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Abstract

Considering the importance of multiobjective optimization in combination with locational analysis, we

study in this thesis a class of extended multiobjective location and approximation problems, where the

objective function includes distances as well as cost functions. This class is very important and has

a lot of applications in economy, engineering and physics. In particular, we give an example for an

application in radiotherapy treatment.

The principle aims of our work are the following: First we prove duality assertions for extended

multiobjective location and approximation problems using Lagrange duality. Furthermore, the extended

multiobjective location problem is decomposed, such that a multiobjective location problem is obtained

as a subproblem. We study this multiobjective location problem comprehensively and get through Pareto

reducibility a new characterization of the set of weakly minimal solutions using its well-known duality-

based geometrical structure. An implementable partition algorithm for the set of minimal solutions

of the multiobjective location problem is also derived. This algorithm is the base for developing

decomposition algorithms, that provide minimal solutions of the extended multiobjective location

problem. In the final part of the thesis, we study a multi-facility location problem by transforming it

into a single-facility approximation problem in a higher dimension. We derive an algorithm for solving

it applying the method of partial inverse and the proximal point algorithm. Finally, an interactive

procedure for a multiobjective multi-facility problem is developed using this algorithm.



Zusammenfassung

Uns ist heutzutage sehr bewusst, welche wichtige Rolle die mehrkriterielle Optimierung kombiniert

mit Standorttheorie spielt. In dieser Arbeit beschäftigen wir uns mit einer Klasse von erweiterten

mehrkriteriellen Standort- und Approximationsproblemen mit einer vektorwertigen Zielfunktion, die

sowohl die Abstände als auch die Kostenfunktionen enthält. Diese Klasse ist sehr wichtig und hat viele

Anwendungen in der Wirtschaft, den Ingenieurwissenschaften und in der Physik. Es wird insbesondere

ein Beispiel in der Radiotherapie präsentiert.

Die Hauptziele dieser Arbeit sind: Die Dualitätsaussagen für die erweiterten mehrkriteriellen Standort-

und Approximationsprobleme mit Hilfe der Lagrange-Dualität zu beweisen. Danach werden erweiterte

mehrkriterielle Standortprobleme zerlegt, wobei das mehrkriterielle Standortproblem ein Teilproblem

ist. Das mehrkriterielle Standortproblem wird ausführlich untersucht. Die geometrische Struktur der

Menge der Minimallösungen dieses Problems wird danach benutzt, um eine neue Charakterisierung der

Menge der schwachen Minimallösungen mit Hilfe von Pareto-Reduzierbarkeit zu erhalten. Weiterhin

wird ein implementabler Zerlegungsalgorithmus entwickelt, um die Menge der Minimallösungen

des mehrkriteriellen Standortproblems zu endlich vielen Rechtecken zu zerlegen. Dieser Algorith-

mus ist die Basis der Entwicklung weiterer Dekompositionsalgorithmen zur Lösung von erweiterten

mehrkriteriellen Standortproblemen.

Im letzten Teil dieser Arbeit untersuchen wir N-Standortprobleme. Das N-Standortproblem wird zu

einem Approximationsproblem in einer höheren Dimension transformiert. Zur Lösung des entstandenen

Approximationsproblems wird ein Proximal-Point-Algorithmus hergeleitet. Unter Verwendung des

Algorithmus wird eine interaktive Prozedur zur Lösung von mehrkriteriellen N-Standortproblemen

entwickelt.



Arabic Abstract

  نبذة عن الرسالة

وْضَعَة(المتجهية ونظرية تحديد المواقع  تختص هذه الرسالة بالحديث عن الأمْثَـلَةِ 
َ
متعددة (إن نظرية الأمْثَـلَة المتجهية ). تسمى أيضاً نظرية الم

مة الصناعية ظالعمليات والأنبحوث والتي نشأت من مفكرين اقتصاديين في اية القرن التاسع عشر ذات تطبيقات واسعة في ) المعايير
نحاول في هذه الرسالة تطبيق أدوات هذه النظرية ونتائجها وخاصة نظرية الثنوية على .  ونظرية التحكم ونظرية اتخاذ القرار والاتصالات

  .)مسائل التقريب(اقع  وتعميماا مسائل تحديد المو 

. رْفَق جديد بحيث تكون المسافات بالنسبة موعة مواقع أخرى أصغريةمُ  مسائل تحديد المواقع تتلخص في البحث عن موقع أمْثَل لبناء
لهذه النظرية تطبيقات  . كما تسمى مسألة تحديد المواقع متعددة المرافق عندما يكون البحث عن مواقع لعدة مرافق جديدة بدلاً من واحد

تعمم مسائل تحديد المواقع إلى مسائل تقريب .  منها الهندسة التقنية وتخطيط الإنتاج والاقتصاد والطب كثيرة غير المرافق الاجتماعية، 
  .على المواقع الموجودة قبل حساب المسافات) مثل تدوير الإحداثيات(عندما يكون من اللازم إجراء تحويلات 

قة بدالة أخرى تعبر عن رس فيه إيجاد القيمة الصغرى لدالة متجهية ملحاخترنا نموذجاً لمسائل تحديد المواقع التقريبية ند في هذه الرسالة
مة المثلى للكثافة هذا النموذج الرياضي له تطبيقات كثيرة أعطينا له مثالاً في المعالجة الشعاعية وتحديداً مسائل حساب القي .التكاليف

  .بقة على كل من الأنسجة المريضة أو السليمةطَ الشعاعية الم

بتقنية مضروبات لاغرانج حيث تم إثبات مسائل الثنوية للمسألة المدروسة، وهي  حل هذا النموذج تم تطبيق نظرية الثنوية من أجل
والتخفيض على مسألتنا وتطوير  زئةكما نحاول تطبيق نتائج التج. مبرهنات الثنوية الضعيفة والثنوية القوية المباشرة والثنوية القوية العكسية

بتجزئة هذا النموذج  نحصل على مسألة تحديد المواقع المتجهية المعروفة  .لة للبرمجة تختص بحل هذه المسألة عن طريق التجزئةخوارزميات قاب
ص في لخلقد تم استخدام البنية الهندسية المعروفة موعة الحلول الصغرى لهذه المسألة الجزئية في إيجاد نتائج جديدة تت. كمسألة جزئية

مجموعة الحلول الصغرى الضعيفة والتي لم تكن معروفة سابقاً، وكذلك نتائج جديدة تتعلق بتجزئة مجموعة الحلول الصغرى إلى وصف بنية 
الغير مرغوب قرا  ا من إيجاد خوارزميات عددية هامة ذات تطبيقات واسعة، مثلاً في مجال بناء المرافق هذه التجزئة مكنتن. مجموعات محدبة

  .تم نشرها في أكثر من مجلة علمية) هود المبرمج كريستيان غنتربـج(تائج المهمة والتي تمت برمجتها هذه الن. لمياهكمحطات معالجة ا

أما مسائل تحديد المواقع متعددة المرافق فتمّت دراستها في شكلها السُلمي وتحويلها إلى مسألة تحديد موقع واحد ولكن في فضاء أعلى 
لحل مسألة تحديد  بعد ذلك قمنا بإيجاد طريقة تفاعلية. يق خوارزمية النقطة الأقرب والمسألة العكسية لسبينغراممن أجل الحل تم تطب. درجة

    .المواقع المتجهية عن طريق الخوارزمية السابقة
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CHAPTER 1

Introduction

Location problems appear in many variants and with different constraints depending on the application

in practice, for instance in urban development, regional planning, social applications, engineering,

production planning, economics or medicine. Such problems and corresponding algorithms are well-

studied in the literature [30, 49, 52, 73, 81] and an overview is provided in [92].

In many problems of locational analysis the decision maker looks for new facilities such that the

distances between the new facilities and existing facilities are minimal in a certain sense. An important

question in modeling is how to choose the distances and the composition of the distances corresponding

to the application. One possibility for the composition of the distances is the weighted sum (see for

example [30]), which is known as the median problem. On the other hand, sometimes it is more

convenient to minimize the largest distance to the existing facilities, e.g., in locating emergency service

facilities. This kind of problems is called a center problem.

If someone uses the weighted sum for the composition of the distances, then the importance of each

particular existing location is represented by a weight, which is usually chosen by the decision maker.

However, it is often difficult to choose these weights. It is also possible that the solution of a scalar

problem with some selected weights is not practicable. This leads to multiobjective location problems.

By formulating a multiobjective location problem with the distances in the components of the vector-

valued objective function, the decision maker gets an overview over the whole solution set, even on

special solutions of the scalar problems.

The decision maker has to describe the distance functions in order to formulate the multiobjective

location problem. The description may be done by norms, which in fact may be chosen in different

ways. For instance, in the case of an air-way distance we choose the Euclidean norm. In many appli-

cations in locational analysis the road system is related to the Manhattan norm or to the maximum norm.

An extension of location theory is approximation theory, where some transformations of the variables

1
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in the problem are included. Such problems occur, for example, if one is looking for approximate

solutions for partial differential equations, which appear in many and different applications (see [49]).

Furthermore, we study multi-facility location problems, where finitely many new facilities are to be

located. We reformulate the multi-facility location problem as an approximation problem in higher

dimensions.

On the other hand, one of the advantages of multiobjective models in locational analysis is that we can

add further criteria to the mathematical model, where accruing costs could be considered as a specific

example.

The aim of this work is to combine these extensions and to study a general class of multiobjective loca-

tion and approximation problems. We support the decision makers in finding solutions corresponding

to their preferences by developing new algorithms and solution methods concerning such problems.

We use tools from convex analysis in order to prove duality assertions for multiobjective location and

approximation problems in the scope of this work. The application of duality results gives sometimes a

perception of the original problem and provides frequently a simpler solution process.

Moreover, we apply methods, which reduce the complexity of the given multiobjective optimization

problem. The complexity rises essentially by increasing the number of the objectives. A simpler

optimization problem can be obtained by eliminating the non-consequential or non-crucial criteria and

possibly including it in the restrictions. Other approaches suggest a decomposition of the multiobjec-

tive optimization problem to a family of subproblems and then to study the relationships between the

solutions of the original problem and the solutions of the subproblems. Through such decompositions,

we may obtain some minimal solutions or all minimal solutions of the original problem with a simpler

and faster process.

Many authors have worked on these decomposition methods during the last decades and several

interesting results concerning minimal solutions of multiobjective optimization problems have been

obtained. A main research point is how the sets of minimal solutions of the original and reduced (or

extended) problems act together, see for example [38, 78, 80, 95, 96, 99, 113] from the point of view

of reducing methods, and [42, 85] from the perspective of adding new criteria to a given multiobjective

optimization problem.

In location problems the number of the objectives is often greater than the dimension of the pre-image

space. Other examples where the number of the objectives is greater than the dimension of the pre-

image space can occur in decision making theory. Therefore, it is very convenient to derive algorithms

computing the set of efficient solutions in the pre-image space in difference to the image approach in

Benson’s algorithm (see [10]). The dimension of the pre-image space and the number of the criteria

play a crucial role in finding relationships between minimal and weakly minimal solutions of a given

multiobjective optimization problem, see [113] and related results in [36, 78, 86, 96, 99].
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The overarching goal of this thesis is to study extended models of multiobjective location and approx-

imation problems. This includes several specific goals: The first goal is to formulate a generalized

Lagrange dual problem for the extended multiobjective location and approximation problem and to

prove duality assertions.

Second, we develop a convenient decomposition method for this class of problems and derive new

duality-based implementable algorithms. These algorithms generate minimal and weakly minimal

solutions of extended multiobjective location problems.

Furthermore, the third goal is to derive algorithms for solving scalar and multiobjective multi-facility

location problems by using the proximal point algorithm.

Our main purpose is to generate impressive results which support the decision making process in many

fields of applications, such as medicine, industry, landscape and urban planning.

This work is structured as follows:

• We begin with an introduction to location theory in Chapter 2. Different models and a literature

review are given. Then we introduce the model of an extended multiobjective location and

approximation problem.

• In Chapter 3, we give the mathematical and analytical background of the notions and tools used

in the thesis.

• We study different solution concepts of multiobjective optimization problems in Chapter 4. Fur-

thermore, we introduce decomposition and reducibility methods for multiobjective optimization

problems and contribute with some new results, that are important for a characterization of

minimal solutions of extended multiobjective location problems.

• In Chapter 5, we apply Lagrange-duality techniques to derive duality assertions for the extended

model given in Chapter 2. In the second part of this chapter, we use a characterization of the

set of minimal solutions of a multiobjective location problem, as well as Pareto reducibility

introduced by Popovici [96, 99], in order to prove that the set of weakly minimal solutions of the

multiobjective location problem coincides with the rectangular Manhattan hull of the existing

facilities.

• In Chapter 6, we derive a partition algorithm for the set of minimal solutions of a multiobjective

location problem that we apply for developing implementable decomposition algorithms for

solving extended multiobjective location problems.

• In Chapter 7, we apply the well-known proximal point algorithm in order to solve a scalar

multi-facility location problem, which is converted to a scalar approximation problem in higher

dimensions. We also give an interactive procedure based on the proximal point algorithm for the
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scalar multi-facility location problem in order to solve multiobjective location and approximation

problems.



