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Chapter 1

Introduction

Many real world optimization problems require the minimization of multiple conflicting objec-

tives, e.g. in finance, the maximization of the expected return versus the minimization of risk

in portfolio optimization; in production theory, the minimization of production time versus the

minimization of the cost of manufacturing equipment; or the maximization of tumor control

versus the minimization of normal tissue complication in radiotherapy treatment design. Such

problems can be formulated as vector optimization problems.

Recently, vector optimization problems with variable ordering structures are studied intensively

in the literature because they have important applications in economics, engineering design,

management science and many other fields (see Bao, Mordukhovich [5], Eichfelder [24], Engau

[29] and Huang, Yang, Chan [40]).

Approximate solutions of vector optimization problems with variable ordering structures play an

important role from the theoretical as well as computational point of view. It is well known that

one needs compactness assumptions in order to show existence results for optimization prob-

lems. Such compactness assumptions are not fulfilled for many optimization problems. Also,

we know that under weak assumptions and without compactness conditions, we have to deal

with approximate solutions and we can show several assertions without any compactness as-

sumptions for these solutions. Also, if we apply numerical algorithms for solving optimization

problems, then these algorithms usually generate approximate solutions which are close to the

exact solutions. Here, we will introduce approximate solutions of vector optimization problems

with variable ordering structures. Many papers deal with different concepts for approximate

solutions with respect to a fixed ordering structure; see [39, 54, 56, 60, 68–74] for different

definitions, concepts and properties of these elements. Gutiérrez , Jiménez and Novo in [36]

introduced a new concept of approximate solutions of vector optimization problems and they

1



CHAPTER 1. INTRODUCTION 2

unified some different concepts of approximate solutions with respect to fixed ordering struc-

tures. In this thesis, we deal with approximate minimizers, approximately nondominated and

approximately minimal solutions with respect to variable ordering structures.

In the second chapter, we will present some necessary mathematical backgrounds and concepts

which will be used in the next chapters. Vector optimization problems have close relationships

with partial orderings in objective spaces. Also, it is known that convex cone helps us to define

an ordering in vector spaces. Therefore, we will introduce binary relations and some of their

properties. Another important topic in the second chapter is cones and their properties. At the

end, we will show some relationships between cone properties and binary ordering.

In the third chapter, we will consider two different orderings such partially orderings with fixed

cones and variable orderings with variable structures. In the first section, we deal with the vector

optimization problem with a fixed cone and later we introduce concepts for approximately mini-

mal, approximately nondominated solutions and approximate minimizers of vector optimization

problems with respect to variable ordering structures. In order to describe solution concepts, we

use a set-valued map and this map is not a (pointed, convex) cone-valued map necessarily. We

illustrate the different concepts for approximate solutions by several examples. Important prop-

erties of these three different kinds of approximate solutions of vector optimization problems

with respect to variable ordering structures will be shown. Eichfelder [24] studied relationships

between exact nondominated and minimal solutions of vector optimization problems with vari-

able ordering structures. In the third chapter, we will show relationships between different kinds

of approximately optimal elements (εk0-nondominated, εk0-minimal and εk0-minimizers) of

vector optimization problems with respect to variable ordering structures and relationships be-

tween sets of approximate solutions choosing different parameters will be discussed. At the

end of the third chapter, it will be obvious to see that concepts of approximately nondominated,

approximately minimal elements and approximate minimizers coincide in the case of vector

optimization problems with fixed ordering structures.

In scalarization methods for vector optimization problems, we replace a vector optimization

problem by a suitable scalar optimization problem to characterize optimal elements. In the

fourth chapter, we characterize εk0-optimal elements by scalarization via nonlinear functionals.

By this scalarization, we show that an approximate solution of the original vector optimization

problem is also a solution for the scalar problem and vice versa. We present a scalarization

method with the help of nonlinear functionals. This scalarization method for vector optimiza-

tion problems was introduced by Gerstewitz (1983) in [31] (see also [32], [33, Theorem 2.3.1],

[35, Theorem 3.38]) and one year later by Pascoletti and Serafini (1984) in [61]. Some general-

izations of this scalarization method for vector optimization problems with a variable ordering

structure where the ordering map is pointed, closed, convex and cone-valued can be found in

[12, 15, 16, 22]. Here, we have a generalization of the Tammer-Weidner functional without any



CHAPTER 1. INTRODUCTION 3

cone or convexity assumptions and we use it for the characterization of all of the three different

kinds of approximate solutions. In fact, our ordering map is just a set-valued map with cer-

tain properties. For sure, our scalarization also works when the ordering map is a convex and

cone-valued map.

Ekeland’s variational principle is a very deep assertion concerning the existence of an exact solu-

tion of a slightly perturbed optimization problem in a neighborhood of an approximate solution

of the original optimization problem. Applications of Ekeland’s variational principle can be seen

in economics, control theory, game theory, nonsmooth analysis and many other fields. Several

generalizations of Ekeland’s variational principle [28] for vector optimization problems with a

fixed ordering structure are given in [3, 4, 8, 9, 13, 14, 37, 38, 41, 44, 55, 70]. In the fifth chap-

ter, we will use results from third and fourth chapters in order to derive variational principles for

vector optimization problems with variable ordering structures and an extension of Ekeland’s

variational principle for vector optimization problems with a variable ordering structure will be

given.

In the last chapter, we present optimality conditions for approximate solutions of vector opti-

mization problems with variable ordering structures. We will use the variational principles pre-

sented in the fifth chapter in order to derive necessary conditions for approximate solutions of

vector optimization problems with variable ordering structures. Bao and Mordukhovich [5] have

shown necessary conditions for nondominated points of sets and nondominated solutions of vec-

tor optimization problems with variable ordering structures and general geometric constraints,

applying methods of variational analysis and generalized differentiation (see Mordukhovich [58]

and Mordukhovich, Shao [59]). In our result we use both Mordukhovich and generic approach

to subdifferentials (compare [21]). We prove the necessary condition for approximate solutions

using a vector-valued variant of Ekeland’s variational principle (see [34, Corollary 9]). Af-

ter that we will give second-order optimality conditions by concept of tangential derivatives of

second-order for set-valued optimization problems with variable ordering structures.



Chapter 2

Preliminaries

In this chapter, we will present some necessary mathematical backgrounds and concepts which

will be used in the next chapters. Vector optimization problems have close relation with partial

orderings in objective spaces. Also, it is known that convex cones help us to define orderings in

vector spaces. Therefore, we will introduce binary relations and some of their properties. The

second important topic is cones and some of their properties. At the end, we will show some

cone properties and their relationships with order properties.

2.1 Order Relations

In this section, we introduce binary and partial relations and some of their properties. Partial

orders are the most important classes of relations in vector optimization problems. Partial or-

dering is given in many real linear spaces because of its important role for introducing solution

concepts and practical interests. In the following we suppose that X and Y are real linear spaces.

Definition 2.1.1. Let A 6= /0 be a nonempty set, the set of ordered pairs of elements of A is

defined as following: A×A := {(x1,x2) | x1,x2 ∈ A}.
A binary relation on X is a subset R of X×X . We write xRy for (x,y) ∈R.

Definition 2.1.2. A binary relation R on X is called

• reflexive iff (x,x) ∈R for all x ∈ X ,

• symmetric iff (x,y) ∈R =⇒ (y,x) ∈R for all x,y ∈ X ,

• antisymmetric iff (x,y) ∈R and (y,x) ∈R =⇒ x = y for all x,y ∈R,

• transitive iff (x,y) ∈R and (y,z) ∈R =⇒ (x,z) ∈R for all x,y,z ∈R.

A binary relation R is called preorder if it is transitive.

4



CHAPTER 2. PRELIMINARIES 5

Definition 2.1.3. Every binary relation ≤ on X is called a partial ordering if it is reflexive,

transitive and if for arbitrary a,b,x,y ∈ X , the following properties hold:

1. x≤ y and a≤ b =⇒ x+a≤ y+b,

2. x≤ y and λ ∈ R+ =⇒ λx≤ λy.

Definition 2.1.4. A partially ordered linear space is a real linear space equipped with a partial

order.

It is important to note that we can not compare two arbitrary elements in a partially ordered

space in general. But there are some binary relations which any two arbitrary elements are

comparable.

Definition 2.1.5. A binary relation R is called a total order if R is a partial order and if every

two elements are comparable, i.e., for all x,y ∈ X , either xRy or yRx.

Definition 2.1.6. If each subset A⊆ X has a first element x, i.e., xRx for all x ∈ A, then we say

that X is well ordered relative to R.

Minimal (maximal) elements of a set A relative to relation R are defined as following:

Definition 2.1.7. Suppose that R is an order relation on the nonempty set S and A is a subset of

S. We say x is a minimal (maximal) element of A relative to R if

∀x ∈ A, xRx =⇒ xRx (∀x ∈ A xRx =⇒ xRx).

The set of minimal (maximal) element of A relative to R are denoted by Min(A,R) (Max(A,R)).

Note that if the order relation R is antisymmetric, then x is a minimal (maximal) element of A

if and only if

∀x ∈ A, xRx =⇒ x = x, (∀x ∈ A, xRx =⇒ x = x) .

Remark 2.1.8. If R is a partial order on X , then a subset A ⊆ X can have no, one or several

minimal (maximal) elements. But if R is a total order, then every subset A of X has at most one

minimal (maximal) element.

Definition 2.1.9. If R is an order relation on X and A⊆ X , then RA = R ∩ (A×A) is an order

relation of A and has the following properties:

1. If R is a partial order (preorder, total order) on X , then RA is also a partial order (preorder,

total order) on A.

2. x is a minimal (maximal) element of A relative to R if and only if x is a minimal (maximal)

element of A relative to RA.
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Example 2.1.10. Suppose that S is a nonempty set and let P=P(S) be the power set of S, i.e.,

the set of all subsets of S, then binary relation

R := {(A,B) ∈P×P : A⊂ B}

is a partial order. If X has more than two element then R is not a total order.

2.2 Cone Properties

Definition 2.2.1. Let C ⊂ Y be a nonempty subset of a real linear space Y . The set C is called a

cone iff λc ∈C for all c ∈C and for all λ ∈ R+ := {t ∈ R | t = 0}.

We define multiplication of a set with a scalar by

αS := {αs : s ∈ S},

specially −S = {−s : s ∈ S}. Furthermore, algebraic sum of two sets S and T is as following

S+T := {s+ t : s ∈ S, t ∈ T}.

We write s+T instead of {s}+T , if S = {s} is a singleton.

Some further notation used in this thesis are as following:

• intS is the interior of S,

• bdS is the boundary of S,

• clS := intS∪bdS,

• rintS is the relative interior of S,

• convS is the convex hull of S.

• coneS is the conic hull of S.

Definition 2.2.2. Suppose Y is a real linear space and C ⊆ Y .

1. A cone/set C is called proper or nontrivial iff C 6= Y and C 6= {0Y}.

2. A cone/set C is called solid iff intC 6= /0.

3. A cone/set C is called pointed iff C∩ (−C) = {0Y}, i.e., if c ∈C and c 6= 0Y , then c /∈−C.

4. A cone/set C is called convex iff λc1 +(1−λ )c2 ∈C for all 0≤ λ ≤ 1 for all c1,c2 ∈C.

5. We say that cone C generates Y or C is called reproducing iff C−C = Y.
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6. Let nonempty convex set B be a subset of convex cone C 6= {0Y}. The set B is called

a base for convex cone C iff each c ∈ C\{0Y} has a unique representation of the form

c = βb for some β > 0 and for some b ∈ B.

Convexity of B and uniqueness of β imply 0Y /∈ B. Note that a cone C is convex if and only if

it is closed under addition and this means closedness under addition of a cone C is sufficient for

convexity.

Theorem 2.2.3. Suppose that C is a convex cone with base B in real linear space Y , then C is

pointed.

Proof. Suppose both c and−c belong to C. By definition of base, we get c = λb1 and−c = µb2

and this means c = λb1 =−µb2. Therefore,

λb1 +µb2 = 0 =⇒ λ

λ +µ
b1 +

µ

λ +µ
b2 = 0.

By convexity of B, we get 0 ∈ B. But this is a contradiction to 0 /∈ B.

Proposition 2.2.4. Let C be a convex cone in a real linear space Y with a nonempty interior,

then intC =C+ intC.

Proof. We know for c1 ∈ intC, c1 = c1 +0Y . Therefore, obviously

intC = intC+{0Y} ⊆ intC+C.

Now suppose that c1 ∈ intC,c2 ∈ C and y ∈ Y . By c1 ∈ intC, there exists ε > 0 such that

c1 + εy ∈ C for every ε ∈ [0,ε]. Since C is a convex cone, c1 + εy+ c2 ∈ C. Because c1,c2,y

were arbitrary and c1 + c2 + εy ∈C, then c1 + c2 is an interior point of C and C+ intC ⊆ intC

and proof is complete.

Definition 2.2.5. Let Y be a vector space over a field F. The continuous dual space of Y , denoted

Y ∗, is the set of all linear maps from Y to F.

Definition 2.2.6. The dual cone C∗ of a set C is the following set

C∗ = {y∗ ∈ Y ∗ : y∗(y)≥ 0 ∀y ∈C}.

Note that dual cone is always a convex cone, even if C is neither convex nor a cone. Furthermore,

the set

C] = {y∗ ∈ Y ∗ : y∗(y)> 0 ∀y ∈C}

is called quasi interior of cone C. Note that if C# 6= /0, then C is pointed. This implication is an

equivalence if Y is a finite dimensional space; see page 2 of [33] for the proof and more details.

For example, if C = {0Y}, then C∗ = Y ∗ and if C = Y , then C∗ = {0}. Suppose that C1 and C2

are two convex cone with dual cones C∗1 and C∗2 respectively and C1 ⊆C2, then C∗2 ⊆C∗1 .
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Proposition 2.2.7. Let C be a convex cone in Y with intC 6= /0, then

intC ⊂ {y ∈ Y : y∗(y)> 0 ∀y∗ ∈C∗\{0} }.

Proof. Suppose that y ∈ intC and y∗ ∈C∗\{0}, then there exists z ∈Y such that y∗(z)< 0. Now,

since y ∈ intC, there exists ε > 0 such that y+ εz ∈C for all ε ∈ [0,ε]. Since y+ εz ∈C and y∗

is linear, we have

y∗(y+ εz)≥ 0 =⇒ y∗(y)≥−εy∗(z)> 0 and

intC ⊂ {y ∈ Y : y∗(y)> 0 ∀y∗ ∈C∗\{0}}.

This completes the proof. �

If C characterizes a partial ordering in Y , we say C is an ordering cone. Now, we are ready to

show relationships between order properties and cone properties.

Theorem 2.2.8. Suppose that C is a pointed convex cone in Y , then the binary relation

≤C= {(x,y) ∈ Y ×Y : y− x ∈C} (2.1)

is a partial ordering in Y .

Proof. Proof is easy and we just prove transitivity. Suppose x≤C y and y≤C z, so

y− x,z− y ∈C =⇒ 1
2
(y− x)+

1
2
(z− y) ∈C.

This means z− x ∈C and x≤C z.

Proposition 2.2.9. Suppose that order relation R is compatible with scalar multiplication, i.e.,

(αx,αy) ∈R for all (x,y) ∈R and α ∈ R+, then CR := {y− x : (x,y) ∈R} is a cone.

Proof. Suppose that a∈CR , then there exists (x,y)∈R such that a= y−x and by compatibility

with scalar multiplication, we get (αx,αy) ∈R. Therefore, αa = αy−αx ∈CR for all α > 0

and this means CR is a cone.

Similarly, we define strict partial ordering by

<C= {(x,y) ∈ Y ×Y : y− x ∈ intC}.

For example, when C = R+, then partial ordering ≤C is usual ordering ≤ and the strict partial

ordering <C is usual strict ordering < on R.

We say a relation R is compatible with addition if (x+ z,y+ z) ∈R holds for all (x,y) ∈R and

z ∈ Y.

Lemma 2.2.10. If R have addition compatibility, then for all a ∈CR we have 0Ra.
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Proof. Suppose that a ∈ CR , then there exists (x,y) ∈ R such that a = y− x. By addition

compatibility, we get (x+ z,y+ z) ∈R for z ∈ Rm. Now, set z = −x, then (0,y− x) ∈R and

0Ra.

The following theorem [33, Theorem 2.1.13] shows relationships between some geometrical

properties of cones and order relation properties.

Proposition 2.2.11. Let Y be a linear space and C be a cone in Y . Then ≤C defined by (2.1) is

compatible with addition and scalar multiplication. Moreover the following properties hold:

1. ≤C is reflexive if and only if 0 ∈C.

2. ≤C is antisymmetric if and only if C is pointed.

3. ≤C is transitive if and only if C is convex.

Proof. 1. Suppose that ≤C is reflexive, then for any x ∈ Y, x− x = 0 ∈C. Now, if 0 ∈C and

x ∈ Y , then x− x = 0 ∈C and x≤c x for any x ∈ Y.

2. First suppose that ≤C is antisymmetric and a,−a ∈C. Since a,−a ∈C, we can say that

0≤C a and 0≤c−a. By addition compatibility, we get a≤C 0. Since≤C is antisymmetric,

a = 0. Now, suppose that C is pointed and there exist some x,y ∈ Y such that x ≤C y and

y≤C x. Therefore, y− x = a ∈C and x− y =−a ∈C, but since C is pointed, a =−a = 0
and this means x = y.

3. First suppose that x,y,z∈Y , x≤C y and y≤C z, then we have y−x,z−y∈C. By convexity

of cone C, we get y−x+ z−y ∈C and this means x≤C z. Now, suppose that a,b ∈C and

≤C is transitive. By b ∈ C, 0 ≤C b and addition compatibility, we get a ≤C a+ b. By

transitivity of ≤C, we get 0≤C a+b and this means a+b ∈C and C is a convex cone. �



Chapter 3

Solution Concepts of Vector
Optimization Problems

Many real world optimization problems require the minimization of multiple conflicting objec-

tives, e.g. the maximization of the expected return versus the minimization of risk in portfolio

optimization, the minimization of production time versus the minimization of the cost of man-

ufacturing equipment, or the maximization of tumor control versus the minimization of normal

tissue complication in radiotherapy treatment design. Such problems can be formulated as vector

optimization problems. In this chapter, we will consider two different orderings such partially

orderings with fixed cones and variable orderings with variable structures and we will define

optimal points with respect to these orderings. When we are talking about optimal points of a

set in a partially ordered space, we are mostly interested in minimal or maximal elements. But

also sometimes for us is important to find weakly (strongly) minimal or maximal points and

locally optimal solutions in the case of nonconvex optimization. Let Y be a real linear space

and C ⊂ Y be an ordering cone. Since every maximal point of a set Ω ⊂ Y with respect to an

ordering cone C ⊂ Y is also a minimal point with respect to the ordering cone −C, we just will

deal with minimal points here. We study the following vector optimization problem

min y subject to y ∈Ω. (VOP)

Here, we will introduce approximate solutions of vector optimization problems with fixed and

variable ordering structures. Many papers deal with different concepts for approximate solutions

of vector optimization problems with respect to fixed ordering structures; see [39, 54, 56, 60, 68–

74] for different definitions, concepts and properties of these elements. Gutiérrez , Jiménez and

Novo in [36] introduced a new concept of approximate solutions of vector optimization problems

and they unified some different concepts of approximate solutions with respect to fixed ordering

structures. First, we define several notions of approximate elements of vector optimization

problems with fixed and variable ordering structures and later, relationships between sets of

10
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approximate solutions choosing different parameters ε will be discussed. Last section is devoted

to the presentation of the relationships between different concepts of approximate solutions of

vector optimization problems with variable ordering structures. Obviously, an exact solution of

a vector optimization problem is the special case of approximate solution and all our results can

be used for exact solutions.

3.1 Approximate Solutions of Vector Optimization Problems w.r.t.
Fixed Ordering Structures

It is well known that one needs compactness assumptions in order to show existence results for

solutions of optimization problems. Such compactness assumptions are not fulfilled for many

optimization problems. Also, we know that under weak assumptions and without compactness

conditions, we have to deal with approximate solutions and we can show several assertions with-

out any compactness assumptions for these solutions. Also, if we apply numerical algorithms

for solving optimization problems, then these algorithms usually generate approximate solu-

tions that are close to exact solutions. Therefore, first in this section, we will define approximate

solutions of vector optimization problems with respect to fixed ordering structures and in the

next section, we will deal with approximate solutions of vector optimization problems with re-

spect to variable ordering structures. Let that Y be a real linear space, Ω⊂ Y be a closed subset

of Y and C ⊂ Y be an ordering, proper, closed, convex and pointed cone. Consider the vector

optimization problem (VOP).

Definition 3.1.1. • An element y ∈Ω is called a minimal point of the set Ω with respect to

the ordering cone C iff

Ω∩ (y−C\{0}) = /0. (3.1)

• Let intC 6= /0. An element y∈Ω is called a weakly minimal point of the set Ω with respect

to cone C iff

(y− intC)∩Ω = /0.

We can define similar definitions for local and local weakly minimal point of the set Ω. For

more details about local minimal points see [11, 19, 49, 75].

Definition 3.1.2. Consider the problem (VOP).

• An element y ∈Ω is called a local minimal point of the set Ω with respect to the ordering

cone C iff there exists a neighborhood U of y such that

(y−C\{0})∩ (Ω∩U) = /0.



CHAPTER 3. SOLUTION CONCEPTS OF (VVOP) 12

• An element y ∈ Ω is called a local weakly minimal point of the set Ω with respect to the

ordering cone C iff there exists a neighborhood U of y such that

(y− intC)∩ (Ω∩U) = /0.

If we apply numerical and iterative algorithms for solving optimization problems, then these

algorithms usually generate approximate solutions. Also for showing existence results for so-

lutions of optimization problems, one need to apply compactness assumptions but these com-

pactness assumptions are not fulfilled for many optimization problems and without these as-

sumptions, we have to deal with approximate solutions. In the following, we bring definition of

approximate solutions of vector optimization problems with fixed ordering structures.

Let Y be a linear topological space and k0 ∈ Y\{0}. For any ε ≥ 0, we define approximately

minimal elements of the set Ω with respect to a fixed ordering cone C ⊂ Y as following.

Definition 3.1.3. Let yε ∈Ω, ε ≥ 0 and consider the problem (VOP).

1. yε is said to be an εk0-minimal element of Ω with respect to C iff

(yε − εk0−C\{0})∩Ω = /0.

2. Let intC 6= /0. yε is said to be a weakly εk0-minimal element of Ω with respect to C iff

(yε − εk0− intC)∩Ω = /0.

3.2 Approximate Solutions of Vector Optimization Problems w.r.t.
Variable Ordering Structures

Recently, vector optimization problems w. r. t. variable ordering structures (VVOP) are studied

intensively in the literature because they have important applications in economics, engineering

design, management science and many other fields (see Bao, Mordukhovich [5], Bao, Mor-

dukhovich, Soubeyran [6], Eichfelder [24], Engau [29] and Huang, Yang, Chan [40]). In these

papers, solution concepts are introduced using cone-valued map whereas in this section, set-

valued maps are considered. In this chapter we impose the following assumption.

Assumption (A). Let Y be a linear topological space, k0 ∈ Y\{0}, ε ≥ 0 and Ω be a closed set

in Y . Suppose that C : Y ⇒ Y is a set-valued map where C(y) is a proper and closed set with

C(y)+ [0,+∞)k0 ⊆C(y) for all y ∈Ω.

The natural way to extend solution concepts of vector optimization problems with a fixed order-

ing cone given by (3.1) to the case of variable ordering structures is as follows.
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We are looking for elements y ∈Ω such that

(y−C(y)\{0})∩Ω = /0 (3.2)

or

∀y ∈Ω : (y−C(y)\{0})∩Ω = /0. (3.3)

Solutions y ∈ Ω with the property (3.2) are called minimal elements of Ω with respect to C(·).
Minimal points of Ω with respect to C(·) are introduced by Chen, Huang and Yang [10–12].

Solutions with the property given by (3.3) are called minimizers of Ω with respect to C(·), (see

[12, Definition 1.11] under a different name).

In the case of fixed ordering structure, we can write (3.1) equivalently in the following form

∀y ∈Ω : y /∈ y+C\{0}. (3.4)

But if we want to generalize this definition to vector optimization problems with variable order-

ing structures, then the concept in (3.4) leads us to minimal (see (3.6)) as well as to so called

nondominated points (see (3.5)) of Ω with respect to C(·). A minimal point y of a set Ω is a can-

didate element which is not dominated by another point y of Ω with respect to the associated set

C(y) at this candidate point y. In the definition of minimal elements, an ordering set is a set asso-

ciated to the minimal point but for nondominated elements, an ordering set is a set associated to

another point. Important properties of these points can be found in [10–12, 15, 23, 24, 76–78].

If we want to define a solution concept for vector optimization problems with respect to ordering

C : Y ⇒ Y in a natural way from (3.4) we get

∀y ∈Ω : y /∈ y+C(y)\{0} (3.5)

or ∀y ∈Ω : y /∈ y+C(y)\{0}. (3.6)

The concept in (3.5) was introduced by Yu [78] in 1974, the so called nondominated points.

Furthermore, (3.6) leads to the definition of minimal points considered by Chen, Huang and

Yang [10–12].

However, it is not possible to derive the concept of minimizers from (3.4) because we change in

the definition of minimizers the set C(y) independently from the elements belonging to Ω.

For sure, sets of all these points coincide in vector optimization problems with fixed ordering

structures.
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Suppose that C : Y ⇒ Y is a set-valued map where C(y) is a closed and pointed set for every

y ∈ Y . We define three different domination relations. For y1,y2,y3 ∈ Y

y1 ≤1 y2 if y2 ∈ y1 +C(y1)\{0}, (3.7)

y1 ≤2 y2 if y2 ∈ y1 +C(y2)\{0}, (3.8)

y1 ≤3 y2 if for all y3 ∈ Y : y2 ∈ y1 +C(y3)\{0}. (3.9)

If C(y1) = C(y2) = C(y3) for all y1,y2,y3 ∈ Y , then these three domination relations are the

same and a vector optimization problem with a variable ordering structure reduces to a vector

optimization problem with a standard fixed domination structure.

3.2.1 Approximate Minimizers

We introduce the concept of approximate minimizers based on the domination relation (3.9).

More details and properties of these points are given in [66, 67].

Definition 3.2.1. Let assumption (A) be fulfilled and yε ∈Ω.

1. yε is said to be an εk0-minimizer of Ω with respect to the ordering map C : Y ⇒ Y iff

y1 �3 yε − εk0 for all y1 ∈Ω, i.e.,

∀y,y1 ∈Ω : (yε − εk0−C(y)\{0})∩{y1}= /0.

2. Let intC(y) 6= /0 for all y ∈Ω. yε is said to be a weak εk0- minimizer of Ω with respect to

the ordering map C : Y ⇒ Y iff

∀y,y1 ∈Ω : (yε − εk0− intC(y))∩{y1}= /0.

3. yε is said to be a strong εk0-minimizer of Ω with respect to the map C : Y ⇒ Y iff

∀y1,y2 ∈Ω : yε − εk0 ∈ y1−C(y2).

Remark 3.2.2. • We denote the set of all εk0-minimizers of Ω with respect to the ordering

map C : Y ⇒ Y by εk0 -MZ(Ω,C).

• We denote the set of all weak εk0-minimizers of Ω with respect to the ordering map C by

εk0 -WMZ(Ω,C).

• We denote the set of all strong εk0-minimizers of Ω with respect to C by εk0 -SMZ(Ω,C).

If ε = 0, then these definitions are definitions of minimizers, weak minimizers and strong mini-

mizers (see [12]) and we denote them by MZ(Ω,C), WMZ(Ω,C) and SMZ(Ω,C) respectively.
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Lemma 3.2.3. Let C : Y ⇒Y be a set-valued map and k0 ∈Y\{0}, then C(y)+[0,+∞)k0 ⊆C(y)

implies intC(y)+ [0,+∞)k0 ⊆ intC(y).

Proof. Suppose that there exists c ∈ intC(y) and ε > 0 such that c + εk0 /∈ intC(y). Since

C(y)+ [0,+∞)k0 ⊆C(y) and c+ εk0 /∈ intC(y), we have c+ εk0 ∈ bdC(y). By c ∈ intC(y) and

c+ εk0 ∈ bdC(y), we get the following implication for any γ > 0:

c+ εk0 + γk0 /∈C(y) =⇒ c+(ε + γ)k0 /∈C(y).

But this is a contradiction to the assumption C(y)+ [0,+∞)k0 ⊆C(y). Therefore, we can con-

clude that intC(y)+ [0,+∞)k0 ⊆ intC(y).

The following theorem shows several properties of approximate minimizers, weak approximate

minimizers and strong approximate minimizers and their relationships to each other. Later, this

theorem will help us to see relationships between sets of exact minimizers and εk0-minimizers.

Theorem 3.2.4. Let assumption (A) be fulfilled, C(y) be a pointed set for all y ∈ Ω and addi-

tionally ε,ε1,ε2 ≥ 0. The following properties hold:

1. MZ(Ω,C)⊆ ε1k0-MZ(Ω,C)⊆ ε2k0-MZ(Ω,C) if 0≤ ε1 ≤ ε2.

2. Suppose that intC(y) 6= /0 for all y ∈Ω, then the following holds:

WMZ(Ω,C)⊆ ε1k0-WMZ(Ω,C)⊆ ε2k0-WMZ(Ω,C) if 0≤ ε1 ≤ ε2.

3. SMZ(Ω,C)⊆ ε1k0-SMZ(Ω,C)⊆ ε2k0-SMZ(Ω,C) if 0≤ ε1 ≤ ε2.

4. Suppose that intC(y) 6= /0 for all y ∈Ω, then the following holds:

εk0-SMZ(Ω,C)⊆ εk0-MZ(Ω,C)⊆ εk0-WMZ(Ω,C) if ε ≥ 0.

Proof. 1. First, we prove if ε1 ≥ 0 then MZ(Ω,C) ⊆ ε1k0-MZ(Ω,C). The proof is obvious

for ε1 = 0 and we suppose ε1 > 0. Suppose that yε ∈MZ(Ω,C) but yε /∈ ε1k0-MZ(Ω,C).

This means that there exist y1,y ∈Ω and c1 ∈C(y)\{0} such that

y1 ∈ (yε − ε1k0−C(y)\{0})∩Ω and yε − ε1k0− c1 = y1. (3.10)

Since C(y)+ [0,+∞)k0 ⊆C(y), there exists c2 ∈C(y) such that

c1 + ε1k0 = c2. (3.11)

We prove that c2 6= 0. Suppose that c2 = 0, then by (3.11), we get

c1 + ε1k0 = 0 =⇒ c1 =−ε1k0. (3.12)

By c1 ∈C(y), we get −ε1k0 ∈C(y). By pointedness of C(y) and C(y)+[0,+∞)k0 ⊆C(y)

for all y ∈Ω, we get

0+ ε1k0 = ε1k0 ∈C(y). (3.13)
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Since ε1 6= 0 and k0 6= 0, we have ε1k0 6= 0 and by (3.12) and (3.13), we get

{ε1k0,−ε1k0} ∈C(y)\{0}∩ (−C(y)),

but this is contradiction to the pointedness of C(y). This means that c2 ∈ C(y)\{0} and

c2 6= 0. Moreover, by (3.10) and (3.11), we get

y1 = yε − c2 =⇒ (yε −C(y)\{0})∩{y1} 6= /0.

But this is a contradiction to yε ∈MZ(Ω,C).

Now suppose that 0 < ε1 < ε2, then there exists γ > 0 such that ε2 = ε1 + γ . Suppose that

yε ∈ ε1k0-MZ(Ω,C) but yε /∈ ε2k0-MZ(Ω,C). This means that there exist y1,y ∈Ω

y1 ∈ (yε − (ε1 + γ)k0−C(y)\{0}) =⇒ y1 ∈ (yε − ε1k0− (γk0 +C(y)\{0}).

Since C(y)+ [0,+∞)k0 ⊆ C(y), then γk0 +C(y)\{0} ⊆ C(y) and there exists c1 ∈ C(y)

such that yε − ε1k0− c1 = y1. Also by C(y)+ [0,+∞)k0 ⊆C(y), ε1 6= 0,k0 6= 0 and point-

edness of C(y) for all y ∈ Ω, we get (C(y)\{0})+ [0,+∞)k0 ⊆ (C(y)\{0}). This means

that c1 6= 0 and c1 ∈C(y)\{0}. Since c1 6= 0, we have y1 ∈ (yε − ε1k0−C(y)\{0}). But

this is a contradiction to yε ∈ ε1k0-MZ(Ω,C).

2. Suppose that yε ∈WMZ(Ω,C), i.e., yε is a weak minimizer with respect to the ordering

map C and (yε− intC(y))∩{y1}= /0 for all y,y1 ∈Ω. Since intC(y)+[0,+∞)k0⊆ intC(y),

for any ε > 0 we can write

(yε − εk0− intC(y))∩{y1} ⊆ (yε − intC(y))∩{y1}= /0 ∀y,y1 ∈Ω,

yε ∈ εk0-WMZ(Ω,C) for all ε > 0 and WMZ(Ω,C)⊆ ε1k0-WMZ(Ω,C).

Now suppose that ε1 < ε2, then there exists γ > 0 such that ε2 = ε1 + γ . Suppose there

exists yε ∈ ε1k0-WMZ(Ω,C) such that yε /∈ ε2k0-WMZ(Ω,C). This means there exist

elements y,y1 ∈ Ω such that y1 ∈ (yε − ε2k0− intC(y)) and yε − ε2k0− c1 = y1 ∈ Ω for

some c1 ∈ intC(y). Therefore, we can write

yε − (ε1 + γ)k0− c1 ∈ {y1} =⇒ yε − ε1k0− (γk0 + c1) ∈ {y1}. (3.14)

By intC(y)+ [0,+∞)k0 ⊆ intC(y) and (3.14), we get c1 + γk0 = c2 ∈ intC(y) and

yε − ε1k0− c2 ∈ {y1} =⇒ (yε − ε1k0− intC(y))∩{y1} 6= /0.

But this is a contradiction to yε ∈ ε1k0-WMZ(Ω,C).
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3. Now we prove that SMZ(Ω,C) ⊆ ε1k0-SMZ(Ω,C) for ε1 ≥ 0. We just need to consider

ε1 > 0, otherwise ε1 = 0 and obviously SMZ(Ω,C) = ε1k0-SMZ(Ω,C). Suppose that

yε ∈ SMZ(Ω,C), then for all ε1 > 0,

yε ∈ y1−C(y2)\{0} =⇒ yε − ε1k0 ∈ y1− (C(y2)\{0}+ ε1k0).

By C(y)+ [0,+∞)k0 ⊆C(y), ε1 6= 0,k0 6= 0 and the pointedness of C(y) for all y ∈Ω, we

get (C(y2)\{0})+ [0,+∞)k0 ⊆C(y2)\{0}. Therefore

yε − ε1k0 = y1−C(y2)\{0} and yε ∈ ε1k0−SMZ(Ω,C).

Now suppose that yε ∈ ε1k0-SMZ(Ω,C) and ε1 < ε2. Therefore, there exists γ > 0 such

that ε1 + γ = ε2. By yε ∈ ε1k0-SMZ(Ω,C), we get

yε − ε2k0 = yε − ε1k0− γk0 ∈ y1−C(y2)\{0}− γk0. (3.15)

Similar to the above (C(y)\{0})+[0,+∞)k0⊆C(y)\{0} for all y∈Ω. By this and (3.15),

we can write

yε − ε2k0 ∈ y1− (C(y2)\{0}+ γk0)⊆ y1−C(y2)\{0}

and this completes the proof.

4. Suppose that yε is a strong εk0-minimizer of Ω with respect to the ordering map C, then

for all y ∈Ω:

yε − εk0 ∈ y1−C(y2) =⇒ yε − εk0− y1 ∈ −C(y2).

Now suppose that yε is not an εk0-minimizer and there exist y1,y2 ∈Ω and c1 ∈C(y2)\{0}
such that

yε − εk0− y1 ∈C(y2)\{0} and yε = y1 + εk0 + c1.

Therefore yε − εk0− y1 ∈C(y2)\{0}∩−C(y2). But this is a contradiction to the pointed-

ness of C(y). This means that each strongly εk0-minimizer is an εk0-minimizer and also

εk0-SMZ(Ω,C)⊆ εk0-MZ(Ω,C).

Now, we show that each εk0-minimizer is a weak εk0-minimizer. By pointedness of C(y),

we get 0 ∈ bdC(y), intC(y)⊆C(y)\{0} and

(yε − εk0− intC(y2))∩Ω⊆ (yε − εk0−C(y2)\{0})∩Ω = /0.

This means that if yε ∈ εk0-MZ(Ω,C), then yε ∈ εk0-WMZ(Ω,C). �
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The following Theorem helps us to see the relationships between sets of (weak) εk0-minimizers

and exact minimizers of the set Ω with respect to C : Y ⇒ Y .

Theorem 3.2.5. Let assumption (A) be fulfilled.

1. Let intC(y) 6= /0 for all y ∈Ω, then
⋂

ε>0 εk0-MZ(Ω,C)⊆WMZ(Ω,C).

2. MZ(Ω,C)⊆⋂ε>0 εk0-MZ(Ω,C)

3. Let intC(y) 6= /0 for all y ∈Ω, then WMZ(Ω,C) =
⋂

ε>0 εk0-WMZ(Ω,C).

Proof. 1. Suppose that yε belongs to the set
⋂

ε>0 εk0-MZ(Ω,C) but yε is not a weak mini-

mizer of the set Ω.

∃y,y1 ∈Ω : (yε − intC(y))∩{y1} 6= /0 =⇒ ∃c1 ∈ intC(y) : yε − c1 = y1.

By c1 ∈ intC(y), there exists ε1 > 0 such that ball B(c1,ε1)⊆C(y) and c1− ε1k0 belongs

to C(y)\{0}. This means that there exists c2 ∈C(y)\{0} such that c1 = c2 + ε1k0 and

(yε − c1) ∈Ω =⇒ (yε − c2− ε1k0) ∈Ω =⇒ (yε − ε1k0−C(y)\{0})∩Ω 6= /0.

