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Abstract: This study explores the potential of Sentinel-1 Synthetic Aperture Radar (SAR) to identify
phenological phases of wheat, sugar beet, and canola. Breakpoint and extreme value analyses
were applied to a dense time series of interferometric (InSAR) and polarimetric (PolSAR) features
recorded during the growing season of 2017 at the JECAM site DEMMIN (Germany). The analyses
of breakpoints and extrema allowed for the distinction of vegetative and reproductive stages for
wheat and canola. Certain phenological stages, measured in situ using the BBCH-scale, such as
leaf development and rosette growth of sugar beet or stem elongation and ripening of wheat, were
detectable by a combination of InSAR coherence, polarimetric Alpha and Entropy, and backscatter
(VV/VH). Except for some fringe cases, the temporal difference between in situ observations and
breakpoints or extrema ranged from zero to five days. Backscatter produced the signature that
generated the most breakpoints and extrema. However, certain micro stadia, such as leaf development
of BBCH 10 of sugar beet or flowering BBCH 69 of wheat, were only identifiable by the InSAR
coherence and Alpha. Hence, it is concluded that combining PolSAR and InSAR features increases
the number of detectable phenological events in the phenological cycles of crops.

Keywords: PolSAR; InSAR; Kennaugh matrix; time series; Sentinel-1; crop phenology; DEMMIN

1. Introduction

Phenology is defined by the International Biological Program as, “study of the timing
of recurrent biological events, the causes of their timing with regard to biotic and abiotic
factors, and the interrelation among phases of the same or different species” [1]. As such,
phenology can provide information about a plant’s health, growth, and productivity, for
example, regarding biomass. This kind of information is crucial for crop management [2,3]
and crop yield prediction because plant productivity and growth are more sensitive to
meteorological conditions in particular phenological stages [4]. In the context of this study,
macro stadia also are referenced as phenological stages or phases, whereas a micro stadium
is referred to as a phenological event. Remote sensing and especially active microwave
remote sensing provide established tools for providing such information at various spatial
and temporal resolutions [5]. The interaction of the radar signal with vegetation has been
widely investigated for roughly four decades. During field campaigns, it was discovered
that radar backscatter is sensitive to vegetation cover and soil moisture [6,7]. The launch
of RADARSAT-1 and ERS-1 during the 1990s as well as later launches of RADARSAT-2,
TerraSAR-X, and TanDEM-X further pushed the advances made in the field of radar-based
environmental monitoring [5,8,9], including applications in agriculture. In 1995 the usage
repeat pass interferometry exhibited low coherence values for densely vegetated fields and

Remote Sens. 2021, 13, 2951. https://doi.org/10.3390/rs13152951 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8731-7534
https://orcid.org/0000-0002-6626-3052
https://orcid.org/0000-0002-0807-7059
https://doi.org/10.3390/rs13152951
https://doi.org/10.3390/rs13152951
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13152951
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13152951?type=check_update&version=1


Remote Sens. 2021, 13, 2951 2 of 20

high coherence values for bare and stubbled fields, allowing for the detection of farming
activities [10]. During the following decade, it was demonstrated that Synthetic Aperture
Radar (SAR) sensors can derive crop height of sugarcane and monitor its harvesting
period [11]. The same study showed X-band outperforming L-and C-band sensors at the
distinction of bare and vegetated soil, increased sensitivity of cross-polarisation towards
harvesting events, and high correlation between time series of Normalized Difference
Vegetation Index (NDVI) and SAR backscatter. As for crop phenology, the derivation of
three different phenological intervals was achieved by employing polarimetric entropy
or co-polarised interferometric coherence in combination with cross-polarised intensity
computed from quad-polarimetric RADARSAT-2 data [12]. Polarimetric features [13]
derived from the same satellite were utilised to develop a tracking framework for crop
phenology of spring wheat and canola that showed a strong correlation (R2 0.66–0.91)
between Alpha angle and plant height, which could be further increased (R2 0.88–0.98) by
applying temporal smoothing [14].

The launch of Sentinel-1 (S-1) A and B addressed one major issue of the above-
mentioned studies: data availability. For Europe, this new C-Band SAR data is available
every six days [15–17]. This increased availability of open SAR data facilitated research
of dense time series at a spatial resolution of 10 m to 20 m. In addition, effects of cli-
mate change, such as increasing severity of extreme weather events, have fostered the
attentiveness towards SAR-based phenology monitoring [5,16,18]. Hence, several studies
demonstrated the validity of using dense SAR time series to monitor the phenological
development of crops [16,19–22]. Combined with advances in the field of cloud computing,
derivation of the start, peak, and end of the season were conducted across Europe [23].
However, the above-named studies focus either on a single crop type [19–21], a specific
phenological event such as the flowering of canola [21], a rather coarse distinction of
phenological events, for example, date of emergence and harvest or start and end of the
season [22,23], mainly rely on training/validation data not georeferenced to a specific
field [16,23], or have a limited set of SAR features, for example, just backscatter [23]. Fur-
thermore, the issue has been raised by Meroni et al. (2021) [23] and Shang et al. (2020) [24]
that georeferenced field measurements are necessary to truly understand the potential of
phenology estimations based on dense SAR time series.

