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Abstract
We address the problem of facial expression analysis. The proposed approach predicts both basic emotion and valence/
arousal values as a continuous measure for the emotional state. Experimental results including cross-database evaluation on 
the AffectNet, Aff-Wild, and AFEW dataset shows that our approach predicts emotion categories and valence/arousal values 
with high accuracies and that the simultaneous learning of discrete categories and continuous values improves the prediction 
of both. In addition, we use our approach to measure the emotional states of users in an Human-Robot-Collaboration scenario 
(HRC), show how these emotional states are affected by multiple difficulties that arise for the test subjects, and examine 
how different feedback mechanisms counteract negative emotions users experience while interacting with a robot system.
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1 Introduction

Human-Robot Cooperation (HCR) is a vital approach to 
increase the efficiency of industrial workflows. Robots 
can perform stressful, strenuous or difficult tasks precisely 
and repeatedly, while humans contribute to flexibility and 
awareness of certain situations (Darvish et al. 2018). The 
development of the last years has led away from robots as 
autonomous systems towards cooperative partners who 
share a working space and work cooperatively with human 
employees. The main requirements for a productive HCR 
environment are security and acceptance of robots (Bröhl 
et al. 2019). This is especially true when large robots take 

on heavy physical tasks while operating in close vicinity to 
humans.

First of all, reliable control mechanisms are of impor-
tance to ensure a smooth cooperation of humans and robots 
(Ao et al. 2017). To ensure the safety of workers and thus 
increase confidence in HCR systems, approaches to avoid 
collisions between humans and robots are essential. Pel-
legrinelli et al. (2016) propose a statistical based approach, 
where the robot trajectories are optimized according to 
volumes that represent the probability of the presence of 
a workers arm. The path with minimal probability is then 
selected, while at the same time the robot speed is reduced 
in accordance with the expected risk of collision. Another 
approach by Anvaripour et al. (2019) uses force myography 
data and neural networks to predict human movements and 
increase HCR.

Apart from objective security issues, the attitude of work-
ers based on experience but also on subjective reasons is 
vital for a smooth human robot cooperation. Inordinate fear 
related to possible physical threats might cause a negative 
attitude and hinder a successful cooperation. This is also 
true for subjective impressions of impeding (robot might 
be perceived as slow or unreliable) as well as social aspects 
(robot might surrogate human workers). Bröhl et al. (2019) 
discuss cultural deviations of the acceptance of robots in 
Germany, Japan, USA and China. They found that robot 
actions must be predictable based on human perception and 
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that acceptance can be increased if robot behavior respects 
cultural characteristics of the respective country. Workers in 
western countries prefer direct communication with techni-
cal systems, but indirect communication in eastern coun-
tries. The professional relevance of HCR also affects accept-
ance, which is, for example, low in China due to the lack of 
automation in industrial processes. Furthermore, the fear of 
losing contact with colleagues is much higher in Germany 
than in the US or Japan.

Human emotions can indicate threats or problems that 
may arise when sharing a workspace with an industrial robot 
and could also be a sign of subjective aspects such as fatigue, 
discomfort or fear. This is why automatic recognition of 
emotions – which are often revealed by facial expressions 
(Wegrzyn et al. 2017; Höfling et al. 2020), speech (Huang 
et al. 2019), eye-gaze (Krishnappa Babu and Lahiri 2020), 
contextual informations (Salido Ortega et al. 2020), or body 
movements (Ahmed et al. 2020) can be helpful in evaluating 
and improving the cooperation between humans and robots 
in HCR environments. Image processing techniques allow 
to analyze such facial expressions in order to predict the 
underlying emotions and deduce human intention or condi-
tion (Jeon 2017; Samara et al. 2019; Werner et al. 2019). 
Approaches of facial expression analysis require a success-
fully detected face to begin with. Thereafter, typically a set 
of facial landmarks is extracted, followed by the calculation 
of so called (AUs) which encode movements of facial mus-
cles (Wegrzyn et al. 2017; Vinkemeier et al. 2018; Werner 
et al. 2017). These AUs are then delivered to a classifier 
predicting discrete emotion classes. Alternatively, the AUs 
are mapped (Al-Hamadi et al. 2016) into continuous emo-
tion state spaces which have been developed with respect 
to human cognition (Kragel and LaBar 2016). Examples 
for this are the Pleasure-Arousal-Dominance space (PAD) 
by Mehrabian and Russell (1974) and the two dimensional 
Circumplex model by Russell (1980) with its dimensions 
valence (attractiveness / averseness) and arousal (intensity). 
Despite being sometimes depicted this way, there is not nec-
essarily a unique mapping between discrete emotion classes 
and the dimensions of the continuous state space models 
(Hoffmann et al. 2012). It therefore is reasonable to use both 
discrete emotion classes and continuous values in order to 
better cover the latent emotional state space.

Chang et al. (2017) used a Convolutional Neural Network 
to compute AUs, which are then used to predict valence 
and arousal. Khorrami et al. (2015) employed an holistic 
approach predicting the valence / arousal values directly 
from (normalized) face images. AUs are then extracted 
implicitly by the Convolutional-Neural-Network (CNN). 
Mollahosseini et al. (2019) compared an approach based on 
HoG features and (SVR) to a CNN based one (AlexNet). The 
latter achieved better results for both predicting the emo-
tion and the (V/A) values. To predict V/A values in video 

sequences, Hasani and Mahoor (2017) combined a CNN 
with a recurrent neural-network (RNN) to extract temporal 
features. Zhang et al. (2020) pursued a similar approach, 
using a pre-trained network to predict emotions and person-
alities. Li et al. (2017) trained a bidirectional RNN, which 
also includes future frames for predictions. In Chu et al. 
(2017), the authors propose to extract both spatial repre-
sentations using a CNN and also temporal representations 
from the data using a Long-Short-Term-Memory (LSTM) 
model. By fusing the output of the CNN and LSTM model, 
their approach is able to predict Action Units with a supe-
rior performance. However, they do not perform any further 
emotion classification. In their approach called Emotion-
alDAN, Tautkute et al. (2018) extend the loss function by 
incorporating facial landmarks in the learning process. They 
report high accuracies results for the CK+, JAFFE and ISED 
dataset but while trained on AffectNet – do not report any 
results on this dataset.

Apart from optical sensors, biophysiological measure-
ments can be used for emotion analysis. Seo et al. (2019) 
used machine learning to predict boredom from electroen-
cephalogram data (EEG). Savur et al. (2019) used EEG, 
Electrocardiogram (ECG), Electromyography (EMG), Gal-
vanic Skin Response (GSR), Heart Rate (HR), Heart Rate 
Bariability (HRV), and pupil dilation to adjust robot speed 
within HCR-scenarios. Höfling et al. (2020) compared bio-
physiological measurements with the output of commer-
cially available facial analysis software (FaceReader). They 
found that while facial EMG and skin conductance corre-
late strongly with the subjects’ self–assessments, especially 
facial expressions with low or negative arousal are hard 
to detect by optical face analysis. However, despite being 
strong signals, biophysiological measurements are hardly 
applicable in realistic HRC scenarios as the signals are sig-
nificantly interfered by human movements and measurement 
equipment hinder the subjects actions.