This means that yε /∈⋂ε>0 εk0-MZ(Ω,C). But this is a contradiction because we supposed

that yε belongs to the set
⋂

ε>0 εk0-MZ(Ω,C).

2. By the first part of Theorem 3.2.4, we get MZ(Ω,C) ⊆ ε1k0-MZ(Ω,C) for all ε1 > 0.

Therefore, MZ(Ω,C)⊆⋂ε>0 εk0-MZ(Ω,C).

3. By the second part of Theorem 3.2.4, WMZ(Ω,C) ⊆ ε1k0-WMZ(Ω,C) holds for every

arbitrary ε1 > 0 and this means WMZ(Ω,C)⊆⋂ε>0 εk0-WMZ(Ω,C). Now, suppose that

yε ∈
⋂

ε>0 εk0-WMZ(Ω,C), then for any ε > 0

(yε − εk0− intC(y))∩Ω = /0 =⇒
⋃
ε>0

(
(yε − εk0− intC(y))∩Ω

)
= /0.

By intC(y)⊆⋃ε>0(intC(y)+ εk0) we can write,

(yε − intC(y))∩Ω⊆
⋃
ε>0

(
(yε − εk0− intC(y))∩Ω

)
= /0.

Therefore yε is a weak minimizer of Ω with respect to the ordering map C : Y ⇒ Y. �

3.2.2 Approximately Nondominated Elements

We define the concept of approximately nondominated solutions of vector optimization prob-

lems with respect to a variable ordering structure based on the domination relation (3.7). More

details and properties of these points are given in [67].
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Definition 3.2.6. Let assumption (A) be fulfilled and yε ∈Ω.

1. yε is said to be an εk0-nondominated element of Ω with respect to the ordering map

C : Y ⇒ Y iff y�1 yε − εk0 for all y ∈Ω, i.e.,

∀y ∈Ω : (yε − εk0−C(y)\{0})∩{y}= /0.

2. Let intC(y) 6= /0 for all y ∈ Ω. yε is said to be a weakly εk0-nondominated element of Ω

with respect to the ordering map C : Y ⇒ Y iff

∀y ∈Ω : (yε − εk0− intC(y))∩{y}= /0.

3. yε is said to be a strongly εk0-nondominated element of Ω with respect to the ordering

map C : Y ⇒ Y iff

∀y ∈Ω : yε − εk0 ∈ y−C(y).

Remark 3.2.7. • We denote the set of all εk0-nondominated elements of Ω with respect to

the ordering map C : Y ⇒ Y by εk0 -N(Ω,C).

• We denote the set of all weakly εk0-nondominated elements of Ω with respect to the

ordering map C by εk0 -WN(Ω,C).

• We denote the set of all strongly εk0-nondominated elements of Ω with respect to C by

εk0 -SN(Ω,C).

If ε = 0, then these definitions coincide with standard definitions of nondominated points (see

[24, 78]). The sets of nondominated, weakly nondominated and strongly nondominated ele-

ments of the set Ω with respect to the ordering map C will be denoted by N(Ω,C), WN(Ω,C)

and SN(Ω,C) respectively.

The following theorem shows several properties of the approximately nondominated, weakly

approximately nondominated and strongly approximately nondominated solutions. This theo-

rem will help us later to show the relationships between the sets of exact nondominated elements

and approximately nondominated elements.

Theorem 3.2.8. Let assumption (A) be fulfilled and C(y) be a pointed set for all y ∈Ω.

1. N(Ω,C)⊆ ε1k0-N(Ω,C)⊆ ε2k0-N(Ω,C) if 0≤ ε1 ≤ ε2.

2. Suppose that intC(y) 6= /0 for all y ∈Ω, then the following holds:

WN(Ω,C)⊆ ε1k0-WN(Ω,C)⊆ ε2k0-WN(Ω,C) if 0≤ ε1 ≤ ε2.

3. SN(Ω,C)⊆ ε1k0-SN(Ω,C)⊆ ε2k0-SN(Ω,C) if 0≤ ε1 ≤ ε2.
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4. Suppose that intC(y) 6= /0 for all y ∈Ω, then the following holds:

εk0-SN(Ω,C)⊆ εk0-N(Ω,C)⊆ εk0-WN(Ω,C) if ε ≥ 0.

Proof. 1. We prove that if ε1 ≥ 0, then N(Ω,C) ⊆ ε1k0-N(Ω,C). If ε1 = 0, then we have

N(Ω,C) = ε1k0-N(Ω,C). Therefore let ε1 > 0 and suppose there exists yε ∈N(Ω,C) such

that yε /∈ ε1k0-N(Ω,C). This means that there exist y ∈Ω and c1 ∈C(y)\{0} such that

y ∈ (yε − ε1k0−C(y)\{0}) and yε − ε1k0− c1 = y. (3.16)

Since C(y)+ [0,+∞)k0 ⊆C(y), there exists c2 ∈C(y) such that

c1 + ε1k0 = c2. (3.17)

Similar to the first part of Theorem 3.2.4, c2 6= 0. By (3.16) and (3.17), we get

y = yε − c2 =⇒ (yε −C(y)\{0})∩{y} 6= /0.

But this is a contradiction to yε ∈ N(Ω,C). Now, suppose that 0 < ε1 < ε2, then there

exists γ > 0 such that ε2 = ε1+ γ . Suppose that yε ∈ ε1k0-N(Ω,C) but yε /∈ ε2k0-N(Ω,C),

then there exist y ∈Ω and c1 ∈C(y)\{0} such that

yε − ε2k0− c1 = y. (3.18)

By (3.18) and ε2 = ε1 + γ , we can write

y ∈ (yε − (ε1 + γ)k0−C(y)\{0}) =⇒ y ∈ (yε − ε1k0− (γk0 +C(y)\{0}).

This implies that there exists c2 ∈ γk0 +C(y)\{0} such that y = yε − εk0− c2. By as-

sumption C(y)+ [0,+∞)k0 ⊆ C(y), we get c2 ∈ γk0 +C(y)\{0} ⊂ C(y) and c2 ∈ C(y).

Similar to the above, we have c2 6= 0 and c2 ∈C(y)\{0}. Therefore yε−ε1k0−c2 = y and

since c2 6= 0, we can write y ∈ (yε − ε1k0−C(y)\{0}). But this is a contradiction to our

assumption yε ∈ εk0-N(Ω,C). Therefore ε1k0-N(Ω,C)⊆ ε2k0-N(Ω,C).

2. Suppose that yε ∈WN(Ω,C), i.e., yε is a weakly nondominated point with respect to the

ordering map C and (yε − intC(y))∩ {y} = /0 for all y ∈ Ω. By Lemma 3.2.3, we get

intC(y)+ [0,+∞)k0 ⊆ intC(y) for all y ∈Ω and therefore for any ε > 0, we can write

(yε − εk0− intC(y))∩{y} ⊆ (yε − intC(y))∩{y}= /0.

This means that yε ∈ εk0-WN(Ω,C) for all ε > 0 and WN(Ω,C) ⊆ ε1k0-WN(Ω,C). Let

0 < ε1 < ε2, then there exists γ > 0 such that ε2 = ε1 + γ . Suppose that there exists

an element yε ∈ ε1k0-WN(Ω,C) such that yε /∈ ε2k0-WN(Ω,C). This means there exist
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y ∈ Ω and c1 ∈ intC(y) such that (yε − ε2k0− intC(y))∩{y} 6= /0 and yε − ε2k0− c1 = y.

Therefore, we can write

yε − (ε1 + γ)k0− c1 = y =⇒ yε − ε1k0− (γk0 + c1) = y. (3.19)

By intC(y)+ [0,+∞)k0 ⊆ intC(y), we get c2 := c1 + γk0 ∈ intC(y) and by (3.19),

yε − ε1k0− c2 = y =⇒ (yε − ε1k0− intC(y))∩{y} 6= /0.

But this is a contradiction to yε ∈ ε1k0-WN(Ω,C).

3. Now we prove that SN(Ω,C)⊆ ε1k0-SN(Ω,C) for ε1≥ 0. We just need to consider ε1 > 0,

otherwise ε1 = 0 and obviously SN(Ω,C) = ε1k0-SN(Ω,C). Suppose that yε ∈ SN(Ω,C),

then for all ε1 > 0,

yε ∈ y−C(y)\{0} =⇒ yε − ε1k0 ∈ y− (C(y)\{0}+ ε1k0).

By C(y)+ [0,+∞)k0 ⊆C(y), ε1 6= 0,k0 6= 0 and the pointedness of C(y) for all y ∈Ω, we

get (C(y)\{0})+ [0,+∞)k0 ⊆C(y)\{0}. Therefore

yε − ε1k0 = y−C(y)\{0} and yε ∈ ε1k0 -SN(Ω,C).

Now, suppose that yε ∈ ε1k0-SN(Ω,C) and ε1 < ε2. Therefore, there exists γ > 0 such

that ε1 + γ = ε2. Since yε ∈ ε1k0-SN(Ω,C), for all y ∈Ω

yε − ε2k0 = yε − ε1k0− γk0 ∈ y−C(yε)\{0}− γk0. (3.20)

Similar to the above (C(y)\{0})+[0,+∞)k0⊆C(y)\{0} for all y∈Ω. By this and (3.20),

we get

yε − ε2k0 ∈ y−
(
C(y)\{0}+ γk0)⊆ y−C(y)\{0}

and this completes the proof.

4. Suppose that yε is a strongly εk0- nondominated element of Ω with respect to the ordering

map C, then for all y ∈Ω we have:

yε − εk0 ∈ y−C(y) =⇒ yε − εk0− y ∈ −C(y).

Now suppose that yε is not an εk0-nondominated element and there exist an element y∈Ω

and c1 ∈C(y)\{0} such that

yε = y+ εk0 + c1 and yε − εk0− y ∈C(y)\{0}.
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Therefore yε−εk0−y∈C(y)\{0})∩−C(y). But this is a contradiction to the pointedness

of C(y). This means each strongly εk0-nondominated element is an εk0-nondominated

element and εk0-SN(Ω,C)⊆ εk0-N(Ω,C).

Now, we show that each εk0-nondominated element is a weakly εk0-nondominated ele-

ment. By pointedness of C(y), we get 0 ∈ bdC(y), intC(y)⊆C(y)\{0} and

(yε − εk0− intC(y))∩{y} ⊆ (yε − εk0−C(y)\{0})∩{y}= /0.

This means if yε ∈ εk0-N(Ω,C), then yε ∈ εk0-WN(Ω,C) and the proof is complete. �

Now, we show relationships between (weakly) εk0-nondominated elements and exact nondom-

inated elements of the set Ω with respect to the ordering map C : Y ⇒ Y

Theorem 3.2.9. Let assumption (A) be fulfilled, then the following holds:

1. Let intC(y) 6= /0 for all y ∈Ω, then
⋂

ε>0 εk0-N(Ω,C)⊆WN(Ω,C).

2. N(Ω,C)⊆⋂ε>0 εk0-N(Ω,C).

3. Let intC(y) 6= /0 for all y ∈Ω, then WN(Ω,C) =
⋂

ε>0 εk0-WN(Ω,C).

Proof. 1. The proof is similar to that of part 1 of Theorem 3.2.5.

2. By the first part of Theorem 3.2.8, we get N(Ω,C)⊆ ε1k0-N(Ω,C) for all ε1 > 0. There-

fore, N(Ω,C)⊆⋂ε>0 εk0-N(Ω,C).

3. By the second part of Theorem 3.2.8, we get WN(Ω,C)⊆ ε1k0-WN(Ω,C) for all ε1 > 0.

Therefore, WN(Ω,C)⊆ ⋂ε>0 εk0-WN(Ω,C). The proof of reverse implication is similar

to that of part 3 of Theorem 3.2.5. �

3.2.3 Approximately Minimal Elements

In this subsection we deal with approximately minimal solutions of vector optimization prob-

lems with variable ordering structures and their properties.

Definition 3.2.10. Let assumption (A) be fulfilled and yε ∈Ω.

1. yε is said to be an εk0-minimal element of Ω with respect to the ordering map C : Y ⇒ Y

iff y�2 yε − εk0 for all y ∈Ω, i.e.,

(yε − εk0−C(yε)\{0})∩Ω = /0.

2. Let intC(yε) 6= /0. yε is said to be a weakly εk0-minimal element of Ω with respect to the

ordering map C : Y ⇒ Y iff

(yε − εk0− intC(yε))∩Ω = /0.



CHAPTER 3. SOLUTION CONCEPTS OF (VVOP) 23

3. yε is said to be a strongly εk0-minimal element of Ω with respect to the ordering map

C : Y ⇒ Y iff

∀y ∈Ω : yε − εk0 ∈ y−C(yε).

Remark 3.2.11. • We denote the set of all εk0-minimal elements of Ω with respect to the

ordering map C : Y ⇒ Y by εk0 -M(Ω,C).

• We denote the set of all weakly εk0-minimal elements of Ω with respect to the ordering

map C by εk0 -WM(Ω,C).

• We denote the set of all strongly εk0-minimal elements of Ω with respect to the ordering

map C by εk0 -SM(Ω,C).

If ε = 0, then these definitions coincide with standard definitions of minimal points (see [24,

40]). The sets of minimal, weakly minimal and strongly minimal elements of the set Ω with

respect to the ordering map C will be denoted by M(Ω,C), WM(Ω,C) and SM(Ω,C), respec-

tively.

Theorem 3.2.12. Let assumption (A) be fulfilled and C(y) be a pointed set for all y ∈Ω.

1. M(Ω,C)⊆ ε1k0-M(Ω,C)⊆ ε2k0-M(Ω,C) if 0≤ ε1 ≤ ε2.

2. Suppose that intC(y) 6= /0 for all y ∈Ω, then the following holds:

WM(Ω,C)⊆ ε1k0-WM(Ω,C)⊆ ε2k0-WM(Ω,C) if 0≤ ε1 ≤ ε2.

3. SM(Ω,C)⊆ ε1k0-SM(Ω,C)⊆ ε2k0-SM(Ω,C) if 0≤ ε1 ≤ ε2.

4. Suppose that intC(y) 6= /0 for all y ∈Ω, then the following holds:

εk0-SM(Ω,C)⊆ εk0-M(Ω,C)⊆ εk0-WM(Ω,C) if ε ≥ 0.

Proof. The proof is similar to that of Theorem 3.2.8.

In the following theorem, we show relationships between (weakly) εk0-minimal elements of the

set Ω with respect to the ordering map C : Y ⇒ Y and minimal elements of Ω with respect to C.

Theorem 3.2.13. Let assumption (A) be fulfilled.

1. Let intC(y) 6= /0 for all y ∈Ω, then
⋂

ε>0 εk0-M(Ω,C)⊆WM(Ω,C).

2. M(Ω,C)⊆⋂ε>0 εk0-M(Ω,C).

3. Let intC(y) 6= /0 for all y ∈Ω, then WM(Ω,C) =
⋂

ε>0 εk0-WM(Ω,C).

Proof. 1. The proof is similar to that of part 1 of Theorem 3.2.5.

2. By the first part of Theorem 3.2.12, we get M(Ω,C)⊆ ε1k0-M(Ω,C) for all ε1 > 0. There-

fore, M(Ω,C)⊆⋂ε>0 εk0-M(Ω,C).
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3. By the second part of Theorem 3.2.12, we get WM(Ω,C)⊆ ε1k0-WM(Ω,C) for all ε1 > 0.

Therefore, WM(Ω,C)⊆⋂ε>0 εk0-WM(Ω,C). The proof of reverse implication is similar

to that of part 3 of Theorem 3.2.5. �

In general, the set of weakly nondominated points is not a subset of
⋂

ε>0 εk0-N(Ω,C). This

statement is also true for weakly minimal and weak minimizers. Consider Figure 3.1 where for

all y ∈Ω, C(y) =R2
+ and k0 = (1,0)T . It is not difficult to see that {{(1,y2)}∪{(y1,1)}}∩Ω is

the set of weakly nondominated points and {(1,y2)}∩Ω is the set
⋂

ε>0 εk0-N(Ω,C). Therefore,

we can see that the set of weakly nondominated points is not a subset of
⋂

ε>0 εk0-N(Ω,C). This

example also shows that the set of weakly minimal and weak minimizers are not subsets of⋂
ε>0 εk0-M(Ω,C) and

⋂
ε>0 εk0-MZ(Ω,C), respectively.

Ω

1

1

k

FIGURE 3.1: Set Ω, C(y) = R2
+ for all y ∈Ω and k0 = (1,0).

Definitions of local εk0-MZ(Ω,C), εk0-N(Ω,C) and εk0-M(Ω,C) are similar. We just need to

substitute Ω with Ω∩U in Definitions 3.2.1, 3.2.6 and 3.2.10 where U is a neighborhood of a

candidate point. If Ω is a convex set, then each locally εk0- optimal element is also a globally

εk0-optimal element. This is also true for weakly (strongly) εk0-optimal elements.

With some examples we show that sets of approximately optimal elements of vector optimiza-

tion problems with variable ordering structures do not coincide.

Example 3.2.14. Let ε = 1
100 and k0 = (1,0)T . Also, suppose that

Ω =
{
(y1,y2) ∈ R2 | y1 + y2 ≥ 2, y1 ≥ 0, 0≤ y2 ≤ 2

}
and

C(y1,y2) =

{
R2
+, if y1 = 0 or y2 = 0

coneconv {(2,0)T ,(y1,y2)}, otherwise.
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It is easy to see that C(y)+ [0,+∞)k0 ⊆C(y) for all y ∈Ω and elements of the set

{(y1,y2) ∈Ω | y1 + y2 ≤ 2+
1

100
}

are εk0-nondominated, εk0-minimizer and also εk0-minimal elements and the sets of all these

points coincide. Furthermore,{
(y1,y2) ∈Ω | y1 + y2 ≤ 2+

1
100

}
∪{(y1,0)}

describes the set of weakly εk0-nondominated, weak εk0-minimizer and weakly εk0-minimal

elements (see Fig. 3.2).

( 1
100

, 2)

(2 + 1
100

, 0)

(ȳ1, ȳ2)

(y1, y2)

(ȳ1, ȳ2)− ǫk0 − C(ȳ1, ȳ2)

(y1, y2)− ǫk0 − C(y1, y2)

ǫk0-N(Ω, C), ǫk0-M(Ω, C), ǫk0-MZ(Ω, C)

Ω

FIGURE 3.2: Example 3.2.14 where sets of εk0-N(Ω,C), εk0-MZ(Ω,C) and εk0-M(Ω,C) of
Ω coincide.

For vector optimization problems with respect to fixed ordering structures, (weakly, strongly)

εk0-nondominated elements and (weakly, strongly) εk0-minimal elements coincide, but the fol-

lowing examples show that this is not true when we are dealing with vector optimization prob-

lems with variable ordering structures.

Example 3.2.15. Let ε = 1
100 and k0 = (1,0)T . Also suppose that

Ω =
{
(y1,y2) ∈ R2 | y1 + y2 ≥−1, y1 ≤ 0, y2 ≤ 0

}
and

C(y1,y2) =

{
{(d1,d2) ∈ R2 | d1 ≥ 0, d2 ≤ 0}, for (−1,0)T

R2
+, otherwise.
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It is easy to see that C(y)+ [0,+∞)k0 ⊆C(y) for all y ∈Ω. Then

{(y1,y2) ∈Ω | y1 + y2 ≤−1+ ε}

is the set of εk0-minimal elements but just the elements of the set

{(y1,y2) ∈Ω | y1 <−1+ ε}∪{(−1+ ε,0)}

are εk0-nondominated and εk0-minimizers (see Fig. 3.3).

−1 −1 + ǫ

−1

−1 + ǫ

Ω

(y1, y2)

(y1, y2)− ǫk0 − C(y1, y2)

(−1, 0)− ǫk0 − C(−1, 0)

(0,−1)− ǫk0 − C(0,−1)

(−1 + ǫ,−ǫ)

ǫk0-N(Ω, C) and ǫk0-MZ(Ω, C) points

ǫk0-minimal points

FIGURE 3.3: Example 3.2.15 where there exists an εk0-minimal element of Ω which is neither
εk0-nondominated element nor εk0-minimizer.

Example 3.2.16. Let ε = 1
100 and k0 = (1,1)T . Also suppose that

Ω =
{
(y1,y2) ∈ R2 | y1 + y2 ≥−1, y1 ≤ 0, y2 ≤ 0

}
and

C(y1,y2) =

{
{(d1,d2) ∈ R2| d2 ≥ 0, d1 +d2 ≥−1}, for (y1,y2) = (−1,0)T

R2
+, otherwise.

It is easy to see that C(y)+ [0,+∞)k0 ⊆C(y) for all y ∈Ω. Then{
(y1,y2) ∈Ω | y1 + y2 ≤−

98
100

, y1 6=−1
}
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is the set of εk0-minimal elements, but (−1,0)T is not a minimal element. However, (−1,0)T is

an εk0-nondominated element and
{
(y1,y2) ∈Ω | y1 + y2 ≤− 98

100

}
is the set of εk0-nondominated

elements. Obviously, (−1,0)T is not also an εk0-minimizer and {(y1,y2) ∈Ω | −1 < y2 <−1+ ε}
is the set of εk0-minimizers (see Fig. 3.4).

(−1, 0)T − ǫk0 − C(−1, 0)T

Ω

(−1, 0)T (−98
100 , 0)

T

(y1, y2)− ǫk0 − C(y1, y2)

(y1, y2)

(0, −98
100 )

T

(0,−1)T
(0, −98

100 )
T − ǫk0 − C(0, −98

100 )
T

FIGURE 3.4: Example 3.2.16 where (−1,0)T is an εk0-nondominated element of the set Ω,
but it is neither εk0-minimizer nor εk0-minimal element.

In the following example, we show that there are some elements which belong to the set of

εk0-nondominated elements and also εk0-minimal elements but they do not belong to the set of

εk0-minimizers.

Example 3.2.17. Let ε = 1
100 and k0 = (1,0)T . Also suppose that

Ω =
{
(y1,y2) ∈ R2 | y1 + y2 ≥−1, y1 ≤ 0, y2 ≤ 0

}
and

C(y1,y2) =

{
{(d1,d2) ∈ R2 | d2 ≥ 0, d1 +d2 ≥ 0}, for (y1,y2) = (0,0)

R2
+, otherwise.

It is easy to see that C(y)+ [0,+∞)k0 ⊆C(y) for all y ∈Ω. Then{
(y1,y2) ∈Ω | y1 + y2 ≤−

99
100

}
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is the set of εk0-minimal and εk0-nondominated points. But only points of the set{
(y1,y2) ∈Ω| y1 + y2 <− 99

100

}
are εk0-minimizers and points of{
(y1,y2) ∈Ω| y1 + y2 =−

99
100

}
are not εk0-minimizers. This shows that there exist elements of Ω which are both εk0-nondominated

and εk0-minimal but not εk0-minimizer (see Fig. 3.5).

(y1, y2)− ǫk0 − C(0, 0)

(y1, y2)

−1 − 99
100 0

−1

− 99
100

Ω

FIGURE 3.5: Example 3.2.17 where there exists an element which is both εk0-nondominated
and εk0-minimal element but not εk0-minimizer.

3.2.4 Relationships between Different Concepts of Approximately Optimal Ele-
ments

Eichfelder [24] studied relationships between exact nondominated and minimal solutions of

vector optimization problems with variable ordering structures. In this section, we will show

relationships between different kinds of approximately optimal elements (εk0-nondominated,

εk0-minimal and εk0-minimizers) of vector optimization problems with respect to variable or-

dering structures. At the end of this section, it will be obvious to see that concepts of approxi-

mately nondominated, approximately minimal and approximate minimizers coincide in the case

of vector optimization with fixed ordering structures. First, we will show relationships between

(weak, strong) εk0-minimizers and (weakly, strongly) εk0-nondominated elements of Ω with

respect to C : Y ⇒ Y . These theorems shows us that in vector optimization problems with fixed
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ordering structures, there is no difference between the sets of approximately nondominated and

approximate minimizers and they do coincide.

Theorem 3.2.18. Let assumption (A) be fulfilled.

1. Every εk0-minimizer of Ω with respect to C is also an εk0-nondominated element.

2. Every εk0-nondominated element of Ω with respect to C is also an εk0-minimizer if

C(y) =C(y′) for all y,y′ ∈Ω. This means that each approximately nondominated element

is approximate minimizer if the ordering set is fixed for all y ∈Ω.

3. Suppose that intC(y) 6= /0 for all y ∈Ω, then every weak εk0-minimizer of Ω with respect

to C is also a weakly εk0-nondominated element.

4. Suppose that intC(y) 6= /0 for all y ∈ Ω, then every weakly εk0-nondominated element of

Ω with respect to C is also a weak εk0-minimizer if intC(y) = intC(y′) for all y,y′ ∈Ω.

5. Every strong εk0-minimizer of Ω with respect to C is also a strongly εk0-nondominated

element.

6. Every strongly εk0-nondominated element of Ω with respect to the ordering map C is also

a strong εk0-minimizer if C(y) =C(y′) for all y,y′ ∈Ω.

Proof. 1. This is obvious from the first parts of Definition 3.2.6 and Definition 3.2.10.

2. Let yε be an εk0-nondominated element. Then (yε − εk0−C(y)\{0})∩{y} = /0 for all

y ∈Ω. Since C(y) =C(y1) for all y,y1 ∈Ω, we have

(yε − εk0−C(y1)\{0})∩{y}= (yε − εk0−C(y)\{0})∩{y}= /0 ∀y,y1 ∈Ω.

This means that (yε − εk0−C(y)\{0})∩ y1 = /0 for all y,y1 ∈ Ω and therefore yε is an

εk0-minimizer.

3. This is obvious from the second parts of Definition 3.2.1 and Definition 3.2.6.

4. If intC(y) = intC(y1) for all y,y1 ∈Ω and yε is a weakly εk0-nondominated element, then

(yε − εk0− intC(y))∩{y1}= (yε − εk0− intC(y1))∩{y1}= /0

for all y,y1 ∈ Ω. This means that (yε − εk0− intC(y))∩{y1}= /0 for all y,y1 ∈ Ω and yε

is a weak εk0-minimizer.

5. This part is obvious from the third parts of Definition 3.2.1 and Definition 3.2.6.

6. Suppose that yε is a strongly εk0-nondominated element, then yε − εk0 ∈ y−C(y)\{0}
for all y ∈Ω. Since C(y) =C(y1) for all y,y1 ∈Ω, we have

yε − εk0 ∈ y−C(y)\{0} =⇒ yε − εk0 ∈ y−C(y1)\{0} ∀y,y1 ∈Ω

and this means that yε is a strong εk0-minimizer. �
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The following examples show that the condition C(y) =C(y′) for all y,y′ ∈Ω in the second part

of Theorem 3.2.18 is not a necessary condition and this condition is just sufficient condition.

Example 3.2.19. Consider Example 3.2.15. Obviously (−1,0)T is an εk0-nondominated ele-

ment and also it is an εk0-minimizer but C(y′) =C(y) does not hold for all y,y′ ∈Ω.

Example 3.2.20. Consider Example 3.2.16. It is easy to see that (−1,0)T is an εk0-nondominated

element but not εk0-minimizer. it is obvious that {(d1,d2) ∈ R2|d2 ≥ 0, d1 +d2 ≥−1} is not a

subset of R2
+.

Now, we discuss the relationships between sets of (weak, strong) εk0-minimizer and (weakly,

strongly) εk0-minimal elements with respect to the ordering map C. We know that in the case

of vector optimization problems with fixed ordering structures, these sets coincide but in vector

optimization problems with a variable ordering structure, Examples 3.2.15 and 3.2.17 show that

there are some approximately minimal elements which are not approximate minimizers.

Theorem 3.2.21. Let assumption (A) be fulfilled.

1. Every εk0-minimizer of Ω with respect to C is also an εk0-minimal element.

2. Suppose that yε is an εk0-minimal element of Ω with respect to C, then yε is also an

εk0-minimizer if C(y)⊆C(yε) for all y ∈Ω.

3. Suppose that intC(y) 6= /0 for all y ∈Ω, then every weak εk0-minimizer of Ω with respect

to C is also a weakly εk0-minimal element.

4. Suppose that intC(y) 6= /0 for all y ∈Ω and yε is a weakly εk0-minimal element of Ω with

respect to C, then yε is also a weak εk0-minimizer if intC(y)⊆ intC(yε) for all y ∈Ω.

5. Every strong εk0-minimizer of Ω with respect to C is also a strongly εk0-minimal element.

6. Suppose that yε is a strongly εk0-minimal element of Ω with respect to C, then yε is also

a strong εk0-minimizer if C(yε)⊆C(y) for all y ∈Ω.

Proof. 1. This is obvious from the first parts of Definition 3.2.10 and Definition 3.2.1.

2. Suppose that yε is an εk0-minimal element, then (yε − εk0−C(yε)\{0})∩Ω = /0. Since

C(y)⊆C(yε) for all y ∈Ω, we have

(yε − εk0−C(y)\{0})∩{y1} ⊆ (yε − εk0−C(yε)\{0})∩{y1}= /0 ∀y,y1 ∈Ω.

This means that yε is a εk0-minimizer.

3. This is obvious from the second parts of Definition 3.2.10 and Definition 3.2.1.

4. If intC(y)⊆ intC(yε) and yε is a weakly εk0-minimal element, then for all y,y1 ∈Ω

(yε − εk0− intC(y))∩{y1} ⊆ (yε − εk0− intC(yε))∩{y1}= /0.
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This means that (yε−εk0− intC(y))∩{y1}= /0 for all element y,y1 ∈Ω and yε is a weak

εk0-minimizer.

5. This part is obvious from the third parts of Definition 3.2.10 and Definition 3.2.1.

6. Suppose that yε is a strongly εk0-minimal element, then yε − εk0 ∈ y−C(yε)\{0} for all

y ∈Ω. Since C(yε)⊆C(y1) for all y1 ∈Ω, we have

yε − εk0 ∈ y−C(yε)\{0} =⇒ yε − εk0 ∈ y−C(y1)\{0} ∀y,y1 ∈Ω.

This means that yε is a strong εk0-minimizer. �

The following examples show that the condition C(y) ⊆C(yε) for all y ∈ Ω in the second part

of Theorem 3.2.21 is not a necessary condition.

Example 3.2.22. Consider Example 3.2.15. Obviously (−1,0)T is an εk0-minimal element and

εk0-minimizer but C(y)⊆C(yε) does not hold for all y ∈Ω .

Example 3.2.23. Consider Example 3.2.15. It is easy to see that (0,−1)T is an εk0-minimal

element but not εk0-minimizer. It is obvious that {(d1,d2) ∈ R2|d1 ≥ 0, d2 ≤ 0} is not a subset

of R2
+.

In the following theorem, we show the relationships between (weakly, strongly) εk0-minimal

and (weakly, strongly) εk0-nondominated elements of Ω with respect to the map C : Y ⇒ Y .

Theorem 3.2.24. Let assumption (A) be fulfilled.

1. Suppose that yε is an εk0- minimal element of Ω with respect to the map C : Y ⇒ Y , then

yε is also an εk0-nondominated element of Ω if C(y)⊆C(yε) for all y ∈Ω.

2. Suppose that yε is an εk0- nondominated element of Ω with respect to the ordering map

C : Y ⇒ Y , then yε is also an εk0-minimal element of Ω if C(yε)⊆C(y) for all y ∈Ω.

3. Suppose that intC(y) 6= /0 for all y ∈ Ω and yε is a weakly εk0- minimal element of Ω

with respect to the ordering map C : Y ⇒ Y , then yε is also a weakly εk0-nondominated

element of Ω if intC(y)⊆ intC(yε) for all y ∈Ω.

4. Suppose that intC(y) 6= /0 for all y ∈ Ω and yε is a weakly εk0- nondominated element

of Ω with respect to the ordering map C : Y ⇒ Y , then yε is also a weakly εk0-minimal

element of Ω if intC(yε)⊆ intC(y) for all y ∈Ω.

5. Suppose that yε is a strongly εk0- minimal element of Ω with respect to the ordering map

C : Y ⇒ Y , then yε is also a strongly εk0-nondominated element of Ω if C(yε)⊆C(y) for

all y ∈Ω.

6. Suppose that yε is a strongly εk0- nondominated element of Ω with respect to the ordering

map C : Y ⇒Y , then yε is also an εk0-minimal element of Ω if C(y)⊆C(yε) for all y∈Ω.
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Proof. 1. By C(y) ⊆ C(yε) and the second part of Theorem 3.2.21, we know that yε is an

εk0-minimizer. Now, from the first part of Theorem 3.2.18, it is obvious that yε is a

εk0-nondominated element.

2. Since yε is a εk0-nondominated element and C(yε)⊆C(y) for all y ∈Ω, we can write

(yε − εk0−C(y)\{0})∩{y}= /0 =⇒ (yε − εk0−C(yε)\{0})∩{y}= /0 ∀y ∈Ω.

This means that (yε − εk0−C(yε)\{0})∩Ω = /0 and yε is εk0-minimal element.

3. By C(y) ⊆ C(yε) and the part 4 of Theorem 3.2.21, yε is a weak εk0-minimizer. Now,

by the third part of Theorem 3.2.18, it is obvious that yε is a weakly εk0-nondominated

element.

4. The proof is similar to that of part 2 by considering intC(yε)⊆ intC(y) for all y ∈Ω.

5. By C(yε)⊆C(y) and the part 6 of Theorem 3.2.21, we know yε is a strong εk0-minimizer.

Now, by the part 5 of Theorem 3.2.18, it is obvious that yε is a strongly εk0-nondominated

element.

6. Suppose that yε is a strongly εk0-nondominated element of Ω. By C(y) ⊆ C(yε) for all

y ∈Ω, we get

yε − εk0 ∈ y−C(y)\{0} =⇒ yε − εk0 ∈ y−C(yε)\{0} ∀y ∈Ω.

This means that yε is a strongly εk0-minimal element of Ω. �

The following examples show that the condition C(y) ⊆C(yε) for all y ∈ Ω in the first part of

Theorem 3.2.24 is a sufficient condition but it is not a necessary condition.

Example 3.2.25. Consider Example 3.2.15. Obviously (−1,0)T is an εk0-minimal element and

also it is an εk0-nondominated element but C(y)⊆C(yε) does not hold for all y ∈Ω.

Example 3.2.26. Consider Example 3.2.15 where (0,−1)T is an εk0-minimal element but not

εk0-nondominated element. Obviously R2
+ is not a subset of {(d1,d2) ∈ R2|d1 ≥ 0, d2 ≤ 0}.

The following examples show that the condition C(yε) ⊆C(y) for all y ∈ Ω in the second part

of Theorem 3.2.24 is a sufficient condition but it is not a necessary condition.

Example 3.2.27. Consider Example 3.2.15. It is easy to see that (−1,0)T is an εk0-nondominated

element and also it is an εk0-minimal element but C(yε)⊆C(y) does not hold for all y ∈Ω.

Example 3.2.28. Consider Example 3.2.16 where (−1,0)T is an εk0-nondominated element but

not εk0-minimal element. It is obvious that {(d1,d2) ∈R2|d2 ≥ 0, d1+d2 ≥−1} is not a subset

of R2
+.



Chapter 4

Characterization of Solutions of Vector
Optimization Problems

In this chapter, we study nonlinear scalarization method by means of a nonlinear separating

functional ϕC,k0 : Y → R introduced by Gerstewitz (Tammer) [31]. Indeed, solutions of vector

optimization problems can be found through scalarization procedures and we use properties of

scalar optimization problems to characterize solutions of original vector optimization problems.

First, we bring the definition of Tammer-Weidner scalarization method for vector optimization

problems with fixed ordering structures and then we generalize this scalarization for vector

optimization problems with variable ordering structures. We study characterization and proper-

ties of solutions of both cases. In the first section, we deal with vector optimization problems

with fixed ordering structures. We prove that if y is a minimal element of the original vector

optimization problem, then y is a minimal solution of the scalar optimization problem and func-

tional ϕC,k0 . With some conditions on ordering cone C, we will show that the optimal solution

of the original vector optimization problem with fixed ordering structure can be characterized

by Tammer-Weidner nonlinear functional. In the second section, we study vector optimization

problems with respect to variable structures and variable ordering cones. We prove that we can

characterize all approximately optimal elements of the set of feasible solutions with respect to a

variable ordering structure by scalarization functionals.

4.1 Characterization of Approximate Solutions of Vector Optimiza-
tion Problems with Fixed Ordering Structures

Scalarization of a given vector optimization problem (VOP) means the replacement of (VOP) by

a suitable scalar optimization problem with a real-valued objective function. Since the scalar op-

timization theory is widely developed, it is important to transform vector optimization problems

33
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to scalar optimization problems and in this case, we can use methods of usual scalar optimiza-

tion problems. In fact, solutions of the scalarized problem are also solutions of the given vector

optimization problem (VOP). There are many scalarization approaches for determining of the

solutions of (VOP), for instance weighted sum method, ε−constraint method, Pascoletti-Serafini

(PS) scalarization and method introduced by Gerstewitz (Tammer) and Weidner (TSP). In this

section, we concentrate on the (TSP) scalarization method. We know that we have wide variety

of scalarization approaches for determining minimal solution of (VOP) but not all are suitable

for nonconvex problems or arbitrary partial orderings. For example, we know that weighted sum

method has disadvantage in nonconvex case and we can not determine all the efficient points.

(TSP) method also is important for us because other scalarization methods such weighted sum,

ε-constraint method, Pascoletti-Serafini (PS), etc are special case of (TSP) scalarization ap-

proach.

Let Y be a real linear space, Ω⊂ Y , k0 ∈ Y\{0} and C be a closed and proper subset of Y such

that C + [0,∞)k0 ⊂ C. Nonlinear separating functional ϕC,k0 : Ω→ R defined by Gerstewitz

(Tammer) and Weidner is as the following

ϕC,k0(y) := inf{t ∈ R | y ∈ tk0−C}. (4.1)

With this scalarization, we can have all important properties of a scalarization approach of vec-

tor optimization problems should have. If y is a minimal solution of (4.1), then depending on

monotonicity properties of ϕC,k0 , one can show we get kind of solution (minimal, weakly min-

imal) for the original problem (VOP) and by variation of parameters, we can characterize all

optimal elements of the original vector optimization problem (VOP). We say y is a minimal so-

lution of ϕC,k0 if there is no other feasible solution y for ϕC,k0 such that ϕC,k0(y) < ϕC,k0(y). In

the following theorem, we bring characterization of (weakly) minimal elements of the original

problem (VOP); see [32] for more properties of solutions of functional defined by (4.1) and see

[23] for similar results using Pascoletti-Serafini scalarization functional.

