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A Note on Notation

We try to use a notation as close as possible to that of the various individual fields of physics
we use to obtain the SpinSCDFT equations (magnetism, Many-Body theory, superconductivity
and DFT). Inevitably, this will cause naming convention conflicts. To increase readability, if a
symbol follows one unique naming convention (for example A(r), the vector potential) we do
not introduce it in the text but advise the reader to refer to the Nomenclature section. Due to
the limited number of common symbols, some very different entities have a similar symbol. We
hope the distinction is possible and in case of doubt advise the reader, again, to refer to the
Nomenclature. The reader should make himself familiar with the following conventions that we
will use throughout the thesis:

1. We define that all quantities are promoted to the space that the context requires. This
means we take the direct product with the identity operator in all the spaces that are not
explicitly referenced. Entities which are usually used in spin space, such as σx,y,z, S, . . .
become in the context of Nambu and Spin space σx,y,z ⊗ τ0. If we want to explicitly point
out that τ0 is used, such as in a basis vector decomposition, we write σx,y,zτ0. From now
on we reserve the symbol ⊗ for the outer product of vectors, for clarity.

2. The indices σ and µ always refer to the spin quantum number; the indices α, γ = {1,−1}
always label Nambu components. Indices i, j, k are a combined quantum number of band
and Bloch vector for single electron states k ≡ (k, n). Here we have to pay attention to
the type of single particle, the ones of the SC system and the (normal state) KS basis. In
quantities that map the two types into each other (u, v) we make the distinction by writing
the basis vector as a superscript and the SC particle quantum number as a subscript:
u

[NS basis]
[SC particle]. Otherwise the type of particle has to be deduced from the context.

3. We mostly use pure spinor operators (Nambu, as well as Spin spinors). We introduce the

notation here for spin only but also use it for Nambu indices. ~̂ψσ(r) is a spin vector with a

spin quantum number and only one non-vanishing component, e.g. ~̂ψ↑(r) =
(
ψ̂(r ↑) 0

)T .
If we refer to the scalar component we promote the index to the argument ψ̂(rσ). For spin
spinors we use the arrow notation that in addition distinguishes the spinor from its scalar
component. For Nambu and Spin vectors we use the symbol Ψ, so here the distinction
between the vector and its scalar components is only by the index being promoted to the
argument. Similarly we introduce Nambu and Spin matrices with a bar, e.g. Ḡ(rτ, r′τ ′) and
keep the symbol (with the bar) for the individual matrix elements. Thus, Ḡ(rαστ, r′α′σ′τ ′)
means the matrix element ασ, α′σ′ in Nambu and Spin space.

4. The operator · appears as a matrix product operation and as a generic vector contraction
in various spaces. The meaning will be clear from the context.

5. In a list of arguments rαστ ≡ r, α, σ, τ we usually do not put commas to save space,
except if we want to point out the distinction between one group and the other. We also
put commas if the number of arguments may be ambiguous, such if there is a minus sign
in front of a variable rασ,−τ ≡ r, α, σ,−τ or we use the short hand notation with single
integral numbers 1, 2, 3 . . . where we want to easily distinguish 1, 2 from 12.



Nomenclature

Abbreviations

SDA Spin Decoupling Approximation
GW Approximation where the dressed vertex is replaced by

the bare vertex in the SE on every occurrence.
RPA Random Phase Approximation
KS Kohn-Sham
(L)DOS (Local) Density Of States
SE Self-Energy
DFT Density Functional Theory
SC Superconductor, superconductivity and similar
L(S)DA Local (Spin) Density Approximation
xc exchange-correlation
FFLO Fulde-Ferrel-Larkin-Ovchinnikov
BdG Bogoliubov-de Gennes
NS Normals State
BCS Bardeen Cooper and Schrieffer
SSE Sham-Schlüter Equation
GF Green’s Function
STM Scanning Tunneling Microscopy
FS Fermi Surface

Symbols

Constants
c The speed of light.
me The electron rest mass.
e The absolute value of the electron charge.
gs The Landé factor gs ≈ 2.
µB The Bohr magneton.
ε0 The vacuum permittivity.
kB The Boltzmann constant.

Basic variables
T The temperature in Kelvin.
β The inverse temperature β = 1/(kBT ).
Tc The SC transition temperature.
Ef The Fermi energy.
εkσ The NS KS particle energy relative to Ef .
Ek The single particle energy eigenvalue with quantum

number k of an excitation on the SC ground state.
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A(r) The vector potential.
φ(r) The scalar potential.
B(r) The magnetic field B(r) = ∇×A(r).
p̂ The momentum operator p̂ = −i~∇.
r,x The position in space. We use r for a the norm of a vector r.
r̄, x̄ The position in the first unit cell.
q,k The Bloch vector in the first Brillouin zone.
q̄, k̄ The Bloch vector in the full inverse space.
Ti A translation of the direct lattice.
G A translation of the inverse lattice.
Ωuc The volume of the unit cell.
Nq The number of unit cells in the lattice.
θ(E) The Heavyside step function.
fβ(E) The Fermi function at inverse temperature β
nβ(E) The Bose-Einstein function at inverse temperature β
T̂ ,T̄ The (imaginary) time ordering symbol.

In Nambu space it orders every individual component.
Densities and Potentials.

n(r) Density of all electrons.
χ(r, r′) Density of condensed electron pairs.
m(r) The magnetization density.
Γ(R1...RN ) Density of nuclei.
∆ext,s The singlet/triplet vector of pair potentials

(
∆ext,s
s ,∆ext,s

tx ,∆ext,s

ty ,∆ext,s

tz

)T
for the interacting system (index ext) or the KS system (index s).

v̄xc The xc potential in Nambu and Spin space.
Basic notation.

〈...〉 The thermal average Tr
{
ρ̂...
}
.

ρ̂ The grand canonical statistical operator.
· The vector contraction symbol, and generic matrix multiplication.
⊗ The tensor (direct) product. Only used for the outer product of vectors.
[..., ...]± The commutator for + and the anticommutator for −.
< The real part of a complex number or function.
= The imaginary part of a complex number or function.
Re The hermitian part of a matrix ReA = 1

2(A+A†).
For symmetric matrices this is equivalent to the real part of every
component.

Im The imaginary unit times the antihermitian part of a matrix
ImA = 1

2i(A−A
†).

For symmetric matrices this is equivalent to the imaginary part of every
component.

Â(τ) An operator in the imaginary Heisenberg picture Â(τ) = eτĤÂe−τĤ .
Note that we include the Lagrange multiplier µN̂ into Ĥ.

Â(t) An operator in the Heisenberg picture Â(t) ≡ eitĤÂe−itĤ as above.
Nambu and spin space symbols.

σ0,x,y,z The Pauli matrices in spin space

σ0 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

τ0,x,y,z The Pauli matrices in Nambu space.
We use the same convention as for the σ0,x,y,z.



Symbols 9

S The vector of Pauli matrices S = 1
2(σx, σy, σz)

T .
Φ The singlet/triplet vector Φ = (iσy,−σz, σ0, σx)T .
~uk(r), ~vk(r) The spinor components of the 4× 2 Bogoliubov-Valatin

unitary transformation
(
~uk(r) ~v∗k(r)
~vk(r) ~u∗k(r)

)
.

~uik, ~v
i
k The expansion coefficients ~uik = (ui↑k , u

i↓
k )T

of ~uk(r) in the NS KS orbitals ~ϕiσ.
ukαkσ , v

−kα
k−σ Components of the eigenvector gαkσ = (ukαkσ , v

−kα
k−σ )T to the eigenvalue Eαkσ

of the KSBdG Eq. (3.152). These construct the
Bogoliubov-Valatin transformation according to Eq. (3.167).

Hamilton operators.
Ĥ The interacting Hamiltonian of electrons and nuclei.
ĤKS The KS Hamiltonian yielding the same densities as Ĥ
Ĥe
s The scalar electronic part of the KS Hamiltonian

ĤKS = Ĥe
s + Ĥn

s .
Ĥe0

c The Hamiltonian yielding the normal state
KS basis which is solvable on a computer.

ĤeT
nc The difference of Ĥe0

c from the full electronic
KS Hamiltonian at finite temperature ĤeT

nc = Ĥe
s − Ĥe0

c .
Ĥn
s The nuclear part of the KS Hamiltonian.

Ĥn
0 The harmonic approximation to Ĥn

s .
Defines the basis for the phonon operators b̂λq.

H̄KS(r, r′) The electronic SC KS Hamiltonian in first quantization
as a Nambu-spin matrix Ĥe

s = d́r d́r′Ψ†(r) · H̄KS(r, r′) ·Ψ(r′).
Particle operators.

γ̂†k The operator that creates the excitations on the SC ground state.
Φ̂k The excitation on the SC ground state in the Nambu notation. We use

Φ̂k(α) to refer to individual scalar components of the 2 component vector.
ψ̂†(rσ) Creator of the electronic field at position r with spin σ in a collinear basis

system.
~̂ψ†(r) The spinor field operator that creates both spin channels at the same time.
Ψ̂(r) The Nambu spinor with 4 components. Ψ̂(rαµ) refers to individual scalar

components.
ζ̂†(R) The nuclear field creation operator.

Perturbation theory.
Ḡ The interacting temperature Nambu GF.
ḠR The retarded Nambu GF.
ḠKS The SC KS systems electronic Nambu GF.
Ā(r, r′, ω) The spectral function of the Nambu GF.
ρµ,α(r, ω) The LDOS relative to Ef . Corresponds to the diagonal limit of Ā(r, r′, ω).
Σ̄ The Nambu Hartree SE.
Σ̄s Σ̄s minus the Nambu xc potential.
Σ̄KS Σ̄[Ḡ] with Ḡ replaced by ḠKS.
χpol The polarization propagator.
Dph, D

0
ph The dressed and the bare (superscript 0) phonon propagator.

Coupling matrix elements.
Mdyn

ijklσσ′
(ω) The purely dynamical matrix elements of the effective

Coulomb interaction in the NS KS basis.
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W stat
ijklσσ′

The static matrix elements of the effective Coulomb
interaction in the NS KS basis.

gqλkk′σ The electron-phonon coupling matrix elements in a non-SC basis.
α2F The isotropic electron-phonon coupling on the Nambu off diagonal.
α2FD

σ The isotropic electron-phonon coupling on the Nambu diagonal.
Cstat The isotropic static Coulomb coupling on the Nambu off diagonal.
Cdyn The isotropic dynamic Coulomb on the Nambu off diagonal.

SDA Sham-Schlüter equation.
Sβ The SSE in the SDA written as

Sβ[∆s
s] ·∆s

s = 0. We distinguish Sβ = SM
β + SD

β + SC
β .

SM
β The part due to ḠKS · v̄xc · ḠKS in the SSE.
SD
β The part due to the Nambu diagonal of the SE in the SSE.
SDPHS
β SD

β where SE contriubtions ∼ τz are neglected.
SC
β The part due to the Nambu off-diagonal of the SE in the SSE.
SsC
β SC

β where SE contributions ∼ σx are neglected.
Ă The small ∆s

s limit of A.
Isotropization.

ε The center of energy 1
2(εk↑ + ε−k↓).

J The splitting 1
2(εk↑ − ε−k↓).

e The combination (ε, J).
F The non-spin part of the isotropic Bogoliubov eigenvalue

√
ε2 + |∆s

s|2.
Eασ The isotropic Bogoliubov eigenvalue sign(σ)J + sign(α)F .
Îkσ(e) The operator that avarages a function Akσ on

equal center of energy ε and splitting J surfaces.
%(e) The double DOS, i.e. number of NS KS states on the intersection of the

surfaces ε and J .
%σ(er) The local double DOS similar to %(e).



Introduction

Superconductivity (SC) is one of the most fascinating effects ever observed in solid state physics.
Discovered by a vanishing of the DC resistance in 1911 by Kammerling Onnes [1], is was later

found that a superconductor expels a static magnetic field (independent on the state before SC
sets in) which is nowadays known as the Meissner-Ochsenfeld effect [2]. The superconducting
phase is technologically important not only due to the obvious application in the transport of
electric energy and the creation of ultra high magnetic fields, but also in precise measurement of
magnetic fields owed to the flux quantization. Its microscopic explanation by Bardeen Cooper
and Schrieffer (BCS) [3], more than 50 years after its initial discovery, turned out to be most
influential even beyond the field of solid state physics. For example it has influenced the concepts
of spontaneous symmetry breaking that was later employed in particle physics to explain a non-
zero mass of fields that are otherwise required to show a zero mass by symmetry [4, 5]. This is
commonly known as the Higgs mechanism.
While the fundamentals of SC are believed to be understood there are still open questions.

These concern the explanation of the high-temperature (non-phononic) SC, the SC of surfaces
or in general of systems in a very constrained geometry, but also the coexistence of magnetic
ordering and SC. As an experimental fact all high−Tc SC appears in the proximity to a magnetic
phase. While in the high temperature SC spin-fluctuations are by many believed to substitute
the phonons as coupling bosons, also different mechanism are under debate [6, 7]. The most
important open problems with the connection of magnetism and SC are mostly on a microscopic
level. With many proposed models, we might argue that the inconclusive situation is due to
the lack of first principal calculations that may clarify whether a given interaction is capable of
explaining the observed experimental effects and thus proves to be predictive.
While one would expect the Meissner effect to render static magnetic fields in SC impossible

there is experimental literature on the coexistence of magnetic ordering and SC (see Ref. [7, 8]
for a review on the situation for the iron based SC or Ref. [9] in an interface). Theoretical studies
on the coexistence are mainly based on models, due to the fact that the situation arises mostly
in materials where the pairing mechanism is non-phononic and thus first principle calculations
of SC are difficult. Powell et al. [10] discuss the inclusion of a homogenous magnetic field into a
Hubbard model. Fulde and Ferrel [11] and independently Larkin and Ovchinnikov [12] (FFLO)
derived a new, spatially inhomogeneous state in SC subject to a strong exchange-splitting. They
start from a BCS model where pairing enters as a parameter and is not necessarily due to
phononic coupling. Intensive research has tried to find this state in nature and has recently
been successful in heavy fermion [13, 14] and organic SC [15]. Moreover in the proximity to
a magnetic impurity there will be competition between the microscopic magnetic field and the
superconducting host that can be visualized experimentally [16]. Even the onset of a Kondo effect
is discussed when a magnetic atom or molecule is absorbed on the surface of a superconductor
[17]. Again, to single out the effect of individual contributions such as direct Coulomb, magnetic
or phononic couplings it would be desirable to simulate the competition of SC and magnetism
on a microscopic scale from first principles.
It is the goal of this work to develop such an ab-initio theory, both the analytic derivation and

the numerical implementation, to be able to compute physical observables that can be compared
with experiment. Apart from Tc we are most interested in the (local) excitation spectrum,
i.e. the (local) DOS because numerical predictions can be compared directly with experimental
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STM maps.
So far there is very scarce literature on first principle magnetic calculations in SC. Schossmann

and Schachinger have derived Eliashberg equations including the vector potential [18]. However,
they set out from a self-energy that is taken to be local in real space with an empirical electron
phonon coupling. It is not straight forward to generalize their approach to the case of ab-
initio calculations, where the pairing interactions are usually taken to be local in the space of
normal state quasi particles. Vonsovsky et al. [19] have derived Eliashberg equations, treating
the magnetic field perturbatively except for a “on site” splitting parameter. They require the self-
energy to be diagonal with respect to normal-state electronic orbitals which is similar to the main
results obtained in this work. In general the assumption of a diagonal pairing interaction might
pose an oversimplification when SC causes regions in the unit cell to lose their magnetic order.
Starting from the magnetic normal state this can only be achieved if we allow the electronic
states to hybridize due to SC. While in principle the perturbative expansion that leads to the
Eliashberg equations can be easily generalized to a non-diagonal normal-state basis, the solution
to the Dyson equation becomes computationally too demanding. If we wish to describe effects
such as the FFLO phase or localized bound states in non-superconducting regions, we have to
choose a theory that is numerically simple enough to cope with the much increased numerical
complexity when hybridization is considered. Such a theory is the Density Functional Theory for
SC [20]. As the most important point however, all Eliashberg based methods share the difficulties
that arise when one attempts the inclusion of an ab initio Coulomb interaction. Thus, we choose
the Density Functional Theory for SC as our starting point and include a magnetic field into the
theory.
While magnetic fields, in a similar shape as in experiment, may in general be well embedded

into the usual unit cell framework of a crystal (possibly with a reasonably large unit cell) the
inclusion of a vector potential can be problematic. For example a static homogenous magnetic
field requires a linearly diverging vector potential, thereby removing the lattice periodicity. An
ab initio calculation thus seems more feasible with just the Zeemann term, i.e. the B = ∇×A
field. This is only possible if the currents in the ground state are negligible. In the regime where
SC is suppressed by the magnetic field this on the other hand might be a severe restriction. Note
also that the Meissner effect appears in the current-current response function.
In the usual Density Functional Theory for SC one considers the one body density of electrons

n(r), the density of condensed electron pairs χ(r, r′) and the density of nuclei [21, 22, 20]. In this
work, in Part I, we include the magnetization m(r) as an additional density, neglecting currents
to have a scheme that is easier applied in practice. Without the inclusion of currents the theory
cannot describe mesoscopic structures like Abrikosov vortices, whose size is beyond the regime
of ab-initio calculations for the near future anyhow. Functionals are developed based on many-
body perturbation theory via the Sham-Schlüter connection. In addition to the full equations
we discuss the following approximations: 1) singlet pairing, 2) no hybridization of electronic
orbitals due to SC and 3) linearization of resulting equations in the pair potential only in the
last step. During this work a code was developed that solves the linear and non-linear equations
within a generalization of the so called Decoupling Approximation [22, 21], that amounts to the
approximation 2). Ideas to extend the framework to a real competition of SC with magnetism
are discussed while not implemented due to time limitations. Instead we apply the theory to
superconducting surfaces where the penetration depth is much larger than the thickness, thus
allowing the presence of an external magnetic field in the superconductor.
The SC of surfaces is an interesting subject on its own, even without the presence of magnetism,

and many effects present in these constrained geometries cannot be easily included in this ab
initio framework. In 1D and 2D there can be no SC due to the onset of long range fluctuations
in the order parameter [23]. While the surface in reality does have a thickness and finite (albeit



13

large) size in x − y the theorems proving the absence of long range order do not apply. Still
the susceptibility to fluctuations in the superconducting order parameter is expected to be large,
effectively reducing the equilibrium magnitude of χ(r, r′) dynamically and thereby reducing the
critical temperature. A functional that captures this effect will most likely involve the order
parameter χ(r, r′) response function. Both, functional and response function are not available
at present and, though definitely interesting, are beyond the scope of this thesis.
In Part II as an example of such systems we simulate a lead monolayer on Si(111) with a

critical temperature in experiment of Tc = 1.8K [24]. A critical analysis of all the conventional
approximations usually done in the theory of SC reveals that several have to be revisited in the
context of surfaces. As the most important one we meet with the Coulomb interaction that acts
very differently in the context of metallic surfaces on an insulating substrate as compared to bulk
systems. As an important side note we find that the Coulomb interaction extends the condensed
phase far into the substrate which will clearly affect the proximity to the 2D limit.



14 Introduction



Part I.

Spin Density Functional Theory for
Superconductors



1. Preparation: SC in a Magnetic Field

In this Part I we develop the ab-initio methods to describe the effect of a magnetic field in a SC
system. As a first fundamental assumption we consider a SC as a system where

χσσ′(r, r
′) = 〈ψ̂(rσ)ψ̂(r′σ′)〉 6= 0⇔ SC , (1.1)

so χσσ′(r, r′) is the order parameter of SC. There is little literature on the origin of the order
parameter of SC. Most books start from χ as the order parameter and then discuss the implication
on e.g. excitation spectra and electromagnetic properties. While it is thus found χ 6= 0⇒ SC the
implication SC⇒ χ 6= 0 is not so easy. Certainly, if we describe it with an N particle Schrödinger
equation a finite block of lead will not be SC in this sense, because if we respect the particle
number in every microscopic state in the ensemble 〈ψ̂ψ̂〉 ≡ χ = 0. The important question,
however, is if the block of lead shows χ 6= 0 below the experimental critical temperature if
we allow for coherent states, i.e. states |E〉 that allow 〈E|ψ̂ψ̂|E〉 6= 0. Typically one obtains
excellent results with this assumption χ 6= 0⇔ SC and there are no indications that it has to be
questioned. In the Diploma thesis [25] a review is given on how to interpret χ as the wavefunction
of SC electron pairs.
If we consider non-relativistic electrons and nuclei under the influence of a static classical

magnetic field, the best starting point is the Pauli equation governed by the Pauli Hamiltonian.
For the purpose of this discussion it is sufficient to consider just one electron without nuclei

ĤP =
1

2me

((
p̂− e

c
A(r)

)2
+ eφ(r)

)
σ0 − gsµBS ·B(r) . (1.2)

This equation can be viewed as a weakly relativistic limit to the Dirac equation which can be
extended also to a SC [26]. Starting from the Dirac equation of a SC as the most general
equation, we may generate the weakly relativistic limit, i.e. the Pauli Hamiltonian for a SC from
this equation. If we allow the electrons to pair and form a condensate we should in principle also
consider pairing terms of first order in the speed of light c. For simplicity we do not include these
effects here, nor do we consider the vector potential A(r) in the main part of the thesis and we are
left with the Zeemann term only. In Appendix A we comment on the case if orbital contributions
are not neglected. Still, while dropping orbital and relativistic contributions, because the Cooper
pairs of a normal SC are spin singlet we expect interesting effects and, ultimately, the suppression
of SC if the field is strong enough.
In this Part I we derive an ab-initio theory for SC in a magnetic field. An overview of the

tasks of this Part I is given in Fig. 1.1.
In Chapter 2 we briefly discuss and reproduce earlier results for a BCS model in a homogeneous

exchange field which is qualitatively equivalent to a simple, special case of our more involved
equations. We will compare numerical solutions with this simple model.
In Chapter 3 we develop the basic formalism of Spin DFT for SCs, finalizing with the so-

called KSBdG equations. These constitute a unitary transformation that diagonalizes the single
particle KS Hamiltonian in the presence of a pair potential. The KS system includes all exchange
and correlation (xc) effects in principle exactly. The particle interactions are moved into the xc
potentials that, as usual in the context of DFT, are unknown in their exact form.
We conclude this chapter with a discussion on approximations of the xc potential matrix

elements. Due to the, in general, low energy scale of the pairing interactions, usually the xc
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Figure 1.1.: Overview of the tasks in Part I.
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pair potential does not induce hybridization among the normal state KS orbitals and the normal
state densities are largely unaffected. The most important results are thus found neglecting
these effects. In this case, solutions to the KSBdG equations are found analytically and take a
particularly easy form. We point out that this form excludes the possibility to describe a FFLO
state at this stage.
In Chapter 4, we discuss the most relevant interactions that are typically treated “on top”

of the KS system. On top means here that these effects are usually not included into the xc
potential but treated in perturbation theory starting from the KS system as a non-interacting
system. While essential in the ab-initio theory of SC such effects are not easily included into a xc
potential on the basis of the densities alone. We take the route via the Sham-Schlüter connection
to derive a xc potential on the basis of perturbation theory. As a preparatory, in this chapter,
equations for matrix elements in the KS system basis are computed.
We introduce perturbation theory for a spin polarized SC in Chapter 5. There we define

and compute the single particle GF of the SC KS system and write down a Dyson equation
that connects the KS system with the interacting GF. Considering the parts of the GF that
correspond to the densities we arrive at the Sham-Schlüter connection.
This connection is essential to find approximations for the KS pair potential functional in the

Chapter 6. In the most simple approximation, solving SpinSCDFT amounts to solving the SSE
in the basis of normal state KS orbitals.
In Chapter 7, we extend the results of SpinSCDFT to observables that are easier to compute

from the interacting GF namely the single particle excitation spectrum. First, we discuss the
solution to the Dyson equation with the SE that we have used in the functional construction.
From this solution we obtain improved excitation spectra. Second, we discuss the case when
the SE is not approximated by replacing the interacting with the KS GF. This leads to the
Eliashberg equations in the formalism introduced in the preceding Chapter. While they are
numerically more demanding than SCDFT, especially if we attempt to include the electronic-
state dependence of the interaction, due to Migdal’s theorem the solution is regarded as the
reference in the purely phononic case.
We present numerical solutions of the resulting equations in Chapter 8 for the toy model

of a spin splitted free electron gas with an attractive phonon coupling. Using this model we
investigate the behavior of the functionals and compare with numerical solutions of Eliashberg
theory and the results of Chapter 2. Because BCS theory considers a similar system, we expect
results to be comparable, although our more sophisticated theory allows the calculation of Tc.



2. BCS and BdG in an Exchange-Splitting
Field

The BCS theory of SC is built on the idea that single electrons form pairs due to an effectively
attractive interaction. BCS proposed a wavefunction that has all the electrons condensed into one
single two-electron wavefunction. The system shows a non-vanishing response to an externally
applied vector potential, even in the static, homogeneous limit, which means it shows the Meissner
effect [27]. It can be seen that the lack of (charged) particle conservation that was imposed
by BCS translates into a continuity equation that is not fulfilled by the electrons alone [28].
Nambu showed that if, instead of bare coupling of electrons to the vector potential, one considers
dressed, effective coupling, the resulting continuity equation contains a collective mode (later
called Nambu-Goldstone mode) that adds to the current and charge. If a Coulomb interaction
among the paired electrons is considered the excitations of the new Nambu-Goldstone field are
pushed up to the plasma frequencies and no low lying excitations exist. We do not go into details
of the derivation of the Meissner effect, but briefly discuss the BCS model of a system with a
homogeneous magnetic field.
In a BCS model we replace the interactions among single electrons with an effective one,

keeping only the matrix elements that couple the states k, ↑ and −k, ↓. Then we perform a mean
field approximation, replacing the pair creation ĉ†−k↓ĉ

†
k↑and annihilation operator ĉk↑ĉ−k↓ with

their average in a (coherent) ground states that is determined self-consistently. The effective
interaction is approximated with “a box” about the Fermi level (from −Ωd to Ωd which is the
Debye phonon frequency cutoff and with height −V ) which leads to a fixed point equation for
the mean field ∆. In earlier works on the BCS model of a spin splitted system in the publications
[29, 10] a peculiar behavior is found when one tries to linearize the BCS gap equation of the
exchange splitted system

1

ρ(0)V
=

ˆ Ωd

0
dε

1√
ε2 + ∆2

(
fβ(J −

√
ε2 + ∆2)− fβ(J +

√
ε2 + ∆2)

)
. (2.1)

In the above equation ρ(0) is the DOS at the Fermi level and J is the splitting energy between up
and down states. V is the effective attractive coupling parameter. With modern computers we
easily solve Eq. (2.1) as a function of J and T 1 and recover the results of Ref. [29]. We normalize
to ∆0, the solution for T → 0 and J = 0, and Tc0 as the critical temperature for J = 0 to remove
the dependence on the parameters ρ(0)V and Ωd. In Fig. 2.1 a) we show results for this simple
model. First, as the most important result, we see that below T/Tc0 ≈ 0.6 the linearized Tc(J)
curve (green) and the non-linear solutions deviate. We have to conclude that a solution with
arbitraryly low ∆ does not exist below this temperature.
Although a solution to the non-linear equation (2.1) can be found even for large splittings

J > ∆0/
√

2, comparing the free energy of this state

Fs = ρ(0)
∑
σ

ˆ
dε

2ε2 + sign(σ)J + ∆2

ε2 + ∆2
fβ
(
sign(σ)J +

√
ε2 + ∆2

)
+

∆2

V
, (2.2)

1We use Ωd = 0.2 and ρ(0)V = 1.0 in the numerical calculation.
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a) b)

Figure 2.1.: BCS solutions for a spin splitted band structure [29]. In the panel a) we plot the
solution ∆ whenever we can find one, while in b) ∆ is set to zero if the free energy favors the
magnetic state. The green curve in a) shows the Tc(J) behavior from the linearized equation
which has a curious shape that bends inwards. Below the thin dashed line in b) at the label A
at T/Tc0 ≈ 0.6 no solution with small ∆ exists and the transition is of first order. Label B at
1/
√

2 represents the Chandrasekhar-Clongston[30, 31] limit.

with the purely ferromagnetic state Fm = ρ(0)J2, one is led to the conclusion that the latter is
the more favorable one. We perform this comparison in Fig. 2.1 b) and plot the gap ∆(T, J) only,
if the SC state is the minimum of the free energy. The transition to the ferromagnetic state at
T = 0 at J = ∆0/

√
2 (label B in Fig. 2.1 b) ) is called the Chandrasekhar-Clogston limit [30, 31].

The cross over from the SC to the magnetic phase is at finite ∆ and the transition is of first order.
As can be seen in Fig. 2.1 b) this comparison cuts off the concave tail of the finite ∆ solutions in
Fig. 2.1 a). In the plot we have normalized T by Tc0 but note that ∆0 and Tc0 are related. BCS
have estimated ∆0/(kBTc) ≈ 1.75[3] in the weak coupling limit. Here we numerically obtain the
slightly larger ∆0/(kBTc) ≈ 1.91 since we do not take the weak coupling limit in the integrals at
this point. This analysis is crucial for the discussion of the more complicated equations in the
context of Spin DFT for SCs in the next chapters.
Another interesting approach to describe SC in the presence of a magnetic field is presented by

Powell et al. [10] who use a Hubbard model in connection with a homogenous exchange splitting.
They treat the pairing part of the interactions among electrons in the system in the Hartree-
Fock approximation, similar to BCS as described above and consequently arrive at a similar gap
equation as compared to Eq. (2.1). The matrix elements of the KS system of Spin SCDFT within
the spin decoupling approximation will turn out to have an similar analytic structure. Also, they
give a discussion of why the transition is of first order. They note that the gap equation (2.1),
and consequently ∆, is independent on J at T = 0. At J = ∆0 on the other hand the Fermi
functions at T = 0 in Eq. (2.1) add to zero and only the trivial solution ∆ = 0 can be found.
We see explicitly that ∆ = ∆0θ(∆0 − J) and the transition is discontinuous T = 0.



3. SpinSCDFT: HK Theorem and KS
Construction

The density functional approach to the many body problem consists of two fundamental steps.
First, one realizes that the chosen set of densities contain all information of the interacting system
under consideration. Second, ones tries to reproduce the chosen set of densities of the exact
system in an auxiliary solvable (read: non-interacting) KS system. This approach assumes that
there is such a KS system (the KS potentials exist) for the interacting system under consideration.
While the existence has been proven for normal state systems [32] under certain constraints, we
shall always assume this so called v-representability in the context of this thesis. Choosing a non-
interacting KS system involves single particle xc potentials which are functionals of these densities
and need to be approximated in a practical calculation. In Section 3.1 of this Chapter we define
the exact system. Then we choose a convenient set of densities n(r),χ(r, r′),m(r) and Γ(R1..RN )
and prove the HK theorem in Section 3.2. Because the KS system is formally non-interacting,
the nuclear and the electronic degrees of freedom separate and we discuss independently the
nuclear part in Section 3.3 and the electronic part in Section 3.4. Taking the xc potentials as
given, we find the unitary transformation that diagonalizes the electronic KS system for a SC
in a magnetic field, resulting in the so called KSBdG equations. In Section 3.5 we discuss the
special cases, first if we treat a singlet collinear SC and second if we further consider the case
that SC pairs a quasi particle state with its time reversed only, which we refer to as the SDA. In
Section 3.6 we discuss the consequence of symmetries in the KS system.

3.1. Hamiltonian of the Interacting System

Consider the Hamiltonian in second quantization describing a solid state system1

Ĥ = Ĥe + Ĥn + Ûen + Ĥ∆ (3.1)

with

Ĥe = T̂ e + V̂ e + Ŵ ee − µN̂ + ĤB , (3.2)
Ĥn = T̂n + Ûnn + V̂ n , (3.3)

where

T̂ e =
∑
σ

ˆ
drψ̂†σ(r)

−~2

2me
∇2ψ̂σ(r) (3.4)

Even though the Hamiltonian will in general not be diagonal in spin, i.e. we consider the non-
collinear case, we work in the basis where ψ̂†σ(r) creates a particle at r with spin σ which means
we define the electronic field operator with respect to a collinear single particle basis. We work
in pure basis sets in many parts of the thesis, also in different contexts. Doing so has the
advantage that the coefficients carry a similar quantum number and this makes it easier to

1We define the general Hamiltonian Ĥ such, that the term −µN̂ is included.



22 3. SpinSCDFT: HK Theorem and KS Construction

introduce approximations. We use the notation2

~̂ψ†↑(r) ≡
(
ψ̂†(r ↑)

0

)
~̂ψ†↓(r) ≡

(
0

ψ̂†(r ↓)

)
(3.5)

representing the fact that we use a pure spinor basis system. Because there will almost always
be a sum over spin (as in Eq. (3.4)) we introduce

~̂ψ†(r) ≡
∑
σ

~̂ψ†σ(r) ≡
(
ψ̂†(r ↑)
ψ̂†(r ↓)

)
. (3.6)

This notation will reappear later in the Nambu notation and is chosen to clutter formulas with
indices as little as possible. In this notation the density operator is n̂(r) = ~̂ψ†(r) · ~̂ψ(r) and the
external potential operator reads

V̂ e =

ˆ
dr n̂(r)vext(r) , (3.7)

the electronic interaction operator Ŵ ee with the potential field wσσ′(r, r′) (typically the Coulomb
interaction which is independent of spin)

Ŵ ee =
∑
σσ′

ˆ
dr

ˆ
dr′ψ̂†(rσ)ψ̂†(r′σ′)wσσ′(r, r

′)ψ̂(r′σ′)ψ̂(rσ) , (3.8)

and the electron number operator is

N̂ =

ˆ
dr n̂(r) . (3.9)

The particle number operator for the nuclei is

N̂n =

ˆ
dRζ̂†(R)ζ̂(R) . (3.10)

where the operator ζ̂(R) creates the nuclear field at location R. For simplicity, we assume that
all nuclei are identical so that the nuclear kinetic energy operator is

T̂n =

ˆ
dR ζ̂†(R)

−~2

2M
∇2

Rζ̂(R) (3.11)

and the nuclear interacting (the Coulomb potential field) reads

Ûnn =
e2

4πε0

Z2

2

ˆ
dR

ˆ
dR′

ζ̂†(R)ζ̂†(R′)ζ̂(R′)ζ̂(R)

|R−R′| . (3.12)

Here Z is the nuclear charge. We assume an external potential acting on the nuclei of the form

V̂ n =

ˆ
dR1...

ˆ
dRNn ζ̂

†(R1)...ζ̂†(RNn)Wext(R1...RNn)ζ̂(RNn)...ζ̂(R1) . (3.13)

The reason why we choose this unconventional Nn-body external nuclear potential is that a
ordinary one-body potential would yield non-interacting nuclear-KS orbitals. So one chooses a
many body potential that couples the nuclei and allows the existence of collective modes also
2We define−σ is always the opposite of σ.
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in the KS system (KS phonons). The scheme is then more easily related to the standard Born-
Oppenheimer approximation.
There also appears the Coulomb interacting between the electrons and the nuclei:

Û en =
Ze2

8πε0

ˆ
dR

ˆ
dr

ζ̂†(R)n̂(r)ζ̂(R)

|R− r| . (3.14)

We assume that there is an external magnetic field acting through

ĤB =

ˆ
drm̂(r) ·Bext(r) (3.15)

where3

m̂(r) = −gsµB
~̂ψ†(r) · S · ~̂ψ(r) . (3.16)

Typically the spontaneous magnetization is described by taking the limit Bext(r)→ 0 at the end
of the derivation (after the thermodynamical limit is taken). Experimentally one always measures
a finite time so the Ergodic hypothesis is not necessarily fulfilled. In the case of symmetry
breaking as in ferromagnetism (the spin rotational symmetry is broken in a magnet), only the
regions of phase space corresponding to a finite magnetization in one given direction are important
on the time scales of the experiment. If Bext(r) was zero, identically, all microscopic states that
are connected by a simple rotation in spin space had the same weight and would equally enter
thermal averages and the magnetization has to average to zero. Here, in the mathematical
description, Bext(r) breaks the spin rotational symmetry and allows the magnetization to build
up as microscopic states favor a particular orientation in spin space. In a system that would
undergo a phase transition to a magnetic state, this breaking - however small - leads to a finite
magnetization. This is expressed by the self-consistent KS potential adopting a finite value, even
if the external field is set to zero after an initial symmetry breaking.
Finally, the external pairing Hamiltonian is defined by

Ĥ∆ =
1

2

ˆ
dr

ˆ
dr′
∑
σσ′

(
∆ext
σσ′
∗(r, r′)ψ̂(rσ)ψ̂(r′σ′) + ∆ext

σσ′(r, r
′)ψ̂†(r′σ′)ψ̂†(rσ)

)
. (3.17)

Due to the anticommutation relations, if ∆ext
σσ′(r, r

′) has a totally symmetric part it cancels in
the integral. As a consequence we need to consider only ∆ext

σσ′(r, r
′) that are antisymmetric under

particle exchange (rσ ↔ r′σ′). We rewrite the potential using the Pauli matrices and the spinors
which has the advantage of giving the potential a well defined symmetry in spin and real space.
With the definitions

∆ext
s (r, r′) =

1

2
(∆ext
↑↓ (r, r′)−∆ext

↓↑ (r, r′)) , (3.18)

∆ext
tx (r, r′) =

1

2
(∆ext
↓↓ (r, r′)−∆ext

↑↑ (r, r′)) , (3.19)

∆ext
ty (r, r′) =

1

2
(∆ext
↓↓ (r, r′) + ∆ext

↑↑ (r, r′)) , (3.20)

∆ext
tz (r, r′) =

1

2
(∆ext
↑↓ (r, r′) + ∆ext

↓↑ (r, r′)) (3.21)

and
χ̂(r, r′) = ~̂ψ(r) ·Φ∗ · ~̂ψ(r′) , ∆ext(r, r

′) =
(
∆ext
s ,∆ext

tx ,∆
ext
ty ,∆

ext
tz

)T (3.22)

3In principle, the internal energy is reduced if the magnetization and the magnetic field are parallel. We use a
“negative” magnetization because this way DFT functionals for the magnetization are consistent in the sign
convention among all densities. Note that this convention also affects the sign convention of response kernels
and higher order derivatives.
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where
Φ = (iσy,−σz, σ0, σx)T , (3.23)

the pair term becomes4

Ĥ∆ =
1

2

ˆ
dr

ˆ
dr′
(
∆ext∗(r, r′) · χ̂(r, r′) +

(
∆ext∗(r, r′) · χ̂(r, r′)

)†)
. (3.24)

Also here one takes the limit of ∆ext(r, r′) → 0 at the end of the derivation. It is important to
note that the starting point of our DFT is the system with already broken symmetries.

3.2. 1:1 Correspondence of External Potentials and Densities

In this Section, we show the first step in the scheme, commonly referred to as the Hohenberg-
Kohn theorem. We shall see that there is only one set of external potentials leading to one set
of densities

n(r) = 〈n̂(r)〉 (3.25)
χ(r, r′) = 〈χ̂(r, r′)〉 (3.26)

m(r) = 〈m̂(r)〉 (3.27)

and the nuclear density

Γ(R1..RN ) = 〈ζ̂†(R1) . . . ζ̂†(RNn)ζ̂(RNn) . . . ζ̂(R1)〉 . (3.28)

Thus, the densities implicitly contain all information because the statistical operator is a func-
tional of the external potentials and thereby a functional of the densities. The proof itself is
analogue to the proof of the Hohenberg-Kohn theorem for finite temperature by Mermin [33].
We define the grand canonical potential functional

Ω[ρ̂] = Tr
{
ρ̂(Ĥ +

1

β
ln ρ̂)

}
, (3.29)

with ρ̂ being a positive definite matrix with trace one. If we insert the equilibrium grand-
canonical-statistical operator

ρ̂0 =
e−βĤ

Tr
{
e−βĤ

} , (3.30)

this functional becomes the equilibrium grand canonical potential

Ω0 ≡ Ω[ρ̂0] = − 1

β
ln
(
Tr
{
e−βĤ

})
. (3.31)

It is shown in Ref. [33] that Ω0 is the minimum of Ω[ρ̂].

Ω[ρ̂] > Ω[ρ̂0] , ρ̂ 6= ρ̂0 (3.32)

As for the normal state HK theorem, we assume that the map from densities to external potentials
is not invertible, which means there is a set of densities that can be associated with two different
sets of external potentials and show that this results in a contradiction. Let the system of
4Here, · is used in two ways. First as the usual spin summation and second as the scalar product in 4d
singlet/triplet space, mapping to spin matrices. As the distinction is clear from the context we decide not to
clutter the notation with an additional symbol.
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unprimed external potentials be described by ρ̂0, Ĥ and Ω[ρ̂] and the primed system by ρ̂′0 Ĥ ′

and Ω′[ρ̂]. The primed Hamiltonian reads

Ĥ ′ = T̂ e + Ŵ ee + T̂n + Ûnn + Ûen + V̂ n′ + V̂ e′ − µ′ · N̂ + Ĥ ′∆ + Ĥ ′B . (3.33)

So we can express the primed in terms of the unprimed Hamiltonian

Ĥ ′ = Ĥ + ∆̂H , (3.34)

where difference term is

∆̂H =
(
V̂ n′ − V̂ n

)
+
(
Ĥ ′B − ĤB

)
+
(
V̂ e′ − V̂ e

)
−
(
µ′ + µ

)
·N̂+

(
Ĥ ′∆ − Ĥ∆

)
. (3.35)

We can evaluate Ω[ρ̂0] at the primed statistical operator and make use of the minimum principle
of Eq. (3.32). Then we use the above relation to express the result in terms of the primed grand
canonical potential.

Ω[ρ̂0] < Ω[ρ̂′0] = Tr
{
ρ̂′0(Ĥ +

1

β
ln ρ̂′0)

}
= Ω′[ρ̂′0] + Tr{ρ̂′0∆̂H} . (3.36)

On the other hand, the minimum principle is also valid for the primed system. An analogous
procedure yields

Ω′[ρ̂′0] < Ω′[ρ̂0] = Tr
{
ρ̂0(Ĥ ′ +

1

β
ln ρ̂0)

}
= Ω[ρ̂0]− Tr{ρ̂0∆̂H} . (3.37)

The assumption is that the densities are equal in both primed and unprimed systems, i. e.

n(r) = Tr
{
ρ̂0n̂(r)

}
= Tr

{
ρ̂′0n̂(r)

}
(3.38)

χ(r, r′) = Tr
{
ρ̂0χ(r, r′)

}
= Tr

{
ρ̂′0χ(r, r′)

}
(3.39)

m(r) = Tr
{
ρ̂0m̂(r)

}
= Tr

{
ρ̂′0m̂(r)

}
(3.40)

Γ(R1..RN ) = Tr
{
ρ̂0

(
ζ̂†(R1) . . . ζ̂†(RN )ζ̂(RN ) . . . ζ̂(R1)

)}
= Tr

{
ρ̂′0
(
ζ̂†(R1) . . . ζ̂†(RN )ζ̂(RN ) . . . ζ̂(R1)

)}
(3.41)

and thus
Tr{ρ̂′0∆̂H} ≡ Tr{ρ̂0∆̂H} . (3.42)

We obtain a contradiction by adding both equations (3.36) and (3.37)

Ω[ρ̂0] + Ω′[ρ̂′0] < Ω[ρ̂0] + Ω′[ρ̂′0] . (3.43)

We conclude that one set of densities is uniquely connected with one set of external potentials
so that the map is invertible.
Since the set of densities

(
n(r),χ(r, r′),m(r),Γ(R1 . . .RN )

)
uniquely determine the potentials

(vext(r),∆ext(r, r′),Bext(r),Wext(R1...RNn)) which in turn determines the statistical operator,
all observables, including the grand canonical potential functional of Eq. (3.29) can be written
as functionals of the four densities. Let us regard the external potentials, i. e. the system, as
fixed from now on. The now fixed grand canonical functional reads

Ω(vext−µ,∆
ext,Aext,Wext)

[n,χ,m,Γ] = 〈Ĥ〉 − 1

β
S [n,χ,m,Γ] (3.44)
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where the entropy is given by

S [n,χ,m,Γ] = −Tr
{
ρ̂0 [n,χ,m,Γ] ln(ρ̂0 [n,χ,m,Γ])

}
. (3.45)

Using the thermal average of the Hamiltonian we obtain

Ω(vext−µ,∆ext,Bext,Wext) [n,χ,m,Γ] =

F [n,χ,m,Γ] +

ˆ
m(r) ·Bext(r)dr

ˆ
dr
(
vext(r)− µ

)
· n(r)−

ˆ
dr

ˆ
dr′
(
∆ext∗(r, r′) · χ(r, r′) + c.c.

)
(3.46)

+

˙
dR1...dRNnΓ(R1, ...,RNn)Wext(R1, ...,RNn) , (3.47)

where we have defined

F [n,χ,m,Γ] ≡ 〈T̂ e〉+ 〈Ŵ ee〉 − 〈T̂n〉+ 〈Ûnn〉+ 〈Û en〉 − 1

β
S [n,χ,m,Γ] . (3.48)

Note that F [n,χ,m,Γ] is universal in the sense that it does not depend on any external potential,
i. e. on any specific system. The minimum principle of Eq. (3.32) guarantees

δΩ(vext−µ,∆
ext,Bext,Wext)

δn(r)
[n,χ0,m0,Γ0]

∣∣∣∣∣
n=n0

= 0 (3.49)

δΩ(vext−µ,∆
ext,Bext,Wext)

δχ(r, r′)
[n0,χ,m0,Γ0]

∣∣∣∣∣
χ=χ0

= 0 (3.50)

δΩ(vext−µ,∆
ext,Bext,Wext)

δm(r)
[n0,χ0,m,Γ0]

∣∣∣∣∣
m=m0

= 0 (3.51)

δΩ(vext−µ,∆
ext,Bext,Wext)

δΓ(R1, . . . ,RN )
[n0,χ0,m0,Γ]

∣∣∣∣∣
Γ=Γ0

= 0 (3.52)

where n0,χ0,m0 and Γ0 are the equilibrium densities of the system with the fixed external
potentials. δm(r) (δχ(r, r′)) is shorthand for the variation with respect to the 3 (4) individual
components. This is the variational principle of Spin SCDFT.
The second step in the formulation of a DFT is the assumption that the exact densities can

be calculated in an auxiliary non-interacting system. For this assumption to hold one needs for
every given set of densities a set of single particle potentials that reproduce these densities in a
non-interacting system. Now the non interacting system is chosen so that the electrons do not
interact with each other and the nuclei while the KS nuclei do interact via an effective Nn-body
potential. The Hamiltonian reads

ĤKS = Ĥe
s + Ĥn

s , (3.53)

where we have separated the Hamiltonian into an electronic Ĥe
s

Ĥe
s ≡
ˆ
dr ~̂ψ†(r) · σ0

( 1

2me
(−i~∇)2 + vs(r)− µ

)
· ~̂ψ(r)

+

ˆ
dr m̂(r) ·Bs(r)− 1

2

ˆ
dr

ˆ
dr′
(
χ̂(r, r′) ·∆∗s (r, r′) + h.c.

)
(3.54)
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and nuclear part Ĥn
s

Ĥn
s ≡
ˆ
dR Φ̂†(R)

( 1

2M
(−i~∇R)2

)
Φ̂(R) +

+

˙
dR1...dRNnΦ̂†(R1)...Φ̂†(RNn)Ws(R1, ...,RNn)Φ̂(R1)...Φ̂(RNn). (3.55)

In analogy to Eq. (3.47), the grand canonical potential for this non interacting system with
densities

(
ns(r),χs(r, r

′),ms(r),Γs(R1 . . .RNn)
)
reads

Ωs
(vs−µ,∆s,Bs,Ws)[ns,ms,χs,Γs]

= Fs[ns,ms,χs,Γs] +

ˆ
dr
(
vs(r)− µ

)
ns(r)

+

ˆ
drm(r) ·Bs(r)−

ˆ
dr

ˆ
dr′
(
∆∗s (r, r′) · χs(r, r′) + h.c.

)
+

ˆ
dR1 . . .

ˆ
dRNn Γs(R1 . . .RNn)Ws(R1 . . .RNn) (3.56)

and with the universal functional

Fs[ns,ms,χs,Γs] = 〈T̂ e〉[ns,ms,χs,Γs] + 〈Tns 〉[ns,ms,χs,Γs]−
1

β
· Ss[ns,ms,χs,Γs] (3.57)

where Ss[ns,ms,χs,Γs] is the entropy of the non interacting system and Tns [ns,ms,χs,Γs] is the
non interacting nuclear kinetic energy functional. Note that we have chosen the same temperature
in the KS system that prevails in the interacting one. Since there is no coupling between the
electrons and nuclei, the electronic and the nuclear Hamiltonian commute

[Ĥn
s , Ĥ

e
s ] = 0 (3.58)

and the equilibrium grand canonical potential takes the form

Ω(vs−µ,∆s,Bs,Ws)[ns,0,ms,0,χs,0,Γs,0] = − 1

β
ln
(
Tr
{
e−β·(Ĥ

e
s+Ĥn

s )
})

(3.59)

= Ωe
(vs−µ,∆s,Bs,Ws)[ns,0,ms,0,χs,0,Γs,0] + Ωn

(vs−µ,∆s,Bs,Ws)[ns,0,ms,0,χs,0,Γs,0] . (3.60)

This means that the Fock space basis we use to evaluate the trace will be a product of electronic
and nuclear wavefunctions. It is therefore possible to solve the electronic and nuclear Schrödinger
equation separately as in a Born-Oppenheimer approximation [34].

3.2.1. Connection to the interacting system

To construct the KS system we need an expression for the KS potentials that yield the same
densities as the given interacting system. We rewrite the grand potential and make use of the
fact that we had assumed that we can represent every set of equilibrium densities in a KS system,
i. e. we can insert the interacting densities into density functionals of the KS system

Ω(vext−µ,∆
ext,Bext,Wext)

[n,χ,m,Γ]

= Fs [n,χ,m,Γ] + Fxc [n,χ,m,Γ] + EeeH [n] + EenH
[
n,Γ

]
+

ˆ
drn(r)

(
vext(r)− µ

)
−
¨

dr dr′
(
χ̂(r, r′) ·∆ext∗(r, r′) + h.c.

)
+

ˆ
drm̂(r) ·Bext(r)

+

ˆ
dR1...

ˆ
dRNn Γ(R1...RNn)Wext(R1...RNn) (3.61)
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where we have explicitly included the Hartree potential

EeeH [n] =
e2

4πε0

ˆ
dr

ˆ
dr′

n(r)n(r′)

2|r− r′| , (3.62)

as is can be treated exactly. The electron-nuclei interaction EenH
[
n,Γ

]
reads

EenH
[
n,Γ

]
= −Ze2

∑
α

ˆ
dr

ˆ
dR1 . . .

