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Chapter 1

Introduction

Elastomers containing nano-sized fillers like carbon black or silica with large filler sur-
face area are of central importance for different fields of application. An automobile
tire is a field of standard application where such composite materials are extensively
used. The optimization of elastomer composites containing nanoparticle for tire treads
is a conventional problem and of major importance for the performance of tires. [1–5]
This is primarily a three-parameter optimization problem since rolling resistance, wet
grip and abrasion result in different requirements regarding the mechanical proper-
ties of an elastomer nanoparticle composite. Most relevant for wet grip and rolling
resistance is the dissipation in different frequency ranges. [6–8] While the wet grip is
determined by the relaxation behavior at high frequencies and small strain amplitudes,
the rolling resistance is, according to experimental studies on realistic road surfaces and
related simulations, connected with the dissipation at lower frequencies [9–11]. Due to
instrumental limitations, estimation of high frequency dissipation is not possible. In
order to estimate high frequency relaxation and dissipation in the filled elastomer, the
optimization of the tire is often based on existing experience, extended screening ex-
periments and empirical rules based on time-temperature superposition principle. This
is due to the fact that there are various effects on the microscopic scale influencing the
dissipation behavior in parallel which are still not well understood from the scientific
point of view. Although this is known since decades, a predictive understanding of the
parameters influencing application relevant quantities like fuel consumption, CO2 emis-
sion, abrasion or braking behavior of tires is, however still missing. The optimization
of composite materials for tire applications touches fundamental scientific questions in
the field of soft matter science like those for the origin of the glass transition, [12–19]
the influence of spatial confinement effects, [20–23] constraints at interfaces, [24–28]
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1. Introduction

and network topology [29–32] on the dynamics of polymers. This shows nicely that
there is a close relation between basic research in the field of soft matter science and
traditional applications of filled elastomers in tires. From that perspective it seems
important to understand and quantify effects influencing the relaxation dynamics of
filled elastomers based on real/applied systems and modern techniques to characterize
network topology, mesostructure and confined dynamics of composite materials.
Many decades of research have been devoted to understand the strong synergistic ef-
fect of particles dispersed on level of nanometers and above, not only their interac-
tions among themselves but also with the polymer matrix [33–36]. High reinforcement
has been desired characteristic for those products and defined as enhanced modulus,
stiffness, rupture energy, tear strength, tensile strength, abrasion resistance, fatigue
resistance and cracking resistance [37, 38]. A number of hydrodynamic (volumetric
argument) and molecular network mechanisms have been proposed to explain the phe-
nomenon of filler reinforcement. The hydrodynamic theory of Einstein-Smallwood
established a relationship between the volume concentration of filler and the observed
increased modulus. A strain-induced softening effect of filled vulcanizates has been
extensively studied and modeled by Payne and Kraus [39–42], attributed this effect
arises due to the simultaneous breakdown and formation of filler-filler bonds. A con-
cept of jammed particle network due to the flocculation of primary filler aggregates
has been presented by Heinrich and Klüppel [8, 43–45]. Flocculation studies consider
the small strain mechanical response of the uncrosslinked composites and demonstrate
that a relative movement of the particles takes place that depends on particle size,
molar mass of the polymer as well as polymer-filler and filler-filler interaction. Hence
they proposed that the strong reinforcement at small mechanical deformations arises
due to a kinetic cluster-cluster aggregation (CCA) mechanism of filler particles in the
rubber matrix to form a filler network. A range of models has been reported to explain
the mechanical measurements relying only on the presence of strong polymer-filler in-
teractions [34, 46–51]. The mechanically active nanoparticle network can be thought
of as being connected by elastic chains that connect the particles, thus assuming the
particles to be “giant crosslinks” [52,53]. The temperature dependent mechanical rein-
forcement has often been explained by more specific interactions arising from “glassy”
(precisely: immobilized) polymer fractions [34, 54–56] that likely exhibit a glass tran-
sition temperature gradient [57–59].
The models assuming the formation of glassy polymer bridges between the filler par-
ticles are among the most widely accepted ones. However, there is no clear consensus
concerning its relevance in actual, technologically relevant elastomers [60]. Numerous
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theoretical studies [46, 61–63] and experiments [28, 55, 56, 64–67] have been conducted
on model systems where particular care has been taken to enhance the polymer-filler
interactions and the homogeneous distribution of the fillers within the matrix. In some
cases, the “glassy layers” have been observed directly on model systems by NMR [28,67]
or by DSC or by other experimental techniques [57,65,68,69]. In other cases, to explain
the temperature- and frequency-dependent mechanical [55,64] or dielectric [56,65] data,
glassy layers has been assumed. However, significant amounts of immobilized polymer
have either not been observed directly at all, or have not been directly related to me-
chanical properties in the same sample. A previous, well-cited study of Tsagaropoulos
and Eisenberg [64] has shown a second, high-temperature peak in the mechanical loss
tangent (tan δ) in different types of non-crosslinked polymers filled with silica nanopar-
ticles. This second peak was interpreted as an increased glass transition temperature of
adsorbed polymer chains on the filler surfaces. This interpretation was later challenged
by Robertson and coworkers [70] and it has been nicely proved that the second tan δ
peak is attributed to a terminal flow rather than a second alpha relaxation process.
This example demonstrates the danger of such indirect interpretations.
The extensive and convincing experimental work of Montes, Lequeux, Long, and
coworkers [28,58,67,71] precisely demonstrate and explain the temperature- and frequency-
dependent mechanical properties based on experimentally determined glassy polymer
around the filler particles. Therefore, their model [54] is based on the presence of glassy
layer around the fillers particles and strong reinforcement is obtained when glassy lay-
ers of the fillers overlaps, forming a glassy bridge between adjacent filler particle. The
dynamics of breaking and rebirth of glassy bridges account for the nonlinear Payne
and Mullins effects. These mechanisms account also for dissipative properties of filled
elastomers under nonlinear mechanical deformations. However these studies are based
upon a rather idealized model material characterized by tailored and particularly strong
polymer-filler interaction. Nevertheless the finite-element simulation work of Gusev [61]
proposed the similar phenomenon that only minute amounts of increased-Tg material
(down to the sub-percent level) located remotely in the gaps between or around filler
particles can already explain the enhanced storage modulus and the additional dissi-
pation in filled elastomers.
In this thesis a combination of mechanical and NMR spectroscopy is presented in tech-
nologically relevant silica-filled Styrene-butadiene rubber (SBR) samples. For the first
time in these systems, a direct correlation between enhanced mechanical properties and
quantitative detection of immobilized-component within the matrix is demonstrated.
The mechanical shear spectroscopy was used on samples filled with different amount of
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1. Introduction

silica nanoparticles, to measure not only fixed-frequency storage and loss modulus at
different temperatures but to construct the master curves over the extended frequency
range. We observed the relaxatory nature of the filler-induced reinforcement effect [72]
from the shear measurements only in high silica-filled composites. This relaxatory na-
ture of composite was regarded as a characteristic feature of a percolating solid phase
in matrix called a filler network. The filler network contribution ∆G to the plateau
modulus above the percolation threshold was separated by using an analysis of the
sample’s linear and non-linear response [72]. Proton low-field NMR was used for a
direct molecular observation of immobilized components of the matrix as a function of
temperature at different filler loadings. The magic-sandwich echo (MSE) was used to
study the polymer relaxation at short time scales i.e., less than 0.2 ms [28,57]. By using
MSE-refocused free induction decay (FID), a precise information of polymer dynamics
near the filler surfaces was obtained as an immobilized fraction of the matrix which
is observed as a function of temperature and the filler fraction. The NMR-observable
immobilized fraction quantifies the mechanically rigid component of the elastomeric
matrix (modulus ≈ 109 Pa), assumed to be confined within the filler network. In
short, by combining the results obtained from the mechanical analysis and the NMR,
it is concluded that the filler network holds viscoelastic properties.
This systematic study helps to gain deeper insights into phenomena determining the
properties of filled elastomers and potentially contributes to a more efficient optimiza-
tion of such materials.
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Chapter 2

Theoretical Background

2.1 Elastomers

Elastomers belong to a class of polymers which has ability to undergo large reversible-
elastic deformations i.e., after stretching, they return to their original shape in a re-
versible way. Raw elastomers consist of long polymer chains which can flow under the
applied strain. In order to make elastomers mechanically more useful, a process named
vulcanization/ curing is usually carried out. Figure 2.1 shows the polymer structure
before and after the vulcanization process. This process involves the conversion of a raw
rubber into a network due to the formation of crosslinks, chemical bonds or bridges
by using curing systems like sulfur based and/ or peroxide based systems. During
the process, a viscous entanglement of long chain molecules is converted into a three
dimensional elastic network by insertion of crosslinks.

The overall usage of the rubber in the world is estimated around 15 million metric
ton [73]. This amount of usage is further divided between natural rubber, which ac-
counts for 35% of global consumption, and synthetic rubber, of which styrene-butadiene
rubber (SBR) accounts for 18%. Nearly 75% of the rubber consumption goes to tire
industry. In this regard, Natural rubber usage has increased significantly in modern
radial tires. The reason for the increase is due to improved strength, lower tire tem-
peratures dissipated under given load conditions, and lower tire rolling resistance to
get better fuel efficiency. SBR was the first successful commercial grade of synthetic
rubber, which was then named as Buna S in the 1930s in Germany [74]. Today, SBR
ranks first in world annual production of all the synthetic rubbers, which finds exten-
sive applications in manufacturing tire treads, accounting for over 65% of the synthetic
rubbers used in tire industry [73]. A typical SBR monomeric unit containing styrene
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2. Theoretical Background

Unvulcanized
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Figure 2.1: Vulcanization process.

and vinyl butadiene monomers is shown in Figure 2.2a.
SBR is a random copolymer of styrene and butadiene (styrene and butadiene can also
be polymerized as block copolymer SBS, which is used as thermoplastic elastomer),
with a usual styrene content of 23 to 40% [74]. Due to the fact that different ar-
rangement of the monomer within a polymer chain can be possible by the addition of
butadiene to the polymer chain, BR as well as SBR could have different microstruc-
tures, and the ratio of these different monomeric isomers depends on the polymerization
condition. The different microstructures for butadiene are cis-1,4, trans-1,4, and vinyl,
as shown in the following Figure 2.2b. Due to the random distribution of different con-
figurations in the polymer chain of the SBR, there is no regularity and hence they are
noncrystalline materials. The macrostructure of a polymeric material, that includes
molecular weight, polymer branching, crosslink distribution and crystallite formation,
governs the overall thermo-mechanical properties of the elastomers. For SBR with a
styrene content of 23.5%, the Tg is usually -50◦C, which increases with the addition of
styrene and vinyl level. A study of Day and Futamura [73] on the effect of varying vinyl
and styrene content in SBR on the final vulcanizate properties, shows i) an increased
tensile strength with increasing styrene content ii) vinyl content tends to reduce both
tear strength and ultimate elongation, and iii) hysteretic properties are hardly effected
by vinyl or styrene content if Tg is constant [73].
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C C

CH2CH2

C C

CH2

CH2

H H H

H

CH

CH

CH2

CH2

CIS‐ TRANS‐ VINYL‐

(a)

(b)

Figure 2.2: (a) Chemical structure of a monomeric unit of the vinyl SBR. (b) Possible configurations
for butadiene in SBR and PBD.

SBR can be polymerized either from emulsion or solution, with the products named
as ESBR (Emulsion SBR) and SSBR (Solution SBR) respectively. Emulsion poly-
merization of SBR follows the mechanism of free radical polymerization, leading to
a copolymer with a broad MWD (molecular weight distribution), random copolymer
composition, and long chain branching [74]. The microstructure is generally not con-
trollable, because the temperature of the polymerization affects the ratio of trans to
cis formation. Solution SBR is synthesized in a living anionic polymerization reaction
usually initiated by alkyl lithium compounds [73]. This kind of polymerization gives
products with narrower MWD and lower Tg than corresponding emulsion polymerized
polymers. ESBRs show superior performance in wet traction, while a SSBR with the
same styrene content gives lower rolling resistance and better tread wear. The liv-
ing feature of the solution polymerizations brings a wide degree of freedom to design
a polymer microstructure, polymer modification, composition and molecular weight
distribution [75].

2.1.1 Fundamental Theories on Rubber Elasticity

The important and unique property of a polymer network is the elasticity. This prop-
erty is based on the macromolecular construction of the polymers and the ability to
alter their configuration by the thermal motions and the external mechanical stress.
When a polymer chain is stretched, it has to change its conformation by rotating the
covalent bonds along the chain. In this stretched state, the number of possible confor-
mational states is much less. That is to say, entropy is greatly reduced upon stretching.
When releasing the external stress, the polymer chain would return to the original coil
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2. Theoretical Background

state since entropy always favors to be maximized and the polymer chain adopt their
entropically favored random-coil conformation [76].
By loading the network under mechanical stress, the polymer chains behave as entropic
springs. This can be explained with the help of thermodynamics of the rubbers. Ac-
cording to first law of thermodynamics, the change in internal energy of a polymer
system is the sum of all the energy changes: e.g., heat added to the system TdS, work
done upon network deformation fdL. Hence the force f applied to deform a network,
consists of two contributions:

f =

(
∂F

∂L

)
T,V

=

(
∂U

∂L

)
T,V

− T
(
∂S

∂L

)
T,V

(2.1)

The first term on the right side of the equality describes how the internal energy
changes with the sample length

(
fE =

(
∂U
∂L

)
T,V

)
. While the second contribution is the

product of absolute temperature and the rate of change of entropy with sample length(
fS = T

(
∂S
∂L

)
T,V

)
.

On the contrary to the polymer networks, very small deformations on an atomic scale
cause a huge increase of internal energy in solids like crystals, metals and ceramics. The
increase of internal energy is several orders of magnitude higher than for comparable
deformations of polymer networks. Hence the energetic contribution dominates the
total deformational force for such systems. In “ideal polymer networks” however, there
is no energetic contribution to elasticity, so fE = 0. The dominance of the entropic part
of Eq 2.1 bestows peculiar temperature dependence to the force at constant extension.
The network strands lose conformation entropy when stretched making ∂S

∂L
< 0 and the

force increases with increasing temperature [77].
Several theoretical models have been developed to describe rubber-like elasticity. All
the models deal with the fundamental problem concerning the precise description and
identification of the microscopic origin of the change in entropy due to deformation
of a network. Additionally another problem is defining the distributions of the length
of network strands between the crosslinks [78]. Since the precise estimation of the
length of network strand is hardly accessible by experiments, many theories for the
description of rubber-like elasticity are based on the assumption of ideal, defect-free
homogeneous polymer network. The two main network models used are the Affine
model by Hermans, Flory and Wall [79, 80], and the Phantom model by James and
Guth [81,82].
The simplest model that explains the idea of rubber elasticity is the affine network
model. The main assumption of this model is an affine deformation: the relative
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2.1.1. Fundamental Theories on Rubber Elasticity

deformation of each network strand is the same as the macroscopic relative deformation
imposed on the whole network. Accordingly the affine length (Raff ) is defined as the
shortest length scale at which the parts of the network deform proportionally to the
deformation of the network as a whole (deform affinely). At length scale shorter than
Raff , the deformation is said to be nonaffine and is characterized by the conformations
of the individual network chains [76]. Based on the statistical theory of rubber elasticity
which utilizes thermodynamic concepts to derive the relationship between stress and
strain, the shear modulus G for uniaxial deformations is calculated,

G =
nkT

V
= νkT =

ρRT

Mc

(2.2)

The number of network strands per unit volume (number density of strands) is ν =
n/V. In the last equality, ρ is the network density (mass per unit volume), Mc is the
number-average molar mass of a network strand, and R is the gas constant. The net-
work modulus increases with temperature because it has entropic origin. The modulus
also increases linearly with the number density of network strands ν = n / V = ρNA/
Mc.
According to the affine model, the network is assumed to be consisting of non-fluctuating
elastic crosslinks where the individual network strands are fixed permanently. In con-
trast to this assumption, the Phantom Model states that the crosslinks are free to fluc-
tuate around a mean position and the macroscopic deformation of the network leads to
the microscopic deformation of the individual chains only through their ends. However,
this model ignored the topological interactions between the neighboring chains. The
constrained-junction model uses the similar approach and adds an additional potential
constraining the fluctuation of the crosslinks [83]. The central idea of this model is
that the fluctuations of the networks strands are changing affinely with the deforma-
tions and hence affects the constraining potential too. One of the successful ways to
account for the topological interactions between the network chains is the Edward’s
tube model [84]. In this model the network chain is confined by the neighboring ones
to a tube like region. The important question was asked how the diameter of this
confining tube changes with the network deformation. Hence this model assumed that
the tube diameter changes affinely with the macroscopic deformation of the network.
Later the experimental studies [85] did not agree well with the assumptions made in
this model. A unified picture of deformation of both phantom and entangled networks
was presented in the form of non-affine tube and slip tube model. The above mentioned
models as well as the others [86] are used in many studies in order to describe the results
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2. Theoretical Background

from mechanical and swelling experiments. [87]. However, they reveal problems in the
quantitative estimation of measurement results. Other physically more precise models
of rubber-like elasticity failed due to an excessive number of free fitting parameters and
/or mathematical complexity, therefore often numerical solutions are required to solve
these experimental results [77,88].

2.2 Fillers

Reinforcement of elastomers by the fillers like carbon black or silica plays an important
role in the improvement of the mechanical properties of high performance rubber ma-
terials. In the dynamic mechanical analysis, the reinforcement is quantified well above
the glass transition temperature and defined as the viscoelastic plateau of the storage
modulus (G′). The effect of fillers on reinforcement has been systematically studied by
Wang [34].

N234 (Carbon black)

Figure 2.3: Storage modulus as a function temperature for different degree of carbon black fillings.
Systematic increase of the plateau modulus (G’p) with filler indicates the filler-induced reinforcement.
Adapted from [34].

In Figure 2.3, it is observed that the G′p is mildly affected with the addition of fillers
at low temperatures in the glassy region. However, at high temperature in the plateau
range the G′p becomes systematically dependent on the filler loadings. This particular
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2.2. Fillers

feature shows the filler-induced reinforcement in the soft elastomer matrix. The degree
of reinforcement is mainly governed by two effects: (i) the formation of a physically
bonded flexible filler network and (ii) strong polymer-filler couplings. Both of these
effects originate from the specific surface nature of the filler particles [34,35]. The basic
equation used to describe the surface energy of fillers is:

γs = γds + γsps (2.3)

where γs is the surface energy (also called surface tension), γds is the dispersive compo-
nent of the surface energy and based on dispersive (van der Waals’) forces among the
fillers, and γsps is the specific component of the surface energy and it is the sum of polar
or hydrogen bond interactions between the fillers. Hence the single most important
parameter to enhance reinforcement is the average particle size. Particles having size
larger than 1 µm do not have reinforcing capacity due to less interactive surface and
they only increase the reinforcement by the simple hydrodynamic effect. Reinforcement
can be realized with the filler size smaller than 100 nm [35]. Figure 2.4 highlights the
typical dimensions considered for both silica and carbon black fillers.

(a)

O

O

O

CO
OH

OH

O

O

OHPyrone

quinone

caboxyl

hydroxyl

ketone

O O O

SiSiSi

O O O O

H HHsiloxane

silanol

(b)

10 ‐ 90 nm 100 ‐ 300 nm 10‐ 100 μm

Carbon Black Surface

Colloidal black Aggregate Agglomerate

Silica Surface
Elementary silica

particle
Aggregate Agglomerate

(Interparticle hydrogen Bonding)

2 ‐ 20 nm 50 ‐ 150 nm 1 ‐ 10 μm

Figure 2.4: Filler morphology and the relevant dimensions of carbon black (a) and silica (b) filler
particles.
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2.2.1 Carbon Black

Carbon black is frequently used as reinforcing filler in polymers. The incorporation of
carbon black into the plastics results in an increase in properties such as mechanical
strength, wear resistance and fatigue resistance. The smallest scale individual block
formed during the partial combustion of oil or natural gas is called a particle as shown
in the Figure 2.4a. A large number of these particles when fused together by Van der
Waals attractive forces form aggregates. These primary aggregates flocculate together
to form larger secondary agglomerates. According to ASTM (American standards of
testing materials) classification, different carbon grades are classified with respect to a
four-character code i.e., Nxyz. Higher the yz number, higher will be the reinforcement,
for instance, N340 is tested more reinforcing grade than N327, while their elementary
particle size have same diameter of 26-30 nm. Typically the “N” stands for “Normal
curing” which means that this kind of filler do not participate in vulcanization process,
“x” represents the average size of the elementary particle (ASTM D1765-86), while “yz”
describes the structure of aggregate [35].
Caron black has a high dispersive component of the surface energy (γds ) which depends
on the surface area of the carbon black and not on the structure [6, 7]. Due to this
fact, carbon black particles have strong filler-rubber interaction and weaker filler-filler
interaction as compared to the silica fillers, resulting in weaker filler networks. The
influence of the presence of carbon black on the dynamic mechanical properties of
variety of filled rubbers has been subject of different studies [33,42,89–91]. An overview
of the earlier work shows that the incorporation of carbon black in different types of
rubber gives in most of the cases an increase in the storage G′ and loss moduli G′′.
Increases in strain amplitude leads to a decrease in storage modulus G’: the so-called
Payne effect, has extensively been studied on carbon black filled systems. Wang and
Wolff [92] reported that the enhanced mechanical properties depends on the bound
rubber content which often realized due to high filler-rubber interactions.

2.2.2 Silica

There are two types of silica: precipitated silica and fumed silica, both produced from
different manufacturing methods. Precipitated silica is produced by a controlled precip-
itation method from the reactions of sodium silicate with acid. The elementary particle
size ranges from 10 to 100 nm [93]. Fumed silica is manufactured with relatively ex-
pensive method with the particle size of 7-15 nm produced at a high temperature by
a reaction of silicon tetrachloride with water vapor [77]. Reinforcing silica particles,
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2.2.2. Silica

either produced by precipitation process or fumed process, exhibit similar hierarchi-
cal structural geometry like carbon black. Particularly in precipitation process, silica
elementary particles are linked by a chemical bond and form an aggregate with dimen-
sions of 50-200 nm. As the precipitation is economically feasible process compared to
the manufacturing fumed silica, this process is widely used in industry. The hierarchy
of the geometrical structure of the silica is shown in Figure 2.4b.
In contrast to the carbon black, the surface characteristics of the precipitated silica
result a variety of problems in the use of this material as reinforcing agent, particu-
larly in hydrocarbon elastomer. The surface of hydrated, precipitated silica is largely
polar and hydrophilic as a result of its polysiloxane structure (as shown schematically
Figure 2.4b) and the presence of several silanol groups [37]. Large amounts of moisture
content are also present on the silica surfaces which cause difficulty of achieving rapid
wetting and dispersion in rubber. Therefore, elementary spherical particles generally
form aggregates and different aggregates due to strong hydrogen bonding form agglom-
erates. Silica has a strong tendency to form agglomerates as compared to the carbon
black due to its high specific component of surface energy (γsps ). Therefore in silica,
filler-filler interactions are stronger than filler-polymer interaction [6, 7]. The surface
interaction of silica surface with non-polar groups of hydrocarbon elastomers is weak
compared to the hydrogen-bonding interactions between surface silanol groups in silica
itself. Due to this reason, silica filler comparatively give rise to greater reinforcement in
polar elastomers like NBR than in nonpolar polymers such as SBR and NR. Moreover
silica, when compared to carbon black particles having the same filler size, do not give
the similar degree of reinforcement. Studies on silica pointed out that the addition
of the silica to a tread material of the tire (usually consists of SBR and BR) on one
hand improves the hysteresis but also leads to a loss of tread material i.e, low abrasion
resistance [73].

It is common practice to enhance the hydrophobic properties of glass and ceramic
surfaces by treatment with different organosilanes [37]. The deficiencies mentioned
above in silica filled composites is compensated by the use of silane coupling agent.
Remarkable improvements in mechanical properties of silica-filled rubbers are ob-
tained with the use of a coupling agent. The most widely used coupling agent is
bis-(triethoxysilylpropyl) tetrasulfide (TESPT) commercially known as Si69. An im-
portant prerequisite for a coupling agent is that the molecule should be bifunctional.
Coupling agent has a capability to react chemically with both the silica and polymer
during the vulcanization process and indirectly form a covalent bond between the filler
and the polymer. The reinforcement mechanism by silanization process consist of two
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Figure 2.5: Reaction mechanism of silanization [93].

processes: i) the silinization reaction to couple filler with the coupling agent, followed
by ii) the formation of chemical bonds between the modified silica surface and the
polymer (as shown in Figure 2.5) [77, 93].
Dannenberg and Cotten [37] have shown the remarkable improvement in mechanical
properties of a silica-filled styrene-butadiene vulcanizate obtained after using a silane
as coupling agent. Chemical bonding of the polymer to the filler surfaces improves
dispersion and prevents formation of large scale agglomerates. They mentioned that
the result of these effects is to decrease low-strain stiffness or hardness and to improve
dynamic properties by minimizing energy-loss processes associated with the breakdown
of large agglomerates. High degree of filler dispersion and better surface wetting leads
to higher tensile strength.
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2.3. Filled Rubber Reinforcement

2.3 Filled Rubber Reinforcement

Particularly it is well known that the addition of fillers in rubbers increases the high
temperature plateau modulus (G′p) of the composite materials [92, 94, 95] and hence
it enhances the overall reinforcement. Not only that, particulate fillers also influence
the overall temperature-dependent mechanical response of composites [34]. This effect
can be observed as the decreasing behavior of the plateau modulus over the whole
investigated temperature range (cf. Figure 2.3). However limited focus has been given
to understand the underlying physical phenomenon of this decreasing storage modulus.
In the following sections, several studies are reviewed to understand the temperature-
as well as frequency-dependent mechanical reinforcement in the elastomeric composites.