CHAPTER 2

Modeling in Location Theory

In location theory, we essentially differentiate between two branches. The first one is discrete location

theory, like the problem of distributing the departments and the belonging facilities of a hospital and

health center, which can be a question of saving lives. Such models are also called network location

problems, which are discrete location problems. To know more about discrete location problems see

for example [24, 91]. The second one, which is studied in this work, is continuous location theory.

We consider the location problem here as follows: We are looking for one new location x in the

plane, with respect to p existing locations a1, · · · , ap. Our aim is to minimize the distances from the

new location x to each of the existing locations ai, for i = 1, . . . , p. Minimizing the distances is not

the only criterion which can be studied, but it is the most used by formulating location problems,

because minimizing the distances represents minimizing the length of the route, the transport cost, fuel

consumption and environment pollution.

x

a1

a4

a3

a2

a5

a6

a7

Figure 2.1: Finding a new facility x with respect to the given facilities a1, . . . , a7.

5
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Two questions arise now: How do we define these distances, and how do we associate these distances

together in the objective function. Concerning the first question, in this work we define the distances

by norms (see Definition 3.10). The examples in Section 3.1.2 show the different motivations in order

to decide what is the most suitable norm for setting the right model, which depends essentially on the

nature of the facilities and its environment. We can also choose different norms in the same model, as

we see going along this chapter. Apart from the norm, more general distance functions can be used

such as gauges, especially when the distances between the facilities are not symmetric.

Answering the second question, i.e., the kind of composing the distances, is very crucial for solving the

location problem. Examples of objective functions in location theory are: Minimizing the weighted

sum of the distances, minimizing the largest distance or considering every distance as a component of

a vector-valued objective function.

For a more comprehensive overview, we refer to Hamacher [52] and Hamacher and Nickel [53]. They

introduced five criteria for the classification of location problems represented by means of five positions,

which can be shortly explained as the following:

• The number of the new facilities: Single-facility or multi-facility problem.

• The type of the problem: Planar (in R2), network (a discrete problem) or Rn.

• Specialities: Restrictions such as barriers, forbidden regions or capacity limitation.

• The type of the distance function: Norms (e.g. the Euclidean norm or the maximum norm), or

using other general distance functions like gauges.

• The type of the objective function: Minimizing the weighted sum of the distances, minimizing

the largest distance, or considering a vector-valued objective function.

More information about classifications and modeling of location problems as well as solution algo-

rithms can be found in [27, 44, 52, 53, 81, 91].

We introduce different models representing scalar and multiobjective locations problems in the follow-

ing sections. To this end and throughout this work, we use the following notation for any index set

{1, . . . , n} with n ∈ N:

In := {1, . . . , n}.

2.1 Scalar Single-Facility Location Problems

As we mentioned above, the single-facility location problem is represented in the search for a new

facility x ∈ R2 with respect to the existing facilities a1, . . . , ap ∈ R2. Some facilities can be represented
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by a line segment or closed regions (see [113]). The existing facilities are always represented by a

single point ai from the considered space in this study.

However, after determining the suitable norm we still have to associate these distances together in

order to formulate a location problem. Thus, the choice of the type of the objective function plays an

important and crucial role in location theory.

Formulating a planar SFLP as a median location problem implies using the sum to associate these

distances:  Minimize
p∑
i=1

wi‖x− ai‖

subject to x ∈ R2,

(2.1)

where ‖ · ‖ denotes a norm on R2 and wi ≥ 0, i ∈ Ip are weights being determined by the decision

maker. Weights represent the importance of the particular facility. For example, when the facility ai

represents some ward in a city, then the weight wi may represent the population density or the tourist

attraction of ai.

As for the case, where the new location x must possibly be centered to all existing facilities, i.e., must

still be optimal for the largest distance (also called the worst case scenario), then the maximum of the

distances ‖x− ai‖ is to be minimized: Minimize max
1≤i≤p

wi‖x− ai‖

subject to x ∈ R2.
(2.2)

The problem (2.2) is called a center location problem.

Many algorithms and solution methods are derived to solve the problems (2.1) and (2.2) with different

norms, see for example [27, 52, 55, 81, 91].

However, these problems can also be generalized or extended. Some facilities do not fit in the wanted

model, unless we do some transformations Ai, i ∈ Ip such as rotations of the street nets or movement

in a specific direction.

Including such transformations is very interesting, like using it in finding approximate solutions

for partial differential equations (see for example [49, Section 4.1.4]). Section 2.5 introduces a

corresponding application in the radiotherapy treatment.

For understanding how such transformations work, the following two cases can be introduced as an

example:

• If the facility ãi has some deformation, then for x, ãi ∈ R2 (or Rn) we apply the transformation

Ai ∈ L(R2,R2) (where L(X,Y ) is the set of all linear and continuous operators from X into

Y ):

‖Ai(x− ãi)‖ = ‖Ai(x)− ai‖,
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for i ∈ Ip. If the original facility has no deformation, then Ai is equal to the unit matrix and

ãi = ai.

• More generally, if x ∈ Rn and ai ∈ Rk, then Ai ∈ L(Rn,Rk), i ∈ Ip.

In this thesis we study extensions of the problem (2.1). Some of our results are derived for models

in general spaces (see Section 5.2), such that we formulate the problem in normed spaces (see

Definition 3.10).

Let (X, ‖ · ‖), (V, ‖ · ‖) be normed spaces and c : X → R. We consider now the additional cost

function c, which is not included or not related to the distances, for instance, additional operational

costs, utility costs and overheads.

The consideration of the cost function c, together with the transformations Ai allow us to extend the

median problem defined in (2.1) to the following scalar approximation problem:

(P1)

 Minimize c(x) +
p∑
i=1

αi‖Ai(x)− ai‖βi(i)

subject to x ∈ D,
(2.3)

where x ∈ X , ai ∈ V , Ai ∈ L(X,V ), αi ≥ 0 and βi ≥ 1 for all i ∈ Ip, with D ⊂ X is some

restriction set. Furthermore, ‖ · ‖(i) (i ∈ Ip) denote different norms in V .

Note the use of the powers βi and the mixed norms ‖ · ‖(i) in the term ‖Ai(x)− ai‖βi(i). The motivation

to work with such powers is to cover many applications appearing e.g. in the control theory. On the

other hand, investigating models with mixed norms, or generally, mixed distance functions, has been

studied in the literature, see [17, 18, 57, 64, 65, 94]. The ability of assigning a convenient distance

function for every particular facility gives an advantage to the problem (2.3), especially in decision

making by modeling real world problems.

A proposed solution method to solve (P1) is the proximal point algorithm (PPA) based on the method

of the partial inverse introduced by Spingarn in [105]. This method is presented in Chapter 3.

2.2 Multi-Facility Location Problems

The problem turns to be a multi-facility location problem, if the decision maker is going to locate

more than one facility. It is represented in looking for a set of N new facilities x1, . . . , xN ∈ R2

with respect to p existing facilities ai ∈ R2 such that the distances, between the new and the existing

facilities as well as between the new facilities among themselves are minimal. As an example consider

the problem of locating N new containers for recyclable waste with respect to p blocks of flats in a

ward of a city, or the problem of locating N helicopter emergency stations in skiing area.

This kind of problems are also called N-Location problems, multi-Weber problems or multi-facility
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location-allocation problems and were formulated first by Cooper in 1963 [22]. Note that a single-

facility location problem with N = 1 is a special case of a multi-facility location problem.

In Chapter 7, we apply a version of proximal point algorithm in order to solve scalar as well as

multiobjective multi-facility location problems, motivated by an example in [107] and [103].

2.3 Multiobjective Location Problems

The importance and the wide application spectrum of multiobjective optimization is well-known

nowadays. Therefore, working with the tools of multiobjective optimization in the field of location

theory is of a big interest to the researchers and decision makers, since the weights in the previous

scalar problems are mostly difficult to be determined precisely.

Many authors worked on multiobjective location modelings, see [11, 16, 17, 20, 21, 46, 49, 53, 81,

86, 90, 113, 114] and the references therein. Our participation in this field focuses on working with

decompositions and reducing methods for multiobjective location problems, see Chapter 4, Chapter 5,

Chapter 6 and [1, 2, 3, 4].

Multiobjective location problems have a vector-valued objective function with the components fi(x) =

‖x − ai‖, i ∈ Ip. Solution algorithms for characterizing minimal and weakly minimal solutions of

multiobjective location problems are discussed in Section 5.3.

The consideration of a specific linear cost function is very practical and useful in many applications,

as mentioned above. Multiobjective approximation problems including a vector-valued linear cost

function C : X → Rp are given in the form:

(P2)


Minimize f(x) = C(x) +


α1‖A1(x)− a1‖β11

· · ·
αp‖Ap(x)− ap‖βpp


subject to x ∈ D

(2.4)

are studied in [49], where x ∈ X and X , D, ai, αi, Ai, βi are defined as in (P1) for all i ∈ Ip.
However, we deal with another new model in the frame of this study, which is introduced in the next

section.
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2.4 Extended Multiobjective Approximation Problems

We introduce a vector-valued objective function different to the model (2.4), which includes the

locational components as well as the linear cost components Cp+j : X → R (j = 1, · · · ,m):

(P)



Minimize f(x) =



α1‖A1(x)− a1‖β11
· · ·

αp‖Ap(x)− ap‖βpp
Cp+1(x)

· · ·
Cp+m(x)


subject to x ∈ A,

(2.5)

concerning some feasible set A ⊂ X , where x ∈ X and ai, αi, Ai, βi are defined as in (P1) for

all i ∈ Ip. This model is very useful for the decision maker, since we include the cost functions in

the vector-valued objective function. The advantage appears by applying scalarization methods. By

using one vector-valued objective function the distance components and the cost components get more

different components of the scalarizing functional, which is not the case by formulating models with

two vectors such as (2.4). In addition to that, by using this structure it is possible to apply reducing

methods and derive decomposition algorithms (see Section 4.3 and 6.2).

A special case of (2.4) was first introduced in [1].

There are many procedures to generate solutions of such multiobjective location and approximation

problems. In this thesis we discuss the following approaches:

• Lagrange-duality techniques in Chapter 5.

• Decomposition and reduction methods in Chapter 6.

• A proximal point algorithm and the methods of partial inverse in Chapter 7.

Furthermore, the problem (P) is able to be linearized for special norms and solved through multiob-

jective linear programming as shown also in Chapter 5.

2.5 Application in the Radiotherapy Treatment

There are many useful applications for multiobjective location and approximation problems given by

(P). We formulate a model in the radiotherapy treatment as multiobjective approximation problem.

In the radiotherapy, a tumor is planned to be treated through available beams k = 1, . . . , p. Known

research points are, for example, the selection of beam angles or computation of an intensity map for
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each selected beam angle (intensity problem). These problems and other models were studied by many

authors, for example see [31, 32, 104]. For intensity problems in particular see [32, 37, 52, 104].

We suppose that each beam consists of bixels j = 1, ..., n, and voxels, which are indexed by i =

1, ...,m. Also let (aijk) denote the dose deposited in voxel i at unit intensity for bixel j of beam k (or

the rate at which radiation along sub-beam j in beam k is deposited into dose-point i), where (aijk) is

positive for each (i, j, k).

These rates are patient-specific constants, and hence, the mapping between intensity (or fluence) and

dose is linear.

Furthermore, we denote

• Dose deposition matrix A (defined by the values (aijk)) by indexing rows by i and columns by

(j, k).

• Beam intensity: x ∈ Rnp, xjk represents the intensity of bixel j, j = 1, ..., n of beam k,

k = 1, ..., p.

• T represents the tumor, C represents critical organs (K critical organs or organs at risk (OARs)

are represented by C1, ..., CK), N represents normal tissue,

• m: total number of voxels, m = mT +mC +mN , where mC = mC1 + · · ·+mCK .

• AT , AC , AN : A can be partitioned and reordered into sub-matrices AT ∈ RmT×np, AC ∈
RmC×np and AN ∈ RmC×np (according to the rows corresponding to tumor, critical organ and

normal tissue voxels (Ai: row i of A).

Now for the treatment planning suppose the following:

TG ∈ RmT : desired dose to tumor voxels,

TLB ∈ RmT : lower bounds on the dose to tumor voxels,

TUB ∈ RmT : upper bounds on the dose to tumor voxels,

CUB ∈ RmC : upper bounds on the dose to critical organ voxels,

NUB ∈ RmN : upper bounds on dose to normal tissue voxels.

Desired dose distribution can not always be obtained due to physical limitations and trade-offs between

the various conflicting treatment goals. Therefore, we choose a multiobjective characteristic of inverse

planning. Hence, we consider the problem of finding the optimal intensity x of the dose:{
Minimize fR(x)

subject to x ∈ Rnp+ ,
(2.6)

where

fR(x) :=


‖ATx− TG‖1
‖ANx‖2

‖(ACx− CUB)+‖3

 , (2.7)
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x ∈ Rnp+ , ‖ · ‖i : Rnp → R, i = 1, 2, 3 are norms.

The first criterion ‖ATx− TG‖1 can be interpreted as the deviation from the prescribed dose to the

tumor, ‖ANx‖2 is the dose to the normal tissue, and ‖(ACx− CUB)+‖3 represents the overdose to

the critical organ.

