
On Robust Optimization
A Unified Approach to Robustness Using a Nonlinear

Scalarizing Functional and Relations to Set Optimization

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

der

Naturwissenschaftlichen Fakultät II

der Martin-Luther-Universität Halle-Wittenberg,

vorgelegt

von Frau Elisabeth Anna Sophia Köbis

geb. am 31.07.1986 in Merseburg

Gutachter:
Frau Prof. Dr. Christiane Tammer (Martin-Luther-Universität Halle-Wittenberg)
Herr Prof. Dr. Akhtar Khan (Rochester Institute of Technology)

Tag der Verteidigung: 19.06.2014



I

Acknowledgements

I wish to thank my advisor Prof. Dr. Christiane Tammer for her guidance and all
the support she has given. I am truly grateful for our inspiring discussions which led to
new ideas and challenging projects that contributed to this thesis. In addition, I would
like to thank Akhtar Khan, Basca Jadamba and Kathrin Klamroth for welcoming me
so warmly to their institutions and providing support. Furthermore, I wish to express
my sincere thanks to Christiane Tammer, Kathrin Klamroth, Anita Schöbel, Jonas Ide
and Daishi Kuroiwa, for our inspiring collaborations have significantly influenced this
thesis. I enjoyed very much the nice working atmosphere at our institute, especially in
our working group, which made it a great pleasure to do research here. I am grateful to
the “Stiftung Theoretische Physik/Mathematik” for supporting this work by providing
a generous travel grant which enabled me to present our projects at conferences and to
collaborate with researchers outside of Halle. It is my great pleasure to offer warm thanks
to my parents who have always supported and encouraged me. Finally, I wish to thank
my husband Markus for his constant support. I feel most fortunate to have you by my
side!



Contents

1 Introduction 1
1.1 Uncertain Scalar Optimization Problems . . . . . . . . . . . . . . . . . . . 3
1.2 Approaches to Uncertain Optimization in the Literature . . . . . . . . . . 4

1.2.1 Stochastic Programming . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Robust Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Vector Optimization and Scalarizing Functionals 8

3 A Unified Approach to Robust Optimization and Stochastic Program-
ming 13
3.1 Discrete Uncertainty Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Weighted Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Deviation Robustness . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Reliable Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.4 Light Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.5 Stochastic Programming . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.6 New Concepts for Robustness . . . . . . . . . . . . . . . . . . . . . 22
3.1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.8 Multiple Objective Counterpart Problems and Relations to Robust

Optimization and Stochastic Programming . . . . . . . . . . . . . 27
3.2 Continuous Compact Uncertainty Set . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Approach 1: Dominance of Functions . . . . . . . . . . . . . . . . . 33
3.2.2 Approach 2: Dominance of Sets . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Reducing the Uncertainty Set . . . . . . . . . . . . . . . . . . . . . 35

4 Relations to Unconstrained Vector Optimization 38

5 Robust Approaches to Vector Optimization 48
5.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Set Order Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 New Concepts for Robustness . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Upper Set Less Ordered Robustness . . . . . . . . . . . . . . . . . 60
5.3.2 Lower Set Less Ordered Robustness . . . . . . . . . . . . . . . . . 69

II



CONTENTS III

5.3.3 Set Less Ordered Robustness . . . . . . . . . . . . . . . . . . . . . 80
5.3.4 Alternative Set Less Ordered Robustness . . . . . . . . . . . . . . . 88
5.3.5 Minmax Less Ordered Robustness . . . . . . . . . . . . . . . . . . 94
5.3.6 Certainly Less Ordered Robustness . . . . . . . . . . . . . . . . . . 99
5.3.7 Possibly Less Ordered Robustness . . . . . . . . . . . . . . . . . . 105
5.3.8 Minmax Certainly Less Ordered Robustness . . . . . . . . . . . . . 107
5.3.9 Further Relationships Between the Concepts . . . . . . . . . . . . . 115

5.4 Robustness vs. Set Optimization . . . . . . . . . . . . . . . . . . . . . . . 121

6 Optimality Conditions 125

7 Conclusions 130



Chapter 1

Introduction

Uncertain data contaminate most optimization problems in various applications ranging
from science and engineering to industry and thus represent an essential component in
optimization. From a mathematical point of view, many problems can be modeled as
an optimization problem and be solved, but in real life, having exact data is very rare
and seems almost impossible. Due to a lack of complete information, uncertain data
can highly affect solutions and thus influence the decision making process. Hence, it is
crucial to address this important issue in optimization theory.

The goal of this work is to provide and study concepts for treating uncertain data in
optimization problems and hence to facilitate a decision maker’s choice when aiming for
a solution that performs well in some sense.

Reasons for uncertain data in optimization problems are measurement and numerical
errors, incomplete information and various future scenarios that are not known prior
to solving a problem. Goerigk [37] distinguishes between microscopic and macroscopic
errors. Microscopic errors comprise the following numerical errors that result from

• limited precision of computations on a computer system;

• approximate solutions obtained when numerical models simplify an equation;

• rounding.

Macroscopic errors consist of a broader variety of errors such as

• forecast errors: As a prominent example, consider weather forecasting. When
not predicted accurately, forecast errors can result in expensive implications, like
redirecting planes, evacuation or flooded areas that could have been avoided if the
weather had been forecasted precisely.

• changing environments: If a solution has been computed or is in the process of being
computed and some of the data change – this is typical in a long-term context – the
computed solution may be no longer feasible or optimal. One example is computing
train schedules: If one train is delayed (for instance due to some weather condition),
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CHAPTER 1. INTRODUCTION 2

then this affects other trains as well, and the timetable would not be feasible or
optimal anymore.

Potential applications of uncertain optimization include supply and inventory man-
agement, since demand and tools needed for the production process can easily be exposed
to uncertain changes. Further examples for uncertain data in optimization problems can
be found in the field of market analysis, share prices, transportation science, timetabling
and location theory.

Two ways of dealing with uncertainties in optimization problems are described in the
literature: Firstly, robust optimization assumes the uncertain parameter to belong to a
given uncertainty set. This approach is very practical in many applications, especially
since one is not troubled to deal with probabilities. One simply puts the values of the
uncertain parameter in consideration that seem likely enough to be attained. Robust
optimization has first been studied by Soyster [92] for linear programming problems and
was later intensely investigated by Ben-Tal, El Ghaoui and Nemirovski, see [8] for an
extensive collection of results.

Secondly, stochastic programming is another conspicuous concept that deals with
uncertain data in optimization problems. We refer to Birge and Louveaux [15] for an
introduction to this field of science. Contrary to robust optimization, stochastic pro-
gramming assumes some knowledge about the probability distribution of the uncertain
parameter. Usually, the problem consists of optimizing the expected value of a cost
function subject to some constraints that have to remain feasible for the solution within
a certain probability. Of course, one particular challenge using this approach is to find
such a probability distribution.

The above mentioned approaches to modeling uncertain data in optimization prob-
lems have thus far been considered fundamentally different. One of our goals in this
work is, however, to present both concepts in a unifying framework, allowing to establish
connections between them.

In addition to discussing robust and stochastic approaches to scalar optimization, i.e.,
where only one objective function is considered, we will present concepts for obtaining
robust solutions of uncertain multi-objective optimization problems.

Optimizing conflicting goals at the same time has been of great interest in the opti-
mization community since the fundamental work by Pareto [82] and Edgeworth [23] and
resulted in the field of multicriteria optimization. The first robust concepts for uncertain
multicriteria optimization problems was introduced by Deb and Gupta [21]. Using an
idea by Branke [16], the authors define robustness as some sensitivity against disturbances
in the decision space. They call a solution to a problem robust if small perturbations in
the decision space result in only small disturbances in the objective space. Additional
research on robust multicriteria optimization was done in [4, 41, 28]. Kuroiwa and Lee
[68] presented the first scenario-based approach by directly transferring the main idea
of robust scalar optimization to multicriteria optimization. This concept was recently
generalized by Ehrgott et al. [25] who implicitly used a set-order relation to define robust
solutions for uncertain multicriteria optimization problems. One of the objectives of this
thesis is to reveal close relations between robust multicriteria optimization problems, as
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defined in [25], and set optimization. Furthermore, using different set order relations,
new concepts for deriving robustness concepts for uncertain vector-valued optimization
will be introduced in Chapter 5.

1.1 Uncertain Scalar Optimization Problems

A deterministic optimization problem is given by

(Q)

min f(x)

s.t. Fi(x) ≤ 0, i = 1, . . . ,m

x ∈ Rn,
(1.1)

with objective function f : Rn → R and m constraints Fi : Rn → R, i = 1, . . . ,m. The
goal is to obtain a solution x0 that minimizes the objective function subject to the given
constraints. Throughout this work the notions optimization and minimization are used
equivalently.

We will now formulate an optimization problem with uncertainties. We denote the
uncertainty set by U ⊂ RN , which is the set of all uncertain parameters. Now let
f : Rn × U → R, Fi : Rn × U → R, i = 1, . . . ,m. Then an uncertain optimization
problem is defined as a parametrized optimization problem

(Q(ξ), ξ ∈ U), (1.2)

where for a given ξ ∈ U the optimization problem (Q(ξ)) is given by

min f(x, ξ)

(Q(ξ)) s.t. Fi(x, ξ) ≤ 0, i = 1, . . . ,m,

x ∈ Rn.
(1.3)

When solving for a solution of the uncertain minimization problem (1.2), it is not known
which value ξ ∈ U is going to be realized. Now the straightforward question that arises
is: How can we deal with such a family of parametrized optimization problems? Clearly,
since we have not specified the structure of the uncertainty set U yet, there may be in-
finitely many optimization problems. The goal of robust optimization as well as stochastic
programming is to convert the family of parametrized optimization problems (1.2) into a
single problem which is then solved in order to obtain a solution that is optimal in some
sense.

We call ξ̂ ∈ U the nominal value, i.e., the value of ξ that we believe is true today. This
may be the value of ξ that we consider the most likely to be attained. The corresponding
nominal problem is denoted by (Q(ξ̂)). The nominal value will be of importance in the
definition of the reliably robust optimization problem in Section 3.1.3.
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1.2 Approaches to Uncertain Optimization in the Literature

In this section, we give an overview of stochastic and robust optimization. As has been
outlined before, these two concepts have been treated in a conceptually different manner
in the literature. In Chapter 3 we will present a unifying methodology for specifying
optimality in this uncertain problem structure.

1.2.1 Stochastic Programming

When using stochastic minimization concepts for dealing with uncertain data, one needs
to assume some knowledge about the probability distribution of the uncertain parameter.
The most common approach is to optimize the expected value of the objective function
(or some cost function) subject to constraints that are required to be satisfied within
a certain probability. If the set of feasible solutions is fixed, the problem consists of
minimizing the expected value of a function f : X × U → R,

min
x∈X

E[f(x, ξ)], (1.4)

where Rn ⊇ X = {x ∈ Rn| ∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m} is the set of feasible
solutions. Here ξ belongs to the probability space (U ,F, P ) with a given probability
measure P . If U is a finite set, then the expected value of the cost function reads

E[f(x, ξ)] =

q∑
k=1

pkf(x, ξk),

where for each ξk ∈ U the probability pk ≥ 0, k = 1, . . . , q,
∑q

k=1 pk = 1 is known.
Numerous extensions of (1.4) are possible and have been proposed in the literature:

For instance, the set of feasible solutions X may be given as a set of constraints of expected
value functions. Another extension of (1.4) is two stage stochastic programming, see
Beale [5], Dantzig [20] and Tintner [97] for early references. Such an approach takes into
account that some knowledge about the uncertainty may be revealed after a decision has
been made on the variable at stage one. Thus, at a second stage, when the realization
of some of the uncertainty is known, the decision maker uses this knowledge to take a
recourse action on the remaining variables. If we again assume that the uncertainty set
U is finite, each scenario ξk ∈ U is associated to a probability pk ≥ 0, k = 1, . . . , q,∑q

k=1 pk = 1. In this situation, a two-stage stochastic counterpart can be formulated as

min
x∈X

ρSP (x) (1.5)

where ρSP (x) := E[Q(x, ξ)] =
∑q

k=1 pkQ(x, ξk). Here, X denotes the feasible set of the
first-stage problem which could, for example, be defined based on the nominal scenario
as X = {x ∈ Rn|Fi(x, ξ̂) ≤ 0, i = 1, . . . ,m}, or as the set of solutions which satisfy the
constraints for every possible realization of the uncertain parameter, X = {x ∈ Rn|∀ ξ ∈
U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m}. The objective is to minimize the expectation of the
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overall cost Q(x, ξ) that involves, for given x ∈ X and known ξ ∈ U , an optimal recourse
action u, i.e., an optimal solution of the second-stage problem

Q(x, ξ) = min f(x, u, ξ)

s.t. u ∈ G(x, ξ).
(1.6)

The second-stage objective function f(x, u, ξ) and the feasible set G(x, ξ) of the second-
stage problem are both parametrized with respect to the stage one solution x ∈ X
and the scenario ξ ∈ U . In terms of the uncertain optimization problem (1.2), we
assume here that the objective function f in (1.2) depends both on the first-stage and
the second-stage variables, i.e., on the nominal cost and the cost of the recourse action.
We hence consider the following specification of problem (1.5) with objective function
ρSP (x, u) :=

∑q
k=1 pkf(x, uk, ξk):

min ρSP (x, u)

s.t. ∀ ξk ∈ U : Fi(x, ξk)− δk(uk) ≤ 0, i = 1, . . . ,m,

(SP ) x ∈ Rn,
uk ∈ G(x, ξk), k = 1, . . . , q,

(1.7)

with compensations δk : Rn → R that depend on the second-stage decisions uk ∈ Rn, k =
1, . . . , q. If we set G(x, ξ) = ∅ in the two-stage stochastic programming formulation (1.7),
we obtain the static model (1.4) as a specification in which the second-stage variables
u ∈ Rn·q are omitted.

Further possible objective functions in stochastic programming include a utility func-
tion

−E(u(f(x, ξ))),

and a Markowitz model
−E(f(x, ξ)) + λVar f(x, ξ)

with λ > 0, where f represents payments of an investment and Var denotes the variance.
For an introduction to stochastic programming and other concepts incorporating

stochastic effects, we refer to [57, 85, 15, 90, 89].

1.2.2 Robust Optimization

If no knowledge about the probability distribution of an uncertain parameter is present,
there is another concept for dealing with uncertain optimization problems called robust
optimization. Robust optimization is an active and relatively new field of science. The
first researcher who studied what is now referred to as robust optimization problems was
Soyster [92] in 1973. He considered robust linear optimization problems with uncertain
constraints by assuming the column vector of the constraint matrix to belong to com-
pact and convex uncertainty sets. In 1976, Falk [29] contributed by investigating linear
programs whose parameters in the objective function are assumed to belong to a con-
vex uncertainty set. He proposed to use a maxmin-approach for the objective function
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and presented optimality criteria that strengthened Soyster’s results. In 1982, Singh [91]
followed this work line.

Neither of them, however, explicitly used the term robustness. The first time the
expression robustness was used in optimization was more than 20 years later by Ben-Tal
and Nemirovski [10, 11, 12] and El-Ghaoui et al. [70]. They propose to treat uncertain
scalar optimization problems by minimizing the worst-case objective function over all
possible realizations of the uncertain parameter.

The traditional scope on robust optimization is built on three assumptions [8]:

A1: The decision variables represent “here and now” decisions, meaning that the uncer-
tain data is only revealed after an optimal decision has been reached.

A2: The decision maker is only responsible for the resulting decision if the uncertain
data belong to the uncertainty set.

A3: Violations of constraints are not tolerated for any ξ ∈ U , thus the constraints are
hard.

Ben-Tal et al. [8] call the resulting problem the robust counterpart to an uncertain
optimization problem (1.2):

(RC) min sup
ξ∈U

f(x, ξ) s.t. ∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m, x ∈ Rn. (1.8)

The crucial assumption of this robust approach consists of supposing that the un-
certain parameter belongs to a set that is given prior to solving the robust counterpart.
Most studies are concerned with finding tractable representations of the robust counter-
part, i.e., simplifying the robust counterpart so it can be solved using algorithms that
are already known.

Consider, for instance, the robust counterpart of an uncertain linear program

min cTx s.t. ∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m,

x ∈ Rn,
(1.9)

where c ∈ Rn is given. The research interest here lies in investigating which cases of
robust counterparts of an uncertain conic problem are computationally tractable, i.e.,
adapt an equivalent formulation that can be processed computationally. Ben-Tal et
al. [8] show that if {x ∈ Rn|∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m} is a computationally
tractable convex cone and if U is given as a convex hull of a finite set of scenarios ξ, then
the robust counterpart (1.9) is computationally tractable.

Deviations from the above assumptions result in different robust counterparts. For
instance, revising Assumption A2 leads to a globalized robust counterpart: This approach
relies on the more realistic possibility that some of the uncertain data may run outside
of the uncertainty set. This approach is based on the assumption that a decision maker
prefers not to obtain

• solutions that are too pessimistic or
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• an infeasible robust counterpart

when using the traditional robust optimization approach. Thus, Ben-Tal et al. [8] propose
to incorporate an uncertainty set for the “typical” data and to control the deterioration
of a solution in case the uncertain data deviate from the uncertainty set. The resulting
model proposed in [8] now reads as follows:

(gRC)

min t s.t. f(x, ξ) ≤ t+ α0 dist(ξ,U),

∀ ξ ∈ U : Fi(x, ξ) ≤ αi dist(ξ,U), i = 1, . . . ,m,

x ∈ Rn,
(1.10)

where dist(ξ,U) := infξ′∈U ||ξ − ξ′|| and αi ∈ R, i = 1, . . . ,m, given. Note that for ξ ∈ U
we have dist(ξ,U) = 0, resulting in the traditional hard constraints. (gRC) is referred
to as globalized robust counterpart [8].

Revising Assumption A1, on the other hand, results in the field of adjustable robust
optimization, introduced in Ben-Tal et al. [9]. This approach proposes that some of
the decision variables are “here and now” variables, while part of the decision variables
may be adjusted at a later stage. Applications of adjustable robust optimization include
uncertain network flow and design problems [1] and circuit design [73]. For an overview
to robust multi-stage decision making, we refer to [8, Chapters 13,15].

Combining the globalized robust counterpart with adjustable robust optimization
leads to the so called comprehensive robust counterpart, as proposed by Ben-Tal et al. [7].

Robust Integer Programming has been intensely studied by Kouvelis and Yu [64].
The authors in [64] also give numerous examples of applications for robust optimization.

Of course, finding an uncertainty set remains a difficult task when modeling such
a problem and ensuring that the solution set be nonempty. In terms of obtaining the
uncertainty set, Brown [17] derives procedures to construct the uncertainty set based on
a decision maker’s attitude toward risk.

More recently, Beck and Ben-Tal [6] studied duality results between the robust coun-
terpart of an uncertain scalar minimization problem and the corresponding optimistic
counterpart, which consists of the problem minimizing the best-case objective function.

Apart from the robust counterpart approach (compare (1.8)), there exist other defi-
nitions of robustness for uncertain scalar optimization problems. These will be discussed
in detail and presented in a unifying framework in Chapter 3. In the following chapter
we will introduce a nonlinear scalarizing functional that will be used to characterize the
objective functions in each discussed robustness concept. Chapter 4 is concerned with
exposing relationships that exist between certain kinds of robust problems and an partic-
ularly chosen unconstrained vector optimization problem. In Chapter 5, we present new
approaches to uncertain vector optimization using set order relations. We derive scalar-
ization and vectorization results to obtain solution procedures for computing solutions of
uncertain multi-objective problems. Finally, Chapter 6 is devoted to deriving optimality
conditions for one of the presented robustness concepts based on abstract subdifferentials
by means of a nonlinear scalarizing functional.



Chapter 2

Vector Optimization and Scalarizing
Functionals

One main part of this thesis is devoted to applying a scalarization technique to multicri-
teria optimization, which allows for robustness concepts as well as stochastic program-
ming to be presented within a unifying framework. Although robustness approaches and
stochastic programming have, for the most part, been considered fundamentally different,
we will demonstrate how these concepts may be obtained by a variation of parameters
involved in a prominent scalarization method. In Chapter 3, we will show how robust and
stochastic scalar optimization problems can be characterized using a nonlinear scalariz-
ing functional. This functional will be discussed in this chapter and important properties
which will be beneficial for our later analysis will be mentioned here.

Throughout this chapter, let Y be a linear topological space, k ∈ Y \ {0} and let
F , B be proper subsets of Y . We suppose that

B + [0,+∞) · k ⊂ B. (2.1)

Under these assumptions, we are now able to introduce the nonlinear scalarizing func-
tional zB,k : Y → R ∪ {+∞} ∪ {−∞} =: R

zB,k(y) := inf{t ∈ R|y ∈ tk −B}. (2.2)

The nonlinear scalarizing approach can now be formulated in the following way:

(Pk,B,F ) inf
y∈F

zB,k(y). (2.3)

Note that the functional zB,k operates in the objective space Y of some (vector-
valued) function f : X → Y , where X is a linear space. When searching for minimal
solutions x ∈ X ⊆ X of f , the functional zB,k can be used to scalarize f . Since the func-
tional’s well-studied properties, mainly monotonicity properties, allow for connections to
vector-valued optimization problems, zB,k may be used to gain minimal solutions of f .

Many well-known scalarization concepts are indeed special cases of this nonlinear
scalarization method which was first introduced by Gerstewitz (Tammer) [33], see also

8
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Gerth (Tammer), Weidner [34], Pascoletti, Serafini [83], Göpfert, Tammer, Zălinescu
[40] and Göpfert, Riahi, Tammer, Zălinescu [39]. Specifically, this scalarization concept
includes, for example, weighted-sums, Tschebyscheff and ε-constraint scalarization. In
order to show that this scalarization method also comprises a large number of differ-
ent models from robust optimization and stochastic programming as specifications, we
present some important notations and preliminaries in this chapter that will be useful
later.

The above problem (Pk,B,F ) has been intensely studied in various works, see, for
instance, [99]. Initially, the scalarizing functional zB,k was used in [34] to prove separation
theorems for not necessarily convex sets.

Monotonicity and continuity properties of zB,k were studied by Gerth (Tammer) and
Weidner in [34], and later in [99, 39]. Further important properties of the functional zB,k,
for example the translation property and sublinearity, were shown in [39]. Applications
of zB,k include coherent risk measures in financial mathematics (see, e.g., Heyde [44]).

In the following chapter it is shown that one may obtain a unifying concept for a
variety of robustness concepts and stochastic programming. Specifically, in Chapter 3 we
show that different concepts of uncertain scalar optimization problems can be described
by means of the functional zB,k and problem (Pk,B,F ) by choosing the parameters B, k
and F accordingly. Later on, we will observe that the well-studied properties of this
scalarizing functional allow for connections to multi-objective optimization. Based on
the interpretation of uncertain scalar optimization problems by means of the nonlinear
scalarizing functional zB,k, we will formulate multiple objective counterparts and observe
that their minimal sets comprise optimal solutions of the considered uncertain scalar
optimization problems.

Before considering numerous properties of the nonlinear scalarizing functional, we
recall some further notations.

Definition 1. Let Y be a linear topological space, D ⊂ Y, D 6= ∅. A functional z : Y → R
is D-monotone, if for

y1, y2 ∈ Y : y1 ∈ y2 −D ⇒ z(y1) ≤ z(y2).

Moreover, z is said to be strictly D-monotone, if for

y1, y2 ∈ Y : y1 ∈ y2 −D \ {0} ⇒ z(y1) < z(y2).

Its domain and epigraph are denoted by

dom z := {y ∈ Y |z(y) < +∞}, epi z := {(y, t) ∈ Y × R|z(y) ≤ t}.

The functional z is said to be proper if dom z 6= ∅ and z does not take the value
−∞. z is lower semi-continuous if epi z is closed. A ⊂ Y is a convex set if
∀ λ ∈ [0, 1], ∀ a1, a2 ∈ A : λa1 + (1 − λ)a2 ∈ A. z is convex on the convex set A if
∀ λ ∈ [0, 1], ∀ a1, a2 ∈ A : z(λa1 +(1−λ)a2) ≤ λz(a1)+(1−λ)z(a2). z is quasiconvex
if

∀ y1, . . . , yp ∈ Y, ∀ λi ∈ [0, 1], i = 1, . . . , p,

p∑
i=1

λi = 1 : z(

p∑
i=1

λiyi) ≤ max{z(y1), . . . , z(yp)}.
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z is called subadditive if ∀ y1, y2 ∈ Y : z(y1 + y2) ≤ z(y1) + z(y2). z is positively
homogeneous if ∀ y ∈ Y, ∀ λ ∈ R, λ ≥ 0 : z(λy) = λz(y). If z is subadditive
and positively homogeneous, then z is sublinear. A set C ⊂ Y is called a cone if
∀ λ ∈ R, λ ≥ 0, ∀ y ∈ C : λy ∈ C. The dual cone to C is denoted by C∗ := {y∗ ∈
Y ∗| ∀ y ∈ C : y∗(y) ≥ 0} and the quasi-interior of C∗ is defined by C# := {y∗ ∈
C∗| ∀ y ∈ C \ {0} : y∗(y) > 0}. A cone C is pointed if C ∩ (−C) = {0}. A cone C is
convex if y1 ∈ C and y2 ∈ C implies that y1 + y2 ∈ C. Finally, the cone C is proper if
C 6= {0} and C 6= Y .

Now we recall the definition of minimal solutions that is used in multi-objective
optimization and then present important properties of the nonlinear scalarizing functional
used in this thesis.

Definition 2. Let Y be a linear topological space, F ⊂ Y, F 6= ∅ and C ⊂ Y a proper
pointed closed convex cone. We call an element y ∈ F C-minimal in F , if

F ∩ (y − (C \ {0})) = ∅. (2.4)

Moreover, if additionally int C 6= ∅, y ∈ F is weakly C-minimal in F , if

F ∩ (y − intC) = ∅. (2.5)

Furthermore, we call an element y ∈ F strictly C-minimal in F , if

(F \ {y}) ∩ (y − C) = ∅. (2.6)

We denote the set of all C-minimal elements in F by Min(F , C \ {0}), the set of all
weakly C-minimal elements in F is denoted by Min(F , intC), and the set of all strictly
C-minimal elements is defined as Min(F , C).

In Chapter 5 we will study maximal points of sets, which are defined as Max(F , Q) :=
Min(F ,−Q) for Q = C \ {0}, Q = intC, Q = C, respectively.

Notice that (2.4) is equivalent to

@ y ∈ F : y ∈ y − C \ {0}.

Furthermore,

(2.5)⇐⇒ @y ∈ F : y ∈ y − intC,

(2.6)⇐⇒ @y ∈ F \ {y} : y ∈ y − C.

If it is clear which cone C is used, we will replace (·, weak, strict) C-minimality by
(·, weak, strict) minimality.

Note that if we set Y = Rk in the above definition and if the ordering cone C is
given by the nonnegative orthant C = Rk= (see the definition below), we obtain the
so called concept of Pareto optimality. In that case, we call elements in the decision
space (·, weakly, strictly) Pareto optimal. It is worth mentioning that this notation is



CHAPTER 2. VECTOR OPTIMIZATION AND SCALARIZING FUNCTIONALS 11

historically not correct, since both Pareto [82] as well as Edgeworth [23] introduced this
approach, compare the brief historic remark in [27]. Nevertheless, we will follow the
notation of Pareto optimality, as it is widely accepted in the literature. We refer to the
books of Ehrgott [24] and Jahn [52, 53] for a detailed introduction to multiple objective
optimization.

For the special case of Y = Rk, we define for y1, y2 ∈ Rk

y1 5 y2 :⇔ yi2 ∈ [yi1,+∞) ∀ i = 1, . . . , k,

y1 ≤ y2 :⇔ y1 5 y2 and y1 6= y2,

y1 < y2 :⇔ yi2 ∈ (yi1,+∞) ∀ i = 1, . . . , k.

Additionally, we define the sets Rk=, R
k
≥, Rk> as follows:

Rk[=/≥/>] := {x ∈ Rk : x[= / ≥ / >]0}.

Furthermore, for the special case F ⊆ Rk, we call the set of minimal solutions
Min(F ,Rk≥) externally stable (see [24, Def. 2.20.]) if for all y ∈ Y \ (Min(F ,Rk≥))

there exists y0 ∈ Min(F ,Rk≥) with y0 ≤ y.
Some of the above properties for the linear topological space Y are now used to

describe connections of monotone scalarizing functionals to multi-objective optimization.

Theorem 1 ([51, Theorem 2.2],[34, Theorem 3.3]). Let Y be a linear topological space,
C ⊂ Y a proper pointed closed convex cone, and F a nonempty subset of Y . Then it
holds:

(i) If there exists a strictly C-monotone functional z : Y → R, where ∀ y ∈ F : z(y0) ≤
z(y) holds, then y0 ∈ Min(F , C \ {0}).

(ii) If there exists a C-monotone functional z : Y → R, where ∀ y ∈ F \{y0} : z(y0) <
z(y), then y0 ∈ Min(F , C \ {0}).

Additionally, if intC 6= ∅ and if there exists a strictly (intC)-monotone functional z :
Y → R where ∀ y ∈ F : z(y0) ≤ z(y), then y0 ∈ Min(F , intC).

Part (i) in Theorem 1 can be found in [34, Theorem 3.3]. A proof of the theorem is
presented in [51, Theorem 2.2].

Theorem 2 below shows that the nonlinear scalarizing functional z = zB,k introduced
in (2.2) satisfies, under quite general assumptions, the properties given in Theorem 1 and
thus immediately connects to minimal solutions in multiple objective optimization.

Theorem 2 ([34, 39]). Let Y be a linear topological space, B ⊂ Y a closed proper set
and D ⊂ Y . Furthermore, let k ∈ Y \ {0} such that (2.1) is satisfied. Then the following
properties hold for z = zB,k:

(a) z is lower semi-continuous.



CHAPTER 2. VECTOR OPTIMIZATION AND SCALARIZING FUNCTIONALS 12

(b) z is convex ⇐⇒ B is convex,
[∀ y ∈ Y, ∀ r > 0 : z(ry) = rz(y)]⇐⇒ B is a cone.

(c) z is proper ⇐⇒ B does not contain lines parallel to k, i.e., ∀ y ∈ Y ∃ r ∈ R : y +
rk /∈ B.

(d) z is D-monotone ⇐⇒ B +D ⊂ B.

(e) z is subadditive ⇐⇒ B +B ⊂ B.

(f) ∀ y ∈ Y, ∀ r ∈ R : z(y) ≤ r ⇐⇒ y ∈ rk −B.

(g) ∀ y ∈ Y, ∀ r ∈ R : z(y + rk) = z(y) + r (translation property).

(h) z is finite-valued ⇐⇒ B does not contain lines parallel to k and Rk −B = Y .

Let furthermore B + (0,+∞) · k ⊂ int B. Then

(i) z is continuous.

(j) ∀ y ∈ Y, ∀ r ∈ R : z(y) = r ⇐⇒ y ∈ rk − bd B,
∀ y ∈ Y, ∀ r ∈ R : z(y) < r ⇐⇒ y ∈ rk − int B.

(k) If z is proper, then z is D-monotone ⇐⇒ B +D ⊂ B ⇐⇒ bd B +D ⊂ B.

(l) If z is finite-valued, then z is strictly D-monotone⇐⇒ B+(D\{0}) ⊂ int B ⇐⇒
bd B + (D \ {0}) ⊂ int B.

(m) Suppose z is proper. Then z is subadditive ⇐⇒ B + B ⊂ B ⇐⇒ bd B+ bd
B ⊂ B.

A proof of the above theorem can be found in [39, Theorem 2.3.1].
The following corollary summarizes the above results for the special case of C being

a proper closed convex cone and k belonging to intC.

Corollary 1 ([39, Corollary 2.3.5.]). Let C be a proper closed convex cone and k ∈
intC. Then z = zC,k, defined by (2.2), is a finite-valued continuous sublinear and strictly
(intC)-monotone functional such that

∀ y ∈ Y, ∀ r ∈ R : z(y) ≤ r ⇐⇒ y ∈ rk − C,

∀ y ∈ Y, ∀ r ∈ R : z(y) < r ⇐⇒ y ∈ rk − intC.

In the following chapter, we will formulate various robustness concepts by means
of the functional zB,k (compare (2.2)) and study the functionals properties based on
Theorem 2.



Chapter 3

A Unified Approach to Robust
Optimization and Stochastic
Programming

As indicated in Chapter 1, uncertainties in optimization lead to a family of parametrized
optimization problems. The goal of robust optimization is to transfer this family of
optimization problems to one optimization problem that produces robust solutions, i.e.,
solutions that perform well in several scenarios, depending on the considered definition
of robustness. Contrary to stochastic optimization, a robust approach does not depend
on a probabilistic structure of the uncertain parameter but relies on an uncertainty set.
Thus, it is assumed that the uncertain parameter ξ belongs to a given uncertainty set U .
Some works are devoted to finding an uncertainty set, e.g., in [17], the author investigates
how one may compute an uncertainty set that represents the decision maker’s attitude
toward risk (see also [13]). Although the issue of finding such a set U is itself a difficult
task, we will presume that the uncertainty set is given.

In this chapter, while focusing on scalar robust problems, we present a concept that
allows for a unifying approach to various definitions of robustness using a nonlinear
scalarizing functional as discussed in Chapter 2. It will further be shown that a stochastic
programming approach also fits into the unifying concept. The results of the following
sections provide new insights into the nature of scalar robust optimization problems,
ranging from continuity properties that are revealed to connections to multi-objective
optimization problems. Furthermore, we will illustrate that new robustness concepts
may be achieved by using a nonlinear scalarizing functional.

Throughout this chapter, we suppose that the minimum of each described optimiza-
tion problem exists.

13
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3.1 Discrete Uncertainty Set

Throughout Section 3.1, we consider the case where the uncertainty set consists of finitely
many elements, i.e., U = {ξ1, . . . , ξq} ⊂ RN . This means that we consider q possible
objective functions f(x, ξ). In the following, we will present several concepts for scalar
robust optimization problems that are known from the literature. It will be shown how
these concepts can be formulated using the nonlinear scalarizing functional discussed
in Chapter 2 by varying the parameters in the objective function and in the set of
feasible solutions. This scalarizing functional possesses interesting properties which will
be revealed to hold as well for the objective functions describing the robustness concepts.
The results in this section are applicable to a wide range of problems, for instance if U
is given by the convex hull of finitely many scenarios ξ, see Section 3.2.3. The following
results, with the exception of the weighted robustness concept, are based on Klamroth,
Köbis, Schöbel and Tammer [59].

3.1.1 Weighted Robustness

The first considered concept for obtaining robust solutions of an uncertain optimization
problem will be referred to as weighted robustness.

Let weights wk > 0, k = 1, . . . , q, be given and consider for the functional ρwRC(x) :=
maxk=1,...,q wkf(x, ξk) the weighted robust counterpart

(wRC)

min ρwRC(x)

s.t. ∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m,

x ∈ Rn.
(3.1)

A feasible solution of problem (wRC) will be called weighted robust. The set of all
feasible weighted robust solutions is denoted by

A := {x ∈ Rn| ∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m}. (3.2)

Such a weighted robust approach to an uncertain optimization problem was proposed by
Sayin and Kouvelis [87, 63] to compute solutions of a vector-valued optimization problem.

For wk = 1, k = 1, . . . , q, this concept coincides with an approach called strict robust-
ness. It was first studied by Soyster [92] who considered linear optimization problems,
i.e., a linear objective function that is minimized over constraints which are described
by a set of linear inequalities. The term robustness, however, was introduced by Ben-
Tal, El Ghaoui, and Nemirovski in [10] who studied robust optimization in numerous
publications, see e.g. [35] for an early contribution and [8] for an extensive collection of
results. A classification of strict robustness within a unifying framework by means of the
nonlinear scalarizing functional zB,k (see (2.2)) is presented in [59].

To obtain a solution that is weighted robust for the uncertain optimization problem
(1.2), the aim is to minimize the weighted worst possible objective function value in
order to yield a solution that performs well even in the weighted worst case scenario. In
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terms of the uncertain constraints given in the problem (1.3), a weighted robust solution
is required to satisfy these constraints in every possible future scenario ξ ∈ U .

In the following theorem it is shown that the nonlinear scalarizing functional zB,k

(see (2.2)) can be used to express the weighted robust optimization problem (wRC)
when embedding the problem in Y = Rq and choosing the involved parameters B, k and
F accordingly.

Theorem 3. Consider for Y = Rq

W :=


w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wq

 , (3.3)

A1 := A, (3.4)
B1 := {y ∈ Y | Wy = 0}, (3.5)

k1 := (w−1
1 , . . . , w−1

q )T , (3.6)

F1 := {(f(x, ξ1), . . . , f(x, ξq))
T | x ∈ A1}. (3.7)

For k = k1, B = B1, condition (2.1) is satisfied and with F = F1, problem (Pk,B,F ) (see
(2.3)) is equivalent to problem (wRC) (see (3.1)) in the following sense:

min{zB1,k1(y)| y ∈ F1} = zB1,k1(y0)

= min{ρwRC(x)| x ∈ A1}
= ρwRC(x0),

with y0 = (f(x0, ξ1), . . . , f(x0, ξq))
T .

Proof. Since wk > 0 for each k = 1, . . . , q, we obtain B1+[0,+∞)·k1 ⊂ B1, and condition
(2.1) is fulfilled. Since k1 ∈ intB1 and B1 is closed, the infimum in the definition of zB1,k1

is finite and attained and the infimum can be replaced by a minimum:

min
y∈F1

zB1,k1(y) = min
y∈F1

min{t ∈ R| y ∈ tk1 −B1}

= min
y∈F1

min{t ∈ R| y − tk1 ∈ −B1}

= min
x∈A1

min{t ∈ R| (f(x, ξ1), . . . , f(x, ξq))
T − t · (w−1

1 , . . . , w−1
q )T ∈ −B1}

= min
x∈A1

min{t ∈ R| (w1f(x, ξ1), . . . , wqf(x, ξq))
T 5 t · (1, . . . , 1)T }

= min{ max
k=1,...,q

wkf(x, ξk)| x ∈ A1}

= min{ρRC(x)| x ∈ A1}.
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Note thatB1 above is equal to Rq=. The matrixW has only been introduced in order to
simplify the representation of the proof of Theorem 3. The vector k1 = (w−1

1 , . . . , w−1
q )

depends on the selection of the weights wi, and thus represents the decision maker’s
preferences toward the different scenarios. For the special case of strict robustness, i.e,
the weighted robust problem (wRC) (see (3.1)) with wk = 1, k = 1, . . . , q, the selection
of k1 symbolizes that all possible objective functions are regarded in parallel and no
objective function is preferred to another one.

Remark 1. Since B1 is a proper closed convex cone and k1 ∈ intB1, the functional
zB1,k1 is continuous, finite-valued, Rq=-monotone, strictly Rq>-monotone and sublinear,
taking into account Corollary 1.

Remark 2. Note that the weighted robustness approach coincides with the weighted
Tschebyscheff scalarization with the origin as reference point. It is well known that the
Tschebyscheff scalarization is a special case of functional zB,k (compare (2.2)), see [99].
Furthermore, Theorem 3 shows that (wRC) (see (3.1)) can be interpreted as a weighted
max-ordering problem as defined in multiple objective optimization, see [24]. This rela-
tionship was also observed by Kouvelis and Sayin [63, 87] where it was used to determine
the nondominated set of discrete bicriteria optimization problems.