Hydrodynamic Theories

Several fundamental models can describe the mechanical reinforcement of rubber com-
pounds. Among these, the simplest models involve the hydrodynamic displacement of
filler particles. The hydrodynamic effect was first introduced as an increased viscosity
of a fluid with dispersed rigid particles by Einstein [96]. Einstein explained this increase
in viscosity with an equation relating the viscosity to the filler volume fraction φ,

η = η0 (1 + 2.5φ) (2.4)

where η0 is the viscosity of the pure fluid without fillers.
To apply this effect in elastomers, it was assume that the modulus of the rubber behave
similar to the viscosity of a liquid. This was done by Smallwood [97] considering the
assumption that the particles are spherical, dispersed, wetted and under low shear
stress. However, in practice the fillers do not meet such ideal conditions and hence
further modification was done. For the practical applications, the equation needed
to be modified for higher filler fractions where filler-filler interactions are observed.
Guth and Gold [98,99] considered the interactions of the spherical fillers by adding an
additional φ2 term in a Einstein-Smallwood equation (Eq. 2.4).

G′ (φ) = G′unfilled(1 + 2.5φ+ 14.1φ2) (2.5)

Several modifications have been done on Guth-Gold Eq 2.5 to account for deviations
of the fillers from the ideal case. In real terms, fillers are not spherical but are asym-
metric consisting of complex branched structure. In order to consider the effect of filler
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shape, aggregates/agglomerate structure or also the occluded rubber on hydrodynamic
reinforcement, Medalia [89, 100] introduced the structure factor “f” in the Guth-Gold
equation and modified the volume fraction φ as an effective volume fraction φeff = fφ.

G′ (φ) = G′unfilled(1 + 2.5fφ+ 14.1f2φ2) (2.6)

Another modification of the Einstein-Smallwood equation for typical loadings of fillers
up to volume fraction φ ≈ 0.35 has been done by Pade approximation [101].

G′ (φ) = G′unfilled(1 + 2.5φ+ 5φ2) (2.7)

The various other models [102,103] used to predict the hydrodynamic effect have largely
developed with the help of experimental data that proposes empirical relationships.
Vilgis and Heinrich [8, 46] have extensively reviewed the field of reinforcement and
emphasized that no consistent model exists that may be used to explain rubber rein-
forcement. Eggers and Schümmer [104] studied the Thomas empirical relation [102],
who added 10.05 φ2 and some constants to the Einstein-Smallwood equation, showing
that it fit to a rather broad range of filler loading i.e. 0.1 < φ <0.5, than the pre-
vious form of Guth-Gold equation. However, Eggers and Schümmer pointed out in
their study that these equations apply only to uncured systems. Once the rubber is
vulcanized these models may no longer be applicable.
So far numerous models have been proposed explaining the hydrodynamic reinforce-
ment behavior of filler rubber. However, all these models are specific to certain partic-
ular cases or these are often sensitive to a narrow range of filler loadings. Generally,
the hydrodynamic effect results in the increase in modulus under conditions of low
strain and low filler fraction. When strain increases beyond the critical value, the ma-
jority of the modulus is attributed to the rubber itself. When the volume fraction of
filler increases, filler-filler interaction increases and forms a filler network. This network
causes a reinforcement mechanism different from those above-mentioned hydrodynamic
effects.

2.3.1 Occluded Rubber

Another kind of reinforcement often reported in literature is due to “occluded rub-
ber”. Woff, Donnet, Wang and coworkers have published many papers that discuss
the hydrodynamic reinforcement of rubbers due to occlusion of rubber within the filler
aggregates [92, 105, 106]. It is proposed that the aggregated geometry of filler leads
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to some of the rubber ’trapped’ within the voids of the aggregates. This trapped or
occluded rubber increases the effective volume of filler. Medalia [89, 90] in his earlier
work proposed that in a carbon black-rubber system, the rubber which fills the void
space within aggregates is occluded and immobilized and thus acts as part of the filler
aggregate rather than as part of the deformable matrix. The amount of occluded rub-
ber has been calculated directly from the DBP (n-dibutyl phthalate) absorption value
by:

φeff = 0.5φ [1 + (1 + 0.02139 (DBP )) /1.46] (2.8)

where φ is the actual volume fraction of filler. This relationship still holds as a predic-
tor of the effective volume of carbon black.
The concept of occluded rubber has been used by several authors to account for the
effect of carbon black structure on viscoelastic properties. Medalia quantified the oc-
cluded rubber using swelling experiments. Kraus and Sambrook [90, 91, 107] treated
the occluded rubber contribution to the modulus using tensile experiments. Sambrook
attempted to use the volume fraction of carbon black plus occluded rubber in a the-
oretical based equation for the prediction of Young’s modulus. The theoretical ratio
of Young’s modulus (Efilled/Egum) from modified Guth-Gold equation 2.6 was used
to interpret the ratio (Efilled/Egum) measured experimentally from the initial slope of
stress-strain curves using f as a correction factor for occluded rubber. He found that
the values of f was not unity but varied from about 0.7 at 20◦C to 0.4 at 150◦C. He
interpreted the decrease in f (occluded rubber) with temperature as a consequence of
increased deformability with increasing temperature. The sole argument of the change
in the deformability of the occluded rubber with temperature is due to the change in
the mobility of the rubber molecules within and /or on the surface of the carbon black
aggregates.

2.3.2 Payne Effect

The Payne effect is a particular feature of the stress-strain behavior of rubber, espe-
cially rubber compounds containing fillers such as carbon black or silica. It is named
after the British rubber scientist A. R. Payne, who made extensive studies of the ef-
fect [39–41]. The effect is observed under cyclic loading conditions starting with small
strain amplitudes. Above approximately 0.3% strain amplitude, the shear storage mod-
ulus (G′) shows sigmoidal decline with increasing amplitude. At sufficiently large strain
amplitudes (roughly 20% or above), the storage modulus approaches to its lower limit.
In contrast to G′, the loss modulus (G′′) shows maximum values at a moderate strain
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amplitude. After passing through a maximum, the G′′ decreases rapidly with further
increase in strain. This typical non-linear behavior of decreasing modulus with strain is
generally termed as “Payne Effect”. Payne mentioned that such behavior of the strain
dependence of filled rubber cannot be explained only by the hydrodynamic effect. He
interpreted the sigmoidal decrease of G′ as a result of a dynamical break-up of the filler
network i.e., van der Waals bonds between carbon black aggregates are continuously
broken and reformed. So at low deformations, the energetic elastic contribution of the
rigid filler network is dominant, whereas at high deformations the filler has only a small
remaining effect, which is hydrodynamic and caused by the rubber-filler interaction
The Payne effect depends on the filler content of the material and the temperature
and the effect vanishes for unfilled elastomers. Payne and some other researchers
[39, 108, 109] studied the effect of temperature and found that the modulus at low
deformations (G′γ→0) decreases with increasing temperature. The magnitude of the
decreasing modulus depends on the filler content. However the shear modulus at large
strains becomes progressively less dependent on temperature and finally G′γ→∞ is vir-
tually independent of temperature over the range considered.
It has been widely accepted that the Payne effect is mainly related to the filler net-
work formed in the polymer matrix. Wang [34] argued that the breakdown of the filler
network by increasing strain amplitude would release the occluded rubber so that the
effective filler volume fraction and hence the modulus will decrease. Hence this mech-
anism suggests that the Payne effect can serve as a measure of filler networking which
originates from filler-filler as well as polymer-filler interaction.

2.3.3 The Kraus Model for the Strain-Softening Effect

The previous section led to a convincing assumption that the strain-dependent soften-
ing phenomenon of filled rubber is due to the break-down of the filler network within the
elastomer matrix. However, in contrast to this approach, few alternative models have
been proposed. Gui et al. postulated that the strain amplitude effect was due to de-
formation, flow and alignment of rubber molecules attached to the filler particles [110].
Smit [111] has indicated that a shell of a bound rubber (a rigid/immobilized rubber
layer at filler interface) of definite thickness surrounds the filler and the non-linearity
in the dynamic mechanical behavior is related to the desorption and reabsorption of
the hard-glassy like rubber shell around the filler. On similar line of argument, Mair
and Göritz suggested a Langmuir-type polymer chain adsorption on the filler surface
to explain the Payne effect [52].
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Kraus suggested the first phenomenological quantitative model based on agglomera-
tion/deaglomeration of carbon black agglomerate to describe Payne effect [42]. Due to
the fact that this model is used extensively in the result section of this thesis, hence
the model needs to understand in detail. Kraus assumes that the (van der Waals) car-
bon black contacts break and reform according to functions, fb for breaking and fr for
reforming, of strain amplitude γ0. Accordingly the rate of breakdown of filler contacts
i,e., the amount of network broken per cycle,Rb, is proportional to the number N of
existing contacts and to the function fb.

Rb = kb ·N · fb (2.9)

where kb is the rate constant. Similarly the network reformation rate, Rr, is assumed
to be proportional to N0 − N where N0 is the number of carbon-carbon contacts at
zero amplitude.

Rr = kr ·N · fr (2.10)

kr being the reformation rate constant. Kraus assumed power laws for the functions
fb = γm0 and fb = γ−m0 with m being a constant. At equilibrium, the two rates are
equal (Rb =Rr), which gives N as

N =
N0

1 + (γ0/γc)
2m (2.11)

where γc is a characteristic strain given by (kr/kb)
1

2m .
The excess modulus (G′ (γ0)-G′∞) of the agglomeration network at any given strain
amplitude is taken as proportional to the existing number of contacts N, so

G′(γ0)−G′∞ =
G′0 −G′∞

1 + (γ0/γc)2m
(2.12)

Kraus refers a loss mechanism to be due to excess forces between carbon black particles
or between particles and the polymeric medium as contacts are broken [42]. The excess
loss modulus may then be taken as proportional to the rate of network breakdown, and

G′′ (γ0)−G′′ = c · kb · γm0 ·N (2.13)
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where c is a constant and G′′∞ will be equal to G′′ (γ0) at infinite strain. Taking the
values for N from Eq. 2.11 and approximating N0 ≈ ∆G′,

G′′(γ0)−G′′∞ =
Cγm0 ∆G′

1 + (γ0/γc)
2m (2.14)

with C being a another constant and the function G′′(γ0) has a maximum G′′m at γ0 =
γ∞, so

G′′(γ0)−G′′∞
G′′m −G′′∞

=
2 (γ0/γc)

m

1 + (γ0/γc)
2m (2.15)

Kraus used the above equations for storage and loss modulus to the data of Payne and
found nice correlation. Moreover, it was found that m and γc are fairly independent of
polymer, filler (carbon black in that case) and dispersion. In this model, the exponent
m is a purely empirical parameter and the physical basis of this parameter is unclear.
However, Vieweg et al. [112,113] estimated m and γc from Eq. 2.12 for a large number
of different carbon blacks dispersed in SBR, BR and NR. He reported the universal
value of m ≈ 0.5 - 0.6 indicating that it is mainly a geometrical factor of the filler
network and agglomerates, independent of the specific filler type [114].

2.3.4 Filler Network Reinforcement

One of the effects of the filler addition into a polymer is a remarkable change in the dy-
namic mechanical properties of the rubber, including storage and loss modulus. Similar
to large deformations of the filled composite, the role of filler structure and the corre-
sponding reinforcement becomes important for the understanding of the small-strain
dynamical deformation. When a small sinusoidal strain is imposed on a viscoelastic
material, either filled or unfilled rubbers, a sinusoidal stress response depends only
upon temperature and frequency, independent of the applied deformation. This phe-
nomenon has been investigated in depth especially in relation to rubber products by
Wang et al. [34]. The temperature-dependent measurements of the storage G′ and
the loss modulus G′′ shows that for a given polymer-rubber system, both G′ and G′′

increase with increase in the concentration of the fillers in the rubber. It is interpreted
that the addition of filler influence reinforcement (G′plateau) and dissipation (G′′plateau) in
different ways i.e., multiple mechanisms may be involved. One of the important mecha-
nism is “filler networking”, which involves its architecture and strength seems to be the
main parameter to govern the dynamic behavior of the filled rubber. Other researchers
also mentioned that the filler aggregates in the polymer matrix have a tendency to
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form agglomerates, especially at high loading, leading to chain-like filler structures or
percolating clusters [33,39,114]. These are generally termed secondary structure or, in
some cases, filler network.

Models for Filler Networking

A reasonable theoretical basis for understanding the linear viscoelastic properties of
reinforced rubbers has been given by Klüppel and Heinrich [8, 43–45]. Flocculation
studies, considering the small-strain mechanical response of the uncrosslinked compos-
ites during heat treatment, demonstrates that a relative movement of the particles takes
place that depends on particle size, molar mass of the polymer, as well as polymer-filler
and filler-filler interaction. They concluded that these experimental studies provides an
evidence for a kinetic cluster-cluster aggregation (CCA) mechanism of filler particles
in a rubber matrix to form a filler network, [43, 45]. According to CCA model, filler
network consist of a space filling configuration of CCA clusters with some characteristic
mass fractal dimension formed at φ>φ∗. A schematic view of this structure is shown
in Figure 2.6 .

Figure 2.6: Schematic view of kinetically aggregated filler clusters in rubber below and above the
percolation threshold φ∗: the left side characterizes the local structure of carbon black clusters, build
by primary particles and primary aggregates; accordingly, every circle on the right side represents a
primary aggregate [43].

The mechanical response of filler networks at small strains depends purely on the
fractal connectivity of the CCA clusters. For the small-strain modulus, a power-law
behavior with filler content is predicted above the percolation threshold (φ>φ∗) with
an estimated exponent of 3.5. They found this exponent well in accordance with the
experimental data of Payne. The predicted power-law bevavior is confirmed by a vari-
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ety of other experimental data including carbon black and silica-filled rubbers as well
as composites with microgels [44, 45].
The consideration of flexible chains of filler particles, by approximating the elastically
effective backbone of filler clusters, allows for a micromechanical description of the
elastic properties of tender CCA clusters in elastomers. The main contribution of the
elastically stored energy in the strained filler clusters results from the bending-twisting
deformation of filler-filler bonds. The concept of filler-filler bonds has been extensively
discussed by Klüppel by means of ac conductivity and dielectric investigations [65].
From these investigations, he argues that the charge transport above the percolation
threshold is limited by a hopping or tunneling mechanism of charge carriers over small
gaps of 1 nm between adjacent carbon black particles. From this finding and the ob-
served dependency of the flocculation dynamics on the molar mass of rubber (or amount
of bound rubber) [45], a model of filler-filler bonds is developed that is schematically
depicted in Figure 2.7.

Figure 2.7: Schematic view considering the structure of filler-filler bonds in a bulk rubber matrix.
The gap size of neighboring filler particles with confined glassy polymer and the bound rubber layer
is indicated.

Following the concept of filler-filler bonds with help of confined glassy polymer
bridges, Klüppel [55, 56] has done extensive study dealing the question related to
micro-mechanical mechanisms affecting the viscoelastic properties of carbon black and
silica-filled elastomer. He shows that the dynamic-mechanical master curves of filled
elastomers can be constructed by applying horizontal as well as vertical shift factors.
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The complex shifting behavior is said to be related to the superposition of two re-
laxation processes, i.e. polymer matrix and the filler network. The application of
only horizontal shift factor, obtained from the unfilled samples, for the construction
of the master curves of the corresponding filled samples leads to a failure of time-
temperature superposition (TTS) principle in the small frequency range. The argu-
ment for the non-overlapping isotherms is that, with the introduction of fillers as re-
inforcing agent, the complex interaction between the filler network and the polymer
matrix leads to a failure of the TTS principle. The splitting of the low frequencies
(high temperature isotherms) curves is regarded as the thermal activation of the filler
network, i.e. the temperature dependence of the glassy-like polymer bridges (filler-
filler bonds) which results in a significant decrease of storage modulus with increasing
temperature. Therefore the two different temperature-dependent vertical shift factors
are introduced to construct smooth/continuous master curve of storage G′ and loss
G′′ modulus respectively by shifting each isotherm vertically on modulus axis. There-
fore the temperature-dependent vertical shift factors are interpreted in terms of an
apparent activation energy associated with the breaking of glassy bridges. This inter-
pretation hence, disregards the relaxatory nature of immobilized polymer components,
and amounts to “counting bridges”, i.e., only a certain fraction of them remains active
at a given temperature.

Rigid/Immobilized/Glassy Component of the Matrix

The concept of immobilized/glassy/bound rubber is dated back in 1970’s when Kauf-
man et al. introduced the immobile and mobile regions in carbon black filled PB
and EPDM composites with the help of measuring spin-spin relaxation time (T2) from
the NMR technique [115]. Later several authors studied the polymer-filler interaction
in the elastomer composites [116–119] by using T2-relaxometry of NMR experiments
on different degree of the filler loadings. The general conclusion of those studies is
that in addition to a loosely bound polymer, there is a thin immobilized polymeric
layer confined to the filler interface which is regarded as a tightly bound polymer.
The difference between tightly and loosely bound polymer is made on the basis of the
mobility of the polymer segments close to the point of interaction with the filler parti-
cles [69, 116, 117, 120]. The thickness of this interfacial layer is estimated in the range
of few diameter of the monomeric unit (≈ 1-3 nm) [121].
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Reinforcement due to Filler-Surface associated Glassy Layer

Based on the findings of rigid/glassy polymeric layer adsorbed to filler surfaces, several
other authors interpreted the outstanding mechanical properties of the composites.
Vilgis et al. [46] came up with a model based on the localization of the bound polymer
near to the heterogeneous surfaces of the filler particles. The argument is based on the
fact that the surface of the filler particles is very rough and disordered over the large
length scale. The localization of the of polymer at the percolating filler clusters forms
significant part of a bound rubber in addition to the filler network formed (at high filler
loadings) and hence this phenomenon give rises to a strong reinforcement. Based on
the polymer chains mobility at the filler interface, several two phase [34,47–49,52] and
three phase models [50,51] are predicted only on the basis of mechanical measurements.
Generally they suggested that due to strong polymer-filler interaction, the adsorption
of polymer chains on the filler surface give rises to the strong reinforcement and the
hysteresis mechanisms in composite [34,46,48,63,122]. Depending upon the nature of
filler and the polymer, the estimated glassy layer thickness is found in the range of 1-10
nm [63, 106]. A precise picture of filler reinforcement and hysteresis is presented with
help of FEM simulations by Gusev [61,123]. A remarkable localization of both storage
and dissipation energy was observed, found to occur primarily in the coating layers of
immobilized polymer. He emphasized the role of the interfacial phenomena and suggest
that the physical (van der Waals) forces responsible for the filler network formation may
not necessarily directly affect the reinforcement and the losses but rather indirectly.
By way of minute amounts (down to per mille level) of adhesive joints formed from the
coating layers of immobilized polymer between the filler particles, one can realize the
enhanced storage modulus and the additional dissipation in filled elastomers.
The large and convincing body of work of Long and coworkers [28,57,58,67,119] is an
exception by studying model systems consisting of polymer chains covalently bound
to silica particles forming strong polymer-filler interaction. For different degree of
filler loadings, temperature dependence of the rigid/glassy fraction is measured by
NMR while mechanical properties are studied by using DMA. By comparing NMR and
mechanical data, they concluded that the temperature and frequency dependence of the
modulus of filled elastomers can be explained by a long-ranged gradient of the polymer
matrix glass transition temperature in the vicinity of the particles. The predicted glass
transition temperature at a distance z from an interface is described by

Tg ≈ Tg

(
1 +

(
β

z

)1/ν
)

(2.16)
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where Tg is the bulk glass transition temperature of the pure rubber. The exponent ν
∼= 0.88 is the critical exponent for the correlation length in 3D percolation. The value
of the length β depends on the polymer-filler interactions. For strong interactions, it
is of the order 1 nm [67].

Figure 2.8: (Top) Schematic view Long’s model of fillers with glassy layers at (left) low filler volume
fraction and/or at high temperature and (right) high filler fraction and/or low temperature forming a
glassy bridge between them. (Bottom) Schematic illustration of percolating aggregates of about 100
nm made of primary particles of 10 nm, surrounded by a glassy layer. Adapted from [54].

With these findings and calculations, a model regarding the reinforcement of nanofilled
elastomers and thermoplastic elastomers is presented [54]. This model is based on the
presence of glassy layers around the fillers as shown in Figure 2.8. Strong reinforcement
(defined here as R (φ = G′filled (φ) /G′unfilled) is obtained when glassy layers between
fillers overlap. Reinforcement is strong when the clusters of fillers and glassy layers
percolate. Moreover, it can also be significant even when these clusters do not per-
colate but are sufficiently large. Under applied strain, the high values of local stress
in the glassy bridges reduce their lifetimes. The latter depend on the history, on the
temperature, on the distance between fillers, and on the local stress in the material.
It is further suggested that the dynamics of breaking and rebirth of glassy bridges
account for the nonlinear Payne and Mullins effects. These mechanisms account also
for dissipative properties of filled elastomers. This model is then solved numerically
by over damped dissipative particle dynamics. The basic ingredients of the model are
permanent elasticity, disorder, and excluded volume effects. The solid filler particles
are represented by hard spheres randomly distributed in space. Two neighboring filler
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particles interact via two distinct forces, which correspond to (a) permanent springs
of stiffness k∞ = 1 representing the rubber matrix contribution (G′ = 106Pa) and (b)
nonpermanent springs due to the glassy bridges (G′ = 108Pa) of much larger stiffness
k0 ≈ 100, which have finite lifetimes depending on the local history, the local stress
at earlier times, and the local glass transition temperature. When the local stress
increases, it can lead to a breaking of a glassy bridge.

Criticism on the Glassy Layer Concept

Robertson and coworkers, however believed that in filled polymers, there are different
variables to control the reinforcement, such as the size and concentration of the par-
ticles, and the nature of the polymer-filler interface. The presence of bound polymer
and the introduction of a jammed filler network can enhance the modulus significantly
beyond the hydrodynamic effect of particle inclusions, at least for shear and tensile
modes of deformation. Therefore glassy bridge/layer should not be considered as a
vital ingredient for reinforcement [124]. In a review [4], author cited many literature
investigations about the effect of small particles on polymer reinforcement which also
affects (increases the polymer Tg) the polymer segmental mobility of polymer chains.
This mobility is assessed from the Tg or segmental relaxation times measured by DMA,
dielectric or NMR. He mentions that there are published studies that appear to show
unambiguously that polymer chains can be immobilized by the presence of small par-
ticles, and he thinks that these instances of a “glassy interphase” are representative,
or merely special cases of unusually strong and pervasive interactions of filler particles
with particular polymers. Certainly the chain segments directly bonded to the filler
(e.g., chemisorbed) are immobilized and can function as junctions to increase the ef-
fective crosslink density and thus the rubbery modulus. However, a large fraction of
directly bonded segments are necessary to obtain an immobilized phase. Robertson
critically analyzed the most common NMR approach for characterizing polymer mo-
tions in the presence of filler which is to measure proton spin-spin relaxation times
(T2). The author mentions the work of Dutta et al., who found that only the olefinic
carbons in SBR were immobilized; indicating that specific interaction at the surface
caused the observed immobilization. This is quite different from an interpretation of a
“glassy” shell in the interfacial region. One of his study indicates that although silica
filler modification can produce high amount of bound rubber (≈ 71%) but this did
not alter the glass transition behavior of the SBR [125]. No evidence for the reduced
segmental mobility of the polymer was found near the filler for any of the materials he

26



2.3.4. Filler Network Reinforcement

studied, and he claimed that the model of Long et al. to connect glassy shell concepts
with the nonlinear viscoelastic response (Payne effect) may not be applicable to these
commercially important filled polymers.

Summary

Several decades of research suggest that the underlying physics of the filler network
reinforcement is still not clear. Additionally extensive research has been done on the
model filled systems where the polymer-filler interactions have been deliberately en-
hanced either by filler surface modification or by homogeneous distribution of the fillers
in the matrix. Therefore on more practical grounds, a reinforcement study needs to be
performed on more technologically relevant elastomer systems.
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Chapter 3

Experimental Methods

3.1 Dynamic Mechanical Analysis

Dynamic mechanical analysis is an instrumental technique extensively used to charac-
terize properties of viscoelastic polymeric systems as a function of temperature, time,
frequency, stress or a combination of these parameters. It can be simply described
as applying a stress or strain to a sample and analyzing the response to obtain phase
angle and deformation data [126].
If an applied strain, subjected to the viscoelastic material, varies sinusoidally with time
then the respond is a sinusoidal stress but will be out of phase with the strain applied,
by the phase angle δ, as shown in figure Figure 3.1. This phase lag is due to the excess
time necessary for molecular motions and relaxations to occur. The dynamic applied
strain ε and stress response σ will have the same angular frequency ω which can be
mathematically expressed as

Input/Program : ε = ε0sin(ωt) (3.1)

Output/Response : σ = σ0sin(ωt+ δ) (3.2)

where ω is the angular frequency. Using this notation, the response (stress) can be
divided into two components: (i) of magnitude (σ0 cos δ) in-phase with the strain and
(ii) of magnitude component (σ0 sin δ) 90◦ out-of-phase with the strain and rewritten
as

σ = σ0sin(ωt)cosδ + σ0 cos(ωt) sin δ (3.3)

The above equation can be written in terms of shear modulus by dividing shear stress
by shear strain and using the symbolsG′ andG′′ for the in-phase (real) and out-of-phase
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3. Experimental Methods

Figure 3.1: (a) Sinusoidal strain applied to the samples (black). Response to sinusoidal strain as
sinusoidal stress (red) for perfectly viscous system (b), for elastic system (c) and for a viscoelastic
system where it lies in between these two extremes (d). Adapted from [127].

