
Object Detection using YOLOv3
Bachelor Thesis

Written by

Sana Jamal Agha

at

Fachbereich Ingenieur- und Naturwissenschaften
Fachbereich Angewandte Informatik

Gutachter: Prof.Dr. Michael Schenke

Gutachter: Prof.Dr. Karsten Hartmann

Introduction 7
Goal 7
Thesis structure 8

Basic Fundamentals 8
Artificial Neural Networks 9

Neurons and network structure 9
Activation functions 11
Bias 11

Image classification and CNN 12
Convolutional Layer 13
Padding 15
Pooling Layer 16
Fully Connected Layer 17
CNN models 17

LeNet 17
AlexNet 18
ResNet 19
VGGNet 20

Transfer Learning 20
Object Detection 21

Region-based Convolutional Neural Network 22
R-CNN 22
Fast R-CNN 24
Faster R-CNN 25
Mask R-CNN 28

Project 29
Concept 29
Used Methods 29

YOLO – You Only Look Once 30
Theoretical background for YOLOv1 30
Limitations of YOLOv1 33
Theoretical background for YOLOv2 33
YOLOv3 34

1

Limitation of YOLO 35
Implementation of the Project 36

Programming language 36
Deep Learning Frameworks used in the project 37

TensorFlow 37
Qt5 37
Keras 37
PyTorch 38
Numpy 38
Pip 38

Training the Data 39
Raw data gathering 40
Data Preparation 40

Labeling the dataset steps: 41
Model Training and Testing 43

Model Training and testing Implementation 44
Implementation of project 47

System Requirements 47
System Implementation and steps 47
Backend Implementation (Object detection) 47
Web Application Implementation 48
End Result 49

Step by step demonstration of the Image detective project 49

Conclusion 52

References 53

2

1. Introduction
In the field of computer vision, artificial neural networks for solving tasks
have recently become more and more popular. This technology has
established itself particularly well in the field of autonomous driving, for
example when recognizing street signs. Apart from that, there are other
areas of application. This thesis describes how to use deep learning to detect
objects in images.

1.1. Goal

The aim of this work is to provide an overview of artificial neural networks
and methods for object recognition within an image. Many methods will be
thoroughly explained to gain perspective about the best approach to
implement the image object detection system. Transfer learning should be
used to keep track of the number of images required to train a small
network. The results obtained can thus be compared and discussed.
Figure(1) shows what the result should look like.

3

Figure(1) Multiple objects detected in an image

1.2. Thesis structure

In the introductory chapter, the background and the objective of this work
are briefly explained. The rest of the work is structured as follows:
Section 2 gives an overview of the theory behind neural networks and object
recognition. In addition to a brief description of the most popular deep
learning frameworks. Furthermore, section 3 gives an idea of the
implemented project and the used methods. In addition to explaining the
steps of the implementation

.

2. Basic Fundamentals
This chapter explains the basic theory on which the work is based. This
includes a general introduction to artificial neural networks. In Addition to
the structure and principle of training. Furthermore, performance problems
and limitations are explained as well as the application of methods for

4

regularization in order to improve the performance of the network. After
that, convolutional neural networks (CNN) and its methods for recognizing
objects in an image are described. At the end of the chapter, the most
popular deep learning frameworks are briefly explained and GPU support is
discussed

2.1. Artificial Neural Networks

An artificial neural network is a computer-generated model based on a
simplified principle of the brain. Like the human brain, an artificial neural
network improves over time. Training data is required for this learning
process [1].

2.1.1. Neurons and network structure

An artificial neural network consists of innumerable neurons that are
assigned to different layers within this network. These layers are
basically divided into three categories: an input layer, several so-called
hidden layers and an output layer. A simple artificial neural network is
shown in Figure(2). The network is a three Layer network, the first
layer aka. Input layer is not counted in deep learning.

Figure(2) Three Layer Neural Network

5

The input layer consists of multiple nodes which represents the
number of the features in the dataset.
The output layer has a number of nodes which define how many
different categories the network can recognize.
As for the layers in between the input and output, they are called the
hidden layers and in this layer is where all the work happens. These
layers can have different setups in depth and width according to how
complicated or simple the dataset is. Also Deeper networks do give
better results, but the deeper the network is the higher its
computational time is.
The nodes in the network are called Neurons. Each of these nodes
represents a value or a feature. The values of the nodes in the input
layer correspond to the information that is fed to the network. In the
hidden layers, these nodes are linked to one or more nodes from the
previous and the following layer by weighted connections. These
weightings change during the network learning process. The value that
a neuron receives from a connection to a neuron in the previous
layer(Input layer). Based on all inputs of a neuron, the value of this
node is calculated in the hidden layer. This is usually calculated from
the sum of all inputs. The value can be supplemented by a so-called
bias (section 2.1.3) or adjusted using an activation function (section
2.1.2). This calculation is shown graphically in Figure(3).

Figure(3) Node from the hidden neural Network Calculation

6

All The values of the neurons in the Input layer are connected with all
the nodes of the first hidden layer. All of the connections have a
representative impact “w” in other words they are the weightings of
the connection. The input is assigned to the category whose neuron
has the highest value [3]. Now to calculate the sum of one node of the
first hidden layer we will multiply each one of the input layer node’s
value with the corresponding weight and get the weighted sum. Each
node on the hidden layer has an Activation function (section 2.1.2)
which will determine based on the summarized value if the node is
activated or the level of “activity” it shall have. Also Bias value could be
added in a positive or negative value to adjust the shift of the
activation function.

2.1.2. Activation functions

Activation functions are functions to adapt the value of a neuron or to
keep it within a certain range of values. These are used to determine
how big the influence of the input is on the output. In this way, for
example, it can also be avoided that certain neurons achieve a value
that is much higher than others and thus have too great an influence
on the calculation of values in later layers. In principle, activation
functions can be divided into linear and non-linear activation
functions. Many different functions can be used for this [3].

2.1.3. Bias

A bias is an optional value that can be added after the calculated value
from the inputs when using the activation function. It can be in the
negative as well as in the positive value range and can therefore be
used to shift the activation function to the right or left. This means that
the bias indicates a threshold value from which a neuron is fired
depending on the activation function. This value can also change
during the learning process [49]

7

2.2. Image classification and CNN

A special type of artificial neural network is used or required to classify
images. This type of neural network is called a convolutional neural network
“CNN” and can analyze features in images. This network differs from
conventional neural networks mainly through special layers. These layers
include convolutional layers (section 2.2.1), fully connected layers (section
2.2.4) and pooling layers (section 2.2.3). The structure of convolutional neural
networks is somewhat similar to the general Artificial Neural Network
structure, it consists of an input layer, followed by a combination of several
convolutional and pooling layers, then one or more fully connected layers
and finally an output layer. This output layer is again responsible for the
categorization of the input image. A structure of such a CNN is illustrated in
Figure(4). Compared to a conventional neural network, a feature map can be
seen with the output of a neuron and a kernel of a convolutional layer with a
weighted connection. This type of network is invariant to a certain extent
with regard to the scaling and translation of features [4].
Figure(4) is a General presentation of a convolutional neural network and
how it works. The convolution layers at the beginning of the network are
necessary to recognize low-level features such as corners and edges.
High-level features at the end of the network are responsible for a precise
understanding of the image. The fully connected layers at the end are
responsible for classifying the image.

