
fmolb-08-660542 April 11, 2021 Time: 10:43 # 1

PERSPECTIVE
published: 15 April 2021

doi: 10.3389/fmolb.2021.660542

Edited by:
Artur Yakimovich,

Roche (United Kingdom),
United Kingdom

Reviewed by:
Shruthi Viswanath,

National Centre for Biological
Sciences, India

Leandro Estrozi,
UMR 5075 - Institut de Biologie

Structurale Center for the National
Scientific Research

(CNRS)/CEA/UGA, France
Dimitry Tegunov,

Max-Planck-Gesellschaft (MPG),
Germany

Bjoern Forsberg,
University of Oxford, United Kingdom

Amarda Shehu,
George Mason University Arlington

Campus, United States
Deb Kelly,

Pennsylvania State University (PSU),
United States
Jiawei Wang,

Tsinghua University, China
Charlotte Scarff,

University of Leeds, United Kingdom

*Correspondence:
Panagiotis L. Kastritis

panagiotis.kastritis@bct.uni-halle.de

Specialty section:
This article was submitted to

Biological Modeling and Simulation,
a section of the journal

Frontiers in Molecular Biosciences

Received: 29 January 2021
Accepted: 18 March 2021

Published: 15 April 2021

Citation:
Kyrilis FL, Belapure J and

Kastritis PL (2021) Detecting Protein
Communities in Native Cell Extracts

by Machine Learning: A Structural
Biologist’s Perspective.

Front. Mol. Biosci. 8:660542.
doi: 10.3389/fmolb.2021.660542

Detecting Protein Communities in
Native Cell Extracts by Machine
Learning: A Structural Biologist’s
Perspective
Fotis L. Kyrilis1,2, Jaydeep Belapure1 and Panagiotis L. Kastritis1,2,3*

1 Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg,
Halle (Saale), Germany, 2 Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle
(Saale), Germany, 3 Biozentrum, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany

Native cell extracts hold great promise for understanding the molecular structure of
ordered biological systems at high resolution. This is because higher-order biomolecular
interactions, dubbed as protein communities, may be retained in their (near-)native
state, in contrast to extensively purifying or artificially overexpressing the proteins of
interest. The distinct machine-learning approaches are applied to discover protein–
protein interactions within cell extracts, reconstruct dedicated biological networks, and
report on protein community members from various organisms. Their validation is
also important, e.g., by the cross-linking mass spectrometry or cell biology methods.
In addition, the cell extracts are amenable to structural analysis by cryo-electron
microscopy (cryo-EM), but due to their inherent complexity, sorting structural signatures
of protein communities derived by cryo-EM comprises a formidable task. The application
of image-processing workflows inspired by machine-learning techniques would provide
improvements in distinguishing structural signatures, correlating proteomic and network
data to structural signatures and subsequently reconstructed cryo-EM maps, and,
ultimately, characterizing unidentified protein communities at high resolution. In this
review article, we summarize recent literature in detecting protein communities from
native cell extracts and identify the remaining challenges and opportunities. We
argue that the progress in, and the integration of, machine learning, cryo-EM, and
complementary structural proteomics approaches would provide the basis for a
multi-scale molecular description of protein communities within native cell extracts.

Keywords: cellular homogenates, random forest, convolutional neural network, cryo-EM, mass spectrometry,
structural biology, protein–protein interactions, metabolons

INTRODUCTION

Since the dawn of biological research, humans are breaking-apart living systems to understand
their structure and function. For example, in Book VI of History of Animals, Aristotle systematically
addressed the processes of egg formation and chick embryo development by visual inspection.
Nowadays, with the rapid technological advances in biochemical, biophysical, structural, and
computational methods, cellular homogenates can be understood in great detail, providing network
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and structural information of the biomolecules within them.
Crude extracts made by the lysis of cellular material possess
operative aspects of cellular function, but in a context that
is easier to manipulate. They are biotechnologically exploited
for bioproduction (Karim and Jewett, 2016), cell-free gene
expression, transcription, translation (Silverman et al., 2020),
and, recently, molecular design (Hammerling et al., 2020).
Probing the intrinsic structure of cell extracts is of paramount
importance, so that their function is understood in detail. Until
recently, the study of cell extracts was limited to low-resolution
data (Han et al., 2009), but, with methodological advances, the
resolution of 4.7 Å for the biomolecular complexes within those
was reached (Kastritis et al., 2017).

