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Abstract: Introduction: Calcification is a highly relevant process in terms of development of car-
diovascular diseases, and its prevention may be the key to prevent disease progression in patients.
In this study we investigated the expression of osteocalcin (OC), osteopontin (OPN) and RUNX2
in patients’ leukocytes and their possible role as diagnostic markers for cardiovascular diseases.
Materials and Methods: Leucocytes from 38 patients were collected in the Department of Surgery of
Martin-Luther-University Halle, including 8 patients without arteriosclerotic disease (PAD−) and
30 patients with symptomatic arteriosclerotic disease (PAD+). Patients’ leucocytes, in vitro calcified
human umbilical vein endothelial cells (HUVEC) and vascular smooth muscle cells (VSMC) were
subjected to qPCR analyses with TaqMan probes, which are specific for OC, OPN and RUNX2.
Additionally, the interaction between monocytes and calcified HUVEC and VSMC was investigated
in adhesion assays. Results: The leucocytes obtained from patients with symptomatic arteriosclerotic
disease (PAD+) demonstrated decreased mRNA level expression of Osteocalcin, while OPN and
RUNX2 were significantly upregulated in comparison to asymptomatic patients. The induction of
calcification in HUVEC and VSMC cells led to an increased expression of OC, OPN and RUNX2.
Immunocytochemistry of calcified HUVEC and VSMC revealed stronger expression of OC, OPN
and RUNX2 in calcified cells. Conclusion: To conclude, these data demonstrate that symptomatic
arteriosclerotic disease has a correlation with OC, OPN and RUNX2. The biological rationale of OC,
OPN and RUNX-2 remains not yet entirely understood for atherosclerotic disease, which means it
needs further investigation.
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1. Introduction

The arterial deposition of hydroxyapatite mineral is related to an increased risk of heart
disease and stroke [1]. Cardiovascular disease represents an important cause of mortality
worldwide [2]. Prevention is a key for fighting this disease [3,4]. Active reprogramming of
vascular smooth muscle cells (VSMC) is described as having a crucial role in the calcification
process [5].

The bone is not only a protective and static organ, but also an organ with endocrine
functions. Osteocalcin (OC) is a bone γ-carboxyglutamic acid (Gla) protein produced by
osteoblasts. In addition, the bone has been identified as a stress organ and osteocalcin as a
stress hormone [6,7].

The collagen-rich matrix that composes bone tissue is produced by osteoblasts. In
addition, other regulating functions of these cells are being studied. In the center of this
potential hormonal role is Osteocalcin. These functions include mineralization, regulation
of glucose and energy metabolism and regulation of fertility and cognition. Among
these functions, osteocalcin was recently described as a potential marker of subclinical
atherosclerosis [8].
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Osteopontin (OPN) is also a protein involved in the mineralization and calcification
processes. The role in inflammatory processes was studied in recent years. Multifunc-
tional roles on physiological and pathophysiological processes also were studied in past
years [9–11]. Additionally, OPN has also been associated with a promoter of arteriosclero-
sis [12]. Furthermore, osteopontin could be a target in treating coronary artery disease [13].

RUNX2 is a transcriptional regulator of skeletogenesis and it is expressed in mouse
and human skeletal progenitors [14,15]. The role of RUNX2 was a matter of several studies
in past years [16,17].

There is no clear definition of the value of OC, OPN and RUNX2 expression in
symptomatic atherosclerotic disease. We investigated in this study the expression of OC,
OPN and RUNX2 in vascular smooth muscle cells and leucocytes, and their possible role
as diagnostic markers.

2. Material and Methods

Patients and tissue preparation. A total of 38 vessel tissues, including 8 patients without
arteriosclerotic disease (PAD−) and 30 patients with symptomatic arteriosclerotic disease
(PAD+) were collected in the Department of Surgery of Martin-Luther-University Halle.

This study was approved by the ethical committee of the Martin Luther University,
Faculty of Medicine, and all patients gave written consent.

