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1

Introduction

During the last decades, electronic structure calculations have become an estab-

lished part of the research process in chemistry and chemical physics. While in physics,

theory and experiment have coexisted on an almost equal footing for a long time, the-

oretical chemistry got emancipated as an independent discipline only within the most

recent scientific generation.

Nowadays, ready-to-use quantum chemistry software packages allow the exploration

of supramolecular structures, molecular dynamics and spectroscopic properties without

the need for highly specialized knowledge from the user. Such quantum chemical calcu-

lations can often be carried out on standard PC-workstations, which established them

as routine tool for the interpretation of experiments, widely used in experimentally

oriented groups of physical chemists or chemical physicists. A particular flavor of com-

putational chemistry is represented by first-principles molecular dynamics simulations,

which are the quantum chemical analogue of force-field-based molecular dynamics sim-

ulations and allow a realistic sampling of the phase space that is accessible to a system

at a given temperature.

By this combination of the molecular dynamics technique with electronic structure

theory, it has become possible to create an accurate and balanced atomistic representa-

tion of many experiments without relying on adjusted parameters. The scope of these

This introduction and the following chapters are intended to give an overview of the methodological

foundations and as well as the most important practical aspects of this thesis work. Hence, several

parts closely follow my review paper.(3)
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1. INTRODUCTION

Figure 1.1: Electronic currents inside a benzene ring, induced by an external magnetic

field. Image by D.Sebastiani, taken from the STM4 Gallery(22)

calculations covers the routine simulation of several hundred independent atoms (6, 7),

up to a million on special occasions(8).

There is a wide variety of problems accessible by ab-initio molecular dynamics

simulations. Among these are the dynamics of liquids and solvation, hydrogen bonding

and diffusion. In this context, a particular strength of the ab-initio description of

liquids is the accurate description of polarization, which is of crucial importance in

hydrogen bonding liquids like water. One of the key properties that can be extracted

is the hydrogen bonding network.(9, 10) A hydrogen bond leads to an electronic charge

redistribution due to the proximity of two water molecules. Such electronic charge

rearrangements are genuine quantum effects, and an approximation by means of force

fields or semi-empirical calculations rarely lead to the same quantitative accuracy that

a regular electronic structure calculation provides.

This has direct effects for more complex properties such as spectroscopic parame-

ters, which react very sensitively to small geometric changes. Common spectroscopic

observables include vibrational frequencies (for IR and Raman spectroscopy) (11, 12),

electronic excitation energies (for UV/vis spectroscopy) (13) and magnetic fields in-

duced by electronic ring currents caused by an external magnetic field (for NMR and

EPR spectroscopy) (14, 15, 16). The structure and dynamics of water in particular

have been a focus of research in the ab-initio MD community, so that the degree of

reliability of the simulations is exceptionally well known.(17, 18, 19, 20, 21)

Figure 1.1 illustrates the ring currents that are induced inside a benzene molecule

when an external field is applied. The plot shows the color-coded current density in
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the molecular plane; interestingly, the current inside the molecule has the opposite

orientation as the current outside the hexagon. Again, this phenomenon has a purely

quantum nature and gives rise to subtle side-effects, such as the switch from aromatic

to anti-aromatic behavior upon ionization of a molecule(23) or as a function of the

symmetry of a fullerene-type molecule(24). Besides the insights into aromaticity, the

computation of the response to external magnetic fields also allows the simulation

of NMR spectra. The ultimate combination of electronic structure calculations and

molecular dynamics simulations with the calculation of spectroscopic parameters on

top of this opens a unique way for obtaining insight into otherwise inaccessible systems

in the condensed phase.(25, 26)

While it has to be noted that such spectroscopic observables do not provide three-

dimensional coordinates of atoms nor explicit information about their dynamics, they

provide an indirect access to these quantities which can readily be compared to the

corresponding experimental data. Molecular dynamics can then be used to map the

experimental data to an atomistic description of the underlying structure and dynamics.

In contrast to other methods it will also describe nonequilibrium dynamics with little

additional effort. Ab-initio molecular dynamics may in addition deliver information

about the electronic structure, as a form of many-body wavefunction is computed on

the fly. This allows for special insight into excited state dynamics. One example is

the picosecond timescale dynamic Stokes shift of a probe molecule. Experimentally the

evolution of the emission wavelength of a fluorescent dye is used to monitor solvation

dynamics. Ab-initio MD can simultaneously provide solute/solvent dynamics in the

electronically excited state(27, 28, 29, 30), and provide the fluorescence wavelength via

TD-DFT calculations. Again AIMD is unique in being able to provide the electronic

strucuture and dynamical behavior of an electronically excited state. Also it is an

example, where the timescale of ab-initio MD directly corresponds to experiment.

The aim of this thesis is to use first principles molecular dynamics in order to gain

insight in the atomistic structure and dynamics of H-bonded systems. The systems

chosen for this purpose are (solvation) water around a chromophore, aqueous solutions

of lithium iodide and water confined at a hydrophilic interface. A wide array of structure

and dynamics based observables was computed to present a coherent picture of the

response of water to local changes in polarization, interfaces and strongly interacting

solutes and provide interpretation.
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1. INTRODUCTION

The thesis consists of five chapters. The first chapter is this introduction. In the

next two chapters a summary of molecular dynamics and electronic structure theory is

presented, with an emphasis on the key methodology used in this thesis. The fourth

chapter consists of a overview over the thesis papers and a perspective on questions of

wider interest. The last chapter consists of reprints of original research articles, which

represent the scientific content of this cumulative dissertation.
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2

Introduction to Molecular

Dynamics Simulations

The classical many body problem, i.e. the motion of several interacting bodies in a po-

tential can only be solved analytically for special cases. To simulate the time evolution

of such a system, numerical methods have to be used. One of the most straightforward

ways to do this is numerical integration of the (classical) equations of motion. Such

an approach applied to molecules is called molecular dynamics (MD). MD simulations

can be considered virtual experiments, provided that the trajectories are representa-

tive of the experimental situation. As a molecular dynamics simulation may never

cover the complete phase space, one has to assume that the region in phase space,

that is being sampled is representative of the whole. If this is the case, the probability

distributions of observables will correspond to those obtained from statistical thermo-

dynamics, and therefore to experiment. The exposition in this section follows the book

by Tuckerman(31) while simplifying as much as possible.

2.1 Equations of motion

The best known formulation of classical mechanics are Newton’s equation of motion.

Newton’s second law can be written in terms of an external potential V, so that the

force Fi on each particle i is

Fi(t) = −∇iV({Ri(t)}) (2.1)

5



2. INTRODUCTION TO MOLECULAR DYNAMICS SIMULATIONS

Here it is assumed that the potential does not depend on the velocities of the

particles, as would be the case when treating magnetic fields and induction properly.

This allows for the following scheme to compute the dynamics: Beginning with a Taylor

expansion of the position in time, one obtains

Ri(t+ ∆t) ≈ Ri(t) + ∆tṘi +
1

2
∆t2R̈i (2.2)

Inserting eq. 2.1 and using vi for the particle velocity this becomes

Ri(t+ ∆t) ≈ Ri(t) + ∆tvi +
1

2mi
∆t2Fi(t) (2.3)

Expanding backwards in time, the equation becomes

Ri(t−∆t) ≈ Ri(t)−∆tvi +
1

2mi
∆t2Fi(t) (2.4)

which allows to eliminate the velocities to obtain

Ri(t+ ∆t) ≈ 2Ri(t)−Ri(t−∆t) +
1

2mi
∆t2Fi(t) (2.5)

This is the classical Verlet algorithm(32), which has been known for about 250 years

but has been periodically rediscovered since then. It incorporates the velocities implic-

itly by a centered difference. This also allows to compute them lateron. Eliminating

the first derivative also has favorable implications on the error which scales as O(∆t4).

Starting the algorithm seems difficult at first, as at least two positions in time have to be

known. But in practice for the first step one may use eq. 2.3 and take initial velocities,

sampled from a Maxwell-Boltzmann distribution. The MD-codes in this work use a

variety of the Verlet algorithm known as the Velocity-Verlet.(33) It is equivalent to the

Verlet algorithm, but also computes velocities explicitly. The velocities are propagated

as

vi(t+ ∆t) ≈ 2vi(t)−
∆t

2mi
[Fi(t) + Fi(t+ ∆t)] (2.6)

This allows to use 2.3 to propagate the trajectory. The verlet integrators fulfill

a number of important properties, which make them well suited for the numerical

propagation of the classical equations of motion. These are

1. Good error scaling with the timestep (local scaling, O(∆t4), integrated O(t2N∆t2))

6



2.2 Temperature coupling

2. Time reversibility

3. Conservation of a shadow Hamiltonian

The conservation of an approximate, “shadow” Hamiltonian, which approaches the

true Hamiltonian as ∆t→ 0 results in improved momentum and energy conservation.

2.2 Temperature coupling

To make experiments reproducible, they are conducted at specific conditions, e.g. fixed

temperature and pressure. A defined temperature is imposed by exchange with a heat

bath. The same has to be done for molecular dynamics simulations, where this situation

corresponds to the so called canonical ensemble. While the correct temperature and

distribution can be imposed a priori on the kinetic energy of the system, this is not easily

possible for the distribution of the potential energy, which depends on the positions in

the system in a nontrivial way. Also, the fluctuations in a sufficiently small system

depend on whether energy exchange with the environment is permitted or not. If no

exchange is permitted, the system is in the microcanonical ensemble. Its dynamics are

described by the following Hamiltonian:

H =
∑
i

p2
i

2mi
+ V({Ri(t)}) (2.7)

Energy exchange with the environment cannot be easily integrated into a Hamil-

tonian formalism, as the energy of the system is no longer conserved due to the in-

teractions with the heat bath. In the Nosé approach(34), the system’s Hamiltonian is

extended by a fictitious degree of freedom, which is included into the kinetic energy

of all other degrees of freedom, in order to scale them to the appropriate tempera-

ture. This fictitious degree s and its momentum ps, plus coupling parameter Q (the

dimension of Q is energy x time2) are introduced in the system Hamiltonian as follows:

HNose =
∑
i

p2
i

2mis2
+ V({Ri(t)}) +

p2
s

2Q
+ gkT ln s (2.8)

Here g is equal the number of spatial degrees of freedom in the system (3N) plus one

for s. The parameters k and T are the Boltzmann constant and the temperature. Note

that 3NkT is the average kinetic energy for a system of N particles in the canonical

7



2. INTRODUCTION TO MOLECULAR DYNAMICS SIMULATIONS

ensemble. It can be shown(31), that fluctuations in the microcanonical ensemble of the

Nosé Hamiltonian become equivalent to those of the canonical ensemble of the original

system. In this fashion canonical sampling can be accomplished in a deterministic way.

From the Hamiltonian one obtains the Nosé equations of motion:

ṗi = Fi (2.9)

Ṙi =
pi
mis2

(2.10)

ṡ =
ps
Q

(2.11)

ṗs =
∑
i

pi
mis3

− gkT

s
(2.12)

Introducing the following noncanonical change of variables transforms the system

into a non-Hamiltonian one.(35)

p′i =
pi
s

(2.13)

dt′ =
dt

s
(2.14)

1

s

ds

dt′
=

η

dt′
(2.15)

ps = pη (2.16)

Applying these substitutions, changing the definition of g to be dN (the dimension

d times the number of nuclei N) and rederiving the equations of motion, one obtains

Ṙi =
pi
mi

(2.17)

ṗi = Fi −
pη
Q

pi (2.18)

8



2.2 Temperature coupling

η̇ =
pη
Q

(2.19)

ṗη =
∑
i

p2
i

mi
− gkT (2.20)

Writing the Nosé-Hoover equation this way allows important intuitive insight. Look-

ing at eq. 2.18 one sees that the acceleration is modified by a friction term depending

on pη. The definition in eq. 2.20 shows, that this friction evolves with the difference of

the kinetic energy and its canonical average. So it becomes clear how the friction term

in all momenta “thermostats” the system to a given temparature and also controls its

fluctuations. It is well known that a single Nosé-Hoover degree of freedom may lead

to nonergodic behavior, as the conservation law introduces restrictions on the phase

space. This can be especially severe for a small system, such as a single harmonic

oscillator.(36) More degrees of freedom have to be reintroduced, this is usually done by

a chain of Nosé-Hoover thermostats. This means coupling the variable pη to another

Nosé-Hoover thermostat, and coupling this thermostat’s pη again to obtain a chain of

thermostats. In practice a chain length of five is usually sufficient. For an in depth

discussion of statistical thermodynamics and ensembles in the context of molecular

dynamics, see the excellent book by Tuckerman.(31)

9
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3

Concepts of Electronic Structure

Theory

3.1 Preliminaries

All equations are given in atomic units, except where denoted otherwise. Letters in bold

denote vector quantities. Variables in curly brackets represent an ensemble of particles.

Specifically, r is used for electronic coordinates and R is used for nuclear coordinates.

The three dimensional electron density is denoted ρ. A one-particle wavefunction is

represented by ϕ and any basis function by χ. The many-body time-dependent wave

function including the nuclear degrees of freedom is called Φ and the many-body elec-

tronic wavefunctions are called Ψ.

3.2 The Schrödinger equation

The equation of motion for a nonrelativistic quantum mechanical system may be written

as the time-dependent Schrödinger equation

i
∂

∂t
Φ({ri}, {RI}, t) = ĤΦ({ri}, {RI}, t) (3.1)

The systems of interest to theoretical chemistry are usually molecular systems con-

sisting of nuclei and electrons. We distinguish between the set of core coordinates {RI}
and the set of electron coordinates {ri}. Following this nomenclature the Hamilton op-

erator Ĥ is written as

11



3. CONCEPTS OF ELECTRONIC STRUCTURE THEORY

Ĥ = −
∑
I

1

2MI
∇I2−

∑
i

1

2
∇i2 +

∑
i<j

1

|ri − rj |
+
∑
i,I

ZI
|RI − ri|

+
∑
I<J

ZIZJ
|RI −RJ |︸ ︷︷ ︸

Ĥe

(3.2)

This includes only the Coulomb interactions of electrons and nuclei, and thus uses

a classical electric field. Without the atomic core kinetic energy it is the electronic

Hamiltonian Ĥe. The next important approximation is to separate electronic and

nuclear degrees of freedom.

3.3 The Born-Oppenheimer approximation

This section follows the treatment in the corresponding chapter in the book by Marx

and Hutter.(37) Let us begin by assuming that for each possible set of positions of the

nuclei, the stationary problem has been solved;

Ĥe({ri}; {RI})Ψk({ri}; {RI}) = Ek({RI})Ψk({ri}; {RI}) (3.3)

which has the fixed positions {RI} parametrically included in the electronic Hamil-

tonian Ĥe, see eq. 3.2. The above equation is called the electronic Schrödinger equation.

The spectrum of Ĥe is taken to be discrete and its eigenfunctions Ψk are orthonormal-

ized. The total wavefunction can then be expanded as

Φ({ri}, {RI}; t) =
∞∑
l=0

Ψl({ri}; {RI})χl({RI}; t) (3.4)

Inserting this into the time-dependent Schrödinger equation, multiplying from the

left by Ψk({ri}; {RI}) and integrating over all electronic coordinates leads to a set of

coupled differential equations, so that for each r from {ri}:[
−
∑
I

1

2MI
∇2
I + Ek({RI})

]
χk +

∑
l

Cklχl = i
∂

∂t
χk (3.5)

Where Ckl is the nonadiabatic coupling operator, its definition is

Ckl =

∫
Ψ∗k

[
−
∑
I

1

2MI
∇2
I

]
Ψldr +

1

MI

∑
I

(∫
Ψ∗k[−i∇I ]Ψldr

)
[−i∇I ] (3.6)

12



3.4 The Hartree-Fock method

Nonadiabatic coupling is the coupling between different eigenstates Ψk of the elec-

tronic Hamiltonian, induced by nuclear motion. The second part of eq. 3.6 is dependent

on the nuclear momentum, in the case of a real wavefunction it will vanish. If one takes

only the diagonal terms Ckk of the problem into account, the adiabatic approximation

is obtained. Within the adiabatic approximation eq. 3.5 is decoupled, this corresponds

to the exclusion of switching quantum states during the time evolution of electronic

state k. Correspondingly, if the complete wave function of the system Φ contains only

one electronic eigenstate, it may be written as a direct product of an electronic and a

nuclear function.

Φ({ri}, {RI}, t) ≈ Ψk({ri}; {RI})χk({RI}, t) (3.7)

This approximation is widely used in electronic structure theory and becomes prob-

lematic when treating excited states in particular, as in excited state dynamics elec-

tronic states can become quite close at certain sets of coordinates {RI} and thus cou-

pling cannot be neglected anymore. Such a situation is commonly referred to as a

conical intersection. However, also the diagonal coupling term is often neglected, thus:

[
−
∑
I

1

2MI
∇2
I + Ek({RI})

]
χk = i

∂

∂t
χk (3.8)

Which constitutes the “Born-Oppenheimer approximation”, as opposed to the full

adiabatic approximation defined above, eq. 3.7. Regarding the electronic wavefunction

Ψk as decoupled from the nuclear wavefunction can also be empirically motivated,

because the (dielectric) spectra of molecular systems have regions where electronic

degrees of freedom are dominant in the response as well as regions, which correspond

to almost purely nuclear motion, so there is often a sufficient separation of energies

to justify the decoupling. The origin for the lack of coupling is the mass difference of

electrons and nuclei and its effect on the inertia. In this discussion spin was neglected.

3.4 The Hartree-Fock method

The electronic structure problem is the solution of the stationary Schrödinger equation

3.3 for one set of coordinates {RI}. It will now be rewritten in the Dirac notation,

while omitting this parametric dependency on the nuclei for clarity.

13



3. CONCEPTS OF ELECTRONIC STRUCTURE THEORY

Ĥe({ri})|Ψk({ri})〉 = Ek|Ψk({ri})〉 (3.9)

In principle, this expression represents a regular eigenvalue problem for the wave-

function with a known Hamiltonian Ĥe. However, the interaction of the individual

electrons leads to an intrinsic complexity of this equation that is so large that a straight-

forward numerical solution exceeds any computational ressources available today and

in the foreseeable future. An easy way to see this is to remember that even a real,

spinless Ψk on a cartesian grid of 100 points in ri is an object of dimension 1003n, n

being the number of electrons. Just storing it in this form would exceed the capabilities

of modern computers for but the most simple systems. A large part of the theoretical

chemistry community is thus developing efficient and accurate approaches that lead to

useful results for the electronic wavefunction. The majority of existing methods starts

with the approximation that every electron can be seen as mainly independent from all

the others, yielding a description by a set of individual single-electron orbitals ϕi. This

approximation is introduced by writing Ψk as an antisymmetrized product - or a Slater

determinant, which is the solution of eq. 3.9 for a system of noninteracting electrons,

i.e. a system without the electron-electron terms in Ĥe:

Ψk({ri}) =
1√
n!

∣∣∣∣∣∣∣∣
ϕ1(r1, s1) ϕ2(r1, s1) . . . ϕn(r1, s1)
ϕ1(r2, s2) ϕ2(r2, s2) . . . ϕn(r2, s2)

. . . . . . . . .
ϕ1(rn, sn) ϕ2(rn, sn) . . . ϕn(rn, sn)

∣∣∣∣∣∣∣∣ (3.10)

By this approach also the dimensionality is drastically reduced, as Ψk reduces to

an antisymmetrized product of one particle functions. One would thus have to only

store only n · 1003 spatial points. The coordinates sn are spin coordinates, reflecting

the spin states of the electrons. These single-particle functions are comparably easy

to obtain numerically: If one uses a 3.10 type ansatz for the full electronic structure

problem and applies the variational principle under an orthonormality constraint for

the different ϕi, one obtains the Hartree-Fock equations, which allow to determine ϕi

with relative ease. Through the ansatz and a follow on unitary transformation the

electronic structure problem becomes a set of one-particle Schrödinger equations

f̂ϕi = εiϕi (3.11)
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3.4 The Hartree-Fock method

With f̂ as the one particle Fock-operator and ϕi as canonical orbitals.

f̂ϕi =
(
−1

2
∇2 + νext︸ ︷︷ ︸

ĥ

+ĵ − k̂
)
ϕi (3.12)

These one particle equations describe the interactions of the electrons via an aver-

aged interaction with the other ϕi. The corresponding operators of this interaction are

ĵ and k̂ respectively. In order to simplify the exposition, only the closed shell case is

presented here. The closed shell case is distinguished by an even number of electrons,

two of which are of opposite spin and occupy one spatial orbital. The spin component

in the ϕi may then be eliminated, so that the functions of interest are now ϕi(r). The

definition of ĵ and k̂ then becomes

ĵ(r)ϕi(r) = 2

n/2∑
k=1

∫
ϕ∗k(r

′)ϕk(r
′)

1

|r− r′|ϕi(r)dr′ (3.13)

where the summation over the orbitals goes up to half the number of electrons. One

can immediately see the classical analogue by recognizing ϕ∗k(r
′)ϕk(r

′) as the one par-

ticle density ρk(r
′) of ϕk(r

′). This allows to write the operator as a potential operator,

the so called Hartree potential νH(r). The Hartree potential represents the classical

electrostatic interaction of the electronic densities, i.e. the mean-field.

k̂(r)ϕi(r) =

n/2∑
k=1

∫
ϕ∗k(r

′)ϕi(r
′)

1

|r− r′|ϕk(r)dr′ (3.14)

The exchange operator k̂ is marked by the exchange of a coordinate in eq. 3.14

and can not be written as a sum of one particle densities. It arises due to the antisym-

metrized nature of the ansatz 3.10. The full Hartree-Fock energy of Ψk is not equal to

simply the (twice) the sum of εi, the “orbital energies” of the previously defined one

particle operator, due to the double counting of mean field interactions. Instead, the

energy of the full HF wavefunction ΨHF can be written as

EHF = 2

n/2∑
k=1

Hk +

n/2∑
k=1,l=1

2Jkl −Kkl (3.15)

Its components in terms of the orbitals are defined as

15



3. CONCEPTS OF ELECTRONIC STRUCTURE THEORY

Hk = 2

n/2∑
k=1

〈ϕk|ĥ(rk)|ϕk〉 (3.16)

which is a sum of the one kinetic and external potential energy parts of eq. 3.12

Jkl = 〈ϕkϕl|
1

|rk − rl|
|ϕlϕk〉 (3.17)

which is the classical electrostatic density interaction between ρk and ρl obtained

by integration over space, a so-called Coulomb integral. The exchange analogue, i.e.

the exchange integral has permutated coordinates and can be written as

Kkl = 〈ϕkϕl|
1

|rk − rl|
|ϕkϕl〉 (3.18)

The difference of the Hartree-Fock energy to the true energy is defined as the cor-

relation energy. It contains the neglected part of the physically correct interaction.

It has to be re-introduced later on by means of specific methods. In classical quan-

tum chemistry it is introduced by a step-wise procedure (Møller-Plesset perturbation

theory or configuration-interaction/coupled-cluster approaches, see reviews (38, 39)).

In practice these theories rely on an expansion of Ψk in several determinants of the

form 3.10. An elegant approach to circumvent these expansions and the associated

numerical heavy lifting is density functional theory. Both these principles lead to

an accurate description of the ensemble of electronic properties for molecules, liq-

uids and solids; their theoretical details are discussed in numerous review articles and

books (6, 40, 41, 42, 43, 44, 45, 46, 47).

3.5 Density functional theory

Density functional theory (DFT), is in principle an exact theory. In practice an effective

potential (the exchange-correlation potential) is optimized such as to represent the ac-

tual many-electron interactions as good as possible. This section gives an introduction

to the fundamentals of DFT.

16



3.5 Density functional theory

3.5.1 The Hohenberg-Kohn theorems

Hohenberg and Kohn were able to prove that instead of finding the solution for the 3N

dimensional electronic Schrödinger equation, it is equally sufficient to determine the

correct electron density ρ.(48) They proved the following theorem:

HK I: For systems with a nondegenerate ground state, the ground state wave

function Ψ0({ri}) and thus all properties that are based on the electronic structure

are uniquely determined by the ground state electronic density ρ0(r).

To proof begins with the energy of the ground state |Ψ0〉.

E = 〈Ψ0|Ĥ|Ψ0〉 =

∫
ν(r)ρ0(r)dr + 〈Ψ0|T̂ + V̂ee|Ψ0〉 (3.19)

The potential ν(r) is an external potential, such as the potential of the nuclei in eq.