ˆ
dRNn

n(r)Γ(R1 . . .RNn)

|r−Rα|
. (3.63)

To keep the relation exact the xc functional is introduced

Fxc [n,χ,m,Γ] ≡ F [n,χ,m,Γ]− Fs [n,χ,m,Γ]− EeeH [n,χ]− EenH
[
n,Γ

]
. (3.64)

We can apply the variational principle for the electronic density of Eq. (3.49) to our rewritten
grand canonical potential of Eq. (3.61). This yields

0 =
δ

δn (r)

(
Fxc[n,m0,χ0,Γ0] + Fs[n,m0,χ0,Γ0] + EeeH [n] +

+EenH [n,Γ0] +

ˆ
dr
(
vext(r)− µ

)
n(r)

)∣∣∣
n=n0

. (3.65)

We define, as in normal state DFT, the xc potential by

vxc [n,m,χ,Γ] (r) ≡ δFxc

δn (r)
[n,m,χ,Γ] (3.66)

and apply the functional derivative to defining equation of the non-interacting grand potential
(Eq. 3.56) resulting in

δFs[ns,ms,χs,Γs]

δns (r)

∣∣∣
ns=ns,0

=
δ

δns(r)

(
Ω(vs−µ,∆s,ms,Ws)[ns,ms,χs,Γs]

+

ˆ
dr′ns(r

′)
(
vs[ns,ms,χs,Γs](r)− µ

))∣∣∣
ns=ns,0

. (3.67)

If we now fix the external potentials of Ω(vs−µ,∆s,ms,Ws) to the ones that reproduce the interacting
densities, the HK minimum principle Eq. (3.49) makes the functional derivative of the grand
potential vanish in the equilibrium. The equilibrium densities are the same in both systems so
we conclude that

δFs
δns (r)

[ns,m0,χ0,Γ0]

∣∣∣∣∣
ns=n0

= −vs[n0,m0,χ0,Γ0] (r) + µ . (3.68)

Inserting this result in Eq. (3.65), we obtain

vs[n0,m0,χ0,Γ0] (r)=vext(r) + vxc[n0,m0,χ0,Γ0](r) +

ˆ
dr′

n0(r′)

|r− r′|

−Z
∑
α

ˆ
dR1 . . .

ˆ
dRNn

Γ0(R1, ...,RNn)

|r−Rα|
(3.69)

Deducing the form of ∆s(r, r
′) is very similar to vs(r). We use the variational principle for the

anomalous density of the interacting system Eq. (3.50), insert the rewritten grand potential and
define the xc anomalous potential

δFxc [n,m,χ,Γ]

δχ∗(r, r′)
≡ −∆xc [n,m,χ,Γ] (r, r′) . (3.70)
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The minimum principle of the non interacting system yields

δFs[n0,m0,χs,Γ0]

δχ∗s(r, r
′)

∣∣∣∣∣
χs=χ0

= ∆s[n0,m0,χ0,Γ0](r, r′) (3.71)

so that we obtain

∆s[n0,m0,χ0,Γ0](r, r′) = ∆xc[n0,m0,χ0,Γ0](r, r′) + ∆ext(r, r′) . (3.72)

The same procedure for the nuclear Kohn-Sham potential Ws(R1, ...,RNn) yields with the defi-
nition of the nuclear xc potential

δFxc [n,m,χ,Γ]

δΓ(R1, ...,RNn)
≡ Wxc [n,m,χ,Γ] (R1, ...,RNn) (3.73)

the expression for the potential of the nuclear KS equation

Ws[n0,m0,χ0,Γ0](R1, ...,RNn) = Wxc[n0,m0,χ0,Γ0](R1, ...,RNn) +

+
∑
i

ˆ
dr

Ze2n0(r)

4πε0|r−Ri|
+Wext(R1, ...,RNn) . (3.74)

The last equation will connect the KS magnetic field with the external one. Define

δFxc[n,m,χ,Γ]

δm(r)
= Bxc[n,m,χ,Γ](r) (3.75)

then with the variational principle in the KS system

0 =
δFs

δms (r)
[n0,ms,χ0,Γ0]

∣∣∣∣∣
ms=m0

+ Bs[n0,m0,χ0,Γ0] (r) , (3.76)

and the variational principle of the exact system

0 = Bext(r) +
δFs[n0,ms,χ0,Γ0]

δms (r)

∣∣∣∣
ms=m0

+
δFxc[n0,m,χ0,Γ0]

δm(r)

∣∣∣∣
m=m0

(3.77)

0 = Bext(r)−Bs[n0,m0,χ0,Γ0](r) + Bxc[n0,m0,χ0,Γ0](r) (3.78)

we thus obtain

Bs[n0,m0,χ0,Γ0](r) = Bext(r) + Bxc[n0,m0,χ0,Γ0](r) . (3.79)

The essential advantage of the KS system, if chosen in this way, is that we can find the so called
Bogoliubov-Valatin transformations in Section 3.4 to diagonalize the Hamiltonian.

3.3. The Nuclear KS System

In this Section we want to represent the nuclear KS system, described by the Hamiltonian in
Eq. (3.55), in phononic operators. In order to obtain a non-interacting reference system with
respect to which we define the single phonon operators we expand the nuclear KS potential
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Ws(R1, ...,RNn) of Eq. (3.74) in a Taylor series in displacements {u} about the set of fixed
nuclear equilibrium coordinates {R0}

Ĥn
0 =

∑
i

−~2∇2
ui

2M
+

∑
a,b=x,y,z

∑
ij

Aabij u
a
i u

b
j , (3.80)

Aabij =
Ws(R01 + ui, ...,R0Nn + uj)

∂uai ∂u
b
j

∣∣∣∣
{u}={0}

. (3.81)

In this configurationWs(R01, ...,R0Nn) is a functional of the densities n,m,χ and Γ. In practice
it can be well approximated with the Born-Oppenheimer energy surface. Following Ref. [34,
Page 108] we further note that from the translational invariance of the full problem follows first
Aabij = Aab0,j−i and second for the Fourier coefficient

Aabq =
∑
i

eiq·(R0j−R0i)Aab0,j−i (3.82)

which can be shown to be symmetric Aabq = Abaq for each q. The dynamical matrix Dab
q is

introduced that diagonalizes the harmonic potential∑
a′b′

Daa′†
q Aa

′b′
q Db′b

q = Aλqδa,b (3.83)

The diagonal form of the Hamiltonian describes a harmonic potential for collective normal modes
that may be quantized with the usual phonon operators [34]

b̂qλ =
1√

2~MΩqλ

(
MΩqλQ̂

λ
q + iP̂ λq

†)
b̂†qλ =

1√
2~MΩqλ

(
MΩqλQ̂

λ
q
† − iP̂ λq

)
(3.84)

where the normal coordinates Q̂λq and P̂ λq are

Q̂λq =
1√
V

∑
i

uλi e
iq·R0i P̂ λq = −i~ ∂

∂Q̂λq
(3.85)

and phonon frequency is given by

Ωqλ =
√
Aλq/M . (3.86)

Very importantly we note that Ωqλ = Ω−qλ because of the symmetry ∂uai ∂ubj ≡ ∂(−uai )∂(−ubj)
in

Aabij and the consequence for its Fourier coefficient Aabq . Now, similar to the electronic operators,
we realize that this b̂qλ create the many-body states of a hermitian operator

Ĥn
0 =

∑
qλ

~Ωqλ

(
b̂†λqb̂λq +

1

2

)
(3.87)

which form a complete basis. We may represent the true nuclear KS Hamiltonian Ĥn
s of Eq. (3.55)

using this operators, which results in n particle interactions for each of the coefficients of the
Taylor series of Ws. All these complicated additional interactions may be viewed as dressing
of the bare phonons. In practice phonon frequencies are computed e.g. with density functional
perturbation theory [35] and the results compare well with experiment.
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3.4. Electronic Part: The Kohn-Sham-Bogoliubov-de-Gennes
equations

The electronic KS Hamiltonian Ĥe
s is not diagonal in the electronic field since it involves terms

proportional to ∼ ψψ. Diagonalizing the SC KS system will bring it to the form

Ĥe
s = E0 +

∑
k

Ekγ̂
†
kγ̂k Ek ≥ 0 . (3.88)

where γ̂†k creates a two component vector in spin space (the Hamiltonian is not diagonal in spin
so the spin degrees of freedom are in the set {k}), E0 is the ground state energy and the Ek
are all positive.5 In order to diagonalize the Hamiltonian in Eq. (3.54) we have to allow the
combination of particles and holes to new operators that are partly both. Formally, if we view a
particle and hole as spinor components(

~̂ψσ(r)
0

)
,

(
0

~̂ψ†σ(r)

)
, (3.89)

the solution of Eq. (3.54) will not be a pure spinor. The translation into this so called Nambu
space [28] will be the next section. Usually the derivation of the Bogoliubov-de-Gennes equations
is done comparing commutators with the respective Hamiltonians [36]. The derivation we give
in the next Subsections 3.4.1 and 3.4.2 takes a different route which is more transparent in
explaining the appearing particle hole symmetry of the solutions but leads to the same results.

3.4.1. The KS Hamiltonian in the Nambu-Anderson Notation

To deal with the problem of a non-pure spinor in particle-hole space we define a notation that is
based on the one of Nambu [28] and Anderson [37]. In this Subsection our goal is to cast the KS
Hamiltonian Ĥe

s Eq. (3.54) into the new notation. We take, similar to spin space Ψ̂αµ(r), with
the notation that α = 1, means “particle” or “up” and α = −1 means “hole” or “down” in Nambu
space

Ψ̂1,↑(r) =


ψ̂(r ↑)

0
0
0

 Ψ̂1,↓(r) =


0

ψ̂(r ↓)
0
0

 Ψ̂−1,↑(r) =


0
0

ψ̂†(r ↑)
0

 Ψ̂−1,↓(r) =


0
0
0

ψ̂†(r ↓)

 .

(3.90)
That means we define this operator as a pure spinor, also in Nambu space (with respect to a non-
SC, collinear single particle system). The direct product results in a 4×4 matrix in Nambu-Spin
space (that has only one non-vanishing component)

Ψ̂αµ(r)⊗ Ψ̂†α′µ′(r
′) ≡

 δα,1δα′,1 ~̂ψµ(r)⊗ ~̂ψ†µ′(r
′) δα,1δ−α′,1 ~̂ψµ(r)⊗ ~̂ψµ′(r

′)

δ−α,1δα′,1 ~̂ψ
†
µ(r)⊗ ~̂ψ†µ′(r

′) δ−α,1δ−α′,1 ~̂ψ
†
µ(r)⊗ ~̂ψµ′(r

′)

 (3.91)

We shall often write for brevity Ψ̂(r) where the quantum numbers µ, α are omitted and all
components are filled, formally as

Ψ̂(r) ≡
∑
αµ

Ψ̂αµ(r) ≡
(
ψ̂(r ↑) ψ̂(r ↓) ψ̂†(r ↑) ψ̂†(r ↓)

)Tsn
. (3.92)

5This form can be achieved by commuting the operators H = Eiâ
†
i âi =

∑
i|Ei<0 +

∑
i|Ei≥0 Eiâ

†
i âi +∑

i|Ei<0 |Ei|âiâ
†
i and then redefining the negative energy operators as holes âi = b̂†i .
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Note that if we commute two such operators, not only does the order of the components change,
but the result is also transposed in spin and Nambu space. Therefore it is useful to define the
special commutator6

[Ψ̂(r),⊗Ψ̂†(r′)]± ≡ Ψ̂(r)⊗ Ψ̂†(r)±
(
Ψ̂(r)⊗ Ψ̂†(r′)

)Tsn (3.93)

that is equivalent to using the commutator in every individual component of the 4 × 4 matrix.
Then

[Ψ̂αµ(r),⊗Ψ̂†α′µ′(r
′)]+ = τ0σ0δ(r− r′)δαα′δµµ′ (3.94)

[Ψ̂(r),⊗Ψ̂†(r′)]+ = τ0σ0δ(r− r′) (3.95)
[Ψ̂(r),⊗Ψ̂(r′)]+ = [Ψ̂†(r),⊗Ψ̂†(r′)]+ = 0 . (3.96)

If we address individual, scalar components of the vector Ψ̂(r) we promote the quantum number
to the bracket

Ψ̂(rσα) ≡ δα,1 ~̂ψ(rσ) + δα,−1
~̂ψ†σ(rσ) . (3.97)

We can now cast the Hamiltonian Eq. (3.54) into the new notation. For the kinetic energy we
may introduce limr′→r and put ψ̂†σ(r′)ψ̂σ′(r) as 1

2

(
ψ̂†σ(r′)ψ̂σ′(r)+ψ̂†σ(r′)ψ̂σ′(r)

)
where we commute

the latter term. Dropping the trace term

1

2

∑
σ

ˆ
dr lim

r′→r
δ(r′ − r)

((
−1

2
(~∇)2 + vs(r)− µ

)
− gsµB (S)σσ ·Bs(r)

)
(3.98)

which is an infinite complex number, that is however not operator valued and thus cancels out
in every thermal average we obtain

Ĥe
s =

ˆ
dr

ˆ
dr′Ψ̂†(r)· 1

2

(((
−~∇2

2me

+ vs(r)− µ
)
σ0τz −

gs
2
µBS ·Bs(r)(τ0 + τz)

−gs
2
µBS∗ ·Bs(r)(τ0−τz)

)
δ(r− r′) + iτx=Φ ·∆s(r, r′) + iτy<Φ ·∆s(r, r′)

)
·Ψ̂(r′) (3.99)

Note that the changed order of the electronic fields implies a transposition in spin space on the
(−1,−1) component that is equivalent to using S∗.

3.4.2. The Bogoliubov-Valatin Transformations

In a similar notation, the diagonal KS Hamiltonian Eq. (3.88) becomes

Ĥe
s =

∑
k

Φ̂
†
k ·

1

2

(
Ek 0
0 −Ek

)
· Φ̂k (3.100)

with

Φ̂k,1 =

(
γ̂k(r)

0

)
Φ̂k,−1 =

(
0

γ̂†k(r)

)
Φ̂k =

(
γ̂k(r)

γ̂†k(r)

)
. (3.101)

Also here we have dropped the infinite
∑

k Ek+E0 resulting from the commutator. Note that Φ̂k

is a two, not four, component vector because the spin may not be a good quantum number in the
SC KS system. We may rotate the form in Eq. (3.99) to the form Eq. (3.100) by introducing a
unitary transformation that we parametrize generically with four complex spinor functions. This
6Tsn is a transposition in spin and Nambu space.
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connection between Ψ̂(r) and Φ̂k is known as the Bogoliubov-Valatin transformation[38, 39]. We
write it in the form

Ψ̂(r) =
∑
k

(
~uk(r) ~v∗k(r)
~vk(r) ~u∗k(r)

)
· Φ̂k Φ̂k =

ˆ
dr

(
~u∗k(r) ~v∗k(r)
~vk(r) ~uk(r)

)
· Ψ̂(r) (3.102)

Note that in the first case the matrix is 4 × 2 dimensional, and in the second 2 × 4 because of
the spinor property of the ~uk(r), ~vk(r). The requirement to be unitary reads

ˆ
dr

(
~u∗k(r) ~v∗k(r)
~vk(r) ~uk(r)

)(
~uk′(r) ~v∗k′(r)
~vk′(r) ~u∗k′(r)

)
= τ0δkk′ , (3.103)

∑
k

(
~uk(r

′) ~v∗k(r
′)

~vk(r
′) ~u∗k(r

′)

)(
~u∗k(r) ~v∗k(r)
~vk(r) ~uk(r)

)
= τ0σ0δ(r− r′) . (3.104)

In going from Eq. (3.99) to Eq. (3.100), we identify
ˆ
dr

ˆ
dr′
(
~u∗k(r) ~v∗k(r)
~vk(r) ~uk(r)

)
· H̄KS(r, r

′) ·
(
~uk′(r

′) ~v∗k′(r
′)

~vk′(r
′) ~u∗k′(r

′)

)
=

(
Ek 0
0 −Ek

)
δkk′ (3.105)

where

H̄KS(r, r
′) = δ(r− r′)

( (
−~2∇2

2me
+vs(r)−µ

)
σ0−gsµBS·Bs(r) 0

0 −
((
−~2∇2

2me
+vs(r)−µ

)
σ0−gsµBS∗·Bs(r)

))

+

(
0 Φ ·∆s(r, r′)

−
(
Φ ·∆s(r, r′)

)∗
0

)
. (3.106)

Applying the inverse Bogoliubov-Valatin transformation from the left we obtain
ˆ
dr′H̄KS(r, r

′) ·
(
~uk(r

′) ~v∗k(r
′)

~vk(r
′) ~u∗k(r

′)

)
=

(
~uk(r

′) ~v∗k(r
′)

~vk(r
′) ~u∗k(r

′)

)
·
(
Ek 0
0 −Ek

)
. (3.107)

This can be viewed as two redundant vector equations of which we usually consider the first
ˆ
dr′H̄KS(r, r

′)

(
~uk(r

′)
~vk(r

′)

)
= Ek

(
~uk(r)
~vk(r)

)
. (3.108)

These are the Kohn-Sham-Bogoliubov-de-Gennes (KSBdG) equations for a magnetic system
which generalize those of Ref. [20].

(
~u∗k(r) ~v∗k(r)

)T leads to the equivalent negative eigenvalue
−Ek which reflects the additional degrees of freedom that we have created in going to the 2× 2
Nambu formalism in particle hole space.

3.4.3. Expansion in the Normal State KS System: Choosing the Closest Basis
Possible

The KSBdG equations pose a challenging set of integro-differential equations. A convenient
simplification can be obtained by expanding this system in a set of non-SC eigenfunctions to the
Hamiltonian

Ĥe
n =

ˆ
dr ~̂ψ†(r) ·

(
−~2∇2

2me
+ vs(r)− µ

)
· ~̂ψ(r) +

ˆ
dr m̂(r) ·Bs(r) . (3.109)

This basis has the advantage that the upper left and bottom right component of H̄KS in Nambu
space is a diagonal matrix. Formally we may choose any basis. In practice we will take the KS
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orbitals available from one of the electronic structure codes using an xc potential in, say, the
LSDA. To introduce approximations at a later stage, we split the Hamiltonian Ĥe

n of Eq. (3.109)
according to Ĥe

n = Ĥe0
c + ĤeT

nc where Ĥe0
c is a collinear zero temperature KS system and the

eigenfunctions {~ϕkσ} are pure spinors7

Ĥe0
c |~ϕkσ〉 = εkσ|~ϕkσ〉 ~ϕk↑(r) = 〈r|~ϕi↑〉 =

(
ϕk(r ↑)

0

)
~ϕk↓(r) =

(
0

ϕk(r ↓)

)
. (3.110)

In this complete set {~ϕiσ(r)}, we expand the spinor coefficients

~uk(r) ≡
∑
jσ

ujσk ~ϕjσ(r) . (3.111)

~vk(r) ≡
∑
jσ

vjσk ~ϕ∗jσ(r) (3.112)

This special choice of basis {~ϕiσ(r)} will simplify the xc potential approximation. The eigenvalue
εkσ is measured with respect to the Fermi level. The remaining part of Ĥe

n is formally

ĤeT
nc = vs[T ](r)− vLSDA

s [T = 0](r) + Bs[T ](r)−BLSDA
s [T = 0](r) . (3.113)

Further we expand the pair potential in the new basis

Φ ·∆s(r, r′) =
∑
iσ,jσ′

∆sσσ′
ij ~ϕiσ(r)⊗ ~ϕjσ′(r

′) (3.114)

∆sσσ′
ij =

ˆ
dr

ˆ
dr′~ϕ∗iσ(r) ·

(
Φ ·∆s(r, r

′)
)
· ~ϕ∗jσ′(r′) . (3.115)

Note that expansion coefficient matrix ∆sσσ′
ij behaves in a defined way to index swapping, due

to the symmetries of the underlying pair potential ∆s(r′, r), namely

∆sσσ′
ij = −∆sσ′σ

ji (3.116)

Note also that −
(
Φ ·∆s(r, r′)

)∗ results in the adjoint matrix ∆s†σσ′
ij . We further introduce the

temperature - and non-collinear matrix elements Rσσ′ij

Rσσ′ij = 〈~ϕiσ|ĤeT
nc |~ϕjσ′〉 (3.117)

The NS KS orbitals are orthonormal so we act with
´
dr~ϕ∗lσ(r) · . . . in the first row and with´

dr~ϕlσ(r) · . . . in the second row of Eq. (3.108). Together with the expansion of the ~uk(r) and
~vk(r) of Eqs. (3.111) and (3.112) we obtain the KSBdG equations in KS space8

Ek

(
uiσk
viσk

)
=
∑
jσ′

(
(εiσδijδσσ′ +Rσσ

′
ij ) ∆sσσ′

ij

∆s†σσ′
ij −(εiσδijδσσ′ +Rσ

′σ
ji )

)(
ujσ

′

k

vjσ
′

k

)
. (3.118)

We distinguish, as in the real space analog ∆s(r, r′) of the Eqs. (3.18) to (3.21), the singlet/triplet
parts of the pair potential expansion coefficient matrix

∆s
sij = 1

2

(
∆s
↑↓
ij −∆s

↓↑
ij

)
∆s
txij = 1

2

(
∆s
↓↓
ij −∆s

↑↑
ij

) ∆s
tyij

= 1
2

(
∆s
↓↓
ij + ∆s

↑↑
ij

)
∆s
tzij = 1

2

(
∆s
↑↓
ij + ∆s

↓↑
ij

) (3.119)

7The index k = (k, n) summarizes all quantum numbers except spin, namely Bloch vector k and band index n.
8We call an entity represented in KS space when we refer to the matrix elements in the basis {~ϕiσ(r)}.
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that are also condensed into the 4 component vector ∆s. This has the distinct advantage that we
may always use the defined behavior under transposition ∆s

sij = ∆s
sji and ∆s

tx|y|zij
= −∆s

tx|y|zji
.

Defining the vector9

gk = ( u1↑
k u1↓

k u2↑
k . . . | v1↑

k v1↓
k v2↑

k . . . )T (3.120)

and the matrix
Eσσ′ij = (εiσδijδσσ′ +Rσσ

′
ij ) (3.121)

we obtain the compact equation(
E Φ ·∆s

(Φ ·∆s)† −ET
)
gk = Ekgk . (3.122)

In practice the unitary transformation Eq. (3.102) is not known beforehand but has to be deter-
mined from the above equation (or its real space analog). Consider the case that there are N
degrees of freedom in the original KS system. If we thus solve the above linear 2N × 2N matrix
equation on a computer we have to construct the uiσk , v

iσ
k from the 2N solutions. Note that by

definition gk corresponds to the positive eigenvalue Ek solutions. The negative ones, again by
definition, are gck = ( v1↑

k

∗
v1↓
k

∗
v2↑
k

∗
. . . | u1↑

k

∗
u1↓
k

∗
u2↑
k

∗
. . . )T . (That gck indeed give

the negative eigenvalues is clear from Eq. (3.107).) Thus, we extract the N u and v always from
the positive branch solution gk (there are N) and the procedure is unique.

3.4.4. The Electronic Densities

In this Subsection we want to express the electronic densities n(r),m(r) and χ(r, r′) in terms of
the solutions to the KSBdG equation (3.118) gk. The definition of the densities Eqs. (3.25) to
(3.27) reads in Nambu space

n(r) =
1

2
〈Ψ̂†(r) · σ0(τ0 + τz) · Ψ̂(r)〉 (3.123)

m(r) =
1

2
〈Ψ̂†(r) · S(τ0 + τz) · Ψ̂(r)〉 (3.124)

χ(r, r′) =
1

2
〈Ψ̂†(r) ·Φ∗(τx − iτy) · Ψ̂(r′)〉 . (3.125)

Insertion of the Bogoliubov-Valatin transformations of Eq. (3.102) and using 〈γ̂†kγ̂k〉 = fβ
(
Ek
)

and 〈γ̂kγ̂†k〉 = 1− fβ
(
Ek
)

= fβ
(
−Ek

)
yields

n(r) =
∑
k

(
~uk(r) · σ0 · ~u∗k(r)fβ(Ek) + ~vk(r) · σ0 · ~v∗k(r)fβ(−Ek)

)
(3.126)

m(r) =
∑
k

(
~uk(r) · S · ~u∗k(r)fβ(Ek) + ~vk(r) · S · ~v∗k(r)fβ(−Ek)

)
(3.127)

χ(r, r′) =
∑
k

(
~v∗k(r) ·Φ · ~uk(r′)f(Ek) + ~uk(r) ·Φ∗ · ~v∗k(r′)f(−Ek)

)
. (3.128)

The expansion coefficients of the densities in the basis of the pure spinor NS KS orbitals {~ϕiσ(r)}
are spin matrices:

n(r) =
∑
iµjµ′

~ϕ∗iµ(r) · nµµ′ij · ~ϕjµ′(r) , (3.129)

9The superscript 1, 2, . . . means we have ordered the Bloch vectors and bands in some way.
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where nµµ
′

ij is a spin matrix for every combination (µµ′). This is an artifact of the pure spinor
notation, but note that component wise this is equivalent to

(nij)µµ′ = δµµ′
∑
k

(
uiµk
∗
ujµ

′

k fβ(Ek) + viµk v
jµ′

k

∗
fβ(−Ek)

)
(3.130)

(mij)µµ′ = Sµµ′
∑
k

(
uiµk
∗
ujµ

′

k fβ(Ek) + viµk v
jµ′

k

∗
fβ(−Ek)

)
(3.131)

(χij)µµ′ = Φ∗µµ′
∑
k

(
ujµ

′

k viµk
∗
fβ(Ek) + uiµk v

jµ′

k

∗
fβ(−Ek)

)
(3.132)

in terms of the scalar components ϕj(rµ). Note also that χ(r, r′) =
∑

ij ~ϕiµ(r) · χµµ′ij · ~ϕjµ′(r′)
without the conjugation of one basis vector.
SpinSCDFT allows to compute the exact number of condensed electrons. Because χ(r, r′) is

the wavefunction of electron pairs that are condensed in the SC state [40, 25] the related density
and number of condensed electrons read

nSC(r) =

ˆ
dr′|χ(r, r′)|2 (3.133)

NSC =

ˆ
drnSC(r) . (3.134)

We want to stress here that we have performed a basis expansion. No approximations have been
introduced so far and the solutions gk reproduce the exact densities of the interacting system.

3.5. Approximations to the KS System
In this Section we discuss implications if the KS potentials matrix elements in the NS KS basis
only couple certain states. First, in Subsection 3.5.1, we drop triplet symmetric parts of the pair
potential and find that spin becomes a good quantum number in the SC KS system. Second, in
Subsection 3.5.2, we consider only diagonal parts (∝ δkk′) on the Nambu-diagonal (∝ δαα′) and
only anti-diagonal parts (∝ δk,−k′) of the pair potential on the Nambu off diagonal (∝ δα,−α′).
This assumption makes the solution of the SC KS system (in terms of the normal state KS system)
trivial and we obtain a potential functional theory. This amounts to neglecting hybridization due
to SC except for particle states k = (k, n) with the corresponding hole state −k ≡ (−k, n). The
latter type of approximation is in the context of SCDFT usually referred to as the Decoupling
Approximation [21, 22].

3.5.1. No Triplet Pairing, Collinear Nambu-Diagonal

There are very few examples where triplet SC appears in nature, all sharing a very low critical
temperature [41, 42]. Thus, in most situations we can rely on a simplified theory that assumes
the triplet pair potentials to be zero

∆s =
(

∆s
s 0 0 0

)
, (3.135)

which implies ∆s
sij = ∆s↑↓

ij = −∆s↓↑
ij and ∆s�

ij = ∆s�
ij = 0. The assumption of collinearity means

Eσσ′ij ≈ εiσδijδσσ′ +Rσσij δσσ′ and we find the KSBdG Eq. (3.122) in the form

Ek



u1↑
k

u1↓
k
...
v1↑
k

v1↓
k
...


=
∑
j



E↑1ju
j↑
k + ∆s

s1jv
j↓
k

E↓1ju
j↓
k −∆s

s1jv
j↑
k

...
−ET↑1j v

j↑
k + ∆s

s
†
1ju

j↓
k

−ET↓1j v
j↓
k −∆s

s
†
1ju

j↑
k

...


(3.136)
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where we see that ui↑k couples with vi↓k but not with ui↓k . Utilizing this fact we permute the above
equations to the form

g̃k = ( u1↑
k u2↑

k . . . v1↓
k . . . | u1↓

k u2↓
k . . . v1↑

k . . . )T (3.137)

and obtain

Ekg̃k =


E↑ ∆s

s 0 0

∆s
s
† −ET↓ 0 0

0 0 E↓ −∆s
s

0 0 −∆s
s
† −ET↑

 g̃k . (3.138)

The spectrum of this block diagonal structure will separate into two kind of eigenfunctions to
each individual block

gk↑ = ( u1↑
k u2↑

k . . . |v1↓
k . . .

∣∣∣ 0 0 . . . | 0 . . . )T (3.139)

gk↓ = ( 0 0 . . . | 0 . . .
∣∣∣ u1↓

k u2↓
k . . . |v1↑

k . . . )T . (3.140)

We see that the quantum numbers of the SC KS system split into spin channels k, k′ → k, σ
solving individual, reduced equations

Ekσgkσ =

( Eσ sign(σ)∆s
s

sign(σ)∆s
s
† −ET−σ

)
gkσ (3.141)

From the separate solutions gkσ of the Eqs. (3.139) and (3.140) we find that in the singlet/collinear
case uiµkσ ∝ δµσ and viµkσ ∝ δµ,−σ. We introduce a single spin notation

vik−σ ≡ vi−σkσ (3.142)
uikσ ≡ uiσkσ . (3.143)

Keep in mind that the spin σ in the short hand notation of u and v refers to the NS KS
wavefunction basis {~ϕiσ(r)} . In the case of vikσ the index corresponds to the spin-opposite
eigenvalue Ek,−σ and eigenvector gk,−σ!
We want to find the corresponding hole state gckσ, i.e. the state with the opposite energy
−Ekσ10. We define

gckσ = ( v1
k−σ
∗

v2
k−σ
∗

. . . | u1
kσ
∗

. . . )T (3.144)

and it is easily shown similar to the hole state for Eq. (3.122) that gck−σ solves

− Ek−σgck−σ =

( Eσ sign(σ)∆s
s

sign(σ)∆s
s
† −ET−σ

)
gck−σ (3.145)

We observe the fact that particle and hole are of different spin channels which means that the
negative solution to a positive Ekσ stems from the spin inverted KSBdG equation. This is
somewhat intuitive because one expects a hole to be the time-reversed, negative energy particle
and, being an angular momentum operator, the spin is inverted under time inversion.

3.5.2. Spin Decoupling Approximation

Anderson extended the BCS model of SC to the “dirty limit” [43] essentially coupling a given
single particle state with its time reversed. Nearly all microscopic theories on SC are build on
this idea: Apart form the spin degenerate SCDFT [21] also the Eliashberg theory on SC [44].

10Many sensible definitions of the “hole” state exist. For example instead of positive excitation states one may
just as well use the (weakly perturbed) electronic bands from a normal state calculation as particles and define
the reflection at the Fermi energy as holes. The individual definitions differ by a ground state energy which
cancels in any thermal average.
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We introduce a similar approximation in this context assuming the potential matrix elements
Eq. (3.115) to be

∆s
sij = ∆s

si,−jδi,−j (3.146)

and in addition that the basis functions remain essentially unchanged in the SC:

Eσij ≈ (εiσ +Rσσii )δijδσσ′ . (3.147)

We thus assume that the NS KS basis {~ϕiσ(r)} describes the true quasi particle spectrum of the
material without SC and that it is enough to consider how these states are paired with their
time reversed to describe the SC phase. These constrains will provide a huge simplification of
the theory since we may solve the KSBdG equations analytically. Choosing ∆s

si,−jδi−j instead
of a diagonal matrix means we keep the matrix elements that correspond to the states ~ϕ∗iσ(r)
and ~ϕ∗−j−σ(r). In the spin degenerate limit this matches earlier work [21, 22] and leads to a
strict momentum conservation at vertices in the diagrammatic derivation of xc potentials. Most
importantly we will see later in Sec. 3.6 that for a system that does not depend on the absolute
position in a lattice, this approximation ∆s

si,−jδi,−j is exact for the Bloch vectors. A problem
is that, if up- and down spin potential differ significantly it might be difficult to identify the
“correct” states to pair. In a ferro magnet for example ~ϕnk↑(r) and ~ϕ∗n′,−k↓(r) are not uniquely
related by a time reversal operation, because the band quantum index remains undefined. In
fact, acting with a time reversal operator on ~ϕnk↑(r) in general many different n′ of ~ϕ∗n′,−k↓(r)
will overlap with the result. Thus inherent to the SDA is the assumption that up- and down
channels differ little.
In approximating Eσij we may also keep diagonal corrections Rσσii . These are omitted from now
on but can be easily reconstructed.
Let us split the set of k = (k, n) in two, where the one half we refer to as “negative”. For

definiteness let this be the second half of N orbitals with the ordering used for gkσ

gkσ =
(
u1
kσ . . . u

N/2
kσ u−1

kσ . . . u
−N/2
kσ | v1

k−σ . . . v
N/2
k−σ v−1

k−σ . . . v
−N/2
k−σ

)T
(3.148)

In this notation within the SDA the matrix of Eq. (3.141) has the form

ε1↑ 0 0 . . . 0 . . . ∆s
s1,−1 0

0
. . .

...
. . .

...
. . . 0

. . .
0 . . . ε−1↑ 0 ∆s

s−1,1 0 0 . . .
...

. . . 0
. . . 0

. . .
...

. . .
0 . . . ∆s

s
∗
−1,1 0 −ε1↓ 0 0 . . .

...
. . . 0

. . . 0
. . .

...
. . .

∆s
s
∗
1,−1 0 0 . . . 0 . . . −ε−1↓ 0

0
. . .

...
. . .

...
. . . 0

. . .


(3.149)

Pivoting, we can reduce this to a Block diagonal form (Starting with the 3
2N + 1 row/column

that we pivot to 2 and so on)

ε1↑ ∆s
s1,−1 0

∆s
s
∗
1,−1 −ε−1↓ 0

0 0
. . . 0 0 0
0 ε−1↑ ∆s

s−1,1 0

0 ∆s
s
∗
−1,1 −ε1↓ 0

0 0 0
. . .


(3.150)
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Due to the block diagonal form the eigenvectors are

{gkσ =
(
. . . 0 ukkσv

−k
k−σ 0 . . .

)T
} (3.151)

where k labels again all, “positive” and “negative” indices. Each of the independent problems is
given by the 2× 2 matrix equation

Ekσ

(
ukkσ
v−kk−σ

)
=

(
εkσ sign(σ)∆s

sk−k
sign(σ)∆s

s
∗
k−k −ε−k−σ

)(
ukkσ
v−kk−σ

)
(3.152)

where gckσ =
(
. . . 0 v−kk−σ

∗
ukkσ
∗

0 . . .
)T

solves the above equation with −σ with the

eigenvalue−Ekσ. Note here that in terms of uikσ and v
i
kσ this approximation requires all expansion

coefficients of normal state wavefunctions to be zero, except the one with the same band and
Bloch vector quantum numbers

uikσ = ukkσδik (3.153)
vikσ = v−kkσ δi,−k . (3.154)

Recalling the discussion at the beginning of this Subsection, we see how the two conditions
Eqs. (3.146) and (3.147) for the pair potential and KS eigenvalues, respectively only allow for
hybridization of a particle with its time reversed hole wavefunction. Because of the simple form
of the KSBdG equations we may compute the solutions analytically. Similar to a numerical
solution the problem appears that we have to construct the ukkσ, v

−k
k−σ from the eigenvectors. By

definition the positive energy eigenvectors contain ukkσ, v
−k
k−σ in the form gkµ ∼ (ukkµ, v

−k
k−µ), while

the negative energy eigenvectors in the form gckµ ∼ (v−k∗kµ uk∗k−µ). In the analytic solution it is
not known which eigenvalue is positive or negative. From the high energy limit εkµ + ε−k−µ �
εkµ − ε−k−µ we take the name ± for the branches. The eigenvalues to Eq. (3.152) are

E−kµ =
εkµ − ε−k−µ

2
−
√(εkµ + ε−k−µ

2

)2
+ |∆s

sk,−k|2 (3.155)

E+
kµ =

εkµ − ε−k−µ
2

+

√(εkµ + ε−k−µ
2

)2
+ |∆s

sk,−k|2 (3.156)

and the non-normalized eigenvectors can be written as

g̃−kµ =

(
ε−k−µ+E−kµ

sign(µ)∆s
s
∗
k,−k

1

)
g̃+
kµ =

(
ε−k−µ+E+

kµ

sign(µ)∆s
s
∗
k,−k

1

)
short: g̃αkµ =

(
ε−k−µ+Eαkµ

sign(µ)∆s
s
∗
k,−k

1

)
(3.157)

We have 4 solutions that are related to each other in energy 11

E−kµ = εkµ − ε−k−µ − E+
kµ (3.158)

E−−k−µ = −E+
kµ (3.159)

E+
kµ = εkµ − ε−k−µ − E−kµ (3.160)

E+
−k−µ = −E−kµ (3.161)

The situation is sketched in Fig. 3.1 . In the spin degenerate limit E+
kµ = E+

−k−µ = −E−kµ =

−E−−k−µ ≥ 0, thus here it is clear that ukkσv
−k
k−σ can be simply taken from the (+) solution. In

the present situation the condition has to be explicitly enforced with a θ(Eαkµ), α = ±. This

11from now on we will use the short hand notation ∆s
sk ≡ ∆s

sk,−k
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Figure 3.1.: Sketch of the Bogoliubov eigenvalues E±kµ for a free electron gas with a splitting
εkσ = −(~k)2/(2me) + sign(σ)µBB0. We choose a constant ∆s

sk > µBB0 in a) and ∆s
sk = 0 in b).

We plot the + Bogoliubov branch in red and orange for↑ and ↓ and the - branch in light blue
and dark blue for ↑ and ↓, respectively. We indicate the εkσ in a) as thin dashed lines. In a), the
+ branches are strictly larger than the Fermi Energy Ef and thus constitute the SC KS particle
excitations. On the other hand for ∆s

sk < µBB0 as in b), the + and − branch partly swap their
order. When E−k↑ > Ef the SC KS particle excitations are from the − branch also.

means if a formula requires the coefficients ukkσ or v−kk−σ we have to consider both possibilities
from the normalized g±kµ = g̃±kµ/|g̃±kµ| that is

gαkµ = (ukαkµ, v
−kα
k−µ)T (3.162)

and drop the negative part with θ(Eαkµ). We will soon see an example when we discuss the form
of the Bogoliubov transformation in the SDA (Eq. (3.166)).
As noted, because the SDA allows to solve the KSBdG system analytically, we can express all

KS wavefunction, i.e. gk in terms of the potential ∆s
s matrix elements. Thus the theory becomes a

potential functional theory. Several relation among the eigenvalues and single electron eigenvalues
will prove useful in derivations. We give them in the Appendix B. Using those relation we find

|gαkµ| =
√
|Eαkµ + Eα−k−µ|
|Eαkµ − εkµ|

(3.163)

and

v−kαk−µ =

√√√√ |Eαkµ − εkµ|
|E+

kµ + E+
−k−µ|

(3.164)

while passing we note that this equals vk−α−kµ . Further we see

ukαkµ = sign(α)sign(µ)
∆s
sk

|∆s
sk|

√
|ε−k−µ + Eαkµ|
|Eαkµ + Eα−k−µ|

(3.165)

which is equal to u−k−α−k−µ. We note a problem with the Bogoliubov-Valatin transformation Eq.
(3.102) that read in the context of the SDA

Ψ̂(r) =
∑
kσ,α


ukαk↑ θ(E

α
k↑)ϕk(r ↑)δσ↑ ukαk↑ θ(−Eαk↑)ϕk(r ↑)δσ↑

ukαk↓ θ(E
α
k↓)ϕk(r ↓)δσ↓ ukαk↓ θ(−Eαk↓)ϕk(r ↓)δσ↓

v−kαk↑ θ(Eαk↓)ϕ
∗
−k(r ↑)δ−σ,↑ v−kαk↑ θ(−Eαk↓)ϕ∗−k(r ↑)δ−σ,↑

v−kαk↓ θ(Eαk↑)ϕ
∗
−k(r ↓)δ−σ,↓ v−kαk↓ θ(−Eαk↑)ϕ∗−k(r ↓)δ−σ,↓

 · Φ̂kσ . (3.166)
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Because the spin is a good quantum number in the SC KS system it is more intuitive to promote
Φ̂k to a 4 component Nambu and spin vector similar to Ψ̂. This leads to a 4 × 4 Bogoliubov
transformation in Nambu and spin space , that we write as12

Ψ̂(r) =
∑
kα


ukαk↑ θ(E

α
k↑)ϕk(r ↑) 0 ukαk↑ θ(−Eαk↑)ϕk(r ↑) 0

0 ukαk↓ θ(E
α
k↓)ϕk(r ↓) 0 ukαk↓ θ(−Eαk↓)ϕk(r ↓)

0 v−kαk↑ θ(Eαk↓)ϕ
∗
−k(r ↑) 0 v−kαk↑ θ(−Eαk↓)ϕ∗−k(r ↑)

v−kαk↓ θ(Eαk↑)ϕ
∗
−k(r ↓) 0 v−kαk↓ θ(−Eαk↑)ϕ∗−k(r ↓) 0

·Φ̂k .

(3.167)

Note that in the example of Fig. (3.1) (right) for |∆s
sk| <

εkµ−ε−k−µ
2 in a certain range in k (the

red and light blue lines in the range of k in the middle of the plot) only states with E±k↑ are
positive while all E±k↓ are negative. We observe that in this case the Bogoliubov transformations
Eq. (3.102) are singular and thus not unitary because none of the α branches to a given spin is
positive. Thus, Ψ̂(r) does not depend on, e.g. Φ̂k(↑). Ultimately this is a consequence of our
initial requirement that all Ek,σ of the SC KS system Eq. (3.88) are positive which cannot be met
for a given spin channel and set of quantum numbers k, σ in this example. We may overcome
this problem only by relaxing the condition Ek,σ ≥ 0 of the SC KS system Eq. (3.88). If we,
for example, had chosen E+

kσ as excitations of the SC KS system in Eq. (3.88) the Bogoliubov
transformation remains unitary. On the other hand we loose the interpretation of the ground
state having only positive energy excitations. This problem was realized before in the context of
BCS theory, see for example the discussion in Ref. [29].
Formally, we arrive at the same equations if we always choose the E+

kσ as excitations, indepen-
dent on the sign of E+

kσ. We have to accept that this region E+
kσ < 0 is equivalent to excitations

on the SC ground state that reduce the energy. At the price of redefining the ground state en-
ergy, with the rewriting −|Ek|γ̂†kγ̂k ≡ −|Ek|+ |Ek|ˆ̃γ

†
k
ˆ̃γk with ˆ̃γk = γ̂†k we can go to a hole picture

where the problem does not appear. The ground state will correspond to the minimal energy
solutions, thus all γ̂k states with negative energies will be occupied. Note that the γ̂k are the
Bogoliubov transformed electron field so we interpret this negative Ek region as to be occupied
by normal electrons with all pairs broken. As is clear from the independence on the ground state
energy in thermal expectation values in statistical physics observables are independent on our
interpretation what to use as the ground state.
We want to close this Section with a note about the FFLO phase. The key to obtain a FFLO

solution is to allow finite momentum pairing but it is not correct to simply interpret the Bloch
vector as the momentum of the electron state. In fact we will see in Sec. 3.6.1 that if the pair
potential is independent on the absolute position in the lattice its matrix elements are diagonal
in the Bloch vector. By analogy with the free electron gas in a periodic lattice we see that
the finite momentum pairing will translate into off-diagonal band pairing. Thus excluding this
possibility means already at this step that we exclude the FFLO state solution.

3.6. Symmetries of the SC KS System

In this Section we give a discussion of the implication of certain very general symmetries, namely
an independence of the pair potential on the absolute position in the lattice in Subsection 3.6.1
and a type of gauge symmetry in Subsection 3.6.2.

12We choose the arbitrary ordering of the matrix coefficents to (↑, ↓, ↑, ↓) for the spin of the NS KS basis as rows
and (↑, ↓, ↑, ↓) for the columns in the SC KS system.
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3.6.1. Translational Symmetry

In this Subsection we want to clarify the effect of assumed translational invariance of the order
parameter and the pair potential. We discuss only the pair potential because the discussion for
χ is the same. Now

∆s(r + Ti, r
′ + Ti) = ∆s(r, r′) (3.168)

where Ti is a lattice vector, so that the potential is independent on the absolute position in the
lattice. As we intend to solve the problem in the basis of Bloch KS orbitals we need to deduce
the consequences of this symmetry on matrix elements. These are, omitting the spin label in
this subsection13

∆s
nkn′k′ =

ˆ
dr

ˆ
dr′~ϕnk(r) ·

(
Φ ·∆s(r, r′)

)
· ~ϕn′k′(r′) (3.169)

=
∑
ij

ˆ
dr̄

ˆ
dr̄′~ϕnk(r̄ + Ti)·

(
Φ ·∆s(r̄ + Ti, r̄

′ + Tj)
)
·~ϕn′k′(r̄′ + Tj) . (3.170)

We reorder the sum in a way that lattice vectors Tj are fixed and then all Ti → Ti + Tj are
summed, we obtain together with (3.168)

∆s
nkn′k′ =

∑
i

ˆ
dr̄

ˆ
dr̄′~φnk(r̄) ·

(
Φ ·∆s(r̄ + Ti, r̄

′)
)
· ~φn′k(r̄′)eik·Tiδk′,−k . (3.171)

Here we have used that
∑

j e
iTj ·(k′+k) = Nqδk′,−k and ~φnk as the periodic part of the KS Bloch

function. This means that, in fact, ∆s
ij is for many cases anti diagonal in the Bloch vector part

(it pairs k with −k).

3.6.2. Gauge Invariance of the KS Hamiltonian

We inferred the KSBdG equations from the condition that the Hamiltonian is diagonal in the
new fields Φ̂k (resulting in Eq. (3.105)). In the basis of NS KS orbitals of Section 3.4.3 we
can equivalently state the condition for the diagonality of the Nambu KS Hamiltonian H̄KS

Eq. (3.105) as

Ekτzδkk′ =
∑
ij

( gk gck )†i

(
E Φ ·∆s

(Φ ·∆s)† −ET
)
ij

( gk′ gck′ )j . (3.172)

The left hand side is ∼ τzδkk′ and this condition is, in fact, independent on a rotation about the
τz axis in Nambu space [28, 37]. Such a rotation with the angle ξk ∈ R is generated by τz in the
following way: Because of τ2n

z = τ0 and τiτj = δij + i
∑

k εijkτk

e−iτz
ξk
2 = τ0 cos(ξk/2)− iτz sin(ξk/2) (3.173)

follows

e−iτz
ξk
2 τzeiτz

ξk
2 = τz (3.174)

e−iτz
ξk
2 τyeiτz

ξk
2 = τy cos(ξk)− τx sin(ξk) (3.175)

e−iτz
ξk
2 τxeiτz

ξk
2 = τx cos(ξk) + τy sin(ξk) . (3.176)

13r̄ and r̄′ are defined to be within the first unit cell.
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Now the rotated Eq. (3.172) takes the form

Ek(τz)
′δkk′ ≡ Ekτzδkk′ =

∑
ij

( gk gck )′†i

(
E Φ ·∆s

(Φ ·∆s)† −ET
)′
ij

( gk′ gck′ )′j(3.177)

where here the prime on Ō′kk′ indicates that we have a rotated matrix according to Ō′kk′ ≡
e−iτz

ξk
2 Ōkk′eiτz

ξk′
2 . We may now use the primed unitary transformation ( gk′ gck′ )′j to construct

Φ̂
′
k but as can be seen from the scalar form of the KS Hamiltonian Eq. (3.100)

Ĥe′
s ≡ Ĥe

s (3.178)

and thermal averages of operators do not depend on the choice of ξk. Thus we say the rotation
by ξk is a gauge transformation since measurable quantities do not depend on it. We may choose
it in any way that is convenient. This becomes of practical relevance if we consider the situation
in the SDA with the analog of Eq. (3.172) being(

εkµ sign(µ)∆s
sk

sign(µ)∆s
s
∗
k −ε−k−µ

)
=

εkµ − ε−k−µ
2

τ0 +
εkµ + ε−k−µ

2
τz

−sign(µ)=∆s
skτy + sign(µ)<∆s

skτx . (3.179)

Choosing

ξk = arctan
(=∆s

sk

<∆s
sk

)
(3.180)

after a little algebra we arrive at(
εkµ sign(µ)∆s

sk

sign(µ)∆s
s
∗
k −ε−k−µ

)′
=

(
εkµ sign(µ)∆̃s

sk

sign(µ)∆̃s
sk −ε−k−µ

)
(3.181)

with ∆̃s
sk = sign(<∆s

sk)|∆s
sk| ∈ R. Thus our general complex decoupled pair potential is gauge

equivalent to a purely real one. It is important to understand when this cannot be done: If ∆s
s

is non-diagonal the k−local rotation angle does not have enough freedom to make either the
hermitian or antihermitian part of the matrix ∆s

s vanish.

Summary

In this Chapter we have extended the HK Theorem of SCDFT [20] to include apart from the
normal density n(r), the SC order parameter χ(r, r′) and the nuclear N -body density Γ(R1..RN )
also the magnetic density m(r). We have introduced a KS system of non-interacting electrons
that are decoupled from the nuclei but reproduces the interacting densities exactly. We have
written the electronic KS Hamiltonian in a 2 × 2 Nambu-Anderson notation where the first
component annihilates the electronic field and the second component creates it. The condition
that the electronic KS system is diagonal leads to the KSBdG equations that constitute unitary
transformations which mix creation and annihilation operators. Then, we have expanded the
system in normal state, zero temperature KS orbitals because we expect these to be reasonably
close to the quasi particle spectrum. In the most important approximation, the SDA, we only
allow the mixing of a given KS orbital with its time reversed. In this case the only non-vanishing
pair potential matrix elements in that basis can be chosen real by gauge symmetry.



4. Interaction Matrix Elements

Usually in the context of a DFT the interactions are incorporated via an xc potential that depends
on the densities. For example the correlation part of the LDA includes a parametrization for
the local density at a point r. Our plan is to include collective interactions such as the electron
phonon interaction into the SpinSCDFT functional that are not easily written as a density
functional in the spirit of an LDA.