8

Figure(4) Convolutional Neural Network [5]

2.2.1. Convolutional Layer

A convolutional layer consists of a set of filters, also known as a kernel.
In the simplest case, such a filter is a two-dimensional matrix of
weightings, provided that each two-dimensional activation map of the
input is seen as an independent input. The calculations in a
convolutional layer are carried out by moving a kernel over the entire
two-dimensional matrix for each input and calculating a value for the
output activation map for each position. The horizontal and vertical
shift of the filter is called the stride. The output is basically calculated
in the same way as with a conventional neuron. For this purpose, the
inputs weighted by the filter are totaled and, if necessary, a bias
(section 2.1.3) is added. This calculation is shown graphically in
Figure(5). An activation function (section 2.1.2) can then be used. Using
a kernel means that, depending on the size of the filter and the shift,
information is lost at the edge of the input and the output matrix is
smaller than the input matrix. Under certain circumstances this can be
avoided by padding (section 2.2.2). A convolutional layer can also have
several activation maps as output [4].

9

Figure(5) is a Graphical representation of the functional principle of a
convolutional Layer. A new feature map is created by adding up the
input areas several times after applying the kernel (filter).

Figure(5) Graphical representation of the functional principle of a
convolutional Layer [5].

10

2.2.2. Padding

Padding is used to avoid loss of information at the edge of the input.
For this purpose, the activation map of the input is enlarged by adding
additional information to the margin. As a result, a kernel is now also
applied centrally to the originally outermost positions of the input.
There are various methods that can be used to expand the input
information. A widely used method is to expand the input matrix with
zero everywhere. This is known as zero padding and can be seen in
Figure(6) [6].

Figure(6) is a Graphic representation of the functional principle of zero
padding. By adding zeros to the edge of the source map, the feature
map created will keep the same size after the kernel is applied.

Figure(6) Graphic representation of the functional principle of zero padding [5][6]

11

2.2.3. Pooling Layer

Pooling layers are used to reduce the size of the activation maps. This
should be seen as positive, as it saves computing effort and enables
deeper networks. Relatively little information is lost and the advantage
is that the network reacts less sensitively to different positions of
features. Another advantage is that kernels that are applied to already
reduced activation maps cover a larger area of the original image
without increasing the kernel and thus the number of parameters. The
most common pooling strategies are max pooling and average
pooling. Basically, pooling works in a similar way to a convolutional
filter. However, no matrix calculation is carried out here, only the
largest or the average value from the input range selected by the filter
is passed on as output. Figure(7) illustrates pooling using max pooling
[4].

Figure(7) is a Graphic representation of the functional principle of
Average and Max-Pooling. In Average-Pooling: the average number of
each color-coded area is calculated and transferred to the next feature
map, where the Max-Pooling: selects the highest number for each
color-coded area and transfers it to the next feature map.

Figure(7) Graphic representation of the functional principle of Max-Pooling [9]

12

2.2.4. Fully Connected Layer

A fully connected layer is a layer in a CNN that does not consist of
filters, it consists of neurons that store a single value. This type of layer
is located at the end of a CNN. When changing from an activation map
to a fully connected layer, each value of the activation map is
connected to a neuron in the subsequent fully connected layer. These
neurons are connected to neurons from the next layer via weights.
The number of neurons in the output layer corresponds to the
number of possible image categories [8].

2.2.5. CNN models

A wide variety of convolutional neural networks for classifying images
have proven to be the most accurate over the past few years. They
differ from one another in the number and arrangement of certain
layers and their parameters. Most of these networks participated in
and won the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC). ILSVRC is a renowned competition in the field of computer
vision. For training, these networks used the ImageNet database,
which contains around 14 million images. Success is indicated in the
competition with the top 5 test error rate, which allows the conclusion
to be drawn about the relative proportion of images to be classified
that were not correctly classified by the network under the top 5 most
likely categories. The most popular CNNs are briefly explained below
[4].

2.2.5.1. LeNet

LeNet is a model developed by LeCun in 1998 to recognize
handwritten digits [10]. It consists of seven layers. The seven
layers are made up of three convolutional layers, two average
pooling layers and two fully connected layers. The input for this
model was limited to 32 × 32 pixel gray-scale images. This
architecture is shown in Figure(8).

13

Figure(8) is a Graphic representation of the architecture of the
LeNet-5 model.

Figure(8) Graphic representation of the architecture of the LeNet-5 model.

2.2.5.2. AlexNet

AlexNet was developed by Krizhevsky, Sutskever and Hinton in
2012 [11] and was the first major breakthrough for neural
networks in the field of computer vision. This network model
won the ILSVRC in 2012 with a top 5 test error rate of 15.4%.
Compared to modern networks, the network consists of a
relatively simple architecture with only eight layers. It consists of
five convolutional layers, max pooling layers and dropout layers
as well as three fully connected layers. The filters in the
convolutional layers have a size of 11 × 11, 5 × 5 or 3 × 3. ReLu
was used as the activation function (Section 2.1.2). The network
was trained to distinguish between 1000 different image
categories. This model is shown in Figure(10)

Figure(9) is a Graphical representation of the architecture of the
AlexNet [12]

14

Figure(9) Graphical representation of the architecture of the AlexNet

2.2.5.3. ResNet

ResNet was developed in 2015 by Microsoft Research Asia [38]
and consists of a total of 152 layers. The special feature of the
model is that inputs from earlier layers are routed backwards
via a kind of bypass in the network and thus combined with the
output of a later layer. This is shown in Figure(13). This network
architecture won first place at the ILSVRC 2015 with a top 5 test
error rate of 3.6%.

Figure(10) gives a clear view how the ResNet network provides a
shortcut connection

Figure(10) Standard CNN on the left vs ResNet on the right

15

2.2.5.4. VGGNet

The VGGNet architecture was developed by Simonyan and Zisserman
from the University of Oxford in 2014 [13] and consists of 19 layers. It
achieved a top 5 test error rate of 7.3% at the ILSVRC. The layers are
made up of convolutional layers, max pooling layers and fully
connected layers. The filters in the convolutional layers have a
uniform size of 3 × 3. By arranging two or more layers with small
filters one behind the other, a layer with a larger filter can be
reproduced. This has the advantage that the number of parameters is
reduced. As a result of the pooling layer, the size of the output
activation map is reduced by half in each dimension. However, the
number of filters in the subsequent convolutional layer is increased,
which leads to a larger number of activation maps.

