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Biofortification, the enrichment of nutrients in crop plants, is of increasing importance to improve human health.
The wild barley nested association mapping (NAM) population HEB-25 was developed to improve agronomic
traits including nutrient concentration. Here, we evaluated the potential of high-throughput hyperspectral im-
aging in HEB-25 to predict leaf concentration of 15 mineral nutrients, sampled from two field experiments and
four developmental stages. Particularly accurate predictions were obtained by partial least squares regression
(PLS) modeling of leaf concentrations for N, P and K reaching coefficients of determination of 0.90, 0.75 and
0.89, respectively. We recognized nutrient-specific patterns of variation of leaf nutrient concentration between
developmental stages. A number of quantitative trait loci (QTL) associated with the simultaneous expression of
leaf nutrients were detected, indicating their potential co-regulation in barley. For example, the wild barley allele
of QTL-4H-1 simultaneously increased leaf concentration of N, P, K and Cu. Similar effects of the same QTL were
previously reported for nutrient concentrations in grains, supporting a potential parallel regulation of N, P, K and
Cu in leaves and grains of HEB-25. Our study provides a new approach for nutrient assessment in large-scale field
experiments to ultimately select genes and genotypes supporting plant biofortification.

The reduction of grain quality and nutritional value has important
consequences, as roughly one billion people suffer from low intake of

1. Introduction

The proliferation of global human population urges for an adequate
boost of crop productivity [1]. During the last decades, crop breeding
was very successful in increasing grain yield in cereals, which are the
main source of calories for human diet [2]. However, this process led to
a ‘dilution effect’, meaning the impoverishment of the protein and
mineral concentration in the grain due to the allocation of a fixed
amount of nutrients into an increased number of grains [3,4].

proteins and mineral nutrients [5-7]. Moreover, nutrient remobilization
from plant vegetative tissues into grains is a limiting factor for grain
development, and therefore critical for increasing grain yield [8].
Biofortification is the enrichment of nutrients in crop plants. It can be
reached by increasing fertilizer application (agronomic biofortification).
However, this solution has only short-term effects [9]. In contrast, ge-
netic biofortification, which is the biofortification obtained through
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plant breeding or genetic engineering, constitutes a sustainable and
economically convenient prospect to increase nutrient concentration in
harvested plant organs [10]. Biofortification of elite crop material can,
thus, contribute in achieving a balanced diet for humans and livestock
[6].

Mineral elements are taken up from the soil, then mostly transferred
to leaves and subsequently remobilized from leaves into developing
grains through xylem transportation and, finally, phloem loading and
un-loading. Nutrient concentration in leaves is therefore a crucial
feature for the final grain nutritional value [11]. Senescent leaves, for
instance, play an important role as a source of amino acids and nutrients
after protein and chlorophyll degradation [12]. During leaf senescence,
proteins, predominantly ribulose-1,5-bisphosphate carboxylase/oxy-
genase (Rubisco), and nutrients are degraded, translocated to younger
leaves and, finally, to developing grains. Small-grain cereals like barley,
wheat and rice remobilize up to 90 % of the nitrogen from leaves to
grains [13]. The major phloem-exported amino acid in barley and wheat
is glutamate [14]. Glutamine synthetase (GS) is, thus, of major impor-
tance for the re-assimilation of ammonium into exported amino acids
during senescence [15]. A delayed leaf senescence, or ‘stay green’
phenotype, has the potential for higher yield due to a longer period of
active photosynthesis [16]. As a consequence, stem and leaf tissue
should be photosynthetically active as long as possible, but should also
be able to quickly respond to abiotic stresses, such as heat or drought,
and remobilize proteins and nutrients with high efficiency to grains
[13]. In barley leaves the number of chloroplasts per mesophyll cell are
largely constant until late senescence, while the chlorophyll and protein
concentration is reduced early on [17].

The barley NAC transcription factor HYNAM-1 is a well-described
gene involved in senescence and in rapid chlorophyll degradation, and
remobilization of nitrogen, iron and zinc to the grain [18]. In addition,
other members of the NAC transcription family are up-regulated during
leaf senescence, where, for instance, the barley gene HYNACO013 directly
interacts with the radical-induced cell death 1 (RCD1) gene [19]. The
observation that HYNAM-1 is associated with the acceleration of senes-
cence indicates the involvement of other developmental genes in
nutrient partitioning among plant organs [20]. Possible candidates
comprise genes encoding transporters involved in phloem loading at
source leaves and phloem unloading at sink. For instance, the enhanced
expression of the OsNRT2.1 gene, which encodes a high-affinity nitrate
transporter, using a nitrate inducible promoter, increased nitrogen-use
efficiency in rice [21]. A similar effect was observed in maize (Zea
mays) by the targeted expression of the ZmNRT1.1A and ZmNRT.1B
transporters [22]. These examples indicate the potential of genetic
biofortification through the improvement of nutrient remobilization
from leaves to grains.

Barley is an optimal model for cereals because of its diploid genome.
Cereals, including barley, show limited genetic variation as a result of
decades of yield-targeted breeding activities [23,24]. In order to over-
come this limitation, the wild barley nested association mapping (NAM)
population HEB-25 was developed by crossing 25 diverse wild barley
accessions with the elite cultivar ‘Barke’ [25]. Several studies on
HEB-25, consisting of 1,420 lines in generation BC1S3, already revealed
extensive variation for important agronomic traits, such as grain
nutrient concentration, plant development and resilience against nitro-
gen deficiency, pathogens, salinity stress and drought [25-36].

Besides genetic variability, a major limiting factor for biofortification
is plant phenotyping. Cost-efficient high-throughput phenotyping is
necessary for exploiting genetic resources. High-throughput hyper-
spectral imaging (HSI) in combination to machine learning methods can
be applied to predict mineral concentrations in plant tissues [37,38]. A
hyperspectral image consists of a two-dimensional image of a tissue,
extended by multiple additional dimensions, the spectral reflectance
data. Both are obtained by hyperspectral camera systems, usually
operating at wavelengths between 400 and 2500 nm, to create a
multi-dimensional data cube [39-42]. HSI proved to be an efficient way
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for predicting grain nutrients and allowed performing a genome-wide
association study (GWAS) to identify quantitative trait loci (QTL) con-
trolling grain nutrient concentrations in HEB-25 [43]. In addition,
monitoring hyperspectral canopy reflectance performed close to visual
scoring in assessing senescence dynamics in wheat, aiming at predicting
grain yield and grain protein concentration [44].

Here, we evaluated the potential of non-invasive high-throughput
HSI in predicting the concentration of 15 mineral elements (C, B, Ca, Cd,
Cu, Fe, K, Mg, Mn, Mo, N, Na, P, S, Zn) in leaves of the HEB-25 popu-
lation, sampled during plant development in the field. Values for R?,
MRE and heritability of the predicted leaf nutrient concentrations were
estimated to characterize prediction quality. We developed several
derived traits on the basis of predictions, describing the kinetics of leaf
nutrient remobilization, and correlated them to plant developmental
and yield component traits to elucidate their interdependence.

2. Materials and methods
2.1. Plant material

The wild barley nested association mapping (NAM) population ‘Halle
Exotic Barley’ (HEB-25) was used in this study. HEB-25 originated from
crossing 25 diverse wild barley accessions (Hordeum vulgare ssp. spon-
taneum and H. v. ssp. agriocrithon) with the German elite spring barley
cultivar Barke (Hordeumv. ssp. vulgare, released in 1996 by breeder
Breun). HEB-25 comprises 1,420 BC1S3 derived lines, grouped into 25
families with 22-75 lines per family [25]. Additionally, a number of 13
control cultivars were included in the study, namely Barke, Catamaran,
Grace, KWS Iri, Marthe, Milford, Propino, Quench, Salome, Simba,
Eunova, Planet and Scarlett, and four introgression lines originating
from a cross between Scarlett and the wild barley accession ISR42-8
(Hordeum v.ssp. spontaneum), namely IL_119, IL_127, IL 130, IL_176
[45].