We intend to use diagrammatic perturbation theory starting from the KS as a formally non-
interacting system which results in an equation for the xc potential for SpinSCDFT in terms
of SE contributions. See Fig. 1.1 for an overview of the steps necessary. In this Chapter we
introduce the interactions as they will appear in the SE contributions. As we did earlier in
Chapter 3 we represent all entities in the basis of NS KS orbitals {~ϕiσ(r)}. We briefly discuss
the electron phonon matrix elements in Sec. 4.1 and the effective Coulomb matrix elements in
Sec 4.2.

4.1. Electron Phonon Matrix Elements

In Sec. 3.3 we have introduced the bare nuclear KS system as the system with only the second
order variation of the xc potential with respect to atomic displacements (the first order is zero),
resulting in a system of well defined bare KS phonons b̂qλ. We come back to this point in Section
5.1 where we define the (bare) phononic propagator.

The standard way to calculate the electron-phonon coupling is to adopt a heuristic picture
to consider the coupling as given by the variation in the potential δvscf (rσ)

δuqλ
in the KS system

that is caused by the displacements from equilibrium of a certain mode uq,λ[35]. The modes are
computed using density functional perturbation theory [35]. This “scattering potential” creates
overlap among the KS states which we take in the following as the electron-phonon matrix
elements

gqλkk′σ =

ˆ
dr
δvscf (rσ)

δuqλ
ϕ∗k(rσ)ϕk′(rσ) . (4.1)

vscf (rσ) is the full single particle potential in the KS system, i.e. we do not distinguish the
magnetic part explicitly. In the case of non-collinear magnetism vscf (r) may even be a spin
matrix. We exclude this possibility here, as it involves additional summations in the functional
construction, but it is straight forward to include. Explicit calculation of the object gqλkk′σ, for
example in Ref. [35] shows that it conserves Bloch momentum gqλkk′σ ≡ gλnk,n′k+qσδk′,k+q. This is
in line with the usual momentum conservation at a coupling vertex in diagrammatic perturbation
theory of Sec. 5.2. The deeper reason for this conservation law is the underlying (lattice periodic)
translational symmetry.
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4.2. Electronic Screening and Effective Interaction

The electrons interact with each other through the instantaneous Coulomb potential:1

V Coul(r, r′) =
1

4πε0

1

|r− r′| . (4.2)

which on the other hand is heavily screened in a solid, especially in a metal. In fact, a direct
calculation using the “bare” Coulomb potential is unlikely to converge because of the delicate
long range q→ 0 limit. We consider an effective interaction potential of the form

w(r, r′, νn) =
1

4πε0

1

|r− r′| +
1

~

( 1

4πε0

)2
ˆ
dr1

ˆ
dr′1

χpol(r1, r
′
1, νn)

|r− r1||r′1 − r′| (4.3)

with the polarization propagator χpol and the Matsubara frequency νn to be introduced later in
this Section. The above equation can be reasoned from the intuitive picture that two charged test
particles repel each other via the bare Coulomb interaction. In the presence of a surrounding
medium we have to add the effect that the test charges locally polarizes the medium which
adds to the bare potential, thus creating an effective interaction. Formally the equation follows
e.g. from diagrammatic perturbation theory (Sec. 5.2) where we consider the bare Coulomb
potentials plus the sum of all connected diagrams that have exactly two external Coulomb lines.
We will come back to this point in Section 5.2; here we take the equation as given. Note that
through the screening we obtain a non-trivial frequency dependence, i.e. dynamic, retardation
effects.
The goal of this Section is to compute the Fourier representation of the above screened in-

teraction w(r, r′, νn) in a lattice and write it into an integral representation that allows for an
analytic Matsubara summation in diagrams. The analytic Matsubara summation of the (dy-
namic) Coulomb part is necessary because it is important to treat the phonon and Coulomb
part in the same manner since differences between numerically and analytically summed con-
tributions are rather large.2 We shall try to represent the diagrammatic effective interaction in
terms of the (physical) linear response polarization which can be effectively computed numer-
ically. On this route we discuss the integral representation of the polarization propagator and
the related dielectric function in the Appendix C which will lead us to the desired dynamical
electronic interaction among electrons which can be summed analytically in Matsubara space.
The Fourier components of the bare Coulomb potential are discussed in the Appendix C as well.
We generalize a draft of A. Sanna3 to the non-decoupled, non-spin degenerate case.

4.2.1. The Polarization Propagator

The screening in the effective interaction is determined by the polarization propagator4 [34, 45]

χpol(r, r′, τ1 − τ2) ≡ −〈T ∆̂n(r, τ1)∆̂n(r′, τ2)〉 (4.4)

with
∆̂n(r) = n̂(r)− 〈n̂(r)〉 (4.5)

1The elementary charge e is viewed as coupling at the vertex, so excluded from the interaction at this point.
2A. Sanna private communication.
3Unpublished
4Both, the imaginary time and the Nambu basis is usually called τ in the literature and we shall keep that
notation. We hope the distinction can be made by the indices 0, x, y, z that uniquely identifies the Pauli
matrices. In this time independent theory we work in Fourier space most of the time where the imaginary
time does not appear.
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in the Heisenberg picture. χpol(r, r′, τ1 − τ2) is periodic in the imaginary time difference τ1 − τ2

according to χpol(r, r′, τ1 − τ2) = χpol(r, r′, τ1 − τ2 + n~β) (n ∈ Z). Thus

χpol(r, r′, νn) =

ˆ ~β

0
dτχpol(r, r′, τ)eiνnτ =

ˆ ~β

0
dτ〈∆̂n(r, τ)∆̂n(r′, 0)〉eiνnτ (4.6)

withνn = 2n π
~β . We always assume independence of the absolute position in the lattice which

leads to Fourier coefficients χpol(q,G,G′, νn) (see Appendix C). They are related to the original
polarization propagator Fourier coefficients via χpol(q+G,q′+G′, νn) = Nqχ

pol(q,G,G′, νn)δq,q′ .

4.2.2. The Effective Interaction in Fourier Space

The Fourier coefficients of the effective interaction Eq. (4.3) can be straight forwardly computed.
The independence of the bare Coulomb potential and χpol(r, r′, νn) on the absolute position
implies the same symmetry for the effective interaction. Then we insert the Fourier representation
of the polarization propagator, use the orthonormality relations

∑
Ti

ei(q−q′)·Ti = Nqδq′,q and´
dr̄ei(G−G′)·r̄ = ΩUCδGG′ and

w(q + G,q′ + G′, νn) = − NqΩUC

ε0|q + G|2
δG′,Gδq′,q +

Nqe
2

~ε20
χpol(q,G,G′, νn)

|q + G′|2|q + G|2 δq,q′ . (4.7)

Usually, the interaction is described in terms of a dielectric function w(q,G,G′, νn) =∑
G1
V Coul(q,G,G1)ε−1(q,G1,G

′, νn) where we introduce

ε−1(q,G,G′, νn) = δGG′ +
e2

~ε0
χpol(q,G,G′, νn)

ΩUC|q + G′|2 . (4.8)

The integral representation (with the function ε−1 on the real frequency axis) is given in Appendix
C. We use it in the next Subsection to compute the integral representation of the effective
Coulomb interaction.

4.2.3. The Integral Representation of the Effective Coulomb Interaction

Using the integral representation of Eq. (C.34) we have

w(q,G,G′, νn) = − e2ΩUC

ε0|q + G|2
(ˆ ∞

0

dω
π

2ωImε−1(q,G,G′, ω)

ω2 + ν2
n

+ δGG′

)
(4.9)

In the above expression appears the bare Coulomb interaction with a peculiar low q + G limit.
To avoid an unscreend Coulomb interaction we separate

w(q,G,G′, νn) = w(q,G,G′, 0)︸ ︷︷ ︸
wstat(q,G,G′,νn)

+w(q,G,G′, νn)− w(q,G,G′, 0)︸ ︷︷ ︸
wdyn(q,G,G′,νn)

(4.10)

Because wstat(q,G,G′, νn) is a constant in the Matsubara frequencies there is no need for an
integral representation and we can directly take

wstat(q,G,G′, νn) = −ε
−1(q,G,G′, 0)

ε0|q + G|2
. (4.11)

On the other hand, the dynamical interaction in this form does not contain the bare Coulomb
term

wdyn(q,G,G′, νn) = − 1

ε0|q + G|2
ˆ ∞

0

2dω
π

( ω

ω2 + ν2
n

− 1

ω

)
Imε−1(q,G,G′, ω) . (4.12)

We conclude this Section with equations for the coupling matrix elements, i.e. the overlap between
KS orbitals introduced by the above interaction, separated into dynamic and static parts.



4.2. Electronic Screening and Effective Interaction 47

4.2.4. The Coulomb Matrix Elements

The matrix elements of the effective Coulomb interactionWk1k2k3k4σσ′(νn) in the KS basis {~ϕkσ}
are easily computed using the lattice periodic part ~φkσ(r̄) of the Bloch function

~ϕkσ(r̄) = ~φkσ(r̄)
1√
Nq

eir̄·k . (4.13)

The appearing orthonormality relation shows that the interaction conserves the Bloch momen-
tum. However, there may be an Umklapp processes with Gq that is uniquely defined by k4−k3

as the reciprocal grid vector so that Gq − (k4 − k3 − q) ∈ 1. Brillouin zone. With this vector
we consider the static and dynamic parts of the interaction seperately.

Static The static matrix elements are given by Eq. (4.11) as

W stat
k1k2k3k4σσ′

=

ˆ
UC

dr̄

ˆ
UC

dr̄′~φ∗k1σ(r̄) · ~φk2σ(r̄)
∑
GG′

e2ε−1(Gq + k4 − k3,G,G′, 0)

NqΩ2
UCε0|Gq + k4 − k3 + G|2

ei(G+Gq)·r̄

×e−i(G′+Gq)·r̄′~φ∗k3σ′(r̄
′) · ~φk4σ′(r̄

′)δk4+k2,k3+k1 . (4.14)

Dynamic Introducing the dynamical matrix elements

Mdyn
k1k2k3k4σσ′

(ω) =

ˆ
UC

dr̄

ˆ
UC

dr̄′~φ∗k1σ(r̄) · ~φk2σ(r̄)
∑
GG′

Imε−1(k1 − k2 + Gq,G,G′, ω)

e−2Ω2
UCNqε0|k1 − k2 + Gq + G|2

×ei(G+Gq)·r̄e−i(G
′+Gq)·r̄′~φ∗k3σ′(r̄

′) · ~φk4σ′(r̄
′)δk4+k2,k3+k1 , (4.15)

we can write the interaction with an analytic dependence on Matsubara frequencies (as a spin
matrix)

W dyn
k1k2k3k4σσ′

(νn) =

ˆ ∞
0

dω
π

( 1

iνn + ω
− 1

iνn − ω
− 2

ω

)
Mdyn
k1k2k3k4σσ′

(ω) . (4.16)

Symmetry For future reference we note a symmetry of the coupling matrix elements. We
use that w(q,G,G′, νn) is hermitian which follows from Eq. (C.32) and the fact that the bare
Coulomb interaction is real and symmetric. From this property follows

W ∗k1k2k3k4σσ′
(νn) = Wk4k3k2k1σ′σ(νn) . (4.17)

This symmetry is preserved in the matrix elements, static as well as dynamic.



5. Many-Body Theory in the KS System

The functional construction in previous works on SCDFT used Many-Body Theory [21, 22]
amongst other methods. As mentioned in the previous Chapter 4 we follow a similar approach.
We construct xc potentials from the SSE for a SC. The SSE in turn uses the property of the KS
GF to reproduce the exact density. We define the GF of a spin polarized SC, the SC KS system
and the phononic system in Section 5.1. In Section 5.2 we introduce diagrammatic perturbation
theory and the form of the SE that is used for the rest of the thesis. In Section 5.3, we derive
the SSE which is the basis for the functional construction in Chapter 6. Again see Fig. 1.1 for
an overview.

5.1. Introduction to Green’s Functions

In this Section we derive the electronic and phononic GFs as the main ingredient for the Sham-
Schlüter equation. We start defining the electronic GF, both the exact and the KS version in
Subsection 5.1.1, introduce the spectral function in Subsection 5.1.2 and compute the SC KS GF
in Subsection 5.1.3. Finally, we turn to the phonon propagator in Subsection 5.1.4.

5.1.1. The Electronic GF

We introduce the GF with the τ ordering symbol T̄ and the field operators in the Heisenberg
picture

Ḡ(rτ, r′τ ′) = −〈T̄ Ψ̂(rτ)⊗ Ψ̂†(r′τ ′)〉 (5.1)

where we are using the notation of Sec. 3.4.1. Individual components of the GF are

Ḡ(rτ, r′τ ′) =

(
G(rτ, r′τ ′) F (rτ, r′τ ′)
F †(rτ, r′τ ′) G†(rτ, r′τ ′)

)
(5.2)

=

(
−〈T ~̂ψ(rτ)⊗ ~̂ψ†(r′τ ′)〉 −〈T ~̂ψ(rτ)⊗ ~̂ψ(r′τ ′)〉
−〈T ~̂ψ†(rτ)⊗ ~̂ψ†(r′τ ′)〉 −〈T ~̂ψ†(rτ)⊗ ~̂ψ(r′τ ′)〉

)
(5.3)

The imaginary time ordering symbol in Nambu space T̄ is defined to act on every of the (4× 4)
components individually which can be achieved by transposing in Nambu-spin space with the
symbol Tsn

T̄ Ψ̂(rτ)⊗ Ψ̂†(r′τ ′) ≡ θ(τ − τ ′)Ψ̂(rτ)⊗ Ψ̂†(r′τ ′)− θ(τ ′ − τ)
(
Ψ̂†(r′τ ′)⊗ Ψ̂(rτ)

)Tsn (5.4)

We use the commutator according to the rule Eq. (3.93) which essentially means to consider the
commutator in every component independently. The thermal average and Heisenberg picture
uses the scalar Hamilton operator Ĥ which involves contractions of the vectors Ψ̂(rτ). As usual
we find the equation of motion in the static case (τ − τ ′ → τ) by taking the derivative −~∂τ of
Eq. (5.1) [45, 34]. With the definition in Eq. (5.4) and Eq. (3.93) this is easily evaluated to

− ~∂τ Ḡ(rτ, r′0) = ~δ(τ)δ(r− r′)τ0σ0 + ~〈T̄ [Ĥ, Ψ̂(r)]−(τ)⊗ Ψ̂†(r′0)〉 (5.5)



5.1. Introduction to Green’s Functions 49

Let us define the notation

1 ≡ (rαµ) δ1,1′ ≡ δαα′δµµ′δ(r− r′)
(−1) ≡ (r,−αµ)

´
d1 ≡

´
dr
∑

α

∑
µ .

(5.6)

Then the above equation becomes component wise (we keep the symbol Ḡ but note that when we
write Ḡ(1τ, 1′, 0) we mean its scalar components, see also the Note on Notation in the beginning
of the thesis.)

− ~∂τ Ḡ(1τ, 1′, 0) = ~δ(τ)δ11′ + ~〈T [Ĥ, Ψ̂(1)]−(τ)Ψ̂†(1′, 0)〉 . (5.7)

In general Ĥ will contain a single particle ˆ̄H
(1)

and a two particle ˆ̄H
(2)

as

Ĥ =

ˆ
dr

ˆ
dr′Ψ̂†(r) · 1

2
ˆ̄H

(1)

(r, r′) · Ψ̂(r′)︸ ︷︷ ︸
Ĥ(1)

+

˙
d(1, 2, 3, 4)Ψ̂†(1)Ψ̂†(2)

1

4
ˆ̄H

(2)

(1, 2, 3, 4)Ψ̂(3)Ψ̂(4)︸ ︷︷ ︸
Ĥ(2)

(5.8)
We note that 〈T̄ [Ĥ, Ψ̂(1)]−(τ)Ψ̂†(1′, 0)〉 is a subtle quantity because it involves the contraction
of Ψ̂(r)’s in the commutator. We compute for the components

[Ψ̂†(1), Ψ̂(1′)]+ = [Ψ̂(1), Ψ̂†(1′)]+ = δ11′ (5.9)
[Ψ̂(1), Ψ̂(1′)]+ = [Ψ̂†(1), Ψ̂†(1′)]+ = δ1,−1′ . (5.10)

With these commutators we obtain

[Ĥ (1), Ψ̂(1)]− =
1

2

ˆ
d2 ˆ̄H

(1)

(2,−1)Ψ̂†(2)− 1

2

ˆ
d2 ˆ̄H

(1)

(1, 2)Ψ̂(1) . (5.11)

Using Ψ̂(r′αµ) = Ψ̂†(r′,−α, µ) we obtain

[Ĥ (1), Ψ̂(1)]− =
1

2

ˆ
d2
( ˆ̄H

(1)

(−2,−1)− ˆ̄H
(1)

(1, 2)
)
Ψ̂(2) . (5.12)

To simplify this, we have to assume that in general

ˆ̄H
(1)

(r′,−γ, µ, r,−α, µ′) = − ˆ̄H
(1)

(rαµ′, r′γµ) (5.13)

which is in particular true for the SC KS Hamiltonian Eq. (3.106)1, we find

[Ĥ (1), Ψ̂(1)]− = −
ˆ

d2 ˆ̄H
(1)

(1, 2)Ψ̂(2) (5.14)

and thusˆ
d2
(
−~δ1,2∂τ − Ĥ

(1)
(1, 2)

)
Ḡ(2τ, 1′0) = ~δ(τ)δ1,1′ + 〈T [Ĥ (2), Ψ̂(1)]−(τ)Ψ̂†(1′, 0)〉 . (5.15)

Let us be more specific and take Ĥ
(1)

(1, 2) as the kinetic energy plus the external single particle
potentials. The inhomogeneity on the right hand side of Eq. (5.15) usually prevents a direct
solution. Introducing the special non-interacting Hartree GF

ˆ
d2
(
−~δ1,2∂τ − Ĥ

(h)
(1, 2)

)
Ḡ0(2τ, 1′0) = ~δ(τ)δ1,1′ (5.16)

1The proof uses the total antisymmetry of the pair potential.
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with Ĥ
(h)

(1, 2) written as a Nambu-Spin matrix

ˆ̄H
(h)

(r, r′) =

((
−~2∇2

2me

+ vext(r)− µ
)
σ0τz −

gsµB

2
S·Bext(r)(τ0 + τz)−

gsµB

2
S∗·Bext(r)(τ0 − τz)

+
e2

4πε0

ˆ
dr′′

n(r′′)

|r− r′′|τzσ0

)
δ(r− r′) + iτx=Φ ·∆ext(r, r

′) + iτy<Φ ·∆ext(r, r
′) (5.17)

we add and subtract the term e2

4πε0

´
dr′′ n(r′′)

|r−r′′|τzσ0 ·Ḡ(rτ, r′0) in the equation of motion Eq. (5.15)
and findˆ

d2
(
−~δ1,2∂τ − ˆ̄H

(h)

(1, 2)
)
Ḡ(2, τ, 1′, 0) = ~δ(τ)δ1,1′ +

ˆ
d2dτ ′Σ̄(1, 2, τ−τ ′)Ḡ(2, τ ′, 1′, 0) (5.18)

with the SE Σ̄ defined by the equation
ˆ

d2dτ ′Σ̄(1, 2, τ −τ ′)Ḡ(2,τ ′, 1′, 0) = 〈T [Ĥ (2), Ψ̂(1)]−(τ)Ψ̂†(1′, 0)〉− e2

4πε0

ˆ
dx
n(x)(τz)αα′

|r− x| Ḡ(1,τ,1′, 0)

(5.19)
In Sec. 5.2 we find an expansion for Σ̄ in terms of Ḡ and the interaction potential which allows
for a systematic approximation scheme. We will work mostly in frequency space, well adapted
to this static problem

Ḡ(1, 1′, ωn) =

ˆ
dτḠ(1τ, 1′, 0)eiωnτ (5.20)

Ḡ(1τ, 1′, 0) =
1

2π

∑
n

Ḡ(1, 1′, ωn)e−iωnτ , (5.21)

for which the equation of motion reads
ˆ

d2
(
i~ωnδ1,2 − Ĥ

(h)
(1, 2)

)
Ḡ(2, 1′, ωn) = ~δ1,1′ +

ˆ
d2Σ̄(1, 2, ωn)Ḡ(2, 1′, ωn) . (5.22)

For time independent systems the convolution theorem ensures that no frequency-integration
has to be done at this point [45]. Using d́2Ḡ0(1, 2, ωn)Ḡ0−1

(2, 1′, ωn) = δ1,1′ and the Fourier
transform of Eq. (5.16) we arrive at the Dyson equation

Ḡ(1, 1′, ωn) = Ḡ0(1, 1′, ωn) +

ˆ
d(2, 2′)Ḡ0(1, 2, ωn)Σ̄(2, 2′, ωn)Ḡ(2′, 1′, ωn) . (5.23)

For a practicable application of the above equation we need to describe how to obtain Σ̄(2, 2′, ωn).
This procedure will be sketched in the next Section 5.2. Because we can add single particle
potentials similar to the Hartree potential freely we may use the SC KS system as our non-
interacting starting system. Introducing the KS GF
ˆ

dx
(
i~ωnδ(r− x)τ0σ0 −

( ˆ̄H
(h)

(r,x) + v̄xc(r,x)︸ ︷︷ ︸
H̄KS(r,x)

))
· ḠKS(x, r′, ωn) = ~δ(r− r′)τ0σ0 (5.24)

with

v̄xc(r, r
′) ≡

(
vxc(r)σ0τz −

gse

2me
S ·Bxc(r)(τ0 + τz)−

gse

2me
S∗ ·Bxc(r)(τ0 − τz)

)
δ(r− r′)

+iτx=Φ∆xc(r, r
′) + iτy<Φ∆xc(r, r

′) (5.25)
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leads then to a similar Dyson equation as the SC KS system as the formally non-interacting
system

Ḡ(1, 1′, ωn) = ḠKS(1, 1′, ωn) +

ˆ
d(2, 2′)ḠKS(1, 2, ωn)

(
Σ̄(2, 2′, ωn)− v̄xc(2, 2′)

)︸ ︷︷ ︸
Σ̄s(2,2′,ωn)

Ḡ(2′, 1′, ωn) .

(5.26)

5.1.2. The Spectral Representation of the Nambu GF

We arrive at the spectral representation for the Nambu GF along the lines that lead to Eq.
(C.21) for the spectral representation of the polarization propagator. We use the periodicity of
Ḡ(r, r′, τ − τ ′)2 to compute the Fourier element and obtain

Ḡ(r, r′, ωn) =

ˆ ∞
−∞

dω
2π

Ā(r, r′, ω)

iωn − ω
(5.27)

with the spectral function

Ā(r, r′, ω) = 2π
∑
i,j

(1+eβ(Ei−Ej))〈Ei|Ψ̂(r)|Ej〉⊗〈Ej |Ψ̂†(r′)|Ei〉
e−βEi

Z
δ
(
ω− 1

~
(Ej−Ei)

)
. (5.28)

The spectral function is also the antihermitian part of the retarded GF. For the retarded GF
defined by

iḠR
(r, r′, t) = θ(t)〈Ψ̂(rt)⊗ Ψ̂†(r′0)〉+ θ(−t)〈

(
Ψ̂†(r′0)⊗ Ψ̂(rt)

)Tsn〉 (5.29)

in turn we have to use the integral representation of the step function Eq. (C.24) and shift in
the integration over ω → ω − 1

~(Ej − Ei) to obtain the Fourier transform

iḠR
(r, r′, ω) =

ˆ ∞
−∞

dω̃
2π

Ā(r, r′, ω̃)

ω + iη − ω̃ (5.30)

Now the antihermitian part Im
(
ḠR

(r, r′, ω)
)
is identified to match

Ā(r, r′, ω) = −2Im
(
ḠR

(r, r′, ω)
)

(5.31)

using Eq. (C.28).

The LDOS The physical interpretation of the spectral function of Eq. (5.28) comes by observing
that its poles are at the exact Many-Body excitation energies Ej −Ei. In addition, the diagonal
of Ā(1, 1′, ω) is proportional to the overlap a single particle spinor field Ψ̂†(1) creates between the
many body states |Ei〉 and |Ej〉. The Many-Body states have to differ by one particle precisely.
Thus, the diagonal of the spectral function is proportional to the sum of single excitations times
their local probability amplitude Ā(1, 1, ω) ∝ ∑ |(〈Ej |Ψ̂†(1)|Ei〉)|2δ

(
ω − 1

~(Ej − Ei)
)
. This

quantity is identified as the Local Density Of States (LDOS)

ρµ,α(r, ω) = Ā(1, 1, ω) . (5.32)

In a SC, considering spin, we find that the wavefunction has 4 components. It is possible to
resolve the different channels in spin space, i.e. excite e.g. only the up branch in an STM exper-
iment. Note that because Ψ̂†(rµα) = Ψ̂(rµ,−α) if ρµ,α=1(r, ω) measures the particle excitation
spectrum, ρµ,α=−1(r, ω) measures the hole excitation spectrum. We give a derivation of the
formula for the KS (L)DOS in Sec. G.
2Shown e.g. in Ref. [45, Page 263 ] for the normal part of the GF. The result is easily generalized.
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5.1.3. KS GF

In this section we want to compute the KS GF that satisfies the equation of motion Eq. (5.24).
We apply the Bogoliubov Valatin transformation to Eq. (5.24) and use that it diagonalizes the
Nambu KS Hamiltonian (compare Eq. (3.105)). The transformed equation of motion for the KS
GF Eq. (5.24) then simply reads

(
iωnτ0 −

1

~
Ekτz

)
· Ḡkk′(ωn) = δkk′τ0 (5.33)

where

Ḡkk′(ωn) =

ˆ
dr

ˆ
dr′
(
~u∗k(r) ~v∗k(r)
~vk(r) ~uk(r)

)
· ḠKS(r, r′, ωn) ·

(
~uk′(r

′) ~v∗k′(r
′)

~vk′(r
′) ~u∗k′(r

′)

)
(5.34)

and

Ḡkk′(ωn) = δkk′τ0 ·
(
iωnτ0 −

1

~
Ekτz

)−1

=

 δkk′

iωn− 1
~Ek

0

0
δkk′

iωn+ 1
~Ek

 . (5.35)

We can directly use the transformed, diagonal, single particle KS GF. In most cases, however,
we work in real space. Here, applying the back transformation, the KS GF that solves Eq. (5.24)
takes the shape

ḠKS(r, r′, ωn) =
∑
k

1

iωn − 1
~Ek

(
~uk(r)⊗ ~u∗k(r′) ~uk(r)⊗ ~v∗k(r′)
~vk(r)⊗ ~u∗k(r′) ~vk(r)⊗ ~v∗k(r′)

)
+
∑
k

1

iωn + 1
~Ek

(
~v∗k(r)⊗ ~vk(r′) ~v∗k(r)⊗ ~uk(r′)
~u∗k(r)⊗ ~vk(r′) ~u∗k(r)⊗ ~uk(r′)

)
. (5.36)

We complete the derivation of the KS-Nambu GF by representing it in the basis of the orthonor-
mal spinors3

〈r|ΨKS
iαµ〉 ≡ ΨKS

iαµ(r) =

(
δα,1~ϕiµ(r)
δα,−1~ϕ

∗
iµ(r)

)
. (5.37)

Again we insist on a pure spinor basis, also in Nambu space. This makes it significantly easier
to introduce approximations or special cases where, e.g. triplet contributions are dropped. If we
had taken a basis of non-pure spin spinors these triplet parts were hidden in the set of quantum
numbers in a similar way as k of the SC KS system includes the spin degrees of freedom.
We compute the matrix elements

ḠKS(r, r′, ωn) =
∑

iαµjα′µ′

GKS
iαµjα′µ′(ωn)〈r|ΨKS

iαµ〉 ⊗ 〈ΨKS
jα′µ′ |r′〉 (5.38)

GKS
iαµjα′µ′(ωn) =

ˆ
dr

ˆ
dr′〈ΨKS

iαµ|r〉 · ḠKS(r, r′, ωn) · 〈r′|ΨKS
jα′µ′〉 . (5.39)

The fact that with the choice of pure spinors all quantum numbers translate one to one into the
matrix elements allows us to use the same notation with the bar for matrices in Nambu-spin
space. With the expansion in NS KS orbitals of u and v in the Eqs. (3.111) and (3.112) and

3These spinors are nothing else than the normal state KS basis, written in the Nambu notation. Note in
particular that these are pure Nambu-spinors.
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the orthonormality of the KS orbitals the matrix elements are straight forward to obtain and we
group them into a Nambu and spin matrix notation4

ḠKS
ij (ωn) =

∑
k

(
1

iωn − 1
~Ek

(
~uik ⊗ ~u

j∗
k ~uik ⊗ ~v

j∗
k

~vik ⊗ ~u
j∗
k ~vik ⊗ ~v

j∗
k

)
+

1

iωn + 1
~Ek

(
~vi∗k ⊗ ~v

j
k ~vi∗k ⊗ ~u

j
k

~ui∗k ⊗ ~v
j
k ~ui∗k ⊗ ~u

j
k

))
.

(5.40)
Similar to the real space definition Eq. (5.2) we also use the notation

ḠKS
ij (ωn) =

(
GKS
ij (ωn) FKS

ij (ωn)

FKS
ij
†(ωn) GKS

ij
†(ωn)

)
. (5.41)

The KS GF of a Collinear Singlet System Assuming collinearity and neglecting triplet con-
tribution makes the spin a good quantum number in the SC KS system (compare Sec. 3.5.1).
Note that the basis ΨKS

iαµ still defines the spin label of GKS
iαµjα′µ′ and the spin index of vikµ refers

to the KS wavefunction. The solution of the KSBdG equation, however, is of opposite spin −µ
and the spin label of Ekµ refers to the SC KS system. Thus vi∗kµ appears with opposite Ek,−µ in
the following equation for ḠKS

ij

ḠKS
ij (ωn)=

∑
k



uik↑u
j∗
k↑

iωn− 1
~Ek↑

+
vi∗k↑v

j
k↑

iωn+ 1
~Ek↓

0 0
uik↑v

j∗
k↓

iωn− 1
~Ek↑

+
vi∗k↑u

j
k↓

iωn+ 1
~Ek↓

0
uik↓u

j∗
k↓

iωn− 1
~Ek↓

+
vi∗k↓v

j
k↓

iωn+ 1
~Ek↑

uik↓v
j∗
k↑

iωn− 1
~Ek↓

+
vi∗k↓u

j
k↑

iωn+ 1
~Ek↑

0

0
vik↑u

j∗
k↓

iωn− 1
~Ek↓

+
ui∗k↑v

j
k↓

iωn+ 1
~Ek↑

vik↑v
j∗
k↑

iωn− 1
~Ek↓

+
ui∗k↑u

j
k↑

iωn+ 1
~Ek↑

0

vik↓u
j∗
k↑

iωn− 1
~Ek↑

+
ui∗k↓v

j
k↑

iωn+ 1
~Ek↓

0 0
vik↓v

j∗
k↓

iωn− 1
~Ek↑

+
ui∗k↓u

j
k↓

iωn+ 1
~Ek↓


(5.42)

The KS GF of a Spin-Decoupled System Further assuming the SDA (Subsection 3.5.2), due
to reduced shape of the unitary Bogoliubov-Valatin transformations, we obtain a GF that is
(anti)diagonal in KS orbitals. There we had pointed out that we have to sum both branches α
and exclude the negative Eαkµ one with a step function because it is not known a priori if an
eigenvalue is positive (see Subsection 3.5.2). This was however necessary in order to make the
correct identification (u, v) with the eigenvector to an eigenvalue. Recall that the coefficients
translate according to vi∗k↑ → vk∗−k↑δi,−k and uikσ → ukkσδik. Together with the important relations
among the coefficients Eq. (B.18), Eq. (B.16) and Eαkµ = −E−α−k−µ (compare Eqs. (3.158) to
(3.161)) we obtain

ḠKS
ij (ωn)=

∑
α



|uiαi↑ |
2δij

iωn− 1
~E

α
i↑

0 0
uiαi↑ (v−iαi↓ )∗δi,−j

iωn− 1
~E

α
i↑

0
|uiαi↓ |

2δij

iωn− 1
~E

α
i↓

uiαi↓ (v−iαi↑ )∗δi,−j

iωn− 1
~E

α
i↓

0

0
(uiαi↑ )∗v−iαi↓ δi,−j

iωn+ 1
~E

α
i↑

|uiαi↑ |
2δij

iωn+ 1
~E

α
i↑

0

(uiαi↓ )∗v−iαi↑ δi,−j

iωn+ 1
~E

α
i↓

0 0
|uiαi↓ |

2δij

iωn+ 1
~E

α
i↓


. (5.43)

We have used that |uiαi↑ |2θ(Eαi↑) + |uiαi↑ |2θ(−Eαi↑) ≡ |uiαi↑ |2.

4We use ~uik =
(
ui↑k ui↓k

)T with the expansion coefficients of ~uk(r) in ~ϕiσ(r) Eq. (3.111). Similar for ~vik.
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5.1.4. The Phonon Propagator

We define the phonon propagator as the term that appears in the bare electron-phonon interac-
tion. The electron-phonon matrix elements couple to the operator φ̂λq(τ)

φ̂λq(τ) = b̂λq(τ) + b̂†λ,−q(τ) ≡ φ̂†λ,−q(τ) (5.44)

with operators b̂λq of Eq. (3.84) in the imaginary time Heisenberg picture5. Thus, we take the
phonon propagator to be defined in general by

Dph(λq, λ′q′, τ, τ ′) = 〈T̂ φ̂λq(τ)φ̂λ′q′(τ
′)〉 . (5.45)

In this thesis we are mainly concerned with the harmonic approximation to lattice vibrations
and we want to neglect multi-phonon scattering. Thus we are interested primarily in the bare
propagator of the non-interacting system of phonons

D0
ph(λq, λ′q′, τ, τ ′) = 〈T̂ φ̂λq(τ)φ̂λ′q′(τ

′)〉0 . (5.46)

The Hamiltonian to evaluate the trace 〈...〉0 in is given by Eq. (3.87). We insert the definition of
φ̂λq(τ) and commute the time-evolution operator to the left side. In Fourier space (τ − τ ′ → τ)

D0
ph(λq, λ′q′, νn) =

1

2

ˆ ~β

−~β
dτeiνnτD0

ph(λq, λ′q′, τ) (5.47)

with, again, discrete νn = 2nπ
~β , because of the periodicity in the time argument. Then we obtain

for this non-interacting system

D0
ph(λq, λ′q′, νn) = δq,−q′δλλ′

2Ωqλ

(νn)2 + (Ωqλ)2
≡ δq,−q′δλλ′

( 1

iνn + Ωqλ
− 1

iνn − Ωqλ

)
. (5.48)

5.2. Perturbation Theory

We have introduced the SE in Eq. (5.19) that prevents a direct solution of the equation of motion
for the GF. We have no method to compute the SE directly, but it is possible to represent it
as a Taylor series in the difference of the potential in the (non-interacting) starting system and
interacting system. The series can be cast into a self-consistent equation that sums an infinite
set of diagrams when it is solved to self-consistency.
Following the books [19] and [45] we show that the diagrammatic perturbation series for the

SE Σ̄(1, 1′, ωn) is essentially the same as for a non-SC system. The only difference is to replace
the normal GFs G(r, r′, ωn) and the vertices Γ with their Nambu analogs Ḡ(1, 1′, ωn) and Γ̄.
We aim to evaluate 〈T̄ [Ĥ I, Ψ̂(1)]−(τ)Ψ̂†(1′, 0)〉 where Ĥ I ≡ Ĥ − Ĥ0. We use Ĥ0 to point out

that the derivation is independent on the specific choice. In most cases we take it simply as
the kinetic energy plus external one-particle potentials. Our task will involve the calculation of
thermal averages in the interacting system, but we may introduce the following time evolution
operator to circumvent this problem

Û(τ, τ ′) = eτĤ0e−(τ−τ ′)Ĥe−τ
′Ĥ0 . (5.49)

We use the notation 〈...〉0 ≡ Tr
{
e−βĤ0 ...

}
/Tr
{
e−βĤ0

}
and notice that

〈T e−τĤ [Ĥ I, Ψ̂(1)]e−τĤΨ̂†(1′, 0)〉 =
〈TÛ(β, τ)[Ĥ I, Ψ̂(1)]−(τ)Ψ̂†(1′0)

}
〉0

〈Û(β, 0)〉0
. (5.50)

5Formally the interacting Hamiltonian is the full KS Hamiltonian of Eq. (3.55) which includes arbitrarily high
N phonon interactions.
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The time evolution operator satisfies the differential equation

∂τ Û(τ, τ ′) = −Ĥ I
I(τ)Û(τ, τ ′) (5.51)

with Ĥ I
I(τ) = eτĤ0Ĥ Ie−τĤ0 and the usual formal solution

Û(τ, τ ′) = T
(
e
´ τ ′
τ ĤI

I(τ ′′)dτ ′′) = T
(
e−
´ τ
τ ′ Ĥ

I
I(τ ′′)dτ ′′) . (5.52)

In Ref. [45, Section 8] it is demonstrated that for two Heisenberg operators under the time
ordering symbol one may replace the Heisenberg picture with the interaction picture so that

〈T e−τĤ [Ĥ I, Ψ̂(1)]−e−τĤΨ̂†(1′)〉 =
〈TÛ(β, 0)[Ĥ I

I , Ψ̂I(1)]−(τ)Ψ̂†I(1
′, 0)

}
〉0

〈Û(β, 0)〉0
. (5.53)

Before we can evaluate this expression, we need to translate the interaction Ĥ I
I into the Nambu

formalism. Let us consider a local two particle interaction wµµ′(r, r′). Due to the time ordering
symbol we do not have to worry about commutators when we rearrange the field operators and
obtain6

〈T...Ĥ I
I(τ)...〉0 =

∑
µµ′

¨
wµµ′(r, r

′)〈T...ψ̂†Iµ(rτ)ψ̂†Iµ′(r
′τ)ψ̂Iµ′(r

′τ)ψ̂Iµ(rτ)...〉0dr dr′ (5.54)

=
1

4

∑
µµ′

¨
wµµ′(r, r

′)〈T...Ψ̂†Iµ(rτ) · τzσ0 · Ψ̂Iµ(rτ)Ψ̂†Iµ′(r
′τ) · τzσ0 · Ψ̂Iµ′(r

′τ)...〉0dr dr′ .(5.55)

Here we use Ψ̂µ ≡
∑

α Ψ̂αµ. In a more elegant way we can represent the interaction as a tensor

〈T...Ĥ I-nl
I (τ)...〉0 =

1

4

ˆ
d(1..4)〈T...Ψ̂†I(1τ)

(
Ψ̂I(2τ)w(1..4)Ψ̂†I(3τ)

)
Ψ̂I(4τ)...〉0 . (5.56)

Tensor matrix elements of w(1..4) must have the symmetry

wσσ
′µµ′

αα′ββ′(r1r2r3r4) = −wσ′σµµ′−α′,−αββ′(r2r1r3r4) = wσ
′σµ′µ
−α′,−α,−β′,−β(r2r1r4r3) (5.57)

if the interaction corresponds to a potential that can be defined without Nambu-space. The
symmetries then follow from the property of the commutator and their relation to the original
interaction in its normal, non-Nambu form. Also hermitian, totally antisymmetric anomalous
potentials satisfy this condition. In the following we are only concerned with interactions that
satisfy this condition. Their form in Nambu space is always ∝ Ψ† · τz · ΨΨ† · τz · Ψ. Now it is
straight forward to compute the commutator [Ĥ I, Ψ̂(1)]−

7

〈T...[Ĥ I
I(τ), Ψ̂I(1

′)]Ψ̂†I(4)〉0
=

1

2

ˆ
d1d2d3

(
w(1, 2, 1′, 3) + w(1′, 3, 1, 2)

)
〈T...Ψ̂†I(1)Ψ̂I(2)Ψ̂†I(4)Ψ̂I(3)〉0 . (5.58)

Further if the interaction is symmetric

〈T...[Ĥ I
I(τ), Ψ̂I(1

′)]Ψ̂†I(4)〉0
=

ˆ
d1d2d3w(1, 2, 1′, 3)〈T...Ψ̂†I(1)Ψ̂I(2)Ψ̂†I(4)Ψ̂I(3)〉0 . (5.59)

6The ... indicate further ĤI
I in the Heisenberg picture at different τ1,2,....

7We include τ into the abbreviation 1 ≡ (rαµτ)
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Making use of the above equation requires the evaluation of the thermal average of a set of
field operators. Expanding the time evolution operator of Eq. (5.52) to nth order we may use a
generalized Wick theorem

´
d2 . . . w(2, 3, 4, 5) . . . 〈T

{
Ψ̂I(1)Ψ̂I(2) . . . Ψ̂†I(1

′)
}
〉0 =´

d2 . . . w(2, 3, 4, 5) . . .
{
Sum of all possible contractions

} (5.60)

where a contraction is defined to be 〈T Ψ̂I(1)Ψ̂†I(1
′)〉0. We demonstrate this theorem in the

Appendix F. The procedure and the result is very similar to normal diagrammatic perturba-
tion theory with the exception that we have to give reasons why 〈T Ψ̂I(1)Ψ̂†I(1

′)〉0 appears but
〈T Ψ̂I(1)Ψ̂I(1

′)〉0 not. We discuss the details in Appendix F, but mention here that for potentials
with the symmetry of Eq. (5.57) the diagrams considering anomalous Nambu field averages are
equivalent to the ones with just the usual GF. Thus in the sum for an N particle interaction we
obtain a multiplicity of 2N that, in fact, cancels the factor 1/2N we obtained in translating into
the Nambu notation.
Note that we may separate the tensor matrix elements w(1, 2, 3, 4) into a vertex part and an

interaction. To keep the simple Nambu-scalar form of the interaction we introduce the bare
vertex as to contain the τz we obtained from the anticommutator. For the screened Coulomb
interaction (and any interaction that is local in spin space) we may keep a spin scalar form as it
is independent of spin. Thus the bare vertex for the Coulomb interaction becomes

ΓCoul(r1, r2, r3) = eσ0τzδ(r1 − r2)δ(r2 − r3) . (5.61)

and we have chosen the vertices to be Spin-Nambu matrices. Given an (effective) interaction that
is non-local in spin space we may choose to symmetrize its tensor matrix elements w(1, 2, 3, 4) to
be ∝ σ0,x,y,zσ0,x,y,z and then perform the separation into vertices and scalar interactions. We are
at the starting point of the discussion to include magnetic fluctuations into the theory. These
however are the content of a different thesis [46] and will not be considered here.
Now that we recover the diagrammatic expansion of the normal system, all results that are

based on the topology of diagrams can be directly transferred. This means one can show that
the denominator will cancel all disconnected diagrams from the sum of all contractions, just
as for the normal metal. Rules for this expansion are discussed in every book on Many Body
perturbation theory e.g. [45] and we only briefly repeat the results for nth order.

1. Draw all topologically distinct diagrams containing n GFs using the diagrammatic notation
of Fig. 5.1.

2. Attach a factor of (−~−1)n.

3. Sum/integrate all degrees of freedom of an inner vertex.

4. Multiply a factor of −1 for every fermionic loop.

5. Interpret equal times in a GF as

Ḡ(rτ, r′τ) =

(
G(rτ, r′τ+) F (rτ, r′τ+)
F †(rτ, r′τ+) G†(rτ+, r′τ)

)
(5.62)

The last rule is different from the usual approach, but follows the same reasoning. Such terms
arise from a contraction term within the interaction Hamiltonian and thus must have the same
ordering [45]. This means in particular that we have to treat the hole GF different from the
particle part in taking the first time argument infinitesimally before the second.
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≡ Ḡ0(r, r
′, ωn) The bare GF.

≡ Ḡ(r, r′, ωn) The dressed GF.

≡ −C(r, r′) = − 1
4πε0

1
2|r−r′| The bare Coulomb interaction.

≡ −w(r, r′, νn) The screened Coulomb interaction (Eq. 4.3).

≡ −D0
ph(λq, λ′q′, νn) = −2δq,−q′δλλ′Ωqλ

(νn)2+(Ωqλ)2 The bare phonon interaction.

≡ Γ̄Coul
0 (r1, r2, r3) = eδ(r1 − r2)δ(r2 − r3)τzσ0 The bare Coulomb vertex.

≡ Γ̄ph
0 (r1, r2,qλ) = δ(r1 − r2)τz

δvscf (r1)
δuqλ

The bare phonon vertex taking vscf
as a spin matrix.

Figure 5.1.: Diagrammatic notation.

We conclude this section by pointing out the connection to a diagrammatic expansion of the
SE we met with in Eq. (5.19). From the relation Eq. (5.59) and Wicks theorem it is found that
we may factor out

〈TÛ(β, 0)[Ĥ I
I(τ), Ψ̂I(1)]⊗ Ψ̂†T (1′)

}
〉0

〈Û(β, 0)〉0
≡
ˆ

d2˜̄Σ(1, 2)Ḡ0(2, 1
′) (5.63)

where ˜̄Σ(1, 2) is called the reducible SE. In a diagrammatic language it contains all diagrams
with two external propagator connectors. Because we have seen that this defines the full GF
diagrammatically, along the line of [47] we define the irreducible SE as the sum of all the diagrams
that cannot be separated by cutting a single propagator line. We can separate every GF diagram
into a part that cannot be split cutting a single propagator line (that is possibly zero) and the
rest. We note that the rest is build of the same kind, so that we can write every GF diagram as
a sequence of irreducible SE insertions that are connected with single propagator lines. The full
GF is the sum of all SE insertions and the above set of diagrams is then equivalently written asˆ

d2Σ̃(1, 2)Ḡ0(2, 1′) ≡
ˆ

d2Σ̄irr(1, 2)Ḡ(2, 1′) (5.64)

because both sides generate all diagrams. Here we separate the Hartree diagram

=
−~−1e2

4πε0

ˆ
dr′
∑
αµα′µ′

(τzσ0)αµα′µ′
(
−Ḡ(r′τ,r′τ)

)
αµα′µ′

2|r− r′| τzσ0 =
e2~−1

4πε0

ˆ
dr′

n(r′)τzσ0

|r− r′|
(5.65)

from Σ̄irr(r, r′, τ − τ ′) to arrive at the usual definition of the SE Σ̄(r, r′, τ − τ ′) of Eq. (5.19).
Note that the SE, as introduced before, is a functional of the bare GF and the perturbation Ĥ I

I

that leads via Eq. (5.63) from bare to the interaction system. In fact, the SE Σ̄ can be
introduced via the Hedin equations, where it is a functional of the interacting GF. This is
important as it shows that the Dyson equation is linear in the addition and subtraction of
single particle potentials such as v̄xc. The idea to separate blocks of diagrams into individual
objects can be pursued further. We define the polarization propagator

χpol(rτ, r′τ ′) = {sum of all connected diagrams with two external interaction line connectors}
(5.66)
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that matches the object introduced in Eq. (4.3) and thus defines the effective interaction.
Further we introduce the dressed vertex

ΓCoul(r1, r2, r3) =


sum of all connected diagrams with two GF- and one

interaction line connector where it is not possible to separate
parts cutting a single GF or interaction line

 .

(5.67)
Since these sets are always chosen such that they mutually exclude each other we see that we
may write the SE as

Σ̄(rτ, r′τ ′) = (5.68)

where diagrammatically we have introduced

ΓCoul(r1, r2, r3) =

.
(5.69)

The discussion is readily extended to additional interactions e.g. the phonon interaction. We
will use the starting approximation for the SE

Σ̄(r, r′, ωn) ≈ + + . (5.70)

This means we immediately drop vertex corrections in the electronic part. While it can be
shown that these vertex corrections are small for the phonon interaction (Migdal’s theorem
[48]) this approximation is of practical nature for the Coulomb potential as these are simply
too demanding to be computed. Also we do not consider a dressing of the phonon interaction,
but take the KS phonons as a reasonably good approximation [35]. Moreover, in principle, we
have to update the screened Coulomb interaction every iteration which is not considered due
to numerical complexity. Further will the phononic Hartree diagram not be considered in the
functional construction. We will come back to this point later in the thesis in Section 6.3. The
subsets of diagrams satisfy five connected self-consistent equations themselves, commonly known
as the Hedin equations. This very elegant set of equations can be derived using a functional
derivative approach that does not rely on the topology of subsets of diagrams and naturally
relates the vertex to the functional derivative of the SE with respect to the GF. The presentation
of the Hedin equations for a SC [49] however is beyond the scope of this thesis.

5.3. The SSE of SpinSCDFT

The SSE [50, 51] allows the construction of an xc potential from Many-Body perturbation theory
via the condition that the densities of the KS system must be equal to those of the (approx-
imated) Many-Body system. With this requirement, every approximate SE directly yields an
approximation for the xc potentials.
The densities n(r),m(r) and χ(r, r′) are obtained, as a first step by taking the limit τ → τ ′,

which is equivalent to a Matsubara summation over frequencies

lim
τ→τ ′

Ḡ(r, r′, τ − τ ′) = lim
τ→τ ′

1

β

∑
ωn

Ḡ(r, r′ωn)eiωn(τ−τ ′) =
1

β

∑
ωn

Ḡ(r, r′ωn) . (5.71)
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Then, by symmetrizing in spin space, we obtain the individual densities8

1

β

∑
ωn

F (r, r′ωn) = χ(r, r′) ·Φ∗ (5.72)

1

β

∑
ωn

G(r, rωn) = n(r)σ0 + m(r) · S∗ (5.73)

1

β

∑
ωn

F †(r, r′ωn) = χ∗(r, r′) ·Φ (5.74)

1

β

∑
ωn

G†(r, rωn) = −n(r)σ0 −m(r) · S . (5.75)

The minus sign in Eq. (5.75) is because of the special definition of the equal time limit Eq. (5.62)
that does not swap the field operators. By construction these densities are also obtained from
the KS GF. Thus we have with Eq. (5.26)

0 = 1
β

∑
ωn

d́(x,x′)
[
ḠKS(r,x, ωn) · Σ̄s(x,x′, ωn) · Ḡ(x′, r, ωn)

]
α,α

0 = 1
β

∑
ωn

d́(x,x′)
[
ḠKS(r,x, ωn) · Σ̄s(x,x′, ωn) · Ḡ(x′, r′, ωn)

]
α,−α

. (5.76)

The point is to arrive at a condition for the xc potential. Moving the xc potential from the KS
SE to the left hand side of the equation we obtain

1

β

∑
ωn

ˆ
d(x,x′)

[
ḠKS(r,x, ωn) · v̄xc(r,x) · Ḡ(x′, r, ωn)

]
α,α

=
1

β

∑
ωn

ˆ
d(x,x′)

[
ḠKS(r,x, ωn) · Σ̄(x,x′, ωn) · Ḡ(x′, r, ωn)

]
α,α

1

β

∑
ωn

ˆ
d(x,x′)

[
ḠKS(r,x, ωn) · v̄xc(r,x) · Ḡ(x′, r′, ωn)

]
α,−α

=
1

β

∑
ωn

ˆ
d(x,x′)

[
ḠKS(r,x, ωn) · Σ̄(x,x′, ωn) · Ḡ(x′, r′, ωn)

]
α,−α . (5.77)

This equation is the basis of the functional construction in the next chapter. We have decom-
posed the density into spin symmetric parts, i.e. (σ0,S)T on the Nambu diagonal and Φ on
the Nambu-offdiagonal. Thus we obtain independent SSE for each of these 16 scalar orthonor-
mal components. Note that we may take the equation also for every Nambu-spin component
individually which, of course, also makes 16 independent equations.