3.1.2 Deviation Robustness

The following robustness approach to uncertain optimization will be called deviation ro-
bustness, sometimes it is referred to as minmax regret robustness. This approach takes
into account the best possible objective values for each future scenario, while minimizing
the worst possible objective function value at the same time. The function to be mini-
mized is maxξ∈U (f(x, ξ)−f0(ξ)), where f0(ξ) ∈ R is the optimal value of problem (Q(ξ))
(see (1.3)) for each parameter ξ ∈ U . Analogous to the concept of weighted robustness,
a deviation robust solution should fulfill the constraints for every future scenario ξ ∈ U .
This robustness approach has proven to be very useful in many applications such as
scheduling or location theory, mostly if no uncertainty in the constraints is present. We
refer to [64] for a collection of many applications. The deviation robust counterpart
of (1.2) can now be introduced as

(dRC)

min ρdRC(x)

s.t. ∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m,

x ∈ Rn,
(3.8)

where ρdRC(x) := maxξ∈U (f(x, ξ) − f0(ξ)). Feasible solutions of (dRC) will be called
deviation robust. We denote by

f0 := (f0(ξ1), . . . , f0(ξq))
T (3.9)

the vector consisting of the individual minimizers for the respective scenarios which can
be interpreted as an ideal solution vector. Now we are able to formulate the following
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theorem, which shows that deviation robust solutions may be computed by minimizing
the nonlinear scalarizing functional zB,k for specific parameter values B, k and F :

Theorem 4. Consider for Y = Rq

A2 := A (compare (3.2)), (3.10)

B2 := Rq= − f
0, (3.11)

k2 := 1q = (1, . . . , 1)T , (3.12)

F2 := {(f(x, ξ1), . . . , f(x, ξq))
T | x ∈ A2}. (3.13)

For k = k2, B = B2, condition (2.1) is fulfilled and with F = F2, problem (Pk,B,F ) (see
(2.3)) is equivalent to problem (dRC) (see (3.8)) in the following sense:

min{zB2,k2(y)| y ∈ F2} = zB2,k2(y0)

= min{ρdRC(x)| x ∈ A2}
= ρdRC(x0),

with y0 = (f(x0, ξ1), . . . , f(x0, ξq))
T .

Proof. Since B2 + [0,+∞) · k2 = (Rq= − f
0) + [0,+∞) · 1q ⊂ Rq= − f

0 = B2, condition
(2.1) is satisfied. Moreover,

min
y∈F2

zB2,k2(y) = min
y∈F2

min{t ∈ R| y ∈ tk2 −B2}

= min
x∈A2

min{t ∈ R| (f(x, ξ1), . . . , f(x, ξq))
T − (f0(ξ1), . . . , f0(ξq))

T − t · 1q 5 0q}

= min
x∈A2

min{t ∈ R| (f(x, ξ1), . . . , f(x, ξq))
T − (f0(ξ1), . . . , f0(ξq))

T 5 t · 1q}

= min{max
ξ∈U

(f(x, ξ)− f0(ξ))| x ∈ A2}

= min{ρdRC(x)| x ∈ A2}.

Note that the same result would have been achieved if we had chosen B̃2 := Rq=
to minimize zB̃2,k2 on the set of feasible elements F̃2 := {(f(x, ξ1), . . . , f(x, ξq))

T −
(f0(ξ1), . . . , f0(ξq))

T | x ∈ A2}. This means that (dRC) (see (3.8)) is a shifted version
of (wRC) (see (3.1)) for wk = 1, k = 1, . . . , q. Thus, under the assumption of a finite
uncertainty set U and if the ideal solution vector f0 is known, one can conclude that
(dRC) and (wRC) can be solved in the same complexity range. Notice that it would
be entirely possible to formulate a weighted deviation robust optimization problem, i.e.,
a deviation robust problem with objective function ρdRC(x) := maxk=1,...,q(wkf(x, ξk)−
f0(ξk)).

Some properties of the functional zB2,k2 that are gained from Theorem 2 are presented
in the following remark.
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Remark 3. Using Theorem 2 and the fact that B2 + (0,+∞) · k2 ⊂ intB2, we can
conclude that the functional zB2,k2 is continuous, finite-valued, convex, Rq=-monotone
and strictly Rq>-monotone. Note that for our proposed approach to formulate (dRC) (see
(3.8)), Corollary 1 cannot be applied, since B2 is not a cone in general.

Remark 4. Similar to the case of weighted robustness, the concept of deviation robust-
ness can be described by the Tschebyscheff scalarization, however, not with the origin as
reference point but with the ideal point f0 defined in (3.9) as reference point. This shows
once again the close relationship between these two robustness concepts, see also Kouvelis
and Sayin [63, 87].

3.1.3 Reliable Robustness

The following concept will be called reliable robustness and describes the possibility of
a robust solution to satisfy slightly adapted constraints. Since it sometimes may not
seem realistic for a solution to fulfill all the constraints at the same time or at the cost
of optimality of the objective function, it is proposed here to replace the original hard
constraints Fi(x, ξ) ≤ 0 for each ξ ∈ U , i = 1, . . . ,m, by soft constraints Fi(x, ξ) ≤ δi
for each ξ ∈ U , where δi ∈ R, i = 1, . . . ,m. Note that Assumption A3 (see Chapter 1) is
not required to be satisfied here. The infeasibility tolerances δi are assumed to be given
by the decision maker. However, the original constraints for the nominal value ξ̂ should
be fulfilled, i.e., Fi(x, ξ̂) ≤ 0, i = 1, . . . ,m. Then the reliably robust counterpart of
(1.2) introduced by Ben-Tal and Nemirovski in [12], is proposed in the following way.

(rRC)

min ρrRC(x)

s.t. Fi(x, ξ̂) ≤ 0, i = 1, . . . ,m,

∀ ξ ∈ U : Fi(x, ξ) ≤ δi, i = 1, . . . ,m,

x ∈ Rn,

(3.14)

with ρrRC(x) := maxξ∈U f(x, ξ). A feasible solution of (rRC) is called reliably robust.
Note that strict robustness (i.e., the weighted robust problem (3.1) with wk = 1, k =
1, . . . , q) is a special case of reliable robustness, since both problems are equivalent for
δi = 0 for all i = 1, . . . ,m.

The following theorem describes how the reliably robust problem (rRC) can be ex-
pressed using the nonlinear scalarizing functional zB,k. Since the proof is mostly similar
to that of Theorem 3 with the only exception being the set F3 of feasible solutions and
setting wk = 1, k = 1, . . . , q, the proof is omitted.

Theorem 5. Consider for Y = Rq

A3 := {x ∈ Rn| Fi(x, ξ̂) ≤ 0, ∀ ξ ∈ U : Fi(x, ξ) ≤ δi, i = 1, . . . ,m}, (3.15)
B3 := Rq=, (3.16)

k3 := 1q, (3.17)

F3 := {(f(x, ξ1), . . . , f(x, ξq))
T | x ∈ A3}. (3.18)
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For k = k3, B = B3, condition (2.1) is satisfied and with F = F3, problem (Pk,B,F ) (see
(2.3)) is equivalent to problem (rRC) (see (3.14)) in the following sense:

min{zB3,k3(y)| y ∈ F3}
= zB3,k3(y0)

= min{ρrRC(x)| x ∈ A3}
= ρrRC(x0),

where y0 = (f(x0, ξ1), . . . , f(x0, ξq))
T .

Remark 5. For the special case of strict robustness (i.e., the weighted robust problem
(wRC), (3.1), with wk = 1, k = 1, . . . , q), it holds zB3,k3 = zB1,k1 and the functional
zB3,k3 is again continuous, finite-valued, Rq=-monotone, strictly Rq>-monotone and sub-
linear, taking into account Corollary 1, compare Remark 1.

Remark 6. The concept of reliable robustness is described by the Tschebyscheff scalar-
ization with the origin as reference point and on the basis of a relaxed feasible set, as a
special case of functional zB,k (see (2.2)).

3.1.4 Light Robustness

By considering a variation of the constraints Fi(x, ξ) ≤ δi, where Fi, δi, i = 1, . . . ,m,
are defined as in the definition of the reliably robust optimization problem (rRC) (see
(3.14)), one may wish to minimize these tolerances, which describes the key essence of the
present robustness concept, called light robustness. This approach was first mentioned in
2008 by Fischetti and Monaci in [30] for linear programs with the Γ-uncertainty set intro-
duced by Bertsimas and Sim [14] and generalized to a broader class of uncertain robust
optimization problems by Schöbel [88]. Applications of the concept of light robustness
include timetabling [88, 31] and timetable information [38].

We denote by z0 the optimal value of the nominal problem (Q(ξ̂)), and suppose that
z0 be positive, i.e., z0 > 0. One of our aims consists of providing an upper bound for the
nominal value f(x, ξ̂). Thus, f(x, ξ̂) ≤ (1 + γ)z0, with a given γ ≥ 0. Then the lightly
robust counterpart of (1.2) is defined by

(lRC)

min ρlRC(δ)

s.t. Fi(x, ξ̂) ≤ 0, i = 1, . . . ,m,

f(x, ξ̂) ≤ (1 + γ)z0,

∀ ξ ∈ U : Fi(x, ξ) ≤ δi, i = 1, . . . ,m,

x ∈ Rn,
δi ∈ R, i = 1, . . . ,m,

(3.19)

where ρlRC(δ) :=
∑m

i=1wiδi, with given weights wi ≥ 0, i = 1, . . . ,m,
∑m

i=1wi = 1. A
feasible solution of (lRC) will be called lightly robust.
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The essential observation in the next theorem is the representation of (lRC) (see
(3.19)) by the nonlinear scalarizing functional zB,k (see (2.2)) for a specific choice of the
parameters B,F and k.

Theorem 6. Consider for Y = Rm

B4 := {(δ1, . . . , δm)T |
m∑
i=1

wiδi ≥ 0, δi ∈ R, i = 1, . . . ,m}, (3.20)

k4 := 1m, (3.21)

F4 := {(δ1, . . . , δm)T | ∃ x ∈ Rn : Fi(x, ξ̂) ≤ 0, f(x, ξ̂) ≤ (1 + γ)z0,

∀ ξ ∈ U : Fi(x, ξ) ≤ δi, δi ∈ R, i = 1, . . . ,m}.
(3.22)

For k = k4, B = B4, condition (2.1) is satisfied and with F = F4, problem (Pk,B,F ) (see
(2.3)) is equivalent to problem (lRC) (see (3.19)) in the following sense:

min{zB4,k4(y)| y ∈ F4}
= zB4,k4(y0)

= min{ρlRC(δ)| δ ∈ F4}
= ρlRC(δ0),

where y0 = δ0 = (δ0
1 , . . . , δ

0
m)T .

Proof. In this case, B4 + [0,+∞) ·k4 = {(δ1, . . . , δm)T ∈ Rm|
∑m

i=1wiδi ≥ 0}+ [0,+∞) ·
1m ⊂ B4, and (2.1) is satisfied in Rm. Moreover,

min
y∈F4

zB4,k4(y) = min
y∈F4

min{t ∈ R| y ∈ tk4 −B4}

= min
y∈F4

min{t ∈ R| y − tk4 ∈ −B4}

= min
δ∈F4

min{t ∈ R|
m∑
i=1

wi(δi − t) ≤ 0}

= min
δ∈F4

min{t ∈ R|
m∑
i=1

wiδi ≤ t ·
m∑
i=1

wi︸ ︷︷ ︸
=1

}

= min{
m∑
i=1

wiδi| δ ∈ F4}

= min{ρlRC(δ)| δ ∈ F4}.

Remark 7. Note that B4 is a proper closed convex cone with k4 ∈ intB4 and Corollary
1 implies that the functional zB4,k4 is continuous, finite-valued, Rm= -monotone, strictly
Rm> -monotone and sublinear.
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Remark 8. As the concept of light robustness sums the weighted upper bounds δi, i =
1, . . . ,m, it can be regarded as a weighted sum approach with constraints in the weighted
objective function. Note that the nonlinear scalarizing functional now operates in Rm,
the space of dimension of number of constraints.

3.1.5 Stochastic Programming

Stochastic programming models differ fundamentally from robust optimization models
as they assume some knowledge about the probability distribution of the uncertain data.
For an introduction to stochastic programming we refer to Birge and Louveaux [15] and
Shapiro et al. [89]. Note that since we assume that the uncertainty set U is finite, each
scenario ξk ∈ U now is associated to a probability pk ≥ 0, k = 1, . . . , q,

∑q
k=1 pk = 1. In

this situation, a two stage stochastic counterpart can be formulated as

(SP )

min ρSP (x, u)

s.t. ∀ k ∈ {1, . . . , q} : Fi(x, ξk)− δk(uk) ≤ 0, i = 1, . . . ,m,

x ∈ Rn,
uk ∈ G(x, ξk), k = 1, . . . , q,

(3.23)

with ρSP (x, u) :=
∑q

k=1 pkf(x, uk, ξk) and compensations δk : Rn → R, k = 1, . . . , q,
that depend on the second stage decision uk ∈ Rn, k = 1, . . . , q, and G(x, ξk) ⊂ Rn.

The following reformulation holds and verifies that the above stochastic programming
problem is a special case of minimizing the nonlinear scalarizing functional zB,k (see (2.2))
as well.

Theorem 7. Let in Y = Rq

A5 := {(x, u) := (x, u1, . . . , uq) ∈ Rn×n·q| ∀ ξk ∈ U :

Fi(x, ξk)− δk(uk) ≤ 0, i = 1, . . . ,m, uk ∈ G(x, ξk), k = 1, . . . , q},
(3.24)

B5 := {(y1, . . . , yq)
T |

q∑
k=1

pkyk ≥ 0, yk ∈ R, k = 1, . . . , q}, (3.25)

k5 := 1q, (3.26)

F5 := {(f(x, u1, ξ1), . . . , f(x, uq, ξq))
T | (x, u) ∈ A5}. (3.27)

For k = k5, B = B5, condition (2.1) is satisfied and with F = F5, problem (Pk,B,F ) (see
(2.3)) is equivalent to problem (SP ) (see (3.23)) in the following sense:

min{zB5,k5(y)| y ∈ F5}
= zB5,k5(y0)

= min{ρSP (x, u)| (x, u) ∈ A5}
= ρSP (x0, u0),

where y0 = (f(x0, u0
1, ξ1), . . . , f(x0, u0

q , ξq))
T .
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Proof. We have B5+[0,+∞)·k5 = {(y1, . . . , yq)
T ∈ Rq|

∑q
k=1 pkyk ≥ 0}+[0,+∞)·1m ⊂

B5, thus (2.1) is satisfied. Moreover,

min
y∈F5

zB5,k5(y) = min
y∈F5

min{t ∈ R| y ∈ tk5 −B5}

= min
y∈F5

min{t ∈ R| y − tk5 ∈ −B5}

= min
y∈F5

min{t ∈ R|
q∑

k=1

pk(yk − t) ≤ 0}

= min
y∈F5

min{t ∈ R|
q∑

k=1

pkyk ≤ t ·
q∑

k=1

pk︸ ︷︷ ︸
=1

}

= min{
q∑

k=1

pkyk| y ∈ F5}

= min{ρSP (x, u)| (x, u) ∈ A5}.

Remark 9. B5 is a proper closed convex cone with k5 ∈ intB5 and Corollary 1 im-
plies that the functional zB5,k5 is continuous, finite-valued, Rq=-monotone, strictly Rq>-
monotone and sublinear.

Remark 10. Similar to the case of light robustness, the above formulated two-stage
stochastic programming problem can be interpreted as a weighted sums approach, however,
in this case with a relaxed feasible set. This relation was also observed by Gast [32] in
the multiple objective context. Note that in the special case of the static model (sSP ) (see
(3.33) in Section 3.1.8), the feasible set is in fact identical to the set of strictly robust
solutions A (and not relaxed), see (3.2).

3.1.6 New Concepts for Robustness

This section is devoted to showing that the nonlinear scalarizing functional zB,k (see
(2.2)) is beneficial to obtain new robustness concepts when dealing with uncertain scalar
optimization problems that do not rely on a probabilistic nature. It is well known that the
functional zB,k contains many scalar problems as specifications (see [95]), for instance the
weighted Tschebyscheff scalarization, weighted sum scalarization, or ε-constraint scalar-
ization, see [99] for details. Since these observations are well studied, they serve as a
motivation to investigate whether it is suitable to gather new robustness concepts from
the nonlinear scalarizing functional zB,k as well. This goal will be attained by a variation
of the parameters B and k, as well as a suitable choice of the set of feasible elements F .
As an example, we will introduce a new approach toward robustness, which we will call
ε-constraint robustness. In the following we analyze which type of robust counterpart is
defined by this scalarization. To this end, let some j ∈ {1, . . . , q} and real values εl ∈ R,
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l = 1, . . . , q, l 6= j be given. Then we use the following components for the ε-constraint
scalarization:

k6 = (k1
6, . . . , k

q
6)T where kl6 =

{
1 for l = j,
0 for l 6= j,

(3.28)

B6 := Rq= − b̄, with b̄ = (b̄1, . . . , b̄q)T , b̄l =

{
0 for l = j,
εl for l 6= j,

(3.29)

F6 = {(f(x, ξ1), . . . , f(x, ξq))
T | x ∈ A}. (3.30)

Note that the set of feasible elements F6 coincides with the set of weighted robust fea-
sible points F1 (see (3.7)). With these parameters the functional zB6,k6 describes the
ε-constraint-method (cf. Eichfelder [26] and Haimes, Lasdon, D. A. Wismer [42]). Now
the following reformulation holds.

Theorem 8. Let ε := (ε1, . . . , εq)
T ∈ Rq and j ∈ {1, . . . , q}. Then for k = k6, B = B6,

(2.1) holds and with F = F6, problem (Pk,B,F ) (see (2.3)) is equivalent to

(εRC)

min ρεRC(x)

s.t. ∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m,

x ∈ Rn,
f(x, ξl) ≤ εl, l ∈ {1, . . . , q}, l 6= j,

(3.31)

where ρεRC(x) := f(x, ξj).

Proof. Since B6 + [0,+∞) · k6 ⊂ B6, condition (2.1) is satisfied. Moreover,

min
y∈F6

zB6,k6(y) = min
y∈F6

min{t ∈ R| y ∈ tk6 −B6}

= min
y∈F6

min{t ∈ R| y − tk6 ∈ −B6}

= min
x∈A

min{t ∈ R| f(x, ξj) ≤ t, f(x, ξl) ≤ εl, l ∈ {1, . . . , q}, l 6= j}

= min{ρεRC(x)| x ∈ Rn, ∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m,

f(x, ξl) ≤ εl, l ∈ {1, . . . , q}, l 6= j}.

Note that the above suggested analysis can be performed for any possible variation
of the parameters B, k and F in order to obtain new concepts for robustness. Such
an approach may be beneficial for a decision maker whose attitude has not yet been
represented by a given robustness concept. Thus, a new concept may be developed that
fits the specific needs of the decision maker, taking his preferences in terms of risk and
uncertainty into account.

Theorem 8 shows that the problem of minimizing the nonlinear scalarizing functional
zB,k can be formulated as (εRC) (see (3.31)). We call (εRC) the ε-constraint robust
counterpart of an uncertain optimization problem (Q(ξ)) (see (1.3)). In a next step,
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we analyze its meaning for robust optimization. Contrary to the other robustness con-
cepts, the parameter k6 symbolizes that only a single objective function is minimized.
In particular, the decision maker chooses one specific objective function that he wishes
to minimize subject to the constraints that are known from weighted and deviation ro-
bustness (although other constraints are entirely possible and the above concept may be
adapted to a different set of feasible solutions F). Furthermore, the former objective
functions f(x, ξl), l ∈ {1, . . . , q}, l 6= j, are shifted to and treated as constraints. This
approach is useful if a solution is required with a given nominal quality for every scenario
ξl, l ∈ {1, . . . , q}, l 6= j, while finding the best possible objective value for the remaining
scenario j. When applying this concept, one difficulty is immediately revealed, namely,
how to pick the upper bounds εl for the constraints. If they are chosen too small, the set
of feasible solutions of (εRC) (see (3.31)) may be empty, or the objective function value
f(x, ξj) may not perform well enough. On the other hand, if the bounds εl are chosen too
large, the optimality, meaning the value f(x, ξl), l 6= j, for the other scenarios decreases.
Such a concept may be beneficial for a decision maker whose preferences have not yet
been represented by any other robustness approach or to provide him with a wider choice
of options. In addition, the values ε could, for instance, represent a company’s regulations
or safety standards which have to be satisfied.

Remark 11. Note that we could have included the constraints f(x, ξl) ≤ εl, l ∈ {1, . . . , q},
l 6= j in the set of feasible points F̃6, and we would have obtained

F̃6 = {(f(x, ξ1), . . . , f(x, ξq))
T | x ∈ Rn : f(x, ξl) ≤ εl, l ∈ {1, . . . , q}, l 6= j,

∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m}.

Then we would have obtained B̃6 = Rq= instead of B6 and we would have gained the same

ε-constraint robust problem as above. The set of feasible points F̃6, however, then could
have been smaller and that could possibly introduce some difficulties in implementation.

Finally, some properties of the nonlinear scalarizing functional zB6,k6 are presented
in the following corollary.

Corollary 2. The functional zB6,k6 is lower semi-continuous, convex, Rq=-monotone,
strictly Rq>-monotone, proper, and the properties (f) and (g) from Theorem 2 hold.

Proof. Since condition (2.1) is satisfied, Theorem 2 implies that zB6,k6 is lower semi-
continuous, convex, proper, Rq=-monotone and the properties (f) and (g) hold true.
However, in the case of ε-constraint robustness we have B6 + (0,+∞) · k6 6⊂ intB6 for
B6 given by (3.29). Therefore, we show directly that zB6,k6 is strictly Rq>-monotone:
Consider t ∈ R, y ∈ tk6 − intB6. Then tk6 − y ∈ intB6. Consequently, there exists
an s > 0 such that tk6 − y − sk6 ∈ intB6 ⊂ B6. Using (f) from Theorem 2, we deduce
zB6,k6(y) ≤ t− s < t, and thus

tk6 − intB6 ⊂ {y ∈ Rq| zB6,k6(y) < t}. (3.32)
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Furthermore, for y1 ∈ y2 − Rq>, it holds

y1 ∈ y2 − Rq>
Thm. 2 (f)
⊂ zB6,k6(y2)k6 −B6 − Rq>
⊂ zB6,k6(y2)k6 − intB6

(3.32)
⊂ {y ∈ Rq| zB6,k6(y) < zB6,k6(y2)}.

We conclude that zB6,k6(y1) < zB6,k6(y2) and thus zB6,k6 is strictly Rq>-monotone.

3.1.7 Summary

In the following table, we present a short summary of the presented robustness concepts
and the stochastic programming approach together with the according parameters B, k
and F that are used to formulate the minimization problem (Pk,B,F ) (see (2.3)) with the
nonlinear scalarizing functional zB,k (see (2.2)) as objective function.

Concept B k F

Weighted R. {y| Wy = 0} ki1 = w−1
i

{(f(x, ξ1), . . . , f(x, ξq))
T | x ∈

A1}

Deviation R. Rq=−f
0 1q

{(f(x, ξ1), . . . , f(x, ξq))
T | x ∈

A2}

Reliable R. Rq= 1q
{(f(x, ξ1), . . . , f(x, ξq))

T | x ∈
A3}

Light R. B4 1m F4, see below

Stochastic P. B5 1q
{(f(x, u1, ξ1), . . . , f(x, uq, ξq))

T |
(x, u) ∈ A5}

ε-constraint R. Rq=−b̄ ki6 =

{
1 for i=j
0 for i 6=j

{(f(x, ξ1), . . . , f(x, ξq))
T | x ∈

A6}

We use the following vectors f0, b̄, matrix W and sets B4, B5 and F4.
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W =

w1 . . . 0
...

. . .
...

0 . . . wq

 ,

f0 = (f0(ξ1), . . . , f0(ξq))
T , where f0(ξ) ∈ R is the optimal value of problem (Q(ξ)),

B4 = {(δ1, . . . , δm)T ∈ Rm|
m∑
i=1

wiδi ≥ 0}, wi ≥ 0, i = 1, . . . ,m,
m∑
i=1

wi = 1,

B5 = {(y1, . . . , yq)
T ∈ Rq|

q∑
k=1

pkyk ≥ 0}, pk ≥ 0, k = 1, . . . , q,

q∑
k=1

pk = 1,

b̄ = (b̄1, . . . , b̄q)T , where b̄l =

{
0 for l = j,
εl for l 6= j,

F4 = {(δ1, . . . , δm)T | ∃ x ∈ Rn : Fi(x, ξ̂) ≤ 0, f(x, ξ̂) ≤ (1 + γ)z0,

∀ ξ ∈ U : Fi(x, ξ) ≤ δi, δi ∈ R, i = 1, . . . ,m}.

The following sets A are used:

A1 = A,

A2 = A,

A3 = {x ∈ Rn| Fi(x, ξ̂) ≤ 0, ∀ ξ ∈ U : Fi(x, ξ) ≤ δi, i = 1, . . . ,m},
A5 = {(x, u) := (x, u1, . . . , uq) ∈ Rn×n̄·q| ∀ ξk ∈ U : Fi(x, ξk)− δk(uk) ≤ 0,

i = 1, . . . ,m, uk ∈ G(x, ξk), k = 1, . . . , q},
A6 = A.

Note that we have A5 = A and F5 = F1 in the special case of static stochastic program-
ming (i.e., if the second stage decision variable is omitted).

In Remarks 1 - 9, we have already presented some properties of the objective func-
tion zB,k for each corresponding robustness concept and the stochastic programming
approach. These properties are summarized in the following corollary (compare Theo-
rem 2 and Corollary 1).

Corollary 3. The following properties hold for i = 1, 2, 3, 5 (i = 1: weighted robustness,
i = 2: deviation robustness, i = 3: reliable robustness, i = 5: stochastic programming):
The corresponding functional zBi,ki is continuous, finite-valued, convex, Rq=-monotone
and strictly Rq>-monotone, and the following properties hold:

∀ y ∈ Fi, ∀ r ∈ R : zBi,ki(y) ≤ r ⇐⇒ y ∈ rki −Bi, (P1)

∀ y ∈ Fi, ∀ r ∈ R : zBi,ki(y + rki) = zBi,ki(y) + r, (P2)

∀ y ∈ Fi, ∀ r ∈ R : zBi,ki(y) = r ⇐⇒ y ∈ rki − bd Bi, (P3)

∀ y ∈ Fi, ∀ r ∈ R : zBi,ki(y) < r ⇐⇒ y ∈ rki − int Bi. (P4)
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For i = 1, 3, 5, zBi,ki is even sublinear. For i = 4 (light robustness), the properties (P1)
– (P4) are fulfilled, and zB4,k4 is continuous, sublinear and finite-valued. Additionally,
zB4,k4 is Rm= -monotone and strictly Rm> -monotone. Finally, for i = 6 (ε-constraint ro-
bustness), the properties (P1) – (P4) are satisfied, and zB6,k6 is lower semi-continuous,
convex, Rq=-monotone and strictly Rq>-monotone.

Remark 12. In addition, continuity, translation property and convexity of the functional
zBi,ki were shown for i = 1, . . . , 5. These properties are present in the theory of risk
measures as well and our analysis of robustness hence suggests further research in the
theory of financial mathematics. For i = 1, 3, 4, 5, the functional zBi,ki is sublinear.

3.1.8 Multiple Objective Counterpart Problems and Relations to Ro-
bust Optimization and Stochastic Programming

This section is concerned with analyzing the properties of each nonlinear scalarizing
functional zB,k used for formulating several introduced robustness concepts in terms of
connections to a multi-objective counterpart problem. In particular, the monotonicity
properties of zB,k will play an essential role in the following analysis.

To this end, we connect the uncertain (scalar) optimization problem (Q(ξ), ξ ∈ U),
as introduced in (1.2), see Chapter 1, to its (deterministic) multiple objective counter-
part. The general idea is that every scenario ξ ∈ U yields its own objective function such
that an uncertain scalar optimization problem can be interpreted as a multi-objective
optimization problem, which we will refer to as the multiple objective counterpart. The
vector of objectives in the multiple objective counterpart then contains the objectives
hl(x) := f(x, ξl) for every scenario ξl ∈ U , l = 1, . . . , q. For the concept of light robust-
ness, however, the roles of objective and constraints are reversed. Following the example
of the different robustness concepts discussed above, the multiple objective counterparts
formulated below can be distinguished with respect to the solution set A, i.e., the way
in which the (uncertain) constraints are handled. To simplify the following analysis, in
the case of stochastic programming we focus on a static model.

Connections between scalar robust optimization and multi-objective optimization
have been mentioned by several authors for specific robustness concepts. In Kouvelis
and Sayin [63, 87], this relation is used to develop solution methods to solve bicriteria
optimization problems while focusing on two classical robustness concepts that we re-
ferred to as strict (weighted robustness with weights wk = 1, k = 1, . . . , q) and deviation
robustness (see Sections 3.1.1 and 3.1.2). Kouvelis and Sayin exemplarily solve the bicri-
teria knapsack problem, the bicriteria assignment problem, and the bicriteria minimum
cost network flow problem using an algorithm which is based on solution procedures
originally introduced to solve uncertain scalar optimization problems (see also [64]).

A detailed analysis of the connections between uncertain scalar optimization and
deterministic multi-objective optimization is presented by Ogryczak [78]. He exemplar-
ily mentions expected value optimization and maximum regret models in relation to
weighted sums and achievement scalarizing functions, respectively. Based on this anal-
ysis, new concepts for decisions under risk like symmetric and equitable optimization
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(efficiency) are introduced. These are further extended in Orgyczak and Śliwiński [81],
where weighted ordered weighted averaging aggregation (WOWA) is used to model both
risk aversion and scenario importance. Moreover, in Ogryczak [79, 80], the robust mean
solution concept is related to the tail mean concept and to equitable solutions, among
others. In order to solve robust shortest path and robust minimal spanning tree problems,
Perny et al. [84] propose a multi-objective counterpart where elements are compared with
respect to a generalized Lorenz dominance rule.

A critical evaluation of scalar robust optimization and its corresponding multi-
objective counterpart is presented in Hites et al. [45]. The authors investigate the robust
optimization framework in the context of multicriteria optimization by comparing the two
methodologies. One feature tying both approaches together is the goal to obtain solutions
that are good in all scenarios (in the robust optimization framework), or in all criteria
(for the multi-objective counterpart, respectively). The authors in [45] discuss how both
approaches bear a lot of complexity, since usually in real life problems, conflicting goals
require the need to compromise. In that regard, robust and deterministic multi-objective
optimization have a lack of an optimality notion in common: In robust optimization, it
seems to be rare that a solution is optimal for all given scenarios. The same applies to
multicriteria optimization: Due to a lack of a total order in Rq, solutions are compared
with respect to the natural ordering cone Rq≥. The authors in [45] conclude, however, that
both approaches should not be confused, as Pareto optimality cannot replace comparing
solutions according to one just scenario in terms of robustness. However, as will be
seen below, there certainly is a strong relation from a theoretical point of view. Iancu
and Trichakis [47] argue that the traditional robust optimization approach, namely the
weighted robust counterpart (3.1) with wk = 1, k = 1, . . . , q, may produce solutions that
are not Pareto optimal for the corresponding multi-objective problem. In fact, as will be
seen below, a uniqueness assumption on a solution ensures that this solution is Pareto
optimal for the multi-objective counterpart.

From the stochastic programming perspective, a multiple objective counterpart for
a two-stage stochastic programming problem was introduced in Gast [32] and used to
interrelate stochastic programming models with the concept of recoverable robustness, see
Stiller [94]. We will in the following focus on the static stochastic programming approach,
such that the second stage decision uk, k = 1, . . . , q, may be omitted and we use the
set of feasible solutions A5 := A (compare (3.2)). A static stochastic counterpart is
formulated as

(sSP )

min ρsSP (x)

s.t. ∀ ξk ∈ U : Fi(x, ξk) ≤ 0, i = 1, . . . ,m,

x ∈ Rn,
(3.33)

with ρsSP (x, u) :=
∑q

k=1 pkf(x, ξk).
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Consider

h(x) :=

h1(x)
...

hq(x)

 :=

f(x, ξ1)
...

f(x, ξq)

 . (3.34)

Recall from (3.2) (see also Section 3.1.7) that

A1 = A2 = A5 = A6 = A = {x ∈ Rn| ∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m}.

Then we introduce the multiple objective strictly robust counterpart to (Q(ξ), ξ ∈
U) by

(RC ′) Min(h[A1],Rq≥), (3.35)

where h[A1] = F1 (see (3.7)).
Similarly, recall from (3.15) that

A3 := {x ∈ Rn| Fi(x, ξ̂) ≤ 0, ∀ ξ ∈ U : Fi(x, ξ) ≤ δi, i = 1, . . . ,m}.

We propose the multiple objective reliably robust counterpart to (Q(ξ), ξ ∈ U) as

(rRC ′) Min(h[A3],Rq≥), (3.36)

where h[A3] = F3 (see formula (3.18)).
Now let us introduce a multiple objective counterpart that corresponds to the lightly

robust counterpart (lRC) (see (3.19)). Let F4 be defined by (3.22), i.e.,

F4 ={(δ1, . . . , δm)T | ∃ x ∈ Rn : Fi(x, ξ̂) ≤ 0, f(x, ξ̂) ≤ (1 + γ)z0,

∀ ξ ∈ U : Fi(x, ξ) ≤ δi, δi ∈ R, i = 1, . . . ,m}.

We define the multiple objective lightly robust counterpart to (Q(ξ), ξ ∈ U) by

(lRC ′) Min(F4,Rm≥ ). (3.37)

In the following corollary, the monotonicity properties of the functional zBi,ki , i =
1, . . . , 6, that represent the respective robustness approaches, are used to display rela-
tionships between the scalar problem (Pki,Bi,Fi

) and the set of minimal solutions
Min(h[Ai],Rq≥). It implies that problem (Pki,Bi,Fi

), i = 1, 2, 5, 6 ((Pk3,B3,F3), (Pk4,B4,F4),
respectively) is a scalarization of the multiple objective counterpart (RC ′) (see (3.35))
((rRC ′) (see (3.36)), (lRC ′), (see (3.37)), respectively), taking into account Theorem 1
together with Corollaries 2 and 3.

Corollary 4. For i = 1, 2, 5, 6 (i = 1: weighted robustness, i = 2: deviation robustness,
i = 5: static stochastic programming, i = 6: ε-constraint robustness), it holds:

[∀ y ∈ Fi \ {y0} : zBi,ki(y0) < zBi,ki(y)] =⇒ y0 ∈ Min(h[A1],Rq≥),

[∀ y ∈ Fi : zBi,ki(y0) ≤ zBi,ki(y)] =⇒ y0 ∈ Min(h[A1],Rq>).
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In terms of reliable robustness (i = 3), we have

[∀ y ∈ F3 \ {y0} : zB3,k3(y0) < zB3,k3(y)] =⇒ y0 ∈ Min(h[A3],Rq≥),

[∀ y ∈ F3 : zB3,k3(y0) ≤ zB3,k3(y)] =⇒ y0 ∈ Min(h[A3],Rq>).

For light robustness (i = 4), we conclude

[∀ y ∈ F4 \ {y0} : zB4,k4(y0) < zB4,k4(y)] =⇒ y0 ∈ Min(F4,Rm≥ ),

[∀ y ∈ F4 : zB4,k4(y0) ≤ zB4,k4(y)] =⇒ y0 ∈ Min(F4,Rm> ).

The above analysis shows that by using the nonlinear scalarizing functional zB,k, con-
nections between scalar robust optimization problems and a multi-objective counterpart
are given in a very natural way. Naturally, the finally chosen robust solution will vary
on the concept of robustness which a decision maker chooses due to his preferences. We
argue that there may exist even more scalar robustness concepts which have yet to be
determined and which the decision maker may be unaware of. If only following one ap-
proach, he may lose solutions that would have suited him but were not represented by a
particular concept. Therefore, it seems reasonable to solve a multi-objective counterpart
and let the decision maker choose appropriate solutions.

We illustrate the above results in the following example, which is based on [62, Ex-
ample 4.1].

Example 1. We introduce the uncertain optimization problem

(Q(ξ)) min
x∈R2

f(x, ξ), (3.38)

where ξ ∈ U := {0, 1} and f(x, ξ) := 1
2x

T (x + 2c(ξ)) + 3 with c(ξ) := (1 + ξ, 1 − ξ)T .
To keep the example as simple as possible, (Q(ξ)) does not involve any constraints. The
corresponding bicriteria optimization problem reads

(RC ′) Min(f [R2],R2
≥) (3.39)

with

f1(x) := f(x, ξ1) =
1

2
xT (x+ 2c(ξ1)) + 3,

f2(x) := f(x, ξ2) =
1

2
xT (x+ 2c(ξ2)) + 3.

One can easily find that

x0
1 = argminx∈R2 f(x, 0) = (−1,−1)T , x0

2 = argminx∈R2 f(x, 1) = (−2, 0)T

are the two solutions of the uncertain problems (Q(ξ)) for ξ = ξ1 and ξ = ξ2. The
respective function values are

f0(ξ1) = min
x∈R2

f(x, 0) = 2, f0(ξ2) = min
x∈R2

f(x, 1) = 1.
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The weighted robust counterpart of problem (Q(ξ)) with weights wk = 1, k = 1, . . . , q,
reads

min
x∈R2

max
ξ∈U

f(x, ξ) = min
x∈R2

max
ξ∈U

(
1

2
xT (x+ 2c(ξ)) + 3) = 2

with the strictly robust solution x0
sr = (−1,−1)T . The function values are

fsr =

(
f(xsr, 0)
f(xsr, 1)

)
=

(
2
2

)
.

Thus, from Corollary 4, we have that xsr is Pareto optimal for the multi-objective opti-
mization problem (RC ′) (see (3.39)). For the deviation robust optimization problem we
find the solution

xdr = argminx∈R2 max
ξ∈{0,1}

{f(x, 0)− f0(0), f(x, 1)− f0(1)}

= argminx∈R2 max
ξ∈{0,1}

{f(x, 0)− 2, f(x, 1)− 1}

=

(
−3

2
−1

2

)
.

The according function values are

fdr =

(
f(xdr, 0)
f(xdr, 1)

)
=

(
9
4
5
4

)
.

Now let j = 1 and choose ε2 = 5
4 . Then the solution xdr of the deviation robust problem

simultaneously is the solution of the ε-constraint robust problem with function values
denoted by fε2 . If, on the other hand, one takes j = 2 and chooses ε1 = 11

4 , the solution
of the ε-constraint problem is

xε1 = argminx∈R2, f(x,0)≤ 11
4
f(x, 1) =

(
−
√

3
2 − 1√
3

2 − 1

)
≈
(
−1.866
−0.134

)
.

The function values here are

fε1 =

(
11
4

11
4 −
√

3

)
≈
(

2.75
1.01795

)
.