(imaginary) moduli:
σ = ε0G

′sin(ωt) + ε0G
′′cos(ωt) (3.4)

where G′ = σ0
ε0

cos δ and G′′ = σ0
ε0

sin δ.
In complex notation, storage modulus G′ and loss modulus G′′ can be combined to a
dynamic modulus G∗ which can be written as

G∗ = G′ + iG′′ (3.5)

where G′ , which is in phase with the strain, is called the storage modulus because it
defines the energy stored in the specimen due to the applied strain and G′′, which is
π/2 out of phase with strain, defines the loss of energy, and is called the loss modulus.
The ratio G′′/G′ gives tan(δ) which is termed as loss tangent or damping factor:

tan δ = G′′/G′ (3.6)

The loss modulus ,G′′, defines the energy dissipation because of the following calcula-
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3.1.1. Temperature-dependent Measurement (Temperature Sweeps)

tions of the energy (∆E) dissipated per cycle:

∆E =

∮
σdε =

∫ 2π/ω

0

σ
dε

dt
dt (3.7)

Substituting for σ and ε values from the Eq 3.1 and 3.2 respectively, yields

∆E = ωε20

∫ 2π/ω

0

(
G′ sinωt cosωt+G′′ cos2 ωt

)
dt (3.8)

The integral is solved by using sinωt cosωt = 1/2 sin 2ω and cos2ωt = 1/2(1+cos 2ωt),
resulting in

∆E = πG′′ε20 (3.9)

3.1.1 Temperature-dependent Measurement (Temperature Sweeps)

Temperature-dependent dynamic shear mechanical measurements were performed on
RDA-2 from TA Instrument. All the measurements were carried out in the linear
response region (confirmed by strain sweeps) with an oscillation strain amplitude of
0.2%. Measurements were performed on as-prepared samples with rectangular geom-
etry having average dimensions of 20 x 10 x 2 mm3 (Length x Width x thickness).
In each test, sample was first cool down (within 10 minutes) with the help of liquid
nitrogen to a temperature lower than the glass transition temperature of the specific
sample, for instance, -75◦C. A temperature equilibration time of 10 min was always
necessary.
The temperature sweeps on RDA-2 started from a -70◦C to 150◦C with a temperature
step of 3◦C and a step soak time of 60s. In each step, data were evaluated at four
different angular frequencies 0.1, 1, 10 and 100 rad/s, so as to see the effect of varying
frequency on the viscoelastic behavior. During the measurement, the sample was kept
oscillating, and data were obtained from regular intervals of time. No prestrain was
applied to the sample and hence the normal force was kept zero through out the shear
measurement.

3.1.2 Time-Temperature Superposition (Master Curves)

Frequency sweeps in the range of 0.1 - 100 rad/s with five points per decade were
carried out at temperatures between -35 and 150◦C to construct master curves. The
soak time for each temperature was 600 s, and the temperature increment was 3 K.
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After the measurements, master curves were constructed according to time-temperature
superposition principle.
Time-temperature superposition implies that the effect of changing the temperature is
the same as a rescaling of the time scale by a multiplication factor ’called horizontal shift
factor’ aT . This means that the response frequency function of the modulus at a certain
temperature resembles the shape of the same functions of adjacent temperatures. This
principle is essential to study the viscoelastic nature of polymeric materials and is well
established by Williams, Landel and Ferry [128].
Experimentally different isotherm curves in log G′ or log G′′ vs. log ω in limited
frequency window are obtained, normally in 3 decades frequency window. For the
construction of the master curve, an isothermal curve (α-transition) in log G′ vs. log
ω is taken as reference at one temperature and considered as reference temperature
T0. While the other isothermal curves are shifted according to the reference curve by
a logarithmic shift parameters aT . From this, the frequency window is expanded and
the entire view of the effect of temperature at different frequency ranges in different
regions of a polymer i.e., α-transition region, rubber plateau, and terminal flow region
can be observed. This results in the formation of a master curve. As the shape of
the of α-transition curve (and terminal flow curve) is independent of temperature, so
any isotherm curve can be chosen as reference and shift other curves on it and from
this one can get a very good idea about the plateau region at lower frequency range or
α-transition region at higher frequency range. The distance of the shift is referred to as
the time-temperature superposition shift factor aT which is calculated by the following
equations:

aT = ω(T )/ω(T0) (3.10)

The shift factor, aT , represents the magnitude of shifting along x-axis, necessary for a
specific isotherm to superimpose on its neighbor in the final master curve with respect
to a give reference temperature. The shift factor is usually described by Williams-
Landel-Ferry equation (WLF) equation as

log aT =
−C1 (T − T0)

C2 + T − T0

(3.11)

and is associated with the transition, plateau, and terminal regions of the frequency
scale. The constants C1 and C2 are material dependent parameters whose values are
in the range of C1 = 14-18 and C2 = 30-70 K if Tref = Tg [128]. With the aid of
aT we can express response functions at any temperature in terms of the respective
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response function at T0. Explicitly, for the dynamical shear modulus, the following
relation holds:

G (T, ω) = G (T0, aTω) (3.12)

or for a logrithimic frequency scale

G (T, logω) = G (T0, logω + log aT ) (3.13)

3.1.3 Strain-dependent Measurement (Payne Effect)

For nonlinear mechanical analysis, strain induced softening phenomena (Payne Effect)
were studied on Anton Paar MCR501 because of its high accuracy at very low strains,
and these experiments were performed at three different temperatures 25◦C, 60◦C and
150◦C. Isotherms were measured at an angular frequency of 10 rad/s after 600 s soak
time over a strain amplitude range from 0.001 to 20%.
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3.2 Low-field NMR

To achieve higher sensitivity in many industrially important elastomeric materials filled
with various kinds of filler sytems, magnetic fields of increasing strength are required.
Currently, superconducting magnets with proton Larmor frequencies up to 1 GHz
are available. [129] Yet, such magnets are heavy, bulky, immobile and expensive in
purchase and maintenance. Moreover, the operation of high-field spectrometers is
rather complex. However robust and cheap low-field proton NMR may provide valuable
insights in structure and dynamics of filled elastomers. Low-field spectrometers are easy
to handle since they use permanent magnets and comparably simple technology. An
apparent drawback of this simple technique is that it has weak magnetic field i.e., 0.5 T.
This problem results strong magnetic field inhomogeneity within the sample and hence
the desired chemical resolution cannot be achieved here. Therefore, low-field devices
are mainly used for standard relaxometry applications in industry. However, it is also
possible to investigate proton-proton dipolar couplings qualitatively, the strength of
which does not depend on the magnetic field strength. As the proton dipolar coupling
strength is an indicator for segmental dynamics in polymers, low-field NMR is a suitable
method for the investigation of chain dynamics, e. g., in rigid-crystallites and mobile-
amorphous domains of semicrystalline polymers or in elastomer composites. Hence,
differences in chain mobility between the individual phases of a filled polymer can be
observed by low-field NMR, enabling the detection of mobile and immobile domains of
polymer composites [130]. Additionally, based on the influence of the weaker dipolar
couplings on the NMR signal, 1H low-field solid-state NMR can also be used to study
the structure of the network i.e., measurement of the network crosslink density.

3.2.1 Theoretical Concept

The basic principle behind the NMR approach is based on the time-dependent orien-
tation of the polymer segments in a network which can be described by an orientation
autocorrelation function. The relevant time-dependent autocorrelation function C(t)
is the one based on the second Legendre polynomial.

P2 =
1

2
(3cos2ϑ (t)− 1) (3.14)
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3.2.1. Theoretical Concept

This function gives the probability for a chain segment in a certain orientation at a
time t1 to be again in the same orientation at another time t2, hence it reads as:

C(t) = 〈P2 (cosϑ (t1))P2 (cosϑ (t2))〉 (3.15)

The angle brackets 〈...〉 in above equation represents an elapsed time averaging over
the whole Kuhn segments N of all the individual chains. Therefore, the autocorrelation
function gives the information about the average orientation of all the polymer chain
segments.
The mobility within the polymer chains arises due to thermal fluctuation. At short time
differences t2 - t1, the polymer segments quickly loose their orientational memory C(t)

due to fast local fluctuations, and the autocorrelation function decreases rapidly (as
shown in Figure 3.2). At some point, however, the long-range or slower motions of the
segments are hindered by the presence of topological constraints such as entanglements
and cross-links. This leads to a very slowly decaying component in the autocorrelation
function, which can almost be seen as a plateau. In this case the height of the plateau of
the autocorrelation function corresponds to the square of a dynamic order parameter of
the polymer backbone Sb [29]. These long-time correlation (ms-s), which is expressed by
an order parameter Sb, quantifies the crosslinked-induced average residual orientation
of the polymer chain segments along the polymer backbone and will be discussed in
detail in later section.

Relationship between Segmental orientation fluctuations and NMR observ-
ables

The relationship between polymer chain dynamics and NMR detected parameter is
the orientation dependence of the spin-pair dipolar couplings. The spin interactions
which are most important for low-field 1H solid-state NMR is the direct pairwise dipole-
dipole coupling of nuclear spins. A nuclear magnetic dipole moment µ associated with
the nuclear spin I generates a small magnetic field B in its environment at a distance
r. This field interacts with the dipole moments of surrounding spins, resulting in a
direct dipolar coupling of spins through the space (see Figure 3.3). The strength of
the dipolar coupling between two spins of the same species is given in the form of an
angular frequency ωD

Dipolar Coupling ≈ ωD = −µ0~
4π

γjγk
r3
jk

1

2

(
3cos2ϑjk − 1

)
(3.16)
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Figure 3.2: Schematics of orientation autocorrelation function vs segmental relaxation times with
corresponding NMR observables motion-averaged Pake-doublets. Width of the doublets represents the
coupling strength which is maximum in glassy state and decreases relatively with the chain mobility
due to motioned narrowing of dipolar couplings.

The coupling strength depends on the distance r between the nuclei and the angle
ϑ of the spin-spin interconnection with respect to the magnetic field B0 as depicted.
The orientational dependence is expressed by the second Legendre polynomial P2 (as
discussed above) and the quantity µ0 represents the magnetic constant. Hence the
apparent dipolar coupling strength and the autocorrelation function is directly propor-
tional to each other.

ωD ∝
√
C(t) (3.17)

In isotropic liquids, the fast Brownian motions change the molecular orientation. These
motions are fast enough on the time scale of NMR experiment to detect the dipolar cou-
plings as it is averaged out completely. However, in the polymer-filler nanocomposites,
the mobility of the polymer chains is significantly reduced as a result of strong adsorp-
tion interactions on the filler surfaces. Due to such phenomenon, an immobile/rigid
phase of the polymer develops where the polymer chains are densely packed and the
relative chain mobility is restricted compare to the bulk regions. Due to restricted chain
mobility, only minor orientational changes of the proton spin interconnection vectors
is possible, hence leading to a static coupling constant, Dstat. The strong dipolar cou-
plings in such a phase affects the NMR signal both in time and frequency domain.
Instead of a single spectral line at ω = ω0, a single pair of dipolar coupled spin produce
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θjk
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r

Local Magnetic field B

Figure 3.3: (left) Schematic illustration of fluctuating polymer chains between crosslinks. (right)
The dipolar coupling between two nuclei (j and k) which depends on the distance between them r,
and the angle ϑjk relative to the external magnetic field B0.

a doublet of the spectral lines appear at

ωD = ω0 ± (3/2) 〈ωD〉t (3.18)

There are multiple possibilities of the spin-spin interconnection orientation in a rigid
powder sample due to the presence of different coupling strengths. Consequently the
final shape of the spectrum appears to be a superposition of spectral lines at different
frequencies and forms a dipolar broadened spectral line with a characteristic shape,
called as Pake doublet (as shown in Figure 3.2).

Surface Immobilized Component

In the time domain curves of the NMR, the superposition of the different frequency
components (dipolar spin-spin couplings) causes an accelerated decay with a short T2

values compared to the signals from non-coupled systems [129]. This means, the pro-
tons residing within the rigid-immobile domains are subject to strong dipolar couplings
(ωD/2π ≈ 20 kHz), resulting a rapidly decaying time-domain (FID) signal with a T2

relaxation time τrigid « 20 µs. Far above the glass transition temperature the chains
in the mobile domains of a elastomeric composites exhibit fast mobility, resulting in
an averaging of the dipolar couplings on the NMR time scale and leading to a sig-
nificantly reduced residual coupling strength as opposed to the value of the immobile
regions (τrigid » 20 µs). Therefore, the time-domain signal decays slowly with a long
T2 time constant [57].
To quantify the contribution of immobile phase from the time-domain FID signal, we
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use following two component fit in Eq 3.19.

M(t) = M0

[
agexp

(
−
(
t

τg

)2
)

+ (1− ag) exp

(
−
(

t

τmob

)b)]
(3.19)

Where ag stands for the immobile fraction, exponent, b (≈ 1) which is less than gaussian
exponent 2 , describes the mobile behavior of elastomer, while τg and τmob represent
decay times for the immobile and the mobile components respectively.

Estimation of the Network Crosslink density

In a chemically crosslinked networks, when the individual chains are chemically linked
(covalently bonded) together, the reptation or the complete chain motion is not pos-
sible. Therefore, in terms of orientation autocorrelation function C(t), a complete
orientation correlation is never lost rather a certain correlation maintains in the long
time limit. Consequently a resulting plateau appears in C(t) as shown in Figure 3.2
which is define as the dynamic backbone order parameter Sb of the polymer chains in
the network [29,131].

S2
b = Limt−→∞C(t) (3.20)

Proton NMR spectroscopy can be used to study the structure of an elastomer also by
exploiting the dipolar interactions within a polymer chain. Therefore to estimate the
network crosslink density, τmob from Eq 3.19 is the parameter which is analyzed more
closely in this section.
Polymer networks act partially solid-like. The existence of crosslinks and other topo-
logical constraints in rubber matrices lead to weakly nonisotropic, fast segmental fluc-
tuations of the chain which is seen as a plateau of C(t) [132] in Figure 3.2. This means
that the internuclear vector of dipolar coupled nuclei at the backbone of the polymer
chain cannot adopt all possible orientation with respect to static magnetic field. As a
consequence, their dipolar couplings are not averaged out completely due to the par-
tial alignment of molecules. Therefore, an average anisotropic dipolar coupling remain
which is called “Residual Dipolar Coupling” (Dres) (NMR-determined parameter) and
a reliable information on the absolute values as well as the distribution of residual cou-
plings becomes accessible considering the fact that in crosslinked networks, large-scale
chain dynamics is mostly absent. The large-scale chain dynamics would further reduce
Dres.

Sb ∝ Dres ∝
1

N
∝ 1

Mc

(3.21)
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The above correlation represents the connection between the experimentally accessible
quantity by NMR i.e., residual dipolar coupling Dres and number of segments within a
polymer chain between a crosslink i.e., N or the average molecular weight of a network
chain, Mc [133]. In SBR, a more qualitative approach is adopted to correlate Dres with
1/Mc. In order to convert Dres into a crosslink density, a model is needed to give the
quantitative estimation of 1/Mc. Based on the computer simulations of fluctutation
(orientation) statistics, the value of prefactor has been determined for natural rubber
(NR) and butadiene rubber (BR) [29].

M (NR)
c =

617Hz
Dres/2π

kg/mol (3.22)

and
M (BR)

c =
656Hz
Dres/2π

kg/mol (3.23)

However in SBR, the complex spin dynamics of the PS comonomer with its phenyl side
group would still require a suitable model to explain the local molecular dynamics.
Therefore, a crosslink density is qualitatively estimated as Dres∝ 1/Mc [32].

3.2.2 Experimental Details

The following MSE and DQ-NMR experiments performed to quantify the phase com-
position and the average crosslink density of the composite materials mentioned in
Table 5.1 respectively, were carried out on a Bruker minispec mq20 spectrometer op-
erating at 0.5 T (20 MHz). The 90 and 180◦ pulses had a length of 1.7 µs and 3.5
µs, respectively. The dead time was 12 µs. For the DQ-buildup curve experiments to
determine crosslink density, all the samples were measured at 120 ◦C.

Quantification of Mobile/Immobile Phase

The NMR sequences typically used to study polymer chain mobility in filled rubbers
are the solid-echo pulse sequence to study the rigid polymer fraction (seen at short time
scales) and the Hahn echo for the mobile fraction (at longer time scales). However,
those methods are tend to produce artifacts related to over interpreted or inapplicable
fitting models and parameter interdependencies [134]. Here we used magic-sandwich
echo (MSE) to study the polymer relaxation at short time scales (less than 0.2ms). The
MSE refocuses the initial part of the free-induction decay (FID) and thus avoids the
dead time issue. Compared with solid echo, it enables a better refocusing of multispin
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dipolar interactions and has been shown to be a robust method to investigate polymer
mobility [28,57,134].

MSE-SequenceDQ- Filter

MSE-Sequence

2/

Dead

FID Signal

time/ μs time/ μs

MSE-FID Signal

(a) Free Induction Decay (FID) (b) Magic Sandwich Echo (MSE-FID)

(c) Double Quantum-Filtered MSE-FID

time/ μs

DQ-Filtered
MSE-FID Signal

15μs 15μs

2/

Figure 3.4: (a) Pulse sequences. Solid bars denote 90◦ pulses, and the blue-shaded areas represent
group of pulses. (a) Initial part of the free-induction decay (FID) (dashed line) is missing due to the
receiver dead time (τDead). (b) MSE sequence is employed after τDead to refocus the lost signal and
thus measure the entire shape of the FID. (c) Double Quantum (DQ) sequence is used before the MSE
sequence to filter out the contributions from the mobile phase i.e., > 30 µs.

However the FID cannot be directly exploited due to the rather long dead time of
the receiver: the first 15 µs of the FID are missing and this part of the signal is very
important since it contains the initial fast decay part and so the immobilized polymer
response (see schematically in Figure 3.4a). The receiver dead time of the spectrometer
is required to ensure the complete decay of the pulse intensity and hence it ranges
between 11 µs and 15 µs for the low-field devices used here. To obtain information
on the shape of the entire FID signal decay, we used a Magic-Sandwich echo coupled
with double quantum (DQ) filter in order to refocus the signals entirely from the
immobile part of the matrix. The Magic Sandwich Echo (MSE) sequence is a so-called
time-reversing pulse sequence. It refocuses rapidly decaying NMR signals, which are
governed by the action of strong multiple dipolar couplings between the nuclear spins
of the sample, by reversing the dipolar dephasing [129] and it is schematically shown
in Figure 3.4b. On ther other hand Double quantum filter, with short DQ evolution
time τDQ ≈ 15-20 µs, is used here for the selection of magnetization in the rigid
polymer phase. Strong dipolar couplings between spins create a complex network of
interacting spins in which multi-quantum coherences, involving orientation correlations
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between interacting spins, can be excited by certain rf-pulse sequences [135]. These
certain rf-pulse sequences are used here as DQ-filter. The DQ-filtered MSE-FID is
schematically shown in Figure 3.4c and it can be qualitatively analyzed by the following
single-component exponential fit

M(t) = M0exp

[
−
(
t

τg

)2
]

(3.24)

From above Eq 3.24, one can get the τg which is the shape parameter of the immobile
phase and shows the decay time due to immobile part. Further τg can be used in Eq
3.19 to fit the entire shape of the initial FID. The fitting results of these Eq 3.19 and
3.24 ares shown in Figure 6.7 in the Section 6.3 of the results Chapter 6.

Determination of Crosslink Density

Quantitative double-quantum (DQ) or, more generally, multiple quantum (MQ) NMR
is a powerful method to measure the crosslink density of polymer networks by detecting
weak residual dipolar coupling [29, 31]. DQ NMR spectroscopy generates two quali-
tatively different signal components. A buildup curve (IDQ) dominated by spin-pair
double-quantum coherences and a decay curve (Iref ). The sum of both components
(IDQ + Iref ) contains the full magnetization of the sample, i.e., contributions from
dipolar coupled network segments and contributions from uncoupled units (isotropi-
cally mobile network defects, e.g. dangling ends, loops, oil content). Dipolar coupled
segments (network) exhibit non-exponential faster relaxation while the signal from
uncoupled parts appears in the form of slower exponential decay (Figure 3.5a) and re-
garded as the defect fractions of the network i.e., dangling chain ends, loops, oil content
etc.
In order to correct the raw IDQ build-up data shown in Figure 3.5a for the obvious
long-time relaxation effects and enable a quantitative analysis, it is divided point-by-
point by a suitable relaxation-only function, IΣMQ. This function is an additive part
of the mentioned (IDQ + Iref ) sum function, and in order to obtain it, the mentioned
defect fraction has to be subtracted:

IΣMQ = IDQ + Iref −B · exp(−2τDQ/T
∗
2 ) (3.25)

The defect fraction with relative amplitude B is easily identified by an exponential
fit to the data range where IDQ has essentially decayed to zero (i.e., beyond a DQ
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Figure 3.5: (a) DQ buildup (IDQ) and reference decay (Iref ) data as a function of the double-
quantum evolution time tDQ. Iref − IDQ can be used to highlight the non-elastic, slowly relaxing
(isotropically mobile) defect fraction. (b) Normalized buildup curves (InDQ) as a function of tDQ.
The solid lines are fits based on Eq 3.26 assuming a Gaussian distribution of dipolar couplings.

evolution time of about 6 ms). Now, the DQ build-up data can be normalized, obtaining
InDQ = IDQ/IΣMQ. InDQ is independent of temperature-dependent relaxation (decay)
effects and it is dominated by the dipolar interactions that are only related to the
network structure. In the absence of relaxation effects of nonelastic network defects,
InDQ (Figure 3.5b) can be evaluated under the assumption of a Gaussian distribution
of dipolar couplings according to

InDQ(τDQ) =
1

2

1−
exp

{
−

2
5
D2

resτ
2
DQ

1+ 4
5
σ2τ2DQ

}
√

1 + 4
5
σ2τ 2

DQ

 (3.26)

The values of residual dipolar couplingDres (Table 5.1) are proportional to the crosslink
density ν of the polymer network. The parameter σ represents the distribution width
in an inhomogeneous sample, which for the case of SBR is dominated by “spin inhomo-
geneity” related to the copolymer character of SBR [31]. The ratio σ/Dres is found to
be nearly constant at a value of around 0.35±0.05 for all samples. Experimental Dres

values are used to study the influence of filler content on the crosslink density of the
rubber matrix in composite materials.
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Chapter 4

Optimizing the Tire Tread

The tread of the tire fulfills an essential function in the transmission of force to the
road. Therefore, tire tread is designed by considering several performance criteria. Out
of these, two functional properties of the tire tread rubbers are given prime importance:
low rolling resistance and high wet traction during braking. In connection with the
fuel economy and the environmental concerns, low rolling resistance in the tread is
demanded to minimize the fuel consumption. For a better road grip and safety concerns
under wet or icy conditions, a tire must deliver high wet/skid resistance to ensure the
predictable steering characteristics. Additionally a tire must also show low wear and
good durability which means the resistance to abrasion should be as high as possible
to create a high mileage [136–138]. However, improvements of the rolling resistance
can only be achieved with a reduction of the wet grip. Hence the optimization of
these interrelated but contradicting properties forms the so called “Magic Triangle” of
tire properties as shown in Figure 4.1 [139, 140]. A compromise level between these
characteristics is always necessary to maintain a balance among them.

Rubber friction differs in many ways from the frictional properties of most other
solids. The reason for this fact is the low elastic modulus of rubber and the high internal
losses due to friction exhibited by the rubber in a wide frequency range. A description
of the viscoelastic behavior of tread rubber is usually presented as a general practice
by the curve of tan δ against temperature (as shown in Figure 4.2). This description is
based on certain strong assumption and crude estimation. However still as an indication
of skidding behavior (grip, traction) on wet or icy roads, the high values of the loss
tangent around 0◦C till +30◦C are considered as an important parameter [137]. Since
the peak in tan δ correlates with the glass transition temperature Tg of the polymer,
for the extensive screening this value became a tool for the selection of a suitable tyre
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Driving 
Condition

WET/ICY GRIP

ABRASION RESISTANCE ROLLING RESISTANCE

Figure 4.1: Schematic shows these three basic performances considered in modern tire production:
traction, abrasion resistance and rolling resistance. The optimization of these three conflicting param-
eters is called “Magic Triangle” optimization because it is impossible to improve all three characteristics
at the same time and a balance must be found between these properties [139].

rubber [141]. While for the rolling resistance optimization, the low values of the tan δ

around 60◦C to 80◦C are believed to be an appropriate parameter.

