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Abstract

The objective of this thesis is to investigate structural, electronic and magnetic prop-
erties of the one-dimensional (1D) metallic nanostructures on metallic substrate. One-
dimensional transition-metal TM nanowires of single atom width can be formed on a
stepped Cu(111) surface. The basic template is an embedded Fe chain at one-atom
distance away from the upper edge of the monatomic surface step. Chains, consisting of
3d TM atoms from Sc to Ni can be formed on top of the embedded Fe chain. Density
functional theory is applied to calculate the magnetic ground state and to describe the
magnetic properties of such TM-Fe wires. The wires form different magnetic structures
but are all characterized by a high local magnetic moment. Ferromagnetic Mn, Fe, Co,
and Ni as well as antiferromagnetic structures Cr might be achieved using the embedded
Fe wire near the step as a template. Exchange parameters are extracted from the non-
collinear DFT calculations. DFT calculations including spinorbit coupling (SOC) are
performed to calculate the magnetic anisotropy energies, including magnetocrystalline
and shape anisotropies of TM-Fe wires in both isolated and deposited cases. A clas-
sical anisotropic Heisenberg model is used in Monte Carlo simulations to study finite
temperature effects.
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1 Introduction

Dimensionality is one of the most important factors in tailoring the properties of ma-
terials. Low-dimensional systems and nanostructures are of particular interest to the
theoretical and experimental communities. Such systems require realistic and efficient
ways to describe them. The system properties are often determined by quantum effects,
which are strongly dependent on the dimension, structure, and elemental composition.
Confinement of electrons in low-dimensional systems may also change the electronic and
magnetic properties of the system. One-dimensional (1D) systems show unusual physical
properties which make the fabrication of such systems a challenge.

These systems exhibit unique electronic structures due to enhanced intra-atomic ex-
change and decreased coordination number. They reveal an increased tendency towards
magnetism. For instance, Pt and Pd are non-magnetic in bulk but become magnetic in
atomic chains.[1, 2]

Low-dimensional systems have become a topic of intense research interest in pursuit
of atomic-scale magnetic storage devices and future spintronics applications.[3, 4] The
development of high density magnetic recording devices is one driving force to investigate
new nanostructured magnetic materials. The idea is to develop future high-density
magnetic data-storage technologies, by moving from two-dimensional (regular hard disk
drive) to one-dimensional (nanowire) and zero-dimensional (single atom) magnetism.
Among others one-dimensional periodic linear arrangements of atoms (chains) have been
investigated from experimental[5, 6, 7, 4, 3] and theoretical points of view.[8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18] Most of the experimental investigations and possible applications
seek a high packing density of such chains.

Such properties depend on the formation and morphology of the low-dimensional
system, therefore modern techniques have been developed to grow tailored structures.
These structures can be self-assembled or built by means of the scanning tunneling
microscopy (STM).

In self-assembly, the substrate defect is used as a template for growth and offers
the possibility to create nanoscale patterns with high densities. Periodic atomically
stepped substrates can be used to create one-dimensional nanostructures. The main
idea is to exploit the 1D symmetry provided by an array of parallel steps on a vicinal
surface. Along this surface, the deposited material can nucleate via a procedure called
step decoration. The stepped substrate is used to grow atomic chains by self-assembly,
exploiting one-dimensional structures provided by topographic features such as step
edges[3] or trenches of reconstructed surfaces. The latter has been observed for Fe
chains on Ir(001)[19] and Au chains on Si(111).[20]

STM allows mapping of surface topography with atomic resolution. In this technique,
an atomic chain can be formed by manipulation with the STM tip. STM also provides
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1 Introduction

a direct way to study the magnetic properties of individual chains. For instance, Serrate
et al. demonstrated non-collinear spin alignment in linear Co chains on Mn/W(110)
surface using STM[21] and Hirjibehedin and co-workers created linear Mn chains of up
to ten atoms on an insulating CuN/Cu(001) surface.[4]

Chains or nanostripes usually grow on lower terraces along ascending step edges. Cu
surfaces can be prepared with many atom-high steps. Surprisingly, Shen et al.[5, 6]
have demonstrated that Fe nanostripes grow on the upper terrace of a stepped Cu(111)
surface. The kinetic mechanism which leads to the formation of such structures has been
a puzzle for almost a decade. Mo et al. investigated this system within the framework of
density functional theory and explained that the growth of Fe nanowires is a two-stage
process.[18] In the first stage, an embedded Fe chain is formed in the Cu stepped surface
one lateral lattice constant away from the descending step. This embedded Fe chain
acts as an attractor for the second row of Fe atoms in the second stage. This growth
process was experimentally confirmed later by Guo et al.. [7] The kinetic Monte Carlo
simulations on this system have also exhibited an optimal temperature and deposition
flux for the formation of ordered Fe nanowires on stepped Cu(111) surfaces.[22] Only
the growth of one mono-layer (ML) high stripes was assumed in these simulations.
Furthermore, the Cu(111) stepped surface with the embedded Fe chain can be used
as a template for the deposition of other 3d transition metals (TM) atoms to form a
chain on top of the embedded Fe chain. It is the interplay between dimensionality,
local environment, and magnetic properties which drives the intense interest in such
systems.[18]

This thesis provides a systematic discussion of one-dimensional magnetic nanostruc-
tures grown on a vicinal Cu(111) surface using the above-mentioned template. This
study is focused on 3d transition metals from Sc to Ni because they offer a wide scope of
complex magnetic structures in higher dimensions some of which are bulk ferromagnets.

This thesis is organized as follows.
In chapter (2), the main concepts of many-body quantum mechanics are briefly dis-

cussed. With the introduced terminology, a description of DFT follows in relation to
the implementation used in this study. Subsequently, a brief description of the finite
temperature study of the system is presented.

In chapter (3), the copper bulk properties are discussed, as well as comparison with the
experimental results. Subsequently, the relaxations, surface energies, and work functions
of the Cu(111) surface are calculated and compared with the experimental results.

Details of growth of 3d TM nanowires on Cu surface are discussed in chapter (4).
The presentation of the results and discussion start with an explanation of the magnetic
structures. Those structures are investigated for TM-Fe wires embedded in the Cu
surface and investigated for comparison to isolated free standing wires as well. A detailed
compilation of the real structure data of the embedded TM-Fe wires follows. After the
presentation of the ground state energies and magnetic moments, a discussion follows.

The magnetic properties of the TM-Fe wires are discussed in chapter (5) by presenting
a systematic investigation of the spin couplings in magnetic TM-Fe wires by analyzing
the exchange interactions. There are two magnetic coupling interactions for TM-Fe
systems explored in this chapter: intrawire and interwire.
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1 Introduction

In chapter (6), the magnetic anisotropy energies (MAE) are calculated, including mag-
netocrystalline and shape anisotropies of TM-Fe wires in both isolated and deposited
cases. The TM-Fe structures are optimized for different orientations of the magnetiza-
tion with respect to the crystallographic axes of the systems. The magnetic anisotropy
energies and the anisotropies of spin and orbital moments are determined. Finally, the
magnetic properties of TM-Fe wires at finite temperatures are discussed in Sec. (6.4).
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2 Theoretical Background

To understand the material properties from a theoretical point of view, quantum me-
chanics provides a strong tool to study the behavior of materials at the atomic scale. By
solving the quantum mechanical wave equation of the system, the properties of a system
can be obtained. This turns into the Schrödinger equation for non-relativistic systems.
This is practically an impossible task. Although the exact solution is not known, there
are many methods to deal with many-body problems by simplifying the general Hamil-
tonian with the introduction of some approximations. These methods can apply to a
limited number of many-body problems which are solvable. Density Functional The-
ory (DFT) is a conceptual improvement which leads to large simplification of the many
body problem and allows practical computation of properties of materials. In princi-
ple, it is an exact theory except for few approximations used to treat the many body
correlation effects. DFT is one the most favored method for the materials simulations,
since most of the properties predicted by DFT find direct experimental support. The
predictive ability for materials properties allows us to study more complex materials,
for which experiments are still lacking. In this chapter, DFT is introduced as a method
dealing with many-body systems, considering the Hohenberg-Kohn-Sham formulation
of density functional theory DFT [23, 24]. Therefore, in the following section, the main
concepts of many-body quantum mechanics are briefly discussed. With the introduced
terminology, a description of DFT follows, in relation to the implementation used in this
study. Subsequently, a brief description of the finite temperature study of the system is
presented.

2.1 The Many-Body Problem

The entire information of a system of interacting electrons and nuclei is contained in the
many-body wavefunction Ψ, which can be obtained by solving the Schrödinger equation.
This is a starting point to investigate properties of materials. The problematic issue
concerns the number of particles that are involved and the coupling and interactions of
the particles (in order of 1023 particles). This problem can be solved using approximate
methods.

The N -electron quantum system (without considering spin) is described by a function
of the spatial r coordinate of each electron, as well as the spatial coordinates R of
the nuclei, Ψ(r1, r2 . . . rN ,R1,R2 . . .RM). The properties of any (non-relativistic) time
independent quantum system are determined by the Schrödinger equation:

ĤΨ(r1, r2 . . . rN ,R1,R2 . . .RM) = EΨ(r1, r2 . . . rN ,R1,R2 . . .RM) (2.1)
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2 Theoretical Background

Ĥ, Ψ and E are the Hamiltonian, many-body wave-function and total energy of the
system, respectively. The Hamiltonian for the solid system in atomic units is given by

Ĥ = −
M∑
i=1

1

2Mi

∇2
Ri
−

N∑
i=1

1

2
∇2

ri
+

M∑
i

M∑
j>i

ZiZj
|Ri −Rj |

−
N∑
i=1

M∑
j=1

Zj
| ri −Rj |

+
N∑
i=1

N∑
j>i

1

| ri − rj |
, (2.2)

where, M and N are the number of nuclei and electrons in the system, Mi, Z and R
are the mass, charge and position of the nuclei and r is the position of the electrons.

The first two terms in equation (2.2) are the kinetic energy contributions of the nuclei
and the electrons respectively, and the rest are Coulombic potential energy terms repre-
senting the ion-ion repulsion, ion-electron attraction and the electron-electron repulsion
respectively. Although in principle everything is known exactly, the Schrödinger equa-
tion (2.1) with this Hamiltonian is very difficult to solve directly. Hence, the quantum
many-body problem is centered upon finding intelligent approximations to the Hamilto-
nian (2.2) and the many body wavefunction Ψ, that retain the correct physics and are
computationally tractable to solve.

2.2 Born-Oppenheimer Approximation

The concept behind this approximation comes from the fact that the mass of a nucleus
is much larger than the mass of an electron. Even for the simplest nuclei, a single
proton, the nuclei mass is approximately 2000 times larger than electron mass. Due
to this fact, the timescales of electronic and nuclear motion are different. This is the
motivation for the Born-Oppenheimer approximation. The difference in the masses
allows the electrons to respond almost instantly to the motion of the nuclei. This
approximation was proposed in 1927, in the early period of quantum mechanics, by
Born and Oppenheimer. The wavefunction can then be taken to be the product of the
electronic and nuclear parts:

Ψ(r1, .., rN ,R1, ..,RM) = Ψe(r1, .., rN ,R1, ..,RM)Ψn(R1, ..,RM). (2.3)

With this approximation the electronic Schrödinger equation is solved first, yielding
the wavefunction Ψe(r1, .., rN ,R1, ..,RM) depending on electrons only. During this so-
lution the nuclei are fixed in a certain configuration. Here, please note that the Ri in
the wave function (Ψe(r1, .., rN ,R1, ..,RM)) are not variables but parameters.

Solving the Schrödinger equation with this approximation is still complex in most
cases, because the many-electron wave-function contains 3N variables. In principle, the
N -body wave function of the system can be approximated by a single Slater determinant.
By using a variational method, a set of N -coupled equations for the N spin orbitals can
be obtained. The solution of these equations yields the Hartree-Fock wave function and
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finally energy of the system. In the following section, this method will be discussed in
detail.

2.3 Hartree-Fock Theory

Hartree-Fock theory is an approximate theory for solving the many-body Hamiltonian,
where the true N -electron wavefunction Ψ is replaced by a product of single-particle
orbitals, ψi(risi),

Ψ(r1s1, r2s2, . . . , rNsN) =
1√
N
ψ1(r1s1)ψ2(r2s2) . . . ψN(rNsN) , (2.4)

where ψi(risi) is comprised of a spatial function φi(ri), and an electron spin function
σ(si) such that,

ψi(ri) = φi(ri)σ(si) , (2.5)

and σ = α, β exhibit up-spin and down-spin electrons respectively. The wavefunction
must be antisymmetric with respect to an interchange of any two electron positions.
This property is required by the Pauli exclusion principle.

Ψ(r1s1, . . . , risi, . . . , rjsj, . . . rNsN) = −Ψ(r1s1, . . . , rjsj, . . . , risi, . . . , rNsN) , (2.6)

This problem was corrected by the Hartree-Fock approximation [25] which accounts
for electron exchange interactions by writing the wavefunction as an antisymmetrised
product of orbitals. The Hartree-Fock wavefunction ΨHF amounts to a linear combina-
tion of the terms in (2.4), which includes all permutations of the electron coordinates
with the corresponding weights ±1, and so fulfils (2.7). In 1951 Slater [26] realized that
the Hartree-Fock wavefunction can be efficiently represented as an N ×N determinant,
now known as a Slater determinant:

ΨHF =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(r1s1) ψ1(r2s2) . . . ψ1(rNsN)
ψ2(r1s1) ψ2(r2s2) . . . ψ2(rNsN)

...
...

...
ψN(r1s1) ψN(r2s2) . . . ψN(rNsN)

∣∣∣∣∣∣∣∣∣∣
, (2.7)

where the orbitals are the orthonormal sets,

∫
ψ∗i (r)ψj(r) dr = 〈ψi|ψj〉 = δij . (2.8)

Shorthand notation of the Slater determinant is written as,
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ΨHF =
1√
N !

det[ψ1(r1s1)ψ2(r2s2) . . . ψN(rNsN)] (2.9)

The expectation value of the Hamiltonian with the above Slater determinant yields,

EHF = 〈ΨHF |Ĥ|ΨHF 〉

=
N∑
i

∫
ψ∗i (r)

(
−1

2
∇2 + vext(r)

)
ψi(r) dr

+
1

2

N∑
i

N∑
j

∫ ∫ |ψi(r)|2 |ψj(r′)|2
|r− r′|

dr dr′

−1

2

N∑
i

N∑
j

∫ ∫ ψ∗i (r)ψi(r
′)ψ∗j (r

′)ψj(r)

|r− r′|
δsisj dr dr

′ (2.10)

The last term is of significant interest since it arises from the antisymmetric nature
of the Hartree-Fock wavefunction - it vanishes when si 6= sj. Consequently this term is
called the exchange energy EX . Hartree-Fock theory, by assuming a single-determinant
form for the wavefunction, neglects correlation between electrons. The electrons are
subject to an average non-local potential arising from the other electrons, which can
lead to a poor description of the electronic structure. Although qualitatively correct in
many materials and compounds, Hartree-Fock theory is insufficiently accurate to make
accurate quantitative predictions.

2.4 Density Functional Theory (DFT)

Density functional theory is a very successful approach for the description of ground state
properties of the solids. One approach to solve the many-electron problem is using the
electron density as the central unknown variable, rather than the many-electron wave-
function. This approach was proposed initially by Thomas and Fermi in the 1920s [27,
28]. This model simplifies the problem considerably since the density contains only three
degrees of freedom. In this model, the electron many-body problem is based uniquely on
the electron density n(r). Due to the severe shortcomings of this method, they probably
never imagined that an exact theory could be based on the density. However, almost
forty years later, Hohenberg and Kohn proved in a seminal paper [23] that this was
indeed possible. In two remarkably powerful theorems they formally established the
electron density as the central quantity describing electron interactions, and so devised
the formally exact ground-state method known as density functional theory (DFT). The
two Hohenberg-Kohn theorems are now described.

2.4.1 The Hohenberg-Kohn Theorems

The foundation of DFT was formulated and proved by two fundamental theorems. These
theorems relate to any system consisting of electrons moving under the influence of an
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external potential vext(r). They are as follows:

Theorem 1

The external potential vext(r), and therefore the total energy, is a unique functional of
the electron density n(r).

The energy functional E[n(r)] mentioned briefly to in the first Hohenberg-Kohn the-
orem can be written in terms of the external potential vext(r) in the following form,

E[n(r)] =
∫
n(r) vext(r) dr + F [n(r)] , (2.11)

where F [n(r)] is an unknown, but universal functional of the electron density n(r)
only. Correspondingly, a Hamiltonian for the system can be written in such a way that
the electron wavefunction Ψ that minimizes the expectation value gives the groundstate
energy (2.11) (assuming a non-degenerate groundstate),

E[n(r)] = 〈Ψ|Ĥ|Ψ〉 . (2.12)

and the Hamiltonian of the system can be written as,

Ĥ = F̂ + V̂ext , (2.13)

where F̂ is the electronic Hamiltonian consisting of a kinetic energy operator T̂ and
an interaction operator V̂ee,

F̂ = T̂ + V̂ee . (2.14)

The electron operator F̂ is the same for all N -electron systems, therefore Ĥ is totally
specified by the number of electrons N , and the external potential vext(r).

The proof of the first theorem obtains with proof by contradiction. First we assume
there are two different external potentials, vext,1(r) and vext,2(r), that give rise to the same

density n0(r). The associated Hamiltonians, Ĥ1 and Ĥ2, will therefore have different
groundstate wavefunctions, Ψ1 and Ψ2, that each yield n0(r). Using the variational
principle [29], together with (2.14) yields,

E0
1 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ2|Ψ2〉+ 〈Ψ2|Ĥ1 − Ĥ2|Ψ2〉 (2.15)

= E0
2 +

∫
n0(r)[vext,1(r)− vext,2(r)] dr (2.16)

where E0
1 and E0

2 are the groundstate energies of Ĥ1 and Ĥ2 respectively. It is at this
point that the Hohenberg-Kohn theorems, and therefore DFT, apply rigorously to the
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groundstate only. A disparity similar expression for (2.15) holds when the subscripts are
interchanged. Hence adding the interchanged disparity to Eq. (2.16) leads to the result:

E0
1 + E0

2 < E0
2 + E0

1 (2.17)

which is a contradiction, and as a result the groundstate density must uniquely be de-
termined by the external potential vext(r) (within an additive constant). Stated simply,
the electrons determine the positions of the nuclei in a system, and also all groundstate
electronic properties, because as mentioned earlier, vext(r) and N completely define Ĥ.

