
Time-Dependent Transport Through

Quantum Dots Coupled to Normal and

Superconducting Leads

Dissertation

zur Erlangung des

Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

der

Naturwissenschaftlichen Fakultät II

Chemie, Physik und Mathematik

der Martin-Luther-Universität

Halle-Wittenberg

vorgelegt von

Herr Klaus Jochen Pototzky

geb. am 14.02.1986 in Nürnberg





3

Datum der Verteidigung
24. Juni 2015

Gutachter:
Prof. Dr. E. Gross (Betreuer), Prof. Dr. I. Mertig, Prof. Dr. T. Frauenheim





Contents

1 Introduction 1

1.1 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Josephson effects . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Andreev reflection . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Andreev bound states . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Mathematical prerequisites 10

2.1 Basic definitions and notations . . . . . . . . . . . . . . . . . . . 10
2.2 Nonequilibrium Green’s functions . . . . . . . . . . . . . . . . . 11

2.2.1 Keldysh contour . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Definition of the nonequilibrium Green’s function . . . . 14
2.2.3 Nonequilibrium Green’s function in the Nambu space . . 15

2.3 Model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Methods 21

3.1 Landauer-Büttiker formula . . . . . . . . . . . . . . . . . . . . . 22
3.2 Time propagation of wave functions . . . . . . . . . . . . . . . . 23

3.2.1 Ground state calculation . . . . . . . . . . . . . . . . . . 23
3.2.2 Time propagation . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Calculation of observables . . . . . . . . . . . . . . . . . 32
3.2.4 Efficient numerical implementation . . . . . . . . . . . . 33

3.3 Large time behaviour of the nonequilibrium Green’s functions . 48
3.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Features of SQDS junctions 53

4.1 DC Josephson effect . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 AC Josephson effect . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Subharmonic gap structure . . . . . . . . . . . . . . . . . . . . . 57
4.4 Inverse AC Josephson effect . . . . . . . . . . . . . . . . . . . . 60
4.5 Insights from the spectral function . . . . . . . . . . . . . . . . 64

4.5.1 Ground state . . . . . . . . . . . . . . . . . . . . . . . . 66

i



ii Contents

4.5.2 Nonequilibrium state - constant bias . . . . . . . . . . . 67
4.5.3 Nonequilibrium state - switching the bias . . . . . . . . . 72

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Junctions with classical vibrations 77

5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Vibrations in Josephson junctions . . . . . . . . . . . . . . . . . 86

5.3.1 Ground state . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2 Biased system in the static limit . . . . . . . . . . . . . . 87
5.3.3 Biased system in resonance . . . . . . . . . . . . . . . . 88

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Controlling observables in time-dependent quantum transport 93

6.1 Optimization problem . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Results for NQDN junctions . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Controlling current and density of a NQDN junction . . 97
6.2.2 Controlling classical vibrations . . . . . . . . . . . . . . . 99
6.2.3 Imposing further constraints on the bias . . . . . . . . . 101

6.3 Results for SQDS junctions . . . . . . . . . . . . . . . . . . . . 102
6.4 Cooper pair splitting in a Y-shaped junction . . . . . . . . . . . 105
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Summary and Outlook 112

Appendix A Time propagation method 115

A.1 Diagonal elements of the inverse of a tridiagonal matrix . . . . . 115
A.2 Calculation of the embedding matrices . . . . . . . . . . . . . . 117
A.3 Calculation of the source term . . . . . . . . . . . . . . . . . . . 119

Appendix B Derivation of the NEGF method 122

B.1 Large time behaviour of the current and density . . . . . . . . . 122
B.2 Evaluation for a monochromatic central Hamiltonian . . . . . . 127
B.3 Calculation of the matrices Gm(ω) . . . . . . . . . . . . . . . . 130

Appendix C Calculation of the spectral function using NEGFs 133

C.1 Large time behaviour of the spectral function . . . . . . . . . . 133
C.2 Convoluted spectral function . . . . . . . . . . . . . . . . . . . . 137

Bibliography 140

Acknowledgements 161

Curriculum vitae and Publications 162



Chapter 1

Introduction

Since the invention of the first computer, engineers and scientists have put a lot
of effort in increasing the computational speed. It goes along with Moore’s law,
which states that the number of transistors on a chip doubles approximately
every two years [Moo65]. Keeping the chip size constant yields an exponential
decrease in the size of the transistors. Intel’s current chip generation is based
on the 22nm technology, the future generations will get even smaller [BM11].
The ultimate goal is to produce electronics using single molecules as its building
blocks. The first work proposing a single molecule as an electric component was
published by Aviram and Ratner in 1974 [AR74] and realized experimentally
by Metzger et al. [MCH+97] several years later. Since then, lots of different
aspects have been studied and an enormous amount of papers on this topic has
been published. The books [CFR05, CS10] provide a very good introduction
into the research field of molecular electronics.

Until today, electronics is usually based on normal-conducting materials like
metals or semiconductors. Prospective devices could also make use of super-
conducting parts, opening new ways for further developments.

One advantage of superconducting wires is the absence of resistivity and
the enormous reduction of the heating of the device. For example, the heat
generation is one of the major problems when increasing clock frequencies of
processors above the intended values, known as overclocking. Often, additional
cooling mechanisms like water circuits or even liquid nitrogen reservoirs are
attached to the processor in order to avoid damages and computational errors.

A second advantage is the existence of phenomena which do not occur in
normal-conducting materials, like the Josephson effects. They open new possi-
bilities to construct novel electronic devices and will be explained in the sections
1.2 - 1.4.

First steps into this direction have already been made, like the invention of
the Josephson field effect transistor [CPG80] and the superconducting quantum
interference device [JLSM64, JLMS65]. The latter are very sensitive measure-
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2 1 Introduction

ment instruments for magnetic fields and are used in various applications for
already quite some time. Besides, they are promising candidates for the realiza-
tion of a future quantum computer. It is therefore essential to have a profound
knowledge of common features and differences between junctions with normal
and superconducting leads. The aim of the thesis is to address novel questions
and to provide insights into phenomena in junctions with normal and super-
conducting leads, focusing on the latter. It is structured as follows:

In the next four sections of the first chapter, we give a short introduction into
superconductivity and explain three phenomena related to interfaces between
normal and superconducting materials: the Josephson effects, the Andreev re-
flections and the Andreev bound states.

Chapter 2 lays the mathematical foundations for the simulations in the later
chapters. We briefly explain the idea of the Keldysh contour and define the
nonequilibrium Green’s functions. We further present our model Hamiltonian.

In chapter 3, we show three different ways to calculate properties of junctions
with an applied bias: (a) The Landauer-Büttiker approach, (b) the calculation
of the large time behaviour of the nonequilibrium Green’s functions and (c) a
method for propagating single particle wave functions in time. For the latter,
an efficient numerical implementation is discussed. The chapter is concluded
with a short comparison of the mentioned methods.

In chapter 4, Josephson junctions are investigated in more detail. We report
and explain deviations of our results from the original current-phase relation
for the DC, AC and inverse AC Josephson effect, which was derived by Brian
D. Josephson [Jos62] using a first order approximation. The subharmonic gap
structure and the spectral function provide further insights into the charge
transfer mechanisms in Josephson junctions.

In chapter 5, a quantum dot is coupled to a vibration, which is treated in the
Ehrenfest approximation. We report bistabilities and instabilities for junctions
with normal and superconducting leads. Conditions for stability are derived.
We further demonstrate resonance phenomena in these junctions.

Chapter 6 combines time-dependent quantum transport with optimal con-
trol. We show how to tailor the bias such that an observable, like a current, a
density or a vibration, follows a predefined target pattern as best as possible.
This is done for junctions with normal and superconducting leads. We fur-
ther demonstrate how to generate a DC current flowing through a Josephson
junction in two different ways. Besides, we use the approach to maximize the
Cooper pair splitting efficiency in a Y-shaped junction. This creates entangled
electrons which get spatially separated.
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1.1 Superconductivity

The history of superconductivity started with the discovery of the resistivity loss
of mercury below 4.2K by Heike Kamerlingh Onnes in 1911 [Onn11a, Onn11b,
Onn11c]. He was awarded with the Nobel prize for “his investigations on the
properties of matter at low temperatures which led, inter alia, to the production
of liquid helium” in 1913 [Nob14].

A theoretical explanation of superconductivity was an open problem for a
long time. The London brothers invented the first phenomenological model
[LL35]. It was able to describe the phenomenon that magnetic fields cannot
penetrate a superconductor, which is known as the Meissner effect [MO33].
Some years later, Ginzburg and Landau developed a macroscopic theory for
superconductivity including phenomenological parameters, which is known as
the Ginzburg-Landau theory [GL50]. It correctly predicts the existence of two
different types of superconductors, named type I and II [Abr57].

The first microscopic theoretical description was published by Bardeen,
Cooper, and Schrieffer in 1957, which is known as the BCS theory [BCS57].
The authors received the Nobel prize in 1972 for their theory. It was later
shown that the Ginzburg-Landau theory can be derived from the BCS theory,
providing an interpretation for the phenomenological parameters [Gor59]. The
BCS theory is based on the idea of Leon N. Cooper that electrons can form
bound pairs in a degenerate electron gas, if there is an attractive force [Coo56].
These pairs were named Cooper pairs. The attractive force is a result of the
interaction between phonons and electrons [Frö54]. The formation of electron
pairs causes a gap of 2∆ in the excitation spectra of a superconductor around
the Fermi level µ. The binding energy 2∆ of a Cooper pair is of the order of
1 to 10meV. Thermal energy can brake up these pairs, if the temperature is
too high. The maximum temperature for a solid to be superconducting is the
critical temperature TC. The BCS theory correctly predicts the temperature

dependence of the superconducting gap ∆(T ) ∝
√

1− T
TC

for temperatures

T slightly smaller than TC. It further captures the isotope effect [RSWN50,
Max50] which relates the critical temperature TC to the mass number A of the

material via TC ∝ A− 1
2 .

But, the BCS theory relies on a weak electron-phonon coupling and does
not take the properties of the superconducting material properly into account.
For example, it is not possible to predict the critical temperature of a certain
material accurately. Nowadays, there are further, more advanced theories avail-
able to describe superconducting materials like the Eliashberg theory [Eli60] or
the superconducting density functional theory [OGK88]. Both can be used to
calculate TC for different materials.
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Since the discovery of the superconductivity of mercury in 1911, lots of other
phonon-driven superconducting materials have been found, for example MgB2.
Its critical temperature is 39K [NNM+01], which is the current record of all
known materials belonging to this group. Although MgB2 is a phonon-driven
superconductor, it cannot be described within the framework BCS theory since
the electron-phonon coupling is not weak.

Besides these phonon-driven superconductors, there is the group of uncon-
ventional superconductors with even higher critical temperatures. One promi-
nent member is the compound YBaCuO with a critical temperature of 93K
[WAT+87]. But, the pairing mechanism in these materials is still under inves-
tigation.

1.2 Josephson effects

In 1962, Brian D. Josephson predicted the tunneling of electron pairs between
two superconductors separated by a thin insulating barrier [Jos62]. The first ex-
perimental verification was published by Anderson and Rowell in 1963 [AR63].
The tunneling of electron pairs is the origin of three effects: (a) the DC Joseph-
son effect, (b) the AC Josephson effect and (c) the inverse AC Josephson effect.
Apart from the original derivation, the Josephson effects appear whenever two
superconductors are weakly linked and not only for an insulating barrier. The
weak link may be a normal-conducting barrier or even a short constriction. All
these types of junctions are called “Josephson junctions”. Figure 1.1 shows a
sketch of a Josephson junction.

S I S

Bias

Figure 1.1: Sketch of a Josephson junction. The two superconductors (S) are
separated by a thin insulating barrier (I).
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In order to explain the Josephson effects, we define the Cooper pair wave
function ϕα =

√
nαe

iχα , where nα represents to Cooper pair density and χα the
phase of the Cooper pairs of lead α. The basic equations in the description of
the Josephson effects in terms of χα are [Jos62, Wal76]:

U(t) =
~

2e

dχ(t)

dt
, (1.1)

χ(0) = χ0 = χR − χL, (1.2)

I(t) = I0 + I1 sin (χ(t)) + I2 cos (χ(t)) . (1.3)

The equation (1.3) is the current-phase relation. The terms I0, I1 and I2 depend
on the system and the bias. In the absence of a bias, the contributions I0

and I2 vanish and only I1 survives [Wal76]. In this case, I1 is called “critical
current” and we use the notation IC instead. For junctions with two identical
superconductors, IC is given by the Ambegaokar and Baratoff formula as a
function of the temperature T [AB63a, AB63b]:

IC =
π∆(T )

2eRn

tanh

(
∆(T )

2kBT

)
. (1.4)

In the above equation, Rn denotes the resistance in the normal state.
The equations (1.1) - (1.3) were derived using the transfer Hamiltonian ap-

proach [CFP62]. The wave functions were calculated in first order of the lead
coupling, hence we expect to see deviations in the current compared to the
current-phase relation in equation (1.3). Nevertheless, the equations are a good
starting point for further investigations. They give rise to the three Josephson
effects:

1. DC Josephson effect

The junction has no applied bias. The phase difference χ(t) is constant
and a constant (DC) current flows through the junction:

I = IC sin (χ0) . (1.5)

2. AC Josephson effect

A constant (DC) bias U is applied across the junction, yielding a linear
increase in the phase difference:

χ(t) =
2e

~
Ut+ χ0 (1.6)
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and

I(t) = I0 + I1 sin
(

2e

~
Ut+ χ0

)
+ I2 cos

(
2e

~
Ut+ χ0

)
. (1.7)

The current oscillates with frequency ω = 2e
~
U .

3. Inverse AC Josephson effect

An alternating (AC) bias is applied on top of a DC bias as

U(t) = UDC + UAC cos(ωACt). (1.8)

The phase difference then reads

χ(t) = χ0 +
2e

~

[
UDCt+

UAC

ωAC

sin(ωACt)
]
. (1.9)

We reformulate the current-phase relation of equation (1.3) into

I(t) = I0 + I1,2 sin
(
χ(t) + arctan

I2

I1

)
(1.10)

with I1,2 =
√
I2

1 + I2
2 . We further define χ̃0 = χ0 + arctan I2

I1
and insert

equation (1.9) into equation (1.10):

I(t) = I0 + I1,2 sin
(
χ(t) + arctan

I2

I1

)
(1.11)

= I0 + I1,2Im
{

exp
[
iχ̃0 + i

2e

~
UDCt+ i

2e

~

UAC

ωAC
sin(ωACt)

]}

(1.12)

= I0 + I1,2Im

{
∑

m∈Z

J−m

(
2eUAC

~ωAC

)
(1.13)

exp
[
iχ̃0 + i

2e

~
UDCt− imωACt

]}

= I0 + I1,2

∑

m∈Z

J−m

(
2eUAC

~ωAC

)
sin

[
χ̃0 +

(
2eUDC

~
−mωAC

)
t
]
.

(1.14)

In the reformulation, we have made use of the Jacobi-Anger identity
[CK98]

eiα sin θ =
∑

m∈Z

J−m(α)e−imθ, (1.15)

where Jm(α) are the Bessel functions of the first kind. Taking the time
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average of the current yields

IDC = I0 + I1,2

∑

m∈Z

J−m

(
2eUAC

~ωAC

)
sin (χ̃0) δ 2e

~
UDC,mωAC

. (1.16)

The Josephson effects have been utilized in many different ways for prac-
tical applications. An applied DC bias U generates a frequency f = 2e

h
U ,

hence Josephson junctions can be used as voltage-to-frequency converters. The
proportionality constant is called Josephson constant KJ = 2e

h
and its recom-

mended value is KJ = 483 597.870(11)GHz
V

[MTN12]. It is independent of the
device geometry and the measurement setup.

Josephson junctions are the basic parts of superconducting quantum inter-
ference devices (SQUIDs), which can be used to measure magnetic fields very
accurately [JLSM64, Fag06]. They can be found in various types of measur-
ing instruments. The underlying mechanisms are the DC Josephson effect and
the magnetic flux quantization through superconducting loops. In the future,
Josephson junctions might be part of novel electronic devices. An example
is the quantum computer with superconducting quantum bits as its building
blocks [MSS01, DWM04].

1.3 Andreev reflection

The Andreev reflection is a special type of reflection which can occur at the
interface of a normal conductor with a superconductor. It was discovered by
Alexander F. Andreev in 1964 [And64]. The mechanism is illustrated in figure
1.2.

An electron in the normal conductor with an energy slightly above the Fermi
level µ hits the interface of a normal conductor with a superconductor. It cannot
enter the superconductor since there is the gap in the density of states between
µ−∆ and µ+∆. But, there are two other possibilities:

1. Normal reflection: The electron gets reflected back to the normal conduc-
tor. The sign of momentum and velocity changes due to the reflection.

2. Andreev reflection: The electron combines with a second electron with op-
posite momentum and forms a Cooper pair in the superconductor. This
creates a hole in the normal conductor with almost the same momen-
tum but opposite velocity as the incoming electron. The momentum is
conserved if the incoming electron is at the Fermi energy. The relative
energies to the Fermi level of the incoming electron and outgoing hole are
the same.
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Blonder, Tinkham and Klapwijk developed a model to describe transport
through an normal-superconducting (NS) interface, taking Andreev reflections
as well as transmissions and normal reflections into account [BTK82]. This
opened the possibility to calculate current-voltage characteristics for junctions
with one normal and one superconducting lead.

Electron
ve Cooper pair

Hole

vh

Fermi level µ

Normal conductor Superconductor

E
n
er

gy
ga

p
2∆

Figure 1.2: Sketch of an Andreev reflection at a normal-superconducting (NS)
interface. The incoming electron creates a Cooper pair in the superconductor
and leaves an outgoing hole in the normal conductor. The arrows indicate the
velocity of the particles. The momentum of the electron and the hole point
both to the right.

1.4 Andreev bound states

Andreev reflections also appear in sandwich structures of two superconductors
and a normal conductor in between. This geometry creates bound states be-
tween the superconductors: the Andreev bound states. Figure 1.3 displays the
mechanism of an Andreev bound state. The electron in the normal conduc-
tor travels to the right and finally hits the right boundary. Together with a
second electron of opposite momentum, it creates a Cooper pair in the right
superconductor. The resulting hole moves towards the left boundary. It annihi-
lates a Cooper pair in the left superconductor and creates an electron, which is
traveling again towards the right interface and the procedure starts over. One
iteration moves a Cooper pair from the left to the right lead and thus creates a
current flowing from left to right.

The opposite process, which moves Cooper pairs form the right to the left
lead, also takes place and is shown in figure 1.4. The resulting currents of these
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two processes only add up to zero if χR − χL = kπ, k ∈ Z. Otherwise, there is
a non-zero current flowing through the normal conductor. Then, the Andreev
bound states contribute to the DC Josephson effect, which was explained in
section 1.2.

Electron
Cooper pair

Hole

Normal conductor Superconductor

Cooper pair

Superconductor

Figure 1.3: Schematic of an Andreev bound state. Cooper pairs are destroyed
in the left superconductor and new ones are created in the right one. The op-
posite process is also possible and shown in figure 1.4.

Electron
Cooper pair

Hole

Normal conductor Superconductor

Cooper pair

Superconductor

Figure 1.4: Schematic of the reversed process of figure 1.3. Cooper pairs are
destroyed in the right superconductor and new ones are created in the left one.



Chapter 2

Mathematical prerequisites

2.1 Basic definitions and notations

We will make use of the second quantization. The usual definitions are:

ĉ†
k,σ Creates an electron at site k with spin σ, (2.1)

ĉk,σ Annihilates an electron at site k with spin σ. (2.2)

Alternatively, one can interpret ĉ†
k,σ (ĉk,σ) as the annihilation (creation) operator

for a hole at site k with spin σ. It is useful to follow the convention introduced by
Yoichiro Nambu [Nam60] and group the operators in two-dimensional vectors:

ψ̂†
k =

(
ĉ†

k,↑ ĉk,↓

)
, (2.3)

ψ̂k =

(
ĉk,↑

ĉ†
k,↓

)
. (2.4)

The resulting space is the Nambu space. The upper component represents spin
up electrons, the lower component can be interpreted as spin down holes. We
use hats to symbolize operators and bold face letters for matrices. Furthermore,
we work with atomic units (~ = e = me = kB = 1) throughout this thesis.

10



2.2 Nonequilibrium Green’s functions 11

2.2 Nonequilibrium Green’s functions

In the following chapters, we want to study the evolution of an infinite system
in a nonequilibrium situation. By using nonequilibrium Green’s functions, we
are able to work only with a finite part of the system showing exactly the same
behaviour as if it is still part of the original infinite system. The truncated
infinite parts of the original system are incorporated by additional terms, which
are the embedding self energies. With the resulting finite system at hand, we
are able to perform numerical simulations.

But first, we need to explain the concept of the Keldysh contour and define
all necessary Green’s functions. An excellent comprehensive introduction for
nonequilibrium Green’s functions can be found in the book [SvL13]. Therefore,
we restrict our explanations to a minimum. We briefly explain the concept of
the Keldysh contour and define all relevant Green’s functions.

2.2.1 Keldysh contour

The Keldysh contour is a valuable tool in the description of systems out of
equilibrium and allows a compact and simple notation.

We define the time evolution operator Û(t,t′) as the solution of the equations

i
d

dt
Û(t,t′) = Ĥ(t)Û(t,t′), (2.5)

i
d

dt′
Û(t,t′) = −Û(t,t′)Ĥ(t′), (2.6)

Û(t0,t0) = 1̂. (2.7)

Û(t,t′) propagates the system’s wave function from time t′ to t and has the

useful property Û(t1,t2) = Û(t1,t
′)Û(t′,t2). The expectation value of an operator

is defined as

O(t) = 〈ÔH(t)〉 (2.8)

= Tr
{
ρ̂(t0)ÔH(t)

}
(2.9)

with the operator Ô in the Heisenberg picture ÔH(t) = Û(t0,t)ÔÛ(t,t0). All
operators in the Heisenberg picture are labeled with a subscript H. The density
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operator ρ̂(t0) is defined as

ρ̂(t0) =
e−β(Ĥ(t0)−µN̂)

Tr
{
e−β(Ĥ(t0)−µN̂)

} . (2.10)

Further, it is useful to define the time ordering and anti-time ordering opera-

tors T̂ and T̂. They order N +1 Hamilton operators Ĥ at times t0 < t1 < . . . tN
chronologically or anti-chronologically and are defined as

T̂
{

Ĥ(tP(0)) . . . Ĥ(tP(N))
}

= Ĥ(t0) . . . Ĥ(tN ), (2.11)

T̂
{

Ĥ(tP(0)) . . . Ĥ(tP(N))
}

= Ĥ(tN) . . . Ĥ(t0) (2.12)

with P being a permutation of the set {0, . . . , N}. Using these ordering opera-

tors allows us to write the evolution operator Û(t,t′) as

Û(t,t′) =





T̂
{
e−i

∫ t

t′ dtĤ(t)
}

for t > t′,

1̂ for t = t′,

T̂
{
e−i

∫ t

t′ dtĤ(t)
}

for t < t′.

(2.13)

We extend the definition of the Hamilton operator to complex time arguments
by

Ĥ(z) =

{
Ĥ(Re(z)) z is real,

Ĥ(Re(z))− µN̂ z is complex.
(2.14)

Using the extension to complex arguments, the density operator can be rewrit-
ten as

ρ̂(t0) =
e

−i
∫ t0−iβ

t0
dz′Ĥ(z′)

Tr

{
e

−i
∫ t0−iβ

t0
dz′Ĥ(z′)

} . (2.15)

Now, equation (2.8) can be reformulated as

O(t) =

Tr

{
e

−i
∫ t0−iβ

t0
dz′Ĥ(z′)

T̂
{
e−i

∫ t0
t

dt′Ĥ(t′)
}

ÔT̂
{
e

−i
∫ t

t0
dt′Ĥ(t′)

}}

Tr

{
e

−i
∫ t0−iβ

t0
dz′Ĥ(z′)

} .

(2.16)

The integration path of equation (2.16) is illustrated in figure 2.1.
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Im(z)

Re(z)
z′

t0 t

−β t0 − iβ

Figure 2.1: Illustration of the integration path in the complex time plane for
equation (2.16) reading the integrals in the numerator from right to left. It
starts at t0 and ends at t0 − iβ. This path is called contour.

We define the contour ordering operator T̂ as the analogue ordering operator
to T̂, but defined on a contour. It orders operators according to their time-
arguments on the contour, later argument on the contour are shifted to the left.
This allows a simpler notation of equation (2.16) as

O(t) =
Tr
{
T̂
{
e

−i
∫

t0→t→t0→t0−iβ
dz′Ĥ(z′)

Ô(t)
}}

Tr
{
T̂
{
e

−i
∫

t0→t→t0→t0−iβ
dz′Ĥ(z′)

}} . (2.17)

The operator Ô(t) is not the Heisenberg representation of Ô, the time argument

just specifies the position of the operator Ô on the contour. We recall that
operators in the Heisenberg picture are denoted by a subscript H. The artificial
time argument of Ô(t) ensures that the contour ordering operator T̂ places

Ô correctly. The integration path in the denominator has been extended, the
forward and backward branches cancel each other.

As a next step, the integration path is extended to infinity making it inde-
pendent of time argument t. The operator Ô can be inserted on the forward
(equation (2.19)) or backward (equation (2.20)) part of the integration path:

O(t) = Tr
{
ρ̂(t0)Û(t0,t)ÔÛ(t,t0)

}
(2.18)

= Tr
{
ρ̂(t0)Û(t0,t)Û(t,∞)Û(∞,t)ÔÛ(t,t0)

}
(2.19)

= Tr
{
ρ̂(t0)Û(t0,t)ÔÛ(t,∞)Û(∞,t)Û(t,t0)

}
. (2.20)

The contour is therefore extended to infinity as shown in figure 2.2 and is
labeled with γ. Times on the forward (upper) branch are labeled by t−, on
the backward (lower) branch by t+. The variable z is used for all times on the
contour. The advantage of this extension is that the contour is the same for all
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time arguments t of O(t). This allows the following simpler notation:

O(t) = O(t±), (2.21)

O(z) =
Tr
{
T̂
{
e

−i
∫

γ
dz′Ĥ(z′)

Ô(z)
}}

Tr
{
T̂
{
e

−i
∫

γ
dz′Ĥ(z′)

}} . (2.22)

Again, the argument z of Ô(z) specifies the position of Ô on the extended
contour γ, which is the Keldysh contour. Note that O(t−) is the same as O(t+)
since equations (2.19) and (2.20) are equivalent.

Im(z)

Re(z)
t0

−β Contour γ

t−

t′+
τ

Figure 2.2: Sketch of the Keldysh contour γ in the complex time plane. Vari-
ables t± denote times on the upper (−) or lower (+) branch of the horizontal
part. The variable τ is used for times on the vertical part.