Recent studies not only increased the achievable resolution
(Arimura et al., 2020; Ho et al., 2020; Su et al., 2021),
particularly in the membrane (Su et al., 2021) or nuclear
extracts (Arimura et al., 2020) but also determined the snapshots
of higher-order organization of in-extract flexible, functional
metabolons (Kyrilis et al., 2021). The importance and challenges
of integrative structural studies of native extracts and the
correlation between structural disorder and function for in-
extract metabolons were recently reviewed (Kyrilis et al., 2019;
McCafferty et al., 2020; Skalidis et al., 2020). Reaching the
milestone of near-atomic detail a few years ago proved that native
cell extracts are amenable to structural studies and considerably
broadened the structural proteomics field by expanding the
concept of “protein communities” (Kastritis et al., 2017),
primarily described by Gavin et al. (2006). Protein communities
describe the associated molecules of several macromolecular
complexes arranged in close proximity encoding functionally
synchronized biomolecular entities. For example, they may
efficiently transfer substrates along with enzymatic pathways
[dubbed metabolons, reviewed in (Kastritis and Gavin, 2018)],
effectively transduce signals, and regulate protein synthesis
on local cellular demand. However, their inherent complexity
limits probing their intrinsic structure to a few abundant
biomolecular complexes, e.g., functional pyruvate dehydrogenase
higher-order architecture (Kyrilis et al., 2021). The review
of machine-learning approaches that are already applied in
various intermediate analysis steps demonstrates an optimistic
perspective in addressing this issue, and thus allowing a deeper
understanding of protein communities in the future. In this
study, by machine learning, we refer to the un-/supervised
algorithms that are trained to learn the patterns in the scientific
data retrieved from -omics, cryo-electron microscopy (cryo-EM),
or any other method to predict the desired physically meaningful
feature without human intervention.

HIGHER-ORDER COMPLEXITY OF
PROTEIN COMMUNITIES: AN IDEAL
TEST BED FOR MACHINE LEARNING

Protein communities (or, in general, biomolecular communities)
are endogenously present in the cell and can be retrieved in native
cell extracts. They are composed of biomolecular assemblies of
varying compositional and chemical heterogeneity. A protein

community comprises a functional cellular assembly and encodes
localized functions (e.g., as in the case of metabolons). Protein
communities also include interconnected protein complexes in
variable stoichiometry and, therefore, represent a holistic view
of cellular function beyond the description of their individual
constituents. Due to their intricacy, communities must be
characterized with an array of methods: (a) -omics methods,
especially quantitative mass spectrometry (MS), to identify
constituent molecules; (b) activity assays to probe their function;
(c) cross-linking to find the interacting community biomolecules;
(d) large-scale molecular modeling or cryo-EM characterization
of community members to annotate complexes within the
protein communities; and (e) cryo-EM characterization to
visualize protein communities. This multi-scale, integrative
characterization of protein communities can only be performed
in native cell extracts and was previously discussed (Kyrilis
et al., 2019). This integrative, systematic analysis was performed
for eukaryotic communities involved in the synthesis of fatty
acids (Kastritis et al., 2017) and in the metabolism of oxoacids
(Kyrilis et al., 2021).

In this review, we outline the methods and challenges faced
in such integrative studies of protein communities. Furthermore,
we assess and discuss the state-of-the-art machine-learning
methods applied in adjoint problems that could better aid
investigations in this field. In the first two sections, we discuss the
molecular characterization of protein communities, first in crude
and then in simplified lysates. The next two sections describe
the structural characterization of protein community members,
since structural analysis of complete protein communities is a
formidable task. This is because cryo-EM of complete protein
communities can show ultrastructural features, but does not
provide high-resolution three-dimensional (3D) reconstructions
due to the highly complex and intricate structure of the
community. We finally surveyed published machine-learning
tools that are principally developed for diverse characterization
of the biomolecular complexes. In each subsequent section, we
discuss the applicability, promises, and limitations of machine-
learning methods for deciphering protein communities.

