Phosphoinositides modulate auxin-dependent transcription by controlling the histone acetyltransferase GCN5 in Arabidopsis

Dissertation

zur Erlangung des
Doktorgrades der Naturwissenschaften
(Dr. rer. nat.)
der
Naturwissenschaftlichen Fakultät I

- Biowissenschaften -
der Martin-Luther-Universität Halle-Wittenberg,
vorgelegt von
Frau Franziska Daamen
geb. am 16. Oktober 1992
in Kleve

Gutachter:
Prof. Dr. Ingo Heilmann
Prof. Dr. Klaus Humbeck
Prof. Dr. Wolfgang Dröge-Laser

Die vorliegende Dissertation wurde unter Anleitung von Dr. Mareike Heilmann in der Abteilung für Pflanzenbiochemie (Prof. Dr. Ingo Heilmann, Martin-Luther-Universiät Halle-Wittenberg) angefertigt.

Table of Contents

Abbreviations VII
Summary / Zusammenfassung XII

1. Introduction 1
1.1. The plant PI system 1
1.2. Enzymes of PI biosynthesis 2
1.3. Physiological functions of Ptdlns3P and VPS34 5
1.4. Physiological functions of Ptdlns $(4,5) \mathrm{P}_{2}$ and PI4P 5-kinases 6
1.5. Evidence for physiological functions of nuclear PIs 10
1.6. Histone modification and the control of gene activation 11
1.7. The histone acetyltransferase GCN5 14
1.8. Physiological roles of GCN5 in phytohormone signaling and the control of growth 17
1.9. Aims of this thesis 20
2. Results 21
2.1. Histone H 3 acetylation is influenced in Arabidopsis by expression level of the intrinsic PI4P 5-kinases PIP5K1 and PIP5K2 21
2.2. PIP5K1 and PIP5K2 interact with the histone acetyltransferase GCN5 23
2.2.1. Arabidopsis PIP5K1 and PIP5K2 and GCN5 interact with ING1 and ING2 26
2.3. Overexpression of PIP5K1 or PIP5K2 attenuates GCN5-dependent activation of the GH3.3 gene 27
2.4. Ptdlns $(4,5) \mathrm{P}_{2}$ and other Pls inhibit histone acetyltransferase activity of recombinant GCN5 protein in vitro 32
2.5. Recombinant MBP-GCN5 protein binds Pls 37
2.5.1. Identification of the putative lipid binding site in GCN5 40
2.6. PI 3-kinase VPS34 has no impact on the GCN5-dependent activation of GH3.3 44
2.7. PI binding contributes to nuclear localization of GCN5 49
3. Discussion 53
3.1. PI4P 5-kinases interact with GCN5 and putative components of the histone acetylation machinery 54
3.2. PIP5K2 activity markedly affects auxin-induced GH3.3 transcription 55
3.3. Inhibition of GCN5 and lipid binding 57
3.4. Possible modes of GCN5 inhibition by Pls 58
3.5. PI binding contributes to nuclear localization of GCN5 59
4. Material and Methods 62
4.1. Equipment and devices 62
4.2. Chemicals 62
4.2.1. Antibiotics used for the selection of bacteria 62
4.2.2. Phospholipids 62
4.3. Consumables and Kits 62
4.4. Enzymes, proteins, peptides and molecular size markers 62
4.5. Microorganisms 62
4.6. Plants 63
4.7. Culture media 63
4.7.1. Media for E. coli 63
4.7.2. Media for yeast 64
4.7.3. Plant medium 64
4.8. Growth conditions 65
4.8.1. Growth conditions for Arabidopsis plants 65
4.8.2. Maintenance of yeast strain NMY51 65
4.9. Vectors used in this study 65
4.9.1. Vectors for recombinant protein expression in E. coli. 65
4.9.2. Vectors for yeast-two-hybrid studies 66
4.9.3. Vectors for transient protein expression in Arabidopsis protoplasts 66
4.10. Molecular biology methods 67
4.10.1. DNA isolation 67
4.10.2. RNA isolation 67
4.10.3. cDNA synthesis 68
4.11. Separation of DNA and RNA in agarose gels 68
4.11.1. Extraction of DNA from gels 68
4.12. PCR strategies 69
4.12.1. Genotyping of Arabidopsis plants. 69
4.12.2. Quantitative real-time RT PCR (qPCR) 69
4.12.3. Amplification of DNA fragments by PCR 69
4.12.4. Introduction of amino acid substitutions: fusion PCR 70
4.13. Restriction 70
4.14. Ligation 71
4.15. Amplification of plasmid- and vector DNA in E. coli. 71
4.15.1. Preparation of chemo-competent E. coli. 71
4.15.2. Transformation of chemo-competent E. coli 71
4.15.3. Plasmid isolation from E. coli. 72
4.16. Sequencing 72
4.17. Cloning strategies 72
4.17.1. Constructs for recombinant protein expression 72
4.17.2. Constructs for split-ubiquitin-based yeast-two-hybrid 73
4.17.3. Constructs for transformation of Arabidopsis protoplasts 74
4.18. Recombinant expression and enrichment of fusion proteins 75
4.18.1. Recombinant expression of fusion proteins in E. coli 75
4.18.2. Lysis of cells expressing recombinant fusion proteins 75
4.18.3. Enrichment of recombinant fusion proteins 76
4.18.4. Determination of protein concentrations via Bradford assay 76
4.19. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 76
4.20. Immunodetection of proteins (Western blotting) 77
4.20.1. Characterization of antibody specificity 78
4.21. Examining protein secondary structure using circular dichroism (CD) spectroscopy 78
4.22. Studies of protein-protein interactions 79
4.22.1. Split-ubiquitin-based yeast-two-hybrid (YTH) 79
4.22.1.1. Preparation of chemo-competent S. cerevisiae cells 79
4.22.1.2. Transformation of chemo-competent S. cerevisiae NMY51 cells 80
4.22.1.3. Analysis of protein-protein interactions by yeast-two-hybrid tests. 80
4.22.2. Analysis of protein-protein interactions by in vitro immuno pull-down assays 80
4.22.3. Analysis of protein-protein interactions by dot-blot analyses. 81
4.23. Analysis of protein-lipid interactions 81
4.23.1. Lipid overlay assay 82
4.23.2. Liposome sedimentation assay 82
4.24. Histone acetyltransferase assay 83
4.25. In vitro lipid kinase activity assay with VPS34 84
4.26. Isolation and transformation of Arabidopsis leaf protoplasts 84
4.26.1. Auxin treatment of Arabidopsis leaf protoplasts 86
4.26.2. Treatment of Arabidopsis leaf protoplasts with a proteasome inhibitor 86
4.27. Microscopy 86
4.28. Isolation of nuclei and histones 87
4.28.1. Isolation of nuclei for histone analysis 87
4.28.2. Isolation of histones using a histone extraction kit, 87
4.29. Computer-based analyses: software and online tools 88
4.29.1. Prediction of protein domains 88
4.29.2. Identification of basic hydrophobic stretches in protein sequences 88
4.29.3. Identification of putative NLS sequences 88
4.30. Statistics and data management 89
5. Literature XIV
6. Appendix XXIX
6.1. Additional information to the obtained results XXIX
6.2. Additional information to Material and Methods XLVII
6.2.1. Specification of equipment and devices XLVII
6.2.2. Specification of chemicals XLVIII
6.2.3. Used consumables and kits
6.2.4. Used enzymes, proteins, peptides and molecular size markers LII
6.2.5. Oligonucleotides used in this thesis LIII
6.2.6. Cell lysates and enriched protein fractions LX
6.2.7. Composition of self-cast polyacrylamide gels LXIII
6.2.8. Primary and secondary antibodies LXIV
6.2.9. Specification of software and online tools LXV
Figures LXVIII
Tables LXX
Acknowledgements / Danksagung LXXI
Curriculum Vitae LXXIII
Erklärung LXXIV

Abbreviations

3-AT
aa
acetyl-CoA
ADA2A
ADA2B
Alg5
AP
APS
Arabidopsis
ARF

ATP

A. tumefaciens

AU
AuxRE
BCIP
BD
BH
bp
BSA
bZIP
C2
CBP
CD
cDNA
Col-0
CTAB
Cub
DMSO
DNA
DsRed
DTT
DUB
E. coli

EDTA
ER

3-amino-1,2,4-triazole
amino acid
acetyl coenzyme A
homolog of yeast ADA2, transcriptional adaptor homolog of yeast ADA2, transcriptional adaptor
dolichyl-phosphate beta-glucosyltransferase
alkaline phosphatase
ammonium persulfate
Arabidopsis thaliana
auxin response transcription factor
adenosine triphosphate
Agrobacterium tumefaciens
arbitrary units
auxin-responsive element
5-bromo-4-chloro-3-indolyl phosphate disodium salt bromodomain (of GCN5)
basic-hydrophobic
DNA base pairs
bovine serum albumin, Albumin fraction V transcription factor of the basic leucine zipper family
calcium-dependent lipid binding domain
p300/CREB-binding protein
circular dichroism
copy DNA
Arabidopsis wild type, ecotype Columbia-0
cetyltrimethylammonium bromide
C-terminal part of ubiquitin, aa 34-76
dimethyl sulfoxide
deoxyribonucleic acid
red fluorescent protein from Discosoma sp.
1,4-dithiothreitol
deubiquitination
Escherichia coli
ethylenediaminetetraacetic acid
endoplasmic reticulum

EYFP
Fib
Fig.

g

GCN5
GCN5 ${ }_{\text {EdD }}$
GCN5 ${ }_{\text {ILL }}$
GDI
GFP
GH3. 3
GNAT
GRE
GST
H3
H3_Ct
H3Kac
H3K4me2
H3K4me3
H3K9
H3K9ac
H3K14
H3K14ac
HAM2
HAT
HDAC
HDAC6
HDAC19
HRP
HsH3. 1
HsPIP5K1a
HsPIP5K2a
HsPIP5K2 β
IAA2
IAA5
IAA19
ING1
ING2
enhanced yellow fluorescent protein
fibrillarin
figure
gravitational force equivalent
general control non-repressible 5
GCN5 R260E,K261D,K263D
GCN5 R2601,K261L,K263L
guanidine nucleotide dissociation inhibitor green fluorescent protein
auxin-responsive GH3 family protein, an auxin-conjugase
GCN5-related N-terminal acetyltransferases
G-box-related element
glutathione S-transferase
histone H3
histone H3 from calf thymus
histone H 3 , acetylated at lysine residues
histone H 3 , dimethylated at lysine residue 4
histone H 3 , trimethylated at lysine residue 4
lysine residue 9 of histone H 3
histone H 3 , acetylated at lysine residue 9
lysine residue 14 of histone H3
histone H 3 , acetylated at lysine residue 14
histone acetyltransferase of the MYST family 2
histone acetyltransferase (domain)
histone deacetylase
histone deacetylase 6
histone deacetylase 19
horse radish peroxidase
human histone H3.1
human PI4P 5-kinase isoform PIP5K1a
human PI4P 5-kinase isoform PIP5K2 α
human PI4P 5-kinase isoform PIP5K2 β
indole-3-acetic acid inducible 2
indole-3-acetic acid inducible 5
indole-3-acetic acid inducible 19
inhibitor of growth 1
inhibitor of growth 2

IPTG
kb
kDa
LPA
LPC
-LW
-LWH
MBP
mcs
MORN
MRW
MS
MYST
NAA
NBT
NLI
NLS
NuA4
Nub
NubG
OCS
OD_{600}
OE
OsPIP5K1

OST4

PCR
PH
PHD
PI
PI-kinase
PI 3-kinase
PI 4-kinase
PI4Ka
PI4K β
PI3P 5-kinase
PI4P 5-kinase
PIKK
isopropyl β-D-1-thiogalactopyranoside
kilo bases
kilo Dalton
lysophosphatidic acid
lysophosphocholine without leucine and tryptophane without leucine, tryptophane and histidine maltose-binding protein multiple cloning site membrane occupation and recognition nexus-repeat domain mean residue weight Murashige \& Skoog (medium)
MOZ, Ybf2/Sas3, Sas2 and Tip60-related
1-naphthaleneacetic acid
p -nitrotetrazolium blue chloride
nuclear lipid island
nuclear localization sequence nucleosome acetyltransferase of H 4
N-terminal part of ubiquitin, aa 1-38
N-terminal part of ubiquitin, aa $1-38$, I13 mutated to G
octopine synthase
absorbance at 600 nm
overexpression
PIP5K1/PIP5K2 homolog from rice
oligosaccharyltransferase 4
polymerase chain reaction
Pleckstrin homology domain
plant homeodomain
phosphoinositide
phosphoinositide kinase
phosphatidylinositol 3-kinase
phosphatidylinositol 4-kinase
subfamily of phosphatidylinositol 4-kinases
subfamily of phosphatidylinositol 4-kinases
phosphatidylinositol 3-phosphate 5-kinase
phosphatidylinositol 4-phosphate 5-kinase
PI 3-kinase-like kinase

PIN	pin-formed
PIP-kinase	phosphatidylinositol-monophosphate-kinase
PIP5K1	phosphatidylinositol 4-phosphate 5-kinase 1
PIP5K2	phosphatidylinositol 4-phosphate 5-kinase 2
PIP5K2 ${ }_{\text {AAA }}$	PIP5K2 variant with inefficient nuclear import and reduced nuclear localization
PIP5K2 K470A	phosphatidylinositol 4-phosphate 5-kinase 2, K470 mutated to A
PIP5K3	phosphatidylinositol 4-phosphate 5-kinase 3
PIP5K4	phosphatidylinositol 4-phosphate 5-kinase 4
PIP5K5	phosphatidylinositol 4-phosphate 5-kinase 5
PIP5K6	phosphatidylinositol 4-phosphate 5-kinase 6
PIP5K7	phosphatidylinositol 4-phosphate 5-kinase 7
PIP5K8	phosphatidylinositol 4-phosphate 5-kinase 8
PIP5K9	phosphatidylinositol 4-phosphate 5-kinase 9
PIP5K10	phosphatidylinositol 4-phosphate 5-kinase 10
PIP5K11	phosphatidylinositol 4-phosphate 5-kinase 11
PEG	polyethylene glycol
PLT	PLETHORA transcription factor
PMSF	phenylmethylsulfonyl fluoride
Pol	polymerase
PtdCho	phosphatidylcholine
PtdEtn	phosphatidylethanolamine
Ptdlns	phosphatidylinositol
Ptdlns3P	phosphatidylinositol 3-phosphate
Ptdlns4P	phosphatidylinositol 4-phosphate
Ptdlns5P	phosphatidylinositol 5-phosphate
Ptdlns(3,4) P_{2}	phosphatidylinositol 3,4-bisphosphate
Ptdlns(3,5) P_{2}	phosphatidylinositol 3,5-bisphosphate
Ptdlns(4,5) P_{2}	phosphatidylinositol 4,5-bisphosphate
Ptdlns(3,4,5) P_{3}	phosphatidylinositol 3,4,5-trisphosphate
PtdOH	phosphatidic acid
PtdSer	phosphatidylserine
RAN-GTP	Ras-related GTPase
RCC1	regulator of chromosome condensation 1
RNA	ribonucleic acid
ROP	Rho of plants

qPCR
rpm
rRNA

RT

S1P
SAGA
S. cerevisiae

ScGCN5
SD
SDG
SDS
SDS-PAGE
SWC4
Tab.
TAF1
T-DNA
TEMED
Ti
TRA1
TLC
TPL
UBC10
UBF
VPS34
WOX
WUS
w/o
YTH
quantitative real-time RT PCR
revolutions per minute
ribosomal RNA
room temperature
sphingosine 1-phosphate
Spt-Ada-GCN5-acetyltransferase-transcriptional co-activator
Saccharomyces cerevisiae
GCN5 homolog in S. cerevisiae
standard deviation
SET domain group
sodium dodecyl sulfate
sodium dodecyl sulfate polyacrylamide gel electrophoresis
myb-like transcription factor family protein
table
TATA-binding protein-associated factor
transfer DNA of A. tumefaciens
$\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetramethyl-ethylenediamine
tumor-inducing
transcription-associated protein 1
thin layer chromatography
TOPLESS
ubiquitin-conjugating enzyme 10, a housekeeping gene
upstream binding factor
vacuolar protein sorting 34
wuschel related homeobox transcription factor
WUSCHEL transcription factor
without
yeast-two-hybrid screen

Summary / Zusammenfassung

Phosphoinositides (PIs) occur in small amounts in eukaryotic membranes. The temporal and spatial distribution of Pls is regulated by PI-kinases. In plants, Pls are important regulators of cytoplasmic membrane trafficking and cytoskeleton. In addition to their functions in the cytoplasm, Pls are also found in the nucleus of plants, to date with unclear function. The phosphatidylinositol 4-phosphate 5-kinase (PI4P 5-kinase) PIP5K2 from Arabidopsis contains a functional nuclear localization sequence and shows dual localization in the nucleus and at the plasma membrane. Upon overexpression or underexpression of PIP5K2 and its sister enzyme PIP5K1, reduced and increased degrees of histone acetylation, respectively, were detected in adult Arabidopsis plants. Systematic interaction assays between PIP5K1 or PIP5K2 and histone-modifying enzymes revealed an interaction with the histone acetyltransferase general control non-repressible 5 (GCN5), known to regulate auxin-mediated gene activation. PIP5K1 and PIP5K2 further interact with histone H 3 and the "epigenetic reader protein" inhibitor of growth (ING). Overexpression of PIP5K2, and to some extent PIP5K1, in protoplasts attenuated auxin-mediated activation of GCN5-dependent genes such as GH3.3, consistent with decreased histone acetylation. Overexpression of an inactive PIP5K2 K470A variant or the functionally divergent PIP5K6 isoform had no effect on gene regulation. In in vitro assays, Pls inhibited histone acetylation by recombinant GCN5 protein, indicating a direct effect of PIs on GCN5 function. Lipid binding studies confirmed that GCN5 binds to Pls, specifically phosphatidylinositol 3-phosphate (Ptdlns3P), via basic amino acid residues. GCN5 interacted with the phosphatidylinositol 3-kinase VPS34, which is also localized in the nucleus. While expression of VPS34 did not affect GCN5-dependent gene activation, as shown for PIP5K2, Ptdlns3P binding was required for nuclear localization of GCN5. Substitution variants of GCN5 (GCN5ILL and GCN5 EDD) in which the potential Ptdlns3P binding site was modified were no longer able to bind to Pls and showed significantly more cytosolic localization than wild type GCN5, which was almost exclusively detectable in the nucleus. Overall, the data suggest that GCN5 and ING, and possibly other components of histone acetylation, may be recruited by Ptdlns3P to active transcription sites in the nucleus, as has previously been proposed. PI4P 5-kinases may remove Ptdlns-monophosphates from this interaction and thus affect transcription. Pls such as Ptdlns(4,5) P_{2} could establish contact sites between chromatin with the inner nuclear membrane, which conditions the recruitment of additional protein components. Thus, nuclear Pls may influence auxin-dependent gene expression by modulating activity and recruitment of GCN5, in addition to and independent of the cytoplasmic influence of Pls on vectorial auxin transport.

Phosphoinositide (Pls) kommen in geringen Mengen in eukaryotischen Membranen vor. Die zeitliche und räumliche Verteilung von Pls wird durch PI-Kinasen reguliert. In Pflanzen sind Pls wichtige Regulatoren des zytoplasmatischen Membranverkehrs und des Zytoskeletts. Neben ihren Funktionen im Zytoplasma sind Pls auch im Zellkern von Pflanzen zu finden, allerdings mit bislang unklarer Funktion. Die Phosphatidylinositol 4-phosphat 5-Kinase PIP5K2 aus Arabidopsis enthält ein funktionales Kernlokalisierungssignal und zeigt duale Lokalisierung im Zellkern und an der Plasmamembran. Bei Über- oder Unterexpression von PIP5K2 und des Schwesterenzyms PIP5K1 wurden in adulten Arabidopsis-Pflanzen reduzierte bzw. erhöhte Histon-Acetylierung detektiert. Systematische Interaktionstests zwischen PIP5K1 bzw. PIP5K2 und Histon-modifizierenden Enzymen zeigten eine Interaktion mit der Histon-Acetyltransferase general control non-repressible 5 (GCN5), die unter anderem die Auxin-vermittelte Genaktivierung reguliert. PIP5K1 und PIP5K2 interagieren weiterhin mit Histon H3 und dem „epigenetischen Leseprotein" inhibitor of growth (ING). Überexpression von PIP5K2, zum Teil auch von PIP5K1, in Protoplasten schwächte die Auxin-vermittelte Aktivierung GCN5-abhängiger Gene wie GH3.3 ab, was mit verminderter Histon-Acetylierung konsistent ist. Überexpression einer inaktiven PIP5K2 K470A-Variante oder der funktional divergenten Isoform PIP5K6 hatten dabei keinen Einfluss auf die Genregulation. In in vitro Tests hemmten Pls die Histon-Acetylierung durch rekombinantes GCN5-Protein, was auf einen direkten Einfluss von Pls auf die GCN5-Funktion hinweist. Lipidbindestudien bestätigten, dass GCN5 über basische Aminosäurereste an Pls, speziell an Phosphatidylinositol 3-Phosphat (Ptdlns3P), bindet. GCN5 interagierte mit der auch im Kern lokalisierten Phosphatidylinositol 3-Kinase VPS34. Die Expression von VPS34 beeinflusste die GCN5-abhängige Genaktivierung, wie für PIP5K2 gezeigt, nicht. Hingegen schien die Ptdlns3P-Bindung für die nukleäre Lokalisierung von GCN5 erforderlich. Substitutionsvarianten von GCN5 (GCN5 ${ }_{\text {ILL }}$ und GCN5 $_{\text {EDD }}$), in denen die mögliche Ptdlns3P-Bindestelle modifiziert wurde, konnten nicht mehr an Pls binden und zeigten deutlich mehr zytosolische Lokalisation als Wildtyp-GCN5, das fast ausschließlich im Zellkern zu detektieren war. Insgesamt weisen die Daten darauf hin, dass GCN5 und ING und möglicherweise auch weitere Komponenten der Histon-Acetylierung durch Ptdlns3P an aktive Transkriptionsstellen im Zellkern rekrutiert werden könnten. PI4P 5-Kinasen entfernen möglicherweise Ptdlns-monophosphate aus dieser Interaktion und beeinflussen so die Transkription. Pls wie Ptdlns(4,5) P_{2} könnten Kontaktstellen zwischen Chromatin und der inneren Kernmembran herstellen, was die Rekrutierung weiterer Proteinkomponenten bedingt. Nukleäre Pls können also die Auxin-abhängige Genexpression beeinflussen, indem sie Aktivität und Rekrutierung von GCN5 modulieren, und zwar zusätzlich und unabhängig vom zytoplasmatischen Einfluss von Pls auf den vektoriellen Auxin-Transport.

1. Introduction

As sessile organisms, plants are inherently dependent on adapting to their environment. To this end, plants can respond to changing environmental conditions with altered development and growth. These reactions are regulated by complex signaling processes. External stimuli, but also signal transduction from cell to cell, are usually first perceived by receptors and transmitted to the interior of the cell. Signal transduction can be achieved by a variety of signaling pathways involving successive protein phosphorylation, phytohormone signaling or signaling lipids such as phosphoinositides (PIs). In most cases signal transduction events represent an interplay of different signaling cascades. Many signals are transmitted up to the nucleus where they lead to changes in gene expression so that physiological processes and functions in the cell can be adapted to the developmental or environmental requirements.

Nuclear-localized processes regulated by Pls are already known from animals (Yu et al., 1998; Zhao et al., 1998; Osborne et al., 2001; Irvine, 2003; Barlow et al., 2010), including DNA replication, modeling of chromatin structure and regulation of transcription factor localization. Since many processes of gene regulation and the structure of the nucleus are very similar in animals and plants, it was a key assumption of this thesis that Pls may also play a role in the regulation of nuclear-localized processes in plants.

1.1. The plant PI system

Pls are phospholipids in the membranes of eukaryotic cells (Heilmann, 2016a, 2016b) where they represent only a small fraction of membrane lipids and exert regulatory functions (Heilmann, 2009; Viaud et al., 2016; Gerth et al., 2017b; Colin and Jaillais, 2020; Jaillais and Ott, 2020). Pls are not uniformly distributed in membranes, but rather are organized in microor nanodomains where Pls can distinctively define membrane properties and initiate protein recruitment by mediating precise and local signaling (Ischebeck et al., 2008, 2011; Heilmann, 2016a; Gerth et al., 2017b; Fratini et al., 2021). In Arabidopsis thaliana (Arabidopsis), several phosphoinositide kinases (PI-kinases) can form different Pls by sequential phosphorylation of the inositol head group of phosphatidylinositol (Ptdlns) (Mueller-Roeber and Pical, 2002; Boss and Im, 2012; Heilmann and Heilmann, 2015; Heilmann, 2016a, 2016b; Gerth et al., 2017b). The resulting Ptdlns-monophosphates phosphatidylinositol 3-phosphate (Ptdlns3P), phosphatidylinositol 4-phosphate (PtdIns4P), phosphatidylinositol 5-phosphate (Ptdlns5P) and the Ptdlns-bisphosphates phosphatidylinositol 3,5 -bisphosphate (Ptdlns $(3,5) \mathrm{P}_{2}$) and phosphatidylinositol 4,5-bisphosphate (Ptdlns(4,5) P_{2}) exert numerous regulatory effects on membrane-associated cytoplasmic processes in plants (Boss and Im, 2012; Heilmann and Heilmann, 2015; Heilmann, 2016a).

The formation of phosphatidylinositol 5-phosphate (Ptdlns5P) remains unclear in plants (Heilmann and Heilmann, 2015). While Ptdlns5P has been detected in plant material (Meijer et al., 2001), the enzymes leading to the formation of Ptdlns5P have not yet been clearly identified. It is possible that Ptdln5P is not formed directly from Ptdlns but is generated by dephosphorylation of the Ptdlns-bisphosphates, Ptdlns $(3,5) \mathrm{P}_{2}$ or $\operatorname{Ptdlns}(4,5) \mathrm{P}_{2}$. The biosynthesis of phosphatidylinositol 3,4-bisphosphate (Ptdlns(3,4) P_{2}) and phosphatidylinositol $3,4,5$-trisphosphate (Ptdlns $(3,4,5) \mathrm{P}_{3}$), which occur in mammalian cells, has not yet been demonstrated. Corresponding PI-kinases have not been identified in plants. (Mueller-Roeber and Pical, 2002; Heilmann, 2016a).

1.2. Enzymes of Pl biosynthesis

The various PIs found in plants are synthesized by PI-kinases, some of them are represented by several isoforms. The numerous regulatory effects regulated by Pls and their subcellular distribution require a precise spatiotemporal distribution of Pls which is determined by the activities of PI-kinases (Heilmann and Heilmann, 2015; Gerth et al., 2017b). Synthesis of Pls begins with the structural lipid Ptdlns. Phosphatidylinositol 3-kinase (PI 3-kinase) phosphorylates the D3 position of the inositol in Ptdlns to form Ptdlns3P. PI 3-kinase is represented only by a single gene in Arabidopsis. It is named after the well-characterized yeast PI 3-kinase homolog, which plays a role in vacuolar sorting and is therefore called vacuolar protein sorting 34 (VPS34, AT1G60490) (Schu et al., 1993; Welters et al., 1994; Dove et al., 1994; Heilmann and Heilmann, 2015) (Fig. 1.1 A). PI 3-kinases can be divided into three distinct classes according to their substrate specificity. Arabidopsis VPS34 is a class III enzyme using only Ptdlns as substrate, whereas class I PI 3-kinases phosphorylate Ptdlns4P and Ptdlns $(4,5) \mathrm{P}_{2}$. They play a central role in PI metabolism in mammals but have not yet been identified in plants (Vanhaesebroeck et al., 2001; Lee et al., 2010). Class II PI 3-kinases phosphorylate Ptdlns and Ptdlns4P (Vanhaesebroeck et al., 2001; Lee et al., 2010). Ptdlns can alternatively be phosphorylated in the D4 position of the inositol by phosphatidylinositol 4-kinases (PI 4-kinases). The Arabidopsis genome encodes four isoforms of PI 4-kinases (Mueller-Roeber and Pical, 2002; Heilmann and Heilmann, 2015; Heilmann, 2016a), which can be divided into the subfamilies PI4Ka and PI4Kß, each with two members (Fig. 1.1 B).

The Ptdlns-monophosphates can be further phosphorylated; Ptdlns3P can be substrate for type III Ptdlns-monophosphate-kinases (PIP-kinases), phosphatidylinositol 3-phosphate 5kinases or also called PI3P 5-kinases (FABla - FABId, Fig. 1.1 C) (Mueller-Roeber and Pical, 2002; Meijer and Munnik, 2003; Heilmann and Heilmann, 2015; Heilmann, 2016a), giving rise to Ptdlns $(3,5) \mathrm{P}_{2}$. Ptdlns4P can be phosphorylated to $\mathrm{Ptdlns}(4,5) \mathrm{P}_{2}$ by eleven different isoforms of the type I PIP-kinases, phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases)
(Fig. 1.1 D) (Mueller-Roeber and Pical, 2002; Meijer and Munnik, 2003; Heilmann and Heilmann, 2015; Heilmann, 2016a). In addition, PI4P 5-kinases also have the ability to use Ptdlns3P as a substrate and convert this substrate to Ptdlns(3,5) P_{2} (Stenzel et al., 2008; Ischebeck et al., 2008, 2011).

Fig. 1.1: Arabidopsis PI-kinases. The Arabidopsis genome encodes several PI-kinases. A, Class III PI 3-kinase, VPS34; encoded by a single gene in Arabidopsis. B, Four PI 4-kinase isoforms; two subfamilies consistent of the alpha subfamily PI4Ka1 and PI4Ka2 and the beta subfamily PI4K 1 and PI4Kß2. C, Four isoforms of PI3P 5-kinases forming Ptdlns $(3,5) \mathrm{P}_{2}$. D, Eleven PI4P 5-kinase isoforms. The domain structure of the PI-kinases is depicted approximately to scale. The scale for 100 amino acids is indicated as well as the corresponding AGI locus identifiers for the corresponding genes. Domains with documented functions are indicated. Abbreviations stand for, AL, activation loop; C2, Ca^{2+}-dependent lipid binding domain; catalytic, catalytic domain; Cct1 homology, chaperonine-containing t-complex protein 1-homology domain; Dim, dimerization domain; FYVE, Fab1 YOTB Vac1 EEA1-domain; helical, helical domain; Ins, variable insert domain; Lin, variable linker domain; MORN, membrane occupation and recognition nexus-repeat domain; PH, Pleckstrin homology-domain; PPC, plant PI4K charged region-domain. The figure was adopted from (Heilmann and Heilmann, 2015).

The Arabidopsis genome encodes eleven isoforms of PI4P 5-kinases (PIP5K1 - PIP5K11). Depending on their domain structure, PI4P 5-kinases can be categorized into subfamily A and subfamily B (Mueller-Roeber and Pical, 2002). Subfamily A includes PI4P 5-kinase isoforms PIP5K10 and PIP5K11 which consist of a dimerization domain and a catalytic domain. The latter domain contains a variable insert and an activation loop (Fig. 1.1 D) (Mueller-Roeber and Pical, 2002; Stenzel et al., 2012; Heilmann and Heilmann, 2015). These domains are conserved in their sequence between animals, yeasts, and plants (Mueller-Roeber and Pical, 2002; Stenzel et al., 2012). PI4P 5-kinase isoforms PIP5K1 to PIP5K9 belong to subfamily B and additionally contain a membrane occupation and recognition nexus (MORN)-repeat domain and a variable linker domain, positioned N -terminal of the dimerization domain and specific for plant PI4P 5-kinases (Fig. 1.1 D) (Mueller-Roeber and Pical, 2002; Stenzel et al., 2012; Heilmann and Heilmann, 2015). The linker domains are highly variable domains and differ greatly between the different PI4P-5 kinase isoforms. They contribute to the distinct subcellular localization and are most likely responsible for protein-protein interaction between the isoforms and further proteins (Stenzel et al., 2012; Gerth et al., 2017b; Fratini et al., 2021). The PIP5K1/PIP5K2/PIP5K3, PIP5K4/PIP5K5/PIP5K6 and PIP5K7/PIP5K8/PIP5K9 isoforms each form distinct phylogenetic clades within subfamily B (Mueller-Roeber and Pical, 2002; Stenzel et al., 2012). The members of the type A subfamily, PIP5K10 and PIP5K11, form a fourth and separate phylogenetic group.
The eleven PI4P 5-kinase isoenzymes differ markedly in their expression patterns and their functions. The isoforms PIP5K1 (AT1G21980), PIP5K2 (AT1G77740) (Ischebeck et al., 2013), PIP5K6 (AT3G07960) (Zhao et al., 2010; Heilmann, 2016a), PIP5K7 (AT1G10900), PIP5K8 (AT1G60890) and PIP5K9 (AT3G09920) (Heilmann, 2016a; Kuroda et al., 2021) are ubiquitously expressed. Besides those, there are isoforms, whose expression is restricted to pollen or pollen tubes, like PIP5K4 (AT3G56960), PIP5K5 (AT2G41210) (Ischebeck et al., 2008; Sousa et al., 2008; Heilmann, 2016a) and the two type A isoforms, PIP5K10 (AT4G01190) and PIP5K11 (AT1G01460) (Ischebeck et al., 2011; Heilmann, 2016a). The expression of isoform PIP5K3 (AT2G26420) is restricted to epidermal and cortical root cells and to root hairs (Kusano et al., 2008; Stenzel et al., 2008; Heilmann, 2016a). PI4P 5-kinase expression patterns are not only spatially divergent but also depend on developmental stage (Elge et al., 2001; Kusano et al., 2008; Stenzel et al., 2008; Ischebeck et al., 2008, 2013; Tejos et al., 2014; Kuroda et al., 2021) or are auxin-induced like the expression of PIP5K1 and PIP5K2 (Mei et al., 2012; Tejos et al., 2014). Together, the particular expression patterns of different PI4P 5-kinases enable a multifaceted and dynamic landscape of Ptdlns(4,5) P_{2} biosynthesis in plants.

Of all the enzymes mentioned, this study is mostly concerned with the elucidation of novel roles of PI 3-kinase and of PI4P 5-kinases in the nucleus. Therefore, the following paragraphs
provide an overview of what is known to date about the physiological effects of these enzymes and their reaction products, Ptdlns3P and Ptdlns(4,5) P_{2}, respectively.

1.3. Physiological functions of Ptdlns3P and VPS34

Molecular genetic studies indicate that the functionality of PI 3-kinase is important for plant development, both in vegetative and reproductive organs (Welters et al., 1994). Studies using T-DNA insertion mutants have shown that the vps34 mutant is impaired in pollen development and the homozygous T-DNA insertion is lethal (Lee et al., 2008). By down-regulating VPS34 expression in Arabidopsis using antisense strategies, it was found that plants suffer from impaired leaf and stem development (Welters et al., 1994). The subcellular distribution of Ptdlns3P was analyzed by genetically encoded biosensors. For this purpose, the biosensor 2xFYVE-GFP can be used, consisting of two FYVE domains (from Fab1, YOTB, Vac1 and EEA1) in tandem, which specifically bind Ptdlns3P. Using this biosensor, Ptdlns3P was detected in different Arabidopsis tissues primarily at the endomembranes (Gillooly et al., 2000; Simon et al., 2014). Consistent with this, Ptdlns3P appears to play a role in different phases of vesicle transport, as salt stress in combination with inhibitors against PI 3-kinases reduced the internalization of FM4-64 dyes (Emans et al., 2002; Leshem et al., 2007). PI 3-kinase appears to be generally involved in vesicle transport and membrane biogenesis in plants (Lee et al., 2010; Simon et al., 2014). In addition, treatment of cells with wortmannin, which inhibits VPS34 among others, resulted in re-localization of pin-formed 2 (PIN2)-GFP to wortmannin-induced compartments, and PI 3-kinase may have a role in controlling the subcellular distribution of the auxin efflux carrier PIN2 (Jaillais et al., 2006).

Beside to cytoplasmic/endomembrane-localized functions, an alternative localization of VPS34 in the nucleus of plant cells was shown (Bunney et al., 2000). The observation at that time indicated that plant PI 3-kinase is involved in nuclear functions. Beside PtdIns4P, Ptdlns3P was synthesized in fractions of isolated nuclei from carrot cell culture and soybean PI 3-kinase was detected at active sites of transcription by using a specific antiserum raised against a truncated variant of the PI 3-kinase (Bunney et al., 2000). Interestingly, the specific binding domain for Ptdlns3P, the FYVE domain, is structurally very similar to the zinc finger domains, RING-like domains, and plant homeodomains (PHD). Zinc finger domains bind to DNA or RNA templates, and PHDs mediate binding to methylated histones. Furthermore, it is interesting to note that many FYVE domain-containing proteins in Arabidopsis also contain so-called tandem repeats of the regulator of chromosome condensation 1 (RCC1)-like domain (Burd and Emr, 1998; Misra and Hurley, 1999; van Leeuwen et al., 2004; Lee et al., 2010). RCC1 is present in mammalian cells and functions as a nuclear-localized Ras-related GTPase (RAN-GTP) exchange factor and, among other things, maintains the nuclear RAN-GTP gradient and is thereby also responsible for the disassembly of protein-nuclear import protein complexes
(Dasso, 2002). However, the FYVE/RCC1-domain-containing proteins identified in Arabidopsis are mostly not well-characterized or not characterized at all. Overall, the data available so far indicate a well-established role for VPS34 in cytoplasmic trafficking, and a much less well-understood alternative role in the plant nucleus.

1.4. Physiological functions of Ptdlns(4,5) P_{2} and P14P 5-kinases

The most studied PI is Ptdlns(4,5)P2, formed by PI4P 5-kinases (Mueller-Roeber and Pical, 2002; Meijer and Munnik, 2003; Heilmann and Heilmann, 2015; Heilmann, 2016a). In several studies, Ptdlns $(4,5) \mathrm{P}_{2}$ has been shown to be involved in plant signal transduction, in the regulation of ion transport across the plasma membrane (Ma et al., 2009), in the control of cytoskeletal stability, protein recruitment to the plasma membrane, exocytosis and clathrin-mediated endocytosis (Fig. 1.2) (Ischebeck et al., 2008; Sousa et al., 2008; Zhao et al., 2010; Ischebeck et al., 2011; Mei et al., 2012; Ischebeck et al., 2013; Heilmann, 2016a; Fratini et al., 2021), and in vesicle transport between Golgi apparatus and plasma membrane (König et al., 2008; Camacho et al., 2009).

Fig. 1.2: Pls contribute to several plasma membrane-associated processes. Pls are involved in numerous plasma membrane-associated processes that take place in the cytosolic space, including vesicle trafficking, endocytosis, signal transduction, protein recruitment or cytoskeleton attachment. Figure from (Heilmann, 2016a).

By regulating these processes, PI4P-5 kinases and Ptdlns(4,5) P_{2} influence the polar orientation and thus the cell morphology of eukaryotic cells (Mei et al., 2012; Stenzel et al.,

2012; Ischebeck et al., 2013; Tejos et al., 2014). Polar tip growth of root hairs (Kusano et al., 2008; Vincent et al., 2005; Stenzel et al., 2008) or pollen tubes is affected by PI4P-5 kinases and Ptdlns(4,5) P_{2} (Kost et al., 1999; Ischebeck et al., 2008, 2011; Stenzel et al., 2012). Thus, different members of the PI4P 5-kinase subfamily B exert isoform-specific regulatory effects and therefore, when overexpressed in, e.g. tobacco pollen tubes, have different effects on phenotypes. Overexpression of either PIP5K4, PIP5K5 (Ischebeck et al., 2008; Sousa et al., 2008), and PIP5K6 (Zhao et al., 2010) affects vesicle/membrane trafficking and leads to branched pollen tubes, whereas expression of PIP5K2 in pollen tubes affects cytoskeleton stabilization and leads to a swelling phenotype in the corresponding cells (Stenzel et al., 2012). PI4P 5-kinases of the different phylogenetic groups, such as PIP5K2 and PIP5K6, have divergent regulatory functions and effects, although they form the same lipid product and localize very similarly at the subcellular level (Stenzel et al., 2012; Fratini et al., 2021). These observations indicate that the precise subcellular localization of PI4P 5-kinases determines a specific regulatory effect of Ptdlns(4,5) P_{2} formed.
A very well-studied example of the influence on cell polarity is the functionality of PIP5K1 and PIP5K2 PI4P 5-kinases from Arabidopsis. Both PI4P 5-kinases, PIP5K1 and PIP5K2, as well as their product Ptdlns $(4,5) \mathrm{P}_{2}$, showed polar localization in Arabidopsis root cells (Ischebeck et al., 2013; Tejos et al., 2014; Gerth et al., 2017a). Alterations in the amounts of Ptdlns(4,5) P_{2} produced at the plasma membrane by PIP5K1 and PIP5K2 in pip5k1 pip5k2 double mutants resulted in decreased endocytosis and, consequently, mislocalization of the normally polar distributed auxin transport proteins PIN1 and PIN2, leading to impaired auxin distribution in these plants (Ischebeck et al., 2013). The data indicate that PI4P 5-kinases have numerous functions in the control of cytoplasmic processes and in the control of cell polarity. Interestingly, the transcription of PIP5K1 and PIP5K2 is by itself induced by exogenously applied auxin (Tejos et al., 2014), suggesting that PI4P 5-kinases are part of the complex regulatory networks mediating auxin-dependent effects in plants.
In addition to the well-described localization in the plasma membrane, fluorescently labeled fusions of PI-kinases were frequently observed in the nucleus of plant cells of different species and tissues (Lou et al., 2007; Ischebeck et al., 2011, 2013; Tejos et al., 2014). Moreover, PIP5K2 from Arabidopsis has been shown to interact with alpha-importins (Fig. 1.3 A) and contains a nuclear localization sequence (NLS) in the linker domain that is necessary and sufficient for active nuclear import of PIP5K2 (Gerth et al., 2017a). Replacement of the NLS in the PIP5K2 variant PIP5K2 ${ }_{\text {AAA }}$ with alanines led to inefficient nuclear import and reduced nuclear observation of PIP5K2 ${ }_{\text {AAA }}$ in onion epidermal cells (Fig. 1.3 B). Importantly, nuclear localization of PIP5K2 is found mainly in meristematic cells and is not observed at all times, suggesting that PIP5K2 shuttles between cytoplasm and nucleus (Gerth et al., 2017a). In addition to PIP5K2, the lipids Ptdlns4P and Ptdlns(4,5) P_{2} have also been identified in plant
nuclei by biochemical analysis via specific antibodies in immunostainings (Gerth et al., 2017a), and by fluorescent reporters such as the Pleckstrin homology (PH) domain of PLC $\delta 1$ fused to fluorescent proteins, which specifically binds Ptdlns(4,5) P_{2} (Mishkind et al., 2009). Furthermore, lipid analyses of isolated or enriched Arabidopsis organelles indicate that Pls are not only found in the membranes of plant nuclei, but also that nuclear Pls have a characteristic pattern of associated fatty acids (König et al., 2008).

Fig. 1.3: Arabidopsis PIP5K2 interacts with the nuclear import machinery and contains a functional NLS. PIP5K2 was demonstrated to be actively transported to the plant nucleus. A, PIP5K2 interacts with alpha-importins Impa6 and Impa9 in an endoplasmic reticulum (ER)-localized split-ubiquitin-based yeast-two-hybrid (YTH). B, Replacement of the identified NLS in PIP5K2 sequence in the variant PIP5K2aaa effects exclusion of the EYFP fusion protein from the nucleus in 31% of examined onion epidermal cells. The figure was adopted and modified from (Gerth et al., 2017a).

The previously observed nuclear localization of PIP5K2 (Gerth et al., 2017a) suggests a so far unexplored regulatory effect of PIP5K2 in the plant nucleus. To test whether nuclear localization of PIP5K2 is relevant for Arabidopsis development, the PIP5K2 variant PIP5K2 ${ }_{\text {AAA }}$ with inefficient nuclear import and reduced nuclear localization (compare Fig. 1.3, (Gerth et al., 2017a)) was expressed under control of the native PIP5K2 promoter in the Arabidopsis pip5k1 pip5k2 double mutant background and the resulting phenotypes were analyzed (Fig. 1.4) (Data from Dr. Katharina Gerth, AG M. Heilmann, unpublished). Plants expressing PIP5K2 ${ }_{\text {AAA }}$-EYFP only partially complemented the phenotypes of the pip5k1 pip5k2 double mutant, compared to full complementation observed upon expression of wild type PIP5K2-EYFP (Fig. 1.4) (Data from Dr. Katharina Gerth, AG M. Heilmann, unpublished).

Fig. 1.4: Partial complementation of pip5k1 pip5k2 double mutant phenotypes upon nuclear-excluded expression of PIP5K2 ${ }_{\text {AAA }}$-EYFP. Arabidopsis pip5k1 pip5k2 double mutants expressing either EYFP, PIP5K2-EYFP wild type or PIP5K2AAA-EYFP were grown on soil or MS medium and were analyzed for various phenotypic aspects. L1, L23 and L30 represent three independent PIP5K2 ${ }_{\text {AAA }}$-EYFP expressing lines. A, Root length of seven-day-old seedlings. Plants were grown on vertical $1 / 2 \mathrm{MS}$ agar plates under long-day conditions (16 h light). Images are representative for 16 (EYFP control) to 65 (PIP5K2-EYFP wild type or PIP5K2AAA-EYFP) analyzed seedlings. Scale bar, 1 cm . B, Meristem size of seven-day-old seedlings. Meristem size was determined by the number of meristematic cortex cells. The cell number of ten seedlings per line was evaluated. Statistical analysis was performed using a generalized linear model with assumed Poisson distribution and tested for differences with a two-way ANOVA. Different letters represent statistically significant differences ($P<0.05$; Tukey's post-hoc test). C, Leaf morphology of six-week-old plants. Scale bar, 2 cm . D, Shoot phyllotaxis of six-week-old plants. Scale bar, 2 cm . E, Flower morphology of six-week-old plants. Scale bar, 2 mm .