However, this viscoelastic description is basically translated on the basis of temperature-
frequency equivalence of the viscoelastic material [137,141]. According to this equiva-
lence principle, rolling resistance is predominantly related to loss tangent of the bulk
polymer at comparatively low frequencies in the plateau region of the loss tangent (see
Figure 4.2). While , the wet skid resistance (WSR) is appeared to be linked with dy-
namic losses in the glass-rubber transition zone of the bulk polymer i.e., typically in
the range of 1 kHz - 1 MHz.
Tha aim of this chapter is to address few ambiguous questions concerning the two main
tread properties i.e. Wet resistance and the rolling resistance. 1) Usually the friction
properties of the tread rubber are characterized by dynamic mechanical analysis. It is
very important to identify and to understand the potential relationship between the
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Figure 4.2: tan δ as function of temperature and frequency of a standard and a target curve of tire
tread material. Adapted from [142].

tread friction (either skid or rolling) and the experimentally observed dynamic mechan-
ical quantity (tan δ). 2) Secondly the tan δ is typically being used to quantify the loss
mechanism of the tread rubber to optimize friction. A literature will be reviewed to
find out the possible reasons for the relevance of the dynamic loss (tan δ) to the loss
mechanism in tire tread instead of loss modulus G′′. 3) Finally in this chapter, physical
basis of the typical frequency dependence of the wet and the rolling resistance of the
tread component will be explored.
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4. Optimizing the Tire Tread

4.1 Relation Between Friction and the Mechanical

Properties of Tire Rubbers

The generally accepted view is that the friction force (either sliding or rolling) between
rubber and a rough (hard) surface has two contributions commonly described as the
adhesion and the hysteretic component respectively [143,144]. The adhesion component
is a surface effect which takes place within a thin layer at the sliding interface. The
hysteretic component arises due to the internal friction of the rubber. During sliding,
the asperities of the rough surface exert oscillating forces on the rubber surface [11].
These oscillating forces result in cyclic deformations of the rubber and energy loss
via the internal damping of the rubber. Hence, this contribution to the friction force
has also the temperature dependence as that of the complex elastic modulus E∗(ω)

[145,146].

Friction force F = Adhesion component + Hysteresis component

The adhesion component of the friction was initially studied experimentally by Bulgin
et al. [145]. They explained that the adhesion term of the total friction is a surface
effect due to intermolecular forces between polymer and the contact surface, which takes
place within a thin layer (few nm) of a sliding interface. This sliding process leads to
a local drag force which acts as a retarding force on the system. An associated strain
also develops in the material, causing energy to be stored elastically in the adhering
element of the polymer. When the elastic stress exceeds the adhesive force, failure
of the adhesion occurs and the element relaxes. The elastic stored energy is partially
returned to the moving system as an accelerating force. However the proportion of
energy returned will depend on the hysteresis loss in the material. Hence group of
molecules near to the contact surface experience alternating retarding and accelerating
forces of different magnitude and the difference is the net retarding force corresponding
to the external friction force. A simplistic model was presented where they showed that
the frictional force developed between a polymer and a solid surface arises from the
adhesion release processes at the interface. The model concluded that the coefficient
of friction µ at the adhering area is

µ ≈
(

1

H

)(
E ′′

E ′

)
(4.1)

where H is hardness of the material and E′′

E′
is the hysteresis loss in the material.

The existence of hysteresis friction is a result of energy loss associated with internal
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4.1. Relation Between Friction and the Mechanical Properties of Tire Rubbers

damping effects within a viscoelastic body, and it normally appears in the form of
heat. When tread rubber slides or rolls on an asperity of a harder surface (road), a
certain amount of work is performed in deforming the rubber in front of the asperity.
Partial amount of this work is recovered from the rear side of the rubber-surface contact.
However, since the filled rubber shows the hysteresis due to the internal friction, energy
is lost. In rolling this is the primary source of the frictional work. In sliding, there
is additional energy dissipation due to the shearing of junctions formed as a result of
adhesion at the interface. Under dry conditions, the adhesional contribution to the
total friction is large enough that the hysteretic part of friction is almost negligible.
However for wet conditions, the adhesional component of the friction is substantially
reduced, and the remaining sliding friction is due to the work expanded in deforming the
surface, causing a hysteretic energy loss [143]. A comprehensive study of the friction
was done by Grosch [146] on several types of rubber against different kinds of hard
surfaces over a wide range of temperatures and sliding velocities. The results show
that the friction increases with the sliding velocity to a maximum value and then falls
(shown in Figure 4.3b). The dependence of the coefficient of friction on velocity and
temperature has been shown by a master curve describing the velocity dependence at
a constant temperature,Ts, which is related to the glass transition temperature of the
material. This transform agrees closely with the W.L.F. transform and thus shows
that both friction mechanisms are visco-elastic in nature (The isotherms of the friction
coefficient as function of sliding velocity are shown in Figure 4.3a for natural rubber).

lo
g 
aT

T‐Tr

(a) (b)

Temp.

Temp.

log V

Figure 4.3: (a) Coefficient of friction as a function of sliding velocity on smooth surface at var-
ious temperatures of natural rubber. (b) Master curve for the coefficient of friction obtained using
horizontal shift factors (inset) which follows WLF function. Adapted from [146].
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4. Optimizing the Tire Tread

From the discussion above, it is clear that the friction, along with the factors like
load, hardness etc, depends also on temperature and frequency. Bulgin et al. [145]
shows that when a hystereis loss, transformed apparently to the temperature and fre-
quency appropriate to the friction, is plotted against the friction (experimental values)
for different tread rubbers, a linear relationship is observed which passes through the
origin of the graph (as shown in Figure 4.4).
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Figure 4.4: Friction force as a funciton of damping factor. Taken from [145].

Hence the the general relationship justifies the view that the friction as a phe-
nomenon of polymers is controlled by the viscoelastic character of the tread material.

4.2 Usage of tan δ As Loss Parameter

Generally in literature tan δ has been used to optimize different properties of the
tire. The objective to use this parameter is to monitor the energy loss at particular
temperature and frequency. There are some indications in literature for that the loss
modulus G′′ alone does not give the appropriate quantitative information to understand
that how much fraction of the energy is used for the deformation of the tread rubber
and accordingly how much energy is dissipated [75, 146, 147]. However, Robertson et
al. [148] shows that large differences in shape and magnitude of the peak in the loss
tangent vs temperature are observed simply by varying the filler surface area and also
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4.2.1. Theoretical Approach

the filler quantity in the same type of the elastomer. The loss modulus (G′′) peak,
however, corresponding to the segmental relaxation process (glass transition) is not
significantly affected of these investigated materials. The reason of the variation in tan
δ peak is due to the variations in the storage modulus in the rubbery states, which is
influenced by the strength of filler network.
In this section, we review those indication through the relevant literature concerning
the physical basis of the loss factor.

4.2.1 Theoretical Approach

The earlier concept of hysteresis applied elasticity theory to the sliding of spheres
and cylinders on an elastomeric plane surface [149]. It was hypothesized that a small
fraction of the input elastic energy to the deformed elastomer must be dissipated in the
form of hysteretic friction. They considered a rigid cylinder or sphere of radius R (as
shown schematically in Figure 4.5-left) pressed on to an elastomer by a loadW per unit
width of cylinder/sphere. If the elastic medium possessed ideal elastic properties, the
part behind the rolling cylinder would yield the same amount of work. The elastomer
would then effectively restore the work done to the object in the initial compressive
stage, and no net energy would be expended. However, a constant fraction α of the
input elastic energy is assumed to be lost as a consequence of hysteresis within the
elastomer, and this gives rise to a friction force F. The coefficient of friction for the
rolling cylinder can be written as

Hertz Model Rieger & Kummer Model

Figure 4.5: (Left) Rolling of rigid cylinder on an elastic medium. (Right) Sinusoidal asperity model
for track roughness. Adapted from [149].

49



4. Optimizing the Tire Tread

frolling =
F

W
≈
[
αW

R

(
1− ν2

E

)]1/2

(4.2)

where ν and E is the poisson’s ratio and the Young’s modulus respectively for the
elastomer.
The review [143] about these calculations mentioned that the above analysis for sphere
and cylinder has very limited application, and it is valid for very low speeds of sliding.
As speed increases to finite values, a complete elastic recovery becomes a necessity to
sustain the rolling mode. The theory inherently contradicts itself, since if elasticity is
assumed there will be complete recovery behind sphere/cylinder and hence no coeffi-
cient of rolling friction. To explain this contradiction, the authors have used the term
“elastic hysteresis” which is a further contradiction.
The theoretical work by Tabor [143] assumed viscoelastic behaviour in the elastomer,
usually by making use of some form of energy dissipative mechanical model. These
various mechanical model theories were distinguished on the basis of the shape of as-
perities in the rigid base surface (i.e. sinusoidal, cylindrical or spherical). In the case
of sinusoidal asperities, it is convenient to consider a multiple asperity model, since the
mathematical definition of the surface is a continuous function of position. Rieger and
Kummer [149], for instance, offer a similar simple Voigt model simulation of rubber
sliding on a sinusoidal track, as shown in Figure 4.5-right. The amplitude of the track
may be described by the equation

z = a (1− cosωt) (4.3)

where ω = 2πV/λ. The mean hysteretic friction force Fhyst was then calculated as on
basis of Voigt model (tan δ = ωη/E ′)

Fhyst = Ed/λ = πa2(L/λ)ηω (4.4)

Ed is total energy dissipated as hysteretic friction, λ wavelength of the sinusoidal
roughness and L is the total characteristic length. Rieger and Kummer obtained two
different forms of equation from Eq 4.4. If ω is replaced by ω = 2πV/λ, the Fhyst is
proportional to velocity

Fhyst = 2π2L(a/λ)2ηV (4.5)
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4.2.1. Theoretical Approach

and if ηω is replaced by tan δ = ωη/E ′, then Fhyst is proportional to E ′ tan δ

Fhyst = 2π2a2(L/λ)E ′ · tan δ (4.6)

This calculation was the first theoretical indication pointing that the deformation hys-
teresis is proportional to the loss factor. However, as the tan δ is the ratio of E ′′/E ′,
one can also conclude from this equation that the Fhyst is also proportional to the E ′′.
Additionally, both Kummer and Rieger [149] have indicated that the above form of
equation shows a constantly increasing hysteretic force Fhyst, as the sliding speed V is
raised. Indeed this is the case as the viscosity term η is assumed constant in the Voigt
model representation of Figure 4.5-right. This reasoning can be valid, however, only
within a limited velocity range. At higher velocities, they fails to show any mathemat-
ical reasoning to account for a drop in hysteresis value, exhibiting the characteristic
viscoelastic peak which one should except (see Figure 4.3b). Similar result is obtained
by Moore [150] where he relates the contact asymmetry to the loss tangent (tan δ) of
the viscoelastic material. He also assumed the Voigt model and considered again the
case of a rigid cylinder sliding on a viscoelastic plane.
Medalia [100] calculated of the energy (∆E) dissipated per cycle:

∆E =

∮
σdε =

∫ 2π/ω

0

σ
dε

dt
dt (4.7)

Substituting for σ and ε values from the Eq 3.1 and 3.2 respectively,

∆E = ωε20

∫ 2π/ω

0

(
G′ sinωt cosωt+G′′cos2ωt

)
dt (4.8)

The integral is solved by using sinωt cosωt = 1/2 sin 2ωt and cos2 ωt = 1/2(1+cos 2ωt),
we have

∆E = πG′′ε20 (4.9)

By the definition of the G′′ and G∗ from the Eq. 3.4 and 3.5 respectively,

∆E = πσ0ε0 sin δ ≈ πσ0ε0 tan δ (4.10)

Therefore, depending on whether σ0, ε0 or σ0ε0 is kept constant during dynamic defor-
mation (corresponding to constant strain, constant stress, or constant energy input),
the energy loss or dynamic hysteresis is proportional to G′′ or tanδ, respectively. How-
ever this relation is only valid when δ values are much smaller (then sin δ ≈ tan δ).

51



4. Optimizing the Tire Tread

Therefore in terms of viscoelastic properties of the elastomer, this relation of energy
dissipation per deformation cycle is only valid for the tan δ if the plateau region is
considered, and not the glass-rubber transition region, where δ values are significantly
smaller than the transition region. In the later section, the practical relevance of the
transition region will be discussed in terms of wet skid resistance.

4.2.2 Experimental Indication

The extensive experimental studies on friction was done by Grosch [146]. He studied
the friction of several types of rubber against hard surfaces over a wide range of tem-
peratures and sliding velocities. For sliding the rubber, different types of hard surfaces
i.e. rough and smooth surfaces, were used to analyze the friction behavior. The master
curve on a rough abrasive track shows two peaks as shown in Figure 4.6a. According
to his interpretation, i) one of these peak occurs at a velocity related to the frequency
with which the track asperities deform the rubber surface. This statement was con-
cluded on the basis of friction studies on the smooth surfaces where one maximum is
absent. Thus the high frequency peak appeared on rough surfaces reflects the defor-
mation losses produced by the passage of the asperities or roughness over the rubber
surface.

(a)

(b)

Smooth surface

Rough Surface

MgO covered
Smooth surface

Figure 4.6: (a) Master curve of the coefficient of friction for SBR on three different surfaces. (b)
Above: Master curve of the coefficient of friction for four different rubbers on smooth surface. (Below)
Loss modulus curves E′′ as a function of frequency for the same four rubbers. Adapted from [146].

ii) The other peak occurs in general at much lower velocities. This peak coincides in
position with the single maximum obtained on a smooth surface. Hence they concluded
that this peak, appearing on smooth surface at lower sliding velocities, originates due
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4.2.2. Experimental Indication

to molecular adhesion between two sliding surfaces. To confirm this conclusion, fine
powder (MgO) was introduced to the interface between the rubber and track. This
method eliminates the friction peak appearing due to adhesion and only the hysteresis
component of the friction left as a single peak (Figure 4.6a). Comparison (shown
in Figure 4.6b) of the maximum of friction coefficient of the adhesion-peak with the
dynamic loss modulus (E ′′) indicates the correlation of both quantities. It is finally
concluded that the adhesional component of friction correlates with the loss modulus
curve (E ′′) of the rubber. Hence the deformation friction, where the operative frequency
is determined by the scale of the surface asperities and the sliding velocity, is assumed to
be correlated with the loss factor or tan δ without giving any experimental evidences.
So far the review of the literature is done to find the appropriate reasons for using
tan δ as a viscoelastic loss parameter. However no concrete theoretical or experimental
evidence has been found which clearly indicates that the tan δ is more reliable parameter
to quantify the loss as compared to the loss modulus G′′. The study in this thesis and
the study by Robertson et al. (as discussed earlier) shows that the peak of the tan δ

and the corresponding glass-rubber transition region (which is currently regarded as
the influential frequency region to the Wet Skid Resistance) are largely influenced by
the addition of fillers. The variations in tan δ primarily originates from the increasing
storage modulus G′ due to the filler addition (tan δ = G′′

G′
). G′′ peak however, is not

affected by the filler addition. Therefore the tan δ might be a misleading parameter for
the quantification of the dissipative mechanisms in the viscoelastic materials and an
extensive comparative study for both parameters (tan δ) is needed to understand the
overall picture.
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4. Optimizing the Tire Tread

4.3 Tire Optimizing Parameters and their Relation

to Viscoelastic Behavior and Friction

The ultimate problem encountering by the tire designers is to achieve an optimal bal-
ance between three major tire properties i.e., obtaining a low rolling resistance, high
wet traction and high wear resistance. These properties are physically interrelated with
each other but their optimization trends are in opposite direction. In order to obtain
the road grip/traction during braking under wet or icy conditions, a tire tread can be
improved by making the rubber softer. In this way, one can get high friction under
such conditions, resulting in high traction. However, if the same tread is used under
normal rolling conditions at high temperatures, a high amount of the applied energy
is dissipated in terms of heat due to high rolling friction. Thus the vehicle consumes
more fuel. Additionally soft rubbers usually wear more quickly, resulting in frequent
tire replacement. As a consequence, if tire manufacturers improve one of these param-
eters, they have no choice but to compromise on the other two tire properties. In this
section, a typical frequency dependence of the Wet skid resistance and the rolling resis-
tance will be discussed. Moreover we examine a relation between dynamic viscoelastic
response of rubber and the corresponding frequency-dependent friction.

4.3.1 Wet Traction

Wet skid resistance is defined as the retarding force generated by the interaction be-
tween a tire and a road under a locked, or non-rotating, wheel (Standards-ASTM E
867). It is a measure of the ability of a material under wet conditions to resist the skid-
ding of a tire material on a road surface. Skidding occurs when the frictional demand
exceeds the available friction force at the interface between a tire and pavement [151].
Wet traction is the most important parameter for the optimization of the tire tread
rubber. Some statistics indicate that the number of accidents increases by up to two
folds during rainy conditions [152]. This happends due to the fact that skidding will
occur easily when the water film covering the road surface act as lubricant and re-
duce the friction between the tire and pavement. The loss of skid resistance affects
driver’s ability to control vehicle. In addition to increasing the stopping distance while
braking, lower skid resistance reduces steering controllability since both braking and
steering depend on tire-pavement friction. Therefore the emphasis generally in tire de-
velopment is placed dominantly on the improvement of skid properties with the least
possible trade-off in rolling resistance and abrasion [153].
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4.3.2. Rolling Resistance

In literature, the wet skid resistance of elastomers is generally recognized as a high-
frequency phenomenon [136, 138]. Figure 4.7 shows a rolling elastomeric object on a
road surface. The road surface is composed of many irregularities or asperities (as
discussed earlier). When braking force is applied, the tire is pressed against the road
surface due to the weight of the car and comes into contact with most of the asperi-
ties [141]. Since there are large number of asperties located close together (schemati-
cally shown in Figure 4.7), the frequency of deformation experienced by the tires is also
very high when tire slides over such surface. The deformation frequency is difficult to
calculate accurately. It depends upon the speed of the sliding tire, the spacing of the
asperities, surface contamination etc. The spacing between asperities is estimated to
be 0.1 to 0.01 mm [10]. Assuming an average speed of slide of 8 kmh−1, the deformation
frequency encountered by the tire must be between 1 kHz to 1 MHz [136,138].

Macro‐Texture of
Road Surface

Direction of MotionBraking Force

Weight of the Car

WET TRACTION

Tread contact patch to 
the road surface

Deformation Frequency
High ( 10⁴ ‐ 10⁶ Hz)

Movement
Tread Surface

Figure 4.7: Schematic diagram of a tire encountering wet skid conditions. When the brakes are
applied, the tire comes in contact with most of the asperities on the road surface and as result, the
deformation frequency encountered by the tire during the wet skid process is quite high i.e., 1 KHz to
1 MHz.

4.3.2 Rolling Resistance

Rolling resistance is the force that resists the rolling of a wheel or other circular object
along a surface caused by the deformations in the object and/or surface. Consider soft
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wheels rolling on and deforming a hard surface (as shown schematically in Figure 4.8)
with W as a vertical load on the rolling object. The resultant reaction force Fr from
the surface opposes the motion can be expressed as

Fr = c ·W (4.11)

where c is the coefficient of rolling resistance that characterizes the material property
to resist the pulling force.

Weight (W)
Pulling Force

Rolling Resistance (Fr)

ROLLING RESISTANCE

Movement
Whole tyre

Deformation Frequency
Low ( 10 ‐ 10² Hz)

Tire deformed patch onto 
the road surface

Figure 4.8: Schematic illustration of the rolling objects and the rolling resistance. Deformation
frequency encountered by a tread during a complete rotation of a wheel is low ≈ 100Hz compared to
wet skid resistance.

Concering the tire tread, rolling resistance is a result of repeated movement of
rubber caused by the tire rotation. These repeated movements lead to the constant
deformations in the viscoelastic material in the form of bending, stretching and re-
covering as the viscoelastic material cycles between loaded (where the tread footprint
flattens against the road) and unloaded states. The final contributor to tire rolling
resistance is the tread’s interaction with the road in the form of adhesion.
Consider the deformation versus time of a footprint section of a typical tire rolling at
about 80 km/h (schematically shown in Figure 4.8. The footprint print of such a tire is
approximately 1/10th of the circumference of the tire. The rotational frequency (ωroll)
corresponding to 80 km/hr speed can be estimated around 10 - 12 Hz. Hence the tread
rubber, during the contact, will be deformed at an effective frequency ωeff equal [141]

ωeff = ωroll

(
Tire Circumference

Footprint Length

)
(4.12)
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4.3.3. Summary

According to the estimation based on equation above, the deformation frequencies of
the tread rubber are in the range of 100 - 120 Hz.

4.3.3 Summary

The optimization of the tire related properties is often done based on strong assump-
tions and crude approximations. Based on the deformation frequencies corresponding
to wet skid resistance and rolling resistance, optimizing temperature-dependent dissi-
pation of both of these quantities is actually based on a linear viscoelastic spectrum.
The linear viscoelastic spectrum of a pure polymer or rubber can be experimentally
obtained from oscillatory shear measurements at suitable temperature on a mechanical
spectrometer (cf. Figure 4.9).

Figure 4.9: Schematically illustrated frequency-dependent storage (G′) and loss (G′′) shear moduli
of an uncrosslinked polymer. Region-1 correlates with the wet skid behavior of a tread material;
and Region-2 correlates with the rolling resistance of a tire. In case of crosslinked rubber, there is
no transition zone instead the rubber plateau of G′ is extended to lower frequencies (dash-dot line
(G0

N )). Adapted from [153].

The storage and loss moduli are measured as a function of frequency in a linear
viscoelastic region [154]. Rolling resistance is related to the energy loss of the bulk
polymer at comparatively low frequencies (as shown Region-2 in Figure 4.9). This ra-
dian low-frequency is in the order of the angular velocity of the rolling tire. The wet
skid resistance is linked with dynamic losses in glass-rubber transition zone of the bulk
polymer at high frequencies (shown as Region-1 in Figure 4.9) [153]. The viscoelas-
tic properties of rubbers at such high frequencies are difficult to measure. Hence the
master curve construction is considered as a useful tool to estimate high frequency
behavior.
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The linear viscoelastic spectrum (mentioned in Figure 4.9) is typical result for the un-
filled/pure polymer and hence the construction of the viscoelastic master curve using
time-temperature superposition principle (TTS) on a broad frequency scale is easily
possible. However with the addition of fillers as reinforcing agents, the complex in-
teraction between the filler and the polymer network leads to a failure of the TTS
principle [55]. The typical discontinuous master curves of G′ and G′′ of the filled
rubber after using the WLF horizontal shift factors of the pure rubber are shown in
Figure 4.10.

G’

G”

Figure 4.10: Discontinuous master curve of G′ and G′′ of the SBR filled with 60 phr carbon black
after horizontal shifting with shift factors from the pure/unfilled SBR. Adapted from [55].

In literature, based on the temperature-frequency shifting principle, tan δ at high
frequencies and ambient temperature can be related to tan δ at low frequencies and
low temperatures. Thus tan δ at 0 ◦C and low frequency (≈ 10Hz) is widely accepted
as an indicator of the wet skid resistance. While the tan δ determined in the vicinity
of 100 - 120 Hz is translated in the temperature range of 60-75 ◦C and considered as
an appropriate material property that relates to the rolling resistance of the tire [136,
138]. These estimations are based on a strong assumption that the linear viscoelastic
spectrum of the investigated filled composite follows time-temperature superposition
principle. This assumption is rather an idealistic approach as it is observed that it is
difficult to construct smooth master curve for the filled system. Therefore a method
needs to be developed which gives a smooth and a continuous master curve for filled
composites. By using that method, one can optimize directly the frequency-dependent
viscoelastic properties of a tire.
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Chapter 5

Sample Mixing and Processing

Solution styrene-butadiene rubber (Sprintan R© SLR-4602 - Schkopau from Styron Deutsch-
land GmbH) filled with nano-sized silica particles were investigated. Sprintan R© SLR-
4602 - Schkopau contains 21wt% styrene, 63% vinyl content (butadiene component)
and its Tg is -25◦C. [155]. Unfilled rubbers are used as a reference to determine crosslink
densities in absolute units. The sample series of filled composites contain 0 to 80 phr
(parts per hundred rubber) of silica (Ultrasil R© U7000GR from Evonik Industries AG
with a BET surface area of 175 m2 g−1 ). [156] The filler volume fraction in the se-
ries ranges from Φ ≈ 0 to 0.21. The sample formulations are summarized in Table
5.1. 3-octanoylthio-1-propyltriethoxysilane (NXT Silane from Momentive Inc.) is used
as a rubber-filler coupling agent to reduce the filler-filler interaction and to get well
dispersed silica. By varying the silica content, the content of silane and oil were var-
ied accordingly in order to obtain better filler dispersion in the rubber. Vulcanization
additives, stearic acid (1 phr), zinc oxide (2.5 phr) and sulfur, were obtained from
Roth, while CBS (N-cyclohexyl-2-benzothiazylsulfenamide) and DPG (Diphenylguani-
dine) were from Rhein-Chemie. Both CBS and DPG were employed as vulcanization
accelerator. The use of two types of accelerators is due to the positive synergistic effect
that could be achieved by combining different types of accelerators. [74] Zinc oxide is
applied as accelerator activator and the activation would be further promoted by the
addition of stearic acid which reacts with zinc oxide, forming hydrocarbon-soluble zinc
stearate. On the other hand, the presence of fatty acid salts (zinc stearate) also lead
to better processing and improved dispersion of fillers and chemicals. [74]
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Label Sulfur U7000GR φU7000GR Dres Defects ν

phr phr vol% kHz % 1026 ·m−3

X0.9 1.26 − − 0.2258 5.8 2.32

Unfilled X1.0 1.4 − − 0.2465 4.2 2.53

reference X1.1 1.54 − − 0.2598 4.8 2.67

samples X1.2 1.68 − − 0.2683 5.9 2.76

Si20 1.4 20 0.075 0.2067 10.1 2.12

Si30 1.4 30 0.105 0.1831 12.2 1.88

Composites Si40 1.4 40 0.132 0.1757 13.0 1.81

filled with Si60 1.4 60 0.173 0.1570 26.9 1.61

silica U7000GR Si64 1.4 64 0.18 0.1455 27.0 1.50

Si68 1.4 68 0.189 0.1445 27.6 1.48

Si72 1.4 72 0.197 0.1436 27.9 1.47

Si80 1.4 80 0.213 0.1253 27.4 1.29

Table 5.1: Sample formulations and network properties

5.1 Rubber Mixing and Processing

Mixing was done in an internal mixer (Plasticorder PL2000, Brabender) for all kinds of
filled and unfilled samples. In case of unfilled compounds with different vulcanization
systems a single step mixing process with an initial temperature of 50◦C and 60 rpm
rotor speed is used for 10 min. This low temperature was chosen to avoid vulcanization
reaction during the mixing process. For each sample, the polymers were placed in the
chamber and masticate for 1 min, followed by the addition of all the additives and
further mixing for 9 min. The mixed compound was then placed in a two-roll-mill
at room temperature, passing through the gap for 5 times in order to obtain sheet-
like shape which is favorable for the further processing. All the unfilled compounds
were then vulcanized according to the procedure mentioned in Section 5.2. Please
note that these reference unfilled samples with different degree of crosslinking were
used to determine crosslink densities in absolute units based on mechanical and NMR
spectroscopy. A Mixing recipe for unfilled system is shown in Table 5.2 which is
schematically presented in Figure 5.1.