PREDICTING PROTEIN COMMUNITIES
IN CRUDE NATIVE CELL EXTRACTS

Cell extracts are amenable to biochemical treatment to probe the
biomolecular content (Figure 1A), and methods were applied
to study the retrieved homogenate directly (i.e., breaking the
cellular material and subjecting it to an array of characterization
tools). Proteins present in the cell extracts can be studied by
MS, providing identification for thousands of protein sequences
(Beck et al., 2011; Titeca et al., 2019). Unfortunately, this
information offers a list of proteins, and, optimally, a report
on their relative abundance, but not on their interactions. To
predict communities, network analysis must then be performed
by integrating the external interaction data for community
members or their close homologs as, e.g., initially performed
for the interconnected yeast complexes using tandem affinity
purification (TAP) and MS (Gavin et al., 2002). In recent studies,
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FIGURE 1 | Native cell extracts as a tool for discovering protein communities with the aid of machine learning. (A) Methods to experimentally extract identity,
structure, and dynamics information of protein communities. In short, the cell is lysed and the subsequent fractionation is applied to recover co-eluting protein
material. In a large-scale manner, mass spectrometric, kinetic, and cryo-EM analysis of the fractions leads to the characterization of protein communities in native cell
extracts. The example of the pyruvate dehydrogenase complex (PDHc) metabolon is shown. Molecular representations for PDHc are retrieved and further edited
from Protein Data Bank “Molecule of the Month” section [Source: Image from the RCSB PDB September 2012 Molecule of the Month feature by David S. Goodsell
(doi: 10.2210/rcsb_pdb/mom_2012_9)]. The cell representation on the top left was retrieved from Microsoft PowerPoint 2019 v16.47. (B) Combined data regarding
protein–protein interactions stemming from fractionation (co-elution), external database information (network data), and contact information prediction (e.g., from
co-evolution analysis, chemical cross-linking or mutagenesis experiments) among community members are used for machine learning, e.g., using a random forest.
Finally, a network with interconnected protein communities is derived and insights into community members can be retrieved. External data shown are extracted
from STRING (https://string-db.org/) and network shown from Kastritis et al. (2017). E1, E2, E3, and E3BP are the proteins structuring the 10-MDa complex of the
PDHc metabolon, all involved in the complex reaction of pyruvate oxidation.
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experimental and/or computational methods for characterizing
protein–protein interactions (PPI) are included, connecting
in vivo, in vitro, and in silico data (Rao et al., 2014). By meticulous
data integration, considering the strengths and limitations of
each approach that was applied to discover PPIs (Rao et al.,
2014), a network is then constructed using the machine-learning
(Havugimana et al., 2017) method. In particular, interesting
computational approaches for PPI prediction include, but are not
limited to, a combination of different machine-learning models
to take a majority vote for final prediction (Saha et al., 2014),
a game theory-based approach inspired by a non-cooperative
sequential game (Maulik et al., 2017), and deep neural networks
that either incorporate physical/chemical properties and graph
theory (Zhang and Kabuka, 2019) or combine with decision-tree
classifiers for the final PPI prediction (Wang et al., 2019).

Naturally, training sets are of vital importance for
reconstructing a biological network and are mostly extracted
from the PPI databases such as CORUM (Giurgiu et al., 2019),
IntAct (Hermjakob et al., 2004), and GO (Harris et al., 2004).
The availability of a high-confidence set of PPIs is often limited,
especially when it comes to organisms that lack genome,
transcriptome, and/or proteome data. Even in well-studied
organisms, the construction of a confusion matrix (error matrix)
for PPIs is not an easy task. Proteins dynamically interact,
change localization, and can even alter their function due to
moonlighting (Jeffery, 2014), and therefore, according to the
cellular state and environmental conditions, PPIs may differ.
Such discoveries revealed localized variations in interaction
networks of disease phenotypes (Vidal et al., 2011), and, recently,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
cellular interactors (Gordon et al., 2020). Protein networks
are, therefore, commonly employed in biotechnological and
medical applications because the cellular function is probed in
a holistic approach, complementing mechanistic investigations
into molecular recognition. Traditionally, reconstruction of
protein networks is not only essential for characterizing protein
complexes, but also for their higher-order interactions present in
their communities (Gavin et al., 2002, 2006).

