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Introduction 

 

Myrmecophily 

 

Ant colonies provide a suitable microhabitat for numerous species, offering them reliable food 

resources and protection from weather and predation. About 10,000 arthropods species have 

evolved a tight life history relationship with ants (Thomas et al. 2005; Barbero et al. 2012) 

termed “myrmecophily”. These myrmecophiles can be mutualistic or parasitic and vary from 

facultative to obligate and are widespread because of the wide range of specific bio-ecological 

traits of the ants (Hinton 1951) which include: 

 Large number of species and occurrence in a large variety of environments; 

 Large number of individuals per nest; 

 Ant nests are generally permanent, with presence of overwintering brood; 

 Easy and frequent encounters with workers because of their patrolling and foraging 

behaviours. 

More than 4000 Lepidoptera species (butterflies and moths) are myrmecophiles with 

Lycaenids representing the dominant group (Hinton 1951). 

Many of these Lycaenids are obligatorily dependent on ants´ presence to complete their life 

cycle and interactions are typically highly species specific (Fiedler 1998; Pierce et al. 2002).  

The myrmecophily of Phengaris (Maculinea) butterflies is arguably the most derived one. In 

taxonomy Maculinea is at present regarded as a subgenus of genus Phengaris (Fric et al. 

2007), but in the context of the present thesis the reference to Phengaris is meant to only refer 

to species of this subgenus Maculinea. Phengaris (Maculinea) species have evolved particular 
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adaptations to avoid ant worker predation including a thicker cuticle compared to larvae of 

non-myrmecophilous butterflies. They can retract the head under a sclerotized plate as 

defence against the ant attacks (Malicky 1970; Sliwinska et al. 2006). Furthermore, Phengaris 

butterflies evolved special adaptations for communicating with ants including the use of 

chemical and acoustical signals (Akino et al. 1999; DeVries et al., 1993; Pierce et al. 2002; 

Barbero et al., 2009a; Barbero et al., 2009b; Sala et al., 2014).   

Initial investigations on the host specificity of Phengaris butterflies suggested a strict 

association with single Myrmica host species (Thomas et al. 2005). Yet subsequent studies 

revealed much more complex host specificity patterns that can vary at the population level or 

at the regional scale (Elmes at al. 1994; Steiner et al. 2003; Sielezniew and Stankiewicz 2004; 

Tartally and Varga 2005; Witek et al. 2006; Tartally and Varga 2008; Tartally et al. 2008; 

Sielezniew and Stankiewicz-Fiedurek 2009; Sielezniew et al. 2010; Casacci et al. 2011; 

Barbero et al. 2012). The list of suitable Myrmica host species had to be expanded for nearly 

all Maculinea species. The only remaining exception is P. nausithous as the only species that 

apparently is associated with a specific single host species (M. rubra) all over its 

distributional range (Barbero et al., 2012). Only two isolated populations of P. nausithous in 

Transylvania and in Spain (Munguira and Martin 1999; Tartally et al., 2008) have been 

observed to exploit  M. scabrinodis colonies. This unusal association may suggest that these 

P. nausithous populations are specific life form or cryptic species (Tartally et al., 2008; 

Rákosy et. al 2010). 

 

Host-parasite co-evolution 

 

An adaptation in parasite to better exploit its host, may enhance the selective pressure on the 

host, selecting for a counter-adaptation and vice versa, resulting in co-evolutionary dynamics 



3 

 

termed “arms race” (Dawkins and Krebs 1979). The concept of an arms race in host-parasite 

evolution may help a lot to better understand the life history and specific adaptations of 

parasites and their hosts (Dawkins and Krebs 1979). Thus, it is not surprising to also see 

highly specific local adaptation in the Myrmica-Phengaris (Maculinea) system (Als et 

al.2001, 2022; Nash et al. 2008; Solazzo et al. 2013, 2014). 

Important preconditions for any local co-evolution between a host and a parasite are:  

i) Parasites have to be sufficiently abundant to select host resistance  

ii)  restricted geneflow and  

iii)  highly specific recognition mechanisms in hosts (Nash and Boomsma, 2008; Nash et 

al. 2008). 