To address this research gap, this study combines a comparatively large set of S-1-
features: polarimetric Alpha and Entropy [13], VV and VH InSAR coherence, Kennaugh
Matrix Elements (K0, K1, K5, K6) [25], and backscatter (VV and VH), with georeferenced
field observations to track phenological development of three crop types: wheat, sugar
beet, and canola, across the growing season of 2017 by applying breakpoint and extreme
value analyses, which have been successfully employed in related studies [16,21,26,27].
Besides the detection of macro stadia, such as flowering, or micro stadia, such as soft
dough [28], this study addresses the transition from vegetative to reproductive period.
The latter is of particular interest because a balanced ratio between those two periods is
crucial for the overall plant productivity and the transition itself is considered the most
dramatic change of plant development [29,30]. Therefore, this transition period marks a
time of increased vulnerability of the plant, which is of special interest in crop and risk
management [23,31]. The objectives of this study are described as following: (i) assess the
complementary value of polarimetric and interferometric S-1-features for monitoring crop
phenology, (ii) identify phenological events or stages on crop signatures, and (iii) detect
the transition from vegetative to reproductive stage.

2. Materials and Methods
2.1. Study Area and In Situ Data

The study was conducted in Mecklenburg-West Pomerania, the north-eastern federal
state of Germany. The climate of the study area is characterised by a mean air temperature
of 8.3 ◦C and an average sum of precipitation of around 550 mm. Therefore, it is classified
as temperate Middle-European, including perennial humidity [32].



Remote Sens. 2021, 13, 2951 3 of 20

From 2001 onwards, the test site, the Durable Environmental Multidisciplinary Moni-
toring Information Network (DEMMIN), has been an established calibration and validation
site for earth observation missions by the German Aerospace Center (DLR). Since 2008,
DEMMIN is commonly operated by DLR and the Geo-Research-Centre Potsdam (GFZ) as
a Terrestrial Environmental Observatoria (TERENO) site, and in 2018 it became an official
member of the Joint Experiment for Crop Assessment and Monitoring (JECAM) [33].

The in situ collected data on crop phenology were provided by the GFZ as part of
the DEMMIN monitoring framework (see below) for the growing season of 2017. The
data were recorded from 20 April to 29 August 2017 every ten to twelve days. In total, the
ground truth data encompasses 13 timesteps. The locations of the measurements cover
one to two measuring points for eight fields of wheat, five fields of canola, two fields of
sugar beet, and four patches of grassland (Figure 1). In this study, grassland is used as a
reference for natural vegetation (see Section 2.3.1 for further information). Every time step
consists of measurements regarding plant height and row distance in centimetres, crop
cover in percentage, the number of leaves, as well as the phenology code. The latter was
estimated based on the BBCH-scale. BBCH is an acronym for Biologische Bundesanstalt
für Forst und Landwirtschaft, Bundessortenamt für CHemische Industrie [28]. As most
of the measuring points were close to roads or field tracks, polygons were drawn for the
respective fields linked to the in situ measurement to avoid the influence of mixed pixels.
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Figure 1. Map of the study area and the locations of the observed fields; background: false-colour composite of Sentinel-2
with a band combination of 4-3-2.

Additionally, phenological data provided by the German Weather Service (DWD) was
acquired to cross-reference the observations of the GFZ, fill in data gaps for canola fields,
and better understand fringe cases of the time series. This DWD data (Table 1) contains
observation dates of important phenological events. For canola, the end of flowering,
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harvest, germination, bud development, and the preparation of the field are observed.
The data was retrieved for the three nearest observation posts (distances to the study area
ranging from 15 km to 25 km) and only for canola and wheat, as sugar beet was sufficiently
covered by the GFZ data.

Table 1. Information on phenological events in 2017 provided by the DWD per station (with ID).

Wheat

DWD label 12 15 18 21 24
BBCH stage - Mainshoot Heading Ripening Harvest

Dargun: 12615 - 10 April 2017 4 June 2017 23 July 2017 6 August 2017
Gülzow: 12563 - 20 April 2017 3 June 2017 - 4 August 2017
Tützpatz: 12508 - 2 May 2017 31 May 2017 12 July 2017 4 August 2017

Canola

DWD label 7 10 12 17 24
BBCH stage End of Flowering Preparing Field Germation Bud development Harvest

Dargun: 12615 29 May 2017 17 August 2017 25 August 2017 30 March 2017 4 August 2017
Gülzow: 12563 30 May 2017 23 August 2017 30 August 2017 20 March 2017 24 July 2017
Tützpatz: 12508 29 May 2017 19 August 2017 2 September 2017 4 April 2017 26 July 2017

Figure 2 depicts the development of temperature and precipitation in DEMMIN
during the observation period in 2017. It also indicates the acquisition dates for both field
data and SAR acquisitions, which are presented in the following section.
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Figure 2. Development of daily mean air temperature [◦C] and daily precipitation [mm] for the growing season of 2017,
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2.2. Sentinel-1 Time Series