Theorem 4.1.1. Let Y be a real linear space, Ω ⊂ Y , C be a closed, proper, solid and pointed

subset of Y , k0 ∈ Y\{0}, intC 6= /0, C+(0,∞)k0 ⊂ intC and y ∈Ω.

1. Let y be a weakly minimal element of Ω with respect to cone C in the sense of Definition

3.1.1, then ϕC,k0,ȳ(ȳ)≤ ϕC,k0,ȳ(y) for all y ∈Ω where

ϕC,k0,ȳ(y) := inf{t ∈ R | tk0 + ȳ− y ∈C}.

2. Suppose that y is a minimal element of Ω with respect to C in the sense of Definition

3.1.1, then ϕC,k0,ȳ(ȳ)≤ ϕC,k0,ȳ(y) for all y ∈Ω.

3. Suppose that C+ intC⊂ intC and y is a minimal solution of (TSP) scalarization functional

ϕC,k0 in (4.1), then y is a weakly minimal element of Ω in the sense of Definition 3.1.1.
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4. Suppose that C+C ⊂C and y is an unique minimal solution of (TSP) scalarization func-

tional in (4.1), i.e., ϕC,k0(y) > ϕC,k0(y) for all y ∈ Ω, then y is a minimal element of Ω in

the sense of Definition 3.1.1.

Proof. 1. By k0 ∈ intC, we get

0k0 + y− y = 0+ y− y = 0 ∈C and ϕC,k0,ȳ(y)≤ 0.

Suppose that there exists another feasible solution y ∈Ω such that

t = ϕC,k0,ȳ(y)< ϕC,k0,ȳ(y)≤ 0 and tk0 + y− y = c2 ∈C.

By t < 0, there exists ε > 0 such that t + ε = 0. By 0k0 + y− y = 0 and tk0 + y− y = c2,

we get

0k0 + y− y = tk0 + εk0 + y+ y− y− y = c2 + εk0 + y− y = 0.

By C+(0,+∞)k0 ⊂ intC, we get c2 + εk0 ∈ intC and y ∈ y+ intC. But this is a contra-

diction to weak minimality of y.

2. By applying the first part and because every minimal element is also a weakly minimal

element, we get ϕC,k0,ȳ(ȳ)≤ ϕC,k0,ȳ(y) for all y ∈Ω.

3. Suppose that ϕC,k0(y) = t and y is not weakly minimal solution of the original vector

optimization problem (VOP), then there exists c1 ∈ intC and y ∈ Ω such that y = y+ c1.

Since y is a minimal solution of (4.1), there exists c2 ∈ C such that tk0− y = c2. By

c1 ∈ intC and C+ intC ⊆ intC, we get c1 + c2 ∈ intC. This means there exists an ε > 0

such that c1 + c2− εk0 ∈ intC. By tk0− y = c2 and y = y+ c1, we get

tk0− y = tk0− (y+ c1) = c2 =⇒ tk0− y = c1 + c2.

Let t = t− ε , then we get

tk0− y = (t− ε)k0− y = tk0− εk0− y = c1 + c2− εk0 ∈C.

This means y is a feasible solution and ϕC,k0(y) < ϕC,k0(y). But this is a contradiction

because we supposed that y is a minimal solution of the scalar problem (4.1).

4. Suppose that y is an unique minimal solution of (4.1) but y is not a minimal element

of (VOP), then there exists c1 ∈C and y ∈ Ω such that y = y+ c1. Since y is a minimal

solution of (4.1), there exist c2 ∈C and t ∈R such that tk0−y= c2. By this and y= y+c1,

we get

tk0− y = tk0− (y+ c1) = c2 =⇒ tk0− y = c1 + c2.

By C+C ⊂C, we have c1 + c2 ∈C, tk0− y ∈C and ϕC,k0(y) = t. This means that there

exists another feasible solution y of (4.1) such that ϕC,k0(y) = ϕC,k0(y). But this is a
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contradiction because we supposed ϕC,k0(y) > ϕC,k0(y) for all other feasible solutions y.

Therefore, y is a minimal element of (VOP) with respect to the ordering cone C. �

Definition 4.1.2. Let Y be a real linear space, C ⊂ Y and y1,y2 ∈ Y . We say y1 dominates y2

with respect to C iff there exists an element c ∈C such that y2 = y1 + c.

Theorem 4.1.3. Let C be a convex cone, y be a minimal solution of ϕC,k0(.) in (4.1) and y ∈ Ω

dominates y, then y is also a minimal solution for (4.1) with respect to ordering cone C.

Proof. Since y is a minimal solution, there exists t ∈ R such that tk0− y = c1 ∈ C. Since y

dominates y, there exists c2 ∈ C such that y = y+ c2. First we prove c2 ∈ bdC. By contrary,

suppose that c2 ∈ intC, then y is not even weakly minimal solution of (VOP) and the third part

of Theorem 4.1.1 implies that y can not be a minimal solution for (4.1). By tk0− y = c1 and

y = y+ c2, we get

tk0− y = tk0− y+ c2 = c1 + c2.

By convexity of the cone C, we get c1 +c2 ∈C and y is a feasible solution for (4.1). Since y is a

minimal solution, t is smallest t with respect to k0 for objective function in (4.1) and therefore,

y is a minimal solution for (4.1).

By this theorem, we can say that if y is a unique minimal solution of scalar problem (4.1), then

y is a minimal solution of vector optimization problem (VOP) with respect to cone C.

Theorem 4.1.4. Let C be a solid and convex cone. A point y is a minimal solution for vector

optimization problem (VOP) with respect to cone C in the sense of Definition 3.1.1 if

(i) there exists t ∈ R such that ϕ(y) = t and y is a minimal solution for scalar problem (TSP)

and ϕC,k0(.) where k0 ∈ intC.

(ii) And also the following equation holds

Ω∩ (tk0−∂C)∩ (y−∂C) = {y}.

Proof. Suppose that conditions (i) and (ii) hold and y is not a minimal solution for the vector

optimization problem (VOP), then there exists c2 ∈C and y ∈Ω such that y = y+ c2. Similar to

the proof of Theorem 4.1.3, we know that c2 belongs to the boundary of C. Since y dominates y,

by Theorem 4.1.3, y is a minimal solution of (TSP) with respect to cone C and ϕC,k0(y)≤ t. By

the first condition, we get tk0− y = c1 and

tk0− y = tk0− y+ y− y = tk0− y+ y− y = c1 + c2.

Since y is a minimal solution, we have c1 + c2 ∈C. Now, we need to prove that c1 + c2 belongs

to the boundary of cone C. By contrary, suppose c1 + c2 ∈ intC, then there exists ε > 0 such

that c1 + c2− εk0 ∈ C and tk0− y− εk0 = (t − ε)k0− y = (c1 + c2− εk0). This means y is a

feasible solution with ϕC,k0(y)≤ t−ε < t. But this is a contradiction because we suppose that y
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is minimal solution of (4.1). Therefore, c1 +c2 ∈ bdC and y = tk0− (c1 +c2) ∈ tk0−∂C. Also,

we know that y ∈Ω and from dominating property y = y− c2 ∈ y−∂C. Finally we can write,

Ω∩ (tk0−∂C)∩ (y−∂C) = {y,y}.

This leads us to a contradiction and completes the proof.

Similar results to this theorem for Pascolleti-Serafini scalarization method were given in [61,

Theorem 3.7].

4.2 Characterization of Approximate Solutions of Vector Optimiza-
tion Problems with Variable Ordering Structure

In this section, we present a scalarization method with the help of nonlinear functionals (see

4.1). This scalarization method for vector optimization problems with resect to a fixed ordering

structure was introduced by Gerstewitz (1983) in [31] (see also [32], [33, Theorem 2.3.1], [35,

Theorem 3.38]) and one year later by Pascoletti and Serafini (1984) in [61]. Some general-

izations of this scalarization method for vector optimization problems with a variable ordering

structure where the ordering map is pointed, closed, convex and cone-valued can be found in

[12, 15, 16, 22]. Here, we give a generalization of the Tammer-Weidner functional without any

cone or convexity assumptions and we use it for the characterization of all of the three different

kinds of approximate solutions. In fact, our ordering map is just a set-valued map with cer-

tain properties. For sure, our scalarization also works when the ordering map is convex and

cone-valued.

4.2.1 Scalarizing Functionals and Their Properties

First, we give generalizations of the nonlinear separating functional defined by Gerstewitz (Tam-

mer) and Weidner and some of its properties. With the help of this functional, we will charac-

terize approximate solutions of vector optimization problems with variable ordering structures.

In this section we impose the following assumption.

Assumption (A1). Let Ω be a subset of Y and k0 ∈Y\{0}. Furthermore, let C : Y ⇒Y be a set-

valued map where C(ω) is a proper, pointed, closed and solid set with C(ω)+[0,+∞)k0⊆C(ω)

for any ω ∈ Y .

For ω ∈ Y , we define a functional θω : Y → R in the following way

θω(y) := inf{t ∈ R | y ∈ tk0−C(ω)}. (4.2)



CHAPTER 4. CHARACTERIZATIONS OF SOLUTIONS OF (VVOP) 38

Remark 4.2.1. For fixed ω ∈ Y , the functional defined by (4.2) coincide with (4.1).

Eichfelder gave a generalization of nonlinear separating functional (4.1) as following. Eichfelder

[22] used ϕ : Y → R where

ϕ(y) := inf{t ∈ R | y ∈ tk0−C(y)} (4.3)

for a characterization of exact nondominated and minimal solutions where C(y) is a pointed,

closed and convex cone for all y ∈ Y . Note that in (4.3), C(y) is a pointed, closed and convex

cone associated to the same y but for the functional in (4.2), C(ω) is independent from y.

Another generalization of nonlinear separating functional defined by Gerstewitz (Tammer) and

Weidner is given by Chen, Yang and Yu. Chen et al. [16] considered intC(y) 6= /0 for all y ∈ y

and k : Y → Y as a vector-valued map and used the following functional ζ (y,z) : Y ×Y → R
where

ζ (y,z) := inf{t ∈ R | z ∈ tk(y)−C(y)} (4.4)

for characterizations of exact nondominated and minimal solutions where C(y) is a pointed,

closed and convex cone and k(y) ∈ intC(y) for all y ∈ Y .

Remark 4.2.2. Note that for fixed y ∈ Y and fixed k(y) = k0, the functional defined by (4.4)

coincides with (4.1).

Chen and Yang [15] proved a similar result to Theorem 4.2.7. Chen, Yang and Yu [16] proved

that the functional (4.4) is subadditive in the second variable if C : Y ⇒ Y is a linear set-valued

map and if C(y) is a pointed, closed and convex cone for all y ∈ Y . Chen, Huang and Yang

[12] proved that the functional ξ defined by (4.4) is lower semicontinuous if C : Y ⇒ Y is a

continuous set-valued map and they also proved that ξ is positively homogenous in the second

variable if C(y) is a pointed, closed and convex cone for all y ∈ Y .

Lemma 4.2.3. Let assumption (A1) be fulfilled, ω,y ∈ Y and θω(y) = t1. Then for any t2 ≥ t1,

y ∈ t2k0−C(ω).

Proof. By C(ω)+ [0,+∞)k0 ⊆C(ω), y ∈ t1k0−C(ω) and t2− t1 ≥ 0, we can write

y ∈ t1k0−C(ω) = t2k0− [(t2− t1)k0 +C(ω)]⊆ t2k0−C(ω).

It is important to show that the scalarizing functional (4.2) is proper. In the following theorem,

this property will be shown. Compare the following theorem with results given by Göpfert et.

al. in Theorem 2.3.1 of [33].

Theorem 4.2.4. Let assumption (A1) be fulfilled. The functional θω defined in (4.2) is proper

for all ω ∈ Y if one of the following properties holds,
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1. For all ω ∈ Y , C(ω) does not contain any line parallel to k0, i.e.,

∀y ∈ Y, ∃ t ∈ R : y /∈ tk0−C(ω).

2. There exists a cone D⊆ Y such that k0 ∈ intD and C(ω)+ intD⊆C(ω) for all ω ∈ Y .

Proof. 1. Suppose that there exists ω ∈ Ω such that θω(y) = −∞. By Lemma 4.2.3 and for

any t >−∞, we get y ∈ tk0−C(ω) and {tk0− y | t ∈ R} ⊂C(ω). This means that there

exists y ∈ Y such that C(ω) contains a line parallel to k0 and this leads to a contradiction.

2. By Proposition 2.3.4 of [33], we get C(ω) does not contain any parallel line to k0. The

rest of proof is similar to that of part 1. �

In the special case, when C(ω) in assumption (A1) is a convex cone-valued map, we have the

following corollary (see Remark 2.1 and Proposition 2.2 of [15]).

Corollary 4.2.5. Let assumption (A1) be fulfilled. Additionally let C(ω) be a convex cone-

valued map and k0 ∈⋂ω∈Y intC(ω), then θω is proper for all ω ∈ Y .

Proof. Obviously, C(ω)+ intC(ω)⊆ intC(ω) when C(ω) is a pointed and convex cone and by

the second part of Theorem 4.2.4, θω is proper.

Remark 4.2.6. Note that the assumption k0 ∈⋂ω∈Y intC(ω) in Corollary 4.2.5 for convex cones

coincide with the assumption C(ω)+(0,+∞)k0 ⊆ intC(ω) for sets.

The following theorem shows some important properties of the functional θω in (4.2) and it will

help us to prove subadditivity, monotonicity and other theorems in the next sections.

Theorem 4.2.7. Let assumption (A1) be fulfilled and additionally C(y)+ (0,+∞)k0 ⊆ intC(y)

for all y ∈ Y . For any y,ω ∈ Y , we have the following properties:

1. θω(y)< t⇐⇒ y ∈ tk0− intC(ω).

2. θω(y)≤ t⇐⇒ y ∈ tk0−C(ω).

3. θω(y) = t⇐⇒ y ∈ tk0−bdC(ω).

4. θω(y)≥ t⇐⇒ y /∈ tk0− intC(ω).

5. θω(y)> t⇐⇒ y /∈ tk0−C(ω).

Proof. 1. First, we prove that the following implication holds:

∀λ ∈ R, y ∈ λk0−C(ω) =⇒ ∀µ > λ : y ∈ µk0− intC(ω). (4.5)

Indeed, for y ∈ λk0−C(ω) and µ > λ holds

y−µk0 = y−λk0 +(λ −µ)k0 ∈ −C(ω)+(λ −µ)k0 ⊆− intC(ω).



CHAPTER 4. CHARACTERIZATIONS OF SOLUTIONS OF (VVOP) 40

Since C(ω)+ (0,+∞)k0 ⊆ intC(ω). If we suppose θω(y) < t, then there exists at least

one λ < t such that y ∈ λk0−C(ω). Now by (4.5), we have y ∈ tk0− intC(ω).

Now suppose that y ∈ tk0− intC(ω), therefore there exists c1 ∈ intC(ω) such that

y = tk0− c1. (4.6)

Since c1 ∈ intC(ω), there exists γ > 0 such that c1− γk0 ∈C(ω). By this and (4.6), we

get

y = (t− γ)k0− (c1− γk0) =⇒ y ∈ (t− γ)k0−C(ω).

Hence θω(y)≤ (t− γ)< t.

2. Suppose that θω(y) ≤ t, then θω(y) = t or θω(y) < t. If θω(y) < t, by the previous part,

we get

y ∈ tk0− intC(ω) =⇒ y ∈ tk0−C(ω).

Now suppose θω(y) = t and there exists a sequence tn→ t such that t < tn and θω(y)< tn.

By the first part, we get y ∈ tnk0− intC(ω), i.e., tnk0− y ∈C(ω). By tnk0− y→ tk0− y

and since C(ω) is a closed set, tk0− y ∈C(ω) and y ∈ tk0−C(ω).

Now suppose y ∈ tk0−C(ω), then obviously from the definition of θω , we get θω(y)≤ t.

3. Suppose that θω(y) = t, then by the second part, we get y ∈ tk0−C(ω) and this means

either y ∈ tk0−bdC(ω) or y ∈ tk0− intC(ω). If y ∈ tk0−bdC(ω), the result holds. But

suppose that y ∈ tk0− intC(ω), then by first part, θω(y)< t and this is a contradiction to

our assumption.

Now suppose that y ∈ tk0− bdC(ω), then y ∈ tk0−C(ω) and θω(y) ≤ t. If θω(y) 6= t,

then θω(y)< t and by the first part, we get y ∈ tk0− intC(ω) which is a contradiction to

our assumption.

4. This follows from the first part.

5. This follows from the second part. �

In the following, we will prove that our scalarizing functional is lower semicontinuous (l.s.c),

subadditive, positively homogenous, monotone and continuous in the case that some assump-

tions hold. These properties are important for us and they will be used in the next chapters in

order to show a generalization of Ekeland’s variational principle for vector optimization prob-

lems with variable ordering structures. Furthermore, this properties will be used in the last

chapter for deriving necessary conditions for different kinds of approximate solutions of vec-

tor optimization problems with variable ordering structures. First we remember definition of

lower and upper semicontinuity and then we will prove that our scalarization functional is lower

semicontinuous.
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Definition 4.2.8. Let θ : Y → R and y ∈ Y .

1. (a) θ is upper semicontinuous at y iff for every sequence {yn} in Y with yn → y, the

following holds: limsupθ(yn)≤ θ(y).

(b) f is upper semi-continuous iff it is upper semicontinuous at every y ∈ Y .

2. (a) θ is lower semicontinuous at y iff for every sequence {yn} in Y with yn → y, the

following holds: liminfθ(yn)≥ θ(y).

(b) f is lower semicontinuous iff it is lower semi-continuous at every y ∈ Y .

Theorem 4.2.9. Let Y be a topological space and let θ : Y →R. The followings are equivalent.

1. The functional θ is lower semicontinuous on Y .

2. For any t ∈ R, the set {y ∈ Y | θω(y)> t} is an open set in Y .

3. For any t ∈ R, the set {y ∈ Y | θω(y)≤ t} is a closed set in Y .

Proof. See [53, Theorem 7.1.1].

Using the above theorem, we show that θω defined in (4.2) is lower semicontinuous. For the

case of fix ordering case see Theorem 2.3.1 of [33].

Theorem 4.2.10. Let assumption (A1) be fulfilled and additionally C(y)+(0,+∞)k0 ⊆ intC(y)

for all y ∈ Y , then θω in (4.2) is lower semicontinuous for any ω ∈ Y .

Proof. We have to show that for any t ∈ R, the set

St := {y ∈ Y | θω(y)≤ t}

is a closed set. For this, we show that for any sequence {yn} ∈ St with yn→ y0, the limit point of

the sequence belongs to the set St and this proves that St is a closed set. Since yn ∈ St , we have

θω(yn)≤ t. Now by the second part of Theorem 4.2.7, we get

yn ∈ tk0−C(ω) =⇒ tk0− yn ∈C(ω).

Since C(ω) is a closed set, the limit point of the sequence tk0− yn → tk0− y0 also belongs to

C(ω) and y0 ∈ tk0−C(ω) and by the second part of Theorem 4.2.7, we get θω(y0) ≤ t. This

means that St is a closed set for any t ∈ R. By Theorem 4.2.9, θω is lower semicontinuous for

any ω ∈ Y .

Lemma 4.2.11. Suppose that assumption (A1) holds. If f : X → Y is a continuous function,

then (θω ◦ f )(·) = θω( f (·)) : X → R is a lower semicontinuous functional for all ω ∈ Y .
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Proof. We prove that S := {x | θω( f (x))≤ t} is a closed set for all t ∈R. Choose t ∈R arbitrarily

and suppose that {xn} is a sequence in S such that xn→ x0. We prove that x0 ∈ S and this means

that S is a closed set. By xn ∈ S, we get θω( f (xn))≤ t and

tk0− f (xn) ∈C(ω).

This means that f (xn) ∈ tk0−C(ω). By continuity of f , we get f (xn)→ f (x0) and therefore

f (x0) ∈ tk0−C(ω) and this means that θω( f (x))≤ t and this completes the proof.

Now we prove that our functional is positively homogenous and for this first we remember

definition of positively homogenous function.

Definition 4.2.12. Let θ : Y → R and y ∈Y . θ is positively homogenous iff λθ(y) = θ(λy) for

all y ∈ Y and λ ≥ 0.

The following theorem shows that θω is positively homogenous under some assumptions. This

theorem was proven by Göpfert et. al. for the case of fixed ordering; see [33, Theorem 2.3.1].

Theorem 4.2.13. Let assumption (A1) be fulfilled and additionally C(y)+(0,+∞)k0 ⊆ intC(y)

for all y ∈ Y . For each ω ∈ Y , θω in (4.2) is positively homogeneous if and only if C(ω) is a

cone.

Proof. First assume that λ > 0, then for any y,ω ∈ Y , we have

θω(λy) = inf {t ∈ R | λy ∈ tk0−C(ω)}.

Since C(ω) is a cone, we have C(ω) = λC(ω) and

θω(λy) = inf{t ∈ R | λy ∈ tk0−λC(ω)}= λ inf{ t
λ
∈ R | y ∈ t

λ
k0−C(ω)},

so by t ′ = t
λ

, we get

θω(λy) = λ inf{t ′ ∈ R | y ∈ t ′k0−C(ω)}= λθω(y).

Suppose now λ = 0, then obviously 0θω(y) = 0 and we just need to prove that θω(0) = 0. By

pointedness C(ω), we have 0 ∈ bdC(ω) for all ω ∈Y and by Theorem 4.2.7, we get θω(0) = 0.

Now assume that θω is positively homogenous and take y ∈C(ω). By the second part of Theo-

rem 4.2.7, we get θω(−y)≤ 0. Since θω is positively homogeneous, we obtain

θω(−λy)≤ λθω(−y)≤ 0.
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Again by the second part of Theorem 4.2.7, we get λy∈C(ω) and λC(ω)⊆C(ω). Now suppose

that y ∈C(ω), then by the second part of Theorem 4.2.7, we get

θω(−y)≤ 0 =⇒ λθω(−
y
λ
)≤ 0.

By λ > 0, we get y
λ
∈C(ω) and y ∈ λC(ω) and this implies C(ω)⊆ λC(ω). Therefore it holds

C(ω) = λC(ω) for any λ > 0 and ω ∈ Y . This means C(ω) is a cone.

Subadditivity of the scalarizing functional is important for us and we need this property in the

next section for the characterization of approximately nondominated, minimal and minimizers.

Furthermore, subadditivity is an important property for the deriving a variational principle for

vector optimization problems with a variable ordering structure. Therefore, first we bring defini-

tion of subadditivity and then we prove that our scalarizing functional is subadditive functional.

Definition 4.2.14. Suppose that f : X → R. f is said to be subadditive function if and only if

f (x+ y)≤ f (x)+ f (y) for all x,y ∈ X .

Theorem 4.2.15. Let assumption (A1) be fulfilled and additionally C(y)+(0,+∞)k0 ⊆ intC(y)

for all y ∈Y , then for each ω ∈Y , θω in (4.2) is subadditive if and only if C(ω)+C(ω)⊆C(ω).

Proof. Assume that C(ω)+C(ω)⊆C(ω) for all ω ∈ Y . Let y1,y2 ∈ Y and t1, t2 ∈ R such that

θω(y1) = t1 and θω(y2) = t2. By the second part of Theorem 4.2.7, we get

θω(y1) = t1 =⇒ y1 ∈ t1k0−C(ω). (4.7)

θω(y2) = t2 =⇒ y2 ∈ t2k0−C(ω). (4.8)

By (4.7), (4.8) and C(ω)+C(ω)⊆C(ω), we get

y1 + y2 ∈ (t1 + t2)k0− (C(ω)+C(ω))⊆ (t1 + t2)k0−C(ω).

Again, by the second part of Theorem 4.2.7, we get θω(y1 + y2) ≤ t1 + t2 = θω(y1)+ θω(y2).

Now assume that θω is subadditive. We show that C(ω)+C(ω) ⊆C(ω). Take y1,y2 ∈C(ω).

By the second part of Theorem 4.2.7 and y1,y2 ∈C(ω), we get θω(−y1)≤ 0 and θω(−y2)≤ 0.

Since θω is subadditive,

θω(−y1− y2)≤ θω(−y1)+θω(−y2)≤ 0.

By the second part of Theorem 4.2.7, we get y1 + y2 ∈C(ω) and this completes our proof.

For sure, there are a lot of new things about vector optimization problems with a variable order-

ing structure and one of the important things is how to define the convexity of a functional with

respect to an ordering map. In vector optimization problems with a fixed ordering structure,

convexity of a functional is equal to the convexity of its epigraph, i.e., the scalarizing functional
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is convex if and only if its epigraph is convex. But unfortunately, for definitions of convexity

in vector optimization problems with a variable ordering structure in literature, this is not true

and convexity of a epigraph does not imply convexity of its functional; see [12] for more details

about convexity in vector optimization problems with a variable ordering structure. Still there

exist no unified definition of convexity in vector optimization problems with a variable ordering

structure and relationships between the convexity of epigraph and convexity of its functional

is not known yet. For all ω ∈ Y , we say that our functional θω : Ω→ R is convex if for all

y1,y2 ∈ Y and 0≤ λ ≤ 1 the following inequality holds,

θω(λy1 +(1−λ )y2))≤ λθω(y1)+(1−λ )θω(y2).

Theorem 4.2.16. Let assumption (A1) be fulfilled and additionally C(y)+(0,+∞)k0 ⊆ intC(y)

for all y ∈ Y . For all ω ∈ Y , θω is convex if and only if C(ω) be a convex set.

Proof. Assume that λ ∈ [0,1], y1,y2 ∈ Y such that θω(y1) = t1 and θω(y2) = t2. By the second

part of Theorem 4.2.7, we get y1 ∈ t1k0−C(ω) and y2 ∈ t2k0−C(ω). By convexity of C(ω),

we have

λy1 +(1−λ )y2 ∈ λ t1k0 +(1−λ )t2k0−λC(ω)+(1−λ )C(ω)

⊆ (λ t1 +(1−λ )t2)k0−C(ω).

Therefore

θω(λy1 +(1−λ )y2)≤ λθω(y)+(1−λ )θω(y2),

and this means that θω is convex.

Now suppose that θω is convex, y1,y2 ∈C(ω) and λ ∈ [0,1]. By y1,y2 ∈C(ω) and the second

part of Theorem 4.2.7, we get θω(−y1)≤ 0 and θω(−y2)≤ 0. By convexity of θω , we get

θω(−(λy1 +(1−λ )y2))≤ λθω(−y1)+(1−λ )θω(−y2)≤ 0.

By the second part of Theorem 4.2.7, we get λy1 +(1−λ )y2 ∈C(ω) and C(ω) is convex.

In the last theorem of this section, we prove some monotonicity properties of our scalarization

functional and these properties will be used in the next section in order to characterize approxi-

mately optimal solutions of vector optimization problems with variable ordering structures and

later for the proof of variational principle of vector optimization problems with variable order-

ing structures; see Theorem 2.3.1 of [33] for the case of fixed ordering case. First we recall

definition of monotonicity.
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Definition 4.2.17. Let D ⊂ Y be a set. A function θ : Y → R is called D-monotone function if

for every d ∈ D and y1,y2 ∈ Y , the following holds,

y2 ∈ y1 +D =⇒ θ(y1)≤ θ(y2).

Theorem 4.2.18. Let assumption (A1) be fulfilled. Additionally let C(ω)+(0,+∞)k0⊆ intC(ω)

for all ω ∈ Y and D⊆ Y . Then for each ω ∈ Y , the following properties hold for θω in (4.2).

1. θω is D-monotone⇐⇒C(ω)+D⊆C(ω).

2. ∀ y ∈ Y, t1 ∈ R : θω(y+ t1k0) = θω(y)+ t1 (translation property).

3. θω is continuous for all ω ∈ Y .

4. If θω is proper, then θω is D-monotone ⇔ C(ω)+D ⊆ C(ω)⇔ bdC(ω)+D ⊆ C(ω).

Moreover, if θω is finite-valued, then θω is strictly D-monotone iff

C(ω)+D\{0} ⊆ intC(ω) ⇐⇒ bdC(ω)+D\{0} ⊆ intC(ω).

Proof. 1. Assume that for all ω ∈ Y , C(ω)+D⊆C(ω). Consider y1,y2 ∈ Y with y1 ≤D y2.

We prove that θω(y1) ≤ θω(y2) for any ω ∈ Y . Suppose that θω(y2) = t. By the second

part of Theorem 4.2.7, we get

y2 ∈ tk0−C(ω). (4.9)

Since y1 ≤D y2, there exists d ∈ D such that y1 +d = y2. By (4.9), we get

y2 = y1 +d ∈ tk0−C(ω) =⇒ y1 ∈ tk0− (C(ω)+d)⊆ tk0−C(ω).

Again by the second part of Theorem 4.2.7, we get θω(y1)≤ t = θω(y2).

Now let θω be D-monotone and choose d ∈ D and y1 ∈C(ω) arbitrarily. By y1 ∈C(ω)

and the second part of Theorem 4.2.7, we get θω(−y1) ≤ 0. Since θω is D-monotone,

θω(−y1−d)≤ 0 and again by the first part of Theorem 4.2.7, we get

−y1−d ∈ −C(ω) =⇒ y1 +d ∈C(ω) ∀y1 ∈C(ω), ∀d ∈ D.

Since y1,d were chosen arbitrarily, we get C(ω)+D⊆C(ω).

2. Suppose that θω(y) = t. By the third part of Theorem 4.2.7, for t1 ∈ R, we get

y ∈ tk0−bdC(ω) =⇒ y+ t1k0 ∈ (t + t1)k0−bdC(ω) =⇒ θω(y+ t1k0) = t + t1

and this means that θω(y+ t1k0) = θω(y)+ t1.
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3. By Theorem 4.2.10, we know that θω is lower semicontinuous and we just need to prove

that it is also upper semicontinuous. Therefore we need to show that for any t ∈R, the set

St := {y ∈ Y | θω(y)≥ t}

is a closed set. For this, we suppose that yn→ y0 is a sequence and yn ∈ St . We show that

the limit point of this sequence belongs to the set St and this proves that St is a closed set.

Since yn ∈ St , θω(yn)≥ t. Now by the part 4 of Theorem 4.2.7, we get

yn /∈ tk0− intC(ω) =⇒ tk0− yn /∈ intC(ω) =⇒ tk0− yn ∈ (intC(ω))c.

Since intC(ω) is an open set, its complement (intC(ω))c is a closed set and includes all

the limit points. Therefore tk0− y0 ∈ (intC(ω))c and this means

tk0− y0 /∈ intC(ω) =⇒ y0 /∈ tk0− intC(ω).

Again by the part 4 of Theorem 4.2.7, we get θω(y0) ≥ t and this implies that St is a

closed set and θω is upper semicontinuous. Since θω is also lower semicontinuous, θω is

continuous.

4. We just prove the second part and the proof for the first part is similar to that. Assume that

θω is strictly D-monotone and take y1 ∈ bdC(ω) and d ∈ D\{0}. Since y1 ∈ bdC(ω), by

the third part of Theorem 4.2.7, we get θω(−y1) = 0 and θω(−y1− d) < 0. By the first

part of Theorem 4.2.7, we get

−y1−d ∈ − intC(ω) =⇒ y1 +d ∈ intC(ω) ∀y1 ∈C(ω), ∀d ∈ D.

Now, suppose that bdC(ω)+ (D\{0}) ⊆ intC(ω) and y1,y2 ∈ Y with y2− y1 ∈ D\{0}.
This means that there is an element d ∈ D\{0} with y2 = y1 + d. By the second part of

Theorem 4.2.7, we get y2 ∈ θω(y2)k0−bdC(ω) and

y2 = y1 +d ∈ θω(y2)k0−bdC(ω)

=⇒ y1 ∈ θω(y2)k0− (bdC(ω)+(D\{0}))⊆ θω(y2)k0− intC(ω).

By the first part of Theorem 4.2.7, we get θω(y1)< θω(y2). The remaining implication is

obvious. �

Definition 4.2.19. Function θω is a sublinear function iff it is positively homogenous and sub-

additive.
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Theorem 4.2.20. Assume that C(ω) is a proper, closed, convex and solid cone for all ω ∈Y and

k0 ∈ intC(ω), then θω is a finite-valued continuous sublinear function for all ω ∈ Y .

Proof. See Corollary 2.3.5 of [33].

First we bring definition of Lipschitz continuous functions and later we show that our scalar-

ization functional is Lipschitz continuous under special assumptions. Suppose that (X ,d) and

(Y,ρ) are metric spaces with metrics d on X and ρ on Y .

Definition 4.2.21. A function f : X → Y is called Lipschitz continuous if there exists a real

constant K ≥ 0 such that for all x1,x2 ∈ X , ρ( f (x1), f (x2))≤ Kd(x1,x2).

Theorem 4.2.22. Let all the assumptions of Theorem 4.2.20 be fulfilled. Then θω is Lipschitz

continuous for all ω ∈ Y

Proof. By [20, Proposition 2.1], every continuous sublinear function is Lipschtiz continuous.

Now by Theorem 4.2.20, θω is Lipschitz continuous.

We already introduce monotone function in Definition 4.2.17 with respect to a fixed set. Now

we introduce monotone function with respect to a set-valued map as following.

Definition 4.2.23. Suppose that Y is a linear topological space, B : Y ⇒ Y is a set-valued map,

ω ∈ Y and consider functionals θω : Y → R. We say that θω is a monotone functional with

respect to a set-valued map B : Y ⇒ Y if the following holds for all ω,y1,y2 ∈ Y ,

y1 ∈ y2 +B(ω)\{0} implies θω(y1)= θω(y2).

Also, we say θω is strictly B-monotone, if for all ω,y1,y2 ∈ Y

y1 ∈ y2 +B(ω)\{0} implies θω(y1)> θω(y2).

Remark 4.2.24. If B = B(y1) = B(y2) and θy1(y) = θy2(y) for all y,y1,y2 ∈ Y , then the above

definition coincide with the usual definition on monotone function with respect to the set B,

y1 ∈ y2 +B\{0} implies θ(y1)= θ(y2).

The following nonconvex separation theorem will be used in the next section for our proofs; see

[33, Theorem 2.3.6] for vector optimization problems with fixed ordering structures.

Theorem 4.2.25. Let assumption (A1) be fulfilled. Additionally let S ⊆ Y be a nonempty set,

C(ω)+(0,+∞)k0 ⊆ intC(ω) and S∩ (− intC(ω)) = /0 for all ω ∈ Y . Let B : Y ⇒ Y be a cone-

valued map such that k0 ∈ intB(ω) and C(ω)+ intB(ω) ⊆ C(ω) for all ω ∈ Y . Then for all

ω ∈ Y , θω is finite-valued continuous functional and

θω(−z)< 0≤ θω(s) ∀ω ∈ Y,∀z ∈ intC(ω), ∀s ∈ S.
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Proof. By Theorem 4.2.4 and [33, Proposition 2.3.4], we get θω is finite-valued and by the

third part of Theorem 4.2.18, θω is continuous. By the first part of Theorem 4.2.7, we get

− intC(ω) = {z ∈ Y | θω(z)< 0}. Now since S∩ (− intC(ω)) = /0 for all ω ∈ Y , we can write:

θω(−z)< 0≤ θω(s) ∀ω ∈ Y,∀z ∈ intC(ω), ∀s ∈ S

and this completes the proof.

Definition 4.2.26. Let X ,Y be Banach spaces. We say that f : X → Y is bounded from below

over S⊂ X with respect to y0 ∈ Y and Θ⊂ Y iff f (S)⊆ y0 +Θ.

Lemma 4.2.27. Let assumption (A1) be fulfilled, C(ω)+ (0,+∞)k0 ⊆ intC(ω) for all ω ∈ Y ,

X be a Banach space and S ⊂ X . For x ∈ S, set y = f (x) and consider the functional θy.

Additionally suppose that there exists a cone D ⊂ Y such that k0 ∈ D and C(ȳ)+ intD ⊂C(ȳ)

and f : X → Y is bounded from below with respect to y0 ∈ Y and the set Θ =C(y) in the sense

of Definition 4.2.26, then θy ◦ f is bounded below.

Proof. By Definition 4.2.26, we have f (S) ⊂ y0 +C(y). By the first part of [33, Proposi-

tion 2.3.4], there exists t̂ such

t̂k0− y0 /∈C(y) (4.10)

Assume that θy ◦ f is not bounded from below and there exists x ∈ S such that θy( f (x)) < t̂.

Since f is bounded from below, there exists c1 ∈C(y) such that f (x) = y0+c1. By θy( f (x))< t̂,

Lemma 4.2.3 and Theorem 4.2.7, we have

f (x) ∈ t̂k0−C( f (x)) =⇒ y0 + c1 ∈ t̂k0−C(y) =⇒ y0 ∈ t̂k0− (C(y)+ c1).

By C(y)+ c1 ⊆C(y), we get y0 ∈ t̂k0−C(y) which is a contradiction to (4.10). This completes

the proof and θy( f (.)) is bounded below.

4.2.2 Characterization of Approximate Minimizers by Scalarizing Functionals

In this section, we characterize εk0-minimizers of vector optimization problems with respect

to variable ordering structures by scalarization via nonlinear functionals. First in the following

theorem, we show that each εk0-minimizer element of the set Ω is a solution of the scalar

optimization problem.

Theorem 4.2.28. Let assumption (A1) be fulfilled. Additionally let C(ω)+(0,+∞)k0⊆ intC(ω)

for all ω ∈ Y and ε ≥ 0.

1. If yε ∈ Ω is an εk0-minimizer of the set Ω ⊆ Y , then θω(0) ≤ θω(y− yε) + ε for all

y,ω ∈Ω, where θω(y) = inf {t ∈ R | tk0− y ∈C(ω)}.
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2. If yε ∈Ω is a weak εk0-minimizer of Ω, then θω(0)≤ θω(y− yε)+ ε for all y,ω ∈Ω.