2.2.2 Definition of the nonequilibrium Green’s

function

We define the nonequilibrium Green’s function (NEGF) as [SvL13]

G(z,z′) = −i 〈T̂ ψ̂H(z)ψ̂†
H(z′)〉 (2.23)

= Θ(z,z′)G>(z,z′) +Θ(z′,z)G<(z,z′) (2.24)

with the field operators in the Heisenberg picture: ψ̂H(z) = Û(z0,z)ψ̂Û(z,z0)

and ψ̂†
H(z) = Û(z0,z)ψ̂

†Û(z,z0). The contour ordering operator T̂ reads for the

fermionic field operators ψ̂H(z) and ψ̂†
H(z′) as

T̂
{
ψ̂H(z)ψ̂†

H(z′)
}

= Θ(z,z′)ψ̂H(z)ψ̂†
H(z′)− Θ(z′,z)ψ̂†

H(z′)ψ̂H(z). (2.25)
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The Heaviside step function Θ(z,z′) defined on the contour γ is:

Θ(z,z′) =

{
1 if z is later on the contour than z′,

0 otherwise.
(2.26)

The lesser and greater Green’s functions for real time argument are given by

G<(t,t′) = i 〈ψ̂†
H(t′)ψ̂H(t)〉 , (2.27)

G>(t,t′) = −i 〈ψ̂H(t)ψ̂†
H(t′)〉 . (2.28)

The retarded and advanced Green’s functions are related to G≷(t,t′) via

GR(t,t′) = θ(t− t′) [G>(t,t′)−G<(t,t′)] , (2.29)

GA(t,t′) = −θ(t′ − t) [G>(t,t′)−G<(t,t′)] . (2.30)

2.2.3 Nonequilibrium Green’s function in the

Nambu space

We will work in the Nambu space throughout the thesis. We use the creation
and annihilation operators in Nambu space defined as in equations (2.3) - (2.4)
and insert them into the definition of the nonequilibrium Green’s function given
in equation (2.23). We calculate the dyadic product of the two Nambu space

vectors ψ̂H(z) and ψ̂†
H(z′) and get

Gkl(z,z
′) = −i

(
〈T̂ {ĉk↑,H(z)ĉ†

l↑,H(z′)}〉 〈T̂ {ĉk↑,H(z)ĉl↓,H(z′)}〉
〈T̂ {ĉ†

k↓,H(z)ĉ†
l↑,H(z′)}〉 〈T̂ {ĉ†

k↓,H(z)ĉl↓,H(z′)}〉

)
. (2.31)

The contour ordering operator T̂ has been applied component-wise. The greater
and lesser Green’s functions are

G<
kl(t,t

′) = i

(
〈ĉ†

l↑,H(t′)ĉk↑,H(t)〉 〈ĉl↓,H(t′)ĉk↑,H(t)〉
〈ĉ†

l↑,H(t′)ĉ†
k↓,H(t)〉 〈ĉl↓,H(t′)ĉ†

k↓,H(t)〉

)
, (2.32)

G>
kl(t,t

′) = −i
(
〈ĉk↑,H(t)ĉ†

l↑,H(t′)〉 〈ĉk↑,H(t)ĉl↓,H(t′)〉
〈ĉ†

k↓,H(t)ĉ†
l↑,H(t′)〉 〈ĉ†

k↓,H(t)ĉl↓,H(t′)〉

)
. (2.33)

The retarded and advanced Green’s functions for a time-independent Hamilto-
nian Ĥ depend only on the time difference t− t′ and can be calculated as
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GR
kl(t,t

′) =
[
GA

lk(t′,t)
]†

(2.34)

= 〈k| − iΘ(t− t′)e−i(t−t′)Ĥ |l〉 (2.35)

=

∞∫

−∞

dω

2π
e−iω(t−t′)GR

kl(ω), (2.36)

GR
kl(ω) = lim

ηց0
〈k|

[
(ω + iη)1̂− Ĥ

]−1 |l〉 . (2.37)

This formulation is useful if one wants to calculate GR(t,t′) for systems with
time-independent Hamiltonians in equilibrium. For general time-dependent
Hamiltonians Ĥ(t) or for the description of relaxation processes, one can solve
the Kadanoff-Baym equations [KB89] in order to obtain the nonequilibrium
Green’s functions. But, solving these equation is very costly since the Green’s
functions have two independent time arguments and one has to perform a nu-
merical time propagation in both arguments. Nevertheless, these equations have
recently been solved in various studies, for example in the works [MSSvL09,
MSSvL10, UKS+10, TvLPS13].

2.3 Model Hamiltonian

The system is modeled using the tight-binding approach with a single orbital
state for each atomic site. An introduction to the tight-binding approach can
be found in the book [CS10] and in the references therein. The system is
partitioned into three regions: The left lead, the central region and the right
lead. Figure 2.3 explains the site numbering for the model.

Left lead Center Right lead

−1 0 +1

Bias

L2 L1 L0 R0 R1 R2

Figure 2.3: A sketch explaining the partitioning and site indices of our model
with three central sites.
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Left Central region Right

tRCtLC

UL

UR

Left Central region

tRCe
iURttLCe

iULt

Right

Figure 2.4: Sketch explaining the introduction of the Peierls’ phases for a
time-independent bias. Left: Bias is part of the lead Hamiltonians. Right: Bias
is part of the hoppings. Both descriptions are equivalent.

We assume only nearest neighbor hopping in the leads and for simplicity also
in the central region. The biases Uα(t) are chosen to be part of the hoppings and
not of the lead Hamiltonians. This can be done as sketched in figure 2.4. The
Coulomb interaction is neglected. We further set the temperature T = 0 and
the Fermi level µ = 0. We work in the wide-band limit throughout the thesis.
In the case of normal leads, this corresponds to a constant density of states of
both leads in the vicinity of the energy levels of the central region. This results
in a coupling of the central region to the leads which is independent of the
energy [CS10]. Such a definition is not possible for superconducting leads due
to the superconducting gap, which leads to an unavoidable energy dependence
of the coupling. But, we can adpot the definition for normal leads in terms of
the parameters of our tight-binding model and use it for both types of leads. It
is given after the introduction of the model Hamiltonian.

The Hamiltonian of the system with 2N + 1 sites in the central region reads

Ĥ(t) = ĤCC(t) + ĤT(t) +
∑

α∈{L,R}

Ĥαα (2.38)

with

ĤCC(t) =
N∑

k=−N

∑

σ∈{↑,↓}

εk(t)ĉ†
k,σĉk,σ +

N∑

k=−N

(
∆ke

iχk ĉ†
k,↑ĉ

†
k,↓ +H.c.

)
(2.39)

+
N−1∑

k=−N

∑

σ∈{↑,↓}

(
tk,k+1e

iγk,k+1(t)ĉ†
k,σ ĉk+1,σ +H.c.

)
,
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Ĥαα =
∞∑

k=0

∑

σ∈{↑,↓}

(
tαĉ†

αk,σĉαk+1,σ +H.c.
)

(2.40)

+
∞∑

k=0

(
∆αe

iχα ĉ†
αk,↑ĉ

†
αk,↓ +H.c.

)
,

ĤT(t) =
∑

σ∈{↑,↓}

(
tLCe

iγLC(t)ĉ†
L0,σĉ−N,σ +H.c.

)
(2.41)

+
∑

σ∈{↑,↓}

(
tRCe

iγRC(t)ĉ†
R0,σ ĉN,σ +H.c.

)
.

The Hamiltonian ĤCC(t) allows superconductivity also on the central region, but
we normally set ∆k = 0. All parameters of the model Hamiltonian are chosen
real valued and non-negative. The exponents γk,k+1(t) and γαC(t) are called
Peierls’ phases [SPC10] and originate from the Peierls’ substitution [Pei33],
which includes a vector potential into a tight-binding Hamiltonian. We assume
that there is no scalar and no vector potential inside the leads, thus there are
no such phases in the Hamiltonians Ĥαα. Further, we assume that there is only
an electric field between the central region and the leads, which comes from the
bias Uα(t). With these assumptions, the Peierls’ phases for our model are

γαC(t) =

t∫

0

dt′Uα(t′), (2.42)

γk,k+1(t) =
1

c

~rk+1∫

~rk

~A(r, t) d~l. (2.43)

The following table lists the meaning of all parameters of the model:

Central Region
εk(t) on-site potential at site k
∆ke

iχk pairing potential at site k
tk,k+1e

iγk,k+1(t) hopping elements inside C from site k + 1 to k

Leads
∆αe

iχα pairing potential, the same for all sites
tα hopping elements inside leads between nearest neighbors

Coupling

tαCe
iγαC(t) hopping elements from C to lead α

As already stated at the beginning of the section, we will work in the wide-
band limit throughout this thesis. For our model, it corresponds to tα ≫
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tαC, tk,k+1, εk(t). In this limit, the results do not depend on tα and tαC sepa-

rately, but on the coupling Γα =
2t2

αC

tα
[SPC10]. Hence, we will only state Γα

in the presented results. The presence of superconductivity requires the use
of the time-dependent Bogoliubov-de Gennes equation, which has the form of
a Schrödinger equation in the electron-hole space. For a single particle wave
function ψq(k,t) = (uq(k,t), vq(k,t))

T with the site variable k, it reads

i
d

dt

(
uq(k,t)
vq(k,t)

)
=
∑

l

Hkl(t)

(
uq(l,t)
vq(l,t)

)
, (2.44)

Hkl(t) =

(
hkl(t) ∆kl

[∆kl]
⋆ [−hkl(t)]

⋆

)
. (2.45)

The non-vanishing elements of h(t) and ∆ are:

Central Region

hk,k(t) = εk(t), (2.46)

∆k,k = ∆k, (2.47)

hk,k+1(t) = [hk+1,k(t)]⋆ = tk,k+1e
iγk,k+1(t), (2.48)

Leads

∆αk,αk = ∆αe
iχα, (2.49)

hαk,αk+1(t) = [hαk+1,αk(t)]⋆ = tα, (2.50)

Coupling

hL0,−N(t) = [h−N,L0(t)]⋆ = tLCe
iγLC(t), (2.51)

hR0,N(t) = [hN,R0(t)]⋆ = tRCe
iγRC(t). (2.52)

For later use, it is convenient to define projections of H(t) onto the different
subspaces. Using the projections, the full Hamiltonian H(t) as well as the
nonequilibrium Green’s function G(z,z′) can be partitioned as

H(t) =




HLL(t) HLC(t) HRL(t)
HCL(t) HCC(t) HCR(t)
HLR(t) HRC(t) HRR(t)


 , (2.53)

G(z,z′) =




GLL(z,z′) GLC(z,z′) GLR(z,z′)
GCL(z,z′) GCC(z,z′) GCR(z,z′)
GRL(z,z′) GRC(z,z′) GRR(z,z′)


 . (2.54)

The projections HRL(t) and HLR(t) are zero, since there is no direct coupling
between the left and the right lead. The projections HLL(t) and HRR(t) are
time-independent. Consequently, their time argument is omitted. The hopping
Hamiltonians HαC(t) = HCα(t)† can be written as HαC(t) = eiγαC(t)σzHαC with
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σz being the third Pauli matrix in Nambu space. Using these properties, the
partitioned Hamiltonian reads

H(t) =




HLL eiγLC(t)σzHLC 0
HCLe

iγCL(t)σz HCC(t) HCRe
iγCR(t)σz

0 eiγRC(t)σzHRC HRR


 . (2.55)

Most of the time, we will work with junctions containing only one central
site. In these cases, we will make use of the abbreviation QD (quantum dot)
instead of C. We further replace the variable ε0(t) by εQD(t).

The pairing potentials for the leads can be written as ∆α = ξα∆. In the case
of normal leads, we set ξα = 0. In superconducting junctions, we always assume
∆L = ∆R. Consequently, we can always choose ξα ∈ {0,1}. Instead of stating
the values of ξα in our results, we will only specify the junction and introduce
the following notation:

N Normal lead,
S Superconducting leads,
QD Quantum dot,

and

junction type values of ξα

NQDN ξL = 0, ξR = 0
NQDS ξL = 0, ξR = 1
SQDN ξL = 1, ξR = 0
SQDS ξL = 1, ξR = 1

The introduction of ξα allows a dimensionless representation of the problem
by measuring times in units of ~∆−1, currents in units of e

~
∆ and energies, like

Uα, tα, tαC, . . ., in units of ∆. Hence, all units are omitted in all simulations for
any kind of junctions.



Chapter 3

Methods

There exists a large variety of approaches to quantum transport. The most
popular one is the Landauer-Büttiker formula, which will be explained briefly
in the next section. Since the Landauer-Büttiker formula is limited to the cal-
culation of steady states in junctions with normal leads, it is unable to describe
time-dependent phenomena or superconductivity. Another disadvantage is that
it only provides access to the current and not to any other observable, like the
density. Nevertheless, this approach paved the road to the theoretical descrip-
tion of quantum transport. Furthermore, it is a simple and valuable tool to
check results in the absence of superconductivity.

The simplest method to overcome the limitations of the Landauer-Büttiker
formula is to use a finite size model. Instead of dealing with infinite leads,
one truncates them at some large distance to the central region. Then, one
can solve the time-dependent Schrödinger equation for the finite system and
calculate the observables using the propagated wave function. But, no matter
how large the system was chosen, one sooner or later always sees effects of the
finite size compared to an infinite system.

These effects can be avoided by working with the full infinite system. Using
an embedding technique, it is possible to propagate the wave functions only in
the central region. The effects of the leads are incorporated by two additional
terms. This method is explained in detail in section 3.2. We will use it for most
of the calculations in the thesis.

Instead of propagating wave functions, one can also obtain the observables
from the nonequilibrium Green’s functions. There are various ways to calcu-
late the nonequilibrium Green’s functions. We will explain one possibility to
calculate their large time behaviour in section 3.3 and use it afterward. Unfor-
tunately, it does not provide access to the transient dynamics.

21
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3.1 Landauer-Büttiker formula

The most common approach to quantum transport with non-interacting elec-
trons is the Landauer-Büttiker formula, which is based on works by Rolf Lan-
dauer [Lan57] and Markus Büttiker [Büt86]. It reads

I =
2e

h

∞∫

−∞

dE T (E) (fL(E)− fR(E)) , (3.1)

with the Fermi functions of the leads fα(E) = 1
1+eβ(E−µα) and the transmission

probability T (E) as function of energy. The bias enters via the shifted chemical
potentials µα of the leads. The factor 2 in front of the integral accounts for the
spin degeneracy. It has been extended by Meir and Wingreen to calculate the
current through an interacting region [MW92]. The transmission probability
T (E) is typically calculated numerically, for example with density functional
theory for realistic systems like molecules as it was done in the work [ZG10].
The Landauer-Büttiker formula was developed to describe transport through
junctions with normal-conducting leads, but can be generalized to hybrid junc-
tions, having one normal and one superconducting lead [BTK82].

The Landauer-Büttiker formula implicitly assumes that the systems evolves
towards a steady state upon switching on the bias. This assumption is not
always justified, for example in junctions with superconducting leads where
the current can oscillate due to the AC Josephson effect. Nevertheless, it is
often a helpful tool. For our model system, but with normal leads, it gives the
correct steady state value for the current. Hence, it was used during the code
development for consistency checks. Very recently, a time-dependent version of
the Landauer-Büttiker formula was published [TvLPS13]. This novel formula
provides access to the full transient dynamics of the system upon switching on
the bias.
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3.2 Time propagation of wave functions

The second approach, that we want to explain in detail, is the time prop-
agation of wave functions. The idea of this method is to solve the time-
dependent Schrödinger equation starting from initial single particle wave func-
tions ψ0

q at time t = 0. This propagation scheme was invented by Kurth et
al. [KSA+05] and later generalized for superconducting leads by Stefanucci
et al. [SPC10]. The original version of the algorithm has been used in var-
ious studies of time-dependent quantum transport, like the effects of bound
states [KKSG08, KSKG09], a time resolved picture of the Coulomb blockade
[KSK+10], multistabilities for an interacting quantum dot [UKS+10, KUS+12]
and classical nuclear motion [VSA06, KVS14]. To the best of our knowledge,
the generalization for superconducting leads [SPC10] has not yet been used for
further studies.

3.2.1 Ground state calculation

In order to carry out a time propagation of wave functions, we first need to
calculate the initial wave functions. We start in the ground state and want to
solve the time-independent Schrödinger equation




HLL HLC 0
HCL HCC(0) HCR

0 HRC HRR






ψL

ψC

ψR


 = E



ψL

ψC

ψR


 (3.2)

for all possible energies E. The solutions of equation (3.2) will then be used as
initial values for the following time propagation.

In the literature, three different techniques for solving equation (3.2) have
been proposed:

1. The work [KSA+05] suggests to diagonalize the retarded Green’s functions
GR

CC(ω). But, the normalization of the resulting wave functions has to
be done separated when using this approach. Further, the calculation of
GR

CC(ω) requires to take the limit limηց0, which can be challenging.

2. An alternative approach is to use the Lippmann-Schwinger equation from
scattering theory [Nit08]. But, it is restricted to junctions with identical
leads, hence NQDS and SQDN junctions cannot be calculated in this way.

3. A method, which is superior for our application, has been suggested in
the work [SPC10]. It is similar to the procedure of calculating the wave
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function which is scattered at a potential step. This is our method of
choice and we will explain it in the following paragraphs.

The solutions of equation (3.2) can be separated into bound and scattering
states. The first decay exponentially in both leads, the latter do not. As shown
in figure 3.1, there is a continuum of scattering states. We use an equidistant
grid in momentum space to approximate it. In the following two paragraphs,
we will explain how to calculate all three types of wave functions. We start
with the scattering wave functions.

D
en

si
ty

of
st

at
es

Energy−Wmax −∆min 0 ∆min Wmax

Andreev bound states

Scattering states

Normal bound states

Figure 3.1: Sketch of the density of states in the central region with normal
bound, Andreev bound and scattering states for a Josephson junction. ∆min =

min{∆L, ∆R}, Wmax = max
{√

4t2
L + ∆2

L,
√

4t2
R + ∆2

R

}
.

Scattering states

We will use a method that is similar to the scattering of a wave functions at a
potential step, which can be found in almost every book on quantum mechanics.

We first solve the stationary Schrödinger equation for the isolated leads, which
are assumed to be periodic in both directions. The Bloch ansatz for the wave
functions in the leads is

ψp,L(Lk) = ψp,L(L0)e−ipk, (3.3)

ψp,R(Rk) = ψp,R(R0)eipk (3.4)

with p ∈ [0, 2π), normalized such that ‖ψp,α(αk)‖2 = 1 for all sites k.
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The ansatz (3.3) and (3.4) gives for the fictitious extended leads:

(
0 ∆αe

iχα

∆αe
−iχα 0

)
ψp,α(αk) +

(
tα 0
0 −tα

)
ψp,α(αk − 1) (3.5)

+

(
tα 0
0 −tα

)
ψp,α(αk + 1) = Eψp,α(αk)

and
(
tαe

ip + tαe
−ip ∆αe

iχα

∆αe
−iχα −tαe−ip − tαeip

)
ψp,α(αk) = Ep,αψp,α(αk). (3.6)

Note that the solutions ψp,α are not eigenfunctions to Hαα, since here the leads
are assumed to be infinite in both directions. The propagation direction of a
wave function can be determined by the sign of its Fermi velocity v = ∂pEp,α =
2tα cos(p) 〈ψp,α|σz|ψp,α〉 with σz being the third Pauli matrix in Nambu space.
Wave functions in the direction towards the central region will be labeled ψ(in)

p,α ,

the others by ψ(out)
p,α .

We now select an incoming wave function ψ(in)
p,α and calculate all outgoing

wave functions ψ
(out)
Ep,α,α′ with the same energy Ep,α. One therefore reformulates

equation (3.6) into an eigenvalue problem for eip′
:




1
tα′

(
Ep,α −∆α′eiχα′

∆α′e−iχα′ −Ep,α

)
−1

1 0



(

ψEp,α,α′(α′k)
e−ip′

ψEp,α,α′(α′k)

)
(3.7)

= eip′

(
ψEp,α,α′(α′k)

e−ip′
ψEp,α,α′(α′k)

)
.

This gives four solutions for every lead, two propagating to the left and two to
the right. In the case of real p′, outgoing solutions can be identified again using
the sign of the Fermi velocity. In the case of complex p′, we consider outgoing
waves as the ones which decay exponentially with increasing distance from the
central region, i.e. Im(p′) > 0 for the right and Im(p′) < 0 for the left lead.

The wave function for the full system can then be constructed as

ψp =





ψ(in)
p,α +

∑
m Cα,mψ

(out)
Ep,α,α,m Lead α ∈ {L,R},

ψC Central region,
∑

m Cα′,mψ
(out)
Ep,α,α′,m Lead α′ 6= α.

(3.8)

We omit the index Ep,α from now on in order to simplify the notation. Inserting
the ansatz (3.8) into equation (3.2) gives a set of equations with 2(2N + 3)
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unknown variables:

A(Ep,L/R)




CL,1

CL,2

ψC

CR,1

CR,2




=




(Ep,L1−HLL)ψ
(in)
p,L

−HCLψ
(in)
p,L

0


 or




0

−HCRψ
(in)
p,R

(Ep,R1−HRR)ψ
(in)
p,R


 ,

(3.9)

where

A(E) =




(HLL −E1)[ψ
(out)
E,L,1ψ

(out)
E,L,2] HLC

HCL[ψ
(out)
E,L,1ψ

(out)
E,L,2] HCC(0)−E1 HCR[ψ

(out)
E,R,1ψ

(out)
E,R,2]

HRC (HRR −E1)[ψ
(out)
E,R,1ψ

(out)
E,R,2]


 .

(3.10)

Here, we used the notation [ψ
(out)
E,α,1ψ

(out)
E,α,2] for the matrix formed of ψ

(out)
E,α,1 and

ψ
(out)
E,α,2. We reduce the number of equations to the number of unknown variables

by applying a projection operator on both sides:

B(Ep,L/R) =




PL0

1

PR0


A(Ep,L/R) (3.11)

with

B(Ep,L/R)




CL,1

CL,2

ψC

CR,1

CR,2




=




PL0(Ep,L1−HLL)ψ
(in)
p,L

−HCLψ
(in)
p,L

0


 or




0

−HCRψ
(in)
p,R

PR0(Ep,R1−HRR)ψ
(in)
p,R




(3.12)

where Pαk is the projection operator of site αk. Inserting the solution into the
ansatz in equation (3.8) gives the wave function ψp for the whole system which
is a solution of the full stationary Schrödinger equation and solves the linear
equation (3.9) with the matrix A(E).

Bound states

Bound states have discrete energies, which are not known a priori. But one
knows at least that Andreev bound states are inside the gap with energies
|EABS| ≤ min{∆L,∆R} and normal bound states are typically above or below
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the band continuum. Since our systems are always chosen such that they never
have normal bound states, we will focus on the Andreev bound states. But,
normal bound states can be treated on the same footing.

The first step is to calculate the energy of the bound states. Bound states
are located at the poles of the retarded Green’s functions. Taking the inverse
leads to the following condition for bound states:

0
!

= det
{
GR

CC(E)−1
}

(3.13)

= lim
ηց0

det
{

(E + iη)1−HCC(0)−ΣR
L (E)−ΣR

R(E)
}
. (3.14)

The embedding self-energies ΣR/A
α (E) can be calculated analytically [PSC09]:

ΣR/A
α (E) = lim

ηց0

(
m̃α(E ± iη) d̃α(E ± iη)eiχα

d̃α(E ± iη)e−iχα m̃α(E ± iη)

)
, (3.15)

m̃α(z) = z
t2αC

2t2α

√
∆2

α − z2 −
√
∆2

α − z2 + 4t2α√
∆2

α − z2
, (3.16)

d̃α(z) = ∆α
t2αC

2t2α

√
z2 −∆2

α − 4t2α −
√
z2 −∆2

α√
z2 −∆2

α

. (3.17)

The energy of Andreev bound states in the case of a single normal central
site coupled to two superconducting leads can be obtained by solving

0
!

= det
{
GR

CC(E)−1
}

(3.18)

= lim
ηց0

{
(E + iη − m̃L(E + iη)− m̃R(E + iη))2 − ε2

QD (3.19)

−
(
d̃L(E + iη)eiχL + d̃R(E + iη)eiχR

)

·
(
d̃L(E + iη)e−iχL + d̃R(E + iη)e−iχR

)}
.

This can be done numerically using standard root-finding algorithms. The
result coincides with the formula given in [SPC10] for the wide-band limit. For
larger systems, one solves equation (3.14) numerically using again root-finding
algorithms.

The second step is to calculate the wave function. The ansatz for the wave
function of a bound state is the same as for a scattering state, but without an
incoming wave function:

ψBS =

{ ∑
m Cα,mψ

(out)
α,m Lead α,

ψC Central region
(3.20)
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with

ψ
(out)
L,m (Lk) = ψ

(out)
L,m (L0)e−iRe(pL,m)k+Im(pL,m)k, (3.21)

ψ
(out)
R,m (Rk) = ψ

(out)
R,m (R0)e+iRe(pR,m)k−Im(pR,m)k. (3.22)

All outgoing wave functions ψ(out)
α,m are exponentially decaying with increasing

distance from the central region and have the same energy EBS. Inserting this
ansatz into the stationary Schrödinger equation of the full system gives

A(EBS)




CL,1

CL,2

ψC

CR,1

CR,2




= 0 respectively B(EBS)




CL,1

CL,2

ψC

CR,1

CR,2




= 0 (3.23)

withA(EBS) and B(EBS) of equations (3.10) - (3.11). The physically meaningful
solutions are the non-trivial ones. They can be obtained by calculating the
kernel ker {A(EBS)} or ker {B(EBS)}. It is easier to calculate the latter since
B(EBS) has a finite number of rows and columns. Applying the singular value
decomposition to the matrix B(E) gives

B(EBS) = UΣV† (3.24)

with unitary matrices U,V and a diagonal matrix Σ. The kernel of B(EBS)
reads

ker {B(EBS)} = {V(: ,i) ∈ C
4N+6 : Σ(i,i) = 0,B(EBS) = UΣV†}. (3.25)

The resulting wave functions have to be normalized such that 〈ψBS|ψBS〉 = 1.
This can be done using the explicit form of equations (3.20) - (3.22), which
gives the norm as the sum of several geometric series.

Instead of searching for the roots in equation (3.14), one can also solve

0
!

= det{B(E)}. (3.26)

This formulation has the advantage that one does not need to take the limit
limηց0. Thus, it is used in the numerical implementation. The search for roots
can be done using a derivative-free root-finding algorithm. Figure 3.2 shows
an example of the calculated Andreev bound states’ energy depending on the
phase difference χ0 for a SQDS junction.
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Figure 3.2: Dependence of the Andreev bound states on the phase difference
χ0 = χR − χL for a SQDS junction. The parameters are: Γα = 0.5, εQD = 0.

3.2.2 Time propagation

Having now all single particle wave functions in the ground state at time t = 0
at hand, we want to propagate them in time. Since the equations are the same
for all single particle wave functions, we use the generic notation ψ for all wave
functions, scattering as well as bound states.

The time-dependent Schrödinger equation reads

i
d

dt



ψL(t)
ψC(t)
ψR(t)


 =




HLL HLC(t) 0
HCL(t) HCC(t) HCR(t)

0 HRC(t) HRR






ψL(t)
ψC(t)
ψR(t)


 . (3.27)

The solutions in the leads are for t > 0 [Ull12]

ψα(t) = igR
α (t,0)ψα(0) +

t∫

0

dt′gR
α (t,t′)HαC(t′)ψC(t′), (3.28)

where gR
α (t,t′) is the retarded Green’s function of the isolated semi-infinite lead

α. This yields for the central region

i∂tψC(t) = HCC(t)ψC(t) +
∑

α∈{L,R}

iHCα(t)gR
α (t,0)ψα(0) (3.29)

+
∑

α∈{L,R}

t∫

0

dt′HCα(t)gR
α (t,t′)HαC(t′)ψC(t′).

We want to derive and solve a discretized version of this equation on an equidis-
tant grid with tm = m∆t and δ = 0.5∆t. The derivation is based on the work
[SPC10], which is the origin of the propagation algorithm. We use a second or-
der Crank-Nicolson scheme to solve the time-dependent Schrödinger equation:

(
1 + iδH(m)

)
ψ(m+1) =

(
1− iδH(m)

)
ψ(m) (3.30)
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with ψ
(m)
C = ψC(tm) and H(m) = 1

2
(H(tm) + H(tm+1)). This gives

(
1 + iδH

(m)
CC

)
ψ

(m+1)
C =

(
1− iδH(m)

CC

)
ψ

(m)
C (3.31)

− iδ
∑

α∈{L,R}

H
(m)
Cα

(
ψ(m+1)

α + ψ(m)
α

)
,

(1 + iδHαα)ψ(m+1)
α = (1− iδHαα)ψ(m)

α (3.32)

− iδH(m)
αC

(
ψ

(m+1)
C + ψ

(m)
C

)
.

If we assume that Hαα is bounded and δ sufficiently small, then 1− iδHαα and
[1 + iδHαα]−1 commute. The fraction of both is then a well-defined object since
numerator and the inverse of the denominator commute and we can reformulate
the wave function in the leads as

ψ(m+1)
α =

1− iδHαα

1 + iδHαα

ψ(m)
α − iδ 1

1 + iδHαα

H
(m)
αC

(
ψ

(m)
C + ψ

(m+1)
C

)
(3.33)

=

(
1− iδHαα

1 + iδHαα

)m+1

ψ(0)
α (3.34)

− iδ
m∑

k=0

(1− iδHαα)k

(1 + iδHαα)k+1 H
(m−k)
αC

(
ψ

(m+1−k)
C + ψ

(m−k)
C

)
.

Inserting this result into equation (3.31) gives the final equation [SPC10]:

(
1 + iδH

(m)
eff

)
ψ

(m+1)
C =

(
1− iδH(m)

eff

)
ψ

(m)
C +

∑

α∈{L,R}

(
S(m)

α +M (m)
α

)

(3.35)

with

H
(m)
eff =

1

2
(HCC(tm) + HCC(tm+1))− iδ

∑

α∈{L,R}

z(m)
α Q(0)

α (z(m)
α )†, (3.36)

S(m)
α = −2iδz(m)

α HCα
(1− iδHαα)m

(1 + iδHαα)m+1
ψ(0)

α , (3.37)

M (m)
α = −δ2

m−1∑

j=0

z(m)
α

(
Q(m−j)

α + Q(m−j−1)
α

)
(z(j)

α )†
(
ψ

(j)
C + ψ

(j+1)
C

)
, (3.38)

Q(m)
α = HCα

(1− iδHαα)m

(1 + iδHαα)m+1
HαC, (3.39)

z(m)
α =

1

2

(
eiγCα(tm)σz + eiγCα(tm+1)σz

)
. (3.40)

In the above equations, σz is the third Pauli matrix. The calculation of the
embedding matrices Q(m)

α is explained in the appendix A.2. We mention that
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only Q(0)
α has to be calculated iteratively. The equations for all other matrices

Q(m)
α , m > 0 can be transformed into a system of normal linear equation which

strongly reduces the computational cost.
The additional terms S(m)

α and M (m)
α are called source and memory term.