The time series of S-1 A and B was available from 5 April to 26 September 2017 at
six-day intervals encompassing 30 scenes. The data was acquired in Interferometric Wide
Swath Mode and VV/VH dual-polarisation. Single Look Complex (SLC) was selected [34]
to process polarimetric features and interferometric coherences. The pre-processing was
accomplished by using the software packages IDL (version 8), ENVI (version 5), and SNAP
(version 7). Hereby, ENVI/IDL was used for data management purposes and SNAP for
the actual processing of the SLC files. This framework followed the steps provided by the
literature [35,36]. The processing of the polarimetric features included terrain flattening [37],
multi-looking with one look in azimuth and three looks in range, speckle filtering by a
5 pixel × 5 pixel boxcar filter, and Range-Doppler Terrain-Correction [38] resulting in
gamma nought (GN) intensities of 20 m × 20 m pixel size. The interferometric (InSAR)
coherence is computed after removing flat earth and topographic phase using a moving
window of three pixels in azimuth and eleven pixels in range, while the subsequent
parameters for multi-looking and terrain correction remain unchanged. The SRTM data
(1-Arc-Second) served as a digital elevation model in the processing. InSAR coherences
were computed using a 6-day temporal baseline and consecutive master images [39].

Table 2 lists the computed S-1 features alongside their abbreviations, units, and the
information provided by them. This list contains VV and VH InSAR coherence as a mea-
surement of temporal decorrelation [40–42], which may reflect major changes in plant
physiognomy, as demonstrated by Schlund and Erasmi (2020) [16]. Additionally, Entropy
and Alpha are calculated from the Covariance-matrix (C2) [13], providing information
about the depolarisation [43,44]. However, for the VV/VH-polarised data, Alpha repre-
sents the relation between both polarisations, as the phase relation between VV and HH
is unknown [35]. The validity of polarimetric decomposition for estimating plant phenol-
ogy as well as biophysical parameters has been shown by various studies [12,14,45,46].
Finally, the Kennaugh Matrix elements [25] were included in the analyses. K0 and K1
are intensity-only features, which represent the combined backscatter (K0) (span) and the
difference between complex signals of VH and VV (K1). K5 and K6 contain the real and
imaginary parts of the inter-channel correlation. These two features exhibit high sensitivity
to deterministic, mostly artificially-created, targets [25].

Table 2. Computed Sentinel-1 features, their abbreviations, units, and interpretation. Dimensionless features are labelled as
such by “/” in the column “Unit”.

Feature Abbreviation Unit About

VV coherence VV Coh / InSAR coherence in VV of two consecutive acquisitions *
VH coherence VH Coh / InSAR coherence in VH of two consecutive acquisitions *

Alpha ALP Degree [◦] Relation of VV and VH simulating the dominant scattering
mechanism

Entropy ENT / Degree of depolarisation
Kennaugh element K0 K0 dB Combined backscatter (VV + VH)
Kennaugh element K1 K1 dB Difference in backscatter (VV − VH)
Kennaugh element K5 K5 dB Real part of inter-channel correlation between VV and VH
Kennaugh element K6 K6 dB Imaginary part of inter-channel-correlation between VV and VH

VV backscatter VV dB Gamma nought VV intensity in dB
VH backscatter VH dB Gamma nought VH intensity in dB

* six-day temporal baselines and absolute perpendicular baselines <200 m.

2.3. Methods
2.3.1. Elementary Analysis of S-1 Features

This analysis assesses the inherent variance of the time series for each crop type by
using descriptive statistics. For this, the class of grassland is included because it provides
a reference to more heterogeneous vegetation than a single crop type. If an S-1 feature
displays a similar behaviour for a crop type compared to grassland, it is assumed that
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this feature is overly sensitive to environmental influences, such as wind or precipitation,
and, therefore, cannot reflect the general trends induced by phenological development.
For this purpose, pixel-based statistical parameters (mean, standard deviation, minimum,
maximum, 25%-, 50%-, and 75%-quartiles) are computed for each crop type and grassland,
using the entire time series. These statistics are then displayed as box and scatter plots
per crop type. An S-1 feature is assessed unsuitable for crop phenology monitoring if
crops exhibit interquartile ranges (IQR; distance between the 25%- and 75%-quartiles) and
median values like grassland. Furthermore, standard deviations are seen as indicators of
a stronger signal response towards phenological development. In addition, a correlation
analysis encompassing all S-1 features and the recorded plant parameters was conducted
to reveal statistical redundancies and dependencies between features and biophysical
parameters. Plant height and crop cover are included in this analysis because they are
crucial parameters for describing phenological development [14,28]. These inclusions serve
as an additional verification of the assumption that S-1 signatures reflect plant development
as described by the BBCH-scale. Therefore, a fixed number of pixels is extracted from
each field to avoid weighting by field size; the number is chosen based on the size of the
smallest field.

2.3.2. Signature Analysis

Individual crop signatures were created by smoothing raw time series data to reduce
the impact of outliers and to enable the extraction of general patterns for each SAR feature
and crop type. For this purpose, locally weighted scatterplot smoothing (LOESS) [47] with
a linear regression model was employed. The LOESS was utilised in remote sensing time
series [16,48,49] and was proven to provide a sufficient generalization of time series, allow-
ing for breakpoint detection. LOESS was executed in R via the tidyverse package [50,51].
The quality of fit was estimated by calculating the difference of the fitted value to the
median of its corresponding time step. A fit is rated suitable when at least 75% of the fitted
values range within two times the standard deviation of their respective time step. This
criterion was introduced to have control on the strength of the generalization/smoothing,
as too strong or too weak smoothing will prevent the analysis, by either generating a very
low or very high number of potential breakpoints and extrema. The threshold of 75% is a
supermajority based on the standard deviation of an assumed normal distribution (68.2%),
which was further adjusted to provide a good trade-off between the original time series
and the smooth time series for all S-1 features. As the span has a major impact on the shape
of these signatures [16], it was set to 0.225. Figure 3 displays examples of smoothed Alpha
and VH intensity signatures for wheat and canola, and the underlying box plots of each
time step.