We observe that the model defined in (2.6) is a special case of the extended multiobjective location and

approximation problem (P). For solving the problem (2.6), we can apply a proximal point algorithm

(see Section 3.4) and an interactive procedure like proposed in Algorithm 7.6.

Remark 2.1.

1. The following additional restrictions (aside from x ∈ Rnp+ ) can be considered for the model

defined in (2.6):

TLB ≤ ATx ≤ TUB

ACx ≤ CUB.

2. Some other models use the squared Euclidean norm ‖x‖22 =
√∑np

i=1 x
2
i for describing the

average deviation for doses in the above described criteria. This model is also a special case of

(P), but we point to the fact that the proximal point algorithm studied in this work is appropriate

for the special case βi = 1. For other versions of the proximal point algorithm appropriate for

the case βi > 1 (see [49, Section 4.2.1] or [107]).

3. It is also possible to extend the model (2.6) to a multiobjective approximation problem with

certain additional criteria. Algorithm 7.6 can be also applied for solving such an extended model.



CHAPTER 3

Convex Analysis

3.1 Basic Concepts

In this section, we mainly recall the mathematical concepts which are used in this work.

We set that the concept of a linear space is well known, and refer that we are dealing throughout with

real linear spaces only.

3.1.1 Convex Sets and Convex Functions

Convex sets and convex functions have a great importance in optimization theory. The useful properties

of convex sets and the differential ability of convex functions make the search for a minimum much

easier. Of course, not all the models in the applications deal with convexity, but when that is the case,

it is much easier to guarantee the existence of solutions and to set algorithms which deliver optimal

solutions for the problem.

Definition 3.1. Let S be a subset of a linear space X . S is called convex if αx+ (1− α)y ∈ S
whenever x, y ∈ S and α ∈ [0, 1].

We call the set [x, y] := {αx + (1 − α)y ∈ S} the line segment connecting the points x and y. So

geometrically, a set S is convex if and only if the line segment of each two points of S is completely

included in S.

13
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Figure 3.1: Examples for convex sets (group left) and nonconvex sets (group right).

Examples 3.2.

(1) The whole space X , the empty set and any singleton set are all convex sets.

(2) Hyperplanes and halfspaces in Rn are convex sets.

(3) The intersection of any collection of convex sets is convex.

(4) If A and B are convex sets, then their sum (also called the Minkowski sum)

A+B := {a+ b | a ∈ A, b ∈ B}

is convex. Note that if A={a} then the sum {a}+B is usually written a+B. The set a+B is

a convex set whenever B is convex. Also the set −A is convex, whenever A is convex.

(5) Figure 3.1 visualizes some examples for convex as well as non convex sets.

Let X be a linear space, a convex combination of the points xi ∈ X for i = 1, · · · , k, is defined by

x :=
∑k

i=1 αix
i with

∑k
i=1 αi = 1 and αi ≥ 0 for i = 1, · · · , k. The set of all convex combinations

of the points xi for i = 1, · · · , k is called the convex hull of the points x1, · · · , xk. We write

conv({x1, · · · , xk}) := {x ∈ X | x =

k∑
i=1

αix
i with αi ≥ 0 (i = 1, · · · , k) and

k∑
i=1

αi = 1}. (3.1)

Accordingly, the convex hull of a set A is the set

conv A :=
⋂
{C ⊂ X | A ⊂ C,C is convex}. (3.2)

Certainly, the set A is generally not convex and conv A is the smallest convex set containing A.

An important class of convex sets are convex cones. Thus, we introduce next the concept of a cone and

its corresponding properties.
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Definition 3.3 (Cones). LetK be a nonempty subset of a linear spaceX ,K is called a cone if αx ∈ K
whenever x ∈ K and α ≥ 0, i.e., if α K ⊂ K holds.

If K is a cone, then we have 0 ∈ K. A cone K ⊂ X is called convex, if for all x1, x2 ∈ K , the

relation x1 + x2 ∈ K holds. In other words, a cone K is convex if K +K ⊂ K.

A cone K is said to be nontrivial or proper, if K 6= {0} and K 6= X . Furthermore, a cone K is

pointed, if K ∩ (−K) = {0}.

K1

0

K2

0

K3

0

K4

0

Figure 3.2: Examples of cones in R2.

Figure 3.2 presents some examples of cones, where K1,K3 are convex, proper and pointed cones, K2

is a proper and pointed cone but not convex, K4 is a proper and convex cone but not pointed.

Cones with these properties can generate order relations, for instance an order relation in Rn. This

makes cones of great interest in the theory of multiobjective optimization.

Before we call up the definition of convex functions, it is important to be clear about the idea of

extended real-valued functions. In this work location and approximation problems are studied

considering some restrictions. Using such extended real-valued functions is very important and useful,

since it can change a restricted optimization problem into a free (not restricted) optimization problem.

Also generally by working with some other operators like directional derivative, some functions come

out with values in the set of extended real numbers.

An extended real-valued functions can be described as f : X → R∪ {−∞}∪ {+∞}, where X is real

linear space. That means we allow the function in some cases to take the values −∞ and +∞, in this

work rather +∞.

Remark 3.4. In order to deal with these values we arrange for α ∈ R that: α < +∞, α±∞ = ±∞
and for α > 0: α · (+∞) = +∞. We set also∞ + (−∞) = +∞, 0 · (+∞) = −∞. To learn more

about the nature of those operations in R ∪ {−∞} ∪ {+∞} see [56].
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As an example for that we take the indicator function, which will be used later in our study.

Example 3.5. Consider the set S ⊂ X , the indicator function concerning the set S is a mapping

XS : X → R ∪ {+∞} with

XS(x) :=

0 for x ∈ S,

+∞ for x ∈ X \ S.
(3.3)

To illustrate the use of the indicator function in converting a restricted optimization problem into a

free one we consider the following general optimization problem concerning the objective function

f : X → R, which is restricted by a feasible set S ⊂ X:

min
x∈S

f(x). (3.4)

This problem becomes a free optimization problem by extending the objective function f to a new

function f̆ : X → R ∪ {+∞} with f̆(x) := f(x) + XS(x). We get the free problem

min
x∈X

f̆(x). (3.5)

Moreover, we remind for the function f : X → R ∪ {+∞} that the set

dom f := {x ∈ X | f(x) < +∞} (3.6)

is called the domain of f and the effective domain when f is extended real-valued.

Definition 3.6. Let X be a linear space and let f : X → R ∪ {+∞}. The function f is called convex,

if for all x, y ∈ X and for all α ∈ [0, 1]:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (3.7)

Furthermore, the function f is called concave if the function −f is convex.

Definition 3.7. Let X be a linear space and let f : X → R ∪ {+∞}. The function f is called quasi

convex, if the level set L6(r) := {x ∈ X | f(x) ≤ r} is convex for all r ∈ R.

Since a big part of this work is dealing with multiobjective functions, we speak about a generalized

type of convex vector-valued functions by means of an ordering cone in Section 4.2.

Examples 3.8.

(1) There are functions, which are neither convex nor concave. The only functions, which are convex

and concave at the same time are linear functions.

(2) More generally, affine and polyhedral functions are convex [62].
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(3) Norms and distance functions are convex (See Section 3.1.2).

(4) The indicator function XS is convex, whenever S is convex.

There is a strong relationship between convex sets and convex functions, which can be realized through

the next definition.

Definition 3.9. Let X be a linear space and let f : X → R ∪ {+∞}. The set

epif := {(x, r) ∈ X × R | f(x) ≤ r} (3.8)

is called the epigraph of f .

We can easily prove that f is a convex function if and only if epif is a convex set, (for the proof see for

example [50]).

3.1.2 Distance Functions

This work is dealing with location theory, therefore it will be convenient to take a big view at distance

functions. The main purpose in location problems is to minimize the distances between the new

facilities and the existing facilities, and the used tool to formulate the corresponding objective function

is an appropriate distance function. Since the main distance functions in this work are norms, we start

with the definition of norms and Banach spaces and get to know the open sets in this environment.

Normed linear Spaces

The algebraic structure of linear spaces is not enough to present some analytic notions as open sets

and convergence, this brings us to the concept of linear normed spaces, which provide such additional

structures. Next, we define norms and introduce some important examples and properties.

Definition 3.10. Let X be a linear space. A norm on X is a function ‖·‖ : X → R which assigns to

each element x in the space X a real number ‖x‖ in such a manner that for all x, y ∈ X and for all

α ∈ R:

(1) ‖x‖ = 0⇔ x = 0 (definiteness),

(2) ‖αx‖ = |α| ‖x‖ (positive homogeneity),

(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (the triangle inequality).

We call (X, ‖·‖) a normed space.
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From the properties (2) and (3), we conclude that ‖x‖ ≥ 0 for all x ∈ X and that every norm is a

convex function.

We notice that a normed space is a metric space with respect to the induced metric defined by

∀x, y ∈ X : d(x, y) := ‖x− y‖ . (3.9)

A complete normed space is called a Banach space, i.e., if it is complete as a metric space with a

metric defined in (3.9). For instance, the linear space Rn with a norm ‖·‖ is a Banach space, also the

set C(X,R) of all continuous functions defined on a metric space X is a real Banach space.

However, a Banach space is a linear space with a topological structure. But we still have to keep in

mind that a linear space equipped with a topology is generally not a Banach space, not even a normed

space.

A special important class of normed linear spaces are inner product spaces.

Definition 3.11. Let X be real linear space. An inner product is a mapping 〈·, ·〉 : X×X → R, which

satisfy the next conditions, for all x, y and z in X and scalars α ∈ R:

(1) 〈x, y〉 = 〈y, x〉,

(2) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0⇔ x = 0,

(3) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉,

(4) 〈αx, y〉 = α〈x, y〉.

The space (X, 〈·, ·〉) is called an inner product space (or pre-Hilbert space).

Note that inner products over complex spaces is slightly different, particularly in (1) and (4).

The standard example is the inner product on Rn defined for x, y ∈ Rn by

〈x, y〉 =

n∑
j=1

xjyj . (3.10)

If 〈·, ·〉 is an inner product on a linear space X , then for all x, y in X it holds the CauchySchwarz

inequality:

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉.

Any inner product on a linear space X defines the norm

‖x‖ :=
√
〈x, x〉. (3.11)

Thus, an inner product space is also a normed linear space.
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A Hilbert Space is a complete linear space with an inner product. So a Banach space is a Hilbert

space when the norm is defined from an inner product. It holds also the parallelogram equality for any

vectors x and y in a Hilbert space X:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 (3.12)

Conversely, a normed space is an inner product space if and only if the parallelogram equality is

fulfilled.

In a normed linear space (X, ‖ · ‖) the open ball and the closed ball with the center x ∈ X and the

radius r > 0 are defined as the sets

B(x, r) := {y ∈ X | ‖x− y‖ < r}, (3.13)

B[x, r] := {y ∈ X | ‖x− y‖ ≤ r}, (3.14)

respectively. In particular, B[0, 1] is the unit ball. It is clear that the open ball and the closed ball are

convex sets.

Consider a subset S of (X, ‖ · ‖). An element x0 ∈ S is called an interior point of S if there exists a

positive real number r such that B(x0, r) ⊂ S. The set

intS := {x ∈ S | ∃ r > 0 : B(x0, r) ⊂ S} (3.15)

is called the interior of S. The set S is said to be open if intS = S. We define also the closure of a set

S ⊂ X by

clS := {x ∈ X | ∃ {xn}∞n=1 with xn ∈ S, n ∈ N, and lim
n→+∞

xn = x}. (3.16)

S is said to be closed if clS = S. It is obvious that intS is an open set and clS is a closed set.

Furthermore, the set clA \ intA =: bd A is called the boundary of A.

In a liner space X , a point x0 ∈ A ⊂ X is called an algebraic interior point of A, if for every y ∈ X
there is an α > 0 with [x0 − αy, x0 + αy] ⊂ A. The set of all algebraic interior points of A is called

the core of A and is denoted by core A.

We introduce now some examples of norms in different spaces concentrating on norms which are

important for location theory.

Example 3.12 (Euclidean norm). The Euclidean norm in Rn represents the length of the vector

x = (x1, · · · , xn) ∈ Rn in the form

‖x‖2 :=
√
x21 + · · ·+ x2n. (3.17)

The Euclidean norm is the most known norm in Rn. It allows the movement in all directions, which is

not the most case that we face in the application, but rather in measuring bee-line distances which are

also known as the crow flies distances.
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Example 3.13 (Manhattan norm, city block norm or rectangular norm). It is defined for all x ∈ Rn by

‖x‖1 :=
n∑
i=1

|xi|. (3.18)

In location theory the Manhattan norm plays a crucial important role, in this work as well. Apart from

its use in the city networks, the Manhattan norm is also used in machine engineering and the branch of

robotics.

Example 3.14 (Maximum norm). The Maximum norm is defined for all x ∈ Rn by

‖x‖∞ := max {|x1|, · · · , |xn|} . (3.19)

The norms in Examples 3.12 - 3.14 belong to a family of norms called p-norms.

‖x‖1 ≤ 1 ‖x‖2 ≤ 1 ‖x‖∞ ≤ 1

Figure 3.3: The unit balls for the Manhattan norm, the Euclidean norm and the maximum norm in R2.