While the overall habitus, like root growth (Fig. 1.4 A) and meristem size (Fig. 1.4 B), was partially rescued, remaining phenotypic aspects included deformed leaves and flowers and defects in phyllotaxis (Fig. 1.4 C, D and E) (Data from Dr. Katharina Gerth, AG M. Heilmann, unpublished). Previously, such effects were not described for the pip5k1 pip5k2 double mutant, because these plants do usually not progress to the relevant developmental stages when
flowers or leaves are formed (Ischebeck et al., 2013; Tejos et al., 2014). Interestingly, the apparent phenotypes caused by expressing PIP5K2 ${ }_{\text {AAA }}$-EYFP in the double mutant background resemble, among others, defects in auxin-dependent gene expression (Hamann et al., 2002; Ha et al., 2010). While it cannot be fully excluded that polar auxin distribution is still altered in these plants, this experimental design suggests that these defects may alternatively be related to the exclusion of PIP5K2 from nuclear localization.
Overall, experimental evidence from different plants and using different experimental approaches indicates the presence of PI4P 5-kinases, of Ptdlns4P and of Ptdlns(4,5) P_{2} in plant nuclei. However, the physiological function of nuclear Pls and their molecular mode of action are currently not well understood.

1.5. Evidence for physiological functions of nuclear Pls

As mentioned above, the PI 3-kinase VPS34, which phosphorylates Ptdlns to Ptdlns3P, has already been detected in the nucleus of plant cells. Catalytically active PI 3-kinase was detected in detergent-resistant isolated plant nuclei. Detection of soy PI 3-kinase in the nucleus by a monoclonal antibody indicated localization at active transcription sites, both in the nucleolus and the nucleoplasm in addition to its localization in endomembranes. A role for PI 3-kinase and therefore also for Ptdlns3P in transcriptional control has been proposed (Bunney et al., 2000). Overexpression of the human PI4P 5-kinase PIP5K1a (HsPIP5K1a) in tobacco cell culture resulted in increased Ptdlns $(4,5) \mathrm{P}_{2}$ levels in the nucleus and reduced histone H3 lysine 9 acetylation (H3K9ac) compared with untransformed tobacco cells (Dieck et al., 2012). However, it remained unclear whether this effect was physiologically relevant and affected plant gene expression or whether it was possibly an incidental consequence of the expression of the human enzyme in a plant cell culture because the domain structures of plant type B PI4P 5-kinases differ significantly from those of human PIP5K1 isoforms.
Similarly, PI4P 5-kinases such as PIP5K2 from Arabidopsis (Lou et al., 2007; Ischebeck et al., 2011, 2013; Tejos et al., 2014), and PIs have been previously observed in plant nuclei (Bunney et al., 2000; Dieck et al., 2012; Gerth et al., 2017a). However, until now, the possible functions of PI-kinases and PIs in the plant nucleus have remained unclear. Studies with mammalian cells and other models provide evidence for a variety of possible nuclear functions of Pls and PI-kinases in different eukaryotic models. Various human PI4P 5-kinases, in addition to localizing to the plasma membrane, could also be observed in the nucleus. The isoforms HsPIP5K1 α, HsPIP5K2 α and HsPIP5K2 β could be observed in nuclear speckles in human lung fibroblasts (Boronenkov et al., 1998). Barlow and coworkers observed that HsPIP5K1a and Ptdlns $(4,5) \mathrm{P}_{2}$ colocalize with components of the mRNA processing machinery in sub-compartments in the nucleus of lung fibroblasts (Barlow et al., 2010). Nuclear localization of HsPIP5K2 β was also observed in HeLa cells (Ciruela et al., 2000). It was shown that

Ptdlns(4,5) P_{2} binds to the upstream binding factor (UBF) of RNA polymerase I (Pol I) and the pre-ribosomal RNA processing factor fibrillarin (Fib) and thus induces a conformational change, affecting binding to ribosomal RNA (rRNA) genes or rRNA (Yildirim et al., 2013). In mammalian cells, Ptdlns(4,5) P_{2} has been shown to regulate the functionality of the Star-PAP poly (A) polymerase, thereby affecting mRNA-3' processing and mRNA expression (Mellman et al., 2008). Recently, subnuclear structures composed of $\operatorname{Ptdlns}(4,5) \mathrm{P}_{2}$ and nuclear myosin 1 have been shown to contribute to the organization of Pol II transcriptional complexes (Sobol et al., 2018). These specialized structures were named nuclear lipid islands (NLIs) by the authors and appear to play a role in the efficient transcription of RNA Pol II (Sobol et al., 2018). The data from mammalian and other non-plant models indicate numerous potential roles for Pls in the nucleus. However, the reports from these systems cannot immediately be applied to plants, because a number of structures have no immediate counterparts in plants.
Nonetheless, studies from the plant field also provide evidence for functional roles of PI4P 5-kinases and PIs in plant nuclei. One study showed that the Arabidopsis homolog of trithorax, ATX1, a histone methyltransferase (Alvarez-Venegas et al., 2003), selectively binds to Ptdlns5P through its PHD finger, leading to translocation of ATX1 from the nucleus to the cytoplasm and reduction of ATX1 transcriptional activity (Alvarez-Venegas et al., 2006; Ndamukong et al., 2010). More recently, it was shown that a PIP5K1/PIP5K2 homolog from rice (OsPIP5K1) interacts with the growth-regulating homeodomain transcription factors DWT1 and DWL2, which are homologs of the intermediate class of wuschel related homeobox (WOX) transcription factors from Arabidopsis (Fang et al., 2020). This unexpected interaction was observed in the nucleus and the results suggest that the interaction of OsPIP5K1 and WOX is essential for the regulation of coordinated growth in rice (Fang et al., 2020). So far, the molecular mechanism by which OsPIP5K1 and Ptdlns $(4,5) \mathrm{P}_{2}$ might influence DWT1 and DWL2 function are unclear. WOX11 from rice, a family member of DWT1 and DWL2, was proposed to recruit a histone acetylation module to root-specific target genes involved in diverse processes, including auxin transport, auxin responses, transcription, cell cycle regulation and plant meristem development (Zhou et al., 2017).
The data available suggest a role of nuclear PIs in the control of transcription, possibly related to the recruitment of transcription factors and/or an effect on histone modification, and possibly a link to auxin biology. As key findings of this thesis revolve around the association of Pl-kinases and Pls with the machinery of histone modification, the following paragraph will provide a brief introduction to this important topic.

1.6. Histone modification and the control of gene activation

In eukaryotes, DNA is wrapped around a histone protein core and thus packaged, protected and regulated. DNA condensed in nucleosomes is called chromatin and histones represent
the protein component of chromatin. Core histones can be modified by posttranslational modifications at presented lysine (or arginine) residues at the N -terminus, called the histone tail (Millar and Grunstein, 2006; Kouzarides, 2007; Berger, 2007; Earley et al., 2007; Zhang et al., 2007). The histone tail stands out from the nucleosome, which is consisting of dimers of histones H2A, H2B, H3 and H4 each, that together form an octamer (Luger et al., 1997; Millar and Grunstein, 2006; Kouzarides, 2007; Zhang et al., 2007). Various post-translational modifications of different histones generate a complex combinatorial code that controls different nuclear functions, e.g. gene expression. The large number of posttranslational modifications at histones is introduced and removed by a variety of enzymes. Histone modifications inserted by various enzymes include phosphorylation at serine or threonine residues, ubiquitylation and SUMOylation of lysines, and of course methylation at lysine or arginine and acetylation and deacetylation of lysines. Introduced methyl- or acetyl groups at the N -termini of core histones can recruit further histone modifiers and/or have effects on chromatin structure and thus on gene expression (Kouzarides, 2007; Zhang et al., 2007; Falkenberg and Johnstone, 2014). The enzymes and proteins that mediate the introduction, removal, and reading of the histone code are therefore called writer, eraser, and reader enzymes. (Fig. 1.5) (Falkenberg and Johnstone, 2014).

Fig. 1.5: Different enzymes are involved in epigenetic control. Epigenetic writers, readers and erasers together regulate epigenetic control dynamically. Writers introduce histone modifications, which can be recognized by readers that can mediate further modifications either by writers or erasers. By this interplay, gene activation status is controlled and gene expression can be influenced. The figure was modified from (Falkenberg and Johnstone, 2014).

Epigenetic "writers" are enzymes that insert covalent histone modifications, such as methylations or acetylations, with the nuclear consequences as already mentioned above
(Kouzarides, 2007; Servet et al., 2010; Falkenberg and Johnstone, 2014; Marmorstein and Zhou, 2014). Typical targets are lysine residues at the N -termini mainly of histones H 3 and H 4 (Berger, 2007; Earley et al., 2007; Zhang et al., 2007; Servet et al., 2010). Epigenetic "readers" can bind to these histone modifications and promote further modifications by recruitment of further histone-modifying enzymes, either introducing new modifications or removing existing modifications (Strahl and Allis, 2000; Pena et al., 2006; Soliman and Riabowol, 2007; Taverna et al., 2007; Pena et al., 2008; Josling et al., 2012; Patel and Wang, 2013; Falkenberg and Johnstone, 2014; Marmorstein and Zhou, 2014; Liu and Min, 2016). Epigenetic "erasers", like histone deacetylases or histone demethylases, can remove epigenetic modifications (Berger, 2007; Kouzarides, 2007; Falkenberg and Johnstone, 2014). The interplay of these operating enzymes dynamically controls the gene activation status of specific not constitutively active gene targets (Berger, 2007; Falkenberg and Johnstone, 2014).
Histone sequences and histone codes are highly but not completely conserved between different species (Fuchs et al., 2006; Zhang et al., 2007). In general, at some specific histone residues methylation leads to a more condensed heterochromatin structure and has a repressive effect (Millar and Grunstein, 2006; Berger, 2007; Zhang et al., 2007), whereas other methylated residues lead to an opening of the chromatin structure and thus promote the formation of euchromatin areas (Millar and Grunstein, 2006; Berger, 2007; Servet et al., 2010). By covalent addition of an acetyl group to lysine residues of the histone tails, various nuclear processes can be influenced. Histone acetylation can lead to altered chromatin structure, regulation of cell cycle, DNA repair mechanisms, DNA replication, and most importantly, transcription and gene silencing (Millar and Grunstein, 2006; Berger, 2007; Kouzarides, 2007; Zhang et al., 2007). The addition of acetyl groups, especially in histones H 3 and H 4 , is catalyzed by histone acetyltransferases (HATs), the removal of acetylation is catalyzed by histone deacetylases (HDACs). In transcriptional regulation, acetylation usually leads to opening of the condensed chromatin structure and thus to gene transcription activation (Millar and Grunstein, 2006; Berger, 2007; Kouzarides, 2007; Zhang et al., 2007; Servet et al., 2010). Methylation at lysine residues (K) of histones H 3 and H 4 are well-studied in plants (Cheng et al., 2020). Lysine residues K4, K9, K23 (Trejo-Arellano et al., 2017), K27, K36, and K79 of histone H 3 and residue K 20 of histone H 4 can be mono-, di-, and/or trimethylated by histone lysine methyltransferases (Cheng et al., 2020). In most cases, these are histone lysine methyltransferases of the Su(var)3-9, Enhancer of zeste, Trithorax (SET) domain group (SDG), which carry a SET domain firstly described in Drosophila (Yeates, 2002; Dillon et al., 2005; Qian and Zhou, 2006). Relatively well-studied plant histone methylators that remove these methylations again include demethylase 1 homologs and Jumonji proteins (Liu et al., 2010; Xiao et al., 2016). Proteins with chromo, Tudor, MBT, WD40, PHD, and PWWP domains are considered "reader" proteins of histone methylation (Yun et al., 2011; Liu and Min, 2016).
"Reading" histone methylation usually results in transcriptional adaptation and thus changes in gene expression patterns. Di- or trimethylation of N-terminal histone H 3 lysine 4 (H3K4me2/H3K4me3) is a typical target for epigenetic readers that recruit activating effector proteins (Pena et al., 2006; Berger, 2007; Pena et al., 2008; Yun et al., 2011; Liu and Min, 2016). Typical acetylation or deacetylation targets of histones in Arabidopsis are N-terminal lysine residues K9, K14, K18, K23 and K27 of histone H3 or lysine residues K5, K8, K12, K16 and K20 of histone H4 (Earley et al., 2007; Kouzarides, 2007; Zhang et al., 2007; Servet et al., 2010).

Histone acetylation generally activates transcription because the introduction of the negatively charged acetyl group loosens the chromatin structure (Shahbazian and Grunstein, 2007). Two groups of HATs are distinguished, those localized in the nucleus (A-type) and those localized in the cytoplasm (B-type) (Brownell and Allis, 1996; Roth et al., 2001; Boycheva et al., 2014). The HATs belonging to the nuclear-localized group are classified in the different HAT families, namely the GCN5-related N-terminal acetyltransferases (GNAT), the MOZ, Ybf2/Sas3, Sas2 and Tip60-related, briefly also called MYST, the p300/CREB-binding protein (CBP) and the TATA-binding protein-associated factor (TAF1) (Servet et al., 2010; Boycheva et al., 2014; Rymen et al., 2019). In Arabidopsis, three enzymes belong to the GNAT family, including general control non-repressible 5 (GCN5, or called HAG1), elongator complex protein 3 (ELP3) and HAG2. The MYST family includes two members, HAG4/HAM1 and HAG5/HAM2. The p300/CBP family includes five enzymes, HAC1, HAC2, HAC4, HAC5 and HAC12 and the TAF1 family has two members HAF1 and HAF2/TAF1 (Servet et al., 2010; Boycheva et al., 2014; Jiang et al., 2020). Proteins with bromodomains are considered "reader" proteins of histone acetylation marks (Dhalluin et al., 1999; Berger, 2007; Servet et al., 2010; Marmorstein and Zhou, 2014). The binding of proteins with bromodomain to acetylated histones can trigger a variety of responses, e.g. acetylation of further histone residues or histones, remodeling of chromatin, and recruitment of other proteins/factors such as transcriptional activators/transcription factors. Thus, reading of this histone acetylation plays a crucial role in the regulation of transcription (Josling et al., 2012).

1.7. The histone acetyltransferase GCN5

GCN5 is one of the best-studied HATs in eukaryotes and is of critical importance in transcription regulation during stress responses but also during development (Gan et al., 2021). HATs are mostly part of large multiprotein complexes, as GCN5 is part of the Spt-Ada-GCN5-acetyltransferase (SAGA)-transcriptional co-activator complex (Grant et al., 1997; Lee and Workman, 2007; Servet et al., 2010; Strahl and Briggs, 2021; Gan et al., 2021). GCN5 activity is enhanced by other factors of the SAGA complex and, in general, protein complexes can also influence the substrate specificity of HATs. The multiprotein complexes are recruited
by protein-protein interactions to target sequences in the genome (Gan et al., 2021). Thus, both HATs, such as GCN5, and HDACs can either activate or repress gene expression through their activity at histones of specific promoters (Millar and Grunstein, 2006; Berger, 2007; Li et al., 2007).
The histone-modifying enzyme complex SAGA executes a highly conserved function in yeast, mammals, and plants (Srivastava et al., 2015; Moraga and Aquea, 2015). Studies in Tetrahymena and yeast led to the discovery of the SAGA complex (Brownell et al., 1996; Grant et al., 1997). In yeast, the SAGA complex is involved in many processes all targeting gene expression control whereby it can act in a multifunctional role due to its modular composition (Wu et al., 2004; Moraga and Aquea, 2015). As listed by Moraga and Aquea (Moraga and Aquea, 2015), yeast SAGA complex is involved in histone acetylation (Grant et al., 1997), histone deubiquitination (Henry et al., 2003; Daniel et al., 2004), mRNA export (RodríguezNavarro et al., 2004), transcription elongation (Govind et al., 2007), chromatin recognition (Pray-Grant et al., 2005), and regulation of the basal transcription machinery (Sterner et al., 1999).

Proteins belonging to the multiprotein complex are divided into modules with different functions and enzymatic activities (Koutelou et al., 2010; Moraga and Aquea, 2015; Vlachonasios et al., 2021). The four Arabidopsis SAGA modules are the core module consisting of TAF5, TAF6, TAF9, TAF10, TAF12, SPT3-like, SPT7, SPT20 and ADA1. The Arabidopsis SPT3-homolog within the core module interacts at active transcription sites with the TATA-binding protein (TBP) (Papai et al., 2020). The core module is connected to the TRA1 module by interaction of transcription-associated protein 1 (TRA1) with TAF12/Spt20. Interestingly, TRA1 is a member of the PI 3-kinase-like kinases (PIKK family) with three identified domains: HEAT, FAT and PI-kinase domain but seems to be catalytically inactive (Grant et al., 1998; Sharov et al., 2017). Both, the deubiquitination (DUB)-module consisting of UBP22, SGF11 and ENY2 (SGF73 is not present in Arabidopsis) and the histone acetyltransferase module (HAT module) comprising the proteins ADA2, ADA3, GCN5 and SGF29 are flexibly associated with the core module (Fig. 1.6) (Pfab et al., 2018; Nassrallah et al., 2018; Grasser et al., 2021; Vlachonasios et al., 2021; Wu et al., 2021). The histone acetylation activity of the HAT module of the SAGA complex is catalyzed by GCN5 (Grant et al., 1997; Stockinger et al., 2001; Servet et al., 2010; Srivastava et al., 2015; Moraga and Aquea, 2015; Grasser et al., 2021; Gan et al., 2021). GCN5 acetylates histone H3 at positions K9, K14, K18 and K27 (Benhamed et al., 2006; Zhang et al., 2007; Servet et al., 2010; Shen et al., 2015). ADA2A and ADA2B, components of HAT modules in Arabidopsis, are the only proteins beside histones that have been described to be acetylated by GCN5 (Mao et al., 2006).
SAGA, and in particular the functionality of ADA2B/GCN5, has been shown to play an important role in the different developmental stages of Arabidopsis. Also, in relation to abiotic
stress conditions (Srivastava et al., 2015; Moraga and Aquea, 2015), such as in the response to drought (Hark et al., 2009; Vlachonasios et al., 2011; Sakuraba et al., 2015; Li et al., 2019), salinity (Hark et al., 2009; Kaldis et al., 2011), heat (Hu et al., 2015) and cold stress (Stockinger et al., 2001; Vlachonasios et al., 2003) or nutrient deficiency (Xing et al., 2015). The subsequent adapted gene regulation is GCN5- or SAGA-dependent. In addition, GCN5 is involved in the transcriptional responses of several phytohormone pathways, such as ethylene, auxin and salicylic acid, and thus plays various roles during the plant life cycle (Weiste and Dröge-Laser, 2014; Grasser et al., 2021; Gan et al., 2021). Many of these signaling pathways that require GCN5 activity intertwine coordination of physiological processes and developmental stages (Grasser et al., 2021; Gan et al., 2021).

Fig. 1.6: The composition of the plant SAGA complex. The four SAGA modules, core module, TRA1 module, HAT module, and the DUB module are shown here. The arrangement and representation of the subunits is derived from the recently solved structure from yeast (Wang et al., 2020; Papai et al., 2020) and was adapted from data from Arabidopsis, which see the structure described here confirmed by co-purifications of the different proteins and modules (Pfab et al., 2018; Nassrallah et al., 2018). Figure from (Grasser et al., 2021).

In addition to the acetyltransferase domain (amino acid (aa) $222-371$), GCN5 contains a bromodomain (aa $472-543$) at its C-terminus (Fig. 1.7), which recruits GCN5 to already acetylated lysine residues. GCN5 is thus both writer and reader of the histone code. (Dhalluin et al., 1999; Berger, 2007; Servet et al., 2010). In chromatin immunoprecipitation experiments, GCN5 could be detected bound to 40% of the identified promoter regions, but the bromodomain of GCN5 was required for only 11% of the GCN5 targets (Benhamed et al., 2008).

Fig. 1.7: Domain structure of GCN5. GCN5 contains two defined protein domains. The histone acetyltransferase (HAT) domain (aa 222 - 371) and the bromodomain (BD) (aa 472 - 543).

GCN5 has previously been shown to interact with ADA2A (AT3G07740) and ADA2B (AT4G16420) (Stockinger et al., 2001; Mao et al., 2006; Servet et al., 2008). The interaction between ADA2A or ADA2B and GCN5 leads to an enhancement of the HAT activity of GCN5 (Mao et al., 2006). Different roles for ADA2A and ADA2B are discussed because expression of ADA2A under a constitutive promotor cannot complement an ada2b mutant (Hark et al., 2009). ADA2A and ADA2B are likely components of different HAT modules with specific target sites and could independently recruit GCN5 to the appropriate context (Hark et al., 2009; Anzola et al., 2010; Servet et al., 2010).

1.8. Physiological roles of GCN5 in phytohormone signaling and the control of growth

Previous studies have linked GCN5 HAT activity to phytohormone signaling pathways, such as ethylene signaling (Poulios and Vlachonasios, 2016; Gan et al., 2021), salicylic acid signaling (Kim et al., 2020; Gan et al., 2021) and auxin signaling (Vlachonasios et al., 2003; Kornet and Scheres, 2009; Weiste and Dröge-Laser, 2014; Gan et al., 2021).
The phenotype of Arabidopsis gcn5-1 mutants was described as comparable to plants with reduced auxin response, displaying short hypocotyls, upcurled leaves, reduced apical dominance and dwarf phenotype (Vlachonasios et al., 2003). ada2 mutants also showed evidence of impaired auxin response. The Arabidopsis ada2b-1 mutant was compared with auxin-overproducing mutants and showed elongated hypocotyls, small and epinastic cotyledons, a lower leaf expansion rate, an increased number of lateral roots and overall dwarfism (Vlachonasios et al., 2003; Anzola et al., 2010). The observed dwarfism phenotype of gcn5 and ada2b mutants is likely based on the fact that both GCN5 and ADA2B exert an influence on meristem maintenance (Kornet and Scheres, 2009). Overexpression of PLETHORA transcription factor 2 (PLT2) in gcn5 mutants can restore stem cell niche defects of gcn5 mutants, suggesting that GCN5 regulates the stem cell niche at the root tip and root growth by mediating the expression of PLT1 and PLT2 transcription (Vlachonasios et al., 2003; Kornet and Scheres, 2009; Servet et al., 2010). Thus, GCN5 together with ADA2B can increase the transcript abundance of PLT1 and PLT2 in the roots, regulating cell division in the meristem and cell expansion of stem cells, whereby ADA2B is not involved in stem cell maintenance. Expression regulation of PLETHORA transcription factors by GCN5 and ADA2B to maintain the root stem cell niche is a process that is also directly linked to auxin distribution (Kornet and Scheres, 2009). Also suggestive of a role of GCN5 in meristem maintenance is
the discovery that in rice ADA2B interacts with a plant homeodomain transcription factor of the WUSCHEL (WUS) family, a WOX11-like transcription factor, and possibly ADA2B subsequently recruits GCN5 to the context of WOX regulated genes (Zhou et al., 2017). In addition to evidence for root meristem regulations, there is also evidence that GCN5 is required for the maintenance of the shoot apical meristem as a negative regulator of WUS (Bertrand et al., 2003; Cohen et al., 2009; Poulios and Vlachonasios, 2016).
Transcription of PLETHORA genes depends on auxin response transcription factors (ARFs) (Aida et al., 2004) and PLETHORA expression therefore forms a gradient within the root tip that is comparable to that of auxin (Galinha et al., 2007; Grieneisen et al., 2007). In response or in combination with a phytohormone stimulus, such as auxin, transcription factors of the basic leucine zipper (bZIP) family, e.g. bZIP11, interact with ADA2B to recruit the histone acetylation machinery to specific auxin-responsive genes (Weiste and Dröge-Laser, 2014). Weiste and Dröge-Laser proposed a model which explains recruitment of GCN5 to auxin-inducible gene loci by the example of GH3.3 (Fig. 1.8).

Fig. 1.8: Increasing auxin levels induce GCN5-regulated transcription. Weiste and Dröge-Laser proposed a model that explains how increasing auxin levels lead to GCN5-mediated histone acetylation, which promotes gene expression of auxin-responsive genes. AC, acetylation, ADA2B, transcriptional adaptor ADA2B; ARF, auxin response transcription factor; Aux/IAA, Aux/IAA repressor protein; AuxRE, auxin-responsive element; bZIP, bZIP transcription factor; GRE, G-box-related element; HAT, histone acetyltransferase GCN5; HDAC, histone deacetylase; Pol II, RNA polymerase; TPL, TOPLESS protein; X, unknown protein. The figure was adopted from (Weiste and Dröge-Laser, 2014).

At low auxin levels, Aux/IAA repressor proteins inhibit the expression of auxin-induced genes. In addition, the transcriptional corepressor TOPLESS (TPL) recruits histone deacetylases
which provide tightly packed inactive chromatin by deacetylating histones. As auxin levels increase, Aux/IAA repressors are polyubiquitinated by the SCF/TIR1 complex and degraded by the 26 S proteasome. Auxin-responsive element (AuxRE)-binding transcription factors and ARFs mediate gene expression of auxin-dependent genes. In previous studies, in addition to auxin-responsive elements (AuxREs), G-box-related elements (GREs) have been found in promoters of auxin-inducible genes, such as GH3.3 (Ulmasov et al., 1995; Heinekamp et al., 2004). To these GREs, bZIP transcription factors can bind. Weiste and Dröge Laser have shown that certain bZIPs that bind to such GRE elements within auxin-inducible promoters, interact with ADA2, thereby recruiting the ADA2/GCN5-HAT module (possibly SAGA complex). GCN5/HAT module activity increases histone acetylation in the promoter region, thereby enhancing auxin-induced transcription through chromatin restructuring (Weiste and DrögeLaser, 2014).
Histone acetylation, as a molecular tool to control dynamic gene expression in response to various stresses or phytohormone signals, depends on several factors and is adapted to the particular developmental or stress-dependent response through the interplay of different signaling pathways and components. It seems likely that not all molecular factors of these detailed regulatory mechanisms are known yet.

One indication that there are Pls among the unknown players in histone modification was that increased Ptdlns(4,5) P_{2} levels through overexpression of a human HsPIP5K1 α in tobacco cells had an effect on histone acetylation (Dieck et al., 2012). While this reported experiment is clearly artificial and no effects on gene expression were tested, it still suggests that Pls may have a function in epigenetic regulation of gene expression. So far, it has not been investigated in plants whether PIs and/or plant PI-kinases might contribute to histone modification and thus to transcriptional control. Also, no molecular targets for PI-dependent effects on histone modification have yet been identified in plants, and it is fully unclear what the physiological consequences of such modifications might be.

1.9. Aims of this thesis

The overall aim of this thesis was to determine whether and how nuclear Pls might contribute to the control of histone modification and gene expression in plants. The initial experimental setup was chosen to help define the subsequent direction of experimental analyses. Based on the hypothesis that PIP5K1 and/or PIP5K2 were part of a nuclear protein complex involved in histone modification, it was attempted to provide evidence for or against this hypothesis and to determine molecular details:

- The first goal was to test whether the increased or decreased expression of the intrinsic nuclear Arabidopsis PI4P 5-kinases PIP5K1 and PIP5K2 would result in a change in the histone acetylation status of Arabidopsis plants.
- To elucidate the molecular mechanism by which histone modification was influenced, a second goal was to determine relevant protein-protein and protein-lipid interactions of PIP5K1/PIP5K2 and enzymes mediating histone modification.
- A third important goal was to determine whether misexpression of PIP5K1 and/or PIP5K2 would influence auxin-regulated gene expression and to clarify the underlying molecular mechanism.
- A fourth goal was to test for potential direct effects of Pls on enzymes of histone modification by using in vitro activity tests with recombinant proteins.
- A last goal was to also investigate the contribution of VPS34 and Ptdlns3P in the control of histone modification and gene expression.

2. Results

At the beginning of this work it was known that Pls (Bunney et al., 2000; Gerth et al., 2017a) and PI4P 5-kinases (Lou et al., 2007; Ischebeck et al., 2011, 2013; Tejos et al., 2014) are detectable in the plant nucleus in addition to the better-studied cytoplasmic and plasma membrane localization. For PIP5K2 from Arabidopsis, an NLS was identified and characterized, also indicating a targeted and active nuclear import of this enzyme (Gerth et al., 2017a). However, to date, there have been no studies on the molecular functions of Pls and the corresponding PI-forming enzymes in plant nuclei. While artificial overexpression of HsPIP5K1a in tobacco cells previously resulted in a reduced pattern in histone H3 lysine 9 acetylation (H3K9ac) (Dieck et al., 2012), it remained unclear whether this effect was physiologically relevant and impacted on plant gene expression or whether it was an accidental consequence of expressing the human enzyme in a plant cell culture. Similarly, the Arabidopsis PI 3-kinase VPS34 had previously been detected in the nucleus of plant cells, in addition to its localization in endomembranes (Bunney et al., 2000). VPS34 localizes to sites of active transcription, and a role for PI 3-kinase and Ptdlns3P in transcriptional control has been proposed that has remained undefined for two decades. While these reports suggest that PIs may influence relevant physiological processes in the nucleus of plant cells, so far there was little focused information on the molecular roles of nuclear PIs.

Therefore, this thesis further explored possible effects of Arabidopsis PI-kinases and Pls on nuclear functions, with a focus on histone modification and the epigenetic regulation of gene expression.

2.1. Histone H 3 acetylation is influenced in Arabidopsis by expression level of the intrinsic PI4P 5-kinases PIP5K1 and PIP5K2

To test whether misexpression of the Arabidopsis intrinsic PI4P 5-kinases PIP5K1 or PIP5K2 resulted in changed histone acetylation patterns, the acetylation levels at histone H 3 were examined in Arabidopsis pip5k1 pip5k2 double mutants (Ischebeck et al., 2013; Tejos et al., 2014) and in PIP5K2-EYFP overexpression (OE) plants (Gerth et al., 2017a) (Fig.2.1, genotyping in appendix Fig. 6.1).

Fig. 2.1: Histone H 3 acetylation levels of pip5k1 pip5k2 double mutant and PIP5K2-EYFP OE lines. Histone H 3 acetylation was assessed by immunodetection. Protein extracts were resolved by SDS-PAGE, blotted on a nitrocellulose membrane and analyzed with antibodies against histone H3 as control and acetylated histone H 3 antibodies, aH3K9ac and aH 3 K 14 ac . Chemiluminescent signals were recorded using an ECL detection system. The expected size of histone H 3 was 15.3 kDa . A, Immunodetection of histone H 3 acetylation levels, $\mathrm{H} 3 \mathrm{K9ac}$ and H 3 K 14 ac , of pip5k1 pip5k2 double mutant in comparison to Col-0. B, Quantification of H3K9ac and H3K14ac normalized against histone H3. The intensity of the detected protein bands in A was measured with ImageJ/Fiji (Schindelin et al., 2012). Data are representative for $\mathrm{n}=4$ with two biological replicates for H3K9ac and $\mathrm{n}=2$ with two biological replicates for H3K14ac. Bars represent means, error bars represent standard deviations. C, Immunodetection of histone H3 acetylation levels, H3K9ac and H3K14ac, of PIP5K2-EYFP OE lines L2 and L5. D, Quantification of H3K9ac and H3K14ac normalized against histone H3. The intensity of
the detected protein bands in C was measured with ImageJ/Fiji (Schindelin et al., 2012). Analysis was performed $\mathrm{n}=1$ with two biological replicates of each line. Bars represent means, error bars represent standard deviations.

Nuclei were isolated from Col-0 and pip5k1 pip5k2 Arabidopsis leaf rosettes and the levels of histone H3 acetylated at lysine residue 9 (H3K9) and at lysine residue 14 (H3K14) were investigated by immunodetection in comparison to total histone H 3 . The specific acetylation was tested with antisera against histone H 3 , against acetylated lysine residue 9 of histone H 3 (H3K9ac) or against acetylated lysine residue 14 of histone H3 (H3K14ac) epitopes, respectively (Fig. 2.1A). The specificity of the antisera was tested with histone H 3 protein and various acetylated or methylated histone H 3 peptides in separate assays (appendix Fig. 6.2). The degree of H3K9ac and H3K14ac was increased in the pip5k1 pip5k2 double mutant in comparison to the Col-0 wild type control (Fig. 2.1 A and B), as indicated by the ratio of the respective detected acetylated histones vs. the total detected histone (Fig. 2.1 B). By contrast, an opposite effect on histone acetylation was observed for histones isolated from the PIP5K2-EYFP OE lines (L2 and L5). Overexpression of intrinsic PIP5K2-EYFP resulted in a decrease in acetylation of H3K9 and H3K14 in the lines studied, whereas histone H3 levels were comparable in all plant samples examined (Fig. 2.1 C). This observation was confirmed by determining the histone H 3 to H 3 K 9 ac and histone H 3 to H 3 K 14 ac ratios, respectively (Fig. 2.1 D). H3K9ac and H3K14ac levels were found to be decreased in PIP5K2-EYFP OE lines L2 and L5 compared with the Col-0 wild type. These observations confirm the previously described effects of overexpressed HsPIP5K1 α in tobacco cells (Dieck et al., 2012) and illustrate that in Arabidopsis, histone H 3 acetylation can be positively or negatively modulated by changed production of Ptdlns $(4,5) \mathrm{P}_{2}$ by changed intrinsic expression levels of PI4P 5-kinases.
A relationship of PIP5K2 to histone H3 has been shown previously where histone H3 was found to be an interaction partner for PIP5K2 in an undirected yeast-two-hybrid (YTH) screen with a pollen tube cDNA library as prey (unpublished data, AG M. Heilmann). In the present study, it was additionally confirmed in dot-blot experiments that recombinantly expressed MBP-PIP5K1 and MBP-PIP5K2 can bind to recombinant histone H3 protein and histone H3 from calf thymus (see appendix Fig. 6.3).

2.2. PIP5K1 and PIP5K2 interact with the histone acetyltransferase GCN5

In view of the findings that altered expression of PI4P 5-kinases affected the acetylation of histone H3 and that PIP5K1 and PIP5K2 also bound to histone H3 themselves, PIP5K1 and PIP5K2 were tested in vivo for protein-protein interaction with various well-characterized and ubiquitously expressed histone-modifying enzymes (Fig. 2.2) (Servet et al., 2010; EspinosaCores et al., 2020; Jiang et al., 2020).

Fig. 2.2: PIP5K1 and PIP5K2 interact with the histone acetyltransferase GCN5. The interaction of PIP5K1 and PIP5K2 with various histone-modifying enzymes was tested by split-ubiquitin-based YTH analysis in S. cerevisiae strain NMY51 and by in vitro immuno pull-down analysis. A, B, Split-ubiquitinbased YTH analysis of OST4 fusions as bait. pAI-Alg5 and pDL2-Alg5 vectors were used as positive or negative controls. Uniform growth on -LW media (without leucine and tryptophane) indicates equal cell densities and the presence of the respective vectors. Interaction is indicated by growth under selective conditions on -LWH media (without leucine, tryptophane and histidine). A, Split-ubiquitin-based YTH of PIP5K1 and PIP5K2 (bait) with GCN5, HAM2, HDAC6, HDAC19 and SWC4 (prey). Yeast colonies were grown at $30^{\circ} \mathrm{C}$ for four days. A representative result of three replicates with five independent colonies of each combination is shown. B, Split-ubiquitin-based YTH of PIP5K1, PIP5K2, PIP5K6 and PIP5K9 (bait) with GCN5 and ADA2B (prey). Yeast colonies were grown at $30^{\circ} \mathrm{C}$ for three days (seven days for tests
with PIP5K9). $\mathrm{n}=3$ (PIP5K6, PIP5K9) or $\mathrm{n}=8$ (PIP5K1, PIP5K2) with five independent colonies of each combination. C, In vitro immuno pull-down of PIP5K1, PIP5K2 and PIP5K6 with GCN5. Recombinantly expressed GST, GST-GCN5 were immobilized on glutathione agarose and incubated with recombinant MBP-tagged PIP5K1, PIP5K2 and PIP5K6 (expression lysate). Bound protein was co-eluted with 50 mM reduced L-glutathione and interacting MBP-tagged proteins were analyzed by immunodetection using an aMBP antibody. Input GST-tagged protein was detected by an aGST antibody. Chemiluminescence signals were recorded with an ECL detection system. Pull-downs were performed in quadruple versions with PIP5K1, in triplicates with PIP5K2 and twice with PIP5K6. GCN5, general control non-repressible 5, a histone acetyltransferase of the GNAT family 1; GST, glutathione S-transferase; HAM2, histone acetyltransferase of the MYST family 2; HDAC6, histone deacetylase 6; HDAC19, histone deacetylase 19; MBP, maltose-binding protein; OST4, oligosaccharyltransferase 4; SWC4, SWR1-complex protein 4.

The following candidate enzymes were selected for the analysis: the HAT GCN5 (AT3G54610, general control non-repressible 5), HAM2 (AT5G09740, a histone acetyltransferase of the MYST family 2), HDAC6 (AT5G63110, a histone deacetylase of the RPD3/HDA1 family), HDAC19 (AT4G38130, or AtHD1, a histone deacetylase of the RPD3/HDA1 family) and SWC4 (AT2G47210, a DNA-binding protein recruiting the histone-modifying SWR1-complex) (Servet et al., 2010; Espinosa-Cores et al., 2020; Jiang et al., 2020). PIP5K1 and PIP5K2 (bait) were tested for interaction with the candidate proteins in split-ubiquitin-based YTH studies where the bait proteins were attached to the endoplasmic reticulum (ER) by fusion to an oligosaccharyltransferase 4 (OST4) anchor (Fig. 2.2 A). Positive protein-protein interaction was found for GCN5 with both PIP5K1 and PIP5K2 (Fig. 2.2 A). The YTH experiments shown in Fig. 2.2 B indicate interaction of GCN5 additionally with the ubiquitously expressed but functionally divergent PI4P 5-kinase PIP5K6 (Zhao et al., 2010; Stenzel et al., 2012; Hempel et al., 2017; Menzel et al., 2019; Fratini et al., 2021), but not with the nuclear-localized PI4P 5-kinase isoform PIP5K9 (Lou et al., 2007). As GCN5 is part of the HAT module of the SAGA complex and does interact with the transcriptional adaptor 2B, ADA2B (AT4G16420) (Stockinger et al., 2001; Mao et al., 2006; Servet et al., 2008), interactions of PIP5K1, PIP5K2, PIP5K6, and PIP5K9 with ADA2B were also tested (Fig. 2.2 B). The GCN5-ADA2B interaction served as a positive control (appendix Fig. 6.4); however, the four PI4P-5 kinases tested showed no interaction with ADA2B (Fig. 2.2 B).

These positive protein-protein interactions of PIP5K1, PIP5K2 and PIP5K6 with GCN5 were verified in in vitro immuno pull-down experiments (Fig. 2.2 C). Recombinant GST-tagged GCN5 was immobilized to a glutathione agarose matrix and incubated together with the different expression lysates including the respective MBP-tagged PI4P 5-kinases. MBP-PIP5K1, MBP-PIP5K2 and MBP-PIP5K6 were co-eluted with GST-GCN5 protein, indicating protein-protein interaction (Fig. 2.2 C) and verifying the results from the YTH analysis. Together, the data indicate interaction of PIP5K1 and PIP5K2 with the HAT GCN5.

2.2.1. Arabidopsis PIP5K1 and PIP5K2 and GCN5 interact with ING1 and ING2

To further confirm the association of PI4P 5-kinases PIP5K1 and PIP5K2 with the nuclear HAT complex, PIP5K1 and PIP5K2 were tested for interaction with known HAT complex recruiting proteins. Inhibitor of growth (ING) is an epigenetic reader recognizing trimethylated histones and recruiting HATs to mediate further acetylation of the histone substrates (Vieyra et al., 2002; Pena et al., 2006; Soliman and Riabowol, 2007). From the mammalian field of research it is known that mammalian ING proteins bind to PIs (Gozani et al., 2003) and require this interaction for their function (Bunce et al., 2006a, 2006b; Soliman and Riabowol, 2007). The two ING isoforms of Arabidopsis, ING1 (AT3G24010) and ING2 (AT1G54390), are also localized in the nucleus and, like mammalian INGs, bind to di- or trimethylated histone H 3 lysine 4 (H3K4me2/H3K4me3) via their plant PHD fingers (Lee et al., 2009). Furthermore, the PHD finger of ING2 binds to Pls in vitro (Alvarez-Venegas et al., 2006). In split-ubiquitin-based YTH experiments both ING1 and ING2 were tested for protein-protein interaction as baits with GCN5 and PIP5K1 and PIP5K2 as prey, respectively (Fig. 2.3 A).

B

Fig. 2.3: GCN5, PIP5K1 and PIP5K2 interact with the epigenetic readers ING1 and ING2 from Arabidopsis. The interaction of GCN5, PIP5K1 and PIP5K2 with ING1 and ING2 was tested by split-ubiquitin-based YTH analysis and by in vitro immuno pull-down analysis. A, Split-ubiquitin-based YTH of GCN5, PIP5K1 and PIP5K2 (bait) with ING1 and ING2 (prey). Yeast colonies were grown at $30^{\circ} \mathrm{C}$ for six days. A representative result of three replicates with five independent colonies of each combination is shown. OST4 fusions localized interactions to ER membranes. pAl-Alg5 and pDL2-Alg5
vectors were used as positive or negative control, respectively. Uniform growth on -LW media (without leucine and tryptophane) indicates equal cell densities and the presence of the respective vectors. Interaction is indicated by growth under selective conditions on -LWH media (without leucine, tryptophane and histidine). *, -LWH medium supplemented with 5 mM 3 -amino-1,2,4-triazole (3-AT). B, In vitro immuno pull-down of GCN5, PIP5K1 and PIP5K2 with ING1 or ING2. Recombinantly expressed GST, GST-ING1 and GST-ING2 were immobilized on glutathione agarose. GST-ING1 and GST-ING2 were incubated with recombinant MBP-tagged GCN5 and GST-ING1 was co-incubated with either MBP-tagged PIP5K1 or PIP5K2 (expression lysates). Bound protein was co-eluted with 50 mM reduced L-glutathione and interacting MBP-tagged proteins were analyzed by immunodetection using an aMBP antibody. Input GST-tagged protein was detected by an aGST antibody. Chemiluminescence signals were recorded with an ECL detection system. Pull-downs were performed twice with the combination GST-ING1/MBP-GCN5; in triplicates with the combination GST-ING2/MBP-GCN5. Pull downs with GST-ING1 and MBP-PIP5K1 were performed in quadruple versions and with GST-ING1 and MBP-PIP5K2 in triplicates.

The YTH analysis indicates that both ING1 and ING2 do interact with GCN5 as well as with PIP5K1 and PIP5K2 (Fig. 2.3 A). These interactions were confirmed in in vitro immuno pull-down experiments (Fig. 2.3 B). GST-ING1 and GST-ING2 were immobilized to a glutathione agarose matrix and incubated with different lysates containing MBP-GCN5 or the respective MBP-tagged PI4P 5-kinases. MBP-GCN5, MBP-PIP5K1 and MBP-PIP5K2 were co-eluted with GST-ING1 or GST-ING2 protein, indicating protein-protein interaction (Fig. 2.3 B) and verifying the results from the YTH analysis. These results support the association of PI4P 5-kinases with the nuclear HAT complex. The epigenetic readers ING1 and ING2 and the HAT GCN5 do not only bind mutually but also to PI4P 5-kinases. PI4P 5-kinases or Pls as signaling lipids could be involved in epigenetic regulation and chromatin remodeling. The data indicate mutual interactions between PIP5K1 and PIP5K2 with GCN5 and with ING proteins as well as between ING proteins and GCN5. It is possible that all these components are cooperating in histone modification in the nucleus.

2.3. Overexpression of PIP5K1 or PIP5K2 attenuates GCN5-dependent activation of the GH3.3 gene

GCN5 is known to be involved in the regulation of a variety of different genes, mainly in stress responses to abiotic stresses (Moraga and Aquea, 2015) or phytohormone signaling (Vlachonasios et al., 2003; Kornet and Scheres, 2009; Weiste and Dröge-Laser, 2014). The gene GH3.3 (AT2G23170), an auxin-conjugase of the auxin-responsive GH3 family proteins, is regulated by both auxin and GCN5-mediated histone acetylation at GH3.3 gene locus (Hagen and Guilfoyle, 2002; Staswick et al., 2005; Park et al., 2007; Weiste and Dröge-Laser, 2014; Chiu et al., 2018). It was previously described that in the presence of auxin, GH3.3 transcription is induced whereas the GCN5 inhibitor butyrolactone 3 leads to a reduced transcriptional response in the presence of auxin (Weiste and Dröge-Laser, 2014). To test whether the GCN5-interactors PIP5K1 and PIP5K2 and their effects on histone acetylation
were relevant for regulating gene expression in vivo, we first analyzed the auxin-mediated activation of the GCN5-dependent gene GH3.3 in the presence or absence of overexpressed PIP5K1 or PIP5K2, respectively. To test this, the experimental setup of Weiste and DrögeLaser (Weiste and Dröge-Laser, 2014) was extended by adding the transient overexpression of the respective PI4P 5-kinases. Protoplasts as solitary cells are a suitable experimental system to study the influence of PI4P 5-kinases on the expression of genes regulated by auxin. Cells could be easily manipulated in their PI-kinase expression levels and respond individually and uniformly to exogenous auxin treatment, circumventing possible effects of altered auxin distribution between plant tissues, such as those reported for the Arabidopsis pip5k1 pip5k2 double mutant (Ischebeck et al., 2013; Tejos et al., 2014).

First, time series experiments were performed with untransformed protoplasts to determine at what time GH3.3 is most strongly expressed in the experimental setup used. For this purpose, protoplasts were incubated for $0.5,1,2,4.25,16,18$ or 22 h either with $0.25 \mu \mathrm{M}$ 1-naphthaleneacetic acid (NAA) or NaOH (mock) both diluted in WI buffer (see 4.26.1) and the transcription activation of GH3.3 was analyzed by quantitative real-time RT PCR (qPCR) (appendix Fig. 6.5). The results showed that GH3.3 transcription increased for up to 18 h after treatment with NAA (appendix Fig. 6.5). The following experiments were performed with a NAA/mock incubation time of 14 h .