Figure(11) is a Graphical representation of the hoe th VGGNet
architecture is built (14)

Figure(11) VGGNet Architecture (14)

2.3. Transfer Learning
The data for training a neural network is a very important part of obtaining a useful
result. Often the amount of data that the network needs is not large enough. In such
a case, transfer learning is used. With transfer learning, the network is trained with

16

another extensive data set. This model, including the learned parameters and
weightings, is used as the basis for the learning process with your own data. To do
this, the last layer in the network is removed and replaced by a separate
classification layer.

Figure(12): Transfer learning network structure

The weightings in the convolutional layers are partially frozen. This means that their
weightings can no longer change when the learning process is repeated. This
process is also known as fine-tuning. Since the early layers in the network are
responsible for recognizing general features such as edges and corners, these
learned features can be used unchanged for your own data set and do not need to
be trained again. The further back the layers are located in the network, the more
specific the features that are extracted from the layer become. Depending on how
much your own data set differs from what was used for basic training, more or less
convolutional layers can be frozen. The layers that are responsible for the
classification must be retrained [15].

2.4. Object Detection
The detection of objects in an image does not correspond to the classification of an
image itself. The difference between object recognition and classification is that the
position of the object in the image in object recognition algorithms is also analyzed.
This is often shown by means of a bounding box and can be seen in Figure(13).

17

Figure(13) Recognition and localization of several recognized objects in an image by means of
bounding boxes and classification[44]

Furthermore, several objects should be able to be found within an image by means
of object recognition. This cannot be solved directly with a CNN, since the number of
objects within an image cannot be determined in advance and the output vector
therefore has a variable length [50]. An initial, bona fide attempt to solve this
problem was here to define different regions of interest in the image and to apply a
CNN to each of these regions for classification. The problem with this experiment is
that objects can be in different places in the picture, they have a different aspect
ratio or can be of different sizes. Therefore, a large number of regions had to be
defined in order to cover all possibilities. To solve this problem, methods such as
Region-based Convolutional Neural Networks (R-CNNs) or You Only Look Once
(YOLO) have been developed [43].

2.4.1. Region-based Convolutional Neural Network
One of the best-known methods for recognizing objects within an image is
called a region-based convolutional neural network. Over time, different
approaches to solutions have been established, which are described below

2.4.1.1. R-CNN

To solve the problem of the large number of regions required,
[16] describes a method that uses a selective search algorithm
[52] so that the number of regions of interest can be reduced to

18

2000. A selective search algorithm works on the principle of
performing a sub-segmentation at the beginning, which
provides a large number of potential region candidates. A
greedy algorithm is then applied to recursively merge similar
regions into larger areas. The combined regions are ultimately
used to determine the final regions of interest. How a selective
search algorithm for object recognition works can be read in
detail under [20]. These 2000 regions are transformed to a
uniform, square size and analyzed with a CNN which produces a
4096 dimensional feature vector as output. The features
extracted from the CNN are fed into a Support Vector Machine
(SVM) [51] in order to classify a potential object in one of these
regions. In addition to the classification of the object, the
position and size of the object in the image is also forecast. This
is shown graphically in Figure(14).

Figure(14) Famous example selective search, extracting Region proposal and
applying classification

However, the solution method still has some immature
approaches. It takes a very long time to train the network
because 2000 different regions have to be classified per image.
As a result, the time required to analyze a test image is
correspondingly long. Furthermore, the use of a selective search
algorithm to determine the regions of interest is not an optimal
solution, since this is a permanently defined algorithm and

19

therefore cannot improve over time, which leads to poor region
candidates.

2.4.1.2. Fast R-CNN

The same author at R-CNN was able to solve some of these
issues and was able to come up with a faster approach. He
called this approach Fast R-CNN [18].

Figure(15) Applying CNN and using ROI pooling layer to convert

Basically, the approach is pretty similar. Instead of analyzing
each individual region using a CNN, this method uses a CNN to
analyze the entire image, which saves an enormous amount of
time. After applying CNN to analyse the entire image ROI
pooling layer is used to convert the feature maps of ROI
obtained from this, the regions of interest are identified with a
selective search algorithm and transformed into squares with a
fixed size. In this way, they can be converted into a fully
connected layer. Finally, a softmax layer is applied to classify the
regions. Furthermore, the position and size of the object in the
image is determined with a BoundingBoxRegressor. This
architecture is shown in Figure(15)

20

Figure(16) R-CNN vs Fast R-CNN performance

In Figure(16) you can see that Fast R-CNN is significantly faster
than R-CNN. The values here were taken from [19] and are
intended to indicate the relative time difference, since the
absolute time required always depends on the type of task and
the system used. With the time required for testing, it can be
seen that a large part of the computation time of the algorithm
is required for the region prediction. This means that the
prediction of the regions of interest by the selective search
algorithm is the weak point of the Fast R-CNN algorithm in
terms of performance and that there is still room for
improvement.

2.4.1.3. Faster R-CNN

The performance problem in determining the regions of interest
is solved with Faster R-CNN [21]. As with Fast R-CNN, the image
as a whole is analyzed using a CNN. In order to suggest regions,
a selective search algorithm is not used, as in the methods
described above. Instead, an object recognition algorithm is
introduced in which the network independently identifies the
suggested regions through learning. A separate, so-called
Region Proposal Network is used for this purpose. This brings
an enormous time advantage and has the consequence that the
entire process takes about the same amount of time as Fast

21

R-CNN without specifying the region proposals.

Figure(17) Faster R-CNN Model and anchor boxes

The predicted, suggested regions are then reshaped with a RoI
pooling layer to classify the image within the suggested region
and predict the offset values for the bounding boxes. The most
important idea in Faster R-CNN is the idea of anchor boxes
which will be mentioned later in the paper again (section
3.2.1.3). Anchor boxes provide a predefined set of bounding
boxes which consists of width and height and predict bounding
box that are relevant to the bounding box instead of predicting
the bounding box which is relevant to the image , these
bounding boxes may have different size and ratios as it is
shown in Figure(18) below. In summary anchor boxes allows
YOLO to predict multiple bounding boxes per grid instead of
having just one bounding box

22

Figure(18) Different sizes and ratios of Anchor boxes

The architecture of Faster R-CNN and a demonstration of the
anchor boxes are shown graphically in Figure(17).