3. If yε ∈Ω is a strong εk0-minimizer of Ω, then θω(0)< θω(y− yε)+ ε for all y,ω ∈Ω.

Proof. 1. Suppose that yε is an εk0-minimizer of the set Ω and there exist y,ω ∈Ω such that

θω(y− yε)+ ε < θω(0) := t. First, we prove that t = 0. By the second part of Theorem

4.2.7, we get

θω(0) = t =⇒ tk0−0 ∈C(ω) =⇒ tk0 ∈C(ω).

By pointedness of C(ω), we get 0 ∈ C(ω) and t ≤ 0. Again by pointedness of C(ω),

tk0 ∈C(ω) and C(ω)+[0,+∞)k0 ⊆C(ω), we get t ≥ 0 and therefore we can write t = 0.

By θω(0)= 0 and θω(y−yε)+ε < θω(0), there exists γ > 0 such that θω(y−yε)=−γ−ε

and by the second part of Theorem 4.2.7, we get

(−γ− ε)k0 + yε − y = c1 ∈C(ω) =⇒ yε − y− εk0 ∈C(ω)+ γk0.

By γ > 0 and C(ω)+ [0,+∞)k0 ⊆ intC(ω), we get yε − εk0− y ∈C(ω)\{0} and

(yε − εk0−C(ω)\{0})∩Ω 6= /0

which is a contradiction to our assumption.

2. The proof is similar to that of the previous part.

3. From the first part, we know that θω(0) ≤ θω(y− yε)+ ε for all y,ω ∈ Ω. We just need

to show that θω(0) 6= θω(y−yε)+ε for all y,ω ∈Ω and this means that we need to show

θω(y−yε)+ε 6= 0 for all y,ω ∈Ω. If yε = y and ε > 0, then θω(y−yε) = 0 and obviously

θω(y− yε)+ ε 6= 0.

Again, if yε = y and ε = 0, then our assumption (θω(0) < θω(y− yε)+ ε) can not be

fulfilled. Therefore suppose yε 6= y and there exist y,ω ∈Ω such that θω(y− yε)+ ε = 0,

then by the second part of Theorem 4.2.7, we get

yε − εk0− y ∈C(ω). (4.11)

Also, by definition of strong εk0-minimizers, for all ω ∈Ω,y ∈Ω\{yε}, we get

yε − εk0 ∈ y−C(ω)\{0} =⇒ yε − εk0− y ∈ −C(ω)\{0}. (4.12)

By (4.11) and (4.12), we get (yε − εk0− y) ∈ C(ω)∩−C(ω)\{0}. But this is a con-

tradiction to the pointedness of C(ω). Therefore θω(0) 6= θω(y− yε) + ε holds and

θω(0)< θω(y− yε)+ ε for all y,ω ∈Ω. �

In the special case that ε = 0, we have:
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Corollary 4.2.29. Let assumption (A1) be fulfilled and additionally C(ω)+(0,+∞)k0⊆ intC(ω)

for all ω ∈ Y .

1. If y ∈Ω is a minimizer of the set Ω⊆ Y , then θω(0)≤ θω(y− y) for all y,ω ∈Ω.

2. If y ∈Ω is a weak minimizer of Ω, then θω(0)≤ θω(y− y) for all y,ω ∈Ω.

3. If y ∈Ω is a strong minimizer of Ω, then θω(0)< θω(y− y) for all y,ω ∈Ω.

In Theorem 4.2.28, we showed that each εk0-minimizer of the set Ω is a solution for the scalar

optimization problem. The following theorem completes characterizations of εk0-minimizers of

vector optimization problems with respect to variable ordering structures.

Theorem 4.2.30. Let assumption (A1) be fulfilled. Additionally let C(ω)+(0,+∞)k0⊆ intC(ω)

for all ω ∈ Y and ε ≥ 0.

1. If yε ∈Ω and θω(0)< θω(y− yε)+ ε for all y,ω ∈Ω, then yε is an εk0-minimizer of the

set Ω.

2. If yε ∈Ω and θω(0)≤ θω(y−yε)+ε for all y,ω ∈Ω, then yε is a weak εk0-minimizer of

the set Ω.

Proof. 1. Similar to the proof of the first part of Theorem 4.2.28, θy2(0) = 0. Now suppose

that θω(0)< θω(y−yε)+ε for all y,ω ∈Ω but yε is not an εk0-minimizer and there exist

y1,y2 ∈Ω such that y1− yε ∈ −εk0−C(y2)\{0} and

−εk0 + yε − y1 ∈C(y2)\{0}.

By the second part of Theorem 4.2.7, we get θy2(y1− yε)+ ε ≤ 0 = θy2(0) which is a

contradiction to our assumption.

2. Suppose that θω(0)≤ θω(y− yε)+ ε for all y,ω ∈Ω but yε is not a weak εk0-minimizer

and there exist y1,y2 ∈Ω such that y1 ∈ yε − εk0− intC(y2) and

−εk0 + yε − y1 ∈ intC(y2).

Similar to the first part of Theorem 4.2.28, θy2(0) = 0 and by the first part of Theorem

4.2.7, we get θy2(y1− yε)+ ε < 0 = θy2(0) which is a contradiction to our assumption.�

Corollary 4.2.31. Let assumption (A1) be fulfilled and additionally C(ω)+(0,+∞)k0⊆ intC(ω)

for all ω ∈ Y

1. If y ∈Ω and θω(0)< θω(y− y) for all y,ω ∈Ω, then y is a minimizer of the set Ω.

2. If y ∈Ω and θω(0)≤ θω(y− y)+ for all y,ω ∈Ω, then y is a weak minimizer of Ω.
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4.2.3 Characterization of Approximately Nondominated Elements by Scalarizing
Functionals

In the last section, we characterized approximate minimizers by the scalarization via nonlinear

functional methods. We can also use this method for characterizing the approximately nondom-

inated elements. First in the following theorem, we show that each εk0-nondominated element

of the set Ω is a solution of the scalar optimization problem.

Theorem 4.2.32. Let assumption (A1) be fulfilled. Additionally let C(ω)+(0,+∞)k0⊆ intC(ω)

for all ω ∈ Y and ε ≥ 0.

1. If yε ∈Ω is an εk0-nondominated element of the set Ω⊆Y , then θω(0)≤ θω(ω−yε)+ε

for all ω ∈Ω where θω(y) = inf {t ∈ R | tk0− y ∈C(ω)}.

2. If yε ∈ Ω is a weakly εk0-nondominated element of Ω, then θω(0)≤ θω(ω− yε)+ ε for

all ω ∈Ω.

3. If yε ∈Ω is a strongly εk0-nondominated element of Ω, then θω(0)< θω(ω− yε)+ ε for

all ω ∈Ω.

Proof. 1. Suppose that yε is an εk0-nondominated element of the set Ω and there exists

ω ∈ Ω such that θω(ω − yε) + ε < θω(0) = t. Similar to the proof of the first part of

Theorem 4.2.28, t = 0. By θω(ω − yε)+ ε < θω(0) and θω(0) = 0, there exists γ > 0

such that θω(ω− yε) =−γ− ε and by the second part of Theorem 4.2.7, we get

(−ε− γ)k0 + yε −ω = c1 ∈C(ω) =⇒ yε −ω− εk0 = c1 + γk0 ∈C(ω)+ γk0.

By γ > 0 and C(ω)+ [0,+∞)k0 ⊆ intC(ω), we get yε − εk0−ω ∈C(ω)\{0} and

(yε − εk0−C(ω)\{0})∩{ω} 6= /0

which is a contradiction to our assumption.

2. The proof is similar to that of part 1.

3. By the first part, the proof is similar to that of part 3 of Theorem 4.2.28. �

In the special case ε = 0, we have the following corollary.

Corollary 4.2.33. Let assumption (A1) be fulfilled and additionally C(ω)+(0,+∞)k0⊆ intC(ω)

for all ω ∈ Y .

1. If y ∈Ω is a nondominated element of Ω⊆ Y , then for all ω ∈Ω, θω(0)≤ θω(ω− y).

2. If yε ∈Ω is a weakly nondominated element of Ω, then for all ω ∈Ω, θω(0)≤ θω(ω−y).

3. If yε ∈Ω is a strongly nondominated element of Ω, then for all ω ∈Ω, θω(0)< θω(ω−y).
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In Theorem 4.2.32, we showed that each εk0-nondominated element of the set Ω is a solution

for the scalar optimization problem. The following theorem completes characterizations of ap-

proximately nondominated elements of Ω with respect to ordering map C : Y ⇒ Y .

Theorem 4.2.34. Let assumption (A1) be fulfilled. Additionally let C(ω)+(0,+∞)k0⊆ intC(ω)

for all ω ∈ Y and ε ≥ 0.

1. Let yε ∈ Ω and θω(0) < θω(ω − yε)+ ε for all ω ∈ Ω, then yε is an εk0-nondominated

element of the set Ω.

2. Let yε ∈Ω and θω(0)≤ θω(ω−yε)+ε for all ω ∈Ω, then yε is a weakly εk0-nondominated

element of the set Ω.

Proof. 1. Similar to the proof of the first part of Theorem 4.2.28, θω(0) = 0. Suppose that

θω(0)< θω(ω− yε)+ ε for all ω ∈ Ω but yε is not an εk0-nondominated element of the

set Ω and there exists ω ∈Ω such that yε − εk0 ∈ ω +C(ω)\{0} and

−εk0 + yε −ω ∈C(ω)\{0}.

By the second part of Theorem 4.2.7, we get θω(ω − yε) + ε ≤ 0 = θω(0) which is a

contradiction to our assumption.

2. The proof is similar to that of part 2 of Theorem 4.2.30. �

In the special case that ε = 0, we have:

Corollary 4.2.35. Let assumption (A1) be fulfilled and additionally C(ω)+(0,+∞)k0⊆ intC(ω)

for all ω ∈ Y

1. Let y ∈Ω and θω(0)< θω(ω− y) for all ω ∈Ω, then y is a nondominated element of the

set Ω.

2. Let y∈Ω and θω(0)≤ θω(ω−y) for all ω ∈Ω, then y is a weakly nondominated element

of the set Ω.

4.2.4 Characterization of Approximately Minimal Elements by Scalarizing Func-
tionals

In the special case, when ε = 0 and C is a cone-valued map and each C(y) is a pointed and

convex cone, Eichfelder [22] gave characterization of exact solutions of vector optimization

problems with variable ordering structures for nondominated and minimal solutions. In the

following theorem, we characterize approximately minimal elements of the set Ω with respect

to the set-valued map C by scalarization via nonlinear functionals.



CHAPTER 4. CHARACTERIZATIONS OF SOLUTIONS OF (VVOP) 53

Theorem 4.2.36. Let assumption (A1) be fulfilled. Additionally let C(ω)+(0,+∞)k0⊆ intC(ω)

for all ω ∈ Y and ε ≥ 0.

1. If yε ∈ Ω is an εk0-minimal element of the set Ω ⊆ Y , then θyε
(0) ≤ θyε

(y− yε)+ ε for

all y ∈Ω where θyε
(y) = inf {t ∈ R | tk0− y ∈C(yε)}.

2. If yε ∈ Ω be a weakly εk0-minimal element of Ω, then θyε
(0) ≤ θyε

(y− yε)+ ε for all

y ∈Ω.

3. If yε ∈ Ω is a strongly εk0-minimal element of Ω, then θyε
(0) < θyε

(y− yε)+ ε for all

y ∈Ω.

Proof. 1. Suppose that yε is an εk0-minimal element of the set Ω and there exists y∈Ω such

that θyε
(y− yε)+ ε < θyε

(0) = t. Similar to the proof of Theorem 4.2.28, t = 0. Since

θyε
(y− yε)+ ε < 0, there exists γ > 0 such that

θyε
(y− yε) =−γ− ε.

By the second part of Theorem 4.2.7, we get

(−γ− ε)k0 + yε − y = c1 ∈C(yε) =⇒ yε − εk0− y = c1 + γk0 ∈C(yε)+ γk0.

By γ > 0 and C(yε)+ [0,+∞)k0 ⊆ intC(yε), we get yε − εk0− y ∈C(yε)\{0} and

(yε − εk0−C(yε)\{0})∩Ω 6= /0

which is a contradiction to our assumption.

2. The proof is similar to that of part 1.

3. By the first part, the proof is similar to that of part 3 of Theorem 4.2.28. �

In the special case that ε = 0, we have

Corollary 4.2.37. Let assumption (A1) be fulfilled and additionally C(ω)+(0,+∞)k0⊆ intC(ω)

for all ω ∈ Y .

1. If y ∈Ω is a minimal element of the set Ω⊆ Y , then for all y ∈Ω, θy(0)≤ θy(y− y).

2. If y ∈Ω be a weakly minimal element of Ω, then θy(0)≤ θy(y− y) for all y ∈Ω.

3. If y ∈Ω is a strongly minimal element of Ω, then θy(0)< θy(y− y) for all y ∈Ω.

Theorem 4.2.36 proves that each εk0-minimal element of the set Ω is a solution for the scalar

optimization problem. The following theorem completes characterizations of εk0-minimal ele-

ments of the set Ω with respect to the ordering map C : Y ⇒ Y .

Theorem 4.2.38. Let assumption (A1) be fulfilled. Additionally let C(ω)+(0,+∞)k0⊆ intC(ω)

for all ω ∈ Y and ε ≥ 0.
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1. Let yε ∈Ω and θyε
(0)< θyε

(y− yε)+ ε for all y ∈Ω, then yε is an εk0-minimal element

of the set Ω.

2. Let yε ∈Ω such that θyε
(0)≤ θyε

(y−yε)+ε for all y∈Ω, then yε is a weakly εk0-minimal

element of the set Ω.

Proof. 1. Again similar to the proof of Theorem 4.2.28, θyε
(0) = 0. Now suppose that

θyε
(0) < θyε

(y− yε)+ ε for all y ∈ Ω but yε is not an εk0-minimal element. this means

there exists y ∈Ω such that yε − εk0 ∈ y+C(yε)\{0} and

−εk0 + yε − y ∈C(yε)\{0}.

By the second part of Theorem 4.2.7, we get θyε
(y− yε) + ε ≤ 0 = θyε

(0) which is a

contradiction to our assumption.

2. The proof is similar to that of part 2 of Theorem 4.2.30. �

In the special case that ε = 0, we have:

Corollary 4.2.39. Let assumption (A1) be fulfilled and additionally C(ω)+(0,+∞)k0⊆ intC(ω)

for all ω ∈ Y .

1. Let y ∈Ω and θy(0)< θy(y− y) for all y ∈Ω, then y is a minimal element of the set Ω.

2. Let y ∈Ω such that θy(0)≤ θy(y−y) for all y ∈Ω, then y is a weakly minimal element of

the set Ω.



Chapter 5

Variational Principles in Vector
Optimization with Variable Order
Structures

We know that for vector optimization problems with variable ordering structures (VVOP), we

have three different solution types (see section 2 of Chapter 3) and it is of interest to formu-

late variational principles for these solutions. Ekeland (1974) formulated in [27] a variational

principle, which has applications in many domains of mathematics. Ekeland’s variational prin-

ciple (EVP) is a deep assertion concerning the existence of an exact solution of a slightly per-

turbed optimization problem in a neighborhood of an approximate solution of the original op-

timization problem under the assumption that the objective function of the original problem

is bounded from below and lower semicontinuous (l.s.c). Several generalization of Ekeland’s

variational principle for vector optimization problems with fixed ordering structures are given

in [3, 4, 8, 9, 13, 14, 28, 37, 38, 41, 44, 55, 70]. The aim of this chapter is to establish new

variational principles of Ekeland’s type for three different kinds of solutions of vector optimiza-

tion problems with variable ordering structures by using a nonlinear scalarization technique (see

Chapter 4) and derive from them necessary conditions for approximate solutions of vector op-

timization problems with variable ordering structures in the next chapter. Applications of Eke-

land’s variational principle can be seen in economics, control theory, game theory, nonsmooth

analysis and many other fields.

Theorem 5.0.1. [28] Let (X ,‖ ·‖) be a real Banach space, ε > 0 and g : X →R be a real-valued

lower semicontinuous function which is bounded below on the closed subset S of X . Let x′ be

an element in S such that g(x′)5 inf{g(x) | x ∈S}+ε , then there exists a point xε ∈ domg∩S
such that

(a) g(xε)5 g(x′)5 inf{g(x)|x ∈S}+ ε.

55
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(b) ‖xε − x′‖5√ε.

(c) g(xε)< g(x)+
√

ε ‖x− xε‖ for all x ∈S.

Remark 5.0.2. (Strong form of Ekeland’s variational principle). Theorem 5.0.1 is known as

the weak version of Ekeland’s variational principle since we can find an element xε ∈ domg∩S
which additionally satisfies the following condition (see [28])

(c′) g(xε)+
√

ε ‖x′− xε‖ ≤ g(x′).

In this chapter we impose the following standing assumptions.

Assumption (A2). X is a real Banach space, S is a subset of X , Y is a topological linear space,

ε ≥ 0, k0 ∈ Y\{0} and f : X → Y is a vector-valued function. Let C : Y ⇒ Y be a set-valued

map where C(y) is a proper, pointed and closed set which satisfies C(y)+ [0,+∞)k0 ⊆C(y) for

all y ∈ Y .

Furthermore, in some cases, we consider the following assumptions.

(A3) The nonzero vector k0 ∈ Y\{0} satisfies C(y)+(0,+∞)k0 ⊆ intC(y) for all y ∈ Y .

(A4) For all y ∈ f (S), C(y)+C(y)⊆C(y).

(A5) B : Y ⇒ Y be a cone-valued map such that for each y ∈ f (S), k0 ∈ intB(y).

(A6) For all y ∈ f (S), C(y)+(B(y)\{0})⊆C(y).

By (A5), (A6) and the second part of Theorem 4.2.4, we get the functional θω in (4.2) is proper.

Also, by Theorem 4.2.15, assumption (A4) is necessary and sufficient for subadditivity of θω in

(4.2). By the first part of Theorem 4.2.18, we know that (A6) is necessary and sufficient for θω

in (4.2) to be a B-monotone function. Also by the third part of Theorem 4.2.18 and (A3), our

functional θω in (4.2) is continuous.

Remark 5.0.3. Figure 5.1 and 5.2 give examples for sets C where assumptions (A2), (A3) and

(A4) are fulfilled (for C(y)≡C).

In the following we will consider the following vector optimization problem with respect to a

variable ordering structure.

εk0−Min f (x) subject to x ∈S with respect to C. (VVOP)

In the third chapter, we defined approximate minimizers, approximate nondominated and ap-

proximate minimal elements of the set Ω ⊂ Y with respect to variable ordering structures in

the image space Y ; see (Definition 3.2.1), (Definition 3.2.6) and (Definition 3.2.10). For reader

convenience, we define these solution concepts of vector optimization problems with respect to
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k0

C

FIGURE 5.1: A convex set C satisfies assumptions (A2), (A3) and (A4).

k0

C

FIGURE 5.2: A nonconvex set C satisfies assumptions (A2), (A3) and (A4).
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variable ordering structures (VVOP) for S⊂ X and the vector-valued function f : X →Y in the

original space X .

Definition 5.0.4. Let assumption (A2) be fulfilled and xε ∈S. Consider problem (VVOP).

1. xε is said to be an εk0-minimizer of (VVOP) with respect to the map C : Y ⇒ Y iff

∀x,x1 ∈S : ( f (xε)− εk0−C( f (x))\{0})∩{ f (x1)}= /0.

2. Let intC(y) 6= /0 for all y ∈ Y. yε is said to be a weak εk0-minimizer of (VVOP) with

respect to the ordering map C : Y ⇒ Y iff

∀x,x1 ∈S : ( f (xε)− εk0− (intC( f (x)))∩{ f (x1)}= /0.

Remark 5.0.5. • We denote the set of all εk0-minimizers of (VVOP) with respect to the

ordering map C : Y ⇒ Y by εk0 -MZ(S, f ,C).

• We denote the set of all weak εk0-minimizers of (VVOP) with respect to the ordering map

C by εk0 -WMZ(S, f ,C).

When ε = 0, it coincide with the usual definition of (weak) minimizers; see e.g. [12]. We denote

the set of minimizers and weak minimizers by MZ(S, f ,C) and WMZ(S, f ,C), respectively.

Definition 5.0.6. Let assumption (A2) be fulfilled and xε ∈S. Consider problem (VVOP).

1. xε is said to be an εk0-nondominated solution of (VVOP) with respect to the ordering map

C : Y ⇒ Y iff

∀x ∈S : ( f (xε)− εk0−C( f (x))\{0})∩{ f (x)}= /0.

2. Let intC(y) 6= /0 for all y∈Y. yε is said to be a weak εk0-nondominated solution of (VVOP)

with respect to the ordering map C : Y ⇒ Y iff

∀x ∈S : ( f (xε)− εk0− (intC( f (x)))∩{ f (x)}= /0.

Remark 5.0.7. • We denote the set of all εk0-nondominated solutions of (VVOP) with re-

spect to the ordering map C : Y ⇒ Y by εk0 -N(S, f ,C).

• We denote the set of all weak εk0-nondominated solutions of (VVOP) with respect to the

ordering map C by εk0 -WN(S, f ,C).

When ε = 0, it coincide with the usual definition of (weakly) nondominated solutions; see e.g.

[24, 78]. We denote the set of nondominated solutions and weakly nondominated solutions by

N(S, f ,C) and WN(S, f ,C), respectively.
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Definition 5.0.8. Let assumption (A2) be fulfilled and xε ∈S. Consider problem (VVOP).

1. xε is said to be an εk0-minimal solution of (VVOP) with respect to the ordering map

C : Y ⇒ Y iff

( f (xε)− εk0−C( f (xε)))∩{ f (S)}= /0.

2. Let intC(y) 6= /0 for all y ∈ Y. yε is said to be a weak εk0-minimal solution of (VVOP)

with respect to the ordering map C : Y ⇒ Y iff

( f (xε)− εk0− (intC( f (xε)))∩{ f (S)}= /0.

Remark 5.0.9. • We denote the set of all εk0-minimal solutions of (VVOP) with respect to

the ordering map C : Y ⇒ Y by εk0 -M(S, f ,C).

• We denote the set of all weak εk0-minimal solutions of (VVOP) with respect to the order-

ing map C by εk0 -WM(S, f ,C).

When ε = 0, it coincide with the usual definition of (weakly) minimal solutions; see e.g. [24,

40]. We denote the set of minimal solutions and weakly minimal solutions by M(S, f ,C) and

WM(S, f ,C), respectively.

5.1 Variational Principle for Approximately Minimal Solutions

Note that in many Ekeland-type results in the literature; see, e.g. [4–6] and the references

therein, the function f is assumed to be C-level-closed, known also as C-lower semicontinuous

and C-semicontinuous [17, Definition 2.4], where C is a fixed ordering cone of the ordered image

space. Therefore we begin this section with the following definitions of lower semicontinuity in

fixed and variable ordering structures.

Definition 5.1.1. Consider problem (VVOP), x ∈S∩dom f , y := f (x) and C :=C(y) is fixed.

The function f is said to be C-lower semicontinuous over S iff the sets

lev(y; f ) :=
{

x ∈S| f (x) ∈ y−C
}

are closed in X for all y ∈ Y .

Definition 5.1.2. Consider problem (VVOP), x ∈S∩dom f , y := f (x) and C :=C(y) is fixed.

The function f is (k0,C)-lower semicontinuous over S iff the sets

M(t) :=
{

x ∈S| f (x) ∈ tk0−C
}

are closed in X for all t ∈ R.
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Definition 5.1.3. We say that f : X → Y is lower semicontinuous with respect to the ordering

map C : Y ⇒ Y , k0 ∈ Y\{0} and S⊆ X (for short (k0,C,S)-lsc ), if

MX
(ω,t) := {x ∈S | f (x) ∈ tk0− clC(ω)}

is a closed set for all ω ∈ f (S) and each t ∈ R.

If C =C(ω1) =C(ω2) is a fixed set, then Definition 5.1.3 coincides with Tammer’s definition on

page 133 in [70]. Moreover, if Y = R, then our definition coincide with the standard definition

of lower semicontinuity. In order to prove the main theorem of this section, first we have to

prove the following lemmas.

Lemma 5.1.4. Let C : Y ⇒ Y be a set-valued map and assumptions (A2) and (A3) be fulfilled.

For each ω ∈ f (S), consider the functional θω defined by (4.2). If the function f : X → Y in

(VVOP) is (k0,C,S)-lsc, then (θω ◦ f )(·) = θω( f (·)) is a lower semicontinuous functional for

each ω ∈ f (S).

Proof. Since the function f : X → Y is (k0,C,S)-lsc, the set

MX
(ω,t) = {x ∈S | f (x) ∈ tk0−C(ω)}

is closed for all ω ∈ f (S) and t ∈ R.

Now consider that MY
(ω,t) = tk0−C(ω)⊆ Y . By (A3) and the third part of Theorem 4.2.18, we

know that θω : Y → (−∞,∞) is a continuous functional for each ω ∈ f (S) and by Theorem

4.2.7, we get

MY
(ω,t) = tk0−C(ω) = {y ∈ Y | y ∈ tk0−C(ω)}

= {y ∈ Y | θω(y)5 θω(tk0)}= {y ∈ Y | θω(y)5 t} := MY
(ω,θω ,t)

for each ω ∈ f (S) and t ∈ R. This means for all ω ∈ f (S) and t ∈ R,

MX
(ω,θω ,t)= {x∈S | θω( f (x))5 t}= {x∈S | f (x)∈MY

(ω,θω ,t)}= {x∈S | f (x)∈MY
(ω,t)}=MX

(ω,t)

is a closed set and θω ◦ f is lower semicontinuous for all ω ∈ f (S). �

Lemma 5.1.5. Suppose that assumptions (A2)–(A3) hold and let B : Y ⇒ Y be a cone-valued

map satisfying assumptions (A5)–(A6). Consider the problem (VVOP). If xε ∈ εk0-M(S, f ,C),

then there exists a continuous functional θ f (xε ) : Y → R which is strictly B( f (xε))-monotone in

the sense of Definition 4.2.17 and

∀x ∈S, θ f (xε )( f (xε))≤ θ f (xε )( f (x)+ εk0).
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Moreover, if C( f (xε))+C( f (xε))⊆C( f (xε)) holds, then θ f (xε ) is subadditive on Y and

∀x ∈S, θ f (xε )( f (xε))≤ θ f (xε )( f (x))+θ f (xε )(εk0).

Proof. Suppose that k0 ∈ Y\{0}, ε > 0 and xε ∈ εk0-M(S, f ,C). This means that,

( f (xε)− εk0−C( f (xε))\{0})∩ f (S) = /0.

This implies ( f (xε)−C( f (xε))\{0})∩ ( f (S)+ εk0) = /0.

We consider V (xε) := ( f (xε)−C( f (xε))\{0}) and f (S)+ εk0 = U . Taking assumptions on

maps C and B and by Theorem 2.3.6 of [33], we get desired functional. Therefore, there ex-

ists a continuous functional θ f (xε ) : Y → R such that θ f (xε )( f (xε)) ≤ θ f (xε )( f (S)+ εk0). By

C( f (xε))+C( f (xε))⊆C( f (xε)) and Theorem 4.2.15, θ f (xε ) is a subadditive functional and

θ f (xε )( f (xε))≤ θ f (xε )( f (S))+θ f (xε )(εk0).

This completes the proof.

The following lemma gives some properties of the functional in Lemma 5.1.5 and these prop-

erties will be used later in the proof of other lemmas and our main theorem about the vectorial

Ekeland’s variational principle for minimal solutions of (VVOP).

Lemma 5.1.6. Let assumptions (A2)–(A3) and (A5)–(A6) be fulfilled, then we can choose the

functional θ f (xε ) : Y → R in Lemma 5.1.5 in a way such that:

1. θ f (xε )(k
0) = 1.

2. θ f (xε )(0) = 0.

3. θ f (xε )(εk0) = ε and θ f (xε )(−εk0) =−θ f (xε )(εk0) =−ε.

Proof. 1. By definition of separating functional θ f (xε ) : Y → R in (4.2), we have

θ f (xε )(y) := inf{t ∈ R | y ∈ tk0−C( f (xε))}.

By pointedness of C( f (xε)) and (A3), we get 0 ∈ bdC( f (xε)) and k0 ∈ k0−bdC( f (xε)).

Taking into account the third part of Theorem 4.2.7, we get θ f (xε )(k
0) = 1.

2. By 0 ∈ bdC( f (xε)) and the third part of Theorem 4.2.7, we get θ f (xε )(0) = 0.

3. We prove that θ f (xε )(εk0) = ε . The proof of the rest is similar. By the second part of

Theorem 4.2.18, the following holds for all y ∈ Y and t ∈ R,

θ f (xε )
(y+ tk0) = θ f (xε )

(y)+ t.

Therefore θ f (xε )(0+ εk0) = θ f (xε )(0)+ ε and θ f (xε )(εk0) = ε . �
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Lemma 5.1.7. Let X be a real Banach space, S ⊂ X , xε ∈S, Y be a topological linear space,

ε ≥ 0, k0 ∈ Y\{0}, f : X → Y is a vector-valued function with dom f 6= /0 and B : Y ⇒ Y be a

cone-valued map satisfying (A5).

(i) Furthermore, suppose that for the strictly B-monotone (in the sense of Definition 4.2.23),

continuous and subadditive functional θ f (xε ) : Y → R, the following inequality holds

∀x ∈S, θ f (xε )( f (xε))≤ θ f (xε )( f (x))−θ f (xε )(−εk0),

then xε ∈ εk0-WM(S, f ,C) for some set-valued map C :Y⇒Y such that 0∈ clC( f (xε))\C( f (xε)),

B( f (xε))\{0} ⊆C( f (xε)) and clC( f (xε))+(B( f (xε))\{0})⊆C( f (xε)).

Proof. We define C( f (xε)) as

C( f (xε)) := {y ∈ Y | θ f (xε )(−y+ f (xε)− εk0)< θ f (xε )( f (xε)− εk0)}, (5.1)

and a functional θ̂ f (xε )(y) : Y → R as

θ̂ f (xε )(y) := θ f (xε )(y+ f (xε)− εk0). (5.2)

By (5.2) and (i) and since θ f (xε ) is subadditive, we get

θ̂ f (xε )( f (S)+ εk0− f (xε)) = θ f (xε )( f (S))≥
θ f (xε )( f (xε))+θ f (xε )(−εk0)≥
θ f (xε )( f (xε)− εk0) = θ̂ f (xε )(0).

Now by (5.1) and (5.2), we get

θ̂ f (xε )(−C( f (xε))) = θ f (xε )(−C( f (xε))+ f (xε)− εk0)< θ f (xε )( f (xε)− εk0) = θ̂ f (xε )(0),

therefore

(− intC( f (xε)))∩ ( f (S)+ εk0− f (xε)) = /0 =⇒ ( f (xε)− εk0− intC( f (xε)))∩ f (S) = /0.

Since θ f (xε ) is a strictly B-monotone functional, then B( f (xε))\{0} ⊆C( f (xε)). Now we show

that clC( f (xε))+(B( f (xε))\{0})⊆C( f (xε)). Choose y∈ clC( f (xε)) and b∈ y+B( f (xε))\{0}.
Since θ̂ f (xε ) is strictly B-monotone and y ∈ clC( f (xε))⊆ {y | θ̂ f (xε )(−y)≤ θ̂ f (xε )(0)},

θ̂ f (xε )(−b)< θ̂ f (xε )(−y)≤ θ̂ f (xε )(0).

Therefore b∈ clC( f (xε))+(B( f (xε))\{0}) implies b∈C( f (xε)). Assumption k0 ∈ intB( f (xε))

and intC( f (xε))+(B( f (xε))\{0})⊆C( f (xε)) implies C( f (xε))+ εk0 ⊆C( f (xε)).
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Moreover, by 0 ∈ cl(B( f (xε))\{0}), B( f (xε))\{0} ⊆C( f (xε)) and 0 /∈C( f (xε)), we get easily

0 ∈ clC( f (xε))\C( f (xε)). �

The following theorem gives the first generalization of the Ekeland’s variational principle for

εk0-minimal solutions of (VVOP) provided that f : X → Y is (k0,C,S)-lower semicontinuous

and bounded from below.

Theorem 5.1.8. Consider the problem (VVOP) and let x ∈ εk0-M(S, f ,C). Impose in addition

to (A2)–(A6) the following assumptions:

(A7) C(y)⊆C( f (x)) for all y ∈ f (S).

(A8) f is (k0,C,S)-lower semicontinuous over S in the sense of Definition 5.1.3.

(A9) f is bounded from below over closed subset S of X with respect to f (x) and C( f (x)) in

the sense of Definition 4.2.26.

Then there exists an element xε ∈ dom f ∩S such that

1. xε ∈ εk0-WM(S, f ,B),

2. ‖x− xε‖ ≤
√

ε,

3. xε ∈WM(S, fεk0 ,B) with fεk0(x) = f (x)+
√

ε ‖x− xε‖k0. (5.3)

Proof. Suppose that x ∈ εk0-M(S, f ,C), then by the definition of approximately minimal solu-

tions (Definition 5.0.8), we get

( f (x)− εk0−C( f (x))\{0})∩ f (S) = /0.

Now suppose that f := f − f (x), then we have

( f (x)− εk0−C( f (x))\{0})∩ f (S) = /0.

By Lemma 5.1.5, the inclusion C( f (x))+C( f (x)) ⊆ C( f (x)) by (A4) and Lemma 5.1.6, the

functional θ f (x) : Y → R defined by (4.2) is a strictly B-monotone, continuous and subadditive

functional. Furthermore,

∀x ∈S, θ f (x)( f (x))≤ θ f (x)( f (x))+θ f (x)(εk0) = θ f (x)( f (x))+ ε.

This means that

θ f (x)( f (x))≤ inf
x∈S

θ f (x)( f (x))+ ε, ε > 0.

Observe that the validity of (A8)–(A9) ensures (k0,C,S)-lower semicontinuity and the bound-

edness from below of f and f . By Lemma 4.2.27, Lemma 5.1.4, Theorem 5.0.1 and Re-

mark 5.0.2, there exists an element xε ∈S such that
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1. θ f (x)( f (xε))≤ θ f (x)( f (x))≤ infx∈S θ f (x)( f (x))+ ε, (5.4)

2. ‖xε − x‖ ≤ √ε,

3. for all x ∈S, θ f (x)( f (xε))≤ θ f (x)( f (x))+
√

ε ‖x− xε‖ , (5.5)

4. θ f (x)( f (xε))+
√

ε ‖x− xε‖ ≤ θ f (x)( f (x)). (5.6)

By Lemma 5.1.6 and (5.4), for all x ∈S we get

θ f (x)( f (xε))≤ inf
x∈S

θ f (x)( f (x))+ ε ≤ θ f (x)( f (x))+θ f (x)(εk0) = θ f (x)( f (x))−θ f (x)(−εk0).

By Lemma 5.1.7, the inclusion B( f (xε))⊆C( f (xε))⊆C( f (x)) by (A6)–(A7) and f = f − f (x),

( f (xε)− εk0− intB( f (xε)))∩ f (S) = /0.

This implies that xε ∈ εk0-WM(S, f ,B). Now we prove (5.3) and for this, suppose that there

exists an element x ∈S such that

f (x) ∈ f (xε)−
√

ε ‖x− xε‖k0− intB( f (xε))

=⇒ f (x) ∈ f (xε)−
√

ε ‖x− xε‖k0− intB( f (xε)).

Since θ f (x) is a strictly B-monotone, continuous and subadditive functional,

θ f (x)( f (x))< θ f (x)( f (xε)−
√

ε ‖x− xε‖k0)≤ θ f (x)( f (xε))+θ f (x)(−
√

ε ‖x− xε‖k0).

Now by Lemma 5.1.6, we get

θ f (x)(−
√

ε ‖x− xε‖k0) =−
√

ε ‖x− xε‖ =⇒ θ f (x)( f (xε))> θ f (x)( f (x))+
√

ε ‖x− xε‖ .

But this yields a contradiction because of (5.5).

In the special case that C : Y ⇒ Y is a solid, closed, pointed and convex cone-valued map, we

have the following corollary.

Corollary 5.1.9. Let C : Y ⇒Y be a cone-valued map where C(y) is a solid and convex cone for

all y ∈ f (S), k0 ∈ ⋂y∈ f (S) intC(y) and ε > 0. Consider the problem (VVOP) and furthermore,

let x ∈ εk0-M(S, f ,C). Impose the following assumptions:

(A7) C(y)⊆C( f (x)) for all y ∈ f (S).

(A8) f is (k0,C,S)-lower semicontinuous over S in the sense of Definition 5.1.3.

(A9) f is bounded from below over closed subset S of X with respect to f (x) and C( f (x)) in

the sense of Definition 4.2.26.
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Then there exists an element xε ∈ dom f ∩S such that

1. xε ∈ εk0-WM(S, f ,C),

2. ‖x− xε‖ ≤
√

ε,

3. xε ∈WM(S, fεk0 ,C) with fεk0(x) = f (x)+
√

ε ‖x− xε‖k0.

In the special case, if C(y1) = C(y2) = C is a fixed, solid and convex cone, Corollary 5.1.9

covers Corollary 1 [3], Theorem 5.1 [8], Theorem 2 [9], Theorem 3.1 for a vector-valued map

[13], Theorem 2.1 [14], Theorem 3.1 [38], Theorem 10 [44] and Theorem 4.1 [70]. For sure in

the case Y = R, we have the classical Ekeland’s variational principe [28].

In Theorem 5.1.8 and Corollary 5.1.9, the existence of an element belonging to the set of εk0-

minimal solutions of the original problem that is a weakly minimal solution of a perturbed opti-

mization problem is shown. We show a sharper result, namely that there exists an εk0-minimal

solution of the original problem that is a minimal solution of a perturbed vector optimization

problem with variable ordering structure; see also [2].

