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Notation

Rn+ {x ∈ Rn| x ≥ 0}

a1, . . . , aM ∈ Rn Attracting facilities

w1, . . . , wM > 0 Weights of attracting facilities

B1, . . . , BM ⊆ Rn Unit balls assigned to the attracting facilities

B
∗
1, . . . , B

∗
M ⊆ Rn Dual unit balls of B1, . . . , BM

g : Rn → R Weighted sum of distances to attracting facilities

gH : Rn → R ∪ {+∞} Weighted sum of distances to attracting facilities considering a

constraints set H

a1, . . . , aM ∈ Rn Repulsive facilities

w1, . . . , wM > 0 Weights of repulsive facilities

B1, . . . , BM ⊆ Rn Unit balls assigned to the repulsive facilities

B∗1, . . . , B
∗
M ⊆ Rn Dual unit balls of B1, . . . , BM

h : Rn → R Weighted sum of distances to repulsive facilities

(P ) Unconstrained location problem with obnoxious facilities

I Primal grid points w.r.t. attraction

I Primal grid points w.r.t. repulsion

G Primal grid w.r.t. attraction



G Primal grid w.r.t. repulsion

X Set of optimal points of (P)

(D) Toland-Singer-dual problem of (P)

ID Dual grid points w.r.t. attraction

ID Dual grid points w.r.t. repulsion

GD Dual grid w.r.t. attraction

GD Dual grid w.r.t. repulsion

Y Set of optimal points of (D)

H Convex polyhedral constraints set

(PH) Constrained location problem with obnoxious facilities

IH Primal constrained grid points w.r.t. attraction

G
H

Primal constrained grid w.r.t. attraction

XH Set of optimal points of (PH)

(DH) Toland-Singer-dual problem of (PH)

IHD Dual constrained grid points w.r.t. attraction

G
H
D Dual constrained grid w.r.t. attraction

YH Set of optimal points of (DH)

(LV OP ) Primal linear vector optimization problem

(LV OD) Dual linear vector optimization problem

(LV OP ) Primal linear vector optimization problem related to attraction

(LV OD) Dual linear vector optimization problem related to attraction

(LV OP ) Primal linear vector optimization problem related to repulsion

(LV OD) Dual linear vector optimization problem related to repulsion



(W ) Classical Fermat-Weber Problem

intB Interior of a set B ⊆ Rn

riB Relative interior of a set B ⊆ Rn

bdB Boundary of a set B ⊆ Rn

ext(B) Set of extreme points of a set B ⊆ Rn

∂f(x) Subdifferential of function f at a point x

f∗ Conjugate function of f

σB Support function of a set B ⊆ Rn

γB(·) Gauge distance associated with unit Ball B ⊆ Rn

IB Indicator function of a set B ⊆ Rn

dom f Effective domain of function f

epi f Epigraph of function f

f1 � f2 Infimal convolution of the functions f1 and f2

NB(x) Normal cone to a convex set B ⊆ Rn at x ∈ Rn

B1 +B2 Minkowski sum of two sets B1, B2 ⊆ Rn

0+B Recession cone of the set B ⊆ Rn

〈·, ·〉 The usual inner product

2B Power set of a set B ⊆ Rn

|B| Cardinal number of a set B ⊆ Rn





Chapter 1
Introduction

The mathematical field of facility location has gained interest of many researchers who have

focused on formulations, geometrical properties and algorithms in a variety of discrete and

continuous settings. The goal of facility location problems is to locate a set of new facilities (re-

sources) such that distances, costs or time for satisfying some set of demands (of the customers)

with respect to some set of constraints is minimized.

The history of locational analysis can be traced back to the early 17th century, when Fermat

proposed the quest to find a point in the plane such that the sum of its distances to three given

points with weights equal to one is a minimum. Mathematicians such as Torricelli, Cavalieri,

and others took up the challenge to work on this problem.

Later on, in 1909, Weber considered the problem how to locate a single warehouse such that the

total distance between the warehouse and several customers is minimized [126]. In 1964, location

science attracted researchers interest with a publication by Hakimi (1964) [44], who wanted to

locate switching centers in a communications network and police stations in a highway system.

Further information about the history of location modeling can be found in the studies by

Drezner, Klamroth, Schöbel and Wesolowsky (2002) [31], Eiselt and Marianov (2011) [38] and

Wesolowsky (1993) [127].

Meanwhile, the problem of locating desirable facilities such as schools, hospitals, fire stations

or post offices has been extensively studied. A large overview on this question can be found

amongst others in the books by Drezner (1995) [29], Drezner and Hamacher (2002) [30], Eiselt

and Sandbloom (2004) [39], Hamacher (1995) [45], Love, Morris and Wesolowsky (1988) [78],

Nickel (2005) [97] and Zanjirani Farahani and Hekmatfa (2009) [130].

In many location models the criteria for finding an optimal location of one or more new facilities

have economical issues. The goal is to establish a desirable facility, for instance a new warehouse,

service center, post-office, supermarket or fire station, such that travel time or travel costs to a

certain amount of given customers are minimized. However, with people getting more and more

concerned about their living environment and its impact on health and safety, the undesirable

effects of certain types of facilities cannot be left aside. Examples for facilities that provide,

to some extent, a disservice to individuals and environment nearby are factories, hazardous
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facilities, (nuclear) power plants, chemical factories, dump sites, military installations, prisons,

airports or train stations, radio or wireless stations, alarm sirens and so on. Although such

facilities may obviously be necessary for certain aspects of social life, they may adversely affect

the quality of life of people or animals in the surrounding area caused by noise, traffic, stench,

pollution or even risk and serious danger. At the same time one cannot afford to select certain

sites too far away from the population areas.

In the literature those facilities are called (semi)-obnoxious; (semi)-desirable; push–pull (to use

the expressive terminology introduced by Eiselt and Laporte in [37]); or NIMBY (not in my

backyard) facilities. Although the history of location theory goes back to the 17th century,

the first attempts considering also undesirable facilities in location modeling appeared in the

1970’s by Goldman and Dearing (1975) in [43], by Church and Garfinkel (1978) in [27] and by

Dasarathy and White (1980) in [28].

A real world example referring to undesirable facilities is cited by Erkut and Neuman (1989) in

[42]: ”Although cost of power transmission and loss of power during transmission are important

issues, Hansen, Peeters and Thisse (1981) [53] point out that the French government chose to

locate half of the country’s nuclear power plants along the Atlantic coastline, and the Belgian

and German borders, at great distances from the large population centers.”

The conflicting objectives of locating a facility close to certain demand points and far from

others lead to consider models, which combine attracting and repulsive forces. A lot of models

have been studied in a great variety of aspects like solution space, distance measures or type of

objective. The general goal is to minimize the distances to attracting facilities and to maximize

the distances to repulsive ones.

In this thesis we consider a non-convex single-facility location problem in the Euclidean

space (Rn) with a single push–pull objective function.

We apply the duality theory by Toland (1978) [121] and Singer (1979) [112] for d.c. optimization

problems in order to obtain geometrical properties and duality results for location problems with

attraction and repulsion points. Using the special structure of the location problem, we further

give statements concerning the existence and attainment of finite optimal solutions as well as

a duality based algorithm for determining exact solutions of location problems with obnoxious

facilities.

To our best knowledge the duality theory by Toland and Singer seems to be never applied to

this kind of non-convex optimization problems in earlier published works.

This study is organized as follows: After proposing a brief overview of literature on location

problems with obnoxious facilities in Chapter 2 we introduce the considered location model (P)

in detail in Chapter 3. Subsequently, in Chapter 4 we provide basic definitions and properties

concerning distance functions (in particular gauge distances (Minkowski, 1911)), as well as

foundations from convex analysis [59, 60, 107] and d.c. optimization [2, 55, 57, 61, 80, 81, 82, 83]

including the duality theory by Toland (1978) [121] and Singer (1979) [112]. Afterwards, those

preliminaries are applied in Chapter 5 in order to formulate a dual problem (D) to the primal
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problem (P), and to give a necessary and sufficient condition for the existence and attainment of

finite optimal solutions as well as geometrical properties and duality statements. As known for

the classical location problem [36], we introduce the terms elementary convex sets and grids with

respect to attraction and to repulsion for both, the primal and the dual problem (P) and (D).

In Chapter 6, we apply results from the theory of geometric duality [56] in order to show how

primal and dual elementary convex sets are related to each other. Although, we are considering

a scalar optimization problem, we show in Chapter 7 that methods from the field of linear vector

optimization [5, 76, 51] can be applied in order to determine the primal and dual grid points

with respect to attraction and to repulsion. In Chapter 8 we extend our research such that

convex polyhedral constraints are considered. Based on the developed duality assertions and

the relationship between primal and dual elements we present a primal and a dual algorithm in

Chapter 9, which determine exact solutions of the dual pair of optimization problems (P) and

(D) by leading back the non-convex problems to a finite number of convex problems. Remarks

on the implementation of these algorithms in MATLAB are stated in Chapter 10. Finally, in

Chapter 11, a conclusion with remarks on possible future researches completes this thesis.





Chapter 2
A Brief Literature Overview and

Classification

Facility location models can differ in their objective function, the distance functions, the number

and size of facilities which are to be located, and several other decision indices. A great amount of

different kinds of location problems has been discussed in the literature during the last decades,

which makes it worth to classify them according to their main properties. Such a classification

scheme was introduced by Hamacher (1995) in [45] and by Hamacher and Nickel (1998) in [49]

(see also Hamacher, Nickel and Schneider (1996) [50]). The main properties can be specified by

pos 1/pos 2/pos 3/pos 4/pos 5

where

pos 1 declares the number of facilities to be located (single or multi facility location

problem);

pos 2 describes the solution space, e.g. a continuous space, a discrete space or a network;

pos 3 leaves room for special assumptions and constraints like equal weights, forbidden

regions or barriers;

pos 4 defines the type of distance function, for instance Manhattan distances, Euclidean

distances, mixed distances, lp–distances, gauge distances or barrier distances;

pos 5 announces the type of objective function, for instance single- or multi-objective,

median or center objective.

Some examples from the literature are given below to indicate the ability of the 5-position

classification scheme to describe various kinds of location models:

� The Fermat–Weber problem in the plane with forbidden regions as discussed by Nickel

(1995) in [96], Hamacher and Nickel (1995) in [48] can be classified by 1/P/R/lp/Σ.
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� The classification schemes 1/R2/B/dB/Σ and 1/R2/B/dB/max belong to the Fermat–

Weber problem and the center problem with barriers as discussed by Klamroth (2002)

in [70].

� The Fermat–Weber problem in the continuous space Rn with some negative weights, as it

is discussed in this study, is classified by 1/Rn/wm <> 0/·/Σ.

A collection of efficient algorithms for solving different classes of facility location problems is

LoLA (Library of Location Algorithms, see Hamacher, Klamroth, Nickel and Schöbel (1996)

[46]). This Software package is based on the classification scheme by Hamacher and Nickel [49].

An overview on classification schemes and facility location software referring to different settings

is given in Tafazzoli and Mozafari (2009) [116].

Classification schemes that refer especially to the problem of locating an undesirable facility

contain the following aspects, see Erkut and Neuman (1989) [42], Eiselt and Laporte (1995)

[37]:

� the number of facilities to be located;

� the solution space;

� the feasible region (discrete, continuous - convex polygon, non-convex polygon, etc.);

� the number of existing facilities (fixed or variable);

� the distance measure;

� the existence of distance constraints (upper bounds to keep undesirable facilities in reach

or lower bounds to ensure a minimal distance to the customers);

� the weights (different or equal weights);

� the location of customers (distributed uniformly or located at specific points; in case of

multi-facility location problems customers may be assigned to facilities or may be free to

choose);

� interactions (only distances between customers and facilities, only distances between fa-

cilities or both kinds of distances are to be considered);

� the type of objective (single- or multi–objective; push-, pull- or push–pull objective; median

or center objective).

Modeling the optimal location in such situations is surveyed in general by Carrizosa and Plastria

in [20] and in a discrete setting by Krarup, Pisinger and Plastria in [71]. Erkut and Neuman

(1989) provided in [42] an elaborate classification and a survey with respect to undesirable

facilities. Further surveys on location problems with obnoxious facilities are given by Plastria

(1996) in [104], by Cappanera (1999) in [16], by Eiselt and Laporte (1995) in [37] and by Moon

and Chaudhry (1984) in [94].
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In the following we want to give a brief overview on references with respect to some main

classification aspects: the number of facilities to be located, the solution space and the

objective. We do not make a claim to be complete, instead we focus mainly on frequently cited

references.

Concerning the number of facilities to be located we distinguish between single- and multi-

facility location problems. References referring to single-facility location problems are

Berman, Drezner and Wesolowsky (1996) [7], Buchanan and Wesolowsky (1993) [15], Carrizosa

and Plastria (1998) [19], Church and Garfinkel (1978) [27], Dasarathy and White (1980) [28],

Drezner and Wesolowsky (1980, 1983, 1991) [32, 33, 35], Hansen, Peeters, Richard and Thisse

(1985) [52], Hansen, Peeters and Thisse (1981) [53], Kaiser and Morin (1993) [64], Karkazis

and Karagiorgis (1987) [67], Labbé (1990) [74], Mehrez, Sinunany-Stern and Stulman (1985,

1986) [84, 85], Melachrinoudis (1985, 1988) [86, 87], Melachrinoudis and Cullinane (1985, 1986)

[89, 90, 91], Minieka (1983) [93], Nickel and Dudenhöfer (1997) [98], Plastria (1992) [103], Plas-

tria, Gordillo and Carrizosa (2013) [106], Romero-Morales, Carrizosa and Conde (1997) [109]

and Ting (1984) [119].

Multi-facility location problems are discussed by Chandrasekaran and Daughety (1981) in

[22], by Chaudhry, McCormick and Moon (1986) in [23], by Drezner and Wesolowsky (1985) in

[34], by Erkut (1990) in [40], by Erkut, Baptie and v. Hohenbalken (1990) in [41], by Hansen,

Peeters and Thisse (1981) in [53], by Kalcsics (2011) in [65], by Karkazis and Papadimitriou

(1992) in [68], by Katz, Kedem and Segal (2002) in [69], by Kuby (1987) in [73], by Moon and

Chaudhry (1984) in [94], by Shier (1977) in [111], by Suzuki and Drezner (2013) in [115], by

Tamir (1991) in [117] and by Ting (1988) in [120].

The continuous space Rn (frequently the plane R2) and networks are considered as solution

spaces. References with regard to the continuous space are Buchanan and Wesolowsky

(1993) [15], Dasarathy and White (1980) [28], Drezner and Wesolowsky (1983, 1985, 1991, 1980)

[33, 34, 35, 32], Hansen, Peeters, Richard and Thisse (1985) [52], Hansen, Peeters, Thisse (1981)

[53], Jourani, Michelot and Ndiaye (2009) [63], Kaiser and Morin (1993) [64], Karkazis and

Karagiorgis (1987) [67], Krebs and Nickel (2010) [72], Mehrez, Sinunany-Stern and Stulman

(1986) [85], Melachrinoudis (1985, 1988) [86, 87], Melachrinoudis and Cullinane (1985, 1986,

1986) [89, 90, 91], Nickel and Dudenhöfer (1997) [98], Plastria (1992) [103], Plastria, Gordillo

and Carrizosa (2013) [106] and Romero-Morales, Carrizosa and Conde (1997) [109].

Networks are considered by Berman and Drezner (2000) in [6], by Berman, Drezner and

Wesolowsky (1996) in [7], by Berman and Wang (2006, 2008) in [8, 9], by Carrizosa and Conde

(2002) in [17], by Carrizosa and Plastria (1998) in [19], by Chandrasekaran and Daughety (1981)

in [22], by Chaudhry, McCormick and Moon (1986) in [23], by Church and Garfinkel (1978) in

[27], by Erkut (1990) in [40], by Hamacher et al. (2002) in [47], by Kuby (1987) in [73], by Labbé

(1990) in [74], by Minieka (1983) in [93], by Moon and Chaudhry (1984) in [94], by Shier (1977)

in [111], by Tamir (1991) in [117] and by Ting (1984, 1988) in [119] and [120].

There are various types of objective functions. On the one hand we may distinguish the

number of objectives. The authors dealt with single objectives in the papers by Brimberg and
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Juel (1998) [14], by Chen, Hansen, Jaumard and Tuy (1992) [25], by Drezner and Wesolowsky

(1991) [35], by Hansen, Peeters and Thisse (1981) [53], by Maranas and Floudas (1994) [79],

by Melachrinoudis and Culllinane (1985) [89], by Melachrinoudis and Xanthopulus (2003) [92],

by Muños-Pérez and Saameno-Rodŕıguez (1999) [95], by Nickel and Dudenhöfer (1997) [98], by

Plastria and Carrizosa (1999) [105], by Plastria (1991) [102], by Rodŕıguez, Garćıa, Munoz-Pérez

and Casermeiro (2006) [108], by Romero-Morales et al. (1997) [109] and by Tamir (2006) [118];

whereas models with vector-valued objective functions are considered by Alzorba, Günther

and Popovici (2013) in [3], by Blanquero and Carrizosa (2002) in [11], by Brimberg and Juel

(1998) in [13], by Carrizosa, Conde and Romero-Morales (1997) in [18], by Carrizosa and Plastria

(2000) in [21], by Hamacher, Labbé, Nickel and Skriver (2002) in [47], by Hansen and Thisse

(1981) in [54], by Jourani, Michelot, and Ndiaye (2009) in [63], by Karasakal and Nadirler (2008)

in [66], by Melachrinoudis (1999) in [88], by Ohsawa (2000) in [99], by Ohsawa, Plastria and

Tamura (2006) in [100], by Ohsawa and Tamura (2003) in [101], by Skriver and Andersen (2003)

in [114], by Yapicioglu, Dozier and Smith (2004) in [128] and by Yapicioglu, Smith and Dozier

(2007) in [129].

On the other hand we may distinguish between push-, pull- and push–pull objectives. Delivering

goods or offer services (medical, social, emergency etc.) to customers, make it natural to ”pull”

a facility as close as possible towards the customer, as known from the classical problem of

locating a desirable facility. In case of semi-desirable facilities lower bounds may be used to

ensure a certain minimal distance in order to avoid annoying effects of the facility. Hence, the

goal of a pull objective is to minimize the distances between the new facility and the customers

such that the facility is located ”as close as possible, but not too close”. Vice versa, it seems to

be natural to ”push” away an undesirable facility as far as possible. In order to avoid pushing

the facility towards infinity the facility must be located inside an allowable set, or an upper

bound is to be considered as a constraint, e.g. [33]. Hence, the goal of a push objective is

to maximize the distances between the new facility and the customers such that the facility is

located ”far away, but within reach”.

Drezner and Wesolowsky (1985) consider both in [34], the location problem with pull objective

and lower bounds as well as the push objective with upper bounds.

References with push objective in which the authors deal with the maximization of the weighted

sum of distances (maxisum) are Buchanan and Wesolowsky (1993) [15], Hansen, Peeters,

Richard and Thisse (1985) [52], Hansen, Peeters, Thisse (1981) [53], Kaiser and Morin (1993)

[64], Plastria (1992) [103], Romero-Morales, Carrizosa and Conde (1997) [109]; whereas the max-

imization of the shortest distance (maximin) is considered in Dasarathy and White (1980) [28],

Drezner and Wesolowsky (1980, 1983) [32, 33], Karkazis and Karagiorgis (1987) [67], Mehrez,

Sinunany-Stern and Stulman (1986) [85], Melachrinoudis (1985, 1988) [86, 87] and Melachri-

noudis and Cullinane (1985, 1986) [89, 90, 91].

Locating facilities, which have some desirable and some undesirable features as well, means to

find a compromise solution for instance by aggregation into a single push–pull objective:

Customers may either try to attract (pull) desirable facilities closer to them, or repel (push)
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undesirable facilities away from them. Since the need to locate facilities far away from certain

points can be quantified through the use of negative weights the objective function constitutes

as a d.c. function (difference of two convex functions).

Maranas and Floudas (1994) [79] solve this kind of location problem by developing a branch and

bound method using rectangular subdivision.

Romero-Morales, Carrizosa and Conde (1997) [109] propose a Big Square Small Square method

with a new bounding scheme, which exploits the structure of the problem.

Tuy, Al-Khayyal and Zhou (1995) [124] apply a triangular branch and bound method, where

branching follows a normal triangular subdivision scheme. By additionally considering repelling

points their paper generalizes the non-convex location problem discussed in Idrissi, Loridan and

Michelot (1988) [62], where the goal is to find a location, which maximizes the whole population

attracted by the new facility. The further the new facility is established from a customer the

less attractive it is (caused by travel time and travel costs). The authors again generalize their

study in Al-Khayyal, Tuy, and Zhou (2002) [1].

Tuy (1996) [122] presents a general approach to location problems based on d.c. optimization

methods. A branch and bound method is proposed where branching is performed by simplicial

subdivision of Rn and bounds are computed by solving certain linear programs.

Drezner and Wesolowsky (1991) [35] determine exact solutions when distances are rectilinear or

squared Euclidean. Further they present heuristic algorithms for the case of squared Euclidean

distances. They also formulate conditions for the attainment of finite solutions in case of uniform

distance functions.

Nickel and Dudenhöfer (1997) [98] present polynomial algorithms and structural properties based

on combinatorial geometrical methods. They use computational geometry and discretization of

continuous problems. Their work is heavily based on the structure of level sets.

Chen, Hansen, Jaumard and Tuy (1992) [25] solve the problem by converting the d.c. problem

into a concave minimization problem and solve this one by outer approximation. A generalization

of this work to multi-source Weber problems, conditional multi-source Weber problems and

facilities location problems with limited distances is presented in Chen, Hansen, Jaumard and

Tuy (1998) [26].

In this thesis we apply results from the field of d.c. optimization, but in contrast to earlier works

we exploit the duality theory by Toland (1978) [121] and Singer (1979) [112] in order to develop

duality statements, geometrical properties and an algorithm for determining exact solutions

of the non-convex single-facility location problem with obnoxious facilities in the Euclidean

space (Rn) with a single push–pull objective function.





Chapter 3
Formulation of the Location Problem with

Obnoxious Facilities

The goal, when locating a semi-desirable facility, is to minimize the weighted sum of distances to

the attracting facilities and to maximize the weighted sum of distances to the repulsive ones. In

this study, distances are measured by mixed gauges. Distances induced by gauges, are defined

by the well known Minkowski functional1 with respect to a special set B ⊆ Rn [36]:

Definition 3.1. (Minkowski 1911) Let B be a closed bounded convex set in Rn containing the

origin in its interior. Then the gauge γB : Rn → R associated with B is a function defined by

γB(x) := min {λ ≥ 0|x ∈ λB} .

The gauge distance from a point a ∈ Rn to x ∈ Rn is defined as γB(x− a). A distance measure

function d : Rn × Rn → R, specified by a gauge, is given by

d(a, x) := γB(x− a).

Vice versa, the set B is called the unit ball associated with γB and is defined by

B := {x ∈ Rn| γB(x) ≤ 1} .

We introduce gauge distances more detailed in Section 4.2.

Note that the distance functions, assigned to the repulsion points, may depend on the kind of

aversion. For example noises and stench do not need to pass streets. Instead, the application

of the Euclidean distance, see (4.4), seems to be reasonable. Meanwhile the distance to other

1 Note that the Minkowski functional can be defined more general for an arbitrary convex set on a topological
space. Concerning the goal of solving location problems in Rn or especially in the plane (n = 2), where gauges
are used to measure distances, it is reasonable to define a gauge γB on Rn with the additional demands on
the set B as given in Definition 3.1.
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obnoxious places may be measured by a distance function given by the course of the roads (e.g.,

the Manhattan distance, see (4.3)). Hence, we consider a median location problem with mixed

distances.

In order to formulate the location problem with obnoxious facilities, we consider M ≥ 1 attrac-

tion points a1, . . . , aM ∈ Rn with weights w1, . . . , wM > 0 as well as M ≥ 1 repulsion points

a1, . . . , aM ∈ Rn, with weights w1, . . . , wM > 0. The gauge distances, assigned to a1, . . . , aM

and a1, . . . , aM , are defined by their associated unit balls B1, . . . , BM and B1, . . . , BM .