SIMPLIFYING PROTEIN COMMUNITY
DETECTION WITHIN CELL EXTRACTS
BY INTEGRATING CO-ELUTION DATA
AND CHEMICAL CROSS-LINKING

The increased complexity of cellular homogenates brings various
limitations in the study of their biomolecular content, mainly
because of the well-known bias toward the identification of
high-abundant proteins and complexes (Fursch et al., 2020). An
idea to confidently annotate proteins in cell extracts, retrieve
more interactors, and optimize the robust identification of
protein communities is to subject the extracted homogenate to a
subsequent biochemical treatment that would coarsely separate
the biomolecular complexes on a certain biophysical property
(termed protein co-fractionation, e.g., using the hydrodynamic
radius as performed via size-exclusion chromatography (SEC)

of the native cell extract). Mapping fractionated extracts with
various proteomics methods was recently reviewed (Salas
et al., 2020). The application of co-fractionation to monitor
protein associations (Havugimana et al., 2012; Kristensen et al.,
2012) perhaps stems from previous works that measured the
enzymatic activities across retrieved cellular fractions, e.g., in
the fractionated extracts of Escherichia coli, where interactions
of Krebs cycle enzymes were probed (Barnes and Weitzman,
1986). Nowadays, the high-resolution separation of cell extracts
is mostly performed by using high-resolution SEC coupled
to MS (Salas et al., 2020). This method (a) simplifies the
cell extract according to an intrinsic physical property of the
contained biomolecules; (b) provides per-fraction quantitative
data regarding protein abundance and co-detection; and (c) offers
robust per-protein elution profiles across the studied fractions,
which may be used for subsequent integration into a PPI network.
Protein co-fractionation can be used to identify interactors within
protein communities (Kastritis et al., 2017) and compare PPI
networks across species, highlighting evolutionary implications
(Wan et al., 2015). An example of data integration to derive
a PPI network, highlighting protein communities, is shown
in Figure 1B.

As with the previously described PPI networks, the application
of machine-learning approaches is crucial, not only to integrate
the protein co-elution data but also to discriminate random co-
elution events from true (interacting) protein complexes. The
machine-learning-based tools to probe the complexes within
cell extracts of different organisms were developed (Kastritis
et al., 2017; Stacey et al., 2017; Hu et al., 2019; Fossati
et al., 2020). EPIC (Hu et al., 2019), an open-source software
tool, may specifically use co-elution data to predict protein
complexes found in cell extracts after training and validating
a random forest algorithm (Tin Kam, 1995) or a support
vector machine algorithm (Boser et al., 1992). The random
forest algorithm showed superior performance when applied
to predict co-eluting complexes and their communities after
cross-validation from Caenorhabditis elegans (Hu et al., 2019),
Chaetomium thermophilum (Kastritis et al., 2017), and HeLa
cells (Fossati et al., 2020). Recently, PCprophet incorporated
Bayesian inference to identify altered protein profiles across
experiments that probe phenotypic changes (Fossati et al.,
2020). Predicting protein communities from co-fractionation
data rely on complex inference from the resulting network after
reconstructing it with identified PPIs. Due to the density of
the network, partitioning methods to recover protein complexes
are limited, and often graph clustering algorithms that handle
weighted graphs to generate overlapping clusters are applied
[e.g., ClusterONE (Nepusz et al., 2012), or the more recent,
ONCQS (Zhao and Lei, 2019)]. High-density chemical cross-
linking can, therefore, offer complementary data to enrich and
validate true protein co-elution and protein complex/community
member data (Sinz, 2018). Cross-linking was applied to soluble
extracts (Liu et al., 2015; Gotze et al., 2019), membrane complexes
(Larance et al., 2016), large macromolecular complexes to dissect
conformational flexibility (Tuting et al., 2020), and, importantly,
directly within the SEC fractions where proteins are determined
to co-elute for the characterization of protein communities
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(Kastritis et al., 2017). Algorithms to detect co-eluting PPIs (Elias
and Gygi, 2007; Havugimana et al., 2012) or cross-links (Ji et al.,
2016; Huang et al., 2020) can include machine-learning tools to
probe the complexity of high data dimensionality.