They incorporate the effects of the two leads. The terms can be interpreted as
indicated in table 3.1.

name interpretation (particle movement)

S(m)
α source term lead α → central region
M (m)

α memory term central region → lead α → central region

Table 3.1: Naming and interpretation of the additional terms S
(m)
α and M

(m)
α

in the equation (3.35).

The source term S(m)
α has to be reformulated for the numerical evaluation,

see appendix A.3 for details. The final result is

S(m)
α =





− 2iδ
1+iδE

z(0)
α

(
HCαψ

(0)
α + iδQ(0)

α ψ
(0)
C

)
, m = 0,

1−iδE
1+iδE

z
(m)
α

z
(m−1)
α

S(m−1)
α

+ 2δ2

1+iδE
z(m)

α

(
Q(m)

α + Q(m−1)
α

)
ψ

(0)
C ,

m > 0.

(3.41)

In the above equation, E is the associated ground state energy of the wave
function ψ(0).
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3.2.3 Calculation of observables

The final step of the presented method is the calculation of the observables
using the propagated wave functions. We denote by ψp(k,t) all scattering states
constructed out of incoming wave functions with momentum p, with εp being
the ground state energy of ψp(k,t). The wave functions are split up into their

upper and lower components as ψp(k,t) = (up(k,t), vp(k,t))T . The integration
over the momentum p is done using an equidistant grid. We enumerate the
bound states with an superindex m, ε

(m)
BS is again the corresponding ground

state energy. We obtain the following expressions for the density and current:

nk(t) =
∑

σ∈{↑,↓}

〈ĉ†
kσ,H(t)ĉkσ,H(t)〉 (3.42)

=

2π∫

0

dp
(
f<(εp)|up(k,t)|2 − f>(εp)|vp(k,t)|2

)
(3.43)

+
#BS∑

m=1

(
f<(ε

(m)
BS )|u(m)

BS (k,t)|2 − f>(ε
(m)
BS )|v(m)

BS (k,t)|2
)
,

Ikl(t) = −i
∑

σ∈{↑,↓}

(
tkle

iγkl(t)〈ĉ†
kσ,H(t)ĉlσ,H(t)〉 − H.c.

)
(3.44)

= 2Im



tkle

iγkl(t)




2π∫

0

dp
(
f<(εp)up(k,t) [up(l,t)]

⋆ (3.45)

− f>(εp) [vp(k,t)]
⋆ vp(l,t)

)

+
#BS∑

m=1

(
f<(ε

(m)
BS )u

(m)
BS (k,t)

[
u

(m)
BS (l,t)

]⋆

− f>(ε
(m)
BS )

[
v

(m)
BS (k,t)

]⋆
v

(m)
BS (l,t)

)





with the Fermi functions f<(ω) = [1 + exp(βω)]−1 and f>(ω) = f<(ω) −
1. We point out that our system has a different continuity equation due to
superconductivity [SPC10]:

d

dt
nk(t) =

∑

l

Ikl(t)− 4Im
[
∆ke

−iχk〈ĉk↓,H(t)ĉk↑,H(t)〉
]
. (3.46)
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3.2.4 Efficient numerical implementation

In the course of this thesis, we want to calculate current-voltage characteristics
for junctions in various situations. Therefore, the propagation time has to be
chosen large enough such that convergence for the time averaged currents and
densities is achieved. The results presented later often require 105 up to 106

propagation steps. Thus, it is essential and of great importance to have an
efficient numerical implementation. The code was written in C++ using the
library FLENS1 [Leh08] as the base for all numerical linear algebra.

The first step is to reduce the number of propagated wave functions. We
will always work in the wide-band limit, i.e. we assume that tα ≫ tαC, tkl

(k,l ∈ C). This allows us to propagate only wave functions with an energy
inside a certain range [−Λ,Λ] since wave functions outside this windows do
not contribute much to observables of the central region. The energy cut-off Λ
is typically chosen an order of magnitude larger than all other parameters of
the system like Γα, Uα, ∆α, . . . ≪ Λ. Exploiting the fact that wave functions
with εp ≤ 0 and those with εp ≥ 0 contribute in equal parts to the density
and current, reduces the required number of propagated wave functions even
further.

2.4%   Apply 1−iδH(m)

eff

4.0%  Observables
4.1%   Apply [1 +iδH

(m)

eff
]−1

7.9%   Source Term

Memory Term 81.6%

Figure 3.3: Diagram with the relative
time consumptions for the propagation
of 1024 wave functions and 1000 time
steps, split into their main contributions,
using variant 3 [page 35] to calculate the
memory term.

The second step is to speed up the
propagation itself. The cost can be
quantified using the “Big O notation”
[CLRS09]. Propagating from time
step tm to tm+1 scales like O(m) since
the memory term M (m)

α requires the
evaluation of m terms of the sum.
The cost of all other terms is indepen-
dent of the time step number. In to-
tal, the cost for propagating from time
step t0 to tm scales like O(m2). Unfor-
tunately, it is not possible to ignore or
even to truncate the sum in the cal-
culation of the memory term M (m)

α .
These attempts always produce com-
pletely useless results.

It is therefore advisable to optimize
the calculation of the memory term M (m)

α since it produces by far most of the

1 FLENS (Flexible Library for Efficient Numerical Solutions) is an open-source
library for numerical linear algebra. It can be freely downloaded from
http://www.mathematik.uni-ulm.de/~lehn/FLENS/.

http://www.mathematik.uni-ulm.de/~lehn/FLENS/
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computational cost. The relative time consumption of the calculation of the
memory term is shown in figure 3.3 for 1000 time steps, which corresponds
to a rather short propagation time. As already mentioned above, one often
has to deal with way larger number of time steps. This increases the relative
time for the calculation of the memory term even further. Using an efficient
evaluation strategy reduces the total cost for a propagation with m time steps
to O(m log(m)2). It is based on circular convolutions, which are calculated
using the fast Fourier transform algorithm.

Direct method

We first show an efficient way to calculate the memory term in the way it is de-
fined in equation (3.38). We later introduce the FFT and mixed method, which
use auxiliary Fourier transforms to calculate the memory term. In contrast,
the direct method calculates directly the memory term without any auxiliary
transformations.

We define Q̃(m)
α = Q(m)

α + Q(m+1)
α and ψ̃

(m)
C = (z(m)

α )†
(
ψ

(m)
C + ψ

(m+1)
C

)
. Then,

the memory term defined in equation (3.38) can be written for each m as

M (m)
α = −δ2z(m)

α

m−1∑

j=0

(
Q(m−j)

α + Q(m−j−1)
α

)
(z(j)

α )†
(
ψ

(j)
C + ψ

(j+1)
C

)

(variant 0)

= −δ2z(m)
α

m−1∑

j=0

Q̃(m−j−1)
α ψ̃

(j)
C . (variant 1)

The intuitive evaluation of variant 0 from right to left requires at least 16m+ 2
floating point operations for every wave function. However, variant 1 only
requires 8m + 2 operations if one always saves Q̃(m)

α = Q(m)
α + Q(m+1)

α and

ψ̃
(m)
C = (z(m)

α )†
(
ψ

(m)
C + ψ

(m+1)
C

)
instead of Q(m)

α and ψ
(m)
C . The additional cost

for calculating the modified objects Q̃(m)
α and ψ̃

(m)
C are small, since it has to be

done only once.
The next step is to reformulate the expression forM (m)

α such that its numerical
evaluation is even more efficient. We will make use of BLAS1 routines for
matrix-vector and matrix-matrix products. We will measure the speed in billion
floating points operations per second (GFLOPS). Matrix-vector operations are
normally limited by memory bandwidth, matrix-matrix operations are limited

1 BLAS (Basic Linear Algebra Subprograms) is a standard library interface for basic linear
algebra operations. The documentation as well as a reference implementation is available
at http://www.netlib.org/blas/. There exists a large variety of highly optimized im-
plementations, commercial as well as open source ones.

http://www.netlib.org/blas/
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by the processor frequency. Thus, the latter can typically achieve a higher peak
performance.

The sum in variant 1 consists of m matrix-vector products with a matrix
of size 2 × 2. Such operations are inefficient, especially when using BLAS.
It is favorable to compute one large matrix-vector product instead of many
small ones. This can be achieved by replacing the sum in variant 1 by a single
matrix-vector product:

M (m)
α = −δ2z(m)

α

(
Q̃(m−1)

α Q̃(m−2)
α . . . Q̃(0)

α

)




ψ̃
(0)
C

ψ̃
(1)
C
...

ψ̃
(m−1)
C



. (variant 2)

The matrices in the calculation of the memory term are the same for all wave
functions at a given time step m. Consequently, it is possible to replace the
matrix-vector product by a matrix-matrix product, improving again the speed.
The memory term for K wave functions then reads

(
M

(m)
α,1 . . . M

(m)
α,K

)
= −δ2z(m)

α

(
Q̃(m−1)

α . . . Q̃(0)
α

)




ψ̃
(0)
C,1 . . . ψ̃

(0)
C,K

ψ̃
(1)
C,1 . . . ψ̃

(1)
C,K

...
...

ψ̃
(m−1)
C,1 . . . ψ̃

(m−1)
C,K



.

(variant 3)

We define for later use

ψ̃
(k)

C =
(
ψ̃

(k)
C,1 ψ̃

(k)
C,2 . . . ψ̃

(k)
C,K

)
, (3.47)

M̃(m)
α =

(
Q̃(m−1)

α Q̃(m−2)
α . . . Q̃(0)

α

)




ψ̃
(0)

C

ψ̃
(1)

C
...

ψ̃
(m−1)

C



, (3.48)

M(m)
α =

(
M

(m)
α,1 M

(m)
α,2 . . . M

(m)
α,K

)
(3.49)

= −δ2z(m)
α M̃(m)

α . (3.50)

In order to show the improving speed, we first benchmark the corresponding
most time consuming BLAS functions. They are listed in table 3.2 for the three
variants. This will also reveal good choices for the block size K in the wave
function domain.

Before comparing the three variants in a real simulation, one has to determine
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BLAS
Operation Size # Calls

routine
variant 1 zgemv y ← αAx+ βy A ∈ C2×2 m ·K
variant 2 zgemv y ← αAx+ βy A ∈ C2×2m K
variant 3 zgemm C← αAB + βC A ∈ C2×2m, B ∈ C2m×K 1

Table 3.2: Details of the most time consuming BLAS functions used for the

different evaluation variants of the memory term M
(m)
α for K wave functions.

a good choice of K for variant 3. This is done by benchmarking the BLAS func-
tion zgemm for different values of K using the ATLAS1 [WPD01, WP05] timing
routines. ATLAS is a well established BLAS library that additionally provides
benchmark functions for BLAS routines of competing BLAS implementations.
These functions take care of proper processor cache flushing and are thus able
to produce reliable results. We choose the BLAS implementation provided by
the Intel MKL2, unless otherwise stated. It outperforms ATLAS significantly
on our target system, which is an Intel Xeon X5650 processor. The presented
results of BLAS functions are all obtained by using the ATLAS timing routines
benchmarking the Intel MKL.

We would like to emphasize that the results may be different depending on the
used hardware and software. Thus a good choice for K is platform dependent.
Figure 3.4 shows the results for variant 3. Starting fromK = 1, the performance
increases with increasing size K and eventually saturates at around K = 64.
Therefore one chooses K = 64 or even larger. In the course of the section, we
will apply further optimizations and eventually see, that K = 64 is the optimal
choice.

1 ATLAS (Automatically Tuned Linar Algebra Software) can be downloaded from
http://math-atlas.sourceforge.net/. It is an automatically tuned BLAS implemen-
tation, thus relying on accurate timing measurements. We use version 3.10.0.

2 The Intel MKL (Math Kernel Library) is a commercial library for BLAS, LAPACK and
FFT, http://developer.intel.com/software/products/mkl. We use version 11.0.1
and always only one thread.

http://math-atlas.sourceforge.net/
http://developer.intel.com/software/products/mkl
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Figure 3.4: Left: Benchmark of the function zgemm using one thread for the

variant 3, which simulates the calculation of M
(m)
α . We measure the speed in

billion floating operations per second (GFLOPS) instead of absolute times to
simplify the comparison, i.e. higher is faster. Right: Comparison of the vari-
ants 1, 2 and 3 (with K = 64). The peak performance for single threaded
matrix-matrix multiplication for square size matrices using zgemm is ≈ 10.2
GFLOPS and the theoretical maximum is 10.68 GFLOPS. The reason for our
low performance is that the matrices have few rows and/or columns as listed in
table 3.2.

The increasing speed in a real simulation is shown in figure 3.5. For this, we
used the BLAS implementation of the Intel MKL and OpenBLAS1 [ZWZ12] and
two different systems. The benchmarks predict a speedup by a factor of ≈ 9,
the simulation shows only a factor of ≈ 7.5. The reason is the contribution of
other terms in the propagation scheme which were neglected in the benchmarks
in figure 3.4.
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Figure 3.5: Run times for calculations with 1024 wave functions and 1000
time steps using two different BLAS implementation and two different CPUs
on one core.

1 OpenBLAS is an optimized open-source BLAS implementation. It is a
successor of GotoBLAS2 [GvdG08a, GvdG08b] and can be obtained from
http://github.com/xianyi/OpenBLAS. We use version 0.2.5.

http://github.com/xianyi/OpenBLAS
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FFT method

The benefit of the FFT method is its reduction of the required number of float-
ing point operations by using the circular convolution theorem. This will even-
tually reduce the cost for m propagation steps from O(m2) to O(m log(m)2),
becoming very advantageous for large m. This strategy has already been used
for a similar algorithm which propagates Green’s functions [ZXW12]. It is based
on a previous work for nonlinear Volterra convolution equations [HLS85].

Definition 3.1 (Discrete circular convolution [Mar09]) Let x and y be two N
dimensional vectors. The discrete circular convolution of x and y is defined as

[x ∗ y](k) =
k∑

l=0

x(l)y(k − l) +
N−1∑

l=k+1

x(l)y(N + k − l) (3.51)

=
k∑

l=0

x(k − l)y(l) +
N−1∑

l=k+1

x(N + k − l)y(l). (3.52)

Definition 3.2 (Discrete Fourier transform [Mar09]) Let x be a N dimensional
vector. The discrete Fourier transform of x is defined as

F [x](k) =
N−1∑

j=0

x(j)e−2πi kj

N (3.53)

and the inverse discrete Fourier transform as

F−1[x](k) =
1

N

N−1∑

j=0

x(j)e+2πi kj
N . (3.54)

Note that the vector elements of x in the above definition need not to be
necessarily complex numbers, but can also be complex matrices. In the latter
case, x is a vector of matrices. The same is possible for the discrete circular
convolution.

The fast Fourier transform algorithm reduces the cost of calculating F [x] and
F−1[x] from O(N2) to O(N logN) for N being the length of x and a power of
2 [CLRS09].

Theorem 3.3 (Discrete circular convolution theorem [Mar09]) Let x and y be
two N dimensional vectors. The discrete circular convolution of x and y can be
calculated as

[x ∗ y](k) = F−1 [(F [x] · F [y])] (k) (3.55)

with (F [x] · F [y])(k) = F [x](k)F [y](k).
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Proof.

F−1 [(F [x] · F [y])] (k) =
1

N

N−1∑

l1=0

F [x](l1)F [y](l1)e
2πi

kl1
N (3.56)

=
1

N

N−1∑

l1,l2,l3=0

x(l2)e−2πi
l1l2

N y(l3)e
−2πi

l1l3
N e2πi

kl1
N

(3.57)

=
1

N

N−1∑

l2,l3=0

x(l2)y(l3) (δk,l2+l3 + δk+N,l2+l3) (3.58)

=
k∑

l=0

x(l)y(k − l) +
N−1∑

l=k+1

x(l)y(N + k − l) (3.59)

= [x ∗ y](k). (3.60)

This theorem reduces the cost of calculating a circular convolution of two
vectors with length N fromO(N2) to O(N logN). We make use of this strategy
to obtain the memory terms M̃(m)

α at reduced computational cost compared to
variant 3.

The calculation scheme for M̃(m)
α using variant 3 is shown in figure 3.6. In

order to get the memory terms, one has to sum up all entries of a column. A
single column is evaluated using a single matrix-matrix product as explained in
previous part this section.

The idea behind the FFT method is not to evaluate every column separately,
but to calculate always the vertical sum in the square sized blocks of figure 3.6.
The evaluation order of these blocks is indicated with numbers. If the block
size is larger than 1 by 1, the computed sums have to be saved for the following
time steps. We will show, that one can use the discrete convolution theorem to
evaluate these block efficiently.
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Figure 3.6: Visualization of the calculation scheme for M̃
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α . The terms have to be added column-wise. The evaluation is

done block-wise in the indicated order. The final memory term is obtained by M
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(m)
α M̃
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α .
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In the following, we present a detailed explanation of the evaluation scheme.
We assume that we want to calculate the block at a time step 2N . This simplifies
the notation. Of course, the strategy can be applied at other time steps, it
may only require some index shifts in order for the following formulas to be
applicable.

We want to calculate M̃(2N )
α and parts of M̃(m)

α with 2N < m < 2N+1, as-

suming that all wave functions ψ̃
(k)

C , k < 2N are known. Thus, we want to
calculate a block of figure 3.6. An example of size 4 by 4 is shown in figure 3.7.
Calculating this block gives M̃(4)

α and parts of M̃(5)
α , M̃(6)

α and M̃(7)
α .

M̃(4)
α M̃(5)
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Figure 3.7: Calculation scheme for the memory terms M̃
(m)
α , m ∈ {4, . . . , 7}

of figure 3.6. The goal is to derive an efficient scheme to evaluate the dark gray

filled block. Evaluating the gray block yields M̃
(4)
α and parts of M̃

(5)
α , M̃

(6)
α and

M̃
(7)
α . The procedure can be adapted to calculate the gray shaded block and all

kinds of similar quadratic blocks of arbitrary size.

We define auxiliary wave functions

φ
(2N ,k)
C =

{
ψ̃

(k)

C if 0 ≤ k < 2N ,
0 if 2N ≤ k < 2N+1.

(3.61)



42 3 Methods

This allows us to write the term M̃(m)
α for 2N ≤ m < 2N+1 as follows:

M̃(m)
α =

m−1∑

k=0

Q̃(m−k−1)
α ψ̃

(k)

C (3.62)

=
m−1∑

k=2N

Q̃(m−k−1)
α ψ̃

(k)

C +
2N −1∑

k=0

Q̃(m−k−1)
α ψ

(k)
C (3.63)

=
m−1∑

k=2N

Q̃(m−k−1)
α ψ̃

(k)

C +
2N −1∑

k=0

Q̃(m−k−1)
α φ

(2N ,k)
C (3.64)

+
m−1∑

k=2N

Q̃(m−k−1)
α φ

(2N ,k)
C +

2N+1−1∑

k=m

Q̃(2N +m−k−1)
α φ

(2N ,k)
C

︸ ︷︷ ︸
=0

=
m−1∑

k=2N

Q̃(m−k−1)
α ψ̃

(k)

C (3.65)

+
m−1∑

k=0

Q̃(m−k−1)
α φ

(2N ,k)
C +

2N+1−1∑

k=m

Q̃(2N +m−k−1)
α φ

(2N ,k)
C

︸ ︷︷ ︸
=

[
Q̃α∗φ

(2N )
C

]
(m−1)

=
m−1∑

k=2N

Q̃(m−k−1)
α ψ̃

(k)

C +
[
Q̃α ∗ φ

(2N )
C

]
(m− 1). (3.66)

In the example of figure 3.7, the term
[
Q̃α ∗ φ

(2N )
C

]
(m − 1) corresponds to

the sum of one column of the dark gray block. The sum
∑m−1

k=2N Q̃(m−k−1)
α ψ̃

(k)

C

corresponds to the remaining parts above the dark gray block in the column of

M̃(m)
α . The dark gray block is calculated via F−1

[(
F [Q̃α] · F [φ

(2N )
C ]

)]
. This

immediately gives the vertical sum for every column of the dark gray block. All
other blocks in figure 3.6 are evaluated in the same manner.

The extension from equation (3.63) to equation (3.64) is shown in figure 3.8
for the example of figure 3.7 with N = 2. This extension allows us to introduce
the discrete circular convolution.
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Figure 3.8: Extension of a 4 by 4 rectangle of figure 3.6 in order to make use of the discrete circular convolution theorem.

The wave functions φ
(m)
C are defined in equation (3.61). Above, φ

(4,m)
C = ψ

(m)
C for k < 4 and 0 otherwise. The discrete

circular convolution theorem will then be applied to Q̃
(k)
α and φ

(4,k)
C , k ∈ {0, . . . , 7}. It calculates the sum of every column.
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Q̃(k)
α and φ

(2N ,k)
C are both matrices and their Fourier transforms are calculated

for each component separately. This allows us to make use of a highly optimized
library for this task, like FFTW1 [FJ05] or the Intel MKL. The latter was used
for all discrete Fourier transforms in this chapter.

The cost of calculating a discrete circular convolution using the discrete cir-
cular convolution theorem and the Fourier transform algorithm is O(N logN).
We define C(m) as the cost for a time propagation from 0 to tm. Since the mem-
ory term is the only contribution that does not scale linearly, we can neglect
all other contributions in the estimate. For simplicity, we want to calculate the
cost at a time step m that is a power of 2. We use a divide & conquer scheme
for the cost estimation which is visualized in figure 3.9.

C(m) =
Direct method:

O
(

m2

4

)

FFT method:
O(m logm)

C
(

m
2

)

C
(

m
2

)

Figure 3.9: Sketch of the memory term for cost estimation. The divide &
conquer scheme will be used recursively. The triangle symbolizes the sum-
mands of the memory term as shown in figure 3.6.

Using the divide & conquer scheme recursively yields for the FFT method

C(m) = O (m log2 m) + 2 · C
(
m

2

)
(3.67)

= O (m log2 m) + 2 · O
(
m

2
log2

m

2

)
+ 4C

(
m

22

)
(3.68)

= O

m

log2 m∑

k=1

log2

m

2k


 (3.69)

= O
(
m

2
(1 + log2 m) log2 m

)
(3.70)

= O
(
m(log2 m)2

)
. (3.71)

1 The library FFTW (Fast Fourier Transform in the West) can be downloaded from
http://www.fftw.org.

http://www.fftw.org
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Similarly, we get for the direct method

C(m) = O
(
m2

4

)
+ 2C

(
m

2

)
(3.72)

= O



log2 m∑

k=1

m2

2k+1


 (3.73)

= O
(
m2
)
. (3.74)

Hence, the FFT method is faster than any direct method for large m.

Mixed method

The application of the circular convolution theorem is only advantageous for
large blocks of figure 3.6. For small ones, a direct calculation of the convolution
is faster. We therefore combine these two methods and name it mixed method.

It works as follows: All blocks of figure 3.6 with a dimension smaller than
a certain switching size L are evaluated without using the circular convolution
theorem as in the direct method. For all larger blocks, we use the discrete
circular convolution theorem as in the FFT method. The optimal switching
size L between direct and FFT method has to be determined by benchmarks
and is again system dependent. It further depends on the block size in the
wave function domain K. Hence, we search the optimal values for K and
L simultaneously. We use a simulation with 2048 time steps and 1024 wave
functions as a test case. Similar results can be obtained for even larger test
cases. The results for our target system are shown in figure 3.10. The minimum
is at K = 64 and L = 16.
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Figure 3.10: Computational time of a test calculation as a function of the
block size K in the wave function domain and the switching size L between the
direct and the FFT method. We used 2048 time steps and 1024 wave functions.
The minimum is at K = 64 and L = 16. The calculations use one core. Very
similar results can be obtained for larger numbers of time steps.



46 3 Methods

Benchmark

We finally want to demonstrate the improvement of the mixed method compared
to the FFT method and an highly optimized direct method. The latter uses
the same evaluation order as the FFT method, but calculates the discrete con-
volutions without using the discrete convolution theorem. Thus, every block of
figure 3.6 is calculated using one matrix-matrix multiplication. The appearing
matrices have more advantageous shapes for the BLAS matrix-matrix multipli-
cation function compared to variant 3. This procedure outperforms variant 3
by a factor of two, but requires a large amount of memory. The comparison of
the three methods is displayed in figure 3.11.
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Figure 3.11: Run times for calculations with 1024 wave functions comparing
the mixed method, the FFT method and an highly optimized direct method.
The inset shows the same plot, but using normal instead of logarithmic axes.
The block size in the wave function domain is K = 64, the switching of the
mixed method is L = 16. For 8192 = 213 time steps, the run time is reduced by
a factor of ≈ 12. The longest propagations in this work require 131072 = 217

(or even 262144 = 218) time steps. In these cases, the computational times of
the mixed and the FFT method are almost identical. Compared to the direct
method, we expect a speed increase in these cases by a factor ≈ 100 (≈ 200).
The calculations use again only one core.

We inserted fits for the measured times. The direct evaluation method is
outperformed by both other methods and the mixed method is only slightly
ahead of the pure FFT method. Compared to a straight forward implemen-
tation using variant 0, one can expect speed improvements up to three orders
of magnitude and more for the most demanding simulations carried out in this
thesis.

As a closing remark to this subsection, we point out that this propagation
scheme can easily be parallelized in the wave function domain using for exam-
ple the Message Passing Interface (MPI) or Open Multi-Processing (OpenMP).
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The propagation from time step tm to tm+1 can be done for all wave functions
independently, only the calculation of the observables requires some commu-
nication between the different threads. Besides, one can get access to more
Random-access memory (RAM) by using several computers for a single simu-
lation, which is especially useful for propagations with many time steps and/or
wave functions, requiring often several Gigabytes of storage. Our implementa-
tion successfully used MPI with an optional further OpenMP parallelization.
Further improvement could be obtained by using general-purpose graphics pro-
cessing units (GPGPU) for the Fourier transforms. In order to achieve the best

possible results, one would need to store Q̃(m)
α and ψ̃

(m)

C directly in the memory
of the GPGPU and thus minimize data transfers between CPU and GPGPU.
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3.3 Large time behaviour of the

nonequilibrium Green’s functions

As a third approach, we want to explain how to calculate the large time be-
haviour of nonequilibrium Green’s functions. This method was originally in-
vented to describe a junction with a time-dependent monochromatic potential
in the central region and normal leads [SKRG08], but without any bias. The
method was originally used to calculate currents from the leads into the central
region. We have modified it such that it is possible to calculate densities and
currents inside the central region for superconducting junctions with an applied
bias, but without the time-dependent potential in the central region.

The method is restricted to the long time behaviour, that means it gives the
nonequilibrium Green’s functions after all switching effects have died out. We
therefore introduce the notation for the convergence in norm

f(t)
t→∞∼ g(t) ⇔ lim

t→∞
‖f(t)− g(t)‖ = 0. (3.75)

This describes that the function g approaches f with increasing time arguments
t. This allows us to neglect all contributions of f(t) which tend to zero as t→∞.
The method relies on two preconditions:

1. HαC(t) = HαC ⇔ γαC(t) = 0.
This can be achieved by extending the central region by one site in both
directions since the Hamiltonians of the leads Hαα are time-independent.
This will be assumed for this section without loss of generality.

2. HCC(t) = H0
CC + U+e

iω0t + U−e
−iω0t.

The shape of the matrices H0
CC and U± can be determined by the Hamil-

tonian given in section 2.3. This precondition restricts the possible choices
for the central Hamiltonian, especially since the central region has been
extended by one site in both direction in the first step. Nevertheless it
still allows the most important two cases with a constant bias: (a) The
bias is only in one of the original leads (ω0 = U) and (b) the bias is in
both original leads with UL = −UR (ω0 = 1

2
U).

The density at the site k can be expressed as

nk(t) =
∑

σ∈{↑,↓}

〈ĉ†
kσ,H(t)ĉkσ,H(t)〉 (3.76)

= −i[G<
kk(t,t)]↑↑ + i[G>

kk(t,t)]↓↓ (3.77)

= −i [G<
CC(t,t)](k↑,k↑) + i [G>

CC(t,t)](k↓,k↓) . (3.78)
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The same is possible for the current between the sites k and l:

Ikl(t) = −i
∑

σ∈{↑,↓}

(
tkle

iγkl(t)〈ĉ†
kσ,H(t)ĉlσ,H(t)〉 −H.c.

)
(3.79)

= 2Re Tr {G<
lk(t,t)Hkl(t)σz } (3.80)

= 2Re Tr
{

[G<
CC(t,t)](l,k) [HCC(t)](k,l)σz

}
(3.81)

with site indices k,l of the central region. σz is the third Pauli matrix in Nambu
space.