Let 1 ≤ p ≤ ∞, then the p-norm is defined for all x ∈ Rn through

‖x‖p :=


(

n∑
i=1
|xi|p

) 1
p

, for 1 ≤ p <∞

max {|x1|, · · · , |xn|} , for p =∞.
(3.20)

Obviously, for p = 1 we get the Manhattan norm and for p = 2 we obtain the Euclidean norm. The

limit p→∞ in (3.20) implies the maximum norm (Example 3.14). Examples for unit balls of special

p-norms are given in Figure 3.3.

The previous examples presented norms in finite-dimensional spaces. Example 3.15 is about a norm in

an infinite-dimensional space.

Example 3.15 (lp norm). Choose a value of p ≥ 1, and let lp = lp(N) denote the set of all sequences

x := {an}∞n=1 of complex numbers (indexed by the positive integers N) for which
∑∞

n=1 |an|
p <∞.

In lp space a norm is define for x = {an} ∈ lp by

‖x‖(p) :=

( ∞∑
n=1

|an|p
) 1

p

. (3.21)
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We can include the choice p =∞ by modifying this definition in the expected way:

l∞ =

{
x = {an}∞n=1 : sup

n∈N
|an| <∞

}
(3.22)

and for x = {an}∞n=1 ∈ l∞:

‖x‖(∞) := sup
n∈N
|an| . (3.23)

3.1.3 Dual Spaces

For a linear space X the algebraic dual space of X is given by

X ′ :=
{
x́ : X → R | x′ is linear

}
, (3.24)

and for a linear topological space X the topological dual space of X is given by

X∗ := {x∗ : X → R | x∗ is linear and continuous} . (3.25)

A linear functional x′ : X → R is said to be bounded, if there exists a number M ≥ 0 with

|x́(x)| ≤ M ‖x‖ for all x ∈ X . There is an equivalence between linear bounded and linear continuous

functionals.

The norm of x∗ ∈ X∗ is defined as

‖x∗‖∗ := sup
x 6=0

|x∗(x)|
‖x‖

. (3.26)

It is easy to check that ‖ · ‖∗ is a norm on the space X∗. We say that ‖ · ‖∗ is the dual norm of ‖ · ‖.
Furthermore, it holds

‖x∗‖∗ = sup
x 6=0

|x∗(x)|
‖x‖

= sup
‖x‖=1

|x∗(x)| = sup
‖x‖≤1

|x∗(x)| = sup
‖x‖≤1,x 6=0

|x∗(x)|
‖x‖

. (3.27)

The nature of the set X∗ of all linear continuous functionals on X will be described in the following

theorem:

Theorem 3.16 ([50, Theorem 3.1]). Let (X, ‖ · ‖) be a normed space and let X∗ be the set of all linear

bounded functionals on X . The set X∗ itself is a linear space and a normed space with the norm

‖x∗‖∗. The generalized Schwarz’s inequality holds:

|x∗(x)| ≤ ‖x∗‖∗ ‖x‖ (for all x ∈ X, x∗ ∈ X∗). (3.28)

It can be proved that the dual space (X∗, ‖ · ‖∗) is always complete, i.e., it is always a Banach space.

The dual space X∗ has also a dual space, which is called the double dual space and denoted by X∗∗.

The double dual space is also a Banach space with the norm ‖·‖∗∗. The normed space (X, ‖·‖) is called

reflexive when X = X∗∗ noticing that the inclusion X ⊂ X∗∗ always holds (see [50, Theorem 3.5]).

The spaces Rn and Cn and all Hilbert spaces are reflexive (where C) is the set of complex numbers.
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The Dual Cone

Now we present some additional properties concerning cones. LetX be a normed space and letK ⊂ X
be a cone.

The set

K∗ = {x∗ ∈ X∗ | ∀x ∈ K : x∗(x) ≥ 0} (3.29)

is called the dual cone of K.

K

K∗

K = K∗ = R2
+

Figure 3.4: Examples for dual cones in R2.

Examples 3.17.

1. We consider the standard ordering cone in Rp:

Rp+ = {y ∈ Rp | ∀i = 1, · · · , p : yi ≥ 0}, (3.30)

then

(Rp+)∗ = {z∗ ∈ (Rp)∗ = Rp | ∀y ∈ Rp+ : (z∗)T y ≥ 0} = Rp+.

In particular, (R2
+)∗ = R2

+ as we see in Figure 3.4.

2. If K = Rp, then K∗ = {z∗ ∈ (Rp)∗ = Rp | ∀y ∈ Rp : (z∗)T y ≥ 0} = {0}. Conversely, if

K = {0}, then K∗ = {z∗ ∈ (Rp)∗ = Rp | (z∗)T 0 ≥ 0} = Rp.

3. An additional example is given in Figure 3.4.
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From the previous examples we observe that (K∗)∗ = K.

Furthermore, the normal cone NM of the set M at the point x0 is the set:

NM (x0) :=

{x∗ ∈ X∗ | ∀x ∈M : x∗(x− x0) ≤ 0} if x0 ∈M,

∅ otherwise.
(3.31)

We can make the observation that, if x0 is an interior point of the set M , then the normal cone of M at

x0 is NM (x0) = {0}.

Orthogonality

Geometrical properties, like orthogonality and projection, can well be described in Hilbert spaces

through the structure of the inner product. The property of orthogonality is defined as follows.

Definition 3.18. Let X be a Hilbert space. For x, y ∈ X we say that x is orthogonal to y, denoted by

x ⊥ y, if 〈x, y〉 = 0. For the sets A,B ⊂ X , we say that A ⊥ B if 〈x, y〉 = 0 for all x ∈ A and all

y ∈ B. Furthermore, we define for a set A ⊂ X the orthogonal complement through

A⊥ := {x ∈ X | ∀y ∈ A : x ⊥ y}. (3.32)

We can show for any subset A ⊂ X that A⊥ is a closed linear subspace of the Hilbert space X , also it

is clear that A ∩A⊥ = {0}.

Theorem 3.19 (Complementary subspaces [60]). If A is a complete subspace of the inner product

space X , then every x ∈ X can be uniquely represented as:

x = u+ v : u ∈ A, v ∈ A⊥;

in other words it holds the orthogonal decomposition A ⊕ A⊥ = X . The subspaces A and A⊥ are

called complementary subspaces.

Theorem 3.19 also holds in the special case, if X is a Hilbert space and A is a closed subspace. For the

existence and the uniqueness of optimal solutions of a general optimization problem in inner product

spaces we introduce these two theorems.

Theorem 3.20 ([60, Theorem 21.1]). Let X be an inner product space. If S 6= ∅ is a convex and

complete subset ofX (e.g. a complete subspace ofX), then for x ∈ X the problem ‖x−y‖ → miny∈S

has a unique solution in S, i.e., there exist a unique element y0 ∈ S with ‖x− y0‖ ≤ ‖x− y‖ for all

y ∈ S.

In particular, the assumptions of Theorem 3.20 are also fulfilled, when X is a complete space and S is

a nonempty, convex and closed subset of X . For the proof of Theorem 3.20, the completeness of S and

the parallelogram equality play the main role.
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Theorem 3.21 ([60, Theorem 21.2]). Let S be a linear subspace of an inner product space (X, 〈·, ·〉).

If the problem ‖x− y‖ → miny∈S for some element x ∈ X has ever a solution y0 ∈ S, then y0 is the

only solution in S and x− y0⊥S.

3.1.4 Separation Theorems for Convex Sets

There are many famous fundamental theorems, which play a role in the background of our results, such

as Zorn’s Lemma and Hahn-Banach-Theorem.

One of the important theorems from Functional Analysis, which is based on the Hahn-Banach-Theorem,

is the following separation theorem. Such a separation theorem is an important tool for deriving

characterizations of solutions of vector optimization problems (see Theorem 4.12) and for the proofs

of duality assertions (see Theorem 3.37, Theorem 5.12).

Theorem 3.22 (Separation Theorem: [50, Theorem 5.11]). Let X be a real normed space, A,B ⊂ X
be nonempty convex sets with intA 6= ∅ and intA ∩ B = ∅. Then the two sets A and B can be

separated through a non-trivial continuous linear functional x∗ ∈ X∗. If A and B are open, then the

separation is strict and made by a continuous linear functional x∗ ∈ X∗ \ {0} and a real number α

∀s ∈ A, ∀t ∈ B : x∗(s) < α < x∗(t). (3.33)

Theorem 3.23 (Separation Theorem: [73, Theorem 3.18]). Let X be a real locally convex spacei, A be

a nonempty closed convex subset of X . Then x ∈ X \A if and only if there exist a continuous linear

functional x∗ ∈ X∗ and a real number α with

∀s ∈ A : x∗(x) < α ≤ x∗(s). (3.34)

3.2 Differentiability Properties of Functions

In this section, we recall the definitions of directional derivatives in order to define the subdifferential of

convex function, especially of the norm. The subdifferential is our main tool to formulate the optimality

conditions in Section 7.1.

3.2.1 Directional Derivative

The directional derivative is an extension of the well-known derivative in the real space. As an example

of the literature see [50, Definition 3.24],[73, Definition 2.12.] or the famous book [100].

Definition 3.24 (Gâteaux Derivative). LetX be a linear space, S a nonempty subset of X , Y a normed

space, and let f : S → Y be a mapping. For x0 ∈ S, h ∈ X , the mapping f is called Gâteaux
iX is a locally convex space, if the origin 0 ∈ X has a neighborhood base formed by convex sets, see [73, Definition 1.33]
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differentiable at x0 in the direction h if there exists an ε > 0 with [x0 − εh, x0 + εh] ⊂ S and if the

limit

f ′(x0, h) := lim
t→0

f(x0 + th)− f(x0)

t
(3.35)

exist. f ′(x0, h) is called the Gâteaux derivative of f at x0 in the direction h. If this limit exists for all

h ∈ X , then f is called Gâteaux differentiable at x0, and f ′(x0, ·) is called the Gâteaux derivative of

f at x0.

The next definition does not consider the whole interval [x0 − εh, x0 + εh]. We see later that this case

could be sometimes enough for our study.

Definition 3.25 (Right-Hand side Gâteaux Derivative). Consider the assumptions in Definition 3.24.

For x0 ∈ S, h ∈ X , if ε > 0 exists with only [x0, x0 + εh] ⊂ S and the if the limit

f ′+(x0, h) := lim
t→+0

f(x0 + th)− f(x0)

t
(3.36)

exist, then f is called directionally differentiable at x0 in the direction h and f ′+(x0, h) is called the

right-hand side direction derivative (or direction derivative) of f at x0 in the direction h.

In the same way, if [x0 − εh, x0] ⊂ S, and t→ −0 in the limit, then we talk about left-hand side

direction derivative denoted by f ′−(x0, h).

We illustrate some properties of Gâteaux derivative and the direction derivative (in Definitions 3.24

and 3.25) and relationships between them. It is easy to show that the following statements are true:

• f ′(x0, ·) is positively homogeneous but not necessarily linear. (A mapping A : X → Y is called

positively homogeneous if A(αx) = αA(x) for all x ∈ X,α ∈ R+).

• Consider the assumptions in Definition 3.24. The function f is Gâteaux differentiable at x0 ∈ S
in direction h, if and only if f is right-hand side and left-hand side directionally differentiable at

x0 in direction h and f ′+(x0, h) = f ′−(x0, h). It holds f ′(x0, h) = f ′+(x0, h) = f ′−(x0, h).

• The function f is left-hand side differentiable at x0 in direction h, if and only if f is right-hand

side differentiable at x0 in direction −h. And the equality f ′−(x0, h) = f ′+(x0,−h) always

holds.

In the literature, there are some other generalized definitions of derivatives. Fréchet derivative, for

instance, is a generalization of the directional derivative in Banach spaces and is definitely a stronger

condition than Gâteaux derivative.

Now, we present some differential properties of function under convexity assumptions. Let X be a

linear space, S ⊂ X is convex. If f : S → R∪{+∞} is convex, then f is right hand-side and left-hand
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side Gâteaux differentiable at every algebraic interior point x0 of S with f(x0) ∈ R, in every direction

h ∈ R, and the Gâteaux derivative mapping f ′(x0, ·) : X → R is linear (see [50, Theorem 3.32]).

Moreover, it holds the monotonicity of the of the difference quotient. The next theorem presents an

important inequality for deriving optimality conditions under convexity assumptions.

Theorem 3.26 ([50, Theorem 3.33]). Let X be a linear space, S ⊂ X a convex set with S = core(S)

(i.e., S consists only of algebraic interior points). Moreover, let the function f : X → R be Gâteaux

differentiable in every point in S , then the following statements are equivalent:

1. f is convex.

2. f ′(x, ·) is linear for all x ∈ S, and the following subgradient inequality holds for all x, x0 ∈ S:

f ′(x0, x− x0) ≤ f(x)− f(x0). (3.37)

In the following example, we compute the Gâteaux derivative of certain convex functions, namely

the norm. The norm as a distance function is the main tool for studying our locations problems in

Chapters 5,6,7. In particular, the differentiability properties of the norm appear by formulating the

optimality conditions in Chapter 7.

Example 3.27 ([50]). Let (X, 〈·, ·〉) be a Hilbert space with the norm ‖x‖ :=
√
〈x, x〉. Consider the

function f(x) := ‖x− x0‖2 for a fixed point x0 ∈ X .