Cell culture and calcification induction. HUVEC (human umbilical vein endothelial
cells) cell line was cultured in EGM Basalmedium (Lonza, Basel, Switzerland) and EGM
Bullet Kit (Lonza). VSMC (vascular smooth muscle cells, Lifeline Cell Technology) were
cultured in Ham’s F-12K Medium (Thermo Fisher Waltham, MA, USA) supplemented
with 0.05 mg/mL Ascorbic acid (Sigma-Aldrich, St. Louis, MO, USA), 0.01 mg/mL
Insulin (Sigma-Aldrich), 0.01 mg/mL Transferrin (SERVA), 10 ng/mL Sodium selen-
ite (Sigma-Aldrich), 0.03mg/mL Endothelial Cell Growth Supplement (ECGS) (Sigma-
Aldrich), 10 mM HEPES (Sigma-Aldrich), 10 mMTES (Sigma-Aldrich) and 10% FCS
(Biochrom AG). Calcification medium was prepared by supplementation of the growth
medium with 1.58 mM/L Calcium D-gluconate monohydrate (Sigma-Aldrich), 0.1 µM/L
Dexamethason (Serva, Heidelberg, Germany), 0.5 mM/L Ascorbic acid (Sigma-Aldrich),
2.5 mM/L ß Glycerophosphate disodium salt hydrate (Sigma-Aldrich). HUVEC and VSMC
were calcified for 7 and 14 days, respectively. There after Alizarin S staining: (Alizarin-Red
Staining Solution) (Sigma-Aldrich) and ALP Assay: (Amplite (TM) Colorimetric Alkaline
Phosphatase Assay Kit) (Biomol), both according to manufacturer’s instructions, were
performed. Control cells received normal growth medium. Briefly, Alizarin S staining
was performed on the cells seeded in 24-Well Plates in corresponding media. Before the
staining medium was completely removed, the cells were shortly washed with double
distilled water. Thereafter, the cells were fixed 10 min with 10% formalin in PBS and
washed again three times with double distilled water. After this step the cells were stained
30 min with 40 mM Alizarin S, pH 4.1. Finally, the cells were washed again three times
with double distilled water and photographed with light microscope (Axiovision, Zeiss,
Oberkochen, Germany).

RT-PCR. Blood samples for mRNA analysis were drawn into Tempus™ Blood RNA
Tubes (Thermo Fisher Waltham, Massachusetts, U.S.A.) prefilled with RNAse inhibitor
and frozen at −20 ◦C. Total RNA was isolated with Tempus Spin RNA Isolation Kit
(Thermo Fisher Scientific). Total RNA from cell culture experiments was isolated with
Trizol (Invitrogen, Carlsbad, CA, USA) according to manufacturer’s instructions.

Then, 500 ng of total RNA was reversely transcribed with Superscript II kit (Gibco,
Munich, Germany) at 42 ◦C for 30 min followed by enzyme inactivation at 95 ◦C for 5 min.
The samples were stored at −20 ◦C until further processing.

QPCR reactions for OC were performed with Rotor-Gene System (Qiagen) and qPCR-
BIO Probe Mix (Nippon Genetics, Düren, Germany). Samples were amplified as double
replicates by employment of TaqMan Assays specific for OC (Hs01587814_g1 BGLAP) and
ACTB (Hs99999903-m1 ACTB). Thermal cycling conditions for TaqMan were as follows:
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hold 10 min 95 ◦C, 40 cycles of 10 s/95 ◦C and 30 s/60 ◦C. OPN and RUN X2 were amplified
with 5×HOT FIREPol EvaGreen qPCR Mix (Solis Biodyne, Tartu, Estonia), specific primers
mentioned in Table 1 and under following conditions: hold 10 min at 95 ◦C, followed by
40 cycles of 15 s at 95 ◦C, 30 s at 60 ◦C and 30 s at 72 ◦C. Normalization was performed
with primers specific for ACTB, GAPDH and 18S (Table 1). For evaluation, each patient
sample with amplified target gene was normalized to ACTB and/or GAPDH and divided
by internal calibrator (positive control) to obtain the fold change value (RQ). For the whole
study, the same internal calibrator, the same negative controls and the same normalizing
markers were employed. Data evaluation was performed with DataAssist Software (3.01)
(Life Technologies, Carlsbad, CA, USA).

Table 1. Primer Pairs for the amplifications of target gene transcripts.