In this thesis we focus on polyhedral gauges (see Section 4.2), although several results also hold

for gauges in general.

Throughout the entire thesis we study the location problem with obnoxious facilities given by

α := inf
x∈Rn

{g(x)− h(x)} , (P)

with functions g, h : Rn → R+ defined as

g(x) :=
M∑
m=1

φm(x), φm(x) := wmγBm
(x− am), (m = 1, . . . ,M), (3.1)

h(x) :=

M∑
m=1

φ
m

(x), φ
m

(x) := wmγBm
(x− am), (m = 1, . . . ,M). (3.2)

Thus, g(x) is the weighted sum of distances between the new location x and the attraction

points a1, . . . , aM , and h(x) is the weighted sum of distances between x and the repulsion points

a1, . . . , aM . Since the distances to repulsive facilities shall be maximized, the function h obtains

a negative sign in (P). One could also consider the repulsion points as facilities with negative

weights instead of giving h a negative sign.

Note that the objective function g − h : Rn → R as a difference of two convex functions g and

h is a d.c. function (difference of convex functions, see Definition 4.19). In this study we apply

the duality theory by Toland [121] and Singer [112] in order to develop geometrical properties,

conditions for the existence of a finite optimal solution, duality statements, a description of the

relationship between primal and dual elements and a duality based algorithm for determining

exact solutions of location problems of type (P) by leading back the non-convex problems to a

finite number of convex problems.

Although, in general, the objective function g − h is non-convex, it is possible to exploit the

properties of the two convex functions g and h by applying the Toland-Singer-duality.

The notation introduced for formulating the location problem (P), based on the functions g and

h as defined in (3.1) and (3.2), are used throughout the entire thesis.



Chapter 4
Preliminaries

In this chapter we provide elementary definitions and properties concerning convex sets and

functions in Sections 4.1 and 4.2. We briefly recall the classical Fermat-Weber problem and

introduce the concept of elementary convex sets w.r.t. attraction and w.r.t. repulsion in Section

4.3. Finally, in Section 4.4, a short introduction to d.c. optimization problems, including the

duality theory by Toland (1978) and Singer (1979), is given.

Instead of providing an extensive overview on these fields, we focus on the main fundamentals,

which play a role for this work at hand. Most of the definitions and results presented in Sections

4.1 and 4.2 can be found in the standard literature on convex analysis [59, 60, 107] and references

therein. Classical results on gauge distances and locational analysis are presented amongst

others in [10, 29, 30, 36, 78, 125, 126], and for frequently cited references with respect to d.c.

optimization techniques and the duality theory by Toland and Singer the reader is referred to

[2, 55, 57, 61, 80, 81, 82, 83, 112, 121, 123] and references therein.

4.1 Convex Sets and Cones

A set C ⊆ Rn is called convex, if for any pair of distinct points x1, x2 ∈ C the closed line segment

{
λx1 + (1− λ)x2| λ ∈ [0, 1]

}
is contained in C. If for any pair of distinct points x1, x2 ∈ C the entire line

{
λx1 + (1− λ)x2

∣∣λ ∈ R
}

through x1 and x2 is contained in C, then the set C is called affine.

Let γB be a gauge distance in Rn associated with a unit ball B, see Definition 3.1. Then the

interior of a set C ⊆ Rn is given by

intC := {x ∈ Rn| ∃ε > 0 : x+ εB ⊆ C} ,

whereas the relative interior of a convex set C ⊆ Rn is the interior of C with respect to the
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affine hull aff C (the smallest affine set containing C), i.e.,

riC = {x ∈ aff C| ∃ε > 0 : (x+ εB) ∩ (aff C) ⊆ C} .

As an example consider the square defined by

C :=
{
x = (x1, x2, x3)

T ∈ R3| x1, x3 ∈ [0, 1], x2 = 0
}
,

whose interior is empty, i.e., intC = ∅, whereas its relative interior is given by

riC =
{
x = (x1, x2, x3)

T ∈ R3| x1, x3 ∈ (0, 1), x2 = 0
}
6= ∅.

A well known relationship between the interior and the relative interior of a convex set is given

in the following remark.

Remark 4.1. The interior of a convex set coincides with its relative interior whenever the

interior is non-empty.

We call a set C ⊆ Rn closed if bdC ⊆ C, where bdC denotes the boundary of C and is given

by bdC = Rn\ (intC ∪ intRn\C).

Polyhedral Sets

Let q ∈ Rn\ {0} and c ∈ R. Then the set H = {x ∈ Rn| 〈q, x〉 ≤ c}, where 〈·, ·〉 denotes the

standard inner product in Rn, is called a closed half-space in Rn. The intersection of a finite

number of half-spaces is called a convex polyhedral set and can be written as

S = {x ∈ Rn| Ax ≤ b} ,

with suitable A ∈ Rm×n and b ∈ Rm. If a convex polyhedral set is bounded, then it is called a

convex polytope.

The following definition plays a role for describing geometric properties of the location problem

(P) and its Toland-Singer dual problem (D), which is formulated in Chapter 5.

Definition 4.2. Let S 6= ∅ be a convex polyhedral set in Rn.

1. A subset F ⊆ S is called an exposed face of S if there are q ∈ Rn\ {0} and c ∈ R such that

S ⊆ {x ∈ Rn| 〈x, q〉 ≤ c} and F = {x ∈ Rn| 〈x, q〉 = c} ∩ S.

2. The exposed face F is called proper if F 6= ∅ and F 6= S. Then dim(F ) < dim(S).

3. A facet is an exposed face F of S with dimension dim(F) = dim(S)− 1.

4. An edge is an exposed face of dimension one.

5. An exposed face of dimension zero is called an extreme point.
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Note that x ∈ S is an extreme point if and only if S\ {x} is convex. This is the case if x is no

relative interior point of any closed line segment in S.

Cones

A set K ⊆ Rn is called a cone if for all x ∈ K and λ ≥ 0 it holds λx ∈ K. Let C ⊆ Rn be a

convex set. Then the set

K := {λx|λ ≥ 0, x ∈ C}

is called the convex cone generated by C. If a polyhedral convex set S ⊆ Rn contains the origin,

then the convex cone generated by S is polyhedral, too.

The normal cone to a convex set B ⊆ Rn at a point x ∈ Rn is defined as

NB(x) =

{y ∈ Rn| ∀z ∈ B : 〈y, z − x〉 ≤ 0} if x ∈ B,

∅ if x /∈ B.
(4.1)

The elements y ∈ NB(x) are said to be normal to the setB at the point x. Note thatNB(x) = {0}
for all x ∈ intB [36].

In Chapter 7 recession cones play a role for applying results from the field of linear vector

optimization.

Definition 4.3. [107] The recession cone of a convex set C(6= ∅) ⊆ Rn is defined by the set

0+C := {y ∈ Rn|C + R+y ⊆ C} .

The elements of 0+C are called receding directions or directions of recession of C.

Note that 0+C is a convex cone containing the origin and it follows directly from the definition

that

C + 0+C ⊆ C. (4.2)

Obviously, a closed set C ⊆ Rn is bounded if and only if 0+C = {0} [107]. We give some

standard examples for convex sets and their recession cones [107]:

C1 : =
{
x ∈ R2

∣∣x2 ≥ x21} , 0+C1 = {0} × R+,

C2 : =
{
x ∈ R2

∣∣x21 + x22 ≤ 1
}
, 0+C2 =

{
(0, 0)T

}
,

C3 : =
{
x ∈ R2

∣∣x1 > 0, x2 > 0
}
∪
{

(0, 0)T
}
, 0+C3 = C3,

C4 : =

{
x ∈ R2

∣∣∣∣x1 > 0, x2 ≥
1

x1

}
, 0+C4 = R2

+.
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Proposition 4.4. [107] The recession cone of a polyhedral set S = {x ∈ Rn|Ax ≤ b} , with

A ∈ Rm×n and b ∈ Rm, is determined as

0+S = {x ∈ Rn|Ax ≤ 0} .

4.2 Convex Functions

As usual we define the effective domain and the epigraph of a function f : Rn → R ∪ {+∞} by

dom f := {x ∈ Rn| f(x) < +∞},

epi f := {(x, r) ∈ Rn × R| r ≥ f(x)} .

Note that dom f is the projection of epi f on Rn. A function f : Rn → R ∪ {+∞} is called

proper, if dom f 6= ∅. If the epigraph of a function f : Rn → R ∪ {+∞} is polyhedral then f

is called a polyhedral function [12]. A function f : Rn → R ∪ {+∞} is said to be closed if its

epigraph epi f is closed. Further, we call f : Rn → R∪{+∞} a convex function on Rn if epi f is

a convex subset of Rn+1. It holds that f is convex if and only if for all x1, x2 ∈ Rn and λ ∈ [0, 1]:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

A frequently used example for convex functions is the indicator function IB : Rn → {0,+∞}
with respect to a set B ⊆ Rn given by

IB(x) :=

0 if x ∈ B,

+∞ otherwise.

The ”cross-section” of its epigraph is B. Hence, the indicator function IB is convex, if and only

if the set B is convex.

Another well known example for convex functions is the Minkowski functional (see Footnote 1

on Page 11).

A function f : Rn → R ∪ {+∞} is called positively homogeneous if for every x ∈ Rn and λ ≥ 0

one has

f(λx) = λf(x).

Hence, the positive homogeneity of f is equivalent to epi f being a cone in Rn+1. A function

f : Rn → R ∪ {+∞} is called subadditive, if for all x, y ∈ Rn it holds

f(x+ y) ≤ f(x) + f(y).

If a function is positively homogeneous and subadditive, then the function is called sublinear .
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Proposition 4.5. [107, Theorem 4.7] A positively homogeneous function f : Rn → R ∪ {+∞}
is convex if and only if f is sublinear.

A function f : Rn → R is called affine if both, f and −f , are convex.

Remark 4.6. [12] A polyhedral function f is closed and convex and can be decomposed as the

pointwise maximum of a finite set of affine functions f1, . . . , fI and the indicator function of a

non-empty polyhedral set P ⊆ Rn, such that

f = max
i=1,...,I

fi + IP .

The support function σA : Rn → R ∪ {+∞} of an arbitrary set A(6= ∅) ⊆ Rn is defined by

σA(y) = sup
x∈A
〈y, x〉 .

Note that the support function is closed and sublinear [59, Prop. 2.1.2]. Moreover, the support

function σA of a non-empty set A ⊆ Rn is finite everywhere if and only if A is bounded [59].

Remark 4.7. Let B(6= ∅) ⊆ Rn be a closed convex set. Then we have

NB(x) = {y ∈ Rn|σB(y) = 〈x, y〉} .

Proof. For each x ∈ B we obtain by (4.1)

NB(x) = {y ∈ Rn| ∀z ∈ B : 〈y, z − x〉 ≤ 0}

= {y ∈ Rn| ∀z ∈ B : 〈y, z〉 ≤ 〈y, x〉}

= {y ∈ Rn|σB(y) = 〈y, x〉} .

Gauge Distances

In the following we provide some general properties concerning gauges and their corresponding

dual gauge distances. An overview on the main properties of gauge distances and their dual

functions is given in [110].

Due to the convexity assumption on the set B, some well known properties of the Minkowski

functional (see Footnote 1 on Page 11) are non-negativity, subadditivity (or triangle inequality),

positive homogeneity, and consequently convexity, see Proposition 4.5. Hence, a gauge distance

measure d(a, x) := γB(x− a), as introduced in Definition 3.1, is also convex and satisfies for all

x, y, z ∈ Rn and r ≥ 0:
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1. d(x, y) = γB(y − x) ≥ 0, (non-negativity)
2. d(x, y) ≤ d(x, z) + d(z, y), (triangle inequality)
3. d(rx, ry) = rd(x, y). (positive homogeneity)

We also find the following properties [59]:

1. Definiteness: For all x 6= 0 it holds γB(x) > 0 since B is assumed to be closed and bounded

by Definition 3.1.

2. Finiteness: For all x ∈ Rn there exists λ ≥ 0 such that x ∈ λB, since the origin is

contained in the interior of B, as assumed in Definition 3.1.

If the set B is strictly convex, i.e.,

{
λx1 + (1− λ)x2

∣∣λ ∈ (0, 1)
}
⊆ intB

for any pair of distinct points x1, x2 ∈ B, then the associated gauge γB is also strictly convex,

i.e., epi γB is a strictly convex subset of Rn+1, and γB is said to be a round gauge. If the set B is

a convex polytope, then the associated gauge γB is called a polyhedral gauge [36]. In case that

the unit ball B ⊆ Rn is symmetric with respect to the origin, i.e., x ∈ B if and only if −x ∈ B
for all x ∈ Rn, the gauge γB defines a norm in Rn and we have d(a, x) = d(x, a) or, equivalently,

γB(x − a) = γB(a − x) for all x, a ∈ Rn [107]. The most frequently applied distances are the

following norms:

� Manhattan or rectilinear distances with polyhedral unit ball

BManhattan :=

{
x ∈ Rn

∣∣∣∣∣
n∑
i=1

|xi| ≤ 1

}
, (4.3)

� Euclidean distances with strictly convex unit ball

BEuclidean :=

x ∈ Rn
∣∣∣∣∣∣
(

n∑
i=1

x2i

)1/2

≤ 1

 , (4.4)

� Tchebychev distances with polyhedral unit ball

BTchebychev := {x ∈ Rn|max {|x1| , . . . , |xn|} ≤ 1} . (4.5)

As usual, we define the dual gauge of γB as the gauge associated with the polar set

B∗ := {y ∈ Rn| ∀x ∈ B : 〈x, y〉 ≤ 1} , (4.6)

i.e., B∗ is the dual unit ball of B. The dual unit ball B∗ is also a closed bounded convex set

in Rn, which contains the origin in its interior [107]. It follows directly from Definition 3.1 and
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(4.6) that

γB∗(y) = max
x∈B
〈x, y〉 , (4.7)

i.e., a gauge γB∗ associated with a dual unit ball B∗ coincides with the support function σB of

the unit ball B, cf. [123, Proposition 1.23].

Gauges and their dual functions are strongly related to each other, as the following properties

demonstrate:

1. The polar set B∗∗ := (B∗)∗ of the polar set B∗ is the set B itself [107], i.e., γB = γB∗∗ .

Hence, by (4.7), a gauge can also be written as

γB(x) = max
y∈B∗

〈x, y〉 , (4.8)

and in case of a weighted polyhedral gauge distance γB with weight w > 0 we have

wγB(x) = w max
y∈B∗

〈x, y〉 = max
y∈B∗

〈x,wy〉 = max
y∈wB∗

〈x, y〉 = max
y∈ext(wB∗)

〈x, y〉 . (4.9)

2. If B is polyhedral then its polar B∗ is polyhedral, too (and hence if γB is a polyhedral

gauge then so is the dual gauge γB∗). In R2, both polyhedra have the same number

of extreme points; in general this property does not hold in Rn [10, 125]. For instance

consider the l1-norm in R3 and its dual l∞-norm.

3. If B is symmetric with respect to the origin then its polar B∗ is symmetric, too (and hence

if γB is a norm then so is the dual gauge γB∗) [107].

In this thesis we focus on polyhedral gauges, although several results also hold for gauges in

general.

Subdifferentials

Since polyhedral gauges are not differentiable we need a more general definition of the commonly

used derivatives. This leads to the definition of subdifferentials:

Definition 4.8. Let f : Rn → R ∪ {+∞} be a convex function, x ∈ dom f . A vector y ∈ Rn is

called a subgradient of f at x if for each z ∈ Rn the inequality

f(z)− f(x) ≥ 〈y, z − x〉

is satisfied. The set of all subgradients of f at x is called the subdifferential of f at x and is

denoted by ∂f(x).

Note that in the case that ∂f(x) is a singleton, the derivative of f exists at x and coincides with

∂f(x).
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Theorem 4.9. (Sum Rule for Subdifferentials) [107]

Let f1, . . . , fM : Rn → R∪{+∞} be proper and convex functions on Rn. Then, for every x ∈ Rn

the inclusion

∂

(
M∑
m=1

fm(x)

)
⊇

M∑
m=1

∂fm(x)

holds. If there exists an element x̂ ∈ ∩Mm=1 dom fm, where every function fm, except at most

one, is continuous, then the above inclusion is in fact an equality for every x ∈ Rn.

Remark 4.10. (Subdifferentiability of polyhedral functions) [12, Proposition 5.1.1]

Let f : Rn → R ∪ {+∞} be a polyhedral function. Then ∂f(x) 6= ∅ whenever x ∈ dom f .

Throughout this work, especially in Chapters 5 and 8, we have to determine several subdif-

ferentials of convex functions. Therefore we briefly provide some basic but important calculus

properties below.

Calculus Rules for Subdifferentials [60]

Let u, v : Rn → R ∪ {+∞} be proper functions, t ∈ R, a ∈ Rn. Then we have for all x ∈ Rn:

(A) Let v(x) := u(x) + t, then

∂v(x) = {y ∈ Rn| ∀z ∈ Rn : (u(z) + t)− (u(x) + t) ≥ 〈y, z − x〉} = ∂u(x).

(B) Let v(x) := tu(x), t > 0, then

∂v(x) = {y ∈ Rn| ∀z ∈ Rn : tu(z)− tu(x) ≥ 〈y, z − x〉}

=
{
y ∈ Rn

∣∣∣ ∀z ∈ Rn : u(z)− u(x) ≥
〈y
t
, z − x

〉}
= {ty ∈ Rn| ∀z ∈ Rn : u(z)− u(x) ≥ 〈y, z − x〉} = t · ∂u(x).

(C) Let v(x) := u(tx), t 6= 0, then

∂v(x) = {y ∈ Rn| ∀z ∈ Rn : u(tz)− u(tx) ≥ 〈y, z − x〉}

=
{
y ∈ Rn

∣∣∣ ∀z ∈ Rn : u(tz)− u(tx) ≥
〈y
t
, tz − tx

〉}
= {ty ∈ Rn| ∀z ∈ Rn : u(tz)− u(tx) ≥ 〈y, tz − tx〉} = t · ∂u(tx).

(D) Let v(x) := u(x− a), then ∂v(x+ a) = ∂u(x).
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(E) Let v(x) := 〈x, a〉 , then

∂v(x) = {y ∈ Rn| ∀z ∈ Rn : 〈z, a〉 − 〈x, a〉 ≥ 〈y, z − x〉}

= {y ∈ Rn| ∀z ∈ Rn : 0 ≥ 〈y − a, z − x〉} = {a} .

(F) Let v(x) := u(x) + 〈a, x〉 , then by Theorem 4.9 and by (E) we have

∂v(x) = ∂u(x) + {a} .

(G) Let v1 ≤ v2, v1(x) = v2(x), then

∂v1(x) ⊆ ∂v2(x),

since for every y ∈ ∂v1(x) and z ∈ Rn we have

v2(z)− v2(x) ≥ v1(z)− v2(x) = v1(z)− v1(x) ≥ 〈y, z − x〉 .

(H) The subdifferential of the support function σB of a set B ⊆ Rn is

∂σB(x) = {y ∈ B| σB(x) = 〈x, y〉} .

(I) The subdifferential of a gauge γB associated with its unit ball B ⊆ Rn is given by

∂γB(x) = {y ∈ B∗| γB(x) = 〈x, y〉} ,

where B∗ denotes the dual unit ball of B.

(J) The subdifferential of the indicator function IB with respect to a convex set B( 6= ∅) ⊆ Rn

at a point x ∈ Rn coincides with the normal cone NB(x) to B at x, i.e.,

∂IB(x) = NB(x) =

{y ∈ Rn| ∀z ∈ B : 〈y, z − x〉 ≤ 0} , if x ∈ B,

∅, if x /∈ B.

Proof. Let x ∈ B. Then

∂IB(x) = {y ∈ Rn| ∀z ∈ Rn : IB(z)− IB(x) ≥ 〈y, z − x〉}

= {y ∈ Rn| ∀z ∈ Rn : IB(z) ≥ 〈y, z − x〉}

= {y ∈ Rn| ∀z ∈ B : 0 ≥ 〈y, z − x〉} = NB(x).

Let otherwise x /∈ B, i.e., IB(x) = +∞. Since B 6= ∅, for all y ∈ Rn there exists z ∈ Rn

such that IB(z)− IB(x) < 〈y, z − x〉 . Hence, ∂IB(x) = ∅.
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Conjugate Functions and Infimal Convolution

The duality theory by Toland [121] and Singer [112], which we apply later in Chapters 5 and 8,

is based on conjugacy. That is why we next introduce the concept of conjugate functions and

some basic but important calculus properties.

Definition 4.11. Given an arbitrary function f : Rn → R ∪ {+∞}, the function f∗ : Rn →
R ∪ {+∞}, defined by

f∗(y) = sup
x∈dom f

{〈y, x〉 − f(x)}

is called the (Fenchel-) conjugate function of f .

Note that f∗ is a convex and closed function for any proper function f : Rn → R ∪ {+∞} [60].

In the case that f is a polyhedral convex function, the conjugate f∗ is polyhedral, too [107]. The

biconjugate of a function f : Rn → R∪ {+∞} is the function f∗∗ : Rn → R∪ {+∞} defined by

f∗∗(x) := (f∗)∗(x) = sup
y∈dom f∗

{〈y, x〉 − f∗(y)} .

An immediate consequence of Definition 4.11 is the so called Fenchel-Young inequality

f∗(y) + f(x) ≥ 〈y, x〉 , (4.10)

that holds for all (x, y) ∈ dom f × Rn. Obviously it is also true if x /∈ dom f .

Fenchel biconjugation [12]: Let f : Rn → R ∪ {+∞} be a proper function. As a direct

consequence of the Fenchel-Young inequality (4.10) it holds for all x ∈ Rn that

f(x) ≥ sup
y∈dom f∗

{〈x, y〉 − f∗(y)} = f∗∗(x). (4.11)

Further, the following equivalence holds [12, Theorem 4.2.1]:

f∗∗ = f ⇔ f is convex and closed. (4.12)

If f : Rn → R ∪ {+∞} is a proper convex function, then f∗∗ = clf [12]. Another important

property is presented in the following proposition.

Proposition 4.12. [59] Let f : Rn → R∪{+∞} be a convex closed function, ∂f(x) 6= ∅. Then

y ∈ ∂f(x) ⇔ f(x) + f∗(y) = 〈x, y〉 ⇔ x ∈ ∂f∗(y).

Proof. By Definition 4.8 of subdifferentials and Definition 4.11 of conjugates it holds for a convex
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function f : Rn → R ∪ {+∞} that

∂f(x) = {y ∈ Rn| ∀z ∈ Rn : f(z)− f(x) ≥ 〈y, z − x〉}

= {y ∈ Rn| ∀z ∈ Rn : 〈y, x〉 ≥ 〈y, z〉 − f(z) + f(x)}

=

{
y ∈ Rn

∣∣∣∣ 〈y, x〉 ≥ sup
z∈Rn

{〈y, z〉 − f(z)}+ f(x) = f∗(y) + f(x)

}
.

With use of the Fenchel-Young inequality (4.10) we obtain

∂f(x) = {y ∈ Rn| 〈y, x〉 = f∗(y) + f(x)} . (4.13)

Analogously, the subdifferential of the conjugate f∗ can be written as

∂f∗(y) = {x ∈ Rn| 〈y, x〉 = f∗∗(x) + f∗(y)} .

Since we assumed the function f to be convex and closed, the assertion follows directly by

equivalence (4.12).

We provide a brief overview on calculus rules for conjugate functions, which are applied in

Chapters 5 and 8.

Calculus Rules for Conjugate Functions [60]

Let u, v : Rn → R ∪ {+∞} be proper functions, t ∈ R, a ∈ Rn. Then it holds for all x, y ∈ Rn:

(a) Let v(x) := u(x) + t, then

v∗(y) = sup
x∈dom v

{〈y, x〉 − v(x)} = sup
x∈domu

{〈y, x〉 − u(x)} − t = u∗(y)− t.