Theorem 5.1.10. (Variational principle for εk0-minimal solutions, solid case). Consider

problem (VVOP), let x ∈ εk0 -M(S, f ,C) and set y = f (x). Assume that in addition to (A2)

the following conditions hold:

(A3′) The image C :=C(y) is a proper, closed, pointed, and solid set satisfying Rk0−C = Y .

(A5′) There exists a cone-valued mapping B : Y ⇒ Y such that k0 ∈ intB with B := B(y).

(A6′) C+B\{0} ⊂ intC, and B( f (x))⊂ B for all x ∈S with ‖x− x‖ ≤ √ε .

(A8′) f is (k0,C)-lower semicontinuous over S in the sense of Definition 5.1.2.

(A9′) f is bounded from below over S with respect to an element y and the cone C in the sense

of Definition 4.2.26.

Then, there exists some xε ∈S∩dom f such that

(i′) xε ∈ εk0 -M(S, f ,B), i.e.,
(

f (xε)− εk0−B( f (xε))\{0}
)
∩ f (S) = /0.

(ii) ‖xε − x‖ ≤ √ε .

(iii′) xε ∈M(S, fεk0 ,B), where fεk0(x) := f (x)+
√

ε‖x− xε‖k0.

Proof. Consider the nonlinear scalarization function θ f (x) defined by 4.2,

θ f (x)(z) = inf
{

t ∈ R | z ∈ tk0−C
}
.

By Theorem 4.2.18, θ f (x) has the following properties under the assumption made in the theo-

rem:



CHAPTER 5. VARIATIONAL PRINCIPLES (VVOP) 66

• θ f (x)(y+λk0) = θ f (x)(y)+λ for all y ∈ Y and for all λ ∈ R.

• θ f (x) is continuous.

• θ f (x) is strictly B-monotone in the sense that

y2− y1 ∈ B\{0} =⇒ θ f (x)(y1)< θ f (x)(y2).

We prove that x is an ε-minimal solution of some scalar optimization problem. To proceed, set

g(x) := f (x)− f (x) with domg = dom f . Obviously, g(x) = 0. We get from the εk0-minimality

of x to the function f with respect to the order structure C in Definition 5.0.8 that

( f (x)− f (x)+ εk0) 6∈ −C( f (x)), ∀ x ∈S∩dom f with f (x) 6= f (x)

⇐⇒ (g(x)+ εk0) 6∈ −C, ∀ x ∈S∩domg with g(x) 6= 0

=⇒ θ f (x)(g(x)+ εk0) = θ f (x)(g(x))+ ε ≥ 0, ∀ x ∈S∩domg,

where the implication holds due to the strict B-monotonicity of θ f (x) and θ f (x)(0) = 0 which

only holds because of (A2) and the pointedness of C in assumption (A3′). This together with

θ f (x)(g(x)) = θ f (x)(0) = 0 yields

inf
x∈S∩domg

θ f (x)(g(x))+ ε ≥ θ f (x)(g(x)), (5.7)

i.e., x is an ε-minimal solution of the composition θ f (x) ◦g : X → R∪{+∞} over S.

Observe that the validity of (A8′) and (A9′) ensures the boundedness from below and the lower

semicontinuity of the composition θ f (x)◦g, respectively. Employing now the classical Ekeland’s

variational principle in Theorem 5.0.1 to the function θ f (x) ◦g and its ε-minimal solution x, we

can find some xε ∈S∩domg =S∩dom f such that

(a) θ f (x)(g(xε))≤ θ f (x)(g(x)) = 0;

(b) ‖xε − x‖ ≤ √ε;

(c) θ f (x)(g(x))+
√

ε‖x− x‖> θ f (x)(g(xε)) for all x ∈ dom f ∩S and x 6= xε .

Next, we will show that xε satisfies also two major relations (i′) and (iii′) in the theorem. Arguing

by contradiction, we assume that (i′) does not hold, i.e., xε is not a εk0-minimal solution of

(VVOP) with respect to the order structure B. By Definition 5.0.8 and xε 6∈ εk0−M(S, f ,B), we

get the existence of x ∈S such that

f (x) ∈ f (xε)− εk0−B( f (xε))\{0}

⇐⇒ f (x)− f (x)+ εk0 ∈ ( f (xε)− f (x))−B( f (xε))\{0}

⇐⇒ g(x)+ εk0 ∈ g(xε)−B( f (xε))\{0}
(A6′)
⊂ g(xε)−B\{0}.
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By the strict B-monotonicity of θ f (x) we get from the last inclusion that

θ f (x)(g(xε))> θ f (x)(g(x)+ εk0) = θ f (x)(g(x))+ ε ≥ inf
u∈S∩dom f

θ f (x)(g(u))+ ε ≥ θ f (x)(g(x))

where the last estimate (≥ 0) holds due to (5.7). The latter contradicts (a). This contradiction

ensures that the validity of (i′) in the theorem.

It remains to show the fulfillment of condition (iii′). Arguing by contradiction, assume that xε is

not a minimal solution of the perturbed function fεk0 = f +
√

ε‖ ·−xε‖k0 with respect to B(·),
i.e., there is some x ∈S∩dom f =S∩domg and x 6= xε such that

f (x)+
√

ε‖x− xε‖k0 ∈ f (xε)−B( f (xε))

⇐⇒ f (x)− f (x)+
√

ε‖x− xε‖k0 ∈ f (xε)− f (x)−B( f (xε))

⇐⇒ g(x)+
√

ε‖x− xε‖k0 ∈ g(xε)−B( f (xε))\{0}
(A6′)
⊂ g(xε)−B\{0}.

=⇒ θ f (x)

(
g(x)+

√
ε‖x− xε‖k0

)
= θ f (x)(g(x))+

√
ε‖x− xε‖ ≤ θ f (x)(g(xε))

where the implication holds due to the B-monotonicity of θ f (x). The latter inequality contradicts

(c). The contradiction justifies (iii′) and thus completes the proof of the theorem.

The next result is another improved version of [63, Theorem 5.1] for the nonsolid case assuming

that (X , || · ||) is a Banach space. In the proof of the next variational principle we will use

Theorem 3.4 by Bao and Mordukhovich [4] such that we adapt our assumptions concerning

boundedness as well as lower semicontinuity to this theorem. Furthermore, we suppose in the

next results that X and Y are Banach spaces.

Definition 5.1.11. Consider the problem (VVOP). We say that f : X→Y is bounded from below

over S with respect to Θ⊂ Y if there is a bounded set M ⊂ Y such that f (S)⊆M+Θ.

Remark 5.1.12. Of course, in the case of Banach spaces X and Y , the boundedness in the

sense of Definition 5.1.11 is weaker than the boundedness in the sense of Definition 4.2.26.

However, in Definition 5.1.11 the boundedness of the set M is supposed and we are dealing

with Banach spaces. The boundedness in the sense of Definition 5.1.11 is used in [4] and called

quasiboundedness there.

The following theorem gives a variational principle for approximate minimal solution of vector

optimization problems with variable ordering structures; see [2].

Theorem 5.1.13. (Variational principle for εk0-minimal solutions, nonsolid case). Suppose

that X and Y are Banach spaces and consider (VVOP). Let x ∈ εk0-M(S, f ,C). Set y := f (x)

and C :=C(y). Assume in addition to the standing assumption (A2) the following one holds:

(A3′′) C is a proper, closed, convex and pointed cone.

(A7′) C( f (x))⊂C for all y ∈S with ‖x− x‖ ≤ ε .
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(A8′′) f is C-lower semicontinuous over S in the sense of Definition 5.1.1.

(A9′′) f is bounded from below over S with respect to the cone C in the sense of Definition

5.1.11.

Then, there exists xε ∈ dom f ∩S such that

(i) f (xε) ∈ f (x)−C( f (x)), and thus xε ∈ εk0-M(S, f ,C).

(ii) ||x− xε || ≤
√

ε .

(iii) xε ∈Min(S, fεk0 ,C), where fεk0(x) := f (x)+
√

ε||xε − x||k0.

Proof. By the C-lower semicontinuity of f over S in (A8′′) and the continuity of the norm,

the function f (·)+√ε‖x− ·‖k0 is C-lower semicontinuous over Ω and thus the y-level-set of

f (·)+√ε‖x−·‖k0 with respect to the ordering cone C denoted by

Ξ := lev(y; f ) =
{

x ∈S| f (x)+
√

ε‖x− x‖k0 ∈ y−C
}

is a closed set in X . Observe that the restriction fΞ of f on Ξ with dom fΞ = Ξ satisfies all the

assumptions of the vector version of Ekeland’s variational principle in vector optimization with

ordering cone/ fixed ordering structure; see, e.g., [4, Theorem 3.4]. Observe also that x is an

εk0-minimal solution of fΞ with respect to the closed, convex and pointed cone C, i.e.,

fΞ(x) /∈ fΞ(x)− εk0−C\{0}, ∀x ∈ Ξ.

Employing [4, Theorem 3.4] to the function fΞ, its εk0-minimal solution x, C =C( f (x)), k0, ε ,

and λ =
√

ε , we can find some xε ∈ Ξ with ‖x− xε‖ ≤
√

ε such that

f (x)+
√

ε‖xε − x‖k0 6∈ f (xε)−C( f (x)), ∀ x ∈ Ξ\{xε}. (5.8)

Obviously, (ii) is satisfied. (i) follows directly from xε ∈ Ξ as follows:

xε ∈ Ξ ⇐⇒ f (xε)+
√

ε‖x− xε‖k0 ∈ y−C (5.9)

⇐⇒ f (xε) ∈ f (x)−
(√

ε‖x− xε‖k0 +C
)

(A2)
=⇒ f (xε) ∈ f (x)−C = f (x)−C( f (x)). (5.10)

Obviously, (5.10) verifies the first part of (i). To justify the second part of (i), we use (5.10), the

εk0-minimality of x, the inclusion C( f (xε))⊂C by assumption (A7′), and the convexity of the
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cone C in (A3′′) ensuring that C+C \{0} ⊂C \{0}. Details below.

x ∈ εk0 -M(S, f ,C) ⇐⇒
(

f (x)− εk0− (C \{0})
)
∩ f (S) = /0

⇐⇒
(

f (x)−C− εk0−C \{0}
)
∩ f (S) = /0

(5.10)
=⇒

(
f (xε)− εk0−C( f (xε))\{0}

)
∩ f (S) = /0

⇐⇒ xε ∈ εk0 -M(S, f ,C).

Finally, we will justify (iii) by contradiction. Assume that it does not hold, and then find some

x ∈S∩dom f with x 6= xε such that f (x)+
√

ε‖xε−x‖k0 ∈ f (xε)−C( f (xε)). By (A7′), we get

f (x)+
√

ε‖xε − x‖k0 ∈ f (xε)−C( f (x)) = f (xε)−C. (5.11)

Using (5.8) this implies x /∈ Ξ. Summing up this inclusion (5.11) and the one in (5.9) gives

f (x)+
√

ε
(
‖xε − x‖+‖x− xε‖)k0 ∈ f (x)−C−C = f (x)−C, (5.12)

where C+C =C holds due to the convexity of the cone C in (A3′′).

Since ‖xε − x‖+‖x− xε‖−‖x− x‖ ≥ 0 by the triangle inequality of the norm, we will further

manipulate (5.12) as follows:

f (x)+
√

ε‖x− x‖k0

∈ f (x)−
√

ε(‖xε − x‖+‖x− xε‖−‖x− x‖)k0−C

⊂ f (x)−C,

where the inclusion holds due to (A2). By the construction of Ξ, we have x ∈ Ξ and arrive at a

contradition. This contradiction verifies the validity of (iii) and thus completes the proof of the

theorem.

5.2 Variational Principle for Approximately Nondominated Solu-
tions

In this section, we give an extension of Ekeland’s theorem for εk0-nondominated solutions of

vector optimization problems with variable ordering structures, where the εk0-nondominatedness

for solutions of (VVOP) is defined in Definition 5.0.6. It is important to emphasize that there is

no difference between εk0-nondominated and εk0-minimal solutions in the case of fixed order-

ing structure. The reader can find many examples illustrating that this statement is in general

not true in the case of variable ordering structure in [22, 24, 67].
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Lemma 5.2.1. Suppose that assumptions (A2)–(A3) hold and let B : Y ⇒ Y be a cone-valued

map satisfying assumptions (A5)–(A6). Consider the problem (VVOP). If xε ∈ εk0-N(S, f ,C),

then for every element x ∈S, there exists a continuous functional θ f (x) : Y →R which is strictly

B-monotone in the sense of Definition 4.2.23 and

∀x ∈S, θ f (x)( f (xε))5 θ f (x)( f (x)+ εk0).

Moreover, if (A4) holds, then each θ f (x) is subadditive on Y and

∀x ∈S, θ f (x)( f (xε))5 θ f (x)( f (x))+θ f (x)(εk0).

Proof. Suppose that k0 ∈Y\{0}, ε > 0 and xε ∈ εk0-N(S, f ,C). This means that for all x ∈S,

( f (xε)− εk0−C( f (x))\{0})∩ f (x) = /0,

and
( f (xε)−C( f (x))\{0})∩ ( f (x)+ εk0) = /0.

We consider D( f (x)) := ( f (xε)−C( f (x))\{0}) and f (x)+εk0 =U . Taking into account (A5),

(A6) and Theorem 4.2.25, we get desired functionals and for all x∈S, the continuous functional

θ f (x) : Y → R satisfies θ f (x)( f (xε))5 θ f (x)( f (x)+ εk0). Now if (A4) holds, then for all x ∈S,

θ f (x) is subadditive and

θ f (x)( f (xε))5 θ f (x)( f (x))+θ f (x)(εk0)

and proof is complete. �

The following lemma gives some properties of the functional in Lemma 5.2.1 and these prop-

erties will be used later in the proof of other lemmas and our main theorem about extension of

Ekeland’s theorem for εk0-nondominated solutions of vector optimization problems with vari-

able ordering structures.

Lemma 5.2.2. Let assumptions (A2)–(A3) and (A5)–(A6) be fulfilled, then for all x ∈S, we

can choose the functional θ f (x) : Y → R in Lemma 5.2.1 in a way such that:

1. θ f (x)(k0) = 1.

2. θ f (x)(0) = 0.

3. θ f (x)(εk0) = ε and θ f (x)(−εk0) =−θ f (x)(εk0) =−ε.

Proof. The proof is similar to that of Lemma 5.1.6.

Lemma 5.2.3. Let X be a real Banach space, S ⊂ X , xε ∈S, Y be a topological linear space,

ε ≥ 0, k0 ∈ Y\{0}, f : X → Y is a vector-valued function with dom f 6= /0 and B : Y ⇒ Y be a

cone-valued map satisfying (A5).
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( j) Furthermore, suppose that for any x ∈ S and for all strictly B-monotone (in the sense of

Definition 4.2.23), continuous, subadditive functionals θ f (x) : Y → R the following inequality

holds

∀x ∈S, θ f (x)( f (xε))5 θ f (x)( f (x))−θ f (x)(−εk0),

then xε ∈ εk0-WN(S, f ,C) for some set-valued map C :Y⇒Y such that B( f (x))\{0}⊆C( f (x)),

0 ∈ clC( f (x))\C( f (x)), clC( f (x))+(B( f (x))\{0})⊆C( f (x)) for all x ∈S.

Proof. For each x ∈S, we define C( f (x)) as following,

C( f (x)) = {y ∈ Y | θ f (x)(−y+ f (xε)− εk0)< θ f (x)( f (xε)− εk0)}, (5.13)

and a functional θ̂ f (x)(y) : Y → R with

θ̂ f (x)(y) := θ f (x)(y+ f (xε)− εk0). (5.14)

By (5.14) and ( j) and since θ f (x) is subadditive for all x ∈S, we get

θ̂ f (x)( f (x)+ εk0− f (xε)) = θ f (x)( f (x))=

θ f (x)( f (xε))+θ f (x)(−εk0)=

θ f (x)( f (xε)− εk0) = θ̂ f (x)(0).

Now by (5.13) and (5.14), we can write

θ̂ f (x)(−C( f (x))) = θ f (x)(−C( f (x))+ f (xε)− εk0)< θ f (x)( f (xε)− εk0) = θ̂ f (x)(0),

and therefore for each x ∈S,

(− intC( f (x)))∩ ( f (x)+ εk0− f (xε)) = /0 =⇒ ( f (xε)− εk0− intC( f (x)))∩ f (x) = /0.

Since θ f (x) is a strictly B-monotone functional for any x ∈S, then B( f (x))\{0} ⊆C( f (x)) for

all x ∈ S. Now we show that clC( f (x))+ (B( f (x))\{0}) ⊆ C( f (x)). Choose y ∈ clC( f (x))

and b ∈ y+B( f (x))\{0}. Since y ∈ clC( f (x))⊆ {y | θ̂ f (x)(−y)5 θ̂ f (x)(0)} and θ̂ f (x) is strictly

B-monotone, we have

θ̂ f (x)(−b)< θ̂ f (x)(−y)5 θ̂ f (x)(0).

Therefore b∈ clC( f (x))+(B( f (x))\{0}) implies b∈C( f (x)). Now by the assumption (A5) and

clC( f (x))+(B( f (x))\{0})⊆C( f (x)), we get C( f (x))+εk0⊆C( f (x)). By 0∈ cl(B( f (x))\{0}),
B( f (x))\{0} ⊆C( f (x)) and 0 /∈C( f (x)), we get 0 ∈ clC( f (x))\C( f (x)). �

In Definition 4.2.26, we defined bounded from below function over S with respect to a set. Now

we generalize this definition to bounded from below function over S with respect to a set-valued

map.
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Definition 5.2.4. Let X ,Y be Banach spaces and C : Y ⇒ Y be a set-valued map. We say that

f : X→Y is bounded from below over S with respect to the set-valued map C if for any y∈ f (S)

there exists y0 such that f (S)⊆ y0 +C(y).

Lemma 5.2.5. Let assumptions (A2) and (A3) be fulfilled and B : Y ⇒ Y be a cone-valued map

satisfying (A5) and (A6). Suppose f : X → Y is bounded from below over S with respect to C

in the sense of Definition 5.2.4, then θy ◦ f is bounded below for all y ∈S.

Proof. Proof is similar to that of Lemma 4.2.27. �

The following theorem gives the first generalization of the Ekeland’s variational principle for

εk0-nondominated solutions of (VVOP) provided that f : X → Y is bounded from below and

(k0,C,S)-lower semicontinuous (see [64]).

Theorem 5.2.6. Consider the problem (VVOP) and let x ∈ εk0-N(S, f ,C). Impose in addition

to (A2)–(A6) the following assumptions:

(A8) f is (k0,C,S)-lower semicontinuous over S in the sense of Definition 5.1.3.

(A9′′′) f is bounded from below over S with respect to C in the sense of Definition 5.2.4.

Then there exists an element xε ∈ dom f ∩S such that

1. xε ∈ εk0-WN(S, f ,B),

2. ‖x− xε‖5
√

ε,

3. xε ∈WN(S, fεk0 ,B) with fεk0(x) = f (x)+
√

ε ‖x− xε‖k0. (5.15)

Proof. Suppose that x ∈ εk0-N(S, f ,C), then by the definition of approximately nondominated

solutions (Definition 5.0.6), we have ( f (x)−εk0−C( f (x))\{0})∩ f (x) = /0. Now suppose that

f := f − f (x), then we have

( f (x)− εk0−C( f (x))\{0})∩ f (x) = /0.

By (A4), Lemma 5.2.1 and Lemma 5.2.2, the functional θ f (x) : Y →R defined by (4.2) is strictly

B-monotone, continuous and subadditive for all x ∈S. Furthermore,

∀ x ∈S, θ f (x)( f (x))5 θ f (x)( f (x))+θ f (x)(εk0) = θ f (x)( f (x))+ ε.

This means that for all x ∈S,

θ f (x)( f (x))5 inf
x∈S

θ f (x)( f (x))+ ε, ε > 0.

Observe that the validity of (A8)–(A9′′′) ensures the boundedness from below and (k0,C,S)-

lower semicontinuity of f and f . By Lemma 5.1.4, Lemma 5.2.5, Theorem 5.0.1 and Re-

mark 5.0.2, there exists xε ∈S such that for all x ∈S,
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1. θ f (x)( f (xε))5 θ f (x)( f (x))5 infx∈S θ f (x)( f (x))+ ε, (5.16)

2. ‖xε − x‖5√ε,

3. for all x ∈S, θ f (x)( f (xε))5 θ f (x)( f (x))+
√

ε ‖x− xε‖ . (5.17)

By Lemma 5.2.2 and (5.16), for all x ∈S, we get

θ f (x)( f (xε))5 inf
x∈S

θ f (x)( f (x))+ ε 5 θ f (x)( f (x))+θ f (x)(εk0) = θ f (x)( f (x))−θ f (x)(−εk0).

Now by Lemma 5.2.3, the inclusion B( f (x))⊆C( f (x)) by assumption (A6) and f = f − f (x),

∀x ∈S, ( f (xε)− εk0− intB( f (x)))∩{ f (x)}= /0.

This implies that xε ∈ εk0-WN(S, f ,B). Now we prove (5.15) and for this, suppose that there

exists an element x ∈S such that

f (x) ∈ f (xε)−
√

ε ‖x− xε‖k0− intB( f (x))

=⇒ f (x) ∈ f (xε)−
√

ε ‖x− xε‖k0− intB( f (x)).

Since for all x ∈ S, θ f (x) is a strictly B-monotone continuous subadditive functional, for all

x ∈S, we can write

θ f (x)( f (x))< θ f (x)( f (xε)−
√

ε ‖x− xε‖k0)5 θ f (x)( f (xε))+θ f (x)(−
√

ε ‖x− xε‖k0).

Now by Lemma 5.2.2, we get

θ f (x)(−
√

ε ‖x− xε‖k0) =−
√

ε ‖x− xε‖ =⇒ θ f (x)( f (xε))> θ f (x)( f (x))+
√

ε ‖x− xε‖ ,

but this yields a contradiction because of (5.17).

In the special case that C : Y ⇒ Y is a solid, closed, pointed and convex cone-valued map, we

have the following corollary.

Corollary 5.2.7. Let C : Y ⇒ Y be a cone-valued map where C( f (x)) is a solid convex cone for

all x ∈S, k0 ∈⋂x∈S intC( f (x)) and ε > 0. Consider the problem (VVOP) and furthermore, let

x ∈ εk0-N(S, f ,C). Impose the following assumptions:

(A8) f is (k0,C,S)-lower semicontinuous over S in the sense of Definition 5.1.3.

(A9′′′) f is bounded from below over S with respect to C in the sense of Definition 5.2.4.

Then there exists an element xε ∈ dom f ∩S such that
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1. xε ∈ εk0-WN(S, f ,C),

2. ‖x− xε‖5
√

ε,

3. xε ∈WN(S, fεk0 ,C) with fεk0(x) = f (x)+
√

ε ‖x− xε‖k0.

In Theorem 5.2.6, we gave an extension of Ekeland’s variational principle for εk0-nondominated

solutions of (VVOP) where for each y ∈ f (S), we have a different functional. Now, using

the functional ϕy,C,k0 defined by (5.18), we give another extension of Ekeland’s theorem for

approximately nondominated solutions of vector optimization problems with variable ordering

structures. In order to prove the next main theorem, we use the functional ϕy,C,k0 : Y → R to

some y ∈ Y and some k0 ∈ Y defined by

ϕy,C,k0(y) = inf{t ∈ R | y+ tk0− y ∈C(y)} for all y ∈ Y (5.18)

which is a slightly modification of the functional ϕ defined by (4.3). This functional was stud-

ied in [25]; see also [22] for characterizing nondominated elements with respect to a variable

ordering structure which is defined by a cone-valued map. A generalization of this scalarization

was studied already by Chen and Yang [15] and later also by Chen and colleagues [12, 16]. The

following lemma is proven in [24, Theorem 5.11].

Lemma 5.2.8. Let (A2) and (A3) hold and let C : Y ⇒ Y be a set-valued map where C(y) is

closed for each y ∈ Y satisfying the following condition for some k0 ∈ Y \{0}:

(C1) (−∞,0)k0∩C(y) = /0 and 0 ∈ bdC(y) for all y ∈ f (S).

We consider the functional ϕy,C,k0 : Y → R defined in (5.18) for some y ∈ f (S). Then the

following hold:

(a) Under condition (C1), one has
ϕy,C,k0(y) = 0

(b) Let x ∈S and y = f (x). Then x ∈WN(S, f ,C) if and only if

inf
y∈ f (S)

ϕy,C,k0(y) = 0.

(c) Let ε ≥ 0, x ∈S, and y = f (x). Then x ∈ εk0-WN(S, f ,C) if and only if

inf
y∈ f (S)

ϕy,C,k0(y)≥−ε.

Proof. We set ϕ(y) := ϕy,C,k0(y) for all y ∈ f (S). As (b) follows from (c) for ε = 0, we prove

only (a) and (c).

(a) We have ϕ(y) = inf{t ∈ R | tk0 ∈C(y)}. By 0 ∈ bdC(y) for all y ∈ f (S) and assumption

(−∞,0)k0∩C(y) = /0 we get ϕ(y) = 0.



CHAPTER 5. VARIATIONAL PRINCIPLES (VVOP) 75

(c) Assume ϕ(y)≥−ε for all y ∈ f (S) but x 6∈ εk0-WN(S, f ,C). Then there exists y ∈ f (S)

with y− εk0− y ∈ intC(y). Thus there is a scalar t < 0 such that

(y− y)+(t− ε)k0 ∈C(y),

i. e. y+(t− ε)k0− y ∈C(y) and hence ϕ(y)≤ t− ε <−ε , which is a contradiction.

Next, let x ∈ εk0-WN(S, f ,C) but assume the existence of t ∈ R, t < −ε and y ∈ f (S)

such that

y+ t k0− y ∈C(y).

As C(y)+(−t− ε)k0 ⊆ intC(y) by (A3), we have

y− εk0 ∈ y+C(y)+(−t− ε)k0 ⊆ y+ intC(y)

in contradiction to the weakly εk0-nondominatedness of x to the problem (VVOP). �

Lemma 5.2.9. Consider problem (VVOP), x ∈ S, y = f (x), and the scalarization functional

ϕy,C,k0 defined by (5.18). Assume that the ordering structure C : Y ⇒Y satisfies condition (C2):

(C2) C has a closed graph over f (S) in the sense that for every sequence of pairs {(yn,vn)}, if

yn ∈ f (S) and vn ∈C(yn) for all n ∈N and (yn,vn)→ (y∗,v∗) as n→+∞, then y∗ ∈ f (S)

and v∗ ∈C(y∗).

Then if f is a continuous function over S, the composition (ϕy,C,k0 ◦ f )(·) = ϕy,C,k0( f (·)) is a

lower semicontinuous functional over S.

Proof. Assume that f is a continuous function over S. To prove the lowersemicontinuity of

ϕy,C,k0 ◦ f over S, it is sufficient to show that the set

A := lev(t;ϕy,C,k0 ◦ f ) =
{

x ∈S| ϕy,C,k0( f (x))≤ t
}

is closed in X for all t ∈ R. Fix t ∈ R arbitrarily and take any sequence {xn} in A such that

xn→ x∗ as n→+∞. By the description of A, we have ϕy,C,k0( f (xn))≤ t and thus

y+ tk0− f (xn) ∈C( f (xn)).

Since f is continuous over the set S, the sequence of pairs (yn,vn) ∈ gphC with yn := f (xn) and

vn := y+ tk0− f (xn) converges to ( f (x∗),y+ tk0− f (x∗)). By (C2), we have

y+ tk0− f (x∗) ∈C( f (x∗))

and thus ϕy,C,k0( f (x∗)) ≤ t by the definition of ϕy,C,k0 in (5.18). The last inequality justifies

x∗ ∈ A and thus the closedness of the set A. The proof is complete. �
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Lemma 5.2.10. Suppose (A2), (A3). Consider problem (VVOP), y ∈ Y , and the scalarization

functional ϕy,C,k0 defined by (5.18). Assume that the ordering structure C : Y ⇒ Y satisfies

conditions (C1) and (Â9):

(Â9) f is bounded from below over S with respect to y ∈ Y and Θ = C(y) in the sense of

Definition 4.2.26.

Furthermore, let the ordering structure C : Y ⇒ Y satisfies for y from assumption (Â9):

(C3) C(y)+C(y)⊂C(y) for all y ∈ f (S). Furthermore, suppose that there exists a cone D with

k0 ∈ intD and C(y)+ intD⊂C(y).

Then the functional ϕy,C,k0 ◦ f is bounded from below over S.

Proof. Consider the element y given by assumption (Â9). Taking into account assumption (C3)

and [33, Theorem 2.3.1 and Theorem 2.3.4], there exists t ∈ R such that

y+ tk0− y /∈C(y). (5.19)

Assume now that f is bounded from below over S by y with respect to C(y), but ϕy,C,k0 ◦ f is

not bounded from below over S. The former ensures that −y ∈− f (x)+C(y). The latter allows

us to find some x ∈S such that ϕy,C,k0( f (x))< t. By (5.18) and (A3), we have

y+ tk0− f (x) ∈C( f (x)).

Combining the last two inclusions while taking into account (C3), we have

y+ tk0− y ∈C( f (x))+C(y)⊂C(y)

which contradicts (5.19). The contradiction clearly verifies the lower boundedness from below

of ϕy,C,k0 over S and completes the proof. �

We are now ready to present an extension of Ekeland’s theorem for εk0-nondominated solutions

of vector optimization problems with variable ordering structures.

Theorem 5.2.11. Consider (VVOP) and let x∈ εk0-N(S, f ,C), y∈Y , and set y := f (x). Impose,

in addition to (A2)–(A3), (C1)–(C3) and (Â9) in Lemmata 5.2.8, 5.2.9 and 5.2.10, the following

condition hold:

(A10) f is continuous over S.

Then, there exists a point xε ∈ dom f ∩S such that

(i) ϕy,C,k0( f (xε))≤ infx∈S ϕy,C,k0( f (x))+ ε ,
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(ii) ‖x− xε‖ ≤
√

ε,

(iii) xε ∈S is an exact solution of the scalar problem

min
x∈S

ϕy,C,k0( f (x))+
√

ε||x− xε ||,

(iv) ϕy,C,k0( f (xε))+
√

ε ‖x− xε‖ ≤ ϕy,C,k0( f (x)).

Proof. Consider x ∈ εk0-N(S, f ,C), y := f (x), and the functional ϕy,C,k0 defined in (5.18). By

(A3), we have intC( f (x)) 6= /0, and thus x ∈ εk0-WN(S, f ,C). By Lemma 5.2.8, we get under

the imposed conditions (C1) and (A3) that

ϕy,C,k0(y)≤ ϕy,C,k0(y)+ ε = inf
y∈ f (S)

ϕy,C,k0(y)+ ε,

i.e., y is an ε-minimal solution of ϕy,C,k0 ◦ f over S. Under the assumptions made in the theorem,

the functional ϕy,C,k0 ◦ f is lower semicontinuous and bounded from below on S because of

Lemmas 5.2.9 and 5.2.10. This means that all the assumptions of Theorem 5.0.1 are fulfilled.

Therefore, we get from Theorem 5.0.1 and Remark 5.0.2, the existence of xε ∈S such that

(i) ϕy,C,k0( f (xε))≤ ϕy,C,k0( f (x))≤ inf
x∈S

ϕy,C,k0( f (x))+ ε .

(ii) ‖xε − x‖ ≤ √ε .

(iii) ϕy,C,k0( f (x))+
√

ε ‖x− xε‖> ϕy,C,k0( f (xε)) for all x ∈S and x 6= xε .

(iv) ϕy,C,k0( f (xε))+
√

ε ‖x− xε‖ ≤ ϕy,C,k0( f (x)).

The proof is complete.

Remark 5.2.12. In Theorem 5.2.11 the assumptions imposed on the set-valued mapping C are

weaker than the assumptions in the variational principles for εk0-minimal elements in the pre-

vious section, however, the assertions in Theorem 5.2.6 are weaker too.

5.3 Variational Principle for Approximate Minimizers

In this section, we give an extension of Ekeland’s theorem for εk0-minimizers of vector opti-

mization problems with variable ordering structures. It is important to emphasize that there is no

difference between εk0-minimizers, εk0-nondominated and εk0-minimal solutions in the case of

fixed ordering structures. The reader can find many examples illustrating that this statement is

in general not true in the case of variable ordering structure in [22, 24, 67]. In order to prove the

main theorem of this section, first we prove the following lemmas.
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Lemma 5.3.1. Suppose that assumptions (A2)–(A3) hold and let B : Y ⇒ Y be a cone-valued

map satisfying assumptions (A5)–(A6). Consider the problem (VVOP). If xε ∈ εk0-MZ(S, f ,C),

then for each ω ∈ f (S), there exists a continuous functional θω : Y → R which is strictly B-

monotone in the sense of Definition 4.2.23 and

∀x ∈S,ω ∈ f (S) θω( f (xε))5 θω( f (x)+ εk0).

Moreover if (A4) holds, then for each ω ∈ f (S), θω is subadditive on Y and

∀x ∈S,ω ∈ f (S) θω( f (xε))5 θω( f (x))+θω(εk0).

Proof. Suppose that k0 ∈Y\{0}, ε > 0 and xε ∈ εk0-MZ(S, f ,C). This means for all ω ∈ f (S),

( f (xε)− εk0−C(ω)\{0})∩ f (S) = /0 and therefore

∀ω ∈ f (S), ( f (xε)−C(ω)\{0})∩ ( f (S)+ εk0) = /0.

We consider D(ω) := ( f (xε)−C(ω)\{0}) and f (S)+ εk0 =U . Taking into account (A5) and

(A6) and applying Theorem 4.2.25, we get desired functionals. Therefore for any ω ∈ f (S),

there exist a continuous functional θω : Y → R such that θω( f (xε))5 θω( f (S)+ εk0). Now if

(A4) holds, then θω is subadditive for all ω ∈ f (S) and

θω( f (xε))5 θω( f (S))+θω(εk0)

and the proof is complete.

The following lemma gives some properties of functionals in Lemma 5.3.1 and these proper-

ties will be used later in the proof of other lemmas and our main theorem about extension of

Ekeland’s theorem for εk0-minimizers of vector optimization problems with variable ordering

structures.

Lemma 5.3.2. Let assumptions (A2)–(A3) and (A5)–(A6) be fulfilled, then for each ω ∈ f (S),

we can choose the functional θω : Y →R in Lemma 5.3.1 in a way such that the followings hold.

1. θω(k0) = 1.

2. θω(0) = 0.

3. θω(εk0) = ε and θω(−εk0) =−θω(εk0) =−ε.

Proof. 1. By definition of separating functional θω in (4.2), for each ω ∈ f (S), we get

θω(y) = inf{t | y ∈ tk0−C(ω)}.

By pointedness of C(ω) and (A3), we get 0 ∈ bdC(ω) and k0 ∈ k0− bdC(ω) for all

ω ∈ f (S). Therefore by the third part of Theorem 4.2.7, we get θω(k0) = 1.



CHAPTER 5. VARIATIONAL PRINCIPLES (VVOP) 79

2. By 0 ∈ bdC(ω) for all ω ∈ f (S) and the third part of Theorem 4.2.7, we get θω(0) = 0

for all ω ∈ f (S).

3. By the second part of Theorem 4.2.18, we know that for all y ∈ Y , t ∈ R, ω ∈ f (S) the

following equation holds:

θω(y+ tk0) = θω(y)+ t,

therefore θω(0+ εk0) = θω(0)+ ε and θω(εk0) = ε . Proofs of other parts are similar. �

Lemma 5.3.3. Let X be a real Banach space, S ⊂ X , xε ∈S, Y be a topological linear space,

ε ≥ 0, k0 ∈ Y\{0}, f : X → Y is a vector-valued function with dom f 6= /0 and B : Y ⇒ Y be a

cone-valued map satisfying (A5).

(k) Furthermore, suppose that for any ω ∈ f (S) and strictly B-monotone (in the sense of Defi-

nition 4.2.23), continuous, subadditive functional θω : Y → R the following inequality holds

∀x ∈S,ω ∈ f (S) θω( f (xε))5 θω( f (x))−θω(−εk0),

then xε ∈ εk0-WMZ(S, f ,C) for some set-valued map C : Y ⇒ Y such that B(ω)\{0} ⊆C(ω),

0 ∈ clC(ω)\C(ω), clC(ω)+(B(ω)\{0})⊆C(ω) for all ω ∈ f (S).

Proof. For each ω ∈ f (S), we define C(ω) and functional θ̂ω : Y → R as following,

C(ω) = {y ∈ Y | θω(−y+ f (xε)− εk0)< θω( f (xε)− εk0)}, (5.20)

θ̂ω(y) := θω(y+ f (xε)− εk0). (5.21)

By (5.21) and (k) and since θω is subadditive for all ω ∈ f (S), we get

θ̂ω( f (S)+ εk0− f (xε)) = θω( f (S))=

θω( f (xε))+θω(−εk0)=

θω( f (xε)− εk0) = θ̂ω(0).

Now by (5.20) and (5.21), we get

θ̂ω(−C(ω)) = θω(−C(ω)+ f (xε)− εk0)< θω( f (xε)− εk0) = θ̂ω(0),

therefore for each ω ∈ f (S),

(− intC(ω))∩ ( f (S)+ εk0− f (xε)) = /0 =⇒ ( f (xε)− εk0− intC(ω))∩ f (S) = /0.

Since θω is strictly B-monotone functional in the sense of Definition 4.2.23, for all ω ∈ f (S),

B(ω)\{0} ⊆C(ω). Now we show that clC(ω)+(B(ω)\{0})⊆C(ω). Choose y ∈ clC(ω) and
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b ∈ y+B(ω)\{0}. Since θ̂ω is strictly B-monotone and y ∈ clC(ω) ⊆ {y | θ̂ω(−y) 5 θ̂ω(0)},
we have

θ̂ω(−b)< θ̂ω(−y)5 θ̂ω(0).

Therefore b ∈ clC(ω)+(B(ω)\{0}) implies b ∈C(ω). By the assumption (A5) and the inclu-

sion clC(ω)+(B(ω)\{0})⊆C(ω), we get C(ω)+εk0 ⊆C(ω). Also since 0 ∈ cl(B(ω)\{0}),
B(ω)\{0} ⊆C(ω) and 0 /∈C(ω), therefore 0 ∈ clC(ω)\C(ω). �

We are now ready to present an extension of Ekeland’s theorem for εk0-minimizers of vector

optimization problem (VVOP) with a variable ordering structure.