Breakpoints were derived by repeatedly segmenting the time series by using the bfast
package [27]. In this procedure, a breakpoint is assumed if two subsequent segments
display a different regression coefficient. By minimising the residual sum of squares, the
optimal position of a breakpoint is established, whereas the optimal number of breakpoints
is retrieved by minimising an information criterion [26,27,52,53]. The breakpoints are
calculated across all fields of the same crop type. This enables a distinction between
breakpoints that refer to phenological events or stages that are present in all fields around
the same time and breakpoints that indicate a point in time when different phenological
stages or events occur.
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Additionally, local extrema (i.e., minima and maxima) were calculated for each field
from the smoothed time series. This provided a secondary set of metrics to derive pheno-
logical stages. Occurrences of local extrema and breakpoints may indicate a phenological
stage of major impact on a crop signature. However, this assumption is only deemed valid
if the extreme in question exhibits a substantial difference in value to its neighbouring
extrema. This substantial difference in value is defined as two times the mean standard
deviation per field and time step. This threshold determines if the difference between
the extrema has exceeded the naturally occurring intra-field variance per time step and
therefore can be related to actual phenological development. In addition, the majority of
crop signatures have to display the same behaviour of their extrema. The artificial extrema
that are located at the start and end of each time series were left out as well [54]. Both
metrics were then linked to the closest field observation to attribute a phenological stage.
By calculating the temporal difference between breakpoint (tbp), detected from S-1 data,
and observation date (tobs), a measurement for the accuracy (∆t) of the linkage is provided
(Equation (1)):

∆t = tobs − tbp (1)

The transition from vegetative to reproductive period is completed at the end of the
flowering stage because major changes of the plant life cycle occur during the transition
from the vegetative to flowering period [29,30]. Therefore, a combination of breakpoints
and extrema derived from various S-1 features were used to determine the time frame of
that transition period (i.e., to detect either the start and end of flowering or the start of
the subsequent stage); the latter marks the end of the transition and the crop achieves its
reproductive stage.

3. Results
3.1. Elementary Data Analysis

The correlation analysis (Figure 4) was conducted for wheat fields as they were best
covered by field observations in regard to data gaps and the number of fields. In the figure,
the square sizes depict the strength of correlation, whereas “pheno” represents the BBCH
measurements. The correlation was estimated by extracting 200 pixels per field, randomly.
K0 correlation with VV and VH backscatter was characterized by a very high positive
coefficient (R > +0.9). Similarly, the two backscatters exhibited a correlation coefficient
above +0.9. VH intensity correlated positively (R = +0.63) with K1. Features K5 and K6 also
correlated with R values around +0.6. Alpha and Entropy exhibited a correlation coefficient
of +0.78. In addition, Alpha and K1 were highly correlated (R > +0.9). The crop parameters
(plant height, crop cover, and BBCH values = “pheno”) were strongly correlated among



Remote Sens. 2021, 13, 2951 8 of 20

each other with correlation coefficients above +0.6 and +0.7. Crop cover and BBCH values
depicted a correlation coefficient of +0.56. Other correlations displayed coefficients above
|0.5|, for example, the relation between plant height and VV and VH coherence ranged
near −0.6.
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Figure 4. Correlation heatmap of wheat fields covered by this study showing potential information
redundancies and statistically relevant relations.

Figure 5 shows box plots of the four investigated crop types and exemplary scatter
plots for VH backscatter and VH InSAR coherence. The mean and standard deviation
were calculated, pixel-based along the time-axis, as described in Section 2.3.1. In this
example, wheat and grassland exhibited a higher variance than sugar beet and canola,
which in turn indicated a higher inter-field variance for those two crop types. Across all
S-1 features, grassland was not comparable in IQR and median to the other crop types.
Also, the examination of a feature space consisting of polarimetric and interferometric
features (Figure 5) revealed clear differences between the crop types. Therefore, the
descriptive analysis indicated that all S-1 features provide valuable information about crop
development. Comparatively, distinct signal responses were displayed in VH coherence
for sugar beet, in Alpha and VH intensity for canola, in VV intensity for wheat, and in K0
for sugar beet and wheat.
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Remote Sens. 2021, 13, 2951 10 of 20

3.2. Signature Analyses

The results for the signature analysis are presented by crop type, including listings of
breakpoints and extrema with their corresponding phenological events or stages.