(b) Let v(x) := tu(x), (t > 0), then

v∗(y) = sup
x∈domu

{〈x, y〉 − tu(x)} = t sup
x∈domu

{〈
x,
y

t

〉
− u(x)

}
= tu∗

(y
t

)
.

(c) Let v(x) := u(tx), (t 6= 0), then

v∗(y) = sup
tx∈domu

{〈x, y〉 − u(tx)} = sup
tx∈domu

{〈
tx,

y

t

〉
− u(tx)

}
= u∗

(y
t

)
.

(d) Let v(x) := u(x− a), then

v∗(y) = sup
x−a∈domu

{〈x, y〉 − u(x− a)}

= sup
x−a∈domu

{〈x− a, y〉 − u(x− a)}+ 〈a, y〉 = u∗(y) + 〈a, y〉 .



24 4. Preliminaries

(e) Let v(x) := u(x) + 〈x, a〉, then

v∗(y) = sup
x∈domu

{〈x, y〉 − u(x)− 〈x, a〉} = sup
x∈domu

{〈x, y − a〉 − u(x)} = u∗(y − a).

(f) Let v(x) := 〈x, a〉, then

v∗(y) = sup
x∈Rn

{〈x, y〉 − 〈x, a〉} = sup
x∈Rn

〈x, y − a〉 = I{a}(y).

(g) Let u1 ≤ u2, then

u∗1(y) = sup
x∈Rn

{〈y, x〉 − u1(x)} ≥ sup
x∈Rn

{〈y, x〉 − u2(x)} = u∗2(y).

(h) Let IB be the indicator function of a non-empty set B ⊆ Rn. Then

I∗B(y) = sup
x∈Rn
{〈x, y〉 − IB(x)} = sup

x∈B
{〈x, y〉} = σB(y)

is the support function of B.

(i) Let σB be the support function of a non-empty convex set B ⊆ Rn. Then

σ∗B(y) = sup
x∈Rn
{〈x, y〉 − σB(x)} = IclB(y)

is the indicator function of clB.

Proof. The assertion follows by (h) and (4.12).

(j) Let γB be a gauge associated with the unit ball B. Then γ∗B = IB∗ where B∗ is the

corresponding dual unit ball.

Proof. The assertion follows by property (i) since γB = σB∗ , see (4.8).

Additionally to the calculus rules above the following Definition 4.13 of an infimal convolution

and Theorem 4.15 can be used for determining the conjugate function of a sum of convex

functions.

Definition 4.13. [60] Let f1, . . . , fM : Rn → R ∪ {+∞} be convex functions. Their infimal

convolution is the function f : Rn → R ∪ {±∞} defined by

f(x) := (f1 � · · · � fM )(x) := inf

{
M∑
m=1

fm(xm)

∣∣∣∣∣
M∑
m=1

xm = x

}
.

The infimal convolution is called exact at x =
∑M

m=1 x̂
m when the infimum is attained at

(x̂1, . . . , x̂M ), where (x̂1, . . . , x̂M ) is not necessarily unique with this property.
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Within this thesis the following results on infimal convolutions are applied.

Remark 4.14. It is well known that dom(f1 � f2) = dom f1 + dom f2 [107] and epi(f1 � f2) =

epi f1 + epi f2 [58]. Note further that the infimal convolution f1 � · · · � fM of convex functions

f1, . . . , fM : Rn → R is convex, too [12].

Theorem 4.15. [107, Theorem 16.4] Let f1, . . . , fM : Rn → R ∪ {+∞} be convex functions

and assume that
⋂M
m=1 ri(dom fm) 6= ∅. Then

(f1 + . . .+ fM )∗ = f∗1 � . . . � f∗M

and, for every y ∈ dom(f1 + . . .+ fM )∗, there exist y1, . . . , yM such that the infimal convolution

f∗1 � . . . � f∗M is exact at y = y1 + . . .+ yM .

Recall that the interior of a convex set coincides with its relative interior whenever the interior

is non-empty (see Remark 4.1).

Theorem 4.16. [60, Proposition 3.4.2] Let f1, f2 : Rn → R ∪ {+∞} and let f := f1 � f2 and

y1 ∈ dom f1, y
2 ∈ dom f2, y := y1 + y2 ∈ dom f . If ∂f1(y

1) ∩ ∂f2(y2) 6= ∅, then f is exact at

y = y1 + y2. If f is exact at y = y1 + y2, then

∂f1(y
1) ∩ ∂f2(y2) = ∂f(y).

4.3 Elementary Convex Sets

The general classical Fermat-Weber problem [126] is to minimize the weighted sum of distances

to each element of a given set of existing facilities A =
{
a1, . . . , aM

}
⊆ R2, i.e.,

min
x∈R2

M∑
m=1

wmγBm(x− am), (W )

with weights w1, . . . , wM > 0 and gauge distances γB1 , . . . , γBM
defined by the associated unit

balls B1, . . . , BM ⊆ R2.

Consider a unit ball B ⊆ Rn and a weight w > 0. Then the normal cone to the weighted dual

ball wB∗ at y ∈ bdwB∗ is the convex cone NwB∗(y) = {λx|x ∈ F (y), λ ≥ 0} generated by an

exposed face of B, see Definition 4.2, which is defined by F (y) := {x ∈ B| 〈y, x〉 = w}, see [36,

Section 2].

For the classical Fermat-Weber problem (W ) the definition of elementary convex sets was in-

troduced in [36]. In Definition 4.17 we analogously introduce the concept of elementary convex

sets w.r.t. attraction and w.r.t. repulsion for the location problem (P) with obnoxious facilities.
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Figure 4.1: A unit ball B and its weighted dual ball wB∗, (w > 0), with extreme points ym and
corresponding normal cones NwB∗(ym) which coincide with the convex cones generated by
the exposed faces F (ym) of B, for m = 1, 2, 3.

Definition 4.17. Consider the location problem (P).

We call a non-empty polyhedral set C ⊆ Rn an elementary convex set w.r.t. attraction, if there

exists a tuple π =
{
y1, . . . , yM

}
∈ w1B

∗
1 × . . .× wMB

∗
M , such that

C =

M⋂
m=1

[
am +NwmB

∗
m

(ym)
]
.

We call a non-empty polyhedral set C ⊆ Rn an elementary convex set w.r.t. repulsion, if there

exists a tuple π =
{
y1, . . . , yM

}
∈ w1B

∗
1 × . . .× wMB∗M , such that

C =

M⋂
m=1

[
am +NwmB

∗
m

(ym)
]
.

The half-lines am + R+e, for e ∈ ext(Bm), m = 1, . . . ,M , and am + R+e, for e ∈ ext(Bm),

m = 1, . . . ,M , are called fundamental directions. Moreover, we call the sets

G :=

M⋃
m=1

⋃
e∈ext(Bm)

am + R+e and G :=

M⋃
m=1

⋃
e∈ext(Bm)

am + R+e

the (construction) grids w.r.t. attraction and w.r.t. repulsion, respectively. A point x ∈ Rn is

called grid point (also intersection point) w.r.t. attraction (repulsion), if x is an extreme point

of an elementary convex set C w.r.t. attraction (resp. repulsion). We denote by I and I the sets

of all grid points w.r.t. attraction and w.r.t. repulsion, respectively.

The following example is considered in different settings within this thesis.
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Example 4.18. We consider a location problem with two attracting facilities and one repulsive

facility with assigned unit balls, given by their extreme points:

a1 = (2, 2)T , ext(B1) = {(1, 1), (1,−1), (−1, 1), (−1,−1)} ,

a2 = (9, 4)T , ext(B2) = {(1, 0), (0, 1), (−1, 0), (0,−1)} ,

a1 = (7, 1)T , ext(B1) = {(0, 1), (−1, 0), (1,−1)} .

The corresponding construction grids G and G are illustrated in Figure 4.2.

Figure 4.2: Construction grid G with respect to attraction points a1 = (2, 2)T and a2 = (9, 4)T and their
assigned unit balls B1, B2 (green) as well as construction grid G with respect to repulsion
point a1 = (7, 1)T and its assigned unit ball B1 (red).

4.4 D.C. Programming Problems and Toland-Singer Duality

Throughout this entire work we follow the notational convention that

(+∞)− (+∞) = (+∞). (4.14)

This convention is reasonable as we will see in Section 5.1.

Definition 4.19. The difference g− h of two convex functions g, h : Rn → R∪ {+∞} is called

d.c. function and the minimization problem

inf
x∈Rn
{g(x)− h(x)},

is called d.c. programming problem.

Note that, taking into account Definition 4.19, the location problem (P), as defined in Chapter

3, obviously is a d.c. programming problem.
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Proposition 4.20. [113, Proposition 8.1] For any pair of functions g, h : Rn → R ∪ {+∞} we

have

inf
x∈Rn

{g(x)− h∗∗(x)} = inf
y∈Rn

{h∗(y)− g∗(y)} ,

inf
x∈Rn

{g(x)− h(x)} ≤ inf
y∈Rn

{h∗(y)− g∗(y)} ,

where g∗ and h∗ are the conjugates of g and h.

Proof. Due to the definition of conjugate functions, see Definition (4.11), we have

inf
x∈Rn
{g(x)− h∗∗(x)} = inf

x∈Rn
{g(x)− sup

y∈Rn
{〈x, y〉 − h∗(y)}}

= inf
y∈Rn

inf
x∈Rn
{g(x)− 〈x, y〉+ h∗(y)}

= inf
y∈Rn
{h∗(y)− sup

x∈Rn
{〈x, y〉 − g(x)}}

= inf
y∈Rn
{h∗(y)− g∗(y)}.

The second assertion follows since h∗∗ ≤ h, as we know from (4.11).

From the duality theory by Toland [121] and Singer [112] we obtain the following theorem, which

provides a dual d.c. optimization problem for a given primal d.c. program, see also [61, 123].

Theorem 4.21. (Toland-Singer Duality, 1978/1979)

[112, 121] Let g : Rn → R ∪ {+∞} be proper and h : Rn → R ∪ {+∞} be proper, convex and

closed. Then

α := inf
x∈Rn
{g(x)− h(x)} = inf

y∈Rn
{h∗(y)− g∗(y)} =: β.

Proof. The assertion follows by Proposition 4.20 since h is supposed to be convex and closed,

i.e., we can substitute h by h∗∗, see (4.12):

inf
x∈Rn

{g(x)− h(x)} = inf
x∈Rn

{g(x)− h∗∗(x)} = inf
y∈Rn

{h∗(y)− g∗(y)} .

Note that in Theorem 4.21 the minimization problem on the left hand side is considered as

primal problem and the one on the right hand side as the corresponding dual problem.

Compared to the classical duality theory of convex analysis, see for instance [131], we do not

have a minimization and a maximization problem as well, such that they provide upper and

lower bounds for each other. Thus, there does not exist a weak duality result as it is known

from the classical Lagrange theory. Nevertheless, this theory by Toland and Singer turns out to
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be useful in order to solve the given location problem (P). An advantage is that we do not need

any special assumptions, such as constraint qualification, on the objective or the constraints of

(P), except the convexity of g and h and closedness of h, in order to apply the duality results

by Toland and Singer.

The following theorem provides necessary optimality conditions for a primal and a dual d.c.

programming problem using the subdifferentials of g and h or h∗ and g∗, respectively.

Theorem 4.22. [61, 123] (Necessary Optimality Conditions)

Let g, h : Rn → R ∪ {+∞} be proper, convex and closed functions. If x̂ ∈ dom g ∩ domh is a

global minimizer of g − h on Rn, then ∂h(x̂) ⊆ ∂g(x̂).

Vice versa, if ŷ ∈ domh∗ ∩dom g∗ is a global minimizer of h∗− g∗ on Rn, then ∂g∗(ŷ) ⊆ ∂h∗(ŷ).

Proof. Let x̂ ∈ dom g ∩ domh be a global minimizer of g − h, i.e.,

g(x̂)− h(x̂) ≤ g(x)− h(x) (4.15)

for all x ∈ Rn. Let y ∈ ∂h(x̂). Then we have by (4.15)

〈y, x− x̂〉) ≤ h(x)− h(x̂) ≤ g(x)− g(x̂)

for all x ∈ Rn, i.e., y ∈ ∂g(x̂). The second inclusion follows analogously.

An important duality based relationship concerning the sets of optimal solutions of dual pairs

of d.c. programming problems is the following theorem:

Theorem 4.23. (Sufficient Optimality Conditions)

[61, 123] Let g, h : Rn → R ∪ {+∞} be proper, convex and closed functions and let X be the

set of (primal) minimizers of g − h on Rn and Y the set of (dual) minimizers of h∗ − g∗ on Rn.

Then the following inclusions hold:

X ⊇
⋃
ŷ∈Y

∂g∗(ŷ), Y ⊇
⋃
x̂∈X

∂h(x̂),

i.e., if x̂ ∈ Rn is a (primal) minimizer of g − h on Rn, then any y ∈ ∂h(x̂) is a minimizer of

h∗ − g∗ on Rn. Vice versa, if ŷ ∈ Rn is a minimizer of h∗ − g∗ on Rn, then any x ∈ ∂g∗(ŷ) is a

(primal) minimizer of g − h on Rn.

Proof. Let ŷ ∈ Y be an optimal solution of infy∈Rn{h∗(y)−g∗(y)}. From Theorem 4.21 we have

inf
x∈Rn
{g(x)− h(x)} = h∗(ŷ)− g∗(ŷ).

Let x̂ ∈ ∂g∗(ŷ). Then we know from Theorem 4.22 that x̂ ∈ ∂h∗(ŷ) and by Proposition 4.12

g∗(ŷ) + g(x̂) = 〈ŷ, x̂〉 , h∗(ŷ) + h(x̂) = 〈ŷ, x̂〉 .
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Hence, we obtain

h∗(ŷ)− g∗(ŷ) = −h(x̂) + g(x̂),

and the first inclusion is true. The second inclusion follows analogously.



Chapter 5
Duality Assertions for Location Problems

with Obnoxious Facilities

In this chapter we formulate a dual problem (D) to the primal problem (P), introduced in

Chapter 3, according to the duality theory by Toland [121] and Singer [112], see Theorem 4.21.

We give a necessary and sufficient condition for the existence and attainment of finite optimal

solutions of the dual pair of optimization problems (P) and (D) in Section 5.1, and geometrical

properties and duality statements in Section 5.2. Moreover, we introduce the terms elementary

convex sets and grids with respect to attraction and to repulsion for the dual problem (D).

Finally, we present discretization results for both problems in Section 5.3.

In order to formulate the Toland-Singer dual problem (D) we determine the conjugate functions

g∗ and h∗ of the functions g and h, as given by (3.1) and (3.2) in the location problem (P):

g(x) :=

M∑
m=1

φm(x), φm(x) := wmγBm
(x− am), (m = 1, . . . ,M),

h(x) :=

M∑
m=1

φ
m

(x), φ
m

(x) := wmγBm
(x− am), (m = 1, . . . ,M).

By Theorem 4.15 the conjugates g∗ and h∗ are given by the infimal convolutions

g∗ = φ
∗
1 � · · · � φ

∗
M h∗ = φ∗

1
� · · · � φ∗

M
.

Define vm : Rn → R ∪ {+∞} such that vm(x) := γBm
(x − am), for all m = 1, . . . ,M . From

properties (d) and property (j) in Section 4.2 we have

v∗m(ym) = γB∗m
(x) + 〈am, ym〉 = IB∗m(ym) + 〈am, ym〉 .

By property (b) we obtain

φ
∗
m(ym) = wmv

∗
m

(
ym

wm

)
= wm

[〈
am,

ym

wm

〉
+ IB∗m

(
ym

wm

)]
= 〈ym, am〉+ IwmB

∗
m

(ym).
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The conjugates φ∗
1
, . . . , φ∗

M
can be determined analogously such that we have

φ
∗
m(ym) = 〈ym, am〉+ IwmB

∗
m

(ym), (m = 1, . . . ,M), (5.1)

φ∗
m

(ym) =
〈
ym, am

〉
+ IwmB

∗
m

(ym), (m = 1, . . . ,M). (5.2)

The Toland-Singer dual problem of (P), see Theorem 4.21, is the minimization problem:

β := inf
y∈Rn
{h∗(y)− g∗(y)}, (D)

with conjugates g∗, h∗ : Rn → R ∪ {+∞} given by

g∗(y) =
(
φ
∗
1 � . . . � φ

∗
M

)
(y)

= inf


M∑
m=1

φ
∗
m(ym)

∣∣∣∣∣∣
M∑
m=1

ym = y


= inf


M∑
m=1

[
〈ym, am〉+ IwmB

∗
m

(ym)
]∣∣∣∣∣∣

M∑
m=1

ym = y

 , (5.3)

h∗(y) =
(
φ∗
1
� . . . � φ∗

M

)
(y)

= inf


M∑
m=1

φ∗
m

(ym)

∣∣∣∣∣∣
M∑
m=1

ym = y


= inf


M∑
m=1

[〈
ym, am

〉
+ IwmB

∗
m

(ym)
]∣∣∣∣∣∣

M∑
m=1

ym = y

 . (5.4)

Since elements y /∈ domh∗ lead to the objective value +∞, we may minimize over domh∗ instead

of the complete space Rn in (D).

5.1 Existence of Finite Optimal Solutions

The weights of the repulsive facilities a1, . . . , aM in the location problem (P) may have a strong

influence on the optimal objective value α. In order to avoid that α = −∞, we give a necessary

and sufficient condition for the existence and attainment of finite optimal solutions of the dual

pair of optimization problems (P) and (D).

It is reasonable to use the notational convention (4.14), since otherwise, if (+∞)−(+∞) = (−∞),

then for each y ∈ Rn\dom g∗ the objective value would be h∗(y)−g∗(y) = −∞. Thus, whenever

dom g∗ 6= Rn, the optimal objective value of (D) would be −∞.

Proposition 5.1. [113, Remark 8.3] Let g, h : Rn → R ∪ {+∞} be two arbitrary functions

and g∗, h∗ the corresponding conjugates. If infx∈Rn {g(x)− h(x)} > −∞ then we have dom g ⊆
domh and infy∈Rn {h∗(y)− g∗(y)} > −∞ and hence domh∗ ⊆ dom g∗ follows as well.
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By applying Proposition 5.1 we obtain the following necessary and sufficient condition for the

finiteness of the optimal objective values of the dual pair of optimization problems (P) and (D).

Theorem 5.2. (Finiteness Criterion)

The optimal objective value of the dual pair of optimization problems (P) and (D) is finite, i.e.,

infy∈Rn{h∗(y)− g∗(y)} = infx∈Rn {g(x)− h(x)} ∈ R, if and only if

M∑
m=1

wmB
∗
m ⊆

M∑
m=1

wmB
∗
m.

Proof. The function g∗, as given in (5.3), attains a finite objective value if and only if there

exists a tuple
(
y1, . . . , yM

)
such that

∑M
m=1 y

m = y and ym ∈ wmB
∗
m for all m = 1, . . . ,M , i.e.,

g∗(y) ∈ R ⇔ y ∈
M∑
m=1

wmB
∗
m.

An analogous statement holds for h∗. Hence, the effective domains of h∗ and g∗ are given as

domh∗ =

M∑
m=1

wmB
∗
m( 6= ∅) and dom g∗ =

M∑
m=1

wmB
∗
m(6= ∅). (5.5)

From Proposition 5.1 we directly obtain

inf
y∈Rn
{h∗(y)− g∗(y)} ∈ R ⇒

M∑
m=1

wmB
∗
m ⊆

M∑
m=1

wmB
∗
m.

Further, the objective value h∗(y)− g∗(y) is finite for all y ∈ domh∗ ∩ dom g∗. For y /∈ domh∗

we have by (4.14) that h∗(y)−g∗(y) = +∞, i.e., y does not contribute to the infimum of h∗−g∗

since domh∗ 6= ∅. Hence, we have

inf
y∈Rn
{h∗(y)− g∗(y)} ∈ R ⇐

M∑
m=1

wmB
∗
m ⊆

M∑
m=1

wmB
∗
m

and the assertion holds.

By Theorem 5.2 we have found a necessary and sufficient condition for the finiteness of the

optimal objective values of the dual pair of optimization problems (P) and (D).

The effective domain of h∗, as the weighted sum of a finite number of convex, closed and bounded

balls B∗1, . . . , B
∗
M , is bounded and closed itself.

The function g∗, as the conjugate of the polyhedral function g, is polyhedral, too, and can be

decomposed as the sum of a piece-wise affine function ĝ and the indicator function Idom g∗ , such

that g∗ = ĝ + Idom g∗ , see Remark 4.6. Hence, we know from the Theorem by Weierstrass that
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g∗ attains a minimum and a maximum in dom g∗. Analogously, h∗ attains a minimum and a

maximum in domh∗.

Consequently, the objective function h∗ − g∗ (and hence the dual optimization problem (D))

attains a minimum in domh∗ ∩ dom g∗ and thus in domh∗ when domh∗ ⊆ dom g∗. Then also

the primal problem (P) does and we can substitute infimum by minimum in both problems.

Remark 5.3. In case that B1 = . . . = BM = B1 = . . . = BM in Theorem 5.2, the finite-

ness criterion for the dual pair of optimization problems (P) and (D) simplifies as follows:

infx∈Rn {g(x)− h(x)} = infy∈Rn{h∗(y)− g∗(y)} ∈ R, if and only if

M∑
m=1

wm ≤
M∑
m=1

wm.

Hence, Theorem 5.2 is a generalization of Theorem 1 in [35] (see also [98, Theorem 2.3]).

In case that the optimal objective value is −∞ the problem (P) is already solved - the optimal

location of the new facility is infinitely far away. Since this is not applicable for practical

issues, one might either change some parameters (for instance the weights) or, alternatively,

some constraints might be considered, see Chapter 8. For example it seems to be reasonable to

require the new facility to be established within a given city or country.

Remark 5.4. Note that the dual feasible set domh∗ is bounded, whereas the primal feasible

set is unbounded. In Chapter 8 we will see that the boundedness into any direction of the primal

feasible set induces unboundedness into this direction within the dual feasible set.

5.2 Geometrical Properties, Duality Statements and Optimality

Conditions

In this section we present geometrical properties, duality results and optimality conditions for

the dual pair of optimization problems (P) and (D).

Proposition 5.5. For φ
∗
1, . . . , φ

∗
M : Rn → R as given in (5.1), and φ∗

1
, . . . , φ∗

M
: Rn → R as

defined in (5.2) we have

∂φ
∗
m(ym) = am +NwmB

∗
m

(ym), (m = 1, . . . ,M),

∂φ∗
m

(ym) = am +NwmB
∗
m

(ym), (m = 1, . . . ,M).

Proof. From (5.1) we obtain for all m = 1, . . . ,M that

∂φ
∗
m(ym) = ∂

[
〈ym, am〉+ IwmB

∗
m

(ym)
]
. (5.6)
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Since the inner product 〈·, am〉 is continuous and convex on Rn and the indicator function IwmB
∗
m

is convex on Rn, we know from Theorem 4.9 that

∂
[
〈ym, am〉+ IwmB

∗
m

(ym)
]

= ∂ 〈ym, am〉+ ∂IwmB
∗
m

(ym). (5.7)

Further, by properties (E) and (J) in Section 4.2, it holds ∂ 〈ym, am〉 = {am} and

∂IwmB
∗
m

(ym) = NwmB
∗
m

(ym).

Thus, by (5.6) and (5.7), we have for all m = 1, . . . ,M

∂φ
∗
m(ym) = am +NwmB

∗
m

(ym).

The second equality follows analogously, by taking into account (5.2).

Proposition 5.6. The subdifferentials ∂g∗(y) and ∂h∗(y) are non-empty for all y ∈ dom g∗ and

y ∈ domh∗, respectively.

Proof. The function g∗, as the conjugate of the polyhedral function g, is polyhedral, too, and can

be decomposed as the sum of a piece-wise affine function ĝ and the indicator function Idom g∗ ,

such that g∗ = ĝ + Idom g∗ , see Remark 4.6. By applying the sum rule for subdifferentials, see

Theorem 4.9, and property (J) in Section 4.2 we obtain for all y ∈ dom g∗

∂g∗(y) ⊇ ∂ĝ(y) + ∂Idom g∗(y) = ∂ĝ(y) +Ndom g∗(y),

which, obviously, is a non-empty set for all y ∈ dom g∗. Analogously, we obtain ∂h∗(y) 6= ∅ for

all y ∈ domh∗.