However compounds containing filler were processed by using two step mixing pro-
cess (recipe is given in Table 5.3). In the first mixing step, a starting temperature of
125◦C was chosen in order to guarantee that silanization can take place at a temper-
ature higher than 140◦C for 4 min. The rotor speed during that mixing step was 60
rpm and the mixing time was 15 min. In the second mixing step, the vulcanization
system was added at an initial kneader temperature of 50◦C, a rotor speed of 50 rpm
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5.2. Vulcanization

Component Quantity Density Weight Volume Mixing time Remarks
(phr) (gcm−3) (g) cm3 (min)

Rubber 100 0.93 48.1346 51.7576 00 : 00 Tinitial = 50◦C
Stearic Acid 1 0.92 0.4813 0.5232 00 : 30 Mixing speed = 60 rpm
ZnO 2.5 5.4 1.2034 0.2228 00 : 30 −
Sulfur 1.4 2.07 0.6739 0.3255 00 : 30 −
CBS 1.5 1.28 0.7220 0.5641 00 : 30 −
DPG 1.5 1.19 0.7220 0.5641 00 : 30 −
Total 107.9 0.962 51.9372 54 10 : 00 −

Table 5.2: Compound recipe for unfilled SBR

and 5 min mixing time.

Component Quantity Density Weight Volume Mixing time Remarks
(phr) (gcm−3) (g) cm3 (min)

Rubber 100 0.93 28.78 30.9463 00 : 00 Ti=130◦C
2/3 Silica 53 2 15.2534 7.6267 01 : 00 n=60 rpm
Silane 9.7 0.97 2.7917 2.8780 01 : 00 tmix= 10 min
1/3 Silica 27 2 7.7706 3.8853 02 : 30 −
ZnO 2.5 5.4 0.7195 0.1332 02 : 30 −
Oil Distillate 20 0.91 5.7560 6.3253 02 : 30 −
Microcrystalline Wax 1.5 0.91 0.4317 0.4744 02 : 30 −
Antioxidant 2 1.1 0.5756 0.5233 02 : 30 −
Stearic Acid 1 0.92 0.4813 0.5232 02 : 30 −
2nd Batch 10 : 00

Sulfur 1.4 2.07 0.4029 0.1946 01 : 00 Ti=50◦C
CBS 1.5 1.28 0.4317 0.3373 01 : 00 n = 50rpm

DPG 1.5 1.19 0.4317 0.3628 01 : 00 tmix=5 min
Total 221.1 1.165 62.9132 54 15 : 00 −

Table 5.3: Compound recipe for 80 phr silica filled SBR composite

All rubber compounds (unfilled and filled) are finally vulcanized at 160 ◦C in a
compression molding machine. The pressing time was chosen in accordance with vul-
canization times t90 determined from dynamic vulcameter measurements [157] and the
procedure is discussed in detail in the following section.

5.2 Vulcanization

The characterization of the vulcanization process to obtain the optimum cure time
t90 was carried out on a moving die rheometer at 160◦C with an arc of oscillation of
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Figure 5.1: Schematic illustration of the mixing procedure for both unfilled (top) and filled (bottom)
elastomer samples.

±0.5◦. For each sample, a small portion was used for the test. After a scorch time,
the measured torque increases as vulcanization reaction takes place, and reaches a
maximum. t90 is the time required to reach 90% of the maximum torque increment
and this torque can be evaluated from the following equation [158]:

M90 = 0.9 (MH −ML) +ML (5.1)

where:
M90 = 90% of the maximum torque increment
MH = maximum torque
ML = minimum torque
t90 was then read from the cure curve (see Figure 5.2). This t90 time was recorded for
each sample and used for the next vulcanization step.
Vulcanization was carried out by compression molding, in which the mixed compounds
(stored in the refrigerator for 2-4 days) were molded at 160◦C under a pressure of 100
bar to the optimum cure time t90. Afterwards, the vulcanized samples were cooled
down with cooling water. Rubber sheets with a size of (15cm × 15cm × 2mm) were
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Figure 5.2: Vulcanization isotherm of unfilled SBR (X1.0) where torque is measured as a function
of cure time.

obtained.
The sample formulation, mixing and processing were done in collaboration with the
group of Prof. H.-J. Radusch. Special thanks to Dr. S. Illisch and Miss M. Keller who
prepared the samples.

5.3 Morphological Analysis by TEM

The morphology of the nanocomposites was studied by Transmission electron micro-
scope (TEM). A JSM 2100 transmission electron microscope from JEOL was employed
for the investigations, and a voltage of 200 KV was used. Four silica-filled composite,
Si20, Si40, Si60 and Si80 were selected for the TEM investigations. Specimens for TEM
investigations were prepared by microtome on the frozen samples, with a thickness of
approximately 80-100 nm.

In Figure 5.3, representative micrographs for two samples (φSi = 7.5%vol. (top)
and φSi = 21.3%vol (bottom)) are shown with two different length scales i.e., large
scale images with 1 µm scalebar (on left) and small scale images with 100 nm scalebar
(on right). TEM pictures of both the samples show nice structural features with
bright-grey contrast represents matrix and the dark-grey spots highlight the fillers.
The less magnified TEM image (1 micron scalebar) of 7.5% vol.-sample shows nice
homogeneously distributed filler structure. The majority of the filler aggregates are
found below 1-micron size. Few micron-sized filler agglomerates are present in the
other investigated figures presented in the Appendix. Filler aggregates are found to
be spatially distributed in the sample with no connectivity among each other. High
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Figure 5.3: TEM pictures of nanocomposite samples: (top) φSi = 7.5%vol. (bottom) φSi =
21.3%vol.

magnified image demonstrates the presence of average aggregates size in the range
of 50 - 200 nm. Yellow circles have a diameter of 100 nm and these are simply a
guide to an eye for the size estimation. The TEM micrographs of 21.3% vol.-samples,
on the other hand, show dense structure of filler aggregates. These filler aggregates
are connected to each other resulting a significantly less number of voids compare to
the 7.5% vol.-sample. Few micron-sized filler agglomerates are visible. However high
magnified image reveals that even at high filler fractions, composite contains several 50
- 200 nm size aggregates. This observation indicates that the investigated sample series
contain an average aggregate size around 100-200 nm and the size does not change with
increasing filler fraction. Moreover this observation is also in accordance with recent
literature reported based on SAXS measurements. [159]
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Chapter 6

Results

6.1 Filler Reinforcement

Polymer nanocomposites, produced by adding nanofillers to polymer melts, frequently
display significantly improved thermomechanical properties relative to the pure poly-
mer. Particularly it is well known that the addition of fillers in rubbers increases
the high temperature plateau modulus (G′p) of the composite materials [92,94,95] and
hence it enhances the overall reinforcement. Not only that, particulate fillers also influ-
ence the overall temperature-dependent mechanical response of composites [34]. This
effect can be observed as the decreasing behaviour of the plateau modulus over the
whole investigated temerpature range. Limited focus has been given to the fundamen-
tal physical understanding of such viscoelastic properties of heterogeneous elastomer
materials and, the underlying physical basis of temperature-dependent large reinforce-
ments effects due to fillers. In this chapter, we explore the molecular origin of the
temperature-dependent mechanical properties and the large reinforcement observed
for the SBR composites containing nanosized silica particles.

Shown in Figure 6.1 are G′ and G′′ as a function of temperature, for silica-filled
SBR composite over a loading range from 0 to 80 phr. Temperature sweeps for different
silica-filled composites were measured from -75◦C to 150◦C at 100 rads−1 with a strain
amplitude of 0.2%. Initial strain sweeps showed that the given strain amplitude was
quite in the linear range. The glass to rubber temperature of the main transition α of
the SBR matrix is same for all the samples. The peak position of G′′ displays the glass
transition of all the samples and it appears around -25◦C(see Figure 6.1b). The plateau
modulus (G′p) in Figure 6.1a of the unfilled SBR shows a constant increase with the
temperature. This peculiar effect of temperature on G′p is due to the rubber elasticity
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Figure 6.1: Temperature-dependent shear (a) storage and (b) loss modulus of composites filled with
0 to 80 phr silica. Measurements were done at 0.2% strain amplitude and at an angular frequency of
100 rad/s. Insets show a linear representation of G′ and G′′ in the temperature range 50◦C to 150◦C.

(details of rubber elasticity can be found in Section 2). Both the storage and the loss
moduli increase with filler loading over the whole temperature range. Interestingly the
feature of rubber elasticity can still be observed in the filled composites containing fillers
up to 55 phr. However the reinforcement suddenly increases for the composites 60 phr
or higher (see Figure 6.1a-inset, a linear representation of G′p). Unlike the composites
containing Si<60 phr, a trend of a decreasing plateau modulus (G′p) with T is observed
for high silica-filled systems (Si>60 phr). The loss modulus (G′′p) in the plateau range
(Figure 6.1b) is affected in the same way as reinforcement by the addition of silica
content. G′′p increases with the silica loading and a small jump in loss modulus is seen
around 55 phr to 60 phr composite (see Figure 6.1b-inset, a linear scale of G′′).
A jump observed in G′ and G′′ can be explained by assuming the formation of a
filler network in 60 phr or higher silica-filled composites. The filler network is a three
dimensional percolating path of a solid phase incorporating filler particles which spans
over the whole rubber network. Below the formation of a filler network, the dynamics
(mechanical response) of the rubber network is dominant in low silica-filled composites
and hence those composites show rubber like elasticity from T>50◦C onwards.
Another interesting feature revealed in Figure 6.1a is the negative slope of G′p with
temperature for the composites having Si>60 phr. This behavior can be interpreted
by assuming a relaxation of the filler network due to the softeninig of a presumably
overlapping glassy layer on the filler particles from T>50◦C. This explanation can also
hold for the amplified loss modulus in the plateau range for highly-filled samples as
compared to less-filled samples. A constant relaxation of the composites (Si>60 phr)
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leads to a constant amplified dissipation through the complete investigated temperature
range.
To understand the relaxation dynamics of the composites and to verify the hypothesis
of filler network relaxation based on the existence of a glassy layer, we need to look at
the time-dependent response of the composite material at a given temperature.
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6. Results

6.2 Frequency-Dependent Mechanical Response of the

Composite

As we have seen earlier that the measurement of the viscoelastic modulus as a function
of temperature at a given frequency can be realized on a broad temperature scale. How-
ever, the same mechancial characterization carried out at one temperature by varying
the frequency scale can practically be applied only from 0.1 to 100 rads−1. The issue of
estimating of the high frequency moduli is accessible via the time-temperature super-
position principle. For different elastomer systems, this concept works well for unfilled
rubbers and allows for the construction of master curves of the complex modulus on a
broad frequency scale.
To construct a master curve of the unfilled SBR, frequency sweeps were performed
at temperatures from -35◦C to 150◦C with a given strain amplitude 0.2%, and the
respective modulus is plotted against the given frequncy window in Figure 6.2.
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Figure 6.2: Isothermal storage modulus curves of SBR in the region of glass tranistion to rubber
plateau plotted against frequency at temperatures from -35◦C to 150◦C (as indicated few of them).

To obtains master curves of G′ and G′′, the isothermal frequency curves shown in
Figure 6.2 were shifted horizontally along the frequency scale with the reference curve
of 0◦C. The resultant viscoelastic master curves G∗(ω) are shown in Figure 6.3. The
obtained temperature-dependent horizontal shift factors aT (see inset) behaves like
WLF and will be discussed more closely in the following sections.

G′(ω) in Figure 6.3 as a function of frequency for the unfilled SBR displays only
a single relaxation process namely the α relaxation process and the G′′(ω) exhibits a
maximum corresponding to this relaxation. A constant elastic pleateau modulus sug-
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Figure 6.3: Master curves G′ (black) and G′′ (red) of pure SBR obtained by shifting the data of
Figure 6.2 horizontally using the shift factors (as shown in inset), giving the viscoelastic behaviour
over an extended frequency scale at reference temperature T0 ≈ 0◦C. A dip in aT appeared around
80◦C (in inset) is due to manual switching of the high-range transducer to the low-range transducer.

gests the absence of any other relaxations at frequencies lower than the main relaxation.
Ideally an unfilled elastomer having a constant plateau modulus below the frequencies
of the α-relaxation step does not display a corresponding loss modulus which appear
here in Figure 6.3 as a tail of the α-dissipation peak. The origin of the plateau modu-
lus is the crosslinked rubber matrix which acts as a spring through the whole ω-range
of the plateau and hence does not contain any time-dependent element. The loss-tail
might appeared due to some network defects in the form of dangling chains or dilated
loops etc present in the rubber matrix.
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6. Results

6.2.1 Master Curve Construction of the Filled Composite Fol-

lowing WLF Procedure

As discussed before (Section 2.3), Klüppel [55, 65] shows that a smooth viscoelastic
master curve (G∗(ω)) for the carbon black filled composites can be constructed by
first shifting the isothermal frequency curves horizontally on the frequency scale and
then vertically on the modulus scale. By this method, he assumed that the significant
decrease of the storage modulus with increasing temeperature is due to the loss of
filler-filler bonds or glassy bridges. Hence this model takes into account the changes in
the structure of a filler network by vertically shifting of the isotherms. We applied the
same method on silica-filled SBR composites to varify the validitity of this mastering
procedure for both G′(ω) and G′′(ω) by first shifting the isotherms horizontally on
ω-scale and then vertically on G′-scale.
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Figure 6.4: (a) Master curves constructed from the isothermal frequency sweeps of 80 phr silica-
filled composite by using horizontal shift factors of pure SBR (inset as empty squares). (b) Master
curves as in a) with additional vertical shifts. The vertical shift factors (empty diamonds) are shown
in the inset.

Isothermal frequency sweeps of 80 phr (φsilica=0.213) silica-filled composite were
measured in the temperature range -35◦C to 150◦C with a strain amplitude of 0.2%
(shown in Figure A.1 in appendix). Figure 6.4a shows the horiontally shifted isothermal
frequency sweeps of this silica-filled composite based on the shift factors determined
for a pure SBR (see inset Figure 6.4a). The shift factors obtained for pure SBR were
fitted with the WLF function (Eq 3.11) with Tref= 0◦C and the values of C1 and C2

are found to be 17.1 and 52.2◦C respectively which are typical values for the diene
unfilled rubbers [128].
In Figure 6.4a, high frequency isotherms (ωT > 100 rads−1) nicely overlap correponding
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to a temperature range of 5◦C to -35◦C. For the frequencies lower than 100 rads−1,
isotherms of G′ and G′′ in the range of 5◦C to 150◦C do not overlap. This result is a
typical behavior for filled elastomers and as recommended earlier that an additional
vertical shifts has to be applied to construct a smooth and continuous master curve.
The result of this procedure is shown in Figure 6.4b. The nonoverlapping G′ isotherms
were shifted vertically on the modulus scale with a reference temperature of 5◦C and
the respective vertical shift factors were recorded accordingly in the inset Figure 6.4b.
A similar procedure was applied for the G′′ isotherms using the vertical shifts obtained
in the previous case. From the plot, we can see that while a smooth master curve can
be obtained for G′(ω), the procedure does not give simultaneously a smooth master
curve for G′′(ω).

6.2.2 Master Curve Construction of Nanocomposites for G∗(ω)

With Single Set of Shift Factors

In the previous section we saw that the time-temperature superposition principle does
not hold for G′′(ω) even if we use additional vertical shift factors obtained from G′(ω).
Therefore, the Kramers-Kronig relation is not fulfilled and it appears that both com-
ponents of the dynamic modulus transform to master curves independently. To solve
this issue, we propose here a method to construct master curves of G′(ω) and G′′(ω)

with a single set of horizontal shift factors assuming that the filled composite behaves
as a relaxing object.

Figure 6.5 shows the master curves for both storage and loss modulus for different
degree of silica filling by shifting each frequency isotherm of the composite horizon-
tally along the frequency scale only. The shift factors necessary to obtain a smooth,
overlapping master curve are different from shift factors determined for the pure SBR.
(cf. Figure 6.6). The shift factors for low-silica composites (Si<60 phr) shown in Fig-
ure 6.6 follow the WLF-trend of a pure SBR. However, shift factors obtained from
high silica-filled composites (Si>60 phr) show strong deviations from the WLF trend
particularly at high temperatures (T>Tg). The underlying physical interpretation for
such deviations is yet an open question and will be discussed later in this section.
However, systematic trends of the plateau region for both G′(ω) and G′′(ω) with dif-
ferent degree of silica loadings nicely confirm the systematic trends observed in the
temperature sweeps (Figure 6.1). The resulting complex shear modulus G∗(ω) con-
tains an α-relaxation at high frequencies which is basically identical with pure SBR.
A constant rubber plateau down to lower frequencies for composites containing less
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Figure 6.5: Master curves of (a) storage and (b) loss modulus for composites containing different
amounts (0 to 80 phr) of silica U7000GR. The original isotherms are only horizontally shifted. The
horizontal line represents the maximum limit ( for φsilica = 0.213) of Einstein-Smallwood hydrody-
namic reinforcement due to fillers. A dissipation regime in the loss modulus at high frequencies is
indicated as α peak regime. Reference temperature is 0◦C.

than 60 phr silica indicates the absence of any relaxation processes. An abrupt in-
crease in the plateau modulus is found for 60 phr silica-filled composite which we, in
the previous section of temperature scans, attributed to the formation of a filler net-
work. For the composites containing filler 60 phr or higher, G′(ω) increases with ω

over the full frequency range indicating relaxations even in the temperature range in
which a polymer network shows approximately elastic properties. As this relaxatory
bahviour appears only for the composites containing filler 60 phr silica or higher, we
concluded that this phenomenon originates from the filler network and for the slow
relaxations the modulus is dominated by the filler network contributions. One possible
reason for this relaxatory nature of highly-filled nanocomposites is the immobilized
polymeric layer associated with fillers/filler aggregates surfaces as suggested by several
researchers in literature [28, 34, 54–57]. Upon increasing the temperature, the glassy
component over the filler network softens and hence the composite relaxes. Following
this interpretation, it is important to note that the filler network has a homogeneous
structure through the whole extended frequency range of the master curves, and that
the temperature does not change the assembly of the filler network. Up to this point,
the whole argument is based on the hypothesis of the formation of a filler network and
the immobilized fraction of the matrix associated with the fillers. To characterize the
rigid/immobilized fraction, we used a low-field NMR technique and the results will be
shown in the next section.
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An obvious question which comes to mind is that how the horizontal shift factors,
which do not follow WLF, work well for constructing a master curve? In the light of
the hypothesis of the formation of the filler network at certain critical filler loading, one
can also explain this question and the subsequent unusal behavior of the shift factors
of highly filled composite which deviates from the shift factors of the pure polymer at
high temperatures.
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Figure 6.6: Horizontal shift factors aT as a function of 1/T for composites containing different
amount of silica U7000GR particles. The reference temperature is 0◦C. The dashed line indicates the
lower limit of the α relaxation region at T≈10◦C.

From Figure 6.6 we can see that the low silica-filled composites follow WLF trend
(20 phr/30 phr composites). Fitting of the WLF function to the measured curves of
unfilled and low silica-filled composites confirms that the dominant contribution to the
shift factors is the pure elastomer matrix. Addition of nanofillers (<60 phr) barely
affects the Vogel-Fulcher behavior of those composites. On the other hand, shift fac-
tors for the high silica-filled SBR composites (Si>60 phr) follow the WLF trend at
low temperatures (up to Tg). However shift factors then deviate from this trend at
high temperatures. Figure 6.6 shows a decade difference in the horizontal shifting of
the unfilled and 80 phr silica-filled composite at maximum measured temperature. We
interpret this deviation due to the dominant dynamics of the interpenetrating hard
filler network within the soft elastomer matrix at T>Tg. At T<Tg, both the unfilled
and filled SBR composite are in the glassy state. Therefore the shifting of the isother-
mal curves for both the systems is same and hence follows the WLF trend. At T>Tg,
horizontal shifting of the isotherms for composite containing Si>60 phr is possible due
to the fact that the filler network dominates over the elastomer matrix and the shifting
procedure no longer follows the WLF of a pure polymer. Systematic trends of aT (T )
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observed in Figure 6.6 indicate that further addition of the nanofillers in the composites
over Si = 60 phr, horizontal shifting varies accordingly with respect to the strength of
the filler network formed.
Another important information obtained from Figure 6.5a is that the reinforcement
(G′p) observed in nanocomposites is nearly a decade higher than the hydrodynamic
limit proposed by Einstein and Smallwood (ES) (as inidicated by the horizontal line
predicting ES limit for φmax = 0.213). To understand the significant reinforcement be-
yond the hydrodynamic limits, we need to quantify different factors contributing to the
reinforcement. For this purpose we use in the later sections the dynamic strain sweep
measurements to quantify different contributions to the reinforcement in particular the
filler network.
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6.3 Evaluation of Immobilized Fractions in Compos-

ites

To prove the existence of an immobilized fraction within the given matrix, a proton
low-field NMR was used to characterize the polymer chain dynamics of the matrix at
different temperatures and different degree of silica fillings. Low-field 1H NMR, being
sensitive to the segmental mobility in polymers, detects the phase composition based
on heterogenities in molecular mobility. In a filled elastomer, the parts of the polymer
chains are densely packed and confined onto the filler surfaces due to strong adsorption
phenomenon. Considerable effort has been done on defining the role of confinement on
the glass transition temperature, Tg, of thin planar polymer films [160, 161]. Primar-
ily two of the experimental observations are now regarded as being universal i.e., (i)
Tg is a function of the film thickness, and (ii) the magnitude of the Tg shift depends
upon polymer-substrate interactions. An interesting experimental study by Bansal et
al. [161] has already established a quantitative equivalence between polymer nanocom-
posites and thin polymer films indicating the presence of high Tg-rigid/amorphous
materials at filler interfaces. In confined spaces between filler particles, the rigid poly-
mer consists of restricted chains mobility which allows only minor orientational changes
of the proton spins. Hence, the protons residing within the polymer chains at confined
interfaces of the filled composites experience a strong dipolar couplings and influence
a free induction decay (FID) of the NMR. The FID shows a rapidly decaying time-
domain signal consisting of a short T2 relaxation time of about 20-30 µs ( as shown
schematically in Figure 3.4a and b of the Section 3.2). On the other hand, the poly-
mer chains within the bulk elastomer exhibit fast and isotropic mobility, resulting in
an averaging of the dipolar couplings on the NMR time scale. The averaging of the
dipolar couplings leads to a significantly reduced residual dipolar coupling strength and
time-domain signal of the FID decays slowly with a long T2 time (T2 > 30 µs). Details
of this method can found in Section 3.2.
Figure 6.7a shows the NMR results on the unfilled SBR with 80 phr silica-filled com-
posite. Slow decay of the FID signal from the unfilled SBR (open circles-black) corre-
sponds to the response from a mobile component within the matrix. The nonexistence
of a fast decaying signal at short time-scales indicate the absence of any immobilized
component. Comparing the unfilled with a filled composite (open triangles-blue), a
relatively fast decay (see initial 50 µs of the FID signal in inset graph) signal, ap-
pearing due to the stronger dipolar couplings, indicates the presence of the immobile
fraction within the matrix. However it is not possible to measure a FID for very short
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time-scales due to the dead time issue of a NMR receiver. The receiver dead time τrec
of the spectrometer is technically required to ensure the complete decay of the pulse
intensity and ranges between 11 µs and 15 µs for the low-field devices. To obtain the
entire shape of the FID, a Magic-Sandwich-Echo (MSE) coupled with double quantum
(DQ) filter was used. This approach helps us to refocus the fast decay signal from an
immobilized fraction and to filter out the remaining slowly decaying signals due to the
mobile contributions. The DQ-filtered MSE-FID shows fast decay signals up to 0.0254
ms for the filled composite (closed triangles-blue) and the τimmobilized was estimated
based on 1-component fitting function (Eq 3.24) [28]. This τimmobilized was later used
to obtain the initial shape of the missing FID of the filled system (see Figure 6.7a). The
MSE-FID obtained from the unfilled sample (closed circles-black), however does not
show any peculiar decay at short time scales indicating the absence of an immobilized
component.
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Figure 6.7: (a) FID (open symbols) and DQ-filtered MSE-FID (closed symbols) signals as a function
of the acquisition time for the unfilled (circles) and filled (triangles) SBR with 60 phr silica at 80 ◦C.
Solid overlapping lines are 1-component Gaussian exponential and 2-components exponential fits of
DQ-filtered and FID signals respectively for filled composite based on Eq 3.24 and 3.19. (b) Evolution
of immobilized fraction as a function of temperature for 80 phr (triangles), 60 phr (diamonds), 40 phr
(stars) and 20 phr (circles) silica-filled SBR.