2.2. Field trials and trait scoring

The HEB-25 population and controls were grown in Halle (Germany;
51°29°46.24" N, 11°59°27.70" E) during two years (2016 and 2017),
following an incomplete randomized block design. In both years, HEB-
25 lines and control genotypes were sown in a total of 1,437 plots per
treatment, i.e. 5,748 field plots across two years and two treatments per
year. Plot size was 0.3 m?, made of a double row with 30 seeds per single
row, a spacing of 0.20 m between rows and a plot length of 1.50 m. In
2016, plants were grown under two nitrogen (N) fertilization treatments
(NO = without fertilizer; N1 = with fertilizer). In NO, the concentration
of plant available nitrogen in soil (Npi,) was 30 kg/ ha (based on
extracting ammonium and nitrate N with calcium chloride from a 90 cm
soil sample, taken in February of each trial year). After measuring Npp,
the N1 block was fertilized with 60 kg/ha of calcium ammonium nitrate
(ENTEC26, Eurochem Agro) to achieve a targeted available nitrogen
level of 90 kg N/ha. Fertilization was carried out two weeks after sow-
ing. In blocks NO and N1, the herbicide Biathlon 4D® was applied at
shooting stage, the herbicides DUANTI® and Axial 50® as well as the
fungicide Adexar® and the insecticide Sumicidin Alpha EC® were
applied during grain filling stage. All treatments followed local practice.

In 2017, Npin was 70 kg/ha before fertilization. Due to this very high
Nmin content no significant difference in soil Ny, could be realized since
spring barley is supposed to grow with an available nitrogen level be-
tween 60 and 120 kg N/ha. The experimental setup for 2017 was, thus,
changed in such a way that field blocks were not differentiated based on
nitrogen fertilization. Instead, the two blocks were distinguished based
on the absence (Fun0) and presence (Funl) of fungicide treatment. In
block FUNO, the herbicide Biathlon 4D® was applied at shooting stage.
The herbicide Axial Komplett® and the insecticide Sumicidin Alpha EC®
were applied during flowering time. In addition, the herbicide
DUANTI® was applied during grain filling stage. In block FUN1, the
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herbicide Biathlon 4D® was applied at shooting stage. The fungicide
Vegas® Proline, the herbicide Axial Komplett® and the insecticide
Sumicidin Alpha EC® were applied during flowering time. In addition,
the fungicide BONTIMA® and the herbicide DUANTI® were applied
during grain filling stage. All treatments followed local practice. The
fungicides were selected based on their effectiveness against the barley
foliar diseases powdery mildew (Blumeria graminis), leaf blotch (Rhyn-
chosporium secalis), leaf rust (Puccinia hordei) and net blotch (Pyr-
enophora teres). Moreover, these fungicides have no known stay-green
effect, as it is the case for other commonly used fungicides. No additional
nitrogen fertilizer was applied to blocks Fun0O and Funl. Growth regu-
lators were not used. In 2016, sowing took place on March 14 and 15 and
harvesting by hand started on July 04, lasting 2 weeks. In 2017, sowing
took place on March 27 and 28 and harvesting by hand started on July
18, lasting 2 weeks. Field management was in accordance with local
practice.

Plant development and yield formation of the studied lines were
characterized by eight trait parameters (Table 1). The traits were
determined as follows: time to shooting (SHO): number of days from
sowing until the first node is noticeable 1 cm above soil surface for 50 %
of all plants of a plot; time to heading (HEA): number of days from
sowing until emergence of 50 % of ears on main tillers of a plot; time to
maturity (MAT): number of days from sowing until grains reach hard
dough stage where grain content is firm and fingernail impression is
held; plant height (HEI): average plant height of a plot at maturity,
measured from soil surface to tip of the erected ear excluding awns; ears
per m? (EAR): number of ears per m?, counted in a representative 50 cm
frame in the middle of a row and extrapolated to 1 m?; grains per ear
(GEA): number of grains per ear, counted with a MARVIN optical seed
analyser (GTA Sensorik GmbH, Neubrandenburg, Germany) from a
representative sample of 10 ears per plot; thousand grain weight (TGW):

Table 1

List of plant phenotypic traits. Nutrient concentrations are given in ppm (ug/g
dry weight) for all nutrients except for N and C. The latter are given in % (g/100
g dry weight, DW). BBCH is a scale for plant developmental stages [66].

Trait category Abbreviation  Trait Explanation Unit
SHO Shooting (BBCH 31) days after
sowing
Plant HEA Heading (BBCH 49) days after
sowing
development days after
MAT Maturity (BBCH 87) .
sowing
HEI Plant height cm
EAR Ears per square meter ears/m?
Yield GEA Grains per ear grains/ear
components TGW Thousand grain weight g
YLD Grain yield dt/ha
A Leaf sampling at shooting stage
(BBCH 31-39)
B Leaf sampling at heading time
Stages (BBCH 49-59)
c Leaf sampling at grain filling
(BBCH 71-77)
D Leaf sampling at maturity
(BBCH 89-92)
Leaf nutrient concentration at
Ac shooting Hs/g DW
Leaf nutrient concentration at
Be heading He/g DW

Stage traits . .
Cc Leaf nutrient concentration at /o DW
: grain filling He’e

Leaf nutrient concentration at

D maturity Hs/g DW
BC.a Area (integral) from B.c to C.c (/g DW) »
days
Kinetic traits CD.a Area (integral) from C.c to D.c ffl";ir/sg Dw) «
DW) «
BCD.a Area (integral) from B.c to D.c g;i/sg W)
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calculated from weighing the MARVIN optical seed analyser grain
sample (explained under GEA) and extrapolating to the weight of 1000
grains; grain yield (YLD): total grain yield in dt/ha, determined after
hand harvesting grains from the full plot.