Figure(19) Faster R-CNN Test Time Speed

In Figure(19) A test speed comparison between R-CNN, Fast
R-CNN and Faster R-CNN including suggestions for regions.
Faster R-CNN was able to dramatically reduce the time it takes

23

to propose regions compared to Fast R-CNN. The values here
were taken also from [19.]

2.4.1.4. Mask R-CNN

Mask R-CNN [22] describes a method that functionally extends
Faster R-CNN. In addition to the existing branches, which
determine the classification as well as the position and size of
the object, another branch is added here. This branch is
responsible for predicting segmentation masks for the
individual regions of interest. For this purpose, a segmentation
mask is predicted at the pixel level by means of a fully
connected network. The additional calculation only leads to a
minimally greater computational effort.

Figure(20) Mask R-CNN architecture[41]

Since Faster R-CNN is basically not designed to analyze at the
pixel level, which is most evident in the pooling operations, a
quantization-free layer that persists the exact position data was
introduced. The system architecture can be seen in Figure(20).

24

Figure(21) shows an example image of what a segmentation mask
looks like using mask R-CNN.

Figure(21) Segmentation mask using Mask R-CNN [40]

3. Project
3.1. Concept

The main concept of this project is to find out the best method to
detect and recognize objects with a neural network. After intensive
research it was decided to use YOLOv3 since every frame of the
picture could have a different size, content quality and background
noises. In (section 3.2.1) the YOLO method will be explained. To train
the chosen method around 1000 Images will be collected and
processed. All of the Images will be obtained from open source
websites and the process of the training will be explained later on.

3.2. Used Methods

For the practical implementation, it was decided to focus on one object
recognition method. The choice is made with the main focus on
YOLOv3. YOLOv3 relies on the fastest possible analysis of an image

25

and is one of the leading recognition methods in this area. It was
decided to use a self-contained implementation for YOLO, which is
based on the original realization of the inventor. Alternatively, there
would also be implementations in various frameworks.

3.2.1. YOLO – You Only Look Once

You Only Look Once (YOLO) is a widely used object detection method
that was developed by Redmon et al. [37] and has since been further
developed in several steps. You see object recognition as a regression
problem in which objects are determined from the pixels of the input
image with the help of a neural network. A recognized object is
described by a bounding box, which clearly defines its position and
size. Furthermore, as many class probabilities as there are possible
classes in the respective application are determined for each
recognized object. A class probability value is determined for each
class - the sum of these values is one. A recognized object is assigned
to the class with the highest class probability.

3.2.1.1. Theoretical background for YOLOv1

In YOLO [23] the image is divided into a grid with a size of S x S.
The cell of the grid field in which the center of an object falls is
also responsible for the recognition of this object. For this
purpose, bounding boxes (B) are predicted for each cell. Each of
these bounding boxes gives a statement of five values. These
are the X position, the Y position, the width (W) and the height
(H) of the box and a confidence value that indicates the
probability that the box contains an object, regardless of what it
is. The X and Y positions indicate the center of the box relative
to the grid boundary. The width and height of the box are given
relative to the entire image. In addition, class probabilities (C)
are predicted for each grid field. In summary in the YOLOv1
each bounding box is described by coordinates (x, y, w, h) and a
confidence score. The Confidence score shows how accurate the

26

bounding box is or how likely that the bounding box contains an
object. Formally, the confidence score of a bounding box is thus
defined as follows:

Confidence = pr(Object) x 𝐼𝑜𝑈
𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ

Pr(Object) is the Objectness Score, which determines how likely
it is that the box contains an object.

determines how accurate the size dimensions and𝐼𝑜𝑈
𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ

position of the box are compared to the dimensions of the
contained object. An overview of the parameters is shown
graphically in Figure(22).

Figure(22) Bounding box Elements [42]

In Figure(23) the image on the left shows the division into a grid
field. The Image above shows the predicted bounding boxes,
whereby the line width is to be interpreted as a confidence
value.

27

Figure(23) YOLO model detection

In the image below displays the class that was most likely found
for a cell. The result can be seen in the picture on the right. Here
only the bounding boxes for which the confidence value
exceeds a certain threshold value are displayed and combined
with the class forecast of the associated cell. This means that a
maximum of exactly one object can be recognized per cell,
regardless of how many bounding boxes are generated per cell.
This has the disadvantage that an image with many small
objects cannot be recognized correctly. Most of them are
ignored here. The network model consists of 24 convolutional
layers, followed by two fully connected layers. 1 × 1 filters are
used to reduce the number of parameters. The exact
architecture can be seen in Figure(24). YOLO achieved an
average of 63.4% at 45 fps. Alternatively, there is another
implementation of the neural network. This is called Fast YOLO
(YOLOv2) and consists of nine instead of 24 convolutional layers.
Fast YOLO achieved a rate of 52.7% at 155 fps.

28

Figure(24) YOLOv1 Network pipeline

3.2.1.2. Limitations of YOLOv1

YOLOv1 has a limitation in predicting nearby objects as each grid cell
is limited to predict two boxes, which leads to limitation in the
number of classes. Each grid may have only one class. Furthermore
YOLOv1 has a high localization error and can detect up to 49 objects
in an image.

3.2.1.3. Theoretical background for YOLOv2

After YOLOv1 was released and the limitations were
documented, researchers continued to work on improving the
object detector. While comparing YOLOv1 to other two stage
approaches such as Fast R-CNN and Faster R-CNN. It was
noticed, as mentioned above, the occurrence of many
localization errors in addition to the low recall. For this reason,
Redmon et al. created YOLOv2 [24][53] which is an improved
version of YOLOv1. YOLOv2 draws its improvements on the
Faster R-CNN Idea. Redmon et al. introduced in his paper the
usage of anchor boxes (section 2.4.1.3) and the batch
normalization in YOLOv2, as a solution for the poor prediction
ability of the bounding boxes, especially for multiple targets in a
grid.

29

Figure(25) YOLOv2 model

Let's talk shortly about the idea of Batch Normalization. Of
Course normalization is a well known data preprocessing tool
which generalizes the model well. It ensures that the numerical
data is scaled unifiedly without distorting its shape. As for the
batch normalization; it is adding an extra layer which does
normalization and standardization processes to the imputed
data in the deep neural network. This layer is inserted after a
full CNN layer. Other than these two steps in general the
network structure hasn’t changed much from YOLOv1.

3.2.1.4. YOLOv3

YOLOv3 [25] has some minor improvements compared to its
predecessor. One of the main improvements in YOLOv3 is that it
can detect two objects that are close to each other, where this
isn’t possible in YOLOv1 & v2. In addition, YOLOv3 provides a
prediction for the objectness score by using logic regression.
So now Darknet-53, which consists of 53 layers, is used as the
network. As in the ResNet architecture (section 2.5.5.3), certain
layer outputs are forwarded backwards in the network. Further
53 layers are added on it, which makes the total of the stacked
layers in the YOLOv3 106 layers. The architecture of the network
can be seen in Figure(). Furthermore, instead of the mean

30

square error, binary cross entropy is used as a cost function in
this network. The implementation is freely accessible online5.