Theorem 5.7. For each tuple π = (y1, . . . , yM ) ∈ w1B
∗
1×· · ·×wMB

∗
M the following statements

are equivalent:

1.
⋂M
m=1

[
am +NwmBm

(ym)
]
6= ∅,

2. g∗ is exact at y :=
∑M

m=1 y
m, i.e., g∗(y) =

∑M
m=1 〈am, ym〉,

3.
⋂M
m=1

[
am +NwmBm

(ym)
]

= ∂g∗
(∑M

m=1 y
m
)
.

Moreover, for each feasible y ∈ dom g∗ there exists a tuple π such that these statements hold.

Analogously, for each tuple π = (y1, . . . , yM ) ∈ w1B
∗
1 × · · · × wMB∗M the following statements

are equivalent:

1.
⋂M
m=1

[
am +NwmBm

(ym)
]
6= ∅,

2. h∗ is exact at y :=
∑M

m=1 y
m, i.e., h∗(y) =

∑M
m=1

〈
am, ym

〉
,
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3.
⋂M
m=1

[
am +NwmBm

(ym)
]

= ∂h∗
(∑M

m=1 y
m
)

.

Moreover, for each feasible y ∈ domh∗ there exists a tuple π such that these statements hold.

Proof. We prove the above statements only concerning the function g∗. The second part follows

analogously.

1. ⇒ 2. ⇒ 3.: By Proposition 5.5 we have

M⋂
m=1

[
am +NwmB

∗
m

(ym)
]

=
M⋂
m=1

∂φ
∗
m(ym)

and by (5.3) we have g∗ = φ1 � · · · � φM . The assertions follow directly from Theorem 4.16.

3. ⇒ 1.: For (y1, . . . , yM ) ∈ w1B
∗
1 × · · · × wMB

∗
M it obviously follows from (5.5) that

y :=

M∑
m=1

ym ∈
M∑
m=1

wmB
∗
m = dom g∗.

The assertion follows since ∂g∗(y) 6= ∅ for all y ∈ dom g∗, see Proposition 5.6.

The existence of such a tuple (y1, . . . , yM ) ∈ w1B
∗
1×· · ·×wMB

∗
M follows from Theorem 4.15.

Proposition 5.8. For each x ∈ Rn the subdifferentials of g and h are given by

∂g(x) =

M∑
m=1

argmax
y∈wmB

∗
m

〈x− am, y〉 , ∂h(x) =

M∑
m=1

argmax
y∈wmB

∗
m

〈x− am, y〉 .

Proof. It holds by (3.1) and the sum rule for subdifferentials, see Theorem 4.9, that

∂g(x) = ∂
M∑
m=1

φm(x) =
M∑
m=1

∂φm(x)

for all x ∈ Rn. We show that

∂φm(x) = argmax
y∈wmB

∗
m

〈x− am, y〉 , (m = 1, . . . ,M).
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Let x ∈ Rn. Then for all m = 1, . . . ,M we obtain the equivalences

ym ∈ ∂φm(x)⇔ x ∈ ∂φ∗m(ym) (5.8)

⇔ x ∈ am +NwmB
∗
m

(ym) (5.9)

⇔ x− am ∈ NwmB
∗
m

(ym)

⇔ ∀y ∈ wmB
∗
m : 〈x− am, y − ym〉 ≤ 0 and ym ∈ wmB

∗
m (5.10)

⇔ ∀y ∈ wmB
∗
m : 〈x− am, y〉 ≤ 〈x− am, ym〉 and ym ∈ wmB

∗
m

⇔ ym ∈ argmax
y∈wmB

∗
m

〈x− am, y〉 .

Equivalence (5.8) holds by Proposition 4.12, and (5.9) holds by Proposition 5.5. Further, equiv-

alence (5.10) holds by definition of the normal cone, see (4.1); ym ∈ wmB
∗
m since otherwise

NwmB
∗
m

(ym) = ∅ in contradiction to x − am ∈ NwmB
∗
m

(ym). The proof of the second assertion

follows analogously.

Corollary 5.9. For x ∈ Rn and ym ∈ wmB
∗
m, m ∈

{
1, . . . ,M

}
, the following equivalence holds:

x ∈ am +NwmB
∗
m

(ym) ⇔ ym ∈ argmax
y∈wmB

∗
m

〈x− am, y〉 ,

and analogously, for x ∈ Rn and ym ∈ wmB∗m, m ∈ {1, . . . ,M}, we have

x ∈ am +NwmB
∗
m

(ym) ⇔ ym ∈ argmax
y∈wmB

∗
m

〈x− am, y〉 .

Proof. From Proposition 5.5 and Proposition 5.8 we have

∂φ
∗
m(ym) = am +NwmB

∗
m

(ym), ∂φm(x) = argmax
y∈wmB

∗
m

〈x− am, y〉 .

The assertion follows by Proposition 4.12.

From Theorem 5.7 and Definition 4.17 we know that the elementary convex sets for the primal

problem (P) coincide with the subdifferentials of the conjugate functions g∗ and h∗. Analogously,

we define dual elementary convex sets using the subdifferentials of the functions g and h:

Definition 5.10. Consider the dual problem (D). For x ∈ Rn we call the sets

∂g(x) =
M∑
m=1

argmax
y∈wmB

∗
m

〈x− am, y〉 and ∂h(x) =

M∑
m=1

argmax
y∈wmB

∗
m

〈x− am, y〉

dual elementary convex set w.r.t. attraction and w.r.t. repulsion, respectively.
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The corresponding dual (construction) grids are given by

GD :=
⋃

{x∈Rn| dim ∂g(x)=1}

∂g(x) and GD :=
⋃

{x∈Rn| dim ∂h(x)=1}

∂h(x).

A point y ∈ Rn is called dual grid point (also dual intersection point) w.r.t. attraction (repulsion),

if y is an extreme point of an elementary convex set w.r.t. attraction (resp. repulsion). We denote

by ID and ID the sets of all grid points w.r.t. attraction and w.r.t. repulsion, respectively.

Remark 5.11. Obviously, the definition of the sets of dual grid points w.r.t. attraction and

w.r.t. repulsion, as given in Definition 5.10, is equivalent to the following:

ID :=
⋃

{x∈Rn|dim ∂g(x)=0}

∂g(x) = {y ∈ dom g∗| ∃x ∈ Rn : {y} = ∂g(x)} ,

ID :=
⋃

{x∈Rn| dim ∂h(x)=0}

∂h(x) = {y ∈ domh∗| ∃x ∈ Rn : {y} = ∂h(x)} .

Figure 5.1 illustrates for Example 4.18 the effective domains dom g∗ and domh∗ as well as the

dual construction grids GD with respect to attraction (green grids) and GD with respect to

repulsion (red grids) for different choices of attraction and repulsion weights. The shape of the

dual elementary convex sets is similar in each picture and differs only depending on the weights.

In Figures 5.1c and 5.1i the finiteness criterion, given in Theorem (5.2), is not satisfied since,

obviously, domh∗ 6⊆ dom g∗.

In Figure 5.1d it holds that ∂h(x) ⊆ g(x) is true, if and only if x = a2, where

ext
(
∂g(a2)

)
=
{

(−1,−2)T , (3,−2)T , (−1, 2)T , (3, 2)T
}
.

Hence, by Theorem 4.22, the only primal element that may be optimal for (P) is x = a2.

The relationship between primal and dual elementary convex sets is further described by an

inclusion-reversion one-to-one map in Chapter 6.
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(a) w1 = w2 = 1; w1 = 0.5 (b) w1 = w2 = 1 (c) w1 = w2 = 1; w1 = 1.5

(d) w1 = 1; w2 = 2; w1 = 0.5 (e) w1 = 1; w2 = 2; w1 = 1 (f) w1 = 1; w2 = 2; w1 = 1.5

(g) w1 = 2; w2 = 1; w1 = 0.5 (h) w1 = 2; w2 = 1; w1 = 1 (i) w1 = 2; w2 = 1; w1 = 1.5

Figure 5.1: The effective domains of g∗ and h∗ as well as the dual construction grids GD with respect
to attraction (green grids) and GD with respect to repulsion (red grids) for different choices
of weights.
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Using the following duality statements we are able to determine the set of optimal solutions of

(D) out of the set of optimal solutions of (P) and vice versa.

Corollary 5.12. (Sufficient Optimality Condition for Dual Solutions)

Let x ∈
⋂M
m=1[a

m + NwmB
∗
m

(ym)] be an optimal solution of the primal problem (P). Then∑M
m=1 y

m is an optimal solution of the dual problem (D).

Proof. By Corollary 5.9 and x ∈
⋂M
m=1[a

m +NwmB
∗
m

(ym)], we have that

ym ∈ argmax
y∈wmB

∗
m

〈x− am, y〉

for all m = 1, . . . ,M . By Proposition 5.8 we have
∑M

m=1 y
m ∈ ∂h(x) and thus, by Theorem

4.23, it follows that
∑M

m=1 y
m is an optimal solution of the dual problem (D).

Corollary 5.13. (Sufficient Optimality Condition for Primal Solutions)

Let y be an optimal solution of the dual problem (D) such that g∗ is exact at y =
∑M

m=1 y
m for

a tuple (y1, . . . , yM ) ∈ w1B
∗
1× . . .×wMB

∗
M . Then each x ∈

⋂M
m=1[a

m+NwmB
∗
m

(ym)] is optimal

for the primal problem (P).

Proof. Let y be an optimal solution of the dual problem (D) and assume that g∗ is exact at

y =
∑M

m=1 y
m. Then, by Theorem 5.7, we know that

⋂M
m=1[a

m+NwmB
∗
m

(ym)] = ∂g∗(y), which is

a non-empty set as we know from Proposition 5.6. The assertion follows from Theorem 4.23.

By applying Corollary 5.12 and Corollary 5.13 we are able to determine the complete set X of

primal optimal solutions when having found the set Y of dual optimal solutions and vice versa:

Remark 5.14. Let X be the set of minimizers of (P) and let Y be the set of minimizers of (D).

Then the following equalities hold:

X =
⋃
ŷ∈Y

∂g∗(ŷ), Y =
⋃
x̂∈X

∂h(x̂).

Proof. We only prove the first equality, the second one follows analogously.

By Theorem 4.23 we already have the inclusions

X ⊇
⋃
ŷ∈Y

∂g∗(ŷ) Y ⊇
⋃
x̂∈X

∂h(x̂).

Let x̂ ∈ X . Then it holds that ∂h(x̂) ⊆ Y and by Theorem 4.22 we have ∂h(x̂) ⊆ ∂g(x̂). Due to

the fact that h is a polyhedral function we have ∂h(x̂) 6= ∅, see Remark 4.10. For ŷ ∈ ∂h(x̂) we
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have by Proposition 4.12 that x̂ ∈ ∂g∗(ŷ) and the opposite inclusion

X ⊆
⋃
ŷ∈Y

∂g∗(ŷ)

is satisfied as well.

5.3 Discretization Results

In preparation for an algorithm for solving the location problem (P) with obnoxious facilities,

the following discretization results play a mayor role.

Corollary 5.15. (Discretization Result for the Primal Problem (P))

The set I of primal grid points in G w.r.t. attraction is a finite dominating set for the optimal

points of the location problem (P), i.e., I ∩ X 6= ∅, where X is the set of minimizers of (P).

Proof. From Remark 5.14 we know that X =
⋃
y∈Y ∂g

∗(y), where the subdifferentials ∂g∗(y) are

closed polyhedral elementary convex sets. Hence, we have ext(∂g∗(y)) ⊆ I∩X for all y ∈ Y.

Note, that the discretization result in Corollary 5.15 is a generalization of the discretization

result for the classical Fermat-Weber problem (W ), see [36].

Corollary 5.16. (Discretization Result for the Dual Problem (D))

The set ID of dual grid points in GD w.r.t. repulsion is a finite dominating set for the optimal

points of the dual problem (D), i.e., ID ∩ Y 6= ∅, where Y is the set of minimizers of (D).

Proof. From Remark 5.14 we know that Y =
⋃
x∈X ∂h(x), where the subdifferentials ∂h(x) are

closed polyhedral elementary convex sets. Hence, we have ext(∂h(x)) ⊆ ID∩Y for all x ∈ X .





Chapter 6
An Assignment between Primal and Dual

Elements Based on Geometric Duality

In this chapter, we apply results from the theory of geometric duality [56] in order to describe the

assignment between primal and dual elementary convex sets by an inclusion reversing one-to-one

mapping.

Consider the cone

K := {(x, r) ∈ Rn × R|x = 0, r ≥ 0} , (6.1)

and the epigraph of a proper closed convex function f : Rn → R∪ {+∞}. A proper face F , see

Definition 4.2, of epi f is called K-minimal if all of its points are minimal with respect to K,

i.e.,

∀y ∈ F : (y −K\(−K)) ∩ epi f = ∅. (6.2)

Proposition 6.1. [56, Proposition 3.2] A subset F ⊆ epi f is a K-minimal exposed face, see

Definition 4.2, of epi f if and only if there exists ŷ ∈ dom f∗ with ∂f∗(ŷ) 6= ∅ such that

F =
{

(x, f(x)) ∈ Rn+1| ŷ ∈ ∂f(x)
}
.

Further, a subset F ∗ ⊆ epi f∗ is a K-minimal exposed face of epi f∗ if and only if there exists

x̂ ∈ dom f with ∂f(x̂) 6= ∅ such that

F ∗ =
{

(y, f∗(y)) ∈ Rn+1| y ∈ ∂f(x̂)
}
.

The following theorem describes an assignment between K-minimal exposed faces F of epi f

and K-minimal exposed faces F ∗ of epi f∗.



44 6. An Assignment between Primal and Dual Elements

Theorem 6.2. (Geometric Duality Map for Epigraphs )

[56, Theorem 3.3] The mapping ψ : 2R
n+1 → 2R

n+1
defined by

ψ(F ∗) :=
⋂

(y,f∗(y))∈F ∗

{
(x, f(x)) ∈ Rn+1| y ∈ ∂f(x)

}
is an inclusion reversing one-to-one mapping (F ∗1 ⊆ F ∗2 if and only if ψ(F ∗1 ) ⊇ ψ(F ∗2 )) between

K-minimal exposed faces of epi f∗ and K-minimal exposed faces of epi f . Its inverse mapping

is given by

ψ∗(F ) :=
⋂

(x,f(x))∈F

{
(y, f∗(y)) ∈ Rn+1| y ∈ ∂f(x)

}
.

Subsection 4.2 in [56] also provides the result

dimF ∗ + dimψ(F ∗) = n (6.3)

concerning the mapping ψ in Theorem 6.2.

Geometric Duality Map for Elementary Convex Sets

Since the function g, as given by (3.1) in the location problem (P), and its conjugate g∗, see

(5.3) in the dual problem (D), are polyhedral and convex, the epigraphs epi g ⊆ Rn+1 and

epi g∗ ⊆ Rn+1 are polyhedral and convex sets.

According to Proposition 6.1 each exposed K-minimal face F of epi g is given by a suitable

y ∈ dom g∗ as

F = {(x, g(x))| x ∈ ∂g∗(y)} =: F y

and each exposed K-minimal face F
∗

of epi g∗ is given by a suitable x ∈ dom g as

F
∗

= {(y, g∗(y))| y ∈ ∂g(x)} =: F
∗
x.

According to Theorem 6.2 and Equation (6.3) the map ψ
∗

: 2R
n+1 → 2R

n+1
defined by

ψ
∗
(F ) =

⋂
(x,g(x))∈F

F
∗
x

provides an inclusion-reversing one-to-one map between the K-minimal faces of epi g and epi g∗

such that

dimF + dimψ
∗
(F ) = n.
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Remark 6.3. The projection of an exposed face F y = {(x, g(x))| x ∈ ∂g∗(y)} ⊆ epi g onto Rn

obviously coincides with the elementary convex set ∂g∗(y), and the projection of an exposed face

F
∗
x = {(y, g∗(y))| y ∈ ∂g(x)} ⊆ epi g∗ onto Rn coincides with the elementary convex set ∂g(x).

On the other hand, the elementary convex sets ∂g∗(y) and ∂g(x) generate the exposed faces

F y = {(x, g(x))| x ∈ ∂g∗(y)} and F
∗
x = {(y, g∗(y))| y ∈ ∂g(x)} ,

i.e., there is a one-to-one relationship between the K-minimal faces F y of epi g and F
∗
x of epi g∗

and the elementary convex sets ∂g∗(y) and ∂g(x), respectively, such that

(x, g(x)) ∈ F y ⇔ x ∈ ∂g∗(y), dimF y = dim ∂g∗(y),

(y, g∗(y)) ∈ F ∗x ⇔ y ∈ ∂g(x), dimF
∗
x = dim ∂g(x).

Consequently the following duality result holds:

Theorem 6.4. (Assignment between Primal and Dual Elementary Convex Sets)

Let C := {∂g∗(y)| y ∈ dom g∗} ⊆ 2R
n

and D := {∂g(x)|x ∈ Rn} ⊆ 2R
n
. The function Ψ

∗
: C→

D, defined by

Ψ
∗
(∂g∗(y)) :=

⋂
x∈∂g∗(y)

∂g(x),

provides an inclusion-reversing one-to-one map between the primal and dual elementary convex

sets, such that

dim ∂g∗(y) + dim Ψ
∗
(∂g∗(y)) = n.

Note that the results of this chapter hold analogously for the epigraphs of h and h∗ and the

corresponding primal and dual elementary convex sets w.r.t. repulsion.

Example

The assignment between primal and dual elementary convex sets in case of the 2-dimensional

space R2 is illustrated in Figure 6.1. The figure refers to the attracting points of Example 4.18

with weights w1 = 2 and w2 = 1 and illustrates the primal and the dual construction grids G

and GD w.r.t. attraction. The sum of the dimensions of each dual pair of assigned elementary

convex sets is dim ∂g∗(y) + dim Ψ(∂g∗(y)) = 2.
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(a) Assignment between primal elementary convex cells and corresponding dual grid points.

(b) Assignment between primal grid points and corresponding dual elementary convex cells.

(c) Assignment between edges (see Definition 4.2) of primal elementary convex sets and cor-
responding dual edges.

Figure 6.1: Primal construction grid G as well as the corresponding dual construction grid GD for the
two attracting facilities a1 and a2 of Example 4.18 and weights w1 = 2 and w2 = 1 .



Chapter 7
An Application of Benson’s Algorithm for

Solving the Scalar Location Problem (P)

Although, we are considering a scalar optimization problem, we show in this chapter that meth-

ods from the field of linear vector optimization, in particular the well known Benson algorithm

[5, 76, 51], can be applied in order to determine the primal and dual grid points with respect to

attraction and to repulsion, as introduced in Definitions 4.17 and 5.10. Based on the discretiza-

tion results presented in Section 5.3, those grid points play a role in Chapter 9 for deriving an

algorithm for solving the location problem (P) with obnoxious facilities.

Let C ⊆ Rq be a polyhedral cone with non-empty interior, which does not contain any line.

Consider the linear vector optimization problem

C −minPx, P ∈ Rq×n, (LVOP)

subject to the set S := {x ∈ Rn|Bx ≥ b}, B ∈ Rm×n, b ∈ Rm. The set P := P [S] + C is called

upper image of (LVOP). A point x̂ ∈ S is called a minimizer of (LVOP), if

P [S] ∩ (Px̂− C\ {0}) = ∅.

The geometric dual problem [51] is

K −maxD∗(u, η), (LVOD)

with respect to the cone K, given in (6.1), the linear objective function D∗ : Rm × Rq → Rq

defined by

D∗(u, η) := (η1, . . . , ηq−1, 〈b, u〉),

and the feasible set

T :=
{

(u, η) ∈ Rm+ × Rq
∣∣BTu = P T η, 〈c, η〉 = 1, Y T η ≥ 0

}
, (7.1)
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where Y is a matrix whose columns are generators of the ordering cone C and c ∈ Rq is a vector

contained in the interior of C with positive last entry. The set D∗ := D∗[T ]−K is called lower

image of (LVOD). A pair (û, η̂) ∈ T is called a maximizer of (LVOD), if

D∗[T ] ∩ (D∗(û, η̂) +K\ {0}) = ∅.

To solve such a linear vector optimization problem (LVOP) one can use the well known Benson

algorithm [5]. The extended version of Benson’s algorithm, presented in [51], solves the linear

vector optimization problem (LVOP) and its geometric dual problem (LVOD) by determining an

inequality representation as well as the extreme points and extreme directions of the polyhedral

sets P [S] + C and D∗[T ]−K with P , S, C and D∗, T , K as given above.

A Primal Linear Vector Optimization Problem Related to Repulsion

In order to apply Benson’s method, we show in the following, that the epigraph of h, where

h(x) =
∑M

m=1wmγBm
(x − am), as defined by (3.2) in the location problem (P), coincides with

the upper image of a linear vector optimization problem related to repulsion.

We use a ”primal” representation of the epigraph of h, ”primal” in the sense that this represen-

tation is based on the primal unit balls B1, . . . BM :

epih

=

(x, t) ∈ Rn+1

∣∣∣∣∣∣ t ≥ h(x) =

M∑
m=1

wmγBm
(x− am)


=

(x, t) ∈ Rn+1

∣∣∣∣∣∣ t ≥
M∑
m=1

wm min {λ ≥ 0| (x− am) ∈ λBm}


=

(x, t) ∈ Rn+1

∣∣∣∣∣∣ ∃λ1, . . . , λM ≥ 0 : ∀m = 1, . . . ,M : (x− am) ∈ λmBm, t ≥
M∑
m=1

wmλm,

 .

Further, we define the feasible set

S :=
{(
x, (λ1, . . . , λM ), t

)
∈ Rn × RM × R

∣∣
λ1, . . . , λM ≥ 0, ∀m = 1, . . . ,M : (x− am) ∈ λmBm, t ≥

M∑
m=1

wmλm,

 . (7.2)

In the following we denote by En the identity matrix in Rn and by 0n,M , 0n,1, 01,M , 01,n the

zero matrices in the dimensions defined by their indices. Writing the unit balls B1, . . . , BM as

Bm = {x ∈ Rn| Amx ≤ bm} , Am ∈ Rrm×n, bm ∈ Rrm , (m = 1, . . . ,M), (7.3)
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and the constraints of the feasible set S in (7.2) into a common system of inequalities, we obtain

S =
{
z =

(
x, (λ1, . . . , λM ), t

)
∈ Rn × RM × R

∣∣Bz ≥ b}
with

B :=



01,n 1 0 0
...

. . .
...

01,n 0 1 0

01,n −w1 · · · −wM 1

−A1 b1 0 0
...

. . .
...

−AM 0 bM 0


, b :=



0
...

0

0

−A1 · a1
...

−AM · aM


. (7.4)

The linear vector optimization problem related to repulsion can be formulated as

C −min
x∈S

Px, (LVOP)

with suitable matrix P : Rn+M+1 → Rn+1 defined as

P :=

(
En 0n,M 0n,1

01,n 01,M 1

)
,

and ordering cone C, which is chosen as the recession cone of the epigraph of h, i.e., C := 0+ epih.

Hence, by (4.2) and due to 0 ∈ 0+ epih, we obtain for the upper image of (LVOP)

P [S] + C = epih+ 0+ epih = epih.

The recession cone C = 0+ epih is determined below.

Analogously, for the function g, as defined by (3.1) in the location problem (P), we can define

a linear vector optimization problem related to attraction

C −min
x∈S

Px, (LV OP )

with suitable matrix P ∈ R(n+1)×(n+M+1), feasible set S ⊆ Rn+M+1 and ordering cone C :=

0+ epi g, such that P [S] + C = epi g.