Primer Sequence Product Size

RUNX2 Sense-5′-CCCTGAACTCTGCACCAAGT-3′

Antisense-5′-GGCTCAGGTAGGAGGGGTAA-3′ 120 bp

Osteopontin s GCCGAGGTGATAGTGTGGTT
as AACGGGGATGGCCTTGTATG 149 bp

ßActin s agg cac cag ggc gtg at
as gcc cac ata gga atc ctt ctg ac 51 bp

GAPDH s acc cag aag act gtg gat gg
as ttc tag acg gca ggt cag gt 233 bp

18S s gtt ggt gga gcg att tgt ctg g
as agg gca ggg act taa tca acg c 151 bp

Immunocytochemistry. 1 × 105 cells were seeded on the microscopic slides (Thermo
Fisher Scientific) and let grow in corresponding medium. Thereafter the cells were fixed
in a 1:4 mixture of 3% H2O2 in ice cold 90% methanol for 20 min. After washing twice
with PBS, cells were incubated overnight at 4 ◦C with the antibodies against Osteocalcin,
Osteopontin and RUNX2 (all from Abcam), diluted 1:1000 with Dako Antibody Diluent
(Dako, Glostrup, Denmark). Negative control sections were exposed to the secondary
antibody only and processed as described below. After 3 × 10 min washing in PBS, cells
were incubated for 30 min with a 1:1000 dilution of biotinylated secondary antibodies
(Dako, Jena, Germany) followed by incubation with an avidin–biotin–peroxidase complex
(Dako). After 3 × 10 min washing in PBS, specific immunostaining was visualized with
diaminobenzidine chromogenic solution (Dako, 1:50).

Finally, cells were lightly counterstained with Mayer’s haematoxylin. Microscopic
investigations were performed with light/fluorescence microscope (Biozero BZ-9000,
Keyence, Osaka, Japan).

Adhesion assay. Adhesion of human THP-1 monocytes to calcified HUVEC or VSMC
monolayers was investigated in 24-well plates. Briefly, HUVEC or VSMC cells were
cultured in calcification for 7 days. For labeling, THP-1 cells were incubated in RPMI
containing 1 µM calcein-AM at 37 ◦C for 60 min. The cells were washed with RPMI twice.
Fluorescence-labeled THP-1 cells were resuspended in 2 ml RPMI medium and added
(1 × 106 cells/well) to control or calcified cells. The plates were incubated for 30 min
at 37 ◦C. After incubation, the monolayer was gently washed three times with RPMI.
Adherent monocytes were photographed using a Biozero BZ-9000 fluorescence microscope
(Keyence). The number of the adherent cells was evaluated in 10 microscopic fields for
each situation by employment of ImageJ software (Wayne Rasband, National Institutes of
Health, Bethesda, MD, USA). All experiments were repeated at least three times.

Statistics. Data are presented as medians according to Tukey method. Distribution of
the quantitative variables was tested using D’Agostino–Pearson omnibus, Shapiro–Wilk
or Kolmogorow–Smirnow normality tests. Depending on data distribution, parametric
(differences between paired values are consistent) or nonparametric (Wilcoxon matched
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pairs signed rank test) two-sided t tests were used; p < 0.05 was considered to represent
statistically significant differences. GraphPad Prism (6.5) and SPSS (21) software were used
for statistical analyses.

3. Results
3.1. Expression of Leucocytic OC Transcripts Is Significantly Reduced in Patients with
Arteriosclerotic Disease

In order to investigate the mRNA level pattern of OC in the cells circulating in patients
with arteriosclerotic disease, we subjected the leucocytes obtained from PAD− and PAD+.
to qPCR. As demonstrated in Figure 1a, OC expression is significantly reduced in patients
with arteriosclerotic disease. The median percentage mRNA level for OC in PAD+ was
52.5% and for PAD− 59% (p = 0.0173).
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Figure 1. Expression of osteocalcin (OC) (a), osteopontin (OPN) (b) and RUNX2 (c) in leucocytes
obtained from the PAD− and PAD+ groups.