A crucial prerequisite in order to train classifiers that 
work beyond lab-conditions is the availability of datasets 
that contain real-case samples with a high variation of sub-
jects, light conditions, head poses and none cooperative 
features (e.g. partial occlusion). However, many datasets 
are limited to only a few subjects and are acquired within 
a controlled environment. We therefore evaluate three cur-
rent in-the-wild datasets in order to investigate their appli-
cability. In the next section, we propose a fast deep learning 
based approach to predict continuous valence and arousal 
values as well as discrete emotion classes. In the experimen-
tal section, we compare our approach to other state-of-the-
art approaches. Finally, we apply our approach in an HCR 
scenario to predict the emotional state of human workers 
and examine how different feedback mechanisms counteract 
negative emotions users may experience while interacting 
with a robot system.
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2  Prediction of valence/arousal and basic 
emotions

We aim to predict the emotional state of a person based on 
its facial expression, i.e. to predict both discrete emotion 
categories (neutral, joy, sad, surprise, fear, anger, disgust) 
and continuous (V/A) values. Typically, the analysis of facial 
expressions consists of several steps (as face and landmark 
detection, feature extraction and classification). The major 
disadvantage of those approaches is that they cannot be 
trained in an end-to-end manner. We, therefore, propose a 
network architecture which detects the users face and pre-
dicts basic emotion categories as well as (V/A) directly from 
the RGB image.

Network architecture and loss function The proposed 
network (Fig. 1) is based on the tiny YOLOv3 architecture 
(Redmon and Farhadi 2017) which is used in the domain 
of object detection. The network takes the complete RGB 
image as input. The output is predicted directly from the 
input image without using any pre-detections like facial 
landmarks or AUs. Unlike other object detection networks 
(e.g. Mask R-CNN), the network does not first generate a list 
of region proposals (ROIs), which then have to be processed 
individually. Instead, the input image is divided into an S × S 
grid. For each grid element, a set of K vectors

is predicted. Here, [x, y, w, h] is the center and the size of 
the predicted bounding box, relative to the dimensions of 
the input image. pr is a confidence score indicating the prob-
ability that the box [x, y, w, h] actually contains a face (see 

(1)V = {x, y,w, h, pr, �c, v
�, a�}K

Redmon and Farhadi 2017 for further details). The vector 
�c ∈ R

7 denotes the class probabilities of each discrete emo-
tion category and v′, a′ are predictions for the V/A values. 
Both v′ and a′ are limited to the range [0.1] using logis-
tic activation (Eq. 6), so the actual V/A values with range 
[−1, 1] are obtained as [v, a] = 2([v�, a�] − 0.5).

The loss function consists of 4 loss terms (Eq.2). Lbox and 
Lpr are the losses for the bounding box and the confidence 
scores (see Redmon and Farhadi 2017). For the class prob-
abilities, Lc , softmax cross entropy loss (Eq. 3).

For Lv,a , the loss of the V/A values, we also use cross entropy 
loss (Eq. 4) rather than MSE due to the logistic activation. 
In order to do so, true valence and arousal values must be 
scaled to the range [0,1] (Eq. 5).
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Fig. 1  Network architecture for emotion classification. A modified 
tiny Yolov3 model is used in order to predict discrete emotion labels 
and continuous valence/arousal values. The network combines fea-

tures from layers of different spatial resolutions in order to better clas-
sify faces of different sizes
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As stated above, for each grid element K vectors V are 
predicted. The reason for this is that the face bounding 
boxes may vary greatly in size depending on the camera 
distance of the person which is difficult to train with only 
one parameter set per grid element. Instead, a set of K pre-
defined anchor boxes A = {[0, 0,w, h]}k is used, following 
the approach in Redmon and Farhadi (2017). To obtain 
these anchors, first, all face bounding boxes of the train-
ing set were clustered using k-means for different numbers 
of clusters NC = {1, 2, 3, 5, 10} . We then computed the 
average intersection–over-union (IOU) between the face 
bounding boxes and the closest centroid for each number 
of clusters. We observed that for NC = 3 the average IOU 
already exceeds a value of 0.8 and, therefore, used three 
anchor boxes and intialized them with the centroids for 
NC = 3 . While more cluster centroids would increase the 
average IOU even further, it would also increase the model 
complexity, making training process more difficult. Dur-
ing training, we first find the anchor box AK̂ which overlaps 
the most with the ground truth face bounding box Bt (using 
K̂ = argmax IOU(Bt,AK) ) and only compute gradients for 
the box parameters [x, y,w, h]K=K̂ . Unlike for the box param-
eters, gradients for the V/A values and the class probabilities 
are computed independently of the anchors.

The network is pre-trained on the COCO dataset (Lin 
et al. 2014) and has 7,7M trainable parameters. The small 
number of parameters and the fact that the complete input 
image is processed in a single forward pass, make our 
approach very fast and capable for real time applications. 
This architecture allows us to learn either discrete emotion 
classes, V/A values or both at the same time, when available.

Datasets We use three different datasets for training and 
evaluation.

– AffectNet: With 450,000 manually annotated image sam-
ples, and almost the same number of different subjects, 
AffectNet is currently the most comprehensive ’in-the-
wild’ database for emotions (Mollahosseini et al. 2019). 
The ground truths cover 7 basic emotion categories as 
well as V/A labels.

– Aff-Wild: A video database containing 298 ’in-the-wild’ 
video sequences and labels for V/A for each frame (Kol-
lias et al. 2019), but no labels for the discrete emotions.

– AFEW-VA: Consists of 600 short video sequences, 
extracted from movies (Kossaifi et al. 2017). While the 
videos in Aff-Wild take several minutes, AFEW-VA only 
contains short sequences of 10 to less than 200 frames 
(<30k frames in total). Thus, AFEW-VA is a small data-
base, making it necessary to employ k-fold cross valida-
tion for a robust evaluation.

Each dataset has its benefits and drawbacks. As a video 
database, Aff-Wild consists of a large number of images, 

which, however, are highly correlated. In contrast, AffectNet 
has a high variance. The database contains a large number 
of images showing different head rotations, occluded faces, 
persons with different ages and skin colors and other image 
distortions, like e.g. text. Fig. 2 shows the V/A ground truth 
distribution for each database. AffectNet almost completely 
covers the V/A space, but - in contrast to Aff-Wild - con-
tains only a few samples of neutral valence and strong neg-
ative arousal (boredom/sleepiness). Furthermore, the V/A 
distribution is similar to a circle, i.e. there are no samples 
with both strong valence and arousal (e.g. v, a = [1, 1] ). We 
assume this is due to the annotation process and the used 
annotation tools. Thus, by combining different datasets, we 
do not only increase the variance of the input images, but 
also cover the V/A space in a more complete way.