Figure(26) YOLOv3 network Architecture

3.2.2. Limitation of YOLO

YOLO can only predict a limited number of bounding boxes per grid
cell, 2 in the original research report. And while this number can be
increased, only one class prediction can be made per cell, which limits
detection when multiple objects appear in a single grid cell. Hence, it
fights with limited groups of small objects like flocks of birds or several
small objects of different classes.

In Figure(27) you can see that there are nine people sitting down in the
lower left corner of the picture (numbered in white); only 5 people
were detected by YOLO. This leads to the conclusion that YOLO could
miss objects that are too close.

31

Figure(27) Non accurate number of person due to the closeness of [42]

4. Implementation of the Project
4.1. Programming language

The most popular programming language for data science projects
according to dasca (Data Science Council of America)[55] is Python as
66% of data scientists use python daily and 84% of these Data
scientists use Python as their primary programming language. The
reason behind python’s popularity among data scientists is that it
allows the developers to write programs for machine learning tasks
with ease. In addition to that it is possible to develop libraries and
tools from scratch. Furthermore it offers a variety of ready to use
machine learning libraries, add-ons models and frameworks which
simplify the development process and time[54].Therefore Python
programming language will be used to develop this project. In addition

32

to Python some HTML and CSS has been used to make a simple
webpage where pictures could be uploaded and processed.
One of the limitations of implementing YOLOv3 is that it could only be
developed on a linux system. Furthermore, in order to use YOLOv3,
OpenCV12 must also be available on the system. Therefore the Python
programming language, OpenCV12 and a computer with a Linux
operating system will be used for the project. More tools will also be
used to be able to self train the used dataset(section 4.3).

4.2. Deep Learning Frameworks used in the project

To develop the Object detection with YOLOv3 project the following popular
machine learning platform and technologies has been used

4.2.1. TensorFlow

TensorFlow is an open source machine learning (ML) platform that
offers various levels of abstraction. Thus, this framework is
recommended for both beginners and experienced users who want
more control over the network. The official high-level Keras API can be
used to create a neural network. For larger ML tasks, the Distribution
Strategy API can be used, which is designed to distribute the training
to different hardware devices without having to change the model
itself. Furthermore, TensorFlow is language and platform independent.
So it is possible to use it for desktop, mobile, web and cloud
applications. TensorFlow supports programming languages such as
Python, C ++ and R. The framework also has a tool called TensorBoard,
which offers an effective representation of network modeling and
performance. There is extensive documentation and the largest
community in the field of deep learning [30].

4.2.2. Qt5

Qt is a framework with which (GUI) applications can be
developed for different platforms. Together with Python3, Qt5

33

can be used in particular to create applications with a graphical
user interface.

4.2.3. Keras

Keras is a high-level API for neural networks in Python that can be
used in combination with three different backends. These include
TensorFlow , CNTK and Theano. With this framework, the focus of
development is on a simple interface and on enabling rapid test
execution. Keras supports both convolutional networks and recurrent
networks and a combination of the two. The CPU or GPU can also be
used for execution. The greatest advantages of Keras are the ease of
use, the modularity and the simple expandability with new modules. In
order to be able to use the full range of Keras, additional software or
additional Python modules must be downloaded and installed. This is
described in detail in the documentation [31].

4.2.4. PyTorch

PyTorch is an open source deep learning platform that ensures a
seamless transition from prototype development to product
development. In order to optimize the performance, the training can
be divided into several systems. PyTorch can be used both in Python
and in a C ++ runtime environment. Models can be exported here in
the Open Neural Network Exchange (ONNX) format and thus used by
other platforms that support this standard. Furthermore, PyTorch is
supported by cloud platforms, which enables training with a large
amount of data [32].

4.2.5. Numpy

The abbreviation NumPy is an acronym for “Numeric Python”. It is a
program library that extends the programming language with
functions for numerical calculations and mathematical routines.
Efficient computing with large matrices and arrays is possible with the
help of Python. This particular program is used because all big data

34

and deep learning applications programmed with Python use NumPy's
mathematical functions, as the Python programming language is not
optimized for numerical calculations.

4.2.6. Pip

As for Pip: it is an acronym that stands for “Preferred Installer
Program”. This command line tool allows the OS to install, reinstall, or
uninstall Python Package Indexes with one simple and straightforward
command: “Pip”.The command pip could also be followed by a number
for example “pip3” which stands for the python version being used.

4.3. Training the Data

The powers of the object detection dataset and models have enorm
potential, by training the computers to detect what every pixel
represents can help in the detecting process of animal pictures to
improve the used technologies in the healthcare department. To be
able to reach the futuristic technological potentials of object detection
and deep learning we must train our datasets in an efficient way. An
important factor to choose the best method is that In order to be able
to use YOLOv3 with a self trained dataset, the images must be labeled
with bounding boxes. Therefore Labelimg tool[56] was used to train
the dataset for this project.

Definition:
Labelimg: is a graphical image annotation tool which uses
bounding boxes to label objects in images

35

Figure(28) Dataset preprocessing steps

In Figure(28) the process to train a new data set consists of four main
steps which are:

1. Raw data gathering
2. Data Preparation
3. Model training
4. Model evaluation and validation

4.3.1. Raw data gathering

In order to build the object detection website using YOLOv3
technology, a training dataset must be done.
First of all I have used a collection of different already existing pictures
of different objects and creatures (i.e. animals, vehicles, and items
which could be found in nature..etc). I have used some of the free
datasets from different online sources; such as Data.gov, EU Open Data

Portal, UCI machine learning repository and Kaggel.

4.3.2. Data Preparation

To prepare the data two aspects must be considered, first of all
the collected data (images) are RGB and have a jpg and png
type. The second aspect is that the images must have four
bounding box variables (x,y min and x,y max). Most importantly
in this step the dataset (1400 images) will be split into two
categories.

36

http://data.gov
https://data.europa.eu/data/datasets?locale=en&minScoring=0
https://data.europa.eu/data/datasets?locale=en&minScoring=0

Category A: has around 70% of the data volume (1000) and will
be used to train the machine learning Model in the next step of
the process. Category B: has about 30% of the data volume and
will be used to evaluate the model. The dataset has 10 classes
which are: Person, Dogs, Cats, Elephant, horse, sheep, Koala,
cow, vehicles (Car, Bus, Truck, Motor, Bicycle), traffic light.
Next step in data preparation is labeling the images using
Labelimg tool as mentioned above. Labelimg supports YOLO
text and VOC XML. VOC XML format will be used during the
labeling of the dataset for this project. This format is more
universal than YOLO xml and it could be converted with ease.