PROCESSING (CRYO-)EM IMAGES
FROM NATIVE EXTRACTS WITH A
FOCUS ON MACHINE LEARNING

Using cryo-EM imaging of native cell extracts to structurally
analyze protein communities is essential. This is because
proteomics methods discover the sequences of the community
members or their interactions but do not provide information
on their higher-order structure within their communities. Even
if high-density cross-linking retrieves interacting proteins and
their relative interacting distances, the community structure is
unknown, including stoichiometry. It is noted that deriving
stoichiometry for protein communities is not trivial, and a
combination of cryo-EM, immunoblotting data, MS, and cross-
linking MS in fractionated extracts was recently performed to
derive approximate stoichiometry for the higher-order structure
of the endogenous pyruvate dehydrogenase complex (Kyrilis
et al., 2021). Direct methods, such as electron microscopy,
can, therefore, be applied to observe cell extracts and were
previously used in combination with MS at low resolution
to visualize protein complexes (Han et al., 2009). However,
recently, with advances in cryo-EM (Kuhlbrandt, 2014), native
cell extracts delivered high-resolution data (Kastritis et al., 2017)
and the first images of protein communities involving fatty
acid synthase (FAS) together with other megadalton complexes
(Kastritis et al., 2017). Recent results in the field also showed
that abundant complexes can be reconstructed de novo (Ho
et al., 2020), but not as members of protein communities.
We also recently communicated the structural and functional
characterization of communities involved in oxo acid metabolism
by integrative methods (Kyrilis et al., 2021). Despite these
advances, the high complexity of the imaged cell extract hinders
proper quantification and 3D reconstruction of the interacting
molecules within the extracts, and this is because of multiple
issues regarding the specimen complexity. Therefore, most of
the algorithms that were developed are applied to protein
complexes and not to their higher-order assemblies in their
native communities.

Cryo-EM micrographs contain two-dimensional (2D)
projections of the particles in different orientations but are
inherently of low contrast and often include contamination
or undesirable features (see, e.g., Figure 2A). The signal-to-
noise ratio in typical cryo-EM tomographs is ∼0.1, perhaps
comparable to imaging in astronomy. Except in cryo-EM,
multiple short exposures are recorded. The traditional methods,
such as bandpass, or Wiener filtering (Jain and Seung, 2008;
Sindelar and Grigorieff, 2011; Xie et al., 2012), to improve the
contrast are insensitive to the underlying noise properties. The
cryo-EM field recently witnessed a surge in machine-learning
models that are trained to learn the noise characteristics and offer
better denoising [(Bepler et al., 2020) and references. therein].

The traditional template-based approaches [e.g., (Huang and
Penczek, 2004)] pick particle candidates by estimating the
similarity of an image region to a reference, also known as a
template, through cross-correlation techniques. The template-
matching methods are prone to introduce template-based
bias and are known for a high rate of false positives. This
stems from the fact that, if matching is performed over
enough number of random regions (e.g., noise only), then
meaningless noise can be perceived as a pattern, a phenomenon
dubbed as “Einstein-from-noise” (Shatsky et al., 2009). For
the purpose of selecting desirable regions without a reference,
deep learning algorithms were developed (Wang et al., 2016;
Zhu et al., 2017; Punjani et al., 2017; Bepler et al., 2018;
Tegunov and Cramer, 2019; Wagner et al., 2019; Zhang et al.,
2019; Sanchez-Garcia et al., 2020b). Inspired by computer
vision applications, using convolutional neural networks (CNNs)
(Tegunov and Cramer, 2019; Sanchez-Garcia et al., 2020b),
per pixel-image segmentation of particle/non-particle regions
was demonstrated (Figure 2B). Many of these architectures are
explicitly designed to eliminate undesirable features or implicitly
learn to avoid them (Wang et al., 2016; Zhu et al., 2017;
Bepler et al., 2018; Wagner et al., 2019; Zhang et al., 2019).
Recent machine-learning and deep learning-based methods
demonstrated improved accuracy and low false-positive rates
(Wang et al., 2016; Punjani et al., 2017; Zhu et al., 2017;
Bepler et al., 2018; Tegunov and Cramer, 2019; Wagner et al.,
2019; Zhang et al., 2019; Sanchez-Garcia et al., 2020b). Since
templates can be essentially seen as filters, CNNs are the
most successful models for the task of image classification
and particle picking, as they are trained to learn thousands
of 2D filters (Rawat and Wang, 2017). We speculate that
these algorithms if trained in the heterogeneous mixtures of
cell extracts instead of single-particle datasets, are expected
to effectively detect particles of varying shapes and sizes
and separate them from the artifacts in the micrographs of
cellular extracts to systematically retrieve members of protein
communities. However, the learning algorithm would still need
to address the subsequent challenging step of segregating and
clustering the particles into correctly assigned classes and yet
incorporate rotational as well as contrast transfer function
(CTF) invariance. Another important aspect is how multiple
distinct 3D reconstructions stemming from heterogeneous 2D
projections can be achieved. This can be generally performed by
the conventional cryo-EM classification methods, but here we
refer to a more specific challenge of faithfully representing the
true variability in the data sufficiently well to be used for protein
community discovery. This is in contrast to current classification
methods that only aim to homogenize the data subset to yield
the highest possible resolution. This notion in the data analysis
would eventually lead to average densities of the particles that
may or may not participate in the same communities. Recently,
Verbeke et al. (2020) applied the projection-slice theorem
principles to group the particles into consistent subsets prior
to 3D classification and, therefore, avoid guessing the number
of underlying 3D shapes present in the data. Still, current
methods, during the reconstruction of cryo-EM data, assume
that sample heterogeneity originates from a small number of