2.3. Nutrient analysis via wet-lab chemistry

In this study, 15 traits of nutrient concentration in leaves were
investigated, including the concentration of macro elements nitrogen
(N), phosphorus (P), potassium (K), carbon (C), calcium (Ca), magne-
sium (Mg), sulfur (S), and micro nutrients boron (B), copper (Cu), iron
(Fe), manganese (Mn), molybdenum (Mo), sodium (Na), nickel (Ni) and
zinc (Zn). Leaf samples at four developmental stages were collected. The
developmental stages corresponded to plant shooting (stage A, BBCH
31-39), heading (stage B, BBCH 49-59), grain filling (stage C, BBCH 71-
77) and maturity (stage D, BBCH 89-92, Table 1). At stage A the youn-
gest leaves and at stages B to D flag leaves were sampled from five
representative plants per field plot. Leaf samples were immediately
frozen in liquid nitrogen and subsequently stored at —20 °C until
biochemical analysis. For nutrient analysis, the dried material obtained
from frozen leaves was placed in 20 mL vials (HDPE, Zinsser Analytic
GmbH, Frankfurt am Main, Germany) and homogenized with two
stainless steel balls (8 mm diameter, Miihimeier GmbH & Co. KG,
Barnau, Germany) for one min. at a frequency of 30 Hz using a Retsch
mixer mill MM 400 (Retsch GmbH, Haan, Germany). For C and N, 1.5
mg of homogenized material were analyzed by a Euro EA300 (Euro-
Vector, Pavia, Italy), based on the principle of Dumas [46], using the
software Callidus version 5.1. For calibration, the standard 2,5-Bis-(5--
tert-butyl-2-bezo-oxazol-2-yl)thiophen with 72.52 % C and 6.51 % N
was used (HEKAtech GmbH, Wegberg, Germany). For the analysis of B,
Ca, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, S and Zn, the homogenized material
(10 mg) was weighted into PTFE digestion tubes and added with Nitric
acid (1.0 mL; 67-69 %, Bernd Kraft, Duisburg, Germany). After a 4-h
incubation, the samples were digested under pressure using a
high-performance microwave reactor (UltraClave 4; MLS, Leutkirch,
Germany). The digested samples were transferred to Greiner centrifuge
tubes and diluted with de-ionized (Milli-Q®) water to a final volume of
8.0 mL. The elemental analysis was carried out by High Resolution
Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS; ELEMENT
2, Thermo Fisher Scientific, Dreieich, Germany) with Software version
3.1.2.242, using a SC-2 DX Autosampler (ESI, Elemental Scientific,
Mainz, Germany). A six-point external calibration curve was set from a
certified multiple standard solution (Bernd Kraft, Duisburg, Germany).
The elements Rodium (Rh) and Germanium (Ge) were infused online
and used as internal standards for matrix correction. The measuring unit
of leaf nutrient concentration is micrograms per gram of dry weight,
except for N and C, whose concentration is expressed in percentage
(weight/leaf dry weight).

2.4. Field hyperspectral imaging

Hyperspectral imaging in the field was performed using the field
sensor platform AgRover, developed by Fraunhofer IFF as an instance of
its HawkSpex® Scan technology (Fig. 1). Per developmental stage
hyperspectral reflectance data were collected within two days from all
field plots together with wet-lab sampling of leaves from approximately
15 % of randomly selected plots per stage. The wet-lab samples were
used for subsequent model generation (see below). The AgRover is a
novel multimodal field sensor system for high-throughput phenotyping
of plant development in field trials. The sensor system collects hyper-
spectral, RGB and depth data at a measuring distance of 1 m above the
barley plants. Leaf reflectance spectra were acquired by a hyperspectral
camera (HySpex SWIR 384, Norsk Elektro Optikk, Norway), with 288
channels in the range of 1,000 to 2,500 nm. The camera system can be
flexibly positioned over the plots to be measured via an extension arm.
Absolute GPS-position of the measurement system was provided by a
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HEB-25 field trials, o

Halle 2016 & 2017,

hypespectral imaging of

all plots
2,874 plots p.a.
Leaf samples Wet lab
from appr. » nutrient
15% of plots analysis

A) HEB-25 field trial 2016 at Halle, including
2,874 plots.

8) B) The AgRover is a novel multimodal field

sensor system for high-throughput

phenotyping in field trials. The sensor
system collects hyperspectral, RGB and
depth data at a measuring distance of appr.

1 m above plants.

C) Leaf reflectance spectra are collected

through a hyperspectral camera (HySpex

SWIR 384, Norsk Elektro Optikk, Norway)

with 288 wavelength channels in the range

of 1,000 to 2,500 nm.

D) D) Workflow of leaf nutrient prediction.
Plants were cultivated in 2,874 plots p.a.
Hyperspectral imaging data with AgRover
and, in parallel, leaf samples from appr. 15%
of plots were collected at four
developmental stages. Modeling of leaf
nutrient concentration was based on partial
least squares regression (PLS), radial basis
function network (RBF) and multilayer
perceptron (MLP).

o

Fig. 1. Hyperspectral imaging and modeling of leaf nutrient concentration in HEB-25. A) HEB-25 field trial 2016 at Halle, including 2,874 plots. B) The AgRover is a
novel multimodal field sensor system for high-throughput phenotyping in field trials. The sensor system collects hyperspectral, RGB and depth data at a measuring
distance of appr. 1 m above plants. C) Leaf reflectance spectra are collected through a hyperspectral camera (HySpex SWIR 384, Norsk Elektro Optikk, Norway) with
288 wavelength channels in the range of 1,000 to 2,500 nm. D) Workflow of leaf nutrient prediction. Plants were cultivated in 2,874 plots p.a. Hyperspectral imaging
data with AgRover and, in parallel, leaf samples from appr. 15% of plots were collected at four developmental stages. Modeling of leaf nutrient concentration was
based on partial least squares regression (PLS), radial basis function network (RBF) and multilayer perceptron (MLP).

highly accurate GPS (R10, Trimble®, Sunnyvale, CA, USA) (resolution:
0.03 m). For the establishment of defined lighting conditions, the cam-
era system is encapsulated in a shading box to protect it from external
ambient light. Inside the measuring box, a halogen light source ensures
homogeneous illumination of the measuring field. Two 300 W short-
wave spotlights with a broad power spectral density were installed
(Hedler C12, Hedler Systemlight, Runkel/Lahn, Germany). A PTFE
Spectralon (54.5 x 35 cm) was used as a calibration standard covered
with a borosilicate glass for protection.

2.5. Prediction of nutrient concentration via hyperspectral imaging, data
processing and machine learning

Hyperspectral image cubes were processed by the automated work-
flow system AutoML platform HawkSpex® Flow developed by the
Fraunhofer IFF. In order to obtain reflectance values, each measurement
contains a calibrated white target with known reflectance, which was
automatically marked and extracted. Reflectance calculation was per-
formed using

P ¢
L —Ipc

where I, is the image pixel intensity at wavelength A, I’C the intensity

when measured with closed shutter (“dark current”) and I{V being the

intensity while recording a white calibration target.

For modeling, the pixels that represent the leaf material were
extracted from the reflectance hyperspectral images by a multistage
segmentation process. In the first step, plant material was isolated from
the general background (soil, white target, etc.). In the second step, the
plant material was segmented into barley and weeds. In the last seg-
mentation step, the plant material of barley was reduced to the leaves.
Stems and, in later stages of development, pronounced ears were
removed. For segmentation, a machine learning model based on the
reflectance image was trained to classify each spectral pixel. Different

configurations of Multilayer Perceptron (MLP) models and Radial Basis
Function Network (RBF) were used (see Table S1). The labeling of the
spectral images was carried out with the help of a combination of un-
supervised clustering algorithms and manually segmentation.

For each plot a mean spectrum over 1,000 spectral samples was
calculated and was assigned to its corresponding nutrient concentrations
value, determined by wet chemistry. This procedure generated the
sample-target assignment needed for machine learning.

In this study, several regression machine learning models were tested
to predict the leaf nutrient concentration in barley (see Table S1). Due to
computational demand, only 30,000 spectra per dataset were used in the
modeling. The ‘leave-one-out’ validation scheme was applied. The co-
efficient of determination (R?) was used as a performance criterion for
the prediction. R? was defined as the squared Pearson correlation
coefficient:

R = (M)z

6,0,

where p; is the nutrient concentration prediction for sample i, while o; is
the ground truth target (observed) nutrient value with p and o being
their respective averages, and o, and 6, being their respective standard
deviations. In order to better evaluate the prediction performance, other
parameters were also used as a further valuable quality measure: the
mean relative error (MRE) between target and prediction over all ob-
servations, and the residual prediction deviation (RPD). Furthermore, a
remobilization index (RI) was developed for this study in order to
evaluate the impact of nutrient concentration variation on R%, MRE and
RPD. MRE, RPD and RI were calculated according to the following
formulas:

1L pi — ol
MRE = — —_—

0;
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Z?—l(\l’i - ol - W)Z

N -1

RPD = SD/SEP ; SEP =

_ |max(mA, mB, mC, mD) — min(mA, mB, mC, mD) |

RI
max(mA, mB, mC, mD)

where: N is the number of samples; o, observed value; p, predicted value;
SD, standard deviation of observed values; SEP, standard error of pre-
diction; mA, mB, mC, mD are the median values of nutrient concentra-
tion at developmental stages A, B, C and D, respectively.