Definition:
VOC: An annotation format which was developed for the Visual
Object Challenge, later on it gained popularity as a common
interchange format for object detection labels.

Labelimg: will save the objects as an xml format after drawing
bounding boxes in the images automatically around the object
in the foto.

For this step a github tutorial was followed [57] the only
difference is that I have used another labeling tool [56].

4.3.2.1. Labeling the dataset steps:

1. Install qt5 and labelimg on the linux system via the
terminal. The process is shown in Figure(29)

Figure(29) qt5 and Labelmg installation on Linux sys

37

2. Predefine the classes that shall be used in a
“data/predefined_classes.txt”

3. Add a folder of the collected raw data into labelimg and
open it via open dir

4. Start creating Rectangular Boxes (Bounding boxes) and
annotate them. Repeat for every object in the image as
shown in Figure(30)

Figure(30): LabelImg while annotating

5. After annotating all the images the folder shall look like
the Figure(31) below. The folder has all the previously
collected data plus a file for each annotated image
holding the same name as its corresponding image (.txt
file). The file will contain a series of numbers

Figure(31) Annotation txt file of a labeled image

38

For example: (15 0.392578 0.504395 0.566406 0.791992)
which represents (ObjectID, Center_X position, Center_Y
position, width, height).
ObjectID: Represents the object’s category or class. The
number of the objectID is determined in the class.txt file.
Center_X position, Center_Y Position: The X, Y center
point of the bounding box. Both values are normalized to
range between 0 and 1.
Width,Height: Represent the width and height of the
bounding box.

Figure(32) Annotated images with annotation txt file

4.3.3. Model Training and Testing

In this step the dataset was trained by feeding the
trained_data.txt (Category A) of the dataset into the pretrained
YOLOv3 Model. The Model which is used for this project is

39

trained and tested using google colab; with google colab is an
environment which allows you to code large datasets in ML and
DL completely on the cloud.

4.3.3.1. Model Training and testing Implementation

As mentioned above, the model training and testing
implementation will be conducted in google colab. The
Implementation took the following steps:

1. Upload the prepared dataset which contains the
labeled images to a new folder in the google drive
account.

Figure(33): Real time image from my gdrive

2. Import all the important libraries which will be
used for the training of the model like (os,
Tensorflow, Tensorflow.keras.layers, numpy) and
instead of writing my own architecture I tried using
the previously used mobile net architecture; after
testing this library I have found out through
research that it does perform well
(Tensorflow.keras.applications.mobilenet_v2). In
addition to that I have used a library of call backs
for measuring the validation accuracy value. Lastly,
to mount the folder of the labeled dataset which is
uploaded on google drive I have also added the
gdrive library.

40

Figure(34) Imported libraries/dependencies in google
collab

3. Mount the folder from google drive to get the
folder through a verification code, then unzip the
folder to retrieve all the data. This process can
take up some time to finish especially in this
project as the dataset was larger than average and
multiple data classes have been trained.

4. Use two different data generators one for training
and another for validation/Testing as shown in the
code Below.

Figure(34) The data generators code in google collab

41

5. Define Model by using the already defined model
Architecture via Mobile net [60]. This architecture
model has predefined arguments which could be
changed according to the needs of the model.In
the two code blocks below you can see the
difference between the original Mobile net
architecture implementation and the changes
which have been made to fit my dataset training
needs.

Input shape specifies the input image resolution
and for this model training I am using input shape
of (224,224,3). Alpha represents the number of
filters in each layer which will remain by default. As
for the weights file, ImageNet weights shall be
used.

6. Last step in the dataset training is to clone,
configure and compile the dataset with the model.

42

The model takes some time to train all the dataset
ca. 6 hours.

7. During the model testing step the performance of
the newly trained dataset will be measured for
example in the following code block

4.4. Implementation of project
4.5. System Requirements

This Project runs on an Ubuntu or macOS based computer system. The most
crucial requirement is Python version 3.7.6, furthermore the following
dependencies are also required:

1. Install Tensor flow, ImageAI,OpenCV, Numpy
2. Use the trained Object detection Model
3. Django v.1.9.8 to build a Web app for uploading and processing the

objects in the images

4.6. System Implementation and steps
4.6.1. Backend Implementation (Object detection)

The final stage in the project is to create a backend system using
python 3.7.6 and some dependencies mentioned in the section above.
During the Implementation phase I have followed a simple tutorial
which explains the YOLOv3 object detection implementation
phase[59]. The implementation of the backend system (object
detection) is done within one class. The class is called “Detection”. An
instance of the class wasYOLOv3 Model type was set. The path of the
previously trained dataset using google colab is set and loaded. And
the Network path is also defined Once the code is running, The
function which is incharge of detection was called and parsed in the
path of the input and output image. Furthermore, an Iteration over
the returned result is performed in order to return the class name of
the object as well as the confidence percentage. In this
Implementation a python based library called Imageai is used.
Imageai produces a detection configuration file which supports

43

detecting objects in Images by parsing the extracted parameters into
the object detection function. Afterwards the uploaded Images are
saved In a folder inside of the python project called “Media”. The
uploaded image will be processed through the YOLOv3 Model and will
be sorted into their corresponding classes after being processed by
the MyData trained model. Hence each detected object will be given a
name of its category (class) in addition to the confidence rate. The
confidence rate will be written in percentage (1-100). After the Object
detection process ends, the Processed Image(result) will be saved also
in the “media” folder under its uploaded name + the word “detected”
to be able to distinguish the original image from the object detection
result. In addition to that, two paths for both the input and the result
image will be created.

Remark(line 6&7): Tensorflow takes control of the GPUs. Hence I
needed to rewrite the environment in order to make GPU(s) visible for
the data process.

Figure(35) The YOLOv3 implementation

4.6.2. Web Application Implementation
The web app is developed using Django.
Django: is a full stack framework written in Python that enables the
rapid development of web applications. One of its great advantages is
reusable components and integration with multiple plugins.

44

Figure(36) Image Detector website Implementation

The Website is a simple frontend which contains three different views
(pages).

● The Home page: Contains the name of the project “Image
Detective”. A start Button, which allows the user to upload an
image to detect its objects. Furthermore four static Images
which show some of the results of the tool.

● Upload Image Page: This page contains an upload button
called “SELECT IMAGE” and a “Submit” button to confirm and
start the upload and object detection processes.

● Result Page: Shows two Images. The image on the left hand
side shows the uploaded image before the object detection
processing with a link path above it to, which allows the user to
see the Image in a bigger (Original size). The Right handside
Shows the processed image which contains the detected
objects plus a bounding box with its corresponding class and
confidence rate. Also on top of this image a path is provided
which allows the user to see the image more closely.