3.2. Expression of Leukocytic OPN and RUNX2 Transcripts Is Significantly Increased in Patients
with Arteriosclerotic Disease

Regarding the leucocytic OPN and RUNX2 transcripts, this was significantly elevated
in PAD+ patients compared to the PAD− group (Figure 1b,c). The median percentage
mRNA level for OPN in PAD+ was 9.5% and for PAD− 6.5% (p = 0.0241), and for RUNX2
was 292.5% and for PAD− 274.5% (p = 0.0449).

3.3. Alkaline Phosphatase Activity Was the Same in HUVEC and Increased in VSMC Cells Treated
with Calcification Medium

The alkaline phosphatase activity in HUVEC cells with calcification induction was
after 7 days 51 mU/mL (SD ± 0.003) and in the control cells was 51 mU/mL (SD ± 0.006).
After 14 days, this was 61 mU/mL (SD ± 0.002) and in the control cells was 63 mU/mL
(SD ± 0.016).

The alkaline phosphatase activity in VSMC cells with calcification induction was
after 7 days 118 mU/mL (SD ± 0.22) and in the control cells was 49 mU/mL (SD ± 0.03).
After 14 days, this was 265 mU/mL (SD ± 0.22) and in the control cells was 50 mU/mL
(SD ± 0.03) (Figure 2).
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Figure 2. Alkaline phosphatase activity (ALP) in human umbilical vein endothelial cells (HUVEC)
and vascular smooth muscle cells (VSMC) cells treated with calcification medium. Note that calcifica-
tion does not alter ALP activity in HUVEC cells, *** p < 0.001.

3.4. Induction of Calcification in HUVEC and VSMC Cells Led to Increased Expression of OC,
OPN and RUNX2

The median percentage mRNA level for OC, OPC and RUNX2 in HUVEC cells with
calcification induction was 92% (SD ± 9.4), 183% (SD ± 15.8) and 164% (SD ± 15.8),
respectively, and in the control cells was 100% (SD ± 4.5).

The median percentage mRNA level for OC, OPC and RUNX2 in VSMC cells with
calcification induction was 2101% (SD ± 15.8), 246% (SD ± 15.8) and 166% (SD ± 15.8),
respectively, and in the control cells was 100 % (SD ± 12.6) (Figure 3).
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Figure 3. Expression of OP, OPN and RUNX2 in control and calcified HUVEC and VSMC.
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3.5. Adhesion of THP-1 Monocytes to Calcified HUVEC or VSMC Cells Was Higher in Calcified
Cells as Compared to Controls

In order to test whether calcified HUVEC or VSMC cells may induce stronger adhesion
and mimic increased inflammatory reaction, we incubated human THP-1 monocytes with
calcified monolayers of these two cell types. (Supplementary Materials) As demonstrated
in Figure 4, monocytes responded with a significantly higher number of adhered cells as
compared to uncalcified control HUVEC or VSMC cells (C vs Calcification).

Figure 4. Adhesion of THP-1 monocytes to calcified HUVEC or VSMC cells. Note that a higher
number of adhered monocytes is visible in calcified cells as compared to controls. *** means p < 0.001.

4. Discussion

In our present investigation we studied the expression of OC, OPN and RUNX2 in
patients’ leucocytes and their possible role as diagnostic markers for cardiovascular disease.
Furthermore, calcified human umbilical vein endothelial cells and vascular smooth muscle
cells, representing two main components of human vessels, were subjected to transcript
and protein analyses with primers and antibodies specific for OC, OPN and RUNX2,
respectively. Additionally, the interaction between monocytes and calcified HUVEC and
VSMC was investigated in adhesion assays.

The expression of leucocytic OC, OPN and RUNX2 was significantly related to the
presence of arteriosclerotic disease, as demonstrated by significantly elevated expression
of OPN and RUNX2. The same expression pattern could be induced in calcified HUVEC
and VSMC cells. VSMC cells responded to calcification medium with a significantly
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increased expression of OC, OPN and RUNX2, while in calcified HUVEC OC transcripts
were not changed. Immunocytochemistry of calcified HUVEC and VSMC revealed stronger
protein expression of OC, OPN and RUNX2 in the calcified cells. The alkaline phosphatase
activity was not altered in HUVEC, but significantly increased in VSMC cells treated with
calcification medium. At last, the higher number of adhered monocytes was visible in
calcified cells as compared to controls. With all these findings, we may conclude that OC,
OPN and RUNX2 proved to have a potential diagnostic value in arteriosclerotic disease.