3.12. The operators T̂ and V̂ee correspond to the (electron) kinetic energy and electron-

electron interaction operators as defined in eq. 3.2. The form of these latter operators

depends only on the number of electrons in the system. This number is also defined as

the integral of the density over all of space. The proof of HK I depends on showing,

that for two different ν(r) 6= ν ′(r)[+const] a different ρ0(r) is necessarily obtained. The

potential ν ′(r) has a different ground state wavefunction Ψ′0({ri}). Assuming it has the

same density as Ψ0({ri}) its energy expectation value is:

E′ = 〈Ψ′0|Ĥ ′|Ψ′0〉 =

∫
ν ′(r)ρ0(r)dr + 〈Ψ′0|T̂ + V̂ee|Ψ′0〉 (3.20)

According to the variational principle, the nondegenerate energy expectation value

is always above the one of the corresponding ground state wavefunction.

E < 〈Ψ′0|Ĥ|Ψ′0〉 = E′ +

∫
[ν(r)− ν ′(r)]ρ0(r)dr (3.21)

Equation 3.21 may also be written for Ψ0:

E′ < 〈Ψ0|Ĥ ′|Ψ0〉 = E +

∫
[ν ′(r)− ν(r)]ρ0(r)dr (3.22)

If eq. 3.21 and eq. 3.22 are added, the following contradiction appears:

E′ + E < E′ + E (3.23)
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3. CONCEPTS OF ELECTRONIC STRUCTURE THEORY

Thus proving HK I by reductio ad absurdum. �

The density of the electronic ground state can therefore be mapped to the ground

state wavefunction; energy and all other ground state electronic properties may be

accordingly obtained from it. The ground state electron density itself may in turn be

obtained variationally, i.e. by finding the density corresponding to the lowest energy,

as is contained in the second Hohenberg-Kohn theorem.

HK II: For each trial density ρ′ which satisfies∫
ρ′(r)dr = n and

ρ′(r) ≥ 0 for all r the following equality holds

E0 = Eν [ρ0] ≤ Eν [ρ′]

It is therefore sufficient to find a way to map the density, a three dimensional

function, to the energy Eν , which is a scalar. This is what is called a density functional.

The proof of HK II relies on the variational principle and HK I. We define a trial

wavefunction Ψ′0, associated to a trial density ρ′ and its corresponding potential ν ′. Its

energy

〈Ψ′0|Ĥ|Ψ′0〉 ≥ E0 = Eν [ρ] (3.24)

is larger than the energy corresponding to the ground state density ρ0 of ν. �

An important limitation of the trial densities ρ′ is already apparent. They have to

be associated to a potential ν ′ (v-representability). However, it is possible to cir-

cumvent this need by using the Levy-Lieb constrained search formalism.(49, 50) The

real density must also be representable by an antisymmetrized wavefunction function

(n-representability), which can also be assured. In order to apply density functional

theory, it is now necessary to find a way of mapping energies to densities, preferably

without any recourse to a wavefunction. This is a very challenging task, as to maintain

the exactness of the theory the density functional Eν [ρ] has to account for the full

many-body interactions.
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3.5 Density functional theory

3.5.2 The Kohn-Sham formalism

Nevertheless, in the Kohn-Sham approach(51), as a starting point for this functional,

one begins with a fictitious noninteracting system, introducing HF-like orbitals to gener-

ate the density and compute the kinetic energy. The orbitals are reintroduced, because

it is not clear how to compute the kinetic energy of a density, as it depends on the

Laplacian of the wavefunction. The density functional E[ρ] is therefore decomposed to

E[ρ] = Ts[{ϕi}] + J [ρ] + EXC [ρ] + Vext[ρ] (3.25)

Hence, it consists of the kinetic energy of the noninteracting system Ts, the (classi-

cal electrostatic) Hartree energy J , the exchange-correlation energy EXC , and the en-

ergy due to the potential of the nuclei Vext. The exchange-correlation (XC) functional

EXC [ρ] is defined to contain the energy difference to the fully interacting, correlated

system. The XC functional is written in terms of a potential for a single-electron.

νXC ≡
δEXC [ρ]

δρ
(3.26)

Where the right part of the equation is a functional derivative of EXC with respect

to ρ. This leads to the Kohn-Sham equations. In analogy to eq. 3.12, a set of single

particle equations is obtained. However, with a slightly different Hamilton operator:

ĥ = −1

2
∇2 + νext(r) + νH(r) + νXC(r) (3.27)

Where the Hartree potential νH is equal to the Coulomb operator ĵ as defined as in

eq. 3.13. The exchange operator k̂ is defined to be included in νXC . The single electron

XC-potential thus turns a mean-field, HF-type calculation into an exact one. In fact

computational effort is reduced to a mere Hartree approximation as the energetic effect

of anti-symmetry, i.e. exchange is also included in the multiplicative operator νXC . So

far the theory is still exact, the only price paid is the replacement of the true Ψ0 with

a fictitious noninteracting system. The true wavefunction of the system is not directly

available anymore. This change leads to some further changes which are not at first

evident from the formalism.

As the fictitious noninteracting system does not deliver the true wavefunction, only

the properties of ΨKS depending on ρ alone (i.e.) J and the physical external potential

can be taken directly from the ϕi. Specifically,

19



3. CONCEPTS OF ELECTRONIC STRUCTURE THEORY

T [ρ] 6= Ts[ρ] (3.28)

The exchange-correlation functional therefore does not only include the exchange

energy and electron correlation as derived from the HF picture, but also a correction

to the kinetic energy of the noninteracting system Ts[ρ]. It can therefore be written

approximately as

EXC [ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ] (3.29)

Where Vee is the full electronic interaction energy. Furthermore, the background

density used in evaluating J [ρ] also includes ρ[ϕi], i.e. for k = i in eq. 3.13. In HF-

calculations this poses no problem as this is offset by subtraction of the self exchange

in eq. 3.14. However, in KS-DFT this also has to be accounted for in EXC [ρ]. This

phenomenon is called self interaction.

A direct way to calculate EXC [ρ], without first solving the Schrödinger equation is

unknown - finding it is equivalent to solving the quantum many-body problem for the

ground state.

3.5.3 Density functionals for exchange and correlation energy

Looking for approximations to the XC-functional, Kohn and Sham turned to the the

homogeneous electron gas (HEG). The HEG is a system of uniform electron density

with corresponding uniform background charge. The idea to use the homogeneous

electron gas to compute energies goes back to Thomas and Fermi.(52, 53) As HEGs of

arbitary densities can be constructed, they are very useful for DFT approximations.

Local density approximation

The most straightforward way to incorporate the HEG into the Kohn-Sham model, is

to assume that the contribution of the density ρ(r) to EXC [ρ] on some volume slice

r0 + dr with density ρ0 corresponds to the the same quantity of an HEG of density ρ0.

As it takes into account only the local density and not the variation in its environment,

it is called the local density approximation (LDA). This makes it possible to write

ELDAXC [ρ] =

∫
ρ(r)εhomXC (ρ(r))dr (3.30)
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3.5 Density functional theory

In order to obtain νLDAXC (r) from it, the functional derivative of ELDAXC [ρ] as in eq.

3.26 is used, so that

νLDAXC (r) = εhomXC (ρ(r)) + ρ(r)
δεhomXC (ρ(r))

δρ(r)
(3.31)

It can be shown that it is possible to separate εXC into exchange and correlation

dependent parts.

εXC(ρ(r)) = εX(ρ(r)) + εC(ρ(r)) (3.32)

The exchange energy of a HEG of density ρ(r) is known analytically.(54)

EX [ρ] =

∫
ρ(r)εhomX (ρ(r))dr = −3

4
(
3

π
)1/3

∫
ρ(r)4/3dr (3.33)

where

εhomX (ρ(r)) = −3

4
(
3

π
)1/3

∫
ρ(r)4/3dr (3.34)

is the exchange energy density. One can numerically compute and interpolate the

correlation energy of the HEG as a function of its density.(55, 56)

In principle the result should be far from exact, as the exchange and correlation

energies of a real system do not necessarily correspond to those assembled from densities

of the HEG model system. The change in kinetic energy due to correlation ∆Ts is

not accounted for, neither is the self interaction problem. One would expect that this

method only gives good results for systems of slowly varying electronic density. However

it turns out, that it actually works reasonably well for a large number of molecular

systems.(57) Some problems inherent to the LDA may be assessed by looking at the

exchange (eq. 3.34) of an exponentially decaying density, in this case

ρ(r) ∝ e−αr → νLDAX (r) ∝ e−αr/3 (3.35)

However, the exact exchange potential derived from the HF exchange energy may

be shown to asymptotically behave as

νexactX (r)→ − e
2

|r| (3.36)
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3. CONCEPTS OF ELECTRONIC STRUCTURE THEORY

In a finite system, such as an atom, this wrong asymptotic behavior leads to a

flawed description of states with Coulombic (1
r ) behavior. One consequence is that

atomic negative ions are predicted to be unbound. This also does not bode well for

eventual descriptions of excited states.

(Generalized) gradient approximation

To improve the description for more rapidly varying densities (as present in most molec-

ular systems), it is desirable to find an approximate exchange-correlation functional

which also includes variations in the densities (local) environment. By including the

gradient of the electron density into εXC one may write

EXC [ρ] =

∫
εXC(ρ(r),∇ρ(r))dr (3.37)

To introduce gradient information on may expand the energy in a gradient expan-

sion and include ∇ρ2 terms. Charge conservation of the so called exchange-correlation

hole then becomes an issue. For further information, see (40, 47, 57). Realizing this and

ensuring proper behavior of the XC-hole brought about the generalized gradient approx-

imation (GGA).(58) In contrast to LDA, there have been many different approaches to

the GGA exchange functional. For example the commonly used Becke88(59) exchange

functional has been parametrized using a test set. Another widespread functional is the

Lee-Yang-Parr (LYP) correlation functional.(60) Combinations of exchange and corre-

lation functionals in the literature have been expressed by combining the abbreviations

for exchange and correlation functionals, e.g. BLYP or BP86(61).

More sophisticated approaches

As a logical next step from the GGA, the Laplacian of the density can also be taken

into account (MGGA).(62) One may also compute an exchange energy from the KS

orbitals (EXX) and only take the correlation energy from the local density. Approaches

may be combined, taking e.g. a fraction of HF-exchange, some LDA and some GGA

exchange and correlation energies, as in so called hybrid functionals.(63) The commonly

used B3LYP functional is a result of such a combination parametrized against a test

set. In addition to this one may correct for the self interaction error (SIC)(64), kinetic

energy density and other problems according to the task at hand. One especially active
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3.6 Basis sets

research area has been dispersion corrections to DFT.(65, 66) While no single method

“just works” in any chemical environment, some variant of DFT has been successfully

applied in nearly all areas of chemistry and chemical physics.(40) For a more in depth

introduction, see e.g. the second half of the book by Koch and Holthausen.(57)

3.6 Basis sets

Wavefunction based methods, such as the HF theory, do need to express this many-

body wavefunction in some basis. In Kohn-Sham DFT, the electron density is generated

from orbital densities. Instead of simply optimizing a free form function on a spatial

grid, i.e. using the position basis, the orbitals are built from linear combinations of

specially adapted functions.

ϕi(r) =
∑
µ

Cµiχµi(r) (3.38)

These basis functions χ may be derived from atomic orbitals, obtained e.g. by

solving the Schrödinger equation for the hydrogen atom. Hence, a so called Slater

Type Orbital (STO) has the form

χ(r, θ, φ) = Arn−1e−ζrYlm(θ, φ) (3.39)

The radial part of the solutions for the hydrogen atom contains an exponentially

decaying part as well as a polynomial.

3.6.1 Gaussian type orbitals

The exponential part is inconvenient from a numerical point of view, as integrals e.g

of the type in eq. 3.13 are not easily evaluated. Therefore, typically Gaussian type

functions (GTFs), also abbreviated as GTOs (Gaussian type orbitals) are chosen for

this purpose, as integrals over products of differently centered Gaussians may be easily

evaluated using the Gaussian product rule. A single Gaussian does not accurately

reproduce the sharp cusp at the center of an exponential, neither does it have the

correct asymptotic decay. However, using linear combinations of Gaussians one may

approximate atomic orbitals. Linear combinations of Gaussian functions with fixed
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3. CONCEPTS OF ELECTRONIC STRUCTURE THEORY

coefficients may be used as one atomic orbital type basis function. This is referred to

as a contracted GTO (CGTO). In this case

χ(r, θ, φ) = Ylm(θ, φ)rl
∑
i

αiAi(l, α)e−ζir
2

(3.40)

Where the coefficients ci and the exponents ζi predetermined in order to optimally

fit atomic orbitals. Instead of spherical coordinates, the GTOs may also be expressed in

cartesian coordinates. Atomic orbital type basis functions, such as GTOs have localized

centers in real space.

3.6.2 Plane waves

Another basis especially suited for periodic systems are plane waves. These are by

nature periodic and localized in reciprocal space.

χG(r) = AeiG·r (3.41)

The normalization factor A is given by 1√
Ω

with Ω as the volume of the unit cell.

In a three dimensional lattice, G contains the reciprocal lattice vectors. The peri-

odicity of the plane waves is especially advantageous in the domain of solid state

physics, where crystal periodicity enforces periodic wavefunctions. According to the

Bloch theorem(67), the wavefunctions of a particle in a periodic potential will have the

form of

ψnk(r) = e[ik·r]unk(r) (3.42)

Where u has the same periodicity as the potential, e.g. the crystal unit cell. The

different wavevectors k are quantum numbers with discrete energy levels εk. They

correspond to a wavefunction phase factor with a different periodicity than the unit cell

itself, e.g. several multiples of a unit cell. Finding all k in the first Brillouin zone of the

crystal will give the band structure. In the case of a metallic system these conduction

bands have nonzero occupation, hence an electron can move freely over several unit

cells. When treating insulators, as is the case in this thesis, it is sufficient to consider

the electronic 0 K ground state at k = 0. This is called the Γ-point approximation. In

the following sections, the k dependency will be omitted for the sake of simplicity.
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3.6 Basis sets

The plane waves (PW) form a complete basis - the momentum basis for a particular

periodic system. As they are not localized in real but in reciprocal space, they avoid

some problems of atom centered basis sets (see below). The Kohn-Sham orbitals are

expressed in PW as follows

ϕi(r) =
1√
Ω

∑
G

Ci,Ge
[iG·r] (3.43)

As in practice the basis set expansion is cut off at some point, the basis is incomplete

which leads to certain systematic errors. When using GTOs, errors arise from the

position dependence of the basis functions, leading to effects dependent on the relative

positions of nuclei to each other. One example for this is the basis set superposition

error (BSSE). Another are the Pulay forces. The use of plane waves avoids these

problems, as the basis is dependent on the unit cell G and not the atomic positions.

However, the energy may instead unphysically depend on the position of a molecule in

the periodic box because of the finite grid resolution. When using PW, the basis set

cutoff is usually given in terms of the kinetic energy. This kinetic energy corresponds to

the energy of the free particle whose wavefunction is χG, e.g. 280 Ry. As the reciprocal

unit cell G is three dimensional, this energy cutoff Ec is expressed in terms of a sphere

1

2
|G|2 ≤ Ec (3.44)

Another natural advantage of plane waves is the ease of computing the Hartree

potential (i.e. mean field classical electrostatic potential defined in eq. 3.13). In real

space, the Hartree potential νH is written as

νH(r) =

∫
ρ(r′)

|r− r′|dr
′ (3.45)

In absence of nuclear charge density, in reciprocal space the equation becomes

νH(G) =
4πρ(G)

G2
(3.46)

and accordingly the classical electrostatic energy is

J [ρ] = 2πΩ
∑

G<GC

ρ∗(G)ρ(G)

G2
(3.47)
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Where the Fourier component of the potential for G = 0 is not included. It cor-

responds to an average, which will result only in a shift. In the case of a charged

periodic cell, the potential diverges. In such a situation, a neutralizing charge has to

be introduced, e.g. included in the G = 0 background. The external potential due

to the nuclei can also be computed in reciprocal space in a similar manner, by adding

the nuclear charge density to the density. In practice short-range interactions are often

treated differently, in a local representation. The density ρ(r) can be accumulated in

real space by summing the plane waves on a real space grid.

ρ(r) =
2

Ω

n/2∑
i

∑
G

C∗i,GCi,Ge
iGr (3.48)

In order to obtain ρ(G) from ρ(r), a Fast Fourier Transform (FFT) may be used,

yielding νH(G) from the real space density with a scaling of O(N logN). Plane waves

are by nature orthogonal to each other and their kinetic energy expectation value is

trivial to compute. Another advantage is the very good representation of diffuse electron

densities. However, the electron density near the atomic centers varies rapidly, so that

a very high number of plane waves would be necessary to represent it. This problem

is especially important for elements with high electronegativity and even worse for the

KS-orbitals of core electrons. This is why pseudopotentials are used in most practical

plane wave based computations - they are explained in the next section.

3.7 Pseudopotentials

The computational effort for the electronic structure problem increases greatly with

the number of electrons. The electrons in the region around the nuclei are especially

problematic from a computational point of view - often without actually affecting the

chemistry of the respective atom. The reason why the orbitals of these electrons are

difficult to deal with is the 1/r dependency of the Coulomb potential with its singu-

larity at the core. In combination with the orthogonality condition, this leads to a

strongly oscillatory behavior in this region (“core-wiggles”). This is difficult to de-

scribe with a small basis set, and even more so with a limited set of plane waves, which

additionally suffer from the convergence problems described above. Therefore, pseu-

dopotentials are introduced to represent an effective core screened by the core electrons.
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3.7 Pseudopotentials

The idea is to remove the “inert” core electrons and simultaneously replace the nuclear

Coulomb potential with a potential that is smooth and generates the same properties

beyond a cutoff distance RC . Hellmann was the first to introduce the pseudopoten-

tial approximation.(68, 69) Numerous advances over the last decades have established

pseudopotentials whose effect can be evaluated efficiently and which even include rela-

tivistic effects of the core electrons.(70, 71, 72, 73) A good pseudopotential (PSP) must

be transferable to different chemical situations and generate a potential as smooth as

possible. In this thesis, Norm Conserving Pseudo Potentials (NCPP) as introduced by

Hamann et al.(74) are used. If one inserts such a pseudopotential instead of the true

Coulomb potential into the Kohn-Sham Hamiltonian one obtains an orthonormalized

set of “pseudofunctions” ϕPSi (r). These functions are normalized and their decay out-

side the core mimicks the true wavefunction. Inside the core zone they are smoother

than the ϕi of the full Hamiltonian. This smoothness arises also due to the fact that

they do not have to be orthogonal to lower states (which have been removed), and thus

have less nodes. The cutoff radius RC can be understood as a quality criterion. The

smaller it is, the smaller is the region in space, in which the pseudofunction is allowed

to deviate from the all-electron wavefunction. Norm conservation means that inside

the cutoff radius RC , the integrated charge of a valence orbital is equal to that of the

pseudofunction

∫ RC

0
ϕ∗i (r)ϕi(r)dr =

∫ RC

0
ϕ∗,PSi (r)ϕPSi (r)dr (3.49)

Alltogether the NCPP should fulfill the following criteria

• The eigenvalues of the valence orbitals have to be the same as in the all electron

calculation

• ϕPSi (r) = ϕi(r) for R > RC

• Norm-conservation (see above)

The criterion of norm-conservation also implies that the logarithmic derivative of

the all electron wavefunction

Dl = r
d

dr
lnψl(ε, r) (3.50)
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agrees with the pseudofunction at RC . More interestingly this also implies that

the first energy derivative dDl/dε agrees at RC , see (74). This ensures a certain de-

gree of transferability. Transferability may be enhanced further by using a small RC ,

which of course also cancels part of the smoothing effect. In order to build accurate

pseudopotentials one has to go beyond substituting the nuclear core charge with an

effective potential only in r, the potential needs to depend also on the angular momen-

tum of the electrons - in analogy with nondegenerate atomic orbitals. Such a semilocal

pseudopotential may be written as

V̂SL = V(r) +
∑
lm

|Ylm〉Vl(r)〈Ylm| (3.51)

Where the notion of semilocality refers to Vl(r) being only a function of r. The

semilocal pseudopotential gives a good impression on how these potentials act on the

valence orbitals: the spherical harmonics project the wavefunction into “seeing ” the

potential corresponding to the angular momentum dependent atomic orbital of the

target valence state. However, projecting planewaves on a localized basis of angular

momentum eigenfunctions is very expensive numerically, as can be seen from the expec-

tation value for V̂SL, whose computation necessitates the evaluation of a double radial

integral. Kleinman and Bylander(72) could show that it is possible to approximate

such a semilocal PSP by a nonlocal one, with a set of localized projectors.

V̂NL = V(r) +
∑
lm

|ϕPSlm Vl(r)〉〈ϕPSlm Vl(r
′)|

〈ϕPSlm |Vl(r)|ϕPSlm 〉
(3.52)

This construction leads to a V̂NL(r, r′) which is fully nonlocal. To understand this

consider 〈ϕPSlm Vl(r)|, which is a projector for the angular momentum dependent part

of the pseudopotential. It is localized, because

〈ϕPSlm Vl(r)|ϕi(r)〉 =

∫
drVl(r)ϕPSlm (r)ϕi(r) is zero outside RC (3.53)

These projectors are built using the pseudofunctions of the atom, introducing a

further approximation, but they allow for efficient numerical calculation of the pseu-

dopotential interaction, because the matrix elements

〈ϕi|V̂NL(r)|ϕj〉 (3.54)
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now just require a product of projection operators instead of the double spatial

integration of the full semilocal PSP. In order to further improve performance and

simplicity, one may choose Gaussian shaped projectors. This is the Goedecker-Teter-

Hutter (GTH) approach to pseudopotentials.(73) The GTH pseudopotentials can be

written as a sum of a local and a nonlocal part, the local part being

VPP
loc (r) = −Z

r
erf
( r√

2rloc

) 4∑
i=1

CPPi
( r

rloc

)2i−2
e
−( 1

2
r

rloc
)2

(3.55)

and the nonlocal part

VPP
nloc(r, r′) =

∑
lm

∑
ij

N l
iYlmr

l+2i−2e
− 1

2
( r
rloc

)2︸ ︷︷ ︸
|rpilm〉

hlij〈r′pjlm| (3.56)

Where Ci, hij and rloc are parameters and Ni is a normalization factor. As can be

seen the projectors plm are Gaussian in real space - and thus also Gaussian in Fourier

space. This allows for analytical integrals. In this work the GTH potentials and the

Troullier Martin(75) potentials have been used. For a summary on different methods

to generate pseudopotentials see (70).

3.8 Combination of Gaussians, planewaves and pseudopo-

tentials

Plane waves and Gaussians may be combined to improve computational performance

and accuracy or even to do away with the need for pseudopotentials.

3.8.1 The GPW method

The Gaussians and plane waves (GPW) approach(76) uses Gaussians for the Kohn-

Sham orbitals, but expands these in plane waves for the density dependent Hartree

energy, combining the numerical advantages of both methods.

In order to make use of the numerical advantages of both methods, a way to express

ρ(r) in Gaussians as well as in plane waves is needed. The density in any basis can be

written using its density matrix P, in the closed shell case

29
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ρ(r) = 2

n/2∑
i

ϕ∗i (r)ϕi(r) = 2

n/2∑
i

∑
µ

C∗µiχ
∗
µ(r)

∑
ν

Cνiχν(r) (3.57)

this expression can be simplyfied

ρ(r) =
∑
µ

∑
ν

[2

n/2∑
i

C∗µiCνi]︸ ︷︷ ︸
Pµν

χν(r)χ∗µ(r) (3.58)

ρ(r) =
∑
µν

Pµνχ
∗
µ(r)χν(r) (3.59)

Where the Matrix of the Pµν is the density matrix. In the PW basis the closed shell

density is

ρ(r) =
1

Ω
2

n/2∑
i

∑
G

C∗i,GCi,Ge
iGr (3.60)

The Fourier coefficents of the density in the PW basis may be obtained by FFT of

ρ(r) on a grid. The density is expanded in a plane wave “auxiliary” basis set. This

is advantageous, not only because the Hartree energy can be computed by FFT; the

density also varies more smoothly than the orbitals, decreasing the size of the necessary

basis. The idea of using a more convenient basis set for the density was first applied to

pure Gaussian basis sets where it is known as the resolution of identity (RI) method.(77)

Nevertheless, pseudopotentials still have to be used in practice, to allow converging the

electrostatic part of the computation. For the kinetic energy, Gaussians may be used

efficiently, because in the Gaussian basis the expression

∫
Pµνχµ(r)

1

2
∇2χν(r)dr (3.61)

can be solved analytically. The Gaussian basis set is better suited to compute the

orbital Laplacians, as it can easily reproduce orbital “spikes”. As the Gaussian basis

functions on different centers are not orthogonal, the calculation of overlap integrals is

also necessary (see section 3.9). As the kinetic energy and overlap integrals are integrals

over all of space, the periodic boundary conditions have to be respected. The Gaussian

basis set is therefore expanded to also include the periodic images, multiples of the cell

vector l.
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3.8 Combination of Gaussians, planewaves and pseudopotentials

χµ =
∑
i

χµ(r− li) (3.62)

Of course there are in principle infinitely many mirror images in any dimension.