Theorem 2

The groundstate energy can be obtained variationally: the density that minimizes the
total energy is the exact groundstate density.

The proof of the second theorem is also straightforward: as just shown, n(r) determines
vext(r), N and vext(r) determine Ĥ and therefore Ψ. This ultimately means Ψ is a
functional of n(r), and so the expectation value of F̂ is also a functional of n(r), i.e.

F [n(r)] = 〈ψ|F̂ |ψ〉 . (2.18)

A density that is the ground-state of some external potential is known as v-representable.
Following from this, a v-representable energy functional Ev[n(r)] can be defined in which
the external potential v(r) is unrelated to another density n′(r),

Ev[n(r)] =
∫
n′(r) vext(r) dr + F [n′(r)] , (2.19)

and the variational principle states that,

〈ψ′|F̂ |ψ′〉+ 〈ψ′|V̂ext|ψ′〉 > 〈ψ|F̂ |ψ〉+ 〈ψ|V̂ext|ψ〉 (2.20)

where ψ is the wavefunction associated with the correct groundstate n(r). This leads
to,

∫
n′(r) vext(r) dr + F [n′(r)] >

∫
n(r) vext(r) dr + F [n(r)] , (2.21)

and therefore the variational principle of the second Hohenberg-Kohn theorem is ob-
tained,

Ev[n
′(r)] > Ev[n(r)] . (2.22)

In spite of the fact that the Hohenberg-Kohn theorems are extremely strong, but there
is no way to compute the ground-state density of a system practically. One year after
the first DFT paper by Hohenberg and Kohn, Kohn and Sham [24] invented a simple
method for performing DFT calculations, that keeps the exact nature of DFT. This
method is delineated next.
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2 Theoretical Background

2.4.2 The Kohn-Sham Method

The Kohn-Sham method is based on the mapping of the full interacting system with
the real potential, onto an imaginary non-interacting system in accordance with, the
electrons move within an effective “Kohn-Sham” single-particle potential vKS(r). The
Kohn-Sham formulation is still accurate because it gives the same groundstate density
as the real system, but extremely promotes the calculation.

Let us consider the variational problem presented in the second Hohenberg-Kohn the-
orem - the groundstate energy of a many-electron system can be acquired by minimising
the energy functional (2.13), subject to the constraint that the number of electrons N
is conserved, which leads to,

δ
[
F [n(r)] +

∫
vext(r)n(r) dr− µ

(∫
n(r) dr−N

)]
= 0 , (2.23)

and the related Euler expression is,

µ =
δF [n(r)]

δn(r)
+ vext(r) , (2.24)

where µ is the Lagrange multiplier connected to the limitation of constant N . The
idea of Kohn and Sham was to establish a system where the kinetic energy could be
determined exactly, since this was a major problem in the Thomas-Fermi theory. The
corresponding groundstate wavefunction ΨKS for this type of system is given exactly by
a determinant of single-particle orbitals ψi(ri),

ΨKS =
1√
N !

det[ψ1(r1)ψ2(r2) . . . ψN(rN)] (2.25)

The universal functional F [n(r)] can be divided into three terms, the first two of which
are known exactly and comprise the majority of the energy, the third being an unknown
quantity,

F [n(r)] = Ts[n(r)] + EH [n(r)] + EXC [n(r)] . (2.26)

Ts[n(r)] is the kinetic energy of a non-interacting electron gas of density n(r), EH [n(r)]
is the classical electrostatic (Hartree) energy of the electrons,

EH [n(r)] =
1

2

∫ ∫ n(r)n(r′)

| r− r′ |
dr dr′ , (2.27)

and EXC [n(r)] is the exchange-correlation energy containing the difference between
the exact and non-interacting kinetic energies and also the non-classical contribution
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to the electron-electron interactions, of which the exchange energy is a part. In the
Kohn-Sham prescription the Euler equation given in (2.26) now turns into,

µ =
δTs[n(r)]

δn(r)
+ vKS(r) , (2.28)

where the Kohn-Sham potential vKS(r) is obtained by,

vKS(r) = vext(r) + vH(r) + vXC(r) , (2.29)

with the Hartree potential vH(r),

vH(r) =
δEH [n(r)]

δn(r)
=
∫ n(r′)

| r− r′ |
dr′ , (2.30)

and the exchange-correlation potential vXC(r),

vXC(r) =
δEXC [n(r)]

δn(r)
. (2.31)

The important point to realize is that equation (2.28) is precisely the same equation
which would be obtained for a non-interacting system of particles moving in an external
potential vKS(r). The ground-state density for this non-interacting system is obtained
in practice by solving the one-electron Schrödinger equations;

[
−1

2
∇2 + vKS(r)

]
ψi(r) = εiψi(r) , (2.32)

where εi are Lagrange multipliers corresponding to the orthonormality of the N single-
particle states ψi(r), and the density is obtained by,

n(r) =
N∑
i=1

|ψi(r)|2 . (2.33)

The non-interacting kinetic energy Ts[n(r)] is therefore given by,

Ts[n(r)] = −1

2

N∑
i=1

∫
ψ∗i (r)∇2ψi(r) dr . (2.34)

(2.31), (2.32) and (2.33) equations, the Kohn-Sham equations, should be solved self-
consistently. Because vKS(r) depends on the density through the exchange-correlation
potential.
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N equations are solved in Kohn-Sham theory to obtain the set of Lagrange multipliers
{εi}, in contrast to one equation that determines µ when solving for the density directly,
so that we can obtain the kinetic energy exactly. The advantage of the Kohn-Sham
method is that as the complexity of a system increases, due to N increasing, the problem
becomes no more difficult, only the number of single-particle equations to be solved
increases.

The Kohn-Sham theory is approximate in practice because of the unknown exchange-
correlation functional EXC [n(r)] , despite the fact that exact in principle. An implicit
definition of EXC [n(r)] can be given through (2.28) as,

EXC [n(r)] = T [n(r)]− Ts[n(r)] + Eee[n(r)]− EH [n(r)] (2.35)

T [n(r)] and Eee[n(r)] are the kinetic and electron-electron interaction energies re-
spectively. The idea is to reduce the unknown contribution to the total energy of the
non-interacting system, and this is only presented in the exchange-correlation energy,
however it is still an important contribution because the binding energy of many systems
is about the same size as EXC [n(r)], so an accurate description of exchange and corre-
lation is critical for the prediction of binding properties. The current approximations
for the exchange-correlation energy are not satisfactory, consequently the development
of improved exchange-correlation functionals is necessary.

2.4.3 The Exchange-Correlation Functionals

As discussed in previous sections, the DFT theory based on Hohenberg-Kohn theorems
is an exact theory. In practice, in the Kohn-Sham formalism, an approximation has to
be adopted for treating the exchange-correlation potential.

The Local Density Approximation (LDA)

One of the approximations which was proposed by Kohn and Sham is the local density
approximation (LDA) [24]. The LDA is derived from the homogeneous electron gas and
can be written as

ELDA
XC [n(r)] =

∫
n(r)V LDA

XC (r)dr (2.36)

where V LDA
XC is a function of density. The exchange part of the LDA is analytically given

by

V LDA
X = −3

4

(
3

π

)1/3 ∫
n(r)4/3dr (2.37)

For the correlation term in LDA, a more accurate value can be obtained from quantum
Monte Carlo methods. The parametric form of correlation in this case is given as,
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V LDA
C =

 A ln(rs) +B + rs(C ln(rs) +D) for high density limit
1
2

(
g0
rs

+ g1

r
3/2
s

+ · · ·
)

for low density limit
(2.38)

where, rs is related to the density as

4

3
πr3

s =
1

ρ
(2.39)

and A,B,C,D, g0, g1 are some parameters. The LDA exchange-correlation functionals
have been used with much success, especially for metallic systems. This is because
metals can be described by an effective free-electron model. Making generalization of
the LDA to include electron spin, leads to the local spin-density approximation (LSDA):

ELSDA
XC [n↑, n↓] =

∫
V LSDA

XC (n↑, n↓)n(r)dr (2.40)

Using quantum Monte Carlo, accurate formulae for the exchange-correlation energy
density V LSDA

XC (n↑, n↓) can be constructed.[30]

The Generalized-Gradient Approximations (GGA)

As shown above, the LDA applies the exchange-correlation energy for the uniform elec-
tron gas at every point in the system. For nonuniform charge densities the exchange-
correlation energy can deviate significantly from the uniform result. This deviation can
be expressed in terms of the gradient and higher spatial derivatives of the total charge
density. If we take into account the gradient of the density at the same coordinate then:

EGGA
XC [n↑, n↓] =

∫
V GGA

XC (n↑, n↓, ~∇n↑, ~∇n↓)n(r)dr (2.41)

For systems where the charge density is slowly varying, the GGA is an improvement
over LDA. Using the GGA good results for structures and ground-state energies have
been achieved. [31, 32, 33, 34] Transition metals on the other hand need gradient correc-
tions in the LDA, commonly known as the generalized gradient approximations (GGA),
for better electronic structure description because of the participation of d-orbitals which
are correlated.

2.5 Electronic Structure Calculations

2.5.1 Plane-Wave Formulation of DFT

Now, the plane-wave pseudopotential formulation of DFT is described, in fact, it is
used in most of the studies presented here. This method is well established within the
physics community as it is particularly suited to describing infinite periodic systems such
as solids.
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Bloch’s Theorem

Bloch’s theorem states that the wavefunction of a particle (usually, an electron) ψj,k,
placed in a periodic potential, may be written as the product of a lattice periodic part
uj(r) and a plane wave envelope function eik·r,

ψj,k(r) = uj(r) eik·r , (2.42)

where the subscript j indicates the band index and k is a vector in reciprocal space
that is confined to the first Brillouin zone of the reciprocal lattice. Since uj(r) has the
same periodicity as the direct lattice, it can be expressed in terms of a discrete plane-
wave basis set with wavevectors G that are reciprocal lattice vectors of the crystal,
i.e.

uj(r) =
∑
G

cj,G eiG·r , (2.43)

where G ·R = 2πm, where m is an integer, R are the crystal lattice vectors and cj,G
are the plane-wave coefficients. The above results show that the electron wavefunctions
can be expanded in terms of a linear combination of plane-waves,

ψj,k(r) =
∑
G

cj,k+G ei(k+G)·r . (2.44)

Plane-waves are a method of representing electron wavefunctions. They offer a com-
plete basis set that is independent of the type of crystal and treats all areas of space
equally. Plane waves are also an orthonormal complete set. Any function belonging to
the class of continuous normalizable functions can be expanded with arbitrary precision
in such a basis set. We thus do not have to invent a new basis set for every atom in the
periodic table nor modify them in different materials. This is in contrast to some other
basis sets which use localized functions such as Gaussians which are dependent on the
positions of the ions.

Kohn-Sham Equations Represented in the Plane-Waves

Using the lattice periodicity and Bloch’s theorem yields the one-electron wavefunctions
being expressed in terms of a Fourier expansion using plane waves as a basis set. The
electronic wavefunctions in periodic systems turns out a particularly simple formulation
of the Kohn-Sham equations in DFT. The fact is applied that the various contributions
to the local potential in the Kohn-Sham equation (2.32) may be written in the following
formation,

v(r) =
∑
G

v̄(G)eiG·r , (2.45)
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v̄(G) represents the Fourier transform of the corresponding real-space quantity, and
substitutes the plane-wave expansions given by Eq. (2.45) into Eq. (2.32), leading to a
reciprocal-space representation of the Kohn-Sham equations,

∑
G′

[
1

2
|k + G|2δG,G′ + v̄ext(G−G′) + v̄H(G−G′)

+ v̄XC(G−G′)

]
cj,k+G′ = εi(k)cj,k+G , (2.46)

The dimension of the plane-wave basis set has to be infinite for an exact calculation.
The plane-waves at the lower end of the kinetic energy range are most important, there-
fore a practical solution of (2.46) can be obtained by truncating the basis set to a finite
number of plane-waves. This is defined by the kinetic cutoff energy Ecut,

1

2
|k + G |2 ≤ Ecut . (2.47)

In principle, the accuracy of a plane-wave basis set can be systematically improved
by increasing Ecut, and thus this fixes the highest reciprocal lattice vector G used in
the plane wave expansion, resulting in a finite basis set. The main disadvantage of
plane-waves is that they are not efficient at describing wavefunctions with large curva-
ture such as in the core regions of atoms, consequently such regions of space require an
unreasonably large number of plane-waves to be sufficiently accurate, and so would dom-
inate the convergence of Ecut. This problem can be overcome with the pseudopotential
approximation.

k-point Sampling

Based on Bloch’s theorem, the electrons within the unit cell can be considered at an
infinite number of k-points within the first Brillouin zone. This means any real-space
integral over a periodic system with infinite extent can be replaced by an integral in
reciprocal-space over the first Brillouin zone. This requires calculating the periodic
functions at an infinite number of points in reciprocal space, refereing to the k-points.
This is a consequence of the infinite number of electrons. This problem can be overcome
by exploiting the fact that electron wavefunctions do not change appreciably over a small
distances in k-space, therefore the integrations can be performed as summations over a
finite, but sufficiently dense, mesh of k-points. Therefore, any integrated function f(r),
for example the density or total energy, can be computed as a discontinuous summation,

∫
BZ

F (k) dk =
1

Ω

∑
j

wjF (kj) (2.48)

here F (k) is the Fourier transform of f(r), Ω is the cell volume and wj are weighting
factors. The number of k-points required for a sufficiently accurate calculation must be
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checked by k-point sampling. This is a procedure that the total energy of the system is
converged with respect to increasing the number of k-point.

The k-points within the Brillouin zone should be distributed in such a way to result
in an efficient description of a particular system. This can significantly save the compu-
tational time. Different approaches for obtaining these optimal or special k-point sets
have been discussed in the past [35, 36, 37]. However the calculations performed in this
work employ the Monkhorst-Pack method [38], whereby the k-points are distributed
uniformly throughout space in rows and columns that follow the shape of the Brillouin
zone,

kj = x1jb1 + x2jb2 + x3jb3 (2.49)

b1,b2,b3 are the reciprocal lattice vectors,

xij =
li
nj
, j = 1, . . . , nj . (2.50)

where li are the reciprocal lattice vectors lengths and nj is the number of special points
in the set.

Typically, the point-group symmetry of the crystal is used to produce a smaller subset
of the full special k-point set, containing points located within the irreducible part of
the Brillouin zone. The values of the weighting factors wj are adjusted according to this
new k-point set and the integrals (2.50) are calculated with this set. If a small number of
k-points is used within the Brillouin zone, a significant decreasing in the computational
time can be achieved.

Pseudopotentials

DFT as described in the previous sections is computationally expensive for system sizes
useful to model nanostructures. Using pseudopotentials is one significant way of achiev-
ing even more simplification of the system. It means that the core electrons are tightly
bound to their host nuclei, and only the valence electrons are involved in chemical bond-
ing. Therefore it is possible to incorporate the core states into a bulk nuclear potential
and only deal with the valence electrons separately. The plane-wave basis set is not
a good choice for describing electron wavefunctions since a preventively large number
would be required to accurately describe the oscillations in the core regions which main-
tain orthogonality between valence and core electrons. This leads to an all-electron
plane-wave calculation which is a huge computational expense. However understanding
the electronic structure of the core-electrons be kept unchanged in different chemical
environments and the problems relating to the core-electrons can be overcome by using
a pseudopotential. [39, 40]

The pseudopotential approximation replaces the strong ionic potential vion(r) in the
core region, by a weaker pseudopotential vPSion(r). The corresponding set of pseudo-
wavefunctions ψPS(r) and the all-electron wavefunctions ψAE(r) are identical outside a
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chosen cutoff radius rc and so exhibit the same scattering properties, but ψPS(r) does
not possess the nodal structure that cause the oscillations inside rc, which means they
can now be described with a reasonable number of plane-waves. A brief explanation of
the pseudopotential concept is shown in Fig. (2.1)

Figure 2.1: (Taken from Ref.[41]) Schematic illustration of the pseudopotential con-
cept. The solid lines show the all-electron wavefunction, ΨAE(r) and ionic
potential, vAEion (r), while the dashed lines show the corresponding pseudo-
wavefunction, ΨPS(r), given by the pseudopotential, vPSion(r). All quantities
are shown as a function of distance, r, from the atomic nucleus. The cutoff
radius rc marks the point beyond which the all-electron and pseudo quanti-
ties become identical.

Pseudopotentials employed in this study

The ultrasoft pseudopotentials (US) were used in many pseudopotential calculations
developed by Vanderbilt in the early 1990s [42]. These pseudopotentials reach to a much
softer pseudo-wavefunction and employs fewer plane-waves for calculations of the same
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accuracy. This is obtained with relaxing the norm-conservation constraint which has
more flexibility in the construction of the pseudo-wavefunctions. In practice, generally
the projector-augmented wave (PAW) potentials are more accurate than the ultra-soft
pseudopotentials. [43, 44] Because first, the radial cutoffs are decreased comparing to
the radii used for the US pseudopotentials, and second the PAW potentials reconstruct
the exact valence wave function with all nodes in the core region. The disadvantages
of using PAW instead of US are the required energy cutoffs and basis sets are also
larger, since the core radii of the PAW potentials are smaller. If such a high precision
is not required, the older US-PP can be used. The practical implementation of DFT,
employed throughout this study, is mostly the Vienna ab initio Simulation Package
(VASP)[45, 46], using PAW pseudo-potentials. [43] For the actual calculations in this
thesis the GGA parametrization of Perdew, Burke and Ernzerhof[52] GGA is chosen for
the exchange-correlation functional.

2.5.2 Augmented Plane Wave (APW) Method

An important example of a basis set is the augmented plane waves set (APW) proposed
by Slater in 1937 [47]. This method has been one of the most popular methods for
solving the electronic structure using the density-functional theory. But without doubt
the single most important step was the linearization of the secular problem as proposed
by Andersen[48].