Protoplasts transiently expressing an EYFP control, PIP5K1-EYFP, PIP5K2-EYFP, the catalytically inactive PIP5K2 variant PIP5K2 K470A-EYFP (Stenzel et al., 2012), or PIP5K6-EYFP (Hempel et al., 2017) were treated with NAA or mock, and then transcriptional activation of GH3.3 was analyzed by qPCR (Fig. 2.4). The relative transcript levels of GH3.3 were normalized to the transcript abundance of the housekeeping gene UBC10.
Overexpression of PIP5K1-EYFP or PIP5K2-EYFP reduced auxin-induced GH3.3 transcription compared with overexpression of the corresponding EYFP control (Fig. 2.4 A and B), although the transcript-reducing effect by overexpression of PIP5K2-EYFP was more pronounced and also significant (Fig. 2.4 B). By contrast, the expression of the catalytically inactive PIP5K2 K470A-EYFP variant had no effect on the auxin-activation of GH3.3 transcription (Fig. 2.4 B). Moreover, overexpression of PIP5K6-EYFP, a functionally divergent isoenzyme, showed no effect on GH3.3 transcription after auxin-induction (Fig. 2.4 C).
The basal GH3.3 transcript levels of PI4P 5-kinase overexpressing mock-treated samples were also determined and were significantly increased by overexpression of PIP5K2-EYFP and slightly but significantly decreased by overexpression of PIP5K6-EYFP (appendix Fig. 6.6 A, B and C).

Fig. 2.4: Overexpression of PI4P 5-kinases reduces auxin-activation of GH3.3. Relative transcript levels of GH3.3 in mesophyll protoplasts upon overexpressing either EYFP or the different PI4P 5-kinases and with mock (-) and with $0.25 \mu \mathrm{M}$ NAA (+) treatment overnight. Data represent $9-16$ biological replicates (transformations) from three to four independent protoplast preparations. A, Protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K1-EYFP. B, Protoplasts transformed with either pEntryA-pCaMV35S::EYFP, pEntryA-pCaMV35S::PIP5K2-EYFP or pEntryA-pCaMV35S::PIP5K2 K470A-EYFP. C, Protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryD-pCaMV35S::PIP5K6-EYFP. Transcript levels were normalized to both the reference gene UBC10 and the transcript levels of the respective mock-treated sample (-). Relative transcript levels are shown as boxplots; dots show outliers. Significant differences were analyzed by one-way ANOVA with a subsequent Tukey's post-hoc test $(P<0.05)$ and indicated by letters a-c. D, Immunodetection of EYFP, PIP5K1-EYFP, PIP5K2-EYFP, PIP5K2 K470A-EYFP, and PIP5K6-EYFP overexpression in protoplasts treated as described above was performed using an $\alpha E Y F P$ antiserum. Chemiluminescence signals were recorded with an ECL detection system. Immunodetections were performed in triplicates with overexpression of EYFP, PIP5K1-EYFP, PIP5K2-EYFP or PIP5K2 K470A-EYFP and twice with overexpression of PIP5K6-EYFP. PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder was used as a molecular size marker. Expected molecular sizes of full-length proteins, EYFP, 27.0 kDa; PIP5K1-EYFP, 112.9 kDa ; PIP5K2-EYFP/PIP5K2 K470A-EYFP, 113.3 kDa ; PIP5K6-EYFP, 108.4 kDa .

Endogenous GCN5 transcript levels were also tested as controls, but these did not change upon expression of the various PI4P 5-kinases and/or upon auxin application (appendix Fig. 6.7 A, B and C). The overexpression of EYFP, PIP5K1-EYFP, PIP5K2-EYFP, PIP5K2 K470A-EYFP and PIP5K6-EYFP was verified by qPCR (appendix Fig. 6.8 A - F). In addition, expression of the fusion proteins was confirmed by immunodetection with a specific antiserum against EYFP (Fig. 2.4 D). This experiment showed that PIP5K1-EYFP was always expressed to a lower level than the other EYFP fusion proteins, which may have been associated with the lower effect of PIP5K1-EYFP overexpression on auxin-activated GH3.3 transcription.

The data suggest that the overexpression of PIP5K2-EYFP results in altered auxin-activation of GH3.3 transcription. This observation is consistent with the observed effects of PIP5K2 overexpression on histone H 3 acetylation in Arabidopsis plants (section 2.1, Fig. 2.1). No clear effect was obtained with PIP5K1-EYFP, possibly due to its lower expression (Fig. 2.4 D) or its lower intrinsic catalytic activity (Ischebeck et al., 2013), nor with PIP5K6-EYFP, possible also due to its lower catalytic activity (Stenzel et al., 2012) or its functional divergence form PIP5K1/PIP5K2 (Zhao et al., 2010; Stenzel et al., 2012; Hempel et al., 2017; Menzel et al., 2019; Fratini et al., 2021).
In addition to GH3.3 gene activation, the auxin-mediated transcriptional activation of the genes indole-3-acetic acid inducible 2 (IAA2, AT3G23030), indole-3-acetic acid inducible 5 (IAA5, AT1G15580) and indole-3-acetic acid inducible 19 (IAA19, AT3G15540) was also tested. Auxin treatment was adjusted to the auxin-induction maxima of IAA2, IAA5, and IAA19 and performed for 2.5 h with $2 \mu \mathrm{M}$ NAA (see section 4.26.1). Data on auxin inducibility and time points were chosen according to data from the Arabidopsis eFP Browser database (Winter et al., 2007).
Overexpression of PIP5K2-EYFP had again a significant effect and attenuated auxin-mediated transcription of IAA2 and IAA5 as of GH3.3 (Fig. 2.5 B and E). No effect was detected for auxin-induction of IAA19 (appendix Fig. 6.9 E). Overexpression of PIP5K1-EYFP did not affect auxin-mediated transcription of IAA2 and IAA5 (Fig. 2.5 A and D), but showed that transcription of IAA19 was reduced (appendix Fig. 6.9 D). Overexpression of PIP5K1 therefore showed a possibly differential effect on auxin-induced gene activation of IAAs. Overexpression of PIP5K6-EYFP had no effect on auxin-induced gene transcription of the IAAs studied (Fig. 2.5 C and F and appendix Fig. 6.9 F). Future experiments will have to expand in elucidating such differences, which could not be resolved in this first description of the effect. Basal transcript levels of IAA2, IAA5 and IAA19 of mock-treated samples were also determined and were not divergent upon overexpression of EYFP, PIP5K1-EYFP, PIP5K2-EYFP or PIP5K6-EYFP (appendix Fig. 6.6 D, E, F, G, H and I and appendix Fig. 6.9 A, B and C).

Fig. 2.5: Overexpression of PI4P 5-kinases reduces auxin-activation of IAA2 and IAA5. Relative transcript levels of IAA2 (A-C) and IAA5 (D-F) in mesophyll protoplasts upon overexpressing either EYFP or the different PI4P 5-kinases and with mock (-) and with $2 \mu \mathrm{M}$ NAA (+) treatment for 2.5 h . Data represent $8-12$ biological replicates (transformations) from three independent protoplast preparations. A, IAA2 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K1-EYFP. B, IAA2 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K2-EYFP. C, IAA2 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryD-pCaMV35S::PIP5K6-EYFP.

D, IAA5 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K1-EYFP. E, IAA5 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K2-EYFP. F, IAA5 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryD-pCaMV35S::PIP5K6-EYFP. Transcript levels were normalized to both the reference gene UBC10 and the transcript levels of the respective mock-treated sample (-). Relative transcript levels are shown as boxplots; dots show outliers. Significant differences were analyzed by one-way ANOVA with a subsequent Tukey's post-hoc test ($P<0.05$) and indicated by letters a-c. n.s., not significant. G, Immunodetection of EYFP, PIP5K1-EYFP, PIP5K2-EYFP, PIP5K2 K470A-EYFP, and PIP5K6-EYFP overexpression in protoplasts treated as described above were performed using an aEYFP antiserum. Chemiluminescence signals were recorded with an ECL detection system. Immunodetections were performed in triplicates with overexpression of EYFP, PIP5K1-EYFP or PIP5K2-EYFP and twice with overexpression of PIP5K6EYFP. PageRuler ${ }^{T M}$ Prestained Protein Ladder was used as a molecular size marker. Expected molecular sizes of full-length proteins, EYFP, 27.0 kDa ; PIP5K1-EYFP, 112.9 kDa ; PIP5K2-EYFP, 113.3 kDa; PIP5K6-EYFP, 108.4 kDa.

The endogenous GCN5 transcript levels were also analyzed and can serve as a control for the overall experimental setup, as GCN5 transcript abundance did not vary upon auxin-activation or upon transient overexpression of EYFP-tagged PI4P 5-kinases (appendix Fig. 6.7 D, E and F). The overexpression of EYFP, PIP5K1-EYFP, PIP5K2-EYFP and PIP5K6-EYFP was also verified by qPCR (appendix Fig. $6.8 \mathrm{G}-\mathrm{L}$) and the expression of the fusion proteins was confirmed by immunodetection with a specific antiserum against EYFP (Fig. 2.5 G).
The data on the effects of overexpressed PI4P 5-kinase variants on auxin-activation of selected genes indicate that PIs contribute to transcriptional control of GH3.3 expression and probably other auxin-inducible genes, possibly by influencing histone acetylation.

2.4. Ptdlns(4,5) P_{2} and other Pls inhibit histone acetyltransferase activity of recombinant GCN5 protein in vitro

The results so far suggested that in particular altered PIP5K2 expression may influence histone H3 acetylation and the activation of GCN5-regulated genes upon auxin application. These effects seemed to be dependent on PIP5K2 catalytic activity (Fig. 2.4) and, thus, on the reaction product Ptdlns $(4,5) \mathrm{P}_{2}$. Therefore, a direct effect of Ptdlns $(4,5) \mathrm{P}_{2}$ or an effect of other Pls, that can function as substrates or reaction products of PI4P 5-kinases, on GCN5 histone acetylation activity was tested.

To test whether Pls had an effect on GCN5, in vitro histone acetylation assays were performed with recombinant GCN5 protein in the presence or absence of different Pls. Before this experiments were started, an in vitro GCN5 activity assay was established on basis of an assay by Gadhia and coworkers ((Gadhia et al., 2017), section 4.24) and was first characterized. The assay employs recombinantly expressed and affinity enriched MBP-GCN5 protein, which is tested for catalytic activity with acetyl coenzyme A (acetyl-CoA) as acetyl donor against recombinant histone H 3 as a substrate (Fig. 2.6 A).

Fig. 2.6: In vitro GCN5 acetylation activity. Histone acetylation with enriched recombinant MBP-GCN5 protein was studied in vitro in the absence and presence of acetyl-CoA and ADA2B. The formation of H3K9ac and H3K14ac was detected with specific antibodies. Chemiluminescent signals were recorded using an ECL detection system. A, In vitro histone H3 acetylation activity of GCN5 in presence or absence of acetyl-CoA and with and without ADA2B. Reactions were stopped after 60 min . The data are representative for four individual experiments. PageRuler ${ }^{T M}$ Prestained Protein Ladder was used as a molecular size marker. Expected molecular sizes of full-length proteins, histone $\mathrm{H} 3,15.3 \mathrm{kDa}$; MBP-GCN5, 105.6 kDa ; MBP-ADA2B, 98.2 kDa . B, Quantification of H3K9ac and H3K14ac in presence and absence of ADA2B. The intensity of the detected H3K9ac and H3K14ac in A was analyzed with ImageJ/Fiji (Schindelin et al., 2012). The degree of acetylation is expressed in arbitrary units (AU). Data represent means, error bars show standard deviation for four independent experiments. Asterisks indicate significant differences in GCN5 activity according to a Student's T-test (** $P \leq 0.01$).

GCN5 acetylates histone H3 at positions H3K9 and H3K14 (Benhamed et al., 2006; Zhang et al., 2007; Servet et al., 2010; Shen et al., 2015). The in vitroformation of H3K9ac and H3K14ac was individually detected using specific antibodies, confirming the intrinsic histone acetylation activity of the recombinant MBP-GCN5 protein used (Fig. 2.6 A). Experiments with and without acetyl-CoA co-substrate showed that the specific histone H 3 acetylation antibodies detect only acetylated histones when acetyl-CoA was present in the assay (Fig. 2.6 A). In addition, the activating effect of recombinant ADA2B on GCN5 (Mao et al., 2006; Servet et al., 2010; Weiste and Dröge-Laser, 2014) was tested (Fig. 3.6 A and B). The addition of recombinant ADA2B protein significantly enhanced GCN5 acetylation at H3K9 but not at H3K14, as shown in Fig. 2.6 A and B. Since GCN5 was active in the assay and the enzyme activity could be influenced by the addition of ADA2B, the HAT assay was considered functional and suitable to assess quantitative changes in histone acetylation.
MBP-GCN5-mediated histone acetylation was next tested in the presence and the absence of added Pls. Pls carry a strong anionic charge in the lipid head group and histones have strongly positively charged N -termini, resulting in electrostatic interactions. In order to minimize
saturation effects of the positive lysine residues by added Pls and thereby exclude the possibility that histone acetylation was limited only by the binding of Pls to lysines, the stoichiometric ratio of lipid to basic histone residues was estimated. There are 18 basic (i.e. putatively positively charged lysines and arginines) amino acids in the first 56 amino acids of the histone tail of histone H 3 . The amount of phospholipid used in the HAT reactions was 0.127 nmol per 0.055 nmol of histone H 3 used (each with 18 basic residues), resulting in a lipid vs. basic residue stoichiometry of 0.127 to 1 . Based on this estimate, the net charge effect between Pls and histones should thus be minimal. For effects on GCN5 activity, phosphatidylcholine (PtdCho), phosphatidic acid (PtdOH), and the Pls Ptdlns3P, Ptdlns4P, Ptdlns(3,5) P_{2}, and Ptdlns(4,5) P_{2} were tested (Fig. 2.7 A) and immunodetection signals of H3K9ac (Fig. 2.7 B) and H3K14ac (Fig. 2.7 C) were quantified with ImageJ/Fiji (Schindelin et al., 2012).
PtdCho as a neutral lipid control did not reduce MBP-GCN5 acetylation activity and PtdOH caused a slight effect compared to a sample without lipid or the sample with PtdCho, but this effect was not significant (Fig. 2.7 A - C). By contrast, reduced MBP-GCN5 acetylation activity, in the form of reduced signal intensities for H3K9ac and H3K14ac immunodetection, was evident in the presence of the Pls (Fig. 2.7 A - C). It was noticeable that the acetylation activity toward H3K9 was not as strongly affected as that toward H3K14. The decrease in the formation of H3K14ac was significantly reduced in the presence of different Pls. The strongest and most significant inhibitory influence was exerted by Ptdlns3P, Ptdlns(3,5) P_{2} and $\operatorname{Ptdlns}(4,5) \mathrm{P}_{2}$ on GCN5 acetylation activity (Fig. 2.7 A - C).
Since Ptdlns3P and Ptdlns(4,5) P_{2} showed a clear influence on the acetylation activity of GCN5, these lipids were selected to further analyze their influence on the catalytic activity of GCN5 in a temporal context as an alternative to a kinetic measurement. For this purpose, histone H 3 acetylation was monitored over a period of 20 to 120 min , and samples were analyzed at 20 min-intervals (Fig. 2.8). In the presence of Ptdlns3P and Ptdlns(4,5) P_{2}, histone H3 at positions H3K9 and H3K14 was less acetylated than in the samples without Pls (Fig. 2.8). Overall, the histone H 3 acetylation status of the PI treated samples never reached that of the samples without Pls (Fig. 2.8 A, B and C for Ptdlns3P and Fig. 2.8 D, E and F for Ptdlns $(4,5) \mathrm{P}_{2}$). The incubation time of the previous HAT assays with or without Pls (Fig. 2.6 and Fig. 2.7) was confirmed to be optimal at 60 min . These experimental data indicate a direct effect of PIs on the GCN5-mediated acetylation of histone H 3 , which is expressed in decreased catalytic activity of the HAT enzyme. However, the mode of action by which Pls might affect the catalytic activity of GCN5, remains currently unclear.

Fig. 2.7: In vitro GCN5 acetylation activity is compromised in presence of Pls. Histone H3 acetylation by enriched recombinant MBP-GCN5 protein was studied in vitro in the absence and presence of various phospholipids. The formation of H3K9ac and H3K14ac was detected with specific antibodies. PageRuler ${ }^{T M}$ Prestained Protein Ladder was used as a molecular size marker. Chemiluminescent signals were recorded using an ECL detection system. The arrow indicates MBP-GCN5. A, Immunodetection with specific antibodies against histone H3, H3K9ac, H3K14ac and MBP. The in vitro histone acetylation is shown after 60 min incubation with 0.127 nmol phospholipids, as indicated. Control, reaction performed without the addition of phospholipids and without acetyl-CoA; no lipid, reaction without any phospholipids. Expected molecular sizes of full-length proteins, histone H 3 , H3K9ac and H3K14ac, 15.3 kDa; MBP-GCN5, 105.6 kDa. B, C, Quantification of H3K9ac and H3K14ac ECL signals in presence and absence of phospholipids with ImageJ/Fiji (Schindelin et al., 2012). Absolute acetylation was quantified and expressed in arbitrary units (AU). Data represent means, error bars show standard deviation for at least four independent experiments. Asterisks indicate significant differences in GCN5 activity between samples with PtdCho and other added phospholipids according to a Student's T-test (* $P \leq 0.05$). B, Quantification of H3K9ac. No significant differences were found. C, Quantification of H3K14ac.

Fig. 2.8: GCN5 acetylation activity in vitro in presence of Pls over time. Time course experiment of histone H 3 acetylation by GCN5 in the presence of 0.127 nmol Ptdlns3P (A-C) or Ptdlns(4,5)P2. (D-F). The acetylation reactions were stopped after 20, 40, 60, 80, 100 and 120 min , respectively. The formation of H3K9ac and H3K14ac was detected with specific antibodies. Expected molecular sizes of
full-length proteins, histone H3, H3K9ac, H3K14ac, 15.3 kDa ; MBP-GCN5, 105.6 kDa. PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder was used as a molecular size marker. Chemiluminescent signals were recorded using an ECL detection system. The arrow indicates MBP-GCN5. A, In vitro acetylation of histone H3 at H3K9 and H3K14 in absence (mock) or presence of Ptdlns3P. Control sample lacking acetyl-CoA was stopped after 60 min . The tests were performed in three independent experiments with similar results. B, C, Quantification of H3K9ac and H3K14ac ECL signals in presence and absence of Ptdlns3P with ImageJ/Fiji (Schindelin et al., 2012). Absolute acetylation was quantified and expressed in arbitrary units (AU). Data represent means, error bars show standard deviation for three independent experiments. B, Quantification of H3K9ac in presence of Ptdlns3P. C, Quantification of H3K14ac in presence of Ptdlns3P. D, In vitro acetylation of histone H3 at H3K9 and H3K14 in absence (mock) or presence of Ptdlns $(4,5) \mathrm{P}_{2}$. Control sample lacking acetyl-CoA was stopped after 60 min . The tests were performed in two independent experiments with similar results. E, F, Quantification of H3K9ac and H3K14ac ECL signals in presence and absence of PtdIns(4,5)P2 with ImageJ/Fiji (Schindelin et al., 2012). Absolute acetylation was quantified and expressed in arbitrary units (AU). The diagrams are representative for two independent experiments. E, Quantification of H3K9ac in the presence of Ptdlns(4,5)P2. F, Quantification of H3K14ac in presence of Ptdlns(4,5) P_{2}.

2.5. Recombinant MBP-GCN5 protein binds Pls

To better understand how Pls might exert an influence on GCN5 functionality and histone acetylation, the direct binding of recombinant MBP-GCN5 to PIs was investigated in vitro by lipid overlay assays and by liposome sedimentation tests (Fig. 2.9). Lipid binding of recombinantly expressed and enriched MBP-GCN5 was first tested in lipid overlay assays with commercially available PIP strips containing various phospholipids, as shown in the schematic representation in Fig. 2.9 A. MBP protein was used as a negative control and did not show any lipid binding (Fig. 2.9 B, left panel). By contrast, MBP-GCN5 bound to the Ptdlns-monophosphates Ptdlns3P, Ptdlns4P and Ptdlns5P (Fig. 2.9 B, as indicated). The binding to Ptdlns3P seemed to be most prominent. Arabidopsis ING proteins ING1 and ING2 were also tested for lipid binding in lipid overlay assays. The PHD domain of ING2 has already been demonstrated to bind to Pls (Alvarez-Venegas et al., 2006), and mammalian ING proteins are also known to bind to Pls (Gozani et al., 2003). Here, recombinant full-length MBP-ING1 and MBP-ING2 protein bound to Ptdlns-monophosphates Ptdlns3P, Ptdlns4P and Ptdlns5P and to PtdSer in lipid overlay assays (Fig. 2.9 B, as indicated). The enriched proteins used for lipid overlay assays are shown in appendix Fig. 6.10. The specificity of the binding assays was confirmed by using the commercial control proteins Ptdlns3P Grip and Ptdlns(4,5) P_{2} Grip, which showed specific binding to Ptdlns3P or Ptdlns $(4,5) \mathrm{P}_{2}$, respectively, as intended (appendix Fig. 6.11).

Fig. 2.9: Lipid interaction studies of GCN5 and ING proteins with Pls. The phospholipid binding of purified recombinant MBP-GCN5 and MBP-ING1/MBP-ING2 was examined by lipid overlay assays and liposome sedimentation assays. A, Schematic representation of the PIP strips used for lipid overlay assays. Next to the important PIs in plants (PtdIns3P, PtdIns4P, Ptdlns5P, Ptdlns(3,5)P P_{2}, Ptdlns(4,5) P_{2}) also the non-plant specific Pls, phosphatidylinositol 3,4-bisphosphate (Ptdlns(3,4)P2),
phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5) P_{3}) and further phospholipids were spotted, lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), sphingosine 1-phosphate (S1P), phosphatidylinositol (Ptdlns), phosphatidylethanolamine (PtdEtn), phosphatidylcholine (PtdCho), phosphatidic acid (PtdOH), phosphatidylserine (PtdSer). B, Lipid overlay assays with enriched MBP, MBP-GCN5 and MBP-ING1/MBP-ING2 protein fractions. Interactions were visualized by using a primary antiserum against MBP and a secondary antiserum with an AP conjugate. AP detection was performed. The experiment was repeated twice with similar results. C, Liposome sedimentation assays of MBP-GCN5 and MBP-ING1. Liposome sedimentation assays were performed with liposomes prepared with PtdCho alone (control) or with a mixture of PtdCho and either Ptdlns3P, Ptdlns4P, Ptdlns5P, Ptdlns(3,5) P_{2}, Ptdlns(4,5) P_{2}, PtdOH or PtdSer. No lipid, control sample without liposomes. Supernatant, contained unbound protein. Sediment, protein that had bound to respective liposomes. Proteins were separated on an SDS-PAGE and detected by immunoblots with the use of the specific antibody against MBP and a secondary antibody conjugated to AP. AP detection was performed. PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder was used as a molecular size marker. Expected molecular size of full-length proteins, MBP-GCN5, 105.6 kDa , MBP-ING1, 68.6 kDa . The samples shown in line are from the same blots; the blots were only split to show the samples in a meaningful order. Experiments were performed 3-11 times (MBP-GCN5) or twice (MBP-ING1) with similar results. D, Quantification of bound MBP-GCN5 in the liposome sedimentation assay shown in C with ImageJ/Fiji (Schindelin et al., 2012). AU, arbitrary units. Data represent means and error bars show standard deviations for at least three independent experiments. Asterisks indicate significant differences of bound MBP-GCN5 compared with the PtdCho sample according to Student's T-test (* $P \leq 0.05$; ** $P \leq 0.01$). E, Quantification of bound MBP-ING1 in the liposome sedimentation assay shown in C with ImageJ/Fiji (Schindelin et al., 2012). AU, arbitrary units. Data represent means and error bars show standard deviations for two independent experiments.

PI binding of MBP-GCN5 and MPB-ING1 was alternatively tested in liposome sedimentation assays, where lipids are presented in vesicles, so-called liposomes. This experimental design is considered to be more physiologically meaningful than binding studies with spotted lipids, because Pls are used in mixtures with structural lipids and are embedded into a bilayer membrane (Julkowska et al., 2013). Liposomes prepared by extrusion had a diameter of $0.2 \mu \mathrm{~m}$ and consisted of 75% PtdCho as a backbone and 25% of each examined PI. Protein bound to liposomes was detected in the sediment fractions, whereas the supernatant contained unbound MBP-GCN5 or MBP-ING1 protein. MBP-tagged proteins in the supernatant and sediment fractions were visualized via immunodetection with a specific antiserum against the MBP epitope. MBP-GCN5 was detected by immunodetection in the sediments of liposomes containing the Ptdlns-monophosphates Ptdlns3P, PtdIns4P, Ptdlns5P and PtdOH (Fig. 2.9 C, as indicated), indicating binding to these lipids. A weak signal was also detected in the PtdSer-containing liposome sample (Fig. 2.9 C , as indicated). MBP-ING1 was detected in liposomes containing Ptdlns3P, Ptdlns4P, Ptdlns5P, PtdOH and PtdSer (Fig. 2.9 C), indicating binding to these lipids. Binding tests without liposomes served as a negative control (Fig. 2.9 C, as indicated).
Immunodetection signals were quantified using ImageJ/Fiji (Schindelin et al., 2012) (Fig. 2.9 D and E). Binding of MBP-GCN5 to Ptdlns-monophosphates PtdIns3P and Ptdlns4P and to PtdOH was significantly higher than binding to PtdCho (Fig. 2.9 D). PI binding by MBP-ING1 was also quantified and confirmed to be higher than binding to PtdCho (Fig. 2.9 E). Again,

MBP was used as a control but showed no lipid binding in liposome sedimentation assays (appendix Fig. 6.12).

The results reveal PI binding capability for GCN5 whereas slight binding preference for Ptdlns3P was observed. ING1 did not show a preference for one of the Ptdlns-monophosphates in liposome sedimentation assays.

2.5.1. Identification of the putative lipid binding site in GCN5

To further elucidate Ptdlns3P binding to GCN5, the GCN5 amino acid sequence was analyzed to identify amino acid residues likely to contribute to a potential lipid binding region. A computer-based analysis for hydrophobic and basic protein regions, BH-search (Brzeska et al., 2010), was used. The resulting BH-search score for each position is calculated not only based on the individual amino acid residue, but also considers the amino acid sequence surrounding each specific amino acid (Brzeska et al., 2010). Lipid/membrane binding capability is indicated by a BH -search score ≥ 0.6. For GCN5, a small basic hydrophobic amino acid region was identified at the beginning of the acetyltransferase domain that had a score of approximately 0.6 . This was the region around amino acid residue K261 with a score of 0.613 . Two further positively charged residues, R260 and K263, could be identified in the immediate vicinity (Fig. 2.10 A and B). Since this cluster of basic/positively charged amino acid residues could well be part of an NLS, the amino acid sequence of GCN5 was examined using NLS prediction programs (see section 4.29.3). This analysis revealed a putative NLS at the N-terminus of GCN5 from amino acids 36 to 39. This position of a putative NLS of Arabidopsis GCN5 fits well with the information about the NLS of GCN5 from Toxoplasma gondii, which is found at a similar position (Bhatti and Sullivan, 2005; Dixon et al., 2011).

To examine whether this predicted basic-hydrophobic amino acid stretch is responsible for PI binding capability of GCN5, the relevant basic amino acid residues R260, K261 and K263 within the candidate region were substituted with either non-polar or acidic amino acids. The GCN5 sequence variants generated contained the amino acid substitutions GCN5 $5_{\text {R260,K261L,K263L }}$ and $G C N 5_{\text {R260E,K261D,K263D }}$ and were consequently named $G C N 5_{\text {ILL }}$ and GCN5 $5_{\text {EDD }}$ (Fig. 2.10 A). BH-analyses of these substitution variants revealed that the basic hydrophobic amino acid region previously predicted in GCN5 was now undetectable in both substitution variants and none of the amino acids exceeded a value of 0.6 (appendix Fig. 6.13 A and B). For MBP-ING1, MBP-ING2 and MBP, a BH-search was performed as a control. While MBP-ING1 and MBP-ING2 contain amino acids which exceed a BH -score of 0.6 , indicating lipid binding motifs (appendix Fig. 6.13 C and D), none of the residues in the MBP sequence exceeded a BH-score of 0.6 (appendix Fig. 6.13 E). This result is consistent with the lipid binding capability of the proteins as shown in Fig. 2.9.

Fig. 2.10: GCN5 amino acid sequence contains a putative phospholipid binding site. The amino acid sequence of GCN5 was analyzed for lipid binding sites. A, Schematic view of GCN5, GCN5ılL and GCN5 ${ }_{\text {edd }}$. GCN5 variants consist of 568 aa. GCN5 contains a putative NLS sequence at the N-terminus (aa $36-39$), a HAT domain (aa $222-371$) and a bromodomain (aa $472-543$). The HAT domain contains a basic hydrophobic region within the sequence aa $255-265$. Abbreviations are BD, bromodomain; HAT, histone acetyltransferase, NLS, nuclear localization sequence. B, BH-search of GCN5. BH-search was conducted with the online tool according to Brzeska and coworkers (Brzeska et al., 2010). Per amino acid a value is calculated that includes the amino acid surrounding of the single amino acid. Values higher than the threshold 0.6 indicate a basic-hydrophobic (BH) amino acid stretch, a putative phospholipid binding site. K261 within the GCN5 sequence reaches score 0.613 . In GCN5ILL the three amino acid substitutions R260I, K261L and K263L were introduced. In GCN5 EDD the three amino acid substitutions R260E, K261D and K263D were introduced. BH-searches of GCN5ILL and GCN5 edd are shown in appendix Fig. 6.13.

The recombinantly expressed and enriched MBP-GCN5 ${ }_{\text {ILL }}$ and MBP-GCN5 EDD proteins were analyzed in liposome sedimentation assays, and both showed attenuated to undetectable PI binding (Fig. 2.11). However, both GCN5 ${ }_{\text {ILL }}$ and GCN5 $_{\text {Edd }}$ still bound to PtdOH, but to a somewhat lesser degree than wild type GCN5 (compare Fig. 2.9 C and Fig. 2.11 A and B). The signal intensities detected for the MBP-GCN5 ${ }_{\text {ILL }}$ and MBP-GCN5 ${ }_{\text {edd }}$ variants in the liposome sediments were quantified using ImageJ/Fiji (Schindelin et al., 2012) and were all comparable to those of the PtdCho-controls (PtdCho liposomes, Fig. 2.11 C and D). Thus, the amino acid residues R260, K261 and K263 might be involved in PI binding of GCN5 and the substitutions in the basic/hydrophobic motif in the beginning of the HAT domain of GCN5 lead to a loss of PI binding capability.

Fig. 2.11: Lipid interaction studies of GCN5 ${ }_{\text {ILL }}$ and $G C N 5_{\text {EDD }}$. The phospholipid binding of purified recombinant MBP-GCN5ILL and MBP-GCN5 EDD was examined by liposome sedimentation assays. A, B, Liposome sedimentation assays were performed with liposomes prepared with PtdCho alone (control) or with a mixture of PtdCho and either Ptdlns3P, Ptdlns4P, Ptdlns5P, PtdOH (or PtdSer). No lipid, control sample without liposomes. Supernatant, contained unbound protein. Sediment, protein that had bound to respective liposomes. Proteins were separated on an SDS-PAGE and detected by immunoblots with the use of the specific antibody against MBP and a secondary antibody conjugated to AP. AP detection was performed. PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder was used as a molecular size marker. Expected molecular size of full-length proteins, MBP-GCN5ıı/MBP-GCN5 mdd, 105.6 kDa . Experiments were performed in triplicates with similar results. A, Liposome sedimentation assay of MBP-GCN5IL. B, Liposome sedimentation assay of MBP-GCN5Edd. C, D, Quantification of bound MBP-GCN5ILL or MBP-GCN5 Edd in the liposome sedimentation assays shown in A or B, respectively with ImageJ/Fiji (Schindelin et al., 2012). AU, arbitrary units. Data represent means and error bars show standard deviations for three independent experiments. No significant differences of bound MBP-GCN5ıL/MBP-GCN5EdD compared to the PtdCho samples were found according to Student's T-test. C, Quantification of bound MBP-GCN5ILL in A. D, Quantification of bound MBP-GCN5EDD in B.

To address the possibility that the loss of PI binding is the result of a severe secondary structure defect (misfolding) of the GCN5 variants, circular dichroism (CD) spectra of purified recombinant MBP-GCN5, MBP-GCN5 ILL, GCN5 EDd and MBP as a control were prepared (appendix Fig. 6.14). Far-UV CD spectra were recorded from at least 200 to 250 nm to investigate the secondary structure of the backbone of the amino acid sequence and ellipticity was calculated. MBP showed a CD spectrum that was strongly influenced by α-helical
structures. Also, a-helical structures can be derived from the CD spectra of MBP-GCN5 and the variants, but these CD spectra for α-helical structures were less pronounced than in MBP. The CD-spectra of GCN5, GCN5 ${ }_{\text {ILL }}$ and $G C N 5_{\text {EDD }}$ were indistinguishable. Therefore, it was concluded that the overall secondary structures of GCN5 ILL and GCN5 EDD were not diminished or altered.

Fig. 2.12: In vitro acetylation activity of GCN5 and variants. Histone acetylation by enriched recombinant MBP-GCN5, MBP-GCN5ILL, MBP-GCN5EDD, MBP-GCN5 212-375 2 and MBP-GCN5 ${ }_{284-375}$ proteins was studied in vitro. The formation of H3K9ac and H3K14ac was detected with specific antibodies. Chemiluminescent signals were recorded using an ECL detection system. A, In vitro histone H 3 acetylation activity of GCN5, GCN5ILL and GCN5 Edd GCN5 in absence of acetyl-CoA
functioned as control. Enriched proteins were tested alone as control. Reactions were stopped after 60 min . The data are representative for four individual experiments. PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder was used as a molecular size marker. The arrow indicates MBP-GCN5/MBP-GCN5ııL/MBP-GCN5 ${ }^{\text {edd. Expected molecular sizes of full-length proteins, histone H3, }}$ 15.3 kDa ; MBP-GCN5/MBP-GCN5ıLIMBP-GCN5Edd, 105.6 kDa . B, In vitro histone H3 acetylation activity of GCN5, GCN5212-375 and GCN5284-375. GCN5 in absence of acetyl-CoA functioned as control. Enriched proteins were tested alone as control. Reactions were stopped after 60 min . The data are representative for four individual experiments. PageRuler ${ }^{T M}$ Prestained Protein Ladder was used as a molecular size marker. Expected molecular sizes of full-length proteins, histone $\mathrm{H} 3,15.3 \mathrm{kDa}$; MBP-GCN5, 105.6 kDa; MBP-GCN5212-375, 61.5 kDa, MBP-GCN5284-375, 53.1 kDa.

Alternatively, the biochemical functionality of the modified proteins was tested in in vitro activity assays. Despite their proper folding according to CD spectroscopy, the in vitro histone H3 acetylation assays showed that both amino acid substitution variants, GCN5 ILL and GCN5 were catalytically inactive (Fig. 2.12 A and appendix Fig. 6.15).
For the GCN5 homolog from S. cerevisiae (ScGCN5) it was shown that ScGCN5 is still catalytically active even with an N-terminally truncated HAT domain (Candau et al., 1997). Therefore, a HAT domain variant, GCN5 ${ }_{284-375}$, truncated by the area of the lipid binding site, was created, recombinantly expressed in E. coli as an MBP fusion and the purified protein was used in in vitro histone H3 acetylation tests (Fig. 2.12 B). As a control, the complete GCN5 HAT domain, MBP-GCN5 ${ }_{212-375 \text {, }}$ was also tested (Fig. 2.12 B). For the full HAT domain MBP-GCN5 ${ }_{212-375}$, in vitro histone H 3 acetylation activity was observed which was comparable to that of full-length MBP-GCN5. The truncated MBP-GCN5 ${ }_{284-375}$ variant, however, was catalytically inactive. The results from yeast could, thus, not be reproduced with GCN5 from Arabidopsis. Despite the reduced/abolished catalytic activity of the GCN5 variants with reduced lipid binding capability, the GCN5 ILL and $^{\text {GCN5 }} 5_{\text {EDD }}$ variants represented tools to further investigate the contribution of lipid binding to GCN5 functionality.

2.6. PI 3-kinase VPS34 has no impact on the GCN5-dependent activation of GH3.3

The catalytic activity of MBP-GCN5 was impaired in vitro by both, Ptdlns3P and Ptdlns(4,5) P_{2}, and GCN5 itself bound preferentially to Ptdlns3P (Fig. 2.9). Therefore, next the effects of Ptdlns3P on GCN5 function were examined in vivo. Ptdlns3P is formed by the PI 3-kinase, VPS34, which is encoded by a single gene in Arabidopsis (Mueller-Roeber and Pical, 2002; Lee et al., 2010). The VPS34 protein contains several functional/regulatory domains, such as an N-terminal calcium-dependent lipid-binding (C2) domain (Welters et al., 1994; Meijer and Munnik, 2003) and a helical domain, in addition to its C-terminal catalytic domain (MuellerRoeber and Pical, 2002) (Fig. 2.13 A). Importantly, VPS34 has previously been detected at active transcription sites in cell nuclei of soybean root cells by immunocytochemistry (Bunney et al., 2000).

Fig. 2.13: The VPS34 gene product is active as a PI 3-kinase. In vitro activity of VPS34 and truncated variants was tested. A, Schematic view of VPS34. VPS34 consists of 814 aa. VPS34 contains a C2 domain (aa 25-177), a helical domain conserved in PI 3-kinases, formerly named PIK domain (aa 274-459) and a catalytic Pl-kinase domain (aa 465-813). aa, amino acids; C2, calcium-dependent lipid binding domain. B, Protein extracts were incubated with Ptdlns substrate in the presence of $\gamma-\left[{ }^{32} \mathrm{P}\right]-A T P$ and Ca^{2+}, anionic lipids were extracted under acidic conditions, separated by thin layer chromatography (TLC), and radiolabeled lipids were visualized by phosphorimaging. Fulllength MBP-VPS34 protein and MBP-VPS34210-814 displayed catalytic activity against Ptdlns substrate in vitro. A representative autoradiograph is shown. The experiment was performed twice with similar results. C, Quantification of phosphorimager signals from B using TINA 2.0 Software (Raytest, Straubenhardt, Germany). Data represent means and error bars show standard deviations for two independent experiments.

While Arabidopsis VPS34 has been described previously as a PI 3-kinase (Welters et al., 1994; Dove et al., 1994; Heilmann and Heilmann, 2015), catalytic activity of the recombinant protein has not previously been reported. Here, recombinant MBP-VPS34 protein displayed catalytic activity in vitro (Fig. 2.13 B and C). Catalytic activity was also demonstrated for a truncated variant lacking the N-terminal C2 domain, VPS34 210-814 2, but the C2 domain itself, VPS34 ${ }_{1-210}$, showed no Ptdlns3P formation (Fig. 2.13B and C). Therefore, PI 3-kinase activity of Arabidopsis VPS34 was confirmed in vitro.

Transient overexpression of VPS34-mCherry in Arabidopsis mesophyll protoplasts showed VPS34-mCherry in both cytoplasm and nucleus (Fig. 2.14), consistent with a putative role of VPS34 in the control of nuclear processes (Bunney et al., 2000). The mCherry control also showed cytosolic and nuclear localization, as expected, and therefore expression of full-length VPS34-mCherry was tested and confirmed by immunodetection (appendix Fig. 6.16).

Fig. 2.14: Subcellular localization of VPS34-mCherry in Arabidopsis mesophyll protoplasts. Arabidopsis mesophyll protoplasts were transiently transformed with pEntryD-pCaMV35S::mCherry or pEntryA-pCaMV35S::VPS34-mCherry. Subcellular localization of fluorescence-tagged proteins was observed by confocal microscopy with an LSM 880 (Carl Zeiss, Jena, Germany). Cells were recorded in single levels dissecting the nucleus. Blue, autofluorescence of chlorophyll A; red, mCherry. The excitation wavelengths for mCherry and chlorophyll A were 561 nm and 633 nm , respectively, and emission was detected between $565-620 \mathrm{~nm}$ (mCherry) and $680-720 \mathrm{~nm}$ (chlorophyll A). The experiment was performed twice for mCherry, recording 22 cells, and eight times for VPS34-mCherry, recording 77 cells. Scale bar, $10 \mu \mathrm{~m}$.

Based on the available information and the additional experiments performed for this thesis, VPS34 was selected for further analysis of its relation to GCN5. In split-ubiquitin-based YTH, VPS34 and the two truncated variants were tested for interaction with GCN5 (Fig. 2.15 A). Both, the full-length protein VPS34, and the C2 domain, VPS34 ${ }_{1-210}$, interacted with GCN5. The variant lacking the C2 domain, VPS34210-814, did not interact with GCN5, indicating that the C2 domain appears to be important for the interaction with GCN5 (Fig. 2.15 A). None of the three variants of VPS34 interacted with ADA2B. The positive protein-protein interactions of VPS34 and VPS34 ${ }_{1-210}$ with GCN5 were verified in immuno pull-down experiments (Fig. 2.15 B). GST and GST-tagged GCN5 were bound to a glutathione agarose matrix and were then co-incubated with recombinant protein extracts of MBP-tagged VPS34, VPS34 ${ }_{1-210}$
 MBP-VPS34 variants only low unspecific binding to GST was observed (Fig. 2.15 B). Interaction of the MBP-VPS34 full-length protein with GCN5 was only weakly detected;
however, a truncated MBP-VPS34 fragment of approximately 50 kDa was always enriched by binding to GST-GCN5 (Fig. 2.15 B). MBP-VPS34 ${ }_{1-210}$ bound to GST-GCN5, whereas MBP-VPS34 ${ }_{210-814}$ was unable to bind more clearly to GST-GCN5 than to GST (Fig. 2.15 B). These results confirmed the findings of YTH studies that the C2 domain of VPS34 could mediate binding to GCN5.

A

B

Fig. 2.15: The PI 3-Kinase VPS34 interacts with GCN5. The interaction of VPS34 and truncated variants VPS34 ${ }_{1-210}$ and VPS34210-814 with GCN5 and ADA2B was tested by split-ubiquitin-based YTH analysis in S. cerevisiae strain NMY51 and by in vitro immuno pull-down analysis (GCN5). A, Split-ubiquitin-based YTH of VPS34, VPS34 ${ }_{1-210}$ and VPS34210-814 (bait) with GCN5 and ADA2B (prey). OST4 fusions localized interactions to ER membranes. pAl-Alg5 and pDL2-Alg5 vectors were used as positive or negative control. Uniform growth on -LW media (without leucine and tryptophane) indicates equal cell densities and the presence of the respective vectors. Interaction is indicated by growth under selective conditions on -LWH media (without leucine, tryptophane and histidine). Yeast colonies were grown at $30^{\circ} \mathrm{C}$ for four days. A representative result of three (VPS34, VPS34 ${ }_{1-210}$) or two (VPS34 ${ }_{210-814}$) replicates with five independent colonies of each combination is shown. B, In vitro immuno pull-down of VPS34, VPS34 ${ }_{1-210}$ and VPS34210-814 with GCN5. Recombinantly expressed GST, GST-GCN5 were immobilized on glutathione agarose and incubated with recombinant MBP-tagged

VPS34, VPS34 ${ }_{1-210}$ and VPS34 ${ }_{210-814}$ (expression lysate). Bound protein was co-eluted with 50 mM reduced L-glutathione and interacting MBP-tagged proteins were analyzed by immunodetection using an α MBP antibody. Input GST-tagged protein was detected by an aGST antibody. Chemiluminescence signals were recorded with an ECL detection system. Expected molecular sizes of full-length proteins, GST, 26 kDa; GST-GCN5, 89.1 kDa ; MBP-VPS34, $135.8 \mathrm{kDa;}$ MBP-VPS341-210, 66.2 kDa ; MBP-VPS34210-814, 112.3 kDa . Pull-downs were performed twice.

The interaction of VPS34 and GCN5 suggested that these proteins might be associating to control transcription. Therefore, the effect of VPS34 on the GCN5-dependent auxin-mediated transcription of GH3.3 was tested in a setup identical to the experiments described for PI4P 5-kinases (section 2.3). Protoplasts overexpressing either mCherry or VPS34-mCherry were treated with NAA or mock, and again the transcription activation of GH3.3 was analyzed by qPCR (Fig. 2.16 A). In contrast to the results for PIP5K2, protoplasts expressing VPS34-mCherry did not show a significantly different response in GH3.3 transcription upon VPS34-mCherry expression. As controls, mCherry and VPS34-mCherry expression in the protoplasts was verified by qPCR (appendix Fig. 6.8 M and N) and the expression of fusion proteins was confirmed via immunodetection with suitable antisera (Fig. 2.16 B). The basal levels of GH3.3 transcript and GCN5 transcript were also tested by qPCR and were not affected neither by auxin treatment nor by VPS34-mCherry expression (appendix Fig. 6.17 A and B).

Fig. 2.16: Overexpression of VPS34 does not impact auxin-activation of GH3.3. Relative transcript levels for GH3.3 in mesophyll protoplasts upon overexpressing either mCherry or VPS34-mCherry and with mock (-) and with $0.25 \mu \mathrm{M}$ NAA (+) treatment overnight. Data represent $6-8$ biological replicates (transformations) from two independent protoplast preparations. A, Protoplasts transformed with pEntryD-pCaMV35S::mCherry or pEntryA-pCaMV35S::VPS34-mCherry. Transcript levels were normalized to both the reference gene UBC10 and the transcript levels of the respective mock-treated sample (-). Relative transcript levels are shown as boxplots; dots show outliers. Significant differences were analyzed by one-way ANOVA with a subsequent Tukey's post-hoc test $(P<0.05)$ and indicated
by letters a-c. B, Immunodetection of mCherry and VPS34-mCherry overexpression in protoplasts treated as described above was performed using an amCherry antiserum. Chemiluminescence signals were recorded with an ECL detection system. Immunodetections were performed twice. PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder was used as a molecular size marker. Expected molecular sizes of full-length proteins, mCherry, 26.7 kDa ; VPS34-mCherry, 120.0 kDa

Taken together, these data suggest that auxin-induced GCN5-mediated histone acetylation is not directly attenuated by VPS34 (and thus Ptdlns3P) in vivo. While an effect of VPS34 or Ptdlns3P on GCN5 activity in vivo cannot be ruled out, it has previously been suggested that Ptdlns3P may act as a positional signal to recruit GCN5 to the nucleus and to sites of active transcription (Bunney et al., 2000). A similar effect was shown for ING proteins in mammalian cells (Bunce et al., 2006a, 2006b; Soliman and Riabowol, 2007). Therefore, it was next tested whether the capability to bind PtdIns3P influenced the localization of GCN5 in the nucleus.