Determination of the Cones C and C

In order to determine the recession cone C = 0+ epih, we use a ”dual” representation of the

epigraph, ”dual” in the sense that this representation is based on the dual unit balls B∗1, . . . , B
∗
M .
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By (4.9) it holds

epih

=

(x, t) ∈ Rn+1

∣∣∣∣∣∣ t ≥ h(x) =

M∑
m=1

wmγBm
(x− am) =

M∑
m=1

max
ym∈ext(wmB

∗
m)

〈
x− am, ym

〉
=

(x, t) ∈ Rn+1

∣∣∣∣∣∣ ∀(y1, . . . , yM ) ∈ ext(w1B
∗
1)× · · · × ext(wMB

∗
M ) :

M∑
m=1

〈
am, ym

〉
≥

M∑
m=1

〈
x, ym

〉
− t

 .

By applying Proposition 4.4 we obtain for the recession cone

C = 0+ epih

=

(x, t) ∈ Rn+1

∣∣∣∣∣∣∀(y1, . . . , yM ) ∈ ext(w1B
∗
1)× · · · × ext(wMB

∗
M ) : 0 ≥

M∑
m=1

〈
x, ym

〉
− t


=

(x, t) ∈ Rn+1

∣∣∣∣∣∣ t ≥
M∑
m=1

max
ym∈wmB

∗
m

〈
x, ym

〉
=

(x, t) ∈ Rn+1

∣∣∣∣∣∣ t ≥
M∑
m=1

wmγBm
(x)

 . (7.5)

The matrix Y , whose columns are the generators of the ordering cone C, contains as columns

the vectors d, M∑
m=1

wmγBm
(d)

 ∈ Rn+1,

for which d is a fundamental direction of at least one of the unit balls B1, . . . , BM .

Analogously, the recession cone C = O+ epi g can be written as

C = 0+ epi g =

(x, t) ∈ Rn+1

∣∣∣∣∣∣ t ≥
M∑
m=1

wmγBm
(x)

 ,

and the matrix Y , whose columns are the generators of C, contains as columns the vectorsd, M∑
m=1

wmγBm
(d)

 ∈ Rn+1,

for which d is a fundamental direction of at least one of the unit balls B1, . . . , BM .
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A Dual Linear Vector Optimization Problem Related to Repulsion

In the following we show that the epigraph of the function h∗ corresponds to the lower image of

the dual linear vector optimization problem related to repulsion.

Taking into account B, b, P , C, S, as defined in the primal linear vector optimization problem

(LVOP), as well as the cone K, as defined in (6.1), a geometric dual vector optimization

problem related to repulsion is given by

K − max
(u,η)∈T

D∗(u, η), (LVOD)

with objective function

D∗(u, η) : = (η1, . . . , ηn, 〈b, u〉) (7.6)

and feasible set

T := {(u, η)| (i)-(vi) are satisfied} , (7.7)

where

(i) u = (u1, . . . , uM , v, z
1, . . . , zM ) with (u1, . . . , uM ) ∈ RM+ , v ∈ R+ and zm ∈ Rrm+ for

m = 1, . . . ,M , where rm is the number of constraints, which define the unit ball Bm, see

(7.3),

η ∈ Rn+1, y := −(η1, . . . , ηn),

(ii) ηn+1 = 1,

(iii) v = 1,

(iv) y =
∑M

m=1A
T
mz

m,

(v) um = wm − 〈bm, zm〉 for all m = 1, . . . ,M ,

(vi) For all (x, t) ∈ C it holds 〈x, y〉 ≤ t.

Proposition 7.1. Set c := (0, . . . , 0, 1) ∈ Rn+1. Then the set T has the structure as given in

(7.1), i.e., the following equivalences hold:

1. (ii) is equivalent to 〈c, η〉 = 1.

2. (iii), (iv) and (v) are equivalent to BTu = P T η.

3. (vi) holds if and only if Y T η ≥ 0, where Y is a matrix, whose columns generate the ordering

cone C.
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Proof.

1. For c := (0, . . . , 0, 1) ∈ Rn+1 we obtain 〈c, η〉 = 1 if and only if ηn+1 = 1, which coincides

with property (ii).

2. We further have equivalence between properties (iii), (iv) and (v) and BTu = P T η:

BTu =



−
M∑
m=1

ATmz
m

u1 − w1 +
〈
b1, z1

〉
...

uM − wM +
〈
bM , zM

〉
1


=



−y
0
...

0

1


= P T η.

3. Let Y be a matrix, whose columns generate the ordering cone C. Then it holds Y T η ≥ 0

if and only if
〈(
x
t

)
, η
〉
≥ 0 for all (x, t) ∈ C, where〈(

x

t

)
, η

〉
=

〈(
x

t

)
,

(
−y
1

)〉
= −〈x, y〉+ t ≥ 0 ⇔ 〈x, y〉 ≤ t,

such that property (vi) is equivalent to Y T η ≥ 0.

Proposition 7.2. Let the properties (i) and (v) be satisfied, i.e., 〈bm, zm〉 ≤ wm and zm ≥ 0

for all m = 1, . . . ,M . Then it holds ATmz
m ∈ wmB∗m for all m = 1, . . . ,M .

Proof. For all x̂ ∈ Bm = {x ∈ Rn|Amx ≤ bm} we obtain

〈
x̂, ATmz

m
〉

= 〈Amx̂, zm〉 ≤ 〈bm, zm〉 ≤ wm.

The assertion follows since wmB
∗
m = {y ∈ Rn| ∀x ∈ Bm : 〈x, y〉 ≤ wm}, see (4.6).

Proposition 7.3. The properties (i), (iv) and (v) imply the property (vi).

Proof. Let (x, t) ∈ C and assume that z1, . . . , zM and y are given such that they satisfy the

properties (i), (iv) and (v). Then we obtain by (7.5), (4.9) and Proposition 7.2

t ≥
M∑
m=1

wmγBm
(x) =

M∑
m=1

max
ym∈wmB

∗
m

〈
x, ym

〉
≥

M∑
m=1

〈
x,ATmz

m
〉

=

〈
x,

M∑
m=1

ATmz
m

〉
= 〈x, y〉 .
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Proposition 7.4. For the lower image of the dual problem (LVOD) and the epigraph of h∗ it

holds

− (D∗[T ]−K) = epih∗.

Proof. For the dual objective function, as given in (7.6), we have by property (i) and by (7.4)

D∗(u, η) = (η1, . . . , ηn, 〈b, u〉) = −

y, M∑
m=1

〈Amam, zm〉

 = −

y, M∑
m=1

〈
am, ATmz

m
〉 .

Taking into account the definition of the set T , see (7.7), and Proposition 7.3 we obtain

−D∗[T ] =
{

(y, t) ∈ Rn+1
∣∣∃z1, . . . , zM ≥ 0 :

∀m = 1, . . . ,M : 〈bm, zm〉 ≤ wm, y =

M∑
m=1

ATmz
m, t =

M∑
m=1

〈
am, ATmz

m
〉 .

By definition of the ordering cone K, in (6.1), and Proposition 7.2 it follows

− (D∗[T ]−K)

=

(y, t) ∈ Rn+1

∣∣∣∣∣∣ ∃ (y1, . . . , yM) ∈ w1B
∗
1 × . . .× wMB∗M : y =

M∑
m=1

ym, t ≥
M∑
m=1

〈
am, ym

〉
=

(y, t) ∈ Rn+1

∣∣∣∣∣∣ t ≥ inf


M∑
m=1

〈
am, ym

〉
+ IwmB

∗
m

(ym)

∣∣∣∣∣∣ y =

M∑
m=1

ym

 = h∗(y)

 = epih∗,

and the assertion holds.

Analogously, we can define a geometric dual vector optimization problem related to

attraction

K − max
(u,η)∈T

D
∗
(u, η), (LV OD)

with objective function D
∗
, dual feasible set T and ordering cone K, as given in (6.1), such that

epi g∗ = −
(
D
∗
[T ]−K

)
.
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Conclusion

We constructed a dual pair of linear vector optimization problems (LVOP) and (LVOD) such that

we obtain for the upper image P [S] +C = epih and for the lower image D∗[T ]−K = − epih∗.

Finding the exposed faces, see Definition 4.2, of epih and epih∗ means to minimize the linear

vector optimization problem (LVOP) and to maximize its geometric dual problem (LVOD). This

can be done by applying Benson’s algorithm. A numerical implementation of the primal and

dual variant of Benson’s algorithm, as presented in [51], is bensolve-1.2.1

The projections of the extreme points of epih and epih∗ onto Rn coincide with the primal and

dual grid points x ∈ I and y ∈ ID, w.r.t. repulsion, see Remark 6.3.

Based on the discretization results, presented in Section 5.3, those grid points play a role in

Chapter 9 for deriving an algorithm for solving the location problem (P) with obnoxious facilities.

Analogous results hold for the function g and its conjugate g∗.

1http://ito.mathematik.uni-halle.de/~loehne

http://ito.mathematik.uni-halle.de/~loehne


Chapter 8
Locating an Obnoxious Facility under

Consideration of Polyhedral Constraints

In practical applications it is reasonable to establish the new facility within a given area, a city

or a country for instance. Throughout this chapter we extend our research such that convex

polyhedral constraints are considered. We formulate a dual problem to the constrained location

problem, based on the duality theory by Toland [121] and Singer [112], see Theorem 4.21. In

Section 8.1 we provide some geometrical properties and duality statements. In Section 8.2 we

state a criterion for the finiteness of the objective value of such a constrained location problem.

In Section 8.3 we give optimality conditions and discretization results for both problems. Finally,

we illustrate the results of this chapter by some examples in Section 8.4.

Let H ⊆ Rn be given by the intersection of I closed half-spaces such that

H :=
I⋂
i=1

Hi, Hi :=
{
x ∈ Rn|

〈
x, qi

〉
≤ ci

}
, (i = 1, . . . , I), (8.1)

with qi ∈ Rn\ {0} and ci ∈ R, for i = 1, . . . , I. We assume that the half-spaces H1, . . . ,HI are

given such that their intersection H has non-empty interior and none of them is redundant, i.e.,

none of them can be omitted without changing the structure of H.

We consider the location problem with obnoxious facilities and convex constraints

min
x∈H
{g(x)− h(x)} , (8.2)

with

g(x) =

M∑
m=1

wmγm(x− am), h(x) =

M∑
m=1

wmγm(x− am).

as given by (3.1) and (3.2) in the location problem (P). Formulating (8.2) as an unconstrained
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d.c. problem by using the indicator function, we obtain

αH : = min
x∈Rn
{gH(x)− h(x)}, (PH)

where gH(x) := g(x) + IH(x). Obviously, the constraints set H does not affect the function h.

Formulation of the Dual Problem

In order to formulate a Toland-Singer dual problem (DH) we determine the conjugate function

g∗H of the function gH.

Proposition 8.1. Let H( 6= ∅) ⊆ Rn be a convex set. Then the conjugate g∗H : Rn → R∪{+∞}
is given by

g∗H(y) = inf
y0∈Rn

{
g∗(y − y0) + σH(y0)

}
= inf


M∑
m=1

[
〈am, ym〉+ IwmB

∗
m

(ym)
]

+ σH(y0)

∣∣∣∣∣∣
M∑
m=0

ym = y

 .

with g∗ : Rn → R ∪ {+∞}, as given by (5.3) in (D).

Proof. The intersection int dom g ∩ int dom IH is non-empty since dom g = Rn and intH ⊆ Rn

is supposed to be non-empty. Further, the functions g and IH are convex. Hence, the assertion

follows by Theorem 4.15 and property (h) in Section 4.2:

g∗H(y) = (g + IH)∗(y) = (g∗ � I∗H) (y) = (g∗ � σH) (y) = inf
y0∈Rn

{
g∗(y − y0) + σH(y0)

}
.

Taking into account the structure of g∗, as given by (5.3) in (D), we obtain the more specific

formulation

g∗H(y) = (g + IH)∗(y)

=
(
φ1 + . . .+ φM + IH

)∗
(y)

=
(
φ
∗
1 � . . . � φ

∗
M � σH

)
(y)

= inf


M∑
m=1

[
〈am, ym〉+ IwmB

∗
m

(ym)
]

+ σH(y0)

∣∣∣∣∣∣
M∑
m=0

ym = y

 ,

with φ1, . . . , φM as given by (3.1) in the location problem (P) and their conjugates φ
∗
1, . . . , φ

∗
M

as given by (5.1) in the dual problem (D).

The Toland-Singer dual problem of (PH), see Theorem 4.21, is defined by

βH := inf
y∈Rn
{h∗(y)− g∗H(y)} (DH)
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with conjugates h∗ : Rn → R ∪ {+∞}, as given by (5.4) in (D), and g∗H : Rn → R ∪ {+∞}, as

given by Proposition 8.1.

8.1 Geometrical Properties

In this section we provide some geometrical properties and duality statements of the dual pair

of optimization problems (PH) and (DH).

Proposition 8.2. Let H =
⋂I
i=1Hi, Hi =

{
x ∈ Rn|

〈
x, qi

〉
≤ ci

}
with qi, ci, for i = 1, . . . , I, as

defined in (8.1). Moreover, define for x ∈ H the index set Jx :=
{
i ∈ {1, . . . , I}

∣∣ 〈x, qi〉 = ci
}

.

Then we have

∂gH(x) = ∂g(x) +NH(x), (8.3)

where

NH(x) =



∑
i∈Jx

R+q
i, if x ∈ bdH,

{0} , if x ∈ intH,

∅, if x /∈ H,

and ∂g(x) is given in Proposition 5.8.

Proof. Equation (8.3) follows from Theorem 4.9 and property (J) in Section 4.2:

∂gH(x) = ∂(g + IH)(x) = ∂g(x) + ∂IH(x) = ∂g(x) +NH(x).

From Theorem 4.9 and property (J) in Section 4.2 we obtain for x ∈ H

NH(x) = ∂IH(x) = ∂
I∑
i=1

IHi(x) =
I∑
i=1

∂IHi(x) =
I∑
i=1

NHi(x) =


∑

i∈Jx R+q
i, x ∈ bdH,

{0} , x ∈ intH.

The last equation holds since NHi(x) = {0} for x ∈ intHi, i.e., whenever i /∈ Ix, and NHi(x) =

R+q
i for x ∈ bdHi, i.e., whenever i ∈ Ix.

Proposition 8.3. The subdifferentials ∂g∗H(y), ∂gH(x) and ∂σH(y) are non-empty for all y ∈
dom g∗H, x ∈ dom gH = H and y ∈ domσH, respectively.

Proof. The function IH is polyhedral, whenever H is a polyhedral set. Hence, the function

gH = g + IH and the conjugates I∗H = σH and g∗H are polyhedral, too. The assertions follow by

Remark 4.10.
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Proposition 8.4. For H =
⋂I
i=1Hi, Hi =

{
x ∈ Rn|

〈
x, qi

〉
= ci

}
with qi, ci (i = 1, . . . , I) as

defined in (8.1) the effective domain of σH is

domσH =
I∑
i=1

R+q
i.

Proof. Let y ∈ domσH. Then by Proposition 8.3 and property (h) in Section 4.2 it holds

∂σH(y) = {x ∈ H|σH(y) = 〈x, y〉} 6= ∅.

By Proposition 4.12, properties (i) and (J) in Section 4.2 and Proposition 8.2 we have

x ∈ ∂σH(y) ⇔ y ∈ ∂σ∗H(x) = ∂IH(x) = NH(x) ⊆
I∑
i=1

R+q
i.

Let y ∈
∑I

i=1R+q
i. Then there exist λ1, . . . , λI ≥ 0 such that y =

∑I
i=1 λiq

i. Hence, we obtain

σH(y) = sup
x∈H
〈x, y〉 = sup

x∈H

〈
x,

I∑
i=1

λiq
i

〉
= sup

x∈H

I∑
i=1

λi
〈
x, qi

〉
≤

I∑
i=1

λici < +∞,

i.e., y ∈ domσH.

Proposition 8.5. Let H =
⋂I
i=1Hi, Hi =

{
x ∈ Rn|

〈
x, qi

〉
≤ ci

}
with qi, ci, for i = 1, . . . , I, as

defined in (8.1). Moreover, define for x ∈ H the index set Jx :=
{
i ∈ {1, . . . , I}

∣∣ 〈x, qi〉 = ci
}

.

Then for (y, y0) ∈ dom g∗H × domσH with y − y0 ∈ dom g∗ we have

∂g∗H(y) ⊇ ∂g∗(y − y0) ∩ ∂σH(y0), (8.4)

where

∂σH(y0) =



{
x ∈ bdH

∣∣∣∣∣ y0 ∈∑
i∈Ix

R+q
i

}
, if y0 ∈ domσH\ {0} ,

H, if y0 = 0,

∅, if y0 /∈ domσH,

and ∂g∗(y − y0) as given in Section 5.2.

Proof. Let (y, y0) ∈ dom g∗H×domσH such that y−y0 ∈ dom g∗ and ∂g∗(y−y0)∩∂σH(y0) 6= ∅.
Then inclusion (8.4) holds by Theorem 4.16 and Proposition 8.1.

Let y0 = 0. Then, by property (H) in Section 4.2, it holds

∂σH(y0) =
{
x ∈ H

∣∣σH(y0) =
〈
x, y0

〉}
= H.
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Let y0 ∈ domσH\ {0}. By Remark 4.7, property (H) in Section 4.2 and Proposition 8.2 it follows

∂σH(y0) =
{
x ∈ H

∣∣σH(y0) =
〈
x, y0

〉}
=
{
x ∈ H

∣∣ y0 ∈ NH(x)
}

=

{
x ∈ bdH

∣∣∣∣∣ y0 ∈∑
i∈Ix

R+q
i

}
.

Let y0 /∈ domσH, then ∂σH(y0) = ∅.

Theorem 8.6. For each pair (y, y0) ∈ dom g∗H × domσH with y − y0 ∈ dom g∗ the following

statements are equivalent:

1. ∂g∗(y − y0) ∩ ∂σH(y0) 6= ∅,

2. g∗H is exact at y := (y − y0) + y0,

3. ∂g∗(y − y0) ∩ ∂σH(y0) = ∂g∗H(y).

Moreover, for each feasible y ∈ dom g∗H there exists y0 ∈ domσH such that these statements

hold.

Proof. 1. ⇒ 2. ⇒ 3. Those implications follow directly by Theorem 4.16.

3. ⇒ 1. The assertion follows since ∂g∗H(y) 6= ∅ for all y ∈ dom g∗H, see Proposition 8.3.

The existence of such a pair (y, y0) ∈ dom g∗H × domσH follows from Theorem 4.15.

Corollary 8.7. If ∂g∗(y) ∩H 6= ∅, then it holds ∂g∗H(y) = ∂g∗(y) ∩H.

8.2 Existence of Finite Optimal Solutions

In general, constraints influence the finiteness of the optimal objective value of the location

problem. A necessary and sufficient criterion for the finiteness of the optimal objective value of

the dual pair of optimization problems (PH) and (DH), under consideration of the polyhedral

constraints as given in (8.1), is the following:

Theorem 8.8. (Finiteness Criterion)

The optimal objective value of the dual pair of optimization problems (PH) and (DH) is finite,

i.e., infx∈Rn {gH(x)− h(x)} = infy∈Rn {h∗(y)− g∗H(y)} ∈ R, if and only if

M∑
m=1

wmB
∗
m ⊆

M∑
m=1

wmB
∗
m +

I∑
i=1

R+q
i.

Proof. By Remark 4.14 and Proposition 8.1 we have dom g∗H = dom g∗ + domσH (6= ∅). Taking

into account the domains of g∗, h∗ and σH, as given in (5.5) and Proposition 8.4, the assertion

follows from Proposition 5.1 analogously as in Theorem 5.2.
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Remark 8.9. In case of one half-space constraint, i.e., for H =
{
x ∈ Rn|

〈
x, q1

〉
= c1

}
with

q1, c1 as defined in (8.1) it holds: If domh∗ and dom g∗ are symmetric with respect to the origin

then

domh∗ ⊆ dom g∗H ⇔ domh∗ ⊆ dom g∗.

If the number I of half-space constraints is greater than one, then the assertion may be wrong.

Proof. Let domh∗ ⊆ dom g∗H and y ∈ domh∗. Since domh∗ is symmetric we also have −y ∈
domh∗ and y,−y ∈ dom g∗H.

Since dom g∗H = dom g∗ + domR+q
1, there exist λ1, λ2 ≥ 0 such that

y − λ1q1 ∈ dom g∗, −y − λ2q1 ∈ dom g∗.

Due to the symmetry of dom g∗ we have

−y + λ1q
1 ∈ dom g∗, y + λ2q

1 ∈ dom g∗.

Hence, the line segment [y−λ1q1, y+λ2q
1] is a subset of the convex set dom g∗, and y ∈ dom g∗.

Let domh∗ ⊆ dom g∗. By 0 ∈ R+q
1 it follows that dom g∗ ⊆ dom g∗H and the assertion holds.

If H is a bounded set the finiteness is even assured since then domσH = Rn and hence domh∗ ⊆
dom g∗H = dom g∗ + domσH = Rn. An example is illustrated in Figure 8.1d in Section 8.4.

Moreover, the constraints Hi =
{
x ∈ Rn|

〈
qi, x

〉
≤ ci

}
, for i = 1, . . . , I, in the constrained

location problem (PH), provoke into each direction q ∈
∑I

i=1R+q
i the boundedness of dom gH

and the unboundedness of dom g∗H.

8.3 Optimality Conditions and Discretization Results

Using the following duality statements we are able to determine the set of optimal solutions of

(DH) out of the set of optimal solutions of (PH) and vice versa.

Corollary 8.10. (Sufficient Optimality Condition for Dual Solutions)

Let x ∈
⋂M
m=1[a

m + NwmB
∗
m

(ym)] be an optimal solution of the primal problem (PH). Then∑M
m=1 y

m is an optimal solution of the dual problem (DH).

Proof. This result follows analogously to Corollary 5.12, since the function h and its conjugate

h∗ are not influenced by the constraints H.

Corollary 8.11. (Sufficient Optimality Condition for Primal Solutions)

Let y be an optimal solution of the dual problem (DH) such that g∗H is exact at y = (y−y0)+y0,

(y− y0, y0) ∈ dom g∗ × domσH. Then each x ∈ ∂g∗(y− y0)∩ ∂σH(y0) is optimal for the primal

problem (PH).
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Proof. Let y be an optimal solution of the dual problem (DH) and assume that g∗ is exact at

y = (y − y0) + y0. Then, by Theorem 8.6, we know that

∂g∗(y − y0) ∩ ∂σH(y0) = ∂g∗H(y),

which is a non-empty set by Proposition 8.3. The assertion follows by Remark 5.14.

By applying Remark 5.14, Corollary 8.10 and Corollary 8.11 we are able to determine the

complete set XH of primal optimal solutions when having found the set YH of dual optimal

solutions and vice versa.

Definition 8.12. For x ∈ H and y ∈ dom g∗H we call the subdifferentials ∂gH(x) and ∂g∗H(y)

primal and dual constrained elementary convex sets w.r.t. attraction. The primal and dual

constrained (construction) grids are defined by

G
H

:=
⋃

{y∈dom g∗H| dim ∂g∗H(y)=1}
∂g∗H(y), G

H
D :=

⋃
{x∈H| dim ∂gH(x)=1}

∂gH(x).

A point x ∈ Rn is called primal constrained grid point w.r.t. attraction, if x is an extreme point

of a primal constrained elementary convex set w.r.t. attraction. We denote by IH the set of all

primal constrained grid points w.r.t. attraction.

A point y ∈ Rn is called dual constrained grid point w.r.t. attraction, if y is an extreme point of

a dual constrained elementary convex set w.r.t. attraction. We denote by IHD the set of all dual

constrained grid points w.r.t. attraction.

Note that primal and dual elementary convex sets w.r.t. repulsion in case of convex polyhedral

constraints coincide with the subdifferentials ∂h(x) and ∂h∗(y), as given in Section 5.2, since

the functions h and h∗ are not influenced by the constraints.

Theorem 8.13. (Geometric Duality Map for the Constrained Case))

Let CH := {∂g∗H(y)| y ∈ dom g∗H} ⊆ 2R
n

and DH := {∂gH(x)|x ∈ dom gH} ⊆ 2R
n
. The function

Φ
∗
H : CH → DH defined by

Φ
∗
H(∂g∗H(y)) :=

⋂
x∈∂g∗H(y)

∂gH(x)

provides an inclusion-reversing one-to-one map between the primal and dual elementary convex

sets such that

dim ∂g∗H(y) + dim Φ
∗
H(∂g∗H(y)) = n.