Figure 3.1 visualizes the function values fsr of the strictly robust solution xsr, the function
values fdr of the deviation robust solution xdr and, respectively, the values fεi , i = 1, 2,
of the ε-constraint robust points xεi , i = 1, 2. It can be seen that the solutions of the
different robust optimization problems belong to the set of Pareto optimal points of the
problem (RC ′) (see (3.39)).
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1 2 3 4

1

2

3

f∗(ξ1) ε1

f∗(ξ2)

ε2

fsr

fdr = f ε2
f ε1

f(x, ξ1)

f(x, ξ2)

Figure 3.1: Pareto optimal solutions of problem (RC ′) (see (3.39)) in the objective space
with the function value fsr of the strictly robust solution, function value fdr of the
deviation robust solution, and the values fεi , i = 1, 2 of the ε-constraint robust point
xεi , i = 1, 2. f0(ξi) ∈ R are the optimal values of problem (Q(ξi)) for ξi ∈ U , i = 1, 2.

3.2 Continuous Compact Uncertainty Set

This section is concerned with examining how the unifying approach for robustness and
stochastic programming that is presented above may be extended to continuous compact
uncertainty sets U ⊂ RN . So far, we have studied the special case of discrete uncertainty
sets U = {ξ1, . . . , ξq} and were able to characterize robust and stochastic optimization
problems by minimizing a nonlinear scalarizing function zB,k, which resulted in choosing
the involved parameters B, k and the set of feasible solutions F in a particular way. In
order to extend this approach to more general, namely compact uncertainty sets, we
present two approaches. First, we suggest a so called dominance of functions, which
is a rather direct extension from the case of finite uncertainty sets. It will be shown that
a robust optimization problem can be expressed using the functional zB,k with a decision
variable y = f(x, ξ). The idea is, similar to the finite approach, that each parameter ξ ∈ U
yields its own objective function f(x, ξ). The second approach deals with dominance
of sets and suggests that all possible objective values are regarded as a set if solution
x is chosen. Specifically, we propose the set Ax := {f(x, ξ)| ξ ∈ U} =: fU (x). In
the following, both approaches will be exemplarily illustrated for the concept of strict
robustness: For f : Rn ×U → R, Fi : Rn ×U → R, i = 1, . . . ,m, the strictly robust
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counterpart is given as

(RC)

min ρRC(x)

s.t. ∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m,

x ∈ Rn,
(3.40)

where ρRC(x) := supξ∈U f(x, ξ) and U ⊂ RN is a compact set. The following Sections
3.2.1 and 3.2.2 are based upon [60], a joint work with K. Klamroth, A. Schöbel and Chr.
Tammer.

3.2.1 Approach 1: Dominance of Functions

Throughout this subsection, let Y be the space of all continuous functions H : U → R.
We define for a given x ∈ Rn the function Hx ∈ Y, Hx : U → R as

Hx(ξ) := f(x, ξ).

The canonical ordering cone in Y is defined by

Y + := {H ∈ Y | ∀ ξ ∈ U : H(ξ) ≥ 0}.

Furthermore, throughout this subsection, we suppose that intY + 6= ∅, which implies
that Y + 6= ∅. We need to ensure that these sets are not empty such that they can be
used in the formulation of the nonlinear scalarizing functional zB,k (see (2.2)).

The set of feasible solutions in the objective space Y is denoted by

F7 := {Hx ∈ Y | x ∈ A}, (3.41)

where A is given by (3.2).

Theorem 9. Consider
B7 := Y +, (3.42)

k7 ≡ 1 := {k7(ξ) ∈ Y | ∀ ξ ∈ U : k7(ξ) = 1}. (3.43)

For k = k7, B = B7, condition (2.1) is satisfied and with F = F7, problem (Pk,B,F ) (see
(2.3)) is equivalent to problem (RC) (see (3.40)) in the following sense:

(i) For all y ∈ F7 there exists x ∈ A such that zB7,k7(y) = ρRC(x).

(ii) For all x ∈ A there exists y ∈ F7 such that zB7,k7(y) = ρRC(x).
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Proof. Since B7 +[0,+∞)·k7 = Y + +[0,+∞)·k7 ⊂ Y + = B7, condition (2.1) is satisfied.
Now consider a pair y ∈ F7, x ∈ A with y = Hx. Then

zB7,k7(y) = zB7,k7(Hx) = inf{t ∈ R| Hx ∈ tk7 −B7}
= inf{t ∈ R| Hx − tk7 ∈ −B7}
= inf{t ∈ R| ∀ ξ ∈ U : Hx(ξ) ≤ tk7}
= inf{t ∈ R| ∀ ξ ∈ U : f(x, ξ) ≤ t}
= sup

ξ∈U
f(x, ξ)

= max
ξ∈U

f(x, ξ) (3.44)

= ρRC(x).

Note that the maximum in (3.44) is attained because f(x, ·) = Hx(·) ∈ Y , i.e., Hx is
continuous in ξ ∈ U for every x ∈ Rn on a compact set U .

(i) Let y ∈ F7. Hence there exists x ∈ A with y = Hx. We conclude zB7,k7(y) =
ρRC(x).

(ii) Vice versa, if x ∈ A we define y := Hx ∈ Y and again obtain zB7,k7(y) = ρRC(x).

Some properties of the nonlinear scalarizing functional zB7,k7 are collected in the
following remark, which remains stated but unproven for it follows directly from the
properties of B7 and k7 as a consequence of Theorem 2.

Remark 13. Since B7 = Y + is a proper closed convex cone and k7 ∈ intB7, the func-
tional zB7,k7 is continuous, finite-valued, Y +-monotone, strictly (intY +)-monotone and
sublinear, taking into account Corollary 1.

3.2.2 Approach 2: Dominance of Sets

Let Z be the set of all subsets on R. We denote by Ax := {f(x, ξ)| ξ ∈ U} =: fU (x) ∈ Z
the image of the mapping f(x, ·) under U . Note that Ax ⊆ R is a (maybe unbounded)
interval in case that f(x, ·) is a continuous function. Furthermore, we define a relation
on a set A ∈ Z for some r ∈ R in the following way:

A ≤ r :⇐⇒ ∀ a ∈ A : a ≤ r.

Now the canonical ordering cone in Z is given by

Z+ := {A ∈ Z| A ≥ 0} (3.45)

We denote the set of feasible solutions in the objective space Z by

F8 := {Ax ∈ Z| x ∈ A}, (3.46)

where A is given by (3.2).
Now we are able to formulate the following theorem.
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Theorem 10. Consider
B8 := Z+, (3.47)

k8 = 1. (3.48)

For k = k8, B = B8, condition (2.1) is satisfied and with F = F8, problem (Pk,B,F ) (see
(2.3)) is equivalent to problem (RC) (see (3.40)) in the following sense:

(i) For all y ∈ F8 there exists x ∈ A such that zB8,k8 = ρRC(x).

(ii) For all x ∈ A there exists y ∈ F8 such that zB8,k8 = ρRC(x).

Proof. Because B8 + [0,+∞) · k8 = Z+ + [0,+∞) · k8 ⊂ Z+ = B8, (2.1) holds true. Now
consider a pair y ∈ F8, x ∈ A with y = Ax. Then

zB8,k8(y) = zB8,k8(Ax) = inf{t ∈ R| Ax ∈ tk8 −B8}
= inf{t ∈ R| Ax − tk8 ∈ −B8}
= inf{t ∈ R| Ax ≤ t}
= inf{t ∈ R| ∀ ξ ∈ U : f(x, ξ) ≤ t}
= sup

ξ∈U
f(x, ξ)

= ρRC(x).

(i) Let y ∈ F8. Thus there there is an x ∈ A with y = Ax. Hence we conclude
zB8,k8(y) = ρRC(x).

(ii) Let x ∈ A and we define y := Ax ∈ Z and again we conclude zB8,k8(y) = ρRC(x).

Theorem 10 verifies that the nonlinear scalarizing functional zB,k may be used to
characterize the strictly robust optimization problem (RC) (see (3.40)) for a compact
uncertainty set U when using a set approach.

Remark 14. Since B8 = Z+ is a proper closed convex cone and k8 ∈ intB8, Corollary
1 implies that the functional zB8,k8 is continuous, finite-valued, Z+-monotone, strictly
(intZ+)-monotone and sublinear.

3.2.3 Reducing the Uncertainty Set

In this subsection, we will show that under a quasiconvexity assumption on f(x, ·) for
x ∈ Rn, robust counterparts with an uncertainty set U as the convex hull of finitely many
scenarios ξ can be reduced to a simple robust optimization problem for which results from
Section 3.1 hold for the specific uncertainty set Ũ = {ξ1, . . . , ξq}. Note that the robust
problems (dRC), (rRC) and (lRC) given by (3.8), (3.14) and (3.19), were introduced for
finite uncertainty sets Ũ := {ξ1, . . . , ξq}, but their definitions may easily be extended to
the case when the uncertainty set is compact. First we mention the following theorem.
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Theorem 11 ([12]). Let Ũ := {ξ1, . . . , ξq}, U := conv(Ũ), the convex hull of Ũ . Assume
that f : Rn × U → R and Fi : Rn × U → R, i = 1, . . . ,m are quasiconvex in ξ ∈ U for
each x ∈ Rn. Then it holds maxξ∈U f(x, ξ) = max

ξ∈Ũ f(x, ξ) and for every x ∈ Rn

∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m ⇐⇒ ∀ ξ ∈ Ũ : Fi(x, ξ) ≤ 0, i = 1, . . . ,m.

Proof. Because U := conv(Ũ), ξ ∈ U can be expressed by ξ =
∑q

k=1 λkξk for ξk ∈ Ũ , and
λk ∈ [0, 1], k = 1, . . . , q,

∑q
k=1 λk = 1. It holds

max
ξ∈U

f(x, ξ) = min{t ∈ R| ∀ ξ ∈ U : f(x, ξ) ≤ t}

= min{t ∈ R| ∀ λk ∈ [0, 1], k = 1, . . . , q,

q∑
k=1

λk = 1 :

f(x,

q∑
k=1

λkξk) ≤ max{f(x, ξ1), . . . , f(x, ξq)} ≤ t}

= max
ξ∈Ũ

f(x, ξ).

The second part of the theorem can be proved in the exact same way.

Now we consider the strictly robust optimization problem (RC) given in (3.40). We
denote the strictly robust optimization problem with uncertainty set Ũ = {ξ1, . . . , ξq} by
(RC(Ũ)), while the strictly robust optimization problem with U = conv(Ũ) is denoted
by (RC(U)). Using Theorem 11 together with Corollary 3 we obtain the following result.

Corollary 5. Let Ũ := {ξ1, . . . , ξq}, U := conv(Ũ). Assume that

f : Rn × U → R

and
Fi : Rn × U → R, i = 1, . . . ,m

are quasiconvex in ξ ∈ U for every x ∈ Rn. Let F1 be defined by the set of feasi-
ble solutions (3.7). If x0 solves (RC(U)), then y(x0) := (f(x0, ξ1), . . . , f(x0, ξq))

T ∈
Min(F1,Rq>). If x0 is a unique solution of the strictly robust problem (RC(U)), then
y(x0) := (f(x0, ξ1), . . . , f(x0, ξq))

T ∈ Min(F1,Rq≥).

For the deviation robust optimization problem (3.8), we obtain the following conclu-
sion. Note that in order to distinguish between the different problems with respective
uncertainty sets, we denote by (dRC(U)) ((dRC(Ũ), respectively) the deviation robust
problem with uncertainty set U (Ũ , respectively).

Corollary 6. Let Ũ := {ξ1, . . . , ξq}, U := conv(Ũ). Assume that

g : Rn × U → R
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and
Fi : Rn × U → R, i = 1, . . . ,m

are quasiconvex in ξ, where g(x, ξ) := f(x, ξ) − f0(ξ). Let F1 be defined by the set of
feasible solutions (3.7). If x0 solves (dRC(U)), then y(x0) := (f(x0, ξ1), . . . , f(x0, ξq))

T ∈
Min(F1,Rq>). If x0 is a unique solution of the deviation robust problem (dRC(U)), then
y(x0) := (f(x0, ξ1), . . . , f(x0, ξq))

T ∈ Min(F1,Rq≥).

Results analogous to the above conclusions for some of the before mentioned ro-
bustness concepts are described below. In the case of reliable robustness, the analysis
is strongly related to Corollary 5. We denote the reliably robust optimization prob-
lem (compare (3.14)) with uncertainty set U (Ũ , respectively) by (rRC(U)) ((rRC(Ũ)),
respectively).

Corollary 7. Let Ũ := {ξ1, . . . , ξq}, U := conv(Ũ). Assume that f : Rn × U → R and
Fi : Rn × U → R, i = 1, . . . ,m are quasiconvex in ξ ∈ U for every x ∈ Rn. Let F3

be defined by the set of feasible solutions (3.18). If x0 solves (rRC(U)), then y(x0) :=
(f(x0, ξ1), . . . , f(x0, ξq))

T ∈ Min(F3,Rq>). If x0 is a unique solution of the reliably robust
problem (rRC(U)), then y(x0) := (f(x0, ξ1), . . . , f(x0, ξq))

T ∈ Min(F3,Rq≥).

Below we denote by (lRC(U)) ((lRC(Ũ)), respectively) the lightly robust optimiza-
tion problem (see (3.19)) with uncertainty set U (Ũ , respectively).

Corollary 8. Let Ũ := {ξ1, . . . , ξq}, U := conv(Ũ). Assume that f : Rn × U → R and
Fi : Rn × U → R, i = 1, . . . ,m are quasiconvex in ξ ∈ U for every x ∈ Rn. Since
for the lightly robust approach, the uncertainty is only reflected within the constraints,
we conclude that (lRC(U)) and (lRC(Ũ)) are equivalent, such that their solution sets
coincide.

In this chapter, we presented a unifying framework for robust optimization by means
of a nonlinear scalarizing functional. We first considered finite uncertainty sets and then
extended our research to compact-valued uncertainty sets. The analysis naturally led
to a multi-objective counterpart problem. Finally, we provided connections between
both approaches in case the objective function in the considered robustness concept is
quasiconvex in the uncertain parameter ξ ∈ U .

The research conducted in this chapter inspires us to study interrelations between
robust scalar problems and an unconstrained vector-valued optimization problem, which
will be the main topic in the following chapter.



Chapter 4

Relations Between Scalar Robust
Problems and Unconstrained
Multicriteria Optimization Problems

In Chapter 3, we showed that by using a nonlinear scalarizing functional optimal elements
of certain kinds of robust optimization problems belong to the set of weakly Pareto
optimal points of a constrained multi-objective optimization problem. Under uniqueness
assumptions, these solutions are even Pareto optimal. Now we show that solutions of
scalar robust optimization problems belong to the set of weakly Pareto optimal solutions
of a particularly chosen unconstrained vector-valued optimization problem.

To this end, let U := {ξ1, . . . , ξq} ⊆ RN be again a finite uncertainty set and let
ξ ∈ U be an uncertain parameter that can take on q different values. Furthermore, let
f : Rn × U → R and Fi : Rn × U → R, i = 1, . . . ,m.

We introduce the unconstrained multi-objective optimization problem

(RCu) Min(h[Rn],Rq+m·q≥ ), (4.1)

where h(x) := (f(x, ξ1), . . . , f(x, ξq), F1(x, ξ1), . . . , Fm(x, ξq))
T .

We call (RCu) the vector-valued unconstrained counterpart of an uncertain optimiza-
tion problem (Q(ξ)) (see (1.3)).

In this chapter, we even show that unique solutions of scalar robust optimization
problems are Pareto optimal solutions to problem (RCu).

Steuer [93] observed that solutions of constrained scalar optimization problems are
weakly Pareto optimal (and, under uniqueness assumptions to the solution, Pareto opti-
mal) for a vector-valued optimization problem if the constraints of the scalar problem are
added as further elements to the vector of objectives of the vector-valued problem and
are hence treated as additional objective functions. Chankong and Haimes [18] showed
this result for the ε-constraint optimization problem. For a summary of this concept
applied to more types of optimization problems, see [61]. In the following, we extend
this result to several definitions of robust optimization problems. The results presented
within this chapter are based on Köbis [62].

38
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In the following we show that the set of weakly Pareto optimal elements of the
multi-objective problem (RCu) (see (4.1)) comprises all solutions of the weighted robust
problem (wRC) (see (3.1)).

Theorem 12. Consider the weighted robust optimization problem (wRC) (see (3.1)) and
let wj > 0, j = 1, . . . , q, U = {ξ1, . . . , ξq}, f : Rn × U → R and Fi : Rn × U → R, i =
1, . . . ,m. If x0 is a solution of the weighted robust optimization problem (wRC), then
x0 is weakly Pareto optimal for the unconstrained multi-objective optimization problem
(RCu) (see (4.1)).

Proof. Let x0 ∈ Rn be a solution of (wRC) (see (3.1)), that means

∀ k = 1, . . . , q : wkf(x0, ξk) ≤ max
l=1,...,q

wlf(x0, ξl) ≤ max
p=1,...,q

wpf(x, ξp) (4.2)

for all x ∈ Rn that satisfy the constraints Fi(x, ξ) ≤ 0 for every ξ ∈ U and i = 1, . . . ,m.
Suppose that x0 is not weakly Pareto optimal for (RCu) (see (4.1)), i.e., there exists
x ∈ Rn such that 

f(x, ξ1)
. . .

f(x, ξq)
F1(x, ξ1)
. . .

Fm(x, ξq)

 <



f(x0, ξ1)
. . .

f(x0, ξq)
F1(x0, ξ1)

. . .
Fm(x0, ξq)

 . (4.3)

Because x0 is feasible for (wRC), it follows for each ξ ∈ U : Fi(x, ξ) < Fi(x
0, ξ) ≤

0, i = 1, . . . ,m, therefore x is feasible for (wRC). The first q inequalities in (4.3) are a
contradiction to x0 being optimal for (wRC), as stated in (4.2).

Furthermore, we obtain the following result:

Theorem 13. Consider the weighted robust optimization problem (wRC) (see (3.1))
and let wj > 0, j = 1, . . . , q, U = {ξ1, . . . , ξq}, f : Rn × U → R and Fi : Rn × U →
R, i = 1, . . . ,m. If x0 is the unique solution of the weighted robust optimization problem
(wRC), then x0 is Pareto optimal for the unconstrained multi-objective optimization
problem (RCu) (see (4.1)).

Proof. Let x0 ∈ Rn be the unique solution of (wRC) (see (3.1)), i.e., it holds

∀ k = 1, . . . , q : wkf(x0, ξk) ≤ max
l=1,...,q

wlf(x0, ξl) < max
p=1,...,q

wpf(x, ξp) (4.4)

for all x ∈ Rn fulfilling the constraints for all ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m. Note
that the strict inequality in (4.4) follows from x0 being the unique solution of problem
(wRC). Suppose that x0 is not Pareto optimal for (RCu) (see (4.1)). Thus, there exists
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an x ∈ Rn with 

f(x, ξ1)
. . .

f(x, ξq)
F1(x, ξ1)
. . .

Fm(x, ξq)

 ≤


f(x0, ξ1)
. . .

f(x0, ξq)
F1(x0, ξ1)

. . .
Fm(x0, ξq)

 . (4.5)

Since x0 is feasible for the weighted robust optimization problem (wRC), it follows
together with (4.5) that for all ξ ∈ U : Fi(x, ξ) ≤ Fi(x0, ξ) ≤ 0, i = 1, . . . ,m. Thus, x is
feasible for (wRC), too. Hence, we arrive at a contradiction to our assumption (4.4).

Theorem 13 points out that the unique optimal solution of the weighted robust op-
timization problem (wRC) is even Pareto optimal for the multi-objective optimization
problem (RCu).

The set of weakly Pareto optimal solutions of (RCu) (see (4.1)) includes also solutions
of the deviation robust optimization problem (dRC) (see (3.8)), which is an assertion of
the following theorem.

Theorem 14. Recall that the deviation robust optimization problem (dRC) (see (3.8))
is defined for U = {ξ1, . . . , ξq}, f : Rn × U → R, f0(ξ) ∈ R for all ξ ∈ U and Fi : Rn ×
U → R, i = 1, . . . ,m. If x0 is a (unique) solution of the deviation robust optimization
problem (dRC), then x0 is weakly Pareto optimal (Pareto optimal, respectively) for the
unconstrained multi-objective optimization problem (RCu) (see (4.1)).

Proof. We first prove that a solution x0 of (dRC) (see (3.8)) is weakly Pareto optimal
for (RCu) (see (4.1)). Let x0 ∈ Rn be a solution of (dRC), that means

∀ ξ ∈ U : f(x0, ξ)− f0(ξ) ≤ max
ξ∈U

(f(x0, ξ)− f0(ξ)) ≤ max
ξ∈U

(f(x, ξ)− f0(ξ)) (4.6)

for every x ∈ Rn that satisfies the constraints for all ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m.
Specifically, for every x ∈ Rn satisfying the above constraints, there is a jx ∈ {1, . . . , q}
where

f(x0, ξjx)− f0(ξjx) ≤ f(x, ξjx)− f0(ξjx). (4.7)

Suppose that x0 is not weakly Pareto optimal for (RCu). Then there is an x ∈ Rn
such that (4.3) is fulfilled. Because x0 is feasible for (dRC), it follows for each ξ ∈
U : Fi(x, ξ) < Fi(x

0, ξ) ≤ 0, i = 1, . . . ,m, therefore x is feasible for (dRC). The first
q inequalities in (4.3) are a contradiction to x0’s optimality for (dRC), as formulated
by (4.6) and (4.7). In the following, we show that the unique solution x0 of (dRC) is
Pareto optimal for the multi-objective optimization problem (RCu). Now let x0 ∈ Rn
be the unique solution of (dRC), i.e., for all x ∈ Rn that satisfy the constraints for all
ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m, it holds:

∀ ξ ∈ U : f(x0, ξ)− f0(ξ) ≤ max
ξ∈U

(f(x0, ξ)− f0(ξ)) < max
ξ∈U

(f(x, ξ)− f0(ξ)). (4.8)
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The strict inequality in (4.8) follows from the uniqueness assumption. Similar to the first
case, for every feasible x ∈ Rn, there exists a jx ∈ {1, . . . , q} with

f(x0, ξjx)− f0(ξjx) < f(x, ξjx)− f0(ξjx). (4.9)

Note that in this case, the inequality in (4.9) is strict. Now assume that x0 is not
Pareto optimal for the multi-objective optimization problem (RCu), thus there exists an
x ∈ Rn such that (4.5) holds true. Because x0 is feasible for (dRC), it follows for each
ξ ∈ U : Fi(x, ξ) ≤ Fi(x

0, ξ) ≤ 0, i = 1, . . . ,m, hence x is also feasible for the deviation
robust optimization problem (dRC). With (4.5), we arrive at a contradiction to the
optimality assumption (4.8), specifically to (4.9).

Similarly to the above results, here we can also conclude that the set of weakly
Pareto optimal solutions of (RCu) (see (4.1)) contains all solutions of the reliably robust
optimization problem (rRC) (see (3.14)).

Theorem 15. Consider the reliably robust optimization problem (rRC) (see (3.14)) for
U = {ξ1, . . . , ξq}, f : Rn × U → R, Fi : Rn × U → R and δi ∈ R, i = 1, . . . ,m. If
x0 is a (unique) solution of the reliably robust optimization problem (rRC), then x0 is
weakly Pareto optimal (Pareto optimal, respectively) for the unconstrained multi-objective
optimization problem (RCu) (see (4.1)).

We do not prove Theorem 15 here because it is similar to proving Theorems 12 and
13, since the only difference between (wRC) and (rRC) is the set of feasible points and
both objective functions of (wRC) and (rRC) coincide for wj = 1, j = 1, . . . , q.

It is also interesting to discover relations between the lightly robust optimization
problem (lRC) (see (3.19)) and the multi-objective optimization problem (RCu) (see
(4.1)):

Theorem 16. Recall that the lightly robust optimization problem (lRC) (see (3.19)) is
formulated for U = {ξ1, . . . , ξq}, f : Rn × U → R, Fi : Rn × U → R, i = 1, . . . ,m, γ ∈
R=, z0 ∈ R, wi ≥ 0, i = 1, . . . ,m,

∑m
i=1wi = 1. If (x0, δ0)T is a (unique) solution of

the lightly robust optimization problem (lRC), then x0 is weakly Pareto optimal (Pareto
optimal, respectively) for the unconstrained multi-objective optimization problem (RCu)
(see (4.1)).

Proof. Let (x0, δ0)T ∈ Rn × Rm be a solution of (lRC) (see (3.19)), that means

m∑
i=1

wiδ
0
i ≤

m∑
i=1

wiδi (4.10)

for all (x, δ)T ∈ Rn × Rm that satisfy the constraints given in the definition of problem
(lRC). Suppose that x0 is not weakly Pareto optimal for (RCu) (see (4.1)). Then there
is an x ∈ Rn such that (4.3) is fulfilled. Because x0 is feasible for (lRC), it follows

Fi(x, ξ̂) < Fi(x
0, ξ̂) ≤ 0, (4.11)
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f(x, ξ̂) < f(x0, ξ̂) ≤ (1 + γ)z0. (4.12)

Because wi ≥ 0 for every i = 1, . . . ,m and not all wi are zero, we have for every

ξ ∈ U :
∑m

i=1wiFi(x, ξ)
(4.3)
<

∑m
i=1wiFi(x

0, ξ) ≤
∑m

i=1wiδ
0
i (the second inequality

follows from (x0, δ0)T being feasible for (lRC)).
Setting δ̄i := maxξ∈U Fi(x, ξ), i = 1, . . . ,m, we have for all ξ ∈ U : Fi(x, ξ) ≤ δ̄i, i =
1, . . . ,m. Together with (4.11) and (4.12), it follows that (x, δ̄)T is feasible for (lRC).
Thus we have found an element (x, δ̄)T contradicting (x0, δ0)T ’s optimality as stated in
(4.10). For a unique solution of (lRC), the proof is similar and therefore omitted.

Theorem 16 above shows that the set of weakly Pareto optimal solutions of the uncon-
strained multi-objective optimization problem (RCu) (see (4.1)) includes all solutions of
the lightly robust optimization problem (lRC) (see (3.19)). The unique solution of prob-
lem (lRC) is even Pareto optimal for (RCu). In the next theorem, it is shown that the
set of weakly Pareto optimal solutions of (RCu) contains all solutions of the ε-constraint
robust optimization problem (εRC) (see (3.31)), whereas the unique solution of (εRC)
even belongs to the set of Pareto optimal points of (RCu).

Theorem 17. Consider the ε-constraint robust optimization problem (εRC) (see (3.31)).
Let U = {ξ1, . . . , ξq}, f : Rn × U → R, Fi : Rn × U → R, i = 1, . . . ,m, and fix
j ∈ {1, . . . , q}, εk ∈ R, k ∈ {1, . . . , q}, k 6= j. If x0 is a (unique) solution of the ε-
constraint robust optimization problem (εRC), then x0 is weakly Pareto optimal (Pareto
optimal, respectively) for the unconstrained multi-objective optimization problem (RCu)
(see (4.1)).

Proof. Let x0 ∈ Rn be a solution of (εRC) (see (3.31)), that means for a fixed chosen
index j ∈ {1, . . . , q}

f(x0, ξj) ≤ f(x, ξj) (4.13)

for all x ∈ Rn that fulfill the constraints that were defined by problem (εRC). Suppose
that there is an x ∈ Rn that satisfies (4.3). Because x0 is feasible for (εRC), with (4.3)
follows feasibility of x for problem (εRC). Obviously, from (4.3) we get a contradiction
to (4.13). Equivalently, one can prove the second part of the theorem.

Thus, we have shown that the set of weakly Pareto optimal solutions of the uncon-
strained multi-objective optimization problem (RCu) (see (4.1)) comprises all solutions
of the concepts of robustness that were introduced in Section 3, provided that the uncer-
tainty set U is discrete. The unique optimal point of each robust optimization problem
even belongs to the set of Pareto optimal solutions. These results provide insight into
interrelations between robust optimization problems and the multi-objective optimiza-
tion problem (RCu) which can facilitate the process when a decision maker is aiming for
a choice between different robust solutions. It can also be interpreted as an approach to
develop new concepts for robustness whose solution algorithms can be directly deducted
from the scalarization results presented within this chapter.

So far, we have shown that solutions of scalar robust optimization problems also be-
long to the set of weakly Pareto optimal solutions of the unconstrained multi-objective
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optimization problem (RCu). Unfortunately, the other direction is, in general, not true:
A weakly Pareto optimal solution of (RCu) is not always a solution to one of the in-
troduced scalar robust optimization problems: Since the constraints of the scalar robust
optimization problems are shifted to the vector of objectives in (RCu), a point x0 may
minimize one constraint and would be weakly Pareto optimal for (RCu), regardless of
the function value f(x0, ξ). We can, however, derive relations between a constrained
multi-objective optimization problem and a scalar robust optimization problem that dif-
fers a bit from the weighted robust optimization problem (wRC) (see (3.1)). In order to
introduce these problems, we need some additional definitions.

Definition 3. We call a vector yI = (yI1 , . . . , y
I
q )T with

yIk := min
x∈Rn

f(x, ξk), k = 1, . . . , q,

an ideal point of the problem
Min(f [Rn],Rq≥),

where f(x) := (f(x, ξ1), . . . , f(x, ξq))
T . The vector yU = (yI1 − ε1, . . . , yIq − εq)T , εk >

0, k = 1, . . . , q, is called a utopia point, compare [24].

Set λk > 0 for all k = 1, . . . , q. Now we introduce the problem

min max
k=1,...,q

λk(f(x, ξk)− yUk )

(Pλ) s.t. ∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m,

x ∈ Rn.

(4.14)

Furthermore, let the constrained multi-objective optimization problem

(RC ′) Min(f [A],Rq≥) (4.15)

with A := {x ∈ Rn|∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m} (see (3.2)) and f(x) =
(f(x, ξ1), . . . , f(x, ξq))

T be given, compare (3.35), the multiple objective strictly robust
counterpart.

Now we extend a theorem proposed by Ehrgott [24, Proposition 5.10] to the concept
of robustness. The following theorem points out that a solution x0 is weakly Pareto
optimal for the multi-objective optimization problem (RC ′) (see (4.15)) if and only if we
can find a λ ∈ Rq> such that x0 is a solution of the problem (Pλ) (see (4.14)). Note that
we do not need any convexity assumptions on f .

Theorem 18. Let U = {ξ1, . . . , ξq}, f : Rn×U → R and Fi : Rn×U → R, i = 1, . . . ,m.
x0 is weakly Pareto optimal for (RC ′) (see (4.15)) if and only if there exists a λ ∈ Rq>
such that x0 solves (Pλ) (see (4.14)).

Proof. ⇒ Let x0 be weakly Pareto optimal for (RC ′) (see (4.15)). Let further the
weights be given by λk = 1

f(x0,ξk)−yUk
, k = 1, . . . , q. We have that λk > 0, k =
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1, . . . , q, because f(x0, ξk) > yUk . Suppose that x0 is not optimal for (Pλ) (see
(4.14)). Then there is x ∈ Rn that satisfies the constraints Fi(x, ξ) ≤ 0 for every
ξ ∈ U and i = 1, . . . ,m and

max
k=1,...,q

λk(f(x, ξk)− yUk ) < max
k=1,...,q

λk(f(x0, ξk)− yUk )

= max
k=1,...,q

1

f(x0, ξk)− yUk
(f(x0, ξk)− yUk ).

Thus, we have for all k = 1, . . . , q : λk(f(x, ξk)− yUk ) < 1. Dividing by λk > 0, we
get for all k = 1, . . . , q : f(x, ξk) − yUk < f(x0, ξk) − yUk , and therefore f(x, ξk) <
f(x0, ξk) for every k = 1, . . . , q, contradicting x0’s weak Pareto optimality.

⇐ Let now x0 ∈ Rn solve (Pλ), i.e.,

max
k=1,...,q

λk(f(x0, ξk)− yUk ) ≤ max
k=1,...,q

λk(f(x, ξk)− yUk ) (4.16)

for all x ∈ Rn satisfying the constraints Fi(x, ξ) ≤ 0 for every ξ ∈ U and i =
1, . . . ,m. Assume x0 is not weakly Pareto optimal for (RC ′). Then there is an
x ∈ Rn that fulfills the constraints for all ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m and

∀ k = 1, . . . , q : f(x, ξk) < f(x0, ξk). (4.17)

That contradicts (4.16), because there we stated that for every feasible x ∈ Rn
there exists a jx ∈ {1, . . . , q} such that

max
k=1,...,q

λk(f(x0, ξk)− yUk )
(4.16)
≤ max

k=1,...,q
λk(f(x, ξk)− yUk )

=: λjx(f(x, ξjx)− yUjx).

Furthermore, it holds λjx(f(x0, ξjx) − yUjx) ≤ maxk=1,...,q λk(f(x0, ξk) − yUk ), and
this yields f(x0, ξjx) ≤ f(x, ξjx) for every feasible x ∈ Rn and a jx ∈ {1, . . . , q}, a
contradiction to (4.17).

The next theorem is a generalization of [24, Proposition 5.11]. It shows that, as-
suming that the set of optimal solutions of problem (wRC) (see (3.1)) is not empty, it
always contains Pareto optimal solutions of the unconstrained multi-objective optimiza-
tion problem (RCu) (see (4.1)). Note that since the strictly robust optimization problem
is a special case of (wRC) with wk = 1, k = 1, . . . , q, this theorem can also be formulated
for a strictly robust optimization problem.

Theorem 19. Let U = {ξ1, . . . , ξq}, f : Rn×U → R, Fi : Rn×U → R, i = 1, . . . ,m and
wk > 0, k = 1, . . . , q. Suppose that the set of Pareto optimal solutions of problem (RCu)
(see (4.1)) is externally stable and there exists a solution of the optimization problem
(wRC) (see (3.1)). Then it holds:

{x0|x0 solves (wRC)} ∩ {x0|x0 is Pareto optimal for (RCu)} 6= ∅.
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Proof. Let x0 ∈ Rn solve(wRC) (see (3.1)), i.e.,

max
k=1,...,q

wkf(x0, ξk) ≤ max
k=1,...,q

wkf(x, ξk) (4.18)

for every x ∈ Rn that fulfills Fi(x, ξ) ≤ 0 for all ξ ∈ U and i = 1, . . . ,m.

• Case 1: x0 is Pareto optimal for (RCu) (compare (4.1)), then there is nothing to
prove.

• Case 2: x0 is not Pareto optimal for (RCu). Because the set of Pareto optimal
solutions of problem (RCu) is externally stable, there exists an x ∈ Rn that belongs
to the set of Pareto optimal solutions of (4.1) and

∀ k = 1, . . . , q : f(x, ξk) ≤ f(x0, ξk), (4.19)

∀ k = 1, . . . , q, ∀ i = 1, . . . ,m : Fi(x, ξk) ≤ Fi(x0, ξk). (4.20)

Because x0 is feasible for (wRC), (4.20) implies that x ∈ Rn is feasible for (wRC),
too. Furthermore, from (4.19), we acquire

max
k=1,...,q

wkf(x, ξk) ≤ max
k=1,...,q

wkf(x0, ξk). (4.21)

Because of (4.18) we have equality in (4.21), i.e., x is optimal for (wRC) and x is
Pareto optimal for (RCu).

The next theorem shows that the intersection of the set of solutions of problem (wRC)
(see (3.1)) and the set of Pareto optimal solutions of the constrained optimization problem
(RC ′) (see (4.15)) is nonempty, assuming that a solution of (wRC) exists and that the
set of Pareto optimal solutions of (RC ′) is externally stable. The proof is quite similar
to proving Theorem 19 and is skipped here for the sake of shortness.

Theorem 20. Let U = {ξ1, . . . , ξq}, f : Rn × U → R, Fi : Rn × U → R, i = 1, . . . ,m
and wk > 0, k = 1, . . . , q. Suppose that the set of Pareto optimal solutions of problem
(RC ′) (compare (4.15)) is externally stable and there exists a solution of the optimization
problem (wRC) (see (3.1)). Then it holds:

{x0|x0 solves (wRC)} ∩ {x0|x0 is Pareto optimal for (RC ′)} 6= ∅.

Below we provide a sufficient condition for an optimal element of the strictly robust
optimization problem (wRC) (i.e., (wRC) with wj = 1, j = 1, . . . , q).

Theorem 21. Let U = {ξ1, . . . , ξq}, f : Rn×U → R and Fi : Rn×U → R, i = 1, . . . ,m.
If for an x0 with f(x0, ξr) = yIr and for all ξ ∈ U : Fi(x

0, ξ) ≤ 0, i = 1, . . . ,m, it holds

f(x0, ξk) ≤ yIr for all k = 1, . . . , q,

then x0 is an optimal solution of the strictly robust optimization problem (i.e., (wRC),
(3.1), with wj = 1, j = 1, . . . , q) with objective value yIr .
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Proof. It holds

yIr = f(x0, ξr)
Def. 3

= min
x∈Rn

f(x, ξr) ≤ min
x∈Rn

max
k=1,...,q

f(x, ξk) ≤ max
k=1,...,q

f(x0, ξk). (4.22)

Because f(x0, ξk) ≤ yIr for all k = 1, . . . , q, it follows

max
k=1,...,q

f(x0, ξk) ≤ yIr . (4.23)

Due to (4.22) we have equality in (4.23), i.e.,

yIr = f(x0, ξr) = min
x∈Rn

max
k=1,...,q

f(x, ξk).

We conclude this chapter with an example concerning robust linear programming for
norm-bounded sets of uncertainties.

Example 2. Let the set of uncertainties be given by U := {ξ ∈ RN | ‖ξ‖∞ ≤ 1} with
‖ξ‖∞ := maxi=1,...,N |ξi|. Note that U is compact in this setting, but as we have already
see in Section 3.2.3, for certain classes, this situation may be reduced to the finite case.
Now consider the strictly robust optimization problem

(LP ) min
x∈X⊆Rn

sup
ξ∈U

c(ξ)Tx (4.24)

with ck ∈ Rn, k = 0, . . . , N , and c(ξ)Tx := cT0 x+
∑N

k=1 ξkc
T
k x for ξ ∈ U .

Then the objective in (LP ) can be expressed by the scalarizing functional zB7,k7 for
k7 ≡ 1, B = B7, y = c(ξ)Tx:

zB7,k7 = inf{t ∈ R|y ∈ tk7 −B7} = inf{t ∈ R|y − tk7 ∈ −B7}
= inf{t ∈ R|c(ξ)Tx− tk7 ∈ −B7}
= inf{t ∈ R|∀ ξ ∈ U : c(ξ)Tx ≤ t} (4.25)

= sup
ξ∈U

c(ξ)Tx.

We already mentioned that zB7,k7 is B7-monotone and strictly (intB7)-monotone in
Remark 13.

Furthermore, the detailed examinations in [8, Example 1.3.2] inspire us to simplify
formulation (4.25):
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inf{t ∈ R|∀ ξ ∈ U : c(ξ)Tx ≤ t} = inf{t ∈ R|∀ ξ ∈ U : cT0 x+

N∑
k=1

cTk xξk ≤ t}

= inf{t ∈ R|max
ξ∈U

(cT0 x+
N∑
k=1

cTk xξk) ≤ t}

= inf{t ∈ R|cT0 x+

N∑
k=1

|cTk x| ≤ t}

= inf{t ∈ R|∃ vi ∈ R, i = 1, . . . , N : −vi −
N∑
k=1

cTk x ≤ 0,

− vi +
N∑
k=1

cTk x ≤ 0, cT0 x−
N∑
i=1

vi ≤ t, i = 1, . . . , N}

= {cT0 x−
N∑
i=1

vi| − vi −
N∑
k=1

cTk x ≤ 0, −vi +

N∑
k=1

cTk x ≤ 0, i = 1, . . . , N}.