Reflectance spectra from leaves in close-range imaging are highly
influenced by plant geometry and its specific alignment towards the
imaging system. This induces high uninformative variability in the
recorded signals, whereas the spectral signature informing on plant
biological traits remains undisclosed [47]. To reduce this uninformative
variability, two normalization methods were applied to the spectra,
namely the Standard Normal Variate (SNV) and the L2 normalization,
according to the formulas:

R;,
YR’

A

Vector L2 Normalization : R}? =

R, —4> Ry
Vector SNV Normalization : RSN = .

3 (ragn)

where R, is a row vector containing the original spectrum and N the
number of the observed wavelength (A) [47].

In the comparison of the vector normalization methods, the vector L2
normalization showed the best prediction results and was used in our
analyses.

For the prediction of leaf nutrient concentration, for each nutrient a
one-year and a two-year model were trained. The model validation
showed that the Partial least squares regression (PLS) model performed
best in all cases, except for the predictions for Cu, S, Zn in 2016 and the
two-year model for K, which are based on MLP models. For each nutrient
prediction the best evaluated model was used. Model training was per-
formed using the AutoML platform HawkSpex® Flow developed by the
Fraunhofer IFF. Table S2 indicates the number and percentage of wet-
lab and predicted field plots generated per year and developmental
stage.

2.6. Measuring phenotypic traits across four developmental stages

For a deeper analysis of the processes involved in nutrient remobi-
lization from leaf, the values of nutrient concentration at different stages
were used to calculate three kinetic parameters per nutrient describing
the change of leaf nutrient concentration during plant development
(here denoted as ‘kinetic traits’; see Table 1). Kinetic traits were ob-
tained for every field plot by calculating the integral of the nutrient
concentration curve delimited by stages B and C (BC.a), C and D (CD.a)
or B and D (BCD.a). Stage A values were excluded from calculation,
because the dataset at this stage was unbalanced between the two
experimental years (in 2016 only wet-lab data were available, as pre-
dictions were not possible due to low spectra quality).

2.7. Statistical analyses

Best linear unbiased estimators (BLUEs) of plant development traits,
yield components, stage and kinetic traits were estimated across years
by applying a mixed linear model in SAS 9.4 (SAS Institute Inc., Cary,
NC, USA, PROC MIXED), with fixed effects for genotype (i.e. 1,420 HEB
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lines), random effects for year (i.e. 2016 and 2017) and random inter-
action effects of genotype x year [36]. To estimate variance components,
all effects were assumed to be random (PROC VARCOMP). Broad-sense
heritabilities across years were estimated based on variance components
as:

h? = Vg / (Vg + Vayly + VRIyD),

where Vg, Vgy and Vg represent the variance components genotype,
genotype x year, and error, respectively. The terms y and r indicate the
number of years and replicates, respectively. Pearson’s correlation co-
efficients (r) based on BLUEs were calculated with PROC CORR.

Although for leaf nutrient concentration only positive values can be
expected, calculation of BLUEs lead to negative values in some cases
where input values were close to zero. Negative values were converted
to zero. This occurred in 3.7% of all calculations (one for B, one for Fe,
18 for Na, 457 for Ni). Analysis of Variance (ANOVA) was performed in
R language [48] via the Anova() function from car package.

2.8. Genome-wide association study (GWAS)

A genome-wide association study was conducted for stage and ki-
netic trait BLUEs across both experimental years, based on 50k Illumina
Infinium iSelect SNP Array data [49]. For this, a multiple linear
regression model was applied using SAS 9.4 Software (SAS Institute Inc.,
Cary, NC, USA) and Proc GLMSELECT [50]. The procedure selects the
best model by including and excluding SNPs as co-factors through
stepwise forward and backward regression. SNPs were allowed to enter
or leave the model at each step until the Schwarz Bayesian criterion
could not be reduced further. SNPs included in the final model are
hereafter referred to as significant SNPs. The SNP effect estimate can be
interpreted as the allele substitution effect (x) and represents the
regression coefficient of the respective SNP in the final model. Based on
the final model, a fivefold cross-validation (CV) was run 20 times to
increase the robustness of the model selection. For each of the 100 CV
runs, the model was trained on 80 % of genotypes (randomly selected)
and validated on the remaining 20 % of genotypes. The mean squared
Pearson product-moment correlation between observed and predicted
phenotypes (R?) in the training set was used to estimate the explained
phenotypic variance in the GWAS model (thrain), while the R? of the
validation set was used as an estimate of the model prediction ability
(szal). The statistical significance of marker-trait associations (MTA)
was determined applying the Bonferroni-Holm method [51]. Significant
MTA were accepted with Pgon.norLm<0.05. For every marker, the num-
ber of significant MTA counted across all CV runs was defined as
detection rate (DR), and used to evaluate the robustness of the
marker-trait association. For every trait, significant markers (at DR >
50) located within an interval <10 cM were combined to one QTL. The
effect of wild alleles in comparison to domesticated alleles was reported
as relative value (in percentage) and denoted as relative performance
(RP).

3. Results and discussion
3.1. Kinetics of leaf nutrient concentration

Leaf concentrations of 15 nutrients were determined for 1,420 HEB
lines, four introgression lines and 13 control cultivars. In total, nutrient
concentrations from 2,591 HEB-25 plots, across two years (2017 and
2018), two treatments per year(NO and N1 in 2016, respectively, Fun0
and Funl in 2017) and four stages per treatment (A to D, i.e. shooting,
heading, grain filling and maturity), were measured by wet-lab chem-
istry with an average of 161.9 wet-lab plots per year x treatment x stage
combination (Tables S2 and S3). Wet-lab data were acquired for all
nutrients at every stage, except for N, whose concentration could not be
determined at stages C and D in 2017 for technical reasons (Table S3). In
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addition, hyperspectral imaging data were collected for all field plots
during the developmental stages plant shooting (A), heading (B), grain
filling (C) and maturity (D), in parallel to collecting wet-lab samples
(Table 1). Only at stage A in 2016, hyperspectral image data could not be
collected due to technical failures of the hyperspectral camera system
caused by improper set up of the camera or scatter sunlight on the
image. In order to achieve a nearly full data set of leaf nutrient con-
centrations for all field plots, wet-lab data and hyperspectral imaging
data were, subsequently, used to successfully model nutrient concen-
trations by applying machine learning methods for 14,653 HEB-25 plots
(for details see chapter 3.2 and Tables S2 and S4). To our knowledge this
experiment is among the largest field trials to model leaf nutrient con-
centrations based on hyperspectral imaging and machine learning.
Grzybowski et al. concluded that the adoption of hyperspectral imaging-
based phenotyping in quantitative genetics of crops may accelerate the
study of genes controlling natural variation in biochemical and physi-
ological traits [52]. In this regard, researchers can apply a wide range of
imaging platforms [53-55] and machine learning routines [56,57],
including rover-based hyperspectral imaging and PLS models as used in
our study.

As a first level of validation, we verified if the predicted nutrient
values of field plots achieved realistic values compared to wet-lab data.