3.2.1. Signatures of Wheat

The breakpoint and extreme value analysis for wheat fields and the crop signatures of
K1 and VH coherence are provided in Figure 6. The figure consists of two parts. The upper
part shows the BBCH progression of the in situ measurements per field with the dates
of relevant extrema (extreme) and breakpoints (vertical line: breakpoint). The lower part
depicts the smoothed signatures for each field with their relevant extrema, the breakpoints
as well as the dates of their closest field observation (vertical line: field obs.). Here, the
high inter-field variance of wheat became visible along with many local extrema, which, in
the case of VH coherence, displayed short and distinct intervals. The breakpoints for wheat
signatures were close to the following field observations: stem elongation (BBCH: 31–33),
inflorescence—heading (BBCH: 57), end of the flowering phase (BBCH: 69), the early stage
of fruit development (BBCH: 71), transition from fruit development to ripening (BBCH: 83),
ripening/soft dough (BBCH: 85), and early and late stages of senescence (BBCH: 93–99).
The S-1 features which exhibited a breakpoint at the given BBCH value are listed in Table 3.
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While the beginning of stem elongation was marked by a wide array of features, a later
stage could only be detected by VV coherence and backscatter. The end of inflorescence as
well as the transition from fruit development to ripening was represented in signatures
of the Kennaugh matrix elements and VH backscatter. A later stage of ripening produced
breakpoints in both InSAR coherence signatures and Alpha, whereas the onset of senescence
was captured by Kennaugh matrix elements and the VH coherence. The harvest or late
senescence was covered by breakpoints of VV coherence and Alpha and Entropy. Flowering
and fruit development are stages that were present in one or two SAR features only, namely
VH coherence and Alpha (flowering) as well as VV backscatter (fruit development).

Table 3. Median BBCH values and phenological stages of breakpoints derived from Sentinel-1 (S-1) features in wheat fields.

Phenological Stages Median BBCH Value at Breakpoint Breakpoint Producing SAR Features

Stem elongation 31 VH coh, ALP, ENT, K0, K1, K5, K6 VH int, VV int
Stem elongation 33 VV coh, VV int

Inflorescence/Heading 57 K0, K1, K5, K6, VH int
Flowering 69 VH coh, ALP

Fruit development 71 VV int
Ripening 83 K0, K1, K5, K6, VH int
Ripening 85 VH coh, VV coh, ALP

Senescence 93 VH coh, K0, K1, K5, K6
Senescence 99 VV coh, ALP, ENT

Local maxima and minima listed in Table 4 were found close to the stages of stem
elongation (BBCH: 31), fruit development (BBCH: 71–73), ripening (BBCH: 85/86), and
senescence (BBCH: 93). For both metrics, the time difference ranged between zero and
five days (i.e., one S-1 repetition cycle). Only the extrema located at the beginning and the
end of the time series displayed greater temporal differences (up to 22 days). This was
explained by the fact that the S-1 time series encompasses a longer period than the field
observations. Since the in situ data did not cover the entire growing season, the tables
contain entries labelled as estimated (“est.”). These represent estimated phenological stages
based on the natural progression of the plant life cycle described in the literature [28]. A
more detailed explanation for this is offered in the discussion section. Due to their small
range of values, which exacerbated the distinction of noise and information, K5 and K6
were left out of the analysis of extrema. Additionally, the extrema of the wheat signatures
scattered widely (no clumps) around certain time steps and were, therefore, excluded from
Table 4.

Table 4. Summary of relevant extrema and corresponding BBCH values for wheat signatures.

Phenological Stage Median BBCH Value SAR Feature Producing Minimum SAR Feature Producing Maximum

Est. Tillering - VH coh
Stem elongation 31 VH coh VH int, VV int

Fruit development 70 - VV int, K0
Fruit development 71 VH int -
Fruit development 73 VV int, K0 -

Ripening 85 - VV int
Ripening 86 VV coh VH int, K0

Senescence 93 VH int, VV int, K0 VH int

By combining the breakpoints of VH coherence, Alpha, and VV intensity, detection of
the transition from vegetative to the reproductive stage was possible. Considering the tem-
poral difference of breakpoint and observation, the wheat fields completed their transition
to the reproductive stage on 24 June 2017. When comparing the detected phases of extrema
and breakpoints, a clear distinction between interferometric and polarimetric features was
observed. There were no stages that simultaneously produce extrema for polarimetric and
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interferometric features. Also, the extreme value analysis detected additional phenological
events: fruit development (BBCH: 70 and 73) as well as ripening (BBCH: 86), which were
indicated by VV backscatter, K0 (BBCH: 70, 73), and VV coherence (BBCH: 86). The largest
amount of phenological events were detected by K0 and both backscatters.

3.2.2. Signatures of Canola

The breakpoints within the canola signatures (Table 5) were allocated close to the
start, full extent, decline of flowering (BBCH: 60, 65, and 67), middle of fruit development
(BBCH: 74), time of harvest, and emergence of secondary vegetation after the harvest.
Relevant extrema (Table 6) were located around the start and the decline of flowering
(BBCH: 60, 67), the beginning of flowering, and the harvest and the emergence of secondary
vegetation. In this case, secondary vegetation refers to the re-emergence of any type of
vegetation, for example, green fertilizer or winter cereal. Similar to wheat, the temporal
distance ranged between zero and five days for the breakpoints. The extrema exhibited
similar behaviour; however, there were also outliers towards the beginning and the end of
the observation period, which resulted in a maximal temporal divergence of 24 days. Only
the stages of inflorescence emergence (BBCH: 57/58), flowering (BBCH: 60–69), and fruit
development (BBCH: 74) were assigned to the breakpoints and extrema within the canola
signatures, because of a gap in the GFZ-field data. The lack of data is visible in Figure 7
as zero values between early June and early August; it also demonstrates a characteristic
mid-season peak for VH coherence.