45

4.6.3. End Result
The end result of the implementation will be demonstrated with
images in this section. In addition to this the full code is downloadable
from Github[61] with a txt file of all the needed dependency versions.

4.6.3.1. Step by step demonstration of the Image detective
project

1. To start the Image Detector website, a command “python3.7
manage.py runserver'' should be performed in the terminal.
This command could only be run inside of the correct directory
(Project Folder). Furthermore Type the localhost IP
“127.0.0.1:8000” in the browser (preferably Chrome).

Figure(37) Private computer’s Terminal while running localhost
2. The Home page of the Image Detective Project:

Here you can see some images detected by the image
detective Project

Figure(38) Image Detective Home page UI

3. Uploading an Image:

46

https://github.com/Sana93JA/ImageDetective

In this step I have picked an Image of different types of dogs
and cats to upload to the website

Figure(39) Image Detector Upload page UI

I have chosen the following image to upload inorder to test the
website

Figure(40) A randomly chosen Image
4. Result:

After processing time the website shows both the original
image (on the left hand side) and the detected objects (on the
right hand side). Furthermore the confidence rate (in %) is also
shown next to the object name

47

Figure(41) Image Detector, Object detection final result

Here is a close up picture of the result:
You can clearly see that the first dog from the left has
overlapping classes. Of Course this type of mistake is expected
from a newly trained dataset module. To achieve better
accuracy in the future, one should train more data to the
model.

Figure(42) Close up of the final result Image

48

5. Conclusion
Deep learning is very suitable for object recognition problems. There is no need for
complicated, specific algorithms that would be different for each object. Instead, the
same project structure can be used all the time. Only the data sets for training the
network and some configuration parameters have to be selected individually. There
are a number of frameworks for implementing deep learning based object detection
solutions, the most popular and widely used one is TensorFlow. This approach was
used during this thesis. In regards to training and testing a dataset for a Model,
given there is only a small amount of data available. The network is trained with
another, larger data set or initialized with weights that have already been trained.
About 1400 images were labeled for the detection of advertisements, which were
divided into a training data set and a validation data set in a ratio of about 70 to 30.

49

References

[1] Shubham Panchal. Artificial Neural Networks — Mapping the Human Brain. Medium.
März 2018. url: https://medium.com/predict/artificial-neural-networks
-mapping-the-human-brain-2e0bd4a93160 (Shubham #) (Shubham 1) (page. 3)

[2] Yann LeCun, Yoshua Bengio und Geoffrey Hinton. „Deep Learning“. Nature 521.7553
(LeCu 2)(Mai 2015), S. 436–444 (page. 4-7).

[3] Unsupervised Feature Learning and Deep Learning Tutorial. url: http://ufldl.stanford . edu
/ tutorial / supervised / MultiLayerNeuralNetworks/ (Unsupervised Feature Learning and
Deep Learning Tutorial 3) (page 4, 5).

[4] Stanford University. CS231n Convolutional Neural Networks for Visual Recognition.
https://cs231n.github.io/convolutional-networks/ (CS231n Convolutional Neural Networks
for Visual Recognition 4)(page. 13–16).

[5] https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-network
s-the-eli5-way-3b (Saha) (Shubham 5)d2b1164a53

[6] Ayeshmantha Perera. What is Padding in CNN’s. Medium. (page. 14, 15).
[7] https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
[8] Yamashita, R., Nishio, M., Do, R.K.G. et al. Convolutional neural networks: an overview

and application in radiology.
[9] Jiang, X., Lu, M. & Wang, SH. An eight-layer convolutional neural network with stochastic

pooling, batch normalization and dropout for fingerspelling recognition of Chinese sign
language

[10] Yann LeCun u. a. „Gradient-Based Learning Applied to Document Recognition“.
Proceedings of the IEEE 86 (Nov. 1998).

[11] Alex Krizhevsky, Ilya Sutskever und Geoffrey E. Hinton. „ImageNet Classification with
Deep Convolutional Neural Networks“. In: Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1. NIPS’12. Lake Tahoe,
NV, USA: Curran Associates Inc., Dez. 2012. (PAGE. 16).

[12] https://duchesnay.github.io/pystatsml/deep_learning/dl_cnn_cifar10_pytorch.html
[13] Karen Simonyan und Andrew Zisserman. „Very Deep Convolutional Networks for

Large-Scale Image Recognition“. In: Proceedings of the 3rd International Conference on
Learning Representations. ICLR’15. San Diego, CA, USA, Mai 2015

[14] https://neurohive.io/en/popular-networks/vgg16/
[15] Jason Yosinski u. a. „How Transferable Are Features in Deep Neural Networks?“ In:

Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2. NIPS’14. Montreal, Canada: Curran Associates, Inc., Dez. 2014,

50

https://medium.com/predict/artificial-neural-networks
https://medium.com/predict/artificial-neural-networks
http://ufldl.stanford
http://ufldl.stanford
https://cs231n.github.io/convolutional-networks/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://duchesnay.github.io/pystatsml/deep_learning/dl_cnn_cifar10_pytorch.html
https://neurohive.io/en/popular-networks/vgg16/

[16] https://madhuramiah.medium.com/deep-learning-using-resnets-for-transfer-learning
-d7f4799fa863

[17] Ross Girshick u. a. „Rich Feature Hierarchies for Accurate Object Detection and
Semantic Segmentation“. In: Proceedings of the 27th IEEE Conference on Computer Vision
and Pattern Recognition. CVPR’14. Columbus, OH, USA: IEEE

[18] Ross B. Girshick. „Fast R-CNN“. In: Proceedings of the 15th IEEE International
Conference on Computer Vision. ICCV’15. Santiago, Chile: IEEE, Dez. 2015

[19] Fei-Fei Li, Justin Johnson und Serena Yeung. Detection and Segmentation. Mai 2017.
url: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

[20] Liu Wei, Lu Runge und Liu Xiaolei. „Traffic sign detection and recognition via transfer
learning“. In: Proceedings of the 30th Chinese Control And Decision Conference. CCDC’18.
Shenyang, China: IEEE

[21] Shaoqing Ren u. a. „Faster R-CNN: Towards Real-time Object Detection with Region
Proposal Networks“. In: Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1. NIPS’15. Montreal, Canada: Curran
Associates, Inc., Jan. 2015

[22] Kaiming He u. a. „Mask R-CNN“. In: Proceedings of the 16th IEEE International
Conference on Computer Vision. ICCV’17. Venice, Italy: IEEE, Okt. 2017

[23] Joseph Redmon u. a. „You Only Look Once: Unified, Real-Time Object Detection“. In:
Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition.
CVPR’16. Las Vegas, NV, USA: IEEE, Juni 2016