Phengaris parasitc butterfly larvae mainly use chemical mimicry to break into a Myrmica 

colony that is otherwise closed to all non-nestmates (Elmes et al. 1991). This mimicry 

involves the production of chemical compounds characteristic of its host, which also serves 

for a social parasite to disguise itself from its host (Nash and Boomsma, 2008). Thus, in a co-

evolutionary arms race, parasites evolve better mimicry to increase their virulence and hosts 

improve their recognition of parasites (Foitzik et al. 2003; Nash et al. 2008).  

 

Butterflies as social parasites: Phengaris (Maculinea) 

 

Life cycle 

Butterflies of the subgenus Maculinea within the genus Phengaris are exclusively endemic in 

the Palaeartic Region and occur from Western Europe to Asia (Mongolia, China and Japan) 

(Munguria and Martin 1999): They have an obligate parasitic relationship with ant species of 

the genus Myrmica. The first records of this parasitc life cycle have been described for 

Phengaris (M.) arion and P. (M.) alcon (Hinton 1951). After mating, females lay single eggs 

on particular food-plants, which are species-specific. The foodplants of each species are well 
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known (Elmes and Thomas 1992): Sanguisorba officinalis (Rosaceae) for P. (M.) nausithous 

and P. (M.) teleius, Gentiana pneumonanthe (Gentianaceae) for P. (M.) alcon, G. cruciata 

(Gentianaceae) for P. (M.) rebeli and Thymus sp. and Origanum vulgare (Lamiaceae) for P. 

(M.) arion. The choice of the correct foodplant for oviposition is dependant on the flowering 

and fruiting phenology (Barbero et al. 2012). It is unkown if and how the butterfly females 

detect the presence of the host ants in the near surrounding of the food-plant (Schepper et al. 

1995; Van Dyck et al. 2000; Wynhoff et al. 2008; Van Dyck and Regniers 2010; Patricelli et 

al. 2011), in some cases the foodplant and the Myrmica host species share a similar habitat 

(Thomas and Elmes 2001; Nowicki et al. 2005; Musche et al. 2006; Fürst and Nash 2010). 

After 4-10 days of incubation the larvae leave the egg and enter flower buds and the seeds, 

where they live for the following 2-3 weeks. During this period, the larva completes 3 moults 

as a herbivours feeder and acquires 1% of its body mass (Thomas et al. 1989). The fourth 

larval instar leaves the flowerheads and moves to the ground where it can encounter Myrmica 

host workers and can be carried into the host colony. 

The adoption and integration of Phengaris caterpillars into Myrmica nests, passes through a 

series of ant behavioural filters (encounter, infection and exploitation; Nash et al., 2011) in 

which chemical mimicry is considered the main means of Phengaris larvae to be adopted and 

fully integrated into the host colony (Elmes et al. 1991). Nevertheless other signals like larval 

size, tactility, the secretion of dorsal nectary organ combined with behavioural “adoption” 

display and the emission of sounds to mimic the queen acoustical signals facilitate the 

adoption of Phengaris larvae (DeVries et al., 1993; Elmes et al., 2001; Barbero et al., 2009a; 

Barbero et al., 2009b; Sala et al. 2014). 

Inside the colony the larva spends the following 9-10 months feeding and growing (Thomas 

1984). Some larvae of Phengaris can spend one additional year inside the host colony to 

complete their development (Hovestadt et al. 2007; Witek et al. 2006; Tartally 2005; Elmes et 

al. 2001; Als et al. 2001; Schönrogge et al. 2000; Thomas et al. 1998). 
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Phengaris larvae exploit two different feeding strategies. The predatory feeders, P. arion and 

P. teleius, show an exceptional case of carnivorous nutrition among the Lepidoptera. They 

directly feed on larvae causing serious damage to the colony, which may lead to 

overexploitation (Thomas and Wardlaw 1992). The cuckoo feeders like P. alcon and P. rebeli 

cause nurse ants to feed through trophallaxis. This strategy allows several larvae to survive 

inside the same nest and never leads to overexploitation (Elmes et al. 1991).  