Data augmentation Several augmentation strategies are 
used to further increase the variance of the training data. 
We apply standard geometric augmentations like random 
cropping, jittering and image flipping. About 25% of all 
images are converted to gray-scale images and also rand-
omized HSV color changes are applied. Rotation was not 
used. Furthermore, randomly selected image parts within 
the face bounding box were occluded with random images 
from the Pascal VOC dataset (Everingham et al. 2015). This 
technique has been used in object detection, identification, 
and facial landmark detection and was also successfully 
applied in the field human pose estimation (Sárándi et al. 
2018). Occluding random image parts acts as a regularizer 
by forcing the network to learn V/A values and emotion 
classes not only based on the most meaningful facial area 
(e.g. eyebrows) for a particular emotion but also include less 
meaningful areas (e.g. cheeks). This is particularly important 
if the respective facial area is not visible.

3  Evaluation of the proposed method

We run several experiments – using the AffectNet, Aff-Wild, 
and AFEW-VA datasets – to evaluate our approach for pre-
dicting both discrete emotion classes and continuous (V/A) 
values. Firstly, we describe experiments using training and 
test sets from the same dataset and compare our approach 
with other state-of-the-art approaches. Thereafter, we report 
results for cross-database evaluation and fusion of datasets. 
Using the AffectNet dataset which contains both labels for 
discrete emotion classes and V/A values, we then examine 
whether the simultaneous training of emotion classes and 
V/A leads to an improved classification.

Since the test set of AffectNet is not yet available, we 
spare 30% of the training samples for testing. For all data-
sets, training sample images were resized to 192x192 pix-
els and augmented as described in Sect.2. The network was 
trained for 50 epoches with a batch size of 32. The learning 
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rate was initially set to 0.001 and was reduced by a factor 
of 0.1 whenever the training error did not decrease within 5 
epoches. This happend the first time after 25 epoches. For 
implementation, we adapted the Darknet Framework (Red-
mon and Bochkovskiy 2018) to our needs. Using a single 
Geforce GTX 1080 TI, our approach is able to process input 
images with 120 fps (inference step).

Prediction of discrete emotion classes: In a first experi-
ment, we evaluated the performance of the emotion class 
prediction. Since Aff-Wild and AFEW-VA have no discrete 
class labels, only AffectNet was used here. The results are 
shown in Table 1. Our approach achieved an accuracy of 
75%. However, accuracy may be misleading due to highly 
imbalanced test and training sets. In this regard, the F1 meas-
ure might be more suitable to compare different approaches. 
As expected, the proposed approach outperforms the SVM 
approach with HoG features of Mollahosseini et al. (2019). 
Compared to other deep learning based approaches, we 
achieve a slightly higher value for both accuracy and F1 
measure. Hereof, it should be noted that our approach does 
not only predict the emotion label, but also detects the face 
and additionally predicts V/A values.

Many of the observed class confusions occurred between 
an emotion and the neutral class. This can be explained by 
the fact that AffectNet contains also many borderline sam-
ples with moderate facial expressions. Also fear and surprise 
are confused quite often. This is expected as both emotions 
are close in the V/A space and expressed with similar facial 
expressions. However, some misclassifications were a result 
of incorrect labels, as shown in Fig. 3. In fact, the annotators 
agreed on only 60.7% of the images in the AffectNet test 
subset (Mollahosseini et al. 2019).

Valence / arousal values: We first evaluated the pre-
diction of V/A values using respectively one of the three 
datasets for training and testing. Following Mollahosseini 
et al. (2019), we computed root-mean-square error (RMSE) 
and the Concordance Correlation Coefficient (CCC) meas-
ure. The results for AffectNet are shown in Table 1. With a 
RMSE of 0.282 for valence and 0.237 for arousal, the pro-
posed approach outperforms the CNN approach by Molla-
hosseini et al. (2019) and the SVR based one. For Aff-Wild, 
the standard Aff-Wild training and test sets were used. The 

results and comparisons to other state-of-the-art approaches 
are shown in Table 2. The proposed approach shows good, 
but not best results in sense of RMSE and CCC. In fact, 
the proposed approach is outperformed by approaches that 
include additional features like facial landmarks or tempo-
ral features. When no additional features are used, however, 
the proposed approach outperforms the approaches reported 
by Kollias et al. (2019) and shows a slightly reduced error 
for the arousal estimation compared to the remaining 
approaches.

For AFEW-VA, we used a 5-fold cross-validation as 
proposed by Kossaifi et al. (2017). We trained five mod-
els on four of the folds using the remaining one for test-
ing. Thereby, we ensured that the test fold shares no subject 
with any of the train folds. Results are shown in Table 3. As 
one can see, the deep learning approaches (Kossaifi et al. 
2017) are outperformed by SVR and Random Forest based 
approaches, which extracts diverse handcrafted features. 
This is expected since the AFEW-VA database contains just 
about 31,000 images, which is little in the context of deep 
learning. However, trained on AFEW-VA, our approach still 
performs better than state-of-the-art DCNN and FT-DCNN. 
Furthermore, RMSE of valence is equal to the best approach.

Simultaneous class and valence / arousal prediction: 
To evaluate, whether the simultaneous training of the emo-
tion class and the valence /arousal values is of any advan-
tage, we firstly trained separate models for class and V/A 
prediction, then a single model, which learned to predict 
both at the same time. In both cases, AffectNet was used for 
training and testing. The results are also reported in Table 1. 
We found that – using the simultaneous approach – CCC 
for both valence and arousal increased by 0.019 and 0.05, 
respectively, while the classification accuracy improved by 
4%. This clearly shows that the simultaneous learning of 
V/A values and discrete emotion categories is beneficial.

Cross-database evaluation To examine how well our 
approach generalizes to unseen data and because the num-
ber of approaches evaluated on the AffectNet dataset is still 
somewhat limited, we also evaluated our approach on the 
Aff-Wild and AFEW-VA dataset.

In Fig. 4, qualitative results for AFEW-VA and Aff-Wild 
depicting predicted and true V/A values are shown when 
AffectNet was used as the training set. For Aff-Wild (top), 
V/A values heavily fluctuate around the relatively steady 
labels. Note that the higher prediction of valence after 
t = 25 , was caused by interpreting the facial expression more 
as fear or surprise than anger, since the model was trained 
on AffectNet. Inspecting the images, we believe this is a 
reasonable prediction. For AFEW-VA (Fig. 4 bottom), the 
predictions are quite close to the actual values.

Quantitative cross-database results of valence/arousal 
predictions are listed in Table 2 (Aff-Wild) and Table 3 
(AFEW-VA) and show how a model which we trained on 
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the full AffectNet training set performed on Aff-Wild resp. 
AFEW-VA. Additionally, Table 4 shows how all models 
trained on one, two or three datasets perform on each of the 
three datasets. For this, 70% of all samples of each dataset 
were used for training and 30% for testing:

AffectNet Using the same dataset for training and testing, 
best results in sense of ICC and RMSE were achieved for 
AffectNet. When using AFEW-VA, Aff-Wild or a combina-
tion of both for training, the achieved results were clearly 
worse, as shown in Table 4. This was expected, since most 
regions of AffectNet were not or only poorly covered by the 
other datasets.