2.7. PI binding contributes to nuclear localization of GCN5

As Pls are generally described positional signals for the correct recruitment of proteins (Heilmann, 2016a; Gerth et al., 2017b; Jaillais and Ott, 2020) and previous data for GCN5 had suggested that GCN5 may be recruited by binding to Pls, the role of lipid binding of GCN5 in its subcellular localization was investigated. To analyze the contribution of lipid binding of GCN5 to its subcellular distribution, GCN5 and its lipid binding-impaired variants GCN5|lL and GCN5 Edd $_{\text {, were }}$ transiently expressed as EYFP fusion proteins in Arabidopsis mesophyll protoplasts and examined for their nuclear localization (Fig. 2.17 A). EYFP served as control (Fig. 2.17 A). Subcellular localization analyses were performed with a laser scanning microscope LSM 880 (Carl Zeiss, Jena, Germany). As a positive control, an NLS-DsRed construct was used, which contained a strong NLS from the simian virus SV40 and served as a bona fide nuclear marker (Gerth et al., 2017a). Images in Fig. 2.17 A show representative localization patterns in confocal z-projections covering both cytoplasm and nucleus.

The fluorescence of EYFP-GCN5 showed a distinct, almost exclusive nuclear distribution pattern (Fig. 2.17 A) similar to that of the nuclear marker, and only in very few cells, a weak cytoplasmic fluorescence was detectable (Fig. 2.17 A), as displayed in the respective corresponding intensity profiles. By contrast, EYFP-GCN5IIL and EYFP-GCN5 Edd $_{\text {localized in }}$ a more relaxed pattern to the nucleus and to the cytosol in a pattern resembling that of the EYFP negative control (Fig. 2.17 A).
For the respective EYFP fluorescence observed and DsRed fluorescence, Pearson correlation coefficients were calculated using the JACoP plugin (Bolte and Cordelières, 2006) for ImageJ/Fiji (Schindelin et al., 2012) (Fig. 2.17 B). A Pearson correlation coefficient of 0 means no co-localization, whereas a Pearson correlation coefficient of 1 reflects perfect co-localization. As EYFP localized to nucleus and cytosol, the fluorescence signals of EYFP and NLS-DsRed did only partly overlap which resulted in a low Pearson correlation coefficient
of 0.45 . For EYFP-GCN5 and NLS-DsRed a coefficient of 0.84 was determined which reflects a strong co-localization. Pearson correlation coefficients of EYFP-GCN5 ILL (0.66) or EYFP-GCN5 EDD $^{\text {(0.74) }}$ with NLS-DsRed were significantly lower than that of EYFP-GCN5/NLS-DsRed, confirming the observed more relaxed nuclear localization pattern of EYFP-GCN5 ${ }_{\text {ILL }}$ and EYFP-GCN5 ${ }_{\text {Edd }}$ (Fig. 2.17 A).
The distribution patterns of EYFP, EYFP-GCN5, EYFP-GCN5 ${ }_{\text {ILL }}$ and EYFP-GCN5 ${ }_{\text {EDD }}$ in transformed protoplasts were scored according to their exclusive nuclear localization, cytosolic and nuclear localization, or exclusive cytosolic localization (Fig. 2.17 C). All cells overexpressing EYFP showed fluorescence in nucleus and cytosol. Cells overexpressing EYFP-GCN5 showed to a percentage of 37.4 \% exclusive nuclear localization and to 58.9 \% a nuclear and cytosolic localization pattern. In some cells the nucleus was not visible (cytosolic fluorescence). None of the cells overexpressing EYFP-GCN5 ${ }_{\text {ILL }}$ or EYFP-GCN5 ${ }_{\text {Edd }}$ showed an exclusive nuclear fluorescence, but 97.5% (EYFP-GCN5IIL) or 94.7% (EYFP-GCN5 EDD) of the transformed cells showed nuclear and cytosolic fluorescence. Also here, in some cells the nucleus was not visible, and cells were classified as cytoplasmic localized.

The overexpression of the EYFP-tagged proteins was confirmed via immunodetection of the transformed protoplasts (appendix Fig. 6.18 A). These controls showed that EYFP-GCN5 was overexpressed to a substantially stronger degree than the EYFP-GCN5 ILL and EYFP-GCN5 variants in all experiments. Therefore, differences in localization, particularly the increased cytosolic localization of the two amino acid substitution variants of GCN5, were likely not due to excessive overexpression of EYFP-GCN5 variants. To test whether the lower expression of GCN5 ILL and GCN5 ${ }_{\text {Edd }}$ was caused by proteolytic degradation via the 26 proteasome, protoplasts overexpressing GCN5 variants were treated with the proteasome inhibitor MG-132. Inhibition of the 26S proteasome resulted in a slight increase in protein levels of EYFP-GCN5, EYFP-GCN5 ${ }_{\text {ILL }}$, and EYFP-GCN5 EDD $_{\text {in }}$ all cases (appendix Fig. 6.18 B), suggesting that the introduced amino acid substitutions in EYFP-GCN5 ${ }_{\text {ILL }}$ and EYFP-GCN5 EDD $_{\text {causing the loss of }}$ PI binding ability did likely not result in differentially increased proteasomal degradation of the substitution variants.

Fig. 2.17: Subcellular localization of GCN5 amino acid substitution variants in Arabidopsis mesophyll protoplasts. Arabidopsis mesophyll protoplasts were transiently transformed with pEntryA-pCaMV35S::EYFP, pEntryA-pCaMV35S::EYFP-GCN5, pEntryA-pCaMV35S::EYFP-GCN5ıLL or pEntryA-pCaMV35S::EYFP-GCN5Edd. Subcellular distribution of fluorescence-tagged proteins was observed by confocal microscopy with an LSM 880 (Carl Zeiss, Jena, Germany). Cells were imaged either in single layers or in z-stacks with a maximum spacing of $0.85 \mu \mathrm{~m}$ between sections, and
z-projections of EYFP (green) and DsRed (magenta) fluorescence were obtained. Intensity profiles along the dashed lines shown in the EYFP and DsRed images are given, as indicated, and are generated with ImageJ/Fiji (Schindelin et al., 2012). The intrinsic chlorophyll A fluorescence (blue) and bright field images are also shown, as indicated. The excitation wavelengths for EYFP, DsRed and chlorophyll A were $514 \mathrm{~nm}, 561 \mathrm{~nm}$, and 633 nm , respectively, and emission was detected between $520-555 \mathrm{~nm}$ (EYFP), $565-620 \mathrm{~nm}$ (DsRed) and $680-720 \mathrm{~nm}$ (chlorophyll A). A, EYFP localized in the cytoplasm and in the nucleus in three independent experiments, recording 13 cells. EYFP-GCN5 localized in the nucleus (upper panel), if cytosolic localization of EYFP-GCN5 was observed, it was very weak (lower panel); three independent experiments, recording 19 cells. EYFP-GCN5ılı and EYFP-GCN5 edd localized in the nucleus and the cytosol in each of three independent experiments, recording 16 and 18 cells, respectively. Scale bar, $10 \mu \mathrm{~m}$. B, Pearson correlation of EYFP and DsRed fluorescence of cells shown in A. Pearson correlation coefficients of NLS-DsRed and EYFP/EYFP-GCN5/EYFP-GCN5ılı/EYFP-GCN5edd were calculated in ImageJ (Schindelin et al., 2012) with the JACoP plugin (Bolte and Cordelières, 2006). Pearson correlation coefficients are shown in a boxplot depicting the two inner quartiles and with whiskers indicating maximum and minimum. The cross marks the mean, the line marks the median. Circles represent outliers. One-way ANOVA was performed with a Tukey's post-hoc test $(P<0.05)$. C, Subcellular distribution patterns of EYFP, EYFP-GCN5, EYFP-GCN5ill and EYFP-GCN5 ${ }^{\text {edd. Cells were counted and categorized into three groups, either }}$ showing fluorescence in the nucleus, in nucleus and cytosol or in the cytosol. Data are normalized to the results of EYFP expressing cells. Experiments were performed five times, with 25 (EYFP), 107 (EYFP-GCN5), 79 (EYFP-GCN5ILL) and 76 (EYFP-GCN5edd) analyzed cells.

Taken together, the different localization patterns observed for EYFP-GCN5 and EYFP-GCN5 ${ }_{\text {ILI/ }}$ EYFP-GCN5 EDD indicate that PI binding capability influences the nuclear localization of the GCN5 protein. This finding is consistent with the notion that Pls, such as Ptdlns3P, may act as positional signals to recruit GCN5 to its site of action to control histone modification and transcription in the plant nucleus.

3. Discussion

In this thesis, the little-explored roles of plant nuclear Pls are addressed to broaden our view of how Pls influence plant physiology and development. Studies on the functions of Pls in plants have mostly been performed using Arabidopsis mutants or other transgenic models with defects in PI biosynthetic enzymes, and in some instances these plants showed strong pleiotropic phenotypes (Mei et al., 2012; Ischebeck et al., 2013; Tejos et al., 2014). The complexity of intertwined cellular processes that influence each other over the course of plant development complicates the interpretation which particular metabolic or signaling defects are primarily responsible for the manifestation of any given phenotype. For instance, it has been shown that Pls influence auxin biology (Mei et al., 2012; Ischebeck et al., 2013; Tejos et al., 2014). However, the interpretation of defects in auxin biology is difficult because auxin distribution, e.g. auxin gradients within different tissues, as well as auxin perception and auxin-regulated gene expression may all be affected. While the drastic and pleiotropic phenotype of the Arabidopsis pip5k1 pip5k2 double mutant has previously been rationalized based on clear defects in the trafficking and polar distribution of PIN proteins (Mei et al., 2012; Ischebeck et al., 2013; Tejos et al., 2014), these trafficking processes might not account for all aspects of the pleiotropic phenotype of these plants. In preparation of this thesis, pip5k1 pip5k2 double mutants expressing the PIP5K2 variant PIP5K2 $2_{\text {AAA }}$ were generated, which displays inefficient nuclear import and reduced nuclear localization (Dr. Katharina Gerth). These plants displayed a partial complementation of the pip5k1 pip5k2 phenotypes, but phenotypes such as deformed leaves and flowers and defects in phyllotaxis emerged that were not previously observed (Fig. 1.4). While it cannot be excluded that the polar auxin distribution in these plants is still altered, the remaining defects could as well result from the fact that PIP5K2 ${ }_{\text {AAA }}$ expressed in the pip5k1 pip5k2 double mutant is no longer transported into the nucleus and the remaining phenotypes result from PIP5K2 missing from the nucleus. This interpretation is supported by the fact that PI biosynthesis mutants show defects in PIN distribution (Mei et al., 2012; Ischebeck et al., 2013; Tejos et al., 2014), but their phenotypes differ markedly from those of Arabidopsis pin mutants (Okada et al., 1991; Müller et al., 1998; Benková et al., 2003) in which the phenotypes are evidently due to altered auxin distribution and an impaired auxin gradient. As the phenotype of the pip5k1 pip5k2 double mutant can furthermore not be rescued by the application of exogenous auxin (Ischebeck et al., 2013), it was hypothesized about additional functional contributions of Pls in the nucleus, beyond their effects on auxin distribution. The phenotype of pip5k1 pip5k2 double mutants complemented with PIP5K2 $2_{\text {AAA }}$ may be thus related to the exclusion of PIP5K2 from the nucleus and represent defects in nuclear signaling or function. As previous studies indicated regulatory functions of Pls in the regulation of transcription and specifically in histone modification (Bunney et al., 2000; Dieck et al., 2012),
it was the aim of this work to determine to what extent the observed nuclear localization of Arabidopsis PI4P 5-kinase is biologically relevant and by what mechanism PIP5K1 and PIP5K2 might influence auxin-regulated gene expression.

3.1. PI4P 5-kinases interact with GCN5 and putative components of the histone acetylation machinery

In accordance with the previous observations by Dieck and coworkers for overexpression of human HsPIP5K1a in tobacco cell cultures (Dieck et al., 2012), overexpression of the intrinsic Arabidopsis PIP5K2 led to reduced acetylation levels at H3K9 and H3K14 in both examined transgenic lines, compared to a Col-0 wild type control (Fig. 2.1 C and D). The opposite effect was observed for the pip5k1 pip5k2 double mutant that displayed enhanced acetylation levels (Fig. 2.1 A and B), confirming that the intrinsic biosynthetic machinery for Pls influences histone acetylation in Arabidopsis.
Changed histone acetylation levels imply an influence of Pls or PI4P 5-kinases on histone-modifying enzymes, which can introduce histone modifications, like acetyl residues, to histones or remove them (Patel and Wang, 2013; Ueda and Seki, 2020). This finding was supported by the specific interaction of the ubiquitously expressed PI4P 5-kinases PIP5K1, PIP5K2 and PIP5K6 with the HAT GCN5 in YTH assays and in immuno pull-down experiments. The interaction of PI4P 5-kinases with GCN5 seemed to be specific, because not every tested ubiquitously expressed PI4P 5-kinase showed an interaction (Fig. 2.2).
GCN5 is described as a HAT component of the SAGA complex (Grant et al., 1997; Servet et al., 2010; Srivastava et al., 2015; Moraga and Aquea, 2015). In the HAT module, GCN5 binds, among others, to ADA2B (Stockinger et al., 2001; Mao et al., 2006; Servet et al., 2008). ADA2B recruits GCN5 to specific promoter regions and influences GCN5 activity by increasing the binding affinity of GCN5 to acetyl-CoA (Hark et al., 2009; Anzola et al., 2010; Servet et al., 2010; Weiste and Dröge-Laser, 2014; Sun et al., 2018). While GCN5 and ADA2B interacted directly in YTH experiments (appendix Fig. 6.4), consistent with earlier findings (Stockinger et al., 2001; Mao et al., 2006; Servet et al., 2008), a direct interaction of any of the PI4P 5-kinases tested with ADA2B was not detected. However, both PIP5K1 and PIP5K2 interacted with ING proteins (Fig. 2.3), providing additional evidence for the presence of a nuclear protein complex containing elements of the HAT module and PI4P 5-kinases. ING proteins are reader proteins recognizing H3K4me2/H3K4me3 and recruit other enzyme complexes, such as HATs, to the corresponding promoter regions (Pena et al., 2006; Soliman and Riabowol, 2007; Lee et al., 2009; Kim et al., 2016). Studies with mammalian ING proteins showed that these proteins get recruited to their histone target sites by binding to Ptdlns-monophosphates that act as recruiting signaling molecules (Bunce et al., 2006a, 2006b; Soliman and Riabowol, 2007). Binding of the Arabidopsis isoforms ING1 and ING2 to GCN5 and PI4P 5-kinases PIP5K1 and

PIP5K2 (Fig. 2.2 and Fig. 2.3) suggests an involvement of PI4P 5-kinases or Pls in the formation of a HAT complex, which might be recruited by ING proteins. The details of how PIP5K1 and PIP5K2 interact with GCN5 have so far not been analyzed and the specific amino acid residues or domains mediating the interaction have not yet been identified. In the future, it will be interesting to elucidate actual subcellular or suborganellar localization of the interaction between PI4P 5-kinases and GCN5 in detail, possibly with advanced high-resolution microscopy. It is also possible that PI4P 5-kinases themselves are acetylation targets of GCN5. However, initial mass spectrometry studies did not detect acetylated PIP5K1 or PIP5K2 fragments (preliminary data, not shown). Furthermore, it cannot be excluded that the interaction between PI4P 5-kinases and GCN5 does not take place in the nucleus at all. Several HATs in yeast and mammalians have been shown to shuttle between the nucleus and cytosol and might acetylate non-histone proteins in the cytosol (Tran et al., 2012; Scott et al., 2012; Parthun, 2012; Shen et al., 2015). To further dissect this issue, the nuclear-excluded PIP5K2 ${ }_{\text {AAA }}$ could be a tool to investigate the interaction of PI4P 5-kinases and GCN5 in the future.

While it remains unclear whether PIP5K1 or PIP5K2 interact also with other components of the HAT module or the SAGA complex, there is evidence indirectly linking the SAGA complex to PI signaling. For instance, the large SAGA subunit TRA1 (about 400 kDa) belongs to the phosphatidylinositol 3-kinase-related kinase (PIKK) family, a group of highly conserved protein kinases that includes the important proteins TOR, ATM, ATR, DNA-PKcs and SMG-1. TRA1 is the only PIKK family member which seems to be a catalytically inactive kinase and shows no catalytic activity, neither against lipids nor proteins (Templeton and Moorhead, 2005; Lovejoy and Cortez, 2009; Sharov et al., 2017). In Arabidopsis two TRA1 isoforms are present, TRA1a and TRA1b, and as in yeast and mammals, both isoforms could be found in the SAGA complex and in nucleosome acetyltransferase of H4 (NuA4), another essential HAT complex in eukaryotes (Grant et al., 1998; Cheung and Diaz-Santin, 2019; Espinosa-Cores et al., 2020). The precise function of TRA1 proteins is currently not clear. Studies in yeast and mammals show that TRA1 proteins mediate the recruitment of large activator complexes like SAGA and thereby influence enzymatic activities such as histone acetylation or histone exchange mechanisms to influence chromatin status (Grant et al., 1998; Altaf et al., 2010; EspinosaCores et al., 2020). The presence of a major protein component of these large activator complexes SAGA and NuA4 with homology to PI-kinases provides further evidence and supports the data of this work that PIs and/or PI-kinases can affect histone acetylation.

3.2. PIP5K2 activity markedly affects auxin-induced GH3.3 transcription

The interaction of the nuclear-localized PI4P 5-kinases PIP5K1 and PIP5K2 with GCN5, a HAT, matched well with the results of histone acetylation levels of H3K9ac and H3K14ac in
the PIP5K2 overexpression lines and the pip5k1 pip5k2 double mutant, respectively. Based on these data, the effect of altered histone acetylation seems to be due to a direct influence of PI4P 5-kinase on histone-modifying enzymes. Since GCN5-mediated histone acetylation at the GH3.3 gene locus has been described (Weiste and Dröge-Laser, 2014) for the auxinregulated gene GH3.3 (Hagen and Guilfoyle, 2002; Staswick et al., 2005), transcript levels of the GH3.3 gene were tested in the presence or absence of overexpressed PI4P 5-kinases (Fig. 2.4). Experiments were performed in Arabidopsis mesophyll protoplasts and the assay setup was adapted with modifications from experiments of Weiste and Dröge-Laser (Weiste and Dröge-Laser, 2014). Weiste and Dröge-Laser used this experimental design to investigate in which manner GH3.3 transcription is activated upon auxin application and requires GCN5mediated histone acetylation at the GH3.3 gene locus. Additional important reasons to use protoplasts were that, on the one hand, the uptake of auxin in protoplast suspensions should occur equally well in all cells, and on the other hand, prevents vectorial auxin transport from being affected by manipulation of PI levels as has been described previously, e.g. for the pip5k1 pip5k2 double mutant (Ischebeck et al., 2013; Tejos et al., 2014), thus complicating interpretation. In addition, manipulation of the different PI4P 5-kinase expression levels is straightforward because cells can be easily transformed with different constructs and allow comparative studies of the influences of the different PI4P 5-kinases. Stable overexpressor lines for PI4P 5-kinases have proven to be difficult to establish and maintain, in our laboratory and in others (Ischebeck et al., 2013; Tejos et al., 2014). For this thesis, the further use of the stable PIP5K2-EYFP OE lines was omitted, although they had shown altered histone acetylation (Fig. 2.1 C and D), because these lines are only weak overexpressors with a patchy fluorescence pattern and thus patchy expression pattern of PIP5K2-EYFP and do not show detectable changes in Ptdlns(4,5) P_{2} levels (Gerth et al., 2017a).

In addition, no stable PIP5K6-EYFP OE line was available as a control, but PIP5K6 overexpression should be used as a control since the ubiquitously expressed PIP5K6 showed interaction with GCN5 (Fig. 2.2 B and C), but acts in different cellular processes than PIP5K1 or PIP5K2 (Zhao et al., 2010; Stenzel et al., 2012; Heilmann, 2016a; Hempel et al., 2017; Menzel et al., 2019; Fratini et al., 2021). Thus, for numerous reasons the use of protoplasts appeared to be most suitable for experiments on auxin-induced gene expression in this thesis. The results showed that overexpression of PIP5K2-EYFP significantly attenuated auxin-activation of GH3.3 and impairs several other genes, IAA2, IAA5 and IAA19, compared with observations when EYFP control was expressed (Fig. 2.4, Fig. 2.5 and appendix Fig. 6.9). Comparable effects were observed with overexpression of PIP5K1-EYFP, but these results were not significant (Fig. 2.4, Fig. 2.5 and appendix Fig. 6.9). Interestingly, expression of the catalytically inactive PIP5K2 K470A-EYFP had no effect on auxin-activation of GH3.3 transcription (Fig. 2.4 B). Likewise, expression of the functionally divergent isoenzyme

PIP5K6-EYFP (Zhao et al., 2010; Stenzel et al., 2012; Heilmann, 2016a; Hempel et al., 2017; Menzel et al., 2019; Fratini et al., 2021) was tested, which had no impact on auxin-activation of GH3.3 transcription or on the other auxin-inducible genes (Fig.2.4, Fig. 2.5 and appendix Fig. 6.9). The observation that the catalytically inactive PIP5K2 K470A had no influence on GH3.3 transcriptional activation in this experimental setup confirmed that PIP5K2 kinase activity is important for the inhibition of auxin-induced GH3.3 transcription. This means that the formation of the lipid product Ptdlns $(4,5) \mathrm{P}_{2}$ or the consumption of the substrate lipid Ptdlns4P of PIP5K2 and probably similarly of PIP5K1 is at the base of the effect. To test in the future whether an influence of PI4P 5-kinase/PI on gene regulation is restricted to individual genes or whether it is a general mechanism, RNAseq experiments would be informative. Additional analysis via chromatin immunoprecipitation (ChIP) assays to detect the effects of PI4P 5-kinases on GCN5-mediated histone modification would also provide information about the nature of the target genes and their promotors.
The overexpression of PIP5K1 had, in the experiments performed here, less pronounced effects on the transcript regulation of the GH3.3 gene or on IAA2, IAA5, and IAA19 than was observed by the expression of PIP5K2. This might be related to the fact that PIP5K1 was always less well expressed than PIP5K2 in protoplasts (Fig. 2.4 D and Fig. 2.5 G) and that the protein itself displays lower catalytic activity than PIP5K2 in in vitro assays (Ischebeck et al., 2013). However, even though PIP5K1 and PIP5K2 have been described as functionally redundant (Ischebeck et al., 2013), it cannot be ruled out that there are functional differences in PIP5K2 and PIP5K1.

3.3. Inhibition of GCN5 and lipid binding

The data so far suggested an effect of PIP5K2 on histone acetylation and an influence on the activation of GCN5-dependent auxin-regulated genes. PI4P 5-kinase activity was required for the in vivo effect on gene expression (Fig. 2.4 B), suggesting that the conversion of a substrate of this enzyme (Ptdlns4P or Ptdlns3P) to a product (Ptdlns(4,5) P_{2} or $\operatorname{Ptdlns}(3,5) \mathrm{P}_{2}$, respectively) influenced the effect of the Pls on histone H 3 acetylation, which contributes to controlling the transcriptional activity of GH3.3 and probably other auxin-inducible genes. When the influence of different PIs on GCN5 activity was tested in vitro, all Pls including Ptdlns(4,5) P_{2} and Ptdlns3P showed inhibitory effects on histone acetylation (Fig. 2.7).

When the histone acetylation was monitored in time course experiments over a reaction time of 120 min, substantial reduction in GCN5-mediated H3K9 and H3K14 acetylation was observed in the presence of either Ptdlns3P or Ptdlns $(4,5) \mathrm{P}_{2}$, compared with the corresponding controls without lipid addition (Fig. 2.8). It is important to note that phospholipids were added in very small amounts to a molar excess of histone substrate to minimize the influence of electrostatic interactions between the basic lysine residues of histones and the
anionic lipids. The data suggest that Pls can affect the catalytic activity of GCN5, but it remains unclear how precisely Pls can affect GCN5.
To better understand the influence of Pls on GCN5 functionality and histone acetylation, the binding of purified recombinant MBP-GCN5 protein to various lipids was examined by lipid overlay tests (Fig. 2.9 B) and by liposome sedimentation assays (Fig. 2.9 C and D). GCN5 was found to bind Ptdlns3P and weakly also Ptdlns4P and Ptdlns5P (Fig. 2.9 B, C and D), but showed no binding to Ptdlns $(4,5) \mathrm{P}_{2}$. The notion that nuclear PIs influence histone modification and that GCN5 binds to Ptdlns3P is consistent with reports from the mammalian field where an interaction of ING protein homologs with Ptdlns-monophosphates has been shown (Gozani et al., 2003). As a reader protein binding to trimethylated histone H3K4 (Lee et al., 2009), it has been proposed that PI binding of ING is required for the subsequent recruitment of human HATs into a functional HAT complex (Bunce et al., 2006a, 2006b; Soliman and Riabowol, 2007). Most importantly, the ING isoforms of Arabidopsis, ING1 and ING2, also bound to Ptdlns3P (Fig. 2.9 B, C and E), suggesting that a similar regulatory mechanism exists for the Arabidopsis HAT element GCN5 and ING, which both bind Ptdlns3P (Fig. 2.9 B and C). A capability for the binding of anionic lipids has also been reported for yeast ADA2, which was demonstrated to bind PtdSer (Hoke et al., 2008). Preliminary findings of our group indicate possible PI binding of Arabidopsis ADA2B (unpublished data, AG M. Heilmann). Although, ADA2B did not interact in YTH studies with PI4P 5-kinases (Fig. 2.2 B), these observations support the hypothesis that Pls exert a regulatory influence on the SAGA complex.

3.4. Possible modes of GCN5 inhibition by Pls

At the molecular level, Pls might inhibit histone acetylation in several ways. For instance, Pls could affect the MBP-GCN5 protein or the histone substrates or possibly even both. Ptdlns(4,5) P_{2} inhibited GCN5 activity in vitro (Fig. 2.7) but did not bind to the MBP-GCN5 protein in lipid binding experiments (Fig. 2.9). The in vitro lipid binding assays may not reflect all aspects of possible interactions between lipids and GCN5. Alternatively, the anionic Ptdlns $(4,5) \mathrm{P}_{2}$ could interact with the basic surface of histone substrates, thereby affecting the formation of the GCN5/histone enzyme/substrate complex that is required for histone modification. The latter mode of action cannot currently be supported or ruled out by experimental evidence. However, Ptdlns $(4,5) \mathrm{P}_{2}$ has already been shown in other contexts to exert regulatory functions by interfering with certain protein-protein interactions, such as the interaction between Rho of plants (ROP) and guanidine nucleotide dissociation inhibitor (GDI) (Fauré et al., 1999; Kost, 2008). An electrostatic effect seems nonspecific at first, but it must be considered that Pls are lipids of low abundance and would not randomly distribute in the nucleoplasm. Instead, the effects of Pls on histone modification and possibly on chromatin transitions likely occur at sites of contact of chromatin with the inner surface of the nuclear
envelope. Several studies have already been conducted for such chromatin-nuclear envelope contact sites in both animals and plants (Kinney et al., 2018; Bishop et al., 2021). This subnuclear distribution of Ptdlns(4,5) P_{2} and other Pls as well as nuclear PI4P 5-kinases will be the target of future analyses using advanced high-resolution microscopy.
Basic hydrophobicity analyses (Fig. 2.10 B and appendix Fig. 6.13 A and B) (Brzeska et al., 2010) and the resulting amino acid substitution variants, GCN5 ILL and GCN5 EDD , showed that only a small region at the beginning of the catalytic HAT domain of GCN5 seems to be responsible for Ptdlns3P binding. In any case, the variants GCN5 ILL and GCN5 Edd no longer bound to Ptdlns3P in liposome sedimentation assays (Fig. 2.11). While the substitutions in the proposed lipid binding region of GCN5 did not result in a clear misfolding of the GCN5 variants, as shown by the CD spectra of the purified recombinant proteins (appendix Fig. 6.14), both substitution variants were catalytically inactive in vitro (Fig. 2.12 A).
To our knowledge, there is currently no crystal structure of Arabidopsis GCN5. A recent model of the Arabidopsis GCN5 protein predicted on the AlphaFold Protein Structure Database (Jumper et al., 2021) predicts surface exposition of the putative Ptdlns3P-binding amino acids R260, K261, and K263 with high confidence. Furthermore, according to comparative analysis of GCN5 sequences from yeast and animals, the residues R260, K261, and K263 are unlikely to be responsible for acetyl-CoA binding and thus for the catalytic activity of GCN5 (Rojas et al., 1999; Schuetz et al., 2007; Sun et al., 2018). It appears possible that the amino acid substitutions in GCN5 ${ }_{\text {ILL }}$ and GCN5 EDD lead to slight changes in tertiary structure, that might result in a slight conformational change in the substrate binding pocket, and thus a changed binding ability to histone H 3 or acetyl-CoA. To further elucidate the effect of lipid binding on catalytic activity of GCN5, in the future single amino acid substitutions, e.g. only at position K261 with the highest BH-score, should be analyzed, which might still prohibit Ptdlns3P binding while still enabling an active enzyme. A GCN5 variant with limited lipid binding but still catalytic activities would also be a helpful tool for future mutant complementation assays to further analyze the proposed GCN5/SAGA regulation by Pls.

3.5. PI binding contributes to nuclear localization of GCN5

Both lipid overlays and liposome sedimentation assays indicated that MBP-GCN5 bound most prominently to Ptdlns3P (Fig. 2.9 B, C and D). This observation appears relevant, because Ptdlns3P is the product of the PI 3-kinase VPS34, which has previously been reported to associate with sites of active transcription in plant cells (Bunney et al., 2000). Please note that the catalytic activity of recombinant Arabidopsis VPS34 as a PI 3-kinase was confirmed here for the first time (Fig. 2.13 B and C). A role of VPS34 in a GCN5-related process is supported by its interaction with GCN5 in YTH tests (Fig. 2.15 A). While the analysis of the subcellular distribution of VPS34-mCherry in Arabidopsis mesophyll protoplasts also confirmed the
localization to nuclei in addition to cytoplasmic localization (Fig. 2.14), the expression of VPS34-mCherry did not affect the auxin-activation of GH3.3 (Fig. 2.16 A) in a manner comparable to the effects of overexpressed PIP5K1-EYFP or PIP5K2-EYFP (Fig. 2.4). The data suggest that overexpressed VPS34 did not influence GCN5-mediated histone acetylation in vivo, even though Ptdlns3P had shown an inhibitory effect on histone acetylation by GCN5 in vitro (Fig. 2.7). Together with the previous reports, the data obtained here on GCN5 binding to Ptdlns3P and on Arabidopsis VPS34 suggest a role for Ptdlns3P in the recruitment of GCN5 to the sites of transcription, but do not indicate that Ptdlns3P contributes to the control of GCN5 activity.

The substantially relaxed subcellular distribution of the EYFP-GCN5 ${ }_{\text {ILL }}$ and EYFP-GCN5 ${ }_{\text {EDD }}$ variants with reduced lipid binding capability compared to the clear nuclear localization of EYFP-GCN5 (Fig. 2.17) indicate a malfunction in the subcellular localization of GCN5 that is consistent with a role for Ptdlns3P as a factor recruiting GCN5 to the nucleus. While data on the more precise subnuclear localization of EYFP-GCN5 or its variants are currently missing, based on the previous observations by Bunney and coworkers (Bunney et al., 2000) it is tempting to speculate that VPS34 and PtdIns3P mark the sites of active transcription to enable the recruitment of ING proteins and a HAT module containing GCN5. On the other hand, it cannot be ruled out that alternatively an essential part of an NLS in GCN5 was accidentally destroyed. However, an NLS prediction tool (SeqNLS; (Lin et al., 2012)) identified a putative NLS from amino acid K36 to L39 in the amino acid sequence of Arabidopsis GCN5 that matches the position of the NLS at the N-terminus of GCN5 from Toxoplasma gondii (Bhatti and Sullivan, 2005; Dixon et al., 2011), suggesting that substitutions in positions R260, K261, and K263 might leave the NLS of GCN5 unaffected.
Overall, the data show that Pls affect the acetylation of histones in the nucleus. It is conceivable that Pls establish contact sites between protein complexes and chromatin and the inner nuclear envelope. Such contacts might be relevant for chromatin transitions and the transcriptional activation of specific genes.

Based on the experimental results obtained in this study, a model for a hypothetical molecular mechanism can be proposed to explain the contribution of PIs in GCN5-mediated auxin-inducible transcription in the Arabidopsis nucleus (Fig. 3.1).

Fig. 3.1: Proposed model of Pls involved in epigenetic control. ING and GCN5, the HAT of the SAGA complex, are recruited to active transcription sites in the nucleus by Ptdlns-monophosphate (PIP) binding. ING, the epigenetic reader, binds to H3K4me3 in the promotor region of auxin-inducible genes, like GH3.3, and recruits GCN5. Bound to histone H3, GCN5 mediates acetylation at lysine residues of the N-terminus of histone H3. PI4P 5-kinases convert the Ptdlns-monophosphates to Ptdlns-bisphosphates $\left(\mathrm{PIP}_{2}\right)$ and thereby induce inhibition of GCN5. Ptdlns-bisphosphates attach the active transcription site to the inner envelope membrane of the nucleus. PI 3-kinase VPS34 interacts with GCN5 and synthesizes Ptdlns3P to retain GCN5 at the gene locus. The model was designed on basis of a model of Weiste and Dröge-Laser (compare Fig. 1.8, (Weiste and Dröge-Laser, 2014)).

In this model, the epigenetic reader ING and the HAT GCN5, as a part of the SAGA complex, are recruited to an active transcription site of an auxin-inducible gene by Ptdlns-monophosphates acting as recruiting signals. PI4P 5-kinases can bind to histone H 3 at the active transcription site and could facilitate positioning of GCN5 and ING by stabilizing the complex at the interface with the inner nuclear envelope membrane. ING binds to H3K4me3 and recruits GCN5. GCN5 positions at the N-terminus of histone H 3 , probably with additional support of its bromodomain. H3K9, H3K14 or H3K27 are acetylated by GCN5, which was activated and regulated by ADA2B, the transcriptional adaptor within the SAGA complex that recruits the complex to bZIP transcription factors/GREs. PI4P 5-kinases, particularly PIP5K2 or PIP5K1, localize in the nucleus and convert the Ptdlns-monophosphates to Ptdlns-bisphosphates, which inhibit GCN5 after acetylation has occurred. Ptdlns-bisphosphates attach the active transcription sites to the inner envelope membrane. PI 3-kinase VPS34 binds to GCN5 and generates Ptdlns3P to retain GCN5 at the gene locus. Evidently, this model is still highly speculative and will require to be modified based on future research. However, I hope that this model summarized the finding of this thesis and can serve as a basis to expand the knowledge on the exciting and new field of nuclear Pls in plants.

4. Material and Methods

4.1. Equipment and devices

Equipment and technical devices used for experiments described in this thesis are listed in appendix Tab. 6.1 and are also mentioned in the description of each method.

4.2. Chemicals

Chemicals used are listed in appendix Tab. 6.2. All other chemicals used but not specifically mentioned were purchased from the companies Sigma-Aldrich/Merck (Munich/Darmstadt, Germany), Carl Roth GmbH (Karlsruhe, Germany) or AppliChem (Darmstadt, Germany).

4.2.1. Antibiotics used for the selection of bacteria

Antibiotic	Stock solution	Final concentration	Supplier
Carbenicillin disodium	$100 \mathrm{mg} / \mathrm{ml}$	$100 \mu \mathrm{~g} / \mathrm{ml}$	Duchefa, Haarlem, Netherlands
Kanamycin monosulfate	$50 \mathrm{mg} / \mathrm{ml}$	$50 \mu \mathrm{~g} / \mathrm{ml}$	Duchefa, Haarlem, Netherlands

4.2.2. Phospholipids

All phospholipids were ordered from Avanti Polar Lipids Inc. (Merck, Darmstadt, Germany) and are listed in appendix Tab. 6.3.

4.3. Consumables and Kits

Used kits and single-use material are listed in appendix Tab. 6.4.

4.4. Enzymes, proteins, peptides and molecular size markers

Restriction enzymes Ascl, BamHI, Ndel, Nhel, Notl, Sall, Sfil, Xbal and Xhol were purchased from New England Biolabs Inc. (Frankfurt, Germany). Other used enzymes, proteins, peptides and molecular size markers and their suppliers are listed in appendix Tab. 6.5.

4.5. Microorganisms

Escherichia coli (E. coli) strain NEB5a (New England Biolabs Inc., Frankfurt, Germany) was used for cloning and vector/plasmid amplification.
Genotype: fhuA2 $\Delta(\operatorname{argF-lacZ}) U 169$ phoA glnV44 Φ © 80 $\Delta($ lacZ $)$ M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17
E. coli strain Rosetta2(DE3) (Merck (Novagen), Darmstadt, Germany) was used for recombinant protein expression.
Genotype: F^{-}ompT hsdS $\mathrm{B}_{\mathrm{B}}\left(\mathrm{r}_{\mathrm{B}^{-}} \mathrm{m}_{\mathrm{B}^{-}}\right)$gal dcm (DE3) pRARE2 (Cam ${ }^{\mathrm{R}}$)

Saccharomyces cerevisiae (S. cerevisiae) strain NMY51 (Dualsystems Biotech, Zurich, Switzerland) was used for split-ubiquitin-based yeast-two-hybrid analyses.
Genotype: MATa, his3D200, trp1-901, leu2-3,112, ade2, LYS2::(lexAop)4-HIS3, ura3::(lexAop)8-lacZ (lexAop)8-ADE2 GAL4)

4.6. Plants

The plant material used in this study was of Arabidopsis thaliana Columbia (Col-0) background.
wild type Arabidopsis Col-0:
pip5k1 pip5k2:
pCaMV35S::PIP5K2-EYFP:
originally obtained from Lehle seeds (http://www.arabidopsis.com)
crossing of single mutants with T-DNA insertions in PIP5K1 (SALK_146728) and PIP5K2 (SALK_012487), stock is heterozygous for PIP5K1 (Ischebeck et al., 2013).
expresses PIP5K2-EYFP under control of the pCaMV35S promotor (pMDC123 vector), individual lines L2 (T3 generation) and L5 (T2 generation) (Gerth et al., 2017a).

4.7. Culture media

Before using, media were autoclaved for 20 min at $121^{\circ} \mathrm{C}$. Media containing saccharides were autoclaved for 15 min .

4.7.1. Media for E. coli

Media for cultivation of E. coli are listed in Tab. 4.1. For solid medium, 1.5% (w/v) micro-agar was added before autoclaving. For applied antibiotics see section 4.2.1.

Tab. 4.1: Media for E. coli.

Component	LB medium	2YT medium
Yeast extract	$0.5 \%(\mathrm{w} / \mathrm{v})$	$1 \%(\mathrm{w} / \mathrm{v})$
Tryptone	$1 \%(\mathrm{w} / \mathrm{v})$	$1.6 \%(\mathrm{w} / \mathrm{v})$
NaCl	$0.5 \%(\mathrm{w} / \mathrm{v})$	$0.5 \%(\mathrm{w} / \mathrm{v})$
Glucose	-	$0.2 \%(\mathrm{w} / \mathrm{v})$

4.7.2. Media for yeast

Media for cultivation of S. cerevisiae NMY51 are listed in Tab. 4.2. For solid medium, 2 \% (w/v) micro-agar was added before autoclaving. Glucose and amino acid supplements were autoclaved for 15 min at $121^{\circ} \mathrm{C}$ and added freshly to SD medium before use.

Tab. 4.2: Media for yeast.

Component	YPAD medium	SD medium
Yeast extract	$1 \%(\mathrm{w} / \mathrm{v})$	-
Peptone	$2 \%(\mathrm{w} / \mathrm{v})$	-
Adenine hemisulfate	$0.004 \%(\mathrm{w} / \mathrm{v})$	-
Yeast nitrogen base w/o amino acids and ammonium sulfate	-	$0.17 \%(\mathrm{w} / \mathrm{v})$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	-	$0.5 \%(\mathrm{w} / \mathrm{v})$
Micro-agar	$2 \%(\mathrm{w} / \mathrm{v})$	$2 \%(\mathrm{w} / \mathrm{v})$
Glucose	$2 \%(\mathrm{w} / \mathrm{v})$	$2 \%(\mathrm{w} / \mathrm{v})$
Amino acid supplement	-	$1 \mathrm{x}-\mathrm{LW}$ or $1 \mathrm{x}-\mathrm{LWH}$

Amino acid stock solution for supplementation of SD medium

-LW (10x) $200 \mathrm{mg} / \mathrm{L}$-adenine hemisulfate, $200 \mathrm{mg} / \mathrm{L}$-arginine HCl, $200 \mathrm{mg} / \mathrm{L}$ histidine HCl monohydrate, $300 \mathrm{mg} / \mathrm{L}$ Lisoleucine, $300 \mathrm{mg} / \mathrm{L}$ L-lysine HCl , $200 \mathrm{mg} / \mathrm{L}$ L-methionine, $500 \mathrm{mg} / \mathrm{L}$ L-phenylalanine, $2000 \mathrm{mg} / \mathrm{L}$ L-threonine, $300 \mathrm{mg} / \mathrm{L}$ L-tyrosine, $200 \mathrm{mg} / \mathrm{L}$ L-uracil, $1500 \mathrm{mg} / \mathrm{L}$ L-valine und $200 \mathrm{mg} / \mathrm{L}$ serine.
-LWH (10x) same as -LW (10x) but without L-histidine HCl monohydrate

4.7.3. Plant medium

Medium for cultivation of Arabidopsis seedlings is listed in Tab. 4.3. For solid medium, $0.8 \%(\mathrm{w} / \mathrm{v})$ micro-agar was added before autoclaving.

Tab. 4.3: Plant medium.

Component	$\mathbf{1 / 2 ~ M u r a s h i g e ~ \& ~ S k o o g ~ (M S) ~ m e d i u m ~}$
Murashige \& Skoog-Medium,	$0.22 \%(\mathrm{w} / \mathrm{v})$
incl. modified vitamins	
Sucrose	$1 \%(\mathrm{w} / \mathrm{v})$
pH was adjusted with 1 M KOH to pH 5.6.	

4.8. Growth conditions

4.8.1. Growth conditions for Arabidopsis plants

Plants were grown at the conditions described below in either Adaptis A1000 plant chambers (Conviron, Winnipeg, MB, Canada) or PERCIVAL AR-66/L3 plant chambers (Percival Scientific, Perry, IA, USA). For sterile growth on $1 / 2$ MS medium, Arabidopsis seeds were sterilized in 1 ml sodium hypochlorite solution ($6 \%(\mathrm{w} / \mathrm{v}$) NaOCl, 0.1% (v/v) Triton X-100) for 15 min while shaking and washed six times with $1 \mathrm{ml} \mathrm{ddH}_{2} \mathrm{O}$ afterwards. Sterilized seeds were directly sown on $1 / 2$ MS medium. Seeds sown on $1 / 2$ MS medium were first stratified for three days at $4^{\circ} \mathrm{C}$ in the dark and then cultivated under long-day conditions (16 h light, 8 h darkness) at ambient humidity and $21^{\circ} \mathrm{C}$.
Protoplast experiments and nuclei isolation were performed using approximately six-week-old leaf material from Arabidopsis grown on soil at ambient humidity at $21^{\circ} \mathrm{C}$ in short-day conditions (8 h light, 16 h darkness). Apart from the pip5k1 pip5k2 double mutant, plants were sown directly on soil. pip5k1 pip5k2 was grown on $1 / 2 \mathrm{MS}$ medium for ten days for preselection, and only plants with the appropriate mutant phenotype were transplanted to soil. The soil used was a mixture of nine parts substrate 1 (Klasmann-Deilmann GmbH, Geeste, Germany) and one part vermiculite and was sterilized by steaming at $80^{\circ} \mathrm{C}$ for 8 h .

4.8.2. Maintenance of yeast strain NMY51

To obtain the S. cerevisiae NMY51 strain, colonies were freshly plated out on YPAD medium every two to three weeks, grown at $28^{\circ} \mathrm{C}$ for two to three days, and then stored at $4^{\circ} \mathrm{C}$.

4.9. Vectors used in this study

4.9.1. Vectors for recombinant protein expression in E. coli

Vector	Description	Source
pGEX-6P-1	${A m p^{R}, \text { contains under control of the ptac }}^{\text {promotor the copy DNA (cDNA) coding for GST }}$GE Healthcare GmbH, and a multiple cloning site (mcs) for expressing proteins with N-terminal GST tag.	

pMAL-c5G	$A m p^{R}$, contains under control of the ptac
	New England Biolabs
promotor the malE gene and a mcs for	Inc., Frankfurt, Germany
	expressing fusion proteins with N-terminal MBP
tag. MBP sequence was optimized for	
enrichment via amylose. MBP can be cleaved	
from protein of interest with the specific protease	
	Genenase I.