However, as the product of the localized Gaussians in eq. 3.61 rapidly goes to zero,

the integral vanishes. A cutoff to the product of the Gaussian functions is therefore

employed to truncate the summation. The exchange-correlation energy also depends

only on the local density in real space, or its gradient in the case of GGA. Therefore it

may also be efficiently computed using the Gaussian basis set.

Summarizing, the GPW method uses GTOs for all computations besides the Hartree

energy. It thereby exploits the properties of plane waves for periodic electrostatic

computations while keeping the convergence and numerical advantages of Gaussians

for the other properties. As the Hartree term is usually the most expensive part of the

calculation scaling with a formal scaling of N4 in a GTO basis set, the scaling properties

are also improved. However, the necessity to keep densities in both representations

equal limits the accuracy, because the soft properies of PW densities as well as the

good behavior of atomic centers cannot be fully harnessed.

3.8.2 The GAPW method

Using an appropriate projection, it is possible to decompose the density and the KS

orbitals in the core region into slowly varying smooth functions (expanded in plane

waves) and a rapidly varying part, typically a predetermined frozen core. This is the

idea behind the projector augmented wave (PAW) method.(78) If one instead uses

flexible Gaussian orbitals in the core region, it becomes the GAPW method.(79) The

first step is to decompose the density into three parts

ρ = ρ̃− ρ̃1 + ρ1 (3.63)

The soft density ρ̃ is smooth and distributed over all space. Centered at the atomic

cores A there is a hard and a soft one center density ρ1 and ρ̃1.

ρ1 =
∑
A

ρ1
A and ρ̃1 =

∑
A

ρ̃1
A (3.64)
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Outside the core region, these densities are constructed to be equal and thus cancel

out. The spherical region around the atomic cores is defined as the environment UA.

The space outside the core region is the insterstitial region I. The aim is to have a well

defined soft density also in UA, which can be well separated from the atom centered

hard density. For this, the following conditions have to be met:

ρ(r)− ρ̃(r) = 0 for r ∈ I (3.65)

ρ(r)1
A − ρ̃(r)1

A = 0 for r ∈ I (3.66)

ρ̃(r)− ρ̃(r)1
A = 0 for r ∈ UA (3.67)

ρ(r)− ρ(r)1
A = 0 for r ∈ UA (3.68)

The purpose of this separation is the possibility to use a plane wave expansion for

the soft density, while using Gaussians for the atomic environment UA. As, contrary

to the GPW method, the global density does not have to be equal in both basis sets,

the different convergence properties may be used. The diffuse part rapidly converges in

plane waves, while the part near the atomic cores is much better suited to treatment

with Gaussians. The difficulty is to construct projections, so that the separation criteria

in eq. 3.65 ff. hold. The soft density ρ̃ may be expanded in smooth Gaussians χ̃µ(r),

by removing the Gaussians with an exponent above a critical value from the basis set.

It can then be written as

ρ̃(r) =
∑
µν

Pµνχ̃µ(r)χ̃µ(r) (3.69)

However, a planewave expansion is also possible - and in the intention of the de-

composition. In order to construct ρ1 and ρ̃1, for the contributions centered on any

atom A, a separation by exponent in “hard” and “soft” Gaussians is sufficient. How-

ever, as the atom centered density on A is computed only from Gaussians centered on

A in order to also treat contributions, which are not centered on the same atom, a

Gaussian projector basis {pj} has to be introduced, which projects contributions from

other atoms on the atom center at A. The primitive gaussians of these other atoms are

denoted as gb. The projection leads to a new set of coefficients

〈pa|ϕµ〉 =
∑
b¬@A

CAbµ〈pa|gb〉 (3.70)
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3.8 Combination of Gaussians, planewaves and pseudopotentials

The coefficients CAbµ can be obtained by the inversion of the overlap matrix defined

by the above equation. ρ1
A can be shown to be

ρ1
A =

∑
a,b@A

∑
µ,ν

CAaµPµνC
A
bνgagb (3.71)

ρ̃1 can be obtained from the same expression after removing the coefficients corre-

sponding to the “hard” Gaussians. The total density can now be separated according

to eq. 3.63. As there is a double and equivalent representation of the densities into a

soft and the hard part, the corresponding XC-energies may also be written to cancel

out in the following way:

EXC [ρ] = EXC [ρ̃]− EXC [ρ̃1] + EXC [ρ1] (3.72)

This decomposition may easily be computed for all local quantities. However, the

nonlocal Hartree energy is introduces further complications. In contrast to the GPW

method, it can not simply be computed from a plane wave density. Instead, hard and

soft screening densities ρ0 are introduced using a multipole expansion at the centers A.

ρ0 =
∑
A

ρA1 =
∑
ml

QlmA glmA (3.73)

The screening densities are expanded in sets of hard and soft Gaussian functions

glmA respectively, the soft part is

ρ̃0 =
∑
A

ρ̃1
A =

∑
ml

QlmA g̃lmA (3.74)

The QmlA are defined as

QmlA = NqmlA [ρ1 − ρ̃1 + ρZA] (3.75)

Where qlmA is the multipole moment operator and ρZA is the core charge density.

The screening densities cancel the electrostatic multipole moments of the one center

densities. The Hartree energy can then be decomposed into different parts. The global

soft density’s J can be computed using the plane wave representation and the screening

densities are atom centered and may be computed by Ewald summation, the short

range part of the localized densities are computed using the Gaussian representation.
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The use of Gaussians in fully periodic calculations together with the plane-wave

soft basis allows to forego the use of pseudopotentials and to do efficient and accu-

rate all-electron calculations in periodic systems. This reflects the state of the art as

implemented in the CP2K program(80).

3.9 Self consistent solution of the Kohn-Sham equations

After showing the construction of the Kohn-Sham orbitals and their associated electron

density, and discussion of the numerical evaluation of the energy as function of these

quantities, one important aspect has not been discussed yet. Taking a look at the

Kohn-Sham equations, we find that the energy minimized by the KS-orbitals depends

on these orbitals themselves. The Kohn-Sham equations are therefore nonlinear, as are

the Hartree-Fock equations. A solution has to be self-consistent, such that applying the

variational principle to a set of orbitals does not change the background potential any

further. For this reason, Hartree-Fock is also known as the self-consistent-field (SCF)

method. Evaluating the KS-or Fock operator in any single basis gives for ϕi(r)

∑
µ

Cµif̂(r)χµ(r) = εi
∑
µ

Cµiχµi(r) (3.76)

Multiplying on the right with the basis functions χ∗ν(r) and integrating over r yields

a matrix equation

∑
µi

Cµi

∫
drχ∗ν(r)f̂(r)χµ(r) = εi

∑
µ

Cµi

∫
drχ∗ν(r)χµ(r) (3.77)

The Matrix equation can be abbreviated by defining a number of matrices, the first

being the overlap matrix S

Sνµ =

∫
drχ∗ν(r)χµ(r) (3.78)

The second being the Kohn-Sham or Fock matrix F.

Fνµ = χ∗ν(r)f̂(r)χµ(r) (3.79)

One may now rewrite eq. 3.77 as
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3.9 Self consistent solution of the Kohn-Sham equations

∑
µ

FνµCµi = εi
∑
µ

SµνCµi (3.80)

After defining the coefficient matrix C for Cµi, the entire problem in all i can be

written in terms of a matrix equation.

FC = SCε (3.81)

This formulation (also known as Roothaan-Hall equation), allows to apply stan-

dard matrix algebra algorithms to be used for obtaining the orbitals. In the case of

orthogonal orbitals, i.e. S = I

FC = Cε (3.82)

To solve this eigenvalue type problem, one would have to merely diagonalize F.

Therefore, the solution of the KS-equations generally begins with a diagonalization of

S. Note that in a plane-wave basis, this problem vanishes. The Fock matrix may in

turn be expressed in terms of the density matrix, which depends on the coefficients,

therefore

F(C)C = SCε (3.83)

This means the equation is still nonlinear. In order to achieve self-consistency,

the potential is optimized iteratively, departing from an initial guess for the density

matrix P(C), see eq. 3.59. A typical way to obtain an initial guess is to depart from

a superposition of the atomic (pseudo)wavefunctions in a minimal localized basis and

then expand in the full basis set. Coefficients have different ranges, it is therefore

advantageous to precondition the SCF problem, leading to the introduction of further

transformation matrices. Once the coefficent matrix for a “trial“ Fock operator is found,

a new density matrix will be computed from it and the Fock operator will be evaluated

again. When this procedure does not change the coefficients anymore, self-consistency

has been achieved.

There are two basically different approaches to efficicently solving the SCF problem,

one being the direct minimization techniques the, other being fix-point methods. The
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most common direct minimization algorithm in the field of SCF theory is called direct

inversion of the iterative subspace (DIIS).(81)

The DIIS procedure produces nonorthogonal orbitals. This leads to the need of a

reorthogonalization step, by e.g. Gram-Schmidt or Löwdin orthonormalization tech-

niques.

3.10 Response and second order properties

3.10.1 Density functional perturbation theory

Kohn-Sham DFT is based on variational minimization of the energy. Many properties

of interest, such as polarizabilities, NMR chemical shifts and IR-spectra based on an-

alytical second derivatives require knowledge of states above the variational minimum.

This is because they are “second” order, i.e. they contain second derivatives of the en-

ergy. This means they cannot be obtained by the Hellmann-Feynman theorem directly.

The approach taken to their calculation is based on perturbation theory. In standard

quantum mechanics, the Hamiltonian of the system is rewritten as a combination of the

original Hamiltonian Ĥ0 and the perturbation Hamiltonian Ĥ1, which is scaled by the

perturbation parameter λ. For clarity, the discussion of degenerate states is omitted.

The section follows the description in (82).

Ĥ = Ĥ0 + λĤ1 (3.84)

The wavefunction and energies can be written as a power series in λ

E = E(0) + λE(1) + λ2E(2) + · · ·+ λnE(n) (3.85)

|ψ〉 = |ψ(0)〉+ λ|ψ(1)〉+ λ2|ψ(2)〉+ · · ·+ λn|ψ(n)〉 (3.86)

If the perturbation is sufficiently small, the series should converge quickly in low orders

of λ. Linear response means only considering terms first order in λ. Not only energy

and wavefunction, but any property X (e.g. the density) may thus be written in a

power series, where each order obeys

X(n) =
1

n!

dnX

dλn
(3.87)
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Within the framework of density functional perturbation theory (DFPT)(83), this

wavefunction based theory is rewritten in terms of the total energy functional EKS .

This allows perturbations which are not expressible with a Hamiltonian to be computed.

EtotKS [{ϕi}] = E
(0)
KS [{ϕi}] + λEpertKS [{ϕi}] (3.88)

With E
(0)
KS as the unperturbed Kohn-Sham energy and thus the orbitals ϕ consitute

a variational minimum. Minimizing the total expression for a sufficiently small per-

turbation EpertKS seems like a straightforward approach. This finite difference method is

however relatively expensive and has numerical stability problems. Instead the analyt-

ical derivative is taken. To do this, the KS wavefunction is expanded in a power series,

analogous to eq. 3.86, so that

E
(tot)
KS [{ϕ(0)

i + λϕ
(1)
i . . . }] = E(0) + λE(1) + λ2E(2) . . . (3.89)

Here the expression is truncated after second order in the energy. The energy term

which is linear in λ vanishes because of the stationarity of the ϕ
(0)
i , see eq. 3.87. It can

be shown that the first nonvanishing term is the second order energy.

This leads to the stationarity condition

δE(tot)

δϕ
(1)
i

= 0 (3.90)

In order to allow a variational scheme on the perturbative expansion in ϕ
(1)
i , it is

helpful to restrict the space in which the response orbitals are being constructed by

introducing a so called parallel transport gauge. Restricting ourselves to linear order

in ϕi, this gauge can be written as

〈ϕ(1)
i |ϕ

(0)
i′ 〉 = 0;∀i, i′ (3.91)

This ensures the manifold of response orbitals to be orthogonal to the ground state

orbitals. The parallel transport gauge is enforced via Lagrange multipliers. The result-

ing system of equations is of the Sternheimer type:

−Pe(Ĥ
(0)
KS − ε

(0)
i )Pe|ϕ(1)

i 〉 = Pe

[ ∫
d3r′fHXC(r, r′)ρ(1)(r′)|ϕ(0)

i 〉+
δEpertKS

δ〈ϕ(0)
i |

]
(3.92)
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The derivation of eq. 3.92 is given in the literature(83, 84, 85), constituting terms

will be discussed on a qualitative basis.

fHXC(r, r′) =
δ2(EH + EXC)

δρ(r)δρ(r′)
(3.93)

fHXC is the Hartree and exchange-correlation kernel. This is the most important

quantity involved in computing the response as it handles the electronic interactions,

i.e. describes the response of the electron-electron interactions to a change in the

density via the change in Hartree and XC-potentials. It reappears in further detail in

the description of TD-DFT, where it is defined and discussed as a frequency dependent

quantity (see the corresponding sections). In static DFPT one operates within the zero

frequency limit. The projection operator Pe projects on the manifold of unoccupied

orbitals, it is written as

Pe =
∑
i

1− |ϕi〉〈ϕi| (3.94)

The Sternheimer equation 3.92 is solved self-consistently, using direct minimization

algorithms such as conjugate gradients. As the nature of the perturbation Epert has

not been defined the approach may be used for a wide variety of properties.

3.10.2 Calculation of NMR shifts

The property being considered in this work are chemical shifts, accessible by NMR

spectroscopy. When a homogeneous, external magnetic field is applied to the system

the nuclear magnetic moment becomes dependent on the spin quantum number m.

Given in standard SI units:

E = −γm~Btot (3.95)

The total magnetic field Btot is a sum of external and induced magnetic field

Btot = Bext + Bind (3.96)

The nuclear shielding tensor of a nucleus K is defined as

σij(Rk) = −∂B
ind.
i (Rk)

∂Bext
j

(3.97)
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The isotropic chemical shifts may be obtained from the nuclear shielding tensor by

taking the trace

σiso =
1

3
Trσ (3.98)

It may then be referenced to a standard - in the case of protons this is usually the

absolute shielding of the tetramethylsilane (TMS) protons.

δ ≡ σref − σiso (3.99)

In order to obtain the experimental chemical shielding δ, one has to compute a

reference shielding tensor on the same level of theory. For the shielding tensor, the

computation of the induced field is done via the law of Biot-Savart:

Bind(r) =
1

c

∫
d3r′jel(r

′)× (r− r′)

|r− r′|3 (3.100)

The integral over the current density jel necessitates the computation of the current

induced by the external magnetic field. The external magnetic field is introduced into

the DFPT perturbation scheme via its vector potential A(r)

Bext = ∇×A(r) (3.101)

The perturbation is thus a static magnetic field. To include it into the Hamiltonian,

the single particle momentum operator p̂ has to be replaced by the canonical momentum

operator π̂ = p̂− q/cA(r). Accordingly, the one particle Hamiltonians transform to

ĥ =
1

2
(p̂− q

c
A(r))2 + ν(r) (3.102)

ĥ =
1

2
p̂2 − q

2c
(p̂A(r) + A(r)p̂) + ν(r) +

q2

2c2
A2 (3.103)

At first order in the perturbation parameter (here: the strength of the external

magnetic field), the perturbation Hamiltonian is identified as

Ĥ1 = −p ·A(r) (3.104)

The vector potential A(r) has a gauge origin, as is well known from classical elec-

trodynamics. In the classical Coulomb gauge it can be chosen as
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A(r) = −1

2
r×Bext → Ĥ1 = p× 1

2
r ·Bext (3.105)

where the angular momentum operator is part of the perturbation. Putting this

perturbation into eq. 3.92, one obtains the Sternheimer equations

−Pe(Ĥ
(0)
KS − ε

(0)
i )Pe|ϕ(1)

i 〉 = Pe[r× p̂|ϕ(0)
i 〉] (3.106)

Here the perturbation parameter λ is the external magnetic field Bext, so that the

perturbation has to be evaluated separately in all directions. Eq. 3.106 is simplified

because the change in the KS orbitals is purely imaginary. As ρ(1) = 0 analytically,

this makes the self-consistent evaluation of the density response via fHXC unnecessary.

From the response orbitals it is possible to compute jel(r) needed for the computation

of the induced magnetic field Bind(r) in eq. 3.100.

jel(r) =
1

2

∑
i

fi<[ϕ
(1)∗
i ∇ϕ(0)

i + ϕ
(0)∗
i ∇ϕ(1)

i ] + ρ(r)A(r) (3.107)

Which has to be done separately for the different components of the external mag-

netic field. Thus, the computation of chemical shifts is performed via DFPT. Some

practical problems in the computation of the chemical shifts have not been discussed

so far. Aside from the gauge origin problem, there are connected problems which arise

from the periodicity of the position operator and the ensuing complications for the

angular momentum operator in periodic boundary conditions. These problems can be

circumvented by localization(86) and adjustment of the gauge-origin, see below.

The gauge origin problem

Returning to the derivation of the magnetic fields B(r) of the vector potential A(r)

B(r) = ∇×A(r) (3.108)

This vector potential is not unique, because the magnetic field may be derived from

an infinite number of vector potentials. These potentials are related by the following

gauge transformation

A(r)→ A′(r) = A(r) +∇φ(r) (3.109)
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Where φ(r) is an arbitrary scalar function. This gauge freedom does not change

the physical magnetic field B. In a real NMR calculation, one can choose for example

φ(r) = r + R0 (3.110)

Where R0 is an arbitrary point in space, called the gauge origin. In a numerical

calculation, instead, the results can depend strongly on the choice of the gauge origin.

The reason for this is that the numerical evaluation relies on a cancellation of two large

terms in the diagmagnetic and the paramagnetic current density.

jel(r) =
1

2

∑
o

fo[ϕ
(1)∗
o ∇ϕ(0)

o + ϕ(0)∗
o ∇ϕ(1)

o ]︸ ︷︷ ︸
jpara

+ ρ(r)A(r)︸ ︷︷ ︸
jdia

(3.111)

Each individual term is not gauge invariant. In practice

jdia(r
′) ∝ R2

0 (3.112)

Solving this problem therefore relies on keeping the largest part of the induced

current for a given core coordinate close to the gauge origin. Approaches include

• The Gauge Including Atomic Orbitals (GIAO) → position of each atom RK as

gauge origin R0 for all their orbitals.(87)

• Individual Gauges for Localized Orbitals (IGLO)→ center of charge of the molec-

ular orbitals as origin.(88)

• Continuous Set of Gauge Transformations (CSGT)→ sets the gauge origin to each

point where the current is evaluated.(89) This removes the diamagnetic term.

In this work an implementation by Weber and others(90) has been used, which is

based on IGAIM(91). IGAIM is a variation on IGLO, where the Atoms in molecules

approach is used to determine the adjacent nuclear center which is then used as the

gauge origin.

3.11 Time-dependent density functional theory

The following introduction closely follows relevant sections the introductory chapter by

Gross and Maitra in (92).
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3.11.1 The Runge-Gross theorem

The Hohenberg-Kohn theorems only concern ground state wavefunctions and energies.

The ground state density determines also the stationary excited states, as it uniquely

identifies the Hamiltonian via the external potential. However, there are several νext

which may lead to the same excited state density.(93) This precludes a straightforward

extension to an excited state energy functional. The rigorous extension of DFT to

solving time-dependent problems and finding excited states was accomplished by the

Runge-Gross theorem.(94) The resulting theory is called time-dependent DFT (TD-

DFT). The Runge-Gross (RG) theorem states that there exists a unique mapping be-

tween the time-dependent potential νext(r, t) and the density ρ(r, t), given an initial

state at t0. This means that (with some limitations) even the time-dependent problem

can be solved knowing only the density. One limitation is that the proof requires the

time-dependent potential to be Taylor expandable. The proof of the RG-theorem, de-

parts from the current density j(r, t). The time evolution of the expectation value of

any operator Q̂(t) can be obtained from the following Heisenberg equation of motion:

∂

∂t
〈Ψ(t)|Q̂(t)|Ψ(t)〉 = 〈Ψ(t)|∂Q̂(t)

∂t
− i[Q̂(t), Ĥ(t)]|Ψ(t)〉 (3.113)

If the current density j(r, t) and its operator ĵ(r) are used, the equation becomes

∂

∂t
j(r, t) = 〈Ψ(t)|(−i[̂j(r), Ĥ(t)])|Ψ(t)〉 (3.114)

Changing the Hamilton operator Ĥ(t) in the external potential νext(r, t)→ ν ′ext(r, t)

to become Ĥ ′(t). (Note that the potential has to be different by more than just a time-

dependent function, otherwise physical observables will be equal, as this represents a

gauge freedom.) The resulting current density j′(r, t) is

∂

∂t
j′(r, t) = 〈Ψ(t)|(−i[̂j(r), Ĥ ′(t)])|Ψ(t)〉 (3.115)

If there are two equal current densities originating from different external potentials

and the same time zero state Ψ(t = 0) = Ψ0 for a noninfinitesimal amount of time after

t = 0, this would break the mapping of the density evolution to the potential. For such

a mapping to exist, the difference
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3.11 Time-dependent density functional theory

∂

∂t
[j(r, t)− j′(r, t)]

∣∣∣∣
t=0

= −ρ0(r)∇[νext(r, 0)− ν ′ext(r, 0)] (3.116)

must not vanish. In order to show this, the potentials νext(r, t) must be expandable

in a power series.

νext(r, t) =
∞∑
k=0

1

k!
νext,k(r)tk (3.117)

This can also be done for the difference of the potential, then in the Taylor expansion

there has to be a smallest integer k so that

νext,k(r)− ν ′ext,k(r) =
∂k

∂tk
[νext,k(r, t)− ν ′ext,k(r, t)] 6= const. (3.118)

The general operator Q̂(t) in eq. 3.113 is now constructed by recursively substituting

ĵ(r) by its commutator with Ĥ(t) until k nested commutators are obtained:

Q̂(t) = (−i)k[[. . . [̂j(r), Ĥ(t)], Ĥ(t)], . . . Ĥ(t)]k (3.119)

This leads to

(
∂

∂t

)k+1

[j(r, t)− j′(r, t)]

∣∣∣∣
t=0

= −ρ0(r)∇
(
∂

∂t

)k
[νext(r, t = 0)− ν ′ext(r, t = 0)] 6= 0

(3.120)

Again this equation has to be nonzero, because in the order k the potential difference

is not constant. This proves

j(r, t) 6= j′(r, t) (3.121)

Having shown that a current density mapping exists, it now has to be led back to

the density. The starting point is the continuity equation:

∂ρ(r, t)

∂t
= ∇ · j(r, t) (3.122)

For the expansion in k, this yields

(
∂

∂t

)k+2

[ρ(r, t)− ρ′(r, t)]
∣∣∣∣
t=0

= −∇ · ρ0(r)∇
(
∂

∂t

)k
[νext(r, 0)− ν ′ext(r, 0)] (3.123)
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The proof is complete if the right hand side can be shown not to be rendered

zero over all of space by the divergence operator. To show this with full rigor is

beyond the scope of this thesis - It should be intuitive that this is the case for all

physically reasonable potentials from the close analogy with the Poisson equation. For

a detailed discussion see the book by Gross.(95) The RG theorem establishes a one-to-

one correspondence between initial state Ψ0 and potential on one side and the density

on the other.

Ψ0 : νext ↔ ρ. (3.124)

This provides a rigorous foundation for treating any time-dependent problems with

DFT. The theorem goes far beyond stationary excited states and even beyond fermions,

as no specific assumption has been made on the particle particle interactions. However,

it is still lacking a method to apply it. A universal way to apply it seems difficult due

to the lack of a variational principle or stationary condition for the density.