Theorem 5.3.4. Consider the problem (VVOP) and let x∈ εk0-MZ(S, f ,C). Impose in addition

to (A2)–(A6) the following assumptions:

(A8) f is (k0,C,S)-lower semicontinuous over S in the sense of Definition 5.1.3.

(A9′′′) f is bounded from below over S with respect to C in the sense of Definition 5.2.4.

Then there exists an element xε ∈ dom f ∩S such that

1. xε ∈ εk0-WMZ(S, f ,B),

2. ‖x− xε‖5
√

ε,

3. xε ∈WMZ(S, fεk0 ,B) with fεk0(x) = f (x)+
√

ε ‖x− xε‖k0. (5.22)

Proof. Let x ∈ εk0-MZ(S, f ,C). By the definition of εk0-minimizer (Definition 5.0.4), we get

∀ω ∈ f (S), ( f (x)− εk0−C(ω)\{0})∩ f (S) = /0.

Now suppose that f := f − f (x), then we have

∀ω ∈ f (S), ( f (x)− εk0−C(ω)\{0})∩ f (S) = /0.

By (A4), Lemma 5.3.1 and 5.3.2, for all ω ∈ f (S), the functional θω : Y →R in (4.2) is a strictly

B-monotone, continuous and subadditive functional such that

∀x ∈S, θω( f (x))5 θω( f (x))+θω(εk0) = θω( f (x))+ ε.

This means that for all ω ∈ f (S),

θω( f (x))5 inf
x∈S

θω( f (x))+ ε, ε > 0.

Observe that the validity of (A8)–(A9′′′) ensures (k0,C,S)-lower semicontinuity and the bound-

edness from below of f and f . By Lemma 5.1.4, Lemma 5.2.5, Theorem 5.0.1 and Remark 5.0.2,

there exists xε ∈S such that for all ω ∈ f (S),



CHAPTER 5. VARIATIONAL PRINCIPLES (VVOP) 81

1. θω( f (xε))5 θω( f (x))5 infx∈S θω( f (x))+ ε, (5.23)

2. ‖xε − x‖5√ε,

3. for all x,ω ∈S, θω( f (xε))5 θω( f (x))+
√

ε ‖x− xε‖ , (5.24)

4. θω( f (xε))+
√

ε ‖x− xε‖ ≤ θω( f (x)). (5.25)

By Lemma 5.3.2 and (5.23), for all x ∈S,ω ∈ f (S), we get

θω( f (xε))5 inf
x∈S

θω( f (x))+ ε 5 θω( f (x))+θω(εk0) = θω( f (x))−θω(−εk0).

By Lemma 5.3.3, the inclusion B(ω)⊆C(ω) by assumption (A6) and f = f − f (x), we get

( f (xε)− εk0− intB(ω)\{0})∩ f (S) = /0.

This implies that xε ∈ εk0-WMZ(S, f ,B). Now we prove (5.22) and for this, suppose that there

exist elements x,ω ∈S such that

f (x) ∈ f (xε)−
√

ε ‖x− xε‖k0− intB(ω)

=⇒ f (x) ∈ f (xε)−
√

ε ‖x− xε‖k0− intB(ω).

Since for all ω ∈ f (S), θω is a strictly B-monotone continuous subadditive functional, then

θω( f (x))< θω( f (xε)−
√

ε ‖x− xε‖k0)5 θω( f (xε))+θω(−
√

ε ‖x− xε‖k0).

Now by Lemma 5.3.2, we get

θω(−
√

ε ‖x− xε‖k0) =−
√

ε ‖x− xε‖ =⇒ θω( f (xε))> θω( f (x))+
√

ε ‖x− xε‖ ,

but this yields a contradiction because of (5.24).

In the special case that C : Y ⇒ Y is a solid, closed, pointed and convex cone-valued map, we

have the following corollary.

Corollary 5.3.5. Suppose that C : Y ⇒ Y is a cone-valued map where C(ω) is a solid convex

cone for all ω ∈ f (S), k0 ∈⋂ω∈ f (S) intC(ω) and ε > 0. Consider the problem (VVOP) and let

x ∈ εk0-MZ(S, f ,C). Impose the following assumptions:

(A8) f is (k0,C,S)-lower semicontinuous over S in the sense of Definition 5.1.3.

(A9′′′) f is bounded from below over S with respect to C in the sense of Definition 5.2.4.

Then there exists an element xε ∈S such that
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1. xε ∈ εk0-WMZ(S, f ,C),

2. ‖x− xε‖5
√

ε,

3. xε ∈WMZ(S, fεk0 ,C) with fεk0(x) = f (x)+
√

ε ‖x− xε‖k0.



Chapter 6

Optimality Conditions

The aim of this chapter is to derive new optimality conditions for approximate solutions of vec-

tor optimization problems with variable ordering structures. Bao and Mordukhovich [4, 5] have

shown necessary conditions for nondominated points of sets and nondominated solutions of vec-

tor optimization problems with variable ordering structures and general geometric constraints,

applying methods of variational analysis and generalized differentiation (see Mordukhovich [58]

and Mordukhovich, Shao [59]). Furthermore, Bao, Eichfelder, Soleimani and Tammer [2] have

shown necessary conditions for approximately nondominated solutions of vector optimization

problems with variable ordering structures in Asplund spaces using a vector-valued variant of

Ekeland’s variational principle. New necessary conditions for approximate minimizers and ap-

proximately minimal solution of vector optimization problems with variable ordering structures

is shown by Soleimani and Tammer in [65].

First, we bring some necessary definitions that will be used later in this chapter.

Definition 6.0.1. Consider a convex functional f : X→R. For a given point x ∈ dom f , Fenchel

subdifferential is defined as following.

∂ f (x) := {x∗ ∈ X∗ | f (y)− f (x)≥ 〈y− x,x∗〉 ∀y ∈ X}.

Definition 6.0.2. Let X and Y be Banach spaces, and U ⊂ X be an open subset of X. A function

f : U → Y is called Frèchet differentiable at x ∈ U if there exists a bounded linear operator

Ax : X → Y such that

lim
h→0

‖ f (x+h)− f (x)−Ax(h)‖Y
‖h‖X

= 0.

Definition 6.0.3. A Banach space is Asplund if every convex continuous function ϕ : U → R
defined on an open convex subset U of X is Fréchet differentiable on a dense subset of U .

83
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The class of Asplund spaces is quite broad including every reflexive Banach space and every

Banach space with a separable dual; in particular, lp and Lp[0,1] for 1 < p < ∞ are Asplund

spaces, but `1 and `∞ are not Asplund spaces.

Definition 6.0.4. Let S be a subset of Banach space X and x ∈S.

(a) The Fréchet normal cone of S at x ∈S is defined by

N̂(x;S) :=
{

x∗ ∈ X∗
∣∣∣ limsup

x
S−→x

〈x∗,x− x〉
‖x− x‖ ≤ 0

}
, (6.1)

where x S−→ x means x→ x with x ∈S.

(b) Assume that X is an Asplund space and S is locally closed around x ∈ S, i.e., there is

a neighborhood U of x such that S∩ clU is a closed set. The (basic, limiting, Mor-

dukhovich) normal cone of S at x is defined by

N(x;S) := Limsup
x→x

N̂(x;S)

=
{

x∗ ∈ X∗
∣∣∣ ∃ xk→ x, x∗k

w∗−→ x∗ with x∗k ∈ N̂(xk;S)
}
,

(6.2)

where Limsup stands for the sequential Painlevé-Kuratowski outer limit of the Fréchet

normal cone to S at x as x tends to x.

Note that, in contrast to (6.1), the basic normal cone (6.2) is often nonconvex enjoying never-

theless full calculus, and that both the cones (6.1) and (6.2) reduce to the normal cone of convex

analysis when S is convex.

Definition 6.0.5. F is called upper semicontinuous at x ∈ X if for any neighborhood N (F(x))

of F(x), there exists a neighborhood N (x) of x such that

∀x ∈N (x) F(x)⊆N (F(x)).

F is called upper semicontinuous on X if F is upper semi-continuous at every x ∈ X .

Definition 6.0.6. F is called lower semicontinuous at x ∈ X if for any y ∈ F(x) and any neigh-

borhood N (y) of y , there exists a neighborhood N (x) of x such that

∀x ∈N (x) F(x)∩N (y) 6= /0.

F is called lower semicontinuous on X if F is lower semi-continuous at every x ∈ X and F is

called continuous at X if F is both upper semi-continuous and lower semi-continuous at every

x ∈ X .
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6.1 Optimality Conditions for Approximately Minimal Solutions

In this section, we present optimality conditions for approximately minimal solutions of vector

optimization problems with variable ordering structures with different approaches namely Mor-

dukhovich subdifferential approach and general generic approach. Also second order optimality

condition using second order contingent derivatives and epiderivatives will be shown for weakly

minimal solutions of set-valued optimization in the last subsection of this section. Our results

in previous chapters like variational principle and characterization of approximately minimal

solutions of vector optimization problems with variable ordering structures will be used here in

order to derive optimality conditions for approximately minimal solutions of vector optimization

problems with variable ordering structures.

6.1.1 Mordukhovich Subdifferential Approach

In the following, we bring definition of Mordukhovich (basic, limiting) subdifferential which

will be used for deriving optimality condition without convexity assumption for solutions of

(VVOP) in the following and sections 6.2 and 6.3.

Definition 6.1.1. Consider a functional f : X → R and a point x ∈ dom f .

(a) The set

∂M f (x) :=
{

x∗ ∈ X∗| (x∗,−1) ∈ N((x, f (x)); epi f )
}

is the (basic, limiting) subdifferential of f at x, and its elements are basic subgradients of

ϕ at this point.

(b) The set

∂
∞ f (x) :=

{
x∗ ∈ X∗| (x∗,0) ∈ N((x, f (x)); epi f )

}
is the singular subdifferential of f at x, and its elements are singular subgradients of f at

this point.

If f is locally Lipschitz at x, then ∂ ∞ f (x) = {0}. If f is strictly Lipschitz continuous at x; in

particular, it is C1,1, then ∂M f (x) = {∇ f (x)}.

Lemma 6.1.2. ([58, Theorem 3.36 and Corollary 3.43]) Assume that X is Asplund.

(a) Suppose that ϕ1,ϕ2 : X → R are proper functionals and there exists a neighborhood U of

x ∈ domϕ1∩domϕ2 such that ϕ1 is Lipschitz and ϕ2 is lower semicontinuous on U , then

∂M(ϕ1 +ϕ2)(x)⊂ ∂Mϕ1(x)+∂Mϕ2(x).
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(b) If f : X → Y is strictly Lipschitz at x and ϕ : Y → R is finite and lower semicontinuous on

some neighborhood of f (x), then

∂M(ϕ ◦ f )(x)⊂
⋃

y∗∈∂Mϕ( f (x))

∂M(y∗ ◦ f )(x)

provided that the pair of functions (ϕ, f ) satisfies the qualification condition

∂
∞

ϕ(y)∩ker∂M〈·, f 〉(x) = {0}, (6.3)

where ker∂M〈·, f 〉(x) = {y∗ ∈ Y ∗| 0 ∈ ∂M〈y∗, f 〉(x)}.

Assumption (A11). Let X and Y be Asplund spaces, k0 ∈ Y\{0}, ε ≥ 0, f : X → Y be a

continuous and strictly Lipschitz function, S be a closed subset of X and C : Y ⇒ Y be a set-

valued map such that C(y) is a pointed closed set with C(y)+(0,+∞)k0 ⊆ intC(y) for all y ∈Y .

Theorem 6.1.3. Consider problem (VVOP), let x ∈ εk0-M(S, f ,C) and set y := f (x). Assume

that in addition to (A11) the following conditions hold:

(A5) B : Y ⇒ Y be a cone-valued map such that for all y ∈ f (S), k0 ∈ intB(y).

(A6′′) C(y)+B(y)\{0} ⊆ intC(y) and B( f (x))⊂C( f (x)) for all ‖x− x‖ ≤ √ε .

(A7) C(y)⊆C(y) for all y ∈ f (S).

(A9) f is bounded from below over S with respect to ȳ ∈ Y and Θ = C(ȳ) in the sense of

Definition 4.2.26.

Let θy ◦ f satisfies the qualification condition (6.3) for all x ∈S such that ‖x− x‖ ≤ √ε . Then,

there exist xε ∈S and v∗ ∈ ∂M(θy( f (xε)) such that

0 ∈ ∂M(v∗ ◦ f )(xε)+N(xε ;S)+
√

εBX∗ .

Proof. By Theorem 5.1.8 and (5.5), there exists xε ∈ dom f ∩S such that it is an exact solution

of minimizing a functional h : X → R∪{+∞} over S with

h(x) := (θy ◦ f )(x)+
√

ε ‖x− xε‖ for all x ∈ X .

By [58, Proposition 5.1], we get

0 ∈ ∂Mh(xε)+N(xε ;S).

By Lemma 4.2.11, the composition θy ◦ f is lower-semicontinuous on a neighborhood of xε .

Employing Lemma 6.1.2 (a) to the lower semicontinuous functional θy ◦ f and the Lipschitz

continuous function ‖.‖, we have

∂Mh(xε) ⊂ ∂M
(
θy ◦ f

)
(xε)+∂M(

√
ε ‖·− xε‖)(xε).
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By Lemma 6.1.2 (b), we get

∂M(θy ◦ f )(xε)⊂
⋃{

∂M(v∗ ◦ f )(xε) | v∗ ∈ ∂Mθy( f (xε))
}
.

Combining three inclusions together while taking into account the subdifferential of the norm

∂M ‖·− xε‖(xε) = BX∗ , we can find v∗ ∈ ∂Mθy( f (xε)) satisfying

0 ∈ ∂M(v∗ ◦ f )(xε)+N(xε ;S)+
√

εBX∗

and proof is complete.

Corollary 6.1.4. Consider problem (VVOP). Let x∈M(S, f ,C) be an exact minimal solution of

problem (VVOP), set y := f (x) and let all assumptions of Theorem 6.1.3 be fulfilled. Assume

that θy ◦ f satisfies the qualification condition (6.3) at x. Then, for any λ > 0, there exists

v∗ ∈ ∂M(θy( f (x)) such that

0 ∈ ∂M(v∗ ◦ f )(x)+N(x;S)+λBX∗ . (6.4)

Proof. Since x ∈M(S, f ,C), i.e., it is a 0k0-minimal solution of (VVOP), it is also εk0-minimal

of (VVOP) with ε = λ 2 > 0 for all λ > 0 and a weakly minimal solution. By Theorem 5.1.8 and

Theorem 6.1.3, the only point which satisfies (5.6) is x and we can find v∗ ∈ ∂Mθy( f (x)) such

that

0 ∈ ∂M(v∗ ◦ f )(x)+N(x;S)+
√

εBX∗

clearly verifying (6.4). The proof is complete.

6.1.2 Generic Approach

It is possible to derive optimality conditions using general generic approach. For doing this

we use an abstract subdifferentials. We introduce a generic approach to subdifferentials that

includes many well-known subdifferentials.

Let X be a class of Banach spaces which contains the class of finite dimensional normed vector

spaces. By an abstract subdifferential ∂ we mean a map which associates to every lsc function

h : X ∈X → R and to every x ∈ X a (possible empty) subset ∂h(x) ⊂ X∗. Let X ,Y ∈X and

denote by F (X ,Y ) a class of functions acting between X and Y having the property that by

composition at left with a lsc function from Y to R the resulting function is still lsc.

In the following we work with the next properties of the abstract subdifferential ∂ :

(H1) If h is convex, then ∂h(x) coincides with the Fenchel subdifferential.

(H2) If x is a local minimum point for h, then 0 ∈ ∂h(x); ∂h(u) = /0 if u /∈ domh.

Note that (H1) and (H2) are very natural requirements for any subdifferential.
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(H3) If ϕ : Y → R∪{+∞} is convex and ψ ∈F (X ,Y ), then for every x,

∂ (ϕ ◦ψ)(x)⊆⋃y∗∈∂ϕ(ψ(x))∂ (y
∗ ◦ψ)(x).

(H4) If ϕ : Y →R∪{+∞} is convex, ψ ∈F (X ,Y ), and S⊂ X is a closed set containing x, then

∂ (ϕ ◦ψ + IS)(x)⊆ ∂ (ϕ ◦ψ)(x)+∂ IS(x).

(H5) If h is convex and g : X→R∪{+∞} is locally Lipschitz, then for every x∈Domh∩Domg,

∂ (h+g)(x)⊆ ∂h(x)+∂g(x).

(H6) If X ∈X , ϕ : X → R is a locally Lipschitz functions and x ∈ domh, then

∂ (h+ϕ)(x)⊂ ‖·‖∗− limsup
y h→x,z→x

(∂h(y)+∂ϕ(z)).

(H7) If ϕ : Y → R is locally Lipschitz and ψ ∈F (X ,Y ), then for every x,

∂ (ϕ ◦ψ)(x)⊂ ‖·‖∗− limsup
u

ψ→x,v→ψ(x)

⋃
u∗∈∂ϕ(v)∂ (u

∗ ◦ψ)(u),

where the following notations are used:

1. u h→ x means that u→ x and h(u)→ h(x); note that if h is continuous, then u h→ x is equivalent

with u→ x.

2. x∗ ∈ ‖·‖∗− limsup
u→x

∂h(u) means that for every ε > 0 there exist xε and x∗ε such that x∗ε ∈ ∂h(xε)

and ‖xε − x‖< ε, ‖x∗ε − x∗‖< ε .

The notation x∗ ∈ ‖·‖∗− limsup
u h→x

∂h(u) has a similar interpretation and it is equivalent with

x∗ ∈ ‖·‖∗− limsup
u→x

∂h(u) provided that h is continuous.

6.1.2.1 Exact Optimality Conditions

In this section, we give exact necessary conditions for approximately minimal solutions of vector

optimization problems with variable ordering structures using generic subdifferential approach

with the help of nonlinear separating functionals defined by Tammer and Weidner and its prop-

erties [32].

Assumption (A12). X ,Y are Banach spaces, S ⊂ X is a closed set in X , f ∈ F (X ,Y ) is a

function with dom f 6= /0 and ε ≥ 0.
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Assumption (A13). C : Y ⇒Y is a set-valued map such that C(y) is a closed, solid and pointed

set for all y ∈Y . The nonzero vector k0 ∈Y \{0} satisfies C(y)+(0,+∞)k0 ⊆ intC(y) for

all y ∈ Y .

In order to drive necessary optimality condition for approximately minimal solutions of (VVOP),

for x ∈S, we use the scalarization functional θx : Y → R := R∪{±∞} defined by

θx(y) := inf{t ∈ R | y ∈ tk0 + f (x)−C( f (x))} (6.5)

which is slightly modification of the functional defined by (4.2). Note that all the properties and

theorems given in section 4.2 hold also for this functional and additionally we have the following

theorem.

Theorem 6.1.5. [33, Theorem 2.3.1] Let assumptions (A12) and (A13) be fulfilled and x ∈ X .

The functional θx : Y → R defined by (6.5) has the following properties.

(a) The functional θx is finite-valued if and only if C( f (x)) does not contain lines parallel to k0

and Rk0−C( f (x)) = Y.

(b) The domain of θx is Rk0−C( f (x)) and

θx(y+λk0) = θx(y)+λ ∀y ∈ Y, ∀λ ∈ R.

(c) θx is convex if and only if C( f (x)) is convex.

If the functional θx is proper and convex, we get the following result concerning the classical

(Fenchel) subdifferential ∂ of θx.

Theorem 6.1.6. [21, Theorem 2.2] Let x ∈ X , C( f (x)) ⊂ Y be a closed convex proper set,

k0 ∈Y\{0} such that C( f (x))+[0,+∞)k0⊂C( f (x)) holds and for every y∈Y , there exists t ∈R
such that y+ tk0 /∈C( f (x))− f (x). Consider the function θx given by (6.5) and let ŷ ∈ domθx.

Then

∂θx(ŷ) = {υ∗ ∈ Y ∗ | ∀d ∈ D : υ
∗(k0) = 1,υ∗(d)+υ

∗(ŷ)−θx(ŷ)≥ 0}, (6.6)

where D :=C( f (x))− f (x).

The following theorem gives a characterization of approximately minimal solutions of (VVOP)

by using a scalarization by means of the functional θx : Y → R defined by (6.5).

Theorem 6.1.7. Suppose that assumptions (A12) and (A13) hold. Let x ∈S be an εk0-minimal

solution of (VVOP). Consider the function θx given by (6.5). Then θx( f (x))≤ inf
x∈S

θx( f (x))+ ε

for all x ∈S.
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Proof. Set ȳ = f (x) and suppose that θx(ȳ) = t̄. First, we prove that t̄ = 0. By θx(ȳ) = t̄ and

Theorem 4.2.7, we get

t̄k0 + ȳ− ȳ ∈C(ȳ) =⇒ t̄k0 ∈C(ȳ).

By pointedness of C(ȳ), we get 0 ∈ bdC(ȳ) and t̄ ≤ 0. We claim that t̄ = 0. Suppose that

t̄ < 0, then again by pointedness of C(ȳ), −t̄ > 0, k0 6= 0 and C( f (x))+ [0,+∞)k0 ⊂C( f (x)),

we get −t̄k0 ∈C(ȳ)\{0} and therefore t̄k0 ∈C(ȳ)\{0}∩ (−C(ȳ)). But this is a contradiction to

pointedness of C(ȳ) in assumption (A13) and therefore t̄ = 0. Now by contrary, suppose that

there exists an element x ∈S such that θx( f (x))+ ε < θx(ȳ) = 0. This means that there exists

γ > 0 such that θx( f (x))+ ε + γ = 0 and θx( f (x)) =−ε− γ . Again by Theorem 4.2.7, we get

(−ε− γ)k0 + ȳ− f (x) ∈C(ȳ) =⇒ ȳ− εk0− y ∈C(ȳ)+ γk0 ⊂C(ȳ)\{0}.

This means that (ȳ− εk0−C(ȳ) \ {0})∩ f (S) 6= /0. But this is a contradiction to approximate

minimality of x and therefore θx( f (x))≤ inf
x∈Ω

θx( f (x))+ ε for all x ∈S.

Lemma 6.1.8. Consider problem (VVOP) and let x ∈S and the functional θx given by (6.5) and

set ȳ := f (x). Impose in addition to (A12)–(A13) the following assumptions:

(C5) C(y)+C(y)⊆C(y).

(C6) f is bounded from below over S with respect to an element y ∈ Y with θx(y) > −∞ and

Θ :=C(y) in the sense of Definition 4.2.26.

Then the functional θx ◦ f is bounded from below.

Proof. Under the assumption C(y)+C(y) ⊆C(y) by (C5), the functional θx is C(y)-monotone

taking into account Theorem 4.2.18. The C(y)-monotonicity of θx and f (S)⊆ y+C(y) implies

∀x ∈S : θx( f (x))≥ θx(y),

i.e., θx ◦ f is bounded from below.

In the next theorem we show necessary conditions for approximately minimal solutions of vector

optimization problems with variable ordering structures.

Theorem 6.1.9. Consider problem (VVOP) and let x ∈ εk0-M(S, f ,C) and the functional θx

given by (6.5). Set ȳ := f (x) and let C(ȳ) be a convex set. Impose in addition to (A12)–(A13)

the following assumptions:

(C5) C(y)+C(y)⊆C(y).

(C6) f is bounded from below over S with respect to an element y ∈ Y with θx(y) > −∞ and

Θ :=C(y) in the sense of Definition 4.2.26.

(C7) f ∈F (X ,Y ) is locally Lipschitz.
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Consider an abstract subdifferential ∂ for that (H1) – (H5) are satisfied. Then, there exists

xε ∈ dom f ∩S and v∗ ∈ ∂ (θx( f (xε)) such that

0 ∈ ∂ (v∗ ◦ f )(xε)+N(xε ;S)+
√

εBX∗ .

Proof. Let x ∈ εk0 -M(S, f,C). By Theorem 6.1.7, we get θx( f (x))≤ inf
x∈S

θx( f (x))+ ε . There-

fore x is an approximate solution of the scalar problem with the objective functional θx ◦ f . By

f ∈F (X ,Y ) and Theorem 4.2.10, (θx ◦ f ) is lower semicontinuous. Furthermore, (θx ◦ f ) is

bounded from below because of Lemma 6.1.8. This yields that the assumptions of the scalar

Ekeland’s variational principle (Theorem 5.0.1) and strong form of Ekeland’s variational princi-

ple (Remark 5.0.2) are fulfilled.

By Theorem 5.0.1 and Remark 5.0.2, there exists an element xε ∈ dom f ∩S such that it satisfies

parts (a), (b) and (c) of Theorem 5.0.1 and it is an exact solution of minimizing a functional

h : X → R∪{+∞} over S with

h(x) := (θx ◦ f )(x)+
√

ε ‖x− xε‖ for all x ∈ X .

Taking into account (H2) and (H4), we get

0 ∈ ∂h(xε)+N(xε ;S).

Under the given assumptions the functional θx is convex and continuous taking into account

Theorem 6.1.5 (c) and third part of Theorem 4.2.18. Since f is locally Lipschitz and θx is

convex and continuous (and hence locally Lipschitz; see [62, Proposition 1.6]), it is clear that

θx ◦ f is also locally Lipschitz. This implies together with the convexity of ‖·‖ and (H5) that

∂h(xε) ⊆ ∂
(
θx ◦ f

)
(xε)+∂ (

√
ε ‖·− xε‖)(xε).

By (H3), we get

∂ (θx ◦ f )(xε)⊆
⋃{

∂ (v∗ ◦ f )(xε) | v∗ ∈ ∂θx( f (xε))
}
.

Because of the convexity of the norm and (H1), we get ∂ ‖·− xε‖(xε) = BX∗ and by the last

three inclusions, we can find v∗ ∈ ∂θx( f (xε)) satisfying

0 ∈ ∂ (v∗ ◦ f )(xε)+N(xε ;S)+
√

εBX∗

and proof is complete.

Remark 6.1.10. Taking into account Theorem 6.1.6 we get in Theorem 6.1.9, the existence of

v∗ ∈ Y ∗ such that (6.6) holds.
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6.1.2.2 Fuzzy Optimality Conditions

In the proof of the next result we use the functional θy : Y → R defined by (4.2)

θy(y) = inf{t ∈ R | y ∈ tk0−C(y)}. (6.7)

where C(y)⊂ Y is a proper, closed and convex cone with nonempty interior and k0 ∈ intC(y).

Under the given assumptions this functional is continuous and convex and its subdifferential is

given by

∂θy(u) = {v∗ ∈C(y)∗ | v∗(k0) = 1,v∗(u) = θy(u)} (6.8)

(see [21, Lemma 2.1]).

In the next theorem we show necessary conditions for approximately minimal elements of a

vector optimization problem with a variable ordering structure following the line of the proof of

[21, Theorem 5.3].

Theorem 6.1.11. Let assumptions (A12) and (A13) be fulfilled, X ,Y ∈X , f ∈F (X ,Y ) be a

L-Lipschitz function and S be a closed subset of the Banach space X . Let xε ∈ εk0 -M(S, f ,C)

and C( f (xε)) is a closed convex cone with nonempty interior. Then for every k0 ∈ intC( f (xε))

and µ > 0, there exist elements u ∈ B(xε ,
√

ε +µ),z ∈ B(xε ,
√

ε +µ/2)∩S, u∗ ∈ (C( f (xε)))
∗,

u∗(k0) = 1, x∗ ∈ X∗,‖x∗‖ ≤ 1 such that

0 ∈ ∂ (u∗ ◦ f )(u)+
√

εu∗(k0)x∗+N∂ (S,z)+B(0,µ),

provided that ∂ satisfies (H1), (H2), (H6), (H7).

Moreover, for some elements x ∈ B(xε ,
√

ε + µ/2) and v ∈ B( f (x)− f (xε),L
√

ε + µ) it holds

u∗(v) = θ f (xε )(v).

Proof. We consider xε ∈ εk0 -M(S, f ,C). Taking into account Definition 5.0.8 we have

( f (xε)− εk0−C( f (xε))\{0})∩ f (S) = /0.

The function f is supposed to be Lipschitz, so it is continuous as well and since S is a closed set

in a Banach space it is a complete metric space endowed with the distance induced by the norm.

Thus, the assumptions of the vector-valued variant of Ekeland’s variational principle given in

[34, Corollary 9] are fulfilled. Applying this variational principle we get the existence of an

element x ∈S with ‖x− xε‖<
√

ε and having the property that

h(S)∩ (h(x)−C( f (xε))\{0}) = /0,

where

h(x) := f (x)+
√

ε ‖x− x‖k0.
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Let µ > 0. Applying now [21, Theorem 4.2] for a positive number δ with properties that 2δ < µ

and
√

ε
∥∥k0
∥∥δ/2+ δ/2 < µ and using the functional θ f (xε ) defined by (4.2), we can find ele-

ments u ∈ B(x,δ )⊂ B(xε ,
√

ε +δ ), x ∈ B(x,δ/2)⊂ B(xε ,
√

ε +δ/2), v ∈ B(h(x)−h(x),δ/2),

z ∈ B(x,δ/2)∩S⊂ B(xε ,
√

ε +δ/2)∩S, u∗ ∈ ∂θ f (xε )(v), such that

0 ∈ ∂ (u∗ ◦h)(u)+N∂ (S,z)+B(0,δ ). (6.9)

We get the properties u∗ ∈ (C( f (xε)))
∗,u∗(k0) = 1 from (6.8).

Consider the element x∗ ∈ ∂ (u∗ ◦h)(u) involved in (6.9). Because of

∂ (u∗ ◦h)(u) = ∂ (u∗ ◦ ( f (·)+
√

ε ‖·− x‖k0))(u),

taking into account (H1) and (H6), there exist u ∈ B(u,δ ) ⊂ B(xε ,
√

ε + 2δ ) and u′ ∈ B(u,δ )

such that

x∗ ∈ ∂ (u∗ ◦ f )(u)+
√

εu∗(k0)∂ (‖·− x‖)(u′)+B(0,δ ). (6.10)

Taking into account the well-known structure of the subdifferential of the norm and combining

relations (6.9) and (6.10) it follows that there exists x∗ ∈ X∗ with ||x∗||= 1 such that

0 ∈ ∂ (u∗ ◦ f )(u)+
√

εu∗(k0)x∗+N∂ (S,z)+B(0,2δ ).

Because 2δ < µ , it remains only to prove the estimation about the ball which contains v. Then,

‖v− ( f (x)− f (xε))‖ ≤ ‖v− (h(x)−h(x))‖+‖(h(x)−h(x))− ( f (x)− f (xε))‖
≤ δ/2+

∥∥√εk0 ‖x− x‖− f (x)+ f (xε)
∥∥

≤ δ/2+
√

ε
∥∥k0∥∥δ/2+L

√
ε

< L
√

ε +µ,

where the last inequality follows because of the assumptions made on δ . Moreover, we get

u∗(v) = θy(v) from (6.8). This completes the proof.

6.1.3 Second Order Optimality Conditions

It is known that duality principles in vector optimization, fuzzy optimization, inverse problems,

etc can be studied using approaches from set-valued optimization. There are two important ap-

proaches to optimality conditions for set-valued optimization. One is using derivatives of the

involved set-valued maps and another one is using the alternative type theorems. Corley (1988)

used contingent derivatives in [18] in order to give optimality conditions in set-valued optimiza-

tion and later many papers come out giving optimality conditions for set-valued optimization;
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see [7, 30, 42, 45–48, 50–52, 57]. Jahn [47] introduced second order contingent epideriva-

tives and using this, he gave second order optimality conditions for set-valued optimization with

fixed ordering structures. In the paper by Isac and Khan [42], second order optimality condi-

tions are given when the underlying second order contingent sets are empty. Here we generalize

optimality conditions given by Isac and Khan [42] for set-valued optimization problems with

variable ordering structures. In the beginning of this chapter, we recalled first and second or-

der contingent derivatives, contingent epiderivatives, second order tangential derivatives and

epiderivatives. Now we used them in order to give second order optimality conditions for set-

valued optimization problems with variable ordering structures. Let X and Y be two separated

topological vector space and F : X ⇒ Y be a set-valued map. The domain and the graph of F

are given by domF := {x ∈ X | F(x) 6= /0} and gphF = {(x,y) ∈ X×Y | y ∈ F(x), x ∈ domF},
respectively.

In order to give second order optimality conditions for approximate solutions of set-valued op-

timization problems with variable ordering structures, we bring some definitions which will be

used later.

Definition 6.1.12. Let K : X ⇒ Y be a cone-valued map where K(x) is a pointed, solid, closed

and convex cone for all x ∈ X .

epiF := {(x,y) ∈ X×Y | y ∈ F(x)+K(x)}.

The profile F+ with respect to the map K : X ⇒ Y is defined as following:

F+(x) = F(x)+K(x).

It is easy to see that epi(F) = gph(F+).

We bring following definitions of second order tangent derivative and second order epiderivative

of set-valued maps in order to give second order optimality condition for weak minimality in

set-valued optimization with variable ordering structures. For this, first we bring definitions of

contingent cones, second order contingent sets and contingent derivatives.

Definition 6.1.13. Let X be a real normed space and S be a nonempty subset of X .

1. The contingent cone T (S,x) of S at x ∈ clS is the set of all x ∈ X such that there are the

sequences (tn)⊂ R+ with tn ↓ 0 and (xn)⊂ X with xn→ x such that x+ tnxn ∈S.

2. The interiorly contingent cone IT (S,x) of S at x ∈ clS is the set of all x ∈ X such that

for any sequences (tn) ⊂ R+ with tn ↓ 0 and (xn) ⊂ X with xn → x, there exists n1 ∈ N
such that x+ tnxn ∈S for all n≥ n1.

3. The second order contingent set T 2(S,x,d) of the set S at x ∈ clS in the direction of

d ∈ X is the set of all x ∈ X such that there are the sequences tn ⊂ R+ with (tn) ↓ 0 and

(xn)⊂ X with xn→ x such that x+ tnd +( t2
n
2 )xn ∈S.
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Remark 6.1.14. The following properties hold for (interiorly) contingent cones and second order

contingent sets.

1. T (S,x) is nonempty closed cone.

2. T 2(S,x,d) is closed set, possible empty and nonconnected.

3. If d ∈ T (S,x), then T 2(S,x,d) may be nonempty.

4. IT (S,x) is an open cone and IT (S,x) = X\T (X\S,x).

5. T (S,x) = T (clS,x), int(T (S,x)) = IT (S,x), IT (S,x) = IT (intS,x)

and cl(IT (S,x)) = T (S,x).

Definition 6.1.15. Let X ,Y be normed spaces, F : X⇒Y be a set-valued map and K : X⇒Y be

a cone-valued map where K(x) is a proper, convex, and pointed cone for all x ∈ X .

1. The contingent derivative of F at (x,y) is the set-valued map DcF(x,y) : X ⇒ Y defined

by

gph(DcF(x,y)) := T (gph(F),(x,y)).

2. Let (x,y) ∈ gph(F) be given. A single-valued map DF(x,y) : X → Y whose epigraph

equals contingent cone to the epigraph of F at (x,y), i.e.,

epi(DF(x,y)) = T (epi(F),(x,y)),

is called contingent epiderivative of F at (x,y).

For more details about contingent epiderivative see [48]. Now we are ready to bring defini-

tions of second order contingent derivatives and second order tangential derivative/epideriva-

tives. These definitions will be used later in order to give second order optimality conditions

for local weakly minimal solutions of set-valued optimization problems with variable ordering

structures.

Definition 6.1.16. The second order contingent derivative of F : X ⇒ Y at (x,y) ∈ gph(F) in

the direction (u,v) is a set-valued map D2
cF(x,y,u,υ) : X ⇒ Y defined by

D2
cF(x,y,u,v)(x) = {y ∈ Y | (x,y) ∈ T 2(gph(F),(x,y),(u,v))}.

Remark 6.1.17. If (u,v) = (0X ,0Y ), then from D2
cF(x,y,u,v), we recover the contingent deriva-

tive DcF(x,y) of F at (x,y).

Definition 6.1.18. Let X ,Y be real normed spaces, F,K : X⇒Y be set-valued maps where K(x)

is a pointed, closed and convex cone for all x ∈ X . Let (x,y) ∈ gph(F) and (u,v) ∈ X×Y.
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1. A set-valued map D2F(x,y,u,υ) : X ⇒ Y given by

D2F(x,y,u,v) = {y ∈ Y | (x,y) ∈ T (T (gph(F),(x,y)),(u,v))}

is called second order tangential derivative of F at (x,y) in the direction of (u,v).

2. A single-valued map D2
eF(x,y,u,υ) : X → Y given by

epi(D2
eF(x,y,u,v)) = T (T (epi(F),(x,y)),(u,v))

is called second-order tangential epiderivative of F at (x,y) at the direction (u,v).

Assumption (A14). Let X ,Y be normed spaces, S ⊂ X and K : X ⇒ Y be a set-valued map

where K(x) is a nontrivial, pointed, solid, closed and convex cone for all x ∈ X . Let F : S⇒ Y

be a set-valued map.

Under assumption (A14) we consider the following optimization problem with respect to a vari-

able ordering structure:

Minimize F(x) subject to x ∈S. (P1)

(x,y) ∈ gph(F) is called a weakly minimal solution of (P1) with respect to K if and only if

(y− intK(x))∩F(S) = /0. Also (x,y) ∈ gph(F) is called a local weakly minimal solution of

(P1) iff there exists a neighborhood U of x such that

(y− intK(x)∩F(S∩U) = /0.

Remark 6.1.19. Observe that in the definition of optimal solutions in the third chapter, our

ordering map C : Y ⇒ Y has the same origin and image space Y while here our ordering map

K : X ⇒ Y is defined from origin space X to the image space Y . This will be important in the

following and subsections 6.2.3 and 6.3.3 because multifunction F : X ⇒Y will be used instead

of f : X → Y and output of F(x) is a set for each x ∈ X .