That means the objective function in (LP ) can be reduced to a linear optimization prob-
lem. Consequently, we arrive at the following conclusion: If x0 is a solution of (4.24),
then there is a vector v := (v1, . . . , vN )T ∈ RN such that g(x0, v) ∈ Min(g[X×RN ],R2N+1

> )
with

g(x, v) =

 g1(x, v)
. . .

g2N+1(x, v)

 :=



cT0 x−
∑N

i=1 vi
−v1 −

∑N
k=1 c

T
k x

−v1 +
∑N

k=1 c
T
k x

. . .

−vN −
∑N

k=1 c
T
k x

−vN +
∑N

k=1 c
T
k x


.

The research conducted in this chapter shows that many well known results from
deterministic optimization can be extended to robust optimization problems, assuming
that the set of uncertainties is discrete. The above example suggests future research that
consists of investigating the case where the uncertainty set U takes a compact form.



Chapter 5

Robust Approaches to Vector
Optimization

5.1 Literature Review

In many optimization problems, there exist conflicting goals which have to be optimized
at the same time. As a prominent example, the classical Markowitz problem consists of
minimizing risk and maximizing expected returns of financial assets [74]. These objectives
are clearly conflicting. Another example is concerned with tumor radiation treatment,
in which the goals are to expose the tumor to as much radiation as is needed to achieve
best medical results, but at the same time to ensure that the surrounding organs are not
harmed, cf. [26, Chapter 6]. Many more examples can be found in game theory, where two
players are trying to optimize their individual objectives and have to reach an agreement,
see, for instance, [76]. Hence, to gain realistic insights into a problem in a complex
surrounding, contrary objectives play an important role and are thus intensely studied in
optimization. In multi-objective optimization one is concerned with comparing elements
and one searches for solutions that are not dominated by another element of the set of
feasible solutions with respect to a set or a cone. Similar to scalar optimization, many
complex multi-objective problems are contaminated with uncertain data. Naturally, the
issue of incorporating uncertainties in multi-objective optimization is an important task
that needs to be addressed. Therefore, being able to model uncertain vector-valued
optimization problems and define robust solutions thereof would be very valuable.

This chapter is devoted to developing solution concepts for uncertain multi-objective
optimization problems, specifically, our goal is to obtain robust solutions. Only a few
approaches to uncertain vector optimization have been mentioned in the literature, of
which we briefly summarize the following. Hughes [46] presented a first concept of deal-
ing with uncertain multi-objective optimization by computing the expected value of the
errors that occur in the objective functions. The vector of expected errors is then used
in the classical concept of Pareto optimality. Teich [96] generalized the concept of Pareto
optimality in a probabilistic nature for uncertain vector-valued problems where the ob-
jective values are constrained by intervals. Another idea was presented by Li et al. [71]

48
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who develop solution procedures that compare the performance of solutions regarding
optimality and its robustness. They propose a biobjective optimization problem, one of
the objective functions being a fitness value and the other one containing a robustness
index. The considered method in [71] may be beneficial for obtaining solutions that
satisfy certain optimality and robustness criteria, and a decision maker may choose de-
pending on his preferences toward uncertainty. Another approach was presented by Deb
and Gupta [21] who used an idea by Branke [16], and defined robustness as a kind of
sensitivity against perturbations in the decision-space. Branke [16] proposes to replace
the objective function f by its mean function f which maps any point x to the average
function value in a pre-defined neighborhood of x. A minimizer of f is then more ro-
bust in the sense that the function values in its neighborhood do not change too much.
Based on this idea for single objective optimization problems, Deb and Gupta [21] intro-
duced two concepts of robustness for vector-valued optimization problems. The first one
replaces all objective functions by their mean functions. Efficient solutions to the result-
ing optimization problem are called robust solutions of the original problem. Deb and
Gupta’s second concept minimizes the original objective functions but adds constraints
to the problem that restrict the variation between the original objective functions and a
perturbed function value (that can be chosen as their mean functions) to a pre-defined
limit. This approach proves to be more pragmatic and enables the user to control the
desired level of robustness.

Barrico and Antunes [2, 4] consider a multi-objective optimization problem with per-
turbations in the decision space . In [2, 4], a solution is called robust if small perturbations
in the decision-space only yield small perturbations in the objective-space. The authors
in [2, 4] define a degree of robustness that allows the decision maker to specify the level
of robustness of the solution. Specifically, the user is able to determine the size of the
neighborhood that the solution belongs to. Furthermore, Barrico and Antunes [3] extend
the concept of degree of robustness to the space of the objective function coefficients,
where perturbations are treated in a similar manner as in [2, 4]. For more results on this
line of research, compare [41, 28].

The first scenario-based approach to uncertain vector-valued problems was intro-
duced by Kuroiwa and Lee [68] who directly transferred the main idea of scalar robust
optimization, meaning minimizing the worst-case objective function, to a multicriteria
setting. For an uncertain objective function f : Rn ⊇ X × U → Rk, where U ⊆ RN is a
given uncertainty set, Kuroiwa and Lee [68] introduce a multi-objective problem

Min(h[X ],Rk≥) (5.1)

with

h(x) :=

maxξ∈U f1(x, ξ)
. . .

maxξ∈U fk(x, ξ)


and call (weakly) Pareto optimal solution of problem (5.1) (weakly) robust efficient. The
special case for convex functions fi, i = 1, . . . , k, is studied in [69]. Because this approach
is a rather direct transferral from scalar robust optimization, it may not be sufficient
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to describe robust solutions of multi-objective optimization problems. To verify this
aspect, consider the following small example in Figure 5.1: First we define for x ∈ X

f1(x, ξ)

f2(x, ξ)

fU (x1)

h(x1)
h(x2) = fU (x2)

Figure 5.1: Here, x1 is not weakly Pareto optimal for problem (5.1), while x2 is Pareto
optimal for (5.1).

fU (x) := {f(x, ξ)| ξ ∈ U}. Here, the point h(x1) is dominated by h(x2) = fU (x2)
which, for simplification, is just one point. Hence, x1 would not be considered robust
efficient by the authors in [68], but x2 is robust efficient. The issue clearly arises because
the point h(x1) does not belong to fU (x1). Problem (5.1) still is beneficial and was
recently used by Ehrgott et al. [25] to obtain solutions that they call robust in a slightly
different setting. The authors in [25] generalize the above approach from Kuroiwa and
Lee [68] by considering the whole set that is obtained when analyzing a possible solution
x. They call a solution x0 robust efficient if its set fU (x0) is not dominated by any
other set fU (x). For the above example in Figure 5.1 this means that both x1 and x2

would be considered robust efficient. The authors in [25] observe that (weakly) Pareto
efficient solutions of the above problem (5.1) are also (weakly) robust efficient solutions
within their definition of robust efficiency, and the reverse implication holds under the
requirement that the uncertainty set takes the form U := U1 × . . . × Uk, i.e., if the
uncertainties are independent of each other. The robustness concept introduced in [25]
implicitly uses a set order relation to compare solution sets. We will show in this chapter
that this approach is closely connected to set optimization, because the objective function
considered here is set-valued.
In the literature, two main ways of treating a set-valued problem are reported: Using
a vector concept, one wishes to obtain single elements that satisfy a certain efficiency
condition (possibly similar to Pareto optimality) for the union of all sets in the objec-
tive space. Since having one element that is optimal in some sense does not reveal any
information about the performance of the remaining elements in that particular solution
set, it can be argued that this approach may not be useful enough in practical applica-
tions. The second concept deals with obtaining solution sets out of all possible sets in the
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objective space. The authors in [25] use the latter approach to define robust solutions
to an uncertain multi-objective optimization problem, i.e., every robust solution of that
problem is a set.

This chapter is organized as follows: In Section 5.2, we recall set order relations that
are well known from set-valued optimization. Section 5.3 is concerned with providing
new robustness concepts for uncertain multi-objective optimization problems using the
before mentioned set relations. We will see that these order relations are useful to describe
strictly robust elements with respect to a certain order relation. In order to model (weak,
· , respectively) robust solution concepts as well, we will extend the mentioned set order
relations that have thus far been introduced for cones to more general sets. For each
introduced concept, algorithms for obtaining robust solutions will be provided. We will
consider a wide spectrum of robust approaches to uncertain vector-valued optimization,
since every real-world problem possesses its own particular requirements and a generic
concept needs to adapt to different circumstances.

Sections 5.2, 5.3.1, 5.3.2, 5.3.3 and 5.3.4 are based on Ide, Köbis, Kuroiwa, Schöbel
and Tammer [49]. Section 5.3.6 is based on Ide, Köbis [48].

5.2 Set Order Relations

Uncertain vector optimization and set-valued optimization are closely related, as further
discussion in Section 5.3 will show. In order to approach uncertain vector-valued op-
timization, set order relations known from set-valued optimization (compare Jahn [53],
Jahn, Ha [55], and Eichfelder, Jahn [27]) will be used. In order to be able to formulate
solution concepts for new definitions of robustness for uncertain vector optimization, we
mention several known set order relations in this section and some of their properties
and interrelations.

Here, let Y be a linear topological space, partially ordered by a proper pointed convex
closed cone C, X is a linear space, G : X ⇒ Y is a set-valued mapping, X is a subset
of X. In contrast to the problems discussed before, the objective values of x ∈ X are
now sets G(x). The graph of the set-valued map G is denoted by graphG := {(x, y) ∈
X × Y | y ∈ G(x)}. We denote by

G(X ) :=
⋃
x∈X

G(x)

the image set of G.
Our goal is to minimize G : X ⇒ Y and we note the problem

(SetP ) min
x∈X

G(x), (5.2)

where “min” denotes a solution concept from set-valued optimization that we will discuss
in the following. There are three approaches to dealing with (SetP ) discussed in the
literature: Using a vector approach leads to solutions that are not dominated by any
other elements of the image set G(X ), compare Definition 4 below. A set approach
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uses whole sets G(x) that are compared with respect to a set order relation, compare
Definition 13 below. A third concept called lattice approach to the set-valued problem
(SetP ) is investigated in [58].

Using the notation from Definition 2, formula (2.4), we introduce a first solution
concept based on a vector approach below.

Definition 4 (Minimizer of (SetP )). Let x ∈ X and (x, y) ∈ graphG. The pair (x, y) ∈
graphG is called a minimizer of the problem (SetP ) if y ∈ Min

(
G(X ), C \ {0}

)
.

The above definition of a minimizer describes a vector approach to solving a set-valued
optimization problem (SetP ). Generally, one pair (x, y) ∈ graphG being a minimizer
does not imply that the whole set G(x) is minimal in some sense when compared to
other sets G(x), x ∈ X (cf. Jahn, Ha [55], Eichfelder, Jahn [27]). Therefore, we will
consider a set approach when dealing with a set-valued optimization problem. That way,
the problem consists of finding sets G(x) for x ∈ X that are not dominated by another
set G(x), x ∈ X , with respect to a set order relation. There are many set order relations
known in the literature that can be used to compare sets. In order to discuss several set
order relations, let us first mention a relation ≤Q with respect to a nonempty set Q ⊂ Y
that satisfies clQ ∩ (− clQ) = {0}. We define

a ≤Q b :⇐⇒ a ∈ b−Q (5.3)

for a, b ∈ Y .
We will introduce several order relations that are used to formulate corresponding

solution concepts for the set-valued problem (SetP ) (see (5.2)).
We call

P(Y ) := {A ⊆ Y | A is nonempty}

the power set of Y , which was introduced by Hamel [43], see also Jahn, Ha [55] and
Eichfelder, Jahn [27].

Definition 5. Let A,B,D ∈ Y be arbitrarily chosen sets and let � be a binary relation.
� is reflexive if A � A. Furthermore, � is transitive if A � B and B � D implies
that A � D. The binary relation � is a pre-order if � is reflexive and transitive.

Young [100] and Nishnianidze [77] independently introduced the set less order relation
�sC for the comparison of sets (cf. Eichfelder, Jahn [27]):

Definition 6 (Set less order relation, [100, 77]). Let C ⊂ Y be a proper closed convex
and pointed cone. Furthermore, let A,B ∈ P(Y ) be arbitrarily chosen sets. Then the set
less order relation �sC is defined by

A �sC B :⇐⇒ A ⊆ B − C and A+ C ⊇ B
⇐⇒ (∀ a ∈ A ∃ b ∈ B : a ≤C b) and (∀ b ∈ B ∃ a ∈ A : a ≤C b).

Kuroiwa [67, 65] introduced the following order relations:
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Definition 7 (Lower (upper) set less order relation, [67, 65]). Let C ⊂ Y be a proper
closed convex and pointed cone. Furthermore, let A,B ∈ P(Y ) be arbitrarily chosen sets.
Then the lower set less order relation �lC is defined by

A �lC B :⇐⇒ A+ C ⊇ B ⇐⇒ ∀ b ∈ B ∃ a ∈ A : a ≤C b

and the upper set less order relation �uC is defined by

A �uC B :⇐⇒ A ⊆ B − C ⇐⇒ ∀ a ∈ A ∃ b ∈ B : a ≤C b.

Remark 15. There is the following relationship between the lower set less order relation
�lC and the upper set less order relation �u−C :

A �lC B :⇐⇒ A+ C ⊇ B ⇐⇒ B ⊆ A− (−C)⇐⇒: B �u−C A.

Remark 16. The following connection between the set less order relation �sC and the
lower (upper, respectively) set less order relation �lC (�uC , respectively) may be observed:

A �sC B =⇒ A �lC B,
A �sC B =⇒ A �uC B.

Remark 17. Obviously A �lC B is equivalent to

A+ C ⊇ B + C.

Furthermore, note that A �uC B is equivalent to

A− C ⊆ B − C.

It is important to mention that

A �lC B and B �lC A⇐⇒ A+ C = B + C,

compare [55, Proposition 3.1]. Under our assumption that C is a pointed closed convex
cone it holds Min(A+C,C\{0}) = Min(A,C\{0}) and Min(B+C,C\{0}) = Min(B,C\
{0}), which implies

A �lC B and B �lC A =⇒ Min(A,C \ {0}) = Min(B,C \ {0}).

Under the additional assumptions A ⊂ Min(A,C\{0})+C and B ⊂ Min(B,C\{0})+C,
we have

Min(A,C \ {0}) = Min(B,C \ {0})⇐⇒ A+ C = B + C

and so
A �lC B and B �lC A⇐⇒ Min(A,C \ {0}) = Min(B,C \ {0}).

Similarly,
A �uC B and B �uC A⇐⇒ A− C = B − C,
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compare [55, Proposition 3.1] and because of Max(A − C,C \ {0}) = Max(A,C \ {0})
and Max(B − C,C \ {0}) = Max(B,C \ {0}) it holds

A �uC B and B �uC A =⇒ Max(A,C \ {0}) = Max(B,C \ {0}).

Under the additional assumption A ⊂ Max(A,C \{0})−C and B ⊂ Max(B,C \{0})−C
it holds

Max(A,C \ {0}) = Max(B,C \ {0})⇐⇒ A− C = B − C

and so
A �uC B and B �uC A⇐⇒ Max(A,C \ {0}) = Max(B,C \ {0}).

Furthermore, the minmax less order relation �mC is introduced for sets A, B belonging
to

Fmin,max := {A ⊂ P(Y ) | Min(A,C \ {0}) 6= ∅ and Max(A,C \ {0}) 6= ∅}. (5.4)

Note that for instance in a topological real linear space Y for every compact set in
P(Y ) minimal and maximal elements exist.

Definition 8 (Minmax less order relation, [55]). Let A,B ∈ Fmin,max. Then the min-
max less order relation �mC is defined by

A �mC B :⇐⇒Min(A,C \ {0}) �sC Min(B,C \ {0})
and Max(A,C \ {0}) �sC Max(B,C \ {0}).

In interval analysis there are even more order relations in use, like the certainly less
order relation �certC (see Jahn, Ha [55], Eichfelder, Jahn [27]):

Definition 9 (Certainly less order relation, [55]). For arbitrary sets A,B ∈ P(Y ) the
certainly less order relation �certC is defined by

A �certC B :⇐⇒ (A = B) or (A 6= B, ∀ a ∈ A, ∀ b ∈ B : a ≤C b).

Note that the above definition of the certainly less order relation has been modified
from the originally defined form by Chiriaev, Walster [19]. In [19], the authors introduce
the certainly less order relation

A �certC B :⇐⇒ ∀ a ∈ A, ∀ b ∈ B : a ≤C b,

but in this definition �certC is generally not a pre-order, as it is not reflexive in general.
Moreover, the possibly less order relation �pC is given in the following definition:

Definition 10 (Possibly less order relation, [19, 55]). For arbitrary sets A,B ∈ P(Y )
the possibly less order relation �pC is given by

A �pC B :⇐⇒ (∃ a ∈ A,∃ b ∈ B : a ≤C b).
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Note that the possibly less order relation is in general not transitive (compare [55,
Proposition 3.3]).

Remark 18. It is clear that A �certC B implies

∃ a ∈ A such that ∀ b ∈ B : a ≤C b. (5.5)

Moreover, (5.5) implies A �lC B (see Definition 7) such that

A �certC B =⇒ A �lC B.

Furthermore, A �lC B implies

∃ a ∈ A, ∃ b ∈ B such that a ≤C b. (5.6)

Taking into account Definition 10, we obtain

A �certC B =⇒ A �lC B =⇒ A �pC B. (5.7)

Remark 19. The relation A �certC B implies

∃ b ∈ B such that ∀ a ∈ A : a ≤C b. (5.8)

In addition, (5.8) implies A �uC B (see Definition 7) such that

A �certC B =⇒ A �uC B.

Furthermore, A �uC B implies

∃ a ∈ A, ∃ b ∈ B such that a ≤C b, (5.9)

such that we acquire

A �certC B =⇒ A �uC B =⇒ A �pC B,

taking into account Definition 10. These observations are depicted in Figure 5.2.

certainly less

lower set less upper set less

possibly less

Figure 5.2: Relationships between set order relations.
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The minmax certainly less order relation �mcC is introduced in the next definition:

Definition 11 (Minmax certainly less order relation, [55, 27]). For arbitrary A,B ∈
Fmin,max the minmax certainly less order relation �mcC is given by

A �mcC B :⇐⇒ (A = B) or

(A 6= B, Min(A,C \ {0}) �certC Min(B,C \ {0}) and
Max(A,C \ {0}) �certC Max(B,C \ {0})).

Finally, we introduce the minmax certainly nondominated order relation �mnC (see
Jahn, Ha [55]).

Definition 12 (Minmax certainly nondominated order relation, [55, 27]). The minmax
certainly nondominated order relation �mnC is defined for arbitrary A,B ∈ Fmin,max

by

A �mnC B :⇐⇒ (A = B) or (A 6= B,Max(A,C \ {0}) �sC Min(B,C \ {0})).

The set less order relation �sC and the order relations �lC , �uC , �mC , �mcC and �mnC
are pre-orders. If � denotes one of these order relations, then we can define optimal
solutions with respect to the pre-order � and the corresponding set-valued optimization
problem is given by

(SP −�) � −minimize G(x) s.t. x ∈ X ,

where we assume again (compare (SetP ), (5.2)) that Y is a linear topological space,
partially ordered by a proper pointed convex closed cone C, X is a linear space, G : X ⇒
Y , X is a subset of X.

Definition 13 (Minimal solutions of (SP − �) w.r.t. the pre-order �). An element
x ∈ X is called a minimal solution of problem (SP −�) w.r.t. the pre-order � if

G(x) � G(x) for some x ∈ X =⇒ G(x) � G(x).

Remark 20. If we use the set relation �lC introduced in Definition 7 in the formulation
of the solution concept, i.e., we study the set-valued optimization problem (SP −�lC), we
observe that this solution concept is based on comparisons among sets of minimal points
of values of G. Furthermore, considering the upper set less order relation �uC (Definition
7), i.e., considering the problem (SP − �uC), we recognize that this solution concept is
based on comparisons of maximal points of values of G. When x ∈ X is a minimal
solution of problem (SP −�lC) there does not exist x ∈ X such that G(x) is smaller than
G(x) with respect to the set order �lC .

In the following we give three examples (see Kuroiwa [66]) of set-valued optimization
problems in order to illustrate the different solution concepts introduced in Definitions 4
and 13.
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Example 3. Consider the set-valued optimization problem

(SP −�lC) �lC −minimize G1(x) s.t. x ∈ X ,

with X = R, Y = R2, C = R2
=, X = [0, 1] and G1 : X ⇒ Y is given by

G1(x) :=

{
[(1, 0), (0, 1)] if x = 0
[(1− x, x), (1, 1)] if x ∈ (0, 1],

where [(a, b), (c, d)] is the line segment between (a, b) and (c, d). Only the element x = 0 is
a minimal solution of (SP−�lC). However, all elements (x, y) ∈ graphG1 with x ∈ [0, 1],
y = (1 − x, x) for x ∈ (0, 1] and y = (1, 0) for x = 0 are minimizers of the set-valued
optimization problem in the sense of Definition 4. This example shows that the solution
concept with respect to the set relation �lC (see Definition 13) is more natural and useful
than the concept of minimizers introduced in Definition 4.

Example 4. Now we discuss the set-valued optimization problem

(SP −�lC) �lC −minimize G2(x) s.t. x ∈ X ,

with X = R, Y = R2, C = R2
=, X = [0, 1] and G2 : X ⇒ Y is given by

G2(x) :=

{ [
(1, 1

3), (1
3 , 1)

]
if x = 0

[(1− x, x), (1, 1)] if x ∈ (0, 1].

The set of minimal solutions of (SP − �lC) in the sense of Definition 13 is the interval
[0, 1], but the set of minimizers in the sense of Definition 4 is given by

{(x, y) ∈ graphG2 | x ∈ (0, 1], y = (1− x, x)}.

Here we observe that x = 0 is a �lC-minimal solution, but the set G(x) (x = 0) has no
Pareto minimal points.

Example 5. In this example we are looking for minimal solutions of a set-valued opti-
mization problem with respect to the set relation �uC introduced in Definition 7.

(SP −�uC) �uC −minimize G3(x) s.t. x ∈ X ,

with X = R, Y = R2, C = R2
=, X = [0, 1] and G3 : X ⇒ Y is given by

G3(x) :=

{
[[(1, 1), (2, 2)]] if x = 0
[[(0, 0), (3, 3)]] if x ∈ (0, 1],

where [[(a, b), (c, d)]] := {(y1, y2) | a ≤ y1 ≤ c, b ≤ y2 ≤ d}. Then a minimal solution of
(SP −�uC) in the sense of Definition 13 is only x = 0. On the other hand, x ∈ (0, 1] are
not minimal solutions of (SP − �uC) in the sense of Definition 13, but for all x ∈ (0, 1]
there are y ∈ G3(x) such that (x, y) are minimizers in the sense of Definition 4.

A visualization of the above discussed examples is given in Figure 5.3.
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Figure 5.3: Feasible solution sets of G1, G2, G3, described in Example 3, 4 and 5.

5.3 New Concepts for Robustness in Multi-Objective Opti-
mization Using Set-Order Relations

In Ehrgott et al. [25] the concept of strict robustness (compare problem (3.1) with weights
wi = 1, i = 1, . . . , q, in Section 3.1.1) is extended to vector-valued optimization
problems. We derive corresponding results in more general settings using the set order
relations introduced in Section 5.2.

Recall the robust counterpart to an uncertain minimization problem from scalar
robust optimization

(RC) min
x∈X

sup
ξ∈U

f(x, ξ) (5.10)

with f : Rn × U → R, X ⊆ Rn, U ⊆ RN . We call (5.10) a strictly robust optimization
problem (see Section 3.1.1). Note that here we suppose that the set of feasible solutions
X remains unchanged for every realization of the uncertain parameter ξ ∈ U . Thus
we only focus on the uncertainty in the objective function during this chapter. The
corresponding optimistic counterpart to an uncertain minimization problem is given
as

(OC) min
x∈X

inf
ξ∈U

f(x, ξ). (5.11)

(OC) was used in Beck and Ben-Tal [6] to develop duality results in robust optimization.
Based on [6] and a work on robust duality by Jeyakumar and Li [56], Goberna et al. [36]
present strong duality results between a robust counterpart of a linear program and an
optimistic counterpart of its Lagrangian dual. They show that strong duality holds under
convexity and closedness assumptions on a particularly defined “robust moment cone”.

We will see that the upper and lower set less order relation, originally introduced
by Kuroiwa [67, 65], play an important role in developing corresponding multi-objective
counterparts to (RC) (see (5.10)) and (OC) (see (5.11)). Furthermore, we derive new
concepts of multicriteria robustness using different set order relations.
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Throughout this chapter – otherwise will be mentioned – we suppose that X is a
linear space, Y a linear topological space and C ⊂ Y is a proper closed convex and
pointed cone.

Consider a deterministic vector optimization problem, where all parameters
involved in the objective function are known and certain,

(V OP ) Min(f(X ), C)

with a vector-valued function f : X → Y , and a feasible set X ⊆ X.
Naturally, as in the single objective case, the assumption that all parameters are

given is not realistic and thus uncertainty should be modeled into the objective function.
For that reason, we assume that the objective function f may depend on scenarios ξ
which are unknown or uncertain. As in uncertain single objective optimization, given an
uncertainty set U ⊆ RN , an uncertain vector-valued optimization problem P (U)
is given as the family

(P (ξ); ξ ∈ U)

of vector-valued optimization problems

(P (ξ)) Min(f(X , ξ), C)

with the objective function f : X × U → Y , a feasible set X ⊆ X and the notation (for
ξ ∈ U)

f(X , ξ) := {f(x, ξ) | x ∈ X}.
We call ξ ∈ U a scenario and (P (ξ)) an instance of P (U) (note that the analogue was
introduced for scalar problems in Chapter 1).

Given an uncertain vector-valued optimization problem P (U), the next step would
be to evaluate feasible solutions x ∈ X . The maxmin-approach from scalar uncertain
optimization (compare (RC) in (5.10)) cannot be easily transferred to the multi-objective
case, since we obtain a vector of objective values for each scenario ξ ∈ U . For every x ∈ X
the set of objective values of x is given by

fU (x) := {f(x, ξ) | ξ ∈ U} ⊆ Y. (5.12)

Note that in general, for |U| > 1, fU (x) is not a singleton, but a set. Throughout this
chapter, we suppose that the set-valued map fU is compact-valued.

Dealing with an uncertain vector-valued optimization problem P (U) leads to the
following set-valued optimization problem with an objective map fU : X ⇒ Y given in
(5.12) and an order relation �:

(SP− �) � −minimize fU (x), subject to x ∈ X .

Ehrgott et al. [25, Definition 3.1] introduced robust efficient elements for the case
X = Rn, Y = Rk, C = Rk=. In [25], a feasible solution x0 ∈ X is called robust efficient
if fU (x0) − Rk≥ does not contain any other set fU (x) with x 6= x0 ∈ X . Furthermore,
Ehrgott et al. formulated in [25, Definition 3.1] robust weakly efficient and robust
strictly efficient elements:
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Definition 14 ([25, Definition 3.1]). Given an uncertain vector-valued optimization prob-
lem P (U). A feasible element x0 is called [strictly, weakly, · ] robust efficient if there does
not exist x ∈ X s.t.

fU (x) ⊆ fU (x0)− Rk[=/>/≥].

Definition 14 above shows that the authors in [25] implicitly use the upper set less
order relation by Kuroiwa [67, 65] which is defined for proper closed convex and pointed
cones C ⊂ Y :

fU (x) ⊆ fU (x0)− Rk= ⇐⇒ fU (x) �uC fU (x0)

for C = Rk= (compare Definition 7). It is important to mention that the order relations
discussed in the previous section are defined for proper closed convex and pointed cones
C ⊂ Y . In order to model weak ( · , respectively) robust efficiency notions, we extend
existing order relations to more general sets Q ⊂ Y .

In a first step, we generalize the concepts given in [25] to more general sets Q using
the upper set less order relation �uQ.

5.3.1 Upper Set Less Ordered Robustness

Using the upper set less order relation �us (see Definition 7), we are able to introduce
the concept of upper set less ordered robustness for uncertain vector-valued optimization
problems for a proper closed convex and pointed cone C. In accordance with [25], we
also wish to define weakly ( · , respectively) upper set less ordered robust elements.

Suppose that Q ⊂ Y is a proper set with C ⊂ clQ and clQ ∩ (− clQ) = {0}, where
clQ denotes the closure of a set Q. Under these assumptions we introduce an order
relation with respect to Q analogously to the upper set less order relation �us introduced
in Definition 7 for arbitrary nonempty sets A,B ⊂ Y :

A �uQ B :⇐⇒ A ⊆ B −Q. (5.13)

If we are dealing with Q = intC, we suppose intC 6= ∅.
We collect the definitions of strictly (weakly, · , respectively) upper set less ordered

robust elements of an uncertain multi-objective optimization problem:

Definition 15. A solution x0 of P (U) is called strictly (weakly, · , respectively) upper
set less ordered robust if there is no x ∈ X \ {x0} such that fU (x) �uQ fU (x0), which
is equivalent to

@ x ∈ X \ {x0} : fU (x) ⊆ fU (x0)−Q

for Q = C (Q = intC, Q = C \ {0}, respectively).

We exemplarily illustrate this definition in the figure below for Q = R2
≥.

As in deterministic vector-valued optimization, there is a relationship between strictly
(weakly, · , respectively) upper set less ordered robust solutions, which may be observed
in the following lemma.
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f1(x, ξ)

f2(x, ξ)

fU (x1)
fU (x2)

fU (x3)

fU (x1)− R2
≥

fU (x2)− R2
≥

fU (x3)− R2
≥

Figure 5.4: x1 is not upper set less ordered robust, x2 and x3 are upper set less ordered
robust.

Lemma 1. Let P (U) be an uncertain vector-valued optimization problem, where C ⊂ Y
is a proper closed convex and pointed cone with intC 6= ∅. Then we have:

x0 is strictly upper set less ordered robust =⇒ x0 is upper set less ordered robust

=⇒ x0 is weakly upper set less ordered robust.

The robust counterpart of an uncertain vector-valued optimization problem is the
problem of identifying all x ∈ X which are weakly upper set less ordered robust, upper
set less ordered robust, or strictly upper set less ordered robust.

Next we show the essential result that for |U| = 1, i.e., in the deterministic multi-
objective case, Definition 15 coincides with the definition of C-minimality (compare Def-
inition 2 in Chapter 2). For the special case Y = Rk, X = Rn, C = Rk=, this relation was
observed by Ehrgott et al. [25].

Lemma 2. Given P (U) with |U| = 1. Then x0 ∈ X is strictly (weakly, · , respectively)
upper set less ordered robust if and only if f(x0) is strictly (weakly, · , respectively)
minimal.

Proof. Let Q = C (Q = intC, Q = C \ {0}, respectively). x0 is strictly (weakly, · ,
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respectively) upper set less ordered robust

⇐⇒ @ x ∈ X \ {x0} : fU (x) �uQ fU (x0)

⇐⇒ @ x ∈ X \ {x0} : fU (x) ⊆ fU (x0)−Q
|U|=1⇐⇒ @ x ∈ X \ {x0} : f(x) ∈ f(x0)−Q
⇐⇒ f(x0) is strictly (weakly, · , respectively) minimal.

Ehrgott et al. [25] prove the following lemma.

Lemma 3 ([25, Lemma 3.6]). Given P (U) with Y = R, X = Rn and C = R=.

(a) x0 is weakly upper set less ordered robust ⇐⇒ x0 is upper set less ordered robust.

(b) If x0 is uniquely optimal for the robust counterpart (RC) (see (5.10)), then x0 is
strictly upper set less ordered robust.

(c) Suppose maxξ∈U f(x′, ξ) exists for every x′ ∈ X . Then it holds: If x0 is strictly
upper set less ordered robust, then x0 is uniquely optimal for the robust counterpart
(RC) (see (5.10)).

(d) Suppose maxξ∈U f(x′, ξ) exists for every x′ ∈ X . Then it holds: If x0 is optimal for
the robust counterpart (RC) (see (5.10)), then x0 is upper set less ordered robust.

(e) If x0 is weakly upper set less ordered robust, then x0 is optimal for the robust
counterpart (RC) (see (5.10)).

Scalarization techniques for deriving upper set less ordered robust elements are pre-
sented below.

Scalarization Approach for Computing Upper Set Less Ordered Robust Points:
Weighted Sum Scalarization

In the following we will see that for special structures of set-valued optimization problems
we are able to use scalarization methods in order to derive algorithms for computing upper
set less ordered robust solutions.

For the special case Y = Rk, X = Rn, C = Rk= Ehrgott et al. [25] propose solu-
tion procedures for uncertain vector optimization problems. In this section, we derive
algorithms to obtain upper set less ordered robust solutions to an uncertain vector op-
timization problem P (U). The most common approach to computing minimal solutions
for a deterministic vector optimization problem in finite dimensional image spaces is
the weighted sum scalarization. The general idea is to form a scalar optimization prob-
lem by multiplying each objective function with a positive weight and summing up the
weighted objectives. The weighted sum problem (Py∗) for a given (deterministic) vector
optimization problem Min(f(X ), C) and a weight vector y∗ ∈ C∗ \ {0} is
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(Py∗) min
x∈X

y∗ ◦ f(x).

We now reduce the uncertain vector-valued optimization problem to a single objective
optimization problem in order to be able to obtain upper set less ordered robust solutions.
To this end, we introduce the robust version of the weighted sum scalarization problem
of an uncertain vector-valued optimization problem P (U) in a general setting as

(PUury∗ ) min
x∈X

sup
ξ∈U

y∗ ◦ f(x, ξ). (5.14)

Theorem 22. Consider an uncertain vector optimization problem P (U). The following
statements hold:

(a) If x0 ∈ X is a unique optimal solution of (PUury∗ ) for some y∗ ∈ C∗ \ {0}, then x0

is strictly upper set less ordered robust for P (U).

(b) If x0 ∈ X is an optimal solution of (PUury∗ ) for some y∗ ∈ C∗ \{0} and maxξ∈U y
∗ ◦

f(x′, ξ) exists for all x′ ∈ X , then x0 is weakly upper set less ordered robust for
P (U).

(c) If x0 ∈ X is an optimal solution of (PUury∗ ) for some y∗ ∈ C# and maxξ∈U y
∗ ◦

f(x′, ξ) exists for all x′ ∈ X and the chosen weight y∗ ∈ C#, then x0 is upper set
less ordered robust for P (U).

Proof. Let Q = C (Q = intC, Q = C \{0}, respectively). Suppose that x0 is not strictly
(weakly, · , respectively) upper set less ordered robust. Then there exists an element
x ∈ X \ {x0} such that

fU (x) ⊆ fU (x0)−Q. (5.15)

This implies
∀ ξ ∈ U ∃ η ∈ U : f(x, ξ) ∈ f(x0, η)−Q.

Choose now y∗ ∈ C∗ \ {0} for Q = C (y∗ ∈ C∗ \ {0} for Q = intC, y∗ ∈ C# for
Q = C \ {0}, respectively) arbitrary, but fixed. This implies

=⇒ ∀ ξ ∈ U ∃ η ∈ U : y∗ ◦ f(x, ξ) [≤ / < / <] y∗ ◦ f(x0, η)

=⇒ ∀ ξ ∈ U : y∗ ◦ f(x, ξ) [≤ / < / <] sup
η∈U

y∗ ◦ f(x0, η)

=⇒ sup
ξ∈U

y∗ ◦ f(x, ξ) [≤ / < / <] sup
η∈U

y∗ ◦ f(x0, η).

The last two inequalities hold because for (b) and (c) maxξ∈U y
∗ ◦f(x′, ξ) exists for every

x′ ∈ X . But this means that x0 is not the unique optimal (an optimal, an optimal,
respectively) solution of (PUury∗ ) for y∗ ∈ C∗ \ {0} (y∗ ∈ C∗ \ {0}, y∗ ∈ C#, respectively).
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Remark 21. In Theorem 22 (c) we consider y∗ ∈ C#. Under our assumptions concern-
ing the cone C and if we assume additionally Y = Rk we have C# 6= ∅ (compare [39,
Theorem 2.2.12], [39, Example 2.2.16]). Moreover, if Y is a Hausdorff locally convex
space, C ⊂ Y is a proper convex cone and C has a base B with 0 /∈ clB, then C# 6= ∅
(compare [39, Theorem 2.2.12]).

Based on Theorem 22 we derive the following algorithms for computing strictly
(weakly, · , respectively) upper set less ordered robust solutions of the uncertain vector-
valued optimization problem P (U). In the following algorithms the set of strictly (weakly,
· , respectively) upper set less ordered robust solutions is denoted by Optsur (Optwur,
Optur, respectively).

Algorithm 1 for solving P (U) based on weighted sum scalarization:

Input: Uncertain vector-valued problem P (U), solution sets Optsur = Optur = Optwur =
∅.

Step 1: Choose a set C ⊂ C∗ \ {0}.

Step 2: If C = ∅: STOP. Output: Set of strictly upper set less ordered robust solutions
Optsur, set of upper set less ordered robust solutions Optur, set of weakly upper set
less ordered robust solutions Optwur.

Step 3: Choose y∗ ∈ C. Set C := C \ {y∗}. Find a set of optimal solutions SOL(PUury∗ )
of (PUury∗ ) (see (5.14)).

Step 4: If SOL(PUury∗ ) = ∅, then go to Step 2.

Step 5: (a) If |SOL(PUury∗ )| = 1, then SOL(PUury∗ ) consists of a strictly upper set less
ordered robust solution for P (U), thus

Optsur := Optsur ∪ SOL(PUury∗ ).

(b) If maxξ∈U y
∗◦f(x′, ξ) exists for all x′ ∈ X , then SOL(PUury∗ ) consists of weakly

upper set less ordered robust elements of P (U), thus

Optwur := Optwur ∪ SOL(PUury∗ ).

(c) If maxξ∈U y
∗ ◦ f(x′, ξ) exists for all x′ ∈ X and y∗ ∈ C#, then SOL(PUury∗ )

consists of upper set less ordered robust solutions of P (U), thus

Optur := Optur ∪ SOL(PUury∗ ).

Go to Step 2.
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The following algorithm represents an interactive procedure for solving the uncertain
vector-valued optimization problem P (U). In this approach we reduce the scalarized
problem to a one-parametric optimization problem by altering the weights y∗ ∈ C∗ \ {0}
chosen in the scalarized problem (PUury∗ ).

Algorithm 2 for computing upper set less ordered robust solutions to the
uncertain vector-valued optimization problem P (U):

Input: Uncertain vector-valued problem P (U), solution sets Optsur = Optur = Optwur =
∅.

Step 1: Choose a set C ⊂ C∗ \ {0} with at least two distinct elements. Set j := 0.
Choose y∗0 ∈ C, set C := C \ {y∗0}.

Step 2: If C = ∅ or if Optsur, Optur, Optwur are accepted by the decision maker:
STOP. Output: Set of strictly upper set less ordered robust solutions Optsur,
set of upper set less ordered robust solutions Optur, set of weakly upper set less
ordered robust solutions Optwur.

Step 3: Choose y∗j+1 ∈ C. Set C := C \ {y∗j+1}. Set t = 0.