Aff-Wild In general, the cross-database experiment 
showed similar RMSE and CCC errors and, therefore, 
generalized well. However, it could not achieve the lowest 
errors of approaches that were directly trained on Aff-Wild. 
Although AffectNet covers the V/A space of Aff-Wild better 
than vice versa, the distribution of V/A values is very differ-
ent (compare Fig. 2a and c).

AFEW-VA Table 4 shows that good results were obtained 
when using AffectNet for training. Nevertheless, the V/A-
space of AFEW-VA also differs significantly from that of 
AffectNet. For example, samples of AFEW-VA with crying 
subjects are located in the same V/A region as angry sub-
jects. As a consequence, the performance of our proposed 
CNN slightly decreases in sense of RMSE when trained on 
AffectNet instead of AFEW-VA. However, valence / arousal 
values that are not close to the expected value are generally 
predicted better, which explains the better ICC results (see 
Table 3). The reasons might be the higher number of sam-
ples within AffectNet with strong V/A intensities, as well as 
the general higher number of training samples.

Multiple datasets As shown in Table 4, best results in 
sense of RMSE were achieved using the training samples 
of all three datasets. Best ICC results were achieved with 
three or two databases, expect for cases where Affect-
Net was used for testing. This shows, that the high num-
ber of AffectNet samples, subjects, light conditions etc. 

Fig. 3  Qualitative results for 
predicting discrete emo-
tion classes (AffectNet) Top: 
True positives for classes 
anger,disgust,joy,neutral,sad 
and surprise. Middle: False 
positives due to incorrect labels 
in the dataset. All samples 
were predicted as fear but have 
incorrect labels anger, disgust, 
etc.. Bottom: False negatives 
due to incorrect labels. All sam-
ples have label fear, but were 
predicted as anger, disgust, joy, 
neutral, sad and surprise

tp

fp

fn

(fear)

(fear)

anger disgust joy neutral sad surprise

Table 1  Quantitative results for 
emotion classes and valence/
arousal on AffectNet

1Trained with class labels only
2trained with valence/arousal values only
3trained on class labels and valence/arousal simultaneously
4Mollahosseini et al. (2019)

Approach Class Valence Arousal

Acc F
1

CCC RMSE CCC RMSE

AlexNet4 72 0.57 – – – –
SVM4 60 0.37 – – – –
MSCognitive4 68 0.51 – – – –
SVR4 – – 0.340 0.494 0.199 0.400
AlexNet4 – – 0.541 0.394 0.450 0.402
Proposed1 75 0.58 – – – –
Proposed2 – – 0.826 0.282 0.556 0.237
Proposed3 79 0.61 0.845 0.269 0.606 0.228
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overcomes the drawback caused by the strong deviation 
between the datasets in V/A space. This proofs that a com-
bination of AffectNet with Aff-Wild or AFEW-VA leads to 
an improved coverage of the V/A space and allows to train 

deep learning models which are more robust regarding real 
world problems.

Figure 5 shows the V/A histograms for cross-database 
experiments. The left diagonal show all experiments, 
where the training and test set where taken from the same 
database. In all other cases the model was trained on the 
training set of one and tested on the test set of another 
database. The coverage of the V/A-space is related to 
achieved results in sense of ICC. While most areas of 
AFEW-VA are still covered using the other datasets for 
training (third row), the distribution of Aff-Wild and 
AffectNet is clearly different due to missing connection to 
basic emotions within Aff-Wild labels. Since the model 
trained on AffectNet allows the highest differentiation of 
V/A predictions, we believe AffectNet is the best choice 
in the context of HCR scenarios.

4  HRC scenario

Apart from the evaluation on standard datasets, we use our 
system for emotion recognition in an human-robot-collab-
oration scenario (HCR). It was developed in collaboration 
with the Fraunhofer Institute in Chemnitz and the German 
car manufacturer Opel AG and models a realistic industry-
related task: The assemblage of a front axle beam. To fulfill 
this task, human workers need to collaborate with an indus-
trial robot in a shared working space. We employ this sce-
nario to address the following questions: a) To what extent 
do human workers show negative emotions, i.e. emotions 
with negative valence , while sharing a workspace with a 

Table 2  Quantitative results for valence/arousal prediction on the Aff-
Wild dataset

1Using additional landmarks
2Trained on Aff-Wild
3Trained on AffectNet
4Hasani and Mahoor (2017)
5Kollias et al. (2019)
6Zhang et al. (2020)
7 Li et al. (2017)
Bold values indicate best values

Approach Valence Arousal

CCC RMSE CCC RMSE

Shallow I.ResNet4 0.03 0.41 0.19 0.33
I.ResNet& LSTM4 0.04 0.40 0.29 0.30
Deep I.-ResNet4 0.04 0.40 0.17 0.33
CNN-M5 0.15 0.36 0.10 0.37
VGG Face1, 5 0.51 0.32 0.33 0.28
VGG-165 0.40 0.36 0.30 0.33
ResNet-505 0.43 0.33 0.30 0.33
PersEmoN6 – 0.36 – 0.33
MM-Net7 – 0.36 – 0.30
Proposed2 0.34 0.37 0.20 0.30
Proposed3 0.53 0.35 0.10 0.36

Table 3  Evaluation (ICC(3,1) 
and RMSE) on AFEW-VA 
dataset

Features: S = Norm-shape, D = Hybrid-DCT, I = RGB-Images
1Proposed, trained on AFEW-VA, 5-fold cross-validation
2Cross-database: Proposed model trained on complete AffectNet train set and tested on AFEW-VA 
3Kossaifi et al. (2017)
Bold values indicate best values

Approach Feat. Valence Arousal

RMSE CORR ICC RMSE CORR ICC

SVR3 S 0.28 0.29 0.21 0.24 0.43 0.36
SVR3 D 0.27 0.37 0.29 0.23 0.38 0.32
RF3 S 0.27 0.36 0.27 0.23 0.41 0.30
RF3 D 0.27 0.41 0.15 0.23 0.45 0.20
DCNN3 I 0.41 0.17 – 0.46 0.25 –
FT-DCNN3 I 0.37 0.26 – 0.39 0.31 –
BoW3 D 0.29 0.12 0.07 0.25 0.25 0.19
OR3 S – 0.25 0.20 – 0.28 0.23
MKL3 S+D 0.26 0.40 0.27 0.22 0.45 0.34
Proposed1 I 0.26 0.39 0.32 0.25 0.29 0.21
Proposed2 I 0.28 0.58 0.57 0.26 0.46 0.44
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larger robot b) How do further difficulties like time pres-
sure, control errors, and insufficient informations affect the 
emotional states and c) How do user feedback mechanisms 
reduce negative emotions and thus help to increase the 
acceptance of robots in industry-related environments. In 
the following, we describe the scenario and the experimen-
tal design in more detail, define hypotheses about expected 
observations, present possible measures to reduce negative 
emotions and evaluate their effectiveness in this scenario.

General scenario description In this scenario, the task 
of a human worker (user) is to attach a set of screws (8) to 
a front axle beam (FAB) at predefined positions. Due to 
its heaviness, the user cannot move the front axle beam by 
himself, but is dependent on the help of the robot.

