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ÂD(τ) operator in Dirac picture . . . . . . . . . . . 10
ÂH(τ) operator in Heisenberg picture . . . . . . . 7

ˆU(τ1, τ2) time evolution operator . . . . . . . . . . 10
ρ̂0
β non-interacting statistical op. . . . . . . . . . . . . 6
ρ̂KS
β statistical op. of KS system . . . . . . . . . . C-8
ρ̂β statistical operator . . . . . . . . . . . . . . . . . . . . . . 6
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Ŵel−ph electron-phonon coupling . . . . . . . . . . . 23
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1. Introduction

Most of the works regarding superconductivity start their introduction with the first observation of
superconductivity in mercury in the year 1911 by H. Kamerling-Onnes [1]. It then took over 40 years,
until Bardeen, Cooper and Schrieffer (BCS) proposed their “Theory of Superconductivity” [2]. The
theory is based on an attractive interaction between electrons, which is created by phonons. The
pairing provided by the interaction leads to an instability of the normal state to the BCS state and to
the formation of superconductivity.
However, for this work the discovery of superconductivity (SC)1 in the copper oxide family (“cuprates”)

in 1986 marks the important date [3]. The critical temperature (Tc) in this class of materials is re-
markable, and today’s absolute record holder for Tc with 134 K at ambient pressure is (still) a cuprate
[4]. Such high critical temperatures had never been measured before in any material. In the sixties
and seventies the record for Tc was increasing very slowly and stagnated around 25 K [5]. This lead
to the assumption that there is a fundamental limit for Tc around 30 K well captured by a phononic
pairing mechanism2.
This assumption was proven wrong by the high critical temperature of the cuprates. The term “high

temperature superconductivity” became common for materials above the former fundamental limit of
25 K. Quite quickly after the discovery of the cuprates, it became clear that the existing microscopic
theory is not able to describe the newly discovered materials. Calculations of the phonon coupling
strength showed [7] that the coupling is too weak to explain the high critical temperatures in the
cuprates, implying that an alternative mechanism has to be present.
After decades of intense research on the cuprates, the question about the underlying mechanism

remains unanswered and under strong debate. Since the critical temperature in the cuprates is out-
standing, many researchers focused their theories on the unique features of the cuprates compared to
the conventional SC. This changed twenty years after the discovery of the cuprates because a second
class of high temperature superconductors was found in 2008: The “pnictides” [8]. The name pnictides
was coined in the first months after the discovery, where all compounds contained iron and pnictides
(mostly arsenic). However, later also compounds containing chalcogens instead of pnictides were found,
so the name iron based superconductors (FeSC) seems more appropriate [9]. The FeSC proved that
high temperature superconductivity is not unique to the cuprates. Ideally, a microscopic theory should
work for both known classes and for all classes discovered in the future.
For the phonon based superconductors described by the conventional BCS theory, the isotope effect

was an early experimental hint for the connection between phonons and superconductivity [10]. Un-
fortunately, there is no such clear experimental hint for the mechanism in the cuprates or pnictides.
Especially, the cuprates are very “difficult” materials, due to the strongly localized d electrons of the
copper atoms resulting in an insulating ground state [11]. The FeSC are less strongly correlated and
are metallic. The fact that the cuprates and FeSC are very different, is advantageous on one hand
because it shows that high temperature superconductivity is not limited to very specific conditions.
On the other hand, the big difference between the two groups complicates the derivation of a unified
theory. The review articles of I. Mazin provide a much more detailed discussion of the arguments given
in this introduction and are highly recommended [12, 13].
Despite all differences between the cuprates and FeSC there are also similarities. In order to find a

unified theory for the high temperature superconductors, one should focus on the similarities:

• The compounds show an anti ferro magnetic (AFM) phase.

1The acronym SC is used flexibly also for superconducting, superconductor, etc.
2Note that BCS theory is derived for a weak electron-phonon coupling, but has been extended to the strong coupling
regime by the Eliashberg theory [6].
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• Magnetic fluctuations (paramagnons) are measured in the superconducting and non-superconducting
phase [14, 15].

• Before superconductivity appears, the magnetic ordering is suppressed and the critical temper-
ature often follows a dome-like structure as a function of a control parameter (doping,pressure)
[12].

These similarities point in the direction that high temperature superconductivity is connected to a
magnetic phase. A pairing mediated by magnetic fluctuations became a widely used theory in the
cuprates and there are entire books summarizing model calculations using this approach [16], but also
other model theories like polarons and orbital fluctuations have been proposed for the unconventional
superconductors [17, 18]. Note that the relevance of magnetism in the context of superconductivity
was recognized already in 1966, when the effect of spin-fluctuations (SF) on conventional systems
like palladium was discussed [19, 20]. For the FeSC additional experimental results have been found,
supporting the idea of a connection between the suppressed magnetic phase and unconventional SC:

• The resonance frequency ωres of the magnetic excitations is related to the critical temperature
for a wide range of materials ωres

kBTc
≈ 5. An overview of the experimental results is given in Table

1.1.

• In FeSe it has been observed that pressure enhances the magnetic fluctuations as well as the
critical temperature [21].

Due to the experimental results, the following scenario is more or less well established within the
scientific community: The AFM long range order has been suppressed as a function of a control
parameter. The control parameter may be (hole, electron, isovalent) doping or pressure (see Tab. 1.1).
Due to the proximity to a magnetic phase, strong magnetic fluctuations (paramagnons) are present in
the material. The fluctuations have finite momentum because they correspond to an AFM order and
allow for electron scattering between different regions of the Brillouin zone (BZ). These fluctuations
may provide the glue for the formation of superconductivity. Note that the paramagnons are collective
electronic excitations created by multiple Coulomb scattering: So the glue is repulsive, in contrast to
the attractive phonon coupling [22, 2]. This may sound odd at first, but the next sections will explain
and clarify this concept.
The present work is devoted to the inclusion of the paramagnon mediated pairing in the framework of

superconducting density functional theory (SCDFT). SCDFT is the extension of the standard density
functional theory (DFT) to superconducting systems and a brief introduction is given in chapter 3.
The theory was proposed by Olivera, Gross and Kohn in 1988 and is based on the total electronic
density and an additional density characterizing the SC state [23]. The additional density is called
anomalous density and is the order parameter of the SC phase. The theory contains no adjustable
parameters and is a formally exact theory for SC. The theory is only in principle exact because the
functional for the exchange-correlation (XC)-energy is only known in some approximation.
The successful functionals in SCDFT are constructed using many-body-perturbation theory (MBPT).

MBPT provides a perturbative expansion of the full electronic Green’s function (GF) in orders of the
Coulomb interaction and the phonon propagator. In chapter 2 an introduction to the GF technique
at finite temperatures is given. Like DFT also the Green’s function approach can be extended to
superconducting systems, by the introduction of an anomalous GF[24]. This anomalous GF is closely
related to the anomalous density in the SCDFT treatment. This extension is presented in chapter 4,
in the context of the SC version of the famous Hedin equations.
The equations have been derived first by Hedin and are a set of five coupled equations [25]. A fully

self-consistent treatment would lead the exact normal and anomalous electronic GF. In particular,
it also leads the exact electronic self-energy. The self-energy provides a connection between SCDFT
and MBPT. The connection has been found by Sham and Schlüter and the central integral equation
is named Sham-Schlüter equation (SSEq) [26]. This equation relates a given approximation for the
self-energy to an xc-potential. In their work Marques et. al. truncate the expansion of the self-energy
after the first order in the screened Coulomb interaction and the phonon propagator and use the SSEq
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CHAPTER 1. INTRODUCTION

Material AFM GS SF measured Tc Tc Doping Tc Pressure
FeSe no yesq(6meV) 8g 10h(80% Te) 37g(P=7)
FeTe yes yesq(6meV) 0.0i 9i(15% S) 0.0
LiFeAs no yesr(8-17meV) 18j negative 18j(P=0)

Na1−δFeAs yes no 21a 33f(20% P) 31d(P=3)
CaFe2As2 yes yesk(25 meV) 0.0a 38e(50% Ni) 10a(P=0.5)
BaFe2As2 yes yess(1.5-6meV) 0.0a 38b(40% K) 29a(P=4)
SrFe2As2 yes no 0.0a 38c(20% K) 27a(P=3)
LaFePO no indicationv 3.2u 6u(6% F) 8.8w(P=0.8)
LaOFeAs yes yes(9-15meV) 0.0l 25t(10% F) 43n(P=3)
CeOFeAs yes yesp(1meV) 0.0m 35m(10% F) 12o(P=0.4)

Table 1.1.: Overview of the critical temperatures as a function of doping and pressure for various FeSC.
The column “AFM GS” indicates whether the undoped ground state at ambient pressure is magnetic.
a[29],b[30],c[31],d[32],e[33],f[34],g[21]h[35],i[36],j[37],k[38],l[39],m[40],n[41],o[42],p[43],q[44],r[45],
s[46],t[47],u[48],v[49],w[50].

to derive an XC-potential [27]. This approximation leads to satisfying results for the conventional
superconductors, but fails for the unconventional superconductors.
This is not surprising since the paramagnons are not included in the expansion for the self-energy.

By using only the first order in the screened Coulomb interaction i.e. the Gw approximation[28],
all the vertex corrections in the self-energy have been neglected. In chapter 5 the vertex corrections
are investigated and the relevant contributions representing the magnetic fluctuations or paramagnons
are selected. The magnetic fluctuations are related to very complicated four point functions and a
simpler local form is suggested. In this local form the magnetic fluctuations appear within an effective
interaction and the corresponding self-energy contribution is reminiscent to the Gw contribution.
In the expression for the self-energy, the Coulomb, paramagnon and phonon contributions enter on

an equal footing. In chapter 6 the XC-potential using the SSEq is derived. The derivation is in analogy
to the derivation done by Marques et. al. and leads a universal XC-functional containing an extra
contribution related to the magnetic excitations. The new term is strictly repulsive which, requires
a sign change of the XC-potential in order to find a SC state. The conditions for a SC solution and
applications of the new functional to model systems are presented at the end of chapter 6.
In chapter 7 the field of model calculations is left and the functional is applied to FeSe and LiFeAs,

which are two representatives of the FeSC. The calculation of the correct magnetic ground state in
these material turns out to be difficult and one parameter is necessary to enforce the experimentally
observed non-magnetic ground state. With this one parameter the framework is not fully ab-initio
anymore. The critical temperature is investigated as a function of pressure and the new contribution
related to the magnetic fluctuations is the key ingredient to explain the high critical temperatures in
this class of materials.
This work features an extended appendix. For a better reading flow, all extensive algebraic trans-

formations have been shifted to the appendix and interested readers may look up details there.
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2. Introduction to Green’s Functions

In this chapter the GF method is introduced. The formalism is presented for a non-superconducting
state, but in chapter 4 an extension to superconducting systems is presented. The section gives only a
brief overview of the GF formalism and many-body perturbation theory. A more detailed and didactic
introduction may be found in standard text books like Nolting 7 or the Fetter Walecka [51, 52].
Essentially, two functions are introduced in this chapter:

1. The single particle GF which contains an expectation value of two Fermionic operators. It is
possible to define four different versions of this function: The retarded, advanced, time ordered
and Matsubara GF. Among the four, the

• Matsubara single particle GF GM [Eq. (2.11)]

is the relevant one in this work.

2. The response function which contains an expectation value of two observables Â and B̂. Also for
the response function the four different versions exist, but only the

• retarded response function χR
AB [Eq. (2.21)] and the

• Matsubara response function χM
AB [Eq. (2.22)]

are used in the derivations.

Why is it necessary to define so many functions? The different functions provide different information
about a system:

• The Matsubara GF is a time ordered quantity. It provides expectation values of single particle
operators and the total energy of the interacting many-body system [Eqs. (2.12) and (2.13)]. GM

is the most convenient choice for calculations at finite temperature. Since a treatment of systems
at finite temperature is essential in the context of SC, the Matsubara GF is mainly used in this
work.

• The linear response of the observable Â, due to a probing field coupling to the internal quantity
B̂ of the system, is described by the retarded response function (see Sec. 2.2). The singularities or
peaks of this function describe phase transitions or excitations of the system due to the external
field. Since the response is a measurable quantity, the retarded response function is a real and
causal quantity.

• The advanced response function is the “anti-causal” analogous to the retarded one. It is mainly re-
quired for mathematical completeness and has no simple physical interpretation like the retarded
counterpart.

• The Matsubara response function is the time ordered variant of the response function.

After GM and χR
AB have been introduced in Sec. 2.1 and 2.2, a perturbation expansion for the time

ordered objects is formulated in Sec. 2.3. A very efficient and descriptive way to present the different
orders in this expansion are the so called Feynman diagrams which are introduced in Sec. 2.4. All the
different Green’s and response functions are connected to each other via the spectral representations
(Appendix B.1.4) which simplifies the work essentially.
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2.1. THE MATSUBARA GREEN’S FUNCTION

2.1. The Matsubara Green’s Function

The final goal of this work is the description of superconducting systems and the most convenient
ensemble for this purpose should be chosen. A superconductor will be cooled down by a large cryostat,
so the temperature T is a variable of the thermodynamical potential. The BCS wave function describing
superconducting systems has no fixed particle number i.e. the corresponding Hamiltonian does not
commute with the electron number operator N̂ . Hence, the grand canonical potential is the most
convenient choice:

Ω (µTV ) = U − TS − µN =

〈
Ĥ − 1

β
ln [ρ̂β]− µN̂

〉
, (2.1)

where µ is the chemical potential, N̂ the particle number, S the entropy, β the inverse temperature
β = 1

kBT
, kBthe Boltzmann constant and ρ̂β the statistical operator. The Hamiltonian Ĥ contains the

following contributions:

Ĥ =Ĥ0 + Ŵ = T̂ + V̂0 + Ŵ (2.2)

T̂ = −
∑

σ

∆ drΨ̂†σ (r)
∇2

2
Ψ̂σ (r)

V̂0 =
∑

σσ′
∆ drΨ̂†σ (r)

[
v0 (r) δσσ′ +

∑

i

σiσσ′ϕi (r)

]
Ψ̂σ′ (r) (2.3)

Ŵ =
1

2

∑

σσ′
Λ d

3rd3r′v
(
rr′
)

Ψ̂†σ (r) Ψ̂†σ′
(
r′
)

Ψ̂σ′
(
r′
)

Ψ̂σ (r) . (2.4)

The kinetic energy operator is labeled with T̂ and Ŵ is the Coulomb interaction between electrons.
The Ψ̂σ (r) and Ψ̂†σ (r) are the usual annihilation and creation operators of an electron at point r and
spin σ. The single particle potential V0 consists of the spin independent, background potential created
by the nuclei v0 and some external contribution

∑
i σ

i
σσ′ϕi (r). Throughout the whole thesis atomic

units e = ~ = me = 1 are used. The thermal average of an operator Â is given by:
〈
Â
〉

:= tr
[
ρ̂βÂ

]
=
∑

n

〈
n
∣∣∣ρ̂βÂ

∣∣∣n
〉
. (2.5)

The trace runs over a complete basis of the Fock space. The statistical operator in the equilibrium
minimizes the grand canonical potential i.e. δΩ

δρ̂β
= 0. This condition determines the form of the

statistical operator: ρ̂β ∝ e−βK̂ . The normalization condition 〈1〉 !
= 1 leads:

ρ̂β =
1

ZG
e−βK̂ with ZG := tr

[
e−βK̂

]
, (2.6)

where the operator K̂ is given by Ĥ − µN̂ . For a non-interacting system3 the eigenstates are known
and the grand canonical potential reads:

Ω0 (µTV ) =
〈
Ĥ0 − kB ln

[
ρ̂0
β

]
− µN̂

〉
0

= tr
[
ρ̂0
β

(
Ĥ0 − kB ln

[
ρ̂0
β

]
− µN̂

)]

ρ̂0
β =

1

Z0
G

e−βK̂0 with Z0
G := tr

[
e−βK̂0

]
= tr

[
e−β(Ĥ0−µN̂)

]
. (2.7)

The grand canonical potential of the interacting system is connected to the non-interacting one by a
coupling constant integration (Sec. B.2):

Ω (µTV ) = Ω0 (µTV ) + ∆
1
0 dλ

〈
Ŵ
〉
λ
. (2.8)

3Non interacting systems are labeled with a subscript 0.

6



CHAPTER 2. INTRODUCTION TO GREEN’S FUNCTIONS

The expectation value on the right hand side can be expressed in terms of a single particle expectation
value. This is done using the equation of motion of the operator Ψ̂σ (r) in the Heisenberg picture. The
Heisenberg picture of an operator is defined as:

Ô (τ)H := eK̂τ ÔSe
−K̂τ Ô (τ)†H := eK̂τ Ô†Se

−K̂τ , (2.9)

where τ is a real time argument often called Matsubara time and ÔS is the operator in the “standard”

picture in general referred to as Schrödinger picture. Note that
(
Ô†H

)†
is not equal to ÔH . For

convenience, combined variables for the electronic coordinates are introduced:

1 := {r1, τ1, σ1} ∆ d1 :=
∑

σ1

∆ d3r1 ∆ dτ1 (2.10)

x1 := {r1, τ1} ∆ dx1 :=
∑

σ1

∆ d3r1.

The equation of motion of the operator ∂τ1Ψ̂ (1)
H
[Eq. (B.14)] leads naturally to an expression for the

expectation value
〈
Ŵ
〉
λ
[Eq. (B.15)] in terms of the Matsubara GF:

Ωλ (µTV ) = Ω0 (µTV ) +
1

2
∆
λ
0 dλ lim

r2→r1
σ2→σ1

lim
τ2↘τ1

∑

σ1

∆ d3r1 [−∂τ1 −K0 (r1)]GM
λ (12)

GM
λ (12) := −

〈
T̂
[
Ψ̂λH (1) Ψ̂†λH (2)

]〉
λ

= −tr
[
ρ̂λβT̂

[
Ψ̂λH (1) Ψ̂†λH (2)

]]
. (2.11)

This is an important result because once the Green’s function GM
λ is known (in some approximation),

this provides the grand canonical potential which contains the ground state (or at finite temperature
the equilibrium) information of the system. For the Matsubara Green’s function of the fully interacting
system (λ = 1) the index λ is left. The operator T̂ is the time ordering operator defined in Eq. (B.16).
In addition, the Green’s function also provides any single particle ground state expectation value
directly:

〈
Ô
〉

=
∑

σ1σ2

Λ d
3r1d

3r2

〈
Oσ1σ2 (r1r2) Ψ̂†σ1

(r1) Ψ̂σ2 (r2)
〉

=
∑

σ1σ2

Λ d
3r1d

3r2Oσ1σ2 (r1r2)G
(
12+

)
(2.12)

and as a special case also the expectation value of 〈K〉 which contains two-particle operators:

〈K〉 =
〈
Ĥ
〉
− µ

〈
N̂
〉

=
〈
K̂0

〉
+
〈
Ŵ
〉

=
∑

σ1

∆ d3r1 lim
r2→r1
σ2→σ1

lim
τ2↘τ1

(
K0 (r1)− 1

2
[∂τ1 +K0 (r1)]

)
GM (12)

= −
∑

σ1

∆ d3r1 lim
r2→r1
σ2→σ1

lim
τ2↘τ1

1

2
[∂τ1 −K0 (r1)]GM (12) , (2.13)

This shows the importance of the Matsubara Green’s function with respect to ground state properties.
The information about excitation on top of a ground state are given by the response function. This
quantity is the central object in linear response theory introduced in Sec. 2.2.

2.2. The Response Function

The retarded response function is the central quantity in linear response (LR) theory. This theory
describes the response of a system related to a (small) perturbation or probing field called Φ̂t. The

7



2.2. THE RESPONSE FUNCTION

perturbation is created by an external Field F (t) which couples to an internal observable B̂ of the
system. The Hamiltonian in the Schrödinger picture of such a system reads:

ĤS (t) = K̂ + Φ̂t = Ĥ − µN̂ + ∆ d3rF (x) · B̂ (r) . (2.14)

The statistical operator for a time dependent system and its time derivative are given by:

ρ̂S (t) =
∑

n

pn|Ψn (t)〉S〈Ψn (t) |S
d

dt
ρ̂S (t) = i

[
ρ̂S (t) , ĤS (t)

]
−
. (2.15)

The time dependence of the wave function |Ψn (t)〉S indicates that the system is not in an equilibrium
and the weights are not given by e−βK̂ . The weights pn of the statistical operator are assumed to be
time independent. This assumption is valid for small perturbations which do not change the occupation
numbers. The statistical operator in the “unperturbed picture” (label U) is:4

ρ̂U (t) := eiK̂tρ̂S (t) e−iK̂t.

The equation of motion for ρ̂U (t) leads with Eq. (2.15) to:

d

dt
ρ̂U (t) = eiK̂t

(
d

dt
ρ̂S (t) + i

[
K̂, ρ̂S (t)

]
−

)
e−iK̂t = −i

[
Φ̂t (t)U , ρ̂U (t)

]
−
.

The equation is integrated with respect to t:

⇒ ρ̂U (t) = lim
t′→−∞

ρ̂U

(
t′
)
− i∆

t
−∞ dt

′
[
Φ̂t′
(
t′
)

U
, ρ̂U

(
t′
)]
−
. (2.16)

The perturbation is switched on at a certain time. Hence, in the limit t→ −∞ the statistical operator
ρ̂ (t)U becomes the one of the unperturbed non-time dependent system K̂ = K̂0 +Ŵ . Since the system
is in equilibrium at this time, the statistical operator has the form ρ̂S (t→ −∞) = 1

ZG
e−βK̂ = ρ̂β and

the time dependence vanishes in this limit:

lim
t→−∞

ρ̂U (t) = lim
t→−∞

eiK̂tρ̂S (t) e−iK̂t = lim
t→−∞

eiK̂te−βK̂e−iK̂t = ρ̂β.

The Dyson like equation for the statistical operator [Eq. (2.16)] is approximated by the first (linear)
order in the perturbation, i.e.:

ρ̂LR
U (t) := ρ̂β − i∆

t
−∞ dt

′
[
Φ̂t′
(
t′
)
U
, ρ̂β

]
−

ρ̂LR
S (t) = e−iK̂tρ̂LR

U (t) eiK̂t = ρ̂β − i∆
t
−∞ dt

′e−iK̂t
[
Φ̂t′
(
t′
)
U
, ρ̂β

]
−
eiK̂t. (2.17)

Due to this truncation in the first order of the perturbation, the theory will only work for small
perturbing fields or “in the linear response regime”. The change of an observable Âβ created by the
perturbation is given by:

∆Ai (rt) = tr
[
ρ̂S (t) Âi

]
− tr

[
ρ̂βÂ

i
]

=
〈
Âi
〉

(t)−
〈
Âi
〉
.

Using the statistical operator in the linear response approximation [Eq. (2.17)], the expression for ∆Ai

reads:

∆Ai (rt) =− i
3∑

j=1

∆
∞
−∞ dt

′
∆ d3r′θ

(
t− t′

)〈[
ÂiU (rt) , B̂j

U

(
r′t′
)]
−

〉
F j
(
r′t′
)
.

4Often the term Dirac picture is used here [51], but this name should be reserved to a time propagation including no
interaction in my opinion.
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CHAPTER 2. INTRODUCTION TO GREEN’S FUNCTIONS

The change in the observable is only non-zero for times t after the perturbation, i.e. t > t′, like it
should be in our causal picture of the world. The “unperturbed picture” is identical to the Heisenberg
picture introduced in Eq. (2.9). The expression of the right hand side leads to the definition of the
response function:

χR
AiBj

(
x,x′

)
:= −iθ

(
t− t′

)〈[
ÂiH (x) , B̂j

H

(
x′
)]
−

〉
. (2.18)

The change in the observable A is determined by χR
AiBj

(x,x′) of the unperturbed system:

∆Ai (x) =
3∑

j=1

∆ d4x′χR
AiBj

(
x,x′

)
F j
(
x′
)
.

In other words, the important information about phase transitions (singularities in χR
AB) and excitations

(peaks in χR
AB) are accessible via the ground state. The theory can only describe excitations related to

small external fields. All important excitations in a solid like the collective magnetic modes (magnons),
lattice vibrations (phonons) and charge density waves (plasmons) are in most cases well captured
within linear response theory. Thus, linear response theory has become a very important tool in the
investigation of excitations in solids [53, 54, 55]. If the following density operators

ρ̂i (r) =
∑

αβ

σiαβΨ̂†α (r) Ψ̂β (r) =
∑

αβ

σiαβ ρ̂αβ (r)

are used for the operators Âi and B̂j , the χR
AiBj

is called “density-density response” [~σ is the Pauli
matrix vector given in Eq. (A.4)]. Alternatively, the names, response or susceptibility are common.
The standard label for the density-density response is χR

ij . The quantity describes the change of the
charge/magnetic-moment densities due to an external coulomb potential/magnetic fields. The coupling
between the external fields and the densities is given by:

Φ̂ (τ) =
∑

αβ

∆ d3r~ϕ (x) · ~σαβΨ̂†α (r) Ψ̂β (r) =

4∑

i=1

∆ d3rϕi (x) ρ̂i (r) (2.19)

~ϕ (x) =




v0
ext (x)
Bx

ext (x)
By

ext (x)
Bz

ext (x)


 ~ρ (r) =




ρ̂ (r)
m̂x (r)
m̂y (r)
m̂z (r)


 , (2.20)

where Bext is the external magnetic field and vext the external Coulomb potential and ~σ is the set of
Pauli matrices defined in Eq. (A.4). The 16 = 4× 4 elements of the response function are given by:

χR
ij

(
x,x′

)
:= iθ

(
t− t′

) 〈[
∆ρ̂i (x)H ,∆ρ̂j

(
x′
)

H

]
−

〉
= χR

∆ρi(r)∆ρj(r′)

(
t, t′
)

(2.21)

∆ρ̂i (x)H :=
∑

αβ

σiαβ

[
Ψ̂α (x)H Ψ̂†β

(
x+
)

H
− ραβ (r)

]
.

In section A.3 the transformation relation between the notation in spin and Pauli matrix components
are given. Depending on the magnetic ground state of the system, the 4× 4 matrix can be very sparse
[Eq. (B.5)]. Note that before the χR

ij can be included a perturbative expansion, a change from the
retarded to the time ordered or Matsubara response function has to be performed using Eq. (B.11).
The details on the perturbative expansion are discussed in the next section (Sec. 2.3). The time
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2.3. PERTURBATION EXPANSION

ordered versions are also the reason why the ∆ρ has been introduced to the expression for χR
ij . In the

commutator of the retarded function a scalar number does not matter. However, the natural definition
of the Matsubara response leads to the form with ∆ρ̂ [Eq. (B.18) ]:

χM
ij (x1x2) := − δρi (x1)

δϕj (x2)
=
〈
T̂ [∆ρ̂i (x1)H ∆ρ̂j (x2)H]

〉

=
〈
T̂ [ρ̂i (x1) ρ̂j (x2)]

〉
−
〈
T̂ [ρ̂i (x1)]

〉〈
T̂ [ρ̂j (x2)]

〉
. (2.22)

The second term
〈
T̂ [ρ̂i (x1)]

〉〈
T̂ [ρ̂j (x2)]

〉
removes all uncorrelated parts from χM. In the diagram-

matic language introduced in Sec. 2.4 this means that only connected contributions are present in the
expansion for χM.
Finally the advanced response function is defined:

χA
AiBj

(
x,x′

)
:= −iθ

(
t′ − t

)〈[
ÂiH (x) , B̂j

H

(
x′
)]
−

〉
. (2.23)

This function is the anti-causal analogon of the retarded response function.

2.3. Perturbation Expansion

After the importance of the Matsubara GF and the response function have been shown, it would
be highly desirable to have a scheme to obtain approximations for these objects. In this section a
perturbation expansion for the Matsubara GF in terms of the interaction and the free propagator is
presented [52, 51].5 This is an advantage compared to the DFT framework (presented in Sec. 3), where
no straightforward way for the construction of approximations is available.
The Schrödinger equation for a non-interacting system [drop Ŵ in Eq. (2.2)] is solvable on modern

computers [56]. Hence, the evaluation of the trace is not a problem and the non-interacting Green’s
function

GM
0 (12) := ε

〈
T̂
[
Ψ̂D (1) Ψ̂†D (2)

]〉
0

= ε tr
[
ρ̂0T̂

[
Ψ̂D (1) Ψ̂†D (2)

]]
(2.24)

is known. In this section always the Matsubara Green’s function is considered and the subscript M
is left out for simplicity. For an interacting system on the other hand, the differential equations are
coupled and the dimensionality of the problem increases exponentially with the number of electrons in
the system. This means a direct solution of the Schrödinger equation is not feasible for large systems
[57]. In order to overcome this problem, the interaction Ŵ is considered as a perturbation and the full
GF is expanded in orders of the interaction and the known G0. The perturbation series is based on
the Matsubara time evolution operator:

U (τ1τ2) := eK̂0τ1e−K̂(τ1−τ2)e−K̂0τ2 (2.25)

This operator is not unitary, but has the same properties as the (unitary) time evolution operator:

U (τ1, τ2) = U (τ1, τ)U (τ, τ2) U (τ, τ) = 1.

The Dirac picture is introduced:
Ô (τ)D := eK̂0τ Ôse

−K̂0τ .

The equation of motion for the time evolution operator

dU (τ1, τ2)

dτ1
= −W (τ1)D U (τ1, τ2)⇒ U (τ1, τ2) = e−∆

τ2
τ1
dτŴD(τ)

leads to an expansion of U in orders of the interaction Ŵ :

U (β, 0) = 1−∆
β
0 dτŴD (τ) +

1

2!
Λ
β
0 dτdτ

′ŴD (τ) ŴD

(
τ ′
)

+ . . . . (2.26)

5An analogous expression could be derived for the response function which is not done here.

10



CHAPTER 2. INTRODUCTION TO GREEN’S FUNCTIONS

The Heisenberg picture [Eq. (2.9)] is connected to the Dirac picture via the Matsubara time evolution
operator:

ÂH (τ) = U (0, τ) ÂDU (τ, 0) . (2.27)

This connection is the essential point in the derivation of a perturbation expansion. The single particle
Matsubara GF is rewritten and the case τ1 > τ2 is considered. The real time arguments in Eq. (2.25)
allow for a connection between the statistical operator and the time propagation:6

G (12) = − 1

ZG
tr
[
e−βK̂0U (β, τ1) Ψ̂ (1)D U (τ1, τ2) Ψ̂† (2)D U (τ2, 0)

]
.

In Sec. B.1.1 it is shown that the Green’s function depends only on τ1 − τ2 ∈ [−β, β]. Hence it is
sufficient to investigate the properties with respect to τ1, τ2 ∈ [0, β]. This means that the operators in
the last equation are already time ordered and the operator T̂ is added:

G (12) = − 1

ZG
tr
[
e−βK̂0 T̂

[
U (β, τ1) Ψ̂ (1)D U (τ1, τ2) Ψ̂† (2)D U (τ2, 0)

]]
.

Since the operator U always contains an even number of fermionic operators, the U ’s are exchanged
within the time ordered product without picking up extra minus signs:

G (1, 2) = −Z
0
G

ZG

〈
T̂
[
U (β, 0) Ψ̂ (1)D Ψ̂† (2)D

]〉
0

The grand canonical partition function ZG is also related to the time evolution operator (see the
definition of the time evolution operator 2.25):

ZG = tr
[
e−βK̂

]
= tr

[
e−βK̂0U (β, 0)

]
(2.28)

and the expression for the GF is cast to:

G (12) = − Z0
G

tr
[
e−βK̂0U (β, 0)

]
〈
T̂
[
U (β, 0) Ψ̂ (1)D Ψ̂† (2)D

]〉
0

= −

〈
T̂
[
U (β, 0) Ψ̂ (1)D Ψ̂† (2)D

]〉
0

〈U (β, 0)〉0
.

For τ1 < τ2 the same result is obtained. The expectation value has been changed from the interacting
to the non-interacting one and the time dependence of the operators is trivial, if eigenstates of the
non-interacting system are used in the trace. The operator U (β, 0) now contains all the interaction
i.e. the difficulties. In terms of the series expansion for the time evolution operator Eq. (2.26) the
expression for the full GF reads:

G (12) = −

〈
T̂
[
U (β, 0) Ψ̂ (1)D Ψ̂† (2)D

]〉
0〈

T̂U (β, 0)
〉

0

(2.29)

= −

〈
T̂
[(

1−∆
β
0 dτŴD (τ) + . . .

)
Ψ̂ (1)D Ψ̂† (2)D

]〉
0〈

T̂
[
1−∆

β
0 dτŴD (τ) + 1

2! Λ
β
0 dτdτ

′ŴD (τ) ŴD (τ ′) + . . .
]〉

0

.

If the expansion for U (β, 0) is truncated after the first term, the GM (1, 2) reduces to the non-
interacting GF. The evaluation of the perturbation series is done in a efficient way using Wick’s
Theorem and the linked cluster theorem. The proof for these theorems can be found in every many-
body theory text book [52, 51]:

6In the zero temperature limit the time evolution operator is given by eiK̂0t1e−iK̂(t1−t2)e−iK̂0t2 and the thermal average
reduces to 〈Ψ0 |. . . |Ψ0〉. In this case the adiabatic connection is used Ψ0 = U (t,−∞) Φ0[52].

11



2.3. PERTURBATION EXPANSION

Wick’s Theorem: The expectation value of a time ordered product of the operators〈
T̂ [A1(τ1)D . . . AN (τN )D]

〉
0
is equal to the sum of all possible totally contracted products.

A product of operators is fully contracted, if all operators in the product are contracted with one
another. A contraction between two operators Â and B̂ will be denoted by ÂB̂ and is defined by:

ÂB̂ :=
〈
T̂
[
ÂB̂
]〉

0.
(2.30)

Note that no normal ordered term is present in the definition of the contraction. This is only necessary
in the zero temperature case [52]. From the definition it is obvious that Ψ̂(1)DΨ̂(2)D =Ψ̂†(1)DΨ̂†(2)D =

0 and Ψ̂(1)DΨ̂†(2)D = −GM
0 (12). This changes in the superconducting state and an extension to

Wick’s theorem for the superconducting state is necessary. This point is discussed in more detail in
the Ph.D. of S. Kurth [58]. In order to illustrate the total contraction procedure, the first order term
in the numerator of Eq. (2.29)

G = G0 (12) + Λ d3d4〈T̂ [v(34)Ψ̂† (3) Ψ̂† (4) Ψ̂ (4) Ψ̂ (3) Ψ̂ (1) Ψ̂† (2)]〉+O
[
v2
]

(2.31)

is fully contracted. The Coulomb interaction is spin-independent and static, but it is convenient to
introduce an interaction v (12) given by v (12) = δτ1τ2v (r1r2):

G(12) = G0(12) + Λ d3d4v(34)Ψ̂†(3)DΨ̂†(4)DΨ̂(4)DΨ̂(3)DΨ̂(1)DΨ̂†(2)D

+ Λ d3d4v(34)Ψ̂†(3)DΨ̂†(4)DΨ̂(4)DΨ̂(3)DΨ̂(1)DΨ̂†(2)D

+ Λ d3d4v(34)Ψ̂†(3)DΨ̂†(4)DΨ̂(4)DΨ̂(3)DΨ̂(1)DΨ̂†(2)D +O[v2]

= G0(12) + Λ d3d4v(34)Ψ̂†(3)DΨ̂(3)DΨ̂†(4)DΨ̂(4)DΨ̂(1)DΨ̂†(2)D

+ Λ d3d4v(34)Ψ̂(1)DΨ̂†(3)DΨ̂†(4)DΨ̂(4)DΨ̂(3)DΨ̂†(2)D

+ Λ d3d4v(34)Ψ̂(4)DΨ̂†(3)DΨ̂†(4)DΨ̂(1)DΨ̂†(2)DΨ̂(3)D +O[v2]

G(12) = G0(12)− Λ d3d4(ρ(3)ρ(4)v(34)G0(1, 2)

+ Λ d3d4G0(13)v(34)ρ(4)G0(32)+

− Λ d3d4G0(14)v(34)G0(43)G0(32) +O[v2].

The factor 1−Λ d3d4ρ(3)ρ(4)v(34) does not depend on the coordinates of the Green’s function (12).
Such contributions are called not linked and following theorem makes a statement with respect to these
constant terms [51, 52].

Linked Cluster Theorem: The non-linked contributions in the expansion of the numerator of Eq.
(2.29) cancel with the denominator.

Hence, the perturbation expansion in Eq. (2.29) simplifies to:

G (1, 2) = −
〈
T̂
[
U (β, 0) Ψ̂ (1)D Ψ̂† (2)D

]〉Linked

0
.

Note that also the difference between the grand canonical potential of the interacting and non-
interacting system is expandable in diagrams [Eq. (2.28)]:

∆Ω = Ω− Ω0 = − 1

β
ln [ZG] +

1

β
ln
[
Z0
G

]
= − 1

β
ln

[
ZG
Z0
G

]

= − 1

β
ln



tr
[
e−βĤ0U (β, 0)

]

Z0
G


 = − 1

β
ln 〈U (β, 0)〉0 = − 1

β
〈U (β, 0)〉Linked

0 . (2.32)
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Already the first order contributions of G are quite complicated. However, all contributions contain
only the non-interacting Green’s function G0 and the bare Coulomb interaction v. Fortunately R.
Feynman invented a very effective way to illustrate the different contributions: The so called “Feynman
diagrams” which are beautifully discussed by R.D. Mattuck [59].
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2.4. The Feynman Diagrams

The Feynman diagrams are a replacement of the more complicated perturbative equation by simple
images. There exists a set of translation rules for going from a picture to the corresponding equation
and vice versa:

1. Each non-interacting Green’s function G0 (12) is represented by a single line arrow pointing from
2→ 1. The full Green’s function is given by a double line.

2. Each interaction v is represented by a wiggled line. The screened interaction [Eq. (2.36)] is given
by a double wiggled line.

3. It is integrated over all internal coordinates, besides the two lose ends.

4. Only linked diagrams are considered, due to the linked cluster theorem.

5. For a contribution with n interaction lines, a factor (−1)n is introduced, related to the expansion
of the exponential function [Eq. (2.29)].7

6. For each Fermionic loop, a factor of (−1) is added. (Sec. D.2).

In Fig. 2.1 examples of diagrams and the corresponding representation in conventional equation form
are given. The not linked terms appearing in the contraction have been left due to rule number 4. The
green factors are related to the number of interaction lines (rule 5) and the blue ones to the number
of loops (rule 6). It becomes immediately clear that for higher order contribution the diagrammatic
representation is much easier to read. The full Green’s function G (12) is given by drawing all possible
connected diagrams with an arrow starting from the open coordinate 2 leading to the point 1 in spin
space time.

21

(−1)1(−1)0G(12)v(12)=

1

δ12(−1)1(−1)1
∫
d3w(13)G0(33

+)3 =

(−1)2(−1)1
∫ ∫

d3d4G0(34)G0(43)v(24)v(13)G(12)

21

=
43

Figure 2.1.: Example of the translation between di-
agrams and equations

The same expansion rules apply also for the
Matsubara response χM

σ1σ1σ2σ2
(x1x2) given in Eq.

(2.22). Note that contributions like ρ (r1) ρ (r2)
are linked in the sense of the linked cluster theo-
rem, but are removed by the definition of the ∆ρ
in Eq. (2.22).
At first sight the introduction of the diagram-

matic language is a totally equivalent reformation
of an existing problem, but the new formulation
starts to develop (like always) its own dynamic.
For example the term “linked” or “connected” is

very natural in the diagrammatic language. Also the group of diagrams containing “ladders”, “bubbles”
and “loops” makes only sense in the new language. For the classification of diagrams it is convenient
to define two new vocabularies:

Reducible Diagram: A diagram is called reducible with respect to something, if one can cut/remove
something in order to get two not linked diagrams. The term irreducible is used for diagrams which
are not reducible.
Proper Diagram: A diagram is called proper, if it is irreducible with respect to an interaction line.
The term improper is used for diagrams which are not proper.

These definitions are very useful in the expansion of quantities. For example is it possible to obtain
the full Green’s function, by the solution of the equation:

7From the expansion you would expect a factor of (−1)n

n!
, but for each connected diagram it is possible to create n!

equivalent contribution by permutation of internal coordinates and a diagram represents all these contribution [52].
An example of such a permutation is to interchange 3↔ 4 in the second order diagram in Fig. 2.1.
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CHAPTER 2. INTRODUCTION TO GREEN’S FUNCTIONS

G (12) = G0 (12)+Λ d3d4G0 (13)M (34)G (42) , (2.33)

G
1 2 M1 2

G
1 2

G0
= +

Figure 2.2.: Dyson equation for G (12)

whereM (12) is defined by all diagrams with an outgoing/incoming GF at 2/1 which are irreducible
with respect to G0. The definition ofM is chosen in such a way that all possible contributions to the
GF are created by iterating the Eq. (2.33):

G (12) = G0 (12) + Λ d3d4G0 (13)M (34)G0 (42)

+ Λ d3 . . . d6G0 (13)M (34)G0 (45)M (56)G0 (62) + . . . .

The function M describes the change from the known G0 to the fully interacting G. Since this
transition is extremely important, the objectM is given a special name: self-energy. An equation of
the kind A = X +XY A is called a Dyson equation. Such an equation is solved either by iteration or
by a matrix inversion:

G0 (12) = ∆ d4 [δ41 −∆ d3G0 (13)M (34)]G (42)

⇒ G (12) = ∆ d4 [δ14 −∆ d3G0 (13)M (34)]−1G0 (42)

The two ways should lead to the same result. A finite order approximation forM leads to a summation
of an infinite number of contributions. This is a clear advantage of the Dyson equation compared to
truncating the expansion implied by Eq. (2.29). After a summation has been carried out, the resulting
set is often called renormalized or dressed [59].
The density response function χM (12) is a very important quantity. In this section always the

Matsubara response function is used and the subscript M is left. The response function is the central
object in linear response theory which is discussed in more detail in section 2.2. The Dyson equation
for the response function reads:

2 2

1

1

2

1
χ =

P
P +

χ χ (12) = P (12)− Λ d3d4P (13) v (34)χ (42) (2.34)

Figure 2.3.: Dyson equation for χ(12)
A

where P (12) contains all proper diagrams which can be connected at 1 and 2 to an interaction line
(Fig. 2.6). In Sec. 2.2 it is shown that the retarded version of this function describes the response
of the density to external fields. Like the self-energy, the set P receives its own name: Polarization
propagator. The simplest approximation to the polarization is the bubble:

P ≈ 1 21 2
P (12) ≈ −G (12)G (21) (2.35)

and the corresponding approximation for χ is called the random phase approximation (RPA).
Besides the sets M and P two more important sets are defined in general. The first one is the

screened Coulomb interaction given by

−w (12) = −v (12) + Λ d3d4v (13)P (34)w (42) (2.36)
2 =1 21 + 21

P

Figure 2.4.: Dyson Equation for w (12)

and represented by a double wiggle line. The screened Coulomb interaction takes multiple scatter-
ing processes of the electrons (screening) into account. The second one is the vertex function Γ (123)
depicted by a triangle (Fig. 2.6). The vertex function appears naturally in the derivation of the Hedin
equations (Sec. 4) and determines the self-energy [Eq. (4.14)]:
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M
1

2
1δ12

1 2
+

=
M (12) = Λ d3d5w (31)G (15) Γ (523) + δ12 ∆ d3v (13)G

(
33+

)
.

Figure 2.5.: Self-energyM (12) A

Some authors call only the non-local part in the previous equation self-energy and the full object
is referred to as mass operator [60]. From the previous definitions of M and w, it can be concluded
that the vertex must contain only proper contributions and is irreducible with respect to G0.

M =

G

= + ++ . . .+

. . .++ + +

+ + . . .
w
=

G0 =−v =

. . .=P ++ +

+
=

Γ

+ + + + . . .

Figure 2.6.: Expansion of the relevant objects appearing in MBPT. In the first line the self-energy is
expanded in terms of G0 and v like discussed in Eq. (2.29). In the next lines the first orders of the
Green’s function G, Response function χ, screened Coulomb interaction w and vertex function Γ are
shown.
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3. Introduction to Density Functional Theory
for Superconductors

Density functional theory (DFT) is an alternative ab-initio approach for treating interacting many-
body systems. A detailed overview of the concepts and ideas behind DFT is presented in the book by
Gross [61]. Instead of the electronic Green’s function (GF) in many-body-perturbation theory (MBPT),
the electronic density is the central object in DFT. The foundation of DFT was laid by Hohenberg and
Kohn, who showed that every ground state expectation value is a functional of the electronic density
ρ (r) [62]. In particular the total energy is also a functional of the electronic density. For this functional
a variational principle holds and the exact ground state density is found by minimizing the energy.
The theory proposed by Hohenberg and Kohn is exact only in principle because the exact form of the
total energy functional is unknown.
The DFT formalism is universal and may be applied to any electronic system: magnetic, supercon-

ducting, containing currents etc. . However, it is easier to construct concrete approximations for the
energy functional, if the relevant densities are explicitly included in the functional. A standard example
for this procedure is the inclusion of the spin magnetic density m (r) := ρ↑ (r) − ρ↓ (r) to the energy
functional [63, 64]. This theory is called spin DFT and all expectation values become functionals of
ρ and m and the energy is minimal for the ground state densities. The magnetic density is the order
parameter of the magnetic phase and couples to external magnetic fields.8

In the same spirit Oliveira, Gross and Kohn included an additional density for the treatment of
superconductivity (SC) [23]. For SC the relevant density is the so called anomalous density. In
analogy to the magnetic case, the anomalous density is the order parameter of the superconducting
phase. The anomalous density is defined by two annihilation operators with different spin:

χ̂
(
rr′
)

:= Ψ̂↑ (r) Ψ̂↓
(
r′
)
. (3.1)

The anomalous density, should not be confused with the density-density response (Sec. 2.2). It couples
to an external pairing potential ∆ext

s (rr′) and the term Λ χ̂∆ext
s + h.c. is added to the interacting

Hamiltonian in Eq. (2.2). If the anomalous density is non-zero i.e.:

〈χ̂〉 6= 0

the system is considered superconducting at this temperature [23]. The contribution Λ χ̂∆ext
s + h.c.

describes only singlet pairing, where electrons with opposite spin are coupled by the pairing potential.
An extension to pairing of electrons with identical spin (triplet pairing) is not considered in this work
because the pairing in the cuprates and iron based superconductors (FeSC) takes place mainly in the
singlet channel [67, 13]. However, the ruthenates are an example of a system, where the triplet pairing
is important [68].
As discussed in the introduction, the magnetic phase is suppressed first and then superconductivity

appears. Hence, it is not necessary to include the magnetic density as an additional density in the
DFT framework of SC, if the goal is the description of the SC phase alone.
The additional densities are not limited to electronic contributions. In order to introduce the phonons

in a proper way, the diagonal part of the N -particle density matrix of the nuclei is included as a further
density. In this case the framework is called multi component DFT [27]. This leads to a formally exact
description of the superconducting electronic-nuclear system. However, the focus of this work lies on
a purely electronic pairing mechanism and the nuclear degrees of freedom are left out for simplicity in
this chapter.