Proof. The assertion follows analogously as for Theorem 6.4 since gH : Rn → R is a polyhedral

convex function.
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An example in R2 is illustrated in Figure 8.1, where dim ∂gH(x) + dim ∂g∗H(y) = 2 for each pair

of assigned elementary convex sets.

The discretization results for an unconstrained location problem (P) with obnoxious facilities,

given in Corollaries 5.15 and 5.16, can analogously be formulated for the more general case of a

constrained location problem (PH) with obnoxious facilities.

Corollary 8.14. (Discretization Result for the Primal Problem (PH))

The set IH of primal grid points in G
H

w.r.t. attraction is a finite dominating set for the optimal

points of the location problem (PH), i.e., IH ∩ XH 6= ∅, where XH is the set of minimizers of

(PH).

Proof. By Remark 5.14 we have XH =
⋃
y∈YH ∂g

∗
H(y), where the subdifferentials ∂g∗H(y) are

closed polyhedral elementary convex sets. Hence, we have ext(∂g∗H(y)) ⊆ IH ∩ XH for all

y ∈ YH.

Corollary 8.15. (Discretization Result for the Dual Problem (DH))

The set ID of all dual grid points in GD w.r.t. repulsion is a finite dominating set for the optimal

points of the dual problem (DH), i.e., ID ∩ YH 6= ∅, where YH is the set of minimizers of (D).

Proof. By Remark 5.14 we have YH =
⋃
x∈XH ∂h(x), where the subdifferentials ∂h(x) are closed

polyhedral elementary convex sets. Hence, we have ext(∂h(x)) ⊆ I ∩ YH for all x ∈ XH.

8.4 Example

In order to illustrate the influence of linear constraints we give some examples in R2. In Figure

8.1 we marked for Example 4.18 the different kinds of primal and dual elementary convex sets

∂g∗H(y) and ∂gH(x) by different colors and line styles. We distinguish the following categories

of elementary convex sets:

1. ∂g∗(y) ∩H 6= ∅, i.e., ∂g∗H(y) = ∂g∗(y) ∩H

a) If ∂g∗(y) ⊆ H, then the primal elementary convex set ∂g∗H(y) is not influenced by the

constraints set H, i.e., ∂g∗H(y) = ∂g∗(y).

i. dim ∂g∗(y) = 0 (green)

ii. dim ∂g∗(y) = 1 (some continuous lines)

iii. dim ∂g∗(y) = 2 (red).

b) If ∂g∗(y) 6⊆ H, then the primal elementary convex set ∂g∗H(y) is influenced by the

constraints set H, i.e., ∂g∗H(y) = ∂g∗(y) ∩H 6= ∂g∗(y).

i. dim ∂g∗(y) = 1 (some continuous lines)

ii. dim ∂g∗(y) = 2 (blue).
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2. ∂g∗(y) ∩H = ∅

a) dim ∂g∗H(y) = 0

i. ∂g∗H(y) ⊆ bdH ∩G (purple)

ii. ∂g∗H(y) ⊆ ext(H) (orange).

b) dim ∂g∗H(y) = 1

∂g∗H(y) ⊆ bdH (dashed lines).

The assigned dual elementary convex sets, see Theorem 8.13, are identified in the same manner

as their respective primal elementary convex sets.

.
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(a) One single half-space constraint.

(b) Two parallel half-space constraints.

(c) Three half-space constraints.

(d) Bounded closed polyhedral constraints.

Figure 8.1: Primal and dual grids w.r.t. attraction for
Example 4.18 under consideration of differ-
ent polyhedral constraints.

H1 =
{
x ∈ Rn

∣∣∣ 〈(−2, 5)T , x〉 ≤ −4} ,
domσH = R+

{
(−2, 5)T

}
.

H1 =
{
x ∈ R2

∣∣∣ 〈(1, 0)T , x〉 ≤ 5
}
,

H2 =
{
x ∈ R2

∣∣∣ 〈(−1, 0)T , x〉 ≤ 1
}
,

domσH = R× {0}.

H1 =
{
x ∈ R2

∣∣∣ 〈(−3, 10)T , x〉 ≤ −11} ,
H2 =

{
x ∈ R2

∣∣∣ 〈(2, 4)T , x〉 ≤ 18
}
,

H3 =
{
x ∈ R2

∣∣∣ 〈(3, 1)T , x〉 ≤ 32
}
,

domσH =

R+

{
(−3, 10)T

}
+ R+

{
(2, 4)T

}
+ R+

{
(3, 1)T

}
.

H1 =
{
x ∈ R2

∣∣∣ 〈(−4, 7)T , x〉 ≤ −10} ,
H2 =

{
x ∈ R2

∣∣∣ 〈(0, 1)T , x〉 ≤ 2
}
,

H3 =
{
x ∈ R2

∣∣∣ 〈(2, 1)T , x〉 ≤ 24
}
,

H4 =
{
x ∈ R2

∣∣∣ 〈(1,−1)T , x〉 ≤ 15
}
,

H5 =
{
x ∈ R2

∣∣∣ 〈(0,−1)T , x〉 ≤ 4
}
,

H6 =
{
x ∈ R2

∣∣∣ 〈(−3,−1)T , x〉 ≤ −2} ,
domσH = R2.



Chapter 9
An Algorithm for Solving Location Problems

with Obnoxious Facilities

In this chapter we formulate a primal and a dual algorithm for solving the problem of locating

an obnoxious facility.

In Sections 9.1 and 9.2 we present different methods for determining the sets I and ID of primal

grid points w.r.t. attraction and dual grid points w.r.t. repulsion. Based on the Corollaries 5.15

and 5.16, we use those grid points in Section 9.3 in order to formulate a primal and a dual

algorithm for solving the dual pair of optimization problems (P) and (D). The algorithms are

illustrated by an example in Section 9.4. Moreover, the special case of no repulsion is shortly

discussed in Section 9.5. Finally, algorithms for the more general case of the constrained location

problem (PH) and its dual problem (DH) are presented in Section 9.6.

9.1 Determination of Grid Points w.r.t. Attraction

In this section we present different methods for determining the set I of primal grid points

w.r.t. attraction. These grid points are determined in step 2 and used in in step 3 of the primal

Algorithm 9.2 for solving the optimization problem (P).

Application of Benson’s Algorithm for Determining I and ID

Although we are considering a scalar optimization problem it is possible to apply methods from

the field of linear vector optimization in order to determine the primal and dual grid points w.r.t.

attraction. In particular, we apply the well known Benson algorithm [5, 51, 76]. We consider the

objectives P ,D
∗
, feasible sets S, T and ordering cones C,K as introduced in Chapter 7. Then

the epigraphs of the functions g and g∗, as given by (3.1) and (5.3) in the location problem (P)

and its dual problem (D), can be written as

epi g = P [S] + C and epi g∗ = −
(
D
∗
[T ]−K

)
,
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i.e., the upper and the lower image of the dual pair of linear vector optimization problems

C−minP [S], (LV OP )

K−maxD
∗
[T ]. (LV OD)

Minimizing the linear vector optimization problem (LV OP ) and maximizing its geometric dual

problem (LV OD) means to find the exposed faces, see Definition 4.2, and the extreme points

of epi g and epi g∗. The grid points x ∈ I and y ∈ ID then are given as the projections of those

extreme points onto Rn, see Remark 6.3, such that

I : =
{
x ∈ Rn

∣∣ (x, g(x)) ∈ ext
(
P [S] + C

)}
,

ID : =
{
y ∈ dom g∗

∣∣∣ (y, g∗(y)) ∈ ext
(
−(D

∗
[T ]−K)

)}
.

Note that the set of primal and dual grid points w.r.t. repulsion may be determined completely

analogously.

Determining I by Intersection of Fundamental Directions

The half-lines am +R+e for all e ∈ ext(Bm), m ∈
{

1, . . . ,M
}

, are called fundamental directions

and generate the primal grid w.r.t. attraction. The set I of grid points coincides with the set of

intersection points of all fundamental directions, such that

I :=
⋃

(m1,m2)∈{1,...,M}2

{(
am1 + R+e

1
)
∩
(
am2 + R+e

2
)∣∣

(e1, e2) ∈ ext(Bm1)× ext(Bm2), e2 /∈ R+e
1
}
.

Determining I in the Special Case of Manhattan Distances

In the special case that the assigned distance function for each attracting facility in the location

problem (P) is the Manhattan norm (4.3), i.e.,

B1 = . . . = BM = BManhattan =

{
x ∈ Rn

∣∣∣∣∣
n∑
i=1

|xi| ≤ 1

}
,

we directly obtain the set I of primal grid points w.r.t. attraction as

I :=
{
a11, . . . , a

M
1

}
× · · · ×

{
a1n, . . . , a

M
n

}
.

9.2 Determination of Grid Points w.r.t. Repulsion

In this section we present different methods for determining the dual grid points w.r.t. repulsion.

These grid points are determined in step 2 and used in in step 3 of the dual Algorithm 9.3 for

solving the dual pair of optimization problems (P) and (D).
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Application of Benson’s Algorithm for Determining I and ID

Consider the objectives P ,D∗, feasible sets S, T and ordering cones C,K as introduced in

Chapter 7. The epigraphs of the functions h and h∗, as given by (3.2) and (5.4) in the location

problem (P) and its dual problem (D), can be written as

epih = P [S] + C and epih∗ = − (D∗[T ]−K) ,

i.e., the upper and the lower image of a dual pair of linear vector optimization problems

C−minP [S], (LVOP)

K−maxD∗[T ]. (LVOD)

Minimizing the linear vector optimization problem (LVOP) and maximizing its geometric dual

problem LVOD means to find the exposed faces and the extreme points of epih and epih∗. The

grid points x ∈ I and y ∈ ID then are given as the projections of those extreme points onto Rn,

see Remark 6.3, such that

I : = {x ∈ Rn| (x, h(x)) ∈ ext (P [S] + C)} ,

ID : = {y ∈ domh∗| (y, h∗(y)) ∈ ext (−(D∗[T ]−K))} .

Determining ID in the Special Case of Manhattan Distances

Consider the special case that the corresponding distance function for each repulsive facility in

the location problem (P) is the Manhattan norm (4.3), i.e.,

B1 = . . . = BM = BManhattan =

{
x ∈ Rn

∣∣∣∣∣
n∑
i=1

|xi| ≤ 1

}
.

By Remark 5.11 the set ID of dual grid points w.r.t. repulsion is given by

ID = {y ∈ domh∗| ∃x ∈ Rn : {y} = ∂h(x)} .

Those dual elementary convex sets are defined (see Definition 5.10) by the subdifferentials

∂h(x) =

M∑
m=1

argmax
ym∈wmB

∗
m

〈
x− am, ym

〉
.

In case of Manhattan distances the weighted dual unit balls wmB
∗
m can be written as

wmB
∗
m = [−wm, wm]× . . .× [−wm, wm] ⊆ Rn,
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for all m = 1, . . . ,M , such that we obtain

∂h(x) =

M∑
m=1

n∑
i=1

argmax
ym
i
∈[−wm,wm]

(xi − ami ) · ym
i
.

Further, for i = 1, 2, . . . , n and m = 1, . . . ,M it holds

argmax
ym
i
∈[−wm,wm]

(xi − ami ) · ym
i

=


{−wm} , if xi < ami ,

[−wm, wm], if xi = ami ,

{wm} , if xi > ami .

Remark 9.1. Note that we do not consider the case that xi = ami since otherwise dim ∂h(x) > 0

in contradiction to {y} = ∂h(x).

Let x ∈ Rn with ∂h(x) = {y}. We define for i = 1, 2, . . . , n

Di(x) := {m ∈ {1, . . . ,M}| ami < xi} , Dc
i (x) := {1, . . . ,M} \Di(x).

If Di(x), Dc
i (x) 6= ∅ then the i-th component of y is given by

yi =
∑

m∈Di(x)

wm −
∑

m∈Dc
i (x)

wm,

h∗i (yi) :=
∑

m∈Di(x)

ami wm −
∑

m∈Dc
i (x)

ami wm,

otherwise if xi < min
{
a1i , . . . , a

M
i

}
then

yi = −
M∑
m=1

wm, h∗i (yi) := −
M∑
m=1

ami wm,

and if xi > max
{
a1i , . . . , a

M
i

}
then we have

yi =

M∑
m=1

wm, h∗i (yi) :=

M∑
m=1

ami wm.

For y = (y1, . . . , yn)T ∈ ID we obtain

h∗(y) =
n∑
i=1

h∗i (yi).

In Algorithm 9.1 these results are used for determining the set ID of dual grid points w.r.t.

repulsion in the case of Manhattan distances for all repulsive facilities a1, . . . , aM .
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Algorithm 9.1 (Determination of dual set ID of grid points w.r.t. repulsion in Case of Man-

hattan Norm).

Input: am, wm, (m = 1, . . . ,M).

Output: ID, h∗[ID].

1. For i = 1, 2, . . . , n and m̂ = 1, . . . ,M determine

Di(m̂) : =
{
m ∈ {1, . . . ,M}

∣∣∣ ami ≤ am̂i } , Dc
i (m̂) := {1, . . . ,M} \Di(m̂),

yi(0) : = −
M∑
m=1

wm,

yi(m̂) : =



∑
m∈Di(m̂)

wm −
∑

m∈Dc
i (m̂)

wm, if Dc
i (m̂) 6= ∅,

M∑
m=1

wm, if Dc
i (m̂) = ∅,

h∗i (0) : = −
M∑
m=1

ami wm,

h∗i (m̂) : =



∑
m∈Di(m̂)

ami wm −
∑

m∈Dc
i (m̂)

ami wm, if Di(m̂), Dc
i (m̂) 6= ∅,

M∑
m=1

ami wm, if Dc
i (m̂) = ∅.

2. Determine

ID =

M⋃
m̂=0

{y1(m̂)} × . . .×
M⋃
m̂=0

{yn(m̂)} ⊆ Rn.

3. For each y := (y1(m̂1), . . . , yn(m̂n)) ∈ ID, with m̂1, . . . , m̂n ∈ {0, . . . ,M}, set

h∗(y) =
n∑
i=1

h∗i (m̂i).



70 9. An Algorithm for Location Problems with Obnoxious Facilities

Example 9.2. Suppose that we have given the repulsion points a1 = (1, 1), a2 = (2, 3), a3 =

(3, 2) and a4 = (2, 0) with corresponding weights w1 = 2, w2 = 1, w3 = 2 and w4 = 3. We

obtain

D1(1) = {1} , D2(1) = {1, 4} ,

D1(2) = {1, 2, 4} , D2(2) = {1, 2, 3, 4} ,

D1(3) = {1, 2, 3, 4} , D2(3) = {1, 3, 4} ,

D1(4) = {1, 2, 4} , D2(4) = {4} ,

y1(0) = −(w1 + w2 + w3 + w4) = −8, y2(0) = −(w1 + w2 + w3 + w4) = −8,

y1(1) = w1 − (w2 + w3 + w4) = −4, y2(1) = (w1 + w4)− (w2 + w3) = 2,

y1(2) = (w1 + w2 + w4)− w3 = 4, y2(2) = w1 + w2 + w3 + w4 = 8,

y1(3) = w1 + w2 + w3 + w4 = 8, y2(3) = (w1 + w3 + w4)− w2 = 6,

y1(4) = (w1 + w2 + w4)− w3 = 4, y2(4) = w4 − (w1 + w2 + w3) = −2,

and hence ID = {−8,−4, 4, 8} × {−8,−2, 2, 6, 8}.

Figure 9.1: Primal and dual grid w.r.t. repulsion in case of Manhattan distances.
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9.3 Solving the Location Problem with Obnoxious Facilities

Before starting the solving procedure, we apply Theorem 5.2 in step 1 of both, the primal

Algorithm 9.2 and the dual Algorithm 9.3, in order to check the finiteness of the optimal objective

value of the dual pair of optimization problems (P) and (D). In case of an infinite optimal

objective value, i.e., α = β := −∞, the algorithm quits. The primal set of optimal solutions is

X = ∅ and the dual set of optimal solutions is Y := domh∗\ dom g∗.

The Primal Algorithm

In case of a finite optimal objective value, one of the methods, presented in Section 9.1, is applied

in step 2 of Algorithm 9.2 for determining the set I of primal grid points w.r.t. attraction as

well as g[I]. In step 3, for each x ∈ I, the objective value h(x) is determined. Finally, in step

4, the primal minimal objective value

α := min
x∈I
{g(x− h(x)} ,

the primal set of optimal grid points

X := argmin
x∈I

{g(x)− h(x)} ,

and the dual set of optimal points

Y :=
⋃
x∈X

∂h(x) =
⋃
x∈X

M∑
m=1

argmax
ym∈ext(wmB

∗
m)

〈
x− am, ym

〉
are determined, based on Corollary 5.12 and Proposition 5.8. By Theorem 4.21 the dual optimal

objective value β coincides with the primal one α.

The Dual Algorithm

In case of a finite optimal objective value, one of the methods presented in Section 9.2, is applied

in step 2 of Algorithm 9.3 for determining the set ID of dual grid points w.r.t. repulsion. In step

3, for each y ∈ ID the objective value g∗(y) is determined by solving the linear optimization

problem

g∗(y) = inf


M∑
m=1

[
〈am, ym〉+ IwmB

∗
M

(ym)
]∣∣∣∣∣∣

M∑
m=1

ym = y

 .

The tuples
(
y1, . . . , yM

)
, for which the infimum is attained, are used in step 4, where the dual

minimal objective value

β := min
y∈ID

{h∗(y)− g∗(y)} ,
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the dual set of optimal grid points

Y := argmin
y∈ID

{h∗(y)− g∗(y)} ,

and the primal set of optimal points

X :=
⋃
y∈Y

∂g∗(y) =
⋃
y∈Y

⋂
m=1,...,M

[
am +NwmB

∗
m

(ym)
]
,

are determined, based on Corollary 5.13 and Theorem 5.7. By Theorem 4.21 the primal optimal

objective value α coincides with the dual one β.

Algorithm 9.2 (Primal Algorithm for Solving the Location Problem (P)).

Input: am, wm, B
∗
m, (m = 1, . . . ,M); am, wm, B

∗
m, (m = 1, . . . ,M).

Output: The sets X and Y of optimal grid points of (P) and (D); optimal objective value α.

1. Check finiteness of the optimal objective value using the condition

domh∗ =

M∑
m=1

wmB
∗
m ⊆

M∑
m=1

wmB
∗
m = dom g∗

given in Theorem 5.2. If the condition is satisfied go on with 2. Otherwise set α := −∞,

Y := domh∗\ dom g∗ and X := ∅ and STOP.

2. Determine the set I as well as g[I] by using one of the methods presented in Section 9.1.

3. For all x ∈ I determine h(x) :=
∑M

m=1wmγBm
(x− am).

4. Determine the optimal objective value

α := min
x∈I
{g(x)− h(x)} ,

the primal set of optimal grid points

X := argmin
x∈I

{g(x)− h(x)} ,

and the dual set of optimal points

Y :=
⋃
x∈X

∂h(x) =
⋃
x∈X

M∑
m=1

argmax
ym∈ext(wmB

∗
m)

〈
x− am, ym

〉
.
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Algorithm 9.3 (Dual Algorithm for Solving the Location Problem (P)).

Input: am, wm, B
∗
m, (m = 1, . . . ,M); am, wm, B

∗
m, (m = 1, . . . ,M).

Output: The sets X and Y of optimal grid points of (P) and (D); optimal objective value β.

1. Check finiteness of the optimal objective value using the condition

domh∗ =

M∑
m=1

wmB
∗
m ⊆

M∑
m=1

wmB
∗
m = dom g∗

given in Theorem 5.2. If the condition is satisfied go on with 2. Otherwise set β := −∞,

Y := domh∗\ dom g∗ and X := ∅ and STOP.

2. Determine the set ID and h∗[ID] by using one of the methods presented in Section 9.2.

3. For all y ∈ ID determine the objective value g∗(y) by solving the linear optimization

problem

g∗(y) = inf


M∑
m=1

[
〈am, ym〉+ IwmB

∗
M

(ym)
]∣∣∣∣∣∣

M∑
m=1

ym = y


and determine the set Ŷ of tuple (y1, . . . , yM ) for which the infimum is attained.

4. Determine the optimal objective value

β := min
y∈ID

{h∗(y)− g∗(y)} ,

the dual set of optimal grid points

Y := argmin
y∈ID

{h∗(y)− g∗(y)} ,

and the primal set of optimal points

X :=
⋃
y∈Y

∂g∗(y) =
⋃
y∈Y

⋂
m=1,...,M

[
am +NwmB

∗
m

(ym)
]
.

Obviously, the time complexity of Algorithm 9.2 strongly depends on the number of primal

grid points w.r.t. attraction. The time complexity of Algorithm 9.3 strongly depends on the

number of dual grid points w.r.t. repulsion. For each grid point, a linear optimization problem

is to be solved in Algorithm 9.3. The complexity of each sub-problem depends on the number

of attraction points. In Section 10.4 we present some examples in order to demonstrate the

influence of the number of facilities (and hence grid points) on the running times.

Further considerations on duality based algorithms for practical usage, including results con-

cerning complexity and efficiency, will be presented in forthcoming studies.
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9.4 Example

We consider again the location problem introduced in Example 4.18, i.e., we have two attraction

points a1 = (2, 2)T and a2 = (9, 4)T and one repulsion point a1 = (7, 1)T with assigned primal

and dual unit balls given by

ext(B1) =
{
±(1, 1)T ,±(1,−1)T

}
, ext(B

∗
1) =

{
±(1, 0)T ,±(0, 1)T

}
,

ext(B2) =
{
±(1, 0)T ,±(0, 1)T

}
, ext(B

∗
2) =

{
±(1, 1)T ,±(1,−1)T

}
,

ext(B1) =
{

(−1, 0)T , (0, 1)T , (1,−1)T
}
, ext(B∗1) =

{
(−1, 1)T , (−1,−2)T , (2, 1)T

}
.

Moreover, we choose the weights such that w1 = w2 = w1 = 1.

Application of the Primal Algorithm

1. The finiteness criteria domh∗ ⊆ dom g∗ is satisfied since the effective domains of h∗ and

g∗ are given by

ext(domh∗) = ext

 M∑
m=1

wmB
∗
m

 =
{

(−1, 1)T , (−1,−2)T , (2, 1)T
}
,

ext(dom g∗) = ext

 M∑
m=1

wmB
∗
m

 = [{−1, 1} × {−2, 2}] ∪ [{−2, 2} × {−1, 1}].

2. The primal grid points x ∈ I w.r.t. attraction and the corresponding objective values g(x)

are given by

x ∈ I (0, 4)T (2, 2)T (4, 4)T (9,−5)T (9, 4)T (9, 9)T

g(x) 11 9 7 16 7 12

where by (4.3) and (4.5)

g(x) = max
{∣∣x1 − a11∣∣ , ∣∣x2 − a12∣∣}+

∣∣x1 − a21∣∣+
∣∣x2 − a22∣∣ .

3. For each grid point x ∈ I we determine the corresponding objective value h(x) such that

x ∈ I (0, 4)T (2, 2)T (4, 4)T (9,−5)T (9, 4)T (9, 9)T

h(x) 10 6 6 10 7 12

where by (4.9)

h(x) = max
y∈B∗1

〈
x− a1, y

〉
.

The corresponding primal elementary convex sets ∂h(x) are illustrated in Figure 9.2.
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4. Obviously, the optimal objective value is

α = min
x∈I
{g(x)− h(x)} = min {1, 3, 1, 6, 0, 0} = 0,

and the set of optimal primal grid points is

X = argmin
x∈I

{g(x)− h(x)} =
{

(9, 4)T , (9, 9)T
}
.

The set of optimal dual solutions results as

Y =
⋃
x∈X

∂h(x) = argmax
y∈B∗1

〈
(9, 4)T − a1, y

〉
∪ argmax

y∈B∗1

〈
(9, 9)T − a1, y

〉
=
{

(2, 1)T
}
.