[24] Joseph Redmon und Ali Farhadi. „YOLO9000: Better, Faster, Stronger“. In: Proceedings
of the 30th IEEE Conference on Computer Vision and Pattern Recognition. CVPR’17.
Honolulu, HI, USA: IEEE, Juli 2017

[25] Joseph Redmon und Ali Farhadi. YOLOv3: An Incremental Improvement. Techn. Ber.
Apr. 2018

[26] Jonathan Huang u. a. „Speed/Accuracy Trade-Offs for Modern Convolutional Object
Detectors“. In: Proceedings of the 30th IEEE Conference on Computer Vision and Pattern
Recognition. CVPR’17. Honolulu, HI, USA: IEEE, Juli 2017

[27] Wei Liu u. a. „SSD: Single Shot MultiBox Detector“. In: Proceedings of the 14th
European Conference on Computer Vision. ECCV’16. Cham, Germany: Springer
International Publishing, 2016

[28] Tsung-Yi Lin u. a. „Focal Loss for Dense Object Detection“. In: Proceedings of the 16th
IEEE International Conference on Computer Vision. ICCV’17. Venice, Italy: IEEE, Okt. 2017

[29] Jonathan Huang u. a. „Speed/Accuracy Trade-Offs for Modern Convolutional Object
Detectors“. In: Proceedings of the 30th IEEE Conference on Computer Vision and Pattern
Recognition. CVPR’17. Honolulu, HI, USA: IEEE, Juli 2017

51

https://madhuramiah.medium.com/deep-learning-using-resnets-for-transfer-learning-d7f4799fa863
https://madhuramiah.medium.com/deep-learning-using-resnets-for-transfer-learning-d7f4799fa863
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

[30] TensorFlow. url: https://www.tensorflow.org/
[31] Keras. url: https://keras.io/
[32] PyTorch. url: https://www.pytorch.org
[33] Caffe. url: http://caffe.berkeleyvision.org/
[34] Theano. url: http://deeplearning.net/software/theano/
[35] Microsoft Cognitive Toolkit (CNTK) - Documentation. url: https://docs.micros

oft.com/en-us/cognitive-toolkit/
[36] Microsoft Cognitive Toolkit. url: https://www.microsoft.com/en-us/cognitive-to olkit/
[37] Christian Szegedy u. a. „Going deeper with convolutions“. In: Proceedings of the 28th

IEEE Conference on Computer Vision and Pattern Recognition. CVPR’15. Boston, MA, USA:
IEEE, Juni 2015

[38] Kaiming He u. a. „Deep Residual Learning for Image Recognition“. In: Proceedings of
the 29th IEEE Conference on Computer Vision and Pattern Recognition. CVPR’16. Las
Vegas, NV, USA: IEEE, Juni 2016

[39] Jenssen, Robert. „Intelligent Monitoring and Inspection of Power Line Components
Powered by UAV and Deep Learning “.IEEE, Juni 2019

[40] Segmentaion mask using Mask R-CNN
https://blog.paperspace.com/mask-r-cnn-in-tensorflow-2-0/

[41] https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.
html

[42] https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b
93e2088

[43] Rohith Gandhi. R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object Detection
Algorithms. Towards Data Science. Juli 2018. url: https://towardsdatascie
nce.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571 365e

[44] https://bitmovin.com/object-detection/
[45] https://archive.ics.uci.edu/ml/datasets.php
[46] https://www.kaggle.com/datasets
[47] Data.gov
[48] https://data.europa.eu/data/datasets?locale=en&minScoring=0
[49] Jaron Collis. Glossary of Deep Learning: Bias. Medium. Apr. 2017. url:

https://medium.com/deeper-learning/glossary-of-deep-learning-bias-cf49d9c895e2
[50] Rohith Gandhi. R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object Detection

Algorithms. Towards Data Science. Juli 2018. url: https://towardsdatascie
nce.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571

52

https://www.tensorflow.org/
https://keras.io/
https://www.pytorch.org
http://caffe.berkeleyvision.org/
http://deeplearning.net/software/theano/
https://docs.micros
https://docs.micros
https://www.microsoft.com/en-us/cognitive-to
https://blog.paperspace.com/mask-r-cnn-in-tensorflow-2-0/
https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html
https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html
https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://towardsdatascie
https://towardsdatascie
https://bitmovin.com/object-detection/
https://archive.ics.uci.edu/ml/datasets.php
https://www.kaggle.com/datasets
https://www.data.gov/
https://data.europa.eu/data/datasets?locale=en&minScoring=0
https://medium.com/deeper-learning/glossary-of-deep-learning-bias-cf49d9c895e2
https://towardsdatascie
https://towardsdatascie

[51] Rohith Gandhi. Support Vector Machine — Introduction to Machine Learning
Algorithms. Towards Data Science. 7. Juni 2018. url: https://towardsdatascienc
e.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a4
44fca47

[52] Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T. et al. Selective Search for Object
Recognition. Int J Comput Vis 104, 154–171 (2013). url:
https://doi.org/10.1007/s11263-013-0620-5

[53] Joseph Redmon und Ali Farhadi. YOLO9000: Better, faster, stronger
[54] https://www.netguru.com/blog/python-machine-learning
[55] https://www.dasca.org/world-of-big-data/article/top-6-programming-languages-for-d

ata-science-in-2021
[56] https://github.com/tzutalin/labelImg
[57] https://github.com/AntonMu/TrainYourOwnYOLO
[58] https://colab.research.google.com/github/hardik0/Deep-Learning-with-GoogleColab/b

lob/master/Darknet_YOLOv3_Guns_Detection.ipynb
[59] https://github.com/OlafenwaMoses/ImageAI
[60] https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet_v2/Mob

ileNetV2
[61] https://github.com/Sana93JA/ImageDetective

53

https://towardsdatascienc
https://towardsdatascienc
https://towardsdatascienc
https://doi.org/10.1007/s11263-013-0620-5
https://www.netguru.com/blog/python-machine-learning
https://www.dasca.org/world-of-big-data/article/top-6-programming-languages-for-data-science-in-2021
https://www.dasca.org/world-of-big-data/article/top-6-programming-languages-for-data-science-in-2021
https://github.com/tzutalin/labelImg
https://github.com/AntonMu/TrainYourOwnYOLO
https://colab.research.google.com/github/hardik0/Deep-Learning-with-GoogleColab/blob/master/Darknet_YOLOv3_Guns_Detection.ipynb
https://colab.research.google.com/github/hardik0/Deep-Learning-with-GoogleColab/blob/master/Darknet_YOLOv3_Guns_Detection.ipynb
https://github.com/OlafenwaMoses/ImageAI
https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet_v2/MobileNetV2
https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet_v2/MobileNetV2
https://github.com/Sana93JA/ImageDetective