8 Note that non-uniqueness problems of spin DFT at zero temperature are fixed at finite temperature [65, 66].
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3.1. Foundation of DFT for Superconductors

Superconducting density functional theory (SCDFT) is based on three pillars [69]:

1. There is a 1:1 correspondence between the densities {ρ, χ} and the corresponding potentials{
v0 + vext,∆

ext
s

}
[70].

2. The statistical operator ρ̂β [Eq. (2.6)] is fully determined by the external potentials and due to
the 1:1 correspondence every expectation value is a functional of the densities. In particular this
is true for the grand canonical potential [Eq. (2.1)]:

Ω (µ, V, T ) = Ω (µ, V, T ) [ρ, χ] .

3. A variational principle for the grand canonical potential holds:

Ω [ρGS, χGS] ≤ Ω [ρ, χ] ,

where ρGS and χGS are the densities of the system in thermal equilibrium.

The grand canonical potential is formally rewritten:

Ω [ρ, χ] = T0 [ρ, χ] + ∆ d3r (v0 + vext − µ) ρ+ Λ d
3rd3r′∆ext

s χ+ EH [ρ] +
1

β
S0 [ρ, χ] + Exc [ρ, χ]

(3.2)

EH [ρ] =
1

2
Λ d

3rd3r′
ρ (r) ρ (r′)

|r− r′|
S0 [ρ, χ] = − 1

β

〈
ln
[
ρ̂0
β

]〉
0

= − 1

β
tr
[
ρ̂0
β ln

[
ρ̂0
β

]]
remember that ρ̂β = ρ̂β [ρ, χ]

T0 [ρ, χ] = −
〈

∆ d3rΨ̂† (r)
∇2

2
Ψ̂ (r)

〉

0

Exc [ρ, χ] :=
(〈
T̂
〉
− T0 [ρ, χ]

)
−
(

1

β
〈ln [ρ̂β]〉 − 1

β

〈
ln
[
ρ̂0
β

]〉
0

)
+
(〈
Ŵ
〉
− EH [ρ]

)
,

where Exc is the exchange-correlation (XC)-energy, EH the Hartree energy, S0 the non-interacting
entropy, T0 the non-interacting kinetic energy and the statistical operators ρ̂β and ρ̂0

β are given in Eqs.
(2.6) and (2.7), respectively. The electronic potentials v0 + vext and pairing potential ∆ext

s couple to
the electronic and anomalous density, respectively. The occurrence of an external pairing potential
may have two reasons: (1) The system is located near another SC material (proximity effect) or (2) an
infinitesimal external field is introduced as a mathematical trick to break the degeneracy in analogy
to an external B-field in magnetic calculations.
The XC-energy is the only unknown part and the main task in DFT is to construct good approxi-

mations to Exc. For the exact functional a minimization would lead to the exact ground state densities
ρGS and χGS for a given temperature T . If χGS is zero at this temperature, the system is not supercon-
ducting.
The minimization of the grand canonical potential is done using a non-interacting auxiliary system

which has the same density as the interacting system. The idea to introduce such an auxiliary system
goes back to Kohn and Sham and therefore the system is called the Kohn-Sham (KS) system [71]. The
condition that the density of the KS and interacting system are equal, leads to the following expression
for the potential in the KS system:

vKS [ρ, χ] (r) = v0 (r) + vext + ∆ dr′
ρ (r′)

|r− r′| +
δExc [ρ, χ]

δρ (r)︸ ︷︷ ︸
:=vxc(r)

(3.3)

∆KS
s [ρ, χ]

(
rr′
)

= ∆ext
s

(
rr′
)

+
δExc [ρ, χ]

δχ (rr′)︸ ︷︷ ︸
:=∆xc

s (rr′)

, (3.4)
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where the XC-potentials vxc and ∆xc
s are given by the functional derivative with respect to the corre-

sponding density. In the present work only singlet superconductivity is considered and the subscript s
at the pairing potential is dropped. Eqs. (3.3) and (3.4) together with ρ (r) =

∑
σ

〈
Ψ̂†σ (r) Ψ̂σ (r)

〉
and

χ (rr′) =
〈

Ψ̂↑ (r) Ψ̂↓ (r′)
〉
lead to a fix point iteration. For the exact XC-energy the fix point leads to

the exact ground state densities [72]. Note that the difference between the grand canonical potential
of the interacting and the KS system is given by the exchange-correlation energies:

ΩKS [ρ, χ] =
〈
ĤKS

〉
− µ

〈
N̂
〉
− TS0 [ρ, χ]

= T0 [ρ, χ] + ∆ d3r (vKS [ρ, χ]− µ) ρ+ Λ d
3rd3r′∆KS [ρ, χ]χ− TS0

Ω [ρχ]− ΩKS [ρ, χ] = Exc [ρ, χ]− Λ d
3rd3r′∆xcχ−∆ d3rvxcρ− EH [ρ] . (3.5)

3.2. The Kohn-Sham Bogoliubov-de Gennes Equations

3.2.1. Real Space Form

The Kohn-Sham Hamiltonian for a non-magnetic (NM) electronic system with singlet pairing reads
[69]:

K̂KS =
∑

σ

∆ d3rΨ̂†σ (r)

(
−∇

2

2
+ vKS (r)− µ

)
Ψ̂σ (r)

+ Λ d
3rd3r′

[
∆KS(r, r′)Ψ̂↑ (r) Ψ̂↓

(
r′
)
−∆KS∗(r, r′)Ψ̂†↑ (r) Ψ̂†↓

(
r′
)]

(3.6)

vKS (r) = v0 (r) + ∆ d3r′
ρ (r′)

|r− r′| + vxc (r) (3.7)

∆KS
(
rr′
)

= ∆ext (rr′
)

+ ∆xc (rr′
)
. (3.8)

An elegant way to diagonalize a Hamilton operator containing Ψ̂↑Ψ̂↓ contributions, is to introduce new
fermionic operators γk defined by [52]:

Ψ̂σ (r) =
∑

l

(
ul (r) γ̂lσ − zσv∗l (r) γ̂†l−σ

)
(3.9)

γ̂lσ = ∆ d3r
(
u∗l (r) Ψ̂σ (r)− z−σv∗l (r) Ψ̂†−σ (r)

)
, (3.10)

where z↑ = +1 and z↓ = −1. In Sec. C.2.2 it is shown that the operators γ are indeed fermionic, if the
transformation matrix is unitary. The ul, vl are chosen in such a way that the operator ĤKS

e becomes
diagonal in terms of the new operators γ̂:

K̂KS
!

=
∑

kσ

Ekγ̂
†
kσγ̂kσ. (3.11)

By evaluating the commutators
[
Ψ̂σ (r) , K̂KS

]
−
once using Eq. (3.6) and once Eq. (3.11) an eigenvalue

equation for the functions ul (r) and vl (r) is obtained (Sec. C.2):

∆ d3r′



(
−∇2

2 + vKS (r)− µ
)
δrr′ ∆KS∗ (rr′)

∆KS (rr′)ul (r
′) −

(
−∇2

2 + vKS (r)− µ
)
δrr′



(
ul (r

′)
vl (r

′)

)
= El

(
ul (r)
vl (r)

)
. (3.12)

The set of these two coupled single particle equations is called Kohn-Sham Bogoliubov-de Gennes
(KS-BdG) equations [69]. The densities ρ and χ in terms of the eigenvector (ul (r) , vl (r)) are given
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by:

ρ (r) :=
∑

σ

〈
Ψ̂σ (r) Ψ̂†σ (r)

〉
= 2

∑

l

[
|ul (r)|2 fβ (El) + |vl (r)|2 fβ (−El)

]
(3.13)

χ
(
rr′
)

:=
〈

Ψ̂↑ (r) Ψ̂↓
(
r′
)〉

=
∑

l

[
ul (r) v∗l

(
r′
)
fβ (−Ei)− v∗l (r)ul

(
r′
)
fβ (Ei)

]
. (3.14)

where fβ (E) is the Fermi function. Remember that the KS potentials are functionals of the densities
ρ and χ and the equations have to be solved self-consistently to find the ground state or at finite
temperature the equilibrium densities.

3.2.2. Change to Bloch Representation

For an application in solid state physics, it is advantageous to rewrite the problem from real space to
a representation in terms of Bloch states. As a basis set for the Bloch space, the eigenstates of the
non-superconducting KS system at zero temperature are used:

ψk (r) =
〈
r
∣∣∣ĉ†k
∣∣∣ vac

〉

εkψk (r) =

[
−∇

2

2
+ vKS

[
ρT=0

GS , χ = 0, T = 0
]

(r)

]
ψk (r) (3.15)

vKS [ρχT ] (r) = v0 (r) + vext (r) + vH [ρ] (r) + vxc [ρχT ] (r) .

The index k is a combined index describing the band n and the momentum k of the Bloch electron
and −k denotes (n,−k). The functions ul (r) , vl (r) and ∆ (r, r′) are expanded in terms of the Bloch
basis functions:

ul (r) :=
∑

k

ulkψk (r) (3.16)

vl (r) :=
∑

k

vlkψk (r) (3.17)

∆KS
qk := Λ d

3rd3r′ψ∗q (r) ∆KS
(
rr′
)
ψk
(
r′
)

(3.18)

∆KS∗
qk := Λ d

3rd3r′ψq (r) ∆KS∗
(
rr′
)
ψ∗k
(
r′
)
. (3.19)

Note that for a system without time reversal symmetry Eq. (3.17) changes to vl (r) =
∑

k vlkψ
∗
−k (r).

Due to the symmetric singlet pairing and the time reversal symmetry the pairing potential in Bloch
space is invariant with respect to (k, k′)→ (−k′,−k):

∆KS
qk = Λ d

3rd3r′ψ∗q (r) ∆KS
(
rr′
)
ψk
(
r′
)

= Λ d
3rd3r′ψ−q (r) ∆KS

(
r′r
)
ψ∗−k

(
r′
)

= ∆KS
−k,−q. (3.20)

Using the definitions given in Eqs. (3.16),(3.17),(3.18) and (3.19) the KS-BdG equations in real space
read

∑

k

[(
−∇

2

2
+ vKS (r)− µ

)
ulkψk (r) + ∆ d3r′∆KS∗

(
rr′
)
vlkψk

(
r′
)]

= El
∑

k

ulkψk (r)

∑

k

[
−
(
−∇

2

2
+ vKS (r)− µ

)
vlkψk (r) + ∆ d3r′∆KS

(
rr′
)
ulkψk

(
r′
)]

= El
∑

k

vlkψk (r) .

The operator ∆ d3rψ∗q (r) is applied from left. The Bloch states are orthogonal and a set of coupled
equations in Bloch space is found:
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(εq − µ)ulq +
∑

k

∆KS∗
−q−kvlk = Elulq (3.21)

∑

k

∆KS
qkulk − (εq − µ) vlq = Elvlq. (3.22)

The last step used the fact that ψk is an eigenfunction of
(
−42 + vKS (r)− µ

)
with eigenvalue εk. This

is only true, if the functional vKS is evaluated for the zero temperature ground state density of the
non-superconducting system [Eq. (3.15)]. It is assumed that the effects induced by temperature and
superconductivity on the KS -potential are small [69]:

vKS [ρ, χ, T ] (r) ≈ vKS
[
ρT=0

GS χ = 0T = 0
]

(r) .

In this approximation the same basis functions ψk and chemical potential µ can be used in every step
of the iteration. Now the decoupling approximation is introduced. In the decoupling approximation it
is assumed that the relevant part of the pairing is created by states with identical quantum numbers9

and hence only the diagonal part of the pairing potential is considered [69]:

∆KS
qk ≈ δqk∆KS

k . (3.23)

This approximation breaks down if bands are crossing close to the Fermi level. In appendix C.2.3 it is
shown that the decoupling approximation leads to diagonal coefficients

ulm = δlmul and vlm = δlmul. (3.24)

The coefficients are determined by a two-dimensional eigenvalue problem and the eigenvectors are
calculated in Sec. C.2.4 of the appendix:

(
εl − µ ∆KS∗

l

∆KS
l µ− εl

)(
ul
vl

)

±
= E±l

(
ul
vl

)

±
(3.25)

E±l = ±
√

(εl − µ)2 +
∣∣∆KS

l

∣∣2 =: ±Rl
(
ul
vl

)

±
=

1√
2



±∆KS∗

l

|∆KS
l |
[
1 + εl−µ

E±l

] 1
2

[
1− εl−µ

E±l

] 1
2


 . (3.26)

The function ∆KS
l determines the gap in the excitation spectrum associated with the γ̂ operators.

That is the reason why the pairing potential coupling to the anomalous density is also called gap
function. Note that ∆KS

l = ∆KS
−l [Eq. (3.20)] and εl = ε−l (time reversal symmetry) lead to:

El = E−l, ul = u−l and vl = v−l. (3.27)

For each quantum number l there is a positive and negative eigenvalue. In the equations for the densities
[Eqs. (3.13) and (3.14)] a sum with respect to the quantum number l appears and the question arises,
how these sums have to be evaluated. Obviously the summation over the positive and negative branch
i.e.

∑
l e
−βEl →∑

l

(
e−βRl + e+βRl

)
would lead to many contributions and would diverge.

9For a lattice periodic system the gap is translation invariant ∆ (r1r2) = ∆ (r1 + T, r2 + T) which leads in Bloch space
to ∆nkmq = δkq∆nm (k). So the decoupling approximation neglects pairing between different bands.
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Figure 3.1.: (left) For a non-superconducting system one eigenvalue branch is occupied. (right) In the
superconducting phase a gap opens and one branch is occupied above and the other one below µ

In the non-superconducting limit the equations should reduce to the non-superconducting expres-
sions: The eigenvalue problem is one dimensional, and only one branch is present with a finite number
of states below the chemical potential and an infinite number of states above. This weight 1

ZG
e−β(εl−µ)

leads to a finite number of particles per unit cell (left hand side of Fig. 3.1). Since the sign of εKS
l − µ

is lost in Eq. (3.26), it is enforced by evaluating the sums in the following way:

∑

l

A
(
E±l
)
→
∑̂

l

A
(
E±l
)

:=

εl<µ∑

l

A (−Rl) +

εl>µ∑

l

A (Rl, ) . (3.28)

where µ is the chemical potential of the non-superconducting system. On the right hand side of
Fig. 3.1 this occupation rule is shown. The convention fixes also the ground state energy EGS of the
superconducting KS system which has been undetermined due to the commutator in Eq. (3.11):

∑̂

k

Ekγ̂
†
kγ̂k =

εk<µ∑

k

(−Rk) γ̂†k−γ̂k− +

εk>µ∑

k

Rkγ̂
†
k+γ̂k+ =

εk<µ∑

k

(−Rk)
(

1− γ̂k−γ̂†k−
)

+

εk>µ∑

k

Rkγ̂
†
k+γ̂k+

=

εk<µ∑

k

(−Rk) +

εk<µ∑

k

Rkγ̂k−γ̂
†
k− +

εk>µ∑

k

Rkγ̂
†
k+γ̂k+ =

εk<µ∑

k

(−Rk)
︸ ︷︷ ︸

GS energy

+
∑

k

Rk ĉ
†
k ĉk

︸ ︷︷ ︸
excitations Rk>0

,

where the operators ĉk and ĉ†k are defined as:

γ̂†k :=

{
ĉk if Ek < 0

ĉ†k if Ek > 0
γ̂k :=

{
ĉk if Ek > 0

ĉ†k if Ek < 0
.

Note that different rules for the evaluation of the sum only affect the ground state energy. If for
example the complete negative branch is chosen for each k, the ground state energy changes to:

(−)∑

k

Ekγ̂
†
kγ̂k =

εk<µ∑

k

(−Rk) γ̂†−kγ̂−k +

εk>µ∑

k

(−Rk) γ̂†k−γ̂k−

=

εk<µ∑

k

(−Rk) +

εk<µ∑

k

(−Rk) +

εk<µ∑

k

(Rk) γ̂−kγ̂
†
−k +

εk>µ∑

k

(Rk) γ̂k−γ̂
†
k−

=

εk<µ∑

k

(−Rk) +

εk<µ∑

k

(−Rk)
︸ ︷︷ ︸

GS energy

+
∑

k

Rk ĉ
†
k ĉk

︸ ︷︷ ︸
excitations Rk>0

.
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In the thermal average the explicit value of the ground state energy is irrelevant (
〈
Ô
〉

=
tr
[
e−βEGSe−βĤ0 Ô

]
tr
[
e−βEGSe−βĤ0

] )

and the same results are found, if for each k either the positive or the negative eigenvalue is used or
the rule given in Eq. (3.28).

3.3. Construction of ∆xc Including Spin-Fluctuation Effects – The
next Steps

A way to construct an approximation for ∆xc is provided by many-body perturbation theory. In the
previous section the diagram rules for a non-superconducting system with Coulomb interaction have
been presented. The phonons (Ph) have been left out for simplicity here, but the lattice dynamics
would show up as an additional interaction term in the Hamiltonian [69]:

Ŵ =
1

2

∑

σσ′
Λ d

3rd3r′
Ψ̂†σ (r) Ψ̂†σ′ (r

′) Ψ̂σ′ (r
′) Ψ̂σ (r)

|r− r′| + Ŵe-ph

Ŵe-ph =
∑

λq

∆ drge-ph
λq (r) Ψ̂† (r) Ψ̂ (r)

[
b̂λq + b̂†λ−q

]

︸ ︷︷ ︸
:=Φλq

, (3.29)

where ge-ph
λq are the electron-phonon coupling matrix elements and b̂λq and b̂†λq are the phonon operators.

The additional term leads in first non-vanishing order to an electron-electron interaction mediated by
phonons. This effective interaction is not instantaneous like the Coulomb interaction and may be
attractive. Two approaches are available for the construction of ∆xc:

• In the Ph.D. thesis of Lüders, the difference Ω − ΩKS [Eqs. (2.32) and (3.5)] is expanded and
functional derivatives are used to obtain ∆xc [69].

• In the work of Marques, the self–energy [Eq. (2.33)] is expanded and the Sham-Schlüter equation
(SSEq) is used to find ∆xc [73]. The SSEq connects an approximation of the self-energy to the
corresponding Kohn-Sham potential (see Sec. 4.4 for details).

If the expansion is done up to first order in the Coulomb interaction and the phonon propagator,
both ways lead to the same expression for ∆xc. This approximation for ∆xc has been used so far
and leads to reasonable results for many materials, i.e. the predicted critical temperatures are close
to the measured ones [27]. However, for materials like the iron based superconductors or cuprates
this approach fails [74]. As discussed in chapter 1, the magnetic fluctuations are most likely the glue
for pairing the electrons in these materials and an inclusion is essential for the correct description of
superconductivity in these materials [12, 13, 75]. The derivation of a functional containing dynamic
effects like fluctuations is not straight forward. In this work the inclusion is based on a diagrammatic
expansion of the self-energy and is split into two chapters:

1. In the next chapter (chapter 4) the Hedin equations for a superconducting system are derived.
A fully self-consistent treatment of these equations would lead to the exact electronic self-energy
which contains all many-body effects including the low lying collective excitations (paramagnons).
However, a fully self-consistent treatment of the Hedin equations is computationally not feasible.

2. Hence, in chapter 5 the relevant diagrams in the self-energy containing the magnetic fluctuations
are selected. After various transformations the contribution in the self-energy related to the
magnetic fluctuations are transformed to an effective interaction which is used along with the
phonon and Coulomb interaction to construct a functional.

The functional construction and application to two representatives are done in chapter 6 and 7, re-
spectively.
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4. Hedin Equations for Superconductors

In this chapter the Hedin equations for superconducting systems are derived. The Hedin equations were
first obtained by Lars Hedin in the sixties [25], for electrons interacting via the Coulomb interaction.
To this day various extensions of the original Hedin equations have been derived. In the original work,
the nuclei are frozen and create only a static background potential. A proper treatment of the nuclei
was proposed by R. Leeuwen et. al. [76]. Recently the Hedin equations have been extended to spin
dependent interactions [60].
The focus of this work lies on the inclusion of the magnetic fluctuations i.e. a purely electronic pairing

mechanism in a DFT functional and the excitations of the nuclear lattice (phonons) are neglected. As
in the previous section, only singlet pairing is considered. In contrast to the previous section, an
external magnetic field Bext along the z−axis is considered in order to allow for the description of
collinear magnetism and superconductivity. The Hamiltonian for such a system reads:

K̂ = Ĥ − µN̂ = Ĥ0 + Ĥsc + Ĥ − µN̂

Ĥ0 =
∑

αβ

∆ drΨ̂†α (r)

[[
−∇

2

2
+ v0 (r)

]
δαβ − σαβz Bext (r)

]
Ψ̂β (r) (4.1)

ĤSC = Λ d
3rd3r′

[
∆ext (rr′

)
Ψ̂↑ (r) Ψ̂↓

(
r′
)

+ ∆ext∗ (rr′
)

Ψ̂†↓
(
r′
)

Ψ̂†↑ (r)
]

(4.2)

Ŵ =
1

2

∑

αβ

Λ d
3rd3r′v

(
rr′
)

Ψ̂†σ (r) Ψ̂†σ′
(
r′
)

Ψ̂σ′
(
r′
)

Ψ̂σ (r) . (4.3)

Here a short remark on the sign convention for the magnetic field is made. The energy term in
the Hamiltonian is written as m̂zB

ext and the magnetic density m̂z is given by −Ψ̂†αΨ̂βσ
αβ
z . In

this convention the moments will align anti-parallel to the external magnetic field which is a bit
counterintuitive, but the XC-fields δE

δm = Bxc are defined without any extra minus signs.

4.1. The Equation of Motion

The starting point for the derivation of the Hedin equations is the equation of motion of the Green’s
function. The definition of the GF given in Eq. (2.11) is extended in order to account for supercon-
ductivity. The scalar function G becomes a matrix object indicated as a Ḡ and is called Nambu GF
[24]:

Ḡ (12) := τ z
(
G (12) F (12)
F † (12) G† (12)

)
= τ z

(
Gσ1σ2 (x1x2) Fσ1σ2 (x1x2)

F †σ1σ2 (x1x2) G†σ1σ2 (x1x2)

)

= −τ z


〈
T̂
[
Ψσ1 (x1) Ψ†σ2 (x2)

]〉 〈
T̂ [Ψσ1 (x1) zσ2Ψσ2 (x2)]

〉
〈
T̂
[
zσ1Ψ†σ1 (x1) Ψ†σ2 (x2)

]〉 〈
T̂
[
zσ1Ψ†σ1 (x1) zσ2Ψσ2 (x2)

]〉

 . (4.4)

The matrix τ z is identical to the Pauli matrix σz [Eq, (A.4)]. The new symbol is introduced to avoid
confusion between the spin and Nambu space and zσ is the spin sign function: z↑ = 1 and z↓ = −1.
The diagonal elements are referred to as normal parts of the Green’s function and the off-diagonal
parts are the anomalous Green’s function. The off diagonal terms determine the anomalous density
χ [Eq. (3.1)] and are zero for a non-superconducting system. If in the thermal average [Eq. (2.5)] the
eigenstates correspond to a fixed particle number N , the off diagonal terms are strictly zero. If the
eigenstates in the trace have the form of a Bardeen, Cooper and Schrieffer (BCS) wave function one
gets a non-trivial result [2]. The definition including the τ z and the zσ is a convenient choice:
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4.1. THE EQUATION OF MOTION

• The τ z simplifies a relation between the two-particle contributions
〈

Ψ̂†Ψ̂†Ψ̂Ψ̂
〉
and the functional

derivative of Ḡ with respect to an external field ϕ (Sec. D.1.4)

• The zσ cancels with the other zσ in the definition of the operators (γ̂, γ̂†) given in Eq. (3.9) which
leads to a KS Green’s functions of a NM system without any zσ.

The equation of motion for the Nambu GF reads [Eq.(D.1)]:

−∂τ1Ḡ (12) := δ12τ
0+ (4.5)



〈
T̂
[
K̂, Ψ̂σ1 (r1)

]
(τ1) Ψ̂†σ2 (x2)

〉 〈
T̂
[
K̂, Ψ̂σ1 (r1)

]
(τ1) zσ2Ψ̂σ2 (x2)

〉
〈
T̂
[
K̂, zσ1Ψ̂†σ1 (r1)

]
(τ1) Ψ̂†σ2 (x2)

〉 〈
T̂
[
K̂, zσ1Ψ̂†σ1 (r1)

]
(τ1) zσ2Ψ̂σ2 (x2)

〉

 .

All the necessary commutators are worked out in Sec. D.1.1 of the appendix. The single particle
contributions in Ĥ give rise to [Eq. (D.2)]:

−τ z∂τ1Ḡ0 (12) = δ12τ
0 + ∆ d3h̄0 (13) Ḡ0 (32)

h̄0 (12) := δτ1τ2δr1r2δσ1σ2τ
0

[
−∇

2

2
+ v0 (r1)− µ+ zαB

ext (r1)

]

+ δτ1τ2δσ1,−σ2

(
0 ∆ext∗ (r1r2)

∆ext (r1r2) 0

)
. (4.6)

This is the equation of motion for a non-interacting system. The interaction Ŵ gives rise to an extra
term which couples the ∂τ Ḡ to the two-particle propagator Ḡ(2) ∝

〈
Ψ̂Ψ̂Ψ̂†Ψ̂†

〉
[Eq. (D.4)]:

−τ z∂τ1Ḡ (12) = δ12τ
0 + ∆ d3h̄0 (13) Ḡ (32)

+



〈
T̂
[
Ŵ , Ψ̂σ1 (r1)

]
(τ1) Ψ̂†σ2 (x2)

〉 〈
T̂
[
Ŵ , Ψ̂σ1 (r1)

]
(τ1) zσ2Ψ̂σ2 (x2)

〉
〈
T̂
[
Ŵ , zσ1Ψ̂†σ1 (r1)

]
(τ1) Ψ̂†σ2 (x2)

〉 〈
T̂
[
Ŵ , zσ1Ψ̂†σ1 (r1)

]
(τ1) zσ2Ψ̂σ2 (x2)

〉

 .

It is possible to connect the two-particle propagator with the single particle one, by using a functional
derivative with respect to an external probing field ϕ0 [Eq. (D.5)]:

−∆ d3
[
τ z∂τ1δ13 + h̄0 (13)

]
Ḡ (32) = δ12τ

0 + ∆ d3rv (r1r)

[
ρ (rτ1) Ḡ (12)− δḠ (12)

δϕ0 (rτ1)

]
.

The Coulomb interaction is formally written as a time dependent interaction i.e. v (12) = δτ1τ2v (r1r2).
This simplifies the expression for Ḡ to:

−∆ d3
[
τ z∂τ1δ13 + h̄0 (13)

]
Ḡ (32) = δ12τ

0 + ∆ d3v (13)

[
ρ (3) Ḡ (12)− δḠ (12)

δϕ0 (3)

]
.

where the total charge ρ (x1) is given by
∑

σ1
ρ (1). Inserting a one 1 = Ḡ0

(
Ḡ0
)−1 between the Ḡ

and the operator on the left hand side and using the identity 0 =
δ(ḠḠ−1)
δϕ0

= Ḡ δḠ−1

δϕ0
+ δḠ

δϕ0
Ḡ−1 for the

derivative on the right hand side leads to:

Ḡ (12) = Ḡ0 (12) + Λ d3d4Ḡ0(13)v (34)

[
ρ (4) Ḡ (32) + Λ d5d6Ḡ (35)

δḠ−1 (56)

δϕ0 (4)
Ḡ (62)

]
.

The inverse Ḡ−1 denotes the inverse of the full Nambu matrix: Ḡij (12) where ij are the components
in Nambu space and 1, 2 are the combined variables defined in Eq. (2.10). In analogy to the non-
superconducting GF in Eq. (2.33) one can define the self-energy M̄ :

M̄ (12) = δ12τ
0

∆ d3v (13) ρ (3) + Λ d4d5Ḡ (15) v (14)
δḠ−1 (52)

δϕ0 (4)

Ḡ (12) = Ḡ0 (12) + Λ d3d4Ḡ0 (13)M̄ (34) Ḡ (42) . (4.7)
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The positive sign of the local contribution v (r1r) ρ (rτ1) = v (r1r) Ψ̂†
(
rτ+

1

)
Ψ̂ (rτ1) is in line with the

diagrammatic rules for the Hartree diagram, requiring a (−1) for the first order in the interaction and
(−1) for each fermionic loop (see Sec. 2.4). This local contribution is called Hartree potential

vH (1) = ∆ d2v (12) ρ (2) (4.8)

and is added to the single particle h̄0 operator:

h̄H (12) := h̄0 (12) + τ0δ12v
H (1) . (4.9)

We define the Hartree Green’s function by:

−∆ d3
[
τ z∂τ1δ13 + h̄H (13)

]
ḠH
σσ2

(32) = τ0δ12.

In terms of the Hartree Green’s function ḠH the Dyson equation for the full GF changes:

Ḡ (12) = ḠH (12) + Λ d3d4ḠH (13) Σ̄ (34) Ḡ (42) (4.10)

Σ̄ (12) := Λ d4d5Ḡ (15) v (14)
δḠ−1 (52)

δϕ0 (4)
. (4.11)

The Eqs. (4.7) and (4.11) lead to the same full Green’s function Ḡ, but the underlying non-interacting
system is different: For M̄ the non-interacting system is h̄0 and for Σ̄ it is h̄H. The freedom of choosing
a single particle Hamiltonian as a reference system is discussed in more detail in Sec. D.3. The Eqs.
(4.10) and (4.11) are a coupled set of equations leading to the exact self-energy and Green’s function.
However, the derivative δḠ−1

δϕ0
is almost impossible to evaluate. Hence, the goal of the next sections is

to rewrite the equations to a form without difficult functional derivatives. The rewriting process leads
more or less naturally to the set of five Hedin equations.

4.2. Introduction of the Hedin Cycle

The first element in the set of Hedin equations has been derived already. It is simply the Dyson
equation for the full Green’s function:

Ḡ (12) = ḠH (12) + Λ d3d4ḠH (13) Σ̄ (34) Ḡ (42) .

As a next step the total field is defined:

Φ0 (1) := ϕ0 (1) + vH (1) = ϕ0 (x1) + ∆ d2v (12) ρ (2) .

Using the chain rule, the self-energy is rewritten:

Σ̄ (12) = Λ d4d5Ḡ (15) v (14)
δḠ−1 (52)

δϕ0 (4)
= Π d3d4d5v (14) Ḡ (15)

δΦ0 (3)

δϕ0 (4)

δḠ−1 (52)

δΦ0 (3)
.

The new quantities: dielectric constant (ε−1), vertex function
(
Γ̄
)
and screened Coulomb interaction

(w) are introduced and the self-energy is rewritten in term of these new quantities:

ε−1 (34) :=
δΦ0 (3)

δϕ0 (4)
= δ34 + ∆ d1v (31)

δρ (1)

δϕ0 (4)
(4.12)

Γ̄ (523) := −δḠ
−1 (52)

δΦ0 (3)
w (31) := ∆ d4ε−1 (34) v (41) (4.13)

Σ̄ (12) = −Λ d3d4Ḡ (14)w (13) Γ̄ (423) . (4.14)
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4.2. INTRODUCTION OF THE HEDIN CYCLE

Note that there is a certain degree of freedom in the distribution of the minus signs: The minus
sign in front of Σ̄ may be moved to the expression of the screened interaction. The next step is the
derivation of Dyson like equations for Γ and w. The inverse of the Green’s function given in Eq. (4.10)
is inserted:

Γ̄ (123) = −δḠ
−1 (12)

δΦ0 (3)
=
δ
[
τ z∂τ1 + h̄H (12) + τ0δ12ϕ0 (1) + Σ̄ (12)

]

δΦ0 (3)

=
δ
[
τ z∂τ1 + h̄0 (12) + τ0δ12Φ0 (1) + Σ̄ (12)

]

δΦ0 (3)
= δ12δ23τ0 +

δΣ̄ (12)

δΦ0 (3)
.

The chain rule and the relation Ḡ δḠ−1

δϕ0
Ḡ = − δḠ

δϕ0
are used to obtain a Dyson equation for the vertex

function:

Γ̄ (123) = τ0δ12δ23 +
∑

ij

Λ d4d5
δΣ̄ (12)

δḠ (45)ij

δḠ (45)ij
δΦ0 (3)

= τ0δ12δ23 −
∑

ij

Υ d4d5d6d7
δΣ̄ (12)

δḠ (45)ij

[
Ḡ (46)

δḠ−1 (67)

δΦ0 (3)
Ḡ (75)

]

ij

= τ0δ12δ23 −
∑

ij

Υ d4d5d6d7
δΣ̄ (12)

δḠ (45)ij

[
Ḡ (46) Γ (673) Ḡ (75)

]
ij
. (4.15)

The index ij indicates a summation with respect to a Nambu matrix and should not be confused with
a spin summation. Note that the quantities are now matrices so Ḡ does in general not commute with
Γ̄. The functional derivative in the equation for Γ̄ is the only one remaining in the set of Hedin’s
equations. For a given approximation of the self-energy in terms of the Green’s function and Coulomb
interaction the derivative can be done analytically. The object δΣ̄(12)

δḠ(34)
is also referred to as irreducible

particle-hole propagator. Depending on the approximation for Σ̄, it may be advantageous to rewrite
the derivative in terms of the Hartree Green’s function [77]:

Γ̄ (123) = τ0δ12δ23 +
∑

ij

Λ d4d5
δΣ̄ (12)

δḠH (45)ij

δḠH (45)ij
δΦ0 (3)

= τ0δ12δ23 −
∑

ij

Υ d4d5d6d7
δΣ̄ (12)

δḠH (45)ij

[
ḠH (46)

δḠH−1
(67)

δΦ0 (3)
ḠH (75)

]

ij

= τ0δ12δ23 +
∑

ij

Υ d4d5d6d7
δΣ̄ (12)

δḠH (45) ij

[
ḠH (43) ḠH (35)

]
ij
. (4.16)

In this form a Dyson equation is avoided, but the self-energy has to be reexpanded in terms of the
non-interacting Hartree Green’s function to calculate the interaction. In Fig. 4.1 it is shown that this
procedure mimics the Dyson equation in Eq. (4.15).

+ + . . . +

δ
δGH

+ . . .

δ
δG

Dyson

for Γ

+ + . . .

expand
in GH

Figure 4.1.: The two possible ways to obtain the vertex function. (top line) The derivative is evaluated
with respect to GH. In this case Σ has to be expanded in terms of GH. (bottom line) The derivative
is evaluated with respect to the full GF followed by the solution of a Dyson equation.
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The derivative in the vertex is the key for the creation of all possible diagrams. The Dyson equation
for the screened Coulomb interaction is found by using the chain rule:

w (12) = ∆ d3ε−1 (13) v (32) = v (12) + Λ d3d4v (13)
δρ (3)

δϕ0 (4)
v (42)

= v (12) + Π d3d4d5v (13)
δρ (3)

δΦ0 (4)

δΦ0 (4)

δϕ0 (5)
v (52)

︸ ︷︷ ︸
=ε−1v=w

−w (12) = −v (12) + Π d3d4d5v (13)P (34)w (42) (4.17)

P (34) := − δρ (3)

δΦ0 (4)
. (4.18)

The function P (12) is the polarization propagator, already introduced in Eq. (2.34). It can be written
in terms of known objects like the vertex and Green’s function:

P (12) = − δρ (1)

δΦ0 (2)
= −δG (11+)

δΦ0 (2)
= −δḠ (11+)11

δΦ0 (2)
=

[
Λ d3d4Ḡ (13)

δḠ−1 (34)

δΦ0 (2)
Ḡ (31)

]

11

.

The index 11 denotes the element of the Nambu matrix. The definition of the vertex function is
inserted:

P (12) = −
[
Λ d3d4Ḡ (13) Γ̄ (342) Ḡ (41)

]
11

= −
∑

ij

Λ d3d4Ḡ (13)1i Γ̄ (342)ij Ḡ (41))j1 (4.19)

= −G (12)G (21) + F (12)F † (21) + . . . .

Here the additional contributions compared to the normal state expression [Eq. (2.35)] due to SC are
clearly seen (terms like FF †, etc.).

4.3. Extension of the Diagrammatic Rules

The basic diagram rules have been introduced in Sec. 2.4. However, the quantities Ḡ, Σ̄ and Γ̄ are now
2× 2 matrices and the irreducible particle-hole propagator has even 16 elements. The elements of the
Nambu Green’s function and self-energy are represented by arrows with two pointers [69, 73]. In a
diagram a G (12)11 and a G (21)22 are indistinguishable which is unproblematic [Eq. (4.4)]:

Ḡ (12)11 = −
〈
T̂
[
Ψ̂ (1) Ψ̂† (2)

]〉
=
〈
T̂
[
Ψ̂† (2) Ψ̂ (1)

]〉
= Ḡ (21)22 . (4.20)

The basic rules regarding the prefactor (−1)n related to the order of a diagram and the integration
with respect to internal coordinates remain unchanged in the superconducting formalism. Also the
full Nambu Green’s function is found by drawing all connected topological distinct diagrams with two
open ends at the coordinates 1 and 2. The conventions for in and outgoing Green’s function lines are
shown in Fig. 4.2. Remember that at each coordinate of the Coulomb interaction w (12) one line comes
in and one goes out.
Only the rule for the Fermionic loop has to be used carefully in the superconducting formalism.

Loops containing anomalous Green’s functions do not lead to a factor of (−1) (Sec. D.2).
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4.4. PERTURBATION THEORY↔ DFT – THE SHAM-SCHLÜTER EQUATION

Ḡ(12) =

1

2

Σ̄(12) =

Ḡ(12)
H
=

1

2

1

2

Σ11 Σ12

Σ22Σ21

Γ̄(123) =

31

2
v(12) = 1 2

w(12) = 1 2
δΣ11(12)
δG22(34)

δΣ11(12)
δG21(34)

δΣ11(12)
δG12(34)

P (12) = δΣ22(12)
δG11(34)

δΣ21(12)
δG11(34)

δΣ12(12)
δG11(34)

4
3

δΣ11(12)
δG11(34)

1
2

Ḡ Ḡ

Γ̄ 11

=

1

2

P

Figure 4.2.: Extension of the diagrammatic rules in the superconducting case. The Green’s function,
self-energy and vertex become 2 × 2 dimensional Nambu matrices. The derivative δΣ̄

δḠ
has sixteen

different elements in total, of which only a few are shown here. The polarization propagator couples
to the Coulomb interaction and stays a scalar object. However, within the polarization propagator,
anomalous terms appear [Eq. (4.19)]

= P+

w

Ḡ

Σ̄

P

11

P+

=

Σ̄+

=

Σ̄

Ḡ

Γ̄P

w

=

δΣ
δḠ

+

11

= + Σ̄

Figure 4.3.: (left) Exact self-consistent cycle for solving the five Hedin equations. (right) If the vertex
corrections are neglected the pentagram becomes a square. This approximation is called the Gw
approximation [28].

4.4. Perturbation Theory ↔ DFT – The Sham-Schlüter Equation

After this preparation, the SSEq is introduced [26]. The fact that the KS Green’s function reproduces
the density of the exact system is also used in linear response DFT [Eq. (B.3.2)]. Now it is applied to
obtain a connection between MBPT and DFT. The normal and anomalous densities defined in Eqs.
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CHAPTER 4. HEDIN EQUATIONS FOR SUPERCONDUCTORS

(3.13) and (3.14) are expressed using the Nambu GF [Eq. (4.4)]:

ρ (r) =
∑

α

lim
τ ′↘τ

Gαα
(
rτrτ ′

)
=

1

β

∑

α

lim
τ ′↘τ

lim
N→∞

N∑

n=−N
e−iωn(τ−τ ′)Gαα (rrωn)

=
1

β

∑

α

∑

n

eiωn0+
Gαα (rrωn)

χ
(
rr′
)

= lim
τ↘τ ′

F↑↓
(
rτr′τ ′

)
=

1

β
lim
τ↘τ ′

lim
N→∞

N∑

n=−N
e−iωn(τ−τ ′)F↑↓

(
rr′ωn

)

=
1

β

∑

n

eiωn0+
F↑↓

(
rr′ωn

)
.

The Dyson equation for the full GF using the KS system as a reference system reads [the v̄xc
σσ′ is given

in Eq. (D.9)]:
Ḡ (12) = ḠKS (12) + Λ 34′ḠKS (13)

[
Σ̄ (34)− v̄xc (34)

]
Ḡ (42) . (4.21)

By taking the limits as discussed above, Ḡ11 becomes the electronic density and Ḡ12 the anomalous
density. The density of the interacting system is reproduced by the KS system and the two terms cancel
out. This leads to the SSEq corresponding to the normal [Eq. (4.22)] and the anomalous density [Eqs
(4.23)]:

0 =
1

β

∑

σ1

[∑

n

∑

σσ′

eiωn0+

Λ d
3rd3r′ḠKS

σ1σ (r1rωn) Σ̄?
σσ′
(
rr′ωn

)
Ḡσ′σ1

(
r′r1ωn

)
]

11

(4.22)

0 =
1

β

[∑

n

∑

σσ′

eiωn0+

Λ d
3rd3r′ḠKS

↑σ (r1rωn) Σ̄?
σσ′
(
rr′ωn

)
Ḡσ′↓

(
r′r2ωn

)
]

12

(4.23)

Σ̄?
σ1σ2

(r1r2ωn) := Σ̄σ1σ2 (r1r2ωn)− v̄xc
σ1σ2

(r1r2) .

The SSEq has to be understood in the following way: Every given approximation for the self-energy
Σ̄app is associated with a Green’s function Ḡapp via the solution of the Dyson equation:

Ḡapp = Ḡapp [Σapp] =
Ḡ0

1− Ḡ0Σ̄app
.

This approximated Green’s function implies a density and therefore also the density can be viewed as
a functional of the approximation to the self energy:

ρ (r1) = Ḡapp
11

(
11+

)
⇒ ρ = ρ

[
Σ̄app

]

χ (r1r2) = Ḡapp
12

(
r1 ↑ τ+

1 , r2 ↓ τ+
1

)
⇒ χ = χ

[
Σ̄app

]
.

By solving the SSEq [Eqs. (4.23) and (4.22)] the XC-potential, corresponding to this density ρ
[
Σ̄app

]

and χ
[
Σ̄app

]
is found. If the approximation of the self-energy leads to a physical density10, the 1:1

mapping between potentials and densities ensures a unique solution of the SSEq [70, 78]. The benefit
of the SSEq is based on the following assumption: If some processes are included in the self-energy,
they also enter the XC-potential by solving the SSEq. For corrections to the densities induced by Σ̄app

this is clear.

4.5. Summary

In this chapter the Hedin equations for a superconducting system have been presented. The contri-
bution related to the dynamics of the nuclei have been neglected. The derivation is based on the

10The density should be real, positive and integrate to a finite number.
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4.5. SUMMARY

equation of motion for the 2 × 2 Nambu Green’s function [Eq. (4.5)] and on Schwinger’s functional
derivative approach (Sec. D.1.4). The diagrammatic rules presented in chapter 2 have been extended
to the superconducting case (Fig. 4.2) and the SSEq has been introduced. The SSEq connects the
MBPT with the DFT world: Given an approximation to the self-energy (Σapp) the SSEq leads the re-
lated XC-potential. In the next section (chapter 5) the diagrams describing the magnetic fluctuations
are located in the exact expression for the self-energy and an approximation Σapp including them is
suggested.
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5. Finding the Spin-Fluctuations

In the last chapter the Hedin equations for a superconducting system have been derived. The Hedin
equations are an exact scheme: Starting with any approximation for Σ̄ from cycle to cycle all possi-
ble diagrams are appearing and if magnetic fluctuations are present in a material the corresponding
diagrammatic contributions should become large and dominate the self-energy.
However, a full self-consistent treatment is at the moment only realizable for simplified model systems

and not for a realistic materials [79]. With this in mind, the aim of this chapter can be formulated in
the following way:

1. Identify the set of diagrams representing the magnetic excitations and find Dyson equations to
compute them.

2. Construct an approximation for the self-energy including these contributions.

3. Simplify the self-energy to extract an effective interaction to be used in the SCDFT framework
along with the Coulomb and phonon contributions.

The exact equation of the self-energy is given in Eq. (4.14). Already in the original work of Hedin [25]
it is suggested to neglect the vertex contribution as an initial approximation for the self-energy:

ΣGw (12) ≈ −G (12)w (12) with − w = −v + vχ00v, (5.1)

where χ00 is the charge-charge response function introduced in Sec. 2.2. Today this approximation is
known as the Gw approximation [28]. In this simple approximation only the charge component of the
susceptibility (Sec. 2.2) enters explicitly, not its magnetic counterpart χzz. Therefore this approximation
is not likely to describe spin fluctuations. Since the Hedin equations are an exact self-consistent
scheme, the diagrams related to the magnetic response will appear in higher orders in the self-consistent
iteration. If in the functional derivative δΣGw

δG appearing in the vertex equation [Eq. (4.15)] only the
explicit G in ΣGw is considered, the Dyson equation for the vertex leads to the set of ladder diagrams
shown in Fig. 5.1.

+ + . . . = + T

=T

1

2 4

3

+ +T

δ13

δ24

1

2 4

3

. . .

1

2

3

4

5

6

Figure 5.1.: Vertex in the ladder approximation
with G approximated by a non-interacting GF.