Summary

We have introduced the electronic spin and Nambu GF Ḡ as the central object in Many-Body
theory. It satisfies a matrix valued, self-consistent Dyson equation and we can start from any
single particle Hamiltonian we wish. As the most important example we have discussed the SC
KS Hamiltonian with the GF ḠKS as the unperturbed (formally) non-interacting system. Two
particle interactions create an inhomogeneity in the Dyson equation that we have rewritten into
the SE Σ̄. We have introduced a diagrammatic perturbative expansion for Σ̄ that is essentially
equivalent to the usual perturbation expansion except that we replace vertices Γ and the usual
electronic GF G with 4× 4 spin and Nambu analogs Γ̄ and Ḡ. In a final step we have used that
Ḡ must equal ḠKS by construction in the limits in which the GF reproduces the densities. This
led us to the SSE which connects the v̄xc potential with an approximation to the SE.
8The special equal time limit for G† discussed in Sec. (5.2) ensures that m(r) · S is not transposed.



6. Functionals and the Self-Consistency
Cycle

In this Chapter we use the Sham-Schlüter connection of Eq. (5.77) to obtain a density functional
for the anomalous pair potential ∆s. The presence of a SC condensate may change also the
normal state densities. In a non-magnetic SC the condensate changes the electronic density n(r)
only in an extremely narrow region about the Fermi level. To a good approximation this density
change can be neglected. However, magnetism and SC tend to compete and we do not expect
the magnetic density to be uneffected by the SC condensation. Thus we start the chapter in
Section 6.1 with a discussion on how to treat those changes in a self consistentcy cycle.
In Section 6.2 we show how we include the density changes into an updated xc potential for

the Nambu diagonal. We point out that the approach is feasible in practice.
In Section 6.3 we are concerned with the derivation of an xc potential for the Nambu off-

diagonal where we use the SSE of Sec. 5.3 and an approximation to the SE using diagrammatic
perturbation theory introduced in Sec. 5.2.
The nature of the KS system changes drastically when we apply the SDA of Subsection 3.5.2.

In this case the solutions to the KSBdG equations (3.152) u and v are analytically known in terms
of the KS potential and single particle energies. Thus, the diagrams of the SE which depend
on u and v are known, explicit functionals of the pair potential ∆s

s. Thus, the potential term
ḠKS · v̄xc · Ḡ in the Sham-Schlüter connection of Eq. (5.77) looses its special status as the only
term that depends on the potential. We choose to interpret the SSE as a (non-linear) operator
that maps the potential to zero Sβ[∆s

s] ·∆s
s = 0 and construct a gap equation in Section 6.4.

As a final step we assume the interactions only to dependent on the energy and spin separation
of the states. At the end of this chapter we have functionals available so that we could directly
attempt to solve them on a computer. This, however, we postpone to Chapter 8 after we have
extended our results in the direction of Many-Body Perturbation Theory in Chapter 7. This will
yield for example improved excitation spectra on the basis of the interacting GF.

6.1. General Approach to a Self-Consistent Solution

In the context of any DFT the accuracy of results is tied to the quality of available density
functionals. The essential ingredient to the KSBdG equations Eq. (3.122) are the matrix elements
E (the “normal” part of the Hamiltonian on the Nambu diagonal) and ∆s (the matrix elements
of the pair potential on the Nambu off-diagonal). These matrix elements as functionals of the
densities are the subject of this Chapter with the focus on E in the Section 6.2 and on ∆s in
the Section 6.3. In this Section we propose a general procedure on how to iterate the KS system
until its densities and potentials (as functionals of the densities) are consistent.
To obtain the basis functions ϕk(rσ) we will take one of the known functionals as e.g. the LSDA

and compute them with one of the electronic structure codes available [52, 53]. Assuming we
had solved Eq. (3.122) for some starting ∆s we may compute the new set of densities n(r),m(r)
and χ(r, r′) as given in Subsection 3.2.1. We refer to the starting densities with a small subscript
0. Obviously, evaluating the functionals vxc and Bxc at different densities n(r),m(r) will result
in corrections to E of Eq. (3.121). Not considering the temperature corrections, (SC is a low
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temperature phenomenon where vxc(T = 0) is expected to be a good approximation) we may
view these changed matrix elements in essentially two ways. First, let us view vxc as a spin
matrix for a moment (i.e. we include Bxc into vxc) then with

V C
ij σσ′

= 〈~ϕiσ|vxc[n,m,χ]− vxc[n0,m0,χ0]|~ϕjσ′〉 (6.1)

we have the old matrix E0ij Eq. (3.121) plus the corrections V C
ij . Because SC is expected to change

the density and thus the eigenfunctions only very close to the Fermi level, V C
ij will be non-zero

only for this states.
We note however that if we include non-diagonal corrections V C

ij to the electronic spectrum εk
we loose the SDA. If we want density corrections and the SDA at the same time we can use the
following, second, approach:

1. Compute E0ij and V C
ij for given densities.

2. Diagonalize Eij = E0ij + V C
ij and keep the unitary matrix U that connects the old and the

new matrix.

3. Perform the Spin-Decoupling Approximation with respect to this solutions.

4. Update the densities and start at (1.) up until self consistency is reached.

If we want to describe the FFLO phase [11, 12] our theory has to allow finite momentum pairing.
As mentioned before in the discussion at the end of Subsection 3.5.2, we have to go beyond the
SDA to treat FFLO states.
Note that the proposed second scheme changes the meaning of the SDA in every iteration

because the basis states it refers to change. In practice the dependence of vxc on χ is expected
to be weak due to the low energy scale of SC. We guess its influence will be mostly indirect via a
change in single KS state occupations. Thus when we discuss how to extract correction matrix
elements V C

ij in the next section we omit the functional dependence on χ as well as temperature
effects beyond the SC pair potential.

6.2. The Eij Matrix as a Functional of m(r) and n(r).

With both, either scheme one or two of the last Section 6.1, we need to update the matrix Eij
for updated densities m(r) and n(r). The Hamiltonian defining the basis {~ϕiσ} is fixed at this
point, thus we obtain a correction V C

ij to the original matrix elements E0ij of the form of Eq. (6.1).
A technical problem is that vxc[n,m] in one of the common approximations such as the LSDA is
non-linear in the densities and can practically only be evaluated in real space where we work in
the space of KS orbitals.
Because of the limited energy region of SC about the Fermi level, these corrections V C

ij are
expected to be of importance also only in this range of O(0.1eV). We use a simple separation of
the density from orbitals far away from the Fermi level

nfix(r) =
∑

(ij)∈S

∑
σσ′

ϕ∗iσ(r)(nij)σσ′ϕjσ′(r) S =
{
i
∣∣|εi| > εb

}
(6.2)

where εb will have to be chosen large enough in order that all relevant V C
ij appearing in a self

consistent cycle can be captured. The rest of the density contributions we consider dependent
on the condensation1

nvar(r) =
∑

(ij)/∈S

∑
σσ′

ϕ∗iσ(r)ϕjσ′(r)(nij)σσ′ , (6.3)

1We need to insert the unitary transformation U to keep the ϕiσ(r) fix every iteration if we choose option two.
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and n(r) = nfix(r) + nvar(r). Similar for the magnetic density m(r) = mfix(r) + mvar(r) with
(mij)σσ′ of Eq. (3.131). We define the matrix

Mσσ′
ij (r) = ϕ∗i (rσ)ϕj(rσ

′) (6.4)

and see that in terms of this object

V C
ij σσ′

=

ˆ
drMσσ′

ij (r)
(
vxc[n,m](r)− vxc[n0,m0](r)

)
(6.5)

nvar(r) =
∑

(ij)/∈S

∑
σ

Mσσ
ij (r)

∑
k

(
uiσk
∗
ujσk fβ(Ek) + viσk v

jσ
k

∗
fβ(−Ek)

)
. (6.6)

Keeping nfix(r) and mfix(r) fix, Mσσ′
ij (r) for (ij) /∈ S is enough to update the normal state densi-

ties. The standard task to evaluate the exchange correlation potential in several approximations
is implemented in many numerical packages2. To show the feasibility of the approach we per-
form an order of size estimate for Mσσ′

ij (r). A reasonable matrix carrying quantum numbers
(i× j) = (n, n′,k) with states close to the Fermi energy could have the following values: A real
space grid of dimension {r} = O(106), a set of electronic bands (n× n′) = O(102) - and a set of
Bloch vectors close to the Fermi surface {k} = O(101). This means a size of order

Mσσ′
ij (r) = O(100)GByte (6.7)

which is feasible on modern computer systems. Thus we have a realistic scheme to include
competition between the magnetic density and SC in an ab-inito framework.

6.3. Construction of the ∆s Matrix Functional

The functionals yielding the best results in a unsplitted SCDFT are constructed via many-body
perturbation theory using the SSE Eq. (5.77) [54, 55].
We introduce further approximations in Subsection 6.3.1 and present the final form of the SE

as it will be used in the functional. This will lead to a matrix equation for the pair potential
matrix elements.
In Subsection 6.3.2 we compute the SE contributions that arise from the first order phonon-

exchange diagram and in Subsection 6.3.3 we give the equations for the equivalent Coulomb
diagram.
While these SE contributions suffice to calculate the functional expression, we decide to in-

vestigate the SE in a different basis in Subsection 6.3.4. The choice of basis is due to individual
contributions to the inverse GF and the densities. We note that in a very important approxima-
tion to the phononic coupling, we have to drop the contributions from basis vectors containing
τz. Moreover this form makes the solution of the Dyson equation (7.9) in Chapter 7 much easier.
Finally, in Subsection 6.3.5, we derive the equation for the ∆s matrix.

6.3.1. Preparatory: General Procedure and Further Approximations.

As the Many-Body GF is not available without a full, numerically expensive solution of the
Dyson equation, we replace Ḡ(r, r′, ωn) with the SC KS GF ḠKS(r, r′, ωn) on all occurrences

Ḡ→ ḠKS , Σ̄[Ḡ]→ Σ̄[ḠKS] ≡ Σ̄KS . (6.8)

2See for example libxc: http://www.tddft.org/programs/octopus/wiki/index.php/Libxc



6.3. Construction of the ∆s Matrix Functional 63

This is a severe approximation and its effect is not easily understood. While A. Sanna could show
that Ḡ→ ḠKS outside the SE has only a small effect in the non-splitted case, it is known that this
approximation for the SE violates Migdal’s theorem and leads to a systematic underestimation
of the critical temperature [54]. Nevertheless it is of great importance to understand the physics
of the functional resulting from the replacement Eq. (6.8). In analogy to the non-magnetic case
we expect that the results obtained in this way are qualitatively correct in many aspects and
represent the basis of future improvements of the functional. In this work as a first approach
to the generalized spin-splitted case, we rely on the simple replacement throughout the entire
thesis. We are going to discuss approaches to improve the functional in the last part of this
Subsection.

Additional Approximations It has been observed that computing the GW quasi particle band
structure in a metal yields essentially the KS bands (compare Ref. [56, Fig. 2]) and moreover
the densities of the two systems are approximately equal. Thus, at least in the spin degenerate
case, the GW corrections on a KS band structure of a metal can usually be safely neglected. For
practical reason we use a similar assumption for the spin part

ˆ
d(x,x′)

1

β2

∑
n,n′

wRPA(x,x′, ωn−ωn′)GKS(r,x, ωn) · σ0 ·GKS(x,x′ωn′) · σ0 ·GKS(x′, r′, ωn)

≈ 1

β

ˆ
dx
∑
n

GKS(r,x, ωn)·
(
vLSDAxc (x)σ0 − gsµBS ·BLSDA

xc (x)
)
·GKS(x, r′, ωn) . (6.9)

This way we drop the construction of the diagonal KS potential from the SSE.
Moreover the phononic Hartree diagram is neglected. Similar to the electronic Hartree diagram

in Eq. (5.65), it is proportional to τz. Terms like this are zero if particle hole symmetry is present,
i.e. the single particle states are symmetric with their time reversed state about the Fermi energy.
We compute the inverse SC KS GF in the Appendix E with the result

(ḠKS)−1
ij (ωn) = δij

(
i~ωnτ0σ0 −

(εi↑ + ε−i↓
2

)
τzσ0 −

(εi↑ − ε−i↓
2

)
τzσz

)
+δi,−j

(
(iτy)(iσy)<∆s

si + τx(iσy)i=∆s
si

)
. (6.10)

Terms in the SE ∝ τz add to the single particle energies. In other words: The Hartree diagram
changes the Fermi energy (the σ0τz symmetric part) and the single particle spin separation (the
σzτz symmetric part). In general we do not consider such corrections important. In fact, we
will remove all energy asymmetric terms in the equations implemented during this work. The
reason is that for numerical simplicity we want to replace the phononic coupling with an only
phonon-frequency dependent object, the well known Eliashberg function α2F (ω). If this is done
one encounters integrals of the form

∑
k

1
εk
→
´
dε1

ε [54] in all asymmetric terms ∝ τz which are
logarithmically divergent. The physical reason is that computing the change in the Fermi energy
is a global property of the band structure. This means one has to consider how the interaction
changes the dispersion and occupation of states well below (or above) the Fermi level because
the full dispersion has to be integrated to obtain N particles. If one replaces the state depended
coupling with the value at the Fermi level, which is the heart of the α2F (ω) approximation, we
do not obtain reasonable results for Fermi energy shifts. If we wish to include this effects, i.e.
integrate the full coupling, in principle also the phononic Hartree diagram has to be considered
but this is not done in this work.
With the expression for the xc potential Eq. (5.25), inserting these approximations the Sham-
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Schlüter Eq. (5.77) becomes

1

β

ˆ
d(xx′)

∑
n

ḠKS(r,x, ωn) ·
(

0 Φ ·∆s(x,x′)

−
(
Φ ·∆s(x,x′)

)∗
0

)
· ḠKS(x′, r′, ωn) =

=
1

β

ˆ
dx

ˆ
dx′
∑
n

ḠKS(r,x,ωn)·
(
Σ̄KS

ph (x,x′, ωn) + Σ̄KS
Coul(x,x

′, ωn)
)
·ḠKS(x′,r′, ωn) (6.11)

with3 4

Σ̄KS
ph (x,x′, ωn) = − 1

β

∑
n′

∑
qλ

D0
ph(λq, ωn − ωn′)τz

δvscf (x)

δuqλ
·

ḠKS(x,x′, ωn′) · τz
δvscf (x′)

δu−qλ
(6.12)

Σ̄KS
Coul(x,x

′, ωn) = −e
2

β

∑
n′

w(x,x′, ωn − ωn′)τzσ0 ·(
0 FKS(x,x′, ωn′)

FKS†(x,x′, ωn′) 0

)
· τzσ0 (6.13)

We have represented the SC KS system in the basis of normal state KS orbitals. Thus, we apply
a similar representation of Eq. (6.11) in KS orbitals to extract ∆s. Formally, we use the spinor
wavefunctions Eq. (5.37) {ΨKS

iσα} and use the same Nambu and Spin matrix notation for the
expansion coefficients (compare Subsection 5.1.3). Using a symbolic notation the SSE Eq. (6.11)
reads

ḠKS · v̄xc · ḠKS = ḠKS · Σ̄KS · ḠKS , (6.14)

which we solve for the coefficient matrices ∆s contained in v̄xc.

The Role of Eliashberg Theory for SCDFT Due to Migdal’s theorem [48] Eliashberg theory
[44] is essentially correct up to order me/M for the electron-phonon interaction. We discuss the
spin splitted extension to Eliashberg theory in Chapter 7. It provides us with what Monte Carlo
calculations are for normal state DFT: An quasi-exact reference frame for the electron phonon
coupling to parametrize parts of the functionals.
In practice the reliable way to understand the effect of the replacement Ḡ→ ḠKS is to compute

Ḡ(r, r′, ωn) via Many-Body perturbation theory and compare self consistent solutions of both
approaches. While it seems that we loose the advantage of the numerical simplicity of DFT as
compared to Many-Body perturbation theory, it has to be understood that this procedure can
be used once for a reference material (e.g. the free electron gas) to obtain a functional. In fact A.
Sanna et. al.5 used a similar procedure in the SC electron gas to fit a replacement (KS-)GF and
SE in Eq. (6.8) to the Many-Body GF and SE with a small set of parameters. Thus, SCDFT
has assimilated the advantages of Eliashberg theory while keeping its own advantages, here in
particular the easy and numerically cheap inclusion of the Coulomb interaction. This functional
leads to results for real material that are in very good agreement with experiment.

3Note the minus sign is from the Feynman rules where the interaction carries a minus sign
4We are using D0

ph(λq, ωn−ωn′) as short hand for the q−diagonal full object Eq. (5.48), but remember that q′

of Eq. (5.48) is q′ = −q.
5To be published.
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6.3.2. Phononic Exchange SE

The phononic SE matrix elements are computed as

Σ̄
KS

ph
αα′

iσjσ′
(ωn) =

ˆ
dr

ˆ
dr′〈ΨKS

iσα|r〉 · Σ̄s
ph(r, r

′, ωn) · 〈r′|ΨKS
jσ′α′〉 (6.15)

=
1

β

∑
n′qλ

∑
kk′

D0
ph(λq, ωn − ωn′)

(
gλqikσδα,1 − g

λq
kiσδα,−1

)
×

×GKS
kσαk′σ′α′(ωn′)

(
gλ−qk′jσ′δα′,1 − g

λ−q
jk′σ′δα′,−1

)
(6.16)

Where we have used the electron-phonon coupling defined in Eq. (4.1). With the equations for
the GF Eq. (5.40) and the phonon propagator Eq. (5.48), we evaluate the individual Nambu
components of Eq. (6.16) to

Σ̄
KS

ph
1,1

iσjσ′
(ωn) =

∑
qλkk′l

gλqikσg
λ−q
k′jσ′

(
ukσl (uk

′σ′
l )∗Is(~Ωqλ, El, ωn) +

+(vkσl )∗vk
′σ′
l Is(~Ωqλ,−El,ωn)

)
(6.17)

Σ̄
KS

ph
1,−1

iσjσ′
(ωn) = −

∑
qλkk′l

gλqikσg
λ−q
jk′σ′

(
ukσl (vk

′σ′
l )∗Is(~Ωqλ, El, ωn) +

+(vkσl )∗uk
′σ′
l Is(~Ωqλ,−El,ωn)

)
(6.18)

Σ̄
KS

ph
−1,1

iσjσ′
(ωn) = −

∑
qλkk′l

gλqkiσg
λ−q
k′jσ′

(
vkσl (uk

′σ′
l )∗Is(~Ωqλ, El, ωn)

+(ukσl )∗vk
′σ′
l Is(~Ωqλ,−El, ωn)

)
(6.19)

Σ̄
KS

ph
−1,−1

iσjσ′
(ωn) =

∑
qλkk′l

gλqkiσg
λ−q
jk′σ′

(
vkσl (vk

′σ′
l )∗Is(~Ωqλ, El, ωn)

+(ukσl )∗uk
′σ′
l Is(~Ωqλ,−El, ωn)

)
. (6.20)

The Matsubara summation in Is(~Ωqλ, Ek, ωn) is evaluated using that eβi~ων = −1 with the
result

Y1(~Ωqλ, Ek, ωn) =
~2

β

∑
ων

1

i~ων − Ek
1

i~(ωn − ων) + ~Ωqλ
(6.21)

= ~2nβ(~Ωqλ) + fβ(Ek)

~Ωqλ − Ek + i~ωn
(6.22)

Is(~Ωqλ, Ek, ωn) = Y1(~Ωqλ, Ek, ωn)− Y1(−~Ωqλ, Ek, ωn) (6.23)

= ~2nβ(~Ωqλ) + fβ(Ek)

~Ωqλ − Ek + i~ωn
+ ~2 fβ(Ek)− 1− nβ(~Ωqλ)

~Ωqλ + Ek − i~ωn
(6.24)

Note also that Y1(−~Ωqλ, Ek, ωn) =
(
Y1(~Ωqλ,−Ek, ωn)

)∗ and thus

Is(~Ωqλ, Ek, ωn) = Y1(~Ωqλ, Ek, ωn)−
(
Y1(~Ωqλ,−Ek, ωn)

)∗
. (6.25)

Singlet SC in the KS System If we disregard triplet SC and non-collinear magnetism as
discussed in the Subsection 3.5.1, inserting the corresponding KS GF Eq. (5.42) modifies the
Eqs. (6.17) - (6.20) to
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Σ̄
KS

ph
1,1

iσjσ′
(ωn) = δσσ′

∑
qλkk′l

gλqikσg
λ−q
k′jσ

(
uklσu

k′∗
lσ Is(~Ωqλ,Elσ, ωn)+vk∗lσ v

k′
lσIs(~Ωqλ,−El,−σ, ωn)

)
(6.26)

Σ̄
KS

ph
1,−1

iσjσ′
(ωn) = −δσ,−σ′

∑
qλkk′l

gλqikσg
λ−q
jk′,−σ

(
uklσv

k′∗
l−σIs(~Ωqλ,Elσ, ωn)+vk∗lσ u

k′
l−σIs(~Ωqλ,−El−σ, ωn)

)
(6.27)

Σ̄
KS

ph
−1,1

iσjσ′
(ωn) = −δσ,−σ′

∑
qλkk′l

gλqkiσg
λ−q
k′j,−σ

(
vklσu

k′∗
l−σIs(~Ωqλ,El−σ, ωn)+uk∗lσ v

k′
l−σIs(~Ωqλ,−Elσ, ωn)

)
(6.28)

Σ̄
KS

ph
−1,−1

iσjσ′
(ωn) = δσσ′

∑
qλkk′l

gλqkiσg
λ−q
jk′σ

(
vklσv

k′∗
lσ Is(~Ωqλ,El−σ, ωn)+uk∗lσ u

k′
lσIs(~Ωqλ,−Elσ, ωn)

)
. (6.29)

SDA Furthermore, assuming the SDA, Subsection 3.5.2, with the corresponding form of the
KS GF given in Eq. (5.43), the Eqs. (6.17) - (6.20) reduce to

Σ̄
KS

ph
1,1

iσjσ′
(ωn) = δσσ′

∑
qλkα

gλqikσg
λ−q
kjσ |ukαkσ |2Is(~Ωqλ, E

α
kσ, ωn) (6.30)

Σ̄
KS

ph
1,−1

iσjσ′
(ωn) = −δσ,−σ′

∑
qλkα

gλqikσg
λ−q
j,−k,−σu

kα
kσ(v−kαk−σ )∗Is(~Ωqλ, E

α
kσ, ωn) (6.31)

Σ̄
KS

ph
−1,1

iσjσ′
(ωn) = −δσ,−σ′

∑
qλkα

gλqkiσg
λ−q
−k,j,−σ(ukαkσ)∗v−kαk−σ Is(~Ωqλ,−Eαkσ, ωn) (6.32)

Σ̄
KS

ph
−1,−1

iσjσ′
(ωn) = δσσ′

∑
qλkα

gλqkiσg
λ−q
jkσ |ukαkσ |2Is(~Ωqλ,−Eαkσ, ωn) . (6.33)

6.3.3. Coulomb SE

With the splitting of the effective interaction into dynamic and static parts (compare Sec. 4.2)
we find that the matrix elements of the combination vertex, interaction, vertex (see Section 5.2
and especially Fig. 5.1):

(6.34)

can be computed as∑
α1α′1

∑
µµ′

〈ΨKS
iσα|ΓCoul|ΨKS

kµα1
〉〈ΨKS

kµα1
|w(ωn − ωn′)|ΨKS

k′µ′α′1
〉〈ΨKS

k′µ′α′1
|ΓCoul|ΨKS

jα′σ′〉

≡
[ˆ ∞

0

dω
π

( 2ω

(ωn−ωn′)2 + ω2
− 2

ω

)( Mdyn
ikk′j(ω) −Mdyn

ikjk′(ω)

−Mdyn
kik′j(ω) Mdyn

kijk′(ω)

)]
ασα′σ′

+

+

[(
W stat
ikk′j −W stat

ikjk′

−W stat
kik′j W stat

kijk′

)]
ασα′σ′

. (6.35)

For the definition of Mdyn and W stat see Eqs. (4.15) and (4.14), respectively. As discussed
before in the Subsection 6.3.1 we do not consider the Nambu-diagonal components of
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Σ̄KS
Coul ij(ωn) and compute the two non-vanishing spin matrices

Σ̄
KS

Coul
1,−1
iσjσ′(ωn) = −

∑
kk′l

(ˆ ∞
0

dω
π

(
ukσl (vk

′σ′
l )∗Mdyn

ikjk′σσ′
(ω)Y2(~ω,El, ωn) +

+(vkσl )∗uk
′σ′
l Mdyn

ikjk′σσ′
(ω)Y2(~ω,−El, ωn)

)
+

+ukσl (vk
′σ′
l )∗W stat

ikjk′σσ′
fβ(El) + (vkσl )∗uk

′σ′
l W stat

ikjk′σσ′
fβ(−El)

)
(6.36)

Σ̄
KS

Coul
−1,1
iσjσ′(ωn) = −

∑
kk′l

(ˆ ∞
0

dω
π

(
vkσl (uk

′σ′
l )∗Mdyn

kik′jσσ′
(ω)Y2(~ω,El, ωn) +

+(ukσl )∗vk
′σ′
l Mdyn

kik′jσσ′
(ω)Y2(~ω,−El, ωn)

)
+

+vkσl (uk
′σ′
l )∗W stat

kik′jσσ′
fβ(El) + (ukσl )∗vk

′σ′
l W stat

kik′jσσ′
fβ(−El)

)
(6.37)

where
Y2(~ω,E, ωn) = Is(~ω,E, ωn)− 2~

ω
fβ(E) . (6.38)

Singlet SC in the KS system Similar as for the phononic SE inserting the singlet KS GF Eq.
(5.42) casts the Eqs. (6.36) and (6.37) into

Σ̄
KS

Coul
1,−1
iσjσ′(ωn) = −δσ,−σ′

∑
kk′l

(ˆ ∞
0

dω
π

(
uklσ(vk

′
l−σ)∗Mdyn

ikjk′σ,−σ
(ω)Y2(~ω,Elσ, ωn)

)
+

+(vklσ)∗uk
′
l−σM

dyn
ikjk′σ,−σ

(ω)Y2(~ω,−El−σ, ωn)
)

+

+uklσ(vk
′
l−σ)∗W stat

ikjk′σ,−σfβ(Elσ) + (vklσ)∗uk
′
l−σW

stat
ikjk′σ,−σfβ(−El−σ)

)
(6.39)

Σ̄
KS

Coul
−1,1
iσjσ′(ωn) = −δσ,−σ′

∑
kk′l

((ˆ ∞
0

dω
π
vklσ(uk

′
l−σ)∗Mdyn

kik′jσ,−σ
(ω)Y2(~ω,El−σ, ωn) +

+(uklσ)∗vk
′
l−σM

dyn
kik′jσ,−σ

(ω)Y2(~ω,−Elσ, ωn)
)

+

+vklσ(uk
′
l−σ)∗W stat

kik′jσ,−σfβ(El−σ) + (uklσ)∗vk
′
l−σW

stat
kik′jσ,−σfβ(−Elσ)

)
(6.40)

SDA Performing the SDA (Section 3.5.2) in the SC KS system results in a further simplified
form

Σ̄
KS

Coul
1,−1
iσjσ′(ωn) = −δσ,−σ′

∑
kα

ukαkσv
−kα∗
k−σ

(
W stat
ikj,−kσ,−σfβ(Eαkσ) +

+

ˆ ∞
0

dω
π
Mdyn
ikj,−kσ,−σ

(ω)Y2(~ω,Eαkσ, ωn)
)

(6.41)

Σ̄
KS

Coul
−1,1
iσjσ′(ωn) = −δσ,−σ′

∑
kα

ukα∗kσ v
−kα
k−σ

(
W stat
ki,−k,jσ,−σfβ(−Eαkσ) +

+

ˆ ∞
0

dω
π
Mdyn
ki,−k,jσ,−σ

(ω)Y2(~ω,−Eαkσ, ωn)
)

(6.42)

6.3.4. Symmetrized Components of the SE

Note that the Dyson Eq. (5.26) may be written as Ḡ =
(
(ḠKS)−1 +Σ̄s

)−1 so we have to compare
the SE with the inverse KS GF and it is beneficial to represent both quantities in the same basis.
Because the densities are chosen this way, the obvious basis in spin space are the vectors (σ0,S)
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a BV SE part a BV SE part a BV SE part a BV SE part

1 τ0σ0 Σs
ω 5 τzσ0 Σs

ε 9 τx(iσy) Σs
=∆ 13 (iτy)(iσy) Σs

<∆

2 τ0σx Aωx 6 τzσx Σs
Jx

10 τx(−σz) ΣTx
=∆ 14 (iτy)(−σz) ΣTx

<∆

3 τ0σy Aωy 7 τzσy Σs
Jy

11 τx(−iσ0) Σ
Ty
=∆ 15 (iτy)(−iσ0) Σ

Ty
<∆

4 τ0σz Aωz 8 τzσz Σs
J 12 τx(σx) ΣTz

=∆ 16 (iτy)(σx) ΣTz
<∆

Table 6.1.: Basis vector (BV) decomposition of the SE. We index the basis with the label a =
(1, . . . , 16). Symmetrized terms highlighted with a light red are supposed to vanish for a collinear
singlet SC. From the remaining set, yellow highlighted parts break particle-hole symmetry.

and Φ on the Nambu diagonal and off diagonal, respectively. For the choice of basis in the Nambu
part, we note that from the equation of motion Eq. (5.24) we expect a frequency part ∝ τ0 and
the Hamiltonian, energy part ∝ τz. Recall Subsection 3.4.1 on the Nambu KS Hamiltonian where
we noted that the single particle energy is ∝ τz because of the Fermionic nature of the electrons.
On the Nambu off-diagonal we choose τx and (iτy) because this splits the pair potential into
imaginary and real part (compare the final form of the Nambu KS Hamiltonian Eq. (3.99)).
A full description in the non-collinear case requires 16 unit vectors, that we label with a =

(1...16). They, as well as their corresponding scalar SE part, are given in Table 6.1. Note that
the basis vectors as given in Table 6.1 are not normalized to 1. The properly normalized change
of basis reads

(SE part a) =
1

4

∑
αα′σσ′

(Basis vector a)αα
′

σσ′ (Σ̄
KS)αα

′
σσ′ (6.43)

The name of the SE parts is due to their behavior as of parts of the inverse GF. As an example
consider the basis vector τ0σ0. The inverse SDA KS GF has a contribution along this direction of
δij i~ωn (see Appendix E, Eq. (E.15)) and Σs

ω adds to this Matsubara frequency. The equations
for each SE part of Table 6.1 are easily written down with the above Eq. (6.43) and the equations
for the SE of the Subsections 6.3.2 and 6.3.3. We save space and do this only later in the thesis
in some special cases where the number of terms is significantly reduced.
The SE parts Aw(x,y,z), if they do not vanish, are certainly an interesting feature. We can

interpret them in a way that they act as a spin dependent frequency renormalization which cannot
be present in a non-interacting GF, or that they appear in the Hamiltonian as an imbalance of
spin transposition. For the latter see the equation for v̄xc Eq. 5.25 which as a term ∝ τ0(<S) ·Bxc

that results from the spin transposition in the hole channel in going to the Nambu notation (see
Subsection 3.4.1). Later, in Chapter 7, we come back to the term Awz and we will see that it
vanishes if the coupling is equal for both spin channels.
Note that the cell color red indicates that its contribution should not be present for a singlet,

collinear SC. We find, however, that not all of those terms are indeed zero by construction even
though the decoupled SC KS system is singlet and collinear. Whether or not it is correct to
drop them is not immediately clear. In the numerical solutions in Chapter 8 we find that their
effect is very small. Moreover yellow highlighted terms break particle-hole symmetry (these are
all terms behaving as τz).

6.3.5. The Equation for ∆s

Using the representation of SE components Eq. (6.43) in the previous Subsection, we can now
rewrite Eq. (6.14):

ḠKS · v̄xc · ḠKS ≡
∑
a

(SE part a)ḠKS · (Basis vector a) · ḠKS . (6.44)
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The matrix elements of the pair potential are contained in the term ḠKS · v̄xc · ḠKS. We want
to rewrite this term in order that we have a tensor in singlet/triplet and Nambu space P that
satisfies the following equation:

ḠKS · v̄xc · ḠKS ≡ P ·
(

0 ∆s

∆s† 0

)
.

This allows to multiply the Sham-Schlüter Eq. (6.44) with the inverse of P (assuming that the
inverse exists) from the left and have an explicit equation for the pair potential matrix elements.
With the Eqs. (5.72) and (5.74) we identify

P
ijα1α′1
kk′αα′ =

1

β

∑
n

∑
µµ′

∑
σσ′

ḠKS
iασkµα1

(ωn)
(
δα1,1δα′1,−1Φµµ′ + δα1,−1δα′1,1Φ

∗
µµ′

)
⊗

⊗
(
δα,1δα′,−1Φ

∗
σσ′ + δα,−1δα′,1Φσσ′

)
ḠKS
k′α′1µ

′jσ′α′(ωn) . (6.45)

Furthermore, we write the right hand side of Eq. (6.44) as R which is the sum of all 16 basis
contributions Ra. Each contribution in turn is a Nambu matrix with singlet/triplet vectors on
the off diagonal and (σ0,S) symmetrized components on the diagonal

(Ra)
αα′

kk′ ≡
1

β

∑
n

∑
ij

(SE part a)ij(ωn)
∑
σσ′

(
δα,1δα′,1

(
σ0

S

)
σσ′

+

+δα,1δα′,−1Φ
∗
σσ′ + δα,−1δα′,1Φσσ′ + δα,−1δα′,−1

(
σ0

S∗

)
σσ′

)
×

×
[
ḠKS
ki (ωn) · (Basis vector a) · ḠKS

jk′(ωn)
]
ασα′σ′

(6.46)

The calculation of this objects is straight forward but tedious. We do not give the results in this
thesis6. We summarize in a matrix equation for ∆s in singlet/triplet and KS space(

0 ∆s

∆s† 0

)
= P−1 ·

∑
a

Ra . (6.47)

If the distinction between ∆s and ∆s† is unimportant, as for example in the SDA (∆s
s may be

chosen real, compare Subsection 3.6.2), it is easier to extract ∆s from the (1,−1) component
of Eq. (6.44) because we have to compute less individual terms. In the following we are mainly
concerned with this special case. In earlier work on SCDFT [54, 57] the SSE equivalent to
Eq. (6.44) was directly calculated with the GF in the Decoupling Approximation and ∆s

s was
extracted from the (1,−1) component.

6.4. SDA: The Gap Equation.

As we have noted in the preceding Subsection 6.3.5 (∆s
s can be chosen real, see Subsection 3.6.2)

that we expect to being able to extract ∆s
s from the (1,−1) component of the Sham-Schlüter

Eq. (6.44). As a preparatory for this Section, in Subsection 6.4.1 we thus further simplify the
Sham-Schlüter connection to the (1,−1) part of Eq. (6.44), relevant for the SDA. Then, in
Subsection 6.4.2, we interpret the SSE as an operator that maps ∆s

s to zero. We compute
contributions to the operator in the Subsections 6.4.3, 6.4.4 and 6.4.5 before we finalize in the
Subsection 6.4.6 with the gap equation of SpinSCDFT.
6As part of this work functional contributions beyond the SDA were derived but not implemented in the computer
code. Since the expressions are huge and do not benefit clearity we made the decision not to present them
here. Moreover the terms calculated are only the parts that add to the (1,−1) component of the Eq. (6.44).
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6.4.1. The (1,−1) Part of the SSE

Multiplying out the spin and Nambu matrix on the left hand side of Eq. (6.44), 1
β

∑
n

∑
kk′ Ḡ

KS
ik (ωn)·

(v̄xc)kk′ · ḠKS
k′j(ωn) we find that the potential is hidden in the terms (using the symbolic notation)

FKS∆†sFKS and GKS∆sG
KS†, that we write as∑

σσ′

Φ∗1σσ′〈~ϕ∗iσ|GKS∆sG
KS†|~ϕ−iσ′〉 ≡

(1
β

∑
nµµ′σσ′

GKS
iσiµ(ωn)G

KS†
−iµ′,−iσ′(ωn)Φ

∗
1σσ′Φ

∗
1µµ′

)
∆s
si (6.48)

≡ M i,−i
i,−i∆

s
si (6.49)∑

σσ′

Φ∗1σσ′〈~ϕ∗iσ|FKS∆†sF
KS|~ϕ−iσ′〉 ≡

(1
β

∑
nµµ′σσ′

FKS
iσ,−iµ(ωn)F

KS
iµ′,−iσ′(ωn)Φ

∗
1σσ′Φ1µµ′

)
∆s
s
∗
i (6.50)

≡ M ′
i,−i
−i,i∆

s
s
∗
i (6.51)

On the right hand side of Eq. (6.44) with the SE diagrams, we distinguish terms involving the
Nambu diagonal SE Ds

i,−i
7 and the Nambu off diagonal Csi,−i. According to Table (6.1) these are

given by

Ds ≡
∑

a=1,...,8

Φ∗1 · (SE part a)
[
ḠKS · (Basis vector a) · ḠKS

]
α=1,α′=−1

(6.52)

Cs ≡
∑

a=9,...,16

Φ∗1 · (SE part a)
[
ḠKS · (Basis vector a) · ḠKS

]
α=1,α′=−1

(6.53)

We arrive at the (1,−1) part of Eq. (6.44) for ∆s in the SDA

M i,−i
i,−i∆

s
si +M ′

i,−i
−i,i∆

s
s
∗
i = Ds

i,−i + Csi,−i . (6.54)

Note that Ds and Cs have non-vanishing matrix elements i, j 6= i,−i because the SE is not
intrinsically diagonal. Because they would invalidate the SDA, these matrix elements must be
dropped. A similar situation is encountered in Chapter 7 where we discuss Many-Body approach.
We see that dropping those matrix elements leads to very good results in general. In the next
paragraph we give the terms Ds and Cs in more detail, pointing out that half of the contributions
are zero.

Ds and Cs in detail For Ds , we distinguish functional contributions that include only one
SE part a = 1, . . . , 8 from the first two columns in Table 6.1. Using m ∈ {0, x, y, z} these
contributions are

D(±,m)
s i,j =

∑
nkk′

∑
σσ′

∑
µµ′

(Φ∗1)σσ′
σmµµ′

4

(
Σ̄

KS1,1
kµk′µ′(ωn)± Σ̄

KS−1,−1
kµk′µ′(ωn)

)
×

×
[(
GKS
ik (ωn) · σm · FKS

k′j(ωn)± FKS
ik (ωn) · σm ·GKS

k′j
†(ωn)

)]
σσ′

(6.55)

Here (±,m) corresponds to the basis vectors a = 1, . . . , 4 (+, 0, x, y, z) and a = 5, . . . , 8 (−, 0, x, y, z).
For example D

(+,0)
s i,j corresponds to a = 1 in Table 6.1, namely the basis vector τ0σ0 and SE Σs

ω.
Note that D(±,x,y)

s are zero. This can be see first noting that FKS
kk′(ωn) is off diagonal in spin (see

Eq. (5.41) and Eq. (5.43)) as well as (Φ∗1)σσ′ . Then, σm must not be purely off diagonal or D(±,m)
s i,j

is zero. Thus, the only non-vanishing contributions are

Ds
i,−i = D(+,0)

s i,−i + D(−,0)
s i,−i + D(+,z)

s i,−i + D(−,z)
s i,−i (6.56)

7The name D refers to earlier work on SCDFT[54], where the Nambu-diagonal phonon contribution was called
D Term.
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Similarly for Cs (m = {s, tx, ty, tz}, ±,m corresponds to the basis vectors a = 9, . . . , 12 for
+, s . . . tz and a = 13, . . . , 16 for −, s . . . tz of Table 6.1)

C
s(±,m)
i,−i =

∑
nkk′

∑
µµ′

∑
σσ′

(Φ∗1)σσ′
Φmµµ′

4

(
Σ̄

KS1,−1
kµk′µ′(ωn)± Σ̄

KS−1,1
kµk′µ′(ωn)

)
×

×
[(
GKS
ik (ωn) · Φm ·GKS

k′j
†(ωn)± FKS

ik (ωn) · Φm · FKS
k′j(ωn)

)]
σσ′

(6.57)

where we note along the same lines that Cs(±,m)
i,−i is zero for m = ty, tz and

Csi,−i = C
s(+,s)
i,−i + C

s(−,s)
i,−i + C

s(+,tx)
i,−i + C

s(−,tx)
i,−i . (6.58)

We evaluate the formulas forM ,M ′,Ds
i,−i and Csi,−i in the Subsections 6.4.3, 6.4.4 and 6.4.5 after

introducing the Sham-Schlüter operator in Subsection 6.4.2.

6.4.2. The Sham-Schlüter Operator

Within the SDA we use the u, v and E representation because it is more convenient. Note that
we could also write the equations in terms of ∆s

si directly. This is fundamentally different from
the case before introducing the SDA where u, v and E are numerical solutions of the KSBdG
equations. The explicit dependence on the potential extends to the diagram contributions Ds

i,−i
and Csi,−i so there is no uniquely defined way to solve the SSE for the potential ∆s

s because all
appearing terms equally depend on ∆s

s. We define the Sham-Schlüter operator Sβ8 that is the
result of all contributions to the SSE (6.54) written to one side of the equation and pulling out
∆s
s. This operator is a non-linear functional of the potential ∆s

s

Sβ[∆s
s] ·∆s

s = 0 (6.59)

As contributions to Sβ we distinguish SM
β that is due to M i,−i

i,−i∆
s
si + M ′i,−i−i,i∆

s
s
∗
i and SD

β that
is due to Ds

i,−i, only including phonon contributions because the Coulomb diagrams have been
removed from the Nambu diagonal (see the discussion at the beginning of Section 6.3). In turn
SC
β = SC

phβ + SstatC
Coulβ + SdynC

Coulβ is due to Csi,−i which has phononic and static and dynamic Coulomb
contributions.

6.4.3. Functional Contribution M and M ′

Within the SDA the terms Eqs. (6.49) and (6.51) are straight forward to calculate using the
components of the KS GF in the SDA Eq. (5.43) and the analytic Matsubara summation given
in the Appendix D. The results are

M i,−i
i,−i =

∑
σαα′

|uiαiσ |2|v−iα
′

i−σ |2Ps(Eαiσ, Eα
′

iσ ) (6.60)

M ′
i,−i
−i,i =

∑
σαα′

uiαiσ(v−iαi−σ )∗uiα
′

iσ (v−iα
′

i−σ )∗Ps(E
α
iσ, E

α′
iσ ) (6.61)

After a little algebra we find

M ′
i,−i
−i,i∆

s
s
∗
i = ∆s

si

∑
σαα′

sign(α′)sign(α)|uiαiσ |2|v−iαi−σ |2Ps(Eαlσ, Eα
′

iσ ) . (6.62)

8The subscript β represents the temperature dependence of Sβ .
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The disappearence of ∆s
s
∗
i reflects the fact that ∆s

si can be chosen real and thus the (1,−1)

component of the SSE contains all information. We introduce SM
β ij

= −
(
M i,−i
i,−i +M ′i,−i−i,i

∆s
s
∗
i

∆s
si

)
δij

that multiplies ∆s
si on the left hand side of the SSE (6.54)

SM
β ij

= −δij
∑
σ

((εiσ + ε−i−σ)2

|E+
iσ − E−iσ|2

Ps(E
+
iσ, E

−
iσ) + 2|ui+iσ |2|v−i+i−σ |2

(
Ps(E

+
iσ, E

+
iσ) + Ps(E

−
iσ, E

−
iσ)
))
.

(6.63)

6.4.4. Functional Contribution Ds

Evaluating the equation (6.56) is straight forward: We use 1) the KS GF in the SDA Eq. (5.43)
2) the Nambu diagonal SE parts Eqs. (6.30) and (6.33) and 3) use the analytic Matsubara
summations of the Appendix D. We obtain

Ds
i,−i =

1

2

∑
qλ

∑
kµσ

∑
α1α2α3

(
1 + sign(µ)sign(σ)

)sign(α3)∆s
si

|E+
iσ − E−iσ|

(
|uiα1
iσ |2|ukα2

kµ |2g
λq
ikµg

λ−q
kiµ

+|v−kα2
k−µ |2|v−iα1

i−σ |2g
λq
−k,−i,−µg

λ−q
−i,−k,−µ

)
L(Ωqλ, E

α1
iσ , E

α2
kµ , E

α3
iσ ) (6.64)

The Matsubara integral L, together with symmetries and various limiting cases, is given in
Appendix D. We see

(
1 + sign(µ)sign(σ)

)
= 2δσµ and introduce SD

β ij
= δijD

s
i,−i/∆

s
si with the

result

SD
β ij

= δij
∑
qλ

∑
kσ

∑
α1α2α3

sign(α3)

|E+
iσ − E−iσ|

(
|uiα1
iσ |2|ukα2

kσ |2g
λq
ikσg

λ−q
kiσ +

+|v−kα2
k−σ |2|v−iα1

i−σ |2g
λq
−k,−i,−σg

λ−q
−i,−k,−σ

)
L(Ωqλ, E

α1
iσ , E

α2
kσ , E

α3
iσ ) (6.65)

For later use we also mention the formula if we drop the contributions of the second column in
Table 6.1, i.e. exclude SE contributions behaving as τz9

DPHS
i,−i = D(+,0)

s i,−i + D(+,z)
s i,−i , (6.66)

which leads to

SD
β

PHS

ij
=

1

2
δij
∑
qλ

∑
kσ

∑
α1α2α3

sign(α3)

|E+
iσ − E−iσ|

((
|uiα1
iσ |2|ukα2

kσ |2g
λq
ikσg

λ−q
kiσ +

+|v−kα2
k−σ |2|v−iα1

i−σ |2g
λq
−k,−i,−σg

λ−q
−i,−k,−σ

)
L(Ωqλ, E

α1
iσ , E

α2
kσ , E

α3
iσ ) +

+
(
|uiα1
iσ |2|ukα2

kσ |2g
λq
kiσg

λ−q
ikσ +

+|v−kα2
k−σ |2|v−iα1

i−σ |2g
λq
−i,−k,−σg

λ−q
−k,−i,−σ

)
L(Ωqλ, E

α1
iσ ,−Eα2

kσ , E
α3
iσ )
)
. (6.67)

6.4.5. Functional Contribution Cs

We evaluate the Eq. (6.58) seperately for the Coulomb and phonon terms along the lines of
Subsection (6.4.4). This means we use 1) the KS GF in the SDA Eq. (5.43) 2) the Nambu off
diagonal SE parts (phonon) Eqs. (6.31) and (6.32) or (Coulomb) Eqs. (6.41) and (6.42) and
3) use the analytic Matsubara summations of the Appendix D. For brevity we directly give the
results in terms of the Sham-Schlüter operator SC

β .

9The name is chosen with a superscript PHS that indicates Particle-Hole Symmetric.
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Phonon Part We arrive at

SC
phβkk′

= −
∑
qλσ

∑
α1α2α3

gλqkk′σg
λ−q
−k,−k′,−σ

sign(α2)|E+
k′σ−E−k′σ|

(
|ukα1
kσ |2|v−kα3

k−σ |2 +

+ukα1
kσ v

−kα1∗
k−σ ukα3

kσ v
−kα3∗
k−σ

∆s
s
∗
k′

∆s
sk′

)
L(Ωqλ, E

α1
kσ , E

α2
k′σ, E

α3
kσ) . (6.68)

Here we have included intermediate triplet contributions C
s(+,tx)
i,−i and C

s(−,tx)
i,−i into to the func-

tional. Whether this is sensible is not immediately clear, but we will see in Chapter 8 that the
differences are tiny. For a further discussion we also mention the result if Cs(±,tx)

phi,−i is dropped
(note a sum over spin µ that is not present in Eq. (6.68)), that reads

SsCphβkk′ = −1

2

∑
qλσµ

∑
α1α2α3

gλqkk′µg
λ−q
−k,−k′,−µ

sign(α2)|E+
k′µ−E−k′µ|

(
|ukα1
kσ |2|v−kα3

k−σ |2+

+ukα1
kσ v

−kα1∗
k−σ ukα3

kσ v
−kα3∗
k−σ

∆s
s
∗
k′

∆s
sk′

)
L(Ωqλ, E

α1
kσ , E

α2
k′µ, E

α3
kσ) . (6.69)

Coulomb part The approach for the Coulomb part is very similar. We note that with the
symmetry of Eq. (4.17) we may write it as

SstatC
Coulβkk′

= −
∑
σ

∑
α1α2α3

sign(α2)

|E+
k′σ − E−k′σ|

(
|ukα1
kσ |2|v−kα3

k−σ |2W stat
kk′,−k,−k′σ,−σ

+ukα1
kσ v

−kα1∗
k−σ ukα3

kσ v
−kα3∗
k−σ

∆s
s
∗
k′

∆s
sk′
W stat
kk′,−k,−k′

∗
σ,−σ

)
LW (Eα1

kσ,E
α2
k′σ,E

α3
kσ) (6.70)

SdynC
Coulβkk′

= −
ˆ ∞

0

dω
π

∑
σ

∑
α1α2α3

sign(α2)

|E+
k′σ − E−k′kσ|

(
|ukα1
kσ |2|v−kα3

k−σ |2Mdyn
kk′,−k,−k′σ,−σ

(ω)

+ukα1
kσ v

−kα1∗
k−σ ukα3

kσ v
−kα3∗
k−σ

∆s
s
∗
k′

∆s
sk′
Mdyn
kk′,−k,−k′

∗
σ,−σ

(ω)
)
LM (ω,Eα1

kσ,E
α2
k′σ,E

α3
kσ) .(6.71)

The functions LM and LW are also defined in the Appendix D. Dropping intermediate triplet
parts we obtain SstatsC

Coulβ kk′
and SdynsC

Coulβ kk′
which features a spin sum similar to Eq. (6.69).