Frontiers in Molecular Biosciences | www.frontiersin.org 5 April 2021 | Volume 8 | Article 660542

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-660542 April 11, 2021 Time: 10:43 # 6

Kyrilis et al. Machine Learning for Cell Extracts

FIGURE 2 | Application of machine learning on cryo-EM images derived from native cell extracts. (A) A cryo-electron micrograph from C. thermophilum fractionated
cell extracts is shown. During machine learning, the algorithm is being trained to discriminate particles from contamination, vitreous ice, aggregation, and noise. At
the end, the algorithm optimally picks and selects learned features that were not previously recognized during learning. Red circles indicate contamination, and blue
and yellow circles indicate learned and predicted particles. Size of the circle does not match particle size but represents a correctly picked particle. Green highlighted
area signifies empty regions of vitreous ice recognized by the algorithm. (B) Structure of a convolutional neural network algorithm frequently used to detect signal in
cryo-EM micrographs. Input micrographs are used for feature learning during the convolution step of algorithm training. Optimal training would lead to efficient
classification of the single particles and/or their higher-order assemblies and discriminate those from noise, contamination, and aggregates. A final output is achieved
with metabolon members in their unbound and bound states as recognized by the convolutional neural networks in heterogeneous cryo-EM micrographs of native
cell extracts. (C) Conservative probabilities for particle detection based on abundance and dilution factor. In the left panel, an example of 10 distinct single-particle
species is shown with their relative abundance following an assumed T-squared distribution. In the middle panel, an illustration of relative particle abundance for three
distinct particles (blue, green, and red, representing high, medium, and low abundant species in a calculated 4K × 4K micrograph with a pixel size of 3.17 Å and
thickness of 200 nm) is shown. In the right panel, dependency of the number of images required to reach ∼5,000 single particles on the dilution factor is shown
(assuming no biochemical manipulation for particle enrichment).
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independent, distinct states; however, in reality, the number of
distinct states is (often) unknown. This issue becomes more
important when other specimens of increased complexity are
considered. A method that addresses this issue by approximating
the continuous 3D density function of a single particle is
CryoDRGN (Zhong et al., 2021), a deep neural network-based
algorithm. Recent machine-learning methods may improve the
protein density of experimental cryo-EM maps, while the use of
generative adversarial networks (GANs) trained on pairs of 3D
atomic models and their noise-free cryo-EM maps is shown to
generate a more realistic ground-truth 3D density map (Sanchez-
Garcia et al., 2020a). An excellent discussion by the Scheres
laboratory covers these aspects through the implementation
of neural networks for simulated cryo-EM 3D reconstructions
(Kimanius et al., 2021). Finally, for post-processing of cryo-
EM maps, new machine-learning algorithms were developed to
account for resolution anisotropy (Ramirez-Aportela et al., 2019;
Sanchez-Garcia et al., 2020a).

For machine-learning models to work in the context of data
stemming from cryo-EM micrographs of native cell extracts, it
is reasonable to assume that they may efficiently be trained to
pick and sort the community members by their heterogeneity.
However, to construct the corresponding de novo 3D cryo-
EM maps, novel ab initio algorithms should be developed to
tackle this complexity. Moreover, the proximity calculations
by accounting the Cartesian coordinates of the derived single
particles in the cryo-EM micrographs can aid in understanding
the protein complex interconnectivity within communities. It
would further aid the detection and structural analysis of protein
communities and their members.