In an APW descendent method, the space is divided into atomic centered spheres
surrounded by an interstitial region. The APW basis functions consist of plane-waves
in the interstitial region, augmented into radial solutions of the Schrödinger equation
inside the Muffin-tin (MT) spheres. These radial functions ul are better for describing
the behavior of the Bloch eigen-functions close to atomic sites. For a system with one
atom per unit cell this gives

XAPW
G (r,k) =

{
eikG·r r ∈ I∑
L a

kG
L ul(r, E)YL(r̂) r ∈ MT,

(2.51)

where the MT is the Muffin-tin radius and the I is located in the interstitial region
between the neighboring Muffin-tin regions, G is a reciprocal lattice vector, k is the
crystal momentum and kG = k + G is the condensed angular momentum {l,m} index
and YL(r̂) are the spherical harmonics . The coefficients akG

L are found by expanding
each planewave into Bessel functions jl(kGr) at the MT-spheres, r = rMT requiring the
basis functions to be continuous at the sphere boundaries. This yields

akG
L = 4πilY ∗L (k̂G)

jl(kGrMT)

ul(rMT, E)
. (2.52)

The radial solutions ul depend on the energy at which the radial Schrodinger equa-
tion is evaluated. An eigen-function Φi(r) =

∑
GCiGXG(r,k) can only be efficiently

described by orbital solutions ul evaluated at the eigen energy Ei. A new set of APW
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basis functions must therefore be evaluated for each new energy treated. As the matrix
elements representing operators depend on the choice of basis set the secular equation,

det[TGG′(E) + VGG′(E)− EOGG′(E)] = 0, (2.53)

will be non-linear in energy. TGG′ represents the kinetic energy operator, VGG′ is the
potential energy and OGG′ the overlap matrix. The procedure of evaluating the determi-
nant for a number of different energies in order to find the energy eigenvalues makes the
APW method very time consuming. Another problem is the decoupling of the basis set
for energies yielding ul = 0 at the MT-sphere boundary, but this is of less importance.

Linear Augmented Plane Wave (LAPW) Method

A great simplification was introduced with the so-called linear augmented plane wave
(LAPW) method. In this approximation, the non-linear eigenvalue problem is overcome
by performing a Taylor expansion of the radial wave function around some fixed energy.
If the basis functions, and thereby the matrix elements TGG′ , VGG′ and OGG′ , were
energy independent, the secular equation Eq. (2.53) would turn into a general eigenvalue
problem. All eigen energies could then be found by diagonalizing the secular matrix
once. However, such an energy independent basis set must be able to describe all eigen-
functions of the different eigen energies.

By introducing the energy derivatives u̇l ≡ ∂ul/∂E of the radial solutions ul, Andersen
constructed an energy independent LAPW basis set [48],

X LAPW
G (r,k) =

{
eikG·r r ∈ I∑
LR

LAPW
L (r)YL(r̂) r ∈ MT

(2.54)

where RLAPW
L (r) = akG

L ul(r, E1) + bkG
L u̇l(r, E1). The X LAPW

G provides a sufficient basis
for eigen-functions in an energy range around the linearization energy E1. The two
coefficients akG

L and bkG
L are determined by forcing each basis function to be continuously

differentiable, i.e. continuous with continuous first derivative, at the surfaces of the MT-
spheres.

2.5.3 Spin Systems

Collinear Spin System

In order to treat spin systems, the total electron density needs to be separated into the
spin-up and spin-down components. A formalism to handle spin systems can be extended
which has been done by von Barth and Hedin [49] in the spin-density functional theory.
Formally, this is done by replacing the density n(r) by an generalized density matrix:

ρ(r) =
n(r)

2
1 +

m(r)

2
· σ (2.55)

Here 1 is the 2× 2 unit matrix, m(r) the magnetization density and σ = (σx, σy, σz)
are the Pauli spin matrices.
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In fact each one-electron state is represented as a spinor function:

ψi(r) =

(
αi(r)
βi(r)

)
, (2.56)

where αi and βi are the two spin projections. Moreover, all operators need to be
represented as 2×2 matrices. The explicit form of the charge and magnetization density
is then:

n(r) =
∑N
i=1 |ψi(r)|2, and m(r) =

∑N
i=1 ψ

†
i (r)σψi(r), (2.57)

and the density matrix has the form:

ρ(r) =
N∑
i=1

(
|αi(r)|2 [α∗i (r)βi(r)]

∗

[α∗i (r)βi(r)] |βi(r)|2
)
. (2.58)

In the case of collinear spin system, a unique global magnetization axis can be de-
fined in, for instance, the z-direction. Then the density matrix and operators reduce
to diagonal form. The two spin projections have different potentials and can be solved
independently of each other and the density matrix is completely described by the scalar
quantities n = n↑ + n↓ and mz = n↑ − n↓.

Non-collinear Spin System

A global spin quantization axis does not exist in a collinear system while it does for a
non-collinear spin system[50]. In the non-collinear magnetic system the spinor formalism
should be kept and we should work with 2× 2 matrices for the operators. Considering
inter-non-collinearity, that is, within each muffin-tin sphere there is a unique quantiza-
tion axis (which is not equal for different spheres) is an approximation, which can be
lifted by treating the magnetization density as a vector field. A local frame of reference
defined by the Euler angles θν and φν with respect to some global frame of reference, is
then introduced in each sphere labeled by ν so the density matrix and effective potential
matrix are diagonal in that local frame. By using the standard spin-1

2
rotation matrix

[51]:

U(θ, φ) =

 cos
(
θ
2

)
exp

(
iφ
2

)
sin

(
θ
2

)
exp

(
− iφ

2

)
−sin

(
θ
2

)
exp

(
iφ
2

)
cos

(
θ
2

)
exp

(
− iφ

2

)  , (2.59)

the effective potential matrix in the global frame of reference can be obtained by an
unitary transformation:

veff (r) = U†(θ, φ)

[
v↑eff (r) 0

0 v↓eff (r)

]
U(θ, φ) (2.60)

Here v↑eff (r) and v↓eff (r) are the components of the effective potential matrix in the
local frame of reference. Now the solution to the Kohn-Sham equation can be obtained
as discussed earlier, in previous sections.
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2.6 Spin System at finite temperature

2.6.1 Classical Heisenberg model

Many aspects of magnetic behavior involve magnetic moments that are strongly coupled.
A model that captures the physics of such systems is the so called classical Heisenberg
spin model. This model consists of interacting spins on lattice sites, Si , with S denoting
a spin variable and i the lattice point where it resides. A pair of spins at lattice sites i
and j interact by the so called exchange term Jij , which depends on the relative distance
between the spins. The classical Heisenberg spin model Hamiltonian is:

H = −
∑
i 6=j

JijSi · Sj (2.61)

where Jij are exchange interactions between atom i and j whose moments lie in the
direction of the unit vectors Si and Sj, respectively. The magnetic moments are included
in Jij. If the exchange constant Jij is positive, then the model describes ferromagnetic
order because the spins will tend to be oriented in the same direction to give a positive
value for JijSi · Sj, as this minimizes the energy. In the opposite case, a negative value
for J will lead to antiferromagnetic order, where nearest neighbor spins will tend to be
oriented in opposite directions.

Anisotropic Heisenberg model

One may note that in the case of ferromagnets the above Heisenberg Hamiltonian pre-
dicts the parallel alignment of atomic spins, but does not specify a preferential direction
of alignment. Thus in such case the Heisenberg Hamiltonian is called the isotropic
Heisenberg Hamiltonian. However, in real solids the isotropy is broken by decreasing
dimensions of the system ( i.e. from bulk to surface) or other magnetic effects that
were neglected in the original Hamiltonian, like the dipolar interactions and spin-orbit
coupling. Also an external magnetic field can be applied so that the isotropy is bro-
ken by introducing a certain direction (the direction of the field). Then the anisotropic
Heisenberg Hamiltonian is written as:

H = −
∑
i 6=j

JijSi · Sj −K
∑
i

(Szi )2 − µsB ·
∑
i

Si (2.62)

where K is the uniaxial anisotropy constant represents the on-site anisotropy. µs is
the absolute value of the magnetic moment which for an atomic moment is of the order
of a Bohr magneton. The external magnetic field, B, can be applied in any relative
orientation with respect to the axis of anisotropy.

2.6.2 Monte Carlo method

Monte Carlo simulations is one of the main approaches in computer simulations. Be-
cause of its confidence on reiterated computation of random numbers, this method is
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very suited to calculation by a computer and tend to be used when it is unfeasible or
impossible to compute an exact result with a deterministic algorithm. The aim of using
this method is to study equilibrium and non equilibrium thermodynamic systems by
stochastic computer simulations. Computer simulations allow for studies of complex
systems where analytical solutions are not possible. Computer simulations have some
advantages in experiments, for instance one can calculate and study properties that are
difficult to obtain in experiments, for example, correlations between different atoms.

Monte Carlo (MC) simulations in statistical physics is based on the use of random
numbers to generate a stochastic trajectory through the phase space of the model con-
sidered, and to calculate thermal averages if equilibrium properties are desired. The first
simulation was carried out by Metropolis et al. [52] in 1953. It is possible to perform
simulations of good quality even on personal computers but in the case of required high
accuracy and/or large systems the simulations have to be performed on supercomput-
ers. MC simulations can be applied to many fields like: diffusion processes in solids,
fluid, surface and plasma physics, properties of alloys, crystal growth kinetics, quantum
many-body problems, critical phenomena in magnetic systems, kinetics of adsorption on
surfaces and thermal properties of disordered systems. For a more complete survey of
MC simulations in statistical physics, see Refs. [53, 54].

Random Number Generators

The basic random number generators make floating point or integer random numbers
with uniform distributions. It is very important to use random numbers with high
quality in order to perform an accurate MC simulations. A digital computer can only
produce pseudo random numbers which are generated in the computer by some suitable
algorithm, for instance, linear congruential method, shift register methods and lagged
Fibonacci generators. Since the sequence is started with a seed, these pseudo random
number sequences are exactly reproducible. There are some requirements on the pseudo
random numbers: they must be uniformly distributed in the interval [0,1], the sequence
must be as less correlated as possible and they must be generated fast. A limitation due
to the finite word length of computers is that the pseudo random numbers have a finite
period. For instance, on a 32-bit processor the period is 231 ≈ 109 numbers only.

Thermodynamic Averages

A thermodynamic quantity can be averaged over by the values for the sequence of
states generated in the MC simulations. Usually, a number of Monte-Carlo steps before
starting to do any averaging is carried out. This is to guarantee that the system is in
thermodynamic equilibrium while the averaging is carried out. The magnetic field B
can also be included as a additional thermodynamic coordinate. Now each particle i
is described by a set of dynamical variables which is spin of particle i in our system.
{Si} corresponds to the spin vector Si . Let Sν be a point in phase space Ω. Then Sν
becomes:
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Sν = {{S1} {S2}, . . . , {SN}}, (2.63)

where Sν fully describes the configuration of the system. The interactions between
the particles are described by a Hamiltonian, H(Sν). The probability density Peq of
the point Sν to lay in a differential volume element is given in equilibrium statistical
mechanics as:

Peq(Sν) =
1

Z
exp[−H(Sν)/kBT ] (2.64)

where Z is the partition function, kB Boltzmann’s constant and T the temperature.
A(Sν) denotes a thermodynamic observable. The thermal average of A(Sν) is obtained
by [55]:

〈A〉T =
1

Z

∫
Ω

dSν A(Sν)exp[−H(Sν)/kBT ] (2.65)

Importance Sampling and Metropolis Algorithm

Many functions have a pronounced weight in some specific regions. For example, most of
the contributions to an integral of a simple Gaussian are located near the central peak.
In a simple Monte Carlo integration scheme, points are sampled uniformly, wasting
considerable effort sampling the tails of the Gaussian. Techniques for overcoming this
problem act to increase the density of points in regions of interest and hence improve
the overall efficiency. These techniques are called importance sampling. Calculation the
phase space integrals in Eq. (2.65) is main idea behind MC simulations. Using standard
numerical integration methods lead to the high dimensionality of the integration space
Ω. Another problem is that the exponential factor (Boltzmann factor) in Eq. (2.64)
and Eq. (2.65) is almost vanishingly small for most of the configurations. This means
that a very few number of configurations will contribute to the expectation value of
A. Metropolis et al. [52] introduced in 1953 a sampling algorithm. In this algorithm
a configuration Sν is not chosen completely at random but with a probability Peq(Sν)
that is proportional to its Boltzmann factor. Then the average of A over M phase space
points Sν :

〈A〉 ≈ A =

∑M
ν=1 exp[−H(Sν)/kBT ]A(Sν)P

−1(Sν)∑M
ν=1 exp[−H(Sν)/kBT ]P−1(Sν)

(2.66)

reduces to a simple arithmetic average:

〈A〉 =
1

M

M∑
ν=1

A(Sν) (2.67)

The probability Peq(Sν) is not explicitly known though. This was solved by Metropolis
who proposed a method to generate a sequence of states Sν → Sν+1 → Sν+2 → · · · ,
where each step has a transition probability W (Sν → Sν+1). This kind of sequence is
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2 Theoretical Background

called a Markov chain. From the theory of Markov chains in probability theory, one can
show that P (Sν)→ Peq(Sν) as M →∞, if the condition of detailed balance is fulfilled:

Peq(Sν)W (Sν → Sν′) = Peq(Sν′)W (Sν′ → Sν) (2.68)

A simple choice for W fulfilling the above condition is given in terms of the energy
change ∆E = H(Sν′)−H(Sν), as proposed by Metropolis:

W (Sν → Sν′) =

{
1 ∆E < 0
exp(−∆E/kBT ) ∆E > 0

(2.69)

Calculation of the Critical Temperature

The critical temperatures of the magnetic phase in system can be modeled by the classical
Heisenberg model Eq. (5.2). The average magnetization and magnetic susceptibility and
specific heat can be obtained from the expectation values as,

average magnetization M,

M =
1

N

N∑
i=1

Si , (2.70)

magnetic susceptibility χ,

χ =
N2

kBT

(
〈M2〉 − 〈M〉2

)
, (2.71)

and specific heat Cv,

Cv =
N2

kBT 2

(
〈E2〉 − 〈E〉2

)
, (2.72)

With analyzing the dependence of specific heat Cv and magnetic susceptibility χ to
the temperature the critical point of a phase transition can be determined. Working
with the specific heat can be more difficult because it incorporates the effect of all the
terms contributing to the Hamiltonian (the Hamiltonian we considered is rather more
simple with only magnetic contribution), susceptibility analysis would give information
about the magnetic critical temperature. In the Hamiltonian considered in this thesis,
both the specific heat and the magnetic susceptibility are studied.
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3 Properties of the Cu substrate

Electronic structure calculations are widely applied to the complex systems such as
nanostructured metals. But, it is fundamentally important to correctly determine the
basic properties of the system under study. For instance, in nanostructures such as
self assembled monolayers or atomic islands grown on a metal substrate, the underlying
metal work function and Fermi energy are crucial to determine interfacial phenomena.[56]
Thus, a clear understanding of the fundamental properties of the surfaces is essential.
Here, the physical properties such as surface energies, structural relaxations, and work
functions of the Cu(111) surface have been studied within the framework of DFT.

This section is organized as follows: In the next section, the computational details
are described. Then, the bulk properties are discussed, as well as comparison with the
experimental results. Subsequently, the relaxations, surface energy, and work function
of the Cu(111) surface are calculated.

Methodology

The calculations are performed within the framework of spin-polarized density functional
theory, using the Vienna ab initio simulation package (VASP) [45, 46]. The frozen-
core full-potential projector augmented-wave method (PAW) is used [43], applying the
generalized gradient approximation of Perdew and Wang (PW91-GGA) [57].

In fact, the VASP with the PAW method and the PW91-GGA functional are employed
for the most of the calculations reflected throughout this thesis. To avoid repetitions,
this fact will not be mentioned anymore, unless a different method is used.

The cutoff energy of 270 eV for the plane wave basis sets is applied. A Gaussian
smearing (σ = 0.1 eV ) of the eigenstates is used to improve convergence. Structural
relaxations are performed using the conjugate gradient algorithm, and stopped when the
forces acting on all the unconstrained ions dropped below 0.01 eV/Å. During structural
relaxations, the bottom three layers of the six-layer slab are fixed at their ideal bulk
positions. The system itself is modelled by six layers of Cu separated by 15Å of vacuum.
The convergence of the calculated properties with respect to number of k-points and
supercell size was carefully checked. A (21 × 21 × 21) k-points mesh is used for the
integration over the Brillouin zone for the bulk Cu.

3.1 Properties of Cu bulk crystals

A surface is directly connected to the underlying bulk, which means that the properties
of the bulk material will most probably influence the properties and behavior of the
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3 Properties of the Cu substrate

Table 3.1: Calculated lattice parameters and bulk moduli of Cu considered in this study
compared with experimental values. Refs: (a) Present study, (b) [59], (c) [60]

a0 (Å) B0 (Mbar) Ecoh (eV)
GGA 3.633a 1.51a −3.30a

Exp. 3.61b 1.37c −3.49c

surface. This chapter is therefore devoted to the investigation of the bulk structure, in
order to study its equilibrium atomic structure, relative stability, electronic properties.
The results are then used to obtain the surface energy and formation energy of films
at the surface. Additionally, it is the basis for comparing the theoretical results with
experimental data. The starting point of any investigation is the determination of the
theoretical lattice parameter.

The lattice parameters and bulk moduli for Cu have been calculated. The calculations
are performed for the total energy of the bulk system for a range of lattice parameters
a. The total energy data are fit with the Murnaghan equation of state [58] to obtain the
bulk moduli. The volumes at zero pressure (equilibrium volume), bulk moduli calculated
at the equilibrium volume, and the cohesive energies are obtained using Murnaghans
equation of state,

E(V ) = E0 +
B0V

B′0

(
(V0/V )B

′
0

B′0 − 1
+ 1

)
− B0V0

B′0 − 1
(3.1)

where V0 is the equilibrium volume at zero temperature, E(V0) is the minimum energy
of the system, B0 is the bulk modulus, defined as

B0 = −V
(
∂P

∂V

)
T

. (3.2)

The cohesive energy of a bulk material is the energy which is required to break the
atoms of the bulk material into isolated atomic species, i.e,

Ecoh = Ebulk −
∑
n
Eisolated

n (3.3)

where n represents the number of different atoms that constitute the bulk. The bulk
cohesive properties calculated with the GGA functional, as well as experimental results
are summarized Table (3.1).

Electronic properties

The calculated density of states (DOS) and band structure for GGA functional at its
equilibrium volume are shown in Fig. (3.1) and Fig. (3.2), subsequently. The DOS and
band structure of Cu bulk are calculated in order to document the performance of our
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3 Properties of the Cu substrate

numerical approximations and to compare the obtained results with different choices
for the exchange-correlation functionals such as LDA, GGA. However the LDA DOS
and band structure are not shown here, but, using this exchange-correlation functional
leads to a visually similar to GGA DOS and band structure, as reported in Ref. [61].
The LDA tends to over-bind the system resulting in a somewhat lower lattice constant.
There are numerous publications on the Cu band structure (Ref. [62] and references
therein) it is well-known that the structure and energetics of the Cu bulk crystal are
best described within the GGA.