The whole scenario is split into five sub-scenarios which 
we refer to as Baseline, S1, S2, S3, and S4. The general 
procedure in each scenario consists of five phases and is 
as follows (Fig. 6): Firstly, the robot fetches the front axle 
beam from a shelf (phase 1). The robot then transports the 
FAB into the shared working space between the robot and 
the user (phase 2). The user now enters the shared working 
space (phase 3). He has the option of using gesture control 
to adjust the position of the robot in order to achieve a com-
fortable position for attaching the screws (phase 4). Since 
the front axle beam is attached to the robot arm the entire 
time, we substituted the screws with colored markers, which 
have to be attached at eight predefined positions and are 
manually removed after each cycle. After the user has left 

the shared workspace, the robot puts the fully assembled 
front axle beam back on a shelf (phase 5). When moving, the 
robot uses different, predefined paths and different speeds. 
This was done to make it harder for the user to anticipate 
the robots next movements. For safety reasons, the speed of 
the robot had to be limited to 5 km/h. In each scenario, this 
general procedure is repeated 4 times (9 for baselines). We 
refer to this repetitions as cycles. This general procedure is 
modified in scenarios S1, S2, S3 as described below.

Scenario modifications: We assume that the presence 
of the larger robot alone, as well as the heavy workpiece 
attached to it and the movements in the immediate vicinity 
of the worker, already make the worker feel uncomfortable 
and induce emotions with negative valence values. In order 
to simulate other situations that are likely to occur in such 
a scenario and could weaken the user’s acceptance of the 
robot system, we modify scenarios S1, S2 and S3 by creating 
further difficulties for the user (Table 5).

The first difficulty is an incorrect working gesture control. 
The robot arm usually follows the user’s hand movements. 
In the event of an error, however, we invert the direction in 
which the robot is moving. After some time has passed, the 
gesture control works again as usual. This error violates sev-
eral basic conditions for the acceptance of technical systems: 
its reliability and correct functioning, its intuitive usability, 
and the permanent controllability of a technical system by the 
user. For a second difficulty, we halve the time available to 
the user to assemble the screws (time pressure). Normally, the 
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Fig. 4  Qualitative result for cross-database valence/arousal prediction for Aff-Wild (top) and AFEW-VA (bottom) using the proposed CNN 
trained on AffectNet
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user has T seconds to attach the screws to the front axle beam, 
where T is measured individually for each user by the experi-
menter during the baseline scenario. In case of time pressure 
the robot transports the front axle beam back to the shelf after 
T/2 seconds. The user is not informed about the reduction of 
the available time, i.e. the technical system does not provide 
the information necessary for a successful collaboration. From 
the user’s point of view, it therefore appears as if the technical 
system is not working correctly. This and the availability of all 
needed information, however, is also a basic requirement for 

the acceptance of technical systems. We let the errors appear 
in cycle 1 and 3 of a scenario. The faulty gesture control occurs 
in S1 and the reduced available time in S3. In scenario S2, both 
errors occur simultaneously. No errors occur in S4.

Feedback systems: In order to investigate approaches 
which reduce negative effects on human workers caused by 
such HCR related aggravations, three basic visual feedback 
systems were implemented. The first feedback system is an 
LED strip installed on the base of the robot. In the event of 
an error, the LEDs flash with a red light. When the robot 
stops, the LEDs light up green permanently. If the robot is 
about to move, a rotating light indicates the next direction 
of rotation of the robot. Thus, by observing the LED lights, 
the user no longer has to guess the movement of the robot 
but is informed about the robots state and its next actions. 
If the gesture control fails, the reason for the failure and the 
time required for reinitialization are displayed to the user. The 
user is thus informed about the internal state of the technical 
system and also knows that it is not an operating error on his 
part. In the event of a reduced available time, the remaining 
time is displayed to the user. This way, he receives the infor-
mation required to adapt his own behavior for a successful 
collaboration with the technical system. The latter two infor-
mations are displayed to the user on a monitor next to him.

Experimental design: The test group consisted of 48 
subjects. Since reactions of workers which are not famil-
iar with HCR are the primary research object, all 48 sub-
jects were laymen and have no previous experience regard-
ing cooperative work with industrial robots. Immediately 
before the beginning of the experiments, the subjects were 
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Fig. 5  Histograms of predicted valence(x-axis) and arousal (y-axis) 
values for the AffectNet, Aff-Wild and AFEW-VA datasets. Training 
and test sets are aligned as columns and row, respectively

Table 4  Results on 
AffectNet(A), Aff-wild(B), and 
AFEW-VA (C) using different 
combinations of training sets

For all three datasets, we split all samples, using 70% for training and the remaining 30% for testing
Bold values indicate best values

Set Valence Arousal

↓train∖ test A B C A B C

ICC(3,1)
 A 0.83 0.36 0.42 0.60 0.02 0.43
 B 0.29 0.29 0.26 0.13 0.22 0.08
 C 0.33 0.13 0.34 0.10 0.08 0.13
 C + B 0.36 0.28 0.44 0.15 0.21 0.24
 B + A 0.80 0.32 0.41 0.49 0.29 0.32
 C + A 0.82 0.36 0.54 0.55 0.16 0.48
 A + B + C 0.83 0.37 0.54 0.58 0.27 0.40

RMSE
 A 0.28 0.39 0.34 0.24 0.42 0.32
 B 0.47 0.30 0.41 0.37 0.37 0.34
 C 0.48 0.33 0.30 0.32 0.38 0.31
 C + B 0.47 0.31 0.31 0.34 0.37 0.30
 B + A 0.30 0.31 0.33 0.25 0.35 0.29
 C + A 0.28 0.34 0.27 0.24 0.37 0.26
 A + B + C  0.28 0.29 0.26  0.23 0.36 0.28
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informed that an additional remuneration depends on how 
well they are able to accomplish their task. The subjects 
were split into two groups of equal size. One group received 
no automatic feedback from the system during the entire 
experiment, while the other group was informed about the 
current state of the robot using the feedback mechanisms 
described above. From here on, we refer to these two groups 
as NF-group (No feedback) and F-group, respectively. Each 
subject undergoes the baseline scenario and scenarios S1-S4. 
The baseline scenario is always the first scenario, while the 
other scenarios are in a random order. To be more precise: 
The order of the scenarios results from all possible per-
mutations of the scenarios S1, S2, S3 and S4 (24 in total). 
Thus, any bias effects due to habituation or exhaustion are 
avoided. During the baseline scenario, examiners may also 
give advice to ensure that all subjects fulfill their task cor-
rectly. However, subjects in preliminary experiments tended 
to concentrate on the examiner behind them, and were thus 
influencing the sensor data and the emotions expressed. This 
happened especially in the event of an error. To avoid this, 
all subjects were isolated during the scenarios S1–S4.