3.11.2 Time dependent Kohn-Sham formalism

For the same reasons as in ground state DFT, the TD-DFT is usually cast in the

frame of a Kohn-Sham noninteracting particle ansatz. Now as the RG theorem is very

general with respect to the form of the Hamiltonian, it also covers the noninteracting

system. Thus, the correspondence exists for νXC = 0. Far more important is the

question, whether a νXC(r, t) potential exists to give a noninteracting particle’s system

the density of the interacting one. Especially in view of the multireference nature,

i.e. qualitative failure of the one Slater-Determinant approach found for many excited

states in the quantum chemistry community. The problems of v and n-representability

arise again. Assuming that an exact νKS(r, t) exists, we can write a time-dependent

Kohn-Sham equation.

i
∂

∂t
ϕi(r, t) =

[
− 1

2
∇2 + νKS [ρ,Ψ0](r, t)

]
ϕi(r, t) (3.125)

The Kohn-Sham potential is decomposed in the same way, as in ground state DFT,

in a time-dependent external, Hartree and exchange-correlation potential.

νKS [ρ,Ψ0](r, t) = νext(r, t) +

∫
d3r′

ρ′(r′, t)

|r′ − r| νext[ρ,Ψ0,Ψ0,KS ](r, t) (3.126)
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3.11 Time-dependent density functional theory

The exchange-correlation potential depends on the initial Kohn-Sham state Ψ0,KS

in addition to the initial quantum state. This is a new complication inherent in time

dependent Kohn-Sham DFT. The initial Kohn-Sham state may be chosen because there

is an infinitely large number of Slater determinants to produce a given density - and

we do not possess a variational criterion. This greatly complicates the search for ap-

proximations to the time-dependent XC functional.

Most calculations on molecular systems are not interested in the true time-dependent

behavior of the electrons, focussing either on static structures or the evolution of the

adiabatically separated nuclear degrees of freedom. Excited states are most important

where they are stationary and correspond to easily accessible UV/Vis data. It is there-

fore highly desirable to have a frequency dependent version of TD-DFT where the inital

state is always the electronic ground state.

3.11.3 Linear response TD-DFT

A frequency dependent approximation to full TD-DFT is provided by linear response

TD-DFT. The linear response formalism is based on the same concepts as encountered

in the previous sections. The external potential in this case may be due to an electro-

magnetic wave, allowing the computation of optical excitation spectra. The first order

change in the density ρ(1)(r, t) this time is obtained by a time-dependent linear response

equation. For an introduction using such a function in classical thermodynamics and

the connection to QM, see the book by Tuckerman.(31)

ρ(1)(r, t) =

∫ ∞
0

dt′
∫
d3r′χ(rt, r′t′)δνext(r, t) (3.127)

The response function χ(rt, r′t′) can be written as

χ(rt, r′t′) =
δρ(r, t)

δνext(r′, t′)

∣∣∣∣
νext,0

(3.128)

This time-dependent polarizability now has to be calculated using DFT. Writing

the response in terms of Kohn-Sham noninteracting system and the change in the

Kohn-Sham potential, one obtains

ρ(1)(r, t) =

∫ ∞
0

dt′
∫
d3r′χKS(rt, r′t′)δνKS(r, t) (3.129)
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The noninteracting Kohn-Sham system’s linear response function χKS is written in

the sum-over-states representation as

χKS(r, r′, ω) = lim
η→0+

∑
k,j

(fk − fj)δσkσj
ϕ

(0)∗
k (r)ϕ

(0)
j (r)ϕ

(0)∗
j (r′)ϕ

(0)
k (r′)

ω − (εj − εk) + iη
(3.130)

This result is obtained from time-dependent perturbation theory of the noninteract-

ing many-body system. The response function has poles in the KS-eigenvalues. This

corresponds to a frozen orbital approximation. This means that the change in the

electrostatic and exchange-correlation potentials due to the density change is not taken

into account. The true excitation energies have to account for this, so the integral in eq.

3.129 is to δνKS(r, t) instead of only the external potential. Let us begin by defining

the response function of the exchange-correlation potential to a density change in linear

order:

fXC(rt, r′t′) =
δνXC(r, t)

δρ(r′, t′)

∣∣∣∣
ρ=ρ(0)

(3.131)

Now the change in the KS potential may be written as

δνKS(r, t) = δνext(r, t)+

∫
d3r′

ρ(1)(r′, t′)

|r− r′| +

∫
dt′
∫
d3r′fXC(rt, r′t′)ρ(1)(r′, t′) (3.132)

Expressing this in terms of the response functions themselves as well as setting eq.

3.127 and eq. 3.129 equal and substituting eq. 3.129 for ρ(1) one obtains after some

algebra the Dyson equation of TD-DFT.

χ(rt, r′t′) = χKS(rt, r′t′) +

∫
dt1

∫
d3r1

∫
dt2

∫
d3r2χKS(rt, r1t1)[

δ(t1 − t2)

|r1 − r2|
+ fXC(r2t2, r1t1)︸ ︷︷ ︸
fHXC

]
χKS(rt, r′t′)

(3.133)

Note that the Hartree-exchange-correlation term depends only on ∆t, allowing a

formulation in terms of frequency ω. The equation may be expressed in the frequency

domain as

χ(ω) = χKS(ω) + χKS(ω) ∗ fHXC(ω) ∗ χ(ω) (3.134)
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3.11 Time-dependent density functional theory

Where the stars denote convolution integrals and the position dependencies have

been omitted. This equation allows the computation of the excitation energies. For

the discrete spectrum, only the poles in ω have to be found (for a continuous response

spectrum the full Dyson equation is necessary).(96) To allow practical computations,

it is first recast into an eigenvalue equation, where the eigenvalues λ(ω) have to be one

at the poles:

χKS(ω) ∗ fHXC(ω) ∗ ε(ω) = λ(ω)ε(ω) (3.135)

For a transition q, there exists a transition density Φq and a Kohn-Sham energy

difference ωq (compare eq. 3.130)

Φq = ϕ∗j (r)ϕk(r); ωq = εk − εj (3.136)

Having introduced these quantities and writing eq. 3.135 in terms of orbitals it may

be rewritten as a matrix eigenvalue equation, the famous Casida equation.(97)

RFI = Ω2
IFI (3.137)

Here the FI are eigenvectors, which can also be used to compute the oscillator

strength, ΩI the excitation energies and the matrix elements of R are

Rqq′ = ωqδqq′ + 4
√
ωqω′q

∫
d3r

∫
d3r′Φq(r)fHXC(r, r′,ΩI)Φ

′
q(r
′) (3.138)

It is now possible to compute molecular excitation spectra using matrix-eigenvalue

solving algorithms such as Lanczos and Davidson diagonalization routines. The well

known Tamm-Dancoff approximation consists of setting to zero the backward transi-

tions, found in the R matrix at q′ = −q. It is often more numerically stable than

ordinary TD-DFT, because triplet instabilities and the like have a smaller impact.(98)

However, the oscillator strengths can be shown not to follow the sum rule, as is the

case with full linear response TD-DFT.

Approximations - ALDA, AGGA

Having described the exact linear response scheme for TD-DFT, we should now take

a second look at fXC , the response function of the exchange-correlation potential. As

a time-dependent response function in principle it incorporates its own time evolution
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3. CONCEPTS OF ELECTRONIC STRUCTURE THEORY

(written above in terms of the frequency). This is almost always neglected in prac-

tice. Instead simple ground state functionals are being used, in a so called “adiabatic”

approximation. In this approximation the XC-functional is not time-dependent but

simply the same as the ground state functional applied to the time-dependent density.

νadiaXC [ρ](r, t) = νGSXC [ρ(t)](r) (3.139)

The usual ground state DFT functionals (LDA, GGA, etc.) may now be used

without any further adaptions. For the response function this means

fadiaXC [ρ0](rt, r′t) = δ(t− t′) δ
2EXC [ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρ0

(3.140)

This is a highly questionable approximation, because it implies a zero frequency

limit. It is not clear that the excited state density and wavefunction can be represented

by a system in the ground state. Nevertheless it often works well in practice. One major

reason are various boundary conditions which are trivially fulfilled in the adiabatic

limit. The pure KS-orbital energies are often already a reasonable approximation, so

that the success of the adiabatic local density approximation (ALDA) methods is put in

perspective. In the adiabatic limit the response Kernel used in DFPT is recovered. The

second functional derivative of EXC is normally evaluated by finite difference methods,

especially in the case of more complex functionals.

3.12 Ab-initio molecular dynamics

Molecular dynamics using DFT is challenging, because within the Born-Oppenheimer

approximation the Kohn-Sham wavefunction Ψ parametrically depends on the nuclei,

therefore one has to solve the electronic structure problem in every step. On the other

hand gradients are readily available by the Hellmann-Feynman theorem, so that a

converged KS-wavefunction provides the forces to propagate the system:

Fk = −〈Ψ0 |
∂Ĥ

∂Rk
| Ψ0〉 (3.141)

This setup, where the force Fk on the nucleus k is computed from the ground

state orbitals is known as Born-Oppenheimer MD (BOMD). The first computation-

ally efficient scheme for DFT-molecular dynamics was developed by Car and Parrinello
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3.12 Ab-initio molecular dynamics

(CPMD).(99) Via an extended Lagrangian approach, they introduced a fictitious dy-

namic of the orbitals, treating them as particles with large masses. This allows to

propagate them simultaneously with the system, without a SCF calculation. Very

good energy conservation can be achieved, provided the timestep is small enough to

keep the orbitals near the BO minimum. The need to keep the timestep small has lead

to a resurgence of interest in BOMD, where the timestep may be chosen larger, pro-

vided the SCF is tightly converged. The renewed interest in BOMD simulations stems

from the use of improved SCF schemes, as well as special predictors that will extrap-

olate the wavefunction in the next MD step from previous steps. In the very efficent

CP2K code(80) various SCF schemes are possible, most notably the orbital transform

method(100, 101) Instead of propagating the orbitals by a fictitious dynamic, their

evolution is predicted by e.g. the Always-Stable-Predictor-Corrector (ASPC) method,

where information from past steps is used to predict the new orbital coefficients in a

polynomial expansion.(102, 103) The increased timestep possible for BO calculations

now compensates the “lost” time for SCF convergence. For a detailed discussion of the

two approaches see.(104) In an ab-initio MD simulation of water, the liquid is repre-

sented by means of a simulation box which is periodically repeated in every direction

(periodic boundary conditions) and which contains between 50 and 500 independent

water molecules. During an ab-initio molecular dynamics simulation, all orbitals of all

molecules are recomputed at each step in the trajectory.
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4

Overview over the published

papers

Since the beginnings of physical chemistry, water has been a focus of experimental as

well as theoretical research. Its abundance and importance to life are not the only

reasons for this continuing interest. Water has also a rich set of anomalies, which set

it apart from most other solvents. The best known example is perhaps the density

anomaly of ice vs. liquid water. At the heart of many of the special properties of

water lies cooperative hydrogen bonding and the tetrahedral structure that results from

it.(11, 105) When this structure is perturbed or the hydrogen bond network cannot fully

form, e.g. due to confinement, water can drastically change its properties.(106, 107,

108) As these influences on water are present in the cell and in fact are ubiquitous

on earth, they play a role in a wide variety of phenomena from protein folding to

chemical reactivity.(109, 110, 111, 112) The papers of this cumulative thesis all deal

with aqueous solvation. However, two fundamentally different approaches have been

taken. In the first project the focus is on a probe molecule, which allows to monitor

its local environment indirectly. The second project directly investigates the effect of

interfaces and ions on the water structure and H-bond dynamics.

4.1 Excited state solvation of a probe molecule

Using ab-initio methods to describe the nonequilibrium excited state solvation dynamics

of a probe molecule in aqueous solution was a main goal of this thesis. These solvation
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dynamics are experimentally available through the time-dependent Stokes shift (TDSS),

as measured by femtosecond pump-probe fluorescence spectroscopy.(113, 114) At room

temperature, the relaxation process takes merely a few picoseconds - making this a

fortunate case, where the timescale of ab-initio MD and experiment coincide. The

probe molecule used in this work is N -methyl-6-oxyquinolinium betaine (MQ).

Figure 4.1: Image taken from ref. (114). Reprinted with permission from Wiley.

Schematic illustration of the excited state solvation of MQ, solvent disorder increases after

the chromophore dipole moment is reduced by electronic excitation. The time-dependent

solvation can be monitored by the Stokes shift.

As can be seen in Fig 4.1, electronic excitation leads to a decrease in the dipole

moment of the chromophore, which induces a change in the averaged solvent confor-

mation. This solvent response to a change in the electric field can be modeled by a

reaction field, which represents the solvent as a polarized dielectric continuum. The

theory is described in more detail in e.g. the book by Nitzan(115). It is known, that

for a suitable chromophore, the time-dependent fluorescence can be connected with the

experimental permittivity spectrum of water via this reaction field approach.(116) Con-

tinuum solvation was also successully used by Ernsting and coworkers to model MQ’s

TDSS data.(114, 117, 118) MQ’s experimental time-dependent Stokes shift therefore

gives access to the local permittivity spectrum in the THz range. This is why the

chromophore may be considered a local spectrometer.

While the dielectric solvation model is very useful, there are several problems as-

sociated with it in practice: Its simplest version will work only for a medium which is
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4.1 Excited state solvation of a probe molecule

isotropic, and for which MQ is solvated in a sufficiently “nonspecific” way, so that the

continuum response to a change in the chromophore dipole satisfactorily describes the

solvation dynamics. In order to obtain localized information in more complex environ-

ments the solvation dynamics have to be described in a more general framework, which

is able to describe solvation on an atomistic level. Ideally such an approach should

include electronic polarizability and should be parameter free. One possible example

for its application would be a protein, into which MQ might be inserted to replace e.g.

the indole moiety of tryptophane.

Figure 4.2: Left: Comparison of average intermolecular force and maximum force around

MQ for all H2O, at the nitrogen ∆Finter@N and oxygen atom ∆Finter@O of MQ, compar-

ing the ground state (GS) with TD-DFT S1 and the triplet model of the excited state.(1)

Right: Time evolution of the average MQ - H2O H-bond length in the T1 state after

excitation at t=0.(4)

To obtain a viable approach to excited state solvation, the interactions of the chro-

mophore with the environment have to be accurately represented in ground and fluo-

rescent excited state. As the MQ S0 → S1 excitation has a charge-transfer character,

this is nontrivial. The first step in this project, was therefore to apply a range of DFT

functionals and benchmark quantum chemical methods to check whether specific inter-

actions, such as changes in H-bonding to MQ and the change in the dipole moment can

be described in an efficient and accurate way. It was found that H-bonding at the MQ-

oxygen terminus is weakened by electronic excitation and that the change in the dipole

moment of MQ is considerable even in the gas phase.(1) Interestingly, it was possible to

accurately describe this using the DFT T1 state in place of a high-level S1 state. On the
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left side of Fig. 4.2, the effective forces on H2O molecules in the condensed phase are

compared between TD-DFT S1 and the T1 state, showing their similarity. In both cases

a large change of forces at the H2O molecules hydrogen bonded to the MQ-oxygen is

triggered by the excitation. Simulating the relaxation, the effect on H-bonding was also

apparent in the H-bond length (Fig. 4.2, right). The time-dependent fluorescence was

then computed on an ensemble of T1 trajectories. For the simulation of the fluorescence

experiment, TD-DFT was used to compute the S0 → S1 transition energies. As can

be seen in Fig. 4.3, the simulation resulted in good agreement with experiment. The

dynamic fluorescence could be accurately modeled, only the equilibrium fluorescence

wavelength had to be adjusted, which was attributed to the difference between S1 and

T1 chromophore equilibrium geometries.

Figure 4.3: Dynamics of the Stokes shift as obtained from averaging ten trajectories and

smoothed by 10 pt moving window averaging (black, left axis), Stokes shift after removal

of 5 random trajectories (grey, left axis), experimental data(119) (dashed line,right axis)

data is referenced to ν(t =∞) in both cases (dotted line).(4)

The experimental Stokes shift could then be decomposed into molecular compo-

nents. No significant contribution to the fluorescence relaxation behavior by the chro-

mophore itself was found. This allowed to rewrite the contribution in terms of the

solvation energy difference. The environment around MQ was then decomposed into

different parts (see Fig. 4.4).

It was found that the water molecules which interact strongly with the dipole field

of MQ have a significant contribution to the relaxation, in agreement with dipolar

relaxation models (see Fig. 4.4). The effect of the reduction of the solvent dipole could
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4.1 Excited state solvation of a probe molecule

Figure 4.4: Left: The first solvation shell of MQ and its components: Water molecules

in torus around N-O (yellow beads,a), H2O molecules hydrogen bonded to the MQ-oxygen

terminus (beads,b), and entire first solvation shell (sticks,c). Right: Computed time evolu-

tion of the solvation energy ∆ESolv(t) for the three clusters around MQ, for the subsystems

extracted from the fully solvated MQ trajectory.(4)

also be quantified with the help of an order parameter. No significant contribution to

the relaxation was obtained from the H-bonded H2O molecules, as is also shown in

Fig. 4.4. In addition it was found, that in order to obtain the full solvation energy,

at least 8 Å of water have to be included in the simulation box. The probe molecule

therefore is influenced by more than the first solvation shell, thus giving experimentalists

information about the range and region of their measurements. Summarizing, the time-

dependent excited state solvation properties of MQ could be well reproduced and could

be decomposed into to regional and molecular contributions. The approach used was

ab-initio in the sense that it does not require to introduce any parameters. Therefore,

it is easily transferable and may be used in the future to help interpreting Stokes-

shift experiments in complex environments. The use of ab-initio water and TD-DFT

excitations instead of electrostatic solvation energy differences complements the more
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empirical approaches known in the literature.(113, 120)

4.2 Effects of ions and interfaces on hydrogen bonding

The equilibrium properties of water have long been a focus of ab-initio molecular dy-

namics studies.(9, 17, 20, 121, 122) In order to understand why, the systems studied

in these work are instructive examples. The first group of systems are aqueous solu-

tions of LiI. Nonpolarizable classical forcefields have been shown to give flawed descrip-

tions of aqueous salt solutions in many cases, leading to unphysical clustering of the

ions.(123, 124) New results from THz spectroscopy, as well as time-dependent infrared

spectroscopy reraise the question how far the hydrogen bonding network of the bulk

solution is affected by the presence of ions.(125, 126, 127, 128) For the description

of the interaction between the hydrogen bonding network and ions, therefore ab-initio

methods are necessary to give an accurate description. As can be seen from the left side

of Fig. 4.5, the formation of a tetrahedral coordination shell at Li+ as well as hydrogen

bonding to I− occurs spontaneously in the simulation. Another system considered was

water confined between two silica interfaces. Water in amorphous silica confinement

is widely known to have significantly different properties from bulk water.(129, 130)

Previously experimentally inaccessible metastable phases of water(131) have been re-

ported to exist in this type of confinement.(132, 133) Changes to the hydrogen bond

network at the interface are crucial to give an accurate representation of the changes

in structure and dynamics that accompany strong confinement.

As polarizability is included in the DFT description, also indirect effects on hy-

drogen bonding, such as reinforcement by polarization of coordinated water molecules

e.g. in a Li+ shell could be quantified.(5) This effect is accessible experimentally from

NMR chemical shift measurements. A strong relation between instantaneous 1H chemi-

cal shifts and the hydrogen bond length exists, and may be used to verify that a correct

description of the hydrogen bond network has been obtained. Therefore, NMR shifts

have been a main tool in this work’s investigations into equilibrium solvation. While

insight from NMR experiments are typically constrained by the timescale of measure-

ment, the availability of the electronic structure allows to compute the instantaneous

NMR chemical shifts. These were computed from snapshots of the trajectory and can

be used to decompose the experimental NMR proton chemical shift spectrum. The
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simulation of a LiI solution shows, how iodine and lithium influence proton NMR shifts

in their immediate vicinity (see Fig. 4.5, right). Experimentally, only the bulk value

is accessible - and can be reconstructed from the averages. As in experiment, it was

found that increasing the concentration of LiI decreases the bulk chemical shift. The

decomposition allowed to localize this effect at the immediate vicinity of the ions. The

size of the I− ions ensured that at high concentration, there are several ions in close

vicinity of a given H2O, which have a combined effect.(5)

Figure 4.5: Left: Snapshot from a simulation of an 1M aqueous solution on LiI. Li+

ions are colored green, I− ions are colored red, characteristic solvation shells are visible.(3)

Right: Chemical shift distribution for hydrating water and bulk water in the LiI 1M

solution. The average for pure water is marked with a black line, while the chemical

shift average of lithium and iodine hydration water is marked with the red and green line,

respectively.(5)

Another system in which this approach has been used was water at a silica inter-

face. The silica interface was modeled by silicic acid groups embedded in a reflective

potential (see Fig. 4.6, left). This system served as a model for water confined in

mesoporous silica of the type of e.g. MCM-41. The H-bonding at the model interface

has been investigated by 1H chemical shift calculations. The shifts show a drastic

weakening of water H-bonding near the interface, while in the middle of the pore nor-

mal bulk H-bonding is recovered. Results show that the effect on H-bonding of this

silica wall becomes very small after 4 Å (see Fig. 4.6, right). Besides chemical shifts,

also more sophisticated NMR experiments can be reproduced and analyzed using ab-

initio methods. One example is the computation of T1 relaxation times(134), another
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Figure 4.6: Left: Model silica interface consisting of silicic acid groups with constrained

oxygens and a quadratic reflective potential. Right: 1H chemical shift averages as a function

of the distance from the interface.(2)

is the simulation of solid state NMR lineshapes.(135) NMR parameters obtained from

ab-initio simulations are highly accurate and have been helpful in the elucidation of

e.g. supramolecular structures.(136, 137, 138) Computing spectroscopic observables is

an important tool to establish the correspondence with experiment. However, the MD

trajectories contain structural and dynamical information beyond what has been mea-

sured by the spectroscopic experiment. In the case of the LiI solutions, the trajectories

revealed a form of clustering in the 9 M solution (see Fig. 4.7, right). At this con-

centration Li+ ions were found to be linked by water bridges, resulting the formation

of clusters and in a deformation of the individual Li+ solvation shells. The occurrence

of water bridging had been proposed already from diffraction experiments and similar

structures are present in the cristalline trihydrate.(139, 140) The length distribution

and structure of the clusters found at 9 M concentration was also quantified by the

MD-simulations in this work.

Furthermore, through a decomposition of the H-bond network it was possible to

quantify how the presence of ions affects the relative stability of H-bonds in the net-

work. In order to achieve this, the H-bond network was represented as a graph. Via

a suitable autocorrelation function, the decay of the H-bond network was analyzed. It

was found, that iodide has a destabilizing effect across several H-bonds in the H-bond

network graph, while Li+ has a competing, stabilizing effect (see Fig. 4.7, left). For a

detailed description, see paper (5). Similar interactions between ions in aqueous solu-

tions on the dynamics have already been observed by IR-spectroscopy.(126)
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4.2 Effects of ions and interfaces on hydrogen bonding

Figure 4.7: Schematic illustration of the structural and dynamics effects in LiI solutions.

Left: At intermediate concentration H-bond stability is affected in opposing ways by cation

and anion. Right: Lithium iodide displays clustering at high concentration.(5)
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The molecular probe N-methyl-6-quinolone (MQ) gives experimental access to its local chemical

environment, e.g. inside a biomolecule. Using ab initio molecular dynamics (MD), it is possible to

simulate the time evolution of the Stokes shift as a function of the actual atomistic coupling to

the surrounding hydrogen bond network and thus obtain a comprehensive view of the local

environment. In contrast to ground state ab initio MD simulations, the choice of a method for

excited state MD is nontrivial. Here, we develop a simple and accurate model for the solvation

dynamics of MQ in its first excited state.

1 Introduction

Water is essential to all life on this planet. Its abundancy and its

remarkable properties have ensured that it is also the most

thoroughly examined liquid.1–11 Despite all efforts, its biophysical

properties have not yet been understood completely. Specifically,

spectroscopic experiments have shown that a geometric confine-

ment has a drastic effect on several of its properties making

it different from water in the bulk phase (see reviews12–14).

A particular case in point are biological confinements: the

functionality of many proteins depends on these changed, local

properties of water.15–18 In order to understand protein folding19

or even the stability of DNA,20 it is necessary to understand the

local structure and dynamics of water, especially as a solvent and

beyond its standard state.21,22 There are numerous experimental

and computational methods which are able to characterize

structural and dynamical properties of hydrogen bonded liquids

and networks,21,23–33 but most of them work on timescales that

are considerably longer than those of the typical molecular

motion of individual water molecules.