Figure 3.1: Density of states of bulk Cu at equilibrium volume with a (21 × 21 × 21)
k-point grid in the Brillouin-Zone using GGA functional. The Fermi energy
defines the zero point on the energy scale.

3.2 Cu(111) surface

3.2.1 Surface relaxation

The interlayer relaxation is one of the surface properties which is accessible experi-
mentally. The atomic structure can be obtained with high accuracy using quantitative
low-energy electron diffraction (LEED) intensity analysis [63, 64]. First-principles cal-
culations also give an accurate description [65, 66, 67, 68]. Surface relaxations can arise
from the creation of a new surface which leads to a smoothing of the charge density at
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3 Properties of the Cu substrate

Figure 3.2: Band structure of face center cubic copper at equilibrium volume using GGA
functional, plotted along the Γ− X in the Brillouin zone. The Fermi energy
defines the zero point on the energy scale.

the newly formed surface, which causes a net force on the outermost surface layer of
ions pointing into the bulk. It is assumed that a pure unit cell of the unreconstructed
surface, using a slab supercell model, within DFT calculations, can be effectively used
to study these surface layer relaxations.

In Table (3.2), the top three surface layer relaxations for 6-layer slab Cu(111) are
shown. As expected, the relaxation of the surface layers is related to the density of
packing, with larger relaxation for the less-densely packed surfaces, with patterns of mul-
tilayer relaxation that become noticeable. Comparison to low-energy electron diffraction
(LEED) experimental values shows that our values are in agreement with the experi-
mentally observed values. Surface relaxation is characterized as the percent change ∆dij
of the spacing between layers i and j versus the equilibrium layer spacing d0. For the
(111) surface d0 is a0/

√
3.

3.2.2 Surface energy

As mentioned earlier, it is important to have a clear understanding of the fundamental
properties of the metal surfaces such as work functions. Since the mentioned physical
properties play a role in determining the behavior of solid metal surfaces when used in
various applications. The direct experimental measurements of the surface energy are
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3 Properties of the Cu substrate

Table 3.2: Surface relaxations for the top three layers. Reported are the values for a
6-layer slabs, compared to experimental values from the literature. Refs: (a)
Present study, (b) [69]

∆d12(%) ∆d23(%) ∆d34(%)
Surface GGA Exp. GGA Expt. GGA Exp.
(111) −0.8a -0.7 ± 0.5b −0.58a - −0.15a -

difficult to perform and subject to various uncertainties, e.g., presence of impurities.
In addition, in most of the experiments, a surface tension measurement in the liquid
phase should be done to extrapolate to zero temperature [70], which does not provide
the orientation dependence of the surface energy. Therefore an accurate first-principle
calculation plays an important role. The surface energy is the energy required to create
a new surface, and as mentioned earlier, it is difficult to determine it experimentally. In
our calculations the surface energy σ can be determined by taking the energy difference
between the total energy of a slab and an equivalent bulk reference amount, as seen in
the following expression [71]:

σ = lim
N→∞

1

2
(EN

slab −NEbulk) (3.4)

where EN
slab is the total energy of an N-atom slab, Ebulk is the total energy of the bulk

per atom, and the factor 1
2

accounts for the two surfaces in the slab unit-cell. In the
limit of large N , one can rewrite Eq. (3.4) as:

EN
slab ≈ 2σ +NEbulk (3.5)

If the total energy of the slab depends linearly on slab thickness N , the bulk energy term
Ebulk can be taken as the slope and used in Eq. (3.4), thereby avoiding a calculation
on a separate bulk system. In practice, it has been shown that divergence can be
avoided when large and matching k-point samplings are used for the slab and bulk
calculations.[72]

Table 3.3: Surface energies for 6-layer slabs in fully relaxed geometries reported here in
(eV/atom). Experimental values compared with the surface energy of the
relaxed surfaces reported here in units of (J/m2). Refs: (a) Present study,
(b) [70]

Surface σ (eV/atom) σ(J/m2) σExp. (J/m2)
Cu (111) 0.71a 1.95a 1.83b

The surface energies, the theoretical as well as the experimental values, are summa-
rized in Table (3.3).
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3 Properties of the Cu substrate

Table 3.4: Work functions calculated for 6-layer slabs of Cu(111) surface. All values in
eV.

Surface Φ ΦExp.

Cu (111) 4.82 4.94

3.2.3 Work function

The work function is the minimum energy (usually measured in electron volts) needed to
remove an electron from the bulk of a material through a surface to a point outside the
material. In principle, this is the energy required at 0 K to remove an electron from the
Fermi level of the metal to the vacuum potential. Calculations of work function using
DFT employ this definition and determine the Fermi energy and vacuum potential from
calculations of the metals in slab-supercell geometries.

The minimum energy needed to remove an electron from the bulk of a material through
a surface to a point outside the material can be written as:

Φ = Vvacuum − EF . (3.6)

Note here that the window for macroscopic averaging is the unrelaxed equilibrium
layer spacing. All of the potentials discussed here (both from the slab and the bulk
reference) refer to the electrostatic part of the total potential. This part of the potential
tails off more rapidly in the vacuum region of the slab-supercell when compared to the
full Kohn-Sham potential including the exchange-correlation potential.

The calculated work functions of Cu(111) slabs are presented in Table (3.4), along with
experimental values. In general the results for the work function are in good agreement
with experimental values.

3.2.4 Surface states

The electronic states localized at the surface of the solids are called surface states.
They are created due to the sharp transition from solid material that terminates with a
surface and are found only at the atom layers closest to the surface. The electronic band
structure is changed from the bulk material to the vacuum, due to the termination of
a material with a surface. In the weakened potential at the surface (see Fig. 3.3), new
electronic states can be formed.

As discussed in Sec. (2.5.1), solutions of the Schrödinger equation with a periodic
potential are Bloch waves. ψj,k(r) is a function with the same periodicity as the crystal,
j is the band index and k is the wave number. By applying the Born−von Karman
cyclic boundary conditions, these allowed wave numbers for a given potential can be
obtained.[60] At the surface, the termination of a crystal causes deviation from per-
fect periodicity. Consequently, in the direction normal to the surface, solutions of the

36



3 Properties of the Cu substrate

Figure 3.3: Schematic model of a one dimensional periodic crystal potential terminating
at an ideal surface. The potential jumps to the vacuum at the surface. The
dashed line represents the potential reaching the vacuum level over some
distance. a is the lattice parameter of the crystal, V0 is the height of the
finite step potential and V is the potential.

Schrödinger equation will be changed. Since, the cyclic boundary conditions are aban-
doned. A simplified model of the crystal potential in one dimension can be sketched as
shown in Fig. 3.3. The potential jumps to the vacuum value at the surface. The dashed
line represents the exponentially decaying tail of the potential which reaches into the
vacuum.

Surface states in metals

A semi-infinite periodic chain of identical atoms can be modeled to derive the basic prop-
erties of states at a metal surface.[73] The termination of this atomic chain represents
the surface, where the potential attains the value V0 of the vacuum in the form of a step
function. (See Fig. 3.3) Within the crystal the potential is assumed periodic with the
periodicity a of the lattice. The Shockley states [74] are then found as solutions to the
one-dimensional single electron Schrödinger equation:

[
− h̄2

2m

d2

dz2
+ V (z)

]
Ψ(z) = EΨ(z), (3.7)

with the periodic potential:

V (z) =

{
V (z + la) for z < 0
V0 for z > 0

, (3.8)
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3 Properties of the Cu substrate

where l is an integer. The solution must be obtained independently for the two domains
z<0 and z>0, where at the domain boundary (z=0) the usual conditions on continuity
of the wave function and its derivatives is applied. Since the potential is periodic deep
inside the crystal the electronic wave functions must be Bloch waves. The solution in
the crystal is then a linear combination of an incoming and a wave reflected from the
surface. For z>0 the solution will be required to decrease exponentially into the vacuum:

Ψ(z) =

 Bu−ke
−ikz + Cuke

ikz for z < 0

A exp
[
−
√

2m(V0 − E) z
h̄

]
for z > 0

, (3.9)

The wave function for a state at a metal surface is qualitatively shown in Fig. 3.4. It
is an extended Bloch wave within the crystal with an exponentially decaying tail outside
the surface. The consequence of the tail is a deficiency of negative charge density just
inside the crystal and an increased negative charge density just outside the surface,
leading to the formation of a dipole double layer. The dipole perturbs the potential at
the surface leading, for example, to a change of the metal work function.

Figure 3.4: Real part of solution to the one-dimensional Schrödinger equation, which
corresponds to the bulk states. These solutions are Bloch-like waves in the
bulk, while decaying exponentially into the vacuum.

Surface states of a three-dimensional crystal

The solutions (surface states) obtained for an atomic linear single chain can be general-
ized to a three-dimensional crystal case. [73] Due to the fact that, the two-dimensional
periodicity of the surface lattice Bloch’s theorem applies for translations parallel to the
surface. This would lead to the surface states which are written as the product of Bloch
waves with k-values k|| = (kx, ky) parallel to the surface and a function representing a
one-dimensional surface state
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Ψ0(r) = ψ0(z)uk||
(r||)e

−ir||·k|| , (3.10)

The energy of this state is increased by a term E||, therefore, we have:

Es = E0 +
h̄2k2

||

2m∗
, (3.11)

where m∗ is the effective mass of the electron. The matching conditions at the crystal
surface, i.e. at z=0, have to be satisfied for each k|| separately and for each k|| a single,
but generally different energy level for the surface state is obtained.

Surface states of Cu(111)

Figure 3.5: (Taken from Ref. [75]) Energy dispersion relation for the surface state. The
solid curve is a parabolic least-squares fit. The shaded region is the pro-
jected bulk continuum of states. Note that the surface state enters the bulk
continuum just above the Fermi level.

The experimentally measured surface state of Cu(111) residing in the projected band
gap around the centre of the surface Brillouin zone is shown in Fig. 3.5. It shows the
dispersion relation E(k||) of the surface state along with the projected bulk continuum.
The upper limit of this continuum was calculated with the assumption of a parabolic fit to
Fermi surface data. The same assumption is made regarding the parabolic fitting for the
VASP and Korringa−Kohn−Rostoker (KKR) method’s [76, 77] projected band structure
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3 Properties of the Cu substrate

calculations. To model a surface, KKR takes a semi-infinite number of layers (which
represents the crystal). This is the advantage of KKR over VASP. As we will discuss
in details below, an accurate description of the surface and its scattering properties can
be provided by taking a semi-infinite number of layers. As already discussed, break of
the crystal symmetry at a surface changes the spectrum and causes additional bands
to appear in the gaps of the (111) projected bulk band structure. States described by
such bands are confined at the surface in between the vacuum potential barrier on the
one, and the crystal band gap on the other side. [78] The dispersion of such surface
states depends on the type and the position of the gap. The surface state arising in the
inverted L-gap of the bulk Cu is 2D free-electron like and is described by a parabolic
dispersion relation.[79]

Two-dimensional band structures of 6, 12, 18 and 24 layer slab of Cu(111) and the
projected bulk band structure are calculated using VASP. The energy bands of a 24
layer slab and corresponding projected bulk band structure are presented in Fig. (3.6).
The results of 6, 12 and 18 layer slab calculations are also shown and compared with the
KKR calculated spectral density map in Fig. (3.7.(d)). This is a considerable fact that
only considering 18 layer slab of Cu or more (24 layer slab) produces the band structures
which are comparable to experimental energy dispersion (Fig. (3.5)) or KKR spectral
density map (Fig. (3.7)).

The calculated values of m∗, k|| and E0 for Cu(111) surface, respectively for 6, 12 and
18 layers of Cu, are summarized in Tab. 3.5. Therefore, in order to obtain the surface
states bands using a DFT slab model, the number of layers should be increased. There is
a separation between band 1 and band 2 in the band structure, as one can see the results
in the Tab. (3.5) or visually observe in Fig. (3.7.(a,b and c)), but due to increasing the
number of layers, these two bands come together and the separation disappears.

Table 3.5: Calculated values of m∗, k|| and E0 for Cu(111) surface. Refs: (a) Present
work, (b) Ref. [75]

Band 1 Band 2
E0 (meV ) m∗/m0 k|| (1/Å) E0 (meV ) m∗/m0 k|| (1/Å)

6 layersa 772 0.528 0.336 274 0.344 0.162
12 layersa 519 0.385 0.235 432 0.328 0.198
18 layersa 455 0.339 0.207 473 0.356 0.216

KKRb 511 0.357 0.236 511 0.357 0.236
Exp.b 435 0.412 0.215 435 0.412 0.215
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Figure 3.6: Energy bands of 24-layer slab of Cu(111). The projected bulk band structure
corresponds to the shaded regions, along high symmetry directions of the
surface Brillouin zone. The blue rectangular frame denotes the approximate
range of the calculated projected bulk band structures, shown in Fig. 3.7.
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Figure 3.7: Two-dimensional band structure of the Cu(111) surface. The projected bulk
band structure corresponds to the shaded regions, along high symmetry di-
rections of the surface Brillouin zone: (a) Schematically showing the band 1
and band 2 separation for a 6-layer slab, calculated by VASP (b) the bands
separation is decreased a 12-layer slab, calculated by VASP (c) the bands
separation visually disappeared for a 18-layer slab, calculated by VASP (d)
(Taken from Ref. H5) The energy resolved spectral density map calculated
at the interface layer of the Cu(111) surface, calculated using KKR Green’s
function method. Blue and violet areas correspond to the projected bulk
bands. Black regions are gaps of the projected band structure. The surface
state band is presented as the bright parabola.
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4 TM nanowires on Cu surfaces

This chapter provides a systematic discussion of one-dimensional magnetic nanostruc-
tures grown on a vicinal Cu(111) surface using the template which will be discussed
in detail in the next sections (cf. Fig. 4.5 (b)). On the vicinal Cu(111) surface, an
array of parallel Fe stripes was produced in the experiments of Shen et al.[5, 6]. Usually,
nanowires or nanostripes grow on lower terraces along an ascending step edge. Surpris-
ingly, in their observations this have been demonstrated that Fe nanostripes grow on the
upper terrace of a stepped Cu(111) surface. For years, the kinetic mechanism leading to
the formation of such structures has not been elucidated. An important step was made
by Mo et al.[18], who used ab intio calculations within the density functional theory and
showed that the growth of Fe nanowires is done in a two-stage process and subsequently,
Guo et al.[7], have experimentally confirmed this growth process.

This study is focused on 3d transition metals from Sc to Ni, because they offer a
wide range of complex magnetic structures in higher dimensions and contain the bulk
ferromagnets. In contrast to the previous theoretical investigations we concentrate on
the magnetic properties of mixed TM-Fe wires behind the step.

This chapter is organized as follows: In the next section, details of growth of 3d TM
nanowires on Cu surface will be discussed. Then the performed ab initio calculations are
presented. The presentation of the results and the discussion start with an explanation
of the magnetic structures. Those structures are investigated for TM-Fe wires embedded
in the Cu surface and for comparison for isolated free standing wires as well. A detailed
compilation of the real structure data of the embedded TM-Fe wires follows. After the
presentation of the ground state energies and magnetic moments a discussion follows.
Special emphasis is placed on the properties of Cr-Fe and Mn-Fe wires.

4.1 Experimental and theoretical background

A stepped surface is a common template to create one-dimensional nanostructures.[80]
The main idea is to exploit the 1D symmetry provided by an array of parallel steps on
a vicinal surface. Along this surface the deposited material can nucleate, a procedure
called step decoration. Chains or nanostripes usually grow on lower terraces along
an ascending step edge. Cu surfaces can be prepared with lots of atom-high steps.
Surprisingly, the observations of Shen et al.[5, 6] have demonstrated that Fe nanostripes
(cf. Fig. 4.1(a,b)) grow on the upper terrace of a stepped Cu(111) surface.

An important investigation to elucidate the growth of linear Fe nanostructures on a
stepped Cu(111) surface was made by Mo et al.[18] They elucidated a kinetic pathway
for the formation of Fe nanowires on the upper edge of a monatomic-layer-high step on
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Figure 4.1: (Taken from Ref.[5]) STM topography image of 0.3-ML a and 0.8-ML b Fe
stripes on Cu(111) stepped surface. The marked line profiles are shown in
the upper-right corner with the dashed lines indicating the height level of
the substrate.

Cu(111) using first-principles calculations. The identification of a hidden fundamental
Fe basal line within the Cu steps prior to the formation of the apparent upper step edge
Fe wire produces a totally different view of step-decorating wire structures.

The investigation of elementary diffusion and exchange processes of Fe atoms on a
stepped Cu(111) surface by means of ab initio calculations based on density functional
theory proved the existence of a special kinetic pathway of the formation of Fe nanowires
on stepped Cu(111) surfaces. Kinetically the growth of linear Fe nanostructures is a two-
stage process. At first, Fe adatoms form an atom chain embedded into the Cu substrate
behind a row of Cu atoms at the descending step (cf. Fig. 4.2 and Fig. 4.5(a,b) ).
This formation of a linear 1D Fe structure makes the row of embedded Fe atoms very
stable. In a following step the embedded Fe chain acts as an attractor for the Fe atoms
deposited on the surface. Therefore, a secondary chain of Fe atoms is formed on top of
the embedded Fe chain (cf. Fig. 4.3 and Fig. 4.5(c) ), since Fe-Fe bonds are stronger
than Fe-Cu bonds. As a result, a very stable atom-wide iron nanowire is formed on
the Cu surface, one chain is buried in the surface behind a step, and the second chain
on top of the first. Total energy calculations revealed that the position of the Fe chain
at the upper edge is energetically favorable to a Fe chain located at the step edge, but
only under the condition that another row of Fe atoms is incorporated underneath the
exposed row.[18]

Here, a description for the formation of one-dimensional Fe nanowires of single atom
width on stepped Cu(111) surfaces will be given. The interaction of a Fe adatom with
the stepped surface will be discussed first. The preferred adsorption site of an Fe adatom
appears to be the fcc site, whether it is located in the central region of a terrace or in the
immediate vicinity of the step. In contrast, the activation energy barrier encountered by
the adatom which moves on the surface is not necessarily the same in the two regions.
An activation energy barrier of 0.025 eV is obtained for terrace diffusion. The preferred
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Figure 4.2: (Taken from Ref.[18]) Top view of the surface model employed in the calcula-
tions which presents the first phase of Fe wire formation. The white and gray
circles represent Cu atoms in the first and second layers, respectively; the
black circles represent Fe atoms. (a) Initial configuration of an Fe adatom
reaching the step from the upper terrace. (b) Initial configuration of an Fe
adatom reaching the step from the lower terrace. (c) Intermediate state of
the Cu-Fe assisted exchange as the state B1 converts to the final state D1

in (d), which is also the stable final configuration from A1 after place ex-
change. The relative energies and the activation barriers (in eV) connecting
the different configurations are indicated next to vertical arrows.

mechanism is via direct hopping in this case. When an Fe adatom reaches a step from
the upper edge (Fig. 4.2(a)), it should overcome a barrier of 1.00 eV, if it climbs down
via direct hopping over the step edge (Fig. 4.2, A1 → B1). However, the Fe adatom can
simply be embedded into the Cu layer through an exchange process (Fig. 4.2, A1 → D1)
with an energy barrier of only 0.07 eV. Moreover, in this exchange process, the Cu atom
displaced by the Fe adatom prefers to stay next to the embedded Fe atom. Because it
has to avoid a high activation barrier of about 0.9 eV to reach the nearest hcp site away
from the step edge.