4.9.2. Vectors for yeast-two-hybrid studies

Vector	Description	Source
$\begin{aligned} & \text { pBT3-C- } \\ & \text { OST4 } \end{aligned}$	$K a n^{R}$, LEU2 auxotrophic marker for selection in yeast, bait vector, based on $p B T 3-C$, contains under control of pCYC1 promotor a mcs and 3 'the cDNAs coding for the C-terminal part of ubiquitin (Cub, aa $34-76$), LexA DNA binding domain and VP16 transactivation domain, CYC1 terminator. Dr. Mareike Heilmann introduced OST4 (coding for oligosaccharyltransferase 4) via Xbal restriction sites.	Dualsystems Biotech, Zurich, Switzerland; modified by Dr. Mareike Heilmann, MLU Halle Wittenberg
pPR3-N	Amp ${ }^{R}$, TRP1 auxotrophic marker for selection in yeast, prey vector, contains under control of $p \mathrm{CYC1}$ promotor the cDNA coding for the N-terminal part of ubiquitin (NubG, aa $1-38$, I13 mutated to G) 5' of HA epitope tag and mcs, CYC1 terminator.	Dualsystems Biotech, Zurich, Switzerland
pAI-Alg5	$A m p^{R}$, TRP1 auxotrophic marker for selection in yeast, prey vector, contains the cDNA of unmodified Nub fused to dolichyl-phosphate beta-glucosyltransferase (Alg5).	Dualsystems Biotech, Zurich, Switzerland
pDL2-Alg5	$A m p^{R}$, TRP1 auxotrophic marker for selection in yeast, prey vector, contains the cDNA of NubG fused to Alg5.	Dualsystems Biotech, Zurich, Switzerland

4.9.3. Vectors for transient protein expression in Arabidopsis protoplasts

Vector	Description	Source	
$p E n t r y A$	$A m p^{R}$, based on pUC18, mcs under control of a	Dr. Mareike	
	$p C a M V 35 S$ promotor, that has been introduced via Sfil	Heilmann, MLU	
	restriction sites, poly(A) terminator of the octopine	Halle-Wittenberg	
	synthase (OCS) from tumor-inducing (Ti) plasmid of		
	Agrobacterium tumefaciens	(A. tumefaciens)	
	(MacDonald et al., 1991), flanked by recombination sites		
	attL1 (5' of mcs) and attL4 (3'of mcs).		

pEntryD	Amp ${ }^{R}$, based on pUC18, mcs under control of a	Dr. Mareike
	$p C a M V 35 S$ promotor, that has been introduced via Sfil	Heilmann, MLU
	restriction sites, poly(A) terminator of the OCS from	Halle-Wittenberg
	Ti plasmid of A. tumefaciens (MacDonald et al., 1991),	
	flanked by recombination sites attR4 (5^{\prime} of mcs$)$ and	
	attL2 (3^{\prime} of mcs$)$.	

4.10. Molecular biology methods

4.10.1. DNA isolation

Genomic DNA was extracted from rosette leaves using the cetyltrimethylammonium bromide (CTAB) method (Murray and Thompson, 1980). For this purpose, plant material frozen in liquid N_{2} was pulverized in a 1.5 ml centrifuge tube and immersed in $250 \mu \mathrm{l}$ of CTAB extraction solution (2\% (w/v) CTAB, 100 mM Tris- $\mathrm{HCl} \quad \mathrm{pH} 8.0, \quad 1.4 \mathrm{M} \quad \mathrm{NaCl}, \quad 20 \mathrm{mM}$ ethylenediaminetetraacetic acid (EDTA) pH 8.0, $2 \%(\mathrm{v} / \mathrm{v})$ 2-mercaptoethanol), and incubated for 30 min at $65^{\circ} \mathrm{C}$. The extracts were then mixed with $250 \mu \mathrm{l}$ chloroform:isoamyl alcohol (24:1 (v/v)) and centrifuged at $7,500 \times g$ and room temperature (RT) for 3 min for phase separation. The upper phase was transferred to a new tube and mixed with $20 \mu \mathrm{CTAB} / \mathrm{NaCl}$ solution (10 \% (w/v) CTAB, $0.7 \%(w / v) \mathrm{NaCl}$, preheated to $65^{\circ} \mathrm{C}$). Samples were incubated for 2 min at RT. 220μ l 2-propanol were added and tubes were inverted several times. Samples were again incubated for 2 min at RT and centrifuged at $18,400 \times g$ and RT for 10 min . The supernatant was carefully removed, and the DNA was washed with $100 \mu \mathrm{l} 75 \%(\mathrm{v} / \mathrm{v})$ ethanol. The samples were centrifuged at $9,400 \times g$ and RT for 5 min and the supernatant was carefully removed. The DNA was dried and finally dissolved in $30 \mu \mathrm{lddH} \mathrm{H}_{2} \mathrm{O}$.

4.10.2. RNA isolation

For RNA preparation from protoplasts, 400μ l transformed protoplasts (see section 4.26) were dissolved in 1 ml Trizol solution (38 \% (v / v) Phenol (saturated with 0.1 M citrate buffer, pH 4.3 (\#P4682, Sigma-Aldrich, Munich, Germany), 0.8 M guanidinium thiocyanate, 0.4 M ammonium thiocyanate, 0.1 M sodium acetate $\mathrm{pH} 5.0,5 \%$ (v/v) glycerol). Afterwards, all samples were incubated for 10 min at RT and centrifuged at $15,870 \times g$ and $4^{\circ} \mathrm{C}$ for 10 min . Supernatant was transferred to a new tube and mixed vigorously for 15 s with $200 \mu \mathrm{l}$ chloroform. Samples were incubated for 3 min at RT and were centrifuged at $15,870 \times g$ and $4^{\circ} \mathrm{C}$ for 10 min . The upper phase was transferred to a new tube and combined with $1 / 2$ volume of 2-propanol and $1 / 2$ volume of high salt precipitation buffer (0.8 M sodium citrate, 1.2 M NaCl). Samples were inverted several times and incubated for 10 to 20 min at RT. RNA was precipitated by centrifuging at $15,870 \times g$ and $4^{\circ} \mathrm{C}$ for 15 min . Supernatant was removed and precipitate was washed two times with $900 \mu \mathrm{l} 75 \%(\mathrm{v} / \mathrm{v})$ ethanol. Samples were centrifuged at $15,870 \times g$ and $4^{\circ} \mathrm{C}$ for 5 min and RNA was dried at RT. Dried RNA was resolved in $20 \mu \mathrm{ldH} \mathrm{H}_{2} \mathrm{O}$. RNA
concentration was measured at 260 nm with an Ultrospec 2100 pro UV/Vis spectrometer (Biochrom, Cambridge, United Kingdom) or Ultrospec 3000 UV/Vis spectrometer (Pharmacia Biotech AG, Dübendorf, Germany). RNA quality was determined by the ratio of absorbances $\mathrm{A}_{260 / 280}$ and electrophoresis (see section 4.11).

4.10.3. cDNA synthesis

For cDNA synthesis, approximately 1 to 5 mg of total RNA from Arabidopsis seedlings and $1 \mu \mathrm{l}$ of total RNA from protoplasts were used. The cDNA synthesis was performed using the RevertAid H Minus First Strand cDNA Synthesis Kit (\#K1632, Thermo Fisher Scientific, Schwerte, Germany) according to the manufacturer's instructions. If RNA was frozen prior to cDNA synthesis, it was incubated for 5 min at $65^{\circ} \mathrm{C}$ after thawing to achieve complete denaturation.

4.11. Separation of DNA and RNA in agarose gels

DNA and RNA molecules were separated according to their size in 1% or $2 \%(\mathrm{w} / \mathrm{v})$ agarose gels in 1x Tris-Acetate-EDTA buffer (TAE buffer) (40 mM Tris, 20 mM glacial acetic acid, 1 mM EDTA). For this, samples were mixed with $5 x$ sample buffer ($60 \%(v / v)$ glycerol, $0.4 \%(w / v)$ Orange G, $0.03 \%(\mathrm{w} / \mathrm{v})$ bromophenol blue, $0.03 \%(\mathrm{w} / \mathrm{v})$ xylene cyanol PP) and loaded into the gels. The GeneRuler ${ }^{\text {TM }} 100 \mathrm{bp}$ DNA Ladder or GeneRuler ${ }^{T M} 1 \mathrm{~kb}$ DNA Ladder (both Thermo Fisher Scientific, Schwerte, Germany) were used as molecular size markers. Electrophoresis was performed with MINI and MIDI chambers (cti, Idstein, Germany) with a voltage of 120 V to 150 V (DNA) or 70 V (RNA) per gel. For detection, gels were incubated in ethidium bromide ($10 \mu \mathrm{~g} / \mathrm{ml}$ in $\mathrm{ddH}_{2} \mathrm{O}$) for 10 to 15 min and nucleic acids were visualized under UV light in a Gel Detection System Gel iX Imager (INTAS, Göttingen Germany) or a Gel Detection System Quantum ST4 (Vilber Lourmat Deutschland GmbH, Eberhardzell, Germany).

4.11.1. Extraction of DNA from gels

To isolate DNA vectors or fragments from agarose gels, the GeneJET ${ }^{\text {TM }}$ Gel Extraction Kit (\#K0692, Thermo Fisher Scientific, Schwerte, Germany) was used. Cut gel pieces were dissolved in manufacturer's binding buffer in a $1: 1$ ratio (v / v) for approximately 10 min at 50 to $60^{\circ} \mathrm{C}$. The DNA was then loaded onto the purification column, washed with washing buffer, and the DNA was eluted with 20 to $30 \mu \mathrm{ldH} \mathrm{dd}_{2} \mathrm{O}$.

4.12. PCR strategies

4.12.1. Genotyping of Arabidopsis plants

To investigate Arabidopsis genotypes, wild type alleles, T-DNA insertions and the presence of transgenic expression cassettes, specific oligonucleotide pairs were used. Oligonucleotides are given in appendix Tab. 6.6. The polymerase chain reaction (PCR) was performed in a total volume of $25 \mu \mathrm{l}$ with $2 \mu \mathrm{l}$ isolated DNA (section 4.10.1) and with the TAQ-DNA-Polymerase (peqlab, VWR International GmbH, Darmstadt, Germany) as described in the manufacturer's instructions. The used standard PCR program started with an initial heating of the samples to $94^{\circ} \mathrm{C}$ for 5 min followed by 40 cycles, alternating the steps of denaturation at $94^{\circ} \mathrm{C}$ for 30 s , oligonucleotide annealing at $60^{\circ} \mathrm{C}$ for 30 s , and elongation at $72^{\circ} \mathrm{C}$ for $30 \mathrm{~s} / \mathrm{k}$ ilo bases (kb). PCR samples were separated using gel electrophoresis (section 4.11).

4.12.2. \quad Quantitative real-time RT PCR (qPCR)

Transcript levels of various target genes were analyzed by quantitative real-time RT PCR (qPCR) on cDNA from section 4.10.3. For this purpose, $2 \mu \mathrm{l}$ of respective cDNA sample and the Luna ${ }^{\circledR}$ Universal qPCR Master Mix (New England Biolabs Inc., Frankfurt, Germany) (for mesophyll protoplasts) were used as described in the manuals. Specific oligonucleotides for amplification of the corresponding transcripts were designed using the online tool PrimerBLAST (National Center for Biotechnology Information, U.S. National Library of Medicine, Bethesda, MD, USA (Ye et al., 2012)). Oligonucleotide pairs were designed to specifically amplify a cDNA fragment of no more than 200 base pairs (bp). Used oligonucleotides are listed in appendix Tab. 6.7. Data were normalized to the transcript level of the housekeeping gene ubiquitin-conjugating enzyme 10 (UBC10). qPCRs were performed in a Rotor Gene Q 2-Plex (Qiagen, Hilden, Germany) using the program Rotor-Gene Q Series Software (Qiagen, Hilden, Germany). The used standard PCR program started with an initial heating of the samples to $95^{\circ} \mathrm{C}$ for 10 min followed by 40 to 50 cycles, alternating the steps of denaturation at $95^{\circ} \mathrm{C}$ for 10 s , oligonucleotide annealing at $60^{\circ} \mathrm{C}$ for 20 s , and elongation at $72^{\circ} \mathrm{C}$ for 30 s . The respective transcript data were analyzed using the Rotor-Gene Q Series software (Qiagen, Hilden, Germany) and the program LinRegPCR (J. M. Ruijter, Academic Medical Center, Amsterdam, Netherlands, based on (Ruijter et al., 2009; Tuomi et al., 2010; Ruijter et al., 2014)).

4.12.3. Amplification of DNA fragments by PCR

To clone the gene or cDNA of interest into a vector, the coding sequence regions had to be amplified by PCR. To avoid errors in the sequences as far as possible, Phusion ${ }^{\circledR}$ High Fidelity DNA-Polymerase with a proofreading ability (New England Biolabs Inc., Frankfurt, Germany) was used for this purpose according to the manufacturer's instructions. Templates were either
cDNAs already cloned as plasmids (1:20 dilution) or prepared cDNA (2 $\mu \mathrm{l}$) (see section 4.10.3). Used oligonucleotides are listed in appendix Tab. 6.8. The used standard PCR program started with an initial heating of the samples to $98^{\circ} \mathrm{C}$ for 1 min followed by 40 cycles, alternating the steps of denaturation at $98^{\circ} \mathrm{C}$ for 30 s , oligonucleotide annealing at $65^{\circ} \mathrm{C}$ for 30 s , and elongation at $72^{\circ} \mathrm{C}$ for $30 \mathrm{~s} / \mathrm{kb}$, followed by a final oligonucleotide annealing at $60^{\circ} \mathrm{C}$ for 30 s and a final elongation at $72^{\circ} \mathrm{C}$ for 5 min . PCR products were separated on agarose gels (section 4.11) and purified as described in section 4.11.1.

4.12.4. Introduction of amino acid substitutions: fusion PCR

Amino acid substitutions were introduced by fusion PCR and appropriately modified oligonucleotide pairs. Forward and reverse oligonucleotides (fusion mutation oligonucleotides) were designed to anneal to the position where the desired substitutions were to be introduced. These fusion mutation oligonucleotides overlapped by at least 20 bp . In two separate PCR reactions, the forward mutagenesis oligonucleotide was used with the 3^{\prime}-end oligonucleotide and the reverse mutagenesis primer was used together with the 5 '-binding forward oligonucleotide. This resulted in two PCR fragments which were separated on an agarose gel (section 4.11), gel extracted (section 4.11.1) and fused in another PCR with the corresponding 5^{\prime}-binding forward oligonucleotide and the 3^{\prime}-end oligonucleotide. Initial templates were 1:100 dilutions of the plasmids carrying the cDNAs to be modified. The polymerase used for this purpose was the Phusion ${ }^{\circledR}$ High Fidelity DNA-Polymerase with a proofreading ability (New England Biolabs Inc., Frankfurt, Germany) as described in section 4.12.3. The used standard PCR program started with an initial heating of the samples to $98^{\circ} \mathrm{C}$ for 1 min followed by 40 cycles, alternating the steps of denaturation at $98^{\circ} \mathrm{C}$ for 30 s , oligonucleotide annealing at $65^{\circ} \mathrm{C}$ for 30 s , and elongation at $72^{\circ} \mathrm{C}$ for $30 \mathrm{~s} / \mathrm{kb}$, followed by a final elongation step at $72^{\circ} \mathrm{C}$ for 10 min . Finally, it was proceeded as described in section 4.12.3.

4.13. Restriction

Restriction enzymes (Ascl, BamHI, Ndel, Nhel, Notl, Sall, Sfil, Xbal and Xhol) were used as described in the manuals from New England Biolabs Inc. (Frankfurt, Germany).
PCR products and vector backbones were digested overnight at the corresponding temperature. The restriction reactions were stopped by incubating the samples for 30 min at $80^{\circ} \mathrm{C}$. The digested vectors were then purified via an agarose gel (section 4.11) and the GeneJETTM Gel Extraction Kit (\#K0692, Thermo Fisher Scientific, Schwerte, Germany) (section 4.11.1).

4.14. Ligation

For ligation of digested DNA fragments in vectors, T4-DNA-Ligase (New England Biolabs Inc., Frankfurt, Germany) was used according to the manufacturer's instructions. Briefly, the reaction mixtures had a total volume of $20 \mu \mathrm{l}$ and each consisted of $3 \mu \mathrm{l}$ of digested PCR/cDNA insert, 1μ l of the digested vector, 2μ of 10x T4-DNA-Ligase buffer, and 1μ l of T4-DNA-Ligase and was incubated for 30 min at RT. Subsequently, the complete reactions were transformed into chemo-competent E. coli NEB5a (section 4.15).

4.15. Amplification of plasmid- and vector DNA in E. coli

4.15.1. Preparation of chemo-competent E. coli

Chemo-competent E.coli NEB5a cells were prepared after the protocol of Inoue and coworkers (Inoue et al., 1990). A pre-culture of 50 ml LB medium was inoculated with $500 \mu \mathrm{l}$ of E. coli NEB5a (New England Biolabs Inc., Frankfurt, Germany) and incubated overnight at 180 rpm and $30^{\circ} \mathrm{C}$. The pre-culture was used to inoculate a larger culture with an OD_{600} of 0.05 which was incubated at 180 rpm and $37^{\circ} \mathrm{C}$. At an OD_{600} between 0.4 and 0.6 , cell suspensions were aliquoted to 50 ml reaction tubes and were incubated on ice for 10 min . Cells were centrifuged at $3,320 \times g$ and $4^{\circ} \mathrm{C}$ for 10 min and the supernatant was discarded. Sediments were resuspended in 20 ml pre-cooled TFB buffer (10 mM PIPES $\mathrm{pH} 6.7,15 \mathrm{mM}$ $\mathrm{CaCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}, 250 \mathrm{mM} \mathrm{KCl}, 55 \mathrm{mM} \mathrm{MnCl}$) and incubated for 10 min at $4^{\circ} \mathrm{C}$. Cell suspensions were centrifuged at $3,320 \times g$ and $4^{\circ} \mathrm{C}$ for 10 min , and the supernatant was discarded. Cells were resuspended in 4 ml TFB buffer, dimethyl sulfoxide (DMSO) was added to a final concentration of $7 \%(\mathrm{v} / \mathrm{v})$ and the cell suspension was incubated on ice for 10 min . Cells were then divided into $500 \mu \mathrm{l}$ aliquots each, frozen in liquid N_{2}, and stored at $-80^{\circ} \mathrm{C}$.

4.15.2. Transformation of chemo-competent E. coli

For the transformation of ligation approaches, 100μ of chemically competent E. coli NEB5 α cells each were used. For the transformation of already existing plasmids (retransformation/propagation), $50 \mu \mathrm{l}$ of chemically competent cells each were used. Cells were mixed with ligation mixtures/plasmid DNA and incubated on ice for 30 min . Then, a heat shock at $42^{\circ} \mathrm{C}$ was performed for 45 s , and the reactions were incubated again on ice for 5 min . $900 \mu \mathrm{LB}$ medium were added and cells were incubated at $37^{\circ} \mathrm{C}$ for 1 h . For transformed ligations, the entire transformation mixture and for retransformations, only $50 \mu \mathrm{l}$ of the transformation mixture were plated out on LB medium with the appropriate antibiotics and cultured overnight at $37^{\circ} \mathrm{C}$.
For retransformation, $50 \mu \mathrm{l}$ of chemo-competent E. coli cells were combined with $1 \mu \mathrm{l}$ of plasmid DNA. E. coli Rosetta2 cells were also transformed in volumes of $50 \mu \mathrm{l}$ with $1 \mu \mathrm{l}$ of plasmid DNA.

4.15.3. Plasmid isolation from E. coli

Plasmid DNA was isolated from E. coli using either the GeneJET ${ }^{\text {TM }}$ Plasmid Miniprep Kit (Thermo Fisher Scientific, Schwerte, Germany) for small-scale plasmid isolation or the CompactPrep Plasmid Midi Kit (Qiagen, Hilden, Germany) for larger scale plasmid isolation. For small-scale plasmid isolation, 2 to 5 ml of LB medium and for larger scale (midi-) plasmid isolations 50 to 100 ml LB medium containing the appropriate antibiotics were inoculated with a single E. coli NEB5 a colony each and grown overnight while shaking at 150 to 180 rpm and $37^{\circ} \mathrm{C}$. Plasmid DNA concentration was measured at 260 nm with an Ultrospec 2100 pro UV/Vis Spectrometer (Biochrom, Cambridge, United Kingdom) or a Ultrospec 3000 UV/Vis Spectrometer (Pharmacia Biotech AG, Dübendorf, Germany). DNA quality was determined by the ratio of absorbances $\mathrm{A}_{260 / 280}$ and electrophoresis (section 4.11).

4.16. Sequencing

Clonings were verified by sequencing. For this purpose, $1 \mu \mathrm{~g}$ of plasmid DNA was mixed with $5 \mu \mathrm{l}$ of a $5 \mu \mathrm{M}$ solution of a sequence- or vector-specific oligonucleotide in a total volume of $10 \mu \mathrm{l}$. The oligonucleotides used are listed in appendix Tab. 6.9. The samples were sequenced using GATC Biotech AG (Eurofins Genomics Germany GmbH, Ebersberg, Germany) and the sequence data were analyzed using Chromas software (version 2.6.6, Technelysium Pty Ltd, South Brisbane, Australia) and the online tools Multalin (Corpet, 1988), Clustal Omega (Madeira et al., 2019) and BoxShade (version 3.21, K. Hofmann, M. Baron, ExPASy Bioinformatics Resource Portal, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland). Reference sequences were obtained from the NCBI gene database (National Center for Biotechnology Information, U.S. National Library of Medicine, Rockville Pike, Bethesda, MD, USA).

4.17. Cloning strategies

4.17.1. Constructs for recombinant protein expression

For recombinant protein expression in E. coli, the respective cDNAs of GCN5, GCN5ILL, $G C N 5_{\text {EDD }}, G C N 5_{212-375,}, G C N 5_{284-375}, A D A 2 B$, ING1, ING2, VPS34, VPS34 1_{1-210} and VPS34210-814 were moved into $p G E X-6 P-1$ or $p M A L-c 5 G$ (section 4.9.1) to get either glutathione S-transferase (GST)- or maltose-binding protein (MBP)-fusion constructs. cDNAs coding for the proteins of interest were introduced to $p G E X-6 P-1$ or $p M A L-c 5 G$ vectors using Notl and Sall restriction sites. Oligonucleotide information is given in appendix Tab. 6.8. Cloning techniques were performed according to sections 4.12 to 4.15 .
Constructs, that were designed during this study or previously, are listed in Tab. 4.4.

Tab. 4.4: Constructs for recombinant protein expression.
Abbreviations: FH: created by Franziska Heinrich, FM: created by Dr. Franziska Meyer, JL: created by Dr. Jennifer Lerche, MA: created in master thesis (FD), MH: created by Dr. Mareike Heilmann, PHD: created in this study.

Vector	cDNA	Created by
pGEX-6P-1	GCN5, ING1, ING2	MA
pMAL-c5G	GCN5	MA
	ADA2B, VPS34, VPS341-210, VPS34210-814	PHD
	ING1, ING2	FH
	PIP5K1	MH
	PIP5K2	JL
	PIP5K6	FM

4.17.2. Constructs for split-ubiquitin-based yeast-two-hybrid

The vector pBT3-C-OST4 (section 4.9.2) was used to clone bait constructs and the vector pPR3-N (section 4.9.2) was used to clone prey constructs. cDNAs coding for the proteins of interest were introduced to $p B T 3-C-O S T 4$ and $p P R 3-N$ vectors using SfilA and SfilB restriction sites, respectively. In pBT3-C-OST4, cDNAs were introduced in reading frame with 5' OST4 and 3^{\prime} Cub, LexA and VP16. In pPR3-N, cDNAs were introduced in reading frame with 5^{\prime} NubG. The respective specific oligonucleotides for cloning are listed in appendix Tab. 6.8. Cloning techniques were performed according to sections 4.12 to 4.15.
Constructs, that were designed during this study or previously, are listed in Tab. 4.5.

Tab. 4.5: Constructs for split-ubiquitin-based yeast-two-hybrid assays.
Abbreviations: FM: created by Dr. Franziska Meyer, MA: created in master thesis (FD), MH: created by Dr. Mareike Heilmann, PHD: created in this study.

Vector	cDNA	Created by
pBT3-C-OST4 (bait)	PIP5K1, PIP5K2	MH
	GCN5, PIP5K9	
	VPS34, VPS34 PI-210, VPS34 $210-814$	PHD
	PIP5K6 $^{\text {GCN5, ING1, ING2, HAM2, HDAC6, }}$	MH
pPR3-N (prey)	HDAC19, SWC4 (MYB1-like)	PHD
	ADA2B	

4.17.3. Constructs for transformation of Arabidopsis protoplasts

For transient expression under the p CaMV35S promotor in protoplasts, pEntryA-pCaMV35S or pEntryD-pCaMV35S vectors were used (section 4.9.3). In control experiments, pEntryA-pCaMV35S::EYFP and pEntryD-pCaMV35S::mCherry were used, both were provided by Larissa Launhardt. In brief, EYFP and mCherry were amplified with 5^{\prime}-Sall and 3^{\prime}-Ascl restriction sites and moved into the respective pEntry-pCaMV35S vector. The coding sequences for EYFP-GCN5, EYFP-GCN5ILL and EYFP-GCN5EDD were amplified by PCR introducing 5^{\prime}-Ascl and 3^{\prime}-Notl restriction sites and moved into the above described pCaMV35S::EYFP, resulting in pEntryA-pCaMV35S::EYFP-GCN5, pEntryA-pCaMV35S::EYFP-GCN5ILL and pEntryA-pCaMV35S::EYFP-GCN5EDD. The respective specific oligonucleotides for cloning are listed in appendix Tab. 6.8.
PIP5K1, PIP5K2, PIP5K2 K470A and PIP5K6 were cloned as C-terminal EYFP fusions (provided by Dr. Mareike Heilmann and Dr. Franziska Meyer) into pEntryA-pCaMV35S::EYFP or pEntryD-pCaMV35S::EYFP (PIP5K6) by using Ascl and Xhol restriction sites. The cDNA of VPS34 was introduced via Ascl and Nhel into a pEntryA-pCaMV35S::mCherry.
The NLSsv40DsRed (NLS-DsRed) marker was produced by PCR fusion of the NLSsv40 sequence (NLSsv40, strong NLS PKKKRKV of the large T-antigen of simian virus 40 (Kalderon et al., 1984)) 5'-prime to the DsRed sequence using the oligonucleotides NLSRedStar-Asclfor/ RedStar-Xholrev and cloned into pEntryA-pCaMV35S (provided by Dr. Mareike Heilmann). Cloning techniques were performed according to sections 4.12 to 4.15. Constructs, that were designed during this study or previously, are listed in Tab. 4.6.

Tab. 4.6: Transformation vectors for Arabidopsis leaf protoplasts.
Abbreviations: FM: created by Dr. Franziska Meyer, LL: created by Larissa Launhardt,
MH: created by Dr. Mareike Heilmann, PHD: created in this study.

Vector	cDNA	Restriction sites (gene)	Restriction sites (tag)	Created by
pEntryA	EYFP	-	Sall/Ascl	LL
	PIP5K1-EYFP	Ascl/Xhol	Xhol/Notl	MH
	PIP5K2-EYFP	Ascl/Xhol	Xhol/Notl	MH
	PIP5K2 K470A-EYFP	Ascl/Xhol	Xhol/Notl	MH
	EYFP-GCN5	Ascl/Notl	Sall/Ascl	PHD
	EYFP-GCN5ILL	Ascl/Notl	Sall/Ascl	PHD
	EYFP-GCN5EDD	Ascl/Notl	Sall/Ascl	PHD
	VPS34-mCherry	Ascl/Nhel	Nhel/BamHI	MH
	NLS-DsRed	Ascl/Xhol	-	MH
pEntryD	PIP5K6-EYFP	Ascl/Xhol		FM

Vector	cDNA	Restriction sites (gene)	Restriction sites (tag)	Created by
$p E n t r y D$	mCherry	-	Sall/Ascl	LL

4.18. Recombinant expression and enrichment of fusion proteins

4.18.1. \quad Recombinant expression of fusion proteins in E. coli

Proteins were recombinantly expressed in E. coli Rosetta2 cells. Competent cells (section 4.15.1) were transformed with respective expression plasmids (sections 4.15 .2 and 4.17.1). Starter cultures were incubated overnight at 180 rpm and $30^{\circ} \mathrm{C}$ in 2 YT medium (section 4.7.1) with appropriate antibiotics and were used to inoculate main expression cultures with an OD_{600} of 0.05 . For MBP-tagged protein expression, the 2 YT medium was supplemented with $0.2 \%(\mathrm{w} / \mathrm{v})$ glucose. Main cultures were shaken with 300 ml 2YT medium either in normal flasks and at 180 rpm or in baffled flasks and at 90 rpm and $37^{\circ} \mathrm{C}$ until an OD_{600} of 0.6 to 0.8 was achieved. MBP-PIP5K1, MBP-PIP5K2 and MBP-VPS34 and variants were expressed at $28^{\circ} \mathrm{C}$ in baffled flasks and expression was induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) for 4 h . MBP-PIP5K6 was expressed at $22^{\circ} \mathrm{C}$ in baffled flasks and expression was induced with 0.1 mM IPTG for 4 h . GST/MBP-GCN5, MBP-GCN5 substitution variants and truncated MBP-GCN5 variants, GST/MBP-ING1, GST/MBP-ING2 and MBP-ADA2B were expressed at $18^{\circ} \mathrm{C}$ and expression was induced with 0.1 mM IPTG for 20 h . As controls GST and MBP were expressed. Expression was at $37^{\circ} \mathrm{C}$ and expression was induced with 0.1 mM IPTG for 2 h . After expression, cells were harvested in aliquots of 50 ml at $3,220 \times g$ and $4^{\circ} \mathrm{C}$ for 15 min , frozen in liquid N_{2} and stored until use at $-20^{\circ} \mathrm{C}$.

4.18.2. Lysis of cells expressing recombinant fusion proteins

Cell pellets with expressed GST-tagged proteins were solubilized in 2.5 ml GST buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl , 1x Protease-Inhibitor (SIGMAFAST ${ }^{\text {TM }}$ Protease Inhibitor Cocktail, EDTA-Free, Sigma-Aldrich, Munich, Germany)) and cell pellets with expressed MBP-tagged proteins were solubilized in 2.5 ml MBP buffer (20 mM Tris-HCl pH 7.4, 200 mM $\mathrm{NaCl}, 1 \mathrm{mM}$ EDTA pH 8.0, 1x Protease-Inhibitor (SIGMAFAST ${ }^{\text {TM }}$ Protease Inhibitor Cocktail, EDTA-Free)). Cell disruption was initiated with $1 \mathrm{mg} / \mathrm{ml}$ lysozyme and incubation on ice for 30 min followed by sonication with 1,600 to $2,000 \mathrm{~J}$ in pulses of $2 \mathrm{~s}(V i b r a-C e l)^{\mathrm{TM}} 72442$, Bioblock Scientific, Sonics \& Materials Inc., Newton CT, USA). The lysates were centrifuged at $20,800 \times g$ and $4^{\circ} \mathrm{C}$ for 15 min , and the soluble protein fraction was retained.
For protein enrichment, cell pellets with expressed MBP-PIP5K1 and MBP-PIP5K2 were solubilized by Lennart Schwalgun according to Dejonghe and coworkers (Dejonghe et al., 2016).

Exemplary cell lysates of all expressed proteins are displayed in appendix Fig. 6.19.

4.18.3. Enrichment of recombinant fusion proteins

For protein enrichment, the soluble protein fractions from section 4.18 .2 were used. For enrichment of GST- or MBP-tagged proteins, Pierce ${ }^{T M}$ centrifuge columns with 500μ Pierce ${ }^{T M}$ glutathione agarose (both Thermo Fisher Scientific, Schwerte, Germany) or 500 to $700 \mu \mathrm{l}$ amylose resin (New England Biolabs Inc., Frankfurt, Germany) were used. The resins were washed three times with either 3 ml GST equilibration buffer (50 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.0,150 \mathrm{mM}$ NaCl) or MBP equilibration buffer (20 mM Tris- $\mathrm{HCl} \mathrm{pH} 7.4,200 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA pH 8.0). Then, cell lysates were incubated with the resins in the columns for 1 h while shaking at RT followed by 1 h while shaking at $4^{\circ} \mathrm{C}$. The flow-through was discarded, and the matrices were washed three times with 3 ml equilibration buffer each. For enhancing the yield, the steps were repeated with a second cell lysate, that was incubated with the resins for 1 h while shaking at RT followed by overnight incubation at $4^{\circ} \mathrm{C}$. The flow-through was discarded, and the matrices were washed three times with 3 ml equilibration buffer each. Proteins were eluted from the resins with $300 \mu \mathrm{l}$ of elution buffer each in five replicates. GST-tagged proteins were eluted with 50 mM reduced glutathione in GST equilibration buffer, MBP-tagged proteins were eluted with 10 mM maltose in MBP equilibration buffer. Enriched protein fractions were checked via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (see section 4.19). Protein concentrations were determined via Bradford assay (see section 4.18.4).

Soluble protein fractions containing MBP-PIP5K1 and MBP-PIP5K2 were enriched by Lennart Schwalgun according to Dejonghe and coworkers (Dejonghe et al., 2016).
Exemplary fractions of all enriched proteins are displayed in appendix Fig. 6.19.

4.18.4. Determination of protein concentrations via Bradford assay

Protein concentrations were determined using a Bradford assay (Bradford, 1976). $10 \mu \mathrm{l}$ of the enriched protein fraction were mixed with $990 \mu \mathrm{l}$ 1x Bradford reagent ($5 x$ Bradford reagent, SERVA Electrophoresis GmbH, Heidelberg, Germany) and incubated for 5 min at RT. Absorption was measured at 595 nm using an Ultrospec 2100 pro UV/Vis spectrometer (Biochrom, Cambridge, United Kingdom) or an Ultrospec 3000 UV/Vis spectrometer (Pharmacia Biotech AG, Dübendorf, Germany). The relative protein content was calculated using a bovine serum albumin (BSA) standard curve.

4.19. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

Cell lysates and protein enrichments were separated according to their molecular weight in an electric field on an SDS-PAGE using a method according to Laemmli (Laemmli, 1970). For this purpose, samples were mixed with $4 x$ Laemmli sample buffer (240 mM Tris-HCI pH 6.8,

8 \% (w/v) sodium dodecyl sulfate (SDS), 0.08 \% (w/v) bromophenol blue, 40 \% (v/v) glycerol, 20 \% (v/v) 2-mercaptoethanol (Julkowska et al., 2013) or 250 mM Tris-HCI pH 6.8, 8 \% (w/v) SDS, $0.04 \%(\mathrm{w} / \mathrm{v})$ bromophenol blue, $40 \%(\mathrm{v} / \mathrm{v})$ glycerol, 400 mM dithiothreitol (DTT)) and separated using either pre-casted $4-20 \%$ SDS gradient gels (SERVAGel ${ }^{\top M}$ TG PRIME ${ }^{T M}$, SERVA Electrophoresis GmbH, Heidelberg, Germany) or self-casted SDS gels with a 5% stacking gel and a 10% separation gel (w/v of polyacrylamide). Self-casted gels were prepared in a Multiple Gel Caster (SE 200 series) (Hoefer Scientific Instruments, Holliston, MA, USA). The gel composition is listed in appendix Tab. 6.10.

Gel electrophoreses were performed in SDS running buffer ($0.3 \%(w / v)$ Tris, $1.44 \%(w / v)$ glycine, $0.1 \%(w / v)$ SDS) in a SE250 Electrophorese Chamber (Hoefer Pharmacia Biotech Inc., San Francisco, CA, USA) at constant $35 \mathrm{~mA} / \mathrm{gel}$ (pre-casted gels) or at constant $25 \mathrm{~mA} / \mathrm{gel}$ (self-casted gels) until the dye bromophenol blue of the Laemmli sample buffer reached the bottom of the gels. Either PageRuler ${ }^{T M}$ Prestained Protein Ladder (10 to 180 kDa) or PageRuler ${ }^{T M}$ Unstained Protein Ladder (10 to 200 kDa) (both Thermo Fisher Scientific, Schwerte, Germany) were used as molecular size markers. After separation, gels were either stained with Quick Coomassie ${ }^{\circledR}$ Stain (SERVA Electrophoresis GmbH, Heidelberg, Germany) or used for immunodetection (see section 4.20).

4.20. Immunodetection of proteins (Western blotting)

For immunodetection, proteins separated by size via SDS-PAGE (section 4.19) were transferred to nitrocellulose membranes (Amersham Protran 0,45 NC, GE Healthcare GmbH, Solingen, Germany) according to the method of Towbin and coworkers (Towbin et al., 1979). Protein transfer was performed in a Mini-PROTEAN ${ }^{\circledR}$ Tetra System Blotting Chamber (BioRad Laboratories GmbH, Munich, Germany) in transfer buffer (0.582 \% (w/v) Tris, 0.293 \% (w/v) glycine, $0.375 \%(\mathrm{w} / \mathrm{v})$ SDS, $20 \%(\mathrm{v} / \mathrm{v})$ methanol) for 60 to 75 min at constant 60 V and 400 mA . Subsequently, the membranes were blocked for 30 min at RT in $3 \%(\mathrm{w} / \mathrm{v})$ milk powder in 1 x TBS buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl) while shaking. The blocked membranes were subsequently incubated with the primary antibody, diluted as recommended in manufacturer's instructions in $3 \%(\mathrm{w} / \mathrm{v})$ milk powder in 1 x TBS buffer for 90 min at RT or overnight at $4^{\circ} \mathrm{C}$ while shaking. Membranes were washed three times for 10 min with 1 x TBS and then incubated with the respective secondary antibody diluted in $3 \%(\mathrm{w} / \mathrm{v})$ milk powder in 1x TBS buffer for 45 to 60 min at RT. Secondary antibodies used were either conjugated to horse radish peroxidase (HRP) or to alkaline phosphatase (AP). Therefore, the membranes were washed either three times each for 10 min with 1 x TBS buffer for HRP detection or twice in 1 x TBS buffer and once in AP buffer (100 mM Tris- $\mathrm{HCl} \mathrm{pH} 9.5,100 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{MgCl}{ }_{2}$) for AP detection. Primary and secondary antibodies used are listed in appendix Tab, 6.11.

HRP detection was performed with SuperSignal ${ }^{\text {TM }}$ West Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific, Schwerte, Germany) in a Fusion Solo S (Vilber Lourmat Deutschland GmbH, Eberhardzell, Germany) using the FusionCapt Advance Solo 7 (version 17.01) software. AP detection was performed with $0.175 \mathrm{mg} / \mathrm{ml}$ 5-bromo-4-chloro-3-indolyl phosphate disodium salt (BCIP, $50 \mathrm{mg} / \mathrm{ml}$ stock solution in $\mathrm{ddH}_{2} \mathrm{O}$) and $0.338 \mathrm{mg} / \mathrm{ml}$ p-nitrotetrazolium blue chloride (NBT, $75 \mathrm{mg} / \mathrm{ml}$ stock solution in $70 \%(\mathrm{v} / \mathrm{v})$ dimethylformamide) in AP buffer.

4.20.1. Characterization of antibody specificity

Antibodies against histone H 3 and its posttranslational acetylation events at lysines 9 and 14 (see Tab.6.11) were tested for their specificity by using different histone peptides (see appendix Tab. 6.5) in a dot-blot analysis.
$1.5 \mu \mathrm{~g}$ and $0.3 \mu \mathrm{~g}$ of histone H3 from calf thymus (\#11034758001, Roche Diagnostics GmbH, Mannheim, Germany), recombinant human histone H3 protein (active, HsH3.1, \#ab198757, Abcam, Cambridge, United Kingdom), acetyl-histone H3 (Lys9) peptide (\#12-358, Sigma-Aldrich, Munich, Germany), acetyl-histone H3 (Lys14) peptide (\#12-359, Sigma-Aldrich, Munich, Germany), acetyl-histone H3 (Lys9/14) peptide (\#12-360, Sigma-Aldrich, Munich, Germany), human histone H3 (di methyl K4) peptide (\#ab7768, Abcam, Cambridge, United Kingdom) and human histone H3 (tri methyl K4) peptide (\#ab1342, Abcam, Cambridge, United Kingdom) were spotted on nitrocellulose membranes (Amersham Protran 0,45 NC, GE Healthcare GmbH, Solingen, Germany). The blocked membranes were incubated with primary antibodies (anti-H3, anti-H3K9ac and anti-H3K14ac, see appendix Tab. 6.11) overnight at $4^{\circ} \mathrm{C}$ and then with the corresponding secondary antibody (see appendix Tab. 6.11). Finally, HRP detection was performed as described in section 4.20.

4.21. Examining protein secondary structure using circular dichroism (CD) spectroscopy

Protein secondary structures of recombinantly expressed MBP, MBP-GCN5, MBP-GCN5 ${ }_{\text {ILL }}$ and MBP-GCN5 EDD were analyzed by using far-UV circular dichroism (CD) spectroscopy (Kelly et al., 2005). As control, CD spectra of MBP-GCN5 denatured with 4.5 M guanidinium chloride for 6.5 h were recorded. Enriched protein fractions with a concentration of 0.3 to $0.6 \mu \mathrm{~g} / \mu \mathrm{l}$ were measured in a precision cell with a light path length of 0.2 mm (Hellma GmbH, \& Co. KG, Müllheim, Germany) in a J-810 spectropolarimeter (JASCO Deutschland GmbH, Pfungstadt, Germany). The associated Peltier element PTC-423S (JASCO Deutschland GmbH, Pfungstadt, Germany) was adjusted to $20^{\circ} \mathrm{C}$. Ellipticity Θ was measured as an average of 64 repetitions with a scan speed of $50 \mathrm{~nm} / \mathrm{min}$ and intervals of 1 nm between data points. Data were taken from 195 (or up to 199) to 250 nm . Measurements were corrected with MBP elution
buffer (for denatured protein control combined with 4.5 M guanidinium chloride) and mean residue weight ellipticity [$\Theta]_{\text {MRW }}$ was calculated by using the following formula:

$$
[\Theta]_{\mathrm{MRW}}=\frac{\Theta * \mathrm{M}}{10 * \mathrm{~d} * \mathrm{c} * \mathrm{~N}} \text { in }\left[\mathrm{deg} * \mathrm{~cm}^{2} * \mathrm{dmol}^{-1}\right]
$$

with $\boldsymbol{\Theta}$: ellipticity [mdeg], M: molecular weight [g/mol] (calculated using ProtParam, ExPASy Bioinformatics Resource Portal, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland, (Gasteiger et al., 2005)), d: light path length [cm], c: concentration [mg/ml], N: number of amino acids.

4.22. Studies of protein-protein interactions

4.22.1. Split-ubiquitin-based yeast-two-hybrid (YTH)

For the study of protein-protein interactions, the DUALmembrane Kit 3 (Dualsystems Biotech AG, Zurich, Switzerland) was used, which is based on a method published by Johnsson and Varshavsky (Johnsson and Varshavsky, 1994). As described in a study by Möckli and coworkers (Möckli et al., 2007), a cytosolic-localized split-ubiquitin-based yeast-two-hybrid (YTH) screen was developed by fusing the bait proteins to the yeast OST4 protein localized in the ER membrane.

This YTH utilizes the eukaryotic conserved mechanism that reconstituted ubiquitin fusion proteins are subsequently cleaved by ubiquitin-specific proteases at the last amino acid position of ubiquitin. Split-ubiquitin-based YTH exploits the fact that the N-terminal half of ubiquitin fused as prey (Nub, residues $1-38$) and the C -terminal half of ubiquitin fused as bait (Cub, 34-76), which is fused to the transcription factor LexA-VP16, reconstitute upon protein-protein interaction of bait and prey, and only then the ubiquitin-specific protease cleaves the transcription factors. The YTH vectors are described in section 4.9.2 and the constructs used in YTH are described in section 4.17.2. The transcription factors then activate the reporter genes HIS3, ADE2 and lacZ, and the yeast is able to grow on medium lacking these components. The control prey vector pAl-Alg5 ensures spontaneous non-protein-protein interaction-dependent reconstitution of the ubiquitin halves and is used as a positive control. $p D L 2-A l g 5$ contains a ubiquitin half not capable of spontaneous reconstitution, so this is used as a negative control along with the bait.

4.22.1.1. Preparation of chemo-competent S. cerevisiae cells

Chemo-competent S. cerevisiae NMY51 cells (Dualsystems Biotech AG, Zurich, Switzerland) were prepared and transformed by the lithium acetate method (Ito et al., 1983). 50 ml of YPAD medium were inoculated with a yeast colony and grown overnight at 180 rpm and $30^{\circ} \mathrm{C}$. The next day, for seven transformation reactions, 50 ml each of YPAD medium was inoculated with
the pre-culture to an OD_{600} between 0.15 and 0.2 and grown at 180 rpm and $30^{\circ} \mathrm{C}$ to an OD_{600} of 0.6 . The yeast cells were sedimented as 50 ml aliquots by centrifugation at $2,500 \times \mathrm{g}$ and RT for 5 min and were washed in 20 ml TE buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA pH 8.0). After sedimentation at $2,500 \times \mathrm{g}$ for 5 min , the cells were washed in 1 ml lithium acetate/TE buffer (110 mM lithium acetate, 11 mM Tris-HCl pH 7.5, 1.1 mM EDTA pH 8.0) and sedimented at $2,500 \times g$ for 3 min and subsequently resuspended in 700μ lithium acetate/TE buffer.

4.22.1.2. Transformation of chemo-competent S. cerevisiae NMY51 cells

For each transformation reaction, 1 to $1.5 \mu \mathrm{~g}$ bait construct and 1 to $1.5 \mu \mathrm{~g}$ prey construct (see Tab. 4.5) were mixed with $100 \mu \mathrm{l}$ chemo-competent cell suspension and $700 \mu \mathrm{l}$ PEG/lithium acetate mix ($40 \%(\mathrm{w} / \mathrm{v}$) polyethylene glycol (PEG), 100 mM lithium acetate, 10 mM Tris-HCl pH 7.5, 1 mM EDTA pH 8.0) and incubated at 180 rpm and $30^{\circ} \mathrm{C}$ for 30 min . Then, $80 \mu \mathrm{LMSO}$ were added, cell suspensions were mixed, and heat shocked for 15 to 20 min at $42^{\circ} \mathrm{C}$. Cells were sedimented at $700 \times g$ for 5 min , supernatant was discarded, and cells were washed with $500 \mu \mathrm{l} 0.9 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaCl}$ solution and sedimented for 30 s at $700 \times \mathrm{g}$. Finally, cells were resuspended in $150 \mu \mathrm{l} 0.9 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaCl}$ solution and plated on SD selection medium lacking leucine and tryptophane (-LW). Plates were incubated for three to seven days at $30^{\circ} \mathrm{C}$.