The ladder diagrams are the simplest ver-
tex correction and are used in calculations of
the magnetic response function since the sixties
[20, 80]. Many researchers refer to the set of lad-
der diagrams as the T -matrix. The diagrams cor-
responding to the T -matrix are shown in the sec-
ond line of Fig. 5.1.
In early calculations, the screened Coulomb

interaction in the ladder diagrams was approxi-
mated by a local model parameter [20, 81]. Re-
cently, the T -matrix has been calculated for ferro
magnets like iron, cobalt or nickel, from first principles without using model parameters[82, 83]. The
expression for the magnetic response function in terms of the T−matrix reads:

χij (12) ≈ −
∑

αβγδ

σiβαG
KS
αγ (x1x2)GKS

δβ (x2x1)σjγδ (5.2)

−
∑

αβγδ

σiβα Υ d3 . . . d6GKS
ασ3

(13)GKS
σ4β (41)T (3456)GKS

δσ6
(26)GKS

σ5γ (52)σjγδ

T (1234) = −δ13δ24w (12)− Λ d5d6w (12)GKS (15)GKS (62)T (5634) . (5.3)
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5.1. SIMPLIFICATION OF THE HEDIN EQUATIONS

The agreement between the calculated response using the T -matrix approximation and experiment
is reasonable [82]. This observation indicates that magnetic fluctuations are represented by multiple
scattering between particle and hole pairs and contributions like this should appear explicitly in the
self-energy. The origin of these diagrams is the vertex function and to go beyond the well established
Gw approximation is essential to include the magnetic fluctuations in a proper way.
The chapter has the following outline: In the first section 5.1, the Hedin equations are simplified and

the expression of the self-energy is adjusted according to point 1. and 2. In Sec. 5.3 the complexity
of the self-energy containing the magnetic fluctuations is reduced. The resulting expression contains
an effective interaction related to magnetic fluctuations and is reminiscent of the Ḡw expression. The
derivation of this effective interaction and proper incorporation in a self-energy is an important result
of this work. The derived self-energy will be used in the next section to construct a functional for
SCDFT, but it could also be used within Eliashberg theory [6]. The applied approximations and
different effective interactions in the literature are discussed in Secs. 5.4.1 and 5.4.2, respectively.

5.1. Simplification of the Hedin Equations

5.1.1. Simplify the Vertex

The starting point is an investigation of the vertex function. The vertex is created by the functional
derivative of the self-energy [Eq. (4.13)]. In general the self-energy is a Nambu matrix and a functional
of the full Nambu Green’s function Σ̄V = Σ̄V

[
Ḡ
]
(the label Σ̄V is given to the self-energy used in the

construction of the vertex function). A self-energy of this form takes all effects related to SC into
account. The calculation of the vertex corrections is a computationally demanding task. In particular,
this calculation cannot be done in every iteration of the KS-BdG equations [Eq. (3.12)] and the vertex
function is approximated by an expression in the non-superconducting state:

Σ̄V (12) ≈
(

Σ̄V
11 (12) [G] 0

0 Σ̄V

22 (12)
[
G†
]
)
. (5.4)

This approximation neglects the effects of SC on the magnetic excitations and is in complete analogy
to the phonons, where the excitation are also calculated only once in the non-superconducting phase
and are kept fixed for the rest of the SCDFT calculation [84, 85, 86]. The approximation is discussed
in Sec. 5.4.1 and is shown diagrammatically in Fig. 5.13. Due to the symmetry between G and G† [Eq.
(4.20)], every functional is expressible in either the 11 or 22 component of the Green’s function. The
vertex related to Σ̄V is diagonal in Nambu space

Γ̄ (125) ≈ δ12δ25τ0 +

(
Γ̄ (125)11 0

0 Γ̄ (125)22

)
= δ12δ25τ0

and the Dyson equations for the two components of the vertex are decoupled:

Γ̄ii = 1 + Λ̄0
iiḠiiḠiiΓ̄ii with

δΣ̄V
ii (12)

δḠii (34)
= Λ̄0

ii (1234) . (5.5)

The vertex is created by multiple scattering between particle and
hole pairs and hence the object Λ̄0

ii is called irreducible particle-hole
propagator.

= +
1

2

3
Λ̄0
ii

Figure 5.2.: Dyson equation for
the vertex

The symmetry between Ḡ11 and Ḡ22 [Eq. (4.20)] also connects the two contributions of the self-energy:

Σ̄V
11 (12) = Σ̄V

22 (21) .

With the two symmetries for Σ̄ and Ḡ, the two components of the irreducible particle-hole propagator
are related:

δΣ̄V
11 (12)

δḠ11 (34)
=
δΣ̄V

22 (21)

δḠ22 (43)
=⇒ Λ̄0

11 (1234) = Λ̄0
22 (2143) ,
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CHAPTER 5. FINDING THE SPIN-FLUCTUATIONS

which transfers via the Dyson Eq. (5.5) also to the vertex function:

Dyson Eq.
=⇒ Γ̄11 (123) = Γ̄22 (213) . (5.6)

Hence, it is sufficient to calculate only the 11 component and from now on only the 11 component is
considered and Σ̄V

11, Γ̄11 and Λ̄0
11 are called ΣV , Γ and Λ0, respectively.

5.1.2. Locate the Magnetic Fluctuations

At this point it is necessary to investigate Λ0 in more detail. A restriction to systems with collinear
magnetism is made, leading to Green’s functions which are diagonal in spin space. The four-point
function Λ0 contains two disjoint sets of diagrams [87]:

• The crossed contributions Λc
0 which have a path connecting the coordinates

1↔ 3 and 2↔ 4. The spin contributions in this set are

Λc
0 (1234) ≡ δσ1σ3δσ2σ4Λc

0 (1234) . (5.7)

Note, that the contributions to the T -matrix are of the crossed type.

• The direct contributions Λd
0 which have a path connecting the coordinates

1↔ 2 and 3↔ 4. The spin contributions in this set are

Λd
0 (1234) ≡ δσ1σ2δσ3σ4Λd

0 (1234) . (5.8)

2

1

4

3

crossed:

Λc
0

2

1

4

3
direct:

Λd
0

The kernels Λc
0 and Λd

0 are created by the functional derivative of the self-energy Σ̄V with respect to G.
By the functional derivative δ

δG(34) one GF within the self-energy is removed and the open connections
get the indices 3 and 4 resulting in the four-point function Λ0 (1234). If the removed function was
part of a loop, the resulting contribution is direct and crossed otherwise (Fig. 5.3). Since a loop was
destroyed in the derivative, an extra minus sign is necessary to compensate for this:

Λc
0 (1234) =

δΣV (12)

δG (34)
with G not in loop (5.9)

Λd
0 (1234) = −δΣ

V (12)

δG (34)
with G in loop (5.10)

The total irreducible particle-hole propagator is
given by the difference between the crossed and di-
rect contribution:

Λ0 (1234) =
δΣ̄V (12)

δG (34)
= Λc

0 − Λd
0 =: Λc−d

0 .

=
δ

δG(34)

1

2

= + . . .

direct:

2

1

4

3

Λd
0

crossed:

=
δ

δG(34)

2

1

4

31

2

== + . . .Λc
0

σ1 = σ3

σ2 = σ4

σ
3
=

σ
4

σ
1
=

σ
2

Σ(12)

Σ(12)

Figure 5.3.: Creation of the direct and crossed
contribution by the functional derivative.

The Λc
0 and Λd

0 contain all four-point functions which are proper and irreducible with respect to
the particle-hole propagator. For the creation of the vertex function, larger sets are needed, namely
all proper four-point functions. Also within this large set all contributions are either crossed or direct.
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5.1. SIMPLIFICATION OF THE HEDIN EQUATIONS

crossed + crossed → crossed

Λc0 Λc0

1

2 4

3

direct + crossed → direct
1

2 4

3

Λc0 Λd0

Figure 5.4.: Each contribution
to the particle-hole prop-
agator is either direct or
crossed.

This is seen by starting with an irreducible contribution and creating
the reducible contributions by a product consisting of: Λc

0, Λd
0 and

pairs of GFs GG connecting two irreducible parts. This procedure
has been used already for the creation of the T -matrix in Eq. (5.3)
using the most simple irreducible part: Λ0 = Λc

0 = −ω. In the
example shown in Fig. 5.4 it is started with a crossed contribution
represented by the gray box. If a direct contribution is multiplied
to the crossed one, the whole product becomes direct and it stays
crossed otherwise. For each further step, the same argument is true
always leading either to a crossed or to a direct contribution. If it
is started with a direct contribution the product will always stay
direct. The sets containing all crossed and direct terms are called
Λc and Λd, respectively.
Having the previous arguments in mind, Dyson equations for the
direct and crossed part are derived. The situation for the crossed
contribution is simple because each single factor has to be crossed
leading to the following Dyson equation:

Λc = Λc
0 + Λc

0GGΛc

Labeling the n-th order with respect to GG inside Λc by Λc
(n), the Dyson equation may be written as:

Λc
(n+1) = Λc

0GGΛc
(n) and Λc =

∞∑

n=0

Λc
(n), (5.11)

where the zero order Λc
(0) is given by the irreducible part Λc

0. This rewriting is necessary for the Dyson
equation of the direct contribution, where a Λc

(n) will appear. This equation has to create all possible
products containing at least one direct term, but without creating multiple times the same contribution
(double counting). This is done by the following equation:

Λd =
∞∑

n

Λd
(n) and Λd

(n+1) = Λd
0GGΛc

(n) + Λc
0GGΛd

(n) − Λd
0GGΛd

(n). (5.12)

The last term Λd
0GGΛd

n alone would create a product of pure direct terms only. The minus sign in front
is due to a loop created by the connection of two direct terms. The first two other terms create mixed
products starting with a direct or crossed term, respectively. The series Λd reads (the GG between
two irreducible contribution has been left for simplicity):

Λd
(1) = Λd

0

Λd
(2) = Λd

0Λc
0 + Λc

0Λd
0 − Λd

0Λd
0

Λd
(3) = Λd

0Λc
(2) + Λc

0Λd
(2) − Λd

0Λd
(2)

= Λd
0ΛcΛc + Λc

0Λd
0Λc

0 + Λc
0Λc

0Λd
0 − Λc

0Λd
0Λd

0 − Λd
0Λd

0Λc
0 − Λd

0Λc
0Λd

0 + Λd
0Λd

0Λd
0

...
...

In Fig. 5.5 some crossed and
direct contributions are shown.
The two sets together contain
all four-point functions which
are proper and irreducible with
respect to a single GF.

Λc =

1

2 4

3
crossed: direct:

+ + . . . =

1

2 4

3

Λd + . . .

Figure 5.5.: Direct and crossed particle-hole propagators.

With these two sets it is possible to create the vertex function without using the Dyson Eq. (5.5).

36



CHAPTER 5. FINDING THE SPIN-FLUCTUATIONS

3 3

1

2

Λd

direct:
1

2

Λc

crossed:

Figure 5.6.: Crossed and direct contribu-
tion in the vertex

In the equation for the vertex function the direct and
crossed contribution enter with a different sign: For the
direct term a loop is created which is not present for
the crossed contribution (Fig. 5.6). This leads to the
following expression for the vertex in terms of Λc and
Λd :

Γ (123) =δ12δ23 + Λ d4d5
[
Λc (1245)− Λd (1245)

]
G (43)G (35) . (5.13)

It is possible to derive a Dyson equation for Λc-d := Λc−Λd, by subtracting the Dyson equation of the
direct part [Eq. (5.12)] from the crossed one [Eq. (5.11)] :

Λc-d
(n+1) = Λc

0GGΛc
(n) −

(
Λd

0GGΛc
(n) + Λc

0GGΛd
(n) − Λd

0GGΛd
(n)

)

= Λc-d
0 GGΛc

(n) − Λc-d
0 GGΛd

(n) = Λc-d
0 GGΛc-d

(n)

⇒ Λc-d = Λc-d
0 + Λc-d

0 GGΛc-d (5.14)

The set Λc-d contains direct and crossed contributions. It is given by a Dyson Eq. (5.14) and leads to
the vertex functions Eq. (5.13). From now on this important set is called the particle-hole propagator
and labeled with:

ΛP (1234) := Λc-d (1234) (5.15)

ΛP = Λ0 + Λ0GGΛP with Λ0 =
δΣV

δG
.

(5.16)

+ Λ0 ΛPΛ0 Λ0=
1

2

3

4
ΛP

Figure 5.7.: Dyson equation for ΛP

The set ΛP contains a huge number of diagrams. The T -matrix is only a small subset of crossed
contributions contained in ΛP. If in Eq. (5.2) the full ΛP is used instead of the T -matrix, the exact po-
larization is found. This means the particle-hole propagator contains the complete information about
the magnetic fluctuations in the system.

5.1.3. Rewrite the Self-Energy

The particle-hole propagator ΛP enters the Hedin equations in two places shown in Fig. 5.13a:

1. In the vertex function Γ̄ within the self-energy.

2. In the polarization propagator P within the screened
Coulomb interaction.

+
ΛP

ΛP

Remember, that the effects of superconductivity in the vertex have been neglected (Sec. 5.1.1) and
only the 11 element of the Green’s function appears in the vertex function. In order to reduce the
complexity of the figures only the 11 element of the self-energy is shown in most figures in the following
discussion. First, the contributions related to P are discussed. These contributions are coupled to the
equations via the Coulomb interaction which does not depend on spin. The summation of the spin
degrees of freedom leads to the charge-charge part of the proper polarization propagator [Eq. (4.17)]:

−w (x1x2) = −v (x1x2) + Λ dx3dx4v (x1x3)P00 (x3x4)w (x4x2) .

The calculation of P00 is easier in the linear response density functional theory (LRDFT) formalism
compared to MBPT because the Dyson equation for the full response function (Sec. B.3.2):

χij (x1x2) = χKS
ij (x1x2)−

∑

lk

Λ dxdx
′χKS
il (x1x)

[
δk0δ0lv

(
xx′′

)
+ fxc

lk

(
xx′′

)]
χkj

(
x′′x2

)
. (5.17)
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contains only two-point objects: Namely the KS response χKS
ij (12), the XC-kernel fxc

ij (12)

χKS
ij (x1x2) := −

∑

αβσσ′

σiβαG
KS
ασ (x1x2)GKS

σ′β

(
x2x

+
1

)
σjσσ′ , (5.18)

fxc
lk (x1x2) :=

δvxc
l [ρ] (x1)

δρk (x2)
(5.19)

and the bare Coulomb interaction v (12) δi0δj0. The indices i and j run over x, y, z and 0, corresponding
to the three directions of a magnetic field in real space and the electric field coupling to the charge.
The equation for the proper part of the charge-charge polarization reads:

P00 = χKS
00 −

∑

ij

χKS
0i f

xc
ij χ

KS
0i +

∑

ijmn

χKS
0i f

xc
ij χ

KS
jmf

xc
mnχ

KS
n0 − . . . .

The off diagonal elements of the XC-kernel i.e. fxc
0x, f

xc
0y and fxc

0z introduce the magnetic contributions
to the charge-charge part. If the size of fxc

0x, f
xc
0y and fxc

0z is comparable to the size of the magnetic
terms fxc

xx, f
xc
xy , f

xc
zz . . . the contribution of the magnetic response i.e. vertex corrections within the

screened Coulomb interaction become an important contribution and should be considered. However,
from experiments it is known, that usually the magnetic phase is suppressed before superconductivity
appears i.e., magnetism and superconductivity normally do not coexist (chapter 1). For a non-magnetic
system the ↑ and ↓ components are degenerate and all off diagonal terms in the kernel or response
vanish [Sec. A.3] (Aij represents χij , χKSij or fxc

ij ):

A0z =A↑↑↑↑ +A↓↓↑↑ −A↑↑↓↓ −A↓↓↓↓ = 0

Axy =− i (A↑↓↑↓ +A↓↑↑↓ −A↓↑↓↑ −A↑↓↓↑) = 0. (5.20)
...

...

Hence, the screened Coulomb interaction contains only multiples of χKS
00 , v and fxc

00 :

−w = −v + vχ00v

χ00
NM
= χKS

00 − χKS
00 (v + fxc

00 )χKS
00 + χKS

00 (v + f00)χKS
00 (v + fxc

00 )χKS
n0 − . . . . (5.21)

This means for a non-magnetic ground state, the screened Coulomb interaction includes no magnetic
fluctuations in the self-energy.
From these arguments it is concluded that vertex corrections included in the screened Coulomb inter-
action are not sufficient to include the magnetic fluctuations in the self-energy.

The explicit vertex correction in the self-energy are the second place where the particle-hole propagator
enters the Hedin equations. Now these contributions are discussed. The exact expression for the self-
energy in terms of the vertex is given in Eq. (4.14). To go beyond the Gw approximation it would
be natural to iterate these equation as shown in Fig. 4.3. If this is done, all possible self-energy
contribution are created and the magnetic excitation are included in the self-energy.

21

Σ̄T
11(12) = + +

Figure 5.8.: T -matrix self-energy contribution.

However, a self-consistent iteration of the ex-
act equations is very demanding and is also not
systematic in the sense that it is not obvious in
which iteration the relevant diagrammatic contri-
bution are included and how fast the results will
improve compared to Gw. Hence, the field of ex-

act expressions is left and the self-energy is approximated by a manageable expression including some
vertex corrections. In the introduction of this section, it has been pointed out that the particle-hole
contributions are the relevant set of diagrams containing the magnetic contribution. The simplest
self-energy contributions related to the crossed particle-hole channel are shown in Fig. 5.8. In order
to include these and also direct contributions with respect to the particle-hole channel, the following
form of the self-energy is proposed:
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Σ ≈ +
ΛP

Σ̄ ≈ −Ḡw + ḠΛP (5.22)

Σ̄CF := −Ḡw Σ̄SF := ḠΛP. (5.23)

Figure 5.9.: Approximation for the self-energy including magnetic fluctuations.

This is an ad-hoc approximation selecting only a subset of all possible self-energy contributions.
Admittedly, this approximation comes out of the sky, but this is a way many-body perturbation
theory has been applied successfully in the past: The relevant physical processes (in this case magnetic
fluctuations) are included by selecting a class of diagrams capturing these processes [59]. In Sec. 5.4.1
the double counting errors and the groups of neglected diagrams are discussed.
In the context of Hubbard models various approximations for Σ containing terms like Gw, GwΓ or

GT have been used in the past [88, 89, 90]. In the Hubbard model the GT approximation describes
the low density limit of particles or holes i.e. close to completely filled or empty bands, whereas the
Gw approximation works well at half filling. More recently, the approximation Gw + GT has been
applied to Pd, Ta and Al [91].
At this point the expression for the self-energy in Eq. (5.22) is worked out in more detail. For the

anomalous terms in Eq. (5.23) the loop rule (Sec. D.2) does not apply and the crossed and direct
contribution in the self-energy enter with the same sign:

Σ̄SF
F := Λ d3d4τ z

(
0 F (34) Λc+d (1342)

F † (34) Λc+d (3124) 0

)
. (5.24)

For the normal contribution the situation is a bit more complicated because the loop rule has to be
considered. If a crossed contribution is inserted, a loop is created (Fig. 5.10) leading to a minus sign.
For the direct terms on the other hand no additional loops appear. Taking the signs related to the
loops into account, the equation for the normal contributions in Σ̄SF reads:

Σ̄SF
G := Λ d3d4τ z

(
G (34) Λd-c (1324) 0

0 G† (34) Λd-c (3142)

)
.

(5.25)

crossed:

2 1

Λc

direct:

12

Λd

Figure 5.10.: Direct and crossed contribution in the normal part of the self-energy.

Collecting the two parts related to the normal and anomalous Green’s function in Σ̄SF and adding
the Σ̄CF , leads to the detailed form of the self-energy containing charge and magnetic fluctuations:

Σ̄ (12) = −w (12) Ḡ (12) + Λ d3d4τ z
(
−G (34) Λc-d (1324) F (34) Λc+d (1342)
F † (34) Λc+d (3124) −G† (34) Λc-d (3142)

)
. (5.26)

In the discussion of the gap equation in Sec. 6.2, the different signs of Λc±d on the diagonal and off
diagonal part turn out to be crucial in order to find a finite solution of the gap equation. Note that
the self-energy derived from the Berk-Schrieffer interaction has the same sign convention, like the Λc±d

presented here [19]. In case the vertex corrections are set to zero i.e. Λc±d = 0, the self-energy given
in Eq. (5.26) reduces to the Gw approximation, with a random phase approximation (RPA) for the
screening of the Coulomb interaction (χRPA

00 = χ0 + χ0vχ
RPA
00 ).

This chapter concludes with an investigation, how the contribution contained in ΣSF are created
within the exact Hedin equations.11 Assume that Σ̄V

11 in Eq. (5.4) is approximated by Gv. In this case
11For simplicity of the figures the non-superconducting diagrams are used here.
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the proper particle-hole propagator reduces to an unscreened (w = v) T -matrix [Eq. (5.3)]:

Λc = T bare Λd = 0. (5.27)

δ
δG(34) =

...
1 2

calculate vertex related to Σ

calculate vertex related to Σ

δ
δG(34) =

1 2

≡

plug in

vertex term
=⇒

plug in

vertex term
=⇒

≡

≡

......

expand

screened Coul.
=⇒

1 2 contrib
u
tion

to
Σ
T−

b
are

exact expressions

start
cycle

1 3

42

4

31

2 ...

Σ = +

Gw term

ΛP = δΣ
δG

+ ΛPδΣ
δG

vertex term

ΛP

Figure 5.11.: Creation of the self-energy contribution related to the T -
matrix in the iteration of the Hedin cycle. For simplicity only the
normal state Green’s function is considered in this and the next pic-
ture.

The first orders of Σ̄SF
11 =

Σ̄T-bare are shown on the
right hand side of Fig. 5.11.
In the exact Hedin cycle
these orders are created in
the following way: One
starts with the simplest ap-
proximation to the self en-
ergy given by Gw and ex-
pands the screened Coulomb
interaction. This leads to
the first contribution shown
in the second line of Fig
5.11. For the next orders,
the previous self-energy has
to be differentiated. The
functional derivative δ

δG(34)
means that one GF within
the self-energy is removed
and the open connections get
the indices 3 and 4. In Fig.

5.11 the removed Green’s function is colored in red. The resulting four-point function is inserted in
the vertex entering the self-energy. This process is repeated for the two next contributions of Σ̄T-bare

and all higher orders are created in an analogous way.

Σ =

exact:

≈ΛP T bare = + . . .

+
ΛP

ΛPΣ ≈ +

approximated:

. . .+ + + + . . .

Figure 5.12.: Comparison between the contribution in the self energy related
to the simple particle-hole propagator T bare [Eq. (5.27)]. One iteration
of the exact expression [Eq. (4.14)] does not lead the desired contribution
shown in Fig. 5.8, but the approximated form [Eq. (5.26)] does.

If the Hedin equa-
tions are iterated all or-
ders related to Σ̄T-bare

will appear. However,
already in the original
work of Hedin [25], it
is pointed out that the
slow summation of a
set like Σ̄T-bare in the
cycle does not seem
like “a systematic im-
provement of the self-
energy”. This problem
is not present in the ap-
proximate form of the
self-energy given in Eq.
(5.26) and all orders of Σ̄T-bare appear within one iteration (Fig. 5.12). In Fig. 5.13 an overview of the
approximations applied so far to the exact Hedin equation is given.
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= += + Σ

Ḡ = ḠH =

= += + Σ̄

Ḡ = ḠH =

charge
fluctuations

+P = +PP

ΛPΛPΣ =Σ̄ =

=

+ δΣ
δG Λp

Λp =

+ ΛP

ΛP δΣ̄
δG

Λ̄0

magnetic
fluctuations

ΛP

Λ̄0

PP

equation → ∆xcΛ̄
′
= Λ̄c − Λ̄d

Λ̄
′′
= Λ̄d − Λ̄c

Λp

1. Neglect the SC
contribution in here

2. Change expression
for self-energy

+

(a) The two approximations in the Hedin cycle are indicated by the green boxes. As a first approximation,
the effect of superconductivity on the fluctuations is neglected by considering a vertex in the normal state
Eq. 5.4. The magnetic excitation have been located in the vertex correction as multiple scattering between
particles and holes (red box). The vertex enters the cycle in two places: In the polarization propagator
and the self-energy. The contribution in the polarization propagator contributes to the screening of the
bare Coulomb interaction (blue box). The contribution in the self-energy are the essential ones, leading an
interaction between electrons and (para)magnons. In order to avoid a full self consistent treatment of the
Hedin equation, and still get the diagrammatic contributions representing the electron-magnon interaction,
the exact expression for the self-energy is approximated. This is the second approximation and is shown in
more detail in the subfigure (b) below. In this form the self-energy may be used directly (without iterating)
in the SSEq for the construction of a pairing potential ∆xc

ΣExact = ≈+

Λ̄P

in the normal phase
1. Vertex

+

2. Change expression
for self − energy

magnetic fluctuations

Λc+d

Λc+d

Λd−c

Λd−c

charge fluctuations

(b) The details on the two approximations of the self-energy. Like discussed above the magnetic fluctuations
represented by ΛP are calculated in the non-superconducting phase and only normal Green’s functions appear
in the expansion. The second approximation was to change the exact expression of the self-energy containing
a vertex function to the form ḠΛP. This step has to be done carefully considering the loops shown in Eq. 5.25
and 5.24. The resulting self-energy contains two terms: The Ḡw representing the interaction of an electron
with charge fluctuations and the new ḠijΛ

P
ij describing the interaction of electrons to magnetic fluctuations.

If the vertex corrections are neglected the ΛP becomes zero and the expression reduces to the well known
Ḡw approximation.

Figure 5.13.: Overview of the approximation applied to the Hedin equations: The top figure shows
the two approximation embedded in the Hedin equations. The lower figure gives the details of the
approximations applied to the self-energy.
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5.2. Reduction to an Effective Interaction

5.2.1. Preparation

In the last section the Hedin equations have been approximated. An overview of the two approximations
is presented in Fig. 5.13 and the final result for the self-energy reads [Eq. (5.26)]:

Σ̄ (12) = −w (12) Ḡ (12) + Λ d3d4τ z
(
−G (34) Λc-d (1324) F (34) Λc+d (1342)
F † (34) Λc+d (3124) −G† (34) Λc-d (3142)

)
. (5.28)

However, these simplifications are still not sufficient to do calculations for real materials. The dimen-
sionality of the four-point object Λc±d and the resulting integrals in Eq. (5.28) are simply too difficult
to handle. A two-point form is necessary i.e.

Σ̄SF (12)ij
!

= Ḡ (12)ij ΛSF (12)ij . (5.29)

The expression is reminiscent of the contribution related to the charge fluctuations (Σ̄CF = −Ḡ (12)w (12)).
A definition is made to distinguish the two:

Effective interactions are all two-point functions with an incoming and outgoing GF line at 1 and
2, beyond the screened Coulomb interaction.

The equation for the self-energy [Eqs. (5.26) and (5.29)] can be inverted for the effective interaction
containing the spin-fluctuations (SF):

ΛSF (12)ij =
Σ̄ (12)ij
Ḡ (12)ij

=
1

Ḡ (12)ij
Λ d3d4

(
−G (34) Λc-d (1324) F (34) Λc+d (1342)
−F † (34) Λc+d (3124) G† (34) Λc-d (3142)

)

ij

.

This relation is not useful in practice because one would need the four-point object Λc±d in the first
place to construct the ΛSF. However, this trivial equation for ΛSF has dire consequences. It shows
that there is a unique way to go from the four-point object Λc±d to the effective interaction and the
two-point object ΛSF is defined rigorously.
In this work, simplifications to the self-energy ΣV creating the vertex correction [Eq. (5.4)] are used

to construct an effective interaction. It is instructive to investigate local potentials as a contribution
to ΣV . An example of such a local contribution is the Hartree potential [Eqs. (4.8) and (D.8)]:

GH = G0 +G0ΣHGH ΣV (12) = ΣH (12) := δ12 ∆ d3r3
ρ (r3)

|r2 − r3|
.

1

Figure 5.14.: Hartree potential

The functional derivative of ΣV leads to a direct contribution because the Green’s function in ΣV

was part of a fermionic loop [Eq. (5.10)]:

Λd
0 (1234) =

δΣV (12)

δG (34)
= −δ12δ34v (13) .

The solution of the Dyson equation [Eq. (5.12)] creates an improper particle-hole propagator which is
equivalent to the screened Coulomb interaction in the RPA:

Λd (1234) = −δ12δ34 [v (12) + Λ d3d4v (13)G (34)G (43) v (42) + . . . ] = −wRPA (12) .

This term is already present in the expansion given in Eq. (5.26) and using Λd in Eq. (5.26) would lead
to double counting errors. This is not surprising because the Hartree system is the reference system
in the Hedin equations (Eq. (4.10) and Sec. D.3) and therefore the Hartree potential is not a correct
self-energy contribution.
However, the discussion leads to the insight that two-point irreducible particle-hole propagators are

related to local self-energies. This will be used to construct an effective interaction containing SF. The

42



CHAPTER 5. FINDING THE SPIN-FLUCTUATIONS

Kohn-Sham potential [Eq. (D.9)] is used as an approximation for the self-energy creating the vertex
correction i.e.:

Σ̄V (12) = Σ̄xc (12) .

This has been done by various other researchers in the context of band structure calculations [92, 93, 90].
The potential is local in space, but non-diagonal in spin:

Σ̄V (12) =
∑

i

δx1x2

(
σiσ1σ2

vxc
i [{ρj}] (x1) 0

0 σi∗σ1σ2
zσ1zσ2v

xc∗
i [{ρj}] (x1)

)
. (5.30)

The XC-energy is defined as the difference between the exact expectation value
〈
T̂ + Ŵ

〉
minus the

Hartree contributions Ts+Λ
ρ(r)ρ(r′)
|r−r′| . So by definition there is no overlap between the Hartree potential

and the XC-potential and double counting cannot occur. On the ground state level, the Σ̄xc usually
improves the Hartree results. This is seen for example by the fact that the KS Green’s function
(corresponding to the exact vxc

i .)
GKS = GH +GHΣxcGKS

reproduces the exact many-body density. Also the quasi particle energies of the KS system are in
general closer to the experimental quasi particle energies, than the Hartree results for metals [94, 95].
But not only the ground state properties are improved going from GH to GKS. Also the information of
the excitations are provided by Σ̄xc : Within time dependent density functional theory, it is possible
to obtain the exact (magnetic) response function [Eq. (5.17)]. Since the expression for the self-energy
is local in space and time, the irreducible particle-hole propagator becomes a two-point function:

δΣxc (12)

δG (34)
=
∑

i

δx1x2σ
i
σ1σ2

δvxc
i [{ρj}] (x1)

δG (34)

= δx1x2

∑

ij

∑

σ5σ6

∆ dx5σ
i
σ1σ2

δvxci [{ρj}] (x1)

δρj (x5)

σjσ6σ5δGσ5σ6

(
x5x

+
5

)

δG (34)

= δx1x2

∑

ij

σiσ1σ2
fxc
ij (x1x3)σjσ4σ3

δx3x4 = 4δx1x2δx3x4f
xc
σ1σ2σ4σ3

(x1x3) (5.31)

and is given by the exchange-correlation kernel fxc
ij . The relation for the change between spin and Pauli

components is given in Sec. A.3. The only problematic point in choosing the Σ̄xc is the separation
in direct and crossed contributions. The separation in direct and crossed terms is necessary for the
construction of the self-energy in Eq. (5.26) because the two sets enter with different sign on the
diagonal and off diagonal part of the equation.
However, the successful XC-potentials like local density approximation (LDA) or generalized gradient

approximation (GGA) are explicit functionals of the densities ρ (r) and m (r) [96, 97] and are not
constructed by a perturbative expansion using MBPT. The functional derivative of Σxc is evaluated
with the chain rule [Eq. (5.31)], but whether the resulting contribution is direct or crossed is not a
meaningful question for a non-perturbative expression like ρ

4
3 or ∇ρ.

This problem is only relevant for the term Λc+d in the self-energy expression. For the other contri-
bution ΛP = Λc-d, the Dyson Eq. (5.16) exists which contains the full kernel (crossed and direct terms).
The problem of determining Λc+d for a non-separable kernel is circumvented by the assumption that
the spin conditions based on the diagram expansion given in Eqs. (5.7) and (5.8) also hold for the
XC-kernel:

fxc
σ−σσ−σ : only crossed (5.32)
fxc
σσ−σ−σ : only direct (5.33)
fxc
σσσσ : crossed and direct.
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5.2.2. Construction Effective Interaction

A separate calculation of Λc and Λd by the Dyson Eq. (5.11) or (5.12) is not possible because the
kernels Λc

0 and Λd
0 given in Eqs. (5.10) and (5.9) are not known for the usual XC-potentials. However,

it is possible to solve the combined Dyson Eq. (5.16) containing direct and crossed terms:

ΛP = Λ0 + Λ0GGΛP with Λ0 =
δΣxc

δG
= 4fxc (5.34)

and use the assumption made in the previous section to construct the missing contribution. The kernel
is a two-point function in space time, but a four-point object in spin space i.e. Λ0

σ1σ2σ3σ4
(x1x3):

ΛP
σ1σ2σ3σ4

(x1x3) = Λ0
σ1σ2σ3σ4

(x1x3)

+
∑

σ5...σ8

Λ dx6 . . . dx8Λ0
σ1σ2σ5σ6

(x1x6)Gσ8σ6 (x6x8)Gσ5σ7 (x8x6) ΛP
σ7σ8σ3σ4

(x8x3) .

For a collinear system the Green’s function is diagonal in spin: Gσ1σ2 = δσ1σ2Gσ1 . The kernel [Eq.
(5.31)] is inserted for Λ0 and the product −Gσ5 (x8x6)Gσ6 (x6x8) is approximated by χKS given in Eq.
(5.18). This means the full Green’s function is approximated by the KS one. Also this approximation
is discussed in Sec. 5.4.1. These steps lead to the following expression for the proper particle-hole
propagator:

ΛP
σ1σ2σ3σ4

= 4fxc
σ1σ2σ4σ3

− 16
∑

σ5...σ8

fxc
σ1σ2σ6σ5

χKS
σ5σ6σ6σ5

ΛP
σ5σ6σ3σ4

.

All quantities are functions of x1 and x2. For simplicity, this dependence and the corresponding
integrals are left out in most places. By comparison with Eq. (5.17) it is seen that Λc-d contains parts
of the response function:

ΛP = 4fxc − 16fxcχKSfxc + 64fxcχKSfxcχKSfxc + · · · = 4fxc − 16fxc


χKS − 4χKSfxcχKS + . . .︸ ︷︷ ︸

=proper response function


 fxc.

The effective interaction contains only the proper parts of the response function [Eq. (B.20)] which are
identical to the polarization propagator P introduced in Eq. (4.18):

ΛP
σ1σ2σ3σ4

= 4fxc
σ1σ2σ4σ3

− 16
∑

σ5...σ8

fxc
σ1σ2σ6σ5

Pσ6σ5σ7σ8f
xc
σ7σ8σ3σ4

(5.35)

Pαβγδ =
1

4

∑

ij

σiαβPijσ
j
γδ with Pij = χKS

ij −
∑

kl

χKS
ik f

xc
kl Plj . (5.36)

For the XC-kernel, adiabatic approximations (Sec. B.4) are used and therefore the object has no
structure in frequency space. The proper response function on the other hand has poles at the excitation
energies of the magnetic fluctuations. This is the relevant contribution in the scenario of pairing
mediated by fluctuations. The flat kernels are put to a separate self-energy term called Ḡfxc:

ΛP
σ1σ1σ2σ2

= 4fxc
σ1σ1σ2σ2︸ ︷︷ ︸

move to Ḡfxc

−16
∑

σ6σ7

fxc
σ1σ1σ6σ6

Pσ6σ6σ7σ7f
xc
σ7σ7σ2σ2

(5.37)

ΛP
σ−σσ−σ = 4fxc

σ−σ−σσ︸ ︷︷ ︸
move to Ḡfxc

−16fxc
σ−σ−σσPσ−σ−σσf

xc
σ−σ−σσ, (5.38)

which is discussed separately from now on. For a collinear system there are only six independent
contributions with respect to spin. In order to keep the equations simpler, the six terms receive a
shorter name:

fσσ′ := fxc
σσσ′σ′ Pσσ′ := Pσσσ′σ′ (5.39)

fFσ := fxc
σ−σ−σσ P F

σ := Pσ−σ−σσ.
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The equations for the effective interaction become more transparent if the response quantities are
rewritten in components of the Pauli matrix [Eq. (A.4)] because these are the response functions
corresponding to magnetic fields in x, y, or z direction. The change between the spin and i, j ∈
{x, y, z, 0} components is done via the following matrix transformation:




A00

Azz
Az0
A0z


 =




1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1







A↑↑
A↓↓
A↓↑
A↑↓







A↑↑
A↓↓
A↓↑
A↑↓


 =

1

4




1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1







A00

Azz
Az0
A0z


 .

For the xx and xy block the transformation matrix becomes block diagonal and the symmetry Axx =
Ayy and Axy = Ayx reduces the transformation relation to a two-dimensional matrix:

(
Axx
Axy

)
=

(
1 1
−i i

)(
AF
↑

AF
↓

) (
AF
↑

AF
↓

)
=

1

2

(
1 i
1 −i

)(
Axx
Axy

)
.

The spin resolved quantities in the Eqs. (5.37) and (5.38) are replaced:

ΛP
σ1σ2

= −16
∑

σ6σ7

fxc
σ1σ1σ6σ6

(x1x6)Pσ6σ6σ7σ7 (x6x8) fxc
σ7σ7σ2σ2

(x8x3)

= 16
[
fxc
σ1↑P↑↑f

xc
↑σ2

+ fxc
σ1↓P↓↓f

xc
↓σ2

+ fxc
σ1↑P↑↓f

xc
↓σ2

+ fxc
σ1↓P↓↑f

xc
↑σ2

]

= 4
[
fxc
σ1↑ (P00 + Pzz + Pz0 + P0z) f

xc
↑σ2

+ fxc
σ1↓ (P00 + Pzz − Pz0 − P0z) f

xc
↓σ2

+fxc
σ1↑ (P00 − Pzz + Pz0 − P0z) f

xc
↓σ2

+ fxc
σ1↓ (P00 − Pzz − Pz0 + P0z)

]
fxc
↑σ2

ΛP
σ−σσ−σ = −16fFσ P

F
σ f

F
σ = −2 (fxx + zσifxy) (Pxx + zσiPxy) (fxx + zσifxy) .

The spin-flip contribution P F
σ in the full response function contain no improper contribution [Eq. (5.17)]

and for this component the proper response function is equal to the full one:

ΛP
σ−σσ−σ = −2 (fxx + zσifxy) (χxx + zσiχxy) (fxx + zσifxy) .

The contributions of ΛP related to the charge-charge response would read:

ΛP
σ1σ2

= −4
(
fxc
σ1↑ + fxc

σ1↓
)
P00

(
fxc
σ2↑ + fxc

σ2↓
)
.

The screened Coulomb interaction in the Gw term of the self energy on the other hand is given by

w = v − vP00v + vP00vP00v − . . . .

From Eq. (5.17) it is seen that for a density of a non-interacting system, the fjk [ρNon Int] has to cancel
the Coulomb interaction in order to provide the non-interacting χKS:

χ00 = χKS
00 −

∑

j,k∈{0,z}

χKS
0j (vδ0jδ0k + fjk [ρNon Int])χj0

!
= χKS

00 .

This indicates the presence of Coulomb contributions within the charge part of the XC-kernel. Hence,
in order to avoid double counting problems with the Ḡw term [Eq. (5.26)], the P00 contributions in ΛP

are dropped:

ΛP
σ1σ2

= −4
[(
fxc
σ1↑ − fxc

σ1↓
)
Pzz

(
fxc
↑σ2
− fxc
↓σ2

)
+
(
fxc
σ1↑ − fxc

σ1↓
)
Pz0

(
fxc
↑σ2

+ fxc
↓σ2

)

+
(
fxc
σ1↑ + fxc

σ1↓
)
P0z

(
fxc
↑σ2
− fxc
↓σ2

)]

ΛP
σ−σσ−σ = −2 (fxx + zσifxy) (χxx + zσiχxy) (fxx + zσifxy) := −2f±σ χ

±
σ f
±
σ .

The spin dependent combinations of the kernel are written in a compact form:

fTzσ := zσfzz + f0z = 2
(
fxc
σ↑ − fxc

σ↓
)

fzσ := zσfzz + fz0 = 2
(
fxc
↑σ − fxc

↓σ
)

fT0σ := f00 + zσ1fz0 = 2
(
fxc
σ↑ + fxc

σ↓
)

f0σ := f00 + zσf0z = 2
(
fxc
↑σ + fxc

↓σ
)

f±σ := fxx + zσifxy χ±σ := χxx + zσiχxy.
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For a non-magnetic system, the kernel and response function becomes diagonal and the expression
reduces to:

fTzσ = fzσ = zσfzz fT0σ = f0σ = f00

f±σ = fxx = fyy = fzz χ±σ = χxx = χyy = χzz.

With these definitions the effective interaction for a collinear and NM system reads:

Collinear: ΛP
σ1σ2

= −
∑

ij∈{0,z}

fTiσ1
Pij (1− δi0δj0) fjσ2 ΛP

σ−σσ−σ = −2f±σ χ
±
σ f
±
σ (5.40)

NM: ΛP
σ1σ2

= −zσ1fzzχzzfzzzσ2 := −zσ1zσ2

ΛSF

2
ΛP
σ−σσ−σ = −2fzzχzzfzz = −ΛSF. (5.41)

For the collinear system the spin diagonal term contains the magnetic response Pzz plus contributions
proportional to Pz0 and Pz0 describing the coupling between charge and magnetic degrees of freedom.
In contrast to the screened Coulomb interaction [Eq. (4.17)], the ΛP

σ1σ2
shows a real dependence on

spin i.e.:
ΛP
↑↓ 6= ΛP

↓↑ and ΛP
↑↑ 6= ΛP

↓↓.

The spin flip term ΛP
σ−σσ−σ contains the transverse response function χ± and is absent in the screened

Coulomb interaction. The physical interpretation of this term is an interaction mediated by a quasi-
particle (magnon) carrying one Bohr magneton: e−↑ → e−↓ + κµB .
For non-magnetic systems, the coupling between charge and magnetic degrees of freedom vanishes.

This is due to the degeneracy of the ↑ and ↓ spin [Eq. (5.20)]. The ratio of 1 : 2 for ΛP
σσ : ΛP

σ−σσ−σ
and the sign change between the ΛP

↑↑ and ΛP
↑↓ is known, from effective interactions in the unpolarized

electron gas [87]. Remember that all quantities are functions of x1 and x2 and the integrals in the
expressions

ΛSF (x1x2) = 2 Λ dx3dx4fzz (x1x3)χzz (x3x4) fzz (x4x2)

have been left for simplicity.

5.3. Self-Energy with Effective Interaction

What remains to be done is the evaluation of the self-energy given in Eq. (5.26) containing this
effective interaction. The space-time integrals in Eq. (5.26) are trivial for an effective interaction and
the summation with respect to spin is simplified by the collinearity of the Green’s function:

Σ̄SF (12) = τ z Λ d5d6

(
−G (56) ΛP (1526) F (56) Λc+d (1562)
F † (46) Λc+d (5126) −G† (46) ΛP (4162)

)

= τ z
∑

σ

(−Gσ (x1x2) ΛP
σ1σσ2σ (x1x2) Fσ (x1x2) Λc+d

σ1σ−σσ2
(x1x2)

F †σ (x1x2) Λc+d
σσ1σ2−σ (x1x2) −G†σ (x1x2) ΛP

σσ1σσ2
(x2x1)

)

= τ z


−Gσ1

(
ΛP
σ1σ1σ2σ1

+ ΛP
σ1−σ1σ2−σ1

)
Fσ1

(
Λc+d
σ1σ1−σ1σ2

+ Λc+d
σ1−σ1σ1σ2

)

F †σ1

(
Λc+d
σ1σ1σ2−σ1

+ Λc+d
−σ1σ1σ2σ1

)
−G†σ1

(
ΛP
σ1σ1σ1σ2

+ ΛP
−σ1σ1−σ1σ2

)


 .

The interaction contains two spin components ΛP
σ1−σ1σ1−σ1

and ΛP
σ1σ1σ2σ2

[Eq. (5.40)]. This leads to a
diagonal spin contribution for the normal part of the self-energy and non-diagonal contribution (δσ1−σ2)
for the anomalous part:

Σ̄SF (12) = τ z


 −δσ1σ2Gσ1

(
ΛP
σ1σ1σ1σ1

+ ΛP
σ1−σ1σ1−σ1

)
δσ1−σ2Fσ1

(
Λc+d
σ1σ1−σ1−σ1

+ Λc+d
σ1−σ1σ1−σ1

)

δσ1−σ2F
†
σ1

(
Λc+d
σ1σ1−σ1−σ1

+ Λc+d
−σ1σ1−σ1σ1

)
−δσ1σ2G

†
σ1

(
ΛP
σ1σ1σ1σ1

+ ΛP
−σ1σ1−σ1σ1

)


 .
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The solution of the Eq. (5.34) provides only ΛP = Λc-d. For the other term Λc+d one would in principle
need to solve one of the Dyson equations [Eq. 5.11 or 5.12]. Alternatively, one can use the relation
given in Eq. (5.32) and (5.33) and the self-energy becomes:

Σ̄SF = τ z
( −δσ1σ2Gσ1

(
ΛP
σ1σ1σ1σ1

+ ΛP
σ1−σ1σ1−σ1

)
δσ1−σ2Fσ1

(
−ΛP

σ1σ1−σ1−σ1
+ ΛP

σ1−σ1σ1−σ1

)

δσ1−σ2F
†
σ1

(
−ΛP

σ1σ1−σ1−σ1
+ ΛP

−σ1σ1−σ1σ1

)
−δσ1σ2G

†
σ1

(
ΛP
σ1σ1σ1σ1

+ ΛP
σ1−σ1σ1−σ1

)
)
,

(5.42)
where the effective interaction is given in Eq. (5.40):

ΛP
σσ = −

∑

ij={0,z}

fTiσ (χij − δi0δj0) fjσ ΛP
σ−σσ−σ = −2f±σ χ

±
σ f
±
σ .