The result of the above mentioned NMR investigations on different silica-filled com-
posites measured at different temperatures is shown in Figure 6.7b. From the plot, it
is evident that the rigid-immobilized fraction of the SBR matrix depends on the filler
content and the temperature. At constant temperature, the immobilized component
increases with the addition of silica nanoparticles. From this observation, we can safely
assume that this immobilized component is associated with the internal surface of the
filler particles. Upon increasing the internal surface of the nanofillers, the immobilized
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component increases as an overlapping rigid layer around the filler aggregates. An
increase in temperature, however, reduces the amount of the immobilized part of the
matrix which indicates the softeninig of the overlapping-immobilized layer around the
aggregates. Please note that, as discussed earlier in this section, based on T2 relax-
ation times of polymer chains i.e., max. 30 µs, NMR differentiates the immobile and
the mobile component of a matrix below and above this timescale. Therefore absence
of a certain fraction of the immobile part means that the FID decays slower than 30
µs. Hence this fraction is no longer considered as a rigid component, rather a mobile
component like a matrix. From NMR-determined volume fraction of the immobile
component for the 80 phr composite, the maximum thickness of an overlapping layer,
assuming a continuous rigid layer, was calculated around 2.5 nm. This thickness (d)
estimation is based on assuming spherical filler aggregates, each having the average
size (R) of 100 nm, distributed homogeneously within the matrix. The glassy layer
thickness was estimated according to following calculations

φglassy =
V olumeglassy

V olumeglassy + V olumepolymer
(6.1)

V olumeglassy =
4

3
π
(
(R + d)3 −R3

)
(6.2)

Volume of polymer is assumed to be 5 times to the volume of fillers i.e., 20% maximum
, R is the average size of the filler aggregates and d is the thickness of the presumable
immobilized layer over the filler aggregates.
The size of the aggregates ≈100 nm is a realistic estimation based on the findings from
TEM images (see Section 3). However the existence of homogeneously distributed
spherical aggregates is more an idealistic approach.
Thus NMR detects an apparent minimum fraction of immobilized material with a
modulus that is considerably higher than that of matrix. Several authors [45, 54]
propose that a rigid/glassy/immobilized layer forms glassy bridge between the filler
aggregates. At certain high filler fraction, these glassy bridges (having a glassy modulus
109 Pa) act as a glue between the filler aggregates, resulting in a percolating filler
network. Therefore, the temperature-dependent high reinforcement, in such models,
has been interpreted with the help of these glassy bridges. The NMR results presented
above support the hypothesis (stated in Section 6.1 and Section 6.2) that a highly filled
elastomeric system acts as a relaxing object, mainly due to the softening of the filler
network at high temperatures. However, it is still a question that an immobilized
fraction of the matrix forms a continuous layer (or a bridges) over the filler/aggregates
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or not?
In the following section, contributing factors, in particular temperature-dependent filler
network, to the reinforcement will be studied. The filler network needs to be defined
quantitatively to evaluate its contribution to the all overall G′p. Hence based on the
absolute values of the filler network, it is then possible to analyze the temperature and
the frequency dependence of the filler network.
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6.4 Factors Contributing to Reinforcement

As shown previously in Section 6.2 that a reinforcement, defined as plateau modulus
G′p, increases nearly half of a decade above the ES theoretical limits. Moreover, we
found that the long time relaxation (shown as a continuously decreasing rubber plateau
with frequency in Figure 6.5) of highly filled composites is due to the presence of a filler
network. The following sections deal with the factors contributing to the reinforcement.
For this purpose, first it is important to discuss the role of matrix crosslink density of
the composites to the reinforcement, the formation of the filler network and the gain
in reinforcement ∆G′ due to the filler network.

6.4.1 Quantification of Crosslink Density of Nanocomposites in

Absolute Units

The aim of this section is to study the variation in crosslink density of the matrix with
the addition of fillers. Furthermore, to what extent the crosslink density of the pure
matrix affects the reinforcement of the composite material. Several authors [4, 52, 53]
have proposed that the fillers act as additional crosslinkers and hence changes in the
crosslink density due to the addition of nano-sized fillers have a considerable influence
on the mechanical properties. The crosslink density of a pure-uniflled matrix can be
determined by the mechanical resposne experiments based on the classical theories
describing the rubber elasticity. The crosslink density ν can be estimated in absolute
units (m−3) from the plateau modulus G0

p of the unfilled elastomer systems (G′ ∝ T).
Details of this theory can be found in Section 2.1.

G0
p = νkT (6.3)

However, the behavior of the G′p gets complicated in the composite systems as the
plateau modulus becomes no longer proportional to the temperature. Hence the clas-
sical theories fail in filled composites to calculate the crosslink density. NMR is a
technique which is sensitive to the polymer chain dynamics between crosslinks, irre-
spective to the presence of the fillers inside the matrix, can be used to overcome this
problem. Hence a qualitative information can be extracted from the DQ-NMR method
to estiamte the average crosslink density of the composite system [29]. Although one
can estimate the average crosslink density of the composite by NMR, nonetheless, the
units of this crosslink density will be in NMR units i.e., kHz. Therefore in this section,
for the composites the absolute units of the crosslink density are estimated based on
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the combination of mechanical and NMR experiments .
In literature for different vulcanization agents (sulfur/peroxide), it has already been
systematically studied by NMR and swelling experiments that the crosslink density is
proportionally affected with the additions of the vulcanization agent [30–32]. Hence
we used four different pure SBR, as reference samples (without fillers), with different
degree of crosslinking to estimate the crosslink densities of the nanocomposites in ab-
solute units. The crosslink densities of the samples were varied based on their sulfur
content. The 100% crosslinked sample contains 1.4 phr sulfur (a standard recipe) and,
90%, 110% and 120% samples contain sulfur accordingly (see table 5.1).
Based on the DQ-NMR measurements, crosslink densities (Dres) of these reference
samples were estimated from the slope of the normalized DQ-buildup curves. Details
of this method and the data treatment to obtain the normalized buildup curve (InDQ)
can be found in the Section 3.2 and Section 3.2.2 respectively. The DQ-buildup curve
fittings were carried out on four different reference samples by using Eq 3.26 and the
results are shown in Figure 6.8. The systematic increase of the slope of the buildup
curves show a systematic increase in NMR-determined crosslink densities (Dres in kHz-
units). This observation indicates the fact that the addition of the sulfur proportionally
affects the degree of the vulcanization of the matrix.
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Figure 6.8: Normalized buildup curves (InDQ) as a function of tDQ. The solid lines are fits based
on Eq 3.26 assuming a Gaussian distribution of dipolar couplings.

Figure 6.9a shows the temperature-dependent mechanical response measurements
performed on the different crosslinked samples. A systematic increase in the plateau
modulus G0

p is observed with the relative increase of the sulfur content of the unfilled
reference samples. A plateau modulus from 50◦C to 150◦C of a particular reference
sample in Figure 6.9a was linearly fitted using Eq 6.3 with a zero intercept. The slope
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of the linear fit contains the information about the crosslink density ν. Therefore one
can conclude from the mechanical experiments that the crosslink density of the unfilled
reference samples increases linearly with the addition of sulfur.
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Figure 6.9: (a) Temperature dependence of storage (G′) and loss (G”) part of the dynamic modulus
of reference samples (unfilled and differently crosslinked). The 100% crosslinked sample (Red open-
squares) contains 1.4 phr sulfur (standard recipe) and accordingly 90% (Black full-triangles), 110%
(Green open-diamonds) and 120% (Green full-stars) samples are crosslinked with respective sulfur
content. The lines are linear fits to the rubber plateau modulus based on Eq.(6.3). (b) Crosslink
densities ν obtained by dynamic shear measurements as function ofDres from DQ NMRmeasurements.
The red line is a linear fit to the data with zero intercept and the slope is ANMR = 1.027 x 1027

m−3/kHz.

The estimated values of the crosslink densities in absolute units (m−3) based on
mechaincal measurements for four different samples are plotted as a function of NMR
determined crosslink densities (Dres) in Figure 6.9b. The comparison between the val-
ues from both experimental methods shows a linear relationship (Figure 6.9b) having
a zero intercept. The emphasis on the zero intercept is important concerning the fact
that some entangled chains within the matrix act as physical crosslinks during shear-
ing. These physical crosslinks are also detected by NMR as a restricted chain mobiltiy.
Therefore NMR also detects these entangled chains as crosslinks. The slope ANMR =
1.027 x 1027 m−3/kHz obtained from this linear relation allows us to determine the
crosslink density of the composite material ν containing the same rubber matrix in ab-
solute units by multiplying the slope with Dres measured by DQ-NMR measurements.

ν
[
m−3

]
= ANMR

[
m−3

kHz

]
·Dres/2π [kHz] (6.4)

This factor ANMR is valid only for the particular Sprintan-4602 SBR samples with a
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specific microstructure (21 wt % styrene and 63% vinyl content).
Now to address our basic question that is there any change in crosslink density with the
addition of fillers? Figure 6.10 shows NMR determined crosslink densities for the silica
filled nanocomposites and the crosslink densiy ν (in absolute units) was calculated by
multiplying the NMR-determined crosslink density Dres and the factor ANMR.
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Figure 6.10: Crosslink densities in absolute units as function of silica U7000GR content.

The crosslink density of the rubber matrix depends systematically on the filler
content and gradually decreases with increasing silica content. This observation shows
that there is indeed a systematic effect of the filler on the average crosslink density of the
matrix. However, this trend contradicts the proposed hypothesis of the effect of fillers
on the matrix crosslink density. In comparison to the unfilled samples, the crosslink
density of a nanocomposite containing 80 phr silica (φ ≈21%) particles reduces to 45%.
This finding shows that nano-sized filler particles do not act as physical crosslinkers.
A possible interpretation of this finding is to assume that the crosslink agent, which
is sulfur in our case, is partly deactivated due to its adosrption on large surfaces of
the filler particles. Therefore, the deactivated sulfur no longer participates in the
vulcanization process.
Comparing the two trends i.e., the filler reinforcement in Figure 6.1a and the average
crosslink density in Figure 6.10, we conclude that the reinforcement in the plateau
range is governed by the filler content and it is barely affected by the crosslink density
of the rubber in the composite.
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6.4.2 Filler Network

A standard experimental technique to quantify the contributions to reniforcement, in
particular filler network contribution, is a strain sweep. A filler network is a solid
percolating path formed by a continuous solid phase incorporating the filler particles
in a composite material. Strain sweeps are performed on filled elastomer from small
sinusoidal deformations to large deformations. As a result, a step in a real part and
a maximum in an imaginary part of the shear modulus are observed for the filled
elastomer composites due to breakdown of the filler network. This strain induced
softening phenomenon is also known as Payne Effect and the details of this effect can
be found in the chapter Section 2.3.
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Figure 6.11: Storage modulus G′ versus shear strain γ (Payne effect) for composites containing
different amounts of silica. Measurements were performed at (a) 25◦C, (b) 60◦C and (c) 150◦C and
10 rad/s. The lines are fits based on the Kraus model (Eq.2.12). Top inserts show sketches of the
filler network before ((γ → 0), left) and after applying large deformations ((γ →∞), right).

To see the contribution from a filler network to reinforcement, large sinusoidal

83



6. Results

deformations were applied to the given composites and the shear moduli were recorded.
Figure 6.11 shows the shear measurements performed at 25◦C, 60◦C and 150◦C with
strain amplitudes γ increasing from 0.001% to 20% at a frequency of 10 rads−1. The
results for different silica-filled composites show a sigmoidal decrease of storage modulus
as a step of G′ from low to high strain limits at 25◦C. The strain sweeps measured at
60◦C or higher temperatures for different silica-filled composites also show this feature
but the magnitude of G′(γ → 0) is reduced compared to 25◦C. This finding is in
accordance with the temperature sweeps shown in Figure 6.1 where we discussed that
the decreasing trend of G′(T ) is due to the relaxation of a filler network. From the
Figure 6.11a, significant sigmoidal steps in G′25◦C appear in the composites containing
fillers from 80 phr down to 60 phr. However this step is less pronounced for the
composites containing fillers <60phr. Although, G′60◦C(γ) and G′150◦C(γ) show the
decreasing step for 60phr or higher silica-filled composites, this feature is not observed
at lower filled composites (<60 phr).
The phenomena of sigmoidal decrease of G′ is interpreted due to the break down of
the filler network after subjecting the composite under large amplitude deformations
γ>1% (cf. sketches shown as insets in Figure 6.11). The pure rubber without fillers, on
the other hand, does not exhibit such phenomena as seen in strain sweeps (0 phr-black
circles in Figure 6.11). Even, the composites filled up to 55 phr do not contain filler
network due to the fact that they do not show a sigmoidal step in G′(γ) (exception is
found at 25◦C and this finding will later discuss as a breakdown of aggregates containing
occluded rubber but no filler network).
For a qualitative analysis of this strain-induced softening of the filled rubber, a Kraus
model was used to obtain the absolute values of the G′ at low (γ −→ 0) and high strain
(γ −→ ∞) limits. The solid lines over each measured data in Figure 6.11a,b,c are the
fits based on the Kraus model (Eq 2.12), details of which is mentioned already in the
Section 2.3.

Kraus paramters at different temperatures are shown in Figure 6.12. The analysis
in Figure 6.12 is based on two parameters extracted from the model: G′∞, which shows
the absolute modulus values at γ → ∞ and G′0, which is the sum of ∆G′ and G′∞

and regarded as G′(γ −→ 0). Comparing values for the storage modulus G′0, G′∞ and
theoretical predictions of Einstein-Smallwood (ES) (Eq 6.5) in Figure 6.12, one can
conclude that hydrodynamic contributions of the nanosized silica particles alone are
small at all temperatures and shear deformations.

G′ES = G′matrix (1 + 2.5φfiller) (6.5)
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Figure 6.12: Analysis of nonlinear mechanical measurements (strain sweeps) as shown in the
Figure 6.11 (ω = 10rads−1). Storage moduli at strain amplitude γ −→ 0 (red circles) and γ −→ ∞
(blue triangles) for different silica filled nanocomposites at (a) 25 ◦C, (b) 60 ◦C and (c) 150 ◦C. Thick-
solid line (red), dash line (orange) and the dash-dotted line (green) represent the Einstein-Smallwood
(ES) fit up to φc (over red circles), the extrapolation of ES fit to φmaximum (extension of red lin e)
and the prediction of Einstein-Smallwood model based on unfilled rubber respectively. The diagonal
hatch illustrates the limit of unfilled SBR plateau modulus.

At constant temperature and frequency in Figure 6.12, G′0(red circles) increases linearly
with the addition of filler up to a critical fraction φc ≈ 0.155. A change in slope is
observed for large φ indicating the formation of a percolating filler network (as shown
schematically in Figure 6.13) and φc is regarded as the percolation threshold.

Note that the percolation threshold is found to be independent of the temperature.
It is schematically illustrated as a vertical dashed line in Figure 6.12. This observation
gives a strong indication that the temperature has primarily no effect on the forma-
tion of the filler network. At certain filler fraction ( φc), silica fillers due to strong
filler-filler interaction form a filler network and no temperature-dependent medium
(glassy/immobilized material) is necessary to aid the formation of the filler network.
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Figure 6.13: Schematic illustration of filler network formation. Additional filler aggregates at each
of φ are encircled in red.

Hence, one can conclude that even during the linear-response measurements for high-
filled composites, the structure of a percolating filler network within the matrix does
not change with temperature. With increasing temperature, G′0 is significantly reduced
due to the relaxatory material properties of the SBR nanocomposite containing filler
network (as discussed previously in Section 6.2). So from where does this filler network
relaxation comes from? The answer of this question will be discussed in Section 6.5,
once the filler network will be quantified in absolute values.
The modulus at high strain limit G′∞ (blue triangles) in Figure 6.12 contains no con-
tribution from the filler network as it breaks down under large deformations. At each
temperature in Figure 6.12, G′∞ increases linearly with the whole given range of filler
fractions and the slope remains unchanged. The values of G′∞ measured at 25◦C and
60◦C are significantly above the hydrodynamic limit as predicted by ES-relation (Eq
6.5) when considering φfiller = φsilica. Notably, the 150◦C data can be fitted in this way
when adding the Guth-Gold second-order term i.e., 14.1φ2

silica. However this factor is
still controversial and debatable and reported to be too high.
To quantify the gain in modulus due to the formation of a filler network, a specific
∆G needs to be defined which contains the information only about the filler network
at small mechanical deformations. In the data set of the G′0 (red circles) of each tem-
perature in Figure 6.12, the ES-relation was used to fit the range from φ = 0 to φc
using φeff = f · φsilica. The factor f attributes to the model inadquacies and it is here
interpreted as the experimental quantification factor for the occluded rubber at small
strain limits. Typical values of the factor f is found to be 6 at 25◦C, 3 at 60◦C and 1.8 at
150◦C. Based on the information from φeff , the ES-fit is extrapolated to the maximum
of φsilica ≈ 0.213. Finally the filler network contribution (∆Gfiller network) to the modulus
is determined at these given T and ω as the difference between the measured G′0 and
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ES extrapolation to above φc. Hence, by using the information from linear and nonlin-
ear dynamic mechanical measurements, the filler network ∆Gfiller network contribution
to the reinforcement is quantified.

∆Gfiller network = G′0 −G′ES fit/extrapol (6.6)

From the analysis above, it is concluded from the linear-response measurements that
the total reinforcement of filled composite consists of a hydrodynamic contribution h0

and a filler network contribution (∆Gfiller network). The hydrodynamic contribution (h0)
is a multiplicative factor to the unfilled modulus Gmatrix. While the filler network
contributes as an additive term to the overall modulus of the filler elastomer.

G′0 = h0 ·Gmatrix + ∆Gfiller network (6.7)

Concerning the large-scale deformation of the filled composite with an assumption that
the filler network is completely destroyed and additionally there is no payne effect for
the pure matrix, the modulus at infinite strain limit (G∞) of the composite can be
written as:

G′∞ = h∞ ·Gmatrix (6.8)

where h∞ is a potentially modified hydrodynamic factor that takes into account the
amount of remaining filler aggregates. Broken filler aggregates comprise the effective
filler fraction (φeff ) which is associated with “occluded rubber” and which will be
discussed in the next section.
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6.4.3 Occluded Rubber
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Figure 6.14: Schematic illustration of occluded rubber within the cavities of the broken filler
aggregates.

In the previous section, we observed that the values G′∞ measured at 25 ◦C and
60 ◦C in Figure 6.12 are significantly above the hydrodynamic limit as predicted by
the Einstein-Smallwood [96,97] even if the filler network is practically destroyed. The
extra reinforcement (G′∞-G′ES) at given temperature depends on the silica content as
it increases linearly with the filler fraction. This observation indicates that at low
temperatures there are additional contributions to the reinforcement, other than the
filler network. In the previous section, we quantified the hydrodynamic contribution
to the modulus (from φ=0 to φ=φc) at low strain limits by assuming the ES-model
as an approximate hydrodynamic approach. For G′∞, we used the similar approach to
estimate the φeff . The typical values for the factor f indicates that the volume fraction
of the solid material φsolid should be 5.5, 2.8 and 2 times higher than the original filler
content φsilica at 25 ◦C, 60 ◦C and 150 ◦C respectively in order to explain the obtained
G′∞ values. It seems to be unrealistic to assume that the observed G′∞ values can be ex-
plained either by simple hydrodynamic effects of the filler particles or by filler particles
plus additional immobilized layer alone. Additionally, the rigid/immobilized fraction
is found only on the order of few percent of the polymer fraction at each temperature
(see Figure 6.7b).
Additional hydrodynamic effects which are related to the presence of larger filler ag-
gregates existing also for large strains (γ >> γc) where filler network is destroyed, are
obviously important. From hydrodynamic point of view, these remaining aggregates,
after the breakdown of the filler network, act like bigger objects containing “occluded”
rubber which is shielded from the shear flow. The whole assembly of aggregates and the
occluded rubber shielded within the cavities of aggregates, as shown schematically in
Figure 6.14, hence, leads to an effectively larger filler fraction and resulting in a stronger
reinforcement. At high temperatures, the aggregates containing occluded rubber are

88



6.5. Viscoelasticity of Filler Network

soft enough to move with the applied stress field and hence the reinforcement decreases.

6.5 Viscoelasticity of Filler Network

So far, we have found that the composites containing the filler network display relax-
atory nature and the elastic moduli of those composites, either obtained from linear
response temperature sweep or frequency sweep measurements, decrease with increas-
ing temperature and decreasing frequency (see Figure 6.1 in Section 6.1 and Figure 6.5
in Section 6.2 respectively). Based on this observation, in previous sections we hypoth-
esized that the relaxatory behaviour of the composite originates from the softening of
the immobilized layer confined to the filler surfaces of the network. The ∆Gfiller network

of highly filled composites, which is defined in the previous section as the modulus
of the filler network, must show viscoelasticity and depends on T and ω. To obtain
the ∆Gfiller network, linear response temperature sweep measurements were performed
at different frequencies for different silica filled composites containig φsilica>φc. As an
example Figure 6.15a shows G′(T ) for only 80 phr silica-filled composite measured at
1 rads−1 , 10 rads−1 and 100 rads−1 frequencies. At same frequencies, Figure 6.15b
shows G′(φsilica) plotted for different degree of fillings at 25◦C. Noteably, the less-filled
composites (φsilica<φc) do not show the ω dependence, allowing a linear ES-fit in the
range of φsilica=0-φc. Upon extrapolating the ES-fit to φmax i.e.,0.213, the absolute
values of the ∆Gfiller network were determined at each isochrone as a difference between
measured G′0 and the ES-extrapolation.

The central result of the analysis mentioned above, is plotted in Figure 6.16a.
The frequency- and temperature-dependent response of the filler network in terms
of ∆Gfiller network of the highest-filled sample is shown as a function of temperature
for different frequencies ω. Significant dependence of the filler network reinforcement
(∆Gfiller network) on frequency is observed at each temperature. The observation that
∆Gfiller network decreases monotonically with temperature as well as frequency is in sup-
port of the relaxatory, viscoelastic nature of the filler network.

An attempt is also made to establish a connection between the mechanical proper-
ties with the results obtained by the NMR measurements of the immobilized fraction
of the matrix. Figure 6.16b shows a correlation of ∆Gfiller network with NMR-determined
rigid fraction (%) for different frequencies and temperatures for φsilica>φc. It is ob-
served that the ∆G as a function of immobilized volume (%) from samples with different
φsilica measured at different temperatures follow nearly the same nonlinear trend for
all frequencies as compared to the Figure 6.16a. In other words, we can deduce an
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Figure 6.15: (a) Storage modulus of 80phr silica-filled composite as a function of temperature
for 100rads−1 (blue), 10rads−1 (green) and 1rads−1 (red) (b) Comparison of storage moduli as
a function different silica loadings measured at 25◦C and at 100rads−1 (closed-squares), 10rads−1

(open-diamonds) and 1rads−1 (closed-triangles). Thick-solid line (black) is the ES fit up to φc and
thick-dashed line (violet) is further the extrpolation up to φ ≈ 0.213.

apparent rigid fraction-temperature superposition property of ∆G (φrig (T ) , T ). This
means that the filler network reinforcement is governed by two vital paramters. 1) Tem-
perature, as ∆Gfiller network decreases with increasing T and 2) the rigid fraction φrig,
as ∆Gfiller network increases with the increase of φrig due to the addition of solid/rigid
component (φsilica+φimmobilized) inside the matrix.
Based on the experimental observations, the relaxatory behaviour of the highly filled
(φsilica>φc) composites was assumed to be originated from the softening of the immo-
bilized polymer associated to the filler network. As suggested by many researchers in
literature [54, 55] in the model systems, the strong reinforcement of the filler network
is a result of “glassy bridges” formed within the percolating path of the filler parti-
cles/aggregates due to the presence of rigid/glassy layer on filler surfaces. Thus, the
reinforcement increases with decreasing temperature due to the formation of thicker
glassy layer. If this would be the case, then this phenomenon, however, should lead
to a reduced percolation threshold at lower temperatures, where the aggregates (plus
the thicker glassy layer) are effectively larger. Hence, they percolate at small filler
fractions. However, our experimental results shows that the percolation threshold of
the filler network does not change with temperature. The temperature-independent
percolation behavior of the filler network strongly indicates that the “glassy bridges”
are not directly responsible for the formation of the filler network. NMR investigations,
however, revealed the presence of small fractions of immobilized components within a
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composite (max. 3.5% of the matrix). Hence in this thesis, it is suggested that the
fractions of rigid/immobilized polymer (G’≈ 109 Pa) is located in the highly confined
regions of the filler network as shown schematically in Figure 6.17. This argument is
well supported by the finite-element simulation work of Gusev [61, 123]. According to
his simulation, only minute amounts of increased-Tg material (down to the permille
level) located between filler particles can explain the enhanced storage modulus and
the additional dissipation in filled elastomers. The immobilized polymer may or may
not form the contiguous layer over the filler network, it is still an open question.