A
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The range of predicted values was similar to the range of wet-lab data for
every combination of treatment x stage for all nutrients, except N and C
(Fig. S1A). At stages C and D in 2017, the predicted N concentration
values barely showed the decrease along stages that we would expect
from N remobilization from leaves to grains. Also, the predicted values
of C concentration at stage D were far higher than the range in the wet-
lab C data. Most likely, these discrepancies were caused by the absence
of wet-lab data for C and N concentrations at stages C and D in 2017.
Applying a two-year model based on the combined datasets of 2016 and
2017, resulted in predicted N and C concentrations for 2017, which were
much closer to the predictions in 2016 (Fig. S1B). For this reason, wet-
lab and predicted values of leaf nutrient concentration were combined
across treatment x stage combinations in one-year models, except for N
and C at stages C and D in 2017, for which the results from a two-year
model was used.

For all nutrients, the concentration levels were significantly different
among stages (Tukey test, confidence level of 95%), except for Ni, whose
concentrations did not differ among stages A, B and C (Fig. 2A).
Although the dataset for stage A is incomplete, it is included in Fig. 2 in
order to delineate patterns of nutrient remobilization. By focusing
mainly on the large variations among stages, it was possible to distin-
guish six different patterns of nutrient remobilization (Fig. 2B). N, P and
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Fig. 2. Leaf nutrient remobilization during plant development based on the whole dataset (wet-lab and predicted data). A) Box whisker plots of single values of leaf
nutrient concentration per stage (A, B, C, D). Nutrient concentrations are given in ppm (ug/g dry weight) for all nutrients except for N and C. The latter are given in %
(g/100 g dry weight). B) Description of nutrient remobilization patterns.
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K leaf concentrations gradually decreased from stages A to D, indicating
that the remobilization of these elements was initiated already before
heading time. Ca and B concentrations increased from stages A to C, and
then dramatically decreased from stages C to D. Mg, S, Cu and Zn con-
centrations were quite stable from stages A to C, and then decreased
from stages C to D. In contrast, Fe, Mn, Mo and Ni values were stable
from stages A to C and increased from stages C to D. The concentrations
of C remained quite stable along the whole plant development. The
pattern of Na was particular, as its leaf concentration decreased mainly
from stages A to B, being quite stable from stages B to D.

Reports on leaf nutrient remobilization during plant development is
sparse regarding the investigated nutrients, plant species and growth
conditions. Nevertheless, it seems clear that several plant species differ
substantially for their patterns of leaf nutrient remobilization. For
example, Siedliska et al. reported on a hyperspectral imaging trial with
three plant species to predict phosphorus concentration in leaves over
five stages of plant development [58]. Applying machine learning al-
gorithms they could show that the lowest prediction accuracy was ob-
tained for the earliest measured stage of plant development. They found
varying correlations between leaf nutrient concentrations among the
studied species. Total chlorophyll, for instance, showed high correla-
tions (r>0.7) with Mg, K and N in sugar beet but not in celery or
strawberry. Maillard and co-authors carried out a comparison of leaf
remobilization of macro nutrients and micro nutrients among eight
plant species, including barley and wheat, under field conditions [59].
In this study, the nutrient concentration of flag leaf was analyzed from
about 40 % until 100 % of leaf life span. Taking into account that flag
leaves are already unrolled at BBCH 39, the curve of nutrient concen-
tration reported in the study covers a plant life period spanning
approximately from our stages B to D. The gradual decrease of the macro
nutrients N, P and K in leaves (Fig. 2) is in accordance with Maillard
et al. [59] who reported that more than 80 % of the apparent N, P and K
were remobilized. Also, the decline of Ca, Mg, S, and, to a lesser degree,
of Zn and Cu from grain filling to maturity (stages C to D) and the lack of
remobilization of Fe, Mo and Ni in our study confirm their findings. It

Table 2
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was shown that Fe remobilization in senescing barley leaves may be
stimulated by N deficiency, due to an increased phytosiderophore syn-
thesis [60]. Others reported that remobilization of Zn from leaves to
grains is substantial in barley [61]. The only remobilization not
confirmed by Maillard et al. [59] is Mn, which was reported to decrease
during leaf senescence, as opposite to our data. Considering that the
results of Maillard et al. are exclusively based on biochemical analysis,
the similarity of nutrient remobilization patterns between the two
datasets supports the reliability of our model predictions based on field
hyperspectral imaging.

The relative contribution of stages (A to D), experimental year,
treatments (NO, N1, Fun0, and Funl), fungicide application (NO, N1
andFunl) and soil N level (NO vs remaining values) to the total variation
of leaf nutrient concentration was evaluated by eta squared statistic,
based on ANOVA analysis (Tables S5-S8). Based on one-way ANOVA, at
average the stages accounted for 57.6 % of nutrient concentration
variation, while treatment, year, soil N level and fungicide only for 13.1,
11.3, 6.9 and 2.5 %, respectively (Tables S5 and S6). The interaction
effect of stages with treatment and year was analyzed by two-way
ANOVA and resulted to be slightly higher than 10 %, both for treat-
ment and year factors (Tables S7 and S8). From both analyses, it is clear
that stages accounted for most of the total variation, whereas different
levels of soil N amount and the use of fungicide had only a minimal
effect on leaf nutrient concentration.

The best linear unbiased estimator (BLUE) values of all investigated
traits were determined along the four treatments for every barley line,
based on the whole dataset (wet-lab and predicted data). Table 2 shows
the descriptive statistics of BLUEs, coefficient of variation (CV) and
heritability (h?) of stage and kinetic traits. Kinetic traits showed
consistently higher heritabilities than stage traits (Table 2). In partic-
ular, h? for BC.a reached at least values of 0.8 for all nutrients except K,
B, Fe, Mo, Na and Ni, thus indicating that leaf nutrient remobilization
from heading until grain filling is highly heritable. Thus, the mere value
of nutrient concentration is not optimal for genetic analyses, as kinetic
traits have the advantage of higher heritability. For all nutrients, except

Descriptive statistics of stage and kinetic traits for macro nutrients and micro nutrients including number of observations (N), BLUEs (Mean), standard deviation (SD),
minimum (Min), maximum (Max), coefficient of variation (CV) and heritability (h?). Traits are explained in Table 1.