The task is to calculate G
≷
CC(t,t), which can be expressed for large times t

in terms of objects of the central region only. This is presented in detail in
appendix B.1. Using the definitions gα(z,z′) for the nonequilibrium Green’s
function of the isolated lead α, the embedding self-energies read Σα(z,z′) =
HCαgα(z,z′)HαC and Σ = ΣL+ΣR. Then, the large time behaviour of G

≷
CC(t,t)

is

G
≷
CC(t,t)

t→∞∼
[
GR

CC ·Σ≷ ·GA
CC

]
(t,t), (3.82)

with [A · B · C](t,t′) =
∫∫∞

−∞ dt1 dt2A(t,t1)B(t1,t2)C(t2,t
′). The Hamiltonian

HCC(t) contains only the frequencies ±ω0, hence we can expand G
R,A
CC as

G
R,A
CC (t,t′) =

∑

m∈Z

∞∫

−∞

dω

2π
G̃R,A

m (ω)e−iω(t−t′)+imω0
t+t′

2

=
∑

m∈Z

∞∫

−∞

dω

2π
GR,A

m (ω)e−iω(t−t′)+imω0t′

. (3.83)

The equivalence of the two expansions can be easily checked by a variable
substitution in the integral. We use the latter representation for convenience
reasons. This expansion is only possible if there is no initial state dependence
and if the system does not have any bound states. We will always choose
systems without normal or Andreev bound states in the biased system. Hence
both conditions are fulfilled.

We define Z
2 = Z× Z, m = (m1, m2) ∈ Z

2, and insert the expansion (3.83)
into the equation (3.82). This is executed in detail in appendix B.2. The final
equations for the density and the current are

nk(t)
t→∞∼

∞∫

−∞

dω

2π

∑

m∈Z2

ei(m1−m2)ω0t

[
f<(ω)[Gm1(ω)Γ(ω)G†

m2
(ω)](k↑,k↑)

(3.84)

+ f>(ω)[Gm1(ω)Γ(ω)G†
m2

(ω)](k↓,k↓)

]
,
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Ik,l(t)
t→∞∼ 2Re Tr

{ ∞∫

−∞

dω

2π

∑

m∈Z2

ei(m1−m2)ω0tf<(ω) (3.85)

[
Gm1(ω)Γ(ω)G†

m2
(ω)

]
(l,k)

[HCC(t)](k,l)σz

}

with the Fermi functions f<(ω) = [1 + exp(βω)]−1 and f>(ω) = f<(ω) −
1. We further introduced Gm(ω) ≡ GR

m(ω − mω0) = [GA
−m(ω)]†, Γα(ω) =

i
[
ΣR

α(ω)−ΣA
α (ω)

]
and Γ(ω) = ΓL(ω) + ΓR(ω). The observables are periodic

with frequency ω0 = 2π
T0

. The time average of the density nk(t) and the current
Ik,l(t) read

nk,DC = lim
t→∞

1

T0

t+T0∫

t

dt′nk(t′) (3.86)

=

∞∫

−∞

dω

2π

∑

m∈Z

[
f<(ω)[Gm(ω)Γ(ω)G†

m(ω)](k↑,k↑) (3.87)

+ f>(ω)[Gm(ω)Γ(ω)G†
m(ω)](k↓,k↓)

]

and

Ik,l,DC = lim
t→∞

1

T0

t+T0∫

t

dt′Ik,l(t
′) (3.88)

= 2Re Tr

{ ∞∫

−∞

dω

2π

∑

m∈Z2

f<(ω)
[
Gm1(ω)Γ(ω)G†

m2
(ω)

]
(l,k)

(3.89)

[
H0

CCδm1,m2 + U+δm1+1,m2 + U−δm1−1,m2

]
(k,l)

σz

}
.

The matrices Gm(ω) can be calculated using the scheme explained in the ap-
pendix B.3. The retarded and advanced embedding self-energy were defined in
equation (3.15).

We point out that the calculated DC current may depend on the site indices
k and l, i.e. even for a linear chain Ik−1,k,DC is not necessarily equal to Ik,k+1,DC

if ∆k 6= 0 due to the modified continuity equation for superconductors [SPC10].
All quantities can now be calculated numerically. For a practical calcula-

tion, the infinite sums in equations (3.84), (3.85), (3.87) and (3.89) have to be
truncated, i.e. we replace

∑

m∈Z

→
M∑

m=−M

and
∑

m∈Z2

→
M∑

m1=−M

M∑

m2=−M

. (3.90)
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The number M has to be chosen large enough such that one achieves conver-
gence. The choice M = 10 turned out to be a good initial guess. M has to be
increased for small biases as well as for weak couplings.

The integrands of the frequency integrals in equations (3.84), (3.85), (3.87)
and (3.89) can vary over several orders of magnitude as shown in figure 3.12.
Thus, it is highly recommended to use an adaptive quadrature method for
an efficient numerical integration. We chose the Gauss-Kronrod quadrature
formula [Kro64, Kro65], which uses 7 points for the quadrature and 15 points
for the error estimate.
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Figure 3.12: Plot of the integrand of equation (3.87) for a SQDS junction
with different biases. The energy gap is clearly visible. Note that the vertical
axis uses a logarithmic scale. The parameters are: Γα = 0.5, UL = −UR, εQD =
0.

3.4 Comparison

We presented three methods to calculate observables of junctions with an ap-
plied bias. We now want to briefly compare these three methods:

1. Landauer+Büttiker formula, section 3.1

It only allows to calculate the steady state current. For junctions with
superconducting leads, it is not applicable, since there is no steady state
due to the AC Josephson effect. But, it can be used for normal and hybrid
junctions.

2. Propagation of wave functions, section 3.2

This method propagates single particle wave functions in time and allows
for an arbitrary time-dependence of the central Hamiltonian and the bi-
ases. It enables us to calculate the density and the current as a function
of time. But, the time propagation can be expensive, depending on the
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number of time steps. This is typically the case for calculations of the
long time limit of the DC current, since one has to ensure that switching
effect have died out.

3. Calculation of nonequilibrium Green’s functions, section 3.3

We showed how to calculate the large time behaviour of the nonequilib-
rium Green’s functions. The calculation scheme has some limitations for
the junction’s setup and gives the density and current after the transient,
i.e. it does not provide access to switching effects. But, the method is
typically computationally cheaper than a long time simulation using the
time propagation algorithm. Hence, this method is used whenever possi-
ble. It further provides a reference to check the convergence of the “Time
propagation method” when performing DC current calculations.

All results obtained by the NEGF method can also be calculated using the time
propagation method. The results are identical as one can see in figure 3.13. In
this example, we introduced an offset t̃ such that the switching effects have died
out at t− t̃ = 0.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  1  2  3  4  5  6

C
ur

re
nt

 I L
,Q

D
(t

)

Time t-t
~

Time Propagation
NEGF

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0  1  2  3  4  5  6

D
en

si
ty

 n
Q

D
(t

)

Time t-t
~

Time Propagation
NEGF

Figure 3.13: Comparison of results obtained by the “Time propagation
method” and the “NEGF method” for a SQDS junction. The offset t̃ is cho-
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Γα = 1, UL = 1, UR = 0 and εQD = 0. Times are measured in units of ~∆,
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∆.



Chapter 4

Features of SQDS junctions

In this chapter, we analyse features of SQDS junctions. In particular, we look
at the Josephson effects in SQDS junctions. We recall the basic equations from
section 1.2 for the description of the Josephson effects. They are:

U(t) =
~

2e

dχ(t)

dt
, (4.1)

χ(0) = χ0, (4.2)

I(t) = I0 + I1 sin (χ(t)) + I2 cos (χ(t)) . (4.3)

Originally, χ(t) represents the phase difference of the Cooper pair wave functions
between the right and left lead. In our model, it is equivalent to the phase
difference of the pairing potentials, hence χ0 = χR − χL. The equations were
derived using approximations and we will see deviations from these relations.
Recall from section 2.3 that we measure energies in units of ∆, currents in
units of e

~
∆ and times in units of ~∆−1. We will work with almost identical

superconducting leads throughout this chapter, only the phases χα may differ
between left and right.

53



54 4 Features of SQDS junctions

4.1 DC Josephson effect

We start this chapter with the demonstration of the DC Josephson effect in
SQDS junctions. It is a phenomenon of the ground state, hence U(t) = 0.
Following the equations (4.1) - (4.3), we expect to see a DC current

I = I1 sin(χR − χL) (4.4)

since I0 and I2 vanish in the absence of a bias. Figure 4.1 shows calculated
currents in a SQDS junction. There are deviations from the predicted sinusoidal
behaviour, being more pronounced for small gate voltages. It further shows
that the Andreev bound states produce the main contribution to the current,
compensating the opposite current of the scattering states. Deviations from the
current-phase relation have already been reported for different types of junctions
in various previous works [Gun94, Cue99, PSC09].
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Figure 4.1: Top: DC Josephson effect in a SQDS junction for different values
of εQD. Bottom: Decomposition of the current into contributions of Andreev
bound states (ABS) and scattering states (SS). The parameters are: Γα = 0.5
(both) and εQD = 0 (only bottom).

The current-phase relation for the ground state has been calculated analyti-
cally for a symmetric SQDS junction in the limit ∆

Γα
→ 0 [Cue99, MRLY11]. It
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reads

I =
e∆

2~

τ sinχ0√
1− τ sin2

(
χ0

2

) , (4.5)

τ =
1

1 +
ε2

QD

Γ 2
α

. (4.6)

A comparison of the analytical with the numerical results is shown in figure 4.2.
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Figure 4.2: Comparison of the analytical results of equation (4.5) with the
calculated ones for εQD = 0. In this case, the current-phase relation is indepen-
dent of Γα since τ = 1. The analytical formula describes the limit ∆

Γα
→ 0.

4.2 AC Josephson effect

The AC Josephson effect describes the phenomenon of creating an AC current
with frequency ω = 2e

~
U , if one applies a DC bias U across the junctions. The

current-phase relation gives

I(t) = I0 + I1 sin
(

2e

~
Ut+ χ0

)
+ I2 cos

(
2e

~
Ut+ χ0

)
. (4.7)

Figure 4.3 shows two simulations of a SQDS junction with different applied
biases. The bias is switched on step-like at t = 0. After the transient, the
current is perfectly periodic. The frequency of the oscillations can be analysed
by a discrete Fourier transform of the current starting after the transient. This is
shown in figure 4.4 for the simulation of figure 4.3 with U = 1 (bottom). Besides
the peaks at ω = ±2 corresponding to the Josephson frequency ωJ = 2e

~
U , one

observes further peaks at ω = 0 and ω = ±4. The first one originates from
the DC component of the current. The latter is the second harmonic of the
Josephson frequency ωJ. In principle, the observation of even higher harmonics
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is possible, but their contributions are very small. The higher harmonics of
the Josephson frequency are not incorporated in the current-phase relation,
but have already been reported in superconducting quantum point contacts
[Cue99]. Including the higher harmonics modifies the current-phase relation as
follows:

I(t) = I0 +
∑

m∈N

I1,m sin (mχ(t)) + I2,m cos (mχ(t)) . (4.8)
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Figure 4.3: AC Josephson effect in a SQDS junction for two different biases:
U = 0.5 (top) and U = 1 (bottom). The parameters are: Γα = 1, χα = 0, εQD =
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4.3 Subharmonic gap structure

We now look at the DC component of the current I(t). We start the simulation
in the ground state and switch on the bias U at t = 0. The DC component of
the current is calculated as

IL,QD,DC = lim
t→∞

1

TJ

t+TJ∫

t

dt′IL,QD(t′), TJ =
2π

ωJ
=

~π

eU
. (4.9)

In general, its value is not independent of the position due to the different
continuity equation for superconductors [SPC10], i.e. calculating the average
of the current inside the leads gives a different result since ∆α 6= 0. But,
IL,QD,DC = IQD,R,DC since ∆QD = 0. Furthermore, the DC current IDC is in
general not equivalent to I0 as it can be seen in the derivation of the inverse
AC Josephson effect. Figure 4.5 shows the DC current for SQDS junctions
with different couplings Γα. There are clearly visible steps at voltages U =
2∆

n+1
with even n. The steps with odd n are suppressed, the one being best

visible lies at U = 1. The suppression has already been observed and explained
in previous works [LYCLDMR97, JBSW99]. It is absent for directly coupled
superconductors, i.e. in superconducting quantum point contacts [CMRY96].
The origin of the suppression will be explained later. This structure of the DC
current-voltage characteristics is called subharmonic gap structure.
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The origins of the subharmonic gap structure are the different possible charge
transfer mechanisms in Josephson junctions. A direct transmission is only pos-
sible for U > 2∆ due to the superconducting gap. For a smaller bias, the only
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possible charge transfer mechanism is the Andreev reflection. Figure 4.6 shows
the four charge transfer mechanisms with the lowest number of Andreev reflec-
tions. The onsets of the steps in figure 4.5 are related to the opening of new
transmissions channels. For example, the cusp at U = 2∆ originates from the
direct transmissions process and the step at U = 2

3
∆ corresponds to the process

with two Andreev reflections. In the sketch, the central region is represented
by a single resonant level at ω = 0. Processes with an odd number of Andreev
reflections are off-resonance and thus suppressed. Unlike in the case of normal
or hybrid junctions, the energy of the resonance is not the same as the gate
voltage energy εQD, but additionally depends on the parameters Γα and Uα. In
the case of a symmetric junction with εQD = 0 and UL = −UR, the resonance is
located at ω = 0. In all other cases, it is not known in advance. The deviation
of the effective resonance from εQD has already been reported [LYCLDMR97],

but the authors did not go into any details. The steps would be at
2(∆±εQD)

n+1

with even n, if there is no deviation.
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Figure 4.6: Sketch of four charge transfer processes. The energy is the exci-
tation energy of the particles, hence the scattered hole of an Andreev reflection
is at the same energy as the incident electron. Recall that a bias in the leads
can be gauged into an electric field in the central region. In this way, the leads
remain unchanged, simplifying the plots. The horizontal bar represents the res-
onant level in the central region. Processes with an odd number of Andreev
reflections do not cross the resonance and are suppressed.
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The dependence of the effective resonance on the gate voltage and the bias
can be seen in figure 4.7. It shows the DC current IL,QD,DC as a function of
the applied bias and the gate voltage for two different junctions. Figure 4.5
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Figure 4.7: Time averaged current as a function of the bias U and the gate
voltage εQD for Γα = 1 (top) and Γα = 0.5 (middle). The figures at the bottom
are magnifications: The bottom left one of Γα = 1 (top) and the bottom right
one of Γα = 0.5 (middle). Note that the color scales differ amongst all plots.

corresponds to a cut along εQD = 0. There are numerous valleys, peaks and
edges visible. Comparing the top and the middle plot of the figure shows, that
the structure depends on the coupling. Minima and maxima are not always
at the same position in the two plots. The edges in the plotted landscape,
which correspond to steps in the current-voltage characteristics, show a non-
linear behaviour as a function of the gate voltage. This indicates, that in the
simple picture of a single resonance, the energy changes non-linearly with the
gate voltage. Nevertheless, these edges can be associated with new resonant
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transmissions processes.
The dependence of the DC current-voltage characteristics on the coupling Γα

is demonstrated in figure 4.8, where the connection is better visible compared
to figure 4.7. The positions of the edges change with Γα. In the chosen param-
eters regime, there seems to be an exponential dependence of the edges on the
coupling Γα.
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Figure 4.8: Dependence of the subharmonic gap structure on the coupling
strength Γα. The parameters are εQD = 0.25, UL = −UR = 1

2U .

4.4 Inverse AC Josephson effect

We apply an AC bias starting at t = 0

U(t) = UDC + UAC cos(ωACt). (4.10)

The expression for the DC current using the Josephson equations is derived in
section 1.2 and reads

IDC = I0+
∑

m∈Z

√
I2

1 + I2
2J−m

(
2eUAC

~ωAC

)
sin

(
χ0 + arctan

I2

I1

)
δ 2e

~
UDC,mωAC

. (4.11)

Taking higher harmonics into account changes the formula for the current to

I(t) = I0 +
∑

m∈N

(
I1,m sin (mχ(t)) + I2,m cos (mχ(t))

)
. (4.12)
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The DC component of the current is expressed as

IDC = I0 +
∑

m1∈N

∑

m2∈Z

I1,2,m1J−m2

(
2em1UAC

~ωAC

)
sin (m1χ0 + χm1) δ 2e

~
m1UDC,m2ωAC

(4.13)

with I1,2,m1 =
√
I2

1,m1
+ I2

2,m1
and χm1 = arctan

I2,m1

I1,m1
. Figure 4.9 shows results

of a DC current-voltage characteristic calculation. The phase difference χ0 is
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Figure 4.9: DC current-voltage characteristics showing the inverse AC
Josephson effect with χ0 being varied between −π and π. The green spikes
show that the DC current depends on the initial value χ0 at the discrete en-
ergies ~

2e
m2
m1

ωAC. We plotted all spikes with m1,m2 ≤ 4, but only the ones

with UDC = m2
m1

= 1
2 ,2

3 ,1 and 2 are clearly visible. The others are very
small. The parameters are: Γα = 0.5, εQD = 0, UAC = 0.2, ωAC = 1 and
UL(t) = −UR(t) = 1

2UDC + 1
2UAC cos(ωAC).

varied between −π and π. The spikes are located at UDC = ~

2e
m2

m1
ωAC, but only

the ones with m2

m1
= 1

2
,2
3
,1 and 2 are clearly visible.

The current IDC at a spike depends on the chosen initial phase difference
χ0. We plotted the DC current for different values of m2

m1
in figure 4.10. The

dominating frequency of the oscillation is determined by the minimal possible
value of m1. This demonstrates again the existence of higher harmonics of the
Josephson frequency in the current. The ratio

I2,m1

I1,m1
depends on the geometry of

the junction. Figure 4.11 shows the calculated current IL,QD,DC(χ0) for UDC =
0.5 and different gate voltages εQD.
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Figure 4.10: Dependence of the current IL,QD,DC on the initial phase differ-
ence χ0 for different values of m2

m1
. The frequency is dominated by the minimum

value of m1. The parameters are: Γα = 0.5, ξα = 1, UAC = 0.2, ωAC = 1, UDC =
0.5 and UL(t) = −UR(t) = 1

2UDC + 1
2UAC cos(ωAC).
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The second effect of the AC bias on the DC current-voltage characteristics
are the Shapiro steps [Sha63]. They modify the subharmonic gap structure
by splitting the large steps up into several small equidistant steps. They can
be explained by the absorption and emission of one or more quanta ωAC by
particles in the central region. An example is shown in figure 4.12. The steps
of the subharmonic gap structure for εQD = 0 are at UDC = 2∆

n+1
. Taking the

absorption and emission of multiple quanta ωAC into account yields the steps
at UDC = 2∆±kωAC

n+1
. Recall that the steps with even n are suppressed since

they are off resonance. The same argument can be applied to the emission
and absorption of quanta ωAC, suppressing processes with an odd number k of
emitted or absorbed quanta ωAC.
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Figure 4.12: Current-voltage characteristics for a SQDS junctions with an
AC bias UL(t) = −UR(t) = 1

2UDC + 1
2UAC cos(ωACt). The parameters are:

Γα = 0.2, εQD = 0, ωAC = 0.1.

A very similar situation occurs in the presence of an oscillating gate volt-
age εQD(t) = V0 cos(ωACt) but without the AC bias. The oscillation can
be gauged away from the central region into the bias substituting Uα(t) by
Uα(t)− V0 cos(ωACt). This also enables assisted charge transfers and produces
a similar additional step structure. Comparing the figures 4.12 and 4.13 shows
this close relationship.
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Figure 4.13: Current-voltage characteristics for a SQDS junctions with an
oscillating gate voltage εQD(t) = V0 cos(ωACt). The parameters are: Γα =
0.2, UL = −UR = 1

2U and ωAC = 0.1.
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4.5 Insights from the spectral function

In this section we study the spectral function A(t,t′) of the Keldysh nonequilib-
rium Green’s function. It is a useful tool to understand the internal changes of
molecular junctions. It provided valuable insights in the dynamics of molecular
junctions [MSSvL09, MSSvL10, UKS+10, UKS+11, KUS+12]. The definition
of the spectral functions [SvL13] is

A(t,t′) = i [G>(t,t′)−G<(t,t′)] (4.14)

= i
[
GR(t,t′)−GA(t,t′)

]
(4.15)

where G≷(t,t′) are the standard greater (lesser) nonequilibrium Green’s func-
tions defined in section 2.2.2. Introducing the average time T = t+t′

2
, we can

define the Fourier transform of A(t,t′) with respect to the relative time τ = t−t′
as

A(ω, T ) =
1

2π

∞∫

−∞

dτeiωτ A

(
T +

τ

2
,T − τ

2

)
. (4.16)

A(ω, T ) is a matrix with respect to some representation referring, e.g. to space
and spin coordinates Arσ,r′σ′(ω, T ) or to localized orbitals Ai,j(ω, T ). The ob-
jective of this section is to give a clear-cut physical interpretation of the diagonal
of this matrix. In particular we shall investigate whether and to which extend
it can be viewed as a time-dependent density of states.

We present two approaches to calculate the spectral function A(ω, T ) in sit-
uations with an applied bias. The first one uses single particle wave functions
which are obtained by the method explained in section 3.2. The greater and
lesser Green’s functions can then be calculated as [SPC10]:

[
G≷(t,t′)

]
kl

= i
∑∫

q

f≷
q (εq)

(
uk,q(t) [ul,q(t

′)]⋆ uk,q(t) [vl,q(t
′)]⋆

vk,q(t) [ul,q(t
′)]⋆ vk,q(t) [vl,q(t

′)]⋆

)
. (4.17)

The Fermi functions f≷(ω) were defined in subsection 3.2.3 and fulfill f<(ω)−
f>(ω) = 1. The symbol

∑∫
q stands for the integration over scattering states and

the summation over bound states. Thus, the spectral function A(t,t′) is

[A(t,t′)]kl =
∑∫

q

(
uk,q(t) [ul,q(t

′)]⋆ uk,q(t) [vl,q(t
′)]⋆

vk,q(t) [ul,q(t
′)]⋆ vk,q(t) [vl,q(t

′)]⋆

)
. (4.18)

The Fourier transform in equation (4.16) is done on a grid using the fast
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Fourier transform algorithm. Since the grid is finite, one implicitly assumes
that A(t,t′) → 0 if |t− t′| → ∞, which is a reasonable assumption if there are
no bound states.

The second approach calculates the large time behaviour of A(ω, T ) with re-
spect to T . It adapts the ideas of section 3.3 and uses the NEGF functions. The
Fourier transform of equation (4.16) is calculated analytically and the method
also relies on A(t,t′) → 0 as |t − t′| → ∞. Furthermore, it has the same two
preconditions as the NEGF method presented in section 3.3:

1. The hopping matrices HαC(t) are time-independent, i.e. HαC(t) = HαC.

2. The central Hamiltonian can be written as

HCC(t) = H0
CC + U+e

iω0t + U−e
−iω0t. (4.19)

One therefore extends the central region again by one site in both directions
and works only with UL = −UR, UL = 0 or UR = 0. The derivation is carried
out in the appendix C.1 and the final equations for G

≷
CC(ω, T ) and ACC(ω, T )

are:

G
≷
CC(ω, T )

T →∞∼ i

2π

∑

m∈Z2

ei(m1+m2)ω0Tf≷

(
ω +

ω0

2
(m1 −m2)

)
(4.20)

Gm1

(
ω +

ω0

2
(m1 −m2)

)
Γ

(
ω +

ω0

2
(m1 −m2)

)

G
†
−m2

(
ω +

ω0

2
(m1 −m2)

)
,

ACC(ω, T )
T →∞∼ 1

2π

∑

m∈Z2

ei(m1+m2)ω0T Gm1

(
ω +

ω0

2
(m1 −m2)

)
(4.21)

Γ

(
ω +

ω0

2
(m1 −m2)

)
G

†
−m2

(
ω +

ω0

2
(m1 −m2)

)
.

The matrices Gm(ω),Γ(ω) and the Fermi functions f≷(ω) are defined in section
3.3. The time-averaged spectral function reads

ACC,DC(ω) = lim
t̃→∞

ω0

2π

t̃+ 2π
ω0∫

t̃

dTACC(ω, T ) (4.22)

=
1

2π

∑

m∈Z

Gm (ω +mω0) Γ (ω +mω0) G†
m (ω +mω0) . (4.23)

In the ground state, the spectral function A(ω, T ) is independent of T and
has peaks at the removal and addition energies. The same holds for a steady
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state [MSSvL10]. Furthermore, [HJ96] relates A(ω, T ) to a time-dependent
density of states. Until now, the time-dependent spectral function A(ω, T ) has
only been analysed for normal conducting systems [Arr02, MSSvL09, MSSvL10,
UKS+10, UKS+11, KUS+12].

Depending on the situation, we calculate G
≷
CC(ω, T ) and ACC(ω, T ) from

the propagated single particle wave functions or by using the NEGF approach.
The latter gives a better resolutions at lower computational cost and it used
whenever possible.

4.5.1 Ground state

In the ground state, the Green’s functions G≷(t,t′) depend only on the time
difference τ = t − t′. We denote the Fourier transforms with respect to t − t′
of the Green’s functions by G≷(ω). The ground state density on the quantum
dot at an arbitrary time t reads

nQD(t) =
∑

σ∈{↑,↓}

〈ĉ†
QDσ,H(t)ĉQDσ,H(t)〉 (4.24)

= −i
[
G<

QD(t,t)
]

↑↑
+ i

[
G>

QD(t,t)
]

↓↓
(4.25)

= −i
∞∫

−∞

dt′
∞∫

−∞

dωe−iω(t−t′)

[
G<

QD

(
ω,
t+ t′

2

)]

↑↑

δ(t− t′) (4.26)

+ i

∞∫

−∞

dt′
∞∫

−∞

dωe−iω(t−t′)

[
G>

QD

(
ω,
t+ t′

2

)]

↓↓

δ(t− t′)

= −i
∞∫

−∞

dω
[
G<

QD (ω,t)
]

↑↑
+ i

∞∫

−∞

dω
[
G>

QD (ω, t)
]

↓↓
(4.27)

= −i
∞∫

−∞

dω
[
G<

QD (ω)
]

↑↑
+ i

∞∫

−∞

dω
[
G>

QD (ω)
]

↓↓
. (4.28)

We use the fluctuation-dissipation theorem [HJ96, SvL13]

G<(ω) = if<(ω)A(ω), (4.29)

G>(ω) = if>(ω)A(ω) (4.30)

with f<(ω) = [1 + exp(βω)]−1, f>(ω) = f<(ω)− 1 and finally arrive at

nQD(t) =

∞∫

−∞

dωf<(ω) [AQD(ω)]↑↑ −
∞∫

−∞

dωf>(ω) [AQD(ω)]↓↓ . (4.31)
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Thus, [AQD(ω)]σσ corresponds to the density of states for spin up electrons
(σ = ↑) or spin down holes (σ = ↓). The spectral function AQD(ω) can be
obtained using equations (4.15) - (4.16) and

G
R/A
QD (ω) = lim

ηց0

[
(ω ± iη)1−HQD(0)−Σ

R/A
L (ω)−Σ

R/A
R (ω)

]−1
. (4.32)

Figure 4.14 shows the density of states of a SQDS junction obtained from the
spectral function.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

-4 -3 -2 -1  0  1  2  3  4

[D
O

S
Q

D
(ω

)]
σσ

Energy ω

Figure 4.14: Density of states on the quantum dot (spin up and down com-
ponents are identical). The gap ranges from −1 to 1, inside there are only the
two Andreev bound states. The parameters are: Γα = 0.5, χα = 0 and εQD = 0.

4.5.2 Nonequilibrium state - constant bias

In nonequilibrium situations, the Green’s functions G≷(t,t′) depend explicitly
on both times t and t′. We use the average time coordinate T = t+t′

2
and the

relative time τ = t − t′ for the Fourier transforms with respect to τ . They are
written as G≷(ω,T ) and A(ω, T ). The time-dependent density can be reformu-
lated as

nQD(t) = −i
[
G<

QD(t,t)
]

↑↑
+ i

[
G>

QD(t,t)
]

↓↓
(4.33)

= −i
∞∫

−∞

dω
[
G<

QD

(
ω,
t+ t

2

)]

↑↑
+ i

∞∫

−∞

dω
[
G>

QD

(
ω,
t+ t

2

)]

↓↓
.

(4.34)

Hence, [G<
QD(ω,T )]↑↑ and [G>

QD(ω,T )]↓↓ contain information about electrons at
time T . In contrast, [G<

QD(ω,T )]↓↓ and [G>
QD(ω,T )]↑↑ are determined by holes at

time T . Thus, the spectral function AQD(ω, T ) contains information of electrons
and holes. For normal and hybrid junctions in the steady state, AQD(ω, T ) is
again independent of T and has peaks at the removal and addition energies.
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For Josephson junctions, AQD(ω, T ) is not independent of T due to the AC
Josephson effect. This can be seen in figure 4.15, which shows a calculation of
[AQD(ω, T )]σσ and [AQD,DC(ω)]σσ using the NEGF method for a SQDS junction.
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Figure 4.15: Top: Spectral function [AQD(ω, T )]σσ . Bottom: Time averaged
the spectral function [AQD,DC(ω)]σσ . The bias has been switched on in the
past. The imaginary part of the spectral function vanishes. The peaks have
a finite width and height. The parameters are: Γα = 0.5, εQD = 0 and UL =
−UR = 0.1, η = 10−9, mmax = 20.