6.4.6. The Gap Equation

Collecting the terms we write Eq. (6.59) as

Sβ[∆s
s] ·∆s

s =
∑
k′

(SM
β kk′

+ SD
β kk′

+ SC
phβkk′

+ SstatC
Coulβkk′

+ SdynC
Coulβkk′

)∆s
sk′ = 0 . (6.72)

One common method to solve a non-linear equation of this type is to use an invertible splitting
matrix Bkk′ . Doing so, we arrive at the non-linear gap equation of SpinSCDFT

0 = (SM
β + SD

β + SC
phβ + SstatC

Coulβ + SdynC
Coulβ +B −B) ·∆s

s (6.73)

∆s
s = B−1 · (SM

β + SD
β + SC

phβ + SstatC
Coulβ + SdynC

Coulβ +B) ·∆s
s (6.74)

Taking B = −SM
β leads directly to the earlier SCDFT gap equation [21, 57, 54] in the spin

degenerate limit. In fact, in all earlier work on SCDFT the problem was interpreted directly in
this fix-point formulation with fixed B = −SM

β . The best choice for B makes the spectrum of the
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non-linear operator B−1 · (SM
β +SD

β +SC
phβ +SstatC

Coulβ +SdynC
Coulβ +B) the most contracting [58], i.e. all

its eigenvalues |λi[∆s
s]| � 1 which ensures a quick convergence to the fixed point that poses the

solution to the SSE. Bad choices may prevent to find the solution even if it exists. Note that one
may always solve the fixed point problem with the inverse operator ∆s

s = Sβ ·∆s
s ⇔ S−1

β ·∆s
s = ∆s

s.
Thus, |λi[∆s

s]| � 1 is also a good choice in this sense.

6.5. The Linearized Gap Equation

From the BCS model Chapter 2 we know that for large magnetic fields the SC transition is of
first order, so an arbitrarily small solution for the SC order parameter χ does not exist. In this
regime a linearization does not lead to meaningful results.
Given that we are in a regime where the SC transition is second order, χ vanishes continuously

when approaching the critical temperature. We have to investigate whether this continuous van-
ishing of χ translates into a continuous vanishing of ∆s

s. We find this to be true, mathematically,
in Subsection 6.5.1 although for a finite magnetic field the dependence of χs on ∆s

s becomes weak
at the Fermi level. Still we conclude that we can compute Tc from the small ∆s

s limit of Sβ in a
fairly large regime. It is important to study the linear equation because, numerically and ana-
lytically, it is much simpler. That is of tremendous value not only in the implementation where
one has to compare to previous results that were almost all obtained from a linear equation.
We discuss in Subsection 6.5.2 how the main ingredient to the non-linear Sham-Schlüter op-

erator Sβ of Eq. (6.59) the |ukαkσ |2, |v−kαk−σ |2 and Eαkσ behave in the small ∆s
s limit.

Then, in Subsection 6.5.3 we report the small ∆s
s limits of the individual terms in Eq. (6.72)

that contribute to Sβ .

6.5.1. Implication Small χs(r, r′) to Small ∆s
si

Consider the connection density to potential (easily derived in the SDA with the use of Eq. (3.132)
and Eq. (3.128))

χs(r, r
′) =

∑
iσ

∆s
si

fβ(E+
iσ)− fβ(E−iσ)

|E+
iσ − E−iσ|

ϕi(rσ)ϕ−i(r
′,−σ) (6.75)

To conclude a continuous vanishing of ∆s
si we need to show fβ(E+

iσ)−fβ(E−iσ)

|E+
iσ−E

−
iσ |

6= 0 independent

of ∆s
si. This is shown with A = εiσ−ε−i−σ

2 and B =
√( εiσ+ε−i−σ

2

)2
+ |∆s

si|2 ≥ 0. Then
fβ(E+

iσ)−fβ(E−iσ)

|E+
iσ−E

−
iσ |

reads

fβ(A+B)− fβ(A−B)

2B
= −tanh(βB)

2B

(
cosh(βB)

cosh(βB) + cosh(βA)

)
< 0 B 6= 0 (6.76)

and, second, we find

lim
B→0

fβ(A+B)− fβ(A−B)

2B
= −β

2

1

cosh(βA)
< 0 q.e.d. . (6.77)

We may simplify the search for Tc to the condition that the matrix Sβ[∆s
s = 0] of Eq. (6.59)

be singular in the regime where the transition is of second order. We note a problem that for
A > B and sufficiently low temperatures where βA� 1 the translation lim|∆|→0 → lim|χ|→0 will

become at least numerically problematic since fβ(E+
iσ)−fβ(E−iσ)

|E+
iσ−E

−
iσ |

is exponentially small in the regime
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Figure 6.1.: Sketch of the function fβ(A+B)−fβ(A−B)
2B multiplying ∆s

si into the coefficients for
χs(r, r

′).

E+
iσ−E−iσ ≈ 0, i.e. numerically zero. We sketch the function in Fig. 6.1 . In the zero temperature

limit the function approaches zero in the B � A region. This can cause fundamental problems
because for a finite magnetic field the density depends only weakly on the value of ∆s

si at the
Fermi level.

6.5.2. Small ∆s
s Behavior of |ukαkσ |2, |v−kαk−σ |2 and Eα

kσ

Note that for a straight forward solution we should expand all quantities in the absolute value
of that gap, because properties as Eαkµ are not analytic in ∆s

s and thus not expandable in the
complex sense. As an example we see that the Bogoliubov eigenvalue behaves as

Eαkσ =
εkσ − ε−k−σ

2
+sign(α)|εkσ + ε−k−σ

2
|+ sign(α)2|∆s

sk|2
|εkσ + ε−k−σ|

+O
(

8|∆s
sk|4

|εkσ + ε−k−σ|3
)

)
(6.78)

This points out another problem with the series of Eαkσ in |∆s
sk| when |εkσ + ε−k−σ| ≤ |∆s

sk|
which is the result of the convergence limitations of the Taylor series for the square root. Note
however that the k space region where the series fails becomes arbitrary small at the critical
temperature where by assumption |∆s

sk| → 0. We use the notation of Marques [54]: Linearized
terms are given with a breve on top for example

Ĕαkσ =
εkσ − ε−k−σ

2
+ sign(α)|εkσ + ε−k−σ

2
| . (6.79)

Then

lim
|∆s
sk|→0

|ukαkσ |2 =
| εkσ+ε−k−σ

2 + sign(α)| εkσ+ε−k−σ
2 ||

|εkσ + ε−k−σ|
= δα,sign(εkσ+ε−k−σ) (6.80)

lim
|∆s
sk|→0

|v−kαk−σ |2 = lim
|∆s
sk|→0

|Eαkσ − εkσ|
|E+

kσ − E−kσ|
= δα,−sign(εkσ+ε−k−σ) . (6.81)

If we evaluate Ĕ±sign(εkσ+ε−k−σ)
kσ =

εkσ−ε−k−σ
2 ± εkσ+ε−k−σ

2 we obtain either εkσ for + or −ε−k−σ
for -. Also we see that

lim
|∆s
sk|→0

|ukαkσ |2|v−kαk−σ |2 = lim
|∆s
sk|→0

ukαkσv
−kα
k−σ

∗
= 0 (6.82)
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6.5.3. The Linear Sham-Schlüter Operator

Using the symmetry ∆s
si ≡ ∆s

si,−i = ∆s
s−i,i ≡ ∆s

s−i implied by the singlet symmetry (which
means we may take i→ −i also in terms multiplying it without changing ∆s

si) we find

S̆M
β ij

= −2δijPs(εi↑,−ε−i↓) (6.83)

Using Eq. (6.65) and a bit of algebra we obtain

S̆D
β ij

=
2δij

εi↑ + ε−i↓

∑
qλk

(
gλqik↑g

λ−q
ki↑

(
L(Ωqλ, εi↑, εk↑, εi↑)− L(Ωqλ, εi↑, εk↑,−ε−i↓)

)
+gλq−k,−i,↓g

λ−q
−i,−k,↓

(
L(Ωqλ, ε−i↓, ε−k↓, ε−i↓)− L(Ωqλ, ε−i↓, ε−k↓,−εi↑)

)
. (6.84)

Because L(Ωqλ, ε1, ε2, ε1) ∼ 1
ε2

only the state (or energy) dependence of the coupling matrix
elements guaranties the convergence of the summation over k. To avoid the full, state dependent
gλqkk′σ, we impose the particle-hole symmetrized term

S̆D
β

PHS

kk′
=

δkk′

εk↑+ε−k,↓

∑
qλl

(
gλqkl↑g

λ−q
lk↑
(
L(Ωqλ, εk↑, εl↑, εk↑)+L(Ωqλ, εk↑,−εl↑, εk↑)

−L(Ωqλ, εk↑, εl↑,−ε−k,↓)− L(Ωqλ, εk↑,−εl↑,−ε−k,↓)
)

+

+gλq−k,−l↓g
λ−q
−l,−k↓

(
L(Ωqλ, ε−k↓, ε−l↓, ε−k↓) + L(Ωqλ, ε−k↓,−ε−l↓, ε−k↓)

−L(Ωqλ, ε−k↓, ε−l↓,−εk↑)− L(Ωqλ, ε−k↓,−ε−l↓,−εk↑)
)

(6.85)

This way, even when the state or energy dependence of the coupling matrix elements gλqkk′σ is not
considered we always encounter L(Ωqλ, ε1, ε2, ε3)+L(Ωqλ, ε1,−ε2, ε3) ∼ 1

A+ε2
+ 1
A−ε2 ∼

1
ε22

which

means S̆D
β

PHS

kk′
depends locally on the electronic structure about ε2 ≈ 0. While due to the special

selection of SE contributions we have symmetrized the “inner” energy (l, that is summed) of the
term we may try also to particle-hole symmetrizing the “outer” energy dependence k. We achieve
this simply by averaging S̆D

β

PHS

kk′
with itself where we substitute εk↑ → −ε−k↓ and ε−k↓ → −εk↑.

The result is10

S̆D
β

TPHS

kk′
=

1

2

∑
qλl

δkk′

εk↑ + ε−k,↓

(
gλqkl↑g

λ−q
lk↑

(
L(Ωqλ, εk↑, εl↑, εk↑) + L(Ωqλ, εk↑,−εl↑, εk↑)

+L(Ωqλ, ε−k↓,−εl↑, ε−k↓) + L(Ωqλ, ε−k↓, εl↑, ε−k↓)
)

+gλq−k,−l↓g
λ−q
−l−k↓

(
L(Ωqλ, ε−k↓, ε−l↓, ε−k↓) + L(Ωqλ, ε−k↓,−ε−l↓, ε−k↓)

+L(Ωqλ, εk↑,−ε−l↓, εk↑) + L(Ωqλ, εk↑, ε−l↓, εk↑)
))

(6.86)

Now we turn our attention to the linearization of the SC
β terms. With Eq. (6.68) and (6.69) we

obtain

S̆C
phβkk′

= −2
∑
qλ

gλqkk′↑g
λ−q
−k,−k′,↓

|εk′↑ + ε−k′,↓|
(
L(Ωqλ,εk↑,Ĕ

+
k′↑,−ε−k↓) + L(Ωqλ,ε−k↓,Ĕ

+
−k′↓,−εk↑)

)
(6.87)

and explicitly dropping intermediate triplet parts we find changing k′ → −k′

S̆sCphβkk′ = −
∑
qλ

( gλqkk′↑gλ−q−k,−k′↓
|εk′↑ + ε−k′↓|

(
L(Ωqλ,εk↑,Ĕ

+
k′↑,−ε−k↓)− L(Ωqλ,εk↑,Ĕ

−
k′↑,−ε−k↓)

)
+
gλq−k,k′↑g

λ−q
k,−k′↓

|εk′↑ + ε−k′↓|
(
L(Ωqλ,ε−k↓,Ĕ

+
k′↑,−εk↑)− L(Ωqλ,ε−k↓,Ĕ

−
k′↑,−εk↑)

))
(6.88)

10The “T” in “TPHS” stands for totally particle hole symmetrized.
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To save space we limit the discussion to the unmodified Coulomb interaction, i.e. we allow for
triplet SE parts. The static Coulomb interaction of Eq. (6.70) similarly becomes

S̆statC
Coulβkk′

= −2W stat
kk′,−k,−k′↑,↓Ps(Ĕ

+
k′↑,−Ĕ+

−k′↓)Ps(εk↑,−ε−k↓) (6.89)

Due to the factorization of the Matsubara sum and the symmetry Ps(E1, E2) = Ps(−E1,−E2)
this term remains unchanged by dropping triplet terms except that we average 1

2(W stat
kk′,−k,−k′↑,↓+

W stat
−k,k′,k,−k′↑,↓). By similarity to the phonon part we, obtain the dynamic Coulomb contribution

S̆dynC
Coulβkk′

=−2

ˆ ∞
0

dω
π

Mdyn
kk′,−k,−k′↑,↓

(ω)

|εk′↑ + ε−k′,↓|
(
LM (ω,εk↑,Ĕ

+
k′↑,−ε−k↓) + LM (ω,ε−k↓,Ĕ

+
−k′↓,−εk↑)

)
(6.90)

The linearized SSE (Eq. (6.72)) takes the shape

S̆β ·∆s
s = 0 . (6.91)

Which means ∆s
s is the right eigenfunction to a singular eigenvalue at the SC critical temperature.

Thus, Tc may be computed from the condition det S̆β = 0.

6.6. Isotropization of SpinSCDFT Equations.

As compared to an equivalent Many-Body calculation, SCDFT is numerically not very demand-
ing, in particular in the linear approximation. Still, in many cases it is found that the pair
potential matrix elements ∆s

sk depend on the the Bloch vector k mostly through the energy of
the state εk they refer to. Assuming this feature from the beginning is the so called isotropic
approximation. This further reduces the numerical effort and allows systematic studies of the
behavior of the theory. Most of our numerical results are obtained in the isotropic approxima-
tion. In the Subsection (6.6.1) we define the isotropic approximation in detail together with an
isotropization procedure and apply it to our non-linear and linear Sham-Schlüter operators Eqs.
(6.72) and (6.91) in the Subsections 6.6.2 and 6.6.3, respectively.

6.6.1. The Isotropization Procedure

As mentioned in the introduction to this Section, often ∆s
sk depend on the the Bloch vector k only

through the energy of the state εk they refer to. We can make this formally an exact property
by averaging the quantity, here namely ∆s

sk on the equal energy surface. This approximation is
referred to as the isotropic approximation. Sometimes, however we need to split certain regions
in k space, i.e. we group ∆s

sk belonging to a certain region in the unit cell and band and allow
the gapfunction to depend on the specific region as well as the energy. If a we need to separate
regions in k space to obtain a better critical temperature we call the system a multiband
superconductor. A famous example is MgB2 [59].
The goal of an isotropization, i.e. averaging the gapfunction on a certain set, is that the

Sham-Schlüter operators becomes numerically cheaper to compute. For this it is necessary to
average the interaction matrix elements independently on a selected set of k. This way the
rest of the kernel depends neigher on k nor on k′ any more. In order that the isotropization
does not invalidate the result, we have to assume that the anisotropic gap does not vary much
within the set selected for averaging. Clearly the latter will be an implicit assumption in many
realistic cases as we try to avoid the more demanding anisotropic calculation. Taking a look
at the SpinSCDFT formulas in the SDA (for example the Bogoliubov eigenvalues Eqs. (3.155)
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to (3.156) or the inverse KS GF Eq. (E.15)), we find that quantities depend on εk↑+ε−k↓
2 and

εk↑−ε−k↓
2 . Thus we define

%(ε, J) =
∑
k

δ
(εk↑ + ε−k↓

2
− ε
)
δ
(εk↑ − ε−k↓

2
− J

)
(6.92)

Îkσ(ε, J)Ak,σ =
1

%(ε, J)

∑
k

δ
(εsign(σ)k↑ + ε−sign(σ)k↓

2
−ε
)
×

×δ
(εsign(σ)k↑ − ε−sign(σ)k↓

2
−J
)
Ak,σ , (6.93)

for arbitrary Ak,σ. We shall refer to the DOS like quantity %(ε, J) as the double DOS, since
it involves the product of two delta functions and represents the number of states with center
of energy ε and energy splitting J . Correspondingly the operator Îkσ(ε, J) averages quantities
that depend on (k, σ) on shells of equal center-of-energy between two spin channels εk↑+ε−k↓

2 and
their difference, the splitting εk↑−ε−k↓

2 . We call Îiσ(ε, J) the isotropization operator. The
result (image) of this operator does not depend on k and the indix is merely a reminder on which
variable the operator acts. Note that we have included sign(σ) into the sign of the k vectors.
The advantage is best seen from the following example

Aσ(ε, J) ≡ Îkσ(ε, J)Ak,σ =
1

%(ε, J)

{∑
k δ
( εk↑+ε−k↓

2 − ε
)
δ
( εk↑−ε−k↓

2 − J
)
Ak,↑ σ =↑∑

k δ
( ε−k↑+εk↓

2 − ε
)
δ
( ε−k↑−εk↓

2 − J
)
Ak,↓ σ =↓

(6.94)

Note here ∑
k

δ
(ε−k↑ + εk↓

2
− ε
)
δ
(ε−k↑ − εk↓

2
− J

)
Ak,↓

≡
∑
−k

δ
(εk↑ + ε−k↓

2
− ε
)
δ
(εk↑ − ε−k↓

2
− J

)
A−k,↓ . (6.95)

Thus A↓(ε, J) is the time-reversed of A↑(ε, J) and it was sign(σ) that preserved that symmetry
in the most general case. If Ak,σ turns out to be time reversely symmetric, the choice becomes
particularly handy because the resulting A(ε, J) is then independent of spin. Let us average the
SSE (Eq. (6.72)) in the SDA which we write here as

0 =

ˆ
dε′̂ dJ ′

∑
k′

δ
(εsign(σ′)k′↑+ε−sign(σ′)k′↓

2
−ε′
)
δ
(εsign(σ′)k′↑−ε−sign(σ′)k′↓

2
−J ′

)
Sβkk′∆

s
sk′ (6.96)

Being a sum of different spin channels, Sβkk′ does not dependent on spin. The isotropization
procedure defined in Eq. (6.93) means to treat every spin summand of Sβkk′ according to its
spin polarization. Applying the isotropization of k in addition to k′ we obtain the isotropic SSE

0 =

ˆ
dε′̂ dJ ′Sβ(ε, J, ε′, J ′)∆s

s(ε
′, J ′) (6.97)

with
Sβ(ε, J, ε′, J ′) = Îkσ(ε, J)%(ε′, J ′)Îk′σ′(ε

′, J ′)Sβkk′ . (6.98)

We introduce the notation

e ≡ (ε, J)

ˆ
de ≡

ˆ
dε
ˆ
dJ δ(e− e′) ≡ δ(ε− ε′)δ(J − J ′) . (6.99)

If we want to allow for multiband SC we simply extend e with an additional isotropic-band
index.
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6.6.2. Non-Linear, Isotropic Sham-Schlüter Operator

In this Subsection we give the isotropic variant of the non-linear Sham-Schlüter operator Eq. (6.72).
Its main ingredient are the expansion coefficient combinations |uiαiσ |2, |v−iαi−σ |2 and the Bogoliubov
eigenvalues Eαiσ so we cast them into the isotropic formulation. For brevity we define

F (e) =
√
ε2 + |∆s

s(e)|2 . (6.100)

Now, consider the isotropization of

|uiαiσ |2 =

√
( εiσ+ε−i−σ

2 )2 + |∆s
si|2 + sign(α) εiσ+ε−i−σ

2

2
√

( εiσ+ε−i−σ
2 )2 + |∆s

si|2
u2(e) =

F (e) +ε

2F (e)
(6.101)

|v−iαi−σ |2 =

√
( εiσ+ε−i−σ

2 )2 + |∆s
si|2 − sign(α) εiσ+ε−i−σ

2

2
√

( εiσ+ε−i−σ
2 )2 + |∆s

si|2
v2(e) =

F (e)−ε
2F (e)

. (6.102)

First Eq. (B.18) in the Appendix provided us with the identity |uiαiσ |2 = |u−iα−i−σ|2 = |v−i−αi−σ |2 =

|vi−α−iσ |2 so with the Isotropization procedure Eq. (6.93) we obtain

Îiσ(e)|ui+iσ |2 = u2(e)

Îiσ(e)|ui−iσ |2 = v2(e)

Îiσ(e)|v−i+i−σ |2 = v2(e)

Îiσ(e)|v−i−i−σ |2 = u2(e) .
(6.103)

Moreover Eq. (B.16) results in

Îiσ(e)u
iα
iσ
∗
v−iαi−σ = Îiσ(e)

sign(α)∆s
s
∗
i

sign(σ)|E+
iσ − E−iσ|

=
sign(σ)∆s

s(e)

sign(α)2F (e)
. (6.104)

Also
Îiσ(e)E

α
iσ = Eασ (e) Eασ (e) = sign(σ)J + sign(α)F (e) , (6.105)

and we drop the indication of the energy and splitting dependence in ∆s
s,Eασ ,F , u2 and v2. We

further see ∆s
s

2F =
√
u2v2 and we can cast the full |∆s

s| dependence back into u2 and v2.

Kernel Contribution SM
β In Eq. (6.63) we found an expression for the term SM

β multiplying the
KS potential. Isotropization according to Eq. (6.98) is done according to

Îkσ(e)%(e′)Îk′σ′(e
′)δkk′δσσ′Akσ = δ(e′ − e)Îkσ(e)Akσ (6.106)

Îkσ(e)%(e′)Îk′σ′(e
′)δk,−k′δσ,−σ′Akσ = δ(e′ − e)Îkσ(e)Akσ (6.107)

which is clear from the definition Eq. (6.93). Thus with E+
+ = −E−− SM

β of Eq. (6.63) is cast into

SM
β (e, e′) = −2δ(e′−e)

( ε2

F 2
Ps(E

+
+ , E

−
+) + 2u2v2

(
Ps(E

+
+ ,E

+
+)+Ps(E

−
+ ,E

−
+)
))
. (6.108)

Kernel Contribution SD
β Here we have to average the phononic coupling. Without the sim-

plifications that come with time-reversal symmetry, it turns out that the to-be-averaged matrix
elements are different for the Nambu-diagonal and off-diagonal. We introduce the generalized
Eliashberg function

α2FD
σ (e, e′, ω) = Îkσ(e)%(e′)Îk′σ(e′)

∑
λq

gλqsign(σ)k,sign(σ)k′σg
λ−q
sign(σ)k′,sign(σ)k,σδ(Ωqλ − ω) . (6.109)
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The name α2FD
σ is a combined symbol and stems from the phonon coupling which is sometimes

called α and the density of states of the phonons named F . As it always appears in the above
combination the standard notation of phononic coupling is α2F (ω) where one usually takes the
coupling averaged on the Fermi surface only. Here we have introduced the spin-splitted general-
ization but in a similar manner we often consider only the frequency dependence. As discussed
this requires the Matsubara sum to provide a cutoff for the appearing integrals which means
we should take the particle-hole symmetric variant SD

β
PHS in this approximation. Now starting

from Eq. (6.65) it is straight forward to find its isotropic variant. We obtain with the notation
u′′2 ≡ u2(e′′)

SD
β (e, e′) = δ(e′−e)

ˆ
de′′̂ dω

∑
σα1α2

α2FD
σ (e, e′′, ω)

sign(α1)F

(
u2δα1,1 + v2δα1,−1

)(
u′′2δα2,1 +

+v′′2δα2,−1

)(
L(ω,Eα1

σ , E′′α2
σ , Eα1

σ )− L(ω,Eα1
σ , E′′α2

σ , E−α1
σ )

)
. (6.110)

The particle-hole symmetrized version of Eq. (6.67) translates into a similar equation

SD
β

PHS
(e, e′) = δ(e′−e)

ˆ
de′′̂ dω

∑
σα1α2α3

α2FD
σ (e, e′′, ω)

2sign(α3)F

(
u2δα1,1 + v2δα1,−1

)(
u′′2δα2,1 +

+v′′2δα2,−1

)(
L(ω,Eα1

σ , E′′α2
σ , Eα3

σ ) + L(ω,Eα1
σ ,−E′′α2

σ , Eα3
σ )
)
. (6.111)

Kernel Contribution SC
β For the phonon coupling on the Nambu off diagonal we meet with

terms as
α2F (e, e′, ω) = Îkµ(e)%(e′)Îk′µ(e′)

∑
λq

gλqkk′µg
λ−q
−k,−k′,−µδ(Ωqλ − ω) (6.112)

That the result does not dependent on µ is due to the special definition of the isotropization
procedure Eq. (6.93). We obtain directly from Eq. (6.68)

SC
phβ(e, e′) = −

ˆ
dω
∑
α1α3

α2F (e, e′, ω)

2F ′

((
u2δα1,1 + v2δα1,−1

)(
u2δα3,−1 + v2δα3,1

)
+

+sign(α1)sign(α3)u2v2 ∆s′
s
∗

∆s′
s

)∑
σα2

sign(α2)L(ω,Eα1
σ ,E

α2′
σ ,Eα3

σ ) (6.113)

With a similar definition of the Coulomb coupling

Cstat(e, e′) = Îkσ(e)%(e′)Îk′σ′(e
′)
(
W stat
kk′,−k,−k′σ,−σ

)∗ (6.114)

Cdyn(e, e′, ω) = Îkσ(e)%(e′)Îk′σ′(e
′)
(
Mdyn
kk′,−k,−k′σ,−σ

(ω)
)∗ (6.115)

We obtain first for the static part

SstatC
Coulβ(e, e′) = −

∑
α1α2

Cstat(e, e′)
((
u2δα1,1 + v2δα1,−1

)(
u2δα2,1 + v2δα2,−1

)
+sign(α1)sign(α2)u2v2 ∆s′

s
∗

∆s′
s

)∑
σ

Ps(E
α1
σ , Eα2

σ )Ps(E
′+
σ , E

′−
σ ) (6.116)

and for the dynamic part SdynC
Coulβ we obtain the same equation as Eq. (6.113) except that α2F is

replaced by Cdyn and L with LM of Eq. (D.21). We do not discuss the pure singlet term, we
just mention that it involves a coupling term that behaves as gλq−kk′µg

λ−q
k,−k′,−µ which leads to the

same α2F of Eq. (6.112).
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6.6.3. Linearized, Isotropic Sham-Schlüter Operator

The linearized isotropic equations for the Sham-Schlüter operator contributions can be obtained
in two equivalent ways. First, taking the small |∆s

s| limit of Subsection 6.6.2 or, second, applying
the isotropization procedure to the linearized anisotropic equations of subsection 6.5.3. For the
latter it is important that

εsign(σ)iσ =
εi↑ + ε−i↓

2
+ sign(σ)

εi↑ − ε−i↓
2

(6.117)

and thus
Îiσ(e)εsign(σ)iσ = ε+ sign(σ)J (6.118)

Kernel Contribution SM
β The expression for the linear potential term in Eq. (6.83) together

with Ps of Eq. (D.2) and the expression for Ĕ in Eq. (6.118) is readily found equal to

S̆M
β (e, e′) = −δ(e− e′)~2 fβ(J + ε)− fβ(J − ε)

ε
(6.119)

Kernel Contribution SD
β Taking Eq. (6.84) for S̆D

β and Eq. (6.118) we find

S̆D
β (e, e′) =

1

ε
δ(e′−e)

ˆ
de′′̂ dω

(
α2FD
↑ (e, e′′, ω)

(
L(Ωqλ, ε+J, ε′′+J ′′, ε+J)

−L(Ωqλ, ε+J, ε′′+J ′′, J−ε)
)

+ α2FD
↓ (e, e′′, ω)

(
L(Ωqλ, ε−J, ε′′−J ′′, ε−J)

−L(Ωqλ, ε−J, ε′′−J ′′,−J−ε)
))

(6.120)

and similarly for the symmetrized version

S̆D
β

HPS
(e, e′) =

1

2ε
δ(e′−e)

ˆ
de′′̂ dω

(
α2FD
↑ (e, e′′, ω)

(
L(ω, ε+J, ε′′+J ′′, ε+J)+L(ω, ε+J,−ε′′−J ′′, ε+J)

−L(ω, ε+J, ε′′+J ′′, J−ε)− L(Ωqλ, ω, ε+J,−ε′′−J ′′, J−ε)
)

+α2FD
↓ (e, e′′, ω)

(
L(ω, ε−J, ε′′−J ′′, ε−J) + L(ω, ε−J, J ′′−ε′′, ε−J)

−L(Ωqλ, ε−J, ε′′−J ′′,−ε−J)− L(Ωqλ, ω, ε−J,J ′′−ε′′,−ε−J)
)
. (6.121)

For treating the totally particle hole symmetric term note that we may integrate (−ε′′) in the
second term because the integration boundaries are symmetric

S̆D
β

THPS
(e, e′) =

1

4ε
δ(e′−e)

ˆ
de′′̂ dω

(
(
α2FD
↑ (e, e′′, ω) + α2FD

↓ (ε, J,−ε′′, J ′′, ω)
)
×(

L(ω, ε+J, ε′′+J ′′, ε+J)+L(ω, ε+J,−ε′′−J ′′, ε+J) +

+L(ω, ε−J,−ε′′−J ′′, ε−J)+L(ω, ε−J, ε′′+J ′′, ε−J)
)
. (6.122)

Due to the locality in the state dependence ε′′ at the Fermi energy (fast decay in ε′′) of the
Matzubara sums L of the particle hole symmetrized kernel it is often a good approximation to
drop the energy dependence of the coupling α2FD in which case the effective coupling will be the
average of both spin channels.
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Kernel Contribution SC
β We isotropize the term of Eq. (6.87) with the result

S̆C
phβ(e, e′) = −

ˆ
dω

α2F (e,e′, ω)

|ε′|
(
L(ω,ε+J,|ε′|+J ′,J−ε) + L(ω,ε−J, |ε′|−J ′,−ε−J)

)
.(6.123)

The purely singlet term, with what was noted in Subsection (6.6.2): gλq−k,k′↑g
λ−q
k,−k′↓ ≡ g

λq
k,k′↑g

λ−q
−k,−k′↓,

becomes

S̆sCphβ(e, e′) = −
ˆ
dω
α2F (e,e′, ω)

2|ε′|
(
L(ω,ε+J,|ε′|+J ′,J−ε)− L(ω,ε+J,J ′−|ε′|,J−ε)

)
+L(ω,ε−J,|ε′|+J ′,−J−ε)− L(ω,ε−J,J ′−|ε′|,−J−ε)

)
(6.124)

The Coulomb interaction takes the slightly simpler shape

S̆statC
Coulβ(e, e′) = −~2

2
Cstat(e, e′)

fβ(J
′+|ε′|)−fβ(J ′−|ε′|)

|ε′|
fβ(J+ε)−fβ(J−ε)

ε
(6.125)

To obtain the dynamic Coulomb term just replace α2F with Cdyn and L with LM in Eq. (6.123).
Similar to Eq. (6.91), because the linearized S̆β does not depended on ∆s

s, Eq. (6.97) requires
that ∆s

s(e
′) = 0 if S̆β is invertible. To find a non-trivial solution we have to search for the point

where this is not the case, i.e.
det
(
S̆β
)

= 0 (6.126)

Summary

In this Chapter we have computed density functionals for the electronic KS System of Spin-
SCDFT (Section 3.4) using Many-Body theory (Chapter 5), the interacting matrix elements
(Chapter 4) in connection with the SSE (5.77). We have presented a strategy to either relax, or
even to keep the SDA while including the possibility to change also the normal densities n(r)
and m(r). Limiting the discussion of explicit results to the SDA, we have cast the SSE to a form
where a solution ∆s

s is mapped to zero by the Sham-Schlüter operator Sβ[∆s
s] · ∆s

s = 0, itself
being a non-linear functional of ∆s

s. We argued that in small magnetic fields, we should be able
to use the linearized equation S̆β ·∆s

s = 0 to determine Tc although the SC order parameter is
only weakly dependent on ∆s

s at the Fermi level. In a final step we have given the same equa-
tions in the isotropic approximation, i.e. assuming all individual quantities to dependent on the
electronic bands and Bloch vectors through the single particle energy εk, only. This will reduce
the numerical effort even further.



7. Many-Body Excitation Spectrum and
Eliashberg Equations

We start this Chapter with Section 7.1 where we cast the Dyson Eq. (5.26) to a form where
the SE is diagonal (similar to the SDA) and isotropic. This equation (5.26) is the basis of the
analysis in this Chapter.
The KS system is designed to reproduce the density of the interacting system. Still, in normal

DFT its single particle excitation spectrum often closely resembles to the experimentally observed
one. This fact can be viewed as a basis of modern solid state physics. We derive formulas for
the KS excitation spectra in Appendix G but it will turn out in the numerical results in Sec. 8.3
that this is not always a good approximation in the context of SpinSCDFT. In the numerical
solution of the equations of Chapter 6 in Chapter 8 we conclude that the KS DOS is not gaped
while the system is a SC. Hence, in Section 7.2 we compute the equations for a correction to the
KS spectra where the Dyson Eq. (7.2) is iterated once by inversion and the DOS is calculated
from the resulting interacting GF. Because no self-consistency is implied all properties are fully
determined by a converged previous SpinSCDFT calculation.
In Section 7.3 we go one step further and require self-consistence in the interacting GF and

do not replace Ḡ in the SE. Assuming all matrices to be diagonal in the KS basis and dropping
the energy (i.e. state, not frequency) dependence of the couplings will allow us to cast the Dyson
equation into a set of self-consistent equations for SE parts: The so called Eliashberg equations.
These will serve as reference in the phonon-only approximation and can be the basis of a future
improvement similar to the spin degenerate case.
Vonsovsky [19] discusses Eliashberg equations for system with an exchange splitting. While,

the authors start from the non-SC Hartree system in Nambu notation, not the SC KS system,
the approach is similar to ours in Section 7.3. In both cases the SE is constructed with first order
phonon and Coulomb diagrams. Similar to our approach, only the diagonal matrix elements are
considered. The splitting term J (compare Subsection 6.6.1) also appears in Ref. [19], but it
does not come from an isotropization and is reasoned on the basis of a d-orbital exchange field.
The rest of the spin interactions, i.e. dynamic spin excitation (namely magnons), are treated
perturbatively in Ref. [19] while we do not consider them in the first place, see Section 5.2.
While our approach focuses on the ab-initio calculation of a SC, lacking computer power the
discussion in Ref. [19] is more phenomenological.

7.1. The Isotropic Dyson Equation

We start this Section casting the Dyson equation (Eq. (5.26)) into the Nambu-KS basis functions
of Eq. (5.37). For the matrix elements our usual notation of 4× 4 matrices applies and we write
the Dyson equation as

Ḡij(ωn) = ḠKS
ij (ωn) +

1

~
∑
kl

ḠKS
ik (ωn) · Σ̄s

kl(ωn) · Ḡlj(ωn) . (7.1)

Alternatively we may write the above equation as a matrix inversion

Ḡij(ωn) =
(
(ḠKS)−1

ij (ωn)− 1

~
Σ̄s
ij(ωn)

)−1
. (7.2)
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This form is most convenient if the SDA Subsection 3.5.2 is used (that we assume for the rest of
this section) in the starting KS system because the inverse (ḠKS)−1

ij can be computed analytically.
As demonstrated in the Appendix E

(ḠKS)−1
ij (ωn) = δij

(
i~ωnτ0σ0 − (

εi↑ + ε−i↓
2

)τzσ0 − (
εi↑ − ε−i↓

2
)τzσz

)
+δi,−j

(
(iτy)(iσy)<∆s

si + τx(iσy)i=∆s
si

)
(7.3)

Assuming that the full GF Ḡij(ωn) as well as the SC KS GF ḠKS
ij (ωn) of Eq. (7.3) depend only

on the splitting J and center of energy ε we may introduce1

Σ̄s
n(e, e′) = Îkσ(e)%(e′)Îlσ′(e

′)Σ̄s
kl(ωn) (7.4)

Ḡn(e, e′) = Îiσ(e)%(e′)Îjσ′(e
′)Ḡij(ωn) (7.5)

ḠKS
n (e, e′) = Îiσ(e)%(e′)Îjσ′(e

′)ḠKS
ik (ωn) . (7.6)

The Dyson Eq. (7.2) reads with the above definitions

Ḡn(e, e′) =
(
ḠKS
n
−1

(e, e′) + Σ̄s
n(e, e′)

)−1
(7.7)

The isotropic KS GF Eq. (7.3) is diagonal in e as well as in KS states and takes the shape(
ḠKS
n (e)

)−1 ≡ i~ωnτ0σ0 − ετzσ0 − Jτzσz + (iτy)(iτy)<∆s
s + τx(iτy)i=∆s

s . (7.8)

We neglect all but the (off)diagonal matrix elements with respect to the KS basis and spin on
the Nambu-(off)diagonal in the SE Σ̄s

kl(ωn). This is similar to the approach to the SpinSCDFT
functional where in the SDA (Subsection 3.5.2) we also drop those matrix elements in order not
to invalidate the SDA (compare Section 6.4). Then, the Dyson equation becomes diagonal in
energy and, for the diagonal part Ḡn(e), reads

Ḡn(e) =
((
ḠKS
n (e)

)−1
+ ~−1Σ̄s

n(e)
)−1

. (7.9)

Following the convention of Eq. (5.41) we address non-vanishing components of Ḡn(e) via

Ḡn(e) =


Gn↑(e) 0 0 Fn↑(e)

0 Gn↓(e) Fn↓(e) 0

0 F †n↑(e) G†n↑(e) 0

F †n↓(e) 0 0 G†n↓(e)

 . (7.10)

7.2. The Many-Body Green’s Function with the KS Self-Energy

As part of the numerical implementation and simulation of Chapter 8 we will find that the
KS excitation spectrum is not what one would expect in a SC, namely it is not gaped in all
situations still maintaining χ 6= 0. As a next step we compute the interacting GF based on the
SpinSCDFT results, i.e. taking the same SE Σ̄KS of Eq. (6.11) that we used for the functional
construction in Section 6.3. Taking the (fixed) SE Σ̄KS means that the Dyson Eq. (7.9) can be
solved once by inversion, without the need to iterate with an update of Σ̄[Ḡ]. Then we may
extract excitation spectra from the resulting interacting GF as a next approximation to the full
solution to the Dyson equation. This can be viewed equivalent to the common G0W0 (one cycle
1The index σ of the isotropization operators act according to the component of the matrix.
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GW) approximation [60] that is well known to improve a KS band structure with respect to semi
conductor gaps [61].
We invert the Dyson Eq. (7.9) in Subsection 7.2.1 and obtain a closed expression for the

interacting (temperature) GF in terms of the Σ̄KS SE on the imaginary axis. In Subsection 7.2.2
we continue the temperature GF to the real axis. Because the only problematic objects in the
continuation of the temperature GF are the SE parts, this is done essentially continuing those
to the real axis.

7.2.1. Imaginary Axis Formulation

We use the results of the Subsections 6.3.2 and 6.3.3 where we apply the isotropization procedure.
We introduce

Σ̄KS
n (e) =


ΣKS1,1

↑n (e) 0 0 ΣKS1,−1
↑n (e)

0 ΣKS1,1
↓n (e) ΣKS1,−1

↓n (e) 0

0 ΣKS−1,1
↑n (e) ΣKS−1,−1

↑n (e) 0

ΣKS−1,1
↓n (e) 0 0 ΣKS−1,−1

↓n (e)

 , (7.11)

where
Σ̄KS
n (e) = Σ̄KS

ph n
(e) + Σ̄KS

Couln(e) . (7.12)
The phonon SE Eqs. (6.30) to (6.33) become

ΣKS
ph

1,1
σn

(e) =

ˆ
dω
ˆ
de′α2FD

σ (e, e′, ω)
∑
α

sign(α)ε′ + F ′

2F ′
Is(ω,E

α
σ
′, ωn) (7.13)

ΣKS
ph
−1,−1
σn

(e) =

ˆ
dω
ˆ
de′α2FD

σ (e, e′, ω)
∑
α

sign(α)ε′ + F ′

2F ′
Is(ω,−Eασ ′, ωn) (7.14)

ΣKS
ph

1,−1
σn

(e) = −sign(σ)

ˆ
dω
ˆ
de′α2F (e, e′, ω)

∑
α

sign(α)∆s′
s

2F ′
Is(ω,E

α
σ
′, ωn) (7.15)

ΣKS
ph
−1,1
σn

(e) = −sign(σ)

ˆ
dω
ˆ
de′α2F (e, e′, ω)

∑
α

sign(α)∆s′
s
∗

2F ′
Is(ω,−Eασ ′, ωn) (7.16)

Further, the Eqs. (6.41) and (6.42) become

ΣKS
Coul

1,−1
σn (e) = −sign(σ)

∑
α

ˆ
de′

sign(α)∆s′
s

2F ′
(
Cstat(e, e′)fβ(E

α
σ
′)

+

ˆ ∞
0

dω
π
Cdyn(ω, e, e′)Y2(ω,Eασ

′, ωn)
)

(7.17)

ΣKS
Coul
−1,1
σn (e) = −sign(σ)

∑
α

ˆ
de′

sign(α)∆s′
s
∗

2F ′
(
Cstat(e, e′)fβ(−Eασ ′)

+

ˆ ∞
0

dω
π
Cdyn(ω, e, e′)Y2(ω,−Eασ ′, ωn)

)
. (7.18)

The correct SE Σ̄s for the Dyson equation starting from the KS system accounts for the xc
potential. If we subtract

(
(iτy)(iσy)<∆s

s(e) + τx(iσy)i=∆s
s(e)
)
from the inverse KS GF in the

Dyson equation the exchange correlation potential cancels as expected. Thus we have to solve

(
Ḡn(e)

)−1
=

1

~


i~ωn−J−ε−Σ̄KS1,1

↑n 0 0 −Σ̄KS1,−1
↑n

0 i~ωn+J−ε−Σ̄KS1,1
↓n −Σ̄KS1,−1

↓n 0

0 −Σ̄KS−1,1
↑n i~ωn+J+ε−Σ̄KS−1,−1

↑n 0

−Σ̄KS−1,1
↓n 0 0 i~ωn−J+ε−Σ̄KS−1,−1

↓n


(7.19)
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We perform a symmetrization according to Eq. (6.43) and with similar results as indicated in
Table 6.1. Non-vanishing parts are, omitting e for a moment

Σω
n =

1

4

∑
σ

(
ΣKS1,1
σn + ΣKS−1,−1

σn

)
Aωzn =

1

4

∑
σ

sign(σ)
(
ΣKS1,1
σn + ΣKS−1,−1

σn

)
Σε
n =

1

4

∑
σ

(
ΣKS1,1
σn − ΣKS−1,−1

σn

)
ΣJ
n =

1

4

∑
σ

sign(σ)
(
ΣKS1,1
σn − ΣKS−1,−1

σn

)

Σt+
n =

1

4

∑
σ

(
ΣKS1,−1
σn + ΣKS−1,1

σn

)
Σt−
n =

1

4

∑
σ

(
ΣKS1,−1
σn − ΣKS−1,1

σn

)
Σ=∆
n =

−i
4

∑
σ

sign(σ)
(
ΣKS1,−1
σn + ΣKS−1,1

σn

)
Σ<∆
n =

1

4

∑
σ

sign(σ)
(
ΣKS1,−1
σn − ΣKS−1,1

σn

)
.

(7.20)

which means the full SE is

Σ̄n = Σω
nτ0σ0 + Σε

nτzσ0 + ΣJ
nτzσz +Aωzn τ0σz

+Σt+
n τxσx + Σt−

n (iτy)σx + iΣ=∆
n τx(iσy) + Σ<∆

n (iτy)(iσy) , (7.21)

which we add to the inverse GF with the result

Ḡ−1
n =

(
i~ωn − Σω

n

)
τ0σ0 −

(
J + ΣJ

n

)
τzσz −

(
ε+ Σε

n

)
τzσ0 −Aωzn τ0σz +

−Σ<∆
n (iτy)(iσy)− iΣ=∆

n τx(iσy)− Σt+
n τxσx − Σt−

n (iτy)σx . (7.22)

Now we may go through the steps of the Appendix E backwards to invert the inverse GF. There
are, however, terms not present in the original KS GF, namely Aωzn and Σt±n. After some
algebra we see the matrix inverse can be written as

Gnσ(e) =
1

2Fnσ(e)

∑
γ

Fnσ(e) + sign(γ)
(
ε+ Σε

n(e) + sign(σ)Aωzn (e)
)

i~ωn − Σω
n(e)− sign(σ)

(
J + ΣJ

n(e)
)
− sign(γ)Fnσ(e)

(7.23)

G†nσ(e) =
1

2Fn−σ(e)

∑
γ

Fn−σ(e) + sign(γ)
(
ε+ Σε

n(e)− sign(σ)Aωzn (e)
)

i~ωn − Σω
n(e) + sign(σ)

(
J + ΣJ

n(e)
)

+ sign(γ)Fn−σ(e)
(7.24)

Fnσ(e) =
sign(σ)

2Fnσ(e)

∑
γ

sign(γ)
(
Σ<∆
n (e) + iΣ=∆

n (e) + sign(σ)
(
Σt−
n (e) + Σt+

n (e)
))

i~ωn − Σω
n(e)− sign(σ)

(
J + ΣJ

n(e)
)
− sign(γ)Fnσ(e)

(7.25)

F †nσ(e) =
sign(σ)

2Fn−σ(e)

∑
γ

sign(γ)
(
Σ<∆
n (e)− iΣ=∆

n (e) + sign(σ)
(
Σt−
n (e)− Σt+

n (e)
))

i~ωn − Σω
n(e) + sign(σ)

(
J + ΣJ

n(e)
)

+ sign(γ)Fn−σ(e)
(7.26)

with

Fnσ(e) =

((
ε+ Σε

n(e) + sign(σ)Aωzn (e)
)2

+
(

Σ<∆
n + iΣ=∆

n + sign(σ)
(
Σt+
n + Σt−

n

))
×

×
(

Σ<∆
n − iΣ=∆

n + sign(σ)
(
Σt+
n − Σt−

n

))) 1
2

(7.27)

Fnσ is a generalization of the absolute value squared of energy plus ∆s
s that we have called

F =
√
ε2 + ∆s

s
2 earlier in Eq. (6.100). The appearance of triplet contributions in the GF are

somewhat disturbing but are the result of the Nambu-offdiagonal SE terms Eqs. (7.15) and
(7.16). With Eq. (7.20) the one cycle interacting GF Eqs. (7.23) to (7.26) may be computed
numerically given the results of a converged SpinSCDFT calculation.