MODEL BUILDING IN CRYO-EM MAPS
FROM NATIVE CELL EXTRACTS
COMBINED WITH STRUCTURE
PREDICTION

Traditionally, protein complexes from the high-resolution
cryo-EM reconstructions can be built because the purified
constructs are used. Such approaches are well-established
for cryo-EM, but, again, become a challenge for native cell
extracts, where the identity of the reconstructed protein
complexes and their interactors can be unknown. It is even
more difficult to reconstruct such complexes when they
are participating in higher-order assemblies, and therefore
additional heterogeneity is manifested. cryo-EM may be used
to visualize protein communities but, without complementary
data, it cannot characterize their structure at a reasonable
resolution. It is extremely challenging to determine the 3D
models of isolated flexible complexes, but not their native
interactions within protein communities. cryo-EM is unlikely
to provide discovery or evidence of protein communities by
itself without correlating the image information to proteomic,
literature, and other sources of data. Interestingly, abundant,
rigid complexes within communities can be retrieved at sub-
nanometer resolution from native cell extracts, as in the cases of

FAS (Kastritis et al., 2017) and pyruvate dehydrogenase complex
(PDHc) (Kyrilis et al., 2021).

If high resolution is achieved for a given protein complex,
and side-chain resolution is realistic, then multiple methods
can be used to model the density, including, for example,
cryoID (Ho et al., 2020), that may perform de novo model
building, assuming that the proteome of the organism is available.
However, if the resolution is more than ∼4.0 Å, then side-
chain resolution is unattainable, and modeling methods must
be ultimately employed [e.g., (Russel et al., 2012; van Zundert
et al., 2016)]. In this case, only orthogonal identification methods
may be applied to recover the map identity. This information
can then be used for subsequent model building. To resolve
this unknown density, the previously mentioned proteomic
methods for network construction and community detection are
of vital importance. Prior to the protein modeling methods, fold
recognition should be the primary consideration for structural
analysis and implementation of fast-fold search algorithm into
the cryo-EM map is important, as proposed by Saha and
Morais (2012). Of course, if complexes include other, non-protein
components, the identification is laborious. For such scenarios,
neural networks are developed to localize nucleotides as well
(Mostosi et al., 2020), but machine learning should be expected
to resolve cryo-EM densities stemming from multiple types of
biological (macro-) molecules. To localize different chemical
molecules in a cryo-EM map, a ground truth is required, i.e.,
the training set as pairs of cryo-EM maps and coordinates of
chemical molecules in it. The hydrogen bonding patterns could
then be recovered by calculating the geometrical properties of
the modeled biomolecule(s) which are used to correlate chemical
structure with portions of the cryo-EM maps and, ultimately,
serve as input for machine learning.

The abundance of protein complexes within sequential
fractions may be correlated to the corresponding structural
signatures that were recovered by negative staining or cryo-EM,
and therefore assign an identity to recovered structural
signatures, which are also members of their respective
communities (Kastritis et al., 2017). This was previously
performed for C. thermophilum complexes using simple cross-
correlation functions (Kastritis et al., 2017) but was limited
to assigning abundant species. Theoretically, if the abundance
of distinct single particles is expected to follow a T-squared
distribution (Figure 2C, left panel) within a particular thick
micrograph (1,300 nm × 1,300 nm × 200 nm, pixel size
of 3.17 Å), then their relative abundance can be estimated
(Figure 2C, middle panel). Without cell lysis (e.g., by cryo-
electron tomography of a cell), a surprisingly high number of
tilt series is required for less abundant particles to reach ∼5,000
single particles [e.g., enough for efficiently retrieving structural
signatures of FAS (Kastritis et al., 2017) or PDHc (Kyrilis et al.,
2021)]. After cell lysis and without biochemical enrichment,
this effect further magnifies due to dilution (Figure 2C). It is
important to note that, using cell extracts, protein complexes
can be selectively biochemically enriched, and their conservative
estimates are shown in Figure 2C. Nevertheless, rare species
will be difficult to capture, and an extremely high amount of
data will be required. In addition, capturing rare species will be
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algorithmically challenging. Therefore, we expect only abundant
complexes to be captured and the abundant community
members to be structurally characterized [as in the case of
communities involved in oxo acid metabolism (Kyrilis et al.,
2021)]. The availability of data for heterogeneous mixtures is still
highly scarce. A possible bottleneck is the availability of both MS
data and negative staining/cryo-EM data for sequential cellular
fractions, preferentially from the same experiment because
alterations in the organism biology can drastically alter recovered
profiles. Another idea is to generate all possible protein folds
from the sequences identified in the fraction using automated
3D structure prediction algorithms and, then, systematically fit
those 3D models in the reconstructed densities. Such work has
not been performed to date, mainly because current methods
are limited to the study of a few abundant protein complexes
present in the fractions (Kastritis et al., 2017; Verbeke et al., 2018;
Arimura et al., 2020; Ho et al., 2020; Kyrilis et al., 2021; Su et al.,
2021) and, sometimes, their communities (Kastritis et al., 2017;
Kyrilis et al., 2021).