Application of the Dual Algorithm

1. The finiteness criteria domh∗ ⊆ dom g∗ is satisfied since the effective domains of h∗ and

g∗ are given by

ext(domh∗) = ext

 M∑
m=1

wmB
∗
m

 =
{

(−1, 1)T , (−1,−2)T , (2, 1)T
}
,

ext(dom g∗) = ext

 M∑
m=1

wmB
∗
m

 = [{−1, 1} × {−2, 2}] ∪ [{−2, 2} × {−1, 1}].

2. Obviously, the set of primal grid points I w.r.t. repulsion contains only the element x = a1

and we obtain

∂h(x) = argmax
y∈B∗1

〈
a1 − a1, y

〉
= B∗1.

The dual grid points y ∈ ID w.r.t. repulsion and the corresponding objective values h∗(y)

are given by

y ∈ ID h∗(y)

(−1, 1)T −6

(−1,−2)T −9

(2, 1)T 15

with h∗(y) =
〈
a1, y

〉
.

3. For each grid point y ∈ ID we determine the corresponding objective value g∗(y) such

that

y ∈ ID
{
y1, y2

}
g∗(y)

(−1, 1)T
{

(0, 1)T , (−1, 0)T
}

−7

(−1,−2)T
{

(0,−1)T , (−1,−1)T
}

−15

(2, 1)T
{

(1, 0)T , (1, 1)T
}

15

The corresponding primal elementary convex sets ∂g∗(y) are illustrated in Figure 9.3.
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4. Obviously, the optimal objective value is

α = min
y∈ID

{h∗(y)− g∗(y)} = min {1, 6, 0} = 0,

and the set of optimal dual grid points is

Y = argmin
y∈ID

{h∗(y)− g∗(y)} =
{

(2, 1)T
}
.

The set of optimal primal solutions results as

X =
⋃
y∈Y

∂g∗(y) = ∂g∗((2, 1)T ) = [a1 +NB
∗
1
((1, 0)T )] ∩ [a2 +NB

∗
2
((1, 1)T )]

= [a1 + R+(1, 1)T + R+(1,−1)T ] ∩ [a2 + R2
+].

Remark 9.3. Without solving the location problem, it is easy to see in Figure 9.2c that the

dual grid point y = (−1,−2)T can not be optimal for the dual problem (D), since the necessary

optimality condition ∂g∗(y) ⊆ ∂h∗(y), in Theorem 4.22, is not satisfied:

∂g∗((−1,−2)T ) = [a1 + R+(−1,−1)T + R+(1,−1)T ] ∩ [a2 − R2
+],

∂h∗((−1,−2)T ) = [a1 + R+(−1, 0)T + R+(1,−1)T ].

Analogously, it is easy to see in Figure 9.2 that the primal grid point y = (2, 2)T can not be

optimal for the primal problem (P), since the necessary optimality condition ∂h(x) ⊆ ∂g(x), in

Theorem 4.22, is not satisfied:

ext(∂g((2, 2)T )) =
{

(−2,−1)T ; (−1,−2)T ; (−1, 0)T ; (0,−1)T
}
,

∂h((2, 2)T ) =
{

(−1, 1)T
}
.
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(a) Primal and dual construction grids.

(b) x = (0, 4)T , x = (2, 2)T , x = (4, 4)T ; corresponding dual elementary
convex set ∂h((0, 4)T ) = ∂h((2, 2)T ) = ∂h((4, 4)T ) =

{
(−1, 1)T

}
.

(c) x = (9,−5)T ; corresponding dual elementary convex set ∂h((9,−5)T ) ={
(−1,−2)T

}
.

(d) x = (9, 4)T , x = (9, 9)T ; corresponding dual elementary convex set
∂h((9, 4)T ) = ∂h((9, 9)T ) =

{
(2, 1)T

}
.

Figure 9.2: Primal grid points x ∈ I (green) and the assigned dual elementary convex sets ∂h(x) (red)
for the example in Section 9.4.
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(a) Dual and primal construction grids.

(b) y = (−1, 1)T ; corresponding primal elementary convex set
∂g∗((−1, 1)T ).

(c) y = (−1,−2)T ; corresponding primal elementary convex set
∂g∗((−1,−2)T ).

(d) y = (2, 1)T ; corresponding primal elementary convex set ∂g∗((2, 1)T ).

Figure 9.3: Dual grid points y ∈ ID (red) and the assigned primal elementary convex sets ∂g∗(y) (green)
for the example in Section 9.4.
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9.5 The Special Case of no Repulsion

For the classical Fermat-Weber problem (W ), as given in Section 4.3, the number of repulsion

points is equal to zero, i.e., M = 0. In this case the function h(x) does not contribute to the

objective function g(x)− h(x) in (P), in particular h ≡ 0. The conjugate h∗ then is given by

h∗(y) = sup
x∈Rn

{〈x, y〉 − 0} = I{0}(y)

and thus the effective domain results as domh∗ = {0} = ID = Y. Hence, the dual set of optimal

solutions is Y = {0}. The primal set of optimal points is given by X := ∂g∗(0), and the optimal

objective value α is finite. The dual problem (D) simplifies to

−g∗(0) = −min


M∑
m=1

[
〈am, ym〉+ IwmB

∗
m

(ym)
]∣∣∣∣∣∣

M∑
m=1

ym = 0

 ,

and the dual algorithm reduces as follows:

Algorithm 9.4 (Dual algorithm in case of M = 0).

Input: am, wm, B
∗
m, (m = 1, . . . ,M).

Output: The set X of optimal grid points of of (PH); optimal objective value α.

Determine

α : = −min


M∑
m=1

[
〈am, ym〉+ IwmB

∗
m

(ym)
]∣∣∣∣∣∣

M∑
m=1

ym = 0

 ,

X : =
M⋂
m=1

[
am +NwmBm

(ym)
]
.

In [36, Lemma 3.1] the authors give a statement on the existence of such a tuple of elements

y1, . . . , yM and a sufficient condition for a tuple to provide optimal solutions for this special case

of no repulsion. Nevertheless, we do not know from Lemma 3.1 in [36] how to determine such

a tuple. Using the duality based results of our study, we are able to determine such a tuple on

the one hand and also to generalize the assertion of Lemma 3.1 in [36] such, that an arbitrary

number of repulsion points may be considered, on the other hand.

9.6 An Algorithm for Solving the Constrained Problem with

Obnoxious Facilities

The Algorithms 9.2 and 9.3 can be generalized to the constrained case by substituting the

unconstrained function g and its conjugate g∗ by the constrained function gH and its conjugate
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g∗H; and by taking into account the primal constrained set of grid points IH, see Definition

8.12. Note that the generalized Benson algorithm, as presented in [51], is not applicable for

determining the grid points x ∈ IH and y ∈ IHD, as described in Chapter 7 and Section 9.1.

In case of constraints the recession cone C := 0+ epi gH may have empty interior such that

the assumption c ∈ intC, see (7.1) in Chapter 7, is not satisfiable. A further generalization

of the algorithms is necessary to be able to deal with epigraphs of arbitrary polyhedral convex

functions, the development is in progress, see [77].

Algorithm 9.5 (Primal Algorithm for Solving the Constrained Location Problem (PH)).

Input: am, wm, B
∗
m, (m = 1, . . . ,M); am, wm, B

∗
m, (m = 1, . . . ,M); H.

Output: The sets XH and YH of optimal grid points of (PH) and (DH), the optimal objective

value αH.

1. Check finiteness of the optimal objective value using the condition

domh∗ =

M∑
m=1

wmB
∗
m ⊆

M∑
m=1

wmB
∗
m +

I∑
i=1

R+q
i = dom g∗H

given in Theorem 8.8. If the condition is satisfied go on with 2. Otherwise set αH := −∞,

YH := domh∗\ dom g∗H and XH := ∅ and STOP.

2. Determine the set IH as well as g[IH].

3. For all x ∈ IH determine h(x) :=
∑M

m=1wmγBm
(x− am).

4. Determine the optimal objective value

αH := min
x∈IH

{gH(x)− h(x)} ,

the primal set of optimal grid points

XH := argmin
x∈IH

{gH(x)− h(x)} ,

and the dual set of optimal grid points

YH :=
⋃
x∈X

∂h(x) =
⋃

x∈XH

M∑
m=1

argmax
ym∈ext(wmB

∗
m)

〈
x− am, ym

〉
.
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Algorithm 9.6 (Dual Algorithm for Solving the Constrained Location Problem (PH)).

Input: am, wm, B
∗
m, (m = 1, . . . ,M); am, wm, B

∗
m, (m = 1, . . . ,M); H.

Output: The sets XH and YH of optimal grid points of (PH) and (DH), the optimal objective

value βH.

1. Check finiteness of the optimal objective value using the condition

domh∗ =

M∑
m=1

wmB
∗
m ⊆

M∑
m=1

wmB
∗
m +

I∑
i=1

R+q
i = dom g∗H

given in Theorem 8.8. If the condition is satisfied go on with 2. Otherwise set βH := −∞,

YH := domh∗\ dom g∗H and XH := ∅ and STOP.

2. Determine the set ID and h∗[ID] by using one of the methods presented in Section 9.2.

3. For all y ∈ ID determine the objective value g∗H(y) by solving the linear optimization

problem

g∗H(y) = inf
y0∈Rn

{
g∗(y − y0) + σH(y0)

}
= inf


M∑
m=1

[
〈am, ym〉+ IwmB

∗
m

(ym)
]

+ σH(y0)

∣∣∣∣∣∣
M∑
m=0

ym = y

 .

and determine the set Ŷ of tuple (y0, . . . , yM ) for which the infimum is attained.

4. Determine the optimal objective value

βH := min
y∈ID

{h∗(y)− g∗H(y)} ,

the dual set of optimal grid points

YH := argmin
y∈ID

{h∗(y)− g∗H(y)} ,

and the primal set of optimal grid points

XH :=
⋃
y∈YH

∂g∗H(y) =
⋃
y∈YH

∂σH(y0) ∩
⋂

m=1,...,M

[
am +NwmB

∗
m

(ym)
] .





Chapter 10
A Matlab Implementation for the

2-Dimensional Case

Based on the duality and discretization results given in Chapter 5 we implemented in Matlab

the Algorithms 9.2 and 9.3 for solving the location problem (P) with obnoxious facilities in the

plane. The aim of this chapter is to give some advice on the implementation. In Sections

10.1 and 10.2 we give some remarks on the required input and the resulting output arguments.

A choice of subroutines is described in detail and an overview on the program structure is

given in Section 10.3. Finally, in Section 10.4, we demonstrate some examples solved by the

implementation.

Throughout this chapter we use the following notation: Consider all (pairwise different) unit

balls B1, . . . , BJ ⊆ R2, (J ≤ M + M), that are assigned to an attracting or a repulsive facility

in the location problem (P), defined in Chapter 3. We define for j = 1, . . . , J the sets

T j : =
{
m ∈

{
1, . . . ,M

}∣∣Bm = Bj
}
, T j : = {m ∈ {1, . . . ,M}|Bm = Bj} , (10.1)

and the index sets

J : =
{
j ∈ {1, . . . , J}

∣∣T j 6= ∅} , J : =
{
j ∈ {1, . . . , J}

∣∣T j 6= ∅} ,
Further, we define vectors u ∈ RM and u ∈ RM , such that

u(m) = j ⇔ m ∈ T j (m = 1, . . . ,M), (10.2)

u(m) = j ⇔ m ∈ T j (m = 1, . . . ,M), (10.3)

which is justified since by (10.1) there exists for all m = 1, . . . ,M exactly one j ∈ {1, . . . , J}
such that m ∈ T j and analogously there exists for all m = 1, . . . ,M exactly one j ∈ {1, . . . , J}
such that m ∈ T j .
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Remark 10.1. Let B =
{
x ∈ Rn

∣∣∣ Âx ≤ b̂}, Â ∈ Rr×n, b ∈ Rr, be a constraint representation

of the unit ball B ⊆ Rn. Since by Definition 3.1 the origin is assumed to belong to the interior

of B, it holds: b̂ > 0. Hence, there exists a representation B = {x ∈ Rn|Ax ≤ 1}, A ∈ Rr×n.

This remark leads to the following definition:

Definition 10.2. A matrix A ∈ Rr×n is called associated with the unit ball B ⊆ Rn if

B = {x ∈ Rn|Ax ≤ 1} .

10.1 Input Arguments

To start the calculations one has to call the function

ObnoxiousSolve(ap,ar,up,ur,B,Options,BenOptions),

where ap,ar,up,ur,B are required input arguments and Options and BenOptions are optional

arguments.

Required Input Arguments

We explain the mandatory arguments with help of the following example:

Example 10.3. Consider the location problem (P) with six attracting and three repulsive

facilities:

a1 = (1, 10)T , w1 = 12, a1 = (6, 7)T , w1 = 6,

a2 = (5, 5)T , w2 = 7, a2 = (3, 4)T , w2 = 5,

a3 = (4, 6)T , w3 = 8, a3 = (3, 9)T , w3 = 2.

a4 = (9, 8)T , w4 = 10,

a5 = (4, 9)T , w5 = 8,

a6 = (4, 10)T , w6 = 14,

We assign the following unit balls to these facilities:

Bj = {x ∈ Rn|Ajx ≤ 1} , (j = 1, . . . , 4),

where the associated matrices are given as

A1 :=


1 1

−1 1

−1 −1

1 −1

 , A2 :=


1 0

0 1

−1 0

0 −1

 , A3 :=

−1 1

2 1

−1 −2

 , A4 :=

 0 1

−1 0

1 −1

 .
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The unit balls are assigned to the facilities by the vectors

u = [1, 3, 1, 2, 3, 4], u = [3, 2, 2],

such that

B1 is assigned to a1 and a3,

B2 is assigned to a4 and a2, a3,

B3 is assigned to a2, a5 and a1,

B4 is assigned to a6.

We obtain by application of (10.2) and (10.3) that J = {1, 2, 3, 4}, J = {2, 3} and

T 1 = {1, 3} , T 2 = {4} , T 3 = {2, 5} , T 4 = {6} ,

T 1 = ∅, T 2 = {2, 3} , T 3 = {1} , T 4 = ∅.

In order to realize the input of those arguments in Matlab, we define a structure B containing the

matrices A1, A2, A3, A4 as well as structures ap and ar containing the coordinates and weights of

the attraction and repulsion points, respectively. Finally, we call the function ObnoxiousSolve

in order to start the computations.�
1 B(1)=struct('ball',[1 1;−1 1;−1 −1; 1 −1]);
2 B(2)=struct('ball',[1 0;0 1;−1 0; 0 −1]);
3 B(3)=struct('ball',[−1 1;2 1;−1 −2]);
4 B(4)=struct('ball',[0 1;−1 0;1 −1]);
5

6 up=[1 3 1 2 3 4];

7 ur=[3 2 2];

8

9 ap(1)=struct('loc',[1 10],'weight',12);

10 ap(2)=struct('loc',[5 5],'weight',7);

11 ap(3)=struct('loc',[4 6],'weight',8);

12 ap(4)=struct('loc',[9 8],'weight',10);

13 ap(5)=struct('loc',[4 9],'weight',8);

14 ap(6)=struct('loc',[4 10],'weight',14);

15

16 ar(1)=struct('loc',[6 7],'weight',6);

17 ar(2)=struct('loc',[3 4],'weight',5);

18 ar(3)=struct('loc',[3 9],'weight',2);

19

20 [solD,solP,grid,time]=ObnoxiousSolve(ap,ar,up,ur,B)
� �
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Optional Input Arguments

The argument Options may be set in order to predefine special details as listed below. The

default setting is

Options=struct(’info’,1,’out’,2,’solve’,d,’plot’,5);

� Options.info: display or suppress status information

– 0: suppress status information

– 1: display status information (default).

� Options.out: select output data

– 0: suppress output data

– 1: display optimal solutions

– 2: display optimal solutions as well as time and grid (default).

� Options.solve: choose algorithm to be applied

– ’d’: use dual algorithm (see Algorithm 9.3) (default)

– ’p’: use primal algorithm (see Algorithm 9.2)

– ’b’: use dual and primal algorithm as well (see Algorithms 9.2 and 9.3).

� Options.plot: select elements to be plotted

– 0: plot facilities, dual domains

– 1: plot facilities, dual domains, solutions

– 2: plot facilities, dual domains, primal grids

– 3: plot facilities, dual domains, primal grids, solutions

– 4: plot facilities, dual domains, primal grids, dual grid points

– 5: plot facilities, dual domains, primal grids, dual grid points, solutions (default)

– 6: suppress plotting.

The argument BenOptions may be set in order to predefine special details referring to the

implementation bensolve-1.2.1, which is a generalized version of Benson’s algorithm [5, 51]

and is applied in our implementation in order to determine primal and dual grid points. The

default setting (by ObnoxiousSolve) is

BenOptions=struct(’info’,0,’lp_solver’,3);

For more details call help bensolve.

1http://ito.mathematik.uni-halle.de/~loehne/

http://ito.mathematik.uni-halle.de/~loehne/
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� BenOptions.info: display information for bensolve

– 0: suppress display information for bensolve (default)

– 1: display information for bensolve

– 2: display more information for bensolve.

� BenOptions.lp_solver: select LP solver for bensolve

– 0: MATLAB linprog

– 1: cdd with criss-cross-method

– 2: cdd with simplex

– 3: glpk (revised simplex) (default).

10.2 Output Arguments

Depending on the chosen output option, the function ObnoxiousSolve returns the following

arguments (as far as they were determined):

1. When Options.out>0, then the calculated primal and dual solutions are displayed.

The structures solP and solD contain

� the optimal primal grid points x ∈ I ∩ X ,

� the optimal dual grid points y ∈ ID ∩ Y,

� the optimal objective value α,

obtained by executing the primal Algorithm 9.2 and the dual Algorithm 9.3, respectively.

2. If Options.out=2 then, additionally, the output arguments grid and time are displayed.

The fields of the structure grid contain

� the primal attraction grid points x ∈ I,

� the primal repulsion grid points x ∈ I,

� the dual attraction grid points y ∈ ID,

� the dual repulsion grid points y ∈ ID.

The fields of the structure time contain the running times for

� determining the primal and dual grid w.r.t. attraction,

� determining the primal and dual grid w.r.t. repulsion,

� solving the location problem (P) by executing the primal Algorithm 9.2,

� solving the location problem (P) by executing the dual Algorithm 9.3.
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10.3 Subroutines of the Matlab Implementation

In this section we present some of the subroutines of the function ObnoxiousSolve.

1. For a matrix A associated with the unit ball B =
{
x ∈ R2

∣∣Ax ≤ 1}, the subroutine

DualBall determines a matrix D, whose rows contain the extreme points of B. The

matrix D represents equivalently the matrix associated with the dual unit ball B∗ ={
x ∈ R2

∣∣Dx ≤ 1}.�
1 function [D]=DualBall(A)

2 A=unique(A,'rows');

3 k = convhull(A(:,1),A(:,2));

4 Q=A(k,1:2);

5 D=zeros(size(Q,1)−1,2);
6 for i=1:size(Q,1)−1
7 x=linsolve([Q(i,:);Q(i+1,:)],[1;1]);

8 D(i,:)=x';

9 end
� �
Amongst others, this subroutine is used for determining the matrices associated with

the dual unit balls B∗1 , . . . , B
∗
J , which then are stored in the field B(j).dualBall for all

j = 1, . . . , J .

2. The subroutine Domain determines the extreme points of dom g∗ and domh∗.

By defining vectors w ∈ R|J|+ and w ∈ R|J|+ such that

w(j) : =
∑
m∈T j

wm, ∀j ∈ J,

w(j) : =
∑
m∈T j

wm, ∀j ∈ J,

the domains of g∗ and h∗ can be determined by

dom g∗ =
∑
j∈J

B∗j · w(j), domh∗ =
∑
j∈J

B∗j · w(j).

Compared to (5.5) the number of unit balls, which are to be summed up, reduces from M

to
∣∣J∣∣ and from M to

∣∣J∣∣, since each ball is taken into account only once. Especially in

the case that J = 1, see Remark 5.3, we have

dom g∗ = B∗ ·
M∑
m=1

wm, domh∗ = B∗ ·
M∑
m=1

wm.
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�
1 function [Bp,Br,B]=Domain(ap,ar,B,up,ur)

2 Bp=[0 0]; Br=[0 0];

3 Mp=length(up); Mr=length(ur);

4 for m=1:Mp

5 for i=1:size(B,2)

6 if up(m)==i

7 B(i).pweight=B(i).pweight+ap(m).weight;

8 end

9 end

10 end

11 for i=1:size(B,2)

12 Bp=minksum(Bp,B(i).pweight*B(i).ball);

13 end

14 for m=1:Mr

15 for i=1:size(B,2)

16 if ur(m)==i

17 B(i).rweight=B(i).rweight+ar(m).weight;

18 end

19 end

20 end

21 for i=1:size(B,2)

22 Br=minksum(Br,B(i).rweight*B(i).ball);

23 end
� �
3. Taking into account the matrices Bp and Br, whose rows contain the extreme points of

dom g∗ and domh∗, respectively, the subroutine Finite evaluates the condition for the

existence of a finite optimal solution of the location problem (P), based on Theorem 5.2.

Let Bcon be the matrix associated with dom g∗, i.e., dom g∗ =
{
y ∈ R2

∣∣Bcony ≤ 1
}

. Then

it holds

domh∗ ⊆ dom g∗ ⇔ ∀y ∈ ext(domh∗) : Bcony ≤ 1.

The subroutine Finite returns a decision variable L which is defined as

L :=

1, if domh∗ ⊆ dom g∗,

0, if otherwise.

�
1 function[L]=Finite(Bp,Br)

2 k = convhull(Bp(:,1),Bp(:,2));

3 Bp=[Bp(k,1),Bp(k,2)];

4 Bp con=dual ball(Bp);

5 if Bp con*Br'<=ones(size(Bp con,1),size(Br,1))

6 L=0;

7 else

8 L=1;

9 end
� �
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4. Based on equation (4.9), the subroutine Gauge determines the gauge distance, associated

with the unit ball B =
{
x ∈ R2

∣∣Ax ≤ 1}, A ∈ Rr×2, between a point x and the origin:

γB(x) = max
y∈B∗

〈x, y〉 = max
y∈ext(B∗)

〈x, y〉 = max
i=1,...,r

[Ax]i.

�
1 function [gaugedist]=Gauge(A,x)

2 gaugedist=max(A*x);
� �
5. Based on Corollary 5.13, the function GetPrimal determines for each optimal dual grid

point y ∈ ID the corresponding primal solutions, given by the elementary convex set

∂g∗(y). We obtain

x ∈ ∂g∗(y) =

M⋂
m=1

[
am +NwmB

∗
m

(ym)
]
,

where for all m = 1, . . . ,M

(x− am) ∈ NwmB
∗
m

(ym)⇔ ∀y ∈ wmB
∗
m : 〈x− am, y − ym〉 ≤ 0

⇔ ∀y ∈ ext(wmB
∗
m) : 〈x, y − ym〉 ≤ 〈am, y − ym〉 .

Since the rows of the matrix Am, associated with the unit ball Bm, contain the extreme

points of the dual unit ball B
∗
m, we obtain

∂g∗(y) =
{
x ∈ R2

∣∣ ∀m = 1, . . . ,M ; ∀i = 1, . . . , rm :〈
x,wm[Am]i − ym

〉
≤
〈
am, wm[Am]i − ym

〉}
.

�
1 function [B,b]=GetPrimal(yp,ap,Mp)

2 B=[];b=[];

3 for m=1:Mp

4 Bm=ap(m).weight*ap(m).ball;

5 for i=1:size(Bm,1)

6 By=Bm(i,:)−yp(m,:);
7 B=[B;By];

8 b=[b;By*(ap(m).loc)'];

9 end

10 end
� �
The determination of the corresponding extreme points can be realized by vertex enumer-

ation [4, 24, 51].