7.2. The Many-Body Green’s Function with the KS Self-Energy 87

7.2.2. Real Axis Formulation

To obtain the (L)DOS, according to Eq. (5.31), we need the retarded GF. This can be computed
from the temperature GF Eq. (7.9) via substitution of

iωn → ω + iη (7.28)

where η as always is a real positive infinitesimal [45]. To distinguish the real frequency ω from
the coupling frequency, e.g. α2F (ω), will call the latter Ω from now on. The expression Eqs.
(7.23) to (7.26) remain essentially unchanged on the real axis, except that we have insert the SE
parts Eq. (7.20) on the real axis and write i~η + ~ω instead of the Matsubara frequency. Here
we have two options, first we may compute the SE parts Eq. (7.20) on the imaginary axis and
use a numerical analytic continuation to the real axis, or we can compute analytic formulas for
the real axis and use them. We choose the latter because then we can use the equations also far
away from the Fermi level.
We will see that the SE parts, e.g. Σ<∆

n (e), on the real axis have to be computed via independent
calculations of imaginary and real part. The dependence on the Matsubara index of the SE is
only via the function Is of Eq. (6.24) (or Y2 of Eq. (6.38) in the Coulomb case), i.e. the results
of the first Matsubara summation in the SE. We first note that Y1 (Eq. (6.22)) as the main
ingredient to Is may be written as2

Y1η(Ω, E, ω) =
(
nβ(~Ω) + fβ(E)

)( (Ω− 1
~E+ω)2

(Ω− 1
~E+ω)2 + η2

~
Ω− 1

~E+ω

−iπ~ 1

π

η

(Ω− 1
~E+ω)2+η2

)
. (7.29)

We note that the first part cuts off the integral if Ω−1
~E+ω � η and the second part is a nascent

delta function. In the limit η ↘ 0 we thus encounter the principle value operator and the delta
distribution

lim
η↘0

(Ω− 1
~E + ω)2

(Ω− 1
~E + ω)2 + η2

1

Ω− 1
~E + ω

≡ P̂
1

Ω− 1
~E + ω

, (7.30)

lim
η↘0

1

π

η

(Ω− 1
~E + ω)2 + η2

≡ δ(Ω− 1

~
E + ω) , (7.31)

so that

Y1η(−Ω, E, ω) = ~
(
P̂
nβ(~Ω) + fβ(−E)

Ω + 1
~E − ω

+ iπ~δ(Ω− 1

~
E + ω)

)
. (7.32)

Thus

Isη(Ω, E, ω) = ~P̂
nβ(~Ω) + fβ(E)

Ω− 1
~E + ω

− ~P̂
nβ(~Ω) + fβ(−E)

Ω + 1
~E − ω

−i~π
((
nβ(~Ω) + fβ(E)

)
δ(Ω− 1

~
E + ω)

+
(
nβ(~Ω) + fβ(−E)

)
δ(Ω +

1

~
E − ω)

)
. (7.33)

2We attach an index η for the Matsubara sums we have analytically continued to the nearly real axis.
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Using nβ(−E + ~ω) + fβ(−E) = −
(
nβ(E − ~ω) + fβ(E)

)
we obtain(

Isη(~Ω, E, ω)± Isη(~Ω,−E,ω)
)
~−1 =

= P̂
nβ(~Ω) + fβ(E)

Ω− 1
~E + ω

∓ P̂ nβ(~Ω) + fβ(E)

Ω− 1
~E − ω

− P̂ nβ(~Ω) + fβ(−E)

Ω + 1
~E − ω

± P̂ nβ(~Ω) + fβ(−E)

Ω + 1
~E + ω

−iπ
((
nβ(E − ~ω) + fβ(E)

)(
δ(Ω− 1

~
E + ω)− δ(Ω +

1

~
E − ω)

)
±
(
nβ(E + ~ω) + fβ(E)

)(
δ(Ω− 1

~
E − ω)− δ(Ω +

1

~
E + ω)

))
. (7.34)

For the dynamic part of the Coulomb interaction the result is similar

Y2η

(
~Ω, E, ω

)
= Isη(~Ω, E, ω)− 2~

Ω
fβ(E) . (7.35)

Because of the very different nature of the imaginary and real part of the SE we compute both
parts independently. Then with Eq. (7.34) for (+) we obtain

=Σω(e, ω) = −~π
ˆ
de′
∑
µα

sign(α)ε′ + F ′

8F ′

((
nβ(Eαµ

′ − ~ω) + fβ(Eαµ
′)
)
×

×
(
α2FD

µ (e,e′, ~−1Eαµ
′ − ω)− α2FD

µ (e,e′, ω − ~−1Eαµ
′)
)

+

+
(
nβ(Eαµ

′+~ω) + fβ(Eαµ
′)
)(
α2FD

µ (e,e′, ~−1Eαµ
′+ ω)

−α2FD
µ (e,e′,−~−1Eαµ

′ − ω)
))

(7.36)

<Σω(e, ω) = ~
ˆ
dΩ

ˆ
de′
∑
µα

sign(α)ε′ + F ′

8F ′
α2FD

µ (e,e′,Ω)
(
P̂
nβ(~Ω) + fβ(Eαµ

′)

Ω− 1
~E

α
µ
′ + ω

−P̂
nβ(~Ω) + fβ(Eαµ

′)

Ω− 1
~E

α
µ
′ − ω − P̂

nβ(~Ω) + fβ(−Eαµ ′)
Ω + 1

~E
α
µ
′ − ω + P̂

nβ(~Ω) + fβ(−Eαµ ′)
Ω + 1

~E
α
µ
′ + ω

)
(7.37)

and very similar for =Aωz(eω) and <Aωz(eω) that only differ by putting a sign(µ) into the spin
sum. For the continuation of Σε

n(e) to Σε(e, ω) we obtain, taking the (−) in Eq. (7.34)

=Σε(e, ω) = −~π
ˆ
de′
∑
µα

sign(α)ε′ + F ′

8F ′

((
nβ(Eαµ

′ − ~ω) + fβ(Eαµ
′)
)
×

×
(
α2FD

µ (e,e′, ~−1Eαµ
′ − ω)−α2FD

µ (e,e′, ω − ~−1Eαµ
′)
)

−
(
nβ(Eαµ

′+~ω) + fβ(Eαµ
′)
)(
α2FD

µ (e,e′, ~−1Eαµ
′+ ω)

−α2FD
µ (e,e′,−~−1Eαµ

′ − ω)
))

(7.38)

<Σε(e, ω) = ~
ˆ
dΩ

ˆ
de′
∑
µα

sign(α)ε′ + F ′

8F ′
α2FD

µ (e,e′,Ω)
(
P̂
nβ(~Ω) + fβ(Eαµ

′)

Ω− 1
~E

α
µ
′ + ω

+P̂
nβ(~Ω) + fβ(Eαµ

′)

Ω− 1
~E

α
µ
′ − ω − P̂

nβ(~Ω) + fβ(−Eαµ ′)
Ω + 1

~E
α
µ
′ − ω − P̂

nβ(~Ω) + fβ(−Eαµ ′)
Ω + 1

~E
α
µ
′ + ω

)
(7.39)

and ΣJ(eω) has the same relation to Σε(e, ω) as Aωz(e, ω) has to Σω(e, ω), i.e. we put a sign(µ)
into the spin sum. The above equation again points out the problem in the ε′ integral if the
energy dependence of α2FD

µ (e,e′,Ω) is neglected. Here Eαµ
′ → |ε′| for large ε′ so there are parts in

the integral that behave as 1
ε′ leading to logarithmic divergence. Thus we see explicitly that we

cannot compute the energy renormalization without considering the influence of the interaction
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on the full energy spectrum and quasi-particle occupations. To avoid double work we define yet
another symbol

I(e, e′,Ω) ≡ α2F (e, e′,Ω) +
θ(Ω)

π
Cdyn(Ω, e, e′) (7.40)

and the integrand

=B±(e, e′, ω) = ~π
∑
µα

sign(µ)
1±1

2
sign(α)

2F ′
(
nβ(Eαµ

′ − ~ω) + fβ(Eαµ
′)
)
×

×
(
I(e,e′, ~−1Eαµ

′ − ω)−I(e,e′, ω − ~−1Eαµ
′)
)

(7.41)

<B±(e, e′, ω) = −~
∑
µα

sign(µ)
1±1

2
sign(α)

4F ′

(ˆ
dΩI(e,e′,Ω)

(
P̂
nβ(~Ω) + fβ(Eαµ

′)

Ω− 1
~E

α
µ
′ + ω

−P̂
nβ(~Ω) + fβ(−Eαµ ′)

Ω + 1
~E

α
µ
′ − ω

)
+ fβ(Eαµ

′)
(
Cstat(e, e′)−

ˆ ∞
0
dΩ

2

πΩ
Cdyn(Ω, e, e′)

))
(7.42)

which makes with

Bs
n(e) ≡ Σ<∆

n (e) + iΣ=∆
n (e)

Bs?
n (e) ≡ Σ<∆

n (e)− iΣ=∆
n (e)

Bt
n(e) ≡ Σt+

n (e) + Σt−
n (e)

Bt?
n (e) ≡ Σt+

n (e)− Σt−
n (e)

(7.43)

the quantities read on the real axis

Bs(e, ω) =
´
de′∆s

s
′B−(e, e′, ω)

Bs?(e, ω) =
´
de′∆s′

s
∗B−(e, e′, ω)

Bt(e, ω) =
´
de′∆s

s
′B+(e, e′, ω)

Bt?(e, ω) =
´
de′∆s′

s
∗B+(e, e′, ω)

(7.44)

and thus, Eq. (7.27) becomes on the real axis (omitting the arguments e, ω)

Fσ =
((
ε+ Σε + sign(σ)Aωz

)2
+
(
Bs + sign(σ)Bt

)(
Bs? + sign(σ)Bt?

)) 1
2
. (7.45)

Note the symmetries

Σω(e, ω) = −Σω∗(e,−ω)
Aωz(e, ω) = −Aωz∗(e,−ω)

Σε(e, ω) = Σε∗(e,−ω)

ΣJ(e, ω) = ΣJ∗(e,−ω)
B−(e, e′, ω) = B∗−(e, e′,−ω)

(7.46)

while, without the Coulomb terms, we similarly find B+(e, e′, ω) = −B+
∗(e, e′,−ω). However,

the frequency independent Coulomb part remains unchanged from the inversion ω → −ω. We
observe that the SE parts are weakly energy dependent; only through the state dependence of
the coupling α2FD

µ , Cstat or Cdyn. Those couplings are typically rather broad on the very narrow
energy scale of SC at the Fermi level. This also points out that the Many-Body term equivalent
to our ∆s

s is in fact not strongly energy dependent but takes its significant shape in frequency
space.
Now we can finally obtain the retarded GF with the equations from Eqs. (7.23) to (7.26)

together with Eq. (7.27) for Fnσ(e) in terms of B and the corresponding SE parts constructed
from real and imaginary part close to the real axis.

ḠR(e, ω) ≡ lim
η→0

Ḡ(e,−iω + η) (7.47)

Then we can evaluate the DOS according to

ρσα(ω) = −2

ˆ
de=ḠRσα,σα(e, ω)%(e) (7.48)
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We obtain the local DOS ρσα(r, ω) simply by replacing %(e) with the local double DOS %σ(e, r)
of Eq. (G.16). The poles of ḠR(e, ω) are shifted from ω = 0 due to the SC condensation. From
the denominator of the equation for ḠR(e, ω), similar to Eq. (7.23) we obtain the condition

~ω0 =
sign(σ)

(
J + <ΣJ(e, ω0)

)
+ sign(γ)<Fσ(e, ω0)

1−<Σω(e, ω0)/(~ω0)
(7.49)

to find such a pole. At the same time we need to ensure that the imaginary part of the SE is
small so that we have a well defined, stable quasi particle. To find the gap in the excitation
spectrum of stable quasi-particles for given spin σ, we search the smallest (largest) ωγ0σ(e) above
(below) zero which leads to a pole very close to the real axis. The gap is half the distance from
the largest pole below to the smallest pole above zero. Due to the symmetry relations Eqs. (7.46),
Eq. 7.49 is approximately symmetric ω0 (this symmetry ω0 → −ω0 is exact without Coulomb
terms).

7.3. Eliashberg Equations of a Spin-Splitted System

Starting from Eq. (7.9) we may approach a different route which is not to replace Ḡ with ḠKS

in the self-energy. Due to Migdal’s theorem and the quality of the phonon spectra and coupling
matrix elements, the diagrammatic Hartree-Fock approximation to the self-energy is almost exact
for the phonon interaction. As we have discussed before during the functional construction in
Section 6.3, the numerical results of the final equations of this Section will serve as a reference we
compare phonon parts of the SpinSCDFT functional to. Moreover we want to stress again that
in a future work we can use the results of this Section to parametrize the SpinSCDFT functional.
The coupled equations for the symmetrized parts of self-energy are usually referred to as the

Eliashberg equations [44]. For a system including splitted states, Eliashberg equations are derived
in Ref. [19] although we do not follow the reference exactly. Thus, our final set of equations has
a different shape. The numerical results will most likely be similar but we cannot be sure with
certainty because non-linear calculations are not discussed in the Ref. [19].
We approximate the SE similar as before in Section 6.3 using the first order phonon and

Coulomb exchange diagram

Σ̄s(r, r′, ωn) ≈ Σ̄ph(r, r
′, ωn) + Σ̄Coul(r, r

′, ωn)− v̄xc(r, r
′) , (7.50)

but here we do not perform the replacement Ḡ→ ḠKS so that

Σ̄ph(r, r
′, ωn) =

1

β

∑
n′qλ

D0
ph(λq, ωn − ωn′)

δvscf (r)

δuqλ
τz · Ḡ(r, r′, ωn′) ·

δvscf (r′)

δu−qλ
τz (7.51)

Σ̄Coul(r, r
′, ωn) =

e2

β

∑
n′

w(r, r′, ωn − ωn′)τzσ0 · Ḡ(r, r′, ωn′) · τzσ0 (7.52)

Because we are primarily interested in the shape of the GF, we do not continue the self-energy
to the real axis because there the integrals (principle values etc.) are rather slow and unstable
to solve numerically. We aim to solve Eq. (7.9) which requires to compute Σ̄s

n(e). Again, the xc
potential cancels with the xc part of the inverse GF as it should.
We distinguish the GF and other properties of this Section from the (more heavily) approx-

imated one of the previous Section 7.2 by putting a superscript E. The procedure is analog to
Sec. 6.3 and Sec. 7.2. We discuss the equivalent of the symmetrized self-energy contributions
Eq. (7.20). Here it is not possible to analytically sum the Matsubara frequencies so we simply
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insert the form of the phonon propagator Eq. (5.48) or the dynamic Coulomb form Eq. (4.12).
With the abbreviation3

Kµn,n′(e, e
′) =

ˆ
dω

2ωα2FD
µ (e, e′, ω)

(ωn − ωn′)2 + ω2
(7.53)

Ln,n′(e, e
′) = Cstat(e, e′)+

ˆ
dω
(2ω

(
α2F (e, e′, ω) + 2θ(ω)

π Cdyn(ω, e, e′)
)

(ωn − ωn′)2 + ω2

−2θ(ω)

πω
Cdyn(ω, e, e′)

)
(7.54)

we arrive at

ΣEω
n (e) =

1

4

ˆ
de′

1

β

∑
n′µ

Kµn,n′(e, e
′)
(
Gn′µ(e′) +G†n′µ(e′)

)
(7.55)

AEωz
n (e) =

1

4

ˆ
de′

1

β

∑
n′µ

sign(µ)Kµn,n′(e, e
′)
(
Gn′µ(e′) +G†n′µ(e′)

)
(7.56)

ΣEε
n (e) =

1

4

ˆ
de′

1

β

∑
n′µ

Kµn,n′(e, e
′)
(
Gn′µ(e′)−G†n′µ(e′)

)
(7.57)

ΣEJ
n (e) =

1

4

ˆ
de′

1

β

∑
n′µ

sign(µ)Kµn,n′(e, e
′)
(
Gn′µ(e′)−G†n′µ(e′)

)
. (7.58)

and

ΣE=∆
n (e) =

i
4

ˆ
de′

1

β

∑
n′µ

sign(µ)Ln,n′(e, e
′)
(
Fn′µ(e′) + F †n′µ(e′)

)
(7.59)

ΣE<∆
n (e) = −1

4

ˆ
de′

1

β

∑
n′µ

sign(µ)Ln,n′(e, e
′)
(
Fn′µ(e′)− F †n′µ(e′)

)
(7.60)

BEs
n (e) = ΣE<∆

n (e) + iΣE=∆
n (e) = −1

2

ˆ
de′

1

β

∑
n′µ

sign(µ)Ln,n′(e, e
′)Fn′µ(e′) (7.61)

BEs?
n (e) = ΣE<∆

n (e)− iΣE=∆
n (e) =

1

2

ˆ
de′

1

β

∑
n′µ

sign(µ)Ln,n′(e, e
′)F †n′µ(e′) . (7.62)

Now the GF is inverted in the same way as in the Section 7.2. Note however that all triplet
components Bt

n and Bt?
n are assumed to be zero. As compared to Section 7.2 we will use a slight

modification that is to introduce ZE
n and rewrite

i~ωnZE
n(e) = i~ωn − ΣEω

n (e)

∆E
n(e) = BEs

n (e)/ZE
n(e)

∆E?
n (e) = BEs?

n (e)/ZE
n(e)

ε̃En(e) =
(
ε+ ΣEε

n (e)
)
/ZE

n(e)

J̃E
n (e) =

(
J + ΣEJ

n (e)
)
/ZE

n(e)

ÃEωz
n (e) = AEωz

n (e)/ZE
n(e) .

(7.63)

3Again, we drop the diagrammatic Coulomb corrections on the Nambu diagonal against the xc potential.
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The result is

GE
nσ(e) =

1

2FE
nσ(e)ZE

n(e)

∑
γ

FE
nσ(e) + sign(γ)

(
ε̃En(e) + sign(σ)ÃEωz

n (e)
)

i~ωn − sign(σ)J̃E
n (e)− sign(γ)FE

nσ(e)
(7.64)

GE†
nσ(e) =

1

2FE
n,−σ(e)ZE

n(e)

∑
γ

FE
n,−σ(e) + sign(γ)

(
ε̃En(e)− sign(σ)ÃEωz

n (e)
)

i~ωn + sign(σ)J̃E
n (e) + sign(γ)FE

n,−σ(e)
(7.65)

F E
nσ(e) =

1

2FE
nσ(e)ZE

n(e)

∑
γ

sign(σ)sign(γ)∆E
n(e)

i~ωn − sign(σ)J̃E
n (e)− sign(γ)FE

nσ(e)
(7.66)

F E†
nσ(e) =

1

2FE
n,−σ(e)ZE

n(e)

∑
γ

sign(σ)sign(γ)∆E?
n (e)

i~ωn + sign(σ)J̃E
n (e) + sign(γ)FE

n,−σ(e)
(7.67)

and

FE
nσ(e) =

((
ε̃En(e) + sign(σ)ÃEωz

n (e)
)2

+∆E
n(e)∆E?

n (e)
) 1

2
. (7.68)

Here we see that the rewriting Eq. (7.63) means the poles of the Nambu-diagonal GFs are directly
given at e.g. i~ωn = sign(σ)J̃E

n (e)+sign(γ)FE
n,−σ(e) which gives the right hand side of the equation

an interpretation as a quasi particle energy. Without further simplifications this will be our final
result for energy dependent couplings.
However, assuming the couplings to be energy independent and taking the value at the Fermi

level

Kµn,n′(e, e
′) ≡ Kµn,n′(0, J, 0, J

′) (7.69)

Ln,n′(e, e
′) ≡ Lµn,n′(0, J, 0, J

′) (7.70)

we may reduce the numerical effort to solve the set of equations. We expect that the discussion of
Sec. 7.2 about the convergence of the energy integrals extends also to this case. Here FE

nσ(e)→ ε
for large ε soGE andGE†both behave as 1

ε . Because also the function ε̃
E
n(e)→ ε only the summand

γ = + will be relevant in GE and GE†. Thus, again, we arrive at a form GE ±GE† → 1
A+ε ± 1

A−ε
behaving as 1

ε2
only for (+). The F E’s behave intrinsically as 1

ε2
i.e. are local at the Fermi energy

in the sense that the integral does not dependend on the high, or low energy structure of the
coupling (if it is bounded). Thus, together with the state dependence of the coupling, we have
to drop energy and splitting renormalization

ΣEε
n (e) = ΣEJ

n (e) = 0 (7.71)

With this state-independence the following quantities do not depended on energy (but on split-
ting): ZE

n , ∆
E
n, ∆

E?
n and ÃEωz

n . Moreover ε̃En(e) ≡ ε/ZE
n and J̃E

n ≡ J/ZE
n . For the following

consideration we also drop the Coulomb interaction, static and dynamic because then we may
analytically integrate F E

n′µ(e′) and F E†
n′µ(e′) over energy in the Eqs. (7.61) and (7.62). In addition

the approximation Eq. (7.69) is not well suited for the Coulomb interaction and, if used anyhow,
leads to one single number that has to be taken as an adjustable parameter (referred to as µ?

see e.g.[62]). Now with the abbreviation

mn,σ = i~ωnZE
n + sign(σ)ÃEωz

n ZE
n (7.72)

an = −J2 + (ÃEωz
n ZE

n)2 + (ZE
n)2∆E

n∆
E?
n + (ZE

n)2(~ωn)2 (7.73)
bn = 2ÃEωz

n ZE
n (7.74)

cn = 2i~ωnZE
nJ (7.75)
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and after some algebra we obtain the analytic energy dependence

GE
nσ(e) +GE†

nσ(e) =
−sign(σ)J −mn,σ + ε

an + ε2 − sign(σ)(cn + bnε)
+

sign(σ)J −mn,σ − ε
an + ε2 + sign(σ)(cn + bnε)

. (7.76)

Because this combination decays faster than ε−1 for large ε, we may compute the integral in the
SE e.g. Eq. (7.55) as the sum of residues in the upper complex half plane. As it is not clear
which of the four poles in the above function will be in the upper half we compute all residues.
Adding those up, we obtain the energy integral in Eq. (7.55) and Eq. (7.56) with

SE
n,σ =

√
−
(
(ZE

n)2∆E
n∆

E?
n − (i~ωnZE

n − sign(σ)J)2
)

(7.77)

as

Mnσ =

ˆ
dε
(
GE
nσ(e) +GE†

nσ(e)
)

(7.78)

= πi
( i~ωnZE

n − sign(σ)J

SE
n,σ

− 1
)
θ
(
=
(
−sign(σ)ÃEωz

n ZE
n −SE

n,σ

))
+πi

(
− i~ωnZE

n − sign(σ)J

SE
n,σ

− 1
)
θ
(
=
(
−sign(σ)ÃEωz

n ZE
n + SE

n,σ

))
+πi

( i~ωnZE
n + sign(σ)J

SE
n,−σ

+ 1
)
θ
(
=
(
sign(σ)ÃEωz

n ZE
n −SE

n,−σ
))

+πi
(
− i~ωnZE

n + sign(σ)J

SE
n,−σ

+ 1
)
θ
(
=
(
sign(σ)ÃEωz

n ZE
n + SE

n,−σ
))
. (7.79)

Further, for Eqs. (7.61) and (7.62) we integrate F E
nσ(e) in energy (note that F E

nσ(e) = ∆E
n(e)

∆E?
n (e)

F E†
n,−σ(e))

where we define

Nn =
1

ZE
n∆

E
n

ˆ
dε
(
F E
n↑(e)− F E

n↓(e)
)

(7.80)

= πi
(
θ
(
=(−ÃEωz

n ZE
n −SE

n,↑)
)

SE
n,↑

−
θ
(
=(−ÃEωz

n ZE
n + SE

n,↑)
)

SE
n,↑

+
θ
(
=(ÃEωz

n ZE
n −SE

n,↓)
)

SE
n,↓

−
θ
(
=(ÃEωz

n ZE
n + SE

n,↓)
)

SE
n,↓

)
. (7.81)

We obtain the Eliashberg equations similar to their usual, spin-degenerate form [62], that only
implicitly refer to the GF

ZE
n(J) = 1 +

i
4~ωn

ˆ
dJ ′

1

β

∑
n′σ

Kσn,n′(0, J, 0, J
′)Mn′σ(J ′) (7.82)

ÃEωz
n (J) =

1

4ZE
n(J)

ˆ
dJ ′

1

β

∑
n′σ

sign(σ)Kσn,n′(0, J, 0, J
′)Mn′σ(J ′) (7.83)

∆E
n(J) = − 1

2ZE
n(J)

ˆ
dJ ′

1

β

∑
n′

Ln,n′(0, J, 0, J
′)ZE

n′(J
′)∆E

n′(J
′)Nn′(J

′) (7.84)

∆E?
n (J) = − 1

2ZE
n(J)

ˆ
dJ ′

1

β

∑
n′

Ln,n′(0, J, 0, J
′)ZE

n′(J
′)∆E?

n′ (J
′)Nn′(J

′) (7.85)
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where

Kσn,n′(0, J, 0, J
′) =

ˆ
dω

2ωα2FD
σ (0, J, 0, J ′, ω)

(ωn − ωn′)2 + ω2
(7.86)

Ln,n′(0, J, 0, J
′) =

ˆ
dω

2ωα2F (0, J, 0, J ′, ω)

(ωn − ωn′)2 + ω2
. (7.87)

Note that Kσn,n′ and Ln,n′ are symmetric in n and n′. Because ∆E
n and ∆E?

n satisfy the same
equation and are not coupled, starting from the same initial values, they have to evolve equally.
Thus we may simply take ∆E

n = ∆E?
n which is equivalent to assuming ΣE=∆

n = 0. Ultimately
this is a consequence of the gauge transformation that rotates off diagonal Nambu components
(compare Subsection 3.6.2).
If the coupling is spin independent α2FD

σ = α2FD
−σ, note ÃEωz

n ∝ ∑n′(Mn′↑ −Mn′↓). Then,
if we start with ÃEωz

n = 0 it will remain zero in the self-consistency iteration. Starting with
ÃEωz
n 6= 0 may shift the poles and invalidate this result. Studing the effect of a spin dependend

coupling and thus a non-vanishing ÃEωz
n is beyond the scope of this thesis.

High and low temperature limits are discussed in the Appendix H. In essence we prove that
for high temperatures the system is not SC.

Summary

No higher principle requires the KS DOS to be a reasonable approximation and in fact we find
in the next Chapter 8 that it is not in some cases. We have introduced an isotropic form of the
Dyson equation with a SE that is diagonal in the normal state KS orbitals. To improve upon
the SC KS DOS, we keep the SE used in the functional construction of Chapter 6 but then use
it to solve the Dyson equation. This is the SC analog of the well known G0W0 approximation
to improve semi-conductor gaps. Thus, the SE is given solely by SpinSCDFT data and the DOS
from the resulting GF can be computed without a self-consistent iteration. In a final step we kept
the dependence of the SE on the interacting GF. When we approximate the SE to be independent
of the underlying KS states (assume it to be energy independent in the isotropic formulation)
we arrived a the Eliashberg equations similar to their usual form for the spin degenerate system.
The self-consistent solution to these equations constitutes a reference for the phononic coupling
for comparison to our SpinSCDFT results.



8. Application to an Exchange-Splitted Free
Electron Gas Model

In Chapters 6 and 7 we have derived several new methods that allow us to compute SC properties
of real materials. These generalize earlier works in the sense that we can handle magnetic fields
while computing Tc. Furthermore, we can compute excitation spectra of the KS or the Many-
Body system (in the G0W0 like approximation).
In addition, as part of this work, the following equations were implemented in a code:

1. The isotropic Sham-Schlüter Eq. (6.97) in the linear approximation.

2. The isotropic version of the non-linear gap equation Eq. (6.74) as derived from Eq. (6.97).

3. The KS excitation spectrum according to Eq. (G.23).

4. The one-cycle Many-Body (G0W0) DOS and LDOS with the KS SE that lead to Eq. (7.48).

5. The isotropic Eliashberg Eqs. (7.82) to (7.85).

6. Tools to average the coupling matrix elements on equal center of energy and splitting
surfaces as well as routines to compute the (local) double DOS %(e) (%σ(er)).

In this Section we test the machinery on the easiest system possible: The free electron gas with
an exchange splitting parameter. We give details of the model in Section 8.1 where essentially
only the temperature and a homogeneous splitting of electronic states are left as parameters. In
Section 8.2 we discuss Tc(J) curves from the linearized SSE (Eq. (6.91)) in several approximations
discussed in the previous Part. In addition, we present the shape of individual contributions to
S̆β . In Section 8.3 we solve the SSE in the form of the gap equation (Eq. (6.74)) via a fixed point
iteration. While the right eigenfunction to a singular eigenvalue of S̆β is only defined up to the
norm, the fully non-linear gap equation allows to compute ∆s

s with a defined magnitude also at
temperatures different from Tc. We use the resulting ∆s

s to compute the SC DOS of the G0W0
interacting system. In Section 8.4 we briefly discuss the results if a static Coulomb interacting is
included before, in the Section 8.5, we solve the Eliashberg equations derived in Section 7.3 for
comparison.

8.1. Details of the Model

We want to study the basic features of SpinSCDFT in the most simple model possible to avoid
further, material specific, complications. For this purpose we briefly introduce the free electron
gas model in this Section and add a phononic coupling to make it SC. Then, as an additional
step, we add a homogeneous external magnetic field that splits electronic states with different
spin in energy. While the dependence of Tc on the phononic coupling is well understood and
not the main topic of this thesis - we fix it to loosely resemble the coupling of MgB2 - we are
concerned with the effect of splitting of the underlying electronic structure on SC properties in
SpinSCDFT. The implementation in a computer code uses Hartree atomic units throughout. As
we have seen earlier in Sec. 3.6.2, the phase of the gap function is not fixed in the equation and
we choose to make the gap real and positive at the Fermi level.
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8.1.1. The Double DOS Function %(e) of the Splitted Electron Gas

The dispersion relation of the free electron gas, subject to a homogenous field B0 is

εkσ =
~2

2me
k2 − Ef + sign(σ)µBB0 . (8.1)

Thus εk↑−ε−k↓
2 = µBB0 and εk↑+ε−k↓

2 = ~2k2

2me
−Ef and it immediately follows from the definition

of the double DOS Eq. (6.92), that

%EG(e) =
∑
k

δ(
~2k2

2me
− Ef − ε)δ(µBB0 − J) = δ(µBB0 − J)ρEG(ε) . (8.2)

Here, ρEG(ε) is evaluated in energy space, not frequency space, to comply with the computer
code. The difference is a factor of 2π/~ that multiplies function in frequency, but not in energy
space. The factor in turn ensures that the DOS integrates to ne electrons per unit cell up to Ef ,
where the 2π cancels the Fourier normalization in frequency space. We use the relation of the
DOS for the spin degenerate free electron gas (per spin channels. See [63, p. 44]):

ρEG(E) =
Ωuc√
2π2

(me

~2

) 3
2√

E + Ef (8.3)

=
3

4Ef

ne
Ωuc

√
E + Ef
Ef

. (8.4)

Again, we have to be careful that εk↑+ε−k↓
2 has the weight of a single spin channel, equivalent to

εkσ. This is why we have to take the single spin channel DOS of the free electron gas. We are
going to treat J as a parameter to investigate the dependence of the SpinSCDFT kernels on an
external magnetic field.
The scale of J in experiment could be interpreted as the range of magnetic fields before vortices

appear. Experimentally, in the example of MgB2 (a Type II SC) the lower critical field B0 is in
the range of O(10−2T) to O(10−1T) [64]. J = 0.1mHa corresponds to an external field of

B0(J = 0.1mHa) ≈ 4.7T . (8.5)

Thus, in reality J ≥ O(0.01mHa) must be considered unrealistic for MgB2 because we cannot
describe the vortex state and we should limit the discussion to Type I SC. Since we intend to
study the behavior of the SpinSCDFT functionals this is of no concern to us at this point. We
postpone the comparison with experiment to the next Part II.
The Fermi energy is defined by integrating the DOS Eq. (8.3) up to Ef to have ne electrons

in the system. This defining equation can be inverted to give Ef as a function of the volume of
the unit cell and the number of electrons. In zeroth order in µBB0

Ef
≈ 0 we obtain the normal

relation for the free electron gas E0
f = (3π2 ne

Ωuc
)

2
3

~2

2me
which has to be regarded as almost exact

for our small splitting energies. As parameters we set ne
Ωuc

= 1 a−3
0 (a0 is the Bohr radius, the

length measure in Hartree units) which leads to a relatively large Fermi Energy of 4.78 Ha.

8.1.2. The Model for the Phononic Coupling α2F

We use an electron-phonon coupling in a three parameter model

α2F (ω, e, e′) ≡ α2F (ω) = λ
ω

2

1

ωw
√
π
e−

1
2

(
ω−ω0
ωw

)2

(8.6)
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Figure 8.1.: α2F (ω) of the model
and MgB2 for comparison.
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Figure 8.2.: Model Cstat(e, e′) according to Eq. (8.7).
Parameters are Ef = 4.78 Ha and k2

TF = (0.005)2 Ha.

with the electron-phonon coupling constant λ. To model the frequency dependence we employ
a Gaussian, centered about the Einstein frequency ω0 with a width ωw. We use the parameters
~ω0 = 2.2mHa ~ωW = 0.5mHa and λ = 0.7 throughout the Chapter. With these parameters
the resulting coupling loosely resembles the main peak in α2F (ω) of MgB2. The resulting curve
is given in Fig. 8.1 with the computed one for MgB2 for comparison.

8.1.3. The Model for the Coulomb Coupling C stat(e, e′)

For simplicity we neglect the Coulomb interaction in most parts of this Chapter. If we consider
it, we use a simple model that is based on the Thomas-Fermi screening theory, valid for slowly
varying electronic potentials. From Ref. [62] and Ref. [21] we take the formula

Cstat(e, e′) ≈ −
π ln

(
ε+ε′+2Ef+2

√
(ε+Ef )(ε′+Ef )+ 1

2
k2

TF

ε+ε′+2Ef−2
√

(ε+Ef )(ε′+Ef )+ 1
2
k2

TF

)
2
√

(ε+ Ef )(ε′ + Ef )
ρEG(ε′) . (8.7)

To arrive at the above equation one has to assume a slowly varying density in real space and
consider the free electron gas KS wavefunctions and average on energy isosurfaces. For details
see Ref. [62], [21] and references therein. The Thomas Fermi vector is taken here as an additional
parameter while in principle its value is determined by the free electron gas model to be k2

TF =
4πρEG(0). In real space, the Thomas Fermi interaction is [21]

v(r, r′) =
e−kTF|r−r′|

|r− r′| (8.8)

and thus k−1
TF has the interpretation of a screening length. With our high density ne

Ωuc
= 1 a−3

0

the screening would be extremely effective (k2
TF ≈ 1.4Ha) and the Coulomb repulsion has an

extremely short range. We employ a greatly reduced k2
TF = (0.005)2Ha to increase the range

which allows us to see the effect of the Coulomb renormalization (discussed later in Sec. 9.3) in
a more pronounced way. The shape of the modeled Cstat(e, e′) is shown in Fig. 8.2 (right) with
the diagonal to the left.
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Figure 8.3.: Spectrum of S̆β(J = 0.0mHa)
as a function of T . We find only one singu-
lar point.

Figure 8.4.: Spectrum S̆β(J = 0.1mHa) as
a function of T . We use S̆D

β

TPHS
together

with S̆C
phβ and find many singular points.

Figure 8.5.: Eigenfunctions to a singular
eigenvalue at T ≈ Tcross. All eigenfunctions
investigated except one are of either type.

Figure 8.6.: Eigenfunctions at Tc for J =
0.0mHa , 0.1mHa.

8.2. Behavior of SpinSCDFT Kernels and Tc(J) in the second
order regime

In this Section we study the linearized SSE (Eq. 6.126). In the Subsection 8.2.1 we perform an
eigenvalue decomposition of the matrix S̆β as a function of temperature. We discuss the general
shape of the contributions S̆M

β (e), S̆D
β (e) (both diagonal) and S̆C

β(e, e′) in Subsection 8.2.2. Based
on the analysis of S̆β(e, e′), in Subsection 8.2.3, we compute and discuss Tc(J). If the splitting
passes the point where the arbitrarily small solutions cease to exist (compare the BCS solution
Chapter 2 and Fig. 2.1 ), the initial assumption of the linearization, namely the existence of
a small ∆s

s, is not met. Then, the linearization cannot give sensible results. Still, to compare
with earlier spin-degenerate results and because in a fairly large regime we expect a second order
phase transition, the linear SSE is important. All eigenfunctions we show are normalized to a
common value.

8.2.1. Critical Temperatures and the Shape of ∆s
s

The linear SSE has a solution, ∆s
s, if we can find a zero eigenvalue. In Fig. 8.3 we show the
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spectrum for the spin-degenerate case J = 0mHa using 100 points on an exponential grid in ε.
As a general feature we see that the eigenvalues smoothly decrease in size with temperature.
At low temperatures we have precisely one negative eigenvalue that crosses zero at a certain
temperature (≈ 30K in this example) and the matrix S̆β becomes positive definite. In Fig. 8.3
and 8.4, we have highlighted the region closely below 0.0 to see the crossing in a more pronounced
way. For J = 0mHa we find only one singular eigenvalue.
In Fig 8.4, we investigate the spectrum of the Sham-Schlüter matrix using S̆C

phβ and S̆D
β

TPHS

at a fixed exchange-splitting of J = 0.1mHa. Note that using only singlet contributions S̆sCphβ
and/or replacing S̆D

β

TPHS
with S̆D

β

PHS
has essentially no effect on the spectrum (we do not show

the results). As compared to the J = 0mHa case the spectrum is fundamentally different. For
small T we have many negative eigenvalues. As the most striking result we find many solutions
det
(
S̆β
)

= 0 at low temperatures. There is a certain small temperature range, here Tcross ≈ 10K,
in which most negative eigenvalues cross zero and become positive but some also before. Beyond
Tcross only one remaining eigenvalue is negative, is crossing later at T ≈ 25K and thereby making
the matrix positive definite. Smoothly reducing J , this specific eigenvalue/eigenfunction pair can
be traced to the original solution to the SSE in the spin-degenerate limit. Although we do not
show this here, it is found that Tcross goes to zero with J and there is only one negative eigenvalue
below Tc (compare Fig. 8.3). With several formal solutions, we need to define what the critical
temperature should be, because we can find zero eigenvalues at multiple temperatures.
We study the shape of the eigenfunctions to the singular eigenvalues and find that they all

appear numerically unbound except one. In this example, the bound, continuous solution to the
linear SSE appears at T ≈ 25K for J = 0.1mHa. With decreasing J it is continuously going
to the solution of the spin-degenerate system. Examples for the other eigenfunctions are given
in Fig. 8.5. In fact, we find only two distinct types of numerically unbound eigenfunctions to
singular eigenvalues1. While type one has a pole, the second kind has a delta peak like structure,
i.e. the value at one sampling point (the one at the discontinuity of the first kind) is large while the
rest is extremely small. Increasing the sampling points increased the value at the discontinuity
so this lead to the conclusion that we are numerically sampling an unbound function.
It has to be understood that an unbound solution to a linearized equation is not similar the

originally non-linear fixed-point equation because a the singularity the function cannot be made
small. Since the solution is not small, the linearization was not justified. Thus, we conclude
that the solutions in Fig. 8.4 are artifacts of the non-existence of a small pairing and that in
the non-linear equation these type of solutions will be suppressed. Thus we define the critical
temperature to be the temperature at which the numerically bound solution passes zero. We
show two eigenfunctions at Tc with a splitting of J = 0.1mHa or without in Fig. 8.6. Equipped
with this definition we compute Tc as a function of the splitting parameter J . Before, however, we
discuss the contributions to the Sham-Schlüter operator in detail. We keep the high resolution of
400 points for the rest of the Section to show smoother plots. Note that this increased sampling
also slightly reduces Tc for example from 30.5K to 29.0K for J = 0mHa. For our purpose to
study the general behavior of the theory we consider 100 points as converged. When we study
the non-linear equation we use 100 sampling points for a better performance.

1The number of sampling points was increased to 400 to make the jump better visible.
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8.2.2. Temperature Dependence of S̆β

In this Subsection we present the individual contributions S̆M
β , S̆

D
β and S̆C

β as a function of T for
J = 0.1mHa and J = 0.0mHa. For the diagonal matrices S̆M

β and S̆D
β we use a color scale to

indicate the temperature while for the matrices we choose the 5 temperatures 1K, 5K, 10K, 15K
and 30K. Note the logarithmic scale in all plots discussed in this Section. In the first row of
Fig. 8.7 we show the temperature dependence of diagonal S̆D

β . The difference between the total
S̆D

β

TPHS
(middle) and the partially particle-hole symmetrized S̆D

β

PHS
(right) is negligible. The shape

of S̆D
β

PHS
at J = 0.1mHa distinguishes from the non-splitted limit (left) mainly in the range ε ≤ J

in being negative and going to zero for small temperatures. At T a bit larger that Tcross, both
S̆D
β

PHS
and S̆D

β

TPHS
cross zero at the Fermi level and assume the sign of the non-splitted limit.

In the second row, the diagonal of the term S̆M
β is given for the non-splitted limit (left) and for

J = 0.1mHa (middle). We see that also this term goes to zero for ε < J at low temperatures.
We observe that approximately at Tcross for finite splitting S̆M

β + S̆D
β ≈ 0 at the Fermi level.

The remainder of the plots in Fig. 8.7 show the non-diagonal S̆C
β(e, e′) term for the spin-

degenerate limit (third row), the purely singlet (fourth row) and the full term including inter-
mediate triplet contributions (fifth row). The color scale for negative values of blue to white to
green is chosen with the maximum of S̆M

β (white) as a reference point, indicated on the right
of every plot. This is because S̆M

β serves as a scale that other kernel contributions have to be
compared to. For positive values, we use red to yellow to white. Zero contours are indicated
by a purple curve. For J = 0mHa we note that the size of S̆C

β(e, e′) decays faster with temper-
ature than those of the diagonal S̆M

β (e) and S̆D
β (e) (compare the position of the white point in

the color scale). Being both positive, S̆M
β (e) and S̆D

β (e) alone would result in a positive definite
Sham-Schlüter matrix. Thus, technically, the phase transition from the SC to the NS is induced
by this relative reduction of S̆C

β(e, e′).
As a side note, we observe that S̆C

β(ε, 0, ε′, 0) changes shape from a triangular to a more
rectangular structure. This means for low temperatures its decay is dominated by ε + ε′ while
for higher temperatures this changes to max(ε, ε′).
The relative scale reduction is also found for the splitted kernels. At the Fermi level, however,

we stay much below the scale of S̆M
β (e) and exceed it only for higher temperatures. Moreover,

S̆D

β (e) features a sign change effectively reducing the diagonal repulsion.
The zero contour shows that for very low T , both S̆C

β(e, e′) and S̆sCβ (e, e′) are positive for
approximately the plain where (|ε| − J)(|ε′| − J ′) < 0 and have a sharp negative spike at ε =
ε′ ≈ J . For increasing temperatures the positive parts of S̆sCβ (e, e′) shrink to the region where
the center of energy ε has the size of the splitting. Approximately at Tcross both S̆C

β(e, e′) and
S̆sCβ (e, e′) become totally negative and, for even increasing temperatures, approach the shape and
size of the spin degenerate limit.
In summary we can say that we see dramatic changes in the spin splitted SSE for the low

temperature limits in the region |ε| < |J | as compared to the spin degenerate case. Then, at
larger temperatures, the splitting becomes less important. From the form of the Bogoliubov
eigenvalues Eασ = sign(σ)J + sign(α)

√
ε2 + |∆s

s|2 we guess that if ∆s
s is larger than J in this

|ε| < |J | region we would see less dramatic changes from J = 0 to J 6= 0. The reason is that then
only the α = + branch has positive excitation energies E+

σ ≥ 0 and means the ground state does
not correspond to some of the excitations γ̂k being occupied (see the discussion in Subsection
3.5.2).
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S̆D

β

TPHS
(e) (middle) and S̆D

β

PHS
(e) (right) for J=0.1mHa. For J=0mHa (left) both approximation agree.

S̆M

β (e) for J = 0.0mHa (left) and J = 0.1mHa (middle)

S̆C

β (e, e′) for J = 0.0mHa the temperatures (l. to r.) T = 1K, 5K, 10K, 15K and 30K

S̆C

β (e, e′) for J = 0.1mHa at the temperatures (l. to r.) T = 1K, 5K, 10K, 15K and 30K

S̆sCβ (e, e′) for J = 0.1mHa at the temperatures (l. to r.) T = 1K, 5K, 10K, 15K and 30K

Figure 8.7.: Behavior of the contributions to the linear SSE.
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a)

b)

c)

Figure 8.8.: a) Tc(J) and the linear BCS curve with the same Tc(0). Both SpinSCDFT Tc(J)
curves start to increase at J ≈ 0.15mHa. The normalized ∆s

s are shown for S̆sCβ b) and S̆C
β c).

For S̆C
β , the solutions become numerically unstable at large J .

8.2.3. Splitting Dependence of Tc

In Fig. 8.8 a) we show the Tc(J) curves obtained with S̆M
β , S̆

D
β

TPHS
and S̆C

β or S̆sCβ . For comparison
we include the linear BCS curve that is normalized to the same Tc(J = 0mHa) in the plot. We
observe that the SC phase is predicted to be more stable against a splitting in SpinSCDFT in the
low J regime where a linearization is valid. We will see later that the Eliashberg theory agrees
with SpinSCDFT in this fact. Moreover, in the regime where we expect a first order transition,
we obtain an almost linear increase starting at J ≈ 0.15mHa. Upon this unexpected behavior,
the eigenfunctions shown in b) become extremely limited to the Fermi level ε ≈ 0 region with
increasing splitting and increasingly numerically noisy in the case of S̆C

β c).
In order to make the strong coupling SpinSCDFT theory more similar to the weak coupling

BCS approach we disregard the electronic mass renormelization contained in S̆D
β in Fig. 8.9. In

this case we are only considering the effectively attractive coupling among electrons via phonons,
similar to Fröhlich [65] and BCS. The effective Fröhlich interaction requires the coupling to be
small and, moreover, we neglect the phonon influence on the normal state (Nambu diagonal)
part of the SE entirely. Thus, this approximation is called the weak coupling limit. As expected,
the resulting T SpinSCDFT

c (J)/T SpinSCDFT
c (0) and TBCS

c (J)/TBCS
c (0) behave very similarly. Here the

Tc(J) curves shown in Fig. 8.9 a) also feature the linear increase for high splitting. Moreover
we observe a discontinuous jump of the Tc(J) at a certain splitting Jc which is accompanied by
the eigenfunctions in b) and c) changing shape. After the jump, the solution does not have a
common sign convention but shows positive and negative parts.
This points out that the S̆D

β term does not simply scale Tc(J) down in a self-similar transfor-
mation. Instead, S̆D

β leads to a larger Tc(J) reduction at small J . Thus we conclude that strong
coupling systems are less affected by an exchange splitting.
Conclusion We find that the linearized functional from a spin-splitted generalization of the
SSE properly describes the regime of the second order phase transition. The linearized BCS
curve TBCS

c (J) decays faster with J in the second order regime but this could be explained by
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a)

b)

c)

Figure 8.9.: a) Tc(J) without S̆D
β and the linear BCS curve (left). The shape of the BCS and

(S̆β− S̆D
β ) curves are very similar, however, after a jump of Tc(J) we still find the linear increase.

The normalized ∆s
s for S̆sCβ b) and S̆C

β c) discontinuously change shape at the jump.

the form of the effective interaction. In the first order regime of the phase diagram, where the
linearization cannot give sensible results, SpinSCDFT behaves differently as compared to BCS.
While the linear BCS curve bends inwards the SpinSCDFT curve bends outwards and starts a
curious linear increase in a large magnetic field.
With increasing splitting, the region ε < J becomes more pronounced in the solutions. From

the discussion in Sec. 6.5 we can speculate that there are problems with the dependence of χ(r, r′)
on ∆s

s (Fig. 6.1) in the theory. SpinSCDFT reproduces χ of the Many-Body system but at least
in the SDA χ is only weakly dependent on ∆s

s in this ε � J region for small temperatures. At
least the many discontinuous solutions, are expected to be suppressed in a non-linear treatment.
Concerning the technical reason why the increase happens, we note that in the region ε ≤ J

the contributions S̆D
β (e) and S̆M

β (e) are very small (compare Fig. 8.7 first and second row, second
plot). This prevents the penalty one usually finds on the diagonal of the matrix in the spin-
degenerate case leaving S̆C

β alone to allow for a solutions that are typically very limited to the
problematic region around the Fermi level. Even if S̆D

β is removed the problem remains because of
a sign change of S̆C

phβ . The origin of the unusual behavior of S̆C
phβ and S̆D

β lies in the combination
of Matsubara sums L of Eq. D.7 which in turn is a consequence of the energy/frequency structure
of the SC KS GF. In the non-linear equation it will turn out that the SC KS system is not gapped
at T → 0 while the interacting system is. Thus we suspect that for ε smaller than J the SC KS
GF is not sufficient to replace the full Ḡ in the SE in the way we had derived the functionals.
We will come back to this point later after we have studied the non-linear equation.
It is a surprising fact that adding the intermediate triplet contributions lowers the critical

temperature. In neglecting the possibility to condense into a triplet state one would expect to
underestimate the critical temperature. In any case, the difference to removing the intermediate
triplet SE parts are minor. Thus, in the following we will not remove any triplet SE contributions
although this formal inconsistency certainly deserves further investigation. This, however is
beyond the scope of this thesis.
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Figure 8.10.: Phase diagram of the non-
linear SSE. We include T full

c (J) (dashed
blue) from the linearized SSE (Fig. 8.8).

Figure 8.11.: Phase diagram of the gap in
the SC G0W0 DOS. The dashed blue line
is the linear T full

c (J) of Fig. 8.8.

Figure 8.12.: ∆s
s(e) for J = 0.0mHa and

several T . We find that ∆s
s goes to zero at

ε ≈ 0 for low T .

Figure 8.13.: ∆s
s(e) for T = 10K for sev-

eral J . At J ≈ 0.2mHa the ∆s
s(e) suddenly

change shape.

8.3. The Non-Linear Gap Equation

We solve the non-linear SSE Eq. (6.97) with the splitting matrix B = SM
β (ε, 0.0 mHa). In

Fig. 8.12 we show results for several T along the iso-splitting line J = 0.0mHa . The non-linear
equation has not been investigated in this form, not even in the spin-degenerate limit. A. Sanna
implemented a version that uses a numerical Matsubara summation. We find features similar to
what he obtained in the sense that we also obtain a ∆s

s(e) that goes to zero at the Fermi level
ε ≈ 0 for low T (purple ∆s

s(e) in Fig. 8.12). This means the SC KS system is not gaped (still
maintaining χ 6= 0) and we cannot directly interpret the SC KS excitations as quasi particles.
To complete the discussion of the J and T dependence of SpinSCDFT, we need a characteristic

number of a given ∆s
s(e) solution. ∆s

s(ε = 0, J) is not a sensible choice because it neither
corresponds to an excitation gap nor is it a measure for the size of the potential ∆s

s(e). Instead,
we chose

´
∆s
s(e)dε and the resulting SpinSCDFT phase diagram of Fig. 8.10 shows a transition

at a point where, from the shape of the non-linear BCS diagram (Fig. 2.1 a) the first order phase
transition is to be expected. However, following this discontinuous transition, the solutions ∆s

s(e)
do not vanish but have a different shape. In Fig. 8.13, we show the ∆s

s(e) with increasing J at
T = 10K and the transition is clearly seen. In general, while before a critical splitting Jc(T ) the
potential is little affected by the splitting, past Jc(T ) the solutions ∆s

s(e) localize at the Fermi
level and show positive as well as negative regions. This behavior is similar to the normalized
∆s
s(e) from the linearized S̆β as given in Fig. 8.8. We include Tc(J) from the linear SSE in

Fig. 8.10 and see that, past the range in J of the second order phase transition, it marks the
border of the appearance of the curious solutions in the non-linear equation.
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Figure 8.14.: SC G0W0 DOS for J = 0mHa (left) with ∆s
s of Fig. 8.12. The system is gaped at

T → 0. We present the DOS (middle: σ =↓, right: σ =↑) using ∆s
s of Fig. 8.13 at T = 10K.

The first order transition can be clearly identified.

Figure 8.15.: ∆s
s(e) at J =

0.1mHa for several T .
Figure 8.16.: SC G0W0 DOS at J = 0.1mHa with σ =↑
(σ =↓) on the left (right) .

In Fig. 8.11 we compute the G0W0 DOS at every point in J and T and extract the SC gap.
We find that the curious solutions past the transition Jc(T ) lead to almost no excitation gap.
The reason is that for the SE in the calculation of the SC DOS in Section 7.2 ∆s

s(e) is integrated
in ε. If ∆s

s(e) in the high ε region is extremely small, as in the KS potential past the Jc(T ), the
effect on the excitation gap is negligible.
Comparing the SpinSCDFT G0W0 gap of Fig. 8.112 with BCS (Fig. 2.1) we conclude that

the point of the phase transition can be clearly identified and has a similar shape. Moreover
this one-cycle correction sheds light onto the appearance of the Fermi-level localized solutions
past the critical field Jc(T ). We have seen that for small T and J = 0 the non-linear ∆s

s(e)
go to zero at the Fermi level (compare Fig. 8.12) while the analogous property of the G0W0
GF, the excitation gap of Fig. 8.11, takes its largest value at T = 0 and shows the expected
monotonous decay with temperature to Tc. This implies a significant difference in the quasi
particle states if a splitting occurs with such a ∆s

s(e). While the KS particle with the dispersion
Eασ = sign(σ)J + α

(
ε2 + ∆s

s(e)
2)1/2 is strongly altered by the splitting because the Bogoliubov

branches change their order (compare the discussion in Section 3.5.2) this is not the case in the
true quasi particle structure. In fact, from Fig. 8.15, we see that the SC solutions ∆s

s(e) if J > 0
do not go to zero and, instead, rise with J to prevent this situation. On the other hand, after
the discontinuous transition we find ∆s

s(0, J) < J in Fig. 8.13.
In the functional construction, the replacement Ḡ → ḠKS is thus a strong suspect for the

occurrence of this curious solutions past the SC transition. This is because Ḡ and ḠKS deviate
in that the latter can be non-gaped while still corresponding to a SC solution. We conclude
that the SpinSCDFT functional derived in Chapter 6 can be improved using a fitting technique
as introduced for the spin degenerate SCDFT functional to improve its Tc prediction (see the
discussion at the end of Subsection 6.3.1). Such an approach would use the Eliashberg results of
the Section 8.5 as a starting point.

2The few blue dots are points where the adaptive integration routine fails to find the pole in the integrand of
Eq. (7.48). This can be avoided with a higher integral precision.
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Figure 8.17.: S̆statC
Coulβ (1. and 2. row) and S̆statC

Coulβ + S̆C
phβ (3. and 4. row). J is 0.0mHa (1. and 3.

row) or 0.05mHa (2. and 4. row).