The feeding stragergy of P. nausithous is still under debate, some authors suggest the 

coexistence of both “cuckoo” and “predatory” (Thomas and Settele, 2004) lifestyles, while 

other authors regard P. nausithous a “cuckoo” feeder (Patricelli et al. 2010). 

Inside the nests of host ants, the young larvae increase in weight acquiring about 99% of their 

final weight, and at the beginning of summer the larvae move into the upper part of the nest 

where they pupate and eclose after three weeks as an adult (Fiedler 1990; Thomas and 

Wardlaw 1992). 
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Origin and evolution 

The origin and evolution of Phengaris parasitism seems tightly linked to the adoption process 

(Pech et al. 2004). Since the predatory species of Phengaris use secretions of a dorsal nectary 

organ (DNO) during the adoption, and DNO secretions play an important role in mediating 

mutualistic association between lycaenid butterflies and ants, the predatory Phengaris species 

have been proposed as ancestral species (Fiedler 1998).  

Pech et al. (2004) used a cladistics analysis based on morphological and ecological data, to 

show that the use of the DNO secretions during adoption is an ancestral state, which was 

subsequently reduced in P. nausithous and lost in cuckoo feeders P. alcon and P. rebeli. 

However they did not find an unequivocal solution for the origin of predatory and cuckoo 

feeding strategy. Treating P. nausithous as predatory or as polymorphic feeders, three 

scenarios are possible i) predatory and cuckoo strategies originated independently, ii) the 

predatory strategy evolved into the cuckoo strategy, iii) cuckoo is the ancestral habit that 

changed into predatory (Pech et al. 2004). Therefore the clarification of P. nausithous feeding 

habit might be helpful to understand the evolution of feeding strategies in these parasitic 

butterflies (Pech et al. 2004).  
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Conservation Status 

Phengaris (Maculinea) butterflies in Europe are declining because of their complex life cycle 

in combination with habitat loss and fragmentation (Wells et al. 1983). The extinction of P. 

arion in the United Kingdom in the 1970s (Thomas 1980) raised interest in the conservation 

of these butterflies (Elmes and Thomas 1992; Hochberg et al. 1994; Thomas 1994; Wynhoff 

1998). During the past decades Phengaris (Maculinea) butterflies have become icons of 

European biodiversity conservation (Thomas and Settele 2004), and are perceived as umbrella 

species covering many grassland communities (Randle et al. 2005; Spitzer et al. 2009; 

Casacci et al. 2011). 

Their conservational status in Europe has been classified as follows: 

 

Phengaris (M.) 

spp. 

Habitats 

Directive 

(Annex)* 

Red list status 

Europe ** 

Red list status 

EU27 ** 

 

European 

Conservation 

Status*** 

P. rebeli    SPEC 1 

P. alcon  LC NT SPEC 3 

P. arion II, IV EN EN SPEC 3 

P. nausithous II, IV NT NT SPEC 3 

P. teleius II, IV VU VU SPEC 3 

                     (*Van Helsdingen et al. 1996 **Van Swaay et al. 2010; ***Van Swaay and Warren 1999) 

                         LC (Least Concern), EN (Endangered), VU (Vulnerable) NT (Near Threatened). 

                     SPEC 1- threatened species at global level, restricted to Europe 

                        SPEC 3 – Not restricted in Europe but threatened in Europe (unfavorable conservational status). 
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Ants as host: Myrmica 

  

Myrmica ants are hosts of Phengaris butterflies. Their colonies have a monomorphic worker 

castes, and their workers show a reddish coloration with possibility of variation from the pale 

orange to the black-brown and a middle length between 5 and 10 mm. 

Although the biology of many Myrmica species has not been studied in detail, it seems that a 

general life style is common to all species (Radchenko and Elmes 2010). 