The bias has been applied in the past. The whole structure is periodic in
time according to the Josephson effect with frequency ωJ = 2eU

~
. Both edges of

the gap structure are split up. The new ones are located at ∆± U
2

and −∆± U
2
.

Inside the gap, there is peak structure with a spacing between the peaks of the
bias U .

In the plot of the time resolved spectral function AQD(ω, T ), we further ob-
serve small areas with negative values, mostly inside the gap. These findings
contradict the interpretation of the diagonal of the spectral function A(ω, T ) as
a time-dependent density of states, which has to be non-negative. The effect is
absent in the time-averaged spectral function AQD,DC(ω): It is non-negative for
all energies ω. This phenomenon has already been found in a study on metallic
rings [Arr02], but was not further investigated. To the best of our knowledge,
negative values of A(ω, T ) did not occur in all other studies of this quantity.

We investigate this issue and provide a reasonable explanation incorporat-
ing these negative areas. The diagonal of the spectral function A(ω, T ) is an
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analogue of the Wigner function. The latter is defined as [Wig32]

P (x,p) =
1

2π~

∞∫

−∞

dye−ipy/~ψ
(
x+

y

2

) [
ψ
(
x− y

2

)]⋆

(4.35)

=
1

2π~

∞∫

−∞

dqeiqx/~ψ
(
p+

q

2

) [
ψ
(
p− q

2

)]⋆

. (4.36)

It links the quantum mechanical wave functions ψ(x) and ψ(p) to a phase
space distribution P (x,p). But, P (x,p) can have small negative areas [Sch01].
Hence, the simple probability interpretation of the Wigner function P (x,p) is
not possible. In fact, it is not unusual that P (x,p) has negative areas. This
issue has been solved [Ste80] by taking into account the uncertainty principle:

σxσp ≥
~

2
, (4.37)

σx =
√
〈x̂2〉 − 〈x̂〉2, (4.38)

σp =
√
〈p̂2〉 − 〈p̂〉2. (4.39)

This means that one cannot determine momentum and position with arbi-
trary precision at the same time and hence, a phase space distribution P (x,p)
with arbitrary sharp values of x and p does not make sense in the quantum
world. In order to achieve a measurable quantity one should take a weighted
average of P (x,p) in some region, i.e. one should for instance investigate

P̃ (x,p) =

∞∫∫

−∞

dx′ dp′P (x′,p′)Mσx,σp
(x− x′, p− p′), (4.40)

Mσx,σp
(x, p) =

~

2πσxσp
e

− x2

2σ2
x

− p2

2σ2
p (4.41)

rather than P (x,p). It has been proven that P̃ (x,p) is non-negative provided
that σx, σp > 0 and σxσp ≥ ~

2
[Car75]. This allows a probability interpretation

of P̃ (x,p) including the momentum and position uncertainties.
The formulation of the spectral function A(ω, T ) stated in equation (4.18) is

very similar to the Wigner function P (x,p). The time T is the analogue of the
momentum p and the frequency ω corresponds to the position x. Hence it is
not surprising to see that the spectral function A(ω, T ) can have small negative
areas. The time-energy uncertainty relation plays the same role for A(ω, T ) as
does the x-p uncertainty relation for P (x,p). Like for the Wigner function, we
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can verify the non-negativity of the convoluted spectral function:

0 ≤
[
ÃQD(ω, T )

]
σσ

(4.42)

=

∞∫∫

−∞

dω′ dT ′ [AQD(ω′, T ′)]σσ Mσω ,σT
(ω − ω′, T − T ′), (4.43)

with

Mσω ,σT
(ω, T ) =

1

2πσωσT
e

− ω2

2σ2
ω

− T 2

2σ2
T , (4.44)

provided that σω, σT > 0 and σωσT ≥ 1
2
. The proof is carried out in the ap-

pendix C.2. We further point out that AQD(ω, T ) and ÃQD(ω, T ) are normalized
such that

1 =

∞∫

−∞

dω [AQD(ω, T )]σσ =

∞∫

−∞

dω
[
ÃQD(ω, T )

]
σσ

(4.45)

for σ ∈ {↑, ↓} and all times T . Hence we conclude that ÃQD(ω, T ) is a proba-
bility density function with respect to ω and allows a direct interpretation as a
T -dependent density of states. We note in passing that a probability interpre-
tation referring to the variable T is generally not possible because there is no
normalization condition with respect to T .

Two different convolutions of the example in figure 4.15 are shown in fig-
ure 4.16. There are no more negative areas as expected. Hence, the spectral
function A(ω, T ) has to be viewed as a quasiprobability density function and
only the convoluted spectral function ÃQD(ω, T ) should be used for direct com-
parisons with experiments. Furthermore, the two examples show that it is
impossible to resolve the peak structure inside the gap and observe the peri-
odicity due to the Josephson effect simultaneously. The spacing of the peak
structure is U and time periodicity is ~

e
π
U

. Hence, one can not resolve both
features simultaneously without violating the time-energy uncertainty relation.

Having this interpretation at hand, we are able to explain the structure inside
the gap. It is created by paricles that cross the gap with the help of Andreev
reflections (see figure 4.6). This charge transfer mechanism has been used to ex-
plain the subharmonic gap structure in several works [LYCLDMR97, JBSW99].
The negative areas can be viewed as interference effects and reveal the quantum
nature of the involved particles.

It is also worth looking at the decomposition of the spectral function AQD(ω,T )
into G<

QD(ω,T ) and G>
QD(ω,T ). This is shown in figure 4.17. Both show a very

similar substructure inside the gap compared to the spectral function.
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Figure 4.16: Comparison of the convoluted spectral function
[
ÃQD(ω, T )

]
σσ

(middle and bottom) with the original one [AQD(ω, T )]σσ (top). The standard
deviations are: σω = 1

50 , σT = 25 (middle) and σω = 1
5 , σT = 2.5 (bottom).

Both cases fulfill σωσT = 1
2 . All other parameters are identical to figure 4.15.
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Figure 4.17: Decomposition of the spectral function [AQD(ω, T )]σσ

into [G<
QD(ω,T )]σσ and [G>

QD(ω,T )]σσ . Recall the definition A(ω, T ) =
i [G>(ω, T )−G<(ω, T )]. The bias has been switched on in the past. All pa-
rameters are identical to figure 4.15.
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4.5.3 Nonequilibrium state - switching the bias

We can also visualize switching effects with the help of the spectral function.
We prepare the system in the ground state for t < 0 and switch on the bias at
t = 0. The spectral function is split up into contributions of Andreev bound
states (labeled A

(ABS)
QD (ω, T )) and scattering states (labeled A

(SS)
QD (ω, T )). All

results of this subsection are calculated using the formulation of equation (4.18)
for the spectral function. The Fourier transform with respect to t − t′ is done
on a grid. We therefore demand for A(t,t′)→ 0 as |t− t′| → ∞.

In contrast to the previous results, we now have to take Andreev bound
states into account. These underline the importance of the previously discussed
convolutions in a second way.

Consider a system with a single bound state (BS) whose energy εBS(t) changes
adiabatically. Its spectral function A(BS)(t,t′) is then proportional to

A(BS)(t,t′) = ψ(BS)(t)
[
ψ(BS)(t′)

]⋆
(4.46)

∼ e+iεBS(t)te−iεBS(t′)t′

. (4.47)

Hence we can conclude A(BS)(t,t′) 6→ 0 as |t − t′| → ∞. If we then calculate
the Fourier transform of A(BS)(t,t′) with respect to τ = t− t′, the full past and
future relative to the time T = t+t′

2
influences the value of A(BS)(ω, T ). The

spectral function A(BS)(ω, T ) is not just a single peak at εBS(T ) as one would
expect since everything changes adiabatically.

This is in contrast to the most common situation where A(t,t′) → 0 as
|t− t′| → ∞. In this case, only the wave functions at times in a neighborhood
of T = t+t′

2
have an influence on the value of A(ω, T ). Besides, this allows us

to calculate the Fourier transform numerically on a grid.
The most natural way to recover the desired behaviour even in the presence

of bound states is to enforce the decay A(t,t′) → 0 as |t − t′| → ∞ by hand.
In this way, one mimics a finite lifetime of the bound states. We now show
that this is automatically done by the convolution in frequency space presented
above.

Using the convolution theorem, the convolution in frequency space can be
reformulated as:

1√
2πσω

∞∫

−∞

dω′A(ω′, T )e−
(ω−ω′)2

2σω =

∞∫

−∞

dτeiωτe−
σ2

ω
2

τ2

A

(
T +

τ

2
, T − τ

2

)
.

(4.48)
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Hence, the convolution of the spectral function adds the desired decay

e−
σ2

ω
2

(t−t′)2

A(t,t′)→ 0 as |t− t′| → ∞ (4.49)

even for bound states. Simultaneously, it broadens all sharp frequency peaks of
A(ω, T ).

Since the convolutions smoothen the plots, we only apply it in frequency space
to all calculations covering Andreev bound states. The time convolution is not
performed in any of the following plots in order to obtain sharper structures.
The value of σω is set to

√
2 · 0.025 for all plots covering bound states in this

section.
Figure 4.18 shows an example of a switching process. The top part shows the

contribution of the Andreev bound states A
(ABS)
QD (ω, T ) to the spectral function,

the lower part the one of the scattering states A
(SS)
QD (ω, T ). The bias is turned

on at t = 0.
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Figure 4.18: Decomposition of the full spectral function AQD(ω, T ) into con-

tributions of the Andreev bound states A
(ABS)
QD (ω, T ) (top) and the scattering

states A
(SS)
QD (ω, T ) (bottom). The bias is switched on at t = 0. The parameters

are: Γα = 0.5, χα = 0, εQD = 0, UL(t) = −UR(t) = 0.1Θ(t).

In the lower part of figure 4.18, the structure already observed in figure 4.15
(top) starts to develop after the bias is switched on at t = 0. Simultaneously,
the Andreev bound states move gradually into the leads. This can hardly be
seen in the top figure since the decay rate in the chosen example is too slow
compared to the plotted time range. This phenomenon is displayed in figure 4.19
using different parameters. Initially, the Andreev bound states are localized on
the quantum dot. After applying the bias, they move gradually into the leads.
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Their contribution to the spectral function will eventually be gone.
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Figure 4.19: Decay of the Andreev bound states in the presence of an applied
bias. The parameters are: Γα = 0.5, χα = 0, εQD = 0 and UL(t) = −UR(t) =
0.25Θ(t)

We observe effects of the bias already at times t < 0 which hints at a violation
of causality of the spectral function. But, in order to compare the results with
an experiment, one has to apply convolutions as explained above. This resolves
the issue for the examples investigated here. Whether this is generally true is
currently unknown.

The reformation of the Andreev bound states after a bias pulse is shown
in figure 4.20. Their energy after the bias depends on the accumulated phase
χ(t) = χ0 + 2e

~

∫ t
0 dt

′U(t′). In the situation of a symmetric junction, the location
of the Andreev bound states as a function of the phase difference χ can be
calculated by solving [SPC10]

0 = x2

(
1 +

γ√
1− x2

)
− e2 − γ2

1− x2

1 + cosχ

2
(4.50)

with x = ω
∆

, e =
εQD

∆
and γ = Γ

∆
.

After the pulse, the system does not evolve towards the ground state again,
but shows non-decaying oscillations. The frequency is the energy difference of
the newly formed Andreev bound states [SPC10].
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Figure 4.20: Spectral function of the Andreev bound states under the influ-
ence of a bias pulse from t0 to t1. The pulse is chosen such that the accumu-
lated phase is ∆χ = 2e

~

∫ t1
t0

U(t′) dt′ = (20 + x)π, x ∈ {0,0.5,0.75,1} (from top to
bottom), t0 = 0, t1 = 204.8. The parameters are: Γα = 0.5, χα = 0, εQD = 0.
The plots show results convoluted in frequency space with σω =

√
2 · 0.025.
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4.6 Conclusion

In this chapter, we have analysed features of SQDS junctions. We report de-
viations from the original current-phase relation. Our calculations for the DC
Josephson effect agreed with the analytical results for the limit ∆

Γα
→ 0. We

observe higher harmonics of the Josephson frequency in the AC and inverse
AC Josephson effect. The DC current-voltage characteristics were explained
using a simple model. We see that the energy of the resonance is not known
a priori and leads to a complicated structure for DC current in the bias-gate
voltage landscape. This shows again the complexity of the system compared to
junctions with normal-conducting leads.

The spectral function provides a time and energy resolved picture of the
quantum dot. We observe negative values of the spectral function implying
that the interpretation as a time-dependent density of states is problematic.
Viewing it as the time-energy analogue of the Wigner function P (x,p) provides
a way out. The latter is well known to have negative values. This issue is
solved by looking at averages which then are strictly non-negative. The same
can be done for the spectral function, which then allows a physically meaningful
interpretation as a time-dependent density of states. It provides useful insights
into the internal changes of the quantum dot, which were illustrated by several
examples.

The presented framework is not limited to a single quantum dot in the central
region, it is possible to work with more complicated structures like e.g. atomic
rings. But, it is very likely that the analysis and the interpretation get even
more complicated.



Chapter 5

Junctions with classical vibrations

In this chapter, we study junctions with a quantum dot coupled to a vibra-
tional degree of freedom using a mixed quantum classical propagation scheme.
The vibration is treated within the Ehrenfest approximation and can be viewed
as a classical version of a polaron model [GRN04, VSA06]. We will investi-
gate the vibrational effects in junctions with normal as well as superconducting
leads. The review of Galperin et al. [GRN07] provides a very good summary
of vibrational effects in molecular junctions with normal leads. Several theo-
retical studies on the topic have appeared [HBT09, HT11a, HT11b, KvOA06,
KSvON06, ZFM06, RHC06, LMD07, RC07, RDCR08, RS09, WPHT11, JA13]
along with experimental ones [WNC+04, LLKD04, PPC+05, BES07, dLLGP08,
HWL+09, BHS+10, TKLvR08, FP12]. Most of them deal with normal leads. A
few studies working with superconducting leads have been published [ZEMM06,
MDD+07, FZB08, ZE10, SPAS+10, TM10]. The interplay of molecular vibra-
tions with superconductivity has not yet been studied systematically.

5.1 Model

We use the Ehrenfest approximation of a polaron model to describe the vibra-
tions and combine it with the propagation scheme of section 3.2. It is a general-
ization of an existing scheme for junctions with normal leads [VSA06], replacing
the electronic propagation scheme to incorporate superconducting leads.

The validity of the underlying polaron model has been discussed for the nor-
mal conducting case [GNR08], revealing that it is not a mean field approxima-
tion but exact in the static limit ωvib

Γ
≪ 1. The limit corresponds to a slow

vibrational motion compared to the electronic timescale. The same holds for
our model in the static limit with larges masses and slow changes in the bias
[GNR08]. When expressing the electron-phonon interaction in the static limit

77
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in term of diagrams, only the Hartree term and similiar terms with boson lines
terminated in a closed loop are relevant.

Figure 5.1: Hartree (left) and Fock (right) diagram. The straight line rep-
resents the electron propagator, the wavy line the phonon propagator. In the
static limit ω

Γ ≪ 1 of our model, only the contribution of the Hartree diagram
is relevant.

Recently, a comparative study of Ehrenfest dynamics and exact results for
the polaron model in a finite system showed quantitatively similar behaviour,
but time scales can be different [LMNR13]. This suggests quantitatively good
results even away from the static limit.

The vibration is incorporated into the Hamiltonian as

ĤQD(t) = (εQD + λx(t))
∑

σ∈{↑,↓}

ĉ†
QD,σĉQD,σ +

1

2
mẋ(t)2 +

1

2
mω2

vibx(t)2.

(5.1)

The equation of motion for the vibrational coordinate x(t) has the shape of a
driven harmonic oscillator and reads

mẍ(t) = −
〈
∂ĤQD

∂x

〉
(5.2)

= −mω2
vibx(t)− λnQD(t). (5.3)

The coupling parameter λ is chosen positive and the mass m will be set to m =
0.5ω−1

vib for all calculations. The equation (5.2) has to be solved simultaneously
with the time-dependent Bogoliubov-de Gennes equation (2.44).

We carry out a time propagation starting from an initial position x0 and
initial single particle wave functions ψ0

q . The initial state is the ground state
of the system, which is calculated using a self-consistency cycle. In the ground
state, the vibrational coordinate x(t) is at rest, i.e. ẋ(t) = ẍ(t) = 0. Hence

x0 = − λ

mω2
vib

n0
QD. (5.4)

This can be used to set up the self-consistency cycle shown in figure 5.2.
The propagation of the coordinate and the wave functions from tm to tm+1 is
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Initial guess for x0

Calculate electronic ground state, solve H[x0]ψq = Eψq

Update x0 = − λ
mω2

vib
n0

QD

Check convergence for x0

Start time propagation

Yes

No

Figure 5.2: Iterative procedure to calculate the ground state

done successively via




x(tm)

nQD(tm)−−−−−→ x(tm+1)

ψq(tm)
x(tm),x(tm+1)−−−−−−−−→ ψq(tm+1)



 . (5.5)

The propagation of the wave functions ψq(tm) works as described in section 3.2.
The vibrational coordinate is updated using a second order finite difference.
The time step reads

x(tm+1) = (2− ω2
vib∆t

2)x(tm)− x(tm−1)− λ

m
∆t2nQD(tm). (5.6)

5.2 Stability analysis

In this section, we analyse the stability of the system against small perturbations
of the coordinate x in the static limit ωvib

Γ
≪ 1, corresponding to vibrations being

much slower than the electrons. This also reveals a way to drive the vibration.
We define time-independent states as the states of the system with time-

independent observables, like nQD, IαC as well as x. This can either be a ground
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state without any bias or a steady state with a constant bias after the transient.
The following analysis requires systems without any initial state or history

dependence. Systems which do not reach a steady state in the non-vibrational
case, systems with bound states [KKSG08, KSKG09] as well as normal junc-
tions in the Coulomb blockade regime [KSK+10, UKS+10, KUS+12] are not
included in the following analysis. Since we neglect the Coulomb interaction,
this leaves normal and hybrid junctions without bound states. Josephson junc-
tions (SQDS) with an applied bias can be included in the following analysis,
provided that the Josephson frequency is much larger than the vibrational fre-
quency. In this limit, the vibration does not react to the fast changes in the
density nQD(t) due to the Josephson effect, but rather to its average over a time
period TJ = 2π

ωJ
= ~

e
π
U

.

We intend to work with adiabatic approximations and therefore define n
(ad)
QD (x)

as the time-independent electronic density for a fixed position x. This is
n

(ad)
QD (x) = nQD(x) for the ground state. For junctions with a constant bias

applied at t = 0, it is n
(ad)
QD (x) = nQD(T,x) (NQDN, NQDS or SQDN junc-

tions) with T chosen large enough to ensure that switching effects have died
out. In the case of Josephson junctions, the AC Josephson effect lets the cur-
rent and density oscillate. But since the Josephson frequency ωJ is chosen much
larger than the vibrational frequency ωvib, we can work with the time-average
n

(ad)
QD (x) = 1

TJ

∫ T +TJ
T nQD(t′,x) dt′ with TJ = π

U
. T is again chosen sufficiently

large.
For the following analysis, we work in the static limit, i.e. the time period

Tvib = 2π
ωvib

of the vibration is much larger than the equilibration time of the

density, which is proportional to Γ−1. This allows us to make the adiabatic
approximation nQD(t) = n

(ad)
QD (x(t)). In order to improve the approximation,

we introduce a small time shift τ and work with the approximation nQD(t) =

n
(ad)
QD (x(t − τ)). The time τ is considered to be small and describes the phase

shift between the density and the position. We assume it to be constant in
time, although it depends on various parameters, for example on ẋ(t).

Figure 5.3 shows two examples of this approximation with τ set to zero.
The optimal choice of τ can be either positive or negative, the first case being
observed most of the times. The latter case is counter intuitive in the first place,
since one would expect that the density follows the slow motion of x(t) with a
short time delay. In a way, it looks like the reaction can be observed prior to
the perturbation.

The phenomenon originates from a temporary “overreaction” of the density
to changes in x(t). The lower part of Figure 5.4 shows an example with an ex-
ternally controlled abrupt change in x(t). The density increases rapidly, passes
its new steady state value and then finally converges to the new value for the
long time limit. Thus, too much density is temporarily accumulated. Next,
we force x(t) to perform a sinusoidal motion starting at t = 200. The density
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Figure 5.3: Comparison of nQD(t) with n
(ad)
QD (x(t)) (i.e. τ = 0) for two NQDS

junctions with vibrations. The best agreement is achieved for τ = 5.6 (top) and
τ = −5.29 (bottom). The parameters are: Γα = 0.5, λ = 0.1, ωvib = 0.1, UL =
−UR = 0.45 (both), εQD = 0 (top) and εQD = 0.275 (bottom). x(t) is kept fixed
to −2.55 (top) and −2.7 (bottom) until t = 50.

reaches its maximum value before the adiabatic approximation without a phase
shift n

(ad)
QD (x(t)). The same holds for the following minima. It thus looks like

the density is ahead of the motion of x(t). So far, this effect was only observed
in junctions with at least one superconducting lead and an applied bias.
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Figure 5.4: Reaction of the density to an externally controlled sinusoidal mo-
tion of x(t). The inset shows the effects of a step-like change in x(t). The pa-
rameters are the same as in figure 5.3 (bottom) with x(t) = −2.75 − 0.05Θ(t −
200)(1 − cos(0.1t)) and x(t) = −2.75 − 0.1Θ(t− 200) (inset).

Within this approximation the equation of motion for x(t) takes the form:

mẍ(t) = −mω2
vibx(t)− λn(ad)

QD (x(t− τ)). (5.7)
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We approximate n
(ad)
QD (x(t− τ)) by making a Taylor expansion

n
(ad)
QD (x(t− τ)) = n

(ad)
QD (x(t))− τ ẋ(t)∂xn

(ad)
QD (x(t)) (5.8)

and obtain

mẍ(t) = −mω2
vibx(t)− λn(ad)

QD (x(t)) + λτẋ(t)∂xn
(ad)
QD (x(t)) (5.9)

= − d

dx
V (x) + λτẋ(t)∂xn

(ad)
QD (x(t)). (5.10)

The potential V (x) is implicitly defined by the equations above up to a con-
stant, which can be chosen freely. The stationary points x of the potential
V (x) define time-independent positions of the vibration. But not all of them
are stable against small perturbations δx, like for example maxima or saddle
points of V (x). But also minima are not always stable as we will see later. The
correct way to check the stability is to solve equations (5.2) and (2.44) for an
initial value x0 = x + δx0 with a small perturbation δx0. Maxima and saddle
points are never stable, we therefore can assume x to be a minimum of V (x),
for simplicity with ∂2

xV (x) > 0. The equation of motion for x(t) reads

mẍ(t) = −mω2
vibx− λn

(ad)
QD (x) (5.11)

−
(
mω2

vib + λ
(
∂xn

(ad)
QD (x)

))
δx(t) + λτδẋ(t)

(
∂xn

(ad)
QD (x(t))

)
.

The first two terms on the right hand side cancel each other since x is a minimum
of V (x). We define the damping coefficient

γ(x(t)) = −1

2
λτ
(
∂xn

(ad)
QD (x(t))

)
(5.12)

and its approximation

γ = −1

2
λτ
(
∂xn

(ad)
QD (x)

)
. (5.13)

Having this approximation at hand, we can solve the equation of motion for
x(t) by

x(t) = x+
(
C+

0 cos (Ωt) + C−
0 sin (Ωt)

)
e− γ

m
t (5.14)
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with

Ω =

√

ω2
eff −

γ2

m2
, (5.15)

ωeff =

√

ω2
vib +

λ

m

(
∂xn

(ad)
QD (x)

)
. (5.16)

Hence, minima of V (x) are stable against small perturbations δx if γ > 0. Thus,
a stationary point x of the potential V (x) fulfilling the following two conditions
is stable:

x is a local minimum of V (x), (5.17)

γ = −1

2
λτ
(
∂xn

(ad)
QD (x)

)
> 0. (5.18)

The density n
(ad)
QD (x) for NQDN junctions can be calculated analytically [GNR08].

Its derivative reads

∂xn
(ad)
QD (x) = −λ

π

∑

α∈{L,R}

Γα

Γ

1

1 +
(

Uα−εQD−λx

0.5Γ

)2 , (5.19)

being always negative. We observe only positive values for τ for NQDN junc-
tions, thus local minima of V (x) are always stable against small perturbations.
This leaves equation (5.17) as the relevant condition. This confirms the findings
of the work by Galperin et al. [GRN04] using a quantum mechanical descrip-
tion of the vibration in a NQDN junction. A recent analysis of a very similar
model of a stretching vibrational mode showed that persistent oscillations can
occur due to negative damping coefficients even in junctions with normal leads
[KVS14]. Similar effects have been observed in junctions with multiple vibra-
tional degrees of freedom [LBH10].

The derivative ∂xn
(ad)
QD (x) can take positive and negative values in NQDS

and SQDN junctions with an applied bias. We show two examples for this
phenomenon in figure 5.5.

The plot in figure 5.5 reveals the existence of junctions with multiple solutions
of equations (5.17) and (5.18), as it has already been discovered in the case
of two normal leads [GRN04]. This finding extends the list of bistability in
junctions with vibrations [GK02, GRN04, DRCR08, RS09, DK11, AWM+12].
The validity of approximations made in some of these works has been intensively
discussed [AB06, GNR06, AB07, GNR08, AB09].

The case in Figure 5.5 (top) has two stable solutions. In contrast, the same
junction with an applied bias (middle plot) has only one stable minimum. It
is even possible to have no stable solution as in the example in Figure 5.5
(bottom).
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Figure 5.5: Potential V (x) and derivative ∂xn
(ad)
QD (x) for three different NQDS

junctions with Γα = 0.5 and ωvib = 0.1. The time τ is positive for all
minima. Top: Ground state (no bias) with two stable local minima of V (x)
(λ = 0.28, εQD = 1.8). Middle: Same junction as the top one, but with a bias
UL = −UR = 0.45. The minimum of V (x) on the right is stable, the left one
is unstable. Bottom: Biased junction (UL = −UR = 0.45) with no stable mini-
mum (λ = 0.1, εQD = 0).

We test the quality of the approximations by comparing the predicted motion
of x(t) with the calculated one for x0 = x + δx0. The quantities x, V (x) and

∂xn
(ad)
QD (x) can all be obtained using a series of further time propagations. τ is

determined by measuring the time shift of minima and maxima between nQD(t)
and x(t) of a full calculation with vibration. We show three test cases in figure
5.6, a stable NQDS and two unstable NQDS junctions, all of them having an
applied bias. We carry out a full time propagation, switch on the bias at t = 0
and enforce x(t ≤ 50) = x0. The equation of motion of x(t) is solved starting
from t = 50. We compare the prediction of equation (5.14) with the results
obtained by the time propagation. The free parameters C±

0 are determined by
the initial conditions x(t ≤ 50) = x0, ẋ(t ≤ 50) = 0 yielding C+

0 = x0 − x and
C−

0 = 0. The agreement is good in the sense that the frequency as well as the
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damping are well reproduced, showing small deviation with increasing times.
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Figure 5.6: Example of a stable (top) and two unstable (middle and bottom)

states. Instability can occur if τ < 0 (middle) or ∂xn
(ad)
QD (x) > 0 (bottom). x(t)

is kept fix until t = 50. The solid black line represents the stationary point x.
The parameters are: Γα = 0.5, λ = 0.1, ωvib = 0.1, UL = −UR = 0.45 (all),
εQD = 0.75 (top), εQD = 0.275 (middle) and εQD = 0 (bottom).

In the case of the unstable examples of Figure 5.6, the amplitude of the
oscillation is slowly but exponentially increasing as predicted. Figure 5.7 shows
the long time behaviour of one of such a junction.

The amplitude of the oscillation converges to a constant value in the long time
limit. This originates from the fact, that the coordinate x leaves the interval
with an effective damping coefficient γ < 0, thus γ is negative only around the
stationary point x of V (x) and positive at both other ends. This leads to an
acceleration in the middle and a slowdown otherwise. In the long time limit, the
system reaches a state with a balance of acceleration and slowdown, resulting
in permanent oscillations with a constant amplitude.