In the context of superconductivity the case of a NM system is relevant. In this case the effective
interaction [Eq. (5.41)] becomes more simple and the self-energy reduces to:

Σ̄SF =
3

2
τ z
(

δσ1σ2G (x1x2) ΛSF (x1x2) −δσ1−σ2F (x1x2) ΛSF (x1x2)
−δσ1−σ2F

† (x1x2) ΛSF (x1x2) δσ1σ2G
† (x1x2) ΛSF (x1x2)

)
(5.43)

ΛSF (x1x2) = 2 Λ dx3dx4f
xc
zz (x1x3)χzz (x3x4) fxc

zz (x4x2) . (5.44)

For completeness, the self-energy contribution containing the screened Coulomb interaction is derived
[Eq. (5.26)]. Remember that in Eq. (5.37) and (5.38) a term containing the bare kernel was present
which is added to the Σ̄CF:

Σ̄CF (12) = −
(
δσ1σ2G (x1x2)wG (x1x2) δσ1−σ2F (x1x2)wF (x1x2)
δσ1−σ2F

† (x1x2)wF (x1x2) δσ1σ2G (x1x2)wG (x1x2)

)
, (5.45)

where the screened Coulomb interactions w, wG and wF are defined as:

−w (12) = −v (12) + Λ d3d4v (13)P00 (34)w (42)

wG (x1x2) := w (x1x2)− 4
[
fxc
σ−σ−σσ (x1x2) + fxc

σσσσ (x1x2)
]

(5.46)
wF (x1x2) := w (x1x2)− 4

[
fxc
σ−σ−σσ (x1x2) + fxc

σσ−σ−σ (x1x2)
]
. (5.47)

The charge-charge polarization propagator P00 in terms of the local vertex correction is given in Eq.
(5.36)

P00 = χKS
00 −

∑

ij={0,z}

χKS
0i f

xc
ij χ

KS
j0 + . . . (5.48)

and after slight rearrangement it is found:

−w (12) = −v (12) + Λ d3d4v (13)χ00 (34) v (42) ,

where χ00 is the full charge-charge response function [Eq. (5.17)].
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5.4. Discussion of the Effective Interaction

5.4.1. The Approximations

In the derivation of the self-energy containing the magnetic fluctuations [Eq. (5.43)], several approx-
imations have been applied. In this section all of them are discussed in the order they appear in the
derivation. If there is no likelihood of confusion, the normal part of the Nambu Green’s function is
depicted with a single arrow in this section.

1.) Non-SC Vertex

As a first approximation, the effect of superconductivity on the vertex i.e. the spin fluctuation spectrum
was neglected. For conventional superconductors it is well known that the phonons are not strongly
influenced by the onset of superconductivity: The linewidth and excitation energy may vary, but the
structure of the spectrum stays the same [98]. For the charge and magnetic fluctuations the effect could
be larger. Static magnetic fields are expulsed completely from a SC below the critical temperature,
regardless of whether the material is first exposed to a magnetic field and then cooled down below
the critical temperature (Tc) or vice versa12. This phenomenon was first reported by Meissner and
Ochsenfeld in 1933 [99] and is described by the phenomenological and macroscopic London equations
[100]. The Meissner-Ochsenfeld effect distinguishes a superconducting system from a perfect conductor.
Not only the static, but also the dynamic response function shows changes induced by superconduc-

tivity. In nuclear magnetic resonance (NMR) experiments for the FeSC and cuprates two changes in
the dynamic response are observed [101, 44, 102]:

1. A resonance peak appears below Tc. In the FeSC the position of the resonance is proportional
to the gap ωres (T ) ∝ ∆ (T ) and close to the critical temperature the rule 5kBTc ≈ ωres is found.

2. A gap opens in the response function, meaning that χzz (ω) drops to zero even for frequencies
above zero.

Model calculations of the RPA magnetic response done by P. Hirschfeld et. al. [103] indicate that the
resonance and gap in the response function are created by the FF † term in Eq. (4.18). Above the
critical temperature magnetic fluctuations are still present, but the resonance energies are higher and
the peaks are much broader. Since the effects induced by superconductivity to the response have been
neglected in the theory, it is not possible to obtain the resonance below Tc and hence a valid self-energy
for this regime.

2.) Change of the Expression for the Self-Energy

Gw +
Hartree :

T−matrix :

Figure 5.15.: Double counting errors in-
duced by the T -matrix self-energy.

As a second approximation the self-energy was changed to a
form given in Eq. (5.26) and shown in Fig. 5.13. The reason
for changing the self-energy was to include all contributions
corresponding to the T -matrix (or more general the Λc,d)
directly in the self-energy. By this change an iteration of
the Hedin equations is avoided (Fig. 5.11).
Since the Hedin equations are an exact scheme in the

first place, applying approximations may create some arti-
facts. This is seen by the presence of double counting (DC)
problems using for example the T -matrix for Λc and set the
direct contribution to zero: Λd = 0. The two problematic contributions are shown in the top row
of Fig. 5.15. The Hartree potential is included already in the reference system and the contribution
δ12 ∆ d3w (13)G (33+) fully contains the Hartree contribution. Also the second order term in w is par-
tially contained in the Gw contribution shown in the second line of Fig. 5.15. Also for the anomalous

12Below Tc the system becomes a perfect diamagnet and the static volume response is −1.
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parts DC appears: The term w (12)F (12) is created by the ḠT in first order and also by the Ḡω. All
these errors are compensated by following double counting correction:

Σ̄T
DC (12) = τ z

(
δ12 ∆ d3w (13)G (33+) −w (12)F (12)
−w (12)F † (12) δ12 ∆ d3w (13)G† (33+)

)

− τ z Λ d3d4

(
G (12)w (13)w (24)G (43)G (34) 0

0 G (21)w (13)w (24)G (34)G† (34)

)
.

(5.49)

=⇒
twice

=⇒
twice

+

+

+

+

Figure 5.16.: Intrinsic double counting errors created by GT .

+ . . .

Λd
0 =

ΣSF
(0) = +

1

2

3

4

if reducible along
this line ⇒ Λd−90◦

0

ΣCF
(0) =

ΣCF
(1) =

+

Figure 5.17.: Double counting errors related to GΛd

Note that the normal terms
shown in the top line of Fig.
5.15 are also intrinsically wrong.
This means each term itself con-
tains multiple copies of the same
diagram and the double count-
ing is not created in combi-
nation with an other diagram
as discussed above. An ex-
ample is the Coulomb interac-
tion screened with bubbles. The
bubbles are also contained in
the renormalized Green’s func-
tion [Eq. (4.10)]. This is shown
on the left hand side of Fig. 5.16.
Also the second order term in
w has intrinsic double counting
problems: If the screened inter-
action is expanded in orders of
v, it leads for third and higher orders to multiple times the same contribution. As an example this is
shown for the third order term in Fig. 5.16.
But DC errors are not restricted to the crossed diagrams in the particle-hole propagator. Assume the

direct second order contribution for the proper particle-hole propagator Λd
0 shown in Fig. 5.17. If this

term is used in the self-energy an DC error in combination with the Gw term is created. The double
counting error originates in direct contribution which are reducible with respect to the particle-hole
channel propagating along 1 → 2 and 3 → 4. This is indicated by the dashed red line in Fig. 5.17.
Such contribution are called Λd−90◦

0 and should be removed form Σ̄SF :

Σ̄d
DC (12) = τ z Λ d3d4

(
G (56) Λd−90◦

0 (1324) 0

0 G† (34) Λd−90◦

0 (3142)

)
.

In higher orders of Λd created by the Dyson Eq. (5.12), no further DC errors appear. Fortunately, all
the double counting problems are not present for the effective interaction. The two-point form leads
to a lowest order contribution which is a “lying object”, of the form δ12δ34 [fxc

zzχzzf
xc
zz ] (13) and not a

“standing” Coulomb interaction δΣ(1)(12)
δG(34) = δ13δ24v (12) as in the diagrammatic expansion. This avoids

the double counting errors shown in Fig. 5.16. Also the double counting problems in the direct part
(Fig. 5.17) are not possible for a two-point function. The DC errors appearing in the anomalous part
of Σ̄T are avoided because the parts of the effective interaction which contains Coulomb contribution
(fxc

00P00f
xc
00 ) have been neglected.

In the rewriting of the self-energy given in Eq. (5.26) only the particle-hole propagator is included.
The response functions introduced in Sec. 2.2 is based on the particle-hole contributions, so the exci-
tations due to external electric and magnetic fields are included. On the other hand, this means all
the particle-particle contributions are entirely neglected in the approximation. A detailed discussion
of the particle-particle and particle-hole contributions on the T -matrix level is given in Ref. [104].
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However, the fluctuations in the particle-particle channel
may become relevant for a pairing mechanism in some
systems. The particle-particle analogon to the T -matrix
is given by:

Tpp (1234) = −δ12δ34w (13)

− Λ d5d6w (12)GKS (15)GKS (26)T (5634) .

=

1

2 4

3

. . .+Tpp
+

Figure 5.18.: Particle-particle variant of the T -
matrix.

It is possible to create two normal self-energy contribution ΣA and ΣB by the particle-particle T -matrix
shown in Fig. 5.19. The first one contains a Fermionic loop leading to a minus sign:

Tpp

1

ΣB(12)

Tpp

2

1 ΣC(12)

Tpp

1

2
ΣA(12)

2

Figure 5.19.: Self-energy corresponding to Tpp.

ΣA (12) = −Λ d3d4Tpp (3214)G (34)

ΣB (12) = Λ d3d3Tpp (3241)G (34) .

For both contributions, double counting errors of the type discussed in Fig. 5.16 appear. The anomalous
part of the self-energy related to Tpp has only a single contribution given by:

ΣC (12) = Λ d3d4Tpp (3412)F (34) .

Note that a systematic inclusion of the particle-particle propagator beyond the Tpp contribution is
not possible. The reason is the lack of an expression for the irreducible particle-particle propagator in
terms of Σ̄ which is present for the irreducible particle-hole propagator Λ0 = δΣ

δG . Only the screened
Coulomb interaction w and G within Tpp could be updated in a self-consistent treatment, but this will
not create all possible particle-particle contributions.

3.) Reduction to Two-Point Function

Eventually, the particle-hole propagator is approximated by an effective interaction. This approxi-
mation seems very severe in the first place. However, the resulting effective interaction given in Eq.
(5.41) has a very physical or intuitive form: fxcχfxc. Like in the case of the screened Coulomb inter-
action (−w = −v + vχ00v) the fluctuations enter explicitly via the corresponding response function
[Eq. (4.17)]. The coupling to the fluctuations is done by the XC-kernel which is the derivative of the
XC-magnetic field with respect to the magnetization [Eq. (5.19)].
This leads to the following coupling mechanism in complete analogy to the Coulomb screening: A

propagating electron creates a change in the magnetic density δm due to its spin. The change leads
to a change in the magnetic field via the kernel. The field creates large fluctuations, if the response
function is peaked for the corresponding field symmetry. These fluctuations then couple to another
propagating electron via the second kernel. This coupling becomes strong if the response function
features large excitations and the coupling to the electronic system given by the XC-kernel is large.
In the derivation of the effective interaction, the full GF has been approximated by the KS one,

i.e. G (12)G (21) ≈ GKS (12)GKS (21). Nevertheless, the final effective interaction contains the full
response function. This is a feature of LRDFT which reproduces the exact response with an RPA like
equation starting form the KS response: χKS (12) = −GKS (12)GKS (21) [Eq. (5.17)]. So in the end
also response functions calculated using MBPT involving the full GF may be used in the construction
of the effective interaction [Eqs. (B.19)].

5.4.2. Comparison with other Effective Interactions

The derivation of the effective interaction in this work is based on a local approximation of the self-
energy [Eq. 5.30] within the formally exact Hedin equations. In the literature, various ways of deriving
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effective interactions or two-point scattering amplitudes are found. The ancestor of all the interactions
is most likely the interaction proposed by Berk and Schrieffer [19]. In this interaction the charge
(bubble diagrams) and magnetic fluctuations (ladder diagrams) are merged to one interaction. It was
designed to treat systems close to a Stoner instability where Uχ0 ≈ 1 and U is a local Hubbard like
Coulomb matrix element between electrons with opposite spin.
Effective interactions suited for a more general purpose are presented in [105, 106, 87]. Some of

the results are comparable (almost identical) to the one presented in Eqs. (5.40) and (5.41). All the
different approaches have in common that:

• many-body effects are responsible for a spin dependence of the interaction and

• a local approximation is used.

In the end, all approaches also lead to a form like: coupling×Fluctuation×coupling. The charge and
magnetic fluctuations are represented either by the response function or a bosonic propagator. For a
practical application, the response function is the more convenient object because the extraction of
quasi particle (QP) energies and lifetimes is not necessary. Although being very similar regarding the
from, the derivations of the effective interactions are very different. They follow physical intuition (1),
a reformulation of the initial problem (2) or a diagrammatic expansion in the homogenous electron gas
(HEG) (3).

1. In their work Kukkonen and Overhauser [105] derive an effective interaction between indistin-
guishable particles. The derivation is not based on diagrammatic techniques so the inclusion of
the presented effective interaction in the self-energy is not obvious. However, the physical picture
is very intuitive. If you bring two test charges e−1 and e−2 into the system, they will interact via
the bare Coulomb interaction v and via scattering processes in the medium. This processes are
given by vχ00v, which is found by the following considerations: The charge e−1 is related to a
potential v1 = ve−1 which creates a change in the density of the system given by δρ = χ00v1. The
change in the density is then seen by the other charge e−2 vδρ = e−1 [vχ00v] e−2 (see top line of Fig
5.20). So the screened Coulomb interaction in the Hedin equation [Eq. (4.17)] is an interaction
between test particles.
This picture changes, if instead of test particles, indistinguishable particles are considered.
Around an electron with spin ↑ at point (r, t) the δρ↑ and δρ↓ are different due to correla-
tion effects13. These many-body effects are taken into account by the so called “field factors”
in the effective interaction of Kukkonen and Overhauser. The field factors are spin dependent,
dynamic and local. They are the analogon to the XC-kernel in our approach. Kukkonen and
Overhauser do not consider transverse magnetic fluctuation which allow for a spin-flip and also
the inclusion of the effective interaction in the self-energy is not discussed.

2. Yarlagadda et al. derive an effective interaction following a different approach. The many-body
Hamiltonian [Eq. (4.3)] is rewritten by dividing the electrons into two sets: (1) The electrons
close to the Fermi surface and (2) the low-lying electrons creating macroscopic fluctuations in
the medium [106]. The electrons close to the Fermi energy couple to the electronic fluctua-
tions (bosons) in the medium. The coupling constants are defined ad-hoc. In analogy to the
electron-phonon coupling, a canonical transformation is used to transform the interaction be-
tween fermions and bosons to an effective electron-electron interaction between electrons close
to the Fermi energy.
This spin dependent effective interaction could be used in a perturbation expansion for the self-
energy. Note that only the first order diagrams in the interaction are allowed due to the minimal
coupling in the derivation. The final result is very similar to the effective interaction in this
section. Also here no higher order contributions in the ΛP appear. However in the presented
derivation the coupling constants are defined much more rigorously and no separation in two sets
of electrons is necessary.

13Correlation in this context means that the charge density around e−1 is reduced due to Coulomb repulsion and the
Pauli principle. The Pauli principle introduces the spin dependence of the change density.
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3. Vignale and Singwi [87] use a diagrammatic approach to derive the scattering amplitude shown
in Eqs. (5.11) and (5.12) for the non-magnetic HEG. The irreducible particle-hole propagator
contains direct and exchange crossed terms (Fig. 5.5). The two contributions do not mix and
hence the renormalization of δΣ

δG can be done for the two channels separately. Before the renor-
malization is done, the function δΣ

δG is approximated by a function Ĩ related to the local field
factor or in our approach the XC-kernel.
The final result is equivalent to the effective interaction for a non-magnetic system presented in
Eqs. (5.41). However, the inclusion of this interaction in the self-energy and the double counting
corrections/errors are not considered in their work.

Test Charge

Physical Electron

=

χ00

=

χ
ij

v(1 +Gj)v(1 +Gi)

Figure 5.20.: Difference of an interaction between test particles and “physical electrons”. The function
Gi (qω) is the local field factor taking care of the many-body effects. The label G is used for historical
reasons and the function has nothing to do with the electronic Green’s function.

5.5. The Question of Self-Consistency

Up to now, the Hedin equations have been investigated in order to find an approximation to the self-
energy containing SF. This self-energy will be used in the SSEq to construct an approximation for
the pairing potential ∆xc (see Sec. 4.4). The initial Hedin equations are an exact self-consistent set of
equations. Exact means that a fully self-consistent solution converges to the exact Green’s function.
The question of convergence and uniqueness of the result is non-trivial and not considered here. At
least for limiting cases (weakly interacting limit in the Gw approximation) it can be shown that the
cycle converges (a fixpoint is present) and the result is unique (there is only one fixpoint) [79].
The change of the exact expression [Eq. (4.14)] to the expression displayed in Eq. (5.26) was mainly

done to avoid a self-consistent treatment of the Hedin equations and still get a self-energy which
contains the magnetic fluctuations. This “non-self-consistency” is indicated in Fig. 5.21 by the open
cycle ending at either the SSEq (SCDFT calculation) or the Dyson equation for the normal part of
the Green’s function (correction of single particle spectrum). However, one could ask the question to
what extent a self-consistent treatment is still possible with the approximated self-energy.

• A self-consistent treatment using “Gw” is feasible. Recently such calculations have been reported
for molecules and solids [107, 108]. The standard Gw approximation for the self-energy has
been extended by a term including magnetic excitations: Σ = (w + ΛSF)G . The interactions
w = v+vχ00v = v

1−fxc
00

1−(fxc
00 +v)χKS , ΛSF = −2fxc

zzχzzf
xc
zz = −2fzzχKSfxc

zz

1−fxc
zzχ

KS and non-interacting response

χKS are functionals of the density and it is possible to update them with new densities, related to
the G in each iteration process. However, the XC-functional remains the same in this approach
and the functional should describe the excitations (charge and spin) in the system properly. In
chapter 7 it is shown for the FeSC that already simple approximations like LDA lead to reasonable
results for the magnetic response function.
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• Updating the XC-kernel itself is more difficult. The updating must somehow recover the func-
tional derivative δΣ

δG in the vertex, where all diagrams are created from cycle to cycle. The SSEq
[Eq. (4.21)] can be used directly to construct an XC-potential related to a self-energy, i.e. update
the potential properly, not only evaluating at a changed density. However, the result of the SSEq
provides only the XC–potential and not the functional dependence vxc = vxc [ρ] which is needed
to calculate the XC-kernel. The calculation of the kernel would require a set of self-energies
{Σ1,Σ2, . . . }. This set corresponds to densities {ρ1, ρ2, . . . }and with the SSEq the corresponding
potentials {vxc [ρ1] , vxc [ρ2] , . . . } are found. With this information the derivative δvxc

δρ can be cal-
culated, but this is a very demanding task (see “difficult connection” in Fig. 5.21). Alternatively
a closed expression for fxc exists within the linearized Sham-Schlüter equation [109].
Note that even such a treatment would not lead to the exact XC–kernel. The reason for this
lies in the approximated self-energy: Only the exact expression will lead to the exact Green’s
function which leads to the exact density and due to the 1:1 correspondence (Sec. 3.1) to the
exact XC–potential and XC–kernel.

+

− v̄xc

vxc, fxc,

in some approximation

like LDA, GGA...

start here

GKS

Ḡ

Ḡ

ΛSF

wG,F

χzz = χKS + χKSf
xc
zzχzz

χ00 = χKS +
χKS(f

xc
00 + v00)χ00

w = v00 + v00χ00v00

ΛSF = 2fxc
zzχzzf

xc
zz

Sham− Schlüther
equation ⇒ ∆xc

difficult
connection

Σ⋆ =

= + Σ⋆

wG = w + fxc
↑↑

wF = w − fxc
↑↓

Figure 5.21.: Approximated Hedin cycle for a NM system applying the approximation shown in Fig.
5.13. The self-energy contains the well known Gw term and an additional term representing the
magnetic fluctuations. The latter contribution originates from vertex corrections and contains the
effective interaction given in Eq. (5.44). The change of the exact self-energy containing the vertex
function was necessary in order to include the magnetic fluctuations within one cycle of the Hedin
equations. Due to this rewriting the loop may end after one iteration in the SSEq leading to an
approximation for ∆xc.

5.6. Summary

In this chapter the exact expression for the electronic self-energy provided by the Hedin equations
for superconductors has been rewritten. This step was necessary because a treatment of the exact
equations is not feasible. The derivation is based on MBPT and involves several approximations (Sec.
5.4.1) of which the assumption in Eq. (5.22) is the least obvious one. The final result is a self-energy
containing two separate terms:
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5.6. SUMMARY

1. The well known Gw contribution [Eq. (5.45)]. This term includes the charge fluctuations and
screened Coulomb interaction.

2. An additional term originating from vertex corrections [Eq. (5.43)]. This term contains the
magnetic response function and is of the same complexity like the Gw term. The (magnetic)
response function can be calculated very efficiently using LRDFT and it is possible to compute
the new self-energy contribution for real materials.

The equations have been derived allowing for a collinear magnetic state, but the special case of a
non-magnetic system will be the relevant one in the context of SC. In the next chapter the proposed
self-energy will be used to construct a SCDFT functional using the Sham-Schlüter connection.

54



6. The SCDFT Functional Containing
Spin-Fluctuations

This chapter consists of two parts. In the first part (Sec. 6.1), the functional containing the SF is
constructed. The starting point for the derivation is the approximation to the self–energy (Fig. 6.1)
which contains the effective interaction mediated by paramagnons, the screened Coulomb interaction
and the phononic contribution [Eqs. (5.41), (5.48) and (6.8) ]. This self-energy is then used in the
SSEq discussed in Sec. 4.4 to construct a functional ∆xc = ∆xc [ρ, χ]. One advantage of SCDFT is
that the involved Matsubara summation can be worked out analytically. The derivation is in analogy
to the previous derivations containing only the Coulomb and phonon term in the work of A. Sanna
[110]. The final result is a gap equation shown at the end of Sec. 6.1, where the magnetic fluctuations
simply appear as an extra term in the gap equation compared to the old framework [110].
In the second part of the chapter (from Sec. 6.2 on), numerical tests with the new functional are

performed. Since the interaction created by the magnetic fluctuations is strictly repulsive, a multi-
band system with changing sign of the gap function is necessary to find a superconducting solution.
The different form of the phonon, Coulomb and magnetic contribution in momentum space, lead to
interesting differences in how the three contributions affect the critical temperature and the shape of
the gap function. In the next chapter the functional is applied to the FeSC.

6.1. Construction of the Functional

The XC-potential is constructed starting from the SSEq [Eqs. (4.21)]. The standard phonon terms are
left out in the discussion for simplicity and but will be put back in the end. Without the phonon part
the SSEq reads:

0 =
1

β

∑

ωn

eiωn0+
ḠKS

[
Σ̄− v̄xc] Ḡ =

∑

ωn

eiωn0+
ḠKS

[(
Σ̄SF + Σ̄CF

)
− v̄xc] Ḡ.

For a NM system the contributions to the self-energy and XC-potential reduce to [Eqs. (5.43) and
appendix D]:

Σ̄− v̄xc := Σ? = τ z
(

δσ1σ2 [aDΛSF − wG]GKS −δ−σ1σ2 [wF + aCΛ
SF]FKS

−δ−σ1σ2 [wF + aCΛ
SF]FKS† δσ1σ2 [aDΛSF − wG]GKS†

)

−
(
δσ1σ2v

xc δ−σ1σ2∆xc∗

δ−σ1σ2∆xc δσ1σ2v
xc

)
. (6.1)

The aC and aD are 3
2 , but it is easier to keep track of the various factors of 1

2 , π, ect., if symbols
are used. In order to invert the SSEq for the XC-potential, two approximations are necessary: (1)
The full Green’s function on the right hand side is approximated with the non-interacting one and
(2) the contribution Σ̄CF

ii − v̄xc
ii is neglected. The first approximation is known as linearization of the

Sham-Schlüter equation and is found by requiring a stationary Klein functional with respect to the
GF [109]. The second approximation is motivated by the fact that the Gw and XC-potential both
add correlation effects to the Hartree system. This argumentation has been suggested by A. Sanna
[110] and is much more transparent than the transformation given by M. Marques, in which a constant
vxc in Bloch representation is assumed [73]. Applying these approximations, the SSEq contains only
known quantities and can be inverted to obtain the ∆xc. The 12 component of the equation related to
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the anomalous density [Eq. (4.23)] is used for this step:

0 =
1

β

∑

ωn

∑

σ3σ4

eiωn0+

Λ d
3r3d

3r4

[
ḠKS
↑σ3

(r1r3ωn) Σ̄?
σ3σ4

(r3r4ωn) ḠKS
σ4↓ (r4r2ωn)

]
12

=
1

β

∑

ωn

∑

σ3σ4

eiωn0+ [
GKS
↑σ3

Σ̄11
σ3σ4

FKS
σ4↓ + FKS

↑σ3

(
Σ̄21
σ3σ4
− δσ3−σ4∆xc)FKS

σ4↓

−GKS
↑σ3

(
Σ̄12
σ3σ4
− δσ3−σ4∆xc∗)GKS†

σ4↓ − F
KS
↑σ3

Σ̄22
σ3σ4

GKS†
σ4↓

]

=
1

β

∑

ωn

eiωn0+
[
GKSΣ̄11

↑↑F
KS + FKS

(
Σ̄21
↓↑ −∆xc)FKS −GKS

(
Σ̄12
↑↓ −∆xc∗

)
GKS† − FKSΣ̄22

↓↓G
KS†
]
.

As a further approximation all terms higher than linear order in the gap are neglected. At this point
only explicit orders of ∆k are counted and the contribution related to E±k = ±

√
ζ2
k + |∆k|2 in Eq.

(C.22) are not considered. This approach is useful in the derivation of a partially linearized gap
equation. Since the anomalous Green’s function [Eq. (C.22)] contains only linear and higher orders in
∆, all terms like FKSΣ̄21

↓↑F
KS are neglected:

0 =
1

β

∑

ωn

eiωn0+
[
GKSΣ̄11

↑↑F
KS − FKSΣ̄22

↓↓G
KS† −GKSΣ̄12

↑↓G
KS†
]

+
∑

ωn

eiωn0+
GKS∆xc∗GKS†.

For a solid state application a transformation to a representation in Bloch states is advantageous. As
discussed in Sec. 3.2.2 the equations are transformed using the orbitals of the non-superconducting
KS system as basis functions. The transformation rules given in Eq. (C.19) are used to transform the
Green’s functions:

0 =
1

β

∑

ωn

eiωn0+
[
GKSΣ̄11

↑↑F
KS − FKSΣ̄22

↓↓G
KS† −GKSΣ̄12

↑↓G
KS†
]

+
1

β

∑

k1k2

∑

ωn

eiωn0+
ψk1 (r1)GKS (k1ωn) ∆xc∗

k1k2
GKS† (k2ωn)ψk2

∗ (r2) .

The gap ∆xc
k1k2

is assumed to be diagonal with respect to k1 and k2 in the decoupling approximation
(chapter 3). Hence, it is sufficient to obtain the k1 = k2 contribution form the SSEq. The element is
selected by multiplying from left and right with the operators ∆ d3r1ψ

∗
k (r1) and ∆ d3rψk (r2), respec-

tively:

−
∑

ωn

eiωn0+
GKSGKS†∆xc∗

k (k) =
∑

ωn

eiωn0+
[
GKS (kωn) Σ̄11

↑↑ (kωn)−GKS† (kωn) Σ̄22
↓↓ (kωm)

]
FKS (kωn)

(6.2)

−
∑

ωn

eiωn0+
GKS (kωn) Σ̄12

↑↓ (kωn)GKS† (kωn) .

The first two terms related to Σ̄11
↑↑ and Σ̄22

↓↓ lead to identical contributions [see Eq. (E.10)]:

− 1

β

∑

ωn

eiωn0+
GKSGKS†∆xc∗

k = 2
1

β

∑

ωn

eiωn0+
GKS (kωn) Σ̄11

↑↑ (kωn)FKS (kωn)

− 1

β

∑

ωn

eiωn0+
GKS (kωn) Σ̄12

↑↓ (kωn)GKS† (kωn) .
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6.1.1. Evaluation of Matsubara Summation

The frequency sum 1
β

∑
ωn
eiωn0+

GKS (kωn)GKS† (kωn) on the left hand side, is evaluated in the Ap-
pendix [Eq. (E.3)]. The resulting hyperbolic tangent is brought to the right hand side of the equation:

∆xc∗
k =− 4Ek

tanh
(
βEk

2

) 1

β

∑

ωn

eiωn0+
GKS (kωn) Σ̄11

↑↑ (kωn)FKS (kωn)

+
2Ek

tanh
(
βEk

2

) 1

β

∑

ωn

eiωn0+
GKS (kωn) Σ̄12

↑↓ (kωn)GKS† (kωn) .

This expression describes ∆xc in terms of interaction matrix elements (w,ΛSF ) and the KS Green’s
function. Since the GFis determined by the solution of the KS-BdG equation [Eqs. (3.26) and (C.18)]
this expression is a functional:

∆xc
k = ∆xc

k [{ul, vl, El}]
and can be used in a self-consistent calculation of the KS-BdG equation given in Eq. (3.25). This
functional is not an explicit functional of the electronic density like the LDA or GGA [96, 97]. However,
XC-functionals depending on orbitals are well known form the optimized effective potential (OEP)
approach [111].
In SCDFT the summation with respect to the Matsubara frequencies can be worked out analytically

using the residue theorem. This is one of the main advantages of SCDFT as compared to the Eliashberg
theory. In exchange for the analytic evaluation of the double Matsubara sum a single frequency integral
on the real frequency axis appears. The appearing retarded quantity on the real axis will have some
features at finite energy and the frequency integrals will converge quickly (Fig. 7.12a). The details and
the lengthy algebra of this rewriting are shown in Sec. E.1. The final results for the term GKSΣ11F

KS

and GKSΣ12G
KS lead to [Eqs. (E.11) and (E.15)]:

∆xc∗
k = − ∆xc∗

k

π tanh
(
βEk

2

)
∑

k′
∆
∞
0 dωIm [aDΛSF

kk′ (ω)]×

([
ζk
Ek

+
ζk′

Ek′

]
I ′ (EkEk′ω) +

[
ζk
Ek
− ζk′

Ek′

]
I ′ (Ek − Ek′ω)− ζk

I (EkEk′ω)− I (Ek − Ek′ω)

E2
k

)

+
1

π tanh
(
βEk

2

)
∑

k′
∆
∞
0 dω

Im
[
−wF

kk′ (ω)− aDΛSF
kk′ (ω)

]

Ek′
×

[Iβ (EkEk′ω)− Iβ (Ek − Ek′ω)] ∆xc∗
k′ . (6.3)

The convenient result that the SF interaction ΛSF
zz enters with the same functions I as the phonons

is related to the adiabatic approximation to the XC-kernel which does not add extra residues in the
expression [Eq. (E.9)]. The functions I(EkEk′ω) and I ′ (EkEk′ω) are defined as [ Eq. (E.5)]:

Iβ (Ek, Ek′ω) := −fβ (Ek) fβ (Ek′) bβ (ω)

[
eβEk − eβ(Ek′+ω)

Ek − Ek′ − ω
− eβEk′ − eβ(Ek+ω)

Ek − Ek′ + ω

]
(6.4)

I ′β (Ek, Ek′ω) :=
∂

∂Ek
Iβ (Ek, Ek′ω) . (6.5)

The expression can be written in the form of a BCS like gap equation:

∆xc∗
k = −ZDk ∆xc∗ −

∑

kk′

KCkk′
tanh

(
βEk′

2

)

2Ek′
∆xc∗
k′ .

The kernels KDk (D-term) and KCkk′ (C-term) are found by comparison with Eq. (6.3). The kernels are
linearized, i.e. Ek = ζk, but the hyperbolic function in the gap equation is still evaluated at Ek. This
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is the well known partial linearization of the gap equation [27, 110]. This linearization ensures that the
relevant nonlinear contributions are those of BCS type. The linearization greatly simplifies the (D)
term:

∆xc∗
k = −∆xc∗

k ZDk −
∑

kk′

KCkk′
tanh

(
βEk′

2

)

2Ek′
∆xc∗
k′ (6.6)

ZDk = ∆
∞
0 dω

Im
[
aDΛSF

kk′ (ω)
]

π tanh
(
βζk
2

)
∑

k′

[
2I ′ (ζkζk′ω)− 1

ζk
(I (ζkζk′ω)− I (ζk − ζk′ω))

]

KCkk′ = ∆
∞
0 dω

2Im
[
wF

kk′ (ω) + aCΛ
SF
kk′ (ω)

]

π tanh
(
βζk
2

)
tanh

(
βζk′

2

) [Iβ (ζkζk′ω)− Iβ (ζk − ζk′ω)] .

The kernels are real functions and the complex conjugation of the gap function is left out from now
on in the gap equation. Also in this form the equation can be understood as a functional because the
gap can be expressed in terms of the particle and hole amplitudes and the eigenvalues [Eq. (3.26)]:

ulv
∗
l

2El
=

sgn [El]

El

∆KS
l∣∣∆KS
l

∣∣

[
1− (εl − µ)2

E2
l

] 1
2

=
∆KS
l |El|∣∣∆KS
l

∣∣

[
|∆KS

l |2
E2
l

] 1
2

= ∆ext
l + ∆xc

l . (6.7)

However, one can directly iterate the gap equation for various temperatures. The phase transition is
found by the condition ∆ (Tc) 6= 0 because all the anomalous terms are linear and higher order in the
gap.

6.1.2. Inclusion of Phonons

The difference in the gap equation compared to the work of A. Sanna [110], is the absence of the
phonon contributions and of course the new terms related to the SF. The phonons have been left out
for simplicity, but are easily added to the equation now. The frequency dependence of the free phonon
propagator is known (see Sec. 3.3):

Dλ1q1λ2q2 (ωn) =
〈
T̂
[
Φ̂λ1q1 (τ1) Φ̂λ2q2 (τ2)

]〉
ωm
−
〈

Φ̂λ1q1

〉〈
Φ̂λ2q2

〉

= −δλ1λ2δq1q2 ∆
∞
0 dω

2ω

ω2
n + ω2

δ (ω − Ωλ1q1) := δλ1λ2δq1q2Dλ1q1 (ωn) .

The term
〈

Φ̂λ1q1

〉〈
Φ̂λ2q2

〉
is useful in the equations of motion for the full phonon propagator [76].

The contraction of two electron-phonon coupling terms [Eq. (3.29)] leads to an effective interaction
mediated by the phonons:

ΛPh
kk′ (ωn) =

∑

λq

∣∣∣gkk′λq

∣∣∣
2
Dλq (ωn) =

1

π
∆
∞
0 dω

2ω

ω2
n + ω2


−π

∑

λq

∣∣∣gkk′λq

∣∣∣
2
δ (ω − Ωλq)




︸ ︷︷ ︸
:=ΛPh(kk′ω)

. (6.8)

The gkk′λq are the electron-phonon coupling matrix elements and the interaction related to the phonons
is attractive: ΛPh (kk′ω) < 0. The interaction is identical for all components of the Green’s function
and it is simple to extend the self-energy given in Eq. (6.1) by a phonon term:

Σ̄ = τ z
(

δσ1σ2aDΛSFGKS −δ−σ1σ2 [wF + aCΛ
SF]FKS

−δ−σ1σ2 [wF + aCΛ
SF]FKS† δσ1σ2aDΛSFGKS†

)
− ΛPhḠ.
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The analytic Matsubara summation leads also for the phonon contribution to the same function I [Eq.
(E.4)]:

∆xc
k = −∆xc (k)ZDk −

∑

k′

KCkk′
tanh

(
βEk′

2

)

2Ek′
∆xc
k′

ZDk =
∑

k′
∆
∞
0 dω

Im
[
aDΛSF

kk′ (ω)
]
− ΛPh

kk′ (ω)

π tanh
(
βζk
2

) ×

[
2I ′β (ζk, ζk′ω)− 1

ζk
(Iβ (ζk, ζk′ω)− Iβ (ζk − ζk′ω))

]

KCkk′ = 2 ∆
∞
0 dω

Im
[
wF

kk′ (ω) + aCΛ
SF
kk′ (ω)

]
+ ΛPh

kk′ (ω)

π tanh
(
βζk
2

)
tanh

(
βζk′

2

) [Iβ (ζk, ζk′ω)− Iβ (ζk,−ζk′ω)] .

In the work of M. Marques [73], two changes of theD-term are suggested: (1) A particle-hole symmetric
form for 2I ′β− 1

ζk
(Iβ − Iβ) is used (2) a factor of 1

2 is introduced. The first change is necessary due to a
divergence of the k′ summation in the anti-symmetric part. The divergence appears only if k averaged
interactions like an α2F [Eq. (6.15)] are used instead of the fully k dependent matrix elements. The
second approximation is done because for the conventional superconductors the critical temperatures
are systematically underestimated by SCDFT.

6.1.3. Final Expression

Applying these approximations, the gap equation reads:

∆xc
k = −∆xc

k ZDk −
∑

k′

KCkk′
tanh

(
βEk′

2

)

2Ek′
∆xc
k′ (6.9)

ZDk =
1

π

∑

k′
∆
∞
0 dω

Im
[
aDΛSF

kk′ (ω)
]
− ΛPh

kk′ (ω)

2 tanh
(
βζk
2

) d

dζk
J+ (ζk, ζk′ω) (6.10)

KCkk′ =
2

π
∆
∞
0 dω

Im
[
wF

kk′ (ω) + aCΛ
SF
kk′ (ω)

]
+ ΛPh

kk′ (ω)

tanh
(
βζk
2

)
tanh

(
βζk′

2

) J− (ζk, ζk′ω) (6.11)

J±β (ζk, ζk′ω) := Iβ (ζk, ζk′ω)± Iβ (ζk,−ζk′ω) .

The contributions in the kernels ZDk and KCkk′ represent different physical processes due to bosonic
QP in the system:

1. The ΛPh
kk′ (ω) term describes pairing between electrons due to phonons. The interaction is attrac-

tive: ΛPh
kk′ (ω) < 0.

2. The wF

kk′ (ω) term is the scattering of electrons due to Coulomb interaction. The bare Coulomb
interaction is reduced by intermediate scattering processes (screening) w = vε−1 [Eq. (4.12)].
Plasmons may also enter via this term.

3. The last term ΛSF
kk′ (ω) contains basically the magnetic response function χzz and hence becomes

important, if the system is close to a magnetic phase transition. In such a case the response
function features sharp excitations which represent paramagnons.

The last two terms originate both from the bare Coulomb interaction and are repulsive14

Im [ΛSF
kk′ (ω)] > 0 and Im [wkk′ (ω)] > 0

14This is not obvious and is a results for all k and k′ in the calculation for the FeSC.
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for ω > 0 [the spectral function swaps sign at ω = 0, see Eq. (B.8)]. The final result is very intuitive and
includes the magnetic fluctuations with an explicit contribution on the same footing as the phonons
and charge fluctuations. In the next section the solutions of the gap equation are discussed. In Fig.
6.1 the three contribution in the self-energy used in the construction of the ∆xc

k are shown.

Phonon

ΛPh(r1, r2, ωn)

G

Coulomb

wG(r1, r2, ωn)

G

Spin− Fluctuations

ΛSF(r1, r2, ωn)

G

Figure 6.1.: Final approximation to the self-energy containing the phonon, Coulomb and SF contri-
bution. The ΛPh, w and ΛSF are given in Eq. (6.16), (5.48) and (5.44), respectively. The screened
Coulomb and effective interaction are renormalized quantities which is indicated by a double line.

6.2. Discussion of the Gap Equation for two Bands

Before turning to calculations, it is instructive to analyze the solutions of the gap equation [Eq.
(6.9)]. One possible solution is always the trivial solution (∆k ≡ 0) which means the system is not
superconducting. Any different solution will be highly peaked around the Fermi energy. The reasons
for this behavior are: (1) scattering elements are largest for k and k′ with similar band energies. Due
to the Pauli principle scattering is possible from full↔empty states leading for low temperature to
large scattering at the Fermi level and (2) the 1

tanh[x] becomes large for small x i.e. εk−µ close to zero.
Whether or not a non-trivial solution is found depends on the topology of the Fermi surface (entering
the function I in the gap equation) and the values of the interaction matrix elements.
In case a non-zero solution is found, two situations are possible: The gap ∆k has the same symmetry

like the underlying Fermi surface or it has a lower symmetry. These two disjunct cases lead to the
most general definition of conventional and unconventional15 SC [16]:

Conventional SC are systems where the gap function at the Fermi level contains a global phase
which is set to one i.e.: ∆k = eiφ |∆k| gauge

= |∆k| with k = kF.

Unconventional SC are systems where ∆k at the Fermi level contains a k dependent phase: ∆k =
eiφ(k) |∆k| with k = kF.

Note that these definitions do not imply any kind of pairing mechanism. However, in the literature
the terms conventional and unconventional are mostly used in a less strict way: In general all systems
which are well described by a phononic pairing mechanism and moderate Tc are called conventional
and the rest unconventional. Before the two types of superconductivity are discussed, it is necessary
to investigate the signs of the functions appearing in the kernels ZDk and ZCkk′ . For ω > 0 and all Ek
and β, the inequalities

Iβ (Ek, Ek′ , ω)− Iβ (Ek,−Ek′ , ω)

tanh
(
βEk

2

)
tanh

(
βEk′

2

) ≥ 0
tanh

(
βEk′

2

)
2Ek′

≥ 0
I ′β (ζk, ζk′ , ω) + I ′β (ζk,−ζk′ , ω)

tanh
(
βζk
2

) ≥ 0

hold [see Eqs. (6.4) and (6.5) for the definitions of I and I ′]. Hence, the signs of the kernels are
determined by the sign of the interactions. The phonon contributions are attractive, whereas the
Coulomb and SF terms are repulsive. Strictly positive kernels DPh,SF,C

k and CPh,SF,C
kk′ are introduced for

15In this work a restriction to systems without currents is made. This implies ∇kφ (k) = 0 and the phase φ (k) is either
0 or π leading to a real gap function with a sign change.
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the different contributions in KCkk′ and ZDk [Eqs. (6.11) and (6.10)] The label Ph indicates the phonon,
SF the spin-fluctuations and C the screened Coulomb contribution. The sign of the contributions
appears now explicitly in the gap equation:

∆xc
k = − (DPh

k +DSF
k ) ∆xc (k) +

∑

k′

(
CPh
kk′ − CSF

kk′ − CC
kk′
)

∆xc
k′ .

First, a conventional superconductor is considered. This means that the phase of the gap is the same
for all k on the Fermi surface and without loss of generality it is set to +1. Such a symmetry of the gap
is called s-symmetry. Other possible symmetries are discussed in detail in section C.3 and the allowed
gap symmetries in a tetragonal structure are shown in Fig. 7.9. In order to find a non-trivial solution,
the left hand side of the gap equation has to be positive. The diagonal contributions, Coulomb and
SF contributions are all negative pushing towards the trivial solution and the phonon term alone must
compensate all the negative contributions:

∆xc
k︸︷︷︸

positive

= − (DPh
k +DSF

k ) ∆xc
k −

∑

k′

(CSF
kk′ + CC

kk′) ∆xc
k

︸ ︷︷ ︸
negative

+
∑

k′

CPh
kk′∆

xc
k′

︸ ︷︷ ︸
positive

.

Note that the SF are reducing the critical temperature for a gap with s-symmetry. An example of a
system where the strong SF suppress SC is Palladium [19, 112]. This was already pointed out 1966 by
Berk and Schrieffer and in their paper they estimate the effect of a T -matrix self-energy on the critical
temperature [19]. Calculations in the cuprates or iron based superconductors using an s-symmetry for
the gap and neglecting the SF predict very small critical temperatures or no phase transition at all
[74, 7]. In other words, the phonon contributions are too small to explain the large critical temperature
in these compounds. Hence, the phonon contributions are left out for the further discussion and the
gap equation becomes more simple:

∆xc
k︸︷︷︸

positive

= −DSF
k ∆xc (k)−

∑

k′

(CSF
kk′ + CC

kk′) ∆xc
k′

︸ ︷︷ ︸
negative

.

It is obvious that this equation can only lead to the trivial solution, unless there is a sign change
of the gap on the Fermi surface. This means that superconductors based on a low energy repulsive
pairing are unconventional by definition. For the present analysis a very simple two-dimensional Fermi
surface with two well separated bands is considered:

1. One band around the Γ point with a positive sign (+) of the gap function.

2. The other band around the M point [qM =
(
π
a ,

π
a , 0
)
] with a negative sign (−).

This example is similar to the situation in the FeSC with their tetragonal unit cell and two groups of
bands at the Fermi level (the results for the FeSC are presented in Sec. 7). A principle picture of such
a Fermi surface is shown in Fig. 6.2 and Mazin proposed the name s± for a symmetry like this [113].
For an analysis of the possible solutions to the gap equation it is sufficient to replace the k quantum
number with a (+) if k is close to Γ and with a (−) if the k was close to qM:

∆xc
+︸︷︷︸

positive

= −DSF
+ ∆xc

+ −
(
CSF

++ + CC
++

)
∆xc

+︸ ︷︷ ︸
negative

+
(
CSF

+− + CC
+−
) ∣∣∆xc

−
∣∣

︸ ︷︷ ︸
positive

. (6.12)

First, the contribution of the screened Coulomb interaction is analyzed in more detail. Assume the
magnetic fluctuations (χzz ≈ 0) are weak in the system which leads to a negligible DSF and CSF and
only Coulomb contributions are present in the gap equation:

∆xc
+︸︷︷︸

positive

= −CC
++∆xc

+︸ ︷︷ ︸
negative

+ CC
+−
∣∣∆xc
−
∣∣

︸ ︷︷ ︸
positive

. (6.13)
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Figure 6.2.: Contribution to the gap equation due to the Coulomb interaction (left) and SF (right).
Red are contributions destroying superconductivity and green contributions pushing towards the
non-trivial solution of the gap equations.

The CCoul
++ corresponds to small momentum transfer and the CCoul

+− to large transfer around |qM|. The
adiabatic and local approximation for the XC-kernel does not depend on the momentum transfer (Sec.
B.4) and will cancel for a gap containing a sign change. Hence, the kernel in wF

kk′ in Eq. (5.47) is
neglected from now on and wF

kk′ is just the screened Coulomb interaction. The Coulomb interaction
is isotropic in k space and becomes weaker for larger momentum transfer. This can be seen, by
the Thomas Fermi interaction which is a simple and static approximation to the screened Coulomb
interaction [Eq. (E.12)]:

w
(
k− k′

)
≈ 4π

|k− k′|2 + k2
TF

. (6.14)

Hence, the negative CCoul
++ is larger than the CCoul

+− and the trivial solution will be found (see left hand
side of Fig. 6.2). Due to its structure in momentum space, the Thomas-Fermi Coulomb contributions
cannot lead to superconductivity in the s± symmetry. This may change close to an instability to a
charge density wave, where the full wkk′ (ω) features peaks at low energy.
The situation changes, if the system features strong magnetic fluctuations. The fluctuations have to

be low lying in energy (the function Iβ (Ek, Ek′ω) goes to zero for ω → ∞) and strongly peaked for
specific momenta. To be more specific, the fluctuations must support a scattering between the parts
of the Fermi surface with different sign:

CSF
kk′ =

{
large for kk′ = +− (interband)
small for kk′ = + + (intraband).