Step 4: Set ŷ∗ := y∗j + t(y∗j+1 − y∗j ).

Step 5: Find a set of optimal solutions SOL(PUurŷ∗ ) of problem (PUurŷ∗ ) (see (5.14)).

Step 6: If SOL(PUurŷ∗ ) = ∅, go to Step 8.

Step 7: (a) If |SOL(PUurŷ∗ )| = 1, then SOL(PUurŷ∗ ) consists of a strictly upper set less
ordered robust solution for P (U), thus

Optsur := Optsur ∪ SOL(PUurŷ∗ ).

(b) If maxξ∈U ŷ
∗ ◦ f(x′, ξ) exists for all x′ ∈ X , then all elements in SOL(PUurŷ∗ )

are weakly upper set less ordered robust solutions for P (U), thus

Optwur := Optwur ∪ SOL(PUurŷ∗ ).

(c) If maxξ∈U ŷ
∗ ◦ f(x′, ξ) exists for all x′ ∈ X and ŷ∗ ∈ C#, then all elements in

SOL(PUurŷ∗ ) are upper set less ordered robust for P (U), thus

Optur := Optur ∪ SOL(PUurŷ∗ ).

Step 8: If t = 1, then set j := j + 1 and go to Step 2. Otherwise, choose t :∈ (t, 1] and
go to Step 4.

In the following, we mention another scalarization method that will be useful to derive
upper set less ordered robust solutions.
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Scalarization Approach for Computing Upper Set Less Ordered Robust Points:
ε-Constraint Scalarization

In this subsection, we focus on the case where Y = Rk, X = Rn and C = Rk=. We now use
the ε-constraint approach to reduce a vector-valued uncertain optimization problem P (U)
to a single objective optimization problem. To this end we define the robust ε-constraint
version (PUε,i) of P (U), thus an ε-constraint problem for an uncertain vector-valued
optimization problem:

(PUurε,i ) min sup
ξ∈U

fi(x, ξ) s.t. ∀ j 6= i, ∀ ξ ∈ U : fj(x, ξ) ≤ εj , x ∈ X . (5.16)

In the following theorem the relationships between solutions of (PUurε,i ) and strictly
upper set less ordered robustness (weakly upper set less ordered robustness, respectively)
are presented (see [25]).

Theorem 23 ([25, Theorem 4.6]). Consider an uncertain vector-valued optimization
problem P (U) with Y = Rk, X = Rn, C = Rk=. The following statements hold.

(a) If x0 is the unique optimal solution of (PUurε,i ) for some ε ∈ Rk and some i ∈
{1, . . . , k}, then x0 is strictly upper set less ordered robust for P (U).

(b) If x0 ∈ X is an optimal solution of (PUurε,i ) for some ε ∈ Rk and maxξ∈U fj(x
′, ξ)

exists for all x′ ∈ X and j = 1, . . . , k, then x0 is weakly upper set less ordered
robust for P (U).

The proof can be found in [25] and is omitted here.
This leads to the following algorithm for computing strictly (weakly, respectively) up-

per set less ordered robust solutions of the uncertain vector-valued optimization problem
P (U) with Y = Rk, X = Rn and C = Rk= (see also [25]).

Algorithm 3 for solving P (U) based on an ε-constraint method:

Input: Uncertain vector-valued problem P (U), solution sets Optsur = Optwur = ∅.

Step 1: Choose a set E ⊂ Rk.

Step 2: If E = ∅: STOP. Output: Set of strictly upper set less ordered robust solutions
Optsur and set of weakly upper set less ordered robust solutions Optwur.

Step 3: Choose ε ∈ E . Set E := E \ {ε}. Find a set of optimal solutions SOL(PUurε,i ) of
(PUurε,i ) (see (5.16)).

Step 4: If SOL(PUurε,i ) = ∅, go to Step 2.

Step 5: (a) If |SOL(PUurε,i )| = 1, then SOL(PUurε,i ) consists of a strictly upper set less
ordered robust solution of P (U), thus

Optsur := Optsur ∪ SOL(PUurε,i ).
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(b) If maxξ∈U fj(x
′, ξ) exists for all x′ ∈ X and j = 1, . . . , k, then SOL(PUurε,i )

consists of weakly upper set less ordered robust solutions for P (U), thus

Optwur := Optwur ∪ SOL(PUurε,i ).

Go to Step 2.

Scalarization Approach for Computing Upper Set Less Ordered Robust Points:
Max-Ordering Scalarization

In this subsection, we provide a characterization of robust strictly (weakly, respectively)
upper set less ordered robust solutions via max-ordering scalarization for the special case
Y = Rk, X = Rn, C = Rk=. Consider the problem

(PUmax,ury∗ ) min
x∈X

max
i=1,...,k

sup
ξ∈U

y∗i fi(x, ξ) (5.17)

with a weight vector y∗ ∈ Rk>.

Theorem 24. Consider an uncertain vector optimization problem P (U) with Y = Rk,
X = Rn, C = Rk=. The following statements hold:

(a) If x0 ∈ X is a unique optimal solution of (PUmax,ury∗ ) for some y∗ ∈ Rk>, then x0 is
strictly upper set less ordered robust for P (U).

(b) If x0 ∈ X is an optimal solution of (PUmax,ury∗ ) for some y∗ ∈ Rk> and
maxξ∈U y

∗
i fi(x

′, ξ) exists for all x′ ∈ X , i = 1, . . . , k, then x0 is weakly upper set
less ordered robust for P (U).

Proof. Let Q = Rk= (Q = Rk>, respectively). Suppose x0 is not strictly (weakly, respec-
tively) upper set less ordered robust. Then there exists an element x ∈ X \ {x0} such
that

fU (x) ⊆ fU (x0)−Q.
This implies

∀ ξ ∈ U ∃ η ∈ U : f(x, ξ) ∈ f(x0, η)−Q.
It follows

∀ ξ ∈ U ∃ η ∈ U : fi(x, ξ) [≤ / <] fi(x
0, η), i = 1, . . . , k.

Choose now y∗ ∈ Rk> arbitrary, but fixed. Then

∀ ξ ∈ U ∃ η ∈ U : y∗i fi(x, ξ) [≤ / <] y∗i fi(x
0, η), i = 1, . . . , k,

=⇒ ∀ ξ ∈ U : y∗i fi(x, ξ) [≤ / <] sup
η∈U

y∗i fi(x
0, η), i = 1, . . . , k,

=⇒ sup
ξ∈U

y∗i fi(x, ξ) [≤ / <] sup
η∈U

y∗i fi(x
0, η), i = 1, . . . , k.

The last implication holds because maxξ∈U y
∗
i fi(x

′, ξ) exists for all x′ ∈ X , i = 1, . . . , k.
But this means that x0 is not the unique optimal (optimal, respectively) solution for
(PUmax,ury∗ ) for y∗ ∈ Rk>.
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Remark 22. The results presented in Theorem 24 also hold in case X is a linear space,
although the objective space Y = Rk is finite dimensional.

Based on the scalarization results obtained in Theorem 24, we provide an algorithm
for solving P (U) via max-ordering scalarization below.

Algorithm 4 for computing upper set less ordered robust solutions based
on max-ordering scalarization:

Input: Uncertain vector-valued problem P (U), solution sets Optsur = Optwur = ∅.

Step 1: Choose a set C ⊂ Rk>.

Step 2: If C = ∅: STOP. Output: Set of strictly upper set less ordered robust solutions
Optsur, set of weakly upper set less ordered robust solutions Optwur.

Step 3: Choose y∗ ∈ C. Set C := C \ {y∗}. Now find a set of optimal solutions
SOL(PUmax,ury∗ ) of (PUmax,ury∗ ) (see (5.17)).

Step 4: If SOL(PUmax,ury∗ ) = ∅, then go to Step 2.

Step 5: (a) If |SOL(PUmax,ury∗ )| = 1, then SOL(PUmax,ury∗ ) consists of a strictly upper
set less ordered robust solution of P (U), thus

Optsur := Optsur ∪ SOL(PUmax,ury∗ ).

(b) If maxξ∈U y
∗
i fi(x

′, ξ) exists for all x′ ∈ X , i = 1, . . . , k, then SOL(PUmax,ury∗ )
consists of weakly upper set less ordered robust elements of P (U), thus

Optwur := Optwur ∪ SOL(PUmax,ury∗ ).

Go to Step 2.

In the following, as has been done in Algorithm 2, we offer an interactive algorithm to
obtain solutions of the uncertain vector-valued optimization problem P (U) by reducing
the problem to a one-parametric max-ordering optimization problem.

Algorithm 5 for for computing upper set less ordered robust solutions
based on max-ordering scalarization:

Input: Uncertain vector-valued problem P (U), solution sets Optsur = Optwur = ∅.

Step 1: Choose a set C ⊂ Rk> with at least two distinct elements. Set j := 0. Choose
y∗0 ∈ C, set C := C \ {y∗0}.
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Step 2: If C = ∅ or if Optsur, Optwur are accepted by the decision maker: STOP.
Output: Set of strictly upper set less ordered robust solutions Optsur, set of weakly
upper set less ordered robust solutions Optwur.

Step 3: Choose y∗j+1 ∈ C. Set C := C \ {y∗j+1}. Set t = 0.

Step 4: Set ŷ∗ := y∗j + t(y∗j+1 − y∗j ).

Step 5: Find a set of optimal solutions SOL(PUmax,urŷ∗ ) of problem (PUmax,urŷ∗ ) (see
(5.17)).

Step 6: If SOL(PUmax,urŷ∗ ) = ∅, go to Step 8.

Step 7: (a) If |SOL(PUmax,urŷ∗ )| = 1, then SOL(PUmax,urŷ∗ ) consists of a strictly upper
set less ordered robust solution for P (U), thus

Optsur := Optsur ∪ SOL(PUmax,urŷ∗ ).

(b) If maxξ∈U ŷ
∗
i fi(x

′, ξ) exists for all x′ ∈ X , i = 1, . . . , k, then all elements in
SOL(PUmax,urŷ∗ ) are weakly upper set less ordered robust elements for P (U),
thus

Optwur := Optwur ∪ SOL(PUmax,urŷ∗ ).

Step 8: If t = 1, then set j := j + 1 and go to Step 2. Otherwise, choose t :∈ (t, 1] and
go to Step 4.

Remark 23. Ehrgott et al. [25] propose a vectorization approach for computing upper
set less ordered robust solutions. Instead of repeating this concept here, we derive similar
results for an approach to uncertain vector-valued optimization involving the lower set
less order relation �lC (see Definition 7) in the following section.

5.3.2 Lower Set Less Ordered Robustness

Contrary to the upper set less order relation, the lower set less order relation (Definition
7) compares sets while focusing on the lower bounds. We now use the lower set less
order relation �lC for deriving a concept to approach uncertain multicriteria optimization
problems. To this end, we define a solution concept to uncertain problems P (U) that
relies on the comparison of sets via the lower set less order relation.

In the following, we extend Definition 7 of the lower set less order relation to general
nonempty sets Q ⊂ Y . To this end, let C ⊂ Y be a proper closed convex and pointed
cone. Suppose C ⊂ clQ and clQ ∩ (− clQ) = {0}. Then we define the lower set less
order relation �lQ for two nonempty sets A,B ⊂ Y

A �lQ B :⇐⇒ A+Q ⊇ B ⇐⇒ ∀ b ∈ B ∃ a ∈ A : a ≤Q b.

When dealing with Q = intC, we assume that intC 6= ∅.
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Definition 16. A solution x0 of P (U) is called strictly (weakly, · , respectively) lower
set less ordered robust if there is no x ∈ X \ {x0} such that fU (x) �lQ fU (x0), which
is equivalent to

@ x ∈ X \ {x0} : fU (x) +Q ⊇ fU (x0)

for Q = C (Q = intC, Q = C \ {0}, respectively).

Example 6. Figure 5.5 shows that x1 is strictly lower set less ordered robust with Q =
R2
=, while it is not upper set less ordered robust.

f1(x, ξ)

f2(x, ξ)

fU (x1)

fU (x2)

fU (x2) + R2
=

Figure 5.5: x1 is strictly lower set less ordered robust.

The lower set less ordered robustness concept is introduced here to give the decision
maker an alternative tool for obtaining robust solutions of an uncertain multicriteria opti-
mization problem. Contrary to the upper set less ordered robustness approach, lower set
less ordered robustness is not a worst-case concept, since this robustness concept focuses
on the lower bound of a set fU (x). This optimistic concept hedges against perturbations
in the best-case scenarios. Thus the decision maker is considered to be risk affine. A
possible explanation for such an optimistic approach may be some knowledge that the
decision maker has about the future: He may be sure that the worst case is very unlikely
to happen and thus wishes to consider other solutions as well, namely those with smaller
objectives in the best-case scenario.

The following lemma shows the essential result that for deterministic multi-objective
optimization the concept of lower set less ordered robustness is equivalent to deterministic
minimality as introduced in Definition 2 in Chapter 2.

Lemma 4. Given P (U) with |U| = 1. Then x0 is strictly (weakly, · , respectively) lower
set less ordered robust if and only if f(x0) is strictly (weakly, · , respectively) minimal.
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Proof. The following holds for Q = C (Q = intC, Q = C \ {0}, respectively):

x0 is strictly (weakly, · , respectively) lower set less ordered robust

⇐⇒ @ x ∈ X \ {x0} : fU (x) +Q ⊇ fU (x0)

⇐⇒ @ x ∈ X \ {x0} : ∀ η ∈ U ∃ ξ ∈ U : f(x, ξ) +Q 3 f(x0, η)

|U|=1⇐⇒ @ x ∈ X \ {x0} : f(x) +Q 3 f(x0)

⇐⇒ @ x ∈ X \ {x0} : f(x) ∈ f(x0)−Q
⇐⇒ f(x0) is strictly (weakly, · , respectively) minimal.

Next we verify that for the scalar case (Y = R, X = Rn) and with the natural
ordering cone C = R= the lower set less ordered robustness concept coincides with the
optimistic counterpart (OC) (compare (5.11)).

Lemma 5. Given P (U) with Y = R, X = Rn and C = R=.

(a) x0 is weakly lower set less ordered robust ⇐⇒ x0 is lower set less ordered robust.

(b) If x0 is uniquely optimal for the optimistic counterpart (OC) (see (5.11)), then x0

is strictly lower set less ordered robust.

(c) Suppose minξ∈U f(x′, ξ) exists for every x′ ∈ X . Then it holds: If x0 is strictly lower
set less ordered robust, then x0 is uniquely optimal for the optimistic counterpart
(OC) (see (5.11)).

(d) Suppose minξ∈U f(x′, ξ) exists for every x′ ∈ X . Then it holds: If x0 is optimal
for the optimistic counterpart (OC) (see (5.11)), then x0 is lower set less ordered
robust.

(e) If x0 is weakly lower set less ordered robust, then x0 is optimal for the optimistic
counterpart (OC) (see (5.11)).

Proof. (a) Holds due to R> = R≥.

(b) x0 is uniquely optimal for the optimistic counterpart (OC) (see (5.11))

⇐⇒ @ x ∈ X \ {x0} : inf
ξ∈U

f(x, ξ) ≤ inf
ξ∈U

f(x0, ξ). (5.18)

Now suppose that x0 is not strictly lower set less ordered robust. Then there exists
x ∈ X \ {x0} s.t.

fU (x) + R= ⊇ fU (x0)

⇐⇒ ∀ η ∈ U ∃ ξ ∈ U : f(x, ξ) + R= 3 f(x0, η)

⇐⇒ ∀ η ∈ U ∃ ξ ∈ U : f(x, ξ) ≤ f(x0, η)

=⇒ inf
ξ∈U

f(x, ξ) ≤ inf
ξ∈U

f(x0, ξ),

in contradiction to (5.18).
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(c) x0 is strictly lower set less ordered robust

⇐⇒ @ x ∈ X \ {x0} : fU (x) + R= ⊇ fU (x0)

⇐⇒ @ x ∈ X \ {x0} : ∀ η ∈ U ∃ ξ ∈ U : f(x, ξ) + R= 3 f(x0, η)

⇐⇒ @ x ∈ X \ {x0} : ∀ η ∈ U ∃ ξ ∈ U : f(x, ξ) ≤ f(x0, η)

⇐⇒ ∀ x ∈ X \ {x0} : ∃ η ∈ U ∀ ξ ∈ U : f(x, ξ) > f(x0, η)

=⇒ ∀ x ∈ X \ {x0} : min
ξ∈U

f(x, ξ) > min
ξ∈U

f(x0, ξ)

⇐⇒ x0 is uniquely optimal for the optimistic counterpart (OC) (see (5.11)).

(d) x0 is optimal for the optimistic counterpart (OC) (see (5.11))

⇐⇒ @ x ∈ X \ {x0} : min
ξ∈U

f(x, ξ) < min
ξ∈U

f(x0, ξ). (5.19)

Now suppose that x0 is not lower set less ordered robust. Then there exists x ∈
X \ {x0} s.t.

fU (x) + R≥ ⊇ fU (x0)

⇐⇒ ∀ η ∈ U ∃ ξ ∈ U : f(x, ξ) + R≥ 3 f(x0, η)

⇐⇒ ∀ η ∈ U ∃ ξ ∈ U : f(x, ξ) < f(x0, η)

=⇒ min
ξ∈U

f(x, ξ) < min
ξ∈U

f(x0, ξ),

in contradiction to (5.19).

(e) x0 is weakly lower set less ordered robust

⇐⇒ @ x ∈ X \ {x0} : fU (x) + R> ⊇ fU (x0)

⇐⇒ @ x ∈ X \ {x0} : ∀ η ∈ U ∃ ξ ∈ U : f(x, ξ) + R> 3 f(x0, η)

⇐⇒ @ x ∈ X \ {x0} : ∀ η ∈ U ∃ ξ ∈ U : f(x, ξ) < f(x0, η)

⇐⇒ ∀ x ∈ X \ {x0} : ∃ η ∈ U ∀ ξ ∈ U : f(x, ξ) ≥ f(x0, η)

=⇒ ∀ x ∈ X \ {x0} : inf
ξ∈U

f(x, ξ) ≥ inf
ξ∈U

f(x0, ξ)

⇐⇒ x0 is optimal for the optimistic counterpart (OC) (compare (5.11)).

Scalarization Approach for Computing Lower Set Less Ordered Robust Points:
Weighted Sum Scalarization

In the following we derive scalarization results based on weighted sums that will be
helpful to obtain lower set less ordered robust solutions.
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Let y∗ ∈ C∗ \ {0} (y∗ ∈ C#, respectively). Consider the weighted sum scalarization
problem

(PU lry∗) min
x∈X

inf
ξ∈U

y∗ ◦ f(x, ξ). (5.20)

The following theorem is presented in [48, Theorem 2.4] for the special case Y = Rk,
X = Rn and C = Rk=.

Theorem 25. Consider an uncertain vector optimization problem P (U). The following
statements hold:

(a) If x0 is a unique optimal solution of (PU lry∗) for some y∗ ∈ C∗ \ {0}, then x0 is
strictly lower set less ordered robust.

(b) If x0 is an optimal solution of (PU lry∗) for some y∗ ∈ C∗\{0} and minξ∈U y
∗◦f(x′, ξ)

exists for all x′ ∈ X , then x0 is weakly lower set less ordered robust.

(c) If x0 is an optimal solution of (PU lry∗) for some y∗ ∈ C# and minξ∈U y
∗ ◦ f(x′, ξ)

exists for all x′ ∈ X and y∗ ∈ C#, then x0 is lower set less ordered robust.

Proof. Let Q = C (Q = intC, Q = C \{0}, respectively). Suppose that x0 is not strictly
(weakly, · , respectively) lower set less ordered robust. Consequently, there exists an
element x ∈ X \ {x0} s.t. fU (x) +Q ⊇ fU (x0). That is equivalent to

∀ ξ ∈ U ∃ η ∈ U : f(x, η) +Q 3 f(x0, ξ)

⇐⇒ ∀ ξ ∈ U ∃ η ∈ U : f(x, η) ∈ f(x0, ξ)−Q. (5.21)

Now choose y∗ ∈ C∗ \ {0} for Q = C (y∗ ∈ C∗ \ {0} for Q = intC, y∗ ∈ C# for
Q = C \ {0}, respectively) arbitrary, but fixed. Hence, we obtain from (5.21)

=⇒ ∀ ξ ∈ U ∃ η ∈ U : y∗ ◦ f(x, η) [≤ / < / <] y∗ ◦ f(x0, ξ)

=⇒ inf
η∈U

y∗ ◦ f(x, η) [≤ / < / <] inf
ξ∈U

y∗ ◦ f(x0, ξ),

in contradiction to the assumption.

Based on these results, we are able to present the following algorithm that computes
lower set less ordered robust solutions of an uncertain multicriteria optimization problem.
We use the notation Optslr, (Optwlr, Optlr, respectively) for the set of strictly (weakly,
· , respectively) lower set less ordered robust solutions.
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Algorithm 6 for deriving lower set less ordered robust solutions based on
weighted sum scalarization:

Input & Steps 1-5: Analogous to Algorithm 1, only replacing Optsur, Optur, Optwur

by Optslr, Optlr, Optwlr, (PUury∗ ) (see (5.14)) by (PU lry∗) (see (5.20)), maxξ∈U y
∗ ◦

f(x′, ξ) by minξ∈U y
∗ ◦ f(x′, ξ) in Step 5 (b) and (c) and replacing “upper” by

“lower” in Step 5.

The next algorithm computes lower set less ordered robust solutions via weighted
sum scalarization by altering the weights.

Algorithm 7 for computing lower set less ordered robust elements of an
uncertain vector-valued optimization problem P (U):

Input & Steps 1-8: Analogous to Algorithm 2, only replacing Optsur, Optur, Optwur

by Optslr, Optlr, Optwlr, (PUurŷ∗ ) (see (5.14)) by (PU lrŷ∗) (see (5.20)), maxξ∈U ŷ
∗ ◦

f(x′, ξ) by minξ∈U ŷ
∗ ◦ f(x′, ξ) in Step 7 (b) and (c) and replacing “upper” by

“lower” in Step 7.

Scalarization Approach for Computing Lower Set Less Ordered Robust Points:
ε-Constraint Scalarization

In the following we provide a solution procedure for obtaining lower set less ordered robust
solutions via ε-constraint scalarization for the special case Y = Rk, X = Rn, C = Rk=.
For this purpose, consider the ε-constraint minimization problem

(PU lrε,i) min inf
ξ∈U

fi(x, ξ) s.t. ∀ j 6= i : inf
ξ∈U

fj(x, ξ) ≤ εj , x ∈ X . (5.22)

The next theorem highlights the connections between solutions of (PU lrε,i) and strictly
(weakly, respectively) lower set less ordered robustness.

Theorem 26. Consider an uncertain vector-valued optimization problem P (U) with Y =
Rk, X = Rn, C = Rk=. Then the following statements hold.

(a) If x0 is the unique optimal solution of (PU lrε,i) for ε ∈ Rk and some i ∈ {1, . . . , k},
then x0 is strictly lower set less ordered robust for P (U).

(b) If x0 ∈ X is an optimal solution of (PU lrε,i) for ε ∈ Rk and minξ∈U fj(x
′, ξ) exists

for all x′ ∈ X and j = 1, . . . , k, then x0 is weakly lower set less ordered robust for
P (U).

Proof. Suppose that x0 is not strictly (weakly, respectively) lower set less ordered robust
for P (U). Thus there is an element x ∈ X \ {x0} with

fU (x) �lQ fU (x0),
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where �lQ is given with respect to Q = Rk= (Q = Rk>, respectively). This is equivalent to

fU (x0) ⊆ fU (x) +Q.

In other words,

∀ ξ ∈ U ∃ η ∈ U : f(x, η) ∈ f(x0, ξ)−Q
⇐⇒ ∀ ξ ∈ U ∃ η ∈ U : f(x, η) [5 / <] f(x0, ξ)

⇐⇒ ∀ ξ ∈ U ∃ η ∈ U : fj(x, η) [≤ / <] fj(x
0, ξ), j = 1, . . . , k

⇐⇒ ∃ η ∈ U : fj(x, η) [≤ / <] inf
ξ∈U

fj(x
0, ξ), j = 1, . . . , k

and this yields
inf
ξ∈U

fj(x, ξ) [≤ / <] inf
ξ∈U

fj(x
0, ξ), j = 1, . . . , k. (5.23)

Because infξ∈U fj(x
0, ξ) ≤ εj for every j = 1, . . . , k, j 6= i, x is also feasible and has an

equal or better objective function value (a better objective function value, respectively)
than x0, contradicting the assumption that x0 is the unique optimal (an optimal, respec-
tively) solution of (PU lrε,i). Note that the strict inequality in (5.23) holds because the
existence of minξ∈U fj(x

′, ξ) for all x′ ∈ X and j = 1, . . . , k is presumed.

The previous theorem enables us to present the following algorithm.

Algorithm 8 for solving P (U) based on ε-constraint method:

Input, Steps 1-5: Analogous to Algorithm 3, only replacing Optsur, Optwur by
Optslr, Optwlr, (PUurε,i ) (see (5.16)) by (PU lrε,i) (see (5.22)) and maxξ∈U fj(x

′, ξ) by
minξ∈U fj(x

′, ξ) in Step 5 (b), and replacing “upper” by “lower” in Step 5.

Scalarization Approach for Computing Lower Set Less Ordered Robust Points:
Max-Ordering Scalarization

In this subsection, we focus once more on the special case Y = Rk, X = Rn, C = Rk=
and present a scalarization method for computing lower set less ordered robust solutions
of P (U). Let y∗ ∈ Rk>. Consider the max-ordering problem

(PUmax,lry∗ ) min
x∈X

max
i=1,...,k

inf
ξ∈U

y∗i fi(x, ξ). (5.24)

The following theorem describes the relationship between solutions of (PUmax,lry∗ ) and
lower set less ordered robust elements.

Theorem 27. Consider an uncertain vector optimization problem P (U) with Y = Rk,
X = Rn, C = Rk=. The following statements hold:

(a) If x0 is a unique optimal solution of (PUmax,lry∗ ) for some y∗ ∈ Rk>, then x0 is
strictly lower set less ordered robust.
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(b) If x0 is an optimal solution of (PUmax,lry∗ ) for some y∗ ∈ Rk> and minξ∈U y
∗
i fi(x

′, ξ)

exists for all x′ ∈ X , i = 1, . . . , k, then x0 is weakly lower set less ordered robust.

Proof. Suppose x0 is not strictly (weakly, respectively) lower set less ordered robust.
Then there is an element x ∈ X \ {x0} s.t. fU (x) + Q ⊇ fU (x0) for Q = Rk= (Q = Rk>,
respectively). That is equivalent to

∀ ξ ∈ U ∃ η ∈ U : f(x, η) +Q 3 f(x0, ξ)

⇐⇒ ∀ ξ ∈ U ∃ η ∈ U : f(x, η) ∈ f(x0, ξ)−Q. (5.25)

Now choose y∗ ∈ Rk> arbitrary, but fixed. Hence, we obtain from (5.25)

=⇒ ∀ ξ ∈ U ∃ η ∈ U : y∗i fi(x, η) [≤ / <] y∗i fi(x
0, ξ), i = 1, . . . , k,

=⇒ ∃ η ∈ U : y∗i fi(x, η) [≤ / <] inf
ξ∈U

y∗i fi(x
0, ξ), i = 1, . . . , k,

=⇒ inf
η∈U

y∗i fi(x, η) [≤ / <] inf
ξ∈U

y∗i fi(x
0, ξ), i = 1, . . . , k,

in contradiction to the assumption.

Theorem 27 enables us to provide the following algorithm for deriving strictly and
weakly lower set less ordered robust solutions of an uncertain vector optimization prob-
lem.

Algorithm 9 for computing lower set less ordered robust solutions based
on max-ordering scalarization:

Input, Steps 1-5: Analogous to Algorithm 4, only replacing Optsur, Optwur by
Optslr, Optwlr, (PUmax,ury∗ ) (see (5.17)) by (PUmax,lry∗ ) (see (5.24)) and maxξ∈U y

∗
i fi(x

′, ξ)
by minξ∈U y

∗
i fi(x

′, ξ) in Step 5 (b), and replacing “upper” by “lower” in Step 5.

The following algorithm provides an interactive procedure for deriving (weakly, strictly)
lower set less ordered robust solutions.

Algorithm 10 for computing lower set less ordered robust solutions based
on max-ordering scalarization:

Input, Steps 1-8: Analogous to Algorithm 5, only replacing Optsur, Optwur by
Optslr, Optwlr, (PUmax,urŷ∗ ) (see (5.17)) by (PUmax,lrŷ∗ ) (see (5.24)) and maxξ∈U ŷ

∗
i fi(x

′, ξ)
by minξ∈U ŷ

∗
i fi(x

′, ξ) in Step 7 (b), and replacing “upper” by “lower”.



CHAPTER 5. ROBUST APPROACHES TO VECTOR OPTIMIZATION 77

Vectorization Approach for Computing Lower Set Less Ordered Robust Points

In addition to deriving scalarization techniques for obtaining lower set less ordered robust
solutions to P (U), we provide the following vectorization method for the special case
Y = Rk, X = Rn, C = Rk=. Here, vectorization means that the uncertain vector-valued
optimization problem P (U) is reduced to a deterministic vector-valued problem which
can be used to determine lower set less ordered robust solutions.

Consider the multi-objective problem

(V OP lr) Min(f [X ],Rk=) (5.26)

with f(x) := (infξ∈U f1(x, ξ), . . . , infξ∈U fk(x, ξ))
T for x ∈ X .

In the following theorem we observe that strictly (weakly, respectively) Pareto optimal
solutions of the above problem (V OP lr) are strictly (weakly, respectively) lower set less
ordered robust elements of the uncertain multi-objective optimization problem P (U).

Theorem 28. Given an uncertain vector-valued optimization problem P (U) with Y =
Rk, X = Rn, C = Rk=. The following statements hold.

(a) If x0 is strictly Pareto optimal for (V OP lr), then x0 is strictly lower set less ordered
robust.

(b) If x0 is weakly Pareto optimal for (V OP lr) and minξ∈U fi(x
′, ξ) exist for all x′ ∈ X

and i = 1, . . . , k, then x0 is weakly lower set less ordered robust.

Proof. Suppose that x0 is not strictly (weakly, respectively) lower set less ordered robust.
Then there exists x ∈ X \ {x0} s.t. for Q = Rk= (Q = Rk>, respectively)

fU (x) +Q ⊇ fU (x0)⇐⇒ ∀ ξ ∈ U ∃ η ∈ U : f(x, η) +Q 3 f(x0, ξ)

⇐⇒ ∀ ξ ∈ U ∃ η ∈ U : fi(x, η) [≤ / <] fi(x
0, ξ), i = 1, . . . , k,

=⇒ ∃ η ∈ U : fi(x, η) [≤ / <] inf
ξ∈U

fi(x
0, ξ), i = 1, . . . , k,

=⇒ inf
ξ∈U

fi(x, ξ) [≤ / <] inf
ξ∈U

fi(x
0, ξ), i = 1, . . . , k,

in contradiction to the assumption of x0 being strictly (weakly, respectively) Pareto
optimal for (V OP lr).

Algorithm 11 for computing lower set less ordered robust solutions using
a vectorization approach:

Input: Uncertain vector-valued problem P (U), solution sets Optslr = Optwlr = ∅.

Step 1: Find a set SOLwe(V OP
lr) of weakly Pareto optimal solutions of (V OP lr) (see

(5.26)).
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Step 2: If SOLwe(V OP
lr) = ∅, then STOP. Output: Set of strictly lower set less

ordered robust solutions Optslr and set of weakly lower set less ordered robust
solutions Optwlr.

Step 3: Choose x ∈ SOLwe(V OP
lr). Set SOLwe(V OP

lr) := SOLwe(V OP
lr) \ {x}.

a) If x is a strictly Pareto optimal solution of (V OP lr) (see (5.26)), then x is
strictly lower set less ordered robust for P (U), thus

Optslr := Optslr ∪ {x}.

b) If minξ∈U fi(x
′, ξ) exists for all x′ ∈ X , i = 1, . . . , k, then x is weakly lower set

less ordered robust for P (U), thus

Optwlr := Optwlr ∪ {x}.

Go to Step 2.

Interestingly, applying the weighted sum / ε-constraint / max-ordering scalarization
to problem (V OP lr) (see (5.26)) yields the same scalarization approach as (PU lry∗) (see
(5.20)) / (PU lrε,i) (see 5.22) / (PUmax,lry∗ ) (see (5.24)).

Remark 24. Applying weighted sum / ε-constraint / max-ordering scalarization to
(V OP lr) (see (5.26)) yields problem (PU lry∗) (see (5.20)) / (PU lrε,i) (see 5.22) / (PUmax,lry∗ )
(compare (5.24)). In addition, Theorem 28 implies that solutions of scalarizations of
(V OP lr) are connected to lower set less ordered robust elements of P (U). For example,
the nonlinear scalarization functional z (compare (2.2)) as discussed in Chapter 2 may
be used to scalarize (V OP lr) using different involved parameters, thus enabling numerous
scalarization techniques to be applied to (V OP lr). Furthermore, note that for |U| = 1,
(V OP lr) reduces to a classical deterministic vector-valued optimization problem. In case
Y = R, (V OP lr) is equivalent to the optimistic counterpart (OC) (see (5.11)).

In the following we investigate under which conditions the inverse direction in Theo-
rem 28 is satisfied. To this end, we introduce object-wise uncertainty, which is motivated
by the notion of constraint-wise uncertainty (see Ben-Tal et al. [8]) and has first been
introduced by Ehrgott et al. [25, Definition 5.1].

Definition 17 (Object-wise uncertainty, [25]). An uncertain multi-objective optimization
problem P (U) with objective function f : Rn × U → Rk is called object-wise uncertain
if the uncertainties in the objective function are independent of each other, i.e., if U :=
U1, . . . ,Uk with Ui ∈ RNi , i = 1, . . . , k,

∑k
i=1Ni = N such that

f(x, ξ) =

f1(x, ξ1)
. . .

fk(x, ξk)


with ξi ∈ Ui, i = 1, . . . , k.
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Note that constraint-wise uncertainty plays an important role in applications, for
instance in the case where the objective coefficients are noisy.

We first mention the essential property that the existence of a best-case scenario for
every objective function minξi∈Ui fi(x, ξi), i = 1, . . . , k, implies that a best-case scenario
exists for the uncertain vector-valued optimization problem.

Lemma 6. Let P (U) be object-wise uncertain and suppose that minξi∈Ui fi(x, ξi) exists
for all x ∈ X and i = 1, . . . , k. Then

ξmin(x) :=

argmin ξ1∈U1 f1(x, ξ1)

. . .
argmin ξk∈Uk fk(x, ξk)

 ∈ U .
Proof. We have that for every x ∈ X and i = 1, . . . , k:

argmin ξi∈Ui fi(x, ξi) ∈ Ui,

thus ξmin(x) ∈ U1 × . . .× Uk = U .

Note that Ehrgott et al. [25] study the property of object-wise uncertainty for un-
certain vector-valued optimization problems to obtain upper set less ordered robust so-
lutions. Therefore, the authors in [25] consider

ξmax(x) := (argmax ξ1∈U1 f1(x, ξ1), . . . , argmax ξk∈Uk fk(x, ξk))
T

and obtain a result similar to Lemma 6.
Next we derive the important result that object-wise uncertain vector-valued opti-

mization problems are equivalent to deterministic multi-objective optimization.

Theorem 29. Assume that the uncertain multi-objective problem P (U) is object-wise
uncertain and minξi∈Ui fi(x

′, ξi) exist for all x′ ∈ X and i = 1, . . . , k. Then x0 is strictly
(· , weakly, respectively) Pareto optimal for (V OP lr) (see (5.26)) if and only if x0 is
strictly (· , weakly, respectively) lower set less ordered robust.

Proof. Due to Lemma 6

f(x, ξmin) :=

minξ1∈U1 f1(x, ξ1)
. . .

minξk∈Uk fk(x, ξk)

 ∈ fU (x)

for all x ∈ X . Thus
f(x, ξmin) +Q ⊆ fU (x) +Q (5.27)

for Q = Rk[=/≥/>]. We now prove “⊇” in (5.27). Consider y ∈ fU (x) + Q. Thus,
there exists ξ ∈ U such that y ∈ f(x, ξ) + Q. Due to the definition of ξmin, we have
f(x, ξ) ∈ f(x, ξmin) + Rk=, and this implies y ∈ f(x, ξmin) +Q, since Q+ Rk= ⊆ Q.
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Ehrgott [24, Theorem 4.5] showed that a feasible solution f(x) is minimal for a
vector-valued optimization problem if and only if there exists an ε such that x solves the
corresponding ε-constraint scalarized problem. From that result, we deduce the following
lemma.

Lemma 7. Assume that the uncertain multi-objective problem P (U) is object-wise un-
certain and minξi∈Ui fi(x

′, ξi) exists for all x′ ∈ X and i = 1, . . . , k. Then x0 is lower
set less ordered robust if and only if there exists an ε ∈ Rk such that x0 is an optimal
solution to problem (PU lrε,i) (see (5.22)) for all i = 1, . . . , k.

Note that an equivalent result has been obtained by Ehrgott et al. [25, Corollary 5.6]
for upper set less ordered robust solutions.

5.3.3 Set Less Ordered Robustness

Definition 6 motivates us to extend the set less order relation to general nonempty sets
Q ⊂ Y . To this end, let C ⊂ Y be a proper closed convex and pointed cone. Suppose
C ⊂ clQ and clQ∩(− clQ) = {0}. Under these assumptions, we define the set less order
relation �sQ for two sets A,B ⊂ Y

A �sQ B :⇐⇒ A ⊆ B −Q and A+Q ⊇ B
⇐⇒ (∀ a ∈ A ∃ b ∈ B : a ≤Q b) and (∀ b ∈ B ∃ a ∈ A : a ≤Q b).

In case we are dealing with Q = intC, we suppose that intC 6= ∅.

Definition 18. A solution x0 of P (U) is called strictly (weakly, · , respectively) set
less ordered robust if there is no x ∈ X \ {x0} such that fU (x) �sQ fU (x0), which is
equivalent to

@ x ∈ X \ {x0} : fU (x) +Q ⊇ fU (x0) and fU (x) ⊆ fU (x0)−Q

for Q = C (Q = intC, Q = C \ {0}, respectively).

Example 7. In Figure 5.6, x1 is set less ordered robust with Q = R2
≥.

The motivation of introducing this concept of robustness is the following: Consider
Example 7. Although x1 is not weakly upper set less ordered robust, there are scenarios
ξ ∈ U for which the objective f(x1, ξ) is smaller than f(x2, ξ) in at least one component fi.
Thus, the definition of set less ordered robustness would reflect a decision maker’s strategy
if he is not only interested in minimizing the worst-case, but does not want to neglect
solutions that are smaller in at least one scenario. Consequently, this approach could
possibly yield a larger number of solutions than the upper set less ordered robustness
approach, which could give the decision maker a wider choice of solutions.

First we verify that in case the uncertainty set U contains only one element, set less
ordered robustness is equivalent to the minimality concept introduced in Definition 2.
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f1(x, ξ)

f2(x, ξ)

fU (x1)

fU (x2)

fU (x1)− R2
≥

fU (x2) + R2
≥

Figure 5.6: x1 and x2 are set less ordered robust.