The experimental setup is placed within a demonstration 
cell located at the Fraunhofer Institute Chemnitz and reflects 
typical industry-related environment conditions (includ-
ing light conditions and noise from neighbored sections 

of the hall). Throughout the entire experiment, the users’ 
faces were captured with a standard Logitech Webcam and 
their facial expressions were analyzed using the proposed 
approach. We first tried to place the camera at a stationary 
position but were unable to find a location that would allow 
the user to be recorded permanently and was not within the 
robot’s operating range. We therefore decided to use a body-
worn camera aiming the users face. For this purpose a self-
constructed device was used (Fig. 7). Furthermore, human 

Fig. 6  Schematic overview of the HRC scenario including the robot arm trajectory for the five different phases

Table 5  Overview of the experimental trials

Name # Desc Time [min]

Interview 1 Inquire about demography and 
relation to technology. General 
instructions.

15

Baseline (S0) 9 Exercising / instructions 15
S1 4 Gesture error 6
Pause 1 4
S2 4 Time pressure and gesture error 6
Pause 1 4
S3 4 Time pressure 6
Pause 1 4
S4 4 Normal 6
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poses and voices were recorded, but this is beyond this work. 
A preliminary evaluation shows, however, that estimating 
emotions from pose and speech was not successful. The is 
mainly due to the fact that the subjects hardly said anything 
as they had to be isolated from the examiner. The subjects 
also did not show any emotional reactions regarding their 
pose. We believe this is because the actions shown by the 
subjects are pure control actions in order to fulfill the assem-
bly task but not any kind of movements/gesture typically 
shown in a communication setting. However, we would like 
to emphasize that these are only preliminary results that are 
not actually part of this work.

Hypotheses The following hypotheses were set up prior 
to the experiment.

– H1 : Standard datasets often contain samples with strong 
facial expressions sometimes played by actors. In con-
trast, we do not expect such strong facial expressions 
and strong emotions in the HRC experiment, but rather 
emotions that are close to the neutral range. For such 
weak expressions, the categorization in basic emotions 
is insufficient. We therefore focus on measuring valence 
and arousal values, which we expect to be low in general.

– H2 : The errors (gesture control error and time pres-
sure) have a negative effect on the emotional states of 
the users. We therefore expect lower valence values in 
scenario S1, S2, and S3 compared to scenario S4 for the 
subjects without any feedback.

– H3 : The feedback mechanisms have a positive effect on 
the emotional states of the users (F-group). On average, 
we therefore expect a higher valence compared to users 
without any feedback (NF group).

– H4 : In scenario S2 two errors occur simultaneously. 
Their effects are supposed to be compensated by the 
feedback mechanisms. Since users in the NF-group do 
not receive any feedback, we - compared to all other sce-
narios - expect the biggest difference in valence between 
the NF-group and F-group in scenario S2.

– H5 : In scenario S4 no errors occur and regarding this fact 
it does not differ from the baseline scenario. So, apart 
from the display of the robot direction, there are no other 
feedback mechanisms. We therefore expect the difference 
in valence between the NF- and F group to be rather 
small and similar to that of the baseline scenario.

In order to test these hypotheses, we compare the average 
valence of the NF-group with that of the F-group at dif-
ferent times in each scenario. As described above, each 
scenario consists of four cycles (nine for baseline) and 
each cycle consists of five phases. When calculating the 
average valence values within a group, it must be con-
sidered that the duration of individual phases can differ 
among users and that for a given time t users may therefore 

be in different phases and cycles of the scenario. With 
simple averaging, this would lead to a higher weighting of 
users with longer phases and valence values from different 
phases would be averaged, respectively. To avoid this, we 
split each phase into ten bins of equal size and calculate 
the mean valence v̄b,u for each bin b and user u. This results 
into Nb = 450 bins for the baseline and Nb = 200 bins for 
the scenarios. The valence is then averaged over all users 
in the NF-group and F-group, respectively.

Experimental Evaluation To give a first overview of the 
experimental results, Fig. 8 shows the distributions of the 
measured valence / arousal values for the NF- and F-group. 
It can be seen that the subjects of the NF- and F-group show 
similar values on the y axis (arousal) but have different 
ones on the x axis (valence). In scenario S4, where no error 
occurred and therefore no feedback mechanisms were used, 
the V/A distributions of the NF- and F-group are almost 
identical. In the event of an error (scenario S1 and S3), the 
histogram of the NF groups shows a shift towards more neg-
ative valence values whereas the subjects of the F-group 
show more positive valence values. This effect is greatest 
in scenario S2, in which the two errors occurred in parallel.

Figure 9, a-e shows the measured average valences v̄NF 
and v̄F in each scenario (baseline, S1-S4) of the NF group 
(no feedback, blue graph) and F-group (with feedback, 
red graph), respectively. The abscissa represents the bins 
as described above. The end of a cycle is indicated by the 
dotted lines. The blue and red numbers are the average 
valences of the two groups in each cycle. For the entire 
sub-scenario, the average valence of both groups are 
denoted as vNF and vF and are shown above each plot and 

(8)v̄NF(b) =
1

|NF|
∑

u∈NF

(
v̄b,u

)
,

(9)v̄F(b) =
1

|F|
∑

u∈F

(
v̄b,u

)
.

Fig. 7  Construction for a body-worn camera to ensure the permanent 
analysis of subjects facial expressions
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separately in Fig. 9g. Their difference is �v = vF − vNF . In 
the following, we will discuss this Figure in detail: 

 (i) The first general observation is the small range of 
measured valence values. For scenarios 1-4, the 
valences are in the interval [-0.1, 0.1] and therefore 
rather reflect the neutral range. However, this corre-
sponds to our expectations (hypothesis H1 ), since in 
an HRC scenario it is reasonable to assume that when 
interacting with a robot test subjects do not show 
excessive facial expressions and experience intense 
emotions such as great anger or deep grief.

 (ii) The second general observation is the somewhat 
noisy looking signal. There are two reasons for this: 
Firstly, the signal represents the mean of all sub-
jects in a group. While some subjects show facial 
expressions in certain situations, other subjects do 
so with a delay or not at all. Secondly, facial expres-
sion analysis in general measures rather short-term 
expressions and reactions rather than longterm emo-
tions which would result in a more smooth signal. 
Nevertheless, there are significant differences and 
similarities between the two groups, which we will 
discuss below.

 (iii) High valence in baseline scenario: Compared to 
all other scenarios, the test subjects of both the 
F-group and NF-group showed the highest valence 
during the baseline scenario (e.g. vNF = 0.056 vs. 
[0.003,−0.012,−0.003, 0.014] ). We suspect sev-
eral reasons for this. Firstly, the subjects were still 
allowed to interact with the experimenter in the base-
line scenario, for example to receive information on 
how to operate with the robot. This resulted in facial 
expressions with positive valence. In fact, inspect-
ing the raw video data shows that the test subjects 
often smiled at the experimenter after he had given 

advices. To prevent this, the test subjects were iso-
lated from the experimenter in all other scenarios. 
A second possible cause is the fact that the baseline 
scenario is always the first scenario. Compared to it, 
subjects in later scenarios show signs of habituation 
and fatigue more often (lower valence). This assump-
tion is supported by the observation that a decrease 
in valence can already be observed in both groups 
within the baseline when the subjects get used to the 
scenario (Fig.9a).