4.22.1.3. Analysis of protein-protein interactions by yeast-two-hybrid tests

Positive selected colonies on SD-LW selection medium were used for drop tests on selection medium lacking leucine, tryptophane and histidine (SD-LWH). Therefore, cells were resuspended in TE buffer to an OD_{600} of 0.5 . Then, 3μ of each cell suspension were dropped on SD-LW and SD-LWH (see section 4.7.2). For more stringent selection conditions, 5 or 10 mM 3 -amino-1,2,4-triazole (3-AT) were added as an inhibitor of histidine biosynthesis. Cell growth was monitored at $30^{\circ} \mathrm{C}$ incubation over a period of eight days.

4.22.2. Analysis of protein-protein interactions by in vitro immuno pull-down assays

For pull-down experiments, $100 \mu \mathrm{l}$ each of Pierce ${ }^{\mathrm{TM}}$ glutathione agarose (Thermo Fisher Scientific, Schwerte, Germany) were loaded in microcentrifuge spin columns (Pierce ${ }^{\text {TM }}$ centrifuge columns, 0.8 ml volume, Thermo Fisher Scientific, Schwerte, Germany), washed three times with $600 \mu \mathrm{l}$ GST equilibration buffer (25 mM Tris-HCl pH 7.2, 75 mM NaCl) and centrifuged in between each time at $100 \times g$ for 1 min . Recombinant GST-tagged protein lysates were loaded onto the resin and GST-tagged proteins were immobilized on glutathione agarose by incubating the mixture for 1 h at $4^{\circ} \mathrm{C}$ with agitation. Unbound protein was eluted by
washing the resins three times with $600 \mu \mathrm{l}$ of GST equilibration buffer each time, and the bound GST-labeled protein was incubated with the corresponding recombinant MBP-labeled protein lysates overnight at $4^{\circ} \mathrm{C}$ under swirling. Upon washing of the resin (see above), GST-bound proteins were eluted with 50 mM glutathione in GST equilibration buffer. Elution was repeated twice. Interacting MBP fusion proteins were detected using a monoclonal anti-MBP antibody. Protein input was detected using a polyclonal anti-GST antibody (see sections 4.19 and 4.20). Tab. 4.7 shows used amounts of protein lysates. Volumes were filled up with GST equilibration buffer to 600μ l. MBP-tagged proteins were incubated with resin before adding to a resin with bound GST-tagged protein.

4.22.3. Analysis of protein-protein interactions by dot-blot analyses

Binding of PIP5K1 and PIP5K2 to histone H3 was tested with the recombinant histone H3 protein and the histone H 3 from calf thymus that are described in appendix Tab. 6.5 and that were used in antibody specificity tests (see section 4.20.1).

Histone H 3 and histone H 3 from calf thymus were spotted on nitrocellulose membranes in dots of $2 \mu \mathrm{~g}, 1 \mu \mathrm{~g}, 200 \mathrm{ng}, 100 \mathrm{ng}, 50 \mathrm{ng}, 10 \mathrm{ng}, 5 \mathrm{ng}, 1 \mathrm{ng}$ and $0.5 \mathrm{ng} .2 \mu \mathrm{l}$ of used enriched protein fractions were spotted three times on the membranes as control. Membranes were blocked for 45 min with $3 \%(\mathrm{w} / \mathrm{v})$ milk powder in 1 x TBS buffer. 50 to $100 \mu \mathrm{~g}$ of enriched MBP, MBP-PIP5K1 or MBP-PIP5K2 were added to $3 \%(\mathrm{w} / \mathrm{v})$ milk powder in $1 \times$ TBS buffer and were incubated with the membranes overnight at $4^{\circ} \mathrm{C}$ while shaking. The next day, membranes were treated with suitable antibodies as described in section 4.20. Protein binding was visualized via AP detection.

4.23. Analysis of protein-lipid interactions

Proteins were tested concerning their ability to bind PIs. Lipid overlay assays and liposome sedimentation assays were performed as described.

4.23.1. Lipid overlay assay

For lipid overlay assays, PIP Strips (\#P-6001, Echelon Biosciences Inc., MoBiTec, Göttingen, Germany) were used. The membranes were blocked for 30 min in 3% milk powder (\mathbf{w} / v) in $1 x$ TBS buffer and were then incubated with the respective enriched recombinant proteins (50 to $100 \mu \mathrm{~g}$) solved in 3% milk powder (w / v) in 1 x TBS overnight at $4^{\circ} \mathrm{C}$ while shaking. Membranes were washed three times each for 10 min with $1 \times$ TBS buffer and incubated with anti-MBP antibody diluted in 3% milk powder (w / v) in 1 x TBS buffer (appendix Tab. 6.11) for 1.5 h at RT. Membranes were washed three times for 10 min with 1 x TBS buffer and were incubated with secondary antibody (anti-mouse conjugated with AP diluted in 3% milk powder (w / v) in 1 x TBS buffer (appendix Tab. 6.11)) for 1 h at RT. After two times washing with 1 x TBS buffer, the membranes were washed once with AP buffer for equilibration and detection was performed using BCIP/NBT as substrates for AP (section 4.20). As lipid blot functionality test, the commercial PIP grips Ptdlns3P Grip (\#G-0302) and Ptdlns(4,5)P ${ }_{2}$ Grip (\#G-4501) (Echelon Biosciences Inc., MoBiTec, Göttingen, Germany) were tested with the PIP Strips. The test was performed according to the manufacturer's instructions.

4.23.2. Liposome sedimentation assay

Liposome sedimentation assays were performed according to Julkowska and coworkers (Julkowska et al., 2013). For each reaction, 300 nmol PtdCho were mixed with 100 nmol phosphoglycerolipid of choice (see appendix Tab.6.3) in a 2 ml Protein LoBind Tube (Eppendorf AG, Hamburg, Germany). Lipids were dried under air stream and solved in $500 \mu \mathrm{l}$ extrusion buffer (250 mM raffinose pentahydrate, 25 mM Tris- $\mathrm{HCl} \mathrm{pH} 7.5,1 \mathrm{mM}$ DTT). Then, lipids were hydrated for 90 min at RT with occasionally mixing and afterwards treated for 30 s in an ultrasonic water bath. Multilamellar lipid vesicle mixtures were extruded 13 times through a polycarbonate membrane (pore size $0.2 \mu \mathrm{~m}$, Whatman, Maidstone, United Kingdom) with filter supports (Avanti Polar Lipids Inc., Merck, Darmstadt, Germany) with an extruder. For washing, lipid vesicles were diluted in three volumes of $1 \times$ binding buffer ($125 \mathrm{mM} \mathrm{KCl}, 25 \mathrm{mM}$ Tris-HCl pH 7.5, 1 mM DTT, 0.5 mM EDTA) and sedimented at $20,800 \times g$ and $22^{\circ} \mathrm{C}$ for 15 min . Supernatant was discarded and liposome pellets were solved in $25 \mu \mathrm{l} 1 \mathrm{x}$ binding buffer. Per sample 750 ng (MBP, MBP-GCN5, MBP-GCN5ILL, MBP-GCN5 Edd $^{\text {) }}$ or $1.5 \mu \mathrm{~g}$ (MBP-ING1) of purified protein (section 4.18) were made up to 25μ with $4.2 \mu \mathrm{l}$ of 6 x binding buffer ($750 \mathrm{mM} \mathrm{KCl}, 150 \mathrm{mM}$ Tris-HCl pH 7.5, 6 mM DTT, 3 mM EDTA) and corresponding volume of $\mathrm{ddH}_{2} \mathrm{O}$, combined with the liposome suspension and incubated for 30 to 45 min at RT. Liposomes were sedimented at $16,000 \times g$ and $22^{\circ} \mathrm{C}$ for 30 min , supernatant was transferred into a new tube and $16.7 \mu \mathrm{l} 4 \mathrm{x}$ Laemmli sample buffer (section 4.19) were added. Liposome pellets were resuspended in $300 \mu \mathrm{l} 1 \mathrm{x}$ binding buffer, transferred into a new tube and sedimented again at $16,000 \times g$ and $22^{\circ} \mathrm{C}$ for 30 min . Supernatant was discarded and
pellets were resuspended in $33 \mu \mathrm{l} 1 \mathrm{x}$ Laemmli sample buffer. Samples were heated for 90 min at $95^{\circ} \mathrm{C}$ and $20 \mu \mathrm{l}$ of supernatant and $20 \mu \mathrm{l}$ or $30 \mu \mathrm{l}$ of liposome fraction were analyzed via immunodetection using the primary anti-MBP antibody followed by the AP-tagged secondary antibody (sections 4.19 and 4.20).

4.24. Histone acetyltransferase assay

For in vitro histone acetylation studies, recombinant enriched histone acetyltransferase (section 4.18) was mixed with human histone H3 protein (\#ab198757, Abcam, Cambridge, United Kingdom) and $7.5 \mu \mathrm{M}$ acetyl-CoA (Sigma-Aldrich, Munich, Germany; dissolved in 50 mM sodium acetate pH 5.0) in 1 x acetylation assay buffer (50 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.0,50 \mathrm{mM}$ $\mathrm{NaCl}, 0.1 \mathrm{mM}$ EDTA, $0.01 \%(\mathrm{w} / \mathrm{v})$ Triton X-100, $50 \mu \mathrm{~g} / \mathrm{ml}$ BSA, 1 mM DTT) at $20^{\circ} \mathrm{C}$ for 1 h . In some assays, enriched ADA2B protein was added to the assay. The total volume of the reactions was 15μ l, and the maximum amount of histone acetyltransferase used did not exceed 10% of the total volume. To ensure comparability, the same volume of histone acetyltransferase elution buffer was added to each sample. The protein amounts and buffer conditions used are listed in Tab. 4.8.

Tab. 4.8: In vitro acetylation assay of GCN5.

Component	Stock solution	Final
Acetylation assay buffer	5 x	$3 \mu \mathrm{l}$
Acetyl-CoA	$50 \mu \mathrm{M}$	$7.5 \mu \mathrm{M}$
Human histone H 3	$0.84 \mu \mathrm{~g} / \mu \mathrm{l}$	$0.84 \mu \mathrm{~g}$
MBP-GCN5 and variants		$0.75 \mu \mathrm{~g}$
MBP-ADA2B	$0.75 \mu \mathrm{~g}$	
Total volume	filled up with	
	$\mathrm{ddH}_{2} \mathrm{O}$ to $15 \mu \mathrm{l}$	

To test the effect of Pls on GCN5 activity, either PtdCho, PtdOH, Ptdlns3P, Ptdlns4P, Ptdlns $(3,5) \mathrm{P}_{2}$, or Ptdlns $(4,5) \mathrm{P}_{2}$ was added to the reaction. For specification and origin of lipids see appendix Tab. 6.3. Lipids were dried under streaming air, resolved in $5 x$ acetylation buffer, sonicated for 10 min in an ultrasonic bath and added to the acetylation mix. Molar amount/dilution of the corresponding phospholipids per reaction was 0.127 nmol , so about 12.7% of the positively charged amino acid residues of histone tails can interact with negatively charged PIs. Time course experiments from 20 to 120 min , with intervals of 20 min , were performed as described above.

Assays were stopped with $5 \mu \mathrm{l} 4 \mathrm{x}$ Laemmli sample buffer (section 4.19) and histone acetylation was visualized by immunoblotting with primary antibodies against H3K9ac and H3K14ac and against histone H 3 and MBP as a control (see sections 4.19 and 4.20).

4.25. In vitro lipid kinase activity assay with VPS34

The activity of VPS34 was determined as described previously for lipid kinases (Im et al., 2013). $20 \mu \mathrm{l}$ MBP-VPS34 or MBP-VPS34 variant enzyme soluble protein lysates were mixed with $6.2 \mu \mathrm{~g}$ Ptdlns substrate in 2% Triton X-100 (v/v) and $10 \mu \mathrm{l}$ buffer mix. Final buffer concentrations were 30 mM Tris- $\mathrm{HCl} \mathrm{pH} 7.2,8.7 \mathrm{mM} \mathrm{MgCl} 2,7.6 \mathrm{mM} \mathrm{MnCl} 2,7.6 \mathrm{mM} \mathrm{CaCl}{ }_{2}$, $0.77 \mathrm{mM} \mathrm{Na}_{2} \mathrm{MoO}_{4}, 1.5 \mathrm{mM}$ ATP and $10 \mu \mathrm{Ci} \mathrm{y}^{-[32 \mathrm{P}]-A T P}$ (Hartmann Analytic, Braunschweig, Germany). For this purpose, Ptdlns was dried under streaming air and resolved in $5 \mu \mathrm{l}$ $2 \%(\mathrm{v} / \mathrm{v})$ Triton X-100 and sonicated for 10 min in an ultrasonic bath. Reactions were filled up with 30 mM Tris-HCl pH 7.2 to $65 \mu \mathrm{l}$ and incubated for 1 h at RT. Phospholipids were extracted with 1.5 ml chloroform:methanol ($1: 2 \mathrm{v} / \mathrm{v}$), $500 \mu \mathrm{l} 2.4 \mathrm{M} \mathrm{HCl}, 250 \mu \mathrm{l} 0.5 \mathrm{M}$ EDTA pH 8.0 and $500 \mu \mathrm{l}$ chloroform. Chloroform phases were transferred to vials and samples were reextracted with $500 \mu \mathrm{l}$ chloroform. Chloroform phases from the reextraction were combined with the first extracts, $750 \mu \mathrm{l} 0.5 \mathrm{M} \mathrm{HCl}$ in methanol:ddH ${ }_{2} \mathrm{O}(1: 1(\mathrm{v} / \mathrm{v}))$ was added and mixed. The upper phase was transferred to a new glass vial and evaporated under streaming air. Samples were solved in 40μ chloroform and analyzed by thin layer chromatography (TLC) (TLC Silica gel 60, $20 \times 20 \mathrm{~cm}$, Merck, Darmstadt, Germany) with chloroform:methanol:ammonium hydroxide: $\mathrm{ddH}_{2} \mathrm{O}$ (45:45:4:11 (v/v/v/v)) as developing solvent. Radioactive Ptdlns3P was visualized/quantified by exposing a phosphorimager screen (BAS-MP 2040s, Fujifilm, Düsseldorf, Germany) and the extent of ${ }^{32} \mathrm{P}$-incorporation was analyzed by phosphorimaging using a BAS-1500 system (Fujifilm, Düsseldorf, Germany). Signals were quantified with the TINA Software (Raytest, Straubenhardt, Germany).

4.26. Isolation and transformation of Arabidopsis leaf protoplasts

Leaf mesophyll protoplasts were prepared from six- to eight-week-old Col-0 wild type plants according to Yoo and coworkers (Yoo et al., 2007). Buffers required for protoplast preparation and transformation were freshly prepared and are listed in Tab. 4.9. For protoplast isolation, Arabidopsis rosette leaves were first sliced into fine strips using a razor blade and immersed in the enzyme solution. The enzyme solution listed in Tab. 4.9 was filtered through a Filtropur S 0.45 (Sarstedt, Nürnbrecht, Germany) before use. Then, the enzyme solution was infiltrated into the tissue of the leaf strips by vacuum infiltration in the dark for 30 min . Cell wall disruption was first performed for 2.5 h at RT at rest and then for 30 min under gentle shaking in the dark. The released protoplasts were then separated from the undigested tissue by filtration through a sterile $100 \mu \mathrm{~m}$ nylon membrane using an EASYstrainer ${ }^{\text {TM }}$ (Greiner Bio-One GmbH,

Frickenhausen, Germany) and sedimented at $200 \times g$ and $11^{\circ} \mathrm{C}$ for 2 min . To wash the protoplasts, they were gently resuspended twice in 2 ml of W5 buffer and sedimented on ice for 40 min in the dark. Protoplasts were then resuspended in MMG buffer and diluted to the desired concentration for transformation.
For transformation, $10 \mu \mathrm{~g}$ plasmid DNA (sections 4.9 .3 and 4.17.3) per $100 \mu \mathrm{l}$ protoplast solution were combined in Cellstar ${ }^{\circledR}$ Cell Culture Tubes (12 ml , round bottom) (Greiner BioOne GmbH, Frickenhausen, Germany) or in 50 ml tubes with conical bottom. 1.1x volume of PEG solution was carefully mixed with protoplast suspension. The transformation mixtures were incubated for 15 min at RT and diluted with 4.4 x volume of W5 buffer. Protoplasts were sedimented at $200 \times g$ and $11^{\circ} \mathrm{C}$ for 2 min , the supernatant was discarded, protoplasts were resuspended in WI buffer (initial volume of protoplast solution used) and incubated overnight in the dark. If RNA was to be isolated from the transformed protoplasts, 2 to 3.2 ml of protoplast solution were used. If the protoplasts were prepared for histone isolation, 5 ml of protoplast solution were used.
400μ l of protoplast transformations were made for samples used exclusively for microscopic examination. Protoplasts were checked for transient protein expression by immunodetection. For this purpose, either $400 \mu \mathrm{l}$ or 1 ml of protoplast solution were sedimented and resuspended in $10 \mu \mathrm{l}$ of 5 x loading buffer (225 mM Tris-HCl pH 6.8, 5% (w/v) glycerol, 5% (w/v) SDS, 0.05 \% (w/v) Coomassie Brilliant Blue G250) or 4x Laemmli buffer (section 4.19) and analyzed by SDS-PAGE (section 4.19) followed by Western blot (section 4.20) and immunodetection with the corresponding antibodies (section 4.20).

Tab. 4.9: Buffers for protoplast preparation.

Component	Stock solution	Enzyme solution	W5	MMG	PEG	WI
	0.8 M	0.4 M	-	0.4 M	0.2 M	0.5 M
Mannitol	0.1 M	20 mM	5 mM	-	-	20 mM
KCl	0.2 M	20 mM	2 mM	4 mM	-	4 mM
MES pH 5.7	-	$1.5 \%(\mathrm{w} / \mathrm{v})$	-	-	-	-
Cellulase R-10	-	$0.4 \%(\mathrm{w} / \mathrm{v})$	-	-	-	-
$\mathrm{Maceroenzyme} \mathrm{R-10}^{2}$	1 M	10 mM	125 mM	-	0.1 M	-
CaCl_{2}	-	$1 \mathrm{mg} / \mathrm{ml}$	-	-	-	-
BSA	5 M	-	154 mM	-	-	-
$\mathrm{NaCl}^{\mathrm{MgCl}} 2$	0.15 M	-	-	15 mM	-	-
PEG 4000	-	-	-	-	$40 \%(\mathrm{w} / \mathrm{v})$	-

4.26.1. Auxin treatment of Arabidopsis leaf protoplasts

Arabidopsis protoplasts were treated with auxin after a modified protocol from Weiste and Dröge-Laser (Weiste and Dröge-Laser, 2014). $400 \mu \mathrm{l}$ of Col-0 protoplasts were treated with $0.25 \mu \mathrm{M}$ 1-naphthaleneacetic acid (NAA, Sigma-Aldrich, Munich, Germany) either for 14 h overnight or with $2 \mu \mathrm{M}$ NAA for 2.5 h the day after transformation. For this, NAA was initially dissolved in 1 N NaOH and diluted with WI buffer. After NAA treatment, protoplasts were sedimented at $200 \times g$ and $11^{\circ} \mathrm{C}$ for 2 min and supernatant was removed. Protoplasts were frozen in liquid N_{2}. RNA isolation and transcript level analysis were performed as described in sections 4.10.2 and 4.12.2.

4.26.2. Treatment of Arabidopsis leaf protoplasts with a proteasome inhibitor

$400 \mu \mathrm{l}$ of Arabidopsis protoplasts were transformed transiently with either pEntryA-pCaMV35S::EYFP-GCN5, pEntryA-pCaMV35S::EYFP-GCN5ıLL, or $p E n t r y A-p C a M V 35 S:: E Y F P-G C N 5_{E D D}$ (see section 4.26). The next day, protoplasts were treated for 6 h with $50 \mu \mathrm{M}$ proteasome inhibitor MG-132 (dissolved in DMSO, stock concentration: 10 mM , SERVA Electrophoresis GmbH, Heidelberg, Germany) or DMSO as a mock. The treatment was performed according to Grimmer and coworkers (Grimmer et al., 2020). The effects of MG-132 treatment were analyzed via SDS-PAGE and subsequent Western blotting with immunodetection (see sections 4.19 and 4.20).

4.27. Microscopy

Microscopic images were taken with an inverted confocal laser scanning microscope LSM 880 (Carl Zeiss, Jena, Germany) using 10x, 20x or $40 x$ objectives without immersion. The excitation wavelengths for EYFP, mCherry/DsRed and chlorophyll A were $514 \mathrm{~nm}, 561 \mathrm{~nm}$ and 633 nm , respectively, and emission was detected between $520-555 \mathrm{~nm}$ (EYFP), $565-620 \mathrm{~nm}$ (mCherry/DsRed) and $680-720 \mathrm{~nm}$ (chlorophyll A). Cells were documented either in single layers or in z-stacks with a maximum interval of $0.85 \mu \mathrm{~m}$. Combinations of different fluorophores were recorded in different tracks to obtain the best signal and avoid crosstalk between channels. Z-stacks were used to create z-projections with ImageJ 1.51s (Fiji) (Schindelin et al., 2012). Line plots were performed on the z-projections to generate intensity profiles and analyze fluorescence intensity in different subcellular compartments, especially to see differences between nucleus and cytoplasm. Pearson coefficients R were generated with the JACoP plugin (Bolte and Cordelières, 2006) for ImageJ. After evaluation and for representation in figures, pictures were contrast-enhanced with a maximum of 0.1% saturated pixels.

4.28. Isolation of nuclei and histones

4.28.1. Isolation of nuclei for histone analysis

Plant nuclei for detection of histones were isolated according to Folta and Kaufman (Folta and Kaufman, 2006). All steps were performed on ice. For this, six- to eight-week-old Arabidopsis Col-0 or pip5k1 pip5k2 tissues (one rosette of Col-0 or ten to twelve rosettes of pip5k1 pip5k2) were sliced into approximately 1 mm thin strips, mixed in a total volume of 30 ml or 20 ml , respectively, with ice-cold extraction puffer (2 M hexylene glycol, 20 mM PIPES-KOH pH 7.0, $10 \mathrm{mM} \mathrm{MgCl} 2,5 \mathrm{mM}$ 2-mercaptoethanol) and disrupted with an Ultra-Turrax ${ }^{\circledR}$ T 25 basic (IKA ${ }^{\oplus}$-Werke GmbH , Staufen, Germany) at $24,000 \mathrm{rpm}$ for 10 min . The homogenate was filtered through three layers of cheesecloth (soaked with extraction buffer). The volume of the homogenate was filled up with extraction buffer to 30 ml (Col-0) or 20 ml (pip5k1 pip5k2) and $25 \%(v / v)$ Triton X-100 solution was added dropwise with constant stirring until a final concentration of $1 \%(\mathrm{v} / \mathrm{v})$ was reached.

Percoll suspensions containing 30 \% or 80% Percoll and 1x gradient buffer were prepared by mixing appropriate volumes of 100 \% Percoll (GE Healthcare GmbH, Solingen, Germany) with $5 x$ gradient buffer (2.5 M hexylene glycol, 25 mM PIPES-KOH pH 7.0, $50 \mathrm{mM} \mathrm{MgCl} 2,25 \mathrm{mM}$ 2-mercaptoethanol, $5 \%(\mathrm{v} / \mathrm{v})$ Triton $\mathrm{X}-100$) and $\mathrm{ddH}_{2} \mathrm{O}$. Density gradients were prepared by first adding 6 ml of the 30% Percoll solution to a 50 ml centrifuge tube, then carefully underlaying 6 ml of the 80% Percoll solution by carefully adding the solution to the bottom of the tube. In this way, the two Percoll layers were not mixed and had a sharp interface between the layers. The plant extract was gently loaded on top of the Percoll gradient and was centrifuged at $2,000 \times g$ and $4^{\circ} \mathrm{C}$ for 30 min . The top layer and the 30% Percoll solution were carefully removed and nuclei were collected from the $30 \%-80 \%$ interface. The nuclei fraction was transferred to a new tube and filled up to a volume of 10 ml with 1 x gradient buffer (0.5 M hexylene glycol, 5 mM PIPES-KOH pH 7.0, $10 \mathrm{mM} \mathrm{MgCl} 2,5 \mathrm{mM}$ 2-mercaptoethanol, $1 \%(\mathrm{v} / \mathrm{v})$ Triton X-100). This nuclei suspension was underlaid with 6 ml of 30% Percoll solution and centrifuged at $2,000 \times g$ and $4^{\circ} \mathrm{C}$ for 10 min . The supernatant was removed and the nuclei were washed with 1 ml 1 x gradient buffer. After sedimentation at $1,000 \times g$ and $4^{\circ} \mathrm{C}$ for 10 min the nuclei pellet was resuspended in 150 to $200 \mu \mathrm{l}$ nuclei storage buffer (50 mM Tris- HCl pH 7.8 , $20 \%(\mathrm{v} / \mathrm{v})$ glycerol, $5 \mathrm{mM} \mathrm{MgCl} 2,0.44 \mathrm{M}$ sucrose, 10 mM 2 -mercaptoethanol). Histones were analyzed by gradient SDS-PAGE (4-20\%) followed by immunodetection with specific histone antibodies (sections 4.19 and 4.20).

4.28.2. Isolation of histones using a histone extraction kit

Histones were isolated from Arabidopsis leaf protoplasts by using the Histone Extraction Kit (\#ab113476, Abcam, Cambridge, United Kingdom). Col-0 wild type protoplasts or PIP5K2-EYFP OE protoplasts were sedimented at 200 xg and $11^{\circ} \mathrm{C}$ for 2 min , resuspended
in $400 \mu \mathrm{l}$ of 1 x pre-lysis buffer and homogenized with the help of a tube plunger. Samples were incubated for 15 min on ice and then centrifuged at $9,400 \times g$ and $4^{\circ} \mathrm{C}$ for 1 min . Supernatant was removed and the sediment was resuspended in 50μ l of lysis buffer and incubated on ice for 30 min . Samples were centrifuged at $13,500 \times g$ and $4^{\circ} \mathrm{C}$ for 5 min , the supernatant was harvested and combined with 0.3 volumes of balance-DTT buffer. $30 \mu \mathrm{l}$ of the suspensions were analyzed by SDS-PAGE and immunodetection (sections 4.19 and 4.20) with antibodies against histone H 3 and modifications at lysine residues 9 and 14 .

4.29. Computer-based analyses: software and online tools

Used software and online tools and their applications are listed in appendix Tab. 6.12 and are mentioned in the description of the methods.

4.29.1. Prediction of protein domains

The NCBI protein database (National Center for Biotechnology Information, U.S. National Library of Medicine, Rockville Pike, Bethesda, MD, USA), the online tool PROSITE (ExPASy Bioinformatics Resource Portal, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland, (Sigrist et al., 2002, 2013)) and the online tool InterPro (European Bioinformatics Institute, Cambridge, United Kingdom, (Blum et al., 2021)) were used for identification and prediction of protein domains.

4.29.2. Identification of basic hydrophobic stretches in protein sequences

A bioinformatic program for identification of potential membrane binding sites was published by Brzeska and coworkers (Brzeska et al., 2010). The program which is available as online tool (https://hpcwebapps.cit.nih.gov/bhsearch/) was used in this study. The BH-search indicates a calculated hydrophobicity value for every amino acid of a sequence. A value higher than 0.6 indicates a basic hydrophobic amino acid that putatively binds to negatively charged phospholipids, like Pls.

4.29.3. Identification of putative NLS sequences

Putative NLS sequences were identified by using the online tools cNLS Mapper (Kosugi et al., 2008, 2009a, 2009b) and SeqNLS (Department of Computer Science and Engineering, University of South Carolina, SC, USA, (Lin et al., 2012)).

4.30. Statistics and data management

Data were analyzed unbiased and tested for statistical relevance by two-sided Student's T-tests or one-way ANOVA with a subsequent Tukey's post-hoc test ($P<0.05$). T-tests and graphs were performed with Microsoft Excel (Microsoft Corporation, Redmond, WA, USA). R and R Studio were used for ANOVA (R Studio, PBC, Boston, MA, USA (Hothorn et al., 2008) for multcomp package).

5. Literature

Aida, M., Beis, D., Heidstra, R., Willemsen, V., Blilou, I., Galinha, C., Nussaume, L., Noh, Y.S., Amasino, R., and Scheres, B. (2004). The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119: 109-120.

Altaf, M., Auger, A., Monnet-Saksouk, J., Brodeur, J., Piquet, S., Cramet, M., Bouchard, N., Lacoste, N., Utley, R.T., Gaudreau, L., and Cote, J. (2010). NuA4-dependent acetylation of nucleosomal histones H 4 and H2A directly stimulates incorporation of H2A.Z by the SWR1 complex. J Biol Chem 285: 15966-15977.

Alvarez-Venegas, R., Pien, S., Sadder, M., Witmer, X., Grossniklaus, U., and Avramova, Z. (2003). ATX-1, an Arabidopsis Homolog of Trithorax, Activates Flower Homeotic Genes. Current Biology 13: 627-637.

Alvarez-Venegas, R., Sadder, M., Hlavacka, A., Baluska, F., Xia, Y., Lu, G., Firsov, A., Sarath, G., Moriyama, H., Dubrovsky, J.G., and Avramova, Z. (2006). The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes. Proc NatI Acad Sci USA 103: 60496054.

Anzola, J.M., Sieberer, T., Ortbauer, M., Butt, H., Korbei, B., Weinhofer, I., Mullner, A.E., and Luschnig, C. (2010). Putative Arabidopsis transcriptional adaptor protein (PROPORZ1) is required to modulate histone acetylation in response to auxin. Proc Natl Acad Sci U S A 107: 10308-10313.

Barlow, C.A., Laishram, R.S., and Anderson, R.A. (2010). Nuclear phosphoinositides: a signaling enigma wrapped in a compartmental conundrum. Trends Cell Biol 20: 25-35.

Benhamed, M. et al. (2008). Genome-scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. Plant J 56: 493-504.

Benhamed, M., Bertrand, C., Servet, C., and Zhou, D.X. (2006). Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18: 2893-2903.

Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., and Friml, J. (2003). Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell 115: 591-602.

Berger, S.L. (2007). The complex language of chromatin regulation during transcription. Nature 447: 407-412.

Bertrand, C., Bergounioux, C., Domenichini, S., Delarue, M., and Zhou, D.X. (2003). Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway. J Biol Chem 278: 28246-28251.

Bhatti, M.M. and Sullivan, W.J. (2005). Histone acetylase GCN5 enters the nucleus via importin-alpha in protozoan parasite Toxoplasma gondii. J Biol Chem 280: 5902-5908.

Bishop, J., Swan, H., Valente, F., and Nutzmann, H.W. (2021). The Plant Nuclear Envelope and Its Role in Gene Transcription. Front Plant Sci 12: 674209.

Blum, M. et al. (2021). The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49: D344-D354.

Bolte, S. and Cordelières, F.P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224: 213-232.

Boronenkov, I.V., Loijens, J.C., Umeda, M., and Anderson, R.A. (1998). Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing premRNA processing factors. Mol Biol Cell 9: 3547-3560.

Boss, W.F. and Im, Y.J. (2012). Phosphoinositide signaling. Annu Rev Plant Biol 63: 409429.

Boycheva, I., Vassileva, V., and lantcheva, A. (2014). Histone acetyltransferases in plant development and plasticity. Curr Genomics 15: 28-37.

Bradford, M.M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem 72: 248-254.

Brownell, J.E. and Allis, C.D. (1996). Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 6: 176184.

Brownell, J.E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D.G., Roth, S.Y., and Allis, C.D. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeastGcn5p linking histone acetylation to gene activation. Cell 84: 843-851.

Brzeska, H., Guag, J., Remmert, K., Chacko, S., and Korn, E.D. (2010). An experimentally based computer search identifies unstructured membrane-binding sites in proteins: application to class I myosins, PAKS, and CARMIL. J Biol Chem 285: 5738-5747.

Bunce, M.W., Bergendahl, K., and Anderson, R.A. (2006a). Nuclear PI(4,5)P(2): a new place for an old signal. Biochim Biophys Acta 1761: 560-569.

Bunce, M.W., Gonzales, M.L., and Anderson, R.A. (2006b). Stress-ING out: phosphoinositides mediate the cellular stress response. Sci STKE 2006: pe46.

Bunney, T.D., Watkins, P.A., Beven, A.F., Shaw, P.J., Hernandez, L.E., Lomonossoff, G.P., Shanks, M., Peart, J., and Drobak, B.K. (2000). Association of phosphatidylinositol 3-kinase with nuclear transcription sites in higher plants. Plant Cell 12: 1679-1688.

Burd, C.G. and Emr, S.D. (1998). Phosphatidylinositol(3)-phosphate signaling mediated by specfic binding to RING FYVE domains. Mol Cell 2: 157-162.

Camacho, L., Smertenko, A.P., Perez-Gomez, J., Hussey, P.J., and Moore, I. (2009). Arabidopsis Rab-E GTPases exhibit a novel interaction with a plasma-membrane phosphatidylinositol-4-phosphate 5-kinase. J Cell Sci 122: 4383-4392.

Candau, R., Zhou, J.X., Allis, C.D., and Berger, S.L. (1997). Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo. EMBO J 16: 555-565.

Cheng, K., Xu, Y., Yang, C., Ouellette, L., Niu, L., Zhou, X., Chu, L., Zhuang, F., Liu, J., Wu, H., Charron, J.B., and Luo, M. (2020). Histone tales: lysine methylation, a protagonist in Arabidopsis development. J Exp Bot 71: 793-807.

Cheung, A.C.M. and Diaz-Santin, L.M. (2019). Share and share alike: the role of Tra1 from the SAGA and NuA4 coactivator complexes. Transcription 10: 37-43.

Chiu, L.-W., Heckert, M.J., You, Y., Albanese, N., Fenwick, T., Siehl, D.L., Castle, L.A., and Tao, Y. (2018). Members of the GH3 Family of Proteins Conjugate 2,4-D and Dicamba with Aspartate and Glutamate. Plant and Cell Physiol 59: 2366-2380.

Ciruela, A., Hinchliffe, K.A., Divecha, N., and Irvine, R.F. (2000). Nuclear targeting of the beta isoform of type II phosphatidylinositol phosphate kinase (phosphatidylinositol 5phosphate 4-kinase) by its alpha-helix 7. Biochem J 346 Pt 3: 587-591.

Cohen, R., Schocken, J., Kaldis, A., Vlachonasios, K.E., Hark, A.T., and McCain, E.R. (2009). The histone acetyltransferase GCN5 affects the inflorescence meristem and stamen development in Arabidopsis. Planta 230: 1207-1221.

Colin, L.A. and Jaillais, Y. (2020). Phospholipids across scales: lipid patterns and plant development. Curr Opin Plant Biol 53: 1-9.

Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16: 10881-10890.

Daniel, J.A., Torok, M.S., Sun, Z.W., Schieltz, D., Allis, C.D., Yates, J.R., and Grant, P.A. (2004). Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J Biol Chem 279: 1867-1871.

Dasso, M. (2002). The Ran GTPase: theme and variants. Curr Biol 12: R502-508.
Dejonghe, W. et al. (2016). Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nat Commun 7: 11710.

Dhalluin, C., Carlson, J.E., Zeng, L., He, C., Aggarwal, A.K., and Zhou, M.M. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399: 491496.

Dieck, C.B., Wood, A., Brglez, I., Rojas-Pierce, M., and Boss, W.F. (2012). Increasing phosphatidylinositol (4,5) bisphosphate biosynthesis affects plant nuclear lipids and nuclear functions. Plant Physiol Biochem 57: 32-44.

Dillon, S.C., Zhang, X., Trievel, R.C., and Cheng, X. (2005). The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6: 227.

Dixon, S.E., Bhatti, M.M., Uversky, V.N., Dunker, A.K., and Sullivan, W.J. (2011). Regions of intrinsic disorder help identify a novel nuclear localization signal in Toxoplasma gondii histone acetyltransferase TgGCN5-B. Mol Biochem Parasitol 175: 192-195.

Dove, S.K., Lloyd, C.W., and Drobak, B.K. (1994). Identification of phosphatidylinositol 3hydroxy kinase in plant cells: association with the cytoskeleton. Biochem J 303: 347350.

Earley, K.W., Shook, M.S., Brower-Toland, B., Hicks, L., and Pikaard, C.S. (2007). In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J 52: 615-626.

Elge, S., Brearley, C., Xia, H.-J., Kehr, J., Xue, H.-W., and Mueller-Roeber, B. (2001). An Arabidopsis inositol phospholipid kinase strongly expressed in procambial cells: Synthesis of PtdIns(4,5)P2 and Ptdlns(3,4,5)P3 in insect cells by 5-phosphorylation of precursors: Arabidopsis inositol phospholipid 5-kinase produces PIP3. The Plant Journal 26: 561-571.

Emans, N., Zimmermann, S., and Fischer, R. (2002). Uptake of a fluorescent marker in plant cells is sensitive to brefeldin A and wortmannin. Plant Cell 14: 71-86.

Espinosa-Cores, L., Bouza-Morcillo, L., Barrero-Gil, J., Jimenez-Suarez, V., Lazaro, A., Piqueras, R., Jarillo, J.A., and Pineiro, M. (2020). Insights Into the Function of the NuA4 Complex in Plants. Front Plant Sci 11: 125.

Falkenberg, K.J. and Johnstone, R.W. (2014). Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13: 673691.

Fang, F., Ye, S., Tang, J., Bennett, M.J., and Liang, W. (2020). DWT1/DWL2 act together with OsPIP5K1 to regulate plant uniform growth in rice. New Phytol 225: 1234-1246.

Fauré, J., Vignais, P.V., and Dagher, M.C. (1999). Phosphoinositide-dependent activation of Rho A involves partial opening of the RhoA/Rho-GDI complex. Eur J Biochem 262: 879-889.

Folta, K.M. and Kaufman, L.S. (2006). Isolation of Arabidopsis nuclei and measurement of gene transcription rates using nuclear run-on assays. Nat Protoc 1: 3094-3100.

Fratini, M., Krishnamoorthy, P., Stenzel, I., Riechmann, M., Matzner, M., Bacia, K., Heilmann, M., and Heilmann, I. (2021). Plasma membrane nano-organization specifies phosphoinositide effects on Rho-GTPases and actin dynamics in tobacco pollen tubes. Plant Cell 33: 642-670.

Fuchs, J., Demidov, D., Houben, A., and Schubert, I. (2006). Chromosomal histone modification patterns--from conservation to diversity. Trends Plant Sci 11: 199-208.

Gadhia, S., Shrimp, J.H., Meier, J.L., McGee, J.E., and Dahlin, J.L. (2017). Histone Acetyltransferase Assays in Drug and Chemical Probe Discovery. In Assay Guidance Manual, G.S. Sittampalam, A. Grossman, K. Brimacombe, and et al, eds (Eli Lilly \& Company and the National Center for Advancing Translational Sciences, Bethesda (MD)), pp. 235-274.

Galinha, C., Hofhuis, H., Luijten, M., Willemsen, V., Blilou, I., Heidstra, R., and Scheres, B. (2007). PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449: 1053-1057.

Gan, L., Wei, Z., Yang, Z., Li, F., and Wang, Z. (2021). Updated Mechanisms of GCN5-The Monkey King of the Plant Kingdom in Plant Development and Resistance to Abiotic Stresses. Cells 10: 979.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., and Bairoch, A. (2005). Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook, J.M. Walker, ed (Humana Press: Totowa, NJ), pp. 571-607.

Gerth, K., Lin, F., Daamen, F., Menzel, W., Heinrich, F., and Heilmann, M. (2017a). Arabidopsis phosphatidylinositol 4-phosphate 5-kinase 2 contains a functional nuclear localization sequence and interacts with alpha-importins. Plant J 92: 862-878.

Gerth, K., Lin, F., Menzel, W., Krishnamoorthy, P., Stenzel, I., Heilmann, M., and Heilmann, I. (2017b). Guilt by Association: A Phenotype-Based View of the Plant Phosphoinositide Network. Annu Rev Plant Biol 68: 349-374.

Gillooly, D.J., Morrow, I.C., Lindsay, M., Gould, R., Bryant, N.J., Gaullier, J.M., Parton, R.G., and Stenmark, H. (2000). Localization of phosphatylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19: 4577-4588.

Govind, C.K., Zhang, F., Qiu, H., Hofmeyer, K., and Hinnebusch, A.G. (2007). Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. Mol Cell 25: 31-42.

Gozani, O. et al. (2003). The PHD Finger of the Chromatin-Associated Protein ING2 Functions as a Nuclear Phosphoinositide Receptor. Cell 114: 99-111.

Grant, P.A., Duggan, L., Côté, J., Roberts, S.M., Brownell, J.E., Candau, R., Ohba, R., Owen-Hughes, T., Allis, C.D., Winston, F., Berger, S.L., and Workman, J.L. (1997). Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11: 1640-1650.

Grant, P.A., Schieltz, D., Pray-Grant, M.G., Yates 3rd, J.R., and Workman, J.L. (1998). The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol Cell 2: 863-867.

Grasser, K.D., Rubio, V., and Barneche, F. (2021). Multifaceted activities of the plant SAGA complex. Biochim Biophys Acta Gene Regul Mech 1864: 194613.

Grieneisen, V.A., Xu, J., Maree, A.F., Hogeweg, P., and Scheres, B. (2007). Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449: 1008-1013.

Grimmer, J., Helm, S., Dobritzsch, D., Hause, G., Shema, G., Zahedi, R.P., and Baginsky, S. (2020). Mild proteasomal stress improves photosynthetic performance in Arabidopsis chloroplasts. Nat Commun 11: 1662.

Ha, C.M., Jun, J.H., and Fletcher, J.C. (2010). Control of Arabidopsis leaf morphogenesis through regulation of the YABBY and KNOX families of transcription factors. Genetics 186: 197-206.

Hagen, G. and Guilfoyle, T. (2002). Auxin-responsive gene expression: genes, promotors and regulatory factors. Plant Mol Biol 49: 373-385.

Hamann, T., Benkova, E., Baurle, I., Kientz, M., and Jurgens, G. (2002). The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROSmediated embryo patterning. Genes Dev 16: 1610-1615.

Hark, A.T., Vlachonasios, K.E., Pavangadkar, K.A., Rao, S., Gordon, H., Adamakis, I.D., Kaldis, A., Thomashow, M.F., and Triezenberg, S.J. (2009). Two Arabidopsis orthologs of the transcriptional coactivator ADA2 have distinct biological functions. Biochim Biophys Acta 1789: 117-124.

Heilmann, I. (2016a). Phosphoinositide signaling in plant development. Development 143: 2044-2055.

Heilmann, I. (2016b). Plant phosphoinositide signaling - dynamics on demand. Biochim Biophys Acta 1861: 1345-1351.

Heilmann, I. (2009). Using genetic tools to understand plant phosphoinositide signalling. Trends in Plant Science 14: 171-179.

Heilmann, M. and Heilmann, I. (2015). Plant phosphoinositides-complex networks controlling growth and adaptation. Biochim Biophys Acta 1851: 759-769.

Heinekamp, T., Strathmann, A., Kuhlmann, M., Froissard, M., Muller, A., PerrotRechenmann, C., and Droge-Laser, W. (2004). The tobacco bZIP transcription factor BZI-1 binds the GH3 promoter in vivo and modulates auxin-induced transcription. Plant J 38: 298-309.

Hempel, F., Stenzel, I., Heilmann, M., Krishnamoorthy, P., Menzel, W., Golbik, R., Helm, S., Dobritzsch, D., Baginsky, S., Lee, J., Hoehenwarter, W., and Heilmann, I. (2017). MAPKs Influence Pollen Tube Growth by Controlling the Formation of Phosphatidylinositol 4,5-Bisphosphate in an Apical Plasma Membrane Domain. Plant Cell 29: 3030-3050.

Henry, K.W., Wyce, A., Lo, W.S., Duggan, L.J., Emre, N.C., Kao, C.F., Pillus, L., Shilatifard, A., Osley, M.A., and Berger, S.L. (2003). Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGAassociated Ubp8. Genes Dev 17: 2648-2663.

Hoke, S.M., Genereaux, J., Liang, G., and BrandI, C.J. (2008). A conserved central region of yeast Ada2 regulates the histone acetyltransferase activity of Gcn5 and interacts with phospholipids. J Mol Biol 384: 743-755.

Hothorn, T., Bretz, F., and Westfall, P. (2008). Simultaneous inference in general parametric models. Biom J 50: 346-363.

Hu, Z. et al. (2015). Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. Plant J 84: 1178-1191.

Im, Y.J., Brglez, I., Dieck, C., Perera, I.Y., and Boss, W.F. (2013). Phosphatidylinositol 4kinase and phosphatidylinositol 4-phosphate 5-kinase assays. Methods Mol Biol 1009: 163-174.

Inoue, H., Nojima, H., and Okayama, H. (1990). High efficiency transformation of Escherichia coli with plasmids. Gene 96: 23-28.

Irvine, R.F. (2003). Nuclear lipid signalling. Nat Rev Mol Cell Biol 4: 349-360.
Ischebeck, T. et al. (2013). Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell 25: 4894-4911.

Ischebeck, T., Stenzel, I., and Heilmann, I. (2008). Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell 20: 3312-3330.

Ischebeck, T., Stenzel, I., Hempel, F., Jin, X., Mosblech, A., and Heilmann, I. (2011). Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Plant J 65: 453-468.

Ito, H., Fukuda, Y., Murata, K., and Kimura A (1983). Transformation of Intact Yeast Cells Treated with Alkali Cations. J Bacteriol 153: 163-168.

Jaillais, Y., Fobis-Loisy, I., Miege, C., Rollin, C., and Gaude, T. (2006). AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443: 106-109.

Jaillais, Y. and Ott, T. (2020). The Nanoscale Organization of the Plasma Membrane and Its Importance in Signaling: A Proteolipid Perspective. Plant Physiol. 182: 1682-1696.