If the fluctuations lead to such a form of the kernel, the positive contributions in Eq. (6.12) can overcome
the negative ones. Note once more that the sign change of the pairing potential is essential to get
a non-trivial solution of the gap equation. If the system is close to a magnetic phase transition, the
magnetic response function features precisely strong fluctuations for discrete momenta at low energies
which makes this scenario very plausible.
This section concludes with an introduction of an effective coupling related to the SF. The standard

Eliasberg function α2F is the averaged phonon interaction at the Fermi level and the effective coupling
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is just the frequency integral of this quantity:

α2F (ω) =
1

N (µ)

∑

kk′

∑

λ

∣∣∣gkk′λq

∣∣∣
2
δ (ω − Ωqλ) δ (εk − µ) δ (εk′ − µ) (6.15)

λPh = 2 ∆
∞
0 dω

α2F (ω)

ω
. (6.16)

The corresponding quantities for the SF are found by comparing Eqs. (6.11), (6.15) and (6.16). In
analogy to the phonon case the equations read:

P SF (ω) =
1

N (µ)

aC
π

∑

kk′
Im
[
ΛSF

(
kk′ω

)]
δ (εk − µ) δ (εk′ − µ)

λSF = 2 ∆
∞
0 dω

P SF (ω)

ω
. (6.17)

A dimensional analysis of the averaged isotropic interaction shows that the object is dimensionless:

[
Mnn′

(
E,E′, ω

)]
=

[
1

Nn (E)

]∑

kk′

[
M
(
kk′ω

)]
[δ (E − εk)]

[
δ
(
E′ − εk′

)]

=
1

states
Ryd

Ryd
1

Ryd
1

Ryd
= 1

and all effective coupling constants are positive real numbers.

6.3. Model Calculation

6.3.1. Comparison to Conventional Systems

For the conventional superconductors driven by an attractive phonon interaction, the critical tem-
perature is well captured by the McMillan formula [114]. The original expression is found by fitting
the critical temperature as a function of the phonon coupling strength λPh, characteristic phonon fre-
quency and effective Coulomb repulsion µ∗ [115, 116]. For the calculation of the critical temperature
the Eliashberg theory theory is used. Later, the fitting procedure was reanalyzed by Allen and Dynes
and a more sophisticated fitting function was proposed [117]. With the more sophisticated fitting func-
tion also the large coupling limit (λPh > 1.5) is well captured. For the characteristic phonon frequency
a logarithmic weight is introduced putting a larger weight to smaller frequencies:

ω̄Log = exp

[
2

λPh ∆ dω log (ω)
α2F (ω)

ω

]
. (6.18)

From the analytic expression for the Tc the following limiting cases are found for the critical tempera-
ture:

• For small coupling the Tc depends exponentially on λPh: Tc ∝ e−
1

λPh .

• In the large coupling limit the critical temperature grows with
√
λPh.

• The Tc is linear in the average phonon frequency ω̄Log.

The question now arises how the unconventional SC based on a repulsive interaction behaves as a
function of coupling strength and characteristic frequency. In Sec. (E.3.1) a fully linearized and isotropic
form of the gap equation is discussed. In this section this equation is solved. For a first investigation,
the Coulomb and phonon parts are neglected. This means only the repulsive interaction related to
magnetic excitations is present. For this purely repulsive interaction a sign change of the gap function
is mandatory to find a non-zero solution in the gap equation. For the calculation two bands labeled
with + and − corresponding to the sign of the gap function are considered at the Fermi level.
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Figure 6.3.: (left) Model isotropic interaction related to the SF given in Eq. (6.19) and model density
of states representing the two bands around the Γ and M point. All energies are in Rydberg.
(right) SCDFT calculation of the critical temperature as a function of the coupling strength λSF and
characteristic frequency ω̄ using the model interaction and density of states. The green lines are iso
lines for Tc = 10 K and 50 K, the red dotes indicate calculated points and the surface is a fit using
the function given in Eq. (6.20). The blue dots are a guide for the eye sitting on top of the surface.

It is assumed that the system is close to an anti ferro magnetic (AFM) instability which leads to
strong fluctuations (paramagnons) for a finite momentum vector qc. It is assumed that the fluctuations
are weak for other vectors and that the two bands at the Fermi level are nested by qc (Fig. 6.2). In such
a situation the isotropic effective interaction is small for intraband scattering

(
ΛSF
±± ≈ 0

)
and peaked

for interband scattering
(
ΛSF
±∓
)
. This situation is modeled by a simple parabola centered around a

characteristic frequency ω̄:

ΛSF
IJ

(
EE′ω

)
=




c1NJ (E′)

[
1−

(
ω−ω̄− c2

2
c2

)2
]

if |ω − ω̄| ≤ c2 and I 6= J

0 elsewhere.
(6.19)

The width c2 is fixed to a value of 0.01 Ryd and the density of states (DOS) of the two sets NI (E)
is modeled by two Gaussian peaks around the Fermi energy (left side of Fig. 6.3). The peak height
c1 is determined by requiring a value for the effective coupling strength λSF [Eq. (6.17)]. On the right
hand side of Fig. 6.3, the critical temperature as a function of ω̄ and λSF is shown. The red dots are
the solution of the fully linearized gap equation together with a fitting function f . The function f is
designed to reproduce the limits imposed by the fit to the conventional superconductors:

f (λSFω̄) = ω̄

[
Θ (λSF −A3) e

− A1
λSF + Θ (A3 − λSF)

√
B1λSF −B2

]
. (6.20)

The parameters B1 and B2 are chosen to get a continuous and smooth function at the crossover
λSF = A3. The remaining parameters {A1, A2, A3} are found by fitting to the calculated points. For
large λSF the calculated Tc shows a systematic deviation form the linear behavior in ω̄. For smaller
coupling (below 1) this is not the case and it can be seen that the overall agreement between the fit and
the calculation is reasonable. This means that the two band system with a sign changing gap function
and a purely repulsive interaction behaves identical to the conventional case with a single band and
an attractive interaction created by phonons. This result is not accidental because the sign change of
the gap leads effectively to an attractive interaction between the two bands.
The A3 gives the crossover between the square-root and exponential dependence i.e. between the

high and weak coupling limit. A value for A3 around 0.5 is found which is smaller then the value for
a single band conventional (i.e. phonon driven) superconductors.
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In the plot also two green iso lines are drawn which mark Tc = 10 K and 50 K, respectively. The
critical temperature for the iron based superconductors lies in this regime. Experiments indicate (Tab.
1.1) that the paramagnon have a very low characteristic energies ω̄ of ∼ 10 meV = 7 · 10−4 Ryd.
The model calculations imply a effective couplings above 0.5 for this ω̄ in order to reproduce the
experimental Tc. In this regime the critical temperature depends exponentially on the coupling and
the critical temperature will depend strongly on the size of the effective interaction.

6.3.2. Interplay between Spin-Fluctuations, Phonons and Coulomb Contributions

In the previous section a model calculation containing two bands at the Fermi level and the SF in-
teraction has been presented. In this section the interplay between the Coulomb, spin and phonon
contributions in a two band system is investigated. Different shapes in frequency space are considered
for the phonon and spin interaction contribution (Fig. 6.4a). But the dependence on E and E′ is
neglected like in Eq. (6.19) which is a valid approximation due to the small characteristic magnon or
phonon frequencies. The function I (EE′ω) given in Eq. (6.4) becomes small for E � ω and ω is
limited by the QP energy. As in the previous section, it is assumed that the bands at the Fermi level
are separated by some finite vector qc and only off diagonal elements are considered for the SF term.
For the Coulomb contribution the situation is different. The characteristic frequencies are not small

and it is assumed that the Coulomb contribution is flat in frequency space and the dependence with
respect to ω is neglected. Since the Coulomb interaction decays like 1

q2 , the contribution for small
momentum transfer (intraband) are usually larger then the interband contribution corresponding to
k − k′ ≈ qc. For higher energies away from the Fermi level the contributions become equal. This
situation is modeled by the following expression:

wIJ
(
EE′

)
=

{
NJ (E′)

(
U0 + U1e

−κ(E2+E′2)
)

if I = J

NJ (E′)U0 if I 6= J.
(6.21)

The NI (E) is the density of states of the band I and originates from the averaging process of the
interaction Eq. (E.19). In the beginning the Phonon contribution are neglected which implies a gap
with different sign on the two bands. Like in the previous section the gap function is labeled as ∆I (E)
and I is either + or −. Note that the sign changing two band system is a special case: For a symmetric
DOS N+ (E) = N− (E) and a symmetric gap function i.e. ∆+ (E) = −∆− (E) the constant Coulomb
term U0 cancels out completely in the C-term [Eq. (E.21)]:

∆ dE

(
U0N+ (E) U0N− (E)
U0N+ (E) U0N− (E)

)(
∆+ (E)
∆− (E)

)
= U0 ∆ dE

(
N+ (E) ∆+ (E) +N− (E) ∆− (E)
N+ (E) ∆+ (E) +N− (E) ∆− (E)

)

U0 ∆ dE [N+ (E) ∆+ (E) +N+ (−E) ∆− (E)] = U0 ∆ dE [N+ (E) ∆+ (E)−N+ (E) ∆+ (E)] = 0

and the Coulomb interaction for a symmetric system reduces effectively to:

wIJ
(
EE′

)
=

{
NJ (E′)U1e

−κ(E2+E′2) if I = J

0 if I 6= J.
(6.22)

The parameter space for a calculation containing three independent model calculation is very large.
For reasons of simplicity, in the beginning a flat DOS N+ (E) = N− (E) = const. is assumed. The fully
linearized equation introduced in Sec. E.3.1 is solved. As discussed in the previous section, the critical
temperature is increasing with the characteristic frequency ω̄ of the SF and the effective coupling
strength λSF. These trends are not reinvestigated here and λSF is fixed to 1.2. and ω̄ to 0.01 Ryd. For
the Coulomb interaction NJ (εF)U0 a value of 0.2 is used and U1 is set to U0

2 . The critical temperature
and gap structure is not influenced by different shapes of the SF interaction (left side of Fig. 6.4a).
The relevant quantity is the characteristic frequency ω̄. With increasing ω̄ the critical temperature
becomes larger and the gap becomes broader.
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Figure 6.4.: (left) Density of states considered in the model calculation. (right) Gap symmetry for a
flat DOS and different values for the parameter κ determining the decay of the Coulomb interaction
in Eq. (6.22)

The parameter κ in Eq. (6.22) can be used to control the Coulomb interaction: If κ is large the
Coulomb interaction decays very quickly. In Fig. 6.4a the gap as a function of κ is plotted. Since the
gap is totally symmetric ∆I (E) = ∆I (−E) and ∆+ (E) = −∆− (E) only the positive branch ∆+ (E) is
shown. The gap shows the typical form being constant close to the Fermi level, followed by a extremum
and a decay for larger energies [110]. For large κ the results are identical to a calculation neglecting
the Coulomb interaction completely. By decreasing the value of κ the Coulomb contribution starts
to influence the results. The critical temperature goes down, due to repulsion within one band [Eq.
(6.13)] and the gap starts to show dips. The dips indicate the regime, where the Coulomb interaction
competes with the SF. For κ < 1 the Coulomb contribution are strong enough to flip the sign of the
gap function for certain energies. The sign change of the gap function at higher energies reduces the
effect related to the repulsive Coulomb term in the gap equation [Eq. (6.13)] . Effectively, the Coulomb
contribution on the full energy scale may be mapped to a reduced effective Coulomb term on a smaller
energy scale due to the sign change of the gap function. Hence, the sign change of the gap function is
referred to as Coulomb renormalization [86]. Note that the sign change of the gap happens far away
from the Fermi level and is compatible with conventional and unconventional SC defined in Sec. 6.2.
However, for κ = 4 the Coulomb contribution still decays faster in energy, than the SF term which

leads to one more sign change in the large energy regime (magenta line in Fig. 6.4a). If the κ is decreased
further the Coulomb contribution dominate also in the large energy range and the gap changes sign
only once. Note that the critical temperature converges quickly with respect to κ. This indicates that
the Coulomb interaction influences the critical temperature only within a small energy window in the
symmetric two band system and the sign change of the gap does not affect the critical temperature.
In a real material, the density of states is of course not flat. In order to investigate the effect of

the DOS two things are there to be done: (1) The ratio of the DOS at the Fermi level is changed i.e.
N+(εF)
N−(εF) 6= 1 and (2) Non-flat functions are used. The results are shown in Fig. 6.5. The tested functions
are step and square root functions which represent a two and three dimensional system, respectively
and a Gaussian peak (left hand side of Fig. .6.4a). First, the ratio is set to one and different functions
are tried. The effect on the critical temperature with respect to the used function is very small for two
band system. The smooth functions used to model the DOS, start to differ beyond the maximum of
the gap (note the logarithmic energy scale). However, the symmetry ∆+ (E) = −∆− (E) is broken by
the unsymmetric DOS with respect to the Fermi level.
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Figure 6.5.: (left) Calculations for a two band system with no phonons, λSF = 1.2 and U0 = 0.3. The
κ is set to 1 in both calculations. (right) Model calculation using a single band with an attractive
Phonon and a repulsive Coulomb interaction for various DOS. The λPh is set to 1.2 and U0 to 0.3.

What seems to matter in the two band case is only the value of the Coulomb interaction at the Fermi
level. Up to now, this value is identical for the two bands: w12 = w21 and w11 = w22. By changing the
ratio N+(εF)

N−(εF) from one, the Coulomb interaction becomes different for the two sets. This has a strong
effect on the critical temperature (green line in Fig. 6.5b) compared to the changes in the shape of the
DOS. These findings are very different from a one band system with an attractive interaction (left side
of Fig. 6.5b). In such a system the Coulomb renormalization in the large energy regime is essential
for the critical temperature. If a Gaussian DOS is used to cut away the renormalization, the Tc is
reduced very strongly and the Tc becomes zero for functions with a smaller width (cf. the change in
Tc in the one and two band case). In summary it can be said that in a two band system with a sign
changing gap function the ratio of the Coulomb interaction at the Fermi level is very important, but
not the large energy tails.
Finally, a comment on the phonon contribution is made. Adding the phonons introduces a repulsive

contribution in the D-term [Eq. (6.10)] and two contributions in the C term: C+−∆− and C++∆+ [Eq.
(6.11)]. If the gap changes sign i.e. ∆−∆+ < 0 the contribution with respect to the C term cancel and
only the repulsive term is left. This means for a system in the sign changing state a band independent
phonon contribution will reduce the critical temperature. If the phonons are further increased and
dominate the gap equation, the symmetry of the gap changes. The s± state favored by the repulsive
interactions is suppressed and an s++ state with ∆−∆+ > 0 is found.

6.4. Summary

In this chapter a SCDFT functional containing magnetic fluctuations along with the Coulomb and
phononic contributions has been derived [Eq. (6.9)]. The functional has been applied to a model
system with two bands at the Fermi level. The critical temperature is sensitive to the characteristic
frequency of the magnetic fluctuation and effective coupling strength provided by the paramagnons.
The Tc follows the trends implied by Eliashberg theory (Fig. 6.3). In contrast to the one band system,
only a small energy range around the Fermi level of the Coulomb interaction is important for the
critical temperature (Fig. 6.5). However, the results are sensitive to the parameters of the model like
DOS at the Fermi level, Coulomb repulsion, λSF, λPh, ect.. In the next section all these parameters
will be calculated form first principles for two representatives of the iron based superconductors and a
SCDFT calculation will be performed for the two compounds.
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In the previous chapters a functional containing SF has been derived. The derivation was based on
MBPT Sec. 4 and 5. The MBPT is connected to the DFT framework using the SSEq. This procedure
leads to a universal functional in Sec. 6.1. The ground state properties enter the functional via the KS
energies ζk and the excitations are included via the linear response function [Eq. (E.17)].
After the general derivation and model calculation it is essential to check the functional in real

materials. Like discussed in the introduction (chapter 1), the iron based superconductors are the
perfect candidate to test the functional for two reasons: (1) There is strong experimental evidence
for a connection between magnetic fluctuations and superconductivity [118] and (2) the ground state
does not involve complicated Mott physics as in the cuprates [11]. However, even in the FeSC the
determination of the correct electronic ground state is problematic (see Sec. 7.2).

Figure 7.1.: Representatives of the four structural families of iron based superconductors. The unit
cell of CaFe2As2 (122 family) is non-tetragonal indicated by the third unit cell vector point in the
(a2 ,

a
2 ,

c
2) direction.

The FeSC split into four main strcutural families, the so called 11, 111 122 and 1111 family [75].
The building blocks in all groups are layers composed of a Fe square lattice, where each Fe atom is
surrounded by a tetragonal of Se or As atoms (Fig. 7.1). The various families are created by putting
different spatial layers between the building blocks. The simplest family (11) is created by simply
using no spatial layer at all [9]. For the 111 family light alkali metals like lithium or sodium are used
as spatial layers [119, 120]. The unit cells become more and more complicated with increasing the
number of different layers. Also the 122 family has only one spatial layer for example Ca,Sr or Ba, but
the layer is rotated by 90◦ form one iron layer to the next one. In the last important group (1111) two
spatial layers are present consisting for example of lanthanum and oxygen. There are more complicated
structures like the 32522 family which are left here for simplicity [75].
The electronic structure close to the Fermi level is mainly given by the d states of the iron atoms
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Figure 7.2.: Fermi surface of: FeSe , LiFeAs, CaFe2As2 and LaOFeAs representing the 11, 111, 122,
1111 family of the iron based superconductors, respectively. The Fermi surface has been calculated
in the non-magnetic phase with an all electron linear augmented plane wave code [125].

and hence the Fermi surface is rather similar in all the materials [13]: There are one or two electron
bands crossing the Fermi energy around theM -point (πa ,

π
a , 0) and two or three hole bands crossing the

Fermi level near the Γ-point. The Fermi surface corresponding to these bands is shown in Fig. 7.2. For
most materials the topology is two-dimensional with two “barrels” centered around the Γ andM point.
In the Li compound small electron “pockets” around the Γ-point are present. These theoretical results
are in reasonable agreement with angle resolved photon emission spectroscopy (ARPES) experiments
[121, 122, 123, 124].

Figure 7.3.: Experimental critical temperature
as a function of pressure [9, 126]. Pmax is
9 GPa for LiFeAs and 18 GPa for FeSe.

The chapter focuses on two representatives of the
iron based superconductors: FeSe (11 family) and
LiFeAs (111 family). FeSe and LiFeAs are both NM
metals at room temperature [9, 121]. By reducing the
temperature both materials become superconducting
with critical temperatures of 9 and 18 K, respectively.
However, the dependence on pressure is different in the
two materials. In FeSe the critical temperature rises
with pressure and a maximum of Tc = 36.7 K is found
at 8.9 GPa. The increase of the critical temperature
in FeSe is accompanied by enhanced SF [21]. This
points towards a connection between spin fluctuations
and the critical temperature. For larger pressures the
critical temperature starts to decrease up to a phase
transition to the hexagonal structure. At the struc-

tural phase transition superconductivity vanishes [9].
In LiFeAs on the other hand, the critical temperature reduces with pressure. The decay in Tc is

measured for pressures up to 2 GPa and a decay rate between −1.5 K
GPa and −2.0 K

GPa depending on
the sample quality is found [37, 127, 126]. The experimentalists explain the negative decay rate with
the small size of the lithium atom. This atom creates chemical pressure which results in the small
lattice parameters of LiFeAs compared to the 122 and 1111 compound. However, the 11 compounds
for example FeSe has an even smaller unit cell and show a different temperature behavior with respect
to pressure. A comparison of the critical temperature as a function of pressure is shown in Fig. 7.3. In
this figure the pressure is normalized by the maximum value investigated in this work which is 18 GPa
for FeSe and 9 GPa for LiFeAs.
This chapter features a complete study of the two compounds with respect to pressure and has the
following outline: First the ground state results are presented (Sec. 7.1). Unfortunately, the magnetic
ground state is not predicted correctly by the DFT calculation within all known functionals. In Sec.
7.2 this problem is discussed and a simple solution is suggested. In the last part of this chapter the
excitations and SCDFT calculations are presented and discussed (Secs. 7.3 and 7.4).
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P FeSe
(GPa) a c zFe-Se mFe

0 7.09 10.37 4.395 2.20
6 6.88 9.65 4.338 1.64
12 6.77 9.52 4.318 1.45

18(s) 6.73 9.63 4.320 1.46

P LiFeAs
(GPa) a c zFe-As zFe-Li mFe

0 7.12 11.99 4.475 5.2855 1.89
1 7.09 11.91 4.467 5.267 1.85
3 7.02 11.78 4.452 5.330 1.79
6 6.94 11.59 4.434 5.168 1.72
9 6.87 11.44 4.420 5.108 1.66

Table 7.1.: Results of the relaxation obtained with the experimental unit cell parameters a and c as a
function of pressure. The zFe-X is the relaxed distance between the Fe and X = {Se,As} atoms, mFe
is the magnetic moment per Fe atom and zcrit

Fe-X is the critical distance .

7.1. Non-Superconducting Ground State

Figure 7.4.: Unit cell parameter with re-
spect to pressure [128, 37].

The preliminary step before the investigation of SC is to
characterize and understand the non-SC ground state from
which SC originates. For this purpose spin DFT calcula-
tions of the electronic ground state of FeSe and LiFeAs as a
function of pressure are performed. For FeSe pressures up to
18 GPa are considered and for LiFeAs the relevant pressure
regime is smaller and a maximum value of 9 GPa is used in
the calculation (Fig. 7.3). The effect of pressure is modeled
in the ground state calculation via the edge length a and
the height of the unit cell c. The values are taken from the
X-ray diffraction experiments performed under pressure. In
Fig. 7.4 the experimental lattice constants as a function of
pressure are shown, together with the interpolation leading
the values for a and c16. In experiments no unified trends for the internal lattice parameters are found
(compare [129, 130] and [128]) and the crystal symmetry does also not require a specific value for the
distance of the Se or As atoms to the iron layer. Hence, the internal lattice positions are obtained by a
structural relaxation, and the distance between an atom X and the nearest Fe atom is labeled with
zFe−X .
The relaxation is performed with a state of the art plane wave (PW) code [131]17. In general the

relaxation in the magnetic cell leads to better agreement with experiment (this point is explained later).
Hence, the relaxation is done in the stripe magnetic phase. The stripe magnetic structure is shown in
Fig. 7.5 and the magnetic unit cell size is twice the chemical one. The results of the relaxation for the
two materials together with the magnetic properties are summarized in Tab. 7.1.
At all pressures for both materials a magnetic ground state is found. This is in contradiction with

the experimental results finding both materials to be NM [9, 121]. It also contradicts with the scenario
of the pairing induced by paramagnetic (PM) fluctuations related to a suppressed magnetic phase

16The test calculation indicate that the orthorhombic distortions do not effect the results significantly and the tetragonal
structure is used in the calculation. For FeSe at the highest pressure (18 GPa) no experimental data was available.
A calculation with a variable cell size and the minimization of the free enthalpy

∂H (S, PV )

∂V

∣∣∣∣ P = 18 GPa
S = const.

= 0

under the pressure of 18 GPa leads the optimal unit cell volume in terms of a and c. The simulated points are shown
in light green in Fig. 7.4.

17The XC-potential is approximated by a norm conserving GGA functional [97] The cutoffs for the PWs and charge
density are set to 100 Ryd and 400 Ryd, respectively. Sixty bands are included per k point and a k point mesh
of 14 × 14 × 10 points is used. The calculation is stopped, if the forces acting on the atoms are below a cutoff of
5 × 10−5 Ryd

a0
. It is very important to use always the same setup (like cutoffs, functional, basis set etc.) in the

calculation in order to achieve consistent results.
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discussed in the introduction (chapter 1). The magnetic ground state explains, why the relaxation in
the NM phase gives less good agreement with experiment than the relaxation considering the magnetic
state.
In principle, DFT is an exact scheme and should lead the correct ground state, so the mistake lies

(like always) in the approximation for the XC-potential. Many researchers believe [132, 133] that the
magnetic fluctuations are also essential for finding the correct ground state and the standard functionals
like LDA or GGA do not take AFM fluctuations into account [96, 97]. So one solution would be the
improvement of the existing XC–potentials in such a way that the ground state is correctly predicted.
However, the inclusion of dynamic effects in a static XC-potential is a highly non-trivial task and has
not been solved in general and is also not in this work. Simpler candidates to overcome this problem
are either dynamical mean field (DMF) or disordered local moments (DLM) [134]. The latter one has
been tried, but the energy of the DLM state does not lie below the stripe structure of all pressures.
The DMF enjoys great popularity nowadays in treating dynamical effects on a simple level [133], but
the common frameworks contain parameters and the derivation of an XC-kernel related to a DMF
ground state is not obvious [134].
In the present work a phenomenological approach is used to overcome the wrongly predicted ground

state. This approach is discussed in more detail in the next section (Sec. 7.2) and this section is closed
with a discussion of the energetic stability of the magnetic phase with respect to pressure.

Figure 7.5.: The CB and stripe magnetic structure.

Both LiFeAs and FeSe follow the general trend
that by reducing the unit cell size the tendency
for a magnetic phase is suppressed. This is seen
by the reduction of the on site magnetic moment
for the two materials with respect to pressure.
In order to investigate the stability of the stripe
magnetic structure, also calculations in the NM
and CB phase are performed (Fig. 7.5). The ener-
getic order of the three configurations is EStripe <
ECB < ENM. The energy difference between the
stripe and CB configuration increases in magni-
tude with pressure by EStripe−ECB

Pmax−P0
∼ −2 mRyd in

both materials. The starting value for ambient
pressure is −4.7 mRyd for FeSe and −11.0 mRyd for LiFeAs. The difference between the CB and NM
structure becomes smaller with pressure and reaches a minimum value of |ECB − ENM| ∼ 2.5 mRyd in
both materials. The change in the latter difference is stronger than the decrease between the Stripe
and CB structure which leads in total to a shirking |EStripe − ENM| for the two materials with respect to
pressure. The only exception from this trends is the highest pressure in FeSe, where the |EStripe − ENM|
goes up a little bit by half a mRyd compared to 12 GPa which is also seen by a small increase in the
size of the magnetic moment. However, the energy difference for all pressures |EStripe − ENM| never
goes below ∼ 9 mRyd which is quite a solid energy amount.
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7.2. A Phenomenological Connection

In order to include the effect of spin fluctuations into SCDFT we need a reliable estimation of the
magnetic response function χzz. Due to the ground state problem χzz cannot be computed straightfor-
wardly from the GGA or LDA ground state. As discussed in the previous section no proper ab-initio
tools to come across the obstacle have been developed. Therefore, a phenomenological method is used
in this work. The idea is to find an adjustable external control parameter ξ to push the system in the
non-magnetic regime. Only in this phase it is possible to compute the χzz containing the paramagnons.

Figure 7.6.: Magnetic moment as a function of ξ
ξcrit

and the external magnetic field.

In Fig. 7.6 a generic cartoon of the phase space
is shown. The magnetic moment undergoes a
phase transition as a function of the control pa-
rameter. The magnetic response χzz is given
by the derivative − δm

δBext

∣∣
Bext=0

and diverges at
ξ = ξcrit. Some distance away from the transi-
tion |ξ − ξcrit| > 0 the values are finite. The sign
of the response function is always negative, if
the KS Green’s function and density correspond-
ing to the ground state at this ξ is used in Eq.
(5.18). If not the ground state GF is used, the
static response becomes positive at the q corre-
sponding to the magnetic ground state ordering
vector qGS. For the stripe magnetic structure in
the FeSC (Fig. 7.5) the qGS is qM =

(
π
a ,

π
a , 0
)
.

The sign changes to a positive response function
leads to an energy gain,

∆E = − lim
q→qGS

lim
ω→0

Bz (qω)·Im [χzz (qω)]·Bz (qω) < 0

if the system is exposed to external magnetic fields matching the ground state symmetry. The energy
gain is indicating that the systems wants to go to the real ground state and static external perturbation
are sufficient to do this. Once more this is in total analogy to the phonons. The positive sign of the
response leads also to an attractive (positive) interaction related to the magnetic fluctuations [see
Eq. (5.41)]. An attractive interaction created by the Coulomb repulsion is highly unphysical and the
integral in Eq. (B.11) would diverge due to the finite value of χ (ω = 0).
This means a linear response calculation on top of non-ground state (for example NM state in the

FeSC) leads to wrong results. What one has to do is to adjust the external control parameter ξ to
enforce the correct or desired ground state (NM) and perform a linear response calculation for this
value of ξ.
One candidate for the control parameter is the distance of the Se or As atom to the iron layer labeled

with zFe-Se and zFe-As, respectively. The on site magnetic moment is strongly affected by the zFe-Se or
zFe-As, as shown in Fig. 7.7. For sufficiently small distances the magnetic phase is suppressed for all
pressures in the considered regime and the phase transition is second order. The values for zFe-Se and
zFe-As obtained by the structural relaxation (dashed lines in Fig. 7.7) lie all above the critical point an
large shifts of ∼ 1

4 a0 from the relaxed position are necessary to obtain a non-magnetic state.
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Figure 7.7.: Magnetic moment as a function of the distance between the As or Se to the Fe atom for
the different pressures. The relaxed values are indicated as a dotted line.

But also doping, pressure or external magnetic fields are possible choices for ξ. However, all these
control parameters strongly affect the underlying electronic and structural properties which will prove
to be a disadvantage in the further discussion. It is also possible to keep the ground state unchanged
and introduce the control parameter in the Dyson Eq. (5.17) for the response function:

χzz (qω) =
χKS (qω)

1− χKS (qω)αfxc
zz (qω)

.

Figure 7.8.: The spectral function [Eq. (B.13)] for
q = qM in LiFeAs. The dashed line indicates
20 meV which is roughly the energy of the fluc-
tuation in the non-SC phase[102]

The response function of LiFeAs for various α
is shown in Fig. 7.8. Due to the scaled kernel the
sign change of the response function is avoided
and χ starts correctly at zero as it should in a non-
magnetic groundstate. The results are very sen-
sitive to the value of α which is well known from
early calculation of S. Doniach of the magnetic
response in the electron gas [135]. The use of the
parameter α has been suggested by I. Mazin and
in Ref. [136, 132] arguments for the rescaling of
the kernel in a magnetic system are given. The
reduction of the XC-kernel and potential can be
connected to magnetic fluctuations. This is in
line with the picture that the absence of the fluc-
tuations in the used functionals leads to the over-
estimation of magnetism. Note that constrained
field calculations (often called fixed spin moment
calculation) enforce a vanishing moment, but the

response depends then on the external constraining field.
From the discussed control parameters, only the scaling of the kernel and the internal lattice position

zFe-Se and zFe-As are undetermined by experiment and could be freely chosen in calculations. In this
work the scaling of the kernel is used as the control parameter in order to fix the problem of the wrongly
predicted ground state. There are two reasons for this choice: One is practical and the other one is
physical. The physical one is that the Fermi surface is in reasonable agreement with the observed
ARPES data (cf. Fig. 7.2 and [121, 122, 123, 124]) and parameters like the zFe-Se and zFe-As would
change the shape of the Fermi surface in an unphysical way. As the role of the Fermi surface is essential
in the context of superconductivity (Sec. 6.2) this should be avoided. The practical advantage is the
much lower computational work associated in a change of the parameter α compared to a change in
the internal lattice coordinates. The latter one would involve a recalculation of the ground state and
χKS, where as a change in the scaling only requires to re-solve the Dyson equation [Eq. (5.17)].
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More important then the choice of the control parameter itself is the procedure how to fix the value
of the parameter. If one is very close to the critical value, the fluctuation strength becomes infinitely
strong, and the characteristic frequency of the fluctuations goes to zero (Fig. 7.6). In Sec. 6.3.1 an
exponential dependence of the critical temperature on the the coupling strength has been observed in
the weak coupling regime. This means that big changes in Tc are created by small change in the value
of the control parameter. The dependence on the parameter means that the framework is not ab-initio
anymore. A principle solution to this problem would be a self-consistent feedback of the fluctuations,
converging to a non-magnetic ground state 5.5. Like the improvement of the ground state functional
itself, also the self-consistent treatment starting from a magnetic state and hopefully converging in a
non-magnetic state due to magnetic fluctuations is beyond the scope of this work.

FeSe
Pressure α [P ] αcrit

0 GPa 0.668 0.686
6 GPa 0.737 0.755
12 GPa 0.738 0.770
18 GPa 0.720 0.765

LiFeAs
Pressure α [P ] αcrit

0 GPa 0.890 0.909
1 GPa 0.890 0.924
3GPa 0.900 0.948
6GPa 0.91 0.984
9GPa 0.905 1.011

Table 7.2.: Values for the rescaling of the kernel used in the calcula-
tion for the effective interaction. The values are chosen to obtain
reasonable agreement with experiment.

The initial idea was to esti-
mate the value of α in order
to reproduce the experimentally
observed critical temperature as
a first step. This leads to one
scaling value α for each separate
calculation i.e.

α = α [Material,Pressure] .

In Tab. 7.2 the value for the two
materials at each pressure are
shown. The values are all below
one, indicating that the ground state is magnetic except for LiFeAs at 9 GPa. At this point no down
scaling of the kernel is necessary to get a finite response. This seems strange because in Sec. 7.1 a
finite moment i.e. a magnetic ground state was found. The reason for this inconsistency lies in the
usage of different codes. The response function and critical values are found using a multiple scattering
Korringa-Kohn-Rostoker (KKR)18 code, whereas the results in the ground state section are obtained
using DFT methods within a PW basis set. However, the tendency to magnetism is overestimated in
both approaches and the critical value for α is increasing with pressure. This implies that the magnetic
state is suppressed by pressure, with FeSe at 18 GPa being an exception of this trend. Precisely the
same results have been found with the DFT methods in the previous section.
Once the values of α are settled, it is tried to find an empirical formula to reproduce the estimated

values of α. With this approach the theory would leave the field of first-principle calculations and
become semi-empirical. The information available for the empirical expression contain ground state
properties as the unit cell volume, the energy differences between the three magnetic structures, the
electronic structure in k space (DOS,nesting...), the coefficients {ai} of a fixed spin moment calculation
E = a0 + a2M

2 + a4M
4 + . . . as well as response quantities like the αcrit or a fluctuation strength

∆ dwχzz (qMωα1) where the scaling value α1 < αcrit is chosen to create an excitation energy of ∼
20 meV found in experiment (Fig. 7.8).
All these quantities have been calculated and collected for the two compounds at each pressure.

Unfortunately it was not possible to find a simple correlation between some of the collected information
and the estimated values for α. The reason for this failure is most likely related to the fact that one
tries to correct the wrong ground state (no information about the fluctuations), with the information
provided by this wrong ground state. This means the scaling of the kernel stays a parameter, chosen
to reproduce the experimental results.

18Details on the KKR calculation are given in Sec. 7.3.2.
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7.3. Contributions to the SC Pairing

After the ground state results have been discussed in detail, it is time to investigate the excitations in
the system. In the gap equation [Eqs. (6.11) and (6.10)] three different excitations are present:

1. The vibration modes of the nuclear lattice (Phonons.)

2. The collective excitation of the electronic spin (Paramagnons.)

3. The screening of the Coulomb interaction

All three terms are accessible via LRDFT. The results of the linear response calculation lead to fully
anisotropic interactions in k space: Λ (nkn′k′ω). These high dimensional objects are very difficult
to investigate and the solution of the gap equation becomes very demanding. Fortunately, the Fermi
surface of the iron based superconductors is split into two sets: one group of bands around the Γ-
point and the other one around the M -point (Figs. 7.2 and 7.11a). The bands around the Γ-point are
merged in one band called {+} and the bands around the M -point go into the set {−}. This means
the interactions become:

Λ
(
nkn′k′ω

)
−→ ΛIJ

(
E,E′, ω

)
with I, J ∈ {+,−} .

In this approximation it is only possible to find isotropic gap structures like the s± or s++ in the
irreducible representation A1g (Fig. 7.9) and also the anisotropy of the gap with respect to the different
bands around Γ or M is neglected [137]. Also d wave structures with nodes on the sheets of the Fermi
surface are excluded. To find such structures (like B1g, B2g and A1g) or oscillations of the gap in k
space [138] one has to keep the isotropy in k space. However, as discussed in the Sec. C.3 there are
experimental hints in favor of a s± symmetry and the missed d symmetries (due to the constrained
symmetry) are energetically close to the s state.
The DOS with respect to the bands is important for the averaging process and is shown in Fig. 7.10.

The region in k space close to the Fermi energy is the essential one for the averaging because this is
the region where the gap function is highly peaked and varies strongly. Since the electronic energies
change along the normal vector of the Fermi surface a very dense sampling along this direction is
necessary. The energy resolution ε (k1)− ε (k2) should be in the regime of 10−6 Ryd. This resolution
is achieved by a dense grid of random k points with uniform weights and a precise interpolation of the
electronic energies is used to obtain the ε (k) at each random grid point. This integration technique
is called Metropolis algorithm [139]. It is not feasible to calculate the electronic or nuclei response on
such a dense grid and the functions are evaluated on a rougher regular q grid. In the summation of
the random grid points in the calculation of the isotropic interaction [Eq. E.19] always the closest q
is assigned to a pair of random points: minq [(k− k′)− q]. In Fig. 7.11a the regular q grid and the
random grid used for the calculation of the electronic response function are shown.

7.3.1. Phonon Contributions

First the phonon contributions are discussed. For the calculation of the phononic contribution the
Sternheimer equation is solved which is the linear response equation for the nuclear degrees of freedom
[53]. The implementation within the PW code quantum espresso is used [131]. The phonons and
isotropic interaction have been calculated by A. Sanna. An ultra soft pseudo potential within the
GGA has been used [97]. For the PW a cutoff of 40 Ryd was sufficient and for the charge a ten times
larger value is used. The k and q grid for the calculation of the gkk′λq and Ωλq [Eq. (6.8)] are set
to 8 × 8 × 6 and 6 × 6 × 4 in LiFeAs and to 10 × 10 × 6 and 6 × 6 × 4 in FeSe, respectively. The
averaging of the k resolved quantity involves a random grid integration and is discussed above. The
dependence with respect to E and E′ is neglected for the phonons and always the value at the Fermi
level E = E′ = 0 is used in the gap equation. This is justified by the small energy ω of the phononic
excitations which will induce a quick decay in the function I (E,E′, ω) defined in Eq. (6.4) with respect
to larger E and E′.
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Figure 7.9.: Possible gap symmetries for singlet pairing in the tetragonal lattice. A detailed derivation
of the groups is found in Sec. C.3. The red and blue areas indicate regions where the gap switches
sign if a symmetry operations is applied. The black lines indicate the two groups of bands at the
Fermi level.

As an example the ΛPh
IJ (ω) at ambient pressure for FeSe and LiFeAs is shown in Fig. 7.10b. As

a function of pressure the phonon spectrum changes a little bit, but the overall structure stays the
same. The off diagonal contributions Λ±∓ (ω) have almost the same form with respect to frequency
and differ only in magnitude due to a different DOS at the Fermi level. For the diagonal contribution
Λ±± (ω) this is not the case and the spectrum is different for the two bands. This difference is stronger
in LiFeAs, where already the Fermi surface indicates a stronger difference between the {+} and {−}
band, compared to FeSe (Fig. 7.2). The characteristic frequency ωlog is larger for FeSe compared to
LiFeAs. Since the coupling strength is weighted with 1

ω [see Eq. (6.16)] the coupling becomes then
stronger in LiFeAs.
However, the general level of the phononic coupling is low and the average coupling strength is

around 0.1. This indicates that the phonons cannot be the essential contribution in the iron based
superconductors. Besides being too small, the phononic coupling also shows no dome like (FeSe) or
declining (LiFeAs) shape with respect to pressure which would be necessary to explain the experimental
trends in Tc (Fig. 7.3). This result is in line with the previous calculations of the phononic coupling in
the 1111 compound [74]. In these calculations a coupling of 0.2 was predicted, leading to a maximum
Tc of less than one Kelvin using the Allen and Dynes Formula with µ∗ = 0 [117].
Assuming a s± symmetry in the gap equation the contribution CPh

±±∆± pushes the system towards a
non-trivial solution, whereas the term CPh

∓±∆± fights superconductivity [Eq. (6.12)]. In order to give a
quick overview which terms enhance or destroys superconductivity the sign function sgn [∆I ] sgn [∆J ]
is added in the Fig. 7.10b to the effective interaction ΛPh

IJ (ω) . A positive value indicates a good
contribution for superconductivity and a negative value a destructive one. This convention will also
be used in all plots of all the other contribution to the gap. Note that this sign only is induced within
the gap equation and plots, but the phonon coupling is always attractive: ΛPh

IJ < 0 for all ω,I and J .
Finally an average coupling is defined:

λ̄ :=
1

N (εF)

∑

IJ

NI (εF)λIJsgn [∆I ] sgn [∆J ] . (7.1)

Also this quantity takes into account the sign convention discussed above. Since for the low pressure
in FeSe the average phonon coupling is stronger for interband scattering the average value becomes
negative. This is not the case for LiFeAs, where the the average value is constant at ∼ +0.02 with
respect to pressure. Our results agree with the recent calculation for LiFeAs at ambient pressure done
by R.A. Jishi and D. Scalapino [140].
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(a) Density of states of the two bands N+ and N− as a function of Pressure.

(b) The effective interaction related to phonons ΛPhon
IJ (ω) . The sign of the ΛPhon

IJ (ω) is given by sgn [∆I ] sgn [∆J ].

FeSe LiFeAs
0 GPa 6 GPa 12 GPa 18 GPa 0 GPa 1 GPa 3 GPa 6 GPa 9GPa

λph
++ 0.020 0.081 0.059 0.054 0.081 0.079 0.081 0.083 0.089
ωlog 2.367 1.257 2.383 2.578 1.447 1.474 1.508 1.593 1.595
λph

+− 0.030 0.100 0.043 0.039 0.056 0.055 0.057 0.063 0.068
ωlog 2.326 0.769 2.054 2.332 1.409 1.429 1.458 1.505 1.530
λph
−+ 0.052 0.206 0.100 0.080 0.082 0.078 0.086 0.047 0.079
ωlog 2.326 0.769 2.054 2.332 1.409 1.429 1.458 1.505 1.530
λph
−− 0.030 0.164 0.078 0.054 0.103 0.096 0.108 0.058 0.096
ωlog 2.370 0.339 2.051 2.419 1.339 1.352 1.375 1.421 1.420
λ̄ph -0.014 -0.029 0.005 0.003 0.023 0.022 0.022 0.019 0.019

(c) Table showing the relevant effective coupling strength and logarithmic frequency defined in Eq. (6.18). The
ωlog is given in (mRyd) and λ̄Ph is the average coupling value defined in Eq. (7.1).

Figure 7.10.: Overview of the phononic contribution in the FeSe and LiFeAs.
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7.3.2. Electronic Contributions

In the gap equation [Eqs. (6.11) and (6.10)] a screened Coulomb term w and a SF term ΛSF are present.
The full density-density response function χii is calculated with LRDFT [Eq. (5.17)]. The charge part
χ00 leads to the screening of the Coulomb interaction and the magnetic response χzz the effective
interaction due to paramagnons [Eqs. (4.17) and (5.41)]. The KS Green’s function is obtained using a
KKR multiple scattering code, implemented by P. Buczek, A. Ernst et. al. [56, 141] . The calculation
of the KS Green’s function GKS (r̄1r̄2kω) is done on a mesh of 20× 20× 20 k points and in the Atomic
Sphere Approximation (ASA) . The XC–energy is approximated by the local density approximation
[96]. The corresponding adiabatic XC-kernel is frequency-independent and local in space (Sec. B.4).
The computationally expensive part within the linear response calculation is the convolution of the
two GKS in the non-interacting response. The convolution is calculated with the GF transformed to
frequency and inverse space:

χKS (r̄1r̄2qω) = ∆ dν
∑

k

GKS (r̄2r̄1k− qν − ω)GKS (r̄1r̄2kν) .

The Fourier transformation (FT) are given in Sec. B.1.2 and B.1.1 for the inverse space and time
independent Hamiltonian, respectively. The response function is evaluated on a q mesh of 20× 20× 1
points. The energy points on the nearly real axis are sampled by a logarithmic mesh with 25 energy
points ranging from an energy of 10−6 Ryd to 0.05 Ryd. The distance to the real axis is set to
0.008 Ryd and a Padé polynom is used for the analytic continuation to the real axis. The dispersion
along the z direction has been neglected due to the two-dimensional structure of the Fermi surface and
additionally only q with |q− qΓ| < r and |q− qM| < r are considered because this is the area where
the bands close to the Fermi energy are located (Fig. 7.2). The radius r is shown in Fig. 7.11a as a
dashed line and in Fig. 7.12a for the path along the Brillouin zone (BZ).
In Fig. 7.11a the regular q grid and the random grid used in the calculation of the isotropic interaction

is shown. The bands around the Γ point are larger in LiFeAs compared to FeSe, but all lie within
the considered radius r indicated by the dashed black line. For the figure only random grid points
with |ε (k)− µ| < 10−3 Ryd are included and a broad set of points around one band indicates a
flat dispersion around the Fermi level. A thin line on the other hand indicates a strong dispersion.
Especially the center band around the Γ point and the inner band around the M point in LiFeAs show
a flat dispersion which indicates a large effective mass. The smallest effective mass is found for the
inner band around Γ in FeSe.
It is not expected that quasi particles corresponding to charge fluctuation (plasmons) are important

and provide a coupling. The theory for a plasmon coupling works in an analogous way like the
framework for the paramagnons. If the plasmonic excitations are strong for vectors connecting the two
parts with altering sign of the gap function this could lead to a coupling (see Sec. 6.2 for a discussion
on the paramagnon case). However, the excitation energies for 3D systems of the plasmons are very
high (eV range) and there is no experimental evidence for charge fluctuations at q ≈ qM. Hence
the dependence with respect to ω is neglected and the static RPA is used for the screened Coulomb
interaction [Eq. (E.13)].
Since, the Phonon contributions are small, the gap must involve a sign change. From the model

calculation in Sec. 6.3.2 it is known that the long Coulomb tail is not important for a two band system
with a sign changing gap. Relevant are only the Coulomb contribution at the Fermi level which are
given by the two bands {+} and {−} shown in Fig. 7.2. Hence, higher bands and k points outside
the random grid sets (Fig. 7.11a) are not considered for the Coulomb interaction and only a small
energy window given by the dispersion of the bands at the Fermi level is used. Remember that this is
only possible in a two band system with s± symmetry, where the long isotropic Coulomb tail cancels
between the bands with different sign. The results for the Coulomb contribution are shown in Fig.
7.11. For an interaction limited to this small energy window it is reasonable to consider also an average
coupling at the Fermi level introduced for the phonon contribution in Eq. 7.1.
The Coulomb contribution are a bit larger, than the phononic ones. The values for scattering within

one band are larger compared to intraband scattering: ω±± > w∓±. This difference is induced by
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(a) Grids for the calculation of the response function and averaging of the effective interaction. The left panel is FeSe
and the right LiFeAs at ambient pressure. The response is only calculated on a rough grid represented by the green
stars, but the summation with respect to k runs over the dense random grid (little dots for the two sets). In the
picture only random points within a small energy interval around the Fermi surface are shown.