 (iv) Similarities between baseline and S4: The baseline 
scenario and scenario S4 have in common that no 
errors occur within the scenarios (i.e. no gesture 
control error and no time pressure). As a result, no 
feedback mechanisms are used that could affect the 
emotional state of the subjects in the F-group. One 
would therefore expect that the valence differences 
between the F- and NF-group in scenario S4 and 
the baseline are very small. The valence differences 
actually measured are �v = −0.003124 for the base-
line scenario and �v = −0.000833 for scenario S4. 
These valence differences are close to each other and 
are significantly smaller compared to all other sce-
narios (in which feedback mechanisms are used). In 
fact, there are cycles in which the NF-subjects have 
a higher valence than the subjects of the F-group. 
This is only observed in S4 and the baseline sce-
nario and does not occur in any other scenario. We 
interpret this observation as a confirmation of our 
hypothesis H5 . Furthermore, this shows that there is 
no general difference between the F- and NF-group. 
Otherwise one would have measured a constant offset 
between the two groups of subjects which is not the 
case. While the valence difference �v in S4 is similar 
to that of the baseline scenario, the absolute valence 
values differ significantly ( [vNF, vF] = [0.056 0.053] 

Fig. 8  Distribution of valence / arousal values in scenarios S1-S4 for 
the NF- and F-group. If no errors occur (S4), both distributions are 
almost congruent. If an error occurs, the subjects in the NF-group 

show a slightly more negative valence (S1+S3). The effect is largest 
when two errors occur in parallel (S2)
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(baseline) vs. [0.014 0.013] (S4)). Possible explana-
tions for this were given in (iii).

 (v) Emotional states are affected by occurring errors: 
The average valence of users who received no feed-
back is vNF = 0.014 in scenario S4. In this scenario 
there are no errors (gesture control error and time 
pressure). The expectation is that those errors will 
lead to more negative emotions and lower the average 
valence (hypothesis H2 ). When the gesture control 
fails (S1), the mean valence of the NF group drops to 
vNF = 0.003 . Similarly, the mean valence in the sce-
nario with time pressure (S3) drops to vNF = −0.003 . 
In the scenario in which both errors occur in par-
allel (S2), the mean valence of the NF subjects as 
expected drops even more to vNF = −0.012 . We 
interpret this as confirmation of our hypothesis H2 . 

It means that the experimental design and the inte-
grated errors are in principle suitable for inducing 
emotions with negative valence. Note that we only 
considered members of the NF-group here because 
the F-group experiences feedback mechanisms that 
are supposed to counteract negative emotions.

 (vi) Effects of feedback mechanisms: As one can see 
in Fig. 9b-d, the mean valences of the F-group in 
scenarios with errors and feedback mechanisms is 
vF = 0.023 (S1), vF = 0.013 (S2) and vF = 0.018 
(S3). The valences are therefore higher than the cor-
responding ones of the NF-group both on average 
and in each cycle. ( vNF = [0.003 − 0.012 0.003] ). As 
expected, this is not the case in scenario S4. Since 
no errors occur here, both groups receive no feed-
back information, so that the mean valence of both 

(a) (b)

(c) (d)

(e) (f) (g)

Fig. 9  Impact of scenario errors and user feedback mechanisms. a-e: 
Mean valence for subjects without any feedback (NF-group, blue 
graph) and subjects with feedback (F-group, red graph). In scenarios 
with either gesture control error (S1), time pressure (S3) or both (S2) 
the mean valence v

NF
 of the NF-group drops compared to scenario 

S4, where no error occurred. This does not apply to subjects of the 
F-group, whose valence is higher than that of the NF-group due to the 
received feedback information. f: Valence distribution of the NF and 
F-group. g: Mean valences (v

NF
,v
F
) and standard errors for NF and 

F-group
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groups is approximately the same ( vNF = 0.014 vs. 
vF = 0.013 ). This means that while the valences of 
the NF group decrease due to the errors, the valences 
of the F-group remain at a comparatively high level 
due to the feedback mechanisms. We interpret this as 
confirmation of hypothesis H3 , which states that the 
feedback mechanisms have a positive effect on the 
emotional states of the subjects.

A stronger form of hypothesis H3 is that the feedback 
mechanisms not only have a positive effect but compen-
sate for most of the valence loss caused by the errors. In 
this case, one would expect that the valence difference 
between the F and NF-group would be larger, the more 
the valence of the NF group was reduced by the errors 
that occurred ( H4 ). The measured valence differences 
are �v = [0.0199, 0.0248, 0.02072, −0.0008] for sce-
nario S1, S2, S3, and S4, respectively. This means that 
𝛥v(S2) > 𝛥v(S1) = 𝛥v(S3) > 𝛥v(S4) and thus �v(two errors) 
> 𝛥v (1 error) > 𝛥v (0 errors). That is, the more errors reduc-
ing the valence, the larger the valence differences between 
the NF- and F-group due to the feedback mechanisms. In its 
strongest form, the hypothesis would be that the feedback 
mechanisms fully compensate for the loss of valence. In 
fact, it can be observed (Fig. 9c,e) that due to the feedback 
mechanisms even in the scenario with two errors (S2) the 
valence of the F group ( vF = 0.013 ) does not drop below the 
valence of the scenario without any errors (S4, vF = 0.013).

In Fig. 10 we plot the robot xy-position (top view) against 
the shown valence values to show the influence of the robot 
position and phase on the emotional state of the test sub-
jects. In phase 2 (denoted as P2 in Fig. 10), when the robot 
approaches the shared working area, the valence of the test 
subjects decreases. This applies to both groups of subjects 
(NF and F). In phase 4, subjects and robot work in the shared 
working area and the errors described above occur. Here, 
the subjects without feedback mostly show clearly negative 
valence values, while the valence of subjects with feedback 
mostly remains in the positive and neutral range. In phase 
5, when the robot moves the front axle beam back onto the 
shelf, subjects from the NF-group still show mostly nega-
tive valence. It is reasonable to assume that this is due to the 
aftermath of the negative emotions experienced in phase 4.

So far, mean valence values were considered. As com-
monly known, this can be misleading as the mean is suscep-
tible to outliers. We therefore also provide the median values 
(Table 6) and the distribution of the valence values (Fig. 9f). 
For this, the valence values of each user v̄b,u were considered 
and not their mean values v̄NF and v̄F . From the histogram 
plot in Fig. 9f it can be seen that emotions with neutral or 
negative valence are shown more often by users of the NF-
group, while emotions with positive valence are more likely 

to be shown by users of the F-group. This is in line with the 
previous observations that the errors induce emotions with 
negative valence, which is compensated for the subjects of 
the F-group through the feedback mechanisms. From the 
median values (Table 6) too, it can be observed for the NF-
group that the most negative valence occurs in the scenario 
with two errors (S2) and the highest valence in S4, the sce-
nario without errors (apart from the baseline scenario). Fur-
thermore, the differences to the F-group mentioned above 
are also evident in the median values.