Terahertz spectroscopy is a useful tool to measure the

fluctuations of the hydrogen bonding network via its dielectric

response.34,35 On the experimental side in order to yield site

specific local data, this approach can be combined with the

use of a molecular probe, typically a fluorescent dye.36–38

N-Methyl-6-quinolone (MQ) has been used as such a probe

for the local terahertz spectrum of water and other polar

solvents.39,40 Recent results have extended its application to

biochemical environments.41 It is especially attractive for this

purpose, because of its small size, which allows an insertion

into DNA or proteins (replacing tryptophan or nucleic acids).

Spectroscopically, MQ is interesting because it has no net

charge and is a rigid molecule. It will therefore not interfere

with the relevant vibrational modes of water.39 In order to

obtain the local THz spectrum the time dependent Stokes shift

(TDSS) is measured by femtosecond spectroscopy, using a

pump–supercontinuum probe setup. On the theoretical level

the experimentally obtained TDSS data have only been dis-

cussed in terms of continuum dipolar relaxation theory.39–41

Ideally, it should be possible to extract information about

the local structure and dynamics around the molecular probe

in atomistic detail. Ab initio molecular dynamics (MD) allows

us to simulate the full experiment without preadjusted para-

meters, and obtain a comprehensive view of the local environ-

ment.42 In particular the interplay of the molecular structure,

dynamic aqueous solvation and the effect of electronic

excitation can be modeled consistently within a common

first-principles based theory.24,43–47 However, excited state

electronic structure calculations are less numerically reliable

and involve higher computational cost than the corresponding

ground state calculations. In contrast to the ground state

ab initio MD simulations, the choice of a method is therefore

nontrivial. There exist two main problems: first the need

for a correct description of the excited state surface within

the Born–Oppenheimer approximation. For this purpose

very accurate approaches exist: Full-CI, CASPT2, GW and

Coupled Cluster descriptions can be considered reliable refer-

ence methods. Their high accuracy comes at the expense of

computational effort and drastically limits the system size.

More affordable methods for treating the excited state range

from perturbation theory inspired methods like time depen-

dent (TD)-DFT,48 via empirical DFT approaches like ROKS49

or ROSS,50 to semi-empirical CI.51 Especially TD-DFT is now

widely used,52–55 despite the known problems when treating

charge transfer states.56–58

The other main problem with excited state MD arises when

potential surfaces approach at so called conical intersections:

the adiabatic approximation fails and semiclassical molecular
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dynamics is not sufficient anymore. Different ways to solve this

problem have been proposed (for a recent review see ref. 59).

One possibility for example is to introduce explicit time

dependency for the nuclei into the CASSCF framework.60

All these methods share a high computational cost further

limiting the system size and simulation time. We aim to find a

model for the excited state, which is capable of providing

insights into complex hydrogen bonding dynamics. As the

relaxation of the hydrogen bonding network occurs on a

picosecond timescale, a computationally affordable method

is required. However, the more approximate a method, the

more it has to be validated for the particular system in view.

Here this is ensured by comparison of different approaches to

the excited state with accurate correlated methods. We aim to

show that reasonable accuracy of the excited state PES can be

achieved with approximate methods.

2 Computational details

2.1 MQ and its molecular clusters

We have computed vertical excitation energies of the free and

hydrated MQ molecule, considering clusters of one MQ with

zero, one and four water molecules. We chose the well-known

BLYP61,62 GGA DFT functional, with and without dispersion

correction,63 and the Hartree–Fock (HF) exchange corrected

hybrid functional PBE0.64 Hybrid DFT was used successfully

in a previous study to calculate MQ ground state geometries

and NMR shifts,65 which is why we use hybrid DFT reference

geometries. The PBE0 functional specifically is known to give

accurate uncorrected excitation energies in comparison with

most of other hybrid DFT functionals for a wide variety of

organic dyes.66 Additionally, we compare the results of the

post-HF methods such as configuration interaction (CIS),

perturbation theory (MP2) and coupled cluster (CCSD,

CCSD(T)). Excited states were calculated using TD-DFT,

CIS and the ROKS functional. The excited state (ES) refer-

ence method was equations of motion coupled cluster theory

(EOM-CCSD, reviewed in ref. 67), the ground state (GS)

reference method was CCSD(T). For the localized basis set

methods a triple-z Pople 6-311G**68 basis set was employed.

Additionally the basis set was augmented with standard

diffuse functions on both the heavy and the hydrogen atoms

(a) or only on heavy atoms (b). All post-HF calculations as

well as PBE0-TD-DFT were done using frozen atomic core

orbitals, unless mentioned otherwise. The BLYP-D TD-DFT

results also make use of the Tamm–Dancoff approximation

(TDA). For the ROKS calculations the modified Goedecker–

Umrigar69 algorithm was employed.70 Plane wave calculations

were done using Troullier–Martins pseudopotentials,71 single

point calculations always had a plane wave cutoff of 140 Ry,

results obtained with this method are marked with (c). The

computer codes used for the calculations were: Gaussian09,72

Gaussian03,73 NWChem 6.0,74 CPMD 3.13,75 CP2K,76

MOPAC,77 Molpro 2006.178 and Orca 2.7.79

2.2 Molecular dynamics of MQ

In order to extend the scope of this study to conformations

beyond the equilibrium geometries, we have performed a short

Car–Parrinello molecular dynamics simulation of a fully

hydrated MQ molecule. To this purpose CPMD simulations

were done with a cutoff of 70 Ry, a fictitious electron mass

of 800 a.u. and a time step of 5 a.u. They were conducted in

an NVT ensemble using a Nosé–Hoover thermostat with a

coupling constant of 2500 cm�1, at a temperature of 298.15 K,

to closely emulate experimental conditions.40 The molecular

dynamics were done in a cubic, periodic box with a side length

of about 16.06 Å. The MQmolecule was inserted by calculating

the molecular volume of the overlapping Van der Waals radii of

its atoms and removing the equivalent volume of water mole-

cules calculated in the same way. This approach results in a box

with MQ and 130 H2O at a density of d = 1.00 g cm�3. MQ

concentration is still 80 times higher than a typical experimental

concentration of 5 � 10�3 M.40 Molecular dynamics was

conducted for a total duration of 10 ps.

3 Results and discussion

3.1 MQ vertical electronic excitation and Stokes shift of

isolated MQ

3.1.1 Vertical electronic excitation of isolated MQ. As a

first step we compare excitation energies and dipole moments

of isolated MQ. A decrease in dipole moment from the ground

to excited states (see Fig. 1) is experimentally known to be the

determining factor in excited state solvation dynamics.39 This

decrease in dipole moment will lead to increased disorder of

the solvation shell. The resulting relaxation dynamics form

the basis of the THz spectroscopic measurement. Therefore

comparing dipoles may serve as a first test of the accuracy of

the different models. For MQ the geometry obtained with the

PBE0b level of theory was chosen as the reference geometry.

It was optimized without constraints and verified to be a

minimum by a frequency calculation. For this geometry,

vertical excitation energies and ground and excited state

dipole moments were calculated. The excitation energies are

compared to EOM-CCSD/6-311G** reference values and a

CASSCF/cc-pVTZ41 calculation taken from the literature.

The excitation energy was also computed on the EOM-

CCSD/cc-pVTZ level of theory without frozen cores, yielding

a deviation of only 0.01 eV from the frozen core/Pople basis

set results. For the TD-DFT and CIS results the first ten

excited states were calculated. Generally the first excited state

with f > 0.01 was chosen as the reference state for the

excitation energy. For PBE0b, CISb, BLYPa and EOM-CCSD

the HOMO/LUMO transition had the largest contribution to

the excited state. Using BLYP we found the lowest excitation

to have zero oscillator strength. The BLYPa dark S1 state

is a pure HOMO-1/LUMO transition and lies at 1.40 eV.

Fig. 1 Schematic illustration of the reduction of the dipole moment

of N-methyl-6-quinolone: the effect of electronic excitation on the

dipole moment.
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When using the larger cc-pVTZ basis set as well as a 6-31G*

basis the S1 state stays dark. Therefore data are given for the

S2 excited state. For the other methods, the S1 state is the state

of interest. As the S1 state is largely the result of a HOMO/

LUMO transition, more empirical DFT approaches were also

considered. For reasons of computational efficiency we used

the BLYP functional for these. We calculated the relevant

properties for the BLYP-LSD triplet state (T1), which we

expect to behave similarly to the S1 state. The same assump-

tion is already contained implicitly in the successful singlet

excited state ROKS model.49 We do not expect to obtain

accurate excitation energies using the T1 or the ROKS model,

for these cases our focus will be on the more important excited

state dipole moment.

The calculated excitation energies in Table 1 are redshifted in

comparison with the experimental value of 3.04 eV (measured in

H2O).80 This is not surprising since due to its zwitterionic nature

MQ is known to show strong negative solvatochromism, so that

in dry pyridine the absorption maximum is at 2.34 eV––far

closer to gas phase benchmark values.80 The results for the gas

phase calculations of ground state dipole moments are in good

agreement for all methods, with the unsurprising exception

of HF theory. However in the excited state, the DFT based

methods predict a smaller decrease in dipole moment than the

wavefunction based methods. The DFT results are consistent;

the comparatively smaller change in dipole moment is not

specific to TD-DFT, but also affects ROKS and the T1 approxi-

mation. While the agreement is far from perfect, the DFT dipole

moments are actually higher than the benchmark values. This is

exactly the opposite of what one would expect to observe in the

case of an overdelocalization issue.

The excitation energy obtained with the PBE0 functional is

between the two benchmark values, so there is no indication of

a general TD-DFT failure. There is also a significant difference

in the CASSCF(12,11) vs. the EOM-CCSD benchmark excita-

tion energies. We note that EOM-CCSD energies were shown

to be in good agreement with the CASPT2 energies in a

benchmark study,81 whereas CASSCF excitation energies are

not as accurate. Another practical advantage of the EOM-

CCSD method is the inherent size consistency, which is not

guaranteed for MRCI or even CASPT2.82

3.1.2 Population analysis. In order to gain further insights

into the nature of the excited state, we did a population

analysis with Mulliken charges on the ground- and excited

state relaxed densities. The results are shown in Table 2. In the

ground state we find a positive partial charge of 1.2 e in the

pyridinium part of the MQ system (ring B), with a corres-

ponding negative partial charge in the phenyl ring (ring A).

Both formal charges of the zwitterion are therefore delocalized.

In all models we find that a negative partial charge of around

0.1 e is transferred from the MQ-oxygen upon excitation, and

the net charge is transferred to the pyridinium part of the MQ

p-system. We also find that when using the BLYPa level of

theory, another major source of electron donation (0.7 e) is a C

atom at the ortho position of theMQ-oxygen (see Fig. 2). In this

case, excitation leads to a net positive polarization of the phenyl

ring of the MQ system. Overall we find little charge transfer

with density functional methods, with the total moved charge

being less than half an electron. There are differences in the

partial charges inside the p-system, depending on the applied

partitioning scheme, i.e. Mulliken analysis consistently assigns

partial charges of absolute value greater than one to the bridging

atoms, which could not be reproduced by either NPA83 or

Löwdin analysis. Also, the partial charge transfer to the

MQ-N atom varies between +0.01e (Mulliken TD-BLYPa

ES) to�0.9 e (NPA BLYPa T1). By summing up partial charges

on the aromatic rings and distributing the partial charge of the

bridging atoms equally we are able to maintain a consistent

picture across partitioning schemes.

3.1.3 Relaxed geometries of MQ in the ground and excited

states. To check whether the good agreement of DFT dipole

moments really corresponds to a similar description of the

electronic structure, the geometry of MQ was optimized in the

ground state and in the target excited state. This allows us to

compare the change of the p system in the excited state and

look for large structural differences between models. Table 3

contains selected bond lengths and angles.

We find that all DFT based excited state models lead to

a qualitatively similar change in the MQ bonding pattern.

In particular the ROKS S1 and the triplet state are in close

mutual agreement. However, the methods differ in the quanti-

tative distribution of charge among bonds inside the p system.

It is remarkable that the C[6]–O[11] bond is slightly elongated

in the excited state by all the tested DFT-based methods in

the gas phase. This directly contradicts the idea of a charge

transfer/delocalization of an oxygen lone pair into the p
system. It is noteworthy that the admixture of exact exchange

(PBE0) also confirms this conclusion.

Table 1 MQ vertical excitation energies in eV and dipole moments in Debye

Level of theory BLYPa BLYPa BLYPc PBE0b HFa CASSCF41 CCSD
Method ES TD-DFT T1 (LSD) ROKS TD-DFT CIS CASSCF EOM

Excitation energy 1.83 1.34 1.74 2.11 2.96 2.0 2.37
Dipole moment GS 10.2 10.2 10.0 10.8 12.3 10.5 10.3
Dipole moment ES 7.4 6.8 6.8 7.3 7.6 5.8 5.1a

Here full linear response TD-DFT results are reported for BLYP, later we use TDA.a EOM-CCSD/6-31G*.

Table 2 Mulliken charges for ground and excited states in elementary
charges

Partial Charge MQ-O Ring A Ring B MQ-N

BLYPa q GS �0.35 �0.84 1.18 0.26
TD-BLYPa Dq S2 0.08 0.04 �0.13 0.01
BLYPa Dq T1 0.10 0.06 �0.15 �0.01
PBE0a q GS �0.38 �0.88 1.27 0.35
TD-PBE0b Dq S1 0.09 �0.05 �0.03 �0.08
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3.1.4 Calculation of the Stokes shift in the gas phase.Having

obtained the relaxed structures in the ground and in the excited

state, we can calculate the energy difference between the ground

state geometry and the relaxed geometry, using the excited

state PES in both cases. This intramolecular relaxation energy

serves to compare different excited state hypersurfaces. From

the geometries, we have seen that the different DFT-based

approaches result in minima at similar structures. We would

like to know whether they are also consistent in their energetics.

From the difference in vertical excitation energy at the ground

state geometry and the excited state geometry we can also

calculate a gas phase stationary Stokes shift. This in turn allows

us to see how far the excited state geometry is away from the

minimum on the ground state PES. The experimental value

for the difference between absorption80 and fluorescence

maximum39 is 1.0 eV in H2O. The stationary Stokes shift due

to solvation was given as 0.38 eV.39 This value is obtained by

monitoring the emission maximum of the S1 state in solution

over time, and then extrapolating it to t= 0. As a first estimate

of intramolecular relaxation in the excited state one may

therefore expect a gas phase Stokes Shift of about 0.6 eV.

This implies the drastic assumption of a fast, uncoupled, intra-

molecular vibrational relaxation unaffected by the solvent,

followed by slow intermolecular solvent relaxation.

We find that the gas phase Stokes shifts in Table 4 are around

0.4–0.7 eV, which is twice the computed intramolecular relaxa-

tion energy in the excited state (0.2–0.3 eV). Thus, the intra-

molecular relaxation in the excited state after an S0 - S1

transition from an optimized geometry is comparable to the

relaxation in the ground state after an S1 - S0 transition (from

the relaxed ES geometry). The TD-DFT and CIS values for

the Stokes shift of about 0.6 eV for intramolecular relaxation

agree well with the first estimate from experimental data.

However, for the T1 state and ROKS they are about 0.2 eV

lower which might lead to different intramolecular relaxation

behavior.

3.2 Dissociation of the MQ water cluster in the ground and

excited states

Our actual goal is the description of solvent dynamics around

an excited MQ. In order to achieve a reliable simulation of

the excited state molecular solvation dynamics, ground and

excited state potential energy surfaces (PES) for the solvent

molecules around MQ have to be described correctly. We

start with the simplest model, an MQ�1H2O cluster, for which

we calculated the dissociation curve. For this purpose, an

MQ�1H2O complex was optimized (see Fig. 3) and the geo-

metry was verified to be a minimum by the absence of negative

PES curvature. The O[MQ]–H[H2O] distance then was varied

in steps of 0.05 Å between 1.95 Å and 4.00 Å. Counterpoise

corrected PBE0b calculations were done to check whether the

basis set superposition error (BSSE) would strongly affect the

dissociation curve. This was not the case, and we therefore

compare non-counterpoise corrected values. At the end points

of the plotted dissociation curve, single point energies were

calculated with CCSD(T). We added EOM-CCSD excitation

energies to the CCSD(T) ground state energy to calculate the

total excited state energies. Energies given are relative to the

energy for the O–H distance of 1.95 Å.

3.2.1 Performance of TD-DFT and the effect of dispersion

correction. The potential energy curves for dissociating a

MQ�H2O cluster using several levels of theory are shown in

Fig. 4. Both ground and excited states are considered. In the

ground state we find a very good agreement of the benchmark

calculations with the PBE0b results. Dispersion uncorrected

BLYPa on the other hand clearly predicts a weaker hydrogen

bond. However, this problem can be alleviated by adding the

empirical Grimme dispersion corrections. The potential energy

surfaces of BLYP-Da and PBE0b then closely agree. For the

excited state, the TD-BLYPa results give the correct trend

of a weakened intermolecular interaction. The PBE0b results

agree better with the EOM-CCSD reference calculations.

In addition to the DFT dissociation curves depicted in Fig. 4,

we calculated dissociation curves using HFa, CISa and semi-

empirical methods (data not shown). The results illustrate

again the need for dispersion correction, and confirm the

finding of a lower hydrogen bond dissociation energy in the

excited state. The lowered dissociation energy corresponds to a

decrease in excitation energy with increasing r(O–H) distance.

Fig. 2 Change in partial charges when going from the BLYPa ground

state to the triplet state negative charges Dq (red) and positive charges

(blue).

Table 3 MQ Selected geometric parameters of MQ in its optimized ground and excited states. Bond lengths in Angström and angles in degree

State GS ES(TD-DFT) ES(T1, LSD) ES (ROKS) GS ES(TD-DFT)
Level of theory BLYP-Da BLYP-Da BLYP-Da BLYP-Dc PBE0b PBE0b

r(C[6]–O[11]) 1.257 1.285 1.269 1.264 1.238 1.252
r(C[6]–C[7]) 1.481 1.481 1.452 1.455 1.466 1.451
r(C[9]–C[10]) 1.466 1.409 1.451 1.434 1.445 1.398
r(C[3]–C[2]) 1.406 1.377 1.377 1.369 1.392 1.360
r(C[2]–N[1]) 1.367 1.371 1.408 1.399 1.343 1.369
r(C[9]–N[1]) 1.383 1.450 1.409 1.412 1.364 1.414
+(C[5]–C[6]–C[7]) 114.3 116.7 116.6 116.8 114.1 116.4
+(C[2]–N[1]–C[9]) 122.6 119.4 120.8 120.5 122.6 119.5
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Weakened hydrogen bonding to the MQ oxygen in full solution

is therefore expected to contribute to the total Stokes shift.

In conclusion, the PBE0b functional gives an accurate

description of both the ground and excited states. While

the computationally efficient BLYP-D method gives a good

description of the ground state surface, its TD-DFT perfor-

mance in the excited state is disappointing.

3.2.2 Description of the excitated state dissociation by the

triplet state. For further evaluation of the excited state

description by a pure density functional, we therefore return

to the more heuristic approach of the T1 state (see Fig. 5). We

find that the dissociation curve of MQ�1H2O in the T1 state is

in very good agreement with the benchmark for the excited

state: the deviation from the reference is only 0.5 � 10�3 EH,

and smaller than for the BLYP TD-DFT approach. The

ability of a triplet to approximate intermolecular interactions

in the excited state was also verified by comparison to the

PM6-DH284 triplet level of theory as well as with ROKSc

(as in the case of isolated MQ the ROKS results are very

similar to the T1 state).

The energies were calculated at the BLYP-Dc level. This

allows us to qualitatively examine basis set effects, as the use of

a plane wave basis set (c) eliminates the basis set superposition

error (BSSE). While the effect of the basis set is visible (see

Fig. 5), it does not change the good agreement with our

reference calculations. The simulation of the excited state by

the triplet state opens up a computationally efficient way of

calculating the solvent relaxation––if it is transferable to the

full system.

3.3 Ground and excited state dissociation of MQ�4H2O

To estimate the consequences arising from the use of a triplet

instead of the true S1 state, we devised a more sensitive test.

We cut out a structure of MQ bound to four H2O from the

BLYP molecular dynamics run (see Fig. 6). This results in an

unrelaxed geometry with a highly screened MQ oxygen and a

partial network of hydrogen bonds. The coordinate of the

water molecule closest to the MQ oxygen was varied over

O[MQ]–H[H2O] distances between 1.45 Å and 3.45 Å. As for

MQ�1H2O, the obtained dissociation curves were compared

with coupled cluster calculations. The energies plotted are

referenced to r(O–H) = 1.9 Å.

The dissociation energy obtained by DFT methods is lower

than the benchmark CCSD(T) value (see Fig. 7). MP2 and

Table 4 Calculations on the Stokes shift for several levels of theory/excited state methods in eV

Level of theory BLYP-Da BLYP-Da BLYP-Dc PBE0b PBE0b (PCM) HFb

Method ES TD-DFTa T1 (LSD) ROKSc TD-DFT TD-DFT CISb

Vertical excitation from GS geometry 2.00 1.26 1.68 2.11 2.54 3.03
Intramol. relaxation in ES 0.35 0.16 0.19 0.31 0.28 0.29
Vertical excitation from ES geometry 1.27 0.95 1.30 1.48 2.04 2.43
Stokes shift 0.73 0.32 0.38 0.63 0.50 0.60

Fig. 3 Relaxed PBE0b structure of an MQ�1H2O complex.

Fig. 4 Comparison of MQ�1H2O dissociation with benchmark

calculations: ground state (GS) and excited state (ES) using TD-DFT.

Fig. 5 Comparison of MQ�1H2O dissociation curves with benchmark

calculations; illustrating the performance of the triplet model and basis

set effects.

Fig. 6 MQ�4H2O cluster cut out of BLYP-MD of MQ and the four

closest lying H2O molecules, unrelaxed structure. The distance of the

H2O (green) to the MQ oxygen was varied.
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CCSD calculations also confirmed this apparent underbonding

of the DFT methods in the ground state.

The dissociation energies in Table 5 show that the BLYP-D

result is closest to the CCSD(T) energy, and the BLYP-D T1

model is closest to the EOM-CCSD energy. In order to judge

the performance of these methods, one also has to look at the

change in dissociation energy between the ground and excited

states (DGS-ES, Table 5). The decrease in dissociation energy

for TD-BLYP-Da is less than half of the effect found in the

benchmark calculations. In addition to this relatively poor

performance of the TD-BLYP-D surface scan, it was neces-

sary to switch between excited states ES5 for r(O–H) o 2.8

and ES4 for r(O–H) 2.8–3.45, as following the oscillator

strength the lower excited states were dark. The T1 model

again shows better agreement with benchmark calculations

than the TD-DFT approach when using the BLYP functional;

however, for D(GS-ES) the TD-PBE0b value agrees best with

the reference calculation.

As in the case of MQ�1H2O we compare the results obtained

using localized basis sets to those obtained with the plane-wave

pseudopotential method (see Fig. 8). This is intended to give a

qualitative estimate of the errors due to basis set incomplete-

ness. Note that the reference calculations were also done with

localized basis sets and are therefore subject to the BSSE.

As the dissociation energy is smaller than in the case of an

unscreened MQ (compare Fig. 4), the relative effect of the

basis set, i.e. the BSSE is larger. However, the change in

hydrogen bond dissociation energy when going from the

ground to the excited state is almost the same, leading us to

the conclusion that the change in intermolecular interactions

upon excitation is less affected by basis set effects. From the

cluster benchmarks, the T1 model to the excited state is

confirmed to be a reasonably accurate approximation.

3.4 Fully solvated MQ in its excited state

Having examined the dissociation curves of MQ–H2O com-

plexes, we switch to a fully solvated MQ + 130 H2O and

periodic boundary conditions. Under these conditions, no

one-dimensional hydrogen bond dissociation curve can be

calculated. Instead, we used MD to generate a series of

representative geometries from the phase space. Starting from

these, we first examine excitation energies in solution and then

compare the change in intermolecular forces upon PES

change. From the last 1.2 ps of the dispersion corrected BLYP

trajectory frames were selected to calculate the ground state

(GS), the T1 and the TD-DFT S1 excited state. For these

calculations, we used the BLYPc level of theory. Only frames

in which the oscillator strength for the first excited state

exceeded those of the other states (the first three were calcu-

lated) and was above 0.01 were used. Force calculations and

excitation energies are based on the same ten sampled frames

that fulfill these criteria. In addition, we calculated Mulliken

charges of these snapshots in the ground and the triplet state,

using the GAPW approach with an Ahlrichs-pTZV all electron

basis set.85,86

3.4.1 Excitation energies of fully solvated MQ. For some of

our TD-DFT calculations, the second excited state was found

to have the highest oscillator strength. This issue has already

been discussed in the context of a dark apparent S1 state

and switching between low lying excited states in the calcula-

tion of the dissociation curve of MQ�4H2O. Averaging ten

S1 ’ S0 excitation energies results in an excitation energy of

2.64 eV, which is still red shifted from the experimental value

of 3.04 eV.