Macronutrients

Micronutrients

Nutrient Trait N Mean SD Min Nutrient Trait N

Mean SD Min

CV scale

B.c 1,436 4.2 0.1 3.7
Cc 1,437 3.7 0.1 3.2
D.c 1,437 14 0.2 0.9

B.c 1,435
Cc 1,437
D.c 1,437

27.0 8.4 0.0
712 12.0 283
157 5.3 26

BC.a
cpa
BCD.a

1,436
1,437
1,436

49.4
9.2
145.5

15
3.7
4.9

B.c
cc
D.c
BC.a
cDa
BCD.a

1,436
1,437
1,437
1,436
1,437
1,436

2,141
1,805
721
24,625
47,278
71,828

161
168
148

2,097

471

6,852

15,617
23,916
39,456

B.c
Cc
D.c
BC.a
Cpa
BCD.a

1,436
1,437
1,436
1,436
1,437
1,436

19,834
15,523
2,402
2,08,827
4,08,003
617,078

1,682
1,773
868
22,877
51,777
74,895

14,172
10,276
26
1,30,746
2,57,565
3,57,071

B.c
cc
D.c
BC.a
cDa
BCD.a

1,436
1,437
1,437
1,436
1,437
1,436

440
432
443
534.2
11335
1667.0

03
03
0.5
2.8
7.5
8.6

423
413
42,0
522.6
1082.0
16135

B.c
Cc
D.c
BC.a
Cpa
BCD.a

Ca

1,436
1,437
1,436
1,436
1,437
1,436

8,023
13,562
5,850
1,37,000
3,45,151
4,81,760

1325
1,555
916
19,240
43,886
63,666

2,732
6133
2,743

53,384

1,39,903

187,712

11,060
2,28,073
6,16,662
8,44,253

B.c
cc
D.c
BC.a
cDa
BCD.a

1,436
1,437
1,436
1,436
1,437
1,436

1137
1,449
384
17,338
36,916
54,230

97
119

1,448
3,465
5,051

719
767
113

10,943

19,599

24,929

1,775

B.c
Cc
D.c
BC.a
cpa
BCD.a

1,436
1,437
1,437
1,436
1,437
1,436

2,794
2,957
910
37,671
76,453
1,14,279

141
145
121

1,703

4,394

5,887

2,146
2,079
484
29,697
43,153
67,676

16.5

15.7
14.0

BC.a
cpa
BCD.a

1,435
1,437
1,435

717.1
1,805.3
2,5280

158.9
357.9
5432

B.c
cc
D.c
BC.a
cba
BCD.a

1,436
1,437
1,437
1,436
1,437
1,436

74
7.0
5.0
873
182.6
269.8

04
0.4
0.7
43
10.0
13.8

B.c
Cc
D.c
BCa
cpa
BCD.a

1,429
1,436
1,437
1,421
1,434
1,412

106.2
1277
872.7

1,393.1

3,295.2

4,683.0

343
36.6
294.0
407.4

,026.3
,483.7

323
287 0.14
337 069
292 0.34
311 034
317

Mn

B.c
cc
D.c
BC.a
cDa
BCD.a

1,436
1,437
1,437
1,436
1,437
1,436

15.3
16.4
221
204.8
4251
632.1

15
15
6.1
19.0
433
60.6

Mo

B.c
Cc
D.c
BCa
cpa
BCD.a

1,436
1,437
1,437
1,436
1,437
1,436

11
1.0
12
117
253
374

0.1
0.1
0.3
13
3.2
4.1

15.4
24.9

B.c
cc
D.c
BCa
cDa
BCD.a

1,436
1,437
1,433
1,436
1,437
1,436

2522
4253
1222
5,015.0
10,723.4
15,8317

844
1016
50.9

,345.1
,074.7
,636.9

0.0
0.0
0.0
0.0
0.0
0.0

574.4
14,837.2
37,7280
54,136.8

335

239 0.58
416 0.17
268 068
287 0.72
293 078

Ni

B.c
Cc
D.c
BCa
cpa
BCD.a

1,397
1,420
1,437
1,302
1,397
1,214

26
37
59.7
493
91.4
141.7

23
23
27.0
286
68.0
96.4

0.0
0.0
0.0
0.0
0.0
0.0

22,0
17.3
2572
2037
4343
662.3

86.6 021
609 025
452 070
58.0 0.32
744 025
68.0

B.c
cc
D.c
BC.a
cDa
BCD.a

1,436
1,437
1,437
1,436
1,437
1,436

17.5
16.4
74
2227
4219
646.8

11
14
11
156
44.1
59.1

9.2
102
32
84.4
191.7
2809

27.4]
297,
18.0
408.8
857.6

1,266.0,

0.45
0.41

15.3

300
40.0
50.0
60.0
70.0
80.0
90.0

0.30
0.40
0.50
0.60
0.70
0.80
0.90
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Ca and Ni, the trait exhibiting the largest variability was D.c, i.e. the leaf
nutrient concentration at maturity stage. In perspective of breeding
applications, high values of both phenotypic variability and heritability
are important for the potential use of a specific trait, although they are
often inversely proportional, similarly to many cases shown in Table 2.
At this regard, it is worth noticing that the D.c trait of N, P, B, Fe, Mn,
Mo, Ni and Zn exhibited a good compromise of variability (CV > 15 %)
and heritability (h? > 0.5). Similar heritabilities were reported by Herzig
et al. [43] based on hyperspectral imaging and modeling of nutrient
concentrations in barley grains. The authors reported highest herita-
bilities for Ca and N (h?>0.7) and medium heritabilities between 0.4 and
0.6 for 11 additional nutrients.

Stage and kinetic traits were then correlated to plant development
traits and grain yield components (Fig. 3 and Table S9). Leaf concen-
tration at maturity (D.c) of Cu, Fe, Mn, Mo and Ni showed negative
correlation (—0.56 < r < —0.44) to the duration of plant developmental
phases (SHO, HEA, MAT), indicating that a slow growth may lead to
depletion of these elements in the leaf (Table S9). D.c values of N, P, K,
Ca, Mg, S, B and Zn were slightly negatively correlated (r < —20) to
grain yield (YLD). Considering that grain nutrient concentration tends to
negatively correlate with YLD, the latter observation suggests the pos-
sibility that a high concentration in leaf of these nutrients at maturity
could lead to an increased concentration in the grain. This pattern is
more evident for N, as the correlation between its concentration at
stages D and YLD was the lowest among all nutrients (r = —0.39).
Regarding the correlations between nutrients, it is worth mentioning the
highly positive correlation among Cu, Fe, Mn, Mo and Ni concentration
at maturity, with r values ranging from 0.90 to 0.94. In Fig. 3, the cor-
relation among kinetic traits is separately presented for N, P, and K, as
these are the most important nutrients for breeders. Differently to all
other nutrients, all leaf traits of N, P and K, which include stages B and C,
are positively correlated at a moderate level (r ~ 0.4—0.6) with SHO,
HEA, MAT. This pattern suggests that a prolonged plant development is
required for the accumulation of N, P and K in leaf from heading to grain
filling. The C.c and kinetic traits of Cu follow a similar trend, as they are
moderately correlated to MAT (0.32 < r < 0.37) and clearly correlated
to the C.c and kinetic traits of P (0.56 < r < -0.44). In addition, for N the
D.c values show a clear positive correlation to the other stage and kinetic
traits (at r ~ 0.5), while for P and K, D.c is poorly correlated to the other
leaf traits. This indicates that N leaf concentration tends to follow
consistent trends along the whole plant development. i.e. a high value at
stage B tends to correspond to a high value at stage D. For P and K,
instead, trends are mainly consistent between heading and grain filling
phases, but not towards maturity .

Plant Science 315 (2022) 111123
3.2. Prediction of leaf nutrient concentration

The predictions of leaf nutrient concentration were based on a one-
year model, i.e. predictions related to single field plots were carried
out by using exclusively the wet-lab data of the same year. The predic-
tive model was first evaluated for the predictions carried out on the
known dataset, i.e. for the field plots, which were analyzed by wet-lab
methods. For this purpose, we employed two commonly-used parame-
ters, namely the coefficient of determination (R?) of the linear rela-
tionship between wet-lab and predicted data, and the mean relative
error (MRE) (Table 3). In many cases, R? and MRE were in agreement in
measuring the model performance, with low MRE values corresponding
to high R? values. In general, predictions of macro nutrient concentra-
tions were better than for micro nutrients. Most macro nutrients R?
values were higher than 0.70, while most of MRE values were lower than
0.25, indicating a high percentage (>70 %) of explained variance. In
most cases micro nutrients, instead, exhibited intermediate values for R
and MRE, indicating a lower prediction power if nutrient concentrations
are markedly reduced. Also Pandey et al. reported on predicting micro
and macro nutrients in maize and soybean leaves based on hyperspectral
imaging and PLS [62]. The authors found prediction accuracies com-
parable to our study with high R? values >0.80 for macro nutrients N, P,
K and S and lower R? values <0.73 for micro nutrients B, Fe, Mn, Na and
Zn.