We compute the Gâteaux derivative f ′(x, h) for the function f for x, h ∈ X . To this end, we compute

the following quotient for t ∈ R:

f(x+ th)− f(x)

t
=
〈x+ th− x0, x+ th− x0〉 − 〈x− x0, x− x0〉

t

=
〈x− x0, x+ th− x0〉+ 〈th, x+ th− x0〉 − 〈x− x0, x− x0〉

t

=
〈x− x0, x− x0〉+ 〈x− x0, th〉+ 〈th, x+ thx0〉 − 〈x− x0, x− x0〉

t

=
2〈x− x0, th〉+ 〈th, th〉

t
=

2t〈x− x0, h〉+ t2〈h, h〉
t

= 2〈x− x0, h〉+ t〈h, h〉.

By computing the limit we get

f ′(x, h) = lim
t→0

f(x0 + th)− f(x0)

t
= 2〈x− x0, h〉.

3.2.2 The Subdifferential of a Convex Function

The subdifferential of convex functions play a crucial role in nonlinear optimization. Generally, distance

functions are not differentiable. The search for more general notion for differentiability leads to the
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subdifferential of a function, which turn to be an important tool to formulate the optimality conditions,

especially in location theory (see Chapter 7).

Definition 3.28 (The Subdifferential [73]). Let X be a real Banach space, f : X → R ∪ {+∞},
x, x0 ∈ X at x0 in direction x. The set

∂Gf(x0) := {x∗ ∈ X∗ | ∀x ∈ X : x∗(x) ≤ f ′+(x0, x)} (3.38)

is called the subdifferential of f at x0, the elements of ∂Gf(x0) are called subgradients.

If f : X → R ∪ {+∞} is convex, then the subdifferential of f at x0 ∈ dom f is the set

∂f(x0) := {x∗ ∈ X∗ | ∀x ∈ X : x∗(x− x0) ≤ f(x)− f(x0)}. (3.39)

Remark 3.29.

1. We note again that the elements of the subdifferential are functionals from the dual space which

we call the subgradients, that means the subdifferential ∂(·) is a set-valued operator.

2. If f is convex, then ∂Gf(x0) = ∂f(x0) for x0 ∈ X

The next theorem shows, under which assumptions the subdifferential of a convex function exists.

Theorem 3.30 ([50, Theorem 5.12]). Let X be a Banach space, x0 ∈ X and let f : X → R ∪ {+∞}
be a convex functional. If f(x0) < +∞ and f is continuous at x0, then

∂f(x0) 6= ∅.

In order to prove this theorem one can apply the separation theorem (e.g. Theorem 3.22).

3.2.3 Subdifferential Calculus

To apply the optimality conditions in some applications and algorithms, we have to compute the

subdifferential of the sum of functions. Therefore, we recall the next theorem concerning the sum rule

of convex functions.

Theorem 3.31 (The Subdifferential Sum Rule [50, Theorem 5.13]). For n ≥ 2 let f1, · · · , fn :

X → R ∪ {+∞} be convex functionals on a Banach space X . If for an element x0 the values

f1(x
0), · · · , fn(x0) < +∞ exist and if f1, · · · , fn−1 are continuous at x0, then it holds for all x ∈ X

that

∂

(
n∑
i=1

fi(x)

)
=

n∑
i=1

∂fi(x). (3.40)
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Note that the right side of the equation (3.40) is understood as the Minkowski sum of the sets of the

subdifferentials ∂fi(x) of the functions fi.

Now, we compute the subdifferential of some special functions, which we use later in our algorithms.

We start with the subdifferential of the norm. Note that norms are convex functions.

Lemma 3.32 ([50]). Let X be a Banach space. The norm is subdifferentiable and

∀x ∈ X \ {0} : ∂ ‖·‖ (x) = {x∗ ∈ X∗ | 〈x∗, x〉 = ‖x‖ and ‖x∗‖∗ = 1} ,

at x = 0 : ∂ ‖·‖ (x) = {x∗ ∈ X∗ | ‖x∗‖∗ ≤ 1} .

Furthermore, for proving the duality statements for extended multiobjective approximation problems

in Chapter 5, we introduce the following Lemma for computing the subdifferential of a norm with an

exponent.

Lemma 3.33 ([5]). Let X be a Banach space. If β > 1 and x 6= 0, then

∀x ∈ X : ∂ (
1

β
‖·‖β)(x) =

{
x∗ ∈ X∗ | 〈x∗, x〉 = ‖x‖β and ‖x∗‖∗ = ‖x‖β−1

}
.

Moreover, we need to compute the subdifferential of the indicator function (defined in Example 3.5)

for some convex set S ⊂ X .

Since S is convex the indicator function XS is also convex, then according to (3.39) it holds for the

subgradients x∗ ∈ X∗ of XS at a point x0 ∈ S the following:

∀x ∈ X : x∗(x− x0) ≤ XS(x)−XS(x0). (3.41)

If x ∈ S then XS(x) = 0, also XS(x0) = 0 for x0 ∈ S. We conclude that x∗(x − x0) ≤ 0 for all

x ∈ S. For x ∈ X \ S the inequality in (3.41) is also fulfilled. If x0 /∈ S then there is no x∗ ∈ X∗, for

which the inequality in (3.41) holds for all x ∈ X , i.e., ∂XS(x0) = ∅. We get

∂XS(x0) =


{
x∗ ∈ X∗ | ∀x ∈ S : x∗(x− x0) ≤ 0

}
if x0 ∈ S

∅ if x0 /∈ S.
(3.42)

Comparing with the definition of the normal cone in (3.31), we observe that the subdifferential of the

indicator function ∂XS(x0) of a convex set S at a point x0 ∈ S coincides with the normal cone NS of

the set S at x0:

∂XS(x0) = NS(x0).

3.2.4 Optimality Conditions

The search for the optimal solution and answering the question of its existence is one of the main

focuses in the optimization theory. In this section, the right-hand side direction derivative (see
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Definition 3.25), Gâteaux-derivative and the subdifferential of convex functions are used in order to

introduce different formulations of necessary and sufficient optimality conditions. As mentioned above,

convexity assumptions yield the existence of Gâteaux-derivative (see also [50, Theorem 3.32]).

The following necessary and sufficient optimality condition is given by a variational inequality.

Theorem 3.34 ([50]). Let X be a linear space, S a convex set and f : S → R a convex function. Then

for x, x0 ∈ S it holds:

1. x0 is a minimal solution of the nonlinear optimization problem min
x∈S

f(x), if and only if for all

x ∈ S:

f ′+(x0, x− x0) ≥ 0.

2. If S is a linear subspace and f is Gâteaux-differentiable, then x0 is a minimal solution of the

nonlinear optimization problem min
x∈S

f(x), if and only if for all x ∈ S:

f ′(x0, x) = 0.

In the following theorem, a necessary and sufficient optimality condition for minimal solutions of

minx∈S f(x) are given. We use this kind of optimality condition later in our results in Chapter 7.

Theorem 3.35 ([50, Theorem 5.14]). Let X be a Banach space and f : X → R ∪ {+∞} be convex

with f(x) < +∞. Then for x0 ∈ S it holds:

x0 ∈ X is a minimal solution of the nonlinear optimization problem min
x∈X

f(x), if and only if

0 ∈ ∂f(x0). (3.43)

The proof follows easily from (3.39).

3.3 Duality for Convex Optimization Problems

In the linear and convex optimization, it can be easier and shorter to solve the dual problem for a

given original problem. When the dual problem is found and a solution of it exists, then we get more

information and perhaps a solution of the original problem. For instance, if the primal problem is an

approximation problem, we can get a dual problem with a linear objective function, which is definitely

easier to compute.

Let A and B be nonempty sets, and let f : A → R, g : B → R. In general, consider the following

problems

(P ) : inf
x∈A

f(x) =: α, (3.44)

(D) : sup
u∈B

g(u) =: β. (3.45)
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We say that a pair of problems are dual [48], if

∀x ∈ A,∀u ∈ B : g(u) ≤ f(x). (3.46)

The Property (3.46) is called weak duality of the pair (P ) and (D). If

α = inf
x∈A

f(x) < β = sup
u∈B

g(u),

then we state that there exists a duality gap between (P ) and (D). If α, β are finite with α = β and

one of the two values α = f(x0) or β = g(u0) can be obtained feasibly (for some x0 ∈ A or u0 ∈ B),

then we speak of a strong duality between (P ) and (D).

This means, for all x0 ∈ A, u0 ∈ B with f(x0) = g(u0) we get the next properties for the solution of

the pair (P ) and (D):

α = β

x0 is the solution of (P )

u0 is the solution of (D).

It is important to examine the relationships between α and β and to look for sufficient conditions for

β = α.

There are several possibilities to construct a dual problem, such as Fenchel’s duality or Lagrange

duality.

Here we introduce a general approach to Lagrange-duality, for example see [50].

Definition 3.36. Let A and B be non-empty sets, and let L : A×B → R. Then (x0, u0) ∈ A×B is

said to be saddle point of L with respect to A×B, if

max
u∈B

L(x0, u) = L(x0, u0) = min
x∈A

L(x, u0).

For example, consider L : R × R → R with L(x, u) = x2 − u2, then it s easy to see that (0, 0) is

saddle point of L with respect to R× R.

The function L : A×B → R is called the Lagrange function and will be used in order to form the

next optimization problem.

Now for the primal problem

(P ) inf
x∈A

f(x) = α; −∞ ≤ α ≤ +∞ (3.47)

we assume that: For all x ∈ A it holds f(x) = sup
u∈B

L(x, u).

Analogously for the appropriated dual problem

(D) sup
u∈B

g(u) = β; −∞ ≤ β ≤ +∞ (3.48)
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and for g(u) we assume that: For all u ∈ B holds g(u) = inf
x∈A

L(x, u).

Both problems (P ) and (D) can now be formulated as the following:

(P ) inf
x∈A

sup
u∈B

L(x, u) = α, (3.49)

(D) sup
u∈B

inf
x∈A

L(x, u) = β. (3.50)

We now present the main theorem of Lagrange duality (see [50, Theorem 5.19] and [125, Theo-

rem 49.B]) including the existence of saddle points of the Lagrange function given in (3.49) and (3.50).

Theorem 3.37 (Main Theorem: Duality between (P ) and (D)). Let A and B be non-empty sets,

L : A×B → R. Then:

I. Double Duality: (D) and (P ) are respectively equivalent to:

(D) inf
u∈B

sup
x∈A
−L(x, u) = −β,

(P ) sup
x∈A

inf
u∈B

−L(x, u) = −α

and in this sense (P ) is the dual problem of (D).

II. Weak Duality: β ≤ α always holds and for x0 ∈ A and u0 ∈ B with f(x0) = g(u0) we get

that α = β and x0 is a solution of (P ) and u0 is a solution of (D).

III. Duality: (x0, u0) is saddle point of the Lagrange function L with respect to A×B if and only

if x0 is a solution of (P ) and u0 is a solution of (D) and α = β holds. In addition to that

α = f(x0) = L(x0, u0) = g(u0) = β is fulfilled.

IV. Existence Statements: L has a saddle point with respect to the set A × B, if the next six

conditions hold:

(C1) The set A ⊂ X is closed and convex, where X is reflexive Banach space.

(C2) The set B ⊂ Y is closed and convex, where Y is reflexive Banach space.

(C3) x→ L(x, u) is convex and lower semi continuous over the set A for every u ∈ B.

(C4) u→ −L(x, u) is convex and lower semi continuous over the set B for every x ∈ A.

(C5) A is bounded or

∃u0 ∈ B with L(x, u0) −→ +∞ for ‖x‖ −→ +∞, x ∈ A.

(C6) B is bounded or

∃x0 ∈ A with −L(x0, u) −→ +∞ for ‖u‖ −→ +∞, u ∈ B.

V. Strong Duality:
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a) If the conditions (C1) – (C5) are fulfilled and α < +∞ holds, then (P ) has a solution

x0 ∈ A and α = β holds.

b) If the conditions (C1) – (C4) and (C6) are fulfilled and β > −∞ holds, then (D) has a

solution u0 ∈ B and α = β holds.

3.4 The Method of Partial Inverse (Spingarn)

In this section the method of partial inverse of Spingarn [105] is introduced, see also [88, 101]. This

method is an instrument for developing different versions of the proximal point algorithm, which

is an important tool for solving several problems in the approximation theory. Usually a Proximal
Point Algorithm (shortly called PPA) uses this method to solve the optimality conditions of the

corresponding problem.

The PPA is used to find the zero element of a set-valued maximal monotone operator T : E ⇒ E, i.e.

to solve the problem:

Find v ∈ E s.t. 0 ∈ T (v), (3.51)

where E is a Hilbert space.

The next definition illustrates the maximal monotone property for set-valued operators.

Definition 3.38. Let E be a real Hilbert space with inner product 〈·, ·〉. A set-valued operator

T : E ⇒ E is said to be monotone when,

∀y ∈ T (x), ỳ ∈ T (x̀), x, x̀ ∈ E : 〈x− x̀, y − ỳ〉 ≥ 0.

The operator T is maximal monotone, if its graph is not strictly contained in the graph of any other

monotone operator.