Queens lay eggs in early spring till late summer, parts of the larvae develop rapidly but others 

enter diapause and overwinter (Barbero et al. 2012). Larvae vary in size, the biggest will 

become queens, the others males or workers. The winged forms abandon the nest, and form 

the end of August until the beginning of September they complete their nuptial flight 

(Wynhoff 2001). Newly mated queens can either found a new nest (haplometrosis) or can be 

integrated into existing colonies (Thomas et al. 1993). Nests are builtunder stones, wood, 

leaves or accumulating musk (Elmes 1991). All Myrmica ants are saprophytic, generalist and 

predators. The number of workers per nest can vary from few hundreds to thousands of 

individuals, while the number of queens has been reported to vary between one to ten 

(Wardlaw and Elmes 1996). Myrmica colonies can be found in various kinds of habitat, such 

as meadows, woods, human alterated landscapes and few xerophilous steppe forms (Arnoldi 

1968; Radchenko and Elmes 2010). Most species are adapted to cool conditions and in the 

southern parts of their distribution, Myrmica are confined to high altitudes (Jansen et al. 

2010).   

Myrmica ants are widespread in the Holoartic region, with European, Asian and well 

separated North-American species (Czechowski et al. 2002). There are 150 species described 

(Czechowski et al. 2002) and 111 species are present in Eurasia (Elmes et al. 2002). 

The genus is divided in four main taxonomic groups (Wardlaw et al. 1998): 
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1. “lobicornis” group: three species (Myrmica lobicornis Nylander, 1846; Myrmica 

schencki Emery, 1895; Myrmica lobicornis var. lobulicornis Nylander, 1857)  

2. “scabrinodis” group: four speciesi (Myrmica sabuleti Meinert, 1860, Myrmica 

scabrinodis Nylander, 1846; Myrmica specioides Bondroit, 1918; Myrmica lonae 

Finzi, 1926).  

3. “rugulosa” group: three species (Myrmica rugulosa Nylander, 1849; Myrmica gallieni 

Bondroit, 1920 e Myrmica sulcinodis Nylander, 1846)  

4. “rubra” group: two species (Myrmica rubra L., 1758 and Myrmica ruginodis 

Nylander, 1846) . 
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Aims of research 

 

The coevolutionary adaptations between P. nausithous and M. rubra are the core of this thesis. 

Research on the interactions between Phengaris species and their hosts is not only relevant 

for understanding the co-evolutionary host-parasite dynamics but also for developing 

appropriate evidence based conservation strategies (Fiedler 1998; Als et al. 2004; Thomas and 

Settele 2004; Hovestadt et al. 2007; Nash et al. 2008; Barbero et al. 2012). For example P. 

nausithous can be more vulnerable to the habitat fragmentation and requirs more efforts for 

conservation if a co-evolutionary arms race is going on, because on the contrary to other 

species like P. alcon, it can not shift into other Myrmica hosts when M. rubra resistance arises 

(Nash et al. 2008).  

Until now most of the studies around coevolutionary adaptation between Phengaris butterflies 

and their hosts were focused on cuckoo species. P. alcon and P. rebeli are considered the most 

derived social parasite within the genus Phengaris because is shorter adoption time, more 

elaborate communication and a lower fitness cost imposed upon the ant hosts (Fiedler 1990, 

1998; Elmes et al. 1991, 2002; Thomas and Elmes 1998). Why P. nausithous is less studied 

compared to other species is probably because it seems to be a “joining link” between cuckoo 

and predatory forms. Although it can exploit also ant brood as food source (Elfferich 1998), 

like cuckoo feeders it is highly specialized and achieves some social integration (Thomas and 

Settele 2004). However as earlier mentionated, there are any evidence to support the origin of 

cuckoo species from predatory forms (Pech et al. 2004).  

P. nausithous like other Phengaris butterflies in Europe are declining and local extinctions 

have already been observed (Settele 1998), thus more efforts on this species are need. In any 

case, the high specificity for M. rubra across all of Europe (Thomas et al., 1989; Elmes et al., 

1998; Tartally and Varga, 2005; Munguira and Martin, 1999; Stankiewicz and Sielezniew, 
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2002; Witek et al., 2008; Patricelli et al., 2010), its vulnerable status throughout its range (Van 

Helsdingen et al. 1996; Van Swaay and Warren 1999; Van Swaay et al. 2010), and its role as 

conservation icon together with the other Phengaris butterflies (Pyle et al. 1981; Settele et al. 