Fe adatoms can also approach a step from the lower terrace. The Fe atom goes through
an exchange process with a Cu atom at the step edge through an intermediate state C1

in this case. The Fe atom is incorporated into the step first by displacing a Cu atom
upward onto an hcp site at the upper step edge (Fig. 4.2(c)). This process has an
activation barrier of 0.66 eV (Fig. 4.2, B1 → C1)); subsequently, the displaced Cu atom
jumps off the step directly to the lower terrace. The activation barrier of this process
is 0.34 eV (Fig. 4.2, C1 → D1). Therefore, no matter in which direction the Fe adatom

45



4 TM nanowires on Cu surfaces

approaches the step edge, there is just one stable final configuration, as shown in Fig.
4.2(d).

Now, we assume a second Fe adatom approaches the step which already has an em-
bedded Fe atom from the upper edge. The second approaching Fe atom prefers to join
the first one and form an embedded wire with two atoms in length to gain an energy as
much as 2.52 eV. Additional Fe atoms which move toward the step edge will undergo the
same processes. Finally, this leads to a row of Fe atoms which are embedded in the Cu
step. This embedded Fe chain is one lateral lattice constant away from the step edge.

The deposition of additional Fe atoms on the stepped surface (containing an embedded
Fe chain) is considered next. The most stable configurations are shown in Fig. 4.3.
There are two possible ways for an Fe adatom to approach the mixed step. Either it
approaches from the upper or lower terrace. From the upper terrace, the configuration
A2 is energetically stable because of the attraction of the Fe adatom to the basal Fe chain.
In contrast, for an Fe adatom approaching from the lower terrace the configuration B2

is energetically unstable. Similar to the processes shown in Fig. 4.2, the high energy
configuration B2 will convert into A2 by two intermediate states C2 and D2. There is an
exchange process for the configuration C2 to be reached. The Fe adatom takes the place
of an edge Cu atom, and the Cu atom displaced up to reside on top of three Fe atoms.
When the atop Cu atom climbs down the step, D2 is the most stable configuration. The
D2 → A2 transition is finally reached via a second assisted process. The relative energies
shown in Fig. 4.3 and the detailed calculations for the first phase (Fig. 4.2) suggest that
the kinetic barriers encountered in the overall B2→ A2 transition are all relatively small.
Therefore, additional deposition of Fe atoms on the mixed stepped surface leads to the
growth of an Fe chain on top of the embedded Fe basal chain. It is obvious that the
width of this Fe chain is only one atom. Further growth of Fe atoms will just increase
the width of the Fe chain. But the narrowest stable Fe chain is an atom-wide structure
residing at the upper edge of the step.

Subsequently to Ref. [18], in a scanning tunnelling microscopy (STM) investigation
aided by DFT calculations, Guo et al. [7] have confirmed the growth process. A careful
study of all atomic processes in the line of Ref. [18] has been used to perform kinetic
Monte Carlo calculations.[81] The simulations demonstrate the growth process as pre-
dicted by Mo et al. and proved experimentally.[7]

Furthermore, the Cu(111) stepped surface with the embedded Fe chain can be con-
sidered as an exemplary template for the deposition of other 3d TM atoms to form a
chain on top of the embedded Fe chain. It is the interplay between dimensionality, local
environment and magnetic properties which causes the special interest in such systems.
For a clear notation a single linear periodic arrangement of atoms will be called a chain
in the following investigation, while a system consisting of two parallel chains, either
isolated or embedded in the Cu(111) surface, will be named wire.

TM chains have been considered in previous density functional studies in different
environments. Spǐsák and Hafner investigated metal chains at the step edge of vicinal
Cu surfaces [14, 15, 16, 17]. Infinite metal chains on flat surfaces have been studied in
Ref. [12] while Ataca et al. [11] and Tung and Guo [10] focused on isolated chains. Finite
chains on flat Cu and Ni surfaces have been considered in Ref. [9, 8]. Antiferromagnetic
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Figure 4.3: (Taken from Ref.[18]) Top view of the second phase of the two-phase kinetic
pathway for Fe wire formation on the stepped Cu(111) surface, together with
the energy levels and activation barriers (in eV) for different configurations.
Dashed lines indicate energies not explicitly calculated. (a) and (b) show
the initial configurations reached when an Fe adatom approaches the Fe-Cu
mixed step from the upper and lower terrace, respectively. Configuration A2

is energetically most stable, because of the strong attraction by the buried
Fe wire. Configuration B2 is energetically very unstable, and will convert to
configuration A2 via two intermediate configurations shown in (c) and (d).

order has been found experimentally by Hirjibehedin et al. [4] for linear finite Mn chains
created by atom manipulation on an insulating CuN/Cu(001) surface.

4.2 Theoretical method

4.2.1 Setup

Computational details and convergence checks are the same as those in the previous
chapter. Structural relaxations have been performed using the quasi-Newton algorithm,
and stopped when the forces acting on all the unconstrained ions have dropped below
0.01 eV/Å. During structural relaxations the bottom three layers of the six-layer slab
are fixed at their ideal bulk positions (calculations using an eight-layer slab lead to
insignificant changes in energy differences between the magnetic configurations). The
convergence of the calculated properties with respect to the number of k-points and
supercell size was carefully checked.

Isolated chains

The isolated chains and wires have been modeled as a two-dimensional array of infinitely
long units, keeping the distance to be at least 13Å. 12 k-points are used to sample half
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Figure 4.4: (Taken from Ref.[7]) Left: STM images of Fe on Cu(111) with different
nominal coverages: (a) 0.03 and (b) 0.10 ML. The inset shows the line profiles
of the nanowires across the step edges as indicated in the topographic images.
Right: STM images (+30 mV/10 nA) of (a) clean vicinal Cu(111) surface at
RT and (b) a Fe nanowire array on the vicinal Cu(111) surface at 60 K.
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Figure 4.5: (Taken from Ref. H7) Growth of TM-Fe double chains on Cu(111): (a) clean
Cu(111) stepped surface (b) deposition of Fe atoms (brown) on a stepped
Cu (blue) surface. The Fe chain is embedded in the step behind a row of Cu
atoms. (c) one-atom-wide Fe nanowire (brown) is formed, one chain of Fe
embedded in the surface behind the step, the second Fe chain is formed on
top of the first. (d) one-atom-wide TM nanowire (yellow) is formed on top
of the embedded Fe chain.
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Figure 4.6: On the (111) surface of an f.c.c. packed lattice two non-equivalent types of
step edges are possible, forming either {100} facets (type A) or {111} facets
(type B).

of the one-dimensional Brillouin zone.

Construction of the surface

There are two types of steps on Cu(111), called A and B types, with the former having
lower formation energy [82]. Experimentally, Fe wires have been observed to form on
the upper edges of both types of steps [18]. Hence, in the present study we focus our
attention on growth of Fe wires on A-type steps. We model the stepped Cu surface by
a slab miscut along the (322) direction, following Ref. [83], consisting of (111) terraces
of width five lateral lattice constants separated by type A steps of monatomic height.

A supercell containing six Cu layers, which corresponds to 60 Cu atoms, was con-
structed to model the Cu(111) stepped surface. The Cu slab was rotated in turn by a
slab miscut along the (322) direction. Therefore, at the end, the system consists of (111)
terraces separated by {100} faceted steps of monatomic height. The same construction
was used by Mo et al. [18]. The terraces are five lattice constants wide. The distance
from one slab to its nearest image was equivalent to 13.5 Å. In all calculations the two-
dimensional Brillouin zone was sampled using a 20× 5 mesh. The template constructed
in this way is shown in Fig. 4.5 and Fig. 4.8.

4.3 Isolated TM chains

As mentioned earlier, the transition metal isolated chains are constructed with the ideal
Cu bond length of dCu=2.569Å. The calculated total energy relative to that of the NM
state (i.e., the magnetization energy) of the FM and AF linear atomic chains and the

50



4 TM nanowires on Cu surfaces

spin magnetic moments are listed in Tab. (4.1). The calculations reveal that the 3d TM
elements which are nonmagnetic in their bulk structures (Sc, Ti, V and Mn), become
magnetic in the linear chain structures. Furthermore, for these 3d TM elements, the
NM state is metastable and the ground state is either FM and AF. The ground states
for the Sc, Ti, V, Fe, Co and Ni chains are ferromagnetic while that for the Cr and Mn
chains are antiferromagnetic.

Table 4.1: Calculated total energies (Et) (in eV/atom) in the FM and AF states (relative
to the NM state), and spin magnetic moments (ms) (in µB/atom), of the 3d
transition metal linear chains. No AF solutions were found for Sc, Ti and Ni.

EFM
t mFM

s EAF
t mAF

s

Sc -0.053 0.13 — —
Ti -0.331 1.99 — —
V -0.968 3.01 -0.810 2.62
Cr -1.979 3.98 -2.447 3.99
Mn -1.990 3.45 -2.508 3.99
Fe -1.698 3.13 -1.536 3.17
Co -0.758 2.03 -0.537 2.09
Ni -0.190 0.96 — —

The Cu bond length is longer than the calculated bond lengths of these 3d TM elements
in the bulk structures. For example, the calculated bond lengths for AF bcc Cr, FM
bcc Fe and FM fcc Co are 2.43, 2.45 and 2.48 Å, respectively. The chemical bonding
environment in a chain is not the same as that in a bulk structure. In particular, the
coordination number in a linear wire is certainly lower than in a bulk structure. Further
discussions concerning the bond length and spin magnetic moments can be found in Sec.
4.5.

4.4 Free-Standing TM-Fe wires

Now, the magnetic properties of free-standing double chains including Fe and TM chains
with an interatomic distance corresponding to the Cu bond length have been investi-
gated first. If a nanowire consisting of a TM and a Fe chain (TM-Fe wire) is constructed,
a series of different magnetic structures is possible. We will restrict our investigation to
four atoms per unit cell. In this case five different magnetic structures can be formed.
All the structures are depicted schematically in Fig. 4.7. The notation of the magnetic
structures throughout the thesis is such that the first letter (A - antiferromagnetic, F -
ferromagnetic) characterizes the TM chain, while the second letter characterizes the em-
bedded Fe chain. To distinguish the two possible directions of moments if both chains are
ferromagnetically ordered an antiferromagnetic coupling between the chains is marked
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Figure 4.7: (Taken from Ref. H7) Schematic view of the five magnetic configurations
considered for nanowires consisting of TM (yellow) and Fe (red) chain. FF:
ferromagnetic structure, FF: ferromagnetic chains are coupled antiferromag-
netically, AF: the antiferromagnetic TM chain is coupled to the ferromag-
netic Fe chain, FA: the ferromagnetic TM chain couples to the antiferromag-
netic Fe chain, AA: antiferromagnetic arrangement.

by an underscore FF. Three structures result from a ferromagnetically ordered Fe chain
(FF,FF,AF). In principal, also the Fe chain could order antiferromagnetically. Two ad-
ditional magnetic structures can be formed. Either the TM chain exhibits ferromagnetic
(FA) or antiferromagnetic order (AA). The calculations reveal that configurations with
the antiferromagnetic order (FA, AA) of Fe chain are energetically not favorable. Such
structures are not taken into account in the following discussion.

The total energy calculations, summarized in Tab. 4.2, reveal magnetic solutions for all
the TM wires. Not all magnetic configurations could be stabilized in the self-consistent
electronic structure calculations.

Table 4.2: Energy differences (meV/cell) for the different magnetic configurations with
respect to the ferromagnetic state for the free-standing double chains, con-
sisting of a 3d transition metal chain and a Fe chain.

Configuration Sc Ti V Cr Mn Fe Co Ni
EFF -1153 -694 -710 -371 743 1225 1026 993
EAF — — -371 -600 161 837 716 —

Tab. 4.3 contains the magnetic moments of the free-standing TM-Fe chains. The Fe
chain moment increases slightly from Sc to Ni and is enhanced with respect to the bulk
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Figure 4.8: (Taken from Ref. H6) TM-Fe wires on vicinal Cu(111) surface. A one-atom
wide TM chain (yellow) is formed on top of an embedded Fe chain (red).
Dimensions of the supercell: a = 5.14 Å, b = 10.59 Å, and c = 25.69 Å.
(Colored atoms in the structure on the right hand side represent the unit
cell.)

value due to the reduced number of neighbors. The variation of the moments in the TM
chain follows the usual trend known from the free atoms and other 3d TM nanostructures
(cf. [84]) Mn shows a high local moment as it was also obtained for Mn clusters on the
Ag(100) surface [85].

Table 4.3: Absolute values of magnetic moments in ground state configurations of free-
standing TM-Fe double chains, given in (µB).

TM elements Sc Ti V Cr Mn Fe Co Ni
|MTM | 0.70 1.56 2.61 3.53 4.07 3.05 2.04 0.88
|MFe| 2.69 2.77 2.85 2.97 2.90 3.05 3.14 3.17

4.5 TM-Fe wires on Cu(111)

4.5.1 Structural and magnetic properties

Information about structural relaxations are given in Table 4.4 and Table 4.5. Relax-
ations of the first three layers at the surface are considered. All relaxations are given
for the magnetic ground state configuration. The relaxations are given in percentages
of the ideal values, i.e. in-plane relaxations (∆y) are expressed in terms of the ideal Cu
bond length dCu=2.569Å whereas the interlayer relaxations are calculated with respect
to ideal interlayer distance of d12=2.098Å.

The relaxations of the clean Cu(111) surface are compared with relaxations in presence
of an embedded Fe chain (cf. Fig. 4.10). The nomenclature used in the table is explained
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Figure 4.9: (Taken from Ref. H7) Schematic view of the stepped surface. The nomen-
clature of the figure is used in Table 4.4 and Table 4.5. ∆y is positive if
the shift is directed in-plane to the step edge. ∆z is positive for an outward
relaxation perpendicular to the surface.

Figure 4.10: Schematic view of the Cu(111) stepped surface that exhibits the relaxation
of the first and second topmost layers. The light colors depict the unrelaxed
structure while the dark ones delineate the relaxed geometry.

in the schematic view given in Fig. 4.10. The relaxations in the second subsurface layer
(S-2) are small in general. The relaxations in (S-1) are larger but only significant at the
step edge. The relaxations of the surface layer of Cu(111) are dominated by two effects.
The lateral relaxation are pointed to the center of the terrace causing a compression.
The lateral relaxation ∆y at site (3) in the middle of the terrace is small. In general
the surface layer shows an inward relaxation. At the step edge, site (5), the inward
relaxation is large. Together with the outward relaxation at site (1) the relaxations
reduce the interatomic distances at the step edge.

The relaxations change significantly if one row of Cu atoms is substituted by one
row of Fe behind the step edge. Larger relaxation effects can be obtained. From the
structural point of view the Fe chain acts as a ”center of attraction”. On clean Cu(111)
site (3) in (S) shows practically no lateral shift ∆y whereas the Cu atom at site (3)
is shifted towards the embedded Fe chain. Also the Cu atoms in the step at site (5)
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Table 4.4: Lateral and vertical relaxations of the clean Cu(111) vicinal surface, the
Cu(111) surface with the embedded Fe chain and the Cu(111) surface with
the embedded Fe-Fe wire. Relaxations are given with respect to the ideal
lattice positions. Lateral relaxations are expressed as percentage of the ideal
bond length 2.569Å. Vertical relaxations along the (111) direction are given as
percentages of the interlayer distance 2.098Å. The relaxations are presented
for the surface (s) and two subsurface layers and all rows of atoms (1)-(5)
parallel to the step in the terrace.

vicinal Cu(111)
(1) (2) (3) (4) (5)

∆ y ∆z ∆y ∆ z ∆y ∆z ∆ y ∆z ∆y ∆z
(s) 2.4 2.7 1.2 -0.9 0.2 -1.1 -1.2 -0.5 -3.8 -4.4

(s-1) 0.2 0.5 -0.4 0.6 0.0 -0.3 0.3 -0.4 1.7 -1.0
(s-2) -0.1 0.2 -0.1 0.4 -0.3 0.3 -0.3 0.0 0.0 0.3

Fe chain embedded in Cu(111)
(1) (2) (3) (4) (5)

∆ y ∆ z ∆ y ∆z ∆y ∆z ∆y ∆ z ∆y ∆z
(s) 1.4 3.1 -0.3 0.2 -1.4 0.3 -2.8 (Fe) -0.9 (Fe) -5.2 -2.6

(s-1) 0.2 0.6 0.1 1.1 0.2 0.2 0.4 -0.8 1.2 -0.7
(s-2) 0.2 0.1 0.2 0.6 -0.1 0.5 -0.2 -0.3 0.2 -0.1

Fe-Fe wire embedded in Cu(111)
(1) (2) (3) (4) (5)

∆ y ∆ z ∆ y ∆z ∆y ∆z ∆y ∆ z ∆y ∆z
(s) 1.1 5.2 -0.2 1.8 -1.0 5.3 -2.7 (Fe) -5.9 (Fe) -6.4 -0.7

(s-1) 1.2 1.2 0.5 2.5 1.1 3.1 -0.4 -4.1 1.5 -1.2
(s-2) 0.6 0.2 0.8 1.2 0.3 2.0 -0.6 -1.5 0.9 -0.9

are strongly attracted by the Fe chain. The inward relaxation of the Fe chain is much
larger than the corresponding relaxation of a Cu atom at this site. In summary, the
Fe chain increases dramatically the tendency to a compression near the step. Therefore
also changes in the magnetic properties of TM-Fe wires can be expected if compared to
calculations based on an ideal real structure.[H8]

The relaxations after forming a TM-Fe wire (cf. Fig. 4.5(d)) are summarized in
Table 4.5. The relaxations at sites (1-3,5) in the surface do not change significantly
compared to the situation of an embedded Fe chain alone, therefore Table 4.5 contains
relaxations of the TM and Fe chains only. The magnetic ground state of the correspond-
ing system is also indicated in the table. Three magnetic ground states are obtained
(cf. Fig. 4.7).The antiferromagnetic (AF) structure of Cr leads to special effects in the
real structure. Therefore Cr will be discussed separately. The TM chains within the
FF and FF magnetic structures show an inward relaxation towards the Fe chain and a
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Table 4.5: Relative relaxations of the TM-Fe wires deposited on the surface. The ground
state magnetic structure (MS) is also indicated.