For a maximal monotone operator T we consider the mapping

P := (I + cT )−1 : E → E, c > 0, (3.52)

this mapping is called the proximal-mapping and has a single-valued image. This result can be

found in [88], where the result says that maximal monotone operators have the property: For every

x ∈ E, c > 0 there is a unique P (x) ∈ E such that x − P (x) ∈ cT (P (x)), which is equal to the

fact that the mapping P = (I + cT )−1 is single-valued. The proximal-mapping is the basic of the

iteration of the PPA, which takes for solving (3.51) a sequence (cn), cn ∈ R with ci > k > 0 for all

i = 1, . . . , n and an arbitrary starting point x1 ∈ E. Then the iteration

xn+1 := (I + cnT )−1(xn) (3.53)
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either converges to a solution x0 with 0 ∈ T (x0) or ‖xn‖ → ∞.

The method of Spingarn [105] propose to choose complementary subspaces A and B of E, which

means E = A⊕B, with A = B⊥ (see Definition 3.18 and Theorem 3.19), then to consider the problem

of finding

y0 ∈ A, p0 ∈ B s.t. p0 ∈ T (y0). (3.54)

In order to solve this problem Spingarn [105] has introduced the inverse TA of T through the definition:

Definition 3.39 ([105]). Let A and B be complementary subspaces of the Hilbert space E. Let T be a

monotone set-valued operator defined on E. The partial inverse TA of T with respect to the subspace

A is a set-valued operator defined on the space E by: u ∈ TA(v) if and only if there exist y, p ∈ E
with p ∈ T (y), v = yA + pB and u = pA + yB. This implies that TA has the graph:

graph(TA) = {(yA + pB, pA + yB) : p ∈ T (y)}. (3.55)

If we compare (3.55) with the graph of T :

graph(T ) = {(yA + yB, pA + pB) : p ∈ T (y)}, (3.56)

we see that yB and pB are exchanged. One can also observe that if B = {0} and A = E, then TA = T ;

and if B = E and A = {0}, then TA is equal to the inverse of T .

Furthermore, we mention one more important result of Spingarn, which describes the maximal

monotonicity relation between the operator T and its partial inverse TA.

Theorem 3.40 ([105]). The operator TA is maximal monotone if and only if T is maximal monotone.

The following theorem shows the idea of using the concept of the partial inverse by Spingarn.

Theorem 3.41 ([105]). Let v be an element from E with v = vA + vB, where vA ∈ A and vB ∈ B.

Furthermore, let the operator T : E ⇒ E be monotone. Then

0 ∈ TA(v)⇔ vB ∈ T (vA). (3.57)

The equation 0 ∈ TA(v) is equivalent to vB ∈ T (vA), where v = vA + vB with vA ∈ A and vB ∈ B.

Applying of this equivalence on the iteration (3.53) leads to

vk+1 := (I + TA)−1vk

vk ∈ vk+1 + TA(vk+1), vk = yk + pk, yk ∈ A, pk ∈ B

(yk − yk+1) + (pk − pk+1) ∈ TA(yk+1 + pk+1)

(yk − yk+1) + pk+1︸ ︷︷ ︸
=:p̃k

∈ T (yk+1 + (pk − pk+1)︸ ︷︷ ︸
=:ỹk

)
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Putting ỹk := yk+1 + (pk − pk+1) and p̃k := (yk − yk+1) + pk+1 we get the equations

p̃k ∈ T (ỹk) with ỹk + p̃k = yk + pk (3.58)

yk+1 := ỹkA pk+1 := p̃kB. (3.59)

Solving of (3.58) is called the proximal step, and solving of (3.59) is called the projection step.



CHAPTER 4

Multiobjective Optimization Problems

Multiobjective optimization (also known as vector optimization or multiple objective programming) is

a very good approach for solving many real world problems occurring in operation research, industrial

systems, networks, control theory, management sciences, decision making, and politics.

A ”good” solution for a multiobjective optimization problem based on a vector-valued objective

function is originally proposed by the Irish economist Francis Ysidro Edgeworth (1881) and the Swiss

economist Vilfredo Pareto (1896) [29], [93]. It is based on the idea of finding good compromises,

instead of finding a single solution in the scalar case. In this work, we apply such Pareto optimal

notions rather in the field of location and approximation theory.

Many books and works have introduced the foundations of multiobjective optimization such as [30, 47,

48, 73]; for a limited example of its different applications see [31, 34, 54, 61, 77]

In this Chapter, we introduce some concepts of the solutions in multiobjective optimization. Then a

view of scalarizations for multiobjective optimization problems is given. Furthermore, we describe

the decomposition and the reduction of multiobjective optimization problems and introduce some

corresponding properties and results.

Now, let X be a linear space and let fi(x) : X → R, i ∈ {1, · · · , p}, p ∈ N, p ≥ 2. We consider the

vector-valued objective function f : X → Rp with

f(x) =


f1(x)

· · ·
fp(x)

 . (4.1)

Usually a general multiobjective optimization problem is described as

(P )

{
Minimize f(x)

subject to x ∈ A.
(4.2)

for a given nonempty feasible setA ⊂ X . Given the emphasis of locational analysis and approximation

theory within this work, X is considered to be simply Rn.

In the following section we study the solutions concept concerning the problem (P ), in order to

understand the minimization in the image space Rp.

35
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4.1 Solution Concepts in Multiobjective Optimization

We introduce a number of well-known solution concepts for multiobjective optimization problems,

see [30, 47, 48, 73].

In multiobjective optimization we use cones with certain properties as a generalization of the order

relation in R. Let K ⊂ Rp be a proper, convex, closed and pointed cone, K therefore characterizes a

partial ordering relation in Rp and is called an ordering cone (or a positive cone).

The order relation generated by the cone K can be described as the following:

y1 ≤K y2 ⇔ y2 − y1 ∈ K, for y1, y2 ∈ Rp.

The definition of the cone itself includes the reflexivity of the relation defined above, as 0 ∈ K. The

convexity of the cone K implies the transitivity, and K being pointed leads to the antisymmetry. The

antisymmetry is omitted in some literature by setting the cone not to be necessarily pointed, but in this

work the ordering cone will be always pointed. Often, the ordering cone used in Rp is the standard

ordering cone, which is Rp+.

Now we present the first concept of a solution, the so called Pareto optimality.

Definition 4.1. Let F ⊂ Rp and let K ⊂ Rp be a proper, convex, pointed and closed cone. An element

y0 ∈ F is said to be efficient with respect to the cone K, if

F ∩
(
y0 − (K \ {0})

)
= ∅.

The set of all efficient elements in F with respect to the cone K is denoted by Eff(F,K).

Remark 4.2. In the above definition, we did not use any index when denoting the set of efficient

elements in F with respect to the cone K concerning the minimization problem by Eff(F,K). Later

we use some indices in order to distinguish the minimization problem EffMin from the maximization

problem by using the symbol EffMax .

In the next definition we introduce weakly efficient elements under the assumption that the ordering

cone has a nonempty interior; this is important from the mathematical point of view. Furthermore,

numerical algorithms usually generate weakly efficient elements.

Definition 4.3 (Weak Efficiency). Let F ⊂ Rp and let K ⊂ Rp be a proper, convex, pointed and

closed cone. Further let intK 6= ∅. y0 ∈ F is said to be a weakly efficient element of F with respect

to K, if

F ∩
(
y0 − intK

)
= ∅.

The set of all weakly efficient elements in F with respect to the cone K is denoted by Effw(F,K).
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K

F ⊂ R2, K = R2
+

F F

y0 ∈ Eff(F,K)

y0

F

y0, y1, y2 ∈ Effw(F,K)

y0

y2

y1

Figure 4.1: The set Eff(F,K) and the set Effw(F,K) of a set F w.r.t. K = R2
+.

Figure 4.1 gives a visualized example of the definitions above.

Let X be linear space. Now consider f : A → Rp for A ⊂ X , which is partially ordered by the

cone K ⊂ Rp, and consider the multiobjective optimization problem (P ) defined in (4.2). We take

F := f [A] := {f(x) | x ∈ A} in the Definitions 4.1 and 4.3.

An element x0 ∈ A, for which f(x0) ∈ Eff(f [A],K), is called a minimal solution. We denote the

set of minimal solutions of A with respect to the objective function f and the cone K by Min(A, f).

This implies that

Min(A, f) := {x ∈ A | f(x) ∈ Eff(f [A],K)} . (4.3)

In the same way, we denote the set of weakly minimal solutions of A with respect to the objective

function f and K by Minw(A, f). This implies that

Minw(A, f) := {x ∈ A | f(x) ∈ Effw(f [A],K)} . (4.4)

Using the previous solution concepts and their notations we formulate the problem (4.2) in the following

way:

(P ) Eff(f [A],K). (4.5)

The formulations (4.5) and (4.2) are both used in the literature and in the following chapters.

Next we introduce further efficiency definitions, which are going to help us in the duality assertions.

Definition 4.4 (Proper Efficiency). Let F ⊂ Rp and let K ⊂ Rp be a proper, convex, pointed and

closed cone. An element y0 ∈ F is said to be a properly efficient element of F with respect to K, if
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there exists a proper convex cone K̃ ⊂ Rp with K \ {0} ⊂ int K̃ such that y0 is an efficient element

with respect to K̃, i.e.,

F ∩
(
y0 −

(
K̃ \ {0}

))
= ∅.

The set of all properly efficient elements in F with respect to the cone K is denoted by Effp(F,K).

Under the assumption intK 6= ∅, it can be easily shown that every properly efficient element of a set

F is an efficient element of F , and that every efficient element of F is a weakly efficient element of it

with respect to a certain cone K.

Effp(F,K) ⊂ Eff(F,K) ⊂ Effw(F,K). (4.6)

We can describe proper efficiency differently under convexity assumptions through scalarization by

linear continuous functionals λ∗ belonging to the interior of the dual cone intK∗, as defined below.

Definition 4.5 (Schönfeld [102]). Let F ⊂ Rp be a convex set and let K ⊂ Rp be a proper, convex,

pointed and closed cone. We call y0 ∈ F a properly efficient element of F with respect to the cone K

(in the sense of Schönfeld), if an element λ∗ ∈ intK∗ exists with

∀ y ∈ F : λ∗(y0) ≤ λ∗(y).

The set of all properly efficient elements in F with respect to the cone K in the sense of Schönfeld is

denoted by EffpSch(F,K).

4.2 Scalarization

The idea of the scalarization is that we replace a multiobjective optimization problem by a surrogate

scalar problem, i.e., an optimization problem with a real-valued objective function. The solutions

of the multiobjective optimization problem can, under some assumptions, be characterized through

the solutions of the scalar problem. This is very interesting, as the study of a scalar optimization

problem is greatly developed. There are many possibilities to formulate the surrogate scalar problem

(see e.g. [30, 37, 48]). One of the well-known methods is the weighted sum scalarization, where a

multiobjective optimization problem like (4.2) can be transformed into a scalar problem like (2.1) by

choosing some suitable weights. We also use this method in this work, namely in Algorithm 6.8.

In this section, we give some properties and conditions for characterizing properly efficient elements

(cf. Definition 4.5) through scalarization (e.g. by using a scalarizing functional belonging to the dual

cone). To this end we introduce monotonicity properties of a scalarization functional z : Rp → R:

Definition 4.6. Let K ⊂ Rp be a proper, convex, pointed and closed cone and let y1, y2 ∈ Rp. The

functional z : Rp → R is said to be:
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• K-monotone increasing, if y2 ∈ y1 +K implies z(y1) ≤ z(y2) .

• strictly K-monotone increasing, if y2 ∈ y1 + (K \ {0}) implies z(y1) < z(y2) .

The next example shows the monotonicity properties of elements belonging to the dual cone of K.

Example 4.7. We consider again the standard ordering cone in Rp:

Rp+ = {y ∈ Rp | yi ≥ 0,∀i = 1, · · · , p}.

According to Example 3.17 (Rp+)∗ = Rp+. The element z∗ ∈ Rp+ \ {0} is a Rp+-monotone increasing

functional. Actually by taking y2 ∈ y1 + Rp+ we infer that z∗(y2 − y1) ≥ 0, having the definition of

the dual cone in mind. It is therefore clear that z∗(y1) ≤ z∗(y2). On the other hand, z∗ ∈ intRp+ is

strictly Rp+-monotone increasing, because from y2 ∈ y1 + (Rp+ \ {0}) we get z∗(y2 − y1) > 0, i.e.,

z∗(y1) < z∗(y2).

Theorem 4.8 ([48]). Let F ⊂ Rp be a nonempty set, and K ⊂ Rp be a proper, convex, pointed and

closed cone. For y0 ∈ F and z : Rp → R let z(y0) ≤ z(y) for all y ∈ F . If z is strictly K-monotone,

then y0 ∈ Eff(F,K).

For the other direction, we still need some convexity assumptions which are represented in the next

definition and theorem.

Definition 4.9. Let K ⊂ Rp be a proper, convex, pointed and closed cone and let X ⊂ Rn be a convex

set. We call the function f : X −→ Rp K-convex, if

f(αx1 + (1− α)x2) ∈ αf(x1) + (1− α)f(x2) −K (4.7)

holds for all x1, x2 ∈ X and all α ∈ [0, 1].