8.4. The Effect of the Static Coulomb Interaction

In order to complete our analysis, we investigate the effect of a static Coulomb potential in a
simplified form of Eq. (8.7). We show the shape of the Coulomb part S̆statC

Coulβ in Fig. 8.17 in
the first (J = 0mHa) and second row (J = 0.05mHa) and for comparison S̆statC

Coulβ + S̆C
phβ in the

third (J = 0mHa) and fourth (J = 0.05mHa) row. The purple line in Fig. 8.8 indicates that
S̆C
β=S̆

statC
Coulβ+S̆

C
phβ features a sign change at higher energies. The FL is strongly attractive and the

HE region is, while much larger (note the logarithmic scale), weakly repulsive. The pair potential
∆s
s utilizes the negative high energy region by changing sign with the matrix elements to, once

more, add positively to the Fermi level ∆s
s during the self-consistent iterations. This effect is

how the well known Coulomb renormalization [66] appears in SpinSCDFT.
In Fig. (8.10) we had chosen the integrated ∆s

s(e) to plot the phase diagram because the purely
phononic ∆s

s(e) is positive for the physical solutions before the transition. In the present case,
due to the Coulomb renormalization, we will find a negative HE part in the ∆s

s(e). Thus, we
show the number of condensed electrons in the system according to Eq. (3.134) as a function of
T and J in Fig. 8.18 . Since it is based on the SC order parameter, this physical property is
exactly reproduced by the SC KS system. We observe that apart from the usual reduction of the
critical temperature Tc(J = 0), the shape of the SC region in the J − T diagram remains very
similar to the purely phononic coupling case of Section 8.2. In addition, as seen in Fig. 8.19,
the eigenfunctions change sign a little away from the Fermi level as the result of the Coulomb
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Figure 8.18.: NSC(T, J) and the linear Tc(J)
(dashed blue) including the Coulomb repul-
sion. The ∆s

s(e) after the transition lead to
almost no condensed electrons.

Figure 8.19.: ∆s
s(e) at T = 3K for several J

along the dashed green line in Fig. (8.18).
The ∆s

s(e) past the transition have similar
features as without the Coulomb repulsion.

Figure 8.20.: G0W0 gap according to
Eq. (7.49) using ωσγ0 (ε = 0).

Figure 8.21.: Upspin channel of the G0W0
DOS along the dashed green line in
Fig. (8.20) at T = 3K. Past the transition,
we see small features from the unphysical
solutions.

renormalization. The solutions past the transition lead to almost no condensed electrons while
the linear Tc(J) still features the increase for J above the second order regime.

We compute the G0W0 gap according to Eq. (7.49). There we assume that the smallest
excitation is the quasi particle at the original FS without SC, namely ε = 0. We then solve
Eq. (7.49) at ε = 0 for given σ at both γ = ±1 and compute the minimal distance above and
below the ω = 0. This distance is twice the gap. The corresponding phase diagram is given in
Fig. 8.20 . Clearly, it follows the shape of NSC(T, J) in Fig. 8.18. This procedure is significantly
more efficient as compared to the extraction of the gap from the G0W0 DOS in Fig. 8.11 while
it leads to largely similar results. In Fig. (8.21), we show the upspin channel of the G0W0 DOS
at T = 3K.
In summary we can say that the Coulomb interaction does not affect the consequences of the

replacement Ḡ→ ḠKS.
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Figure 8.22.: T−J−diagram of the excitation gap (∆Es
n=0) of the Eliashberg equations. We follow

∆Es
n (J) 6= 0 (left) or ∆Es

n (J) = 0 (right). There is a region where both are (meta) stable. In
Fig. 8.23, we plot ∆Es

n (J) along the blue lines. The green (black) dotted line on the left (right)
is the linear BCS (SpinSCDFT) curve, fitted to the same Tc(0). The green dotted line on the
right is T full

c (J) of Fig. 8.8.

8.5. Solutions to the Eliashberg Equations

We solve the Eliashberg Eqs. (7.82) to (7.85). To arrive at these equations we assume a phononic
coupling that does not depend on ε. Further we are not considering the Coulomb interaction
that in the static approximation would correspond to the µ? pseudo-potential (compare Chapter
7). The best overview is obtained by plotting a characteristic SC property vs T and J . Here, we
choose ∆Es

n (J) at n = 0 as it corresponds to the single particle excitation gap.
In this non-linear equation we may have several stable solutions and, in fact, we find that

results depend on the starting value ∆0 in some ranges of the parameters T and J . In this
work we always start with constant, finite ∆Es

n = ∆0 or an already converged solution of some
different point in T and J . At J = 0 this is not the case and below Tc we always reach a
non-zero SC solutions if our starting value is non-zero. We call this finite ∆Es

n solution the SC
fixed point. After some critical splitting Jc we arrive at the normal state ∆Es

n (J) = 0 even if
we start with a small symmetry breaking field ∆0. With a large starting value ∆0, however, we
arrive at a converged finite solution ∆Es

n (J) 6= 0. To investigate this systematically, we follow
the SC fixed point in the left panel of Fig. 8.22 . “Follow” means we take a converged solution
∆Es
n (J) from the last calculation as input for the next set of parameters J and T . Following the

SC fixed point means to compute the data for the plot “from left to right” while we follow the
normal state fixed point in the right panel which means we generate the data “from right to left“.
Comparing left and right panel of Fig. 8.22 we see that there is a region at J ≈ 0.3mHa where
the system supports a SC solution while the normal state is meta stable within a finite basin of
attraction. This means that small SC perturbations converge to the respective fixed point via a
self-consitency iteration.
We show the linear BCS results of Fig. 2.1, fitted to the same Tc(J = 0) as Eliashberg theory, in

the plots of Fig. 8.22 as a dotted green line. The shape of the linear BCS curve is very similar to
the border between stability and instability of the normal state fixed point. However, Eliashberg
predicts a higher critical field as compared to BCS theory in agreement with SpinSCDFT. The
linear SpinSCDFT curve is shown as a green dotted line on the right panel and, scaled to the
same Tc(0), once more as a black dotted line. First we see explicitely that Eliashberg theory
predicts a higher Tc(0). This is known [21, 22] and due to the violation of Migdal’s theorem.
Apart from this, in the region of the second oder phase transition we see deviations from the
black, scaled SpinSCDFT curve.
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Figure 8.23.: ∆Es
n (J) for T = 40K (left) and T = 10K (right) along the blue lines of the left panel

of Fig. 8.22.

We show the shape of the solutions ∆Es
n (J) for T = 10K (right) and 40K (left) as a function of

J in Fig. 8.23 . The only effect of the splitting is to scale down the gapfunction up until the point
where it suddenly vanishes. For low temperatures the down-scaling is much less pronounced and
it is safe to say that the pairing is almost unaffected by the presence of a splitting up until the
point where SC is lost. This behavior is much different from the energy dependent pair potential
in SpinSCDFT in the heuristic partial linearization but more similar to the non-linear solutions.
Comparing Tc(J = 0) we see that the prediction of the Eliashberg equations is much higher

than the one of SCDFT where T SCDFT
c (J = 0) ≈ 29.0K while T Eliash

c (J = 0) ≈ 50K. This problem
is the result of the violation of Migdal’s theorem due to our replacement Σ̄[Ḡ]→ Σ̄[ḠKS] and, as
mentioned before, was solved by A. Sanna with a fitting procedure.



Summary and Outlook

We have derived ab-initio methods for a SC in a magnetic field. Our analysis disregards orbital
currents and is solely based on the destructive effect of the separation of single electronic states
due to a magnetic field via the Zeemann term. The focus is on the extension DFT for SC. There,
we employ a SC KS system to reproduce the densities of the interacting system. Using Many-
Body perturbation theory and the Sham-Schlüter connection we have derived xc functionals. In
this first approach we rely on the replacement of the interacting with the KS GF in the SSE. In
a specialization, we neglect triplet SC and assume that SC does not hybridize KS states other
than to a given particle, the corresponding time reversed hole state. We refer to this as the SDA.
Because our SC KS system reproduces the interacting densities, but not the excitation spectrum
we have derived equations for a G0W0 like GF. From this interacting GF we have constructed
equations for the DOS. We have further derived Eliashberg equations that do not rely on the
replacement of the GF but are otherwise based on very similar approximations: We assume the
SE to be diagonal in the space of KS orbitals and do not consider triplet SC.
During this work we have developed a code from scratch that solves these equations numerically

to test the quality of the functionals derived. We have tested the new methods on the free
electron gas with a homogeneous magnetic field (as a parameter) and phononic and Thomas-
Fermi screened Coulomb coupling.
In agreement with earlier work on spin-degenerate SCDFT [54, 57], we recover the Tc under-

estimation as compared to the Eliashberg solution. Both, Eliashberg and SpinSCDFT, however,
predict that the SC state is more stable against a splitting field than a similar BCS model with
the same Tc. We could trace this to the strong coupling Nambu-diagonal SE contributions that
are not considered in BCS. In the regime where the SC transition is of second order, the lin-
earized SSE of SpinSCDFT properly describes the Tc(J) curve. In the non-linear SSE we can
clearly identify the transition by a sudden change of shape in the solution, however the ∆s

s do not
vanish past this point. Computing the G0W0 DOS shows that the curious solutions correspond
to almost no gap in the excitation spectrum.
From this encouraging result we believe that a similar fit of the SE as used by A. Sanna to

improve Tc(J = 0) will remove the high J solutions. While we believe it to be a promising
approach it can become a time-consuming task: 1) One has to choose a set of fitting parameters
and 2) match numerical conditions from Eliashberg theory with a SpinSCDFT calculation for
each individual value. Moreover, we believe that the J − T spectra from the present functional
have already the qualitatively correct shape. We thus leave the functional improvement to a
future project and apply SpinSCDFT to a realistic material in the next Part II.



Part II.

Superconductivity of Surfaces: Lead
Monolayer on Silicon



Figure 8.24.: Striped incommensurate phase configuration of Pb on the Si (111) substrate. On
the left we present the top view, and on the right the side view. Black lines mark the simulated
unit cell.

Introduction

Part I dealt with the theoretical methods and their implementation. If we want to compare the
results of Part I with experiment, a realistic system has to be considered where SpinSCDFT
is applicable in its present implementation. At the moment there is no implementation of a
feedback mechanism of the SC condensation to the magnetization of the substance. In a realistic
situation the Meißner effect will prevent the system from being homogeneously magnetized as
we had supposed in our free electron gas toy model. There is however great interest in the study
of SC of thin surfaces layers[24], where in general the thickness is much less than the penetration
depth of the magnetic field. Here we suppose that SC is directly altered by the presence of a
nearly homogenous external magnetic field without the necessity to consider the Meißner effect.
The exponential growth in computing power over the last decades allows for the numerical

ab-initio simulation of large systems, even for surfaces where the broken translational symmetry
requires large unit cells with enormous numbers of electrons. Improvements in experimental
techniques on the other hand have enormously reduced the effective size, i.e. the number of
atomic layers, of the surfaces under study, which allows the direct comparison between numerical
simulations and experimental results.
In this work we simulate a single layer of Pb in the striped incommensurate phase configuration

on a Si(111) substrate with Tc = 1.86K in experiment [24]. In Fig. 8.24 we show the simulated
unit cell of this system.
Before we can study the SC phase of a thin surface on a computer, several challenges have

to be faced. We describe the calculation of the normal state ingredients to a (Spin-) SCDFT
calculation in Chapter 9. In Chapter 10 we discuss the SC of the system without an external
magnetic field which allows for a very interesting discussion by itself before we turn to the effects
of a magnetic field in Chapter 11. We do not have an improved functional that accounts for the
inaccuracy of the replacement Σ̄[Ḡ] → Σ̄[ḠKS] in the magnetic case. However, the accurate Tc
prediction turns out to be crucial for the theoretical study of the Pb on Si(111) surface and we
use a mixed approach. We discuss some of the features of the SC of the system such as the Tc
and gap at T = 0 using the improved functional, but then compute properties like the DOS, the
LDOS and the effect of a magnetic field using the functional derived in this work.



9. Electronic and Phononic Properties of Pb
on Si(111)

In this Chapter, we discuss the results of first principle calculations of a single layer of lead on a
silicon substrate including a full treatment of phononic and RPA screened Coulomb interactions.
We constructed the Si-Pb system as shown in Fig. 8.24. Lead arranges in this system in the
so-called striped incommensurate phase configuration. We model the Si substrate by a (111)
oriented slab, which we passivate on the opposite side of the lead surface using hydrogen. We
converge the number of silicon layers with respect to the purely phononic Tc of the SCDFT
calculation to ensure that the electron phonon coupling is accurately accounted for. A relatively
large width of five Si-bilayers reduces the effects of the limited size of the substrate on the Pb
layer. To resemble more closely to the experimental setup we constrain the hexagonal (xy)
Si unit cell to its bulk size. Since we work with periodic boundary conditions, a vacuum of
∼8 Å separates the periodic replica of the system. Within these constraints, we performed a full
relaxation. A similar system has been studied before by Noffsinger and Cohen [67]. We work
in a different approximation in using a larger Si bulk and, we explicitly include silicon phonon
modes in our calculations. Most importantly we allow different pairings for bulk and surface and
discuss the influence of the Coulomb interaction. The SC of this system is the topic of the next
Chapter 10. We have calculated relaxations, electronic structure, phonons and electron-phonon
interactions within KS DFT. All normal state calculations employ the LDA for the xc functional
[68] using norm conserving pseudo-potentials to account for core electronic states. We use a
cutoff of 80 Ry in the plane wave expansion of the KS states and the Brillouin zone has been
sampled with a mesh of 12×12×1 k-points. Phonons and electron phonon coupling have been
calculated within linear response DFT [35] using the ESPRESSO package [52]. We discuss the
electronic bands in Section 9.1 and the vibrational structure in Section 9.2. In Section 9.4 we
discuss the connection of the surface and the substrate with respect to electronic couplings.

9.1. Electronic Structure

One property of the undoped electronic band structure (Fig. 9.1 , black dotted lines) is the
presence of both Pb and substrate bands at the fermi level. This means that the Pb deposition
acts as a dopand to the Si substrate, which develops a surface metallic region. This metallic
region fades within a few layers. The presence of this additional metallic band is relevant for two
reasons. First it may be providing a contribution to the electron-phonon coupling and, second,
it may stabilize fluctuations of the order parameter of the SC phase by effectively enhancing the
three-dimensionality of the condensate. These Si metallic bands can be removed by using a n-
doped substrate. We explicitly consider this case by substituting one Si atom (in the deep bulk)
with a virtual mixture of P and Si, corresponding to a doping of 1 part per 240 Si. Doping has
a small effect on the filling level of the Pb bands, but completely saturates the Si- hole pockets
(see Fig. 9.1, thick colored lines). This doped system is experimentally realized [24] and allows
for direct comparison with results of the calculation.



114 9. Electronic and Phononic Properties of Pb on Si(111)

Figure 9.1.: Band Structure and DOS. Thick
(thin dashed) lines correspond to a P doped
(undoped) system. The doping has little effect
on the purple Pb bands while it fills the green
silicon hole pockets (green arrows).

Figure 9.2.: FS of Pb on undoped Si(111). The
2D nature of the system leads to no dispersion
along kz. The doping removes the green Si
states from the FS (compare Fig. 9.1).

Figure 9.3.: Phonon dispersion and DOS of Pb
on Si(111). Blue (red) corresponds to a mo-
tion of Pb (Si) and black to H atoms. Optical
modes of H appear up to 2000cm−1.

Figure 9.4.: α2F i,j(ω) for states at the FS of
the undoped system. We resolve the Si and
Pb FS sheets.

9.2. Phononic Structure

We show the results of the phonon calculation in Fig. 9.3 . We choose the color according to the
normalized motion of the type of atom due to a given phonon mode Ωqλ: Blue corresponds to
the Pb surface motion, red corresponds to the Si substrate and black to the H atoms we used for
saturation of the Si bonds. We point out that we find many modes that involve only the motion
of a certain type of atom, so similar to the electronic states at the Fermi level also the phonon
mode structure is decoupled. We expect that the blue lead phonon modes in the spectrum will
be unchanged if we alter the silicon configuration fare from the surface. However we cannot hope
that the silicon modes remain unchanged if we add more layers.
Following the discussion in Sec. 4.1, we note that the electron phonon coupling is due to the

local potential variation induced by a phononen mode. The coupling matrix elements are the
overlap among electronic states that is created by this local potential. In the calculation of
SC, the coupling of states directly at the FS is the most relevant. Thus, the electron phonon
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λPb,Pb λPb,Si λSi,Si λav max[λi] ρPb(0mHa) ρSi(0mHa)

undoped 0.95 0.13 0.06 0.78 0.98 0.0265(mHa)−1 0.0162(mHa)−1

doped 1.03 0.00 0.00 1.03 1.03 0.0291(mHa)−1 0.0000(mHa)−1

Table 9.1.: λi,j is the FS sheet resolved coupling matrix. λav = 1
ρ(0)

∑
i,j λ

i,jρi(0) is the average
electron phonon coupling where ρi(0) are the FS sheet resolved DOSs and ρ(0) is total DOS.
max[λi] is the maximal eigenvalue of λi,j that in BCS determines Tc[69].

coupling is as localized in real space as are the states at the FS. From the little hybridization of
the phonon modes in Figure 9.3 we conclude that at least the lead electron phonon coupling will
be largely independent on additional layers. Here, the calculated full electron phonon coupling
strength for the undoped system results is λ = 0.78 (see Table 9.1). We can well separate Fermi
surface sheets into Pb and Si like states (Fig. 9.2). We compute the coupling constant matrix
λi,j among fermi surfaces sheets, i.e. states in the Pb and Si (first) and from one to the other
(i, j = Pb, Si) (second) and show them in Table 9.1. The internal coupling of lead alone is larger
than the averaged one and points out that we have to consider the possibility that this system
is a multiband SC. Note that because the coupling is weighted by the DOS, we have to use the
formula λav = 1

ρ(0mHa)

∑
i,j λ

i,jρi(0mHa) to avage isotropic band resolved coupling constants. If
a hole dopand is present we calculate an even splightly increased Pb,Pb coupling as compared
to the undoped case.

9.3. Coulomb Coupling

We compute the static screened Coulomb coupling matrix elements Eq. (4.14) with dielectric
screening in the RPA using the YAMBO code1. Due to the size of the system we have to
remove 3 double layers of Si from the ab-initio calculation. Then we average the anisotropic
matrix elements on equal-energy surfaces. The results resemble closely to 3 times the electron
gas model analogous to Eq. (8.7) with different paramters each: First a hole gas for the Si hole
pocket (green arrow in Fig. 9.1). Second, an electron gas for the rest of the Si bulk and third an
electron gas for Pb surface layer. The averaging process and the final fitting results in Cstat

nn′(e, e
′)

which we show in Fig. 9.5 . The Thomas-Fermi screened Coulomb coupling our model of the
last Part in Fig. 8.2 has a slightly different shape as compared to Fig. 9.5. This is due to the
unrealistically small screening of kTF we had chosen in our toy model. The hole band of silicone
leads to a pronounced peak because of the matrix elements approaching the low q limit of the
Coulomb interacting on the top of the hole pocket.

1http://www.yambo-code.org/

Pb - Pb Pb - Si Si - Pb Si - Si

Figure 9.5.: The statically screened Coulomb coupling Cstat
ij (e, e′) divided by %i(e′).
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9.4. Interaction of Surface and Substrate

In this Section we combine the analysis of the Sections 9.1, 9.2 and 9.3 to investigate how the
NS KS particles (taken as quasi particles) behave in this system. We can distinguish three main
effects that describe how the KS electrons of the Pb surface and the substrate are coupled:
chemical hybridization, electron phonon coupling and the Coulomb interaction.
The chemical hybridization between surface and substrate states can be made visible by pro-

jecting the KS states on the Pb atomic orbitals. This type of projection determines the color
scale we used in Fig. 9.1 and shows that the KS states near the Fermi energy are either located
in the lead surface or inside the silicon bulk, with essentially no overlap.
The electron-phonon coupling is computed for the KS system via linear response. Phonons

may provide pairing between bulk and surface states. In Section 9.2 Table 9.1 we give the Fermi
surface sheet resolved electron phonon coupling. While in the undoped case the phonons do
couple the electron states of the surface and substrate, the doping fills the hole pockets and
removes all substrate states from the range of the phonon energies.
Moreover the electrons are subject to a screened Coulomb scattering which we treat within

the RPA [70]. This kind of interaction in bulk materials is often overlooked, since, acting both
as a repulsive (directly) and attractive interaction (via Coulomb renormalization mechanism
[66, 71, 27]) its effect on the SC pairing appears very often to be largely material independent.
Compare also Section 8.4 on how this effect is incorporated in the purely energy (electronic
state) dependent SCDFT. The material independence is the reason for the usually lax way the
Coulomb interaction is treated in Eliashberg based methods [44, 72] where the well-known rule
of thumb is to take µ? ∼ 0.13 [73].
To understand why the behavior of the Coulomb potential is different in the context of surfaces,

we want to emphasize the DOS in Fig. 9.1. The purple, almost constant, DOS is due to states in
the lead surface layer. The green one is due to states in the silicon and goes to zero at the Fermi
level, leaving the lead alone to give a metallic region. The Coulomb matrix elements connect all
states in a broad energy region about the Fermi level. Moreover, the variation on the narrow
energy scale of SC at the Fermi level is small and for the following discussion we can view the
potential as constant. Then, the size of the coupling matrix elements Cstat

ij (e, e′) is determined by
the number of states at given energy that are connected with the states at another given energy.
Thus, for almost constant coupling matrix elements this would be proportional to the DOS at
the first, times the DOS at the second energy. Because we had to normalize the average coupling
in Eq. (6.114) by the first DOS the result is essentially proportional to the second DOS alone.
There are very few states of lead as compared to silicon due to the reduced dimensionally of
the surface layer as compared to the large bulk. This means the Fermi level Pb to Pb Coulomb
repulsion is small while the rest of the energy spectrum is not. In the Section 8.4 we understood
that this high to low energy coupling is what causes the Coulomb renormalization in SCDFT.
We conclude that this interaction is much less destructive in the present system as in a usual
bulk geometry: The effectively repulsive Fermi level to Fermi level Coulomb interaction is small
and the effectively attractive high energy to Fermi level coupling is large.
This insight is not specific to lead on silicon. It will always arise when we have a metallic layer

on an insulating substrate and, then, we cannot simplify use the usual, averaged µ? ∼ 0.13.



10. The SC Si−Pb Surface without Magnetic
Field

A simple approach to computing the Tc of a material is the McMillan formula [72]. With a
standard value for the effective Coulomb coupling parameter µ? = 0.10 we obtain an estimation
for Tc = 1.98K. This is in perfect agreement with the experimental Tc of 1.86K[24]. This is in
spite of the Mermin-Wagner theorem [74] claiming the absence of SC ordering in 2D due to the
onset of fluctuations in the order parameter. While this system is not truly 2D, we expect a
high susceptibility with respect fluctuations and a dynamical reduction of Tc. According to the
agreement of the McMillan formula with experiment at first it seems that SC in this 2D limit can
be understood from the electronic coupling alone and no fluctuations are necessary to explain
the physics of this system. Considering a fully averaged coupling λav and ignoring the energy
dependence of DOS and screened Coulomb interactions (by approximating them with the value
at the Fermi energy), SCDFT1 results are equivalent to McMillan. Within these assumptions,
we obtain Tc = 2.01K in SCDFT for Pb on the undoped substrate and Tc even rises to 2.74K for
the doped Si substrate. The difference in Tc between the doped and undoped system is caused
by the fact that the undoped material has an avarage coupling which is much weaker than the
coupling among the lead states alone (compare Table 9.1). This implies that the full isotropic
approximation is unjustified and we have to allow the substrate and the lead monolayer to develop
different pair amplitudes. Forcing both parts of the system to have the same pairing leads to
an underestimation of Tc. Thus, multiband-SC (compare Section 9.2) has to be considered as in
MgB2 [59].
Using a two isotropic band approach, SCDFT predicts for the undoped(doped) system Tc =

3.42(3.54)K (compare Tab. 10.1). The computed Tc turns out to be much higher than the
experimental value of 1.86K. As discussed in Subsection 6.6.1 the isotropization relies on the
assumption that in a fully anisotropic calculation the pairing depends on the Bloch vector only
via the single particle energy. The McMillan formula relies on the fully isotropic assumption and
its good agreement has to be the result of error compensation. Because we cannot reproduce
experiment we have to determine which effects have been left out in our approximations and
what their effect would be if included. We believe that the only reasonable explanation for the
experimental Tc suppression is the onset of fluctuations of the SC order parameter. To justify
this conclusion we have to be able to exclude other mechanisms that possibly suppress Tc.

I) We have assumed the RPA for the Coulomb interaction. This is reliable in the high-density
limit when screening is good. We estimate the effective density of Pb using the density of Pb
states at the FS and then using the density of a free electron gas with the same DOS at Ef . This
procedure leads to an effective sphere volume for an electron with radius rs ≈ 0.7a0. Therefore
the Pb layer is expected to be well described in the RPA. An equivalent procedure for the Si
hole pocket (effective Ef ≈ 20mHa) leads to a very low density with an average rs ≈ 33a0 and
cannot be expected to be well described by the RPA. However, the strong Coulomb repulsion will
1We are using A. Sanna’s improved functional unless not otherwise specified.

T c [K] ∆Pb(0) [mHa] ∆Si(0) [mHa] T av
c [K]

undoped 3.42 0.026 0.012 2.01
doped 3.54 0.027 — 2.74

Table 10.1.: Tc and the SC gaps in the Pb- and Si FS, ∆Pb(0) and ∆Si(0) , respectively via
multi-band SCDFT. T av

c uses an average coupling on both FS, ignoring the energy dependence
of DOS and Coulomb interactions (corresponding to a µ? like approximation).
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prevent a significant contribution to SC, therefore this inaccuracy cannot affect the estimated Tc
significantly. In the doped system these bands are even beyond the range of SC.
II) Due to Migdal’s theorem [48], vertex corrections to the electron phonon coupling are ig-

nored. Due to its shape, the theorem does not apply to the Si hole pocket. However, this cannot
have a significant influence since, as discussed before, this band effectively does not take part in
the condensation.
III) We consider only a statically screened Coulomb interaction. The result of dynamic (plas-

monic) effects could lead to important modifications of the dielectric screening in the case of
low energy surface plasmons. However this effect is known to give a positive contribution to
SC (enhancement of coulomb renormalization by the plasmonic peak). Therefore, if relevant, it
would lead to a higher Tc prediction.
IV) We use the LDA in the low dimensional limit. This issue has been investigated in detail

by Pollack and Perdew [75] showing that LDA performs well as soon as the ratio between the
layer thickness and the rs coefficient of the gas is & 2. In our case this ratio is ≈ 5 and we expect
the LDA to perform as reliably as usual.
V) Due to the poor metal-substrate hybridization, the calculated single particle excitation

spectrum of Si has a fundamental gap that is about one half of the observed gap in bulk silicon.
This may lead to an overestimation in the Coulomb renormalization, and then in an overestima-
tion of Tc. We have therefore accounted for this effect in our calculations by including a scissor
correction on the Si bands and the resulting effect on Tc correction is < 0.1K.
We believe that we have considered all relevant electronic pairing effects. In the bulk limit

the critical temperature in SCDFT in the same approximations used for the slab is 6.3K that
compares well with the experimental value of 7.2K.
We have not accounted for fluctuations in the order parameter in the present functionals,

while this could be in principle captured in SCDFT. According to model calculations, these
are strongly suspected to suppress SC. The Mermin-Wagner theorem[74, 23] states that these
fluctuations completely forbid SC in two dimensions. In 3D systems of constrained geometry
(as surfaces) model calculations for Bose gases and spin systems show that these fluctuations
may still be relevant in the limit in which the thickness is on the atomic scale and the in-plane
dimension of the system is macroscopic[76, 77]. Due to the strong confinement of the SC phase
to the lead layer one would expect to be in a regime where these fluctuation effects are relevant.
The disagreement between the calculated and experimental critical temperature then strongly
suggests that T c is experimentally limited by fluctuations. The SC phase rapidly approaches
a value similar to the bulk with an increasing number of Pb layers [78, 79] (see Fig. 10.1),
strengthening this conclusion.
While especially in this system Tc is the most interesting, we compute additional physical

properties of this SC system. As mentioned, we perform the following calculations using the
functional of Part I, not the spin-degenerate, improved version that yields the accurate results of
this Section. We study the undoped system which allows us to see the behavior of a multi-band
SC. We show the solutions to the non-linear SSE for the undoped system in Fig. 10.2 . The ε
dependence of the Coulomb coupling makes the gap asymmetric. A two gap structure is clearly
visible: The green Si pairing is much less pronounced than the purple Pb. From the linearized

Figure 10.1.: Tc as a function
of the number of layers. Ex-
perimental data is from the
Refs. [24, 78, 79].
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Figure 10.2.: ∆s
s(e) of the undoped system at T = 0.01K, 0.5K and 1.5K (l. to r.).

Figure 10.3.: G0W0 DOS for the undoped system at T = 0.01K, 0.5K and 1.5K (l. to r.).

equation we obtain a critical temperature with the functional of Part I of Tc = 1.806K which is
much reduced as compared to the functional we have used before in this Section to arrive at the
results of Table 10.1. We compute the G0W0 DOS and show the results in Fig. 10.3 . The double
gap structure leads to two overlayed dips in the excitation spectrum, one smaller for Si and one
larger for Pb. This behaviour is also visible in the local DOS of the SC surface in Fig. 10.4. In
the doped case, the Si disappears from the Fermi level. We take T = 0.5K and show several
frequency steps in the range of SC of this system. The lead states are first enhanced before we
enter the Pb gap and they vanish from the plots where only the Si remains. Then the Si states
are enhanced before the DOS vanishes in the SC gap.
We conclude this Chapter plotting the real space structure of the order parameter of Fig. 10.5,

that has the interpretation of the wavefunction of electrons in the condensed phase. The shape
allows us to immediately identify the regions in the unit cell that take part in the SC condensation.
We see that the effect of the Coulomb renormalization is to extend the phase into the substrate
(dark blue) while the strongest magnitudes are reached in the Pb layer. Being positive, the Pb
layer with its high attractive coupling is responsibable for SC in this system while proximity
effect also makes the Si substrate a SC, due to the Coulomb interacting even in the doped case.

Figure 10.4.: LDOS of SC lead on Si(111) at T = 0.5K without
external magnetic field. We show (l. to r.) the LDOS 1) before the
SC range close to the Fermi level, 2) the larger gap Pb peak, 3) the
range after the Pb peak, 4) the Si peak and 5) the excitation gap.

Figure 10.5.: Real-space
structure of χ(R,0)
normalized to its maxi-
mal value of 0.0002765.



Figure 11.1.: J(k) vs ε(k) for B0 = 0.005, 0.01,0.015 and 0.02mHa. Each yellow (black) dot is a
k = k, n associate with Pb (Si). We highlight the low ε region on the left of each plot. We see
J(k) ≈ Jeff in the FL region and Jeff/B0 ≈ 0.6.

11. The Si−Pb Surface in a Magnetic Field
In this Section we investigate the SC phase as a function of a small, constant, homogenous
magnetic field and of temperature. First, we have to address the question, whether or not
we can neglect the current in our calculations. We point out that experimentally, vortices are
found [24] that we cannot describe in SpinSCDFT. However, for computing the critical field we
expect that the comparison of energies will be the most important, where the Zeemann term
dominates the current term. We expect that in our calculation, SC is not fully suppressed by
the magnetic field. As before, we attribute this to the replacement Σ̄[Ḡ]→ Σ̄[ḠKS]. In addition
the replacement will lower the overall predicted Tc while we expect qualitative agreement.
From the analysis of Part I we expect the critical field for SC of this system in the order

of 10−3mHa. Thus, we assume that the coupling matrix elements and thereby the isotropic
couplings α2Fn(ω) and Cstat

nn′(e, e
′) do not change significantly. In Section 11.1 we discuss the

isotropization of the system, i.e. to what extent the homogenous field results in an effective
splitting parameter Jeff . Then, in Section 11.2, we compute SC of the system as a function of
temperature and field strength B0.

11.1. Isotropization of the Si− Pb Surface in a Magnetic Field
Screening effects may result in an anisotropic magnetic field, even if the applied external field
is homogenous. We sample the KS single particle energy distribution εkσ on a random grid in
first Brillouin zone with a higher acceptance probability close to Ef . For the external fields
B0 = 0.005mHa, 0.01mHa,0.015mHa and 0.02mHa, for each such point k = (k, n) we compute
ε(k) = (εk↑ + ε−k↓)/2 and J(k) = (εk↑ − ε−k↓)/2 and plot a dot in Fig. 11.1. We see that the
screening of the magnetic field is anisotrop and ε dependent. Note, however, that we always
compare J with ε in the equations of Part I and thus the only relevant splitting parameter is
the value at the Fermi level. We highlight a smaller range about ε ≈ 0 on the right of every
plot in Fig. 11.1. In this range we clearly see that to a good approximation J(k) ≈ Jeff . For our
four values of the fields we extract the effective splitting parameters Jeff ≈ 0.003, 0.006,0.009 and
0.012mHa which results in Jeff ≈ 0.6B0. This allows us to compute the critical magnetic field
taking some of the (non SC) screening of the magnetic field into account.
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Figure 11.2.: Nsc(T,B0) for Pb on doped
Si(111) and the linear Tc(B0) curve.

Figure 11.3.: The SC G0W0 gap of Pb on
doped Si(111) as a function of T and B0.

Figure 11.4.: ∆s
s(e) along the dashed green

line in Fig. 11.2
Figure 11.5.: The SC G0W0 gap of Pb
on doped Si(111) at T = 1.0K along the
dashed green line in Fig. 11.3.

11.2. Suppression of SC via a Magnetic Field

From the last Section 11.1 we conclude that to a good approximation the external B0 results
in an effective splitting parameter of Jeff = 0.6B0. Thus, we may use the tools of the last part
to compute the phase diagram. For the analysis of this Section we use the doped system since
it is realized in experiment [24]. While we can thus compute SC physical properties of a real
material in a magnetic field such as excitation spectra and the critical field from first principles,
the results have to be taken with care. The inclusion of fluctuation corrections is beyond the
scope of this thesis as is the fitting procedure to account for the replacement of Σ̄ → Σ̄KS. The
earlier discussions suggests that these effects have to be considered. Similar to the Tc via the
McMillan method, we do expect some error compensation. The experimental upper critical field
(perpendicular to the surface as in our calculation) is estimated in Ref. [24] to be BII

0 = 0.145T.
We cannot describe the vortex state, still, since in this geometry the field penetrates the SC,
we expect that BII

0 is similar to a homogenous field that suppresses the SC phase. When we
compare our results of Fig. 11.21 to experiment we have to take into account that the high field
SC tail is not the minimum of the free energy similar to BCS in Fig. 2.1 b). Assuming that the
corrected phase diagram has a similar shape as BCS in Fig. 2.1 b), we extract the critical field
Bc ≈ 0.03mHa = 1.4T from Fig. 11.2 at T = 0K . We note that this is one order of magnitude
above BII

0 . BII
0 is the point where the vortices get too dense so that the super currents that

allow the flux through the core become too localized, instead Bc is computed neglecting current
contributions. Clearly, parts of the mismatch have to be attributed to the Tc overestimation.
Also, impurity effects have been neglected that may significantly influence the result.

1The data of Fig. 11.2 and 11.3 was computed starting always from a constant initial guess while the data of
Fig. 11.4 and 11.5 was obtained from low to high B0 in the sense of Sec. 8.5.



Summary and Outlook

In this second Part we simulate the SC phase of the realistic system: A lead monolayer on a silicon
(111) surface. We model the semi-infinite substrate with a 10 monolayer slab that is saturated
with hydrogen. The SC of this system turns out to be interesting even without the magnetic field.
Carefully revisiting common approximations in the context of SC we conclude that the agreement
of the experimental Tc with the McMillan formula is due to error compensation. Allowing the
surface and the substrate to develop different pair amplitudes we overestimate Tc by a factor of
two. We attribute this overestimation to the fact that we do not include fluctuations in the order
parameter which according to model calculations is a very important mechanism in constrained
geometries.
Then, as a next step, we apply a perpendicular magnetic field B0 to the system and compute

the number of condensed electrons per unit cell as a function of T and B0. We estimate the
critical field at T = 0K to be Bc ≈ 1.4T which is one order of magnitude higher than the upper
critical field BII

0 in experiment. We might conclude that in lead on silicone the critical field
is limited by currents which are not part of the present description or the effect of impurities.
Clearly a systematic investigation is in order.
Several questions have been left out to future investigations. For the most important ques-

tion, we could argue that a fitting procedure similar to A. Sanna to rise the Tc(J = 0) to the
experimental value is likely to remove the unphysical solutions past the first order phase transi-
tion. As a further interesting aspect we found that the functional construction generates triplet
components in the order parameter. The effects of such contributions in the functional seem
to be small, but the inclusion of triplet pairing clearly deserves further attention. As a further
intriguing project we would like to include the effects of fluctuations in the order parameter into
an ab-initio theory. Intuitively we expect that this will require the susceptibility of the SC state
with respect to variations in the order parameter. A formal derivation of an effective interaction
that involves the SC fluctuations appears desirable.
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A. Derivation of the Continuity Equation

The goal of this section is to compute the divergence of the current operator which will lead to
the continuity equation for superconductors on an operator level. As the governing Hamiltonian,
we consider the full SC Pauli equation, i. e. we take Ĥ of Eq. (3.1) but we replace in the part
Ĥe of Eq. (3.2)

T̂ e → T̂ eA =

ˆ
drψ̂†(r) · 1

2me
σ0

(
−i~∇ +

e

c
A(r)

)2 · ψ̂(r) . (A.1)

with the paramagnetic current operator

ĵp(r) =
~

2mei

∑
σ

{
ψ̂†(rσ)

(
∇ψ̂(rσ)

)
−
(
∇ψ̂†(rσ)

)
ψ̂(rσ)

}
. (A.2)

We may write T̂ eA also as

T̂ eA = −
∑
σ

ˆ
drψ̂†(rσ)

~2

2me
∇2ψ̂(rσ) +

+
e2

2c2

ˆ
drn̂(r)A2(r) +

ˆ
dr̂jp(r)

e

c
A(r) , (A.3)

if we assume ˆ
∇
(
A(r)n̂(r)

)
dr ≡ 0 (A.4)

This can be viewed a reasonable assumption because the flow through the surface at infinity is
zero. In the theoretical model of crystals with periodic boundary conditions the validity of this
assumption is not so easily argued. We introduce the current operator that is connected with
the paramagnetic current Eq. (A.2) via

ĵ(r) = ĵp(r) +
e2

2c2
n̂(r)Aext(r) (A.5)

For the present purpose we neglect the vector potential acting on the nuclear kinetic operator
Eq. (3.11). We thus evaluate (

∇ · ĵ
)

=
(
∇ ·

(̂
jp +

e

2c
n̂(r)A(r)

))
. (A.6)

We consider the paramagnetic part first, is which readily seen to equal

(
∇ · ĵp

)
=

~
2mei

∑
σ

{
ψ̂†(rσ)

(
∇2ψ̂(rσ)

)
−
(
∇2ψ̂†(rσ)

)
ψ̂(rσ)

}
(A.7)

because the terms
(
∇ψ̂†(rσ)

)
·
(
∇ψ̂(rσ)

)
cancel. Further, let us compute

[

ˆ
ψ̂†(r)∇2ψ̂(r)dr, ψ̂†(xσ′)ψ̂(xσ′)] (A.8)
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Due to the peculiar behavior of the derivative operator we prefer to perform the calculation for
matrix elements in a plane wave basis

[

ˆ
ψ̂†(rσ)∇2ψ̂(rσ)dr, ψ̂†(xσ′)ψ̂(xσ′)] =

= −
∑
kll′

[ĉ†kσk
2ĉkσ, ĉ

†
l′σ′ ĉlσ′ ]e

−ix·l′eix·l (A.9)

with
[ĉ†kσk

2ĉkσ, ĉ
†
l′σ′ ĉlσ′ ] = δkl′δσσ′k

2ĉ†kσ ĉlσ′ − δklδσσ′ ĉ
†
l′σ′k

2ĉkσ (A.10)

so that

[
∑
σσ′

ˆ
ψ̂†(rσ)∇2ψ̂(rσ)dr, ψ̂†(xσ′)ψ̂(xσ′)] =

=
∑
σll′

(
ĉ†l′σ′l

2ĉlσ − l′2ĉ†l′σ ĉlσ′
)
e−ix·l

′
eix·l (A.11)

= −
∑
σ

{
ψ̂†(xσ)

(
∇2ψ̂(xσ)

)
−
(
∇2ψ̂†(xσ)

)
ψ̂(xσ)

}
(A.12)

=
2me

i~
(
∇ · ĵp(x)

)
(A.13)

Similarly, in a plane wave expansion, we compute

[

ˆ
ĵp(r)Aext(r)dr, n̂(x)] =

~
ime

∇
(
n̂(r)A(r)

)
. (A.14)

Finally for the diamagnetic, second part of Eq. (A.6), with

[

ˆ
n̂(r)A2

ext(r)dr, n̂(r)] = 0 , (A.15)

we arrive at the divergence of the physical current operator(
∇ · ĵ(r)

)
=

1

i~
[T̂ eA, n̂(r)] . (A.16)

All the interaction potentials usually commute with the density operator, e.g. the Coulomb
interaction and the electron phonon Coupling. This expresses the fact that those potentials
conserve the particle number. Thus, in general,

[Ŵ ee, n̂(r)] = [V̂ e, n̂(r)] = [Û en, n̂(r)] = [V̂s, n̂(r)] = 0 . (A.17)

It is straight forward to verify
[ĤB, n̂(r)] = 0 . (A.18)

However, using the total antisymmetry of ∆σσ′(r, r
′)

[Ĥ∆, n̂(r′)] =
∑
σσ′

ˆ
dr
(

∆σσ′(r, r
′)ψ̂(rσ)ψ̂(r′σ′)− h.c.

)
6= 0 . (A.19)

Thus, we find (
∇ · ĵ(r)

)
=

1

i~
[Ĥ, n̂(r)]− 1

i~
[Ĥ∆, n̂(r)] , (A.20)
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and represent the above equation in the Heisenberg picture. Recognizing the Heisenberg equation
of motion

i
~

[Ĥ, n̂(r)]H(t) = ∂tn̂H(rt) (A.21)

we obtain the continuity equation in the Heisenberg picture for a superconductor(
∇ · ĵ(r)

)
H

(t) + ∂tn̂H(rt) +
i
~

[Ĥ∆, n̂(r)]H(t) = 0 (A.22)

This procedure applies to every, interacting or non-interacting, Hamiltonian Ĥ. Even a true time
dependence is possible, although not considered here.

A comment on the current as a density If we attempt to add the paramagnetic current as an
additional density to the KS system the continuity equations connects it with the pair potential.
Since in a static system

〈[Ĥ, n̂(r)]〉 = 0 , (A.23)

the continuity equation becomes equivalent to

∇ · j(r) = − i
~

ˆ
dr′=

(
∆(r, r′) · χ(r, r′)

)
, (A.24)

so the imaginary part of the pair term acts as a source for the current. If we tried to choose j(r)
as a density we could equate Eq. (A.24) for the KS and the exact system and obtain a severe
condition for the KS potential of the form d́r′=

(
∆ext(r, r

′) ·χ(r, r′)
)

= d́r′=
(
∆s(r, r

′) ·χ(r, r′)
)
.

If just the paramagnetic current density is reproduced by the KS system we obtain similarly

e

2c
∇ ·

(
n(r)

(
Aext(r)−As(r)

))
= − i

~

ˆ
dr′=

((
∆ext(r, r

′)−∆s(r, r
′)
)
· χ(r, r′)

))
(A.25)

We may integrate this equation and drop the surface terms on the left to obtain condition for
the pair potential ˆ

dr

ˆ
dr′=

((
∆ext(r, r

′)−∆s(r, r
′)
)
· χ(r, r′)

))
= 0 (A.26)

with the physical interpretation that the total current source over all space due to the pair
potential is equal in the KS as compared to the exact system.



B. Relations for expansion coefficients in the
Spin Decoupling Approximation

In this Appendix we want to introduce several relations among the ukαkµ,v
−kα
k−µ and Eαkµ, α = ±

which are essential to follow the calculations done during the functional construction. Due to
space limitations and because proving the those relations involves only a bit of algebra, we do
not explicity demonstate the equations.
The first part uses mainly the Eqs. (3.158) to (3.161). We find

1.

|∆s
sk|2 = (Eαkµ − εkµ)(ε−k−µ + Eαkµ) (≥ 0) (B.1)

2.

Eαkµ − εkµ = −ε−k−µ − E−αkµ = Eα−k−µ − ε−k−µ (B.2)

Eαkµ + ε−k−µ = εkµ − E−αkµ = εkµ + Eα−k−µ (B.3)

3.
sign(α) = sign(Eαkµ − εkµ) = sign(Eαkµ + Eα−k−µ) = sign(ε−k−µ + Eαkµ) (B.4)

4.

(Eαkµ − εkµ)(ε−k−µ + Eαkµ) = sign(α)2|Eαkµ − εkµ||ε−k−µ + Eαkµ| (B.5)

= |Eαkµ − εkµ||ε−k−µ + Eαkµ|(= |∆s
sk|2) (B.6)

Using the above relations we compute ukαkµ, v
−kα
k−µ . This involves first to normalize the eigenvector

g̃αkµ of Eq. (3.157). Its norm is

|g̃αkµ| =

√
|Eαkµ + Eα−k−µ|
|Eαkµ − εkµ|

. (B.7)

With Eq. B.4 it is clear that Eq. (B.1) also implies

ε−k−µ + Eαkµ
sign(µ)∆s

s
∗
k

√
|Eαkµ − εkµ|
|Eαkµ + Eα−k−µ|

=
sign(α)

sign(µ)

|∆s
sk|

∆s
s
∗
k

√
|ε−k−µ + Eαkµ|
|Eαkµ + Eα−k−µ|

(B.8)

so

gαkµ =
g̃αkµ
|g̃αkµ|

=


sign(α)
sign(µ)

|∆s
sk|

∆s
s
∗
k

√
|Eαkµ+ε−k−µ|
|Eαkµ+Eα−k−µ|√

|Eαkµ−εkµ|
|Eαkµ+Eα−k−µ|

 (B.9)
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Here we see

v−kαk−µ =

√√√√ |Eαkµ − εkµ|
|E+

kµ + E+
−k−µ|

(B.10)

ukαkµ = sign(α)sign(µ)
|∆s

sk|
∆s
s
∗
k

√
|ε−k−µ + Eαkµ|
|Eαkµ + Eα−k−µ|

(B.11)

Many further useful relations can be shown:

1.
Eα2
kµ = ε2

−k−µ + (εkµ − ε−k−µ)(ε−k−µ + Eαkµ) + |∆s
sk|2 (B.12)

2.

|ukαkµ|2|u−kα−k−µ|2 + |v−kαk−µ |2|vkα−kµ|2 =
(εkµ + ε−k−µ)2 + 2|∆s

sk|2
|Eαkµ + Eα−k−µ|2

(B.13)

3.

|ukαkµ|2|v−kα
′

k−µ |2 =
|∆s

sk|2δαα′ +
(
ε−k−µ + Eαkµ

)2
δα,−α′

(Eαkµ + Eα−k−µ)2
(B.14)

4.

|ukαkµ|2|u−kα−k−µ|2 =
(ε−k−µ + Eαkµ)2

(Eαkµ − E−αkµ )2
(B.15)

5.
ukγkµv

−kγ
k−µ
∗
(= u−k−γ−k−µv

k−γ
−kµ
∗
) = sign(µ)sign(γ)

∆s
sk

|E+
kµ − E−kµ|

(B.16)

6.
ukγkµ
∗
v−kγk−µ =

(
ukγkµv

−kγ
k−µ
∗)∗

= sign(µ)sign(γ)
∆s
s
∗
k

|E+
kµ − E−kµ|

(B.17)

7.
|ukαkµ|2 = |u−kα−k−µ|2 = |vk−α−kµ |2 = |v−k−αk−µ |2 (B.18)

8.
(ε−k−µ + E+

kµ)2 + (ε−k−µ + E−kµ)2 = (ε−k−µ + εkµ)2 + 2|∆s
sk|2 (B.19)



C. The Coulomb Potential in Fourier Space
and Integral Representations of χpol and
ε−1.

C.1. The Coulomb Potential in Fourier Space

Let us consider a potential with the property of being independent on the absolute position in
the lattice

V (r + Tj , r
′ + Tj) = V (r, r′) (C.1)

where Tj is a lattice translation. Disregarding the surface of a real material one expects such a
symmetry in almost every physical system. The general Fourier transform of a function V with
this property1is

V (q̄, q̄′) =
∑
TiTj

¨
UC

dr̄ dr̄′V (r̄ + Ti, r̄
′ + Tj)e−iq̄·(r̄+Ti)eiq̄

′·(r̄′+Tj) (C.2)

If we also separate q̄ = (q ∈ BZ) + G, we obtain

V (q + G,q′+ G′) =
∑
Tij

¨
UC

dr̄ dr̄′V (r̄ + Tij , r̄
′)e−iq·Tije−i(q+G)·r̄ei(q

′+G′)·r̄′
∑
Tj

ei(q
′−q)·Tj

︸ ︷︷ ︸
Nqδq′,q

(C.3)

Thus we may put this as

V (q + G,q′ + G′) = NqV (q,G,G′)δq′,q (C.4)

with
V (q,G,G′) =

∑
Ti

¨
UC

dx̄ dx̄′V (x̄ + Ti, x̄
′)e−i(q+G)·x̄ei(q+G′)·x̄′e−iq·Ti (C.5)

For such a function we see that q′ needs to be q up to an arbitrary vector of the reciprocal lattice
Gq. It is found that for two opposite vectors q′ = −q, Gq = 0.
Application of the above to the Coulomb potential

V Coul(r, r′) =
1

4πε0

e2

|r− r′| (C.6)

results in the Fourier transform

V Coul(q,G,G′) =
e2

4πε0

∑
Ti

¨
UC

dr̄ dr̄′
e−i(q+G)·r̄ei(q+G′)·r̄′e−iq·Ti

|r̄− r̄′ + Ti|
(C.7)

1We distinguish: Vectors in real space with a bar r̄ are defined in the first uni cell and r gives the total position.
Instead vectors in reciprocal space q without a bar are defined in the first BZ and q̄ is given in the full
reciprocal lattice.
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Since the straight forward evaluation of the integral is ill-defined we take the Yukuawa form of
the coupling and the limit of “zero mass” after the transformation

V Coul(q,G,G′) =
e2

4πε0
lim
η→0+

∑
Ti

¨
UC

dr̄ dr̄′
e−η|r̄−r̄′+Ti|

|r̄− r̄′ + Ti|
e−iG·r̄eiG

′·r̄′e−iq·(r̄−r̄
′+Ti) (C.8)

Reintroducing r = r̄ + Ti and x = r− r̄′ the above becomes

V Coul(q,G,G′) =

=
e2

4πε0
lim
η→0+

ˆ
Vol

dx

ˆ
UC

dr̄′
e−η|x|

|x| e−iG·xeiG·(Ti−r̄
′)eiG

′·r̄′e−iq·x (C.9)

=
e2

4πε0
lim
η→0+

ˆ
UC

dr̄′ei(G
′−G)·r̄′

ˆ ∞
0
dx
ˆ 1

−1
d cos(θ)

ˆ 2π

0
dϕx2 e−ηx

x
ei|G+q|x cos(θ) (C.10)

=

ˆ
UC

dr̄′ei(G
′−G)·r̄′2π lim

η→0+

( 1

i|G + q|(i|G + q| − η)
+

1

i|G + q|(i|G + q|+ η)

)
(C.11)

where the limit η → 0+ is safely taken. Using
´
UC
dr̄′ei(G′−G)·r̄′ = ΩUCδG′,G we obtain

V Coul(q,G,G′) = − e2ΩUC

ε0|q + G|2
δG′,G (C.12)

V Coul(r̄, r̄′,Ti) = − e2

NqΩUCε0

∑
qG

1

|q + G|2
ei(q+G)·(r̄−r̄′+Ti) (C.13)

in terms of the original interaction

V Coul(r, r′) = − ε−1
0 e2

NqΩUC

∑
qG

1

|q + G|2
ei(q+G)·(r−r′) (C.14)

V Coul(q + G,q′ + G′) = NqV
Coul(q,G,G′)δq′,q = − e2NqΩUC

ε0|q + G|2
δG′,Gδq′,q (C.15)

C.2. Integral Representation of χpol and ε−1

The thermal average in Eq. (4.6) in terms of Many-Body states |Ei〉 reads

χpol(r, r′, νn) = −
∑
i,j

e−βEi

Z

ˆ ~β

0
dτ〈Ei|∆̂n(r)|Ej〉〈Ej |∆̂n(r′)|Ei〉e

1
~ τ(Ei−Ej)eiνnτ . (C.16)

We introduce the spectral density

S(r, r′, ω) = 2π
∑
i,j

(1− eβ(Ei−Ej))〈Ei|∆̂n(r)|Ej〉〈Ej |∆̂n(r′)|Ei〉
e−βEi

Z
δ
(
ω− 1

~
(Ej −Ei)

)
(C.17)

and obtain the Lehmann representation of the polarization propagator

χpol(r, r′, νn) =

ˆ ∞
−∞

dω
2π

S(r, r′, ω)

iνn − ω
(C.18)

The spectral density satisfies

S(r, r′, ω) = S(r′, r, ω)∗ (C.19)
S(r, r′,−ω) = −S(r, r′, ω)∗ (C.20)
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which is readily verified. Note that the first relation implies that S(r, r′, ω) is hermitian. We
may use the second relation to obtain the hermitian part of χpol(r, r′, νn)2

Reχpol(r, r′, νn) = −
ˆ ∞

0

dω
2π

2ωS(r, r′, ω)

ω2 + ν2
n

(C.21)

Similarly we compute the antihermitian part and see that it vanishes

Imχpol(r, r′, νn) = 0 (C.22)

While this form is sufficient to compute the appearing Matsubara sum analytically, we want to
end this subsection by pointing out the connection with physical linear density response of the
system. This has the advantage of being implemented in several existing codes. For the following
we consider the retarded density fluctuation GF

χret(r, r′, t− t′) = −iθ(t− t′)〈[∆̂n(r, t), ∆̂n(r′, t′)]−〉 . (C.23)

Using

θ(t) = − lim
η→0

1

2πi

ˆ ∞
−∞

dω
1

ω + iη
e−itω (C.24)

δ(ω − ω′) =

ˆ ∞
−∞

dt
2π

e−it(ω
′−ω) (C.25)

we obtain the integral representation

χret(r, r′, t) =
1

2π

ˆ ∞
−∞

dω
∑
ij

e−β(Ej−Ei) − 1

ω + 1
~(Ei − Ej) + iη

〈Ei|∆̂n(r)|Ej〉〈Ej |∆̂n(r′)|Ei〉
e−βEi

Z
e−itω .