TM Fe
TM MS

∆ y ∆ z ∆ y ∆ z
Sc FF -4.7 -19.8 -0.8 -2.1
Ti FF -5.0 -28.5 0.6 -0.2
V FF -6.3 -33.2 1.8 0.1
Cr AF -3.8(-0.5) -24.2(-4.4) -4.0 -6.2
Mn FF -3.0 -15.8 -4.2 -6.4
Fe FF -3.1 -22.5 -2.7 -5.9
Co FF -4.8 -25.8 -2.3 -6.1
Ni FF -4.6 -23.9 -5.0 -8.7

shift away from the step. ∆y and ∆z have the same order of magnitude for all those
systems. The antiferromagnetic coupling of the ferromagnetic TM chain (Sc-V) reduces
the inward relaxation of the Fe chain significantly. The TM-Fe wires formed by late
TM (Mn-Ni) couple ferromagnetically (FF). The relaxation of the embedded Fe chain
is nearly unchanged as it can be deduced by comparison with Table 4.5.

The detailed investigation of real structure effects of FF and FF structures proofs the
strong correlation between magnetic and real structure in this quasi one-dimensional
systems. Therefore especially the Cr-Fe wire, having an AF magnetic ground state
structure, should show an interesting relaxation pattern. It should be noted, that mag-
netic frustration will lead in general to a non-collinear magnetic structure for this wire,
which will reduce the relaxations compared to the strictly collinear calculations of the
present paper. As schematic shown in Fig. 4.11, the Cr-Fe wire minimizes the energy by
adopting a zigzag like structure in the plane perpendicular to the surface. The inward
relaxations are 7.0% and 23.2% for Cr(↑,↓). Also the lateral relaxations show a zigzag
structure of 14.3% and -35.5% for Cr(↑,↓) away from the step. The relaxations of the
Cr atoms are connected with an inward relaxation of -2.9% of the embedded Fe chain
and 7% of dimerization. The dimerization which is observed only for AF structures may
be interpreted as a result of repulsive (attractive) nature of the magnetic contribution
to the interaction energy of Cr (Fe) pairs in Cu.[86]

Stability of the different magnetic structures is the most interesting question in our
investigation. The data are summarized in Fig. 4.12. The energy differences ∆E (in
meV/supercell) are defined relative to the FF structure. Energy differences larger than
zero indicate a stable FF structure, while ∆E < 0 denotes the stability of FF or AF
structures. The magnetic structures of the embedded wires are calculated in fully relaxed
geometries.

The bulk ferromagnets Fe, Co, and Ni lead to a ferromagnetic TM-Fe wire in this
low-dimensional configuration. If we assume an ideal structure for Mn (non-relaxed)
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Figure 4.11: Schematic view of antiferromagnetic order of Cr chain making a zigzag
deformation due to magnetic frustration on Cr-Fe: (a) side view of zigzag
deformation of Cr chain (yellow) and dimerization Fe chain (brown) (b) top
view of slightly zigzag deformed Cr chain in xy plane

a bistability between the FF and AF magnetic structures (∆E ≈ 13 meV/supercell)
is observed.[87] This bistability is lifted including relaxations and the energy difference
becomes considerably larger, stabilizing the FF structure. (∆E ≈ 89 meV/supercell, cf.
Fig. 4.12). It was not possible to stabilize AF structures in our calculations for Sc, Ti
and Ni. The Cr-Fe wire shows an antiferromagnetic (AF) structure.

Energy differences for the isolated TM-Fe wires are given in Fig.4.12 for comparison.
The isolated wire is calculated in an ideal linear structure corresponding to the Cu bond
length dCu. The embedding of the wires has a large effect on the FF magnetic structure
of all the 3d TM but ∆E changes only marginal for most of the calculated AF structures.
The comparison of magnetic structures of unrelaxed isolated wires with the embedded
wires shows that the magnetic structures practically do not change. The most interesting
system of the 3d series investigated here is the Cr-Fe wire. It is characterized by large
local Cr(↑,↓) moments of 3.4 and 3.3 µB. Both, the FF and AF structures are practically
not influenced by the embedding in the Cu surface. The AF structure is the ground state.
It was pointed out by Mo et al. [7] that the adatom position on the embedded Fe chain
represents a local energy minimum, independent on the type of the atom. From this
point of view the formation of structurally well ordered antiferromagnetic Cr chains on
top of the Fe template chain should be experimentally feasible.

The magnetic properties of the groundstate configurations will be discussed in more
detail. The magnetic properties of isolated TM chains and TM-Fe wires will be used as
a reference in the discussion. The ideal bond length dCu in accordance with the Cu bulk
lattice constant is assumed for the calculation of those idealized structures. Although
isolated TM chains show effects like dimerization and formation of a zigzag structure,(cf.
[10, 11]) we do not allow such effects to have well defined reference structures.

The total energies of possible magnetic structures have been calculated to find the
ground state. The calculations reveal that the ground states of the TM chains, TM-Fe
wires, and the embedded structures are the same for most of the systems. Exceptions
appear for Sc, V, and Mn. While the free Sc chain is nonmagnetic, the Sc-Fe wire
exhibits the FF structure in the isolated and embedded case. The isolated V chain shows
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Figure 4.12: (Taken from Ref. H7) Total energy of the FF and AF states relative to
the FF magnetic structure. The solid symbols are related to the embed-
ded wires and the open symbols stand for the isolated TM-Fe wire. The
energy calculations for the embedded structures are based on the relaxed
structures.

ferromagnetic coupling while the isolated V-Fe wire and the corresponding embedded
system exhibit an FF structure. The isolated Cr and Mn chains are antiferromagnetically
coupled. The coupling to Fe in the isolated Mn-Fe wire accounts for the FF structure
being the groundstate of embedded Mn-Fe as well.

Our calculations can be compared with results for fully relaxed linear chains by Tung
and Guo [10]. The equilibrium bond lengths in the relaxed chains are up to 20% smaller
than the Cu bond length assumed in our calculations. Only Sc shows a 10% larger bond
length. The equilibrium magnetic structures in the relaxed geometry given in Ref. [10]
are nevertheless the same as in our artificial structure strained to the Cu bond length,
with V as an exception. It is not surprising that the V chain is ferromagnetic at the
Cu bond length, because its relaxed interatomic distance is only 1.2% different from dCu

in the ferromagnetic state, in contrast to a 20.2% smaller one with respect to the Cu
bond length in the antiferromagnetic state. Fixing the bond length to dCu leads to the
suppression of the Sc magnetic moment.

Starting from a linear chain and fixing the distance of next nearest neighbors to 2dCu,
a relaxation of the AF Cr chain leads to a zigzag deformation with an angle of 153◦.
This angle is 160◦ if the chain is deposited on top of the embedded Fe chain.

The magnetic moments of the ground states of all systems are given in Fig. 4.13. In
general, the magnetic moments of the TM atoms in the TM-Fe wire are smaller than
in the isolated TM chain. However, Sc is polarized and obtains a sizable moment, the
Cr moment decreases and the Mn moment is practically unchanged. The Fe moment in
the different wire systems is nearly constant and larger than the bulk value. Note that
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Figure 4.13: (Taken from Ref. H7) Absolute magnetic moments of the ground-state
configurations. a) isolated TM chain and isolated TM-Fe wire. An ideal
structure based on the Cu lattice constant is assumed. b)TM-Fe wire em-
bedded in Cu(111) surface. The structure is relaxed.

our calculated magnetic moments for bulk ferromagnetic metals Fe, Co, and Ni are 2.23,
1.65 and 0.67 µB/atom, respectively. The combination of a TM chain with the Fe chain
is connected with an increase of the coordination number of the atoms. This leads in
general to a decrease of the moments. Due to the embedding each TM atom will beside
the two Fe neighbors, get two additional Cu atoms as nearest neighbors. The moment
of the template Fe chain is reduced by about 0.5 µB. The TM moments are only slightly
reduced.

Our investigation reveals that from the 3d series Cr-Fe and Mn-Fe wires are the most
promising systems for experimental investigations. In all configurations considered here
Cr shows an antiferromagnetic coupling. Embedding has practically no effect on the
stability of the AF structure. The latter is very stable with respect to the other magnetic
structures. The bistability detected for the Mn-Fe system in the nonrelaxed structure
was the starting point to investigate if changes in the lattice constant could force the
Mn-Fe wire to switch to the AF structure. Compressive or tensile strain perpendicular
to the wire does not change the magnetic structure. 5% compressive strain along the
Mn-Fe wire leads to an AF ground state (see Fig. 4.14). Let’s assume that the physics
of the formation of the template Fe chain will not change if an appropriate substrate,
i.e. a few Cu layers with a stepped (111) surface deposited on an adequate substrate
which causes the strain in the Cu film, leads to a stress of some percent in direction of
the Mn-Fe wire. In this case one could speculate that a switching of the magnetic state
by external means might be possible.
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Figure 4.14: Picture on the top: Compressive or tensile strain perpendicular to the Mn-
Fe wire does not change the magnetic structure . Picture on the bottom:
5% compressive strain along the Mn-Fe wire leads to an AF ground state.
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In summary, we have performed first-principle calculations of magnetic states in TM-
Fe wires on the vicinal Cu surface. The Fe chain near the step of the Cu(111) surface is
the template for the formation of TM chains in atop position of the Fe chain.

Ferromagnetic (Mn,Fe,Co,Ni) as well as antiferromagnetic structures (Cr) might be
achieved using the embedded Fe wire near the step as a template. The antiferromag-
netic structure of Cr is very robust. Therefore the formation of long antiferromagnetic Cr
chains on top of the Fe template chain should be experimentally feasible. Stress could be
used to prepare Mn-Fe wires in ferromagnetic or antiferromagnetic structure. The sys-
tematic investigation of different magnetic states, as presented in this letter can be used
as a starting point to consider the finite temperature magnetic properties of such TM-Fe
wires. If the energy differences of the different magnetic states are mapped on a classical
Heisenberg model the nearest neighbor exchange parameters JTM−TM , JFe−Fe, JTM−Fe
can be determined. These values can be extracted from DFT calculations either by the
comparison of total energies of several artificial collinear magnetic structures. In the
next chapter, the second approach has been used. Then Monte Carlo calculations will
be used to determine the magnetic properties at finite temperature.
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5 First-Principles Calculation of
Exchange Interactions

5.1 Introduction

Magnetic nanostructures on surfaces are of great interest for modern nanoscience due
to their potential application as atomic-scale magnetic devices. Therefore, nanoscale
clusters, monoatomic wires or quasi-1D stripes have been investigated from experimen-
tal [5, 6, 7] and theoretical point of view.[10, 18] The lower coordination of the mag-
netic atoms in such systems located on a metallic surface compared to bulk leads to
an enhancement of the moments and a large magnetocrystalline anisotropy can help to
stabilize the direction of the magnetic moments.

Figure 5.1: TM-Fe wires on vicinal Cu(111) surface. A one-atom wide TM chain (yellow)
is formed on top of an embedded Fe chain (red).

The magnetic properties of the wires will be discussed in this chapter, by presenting a
systematic investigation of the spin couplings in magnetic TM-Fe wires by analyzing the
exchange interactions (interwire and intrawire couplings). Detailed information on the
real structure of such systems is given in the previous section and elsewhere [H7]. The
analysis of the exchange coupling and of the magneto crystalline anisotropy allows to
set up a classical Heisenberg model to study finite temperature effects in the following
chapters.

There are two interactions for TM-Fe system. The intrawire and interwire magnetic
coupling (as shown in Fig.5.3) will be explored in this study. J‖ is named for the effec-
tive intrachain coupling constant and J⊥ for the interchain coupling constant (RKKY
coupling).
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Figure 5.2: Schematic picture showing magnetic interactions of TM-Fe wires. J‖: Direct
exchange coupling, and J⊥: Indirect exchange coupling (RKKY coupling).

5.2 Theoretical method

Calculation of direct exchange coupling

Computational details and convergence checks are the same as those in the previous
chapter. Although, the computational details and convergence checks are different in
some aspects. The detailed reason for this deference was given in the second chap-
ter. A supercell containing twelve Cu layers, this corresponds to 72 to 192 Cu atoms
(respectively for Cu(n+2,n,n), n=2-7), was constructed to model the Cu(111) stepped
surface. Whereas, the terraces are from three to eight lattice constants wide. The dis-
tance from one slab to its nearest image was equivalent to 13.5Å. In all calculations the
one-dimensional Brillouin zone was sampled by a 50× 1× 1 mesh.

Nearest-neighbor exchange interaction is assumed to define the anisotropic classical
Heisenberg Hamiltonian. Anisotropy effects are taken into account by taking the MAE
to be 0, 0.01, 0.03, 0.10, 0.30, 1, 3, or 9 meV per site. This does not have any effect
on the calculation of exchange couplings. By doing so, it is assumed that the MAE
of Fe and the TM sublattices are equal. The intrachain coupling constants have been
calculated exploiting supercells, doubled in same of the direction of the wires, and for
parallel and antiparallel alignment of the moments in the wire. It is obvious that the
second and third terms are always canceled out in the subtraction of the parallel and
antiparallel alignments. Therefore,

H = −
∑
i 6=j

JijSi · Sj −K
∑
i

(Szi )2 − µB ·
∑
i

Si (5.1)

As mentioned above, K
∑
i(S

z
i )2 and µB · ∑i Si are cancelled out and Jij can be

calculated with making parallel and antiparallel alignment of the moments.
Therefore,
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5 First-Principles Calculation of Exchange Interactions

Jij =
HAF −HFM

2
(5.2)

where Jij is the exchange coupling constant between Si and Sj. HAF and HFM are
the DFT total energies calculated for antiparallel alignment of the moments and parallel
alignment of the moments, respectively.

Calculation of indirect exchange coupling

The interchain coupling constants have been calculated exploiting supercells doubled in
the direction perpendicular to the wires, and for parallel and antiparallel alignment of
the moments on the two wires on each side of the supercell.

5.3 Calculation of direct exchange coupling

Three systems were investigated. In freestanding TM chains the atomic distance was
constrained to the Cu bond length dCu of the Cu(111) substrate in order to simulate
a freestanding equivalent to the TM chain in the TM-Fe wire on the substrate. A
freestanding wire was studied as an equivalent to the one embedded into the Cu(111)
surface (cf. Fig. 5.1). All interatomic distances correspond to the Cu bond length of the
substrate in this case. The structure of the embedded TM-Fe wire was fully relaxed. The
main effect of structural relaxations is an inward relaxation of the TM atoms relative
to their ideal positions. For Mn-Fe the inward relaxation of Mn is 16 % ( related to Cu
lattice plane distance). The Fe chain shows also an inward relaxation of 7 % respectively.
Details of the relaxations for all 3d TM-Fe wires are given in the previous chapter.

Central task for the mapping onto a classical Heisenberg model is the determination
of exchange constants and magnetocrystalline anisotropy. The exchange constants can
be extracted from DFT calculations either by the comparison of total energies of several
artificial collinear magnetic structures or by applying the magnetic force theorem in the
framework of the Korringa-Kohn-Rostoker (KKR) Green’s function method[88, 89]. Also
artificial noncollinear structures can be used. The idea is to choose such noncollinear
states that exchange interactions in the Heisenberg model can be switched on or off in a
controlled manner. Investigations of the freestanding TM chains by means of total energy
considerations and magnetic force theorem reveal that the nearest neighbor exchange
interaction is the most important one. Already the next-nearest neighbor interaction is
an order of magnitude smaller. Therefore we restrict the Heisenberg model to nearest
neighbor interactions only. As an example, exchange couplings of next neighbors are
calculated for Fe-Fe wire (see Fig. 5.4).

Noncollinear configurations are used to calculate the exchange parameters for free-
standing and embedded wires are given in Fig. 5.3. It is checked, that the magnetic
moments are constant for the different noncollinear configurations used for a specific
system. Noncollinear arrangements being equivalent by symmetry lead to the same
exchange parameters. The exchange parameters for all systems calculated by such a
procedure are given in Tab. 5.2. The discussion is restricted to V to Co because it was
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5 First-Principles Calculation of Exchange Interactions

Figure 5.3: (Taken from Ref. H6) Noncollinear arrangement of spin moments to deter-
mine exchange constants: (a,b) The spins moments at the Fe atoms (red) are
oriented such, that nearest-neighbor interactions in-between the Fe chain and
between Fe and TM chain (yellow) cancel out in the Heisenberg Hamiltonian.
JTM−TM can be calculated. (c,d) Configurations that allow to calculate the
interaction JTM−Fe between the chains.
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5 First-Principles Calculation of Exchange Interactions

Figure 5.4: Exchange constants calculated for the freestanding Fe-Fe wires (Because the
system consists of two Fe chains, there are only two exchange constants. The
fist, JFe−Fe is the coupling between Fe atoms inside the Fe single chain. The
second, JTM−Fe is the coupling between two Fe chains.). The second and
third neighbors interactions are an order of magnitude smaller, while for the
forth and fifth neighbors, the interactions are very small and negligible.
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5 First-Principles Calculation of Exchange Interactions

Figure 5.5: TM exchange coupling constants calculated for the freestanding TM chain
and TM-Fe and embedded wires. Unfilled signs correspond to the freestand-
ing chain and wire (black and brown, respectively), while the filled signs for
the embedded wire.