From the gas-phase excitation energy of 2.0 eV (Table 4), we

calculate a solvatochromic blue shift of 0.64 eV. Adding this

blue shift to the gas-phase EOM-CCSD excitation energy

yields a value of 3.01 eV, which differs only by 0.03 eV from

the experimental excitation energy. This confirms that inter-

molecular interactions are very well represented by DFT.

3.4.2 Population analysis of fully solvated MQ. Mulliken

charge analysis on the heavy atoms indicates a transfer of

negative charge of 0.1 e from the oxygen atom and delocalization

Fig. 7 Comparison of MQ water dissociation curves in the ground

state (GS) and the excited state (ES) to benchmark, using the TD-DFT

and T1 models for excitation.

Table 5 MQ�4H2O dissociation energies in 10�3 EH

Level of theory BLYP-Da BLYP-Da PBE0b CCSD
Method ES TD-DFT T1 (LSD) TD-DFT EOM

GS 7.3 7.3 6.9 9.4
ES 5.4 3.9 2.8 4.4
D(GS-ES) 1.9 3.4 4.0 5.0

Fig. 8 Comparison of MQ water dissociation curves in the ground

state (GS) and the excited state (ES) to benchmark, using localized

(red) and plane-wave basis sets (green).
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into the pyridinium ring. This is consistent with the change in

partial charges obtained from the gas phase (see Table 2).

Solute–solvent charge transfer was small, with the solute gaining

0.03 e in partial charge on average.

We find that the change in partial charges is largest near the

MQ-Oxygen (see Fig. 9). The gain in electronic charge of the

solute is most likely due to transfer of electron density from

the hydrogen bonds around MQ into the solute.

3.4.3 Change in the resulting forces on water molecules

upon electronic excitation. The Mulliken charges can give a

first idea of charge reorganization. The MQ-oxygen is a

hydrogen bonding donor and the pyridinium ring is screened

by the methyl group. One expects the change in force upon

electronic excitation to be strongest around the MQ-oxygen,

where hydrogen bonding will be significantly weakened.

However to accurately predict the behavior of the solvation

network we explicitly calculated intermolecular forces. The

triplet model has already been shown to agree somewhat better

with the reference calculations on MQ�xH2O clusters than

TD-BLYPa, while the same trend of weakened hydrogen

bonding in the excited state was found with both approaches.

TD-BLYP may therefore be used as a qualitative check to see

if the excited state models qualitatively agree in a realistic

system and to make sure that no important effects were

overlooked: the water cluster benchmarks were limited to

hydrogen bonds of H2O molecules around the MQ oxygen.

Aqueous solvation naturally also affects the positive side of

the zwitterionic dipole, the formally cationic nitrogen atom.

In order to quantify the representation of all intermolecular

forces in the excited solvated MQ, we computed effective

intermolecular forces
-

fint on the water molecules by the sum

of the forces on each atom of a given H2O molecule according

to eqn (1).
-

fint =
-

fO +
-

fH1
+

-

fH2
(1)

The forces inside and on the MQ molecule itself were

ignored, as the focus of interest is the dipolar relaxation of

the solvation shell and later its influence on the Stokes shift.

The difference in intermolecular force when switching the PES

can also be calculated for any given molecule by computing

the difference of the respective vectors
-

fint. For comparison

between two PES (A and B), the norm of the difference of the

effective forces was averaged over all H2O molecules for all ten

frames according to

DFinter = hJ
-

fintB �
-

fintAJi (2)

DFinter is the average change of the intermolecular force on a

water molecule in solution when switching from PES A to PES B.

It also serves as a measure of how the dynamics will change

upon putting the system in an excited state. If DFinter is

calculated only for water molecules close to certain positions

local information can also be extracted from the forces.

The MQ-oxygen and formally cationic nitrogen atoms were

chosen as centers as they are the places where the effect of

excitation is expected to be the largest. All water molecules

that have any atom closer than 3.6 Å to the chosen center were

averaged for the entire system as in eqn (2). In addition, we

have also calculated the norm of the single largest D
-

fintAB
encountered.

The results are shown in Fig. 10. We compare the average

change in the effective force DFinter (and its maximum single-

molecular contribution) for vertical excitations using the PES

pairs (GS, T1) and (GS, S1/TDDFT), but also between the two

excited states (S1, T1). Upon excitation (GS, ES), the average

of the effective intermolecular forces for the water molecules

around the N and O centers of MQ changes by 0.4 or about

1.3 mEH Å�1 respectively (1 mEH Å�1 = 43.6 pN). The

maximum change of the force is two to three times larger than

the average change over all water molecules in the first

solvation shell. The average change of the force is 6–7 times

higher near the MQ-oxygen than in the whole solution and the

maximum change is found at the oxygen (this is valid for each

individual frame as well). There exists one exception for the

difference between triplet and singlet excited states, where the

maximum change is elevated by one single large deviation in a

Fig. 9 Change in partial charge in the solvent upon changing from S0

to T1, negative charge in red and positive charge in blue.

Fig. 10 Comparison of average intermolecular force and maximum

JDAB
~f intJ around MQ for all H2O, at the nitrogen DFinter@N and

oxygen atom DFinter@O of MQ, comparing the ground state (GS)

with TD-DFT S1 and the triplet model of the excited state.
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H2O not close to MQ. In addition to this the change in force

near the nitrogen center (Fig. 10, DFinter@N) is also significant

but its absolute is on average only 29% of DFinter@O.

Comparing maximum forces shows an even larger difference.

Also there are on average only 3 molecules within the cutoff

radius on the nitrogen atom, while there are 6 near the oxygen

atom. Therefore, limiting our post-HF benchmarks to water

molecules close to the MQ-oxygen was justified. Furthermore

all differences between the excited state models are smaller

than the differences between ground and excited states. The

effect is especially strong near the crucial oxygen atom, where

the difference is 0.27 mEH Å�1 on average or 20% of the effect

of TD-DFT excitation. Contrary to the effect measured for

the water clusters, the difference between the ground and

excited states is actually larger for the TD-DFT forces.

3.5 Relative computational cost

The relative cost of a spin unrestricted DFT calculation is

twice the cost of a restricted singlet calculation per SCF step.

In contrast to this, TD-DFT in the current implementations

requires the diagonalization of a large matrix in addition to a

restricted singlet ground state calculation. In the case of full

solvation this added an order of magnitude to the computa-

tional cost. Furthermore, it is not currently possible to use

CPMD-like propagation schemes for the TD-DFT excited

state, which adds another order of magnitude to the relative

cost in an MD run.

4 Conclusion

As an initial step, we have calculated gas phase excitation

energies, geometries and dipole moments of N-methyl-6-

quinolone comparing different levels of theory. Apart from a

slight overestimation of the excited state dipole moment by

DFT methods we find reasonable agreement with benchmark

post-HF calculations and a surprisingly good agreement

of different DFT based approaches to the excited state.

All methods predict a significant decrease in the dipole

moment upon excitation. We also calculated intramolecular

reorganization energies, finding good agreement between

TD-DFT methods and CIS.

Our actual aim was to investigate the structural and

dynamic response of the hydrogen bond network of MQ in

aqueous solution. Specifically we are interested in the accuracy

to which the change of the hydrogen bond network due to

electronic excitation can be reproduced with DFT. Using

high quality reference methods, we find that upon excitation

MQ hydrogen bonding is considerably weakened. The BLYP

T1 state and hybrid TD-DFT (PBE0) reasonably reproduce

this effect.

The central result of this study is the applicability of the triplet

description for the simulation of the excited-state dynamics

of a fully solvated MQ. Such a description is necessary for the

adequate representation of the experimentally accessible time-

dependent Stokes shift. In particular, we found that the triplet

state also qualitatively agrees with TD-DFT forces in the full

system. Excitation predominantly affects the solvation around the

electronegative oxygen of MQ. Through the agreement between

S1 and T1 states (calculated with LSD) the computational cost of

simulating solvent relaxation is greatly reduced. This enables the

direct simulation of femtosecond spectroscopic experiments in

large disordered systems that require considerable phase space

sampling for convergence, such as terahertz spectra.
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Angew. Chem., Int. Ed., 2010, 49(2), 454–457.

42 J. Schmidt, J. VandeVondele, I.-F. Kuo, D. Sebastiani, J. Siepmann,
J. Hutter and C. J. Mundy:, J. Phys. Chem. B, 2009, 113,
11959–11964.

43 M. Boero, T. Ikeshoji and K. Terakura, ChemPhysChem, 2005, 6,
1775–1779.

44 B. Chen, I. Ivanov, M. L. Klein and M. Parrinello, Phys. Rev.
Lett., 2003, 91, 215503.

45 H. Chen, G. A. Voth and N. Agmon, J. Phys. Chem. B, 2010, 114,
333–339.

46 D. Banyai, T. Murakhtina and D. Sebastiani,Magn. Reson. Chem.,
2010, 48, S56–S60.

47 P. L. Geissler, C. Dellago, D. Chandler, J. Hutter andM. Parrinello,
Science, 2001, 291, 2121–2124.

48 E. Runge and E. K. U. Gross, Phys. Rev. Lett., 1984, 52, 997.
49 I. Frank, J. Hutter, D. Marx and M. Parrinello, J. Chem. Phys.,

1998, 108, 4060–4069.
50 J. Gräfenstein, E. Kraka and D. Cremer, Chem. Phys. Lett., 1998,

288, 593–602.
51 G. Granucci, M. Persico and A. Toniolo, J. Chem. Phys., 2001,

114, 10608.
52 A. Dreuw andM. Head-Gordon,Chem. Rev., 2005, 105, 4009–4037.
53 L. Bernasconi, M. Sprik and J. Hutter, J. Chem. Phys., 2003, 119,

12417–12431.
54 J. Hutter, J. Chem. Phys., 2003, 118, 3928–3934.
55 M. Odelius, D. Laikov and J. Hutter, J.Mol. Struct. (THEOCHEM),

2003, 630, 163–175.
56 A. Dreuw and M. Head-Gordon, J. Am. Chem. Soc., 2004, 126,

4007–4016.
57 L. Bernasconi, J. Blumberger, M. Sprik and R. Vuilleumier,

J. Chem. Phys., 2004, 121, 11885–11899.
58 L. Bernasconi, M. Sprik and J. Hutter, Chem. Phys. Lett., 2004,

394, 141–146.
59 G.Worth,M. Robb and B. Lasorne,Mol. Phys., 2008, 106, 2077–2091.
60 M. Nest, T. Klamroth and P. Saalfrank, J. Chem. Phys., 2005,

122, 124104.
61 A. D. Becke, Phys. Rev. A, 1988, 38, 3098.
62 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter,

1988, 37, 785–789.
63 S. Grimme, J. Comput. Chem., 2006, 27(15), 1787–1799.
64 J. Perdew, K. Burke and M. Ernzerhof, J. Phys. Chem., 1996, 105,

9982–9985.
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85 A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100,

5829–5835.
86 G. Lippert, J. Hutter and M. Parrinello, Theor. Chem. Acc., 1999,

103, 124–140.

Pu
bl

is
he

d 
on

 1
1 

A
ug

us
t 2

01
1.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

t E
rl

an
ge

n 
N

ur
nb

er
g 

on
 2

5/
09

/2
01

3 
10

:5
4:

55
. 

View Article Online



5.2 Paper II

5.2 Paper II

Reproduced from (2)

Zeitschrift für Physikalische Chemie International journal of research in physical chem-

istry and chemical physics. Volume 226, Issue 11-12, Pages 14151424, ISSN (Print)

0942-9352, DOI: 10.1524/zpch.2012.0290, October 2012

with permission from Walter de Gruyter GmbH, Berlin.

71



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

Z. Phys. Chem. 226 (2012) 1415–1424 / DOI 10.1524/zpch.2012.0290
© by Oldenbourg Wissenschaftsverlag, München

First Principles Calculations of NMR Chemical
Shifts of Liquid Water at an Amorphous Silica
Interface

By Xiang Yang Guo1, Tobias Watermann1, Shane Keane1, Christoph Allolio1, and
Daniel Sebastiani1 ,2,∗
1 Physics Department, Freie Universität Berlin, Arnimalle 14, 14195 Germany
2 Institute of Chemistry, Martin-Luther-Universität Halle Wittenberg, Kurt-Mothes-Strasse 2, 06120

Halle, Germany

Dedicated to Professor Hans Wolfgang Spiess on the occasion of his 70th birthday

(Received June 4, 2012; accepted in revised form September 21, 2012)

(Published online October 29, 2012)

Car-Parrinello Molecular Dynamics Simulations / DFT / NMR Chemical Shift
Calculations / MCM-41 / Liquid Water Structure / Confinement

We investigate the anomalous structure and hydrogen bond network of water molecules confined
inside a silica nanopore (MCM-41 type). In addition to geometric data, we use proton NMR
chemical shifts as a measure for the strength of the H-bonding network. We compute the 1H NMR
shifts of confined water based on a first principle approach in the framework of density functional
perturbation theory under periodic boundary conditions. The hydrophilic character of the silica is
well manifested in the water density profile. Our calculations illustrate both the modifications of
the 1H NMR chemical shifts of the water with respect to bulk water and a considerable slowing
down of water diffusion. In the vicinity of silanols, weakly hydrogen bonded liquid water is
observed, while at the center region of the pore, the hydrogen bonding network is enhanced with
respect to bulk water.

1. Introduction
Periodically structured porous materials have evoked wide interest for various appli-
cations in recent years. Their micro-structure is observed to be composed of orderly
arranged pores with uniform size [1]. MCM-41, as one of the most studied type, is
characterized by pores less than 40 Å in diameter, within which liquids can be con-
fined. Experimental studies regarding MCM-41 and the properties of liquids confined
within it have been performed at length. Techniques such as quasi-elastic and deep elas-
tic neutron scattering [2–4], neutron diffraction with isotopic substitution [5], x-ray
spectroscopy [6], sum frequency vibration spectroscopy [7], adsorption calorimetry [8],

* Corresponding author. E-mail: daniel.sebastiani@fu-berlin.de
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and NMR spectroscopy [9–11] have provided a lot of experimental data which may be
compared to simulation data.

The silanol groups on the silica surface play a special role for its ability of supply-
ing hydrogen bonding sites for the confined solvent [14]. With respect to their density
on the MCM-41 silica surface [9,10,13], the consensus seems to be about 2 to 3 nm−2,
meaning these groups cannot form hydrogen bonds with each other as they are too far
apart. Since the average distance between them is about 5.8 Å, one water molecule can-
not be simultaneously hydrogen bonded to two silanol groups [1]. Up to three water
molecules, however, may be hydrogen bonded to a single silanol group [14]. The nature
of water differed from bulk water when it is hydrogen bonded to the hydroxyl groups on
the silica surface. Recent neutron scattering evidence suggests that the hydrogen bond
formed between a water molecule and a silanol in mesoporous silica is stronger than the
hydrogen bonds between water molecules [4].

Many simulations have been conducted focusing on the water silica interface. Since
the structure of MCM-41 is not fully known, many varying models have been pro-
posed to simulate its surface. For example, Shirono et al. [15] and Kleestorfer et al. [16]
used a block of alpha-quartz out of which they cut circular pores of various sizes.
In cases where there remained oxygens attached to only one silicon atom, hydrogen
atoms were added to create the silanol groups characteristic of the surface of MCM-41.
Gallo et al. [12] used beta-cristobalite which was melted and equilibrated at 1000 K. It
was then quenched and a cylindrical pore 15 Å in diameter was carved into it. Again,
oxygens left attached to only one silicon atom were capped with hydrogen atoms.
Sherendovich et al. [9] use different experimentally derived criteria to recommend
a model of MCM-41 based on the structure of tridymite. The model they proposed was
not in fact tridymite, but a fictitious structure created from pieces of it stuck together
in different configurations. With respect to the silica-water interface, Sulpizi et al. [29]
conducted ab initio Molecular Dynamics (AIMD) on the hydroxilated (0001) α-quartz
surface system. Two types of silanol groups were addressed in their results, so called
out-of-plane silanols with a strong acidic character and in-plane silanols with weaker
acidity.

In this work, a simplified surface model is constructed which has the virtue of con-
taining the same density of silanol groups as MCM-41. We obtain the density and
translational mobility profiles of water confined in this model by applying first princi-
ple density functional theory based molecular dynamics (AIMD) simulation. Then we
compute ensemble averages of Nuclear Magnetic Resonance (NMR) calculations on
the confined water molecules and compare the results with bulk water. Furthermore we
analyze the distribution of the water NMR shifts along the pore axis and the impact of
the geometric confinement on the bound water NMR shifts so as to increase our un-
derstanding of the influence of spatial confinement on the structure and dynamics of
water.

2. Computional details

The water-silica interface is represented by a simplified yet realistic surface model
which demonstrates the experimentally known structure of the MCM-41 pore. Figure 1
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Liquid Water at an Amorphous Silica Interface 1417

Fig. 1. Two silica-water unit cells from a snapshot of the MD simulation (xz side view). The three-
dimensional periodic cell contains six silicic acid groups at the walls and 59 water molecules in between.
Si, O and H atoms are represented in yellow, red and white respectively. The silica surface is represented
by three isolated Si(OH)4 tetrahedrons.

shows a snapshot of the model. Silicic acid Si(OH)4 is used to model the silanol groups
with the three outer hydroxy groups fixed.

Following the experimental results from the NMR spectroscopy [9,10] on the
structure of MCM-41, the density of the silanol groups is taken to be 3 nm−2. The
possible hydrogen bonding between Si-O-Si bridge and water is missing in this
model. We assume it is only of minor influence since the highly concentrated silanol
groups on the surface hamper sterically the formation of this type of hydrogen bonds.
In the next more sophisticated model, the actual amorphous pore will be consid-
ered.

The diffusion of water into the surface is prevented by a harmonic potential (Fig. 1).
The potential only acts on the water molecules to allow free Si−OH vibrations. The
simulation is carried out in a fully periodic box with a size of 28×10 ×10 Å, two flat
silanol walls are placed 22 Å apart, 6 Å space is left at either end of the potential to re-
duce periodic effects in the x direction. 59 water molecules are placed between the two
walls. In order to employ a timestep of 1 fs, we choose heavy water instead of H2O to
double the calculation speed.

We run DFT based molecular dynamics simulations in the CP2K package [30]. The
BLYP [31] exchange-correlation functional was used, as well as the TZVP basis sets
and GTH pseudopotentials [32]. The DFT-D2 Grimme [33] dispersion correction was
also used. In total, the simulation ran for over 45 ps.

The system was first equilibrated for 10 ps using the canonical ensemble, em-
ploying a Nosé–Hoover thermostat. The temperature was set to be 320 K. The
simulation was then switched to the microcanonical ensemble for the remaining
time.

The NMR chemical shifts are computed as ensemble averages from ab initio nu-
clear shielding calculations within the CP2K package [30]. A random set of 15 snap-
shots from the NVE trajectory was sampled, and chemical shifts of all atoms were
calculated. For the referencing of the nuclear shielding tensors to chemical shifts, we
utilized the method applied in Ref. [23] The NMR simulation used a Gaussian aug-
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mented plane wave approach with GAPW plane wave cutoff 320 Ry, the BLYP-DFT
exchange-correlation functional and the TZV2PX-MOLOPT-GTH basis set were em-
ployed [34].

It should be noted that we do not compute the quantum propagation of the nuclear
spin state which occurs on a timescale of millisecond in a typical NMR experiment, but
instead we compute directly the energy difference of the 2 states. Hence the simulation
duration on a picosecond level is adequate to achieve the necessary sampling for the
averaged instantaneous chemical shifts [35–40].

3. Results and discussion

3.1 Translational dynamical properties

One of the most salient properties of water confined in MCM-41, discovered by ex-
periments and MD simulations [12,15,17,18] is a slower translational dynamics with
respect to bulk water. The translational dynamics of our system were measured by cal-
culating the diffusion coefficient of the system. The ratio of the diffusion coefficient of
water confined in MCM-41 to that of bulk water

q = DConfined
D2O

DBulk
D2O

has been ascertained experimentally and via simulation. Values of q range quite widely
from 0.23 to 0.64 [15,17,18,24], with the consensus showing a much slower diffusion of
water within MCM-41 pores. In this work, the reference self diffusion coefficient value
for bulk heavy water is taken to be 0.187 Å2/ps from Ref. [28]. In order to obtain the
value of q for our system, we calculated the diffusion coefficient D for our confined
water according to Einstein’s relation

D = MSD

2dt
=

〈
(RD2O(t)− RD2O(0))2

2dt

〉
D2O

with the numerator representing the mean-square displacement (MSD), t the time, and
d the number of dimensions in which the quantity is measured. For the simulation of
confined water, only diffusion in the two periodic directions (in our case the y and
z dimensions) is taken into account in order to reduce possible distortion due to the
presence of the walls [18].

The mean-square displacement (MSD) of water molecules over time in the confined
cases is presented in Fig. 2. From this graph, the diffusion coefficient for confined wa-
ter is calculated to be 0.05 Å2/ps. As 0.187 Å2/ps for bulk water, the resulting ratio q is
about 0.27 which falls into the range we obtained from literature.

As pointed out in several studies [11,12], however, taking the diffusion coefficient
of the whole system all at once fails to take adequate consideration of different effects
of the confinement at different position within the pore.
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Liquid Water at an Amorphous Silica Interface 1419

Fig. 2. Global MSD of the oxygen atoms of confined water at T = 320 K.

Fig. 3. Density Profile of Water confined between two silica slabs. The origin x = 0 Å corresponds to the
center of the pore.

3.2 Density profile

The water density profile can demonstrate the configuration of confined water and the
hydrophilic character of the silica surfaces. In the earlier empirical structure refinement
simulations by R. Mancinelli et al. [5,27], the density of confined water in a MCM-41
pore is found to be higher in the vicinity of the silanol walls; at 300 K in the interfacial
region the density was observed to be about 3 times as large as the density in the middle.
This phenomenon stems from a so-called cohesive failure between water molecules.
I. e. when water is confined between hydrophilic surfaces, voids occur in the middle
of the water layer which leads to cohesive failure [26]. As to the present experimental
results, Kocherbitov et al. [8] measured the apparent density of water in the MCM-41
pores at 298 K to be 0.88 g/cm3 using H2O and N2 sorption method.

In our simulation, the density profile of water was constructed by creating a his-
togram of the spatial locations of all atoms across the pore with bins 0.3 Å wide and
averaging over the entire NVE trajectory, as shown in Fig. 3. The position represents
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Fig. 4. Calculated 1H NMR chemical shifts of water confined between silica slabs compared with bulk wa-
ter, the distribution has been symmetrized with respect to the center (x = 0 Å), the value of 1H NMR shifts
are averaged in the x direction over the length of the model and the NVE trajectory of the system. The
graph is drawn up to where the atoms in Si(OH)4 start to appear.

the distance of the oxygen atoms from the center along the pore axis perpendicular to
the silica surface. At the core region of the cell (0 Å to 2 Å) a lower density appears in
our result, and at the outer edge (7 Å to 9 Å) as well, then it gradually decays to zero at
the silica wall. Notable density oscillations are observed from Fig. 3, which reveals that
the spatial layering occurred in confined water due to the hydrophilic character of the
substrate [21]. For example, we see 2 density peaks near the silica substrate, which in-
dicates that there are 2 separate layers of water in this region. However in several other
simulations, the produced density profile showed either one [5,18] or two [12,24,25]
peaks in the interfacial region and lower density in the core region. The small bump in
the density profile near the very edge of the pore is also present in other results [12,18].
One possible reason for the minimum appearing here is the presence of the silanol
groups oxygen atoms in that area taking up space.

3.3 1H NMR chemical shift calculations

Lately the ab initio calculation of nuclear chemical shifts has become one of the most
powerful methods for structure determination on the molecular level. Not merely can
the calculation interpret the spectra returned by the experiments [23], but also it can
produce instantaneous results that are beyond experimental capability. Particularly the
instantaneous 1H NMR shifts can provide significant probe for the hydrogen bonding
network of specific chemical environments [41,42].