Table 5. Median BBCH values and phenological stages of breakpoints derived from corresponding SAR features in canola
fields.

Phenological Stages Median BBCH Value at Breakpoint Breakpoint Producing SAR Features

Flowering 60 ALP, ENT, K1, K5, VV int
Flowering 65 K6, VH int
Flowering 67 VH coh, VV coh, K1, VV int

Fruit development 74 ALP, ENT
Est. harvest - VH coh, VV coh, ALP
Harvested - K0, K1, K5, VV int, VH int

Harvested, secondary Vegetation - VH coh, VV coh, ALP, ENT, K0, VH int, VV int

Different steps of flowering were distinguished by comparing phases aligned with
breakpoints of various S-1 features. The beginning was covered by Alpha and Entropy,
K1, K5, and VV backscatter, while the middle of the stage was represented by K6 and
VH backscatter, and the later stage produced breakpoints in signatures of both InSAR
coherences, K1 and, VV backscatter. Additionally, Alpha and Entropy were the only
features with a breakpoint covering the development of fruit. The estimated date of harvest,
which was derived from DWD data, was covered by VV and VH coherence and Alpha,
whereas the in situ observation of harvested fields produced breakpoints in both backscatter
and the Kennaugh matrix elements, except for K6. The onset of secondary vegetation was
marked by both InSAR coherences, Alpha and Entropy, VV and VH backscatter, and K0. As
observed for wheat, the extrema of canola signatures were less consistent, and the feature
groups exhibited a clear disparity in behaviour. For example, Alpha and InSAR coherences
were only linked to the harvest and the emergence of secondary vegetation, whereas
intensity-based features enable the detection of multiple events. The most phenological
events were found in VH backscatter signatures.
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Table 6. Summary of relevant extrema and corresponding BBCH values for canola signatures.

Phenological Stage Median BBCH Value SAR Feature Producing Minimum SAR Feature Producing Maximum

Flowering: 60 - K0, VH int
Flowering: 67 K0, VH int -

Fruit development: 72 VH int K1
Est. harvest - - K1, ALP

Harvest - VH coh, VV coh, K0, VH int, VV int -

Secondary vegetation VH coh, K0, VH int, VV
int - -

The transition from vegetative to reproductive stage was allocated, as the breakpoints
of canola signature covered the decline of flowering and the development of fruit. As
these breakpoints did not encompass the onset of fruit development, the estimation was
less accurate. Nevertheless, a local maximum for K1 was found that covers the point of
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transition since the lowest BBCH value recorded at that time was 69 and the highest was
73. Using this extremum, the arrival at the reproductive stage was allocated on 4 June 2017.
Taking only the breakpoints into account, the estimated dates of transition were 1 June or
2 June 2017. Because the start of flowering was represented as well, the start of the transition
was estimated at 1 May 2017, resulting in a transitional period of roughly one month, with
the decline of flowering being recorded in situ on 24 May 2017. Incidentally, this event was
also represented by breakpoints on 20 May and 21 May 2017.

3.2.3. Signatures of Sugar Beet

Sugar beet was characterised by distinctive signatures in the time series of VV and
VH coherence, which reflected its dissimilarity in physiognomy and taxonomy to the
other crops. The field data for the sugar beet covered only two phases across the entire
observation period: leaf (BBCH: 10; 16/18; 19) and rosette development (BBCH: 33–36; 39).
The transition between these two phases was identifiable by employing S-1 features. The
breakpoints of sugar beet signatures aligned with both phases. The median BBCH values
for the breakpoints covering leaf development were 10, 12, and 19, whereas the values
associated with breakpoints within the phase of rosette development were 33 and 39. The
extrema displayed similar behaviour, yet VV backscatter exhibited a local minimum that
was linked to a BBCH value of 17. Figure 8 displays the breakpoints for K1 at BBCH values
of 12 and 33. For VH coherence, the breakpoints cover BBCH values of 10 and 19.
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Table 7 lists the breakpoints for each S-1 feature and the corresponding median BBCH-
values, whereas Table 8 displays the extrema and their respective BBCH-values. Except
for VH coherence, every feature produced a breakpoint for both phenological stages. Leaf
development (BBCH: 10) was indicated by VV and VH coherence as well as K6, leaf devel-
opment (BBCH: 12) by Alpha and Entropy, K0, K1, VH, and VV backscatter. The later leaf
development (BBCH: 19) was found in signatures of both coherences, Alpha and Entropy,
plus K6. The earlier stage of rosette development (BBCH: 33) produced a breakpoint in
K0, K1, K5, and both backscatter signatures, whereas later rosette development (BBCH: 39)
was indicated by every feature except the VH coherence.

Table 7. Median BBCH values and phenological stages of breakpoints derived from corresponding SAR features in sugar
beet fields.