The experimental search for unstable solutions can be done by varying the
gate voltage εQD. The time averaged current-gate voltage characteristics has
steps revealing changes from stable to unstable solutions and vice versa, as
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Figure 5.7: Long time behaviour of the example in figure 5.6 (bottom).

shown in figure 5.8. The region of instability can be separated into two parts
with different origin for γ < 0. We observe one part with ∂xn

(ad)
QD (x) > 0, τ > 0

and a second one with ∂xn
(ad)
QD (x) < 0, τ < 0. They are next to each other with

the cross-over at a gate voltage corresponding to ∂xn
(ad)
QD (x) = 0. The stable

intervals have ∂xn
(ad)
QD (x) < 0 and τ > 0. This presented instability can be used

to drive the vibration.
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Figure 5.8: Time averaged current-gate voltage characteristics for NQDS
junction. The parameters are the same as in figure 5.5 (bottom).

5.3 Vibrations in Josephson junctions

5.3.1 Ground state

We demonstrate the possibility of bistability in the ground state for Josephson
junctions. The bistability can depend on the chosen phase difference χ0 =
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χL − χR. Such an example in shown is figure 5.9. Note, that the analysis
of stability as it was done in section 5.2 is not applicable. Starting from the
ground state at t = 0 and disturbing the system only for a short time does not
guarantee that it will return to its initial state. This has been shown for an
applied bias pulse resulting in persistent oscillations in the current and density
[SPC10].

The correct way to answer the question of stability is to carry out a full time
propagation. The criterium “minimum of V (x)” turned out to be reliable for
SQDS systems in the ground state studied here.
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Figure 5.9: Potential V (x) for a Josephson junction in the ground state for
different phase differences χ0 = χR − χL. All minima turned out to be stable.
The parameters are: Γα = 0.5, εQD = 1.25, λ = 0.225 and ωvib = 0.1.

5.3.2 Biased system in the static limit

We now turn to Josephson junctions with vibrations in the static limit, i.e.
ωJ, Γ ≫ ωvib with ωJ = 2e

~
(UL − UR). In this limit, the harmonic oscillator

does not react to the fast changes in the density nQD(t) due to the Josephson
effect, but rather to its average over a time period T0 = π

U
. The system does

not reach a time-independent state as it is described in section 5.2. In this
limit, it is reasonable to replace the condition of constant observables by the
demand for constant time averaged observables over a period T0 = π

U
in the

long time limit. Thus, the analysis of stability from section 5.2 can be applied
if we replace n

(ad)
QD (x) by 〈n(ad)

QD 〉(x) = 1
T0

∫ T +T0
T nQD(t′,x) dt′ with x being fixed

and T chosen large enough such that switching effects have died out. We again
encounter two possible states: stable and unstable ones. Figure 5.10 shows a
Josephson junction with two stable and two unstable minima. The oscillations
due to the instability can have a notable influence on the current-voltage char-
acteristics. In figure 5.11, we compare it to a junction with a vibration which is
coupled to a bath of secondary phonons. The bath is modeled by introducing
a small damping parameter γart to equation (5.2) which is chosen large enough
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Figure 5.10: Potential V (x) and derivative ∂x〈n(ad)
QD 〉(x) for a Josephson junc-

tion with an applied bias UL = −UR = 1. The outer two minima are stable, the
inner ones are unstable against small perturbations in x (τ is positive). The
parameters are: Γ = 1, εQD = 2.5, λ =

√
0.125 and ωvib = 0.1.

to overcome any instability, but small enough not to change the results more
than necessary. The amplitude of the oscillation of x(t) in the long time limit
is shown in the lower part of figure 5.11. There are regions with vanishing
amplitude, corresponding to stable time-independent states, and others with
non-zero amplitudes, coming from unstable ones. The currents of damped and
undamped calculations deviate from each other, if the amplitude of the oscilla-
tion is non-zero, and match otherwise. Again, one can use the bias to drive the
vibration.
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Figure 5.11: Top: Time averaged current-voltage characteristics for a Joseph-
son junction with a bias dependent stability. Bottom: Amplitude of the os-
cillation. The parameters are: Γα = 0.5, εQD = 0, λ = 0.1, ωvib = 0.1 and
γart = 0.01.

5.3.3 Biased system in resonance

We finally want to analyse resonances in Josephson junctions. There can be
up to three frequencies involved: The vibrational frequency ωvib, the Josephson
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frequency ωJ and the frequency of an AC bias ωAC. In a real experiment, only
the latter two ones can be varied easily. Hence, we keep ωvib fix and vary one
of the others.

Resonance of the vibration with the Josephson frequency

We start with the demonstration of the interplay between ωJ and ωvib, first
in the absence of an AC bias. We tune the DC bias such that the Josephson
frequency is in resonance with the vibrational degree of freedom. This is shown
in figure 5.12 We make the following observations:

(a) As a function of the applied bias U = UL − UR (and hence as a function
of the Josephson frequency ωJ = 2e

~
U), the amplitude of the Josephson effect-

driven vibration has the expected shape a driven harmonic oscillator (see Figure
5.12 second to top panel).

(b) The peak of the amplitude is shifted compared to the frequency of the
pure vibration as expected for a damped driven harmonic oscillator.

(c) The absolute value |〈x〉| of the time average of the classical coordinate, i.e.
the average distance between the vibrating nuclei, becomes slightly larger at the
resonance and has two different values above and below the resonance. Note
that this effect is by 2 − 3 orders of magnitude smaller than the enhancement
of the amplitude.

(d) The current as a function of the bias shows a resonance effect as well: The
DC part shows a down-up variation near the resonance within the otherwise
linear behaviour.

(e) The amplitude of the oscillatory part has a relatively sharp maximum
at the resonance and has different values above and below the resonance. The
peak is again slightly shifted towards smaller biases.

A second example is presented in figure 5.13, but with a different vibrational
frequency. The observations are very similar except that there is a break down
of the vibrational oscillation near the resonance at slightly larger values. The
reason currently still unkown.

Since the amplitude of the current can easily be measured in experiments,
the above effects provide a way of accurately determining the vibrational fre-
quency of the molecule in the junction. The signatures in the current-voltage
characteristics are much sharper compared to those produced by photon as-
sisted tunneling, which can also used to determine the vibrational frequency
experimentally.

We now add an AC bias on top, giving

U(t) = UDC + UAC cos (ωACt) . (5.20)

We show results for three choices of ωAC in figure 5.14: (i) slightly smaller than
ωvib, (ii) the same as ωvib, and (iii) slightly larger than ωvib. The influence of the
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Figure 5.12: Resonance of the Josephson frequency ωJ = 2e
~

U with the vi-
brational frequency ωvib. The parameters are: Γα = 0.5, εQD = 0, λ = 0.1,
ωvib = 1.4) and UL = −UR.

additional AC bias is rather small for the off-resonance choices of ωAC. The case
of ωvib = ωAC shows a more complicated structure with several additional dips.
There, one further observes the inverse AC Josephson effect at the resonance,
which is drawn using the color green. It is absent in the other two plots since
the frequencies ωJ and ωAC do not match in the plotted range.
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Figure 5.14: Resonance of the Josephson frequency with the vibrational fre-
quency. The green vertical line represents results depending on the initial phase
difference χ0 due to the inverse AC Josephson effect. The parameters are:
Γα = 0.5, εQD = 0, λ = 0.1, ωvib = 1.2, UAC = 0.2, ωAC = 1.15 (top left),
1.2 (top right) and 1.25 (bottom) and UL(t) = −UR(t).
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Figure 5.15: Resonance of the AC bias with the vibrational frequency. The
green vertical line represents results depending on the initial phase differ-
ence χ0 due to the inverse AC Josephson effect. The parameters are: Γα =
0.5, εQD = 0, λ = 0.1, ωvib = 1.2, UAC = 0.2, UDC = 0.575 (top left), 0.6 (top
right), 0.625 (bottom) and UL(t) = −UR(t).
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Resonance of the vibration with the AC bias

Next, we fix UDC such that the Josephson frequency ωJ is close to the vibrational
frequency ωvib and vary the frequency ωAC of the AC bias. Again, we show three
examples in figure 5.15: (i) ωJ < ωvib, (ii) ωJ = ωvib, and (iii) ωJ > ωvib.

The amplitude of x(t) shows a broadened resonance peak in all cases. The
current changes depending on the value of ωJ. If ωJ is smaller than ωvib, the
current gets enhanced and otherwise reduced. The inverse AC Josephson effect
is again present in the case of ωJ = ωvib. In contrast to resonances of vibration
and Josephson frequency, the overall structures for all three cases look much
more like a driven harmonic oscillator in resonance.

5.4 Conclusion

Hybrid and Josephson junctions with a vibration in the Ehrenfest approxi-
mation are studied in this chapter. We rigorously discuss the stability of the
vibration against small perturbations and finally obtain a criterium for stabil-
ity. It helps us to understand why the vibration sometimes shows persistent
oscillations and is damped in other cases. Besides, we discover the possibility
of bistabilities in the course of the stability analysis. We suggest to test our
findings in experiment by creating a molecular junction with a vibrational de-
gree of freedom. Variations of the bias and gate voltage hopefully lead to the
predicted significant changes in the current.

Furthermore, we demonstrate the possibility to drive the vibration with the
bias and observe that this works only in certain parameter regimes. Besides,
the resonance of the Josephson frequency, the vibration and the AC bias in
Josephson junctions is discussed. We show that resonance produces a peak in
the amplitude of the current’s oscillation. It is particularly sharp in the case of
a resonance between Josephson frequency and the vibration. In experiments, a
measurement of the latter can be used to accurately determine the vibrational
frequency of the molecule. The vibrational signatures in the current-voltage
characteristics are much sharper than those produced by photon assisted tun-
neling, which can alternatively be used to determine the vibrational frequency.



Chapter 6

Controlling observables in

time-dependent quantum transport

The theory of time-dependent quantum transport addresses the question: How
do electrons flow through a junction under the influence of an external pertur-
bation as time goes by? In this chapter, we invert this question and search for
a time-dependent bias such that the system behaves in a desired way. This can,
for example, be an observable that is forced to follow a certain pattern or the
minimization of an objective function which depends on the observables. Our
system of choice consists of quantum dots coupled to normal or superconducting
leads. We present results for junctions with normal leads where the current, the
density or a molecular vibration is optimized to follow a given target pattern.
For junctions with two superconducting leads, where the Josephson effect trig-
gers the current to oscillate, we show how to suppress the Josephson oscillations
by suitably tailoring the bias. In a second example involving superconductiv-
ity, we consider a Y shaped junction with two quantum dots coupled to one
superconducting and two normal leads. This device is used as a Cooper pair
splitter to create entangled electrons on the two quantum dots. We maximize
the splitting efficiency with the help of an optimized bias.

The research field of optimal control was pioneered by the work of Pontryagin
[PBGM62] and Bellman [Bel57] who paved the way for numerous applications.
Initially, optimal control theory was mainly used to solve problems of classical
mechanics. Later, it found applications in many other research fields including
quantum mechanics [PDR88, SWR88, KRG+89].

A particularly interesting field goes under the heading of “femto-chemistry”
where chemical reactions are influenced with femto-second laser pulses such that
a specific reaction gets suppressed or enhanced [ABB+98, HMM89, EKMO03,
EG04]. A successful experimental application is the selective bond dissocia-
tion of molecules [LMR01]. Other applications of optimal control theory in
the quantum world include the control of the electron flow in a quantum ring

93
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[RCW+07], the accelerated cooling of molecular vibrations [RK13], the control
of the entanglement of electrons in quantum wells [RBBH12], the optimization
of quantum revival [RH13], the control of ionization [CRRG09, RM12] or the
selection of transitions between molecular states [JMS90].

Kleinekathöfer and coworkers combined optimal control theory with the mas-
ter equation approach for quantum transport and demonstrated the control of
various observables in junctions with normal leads [LSK07, ALPK09, LK10].
We take a different approach to the same problem by propagating wave func-
tions using the scheme described in section 3.2. This allows us to treat not
only normal but also superconducting leads. We further use a direct instead of
a variational optimization method, which is closer to optimizations in experi-
ments.

6.1 Optimization problem

We start at t = 0 in the ground state of the junction with Uα(t ≤ 0) = 0. The
goal is to tailor the bias Uα(t) such that the observable of choice O(t) follows a
predefined target pattern as best as possible. The corresponding optimization
problem reads

min
UL(t),UR(t)

‖O[Ψ ](t)− O(target)(t)‖2
2,[0,T ] (6.1)

s.t. i∂tψq(t) = H[UL, UR](t)ψq(t), t ∈ [0, T ],
ψq(0) = ψ0

q .

Here, ‖·‖2,[0,T ] denotes the L2-norm on the time interval [0,T ], i.e. the objective
function is the following integral:

T∫

0

dt
∣∣∣O[Ψ ](t)−O(target)(t)

∣∣∣
2
. (6.2)

The integral is well-defined since T and the integrand are finite in all examples
studied in this work.

Most common is a variational approach to this problem, like the Rabitz ap-
proach [ZBR98] or Krotov’s method [ST02, PK03]. Such an approach incorpo-
rates the constraints into the objective function using Lagrange multipliers and
searches for the roots of the variation of the new objective function. An alterna-
tive approach, which we shall adopt in this chapter, is the direct minimization of
the objective function using derivative-free minimization algorithms. This strat-
egy was successfully used in several works [CRRG09, KCG11, HRG13, RPM13].
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In this way, we avoid various difficulties arising from the time propagation al-
gorithm. This approach can be viewed as the computational analogue to the
closed-loop learning algorithms employed in experimental optimization [JR92].

The basic idea of our numerical approach is to approximate Uα(t) by cubic
splines with N + 1 equidistant nodes at τk = k

N
T, k ∈ {0, . . . , N}. We choose

d
dt
Uα(τ0) = d

dt
Uα(τN) = 0 as the boundary conditions for the splines. The

dependence of the problem (6.1) on the bias Uα(t) is replaced by

Uα(t)→ [Uα(τ0), . . . , Uα(τN )] ≡ ~uα. (6.3)

In this way, the spline-interpolated bias Uα(~uα, t) becomes a function of ~uα.
This then yields a normal non-linear optimization problem with the unknown
variables Uα(τk). We further impose the condition Uα(τ0) = 0 since the bias
has to be continuous and we assume Uα(t < 0) = 0. Figure 6.1 demonstrates
this approach.
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Uα(τ0)=0
Uα(τ1) Uα(τ2)
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Uα(τ4)

Uα(τ5)

Spline Nodes

Figure 6.1: Cubic spline interpolation using six nodes τk. The optimization
algorithm changes the values Uα(τk), k ∈ {1, . . . , 5}. The value Uα(τ0) is fixed
to zero. The derivatives at both ends are set to zero. The spline does not nec-
essarily take the maximum or minimum value at one of the nodes. In this ex-
ample, the maximum lies between τ1 and τ2.

Additionally, we add the constraint UL(t) = −UR(t) unless otherwise stated,
since it reduces the dimensionality of the optimization problem in the numerical
implementation by a factor of two. This implies the constraint ~uL = −~uR. The
resulting non-linear optimization problem is

min
~uL,~uR∈RN+1

‖O[Ψ ](t)−O(target)(t)‖2
2,[0,T ] (6.4)

s.t. i∂tψq(t) = H(~uL, ~uR, t)ψq(t), t ∈ [0, T ],
ψq(0) = ψ0

q ,
~uL = −~uR,

Uα(~uα, τ0) = 0, α ∈ {L,R}.

The single particle wave functions ψq(t) in the problem (6.4) are only auxiliary
variables. Hence, the time-dependent Bogoliubov-de Gennes equation can be
removed from the constraint equations for the numerical implementation. The
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objective function is then written as ‖O[ψ0
q ,H(~uL, ~uR, t)](t)−O(target)(t)‖2

2,[0,T ],
whose evaluation requires us to solve the time-dependent Bogoliubov-de Gennes
equation in order to calculate the observable O(t).

The problem (6.4) can be solved using standard derivative-free algorithms
for non-linear optimization problems. The library NLopt1 provides a common
interface to numerous non-linear optimization algorithms. Some of them can
be used for our problem. The proposed method relies on a fast optimization
algorithm for the search of the optimal bias Uα(t). We tested the following
algorithms: Sbplx [Row90], COBYLA [Pow94, Pow98], Nelder-Mead Simplex
[NM65], PRAXIS [Bre73], NEWUOA [Pow06] and BOBYQA [Pow09]. Figure
6.2 shows benchmarks of these algorithms for a system with N = 12. Qual-
itatively similar results are obtained for larger values of N . The algorithm
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Figure 6.2: Benchmark of six different derivative free-minimization optimiza-
tion algorithms for a system with N = 12.

BOBYQA outperforms all others. Thus, we choose it for optimizations without
additional non-linear constraints. It is based on a quadratic approximation of
the objective function. The only algorithm of the above listed which supports
non-linear constraints is COBYLA. It approximates the objective function in
linear order and is used whenever non-linear constraints are needed.

We point out that the quality of the results depends on the number of nodes
τk for the splines. A larger number of nodes is typically favorable for better
results, i.e. yields a better match of the observable O[Ψ ](t) with its target
pattern O(target)(t). But, the computational cost increases with the number of
nodes. Besides, it is not guaranteed that the obtained minimum is the global
minimum since the used algorithms are local optimization algorithms. Thus,
the results may depend on the initial choice for Uα(τk).

1 NLopt is a library for non-linear optimization. It can be freely downloaded from
http://ab-initio.mit.edu/nlopt. We use version 2.3.

http://ab-initio.mit.edu/nlopt
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6.2 Results for NQDN junctions

6.2.1 Controlling current and density of a

NQDN junction

As a first example, we show the optimization of the current IL,QD(t) from the
left lead onto the quantum dot. This is done for two different numbers of spline
nodes N . The case N = 4 shows strong deviations while N = 20 already yields
an excellent agreement of the calculated current IL,QD(t) with its target pattern.
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Figure 6.3: NQDN junction with an optimized current for two different num-
ber of spline nodes N . The parameters are: Γα = 0.2, εQD = 0.5.

The evolution from the initial guess Uα(t) = 0 towards to final solution is
displayed in figure 6.4. The first evaluations are used to construct the initial
quadratic model of the objective function and the algorithm tries to determine
the reaction of the system to bias pulses at different times. After the first 2N+1
evaluations, the algorithm starts the real optimization and eventually converges
towards the target.

The optimization of the density nQD(t) is very similar to the optimization of
a current, one simply exchanges the observable in the objective function. An
example is shown in figure 6.5. The density follows perfectly the target pattern.
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Figure 6.4: Visualization of the convergence using the BOBYQA algorithm,
M denotes the number of objective function evaluations. The parameters are:
Γα = 0.2, εQD = 0.5, UL(t) = −UR(t), N = 20.
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Figure 6.5: NQDN junction with an optimized density. The parameters are:
Γα = 0.2, εQD = 0.5.
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6.2.2 Controlling classical vibrations

In this paragraph, we extend the model to incorporate a vibrational degree
of freedom in the central region. In the past, most theoretical work focused
on the electronic system and neglected the nuclear motion. In experiments,
the nuclei are, of course, not fixed to a position and their motion can have a
significant influence on the measured properties, for example on the current-
voltage characteristics [GRN07, KvO05, RHC06, HBT09].

The goal of this section is to control the nuclear motion using the bias as
before. Although the bias couples only to the electronic part of the system,
it induces changes in the density which in turn influences the nuclear motion.
Hence, the electrons mediate between the bias and the vibration. The feasibility
of controlling the nuclear motion in a quantum-classical system has already been
demonstrated [CG14].

The vibrational degree of freedom is described within the Ehrenfest approx-
imation following Verdozzi et al. [VSA06] as it was already done in chapter 5.
The modified central part of the electronic Hamiltonian reads

ĤQD(t) = (εQD + λx(t))
∑

σ∈{↑,↓}

ĉ†
QD,σ ĉQD,σ. (6.5)

The parameter λ determines the interaction strength between the electronic
and the nuclear system. The equation of motion for the vibrational coordinate
x(t) is

mẍ(t) = − d

dx

(
1

2
mω2x2 + 〈Ψ |ĤQD(t)|Ψ〉

)
(6.6)

= −mω2x(t)− λnQD(t), (6.7)

x(0) = x0.

The initial value x0 is calculated self-consistently and the classical equation of
motion for the vibrational degree of freedom is solved simultaneously with the
time-dependent Schrödinger equation. The optimization problem for controlling
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the vibrational coordinate x(t) then reads

min
~uL,~uR∈RN+1

‖x(t)− x(target)(t)‖2
2,[0,T ] (6.8)

s.t. i∂tψq(t) = H(~uL, ~uR, x(t), t)ψq(t), t ∈ [0, T ],
m∂2

t x(t) = −mω2x(t)− λnQD(t), t ∈ [0, T ],
ψq(0) = ψ0

q ,
x(0) = x0,
~uL = −~uR,

Uα(~uα, τ0) = 0, α ∈ {L,R}.

Figure 6.6 shows the results of such a calculation.
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Figure 6.6: NQDN junction with an optimized coordinate x(t) of a vibration
coupled to the quantum dot. The parameters are: Γα = 0.2, εQD = 0.5, λ =
0.1, ω = 0.5,m = 1.
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6.2.3 Imposing further constraints on the bias

In real-world control experiments, an arbitrary time-dependence of Uα(t) is
difficult to achieve. In this section, we therefore impose further constraints
to restrict the bias Uα(t) or the derivative ∂tUα(t). The optimization problem
including such additional constraints then reads

min
~uL,~uR∈RN+1

‖O[Ψ ](t)− O(target)(t)‖2
2,[0,T ] (6.9)

s.t. i∂tψq(t) = H(~uL, ~uR, t)ψq(t), t ∈ [0,T ],

ψq(0) = ψ0
q ,

~uL = −~uR,

Uα(~uα, τ0) = 0,

U (min)
α ≤ Uα(~uα, t) ≤ U (max)

α ,

Ũ (min)
α ≤ d

dt
Uα(~uα, t) ≤ Ũ (max)

α .

The conditions U (min)
α ≤ Uα(~uα, t) ≤ U (max)

α are in general not equivalent to
U (min)

α ≤ ~uα ≤ U (max)
α , unless one uses a monotonic cubic spline. This can be

seen in figure 6.1, where the maximum value of the spline lies between τ1 and
τ2. The constraint for the time derivative is not accessible in this way.

The cubic spline is a third degree polynomial between two nodes τj and τj+1.
Thus, the minimum and maximum values can be calculated analytically in every
interval [τj ,τj+1]. The constraints are replaced by

max
t∈[τj ,τj+1]

Uα(~uα, t) ≤ U (max)
α , (6.10)

min
t∈[τj ,τj+1]

Uα(~uα, t) ≥ U (min)
α , (6.11)

max
t∈[τj ,τj+1]

d

dt
Uα(~uα, t) ≤ Ũ (max)

α , (6.12)

min
t∈[τj ,τj+1]

d

dt
Uα(~uα, t) ≥ Ũ (min)

α (6.13)

for j ∈ {0, . . . , N − 1}. Figure 6.7 shows the influence of the additional con-
straints. They are chosen such that the steady state value can still be reached,
but the transient time is lengthened.
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Figure 6.7: NQDN junction with an optimized current IL,QD(t). The black
lines represent the additional constraints U(t) ≤ 1.1 and ∂tU(t) ≤ 1.5. The
parameters are: Γα = 0.2, εQD = 0.5, N = 25.

6.3 Results for SQDS junctions

When making the leads superconducting, a junction with an applied DC bias
does not reach a steady state anymore, but ends up in a time-periodic state.
A DC current, on the other hand, can flow through the junction even without
applying a bias. These phenomena are known as the AC and DC Josephson
effects [Jos62]. The underlying relation is

U(t) =
~

2e

dχ

dt
, (6.14)

χ(0) = χR − χL, (6.15)

I(t) = I0 + I1 sin(χ(t)) + I2 cos(χ(t)), (6.16)

where the variables χα describe the phase of the superconducting wave function
in lead α. Thus, the current oscillates with the frequency ω = 2e

~
U when apply-

ing a constant bias U across the junction. The values of I0, I1 and I2 depend on
the bias and only I1 is non-zero for zero bias. Following these equations, the only
solution for a DC current flowing through the junction would be χ(t) ≡ const
and hence U(t) = 0. But these equations do not take switching effects into
account and only approximate the current after the transients as it is discussed
in chapter 4. In order to force the current to follow a predefined pattern, one
can make use of the reaction of the current to time-dependent changes in the
bias. These can be used, for example, to compensate the Josephson oscillations.
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We start again with optimizing the current IL,QD(t) from the left lead onto the
quantum dot such that it follows the target pattern. In this way, we generate a
DC current IL,QD(t). But the current IQD,R(t) still shows the typical oscillation
as it is shown in figure 6.8.
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Figure 6.8: SQDS junction with an optimized current for two different num-
ber of spline nodes N . The parameters are: Γα = 0.2, εQD = 0.5, χα = 0.

In order to obtain a real DC current flowing through the Josephson junction,
one has to modify the objective function. The idea is to optimize IL,QD(t) and
IQD,R(t) simultaneously such that each of them follows a target pattern. The
targets have to be chosen carefully, since one might end up in situations where
the targets cannot be reached simultaneously.

Suppose that the currents IL,QD(t) and IQD,R(t) follow the predefined patterns
perfectly. The density on the quantum dot can then be obtained by integrating
the continuity equation at the quantum dot:

nQD(t) = nQD(0) +

t∫

0

dt′
∑

α∈{L,R}

I
(target)
α,QD (t′). (6.17)

As we see, this can easily lead to contradictions like nQD(t) < 0 or nQD(t) >
2, if the targets are not chosen carefully. Even situations with IL,QD(t) =
−IR,QD(t) 6= 0 for all times t are in general not possible, since the density in
such cases would be constant, but switching on a bias normally changes the
density. The density and currents are much more linked than one might think
in the first place.

We avoid these difficulties by using the norm L2([t0,t1]), 0 ≤ t0 < t1 ≤ T in
the objective function, which is denoted by ‖ · ‖2,[t0,t1]. Furthermore, we remove
the constraint UL(t) = −UR(t) in order to make the targets reachable. The
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modified optimization problem reads

min
~uL,~uR∈RN+1

(
‖IL,QD[Ψ ](t)− I(target)

L,QD (t)‖2
2,[t0,t1] (6.18)

+‖IQD,R[Ψ ](t)− I(target)
QD,R (t)‖2

2,[t0,t1]

)

s.t. i∂tψq(t) = H(~uL, ~uR, t)ψq(t), t ∈ [0,T ],
ψq(0) = ψ0

q ,
Uα(~uα, τ0) = 0, α ∈ {L,R}.

The system has now the freedom to adjust the density and currents from
time 0 to t0 such that the target patterns can be reached. There are two ways
to achieve a DC current flowing through a Josephson junction:

1. Following the equations (6.14) - (6.16), only the case U(t) = 0 produces
a DC current, namely I(t) = I1 sin(χ0). This is the DC Josephson effect.
In general, this relation is not true for our model, since the quantum dot
always supports two Andreev bound states for U = 0 [SPC10]. They
lead to persistent oscillations in the current and density [Ste07, KKSG08,
SPC10]. The oscillations in the current can be compensated by small
variations of the bias U(t) = UL(t)− UR(t) around the origin. Figure 6.9
shows an example of such a solution. This approach is limited by I1 and
hence does not work for arbitrary large DC currents.
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Figure 6.9: SQDS junction with optimized currents IL,QD(t) and IQD,R(t).
We removed the constraint UL(t) = −UR(t), since the target cannot be reached
otherwise. The target is the same for both currents and starts at t = 25. The
parameters are: Γα = 0.2, εQD = 0.5, χα = 0, t0 = 25, t1 = 50.

2. An alternative approach is to apply a DC bias across the junction, leading
to a linear increase in the phase difference χ(t) and thus to oscillations in
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the currents. This is the AC Josephson effect. These oscillations can be
compensated again by small variations in the bias, the reaction to these
changes cancels the Josephson oscillations. Figure 6.10 shows an example
for this type of solutions.
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Figure 6.10: Same junction as in figure 6.9, but a different solution for the
problem.

6.4 Cooper pair splitting in a Y-shaped

junction

In this section, we demonstrate how to optimize the Cooper pair splitting effi-
ciency in a two-quantum dot Y-junction. The overall idea is to create entangled
electrons at two quantum dots.

The entanglement of quantum particles has fascinated the scientific commu-
nity since the proposition of the Einstein-Podolsky-Rosen (EPR) Gedankenex-
periment [EPR35]. Entanglement means that two particles are linked such that
the measurement of one particle is sufficient to completely determine the quan-
tum state of the other one. A prominent example is a pair of electrons with
opposite spin. Suppose, you have a pair of entangled electron in a spin singlet.
Then, one spin is up and the other spin is always pointing downwards. Photons
are a second example which can be entangled with respect to the polarization.

The EPR Gedankenexperiment is directly linked to the question of non-
locality of quantum mechanics: Can a measurement at position x have an
influence on a simultaneous or later independent measurement at a different
position x′? This question can be cast into a mathematical formula known as
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Bell’s inequality [Bel64]. A violation of the latter would prove the non-locality
of quantum mechanics.