2005) make P. nausithous a good model species for studying host-parasite co-adaptation and 

large blue butterfly conservation. Therefore P. nausithous was chosen as target species of this 

research.  

Consequently, the basic research questions of the present thesis are:  

Is the host-parasite interaction so tight to fuel a co-evolutionary arms race? 

Was there an evolution of allomones in P. nausithous that elude M. rubra nest-mate 

recognition? 

Do M. rubra infested populations respond by local adaptation and evolve a more careful nest-

mate recognition as counter adaptation? 

Does a long and intense parasitation of  P. nausithous affect the population genetics of M. 

rubra? 

To answer these questions a multidisciplinary approach had to be chosen included chemical-

behavioural ecology and population genetics:  

Chemical ecology 

The majority of social parasites gain access to host colonies by exploiting the recognition 

signals used by the social insects themselves (Nash and Boomsma 2008). However, little is 

known about the function of individual or classes of compounds within the mixture of 

cuticular hydrocarbons, while a positive interaction is evident during the retrieval of 

Phengaris larvae by workers (Schönrogge et al. 2004). Then the first question to address is: 

which are the chemical cues involved in the mimicry of P. nausithous caterpillars? The 

research of compounds that are common to both M. rubra and P. nausithous larvae may 
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represent the best candidates for M. rubra brood signature and P. nausithous mimicry. 

Subsequently, the second goal is to prove the behavioural response of shared compounds with 

their synthetic counterpart to find those compounds in P. nausithous larvae that might catch 

the attention of M. rubra workers. 

Behavioural ecology 

As Myrmica ants have evolved sophisticated nest-mate recognition abilities based on the 

complex signals of cuticular hydrocarbons, it is clear that any mimicry of a social parasite 

does not require to match the overall suite of signals produced by their hosts because not all 

compounds of the host are equally important. Most importantly a social parasite must mimic 

general signals involved in species recognition rather than those for intra-specific colony 

interaction. The parasite larvae need to be adopted into any colony of a host species not a 

specific one. Thus the attractivity of P. nausithous for M. rubra workers is expected to be 

lower than that of its own brood. Nevertheless there is strong selection on the parasitc larvae 

for optimizing their mimicry and reduce the avoidance by the local host workers.  

In case of local adaptation to the parasite, sympatric and allopatric workers should show 

different behavioral responses towards P. nausithous depending on who is leading the arms 

race: host or parasite. Therefore the core questions are: i) do Myrmica workers recognize nest-

mate larvae? ii) do workers prefer own brood over P. nausithous larvae? and iii) are there 

differences in P. nausithous larvae choice between Myrmica ants from sympatric or allopatric 

parasite populations?   

Population genetics 

The “Gestalt odour” hypothesis (Crozier and Dix 1979) predicts that nest-mates share a 

common colony specific label. Since a larger genetic variation will increase differences 

among genetically derived recognition labels, this may reduce the efficiency of nest-mate 

recognition. Thus, P. nausithous can take advantage in M. rubra colonies with high genetic 

variation because this increases the variability of odour among colony members and 



13 

 

consequently the workers´ tolerance. Comparing the genetic variability of infested M. rubra 

populations with M. rubra populations whith those that (at least for quite some time) are not 

infested by P. nausithous, is expected to find out host populations genetically more varied in 

association with the social parasite, because a higher genetic variation allows for an easier 

infiltration into the colony. 
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Abstract. Phengaris (Maculinea) butterflies are social parasites of Myrmica ant colonies. 

Larvae of the parasite are adopted by the ant workers into the colonies. Apparently, chemical 

signals are used by P. nausithous larvae to mimic those of the host brood to be recognised by 

the ants. Here, chemical extracts of ant brood and butterfly larvae with four different solvents 

are tested in behavioural choice assays in search of compounds involved in the adoption 

process. Tetracosane is the main shared compound in all brood extracts of M. rubra and in all 

larvae of P. nausithous. The attractiveness of tetracosane for M. rubra workers is confirmed 

by testing synthetic tetracosane in behavioural choice assays, suggesting that the adoption 

ritual may be initiated by tetracosane. 