Phenological Stages Median BBCH Value at Breakpoint Breakpoint Producing SAR Features

Leaf development 10 VH coh, VV coh, K6
Leaf development 12 ALP, ENT, K0, K1, VH int, VV int
Leaf development 19 VH coh, VV coh, ALP, ENT, K6

Rosette development 33 K0, K1, K5, VV int, VH int
Rosette development 39 VV coh, ALP, ENT, K0, K1, K5, K6, VV int, VH int

In addition, the extrema cover leaf development (BBCH 17), which was represented
by minima in signatures of K0, and both backscatters. Furthermore, rosette development
(BBCH 39) was only covered by K0 and VH backscatter. In sum, the K0 and VH backscat-
ter represented the most phenological events. The transition from the vegetative to the
reproductive stage was not detected, because the first year of growth has no flowering
phase [28].

Table 8. Summary of relevant extrema and corresponding BBCH values for sugar beet signatures.

Phenological Stage Median BBCH Value SAR Feature Producing Minimum SAR Feature Producing Maximum

Leaf development 10 - VH coh, VV coh
Leaf development 12 - K0, VH int, VV int
Leaf development 17 K0, VH int, VV int -
Leaf development 19 VH coh, VV coh ALP, ENT

Rosette development 33 - K0, K1, VH int, VV int
Rosette development 39 K0, VH int -

4. Discussion
4.1. Elementary Data Analysis

The results of the elementary data analysis provided initial insights into the relation-
ship between SAR-based time series and crop phenology. First, some crops (e.g., wheat),
exhibited a higher inter-field variance than others. Therefore, the loss of information by
the aggregation to a coarser scale was most likely dependent on the crop type. Second, the
pixel-based standard deviation, which was computed for the entire time series, proved
to be a valid indicator for the sensitivity of SAR features towards phenological develop-
ment. It indicated the strong changes in InSAR coherence signatures of sugar beet and
the comparatively high sensitivity of backscatter. Third, the influence of plant physiog-
nomy became evident by comparing the standard deviations of VV and VH backscatter,
as wheat, whose structure is dominated by vertical elements [55–57], exhibited a higher
standard deviation than canola, which has a more complex and dense vegetation structure.
The latter also produced stronger responses of SAR features, such as Alpha and Entropy,
and VH backscatter, which was also confirmed by the signature analysis. Moreover, the
physiognomy of wheat served as the first explanation of its higher inter-field variance,
because fully grown stems and developing fruits are likely more susceptive to stochastic
displacement by wind and precipitation [10].
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The results of the correlation analysis revealed multiple statistical redundancies. The
high correlations of Alpha and Entropy, as well as backscatter and K0, were explained by
the fact that the former pair is derived from dual-polarized data (missing the phase relation
between HH and VV) and K0 represented the combined backscatter. The high correlation
of K1 and Alpha was related to the fact that K1 is the difference between the complex
signals of VV and VH. The lack of strong correlation coefficients (R > |0.7|) between
BBCH values and SAR features can be attributed to the difficulty of describing nonlinear
developments, such as plant growth or SAR-based time series, with linear trends such as
the BBCH scale [14,45].

4.2. Realisations of the Signature Analysis

As demonstrated, breakpoint and extreme value analyses were successfully employed
to track phenological development in polarimetric and interferometric time series. K5 and
K6 were the SAR features that were less sensitive to phenological development. Because of
their sensitivity to deterministic targets, this was an expected result [25]. On the contrary,
backscatter and K0 exhibited the strongest dependency on phenological stages or events.
Signatures derived from these SAR features generated the most breakpoints and extrema.
This is in line with several studies on backscatter and their ratios to monitor phenological
development [11,19,55,56]. InSAR coherences, Alpha and Entropy tended towards a binary
behaviour, which was often related to strong changes in biomass, for example, harvest or
stages of rapid growth. These observations are in line with the results of Khabbazan et al.
(2019) [22] and Schlund and Erasmi (2020) [16]. However, it was demonstrated that a more
detailed tracking of macro and micro stadia is possible by combining polarimetric and
interferometric features. Detailed assessments of each crop type concerning complementary
potential are provided below.

The signature analysis of wheat revealed that the following macro stadia produced
strong signal responses: stem elongation, inflorescence heading, ripening, and senescence.
Flowering and fruit development could only be tracked by two S-1 features and yet these
phases match the findings of Khabbazan et al. (2019) [22], who investigated general trends
in crop signatures derived from backscatter. The detection of flowering was only achieved
by computing VH coherence and Alpha, thus providing a first proof of the complementary
value of polarimetric and interferometric S-1 features. Alpha and InSAR coherences
also tracked ripening (BBCH 85). When comparing the stages of wheat detected in this
study with the results of previous studies, some differences become evident. Schlund and
Erasmi (2020) [16] extracted stem elongation (BBCH 31), fruit development (BBCH 75), and
ripening (BBCH 87), whereas Meroni et al. (2021) [23] were able to detect stem elongation
(BBCH 31) and ripening (BBCH 87). This confirms that stem elongation and ripening create
a strong signal response in the C-Band SAR time series, and the additional phase detected
by this study indicates that more detailed monitoring of wheat phenology is possible.
When applying the definition of most critical stages for wheat development [31,58] as
provided by Schlund and Erasmi (2020) [16], this study only detected stem elongation
(BBCH 31). Fruit development was only tracked for the BBCH-Values of 70, 71, and 73,
whereas values of ripening encompassed 83, 85, and 86. However, if the transition from
the vegetative to reproductive stage is classified as the most crucial phase [29,30], the
completion of this transition was successfully detected by tracking the end of flowering as
well as the start of fruit development.