Remark 4.10. For the special case p = 1 we get

∀x1, x2 ∈ X,∀α ∈ [0, 1] : f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2),

which is the classic definition of the convexity of a function f : X −→ R.

Now we investigate the convexity of the set f [X] in the image space under the convexity assumptions

of X and f .

Theorem 4.11 ([48, Theorem 2.11]). Let K ⊂ Rp be a proper, convex, pointed and closed cone, let

X ⊂ Rn be convex and let the function f : X −→ Rp be K-convex. Then the set f [X] +K is convex.

We introduce the following scalarization result, which states that for every minimal solution x0 (with

f(x0) ∈ Eff(f [X],K)), there exits a functional λ∗ ∈ K∗ \ {0} such that x0 is a minimal solution of

the scalarized problem. See also [73, Theorem 5.4].
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Theorem 4.12. Let K ⊂ Rp be a proper, convex, pointed and closed cone with intK 6= ∅, the set

X ⊂ Rn is convex and let the function f : X −→ Rp be K-convex. Then

f(x0) ∈ Eff(f [X],K) =⇒
(
∃λ∗ ∈ K∗ \ {0}, ∀x ∈ X : λ∗(f(x0)) ≤ λ∗(f(x))

)
.

Proof. Let f(x0) ∈ Eff(f [X],K), then f [X] ∩
(
f(x0)− (K \ {0})

)
= ∅. This implies

(f [X] +K) ∩
(
f(x0)− (K \ {0})

)
= ∅.

The last statement holds, because supposing the contrary, i.e., supposing that

(f [X] +K) ∩
(
f(x0)− (K \ {0})

)
6= ∅

implies the existence of x1 ∈ X, k1 ∈ K with (x1) + k1 ∈ f(x0)− (K \ {0})

f(x1) ∈ f(x0)− (K \ {0})− k1.

It follows f(x1) ∈ f(x0)− (K \ {0}), since K is a convex and pointed cone. This contradicts the fact

that f(x0) ∈ Eff(f [X],K). Now we apply the separation Theorem 3.22 on the two sets

A := (f(x0)−K) and B := f [X] +K,

where A is nonempty and convex with intA 6= ∅, B is nonempty and convex, and intA ∩B = ∅ (see

Theorem 4.11).

Taking into account Theorem 3.22 there exists λ∗ ∈ Rp \ {0}, α ∈ R such that for all x ∈ X and all

k1, k2 ∈ K:

λ∗
(
f(x0)− k1

)
≤ α ≤ λ∗

(
f(x) + k2

)
. (4.8)

Since K is a cone we get λ∗ ∈ K∗ \ {0}: Otherwise, suppose that λ∗ /∈ K∗, then λ∗(k) < 0 for some

k ∈ K. With some n ∈ N we make λ∗(n · k) small enough such that λ∗(n · k) < α− λ∗(f(x)) for

some fixed x ∈ X , which contradicts (4.8). Consequently we obtain

∀x ∈ X : λ∗(f(x0)) ≤ λ∗(f(x)).

4.3 Decomposition of Multiobjective Optimization Problems

Often it is easier to solve complex problems using certain subproblems. We mentioned above that the

complexity of a multiobjective optimization problem rises essentially by increasing the number of the

objectives. We obtain a simpler optimization problem, for instance by eliminating some criteria and

including it in the restrictions. However, in many papers decomposition methods for multiobjective
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optimization problems are derived. In these papers the authors decompose a multiobjective optimization

problem to a family of subproblems and study the relationships between the solutions of the original

problem and the solutions of the subproblems, see [38, 78, 80, 95, 96, 99, 113]. Furthermore, in [42, 85]

the authors added new criteria to a given multiobjective optimization problem.

Building on the aforementioned works, the aim of this section is to derive new results in order to obtain

efficient elements by decomposing a multiobjective optimization problem. These results are used

in Sections 6.2 in order to generate minimal solutions of extended multiobjective location problems

through the decomposition algorithms derived in Sections 6.1 and 6.2.

Consider again the general multiobjective optimization problems (P ) in (4.2) and the index set

Ip = {1, · · · , p}. For every nonempty selection of indices, I ⊂ Ip, the notation fI will represent the

function

fI = (fi1 , · · · , fik) : X → Rk,

where I := {i1 < · · · < ik}.
Given any nonempty feasible domain A ⊂ X , we consider the optimization problem:

(PI)

{
Minimize fI(x)

subject to x ∈ A.
(4.9)

We observe that (PI) represents the multiobjective optimization problems (P ) itself when I = Ip, and

when I = {i} then the corresponding (PI) is a scalar problem with the objective function fi. If |I| is
the cardinality of the set I , then for 0 < |I| < p the optimization problem (PI) can be considered as a

subproblem, i.e., a reduced problem obtained from
(
PIp
)

by eliminating certain criteria.

As defined in Section 4.1 and for the ordering cone KI := R|I|+ , the set of the minimal solutions of

(PI) is given by

Min(A, fI) =
{
x ∈ A | fI(x) ∈ Eff(fI [A],R|I|+ )

}
(4.10)

=
{
x ∈ A | fI [A] ∩

(
fI(x)− (R|I|+ \ {0})

)
= ∅
}
. (4.11)

One can easily check that for every subset I of Ip it holds that

Min(A, fI) ⊂ Minw(A, fI) ⊂ Minw(A, fIp). (4.12)

In particular, for every i ∈ Ip, letting I := {i} and identifying fI with fi we have

Min(A, fi) = Minw(A, fi) = argmin
x∈A

fi(x). (4.13)

Theorem 4.13 ([3]). For every proper subset I of Ip we have

Min
(
Min(A, fI), fIp\I

)
⊂ Min(A, fIp).
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Proof. Let I ⊂ Ip with 0 < |I| < p and let x0 ∈ Min
(
Min(A, fI), fIp\I

)
. Then

x0 ∈ Min(A, fI); (4.14)

@ x ∈ Min(A, fI) such that fIp\I(x) ∈ fIp\I(x0)− Rp−|I|+ \ {0}. (4.15)

Suppose to the contrary that x0 /∈ Min(A, fIp). Since x0 ∈ A by (4.14), we infer the existence of an

element x̃ ∈ A satisfying fIp(x̃) ∈ fIp(x0)− Rp+ \ {0}, i.e.,

fI(x̃) ∈ fI(x0)− R|I|+ ; (4.16)

fIp\I(x̃) ∈ fIp\I(x0)− Rp−|I|+ ; (4.17)

fIp(x̃) 6= fIp(x
0). (4.18)

By (4.14) and (4.16) it follows that

fI(x̃) = fI(x
0) (4.19)

and x̃ ∈ Min(A, fI). But the relations (4.16), (4.17), (4.18) together with (4.19) imply fIp\I(x̃) ∈
fIp\I(x

0)− Rp−|I|+ \ {0}, contradicting (4.15).

Furthermore, we can show the following result.

Corollary 4.14 ([3]). Let I be a proper subset of Ip. For every weight vector λ ∈ intRp−|I|+ we have

argmin
x∈Min(A,fI)

λ(fIp\I(x)) ⊂ Min(A, fIp).

Proof. Let λ ∈ intRp−|I|+ . According to the weighted sum method in multiobjective optimization, we

have

argmin
x∈C

λ(fIp\I(x)) ⊂ Min(C, fIp\I),

for any nonempty set C ⊂ A. In particular, for C := Min(A, fI), we obtain

argmin
x∈Min(A,fI)

λ(fIp\I(x)) ⊂ Min
(
Min(A, fI), fIp\I

)
.

Finally, by Theorem 4.13 we get the desired inclusion.

In particular, when I := Ip \ {i} and λ = 1, then we have for each i ∈ Ip

argmin
x∈Min(A,fIp\{i})

fi(x) ⊂ Min(A, fIp).

In the following definition, we learn about the concept of Pareto reducibility for multiobjective

optimization problems as introduced by Popovici [96]. Pareto reducibility is an important tool in our

results which aim to find a characterization of the set of weakly minimal solutions of a multiobjective

location problem with the maximum norm or Manhattan norm (see Theorem 5.18).
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Definition 4.15 ([96]). A problem
(
PIp
)

is said to be Pareto reducible if its weakly efficient solutions

are efficient solutions either for the problem
(
PIp
)

itself or for some subproblem (PI) of it. We can

formulate Pareto reducibility as follows

A problem
(
PIp
)

is Pareto reducible ⇔ Minw(A, f) =
⋃

∅6=I⊂In

Min(A, fI) (4.20)

Theorem 4.16 ([3]). If the multiobjective optimization problem
(
PIp
)

is Pareto reducible, then the

following assertions are equivalent:

1. Minw(A, fIp) = Min(A, fIp).

2. Min(A, fI) ⊂ Min(A, fIp) for each proper subset I of Ip.

Proof. The conclusion directly follows from (4.20).

Corollary 4.17 ([3]). Let p = 2. If the bicriteria optimization problem (PI2) is Pareto reducible,

then the following assertions are equivalent:

1. Minw(A, fI2) = Min(A, fI2).

2. argminx∈A f1(x)
⋃

argminx∈A f2(x) ⊂ Min(A, fI2).

3. The outcome sets fI2 (argminx∈A f1(x)) and fI2 (argminx∈A f2(x)) are either empty or sin-

gletons.

Proof. In view of (4.13), the equivalence 1⇔ 2 is a straightforward consequence of Theorem 4.16.

In order to prove the equivalence 2 ⇔ 3 let i ∈ I2. It suffices to show that argminx∈A fi(x) ⊂
Min(A, fI2) if and only if card (fI2 (argminx∈A fi(x))) 6 1.

Assume that argminx∈A fi(x) ⊂ Min(A, fI2) and suppose to the contrary that there exist x′, x′′ ∈
argminx∈A fi(x) with fI2(x′) 6= fI2(x′′). Then fi(x

′) = fi(x
′′) = min fi(D) and f3−i(x

′) 6=
f3−i(x

′′). It follows that fI2(x′′) ∈ fI2(x′) − R2
+ \ {0} or fI2(x′) ∈ fI2(x′′) − R2

+ \ {0}, hence

x′ /∈ Min(A, fI2) or x′′ /∈ Min(A, fI2), which contradicts our assumption.

If card (fI2 (argminx∈A fi(x))) = 0, then argminx∈A fi(x) = ∅ ⊂ Min(A, fI2). Assume now that

card (fI2 (argminx∈A fi(x))) = 1 and suppose to the contrary that there exists x0 ∈ argminx∈A fi(x)\
Min(A, fI2). Then there exists x̃ ∈ A such that fI2(x̃) ∈ fI2(x0) − R2

+ \ {0}, i.e., fi(x̃) 6 fi(x
0)

and f3−i(x̃) 6 f3−i(x0) , with one of those inequalities being strict. More precisely, since fi(x0) =

min fi(D) 6 fi(x̃) we should have fi(x̃) = fi(x
0) and f3−i(x̃) < f3−i(x

0). It follows that x̃ 6= x0

and x0, x̃ ∈ argminx∈A fi(x), which is a contradiction.
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Corollary 4.18 ([3]). If A is a nonempty convex subset of a linear space and all criteria f1, · · · , fp of

the optimization problem
(
PIp
)

are convex, each of them attaining its minimum on A in a unique point,

then

Min(A, fI) = Minw(A, fI) for all I ⊂ Ip with |I| = 2.

The next corollary is derived simply from other interesting results which give sufficient conditions for

Pareto reducibility. The next result was given by [80] (1984), it gives sufficient conditions for what

later in [96] (2005) called Pareto reducibility.

Corollary 4.19. Let X be a convex subset of a real linear space and let f = (f1, · · · , fp) : X → Rp.
If f1, · · · , fp are convex, then the problem

(
PIp
)

is Pareto reducible.



CHAPTER 5

Duality Assertions for Extended
Approximation Problems

Many authors along several decades have studied multiobjective approximation problems, and used

duality as an effective tool not only in the theory of scalar but also for multiobjective approximation

problems, see [12, 49, 59, 71, 73, 106, 108, 109, 110, 111, 112]. In particular, we focus on Lagrange

duality approaches like in [49, 71, 73, 106, 108]. The idea of Lagrange duality is already introduced

in Section 3.3. Duality assertions for approximation problems based on conjugation are derived in

[109, 110, 112].

In this chapter, we describe the extended multiobjective location and approximation problem (P)

which is introduced in Section 2.4, where we discussed also the difference to the known formulations

in the literature (such as [49] or [112]). We construct the dual problem of the problem (P) with

this specific structure and prove the duality assertions according to Section 3.3. As such, we work

with scalarization methods in order to do that. In the first part of this chapter we therefore introduce

the dual problem of a scalar approximation and control problem, which is already known in the

literature mentioned above. Then we use Lagrange duality similar to [49] and [106] in order to

prove weak, strong direct, and converse duality assertions. The weak duality statement is easy to

prove, while proving strong duality statements requires some additional assumptions as we see in

Section 5.2. In the third part of this chapter, we comprehensively study a special case of (P), namely

a multiobjective location problem. We use geometric characterizations of the set of minimal solution

of the multiobjective location problem, especially that is given in [46], in order to derive new results,

which characterize the set of weakly minimal solutions of the multiobjective location problem by

using Pareto reducibility (see [96, 99]). These results are used to derive implementable decomposition

algorithms in Chapter 6.