 

 

Keywords. Chemical mimicry, social parasites, myrmecophily, co-evolution, brood 

recognition. 
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Larvae of Phengaris (Maculinea) butterflies are adopted by Myrmica workers and are 

obligate myrmecophiles. Brood recognition by M. rubra workers was tested for concolonial 

larvae (M. rubra) vs allocolonial larvae (M. rubra and P. nausithous) to assay the mimetic 

efficiency of P. nausithous. In addition, we tested M. rubra ant colonies from different 

populations with and without the presence of Phengaris, to test for potential local adaptation 

in adoption behaviour. We show that M. rubra can distinguish between nest-mate and foreign 

mailto:gaetano.solazzo@zoologie.uni-halle.de


27 

 

larvae as well as between P. nausithous and their own larvae. Workers from the allopatric 

population inspected and rejected more P. nausithous larvae than workers from the sympatric 

population. This might reflect a local host adaptation in which the social parasite more 

efficiently mimes its sympatric host ants than allopatric ones.  
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Evolutionary theory predicts that high genetic variation maintains plasticity in a species´ 

response to parasite pressure. However, higher genetic diversity might also cause easier 
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infiltration by social parasites, because odour diversity is high and nest-mate recognition poor. 

Here we test if the obligate myrmecophile Lycaenid butterfly Phengaris nausithous, a parasite 

of colonies of the highly polygynous ant Myrmica rubra causes local adaptation by enhancing 

genetic variance in parasitized vs. non parasitized ant populations. M. rubra colonies from six 

infested and three uninfested sites were assayed at five microsatellite loci to quantify genetic 

variation. Our results reveal isolation by distance and a significantly enhanced intracolonial 

variance due to the parasite pressure.  
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Synthesis 

 

Phengaris nausithous as model of study 

The three studies of this thesis address the strategies that allow social parasites to break down 

colony barriers and the host counter adaptations against the parasitism.  

For many years butterflies of the genus Phengaris (Maculinea) have been the subject of many 

studies on ecology, behavior and conservation biology. In particular P. alcon and P. rebeli 

became a model system for the study of the mechanisms used by social parasites to infiltrate 

colonies of social insects (Akino et al. 1999; Als et al., 2001, 2002; Schönrogge et al. 2004; 

Nash et al., 2008, 2011; Barbero et al., 2009a; Barbero et al., 2009b; Sala et al., 2014).  

Although P. nausithous is a more specific social parasite, it has been rather understudied 

compared with its European congeners, for example none of the studies on the chemical 

ecology of Phengaris butterflies (Akino et al. 1999; Schlick-Steiner et al. 2004; Schönrogge 

et al. 2004; Nash et al. 2008; Witek et al. 2013) have taken P. nausithous into account, 

excluding the analysis of some post-adoption samples of P. nausithous in Witek et al. (2013). 

In contrast this thesis enhances the validity of using P. nausithous and M. rubra as a model 

system to detect co-evolutionary adaptation between social parasites and their host. The 

absence of a competing good alternative host, like M. ruginodis that infrequently occurs in the 

wet meadows used by P. nausithous, might have led to this butterfly evolving a greater 

fidelity to its host over a very wide range (Elmes et al. 2002). The higher specificity of 

Phengaris nausithous suggests a monophyletic clade lacking cryptic species (Ritter et al. 