The NMR shifts profile we obtained, as shown in Fig. 4, substantially indicates the
configuration of water confined between the 2 silica slabs. The experimental 1H NMR
chemical shift δ = 4.79 ppm for bulk water is taken from the value given in Ref. [22].
Figure 4 displays that in the major part of the cell, within 7.6 Å away from the center,
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Liquid Water at an Amorphous Silica Interface 1421

stronger H-bonded water appears with δ varying from 4.7 ppm to 5.4 ppm. The larg-
est δ = 5.4 ppm is reached at x = 2 Å. At the core of the pore (x = 0 Å), δ = 4.86 ppm.
Due to the confining effects of silica slabs, the NMR shifts are greater than those of
bulk water. But at the core of the pore, the calculated shift approximates that of the bulk
water, reflecting the hydrogen bonding in this region resembles bulk water H-bond net-
work. While the shifts drop to upper-field as approaching the wall, in the vicinity of
silanol walls (from x = 7.6 Å to x = 10 Å), water molecules are found to form weaker
hydrogen bonds with each other or with silanols, the minimum value 2.1 ppm is found
at x = 10 Å. As discussed before, the density profile shows layering effect took place in
our cell. According to Gallo et al. [21], the interactions of the substrate atoms and thin
water layers causes a strong distortion of the H-bond network. This explains why we see
a decline of the shifts near the wall, even though it has been experimentally proven that
the single silanol-water H-bond is stronger than the water-water H-bond [4].

We analogize the water filling process inside the pore by calculating the running
average of 1H chemical shifts up to a certain distance from the wall using equation

δAvg
1H(x) = 1

NH

x∑
x ′=xwall

δ1H(x)

δAvg
1H(x) represents the average δ value of a fictitious water film with thickness x. For

each value of δAvg
1H(x), we sampled from the wall to the plane at corresponding dis-

tance and calculated all the shifts of water between the 2 planes. Taking the limitation of
sampling into account, we leave out the first averaged value from x = 0 Å to 0.5 Å. The
range of averaged NMR shifts along the x direction over the length of the cell covers
from 2 to 4.9 ppm which is in good agreement with the experimental value from 1.74
to 4.7 ppm achieved in Buntkowsky’s group [1]. Grünberg et al. obtained the chemical
shift spectra of confined water at varying hydration level using 1H solid-state NMR. In
their results for the fully hydrated pore, one single signal appears at 4.7 ppm, and with
very small water content (≤ 2.7%), one dominating peak locates at 1.74 ppm which is
ascribed to the shift of silanol groups.

Figure 5 shows that the behavior of water in our model resembles the water filling
process described in Ref. [1]. Comparing our data with the experimental findings, we
observe the same varying tendency in the chemical shifts. The minimum value of δ in
Fig. 5 was obtained by computing the shifts of water locating within 0.5 Å to the silica
substrate, so as to correspond the very low water filling factor in the experiments. In the
interfacial region,the experimental NMR shift is an approximation to the shift of silanol
groups. Therefore, it is believed that all water molecules at this region were hydrogen
bonded to the silanols. With increased water content, additional water molecules start
to form hydrogen bonds with each other which gives rise to ascending chemical shifts.
This phenomenon is also reflected in Fig. 5, but increasing distance from the wall plays
the role instead of increasing water filling factor. When the water content goes up to
3.2%, a notable peak at 2.5 ppm arises beside a weakened line at 1.74 ppm, which in-
dicates the coexistence of 2 different types of hydrogen bonds. The NMR peak shifts
consistently towards down-field upon further increasing hydration level. When there is
23% of water, the line at 2.5 ppm is broadened and shifts to 3.4 ppm. When the pore is
completely filled, a single shift appears at 4.7 ppm.



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

1422 X. Y. Guo et al.

Fig. 5. Average of the 1H NMR chemical shift values of those water molecules residing within a film of
given thickness from the wall. The film thickness axis 0 Å and 11 Å are corresponding to the wall and the
cell center respectively.

Fig. 6. Calculated 1H NMR shift distribution of confined water. The ordinate is the occurence of the shifts
for various δ values. δ = 3.65 ppm is the averaged value for the water within 3 Å proximity to the walls
(blue), δ = 4.94 ppm is the global average of the whole system (red), and δ = 5.13 ppm is the average
shift of the water at the center of the pore (green). The dashed curve represents a gaussian centered at
δ = 4.94 ppm (black).

Our averaged NMR shifts imitate this process (as shown in Fig. 5) in such a way
that the δ value continually goes up from 2 ppm to 5.5 ppm as increasing thickness of
the film which starts from the wall (0 Å). This denotes that the bonding between wa-
ter and the silanols becomes less and less dominating which leads to the the growing
of the shifts until x = 5.5 Å. A plateau arises at 5.5 Å < x < 11 Å reflecting the water
molecules at the center region are mostly bounded to each other and not influenced by
the walls.

Figure 6 illustrates the spacial distribution of the 1H NMR shifts inside the cell.
Those water molecules situated within 3 Å proximity to the silica wall are denoted as
wall water, and the rest are considered to be center water. In this way, the confined
water is divided into 3 layers, silanol-water interface (wall water), water-water (center
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water) and water-silanol interface (wall water). The computed global average value of
the 1H chemical shift for all the water inside this cell is 4.94 ppm, the averaged wa-
ter shift in the close region of walls is 3.65 ppm, and that for the water in the core
area is 5.13 ppm. Comparing the whole distribution with a Gaussian centered at the
global average δ value 4.94 ppm, we can easily see that more water molecules fall into
the up field in the proximity of silanols. Most wall water resides at the left half of the
graph with δ ≤ 4.94 ppm. The overall average shift of the system moves towards lower
δ (upper field) under the effects of silica walls. This gives further evidence that the
silanol groups play a twisting role for the water-water hydrogen bonding network in the
interfacial region [21].

4. Conclusion

In this paper, DFT based molecular dynamics simulations and first principles NMR
chemical shift calculations are applied on a simplified surface model based on the struc-
tural properties of the MCM-41 pore. Our calculations demonstrate the strong influence
of spatial confinement on the structure and dynamical properties of water.

On the structural level, we see a strong influence on the 1H chemical shifts of the
confined water. While at the center of the pore a 0.5 ppm increased chemical shift com-
pared to bulk water is found, the chemical shift gradually decreases when approaching
the wall, until it reaches a value 3 ppm below bulk water reference. This implies an en-
hanced hydrogen bonding network for the water at the center, and a strongly weakened
network close to the silica-water interface. In the density profile, distinctive peaks ap-
pear next to the wall, indicating a structuring of the water by the wall geometry. By
calculating average chemical shifts for fictitious water films at the wall, we can see
a change from low chemical shifts for thin films towards bulk water like chemical shifts
for a film thickness above 4 Å. This is in good agreement with a previous experimental
model on the gradual filling of nanopores.

With respect to the dynamical behavior, we see a decrease in the diffusion rate by
a factor of 4 when comparing to bulk water values.
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An Ab Initio Microscope: Molecular Contributions to the Femtosecond
Time-Dependent Fluorescence Shift of a Reichardt-Type Dye**
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Despite decades of effort, the properties of liquid water are
not fully understood. In recent years it was found that
geometric confinement has a strong effect on water, making it
quite different from the bulk.[1] To understand protein
functionality, agglomeration, and folding, as well as DNA
stability, it appears to be essential to explicitly consider the
presence of water.[2]

With current IR-based spectroscopic techniques, it is
possible to monitor rapid photochemical reactions.[3] These
techniques are, however, severely limited by strong absorp-
tion due to water, in addition to spectral crowding. To
overcome these limitations, compounds with isotopically
substituted carbonyl groups have been used.[4] IR spectros-
copy observes the hydrogen-bond network indirectly by its
coupling to the vibrational modes. Fluctuations of the hydro-
gen-bond network can be directly measured by THz spec-
troscopy which probes the dielectric bulk response.[5] Inside
biomolecules or confinements, the absorption background of
water can be entirely avoided when the fluorescence of
a suitably placed chromophore is monitored. For this purpose,
dyes are employed whose fluorescence depends strongly on
solvent polarity.[6] In this context, the molecular probe N-
methyl-6-oxyquinolinium betaine (MQ) is especially attrac-
tive because of its small size and water solubility, allowing
insertion into DNA or proteins. Structurally, it resembles the
polarity indicator dye introduced by Reichardt and co-
workers.[7] The local THz spectrum, up to the far-IR intra-
molecular modes, can then be extracted almost quantitatively
from the time-dependent Stokes shift (TDSS) of its fluores-
cence as measured by femtosecond spectroscopy. The con-
nection between TDSS data of MQ and the THz spectrum of
its surroundings has been established by simple dipolar
continuum theory.[8] It should be noted that the Stokes shift
of the chromophore represents only an indirect measurement
of the water dynamics. In addition, the presence of the

chromophore has the potential of affecting this very water
dynamics to a certain extent.

However, the time-dependent dielectric response can be
traced back to the structure and dynamics around the
molecular probe in atomistic detail with the help of molecular
dynamics simulations in combination with the experimentally
observed evolution of the Stokes shift.

Published attempts at describing time-dependent solva-
tion with molecular dynamics used either a quantum mechan-
ics/molecular dynamics (QM/MM) approach, including only
the solute and a few water molecules in a quantum mechan-
ical treatment,[9] or a model potential derived from quantum
mechanical calculations of the chromophore.[10] In our
approach, we use density functional theory (DFT) for solute
and solvent, which is known to yield an accurate picture of
solvent effects and the dynamics of hydrogen-bond networks,
also for excited-state solutes.[11] Instead of the dielectric linear
response of the solvent or the time-dependent solvation
energy, we compute the time-dependent fluorescence emis-
sion wavelength directly from nonequilibrium MD. This
allows us to simulate the full TDSS experiment from first
principles—without preadjusted parameters and assumptions
about the solvent response, including full electronic polar-
ization and all intramolecular degrees of freedom. We
performed molecular dynamics simulations in the T1 triplet
state, providing an efficient approach for excited-state
dynamics. In a previous paper we verified that the dipole
moment and forces of the S1 state of MQ are equally well
described by both the T1 state and time-dependent (TD-)
DFT.[12] The Stokes shifts in turn were computed by TD-DFT
in order to obtain more accurate excitation energies. For
computational details see the Supporting Information.

MQ is formally a zwitterionic molecule with a large dipole
moment (Figure 1). In agreement with previous static calcu-
lations the MD simulations performed here yield strong
hydrogen bonds at the electron-rich MQ oxygen, which are
weakened upon electronic excitation of the molecule.[12] The
radial distribution functions show that the coordination
number of 3 remains unaffected by this weakening (see the
Supporting Information). When visually examining the tra-
jectory, we find MQ to be inside a broad cavity in the solvent,
generated by its hydrophobic planar p-system.

MQ shows a strong reduction of the molecular dipole
moment upon electronic excitation (Figure 1). We previously
computed this change of dipole moment to be from 10.2 D to
6.8 D in the gas phase.[12] In aqueous solution, we find
a reduction from 22 D to 14 D (computed from Wannier
centers, averaged over ten conformations in the correspond-
ing relaxed trajectories.) As the large ground-state dipole
moment induces a strong alignment of the solvent molecules
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around the solute dipole, excitation of MQ reduces the
statistical ordering for the water dipoles. This reduction of the
ordering due to the weaker dipolar interaction is illustrated in
Figure 1 by means of the average orientations of the water
molecules around MQ. In the ground state (left) the
distribution of water molecules is aligned with the field lines
of the MQ dipole, with a reduced amplitude at the nitrogen
site. In order to quantify the orientational response of the
solvation structure to the excitation of MQ (right), we
compute an order parameter l, inspired by the dipole–
dipole interaction energy.

l ¼ e � pH2O

ek k � pH2O

�
�

�
�

* +

e ¼ �r 1
rN � rk k �

1
rO � rk k

� �

ð1Þ

For simplicity, we use the geometric orientation of water
molecules instead of the actual physical dipoles for pH2O and
the electric field e of point charges at the oxygen and nitrogen
atoms. Our first-principles MD simulations yield l = 0.12 in
the ground state and l = 0.08 upon excitation. We find the
average vertical S0!S1 excitation energy to be 2.97 eV—close
to the experimental value of 3.04 eV.[13] In the excited state
the electronic excitation energy is found to be 2.29 eV, 0.2 eV
higher than the experimentally observed value. We attribute
this difference to the fact that in our triplet model, the
chromophore moves on a slightly different energy surface
than in the true S1 state.

In our simulation, we switch from the ground state to the
excited state and then follow the solvent relaxation by means
of the vertical de-excitation energy n(t). In order to increase
ergodicity, we sample from ten independent trajectories
started at different points of the equilibrated ground-state
trajectory to yield an ensemble average for the evolution of
the fluorescence wavenumber nm(t). To provide an estimate of
the uncertainty inherent in the limited sampling, we have
computed nm(t) based on half of the trajectories (gray lines in
Figure 2, multiple random selection of trajectory subset). The
time-dependent Stokes shift of our ab initio MD is shown in in

Figure 2 (black line). When we correct for the different
equilibrium de-excitation energy nm

1 we find good agreement
with experiment. The computed Stokes shift exhibits oscil-
lations with a period of about 350 fs, which are not visible in
experiment. We believe they may be due to finite size effects.

A complementary approach to characterize solvation
dynamics is the relaxation from excited-state equilibrium to
ground-state equilibrium. The shape and relaxation time of
the reversed time-dependent Stokes shift, that is, an “anti-
Stokes” shift, is virtually identical to the fluorescence stokes
shift (see Figure S7 in the Supporting Information).

Having obtained a good reproduction of the experimental
relaxation, we further decompose the total Stokes shift into
several contributions. For the intramolecular part, we com-
pute the Stokes shift using only the isolated MQ in geometries
extracted from the (fully solvated) MD trajectory. We find
that the de-excitation energy of isolated MQ does not
decrease over time; instead it oscillates with a frequency of
about 600 cm�1, other modes being less discernible. Exper-
imentally, the intramolecular vibrational modes obtained
from the maxima of stimulated emission[8] also are present in
this region: prominent peaks occur at 460 cm�1, 520 cm�1, and
600 cm�1 (see the Supporting Information).

Shifting from the chromophore to the solvent, the
question arises which water molecules provide the largest
contribution to the TDSS. The solvation energy difference
DESolv(t) for a cluster of MQ with surrounding water
molecules is just the difference between the S1!S0 transition
energies of the isolated MQ molecule and the cluster;
therefore intramolecular oscillations of MQ are mapped out.

We compute DESolv(t) of solvent clusters extracted from
our trajectories, partitioning the solvating water molecules
into three groups (Figure 3): group a: water molecules that
are located in a torus 10 � in diameter centered at the N�O
axis of MQ (for details see the Supporting Information);

Figure 1. Schematic illustration of the change in the dipole moment
upon electronic excitation of MQ (top, not to scale), averaged
orientations of water molecules around solvated MQ in the ground
(left) and in the excited state (right). The length of the arrows
corresponds to a preferential orientation, obtained by ensemble
averaging over the MD trajectory. For details see the Supporting
Information.

Figure 2. Dynamics of the Stokes shift as obtained by averaging ten
trajectories and smoothing by 10 point moving-window averaging
(black, left axis), Stokes shift after removal of five random trajectories
(gray lines, left axis), experimental data[14] (dashed black line, right
axis); data is referenced to n(t=1) in both cases (dotted base line).
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group b: water molecules that are hydrogen-bonded to MQ;
group c: the full first solvation shell of water. This partitioning
of the first solvation shell is motivated by experimental results
indicating that the Stokes shift is mostly caused by dipolar
relaxation of water molecules.[8] Hence we choose the water
molecules in the first solvation shell that are most affected by
the change in the dipolar field of MQ.

We find that within the examined clusters, only the water
molecules in group a shows considerable net relaxation
behavior. The contribution of the water molecules to the
Stokes shift amounts to about 0.3 eV, which represents
a substantial part of the observed dynamic Stokes shift. For
the water molecules in group b we find a strong contribution
to the static DESolv (Figure 4, dashed gray line); this molecular
solvatochromism is consistent with our previous results.[12]

Instead of a relaxation, we find an increase in the solvation
energy in first 0.1 ps. Finally, for water molecules in group c
no net relaxation is visible after 0.7 ps, despite a strong initial
response within the first 0.1 ps.

Summarizing the above, the dielectric effects of MQ
solvation clearly extend beyond the first solvation shell, as the
complete relaxation of DESolv is considerably larger than the
contribution from the first solvation shell only. Extrapolating
DESolv of the cluster decompositions, we estimate that the
aqueous dielectric screening of the MQ probe extends
roughly 8 � into the solution. When examining the time
evolution of the three hydrogen bonds connected to the MQ
oxygen, we find that a rapid elongation of these bonds occurs
(see the Supporting Information). The weakening of these
hydrogen bonds occurs within 0.2 ps after the excitation; this
local dynamics could in principle explain the initial Stokes
relaxation. However, a direct causality between the geometric
motif and the MQ excitation energy is not confirmed by the
cluster decomposition (dashed gray line in Figure 4.) Only the
full solution is capable of reproducing the experimental
relaxation.

In conclusion, our ab initio molecular dynamics simula-
tions in combination with TD-DFT calculations are able to
explain the experimentally observed femtosecond time

dependence of the fluorescence Stokes shift of solvated N-
methyl-6-oxyquinolinium betaine at the molecular level. By
decomposing the MD trajectories, we show that an important
contribution to the time-dependent Stokes shift originates
from a group of water molecules that strongly interact with
MQ�s molecular dipole (located inside a torus around the
aromatic core of MQ). Our MD simulations give a molecular,
first-principles justification to interpretations based on dipo-
lar relaxation: Molecular excitation of MQ causes a loss of
dipolar orientation that extends through the solution, which
we describe by a suitable order parameter l. For the
relaxation of the ground state from the excited-state equilib-
rium, we predict a very similar behavior of the relaxation
dynamics. As our method of calculating the time-dependent
Stokes shift of MQ does not use any adjustable parameters, it
can be readily transferred to more complex systems, in
particular biomolecules.
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Figure 3. The first solvation shell of MQ and its components: Water
molecules in a torus around the N�O axis of MQ (yellow balls, type a
in Figure 4), H2O molecules hydrogen-bonded to the MQ oxygen
terminus (red and white balls, type b), and the entire first solvation
shell (rods, type c).

Figure 4. Computed time evolution of the solvation energy DESolv(t) for
the three types of water molecules around MQ, for the subsystems
extracted from the fully solvated MQ trajectory. For definitions of the
subsystems see Figure 3 and the main text.
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ABSTRACT: We have characterized the structure and
picosecond dynamics of the hydrogen bond network of
solvated LiI by means of first-principles molecular dynamics
simulations at ambient temperature. Our calculations reveal
the qualitative differences of the network between low (1 M)
and high (9 M) salt concentrations. In particular, we find the
presence of fused Li+ solvation shells at 9 M, meaning that a
single water molecule is coordinated to two different Li+ ions.
This results in the formation of (Li+·H2O)n chains, dominating
over conventional ion pairing. We report experimental and
simulated NMR chemical shifts, which indicate a weakening of the hydrogen bond network, mainly within the first solvation shell
of the I− ions. In line with this finding, the local dynamics of this network reveal a competition between the chaotropic effects of
I− and the kosmotropic properties of Li+ ions at an intermediate range. We find that the chaotropic effect of I− reaches across
several H-bonds into the solution, whereas the kosmotropic effect of Li+ is more short ranged.

1. INTRODUCTION

The interaction of molecular and ionic solutes with water is one
of the evergreens of structural chemistry and biochemistry.
Increasing attention is currently focused on cooperative effects
in this context, in particular, the influence of cosolvents on the
solvation of a larger solute molecule. Historically, this is known
as the Hofmeister effect, which was originally observed as the
specific effect of different ions on the precipitation and
dissolution of egg protein.1 This effect has turned out to be
of universal relevance to protein science2 and is intrinsically
related to the broader issue of the properties of water at
interfaces and under confinement. Apart from biomolecules,3−5

the dissolution of synthetic polymers is also strongly affected by
the addition of salts.6 Protein precipitation necessitates
exclusion of a large part of water confined at the interface of
the macromolecule.7,8 Understanding modifications of the
(local) hydrogen bond network by ions is therefore key to
understanding Hofmeister effects. To improve our quantitative
understanding, a variety of spectroscopic signatures of the
hydrogen bond network under the influence of ions may be
assembled to form a coherent atomistic and thermodynamic
picture. At present, this picture is far from complete, as
evidenced by the still ongoing controversy on how far the
influence of the ions themselves on the bulk solution reaches.3,9

However, valuable insights have been gained from (ultrafast)
infrared spectroscopy10−12 as well as NMR,4,13,14 and THz15

and neutron scattering.16,17 Simple aqueous solutions of
monovalent ions have undergone extensive research in the

past.18−23 Despite the considerable shortcomings of classical
force fields for high concentrations of salts,24,25 studies of
concentrated aqueous salt solutions using ab initio molecular
dynamics are still rare in the literature, the main focus of
reasearch having been studies of the isolated ions or halide
acids.26−37 While the problems associated with long-range
electrostatic interactions in periodic systems make this partially
understandable, we think that important insight can be gained
from the interplay of ions in such systems, especially at high
concentrations. This is particularly true in the case of LiI
because it combines a kosmotropic, that is, a H-bond network
reinforcing cation with a chaotropic anion having the opposite
effect, making it a reference in the search for cooperative
effects,38 as well as specific phenomena caused by overlapping
solvation structures. In addition, LiI has recently been found to
facilitate polyamide processing when used in high concen-
trations,39 so that the question arises by what mechanism a
highly concentrated LiI solution dissolves the polymer. 1H
NMR chemical shifts of aqueous solutions of chaotropic and
kosmotropic ions are a sensitive measure of an ion’s effect on
hydrogen bonding. We here present a combined theoretical and
experimental study of the solvation of LiI, focusing on the
structure and dynamics of the hydrogen bond network. We
begin by describing the structure of the ionic solvation shells
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and their supramolecular organization. Next, we examine the
hydrogen bond network itself, using the trends in experimental
and simulated 1H NMR chemical shifts as a guide for our
description. Finally, we examine the dynamic interactions of the
solvated ions with the hydrogen bond network and their
competing effects on its stability.

2. THEORETICAL METHODS

Initially, we carried out classical MD simulations on three boxes
of side length 11.84 Å containing 55 water molecules, 53 water
molecules and one ion pair, and 37 water molecules and 9 ion
pairs. The densities of the boxes were set to 0.99, 1.09, and 1.87
g/cm3 according to an empirical polynomial fit from literature
values for LiI at 25 °C40 and adjusting the baseline for the
equilibrium density of BLYP-D water at 0.991 g/cm3.41 In a
first step, we pre-equilibrated the systems using a Kirkwood−
Buff-type force field, which is tuned for highly concentrated
aqueous solutions of monovalent ions.42−44 For water, we used
the SPC/E model.45 Subsequently, ab initio simulations of 5 ps
were carried out for each box, employing a DZVP-MOLOPT46

basis set with GTH47,48 pseudopotentials and the GAPW49

method using a 320 Ry cutoff and a time step of 0.5 fs (Method
I). In a third step, MD simulations of each system were done
from 17 to 18 ps for 1 M LiI and H2O to 29 ps for 9 M LiI,
employing the GPW50,51 method, with the BLYP-D dispersion-
corrected52 density functional53,54 with a cutoff of 600 Ry. The
basis set employed was a triple-ζ augmented basis for hydrogen
and oxygen (TZV2PX) and a quadruple-ζ (QZV2P) basis set
for the cation and DZVP-MOLOPT for anions46 (Method II).
The system was kept at constant volume and at 350 K by

means of a CSVR thermostat55 with a time constant of 100 fs to
compensate for overstructuring of water.36,56 We ran the
simulations with deuterated water and used a 1 fs MD time
step.
The NMR chemical shift calculations were carried out using

Method I57 by averaging over 20−30 randomly sampled
snapshots from the last several picoseconds of the (Method II)
MD trajectories. For each concentration, the average is
computed over more than 2000 instantaneous 1H chemical
shifts. The use of deuterated water affects only the dynamic of
the MD but no structural aspects, in particular, neither the
magnetic perturbation Hamiltonian nor the electronic ground
state, thereby yielding identical chemical shifts to that of
protons.36 All computations were done using the CP2K
software package.58 We used Method I as the PSP of hydrogen
has no nonlocal part and the method has previously been
employed successfully for proton shifts.59 Results are easily
comparable to PW/PSP results, yielding especially a good
convergence for the polarization due to the plane wave
description of the diffuse “soft” part of the density.