However, in several cases R? and MRE appeared to be discordant, as
for instance predictions for C (very low R? and MRE values), and for B
and Fe (high R? and MRE values). For N, R? was very high (0.91), based
on 2016 data, whereas the value was very low (0.33) for 2017. When the
R? for N was estimated based on the combined data from both years
(‘2016 4 2017’ column in Table 3) the value was high (0.90). All values
of MRE for N, instead, were low, thus indicating high prediction quality,
particularly in 2017 data.

The contradictions between R? and MRE values prompted us to
critically analyze the reliability of these parameters as a measure of
model performance. As a working hypothesis, we supposed that a source
of error could derive by the nutrient remobilization in plants from stages
A through D, as it may cause high differences of data range among nu-
trients. For this reason, we developed a parameter estimating the range
of nutrient remobilization across stages for each nutrient (here denoted
as ‘remobilization index’ [RI]; explained in the Material & Method
section, paragraph 2.5) and tested its correlation with R? and MRE (Fig.
S2). In addition, a further parameter for the evaluation of model per-
formance was calculated, namely the residual prediction deviation
(RPD) [63]. R® was strongly correlated to RI (r = 0.82, Fig. S2) and only
moderately to RPD (r = 0.59), while the correlation to MRE was weak (r
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Table 3
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Coefficient of determination (R?) and mean relative error (MRE) of the predictions for leaf nutrient concentration based on PLS modelling or MLP modelling, the latter
indicated by *. ‘2016’ and ‘2017’ indicate the two experimental years. ‘2016 + 2017’ refers to R? and MRE values calculated on combined data from both experimental

years.
Nutrient R? 2016 R? 2017 R? 2016+2017 MRE 2016 MRE2017 | MRE 2016+2017 R? scale MRE scale
N 091 033 0.90 0.14 0.06 0.09
P 0.75 0.71 0.75 0.26 0.21 022 0.10
K 0.83 091 0.89 042 027 025 0.20 0.20
macronutrients C 0.30 0.30
Ca 0.63 0.69 0.65 024 024 025 040 0.40
Mg 0.69 063 073 029 023 0.26 050 0.50
s * 079 0.84 0.83 * 019 0.13 0.16 0.60 0.60
B 0.61 078 076 0.44 050 0.64 0.70 0.70
Cu *_ 067 0.17 038 *_ 017 0.15 0.15 0.80 0.80
Fe 0.60 0.70 0.68 0.47 0.59 0.65 0.90 -
micronutrients Mn 0.45 0.50 052 019 025 027 10 |
Mo 027 043 038 033 027 029
Na 039 044 057 086 H
Ni 034 068 0.66 078 025 032
Zn [ * o064 | 0.49 0.59 * 023 0.20 | 0.22 |

= 0.48). R? and RPD were strongly correlated to each other, MRE instead
was neither correlated to R? nor to RPD. The explanation for this pattern
has to be found in the formulas underlying R?, MRE and RPD. Both R?
and RPD are highly affected by the extend of data range. R? depends on
the difference between observed values and their mean, which in turn
increases with nutrient remobilization. Likewise, RPD depends on the
standard deviation of observed values (SD), whose value is also strongly
affected by remobilization. In contrast, MRE is based on the relative
difference between every observed value and the corresponding pre-
diction, and therefore it is independent of data range, and hence
remobilization. The weak positive correlation between MRE and RI can
be explained by the fact that a high remobilization implies in many cases
low nutrient concentration values at stage D, to which would probably
correspond an increase of technical error of biochemical and/or spectral
measurements. We conclude that, for the particular case of leaf nutrient
remobilization study, MRE, instead of R? and RPD, is a suitable
parameter for evaluating model performance.

By using MRE based on both experimental years as the main
parameter to judge model performance, we could recognize three clus-
ters of nutrient predictions: good prediction performance, at MRE below
0.20 for N, C, S, Cu; acceptable prediction performance (0.20 < MRE <
0.32) for P, K, Ca, Mg, Mn, Mo, Ni and Zn; low prediction performance,
at MRE greater than 0.60, for B, Fe and Na. The apparent contradiction
between non-optimal MRE values and high heritabilities (compare Ta-
bles 2 and 3) may be explained by the fact that the BLUEs estimation
probably leads to a compensation of prediction error.

3.3. Genome-wide association study (GWAS) of leaf nutrient
concentration

A GWAS was carried out on the BLUEs of leaf nutrient stages and
kinetic traits of population HEB-25 and its domesticated parent Barke.
The highest levels of prediction ability of the GWAS model were reached
for N, P, K and Ca (from 0.20 to 0.27), while among traits the highest
value was for BC.a (0.26) (Table S10). Table S11 shows the distribution
of the statistically significant marker-trait associations (MTA) along
different levels of detection rate (DR). A total of 23,087 MTAs was
detected for all nutrients along the six investigated traits. We applied a
threshold of DR > 50 % for selecting the most robust MTAs, thus
resulting into 278 highly significant markers (Table S12). The subset of
robust MTAs was quite evenly distributed across traits and across nu-
trients (Table S13). It is worth to notice the low number of significant
markers (9) for C, which is most likely due to the very low variance of
this element (Table 2). On the contrary, P and B are the nutrients with
the highest number of MTAs (30 and 31, respectively).

The markers included in the 278 robust MTAs were grouped to 44
QTLs (Table S14): 18 QTLs are associated to a single nutrient, while the
remaining ones are associated to more than one nutrient, in a range from

two up to 12. Within every QTL, the marker associated to the highest DR
score (DR max) was defined as the peak marker. The ten QTLs showing
the highest DR max values were then selected as genomic hotspots
(Table 4). Among the hotspots, QTL-4H-1 represents the case with the
highest potential for both agricultural applications and biological
insight. It is located at the telomeric region of chromosome 4H, ranging
from 3.77 to 6.24 Mbp. This QTL exhibited the highest possible value of
DR max, and was associated with the highest number of effected nu-
trients (12) among all QTLs, i.e. to all nutrients except C, S and Na.
Moreover, QTL-4H-1 included 44 out of the overall 278 significant
MTAs. In particular, the QTL-4H-1 peak marker
(JHI_Hv50k_2016_228144) included 25 MTAs. This observation
prompted us to a detailed analysis of the peak marker effect, i.e. the
mean relative performance of wild barley allele compared to the
domesticated (Barke) allele (Fig. 4A). The peak marker exerts positive
effects on N, P, K and Cu concentration in leaves, while negative effects
on Ca and B concentration. At this point, it is worth noticing that Ca and
B are the only nutrients showing a gradual increase of concentration in
leaf from stages A to C (Fig. 2), thus indicating a peculiar remobilization
physiology for these two elements.