σ

?

σ

Figure 6.17: Schematic illustration of the complex deformation modes in the percolating filler
aggregates containing immobilized fractions in highly confined regions.

The sketch in Figure 6.17 highlights the complex deformation modes of the perco-
lated filler network, and provides a fundamental ground for the temperature-independent
percolation threshold. Due to the strong filler-filler interaction in silica particles, the
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filler network is formed at a certain critical filler fraction (φc) during the mixing pro-
cess of fillers in an elastomer. The strong adsorption of the polymer in the highly
confined regions of filler network results in the immobilization of the polymer. During
the mechanical deformations, the confined immobilized polymer in the cavities of the
filler network dominates the bending modes of the filler network. It has already been
established that the elastic properties in the random percolating system is dominated
by the bending modes of the filaments due to soft and rigid portions of the system [162].
Therefore, in case of near-spherical filler particles, the small amplitude shearing of the
filler network causes the bending or dilating of the filler network possibly via the immo-
bilized fractions in the interparticle gaps. At lower temperatures, network experiences
a high bending rigidity of the viscoelastic filler-filler connections due to relatively high
amount of rigid material in the cavities and thus an overall higher ∆G is observed.
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6.6 Parameters Influencing Energy Dissipation in Filled

Rubbers

According to Kramers-Kronig relation, real part of the modulus (G′) is connected to
the imaginary part (G′′) of the complex function G∗ provided that the measurement
is perfomred under linear regime. Therefore in a linear response dynamic mechanical
experiments if there is a relaxation in the form of a step in G′(T ) curve, there must be
a dissipation peak in G′′(T ).
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Figure 6.18: Loss modulus G” at 25◦C (circles), 60◦C (triangles) and 150◦C (pentagones) for
composites containing different amounts of silica measured at 0.2% amplitude and 100 rads−1 angular
frequency from linear response measurements.

Figure 6.18 shows the values of the loss modulus G′′ obtained from the linear re-
sponse measurements for the composites with different degree of silica fractions mea-
sured at 25◦C, 60◦C and 150◦C. At a given temperature, loss modulus G′′ increases
strongly with increasing filler particles. A comparison of the data in Figure 6.18 with
Figure 6.12 shows that G′′ depends in a similar way on the filler fraction as the corre-
sponding storage modulus G’. With increasing filler fraction, a change in slope of G′′

is also observed around φc at each temperature indicating that the formation of a filler
network strongly amplifies the loss modulus.
Similar behavior of loss modulus G′′ was observed when the composites were subjected
to large sinusoidal deformations. Figure 6.19 shows the Payne effect measurements for
the loss modulus. At large deformations and given temperatures, G′′ shows a similar
significant decrease as compared to G′ (shown in Figure 6.11).

At critical strain amplitude (γc > 1%), the loss modulus of high silica-filled SBR
composites exhibits a pronounced peak indicating an elevated dissipation of the applied
energy due to the breaking process of the filler network. Once the filler network is
broken down, the G′′ values reduces significantly as compared to the values observed
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Figure 6.19: Loss modulus G′′ versus shear strain γ (Payne effect) for composites containing
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rad/s. Note: the increasing values of G′′ at 150◦C and high amplitudes for samples 0 to 55 phr are
purely instrumental effect, appeared due to softening of the samples.

at small deformations. Interestingly, a similar systematic trend of high deformation
loss modulus G′′∞ is observed with the addition of fillers as well as with the temperature
as compared to the trends observed for G′∞ (c.f. Figure 6.11).

Comparison of Loss Factor and Loss Modulus

In the previous chapter 4, on the basis of the literature review it was concluded that
the tan δ might be a misleading parameter for the characterization of loss/dissipation
during the wet skid and the rolling resistance. Additionally based on the studies of
Robertson et al., G′′ appeard to be an appropriate loss quantity in terms of analzying
the glass tranistion temperature of the rubber matrix which is not affected by addition
of fillers. The values of the tan δ peak and/or even glass-rubber transition region,
which is the important temperature region for the wet skid resistance, are influenced
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not only by local segmental motions, as shown in the loss modulus (G′′) towards lower
T, but also by filler reinforcement effects on both the storage modulus (G′) and G′′ at
higher T. Similar results were obtained in this thesis(see Figure 6.1). Therefore to see
the validity of this argument in silica filled composites, tan δ vs temperature obtained
from dynamic shear experiments is plotted below in Figure 6.20a.
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Figure 6.20a shows that the high temperature plateau region of the tan δ, which is
the important region for the optimization of the rolling resistance of the tire, increases
systematically with the addition of filler. However, this is not the case in the temper-
ature range of 0◦C to 25◦C which has a considerable importance concerning the wet
skid resistance of the tire. In order to compare both of the viscoelastic loss paramters
i.e., tan δ and G′′, a comparison is done in Figure 6.20b at 0◦C to 25◦C. At 0◦C, the
tan δ and G′′ show opposite trends with increasing filler fraction. G′′ systematically
increases with the filler addition which is the expected behavior of the dissipation in
case of addition of the fillers. However, tan δ decreases with the filler loading upto
φc(0.156) and then it remains nearly constant for the loading above φc. At 25◦C, it is
observed that the values of the tan δ approximately remain unchanged over the whole
range of filling. While G′′ systematically increases with the addition of silica.
It is evident from the observaions above, that the loss modulus G′′ is related to the
storage modulus G′ not only in the linear range of small deformations (G′0,G′′0) but also
in the nonlinear range of large deformations (G′∞,G′′∞). Therefore, if the behaviour of
loss needs to be monitored in the tread rubber by varying the filler content, G′′ gives the
most systematic results as compared to the tan δ particularly in the low temperature
zone.
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Chapter 7

Conclusion

In this work, solution polymerized Styrene Butadiene rubber (S-SBR) vulcanizates
filled with different amounts of silica nanoparticles with high specific surface are stud-
ied. To study the temperature- (T) and frequency-dependent (ω) mechanical response
of the composites, the dynamic mechanical analysis (DMA) were used to quantify
and to understand different factors contributing to the reinforcement (defined here as
plateau storage modulus G′p). DQ-NMR approach was used to study the network topol-
ogy with and without the presence of fillers. Additionally magic-sandwich-echo (MSE)-
sequence of the low-field NMR was used to quantify the confined rigid-immobilized
components of the matrix.
The temperature-dependent mechanical properties of the composites filled with dif-
ferent amounts of silica nanoparticles show that the plateau storage modulus (G′p) in-
creases systematically with the fillers. The filler-induced reinforcement (G′p) is strongly
increased over the silica loadings of 60 phr (φsilica=0.156). This notable increase in G′p
is, assumed at this point, appeared due to a filler network formed at such high filler
loadings. The softening of the composites (>60 phr) are observed at high temperatures
based on the observations of T-dependent decreasing modulus of those composites.
Similarly the loss modulus (G′′p) also systematically increases with the addition of the
fillers. Furthermore, similar to the observation for G′p for high silica-filled samples, the
G′′p also decreases with increasing temperature.
In order to obtain the wide-range ω-dependent shear modulus for the composites,
isothermal frequency curves of shear modulus (limited ω-range 0.1-100 rads−1) were
obtained from DMA at different temperatures. The master curve of unfilled SBR, which
fulfills time-temperature superposition principle (TTS), was constructed over the wide
frequency range by using WLF-horizontal shift factors. It is further demonstrated that
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7. Conclusion

by using the shift factors of the pure SBR, a master curve of high silica-filled composite
cannot be constructed which is an expected result as already discussed in literature.
Additional vertical shift factors are used, according to the procedures mentioned in
literature [55, 56], to create master curve of G′. However these vertical shift factors
do not master a simultaneous curve for G′′. For the first time, it is shown in this
thesis that the master curve of the composites containing silica > 60 phr can be con-
structed using single set of horizontal shift factors. Such master curves are constructed
by horizontal shifting of each isotherm and the corresponding shift factor is recorded
separately. The apparent-single set of shift factors obtained for the filled composites
follow WLF-behavior for the composites filled with silica < 60 phr. However the shift
factors obtained for the composites with high amount of silica (>60 phr) deviate from
the WLF-trend at high temperatures (T>Tg). Systematic trends of the shift factors
obtained from the addition of fillers (over 60 phr) support the idea of the presence of
filler network whose relaxation dynamics is dominant over the rubber network at such
high filler loadings. The master curves of G′ obtained for high silica-filled composites
show the presence of low frequency relaxations which is indicated as a negative slope of
G′p vs ω. Due to the fact that this feature is not seen in the low silica-filled composite,
hence the negative slope of G′p at high filler loadings is interpreted due to relaxation of
the filler network.
The T- and ω-dependent mechanical results show the high-temperature softening and
low-frequency relaxation of the G′p respectively at high filler loadings. From these
results, the presence of a rigid-immobilized fraction of the soft polymer matrix was
assumed which has modulus that is considerably higher than the matrix and presum-
ably this fraction is associated with the filler network. To confirm the presence of the
immobilized component of the matrix, a low-field NMR was used with a particular
MSE-sequence to detect an apparent minimum fraction of an immobilized material
(arig) of the matrix. The arig for a given filler loading decreases significantly with tem-
perature. This result explains the softening and the relaxation of G′p in high silica filled
composites. At constant temperature, arig increases with the addition of silica fillers.
This result indicates that the immobilized-rigid component of the matrix is associated
with the filler surface.
A different NMR technique was used to study the effect of fillers on the crosslink den-
sity of the filled composites. The DQ-NMR spectroscopy measurements on unfilled
rubbers with variable content of crosslink agent and crosslink density allow, in combi-
nation with shear measurements on these samples, to determine the crosslink density
ν of rubbers in absolute units. According to classical theories describing rubber elas-
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ticity, the crosslink density ν was estimated from the plateau modulus G0
p of unfilled

elastomers [88]. The Dres values from independent DQ NMR measurements on these
unfilled rubbers are found proportional to the ν values determined from shear data.
This allows to determine the proportionality constant between both quantities for our
Sprintan R© SLR-4602 - Schkopau samples with a specific microstructure. Based on a
combination of DQ NMR measurements and shear data for unfilled rubbers, for the
first time the crosslink density of the rubber matrix is estimated in composites in abso-
lute units (m−3). The results for different silica-filled composites show clearly that the
crosslink density decreases systematically with increasing U7000GR filler content. We
interpret this as a consequence of a strong absorption of the cross-linking agent on the
surface of filler particles. With this observation, it is evident from T-sweep mechanical
measurements that the reinforcement is primarily induced by the fillers and it is abso-
lutely not affected by the network topology.
Different contributions to the reinforcement were quantified based on nonlinear me-
chanical behavior of SBR composites. It is concluded from this analysis that the
hydrodynamic component of the filler reinforcement is the multiplicative term to the
unfilled storage modulus. The contribution from the filler network is an additive quan-
tity to the overall modulus of the filled composite. At small deformations, the filler
network is formed at critical filler fraction φc ≈0.156 (60 phr). The φc is considered
as the percolation threshold of the formation of the filler network. The G′0 measured
at 25◦C, 60◦C and 150◦C show that the value of the percolation threshold (φc) do
not change with temperature. The storage modulus (G′∞) measured at large sinu-
soidal deformations increases linearly with the addition of filler and do not show a
percolation threshold, indicating the absence of the filler network at high mechanical
deformations. The G′∞ observed at all measured temperatures are observed higher than
theoretical hydrodynamic model of Einstein-Smallwood (ES). The remaining reinforce-
ment (G′∞-G′ES) and its systematic temperature-dependent behavior is interpreted as a
contribution from the occluded rubber within the broken aggregates, which is shielded
from the applied stress-field and hence it increases the effective filler volume (φeff ) of
the composite.
From the linear response mechanical measurements, the filler network contribution
(∆Gfiller network) were isolated at different temperatures and frequencies as the differ-
ent between the measured G′0 and the ES extrapolation to above φc. ∆Gfiller network

decreases monotonically with temperature as well as with frequency. This result con-
firms the idea presented in T- and ω-dependent G′p measurements for high silica-filled
samples that the filler network (∆Gfiller network) has a relaxatory nature and holds vis-
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7. Conclusion

coelastic properties. By combining the results obtained from the NMR and the DMA
measurements, it is proposed that the viscoelasticity of the filler network originates
from the rigid-immobilized fractions of the matrix confined in the isolated cavities
of the filler network. Upon increasing the temperature, the softening of confined-
immobilized component leads to a lower bending rigidity of the viscoelastic filler-filler
connections and hence lower the overall ∆Gfiller network.
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Appendix A

Isothermal Frequency Sweeps (80 phr
Silica-filled)

To construct a master curve of the SBR composite filled with 80 phr of the silica,
frequency sweeps were measured at temperatures from -35◦C to 150◦C with a given
strain amplitude 0.2%. The isothermal curves of storage and loss moduli are plotted
against the given frequncy window in Figure A.1.
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Figure A.1: Isothermal storage (a) and loss (b) modulus curves of SBR plotted against the given
frequency measured at temperatures from -35◦C to 150◦C (as indicated few of them).

To obtains the master curves ofG′ andG′′, the isothermal frequency curves shown in
Figure A.1 were shifted horizontally along the frequency scale with the reference curve
of 0◦C. The resultant viscoelastic master curves G∗(ω) are shown in Figure 6.5. The
obtained temperature-dependent horizontal shift factors aT are shown in Figure 6.6.

101





Bibliography

[1] G. Kraus, Reinforcement of elastomers. Interscience Publishers, 1965.

[2] J. E. Mark, B. Erman, and F. R. Eirich, eds., Science and Technology of Rubber.
Elsevier, Amsterdam, 2006.

[3] A. I. Medalia, “Effects of carbon black on abrasion and treadwear,” in The Sec-
ond international conference on carbon black, pp. 295–304, Universite de Haute-
Alsace, 1993.

[4] C. Robertson and C. Roland, “Glass transition and interfacial segmental dy-
namics in polymer-particle composites,” Rubber Chem Technol, vol. 81, no. 3,
pp. 506–522, 2008.

[5] M. Gerspacher and C. P. O’Ferrell, “Tire compound materials interaction,” KGK,
vol. 54, pp. 153–158, 2001.

[6] M.-J. Wang, “Effect of filler-elastomer interaction on tire tread performance part-
1,” Kautsch Gummi Kunstst, vol. Issue 9, pp. 438–443, 2007.

[7] M.-J. Wang, “Effect of filler-elastomer interaction on tire tread performance part
2,” Kautsch Gummi Kunstst, pp. 33–42, 2008.

[8] G. Heinrich, M. Klüppel, and T. A. Vilgis, “Reinforcement of elastomers,” Curr
Opin Solid State Mater Sci, vol. 6, no. 3, pp. 195–203, 2002.

[9] M. Klüppel and G. Heinrich, “Rubber friction on self-affine road tracks,” Rubber
Chem.Technol., vol. 73, no. 4, pp. 578–606, 2000.

[10] B. Persson, “Theory of rubber friction and contact mechanics,” J Chem Phys,
vol. 115, pp. 3840–3861, 2001.

[11] B. Persson, “On the theory of rubber friction,” Surface Science, vol. 401, pp. 445–
454, 1998.

103



BIBLIOGRAPHY

[12] C. Angell, “Formation of glasses from liquids and biopolymers,” Science, vol. 267,
pp. 1924–1935, 1995.

[13] R. Böhmer, R. Chamberlin, G. Diezemann, B. Geil, A. Heuer, G. Hinze, S. Kue-
bler, R. Richert, B. Schiener, H. Sillescu, H. Spiess, U. Tracht, and M. Wilhelm,
“Nature of the non-exponential primary relaxation in structural glass-formers
probed by dynamically selective experiments,” J noncryst solids, vol. 235-237,
pp. 1–9, 1998.

[14] E. Donth, The glass transition: Relaxation dynamics in liquids and disordered
materials. Springer, Heidelberg, 2001.

[15] G. P. Debenedetti and F. H. Stillinger, “Supercooled liquids and the glass tran-
sition,” Nature, vol. 410, no. 6825, pp. 259–267, 2001.

[16] L. Berthier, G. Biroli, J. Bouchaud, L. Cipelletti, D. El Masri, D. L’Hote,
F. Ladieu, and M. Pierno, “Direct experimental evidence of a growing length
scale accompanying the glass transition,” Science, vol. 310, no. 5755, pp. 1797–
1800, 2005.

[17] G. B. McKenna, “Glass dynamics - diverging views on glass transition,” Nature
Physics, vol. 4, no. 9, pp. 673–674, 2008.

[18] K. Dawson, K. Kearns, L. Yu, W. Steffen, and M. Ediger, “Physical vapor deposi-
tion as a route to hidden amorphous states,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 106, no. 36, pp. 15165–15170,
2009.

[19] K. Ngai, Relaxation and diffusion in complex systems. Springer, Heidelberg, 2011.

[20] M. Alcoutlabi and G. B. McKenna, “Effects of confinement on material behaviour
at the nanometre size scale,” J Phys Cond Matter, vol. 17, no. 15, pp. R461–R524,
2005.

[21] C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K. Gubbins, R. Rad-
hakrishnan, and M. Sliwinska-Bartkowiak, “Effects of confinement on freezing
and melting,” J Phys Cond Matter, vol. 18, no. 6, pp. R15–R68, 2006.

[22] E. Hempel, S. Vieweg, A. Huwe, K. Otto, C. Schick, and E. Donth, “Characteristic
length of glass transition from calorimetry in different confinements,” J.Phys.IV
France, vol. 10, no. Pr7, pp. 79–82, 2000.

104



BIBLIOGRAPHY

[23] M. Beiner and H. Huth, “Nanophase separation and hindered glass transition in
side-chain polymers,” Nat Mat, vol. 2, no. 9, pp. 595–599, 2003.

[24] C. J. Ellison and J. M. Torkelson, “The distribution of glass-transition tempera-
tures in nanoscopically confined glass formers,” Nat Mat, vol. 2, no. 10, pp. 695–
700, 2003.

[25] J. Dutcher and M. Ediger, “Materials science - glass surfaces not so glassy,”
Science, vol. 319, no. 5863, pp. 577–578, 2008.

[26] A. Serghei, M. Tress, and F. Kremer, “The glass transition of thin polymer films in
relation to the interfacial dynamics,” J Chem Phys, vol. 131, no. 15, pp. 154904–
+, 2009.

[27] V. Boucher, D. Cangialosi, A. Alegria, J. Colmenero, J. Gonzalez-Irun, and
L. Liz-Marzan, “Accelerated physical aging in pmma/silica nanocomposites,” Soft
Matter, vol. 6, no. 14, pp. 3306–3317, 2010.

[28] A. Papon, K. Saalwächter, K. Schäler, L. Guy, F. Lequeux, and H. Montes,
“Low-field nmr investigations of nanocomposites: Polymer dynamics and network
effects,” Macromolecules, vol. 44, no. 4, pp. 913–922, 2011.

[29] K. Saalwächter, “Proton multiple-quantum nmr for the study of chain dynam-
ics and structural constraints in polymeric soft materials,” Progress in nuclear
magnetic resonance spectroscopy, vol. 51, pp. 1–35, 2007.

[30] J. L. Valentin, J. Carretero-Gonzalez, I. Mora-Barrantes, W. Chasse, and K. Saal-
wächter, “Uncertainties in the determination of cross-link density by equilib-
rium swelling experiments in natural rubber,” Macromolecules, vol. 41, no. 13,
pp. 4717–4729, 2008.

[31] J. L. Valentin, P. Posadas, A. F. Torres, M. A. Malmierca, J. Carretero-Gonzalez,
W. Chasse, and K. Saalwächter., “Inhomogeneities and chain dynamics in diene
rubbers vulcanized with different cure systems,” Macromolecules, vol. 43, no. 9,
pp. 4210–4222, 2010.

[32] J. L. Valentin, I. Mora-Barrantes, J. Carretero-Gonzalez, M. A. Lopez-Manchado,
P. Sotta, D. R. Long, and K. Saalwächter, “Novel experimental approach to
evaluate filler-elastomer interactions,” Macromolecules, vol. 43, no. 1, pp. 334–
346, 2010.

105



BIBLIOGRAPHY

[33] A. Medalia, “Effect of carbon black on dynamic properties of rubber vulcan-
izates,” Rubber Chem. Technol., vol. 51, pp. 437–523, 1978.

[34] M. J. Wang, “Effect of polymer-filler and filler-filler interactions on dynamic
properties of filled vulcanizates,” Rubber Chem Technol, vol. 71, no. 3, pp. 520–
589, 1998.

[35] J. L. Leblanc, “Rubber-filler interactions and rheological properties in filled com-
pounds,” Prog Polym Sci, vol. 27, pp. 627–687, 2002.

[36] D. Kohls and G. Beaucage, “Rational design of reinforced rubber,” Current Opin-
ion in Solid State and Materials Science, vol. 6, no. 3, pp. 183 – 194, 2002.

[37] E. M. Dannenberg, “The effects of surface chemical interactions on the properties
of filler-reinforced rubbers,” Rubber Chem Technol, vol. 48, pp. 410–444, 1975.

[38] R. Christensen, Mechanics of composite materials. New York: Wiley, 1979.

[39] A. R. Payne, “The dynamic properties of carbon black-loaded natural rubber
vulcanizates. part-1,” J App Polym Sci, vol. 6, Issue. 19, pp. 57–63, 1962.

[40] A. R. Payne, “Dynamic properties of heat treated butyl vulcanizates,” J App
Polym Sci, vol. 7, pp. 873–885, 1963.

[41] A. R. Payne and W. F. Watson, “Carbon black structure in rubber,” Rubber
Chem. Technol., pp. 147–155, 1963.

[42] G. Kraus, “Mechanical losses carbon-black filled rubbers,” App. Polym. Sci.: App.
Polym. Symp., vol. 39, pp. 75–92, 1984.

[43] M. Klüppel, R. H. Schuster, and G. Heinrich, “Structure and properties of re-
inforcing fractal filler networks in elastomers,” Rubber Chem. Technol., vol. 70,
no. 2, pp. 243–255, 1997.

[44] M. Klüppel, “The role of disorder in filler reinforcement of elastomers on various
length scales,” Adv Polym Sci, vol. 164, pp. 1–86, 2003.

[45] M. Klüppel and G. Heinrich, “Physics and engineering of reinforced elastomers:
From mechanical mechanisms to industrial applications,” Kautsch. Gummi Kun-
stst., vol. 58, pp. 217–224, 2005.

106



BIBLIOGRAPHY

[46] T. Vilgis and G. Heinrich, “Disorder-induced enhancement of polymer adsorption-
a model for the rubber-polymer interaction in filled rubbers,” Macromolecules,
vol. 27, pp. 7846–7854, 1994.

[47] P. Mele, S. Marceau, D. Brown, Y. Puydt, and N. D. Alberola, “Reinforcement
effects in fractal-structure-filled rubber,” Polymer, vol. 43, pp. 5577–5586, 2002.

[48] C. Gauthier, E. Reynaud, R. Vassoille, and L. Ladouce-Stelandre, “Analysis of
the non-linear viscoelastic behaviour of silica filled styrene butadiene rubber,”
Polymer, vol. 45, pp. 2761–2771, 2004.

[49] L. Guy, S. Daudey, P. Cochet, and Y. Bomal, “New insights in the dynamic
properties of precipitated silica filled rubber using a new high surface silica,”
Kautsch. Gummi Kunstst., vol. Jul/Aug, pp. 383–391, 2009.

[50] Y. Fukahori, “New progress in the theory and model of carbon black reinforcement
of elastomers,” J App Polym Sci, vol. 95, pp. 60–67, 2005.

[51] J. Diani, P. Gilormini, Y. Merckel, and F. Vion-Loisel, “Micromechanical model-
ing of the linear viscoelasticity of carbon-black filled styrene butadiene rubbers:
The role of the filler–rubber interphase,” Mech Mat, vol. 59, pp. 65–72, 2013.

[52] P. G. Maier and D. Göritz, “Molecular interpretation of the payne effect,”
Kautsch. Gummi Kunstst., vol. 49, pp. 18–21, 1996.

[53] A. P. Meera, S. Said, Y. Grohens, and S. Thomas, “Nonlinear viscoelastic behav-
ior of silica-filled nr nanocomposite,” J Phys Chem C, vol. 113, pp. 17997–18002,
2009.

[54] S. Merabia, P. Sotta, and D. R. Long, “A microscopic model for the reinforce-
ment and the nonlinear behavior of filled elastomers and thermoplastic elastomers
(payne and mullins effects),” Macromolecules, vol. 41, no. 21, pp. 8252–8266,
2008.