Figure 5.6: TM-Fe exchange coupling constants calculated for the freestanding and em-
bedded TM-Fe wires. Unfilled sign corresponds to the freestanding wire and
the filled one to the embedded wire.
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Table 5.1: Exchange constants for the freestanding TM chain, freestanding TM-Fe wires,
and the embedded TM-Fe wires. The definition of the constants in the Heisen-
berg model incorporates the magnetic spin moments[H5, H6]. All values are
given in meV.

J (meV) V Cr Mn Fe Co

freestanding chain
JTM−TM 84.18 -154.89 -11.90 114.54 138.53

freestanding wire
JTM−TM -12.96 -115.83 -30.00 80.33 65.16
JTM−Fe -79.69 -26.12 86.69 150.42 115.48
JFe−Fe 48.30 77.80 82.40 80.33 54.20

embedded wire
JTM−TM 22.30 -69.97 -26.12 79.76 67.37
JTM−Fe -60.37 17.70 74.34 80.00 68.26
JFe−Fe 65.07 48.50 58.30 74.58 55.60

not possible to stabilize all necessary magnetic configurations for the other elements.
In a previous investigation[90] the magnetic groundstates of such freestanding and em-
bedded wires were investigated for ideal structures by means of collinear spin-polarized
DFT calculations. The magnetic groundstates for the free chains are in agreement with
the results of Tung and Guo[10] for the relaxed chains with V as an exception. This
can be understood easily because the relaxed bond length in the ferromagnetic state is
close to the Cu bond length, whereas in the antiferromagnetic ground state the bond
length is 20.2% smaller than dCu. The exchange constants reflect the antiferromagnetic
groundstates of Cr and Mn chains. Noncollinear calculations for such 3d-TM chains
reveal that the easy axis is the chain direction, with Mn as an exception having the easy
axis perpendicular to the chain. The magnetocrystalline anisotropy energy of the chains
is in the order of a few meV. The anisotropy energy will be taken as a parameter in the
MC calculations which will be discussed in detail in the next chapters.

Some general conclusions can be drawn from Tab. 5.2 and figures 5.5, 5.6 and 5.7. The
exchange constants reflect the result that Fe-Fe and Co-Fe wires have a ferromagnetic
groundstate in collinear calculations. Antiferromagnetic couplings are present at the
beginning of the series. For the freestanding wires JFe−Fe, is roughly constant through
the series. Cr shows a strong antiferromagnetic intrachain coupling, whereas in V-Fe a
strong antiferromagnetic interchain coupling is present. Relaxation effects are reflected of
course in the exchange constants of the embedded systems. The stronger hybridization
due to the inward relaxation of the TM chains leads to a decrease of the interchain
exchange constants.
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5 First-Principles Calculation of Exchange Interactions

Figure 5.7: Fe-Fe exchange coupling constants calculated for the freestanding and em-
bedded TM-Fe wires. Unfilled sign corresponds to the freestanding wire and
the filled one to the embedded wire.

5.4 Calculation of exchange coupling: long range
(RKKY) interactions

Bulk

Magnetic moments couple over relatively large distances. However, this coupling is
indirect. In this case, the dominant exchange interaction in the metal will be indirect. In
metals, the magnetic moments couple through an intermediary which are the conduction
electrons (itinerant electrons). This type of exchange was first proposed by Ruderman
and Kittel[91] and later extended by Kasuya [92] and Yosida [93]. They constructed
a theory that now generally is known as the RKKY interaction. The interaction is
characterised by a coupling coefficient, J , given by the following formula

J (Rl −Rl′) = 9π

(
J2

εF

)
F (2kF |Rl −Rl′ |) (5.3)

where kF is the radius of the conduction electron Fermi surface, Rl is the lattice
position of the point moment, εF is the Fermi energy and

F (r) =
r cos r − sin r

r4
(5.4)

As one can see in Fig. 5.8, the RKKY exchange coupling oscillates from positive to
negative as a function distance between the ions. It has also the damped oscillatory
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Figure 5.8: Variation of the indirect exchange coupling constant, J , of a free electron
gas in the neighbourhood of a point magnetic moment at the origin r = 0.

nature. Therefore, depending upon the distance between a pair of ions their exchange
coupling can be ferromagnetic or antiferromagnetic. A magnetic ion induces a spin
polarisation in the conduction electrons in its neighbourhood. This spin polarisation
in the itinerant electrons is felt by the moments of other magnetic ions within range,
leading to an indirect coupling.

Fe nanowires RKKY interactions

First, surface states of clean Cu(111) vicinal surfaces have been studied, as discussed
in chapter 3. Because such long range interactions have been attributed to the surface
states[94, 95]. Based on the calculations presented in Sec. 3.2.4, we concluded that only
considering 18 layer slab of Cu or more (i.e. 24 layer slab) produces a band structure
which are comparable to experimental energy dispersion. Here, the interwire coupling
constants are determined by making parallel and antiparallel alignment of the moments
in the Fe wires. This means that the energy differences are calculated not the absolute
value of energy itself. As one can see in Fig. 5.9, using 15 and 12 layer slab of Cu,
gives a negligible difference for the interwire couplings, obtained for two interwire sep-
arations. Therefore, 12 layer slab of Cu is used to model the C(111) and simulate the
surface states. A direct relaxation calculation for such a big system is very expensive.
Thus, four top most relaxed layers of a 8 layer slab of Cu(111) have been taken and
replaced on the corresponding geometry of 12 layer slab of Cu(111) surface, mimicking
the relaxed geometry, having the eight bottom layers fixed in their ideal bulk positions.
The strength of intrachain magnetic coupling can be deduced from the energy difference
of the ferromagnetic and antiferromagnetic oriented wires, with supercells doubled in a
direction perpendicular to the wires.

To construct a Heisenberg Hamiltonian which takes into account all the magnetic in-
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teractions, the J‖, effective intrawire couplings and J⊥, the interchain couplings (RKKY
coupling) are required (The anisotropies will be discussed in the next chapter in detail).
The effective intrawire couplings were determined in the previous section. Now, we dis-
cuss how to estimate the interchain couplings. In principle, there are three interchain
coupling constants in the cell. The first is the coupling between the embedded Fe and
embedded Fe in the nearest neighboring wire. The second is between the embedded
Fe and the deposited Fe at the top position in the nearest neighboring wire and finally
between the deposited Fe on top and the deposited Fe at the top position in the nearest
neighboring wire. Computationally, this is a demanding task to calculate the mentioned
interactions. Since instead of just ferromagnetic and antiferromagnetic configurations,
more possible magnetic configurations (they are necessary to make different configura-
tions and extract the exchange couplings from subtracting the configurations energies,
but, energetically, may not be favored) have to be constructed. At the end, still, the
difference between the calculated interactions may be too small, keeping this question
opened whether this tiny difference has any significant effect on the estimated transition
temperature. Therefore the current study has been confined with the effective inter-
wire coupling constants. The interchain coupling constants by parallel and antiparallel
alignment of the moments on the two wires on each side of the supercell, keeping the
moments inside the wires parallel.

The calculated exchange couplings functions of interwire separation are reflected in
Fig. 5.9. The intrachain couplings are higher than the interchain couplings , in fact one
order of magnitude higher for relatively large inerwire separation. The RKKY exchange
coupling between the Fe nanowires oscillates from +27.23 meV for Cu(422) to -4.78
meV for Cu(533) and from -2.13 meV for Cu(644) to +1.67 meV for Cu(755), -2.23
meV for Cu(866), -0.61 meV for Cu(977) and -0.49 meV for Cu(1088). These results
are also summarized in Tab. 5.2.

Table 5.2: Exchange coupling constants (J⊥) of Fe wires on Cu(111) stepped surfaces.

Cu(n+2,n,n,) (4,2,2) (5,3,3) (6,4,4) (7,5,5) (8,6,6) (9,7,7) (10,8,8)
J⊥ (meV ) 27.23 -4.78 -2.13 1.67 -2.23 -0.61 -0.49
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Figure 5.9: Interwire coupling constants of Fe wires as functions of interwire separation.

72



6 Magnetic Anisotropy Energy

Magnetism at the nanometer scale has been an exciting research areas over the past
few decades. This is due to the fundamental and interesting physical properties such
as magnetic anisotropy energy. It is known that in crystals, physical properties are
generally anisotropic (they are different in different crystallographic directions). Some
magnetic properties are also anisotropic, such as easy and hard directions of magneti-
zation. However, there are also isotropic quantities, such as the Curie temperature and
the saturation magnetization.

There are two possible reasons for the magnetic anisotropy: the coupling of the elec-
tron orbits to the crystalline electric field and the dipole interaction. The first is the
magnetocrystalline anisotropy, which is caused by the simultaneous occurrence of the
electron spin-orbit interaction and spin-polarization in the magnetic system. This is also
known as the electronic contribution. The second one is the magnetostatic (or shape)
anisotropy energy due to the magnetic dipolar interaction in the solid.

Recently, there has been great interest in the magnetic anisotropy energy (MAE) of
small magnetic nanostructures supported on nonmagnetic substrates to build memory
storage devices with a maximal storage density. The minimum magnetic anisotropy
energy MAE of 1.2 eV/bit is required to inhibit magnetization reversal for a storage
device. Therefore, a reduction of the size of the nanostructures carrying one bit of
information requires an increase of the MAE per atom. In the ideal case, having an in-
creased MAE would lead the magnetism from two dimensions (surface) to one dimension
(wire) or even a single atom. For example, finite free-standing gold atomic chains were
first reported in 1998[96, 97], and their structural properties, such as the actual length
of the chain have been the focus of intensive experiments and theoretical studies since
then. However, these free-standing atomic chains are unstable and thus can only exist at
low temperatures and only on a suitably chosen substrate. Physically, stable magnetic
nanowires deposited on metallic substrates are one of the most important nanostructures
and a variety of techniques have been used to prepare and study them. For example,
Gambardella et al [98, 3] succeeded in preparing a high density of parallel atomic chains
along steps by growing cobalt on a high-purity Pt(997) vicinal surface (See Fig. 6.1)
in a narrow temperature range of 10∼20 K. The magnetism of the Co wires was also
investigated by the x-ray magnetic circular dichroism.[3] A very large anisotropy energy
of MAE=9.3±1.6 meV is determined for Co wires using this experiment. As mentioned
above, the extreme case of a system showing magnetic anisotropy is an adatom on a
nonmagnetic surface. A high magnetic anisotropy energy requires large spin and orbital
magnetic moments and a strong spinorbit coupling. Cobalt has a large spin moment
among the ferromagnetic 3d metals. Platinum also has a strong spinorbit coupling. In
this case, Co chains supported on substrates of highly polarizable Pt are a viable route
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to tune both the spin moments and the anisotropy energy. Therefore, this large MAE
has to be attributed to the large spin moment of Co and reduced dimensionality of the
Co atom (versus the Co bulk) and to the magnetic moments induced in the Pt substrate
combined with the strong spinorbit coupling of the Pt 5d states.

Figure 6.1: STM topographs of the Pt(997) surface (Taken from Ref.[3]): Co monatomic
chains decorating the Pt step edges. The chains are linearly aligned and have
a spacing equal to the terrace width.

Monoatomic wires have been investigated theoretically in a large number of studies.
[99, 18, 100, 101, 102, 103, 104, 105, 106, 107, 108] The lower coordination of the mag-
netic atoms in such systems located on a metallic surface compared to bulk leads to
an enhancement of the moments and a large magnetocrystalline anisotropy can help to
stabilize the direction of the magnetic moments. In the Ref. [109, 87, 90, 110] electronic
and magnetic properties of transition metal chains is investigated, but with the equilib-
rium bond length in each case. The presented study is focused on the transition metal
chains with the bond length of Cu.
Ab initio studies of the magnetic anisotropy for all 3d transition metal (TM) free-

standing linear chains [111] revealed that the Fe freestanding linear chains has a massive
magnetic anisotropy energy MAE. In Ref. [111] the bond length of transition metal
chains is not constrained to the copper bond length. Experimentally, copper and tung-
sten are good substrates for growth of Fe thin films.[112, 113] Also, as discussed in
details in Chp. (4) TM-Fe wires can be formed on Cu(111) stepped surface. Thus,
in this chapter, first principles calculations for the magnetic anisotropy energies of the
M-Fe wires (M=ScNi) on vicinal Cu(111) surface have been carried out.

In this chapter, ab initio density-functional calculations including spinorbit coupling
(SOC) have been performed to calculate the magnetic anisotropy energies, including
magnetocrystalline and shape anisotropies of TM-Fe wires in both isolated and de-

74



6 Magnetic Anisotropy Energy

posited cases. The TM-Fe structures have been optimized for different orientations of
the magnetization with respect to the crystallographic axes of the systems. The mag-
netic anisotropy energies and the anisotropies of spin and orbital moments have been
determined. Particular attention has been paid to the correlation between the geometric
and magnetic structures as discussed in detail in Chp. (4). The Fe-Fe and Mn-Fe wires
exhibit a large magnetic anisotropy energy , indicating that these nanowires would have
applications in high density magnetic data storages. The substrate effect on the MAE
of the wires are discussed in this chapter.

The rest of this chapter is organized as follows: In the next section, a brief description
of the theory and computational details is given. Then, in Sec. (6.3), magnetocrystalline
and shape anisotropy energies of the linear 3d transition metal chains are presented.
The calculated magnetic anisotropy energies and moments of TM-Fe wires on Cu(111)
stepped surface are presented in Sec. (6.3). Finally, the magnetic properties of TM-Fe
wires at finite temperatures are discussed in Sec. (6.4).

6.1 Theoretical method

Computational details and convergence checks are the same as those in the previous
chapter, although the computational details and convergence checks are different in some
aspects. A large plane-wave cutoff energy of 340 eV is used for all 3d transition metal
chains. The Methfessel-Paxton scheme [114] is employed for Brillouin zone integrations.
The convergence of the calculated properties with respect to number of k-points and
supercell size was carefully checked. For the linear chains, the nearest wire-wire distance
between the neighboring chains is, at least, 13 Å. Because of its smallness, ab initio
calculation of the MAE is computationally very demanding and needs to be carefully
carried out. Here we use the total energy difference approach rather than the widely used
force theorem to determine the MAE, i.e., the MAE is calculated as the difference in
the full self-consistent total energies for the two different magnetization directions (e.g.,
parallel and perpendicular to the chain) concerned. Because MAE is a delicate and
controversial effect, we made sure that our broad conclusions are approach-independent
by performing calculations with two different software packages. What are presented
here are only the results obtained with the VASP code. The total energy convergence
criterion is 10−6 eV/atom. The MAEs calculated with a dense 32×6×1 k-point mesh
with σ=0.001 eV hardly differ from that obtained with the 20×5×1 k-point mesh (within
0.02 meV). The same k-point mesh is used for the band structures and density of states
calculations.

To verify the MAE results with another method, the all-electron full-potential linear
augmented plane wave (FP-LAPW) method is also used as implemented in the WIEN2K
code [115] and the generalized gradient approximation (GGA).
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Figure 6.2: Schematic structure diagram for (a) the isolated TM chain and (b) TM-Fe
wire.

6.2 Spin-orbit coupling and orbital magnetic moment

The spin-orbit coupling (SOC) is necessary for the orbital magnetization and magne-
tocrystalline anisotropy in solids, however it may be weak in the 3d transition metals.
Thus, it was taken into account in the self-consistent calculations presented here.

TM chains

With taking into account the SOC, the spin moments for the isolated 3d transition chains
become 3.02 µB (V), 3.99 µB (Cr), 4.01 µB (Mn), 3.24 µB (Fe), 2.23 µB (Co), respectively.
These values are almost identical to the corresponding ones obtained without the SOC.
This is due to the weakness of the SOC in the 3d transition metals. However, including
the SOC does give rise to a significant orbital magnetic moment in some atomic chains
and, importantly, allows us to determine the easy magnetization axis for these 3d atomic
chains. As summarized in Tab. (6.1), for the magnetization along the chain direction, the
calculated orbital magnetic moments in the FM state are 0.41 and 0.55 µB/atom for the
Fe and Co chains, respectively, though they are only 0.02 , 0.01 and 0.02 µB/atom for the
V, Cr and Mn chains, respectively. The orbital moments in the Fe and Co atomic chains
are, therefore, considerably enhanced, when compared with the bulk materials [116], and
are also larger than the orbital moments in the Fe and Co monolayers [117].
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The spin moment is found to be unaffected when the SOC is taken into account even
in the 4d [118, 1, 119, 120] and 5d [107] TM linear atomic chains. Nonetheless, the SOC
contributes to apparent orbital moments in all three cases. It was shown in some studies
[118, 111] that the orbital moment increases significantly with the bond length and has
a strong dependence on the magnetization orientation. As summarized in Tab. (6.1),
the orbital moment for the magnetization along the chain is higher than that for the
magnetization perpendicular to the chain for V, Fe, and Co. This is in contrast with
the orbital moments estimated for the magnetization along the chain which is lower
than that for the magnetization perpendicular to the chain for Cr and Mn. The orbital
moments of the V, Fe, and Co chains with a perpendicular magnetization are 0.02, 0.41,
and 0.55 µB, respectively. The orbital moments of the Cr and Mn with a magnetization
along the chain are only 0.03 and 0.07 µB, respectively. This anisotropy in the orbital
moment is especially pronounced in the Fe and Co chains. It is well known that in
general, the magnetization direction with a larger orbital moment, would be lower in
total energy. Therefore, the easy magnetization direction in the V, Fe, and Co chains is
expected to be along the chain, as will be reported in Sec. (6.3). It is noticeable that the
presented results for the spin and orbital moments are in good agreement with previous
calculations for the 3d atomic chains [118, 111].

Table 6.1: Spin (ms) and orbital (mo) magnetic moments (in µB/atom) of the magnetic
3d transition metal linear chains at the Cu bond lengths with magnetization
parallel (M ‖ ẑ) and perpendicular (M ⊥ ẑ) to the chain axis.

M‖ ẑ M⊥ ẑ
ms mo ms mo

V (FM) 3.02 0.02 3.01 0.01
Cr (AF) 3.99 0.01 4.00 0.03
Mn (AF) 4.01 0.02 4.07 0.07
Fe (FM) 3.24 0.41 3.15 0.19
Co (FM) 2.23 0.55 2.18 0.47

TM-Fe wires

As discussed in Chp. (4), all the isolated TM-Fe wires have magnetic solutions and
as summarized in Tab. (6.2), the V-Fe wire is most stable in the FF state, whilst the
ground state of the Cr-Fe wire is the AF state and the Mn-Fe, Fe-Fe and Co-Fe wires
have the FF ground state (See Fig. (4.7)).