Protein structure prediction, in particular, recently witnessed
advances, not only in traditional structure prediction methods
[e.g., ROSETTA (Leman et al., 2020), I-TASSER (Roy et al.,
2010)], but also in methods that are based on machine/deep
learning (Torrisi et al., 2020), such as basic feed-forward neural
network, CNN, recurrent neural network (RRN), and generative
adversarial networks (GAN) (Torrisi et al., 2020). A recent
example that excelled in the Critical Assessment of protein
Structure Prediction [CASP, (Moult et al., 1995)], which is a
blind protein structure prediction experiment, is AlphaFold2
developed by DeepMind. AlphaFold2 is based on an attention-
based neural network system (Jumper et al., 2020) and was
trained on all publicly available experimental 3D structures
in the Protein Data Bank (PDB). Even if a fold can be
recognized [and, currently thousands of those were predicted
via machine-learning-based ROSETTA functions (Yang et al.,
2020) and added in Pfam (Mistry et al., 2021)], it is still far
from explaining the higher-order interactions captured within
the cryo-EM map. For understanding the molecular recognition,
large protein complex assembly and community function are
still out of reach: only methods that include experimental data
to drive the modeling process with physics-based potentials
[e.g., HADDOCK (van Zundert et al., 2016), IMP (Russel
et al., 2012)] can provide physically realistic models. It is noted
that the Critical Assessment of PRotein–protein Interactions
(CAPRI) (Janin et al., 2003) is a blind experiment where
algorithms are tested in their ability to solve the biomolecular
recognition problem. To date, in CAPRI, the top-performing
algorithms are physics-based which integrate experimental data
from various targets.

DISCUSSION: ASPIRING DEEPER
STRUCTURAL CHARACTERIZATION OF
PROTEIN COMMUNITIES

Machine/deep learning is applied to a multitude of optimization
problems that are related with the recovery and characterization

of protein communities at high resolution. In each step
toward their multi-scale molecular characterization, distinct
approaches are applied, fitted to answer diverse questions
arising from experimentally measured multidimensional data.
Unambiguous and large training sets, avoiding overfitting
and careful cross-validation, true test sets, and, overall,
systematic benchmarking are all required to accurately
predict the desirable outcome. However, the complex
nature of native cell extracts has not yet been fully explored
systematically from a structural perspective, especially in
(a) deriving 3D reconstructions out of the cryo-EM data
in an un-/supervised manner, (b) model building in the
recovered 3D maps, and (c) interconnecting multi-scale
structural information from (a) and (b) to discover structural
data about protein communities. As of note, cryo-electron
tomography of complex specimen and associated image
processing methods for in-tomogram particle detection
and classification (Xu et al., 2011, 2019; Chen et al., 2013;
Zhou et al., 2020) may also inspire methods for chemically
heterogeneous single-particle datasets (and vice versa)
for future applications in the characterization of protein
communities. Structural biology of native cell extracts,
therefore, provides an ideal test bed for the development
and application of artificial intelligence. It is of paramount
importance to note that the studies of native cell extracts
and the structural characterization of protein communities
that reside within should not simply focus on retrieving
high resolution. The extreme flexibility and heterogeneity
of the participating biomolecules pose a practical limitation
on the resolution; even if high resolution is achieved, it
will be non-uniform and will be prohibitive for a deeper
understanding of function. Instead, the studies should
aim to characterize components, stoichiometry, and, via
cryo-EM, to utilize structural data in the discovery of
PPIs within communities. We expect that, in the years
to come, more datasets for heterogeneous specimen will
be available through dedicated databases [e.g., UNIPROT
(UniProt Consortium, 2019), PRIDE (Perez-Riverol et al.,
2019), CORUM (Giurgiu et al., 2019), EMDB (Lawson et al.,
2011), EMPIAR (Iudin et al., 2016), and PDB (Berman
et al., 2000)]. Given the exponential increase of open-
source data, and significant advancement in computational
hardware over the past decade, machine/deep learning
algorithms will become more efficient. The machine-
learning methods will be eventually able to tackle some of
the aforementioned limitations in the analysis of complex
mixtures and homogenates of soluble and/or membrane extracts
with success, aiming to provide answers to the, yet, elusive
conundrum of macromolecular recognition: How and why
biomolecules interact?
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