(b) Static screened Coulomb interaction wIJ (E,E′) for E = E′. Also here the same sign convention like in Fig. 7.10 is
made, but the screened Coulomb interaction is repulsive.

FeSe LiFeAs
0 GPa 6 GPa 12 GPa 18 GPa 0 GPa 1 GPa 3 GPa 6 GPa 9GPa

w++ -0.182 -0.175 -0.177 -0.171 -0.162 -0.155 -0.138 -0.116 -0.110
w+− 0.077 0.069 0.068 0.076 0.093 0.094 0.086 0.090 0.097
w−+ 0.133 0.143 0.153 0.155 0.135 0.132 0.130 0.115 0.113
w−− -0.108 -0.093 -0.122 -0.144 -0.138 -0.144 -0.130 -0.144 -0.161
w̄ -0.048 -0.036 -0.038 -0.032 -0.037 -0.036 -0.032 -0.025 -0.029
(c) Table giving the value of wIJ at the Fermi level and w̄ is the average with respect to the bands.

Figure 7.11.: Overview of the grids in inverse space for the linear response calculation for the screened
Coulomb contributions.
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the larger momentum transfer necessary for scattering between the two bands [see Eq. (6.14)]. This
means the negative contribution induced by the Coulomb contribution (CCoul

++ ∆+) in the gap equation
are larger than the positive ones (CC+−∆−). The average Coulomb contribution taking the sign of
the bands into account becomes negative and a reduction of the critical temperature by the Coulomb
contribution is expected (Sec. 6.2). For both materials there is no strong change in the Coulomb term
with respect to pressure. Therefore, like the phonon contribution also the Coulomb terms cannot be
the reason for the experimentally observed trends of the critical temperature (Fig. 7.3).
From the three contributions only the SF remains to explain the high critical temperatures and the

dependence with respect to pressure found in the materials. The Phonon and Coulomb contributions
have been ruled out, due to the weak coupling strength and no dependence on pressure. Before the
isotropic interactions related to the magnetic fluctuations are presented and discussed an additional
approximation is made. In Fig. 7.12a the spectral function for FeSe and LiFeAs along a path in the BZ
is shown. The spectrum features strong low energy fluctuations for the vector qM. The fluctuations
are introduced by the stripe structure which is the ground state in these materials (see Sec. 7.1 for the
ground state results). Also for the other high symmetry points like qX =

(
π
2a , 0, 0

)
and qΓ = (0, 0, 0)

some (small) excitations are observed. The vector qΓ corresponds to a ferro magnetic structure and
2qX to the CB structure. The fluctuations at Γ are stronger in FeSe compared to LiFeAs where
more excitations around the X point are found. For larger pressure the fluctuation for q 6= qM are
suppressed, and the qM dominates because the systems are closer to the critical point for higher
pressures.
The excitation with small momentum create the intraband (± → ±) coupling and the fluctuation

around qM are responsible for the interband scattering between the two bands(∓ → ±). For the
Coulomb interaction the intraband contribution were larger than the interband one. This is not the
case for the SF: The intensity of the fluctuation is weaker for qΓ than for qM in LiFeAs and the energies
of the excitations for q 6= qM are much higher. Especially the high energies lead to an effective coupling
given in Eq. (6.17) which is more than 10 times larger for the interband scattering (q ≈qM) than for
the intraband one(q ≈qΓ). Hence, the diagonal elements of the effective interaction related to the SF
are neglected:

ΛIJ
zz

(
EE′ω

)
=

(
Λ++
zz (EE′ω) Λ+−

zz (EE′ω)
Λ−+
zz (EE′ω) Λ−−zz (EE′ω)

)
≈
(

0 Λ+−
zz (EE′ω)

Λ−+
zz (EE′ω) 0

)
.

In Fig. 7.12a two ticks with a label r are shown. These indicate the range of possible vectors around
M for interband scattering, given by the two spherical sets indicated by the dashed line in Fig. 7.11a.
The radius r of the sets is large enough to include all the low lying excitations around the M point.
The averaging process for the isotropic interaction involves the same steps already discussed for the
Coulomb interaction and the same framework is used for the magnetic contributions. The results are
shown in Fig. 7.12b.
The shape of the interaction is different for the two materials. The difference between the considered

systems is created by the form of the magnetic response function. The adiabatic kernel is almost
constant and does not change the form of the effective interaction given by fxc

zzχzzf
xc
zz [Eq. (5.41)]. As

in all the previous plots the terminus spectral function is used for the largest eigenvalue of the loss
tensor introduced in Eq. B.13. The spectral function at qM is larger for LiFeAs than for FeSe and
shows a clear peak. This is also seen in the effective interaction: For LiFeAs a low energy peak is
present, whereas the contribution for FeSe is rather flat. This situation changes if pressure is applied.
The tendency to magnetism is suppressed by pressure and the critical value αcrit is rising. All the

values of the critical and used scaling values for each pressure and material are summarized in Tab.
7.2. For the LiFeAs compound the used values for the scaling are not increasing with pressure and are
almost constant (∼ 0.9). This means the distance between the critical and the used value increases as
a function of pressure. This leads to a decay of the fluctuations with respect to pressure in LiFeAs
and only for ambient pressure a low energy peak is visible in the effective interaction due to strong
fluctuations at the M point. The characteristic frequency ω̄ (neglecting the log weight in Eq. (6.18)]
is increasing with pressure because the main peak at qM is moving to larger values since |α− αcrit| is
increasing (Fig. 7.8)
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7.3. CONTRIBUTIONS TO THE SC PAIRING

This is different in FeSe. In this material the scaling values are adjusted with pressure. In particular
the chosen values lead to a smaller difference |α− αcrit| and stronger fluctuation for intermediate
pressures of 6 and 12 GPa. The enhanced fluctuations due to the smaller difference to the critical
value of the control parameter create a peak in the effective interaction. Since multiple q close to qM
are averaged in the isotropic interaction the peak is broad and at higher energy than the excitation
shown in Fig. 7.6b at precisely q = qM. A broad response function is also observed in experiment
in the non-superconducting regime [102]. For pressures above 12 GPa the scaling is not increased
anymore and as a consequence the fluctuations start to decrease due to a larger |α− αcrit| compared
to the intermediate pressures. This introduces the dome like structure in fluctuation strength with
respect to pressure. It should be emphasized again that the scaling function is chosen in such a way
to create the dome and decaying form of the response function in FeSe and LiFeAs, respectively.
In the Tab. 7.12c the effective coupling and logarithmic frequencies for the magnetic fluctuations

are presented. It becomes immediately clear, that the fluctuation are the key in the description of
the FeSC. The effective coupling strength λ̄SF are ∼ 10 times larger than the phonon contribution and
the Coulomb terms. Also the trends implied for the critical temperature can be captured by the SF
coupling. The strength is still in the weak coupling regime, but the characteristic frequencies are higher
then the phonon ones (like predicted by the model calculation in Sec. 6.3.1). The obtained effective
coupling and characteristic frequency, put the iron based superconductors in the central region (within
the green iso lines) of the Tc

(
λ̄SF , ω̄

)
plot derived for the model interaction (Fig. 6.3). Since the iso

lines indicate the experimentally observed critical temperatures, the coupling strength provided by the
paramagnons will be strong enough to explain the experimentally observed critical temperatures. In
the next section SCDFT calculations are performed to verify this statement.
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(a) spectral function for FeSe and LiFeAs at ambient pressure for a path along the BZ. A dominant peak at the M point
is present and some smaller fluctuation at higher energy around the Γ point. In the plot a Gaussian smearing has
been used.

(b) Isotropic interaction related to the SF in FeSe and LiFeAs as a function of pressure in GPa. Shown is always the
Λ+−
zz (E,E′ω) element for E = E′ = 0.

FeSe LiFeAs
0 GPa 6 GPa 12 GPa 18 GPa 0 GPa 1 GPa 3 GPa 6 GPa 9GPa

λSF
+− -0.225 -0.375 -0.354 -0.291 -0.323 -0.294 -0.242 -0.224 -0.209
ωLog 12.35 9.18 9.87 11.20 10.79 12.31 14.38 15.38 15.51
λSF−+ -0.401 -0.785 -0.818 -0.598 -0.473 -0.423 -0.370 -0.289 -0.251
ωLog 12.39 9.20 9.89 11.23 10.87 12.34 14.44 15.44 16.48
λ̄SF 0.289 0.509 0.494 0.392 0.384 0.348 0.293 0.253 0.228

(c) Table showing the relevant effective coupling strength and logarithmic frequency defined in Eq. (6.18). The
ωLog is given in (mRyd) and λ̄SF is the arithmetic mean over the four sets.

Figure 7.12.: Overview of the SF contributions.
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7.4. SCDFT CALCULATION

7.4. SCDFT Calculation

Now that all necessary ingredients for a SCDFT calculation have been computed and discussed, it is
time to solve the gap equation and obtain critical temperatures. All contribution in the gap equation
(phonon, Coulomb, SF ) are just separate additive terms and it is trivial to include them in a calculation
or set them to zero [Eq. (6.9)]. As a first step, the spin contribution are set to zero and the fully
linearized gap equation given in Sec. E.3.2 is solved. There are now three possible combinations: Only
Coulomb, only phonon and both. All have in common that the Tc is zero or to be more precise below
the threshold of 0.1 K where the iterations are stopped. This was already expected from the discussion
in the previous section, in which very small coupling strengths were found for the Coulomb and phonon
terms.
Now the SF are added and three combinations are considered: Only SF, SF and Coulomb and all

three contribution. The first setup is often used in model calculation, with the argument that the
phonon and Coulomb contribution cancel [16]. In Fig. 7.13 the results for the critical temperatures as
a function of pressure are shown together with the experimental data.

Figure 7.13.: Tc as function of pressure together with the ex-
perimental data [9, 126] as light green and red dots.

The coupling strength provided by
the SF depends strongly on the rescal-
ing of the XC-kernel which was neces-
sary to overcome the problem of the
wrongly predicted ground state (Sec.
7.2). The values for the rescaling of
the kernel for each pressure are listed
in Tab. 7.2. The values have been cho-
sen in such a way to reproduce the ex-
perimental trends of the critical tem-
perature with respect to pressure:

• LiFeAs has a higher Tc then FeSe
at ambient pressure

• The Tc in FeSe shows a dome like
dependence on pressure and a de-
caying one in LiFeAs.

The message of the calculation is, that it is possible to obtain the correct trends in the Tc and that the
trends are related to changes in the magnetic fluctuation with respect to pressure. However, it should
be emphasized once more, that the calculations contain the phenomenological scaling of the kernel,
and the trends in the Tc are not a result of an ab-initio calculation.
But not only the trends in the critical temperature are well reproduced by the calculation. Also the

overall size of Tc is in reasonable agreement with experiments, with a tendency of underestimating the
experimental values. However, since the materials are located in the weak coupling regime, where an
exponential dependence of the critical temperature on the coupling strength is found (Sec. 6.3.1), it is
possible to adjust the control parameter for each interaction in order to achieve perfect agreement with
experiment. However, it was not the aim of this work, to achieve perfect agreement with experiment
but to give a first estimation of the coupling strength related to SF in the FeSC.
The results for the critical temperature prove, that the pairing in the FeSe and LiFeAs is unconven-

tional and that magnetic fluctuations are capable of explaining the trends and the magnitude of the
critical temperature. The largest values for Tc are found, if only the SF are considered and the smallest
if all contribution are included. The case where only repulsive electronic contribution are considered
(spin and Coulomb) lies in between the two limiting cases. The reduction of the critical temperature by
the phonon term is larger in FeSe compared to LiFeAs. The argument that the Coulomb and phonon
contribution cancel, is not supported by our calculation in a two band system. The reason for this lies
in the isotropy of the phonon terms with respect to the bands (Fig. 7.10c). For a compensation between
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Figure 7.14.: Gap function ∆± (E) close to the phase transition T ≈ Tc for FeSe and LiFeAs.

the two, the λ̄Ph
±± should be substantially larger than the off diagonal contribution λ̄Ph

±∓ in order to
compensate the phononic D-term [Eq. (6.10)] and the overage of intraband Coulomb repulsion part.
The fact that the purely repulsive contribution (spin and Coulomb) lead to solid transition temper-

atures, makes a sign change of the gap function mandatory. In Fig. 7.14 the gap function ∆± (E) is
shown for the calculation considering only the spin contribution. Since the fully linearized equation
is solved the function is normalized to one for each calculation. The form of the gap function is com-
parable to the results found for the model calculation in Sec. 6.3.2. The system is clearly in the s±
symmetry. The maximum of the gap is related to the critical temperature. This is already known
from the model calculation (Sec. 6.3.2) and is now found for the two materials: For FeSe the maximum
position is increasing with pressure as Tc and for LiFeAs it is the other way around. The ratio of the
gap |∆+(E=εF)|

|∆−(E=εF)| is ∼ 3
4 for both materials which is given by the ratio of the DOS at the Fermi energy

(Fig. 7.10a). If the Coulomb contributions are added to the kernel [Eq. 6.11], the gap functions start
to show little dips. These dips are well known from the model calculation in Sec. 6.3.2 and indicate
the energy region where the Coulomb contributions start to compete with the SF ones. However, a
proper Coulomb renormalization with a sign change of the gap is not observed. This is related to the
small energy cutoff of the Coulomb contribution.

7.5. Summary

In this chapter a full SCDFT calculation for FeSe and LiFeAs has been presented. All contributions
to the gap equation: screened Coulomb, phonon and magnetic fluctuations have been calculated from
first principles and are discussed in Sec. 7.3. Due to the wrongly predicted magnetic ground state (7.2),
a scaling parameter of the XC-kernel has been introduced. The results show that the Coulomb and
phonon contribution are not able to explain the high Tc in this class of materials. The contribution
related to the magnetic fluctuations depends strongly on the value of the scaling parameter. It is
possible to choose a scaling for each material and at each pressure, such that the coupling provided by
the magnetic fluctuations is sufficient to explain the critical temperature in the two compounds (Fig.
7.13).
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8. Summary, Conclusion and Outlook

In the current work a theoretical method to include the effects of paramagnetic spin-fluctuations in an
ab-initio theory of superconductivity has been proposed. The three main results of this work may be
summarized as:

1. The construction of a simple expression for the electronic self-energy containing the spin-fluctuations
(chapter 5).

2. The inclusion of this self-energy in the existing SCDFT framework using the Sham-Schlüter
connection (chapter 6).

3. The application of the new functional containing phonon, Coulomb and magnetic contribution
to the FeSC (chapter 7).

The derivation of the self-energy in chapter 5 is the main theoretical result of this work. The starting
point for the derivation is the SC version of the Hedin equations (chapter 4). The construction involves
various steps, but in the end a term with the same form as the well established Gw approximation
related to the magnetic fluctuations is found (Fig. 6.1). Instead of the screened Coulomb interaction
an effective interaction appears which can be viewed as a two-point T -matrix or, more abstractly, a
correction due to the vertex function. This is not surprising since the vertex has been neglected in the
Gw approximation which was the only Coulomb contribution in the theory before.
Once the equation for the self-energy is fixed, the construction of a SCDFT functional follows the

same steps as in the existing approximation including the phonon and Coulomb contributions [110].
However, the use of the derived self-energy is not limited to SCDFT. It may be equally used in Green’s
function based methods for SC as Eliashberg theory or in the renormalization of quasi-particle energies
in a non-SC context. For the latter application it may be useful that the expression have been derived
not only for a non-magnetic state, but also for a collinear magnetic system.
The other main part of this work is numerical and evolves around the application of the new

functional. This is done on the level of model calculations but also for real materials in chapter 6.1
and 7, respectively. Trends with respect to the effective coupling and characteristic frequency imposed
by the Eliashberg theory are well reproduced by the new contribution related to spin fluctuations.
However, the model calculations reveal conceptional differences between the conventional phonon based
superconductors with one band and the unconventional case in which a purely electronic interaction
is responsible for the pairing. The repulsive nature of the interaction requires a sign change of the
gap function and a system with at least two bands or a highly anisotropic gap at the Fermi level. In
contrast to the one band case, the long range Coulomb contribution turns out to be not essential for
two bands and a sign changing gap.
In chapter 7 the field of model calculations is left and the universal functional is applied to FeSe

and LiFeAs which are representatives of the 11 and 111 family of the FeSC. The main results of
the calculation is that the new contribution related to the magnetic fluctuations are the essential
contribution in the gap equation. Without them the critical temperature is unavoidably zero. Also the
trends of the critical temperature with respect to pressure can be reproduced by the presented theory
and the calculations show that the trends are due to changes in the pairing strength of the magnetic
fluctuations. The pairing strength induced by the fluctuations lies in the weak coupling regime, but the
involved frequencies are higher than in the usual phonon case. From an application to two materials
it does not follow that every unconventional superconductor is captured by this theoretical approach.
However, all the iron based superconductors have a similar Fermi surface and magnetic fluctuations
nesting the two sheets of the Fermi surface are present in all of them (Tab. 1.1 and Fig. 7.2). Hence,
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it is fair to say that the pairing in the FeSC is well captured by the magnetic fluctuations and it
has been shown that this pairing can be included in the SCDFT framework.
The biggest obstacle for the systematic application of this work is the wrongly predicted ground state

in the investigated materials. A large part of the community is working on this problem. Hence, the
problem was circumvented by the inclusion of an empirical parameter α, which gives the rescaling of the
XC–kernel. The value has been chosen to get a reasonable agreement with the experimental situation
for each material at each pressure. This means the presented results are not ab-initio anymore. The
invention of a simple ground state functional that accounts for the fluctuations (and strong correlation
in the cuprates) would solve this problem. However, a functional like this would mark a milestone and
change the world of solid state physics in a way only the LDA did before. A more straight forward,
but less revolutionary road lies in the self-consistent feedback of the fluctuations to the ground-state
function. This could be a promising approach to fix the problem of the wrongly predicted ground state
and should be tried in the future.
Another project for the future are calculations using a fully k resolved gap equation. This would

allow to predict properly the gap symmetry as a function of pressure and doping. In this work only the
effects of pressure have been considered. However, the applied KKR method allows to model doping
in terms of the coherent potential approximation (CPA). This method is much more realistic than the
rigid band doping used in DFT codes. It would be nice to investigate the changes of the gap structure
and critical temperature including the effects of doping using the CPA properly. In the presented
calculation a NM ground state has been used as a starting point for the LRDFT calculations. Most
likely a DLM state gives a much more realistic description of the PM ground state in the materials.
To investigate the difference in the response function with respect to the two ground states (NM and
DLM) is also an interesting topic.
Finally, it can be said that there are many tasks left to do: Difficult ones like the solution of the

ground state problem and simpler ones like fully k resolved calculations. However, the first results re-
ported in this work are promising and hopefully they encourage other researchers to keep on developing
an ab-initio theory for the unconventional SC.
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A. Transformations

A.1. Fourier Transformation – No Boundary Conditions

A.1.1. Space

If the (infinite) real space is not limited by boundary conditions, the Fourier transformation (FT)
becomes continuous and the transformation relations between real and inverse space read:

f (k) = ∆ d3rf (r) e−ikr f (r) =
1

(2π)3 ∆ d3kf (k) eikr. (A.1)

Mathematicians tend to distribute a factor of 1/ (2π)
3
2 on both sides of the transformation, but this

is a matter of taste. The only condition is that a double transformation must give back the initial
function. This is the case since the delta distribution in three dimensions is given by:

1

(2π)3 ∆ d3re−ikr = δ (k)
1

(2π)3 ∆ d3keikr = δ (r) .

A.1.2. Time

The FT with respect to time is the one dimensional variant of the transformation from real space to
inverse space introduced above:

f (ω) = ∆ d3tf (t) e−iωt f (t) =
1

2π
∆ d3wf (ω) eiωt.

A.2. Fourier Transformation – Boundary Conditions

A.2.1. Space

Boundary conditions in a solid state denote that after Ni lattice translations the system is repeated(
P (T)Ni = 1

)
. Due to this condition the domain of the FT is finite19

r̄ =
3∑

i=1

λiai with λi ∈ [0, 1[ kn =
3∑

i=1

ni
Ni

bi with ni ∈ {0, . . . , Ni − 1}

Tn =
3∑

i=1

niai with ni ∈ {0, . . . , Ni − 1} Gn =
3∑

i=1

nibi with n ∈ 0, 1, 2, . . .

where ai are the primitive unit cell vectors describing the crystal structure and bi are the primitive
reciprocal lattice vectors. The Fourier components become discrete:

f (k + G) =
∑

T

∆ d3r̄e−i(r̄+T)(k+G)f (r̄ + T) f (r̄ + T) =
1

NΩWS

∑

k

∑

G

ei(r̄+T)(k+G)f (k + G) ,

where the same convention as in the continuous case is used for the prefactor and ΩWS is the size of
the Wigner Seitz cell. Any vector r or q is given by the sum r = r̄ + T and q = k + G. Note that the

19The index n is a collective index n = {n1, n2, n3} and n = 0 denotes n1 = n2 = n3 = 0. The total number of unit cells
N is given by N1N2N3.
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A.2. FOURIER TRANSFORMATION – BOUNDARY CONDITIONS

function f is invariant under f (r)→ f (r +Niai) due to the definition of the Fourier components. The
ekjTn is the n-th class of the j-th representation of the translation group. The orthogonality between
different representations, derived in group theory [142], leads to the following relations:

1

N

∑

T

e−i(kn+Gm)T = δ0n
1

N

∑

k

eikTn = δ0n

1

ΩWS
∆ dr̄eiGnr̄ = δ0n

∑

G

eiGr̄ = δr̄0.

If a function is invariant with respect to lattice translation i.e. f (r̄ + T) = f (r̄), it becomes very
simple in inverse space:

f (k + G) = Nδk0 ∆ d3r̄e−ir̄Gf (r̄) . (A.2)

The electronic density in a periodic crystal has this symmetry. The function depends only on one
vector G due to the translation symmetry. Let’s look at the FT of a function of two spatial variables
with translational symmetry. This function depends only on the difference between the two translation
vectors (T12 := T1 −T2):

f (r1, r2) = f (r1 + T, r2 + T)⇒ f (r1, r2) = f (r̄1, r̄2,T12) .

An important example of such a function is the Green’s function introduced in chapter 2. Also here
the symmetry simplifies the dependence with respect to k1 and k2:

f (k1,G1,k2,G2) =
1

A1

∑

T12T2

Λ dr̄1dr̄2e
−i(k1+G1)r̄1f (r̄1, r̄2,T12) e+i(k2+G2)r̄2e−ik1T12ei(k2−k1)T2 .

(A.3)

The vector k1−k2 is rewritten as qk1k2 + Gk1k2 where qk1k2 lies in the first Brillouin zone (BZ). The
orthogonality requires a vanishing qk1k2 i.e. δqk1k2

,0. Note that for a difference of two k, the δqk1k2
,0

is equivalent to a δk1k2 because |k1 − k2| < |G| due to kx,y,z ∈ [−π
a ,

π
a [:

f (k1,G1,k2,G2) =
Nδk1k2

A1

∑

T12

Λ dr̄1dr̄2e
−i(k1+G1)r̄1f (r̄1, r̄2,T12) e+i(k2+G2)r̄2e−ik1T12

f (r̄1, r̄2,T12) =
1

A2

∑

k1k2

∑

G1G2

e+i(k1+G1)r1f (k1,G1,k2,G2) e−i(k2+G2)r2 .

The total norm is A1 ·A2 = (NΩWS)−2 and it would be straight forward to transfer everything to the
real space side as in the previous cases. However, another choice is made here. For uniform systems
the function depends only on the difference between spatial arguments and becomes diagonal in inverse
space:

f (r1, r2) = f (r1 − r2, 0)
FT

=⇒ f (k1,G1,k2,G2) =
NΩWS

A1
δk1k2δG1G2f (k1 + G1) .

The A1 and A2 are chosen such that the uniform function becomes a diagonal matrix with no additional
prefactors:

A1 = NΩWS A2 = NΩWS.
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APPENDIX A. TRANSFORMATIONS

A.2.2. Time

For the time argument it seems odd to have periodic boundary conditions. However, in the context
of perturbation theory it is essential to introduce a complex time argument for the Green’s function
(GF) . In this formalism the GF becomes periodic with respect to time. This concept is explained in
more detail in Sec. B.3.

A.3. Spin Space Transformation

The set of Pauli matrices σx,σy,σz and σ0 is a basis for a four dimensional vector space:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
σ0 =

(
1 0
0 1

)
. (A.4)

Each quantity in spin space, may also be written in components of the four Pauli matrices

Bβα =
1

2

∑

i

σiαβBi Bi =
∑

αβ σ
i
αβBαβ

4∑

i=1

σiαβσ
i
γδ = 2δαδδβγ (A.5)

Aαβγδ =
1

4

∑

ij

σiαβAijσ
j
γδ Aij =

∑
αβγδ σ

i
βαAαβγδσ

j
δγ.
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B. Normal State Green’s and Response
Functions

B.1. Properties of the Green’s Function and Response Function

The Green’s function becomes the central object for a perturbation expansion of an interacting system.
The symmetries implied by a Hamiltonian lead to simplifications in the corresponding Green’s function.
Also the response function is simplified by symmetries in the underlying system. The most common
symmetries are listed here. The relations are shown for a general function (R=retarded, A=advanced,
T=Time-ordered and M=Matsubara):

FR
AB

(
t, t′
)

= −iθ
(
t− t′

)〈[
ÂH (t) , B̂H

(
t′
)]
−

〉
FT
(
t, t′
)

= −i
〈
T̂
[
ÂH (t) , B̂H

(
t′
)]〉

FA
AB

(
t, t′
)

= −iθ
(
t′ − t

)〈[
ÂH (t) , B̂H

(
t′
)]
−

〉
FM

(
t, t′
)

= −
〈
T̂
[
ÂH (τ) , B̂H

(
τ ′
)]〉

which is either a single particle GF (Â = Ψ̂σ (r) and B̂ = Ψ̂†σ′ (r
′)) defined in Sec. 2.1, or a response

function (Â = ∆ρ̂i (r) and B̂ = ∆ρ̂i′ (r
′)) introduced in Sec. 2.2.

B.1.1. Time Independent System

For real times and time independent systems the Heisenberg picture reads:

ÔH (t) = ei(Ĥ−µN̂)tÔSe
−i(Ĥ−µN̂)t,

where Ĥ is the Hamilton operator defined in Eq. (2.2) and Ĥ−µN̂ is called K̂. The simple exponential
form with respect to K̂ leads to a function which depends only on the time difference:

FT
AB

(
t, t′
)
∝
〈
ÂH (t) B̂H

(
t′
)〉

=
∑

n

〈
n

∣∣∣∣∣T̂
[
e−βK̂

ZG
eiK̂tÂe−iK̂eiK̂t

′
B̂e−K̂t

′

]∣∣∣∣∣n
〉

=
∑

n

e−βEn

ZG
eiEn(t−t′)

〈
n
∣∣∣T̂
[
Âe−iK̂(t−t′)B̂

]∣∣∣n
〉

= FT
AB

(
t− t′, 0

)
,

where Â and B̂ are arbitrary operators. Also the retarded and advanced functions depends only on
the time difference

FR,A
AB

(
t, t′
)
∝
〈[
ÂH (t) , B̂H

(
t′
)]
−

〉
=
∑

n

〈
n
∣∣∣ρ̂
[
eiK̂tÂe−iK̂eiK̂t

′
B̂e−K̂t

′ − eiK̂t′B̂e−K̂t′eiK̂tÂe−iK̂
]∣∣∣n
〉

=
∑

n

e−βEn

ZG

〈
n
∣∣∣eiEn(t−t′)Âe−iK̂(t−t′)B̂ − e−iEn(t−t′)B̂eK̂(t−t′)Â

∣∣∣n
〉

= FR,A
AB

(
t− t′, 0

)
,

and the standard Fourier transformation for a continuous variable are applied [Eq. (A.1)]:

FR,A,T
AB (ω) = ∆

∞
−∞ d

(
t− t′

)
eiω(t−t′)FR,A,T

AB

(
t− t′

)
(B.1)

FR,A,T
AB

(
t− t′

)
=

1

2π
∆
∞
−∞ dωte

−iω(t−t′)FR,A,T
AB (ω) .
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Also the Matsubara objects [Eqs. (2.11) and (2.22)] are functions of the time difference i.e.

FM
AB

(
τ, τ ′

)
== −

∑

n

〈
n
∣∣∣T̂
[
ρ̂eĤτ Âe−ĤτeĤτ

′
B̂e−Ĥτ

′
]∣∣∣n
〉

= FAB
(
τ − τ ′, 0

)
.

If τ − τ ′ ∈ [0, β] the relation:

FM
AB

(
τ − τ ′ + β, 0

)
= −tr

[
ÂH

(
τ − τ ′

)
e−βĤB̂H (0)

]
= −tr

[
e−βĤB̂H (0) ÂH

(
τ − τ ′

)]
= εFAB

(
τ − τ ′, 0

)

is obtained. The factor ε is defined in Eq. (B.17). On the other hand for τ − τ ′ ∈ [−β, 0], the following
is found:

FM
AB

(
τ − τ ′ − β, 0

)
= −εtr

[
e−βĤB̂H (0) ÂH

(
τ − τ ′ − β

)]
= εFAB

(
τ − τ ′, 0

)
.

So the knowledge of FM
AB (τ − τ ′, 0) in the interval τ − τ ′ ∈ [−β, β] determines the whole time depen-

dence20 i.e. the function is periodic with respect to τ and the FT becomes discrete:

FM
AB (ωn, ωn′) := Λ

+β
−β dτdτ

′eiωnτe−iωn′τ
′
FM
AB

(
τ, τ ′

)
with ωn =

2π

2β
n

=
δωnωn′

2β
∆

+β
−β d

(
τ − τ ′

)
eiωn(τ−τ ′)FM

AB

(
τ − τ ′, 0

)
= δωnωn′F

M
AB (ωn)

FM
AB

(
τ − τ ′, 0

)
=

∞∑

n=−∞
e−iωn(τ−τ ′)FM

AB (ωn) .

The discrete frequencies ωn are called “Matsubara frequencies” [51]. The transformation to frequency
representation is further simplified (τ − τ ′ = τ̃):

FM
AB (ωn, ωn′) = δωnωn′ ∆

+β
0 d

(
τ − τ ′

)
eiωn(τ−τ ′)FM

AB

(
τ − τ ′, 0

)
(B.2)

FM
AB

(
τ − τ ′, 0

)
=

1

β

∞∑

n=−∞
e−iωn(τ−τ ′)FM

AB (ωn)

ωn =

{
2nπ
β if ε = 1 (bosons)

(2n+1)π
β if ε = −1 (fermions).

(B.3)

B.1.2. Periodic Hamiltonian

In a crystal the nuclear Coulomb potential and hence the whole Hamiltonian [Eq. (2.3)] is periodic
with respect to lattice translations T. This symmetry is transferred also to the Green’s function or
response function i.e.:

F (r1, r2) = F (r1 + T, r2 + T)⇒ F (r1, r2) = F (r̄1, r̄2,T1 −T2) ,

where the vectors r̄1, r̄2 are within the unit cell ΩWS and the translation vector T connects two unit
cells. A transformation to reciprocal space is made which leads to a diagonal function with respect to
the long wavelength periodicity given by the k vector [Eq. (A.3]:

F (k1G1k2G2) =
δk1k2

ΩWS
Λ d

3r̄1d
3r̄2

∑

T12

F (r̄1r̄2T12) e−i(k1+G1)r̄1ei(k2+G2)r̄2e−ik1T12 (B.4)

F (r̄1r̄2T12) =
1

ΩWSN

∑

k1k2

∑

G1G2

F (k1G1k2G2) ei(k1+G1)r̄1e−i(k2+G2)r̄2eik1T1eik2T2 .

20Simply use FM
AB (τ − τ ′ ± nβ, 0) = εnFM

AB (τ − τ ′, 0) with n ∈ N.
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APPENDIX B. NORMAL STATE GREEN’S AND RESPONSE FUNCTIONS

B.1.3. Collinear Hamiltonian

If the Hamiltonian is collinear i.e.
[
σz, Ĥ0

]
−

= 0, it is possible to create an electron with either spin

up or spin down: Ψ̂†σ (x) =
∑

k ϕkσ (x) â†kσ. In such a case also the Green’s function becomes diagonal
with respect to the spin coordinates:

GM
0 (12) = −

〈
T̂
[
Ψ̂σ1 (x1) Ψ̂†σ2

(x2)
]〉

0
= −

∑

k1k2

ϕk1σ1 (x1)ϕ∗k2σ2
(x2)

〈
T̂
[
âkσ1 â

†
k′σ2

]〉
0︸ ︷︷ ︸

=δσ1σ2δk1k2

.

The full Green’s function also becomes diagonal in spin because all parts (Coulomb interaction and G0)
in the expansion given in Eq. (2.29) are spin conserving. The diagonal GF leads to a sparse response:

χM
ij =




χM
xx χM

xy 0 0

χM
yx χM

yy 0 0

0 0 χM
zz χM

z0

0 0 χM
0z χM

00


 . (B.5)

In the next section connections between the retarded, advanced and Matsubara functions are derived.
The connections use the spectral representation and conserve the structure in spin space. This means
the retarded and advanced GF are also diagonal in spin space if

[
σz, Ĥ0

]
−

= 0 and the χR,A
ij take the

same form as χM
ij given in Eq. (B.5).

B.1.4. The Spectral Representation

Matsubara Function

The spectral representations is derived in frequency space. The Matsubara Green’s function or response
function in frequency space reads [Eq. (B.2)]:

FM
AB (ωn) := −∆

+β
0 dτeiωnτ

[
θ (τ)

〈
Â (τ) B̂ (0)

〉
+ εθ (−τ)

〈
B̂ (0) Â (τ)

〉]
.

The Fourier transformation ensures τ > 0 and hence only the first term gives a contribution. The trace
in the thermal average [Eq. (2.5)] is evaluated with a set of eigenstates with respect to K̂ = Ĥ − µN̂ ,
leading to:

〈
Â (τ) B̂ (0)

〉
=
∑

nm

e−βEn

ZG

〈
n
∣∣∣Â (τ)

∣∣∣m
〉〈

m
∣∣∣B̂ (0)

∣∣∣n
〉

=
∑

nm

e−βEn

ZG
e(En−Em)τ

〈
n
∣∣∣Â
∣∣∣m
〉〈

m
∣∣∣B̂
∣∣∣n
〉

=
∑

nm

e−βEne(En−Em)τAnmBmn

〈
B̂ (0) Â (τ)

〉
=
∑

nm

e−βEn

ZG

〈
m
∣∣∣B̂ (0)

∣∣∣n
〉〈

n
∣∣∣Â (τ)

∣∣∣m
〉

=
∑

nm

e−βEn

ZG
e(En−Em)τ

〈
n
∣∣∣Â
∣∣∣m
〉〈

m
∣∣∣B̂
∣∣∣n
〉

=
∑

nm

e−βEme(En−Em)τAnmBmn.

A shorter name for the matrix elements Anm :=
〈
n
∣∣∣Â
∣∣∣m
〉
is used and some rearranging is done:

FM
AB (ωn) =

1

ZG
∆
∞
−∞ dE

∑

nm

AnmBmne
−βEn 1− εe−βE

iωn − E
δ (E + (En − Em)) .

The spectral function SAB is defined by everything besides the energy denominator:
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SAB (E) : =
1

ZG

∑

nm

δ (E + (En − Em))AnmBmne
−βEn

[
1− εe−βE

]
(B.6)

FM
AB (ωn) = ∆

∞
−∞ dE

SAB (E)

iωn − E
. (B.7)

The function has δ-peaks at the excitation energy ∆Emn = Em − En. Hence the spectral function
measures the excitations created in the system at energy E due to the operators Â and B̂. For the
spectral function the following symmetry relations hold:

SAB (E) = S∗BA (E) only for hermitian operators Â and B̂ (B.8)
SAB (E) = −εSBA (−E) .

Retarded and Advanced Function

The spectral representation of the Green’s or the response function is obtained in complete analogy to
the derivation of the Matsubara function:

FR
AB (ω) = ∆

+∞
−∞ dE

SAB (E)

ω − E + i0+
GA
AB (ω) = ∆

+∞
−∞ dE

SAB (E)

ω − E − i0+
, (B.9)

where the spectral function S is defined in Eq. (B.6).

Connection R↔M and A↔M

By comparison of Eqs. (B.7) and (B.9) connections between the three functions are found:

FM
AB

(
−iω + 0+

)
= FR

AB (ω) FR
AB

(
iωn − i0+

)
= FM

AB (ωn)

FM
AB

(
−iω − 0+

)
= FA

AB (ω) FA
AB

(
iωn + i0+

)
= FM

AB (ωn) .

A general function with a complex frequency argument x ∈ C is defined (ω, ωn ∈ R):

FAB (x) = ∆
+∞
−∞

SAB (E)

x− E =





FR
AB (ω) if x = ω + i0+

FA
AB (ω) if x = ω − i0+

FM
AB (ωn) if x = iωn.

(B.10)

This function determines the retarded, advanced and Matsubara version of the GF or response function,
depending where FAB (x) is evaluated. In general, the function is only known numerically on certain
frequency points, and it is not possible to evaluate the function at some frequencies in the complex
plane. An analytic continuation using a polynom is possible for short distances. In particular an
analytic continuation from the real frequencies (retarded) to the complex (Matsubara) axis or vice
versa is not working and a different connection is derived [54]. For this connection the Hermitian (Re)
and anti Hermitian (Im) part are defined:

Re [FAB (ω)] :=
1

2
[FAB (ω) + F ∗BA (ω)] Im [FAB (ω)] :=

1

2i
[FAB (ω)− F ∗BA (ω)] .

For a diagonal function the definitions reduce to the real and imaginary part. The anti Hermitian part
of the retarded or advanced function is [Eq. (B.8)]:

Im [GR,A
AB (ω)] =

1

2i

[
∆

+∞
−∞ dE

SAB (E)

ω − E ± i0+
−∆

+∞
−∞ dE

S∗BA (E)

ω − E ∓ i0+

]

=
1

2i
∆

+∞
−∞ dE

[
SAB (E)

ω − E ± i0+
− SAB (E)

ω − E ∓ i0+

]
.
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An expression like 1
w−E±i0+ leads to following two contributions:

lim
η→0

1

w − E ± iη = lim
η→0

w − E
(w − E)2 + η2

︸ ︷︷ ︸

=


1

w−E for w−E 6=0

0 for w−E=0

∓ lim
η→0

iη

(w − E)2 + η2

︸ ︷︷ ︸
Lorenz peak with width η

→ πiδ (ω − E)

.

The first terms together with the integral is the principle value denoted by P̂:

ImFR,A
AB (ω) =

1

2i

(
P̂
[
SAB (E)

ω − E

]
− P̂

[
SAB (E)

ω − E

])
− π∆

+∞
−∞ dEδ (ω − E)SAB (E) .

The principle value vanishes and the retarded or advanced function are directly related to the spectral
function: Im

[
FR,A
AB (ω)

]
= ∓πSAB (ω) and the Matsubara in terms of the retarded function reads:

FM
AB (ωn) = ∆

∞
−∞ dE

SAB (E)

iωn − E
= − 1

π
∆
∞
−∞ dE

Im [FR
AB (E)]

iωn − E
=

2

π
∆
∞
0 dE

Im [FR
AB (E)]E

(ω2
n + E2)

. (B.11)

As discussed above, the spectral function is peaked at the excitation energies of the system. In
particular Callen and Welton have shown [143] that the power absorbed by the system exposed to a
magnetic field of the form B (r) sin (ωt) is given by

P = −ω
2

∑

ij

Λ d
3r1d

2r2Bi (r)χL
ij

(
rr′ω

)
Bj
(
r′
)
. (B.12)

This theorem is known as fluctuation dissipation theorem in literature and in Ph.D. thesis of P. Buczek
a longer derivation of the concepts is given [141]. The object χL is called loss tensor and is given by
the anti Hermitian part of the response function:

χL
ij

(
rr′ω

)
:= − 1

2i

[
χij
(
rr′ω

)
− χji

(
r′rω

)]
= πSij

(
rr′ω

)
. (B.13)

Motivated by Eq. (B.12) the largest eigenvalue of the loss tensor or the spectral function largely
determines the absorption strength in the system. This is a very convenient result because a scalar
eigenvalue is much easier to analyze, then a complete matrix. Hence, unless mentioned otherwise the
largest eigenvalue of the matrix χL

ij (rr′ω) for each ω is called spectral function of an response function.

B.2. Coupling Constant Integration

For the coupling constant integration the full Hamiltonian [Eq. (2.2)] is split in two parts:

Ĥλ = Ĥ0 + λŴ .

The parameter λ is zero for a non-interacting system and one for the fully interacting one. The partition
function [Eq. (2.6)] and hence also the grand canonical potential [Eq. (2.32)] depends on the parameter
λ: Ωλ = − 1

β ln [ZGλ]. The derivative with respect to λ of the grand canonical potential reads:

dΩλ

dλ
=

1

βZGλ

dZGλ
dλ

=
1

βZGλ

d

dλ
tr
[
eβK̂λ

]
= tr

[
eβK̂λ

ZGλ
Ŵ

]
= tr

[
ρ̂λβŴ

]
=
〈
Ŵ
〉
λ
.

Integration with respect to λ from 0 to 1 leads to the standard equation connecting the full grand
canonical potential with the non-interacting one[52]:

Ωλ=1 = Ωλ=0 + ∆
1
0 dλ

〈
Ŵ
〉
λ
.
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The expectation value on the right hand side may be connected to a one particle expectation value,
later identified as the Green’s function. The equation of motion for the electronic annihilation operator
in the Heisenberg picture using the operator Ĥλ reads:

∂τ1Ψ̂λ (1) =
[
K̂, Ψ̂λ (1)

]
=
[
K̂0, Ψ̂λ (1)

]
+
[
Ŵ , Ψ̂λ (1)

]
. (B.14)

The commutators are worked out and the operator −Ψ̂†λ (2) is multiplied to the equation:

−∂τ1Ψ̂†λ (2) Ψ̂λ (1) = Ψ̂†λ (2)
[
K0 (r1) Ψ̂λ (1) + ∆ d3v (31) Ψ̂†λ (3) Ψ̂λ (3) Ψ̂ (1)

]
.

The thermal average [Eq. (2.5)] of the equation is taken and the integral with respect to r1 is performed
in order to obtain the expectation value of Ŵ :

2
〈
Ŵ
〉
λ

=
∑

σ1

∆ d3r1 lim
r2→r1
σ2→σ1

lim
τ2↘τ1

[−∂τ1 −K0 (r1)] tr
[
ρ̂λβΨ̂†λ (2) Ψ̂λ (1)

]
. (B.15)

The function on the right hand side leads to the definition of the single particle Matsubara GFGM (12):

GM
λ (12) := −

〈
T̂
[
Ψ̂λ (1) Ψ̂†λ (2)

]〉
= −tr

[
ρ̂λβT̂

[
Ψ̂λ (1) Ψ̂†λ (2)

]]
.

The operator T̂ is the time ordering operator which acts on two operators in the Heisenberg picture
in the following way:

T̂
[
Â (τ1) B̂ (τ2)

]
:=

{
Â (τ1) B̂ (τ2) τ1 > τ2

εB̂ (τ2) Â (τ1) τ2 > τ1

(B.16)

ε =

{
−1 if Â and B̂ contain both an odd numer of fermionic operators
+1 otherwise.

(B.17)

The average of
〈
Ŵ
〉
in terms of the electronic Green’s function reads:

2
〈
Ŵ
〉
λ

=
∑

σ1

∆ d3r1 lim
r2→r1
σ2→σ1

lim
τ2↘τ1

[−∂τ1 −K0 (r1)]GM
λ (12) .

B.3. Non-SC Response Function

The review article [144] by Onida et. al. gives a nice comparison between the GF and density functional
theory (DFT) approach for the response function.

B.3.1. χM – Many-Body Approach

In Sec. D.1.4 only one external field ϕ0 coupling to the total charge density has been considered. In
order to access also the magnetic degrees of freedom three additional fields coupling to the magnetic
density are necessary:

Φ̂ (τ) =
3∑

i=0

∆ d3rϕi (x) ρ̂i (r) =
3∑

i=0

∆ d3rϕi (x)
[
σiαβΨ̂†α (r) Ψ̂β (r)

]
.

The generalization of Eq. (D.5) for four fields reads:

δG (12)

δϕi (x3)
= ρi (r3)G (12) +

∑
σiαβ

〈
T̂
[
Ψ̂†α (x3) Ψ̂β (x3) Ψσ1 (x1) Ψ†σ2

(x2)
]〉

= ρi (r3)G (12)−
∑

σiαβ

〈
T̂
[
Ψ̂†α (x3) Ψ̂β (x3) Ψ†σ2

(x2) Ψσ1 (x1)
]〉
.
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By performing the equal time limit τ2 → τ2 and r2 = r1 the GF Ḡσ1σ2 (x1x2) becomes the expectation
value

〈
Ψ̂†σ2 (r1) Ψ̂σ1 (r1)

〉
and the response function is defined in analogy to the proper part [Eq. (4.18)]

using a functional derivative

χM
ji (x1x3) := −δρj (x1)

δϕi (x3)
= −σjσ2σ1

δGσ1σ2

(
x1x

+
1

)

δϕi (x3)

= 〈ρ̂j (x1) ρ̂i (x3)〉+ ρj (x1) ρi (x3) =
〈
T̂ [ρ̂j (x1)− ρj (x1)] [ρ̂i (x3)− ρi (x3)]

〉
. (B.18)

Note that the expression is identical to the retarded response function given in Eq. (2.21) derived using
linear response (LR) theory, but the time ordered object is given here. Using the chain rule a Dyson
equation is found:

χM
ij (x1x2) = − δρi (x1)

δϕj (x2)
= Pij (x1x2)− Λ dxdx

′Pi0 (x1x) v
(
xx′
)
χ0j

(
x′x2

)
. (B.19)

B.3.2. χM – DFT Approach

An alternative way to calculate the response function is provided using the Kohn-Sham (KS) Green’s
function [Eq. (D.9)]. For the exact exchange-correlation (XC)-potential the exact density is reproduced
by the KS system. With this relation the Matsubara response function is expressed using the GKS:

χM
ij (x1x2) = − δρi (x1)

δϕj (x2)
=
∑

αβσσ′
Λ dxdx

′σiβαG
KS
ασ (x1x)

δ
(
GKS
σσ′
)−1

(xx′)

δϕj (x2)
GKS
σ′β

(
x′x+

1

)
.