Lemma 8. Given P (U) with |U| = 1. Then x0 is strictly (weakly, · , respectively) set
less ordered robust if and only if f(x0) is strictly (weakly, · , respectively) minimal.

Proof. The following holds for Q = C (Q = intC, Q = C \ {0}, respectively): x0 is
strictly (weakly, · , respectively) set less ordered robust

⇐⇒ @ x ∈ X \ {x0} : fU (x) +Q ⊇ fU (x0) and fU (x) ⊆ fU (x0)−Q
⇐⇒ @ x ∈ X \ {x0} : ∀ η1, η2 ∈ U ∃ ξ1, ξ2 ∈ U : f(x, ξ1) +Q 3 f(x0, η1)

and f(x, η2) ∈ f(x0, ξ2)−Q
|U|=1⇐⇒ @ x ∈ X \ {x0} : f(x) ∈ f(x0)−Q
⇐⇒ f(x0) is strictly (weakly, · , respectively) minimal.

Next we check for consistency of the introduced set less ordered robustness concept
in the scalar case Y = R, X = Rn and C = R=.

Lemma 9. Given P (U) with Y = R, X = Rn and C = R=.

(a) x0 is weakly set less ordered robust ⇐⇒ x0 is set less ordered robust.

(b) If x0 is uniquely optimal for the robust counterpart (RC) (see (5.10)) or for the
optimistic counterpart (OC) (see (5.11)), then x0 is strictly set less ordered robust.

(c) Suppose maxξ∈U f(x′, ξ) and minξ∈U f(x′, ξ) exist for every x′ ∈ X . Then it holds:
If x0 is strictly set less ordered robust, then x0 is uniquely optimal for the robust
counterpart (RC) (see (5.10)) or for the optimistic counterpart (OC) (see (5.11)).
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(d) Suppose maxξ∈U f(x′, ξ) and minξ∈U f(x′, ξ) exist for every x′ ∈ X . Then it holds:
If x0 is optimal for the robust counterpart (RC) (see (5.10)) or for the optimistic
counterpart (OC) (see (5.11)), then x0 is set less ordered robust.

(e) If x0 is weakly set less ordered robust, then x0 is optimal for the robust counterpart
(RC) (see (5.10)) or for the optimistic counterpart (OC) (see (5.11)).

Proof. (a) Holds due to R> = R≥.

(b) x0 is uniquely optimal for the robust counterpart (RC) (compare (5.10))

⇐⇒ @ x ∈ X \ {x0} : sup
ξ∈U

f(x, ξ) ≤ sup
ξ∈U

f(x0, ξ) (5.28)

or for the optimistic counterpart (OC) (see (5.11))

⇐⇒ @ x ∈ X \ {x0} : inf
ξ∈U

f(x, ξ) ≤ inf
ξ∈U

f(x0, ξ). (5.29)

Now suppose that x0 is not strictly set less ordered robust. Then there exists
x ∈ X \ {x0} s.t.

fU (x) + R= ⊇ fU (x0) and fU (x) ⊆ fU (x0)− R=
⇐⇒ ∀ η1, η2 ∈ U ∃ ξ1, ξ2 ∈ U : f(x, ξ1) + R= 3 f(x0, η1)

and f(x, η2) ∈ f(x0, ξ2)− R=
⇐⇒ ∀ η1, η2 ∈ U ∃ ξ1, ξ2 ∈ U : f(x, ξ1) ≤ f(x0, η1) and f(x, η2) ≤ f(x0, ξ2)

=⇒ sup
ξ∈U

f(x, ξ) ≤ sup
ξ∈U

f(x0, ξ) and inf
ξ∈U

f(x, ξ) ≤ inf
ξ∈U

f(x0, ξ),

in contradiction to (5.28) and (5.29).

(c) x0 is strictly set less ordered robust

⇐⇒ @ x ∈ X \ {x0} : fU (x) + R= ⊇ fU (x0) and fU (x) ⊆ fU (x0)− R=
⇐⇒ @ x ∈ X \ {x0} : ∀ η1, η2 ∈ U ∃ ξ1, ξ2 ∈ U : f(x, ξ1) + R= 3 f(x0, η1)

and f(x, η2) ∈ f(x0, ξ2)− R=
⇐⇒ @ x ∈ X \ {x0} : ∀ η1, η2 ∈ U ∃ ξ1, ξ2 ∈ U : f(x, ξ1) ≤ f(x0, η1)

and f(x, η2) ≤ f(x0, ξ2)

⇐⇒ ∀ x ∈ X \ {x0} : ∃ η1, η2 ∈ U ∀ ξ1, ξ2 ∈ U : f(x, ξ1) > f(x0, η1)

or f(x, η2) > f(x0, ξ2)

=⇒ ∀ x ∈ X \ {x0} : max
ξ∈U

f(x, ξ) > max
ξ∈U

f(x0, ξ) or min
ξ∈U

f(x, ξ) > min
ξ∈U

f(x0, ξ)

⇐⇒ x0 is uniquely optimal for the robust counterpart (RC) (see (5.10))
or for the optimistic counterpart (OC) (see (5.11)).
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(d) x0 is optimal for the robust counterpart (RC) (see (5.10))

⇐⇒ @ x ∈ X \ {x0} : max
ξ∈U

f(x, ξ) < max
ξ∈U

f(x0, ξ) (5.30)

or for the optimistic counterpart (OC) (see (5.11))

⇐⇒ @ x ∈ X \ {x0} : min
ξ∈U

f(x, ξ) < min
ξ∈U

f(x0, ξ). (5.31)

Now suppose x0 is not set less ordered robust. Then there exists x ∈ X \ {x0} s.t.

fU (x) + R≥ ⊇ fU (x0) and fU (x) ⊆ fU (x0)− R≥
⇐⇒ ∀ η1, η2 ∈ U ∃ ξ1, ξ2 ∈ U : f(x, ξ1) + R≥ 3 f(x0, η1)

and f(x, η2) ∈ f(x0, ξ2)− R≥
⇐⇒ ∀ η1, η2 ∈ U ∃ ξ1, ξ2 ∈ U : f(x, ξ1) < f(x0, η1) and f(x, η2) < f(x0, ξ2)

=⇒ max
ξ∈U

f(x, ξ) < max
ξ∈U

f(x0, ξ) and min
ξ∈U

f(x, ξ) < min
ξ∈U

f(x0, ξ),

in contradiction to (5.30) and (5.31).

(e) x0 is weakly set less ordered robust

⇐⇒ @ x ∈ X \ {x0} : fU (x) + R> ⊇ fU (x0) and fU (x) ⊆ fU (x0)− R>
⇐⇒ @ x ∈ X \ {x0} : ∀ η1, η2 ∈ U ∃ ξ1, ξ2 ∈ U : f(x, ξ1) + R> 3 f(x0, η1)

and f(x, η2) ∈ f(x0, ξ2)− R>
⇐⇒ @ x ∈ X \ {x0} : ∀ η1, η2 ∈ U ∃ ξ1, ξ2 ∈ U : f(x, ξ1) < f(x0, η1)

and f(x, η2) < f(x0, ξ2)

⇐⇒ ∀ x ∈ X \ {x0} : ∃ η1, η2 ∈ U ∀ ξ1, ξ2 ∈ U : f(x, ξ1) ≥ f(x0, η1)

or f(x, η2) ≥ f(x0, ξ2)

=⇒ ∀ x ∈ X \ {x0} : sup
ξ∈U

f(x, ξ) ≥ sup
ξ∈U

f(x0, ξ) or inf
ξ∈U

f(x, ξ) ≥ inf
ξ∈U

f(x0, ξ)

⇐⇒ x0 is optimal for the robust counterpart (RC) (see (5.10))
or for the optimistic counterpart (OC) (see (5.11)).

The following theorem reveals an important connection between the set of strictly
(weakly, · , respectively) upper / lower set less ordered robust solutions and the set of
strictly (weakly, · , respectively) set less ordered robust points.

Theorem 30. If x0 is strictly (weakly, · , respectively) upper / lower set less ordered
robust, then x0 is strictly (weakly, · , respectively) set less ordered robust.
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Proof. Let Q = C (Q = intC, Q = C \ {0}, respectively), and let x0 ∈ X be strictly
(weakly, · , respectively) upper set less ordered robust. Then there exists no x ∈ X \{x0}:
fU (x) �uQ fU (x0)

⇐⇒ @ x ∈ X \ {x0} : fU (x) ⊆ fU (x0)−Q. (5.32)

Suppose that x0 is not strictly (weakly, · , respectively) set less ordered robust. Then
there exists x ∈ X \ {x0} such that

fU (x) �sQ fU (x0) ⇐⇒ fU (x) +Q ⊇ fU (x0) and fU (x) ⊆ fU (x0)−Q,

in contradiction to (5.32). The second part of the proof, for lower set less ordered robust
elements, works in the exact same way.

Example 8. Theorem 30 verifies that the union of lower and upper set less ordered robust
points belongs to the set of set less ordered robust solutions. The inverse inclusion is in
general not fulfilled, which the example in Figure 5.7 shows. We have depicted a solution
x1 that is neither lower set less ordered robust nor upper set less ordered robust, while it
is set less ordered robust.

f1(x, ξ)

f2(x, ξ)

fU (x1)
fU (x3)

fU (x2)

fU (x1)− R2
≥

fU (x3) + R2
≥

fU (x2) + R2
≥

Figure 5.7: x1 is set less ordered robust, but neither lower set less ordered robust nor
upper set less ordered robust.

Computing Set Less Ordered Robust Solutions

After introducing the concept of set less ordered robustness, we now present an approach
to compute set less ordered robust solutions via vectorization. To this end, consider the
bicriteria optimization problem
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(V OP sl(y∗, y∗∗)) Min(h[X ],R2
=) (5.33)

with h(x) := (infξ∈U y
∗ ◦ f(x, ξ), supξ∈U y

∗∗ ◦ f(x, ξ))T , y∗, y∗∗ ∈ C∗ \{0} (y∗, y∗∗ ∈ C#,
respectively). Here we minimize h with respect to the natural ordering cone R2

=, i.e., we
call the decision variable x of minimal elements f(x) in R2 Pareto optimal. Note that the
selection y∗ = y∗∗ is entirely possible and not excluded here. Now we have the following
theorem:

Theorem 31. Given an uncertain vector-valued optimization problem P (U). The fol-
lowing statements hold.

(a) If x0 is strictly Pareto optimal for problem (V OP sl(y∗, y∗∗)) for some y∗, y∗∗ ∈
C∗ \ {0}, then x0 is strictly set less ordered robust.

(b) If x0 is weakly Pareto optimal for problem (V OP sl(y∗, y∗∗)) for some y∗, y∗∗ ∈
C∗ \ {0} and minξ∈U y

∗ ◦ f(x′, ξ) and maxξ∈U y
∗∗ ◦ f(x′, ξ) exist for all x′ ∈ X and

the chosen weights y∗, y∗∗ ∈ C∗ \ {0}, then x0 is weakly set less ordered robust.

(c) If x0 is weakly Pareto optimal for problem (V OP sl(y∗, y∗∗)) for some y∗, y∗∗ ∈ C#

and minξ∈U y
∗◦f(x′, ξ) and maxξ∈U y

∗∗◦f(x′, ξ) exist for all x′ ∈ X and the chosen
weights y∗, y∗∗ ∈ C#, then x0 is set less ordered robust.

Proof. Let x0 be strictly Pareto optimal (weakly Pareto optimal, weakly Pareto optimal,
respectively) for problem (V OP sl(y∗, y∗∗)) with some weights y∗, y∗∗ ∈ C∗\{0} (y∗, y∗∗ ∈
C∗ \ {0}, y∗, y∗∗ ∈ C#, respectively), i.e., there is no x ∈ X \ {x0} such that

inf
ξ∈U

y∗ ◦ f(x, ξ) [≤ / < / <] inf
ξ∈U

y∗ ◦ f(x0, ξ)

and sup
ξ∈U

y∗∗ ◦ f(x, ξ) [≤ / < / <] sup
ξ∈U

y∗∗ ◦ f(x0, ξ).

Let Q = C (Q = intC, Q = C \ {0}). Now suppose that x0 is not strictly (weakly, · ,
respectively) set less ordered robust. Then there exists an x ∈ X \ {x0} such that

fU (x) +Q ⊇ fU (x0) and fU (x) ⊆ fU (x0)−Q.

That implies

∃ x ∈ X \ {x0} : ∀ ξ1, ξ2 ∈ U ∃ η1, η2 ∈ U : f(x, η1) +Q 3 f(x0, ξ1)

and f(x, ξ2) ∈ f(x0, η2)−Q.
(5.34)

Choose now y∗, y∗∗ ∈ C∗ \ {0} (y∗, y∗∗ ∈ C∗ \ {0}, y∗, y∗∗ ∈ C#, respectively) as in
problem (V OP sl(y∗, y∗∗)). We obtain from (5.34)

∃ x ∈ X \ {x0} : ∀ ξ1, ξ2 ∈ U ∃ η1, η2 ∈ U : y∗ ◦ f(x, η1) [≤ / < / <] y∗ ◦ f(x0, ξ1)

and y∗∗ ◦ f(x, ξ2) [≤ / < / <] y∗∗ ◦ f(x0, η2)
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=⇒ inf
ξ∈U

y∗ ◦ f(x, ξ) [≤ / < / <] inf
ξ∈U

y∗ ◦ f(x0, ξ) (5.35)

and sup
ξ∈U

y∗∗ ◦ f(x, ξ) [≤ / < / <] sup
ξ∈U

y∗∗ ◦ f(x0, ξ). (5.36)

The last two strict inequalities in (5.35) and (5.36) hold because the minimum and
maximum exists. But this is a contradiction to the assumption.

Based on these observations, we provide the following algorithm for computing set
less ordered robust solutions of an uncertain vector-valued optimization problem. The
sets of strictly (weakly, · , respectively) set less ordered robust solutions are denoted by
Optsslor (Optwslor, Optslor, respectively).

Algorithm 12 for computing set less ordered robust solutions using a family
of problems (V OP sl(y∗, y∗∗)) (see (5.33)):

Input: Uncertain vector-valued problem P (U), solution sets

Optsslor = Optslor = Optwslor = ∅.

Step 1: Choose a set C ⊂ C∗ \ {0}.

Step 2: If C = ∅: STOP. Output: Set of strictly set less ordered robust solutions
Optsslor, set of set less ordered robust solutions Optslor, set of weakly set less ordered
robust solutions Optwslor.

Step 3: Choose y∗, y∗∗ ∈ C. Set C := C \ {y∗, y∗∗}.

Step 4: Find a set of weakly Pareto optimal solutions SOLwe(y∗, y∗∗) of (V OP sl(y∗, y∗∗))
(see (5.33)).

Step 5: If SOLwe(y∗, y∗∗) = ∅, then go to Step 2.

Step 6: Choose x ∈ SOLwe(y∗, y∗∗). Set SOLwe(y∗, y∗∗) := SOLwe(y
∗, y∗∗) \ {x}.

a) If x is a strictly Pareto optimal solution of (V OP sl(y∗, y∗∗)) (see (5.33)), then
x is strictly set less ordered robust for P (U), thus

Optsslor := Optsslor ∪ {x}.

b) If x is a weakly Pareto optimal solution of (V OP sl(y∗, y∗∗)) (see (5.33)) and
maxξ∈U y∗∗ ◦ f(x′, ξ) and minξ∈U y∗ ◦ f(x′, ξ) exist for all x′ ∈ X , then x is
weakly set less ordered robust for P (U), thus

Optwslor := Optwslor ∪ {x}.
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c) If x is weakly Pareto optimal for problem (V OP sl(y∗, y∗∗)) (compare (5.33))
and y∗, y∗∗ ∈ C# and minξ∈U y∗ ◦ f(x′, ξ) and maxξ∈U y∗∗ ◦ f(x′, ξ) exist
for all x′ ∈ X and the chosen weight y∗, y∗∗ ∈ C#, then x is set less ordered
robust for P (U), thus

Optslor := Optslor ∪ {x}.

Step 7: Go to Step 5.

In the following we present an algorithm that computes set less ordered robust solu-
tions while varying the weights in the vector of objectives of problem (V OP sl(y∗, y∗∗))
(see (5.33)).

Algorithm 13 for computing set less ordered robust solutions using a family
of problems (V OP sl(y∗, y∗∗)) (see (5.33)):

Input: Uncertain vector-valued problem P (U), solution sets

Optsslor = Optslor = Optwslor = ∅.

Step 1: Choose a set C ⊂ C∗ \ {0} with at least four distinct elements. Set j := 0.
Choose y∗0, y∗∗0 ∈ C, and set C := C \ {y∗0, y∗∗0 }.

Step 2: If C = ∅ or if Optsslor, Optslor, Optwslor are accepted by the decision maker:
STOP. Output: Set of strictly set less ordered robust solutions Optsslor, set of set
less ordered robust solutions Optslor, set of weakly set less ordered robust solutions
Optwslor.

Step 3: Choose y∗j+1, y
∗∗
j+1 ∈ C. Set C := C \ {y∗j+1, y

∗∗
j+1}. Set t := 0.

Step 4: Set ŷ∗ := y∗j + t(y∗j+1 − y∗j ) and ŷ∗∗ := y∗∗j + t(y∗∗j+1 − y∗∗j ).

Step 5: Find a set of weakly Pareto optimal solutions SOLwe(ŷ∗, ŷ∗∗) of (V OP sl(ŷ∗, ŷ∗∗)).

Step 6: If SOLwe(ŷ∗, ŷ∗∗) = ∅, then go to Step 8.

Step 7: Choose x ∈ SOLwe(ŷ∗, ŷ∗∗). Set SOLwe(ŷ∗, ŷ∗∗) := SOLwe(ŷ
∗, ŷ∗∗) \ {x}.

a) If x is a strictly Pareto optimal solution of (V OP sl(ŷ∗, ŷ∗∗)), then x is strictly
set less ordered robust for P (U), thus

Optsslor := Optsslor ∪ {x}.

b) If x is a weakly Pareto optimal solution of (V OP sl(ŷ∗, ŷ∗∗)) and maxξ∈U ŷ∗∗ ◦
f(x′, ξ) and minξ∈U ŷ∗ ◦ f(x′, ξ) exist for all x′ ∈ X , then x is weakly set less
ordered robust for P (U), thus

Optwslor := Optwslor ∪ {x}.
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c) If x is weakly Pareto optimal for problem (V OP sl(ŷ∗, ŷ∗∗)) with ŷ∗, ŷ∗∗ ∈ C#

and minξ∈U ŷ∗ ◦f(x′, ξ) and maxξ∈U ŷ∗∗ ◦f(x′, ξ) exist for all x′ ∈ X and the
chosen weights ŷ∗, ŷ∗∗ ∈ C#, then x is set less ordered robust for P (U), thus

Optslor := Optslor ∪ {x}.

Go to Step 6.

Step 8: If t = 1, set j := j + 1 and go to Step 2. Otherwise, choose t :∈ (t, 1] and go to
Step 4.

5.3.4 Alternative Set Less Ordered Robustness

In Sections 5.3.1 and 5.3.2 we investigated upper and lower set less ordered robust solu-
tions of uncertain vector-valued problems. For the special case Y = R, X = Rn, C = R=
we revealed connections between the robust counterpart (RC) (compare (5.10)) and the
concept of upper set less ordered robustness (between the optimistic counterpart (OC)
(see (5.11)) and the lower set less ordered robustness approach, respectively). We noted
that a risk averse decision maker would be likely to choose the upper set less ordered
robust approach, while a person who is risk affine may be eligible to choose the latter
concept. It is not clear, however, which decision strategy a person should follow in case
his attitude toward risk has not been revealed. In this section, we wish to combine both
approaches such that a decision maker who is not sure which concept to choose may be
presented with an alternative concept.

To this end, we define the alternative set less order relation �aQ for a nonempty set
Q ⊂ Y in the following way. Let C ⊂ Y be a proper closed convex and pointed cone.
Suppose C ⊂ clQ and clQ ∩ (− clQ) = {0}. Then we define for two nonempty sets
A,B ⊂ Y

A �aQ B :⇐⇒ A ⊆ B −Q or A+Q ⊇ B
⇐⇒ (∀ a ∈ A ∃ b ∈ B : a ≤Q b) or (∀ b ∈ B ∃ a ∈ A : a ≤Q b).

As usual, we assume that intC 6= ∅ if we are dealing with Q = intC.
Note that

A �aQ B ⇐⇒ (A �uQ B or A �lQ B),

taking into account the definition of the upper and lower set less order relation (see
Sections 5.3.1 and 5.3.2). Furthermore, it is important to mention that �aC is in general
not a pre-order. Consider, for example, the illustration in Figure 5.8. It shows that
A �aC B and B �aC D, but A 6�aC D, thus �aC is not transitive and hence not a pre-order.

Definition 19. A solution x0 of P (U) is called strictly (weakly, · , respectively) alter-
native set less ordered robust if there is no x ∈ X \{x0} such that fU (x) �aQ fU (x0),
which is equivalent to

@ x ∈ X \ {x0} : fU (x) +Q ⊇ fU (x0) or fU (x) ⊆ fU (x0)−Q
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B

D

A

B + C

B − C

Figure 5.8: �aC is not transitive and consequently not a pre-order.

for Q = C (Q = intC, Q = C \ {0}, respectively).

Example 9. In Figure 5.9, using Q = R2
≥, we see that x1 is alternative set less ordered

robust.

f1(x, ξ)

f2(x, ξ)

fU (x1)

fU (x2)

fU (x1)− R2
=

fU (x2) + R2
=

Figure 5.9: x1 is alternative set less ordered robust.

This approach is extremely restrictive. Using the alternative set less ordered ro-
bustness concept may produce a smaller number of solutions than the above mentioned
concepts for multicriteria robustness. A decision maker whose preferences reflect this
approach is considered to be risk averse and risk affine at the same time. The following
lemma verifies that for |U| = 1, alternative set less ordered robustness is equivalent to
deterministic minimality.

Lemma 10. Given P (U) with |U| = 1. Then x0 is strictly (weakly, · , respectively)
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alternative set less ordered robust if and only if f(x0) is strictly (weakly, · , respectively)
minimal.

Proof. The following holds for Q = C (Q = intC, Q = C \ {0}, respectively):

x0 is strictly (weakly, · , respectively) alternative set less ordered robust

⇐⇒ @ x ∈ X \ {x0} : fU (x) +Q ⊇ fU (x0) or fU (x) ⊆ fU (x0)−Q
⇐⇒ @ x ∈ X \ {x0} : ∀ η1, η2 ∈ U ∃ ξ1, ξ2 ∈ U : f(x, ξ1) +Q 3 f(x0, η1)

or f(x, η2) ∈ f(x0, ξ2)−Q
|U|=1⇐⇒ @ x ∈ X \ {x0} : f(x) ∈ f(x0)−Q
⇐⇒ f(x0) is strictly (weakly, · , respectively) minimal.

Lemma 11. Given P (U) with Y = R, X = Rn and C = R=.

(a) x0 is weakly alternative set less ordered robust ⇐⇒ x0 is alternative set less ordered
robust.

(b) If x0 is uniquely optimal for the robust counterpart (RC) (see (5.10)) and for the
optimistic counterpart (OC) (see (5.11)), then x0 is strictly alternative set less
ordered robust.

(c) Suppose maxξ∈U f(x′, ξ) and minξ∈U f(x′, ξ) exist for every x′ ∈ X . Then it holds:
If x0 is strictly alternative set less ordered robust, then x0 is uniquely optimal for
the robust counterpart (RC) (see (5.10)) and for the optimistic counterpart (OC)
(see (5.11)).

(d) Suppose maxξ∈U f(x′, ξ) and minξ∈U f(x′, ξ) exist for every x′ ∈ X . Then it holds:
If x0 is optimal for the robust counterpart (RC) (see (5.10)) and for the optimistic
counterpart (OC) (see (5.11)), then x0 is weakly alternative set less ordered robust.

(e) If x0 is weakly alternative set less ordered robust, then x0 is optimal for the robust
counterpart (RC) (see (5.10)) and for the optimistic counterpart (OC) (see (5.11)).

Proof. (a) Holds due to R> = R≥.

(b) Let x0 be uniquely optimal for the robust counterpart (RC) (compare (5.10)), thus

@ x ∈ X \ {x0} : sup
ξ∈U

f(x, ξ) ≤ sup
ξ∈U

f(x0, ξ). (5.37)

In addition, x0 is uniquely optimal for the optimistic counterpart (OC) (see (5.11)),
i.e.,

@ x ∈ X \ {x0} : inf
ξ∈U

f(x, ξ) ≤ inf
ξ∈U

f(x0, ξ). (5.38)
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Now suppose that x0 is not strictly alternative set less ordered robust. Thus there
exists x ∈ X \ {x0} such that

fU (x) + R= ⊇ fU (x0) or fU (x) ⊆ fU (x0)− R=
=⇒ ∀ ξ1, ξ2 ∈ U ∃ η1, η2 ∈ U : f(x, η1) + R= 3 f(x0, ξ1)

or f(x, ξ2) ∈ f(x0, η2)− R=
=⇒ ∀ ξ1, ξ2 ∈ U ∃ η1, η2 ∈ U : f(x, η1) ≤ f(x0, ξ1) or f(x, ξ2) ≤ f(x0, η2)

=⇒ inf
ξ∈U

f(x, ξ) ≤ inf
ξ∈U

f(x0, ξ) or sup
ξ∈U

f(x, ξ) ≤ sup
ξ∈U

f(x0, ξ),

in contradiction to (5.38) and (5.37).

(c) x0 is strictly alternative set less ordered robust

⇐⇒ @ x ∈ X \ {x0} : fU (x) + R= ⊇ fU (x0) or fU (x) ⊆ fU (x0)− R=
⇐⇒ @ x ∈ X \ {x0} : ∀ η1, η2 ∈ U ∃ ξ1, ξ2 ∈ U : f(x, ξ1) + R= 3 f(x0, η1)

or f(x, η2) ∈ f(x0, ξ2)− R=
⇐⇒ @ x ∈ X \ {x0} : ∀ η1, η2 ∈ U ∃ ξ1, ξ2 ∈ U : f(x, ξ1) ≤ f(x0, η1)

or f(x, η2) ≤ f(x0, ξ2)

⇐⇒ ∀ x ∈ X \ {x0} : ∃ η1, η2 ∈ U ∀ ξ1, ξ2 ∈ U : f(x, ξ1) > f(x0, η1)

and f(x, η2) > f(x0, ξ2)

=⇒ ∀ x ∈ X \ {x0} : max
ξ∈U

f(x, ξ) > max
ξ∈U

f(x0, ξ) and min
ξ∈U

f(x, ξ) > min
ξ∈U

f(x0, ξ)

⇐⇒ x0 is uniquely optimal for the robust counterpart (RC) (see (5.10))
and for the optimistic counterpart (OC) (see (5.11)).

(d) Let x0 be optimal for the robust counterpart (RC) (see (5.10)), thus

@ x ∈ X \ {x0} : max
ξ∈U

f(x, ξ) < max
ξ∈U

f(x0, ξ). (5.39)

Furthermore, let x0 be optimal for the optimistic counterpart (OC) (see (5.11)),
i.e.,

@ x ∈ X \ {x0} : min
ξ∈U

f(x, ξ) < min
ξ∈U

f(x0, ξ). (5.40)

Now suppose that x0 is not weakly alternative set less ordered robust. This implies
that there exists x ∈ X \ {x0} such that

fU (x) + R> ⊇ fU (x0) or fU (x) ⊆ fU (x0)− R>
⇐⇒ ∀ ξ1, ξ2 ∈ U ∃ η1, η2 ∈ U : f(x, η1) + R> 3 f(x0, ξ1)

or f(x, ξ2) ∈ f(x0, η2)− R>
⇐⇒ ∀ ξ1, ξ2 ∈ U ∃ η1, η2 ∈ U : f(x, η1) < f(x0, ξ1) or f(x, ξ2) < f(x0, η2)

=⇒ min
ξ∈U

f(x, ξ) < min
ξ∈U

f(x0, ξ) or max
ξ∈U

f(x, ξ) < max
ξ∈U

f(x0, ξ),
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in contradiction to (5.40) and (5.39).

(e) x0 is weakly alternative set less ordered robust

⇐⇒ @ x ∈ X \ {x0} : fU (x) + R> ⊇ fU (x0) or fU (x) ⊆ fU (x0)− R>
⇐⇒ @ x ∈ X \ {x0} : ∀ η1, η2 ∈ U ∃ ξ1, ξ2 ∈ U : f(x, ξ1) + R> 3 f(x0, η1)

or f(x, η2) ∈ f(x0, ξ2)− R>
⇐⇒ @ x ∈ X \ {x0} : ∀ η1, η2 ∈ U ∃ ξ1, ξ2 ∈ U : f(x, ξ1) < f(x0, η1)

or f(x, η2) < f(x0, ξ2)

⇐⇒ ∀ x ∈ X \ {x0} : ∃ η1, η2 ∈ U ∀ ξ1, ξ2 ∈ U : f(x, ξ1) ≥ f(x0, η1)

and f(x, η2) ≥ f(x0, ξ2)

=⇒ ∀ x ∈ X \ {x0} : inf
ξ∈U

f(x, ξ) ≥ inf
ξ∈U

f(x0, ξ) and sup
ξ∈U

f(x, ξ) ≥ sup
ξ∈U

f(x0, ξ)

⇐⇒ x0 is optimal for the robust counterpart (RC) (compare (5.10))
and for the optimistic counterpart (OC) (see (5.11)).

The following theorem reveals important interrelations between alternative set less
ordered robust solutions and upper / lower set less ordered robust points.

Theorem 32. x0 is strictly (weakly, · , respectively) alternative set less ordered robust if
and only if x0 is strictly (weakly, · , respectively) lower set less ordered robust and strictly
(weakly, · , respectively) upper set less ordered robust.

Proof. Let Q = C (Q = intC, Q = C \ {0}, respectively).

=⇒ Let x0 ∈ X be strictly (weakly, · , respectively) alternative set less ordered robust.
Then there exists no x ∈ X \ {x0}: fU (x) �aQ fU (x0)

⇐⇒ @ x ∈ X \ {x0} : fU (x) +Q ⊇ fU (x0) or fU (x) ⊆ fU (x0)−Q.

In particular there exists no x ∈ X \ {x0} such that fU (x) +Q ⊇ fU (x0), therefore
x0 is strictly (weakly, · , respectively) lower set less ordered robust. Analogously
there exists no x ∈ X \ {x0} such that fU (x) ⊆ fU (x0)−Q, therefore x0 is strictly
(weakly, · , respectively) upper set less ordered robust.

⇐= Let x0 ∈ X be strictly (weakly, · , respectively) lower set less ordered robust, i.e.,
there is no x ∈ X \ {x0} : fU (x) + Q ⊇ fU (x0). Furthermore, let x0 be upper set
less ordered robust, i.e., there does not exist x ∈ X \ {x0} : fU (x) ⊆ fU (x0) −Q.
Suppose that x0 is not strictly (weakly, · , respectively) alternative set less ordered
robust. That means there is an x ∈ X \ {x0} such that fU (x) + Q ⊇ fU (x0) or
fU (x) ⊆ fU (x0)−Q, a contradiction.
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Example 10. This example in Figure 5.10 shows that there are upper (lower, respec-
tively) set less ordered robust solutions that are not alternative set less ordered robust.

f1(x, ξ)

f2(x, ξ)

fU (x2) fU (x1)

fU (x2) + R2
≥

f1(x, ξ)

f2(x, ξ)

fU (x3)

fU (x4)

fU (x3)− R2
≥

Figure 5.10: Left: x1 is lower set less ordered robust, while it is not alternative set less
ordered robust. Right: x3 is upper set less ordered robust, but not alternative set less
ordered robust.

Computing Alternative Set Less Ordered Robust Solutions

Theorem 32 proves to be beneficial for computing alternative set less ordered robust
elements of an uncertain multi-objective optimization problem, which the following algo-
rithm illustrates. The sets of strictly (weakly, · , respectively) alternative set less ordered
robust solutions are denoted by (Optsar, Optwar, Optar).

Algorithm 14 for deriving alternative set less ordered robust solutions:

Input: Uncertain vector-valued problem P (U), solution sets Optsar = Optwar = Optar =
∅.

Step 1: Compute the set of strictly (weakly, · , respectively) lower set less ordered robust
points Optslr, (Optwlr, Optlr, respectively) using Algorithm 6, 7, 8, 9, 10 or 11.

Step 2: Compute the set of strictly (weakly, · , respectively) upper set less ordered
robust points Optsur, (Optwur, Optur, respectively) using Algorithm 1, 2, 3, 4 or 5.

Output: Set of strictly (weakly, · , respectively) alternative set less ordered robust points

Optsar = Optsur ∩Optslr,
Optwar = Optwur ∩Optwlr,

Optar = Optur ∩Optlr .
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5.3.5 Minmax Less Ordered Robustness

We extend the definition of the minmax less order relation (Definition 8) to a nonempty
set Q ⊂ Y in the following way. Let C ⊂ Y be a proper closed convex and pointed
cone. Suppose C ⊂ clQ and clQ ∩ (− clQ) = {0}. Under these assumptions we extend
Fmin,max given by (5.4) to sets Q:

FQmin,max := {A ∈ P(Y )|Min(A,Q) 6= ∅ and Max(A,Q) 6= ∅}. (5.41)

Then we define for two sets A,B ∈ FQmin,max

A �mQ B :⇐⇒
(
Min(A,Q) �sQ Min(B,Q) and Max(A,Q) �sQ Max(B,Q)

)
.

In this section, we assume that fU (x) ∈ FQmin,max is satisfied for every x ∈ X and for
Q = C (Q = intC, Q = C \ {0}, respectively). In case we have Q = intC, we suppose
that intC 6= ∅.

Definition 20. A solution x0 of P (U) is called strictly (weakly, · , respectively) minmax
less ordered robust if there is no x ∈ X \ {x0} such that fU (x) �mQ fU (x0), which is
equivalent to: There does not exist x ∈ X \ {x0} s.t.

Min(fU (x), Q) +Q ⊇ Min(fU (x0), Q)

and Min(fU (x), Q) ⊆ Min(fU (x0), Q)−Q
and Max(fU (x), Q) +Q ⊇ Max(fU (x0), Q)

and Max(fU (x), Q) ⊆ Max(fU (x0), Q)−Q

(5.42)

for Q = C (Q = intC, Q = C \ {0}, respectively).

This approach is appealing for a decision maker because its definition contains com-
parisons of minimal as well as maximal elements of sets. In that manner it reflects
optimism about the future as well as the risk averse nature of the approaches containing
maximal elements. Contrary to upper / lower set less ordered robustness, the decision
maker is now able to hedge against the strictly (weakly, · ) minimal / maximal solutions
of sets fU (x) instead of the whole lower / upper bound. This enables a user to specify
his wishes during the decision process even more. This concept is less restrictive than
set less ordered robustness, which Theorem 33 below will show.

Lemma 12. Given P (U) with |U| = 1. Then x0 is strictly (weakly, · , respectively) min-
max less ordered robust if and only if f(x0) is strictly (weakly, · , respectively) minimal.

Proof. Note first that for |U| = 1, fU (x) = f(x) is just one point and hence Min(f(x), Q) =
Max(f(x), Q) = f(x) for Q = C (Q = intC, Q = C \ {0}). Now the following holds for
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Q = C (Q = intC, Q = C \ {0}, respectively):

x0 is strictly (weakly, · , respectively) minmax less ordered robust

⇐⇒ @ x ∈ X \ {x0} : (5.42) holds
|U|=1⇐⇒ @ x ∈ X \ {x0} : f(x) +Q 3 f(x0) and f(x) ∈ f(x0)−Q
⇐⇒ @ x ∈ X \ {x0} : f(x) ∈ f(x0)−Q
⇐⇒ f(x0) is strictly (weakly, · , respectively) minimal.

Below we define the domination property which was given in [55] (also compare [72])
for convex cones C. We will use this property in Theorem 33 below.

Definition 21 (Domination property). If for some A ∈ FQmin,max and a set Q ⊂ Y , it
holds

A ⊆ Min(A,Q) +Q, (5.43)

then A fulfills the domination property according to the minimum. If

A ⊆ Max(A,Q)−Q (5.44)

is satisfied, then A fulfills the domination property according to the maximum.

Note that the domination property according to the minimum / maximum is intro-
duced in [55] as quasi domination property.

Remark 25. Suppose A ⊂ Y fulfills the domination property according to the minimum
(5.43) and assume Q+Q ⊆ Q holds. With (5.43), we obtain

A+Q ⊆ Min(A,Q) +Q+Q ⊆ Min(A,Q) +Q. (5.45)

Similarly, assuming that A satisfies the domination property according to the maximum
(5.44) and −Q−Q ⊆ −Q, we have

A−Q ⊆ Max(A,Q)−Q−Q ⊆ Max(A,Q)−Q. (5.46)

Theorem 33. Let the domination property according to the minimum and maximum
(5.43), (5.44) be satisfied for every fU (x), x ∈ X and Q = C for a proper closed convex
and pointed cone C. Then it holds: If x0 is strictly set less ordered robust, then x0 is
strictly minmax less ordered robust.

Proof. First note that since C is a convex cone, the assumption C +C ⊆ C that is used
in Remark 25 is fulfilled. Assume that x0 ∈ X is not strictly minmax less ordered robust.
Then there exists x ∈ X \ {x0} such that

Min(fU (x), C) + C ⊇ Min(fU (x0), C) (5.47)

and Min(fU (x), C) ⊆ Min(fU (x0), C)− C
and Max(fU (x), C) + C ⊇ Max(fU (x0), C)

and Max(fU (x), C) ⊆ Max(fU (x0), C)− C. (5.48)
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From (5.45), we conclude

fU (x) + C = Min(fU (x), C) + C (5.49)

for any x ∈ X . Together with (5.47), we deduce

fU (x0) ⊆ fU (x0) + C

(5.49)
= Min(fU (x0), C) + C

(5.47)
⊆ Min(fU (x), C) + C + C

⊆ Min(fU (x), C) + C

⊆ fU (x) + C.

In the same way we show fU (x) ⊆ fU (x0)− C: From (5.46), we obtain

fU (x)− C = Max(fU (x), C)− C (5.50)

for any x ∈ X . Together with (5.48), we acquire

fU (x) ⊆ fU (x)− C
(5.50)

= Max(fU (x), C)− C
(5.48)
⊆ Max(fU (x0), C)− C − C
⊆ Max(fU (x0), C)− C
⊆ fU (x0)− C.

Therefore fU (x) + C ⊇ fU (x0) and fU (x) ⊆ fU (x0) − C, thus x0 is not strictly set less
ordered robust, in contradiction to the assumption.

Example 11. In Theorem 33, we have seen that strictly set less ordered robust solutions
are also strictly minmax less ordered robust. By considering the example in Figure 5.11,
we observe that the inverse direction is not true. Here, using Y = R2, X = Rn and
C = R2

=, x1 is strictly minmax less ordered robust, while it is not strictly set less ordered
robust.

Lemma 13. Given P (U) with Y = R, X = Rn and C = R=. Then x0 is minmax less
ordered robust if and only if x0 is weakly minmax less ordered robust. Furthermore, if x0

is uniquely optimal for the robust counterpart (RC) (compare (5.10)) or for the optimistic
counterpart (OC) (see (5.11)), then x0 is strictly minmax set less ordered robust.