4.1. Osteocalcin

Recently, osteocalcin has been described as a potential preventive or therapeutic agent
in metabolic disorders [18]. The complex expression of osteocalcin suggests that all its
functions are not already known [19]. A recent meta-analysis showed an overall significant
inverse association between serum osteocalcin and body mass index [20]. In mouse models
and also patients with peripheral artery disease, circulating OC positive mononuclear
cells were associated with severe calcification of the aorta [21]. Circulating OC was also
associated with plaque destabilization in patients with early coronary atherosclerosis [22].
In a recent study from Ramirez-Sandoval et al., in patients undergoing peritoneal dialysis,
there was no significant association between vascular calcification and OC [23]. In our
study, OC expression was significantly reduced in patients with arteriosclerotic disease.
Our findings are not consistent with the current evidence, and further investigation is
needed in order to access these differences.

4.2. Osteopontin

In our study, the leucocytic OPN transcripts were significantly elevated in PAD+
patients. OPN is considered a potential therapeutic target in these patients [24]. Lok et al.
showed that OPN in lower concentrations may have a protecting effect and in high levels a
damaging role in vascular tissue injury [25]. Also, elevated plasma levels of OPN have been
discussed as an independent predictor of coronary calcification in patients with diabetes
and asymptomatic coronary disease [26]. Further studies investigating OPN mechanisms
and relations with the vascular tissue are required to understand if this protein represents
a protective or a harmful role in PAD+ patients.

4.3. Runt-Related Transcription Factor 2

Runx2 expression is increased in calcifying human atherosclerotic plaques [16]. Addi-
tionally, in another study, Tanaka et al. stated that RUNX2 has a major role in osteogenic
conversion in atherosclerotic lesions [27]. In mice models, RUNX2 was strongly correlated
with the vessel calcification process [28,29]. These findings are consistent with our analysis,
which revealed that RUNX2 transcripts were significantly elevated in PAD+ patients.

4.4. Alkaline Phosphatase Activity (ALP)

Concerning ALP, our results are consistent with the current literature. In our study,
the alkaline phosphatase activity was increased in VSMC cells treated with calcifica-
tion medium.

In animal models, an increased concentration of ALP in vascular smooth muscle cells
or in endothelial cells leads to calcification [30,31]. In patients with coronary artery disease,
elevated ALP activity was independently associated with the risk of 3-year all-cause
mortality [16]. In a separate study, the overexpression of ALP in vascular endothelium
in mice resulted in a different course of atherosclerosis. Calcification preceded lipid
deposition [32].

4.5. Monocytes

Several studies are trying to identify the monocyte adhesion and plaque recruitment
as a potential target for treating arteriosclerosis [33,34]. Here, we confirm this potential
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as a higher number of adhered monocytes was visible in calcified cells when compared
to controls.

4.6. Limitations

By design, the assessment of the leucocytic parameters was possible on the transcript
level only. In addition, whether the circulating blood levels of OC, OPN and RUNX-2 may
support the development of a serum/plasma noninvasive assay useful for diagnostics
remains an open question. Furthermore, the patient collective in our study was relatively
small. The lack of functional leucocytic data, which is a noticeable limitation of this study,
should be addressed in future clinical trials with larger patient cohorts as the biological
rationale of OC, OPN and RUNX-2 remains not entirely understood for atherosclerotic
disease. All in all, further investigations should be conducted to understand the role of
monocytes and alkaline phosphatase activity on the calcification process.

5. Conclusions

In this study, a clear relation between symptomatic arteriosclerotic disease and the
expression of OC, OPN and RUNX2 in patients’ leucocytes could be demonstrated. It is
still not clear if one could be used as a diagnostic marker or a potential drug target. Further
studies with larger patient collectives should be designed to address these questions.

Supplementary Materials: The Supplementary Materials are available online at https://www.mdpi.
com/2079-9721/9/1/19/s1.
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