Great progress has been achieved with entangled photons, but the final
experiment ruling out all possible loopholes has not yet been accomplished
[GMR+13]. For example, the two measurements at (x,t) and (x′,t′) have to
be separated such that c|t − t′| < ‖x − x′‖, i.e. no information of the first
measurement can be transmitted to the second. Hence large distances are typ-
ically required to close this loophole [WJS+98]. Another important loophole
stems from the detector efficiency, i.e. one has to take into account that un-
detected particles might behave completely different compared to the detected
ones. Typically, one uses the fair sampling assumption stating that the detected
particles are selected randomly and behave statistically in the same way as the
undetected ones.

To do similar Bell test experiments with electrons is much more difficult
and remains an open challenge. In recent years, a number of ingenious exper-
iments to create entangled electrons have been performed [HCNS09, HCB+11,
HPR+10, SBS12], going along with several theoretical developments [RSL01,
RL02, SFM04, MBB06, GZ07, BHLY11]. The basic idea is to use a supercon-
ductor as a source of entangled electrons. In the BCS ground state, electrons
form Cooper pairs due to the attractive interaction caused by phonons. These
pairs consist of two electrons with opposite spin and momentum.

The idea is to create a splitted Cooper pair at the two quantum dots, i.e.
one electron is on the left quantum dot and the other with opposite spin is on
the right one (see sketch in figure 6.11). However, this process competes with
the case of both electrons moving onto the same quantum dot. The latter can
be suppressed by a large charging energy of the quantum dots caused by the
Coulomb interaction. This make double occupancies less likely.

We propose a way to achieve splitting efficiencies of 99% and more, which
we hope will help the eventual experimental demonstration of the violation of
Bell’s inequality. In comparison to traditional approaches, our method has two
major differences. First, we do not rely on a large Coulomb repulsion on the
quantum dots but rather use optimal control theory to tailor the bias in the
normal leads in such a way that the splitting probability is maximized. Second,
we look at the Cooper pair density on the quantum dots as opposed to the
experimental approaches working currents of entangled electrons in the two
normal conducting leads. Consequently, a direct comparison of results is not
easily possible as the efficiencies measure different ratios. As a future work, it
might be worth doing an extensive comparative study answering whether the
here created pair eventually moves towards the leads or stays on the quantum
dots. In experiments, splitting efficiencies for the current of 90% have been
realized in recent experiments [SBS12] being significantly higher than previous
results. Despite this progress, the experimental proof of the violation of Bell’s
inequality is still pending.
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Figure 6.11: Sketch of the Y junction and explanation of all relevant parame-
ters. Only the lead labeled with S is superconducting. The gray color is used to
indicate the superconducting part. The aim is to create entangled electrons on
the two quantum dots. All three leads are semi infinite.

In contrast to all systems studied in the previous sections, we now work with
three leads. The system is sketched in figure 6.11. It consists of two quantum
dots (QDL and QDR), one superconducting (S) and two normal leads (L and
R).

The Hamiltonian of our modified model reads

Ĥ(t) =
∑

α∈{L,R,S}

Ĥα +
∑

α∈{L,R,S}

ĤT,α(t), (6.19)

Ĥα =
∞∑

k=0

∑

σ∈{↑,↓}

(
tαĉ†

αk,σ ĉα(k+1),σ + h.c.
)

(6.20)

+
∞∑

k=0

(
∆αĉ†

αk,↑ĉ
†
αk,↓ + h.c.

)
for α ∈ {S,L,R},

ĤT,S =
∑

α∈{L,R}

∑

σ∈{↑,↓}

(
tS,QDα

ĉ†
S0,σ ĉQDα,σ + h.c.

)
, (6.21)

ĤT,α(t) =
∑

σ∈{↑,↓}

(
tα,QDα

eiγα,QDα
(t)ĉ†

α0,σ ĉQDα,σ + h.c.
)

for α ∈ {L,R}.

(6.22)

Note that there is only a bias in the left and right lead. All parameters are
again chosen real and positive. Furthermore, we work at temperature T = 0
and assume the wide band limit tα,QDβ

≪ tα. Again, only the coupling strengths

Γα,QDβ
= 2t2α,QDβ

/tα will be stated.
In the following, we demonstrate how to optimize the Cooper pair splitting
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efficiency in the above model of a two-quantum dot Y-junction. The goal is to
operate the device as a Cooper pair splitter that creates entangled electrons on
the two quantum dots. The splitting of a Cooper pair can be understood as
a crossed Andreev reflection. An incoming electron in one of the normal leads
gets reflected into the other lead as a hole. This creates a Cooper pair in the
superconductor. The process is sketched in figure 6.12 (top left). Similarly,
the opposite process removes a Cooper pair from the superconductor. Besides,
there are three other possible reflection processes: (a) normal reflection, (b)
Andreev reflection, and (c) elastic cotunneling. The latter corresponds to a
reflection of the incoming electron to the opposite lead. These three processes
together with the crossed Andreev reflection are all sketched in figure 6.12.

Figure 6.12: Overview of the four possible reflection processes. Black arrows
indicate electrons, white arrows represent holes. The gray block is the super-
conducting lead S of figure 6.11. Top left: Sketch of a crossed Andreev reflec-
tion. The incoming spin up electron in the left lead gets reflected as a spin
down hole to the right lead. Simultaneously, a Cooper pair is created in the
superconducting lead. The opposite process, which removes a Cooper pair from
the superconductor, is also possible. Bottom left: The reflected hole stays in
the left lead. This corresponds to the normal Andreev reflection. Top right:
Sketch of an elastic cotunneling process. Now, the incoming electron gets re-
flected into the right lead. Bottom right: Alternatively, the electron can also be
reflected into the left lead corresponding to normal reflection.

The central ingredient for the optimization process is the proper definition of
a suitable objective function which is then to be minimized. It has to quantify
the Cooper pair splitting efficiency. To this end, we first define the so-called
pairing density or anomalous density as

PQDα,QDβ
(t) = 〈ĉQDα,↓(t)ĉQDβ ,↑(t)〉. (6.23)

We use its absolute value squared |PQDα,QDβ
(t)|2 as a measure for the Cooper
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pair density with one electron at QDα and the other at QDβ. We propose to
minimize the following objective function:

− 1

t1 − t0

t1∫

t0

dt

∑
α6=α′∈{L,R} |PQDα,QDα′ (t)|2∑
α,α′∈{L,R} |PQDα,QDα′ (t)|2

. (6.24)

The fraction represents the Cooper pair splitting efficiency at time t, which is
expressed as the amount of Cooper pairs being split up divided by the total
amount of Cooper pairs on the quantum dots. We calculate its average over the
time span from t0 to t1. The pairing densities PQDα,QDβ

(t) are obtained from
the single particle wave functions ψq(t), i.e., the solutions of the time-dependent
Bogoliubov-de Gennes equation (2.44).

We want to tailor the bias such that we maximize the time averaged Cooper
pair splitting efficiency. The corresponding optimization problem then reads

min
~uL,~uR∈RN+1

− 1

t1 − t0

t1∫

t0

dt
|PQDL,QDR

(t)|2 + |PQDR,QDL
(t)|2

∑
α,α′∈{L,R} |PQDα,QDα′ (t)|2

(6.25)

s.t. PQDα,QDβ
=

∫
dqf(εq)uq(QDα, t)

[
vq(QDβ, t)

]⋆
,

i∂tψq(t) = H(~uL, ~uR, t)ψq(t), t ∈ [0, T ],
ψq(0) = ψ0

q ,
Uα(~uα, τ0) = 0, α ∈ {L,R}.

The problem can be solved using again standard derivative-free algorithms for
non-linear optimization problems, for example the ones provided by the library
NLopt.

To achieve high splitting efficiencies it is essential that the junction is asym-
metric, i.e. the couplings to the left and to the right quantum dot must not be
equal. This is necessary since we observe an upper bound of 50% for the Cooper
pair splitting efficiency in symmetric junctions, which is already achieved in the
ground state by the usual Cooper pair tunneling leading to the proximity ef-
fect. Hence any optimization starting in the ground state will not improve the
results. The underlying cause for this limitation is still unknown and under
investigation. In order to bypass this issue, we choose an asymmetric coupling
of the quantum dots to the normal leads.

The results of such an optimization are depicted in figure 6.13. The bias is tai-
lored such that the Cooper pair splitting efficiency is maximized. It suppresses
the non-splitting processes. The efficiency is optimized in the time interval
from t0 = 10 to t1 = 40. This interval is indicated by the underlying thick
gray line in the plot of the efficiency (second from top). In this interval, we
achieve an average efficiency of more than 99%. The values of |PQDL,QDR

(t)|2
and |PQDR,QDL

(t)|2 are on top of each other. The resulting currents flowing
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through the junction indicate, that in the time average, there is a net current
flowing from the right normal conducting lead (R) via the superconductor (S)
to the left one (L). This is deduced from the observation that IQDL,S(t) and
IS,QDR

(t) are both negative in the time average. We point out, that this does
not say anything about the movement of the entangled Cooper pairs.

This result clearly demonstrates that the Coulomb interaction at the quantum
dots is not necessary in order to obtain high efficiencies. One can also succeed
with optimized biases.
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Figure 6.13: Simulation with an optimized bias. (a) Top: |PQDα,QDβ
(t)|2 as

a function of time. (b) Second from top: Resulting efficiency, gray line indi-
cates time interval of optimization. (c) Second from bottom: Resulting currents
IQDL,S(t) and IS,QDR

(t). (d) Bottom: Tailored bias UL(t) and UR(t) of the opti-
mization. The parameters are: ΓS,QDL

= ΓS,QDR
= ΓN,QDL

= 0.2, ΓN,QDR
= 1,

N = 200.
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6.5 Conclusion

Usually, in the field of molecular electronics, the goal is to calculate the steady-
state or time-dependent current that is generated by a given bias and gate
voltage. Sometimes, however, one may be interested in taking a step beyond this
point and control the current or other observables of the junction. To this end
we have presented an algorithm that allows us to calculate the time-dependent
bias that achieves a prescribed goal. In the examples presented, we determine
numerically the time-dependent bias that forces the current, the density or the
molecular vibration to follow a given temporal pattern. The method is general
and not restricted to the observables listed above. In the final section we apply
our approach to optimize the Cooper pair splitting efficiency in a Y-junction
with two quantum dots. We successfully create spatially separated entangled
electron pairs with an efficiency of nearly 100%. We expect our approach to be
useful in the control of other - essentially arbitrary - observables in molecular
junctions.



Chapter 7

Summary and Outlook

In this thesis we have investigated properties of quantum dots coupled to nor-
mal and superconducting leads using two different methods. The first one cal-
culates the large time behaviour of the nonequilibrium Green’s functions and
is a further development of an existing scheme for the time averaged current in
junctions with normal leads [SKRG08]. Our approach yields the asymptotics
of the current and the density for junctions with superconducting leads at low
computational cost. The other method provides access to the observables at all
times by propagating single particle wave functions [SPC10]. For the latter, we
have designed an efficient numerical implementation. The speed improvement
originates from an optimized data storage and data access as well as from a re-
duction of the algorithm’s time complexity from O(n2) to O(n(log n)2), where
n is the number of time steps.

Our actual study starts with the analysis of the Josephson effects and the
current-voltage characteristics. This provides first insights into the charge
transfer mechanisms of Josephson junctions. These are direct transmission,
single and multiple Andreev reflection. We report deviations from the origi-
nal current-phase relation derived by Josephson, which go back to a first order
approximation in the coupling to the leads. Furthermore, we observe a reso-
nance condition for particles crossing the dot resulting in the suppression of
off-resonance charge transfer processes.

The latter findings are confirmed by the calculation of the spectral function
A(ω, T ), which yields a time-resolved picture of the density of states. The spec-
tral function turns out to have negative value and thus does not allow a simple
probability interpretation. It can be viewed as the time-energy analogue of the
Wigner function, for which the occurrence of negative values is well known.
The problem is resolved by taking the time-energy uncertainty into account
and convoluting the spectral function with two Gaussians in the time-energy
space. This represents a process of measuring. The resulting distribution is
positive-semidefinite, provided that the Gaussians obey the time-energy un-
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certainty relation. Having this interpretation at hand, we can visualise and
interpret internal changes in the dot when switching the bias. In particular,
we illustrate the disappearance and reformation of the Andreev bound states
under the influence of a bias pulse.

All results are obtained by neglecting the Coulomb interaction and by treating
the pairing potential as an input parameter. This leaves space for further studies
extending our work and modelling the electron-electron interaction using an on-
site Hubbard interaction as it has already been done for junctions with normal
leads [KSK+10]. Furthermore, it would be interesting to analyse the proximity
effect in the central region by calculating the pairing potential self-consistently.

Next, we generalize our model to allow for a vibrational mode in the dot
using the Ehrenfest approximation. We rigorously discuss the stability of the
system against small perturbations in the vibrational coordinate for normal and
hybrid junctions. Although we work in the limit where the vibrational motion is
slow compared to the electronic timescale, we need to go beyond the adiabatic
approximation in order to explain all occurring instabilities in the vibrational
coordinate. They originate either from a maximum in the effective potential or
from a negative effective damping coefficient. We extend the analysis to Joseph-
son junctions in the limit of a large bias and obtain similar criteria for stability.
These results can be used to drive the vibration using the bias, working only
in certain parameter regimes. Furthermore, we investigate resonances of the
different frequencies of the system, in particular the case where the Josephson
frequency and the vibrational mode come close. We show that the resonance
produces a sharp peak in the amplitude of the current oscillation. We pre-
dict that a measurement of the latter can be used to determine the vibrational
frequency of the molecule with high accuracy. The vibrational signatures in
the current-voltage characteristics are much sharper than those produced by
photon assisted tunneling which could alternatively be used to determine the
vibrational frequency.

Since the vibration is treated classically, we are not able to observe phenom-
ena like the Franck-Condon blockade. As a future work, we propose to study
the behaviour of the vibration in the neighbourhood of an avoided crossing of
two potential energy surfaces and incorporate surface hoppings.

Finally, we have explored how to control observables of the system using a
tailored bias. The basic idea is to minimize the objective function with the help
of derivative-free optimization algorithms. Despite the simplicity of our control
scheme, we are able to demonstrate how to force the current, the density or the
vibration to follow a predefined pattern. In particular, we are able to obtain a
direct current flowing through a Josephson junction. We expect the approach
to be useful, for example when the target is a specific state in the presence of
multistability or a dynamically unstable steady state.

The approach can be used for essentially arbitrary objective functions and not
only to control a given observable. We successfully demonstrated how to employ
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the method to maximize the Cooper pair splitting efficiency in a Y-shaped
junction. The goal is to create entangled electrons which are spatially separated.
In this way, we are able to create entangeld electrons with an efficiency of nearly
100%.

As a concluding remark, we remind the reader that this thesis is based on
a simple non-interacting tight-binding model. The ultimate prospective goal
is to study the time dynamics of superconducting materials with the help of
ab initio calculations. First progress for normal-conducting junctions using
time-dependent density functional theory has already been achieved [KNHG14].
This work employs a modified version of the time propagation algorithm. Since
the calculation of superconducting materials with time-dependent density func-
tional theory for superconductors [WKG94] is much more complex, a lot of work
remains to be done in this direction.



Appendix A

Time propagation method

A.1 Diagonal elements of the inverse of

a tridiagonal matrix

In this section, we explain how to calculate the diagonal elements of the inverse
of a tridiagonal matrix. The procedure is adapted from the work [KSA+05].
It will be used in the sections A.2 and B.3. Consider an infinite-dimensional
tridiagonal matrix

A =




b0 c0 0
a0 b1 c1

0 a1 b2
. . .

. . .
. . .




=

(
A00 Ã01

Ã10 Ã11

)
. (A.1)

with ak,bk, ck ∈ Cn×n, k ∈ N0 and

A00 = b0, Ã01 =
(
c0 0 . . .

)
,

Ã10 =




a0

0
...


 , Ã11 =




b1 c1

a1 b2
. . .

. . .
. . .


 .

(A.2)

We want to calculate the diagonal elements of the matrix A−1 ≡ B̃00. The
matrix B̃00 can be partitioned in the same way as A:

A−1 = B̃00 =

(
B00 B̃01

B̃10 B̃11

)
(A.3)

115



116 A Time propagation method

with B00 ∈ Cn×n. We iterate the partitioning and obtain

B̃11 =

(
B11 B̃12

B̃21 B̃22

)
, B̃22 =

(
B22 B̃23

B̃32 B̃33

)
, B̃33 =

(
B33 B̃34

B̃43 B̃44

)
, . . .

(A.4)

with Bkk ∈ Cn×n, k ∈ N. We write

(
A00 Ã01

Ã10 Ã11

)
=

(
0 Ã01

Ã10 0

)
+

(
A00 0

0 Ã11

)
, (A.5)

and obtain for the inverse of A

(
B00 B̃01

B̃10 B̃11

)
=

(
A00 0

0 Ã11

)−1

(A.6)

−
(

A00 0

0 Ã11

)−1 (
0 Ã01

Ã10 0

)(
B00 B̃01

B̃10 B̃11

)
.

This yields

B00 = A−1
00 −A−1

00 Ã01B̃10 (A.7)

B̃10 = Ã−1
11 Ã10B00 (A.8)

and thus

B00 =
[
A00 − Ã01Ã−1

11 Ã10

]−1
. (A.9)

Iterating the procedure finally results in

B00 =
1

b0 − c0
1

b1−c1
1

...
a1

a0
(A.10)

and

Bmm =
1

bm − cm
1

bm+1−cm+1
1

...
am+1

am

. (A.11)

In the case of a0 = a1 = a2 = . . . ,b0 = b1 = b2 = . . . and c0 = c1 = c2 = . . .,
we obtain the implicit equation

B00 =
1

b0 − c0B00a0

. (A.12)
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A.2 Calculation of the embedding

matrices

In order to calculate the source and memory term, we need the embedding
matrices Q(m)

α . We recall their definition from equation (3.39):

Q(m)
α = HCα

(1− iδHαα)m

(1 + iδHαα)m+1 HαC. (A.13)

Since they include the inversion of an infinite dimensional matrix, this cannot
be done directly. The scheme is taken from the works [KSA+05, SPC10]. The
entries of the matrices Q(m)

α are mostly zero, except for the ends of the diagonal.
This is due to the fact that the hopping matrices only act on the sites in the
direct neighbourhood of the interfaces. Thus we can write them as

Q
(m)
L =




q
(m)
L 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0



, Q

(m)
R =




0 . . . 0 0
...

. . .
...

...
0 . . . 0 0

0 . . . 0 q
(m)
R



. (A.14)

Similarly, the entries of the matrices HαC = H
†
Cα and Hαα are mostly zero and

are written as

HCR =




0 0 0 . . .
...

...
...

0 0 0 . . .
tCR 0 0 . . .



, HCL =




. . . 0 0 tCL

. . . 0 0 0
...

...
...

. . . 0 0 0



, (A.15)

HLL =




. . .
. . .

. . .

. . . 0 tL hL t
†
L 0

. . . 0 0 tL hL t
†
L

. . . 0 0 tL hL



, (A.16)

HRR =




hR tR 0 0 . . .

t
†
R hR tR 0 0 . . .

0 t
†
R hR tR 0 . . .

. . .
. . .

. . .



. (A.17)
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Using the technique of a generating function, we get

q(m)
α = tCα

(
(1− iδHαα)m

(1 + iδHαα)m+1

)

(α0,α0)

tαC (A.18)

= tCα
1

m!

(
− ∂

∂x
+

∂

∂y

)m (
1

x1 + iδyHαα

)

(α0,α0)

∣∣∣∣∣
x=y=1

tαC, (A.19)

where the subindex (α0,α0) denotes the projection onto the site α0. We define

p(0)
α (x,y) =

(
1

x1 + iδyHαα

)

(α0,α0)

, (A.20)

p(m)
α (x,y) =

1

m!

(
− ∂

∂x
+

∂

∂y

)m

p(0)
α (x,y), m ∈ N. (A.21)

The matrices q(m)
α are then calculated via q(m)

α = tCαp(m)
α (1,1)tαC. The matrix

p(0)
α (x,y) can be calculated using the result of equation (A.12):

p(0)
α (x,y) =

1

x1 + iδyhα + δ2y2tαp
(0)
α (x,y)t†

α

. (A.22)

This equation is a fixed-point equation for the matrix p(0)
α (x,y). Performing a

fixed-point iteration with x = y = 1 eventually gives q(0)
α = tCαp(0)

α (1,1)tαC.
The calculation of p(m)

α (x,y), m ∈ N is based on the identity

0 =
1

m!

(
− ∂

∂x
+

∂

∂y

)m
1

p
(0)
α (x,y)

p(0)
α (x,y), m ∈ N. (A.23)

We combine the equation (A.23) with the equations (A.21) and (A.22) and
eventually obtain for x = y = 1

(1 + iδhα)p(m)
α (1,1) = (1− iδhα)p(m−1)

α (1,1) (A.24)

− δ2
m∑

k=0

tαp(k)
α (1,1)t†

αp(m−k)
α (1,1)

− 2δ2
m∑

k=1

tαp(k−1)
α (1,1)t†

αp(m−k)
α (1,1)

− δ2
m∑

k=2

tαp(k−2)
α (1,1)t†

αp(m−k)
α (1,1).
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This equation can be transformed into a Sylvester equation for p(m)
α (1,1) of the

type

AX + XB = C (A.25)

with the unknown matrix X. One possibility to solve for X is to cast this
equation into the normal linear equation

(
1n×n ⊗A + BT ⊗ 1n×n

)
ˆvec {X} = v̂ec {C} , (A.26)

with the Kronecker product ⊗ and the matrix-to-vector operator v̂ec : Cn×m →
C

n·m [SS97]. An alternative approach is to use Schur decompositions as it
implemented in LAPACK [And99].

This procedure allows a fast and easy calculation of p(m)
α (1,1), provided all

other p(j)
α (1,1) with j < m are known. The matrix p(0)

α (1,1) is calculated using
the continuous fraction from above. The matrices Q(m)

α can then be constructed
using

q(m)
α = tCαp(m)

α tαC. (A.27)

A.3 Calculation of the source term

The source term S(m)
α was defined in section 3.2 and reads

S(m)
α = −2iδz(m)

α HCα
(1− iδHαα)m

(1 + iδHαα)m+1
ψ(0)

α . (A.28)

For a practical implementation, the source term has to be reformulated since
it cannot be computed directly in the above way. We denote the ground state
energy of the wave function ψ with E. At time t = 0, we have

Eψ(0)
α = Hααψ

(0)
α + HαCψ

(0)
C , (A.29)

(x+ iδyE)ψ(0)
α = (x1 + iδyHαα)ψ(0)

α + iδyHαCψ
(0)
C . (A.30)

Using the identity

(1− iδξ)m

(x+ iδyξ)m+1
=

1

m!

(
− ∂

∂x
+

∂

∂y

)m
1

x+ iδyξ
, (A.31)
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we finally arrive at

(1− iδHαα)m

(1 + iδHαα)m+1
ψ(0)

α =
1

m!

(
− ∂

∂x
+

∂

∂y

)m
1

x1 + iyδHαα

∣∣∣∣∣
x=y=1

ψ(0)
α

(A.32)

=
1

m!

(
− ∂

∂x
+

∂

∂y

)m (
1

x+ iδyE
ψ(0)

α (A.33)

+
1

x1 + iδyHαα

iδy

x+ iδyE
HαCψ

(0)
C

)∣∣∣∣∣
x=y=1

=
(1− iδE)m

(1 + iδE)m+1
ψ(0)

α (A.34)

+ iδ
m∑

j=0

(1− iδE)m−j

(1 + iδE)m−j+1

(1− iδHαα)j

(1 + iδHαα)j+1
HαCψ

(0)
C

+ iδ
m∑

j=1

(1− iδE)m−j

(1 + iδE)m−j+1

(1− iδHαα)j−1

(1 + iδHαα)j
HαCψ

(0)
C .

Thus

S(m)
α = −2iδz(m)

α


f (m)HCαψ

(0)
α + iδ

m∑

j=0

f (m−j)Q(j)
α ψ

(0)
C (A.35)

+ iδ
m∑

j=1

f (m−j)Q(j−1)
α ψ

(0)
C




with

f (j) =
(1− iδE)j

(1 + iδE)j+1
. (A.36)

The source term S(m)
α , m > 0 can be further reformulated for a more efficient

numerical implementation, as it was already done in [Nit08, Kho12] for systems
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with normal leads:

S(m)
α =

1− iδE
1 + iδE

z(m)
α

z
(m−1)
α

[
− 2iδz(m−1)

α

(
f (m−1)HCαψ

(0)
α (A.37)

+ iδ
m−1∑

j=0

f (m−1−j)Q(j)
α ψ

(0)
C + iδ

m−1∑

j=1

f (m−1−j)Q(j−1)
α ψ

(0)
C

)]

+ 2δ2f (0)z(m)
α

(
Q(m)

α + Q(m−1)
α

)
ψ

(0)
C

=
1− iδE
1 + iδE

z(m)
α

z
(m−1)
α

S(m−1)
α +

2δ2

1 + iδE
z(m)

α

(
Q(m)

α + Q(m−1)
α

)
ψ

(0)
C .

(A.38)



Appendix B

Derivation of the NEGF method

B.1 Large time behaviour of the

current and density

The goal of this section is to derive formulas for the density and the current after
the transient. As already explained in section 3.3, the Hamiltonians HαC(t)
will be time-independent in this section. The observables read in terms of the
nonequilibrium Green’s functions as

nk(t) = −i[G<
kk(t,t)](↑,↑) + i[G>

kk(t,t)](↓,↓), (B.1)

= −i [G<
CC(t,t)](k↑,k↑) + i [G>

CC(t,t)](k↓,k↓) , (B.2)

Ik,l(t) = 2Re Tr {G<
lk(t,t)Hkl(t)σz } (B.3)

= 2Re Tr
{

[G<
CC(t,t)](l,k) [HCC(t)](k,l)σz

}
. (B.4)

The main idea is to derive equations for the long time behaviour of G
≷
CC(t,t).

Our derivation presented here adapts the ideas of the work [SKGR07] which
calculates the currents IαC(t) for junctions with normal leads by analyzing the
large time behaviour of G<

Cα(t,t)HαC.
We recall the definition of the Keldysh contour γ from section 2.2.1 which

is shown again in figure B.1. The contour starts at t0 which will be set to
−∞ after the derivation, corresponding to the usual approach which applies
perturbations in the past at t0 = −∞.

We further make heavy use of convolutions and products of two and more
functions defined on the Keldysh contour. Derivations of various useful identi-
ties can be found in [vLDS+06, SvL13].
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Im(z)

Re(z)
t0

−β

t−

t′+
τ

Figure B.1: Sketch of the Keldysh contour γ in the complex time plane. Vari-
ables t± denote times on the upper (−) or lower (+) branch of the horizontal
part. The variable τ is used for times on the vertical part.

We define the symbols · and ⋆ as

[A ·B](t,t′) =

∞∫

t0

dtA(t,t)B(t, t′), (B.5)

[A ⋆B](t,t′) =

t0−iβ∫

t0

dτA(t,τ)B(τ, t′). (B.6)

Multiple products are defined analogously, i.e. [A·B·C](t,t′) = [A·[B·C]](t,t′).
Let g(z,z′) be the Green’s function of the uncontacted System with HαC =
HCα = 0 which is linked to the full Green’s function via [SKGR07]

G(z,z′) = g(z,z′) +
∫

γ

dz̃g(z,z̃)




0 HLC 0
HCL 0 HCR

0 HRC 0


G(z̃,z′) (B.7)

= g(z,z′) +
∫

γ

dz̃G(z,z̃)




0 HLC 0
HCL 0 HCR

0 HRC 0


g(z̃,z′). (B.8)

Carrying out the matrix multiplication and using identities for the retarded and
advanced Green’s functions yields [vLDS+06]

G
R,A
Cα (t,t′) =

[
G

R,A
CC ·HCαgR,A

αα

]
(t,t′), (B.9)

G
R,A
αC (t,t′) =

[
gR,A

αα HαC ·GR,A
CC

]
(t,t′). (B.10)

We will further make use of the several relations which are taken from [SKGR07],
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but adapted to our definition of the Keldysh contour:

G≷(t,t′) = GR(t,t0)G≷(t0,t0)G
A(t0,t

′), (B.11)

g⌉(t,τ) = igR(t,t0)g
⌉(t0,τ), (B.12)

g⌈(τ,t) = −ig⌈(τ,t0)g
A(t0,t), (B.13)

G
≷
αC(t0,t0) =

[
g⌉

ααHαC ⋆G
⌈
CC

]
(t0,t0), (B.14)

G
≷
αα′(t0,t0) = δαα′g≷

αα(t0,t0) +
[
g⌉

ααHαC ⋆GM
CC ⋆HCα′g

⌈
α′α′

]
(t0,t0). (B.15)

The superscript ⌈ (⌉) denotes that the first (second) time argument is on the
vertical part of the Keldysh contour. Similarly, the superscript M indicates that
both time arguments are complex. The variables t and t′ always represent real
time arguments and τ is reserved for complex ones, which are on the vertical
part of the Keldysh contour.