The spin magnetic moments in the isolated TM-Fe wires are generally smaller than
in the corresponding TM single chains . This is due to the increase in the coordination
number in the TM-Fe wires. When the SOC is taken into account, the spin magnetic
moments of the TM-Fe wires slightly change, as for the linear chain cases. The orbital
magnetic moments of the TM-Fe wires with the magnetization along the z-axis (easy
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Table 6.2: Spin (ms) and orbital (mo) magnetic moments (in µB/atom) of the TM-Fe
wires with magnetization M in x̂, ŷ and ẑ directions.

x̂ ŷ ẑ
ms mo ms mo ms mo

V-Fe (FF) 2.59 0.00 2.59 0.01 2.61 0.02
Cr-Fe (AF) 3.49 0.01 3.50 0.00 3.53 0.03
Mn-Fe (FF) 4.06 0.01 4.07 0.01 4.07 0.02
Fe-Fe (FF) 3.04 0.01 3.04 0.09 3.05 0.14
Co-Fe (FF) 2.03 0.03 2.04 0.11 2.04 0.17

magnetization axis) are 0.02 (V), 0.03 (Cr), 0.02 (Mn), 0.14 (Fe) and 0.17 (Co) µB which
are significantly smaller than that of the corresponding linear single chains.

6.3 Magnetic anisotropy energy (MAE)

The total energy of the orientation dependent magnetization M(φ, θ) of a TM wires (see
Fig. (6.3)) in the lowest non-vanishing terms can be written [111] as

Et = E0 + sin2θ(E1 − E2cos
2φ) (6.1)

where θ is the polar angle of the magnetization M from the wire axis (z-axis) and φ is
the azimuthal angle in the x − y plane perpendicular to the wire, measured from the
x axis. For the isolated chain, the azimuthal anisotropy energy constant E2 is zero,
because of the rotational invariance. The axial anisotropy energy E1 is calculated by
the total energy difference between the magnetization along the y(x) and z axes, i.e.,
E1 = Ey − Ez (Ex = Ey). If E1 is positive, it would mean that the chain (z) axis is
the easy magnetization axis. For the TM-Fe wires which are in the x − z plane, E2 is
not zero and can be calculated as the total energy difference between the magnetization
along the x and y axes, i.e., E2 = Ey − Ex.

As mentioned earlier, the magnetic anisotropy energy for a magnetic solid has two
contributions, which are the magnetocrystalline and shape anisotropy energies. It is
known that the shape anisotropy energy is zero for the cubic systems such as bcc Fe and
fcc Ni, and also very small for the solids such as hcp Co. However, the shape anisotropy
energy is comparable to the magnetocrystalline energy for the anisotropic structures such
as magnetic Fe and Co monolayers [117, 121]. The shape anisotropy is calculated by
a sum over classical dipole-dipole energies in the system. Each of the individual terms
may not sound to have a significant contribution to the MAE. However, the dipole-
dipole interactions are long-ranged and a sum over the whole magnetic material, makes
the dipolar interactions non-negligible for anisotropic structures.

Furthermore, as will be discussed in detail later, the shape anisotropy energy of the 3d
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Figure 6.3: Schematic representation of the magnetization orientation (θ, φ) of a TM-Fe
wire on the vicinal surface.

TM chains and TM-Fe wires are also non-negligible. Therefore, their magnetic dipole-
dipole interaction energies are calculated.

In order to check possible collinearity between the Fe and TM magnetic moments
(MTM‖MFe), using the all-electron full-potential linear augmented plane wave (FP-
LAPW), fully relaxed magnetic structures have been calculated. The ground state cal-
culations estimated collinear magnetic structure for TM-Fe wires on Cu(111) stepped
surface. However, there is a negligible angle between the Fe and TM magnetic mo-
ments. This angle does not reach to 2◦ for any of TM-Fe wires. Therefore, the magnetic
anisotropy energy calculations are restricted to the collinear cases in the present chapter.

For the collinear magnetic systems, this magnetic dipolar energy (Ed) is given by (in
atomic Rydberg units)

Ed =
∑
qq′

mqmq′

c2
Mqq′ (6.2)

and

Mqq′ =
∑
R

′ 1

| R + q + q′ |3
{1− 3

[(R + q + q
′
) · m̂q]2

| R + q + q′ |2
} (6.3)

where Mqq′ is called the magnetic dipolar Madelung constant. The speed of light c =
274.072. R are the lattice vectors, q are the atomic position vectors in the unit cell and
mq is the atomic magnetic moment on site q. Note that in atomic Rydberg units, one
Bohr magneton (µB) is

√
2.

The dipolar energy convergence criterion of 10−6 eV/atom was reached by taking 300
terms (300 neighboring magnetic moments) of Eq. (6.3).
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Free-standing TM chains

Table 6.3: Total (Et
1), electronic (Ee

1) and dipolar (Ed
1) magnetic anisotropy energies

(in meV/atom) of the 3d transition metal linear chains for the ground state
magnetic structure (MS). If Et

1 is positive, the easy magnetization axis is
along the chain; otherwise, the easy magnetization axis is perpendicular to
the chain.

MS Et
1 Ee

1 Ed
1

V (FM) 1.62 0.88 0.74
Cr (AF) -1.29 -0.32 -0.97
Mn (FM) 1.04 -0.27 1.31
Fe (FM) 5.69 4.83 0.86
Co (FM) 2.72 2.31 0.41

The calculated electronic (Ee
1) and shape anisotropy (Ed) energies for the free-standing

TM chains, free-standing TM-Fe wires and TM-Fe wires on Cu(111) stepped surface are
listed in Tables (6.3), (6.4) and (6.5), respectively. Table (6.3) shows MAEs for the
single 3d TM chains of their ground states. It is noticeable that the shape anisotropy
energies can be comparable to the electronic contributions. Furthermore, V, Mn, Fe and
Co (3d elements with FM ground state) prefer the chain direction (M ‖ ẑ) as the easy
magnetization axis. For the FM chains, this may be expected since the shape anisotropy
energy always favors the direction of the longest dimension. Therefore, any perpendicular
magnetic anisotropy should originate from the electronic magnetocrystalline anisotropy
when it is sufficiently large to overcome the shape anisotropy. Cr chain (AF state)
prefers the perpendicular magnetic anisotropy (M ⊥ ẑ) as the easy magnetization axis.
This conclusion can be drawn that for an AF chain the shape anisotropy energy favors
the perpendicular direction to the longest dimension.

Interestingly, Table (6.3) exhibits that in the FM linear chains, the electronic anisotropy
energy would favor a perpendicular anisotropy in the Cr and Mn chains but prefer the
chain axis in the V, Fe and Co chains. Nevertheless, the easy magnetization direction is
predicted to be the chain axis in all the 3d FM chains except Mn. But the perpendicular
electronic anisotropy in the Mn chain is not sufficiently large to overcome the axial shape
anisotropy. In the AF state, Cr chains would have the easy axis perpendicular to the
chain. Remarkably, the Fe chain with MAE of 5.69 meV has a large axial anisotropy
energy, being in the same order of magnitude of that in the 4d transition metal linear
chains [118, 122]. In the 4d transition metals, the SOC splittings are large, being about
ten times larger than the 3d transition metals, and thus the large MAE in the 4d transi-
tion metal linear chains may be expected. The axial anisotropy energy for the V, Cr, Fe
and Co chains are also generally larger than the corresponding monolayers. [117, 121]
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TM-Fe wires

Table 6.4: The total (Et
1, Et

2), electronic (Ee
1, Ee

2) and dipolar (Ed
1 , Ed

2) magnetic
anisotropy energies (in meV/atom) as well as the easy magnetization axis
(M) of the Free-standing TM-Fe wires for the ground state magnetic struc-
ture (MS). E1 = Ey - Ez; E2 = Ey - Ex.

MS Ee
1 Ee

2 Ed
1 Ed

2 Et
1 Et

2 M
V-Fe (FF) 4.42 -0.08 0.27 -0.11 4.69 -0.19 z
Cr-Fe (AF) 3.33 -0.77 -0.04 -0.14 3.29 -0.91 z
Mn-Fe (FF) 2.37 -0.74 0.65 0.18 3.02 -0.56 z
Fe-Fe (FF) 1.39 0.07 0.51 0.14 1.90 0.21 z
Co-Fe (FF) 1.92 0.55 0.38 0.09 2.30 0.64 z

The axial magnetic anisotropy energy E1 of the free-standing TM-Fe wires with the
magnetization along the z-axis (easy magnetization axis) are 4.42 (V), 3.33 (Cr), 2.37
(Mn), 1.39 (Fe) and 1.92 (Co) meV. E1 in the Fe and Co chains becomes smaller as
the structures change from the chains to the wires. The magnetic anisotropy energies
in the V-Fe, Cr-Fe and Mn-Fe are considerably enhanced compared with those in the
linear V, Cr and Mn chains, respectively. The most dramatic reduction in the magnetic
anisotropy occurs in the Fe chain. The axial anisotropy constant E1 in the Fe-Fe wire
is almost three times smaller than that in the linear Fe chain. In contrast, the most
noticeable increase happens in the V chain. E1 in the V-Fe wire is about three times
larger than that in the V chain. The shape anisotropy energy (Ed

1) energies become
generally smaller as the structure changes from the 3d TM chain to the TM-Fe wire.
However due to this structure change the sign of Ed

1 does not alter.
There is also a significant magnetic anisotropy energy (E2) in the x− y plane perpen-

dicular to the z axis (wire). Ed
2 (however relatively smaller than Ed

1) also appears in the
x− y plane. For the Fe-Fe and Co-Fe wires, the x axis is favored, i.e., the y axis would
be the hard magnetization axis. In contrast, for the V-Fe, Cr-Fe and Mn-Fe wires the x
axis would be the hard axis (see Table (6.4)).

An isolated transition metal atoms have large spin and orbital magnetic moments
according to Hunds rules. However, electron delocalization and crystal field effects
compete with the intra-atomic Coulomb interactions causing an overall decrease of spin
moment and quenching of orbital moment in TM impurities dissolved in nonmagnetic
metal hosts. Theoretical calculations also predict such effects to be strongly reduced at
surfaces owing to the decreased coordination of TM impurities[123].

The substrate has expectedly a significant effect on the MAEs in this study as well,
as reflected in the calculations. For the deposited V-Fe, Cr-Fe, Mn-Fe and Fe-Fe wires,
the x axis is favored. This makes the y axis to be the hard magnetization axis. In
contrast, only for the Co-Fe wire the x axis is the hard axis (see Table (6.5)). In
other words, the V-Fe, Cr-Fe, Mn-Fe and Fe-Fe wires have an out-of-plane magnetic
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Table 6.5: The total (Et
1, Et

2), electronic (Ee
1, Ee

2) and dipolar (Ed
1 , Ed

2) magnetic
anisotropy energy constants (in meV/atom) as well as the easy magnetization
axis (M) of the TM-Fe wires on Cu(111) stepped surface for the ground state
magnetic structure (MS). E1 = Ey - Ez; E2 = Ey - Ex, see Eq. (2).

MS Ee
1 Ee

2 Ed
1 Ed

2 Et
1 Et

2 M
V-Fe (FF) 1.03 0.90 0.16 -0.19 1.19 0.71 x
Cr-Fe (AF) 1.09 0.44 -0.08 -0.11 1.01 0.33 x
Mn-Fe (FF) 5.15 0.31 0.57 0.17 5.72 0.48 x
Fe-Fe (FF) 4.32 0.89 0.44 0.15 4.76 1.04 x
Co-Fe (FF) 0.88 -1.61 0.33 0.11 1.21 -1.50 z

anisotropy whilst the Co-Fe has an in-plane anisotropy. Experimentally, Shen et al.[5, 6]
also demonstrated that Fe nanostripes on Cu(111) vicinal surface were characterized by a
perpendicular anisotropy. Similarly, Tung et al.[124] also found that the Fe wire presents
a perpendicular magnetic anisotropy while the Co wire shows an in-plane anisotropy on
Cu(001) surface.

6.4 Magnetism at Finite Temperatures

It is necessary to calculate some well-defined macroscopic property which ensures the cor-
rect implementation of interactions in a system. The Curie temperature Tc of a nanowire
is primarily determined by the strength of the exchange interaction between spins and
the magnetic anisotropy energies. For the Monte Carlo simulations, lattices with 5200
sites representing the atoms of the single wire were used. Nearest-neighbour exchange
interaction is assumed to define the classical Heisenberg Hamiltonian. Anisotropy is
also taken into account by taking the MAE to be 0, 0.01, 0.03, 0.10, 0.30, 1, 3, or
9meV. By doing so it is assumed that the MAE of Fe and the TM sublattices are equal.
Periodic boundary conditions in direction of the wire are applied. To find the critical
temperature the system is first relaxed into thermodynamical equilibrium using 20,000
MC steps per temperature step. Then averaging is done over 30,000 measurements,
between each of which three MC steps were performed in order to reduce correlation
effects. To improve the statistics averaging over at least ten of such temperature loops is
performed. Importance sampling is done using the Metropolis algorithm. Critical tem-
peratures are determined using the specific heat and, in case of a ferromagnetic system,
the susceptibility χ and 4th-order-cumulant U4.

Figure 6.4 shows the susceptibility for an embedded Mn-Fe wire calculated for different
magnetocrystalline anisotropy. In increasing anisotropy stabilizes the moments against
thermal fluctuation and leads to an increase of the critical temperature. The calculated
critical temperatures are well below room temperature for all systems. A summary of the
critical temperatures Tc’s of all systems for MAE = 1.00meV can be found in Table 6.6.
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Table 6.6: Critical temperatures for the freestanding and embedded TM-Fe chains for
MAE = 1.00meV. The error is approximately ±10%.

Tc[K] V Cr Mn Fe Co
freestanding wire 100 20 132 68 75
embedded wire 88 41 63 122 94

Figure 6.4: (Taken from Ref. H6) Magnetic susceptibility of the embedded Mn-Fe wire
for different values of MAE.
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Conclusions

The physical properties such as surface energies, structural relaxations, work functions,
and surface states of the Cu(111) surface are studied within the framework of DFT.
The results obtained for the surface energies, structural relaxations, and work functions
using a 6-layer slab are comparable with experimental values. This is not the case for
the surface states calculations. The number of layers should be increased to at least 18
in order to obtain surface states. 18-layer slab produces the band structures which are
comparable with the experimentally measured energy dispersion.

First-principles calculations are performed in order to study the magnetic states of
TM-Fe wires on the vicinal Cu surface. The Fe chain near the step of the Cu(111)
surface is the template for the formation of TM chains in atop position of the Fe chain.
Ferromagnetic Mn, Fe, Co, and Ni as well as antiferromagnetic structures Cr are achieved
using the embedded Fe wire near the step as a template. The antiferromagnetic structure
of Cr is very robust. Therefore, the formation of long antiferromagnetic Cr chains on
top of the Fe template chain should be experimentally feasible. Stress could be used to
prepare Mn-Fe wires in ferromagnetic or antiferromagnetic structure.

The intrawire and interwire magnetic coupling are explored in this study. The effec-
tive intrawire coupling constants are extracted from the non-collinear DFT calculations,
while the interwire coupling constants are obtained from the regular DFT calculations.
The intrawire coupling constants show that Fe-Fe and Co-Fe wires have a ferromagnetic
groundstate. Antiferromagnetic couplings are present at the beginning of the series.
Cr shows a strong antiferromagnetic intrachain coupling, whereas in V-Fe a strong an-
tiferromagnetic interchain coupling is present. Relaxation effects are discussed. The
stronger hybridization due to the inward relaxation of the TM chains leads to a decrease
of the interchain exchange constants. The interwire exchange couplings, as functions of
interwire separation, are calculated. The intrawire couplings are at least one order of
magnitude higher than the interwire couplings.

Non-collinear spin-polarized DFT is employed to calculate magnetocrystalline and
shape anisotropy energies of TM-Fe wires in both isolated and deposited cases. The
TM-Fe structures are optimized for different orientations of the magnetization with
respect to the crystallographic axes of the systems. The magnetic anisotropy energies
and the anisotropies of spin and orbital moments are determined. The Fe-Fe and Mn-Fe
wires exhibit a large magnetic anisotropy energy , indicating that these nanowires would
have applications in high density magnetic data storages.
Ab initio DFT calculations are used to set up classical Heisenberg model to study finite

temperature properties of TM-Fe wires embedded on Cu(111). The critical temperatures
of the systems are well below room temperature.
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[25] V. Fock. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörper-
problems. Zeitschrift für Physik A Hadrons and Nuclei, 61(1):126–148, Jan 1930.

86



Bibliography

[26] J. C. Slater. A simplification of the Hartree-Fock method. Phys. Rev., 81(3):385–
390, Feb 1951.

[27] L. H. Thomas. The calculation of atomic fields. Math. Proc. Cambridge, 23:542–
548, 0 1927.

[28] E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigenschaften des
Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Ele-
mente. Zeitschrift für Physik, 48(1-2):73–79, 1928.

[29] L. I. Schiff. Quantum Mechanics. McGraw-Hill, 1986.

[30] JP Perdew, A Ruzsinszky, JM Tao, VN Staroverov, GE Scuseria, and GI Csonka.
Prescription for the design and selection of density functional approximations:
More constraint satisfaction with fewer fits. J. Chem. Phys, 123(6), Aug 8 2005.

[31] David C. Langreth and John P. Perdew. Theory of nonuniform electronic systems.
i. analysis of the gradient approximation and a generalization that works. Phys.
Rev. B, 21:5469–5493, Jun 1980.

[32] David C. Langreth and M. J. Mehl. Beyond the local-density approximation in
calculations of ground-state electronic properties. Phys. Rev. B, 28:1809–1834,
Aug 1983.

[33] John P. Perdew and Wang Yue. Accurate and simple density functional for the
electronic exchange energy: Generalized gradient approximation. Phys. Rev. B,
33:8800–8802, Jun 1986.

[34] John P. Perdew. Density-functional approximation for the correlation energy of
the inhomogeneous electron gas. Phys. Rev. B, 33:8822–8824, Jun 1986.

[35] A. Baldereschi. Mean-value point in the Brillouin zone. Phys. Rev. B, 7(12):5212–
5215, Jun 1973.

[36] Sverre Froyen. Brillouin-zone integration by fourier quadrature: Special points for
superlattice and supercell calculations. Phys. Rev. B, 39(5):3168–3172, Feb 1989.
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