Jiang, J., Ding, A.B., Liu, F., and Zhong, X. (2020). Linking signaling pathways to histone acetylation dynamics in plants. J Exp Bot 71: 5179-5190.

Johnsson, N. and Varshavsky, A. (1994). Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci USA 91: 10340-10344.

Josling, G.A., Selvarajah, S.A., Petter, M., and Duffy, M.F. (2012). The role of bromodomain proteins in regulating gene expression. Genes (Basel) 3: 320-343.

Julkowska, M.M., Rankenberg, J.M., and Testerink, C. (2013). Liposome-binding assays to assess specificity and affinity of phospholipid-protein interactions. Methods Mol Biol 1009: 261-271.

Jumper, J. et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature: 1-7.

Kalderon, D., Roberts, B.L., Richardson, W.D., and Smith, A.E. (1984). A short amino acid sequence able to specify nuclear location. Cell 39: 499-509.

Kaldis, A., Tsementzi, D., Tanriverdi, O., and Vlachonasios, K.E. (2011). Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta 233: 749-762.

Kelly, S.M., Jess, T.J., and Price, N.C. (2005). How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1751: 119-139.

Kim, S. et al. (2020). GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5' and 3' ends of its target genes. Nucleic Acids Res 48: 5953-5966.

Kim, S., Natesan, S., Cornilescu, G., Carlson, S., Tonelli, M., McClurg, U.L., Binda, O., Robson, C.N., Markley, J.L., Balaz, S., and Glass, K.C. (2016). Mechanism of Histone H3K4me3 Recognition by the Plant Homeodomain of Inhibitor of Growth 3. J Biol Chem 291: 18326-18341.

Kinney, N.A., Sharakhov, I.V., and Onufriev, A.V. (2018). Chromosome-nuclear envelope attachments affect interphase chromosome territories and entanglement. Epigenetics Chromatin 11: 3.

König, S., Ischebeck, T., Lerche, J., Stenzel, I., and Heilmann, I. (2008). Salt-stress-induced association of phosphatidylinositol 4,5 -bisphosphate with clathrin-coated vesicles in plants. Biochemical Journal 415: 387-399.

Kornet, N. and Scheres, B. (2009). Members of the GCN5 histone acetyltransferase complex regulate PLETHORA-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis. Plant Cell 21: 1070-1079.

Kost, B. (2008). Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol 18: 119-127.

Kost, B., Lemichez, E., Spielhofer, P., Hong, Y., Tolias, K., Carpenter, C., and Chua, N.H. (1999). Rac homologues and compartimentalized phosphatidylinositol 4,5bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145: 317-330.

Kosugi, S., Hasebe, M., Entani, T., Takayama, S., Tomita, M., and Yanagawa, H. (2008). Design of peptide inhibitors for the importin alpha/beta nuclear import pathway by activity-based profiling. Chem Biol 15: 940-949.

Kosugi, S., Hasebe, M., Matsumura, N., Takashima, H., Miyamoto-Sato, E., Tomita, M., and Yanagawa, H. (2009a). Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem 284: 478-485.

Kosugi, S., Hasebe, M., Tomita, M., and Yanagawa, H. (2009b). Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci USA 106: 10171-10176.

Koutelou, E., Hirsch, C.L., and Dent, S.Y. (2010). Multiple faces of the SAGA complex. Curr Opin Cell Biol 22: 374-382.

Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128: 693-705.
Kuroda, R., Kato, M., Tsuge, T., and Aoyama, T. (2021). Arabidopsis phosphatidylinositol 4phosphate 5-kinase genes PIP5K7, PIP5K8, and PIP5K9 are redundantly involved in root growth adaptation to osmotic stress. Plant J 106: 913-927.

Kusano, H., Testerink, C., Vermeer, J.E.M., Tsuge, T., Shimada, H., Oka, A., Munnik, T., and Aoyama, T. (2008). The Arabidopsis Phosphatidylinositol Phosphate 5-Kinase PIP5K3 Is a Key Regulator of Root Hair Tip Growth. The Plant Cell 20: 367-380.

Laemmli, U.K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 227: 680-685.

Lee, K.K. and Workman, J.L. (2007). Histone acetyltransferase complexes: one size doesn't fit all. Nat Rev Mol Cell Biol 8: 284-295.

Lee, W.Y., Lee, D., Chung, W.I., and Kwon, C.S. (2009). Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. Plant J 58: 511-524.

Lee, Y., Kim, E.S., Choi, Y., Hwang, I., Staiger, C.J., Chung, Y.Y., and Lee, Y. (2008). The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. Plant Physiol 147: 1886-1897.

Lee, Y., Munnik, T., and Lee, Y. (2010). Plant Phosphatidylinositol 3-Kinase. In Lipid Signaling in Plants, Plant Cell Monographs., pp. 95-106.
van Leeuwen, W., Okresz, L., Bogre, L., and Munnik, T. (2004). Learning the lipid language of plant signalling. Trends Plant Sci 9: 378-384.

Leshem, Y., Seri, L., and Levine, A. (2007). Induction of phosphatidylinositol 3-kinasemediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J 51: 185-197.

Li, B., Carey, M., and Workman, J.L. (2007). The role of chromatin during transcription. Cell 128: 707-719.

Li, S. et al. (2019). The AREB1 Transcription Factor Influences Histone Acetylation to Regulate Drought Responses and Tolerance in Populus trichocarpa. Plant Cell 31: 663-686.

Lin, J.-R., Mondal, A.M., Liu, R., and Hu, J. (2012). Minimalist ensemble algorithms for genome-wide protein localization prediction. BMC Bioinformatics 13: 157.

Liu, C., Lu, F., Cui, X., and Cao, X. (2010). Histone methylation in higher plants. Annu Rev Plant Biol 61: 395-420.

Liu, Y. and Min, J. (2016). Structure and function of histone methylation-binding proteins in plants. Biochem J 473: 1663-1680.

Lou, Y., Gou, J.Y., and Xue, H.W. (2007). PIP5K9, an Arabidopsis phosphatidylinositol monophosphate kinase, interacts with a cytosolic invertase to negatively regulate sugar-mediated root growth. Plant Cell 19: 163-181.

Lovejoy, C.A. and Cortez, D. (2009). Common mechanisms of PIKK regulation. DNA Repair 8: 1004-1008.

Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251-260.

Ma, X., Shor, O., Diminshtein, S., Yu, L., Im, Y.J., Perera, I., Lomax, A., Boss, W.F., and Moran, N. (2009). Phosphatidylinositol (4,5)bisphosphate inhibits K+-efflux channel activity in NT1 tobacco cultured cells. Plant Physiol 149: 1127-1140.

MacDonald, M.H., Mogen, B.D., and Hunt, A.G. (1991). Characterization of the polyadenylation signal from the T-DNA-encoded octopine synthase gene. Nucleic Acids Res 19: 5575-5581.

Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A.R.N., Potter, S.C., Finn, R.D., and Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APls in 2019. Nucleic Acids Res 47: W636-W641.

Mao, Y., Pavangadkar, K.A., Thomashow, M.F., and Triezenberg, S.J. (2006). Physical and functional interactions of Arabidopsis ADA2 transcriptional coactivator proteins with the acetyltransferase GCN5 and with the cold-induced transcription factor CBF1. Biochim Biophys Acta 1759: 69-79.

Marmorstein, R. and Zhou, M.M. (2014). Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 6: 0018762.

Mei, Y., Jia, W.J., Chu, Y.J., and Xue, H.W. (2012). Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Res 22: 581-597.

Meijer, H.J., Berrie, C.P., Iurisci, C., Divecha, N., Musgave, A., and Munnik, T. (2001). Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5monophosphate (Ptdlns5P), and its accumulation upon osmotic stress. Biochem J 360: 491-498.

Meijer, H.J. and Munnik, T. (2003). Phospholipid-based signaling in plants. Annu Rev Plant Biol 54: 265-306.

Mellman, D.L., Gonzales, M.L., Song, C., Barlow, C.A., Wang, P., Kendziorski, C., and Anderson, R.A. (2008). A Ptdlns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature 451: 1013-1017.

Menzel, W., Stenzel, I., Helbig, L.M., Krishnamoorthy, P., Neumann, S., Eschen-Lippold, L., Heilmann, M., Lee, J., and Heilmann, I. (2019). A PAMP-triggered MAPK cascade
inhibits phosphatidylinositol 4,5-bisphosphate production by PIP5K6 in Arabidopsis thaliana. New Phytol 224: 833-847.

Millar, C.B. and Grunstein, M. (2006). Genome-wide patterns of histone modifications in yeast. Nat Rev Mol Cell Biol 7: 657-666.

Mishkind, M., Vermeer, J.E., Darwish, E., and Munnik, T. (2009). Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus. Plant J 60: 10-21.

Misra, S. and Hurley, J.H. (1999). Crystal structure of a phosphatidylinositol 3-phosphatespecific membrane-targeting motif, the FYVE domain of Vps27p. Cell 97: 657-666.

Möckli, N., Deplazes, A., Hassa, P.O., Zhang, Z., Peter, M., Hottiger, M.O., Stagljar, I., and Auerbach, D. (2007). Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. Biotechniques 42: 725-730.

Moraga, F. and Aquea, F. (2015). Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses. Front Plant Sci 6: 865.

Mueller-Roeber, B. and Pical, C. (2002). Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol 130: 22-46.

Müller, A., Guan, C., Gälweiler, L., Tänzler, P., Huijser, P., Marchant, A., Parry, G., Bennett, M., Wisman, E., and Palme, K. (1998). AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17: 6903-6911.

Murray, M.G. and Thompson, W.F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321-4325.

Nassrallah, A. et al. (2018). DET1-mediated degradation of a SAGA-like deubiquitination module controls H2Bub homeostasis. Elife 7: e37892.

Ndamukong, I., Jones, D.R., Lapko, H., Divecha, N., and Avramova, Z. (2010). Phosphatidylinositol 5 -phosphate links dehydration stress to the activity of ARABIDOPSIS TRITHORAX-LIKE factor ATX1. PLoS One 5: e13396.

Okada, K., Ueda, J., Komaki, M.K., Bell, C.J., and Shimura, Y. (1991). Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell 3: 677-684.

Osborne, S.L., Thomas, C.L., Gschmeissner, S., and Schiavo, G. (2001). Nuclear Ptdlns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci 114: 2501-2511.

Papai, G., Frechard, A., Kolesnikova, O., Crucifix, C., Schultz, P., and Ben-Shem, A. (2020). Structure of SAGA and mechanism of TBP deposition on gene promoters. Nature 577: 711-716.

Park, J.E., Park, J.Y., Kim, Y.S., Staswick, P.E., Jeon, J., Yun, J., Kim, S.Y., Kim, J., Lee, Y.H., and Park, C.M. (2007). GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282: 10036-10046.

Parthun, M.R. (2012). Histone acetyltransferase 1: more than just an enzyme? Biochim Biophys Acta 1819: 256-263.

Patel, D.J. and Wang, Z. (2013). Readout of Epigenetic Modifications. Annu. Rev. Biochem. 82: 81-118.

Pena, P.V. et al. (2008). Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor. J Mol Biol 380: 303-312.

Pena, P.V., Davrazou, F., Shi, X., Walter, K.L., Verkhusha, V.V., Gozani, O., Zhao, R., and Kutateladze, T.G. (2006). Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442: 100-103.

Pfab, A., Bruckmann, A., Nazet, J., Merkl, R., and Grasser, K.D. (2018). The Adaptor Protein ENY2 Is a Component of the Deubiquitination Module of the Arabidopsis SAGA Transcriptional Co-activator Complex but not of the TREX-2 Complex. Journal of Molecular Biology 430: 1479-1494.

Poulios, S. and Vlachonasios, K.E. (2016). Synergistic action of histone acetyltransferase GCN5 and receptor CLAVATA1 negatively affects ethylene responses in Arabidopsis thaliana. J Exp Bot 67: 905-918.

Pray-Grant, M.G., Daniel, J.A., Schieltz, D., Yates 3rd, J.R., and Grant, P.A. (2005). Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433: 434-438.

Qian, C. and Zhou, M.-M. (2006). SET domain protein lysine methyltransferases: Structure, specificity and catalysis. Cell. Mol. Life Sci. 63: 2755-2763.

Rodríguez-Navarro, S., Fischer, T., Luo, M.-J., Antúez, O., Brettschneider, S., Lechner, J., Pérez-Ortín, J.E., Reed, R., and Hurt, E. (2004). Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116: 75-86.

Rojas, J.R., Trievel, R.C., Zhou, J., Mo, Y., Li, X., Berger, S.L., Allis, C.D., and Marmorstein, R. (1999). Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature 401: 93-98.

Roth, S.Y., Denu, J.M., and Allis, C.D. (2001). Histone acetyltransferases. Annu Rev Biochem 70: 81-120.

Ruijter, J.M., Lorenz, P., Tuomi, J.M., Hecker, M., and van den Hoff, M.J. (2014). Fluorescent-increase kinetics of different fluorescent reporters used for qPCR depend on monitoring chemistry, targeted sequence, type of DNA input and PCR efficiency. Mikrochim Acta 181: 1689-1696.

Ruijter, J.M., Ramakers, C., Hoogaars, W.M., Karlen, Y., Bakker, O., van den Hoff, M.J., and Moorman, A.F. (2009). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37: e45.

Rymen, B. et al. (2019). Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis. Commun Biol 2: 404.

Sakuraba, Y., Kim, Y.S., Han, S.H., Lee, B.D., and Paek, N.C. (2015). The Arabidopsis Transcription Factor NAC016 Promotes Drought Stress Responses by Repressing AREB1 Transcription through a Trifurcate Feed-Forward Regulatory Loop Involving NAP. Plant Cell 27: 1771-1787.

Schindelin, J. et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676-682.

Schu, P.V., Takegawa, K., Fry, M.J., Stack, J.H., Waterfield, M.D., and Emr, S.D. (1993). Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260: 88-91.

Schuetz, A., Bernstein, G., Dong, A., Antoshenko, T., Wu, H., Loppnau, P., Bochkarev, A., and Plotnikov, A.N. (2007). Crystal structure of a binary complex between human GCN5 histone acetyltransferase domain and acetyl coenzyme A. Proteins 68: 403407.

Scott, I., Webster, B.R., Li, J.H., and Sack, M.N. (2012). Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1. Biochem J 443: 655-661.

Servet, C., Benhamed, M., Latrasse, D., Kim, W., Delarue, M., and Zhou, D.X. (2008). Characterization of a phosphatase 2C protein as an interacting partner of the histone acetyltransferase GCN5 in Arabidopsis. Biochim Biophys Acta 1779: 376-382.

Servet, C., Conde e Silva, N., and Zhou, D.X. (2010). Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis. Mol Plant 3: 670-677.

Shahbazian, M.D. and Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76: 75-100.

Sharov, G., Voltz, K., Durand, A., Kolesnikova, O., Papai, G., Myasnikov, A.G., Dejaegere, A., Ben Shem, A., and Schultz, P. (2017). Structure of the transcription activator target Tra1 within the chromatin modifying complex SAGA. Nat Commun 8: 1556.

Shen, Y., Wei, W., and Zhou, D.X. (2015). Histone Acetylation Enzymes Coordinate Metabolism and Gene Expression. Trends Plant Sci 20: 614-621.

Sigrist, C.J., de Castro, E., Cerutti, L., Cuche, B.A., Hulo, N., Bridge, A., Bougueleret, L., and Xenarios, I. (2013). New and continuing developments at PROSITE. Nucleic Acids Res 41: D344-347.

Sigrist, C.J., Cerutti, L., Hulo, N., Gattiker, A., Falquet, L., Pagni, M., Bairoch, A., and Bucher, P. (2002). PROSITE: A documented database using patterns and profiles as motif descriptors. Brief Bioinform 3: 265-274.

Simon, M.L., Platre, M.P., Assil, S., van Wijk, R., Chen, W.Y., Chory, J., Dreux, M., Munnik, T., and Jaillais, Y. (2014). A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J 77: 322-337.

Sobol, M. et al. (2018). Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J Cell Sci 131: jcs211094.

Soliman, M.A. and Riabowol, K. (2007). After a decade of study-ING, a PHD for a versatile family of proteins. Trends Biochem Sci 32: 509-519.

Sousa, E., Kost, B., and Malho, R. (2008). Arabidopsis phosphatidylinositol-4monophosphate 5 -kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. Plant Cell 20: 3050-3064.

Srivastava, R., Rai, K.M., Pandey, B., Singh, S.P., and Sawant, S.V. (2015). Spt-Ada-Gcn5Acetyltransferase (SAGA) Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination. PLoS One 10: e0134709.

Staswick, P.E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M.T., Maldonado, M.C., and Suza, W. (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17: 616-627.

Stenzel, I., Ischebeck, T., Konig, S., Holubowska, A., Sporysz, M., Hause, B., and Heilmann, I. (2008). The type B phosphatidylinositol-4-phosphate 5 -kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20: 124-141.

Stenzel, I., Ischebeck, T., Quint, M., and Heilmann, I. (2012). Variable Regions of PI4P 5Kinases Direct Ptdlns(4,5)P(2) Toward Alternative Regulatory Functions in Tobacco Pollen Tubes. Front Plant Sci 2: 114.

Sterner, D.E., Grant, P.A., Roberts, S.M., Duggan, L.J., Belotserkovskaya, R., Pacella, L.A., Winston, F., Workman, J.L., and Berger, S.L. (1999). Functional organization of the yeast SAGA complex: distinct components involved in strucutral integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol 19: 86-98.

Stockinger, E.J., Mao, Y., Regier, M.K., Triezenberg, S.J., and Thomashow, M.F. (2001). Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res 29: 1524-1533.

Strahl, B.D. and Allis, C.D. (2000). The language of covalent histone modi®cations. Nature 403: 41-45.

StrahI, B.D. and Briggs, S.D. (2021). The SAGA continues: The rise of cis- and trans-histone crosstalk pathways. Biochim Biophys Acta Gene Regul Mech 1864: 194600.

Sun, J., Paduch, M., Kim, S.A., Kramer, R.M., Barrios, A.F., Lu, V., Luke, J., Usatyuk, S., Kossiakoff, A.A., and Tan, S. (2018). Structural basis for activation of SAGA histone acetyltransferase Gcn5 by partner subunit Ada2. Proc Natl Acad Sci U S A 115: 1001010015.

Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D., and Patel, D.J. (2007). How chromatinbinding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14: 1025-1040.

Tejos, R., Sauer, M., Vanneste, S., Palacios-Gomez, M., Li, H., Heilmann, M., van Wijk, R., Vermeer, J.E., Heilmann, I., Munnik, T., and Friml, J. (2014). Bipolar Plasma Membrane Distribution of Phosphoinositides and Their Requirement for AuxinMediated Cell Polarity and Patterning in Arabidopsis. Plant Cell 26: 2114-2128.

Templeton, G.W. and Moorhead, G.B.G. (2005). The phosphoinositide-3-OH-kinase-related kinases of Arabidopsis thaliana. EMBO Rep 6: 723-728.

Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 76: 4350-4354.

Tran, H.T., Nimick, M., Uhrig, R.G., Templeton, G., Morrice, N., Gourlay, R., DeLong, A., and Moorhead, G.B. (2012). Arabidopsis thaliana histone deacetylase 14 (HDA14) is an alpha-tubulin deacetylase that associates with PP2A and enriches in the microtubule fraction with the putative histone acetyltransferase ELP3. Plant J 71: 263272.

Trejo-Arellano, M.S., Mahrez, W., Nakamura, M., Moreno-Romero, J., Nanni, P., Kohler, C., and Hennig, L. (2017). H3K23me1 is an evolutionarily conserved histone modification associated with CG DNA methylation in Arabidopsis. Plant J 90: 293-303.

Tuomi, J.M., Voorbraak, F., Jones, D.L., and Ruijter, J.M. (2010). Bias in the Cq value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value. Methods 50: 313-322.

Ueda, M. and Seki, M. (2020). Histone Modifications Form Epigenetic Regulatory Networks to Regulate Abiotic Stress Response. Plant Physiol 182: 15-26.

Ulmasov, T., Liu, Z.B., Hagen, G., and Guilfoyle, T.J. (1995). Composite structure of auxin response elements. Plant Cell 7: 1611-1623.

Vanhaesebroeck, B., Leevers, S.J., Ahmadi, K., Timms, J., Katso, R., Driscoll, P.C., Woscholski, R., Parker, P.J., and Waterfield, M.D. (2001). Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70: 535-602.

Viaud, J., Mansour, R., Antkowiak, A., Mujalli, A., Valet, C., Chicanne, G., Xuereb, J.M., Terrisse, A.D., Severin, S., Gratacap, M.P., Gaits-lacovoni, F., and Payrastre, B. (2016). Phosphoinositides: Important lipids in the coordination of cell dynamics. Biochimie 125: 250-258.

Vieyra, D. et al. (2002). Human ING1 proteins differentially regulate histone acetylation. J Biol Chem 277: 29832-29839.

Vincent, P., Chua, M., Nogue, F., Fairbrother, A., Mekeel, H., Xu, Y., Allen, N., Bibikova, T.N., Gilroy, S., and Bankaitis, V.A. (2005). A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol 168: 801-812.

Vlachonasios, K., Poulios, S., and Mougiou, N. (2021). The Histone Acetyltransferase GCN5 and the Associated Coactivators ADA2: From Evolution of the SAGA Complex to the Biological Roles in Plants. Plants (Basel) 10: 308.

Vlachonasios, K.E., Kaldis, A., Nikoloudi, A., and Tsementzi, D. (2011). The role of transcriptional coactivator ADA2b in Arabidopsis abiotic stress responses. Plant Signal Behav 6: 1475-1478.

Vlachonasios, K.E., Thomashow, M.F., and Triezenberg, S.J. (2003). Disruption Mutations of ADA2b and GCN5 Transcriptional Adaptor Genes Dramatically Affect Arabidopsis Growth, Development, and Gene Expression[W]. The Plant Cell 15: 626-638.

Wang, H., Dienemann, C., Stutzer, A., Urlaub, H., Cheung, A.C.M., and Cramer, P. (2020). Structure of the transcription coactivator SAGA. Nature 577: 717-720.

Weiste, C. and Dröge-Laser, W. (2014). The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery. Nat Commun 5: 3883.

Welters, P., Takegawa, K., Emr, S.D., and Chrispeels, M.J. (1994). AtVPS34, a phosphatidylinositol 3 -kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc Natl Acad Sci USA 91: 11398-11402.

Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., and Provart, N.J. (2007). An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS One 2: e718.

Wu, C.J., Liu, Z.Z., Wei, L., Zhou, J.X., Cai, X.W., Su, Y.N., Li, L., Chen, S., and He, X.J. (2021). Three functionally redundant plant-specific paralogs are core subunits of the SAGA histone acetyltransferase complex in Arabidopsis. Mol Plant 14: 1071-1087.

Wu, P.Y., Ruhlmann, C., Winston, F., and Schultz, P. (2004). Molecular architecture of the S. cerevisiae SAGA complex. Mol Cell 15: 199-208.

Xiao, J., Lee, U.S., and Wagner, D. (2016). Tug of war: adding and removing histone lysine methylation in Arabidopsis. Curr Opin Plant Biol 34: 41-53.

Xing, J., Wang, T., Liu, Z., Xu, J., Yao, Y., Hu, Z., Peng, H., Xin, M., Yu, F., Zhou, D., and Ni, Z. (2015). GENERAL CONTROL NONREPRESSED PROTEIN5-Mediated Histone Acetylation of FERRIC REDUCTASE DEFECTIVE3 Contributes to Iron Homeostasis in Arabidopsis. Plant Physiol 168: 1309-1320.

Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., and Madden, T.L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134 .

Yeates, T.O. (2002). Structures of SET domain proteins: protein lysine methyltransferases make their mark. Cell 111: 5-7.

Yildirim, S., Castano, E., Sobol, M., Philimonenko, V.V., Dzijak, R., Venit, T., and Hozak, P. (2013). Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J Cell Sci 126: 2730-2739.

Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2: 1565-1572.

Yu, H., Fukami, K., Watanabe, Y., Ozaki, C., and Takenawa, T. (1998). Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H 1 . Eur J Biochem 251: 281-287.

Yun, M., Wu, J., Workman, J.L., and Li, B. (2011). Readers of histone modifications. Cell Res 21: 564-578.

Zhang, K., Sridhar, V.V., Zhu, J., Kapoor, A., and Zhu, J.K. (2007). Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS One 2: e1210.

Zhao, K., Wang, W., Rando, O.J., Xue, Y., Swiderek, K., Kuo, A., and Crabtree, G.R. (1998). Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95: 625-636.

Zhao, Y., Yan, A., Feijo, J.A., Furutani, M., Takenawa, T., Hwang, I., Fu, Y., and Yang, Z. (2010). Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell 22: 4031-4044.

Zhou, S., Jiang, W., Long, F., Cheng, S., Yang, W., Zhao, Y., and Zhou, D.X. (2017). Rice Homeodomain Protein WOX11 Recruits a Histone Acetyltransferase Complex to Establish Programs of Cell Proliferation of Crown Root Meristem. Plant Cell 29: 10881104.

6. Appendix

6.1. Additional information to the obtained results

Fig. 6.1: Genotypic characterization of pip5k1 pip5k2 double mutant and pCaMV35S::PIP5K2-EYFP OE lines with specific oligonucleotides. Col-0 was used as control. The applied marker is GeneRuler ${ }^{\text {TM }} 1 \mathrm{~kb}$ DNA Ladder (Thermo Fisher Scientific, Schwerte Germany). A, Genotypic characterization of one representative Col-0 plant and one representative pip5k1 pip5k2 plant. DNA fragments were amplified with specific oligonucleotides. PIP5K1, SALK-146728-PIP5K1-for, SALK-146728-PIP5K1-rev; pip5k1, LBa1-SALK-for, SALK-146728-PIP5K1-rev; PIP5K2, SALK_012487-PIP5K2-for, SALK-012487-PIP5K2-rev; pip5k2, LBa1-SALK-for, SALK-012487-PIP5K2-rev. Expected fragment sizes are PIP5K1, $1037 \mathrm{bp} ;$ pip5k1, 750 bp ; PIP5K2, 1001 bp ; pip5k2, 750 bp . B, Genotypic characterization of pCaMV35S::PIP5K2-EYFP OE lines L2 and L5. A fragment of PIP5K2-EYFP (477 bp length) was amplified with the specific oligonucleotides gPIP5K2-for and gVYFP-rev. Four plants each of Col-0 and pCaMV35S::PIP5K2-EYFP OE lines L2 and L5 were genotyped.

Fig. 6.2: Test for epitope specificity of antisera against different histone H 3 acetylation events. Primary antisera against histone H3, H3K9ac and H3K14ac were tested for their epitope specificity by using histone H3 and differently modified histone H3 peptides. Used peptides are listed in appendix Tab. 6.5 and were spotted on a nitrocellulose membrane in dots of $1.5 \mu \mathrm{~g}$ and $0.3 \mu \mathrm{~g}$. Immunodetection was performed as described in section 4.20. Primary antisera were applied overnight as recommended in 3% milk powder (w / v) in 1x TBS buffer. The next day, a secondary antiserum against rabbit with a HRP conjugate was applied. HRP detection was performed. Tested and used antisera are listed in appendix Tab. 6.11. $n=4$ (except the use of H3K9ac peptide, $n=2$).

Fig. 6.3: Interaction test of P14P 5-kinases PIP5K1 and PIP5K2 with histone H3. A, Dot-blot analysis of histone H3 binding of PIP5K1 and PIP5K2. Recombinant human histone H3 (HsH3.1) and histone H3 from calf thymus (H3_Ct) were spotted on a nitrocellulose membrane in amounts of $2 \mu \mathrm{~g}, 1 \mu \mathrm{~g}, 0.2 \mu \mathrm{~g}$, $100 \mathrm{ng}, 50 \mathrm{ng}, 10 \mathrm{ng}, 5 \mathrm{ng}, 1 \mathrm{ng}$ and 0.5 ng per dot. As a control, two times $2 \mu \mathrm{l}$ of a $1: 1$ dilution of recombinantly expressed and enriched MBP, MBP-PIP5K1 and MBP-PIP5K2 protein fractions were spotted. Applied protein fractions are shown in B. 20μ of MBP, 150μ I of MBP-PIP5K1 and 300μ l of MBP-PIP5K2 fractions (50 to $100 \mu \mathrm{~g}$ protein) were incubated with the blocked membranes overnight. The next day, immunodetections were performed with suitable antibodies. AP detection was conducted for 2 h . $\mathrm{n}=4$, for this setup combination $\mathrm{n}=1$. B, Applied protein fractions of enriched recombinant MBP, MBP-PIP5K1 and MBP-PIP5K2 proteins for A. 10μ l of protein fractions were separated on an SDS-PAGE and were stained with Coomassie afterwards. PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder was used as a molecular size marker. MBP was affinity purified and obtained from Larissa Launhardt. MBP-PIP5K1 and MBP-PIP5K2 proteins were enriched by Lennart Schwalgun according to Dejonghe and coworkers (Dejonghe et al., 2016). Expected molecular sizes of full-length proteins MBP, 42.5 kDa ; MBP-PIP5K1, 128.4 kDa; MBP-PIP5K2, $128.8 \mathrm{kDa} . \mathrm{n}=3$.

Fig. 6.4: GCN5 and ADA2B interact in YTH. The interaction of GCN5 (bait) and ADA2B (prey) was tested by split-ubiquitin-based YTH analysis in S. cerevisiae strain NMY51. OST4 fusions localized interactions to ER membranes. pAl-Alg5 and pDL2-Alg5 vectors were used as positive or negative control. Uniform growth on -LW media (without leucine and tryptophane) indicates equal cell densities and the presence of the respective vectors. Interaction is indicated by growth under selective conditions on -LWH media (without leucine, tryptophane and histidine). *, -LWH medium supplemented with 10 mM 3-AT. Yeast colonies were grown at $30^{\circ} \mathrm{C}$ for two days. A representative result of three replicates with five independent colonies of each combination is shown. ADA2B, transcriptional adaptor 2B; GCN5, general control non-repressible 5; OST4, oligosaccharyltransferase 4.

Fig. 6.5: Relative transcript levels of GH3.3 in mesophyll protoplasts over time. Arabidopsis mesophyll protoplasts were prepared from Col-0 wild type and were treated for $0.5,1,2,4.25,16,18$ or 22 h with $0.25 \mu \mathrm{M}$ NAA. Relative transcript levels of GH3.3 were measured in a qPCR. Transcript levels were normalized to both the reference gene UBC10 and the transcript levels of the respective mocktreated samples. Bars show the mean. Error bars indicate standard deviation. The experiment was conducted once with four biological replicates (three replicates for 18 h time point).

Fig. 6.6: Basal transcript levels of GH3.3, IAA2 and IAA5 upon overexpression of PI4P 5-kinases. Relative basal transcript levels of GH3.3, IAA2 and IAA5 in mesophyll protoplasts upon overexpressing either EYFP or the different PI4P 5 -kinases. Data represent $8-16$ biological replicates (transformations) from three to four independent protoplast preparations. A, GH3.3 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K1-EYFP. B, GH3.3 transcript levels in protoplasts transformed with either pEntryA-pCaMV35S:::EYFP, pEntryA-pCaMV35S::PIP5K2-EYFP or pEntryA-pCaMV35S::PIP5K2 K470A-EYFP. C, GH3.3 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryD-pCaMV35S::PIP5K6-EYFP. D, IAA2 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S:::PIP5K1-EYFP. E, IAA2 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K2-EYFP. F, IAA2 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or
pEntryD-pCaMV35S::PIP5K6-EYFP. G, IAA5 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K1-EYFP. H, IAA5 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K2-EYFP. I, IAA5 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryD-pCaMV35S::PIP5K6-EYFP. Transcript levels were normalized to the reference gene UBC10. Relative transcript levels are shown as boxplots; dots show outliers. Asterisks indicate significant differences compared to EYFP control according to a Student's T-test (* $P \leq 0.05$).

Fig. 6.7: Endogenous transcript levels of GCN5 upon transient expression of different PI4P 5-kinases. Relative transcript levels of GCN5 in mesophyll protoplasts upon overexpressing either EYFP or the different PI4P 5-kinases and with mock (-) and with $0.25 \mu \mathrm{M}$ NAA (+) treatment overnight (A-C) or $2 \mu \mathrm{M}$ NAA (+) for 2.5 h (D-F). Data represent 11-16 biological replicates (transformations) from three to four independent protoplast preparations. A, Protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K1-EYFP and treated with $0.25 \mu \mathrm{M}$ NAA. B, Protoplasts transformed with either pEntryA-pCaMV35S::EYFP, pEntryA-pCaMV35S::PIP5K2-EYFP or pEntryA-pCaMV35S::PIP5K2 K470A-EYFP and treated with $0.25 \mu \mathrm{M}$ NAA. C, Protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryD-pCaMV35S::PIP5K6-EYFP and treated with $0.25 \mu \mathrm{M}$ NAA. D, Protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K1-EYFP and treated with $2 \mu \mathrm{M}$ NAA. E, Protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K2-EYFP and treated with $2 \mu \mathrm{M}$ NAA. F, Protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryD-pCaMV35S::PIP5K6-EYFP and treated with $2 \mu \mathrm{M}$ NAA. Transcript levels were normalized to the reference gene UBC10. Relative transcript levels are shown as boxplots; dots show outliers. Significant differences were analyzed by one-way ANOVA with a subsequent Tukey's post-hoc test ($P<0.05$).

Fig. 6.8: Transcript levels of overexpressed PI-kinases and respective controls in protoplasts. Relative transcript levels of EYFP/mCherry or PIP5K1/PIP5K2/PIP5K2 K470A/PIP5K6/VPS34 in mesophyll protoplasts upon overexpressing either EYFP/mCherry or the different PI4P 5-kinases/VPS34 and with mock (-) and with $0.25 \mu \mathrm{M}$ NAA (+) treatment overnight or $2 \mu \mathrm{M}$ NAA for 2.5 h , as indicated. Data represent 11 - 16 biological replicates (transformations) from three to four independent protoplast preparations (EYFP/PIP5K1-EYFP/PIP5K2-EYFP/PIP5K2 K470A-EYFP/ PIP5K6-EYFP) or 7-8 biological replicates (transformations) from two independent protoplast preparations (mCherry/VPS34-mCherry). A-F, Protoplasts treated with $0.25 \mu \mathrm{M}$ NAA overnight. A, EYFP transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K1-EYFP. B, PIP5K1 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K1-EYFP. C, EYFP transcript levels in protoplasts transformed with either pEntryA-pCaMV35S::EYFP, pEntryA-pCaMV35S::PIP5K2-EYFP or pEntryA-pCaMV35S::PIP5K2 K470A-EYFP. D, PIP5K2 transcript levels in protoplasts transformed with either pEntryA-pCaMV35S::EYFP, pEntryA-pCaMV35S::PIP5K2-EYFP or pEntryA-pCaMV35S::PIP5K2 K470A-EYFP. E, EYFP transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryD-pCaMV35S::PIP5K6-EYFP. F, PIP5K6 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryD-pCaMV35S::PIP5K6-EYFP. G - L, Protoplasts treated with $2 \mu \mathrm{M}$ NAA for 2.5 h . G, EYFP transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K1-EYFP. H, PIP5K1 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K1-EYFP. I, EYFP transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K2-EYFP. J, PIP5K2 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K2-EYFP. K, EYFP transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryD-pCaMV35S::PIP5K6-EYFP. L, PIP5K6 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or
pEntryD-pCaMV35S::PIP5K6-EYFP. M, N, Protoplasts treated with $0.25 \mu \mathrm{M}$ NAA overnight. \mathbf{M}, mCherry transcript levels in protoplasts transformed with pEntryD-pCaMV35S::mCherry or pEntryA-pCaMV35S::VPS34-mCherry. N, VPS34 transcript levels in protoplasts transformed with pEntryD-pCaMV35S::mCherry or pEntryA-pCaMV35S::VPS34-mCherry. Transcript levels were normalized to the reference gene UBC10. Relative transcript levels are shown as boxplots; dots show outliers. Significant differences were analyzed by one-way ANOVA with a subsequent Tukey's post-hoc test $(P<0.05)$ and indicated by letters a-c.

Fig. 6.9: Overexpression of PI4P 5-kinases reduces auxin-activation of IAA19. Relative transcript levels of IAA19 in mesophyll protoplasts upon overexpressing either EYFP or the different PI4P 5-kinases and with mock (-) and with $2 \mu \mathrm{M}$ NAA (+) treatment for 2.5 h . A, B, C, Basal transcript levels of IAA19. Data represent $8-12$ biological replicates (transformations) from three independent protoplast preparations. A, IAA19 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K1-EYFP. B, IAA19 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K2-EYFP. C, IAA19 transcript levels in protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryD-pCaMV35S::PIP5K6-EYFP. Significant differences were analyzed by Student's T-test. No significances were observed. D, E, F, Relative transcript levels of IAA19 in mesophyll protoplasts upon overexpressing either EYFP or the different PI4P 5-kinases and with mock (-) and with $2 \mu \mathrm{M}$ NAA (+) treatment for 2.5 h . Data represent $8-12$ biological replicates (transformations) from three independent protoplast preparations. D, Protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K1-EYFP. E, Protoplasts transformed with pEntryA-pCaMV35S::EYFP or pEntryA-pCaMV35S::PIP5K2-EYFP. F, Protoplasts transformed with pEntryA-pCaMV35S:::EYFP or pEntryD-pCaMV35S::PIP5K6-EYFP. Transcript levels were normalized to both the reference gene UBC10 and the transcript levels of the respective mock-treated sample (-). Mock data are based on data in A-C. Relative transcript levels are shown as boxplots; dots show outliers. Significant differences were analyzed by one-way ANOVA with a subsequent Tukey's post-hoc test ($P<0.05$) and indicated by letters a - c.

Fig. 6.10: Enriched proteins used for lipid overlay assays. Coomassie-stained SDS-PAGE of enriched MBP, MBP-GCN5 and MBP-ING1/MBP-ING2 protein fractions used in lipid overlay assays. Enriched protein fractions were proven for protein content on an SDS-PAGE to equalize used protein amounts. 50 to $100 \mu \mathrm{~g}$ of enriched proteins ($20 \mu \mathrm{l}$ of MBP, $120 \mu \mathrm{l}$ of MBP-GCN5, $100 \mu \mathrm{l}$ of MBP-ING1 or 150μ I MBP-ING2) were utilized for lipid overlay assays shown in Fig. 2.9 B. PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder was used as a molecular size marker. Expected molecular size of full-length proteins, MBP, 42.5 kDa; MBP-GCN5, 105.6 kDa; MBP-ING1, 68.6 kDa; MBP-ING2, 72.6 kDa.

Fig. 6.11: Lipid binding studies of PIP grips. Lipid overlay assays were controlled for functionality of experimental setup with purchased PIP grips with known lipid binding capability. Lipid overlay assays with $2.5 \mu \mathrm{~g}$ Ptdlns3P Grip (\#G-0302) and Ptdlns(4,5)P2 Grip (\#G-4501) (both Echelon Biosciences Inc., MoBiTec, Göttingen, Germany) and PIP strips shown in Fig. 2.9 A. Interactions were visualized by using a primary antiserum against GST and a secondary antiserum with an AP conjugate. AP detection was performed. The experiment was conducted once.

Fig. 6.12: Liposome sedimentation assay of MBP. Liposome sedimentation assay was performed with liposomes prepared with PtdCho alone (control) or with a mixture of PtdCho and either Ptdlns3P, Ptdlns4P, PtdIns5P, Ptdlns(3,5)P2, Ptdlns(4,5)P2 or PtdOH. No lipid, control sample without liposomes. Supernatant, contained unbound protein. Sediment, protein that had bound to respective liposomes. Proteins were separated on an SDS-PAGE and detected by immunoblots with the use of the specific antibody against MBP and a secondary antibody conjugated to AP. AP detection was performed. PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder was used as a molecular size marker. Expected molecular size of full-length protein, MBP, 42.5 kDa . Experiments were performed twice with similar results.

Fig. 6.13: BH-search analyses of GCN5 ${ }_{\text {ILL }}$ and GCN5 $_{\text {EDD }}$, ING1, ING2 and MBP. BH-searches of A, GCN5IIL. B, GCN5 EDD. $^{\text {C, }}$ ING1. D, ING2. E, MBP. BH-searches were conducted with the online tool according to Brzeska and coworkers (Brzeska et al., 2010). Per amino acid a value is calculated that includes the amino acid surrounding of the single amino acid. Values higher than the threshold 0.6 indicate a basic hydrophobic (BH) stretch which putatively binds phospholipids.

Fig. 6.14: CD spectroscopy of MBP-GCN5, MBP-GCN5 ${ }_{\text {ILL }}$, MBP-GCN5 ${ }_{\text {edd }}$ and MBP. CD spectra were recorded at $20^{\circ} \mathrm{C}$. Each sample was measured 64 times with $50 \mathrm{~nm} / \mathrm{min}$ in an interval of 1 nm . Ellipticity $\Theta_{\text {mRw }}$ was calculated for the wavelength range from around 200 to 250 nm . As control, MBP-GCN5 was denatured for 6.5 h in 4.5 M guanidinium chloride. Blue, MBP; green, MBP-GCN5; red, MBP-GCN5ill; yellow, MBP-GCN5edd; grey, MBP-GCN5 denatured. CD spectra are representative for $\mathrm{n}=4$ (MBP, MBP-GCN5ıLL, MBP-GCN5Edd), $\mathrm{n}=7$ (MBP-GCN5), $\mathrm{n}=2$ (MBP-GCN5 denatured).

Fig. 6.15: GCN5 and GCN5 ${ }_{\text {ILL }}$ acetylation activity in vitro over time. In vitro acetylation of histone H3 at H3K9 and H3K14 by GCN5 and GCN5ılı over time. The acetylation reactions were stopped after 20, $40,60,80,100$ and 120 min , respectively. Control sample with GCN5 lacking acetyl-CoA was stopped after 60 min . The formation of H3K9ac and H3K14ac was detected with specific antibodies. Expected molecular sizes of full-length proteins, histone H3, H3K9ac, H3K14ac, 15.3 kDa ; MBP-GCN5, 105.6 kDa . PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder was used as a molecular size marker. Chemiluminescent signals were recorded using an ECL detection system. The arrow indicates MBP-GCN5/MBP-GCN5ıLL. The test was performed once.

Fig. 6.16: Immunodetection of mesophyll protoplasts overexpressing mCherry-tagged VPS34. Arabidopsis mesophyll protoplasts used for examination of subcellular localization of mCherry-tagged VPS34 were tested for transient protein expression. Transiently transformed protoplasts were applied to an SDS-PAGE and were blotted on a nitrocellulose membrane. The mCherry-tagged proteins were detected with specific antibodies. Chemiluminescent signals were recorded using an ECL detection system. PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder was used as a molecular size marker. Expected molecular size of full-length protein, VPS34-mCherry, 120.0 kDa . The experiment was conducted seven times with similar results.

Fig. 6.17: Basal GH3.3 transcript levels and endogenous GCN5 transcript levels in protoplasts upon overexpression of VPS34. Relative basal transcript levels of GH3.3 and relative transcript levels of GCN5 in mesophyll protoplasts upon overexpressing either mCherry or VPS34-mCherry and with mock (-) and with $0.25 \mu \mathrm{M}$ NAA (+) treatment overnight. Data represent $6-8$ biological replicates (transformations) from two protoplast preparations. A, Basal GH3.3 transcript levels in protoplasts transformed with pEntryD-pCaMV35S::mCherry or pEntryA-pCaMV35S::VPS34-mCherry. B, Endogenous GCN5 transcript levels in protoplasts transformed with pEntryD-pCaMV35S::mCherry or pEntryA-pCaMV35S::VPS34-mCherry. Transcript levels were normalized to the reference gene UBC10. Relative transcript levels are shown as boxplots; dots show outliers. Significant differences were analyzed by Student's T-test (A) or by one-way ANOVA with a subsequent Tukey's post-hoc test ($P<0.05$) (B).

Fig. 6.18: Immunodetection of mesophyll protoplasts overexpressing EYFP-tagged GCN5 amino acid substitution variants. Arabidopsis mesophyll protoplasts used for examination of subcellular localization of EYFP-tagged GCN5 variants were tested for transient protein expression. Transiently transformed protoplasts were applied to an SDS-PAGE and were blotted on a nitrocellulose membrane. The EYFP-tagged proteins were detected with specific antibodies. Chemiluminescent signals were recorded using an ECL detection system. PageRuler ${ }^{T M}$ Prestained Protein Ladder was used as a molecular size marker. Expected molecular sizes of full-length proteins, EYFP, 27.0 kDa ; EYFP-GCN5/EYFP-GCN5ıl/EYFP-GCN5 ${ }_{\text {edd }} \quad 90.1 \mathrm{kDa}$. A, Protoplasts overexpressing EYFP, EYFP-GCN5, EYFP-GCN5ıll or EYFP-GCN5edd. The experiment was conducted five times with similar results. B, Protoplasts overexpressing EYFP-GCN5, EYFP-GCN5ıll or EYFP-GCN5edd were treated for 6 h with $50 \mu \mathrm{M}$ proteasome inhibitor MG-132 according to Grimmer and coworkers (Grimmer et al., 2020). Mock, DMSO solvent as control; MG-132, proteasome inhibitor solved in DMSO. The experiment was conducted twice with similar results. The arrow indicates EYFP-GCN5/EYFP-GCN5ıL/ EYFP-GCN5edd.

6.2. Additional information to Material and Methods

6.2.1. Specification of equipment and devices

Tab. 6.1: Equipment and devices.