2013), in contrast to other Phengaris species which show huge differences in host specificity 

suggesting the existence of cryptic species and/or speciation (Thomas et al. 2012; Bereczki et 

al. 2013). Several studies have obtained support for geographical variation in parasitism and 

host resistance (Thompson 1994, 2005; Van Baalen 1998; Gomulkiewicz et al. 2000; Brodie 
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et al. 2002; Stokke et al. 2008), hence P. nausithous and M. rubra may work as a general 

model to better understand the arms race, host-parasite co-evolvution and their geographical 

variation without problems arising from cryptic and morpho-species, given that this social 

parasite only exploits just a single host over all of its distribution range (Lukhtanov and 

Lukhtanov 1994; Sibatani et al. 1994; Tuzov 1997; Wynhoff 1998; Munguira and Martin 

1999). It is necessary to clarify that also some aspects of P. nausithous biology are till now not 

fully understood, mainly the feeding strategy. It is probably for this reason that P. nausithous 

is less studied compared to other species, clarification of P. nausithous feeding seems to be 

the only way to resolve the evolution of feeding strategies in these parasitic butterflies (Pech 

et al. 2004), which should encourage the study of P. nausithous.  

 

Consequence for understanding host parasite co-evolution 

Combining all the results found for population genetics, behavioural and chemical ecology in 

P. nausithous and M. rubra interactions, this thesis suggests the existence of such 

evolutionary hot spots for P. nausithous in which the parasite evolves cuticular hydrocarbons 

that are attractive to M. rubra workers resulting in locally adapted actions between host and 

parasite. This thesis also suggests that after a long and intensive infestation period cold spots 

emerge, because currently uninfested host populations show strong differences in 

sociorganization and nestmate recognition as an adaptative resistance to parasitism. Hence, in 

host populations in which M. rubra is ahead of P. nausithous, the host developed a more 

efficient defence against the parasite, which may have caused local temporary extinctions of 

P. nausithous. On the other hand populations in which P. nausithous is ahead of M. rubra, the 

parasite larvae may better mimic the host brood, as already found for P. alcon (Als et al., 

2001, 2002; Nash et al., 2008). 

The dynamics between social parasites and their hosts are typically highly dynamic oscillating 

processes, often resulting in a host-parasite arms race. At regional scales such interactions 
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produce a geographic mosaic of co-evolutionary dynamics (Thompson 2005). To understand 

the geographical mosaic theory of co-evolution it has been suggested (Gomulkiewicz et al. 

2007; Ruano et al. 2011) to detect: i) co-evolutionary hot and cold spots. Hot spots are defined 

as populations in which interacting species have reciprocal effects on each others fitness. 

These hot spots are often embedded within surrounding communities in which interspecific 

selection affects one, or neither species (cold spots) (Thompson 1994, 1997; Gomulkiewicz et 

al. 2000); ii) selection mosaic, populations that show different co-evolutionary outcomes, and 

iii) Trait remixing (Thompson 2005; Gomulkiewicz et al. 2007), trasformations in co-

evolutionary mosaic induced when the interacting populations change and when migration 

occurs.  

The ability of a population to adapt to local conditions is determined by the strength of natural 

selection, effects of genetic drift and gene flow (Slatkin 1973; May et al. 1975; Endler 1977). 

In particular gene flow among populations is a fundamental evolutionary force that can 

determine the geographical spread of novel adaptations (Fisher 1930; Mayr 1942; Mayr 1963; 

Ehrlich and Raven 1969). Theoretical studies has revealed that, with gene flow, hot spots can 

affect the co-evolutionary dynamics in cold spots and vice versa (Gomulkiewicz et al. 2000). 

Hence, patterns of local adaptation can be strongly shaped by the mix of co-evolutionary hot 

and cold spots (Gomulkiewicz et al. 2000). However, migration may also interfere with this 

local co-evolution: Some authors suggested that gene flow may enable beneficial adaptations 

by acting as a source of beneficial mutations driving the dynamics of local adaptation (Forde 

et al. 2004; Morgan et al. 2005). Under this scenario the species with the higher migration rate 

is expected to become locally adapted (Gandon et al., 1996; Ruano et al. 2011). Other studies 

point out that the absence of (or restriction of) gene flow is essential for local coevolution, 

given that migration homogenizes the populations (Nuismer et al. 2003; Nash et al. 2008).  

In the Upper Rhine valley, the study area where genetic variability has been tested for M. 

rubra (Solazzo et al. 2014) and P. nausithous (Anton et al. 2007) populations, it seems that 
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the genetic differentiation of host populations is an order of magnitude higher than P. 

nausithous (Seppä and Pamilo 1995; Nash et al. 2008; Solazzo et al. 2014), hence it should be 

interesting to test if this isolation facilitates host resistance and the cold spot allows P. 

nausithous, at least temporarily, to escape the arms race.  