In the following theorem, we give necessary optimality conditions for local weakly minimal

solutions of (P1); see [43] for the case of fixed ordering structure. Let (x, ȳ) be a weakly minimal

solution of (P1), we define (F +K(x)) : X ⇒ Y as (F +K(x))(x) := F(x)+K(x). Please note

that K(x) is fixed here and is different from profile F+(x) = F(x)+K(x).

Theorem 6.1.20. Let assumption (A14) be fulfilled and (x,y) ∈ gph(F) be a local weakly

minimal solution of problem (P1), then for every u ∈ dom(D(F +K(x))(x,y)) and for every

v ∈ D(F +K(x))(x,y)(u)∩ (−K(x)), the following holds:

D2(F +K(x))(x,y,u,v)(x)∩ IT (− intK(x),v) = /0 (6.11)
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for all x ∈ dom(D2(F +K(x))(x,y,u,v)).

Proof. Suppose that (6.11) does not hold and there exists x∈ dom(D2(F+K(x))(x,y,u,v)) such

that

y ∈ D2(F +K(x))(x,y,u,v)(x)∩ IT (− intK(x),v)),

then (x,y)∈ T (T (gph(F)+K(x),(x,y)),(u,v)). Therefore there exist sequences (tn)∈R+ with

tn ↓ 0 and (xn,yn)⊂ X×Y with (xn,yn)→ (x,y) such that

(u+ tnxn,v+ tnyn) ∈ T (gph(F)+K(x),(x,y)) ∀n ∈ N.

By tn ↓ 0, yn→ y and y ∈ IT (− intK(x),v), there exists n1 ∈ N such that

v+ tnyn ∈ − intK(x), ∀n > n1.

For any n > n1, we fix an element (un,vn) = (u+ tnxn,v+ tnyn) and notice that

(un,vn) ∈ T (gph(F)+K(x),(x,y)).

By the definition of contingent cones, for (un,vn), there exist sequences (xm,ym) ⊂ X ×Y with

(xm,ym)→ (un,vn) and (tm)⊂ R+ with tm ↓ 0 such that

y+ tmym ∈ F(x+ tmxm)+K(x).

Furthermore, by vn ∈ − intK(x) and ym → vn, there exists m1 ∈ N such that ym ∈ − intK(x)

for all m > m1. Since K(x) is a cone, this implies that tmym ∈ − intK(x). Now assume that

ωm ∈ F(x+ tmxm) such that y+ tmym ∈ ωm +K(x). Then

ωm ∈ y− intK(x).

Since bm := (x+ tmxm)→ x, there exists m2 > 0 such that bm ∈N (x) where N (x) is a suitable

neighborhood of x. Therefore, we showed that there exists a sequence {ωm} such that

ωm ∈ F(bm)∩ (y− intK(x)) for all m > {m1,m2}.

This is a contradiction to weak minimality of (x,y) and proof is complete.

If we set (x,y) = (0X ,0Y ), we have the following corollary.

Corollary 6.1.21. Let assumption (A14) be fulfilled and (x,y) ∈ gph(F) be a local weakly min-

imal solution of problem (P1), then

D(F +K(x))(x,y)∩− intK(x) = /0 for all x ∈ dom(D(F +K(x))(x,y)).
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Example 6.1.22. Suppose that X =Y =R, S= [1,2]⊂ X , f (x) = 2x, g(x) = 3x and F : X ⇒Y

be a set-valued map such that

F(x) = {y ∈ Y | f (x)≤ y≤ g(x)}.

We also define K : X ⇒ Y as following

K(x) =

{
[0,+∞) if x = 1,2

(−∞,0] otherwise.

Then F(S) =
⋃

x∈S F(x) = [2,6] and (1,2) is a weakly minimal solution because

F(S)∩
(
y− intK(x)

)
= [2,6]∩ (2− (0,+∞)) = [2,6]∩ (−∞,2) = /0.

Also D(F +K(1))(1,2)⊂ [0,+∞) and gph(D(F +K(1))(1,2)) = {(x,y)∈R2
+| y≥ 2x}. There-

fore, for any (x,y) ∈ T (gph(F +K(1)),(1,2)), we have y≥ 0. This means that

D(F +K(1))(1,2)∩− intK(1) = /0.

The following theorem shows that (6.11) is in fact a sufficient optimality condition under a

certain convexity assumption; see [43] for the case of fixed ordering structure.

Theorem 6.1.23. Let assumption (A14) be fulfilled, x ∈S and gph(F +K(x)) be convex. Let

for every u ∈ dom(D(F +K(x))(x,y)), every v ∈ D(F +K(x))(x,y)(u)∩
(
− bdK(x)

)
and for

all x ∈ dom(D2(F +K(x))(x,y,u,v)), the following holds:

D2(F +K(x))(x,y,u,v)(x)∩ IT (− intK(x),v) = /0 (6.12)

Then (x,y) ∈ gph(F) is a weakly minimal solution of (P1).

Proof. By setting (u,v) = (0X ,0Y ) and by (6.12), we obtain

D(F +K(x))(x,y)∩− intK(x) = /0.

Notice that (x− x) ∈ dom(D(F +K(x))(x,y)) for x ∈ S and under the convexity assumption,

we have y− y⊂ D(F)(x,y)(x− x), therefore

(y− y)∩− intK(x) = /0.

Therefore F(S)∩ (y− intK(x)) = /0 and this completes the proof.

Assumption (A15). Let X ,Y,Z be normed spaces and K : X ⇒ Y be a set-valued map where

K(x) is a nontrivial, pointed, closed, solid and convex cone for all x ∈ X . Let F : S⇒ Y and

G : S⇒ Z be set-valued maps and D⊂ Z is a nontrivial, solid, pointed, closed and convex cone.
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Under assumption (A15) we consider the following optimization problem with respect to a vari-

able ordering structure:

Minimize F(x) subject to x ∈S1 := {x ∈S| G(x)∩−D 6= /0}. (P2)

The following theorem gives a necessary optimality condition for local weakly minimal solu-

tions of (P2); see [43] for the case of fixed ordering structure.

Theorem 6.1.24. Let assumption (A15) be fulfilled. Suppose that (x,y) ∈ gph(F) is a local

weakly minimal solution of (P2) and z ∈ G(x). Then for every u ∈ dom(D(F,G)(x,y,z)), every

(v,ω) ∈ D(F,G)(x,y,z)∩{−K(x)×−D} and every x ∈ D1 := dom(D2(F,G)(x,y,z,u,v,ω)),

we have

D2(F,G)(x,y,z,u,v,ω))(x)∩ IT (−K(x),v)× IT (IT (−D,z),ω) = /0 (6.13)

where the notation (F,G)(x) represents (F(x)+K(x))× (G(x)+D).

Proof. Suppose that the assertion is not true and there exists x ∈ dom(D2(F,G)(x,y,z,u,v,ω))

such that (y,z) ∈ D2(F,G)(x,y,z,u,v,ω)(x)∩ IT (−K(x),v)× IT (IT (− intD,z),ω) which im-

plies that (x,y,z) ∈ T (T (gph(F,G),(x,y,z)),(u,v,ω)). This means there exist sequences (tn) in

R+ with tn ↓ 0 and (xn,yn,zn) in the product space X×Y ×Z with (xn,yn,zn)→ (x,y,z) such that

(u+ tnxn,v+ tnyn,ω + tnzn) ∈ T (gph(F,G),(x,y,z)).

By y ∈ IT (− intK(x),v), there exists n1 ∈ N such that

v+ tnyn ∈ − intK(x) n≥ n1.

Analogously by z ∈ IT (IT (− intD,z),ω), there exists n2 ∈N such that ω + tnzn ∈ IT (− intD,z)

for all n > n2. For n ≥ max{n1,n2}, we fix un := u+ tnxn, vn := v+ tnyn and ωn := ω + tnzn.

Then

(un,vn,ωn) ∈ T (gph(F,G),(x,y,z))

(vn,ωn) ∈ − intK(x)× IT (− intD,z).

By definition of contingent cones, there exist sequences (tm) ⊂ R+ with tm ↓ 0 and (xm,ym,zm)

in X ×Y ×Z with (xm,ym,zm)→ (un,vn,ωn) such that (y+ tmym,z+ tmzm) ∈ (F,G)(x+ tmxm)

which means

y+ tmym ∈ F(x+ tmxm)+K(x),

z+ tmzm ∈ G(x+ tmxm)+D.

By ym→ vn and vn ∈ − intK(x), there exists m1 > 0 such that

tmym ∈ − intK(x) ∀m > m1.
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Let am ∈ F(x+ tmxm) be such that y− intK(x) ∈ am +K(x) and consequently we have:

am ∈ y− intK(x).

By ωn ∈ IT (− intD,z), there exists m2 > 0 such that z+ tmzm ∈ − intD for every m > m2. Let

bm ∈G(x+ tmxm) be such that z+ tmzm ∈ bm+D and therefore we have bm ∈− intD. Therefore,

for sufficiently large m, we have cm := x+ tmxm ∈N (x), G(cm)∩−D 6= /0 and

F(cm)∩ (y− intK(x)) 6= /0.

But this is a contradiction to the local weak minimality of (x,y) and proof is complete.

In assumption (A15), we suppose that D ⊂ Z is a fixed, nontrivial, solid, pointed and convex

cone for all x ∈ X . In the following assumption, we suppose that D is not fixed and it is defined

by a convex cone-valued map D : X ⇒ Z.

Assumption (A16). Let X ,Y,Z be normed spaces, K : X ⇒ Y be a set-valued map such that

K(x) ⊂ Y is a nontrivial, pointed, solid, closed, and convex cone for all x ∈ X , F : S⇒ Y

and G : S⇒ Z be set-valued maps and D : X ⇒ Z be a cone-valued map where D(x) ⊂ Z is a

nontrivial, solid, pointed, closed and convex cone for all x ∈ X .

Under assumption (A16) we consider the following optimization problem with respect to a vari-

able ordering structure:

Minimize F(x) subject to x ∈S2 := {x ∈S| G(x)∩−D(x) 6= /0.} (P3)

The following theorem gives a necessary optimality condition for local weakly minimal solution

of (P3).

Theorem 6.1.25. Let assumption (A16) be fulfilled. Suppose that (x,y) ∈ gph(F) is a local

weakly minimal solution of problem (P3), z ∈G(x) and D(x)⊆D(x) for all x ∈N (x). Then for

every u ∈ dom(D(F̂,G)(x,y,z)), for every (v,ω) ∈ D(F̂,G)(x,y,z)∩{−K(x)×−D(x)} and for

every x ∈ D1 := dom(D2(F̂,G)(x,y,z,u,v,ω)), we have

D2(F̂,G)(x,y,z,u,v,ω)(x)∩ IT (−K(x),v)× IT (IT (−D(x),z),ω) = /0

where the notation (F̂,G)(x) represents (F(x)+K(x))× (G(x)+D(x)).

Proof. Suppose that assertion is not true and there exists x∈ dom(D2(F̂,G)(x,y,z,u,v,ω)) such

that (y,z) ∈D2(F̂,G)(x,y,z,u,v,ω)(x)∩ IT (−K(x),v)× IT (IT (− intD(x),z),ω) which implies

that (x,y,z) ∈ T (T (gph(F̂,G),(x,y,z)),(u,v,ω)). Therefore, there exist sequences (tn) ⊂ R+

with tn ↓ 0 and (xn,yn,zn)⊂ X×Y ×Z with (xn,yn,zn)→ (x,y,z) such that

(u+ tnxn,v+ tnyn,ω + tnzn) ∈ T (gph(F̂,G),(x,y,z)).
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By y ∈ IT (− intK(x),v), there exists n1 ∈ N such that

v+ tnyn ∈ − intK(x) n≥ n1.

By z ∈ IT (IT (− intD(x),z),ω), there exists n2 ∈N such that ω + tnzn ∈ IT (− intD(x),z) for all

n > n2. For n≥max{n1,n2}, we fix un := u+ tnxn, vn := v+ tnyn and ωn := ω + tnzn. Then

(un,vn,ωn) ∈ T (gph(F̂,G),(x,y,z)),

(vn,ωn) ∈ − intK(x)× IT (− intD(x),z).

By definition of contingent cones, there exist sequences (tm) ⊂ R+ with tm ↓ 0 and (xm,ym,zm)

in X ×Y ×Z with (xm,ym,zm)→ (un,vn,ωn) such that (y+ tmym,z+ tmzm) ∈ (F̂,G)(x+ tmxm)

and

y+ tmym ∈ F(x+ tmxm)+K(x),

z+ tmzm ∈ G(x+ tmxm)+D(x+ tmxm).

By ym→ vn and vn ∈ − intK(x), there exists m1 > 0 such that

tmym ∈ − intK(x) ∀m > m1.

Let am ∈ F(x+ tmxm) be such that y− intK(x) ∈ am +K(x) and consequently we have:

am ∈ y− intK(x).

By ωn ∈ IT (− intD(x),z), there exists m2 > 0 such that z+ tmzm ∈− intD(x) for every m > m2.

Let bm ∈ G(x+ tmxm) be such that z+ tmzm ∈ bm +D(x+ tmxm). By this assumption we get

bm ∈ − intD(x)−D(x+ tmxm). By D(x) ⊆ D(x) for all x ∈N (x) and since D(x) is a convex

cone for all x, we get

bm ∈ − intD(x)−D(x+ tmxm)⊆− intD(x+ tmxm)−D(x+ tmxm)⊆− intD(x+ tmxm).

Therefore, for sufficiently large m, cm := x+ tmxm ∈N (x), G(cm)∩−D(cm) 6= /0 and

F(cm)∩ (y− intK(x)) 6= /0.

This is a contradiction to the local weakly minimality of (x,y).

6.2 Optimality Conditions for Approximately Nondominated Solu-
tions

In this section, we present optimality conditions for approximately nondominated solutions of

vector optimization problems with variable ordering structures with different approaches namely
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Mordukhovich subdifferential approach and general generic approach. In the last subsection,

contingent derivatives and epiderivatives will be used in order to derive second order optimal-

ity condition for weakly nondominated solutions of set-valued optimization. Given variational

principle in the previous chapter for approximately nondominated solutions and characterization

of approximately nondominated solutions of vector optimization problems with variable order-

ing structures in the fourth chapter will be used here in order to derive optimality conditions for

approximately nondominated solutions of vector optimization problems with variable ordering

structures.

6.2.1 Mordukhovich Subdifferential Approach

In this subsection, we give some optimality conditions for approximately nondominated so-

lutions of vector optimization problems with variable ordering structures using the functional

ϕy,C,k0 defined in (5.18) with Mordukhovich subdifferential approach. The following optimality

condition is given by Bao, Eichfelder, Soleimani and Tammer in [2] and the same result for the

functional defined in (4.2) can be proven in similar ways. It worth to remember that all solution

concepts of vector optimization problems with variable ordering structures coincide in the case

of vector optimization problems with fixed ordering structures.

Theorem 6.2.1. Consider problem (VVOP), let x ∈ εk0-N(S, f ,C) and set y := f (x). Assume

that in addition to (A11) the following conditions hold:

(Â9) f is bounded from below over S with respect to y ∈ Y and Θ = C(y) in the sense of

Definition 4.2.26.

(C2) C has a closed graph over f (S) in the sense that for every sequence of pairs {(yn,vn)}, if

yn ∈ f (S) and vn ∈C(yn) for all n ∈N and (yn,vn)→ (y∗,v∗) as n→+∞, then y∗ ∈ f (S)

and v∗ ∈C(y∗).

(C5′) C(y)+C(y)⊂C(y) for all y ∈ f (S).

(C8) There exists a cone D with k0 ∈ intD and C(y)+ intD⊂C(y).

Let ϕy,C,k0 ◦ f satisfies the qualification condition (6.3) for all x ∈ S such that ‖x− x‖ ≤ √ε .

Then, there exist xε ∈ dom f ∩S and v∗ ∈ ∂M(ϕy,C,k0( f (xε)) such that

0 ∈ ∂M(v∗ ◦ f )(xε)+N(xε ;S)+
√

εBX∗ .

Proof. By Theorem 5.2.11, there exists xε ∈ dom f ∩S such that it is an exact solution of

minimizing a functional h : X → R∪{+∞} over S with

h(x) := (ϕy,C,k0 ◦ f )(x)+
√

ε ‖x− xε‖ for all x ∈ X

By [58, Proposition 5.1], we get
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0 ∈ ∂Mh(xε)+N(xε ;S).

By Lemma 5.2.9, the composition ϕy,C,k0 ◦ f is lower-semicontinuous on a neighborhood of xε .

Employing Lemma 6.1.2 (a) to the lower semicontinuous functional ϕy,C,k0 ◦ f and the Lipschitz

continuous function ‖.‖, we have

∂Mh(xε) ⊂ ∂M
(
ϕy,C,k0 ◦ f

)
(xε)+∂M(

√
ε ‖·− xε‖)(xε).

By Lemma 6.1.2 (b), we get

∂M(ϕy,C,k0 ◦ f )(xε)⊂
⋃{

∂M(v∗ ◦ f )(xε) | v∗ ∈ ∂Mϕy,C,k0( f (xε))
}
.

Combining three inclusions together while taking into account the subdifferential of the norm

∂M ‖·− xε‖(xε) = BX∗ , we can find v∗ ∈ ∂Mϕy,C,k0( f (xε)) satisfying

0 ∈ ∂M(v∗ ◦ f )(xε)+N(xε ;S)+
√

εBX∗ .

The proof is complete.

Corollary 6.2.2. Consider problem (VVOP) and let all assumptions of Theorem 6.2.1 be ful-

filled. Let x ∈ N(S, f ,C) be an exact nondominated solution of problem (VVOP) and set

y := f (x). Assume that ϕy,C,k0 ◦ f satisfies the qualification condition (6.3) at x. Then, for

any λ > 0, there exists v∗ ∈ ∂M(ϕy,C,k0( f (x)) such that

0 ∈ ∂M(v∗ ◦ f )(x)+N(x;S)+λBX∗ . (6.14)

Proof. Since x∈N(S, f ,C), i.e., it is a 0k0-nondominated solution of problem (VVOP), it is also

εk0-nondominated solution of (VVOP) with ε = λ 2 for all λ > 0 and a weakly nondominated

solution of (VVOP). By Theorem 5.2.11 and Theorem 6.2.1, the only point which satisfies the

part (iv) of Theorem 5.2.11 is x and we can find v∗ ∈ ∂Mϕy,C,k0( f (x)) such that

0 ∈ ∂M(v∗ ◦ f )(x)+N(x;S)+
√

εBX∗

clearly verifying (6.14). The proof is complete.

Note that the necessary conditions for nondominated solutions of problem (VVOP) obtained in

this section are different from those in [5, 26].

6.2.2 Generic Approach

Similar to approximately minimal solutions of vector optimization problems with variable or-

dering structures, it is possible to derive optimality conditions for approximately nondominated

solutions of vector optimization problems with variable ordering structures using general generic

approach; see section 6.1.2 for the symbols and assumptions.
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6.2.2.1 Exact Optimality Conditions

Similar to the previous section we use the functional ϕy,C,k0 defined in (5.18). In order to prove

the main result of this section, we need to prove that this functional is convex functional. For

this, first we bring the following definition.

Definition 6.2.3. A set-valued map C is convex if and only if

λC(x1)+(1−λ )C(x2)⊆C(λx1 +(1−λ )x2)

for all λ ∈ [0,1] and all x1,x2 ∈ domC.

Lemma 6.2.4. Let assumption (A13) be fulfilled and additionally C be a convex set-valued map,

then ϕy,C,k0 defined by (5.18) is convex.

Proof. Let λ ∈ [0,1] and y1,y2 ∈ Y such that ϕy,C,k0(y1) = t1 and ϕy,C,k0(y2) = t2. By (5.18) we

have:

ȳ+ t1k0− y1 ∈C(y1) =⇒ λ ȳ+λ t1k0−λy1 ∈ λC(y1)

ȳ+ t2k0− y2 ∈C(y2) =⇒ (1−λ )ȳ+(1−λ )t2k0− (1−λ )y2 ∈ (1−λ )C(y2)

and thus

ȳ+
(
λ t1 +(1−λ )t2

)
k0−

(
λy1 +(1−λ )y2) ∈ λC(y1)+(1−λ )C(y2).

By convexity of the set-valued map C, we get

ȳ+
(
λ t1 +(1−λ )t2

)
k0−

(
λy1 +(1−λ )y2) ∈C(λy1 +(1−λ )(y2)).

Now again by (5.18), we get

ϕy,C,k0(λy1 +(1−λ )y2)≤ λ t1 +(1−λ )t2 = λϕy,C,k0(y1)+(1−λ )ϕy,C,k0(y2)

and this completes the proof.

Another important property that we need to prove about the functional defined by (5.18) is

continuity. In following lemmata, we prove this functional is lower semicontinuous and upper

semicontinuous.

Lemma 6.2.5. Let assumption (A13) be fulfilled and C : Y ⇒ Y satisfies condition (C2) in The-

orem 6.2.1. Then the functional ϕy,C,k0 defined by (5.18) is a lower semicontinuous functional.

Proof. To prove the lower semicontinuity of ϕy,C,k0 , it is sufficient to prove that

S := lev(t,ϕy,C,k0) = {y ∈ Y | ϕy,C,k0(y)≤ t}
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is a closed set in Y for all t ∈ R. Fix t ∈ R arbitrarily and take any sequence {yn} in S such that

yn→ y0 as n→+∞. By the description of S, we have ϕy,C,k0(yn)≤ t and thus

y+ tk0− yn ∈C(yn).

By (C2), we have ȳ+ tk0− y0 ∈ C(y0) and ϕy,C,k0(y0) ≤ t. The last inequality justifies y0 ∈ S

and thus closedness of S. The proof is complete.

Now we prove that under some conditions the functional ϕy,C,k0 defined by (5.18) is upper semi-

continuous. For this, we define set-valued map C : Y ⇒ Y as following;

∀y ∈ Y C(y) := (intC(y))c,

i.e, for each y ∈ Y , C(y) is the set of complement of intC(y). Since interior of C(y) is an open

set, then C(y) is closed for all y ∈ Y .

Lemma 6.2.6. Let assumptions (A13) be fulfilled and additionally C(y) : Y ⇒Y satisfies condi-

tion (C2) in Theorem 6.2.1. Then the functional ϕy,C,k0 defined by (5.18) is a upper semicontin-

uous functional.

Proof. To prove the upper semicontinuity of ϕy,C,k0 , it is sufficient to prove that

S := {y ∈ Y | ϕy,C,k0(y)≥ t}

is a closed set in Y for all t ∈ R. Fix t ∈ R arbitrarily and take any sequence {yn} in S such that

yn→ y0 as n→+∞. By the description of S, we have ϕy,C,k0(yn)≥ t and thus

y+ tk0− yn /∈ intC(yn) =⇒ y+ tk0− yn ∈C(yn).

By (C2), we have ȳ+ tk0− y0 ∈ C(y0) and ϕy,C,k0(y0) ≥ t. The last inequality justifies y0 ∈ S

and thus closedness of S. The proof is complete.

Corollary 6.2.7. Let assumptions (A13) be fulfilled and set-valued maps C and C satisfy con-

dition (C2) in Theorem 6.2.1. Then the functional ϕy,C,k0 defined by (5.18) is a continuous

functional.

Theorem 6.2.8. Consider problem (VVOP) and let x ∈ εk0-N(S, f ,C), the functional ϕy,C,k0

given by (5.18) and set ȳ := f (x). Let C be a convex set-valued map and set-valued maps C

and C satisfy condition (C2) in Theorem 6.2.1. Impose in addition to (A12)–(A13), (C7) in

Theorem 6.1.9, (C5′) and (C8) in Lemma 6.2.1 the following assumptions:

(Â9) f is bounded from below over S with respect to y ∈ Y and Θ = C(y) in the sense of

Definition 4.2.26.
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Consider an abstract subdifferential ∂ for that (H1) – (H5) are satisfied. Then, there exists

xε ∈ dom f ∩S and v∗ ∈ ∂ (ϕy,C,k0( f (xε)) such that

0 ∈ ∂ (v∗ ◦ f )(xε)+N(xε ;S)+
√

εBX∗ .

Proof. Let x ∈ εk0 -N(S, f,C). Applying Lemma 5.2.8, we get

ϕy,C,k0( f (x))≤ inf
x∈S

ϕy,C,k0( f (x))+ ε.

Therefore x is an approximate solution of the scalar problem with the objective functional

ϕy,C,k0 ◦ f . By Corollary 6.2.7, we get that ϕy,C,k0 ◦ f is lower semicontinuous because of

f ∈F (X ,Y ). Furthermore, ϕy,C,k0 ◦ f is bounded from below because of Lemma 5.2.10. This

yields that the assumptions of the scalar Ekeland’s variational principle (Theorem 5.0.1) and

strong form of Ekeland’s variational principle (Remark 5.0.2) are fulfilled.

By Theorem 5.0.1 and Remark 5.0.2, there exists an element xε ∈ dom f ∩S such that it satisfies

parts (a), (b) and (c) of Theorem 5.0.1 and it is an exact solution of minimizing a functional

h : X → R∪{+∞} over S with

h(x) := (ϕy,C,k0 ◦ f )(x)+
√

ε ‖x− xε‖ for all x ∈ X .

Taking into account (H2) and (H4), we get

0 ∈ ∂h(xε)+N(xε ;S).

Under the given assumptions the functional ϕy,C,k0 is convex and continuous taking into account

Lemma 6.2.4 and Corollary 6.2.7. Since f is locally Lipschitz and ϕy,C,k0 is convex and con-

tinuous (and hence locally Lipschitz, see [62, Proposition 1.6]), it is clear that ϕy,C,k0 ◦ f is also

locally Lipschitz. This implies together with the convexity of ‖·‖ and (H5) that

∂h(xε) ⊆ ∂
(
ϕy,C,k0 ◦ f

)
(xε)+∂ (

√
ε ‖·− xε‖)(xε).

By (H3), we get

∂ (ϕy,C,k0 ◦ f )(xε)⊆
⋃{

∂ (v∗ ◦ f )(xε) | v∗ ∈ ∂θx( f (xε))
}
.

Because of the convexity of the norm and (H1), we get ∂ ‖·− xε‖(xε) = BX∗ and by the last

three inclusions, we can find v∗ ∈ ∂ϕy,C,k0( f (xε)) satisfying

0 ∈ ∂ (v∗ ◦ f )(xε)+N(xε ;S)+
√

εBX∗

and proof is complete.
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6.2.2.2 Fuzzy Optimality Conditions

Now we give fuzzy optimality conditions for approximately nondominated solutions of vector

optimization problems with variable ordering structures. We use the functional θy : Y → R
defined by (6.7)

θy(y) = inf{t ∈ R | y ∈ tk0−C(y)}.

where C(y)⊂ Y is a proper closed convex cone with nonempty interior and k0 ∈ intC(y).

Theorem 6.2.9. Let assumptions (A12) and (A13) be fulfilled, X ,Y ∈X , f ∈F (X ,Y ) be a

L-Lipschitz function and S be a closed subset of the Banach space X . Let xε ∈ εk0 -N(S, f ,C)

and C( f (xε)) is a closed convex cone with nonempty interior and C( f (xε)) ⊆ C( f (x)) for all

x ∈S.

Then for every k0 ∈ intC( f (xε)) and µ > 0, there exist elements z ∈ B(xε ,
√

ε + µ/2)∩S,

u ∈ B(xε ,
√

ε +µ),u∗ ∈ (C( f (xε)))
∗,u∗(k0) = 1, x∗ ∈ X∗,‖x∗‖ ≤ 1 such that

0 ∈ ∂ (u∗ ◦ f )(u)+
√

εu∗(k0)x∗+N∂ (S,z)+B(0,µ),

provided that ∂ satisfies (H1), (H2), (H6), (H7).

Moreover, for some elements x ∈ B(xε ,
√

ε + µ/2) and v ∈ B( f (x)− f (xε),L
√

ε + µ) it holds

u∗(v) = θ f (xε )(v).

Proof. Consider xε ∈ εk0-N(S, f ,C). By C( f (xε))⊆C( f (x)) for all x ∈S and the second part

of Theorem 3.2.24, xε is an approximately minimal solution of (VVOP) the proof is completed

by applying Theorem 6.1.11.

6.2.3 Second Order Optimality Conditions

In this section, we give second order optimality conditions for nondominated solutions of set-

valued optimization problems with variable ordering structures. Consider the optimization prob-

lem (P1). We say (x,y) ∈ gph(F) is a weakly nondominated solution of (P1) if and only if

(y− intK(x))∩F(x) = /0 ∀x ∈S

and (x,y) ∈ gph(F) is called a local weakly nondominated solution if and only if there exists a

neighborhood U of x such that

(y− intK(x))∩F(x) = /0 ∀x ∈S∩U.

By second part of Theorem 3.2.24, each weakly nondominated element x is also a weakly mini-

mal point if K(x)⊂ K(x) for all x ∈S. Therefore by Theorem 3.2.24 and if K(x)⊂ K(x), then
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all the results in section 6.1.3 work for weakly nondominated solution x. But again it is worth

to remember that the set of nondominated solutions and minimal solutions do not coincide in

the case of variable ordering structure and there exists a nondominated solution which is not a

minimal solution and for this reason, we consider the general case. First we bring definition of

convex process; see [1] for more details.

Definition 6.2.10. A set-valued map K is a process if and only if for all x ∈ X and λ > 0, the

followings hold:

λK(x) = K(λx) and 0 ∈ K(0).

Definition 6.2.11. A set-valued map K is a convex process if and only if it is a process satisfying

K(x1)+K(x2)⊆ K(x1 + x2).

In the following theorem, we give a necessary optimality condition for local weakly nondomi-

nated solutions of (P1); see [43] for the case of fixed ordering structure. Remember the definition

of profile F+(x) : X ⇒ Y as F+(x) = F(x)+K(x).

Theorem 6.2.12. Let assumption (A14) be fulfilled. Additionally suppose that (x,y) ∈ gph(F)

is a local weakly nondominated solution of (P1) and K : X ⇒ Y is a convex process, then for

every u ∈ dom(D(F+)(x,y)) and every v ∈ D(F+)(x,y)(u)∩ (−K(x)), the following holds:

D2(F+)(x,y,u,v)(x)∩ IT (− intK(x),v) = /0 (6.15)

for all x ∈ dom(D2(F+)(x,y,u,v)).

Proof. Suppose that (6.15) does not hold and there exists x ∈ dom(D2(F+)(x,y,u,v)) such that

y ∈ D2(F+)(x,y,u,v)(x)∩ IT (− intK(x),v),

then (x,y) ∈ T (T (gph(F+),(x,y)),(u,v)). Therefore there exist sequences (tn) ∈R+ with tn ↓ 0

and (xn,yn)⊂ X×Y with (xn,yn)→ (x,y) such that

(u+ tnxn,v+ tnyn) ∈ T (gph(F+),(x,y)) ∀n ∈ N.

By tn ↓ 0, yn→ y and y ∈ IT (− intK(x),v), there exists n1 ∈ N such that

v+ tnyn ∈ − intK(x), ∀n > n1.

For any n > n1, we fix an element (un,vn) = (u+ tnxn,v+ tnyn) and notice that

(un,vn) ∈ T (gph(F+),(x,y)).
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By the definition of contingent cones, for (un,vn), there exist sequences (xm,ym) ⊂ X ×Y with

(xm,ym)→ (un,vn) and (tm)⊂ R+ with tm ↓ 0 such that

y+ tmym ∈ F+(x+ tmxm) = F(x+ tmxm)+K(x+ tmxm).

Furthermore, by vn ∈ − intK(x) and ym → vn, there exists m1 ∈ N such that ym ∈ − intK(x)

for all m > m1. Since K(x) is a cone, this implies that tmym ∈ − intK(x). Since K is a convex

process, K(x) is a convex cone and 0 ∈ K(x) for all x ∈ X , then we have

K(x)⊆ K(x)+0⊆ K(x)+K(tmxm)⊆ K(x+ tmxm). (6.16)

By (6.16) and tmym ∈ − intK(x), we get tmym ∈ − intK(x + tmxm). Furthemore let elements

ωm ∈ F(x+ tmxm) be such that y+ tmym ∈ ωm +K(x+ tmxm). Then by convexity of K(x+ tmxm)

and tmym ∈ − intK(x+ tmxm), we get ωm ∈ y− intK(x+ tmxm).

By bm := (x+ tmxm)→ x, there exists m2 > 0 such that bm ∈N (x) where N (x) is a suitable

neighborhood of x. Therefore, we have shown that there exists a sequence {ωm} such that

ωm ∈ F(bm)∩ (y− intK(bm)) for all m > {m1,m2}.

This is a contradiction to local weakly nondominatedness of (x,y).

If we set (x,y) = (0X ,0Y ), we have the following corollary.

Corollary 6.2.13. Let all the assumptions of Theorem 6.2.12 be fulfilled and (x,y) ∈ gph(F) be

a local weakly nondominated solution of problem (P1), then

D(F+)(x,y)∩− intK(x) = /0 for all x ∈ dom(D(F+)(x,y)).

In the following theorem, we give a necessary optimality condition for local weakly nondomi-

nated solution of problem (P2).

Theorem 6.2.14. Let assumption (A15) be fulfilled, (x,y) ∈ gph(F) be a local weakly nondom-

inated solution of (P2), z ∈ G(x) and additionally K : X ⇒ Y be a convex process.

Then for every u ∈ dom(D(F+,G)(x,y,z)), every (v,ω) ∈ D(F+,G)(x,y,z)∩ {−K(x)×−D}
and for every x ∈ D1 := dom(D2(F+,G)(x,y,z,u,v,ω)), we have

D2(F+,G)(x,y,z,u,v,ω))(x)∩ IT (−K(x),v)× IT (IT (−D,z),ω) = /0

where the notation (F+,G)(x) represents (F(x)+K(x))× (G(x)+D).

Proof. Suppose that assertion is not true and there exists x ∈ dom(D2(F+,G)(x,y,z,u,v,ω))

such that (y,z) ∈ D2(F+,G)(x,y,z,u,v,ω)(x)∩ IT (−K(x),v)× IT (IT (− intD,z),ω) which im-

plies that (x,y,z) ∈ T (T (gph(F+,G),(x,y,z)),(u,v,ω)). This means that there exist sequences
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(tn)⊂ R+ with tn ↓ 0 and (xn,yn,zn)⊂ X×Y ×Z with (xn,yn,zn)→ (x,y,z) such that

(u+ tnxn,v+ tnyn,ω + tnzn) ∈ T (gph(F+,G),(x,y,z)).

By y ∈ IT (− intK(x),v), there exists n1 ∈ N such that

v+ tnyn ∈ − intK(x) n≥ n1.

Analogously by z ∈ IT (IT (− intD,z),ω), there exists n2 ∈N such that ω + tnzn ∈ IT (− intD,z)

for all n > n2. For n ≥ max{n1,n2}, we fix un := u+ tnxn, vn := v+ tnyn and ωn := ω + tnzn.

Then

(un,vn,ωn) ∈ T (gph(F+,G),(x,y,z))

(vn,ωn) ∈ − intK(x)× IT (− intD,z).

By definition of contingent cones, there exist sequences (tm) ⊂ R+ with tm ↓ 0 and (xm,ym,zm)

in X ×Y ×Z with (xm,ym,zm)→ (un,vn,ωn) such that (y+ tmym,z+ tmzm) ∈ (F+,G)(x+ tmxm)

which means

y+ tmym ∈ F+(x+ tmxm) = F(x+ tmxm)+K(x+ tmxm),

z+ tmzm ∈ G(x+ tmxm)+D.

By ym→ vn and vn ∈ − intK(x), there exists m1 > 0 such that

tmym ∈ − intK(x) ∀m > m1.

Let am ∈ F(x+ tmxm) be such that y− intK(x) ∈ am +K(x+ tmxm). Since K is a convex process

and for all x ∈ X , K(x) is a convex cone and 0 ∈ K(x), we have

K(x)⊆ K(x)+0⊆ K(x)+K(tmxm)⊆ K(x+ tmxm).

Consequently we have:

am ∈ y− intK(x)−K(x+ tmxm)⊆ y− intK(x+ tmxm).

By ωn ∈ IT (− intD,z), there exists m2 > 0 such that z+ tmzm ∈ − intD for every m > m2. Let

bm ∈G(x+ tmxm) be such that z+ tmzm ∈ bm+D and therefore we have bm ∈− intD. Therefore,

for sufficiently large m, we have cm := x+ tmxm ∈N (x), G(cm)∩−D 6= /0 and

F(cm)∩ (y− intK(cm)) 6= /0.

This is a contradiction because we supposed that (x,y) is a local weakly nondominated solution

of the problem (P2).
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The following theorem gives a necessary condition for local weakly nondominated solution of

(P3).

Theorem 6.2.15. Let assumption (A16) be fulfilled, (x,y) ∈ gph(F) be a local weakly nondom-

inated solution of problem (P3), z ∈ G(x) and K : X ⇒ Y be a convex process. Additionally,

suppose that D : X ⇒ Z satisfies one of the following conditions:

(i) D is a convex process.

(ii) For all x ∈N (x), D(x)⊆ D(x).

Then for every u ∈ dom(D(F̂+,G)(x,y,z)), every (v,ω)∈D(F̂+,G)(x,y,z)∩{−K(x)×−D(x)}
and for every x ∈ D1 := dom(D2(F̂+,G)(x,y,z,u,v,ω)), we have

D2(F̂+,G)(x,y,z,u,v,ω)(x)∩ IT (−K(x),v)× IT (IT (−D(x),z),ω) = /0

where the notation (F̂+,G)(x) represents (F(x)+K(x))× (G(x)+D(x)).

Proof. Suppose that assertion is not true and there exists x ∈ dom(D2(F̂+,G)(x,y,z,u,v,ω))

such that (y,z) ∈ D2(F̂+,G)(x,y,z,u,v,ω)(x)∩ IT (−K(x),v)× IT (IT (− intD(x),z),ω) which

implies that (x,y,z)∈T (T (gph(F̂+,G),(x,y,z)),(u,v,ω)). This means that there exist sequences

(tn)⊂ R+ with tn ↓ 0 and (xn,yn,zn)⊂ X×Y ×Z with (xn,yn,zn)→ (x,y,z) such that

(u+ tnxn,v+ tnyn,ω + tnzn) ∈ T (gph(F̂+,G),(x,y,z)).