Equipment/device	Supplier
Plant Chamber Adaptis A1000	Conviron, Winnipeg, MB, Canada
Plant Chamber PERCIVAL AR-66/L3	Percival Scientific, Perry, IA, USA
Eppendorf centrifuges 5424, 5417 R, $5424 R$ and 5810 R	Eppendorf AG, Hamburg, Germany
Agarose gel chambers, MINI and MIDI with gel slides	cti, Idstein, Germany
Gel Detection System Gel iX Imager	INTAS, Göttingen Germany
Gel Detection System Quantum ST4	Vilber Lourmat Deutschland GmbH, Eberhardzell, Germany
TADVANCED or TProfessional Thermocycler	Biometra, Göttingen, Germany
Rotor Gene Q 2-Plex	Qiagen, Hilden, Germany
Ultrospec 2100 pro UV/Vis Spectrometer	Biochrom, Cambridge, United Kingdom
Ultrospec 3000 UV/Vis Spectrometer	Pharmacia Biotech AG, Dübendorf, Germany
Multiple Gel Caster (SE 200 series)	Hoefer Scientific Instruments, Holliston, MA, USA
SE250 Electrophorese Chamber	Hoefer Pharmacia Biotech Inc., San Francisco, CA, USA
Mini-PROTEAN ${ }^{\circledR}$ Tetra System Blotting Chamber	BioRad Laboratories GmbH, Munich, Germany
Fusion Solo S	Vilber Lourmat Deutschland GmbH, Eberhardzell, Germany
Ultra-Turrax ${ }^{\text {® }} \mathrm{T} 25$ basic	IKA ${ }^{\text {®-Werke GmbH, Staufen, Germany }}$
Bransonic B12 Ultrasonics Sonifier	Branson, Emerson Electric, DietzenbachSteinberg, Germany
Vibra-Cell ${ }^{\text {TM }} 72442$	Bioblock Scientific, Sonics \& Materials Inc., Newtown, CT, USA
J-810 Spectropolarimeter	JASCO Deutschland GmbH, Pfungstadt, Germany
Peltier Element PTC-423S	JASCO Deutschland GmbH, Pfungstadt, Germany
Water Recirculator Thermo Haake ${ }^{\oplus}$ WKL 26	JASCO Deutschland GmbH, Pfungstadt, Germany

Equipment/device	Supplier
Precision Cell (made of Quartz SUPRASIL®,	Hellma GmbH, \& Co. KG, Müllheim,
Type No. 105.201-QS, Light Path 10 mm)	Germany
Precision Cell (made of Quartz SUPRASIL®	
Type No. 106-QS, Light Path 0.2 mm, transmission matched)	Germany
Laser Scanning Microscope LSM \& 80 with	Carl Zeiss, Jena, Gëllheim, Germany
HXP 120V metal halide fluorescence light source	
Phosphorimager Screen BAS-MP 2040s	Fujifilm, Düsseldorf, Germany
Phosphorimager BAS-1500	Fujifilm, Düsseldorf, Germany

6.2.2. Specification of chemicals

Tab. 6.2: Chemicals used in this study.

Chemical	Supplier
Acetyl coenzyme A sodium salt (Acetyl-CoA) (\#A2056)	Sigma-Aldrich, Munich, Germany
Albumin Fraction V (BSA)	Carl Roth, Karlsruhe, Germany
3-Amino-1,2,4-triazole (3-AT)	Sigma-Aldrich, Munich, Germany
Amylose Resin	New England Biolabs Inc., Frankfurt,
	Germany
Biozym LE Agarose	Biozym Scientific GmbH, Hessisch
	Oldendorf, Germany
Blotting-Grade Blocker Nonfat dry milk	BioRad Laboratories GmbH, Munich, Bradford reagent, 5x
	Germany
5-Bromo-4-chloro-3-indolyl phosphate	Germany Electrophoresis GmbH, Heidelberg,
disodium salt (X-phosphate)	Carl Roth, Karlsruhe, Germany
1,4-Dithiothreitol (DTT)	Carl Roth, Karlsruhe, Germany
Pierce ${ }^{\text {TM }}$ Gluthatione Agarose	Thermo Fisher Scientific, Schwerte,
	Germany
L-Glutathione reduced	Sigma-Aldrich, Munich, Germany
Hexylene glycol	Sigma-Aldrich, Munich, Germany
Isopropyl β-D-1-thiogalactopyranoside	Thermo Fisher Scientific, Schwerte,
(IPTG), dioxane free	Germany

Chemical	Supplier
2-Mercaptoethanol	Carl Roth, Karlsruhe, Germany
Micro-Agar	Duchefa, Haarlem, Netherlands
Murashige \& Skoog-Medium, incl. modified vitamins	Duchefa, Haarlem, Netherlands
1-Naphthaleneacetic acid (NAA) (\#N0640)	Sigma-Aldrich, Munich, Germany
p-Nitrotetrazolium blue chloride (NBT)	Carl Roth, Karlsruhe, Germany
Percoll ${ }^{\text {TM }}$	GE Healthcare GmbH, Solingen, Germany
Phenol solution, saturated with 0.1 M citrate buffer, pH 4.3, (\#P4682)	Sigma-Aldrich, Munich, Germany
Poly(ethylene glycol), average Mn 4,000 platelets (PEG)	Sigma-Aldrich, Munich, Germany
Proteasome Inhibitor MG-132 (\#33766)	SERVA Electrophoresis GmbH, Heidelberg, Germany
Quick Coomassie ${ }^{\text {® }}$ Stain	SERVA Electrophoresis GmbH, Heidelberg, Germany
Rotiphorese® Gel 30 ($37,5: 1$)	Carl Roth, Karlsruhe, Germany
SIGMAFAST ${ }^{\text {TM }}$ Protease Inhibitor Cocktail, EDTA-Free	Sigma-Aldrich, Munich, Germany
Skim milk powder for blotting	SERVA Electrophoresis GmbH, Heidelberg, Germany
$\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-Tetramethyl-ethylenediamine (TEMED)	Sigma-Aldrich, Munich, Germany
yeast nitrogen base w/o amino acids and ammonium sulfate	Difco, Detroit, MI, USA

Tab. 6.3: Used Phospholipids.
All phospholipids were purchased from Avanti Polar Lipids Inc. (Merck, Darmstadt, Germany) and were dissolved in chloroform.

Phospholipid	Stock solution	Product No.
$18: 1$ Ptdlns3P	$1 \mathrm{mg} / \mathrm{ml}$	850150 P
18:1 Ptdlns4P	$1 \mathrm{mg} / \mathrm{ml}$	850151 P
18:1 Ptdlns5P	$1 \mathrm{mg} / \mathrm{ml}$	850152 P
18:1 Ptdlns(3,5)P P_{2}	$1 \mathrm{mg} / \mathrm{ml}$	850154 P
18:1 Ptdlns(4,5) P_{2}	$1 \mathrm{mg} / \mathrm{ml}$	850155 P
18:1 PtdOH	$10 \mathrm{mg} / \mathrm{ml}$	840875 P
18:1 PtdCho	$10 \mathrm{mg} / \mathrm{ml}$	$850375 \mathrm{P} / 850375 \mathrm{C}$
18:1 PtdEtn	$10 \mathrm{mg} / \mathrm{ml}$	850725 P
18:1 PtdSer	$10 \mathrm{mg} / \mathrm{ml}$	840035 P

6.2.3. Used consumables and kits

Tab. 6.4: Consumables and kits.

Consumable	Supplier
Amersham Protran 0,45 NC (nitrocellulose membrane)	GE Healthcare GmbH, Solingen, Germany
Biosphere ${ }^{\circledR}$ Filter Tip (10, 100, $1000 \mu \mathrm{l}$)	Sarstedt, Nürnbrecht, Germany
Cellstar ${ }^{\circledR}$ Cell Culture Tube (12 ml , round bottom)	Greiner Bio-One GmbH, Frickenhausen, Germany
Cellview ${ }^{\text {TM }}$ Cell Culture Dish ($35 / 10 \mathrm{~mm}$, glass bottom)	Greiner Bio-One GmbH, Frickenhausen, Germany
EASYstrainer ${ }^{\text {TM }}$ ($100 \mu \mathrm{~m}$, sterile)	Greiner Bio-One GmbH, Frickenhausen, Germany
Filter paper	Whatman (GE Healthcare), Maidstone, United Kingdom
Filter Supports (10 mm)	Avanti Polar Lipids Inc., Merck, Darmstadt, Germany
Filtropur S 0.45 (filter for syringes)	Sarstedt, Nürnbrecht, Germany
Micro Bio-Spin ${ }^{\text {TM }}$ Columns (0.8 ml)	BioRad Laboratories GmbH, Munich, Germany
Nucleopore Track-Etch Membrane (polycarbonate membrane, pore size $0.2 \mu \mathrm{~m})$	Whatman (GE Healthcare), Maidstone, United Kingdom

Consumable	Supplier
PCR 0.1 ml 4-Tube \& 4-Cap Strips	Biozym Scientific GmbH, Hessisch
(for Qiagen/Corbett Rotor-Gene (TM))	Oldendorf, Germany
Pierce $^{\text {TM }}$ Centrifuge Columns,	Thermo Fisher Scientific, Schwerte,
$0.8 \mathrm{ml}, 2 \mathrm{ml}, 5 \mathrm{ml}$	Germany
PIP Strips (\#P-6001)	Echelon Biosciences Inc., MoBiTec,
	Göttingen, Germany
Protein LoBind Tube 2.0 mL	Eppendorf AG, Hamburg, Germany
SERVAGelT TG PRIME ${ }^{\text {TM }} 4$ - 20\% \%	SERVA Electrophoresis GmbH, Heidelberg,
(precast gels with 10, 12 or 15 sample	Germany
wells)	
Whatman paper (550 g/m²)	A. Hartenstein GmbH, Würzburg, Germany
Kit	Supplier
CompactPrep Plasmid Midi Kit	Qiagen, Hilden, Germany
DUALmembrane Kit 3	Dualsystems Biotech AG, Zurich,
	Switzerland
GeneJET ${ }^{\text {TM }}$ Plasmid Miniprep Kit	Thermo Fisher Scientific, Schwerte,
	Germany
GeneJET ${ }^{\text {TM }}$ Gel Extraction Kit	Thermo Fisher Scientific, Schwerte,
	Germany
Histone Extraction Kit (\#ab113476)	Abcam, Cambridge, United Kingdom
Luna Universal qPCR Master Mix	New England Biolabs Inc., Frankfurt,
(\#M3003)	Germany
RevertAid H Minus First Strand cDNA	Thermo Fisher Scientific, Schwerte,
Synthesis Kit (\#K1632)	Germany
SuperSignal	
Sensitivity Substrate (\#34095)	Thermo Fisher Scientific, Schwerte,

6.2.4. Used enzymes, proteins, peptides and molecular size markers

Tab. 6.5: Enzymes, proteins, peptides and molecular size markers.

Enzyme	Supplier
Cellulase "Onozuka R-10" from Trichoderma viride ca. $1 \mathrm{U} / \mathrm{mg}$	SERVA Electrophoresis GmbH, Heidelberg, Germany
Lysozyme from chicken egg white, min. 100000 units/mg, cryst.	SERVA Electrophoresis GmbH, Heidelberg, Germany
Maceroenzyme R-10 from Rhizopus sp. lyophile.	SERVA Electrophoresis GmbH, Heidelberg, Germany
Phusion ${ }^{\text {® }}$ High Fidelity DNA-Polymerase	New England Biolabs Inc., Frankfurt, Germany
TAQ-DNA-Polymerase	peqlab, VWR International GmbH, Darmstadt, Germany
T4-DNA-Ligase, 5 Weiss Units/ $\mu \mathrm{l}$	New England Biolabs Inc., Frankfurt, Germany
Protein/peptide	Supplier
Recombinant human Histone H3 protein HsH3.1 (Active) (\#ab198757)	Abcam, Cambridge, United Kingdom
Histone H3 from calf thymus (\#11034758001)	Roche Diagnostics GmbH, Mannheim, Germany
Acetyl-Histone H3 (Lys9) Peptide (\#12-358)	Sigma-Aldrich, Munich, Germany
Acetyl-Histone H3 (Lys14) Peptide (\#12-359)	Sigma-Aldrich, Munich, Germany
Acetyl-Histone H3 (Lys9/14) Peptide (\#12-360)	Sigma-Aldrich, Munich, Germany
Human Histone H3 (di methyl K4) peptide (\#ab7768)	Abcam, Cambridge, United Kingdom
Human Histone H3 (tri methyl K4) peptide (\#ab1342)	Abcam, Cambridge, United Kingdom
Ptdlns3P Grip (\#G-0302)	Echelon Biosciences Inc., MoBiTec, Göttingen, Germany
Ptdlns(4,5)P2 Grip (\#G-4501)	Echelon Biosciences Inc., MoBiTec, Göttingen, Germany
Molecular size marker	Supplier
GeneRuler ${ }^{\text {TM }} 100$ bp DNA Ladder	Thermo Fisher Scientific, Schwerte, Germany
GeneRuler ${ }^{\text {TM }} 1 \mathrm{~kb}$ DNA Ladder	Thermo Fisher Scientific, Schwerte, Germany

Molecular size marker	Supplier
PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder,	Thermo Fisher Scientific, Schwerte,
10 to 180 kDa	Germany
PageRuler ${ }^{\text {TM }}$ Unstained Protein Ladder,	Thermo Fisher Scientific, Schwerte,
10 to 200 kDa	Germany

6.2.5. Oligonucleotides used in this thesis

Tab. 6.6: Oligonucleotides used for genotyping.

Plant line	Gene / cDNA	Oligonucleotides for genotyping $5^{\prime}-3^{\prime}$
pip5k1 pip5k2	PIP5K1	SALK-146728-PIP5K1-for actaangagcaatantccttccacc SALK-146728-PIP5K1-rev GCAAATTCTCATGGCCAAGTGGA
	pip5k1	LBa1-SALK-for tGGTtCACGTAGTGGGCCATCG SALK-146728-PIP5K1-rev GCAAATTCTCATGGCCAAGTGGA
	PIP5K2	SALK-012487-PIP5K2-for CAGGTTTGATACAATGCACACCAT SALK-012487-PIP5K2-rev tGGGAGTCTGATGGAGAAGCTG
	pip5k2	LBa1-SALK-for tGGttcacgtagtgagccatcg SALK-012487-PIP5K2-rev tGGGAGTCTGATGGAGAAGCTG
pCaMV35S::PIP5K2EYFP	PIP5K2-EYFP	gPIP5K2-for TTAGCTGGCAGGAAACCATTG gVYFP-rev CTTGCCGGTGGTGCAGATGAACTTCAG

Tab. 6.7: Oligonucleotides for qPCRs.

Target gene	Description of oligonucleotides	Oligonucleotides $5^{\prime}-3^{\prime}$
UBC10	qUBC10-for	ACATCATGTAGCGCAGGTCC
(AT5G53300)	qUBC10-rev	CCGGAGGGAAATGGATGGTT
PIP5K1	qPIP5K1-for	TAGCTGGCAGGAAACCATCG
(AT1G21980)	qPIP5K1-rev	TGGATAACTGGCTCCTCCTGA
PIP5K2	qPIP5K2-for	CGGTGAGGCTAAGAAACCTGGAG
(AT1G77740)	qPIP5K2-rev	CTTGTCCAGAACTTTTCACTTGGG
PIP5K6	qPIP5K6-for	ATTCTGCAGGCAAGTGGACA
(AT3G07960)	qPIP5K6-rev	TGAATTTCCGGTAGGGGTTCG
VPS34	qVPS34-for	GGCGGAGCAGAAAGCCAATA
(AT1G60490)	qVPS34-rev	TCGGGAATAGTTGAACCCGC
GCN5	qGCN5-for	GTGGCTTAAGGGAAGCTGGT
(AT3G54610)	qGCN5-rev	GGACATCGCGAGAATCCACT
GH3.3	qGH3.3-for	CATCACAGAGTTCCTCACAAGC
(AT2G23170)	qGH3.3-rev	GTCGGTCCATGTCTTCATCA
	(Weiste and Dröge-Laser, 2014)	
IAA2	qIAA2-for	TCTACACCTCCTACCAAAACTCAA
(AT3G23030)	qIAA2-rev	CTTTGAGAAGCTCGGGGTAGT
IAA5	qIAA5-for	TCCGCTCTGCAAATTCTGTTC
(AT1G15580)	qIAA5-rev	CACGATCCAAGGAACATTTCCCA
IAA19	qIAA19-for	GGTGATGTACCTTGGGGGATG
(AT3G15540)	qIAA19-rev	CCCGGTAGCATCCGATCTTT
EYFP	qEYFP-for	CTGAAGTTCATCTGCACCAC
	qEYFP-rev	GTCGTGCTGCTTCATGTGGTC
mCherry	qmCherry-for	CGAGATCAAGCAGAGGCTGA
	qmCherry-rev	TTCCACGATGGTGTAGTCCT

Tab. 6.8: Oligonucleotides used for cloning.

Vector	cDNA	Oligonucleotides for cloning (5'- 3')
pGEX-6P-1	GCN5	GCN5-Sall-for
		ATGCGTCGACGCATGGACTCTCACTCTTCCCA
	GCN5-Notl-rev	
		ATGCGCGGCcGCCTATTGAGATTTAGCACCAG
		ING1-Sall-for
		ATGCGTCGACGCATGTCATTCGCCGAGGAATT
		ING1-Notl-rev
		ATGCGCGGCcGCTCATCGACCTTTCCTGCTCT

Vector	cDNA	Oligonucleotides for cloning ($5^{\prime}-3^{\prime}$)
pMAL-c5G	GCN5EDD	GCN5-Notl-for
		ATGCGCGGCCGCATGGACTCTCACTCTTCCCA
		GCN5-Sall-rev
		atGcgicgacctattgagatttagcaccag
		for introduction of mutation:
		GCN5-EDD-for
		tCtGAtGGatgatantcatgattctattat
		GCN5-EDD-rev
		atahcagantcatgatcttcatccatcaga
		GCN5-for
		atgGactctcactcttccca
		GCN5-rev
		CTATTGAGATTTAGCACCAGATT
	ADA2B	ADA2B-Notl-for
		AtGcGcGaccacatgagtcgctctcgagag
		ADA2B-Sall-rev
		atgcgicgacttanagttgagcaitacc
	VPS34	VPS34-Notl-for
		ATGCGCGGCCGCATGGGTGCGAACGAGtTT
		VPS34-Sall-rev
		ATGCGTCGACTCAACGCCAGTATTGAGC
	VPS341-210	VPS34-Notl-for
		ATGCGCGGCCGCATGGGTGCGAACGAGTTT
		VPS34-210-Sall-rev
		AtGCGTCGACTCAAAACAGATGTGAGCtTCC
	VPS34210-814	VPS34-210-Notl-for
		atgcgcagccgcatatttatgatcattgat
		VPS34-Sall-rev
		atGcgtcgactcancgccagtattgagc
pBT3-C-OST4	PIP5K6	OST4-PIP5K6-for
		ATGCGGCCATTACGGCCCATGTCGGTAGCACACGCAGA
		OST4-PIP5K6-rev
		ATGCGGCCGAGGCGGCCGCAGCGTC TTCAACGAAGACCC
	PIP5K9	OST4-PIP5K9-for
		ATGCGGCCATTACGGCCAATGTCTGGCCTTGACGTACGA
		OST4-PIP5K9-rev
		ATGCGGCCGAGGCGGCCCTTGATTTGTTGTTCTGTGGAAAT
	GCN5	OST4-GCN5-for
		ATGCGGCCATTACGGCCCATGGACTCTCACTCTTCCCA
		OST4-GCN5-rev
		ATGCGGCCGAGGCGGCCGCTTGAGATTTAGCACCAGATT

Vector	cDNA	Oligonucleotides for cloning ($5^{\prime}-3$)
pBT3-C-OST4	VPS34	OST4-VPS34-for
		ATGCGGCCATtACGGCCCATGGGTGCGAACGAGTtT
		OST4-VPS34-rev
		ATGCGGCCGAGGCGGCCGCACGCCAGTATTGAGC
	VPS341-210	OST4-VPS34-for
		ATGCGGCCATtACGGCCCATGGGTGCGAACGAGTtT
		OST4-VPS34-210-rev
		ATGCGGCCGAGGCGGCCGCAAACAGATGTGAGCTTCC
	VPS34210-814	OST4-VPS34-210-for
		ATGCGGCCATTACGGCCAATGTtTGTGGTCATTGAT
		OST4-VPS34-rev
		AtGcGGccgaggcgaccgcacgccagtattgagc
pPR3-N	ADA2B	ADA2B-Sfil-for
		ATGCGGCCATTACGGCCATGGGTCGCTCTCGAGGGAACTT
		ADA2B-Sfil-rev
		ATGCGGCCGAGGCGGccttanagttgagcaitaccctt
pEntryA	EYFP-GCN5	pD-GCN5-Ascl-for
	EYFP-GCN5ILL	ATGCGGCGCGCCATGGACTCTCACTCTTCCCA
	EYFP-GCN5 EDD	pD-GCN5-Notl-rev
		ATGCGCGGCCGCCTATTGAGATtTAGCACCAGATT

Tab. 6.9: Oligonucleotides used for sequencing.

Analyzed sequence	Description of oligonucleotides	Oligonucleotides (5' $\mathbf{3}^{\prime}$)
pBT3-C-OST4	pBT3-for	CATGATCATATGGCATGCATG
	pBT3-LexA-rev	ACACCTCTTGTTGCCTGGCCA
pPR3-N	pPR3N-for	ATGCAGATTTCGTCAAGACTTT
	pPR3N-rev	ATAACTAATTACATGACT
pGEX-6-P1	pGEX-for	GGGCTGGCAAGCCACGTTTGGTG
	pGEX-rev	CCGGGAGCTGCATGTGTCAGAGG
pMAL-c5G	pMAL-for	ATGCCGAACATCCCGCAGAT
	pMAL-rev	TTGTCCTACTCAGGAGAGCGTT
$p E n t r y A$ and	35S-for	TATATAAGGAAGTTCATTT
$p E n t r y D ~$	OCS-rev	TTTACAACGTGCACAACAGAA
	M13-for	CCCAGTCACGACGTTGTAAAACG
	M13-rev	AGCGGATAACAATTTCACACAGG

Analyzed sequence	Description of oligonucleotides	Oligonucleotides ($5^{\prime}-3^{\prime}$)
EYFP	VYFP-for	CTGAAGTTCATCTGCACCACCGGCAAG
	VYFP-rev	CTTGCCGGTGGTGCAGATGAACTTCAG
	HYFP-for	TACCAGTCCGCCCTGAGCAAAGA
	HYFP-rev	TCTTTGCTCAGGGCGGACTGGTA
mCherry	HmCherry-for	CTACGACGCTGAGGTCAAGAC
	HmCherry-rev	GTCTTGACCTCAGCGTCGTAG
GCN5 and variants	GCN5-m-for	TGAAGCTTGAGAGCTCTGAT
	GCN5-m-rev	ATCAGAGCTCTCAAGCTTCA
	GCN5-m2-for	TAGAAAGATTATCAAAGT
ADA2B	ADA2B-m-for	AAGAGTTTGACCCTGAATAT
	ADA2b-m-rev	ATATTCAGGGTCAAACTCTT
PIP5K1	PIP5K1-m1-for	AGTAATATTATGAGGAGTTT
	PIP5K1-m1-rev	AAACTCCTCATAATATTACT
	PIP5K1-m2-for	AAAACGGTGAAGAAATCA
	PIP5K1-m2-rev	TGATTTCTTCACCGTTTT
	PIP5K1-m3-for	TGAAGGTACTTGGAGAAG
	PIP5K1-m4-for	CAACACCGCCGCATCAGT
	PIP5K1-m4-rev	ACTGATGCGGCGGTGTTG
PIP5K2 and variant	PIP5K2-m-for	ATTTTGACCCAAGTGAAAA
PIP5K2 K470A	PIP5K2-m-rev	TTTTCACTTGGGTCAAAAT
	PIP5K2-m2-for	AAGAGATATGCCAACGGAGA
	PIP5K2-m3-for	TTACTATGAAGGTACATGGC
	PIP5K2-m4-for	TATCTCCATTTGTATTGAGA
	PIPK2-m4-rev	TCTCAATACAAATGGAGATA
	PIP5K2-m5-for	TAGTAATCTCATGAGGAATT
	PIP5K2-m5-rev	AATTCCTCATGAGATTACTA
PIP5K6	PIP5K6-for	ATGTCGGTAGCACACGCAGA
	PIP5K6-rev	TCAAGCGTCTTCAACGAAGA
	PIP5K6-m1-for	TTTGTACTTGTCAGAGAAT
	PIP5K6-m1-rev	ATTCTCTGACAAGTACAAA
	PIP5K6-m2-for	AAAGTTCTTATAAGGATGCT
	PIP5K6-m3-for	TGCCGTCTCAGAAGATGC
	PIP5K6-m4-for	ACCCTTCGACTTCTTCCGG

Analyzed sequence	Description of oligonucleotides	Oligonucleotides (5'- 3')
PIP5K9	PIP5K9-m1-for	CGTGGGATGAGACATGGAAT
	PIP5K9-m2-for	ACGGGTTTTCGCGCACATCCA
	PIP5K9-m2-rev	ATATAATCAGCTGCATCGAT
	PIP5K9-m3-rev	TAGTTGCCTCAGTAAACCT
	PIP5K9-m4-for	ACAGCACTTAAGATCCCAAT
VPS34 and	VPS34-m1-for	AGCTGGCAAGGAGCTTGGAT
variants	VPS34-m1-rev	ATCCAAGCTCCTTGCCAGCT
	VPS34-m2-for	GCAGGAGAATCATCACTCTT
	VPS34-m2-rev	AAGAGTGATGATTCTCCTGC
	VPS34-m3-rev	AGTATATATGTGATCACAGA
ING1 and ING2	no specific	
	oligonucleotides within the sequence	
	necessary	

6.2.6. Cell lysates and enriched protein fractions

Fig. 6.19: Cell lysates and enriched protein fractions. Proteins were recombinantly expressed in E. coli Rosetta2. 10μ l of protein crude extracts were applied to an SDS-PAGE and were either stained with Coomassie or transferred to a nitrocellulose membrane. Membranes were incubated with primary antisera against GST or MBP. Afterwards, a suitable secondary antibody with a HRP conjugate was applied. Immunodetections were performed via HRP detection. PageRuler ${ }^{\text {TM }}$ Unstained Protein Ladder or PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder was used as molecular size marker. To get purified and enriched protein, protein crude extracts of MBP-tagged proteins (C) were purified via affinity chromatography with an amylose matrix. Protein crude extracts and enriched protein fractions (EP) were applied to an SDS-PAGE and were either stained with Coomassie or transferred to a nitrocellulose membrane. Nitrocellulose membranes were incubated with a primary antiserum against MBP epitope and a secondary antibody against mouse with an AP conjugate subsequently. AP detection was performed. PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder was used as molecular size marker. A, Protein crude extracts of GST and GST-GCN5 that were used for in vitro immuno pull-down assays. B, Protein crude extract of MBP-GCN5 that was used for in vitro immuno pull-down assays. C, Used affinity purified extracts of MBP-GCN5, MBP-GCN5ILL and MBP-GCN5 EDD for in vitro acetylation assays and liposome sedimentation assays. D, Used affinity purified extracts of MBP-GCN5 $2_{212-375}$ and MBP-GCN5 $284-375$ for in vitro acetylation assays. E, Protein crude extracts of MBP-PIP5K1 and MBP-PIP5K2 that were used for in vitro immuno pull-down assays. F, Protein crude extract of MBP-PIP5K6 that was used for in vitro immuno pull-down assays. G, Enriched protein extracts of MBP-PIP5K1 and MBP-PIP5K2 that were used for dot-blot assays. Proteins were enriched by Lennart Schwalgun according to Dejonghe and coworkers (Dejonghe et al., 2016). H, Used protein crude extracts of MBP-VPS34, MBP-VPS341-210 and MBP-VPS34 ${ }_{210-814}$ for in vitro immuno pull-down assays and in vitro activity assays. I, Protein crude extracts of GST-ING1 and GST-ING2 that were used for in vitro immuno pull-down assays. J, Used
affinity purified extract of MBP-ING1 for liposome sedimentation assays. K, Used affinity purified extract of MBP-ADA2B for in vitro acetylation assays. L, Used affinity purified extract of MBP for liposome sedimentation assays.
Expected molecular sizes of full-length proteins, GST, 26 kDa ; GST-GCN5, 89.1 kDa ; MBP-GCN5, MBP-GCN5ılL, MBP-GCN5edd, 105.6 kDa; MBP-GCN5212-375, 61.5 kDa ; MBP-GCN5284-375, 53.1 kDa ; MBP-PIP5K1, 128.4 kDa; MBP-PIP5K2, $128.8 \mathrm{kDa;} \mathrm{MBP-PIP5K6}$,123.9 kDa ; GST-ING1, 52.1 kDa ; GST-ING2, 56.1 kDa; MBP-ING1, 68.6 kDa; MBP-ADA2B, 98.2 kDa; MBP, 42.5 kDa; MBP-VPS34, 135.8 kDa ; MBP-VPS34 ${ }_{1-210,} 66.2 \mathrm{kDa}$; MBP-VPS34210-814, 112.3 kDa . Proteins were individually expressed and enriched several times.

6.2.7. Composition of self-cast polyacrylamide gels

Tab. 6.10: Composition of self-cast polyacrylamide gels.

Component	Stock solution	$\begin{aligned} & \text { Separation gel } \\ & 10 \%(w / v) \end{aligned}$	Stacking gel $5 \%(w / v)$
Rotiphorese $®$ Gel 30 (37,5:1) (Carl Roth, Karlsruhe, Germany)	30% (w/v) with 0.8% (w/v) bisacrylamide	$10 \%(w / v)$	5% (w/v)
Tris-HCl pH 8.8	1.88 M	370 mM	-
Tris-HCl pH 6.8	625 mM	-	120 mM
$\mathrm{ddH}_{2} \mathrm{O}$	-	45% (v/v)	62 \% (v/v)
SDS	10 \% (w/v)	0.1 \% (w/v)	0.1 \% (w/v)
ammonium persulfate (APS)	10% (w/v)	0.06% (w/v)	0.09% (w/v)
N,N,N', N'-tetramethylethylenediamine (TEMED)	~99 \% (v/v)	0.01 \% (w/v)	0.01 \% (w/v)

6.2.8. Primary and secondary antibodies

Tab. 6.11: Primary and secondary antibodies.
Abbreviations: AB: Abcam, Cambridge, United Kingdom, ME: Merck, Darmstadt, Germany, NEB: New England Biolabs Inc., Frankfurt, Germany, SI: Sicgen, Cantanhede, Portugal, TF (IN): Invitrogen, now Thermo Fisher Scientific, Schwerte, Deutschland.

Primary antisera

Epitope	Host	Conjugate	Application	Type	Product No., supplier
anti-GST	goat	-	$1: 2,000$	polyclonal	\#27-4577-01, ME
anti-MBP	mouse	-	$1: 10,000$	monoclonal	\#E8032S, NEB
anti-GFP	rabbit	-	$1: 2,000$	polyclonal	\#A-11122, TF
			$1: 2,500$	polyclonal	\#AB0040-200, SI
anti-mCherry	goat	-	$1: 5,000$	polyclonal	\#H0164, ME
anti-H3	rabbit	-	$1: 5,000$	polyclonal	\#ab4441, AB
anti-H3K9ac	rabbit	-	$1: 5,000$	polyclonal	\#07-353, ME
anti-H3K14ac	rabbit	-			
Secondary antisera		Application	Type	Product No.,	
Epitope	Host	Conjugate			supplier
			$1: 7,500$	polyclonal	\#A5420, ME
anti-goat	rabbit	HRP	$1: 30,000$	polyclonal	\#A4187, ME
anti-goat	rabbit	AP	$1: 5,000$	polyclonal	\#AP130P, ME
anti-mouse	goat	HRP	$1: 30,000$	polyclonal	\#A3562, ME
anti-mouse	goat	AP	$1: 7,000$	polyclonal	\#A6154, ME
anti-rabbit	goat	HRP			

6.2.9. Specification of software and online tools

Tab. 6.12: Used software and online tools and their applications.

Software	Application	Supplier
Chromas (version 2.6.6)	DNA sequence analysis	Technelysium Pty Ltd, South Brisbane, Australia
EndNote X9.3.3 reference management Clarivate Analytics, Philadelphia, (Bld 13966) PusionCapt Advance chemiluminescence Solo 7 detection of Western Vilber Lourmat Deutschland GmbH, Eberhardzell, Germany		
(version 17.01)	Blots	
ImageJ 1.51s (Fiji)	image processing and	Wayne Rasband National Institutes
		of Health, USA (http://imagej.nih.gov//ij),
		(Schindelin et al., 2012)

Software	Application	Supplier
Spectra Manager for Windows 95/NT (version 1.53.01 (Build 1), including Spectra Analysis and Spectrum Measurement)	CD spectroscopy	JASCO Deutschland GmbH, Pfungstadt, Germany
TINA 2.0 Software	quantification of radiolabeled signals	(Raytest, Straubenhardt, Germany)
ZEN 2.3 SP1FP3 (black) (version 14.0.18.201)	microscopy	Carl Zeiss, Jena, Germany
Online tool	Application	Supplier
Arabidopsis eFP Browser	elucidating gene expression after auxin treatment	http://bar.utoronto.ca/efp/cgibin/efpWeb.cgi?dataSource=Hormone (Winter et al., 2007)
BH-search analyses	identification of basic hydrophobic stretches in amino acid sequences	(Brzeska et al., 2010)
BoxShade (version 3.21)	sequence alignment	K. Hofmann, M. Baron, ExPASy Bioinformatics Resource Portal, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
Clustal Omega	sequence alignment	(Madeira et al., 2019)
cNLS Mapper	identification of putative NLS sequences	(Kosugi et al., 2008, 2009a, 2009b)
InterPro	identification of protein domains	European Bioinformatics Institute, Cambridge, United Kingdom, (Blum et al., 2021)
Multalin	sequence alignment	(Corpet, 1988)
NCBI Gene Database	gene sequences for cloning	National Center for Biotechnology Information, U.S. National Library of Medicine, Rockville Pike, Bethesda, MD, USA
NCBI Protein Database	identification of protein domains	National Center for Biotechnology Information, U.S. National Library of Medicine, Rockville Pike, Bethesda, MD, USA

Online tool	Application	Supplier
Primer-BLAST	design of oligonucleotides for qPCR	National Center for Biotechnology Information, U.S. National Library of Medicine, Bethesda, MD, USA
		(Ye et al., 2012)

Figures

Fig. 1.1: Arabidopsis PI-kinases.
Fig. 1.2: Pls contribute to several plasma membrane-associated processes.
Fig. 1.3: Arabidopsis PIP5K2 interacts with the nuclear import machinery and contains a functional NLS.
Fig. 1.4: Partial complementation of pip5k1 pip5k2 double mutant phenotypes upon nuclear-excluded expression of PIP5K2 $2_{\text {AAA }}$-EYFP.
Fig. 1.5: Different enzymes are involved in epigenetic control.
Fig. 1.6: The composition of the plant SAGA complex.
Fig. 1.7: Domain structure of GCN5.
Fig. 1.8: Increasing auxin levels induce GCN5-regulated transcription.
Fig. 2.1: Histone H3 acetylation levels of pip5k1 pip5k2 double mutant and PIP5K2-EYFP OE lines.
Fig. 2.2: PIP5K1 and PIP5K2 interact with the histone acetyltransferase GCN5.
Fig. 2.3: GCN5, PIP5K1 and PIP5K2 interact with the epigenetic readers ING1 and ING2 from Arabidopsis.
Fig. 2.4: Overexpression of PI4P 5-kinases reduces auxin-activation of GH3.3.
Fig. 2.5: Overexpression of PI4P 5-kinases reduces auxin-activation of IAA2 and IAA5.
Fig. 2.6: In vitro GCN5 acetylation activity.
Fig. 2.7: In vitro GCN5 acetylation activity is compromised in presence of Pls.
Fig. 2.8: GCN5 acetylation activity in vitro in presence of Pls over time.
Fig. 2.9: Lipid interaction studies of GCN5 and ING proteins with Pls.
Fig. 2.10: GCN5 amino acid sequence contains a putative phospholipid binding site.
Fig. 2.11: Lipid interaction studies of GCN5 ILL and GCN5 EdD $^{\text {E }}$
Fig. 2.12: In vitro acetylation activity of GCN5 and variants.
Fig. 2.13: The VPS34 gene product is active as a PI 3-kinase.
Fig. 2.14: Subcellular localization of VPS34-mCherry in Arabidopsis mesophyll protoplasts.
Fig. 2.15: The PI 3-Kinase VPS34 interacts with GCN5.
Fig. 2.16: Overexpression of VPS34 does not impact auxin-activation of GH3.3.
Fig. 2.17: Subcellular localization of GCN5 amino acid substitution variants in Arabidopsis mesophyll protoplasts.
Fig. 3.1: Proposed model of Pls involved in epigenetic control.
Fig. 6.1: Genotypic characterization of pip5k1 pip5k2 double mutant and
pCaMV35S::PIP5K2-EYFP OE lines with specific oligonucleotides.
Fig. 6.2: Test for epitope specificity of antisera against different histone H3 acetylation events.
Fig. 6.3: Interaction test of PI4P 5-kinases PIP5K1 and PIP5K2 with histone H3.
Fig. 6.4: GCN5 and ADA2B interact in YTH.
Fig. 6.5: Relative transcript levels of GH3.3 in mesophyll protoplasts over time.
Fig. 6.6: Basal transcript levels of GH3.3, IAA2 and IAA5 upon overexpression of PI4P 5kinases.
Fig. 6.7: Endogenous transcript levels of GCN5 upon transient expression of different PI4P 5-kinases.
Fig. 6.8: Transcript levels of overexpressed PI-kinases and respective controls in protoplasts.
Fig. 6.9: Overexpression of PI4P 5-kinases reduces auxin-activation of IAA19.
Fig. 6.10: Enriched proteins used for lipid overlay assays.
Fig. 6.11: Lipid binding studies of PIP grips.
Fig. 6.12: Liposome sedimentation assay of MBP.
Fig. 6.13: BH -search analyses of $\mathrm{GCN5}_{\text {ILL }}$ and GCN5 EDD $^{\text {, ING1, ING2 }}$ and MBP.
Fig. 6.14: CD spectroscopy of MBP-GCN5, MBP-GCN5IIL, MBP-GCN5 Edd $^{\text {and }}$ MBP.

Fig. 6.15: GCN5 and GCN5 ${ }_{\text {ILL }}$ acetylation activity in vitro over time.
Fig. 6.16: Immunodetection of mesophyll protoplasts overexpressing mCherry-tagged VPS34.
Fig. 6.17: Basal GH3.3 transcript levels and endogenous GCN5 transcript levels in protoplasts upon overexpression of VPS34.
Fig. 6.18: Immunodetection of mesophyll protoplasts overexpressing EYFP-tagged GCN5 amino acid substitution variants.
Fig. 6.19: Cell lysates and enriched protein fractions.

Tables

Tab. 4.1: Media for E. coli.
Tab. 4.2: Media for yeast.
Tab. 4.3: Plant medium.
Tab. 4.4: Constructs for recombinant protein expression.
Tab. 4.5: Constructs for split-ubiquitin-based yeast-two-hybrid assays.
Tab. 4.6: Transformation vectors for Arabidopsis leaf protoplasts.
Tab. 4.7: Used amounts of protein crude extracts in in vitro immuno pull-down assays.
Tab. 4.8: In vitro acetylation assay of GCN5.
Tab. 4.9: Buffers for protoplast preparation.
Tab. 6.1: Equipment and devices.
Tab. 6.2: Chemicals used in this study.
Tab. 6.3: Used Phospholipids.
Tab. 6.4: Consumables and kits.
Tab. 6.5: Enzymes, proteins, peptides and molecular size markers.
Tab. 6.6: Oligonucleotides used for genotyping.
Tab. 6.7: Oligonucleotides for qPCRs.
Tab. 6.8: Oligonucleotides used for cloning.
Tab. 6.9: Oligonucleotides used for sequencing.
Tab. 6.10: Composition of self-cast polyacrylamide gels.
Tab. 6.11: Primary and secondary antibodies.
Tab. 6.12: Used software and online tools and their applications.

Acknowledgements / Danksagung

Vielen, vielen Dank Mareike. Vielen Dank für die fachliche Unterstützung, angefangen bei Vektoren, über Protokolle und gemeinsame Versuche neuer Experimente, bis zu Hilfe bei Postern und Vorträgen, lehrreichen Diskussionen und wertvollem Rat bei der Anfertigung dieser Arbeit. Nicht zu vergessen ist dabei natürlich der Spaß neben der Arbeit mit den vielen amüsanten Gesprächen. Es war eine wunderschöne Zeit mit Dir. Ich durfte so viel von Dir lernen. Vielen Dank, dass ich meine Arbeit zu diesem tollen und interessanten Thema bei Dir anfertigen durfte. Ich bin gespannt, was ich in Zukunft von der AG Nukleus hören werde.

Mein großer Dank gilt auch Ingo. Vielen Dank, dass ich die Möglichkeit bekommen habe, in Deiner Abteilung zu arbeiten und Du die Finanzierung ermöglicht hast. Auch Dir möchte ich danken für wertvolle fachliche Gespräche, neue Impulse und Denkanstöße, auch hinsichtlich dieser Arbeit, aber auch für amüsante Anekdoten und lustige Momente, die ich nicht missen möchte.

Danke Euch beiden, Mareike und Ingo, für zwei besondere Erlebnisse der letzten Jahre. Danke, dass ihr mich nach Galveston mitgenommen habt, wo ich eine tolle Tagung erleben durfte und vielen Dank, dass ihr mir das Shiva gezeigt habt. Ich hätte in beiden Fällen wirklich etwas verpasst.

Danken möchte ich auch der DFG, an deren GRK 2498 „Kommunikation und Dynamik pflanzlicher Zellkompartimente" (Projektnummer 400681449/GRK2498) ich thematisch assoziiert teilnehmen durfte. Danke an alle Mitglieder des GRKs für das schöne fachliche und persönliche Miteinander.

Mein Dank gilt auch den Gutachtern für Ihre Zeit, die sie sich meiner Dissertation widmen.

Vielen Dank auch an Prof. Dr. Klaus Humbeck, Dr. Xuan Hieu Cao und Charlotte Ost, die mir den ChIP-Assay nähergebracht haben, der in dieser Arbeit leider keine Anwendung mehr fand. Vielen Dank an Dr. Wolfgang Hoehenwarter für die massenspektrometrische Messung.

Danke Christoph, dass Du Dir die Zeit genommen hast, mir die CD-Spektroskopie zu zeigen und vielen Dank an PD Dr. Hauke Lilie, dass ich das Gerät nutzen durfte.

Danke Larissa und Lennart für Eure Unterstützung im Labor. Vielen Dank Lennart, dass ich von Dir ÄKTA-PIP-Kinasen bekommen durfte und vielen Dank Larissa, dass Du mir Vektoren
und MPB-Protein zur Verfügung gestellt hast. Vielen Dank Larissa und Willi für die vielen konstruktiven Diskussionen.

Liebsten Dank an alle meine Kolleginnen und Kollegen, an Willi, Larissa, Lennart, Christoph, Nadine, Monique, Johanna, Johanna, Benita, Julia, Daniel, Katharina, Irene, Praveen, Marta, Feng, Angela, Alex, Marion, Kristin und Martina. Ich hoffe, ich habe niemanden vergessen. Ihr habt meine Promotionszeit unvergesslich gemacht, hattet immer eine helfende Hand, ein offenes Ohr, einen Rat oder einen schlechten Witz parat. Vielen Dank für lebhafte Diskussionen und die schöne Zeit.

Danke an die Studenten, mit denen ich mein Projekt für einige Zeit teilen durfte. Die Arbeit mit Euch hat Spaß gemacht.

Zum Schluss möchte ich meinen Freunden und meiner Familie danken. Danke für Euer Verständnis und Eure Geduld, wenn es im Labor doch mal wieder etwas länger gedauert hat, und für die Aufmunterung, wenn es mal nicht so gelaufen ist, wie es sollte.

Danke Freddy!

Curriculum Vitae

Franziska Daamen

Date of Birth:
Place of Birth:
Nationality:

Education

since 06/2020
since 03/2017 PhD
Martin Luther University Halle-Wittenberg
Research group: Nuclear Phosphoinositides (Dr. Mareike Heilmann) Department of Plant Biochemistry (Prof. Dr. Ingo Heilmann)
$\begin{array}{ll}\text { 10/2014-02/2017 } & \text { Master of Science in Biochemistry } \\ & \text { Martin Luther University Halle-Wittenberg }\end{array}$
10/2011-10/2014 Bachelor of Science in Biochemistry
Martin Luther University Halle-Wittenberg

2011

Abitur

Collegium Augustinianum Gaesdonck, Goch

Publications and Conferences

Franziska Daamen, Katharina Gerth, Mareike Heilmann (2021) Phosphoinositides modulate auxin-dependent transcription by controlling activity and recruitment of the histone acetyltransferase GCN5 in Arabidopsis. Molecular Plant, under review (25/08/2021).

Katharina Gerth, Feng Lin, Franziska Daamen, Wilhelm Menzel, Franziska Heinrich, Mareike Heilmann (2017) Arabidopsis phosphatidylinositol 4-phosphate 5-kinase 2 contains a functional nuclear localization sequence and interacts with alpha-importins. Plant J. 92(5):862878.

Franziska Daamen, Mareike Heilmann (June 2019) The Arabidopsis phosphoinositide kinase PIP5K2 influences transcriptional control by interacting with the histone acetyltransferase GCN5. "Plant Science Student Conference" (PSSC), Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany (poster).

Franziska Daamen, Mareike Heilmann (January 2019) The Arabidopsis phosphoinositide kinase PIP5K2 influences transcriptional control by interacting with the histone acetyltransferase GCN5. Gordon Research Conference "Plant Lipids: Structure, Metabolism and Function", Galveston, Texas, USA (poster).

Franziska Daamen, Mareike Heilmann (January 2019) The Arabidopsis phosphoinositide kinase PIP5K2 influences transcriptional control by interacting with the histone acetyltransferase GCN5. Gordon Research Seminar "Plant Lipids: Structure, Metabolism and Function", Galveston, Texas, USA (poster and talk).

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation selbständig und ohne fremde Hilfe verfasst habe, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Des Weiteren erkläre ich, bisher keine vergeblichen Promotionsversuche unternommen zu haben und die Dissertation in der gegenwärtigen bzw. in einer anderen Fassung nicht bereits an einer anderen Fakultät vorgelegt zu haben.

Halle (Saale), \qquad