Proof. The first part obviously holds because R≥ = R>. The second assertion follows
from Lemma 9 (b) applied to Theorem 33.
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f1(x, ξ)

f2(x, ξ)

fU (x1)

fU (x2)

Max(fU (x1),R2
=)Max(fU (x1),R2

=)− R2
=

Max(fU (x2),R2
=)

Max(fU (x2),R2
=) + R2

=

Figure 5.11: x1 is strictly minmax less ordered robust, but x1 is not strictly set less
ordered robust.

Computing Minmax Less Ordered Robust Solutions

In order to find minmax less ordered robust solutions of an uncertain multicriteria op-
timization problem, we suggest the following method. Consider for Q = C (Q = intC,
Q = C \ {0}, respectively) and y∗ := (y∗1, . . . , y

∗
4)T , y∗j ∈ C∗ \ {0}, j = 1, . . . , 4, the

problem

(V OPml(y∗)) Min(h[X ],R4
=), (5.51)

where

h(x) :=


inf{y∗1 ◦ f(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Min(fU (x), Q)}
sup{y∗2 ◦ f(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Min(fU (x), Q)}
inf{y∗3 ◦ f(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Max(fU (x), Q)}
sup{y∗4 ◦ f(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Max(fU (x), Q)}

 .

Theorem 34. Consider an uncertain vector optimization problem P (U). The following
statements hold:

(a) If x0 is strictly Pareto optimal for problem (V OPml(y∗)) with Q = C for some
y∗j ∈ C∗ \ {0}, j = 1, . . . , 4, then x0 is strictly minmax less ordered robust.

(b) If x0 is weakly Pareto optimal for problem (V OPml(y∗)) with Q = intC for some
y∗j ∈ C∗ \{0}, j = 1, . . . , 4, and the minima and maxima in each of the components
in the vector of objectives exist for all x ∈ X and the chosen weights y∗j ∈ C∗ \
{0}, j = 1, . . . , 4, then x0 is weakly minmax less ordered robust.
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(c) If x0 is weakly Pareto optimal for problem (V OPml(y∗)) with Q = C \{0} for some
y∗j ∈ C#, j = 1, . . . , 4, and the minima and maxima in each of the components in
the vector of objectives exist for all x ∈ X and the chosen weights y∗j ∈ C#, j =

1, . . . , 4, then x0 is minmax less ordered robust.

Proof. Suppose x0 is not strictly (weakly, · , respectively) minmax less ordered robust.
Consequently, there exists x ∈ X \ {x0} such that for Q = C (Q = intC, Q = C \ {0},
respectively) (5.42) holds. Thus, it follows

∀ f(x0, ξ) ∈ Min(fU (x0), Q) ∃ f(x, η) ∈ Min(fU (x), Q) : f(x, η) +Q 3 f(x0, ξ),

∀ f(x, ξ) ∈ Min(fU (x), Q) ∃ f(x0, η) ∈ Min(fU (x0), Q) : f(x, ξ) ∈ f(x0, η)−Q,
∀ f(x0, ξ) ∈ Max(fU (x0), Q) ∃ f(x, η) ∈ Max(fU (x), Q) : f(x, η) +Q 3 f(x0, ξ),

∀ f(x, ξ) ∈ Max(fU (x), Q) ∃ f(x0, η) ∈ Max(fU (x0), Q) : f(x, ξ) ∈ f(x0, η)−Q.

For chosen y∗j ∈ C∗ \ {0} (y∗j ∈ C∗ \ {0}, y∗j ∈ C#, respectively) for j = 1, . . . , 4, we
acquire

∀ f(x0, ξ) ∈ Min(fU (x0), Q) ∃ f(x, η) ∈ Min(fU (x), Q) : y∗1 ◦ f(x, η) [≤ / < / <] y∗1 ◦ f(x0, ξ),

∀ f(x, ξ) ∈ Min(fU (x), Q) ∃ f(x0, η) ∈ Min(fU (x0), Q) : y∗2 ◦ f(x, ξ) [≤ / < / <] y∗2 ◦ f(x0, η),

∀ f(x0, ξ) ∈ Max(fU (x0), Q) ∃ f(x, η) ∈ Max(fU (x), Q) : y∗2 ◦ f(x, η) [≤ / < / <] y∗3 ◦ f(x0, ξ),

∀ f(x, ξ) ∈ Max(fU (x), Q) ∃ f(x0, η) ∈ Max(fU (x0), Q) : y∗4 ◦ f(x, ξ) [≤ / < / <] y∗4 ◦ f(x0, η).

We obtain

inf{y∗1 ◦ f(x, η)| η ∈ U , f(x, η) ∈ Min(fU (x), Q)}
[≤ / < / <] inf{y∗1 ◦ f(x0, ξ)| ξ ∈ U , f(x0, ξ) ∈ Min(fU (x0), Q)},

(5.52)

sup{y∗2 ◦ f(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Min(fU (x), Q)}
[≤ / < / <] sup{y∗2 ◦ f(x0, η)| η ∈ U , f(x0, η) ∈ Min(fU (x0), Q)},

(5.53)

inf{y∗3 ◦ f(x, η)| η ∈ U , f(x, η) ∈ Max(fU (x), Q)}
[≤ / < / <] inf{y∗3 ◦ f(x0, ξ)| ξ ∈ U , f(x0, ξ) ∈ Max(fU (x0), Q)},

(5.54)

sup{y∗4 ◦ f(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Max(fU (x), Q)}
[≤ / < / <] sup{y∗4 ◦ f(x0, η)| η ∈ U , f(x0, η) ∈ Max(fU (x0), Q)}.

(5.55)

The last two strict inequalities in (5.52) – (5.55) hold because the maxima and minima
exist. But (5.52) – (5.55) are a contradiction to the assumption.

The following algorithm computes minmax less ordered robust solutions based on the
vectorization results presented in Theorem 34. We denote the sets of strictly ( · , weakly)
minmax less ordered robust solutions by Optsmlr (Optmlr, Optwmlr, respectively).
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Algorithm 15 for computing minmax less ordered robust solutions using
a family of problems (V OPml(y∗)) (see (5.51)):

Input & Steps 1-7: Analogous to Algorithm 12, only replacing the sets Optsslor, Optslor,
Optwslor by Optsmlr, Optmlr, Optwmlr, y∗, y∗∗ by y∗1, . . . , y∗4, (V OP sl(y∗, y∗∗)) by
(V OPml(y∗1, . . . , y

∗
4)), and replacing minξ∈U y∗ ◦ f(x′, ξ) and maxξ∈U y∗∗ ◦ f(x′, ξ)

by min{y∗1 ◦ f(x′, ξ)| ξ ∈ U , f(x′, ξ) ∈ Min(fU (x′), Q)}, max{y∗2 ◦ f(x′, ξ)| ξ ∈
U , f(x′, ξ) ∈ Min(fU (x′), Q)}, min{y∗3 ◦f(x′, ξ)| ξ ∈ U , f(x′, ξ) ∈ Max(fU (x′), Q)},
max{y∗4 ◦f(x′, ξ)| ξ ∈ U , f(x′, ξ) ∈ Max(fU (x′), Q)}, and replacing “set less ordered
robust” by “minmax less ordered robust”.

In accordance with prior algorithms, it is also possible here to provide an interactive
procedure to obtain minmax less ordered robust solutions. In order to keep it simple and
short, we use the same weight ŷ∗ in every objective function in problem (V OPml(ŷ∗))
(see (5.51)), but of course, as seen in Theorem 34, it is entirely possible to use different
weights in every objective.

Algorithm 16 for computing minmax less ordered robust solutions using
a family of problems (V OPml(y∗)) (see (5.51)):

Input & Steps 1-8: Analogous to Algorithm 13, only replacing the solution sets Optsslor,
Optslor, Optwslor by Optsmlr, Optmlr, Optwmlr, ŷ∗, ŷ∗∗ by ŷ∗, (V OP sl(ŷ∗, ŷ∗∗))
by (V OPml(ŷ∗)), and replacing minξ∈U ŷ∗ ◦ f(x′, ξ) and maxξ∈U ŷ∗∗ ◦ f(x′, ξ)
by min{ŷ∗ ◦ f(x′, ξ)| ξ ∈ U , f(x′, ξ) ∈ Min(fU (x′), Q)}, max{ŷ∗ ◦ f(x′, ξ)| ξ ∈
U , f(x′, ξ) ∈ Min(fU (x′), Q)}, min{ŷ∗◦f(x′, ξ)| ξ ∈ U , f(x′, ξ) ∈ Max(fU (x′), Q)},
max{ŷ∗◦f(x′, ξ)| ξ ∈ U , f(x′, ξ) ∈ Max(fU (x′), Q)}, and replacing “set less ordered
robust” by “minmax less ordered robust”.

5.3.6 Certainly Less Ordered Robustness

The so far introduced methods for solving uncertain multi-objective optimization prob-
lems are, due to our investigations, useful for acquiring solutions which are of good
quality in regard to a decision maker’s preferences. In some cases, however, it might be
beneficial for the decision process to sort out those solutions which are of obviously bad
quality beforehand, without considering a certain concept of robustness. In this section,
we present an approach which is able to filter out those feasible elements which are obvi-
ously of bad quality for all possible interpretations of robustness. We will see below that
the certainly less order relation mentioned in Definition 9 will be useful to obtain such a
concept.

In the following, we extend the definition of the certainly less order relation to general
nonempty sets Q ⊂ Y with clQ∩ (− clQ) = {0}, C ⊂ clQ, C ⊂ Y being a proper closed
convex and pointed cone. The certainly less order relation �certQ is introduced as

A �certQ B :⇐⇒ (∀ a ∈ A, ∀ b ∈ B : a ≤Q b).
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If we are dealing with Q = intC, we suppose that intC 6= ∅. Note that in the definition
we use, �certC is generally not a pre-order.

Definition 22. A solution x0 of P (U) is called strictly (weakly, · , respectively) certainly
less ordered robust if there is no x ∈ X \ {x0} such that fU (x) �certQ fU (x0), which is
equivalent to

@ x ∈ X \ {x0} : ∀ f(x, ξ) ∈ fU (x), ∀ f(x0, η) ∈ fU (x0) : f(x, ξ) ≤Q f(x0, η)

for Q = C (Q = intC, Q = C \ {0}, respectively).

This approach is, compared to the before introduced robustness concepts, the least
restrictive and may yield more solutions for a decision maker to choose from. A solution
obtained from this robustness concept may not be “robust” in its general meaning, but
this approach will lead to more variety in optimal points which gives the decision maker
more flexibility. Furthermore, this concept can serve as a pre-selection in order to sort
out those solutions which are of bad quality.

In order to be consistent with the literature, we check if the concept at hand would
be useful in case |U| = 1.

Lemma 14. Given P (U) with |U| = 1. Then x0 is strictly (weakly, · , respectively) cer-
tainly less ordered robust if and only if f(x0) is strictly (weakly, · , respectively) minimal.

The proof of the above lemma can be led analogously to that of Lemma 8.
To verify whether this concept would be helpful in the case of scalar robust optimiza-

tion, we check for consistency for Y = R, X = Rn and C = R=.

Lemma 15. Given P (U) with Y = R, X = Rn and C = R=.

(a) x0 is weakly certainly less ordered robust ⇐⇒ x0 is certainly less ordered robust.

(b) If x0 is uniquely optimal for the robust counterpart (RC) (compare (5.10)) or for
the optimistic counterpart (OC) (compare (5.11)), then x0 is strictly certainly less
ordered robust.

(c) Suppose maxξ∈U f(x′, ξ) and minξ∈U f(x′, ξ) exist for every x′ ∈ X . Then it holds:
If x0 is optimal for the robust counterpart (RC) (compare (5.10)) or for the opti-
mistic counterpart (OC) (compare (5.11)), then x0 is certainly less ordered robust.

Proof. (a) Holds since R> = R≥.

(b) x0 is uniquely optimal for the robust counterpart (RC) (compare (5.10))

⇐⇒ @ x ∈ X \ {x0} : sup
ξ∈U

f(x, ξ) ≤ sup
ξ∈U

f(x0, ξ). (5.56)

Alternatively, x0 may be uniquely optimal for the optimistic counterpart (OC) (see
(5.11))

⇐⇒ @ x ∈ X \ {x0} : inf
ξ∈U

f(x, ξ) ≤ inf
ξ∈U

f(x0, ξ). (5.57)



CHAPTER 5. ROBUST APPROACHES TO VECTOR OPTIMIZATION 101

Now suppose that x0 is not strictly certainly less ordered robust. Then there exists
x ∈ X \ {x0} s.t.

∀ f(x, ξ) ∈ fU (x), ∀ f(x0, η) ∈ fU (x0) : f(x, ξ) ∈ f(x0, η)− R=
=⇒ sup

ξ∈U
f(x, ξ) ≤ inf

ξ∈U
f(x0, ξ)

=⇒ inf
ξ∈U

f(x, ξ) ≤ sup
ξ∈U

f(x, ξ) ≤ inf
ξ∈U

f(x0, ξ) ≤ sup
ξ∈U

f(x0, ξ),

in contradiction to (5.56), or alternatively, contradicting (5.57).

(c) Suppose that x0 is not certainly less ordered robust. Then there exists x ∈ X \{x0}
s.t.

∀ f(x, ξ) ∈ fU (x), ∀ f(x0, η) ∈ fU (x0) : f(x, ξ) ∈ f(x0, η)− R≥
=⇒ max

ξ∈U
f(x, ξ) < min

ξ∈U
f(x0, ξ)

=⇒ min
ξ∈U

f(x, ξ) ≤ max
ξ∈U

f(x, ξ) < min
ξ∈U

f(x0, ξ) ≤ max
ξ∈U

f(x0, ξ),

contradicting x0’s optimality for (RC) (compare (5.10)) ((OC), see (5.11), respec-
tively).

The following theorem verifies that set less ordered robust solutions to P (U) are
certainly less ordered robust.

Theorem 35. If x0 is strictly (weakly, · , respectively) set less ordered robust, then x0

is strictly (weakly, · , respectively) certainly less ordered robust.

Proof. Let Q = C (Q = intC, Q = C \ {0}, respectively), and let x0 ∈ X be strictly
(weakly, ·, respectively) set less ordered robust. Then there exists no x ∈ X \ {x0}:
fU (x) �sQ fU (x0)

⇐⇒ @ x ∈ X \ {x0} : fU (x) ⊆ fU (x0)−Q and fU (x) +Q ⊇ fU (x0). (5.58)

Suppose that x0 is not strictly (weakly, ·, respectively) certainly less ordered robust.
Then there exists x ∈ X \ {x0} such that

fU (x) �certQ fU (x0) ⇐⇒ ∀ f(x, ξ) ∈ fU (x), ∀ f(x0, η) ∈ fU (x0) : f(x, ξ) ≤Q f(x0, η)

=⇒ fU (x) ⊆ fU (x0)−Q and fU (x) +Q ⊇ fU (x0),

in contradiction to (5.58).

In contrast to the work line that we followed before, we will not continue working
with the above definition for certainly less ordered robust elements. Instead, Definition
22 rather serves as an inspiration to motivate the following robustness approach for the
special case Y = Rk, X = Rn, C = Rk=.
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Definition 23. Given an uncertain multi-objective optimization problem P (U) with Y =
Rk, X = Rn and C = Rk=. For all x ∈ X we define

CMax fU (x) := (sup
ξ∈U

f1(x, ξ), . . . , sup
ξ∈U

fk(x, ξ))
T ,

CMin fU (x) := ( inf
ξ∈U

f1(x, ξ), . . . , inf
ξ∈U

fk(x, ξ))
T .

A solution x0 to P (U) is called [strictly, weakly, · ] certainly less alternative ordered
robust, if there is no x ∈ X \ {x0} such that:

CMax fU (x) ∈ CMin fU (x0)− Rk[=/>/≥].

The relation between the certainly less order relation �certQ for Q = C = Rk= and
certainly less alternative ordered robust solutions is given below.

Lemma 16. Given an uncertain multi-objective optimization problem P (U) with Y = Rk,
X = Rn. Then for all x, x ∈ X :

fU (x) �certQ fU (x) with respect to Q = Rk= ⇐⇒ CMax fU (x) ∈ CMin fU (x)− Rk=.

Proof.

fU (x) �certQ fU (x) with respect to Q = Rk=
⇐⇒ ∀ ξ ∈ U , ∀ η ∈ U : f(x, ξ) 5 f(x, η)

⇐⇒ sup
ξ∈U

fi(x, ξ) ≤ inf
η∈U

fi(x, η), i = 1, . . . , k

⇐⇒ CMax fU (x) ∈ CMin fU (x)− Rk=.

Remark 26. Note that the analogous of Lemma 16 for Rk[>/≥] only hold for the direction
⇐=. The inverse only holds if minξ∈U fi(x

′, ξ) and maxξ∈U fi(x
′, ξ) exist for all x′ ∈

X , i = 1, . . . , k.

In the sense of robustness, the certainly less alternative ordered robustness concept is
able to filter out solutions that cannot be optimal in some sense, since the best cases of
one solution are dominated by the worst cases of another element. Thus, this approach
may serve as a pre-selection before a finite decision strategy has been made by the decision
maker. Note that the reason the certainly less alternative ordered robustness concept is
introduced here is to derive algorithms in order to compute strictly certainly less ordered
robust solutions.

Example 12. The left side of Figure 5.12 shows an example for a strictly certainly less
alternative ordered robust solution x1. On the right side of Figure 5.12, x3 is not weakly
certainly less alternative ordered robust.
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f1(x, ξ)

f2(x, ξ)

fU (x1)

fU (x2)

CMin fU (x1)− R2
=

f1(x, ξ)

f2(x, ξ)

fU (x3)

fU (x4)

CMin fU (x3)− R2
>

Figure 5.12: Left: x1 is strictly certainly less alternative ordered robust. Right: x3 is not
weakly certainly less alternative ordered robust.

Computing Certainly Less Alternative Ordered Robust Solutions

This subsection is devoted to analyzing how one may obtain certainly less alternative
ordered robust solutions to an uncertain multi-objective optimization problem. Recall
that certainly less alternative ordered robustness has only been defined for the special
case Y = Rk, X = Rn, C = Rk=. To this end, we introduce a bicriteria minimization
problem and show that weakly Pareto optimal solutions of this problem are at least
weakly certainly less alternative ordered robust for P (U). Consider the problem

(V OP cert(y∗)) Min(h[X ],R2
=) (5.59)

where y∗ ∈ Rk≥ and h(x) := (
∑k

i=1 y
∗
i infξ∈U fi(x, ξ),

∑k
i=1 y

∗
i supξ∈U fi(x, ξ))

T . Note
that we use the same weight y∗ in both objectives.

Theorem 36. Consider an uncertain vector-valued optimization problem P (U) with Y =
Rk, X = Rn, C = Rk=. The following statements hold:

(a) If x0 is strictly Pareto optimal for problem (V OP cert(y∗)) for some y∗ ∈ Rk≥, then
x0 is strictly certainly less alternative ordered robust.

(b) If x0 is weakly Pareto optimal for problem (V OP cert(y∗)) for some y∗ ∈ Rk≥, then
x0 is weakly certainly less alternative ordered robust.

(c) If x0 is weakly Pareto optimal for problem (V OP cert(y∗)) for some y∗ ∈ Rk>, then
x0 is certainly less alternative ordered robust.

Proof. Let x0 be strictly Pareto optimal (weakly Pareto optimal, weakly Pareto opti-
mal, respectively) for problem (V OP cert(y∗)) with some y∗ ∈ Rk≥ (y∗ ∈ Rk≥, y∗ ∈ Rk>,
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respectively), i.e., there is no x ∈ X \ {x0} such that

k∑
i=1

y∗i inf
ξ∈U

fi(x, ξ) [≤ / < / <]
k∑
i=1

y∗i inf
ξ∈U

fi(x
0, ξ)

and
k∑
i=1

y∗i sup
ξ∈U

fi(x, ξ) [≤ / < / <]

k∑
i=1

y∗i sup
ξ∈U

fi(x
0, ξ).

Now suppose that x0 is not [strictly, weakly, · ] certainly less alternative ordered robust.
Then there exists x ∈ X \ {x0} such that

CMax fU (x) ∈ CMin fU (x0)− Rk[=/>/≥].

Thus, for y∗ ∈ Rk≥ (y∗ ∈ Rk≥, y∗ ∈ Rk>, respectively),

k∑
i=1

y∗i sup
ξ∈U

fi(x, ξ) [≤ / < / <]
k∑
i=1

y∗i inf
ξ∈U

fi(x
0, ξ).

This implies

k∑
i=1

y∗i inf
ξ∈U

fi(x, ξ) ≤
k∑
i=1

y∗i sup
ξ∈U

fi(x, ξ)

[≤ / < / <]

k∑
i=1

y∗i inf
ξ∈U

fi(x
0, ξ)

≤
k∑
i=1

y∗i sup
ξ∈U

fi(x
0, ξ),

a contradiction.

The following algorithm is based on the vectorization results in Theorem 36. The
sets of strictly (weakly, · , respectively) certainly less alternative ordered robust solutions
are denoted by Optsclor (Optwclor, Optclor, respectively).

Algorithm 17 for computing certainly less alternative ordered robust so-
lutions using a family of problems (V OP cert(y∗)) (see (5.59)):

Input, Steps 1-7: Analogous to Algorithm 12, only replacing C∗ \ {0} by Rk≥, C#

by Rk>, y∗, y∗∗ by one single y∗, (V OP sl(y∗, y∗∗)) (see (5.33)) by (V OP cert(y∗)),
Optsslor, Optwslor, Optslor by Optsclor, Optwclor, Optclor, and replacing “set less or-
dered robust” by “certainly less alternative ordered robust”. Note that the existence
of minξ∈U fi(x

′, ξ) and maxξ∈U fi(x
′, ξ) is not required for any i = 1, . . . , k.
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An interactive procedure for obtaining certainly less alternative ordered robust solu-
tions is given below.

Algorithm 18 for computing certainly less alternative ordered robust so-
lutions using a family of problems (V OP cert(y∗)) (see (5.59)) by altering the
weights:

Input, Steps 1-8: Analogous to Algorithm 13, only replacing C∗ \ {0} by Rk≥, C#

by Rk>, y∗j , y∗j+1, y
∗∗
j , y

∗∗
j+1 by one single pair y∗j , y

∗
j+1, ŷ

∗, ŷ∗∗ by one single ŷ∗,
(V OP sl(ŷ∗, ŷ∗∗)) (see (5.33)) by (V OP cert(ŷ∗)) (see (5.59)), Optsslor, Optwslor,
Optslor by Optsclor, Optwclor, Optclor, and replacing “set less ordered robust” by
“certainly less alternative ordered robust”. Notice again that we do not need to
assume that minξ∈U fi(x

′, ξ) and maxξ∈U fi(x
′, ξ) exist for any i = 1, . . . , k.

5.3.7 Possibly Less Ordered Robustness

We extend the characterization of the possibly less order relation given in Definition 10
to general nonempty sets Q ⊂ Y . To do this, let C ⊂ Y be a proper closed convex and
pointed cone and assume C ⊂ clQ and clQ∩ (− clQ) = {0}. Under these requirements,
we define the possibly less order relation �pQ for two sets A,B ⊂ Y by

A �pQ B :⇐⇒ (∃ a ∈ A, ∃ b ∈ B : a ≤Q b) .

We assume that intC is nonempty in case we are dealing with Q = intC.

Definition 24. A solution x0 of P (U) is called strictly (weakly, · , respectively) possibly
less ordered robust if there is no x ∈ X \ {x0} such that fU (x) �pQ fU (x0), which is
equivalent to

@ x ∈ X \ {x0} : fU (x) ∩
(
fU (x0)−Q

)
6= ∅

for Q = C (Q = intC, Q = C \ {0}, respectively).

Example 13. In Figure 5.13, we have depicted an example for a possibly less ordered
robust solution x1 and a solution x3 which is not possibly less ordered robust, where
Q = R2

≥.

This approach is actually the most restrictive concept for robustness which we con-
sider. A solution is called possibly less ordered robust if there is no other point whose
objective value for some scenario ξ and some objective is smaller with respect to the
ordering set Q. This concept may be appropriate for a decision maker who is looking for
a solution which is not dominated by any other points for all objectives. Due to these
extreme restrictions to a solution, the set of possibly less ordered robust points may be
empty.

Lemma 17. Given P (U) with |U| = 1. Then x0 is strictly (weakly, · , respectively)
possibly less ordered robust if and only if f(x0) is strictly (weakly, · , respectively) minimal.
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f1(x, ξ)

f2(x, ξ)

fU (x1)fU (x1)− R2
≥

fU (x2)

f1(x, ξ)

f2(x, ξ)

fU (x3)fU (x3)− R2
≥

fU (x4)

Figure 5.13: Left: x1 is possibly less ordered robust. Right: x3 is not possibly less
ordered robust.

Proof. The following holds for Q = C (Q = intC, Q = C \ {0}, respectively):

x0 is strictly (weakly, · , respectively) possibly less ordered robust

⇐⇒ @ x ∈ X \ {x0} : fU (x) ∩ (fU (x0)−Q) 6= ∅
|U|=1⇐⇒ @ x ∈ X \ {x0} : f(x) ∩ (f(x0)−Q) 6= ∅
⇐⇒ ∀ x ∈ X \ {x0} : f(x) ∩ (f(x0)−Q) = ∅
⇐⇒ f(x0) is strictly (weakly, · , respectively) minimal.

The assertions in the lemma below are easy to verify.

Lemma 18. Given P (U) with Y = R, X = Rn and C = R=. Then x0 is possibly less
ordered robust if and only if x0 is weakly possibly less ordered robust. Furthermore, x0

is strictly (· , respectively) possibly less ordered robust if and only if there does not exist
any x ∈ X \ {x0} such that f(x, ξ) [≤ / <] f(x0, η) for some ξ, η ∈ U .

Interrelations between possibly and alternative set less ordered robust solutions of
an uncertain vector-valued optimization problem P (U) are presented in the following
theorem.

Theorem 37. If x0 is strictly (weakly, · , respectively) possibly less ordered robust, then
x0 is strictly (weakly, · , respectively) alternative set less ordered robust.

Proof. Let Q = C (Q = intC, Q = C \ {0}, respectively). Assume that x0 ∈ X is not
strictly (weakly, · , respectively) alternative set less ordered robust. Then there exists an
x ∈ X \ {x0} such that fU (x) +Q ⊇ fU (x0) or fU (x) ⊆ fU (x0)−Q.
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Case 1: fU (x) + Q ⊇ fU (x0): Then for all y0 ∈ fU (x0) there exists y ∈ fU (x) such
that y0 ∈ {y} + Q, i.e. y ≤Q y0. Therefore x0 is not strictly (weakly, · , respectively)
possibly less ordered robust.

Case 2: fU (x) ⊆ fU (x0) − Q: Then for all y ∈ fU (x) there exists y0 ∈ fU (x0) such
that y ∈ {y0} − Q, i.e. y ≤Q y0. But then x0 is not strictly (weakly, · , respectively)
possibly less ordered robust, a contradiction to the assumption.

Remark 27. The inverse direction in Theorem 37 is generally not fulfilled: Consider,
for instance, the right hand side in Figure 5.13. x3 is not possibly less ordered robust,
but x3 is an alternative set less ordered robust solution.

Theorem 38. If x0 is strictly (weakly, · , respectively) possibly less ordered robust, then
x0 is strictly (weakly, · , respectively) minmax less ordered robust, provided that fU ∈
FQmin,max for Q = C (Q = intC, Q = C \ {0}, respectively) (compare (5.41)).

Proof. Suppose that x0 is not strictly (weakly, · , respectively) minmax less ordered
robust. Consequently, there exists x ∈ X \ {x0} such that for Q = C (Q = intC,
Q = C \ {0}, respectively) (5.42) holds. Thus, it follows

∀ f(x0, ξ) ∈ Min(fU (x0), Q) ∃ f(x, η) ∈ Min(fU (x), Q) : f(x, η) +Q 3 f(x0, ξ),

∀ f(x, ξ) ∈ Min(fU (x), Q) ∃ f(x0, η) ∈ Min(fU (x0), Q) : f(x, ξ) ∈ f(x0, η)−Q,
∀ f(x0, ξ) ∈ Max(fU (x0), Q) ∃ f(x, η) ∈ Max(fU (x), Q) : f(x, η) +Q 3 f(x0, ξ),

∀ f(x, ξ) ∈ Max(fU (x), Q) ∃ f(x0, η) ∈ Max(fU (x0), Q) : f(x, ξ) ∈ f(x0, η)−Q.

But this is a contradiction to fU (x) ∩
(
fU (x0)−Q

)
= ∅ for every x ∈ X \ {x0}.

Since the possibly less ordered robustness concept is extremely restrictive and its
application may result in an empty solution set, we will not investigate this concept
any further and neglect to provide any algorithms. Of course, deriving algorithms for
computing possibly less ordered robust solutions may be a topic for future research.

5.3.8 Minmax Certainly Less Ordered Robustness

The minmax certainly less order relation given in Definition 11 inspires us to extend it
to general nonempty sets Q ⊂ Y . To this end, let C ⊂ Y be a proper closed convex
and pointed cone. Suppose C ⊂ clQ and clQ ∩ (− clQ) = {0}. Recall that FQmin,max

was given by (5.41). Under these assumptions, we define the minmax certainly less order
relation for two sets A,B ∈ FQmin,max by

A �mcQ B :⇐⇒ (Min(A,Q) �certQ Min(B,Q) and Max(A,Q) �certQ Max(B,Q)).

If we are considering Q = intC, we suppose that intC 6= ∅.
Throughout this section, we assume fU (x) ∈ FQmin,max for each x ∈ X and Q = C

(Q = intC, Q = C \ {0}, respectively).
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Definition 25. A solution x0 of P (U) is called strictly (weakly, · , respectively) minmax
certainly less ordered robust if there is no x ∈ X \{x0} such that fU (x) �mcQ fU (x0),
which is equivalent to: There does not exist x ∈ X \ {x0} such that

Min(fU (x), Q) �certQ Min(fU (x0), Q)

and Max(fU (x), Q) �certC Max(fU (x0), Q)

⇐⇒ ∀ y ∈ Min(fU (x), Q), ∀ y0 ∈ Min(fU (x0), Q) : y ≤Q y0

and ∀ y′ ∈ Max(fU (x), Q), ∀ y0′ ∈ Max(fU (x0), Q) : y′ ≤Q y0′
(5.60)

for Q = C (Q = intC, Q = C \ {0}, respectively).

Example 14. The left hand side of Figure 5.14 shows an example for a strictly minmax
certainly less ordered robust solution x1. On the right hand side, we have depicted an
element x3 that is not weakly minmax certainly less ordered robust.

f1(x, ξ)

f2(x, ξ)

fU (x1)

fU (x2)

z1

z1 − R2
=

f1(x, ξ)

f2(x, ξ)

fU (x3)

fU (x4)

z2

z2 − R2
>

Figure 5.14: Left: x1 is strictly minmax certainly less ordered robust, where z1 ∈
Min(fU (x1),R2

=). Right: x3 is not weakly minmax certainly less ordered robust, where
z2 ∈ Min(fU (x3),R2

>).

This concept compares the values f(x, ξ) that belong to the set Min(fU (x), Q)
(Max(fU (x), Q), respectively) to those of another point f(x, ξ) ∈ Min(fU (x), Q)
(Max(fU (x), Q), respectively). Thus, this approach would reflect a decision maker’s
preferences if he is risk-averse or optimistic about the future.

The following lemma states that for |U| = 1, the minmax certainly less ordered
robustness concept is equivalent to deterministic minimality. The proof is omitted here
as it is quite similar to that of Lemma 12.

Lemma 19. Given P (U) with |U| = 1. Then x0 is strictly (weakly, · , respectively) min-
max certainly less ordered robust if and only if f(x0) is strictly (weakly, · , respectively)
minimal.
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Lemma 20. Given P (U) with Y = R, X = Rn and C = R=.

(a) x0 is weakly minmax certainly less ordered robust ⇐⇒ x0 is minmax certainly less
ordered robust.

(b) If x0 is uniquely optimal for the robust counterpart (RC) (see (5.10)) or for the
optimistic counterpart (OC) (see (5.11)), then x0 is strictly minmax certainly less
ordered robust.

(c) Suppose maxξ∈U f(x′, ξ) and minξ∈U f(x′, ξ) exist for every x′ ∈ X . Then it holds:
If x0 is optimal for the robust counterpart (RC) (see (5.10)) or for the optimistic
counterpart (OC) (see (5.11)), then x0 is minmax certainly less ordered robust.

Proof. (a) Holds due to R> = R≥.

(b) x0 is uniquely optimal for the robust counterpart (RC) (see (5.10))

⇐⇒ @ x ∈ X \ {x0} : sup
ξ∈U

f(x, ξ) ≤ sup
ξ∈U

f(x0, ξ)

or for the optimistic counterpart (OC) (see (5.11))

⇐⇒ @ x ∈ X \ {x0} : inf
ξ∈U

f(x, ξ) ≤ inf
ξ∈U

f(x0, ξ).

Assume that x0 is not strictly minmax certainly less ordered robust. Then there
exists x ∈ X \{x0} s.t. (5.60) is fulfilled for Q = R=. But then we acquire f(x, ξ) ≤
f(x0, ξ0) for every f(x, ξ) ∈ Min(fU (x),R=) and f(x0, ξ0) ∈ Min(fU (x0),R=).
f(x0, ξ0) ∈ Min(fU (x0),R=) implies that f(x0, ξ0) ≤ f(x0, ξ) for all ξ ∈ U , thus
f(x, ξ) ≤ f(x0, ξ) for every ξ ∈ U , and hence infξ∈U f(x, ξ) ≤ infξ∈U f(x0, ξ). An
analogous analysis can be performed for f(x, ξ) ≤ f(x0, ξ0) for every f(x, ξ) ∈
Max(fU (x),R=) and f(x0, ξ0) ∈ Max(fU (x0),R=). But then we arrive at a contra-
diction.

(c) x0 is optimal for the robust counterpart (RC) (see (5.10))

⇐⇒ @ x ∈ X \ {x0} : max
ξ∈U

f(x, ξ) < max
ξ∈U

f(x0, ξ) (5.61)

or for the optimistic counterpart (OC) (see (5.11))

⇐⇒ @ x ∈ X \ {x0} : min
ξ∈U

f(x, ξ) < min
ξ∈U

f(x0, ξ). (5.62)

Now suppose x0 is not minmax certainly less ordered robust. Then there exists
x ∈ X \ {x0} s.t. (5.60) is satisfied for Q = R≥. This implies f(x, ξ) < f(x0, ξ0)
for every f(x, ξ) ∈ Min(fU (x),R≥) and f(x0, ξ0) ∈ Min(fU (x0),R≥). f(x0, ξ0) ∈
Min(fU (x0),R≥) implies that f(x0, ξ0) ≤ f(x0, ξ) for all ξ ∈ U , consequently,
f(x, ξ) < f(x0, ξ) for every ξ ∈ U , and thus minξ∈U f(x, ξ) < minξ∈U f(x0, ξ).
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The analogous follows for f(x, ξ) ≤ f(x0, ξ0) for every f(x, ξ) ∈ Max(fU (x),R≥)
and f(x0, ξ0) ∈ Max(fU (x0),R≥), contradicting the assumptions (5.61) ((5.62),
respectively).

Connections between the minmax less ordered robustness concept and minmax cer-
tainly less ordered robustness are revealed below.

Theorem 39. If x0 is strictly (weakly, · , respectively) minmax less ordered robust, then
x0 is strictly (weakly, · , respectively) minmax certainly less ordered robust.

Proof. Let Q = C (Q = intC, Q = C \ {0}, respectively). Assume that x0 ∈ X is not
strictly (weakly, · , respectively) minmax certainly less ordered robust. Then there exists
an x ∈ X \ {x0} s.t.

∀ y ∈ Min(fU (x), Q), ∀ y0 ∈ Min(fU (x0), Q) : y ≤Q y0

and ∀ y′ ∈ Max(fU (x), Q), ∀ y0′ ∈ Max(fU (x0), Q) : y′ ≤Q y0′ .

Consequently, we acquire (5.42), a contradiction.

Example 15. The inverse direction in Theorem 39 is generally not satisfied. Consider,
as an example, the left hand side of Figure 5.15: Here, x1 is minmax certainly less ordered
robust, but it is not minmax less ordered robust.

Theorem 40. If x0 is strictly (weakly, · , respectively) minmax certainly less ordered
robust, then x0 is strictly (weakly, · , respectively) certainly less ordered robust.

Proof. Let Q = C (Q = intC, Q = C \ {0}, respectively). Assume that x0 ∈ X is
not strictly (weakly, · , respectively) certainly less ordered robust. Then there exists an
x ∈ X \ {x0} such that for every y ∈ fU (x) and for all y0 ∈ fU (x0) : y ≤Q y0. Because
Min(fU (x), Q) ⊆ fU (x) and Min(fU (x0), Q) ⊆ fU (x0), it holds for all y ∈ Min(fU (x), Q)
and for every y0 ∈ Min(fU (x0), Q) : y ≤Q y0, in contradiction to the assumption.

Example 16. The inverse direction in Theorem 40 is generally not fulfilled, as the
example at the right hand side in Figure 5.15 verifies.

Deriving algorithms for obtaining minmax certainly less ordered robust solutions
shall remain a future challenge. In order to deal with that concept in the special case
Y = Rk, X = Rn, C = Rk=, we present an alternative definition of minmax certainly
less ordered robust elements, along with a solution procedure.
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f1(x, ξ)

f2(x, ξ)

fU (x1)

z1
z1 − R2

≥

fU (x2)

fU (x2) + R2
≥

f1(x, ξ)
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fU (x3)

fU (x4)
z2
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≥

Figure 5.15: Left: x1 is minmax certainly less ordered robust, but it is not minmax less
ordered robust, where z1 ∈ Min(fU (x1),R2

≥). Right: Here, x3 is certainly less ordered
robust, while it is not minmax certainly less ordered robust, where z2 ∈ Max(fU (x4),R2

≥).

Definition 26. Let Y = Rk, X = Rn. Consider for Q = Rk[=/>/≥]

CInfMin
Q fU (x) :=

inf{f1(x, ξ)| ξ ∈ U : (f1(x, ξ), . . . , fk(x, ξ))
T ∈ Min(fU (x), Q)}

. . .
inf{fk(x, ξ)| ξ ∈ U : (f1(x, ξ), . . . , fk(x, ξ))

T ∈ Min(fU (x), Q)}

 ,

CInfMax
Q fU (x) :=

inf{f1(x, ξ)| ξ ∈ U : (f1(x, ξ), . . . , fk(x, ξ))
T ∈ Max(fU (x), Q)}

. . .
inf{fk(x, ξ)| ξ ∈ U : (f1(x, ξ), . . . , fk(x, ξ))

T ∈ Max(fU (x), Q)}

 ,

CSupMin
Q fU (x) :=

sup{f1(x, ξ)| ξ ∈ U : (f1(x, ξ), . . . , fk(x, ξ))
T ∈ Min(fU (x), Q)}

. . .
sup{fk(x, ξ)| ξ ∈ U : (f1(x, ξ), . . . , fk(x, ξ))

T ∈ Min(fU (x), Q)}

 ,

CSupMax
Q fU (x) :=

sup{f1(x, ξ)| ξ ∈ U : (f1(x, ξ), . . . , fk(x, ξ))
T ∈ Max(fU (x), Q)}

. . .
sup{fk(x, ξ)| ξ ∈ U : (f1(x, ξ), . . . , fk(x, ξ))

T ∈ Max(fU (x), Q)}

 .