The derivative of the inverse GKS is [cf. Eqs. (D.9) or (D.2)]:

−δ
(
GKS
σσ′
)−1

(xx′)

δϕj (x2)
= δxx′

[
σjσσ′δxx2 +

∑

lk

σlσσ′ ∆ dx′′
δ [vH (x) δk0δl0 + vxc

l [ρ] (x)]

δρk (x′′)

δρk (x′′)

δϕj (x2)

]
.

The expression for δ(GKS)
−1

δϕ is plugged into the equation for the susceptibility:

χM
ij (x1x2) = −

∑

αβσσ′
Λ dxdx

′σiβαG
KS
ασ (x1x) δxx′

[
σjσσ′δxx2 +

∑

lk

σlσσ′ ∆ dx′′
δ [vH (x) δk0δ0l + vxc

l [ρ] (x)]

δρk (x′′)

δρk (x′′)

δϕj (x2)︸ ︷︷ ︸
=−χM

kj



GKS
σ′β

(
x′x+

1

)

χM
ij (x1x2) = −

∑

αβσσ′
∆ dxσiβαG

KS
ασ (x1x2)σjσσ′G

KS
σ′β

(
x2x

+
1

)
+
∑

αβσσ′

∑

lk

Λ dxdx
′′×

σiβαG
KS
ασ (x1x)GKS

σ′β

(
xx+

1

)
σlσσ′

[
δk0δ0lv

(
xx′′

)
+ fxc

lk

(
xx′′

)]
χM
kj

(
x′′x2

)
.

The definition of the KS response function χKS
ij and the XC-kernel fxc

lk [145]:

χKS
ij (x1x2) := −

∑

αβσσ′

σiβαG
KS
ασ (x1x2)GKS

σ′β

(
x2x

+
1

)
σjσσ′

fxc
lk (x1x2) :=

δvxc
l [ρ] (x1)

δρk (x2)
=

δ2Exc

δρl (x1) δρk (x2)

lead to the “DFT Dyson equation” for the response function [145]:
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χM
ij (x1x2) = χKS

ij (x1x2)−
∑

lk

Λ dxdx
′χKS
il (x1x)

[
δk0δ0lv

(
xx′′

)
+ fxc

lk

(
xx′′

)]
χM
kj

(
x′′x2

)
.

Note that at this point the XC-potential and density are time dependent. The reason for the time
dependence lies in the probing field. However, the derivative is evaluated in the end at ϕi = 0 (as
discussed in Sec. D.1.4) and the Hamiltonian becomes static and the response and kernel depend only
on time differences. For the analysis in Sec. 5 it is convenient to split the Dyson equation for χM in
two parts. Assume a general Dyson equation c = a0 + a0Cc and split the operator C = A+B in two
contributions:

c = a0 + a0 (A+B) c =
a0

1− a0 (A+B)
.

It is possible to iterate two separate Dyson equations containing the operators A and B to obtain c :

a = a0 + a0Aa =
a0

1− a0A
and c = a+ aBc =

a

1− aB ,

which is seen by simply inserting the two equations in each other:

c =
a0

1−a0A

1− a0
1−a0A

B
=

a0

1− a0 (A+B)
.

For the response function a separation in the proper part containing no Coulomb contribution and the
rest is natural:

P = χKS − χKSfxcP and χM = P − PvχM . (B.20)

B.4. Adiabatic Local Density Approximation

The XC-energy of the static, homogenous electron gas (HEG) is a functional of the constant density ρ
and magnetization |m|. The XC-kernel for the HEG reads:

fHEG
ij =

δ2EHEG [ρ, |m|]
δρiδρj

.

In the adiabatic local density approximation (ALDA) the functional for the HEG is evaluated at each
point in space-time with the varying density of the interacting system:

fxc
ij

(
xx′
)

=
δ2E

δρi (x) δρj (x′)
≈ δxx′f

ALDA
ij (x)

fALDA
ij (x) = fHEG

ij [ρ, |m|]
∣∣
ρi=ρi(x)

=
δ2EHEG [ρ, |m|]

δρiδρj

∣∣∣∣
ρi=ρi(x)

.

For a lattice periodic and static density, the exact kernel depends only on the time difference t1 − t2,
the position within the unit cell {r̄1, r̄2} and the distance of the two unit cells T1 −T2. In the ALDA
this symmetry leads to a static and local kernel i.e.:

fxc
ij (r̄1, r̄2,T1 −T2, t1 − t2) ≈ δt1t2δr1r2f

ALDA
ij (r̄1) .

and in reciprocal space the ALDA kernel depends only on a single G vector [Eq. (A.2)].
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C. DFT for Superconductors

C.1. The Pairing Potential

The pairing potential couples to the anomalous density χ. The most general contribution in the
Hamiltonian corresponding to the anomalous density is:

ĤSC =
∑

σσ′
Λ d

3rd3r′∆ext
σσ′
(
rr′
)

Ψ̂σ (r) Ψ̂σ′
(
r′
)

+ h.c. .

The sum over spin is rewritten in terms of the one singlet and three triplet channels [Eq. (A.5)]:

ĤSC =

4∑

i=1

Λ d
3rd3r′∆ext

i

(
rr′
)
χi
(
rr′
)

+ h.c. ,

where the densities are given by:

χ̂i(r, r
′) =

∑

αβ

Ψ̂α (r) τ iαβΨ̂β

(
r′
)

=




Ψ̂↑ (r) Ψ̂↓ (r′)− Ψ̂↓ (r) Ψ̂↑ (r′)

Ψ̂↓ (r) Ψ̂↓ (r′)− Ψ̂↑ (r) Ψ̂↑ (r′)

Ψ̂↓ (r) Ψ̂↓ (r′) + Ψ̂↑ (r) Ψ̂↑ (r′)

Ψ̂↑ (r) Ψ̂↓ (r′) + Ψ̂↓ (r) Ψ̂↑ (r′)


 (C.1)

∆̃i(r, r′) =




∆̃s(r, r
′)

∆̃tx(r, r′)

∆̃ty(r, r
′)

∆̃tz(r, r
′)


 =

1

2




(∆ext
↑↓ (r, r′)−∆ext

↓↑ (r, r′))

(∆ext
↓↓ (r, r′)−∆ext

↑↑ (r, r′))

(∆ext
↓↓ (r, r′) + ∆ext

↑↑ (r, r′))

(∆ext
↑↓ (r, r′) + ∆ext

↓↑ (r, r′))


 ~τ =

(
iσy − σzσ0σx

)
. (C.2)

This notation is copied from the Ph.D. thesis of A. Linscheid, where an investigation of superconduc-
tivity beyond singlet pairing is given [146]. The σx,y,z,0 are the usual Pauli matrices defined in Eq.
(A.4). If ∆ext

σσ′(r, r
′) has a totally symmetric part it has to drop out of the Hamiltonian:

Ĥsym
sc = Λ d

3rd3r′∆̃ext-sym
σσ′ (r, r′)Ψ̂σ (r) Ψ̂σ′

(
r′
)

= Λ d
3rd3r′∆̃ext-sym

σ′σ (r′, r)Ψ̂σ (r) Ψ̂σ′
(
r′
)

= −Λ d
3rd3r′∆̃ext-sym

σ′σ (r′, r)Ψ̂σ′
(
r′
)

Ψ̂σ (r) = −Ĥext-sym
sc . (C.3)

As a consequence ∆ext
σσ′(r, r

′) is taken to be antisymmetric under particle exchange (rσ ↔ r′σ′). The
singlet part of the pairing potential is symmetric:

2∆̃ext
s (r′, r) = ∆ext

↑↓ (r′, r)−∆ext
↓↑ (r′, r) = −∆ext

↓↑ (r, r′) + ∆ext
↑↓ (r, r′) = 2∆̃ext

s (r, r′) (C.4)

and the contribution in the Hamiltonian for the singlet pairing are:

Λ d
3rd3r′∆̃s(r, r

′)χ̂s(r, r
′) = 2 Λ d

3rd3r′∆̃s(r, r
′)Ψ̂↑ (r) Ψ̂↓

(
r′
)
.

The factor of 2 is included in the pairing potential and the tilde is left i.e. 2∆̃ext
s = ∆ext

s . The ∆ext
s is

the potential coupling to the anomalous density χ := Ψ̂↑Ψ̂↓ which is the part included in the SCDFT
equations [Eq. (3.6)].
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C.2. KS-BOGOLIUBOV-DE GENNES TRANSFORMATION

C.2. KS-Bogoliubov-de Gennes Transformation

C.2.1. Introduction of the Bogoliubons

The Hamilton operator of the superconductivity (SC) Kohn-Sham system is given in Eq. (3.6):

K̂KS =
∑

α

∆ d3r (hKS
α (r)− µ) Ψ̂†α (r) Ψ̂α (r) + Λ d

3rd3r′
[
∆KS
s (r, r′)Ψ̂↑ (r) Ψ̂↓

(
r′
)
− h.c.

]
.

An elegant way to diagonalize such a Hamiltonian is to use a Bogoliubov-Valatin transformation21.
Therefore new operators are defined:

Ψ̂σ (r) =
∑

l

(
ul (r) γ̂lσ − zσv∗l (r) γ̂†l−σ

)
γ̂lσ = ∆ d3r

(
u∗l (r) Ψ̂σ (r)− z−σv∗l (r) Ψ̂†−σ (r)

)
.

The transformation matrix uk (r) and vk (r) are chosen in such a way that the initial Hamilton operator
becomes diagonal in terms of the γ̂ operators, i.e.: ĤKS =

∑
k Ekγ

†
kγk. An equation for determining

the transformation is found by calculating the anti-commutator A =
[
Ψ̂σ1 (r1) , K̂KS

]
−

starting form
the field operators on the one hand:

A =
[
Ψ̂σ1 (r1) , K̂KS

]
=
(
hKS
σ1

(r1)− µ
)∑

l

(
ul (r1) γ̂lσ1 − zσ1v

∗
l (r1) γ̂†l−σ1

)

−
∑

l

∆ d3r∆KS∗
s (r1r)

∑

σ

δσ1−σ

(
u∗l (r) γ̂†lσ − zσvl (r) γ̂l−σ

)
. (C.5)

and form the γ̂ operators on the other hand:

A =

[∑

l

(
ul (r1) γ̂lσ1 − zσv∗l (r1) γ̂†l−σ1

)
,
∑

kσ

Ekγ
†
kσγkσ

]

−

=
∑

k

Ek

[
uk (r1) γkσ1 + zσ1v

∗
k (r1) γ†k−σ1

]
. (C.6)

By combining the two results an eigenvalue problem determining the transformation matrix uk (r) and
vk (r) is found

∆ d3r



[
−42 + vKS (r)− µ

]
δr1r ∆KS∗ (r1r)

∆KS (r1r) −
[
−42 + vKS (r)− µ

]
δr1r



(
uk (r)
vk (r)

)
= Ek

(
uk (r1)
vk (r1)

)
.

C.2.2. Commutator Relations for the Bogoliubons

For the calculation of the Green’s functions corresponding to the operators γ̂ (Sec. C.4) it is essential
that the new operators γ̂ and γ̂† are Fermionic operators. The transformations given in Eq. (3.9) are
for a discrete basis:

ĉmσ =
∑

k umkγ̂kσ − zσv∗mkγ̂
†
k−σ γ̂mσ =

∑

k

u∗kmĉkσ − z−σ
∑

k

v∗kmĉ
†
k−σ

ĉ†m−σ =
∑

k u
∗
mkγ̂

†
k−σ − z−σvmkγ̂kσ γ̂†m−σ =

∑

k

ukmĉ
†
k−σ − zσ

∑

k

vkmĉkσ.

With these definitions in hand it is straight forward to check the anti-commutator relations:

[γ̂lσ, γ̂l′σ′ ]+ =
∑

kk′

[
u∗klĉkσ − z−σv∗klĉ†k−σ, u∗k′l′ ĉk′σ′ − z−σ′v∗k′l′ ĉ

†
k′−σ′

]
+

= −δσ−σ′
∑

k

[zσu
∗
klv
∗
kl′ + z−σv

∗
klu
∗
kl′ ]

[
γ̂lσ, γ̂

†
l′σ′

]
+

=
∑

kk′

[
u∗klĉkσ − z−σv∗klĉ†k−σ, uk′l′ ĉ

†
k′σ − z−σvk′l′ ĉk′−σ

]
+

= δσσ′
∑

k

[u∗klukl′ + v∗klvkl′ ] .

21We denote the elementary excitations associated with the (Fermionic) γ̂ and γ̂†as “Bogoliubons”.
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APPENDIX C. DFT FOR SUPERCONDUCTORS

The Bogoliubov-Valatin transformation have to be unitary i.e.:
∑

m

(u∗mlumk + v∗mlvmk) = δlk
∑

m

(vmlumk − umlvmk) = 0 (C.7)

in order to ensure the Fermionic anti-commutator relations for the γ̂ and γ̂†.

C.2.3. Decoupling Approximation

Since the pairing potential is invariant under inversion [Eq. (3.20)] the minus sign in the argument of
∆KS∗ can be dropped. The set of equations given in Eqs. (3.21) and (3.22) are written in 2N × 2N
matrix form:




ε1 − µ 0 · · · ∆KS
−1−1

∗ ∆KS
−1−2

∗ · · ·
0 ε2 − µ

. . . ∆KS
−2−1

∗ ∆KS
−2−2

∗ · · ·
...

. . . . . .
...

...
. . .

∆KS
11 ∆KS

12 · · · µ− ε1 0 · · ·
∆KS

21 ∆KS
22 · · · 0 µ− ε2

. . .
...

...
. . .

...
. . . . . .







ul1
ul2
...
vl1
vl2
...




= El




ul1
ul2
...
vl1
vl2
...




. (C.8)

Within the decoupling approximation the off-diagonal parts of the pairing potential are assumed to be
diagonal which leads to [Eqs. (3.23) and (3.20)]:




ε1 − µ 0 · · · −∆KS
1
∗ 0 · · ·

0 ε2 − µ
. . . 0 −∆KS

2
∗ · · ·

...
. . . . . .

...
...

. . .
∆KS

1 0 · · · µ− ε1 0 · · ·
0 ∆KS

2 · · · 0 µ− ε2
. . .

...
...

. . .
...

. . . . . .







ul1
ul2
...
vl1
vl2
...




= El




ul1
ul2
...
vl1
vl2
...




.

Note that for a uniform system this approximation becomes exact. The matrix is transformed by
column-row permutations to:




ε1 − µ ∆KS∗
1 0 0 0 · · ·

∆KS
1 µ− ε1 0 0 0 · · ·
0 0 ε2 − µ ∆KS∗

2 0 · · ·
0 0 ∆KS

2 µ− ε2 0 · · ·
0 0 0 0

. . . . . .
...

...
...

...
. . . . . .







ul1
vl1
ul2
vl2
...




= El




ul1
vl1
ul2
vl2
...




(C.9)

M̄bl = Elbl.

The Hamiltonian in Eq. (3.6) is diagonalized by the operators γ̂, if the vectors bl solve the eigen-
value problem in Eq. (C.9) for every l. Since the matrix M̄ is block diagonal, the problem is split
in N decoupled two-dimensional eigenvalue problems with a different labeling of the eigenvalues(
E±l =

{
E+
l , E

−
l

})
and eigenfunctions (ul, vl)± :

(
εl − µ ∆KS∗

l

∆KS
l µ− εl

)(
ul
vl

)

±
= E±l

(
ul
vl

)

±
.
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In order to link the eigenvectors and values of the 2× 2 equations with the initial problem, the vectors
{bl} are expressed in terms of the new eigenvectors (ulvl)±:

{
b±1 ,b

±
2 , ...

}
=




(
u1

v1

)

±
0
...


 ,




0
0(
u2

v2

)

±
0
...



, . . . M̄b±l = E±l b±l .

A comparison between b±l and the initial definition of the bl leads to diagonal eigenvectors with respect
to l and m:

(ulm, vlm) = δlm
(
u±l , v

±
l

)
.

.

C.2.4. Eigenvalues and Vectors of the KS-BdG Equations

The eigenvalue equations obtained after the Bogoliubov-Valatin transformation [Eq. (3.25)] read:
(
εl − µ ∆KS∗

l

∆KS
l µ− εl

)(
ul
vl

)
= El

(
ul
vl

)
.

The energy difference εl − µ is called ζl. The eigenvalues of the 2× 2 matrix are given by:

El± = ±
√
ζ2
l +

∣∣∆KS
l

∣∣2 = ±Rl.

The eigenvectors are the kernel of the matrix
(
εl − µ ∆KS∗

l

∆KS
l µ− εl

)
− 12×2El± and are given up within a

scaling factor by: (
ul
vl

)
= α

(
(−ζl∓Rl)

∆KS
l

1

)
= α

(
− (ζl±Rl)

∆KS
l

1

)
.

In order to make the γ̂’s Fermionic operators, the Bogoliubov-de Gennes (BdG) transformation has to
be unitary (see previous section). In the decoupling approximation unitarity is given by |ul|2 + |vl|2 = 1
and the factor α is fixed:

ul = ∓ ∆KS∗
l√

2
∣∣∆KS

l

∣∣

√
1± ζl

Rl
vl = α =

√
1

2

(
1∓ ζl

Rl

)
.

C.3. Group Theory for the Gap

In this section the gap function ∆k is investigated with the tools provided by group theory. The gap
is found by solving an eigenvalue problem [Eq. (6.9]. The symmetry group of the matrix determines
also the symmetry of the eigenvector. To be more precise: The set of eigenfunction(s) corresponding
to one eigenvalue forms a basis of the irreducible representation of the underlying symmetry group
[147, 142]. With group theory:

• It is possible to predict the symmetry of these basis functions and hence the possible symmetries
of the gap function. This analysis is based on the point group of the system, and does not involve
an explicit knowledge of the interaction or Fermi surface.

• It is not possible to predict the values or energetic order of the eigenvalues. In general there will
be multiple representations and the one with the largest eigenvalue is the most stable solution
and gives the experimentally observed gap structure.
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The m basis functions ϕrm of a representation r are computed using a projection operator Prmm :

armϕ
r
m = Prmmφ =

∑

T

Γrmm (T )P (T )φ (C.10)

acting on a function φ. Γrmn is the mn element of the representation r and P (T ) is the transformation
operator corresponding to the symmetry operation T. In our case the symmetry operators are elements
of the point-group G of the crystal. A transformation T corresponding to the crystal point group leads
to a change in the spatial and spin coordinate of the gap. The transformation to the new coordinates
is done in the following way:

~α′ = ΓSU(2)~α r′1 = ΓR (T ) r1

P (T ) ∆σ1σ2(r1, r2) = ∆σ′1σ
′
2
(r′1, r

′
2) =

∑

σ1σ2

ΓSU(2)

σ′1σ1
∆σ1σ2 (ΓR (T ) r1,Γ

R (T ) r2) ΓSU(2)

σ′2σ2
. (C.11)

Many of the iron based superconductors (FeSC) appear in the tetragonal crystal structure. From now
on this group will be investigated. In the tetragonal lattice 16 symmetry operators are present. The
nomenclature for the symmetry operation is as follows:

• Cnν are proper rotations with an angle 2π
n around the axis ν.

• Snν are improper rotations with an angle 2π
n around the axis ν.

• σn are reflections on the plane with an normal vector n.

• E is the identity operator and I the inversion.

The symmetry operations in real and spin space are shown in Tab. C.1a. For a tetragonal lattice the
coordinate transformation in real space are identical to the transformations in inverse space. With the
explicit form of the symmetry operations, it is easy to work out the effect of a transformation operator
P (T ) on an anti-symmetric function: φ = ∆σ1σ2(r1, r2) defined in Eq. (C.11).
However, for the construction of the projection operator Prmn given in Eq. (C.10) the irreducible

representations Γrmn are needed. These are shown in Tab. C.1b and are either taken from any standard
group theory textbook or derived using orthogonality relations between the irreducible representa-
tions. Note that the three dimensional representation ΓR is reducible. The number of times nij a
representation Γj contains the irreducible representation Γi is given by the expression [142]:

nji =
1

g

∑

T

χj (T )χ∗i (T ) ,

where χ denotes the trace of the representation i.e. χr (T ) =
∑

n Γrnn (T ) and g is the number of
symmetry operations in our case 16. The ΓR is decomposed in the following way:

ΓR = Γ10 ⊕ Γ5.

If the system would feature strong spin-orbit coupling, the transformation in real and spin space
would couple and the picture would become much more complicated. As a last step, the domain for
the operator P (T ) has to be specified: The gap is an antisymmetric function, due to the Fermionic
commutation relations i.e. ∆σσ′(r, r

′) = −∆σ′σ(r′, r) [Eq. (C.3)]. So any square integrable, anti-
symmetric function is allowed for φ. For practical calculations the symmetry in inverse space is more
relevant and the gap in the decoupling approximation reads:

∆KS
σσ′ (k) = Λ d

3rd3r′ψ∗k (r) ∆KS
σσ′
(
rr′
)
ψKS

k

(
r′
)
,

which leads to a totally anti-symmetric function also in inverse space:

∆KS
σσ′ (−k) = Λ d

3rd3r′ψ∗−k (r) ∆KS
σσ′
(
rr′
)
ψ−k

(
r′
)

= −Λ d
3rd3r′ψk (r) ∆KS

σ′σ

(
r′r
)
ψ∗k
(
r′
)

= Λ d
3rd3r′ψ∗k (r)

[
−∆KS

σ′σ

(
rr′
)]
ψk

(
r′
)

= −∆KS
σ′σ (k) .
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Note that for the tetragonal point group the representation in real and inverse space are identical and
the transformation P (T ) acts on ∆KS

σ′σ as:

P (T ) ∆KS
σ1σ2

(k) = ∆KS
σ′1σ
′
2
(k′) =

∑

σ1σ2

ΓSU(2)

σ′1σ1
∆KS
σ1σ2

(ΓR (T ) k) ΓSU(2)

σ′2σ2
.

Now all the necessary ingredients are collected to start projecting test functions φαβ (k). If the
k part of the basis function is even f (−k) = f (k) the spin part has to be anti-symmetric in other
words being proportional to σy. If the k part is odd on the other hand the spin part has to be
even in spin (proportional to σ0, σx or σz). The guessing is a non-unique process, as a first choice
φ1
αβ (k) =

∑
i kiσ

x
αβ is used. This function is odd with respect to k and even in spin space so that the

product is anti-symmetric. Very often a symmetry invariant function f (|k|) = e−|k| is multiplied in
order to make the function φ1 square integrable which is left out here for simplicity. The projection
Prmmφ1

αβ (k) is zero for most of the representation except for Γ6 and Γ10 :

P6
11φ

1
αβ (k) = σxαβkz P10

11φ
1
αβ (k) = σxαβkx P10

22φ
1
αβ (k) = σxαβ (kx + ky) .

So the first basis functions are found. A second choice could be a function like: φ2
αβ (k) =

∑
ij kikjσ

y
αβ .

This one is even with respect to k and odd in spin space. The projection leads to:

P8
11φ

1
αβ (k) = σyαβ

(
k2
x + k2

y + k2
z

)
P9

11φ
1
αβ (k) = σyαβ (kx + ky) kz.

After some attempts of guessing the first orders in kx, ky and kz, the table C.1b is filled with basis
functions. Experimentally clear indications are found that the pairing takes place in the singlet channel
in the FeSC [67, 13, 12]. In order to have an anti-symmetric gap function for singlet pairing, the
behavior with respect to k has to be even and the five odd representation in k space are ruled out
as a possible pairing symmetry. The five remaining even representations are: A1g, B1g, B2g, A2g and
the two-dimensional Eg. The symmetry of the basis functions corresponding to these representations
is illustrated in Fig. 7.9. The names s, d and g wave are related to the angular momentum quantum
number of the SO (3) group. For the thermodynamical properties like thermal conductivity it is
important, whether the gap has nodes or the excitation spectrum is fully gaped. The d wave symmetries
require nodes of the order parameter. However, nodes are not excluded for the s-wave state.

Accidental nodes are nodes that are not required by symmetry. For example the appearance of
nodes in an A1g (s wave) would be accidental.

Note that the s and s± symmetry discussed in Sec. 6.2 are identical from a group theoretical point
of view. For the pairing symmetry in k space, the experimental situation is less clear compared to
the spin part. There are experiments as angle resolved photon emission spectroscopy (ARPES) ,
superconducting quantum interference device (SQUID) and tunneling in favor of an s wave symmetry
without nodes. However, the thermal conductivity experiments indicate a structure with nodes at least
for some materials in the 122 family. Whether this means a d wave or s wave with accidental nodes
only k resolved experiments could tell.
Model calculations using a “one iron atom five band” model predict a change from a s± to a structure

with nodes as a function of doping [148]. Most likely, the energies corresponding to the different sym-
metries are very close together and the energetic order changes as a function of an external parameter
like doping or pressure. For a detailed discussion of the experimental and theoretical situation the
review article [13] is a very good starting point.
In some iron based superconductors, a distortion from the tetragonal symmetry (D4h) to the or-

thorhombic symmetry (D2h) is found [9, 149, 150]. The change in symmetry is related to a reduction
of the possible basis functions: The two-dimensional irreducible representation Eg disappears in the
lower D2h symmetry (red color in Tabs. C.1a and C.1b). So the corresponding symmetries kxkz and
kykz with nodes along the z direction are ruled out as a pairing symmetry because SC is observed also
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APPENDIX C. DFT FOR SUPERCONDUCTORS

Label Real Space ΓR Spinor ΓSU(2) Label Real Space ΓR Spinor ΓSU(2)

E




1 0 0
0 1 0
0 0 1




(
1 0
0 1

)
I



−1 0 0
0 −1 0
0 0 −1




(
1 0
0 1

)

C2z



−1 0 0
0 −1 0
0 0 1




(
i 0
0 −i

)
σz




1 0 0
0 1 0
0 0 −1




(
i 0
0 −i

)

C−1
4z




0 −1 0
1 0 0
0 0 1




(
ω 0
0 ω∗

)
S4z




0 −1 0
1 0 0
0 0 −1




(
ω∗ 0
0 ω

)

C4z




0 1 0
−1 0 0
0 0 1




(
ω∗ 0
0 ω

)
S−1

4z




0 1 0
−1 0 0
0 0 −1




(
ω 0
0 ω∗

)

C2x




1 0 0
0 −1 0
0 0 −1




(
0 i
i 0

)
σx



−1 0 0
0 1 0
0 0 1




(
0 i
i 0

)

C2y



−1 0 0
0 1 0
0 0 −1




(
0 −1
1 0

)
σy




1 0 0
0 −1 0
0 0 1




(
0 −1
1 0

)

C2a




0 1 0
1 0 0
0 0 −1




(
0 −ω∗
ω 0

)
σx+y




0 −1 0
−1 0 0
0 0 −1




(
0 −ω∗
ω 0

)

C2b




0 −1 0
−1 0 0
0 0 −1




(
0 −ω
ω∗ 0

)
σx−y




0 1 0
1 0 0
0 0 1




(
0 −ω
ω∗ 0

)

(a) Representation of the point group D4h where the axis a and b are in the xy plane and point in (1, 1, 0)
and (1,−1, 0) direction, respectively. The ω determines the rotation in spin space ω = ei

π
4 . The symmetry

operations in red are removed in case of an orthorhombic distortion (D2h symmetry).

Name dim parity k parity σ Basis functions
Γ1 B2g 1 even odd σxkxky
Γ2 B1g 1 even odd σx

(
k2
x − k2

y

)

Γ3 B2u 1 odd even σzky − iσ0kx
Γ4 B1u 1 odd even iσ0ky − σzkx
Γ5 A2u 1 odd even σ0kx − σziky
Γ6 A1u 1 odd even σxkz, σ

zkx − iσ0ky
Γ7 A2g 1 even odd σykxky

(
k2
x − k2

y

)

Γ8 A1g 1 even odd σy, σy
(
k2
x + k2

y

)
, σyk2

z

Γ9 Eg 2 even odd σykxkz, σ
ykykz

Γ10 Eu 2 odd even σxkx, σ
xky

(b) Basis function for the ten irreducible representations. Half of the representations are even and the other
half are odd with respect to k parity. For singlet pairing only the even functions are relevant. In the column
“Name” the common labels of the representation are given [142]. The representations in red become reducible
if the symmetry becomes lowered to orthorhombic.

Table C.1.: Representations and basis functions of the tetragonal point group.
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C.4. THE KOHN-SHAM GREEN’S FUNCTION

in the orthorhombic phase. The other irreducible symmetries A1g, B1g, B2g and A2g remain in the
D2h symmetry.
However, this investigation shows that a reduction of symmetry will reduce the number of possi-

ble pairing symmetries. Only the trivial representation A1g will always remain even for additional
distortion and keep the channel for s± superconductivity open.

C.4. The Kohn-Sham Green’s function

C.4.1. The Kohn-Sham Green’s function – Real Space

The statistical operator corresponding to the KS system reads:

ρ̂KSβ =
1

ZG
e−βK̂KS with ZKS

G := tr
[
e−βK̂KS

]
.

The 11 element of the Nambu Green’s function defined in Eq. (4.4) is evaluated:

GKS
σ1σ2

(r1r2ωn) = −∆
+β
0 d (τ1 − τ2) eiωn(τ1−τ2)tr

[
ρ̂KSβ T̂

[
Ψ̂σ1 (x1) Ψ̂†σ2

(x2)
]]

:= −
〈
T̂
[
Ψ̂σ1 (x1) Ψ̂†σ2

(x2)
]〉ωn

KS
.

The definition of the field operators Ψ̂ (r) in terms of the γ̂’s is given in Eq. (3.9).

GKS
σ1σ2

(r1r2ωn) := −
〈
T̂
[
Ψ̂σ1 (x1) Ψ̂†σ2

(x2)
]〉ωn

KS

= −
∑

kk′

〈
T̂
[(
uk (r1) γ̂kσ1 (τ1)− zσ1v

∗
k (r1) γ̂†k−σ1

(τ1)
)
×

(
u∗k′ (r2) γ̂†k′σ2

(τ2)− zσ2vk′ (r2) γ̂k′−σ2 (τ2)
)]〉ωn

KS

= −
∑

kk′

uk (r1)u∗k′ (r2)
〈
T̂
[
γ̂kσ1 (τ1) γ̂†k′σ2

(τ2)
]〉ωn

KS

−
∑

kk′

zσ1zσ2v
∗
k (r1) vk′ (r2)

〈
T̂
[(
γ̂†k−σ1

(τ1) γ̂k′−σ2 (τ2)
)]〉ωn

KS
.

The terms A =
〈
T̂
[
γ̂σ1k1 γ̂

†
σ2k2

]〉
and B =

〈
T̂
[
γ̂†σ1k1

γ̂σ2k2

]〉
appear also for the other elements of

the Nambu GF and are evaluated separately. In Sec. C.2.2 it has been shown that the γ̂ operators
are Fermionic operators and the trace is evaluated using N particle Slater determinants composed of
single particle states corresponding to the γ’s. For such states the time dependence of the operators is
simple:

γ̂σk (τ) |Q〉 = eK̂KSτ γ̂σke
−K̂KSτ |Q〉 = eK̂KSτe−EQτ |Qnσk = 0〉 = e−Ekτ |Qnσk = 0〉 = e−Ekτ γ̂σk|Q〉

γ̂†σk (τ) |Q〉 = e+Ekτ γ̂σk|Q〉.
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APPENDIX C. DFT FOR SUPERCONDUCTORS

The Fourier transformation given in Eq. (B.2) ensures τ1 − τ2 > 0 and the time ordering is trivial:

A
(
τ − τ ′

)
=
〈
γ̂σ1k1 (τ1) γ̂†σ2k2

(τ2)
〉

KS
= e−Ek(τ1−τ2)

〈
γ̂σ1k1 γ̂

†
σ2k2

〉
KS

= e−Ek(τ1−τ2) [1− fβ (Ek1)] δk1k2δσ1σ2 = e−Ek(τ1−τ2)fβ (−Ek1) δk1k2δσ1σ2

A (ωn) = ∆
β
0 dτe

(iωn−Ek)τfβ (−Ek1) δk1k2δσ1σ2 = −fβ (−Ek1) δk1k2δσ1σ2

e−βEk + 1

iωn − Ek
= −δk1k2δσ1σ2

iωn − Ek
(C.12)

B
(
τ − τ ′

)
= δk1k2δσ1σ2θ (τ1 − τ2) eEk1

(τ1−τ2)fβ (Ek1)

B (ωn) = ∆
β
0 dτe

(iωn+Ek)τfβ (Ek1) δk1k2δσ1σ2 = fβ (Ek1) δk1k2δσ1σ2

eβEk + 1

iωn + Ek

= −δk1k2δσ1σ2

iωn + Ek
. (C.13)

The expectation values in Eqs. (C.12) and (C.13) are inserted in the 11 element of the GF:

GKS
σ1σ2

(r1r2ωn) = δσ1σ2

∑

k

[
uk (r1)u∗k (r2)

iωn − Ek
+
v∗k (r1) vk (r2)

iωn + Ek

]
.

In an analogous way, the remaining normal and anomalous GF are found:

FKS
σ1σ2

(r1r2ωn) = δσ1−σ2

∑

k

[
v∗k (r1)uk (r2)

iωn + Ek
− uk (r1) v∗k (r2)

iωn − Ek

]

GKS†
σ1σ2

(r1r2ωn) = δσ1σ2

∑

k

[
u∗k (r1)uk (r2)

iωn + Ek
+
vk (r1) v∗k (r2)

iωn − Ek

]

FKS†
σ1σ2

(r1r2ωn) = δσ1−σ2

∑

k

[
u∗k (r1) vk (r2)

iωn + Ek
− vk (r1)u∗k (r2)

iωn − Ek

]
.

C.4.2. The Kohn-Sham Green’s Function – Bloch Representation

First the spatial representation of the Green’s function is rewritten using the expansion of unq (r) and
vnq (r) in terms of the Bloch states with respect to the non-SC system defined in Eqs. (3.16) and (3.17).
In the decoupling approximation the coefficients are diagonal and the invariance of E±k with respect
to k → −k leads to [Eqs. (3.24) and (3.27)]:

GKS
σ1σ2

(r1r2ωn) = δσ1σ2

∑̂

k

ψk (r1)ψ∗k (r2)

[ ∣∣u±k
∣∣2

iωn − E±k
+

∣∣v±k
∣∣2

iωn + E±k

]
.

The Bloch representation is the k dependent part of the real space function. Using the orthogonality
of the non-superconducting Bloch states [Eq. (3.15)] the GF in Bloch representation is found:

⇒ GKS
σ1σ2

(
kk′ωn±

)
:= δσ1σ2δkk′ Λ d

3r1d
3r2ψk (r1)GKS

σ1σ2
(r1r2ωn)ψ∗k′ (r2) (C.14)

= δσ1σ2δkk′

[ ∣∣u±k
∣∣2

iωn − E±k
+

∣∣v±k
∣∣2

iωn + E±k

]
.
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C.4. THE KOHN-SHAM GREEN’S FUNCTION

Every sum with respect to the quantum number k, is evaluated with the rule presented in Eq. (3.28)
and for the other components of the GFit is found:

GKS†
σ1σ2

(k1k2ωn±) = δσ1σ2δk1k2




∣∣∣u±k1

∣∣∣
2

iωn + E±k1

+

∣∣∣v±k1

∣∣∣
2

iωn − E±k1


 (C.15)

FKS
σ1σ2

(k1k2ωn±) = δσ1−σ2δk1k2

[
v±∗k1

u±k1

iωn + E±k1

−
v±∗k1

u±k1

iωn − E±k1

]
(C.16)

FKS†
σ1σ2

(k1k2ωn±) = δσ1−σ2δk−k′

[
u±∗k1

v±k1

iωn + E±k1

−
u±∗k1

v±k1

iωn − E±k1

]
. (C.17)

Note that some authors [69, 110] define the transformation of the anomalous terms via

Λ d
3r1d

3r2ψ
∗
k1

(r1)FKS
σ1σ2

(r1r2ωn)ψ∗k2
(r2)

leading to a δk1−k2 instead of the δk1k2 . The transformation for all components reads (the spin conditions
δσ1σ1 for G and G† and δσ1−σ2 for F and F † are left for simplicity):

ḠKS
(
kk′ωn±

)
= Λ d

3r1d
3r2ψ

∗
k (r1) ḠKS (r1r2ωn)ψk′ (r2)

= δkk′τ3



|u±k |2

iωn−E±k
+
|v±k |2

iωn+E±k

v±∗k u±k
iωn+E±k

− v±∗k u±k
iωn−E±k

u±∗k v±k
iωn+E±k

− u±∗k v±k
iωn−E±k

|u±k |2
iωn+E±k

+
|v±k |2

iωn−E±k


 (C.18)

ḠKS (r1r2ωn) =
∑

kk′

ψk (r1) ḠKS
(
kk′ωn

)
ψ∗k′ (r2) . (C.19)

The transformation relation for the GF [Eq. (C.19)] together with the Dyson equation [Eq. (D.9)] lead
to the following relations for the self-energy and XC-potential:

Σ̄
(
kk′ωn

)
:= Λ d

3r1d
3r2ψ

∗
k (r1) Σ̄ (r1r2ωn)ψk′ (r2) (C.20)

v̄xc (kk′
)

:= Λ d
3r1d

3r2ψ
∗
k (r1) v̄xc (r1r2)ψk′ (r2) . (C.21)

Note that the definition given in Eq. (C.21) is in line with the definition used in the SCDFT introduction
[Eq. (3.19)]. In some situation it is advantageous to write the Green’s function in terms of the gap
∆KS
s (k) and eigenvalue Ek. This is done by using the explicit equation for the eigenvectors given in

Eq. (3.26):

ḠKS
(
kk′ωn±

)
=
δkk′

2
τ3




1+
ζk

E±
k

iωn−E±k
+

1− ζk

E±
k

iωn+E±k

∆KS∗
k

E±k

[
1

iωn+E±k
− 1

iωn−E±k

]

∆KS
k

E±k

[
1

iωn+E±k
− 1

iωn−E±k

] 1+
ζk

E±
k

iωn+E±k
+

1− ζk

E±
k

iωn−E±k


 . (C.22)

In this form it is obvious that the ḠKS (kkωn+) is identical to the ḠKS (kkωn−) and hence it does
not matter which function is chosen in the evaluation of the sum with respect to k (Fig. 3.1). From
now on the index ± is left out for simplicity. Using the expressions for ḠKS (kk′ωn) , relations for the
substitution of the frequency ωn → −ωn are obtained:

FKS (k − ωn) =
v∗kuk

−iωn + Ek
− v∗kuk
−iωn − Ek

=
v∗kuk

iωn + Ek
− v∗kuk
iωn − Ek

= FKS (kωn) (C.23)

GKS (k − ωn) =
|uk|2

−iωn − Ek
+

|vk|2
−iωn + Ek

= − |uk|2
iωn + Ek

− |vk|2
iωn − Ek

= −GKS† (kωn) . (C.24)
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D. Hedin Equations for Superconductors

D.1. Nambu Green’s Function

D.1.1. Equation of Motion

The equation of motion for the Nambu GF given in Eq. (4.4) reads:

∂τ1Ḡ (12) = −τ z
( [

Ψ (1) ,Ψ† (2)
]
+

[Ψ (1) , zσ2Ψ (2)]+[
zσ1Ψ† (1) ,Ψ† (2)

]
+

[
zσ1Ψ† (1) , zσ2Ψ (2)

]
+

)

− τ z




〈
T̂
[
K̂,Ψσ1 (r1)

]
−

(τ1) Ψ† (2)

〉 〈
T̂
[
K̂,Ψσ1 (r1)

]
−

(τ1) zσ2Ψ (2)

〉

〈
T̂
[
K̂, zσ1Ψ†σ1 (r1)

]
−

(τ1) Ψ† (2)

〉 〈
T̂
[
K̂, zσ1Ψ†σ1 (r1)

]
−

(τ1) zσ2Ψ (2)

〉


 .

The commutator leads to the unity and the τ z is brought to the left hand side of the equation:

−τ z∂τ1Ḡ (12) = δ12τ
0+



〈
T̂
[
K̂,Ψσ1 (r1)

]
(τ1) Ψ† (2)

〉 〈
zσ2 T̂

[
K̂,Ψσ1 (r1)

]
(τ1) Ψ (2)

〉
〈
zσ1 T̂

[
K̂,Ψ†σ1 (r1)

]
(τ1) Ψ† (2)

〉 〈
zσ1zσ2 T̂

[
K̂,Ψ†σ1 (r1)

]
(τ1) Ψ (2)

〉

 . (D.1)

The Hamilton operator determining the time evolution contains single and two-particle contributions
which are defined in Eqs. (4.1) and (4.3). The single-particle operator terms are unproblematic. The
complications are created by the two-particle operator Ŵ .

D.1.2. Single-Particle Contributions

For the single particle parts of the Hamiltonian the commutators give the following contribution:
[
K̂0, Ψ̂σ1 (r1)

]
−

= −
∑

β

∆ d3rk0
σ1β

(
r1r
′) Ψ̂β

(
r′
) [

K̂0, Ψ̂
†
σ1

(r1)
]
−

= −
[
K̂0, Ψ̂σ1 (r1)

]†
−

[
ĤSC, Ψ̂σ1 (r1)

]
−

= zσ1 ∆ d3r∆ext∗ (r1r) Ψ̂†−σ1
(r)

[
ĤSC, Ψ̂

†
σ1

(r1)
]
−

= −
[
ĤSC, Ψ̂σ1 (r1)

]
−
,

where K̂0 is given by Ĥ0 − µN̂ . Inserting the single particle results in the equation of motion [Eq.
(D.1)] leads to:

−τ z∂τ1Ḡ (12)11 = δ12τ
0 +

〈
T̂


−

∑

β

k0
σ1β (r1r) Ψ̂β (rτ1) + zσ1∆ext∗ (r1r) Ψ̂†−σ1

(rτ1)


 Ψ̂†σ2

(x2)

〉

−τ z∂τ1Ḡ (12)12 =

〈
T̂


−

∑

β

k0
σ1β (r1r) Ψ̂β (rτ1) + zσ1 ∆ d3r∆ext∗ (r1r) Ψ̂†−σ1

(rτ1)


 zσ2Ψ̂σ2 (x2)

〉

−τ z∂τ1Ḡ (12)21 =

〈
T̂


∑

β

k0∗
σ1β (r1r) zσ1Ψ̂†β (rτ1)−∆ d3r∆ext (r1r) Ψ̂−σ1 (rτ1)


 Ψ̂†σ2

(x2)

〉

−τ z∂τ1Ḡ (12)22 = δ12 +

〈
T̂


∑

β

k0∗
σ1β (r1r) zσ1Ψ̂†β (rτ1)−∆ d3r∆ext (r1r) Ψ̂−σ1 (rτ1)


 zσ2Ψ̂σ2 (x2)

〉
.
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The components of the Nambu Green’s function defined in Eq. (4.4) are identified

−τ z∂τ1Ḡ (12)11 = δ12τ
0 +

〈∑

β

k0
σ1β (r1r)Gβσ2 (rτ1x2)−∆ext∗ (r1r)F †−σ1σ2

(rτ1x2)

〉

−τ z∂τ1Ḡ (12)12 =

〈∑

β

k0
σ1β (r1r)Fβσ2 (rτ1x2)−∆ d3r∆ext∗ (r1r)G†−σ1−σ2

(rτ1x2)

〉

−τ z∂τ1Ḡ (12)21 =

〈
−
∑

β

zσ1k
0∗
σ1β (r1r) zβF

†
βσ2

(x1x2) + ∆ d3r∆ext (r1r)G−σ1σ2 (rτ1x2)

〉

−τ z∂τ1Ḡ (12)22 = δ12τ
0 +

〈
−
∑

β

zσ1k
0∗
σ1β (r1r) zβG

†
βσ2

(rτ1x2) + ∆ext (r1r)F−σ1σ2 (rτ1x2)

〉

and written in compact matrix notation:

−τ z∂τ1Ḡ (12) = δ12τ
0+

∑

σ

∆ dr

(
k0
σ1σ (r1r) ∆ext∗ (r1r) δ−σ1σ

∆ext (r1r) δσ1−σ k0∗
σ1σ (r1r) zσ1zσ2

)(
Gσσ2 (rτ1x2) Fσσ2 (rτ1x2)

−F †σσ2 (rτ1x2) −G†σσ2 (rτ1x2)

)
+O

[
Ψ̂4
]
.

(D.2)

The time dependent potentials are introduced to simplify the notation:

−τ z∂τ1Ḡ (12) = δ12τ
0 + ∆ d3

(
k0 (13) ∆ext∗ (13)

∆ext (13) k0∗ (13)

)
Ḡ (32)

+



〈
T̂
[
Ŵ ,Ψσ1 (r1)

]
(τ1) Ψ† (2)

〉 〈
T̂
[
Ŵ ,Ψσ1 (r1)

]
(τ1) Ψ (2)

〉
〈
T̂
[
Ŵ ,Ψ†σ1 (r1)

]
(τ1) Ψ† (2)

〉 〈
T̂
[
Ŵ ,Ψ†σ1 (r1)

]
(τ1) Ψ (2)

〉



︸ ︷︷ ︸
This part is done in the next section

k0 (12) = δτ1τ2k
0
σ1σ2

(r1r2)

∆ext (12) = δτ1τ2δσ1,−σ2∆ext (r1r2) .

In a non-magnetic (NM) Kohn-Sham system considered in the superconducting density functional
theory (SCDFT) chapter 3, the diagonal part A is given by the normal single particle contribution
plus the XC and Hartree potential: −42 +v0 +vH +vxc and the ∆ext is replaced by the sum of external
pairing field ∆ext and the XC part ∆xc.