Table 6 (bottom) shows the median values of the arousal 
measurement. In contrast to valence, we did not find any 
significant difference between the F- and NF-group. This 
may be due to the fact that the test subjects show no changes 
in the arousal or that the experimental setup is not suitable 
for inducing emotions that differ in their arousal. Here, one 
has to consider that strongly different emotions such as joy 
or anger are characterized by similar arousal values and only 
differ by their valence. However, we believe it is more likely 
that the proposed method is not sensitive enough to measure 
the low arousal values in a real-world scenario. In fact, the 
proposed method, although comparable to other state of the 
art methods, achieved lower ICC (3.1) values for arousal 
on the Aff-Wild, AFEW-VA, and AffectNet dataset when 
compared to valence (Table 4). The major problem here is 
the small number of examples with low or negative arousal 
(Fig. 2), even with several datasets combined. Nevertheless, 
we believe that valence is the more important measure when 
it comes to assessing a positive or negative attitude towards 
a robot and evaluating the acceptance in a collaborative 
environment.

5  Conclusion

In this work, we addressed the problem of facial expres-
sion analysis to deduce the emotional state of subjects in an 
industry related Human-Robot Cooperation (HRC) scenario. 
Therefore, we proposed an deep learning approach that is 
based on the YOLO architecture (you-only-look-once) and 
has been trained and tested on several comprehensive in-
the-wild datasets.

The network has been designed to simultaneously pre-
dict the face bounding boxes, basic emotions and V/A val-
ues. Compared to other state-of-the-art models, our CNN 
is small and consists of only ten convolutional layers. As a 
consequence, it is suitable for real-time applications even 
with multiple cameras. We evaluated the capability of the 
proposed network to predict valence/arousal values and dis-
crete emotion classes on the AffectNet database. For V/A 
predictions, we also performed a cross-database evaluation 
on the Aff-Wild and AFEW-VA dataset and found that our 
approach generalizes well and produces reliable predictions 
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even beyond laboratory conditions when trained on Affect-
Net. This is crucial to ensure that the model is also capable 
to handle unseen faces, camera views and light conditions 
of the investigated HCR scenario. Using multitask learn-
ing lead to a further improvement both for the detection of 
discrete basic emotions and for the determination of valence 
and arousal values. We also found that regression of valence 
and arousal is more suitable than emotion classification 
in case of real life expressions, which might be moderate 
compared to expressions which are performed by actors or 
acquired under lab conditions. Even though the training sam-
ples of AffectNet already show a wide range of variations 
in lighting, pose and more, we further increase variation by 
data augmentation including random occlusion that reduced 
overfitting and the prediction error. Furthermore, we showed 
how results on Aff-Wild and AFEW-VA benefit from fusing 
training samples from multiple datasets.

Finally, we applied the proposed approach to analyze 
facial expressions in an industrial HCR scenario, where 

human workers have to collaborate with a large industrial 
robot in order to fulfill an assemblage task.

Various difficulties, which we assume are likely to occur 
in the real world, were incorporated into the scenario in 
order to induce negative emotions in the test subjects. This 
includes control errors (subject fails to adjust heights of 
robot arm) and/or time pressure (granted time for task was 
suddenly reduced). In addition, a feedback system was inte-
grated, which on the one hand informs test subjects about 
the next robot movements and on the other hand informs 
them of the internal state of the robot system in the event of 
difficulties, so that successful cooperation with the system 
and completion of the assemblage task remains possible.

First of all, we found that human workers show only 
slightly negative valence values and typically no high 
arousal when they share a workspace with a large robot 
(likelihoods for fear, anger, surprise or sadness were even 
more minor). One ascertained reason was the – due to safety 
reasons – limited robot speed, another a high level of trust in 
the overall system. Furthermore, we found that the induced 
difficulties as expected did not cause strong expressions of 
negative emotions which would indicate fear, anger or frus-
tration. This applies for both, the manually examination of 
the captured facial expressions and the CNN based predic-
tions. However, for such aggravated conditions, subjects who 
received no feedback information from the system showed 
a lower mean and median value of valence and thus experi-
enced more negative emotions.

Finally, we found that – inducing the same difficulties as 
before – subjects who received feedback from the system 
and therefore knew its internal state, showed a significantly 
higher valence. This shows that the provided feedback infor-
mation is sufficient to reduce negative emotions. We assume 
that by knowing the internal state, especially in the event 
of an error, the system remains more controllable for the 
user which is a necessary condition for successful coop-
eration between humans and technical systems in order to 
strengthen human trust in a such system and thus increase 
their acceptance. Since the valence values shown are rather 
small and changes only occur on average, we do not believe 
that it is possible, for example, to set a fixed threshold value 
under which feedback mechanisms can be used to specifi-
cally compensate for negative emotions experienced in an 
actual industrial environment. It would also involve labor 
law problems, as it would require permanent monitoring of 
workers and an assessment of their emotional state. Nev-
ertheless, we could show that the proposed classification 
system is suitable for detecting even minor changes in facial 
expressions and that – by comparing two groups – the pro-
posed approach can be used to evaluate the effectiveness 
of mechanisms for compensating negative emotions expe-
rienced in realistic HRC scenarios. However, one has to 
keep in mind that the approach – like all systems for facial 
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Table 6  Mean, standard error, and median for valence and arousal of 
the NF and F group in scenario S0–S4

Scenario NF F

∅(SE) Q
0.5

∅(SE) Q
0.5

Valence
 S

0
0.056 (0.0022) 0.025 0.053 (0.0016) 0.033

 S
1

0.004 (0.0023) − 0.02 0.023 (0.0025) 0.022
 S

2
− 0.012 (0.0031) − 0.038 0.012 (0.0021) 0.009

 S
3

− 0.003 (0.0021) − 0.01 0.017 (0.0019) 0.018
 S

4
0.013 (0.002) 0.00 0.012 (0.002) 0.008

Arousal
 S

0
0.07 (0.0009) 0.06 0.079 (0.0008) 0.058

 S
1

0.071 (0.0013) 0.069 0.068 (0.0012) 0.053
 S

2
0.067 (0.0014) 0.062 0.073 (0.0013) 0.068

 S
3

0.064 (0.0011) 0.067 0.066 (0.0013) 0.049
 S

4
0.067 (0.0013) 0.064 0.065 (0.0014) 0.043
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expression analysis – has been trained on labels which define 
the observed range of facial expressions. Hence, the CNN 
rather predict the shown facial expressions than the hidden 
subjective emotions (which might deviate).

Limitations of the described HCR study are given by the 
fact that arousal values are less sensitive to slight variations 
of facial expressions. In particular, negative arousal values 
are hard to predict due to the very few available training 
data. In addition, the body-worn camera is a self-constructed 
one-off production and has not been designed for everyday 
use. Hence, it is practically limited for experiment trials.

In future work, we intend to use the proposed approach 
to predict whether a user agrees with the current actions, 
suggestions, and decisions of a technical system in an HCR 
scenario. This includes self-initiated actions of a mobile 
assistance robot that predicts whether a user may need help 
and, if so, approaches. This can be done from far using pose 
estimation and verified in the users’ vicinity by analyzing 
its facial expression.
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