By y ∈ IT (− intK(x),v), there exists n1 ∈ N such that

v+ tnyn ∈ − intK(x) n≥ n1.

By z ∈ IT (IT (− intD(x),z),ω), there exists n2 ∈N such that ω + tnzn ∈ IT (− intD(x),z) for all

n > n2. For n≥max{n1,n2}, we fix un := u+ tnxn, vn := v+ tnyn and ωn := ω + tnzn. Then

(un,vn,ωn) ∈ T (gph(F̂+,G),(x,y,z))

(vn,ωn) ∈ − intK(x)× IT (− intD(x),z).

By definition of contingent cones, there exist sequences (tm) ⊂ R+ with tm ↓ 0 and (xm,ym,zm)

in X ×Y ×Z with (xm,ym,zm)→ (un,vn,ωn) such that (y+ tmym,z+ tmzm) ∈ (F̂+,G)(x+ tmxm)

which means

y+ tmym ∈ F+(x+ tmxm) = F(x+ tmxm)+K(x+ tmxm),

z+ tmzm ∈ G(x+ tmxm)+D(x+ tmxm).
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By ym→ vn and vn ∈ − intK(x), there exists m1 > 0 such that

tmym ∈ − intK(x) ∀m > m1.

Let am ∈ F(x+ tmxm) be such that y− intK(x) ∈ am +K(x+ tmxm). Since K is a convex process

and for all x ∈ X , K(x) is a convex cone and 0 ∈ K(x), we have

K(x)⊆ K(x)+0⊆ K(x)+K(tmxm)⊆ K(x+ tmxm).

Consequently we have:

am ∈ y− intK(x)−K(x+ tmxm)⊆ y− intK(x+ tmxm).

By ωn ∈ IT (− intD(x),z), there exists m2 > 0 such that z+ tmzm ∈− intD(x) for every m > m2.

Let bm ∈ G(x+ tmxm) be such that z+ tmzm ∈ bm +D(x+ tmxm) and

bm ∈ − intD(x)− intD(x+ tmxm). (6.17)

Now if condition (i) on D holds we have,

D(x)⊆ D(x)+0⊆ D(x)+D(tmxm)⊆ D(x+ tmxm)

or if condition (ii) on D holds, again we have directly D(x)⊆ D(x+ tmxm). Therefore by (6.17)

and one of the conditions (i) or (ii), we have bm ∈ − intD(x+ tmxm). This means that for suffi-

ciently large m, we have cm := x+ tmxm ∈N (x) such that G(cm)∩−D(cm) 6= /0 and

F(cm)∩ (y− intK(cm)) 6= /0.

But this is a contradiction because we supposed that (x,y) is a local weakly nondominated

solution of (P3).

6.3 Optimality Conditions for Approximate Minimizers

In this section, we present optimality conditions for approximate minimizers of vector optimiza-

tion problems with variable ordering structures with different approaches namely Mordukhovich

subdifferential approach and general generic approach. Our results about variational principles

for approximate minimizers and characterization of approximate minimizers of vector optimiza-

tion problems with variable ordering structures in previous chapters will be used here in order to

derive optimality conditions for approximate minimizers of vector optimization problems with

variable ordering structures. Finally, second order optimality condition for weak minimizers of

set-valued optimization with variable ordering structures will be presented using second order

contingent derivatives and epiderivatives.
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Remark 6.3.1. By Theorem 3.2.18 and Theorem 3.2.21, each (approximate) minimizer of vec-

tor optimization problems with variable ordering structures is both (approximately) minimal

and nondominated solution of vector optimization problems with variable ordering structures

(VVOP). This means that all optimality conditions for (approximately) minimal and nondom-

inated solutions of (VVOP) can be used for (approximate) minimizers of vector optimization

problems with variable ordering structures. It worth to remember that all these solution con-

cepts coincide in the case of vector optimization problems with fixed ordering structures.

Let assumptions (A12) and (A13) be fulfilled and x ∈ X . In order to drive necessary conditions

for approximate minimizers of vector optimization problems with variable ordering structures,

we use the following functional which is a slight modification of the functional defined by Chen

and Yang [15], especially concerning the assumptions for the set-valued map C. We define

ξx(z,y) : Y ×Y → R as following:

ξx(z,y) := inf{t ∈ R | z ∈ tk0 + f (x)−C(y)}. (6.18)

Lemma 6.3.2. Let assumptions (A12) and (A13) be fulfilled and x ∈ X . For each t ∈ R and

y,z ∈ Y , followings hold.

ξx(z,y)> t⇐⇒ z /∈ tk0 + f (x)−C(y),

ξx(z,y)= t⇐⇒ z /∈ tk0 + f (x)− intC(y),

ξx(z,y) = t⇐⇒ z ∈ tk0 + f (x)−bdC(y),

ξx(z,y)5 t⇐⇒ z ∈ tk0 + f (x)−C(y),

ξx(z,y)< t⇐⇒ z ∈ tk0 + f (x)− intC(y).

Proof. Proof is similar to that of Theorem 4.2.7.

Theorem 6.3.3. Suppose assumptions (A12) and (A13) hold, then for each arbitrary fixed y∈Y ,

ξx(·,y) is continuous.

Proof. Proof is similar to that of third part of Theorem 4.2.18.

Now we prove that ξx(·,y) is a convex functional for each y∈Y . Chen and Yang [15] proved that

ξ is a convex functional under strong assumptions and for convex cone-valued map C : Y ⇒ Y .

Theorem 6.3.4. Suppose that assumptions (A12) and (A13) hold, x ∈ X and additionally C(y)

is a convex set for all y ∈ Y . Then ξx(·,y) is convex for all y ∈ Y .

Proof. Let y ∈ Y be an arbitrary but fixed element. Assume that λ ∈ [0,1] and z1,z2 ∈ Y such

that ξx(z1,y) = t1 and ξx(z2,y) = t2. By Lemma 6.3.2, we have the followings

ξx(z1,y) = t1 =⇒ y1 ∈ t1 + f (x)−C(y),
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ξx(z1,y) = t2 =⇒ y2 ∈ t2 + f (x)−C(y).

This means there exist c,d ∈C(y) such that z1 = t1k0 + f (x)− c and z2 = t2k0 + f (x)−d and

λ z1 +(1−λ )z2

= λ t1k0 +λ f (x)−λc+(1−λ )t2k0 +(1−λ ) f (x)− (1−λ )d

=
(
λ t1 +(1−λ )t2

)
k0 + f (x)−

(
λc+(1−λ )d

)
,

by c,d ∈C(y) and convexity of C(y), we get λc+(1−λ )d ∈C(y) and therefore

λ z1 +(1−λ )z2 ∈ (λ t1 +(1−λ )t2)k0 + f (x)−C(y).

Again by Lemma 6.3.2, ξx(λ z1 +(1−λ )z2,y)≤ λ t1 +(1−λ )t2 and

ξx(λ z1 +(1−λ )z2,y)≤ λξx(z1,y)+(1−λ )ξx(z2,y).

This means that ξx(·,y) is convex and the proof is complete.

Definition 6.3.5. Consider x ∈ X and the functional ξx : Y ×Y → R given by (6.18). f : X → Y

is called bounded from below over S with respect to ξx if and only if for all s ∈S, there exists

a real number α >−∞ such that

inf
x∈S

ξx( f (x), f (s))> α.

The following theorem gives a characterization of approximate minimizers of (VVOP) by using

a scalarization by means of the functional ξx : Y ×Y → R defined by (6.18).

Theorem 6.3.6. Suppose that assumptions (A12) and (A13) hold. Let x∈Ω be an εk0-minimizer

of (VVOP), then for all s ∈S,

ξx( f (x), f (s))≤ inf
x∈S

ξx( f (x), f (s))+ ε. (6.19)

Proof. Let s be an arbitrary but fixed element of S and set ȳ = f (x). First we prove that

ξx( f (x), f (s)) = 0. Suppose ξx( f (x), f (s)) = t̄. By Theorem 6.3.2, we get

tk0 + ȳ− ȳ ∈C( f (s)) =⇒ t̄k0 ∈C( f (s)).

By pointedness of C( f (s)), we get 0 ∈ bdC( f (s)) and t̄ ≤ 0. If ξx( f (x), f (s)) < 0, then t̄ < 0

and −t̄ > 0. By pointedness of C( f (s)), −t̄ > 0, k0 6= 0 and C( f (s))+ [0,+∞)k0 ⊂ C( f (s)),

we get −t̄k0 ∈C( f (s))\{0} and therefore t̄k0 ∈C( f (s))\{0}∩ (−C( f (s))) and we arrive at a

contradiction because we supposed C(y) is a pointed set for all y ∈ Y . This means that t̄ = 0.

Now we prove that ξx( f (x), f (s))≤ inf
x∈S

ξx( f (x), f (s))+ε. Suppose by contrary (6.19) does not

hold and there exists an element x ∈S such that ξx( f (x), f (s))+ ε < ξx( f (x), f (s)) = 0. This
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means that there exists β > 0 such that ξx( f (x), f (s)) =−ε−β . By Theorem 6.3.2, we get

(−ε−β )k0 + ȳ− f (x) ∈C( f (s))

=⇒ ȳ− εk0− f (x) ∈C( f (s))+βk0 ⊂C( f (s))\{0}.

This means that there exists s ∈S such that

(ȳ− εk0−C( f (s))\{0})∩ f (S) 6= /0

and therefore x /∈ εk0 -MZ(S, f ,C). But this is a contradiction because we supposed that x is an

εk0-minimizer of (VVOP). Therefore

ξx( f (x), f (s))≤ inf
x∈S

ξx( f (x), f (s))+ ε.

for all x,s ∈S.

6.3.1 Mordukhovich Subdifferential Approach

In this section, we give some optimality condition for approximate minimizers of vector opti-

mization problems with variable ordering structures using the functional ξx defined in (6.18).

Theorem 6.3.7. Consider problem (VVOP), let x ∈ εk0-MZ(S, f ,C) and y := f (x). Assume

that in addition to (A11) the following conditions hold:

(A5) B : Y ⇒ Y be a cone-valued map such that for all y ∈ f (S), k0 ∈ intB(y).

(A6′′) C(y)+B(y)\{0} ⊆ intC(y) and B( f (x))⊂C( f (x)) for all ‖x− x‖ ≤ √ε .

(C9) f is bounded from below in the sense of Definition 6.3.5 over S with respect to ξx.

Let ξx(·, f (s))◦ f satisfies the condition (6.3) for all x,s ∈S such that ‖x− x‖ ≤ √ε . Then for

all s ∈S, there exist xs ∈ dom f ∩S and v∗s ∈ ∂M(ξx( f (xs), f (s)) such that

0 ∈ ∂M(v∗s ◦ f )(xs)+N(xs;S)+
√

εBX∗ .

Proof. Let x ∈ εk0 -MZ(S, f,C). Applying Theorem 6.3.6, we get for all s ∈S

ξx( f (x), f (s))≤ inf
x∈S

ξx( f (x), f (s))+ ε.

Therefore x is an approximate minimizer of the scalar problem with the objective functionals

ξx(·, f (s)) for all s ∈S. Taking into account Theorem 6.3.3 and since f is strictly Lipschitz by

(A11), we get that ξx(·, f (s)) is lower semicontinuous for all s ∈S. Furthermore, ξx(·, f (s)) is

bounded from below for all s∈S. By the scalar Ekeland’s variational principle (Theorem 5.0.1),

for all s ∈S there exists an element xs ∈ dom f ∩S such that it satisfies parts (a), (b) and (c) of
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Theorem 5.0.1 and it is an exact solution of an optimization problem with the objective function

hs : X → R∪{+∞} over S with

hs(x) := ξx( f (x), f (s))+
√

ε ‖x− xs‖ for all x ∈ X

By [58, Proposition 5.1], we get

0 ∈ ∂Mhs(xs)+N(xs;S).

By Theorem 6.3.3 and (A11), the composition ξx(·, f (s)) ◦ f is lower-semicontinuous on a

neighborhood of xs for all s ∈ S. Employing Lemma 6.1.2 (a) to the lower semicontinuous

functional ξx(·, f (s))◦ f and the Lipschitz continuous function ‖.‖, we have

∂Mhs(xs) ⊂ ∂M
(
ξx(·, f (s))◦ f

)
(xs)+∂M(

√
ε ‖·− xs‖)(xs).

By Lemma 6.1.2 (b), we get

∂M(ξx(·, f (s))◦ f )(xs)⊂
⋃{

∂M(v∗s ◦ f )(xs) | v∗s ∈ ∂Mξx( f (xs), f (s))
}
.

Combining three inclusions together while taking into account the subdifferential of the norm

∂M ‖·− xs‖(xs) = BX∗ , we can find v∗s ∈ ∂Mξx( f (xs), f (s)) satisfying

0 ∈ ∂M(v∗s ◦ f )(xs)+N(xs;S)+
√

εBX∗ .

The proof is complete.

Corollary 6.3.8. Consider problem (VVOP), x∈MZ(S, f ,C) be an exact minimizer of problem

(VVOP) and y := f (x). Let all the assumptions of Theorem 6.1.3 be fulfilled. Also assume that

ξx(·, f (s)) ◦ f satisfies the qualification condition (6.3) at x for all s ∈S. Then, for any λ > 0

and s ∈S, there exists v∗s ∈ ∂M(ξx( f (x), f (s)) such that

0 ∈ ∂M(v∗s ◦ f )(x)+N(x;S)+λBX∗ . (6.20)

such that ‖x∗ε‖ ≤ ε .

Proof. Since x ∈MZ(S, f ,C), i.e., it is a 0k0-minimizer of (VVOP), it is also εk0-minimizer of

(VVOP) with ε = λ 2 for all λ > 0. By Theorem 5.3.4 and Theorem 6.3.7, the only point which

satisfies (5.25) is x and we can find v∗s ∈ ∂Mξx( f (x), f (s)) such that

0 ∈ ∂M(v∗s ◦ f )(x)+N(x;S)+
√

εBX∗

clearly verifying (6.20). The proof is complete.
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6.3.2 Generic Approach

Similar to approximately minimal and nondominated solutions of vector optimization problems

with variable ordering structures, it is also possible to derive optimality conditions for approxi-

mate minimizers of vector optimization problems with variable ordering structures using general

generic approach; see section 6.1.2 for symbols and assumptions.

6.3.2.1 Exact Optimality Conditions

In this section, we give necessary conditions for approximate minimizers of vector optimization

problems with variable ordering structures. Theorem 6.3.6 and Ekeland’s variational principle

(Theorem 5.0.1) will be used in order to drive necessary conditions for minimizers of vector

optimization problems with variable ordering structures.

Theorem 6.3.9. Consider problem (VVOP) and the functional ξx given by (6.18). Let C(y)

be a convex set for all y ∈ Y , x ∈ εk0 -MZ(S, f,C) and set ȳ := f (x). Impose in addition to

(A12)–(A13) the following assumptions:

(C7) f ∈F (X ,Y ) is locally Lipschitz.

(C9) f is bounded from below in the sense of Definition 6.3.5 over S with respect to ξx.

Consider an abstract subdifferential ∂ for that (H1) – (H5) are satisfied. Then for all s∈S, there

exist xs ∈ dom f ∩S and v∗s ∈ ∂ (ξx( f (xS), f (s)) such that

0 ∈ ∂ (v∗s ◦ f )(xs)+N(xs;S)+
√

εBX∗ .

Proof. Let x ∈ εk0 -MZ(S, f,C). Applying Theorem 6.3.6, we get for all s ∈S

ξx( f (x), f (s))≤ inf
x∈S

ξx( f (x), f (s))+ ε.

Therefore x is an approximate minimizer of the scalar problem with the objective functionals

ξx(·, f (s)) for all s ∈ S. Taking into account Theorem 6.3.3 and f ∈ F (X ,Y ) we get that

ξx(·, f (s)) is lower semicontinuous for all s ∈ S. Furthermore, ξx(·, f (s)) is bounded from

below for all s ∈ s. By the scalar Ekeland’s variational principle (Theorem 5.0.1), for all s ∈S

there exists an element xs ∈ dom f ∩S such that it satisfies parts (a), (b) and (c) of Theorem 5.0.1

and it is an exact solution of an optimization problem with the objective function hs : X →
R∪{+∞} over S with

hs(x) := ξx( f (x), f (s))+
√

ε ‖x− xs‖ for all x ∈ X .

By (H2) and (H4), we get

0 ∈ ∂hs(xs)+N(xs;S).

Under the given assumptions and taking into account Theorem 6.3.3 and Theorem 6.3.4, the

functional ξx(·, f (s)) is convex and continuous. Since f is locally Lipschitz and ξx(·, f (s)) is
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convex and continuous and hence locally Lipschitz, then the composition ξx( f (·), f (s)) is also

locally Lipschitz. This implies together with the convexity of the norm ‖·‖ and (H5) that

∂hs(xs) ⊆ ∂
(
ξx( f (·), f (s))

)
(xs)+∂ (

√
ε ‖·− xs‖)(xs).

By (H3), we get

∂ (ξx( f (·), f (s)))(xs)⊆
⋃{

∂ (v∗s ◦ f )(xs) | v∗s ∈ ∂ξx( f (xs), f (s))
}
.

Because of the convexity of the norm and (H1), we get ∂ ‖·− xs‖(xs) = BX∗ and by the last three

inclusions, we can find v∗s ∈ ∂ξx( f (xs), f (s)) satisfying

0 ∈ ∂ (v∗s ◦ f )(xs)+N(xs;S)+
√

εBX∗

and the proof is complete.

6.3.2.2 Fuzzy Optimality Conditions

Now we are ready to give fuzzy optimality conditions for approximate minimizers of vector

optimization problems with variable ordering structures. In the proof of the main result of this

section, we use the functional ξ : Y ×Y → R defined by (6.18)

ξ (z,y) := inf{t ∈ R | z ∈ tk0−C(y)} (6.21)

where C(y)⊂Y is a proper, closed and convex cone with nonempty interior and k0 ∈ intC(y) for

all y ∈ Y . By Theorem 6.3.3 and Theorem 6.3.4, we already proved that ξx(·,y) is continuous

and convex for all y ∈Y if C(y)⊂Y is a proper, closed and convex cone with nonempty interior

and k0 ∈ intC(y) for all y ∈ Y . Therefore, for all fixed arbitrary y ∈ Y and under the given

assumptions, the functional ξx(·,y) is continuous and convex and its subdifferential is given by

∂ξ (u,y) = {v∗ ∈C(y)∗ | v∗(k0) = 1,v∗(u) = ξ (u,y)} (6.22)

(see [21, Lemma 2.1]).

In the next theorem we show necessary conditions for approximate minimizers of a vector op-

timization problem with a variable ordering structure following the line of the proof of [21,

Theorem 5.3].

Theorem 6.3.10. Suppose that assumptions (A12) and (A13) are fulfilled and additionally C( f (s))

is a closed convex cone with nonempty interior for all s ∈S. Let X ,Y ∈X , f ∈F (X ,Y ) be

a L-Lipschitz function, S be a closed subset of the Banach space X and xε ∈ εk0 -MZ(S, f ,C).

Then for every s ∈S and k0 ∈ intC( f (s)) and µ > 0, there exist elements us ∈ B(xε ,
√

ε +µ),
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zs ∈ B(xε ,
√

ε +µ/2)∩S,u∗s ∈ (C( f (s)))∗,u∗s(k
0) = 1, x∗s ∈ X∗,‖x∗s‖ ≤ 1 such that

0 ∈ ∂ (u∗s ◦ f )(us)+
√

εu∗s(k
0)x∗s +N∂ (S,zs)+B(0,µ),

provided that ∂ satisfies (H1), (H2), (H6), (H7).

Moreover, for some elements x ∈ B(xε ,
√

ε +µ/2) and vs ∈ B( f (x)− f (xε),L
√

ε +µ) it holds

u∗s(vs) = ξ (vs,s).

Proof. Let xε ∈ εk0 -MZ(S, f ,C). Taking into account Definition 5.0.4, for all s ∈S we have

( f (xε)− εk0−C( f (s))\{0})∩ f (S) = /0.

The function f is supposed to be Lipschitz, so it is continuous as well and since S is a closed set

in a Banach space it is a complete metric space endowed with the distance induced by the norm.

Thus, the assumptions of the vector-valued variant of Ekeland’s variational principle given in

[34, Corollary 9] are fulfilled for all s ∈S. Applying this variational principle for all s ∈S, we

get the existence of an element xs ∈S with ‖xs− xε‖<
√

ε and having the property that

hs(S)∩ (hs(xs)−C( f (s))\{0}) = /0,

for all s ∈S where

hs(x) := f (x)+
√

ε ‖x− xs‖k0.

Let µ > 0. Applying now [21, Theorem 4.2] for a positive number δ with properties that 2δ < µ

and
√

ε
∥∥k0
∥∥δ/2+ δ/2 < µ and using the functional ξ (·, f (s)) defined by (6.21), we can find

us ∈ B(xs,δ )⊂ B(xε ,
√

ε +δ ), x ∈ B(xs,δ/2)⊂ B(xε ,
√

ε +δ/2), vs ∈ B(hs(x)−hs(xs),δ/2),

zs ∈ B(xs,δ/2)∩S⊂ B(xε ,
√

ε +δ/2)∩S, u∗s ∈ ∂ξ (vs, f (s)), such that

0 ∈ ∂ (u∗s ◦hs)(us)+N∂ (S,zs)+B(0,δ ). (6.23)

We get the properties u∗s ∈ (C( f (s)))∗,u∗s(k
0) = 1 from (6.22).

Consider the element x∗s ∈ ∂ (u∗s ◦hs)(us) involved in (6.23). Because of

∂ (u∗s ◦hs)(us) = ∂ (u∗s ◦ ( f (·)+
√

ε ‖·− xs‖k0))(us),

taking into account (H1) and (H6), there exist us ∈ B(us,δ )⊂ B(xε ,
√

ε +2δ ) and u′s ∈ B(us,δ )

such that

x∗s ∈ ∂ (u∗s ◦ f )(us)+
√

εu∗s(k
0)∂ (‖·− xs‖)(u′s)+B(0,δ ). (6.24)
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Taking into account the well-known structure of the subdifferential of the norm and combining

relations (6.23) and (6.24) it follows that there exists x∗s ∈ X∗ with ||x∗s ||= 1 such that

0 ∈ ∂ (u∗s ◦ f )(us)+
√

εu∗s(k
0)x∗s +N∂ (S,zs)+B(0,2δ ).

Because 2δ < µ , it remains only to prove the estimation about the ball which contains vs. Then,

‖vs− ( f (x)− f (xε))‖ ≤ ‖vs− (hs(x)−hs(xs))‖+‖(hs(x)−hs(xs))− ( f (x)− f (xε))‖
≤ δ/2+

∥∥√εk0 ‖x− xs‖− f (xs)+ f (xε)
∥∥

≤ δ/2+
√

ε
∥∥k0∥∥δ/2+L

√
ε

< L
√

ε +µ,

where the last inequality follows because of the assumptions made on δ . Moreover, we get

u∗s(vs) = ξ (vs,s) from (6.22). This completes the proof.

6.3.3 Second Order Optimality Conditions

In this section, we give second order optimality conditions for minimizers of set-valued opti-

mization problems with variable ordering structures. Consider the optimization problem (P1).

We say (x,y) ∈ gph(F) is a weak minimizer of (P1) if and only if

(y− intK(x))∩F(S) = /0 ∀x ∈S

and (x,y) ∈ gph(F) is called a local weak minimizer if and only if there exists a neighborhood

U of x such that

(y− intK(x))∩F(S) = /0 ∀x ∈S∩U.

By first parts of Theorem 3.2.18 and Theorem 3.2.21, each weak minimizer is both weakly

minimal and weakly nondominated solution and all the results in sections 6.1.3 and 6.2.3 hold

also for weak minimizers.

In the following theorem, we give necessary optimality conditions for local weak minimizers of

(P1); see [43] for the case of fixed ordering structure. For s ∈S, (F +K(s)) : X ⇒ Y is defined

as (F +K(s))(x) = F(x)+K(s).

Theorem 6.3.11. Let assumption (A14) be fulfilled and (x,y) ∈ gph(F) be a local weak min-

imizer of problem (P1), then for every s ∈ S, u ∈ dom(D(F + K(s))(x,y)) and for every

v ∈ D(F +K(s))(x,y)(u)∩ (−K(s)), the following holds:

D2(F +K(s))(x,y,u,v)(x)∩ IT (− intK(s),v) = /0 (6.25)

for all x ∈ dom(D2(F +K(s))(x,y,u,v)).
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Proof. Suppose that (6.25) does not hold and for some arbitrary s ∈S, there exists an element

x ∈ dom(D2(F +K(s)))(x,y,u,v) such that

y ∈ D2(F +K(s))(x,y,u,v)(x)∩ IT (− intK(s),v)).

Then (x,y) ∈ T (T (gph(F) +K(s),(x,y)),(u,v)). Therefore there exist sequences (tn) ∈ R+

with tn ↓ 0 and (xn,yn)⊂ X×Y with (xn,yn)→ (x,y) such that

(u+ tnxn,v+ tnyn) ∈ T (gph(F)+K(s),(x,y)) ∀n ∈ N.

By tn ↓ 0, yn→ y and y ∈ IT (− intK(s),v), there exists n1 ∈ N such that

v+ tnyn ∈ − intK(s), ∀n > n1.

For any n > n1, we fix an element (un,vn) = (u+ tnxn,v+ tnyn) and notice that

(un,vn) ∈ T (gph(F)+K(s),(x,y)).

By the definition of contingent cones, for (un,vn), there exist sequences (xm,ym) ⊂ X ×Y with

(xm,ym)→ (un,vn) and (tm)⊂ R+ with tm ↓ 0 such that

y+ tmym ∈ F(x+ tmxm)+K(s).

Furthermore, by vn ∈ − intK(s) and ym → vn, there exists m1 ∈ N such that ym ∈ − intK(s)

for all m > m1. Since K(s) is a cone, this implies that tmym ∈ − intK(s). Now assume that

am ∈ F(x+ tmxm) such that y+ tmym ∈ am +K(s). Then

am ∈ y− intK(s).

By bm := (x+ tmxm)→ x, there exists m2 > 0 such that bm ∈N (x) where N (x) is a suitable

neighborhood of x. Therefore, we have shown that there exists an arbitrary element s ∈S and a

sequence {am} such that

am ∈ F(bm)∩ (y− intK(s)) for all m > {m1,m2}.

This is a contradiction because we supposed that (x,y) is a local weak minimizer.

If we set (x,y) = (0X ,0Y ), we have the following corollary.

Corollary 6.3.12. Let assumption (A14) be fulfilled and (x,y) ∈ gph(F) be a local weak mini-

mizer of problem (P1), then for all s ∈S

D(F +K(s))(x,y)∩− intK(s) = /0 for all x ∈ dom(D(F +K(s))(x,y)).
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The following theorem gives a necessary optimality condition for local weak minimizer of (P2);

see [43] for the case of fixed ordering structure. For each s ∈ S1 in (P2), Fs(x) is defined as

F(x)+K(s).

Theorem 6.3.13. Let assumption (A15) be fulfilled, (x,y) ∈ gph(F) be a local weak minimizer

of (P2) and z ∈ G(x). Then for every s ∈ S, for every u ∈ dom(D(Fs,G)(x,y,z)), for every

(v,ω)∈D(Fs,G)(x,y,z)∩{−K(s)×−D} and for every x∈D1 := dom(D2(Fs,G)(x,y,z,u,v,ω)),

we have

D2(Fs,G)(x,y,z,u,v,ω))(x)∩ IT (−K(s),v)× IT (IT (−D,z),ω) = /0 (6.26)

where the notation (Fs,G)(x) represents (F(x)+K(s))× (G(x)+D) for each s ∈S1.

Proof. Suppose that assertion (6.26) is not true and there exists an arbitrary element s ∈S1 and

x ∈ dom(D2(Fs,G)(x,y,z,u,v,ω)) such that

(y,z) ∈ D2(Fs,G)(x,y,z,u,v,ω)(x)∩ IT (−K(s),v)× IT (IT (− intD,z),ω)

which implies that (x,y,z)∈T (T (gph(Fs,G),(x,y,z)),(u,v,ω)). Therefore, there exist sequences

(tn)⊂ R+ with tn ↓ 0 and (xn,yn,zn)⊂ X×Y ×Z with (xn,yn,zn)→ (x,y,z) such that

(u+ tnxn,v+ tnyn,ω + tnzn) ∈ T (gph(Fs,G),(x,y,z)).

By y ∈ IT (− intK(s),v), there exists n1 ∈ N such that

v+ tnyn ∈ − intK(s) n≥ n1.

By z∈ IT (IT (− intD,z),ω), there exists n2 ∈N such that ω+tnzn ∈ IT (− intD,z) for all n> n2.

For n≥max{n1,n2}, we fix un := u+ tnxn, vn := v+ tnyn and ωn := ω + tnzn. Then

(un,vn,ωn) ∈ T (gph(Fs,G),(x,y,z)),

(vn,ωn) ∈ − intK(s)× IT (− intD,z).

By definition of contingent cones, there exist sequences (tm) ⊂ R+ with tm ↓ 0 and (xm,ym,zm)

in X ×Y ×Z with (xm,ym,zm)→ (un,vn,ωn) such that (y+ tmym,z+ tmzm) ∈ (Fs,G)(x+ tmxm)

which means

y+ tmym ∈ F(x+ tmxm)+K(s),

z+ tmzm ∈ G(x+ tmxm)+D.

By ym→ vn and vn ∈ − intK(s), there exists m1 > 0 such that

tmym ∈ − intK(s) ∀m > m1.

Let dm ∈ F(x+ tmxm) be such that y− intK(s) ∈ dm +K(s) and consequently we have:

dm ∈ y− intK(s).
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By ωn ∈ IT (− intD,z), there exists m2 > 0 such that z+ tmzm ∈ − intD for every m > m2. Let

bm ∈G(x+ tmxm) be such that z+ tmzm ∈ bm+D and therefore we have bm ∈− intD. Therefore,

for sufficiently large m, we have cm := x+ tmxm ∈N (x), G(cm)∩−D 6= /0 and

F(cm)∩ (y− intK(s)) 6= /0.

But this is a contradiction because we supposed that (x,y) is a local weak minimizer of (P2).

The following theorem gives a necessary optimality condition for local weak minimizers of (P3).

For each s ∈S2, Fs(x) is defined as F(x)+K(s)

Theorem 6.3.14. Let assumption (A16) be fulfilled. Suppose that (x,y)∈ gph(F) is a local weak

minimizer of problem (P3), z ∈ G(x) and D : X ⇒ Z satisfies one of the following conditions:

(i∗) D is a convex process.

(ii∗) For all x ∈N (x), D(x)⊆ D(x).

Then for every element s ∈ S2, for every (v,ω) ∈ D(F̂s,G)(x,y,z)∩ {−K(x)×−D(x)}, for

every u ∈ dom(D(F̂s,G)(x,y,z)) and for every x ∈ D1 := dom(D2(F̂s,G)(x,y,z,u,v,ω)), we

have
D2(F̂s,G)(x,y,z,u,v,ω)(x)∩ IT (−K(s),v)× IT (IT (−D(x),z),ω) = /0

where the notation (F̂s,G)(x) represents (F(x)+K(s))× (G(x)+D(x)).

Proof. Suppose that assertion is not true and there exists an arbitrary element s ∈S2 and ele-

ment x ∈ dom(D2(F̂s,G)(x,y,z,u,v,ω)) such that

(y,z) ∈ D2(F̂s,G)(x,y,z,u,v,ω)(x)∩ IT (−K(s),v)× IT (IT (− intD(x),z),ω)

which implies that (x,y,z)∈T (T (gph(F̂s,G),(x,y,z)),(u,v,ω)). Therefore, there exist sequences

(tn)⊂ R+ with tn ↓ 0 and (xn,yn,zn)⊂ X×Y ×Z with (xn,yn,zn)→ (x,y,z) such that

(u+ tnxn,v+ tnyn,ω + tnzn) ∈ T (gph(F̂s,G),(x,y,z)).

By y ∈ IT (− intK(s),v), there exists n1 ∈ N such that

v+ tnyn ∈ − intK(s) n≥ n1.

By z ∈ IT (IT (− intD(x),z),ω), there exists n2 ∈N such that ω + tnzn ∈ IT (− intD(x),z) for all

n > n2. For n≥max{n1,n2}, we fix un := u+ tnxn, vn := v+ tnyn and ωn := ω + tnzn. Then

(un,vn,ωn) ∈ T (gph(F̂s,G),(x,y,z))

(vn,ωn) ∈ − intK(s)× IT (− intD(x),z).
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By definition of contingent cones, there exist sequences (tm) ⊂ R+ with tm ↓ 0 and (xm,ym,zm)

in X ×Y ×Z with (xm,ym,zm)→ (un,vn,ωn) such that (y+ tmym,z+ tmzm) ∈ (F̂s,G)(x+ tmxm)

which means

y+ tmym ∈ F(x+ tmxm)+K(s),

z+ tmzm ∈ G(x+ tmxm)+D(x+ tmxm).

By ym→ vn and vn ∈ − intK(s), there exists m1 > 0 such that

tmym ∈ − intK(s) ∀m > m1.

Let dm ∈ F(x+ tmxm) be such that y− intK(s) ∈ dm +K(s) and consequently we have:

dm ∈ y− intK(s).

By ωn ∈ IT (− intD(x),z), there exists m2 > 0 such that z+ tmzm ∈− intD(x) for every m > m2.

Let bm ∈G(x+tmxm) be such that z+tmzm ∈ bm+D(x+tmxm) and bm ∈− intD(x)−D(x+tmxm).

Now if condition (i∗) on D holds we have,

D(x)⊆ D(x)+0⊆ D(x)+D(tmxm)⊆ D(x+ tmxm)

or if condition (ii∗) on D holds, again we have directly D(x)⊆ D(x+ tmxm) and since D(x) is a

convex cone for all x, we get

bm ∈ − intD(x+ tmxm)−D(x+ tmxm)⊆− intD(x+ tmxm).

Therefore, for sufficiently large m, cm := x+ tmxm ∈N (x), G(cm)∩−D(cm) 6= /0 and

F(cm)∩ (y− intK(s)) 6= /0.

But this is a contradiction because we supposed that (x,y) is a local weak minimizer of (P3) and

proof is complete.
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Conclusions

In this thesis, we studied approximate solutions of vector optimization problems with variable

ordering structures and their properties. After introducing concepts of approximate solutions

of vector optimization problems with variable ordering structures, we characterized them us-

ing generalizations of nonlinear scalarizing functionals defined by Tammer and Weidner. We

derived variational principles for vector optimization problems with variable ordering struc-

tures and these variational principles were used in the last chapter in order to show optimality

conditions for approximate solutions of vector optimization problems with variable ordering

structures.

Approximate solutions of vector optimization problems play an important role from the theo-

retical as well as computational point of view. It is well known that one needs compactness

assumptions in order to show existence results for solutions of optimization problems. Such

compactness assumptions are not fulfilled for many optimization problems. Also we know that

under weak assumptions and without compactness conditions, we have to deal with approximate

solutions and we can show several assertions without any compactness assumptions for these so-

lutions. Furthermore, if we apply numerical algorithms for solving optimization problems, then

these algorithms usually generate approximate solutions that are close to the exact solutions. In

the third chapter, we introduced several notions of approximate elements of vector optimiza-

tion problems with fixed and variable ordering structures and later, relationships between sets of

approximate solutions choosing different parameters were discussed. The last section of third

chapter was devoted to the presentation of relationships between different concepts of approx-

imate solutions of vector optimization problems with variable ordering structures. Obviously,

exact solution of vector optimization problems is the special case of approximate solution and

all our results in this thesis can be used for exact solutions.

Scalarization of a given vector optimization problem means the replacement of it by a suitable

scalar optimization problem with a real-valued objective function. Indeed, solutions of vector

optimization problems can be found through scalarization procedures and we use properties of

125
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scalar optimization problems to characterize solutions of original vector optimization problems.

Characterization of approximate solutions of vector optimization problems with respect to vari-

able ordering structures by means of suitable nonlinear functionals were discussed in the fourth

chapter. We characterized approximate minimizer, approximate nondominated and approximate

minimal solutions of vector optimization problems with respect to a variable ordering struc-

ture by generalization of nonlinear separating functional θ(y) : Y → R defined by Tammer and

Weidner as following:

θ(y) = inf{t ∈ R | y ∈ tk−C}.

In the fifth chapter, we used the concepts for approximate solutions of vector optimization prob-

lems with variable ordering structures in order to derive variational principles for problems with

variable ordering structure. Ekeland’s variational principle is a deep assertion concerning the

existence of an exact solution of a slightly perturbed optimization problem in a neighborhood

of an approximate solution of the original optimization problem under the assumption that the

objective function of the original problem is bounded from below and lower semicontinuous.

Firstly, we supposed that our ordering set-valued map C : Y ⇒ Y associates a set C(y) for any

y ∈ Y with nonempty interior and we gave an extension of Ekeland’s variational principle for

approximate solutions of vector optimization problems with respect to this ordering map. In

fact, we show the existence of an element belonging to the set of approximately minimal so-

lutions of the original problem that is a weakly minimal solution of a perturbed optimization

problem. Later, we showed a sharper result, namely that there exists not just weakly minimal

but minimal solution of the original problem that is a minimal solution of a perturbed vector

optimization problem with variable ordering structure. After proving results for solid case, we

supposed that our ordering set-valued map C associates a set C(y) for any y ∈ Y with empty

interior and we gave an extension of Ekelenad’s variational principle for approximate minimal

solutions of vector optimization problems with variable ordering structures.

In the last chapter, we presented necessary optimality conditions for approximate minimizers

and approximately nondominated and approximately minimal solutions of vector optimization

problems with variable ordering structures. We used our results in fourth and fifth chapters

in order to show optimality condition for approximate solutions. After that we gave second-

order optimality conditions by concept of tangential derivatives of second-order for set-valued

optimization problems with variable ordering structures.
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