[55] M. Klüppel, “Evaluation of viscoelastic master curves of filled elastomers and ap-
plications to fracture mechanics,” Journal of Physics-Condensed Matter, vol. 21,
p. 35104, 2009.

[56] J. Fritzsche and M. Klüppel, “Structural dynamics and the interfacial properties
of filled-reinforced elastomers,” J of Phys: Cond. Matter, vol. 23, p. 035104, 2011.

107



BIBLIOGRAPHY

[57] A. Papon, H. Montes, M. Hanafi, F. Lequeux, L. G. L., and K. Saalwächter,
“Glass-transition temperature gradient in nanocomposites: Evidence from nu-
clear magnetic resonance and differential scanning calorimetry,” Phys Rev Lett,
vol. 108, p. 065702, 2012.

[58] A. Papon, H. Montes, F. Lequeux, J. Oberdisse, K. Saalwächter, and L. Guy,
“Solid particles in an elastomer matrix: impact of colloid dispersion and poly-
mer mobility modification on the mechanical properties,” Soft Matter, vol. 8,
pp. 4090–4096, 2012.

[59] A. Papon, T. Chaussee, L. Guy, K. Saalwächter, J. Oberdisse, S. Merabia,
D. Long, P. Sotta, H. H. Frielinghaus, A. Radulescu, B. Deme, L. Noirez,
H. Montes, and F. Lequeux, “Studying model samples to understand mechan-
ical properties of filled elastomers,” Kautsch Gummi Kunstst, vol. 9, pp. 52–58,
2013.

[60] C. Robertson, C. Lin, R. Bogoslovov, M. Rackaitis, P. Sadhukhan, J. Quinn, and
C. Roland, “Flocculation, Reinforcement, and Glass Transition Effects in Silica-
Filled Styrene-Butadiene Rubber,” Rubber Chem. Technol., vol. 84, pp. 507–519,
2011.

[61] A. A. Gusev, “Micromechanical mechanism of reinforcement and losses in filled
rubbers,” Macromolecules, vol. 39, pp. 5960–5962, 2006.

[62] D. Long and P. Sotta, “Stress relaxation of large amplitudes and long timescales
in soft thermoplastic and filled elastomers,” Rheo. Acta, vol. 46, pp. 1029–1044,
2007.

[63] I. Morozov, B. Lauke, and G. Heinrich, “A new structural model of carbon black
framework in rubbers,” Comput. Mat. Sci., vol. 47, pp. 817–825, 2010.

[64] G. Tsagaropoulos and A. Eisenberg, “Direct observation of two glass transitions
in silica-filled polymers. implications for the morphology of random ionomers,”
Macromolecules, vol. 28, no. 1, pp. 396–398, 1995.

[65] D. Fragiadakis, L. Bokobza, and P. Pissis, “Dynamics near the filler surface in
natural rubber-silica nanocomposites,” Polymer, vol. 52, no. 14, pp. 3175–3182,
2011.

[66] E. Donth, “Characteristic length of the glass transition,” J Polym Sci B: Polym
Phys, vol. 34, no. 17, pp. 2881–2892, 1996.

108



BIBLIOGRAPHY

[67] J. Berriot, H. Montes, F. Lequeux, D. Long, and P. Sotta, “Evidence for the
shift of the glass transition near the particles in silica-filled elastomers,” Macro-
molecules, vol. 35, no. 26, pp. 9756–9762, 2002.

[68] A. Wurm, M. Ismail, B. Kretzschmar, D. Pospiech, and C. Schick, “Retarded
crystallization in polyamide/layered silicates nano-composites caused ba an im-
mobilized interphase,” Macromolecules, vol. 43, pp. 1480–1487, 2010.

[69] N. Jouault, J. F. Moll, D. Meng, K. Windsor, S. Ramcharan, C. Kearney, and
S. K. Kumar, “Bound polymer layer in nanocomposites,” Macro Lett, vol. 2,
pp. 371–374, 2013.

[70] C. G. Robertson and M. Rackaitis, “Further consideration of viscoelastic two glass
transition behavior of nanoparticle-filled polymers,” Macromolecules, vol. 44,
pp. 1177–1181, 2011.

[71] H. Montes, F. Lequeux, and J. Berriot, “Influence of the glass transition temper-
ature gradient on the nonlinear viscoelastic behavior in reinforced elastomers,”
Macromolecules, vol. 36, pp. 8107–8118, 2003.

[72] A. Mujtaba, M. Keller, S. Ilisch, H.-J. Radusch, T. Thurn-Albrecht, K. Saal-
wächter, and M. Beiner, “Mechanical properties and cross-link density of styrene-
butadiene model composites containing fillers with bimodal particle size distri-
bution,” Macromolecules, vol. 45, no. 16, pp. 6504–6515, 2012.

[73] J. E. Mark, B. Erman, and F. R. Eirich, eds., Science and Technology of Rubber.
Elsevier 3rd Edition, 2005.

[74] W. Hofmann, Rubber Technology Handbook. Hanser Publishers, 1989.

[75] M. K. H. Nordsiek, “The integral rubber concept- an approach to an ideal tire
tread rubber.,” Kautsch. Gummi Kunstst., vol. 38, pp. 178–185, 1984.

[76] M. Rubinstein and S. Panyukov, “Nonaffine deformation and elasticity of polymer
networks,” Macromolecules, vol. 30, pp. 8036–8044, 1997.

[77] T. A. Vilgis, G. Heinrich, and M. Klüppel, Reinforcement of polymer nano-
composites. Cambridge University Press, 2009.

[78] R. Ullman, “An essay on the molecular theory of rubber elasticity,” J Polym Sci:
Polym Symp, vol. 72, pp. 39–44, 1985.

109



BIBLIOGRAPHY

[79] J. J. Hermans, “Deformations and swelling of polymer networks containing com-
paratively long chains.,” Transactions of the Faraday Society, vol. 43, pp. 591–
600, 1947.

[80] F. T. Wall and P. J. Flory, “Statistical thermodynamics of rubber elasticity,” J
Chem Phys, vol. 19, pp. 1435–1439, 1951.

[81] H. M. James and E. Guth, “Theory of elastic properties of rubber,” J Chem Phys,
vol. 11, pp. 455–481, 1943.

[82] H. M. James and E. Guth, “Theory of the increase in rigidity of rubber during
cure,” J Chem Phys, vol. 15, pp. 669–683, 1947.

[83] G. Ronca and G. Allegra, “An approach to rubber elasticity with internal con-
straints,” J Chem Phys, vol. 63, pp. 4990–4997, 1975.

[84] S. F. Edwards, “The satistical mechanics of polymerized material,” Proceedings
Phys Soc, vol. 92, p. 9, 1967.

[85] P. G. Higgs and R. J. Gaylord, “Slip-links, hoops and tubes: tests of entanglement
models of rubber elasticity,” Polymer, vol. 31, pp. 70–74, 1988.

[86] M. Gottlieb and R. J. Gaylord, “Experimental tests of entanglements models of
rubber elasticity,” Macromolecules, vol. 17, pp. 2024–2030, 1984.

[87] J. E. Mark and J. L. Sullivan, “Model networks of end-linked pdms chains: a
comparison between experimental and theoratical values of elastic modulus and
equilibrium degree of swelling.,” J Chem Phys, vol. 66, pp. 1006–1011, 1977.

[88] M. Rubinstein and R. H. Colby, Polymer Physics. Oxford University Press,
Oxford, 2003.

[89] A. I. Medalia, “Morphology of aggregates: I. calculation of shape and bulkiness
factors; application to computer-simulated random flocs,” J Colloid Interface Sci,
vol. 24, pp. 393–404, 1967.

[90] A. I. Medalia, “Effective degree of immobilization of rubber occluded within car-
bon black aggregates,” Rubber Chem.Technol., vol. 45, p. 1171, 1972.

[91] G. Kraus, “A structure-concerntration equivalence principle in carbon black re-
inforcement of elastomers,” Polym Lett, vol. 8, pp. 601–606, 1970.

110



BIBLIOGRAPHY

[92] S. Wolff and M. J. Wang, “Filler elastomer interactions. part 4. the effect of
the surface energies of fillers on elastomer reinforcement,” Rubber Chem Technol,
vol. 65, no. 2, pp. 329–342, 1992.

[93] M. P. Wagner, “Reinforcing silica and silicates,” Rubber Chem Technol, vol. 49,
pp. 703–774, 1976.

[94] S. Wolff, “Chemical aspects of rubber reinforcement by fillers.,” Rubber Chem
Technol, vol. 69, p. 325, 1996.

[95] J. Fröhlich, W. Niedermeier, and H. D. Luginsland, “The effect of filler-filler and
filler-elastomer interaction on rubber reinforcement.,” Compos. Part A: Appl. Sci.
Manuf., vol. 36, p. 449, 2005.

[96] A. Einstein, “Eine neue bestimmung der molekül dimension,” Ann. Physics,
pp. 289–306, 1906.

[97] H. M. Smallwood, “Limiting law of the reinforcement of rubber,” J App Phys,
vol. 15, no. 11, pp. 758–766, 1944.

[98] E. Guth and O. Gold, “On the hydrodynamical theory of the viscosity of suspen-
sions,” Phys. Rev., vol. 53, p. 322, 1938.

[99] E. Guth, “Theory of filler reinforcement,” J. App. Phys., vol. 16, pp. 20–25, 1944.

[100] A. I. Medalia, “Heat generation in elastomer compounds: causes and effects,”
Rubber Chem. Technol., vol. 64, pp. 481–492, 1990.

[101] G. K. Batchelor and J. T. Green, “The determination of the bulk stress in a
suspension of spherical particles to order c2.,” J Fluid Mech, vol. 56, pp. 401–
427, 1972.

[102] D. G. Thomas, “Transport characteristics of suspension: A note on the viscosity
of newtonian suspensions of uniform spherical particles,” J Colloid Sci, vol. 20,
pp. 267–277, 1965.

[103] B. Hinkelmann, “The analytical descrption of the filler influence on the flow
behaviour of the polymer melt,” Rheol Acta, vol. 21, p. 491, 1982.

[104] H. Eggers and P. Schümmer, “Reinforcement mechanisms in carbon black and
silica loaded rubber melts at low stresses.,” Rubber Chem. Technol., vol. 69,
pp. 253–265, 1996.

111



BIBLIOGRAPHY

[105] S. Wolff and J.-B. Donnet, “Characterization of fillers in vulcanizates according
to the einstein-guth-gold equation,” Rubber Chem Technol, vol. 63, pp. 32–45,
1990.

[106] M.-J. Wang, S. X. Lu, and K. Mahmud, “Carbon-silica dual phase filler,” J Polym
Sci B: Polym Phys, vol. 38, pp. 1240–1249, 2000.

[107] R. W. Sambrook J Inst Rubber Ind, vol. 4, p. 210, 1970.

[108] F. Clement, L. Bokobza, and L. Monnerie, “Investigation of the payne effect and
its temperature dependence on silica-filled pdms networks. part i: Experimental
results,” Rubber Chem. Technol., vol. 78, pp. 211–231, 2005.

[109] F. Clement, L. Bokobza, and L. Monnerie, “Investigation of the payne effect
and its temperature dependence on silica-filled pdms networks. part ii: Test of
quantitative models,” Rubber Chem. Technol., vol. 78, pp. 232–244, 2005.

[110] K. E. Gui, C. S. Wilkinson, and S. D. Gehmann, “Vibration characteristics of
tread stocks,” Ind Engg Chem, vol. 44, pp. 720–723, 1952.

[111] P. P. A. Smit, “The glass transition in carbon black reinforced rubber,” Rheol
Acta, vol. 5, pp. 277–283, 1966.

[112] S. Vieweg, R. Unger, K. Schröter, and E. Donth, “Frequency and temperature de-
pendent of the small-strain behaviour of carbon-black filled vulcanizates,” Polym
Net Blends, vol. 5, pp. 199–204, 1995.

[113] S. Vieweg, R. Unger, G. Heinrich, and E. Donth, “Comparison of dynamic shear
properties of styrene-butadiene vulcanizates filled with carbon black or polymeric
fillers,” J.Appl.Polym.Sci., vol. 73, no. 4, pp. 495–503, 1999.

[114] G. Heinrich and M. Klüppel, “Recent advances in the theory of filler networking
in elastomers,” Ad Polym Sci, vol. 160, 2002.

[115] S. Kaufman, W. P. Slichter, and D. D. Davis, “Nuclear magnetic resonance study
of rubber-carbon black interactions,” J Polym Sci, vol. 9, pp. 829–839, 1971.

[116] J. O’Brien, E. Cashell, G. E. Wardell, and V. J. McBrierty, “An nmr investigation
of the interaction between carbon black and cis-polybutadiene,” Macromolecules,
vol. 9, pp. 653–660, 1976.

112



BIBLIOGRAPHY

[117] S. Asai, H. Kaneki, M. Sumita, and K. Miyasaka, “Effect of oxidized carbon black
on the mechanical properties and molecular motions of natural rubber studied
by pulse nmr,” J App Polym Sci, vol. 43, pp. 1253–1257, 1991.

[118] N. K. Dutta, N. R. Choudhury, B. Haidar, A. Vidal, and J. B. Donnet, “High reso-
lution solid-state nmr investigation of the filler-rubber interaction: High speed 1h
magic-angle spinning n.m.r, spectroscopy in carbon black filled styrene butadiene
rubber,” Polymer, vol. 35, pp. 4293–4299, 1994.

[119] J. Berriot, H. Montes, F. Lequeux, D. Long, and P. Sotta, “Gradient of glass
transition temperature in filled elastomers,” Europhys Lett, vol. 64, no. 1, pp. 50–
56, 2003.

[120] N. Jouault, P. Vallat, F. Dalmas, S. Said, J. Jestin, and F. Boue, “Well-dispersed
fractal aggregates as filler in polymer-silica nanocomposites: Long-range effects
in rheology,” Macromolecules, vol. 42, no. 6, pp. 2031–2040, 2009.

[121] V. M. Litvinov and P. A. M. Steeman, “Epdm-carbon black interactions and
the reinforcement mechanisms, as studied by low-resolution 1h nmr,” Macro-
molecules, vol. 32, pp. 8476–8490, 1999.

[122] J. Liu, S. Wu, L. Zhang, W. Wang, and D. Cao, “Molecular dynamics simulation
for insight into microscopic mechanism of polymer reinforcement,” Phys Chem
Chem Phys, vol. 13, pp. 518–529, 2011.

[123] A. A. Gusev and S. A. Lurie, “Loss amplification effect in multiphase materials
with viscoelastic interfaces,” Macromolecules, vol. 42, pp. 5372–5377, 2009.

[124] C. G. Robertson, R. Bogoslovov, and C. M. Roland, “Structural arrest and ther-
modynamic scaling in filler-reinforced polymers,” Rubber Chem Technol, vol. 82,
no. 2, pp. 202–213, 2009.

[125] C. G. Robertson, C. J. Lin, R. B. Bogoslovov, M. Rackaitis, P. Sashukhan, J. D.
Quinn, and C. M. Roland, “Flocculation, reinforcement, and glass transition
effects in silica-filled sbr,” Rubber Chem Technol, vol. 84, pp. 507–519, 2011.

[126] I. M. Ward and H. D. W., An introduction to the mechanical properties of solid
polymers. John Wiley & Sons, 1993.

113



BIBLIOGRAPHY

[127] S. Pankaj, Confined dynamics, side-chain crystallization and long term behav-
ior of nanophase separated poly(3-alkyl thiophenes). PhD thesis, Martin-Luther-
Universität Halle-Wittenberg, 2011.

[128] J. D. Ferry, Viscoelastic properties of polymers. New York: Wiley, 1980.

[129] K. Schäler, Low-Field NMR Studies Of Structure and Dynamics in Semicrys-
talline Polymers. PhD thesis, Martin-Luther-Universität Halle-Wittenberg, 2012.

[130] M. Mauri, Y. Thomann, H. Schneider, and K. Saalwächter, “Spin-diffusion nmr
at low field for the study of multiphase solids,” Solid State Nucl. Magn. Reson,
vol. 34, pp. 125–141, 2008.

[131] W. Chasse, Structure, formation and thermodynamic properties of polymer
networks as studied by NMR. PhD thesis, Martin-Luther-Universität Halle-
Wittenberg, 2012.

[132] K. Saalwächter and J. Sommer, “Nmr reveals non-distributed and uniform charac-
ter of network chain dynamics,” Macromolecular Rapid Communications, vol. 28,
no. 14, pp. 1455–1465, 2007.

[133] W. Kuhn and F. Grün, “Beziehungen zwischen elastischen konstanten und
dehnungsdoppelbrechung hochelastischer stoffe.,” Colloid & Polym Sci, vol. 101,
pp. 248–271, 1942.

[134] K. Saalwächter, “Artifacts in transverse proton nmr relaxation studies of elas-
tomers,” Macromolecules, vol. 38, pp. 1508–1512, 2005.

[135] M. J. Duer, Solid-state NMR spectroscopy - principles and applications. Blackwell
Science., 2002.

[136] R. Bond and G. F. Morton, “A tailor-made polymer for tyre applications,” Poly-
mer, vol. 25, pp. 132–140, 1984.

[137] A. Lechtenboehmer, H. G. Moneypenny, and F. M. F., “A review of polymer
interfaces in tyre technology,” J Brit Polym, vol. 22, pp. 265–301, 1990.

[138] K. Y. Saito, “New polymer development for low rolling resistance tyres,” Kautsch
Gummi Kunstst, vol. 39, pp. 30–32, 1985.

[139] A. K. Chandra, Current topics in Elastomer Research. CRC Press, 2008.

114



BIBLIOGRAPHY

[140] A. H. Tullo, “Stretching tire’s magic triangle,” Chemical and Engineering News
(C&EN), vol. 87:46, pp. 10–14, 2009.

[141] R. A. L. H. J. F. S. L. Aggarwal, I. G. Hargis, Advances in elastomers and rubber
elasticity. Plenum Press, 1986.

[142] “Wet grip basics-continental-tires.”

[143] J. A. Greenwood, H. Minshall, and D. Tabor, “Hysteresis losses in rolling and
sliding friction,” Rubber Chem. Technol., vol. 259, pp. 480–507, 1960.

[144] F. S. Conant and J. W. Liska, “Friction studies on rubberlike materials,” Rubber
Chem. Technol., vol. 33, pp. 1218–1258, 1960.

[145] D. Bulgin, G. Hubbard, and M. Walters, “Road and laboratory studies of friction
and elastomers,” in Paper presented at the 4th Rubber Technology Conference,
London, 1962.

[146] K. A. Grosch, “The relation between the friction and visco-elastic properties of
rubber,” Proc. R. Soc., Lond, vol. A274, p. 21, 1963.

[147] G. Heinrich and H. B. Dumler, “Wet skid properties of filled rubbers and the
rubber - glass transition,” Rubber Chem.Technol., vol. 71, no. 1, pp. 53–61, 1998.

[148] C. Robertson, C. Lin, M. Rackaitis, and C. Roland, “Influence of particle size
and polymer-filler coupling on viscoelastic glass transition of particle-reinforced
polymers,” Macromolecules, vol. 41, no. 7, pp. 2727–2731, 2008.

[149] D. F. Moore, “A review of hysteresis theories for elastomers,” Wear, vol. 30,
pp. 1–34, 1974.

[150] D. F. Moore, The Friction and Lubrication of Elastomers. Pergamon Press,
Oxford, 1972.

[151] B. Choubane, C. R. Holzschuher, and S. Gokhale, “Precision of locked wheel
testers for measurements of roadway surface friction characteristics,” Research
Report FL/DOT/SMO/03-464, 2003.

[152] R. Engehausen, A. Rawlinson, and J. Trimbach Tire Technol. Int. Ann. Review,
p. 36, 2001.

115



BIBLIOGRAPHY

[153] G. Heinrich, “The dynamics of tire tread compounds and their relationship to
wet skid behavior,” Prog. Colloid Polym. Sci., vol. 90, pp. 16–26, 1992.

[154] R. R. Rahalkar, “Dependence of wet skid resistance upon the entanglement den-
sity and chain mobility according to the rouse theory of viscoelasticity,” Rubber
Chem. Technol., vol. 62, p. 246, 1988.

[155] Styron GmbH, SPRINTAN SLR 4602 - Schkopau, Technical information 2010,
Form No. 850 – 00901.

[156] Evonik GmbH, Ultrasil U7000GR - Technical information.

[157] M. Keller, A. Wutzler, A. Mujtaba, H. H. Le, S. Ilisch, and H.-J. Radusch in
Proceedings of Symposium ’Polymer Blends and Nanocomposites with Biobased
Components’, 14-15th of September 2011, Halle (Saale), ISBN 978-3-86829-391-3.

[158] J. S. Dick, Compounding Processing Characteristics and Testing, in Rubber Tech-
nology: Compounding and Testing for Performance. Hanser Publisher, 2001.

[159] G. P. Baeza, A. C. Genix, and J. Oberdisse, “Multiscale filler structure in sim-
plified industrial nanocomposite silica/sbr systems studies by saxs and tem,”
Macromolecules, vol. 46, pp. 317–329, 2012.

[160] D. Long and F. Lequeux, “Heterogeneous dynamics at the glass transition in van
der waals liquids, in the bulk and in thin films,” Euro Phys E, vol. 4:3, pp. 371–
387, 2001.

[161] A. Bansal, H. Yang, C. Li, K. Cho, B. Benicewicz, S. K. Kumar, and L. Schadler,
“Quantitative equivalence between polymer nanocomposites and thin polymer
films,” Nat Mat, vol. 4, pp. 693–698, 2005.

[162] Y. Kantor and I. Webman, “Elastic properties of random percolating systems,”
Phys Rev Lett, vol. 52,21, pp. 1891–1894, 1984.

116



Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig durchge-
führt und verfasst habe. Außer den in der Arbeit genannten, standen mir kein-
erlei Hilfsmittel oder Hilfen zuteil. Die benutzten fremden Quellen habe ich
vollständig aufgelistet und inhaltliche oder wörtliche Zitate als solche gekennze-
ichnet.

Anas Mujtaba





Acknowledgement

First, I would like to thank my supervisors, Prof. Dr. T. Thurn-Albrecht
and Prof. Dr. K. Saalwächter , who not only induced scientific orientation
into me but also set himself as an example of commitment and passion for
research. Being my most critical audience, both of them have contributed to
this research in invaluable ways. I have really enjoyed our countless inspiring
discussions through this time which helped me to shape my intellectual devel-
opment through these profitable interactions with them.
I would like to thank warmly to Prof. Dr. M. Beiner for his help, guidance,
patience and advice. His enthusiastic and unremitting support during this
course of time, and his teaching will benefit me in future, to which I show my
greatest respect and most sincere gratitude from the core of my heart.
At the end, obviously I cannot forget the entire moral support from my parents
and especially from my wife over the last four years. I really feel necessary
to acknowledge the bundles of prayers and regards which I often felt at times
of desperation here. Of course it is not out of place to mention the force of
motivation which I received from my daughter to perform better for her future.

Halle (Saale), January 2014





Publications

1. A. Mujtaba, M. Keller, S. Ilisch, H.J. Radusch, T. Thurn-Albrecht, K. Saal-
wächter, and M. Beiner, ’Mechanical properties and cross-link density of styrene-
butadiene model composites containing fillers with bimodal particle size distri-
bution’, Macromolecules, 45(16):2012

2. A. Mujtaba, M. Keller, S. Ilisch, H.J. Radusch, M. Beiner, T. Thurn-Albrecht
and K. Saalwächter, ’Detection of surface-immobilized components and their role
in viscoelastic reinforcement of rubber-silica nanocomposites’, ACS Macro Lett.,
2014,3,481-485.

3. G. P. Baeza, A.-C. Genix, C. Degrandcourt, J. Gummel, A. Mujtaba, K. Saal-
wächter, T. Thurn-Albrecht, M. Couty and J. Oberdisse, ’Evidence for a unique
structure-determining parameter in simplified industrial styrene-butadiene/silica
nanocomposites’, ACS Macro Lett., 2014,3,448-452.





Curriculum vitae

First Name Anas
Family Name Mujtaba
Date of Birth April 03, 1980
Place of Birth Lahore, Pakistan
Nationality Pakistan
E-mail anasmujtaba@hotmail.com

EDUCATION

Apr. 1998 - Jul. 2002 Bachelor of Engineering: Chemical Engineering
University of the Punjab
Lahore, Pakistan

Oct. 2007 - Nov. 2009 Master of Science: Applied Polymer Science
Martin-Luther-Universität Halle Wittenberg
Halle, Germany

Dec. 2009 - Jan. 2014 Ph.D in Institut für Physik
Experimental Polymer Physics
Martin-Luther-Universität Halle-Wittenberg
(Supervised by Prof. Thomas Thurn-Albrecht
and Prof. Dr. Kay Saalwächter)

PROFESSIONAL EXPERIENCE
Feb 2003 - May 2006 Noon Industries of Ethanol Fermentation

and Distillation.
Sargodha, Pakistan (Shift Engineer)

Feb 2014 - Present Wiss. Mitarbeiter
Gruppe Polymerbasiertes Materialdesign
Fraunhofer-Institut für Werkstoffmechanik IWM
Halle (Saale)