In relation to these results, it is useful carrying out a QTL meta-
analysis by relating the relative performance of QTLs to all the
markers located within the QTL interval, whose effects on different
phenotypic traits were investigated in previous GWAS studies on grain
nutrient concentration in population HEB-25 (Table S15). QTL-4H-1
exerted positive effects on grain protein concentration (i.e. N bound in
proteins, free amino acids and other sources) and P, K, Ca, Cu, Fe, Mo
and Zn concentration in grains [43]. Therefore, the QTL-4H-1 effects on
N, P, K and Cu concentration are positive in both leaf and grain, while
for Ca the trends are opposite (negative effect in leaf, positive in grain).
Such a pattern supports the idea that a high nutrient concentration in
leaf during the overall plant development is required for increasing
nutrient concentration in the grain, at least for N, P, K and Cu. This
conclusion is in agreement to a previous study on wheat, reporting a
positive correlation between N concentration in flag leaves and in
mature grains [64]. In the latter study, leaf samples were collected 10
days after anthesis, which corresponds approximately to our stage C. In
our dataset, N C.c was positively correlated to all other stage and kinetic
traits, showing the highest value (r = 0.85) in relation to BCD.a (Fig. 3),
which is proportional to leaf N concentration from heading until
maturity stage, thus including a large part of plant development.
Consistently, the significant cases of relative performance of the
QTL-4H-1 peak marker include the BCD.a trait for all nutrients, and all
other traits always follow the same trend of BCD.a (Fig. 4A). In case of N,
the relative performance at stage D was remarkably higher compared to
the other N traits. Interestingly, the variability of N concentration at
stage D was 5-fold higher compared to all other stage and kinetic traits
(Table 2). This indicates that the D.c trait could have high potential for
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Table 4

Plant Science 315 (2022) 111123

List of ten hotspot QTLs exhibiting the highest value of detection rate along phenotypic traits (DR max) and the nutrients associated to each QTL. ,From (bp)‘ and ,Until
(bp)’ indicate the start and the end of the QTL interval based on barley reference sequence Refseq 1.0, given in Bayer et al. [67].

QTL Chr DR max Peak marker From (bp) Until (bp) Nutrient
QTL-2H-2 2H 98 JHI_Hv50k_2016_72947 22.225.428 33.900.600 B, G, Ca, Fe, K, Mg, Mn, Na, P, S, Zn
QTL-2H-6 2H 89 JHI_Hv50k_2016_91278 174.057.696 613.635.962 C, Ca, Fe, K, Mg, Mo, Na, Ni, P, S
QTL-2H-9 2H 92 JHI_Hv50k_2016_116945 696.276.957 709.630.653 Ca, Mg, Zn
QTL-3H-4 3H 92 BOPA1_ABC04826_1_1_174 169.956.751 555.807.600 Ca, Cu, Fe, Mg, Mo, P, S
QTL-3H-5 3H 94 JHI_Hv50k_2016_204905 630.484.961 635.416.060 B, Cu, Mg, N, Na, Ni, P, S, Zn
QTL-4H-1 4H 100 JHI_Hv50k_2016_228144 3.772.432 6.238.496 B, Ca, Cu, Fe, K, Mg, Mn, Mo, N, Ni, P, Zn
QTL-4H-2 4H 97 JHI_Hv50k_2016_228496 7.421.617 10.682.174 B, N, Na
QTL-7H-1 7H 92 JHI_Hv50k_2016_443476 8.003.056 8.003.056 Cu
QTL-7H-2 7H 100 JHI_Hv50k_2016_460028 29.729.518 40.734.929 K, Mn, Na, P, Zn
QTL-7H-3 7H 97 JHI_Hv50k_2016_466006 52.114.280 62.976.250 Cu, N
was then decomposed into the contributions of single HEB-25 families.
A Peak marker effect Fig. 4B shows the distribution of the relative performance among fam-
. ilies on the trait exhibiting the highest absolute peak marker effect for
every nutrient. Family 17 induced the highest positive performance
q (27.9 %) on N concentration at stage D (N D.c) (Fig. 4B). Interestingly, N
o D.c showed the highest variability (CV = 15.9 %) among N traits and a
§ 0_. Em L1l Ill Nutrient good heritability value (0.59) (Table 2), thus suggesting potential for
E | HN breeding application. Family 12 induced the highest positive effect on P
| P .
-g ‘ — CD.a (16.8 %) and the lowest negative effect on Ca B.c (-19.8 %). The
8 ‘ HCa highest positive performance on K CD.a and Cu C.c were induced
B . o . .
_“2’ i i respectively by families 5 (21.0 %) and 16 (8.1 %), while family 15
S_10- . . .
% induced a remarkable negative effect on B B.c (-42.6 %). For all traits,
o almost all the remaining families exerted the same trend of relative
performance as the family with the highest absolute effect.
'202 4. Conclusion
QB TO0ETEOOTTTOLLATTQTLATE QT a .
0088058882 2808855888088%3838
Zzzmn_'l&mmxxxxmgs(:ggﬁmmmascg . 3 L. .
= = = 8 = 3 In a very large field experiment consisting of 5,748 field plots, we
Trait could successfully predict the change of leaf concentrations of 15 micro
B Family effect and macro nutrients over four developmental stages. For this, we used
G ] R N S TR appr. 15 % wet lab data for model training, field based hyperspectral
8- o imaging data and machine learning algorithms to model leaf nutrient
- 6 Y concentrations. Heritabilities of the studied nutrients included middle
s E and high values. The use of derived traits (kinetic traits) allowed a
3* 17 12 5 12 }5 16 mca further increasing of heritabilities for all investigated nutrients (except
2- \ : \ / \ % Eu Fe and Ni).
o ‘Ill | IIl ||]h TTRE W] I || Wet-lab and predicted values of leaf nutrient concentrations were
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Relative performance (%)

Fig. 4. Phenotypic effects of QTL-4H-1, expressed as relative performance of
the wild barley allele compared to the domesticated allele present in Barke. A)
Effects related to the peak marker. B) Decomposition of peak marker effect into
single HEB-25 family effect. Count, number of families showing the same value
of relative performance, rounded to the nearest unit. The number depicted in
every histogram in B indicates the family showing the most extreme value
(furthest from 0).

fine-tuning grain nutrient concentration. At this point, it is useful to
compare the nutrient effects between the QTL-4H-1 and the NAM-1
(NAC-type transcription factor) gene: both wild barley alleles induce an
increase of grain protein concentration; however, while the wild barley
allele at NAM-1 induces early senescence, the wild allele at QTL-4H-1
induces late senescence (i.e. 1-2 days more until maturity) [36].
Therefore, QTL-4H-1 may represent an additional tool for balancing
nutrient concentration and senescence. An interesting observation was
reported by Waters et al. [65]. The authors found that a major effect of
the NAM-B1 gene in wheat was the increased remobilization of nutrients
from vegetative tissue to grains. They showed that Fe and Zn remobili-
zation from wheat leaves was blocked in RNAi knockdown lines of the
NAM-B1 gene.

The relative performance of the QTL-4H-1 wild allele peak marker

consistent in delineating patterns of changes along plant development. A
prolonged plant growth until grain filling stage positively correlated
with the accumulation of N, P, K and Cu in leaf, which in turn may lead
to enhanced concentration of protein, P, K and Cu in grains. We iden-
tified a QTL (QTL-4H-1), which exerted a positive effect on the leaf
concentration of these nutrients. This QTL was previously reported to
have a positive effect also on protein, P, K and Cu concentration in the
grain. Moreover, QTL-4H-1 was associated to a slight delay of senes-
cence, thus possibly representing an additional tool together with the
NAM-1 gene for fine-tuning grain nutrient concentration and plant
development.

Our results sustain the reliability of high-throughput prediction of
leaf nutrient kinetics based on hyperspectral field imaging and subse-
quent application of machine learning modelling. We demonstrated its
potential for GWAS studies, aiming at understanding the genetic basis of
nutrient remobilization under varying environmental and agronomical
conditions. This may provide breeders a new tool for nutrient assess-
ment in large-scale field experiments to ultimately select genes and
genotypes better prepared for biofortification to increase nutrient con-
centration in harvested plant organs.
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