D.1.3. Two-Particle Contributions

The commutator for the two-particle term Ŵ is evaluated:

[
Ŵ , Ψ̂σ1 (r1)

]
= −2

∑

α

∆ d3r
v (rr1)

2
Ψ̂†α (r) Ψ̂α (r) Ψ̂σ1 (r1)

[
Ŵ , Ψ̂†σ1

(r1)
]

= −
[
Ŵ , Ψ̂σ1 (r1)

]†
.

(D.3)

Inserting this on the right hand side of the equation of motion [Eq. (D.1)] leads to:

O
[
Ψ̂4
]

=
∑

α

∆ d3rv (r1r)× (D.4)


−

〈
T̂ Ψ̂†α (rτ1) Ψ̂α (rτ1) Ψ̂σ1 (x1) Ψ̂†σ2 (x2)

〉
−
〈
T̂ Ψ̂†α (rτ1) Ψ̂α (rτ1) Ψ̂σ1 (x1) zσ2Ψ̂σ2 (x2)

〉
〈
T̂ zσ1Ψ̂†α (rτ1) Ψ̂α (rτ1) Ψ̂†σ1 (x1) Ψ̂†σ2 (x2)

〉 〈
T̂ zσ1Ψ̂†α (rτ1) Ψ̂α (rτ1) Ψ̂†σ1 (x1) zσ2Ψ̂σ2 (x2)

〉

 .
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D.1.4. Schwinger’s Functional Derivative Approach

The two-particle expectation values are too difficult to evaluate, but it is possible to connect the
expectation value to a functional derivative with respect to an external probing field. This procedure
is called Schwinger’s functional derivative approach [83]. The probing field or perturbation ϕi is time
dependent and couples to the densities:

Φ̂ (τ) =
∑

i

∆ d3rϕi (x) ρ̂i (r) .

This field is used as a mathematical tool and it is set to zero after the derivative is calculated i.e.:

δA

δϕi
:= lim

ϕi→0

δA

δϕi

∣∣∣∣
e,v,H0

.

The limit guarantees that the considered Hamiltonian remains time independent and all quantities
depend only on the time difference. The new term in the Hamiltonian Φ̂ (τ) = ∆ d3rϕ (x) ρ̂ (r) is
considered as the interaction in the Dirac picture. Note that in this way the fully interacting system
takes the roles of the unperturbed system. In the standard definition of the Dirac picture the two-
particle interaction is the perturbation. In order to highlight this difference the label Ŝ is used for
the time propagation operator, instead of the usual Û (β, 0) [Eq. 2.25]. However, the perturbative
expression [Eq. (2.29)] holds also for the Φ̂ related to the probing field:

Ḡ (12) = −limΦ→0
τ z〈
Ŝ
〉



〈
T̂
[
ŜΨσ1 (x1)D Ψ†σ2 (x2)D

]〉 〈
T̂
[
ŜΨσ1 (x1)D zσ2Ψσ2 (x2)D

]〉
〈
T̂
[
Ŝzσ1Ψ†σ1 (x1)D Ψ†σ2 (x2)D

]〉 〈
T̂
[
Ŝzσ1Ψ†σ1 (x1)D zσ2Ψσ2 (x2)D

]〉



Ŝ (β, 0) = e−∆
β
0 dτ Φ̂(τ)D

δŜ

δϕi (x)
= −Ŝρ̂i (x)D = −Ŝ

∑

αβ

σiαβΨ̂†α (x)D Ψ̂β (x)D .

Fields coupling to the anomalous density are not needed because the Coulomb part creates no terms
like

〈
Ψ̂Ψ̂Ψ̂Ψ̂

〉
or
〈

Ψ̂†Ψ̂†Ψ̂†Ψ̂†
〉
. Evaluating the functional derivative leads to:

δḠ (12)

δϕ0 (x3)
= ρ̂i (x3)D Ḡ (12) +

∑

αβ

σ0
αβτ

z

〈
Ŝ
〉



〈
T̂
[
ŜΨ̂†α (x3)D Ψ̂β (x3)D Ψσ1 (x1)D Ψ†σ2 (x2)D

]〉
0〈

T̂
[
ŜΨ̂†α (x3)D Ψ̂β (x3)D zσ1Ψ†σ1 (x1)D Ψ†σ2 (x2)D

]〉
0




+
∑

αβ

σ0
αβτ

z

〈
Ŝ
〉


0

〈
T̂
[
ŜΨ̂†α (x3)D Ψ̂β (x3)D Ψσ1 (x1)D zσ2Ψσ2 (x2)D

]〉

0
〈
T̂
[
ŜΨ̂†α (x3)D Ψ̂β (x3)D zσ1Ψ†σ1 (x1)D zσ2Ψσ2 (x2)D

]〉

 .

The perturbation is set to zero after the derivative is performed. This means Ŝ = 1 and the Dirac
picture of this section reduces to the normal Heisenberg picture. The steps in this section are in
complete analogy to the procedure in the LR theory in Sec. 2.2. The two-particle contributions are
given in terms of the functional derivative of Ḡ with respect to the external probing field and a
comparison with Eq. (D.4) leads to:

∑

α

∆ d3rv (r1r)

[
ρ0 (rτ1) Ḡ (12)− δḠ (12)

δϕ0 (rτ1)

]
=



〈
T̂
[
Ŵ , Ψ̂σ1 (r1)

]
(τ1) Ψ̂†σ2 (x2)

〉 〈
T̂
[
Ŵ , Ψ̂σ1 (r1)

]
(τ1) zσ2Ψ̂σ2 (x2)

〉
〈
T̂
[
Ŵ , zσ1Ψ̂†σ1 (r1)

]
(τ1) Ψ̂†σ2 (x2)

〉 〈
T̂
[
Ŵ , zσ1Ψ̂†σ1 (r1)

]
(τ1) zσ2Ψ̂σ2 (x2)

〉

 . (D.5)
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D.2. The Loop Rule

Within the perturbation expansion of the GF, the interaction enters in multiples of [Eq. 2.29]:

−v (12) Ψ̂†
D

(1) Ψ̂†
D

(2) Ψ̂D (2) Ψ̂D (1) .

Assume now a fully contracted contribution, in which the GF is separated into two parts (see left side
of Fig. D.1):

G (12) =
〈

Ψ̂D (1) . . . some contraction . . . Ψ̂†
D

(2)
〉
×

〈
Ψ̂†
D

(4) Ψ̂D (4) Ψ̂†
D

(5) Ψ̂†
D

(6) Ψ̂D (6) Ψ̂D (5) . . . Ψ̂†
D

(N) Ψ̂D (N)
〉
v (34) v (56) . . . v (N − 1N)

︸ ︷︷ ︸
=Part A only connected via v to the other term

.

Within the separate Part A at least one Fermionic loop must appear. If there are multiple loops the
part A is split in A1 . . . As separate parts, where each Ai contains only a single loop and from now on
only parts with a single loop are considered. Since the product of the various interactions is always
within the time ordering operator the terms are rearranged:

〈
. . . Ψ̂†

D
(3) Ψ̂D (3) Ψ̂†

D
(4) Ψ̂D (2) . . . Ψ̂†

D
(N) Ψ̂D (N) . . .

〉
0
.

With the help of Wick’s theorem (Sec. 2.4), such expectation values are evaluated by the sum of all
possible totally contracted contributions. The contraction is defined in Eq. (2.30) and a contraction
with a single loop leads to:

Ψ̂†(1)DΨ̂(1)DΨ̂†(2)DΨ̂(2)D...Ψ̂
†(N)DΨ̂(N)D

Ψ̂†(1)DG0(12)...G0(N − 1N)Ψ̂(N)D = −G0(N1)G0(12)...G0(N − 1N).

For each Part Ai containing a single loop of normal state Green’s functions a (−1) appears. Up to now
only loops with multiple Green’s functions have been considered, but the most simple form of a loop
is just the contraction between two operators with the same space-time argument:

lim
2↗1

Ψ̂†
D

(1) Ψ̂D (2) = lim
2↗1

〈
T̂
[
Ψ̂†
D

(1) Ψ̂D (2)
]〉

0
= − lim

2↗1
G0 (21) = −G0

(
11+

)
.

This means a factor of (−1)s is added, where s is the number of loops. Note that this rule is only
necessary for purely normal GF loops. If SC contributions are present in the loop, no minus signs
appear. For the anomalous Green’s function a single Green’s function loop like F (11+) is not possible
because the Coulomb interaction contains always an incoming and an outgoing GF line. Hence, the
first loops containing anomalous terms are

Ψ̂†(1)DΨ̂†(2)DΨ̂(2)DΨ̂(1)D = −Ψ̂(2)DΨ̂†(1)DΨ̂(1)DΨ̂†(2)D = −G0(21)G0(12)

Ψ̂†(1)DΨ̂†(2)DΨ̂(2)DΨ̂(1)D = F †0 (12)F0(21)

Ψ̂†(1)DΨ̂(1)DΨ̂†(2)DΨ̂(2)DΨ̂†(3)DΨ̂(3)D = −G0(13)G0(12)G0(23)

Ψ̂†(1)DΨ̂(1)DΨ̂†(2)DΨ̂(2)DΨ̂†(3)DΨ̂(3)D = F †0 (12)G0(13)F0(23)

...

and no minus sign appears for loops with an anomalous term.
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2 1

Contributions with loops Contributions with no loops

2 1

Figure D.1.: Contributions in the expansion of the Green’s function containing at least one loop (left)
and without loops (right).

D.3. Different Reference Systems

Two different reference systems have been used already in chapter 4: The ˆ̄h0 system related to a self-
energy with Hartree terms and ˆ̄hH where the Hartree contribution are removed from the self-energy
(Eqs. (2.33) and Eq. (4.10). However, it is possible to add arbitrary single particle potentials v̄ on
both sides of the equation of motion [Eq. (4.10)]:

−
[
τ z∂τ1 +

∑

α

∆ d3rh̄H+v̄
σ1α (r1r)

]
Ḡασ2 (rτ1x2) = 12×2 + ∆ d3

[
Σ̄ (13)− v̄ (13)

]
Ḡ (32)

h̄H+v̄
σ1σ2

(r1r2) = h̄H
σ1σ2

(r1r2) + v̄σ1σ2 (r1r2) .

By adding a v̄ to the non-interacting system, the corresponding reference GF changes. The full Ḡ is
independent of the selected reference system because also the self–energy [Eq. (4.10)] in the Dyson
equation for Ḡ is changed i.e.:

Ḡ = Ḡref + ḠrefΣ̄refḠ Σ̄ref = Σ̄− v̄ and −
[
τ3∂τ + h̄H+v̄

]
Ḡref = 1.

All further steps in the Hedin cycle are independent of the reference system because the equations
depend only on the full Green’s function and Σ. For practical applications some choices for the
reference system are a better starting point than others [151]. The standard reference systems in the
literature are:

1. The “free Green’s function”:

−
(
∂τ1 −∆r1 0

0 −∂τ1 −∆r1

)
ḠHEG = 1 Ḡ = ḠHEG + ḠHEG [±+ vH + v0]G (D.6)

corresponding to the HEG and all system information must enter in the renormalization process.

2. The “non interacting Green’s function”:

−
[
τ z∂τ1 + h̄0

]
Ḡ0 = 1 Ḡ = Ḡ0 + Ḡ0

[
Σ̄ + τ0v

H
]
Ḡ (D.7)

corresponding to non-interacting electrons in the background potential of the nuclei (Eq. (4.6)
for the definition of h̄0). This means the structural information of the system is added to the
reference system, but all interaction between the electrons enters in the Dyson equation.

3. The “Hartree Green’s function”:

− τ z
[
∂τ1 + h̄H

]
ḠH = 1 Ḡ = ḠH + ḠHΣ̄Ḡ, (D.8)

where the Hartree potential is added to the reference system. In this form the self–energy contains
no local contributions [Eq. (4.9) for definition of h̄H].
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4. The “Kohn-Sham Green’s function”:

−
[
τ z∂τ1 +

[
h̄H +

(
vxc +Bxc ∆xc∗

s

∆xc
s (vxc +Bxc

i )∗

)]]
ḠKS = 1 Ḡ = ḠKS + ḠKS

[
Σ̄− v̄xc] Ḡ (D.9)

corresponding to the Hamiltonian given in Eq. (3.6). The KS system is obtained by adding the
XC-potential and Hartree potential (Bext

i → Bext
i +Bxc

i , v0 → v0 + vH + vxc and ∆ext
s → ∆ext

s +
∆xc
s ) to the non-interacting Hamiltonian [Eq. (4.6)]. The KS system has the special property

that it reproduces (for the exact v̄xc) the density of the full system i.e.
∑

αG
KS
αα (11+)11 =

ρ (r1) and χ (r1r2) =
∑
FKS
↑↓
(
r1τ1r2τ

+
1

)
. In practice, the XC-potential is approximated by

one of the countless approximations (local density approximation (LDA), generalized gradient
approximation (GGA), . . . ) and the full GF will depend on the choice of the reference system
[151].

The functions ḠKS or ḠH are much closer to the full Green’s function than ḠHEG and Ḡ0 because
many-body effects like exchange for ḠH and XC for ḠKS are included. This is advantageous for a
perturbation expansion.
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E. Sham-Schlüter Equation

E.1. Frequency Sums – Residue Theorem

In the Sham-Schlüter equation (SSEq), summations with respect to the Matsubara frequencies are
involved. Any Matsubara summation can be rewritten using the residue theorem and the Fermi (fβ)
or Bose (bβ) distribution functions: The fβ or bβ have poles on the imaginary axis at either 2πn

β i or
(2n+1)π

β i (Fig. E.1) and the residue at every pole is simply − 1
β . From now on only the Fermionic case

is considered, but analogous equations hold also for bosonic Matsubara sums.

Figure E.1.: Absolute values of the Fermi function fβ (z) = 1
eβz+1

and bosonic distribution function
bβ (z) = 1

eβz−1
in the complex plane. The red line is the function for z ∈ R which is shown in every

many-body text book [52, 51].

Assume a function A(z) which is analytic (has no poles) in the complex frequency plane. By
multiplying this function with fβ a function is created with poles at every ωn. The Cauchy integral
formula or residue theorem connects such a sum to a contour integral:

− 1

2πi
ffγ dzA (z) fβ (z) =

Poles∈γ∑

n

res [fβ (z)A (z) , zn] =
1

β

∞∑

ωn

A (iωn) ,

where res [f (z) , z0] denotes the residue of the function f located at z0. Note that the residue theorem
is unique only in one direction. If a function f (z) is analytic on a region Γ and the values of the
function are known on the contour γ surrounding that region all function values z0 ∈ Γ are determined
via:

ffγ dz
f (z)

z − z0
= 2πif (z0)

and it is not possible to multiply an analytic function which is 1 on the contour and not identical
to 1 (⇒). However, in this section the summation with respect to discrete Matsubara frequencies is
rewritten. This means the function is known on only Matsubara points (z0 = {ω1, ω2, . . . }) and not on
a contour. In this case it is possible to add a function f̃ which is 1 for z = z0 and different elsewhere
i.e. the analytic continuation from points to the complex plane is in general not unique (��⇐). However,
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for the GF it can be shown that the continuation is unique because a non-trivial f̃ breaks the limit
behavior: lim|z|→0G (z) = 0 [52]. It is assumed that such a condition is also valid for the considered
functions A (z) which will be a product of Green’s functions and self-energy contributions. The contour
γ is transformed to γ′ (Fig. E.2):

1

β

∞∑

ωn

A (iωn) = − 1

2πi
ffγ′ dzA (z) fβ (z) .

In order to close the contour with the infinite cycle the function A (z) must vanishes for |z| → ∞ faster
then 1

|z| (Jordan’s lemma). The Fermi function has no poles besides the ones on the imaginary axis.
Hence, the contour integral with respect to γ′ is given by the residues of A (z) in the complex plane
(imaginary axis excluded):

1

β

∞∑

ωn

A (iωn) =

Poles∈γ′∑

n

res [fβ (z)A (z) , zn] . (E.1)

Figure E.2.: Fermi function with poles on the imaginary axis and some example function A with two
poles in the complex plane. The initial contour γ (left) is changed in two steps to the contour γ′

(right), where the poles of the function A lie inside the contour [Eq. (E.1)]. For closing the contour
with the infinite circle (dashed line) it is assumed that the function A (z) vanishes for |z| → ∞ faster
then 1

|z| .

E.2. Various Terms in the Sham-Schlüter Equation

In this section the Matsubara summations appearing in the Sham-Schlüter equation [Eq. (6.2)] are
worked out analytically.

E.2.1. The GG† Term

The first rather simple contribution in Eq. (6.2) is:
∑

nG
KS (kωn)GKS† (kωn). The explicit expression

for GKS given in Eq. (C.18) is inserted:

GKSGKS† =

(
|uk|2

iωn − Ek
+

|vk|2
iωn + Ek

)(
|uk|2

iωn + Ek
+

|vk|2
iωn − Ek

)

=
|uk|4 + |vk|4

(iωn − Ek) (iωn + Ek)
+
|uk|2 |vk|2

(iωn − Ek)2 +
|uk|2 |vk|2

(iωn + Ek)
2 .

Note that |uk|2 |vk|2 contains only |∆k|2 and higher orders in ∆k [Eq. (6.7)]. Since the equation is
linearized in ∆k the last two terms are neglected and 2 |uk|2 |vk|2 is added to the first term:

GKSGKS† =
|uk|4 + |vk|4 + 2 |uk|2 |vk|2

(iωn − Ek) (iωn + Ek)
=

(
|uk|2 + |vk|2

)2

(iωn − Ek) (iωn + Ek)
.
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The coefficients are renormalized |uk|2 + |vk|2 = 1 and the KS Green’s function reads:

1

β

∑

n

eiωn0+
GKSGKS† =

1

β

∑

n

eiωn0+

(iωn − Ek) (iωn + Ek)
=

1

2Ekβ

∑

n

eiωn0+

[
1

iωn + Ek
− 1

iωn − Ek

]

(E.2)

=

Poles∈γ′∑

n

res

[
fβ (z) eiz0

+

2Ek

[
1

z + Ek
− 1

z − Ek

]
, zn

]
.

The two poles of A (z) = 1
z+Ek

− 1
z−Ek are at ±Ek and the residues are obviously ±fβ(Ek)

±2Ek
, since the

function fβ has no poles in the contour γ′(Fig. E.2). Inserting this in the Eq. (E.1) leads to:

1

β

∑

n

eiωn0+
GKSGKS† = − 1

2Ek
[fβ (Ek)− fβ (−Ek)] =

tanh
[
βEk

2

]

2Ek
. (E.3)

E.2.2. The I Term

In the contributions to the SSEq containing the self-energy i.e. GKSΣ̄11F
KS and GKSΣ̄12G

KS† [Eq. (6.2)]
a function depending on Ek, Ek′ and ω appears. The function contains all the Matsubara summations
and is defined by:

Iβ (Ek, Ek′ω) := − 1

β2

∑

nm

1

iωn + Ek

2ωeiωn0+

ω2 + (ωn − ωm)2

1

iωm + Ek′
. (E.4)

The calculation of the residues is easier, if the fraction is split into two parts:

Iβ (Ek, Ek′ω) =
1

β2

∑

nm

1

iωn + Ek

eiωn0+

ω + i (ωn − ωm)

1

ωm + Ek′︸ ︷︷ ︸
A(ωωnωmEkEk′ )

+
1

β2

∑

nm

1

iωn + Ek

eiωn0+

ω − i (ωn − ωm)

1

ωm + Ek′︸ ︷︷ ︸
B(ωωnωmEkEk′ )

.

Mathematica helps with the determination of the residues. The final results from the term A and B,
using the relations discussed in Sec. E.1, are

∑

nm

A (ωωnωmEkEk′) =
fβ (Ek′) fβ (Ek) bβ (ω)

Ek − Ek′ − ω
[
eEk − eEk′+ω

]

∑

nm

B (ωωnωmEkEk′) =
fβ (Ek) fβ (Ek′) bβ (ω)

Ek − Ek′ + ω

[
eEk+ω − eEk′

]

and the function I, after the Matsubara frequencies have been summed analytically, reads:

Iβ (Ek, Ek′ω) = −fβ (Ek) fβ (Ek′) bβ (ω)

[
eβEk − eβ(Ek′+ω)

Ek − Ek′ − ω
− eβEk′ − eβ(Ek+ω)

Ek − Ek′ + ω

]
. (E.5)

Note that this function diverges for ω → 0 as bβ (ω) ≈ 1
ω . This means the interaction has to behave

like a1ω+ a2
2 ω

2 + . . . for small frequencies in order to avoid divergences in the frequency integrals [Eq.
(6.6)]. On the other hand, the Bose function goes to zero for ω →∞ ensuring the convergence of the
frequency integrals even if the retarded response decays slowly.

E.2.3. Preparation for the Self-Energy Terms

The structure of the self-energy contribution, required in the SSEq in real space reads [Eq. (6.1)]:

Σ̄ (r1r2ωn) =
1

β

∑

ωm

M (r1r2ωn − ωm) Ḡ (r1r2ωm) .
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In principle, the interaction M varies for the different components of the GF [Eq. (6.1)], but for the
discussion at this point this is irrelevant. The self–energy in Bloch representation [Eq. (C.20)] and the
transformation of the GF [Eq. (C.19)] are inserted:

Σ̄ (kωn) =
1

β

∑

k′ωm

Λ d
3r1d

3r2ψ
∗
k (r1)ψk′ (r1)M (r1r2ωn − ωm) Ḡ

(
k′ωm

)
ψ∗k′ (r2)ψk (r2)

Σ̄ (kωn) =
1

β

∑

k′ωm

Mkk′ (ωn − ωm) Ḡ
(
k′ωm

)
(E.6)

Mkk′ (ωn − ωm) := Λ d
3r1d

3r2ψ
∗
k (r1)ψk′ (r1)M (r1r2ωn − ωm)ψ∗k′ (r2)ψk (r2) . (E.7)

In the analytic evaluation of the Matsubara sums, the frequency dependence of the interaction is
crucial. The basic form of the interactions given in Eq. (5.41) is:

M (r1r2ωn) ∝ Λ d
3rd3r′fxc

zz (r1rωn)χM
zz

(
rr′ωn

)
fxc
zz

(
r′r2ωn

)
.

A restriction to real, local and static kernels as the ALDA (Sec. B.4) is made:

M (r1r2ωn) ∝ fxc
zz (r1)χM

zz (r1r2ωn) fxc
zz (r2) .

The connection between the retarded and Matsubara functions [Eq. (B.11)] is used and the interaction
is transformed to Bloch representation:

Mkk′ (ωn) ∝ ∆ dω
MR
kk′ (ω)−MR∗

k′k (ω)

ω2
n + ω2

= ∆ dω
Im
[
MR
kk′ (ω)

]
ω

ω2
n + ω2

. (E.8)

The adiabatic kernel leads to the convenient result that simply the anti-Hermitian part of the whole
interaction is used in the expression. For frequency dependent kernels the situation becomes more
complicated. The kernel is also defined implicitly by Eq. (5.17):

fxc
zz (ω) = χKS

zz
−1 (ω)− χ−1

zz (ω) ,

where the −1 denotes a matrix inversion in space: χzz (r1r2ω). For the response functions the Eq.
(B.11) holds:

fxc
zz (ωn) =

2

π
∆
∞
0 dE

Im
[
χKS
zz
−1 (E)− χ−1

zz (E)
]
E

ω2
n + E2

=: ∆ dE
A (E)

ω2
n + E2

,

and the matrix elements read:

M (r1r2ωn) ∝ Λ d
3rd3r′Π dE1 . . . dE3

A (r1rE1)E1

ω2
n + E2

1

Im [χzz (rr′E2)]E2

ω2
n + E2

2

A (r′r2E3)E3

ω2
n + E2

3

. (E.9)

Also for this expression it is possible to evaluate the Matsubara summation analytically, but the poles
have higher order compared to the adiabatic situation. This leads to more complicated expressions for
the residues compared to Eq. (E.5).
Before the contributions to the SSEq containing the self–energy are evaluated, a helpful observation

is made: The two contributions GKSΣ11F
KS and GKS†Σ22F

KS in Eq. (6.2) are identical. This is shown
by using the symmetry relations with respect to ωn → −ωn given in Eqs. (C.24) and (C.23):

1

β

∑

n

GΣ11F
n→−n

=
1

β2

∑

nm

∑

k′

G (k − ωn)Mkk′ (ωn − ωm)G
(
k′ − ωm

)
F (k − ωn)

=
1

β2

∑

nm

∑

k′

G† (kωn)Mkk′ (ωn − ωm)G†
(
k′ωm

)
F (kωn) = − 1

β

∑

n

G†Σ22F. (E.10)

This reduces the work by 50% and only the
∑

nG
KSΣ11F

KS term is evaluated in Sec. E.2.5. But first
the term containing the 12 elements of the self-energy i.e. GKSΣ12G

KS† is evaluated.
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E.2.4. The GKSΣ12G
KS† Term

The Matsubara sums are evaluated first for the contribution with respect to the off diagonal element
of the self-energy in Eq. (6.2). The expression for the self-energy is given in Eq. (E.7):

1

β

∑

n

GKSΣ12G
KS†

︸ ︷︷ ︸
:=GΣ12G†

=
1

β

∑

n

GKS (kωn) Σ12 (kωn)GKS† (kωn)

=
1

β2

∑

nm

∑

k′

GKS (kωn)GKS† (kωn)Mkk′ (ωn − ωm)FKS
(
k′ωm

)
.

As a first step the Green’s functions are inserted and the simplified form for GKSGKS† [Eq. (E.2)] is
used directly:

GΣ12G
† =

1

β2

∑

nm

∑

k′

1

(iωn − Ek) (iωn + Ek)
Mkk′ (ωn − ωm)

(
1

iωm + Ek′
− 1

iωm − Ek′

)
v∗k′uk′ .

The anomalous Green’s function FKS is written in terms of the gap [Eq. (C.22)]:

GΣ12G
† =

1

β2

∑

nm

∑

k′

1

2Ek

(
1

iωn − Ek
− 1

iωn + Ek

)
Mkk′ (ωn − ωm)×

(
1

iωm + Ek′
− 1

iωm − Ek′

)
∆∗k′

2Ek′
.

From Eq. (E.8) it is seen that the interaction M (kk′ωn) is invariant with respect to {ωm, ωn} →
−{ωm, ωn}. This symmetry is used to merge the different contributions:

GΣ12G
† = − 1

β2

∑

k′
∆
∞
0 dω

Im [Mkk′ (ω)] ∆∗k′

2πEk′Ek
×

∑

nm

1

iωn + Ek

2ω

ω2 + (ωn − ωm)2

(
1

iωm + Ek′
− 1

iωm − Ek′

)
.

The expression has been changed to a form, such that the function I given in Eq. (E.4) is found and
inserted in the equation:

GΣ12G
† =

1

π

∑

k′
∆
∞
0 dω

Im [Mkk′ (ω)] ∆∗k′

2Ek′Ek
[Iβ (EkEk′ω)− Iβ (Ek − Ek′ω)] .

As a last step, the explicit contribution to the interaction Mkk′ (ω) for the off diagonal element of the
self-energy [Eq. (5.43)] is inserted:

1

β

∑

n

GKSΣ12G
KS† =

1

π

∑

k′
∆
∞
0 dω

Im
[
−wF

kk′ (ω)− aCΛSF
kk′ (ω)

]
∆∗k′

2Ek′Ek
[Iβ (EkEk′ω)− Iβ (Ek − Ek′ω)] .

(E.11)

At this point it was assumed that the XC-kernel also fulfills Eq. (E.8). The expression contains the spin
interaction ΛSF

kk′ (ω) and the screened Coulomb interaction w. For the Coulomb contribution and XC-
kernel [Eq. (5.47)] the frequency dependence is neglected and a static approximation i.e. wF

kk′ (ωn) ≈
wF

kk′ is used in the final calculations. This approximation simplifies the equation significantly:

1

β

∑

n

GKSΣC
12G

KS†

=
1

β2

∑

nm

∑

k′

GKS (kωn)wF

kk′F
KS
(
k′ωm

)
GKS† (kωn) =

1

β2

∑

nk′

GKS (kωn)GKS† (kωn)wF

kk′

∑

k′m

FKS
(
k′ωm

)

=
∑

k′

tanh
[
βEk

2

]

2Ek
wF

kk′
∆∗k′

Ek′
[fβ (Ek′)− fβ (−Ek′)] = −

∑

k′

tanh
[
βEk

2

]
tanh

[
βEk′

2

]

4EkEk′
wF

kk′∆
∗
k′ .
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A simple approximation for the static screened interaction is the Thomas Fermi screening:

vBare (r1r2) =
1

|r1 − r2|
Screening−→ e−α|r12|

|r1 − r2|
,

where α is a parameter describing the screening length. The translation invariance of the interaction
leads to a diagonal form with respect to G [Eq. (A.3)]:

v
(
qGG′

)
= v (q + G) δGG′ v (q + G) =

4π

α2 + |q + G|2
. (E.12)

An intermediate step between the phenomenological Thomas Fermi screening with a parameter α and
the full screened Coulomb interaction [Eq. (4.17)] is to use the statically screened Coulomb interaction
in the random phase approximation (RPA):

wRPA (qG1G2) = v (qG1G2)−
∑

GG′

∑

σσ′

v (qG1G)χKS
σσσ′σ′

(
qGG′ω = 0

)
wRPA

(
qG′G2

)
.

It is convenient to write the equation for wRPA in terms of the dielectric constant:

wRPA (qG1G2) = [δG1G2 + v (q + G1)χKS
00 (qG1G2)]−1 v (q + G2) = ε−1 (qG1G2) v (q + G2) .

(E.13)

E.2.5. The GKSΣ11F
KS Term

Last but not least, the term containing the diagonal part of the self-energy in the SSEq is evaluated
[Eq. (6.2)]. Using again some generic interaction M to keep the expression shorter, the term reads:

1

β

∑

n

GKSΣ11F
KS

︸ ︷︷ ︸
:=GΣ11F

=
1

β2

∑

nm

∑

k′

FKS (kωn)GKS (kωn)Mkk′ (ωn − ωm)GKS
(
k′ωm

)
. (E.14)

Before the Matsubara summation is evaluated, some simple algebra is done for the part FKS (kωn)GKS (kωn):

FKS (kωn)GKS (kωn) = v∗kuk

(
1

iωn + Ek
− 1

iωn − Ek

)(
1

2

1 + ζk
Ek

iωn − Ek
+

1

2

1− ζk
Ek

iωn + Ek

)

= − ∆∗k
2Ek

2Ek (iωn + ζk)(
ω2
n + E2

k

)2 .

The second order pole is rewritten by a derivative with respect to Ek:

FKS (kωn)GKS (kωn) =
∆∗k
2Ek

(iωn + ζk)
d

dEk

1

ω2
n + E2

k

=
∆∗k
2Ek

(
d

dEk

iωn
ω2
n + E2

k

+ ζk
d

dEk

1

ω2
n + E2

k

)
.

The simplified expression for FKS (kωn)GKS (kωn) containing a first order pole and the derivative is
inserted in Eq. (E.14):

GΣ11F =
1

β2

∑

nm

∑

k′

∆∗k
2Ek

[
ζk

d

dEk

1

ω2
n + E2

k

+
d

dEk

iωn
ω2
n + E2

k

]
Mkk′ (ωn − ωm)G

(
k′ωm

)

=
1

β2

∑

nm

∑

k′

∆∗k
2Ek

ζk
d

dEk

(
1

2Ek

[
1

iωn + Ek
− 1

iωn − Ek

])
Mkk′ (ωn − ωm)G

(
k′ωm

)

− 1

β2

∑

nm

∑

k′

∆∗k
2Ek

d

dEk

(
1

2

[
1

iωn + Ek
+

1

iωn − Ek

])
Mkk′ (ωn − ωm)G

(
k′ωm

)
.
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The invariance of the interaction M (kk′ωn − ωm) with respect to {ωm, ωn} → −{ωm, ωn} is used
again to merge the to parts 1

iωn+Ek
− 1

iωn−Ek :

GΣ11F =
1

β2

∑

nm

∑

k′

∆∗kζk
4Ek

d

dEk

(
1

Ek

1

iωn + Ek

)
Mkk′ (ωn − ωm)

[
G
(
k′ωm

)
+G

(
k′ − ωm

)]

− 1

β2

∑

nm

∑

k′

∆∗k
4Ek

d

dEk

(
1

iωn + Ek

)
Mkk′ (ωn − ωm)

[
G
(
k′ωm

)
−G

(
k′ − ωm

)]
.

The GKS (k′ − ωm) are rewritten using Eq. (C.24):

GΣ11F =
1

β2

∑

nm

∑

k′

∆∗kζk
4Ek

d

dEk

(
1

Ek

1

iωn + Ek

)
Mkk′ (ωn − ωm)

[
GKS

(
k′ωm

)
−GKS† (k′ωm

)]

− 1

β2

∑

nm

∑

k′

∆∗k
4Ek

d

dEk

(
1

iωn + Ek

)
Mkk′ (ωn − ωm)

[
GKS

(
k′ωm

)
+GKS† (k′ωm

)]
.

The sum of the two Green’s functions is evaluated:

2
(
GKS +GKS†

)
=

1 +
ζk′
Ek′

iωm − Ek′
+

1− ζk′
Ek′

iωm + Ek′
+

1 +
ζk′
Ek′

−iωm − Ek′
+

1− ζk′
Ek′

−iωm + Ek′
=
−2

ζk′
Ek′

iωm + Ek′
+

2
ζk′
Ek′

iωm − Ek′

2
(
GKS −GKS†

)
=

1 +
ζk′
Ek′

iωm − Ek′
+

1− ζk′
Ek′

iωm + Ek′
−

1 +
ζk′
Ek′

−iωm − Ek′
−

1− ζk′
Ek′

−iωm + Ek′
=

2

iωm + Ek′
+

2

iωm − Ek′
.

The expression is further simplified and the interaction in terms of the retarded quantity given in Eq.
(E.8) is inserted:

GΣ11F =
1

β2

∑

nm

∑

k′

∆∗kζk
4Ek

d

dEk

(
1

Ek

1

iωn + Ek

)
∆
∞
0 dω

2

π

ωIm [Mkk′ (ω)]

ω2 + (ωn − ωm)2

[ −1

iωm + Ek′
+

1

iωm − Ek′

]

− 1

β2

∑

nm

∑

k′

∆∗kζk′

4EkEk′

d

dEk

(
1

iωn + Ek

)
∆
∞
0 dω

2

π

ωIm [Mkk′ (ω)]

ω2 + (ωn − ωm)2

[
1

iωm + Ek′
+

1

iωm − Ek′

]
.

The function I [Eq. (E.4)] is used to express the Matsubara summations:

GΣ11F =
∑

k′

∆∗kζk
4πEk

∆
∞
0 dωIm [Mkk′ (ω)]

d

dEk

(
1

Ek
I (EkEk′ω)− 1

Ek
I (Ek − Ek′ω)

)

+
∑

k′

∆∗kζk′

4πEkEk′
∆
∞
0 dωIm [Mkk′ (ω)]

d

dEk
(I (EkEk′ω) + I (Ek − Ek′ω)) .

The derivatives are evaluated and M is replaced with the interaction on the diagonal part of the
self–energy [Eq. (5.43)]:

1

β

∑

n

GKSΣ11F
KS =

∆∗k
4πEk

∑

k′

∆
∞
0 dωIm [aDΛSF

kk′ (ω)]×
([

ζk
Ek

+
ζk′

Ek′

]
I ′ (EkEk′ω) +

[
ζk
Ek
− ζk′

Ek′

]
I ′ (Ek − Ek′ω)− ζk

I (EkEk′ω)− I (Ek − Ek′ω)

E2
k

)
.

(E.15)

E.3. Approximations to the Gap Equation

E.3.1. The Fully Linearized Gap Equation and Isotropic Approximation

The gap equation given in Eq. (6.6) is a non-linear eigenvalue problem due to the factor tanh
(
βEk′

2

)
.

This non-linearity fixes the value of the gap and it is possible to obtain the gap as a function of

E-7
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temperature i.e. ∆k = ∆k (T ). However, a self-consistent treatment of a non-linear eigenvalue problem
is computationally demanding and the interaction matrix element in the kernels are calculated in the
normal phase (Sec. 5.4.1). The equation is fully linearized (tanh

(
βEk′

2

)
= tanh

(
βζk′

2

)
):

∆xc
k =

∑

k′


ZDk δkk′ +KCkk′

tanh
(
βζk′

2

)

2ζk′


∆xc

k′ .

Since the gap equation has been fully linearized, the eigenvector (i.e. the gap function) is only deter-
mined up to a complex factor. This means the fully linearized gap equation determines Tc only and
the shape of the gap close to the phase transition i.e. ∆k(T≈Tc)

|∆k(T≈Tc)| , not its magnitude. The temperature
where an eigenvalue λ = 1 appears, marks the phase transition.
Now a second approximation reducing the computational effort is made. The summation with respect

to the momentum quantum number k in the gap equation may be demanding. However, in many cases
the gap depends only weakly on the vector k, but strongly on the band index n. Such a situation has
been assumed in the discussion of the gap equation in Sec. 6.2, where the gap was approximated by
a positive number for all k around the Γ−point and negative value for the band around the corners
of the Brillouin zone (Fig. 6.2). In such a case it is possible to neglect the isotropy of the gap with
respect to k. Formally this is done by replacing the full k dependent gap by its average with respect
to k

∆xc
k ≈ ∆xc

n (E) :=
1

Nn (E)

∑

k

δ (ζnk − E) ∆xc (k) Nn (E) =
∑

k

δ (ζnk − E) , (E.16)

where Nn is the density of states (density of states (DOS)) of the n-th band. Note that the Nn (E) is
the DOS per spin because in a non-magnetic system each eigenvalue is two-fold degenerate. Inserting
this average in the linearized gap equation and multiplying from the left with the averaging operator∑

k
δ(ζnk−E)
Nn(E) , leads to the isotropic gap equation:

∆xc
n (E) = −ZDn (E)−

∑

n

∆ dEKCnn′
(
EE′

) tanh
(
βE′

2

)

2E′
∆xc∗
n′
(
E′
)

ZDn (E) =
1

Nn (E)

∑

k

δ (ζnk − E)ZDk KCnn′
(
EE′

)
=

1

Nn (E)

∑

kk′

δ (ζnk − E)KCkk′δ
(
ζnk′ − E′

)
.

E.3.2. Alternative Gap Equation

Instead of using the Bardeen, Cooper and Schrieffer (BCS) like gap equation from the previous section,
it is also possible to go one step back and investigate the linearized SSEq directly. This is equivalent
to solving the gap equation, but the new equation is numerically easier to handle which was found by
A. Linscheid and is discussed in his Ph.D. thesis [146]. The SSEq is an implicit expression for the gap
[Eq. (6.2)]:

0 =
∑

ωn

(
GKSGKS†∆xc∗

k + 2GKS (kωn) Σ̄11
↑↑ (kωn)FKS (kωn)

)

−
∑

ωn

GKS (kωn) Σ̄12
↑↓ (kωn)GKS† (kωn) .

The three different contributions are evaluated in Eqs. (E.11),(E.15) and (E.3). The resulting equation
is also fully linearized with respect to ∆k and the symmetric part with respect to I ′ and the factor 1

2
are used for the D-term [Eq. (6.9)]. Applying these steps lead to the following form of the SSEq :

0 =
∑

k′

[
DGGkk′ +D11

kk′ + C12
kk′
]

∆xc∗
k′ =

∑

k′

Mβ
kk′∆

xc∗
k′ (E.17)
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DGGkk′ = δkk′
tanh

[
βζk
2

]

2ζk

D11
kk′ = δkk′ ∆

∞
0 dω

∑

k2

Im
[
aDΛSF

kk2
(ω)
]
− ΛPh

kk2
(ω)

4πζk

d

dζk
J+
β (ζk, ζk2ω)

C12
kk′ = ∆

∞
0 dω

Im
[
wF

kk′ (ω) + aCΛ
SF
kk′ (ω)

]
+ ΛPh

kk′ (ω)

2πζk′ζk
J−β (ζk, ζk′ω) .

Instead of having an eigenvalue with the value 1 in the spectrum (linearized gap equation), the matrix
Mβ
kk′ becomes singular at the critical temperature. Like the fully linearized gap equation, also the

linearized SSEq determines only the critical temperature and not the value of the gap. If the value of
the gap is of interest, the non-linear eigenvalue problem has to be solved by rewriting the problem as
an iterative scheme:

0 = Mβ [∆] ∆ =
[
Mβ [∆]−A+A

]
∆

∆i+1 = A−1
(
Mβ

[
∆i
]

+A
)

∆i.

The matrix A is referred to as splitting matrix and should make the fix point problem contractive

[146]. In the standard gap equation the factor
tanh

[
βEk

2

]
2Ek

is the splitting matrix [Eq. (E.3)]. Also
for this equation the full anisotropy in k space is hard to handle and an isotropic approximation of
Eq. (E.17) is introduced. The average value of the gap in Eq. (E.16) and the averaging operator∑

k
δ(ζnk−E)
Nn(E) lead to:

0 =
∑

n′
∆ dE′Mβ

nn′
(
EE′

)
∆xc∗
n′
(
n′E′

)
(E.18)

Mβ
nn′
(
EE′

)
:=

1

Nn (E)

∑

kk′

δ (ζnk − E)
[
DGGkk′ +D11

kk′ + C12
kk′
]
δ
(
ζn′k′ − E′

)
.

The first diagonal term DGGkk′ depends only on energy and the average is simple:

DGGnn′
(
EE′

)
=

1

Nn (E)

∑

k

δ (ζnk − E) δEE′δnn′
tanh

[
βE
2

]

2E
= δEE′δnn′

tanh
[
βE
2

]

2E
.

For the other contributions, the isotropy with respect to k is located in the interaction matrix elements
and an isotropic interaction is defined by:

Λnn′
(
EE′ω

)
:=

1

Nn (E)

∑

kk′

δ (ζnk − E) Λkk′ (ω) δ
(
ζn′k′ − E′

)
. (E.19)

Using this definition in D11
kk′ and C12

kk′ leads to isotropic variants of the D and C term:

D11
nn′
(
EE′

)
= +δnn′δEE′

∑

n2

∆ dE2 ∆
∞
0 dω

Im
[
aDΛSF

nn2
(EE2ω)

]
− ΛPh

nn2
(EE2ω)

4πE

d

dζk
J+
β (E,E2ω)

(E.20)

C12
nn′
(
EE′

)
= ∆

∞
0 dω

Im
[
wF
nn′ (EE

′ω) + aCΛ
SF
nn′ (EE

′ω)
]

+ ΛPh
nn′ (EE

′ω)

2πEE′
J−β
(
E,E′ω

)
. (E.21)
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E.4. Details for the Implementation of the Matrix Elements

The matrix elements defined in Eq. (E.6) are calculated using the Bloch states of the non-superconducting
KS system. The eigenstates are calculated with a plane wave (PW) code [131]. For the implementation
it is useful to write the matrix elements in more detail. The eigenstates are expanded in terms of the
plane waves:

ψnk (r) =
1√
N
eikTψnk (r̄) =

1√
NΩWS

∑

T

∑

G

eikTcnk+Ge
i(k+G)r̄.

The matrix elements in terms of the Bloch states are given in Eq. (E.7):

Mkk′ (ωnνn) = Λ d
3r1d

3r2ψ
∗
nk (r1)ψn′k′ (r1)M (r1r2ωn − νm)ψ∗n′k′ (r2)ψnk (r2) .

The plane wave expansion is inserted for the wave functions:

Mkk′ (ωnνn) =
1

V 2

∑

G1...G4

Λ d
3r1d

3r2

(
cnk+G1

)∗
cn
′

k′+G2

(
cn
′

k′+G3

)∗
cnk+G4

×

e−i(k−k′+G1−G2)r̄1M (r1r2ωn − νm) ei(k−k′+G4−G3)r̄2ei(k
′−k)(T1−T2).

The FT given in Eq. (A.3) requires k1 = k2 within the first BZ zone. Hence the difference is rewritten
as k − k′ = qkk′ + Gkk′ , where qkk′ lies always in the BZ. With this rewriting the definition for the
double transformation in Eq. (A.3) leads to:

Mkk′ (ωnνn) =
1

V

∑

G1...G4

(
cnk+G1

)∗
cn
′

k′+G2

(
cn
′

k′+G3

)∗
cnk+G4

×

M (qkk′ ,G1 −G2 + Gkk′ ,qkk′ ,G4 −G3 + Gkk′ , ωn − νm) .

With the substitutions

G := G1 −G2 G′ := G4 −G3

it is possible to separate two G loops. The notation for the matrix elements is also simplified
M (q,G1,q,G2) = M (q,G1,G2):

Mkk′ (ωnνn) =
1

NΩWS

∑

GG′


∑

G1

(
cnk+G1

)∗
cn
′

k′+G1−G




∑

G4

cnk+G4

(
cn
′

k′+G4−G′

)∗

×

M
(
qkk′G + Gkk′G

′ + Gkk′ωn − νm
)
.

An auxiliary function is defined:

bnn
′

kk′ (G) :=
∑

G′

(
cnk+G′

)∗
cn
′

k′+G′−G. (E.22)

Inserting the auxiliary function, the expression for the matrix elements in Bloch representation be-
comes:

Mkk′ (ωnνn) =
1

NΩWS

∑

GG′

bnn
′

kk′ (G)
(
bnn

′
kk′
(
G′
))∗

M
(
qkk′G + Gkk′G

′ + Gkk′ωn − νm
)
. (E.23)

For the different parts of the interaction, different cutoffs in the PW expansion are needed:

• The wave function ψnk (r) needs a very high cutoff and a value around ∼ 100 Ryd is used in the
ground state calculation.
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• The product of the two plane wave coefficients converges faster and a value of ∼ 40 Ryd is used
for the summation in bnn′kk′ [Eq. (E.22)].

• The spin fluctuation interaction decays very fast with respect to G and small values of ∼ 10 Ryd
are sufficient. In Fig. E.3 it is shown that only the first two or three plane wave coefficients give a
relevant contribution. Also for the Coulomb contribution only the first coefficients are important
due to the monotone decay in momentum space 1

|q+G|2 .
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Figure E.3.: Anti-Hermitian part of the spin fluctuation interaction Λzz [Eq. (5.41)] for FeSe in PW
representation. The vectors qM,qX and qΓ are the usual high symmetry points given in chapter 7
and the plane wave in units of 2π

a is: G0 = (0, 0, 0) and G1 = (1, 0, 0)and G2 = (2, 0, 0).
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