The definitions of crucial phases used in this study and related research in regard to
canola are congruent. According to the literature, developments during the flowering phase
of canola are directly linked to the oil content of its seeds [59,60]. The stages detected by the
presented approach only partially overlapped with previous observations. D’Andrimont
et al. (2020) [21] identified BBCH-values of 61, 65, and 69, whereas Meroni et al. (2021) [23]
was only able to detect events corresponding to BBCH values of 61 and 99. This study
produced extrema and breakpoints for flowering (BBCH: 60, 65, 67), fruit development
(BBCH: 72, 74), and likely harvest dates. As mentioned in Section 4.1, the complex and
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dense vegetation cover of canola is reflected in its crop signatures. A similar effect was
observed by other studies employing SAR data [24,61]. This was especially reflected by
the InSAR coherences, which both produced a peak after the onset of the flowering period.
Because the in situ data did not cover this period, an estimation based on the progression
described by Meier (2001) [28] links this trend to the end of ripening. The harvest period
was again represented by field data. Here, an early harvest date was tracked by InSAR
coherences and Alpha, whereas the later harvest date was marked by backscatter and K0,
K1, and K5. The advantages of combining polarimetric and interferometric features to
track the phenological development of canola are, therefore, less evident when compared
to wheat. Only fruit development (BBCH: 74) produced exclusive breakpoints for Alpha
and Entropy. However, the midseason peak of InSAR coherences and the period between
fruit development and harvest are deemed worthy of further investigation.

The signatures of sugar beet offer a better example for the complementary value
of polarimetric and interferometric features. Here, leaf development (BBCH: 10 and
19) produce breakpoints and extrema for Alpha and Entropy and InSAR coherences,
whereas leaf development (BBCH: 12) and rosette development (BBCH: 33) were tracked by
intensity-based features. Rosette development (BBCH: 39), which refers to the closing of the
canopy [28], was detected by most features, as the dates of detection of rosette development
range from early July to mid-August. Compared to Khabbazan et al. (2019) [22], the
presented approach was able to track a more detailed phenological development of sugar
beets than emergence and closure by employing breakpoint and extreme value analysis of
multiple S-1 features, instead of slope analysis based on InSAR coherences only.

The SAR-based signatures of all crop types indicated that the quality of the results
depends on the smoothing algorithm. Schlund and Erasmi (2020) [16] also used LOESS, but
they applied a one-degree polynomial model instead of a linear model and set a different
span. This may already partly explain the disparity in detected events. Other smoothing
approaches encompass harmonic time series analysis [20] or a Whittaker fit [21]. Hence, the
comparability of these studies is already impaired and the SAR feature that produced the
most breakpoints and extrema might be dependent on the choice of smoothing approach.
K5 and K6, for example, would be less indicative of phenological changes if their signatures
become more generalised. Nevertheless, the difference in time between detection and in
situ observation is somewhat comparable. Here, a range from zero to five days matches
the findings of other studies [16,23]. Various types of fitting also introduce a different
number of extrema, which have to be addressed by filtering out extrema not related
to phenological development [23]. Despite this issue, extrema enabled the tracking of
additional phenological stages and events.

A definite limit of this approach is the saturation of features, such as InSAR coher-
ences, or Alpha and Entropy. These features are only capable of reflecting certain parts of
phenological development. Once the plants are grown to a certain extent, the temporal
decorrelation becomes too strong (InSAR coherence), or the depolarisation is maximized
(Entropy). Therefore, backscatter are crucial for successful phenology monitoring because
VV and VH reflect different stages of the plant development, such a fruit development and
ripening of wheat [16,22].

5. Conclusions

In this study, time series (April–September 2017) of several polarimetric and interfer-
ometric features of Sentinel-1 were used to identify the phenological phases and crucial
stages of plant development of three crop types (wheat, canola, and sugar beet). It was
found that temporal SAR signatures of wheat are mainly influenced by the stem elongation,
inflorescence/heading, ripening, and senescence, whereas, for sugar beet, S-1 features were
sensitive to the leaf and rosette development. Flowering and fruit development of canola
were revealed in the temporal signatures, yet other stages could not be identified due to
the lack of in situ data. These findings confirm the results of related studies [16,21–23]
and offer further details of crop phenological development, as multiple micro stadia of
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the leaf development of sugar beets, the flowering of canola, as well as the ripening and
senescence of wheat, were tracked. This degree of detail is ascribed to the combined usage
of polarimetric and interferometric SAR features.

It is suggested that future research is directed towards multi-annual frameworks.
Hereby, the robustness across multiple growing seasons should be assessed, especially for
extremely dry or wet seasons [16]. In addition, these endeavours should be accompanied
by elaborate fieldwork to further investigate the potential and reliability of SAR-based
phenology monitoring at the field or even sub-field level [23,24]. Furthermore, the influence
of various smoothing approaches on the tracking of phenological development needs to be
researched, to avoid an issue that is comparable to deriving crop phenology from various
optical sensors [62].
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