3. RESULTS AND DISCUSSION

3.1. Ion Coordination. To compare the solvation shell
structures with available experimental X-ray data, we compute
radial distribution functions (RDFs) for the two concentrations.
We find good agreement with previous X-ray diffraction and
molecular dynamics studies regarding the position of the first
peaks in the RDF (see the Supporting Information). Inspection
of the trajectory reveals that many of the O−H bonds of
neighboring H2O do not point toward the iodide ion. This
results in the first shell I−H coodination number (CN) being
about 2 lower than the I−O CN at 1 M concentration. We

therefore only consider protons in the first I−H shell to be H-
bonded to I−. Nevertheless, we count all water in the first I−O
shell as coordinated. The weak H-bonding to iodide is also
reflected by the large fluctuations in the number of coordinated
waters (see Figure 1).

The weak hydration of iodide is well-known and can be
explained by its low net charge density owing to its large ionic
radius.9,60−62 Remarkably, the I−O CN actually increases with
concentration. The solvation structure of iodide has already
been studied using ab initio MD.27,63,64 Good agreement with
EXAFS and PES data was observed, and details including the
asymmetry of the solvation shell and ion dipole moments have
been discussed at length. These studies also have noted the
weak H-bonding and the associated flexibility of the O−H
angle (however finding a lower I−O CN for isolated I−,
possibly due to the aforementioned concentration effect).
Therefore, we focus on the interplay between ions.
Although the water−ion ratio drops drastically from the 1 M

solution (26.5) to the 9 M solution (2.0), the average Li−O
CN of Li+ remains 4. In addition, the average distance between
Li+ and the hydration water remains the same despite the
increase in concentration (see the Supporting Information).
The structure of the Li+ coordination shells is found to be
heavily influenced by ionic strength. It is tetrahedral at 1 M,
consistent with other DFT studies.28,29 However, it becomes
deformed at 9 M concentration, with maxima at 90 and 180°
angles (see Figure 2). We find this to be somewhat surprising as
we had expected the change in shell geometry to go in step with
a change in CN. While Li−I ion pairing is present, it is not
sufficient to explain the deformation as it is found only in less
than a third of the Li+ ions.
The conservation of the four-fold coordination is achieved

because most hydration polyhedra share one water molecule at
some point in time. When lithium solvation shells are joined in
this fashion, the oxygen of the shared water molecule will be
facing both cations, forming what we call an oxygen bridge (see
Figure 3, left). Oxygen bridges have been previously observed
in both lithium iodide and lithium chloride.65 As can be seen
from the wide distribution of bridged Li+ clusters (Figure 3,
right), oxygen bridges connecting lithium ions are constantly
formed and broken (the same is also true in the 1 M case,
where we observed H2O exchange). Half of the lithium ions in
the sample share an oxygen with another lithium only for a few

Figure 1. Distribution of the oxygen CNs of iodide in the 1 M LiI
solution throughtout the trajectory. The distribution yields an average
of 8.3; the equivalent distribution for Li+ yields 91% of four-fold
coordination and 9% of five-fold coordination.
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picoseconds before migrating to the next neighboring solvation
shell.
This leads to fluctuations between 3 and 6 in the Li−O CN

of the single Li+ cations. The distribution of cluster sizes
suggests the existence of preferred geometries with “magic
numbers” of five or eight. Because the box size and sampling
time are very restricted, we cannot distinguish this phenom-
enon with certainty from potential finite size effects. However,
the observed condensation of Li+ shells is plausible as it is also
present in the structure of the LiI·3H2O crystal.66 In the LiI·
3H2O crystal, the lithium ion is at the center of a regular
octahedron of oxygens with a Li−O distance of 2.14 Å. Each of
the six oxygens in the coordination shell forms an oxygen
bridge to the next ion. Thus, the water molecules in the LiI·
3H2O crystal are coordinated to two lithium cations and to two
iodides via hydrogen bonds. The hydrogen bonding structure
has been verified by solid-state IR.67 The iodide in the crystal is
surrounded by 12 oxygens at a distance between 3.70 and 3.75
Å.66 In the crystal structure, the distance between Li+ and
iodide is 4.5 Å, close to the peak at 4.7 Å in the RDFLi−I of our
trajectory (see the Supporting Information). In the crystal, the
I− ions also form a chain parallel to the Li−O “polymer”. We

find both of these structural motifs in our simulation but in a
disordered and transient form. An I− chain is enforced already
by the fact that the ion radius for I− is about 2 Å. For a H2O
molecule to clearly separate the two ions, one would need a
distance of about 7 Å of the I− nuclei, or at least more than 5.5
Å, which puts just one atom’s VdW radius in between.
According to this definition, at 9 M concentration, all I− are
found to be in contact with other iodides. This pairing is merely
due to spatial constraint and does not imply any favorable
interaction. The crystal structure differs from our simulation in
that it does not exhibit any cation−anion ion pairing. Another
important difference is the Li−O CN of 4 found in our
simulation as opposed to 6 in the crystal. As most of the water
molecules in the 9 M solution are part of the Li+ solvation
clusters and the iodide ions move very slowly due to their large
mass, the structure can be thought of as a dynamic intermediate
between the crystal and liquid phases. For the water molecules
not bound to Li+, the ions hence represent a geometric
confinement in the form of a hydrophilic matrix.

3.2. Hydrogen Bond Network: Concentration and
Confinement. 3.2.1. Structure. The hydrogen bonding
network (HBN) of the LiI solutions represents our main

Figure 2. Angular distribution of the oxygen−metal−oxygen angle in the Li+ coordination shell.

Figure 3. (Left) Cluster of five linked Li+ ions at 9 M LiI. (Right) Probability for a Li+ to be in a cluster of a given size; Li−O cutoff = 2.85 Å.
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interest as its modifications are thought to be responsible for
the effects on protein precipitation and polymer dissolution.
The RDFO−H in Figure 4 for the 1 M LiI solution shows only

small deviations from pure water. In the 9 M LiI solution
however, there is a significant weakening of H-bonding between
water molecules, as evidenced by the far-smaller O−H
coordination peak. The O−H CN for H-bonded water is 0.6
for water in the 9 M LiI solution, whereas for the 1 M LiI
solution and pure water, the integral yields 2. This was also
observed in LiCl solutions,17,68 revealing a breakdown of the
HBN at high concentrations as water molecules increasingly
bond to ions.
One major reason for the weakening of the H-bond network

at 9 M concentration has already been identified; most of the
water oxygen atoms (>85%) become involved in Li+

coordination and bridging; thus, fewer H-bonds between
water molecules exist. It should be noted however that H-
bonding between Li+ coordinated oxygens and protons from
other solvation shells is possible. In order to explore the
possibilities of H-bonding, we have dissected the H-bonding
topology (taking the H-bond definition from RDFs; see the
Supporting Information). The three-dimensional HBN may be
represented by a directed graph, where the nodes (H2O
molecules and ions) are connected by arrows. A small excerpt
of the large complete graph for a given MD snapshot is
depicted in Figure 5
As expected, the graph shows that the HBN is dominated by

Li+ solvation shell water molecules; these are interacting with
each other. In the case of clusters not linked by oxygen bridges,
the water molecules form H-bonds between Li+ solvation shells.
Even intrashell H-bonding is observed (see Figure 5, top). The
I− ions have a large number of H-bonds due to their large
surface, so that the majority of water molecules are hydrogen-
bonded to them (see Figure 5, bottom). The hydrogen bond
network in the 9 M LiI solution can best be understood as a
fusing “glue” between solvation shells.
3.2.2. NMR Chemical Shifts. We have performed exper-

imental NMR measurements on aqueous solutions of a number
of alkali halide salts at different concentrations (see Figure 6).
These show that halide and alkali metal ions have a distinct
effect on 1H NMR chemical shifts that is in agreement with the
Hofmeister series. Iodide is known to have a strong chaotropic
behavior, and Li+ is a more kosmotropic ion than Na+. The
strength of H-bonds can be measured by NMR chemical shifts,

which exhibit a downfield shift proportional to the strength of
the H-bond.36,69−71 Thus, the NMR shifts give a direct
confirmation of the Hofmeister effect in terms of hydrogen
bonding.
The complex structural phenomena found at high concen-

trations of LiI, the general absence of a noticeable effect on ions
at 1 M concentration, and the experimental linear dependence
of the ppm shift on the concentration strongly suggest that the
concentration effect on 1H chemical shifts (and thus the H-
bonding structure) is extremely short ranged. This means that

Figure 4. RDFO−H for pure water, a 1 M LiI solution, and a 9 M LiI
solution.

Figure 5. Patterns in the hydrogen bond network topology in a 9 M
LiI solution. Water molecules in Li+ solvation shells are colored yellow,
“free” water molecules are colored green, and arrows are pointing from
an electron pair donor (H-bond acceptor) to a H-bond donor in the
style of dipolar bonding.

Figure 6. Experimental 1H chemical shifts for different salt aqueous
solutions of monovalent ions at concentrations from 1 to 12 mol/L in
ppm. Full lines are meant as guides to the eye.
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the bulk water will not show a pervasive change in hydrogen
bonding at all. Instead, it just disappears as more and more
volume is being taken up by the ions. Figure 7 shows direct

support for this hypothesis as the water 1H NMR shift average
(and distribution) of protons beyond the first solvation shell is
virtually identical to that of bulk water. Besides NMR shifts,
other (far)-infrared spectroscopical data suggest the same
conclusion.9,15

As reported in Table 1, the average chemical shift for all
hydrogens in the 1 M LiI solution does not deviate strongly

from that for pure water. Although ions have an important
effect on the chemical shift of their direct hydration water
(defined by the ion-oxygen RDF’s first peak), the effects of Li+

and iodide largely cancel out in the 1 M solution. Results are in
good agreement with experiment in this case. The small
deviation originates from an overly kosmotropic effect of Li+ in
the simulation, which is not observed in experiment. The small
effect on NMR shifts indicates that the hydrogen bond network
in the solution is not strongly perturbed, which is consistent
with the RDF data seen before as well as topological analysis of
the HBN. Thus, there is no indication of a long-range influence
on the H-bond structure.
As in the 1 M solution, in the 9 M LiI solution, the upfield

shift should originate from the water molecules directly
involved in I− hydration. Actually, we observe a collective
effect of several iodides on a single water molecule (see Figure
8). Due to the large I− solvation shell (see the Supporting
Information), about 94% of the water molecules in the sample
are coordinated to two or more I− at the same time. Very few
H2O are coordinated to only one I− (about 5%), and H2O only

coordinated to Li+ is not observed in most frames. The most
probable CNs are 2 (30%) and 3 (45%), with average 1H
chemical shifts of 4.2 and 3.6 ppm, respectively. The average
chemical shift for the 9 M LiI solution given in Table 1 is 3.62
ppm, which is slightly lower than the experimental value,
reflecting the very weak hydrogen bonding to iodide obtained
by the DFT description. It might alternatively be an unintended
side effect of the elevated temperature of the simulation.
Nevertheless, the experimental trend is reproduced.
Structure and properties of the hydrogen bond network show

a consistent weakening of the HBN at 9 M concentration, in
agreement with experiment. A global chaotropic effect at the
medium concentration of 1 M was not found. Structurally, H-
bonding is drastically affected only in the first coordination shell
of the ions; the global effect at the 9 M concentration originates
from the absence of bulk water. No longer-ranged structural
effect is observed in our first-principles calculations.

3.2.3. Dynamics. Dynamic properties are more sensitive to
changes in hydrogen bonding than structural properties due to
the exponential form of rate laws. We examine hydrogen
bonding using the same definition as that used for the
topological structure. To investigate the H-bond dynamics, we
define a hydrogen bonding autocorrelation function, with a
vector function ζ(t), which has the dimension of the number of
possible H-bonds

ζ
ζ ζ=

∥ ∥
⟨ | ⟩C t

t
t t( )

1
( )

( ) ( )HB
0 1

0
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For all possible hydrogen bonding pairs k, as defined by H-
bond donor (proton, lithium cation) and acceptor sites
(oxygen, iodide), the hydrogen bond vector component ζ(t)k
is 1 if a hydrogen bond exists between bonding partners and 0
otherwise. Accordingly, the scalar product in eq 1 represents
the number of conserved hydrogen bonds that are present at
both the time t0 and a time t. A hydrogen bonding pair existing
only at time t0 or t will not result in a contribution. The
evolution of the autocorrelation function for pure water and
both LiI solutions is shown in Figure 9.
We find the decay of the overall CHB to be only slightly

influenced by the presence of ions at 1 M concentration. For

Figure 7. 1H chemical shift distribution for hydrating water and bulk
water in the 1 M LiI solution. The average for pure water is marked
with a black line, while the chemical shift averages of lithium and
iodide hydration water are marked with the green and red lines,
respectively. We have used ion-oxygen cutoffs from the RDF.

Table 1. NMR Proton Chemical Shift (δ 1H) Results for 1
and 9 M LiI and Pure Watera

δ 1H/ppm 1 M LiI 9 M LiI

ab initio MD 4.72 3.62
experiment 4.55 4.16

aComputed NMR shifts are referenced to the H2O trajectory, which in
turn is set to the experimental shift of 4.65 ppm.

Figure 8. 1H chemical shift distribution for all hydrogens in the 9 M
LiI solution and for iodide hydration water, clasified by the number of
iodides surrounding the water molecule (using the ion-oxygen first
shell as a cutoff). The chemical shift of pure water is marked by a black
line at 4.65 ppm.
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this, it is irrelevant whether ions are included in the H-bonding
definition or not. However, the tail end of the relaxation is
found to be slightly modified, with the LiI solution having a
faster tail relaxation. This indicates a small chaotropic effect of
the salt. The graph of the HBN present at t = 0 and 7 ps reveals
that the maximum size connected component in the resulting
HBN includes the Li+ solvation shell and is smaller than the
corresponding component in the bulk solution. The broken H-
bonds unsurprisingly include the majority of H-bonds to iodide
(for an example, see the Supporting Information). From this,
we conclude that there is a dynamic structure-breaking effect of
the iodide, which might extend over the first solvation shell and
is stronger than the corresponding stabilizing effect of the
lithium ion, in part due to the larger number of H-bonding
partners for I−. Another indication of this is the decay of CHB
for the 9 M solution. It is found to be slower when including
Li+ coordination, which reflects the kinetic stability of the Li+

oxygen clusters discussed above. When only interwater
hydrogen bonding is considered, without including the direct
hydrogen bonding to iodide, a drastic weakening is observed.
We take this to be further indication of an indirect chaotropic

effect of iodide. In order to gather further support for this
hypothesis, the decay function is decomposed on the graph
spanned by the HBN; see Figure 10.
We define a distance in the HBN graph as the shortest path,

that is, smallest number of edges (H-bonds) to connect two
vertices (molecules) at t0 (see Figure 10, left). For example, a
water molecule directly coordinated to Li+ will have graph
distance of 1 to Li. If the same molecule is not hydrogen-
bonded to iodide but has a H-bonding partner, its distance to
iodide is 2 and so on. We directly plot the averaged CHB(t = 7
ps) of water layers as a function of this distance to the Li+ and
I− ions. Figure 10, right shows that at 1 M concentration the
HBN is destabilized by iodide up to four H-bonds into the
solution, depending on the presence of lithium cations. The
competing, kosmoptropic effect on H-bonding is clearly visible
only at maximally two H-bonds of distance to the Li+ ion. As
the Li−O coordination is also counted as H-bonds, this merely
shows that the polarized water molecules in the Li+ shell form
stronger H-bonds. Inferring from the values of CHB(t) inside of
the Li+ solvation shell, one can see that water around lithium
remains immobilized, which explains the slow decay in the case
of the 9 M solution. The majority of water molecules are not
hydrogen-bonded to either ion, and the maximum population is
at (3;3). The picture obtained from dynamics is consistent with
NMR chemical shifts as well as the overall structure of the
solutions. From the instability of the H-bond network, as well
as the fluctuations in the first solvation shell of iodide, we
deduce that water in the first solvation shells around iodide is
highly mobile due to weakened H-bonding. The water around
I− will easily diffuse into nonhydrophobic interfaces. This effect
might play an important role in polymer dissolution and the
salting-in effect on proteins.

4. CONCLUSION
We have characterized the structure and picosecond dynamics
of the hydrogen bond network of solvated LiI at ambient
temperature by means of first-principles molecular dynamics
simulations. Our calculations reveal the significant qualitative
differences of the network between low (1M) and high (9M)
salt concentrations. In particular, we observe the presence of
oxygen-bridged lithium ion clusters at 9 M concentration. The
solution at this concentration shows characteristic motifs, which

Figure 9. Decay of the hydrogen bond autocorrelation function,
averaged over 100 random starting points, where the label “all H-
bonds” includes coordination to the ions into the H-bond definition,
whereas “H2O only” includes only H-bonds between H2O.

Figure 10. (Left) Visualization of the H-bond network, represented by the blue network of edges and its different components: (a, full color) is the
direct Li+ solvation shell with a minimal distance of x = 1 from the edges to lithium, and (b, metallic gray) is the water molecules H-bonded to I−,
with a distance of y = 1 from the edges to iodide. In the intermediate range, we find water molecules (c), with the left having a coordinate of (2;2)
and the right a coordinate of (2;4), (Right) CHB at t = 7 ps of the 1 M LiI solution at minimal distances in hydrogen bonds as present at t0, averaged
over 300 random starting points. The orange grid represents pure water.
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are also present in the trihydrate crystal. These motifs are best
understood in terms of fused Li(H2O)4 shells linked by
hydrogen bonds to iodide and between themselves. Closer
study of the cooperative HBN reveals that iodide ions have only
little structural influence but an indirect long-range chaotropic
effect on the H-bond dynamics by increasing water mobility in
their first shell. In contrast to this, the kosmotropic, that is, the
structure-conserving effect of Li+, does not reach more than one
H-bond beyond the first solvation shell. Complementary
measurements of a series of NMR shifts of a series of
monovalent lithium and sodium halide salts reveal a weakening
of hydrogen bonding by heavy halide ions. Our simulation
results explain this general trend from coordination shell ion−
water interactions. We have validated these findings by first-
principles calculations of the 1H NMR chemical shift lines of
LiI at 1 and 9 M, which are in very good agreement with
experiment.
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Conclusion and Outlook

The results presented in this work show the versatility of the ab-initio molecular dy-

namics approach in the investigation of aqueous solvation. From ion specific effects,

via confinement effects to femtosecond spectroscopy and nonequilibrium dynamics, this

thesis also illustrates the range of phenomena, which are crucially dependent on hydro-

gen bonding. The sophisticated description of aqueous solvation inherent to the DFT

method was exploited to give a quantitative description of the (non)equilibrium solva-

tion dynamics as well as equilibrium structure. Combining the electronic structure with

statistical information from molecular dynamics gives access to observables which are

not available from either molecular dynamics or electronic structure alone. The most

important observables computed in this work are based on density functional pertur-

bation theory, applied to geometries obtained from molecular dynamics trajectories:

The time-dependent Stokes shift of MQ in aqueous solution and the 1H NMR chemical

shifts of aqueous solutions of LiI and of water confined at a silica interface. A good

agreement with experiment for these observables and a range of other properties was

found. Furthermore, decompositions were introduced to help interpreting experimental

results. These decompositions into local contributions have been applied to

• The time-dependent Stokes shift of MQ - revealing that the reach of the molec-

ular probe goes beyond the first solvation shell and that dipolar interactions are

crucial.

• 1H NMR chemical shifts of aqeous solutions of LiI and of water at a silica inter-

face. It was found that the structure of the hydrogen bond network is perturbed

strongly only within the first solvation shell.
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• The stability of the hydrogen bond network in a solution of LiI - allowing to

quantify a competetive effect of Li+ and I− on the stability of the hydrogen

bonds of waters in between them.

In order to make simulations computationally efficient, some approximations were

introduced. The most important one is the treatment of the interactions of the chro-

mophore MQ with H2O in the S1 state by the T1 state. This approach has been

carefully validated before application. Another simplification was the representation of

an amorphous silicate by a quadratic potential and silicic acid groups. While the spirit

of ab-initio molecular dynamics is to gradually let go of this type of system-specific

solutions in favor of generality, a good approximation also yields insights into what

effects are dominant in a system. It thus facilitates interpretation.

The outlook for this work is determined by the effort to extend and refine the de-

scription of the type of systems encountered here. Specifically, the approach to MQ

solvation solvation dynamics introduced in this work now is being extended to treat

photoacidity and the dynamics of water wires. Ion specific effects are also being inves-

tigated for dications, where a description by ab-initio molecular dynamics is expected

to be even more crucial than for monocations. The same approach of simulating ac-

tual dissolved salts instead of single ions has been adopted, future projects should also

include the treatment of peptides. The model confinement introduced in this work

has been revised by the author to introduce full surface effects. Currently it is being

used to model mixing and demixing phenomena. Another possibility for the future is

to combine interactions, such as ion specific effects or local spectrosopy with e.g. the

silica confinement. The fact that several of the projects started in this work are being

successfully continued and taken further into different directions seems to the author

as the best possible conclusion to his thesis.
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Int. Ed. Engl., 2010, 49, 454–457.

[119] M. Sajadi, M. Weinberger, H.-A. Wagenknecht, and N. P. Ernsting, Phys. Chem.

Chem. Phys., 2011, 13, 17768–17774.

105



[120] R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Nature, 1994, 369,

471–473.

[121] R. Bukowski, K. Szalewicz, G. C. Groenenboom, and A. van der Avoird, Science,

2007, 315, 1249–1252.

[122] P. L. Geissler, C. Dellago, D. Chandler, J. Hutter, and M. Parrinello, Science,

2001, 291, 2121–2124.

[123] A. A. Chen and R. V. Pappu, J. Phys. Chem. B, 2007, 111, 11884–11887.

[124] E. Wernersson and P. Jungwirth, J. Chem. Theory Comput., 2010, 6, 3233–3240.

[125] S. Funkner, G. Niehues, D. A. Schmidt, M. Heyden, G. Schwaab, K. M. Callahan,

D. J. Tobias, and M. Havenith, J. Am. Chem. Soc., 2012, 134, 1030–1035.

[126] K. J. Tielrooij, N. Garcia-Araez, M. Bonn, and H. J. Bakker, Science, 2010, 328,

1006–9.

[127] C. Fecko, J. Eaves, J. Loparo, A. Tokmakoff, and P. Geissler, Science, 2003, 301,

1698.

[128] A. W. Omta, M. F. Kropman, S. Woutersen, and H. J. Bakker, Science, 2003,

301, 347.

[129] P. Gallo, M. Rovere, and S.-H. Chen, J. Phys.: Condens. Matter, 2010, 22,

284102.

[130] M. Vogel, Eur. Phys. J. Spec. Top., 2010, 189, 47–64.

[131] P. H. Poole, F. Sciortino, U. Essmann, and E. H. Stanley, Nature, 1992, 360,

324–328.

[132] Y. Zhang, A. Faraone, W. A. Kamitakahara, K.-H. Liu, C.-Y. Mou, J. B. Leo,

S. Chang, and S.-H. Chen, Proc. Natl. Acad. Sci. USA, 2011, 108, 12206–12211.

[133] P. Gallo, M. Rovere, and S.-H. Chen, J. Phys.: Condens. Matter, 2012, 24,

064109.

[134] J. Schmidt, J. Hutter, H. W. Spiess, and D. Sebastiani, ChemPhysChem, 2008,

9, 2313–2316.

106



[135] Y. J. Lee, T. Murakhtina, D. Sebastiani, and H. Spiess, J. Am. Chem. Soc., 2007,

129, 12406–12407.

[136] Y. J. Lee, B. Bingöl, T. Murakhtina, D. Sebastiani, W. Meyer, G. Wegner, and

H. Spiess, J. Phys. Chem. B, 2007, 111, 9711–9721.

[137] A. Rapp, I. Schnell, D. Sebastiani, S. P. Brown, V. Percec, and H. W. Spiess, J.

Am. Chem. Soc., 2003, 125, 13284–13297.

[138] D. Sebastiani, Mod. Phys. Lett. B, 2003, 17, 1301–1319.

[139] M. Strauss X-ray diffraction studies of some aqueous solutions of lithium iodide

PhD thesis, University of Cincinnati, 1960.

[140] C. West, Zeitschr. Kristallog, 1934, 88, 198.

107



Declaration

I herewith declare that I have produced this paper without the prohibited

assistance of third parties and without making use of aids other than those

specified; notions taken over directly or indirectly from other sources have

been identified as such. This paper has not previously been presented in

identical or similar form to any other German or foreign examination board.

The thesis work was conducted under the supervision of Prof. Dr. Daniel

Sebastiani at FU Berlin and MLU Halle-Wittenberg.

Halle, Saale - 20.12.2013 Christoph Allolio



C H R I S T O P H A L L O L I O

personal information

born in Germany (Köln), August 1, 1983
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