(C.26)
Identifying the delta distribution and the spectral density Eq. (C.18) we obtain the Fourier
transform

χret(r, r′, ω) =

ˆ ∞
−∞

dω̃
2π

S(r, r′, ω̃)

ω + iη − ω̃ (C.27)

With
lim
η→0

1

π

η

(ω − ω̃)2 + η2
= δ(ω − ω̃) (C.28)

we see that the antihermitian part becomes simply

Imχret(r, r′, ω) = −1

2
S(r, r′, ω) . (C.29)

Together with Eq. (4.8) we find

χpol(r, r′, νn) =

ˆ ∞
0

dω
π

2ωImχret(r, r′, ω)

ω2 + ν2
n

. (C.30)

It immediately follows for the Fourier coefficients that

χpol(q,G,G′, νn) =

ˆ ∞
0

dω
π

2ωImχret(q,G,G′, ω)

ω2 + ν2
n

. (C.31)

2The symbol Re means to take the hermitian part of a matrix ReA ≡ 1
2
(A + A†). Similarly Im times the

imaginary unit is the antihermitian part: ImA = 1

2i (A−A
†). Only for symmetric matrices this is equivalent

to taking the real < and imaginary part = of each component.
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Note that, of course, χpol(q,G,G′, νn) is still hermitian, i.e.

χpol(q,G,G′, νn) = χpol(q,G′,G, νn)∗ . (C.32)

Using Eq. (4.8) we can establish the analogous equation for the dielectric function. The physical
dielectric screening satisfies on the real axis ω ∈ R

ε−1(q,G,G′, ω) = δGG′ +
e2

~ε0
χret(q,G,G′, ω)

ΩUC|q + G′|2 (C.33)

because χret(q,G,G′, ω) is the true linear response of a density perturbation on the ground state.
Inserting Eq. (4.8) and the antihermitian part of the above equation into Eq. (C.31) we obtain
finally

ε−1(q,G,G′, νn) = δGG′+

ˆ ∞
0

dω
π

2ωImε−1(q,G,G′, ω)

ω2 + ν2
n

. (C.34)



D. Analytic Matsubara Summations

The replacement of the interacting GF with the KS one in Section 6.3 allows us to compute the
appearing Matsubara summations explicitly. For this we use the contour integration technique
(see [45] page 80ff) where we view the Matsubara frequency as a continuous variable and need
to sum the residues of the Matsubara integrand

1

β

∑
n

F (i~ωn) = −
ˆ
�

dz
2πi

F (z)fβ(z) =
∑
i

Res{F (z)fβ(z), zi} . (D.1)

Here F (i~ωn) stands for some arbitrary function of Matsubara frequencies. Analytically contin-
ued as F (z) it needs to die off faster than z−1 and we use the Fermi function fβ(z) evaluated on
the full complex plain. The sum includes all poles zi of F (z) but not the ones of fβ(z).

Susceptibility-like diagrams In the potential terms, the Matsubara summation

Ps(E,E
′) =

1

β

∑
n

1

(iωn − 1
~E)(iωn − 1

~E
′)

(D.2)

appears. Eq. D.2 is evaluated using partial fraction and Eq. D.1 with the result

Ps(E,E
′) =

fβ(E)− fβ(E′)

E − E′ lim
E′→E

Ps(E,E
′) = −βfβ(E)fβ(−E) (D.3)

where the following symmetries are found

Ps(E,E
′) = Ps(−E,−E′) (D.4)

Ps(E,E
′) = Ps(E

′, E) . (D.5)

Single-interaction-line diagrams The Matsubara frequency summation of the objects

I(Ω, E1, E2, E3) =
1

β2

∑
nn′

1

iωn − 1
~E1

1

i(ωn − ωn′)− Ω

1

iωn′ − 1
~E2

1

iωn − 1
~E3

(D.6)

L(Ω, E1, E2, E3) = I(−Ω, E1, E2, E3)− I(Ω, E1, E2, E3) (D.7)

is in principle straight forward. The resulting formulas, are large and computer algebra becomes
essential for the evaluation of the residues and limiting cases, necessary for an implementation
in a code. Using Mathematica, we evaluate the sum Eq. D.6 to

I(Ω, E1, E2, E3) =

= ~4
(
1 + nβ(~Ω)

)( fβ(E1)

(E1 − E3)(E2 − E1 + ~Ω)

+
fβ(E3)

(E3 − E1)(E2 − E3 + ~Ω)

)
− fβ(E2)fβ(E1)

(E1 − E3)(E2 − E1 + ~Ω)

− fβ(E2)fβ(E3)

(E3 − E1)(E2 − E3 + ~Ω)
− nβ(~Ω)fβ(E2)

(E2 − E1 + ~Ω)(E2 − E3 + ~Ω)
(D.8)
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And related, with some simplification

L(Ω, E1, E2, E3) =

= ~4

(
fβ(E2)nβ(~Ω)

(E2 − E1 + ~Ω)(E2 − E3 + ~Ω)
+

fβ(E2)
(
1 + nβ(~Ω)

)
(E1 − E2 + ~Ω)(E3 − E2 + ~Ω)

+

+
fβ(E1)

(
1− fβ(E2) + nβ(~Ω)

)
(E1 − E3)(E1 − E2 − ~Ω)

+
fβ(E3)

(
1− fβ(E2) + nβ(~Ω)

)
(E1 − E3)(E2 − E3 + ~Ω)

+

+
fβ(E1)

(
fβ(E2) + nβ(~Ω)

)
(E1 − E3)(E1 − E2 + ~Ω)

+
fβ(E3)

(
fβ(E2) + nβ(~Ω)

)
(E3 − E1)(E3 − E2 + ~Ω)

)
. (D.9)

Note that in terms of the SE Matsubara sum, Eq. 6.25

L(Ω, E1, E2, E3) =
1

β

∑
n

Is(~Ω, E2, ωn)

(iωn − 1
~E1)(iωn − 1

~E3)
(D.10)

From the initial definition we expect (and find) the symmetry

L(Ω, E1, E2, E3) = L(Ω, E3, E2, E1) (D.11)
L(−Ω, E1, E2, E3) = −L(Ω, E3, E2, E1) (D.12)(
L(Ω, E1, E2, E3)

)∗
= L(−Ω,−E3,−E2,−E1) = −L(Ω,−E3,−E2,−E1)

≡ −L(Ω,−E1,−E2,−E3) (D.13)

Clearly some points, e.g. E1 = E3 are numerically problematic, so whenever E1 ≈ E3 we may
have to evaluate the limiting formula instead. In general, the various limits where the denomi-
nators are zero, all exist and can be computed explicitly, again using Mathematica. The results
are

lim
E1→E3

L(Ω, E1, E2, E3) =

= fβ(E2)

(
nβ(~Ω)

(E2 − E3 + ~Ω)2
+

1 + nβ(~Ω)

(E2 − E3 − ~Ω)2

)
−fβ(E3)

(
fβ(−E2) + nβ(~Ω)

(E2 − E3 + ~Ω)2
+
fβ(E2) + nβ(~Ω)

(E2 − E3 − ~Ω)2

− βfβ(−E3)

(E2 − E3)2 − (~Ω)2

((
fβ(E2)− fβ(−E2)

)
~Ω +

(
2nβ(~Ω) + 1

)
(E2 − E3)

))
,(D.14)

and further

lim
Ω→E3−E2

lim
E1→E3

L(Ω, E1, E2, E3) =

=
fβ(E2) + fβ(E3)

(
fβ(−E2)− fβ(E2)

)
4(E2 − E3)2

+β

(
1 + fβ(E2) + nβ(E3 − E2)

)
fβ(−E3)fβ(E3)

2(E2 − E3)

+β2fβ(−E2)
(
1 +

1

2
nβ(E3 − E2)

)
fβ(E3)

(
1− 2fβ(E3)

)
. (D.15)

Moreover
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lim
Ω→E1−E2

L(Ω, E1, E2, E3) =

=
fβ(E1)

(
fβ(E2) + nβ(E1 − E2)

)
2(E1 − E2)(E1 − E3)

+
fβ(E2)

(
1 + nβ(E1 − E2)

)
2(E1 − E2)(E1 − 2E2 + E3)

+
fβ(E3)

(
nβ(E1 − E2) + fβ(−E2)

)
− fβ(E2)nβ(E1 − E2)

(E1 − E3)2

+
fβ(E3)

(
fβ(E2) + nβ(E1 − E2)

)
2(E3 − E1)(E1 − 2E2 + E3)

+ β
fβ(−E1)fβ(E2)nβ(E1 − E2)

E3 − E1
(D.16)

and further
(D.17)

lim
E1→2E2−E3

lim
Ω→E1−E2

L(Ω, E1, E2, E3) =

=
fβ(E2)

(
1 + nβ(E2 − E3)

)
2(E2 − E3)

(
βfβ(−E3)− 1

2(E2 − E3)

)
. (D.18)

That said we note that the Limit Ω(q→0)λ → 0 does not exist but is also unimportant as the gλqij
go to zero in the limit q→ 0 even faster than L diverges. As a side note the test of an analytic
zero temperature limit β →∞ did not converge so it remains unknown at this point if or under
what conditions it exists. For the Coulomb parts we further need for static part

LW (E1, E2, E3) =
1

β

∑
n′

1

iωn′ − 1
~E2

1

β

∑
n

1

iωn − 1
~E1

1

iωn − 1
~E3

(D.19)

=
1

~
fβ(E2)Ps(E1, E3) (D.20)

and for the dynamic part

LM (~ω,E1, E2, E3) = L(~ω,E1, E2, E3)− 2

ω
LW (E1, E2, E3) . (D.21)



E. Inverse Spin-Decoupled KS
Greensfunction

For solving the Dyson equation starting from a KS system within the SDA via inversion we
need the inverse matrix (ḠKS)−1. This can be calculated explicitly which is the content of this
Appendix.
Within the Decoupling Approximation we have the explicit form of the KS GF of Eq. 5.43.

Using the form

ḠKS
ij =


δijG

KS
11,i↑ 0 0 δi,−jG

KS
12,i↑

0 δijG
KS
11,−i↓ δi,−jG

KS
12,i↓ 0

0 δi,−jG
KS
21,i↑ δijG

KS
22,i↑ 0

δi,−jG
KS
21,−i↓ 0 0 δijG

KS
22,−i↓

 (E.1)

we compute the inverse of the full matrix
∑

j Ḡ
KS
ij · ḠKS

jl
−1

= δilτ0σ0. Note that with (invertible!)
pivoting matrices we need to invert the 2× 2 sub-matrices on the diagonal

Giσ =

(
GKS

11,iσ GKS
12,iσ

GKS
21,−i−σ GKS

22,−i−σ

)
(E.2)

which is done with the determinant

Diσ = GKS
11,iσG

KS
22,−i−σ −GKS

12,iσG
KS
21,−i−σ (E.3)

and the formula

G−1
iσ =

1

Diσ

(
GKS

22,−i−σ −GKS
12,iσ

−GKS
21,−i−σ GKS

11,iσ

)
(E.4)

We first compute Diσ. We obtain the surprisingly simple result

GKS
11,iσG

KS
22,−i−σ −GKS

12,iσG
KS
21,−i−σ =

1

(iωn− 1
~E

+
iσ)(iωn− 1

~E
−
iσ)

. (E.5)

Inserting this into Eq. (E.4) while replacing the u and v with the help of the Eqs. (B.16), (3.164)
and (3.165) we obtain

G−1
iσ =

1

Diσ

∑
α

1

|E+
iσ − E−iσ|

 |εiσ−Eαiσ |
iωn− 1

~E
α
iσ

− sign(σ)sign(α)

iωn− 1
~E

α
iσ

∆s
si

sign(σ)sign(α)

iωn+ 1
~E

α
−i−σ

∆s
s
∗
i

|ε−i−σ+Eαiσ |
iωn− 1

~E
α
iσ

 . (E.6)

Now ∑
α

1

|E+
iσ − E−iσ|

|εiσ − Eαiσ|
iωn − 1

~E
α
iσ

(iωn −
1

~
E+
iσ)(iωn −

1

~
E−iσ) =

= iωn − |vi+iσ |2
1

~
E−iσ − |ui+iσ |2

1

~
E+
iσ (E.7)
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and with the abbreviation Fiσ =
√

( εiσ+ε−i−σ
2 )2 + |∆s

si|2 ≡ 1
2 |E+

iσ − E−iσ|

(E+
iσ − εiσ)

|E+
iσ − E−iσ|

E−iσ +
(E+

iσ + ε−i−σ)

|E+
iσ − E−iσ|

E+
iσ

=
εiσ − ε−i−σ

2
+
εiσ + ε−i−σ

2
= εiσ . (E.8)

Similarly ∑
α

1

|E+
iσ − E−iσ|

|ε−i−σ + Eαiσ|
iωn − 1

~E
α
iσ

(iωn −
1

~
E+
iσ)(iωn −

1

~
E−iσ) =

= iωn − |ui+iσ |2
1

~
E−iσ − |vi+iσ |2

1

~
E+
iσ (E.9)

and

(E+
iσ − εiσ)

|E+
iσ − E−iσ|

E+
iσ +

(E+
iσ + ε−i−σ)

|E+
iσ − E−iσ|

E−iσ

=
εiσ − ε−i−σ

2
− εiσ + ε−i−σ

2
= −ε−i−σ . (E.10)

Further ∑
α

−sign(σ)sign(α)∆s
si

|E+
iσ − E−iσ|(iωn − 1

~E
α
iσ)

(iωn −
1

~
E+
iσ)(iωn −

1

~
E−iσ) = −sign(σ)

1

~
∆s
si (E.11)

and ∑
α

sign(σ)sign(α)∆s
s
∗
i

|E+
iσ − E−iσ|(iωn + 1

~E
α
−i−σ)

(iωn −
1

~
E+
iσ)(iωn −

1

~
E−iσ) = −sign(σ)

1

~
∆s
s
∗
i . (E.12)

Where we arrive at the inverse of the block diagonal

G−1
iσ =

(
iωn − 1

~εiσ −sign(σ)∆s
si

−sign(σ)∆s
s
∗
i iωn + 1

~ε−i−σ

)
(E.13)

so back-pivoting to the original notation

(ḠKS)−1
ij =

1

~


(i~ωn − εi↑)δij 0 0 −∆s

siδi,−j
0 (i~ωn − ε−i↓)δij ∆s

siδi,−j 0
0 ∆s

s
∗
i δi,−j (i~ωn + εi↑)δij 0

−∆s
s
∗
i δi,−j 0 0 (i~ωn + ε−i↓)δij

 .

(E.14)
In terms of basis vectors

(ḠKS)−1
ij (ωn) = δij

(
i~ωnτ0σ0 − (

εi↑ + ε−i↓
2

)τzσ0 − (
εi↑ − ε−i↓

2
)τzσz

)
+δi,−j

(
(iτy)(iσy)<∆s

si + τx(iσy)i=∆s
si

)
. (E.15)



F. Wick Theorem for Superconductors

In this Appendix we show that for any set of Nambu fields∑
1...

. . . w(1, 2, 3, 4) . . . 〈T
{

Ψ̂I(rτα)Ψ̂I(1) . . . Ψ̂†I(r
′τ ′α′)

}
〉0

=
∑
1...

. . . w(1, 2, 3, 4) . . .
{
Sum of all possible contractions

}
(F.1)

where a contraction is defined as 〈T
{

Ψ̂I(rτα)Ψ̂†I(r
′τ ′α′)

}
〉0. We follow the usual proof given in

for example in the book [45] together with a peculiarity in the prefactors that we were made
aware of in the book [19]. To show the theorem, let us go to the single particle basis where
the single particle Hamiltonian Ĥ0 is diagonal. We want to be general and allow Ĥ0 to contain
pair potential contributions. Thus we have to rotate with Bogoliubov transformations similar to
Eq. (3.102) in order to achieve a diagonal form. We could take Ĥ0 to be the Hartree electronic
Hamiltonian Eq. 5.17 in which case we would obtain a series for Σ̄ directly. Being a single partice
operator, Ĥ0 can be written as

Ĥ0 =

ˆ
dr

ˆ
dr′Ψ̂†(r) · 1

2
ˆ̄H0(r, r

′) · Ψ̂(r′) ≡
∑
k

EkΦ̂
†
k ·

1

2
τz · Φ̂k (F.2)

With the Nambu spinor Φ̂k that diagonalizes Ĥ0

Φ̂kα =

(
γ̂kδα,1
γ̂†kδα,−1

)
Ψ̂†(r) =

∑
k

(
~uk(r) ~v∗k(r)
~vk(r) ~u∗k(r)

)
· Φ̂†k (F.3)

where
ˆ

dr

ˆ
dr′
(
~uk(r) ~v∗k(r)
~vk(r) ~u∗k(r)

)†
· ˆ̄H0(r, r

′) ·
(
~uk′(r

′) ~v∗k′(r
′)

~vk′(r
′) ~u∗k′(r

′)

)
= δkk′

(
Ẽk 0

0 −Ẽk

)
. (F.4)

Note that in computing the time ordered product, we have to apply this transformation to each
field operator

〈T
{

Ψ̂I(rτα) . . . Ψ̂†I(r
′τ ′α′)

}
〉0 =∑

k...k′

∑
α1...α′1

(
~uk(r) ~v∗k(r)
~vk(r) ~u∗k(r)

)
αα1

· . . .
(
~uk′(r) ~v∗k′(r)
~vk′(r) ~u∗k′(r)

)
α′α′1

· 〈T
{

Φ̂kI(τα1) . . . Φ̂
†
k′I(τ

′α′1)
}
〉0

(F.5)

Considering 〈T
{

Φ̂kI(τα1) . . . Φ̂
†
k′I(τ

′α′1)
}
〉0 this may be computed explicitly from the fact that

the commutator with the propagating Hamiltonian Ĥ0 is known. It reads

[Ĥ0, Φ̂k′(α)]− =

[∑
k

Φ̂
†
k ·

1

2

(
Ẽk 0

0 −Ẽk

)
· Φ̂k, Φ̂k′(α)

]
= −Ẽk′sign(α)Φ̂k′(α) . (F.6)
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Thus we see that
e±βĤ0Φ̂k′(α) = Φ̂k′(α)e∓βsign(α)Ẽk′ e±βĤ0 (F.7)

and similarly
e±βĤ0Φ̂

†
k′(α) = Φ̂

†
k′(α)e±βsign(α)Ẽk′ e±βĤ0 . (F.8)

We want to introduce a symbol that helps to distinguish the many cases, let

a = †, (no dagger) (F.9)

sign(a) ≡
{

+1 a = †
−1 a = (no dagger)

. (F.10)

Then in short we may write

e±βĤ0Φ̂
a
k′(α) = Φ̂

a
k′(α)e±βsign(a)sign(α)Ẽk′ e±βĤ0 . (F.11)

Most importantly the result allows us to pull the imaginary time ordering out of the thermody-
namic average because

eτĤ0Φ̂
a
k(α)e−τĤ0 = Φ̂

a
ke
τsign(a)sign(α)Ẽk (F.12)

so the time ordered thermal average becomes

〈Φ̂a
k1I

(τ1α1)Φ̂
b
k2I

(τ2α2) . . . Φ̂
c
kN I

(τNαN )〉0
= Tr

{
ρ̂0Φ̂

a
k1

(α1)Φ̂
b
k2

(α2) . . . Φ̂
c
kN

(αN )
}
eτ1sign(a1)sign(α1)Ẽk1 . . . eτN sign(aN )sign(αN )ẼkN . (F.13)

Now consider an even number of operators that are being evaluated where with

Tr
{
ρ̂0Φ̂

a
k1

(α1)Φ̂
b
k2

(α2) . . . Φ̂
c
kN

(αN )
}

= Tr
{
ρ̂0

[
Φ̂
a
k1

(α1), Φ̂
b
k2

(α2)
]
+
. . . Φ̂

c
kN

(αN )
}
− Tr

{
ρ̂0Φ̂

b
k2

(α2)
[
Φ̂
a
k1

(α1), ...
]
+
. . . Φ̂

c
kN

(αN )
}

±...− Tr
{
ρ̂0Φ̂

b
k2

(α2) . . . Φ̂
c
kN

(αN )Φ̂
a
k1

(α1)
}

(F.14)

but because of the cyclic invariance of the trace for the last term may be written as

Tr
{

Φ̂
a
k1

(α1)ρ̂0Φ̂
b
k2

(α2) . . . Φ̂
c
kN

(αN )
}

= Tr
{
ρ̂0e−βsign(a1)sign(α1)Ẽk1 Γ̂

a
k̄(α)Γ̂

b
k̄1

(α1) . . . Γ̂
c
k̄′(α

′)
}
.

(F.15)
Thus Eq. (F.14) becomes

Tr
{
ρ̂0Φ̂

a
k1

(α1)Φ̂
b
k2

(α2) . . . Φ̂
c
kN

(αN )
}

=

[
Φ̂
a
k1

(α1), Φ̂
b
k2

(α2)
]
+

1 + e−βsign(a1)sign(α1)Ẽk1

Tr
{
ρ̂0 . . . Φ̂

c
kN

(αN )
}

−
[
Φ̂
a
k1

(α1), ...
]
+

1 + e−βsign(a1)sign(α1)Ẽk1

Tr
{
ρ̂0Φ̂

b
k2

(α2) . . . Φ̂
c
kN

(αN )
}

±... (F.16)

The single particle propagator, we define here to be a contraction, is easily evaluated

〈T
{

Φ̂
a
k1

(α1τ1)Φ̂
b
k2

(α2τ2)
}
〉0 =

[
Φ̂
a
k1

(α1), Φ̂
b
k2

(α2)
]
+

1 + e−βsign(a1)sign(α1)Ẽk1

eτ1sign(a1)sign(α1)Ẽk1 eτ2sign(a2)sign(α2)Ẽk2

(F.17)



140 F. Wick Theorem for Superconductors

This relation shows that the time ordered product of N operators is related to N − 1 times the
single particle propagator times the N − 1 reordered product. We conclude

〈Φ̂a
k1I

(τ1α1)Φ̂
b
k2I

(τ2α2) . . . Φ̂
c
kN I

(τNαN )〉0 =
{
Sum of all possible contractions

}
(F.18)

Moreover

〈T Ψ̂I(rτα)Ψ̂†I(r
′τ ′α′)〉0 =

∑
kk′

∑
α1α′1

(
~uk(r)~v∗k(r)
~vk(r) ~u∗k(r)

)
αα1

(
~uk′(r

′)~v∗k′(r
′)

~vk′(r
′) ~u∗k′(r

′)

)†
α′α′1

〈T Φ̂k(α1τ)Φ̂
†
k′(α

′
1τ
′)〉0

(F.19)
where we identify, using the notation 1 = (α1r1σ1)

〈T Ψ̂a
I (1τ1)Ψ̂b

I(2τ2)Ψ̂c
I(3τ3) . . . Ψ̂d

I(4τ4)〉0 = 〈T Ψ̂a
I (1τ1)Ψ̂b

I(2τ2)〉0 ×
×〈T Ψ̂c

I(3τ3) . . . Ψ̂d
I(4τ4)〉0 − 〈T Ψ̂a

I (1τ1)Ψ̂c
I(3τ3)〉0〈T Ψ̂b

I(2τ2) . . . Ψ̂d
I(4τ4)〉0 ± . . . (F.20)

which almost proves Wicks theorem Eq. (5.60) since at this point me may insert the left side
for the remaining uncontracted terms on the right hand side. Note a problem here, that we
encounter the GF 〈T Ψ̂I(rτ) ⊗ Ψ̂†I(r

′τ ′)〉0 but also the GF 〈T Ψ̂I(rτ) ⊗ Ψ̂I(r
′τ ′)〉0. We follow

Vonsovsky and show that in a perturbative expansion this part cancels the puzzling factors of 1
2n

in the n particle interaction. For definiteness consider a two particle interaction in time ordering

Ĥ I =
1

4

∑
1,2,3,4

ˆ
Ψ̂†(1)Ψ̂(2)W (1234)Ψ̂†(3)Ψ̂(4) . (F.21)

Then in the contractions there will appear the term according to

∑
1,2,...

ˆ
〈T . . . Ψ̂†I(1τ1)W (1256)Ψ̂I(2τ2) . . . Ψ̂a

I (3τ3) . . . Ψ̂b
I(4τ4)〉0

=
∑
1,2,...

ˆ
W (1256)〈T Ψ̂†I(1τ1)Ψ̂b

I(4τ4)〉0〈T Ψ̂I(2τ2)Ψ̂a
I (3τ3)〉0〈. . .〉0 +

−
∑
1,2,...

ˆ
W (1256)〈T Ψ̂I(2τ2)Ψ̂b

I(4τ4)〉0〈T Ψ̂†I(1τ1)Ψ̂a
I (3τ3)〉0〈. . .〉0 . (F.22)

Let us rename in the sum in second term 1↔ 2

∑
1,2,...

ˆ
〈T . . . Ψ̂†I(1τ1)W (1256)Ψ̂I(2τ2) . . . Ψ̂a

I (3τ3) . . . Ψ̂b
I(4τ4)〉0

=
∑
1,2,...

ˆ
W (1256)〈T Ψ̂†I(1τ1)Ψ̂b

I(4τ4)〉0〈T Ψ̂I(2τ2)Ψ̂a
I (3τ3)〉0〈. . .〉0 +

−
∑
1,2,...

ˆ
W (2156)〈T Ψ̂I(1τ1)Ψ̂b

I(4τ4)〉0〈T Ψ̂†I(2τ2)Ψ̂a
I (3τ3)〉0〈. . .〉0 . (F.23)

Together with and

Ψ̂I(r1τ1α1σ1) = Ψ̂†I(r1τ1,−α1, σ1) (F.24)
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we may sum −1,−2 instead and use the symmetry Eq. (5.57) that essentially represents the
condition that the interaction can be written without the Nambu formalism. Then we obtain∑

1,2,...

ˆ
〈T . . . Ψ̂†I(1τ1)W (1256)Ψ̂I(2τ2) . . . Ψ̂a

I (3τ3) . . . Ψ̂b
I(4τ4)〉0 =

= 2
∑
1,2,...

ˆ
W (1256)〈T Ψ̂†I(1τ1)Ψ̂b

I(4τ4)〉0〈T Ψ̂I(2τ2)Ψ̂a
I (3τ3)〉0〈. . .〉0 (F.25)

= −2
∑
1,2,...

ˆ
W (1256)〈T Ψ̂I(1τ1)Ψ̂b

I(4τ4)〉0〈T Ψ̂†I(2τ2)Ψ̂a
I (3τ3)〉0〈. . .〉0 (F.26)

because there is always just as many creation as annihilation operators and all but two are
integrated over with matrix elements that have the assumed symmetry we see that is is sufficient
to consider only

Ḡ0(rτ, r
′τ ′) = 〈T̄ Ψ̂I(rτ)⊗ Ψ̂†I(r

′τ ′)〉0 (F.27)

and at the same time get rid of the factors 1
2n+m that appear for an n particle interaction in

mth order perturbation theory. This very convenient fact shows that we obtain formally the
same diagrammatic expansion as for a normal system, except that the GF is here the 4 × 4
matrix 〈T Ψ̂I(rτ) ⊗ Ψ̂†I(r

′τ ′)〉0 and the reordered interactions Ĥ I
I(τ) have to be translated into

the Nambu formalism which will lead to different vertices that in the case of a local interaction
the bare vertex will be proportional to

Γ ∝ σ0τz (F.28)

Note that these interactions must not break the symmetry of Eq. (5.57). With this understanding
the results from the normal diagrammatic perturbation theory may be transferred.



G. The KS Excitation Spectrum

One of the key advantages of DFT in e.g. the LDA approximation for the xc potential[80], is
that the single particle states of the KS system are often comparable to the true quasi particle
spectrum. This is in some sense accidental because the KS system only yields the exact densities.
There are also cases known where the KS band structure is not a good approximation to the
true single particle excitation spectrum. Two of the most prominent examples in the context
of SC being the High-Tc cuprates [81, Section 7.1, Page 378] and the iron based SC [82]. To
improve upon the KS DFT excitation spectrum, for example with the spectrum of the G0W0
GF, can be numerically demanding. In the full non-linear SSE, we obtain a potential that is not
gaped at low temperatures. However, there exists a so-called partial linearization [21, 22] that
multiplies the BCS non-linear factor to the linearized gap equation. There, the gap shows the
usual behaviour and compares well with experiment. This procedure is ill defined in the range
of a first order phase transition, since we cannot linearize the equation, still it justifies the effort
to calculate the KS excitation spectrum for the use in the spin degenerate limit.
We employ the Lehmann representation of the KS GF Eq. (5.20) with the spectral function

of Eq. (5.31) and (5.27)

ĀKS(r, r′, ω) = −2Im
(
ḠKS(r, r′, ω)

)
(G.1)

ḠKS(r, r′, ωn) =

ˆ ∞
−∞

dω
2π

ĀKS(r, r′, ω)

iωn − ω
(G.2)

According to Eq. (5.36) with the explicit expression for ḠKS(r, r′, ωn), ĀKS is given by

ĀKS(r, r′, ω) = 2π
∑
k

(
~uk(r)⊗ ~u∗k(r′) ~uk(r)⊗ ~v∗k(r′)
~vk(r)⊗ ~u∗k(r′) ~vk(r)⊗ ~v∗k(r′)

)
δ(ω − 1

~
Ek) +

+2π
∑
k

(
~v∗k(r)⊗ ~vk(r′) ~v∗k(r)⊗ ~uk(r′)
~u∗k(r)⊗ ~vk(r′) ~u∗k(r)⊗ ~uk(r′)

)
δ(ω +

1

~
Ek) (G.3)

The LDOS is obtained from the diagonal of ĀKS(r, r′, ω). Aside from this technicality it is
interesting to find the wavefunction of a SC KS particle in real space ΨB

kα(r) (the B is for
Bogolon), i.e. the state that is created by one of the Φ̂

†
kα operators of Eq. (5.36). In principle,

the Φ̂
†
kα are no different from usual electron operators and we should be able to transfer results

for non-interacting properties. First, because they are the single particle KS states of the SC KS
system the ΨB

i (r) should add up to the KS LDOS in the form
∑

i |ΨB
i (r)|2δ(Ei − ~ω). Second,

we should also find the KS GF as

ḠKS(r, r′, ωn) =
∑
i

ΨB
i (r)⊗ΨB∗

i (r′)

iωn − 1
~Ẽi

(G.4)

where from the dimensionality of the KSBdG equations (3.108) we conclude that i is twice the
set of the normal state KS quantum numbers. The KS system’s diagonal KS GF Ḡkk′(ωn) is
given in Eq. (5.35) or in real space as ḠKS(r, r′, ωn) in Eq. (5.36). From the form Eq. (5.35) we
identify

Ẽi=k,α = sign(α)Ek , (G.5)
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and from the KS GF in terms of Valatin transformations Eq. (5.40) we find

ΨB
kα(r) =

(
~uk(r)
~vk(r)

)
δα,1 +

(
~v∗k(r)
~u∗k(r)

)
δα,−1 (G.6)

Here α labels the branch (+ or −) of the eigenvalues Ekα. ΨB
kα is not a pure Nambu spinor as

is clearly seen from the above equation. It is not surprising that the spectral function Eq. (G.3)
may be also written with the Bogolon state of Eq. (G.6) as

ĀKS(r, r′, ω) = 2π
∑
kα

ΨB
kα(r)⊗ΨB∗

kα(r′)δ(ω − 1

~
Ẽkα) (G.7)

which is consistent with ḠKS in Eq. (G.2). With the definition of the u, v coefficients of Eq. (3.111)
and Eq. (3.112), further

ΨB
kα(r) =

∑
k′σ

( (
uk
′σ
k δα,1 + (vk

′σ
k )∗δα,−1

)
~ϕk′σ(r)(

vk
′σ
k δα,1 + (uk

′σ
k )∗δα,−1

)
~ϕ∗k′σ(r)

)
. (G.8)

Note here that ΨB
kα(r) is in general neither a pure state in Nambu nor in spin space so that the

particle is neither an electron nor a hole but a mixture of both. This transformation allows one
to study the Bogolon also in the SDA where spin becomes a good quantum number

ΨB
kασ(r) =

∑
α′

(
ukα

′
kσ θ(E

α′
kσ)δα,1~ϕkσ(r) + (v−kα

′

k,−σ )∗θ(Eα
′

kσ)δα,−1~ϕ−k,−σ(r)

v−kα
′

k,−σ θ(E
α′
kσ)δα,1~ϕ

∗
−k,−σ(r) + (ukα

′
kσ )∗θ(Eα

′
kσ)δα,−1~ϕ

∗
kσ(r)

)
(G.9)

The KS LDOS is defined as ρKS
σα(r, ω) = ĀKSσσ

αα(r, r, ω) which results in

ρKS
σα(r, ω) =

2π

~
∑
ijk

(
uiσk (ujσk )∗δ

(
~ω−sign(α)Ek

)
+(viσk )∗vjσk δ

(
~ω+sign(α)Ek

))
ϕi(rσ)ϕ∗j (rσ) . (G.10)

Integrating the local DOS over the unit cell we obtain the total DOS. The orthonormality of the
pure spin basis leads to

ρKS
σα(ω) =

2π

~
∑
ik

(
|uiσk |2δ

(
~ω−sign(α)Ek

)
+|viσk |2δ

(
~ω+sign(α)Ek

))
. (G.11)

For a singlet superconductor (compare Subsection 3.5.1) the equations simplify to

ρKS
σα(r, ω) =

2π

~
∑
ijk

(
uikσ(ujkσ)∗δ

(
~ω−sign(α)Ekσ

)
+

+(vik,−σ)∗vjk,−σδ
(
~ω+sign(α)Ek,−σ

))
ϕi(rσ)ϕ∗j (rσ) (G.12)

ρKS
σα(ω) =

2π

~
∑
ik

(
|ukkσ|2δ

(
~ω−sign(α)Ekσ

)
+|vik−σ|2δ

(
~ω+sign(α)Ek−σ

))
. (G.13)

Further, within the SDA (compare Subsection 3.5.2) we find

ρKS
σα(r, ω) =

2π

~
∑
kα′

|ukα′kσ |2δ(~ω − sign(α)Eα
′

kσ)|ϕk(rσ)|2 (G.14)

ρKS
σα(ω) =

2π

~
∑
kα′

|ukα′kσ |2δ(~ω − sign(α)Eα
′

kσ) . (G.15)
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With the definition of the isotropization procedure of Eq. (6.93) and the local double DOS

%σ(e, r) ≡
∑
k

δ(
εk↑ + ε−k↓

2
− ε)δ(εk↑ − ε−k↓

2
− J)|ϕk(rσ)|2 (G.16)

we arrive at the isotropic version

ρKS
σα(r, ω) =

2π

~
∑
α′

ˆ
de
(
u2δα′,1 + v2δα′,−1

)
δ(~ω − sign(α)Eα

′
σ )%σ(e, r) (G.17)

ρKS
σα(ω) =

2π

~
∑
α′

ˆ
de
(
u2δα′,1 + v2δα′,−1

)
δ(~ω − sign(α)Eα

′
σ )%(e) . (G.18)

Because the expressions are similar (replace %(e) with %σ(e, r)) we limit the discussion to the
total DOS. Now with u2 = F+ε

2F and v2 = F−ε
2F

ρKS
σα(ω) =

π

~
∑
α′

ˆ
de
F + sign(α′)ε

F
δ
(
~ω − sign(α)(sign(σ)J + sign(α′)F

))
%(e) . (G.19)

The property of the Dirac delta distribution
ˆ
dεf(ε)δ

(
g(ε)

)
=

∑
{ε0|g(ε0)=0}

f(ε0)

|g′(ε0)| (G.20)

can be used to eliminate the energy integral. Instead of the energy integral, we have to sum the
roots of the function in the delta distribution and divide by its derivative. Here the derivative
becomes∣∣∣∣( d

dε

(
~ω−sign(α)

(
sign(µ)J + sign(α′)

√
ε2 + |∆s

s(e)|2
)))−1∣∣∣∣ =

√
ε2 + |∆s

s(e)|2
|ε+ <

(
∆s
s(e)∂ε∆

s
s(e)
)
| (G.21)

When we define εσ0αα′(J, ω) as the set of ε that solves

~ω − sign(α)
(
sign(σ)J + sign(α′)

√
ε2

0 + |∆s
s(ε0, J)|2

)
= 0 (G.22)

for given J and ω we write the KS DOS as

ρKS
σα(ω) =

π

~

ˆ
dJ
∑
α′

∑
εσ
0αα′

sign(α′)εσ0αα′ +
√
εσ0αα′

2 + |∆s
s(ε

σ
0αα′ , J)|2

|εσ0αα′ + Re
(
∆s
s(ε

σ
0αα′ , J)∂ε∆s

s(ε
σ
0αα′ , J)

)
| %(εσ0αα′ , J) (G.23)

We check the non-superconducting limit of ρKS
σα(ω) for consistency. We see with

ρNSσ (ω) =
2π

~
∑
k

δ
(
εkσ − ~ω

)
(G.24)

that
lim
∆→0

ρKS
σα(ω) = ρNSσ (sign(α)ω) (G.25)

and we recover the normal state DOS or the DOS with hole excitations if α is −.



H. Limiting cases of the Eliashberg
Equations

In this Appendix we want provide high and low temperature limits to the Eliashberg equations
Eqs. (7.82) to (7.85). Let us first consider the high temperature limit and derive the behavior
of the equations. From ωn = π

β (2n + 1) we see n and n + 1 are always 2πkBT apart. If 2πkBT

is much larger than the scale of the coupling α2F we noteKσn,n′ and Ln,n′ behave as Kronecker
deltas

lim
T→∞

Kσn,n′(0, J, 0, J
′) = δnn′

ˆ
dω

2α2FD
σ (0, J, 0, J ′, ω)

ω
= δnn′λ

D
σ (J, J ′) (H.1)

lim
T→∞

Ln,n′(0, J, 0, J
′) = δnn′

ˆ
dω

2α2F (0, J, 0, J ′, ω)

ω
= δnn′λ(J, J ′) (H.2)

where λDσ (J, J ′) and λ(J, J ′) are the analog of the electron-phonon coupling parameter λ =

d́ω 2α2F (ω)
ω for this spin splitted system. Then follows

lim
T→∞

ZE
n(J) = 1 +

i
4~π(2n+ 1)

ˆ
dJ ′

∑
σ

λDσ (J, J ′)Mnσ(J ′) (H.3)

lim
T→∞

ÃEωz
n (J) =

kBT

4ZE
n(J)

ˆ
dJ ′

∑
σ

sign(σ)λDσ (J, J ′)Mnσ(J ′) (H.4)

lim
T→∞

∆E
n(J) = − kBT

2ZE
n(J)

ˆ
dJ ′λ(J, J ′)ZE

n(J ′)∆E
n(J ′)Nn(J ′) . (H.5)

This is because1

lim
T→∞

SE
n,σ =

√
(i~ωnZE

n)2 = −i~kBπ(2n+ 1)ZE
nT (H.6)

⇒ lim
T→∞

Mnσ = πi
(
−1− 1

)
+ πi

(
−1 + 1

)
= −2πi (H.7)

⇒ lim
T→∞

Nn = − 2

~kB(2n+ 1)ZE
nT

, (H.8)

where we assume ZE
n , ∆E

n and ÃEωz
n to be bounded2.Inserting this into the Eq. (H.4) we see that

our assumption that ÃEωz
n is bounded is violated (istead we find ÃEωz

n = O(T )) and we have to
assume the coupling to be spin channel independent λDσ = λD−σ ≡ λD in which case ÃEωz

n = 0

and the previous analysis is correct. This does not mean ÃEωz
n diverges if the coupling depends

on the spin channel because the energy integrals Eq. (H.7) and (H.8) are not so easily evaluated
if ÃEωz

n ZE
n cannot be dropped against SE

n,σ. Taking ÃEωz
n = 0 for now we obtain

lim
T→∞

ZE
n(J) = 1 +

1

~(2n+ 1)

ˆ
dJ ′λD(J, J ′) (H.9)

lim
T→∞

∆E
n(J) = − 1

~ZE
n(J)

ˆ
dJ ′λ(J, J ′)∆E

n(J ′) (H.10)

1Note that the minus sign in SE
n,σ is due to the principle branch of the square root.

2Of cause we also assume J to be bounded, so it can be dropped when compared to T .



146 H. Limiting cases of the Eliashberg Equations

If we are dealing with a spin independent system, i.e. J = 0 and all properties dependent on J
as a delta function, clearly ∆E

n = −scalar×∆E
n and ∆E

n = 0 is the only solution.
In the low temperature limit the ωn are infinitly dense, with an interval length of 2πkBT and we

transform the summation into an integral. Again we shall assume λDσ = λD−σ ≡ λD, i.e. ÃEωz = 0.
The equations remain rather complicated and we impose the simplification of zero splitting. Here
we may replace π

β (2n′ + 1) with 2π
β n
′ because 2π

β n
′ and 2π

β (n′ + 1) are infinitesimally apart and
integrate ñ′ = 2π~

β n′. Then we have to solve

ZE(ñ) = 1 +
1

ñ

ˆ
dω
ˆ
dñ′

ωα2F (ω)

(ñ− ñ′)2 + ω2

ñ′√
∆E(ñ′)2 +

(
ñ′
)2 (H.11)

∆E(ñ) =
1

ZE(ñ)

ˆ
dω
ˆ
dñ′

ωα2F (ω)

(ñ− ñ′)2 + ω2

∆E(ñ′)√
∆E(ñ′)2 +

(
ñ′
)2 (H.12)

Neglecting ∆E(ñ′)2 we may compute how ZE(ñ) behaves in the normal state. Thus we compute

ZE(ñ) = 1 +
1

ñ

ˆ
dω
ˆ
dñ′

ωα2F (ω)

(ñ− ñ′)2 + ω2
sign(ñ′) (H.13)

= 1 +
2

ñ

ˆ
dω arctan(

ñ

ω
)α2F (ω) (H.14)

as an interesting fact we note

lim
ñ→0

lim
∆s→0

ZE(ñ) = 1 +

ˆ
dω

2α2F (ω)

ω
= 1 + λ (H.15)

lim
ñ→∞

lim
∆s→0

ZE(ñ) = 1 (H.16)

These analytic results provide aid in the implementation.
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Deutsche Kurzfassung

Bei der ab-initio Beschreibung von Phänomenen, welche die Wechselwirkung von Magnetismus
und Supraleitung beinhalten, stoßen herkömmliche Verfahren bislang weitgehend an ihre Gren-
zen. In dieser Arbeit wird die Dichtefunktionaltheorie für Supraleiter für den Fall verallgemeinert,
in welchem neben der elektronischen Dichte, der Dichte der Kerne und der Dichte von konden-
sierten Elektrononpaaren auch die magnetische Dichte Berücksichtigung findet. Hierbei erfolgt
die approximative Lösung des wechselwirkenden Systems indem die exakten Dichten in einem
einfacheren, nicht wechselwirkenden, Kohn-Sham System reproduziert werden. Für die Funk-
tionalentwicklung des Austauschkorrelationeinteilchenpotentials des Kohn-Sham Systems, was
integraler Bestandteil jeder Dichtefunktionaltheorie ist, wird in dieser Arbeit die Sham-Schlüter
Gleichung verwendet. Zu deren Herleitung verwendet man das die teile der beiden Greensfunk-
tionen im Kohn-Sham- und wechselwirkenden System, welche zu den Dichten korrespondieren,
per Konstruktion identisch sind. Wendet man diese Überlegungen auf die Störentwicklung vom
Kohn-Sham zum wechselwirkenden System an, ergibt sich eine Approximation des Austausch-
korrelationpotentials in Abhängigkeit der Selbstenergie.
Im einfachsten Fall, welcher die Situation in vielen physikalisch relevanten System akkurat

beschreibt, reduziert sich die Paarung von Elektronen auf solche, welche miteinander über Zeitin-
vertierung in Verbindung stehen. Für diesen Fall lösen wir die meisten hergeleiteten Gleichungen
dieser Arbeit numerisch.
Um die erreichten Resultate besser vergleichen zu können wird in der Arbeit das Bardeen-

Cooper-Schrieffer System als Funktion eines homogenen Magnetfeldes und der Temperatur ge-
löst. Hier zeigt sich das erste mal das der Phasenübergang zum ferromagnetischen System erster
Ordnung sein muss. Um die Selbstenergie besser zu verstehen wird des weiteren in der selben
Notation eine Verallgemeinerung der Eliashberg Gleichungen für den Magnetischen Fall vorge-
nommen. Es zeigt sich das obwohl das System supraleitend bleibt, das Kohn-Sham System bei
T = 0 keine supraleitende Anregungslücke aufweist, was in Einklang mit dessen Konstruktion ist
da eine Reproduktion des Einteilchenspektrums nicht unbedingt erwartet werden kann. Um auch
ein adäquates Einteilchenspektrum vorhersagen zu können führen wir eine zur G0W0 Approxi-
mation verwandten Prozedur durch, in welcher die Dyson-Gleichung einmal mit der Selbstenergie
aus der Funktionalkonstruktion gelöst wird. Zum Abschluss der theoretischen Herleitungen testen
wir die Gleichungen an einem freien Elektronengas mit justierbarem Magnetfeld.
Anschließend wird der Formalismus auf eine simulierte Oberfläche von einem Monolayer Blei

auf einem Silizium (111) Substrat angewendet welche experimentell untersucht ist. Hier zeigen
sich auch ohne Magnetfeld schon interessante Effekte. Zum Beispiel ist die vorhergesagte kri-
tische Temperatur sehr viel größer als der normale Fehler einer derartigen Rechnung erwarten
lässt. In 2D ist Aufgrund von langwelligen Fluktuationen keine supraleitende Ordnung zu erwar-
ten. Dennoch ist experimentell Supraleitung in dem untersuchten System nachgewiesen. In dem
Zusammenhang ergibt sich somit die Möglichkeit den Begriff der “Nähe” zu einem 2D System
weiter zu quantifizieren. In dieser Arbeit wird ein solcher Versuch unternommen indem ver-
nachlässigte Effekte auf ihren Einfluss auf die Sprungtemperature untersucht werden. Es muss
geschlossen werden das die viel zu hohe vorhergesagte Sprungtemperatur der Vernachlässigung
von langwelligen Fluktuationen geschuldet ist.
Im letzten Schritt legen wir ein homogenes, externes Magnetfeld an das System an und unter-

suchen seinen Einfluss.
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