6. Based on Proposition 5.8 and Corollary 5.12, the function GetDual determines for each

optimal primal grid point x ∈ I the corresponding dual solutions, given by the elementary

convex set ∂h(x). Since the extreme points of the dual balls B∗1, . . . , B
∗
M coincide with the
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rows of the matrices A1, . . . , AM associated with the respective primal balls B1, . . . , BM ,

we obtain

∂h(x) =

M∑
m=1

argmax
ym∈wmB

∗
m

〈
x− am, ym

〉
where

ext(wmB
∗
m) =

{
wm[Am]1, . . . , wm[Am]rm

}
.

�
1 function Y=GetDual(x,ar,Mr)

2 Y=[0 0];

3 for m=1:Mr

4 Ym=[];

5 u=ar(m).weight*ar(m).ball;

6 d=u*(x−ar(m).loc)';
7 z=max(d);

8 ind=find(d>z−0.0001);
9 for i=1:length(ind)

10 Ym=[Ym;u(ind(i),:)];

11 end

12 Y=minksum(Y,Ym);

13 end
� �
Overview on the Program Structure

The function ObnoxiousSolve is organized as follows:

0. The subroutine SetDefault sets the default options for the function ObnoxiousSolve.

1. For a matrix A, associated with the unit ball B =
{
x ∈ R2

∣∣Ax ≤ 1}, the subroutine

DualBall determines a matrix D, whose rows contain the extreme points of B. The matrix

D represents equivalently the matrix associated with the dual ballB∗ =
{
x ∈ R2

∣∣Dx ≤ 1}.

2. The function Domain determines the extreme points of dom g∗ and domh∗.

3. The function Finite evaluates the finiteness condition domh∗ ⊆ dom g∗ (see Theorem 5.2

and step 1 in the Algorithms 9.2 and 9.3). If the condition is not satisfied, the program

displays ”Solution is INFINITE.” before quitting. Otherwise, if the finiteness condition

is true, the program displays ”Solution is finite.” and starts the determination of

optimal solutions.

4. SolvePrimal executes the steps 2, 3 and 4 in the primal Algorithm 9.2 in order to deter-

mine the optimal primal and dual grid points for the dual pair of optimization problems

(P) and (D).
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a) The subroutine Gauge is applied in order to calculate the objective values h(x) for all

x ∈ I (step 3 in Algorithm 9.2) and for determining the matrix Y , whose columns

generate the recession cone 0+ epi g, see Section 7.

b) The function bensolve determines the primal and the dual grid points x ∈ I and

y ∈ ID as well as the objective values g(x) and g∗(y), see step 2 in Algorithm 9.2.

The subroutine is called by bensolve(P,B,b,Y,[],c,ben_opt). The required input

arguments P,B,b,Y,c can be chosen as they are presented in Chapter 7.

c) Based on Proposition 5.8 and Corollary 5.12, the function GetDual determines for

each optimal primal grid point x ∈ I the corresponding dual solutions, given by the

elementary convex set ∂h(x), see step 4 in Algorithm 9.2.

5. SolveDual executes the steps 2, 3 and 4 in the dual Algorithm 9.3, in order to determine

the optimal primal and dual grid points for the dual pair of optimization problems (P)

and (D).

a) The subroutine Gauge is applied in order to determine the matrix Y , whose columns

generate the recession cone 0+ epih, see Section 7.

b) The function bensolve determines the primal and dual grid points x ∈ I and y ∈ ID
as well as the objective values values h(x) and h∗(y), see step 2 in Algorithm 9.3.

c) Based on Corollary 5.13, the function GetPrimal determines for the optimal dual grid

points y ∈ ID the corresponding primal solutions given by the elementary convex set

∂g∗(y), see step 4 in Algorithm 9.3.

6. ObnoxiousPlot illustrates (depending on the predefined plot options) the existing facilities,

the primal grids w.r.t. attraction and repulsion, the dual domains w.r.t. attraction and

repulsion and the optimal primal and dual grid points.
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Matlab Code of the Main Routine

�
1 function [solD,solP,grid,time]=ObnoxiousSolve(ap,ar,up,ur,B,Options,BenOptions)

2

3 display('*******************************')

4 display('* ObnoxiousSolve *')

5 display('*******************************')

6

7 solP=[];

8 solD=[];

9 grid=[];

10 time=[];

11

12 Mp=length(up);

13 Mr=length(ur);

14

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 % 0. set (default) options

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18 [Options,BenOptions]=SetDefault(Options,BenOptions);

19

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21 % 1. determine dual balls and initialize

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

23 if Options.info>0

24 display('DETERMINING DUAL BALLS')

25 end

26 for i=1:size(B,2)

27 B(i).pweight=0;

28 B(i).rweight=0;

29 B(i).dualBall=DualBall(B(i).ball);

30 end

31 for m=1:Mp

32 ap(m).ball=B(up(m)).ball;

33 ap(m).dualBall=B(up(m)).dualBall;

34 end

35 for m=1:Mr

36 ar(m).ball=B(ur(m)).ball;

37 ar(m).dualBall=B(ur(m)).dualBall;

38 end

39 if Options.info>0

40 display('done.')

41 end

42

43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

44 % 2. determine domain g* and domain h*
45 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

46 if Options.info>0

47 display('DETERMINING DOMAINS OF g* AND h*...')

48 end
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49 [Bp,Br,B]=Domain(ap,ar,B,up,ur);

50 if Options.info>0

51 display('done.')

52 end

53

54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

55 % 3. check if dom h* subset of dom g*
56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

57 if Options.info>0

58 display('CHECKING FINITENESS...')

59 end

60 L=Finite(Bp,Br);

61 if L>0

62 display('Solution is INFINITE.')

63 else

64 if Options.info>0

65 display('Solution is finite.')

66 end

67

68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

69 % 4./5. solve primal and/or dual problem

70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

71 if options.solve=='p'

72 [solP,grid.primal att,grid.dual att,time.att grid,...

73 time.primal solve]=SolvePrimal(ap,ar,Options,BenOptions);

74 elseif options.solve=='d'

75 [solD,grid.primal rep,grid.dual rep,time.rep grid,...

76 time.dual solve]=SolveDual(ap,ar,Mp,Mr,Options,BenOptions);

77 elseif options.solve=='b'

78 [solP,grid.primal att,grid.dual att,time.att grid,...

79 time.primal solve]=SolvePrimal(ap,ar,Options,BenOptions);

80 [solD,grid.primal rep,grid.dual rep,time.rep grid,...

81 time.dual solve]=SolveDual(ap,ar,Mp,Mr,Options,BenOptions);

82 else

83 error('Invalid entry in Option.solve chosen.')

84 end

85 end

86

87 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

88 % 6. plot

89 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

90 ObnoxiousPlot(ap,ar,solP,solD,grid,Bp,Br,Options)
� �
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10.4 Examples

In this section we illustrate some examples solved by ObnoxiousSolve. The first Example 10.4

serves as a general explanation concerning the interpretation of the output arguments. The

Examples 10.5, 10.6, 10.7 and 10.8 demonstrate the difference between the primal Algorithm 9.2

and the dual Algorithm 9.3 concerning time complexity. The case that no finite solution exists

is illustrated in Example 10.9.

Example 10.4. For the data of Example 10.3 the implementation ObnoxiousSolve returns the

following output:�
1 time =

2 att grid: 1.4920

3 primal solve: 0.0112

4 rep grid: 0.1548

5 dual solve: 0.1650

6

7 grid =

8 primal att: [3x33 double]

9 dual att: [3x45 double]

10 primal rep: [3x9 double]

11 dual rep: [3x16 double]

12

13 solP.primal =

14 4.0000 10.0000

15

16 solP.dual =

17 −16 43

18 −4 31

19

20 solP.obj val =

21 −14.0000
22

23 solD.primal =

24 4 10

25

26 solD.dual =

27 −16.0000 43.0000

28 −4 31

29

30 solD.obj val =

31 −14
� �
Both, the primal Algorithm 9.2 as well as the dual Algorithm 9.3, lead to the optimal primal

grid point x = (4, 10)T , the optimal dual grid points y = (−16, 43)T and y = (−4, 31)T and the

optimal objective value α = −14.

Moreover, the primal Algorithm 9.2 returns the sets I and ID of 33 primal and 45 dual grid

points w.r.t. attraction, where each x ∈ I and y ∈ ID has three entries: its coordinates in
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R2 and the objective values g(x) and g∗(y), respectively. Analogously, the dual Algorithm 9.3

returns the sets I and ID of 9 primal and 16 dual grid points w.r.t. repulsion, where each x ∈ I
and y ∈ ID has three entries: its coordinates in R2 and the objective values h(x) and h∗(y),

respectively.

(a) Attracting points and resulting primal grid w.r.t. attraction (green); repul-
sive facilities and resulting grid w.r.t. repulsion (red); optimal primal grid
point x = (4, 10)T (square).

(b) Domain of g∗ (green); domain of h∗ and dual grid points y ∈ ID w.r.t.
repulsion (red); optimal dual grid points y = (−16, 43) and y = (−4, 31)
(squares).

Figure 10.1: Primal and dual plot for Example 10.4.
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Example 10.5. Consider the location problem (P) with ten attracting and two repulsive facil-

ities as follows:�
1 B(1)=struct('ball',[1 1;−1 1;−1 −1; 1 −1]);
2 B(2)=struct('ball',[1 0;0 1;−1 0; 0 −1]);
3 B(3)=struct('ball',[−1 1;2 1;−1 −2]);
4 B(4)=struct('ball',[0 1;−1 0;1 −1]);
5

6 up=[4 2 4 3 1 1 4 2 2 4];

7 ur=[3 1];

8

9 ap(1) =struct('loc',[8 4],'weight',2);

10 ap(2) =struct('loc',[4 3],'weight',2);

11 ap(3) =struct('loc',[7 12],'weight',3);

12 ap(4) =struct('loc',[2 1],'weight',1);

13 ap(5) =struct('loc',[12 9],'weight',1);

14 ap(6) =struct('loc',[12 2],'weight',2);

15 ap(7) =struct('loc',[5 6],'weight',1);

16 ap(8) =struct('loc',[4 4],'weight',1);

17 ap(9) =struct('loc',[12 1],'weight',3);

18 ap(10)=struct('loc',[5 8],'weight',3);

19

20 ar(1) =struct('loc',[2 9],'weight',3);

21 ar(2) =struct('loc',[2 6],'weight',3);

22

23 [solD,solP,grid,time]=ObnoxiousSolve(ap,ar,up,ur,B,struct('solve','b'),[]);
� �
We obtain the following results:�
1 time =

2 att grid: 5.3228

3 primal solve: 0.0051

4 rep grid: 0.0619

5 dual solve: 0.0257

6

7 grid =

8 primal att: [3x80 double]

9 dual att: [3x102 double]

10 primal rep: [3x3 double]

11 dual rep: [3x7 double]
� �
Obviously, the time complexity is mainly influenced by the number of grid points w.r.t. attrac-

tion. We have 80 primal and 102 dual grid points w.r.t. attraction (computed by executing the

primal Algorithm 9.2) and only 3 primal and 7 dual grid points w.r.t. repulsion (computed by

executing the dual Algorithm 9.3). Hence, for this example it seems to be advantageous to apply

the dual algorithm.
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(a) Attracting points and resulting primal grid w.r.t. attraction (green); repul-
sive facilities and resulting grid w.r.t. repulsion (red); optimal primal grid
points x = (12, 11)T and x = (12, 11.5)T (squares).

(b) Domain of g∗ (green); domain of h∗ and dual grid points y ∈ ID w.r.t.
repulsion (red); optimal dual grid point y = (9, 6)T (square).

Figure 10.2: Primal and dual plot for Example 10.5.
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Example 10.6. Consider the location problem (P) with three attracting and ten repulsive

facilities as follows:�
1 B(1)=struct('ball',[1 1;−1 1;−1 −1; 1 −1]);
2 B(2)=struct('ball',[1 0;0 1;−1 0; 0 −1]);
3 B(3)=struct('ball',[−1 1;2 1;−1 −2]);
4 B(4)=struct('ball',[0 1;−1 0;1 −1]);
5

6 up=[2 3 4];

7 ur=[2 1 4 4 4 2 3 3 1 2];

8

9 ap(1) =struct('loc',[4 11],'weight',10);

10 ap(2) =struct('loc',[5 6],'weight',8);

11 ap(3) =struct('loc',[8 3],'weight',4);

12

13 ar(1) =struct('loc',[11 8],'weight',1);

14 ar(2) =struct('loc',[4 6],'weight',2);

15 ar(3) =struct('loc',[11 9],'weight',1);

16 ar(4) =struct('loc',[9 6],'weight',1);

17 ar(5) =struct('loc',[2 10],'weight',1);

18 ar(6) =struct('loc',[3 5],'weight',1);

19 ar(7) =struct('loc',[7 7],'weight',1);

20 ar(8) =struct('loc',[5 7],'weight',1);

21 ar(9) =struct('loc',[12 9],'weight',1);

22 ar(10)=struct('loc',[10 2],'weight',1);

23

24 [solD,solP,grid,time]=ObnoxiousSolve(ap,ar,up,ur,B,struct('solve','b'),[]);
� �
We obtain the following results:�
1 time =

2 att grid: 0.0489

3 primal solve: 0.0013

4 rep grid: 2.2252

5 dual solve: 0.0424

6

7 grid =

8 primal att: [3x8 double]

9 dual att: [3x14 double]

10 primal rep: [3x88 double]

11 dual rep: [3x113 double]
� �
Obviously, the time complexity is mainly influenced by the number of grid points w.r.t. repulsion.

We have 8 primal and 14 dual grid points w.r.t. attraction (computed by executing the primal

Algorithm 9.2) but 88 primal and 113 dual grid points w.r.t. repulsion (computed by executing

the dual Algorithm 9.3). Hence, for this example it seems to be advantageous to apply the

primal algorithm.
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(a) Attracting points and resulting primal grid w.r.t. attraction (green); repul-
sive facilities and resulting grid w.r.t. repulsion (red); optimal primal grid
point x = (5, 10)T (square).

(b) Domain of g∗ (green); domain of h∗ and dual grid points y ∈ ID w.r.t.
repulsion (red); optimal dual grid points y = (−3, 6)T , y = (−2, 7)T , y =
(0, 6)T , y = (1, 7)T (squares).

Figure 10.3: Primal and dual plot for Example 10.6.
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Example 10.7. Consider the location problem (P) with ten attracting and ten repulsive facil-

ities as follows:�
1 B(1)=struct('ball',[1 1;−1 1;−1 −1; 1 −1]);
2 B(2)=struct('ball',[1 0;0 1;−1 0; 0 −1]);
3 B(3)=struct('ball',[−1 1;2 1;−1 −2]);
4 B(4)=struct('ball',[0 1;−1 0;1 −1]);
5

6 up=[1 3 2 1 1 4 3 2 4 1];

7 ur=[3 4 2 2 2 4 4 1 1 2];

8

9 ap(1) =struct('loc',[15 15],'weight',7);

10 ap(2) =struct('loc',[4 12],'weight',4);

11 ap(3) =struct('loc',[3 5],'weight',10);

12 ap(4) =struct('loc',[2 5],'weight',1);

13 ap(5) =struct('loc',[9 1],'weight',10);

14 ap(6) =struct('loc',[4 2],'weight',4);

15 ap(7) =struct('loc',[10 3],'weight',11);

16 ap(8) =struct('loc',[7 6],'weight',1);

17 ap(9) =struct('loc',[6 1],'weight',6);

18 ap(10)=struct('loc',[16 13],'weight',1);

19

20 ar(1) =struct('loc',[2 16],'weight',5);

21 ar(2) =struct('loc',[11 3],'weight',5);

22 ar(3) =struct('loc',[7 6],'weight',5);

23 ar(4) =struct('loc',[1 1],'weight',4);

24 ar(5) =struct('loc',[13 11],'weight',5);

25 ar(6) =struct('loc',[15 16],'weight',2);

26 ar(7) =struct('loc',[14 12],'weight',3);

27 ar(8) =struct('loc',[2 16],'weight',2);

28 ar(9) =struct('loc',[13 15],'weight',1);

29 ar(10)=struct('loc',[3 11],'weight',3);

30

31 [solD,solP,grid,time]=ObnoxiousSolve(ap,ar,up,ur,B,struct('solve','b'),[]);
� �
We obtain the following results:�
1 time =

2 att grid: 6.5522

3 primal solve: 0.0165

4 rep grid: 4.1830

5 dual solve: 0.0607

6

7 grid =

8 primal att: [3x106 double]

9 dual att: [3x129 double]

10 primal rep: [3x94 double]

11 dual rep: [3x121 double]
� �
Obviously, the time complexity is mainly influenced by both, the number of grid points w.r.t.
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attraction and the number of grid points w.r.t. repulsion. We have 106 primal and 129 dual grid

points w.r.t. attraction (computed by executing the primal Algorithm 9.2) and 94 primal and

121 dual grid points w.r.t. repulsion (computed by executing the dual Algorithm 9.3). Hence,

both algorithms seem to be comparable concerning running times for this example.

(a) Attracting points and resulting primal grid w.r.t. attraction (green); repul-
sive facilities and resulting grid w.r.t. repulsion (red); optimal primal grid
points x = (9, 3)T and x = (9, 2.5)T (squares).

(b) Domain of g∗ (green); domain of h∗ and dual grid points y ∈ ID w.r.t.
repulsion (red); optimal dual grid point y = (−6,−28)T (square).

Figure 10.4: Primal and dual plot for Example 10.7.
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Example 10.8. Consider the location problem (P) with randomly chosen coordinates and

weights for M attracting and M = 1 repulsive facilities:�
1 B(1)=struct('ball',[1 1;−1 1;−1 −1; 1 −1]);
2 B(2)=struct('ball',[1 0;0 1;−1 0; 0 −1]);
3 B(3)=struct('ball',[−1 1;2 1;−1 −2]);
4 B(4)=struct('ball',[0 1;−1 0;1 −1]);
5

6 ur=ceil((size(B,2))*rand(1,Mr));

7 up=ceil((size(B,2))*rand(1,Mp));

8

9 for m=1:Mp

10 ap(m).loc=ceil(rand(1,2)*(Mp+Mr));

11 ap(m).weight=ceil(rand(1,1)*(Mr+1));

12 end

13 for m=1:Mr

14 ar(m).loc=ceil(rand(1,2)*(Mp+Mr));

15 ar(m).weight=ceil(rand(1,1)*0.5*(Mp+1));

16 end
� �
We first solve the location problem with M = 20 attraction points by executing the primal

Algorithm 9.2, i.e.,�
1 Mp=20; Mr=1;

2 [sol,solP,grid,time]=Obnoxious Solve(ap,ar,up,ur,B,struct('solve','p'),[]);
� �
and we obtain�
1 time =

2 att grid: 44.3437

3 primal solve: 0.0067

4

5 grid =

6 primal att: [3x244 double]

7 dual att: [3x317 double]
� �
Further, we solve the location problem with M = 500 attraction points by executing the dual

Algorithm 9.3, i.e.,�
1 Mp=500; Mr=1;

2 [sol,solP,grid,time]=Obnoxious Solve(ap,ar,up,ur,B,struct('solve','d'),[]);
� �
and we obtain
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�
1 time =

2 rep grid: 0.0153

3 dual solve: 17.3229

4

5 grid =

6 primal rep: [3x1 double]

7 dual rep: [3x3 double]
� �
When solving the location problem (P) with 20 attraction points by executing the primal Algo-

rithm 9.2, the time complexity consists mainly of determining the 244 primal and 317 dual grid

points w.r.t. attraction. When solving the location problem (P) with a much greater amount of

500 attraction points by executing the dual Algorithm 9.3, the time complexity consists mainly

of determining the optimal solutions. There are only one primal and three dual grid points.

For each grid point, a linear optimization problem is to be solved in step 3 of Algorithm 9.3,

where the running time for each sub-problem depends on the number of attraction points, see

also Section 9.3.

As we can see, solving the problem with M = 20 attraction points by executing the primal

algorithm needs more than twice the time for solving the problem with M = 500 attraction

points by executing the dual algorithm. Hence, when there is a large number of attracting

facilities and a small number of repulsive ones, then it is beneficial to apply the dual Algorithm

instead of the primal one.

Example 10.9. Consider the location problem (P) with five attracting and five repulsive facil-

ities as follows:�
1 B(1)=struct('ball',[1 1;−1 1;−1 −1; 1 −1]);
2 B(2)=struct('ball',[1 0;0 1;−1 0; 0 −1]);
3 B(3)=struct('ball',[−1 1;2 1;−1 −2]);
4 B(4)=struct('ball',[0 1;−1 0;1 −1]);
5

6 up=[2 3 2 3 3];

7 ur=[1 2 4 4 1];

8

9 ap(1)=struct('loc',[3 5],'weight',1);

10 ap(2)=struct('loc',[10 2],'weight',1);

11 ap(3)=struct('loc',[4 2],'weight',3);

12 ap(4)=struct('loc',[4 10],'weight',6);

13 ap(5)=struct('loc',[1 8],'weight',2);

14

15 ar(1)=struct('loc',[5 6],'weight',3);

16 ar(2)=struct('loc',[5 10],'weight',1);

17 ar(3)=struct('loc',[8 7],'weight',2);

18 ar(4)=struct('loc',[7 7],'weight',1);

19 ar(5)=struct('loc',[2 10],'weight',1);

20

21 [sol,solP,grid,time]=ObnoxiousSolve(ap,ar,up,ur,B,struct('solve','b'),[]);
� �
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For this example the finiteness criterion is not satisfied (cf. subroutine Finite in Section 10.3),

such that the implementation ObnoxiousSolve returns:�
1 Solution is INFINITE.
� �

The existing facilities and the corresponding primal grids as well as the domains of g∗ and h∗

are illustrated in Figure 10.5.

(a) Attracting points and resulting primal grid w.r.t. attraction (green); repulsive
facilities and resulting grid w.r.t. repulsion (red).

(b) Domain of g∗ (green); domain of h∗ (red).

Figure 10.5: Primal and dual plot for Example 10.9.





Chapter 11
Conclusion

In this thesis we present a new approach for solving the non-convex location problem (P) with

obnoxious facilities. This approach is based on the special structure of (P) and the fact that the

objective function can be written as a d.c. function. By applying the duality theory by Toland

[121] and Singer [112] we obtain a suitable dual problem (D).

We introduce the concepts of primal and dual elementary convex sets with respect to attraction

and to repulsion, as well as corresponding grids and grid points.

Although, we consider a scalar optimization problem, we show the remarkable fact, that methods

from the field of linear vector optimization can be applied in order to determine those grid points

with respect to attraction and to repulsion.

The relationship between primal and dual elementary convex sets is described, based on results

from the field of geometric duality [56], by an inclusion reversing one-to-one mapping.

Moreover, we present properties of primal and dual elementary convex sets and state duality

assertions and discretization results based on the duality theory by Toland and Singer.

The obtained results are applied in order to formulate a dual and a primal algorithm, which

determine exact solutions by leading back the non-convex optimization problems to a finite

number of convex problems.

The developed algorithms are implemented as Matlab functions. It turns out that, in case

of few attraction points with a small amount of fundamental directions, the primal algorithm

is beneficial. Whereas, in case of few repulsive facilities with a small amount of fundamental

directions the dual algorithm is advantageous.

In this thesis we also consider the more general case of a constrained location problem (PH)

by introducing an indicator function. Analogously to the unconstrained case, we define a dual

problem (DH) as well as primal and dual elementary convex sets with respect to attraction and

to repulsion, taking into account the constraints. We show that most of the results obtained for

the unconstrained location problem can be generalized for the constrained case.

For future research, further improvements of the presented algorithms might be possible. Fur-

thermore, the case of round gauges may be studied in more detail. Many results obtained in



108 11. Conclusion

this research can in fact also be formulated for this case, but are not applicable for an algorithm

from the present point of view. Moreover, it seems to be suitable to consider further constraints,

such as barriers, which may influence travel time and travel costs, or forbidden regions for the

obnoxious facility. Also the problem of locating multiple obnoxious facilities may be discussed.

Another interesting future research may focus on the question, how the duality theory by Toland

and Singer may also be applied for different kinds of location problems with obnoxious facilities,

such as network problems or problems with center objective function.
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