We further recall the definition of the embedding self-energy:

ΣR,A,≷
α (t,t′) = HCαgR,A,≷

αα (t,t′)HαC, (B.16)

Σ⌉
α(t,τ) = HCαg⌉

αα(t,τ)HαC, (B.17)

Σ⌈
α(τ,t′) = HCαg⌈

αα(τ,t′)HαC. (B.18)

We now express G<
CC(t,t) in terms of quantities of the central region, that

are G
R,A,≷,⌉,⌈,M
CC and ΣA,≷,⌉,⌈

α .
At this point, we are a bit more general than necessary and express G

≷
CC(t,t′)

in term of matrices of the central region. At the end of the derivation, we set
t′ = t. This allows us to reuse the intermediate results in a later part of the
appendix.

G
≷
CC(t,t′)

(B.11)
= [GR(t,t0)G≷(t0,t0)G

A(t0,t
′)]CC (B.19)

= GR
CC(t,t0)G

≷
CC(t0,t0)GA

CC(t0,t
′) (B.20)

+
∑

α∈{L,R}

GR
Cα(t,t0)G≷

αC(t0,t0)G
A
CC(t0,t

′)

+
∑

α∈{L,R}

GR
CC(t,t0)G≷

Cα(t0,t0)GA
αC(t0,t

′)

+
∑

α,α′∈{L,R}

GR
Cα(t,t0)G≷

αα′(t0,t0)G
A
α′C(t0,t

′)

=
4∑

m=1

R(m)(t,t′). (B.21)

We now can evaluate the four terms R(m)(t,t′):

R(1)(t,t′) = GR
CC(t,t0)G≷

CC(t0,t0)GA
CC(t0,t

′), (B.22)
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R(2)(t,t′) =
∑

α∈{L,R}

GR
Cα(t,t0)G≷

αC(t0,t0)G
A
CC(t0,t

′) (B.23)

(B.9)
=

(B.14)

∑

α∈{L,R}

[GR
CC ·HCαgR

αα](t,t0) (B.24)

[g⌉
ααHαC ⋆G

⌈
CC](t0,t0)G

A
CC(t0,t

′)
(B.12)

=
(B.17)

−i
∑

α∈{L,R}

[GR
CC ·Σ⌉

α ⋆G
⌈
CC](t,t0)GA

CC(t0,t
′), (B.25)

R(3)(t,t′) =
∑

α∈{L,R}

GR
CC(t,t0)G≷

Cα(t0,t0)GA
αC(t0,t

′) (B.26)

(B.9)
=

(B.10)

∑

α∈{L,R}

GR
CC(t,t0)[G

⌉
CC ⋆HCαg⌈

αα](t0,t0) (B.27)

[gA
ααHαC ·GA

CC])(t0,t
′)

(B.13)
=

(B.18)

∑

α∈{L,R}

GR
CC(t,t0)[G

⌉
CC ⋆Σ⌈

α ·GA
CC](t0,t

′), (B.28)

R(4)(t,t′) =
∑

α,α′∈{L,R}

GR
Cα(t,t0)G≷

αα′(t0,t0)GA
α′C(t0,t

′) (B.29)

(B.9),(B.10)
=

(B.15)

∑

α,α′∈{L,R}

[GR
CC ·HCαgR

αα](t,t0) (B.30)

[δα′αg≷
αα + g⌉

ααHαC ⋆GM
CC ⋆HCα′g

⌈
α′α′ ](t0,t0)

[gA
α′α′Hα′C ·GA

CC](t0,t
′)

(B.16)−(B.18)
=

(B.12),(B.13)

∑

α∈{L,R}

[GR
CC ·Σ≷

α ·GA
CC](t,t′) (B.31)

+
∑

α,α′∈{L,R}

[GR
CC ·Σ⌉

α ⋆GM
CC ⋆Σ

⌈
α′ ·GA

CC](t,t′).
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Combining equations (B.22), (B.25), (B.28), and (B.31) with (B.21) leads to

G
≷
CC(t,t′) = GR

CC(t,t0)G≷
CC(t0,t0)GA

CC(t0,t
′) (B.32)

− i
∑

α∈{L,R}

[GR
CC ·Σ⌉

α ⋆G
⌈
CC](t,t0)GA

CC(t0,t
′)

+
∑

α∈{L,R}

GR
CC(t,t0)[G

⌉
CC ⋆Σ⌈

α ·GA
CC](t0,t

′)

+
∑

α∈{L,R}

[GR
CC ·Σ≷

α ·GA
CC](t,t′)

+
∑

α,α′∈{L,R}

[GR
CC ·Σ⌉

α ⋆GM
CC ⋆Σ

⌈
α′ ·GA

CC](t,t′).

The final step of this section is to look at the long time behaviour and to set
t′ = t. We assume

lim
t→∞

GCC(t±,z
′) = lim

t′→∞
GCC(z,t′±) = 0 (B.33)

lim
t→∞

Σα(t±,z
′) = lim

t′→∞
Σα(z,t′±) = 0 (B.34)

for fixed z,z′ on the Keldysh contour. It is for example sufficient to demand the
L1 integrability with respect to ω of

[
g≷

αα(ω, T )
]

(α0,α0)

τ=t−t′

=
T = t+t′

2

∞∫

−∞

dτeiωτ
[
g≷

αα

(
T +

τ

2
, T − τ

2

)]

(α0,α0)
, (B.35)

G
≷
CC(ω, T )

τ=t−t′

=
T = t+t′

2

∞∫

−∞

dτeiωτ G
≷
CC

(
T +

τ

2
, T − τ

2

)
. (B.36)

Note that this condition does not allow any bound states, hence one has to
choose the system at t0 carefully, for example with a superconducting central
region preventing Andreev bound states to be formed. As soon as a bias is
applied, these are not problematic any more. The Riemann-Lebesgue lemma
then guarantees to the desired limits.

We finally can drop all terms which tend to zero as t → ∞. The remainder
is the first part of R(4):

G
≷
CC(t,t)

t→∞∼
[
GR

CC ·Σ≷ ·GA
CC

]
(t,t) (B.37)

with Σ≷ = Σ
≷
L + Σ

≷
R. It is convenient to set the initial time t0 of the Keldysh

contour to t0 = −∞, which will be assumed in the following.
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B.2 Evaluation for a monochromatic

central Hamiltonian

In this section, we adopt the procedure of [SKRG08] and reformulate the equa-
tion (B.37) with the help of a Fourier expansion. We specify the central Hamil-
tonian to be monochromatic, i.e.

HCC(t) = H0
CC + U+e

iω0t + U−e
−iω0t. (B.38)

The other projections of the total Hamiltonian are considered to be time-
independent. If we assume, that the system with the applied bias does not
have any bound states and has no history dependence, then we can expand the
advanced and retarded Green’s function of the central region as

G
R,A
CC (t,t′) =

∑

m∈Z

∞∫

−∞

dω

2π
GR,A

m (ω)e−iω(t−t′)+imω0t′

. (B.39)

The self-energies ΣR,A,≷
α (t,t′) depend only on the time difference t − t′, thus

we can write ΣR,A,≷
α (t − t′) instead of ΣR,A,≷

α (t,t′). The self-energies can be
expressed in the frequency space as

ΣR,A,≷
α (t,t′) =

∞∫

−∞

dω

2π
e−iω(t−t′)ΣR,A,≷

α (ω). (B.40)

Recall, that the initial time t0 of the Keldysh contour was set to t0 = −∞,
which allows us to make use of the following property of the Fourier transform:

∞∫

−∞

dteiωt = 2πδ(ω). (B.41)

For a simpler notation, we define Z
2 = Z×Z and m = (m1,m2) ∈ Z

2. We now
insert the expansions of equations (B.39) and (B.40) into the equation (B.37).
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We then evaluate the integrals by using equation (B.41) and finally arrive at:

[GR
CC ·Σ≷ ·GA

CC](t,t) (B.42)

=

∞∫∫

−∞

dt1 dt2GR
CC(t,t1)Σ≷(t1,t2)GA

CC(t2,t) (B.43)

=

∞∫∫

−∞

dt1 dt2

∞∫∫

−∞

dω1 dω2

4π2

∑

m∈Z2

GR
m1

(ω1)Σ
≷(t1 − t2)GA

m2
(ω2) (B.44)

e−iω1(t−t1)+im1ω0t1e−iω2(t2−t)+im2ω0t

=

∞∫∫

−∞

dτ1 dt2

∞∫∫

−∞

dω1 dω2

4π2

∑

m∈Z2

GR
m1

(ω1)Σ
≷(τ1)G

A
m2

(ω2) (B.45)

e−iω1(t−τ1+t2)+im1ω0(τ1+t2)e−iω2(t2−t)+im2ω0t

=

∞∫

−∞

dt2

∞∫∫

−∞

dω1 dω2

4π2

∑

m∈Z2

GR
m1

(ω1)Σ
≷(ω1 +m1ω0)G

A
m2

(ω2) (B.46)

e−iω1(t−t2)+im1ω0t2e−iω2(t2−t)+im2ω0t

=

∞∫

−∞

dω

2π

∑

m∈Z2

GR
m1

(ω)Σ≷(ω +m1ω0)G
A
m2

(ω +m1ω0)e
i(m1+m2)ω0t

(B.47)

=

∞∫

−∞

dω

2π

∑

m∈Z2

GR
m1

(ω −m1ω0)Σ
≷(ω)GA

m2
(ω)ei(m1+m2)ω0t. (B.48)

The fluctuation-dissipation theorem [HJ96, SvL13] reads

g<
α (ω) = −f<(ω)

(
gR

α (ω)− gA
α (ω)

)
, (B.49)

g>
α (ω) = −f>(ω)

(
gR

α (ω)− gA
α (ω)

)
(B.50)

with the Fermi functions f<(ω) = [1 + exp(βω)]−1, f>(ω) = f<(ω) − 1. This
yields

Σ<
α (ω) = if<(ω)Γα(ω), (B.51)

Σ>
α (ω) = if>(ω)Γα(ω) (B.52)
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with Γα(ω) = i
[
ΣR

α(ω)−ΣA
α (ω)

]
. We define Gm(ω) ≡ GR

m(ω − mω0) =
[
GA

−m(ω)
]†

, Γ = ΓL + ΓR and obtain the final results:

nk(t)
t→∞∼

∞∫

−∞

dω

2π

∑

m∈Z2

ei(m1−m2)ω0t

[
f<(ω)[Gm1(ω)Γ(ω)G†

m2
(ω)](k↑,k↑)

− f>(ω)[Gm1(ω)Γ(ω)G†
m2

(ω)](k↓,k↓)

]
(B.53)

and

Ik,l(t)
t→∞∼ 2Re Tr

{ ∞∫

−∞

dω

2π

∑

m∈Z2

ei(m1−m2)ω0tf<(ω) (B.54)

[
Gm1(ω)Γ(ω)G†

m2
(ω)

]
(l,k)

[HCC(t)](l,k) σz

}
.

We are often only interested in the time averaged density and current. Since
they are periodic with frequency ω0 = 2π

T0
, we define

nk,DC = lim
t→∞

1

T0

t+T0∫

t

dt′nk(t′), (B.55)

Ik,l,DC = lim
t→∞

1

T0

t+T0∫

t

dt′Ikl(t
′). (B.56)

This yields

nk,DC =

∞∫

−∞

dω

2π

∑

m∈Z

[
f<(ω)[Gm(ω)Γ(ω)G†

m(ω)](k↑,k↑) (B.57)

− f>(ω)[Gm(ω)Γ(ω)G†
m(ω)](k↓,k↓)

]

and

Ik,l,DC = 2Re Tr

{ ∞∫

−∞

dω

2π

∑

m∈Z2

f<(ω)
[
Gm1(ω)Γ(ω)G†

m2
(ω)

]
(l,k)

(B.58)

[
H0

CCδm1,m2 + U+δm1+1,m2 + U−δm1−1,m2

]
(l,k)

σz

}
.

The next task is to derive an algorithm for the matrices Gm(ω). The matrices
Γα(ω) and ΣA

α (ω) can be calculated analytically using equation (3.15).
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B.3 Calculation of the matrices Gm(ω)

This section is based on the work [SKRG08], which uses the recursive scheme of
[Mar03]. The central Hamiltonian HCC(t) is considered to be monochromatic,
i.e.

HCC(t) = H0
CC + U+e

iω0t + U−e
−iω0t. (B.59)

We define gR
CC as the retarded Green’s function for the system with U± = 0:

gR
CC(t,t′) =

∞∫

−∞

dω

2π
gR

CC(ω)e−iω(t−t′), (B.60)

gR
CC(ω) = lim

ηց0

[
(ω + iη)1−H0

CC −ΣR
L (ω)−ΣR

R(ω)
]−1

, (B.61)

GR
CC(t,t′) =

∑

m∈Z

∞∫

−∞

dω

2π
GR

m(ω)e−iω(t−t′)+imω0t′

. (B.62)

The retarded embedding self-energy ΣR
α(ω) was defined in equation (3.15). We

insert these expressions into the Dyson equation

GR
CC(t,t′) = gR

CC(t,t′) +

∞∫

−∞

dtgR
CC(t,t)

(
U+e

iω0t + U−e
−iω0t

)
GR

CC(t,t′)

(B.63)

and obtain for m ∈ Z

GR
m(ω) = gR

CC(ω)
(
δm,0 + U+GR

m−1(ω + ω0) + U−GR
m+1(ω − ω0)

)
.

(B.64)

We introduce the notation Gm(ω) = GR
m(ω−mω0) and gm(ω) = gR

CC(ω−mω0)
which leads to the more compact equation:

Gm(ω) = gm(ω) (δm,0 + U+Gm−1(ω) + U−Gm+1(ω)) . (B.65)
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We write it as a system of linear equations:




...

W(−) 0
...

0 0
−g−1U− 0 0 . . .

. . . 0 −g0U+ 1 −g0U− 0 . . .

. . . 0 0 −g1U+

0 0
... 0 W(+)

...







...
G−3

G−2

G−1

G0

G1

G2

G2
...




=




...
0
0
0
g0

0
0
0
...




(B.66)

with

W(−) =




. . .
. . .

. . . 0
...

−g−3U+ 1 −g−3U− 0
. . . 0 −g−2U+ 1 −g−2U−

. . . 0 −g−1U+ 1



, (B.67)

W(+) =




1 −g1U− 0 . . .
−g2U+ 1 −g2U− 0 . . .

0 −g3U+ 1 −g3U−
... 0

. . .
. . .

. . .



. (B.68)

We define W−1
±,m, m ∈ N as the m-th block on the diagonal of the inverse

matrix
[
W(±)

]−1
. The counting starts at the top left (bottom right) corner of

the matrix. Combining this definition with the above linear equation gives the
following relation for m > 0:

G±m(ω) = W−1
±,m(ω)g±m(ω)U±G±(m−1)(ω). (B.69)

The entries W−1
±,m(ω) can be calculated using the continuous fraction of equation

(A.11):

W−1
±,m(ω) =

1

1− g±m(ω)U∓
1

1−g±(m+1)(ω)U∓
1

...
g±(m+2)(ω)U±

g±(m+1)(ω)U±

(B.70)

=
1

g−1
±m(ω)−U∓

1

g−1
±(m+1)

(ω)−U∓
1

...
U±

U±

g−1
±m(ω). (B.71)
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In the above equation, we made use of the identity [1 + AB]−1 = [A−1 +
B]−1A−1. We define

W−1
±,m(ω) = W̃−1

±,m(ω)g−1
±m(ω), (B.72)

W̃−1
±,m(ω) =

1

g−1
±m(ω)−U∓W̃−1

±,m+1(ω)U±

, (B.73)

g±m(ω) = lim
ηց0

[
(ω ∓mω0 + iη)1−H0

CC −ΣR(ω ∓mω0)
]−1

, (B.74)

and obtain

G0(ω) = g0(ω) (δm,0 + U+G−1(ω) + U−G1(ω)) (B.75)

= g0(ω)
(
δm,0 + U+W−1

− (ω)g−1(ω)U−G0(ω) (B.76)

+ U−W−1
+ (ω)g−1(ω)U+G0(ω)

)
.

This equation can be solved for G0(ω):

G0(ω) =
[
g−1

0 (ω)−U−W̃−1
+,1(ω)U+ −U+W̃−1

−,1(ω)U−

]−1
. (B.77)

Using G0(ω) as a starting point, all other matrices G±m(ω) with m > 0 can be
calculated as:

G±m(ω) = W−1
±,m(ω)g±m(ω)U±G±(m−1)(ω) (B.78)

= W̃−1
±,m(ω)U±G±(m−1)(ω), m > 0. (B.79)

The remaining problem is the numerical calculation of W̃−1
±,m(ω). Therefore,

one simply truncates the recursion depth of the continuous fraction in equation
(B.73) by setting W̃−1

±,mmax
(ω) = 0 for some value mmax. This allows us to

calculate the matrices G±m(ω) for m < mmax. Of course, one has to check the
convergence of the final results with respect to mmax, the choice mmax = 10
turned out to be a reasonable initial guess.



Appendix C

Calculation of the spectral function using

NEGFs

C.1 Large time behaviour of the

spectral function

In this section we want to calculate the spectral function ACC(ω,T ). We recall
the definitions from equations (4.14) and (4.16):

ACC(t,t′) = i [G>
CC(t,t′)−G<

CC(t,t′)] , (C.1)

ACC(ω,T ) =
1

2π

∞∫

−∞

dτeiωτ ACC

(
T +

τ

2
,T − τ

2

)
, (C.2)

with the relative time τ = t− t′ and the average time T = t+t′

2
.

The goal is to calculate the large time behaviour of ACC(ω,T ) with respect
to T . We assume, that ACC(t,t′) → 0 as |t − t′| → ∞, which is a reasonable
assumption and is already part of the derivation in section B.1. This implies,
that we can look at G

≷
CC(t,t′) and drop all contributions which go to zero as

t,t′ > b and b→∞. This corresponds to looking at the large time behaviour in
both time arguments simultaneously.
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We start with the reformulation of equation (B.32) for G
≷
CC(t,t′):

G
≷
CC(t,t′) = GR

CC(t,t0)G≷
CC(t0,t0)GA

CC(t0,t
′) (C.3)

− i
∑

α∈{L,R}

[GR
CC ·Σ⌉

α ⋆G
⌈
CC](t,t0)GA

CC(t0,t
′)

+
∑

α∈{L,R}

GR
CC(t,t0)[G

⌉
CC ⋆Σ⌈

α ·GA
CC](t0,t

′)

+
∑

α∈{L,R}

[GR
CC ·Σ≷

α ·GA
CC](t,t′)

+
∑

α,α′∈{L,R}

[GR
CC ·Σ⌉

α ⋆GM
CC ⋆Σ

⌈
α′ ·GA

CC](t,t′).

We are interested in the large time behaviour of G
≷
CC(t,t′) with both time ar-

guments being large, i.e. t,t′ > b. We then drop all terms which tend to zero
as b→∞ and obtain

G
≷
CC(t,t′)

t,t′→∞∼
[
GR

CC ·Σ≷ ·GA
CC

]
(t,t′). (C.4)

It is again useful to set the initial time t0 of the Keldysh contour to −∞. We
now insert again the Fourier expansion for G

R/A
CC (t,t′) of equation (B.39) and

use relation (B.41):

[
GR

CC ·Σ≷ ·GA
CC

]
(t,t′) (C.5)

=

∞∫∫

−∞

dt1 dt2G
R
CC(t,t1)Σ≷(t1,t2)GA

CC(t2,t
′) (C.6)

=

∞∫∫

−∞

dt1 dt2

∞∫∫∫

−∞

dω1 dω2 dω3

(2π)3

∑

m∈Z2

GR
m1

(ω1)Σ≷(ω2)G
A
m2

(ω3) (C.7)

e−iω1(t−t1)+im1ω0t1e−iω2(t1−t2)e−iω3(t2−t′)+iω3(t2−t′)+im2ω0t

=

∞∫

−∞

dω1

2π

∑

m∈Z2

GR
m1

(ω1 −m1ω0)Σ
≷(ω1)G

A
m2

(ω1) (C.8)

e−iω1(t−t′)+iω0(m1t+m2t′).

Using the relative time τ = t − t′ and average time T = t+t′

2
, we can calculate
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the Fourier transform with respect to τ :
[
GR

CC ·Σ≷ ·GA
CC

]
(ω, T ) (C.9)

=
1

2π

∞∫

−∞

dτeiωτ

∞∫

−∞

dω1

2π
GR

m1
(ω1 −m1ω0)Σ

≷(ω1)G
A
m2

(ω1) (C.10)

e−iω1τ+iω0m1(T + τ
2

)+iω0m2(T − τ
2

)

=
1

2π

∑

m∈Z2

GR
m1

(
ω −m1ω0 +

ω0

2
(m1 −m2)

)
Σ≷

(
ω +

ω0

2
(m1 −m2)

)

GA
m2

(
ω +

ω0

2
(m1 −m2

)
ei(m1+m2)ω0T . (C.11)

We use again the fluctuation-dissipation theorem of equations (B.49) and (B.50)

as well as the definitions Gm(ω) ≡ GR
m(ω − mω0) =

[
GA

−m(ω)
]†

, Σ≷
α (ω) =

if≷(ω)Γα(ω). This eventually yields

[
GR

CC ·Σ≷ ·GA
CC

]
(ω, T ) (C.12)

=
i

2π

∑

m∈Z2

f≷

(
ω +

ω0

2
(m1 −m2)

)
Gm1

(
ω +

ω0

2
(m1 −m2)

)
(C.13)

Γ

(
ω +

ω0

2
(m1 −m2)

)
G

†
−m2

(
ω +

ω0

2
(m1 −m2)

)
ei(m1+m2)ω0T .

We assumed that G
≷
CC(t,t′)→ 0 if |t− t′| → ∞, which allows us to look at the

large time behaviour with respect to t+t′

2
. This gives us the final expression for
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G
≷
CC(ω, T ) and ACC(ω, T ):

G<
CC(ω, T )

T →∞∼ i

2π

∑

m∈Z2

ei(m1+m2)ω0Tf<
(
ω +

ω0

2
(m1 −m2)

)
(C.14)

Gm1

(
ω +

ω0

2
(m1 −m2)

)
Γ

(
ω +

ω0

2
(m1 −m2)

)

G
†
−m2

(
ω +

ω0

2
(m1 −m2)

)
,

G>
CC(ω, T )

T →∞∼ i

2π

∑

m∈Z2

ei(m1+m2)ω0Tf>
(
ω +

ω0

2
(m1 −m2)

)
(C.15)

Gm1

(
ω +

ω0

2
(m1 −m2)

)
Γ

(
ω +

ω0

2
(m1 −m2)

)

G
†
−m2

(
ω +

ω0

2
(m1 −m2)

)
,

ACC(ω, T )
T →∞∼ 1

2π

∑

m∈Z2

ei(m1+m2)ω0T Gm1

(
ω +

ω0

2
(m1 −m2)

)
(C.16)

Γ

(
ω +

ω0

2
(m1 −m2)

)
G

†
−m2

(
ω +

ω0

2
(m1 −m2)

)
.

This results is consistent with the expression for the density nk(t) of equation
(B.53) after some variable shifts:

nk(t) = −i[G<
kk(t,t)]↑↑ + i[G>

kk(t,t)]↓↓ (C.17)

= −i
∞∫

−∞

dω
[
G<

kk

(
ω,
t+ t

2

)]

↑↑
+ i

∞∫

−∞

dω
[
G>

kk

(
ω,
t+ t

2

)]

↓↓
,

(C.18)

t→∞∼
∞∫

−∞

dω

2π

∑

m∈Z2

ei(m1−m2)ω0t

[
f<(ω)[Gm1(ω)Γ(ω)G†

m2
(ω)](k↑,k↑)

− f>(ω)[Gm1(ω)Γ(ω)G†
m2

(ω)](k↓,k↓)

]
. (C.19)
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In some cases, we are only interested in the time-averaged quantities:

G
≷
CC,DC(ω) = lim

t→∞

1

T0

t+T0∫

t

dTG
≷
CC(ω, T ) (C.20)

=
i

2π

∑

m∈Z

f≷ (ω +mω0) Gm (ω +mω0) (C.21)

Γ (ω +mω0) G†
m (ω +mω0) ,

ACC,DC(ω) = lim
t→∞

1

T0

t+T0∫

t

dTACC(ω, T ) (C.22)

=
1

2π

∑

m∈Z

Gm (ω +mω0) Γ (ω +mω0) G†
m (ω +mω0) (C.23)

with T0 = 2π
ω0

.

C.2 Convoluted spectral function

The goal of this section is to proof

0 ≤
[
ÃQD(ω, T )

]
σσ

(C.24)

≡
∞∫∫

−∞

dω′ dT ′ [AQD(ω′, T ′)]σσ Mσω ,σT
(ω − ω′, T − T ′) (C.25)

for σω, σT > 0, σωσT ≥ 1
2

and the Gaussian kernel Mσω ,σT
(ω, T ) defined as

Mσω ,σT
(ω, T ) =

1

2πσωσT
e

− T 2

2σ2
T

− ω2

2σ2
ω . (C.26)

The proof follows the work [Car75]. We will make use of the following relations:

1

σ
√

2π

∞∫

−∞

dxe− 1
2 (x−µ

σ )
2

= 1, (C.27)

1

σ
√

2π

∞∫

−∞

dxeiωxe− 1
2 (x−µ

σ )
2

= e− σ2ω2

2
+iµω. (C.28)
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[
ÃQD(ω, T )

]
σσ

(C.29)

=

∞∫∫

−∞

dω′ dT ′ [AQD(ω′, T ′)]σσ Mσω ,σT
(ω − ω′, T − T ′)

=
1

4π2σωσT

∞∫∫∫

−∞

dω′ dT ′ dτ ′

[
AQD

(
T ′ +

τ ′

2
,T ′ − τ ′

2

)]

σσ

(C.30)

eiω′τ ′

e
−

(T −T ′)2

2σ2
T

−
(ω−ω′)2

2σ2
ω

=
1

2π
√

2πσT

∞∫∫

−∞

dT ′ dτ ′

[
AQD

(
T ′ +

τ ′

2
,T ′ − τ ′

2

)]

σσ

(C.31)

e−
σ2

ωτ ′2

2
+iτ ′ωe

−
(T −T ′)2

2σ2
T

x=T ′+ τ ′

2=
y=T ′− τ ′

2

2

2π
√

2πσT

∞∫∫

−∞

dx dy [AQD (x, y)]σσ (C.32)

e−
σ2

ω(x−y)2

2
+i(x−y)ωe

−
(T −

x+y
2 )

2

2σ2
T .

We split the exponential function as follows:

e−
σ2

ω(x−y)2

2
+i(x−y)ωe

−
(T −

x+y
2 )

2

2σ2
T (C.33)

= e
σ2

ωxy− T 2

2σ2
T

− xy

4σ2
T e

iωx−
σ2

ωx2

2
−

x2

4
−T x

2σ2
T e

−iωy−
σ2

ωy2

2
−

y2

4
−T y

2σ2
T

and define

f(x, ω, T ) =
1√
2π
e

iωx−
σ2

ωx2

2
−

x2

4 −T x

2σ2
T . (C.34)
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We specify σ =↑, the case σ =↓ follows in a similar way. We insert the expansion
of [AQD(t,t′)]↑↑ from equation (4.18) and use above definition:

[
ÃQD(ω, T )

]
↑↑

(C.35)

=
2e

− T 2

2σ2
T√

2πσT

∞∫∫

−∞

dx dy [AQD (x, y)]↑↑ f(x, ω, T ) [f(y, ω, T )]⋆ e
σ2

ωxy− xy

4σ2
T

=
2e

− T 2

2σ2
T√

2πσT

∞∫∫

−∞

dx dy
∑∫

q

uQD,q(x) [uQD,q(x)]⋆ (C.36)

f(x, ω, T ) [f(y, ω, T )]⋆ e
σ2

ωxy− xy

4σ2
T

=
2e

− T 2

2σ2
T√

2πσT︸ ︷︷ ︸
>0, since σT >0

∑∫

q

∞∑

k=0

(σ2
ω − 1

4σ2
T

)k

k!︸ ︷︷ ︸
≥0, since σωσT ≥ 1

2

(C.37)




∞∫

−∞

dx uQD,q(x)f(x, ω, T )xk






∞∫

−∞

dy uQD,q(y)f(y, ω, T )yk




⋆

︸ ︷︷ ︸
=CC⋆≥0

≥ 0. (C.38)

The proof for
[
ÃQD(ω, T )

]
↓↓

follows straight forward by substituting uQD,q(x)

by vQD,q(x).
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