A feasible solution x0 ∈ X is called [strictly, weakly, · ] minmax certainly less alter-
native ordered robust if there does not exist x ∈ X \ {x0} such that

CSupMin
Q fU (x) ∈ CInfMin

Q fU (x0)− Rk[=/>/≥]

and CSupMax
Q fU (x) ∈ CInfMax

Q fU (x0)− Rk[=/>/≥]

for Q = Rk[=/>/≥].

The relation between the minmax certainly less order relation �mcQ for Q = C = Rk=
and minmax certainly less alternative ordered robust solutions is given below.
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Lemma 21. Given an uncertain multi-objective optimization problem P (U) with Y = Rk,
X = Rn and Q = Rk=. Then for all x, x ∈ X :

fU (x) �mcQ fU (x) with respect to Q = Rk= ⇐⇒ CSupMin
Q fU (x) ∈ CInfMin

Q fU (x)− Rk=
and CSupMax

Q fU (x) ∈ CInfMax
Q fU (x)− Rk=.

Proof.

fU (x) �mcQ fU (x) with respect to Q = Rk=
⇐⇒ Min(fU (x),Rk=) �certQ Min(fU (x),Rk=) and Max(fU (x),Rk=) �certQ Max(fU (x),Rk=)

⇐⇒ ∀ f(x, ξ) ∈ Min(fU (x),Rk=) ∀ f(x, ξ) ∈ Min(fU (x),Rk=) : f(x, ξ) ≤Q f(x, ξ)

and ∀ f(x, η) ∈ Max(fU (x),Rk=) ∀ f(x, η) ∈ Max(fU (x),Rk=) : f(x, η) ≤Q f(x, η)

⇐⇒ CSupMin
Q fU (x) ∈ CInfMin

Q fU (x)− Rk= and CSupMax
Q fU (x) ∈ CInfMax

Q fU (x)− Rk=.

Computing Minmax Certainly Less Alternative Ordered Robust Solutions

To this end, we are able to derive solution procedures for computing minmax certainly
less alternative ordered robust elements.

Consider the vector-valued optimization problem

(V OPmca(y∗, y∗∗)) Min(h[X ],R4
=), (5.63)

where

h(x) :=


∑k

i=1 y
∗
i inf{fi(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Min(fU (x), Q)}∑k

i=1 y
∗∗
i inf{fi(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Max(fU (x), Q)}∑k

i=1 y
∗
i sup{fi(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Min(fU (x), Q)}∑k

i=1 y
∗∗
i sup{fi(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Max(fU (x), Q)}


for y∗, y∗∗ ∈ Rk≥ and Q = Rk[=/>/≥]. Note that the selection y∗ = y∗∗ is possible here.

Now we have the following connection between (V OPmca(y∗, y∗∗)) and minmax cer-
tainly less alternative ordered robust elements of an uncertain multi-objective optimiza-
tion problem.

Theorem 41. Given P (U) with Y = Rk, X = Rn and C = Rk=. The following state-
ments holds:

(a) If x0 is a strictly Pareto optimal solution to (V OPmca(y∗, y∗∗)) for some y∗, y∗∗ ∈
Rk≥, then x0 is strictly minmax certainly less alternative ordered robust.

(b) If x0 is a weakly Pareto optimal solution to (V OPmca(y∗, y∗∗)) for some y∗, y∗∗ ∈
Rk≥, then x0 is weakly minmax certainly less alternative ordered robust.
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(c) If x0 is a weakly Pareto optimal solution to (V OPmca(y∗, y∗∗)) for some y∗, y∗∗ ∈
Rk>, then x0 is minmax certainly less alternative ordered robust.

Proof. Set Q = Rk[=/>/≥]. Let x0 be strictly Pareto optimal (weakly Pareto optimal,
weakly Pareto optimal, respectively) for problem (V OPmca(y∗, y∗∗)) with some y∗, y∗∗ ∈
Rk≥ (y∗, y∗∗ ∈ Rk≥, y∗, y∗∗ ∈ Rk>, respectively), i.e., there is no x ∈ X \ {x0} such that

∑k
i=1 y

∗
i inf{fi(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Min(fU (x), Q)}∑k

i=1 y
∗∗
i inf{fi(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Max(fU (x), Q)}∑k

i=1 y
∗
i sup{fi(x, ξ| ξ ∈ U , f(x, ξ) ∈ Min(fU (x), Q)})∑k

i=1 y
∗∗
i sup{fi(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Max(fU (x), Q)}



∈


∑k

i=1 y
∗
i inf{fi(x0, ξ)| ξ ∈ U , f(x0, ξ) ∈ Min(fU (x0), Q)}∑k

i=1 y
∗∗
i inf{fi(x0, ξ)| ξ ∈ U , f(x0, ξ) ∈ Max(fU (x0), Q)}∑k

i=1 y
∗
i sup{fi(x0, ξ)| ξ ∈ U , f(x0, ξ) ∈ Min(fU (x0), Q)}∑k

i=1 y
∗∗
i sup{fi(x0, ξ)| ξ ∈ U , f(x0, ξ) ∈ Max(fU (x0), Q)}

− Rk[=/>/>].

Now suppose that x0 is not strictly (weakly, · , respectively) minmax certainly less
alternative ordered robust. Then there exists x ∈ X \ {x0} such that

CSupMin
Q fU (x) ∈ CInfMin

Q fU (x)−Q
and CSupMax

Q fU (x) ∈ CInfMax
Q fU (x)−Q,

and this implies for y∗, y∗∗ ∈ Rk≥ (y∗, y∗∗ ∈ Rk≥, y∗, y∗∗ ∈ Rk>, respectively)

k∑
i=1

y∗i sup{fi(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Min(fU (x), Q)}

[≤ / < / <]

k∑
i=1

y∗i inf{fi(x0, ξ)| ξ ∈ U , f(x0, ξ) ∈ Min(fU (x0), Q)},

k∑
i=1

y∗∗i sup{fi(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Max(fU (x), Q)}

[≤ / < / <]
k∑
i=1

y∗∗i inf{fi(x0, ξ)| ξ ∈ U , f(x0, ξ) ∈ Max(fU (x0), Q)}.
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Furthermore,

k∑
i=1

y∗i inf{fi(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Min(fU (x), Q)}

≤
k∑
i=1

y∗i sup{fi(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Min(fU (x), Q)}

[≤ / < / <]
k∑
i=1

y∗i inf{fi(x0, ξ)| ξ ∈ U , f(x0, ξ) ∈ Min(fU (x0), Q)}

≤
k∑
i=1

y∗i sup{fi(x0, ξ)| ξ ∈ U , f(x0, ξ) ∈ Min(fU (x0), Q)}.

In addition,

k∑
i=1

y∗∗i inf{fi(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Max(fU (x), Q)}

≤
k∑
i=1

y∗∗i sup{fi(x, ξ)| ξ ∈ U , f(x, ξ) ∈ Max(fU (x), Q)}

[≤ / < / <]

k∑
i=1

y∗∗i inf{fi(x0, ξ)| ξ ∈ U , f(x0, ξ) ∈ Max(fU (x0), Q)}

≤
k∑
i=1

y∗∗i sup{fi(x0, ξ)| ξ ∈ U , f(x0, ξ) ∈ Max(fU (x0), Q)}.

But this is a contradiction.

Applying Theorem 41 leads to the following algorithm for deriving minmax certainly
less alternative ordered robust solutions. The sets of strictly (weakly, · , respectively) min-
max certainly less alternative ordered robust solutions are denoted by Optsmcr (Optwmcr,
Optmcr , respectively).

Algorithm 19 for computing minmax certainly less alternative ordered
robust solutions using a family of problems (V OPmca(y∗, y∗∗)) (see (5.63)):

Input, Steps 1-7: Analogous to Algorithm 12, only replacing C∗ \ {0} by Rk≥, C#

by Rk>, (V OP sl(y∗, y∗∗)) (see (5.33)) by (V OPmca(y∗, y∗∗)) (see (5.63)), Optsslor,
Optwslor, Optslor by Optsmcr, Optwmcr, Optmcr, and replacing “set less ordered ro-
bust” by “minmax certainly less alternative ordered robust”. Note that the existence
of minξ∈U y

∗ ◦ f(x′, ξ) and maxξ∈U y
∗∗ ◦ f(x′, ξ) is not required for the present con-

cept.
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The following algorithm computes minmax certainly less alternative ordered robust
solutions by varying the weights in (V OPmca(y∗, y∗∗)).

Algorithm 20 for computing minmax certainly less alternative ordered
robust solutions using a family of problems (V OPmca(y∗, y∗∗)) (see (5.63)) by
altering the weights:

Input, Steps 1-8: Analogous to Algorithm 13, only replacing C∗ \ {0} by Rk≥, C# by
Rk>, (V OP sl(ŷ∗, ŷ∗∗)) by (V OPmca(ŷ∗, ŷ∗∗)), Optsslor, Optwslor, Optslor by Optsmcr,
Optwmcr, Optmcr, and replacing “set less ordered robust” by “minmax certainly less
alternative ordered robust”. Notice again that minξ∈U ŷ

∗◦f(x′, ξ) and maxξ∈U ŷ
∗∗◦

f(x′, ξ) do not need to exist for this concept.

5.3.9 Further Relationships Between the Concepts

The following corollary shows the essential result that for deterministic multi-objective
optimization the introduced concepts of robustness are equivalent to deterministic C-
minimality.

Corollary 9. Given P (U) with |U| = 1. Suppose that for all x ∈ X , it holds fU (x) ∈
FQmin,max (compare (5.41)) for Q = C, (Q = intC, Q = C \ {0}, respectively). Then
f(x) is strictly (weakly, · , respectively) minimal if and only if x is strictly (weakly, · ,
respectively)

• upper set less ordered robust;

• lower set less ordered robust;

• set less ordered robust;

• alternative set less ordered robust;

• minmax less ordered robust;

• certainly less ordered robust;

• possibly set less ordered robust;

• minmax certainly less ordered robust.

In addition, we have the following corollary.

Corollary 10. Given P (U) with Y = R, X = Rn and Q = R≥. Suppose that for all
x ∈ X fU (x) ∈ FQmin,max holds (compare (5.41)). Then it holds due to R> = R≥:

• x is weakly upper set less ordered robust ⇐⇒ x is upper set less ordered robust;
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• x is weakly lower set less ordered robust ⇐⇒ x is lower set less ordered robust;

• x is weakly set less ordered robust ⇐⇒ x is set less ordered robust;

• x is weakly alternative set less ordered robust ⇐⇒ x is alternative set less ordered
robust;

• x is weakly minmax less ordered robust ⇐⇒ x is minmax less ordered robust;

• x is weakly certainly less ordered robust ⇐⇒ x is certainly less ordered robust;

• x is weakly possibly set less ordered robust ⇐⇒ x is possibly set less ordered robust;

• x is weakly minmax certainly less ordered robust ⇐⇒ x is minmax certainly less
ordered robust.

From Theorems 37, 32, 30, 33, 40 and 39 we deduce a summary for interrelations of
robust solutions in Figure 5.16.
Furthermore, Table 5.1 summarizes the definitions of all introduced concepts for uncer-
tain multi-objective problems.
The diagram in Figure 5.17 shows the relationships between some of the introduced
robustness concepts for uncertain multi-objective optimization.
Links between scalar problems and corresponding robustness concepts for uncertain
vector-valued optimization problems in the special case of scalar optimization (Y = R,
X = Rn, C = R=) are summarized below in Table 5.2.
In order to give some insight to the problem structure and the concepts of robustness
we introduced, we present an example that illustrates the different robustness concepts.
This example can be found in Ide, Köbis [48].

Example 17. ([48]) Imagine the decision process of choosing a hotel with respect to two
objective functions a decision maker might value the most: silence and weather conditions.
Since it is not entirely known which weather conditions will occur, it is also not known
how many tourists will stay at the specific hotel and therefore how noisy it will be there
during the stay.

The following result for possible scenarios is considered: For the sake of simplicity,
we restrict ourselves to four weather scenarios, each of which yielding a different score
on weather conditions and noise for every hotel. The score is estimated in grades from 1
to 20, 1 being perfect and 20 being very bad.

The decision maker now has to choose a suitable hotel due to his preferences. Since the
problem is multi-objective, the decision maker has to choose the trade-off he is willing to
pay between the two objective functions. Furthermore, since the problem is also uncertain,
he has to define what would be a suitable solution considering not just one but all four
scenarios. Thus, he has to decide in a definition of what is called robust in this context.

We now discuss this example for the case C = R2
= and use it to validate the different

concepts of robustness. For this we plot the objective values of the above Table 5.3.
First we note that in terms of upper set less ordered robustness, one is searching for

solutions where the set of worst cases is non-dominated by any other set of worst cases.
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possibly less ordered robust

alternative set less ordered robust

lower set less or-
dered robust

upper set less or-
dered robust

set less ordered robust

certainly less ordered robust

possibly less ordered robust

minmax less ordered robust

minmax certainly less ordered robust

certainly less ordered robust

Thm. 37

Thm. 32 Thm. 32

Thm. 30 Thm. 30

Thm. 35

Thm. 38

Thm. 39

Thm. 40

Figure 5.16: Interrelations between robust solutions.
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Concept Section Definition, x0 robust if @ x ∈ X \ {x0} s.t. ...
Upper set less ordered robustness 5.3.1 fU (x) ⊆ fU (x0)−Q
Lower set less ordered robustness 5.3.2 fU (x) +Q ⊇ fU (x0)

Set less ordered robustness 5.3.3 fU (x) ⊆ fU (x0)−Q and
fU (x) +Q ⊇ fU (x0)

Alternative set less ordered
robustness

5.3.4 fU (x) ⊆ fU (x0) − Q or
fU (x) +Q ⊇ fU (x0)

Minmax less ordered robustness 5.3.5

Min(fU (x), Q) +Q ⊇ Min(fU (x0), Q)

and Min(fU (x), Q) ⊆ Min(fU (x0), Q)−Q
and Max(fU (x), Q) +Q ⊇ Max(fU (x0), Q)

and Max(fU (x), Q) ⊆ Max(fU (x0), Q)−Q

Certainly less ordered
robustness

5.3.6 ∀ f(x, ξ) ∈ fU (x), ∀ f(x0, η) ∈ fU (x0) :

f(x, ξ) ≤Q f(x0, η)

Possibly less ordered robustness 5.3.7 fU (x) ∩
(
fU (x0)−Q

)
6= ∅

Minmax certainly less ordered
robustness

5.3.8

∀ y ∈ Min(fU (x), Q), ∀ y0 ∈ Min(fU (x0), Q) :

y ≤Q y0 and

∀ y′ ∈ Max(fU (x), Q), ∀ y0′ ∈ Max(fU (x0), Q) :

y′ ≤Q y0′

Table 5.1: Summary of all introduced concepts, using Q = C (Q = intC, Q = C \ {0},
respectively) for strict (weak, · , respectively) robustness.
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Concept
For Y = R, X = Rn, C =
R= related to: See Lemma:

Upper set less ordered robustness (RC) minx∈X supξ∈U f(x, ξ) 3
Lower set less ordered robustness (OC) minx∈X infξ∈U f(x, ξ) 5
Set less ordered robustness (RC) or (OC) 9

Alternative set less ordered ro-
bustness

(RC) and (OC) 11

Minmax less ordered robustness (RC) or (OC) 13
Certainly less ordered robust-
ness

(RC) or (OC) 15

Possibly less ordered robustness

x0 is possibly less or-
dered robust if
there is no x ∈ X \ {x0}
s.t.
f(x, ξ) ≤ f(x0, η) for
some ξ, η ∈ U

18

Minmax certainly less
ordered
robustness

(RC) or (OC) 20

Table 5.2: Relations of introduced robustness notions in the scalar case are described.
(RC) ((OC), respectively) is given by (5.10) ((5.11), respectively).
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poss.
alt.

lowerupper

set less

certainly less ordered

Figure 5.17: Scheme of robust solutions to an uncertain multicriteria optimization prob-
lem.

The left hand side in Figure 5.18 illustrates that Hotels No. 1 and No. 4 are upper set
less ordered robust as their worst cases are non-dominated by another set of worst cases.
At the same time Hotels No. 2, 3, 5 and 6 are not upper set less ordered robust as their
sets of worst cases are dominated by the set of worst cases of Hotel No. 4.

In terms of lower set less ordered robustness, we can see at the right hand side in
Figure 5.18 that Hotels No. 4 and 5 are lower set less ordered robust, while Hotel No. 1
is not lower set less ordered robust since it is dominated by Hotel No.5 (although Hotel
No. 1 is weakly lower set less ordered robust). Furthermore, Hotels No. 2, 3 and 6 are
dominated by Hotel No. 5 and are thus not lower set less ordered robust.

Theorem 30 implies that Hotels No. 1 and 4 (Hotel No. 5, respectively) are set less
ordered robust, since they are upper (lower, respectively) set less ordered robust. We can
see that Hotels No. 2 and 3 are both dominated by Hotels No. 4, 5 and 6, thus they
cannot be set less ordered robust. Note that Hotel No. 6 is neither upper nor lower set
less ordered robust, but still set less ordered robust, see Figure 5.19. This verifies that the
inverse implication in Theorem 30 is in general not fulfilled.

At this point, we can use Theorem 32 to conclude that the only Hotel which is alter-
native set less ordered robust is Hotel No. 4. Thus, a decision maker who acts both risk
averse and risk affine with regard to the future would choose this hotel. At the same time,
Hotel No. 1 is weakly alternative set less ordered robust, since it is both weakly upper and
lower set less ordered robust.

Hotels No. 1, 4, 5 and 6 are minmax less ordered robust. Hotels No. 2 and 3 are not
minmax less ordered robust, since they are dominated by Hotel No. 4.

Note that Theorem 35 implies that Hotels No. 1, 4, 5, 6 are certainly less ordered
robust. As can be seen in the plot, Hotel No. 3 is certainly less ordered robust. However,
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(
noise

weather

)
H1 H2 H3 H4 H5 H6

Scenario 1

(
12
8

) (
15
13

) (
15
10

) (
13
6

) (
15
7

) (
14
9

)
Scenario 2

(
9
3

) (
15
13

) (
10
8

) (
6
5

) (
7
3

) (
8
4

)
Scenario 3

(
4
9

) (
15
13

) (
10
8

) (
4
7

) (
3
8

) (
5
10

)
Scenario 4

(
10
14

) (
15
13

) (
11
13

) (
6
10

) (
7
15

) (
8
12

)

Table 5.3: Hotels 1–6 and scenarios 1–4.

we note that Hotel No. 2 is not certainly less ordered robust, and one would want to
exclude Hotel No. 2 beforehand because obviously Hotels No. 4 and 6 dominate it in
every scenario, see Figure 5.19

Note that in this example, the set of possibly less ordered robust solutions is empty.
Due to Theorem 39, Hotels No. 1, 4, 5 and 6 are minmax certainly less ordered robust.
Since Hotels No. 2 and 3 are dominated by Hotels No. 4 and 6, they are not minmax
certainly less ordered robust. We conclude that Hotel No. 2 is not considered robust for
any robustness concept.

5.4 Robustness vs. Set Optimization

As observed in the previous section, there is a strong connection between robustness
as it was introduced by Ehrgott et al. [25] for uncertain multi-objective optimization
and set optimization. This observation inspired us to introduce new concepts for robust
solutions of uncertain vector optimization problems based on various well known set order
relations.

Recalling Definition 13 of a minimal solution of (SP− �) w.r.t. a pre-order � (see
Definition 5), we are able to mention the following relationship between our definition
of robust solutions and minimal solutions. To this end, we define optimal solutions of a
set-valued problem (SP− �), where G : X ⊇ X ⇒ Y is a set-valued mapping.

Definition 27. x0 is called an optimal solution of (SP− �) if there does not exist
x ∈ X \ {x0} s.t. G(x) � G(x0).

The following lemma describes links between the optimality notion in Definition 27
and minimal solutions in the sense of Definition 13 of a set-valued problem (SP− �).

Lemma 22. If x0 is an optimal solution of (SP− �) w.r.t. a pre-order �, then x0 is a
minimal solution of (SP− �) w.r.t. the same pre-order �.
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Figure 5.18: Left: Hotels No. 1 and 4 are upper set less ordered robust. Right: Hotels
No. 4 and 5 are lower set less ordered robust.
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Figure 5.19: Left: Hotel No. 6 is, in addition to Hotels No, 1, 4 and 5, set less ordered
robust. Right: Hotel No. 2 is not certainly less ordered robust.
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alt. s.l.o.r.
Hotel No. 4

lower s.l.o.r.
Hotel No. 5

u.s.l.o.r.
Hotel No. 1

s.l.o.r., Hotel No. 6

certainly l.o.r.
Hotel No. 3

Hotel No. 2

Figure 5.20: Summary of hotels in a robust classification framework. “Set less ordered
robust” is abbreviated by “s.l.o.r.”.

Proof. Let x0 be an optimal solution of (SP− �) w.r.t. the pre-order �. Then there
does not exist x ∈ X \ {x0} s.t. G(x) � G(x0). Suppose x0 is not a minimal solution of
(SP− �). Thus, there exists x ∈ X s.t.

G(x) � G(x0) and ¬
(
G(x0) � G(x)

)
.

Due to x0’s optimality, we deduce x = x0. But this means that ¬
(
G(x0) � G(x0)

)
, a

contradiction as � was assumed to be a pre-order.

Hence, due to our analysis of robust solutions to uncertain multi-objective optimiza-
tion problems, we indirectly provided algorithms for solving set optimization problems
using various set order relations. The above lemma shows that the algorithms we pro-
vided for obtaining strictly

• lower set less (�lC);

• upper set less (�uC);

• set less (�sC) and

• minmax less (�mC )

ordered robust solutions can be used for computing minimal solutions in the sense of
Definition 13 of (SP− �) w.r.t. the according pre-order �. Notice that the introduced
order relations �lQ, �uQ, �sQ and �mQ are not pre-orders in general for Q = C \ {0} and
for Q = intC. Note that we redefined the order relations �certC , �mcC such that they are
in general no longer pre-orders. Of course, this can be done differently in future research.
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The algorithms we obtained for these remaining robust solution concepts can be used
to obtain optimal solutions w.r.t. the corresponding order relation � in the sense of
Definition 27.

Furthermore, note that this suggested approach is only possible if the set-valued
mapping G : X ⇒ Y can be reformulated as

G(x) =: fU (x) = f(x,U) = {f(x, ξ)| ξ ∈ U}

for each x ∈ X , a set U ⊆ RN and a function f : X ×U → Y . Determining which classes
of set-valued problems satisfy this condition is a topic for future research.

Scalarization and vectorization techniques for set-valued optimization based on the
lower, upper and set less order relation have also been investigated by Jahn [54]. The re-
search conducted in this chapter shows that the framework along with solution procedures
introduced in [54] can be directly applied to uncertain vector-valued optimization, hence
uncertain multi-objective optimization is an important application of set optimization.

Future research could include providing algorithms for solving the uncertain vector-
valued problem for possibly less ordered robust solutions. Furthermore, studying ap-
plications of uncertain vector-valued problems along with numerical examples would be
interesting to investigate.



Chapter 6

Optimality Conditions for Robust
Optimization Problems

In this chapter, we study optimality conditions for the strictly robust optimization prob-
lem as a special case of weighted robustness that was introduced in Chapter 3 by means
of abstract subdifferentials. By an abstract subdifferential we mean a subdifferential
that satisfies certain axioms. For an introduction of abstract subdifferentials, we follow
Durea and Tammer [22]. Although in [22], “exact” and “fuzzy” calculus rules are con-
sidered, we confine ourselves to “exact” calculus rules in the following. Let χ be a class
of Banach spaces. An abstract subdifferential is a map that associates to every lower
semi-continuous function h : χ 3 X → R and to every x ∈ X a subset ∂h(x) ⊂ X∗. For
X,Y ∈ χ, G(X,Y ) is the class of functions mapping from X to Y with the property that
by composition at left with a lower semi-continuous function from Y to R, the resulting
function is again lower semi-continuous. The indicator function IS of a set S ⊂ X is
defined by

IS(x) :=

{
0, x ∈ S,
+∞, otherwise.

It is well known that the subdifferential of the indicator function of a convex set S ⊂ X
coincides with the normal cone, defined by

N(S, x0) :=

{
{p ∈ L(X,R)|∀x ∈ S : p(x− x0) ≤ 0}, x0 ∈ S,
∅, otherwise,

where L(X,R) is the class of all continuous linear operators from X to R. The following
properties are assumed to be satisfied by an abstract subdifferential.

(H1) If h is a convex functional, then ∂h(x) coincides with the Fenchel subdifferential.

(H2) If x0 is a local minimum for h, then 0 ∈ ∂h(x0). Furthermore, if x /∈ domh, then
∂h(x) = ∅.

125
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(H3) If z : Y → R is a convex functional and ψ ∈ G(X,Y ), then it holds for all x ∈ X:

∂(z ◦ ψ)(x) ⊂
⋃

y∗∈∂z(ψ(x))

∂(y∗ ◦ ψ)(x).

(H4) If z : Y → R is a convex functional, ψ ∈ G(X,Y ), and S is a closed subset of X
containing x, then it holds

∂(z ◦ ψ + IS)(x) ⊂ ∂(z ◦ ψ)(x) + ∂IS(x).

As usual, we define the normal cone using the subdifferential of the indicator function
∂IS(x) for a set S ⊂ X:

N∂(S, x) := ∂IS(x).

Note that (H1) and (H2) are very natural assumptions on a subdifferential. Properties
(H3) and (H4) are exact calculus rules for compositions. Examples for subdifferentials
that satisfy these requirements include (compare [22])

• the limiting (or Mordukhovich) subdifferential, when χ is the class of Asplund
spaces, Y is finite dimensional and with G(X,Y ) as the class of Lipschitz functions
from X to Y [75];

• the approximate (or Ioffe) subdifferential when χ is the class of Banach spaces and
G(X,Y ) being the class of strongly compact Lipschitz functions from X to Y [50].

Let C ⊂ Y be a proper closed convex and pointed cone. Recall from (5.3) that for
y1, y2 ∈ Y :

y1 ≤C y2 :⇐⇒ y1 ∈ y2 − C.

At this point it is interesting to mention an important result by Valadier [98]. For this we
need some additional notations. Adding a greatest element +∞ (/∈ Y ) to Y , we obtain
Y • := Y ∪ {+∞}. For a function f : X → Y • we define the subdifferential ∂≤C of f at
x0 ∈ dom f by

∂≤Cf(x0) := {T ∈ L(X,Y )|∀ x ∈ X : T (x− x0) ≤C f(x)− f(x0)},

where L(X,Y ) is the class of all continuous linear operators from X to Y . If there is no
confusion, we write ∂≤ instead of ∂≤C . Furthermore, f is C-convex for a convex cone C
if

∀ x1, x2 ∈ X, ∀ λ ∈ [0, 1] : f(λx1 + (1− λ)x2) ≤C λf(x1) + (1− λ)f(x2).

Now we are ready to mention a result by Valadier [98], which stated that, under cer-
tain assumptions on f and the ordering cone C, it is possible to extract y∗ from the
subdifferential.
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Theorem 42 ([98]). Let (X, ‖ · ‖), (Y, ‖ · ‖) be real reflexive Banach spaces and C ⊂ Y
a proper convex cone with a weakly compact base. If f : X → Y • is a C-convex operator,
continuous at some point of its domain, then

∀ x ∈ int(dom f), ∀ y∗ ∈ C∗ : y∗ ◦ ∂≤Cf(x) = ∂(y∗ ◦ f(x)),

using the convention that y∗(+∞) = +∞ for y∗ ∈ C∗.

We now recall the definition of the nonlinear scalarizing functional zB,k (see (2.2) in
Chapter 2),

zB,k(y) := inf{t ∈ R|y ∈ tk −B}, (6.1)

under the requirement that (compare (2.1))

B + [0,+∞) · k ⊂ B (6.2)

for B ⊂ Y, k ∈ Y \ {0}. The nonlinear scalarizing functional can now be minimized on
a set of feasible solutions F ⊂ Y , resulting in the nonlinear scalarization approach as
discussed in Chapter 2 (compare (2.3)):

(Pk,B,F ) inf
y∈F

zB,k(y). (6.3)

In order to provide optimality conditions for a strictly robust optimization problem,
the subdifferential of the nonlinear scalarizing functional zB,k is of importance. The fol-
lowing theorem describes the structure of the subdifferential of zB,k when this functional
is convex and proper. Here, ∂ denotes the classical (Fenchel) subdifferential.

Theorem 43 ([22, Theorem 2.2]). Let B ⊂ Y be a closed proper set and k ∈ Y \ {0}
such that (6.2) holds and for each y ∈ Y there exists t ∈ R such that y + tk /∈ B. Then
for y ∈ dom zB,k, we have

∂zB,k(y) = {v∗ ∈ Y ∗|v∗(k) = 1, ∀ y ∈ B : v∗(y) + v∗(y)− zB,k(y) ≥ 0}.

The next result presents further insight into the classical (Fenchel) subdifferential of
zB,k when B is a cone. We will use the following lemma to provide a necessary optimality
condition of a strictly robust optimization problem which was introduced in Section 3.1.1
as a special case of weighted robustness.

Lemma 23 ([22, Lemma 2.4]). Let B ⊂ Y be a proper closed convex cone. Then for
every k ∈ intB and for each y ∈ Y , ∂zB,k(y) 6= ∅ and ∂zB,k(y) = {v∗ ∈ B∗|v∗(k) =
1, v∗(y) = zB,k(y)}.

Before using the above lemma to present an optimality condition by means of ab-
stract subdifferentials, we first recall a scalar uncertain optimization problem, where the
uncertain parameter ξ is assumed to belong to a finite uncertainty set U := {ξ1, . . . , ξq}.
Let f : Rn × U → R, Fi : Rn × U → R, i = 1, . . . ,m. Now an uncertain optimization
problem is defined as a family of parametrized optimization problems

(Q(ξ), ξ ∈ U). (6.4)
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For a fixed ξ ∈ U , the optimization problem (Q(ξ)) is given by

min f(x, ξ)

(Q(ξ)) s.t. Fi(x, ξ) ≤ 0, i = 1, . . . ,m,

x ∈ Rn.

Now the strictly robust counterpart to the family of uncertain optimization problems
(Q(ξ), ξ ∈ U) is defined for A := {x ∈ Rn|∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m} (compare
(3.2)) as

(RC) min
x∈A

sup
ξ∈U

f(x, ξ). (6.5)

Recall that (RC) may be formulated using zB,k for a specific choice of parameters B,
k on a set of feasible solutions F (compare problem (wRC) in Chapter 3 with weights
wk = 1, k = 1, . . . , q). For this we redefine the objective function as f : Rn → Rq s.t. for
every x ∈ A

f(x) =

f1(x)
. . .

f q(x)

 :=

f(x, ξ1)
. . .

f(x, ξq)

 .

We use the following notation:

B := Rq=, (6.6)

k := 1q = (1, . . . , 1)T , (6.7)

F := {(f(x, ξ1), . . . , f(x, ξq))
T |x ∈ A}. (6.8)

Note that F is not necessarily a convex set. With the above parameters B, k and F , we
obtain for y = f(x) = (f(x, ξ1), . . . , f(x, ξq))

T

min
y∈F

zB,k(y) = min
x∈A

max
ξ∈U

f(x, ξ),

taking into account Theorem 3 of the weighted robust problem with weights wk = 1,
k = 1, . . . , q. Thus, both problems can be regarded as equivalent and the following
connections between problems (RC) (see (6.5)) and (Pk,B,F ) (see (6.3)) are to mention:

min
x∈A

sup
ξ∈U

f(x, ξ)⇐⇒ min
y∈F

zB,k(y)⇐⇒ min
x∈A

zB,k(f(x)).

Now we are able to use the special structure of the subdifferential of the nonlinear
scalarizing functional zB,k to characterize optimal solutions of (Pk,B,F ) by means of
abstract subdifferentials. Since both problems (Pk,B,F ) and (RC) are equivalent, as
demonstrated above, optimality conditions that hold for (Pk,B,F ) apply to (RC) as well.
In the following theorem we provide a necessary optimality condition for feasible solutions
of the strictly robust optimization problem (RC).
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Theorem 44. Let the nonlinear functional zB,k be defined by (6.1) for the parameters
B given in (6.6) and k as in (6.7). Assume ∂ satisfies (H1)− (H4). If x0 solves (RC)
(see (6.5)), then there exists a v∗ ∈ Rq= with v∗ · 1q = 1 and v∗(f(x0)) = z(f(x0)) for
f(x0) = (f(x0, ξ1), . . . , f(x0, ξq))

T and

0 ∈ ∂(v∗ ◦ f)(x0) +N∂(A, x0). (6.9)

Proof. For simplification, we set z := zB,k. Let x0 solve (RC) (see (6.5)), i.e.,

f(x0) = (f(x0, ξ1), . . . , f(x0, ξq))
T

solves (Pk,B,F ) and
y = f(x) = (f(x, ξ1), . . . , f(x, ξq))

T .

Because the subdifferential ∂ satisfies (H1)− (H4), we arrive at

0 ∈ ∂
(
(z ◦ f) + IA

)
(x0)

⊂ ∂(z ◦ f)(x0) + ∂IA(x0)

= ∂(z ◦ f)(x0) +N∂(A, x0)

⊂ ∪y∗∈∂z(f(x0))∂(y∗ ◦ f)(x0) +N∂(A, x0).

Since B = Rq= is a proper closed convex cone, it holds for the subdifferential of z:

∂z(f(x0)) = {v∗ ∈ Rq=|v
∗ · 1q = 1, v∗(f(x0)) = z(f(x0))}

(compare Lemma 23) and the proof is complete.

If f : Rn → Rq is an Rq=-convex operator and continuous at some point of its domain,
then Theorem 42 is applicable and

∀ x ∈ int(dom f), ∀ v∗ ∈ Rq= : v∗ ◦ ∂≤f(x) = ∂(v∗ ◦ f(x))

holds, such that we get in (6.9) in Theorem 44

0 ∈ v∗ ◦ ∂≤f(x0) +N∂(A, x0).

Note that the above analysis may be performed analogously for the remaining ro-
bustness concepts that are described in Chapter 3 for a suitable choice of parameters B,
k and F , yielding necessary optimality conditions for these approaches.



Chapter 7

Conclusions

This thesis is devoted to providing and analyzing scalar as well as various new vector-
valued approaches to uncertain optimization.

In the first main part of the thesis (Chapter 3), we presented scalar robustness con-
cepts in a unifying framework by means of a nonlinear scalarizing functional. We showed
that new concepts for robustness may be deducted from this approach by varying the
parameters B, k involved in the functional zB,k and by changing the set of feasible solu-
tions F on which zB,k is minimized. Several properties of this functional were studied
and compared for different robustness concepts. Specifically, the monotonicity property
that zB,k fulfills under certain assumptions on B and k allows for links to multi-objective
optimization, which led to an investigation of multiple objective robust counterpart prob-
lems. We showed that several robustness concepts are scalarizations of particularly chosen
vector-valued problems.

Future research interests include the relation to coherent risk measures, since the
functional zB,k is an important tool in the field of financial mathematics (compare Heyde
[44] and a short note in [59]). It can be used as a coherent risk measure of an investment.
One can show that

µ(y) = inf{t ∈ R|y + tk ∈ B}
is a coherent risk measure. Obviously, we have (cf. Heyde [44])

µ(y) = zB,k(−y).

A risk measure induces a set Bµ of acceptable risks (dependent on µ)

Bµ = {y ∈ Y |µ(y) ≤ 0}.

The following interpretation of coherent risk measures is possible: If Y = Rq (there
are q states of the future), B1 = Rq= and k1 = 1q, then

µ(y) = zB1,k1(−y) = max
ξ∈U

(−f(x, ξ)) = −min
ξ∈U

f(x, ξ)

is a coherent risk measure. Specifically, the risk measure maxξ∈U (−f(x, ξ)) is the ob-
jective function of the strictly robust counterpart (compare (wRC), (3.1), with weights

130
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wk = 1, k = 1, . . . , q) with negative values of f . Because µ(y) = −minξ∈U f(x, ξ), neg-
ative payments f of an investment in the future result in a positive risk measure, and
positive payments result in a negative risk measure. This seems very reasonable since neg-
ative payments (losses) are riskier than investments with only positive payments (bonds).
This approach can analogously be performed for other concepts of robustness and may
be analyzed in terms of financial theory. Interrelations between robustness and coherent
risk measures have also been studied by Quaranta and Zaffaroni in [86]: They minimized
the conditional value at risk (which is a coherent risk measure) of a portfolio of shares
using concepts of robust optimization.

The second main part of the thesis (Chapter 5) was devoted to analyzing new concepts
for robustness for uncertain vector-valued optimization problems. Since for each x ∈ X ,
fU (x) is a set, we used set-valued approaches for dealing with uncertain vector-valued
problems. We deducted new concepts for multicriteria robustness using different set
orders � in order to identify elements that are immunized against perturbations. In
particular, we concluded that the upper set less ordered robustness concept, that uses
the order relation �uC and hedges against perturbations in the worst-case scenarios, is
applicable if a decision maker acts risk averse. Lower set less ordered robustness on the
other hand (with the order relation �lC) hedges against perturbations in the best-case
scenarios and is thus useful for a risk affine decision maker. If a decision maker is both
risk averse and risk affine at the same time, we introduced the alternative set less ordered
robustness concept, which produces solutions that are upper and lower set less ordered
robust in parallel. If a user does not know whether to hedge against the worse or best
cases, he may rely upon the set less ordered robustness approach (using the relation
�sC), which unifies lower and upper set less ordered robust solutions. More set order
relations � are known from the literature and were investigated in this thesis in relation
to robustness.

For each concept, we provided solution methods for obtaining robust elements. We
pointed out that these methods can be used to handle other set-valued optimization
problems as well, provided that they may be transformed in a way such thatG(x) = fU (x)
for a set-valued map G : X ⇒ Y . We omitted to provide a solution procedure for the
possibly less ordered robustness concept, since this concept revealed itself to be extremely
restrictive. Of course, this may be a topic for future research. Every new robustness
concept was analyzed and compared to other approaches. We concluded Chapter 5 with
a simple example to illustrate the different robustness concepts.

The presented results on connections between robust solutions of uncertain multi-
objective optimization and set optimization suggest further research. One aspect of
interest are different solutions concepts that exist in set-valued optimization. One may
wish to investigate if the suggested methods for obtaining minimal solutions of set-valued
optimization problems hold true for other solution notions as well, or if they can be
adjusted. Further research could include providing applications for these concepts. An
extension which would be interesting to investigate is analyzing the presented approaches
for a variable ordering cone, i.e., a cone C(x) that depends on the decision variable.

By means of abstract subdifferentials and using the special structure of the nonlinear
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scalarizing functional zB,k, we finally provided an optimality condition for a strictly
robust optimization problem, which was introduced in Chapter 3 as a special case of
weighted robustness. We noted that this analysis may be performed for the remaining
robustness concepts as well in the future.
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