Thus: the high specificity of P. nausithous over a very wide range (Lukhtanov and Lukhtanov 

1994; Sibatani et al. 1994; Tuzov 1997; Wynhoff 1998; Munguira and Martin 1999; Elmes et 

al. 2002), the presence of hot and cold spots (Solazzo et al. 2013, 2014), the asymmetry in 

migration between host and parasite, and the difference in breeding system (haplodiploid for 

M. rubra and diploid for P. nausithous) which erodes the genetic variation differently (Anton 

et al. 2007) suggest several future perspectives for the research on evolutionary dynamics 

between host-parasite co-adaptations that can be addressed using P. nausithous and M. rubra 

as a model system. 

This direction for the research on co-evolution between P. nausithous and M. rubra can also 

provide an effective support for the conservation of this vulnerable parasitc butterfly. 

 

Consequence for improving conservation 

As mentioned in the introduction, the coevolutionary adaptations between P. nausithous and 

M. rubra are the core of this thesis and the interactions between Phengaris species and their 

hosts may be relevant for developing appropriate conservation strategies (Fiedler 1998; Als et 

al. 2004; Thomas and Settele 2004; Hovestadt et al. 2007; Nash et al. 2008; Barbero et al. 

2012).  

The arms race between P. nausithous and M. rubra might be consistent with the intermittent 

arms race hypothesis (Soler et al. 1998). This suggests a scenario in which periods of frequent 

parasitism will alternate with periods of no or rare parasitism. During periods of intense 

parasitism, host defences are continuously improving and, as a consequence, the success rate 

of the parasites is decreasing. Once host defence has reached a high level, brood parasites will 
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benefit from emigration. After a period of parasites being absent, hosts will lose their 

defensive adaptations against parasites, and it will then be advantageous for the brood parasite 

to recolonize the area.   

The Upper Rhine valley is an area where P. nausithous presence and absence has been studied 

since 1989 (Settele 1998; Anton et al. 2007; Solazzo et al. 2014). The risk of colony collapse 

is still unknown in this area but in some studies an annual death of Myrmica colonies has been 

estimated between 80% for nest infested by predator and 76% by cuckoo Phengaris (Thomas 

and Wardlaw 1992; Thomas et al. 1997; Thomas and Elmes 1998; Hovestadt et al. 2012). 

Hence some meadows are intensively parasitized while on the other hand in meadows which 

are no longer infested, M. rubra populations are characterized by a higher monogyny 

(Solazzo et al. 2014) which consequently may promote a more carefully nestmat recognition 

and a lower acceptance for the parasites making more difficult P. nausithous infestations 

(Solazzo et al. 2013). Further, extinction and recolonization dynamics have already been 

observed for P. nausithous in the various meadows of the Upper Rhine valley (Settele 1998). 

All these traits are in agreement to the intermittent arms race hypothesis because in the Upper 

Rhine valley some M. rubra populations show highly resistance to be infested in which the 

parasite disappeared and other populations that seems more vulnerable in which P. nausithous 

survive.  

Typically Phengaris (Maculinea) butterflies in Europe live in small and closed populations 

(Thomas 1995; Nowicki et al. 2005), indeed P. nausithous can be more vulnerable to habitat 

fragmentation and more efforts are required for it conservation than for other Phengaris 

species, because the latter can shift into other Myrmica hosts when the primary host enhances 

its resistance (Nash et al. 2008). In fact, as predicted by the intermittent arms race hypothesis, 

once host defence has reached a high level, parasite will benefit from emigration. Thus to help 

the survaival of this butterfly it might be important to allow and facilitate P. nausithous to 

disperse into surrounding host populations. After a period of parasites being absent, hosts will 



35 

 

lose their defensive adaptations. Then it can be expexted that polygynous colonies can be 

promoted again enabling P. nausithous to recolonize the area.   
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