In order to describe the extended multiobjective location and approximation problem (P), we consider

the following assumptions:

(A1) Let (X, ‖ · ‖X), (U, ‖ · ‖U ) be reflexive Banach spaces, which are partially ordered by the

45
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nontrivial, convex, pointed and closed cones KX ⊂ X , KU ⊂ U . The corresponding dual cones

are K∗X , K∗U .

(A2) Define Ip := {1, · · · , p}. Let (V, ‖ · ‖(i)) be a normed space and let ai ∈ V , αi ∈ R+ and

βi ≥ 1 for each i ∈ Ip. Furthermore, let b ∈ U .

(A3) Consider the operators Ai ∈ L(X,V ) for i ∈ Ip, B ∈ L(X,U) and c ∈ L(X,R).

The reflexivity of the spaces X and U is needed in order to prove strong duality statements for extended

multiobjective approximation problems by applying the main duality theorem (see Theorem 3.37).

In the following section, we introduce a scalar approximation problem under the previous assumptions.

Furthermore, we formulate a corresponding dual problem and take a look on a very well-known special

case of it, which are both given in the literature mentioned above.

5.1 Duality Assertions for Scalar Approximation Problems

Under the assumptions (A1), (A2) and (A3) we consider the following scalar approximation problem

(P1) (compare with (2.3))

(P1)

 Minimize c(x) +
p∑
i=1

αi‖Ai(x)− ai‖βi(i)

subject to x ∈ D.
(5.1)

The feasible set D is defined corresponding to the assumptions (A1), (A2) and (A3) as follows

D := {x ∈ X | x ∈ KX , B(x)− b ∈ KU}.

Consider a special case of (P1) by taking βi = 1 in (5.1) and the same norm ‖ · ‖(i) = ‖ · ‖ in (5.1) for

all i ∈ Ip. For this special case of (P1) the dual problem is given in [49] as Maximize
p∑
i=1

αiyi(a
i) + z(b)

subject to (y, z) ∈ D∗,
(5.2)

with

D∗ := {(y, z) | y = (y1, · · · , yp), yi ∈ L(V,R), αi‖yi‖∗ ≤ αi

z ∈ K∗U , c−
p∑
i=1

αiA
∗
i yi −B∗z ∈ K∗X}. (5.3)

We get from Theorem 3.37 that for the primal problem (5.1) and the dual problem (5.2) weak, and

under certain additional assumptions, strong duality assertions hold (see [49, 50]).
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The Fermat-Weber-Problem

If we additionally consider the special case D = V = X , c = 0 and Ai = I for i ∈ Ip, we obtain the

Fermat-Weber-Problem introduced in (2.1) Minimize
p∑
i=1

αi‖x− ai‖

subject to x ∈ X,

with the corresponding dual problem
Maximize

p∑
i=1

αiyi(a
i)

subject to yi ∈ X∗, ‖yi‖∗ ≤ 1, i ∈ Ip,
p∑
i=1

αiyi = 0.

We now focus on multiobjective problems and introduce the class of extended multiobjective location

and approximation problems.

5.2 Duality Assertions for Extended Multiobjective Approximation
Problems

In this Section, we introduce in detail the class of multiobjective location and approximation problems

given in (2.5). We minimize a vector-valued objective function, where the first p components are given

by distances to the existing facilities. Furthermore, the vector-valued objective function also containsm

additional components representing occurring cost functions. We formulate its dual problem and prove

the corresponding duality assertions. To achieve this, we use the general Lagrange duality principle

introduced in Section 3.3.

The Primal Problem

In addition to the assumptions (A1), (A2) and (A3) we suppose

(A4) C ∈ L(X,Rm) is a vector-valued cost function with Cp+j ∈ L(X,R) for j ∈ {1, · · · ,m} =:

Im:

C =


Cp+1

· · ·
Cp+m

 .

(A5) We assume that K ⊂ Rp+m is a nontrivial, convex, pointed and closed cone with Rp+m+ ⊂ K
(for example see Figure 3.4) and let K∗ be the corresponding dual cone of K with intK∗ 6= ∅.
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Taking into account the assumptions (A1) – (A5) we introduce the primal vector-valued objective

function f : X → Rp+m with

f(x) :=



α1‖A1(x)− a1‖β11
· · ·

αp‖Ap(x)− ap‖βpp
Cp+1(x)

· · ·
Cp+m(x)


(5.4)

and the primal feasible set

A = {x ∈ X | x ∈ KX , B(x)− b ∈ KU} . (5.5)

The extended multiobjective location and approximation problem we study in this section is given by

(P) EffMin (f [A],K). (5.6)

In order to applying the duality principle described in Section 3.3, we introduce a Lagrange function in

a generalized form.

For x ∈ X and Y = (Y 1, · · · , Y p) with Y i ∈ L(V,R), i ∈ Ip, λ∗ ∈ intK∗, u∗ ∈ L(U,R) we define

Lλ∗(x, Y, u
∗) := λ∗



α1
β1
Y 1(a1 −A1(x))

· · ·
αp
βp
Y p(ap −Ap(x))

Cp+1(x)

· · ·
Cp+m(x)


+ u∗(b−B(x)). (5.7)

Remark 5.1.

1. In difference to the classical Lagrange function (see for example [13]), in (5.7) the objective

function of the primal problem is not involved.

2. We observe from (5.7) that the Lagrange function is linear in x whenever Y, u∗ are fixed, linear

in Y whenever x, u∗ are fixed and linear in u∗ whenever x, Y are fixed.
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Construction of the Dual Problem to (P)

We now formulate the dual problem to the problem (P). We begin with the dual objective function

f∗ : B → Rp+m defined for (Y, Z) ∈ B by

f∗(Y, Z) :=



α1
β1
Y 1(a1)

· · ·
αp
βp
Y p(ap)

0

· · ·
0


+ Z(b), (5.8)

where Z ∈ L(U,Rp+m). The dual feasible set is given by

B = {(Y,Z) | Y = (Y 1, . . . , Y p) : Y i ∈ L(V,R), Z ∈ L(U,Rp+m),

αi‖Y i‖(i)∗ = βiαi‖ai −Ai(x)‖βi−1(i) ∀i = 1, · · · , p,

∃λ∗ ∈ intK∗ :
m∑
j=1

λ∗p+jCp+j −
p∑
i=1

λ∗i
αi
βi
A∗iY

i − (Z(B))∗λ∗ ∈ K∗X

where Z∗λ∗ ∈ K∗U}, (5.9)

where ‖ · ‖(i∗) is the dual norm of the norm ‖ · ‖(i), and (ZA)∗ is, in general, an adjoint operator.

The dual problem of the multiobjective approximation problem (P) is given by

(D) EffMax (f∗[B],K). (5.10)

Special Cases of (P)

The following special cases can be taken from the extended multiobjective location and approximation

problem (P):

1. If α1 = . . . = αp = 0, then the problem (P) is a multiobjective linear optimization problem (a

multiobjective linear program). We additionally consider m = 1, then we have a scalar linear

optimization problem.

2. If Cp+j = 0 for j ∈ Im, then by eliminating the trivial criteria we have a multiobjective

approximation problem.

3. If Cp+j = 0 (and the trivial criteria are eliminated), βi = 1 and Ai = I (certainly when X = V )

for each i ∈ Ip, we get the well-known multiobjective location problem, which is studied

comprehensively in Section 5.3.
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4. If Ai = I and βi = 1 for each i ∈ Ip, we have an extended multiobjective location problem.

Decomposition algorithms for this special case are derived in Section 6.2.

In order to prove the duality statements for (P) and (D), we use a scalarization by means of linear

continuous functionals and Theorem 3.37 taking into account the Lagrange function (5.7).

Since we use a scalarization in the proof of the duality statements, it is convenient to define a scalarized

form of the dual feasible set and of the elements of the image space by introducing the following sets.

For λ∗ ∈ intK∗:

Bλ∗ := {(Y, u∗) | Y = (Y 1, . . . , Y p) : Y i ∈ L(V,R), u∗ ∈ L(U,R),

αi‖Y i‖(i)∗ = βiαi‖ai −Ai(x)‖βi−1(i) , ∀ i = 1, · · · , p,
m∑
j=1

λ∗p+jCp+j −
p∑
i=1

λ∗i
αi
βi
A∗iY

i −B∗(u∗) ∈ K∗X with u∗ ∈ K∗U}. (5.11)

D1 := {d ∈ Rp+m | ∃ λ∗ ∈ intK∗, ∃ (Y, u∗) ∈ Bλ∗ : λ∗d =

p∑
i=1

λ∗i
αi
βi
Y i(ai) + u∗(b)} (5.12)

D2 := {d ∈ Rp+m | ∃ (Y, Z) ∈ B : d =



α1
β1
Y 1(a1)

· · ·
αp
βp
Y p(ap)

0

· · ·
0


+ Z(b) }. (5.13)

Furthermore, for more abbreviation we denote

Y := {Y = (Y 1, . . . , Y p) | Y i ∈ L(V,R) with αi‖Y i‖(i)∗ = βiαi‖ai −Ai(x)‖βi−1(i) }. (5.14)

The next step is to compute both the supremum and the infimum of the Lagrange function in (5.7),

which helps by proving the duality assertions.

Note the use of Lemma 3.33 for computing the supremum of the Lagrange function.

Lemma 5.2. For every λ∗ ∈ intK∗ we have

sup
u∗∈K∗U
Y ∈Y

Lλ∗(x, Y, u
∗) =


p∑
i=1

λ∗iαi‖ai −Ai(x)‖βi(i) +
m∑
j=1

λ∗p+jCp+j(x) if B(x)− b ∈ KU

+∞ otherwise.
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Proof. We have

sup
u∗∈K∗U

u∗(b−B(x)) =

{
0 if B(x)− b ∈ KU

+∞ otherwise.

Furthermore, we have according to the Hahn-Banach-Theorem (see for example [50, Theorem 5.1])

and considering the subdifferential of the norm in Lemma 3.33 for i = 1, · · · , p

sup
Y ∈Y

Y i(ai −Ai(x)) = βi ‖ai −Ai(x)‖βi(i).

This leads to

sup
u∗∈K∗U
Y ∈Y

Lλ∗(x, Y, u
∗) =

= sup
u∗∈K∗U
Y ∈Y

 p∑
i=1

λ∗i
αi
βi
Y i(ai −Ai(x)) +

m∑
j=1

λ∗p+jCp+j(x) + u∗(b−B(x))


=

p∑
i=1

λ∗i
αi
βi

sup
Y ∈Y

Y i(ai −Ai(x)) +

m∑
j=1

λ∗p+jCp+j(x) + sup
u∗∈K∗U

u∗(b−B(x))

=


p∑
i=1

λ∗iαi‖ai −Ai(x)‖βi(i) +
m∑
j=1

λ∗p+jCp+j(x) if B(x)− b ∈ KU

+∞ otherwise.

Now we compute the infimum of the Lagrange function, which we use for proving the weak duality

statement.

Lemma 5.3. For every λ∗ ∈ intK∗ we have

inf
x∈KX

Lλ∗(x, Y, u
∗) =

=


p∑
i=1

λ∗i
αi
βi
Y i(ai) + u∗(b) if

m∑
j=1

λ∗p+jCp+j −
p∑
i=1

λ∗i
αi
βi
A∗iY

i −B∗(u∗) ∈ K∗X

−∞ otherwise.
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Proof.

inf
x∈KX

Lλ∗(x, Y, u
∗) =

= inf
x∈KX

 p∑
i=1

λ∗i
αi
βi
Y i(ai −Ai(x)) +

m∑
j=1

λ∗p+jCp+j(x) + u∗(b−B(x))


= inf

x∈KX

 p∑
i=1

λ∗i
αi
βi
Y i(ai) + u∗(b) +

m∑
j=1

λ∗p+jCp+j(x)−
p∑
i=1

λ∗i
αi
βi

[A∗iY
i](x)− [B∗(u∗)](x)


=

p∑
i=1

λ∗i
αi
βi
Y i(ai) + u∗(b) + inf

x∈KX

 m∑
j=1

λ∗p+jCp+j −
p∑
i=1

λ∗i
αi
βi
A∗iY

i −B∗(u∗)

 (x)

=


p∑
i=1

λ∗i
αi
βi
Y i(ai) + u∗(b) if

m∑
j=1

λ∗p+jCp+j −
p∑
i=1

λ∗i
αi
βi
A∗iY

i −B∗(u∗) ∈ K∗X

−∞ otherwise.

By computing the supremum and the infimum of the Lagrange function, we observe that they coincide

with the scalarized form of the primal and the dual objective functions respectively.

Now we show the relationship between D1 and D2, defined in (5.12) and (5.13), respectively.

Theorem 5.4. It holds D2 ⊂ D1.

Proof. Let d0 ∈ D2 : d0 ∈ Rp+m, ∃(Y, Z) ∈ B with

d0 −



α1
β1
Y 1(a1)

· · ·
αp
βp
Y p(ap)

0

· · ·
0


= Z(b). (5.15)

According to (5.9) we see that (Y, Z) ∈ B means

∃λ∗ ∈ intK∗ :
m∑
j=1

λ∗p+jCp+j −
p∑
i=1

λ∗i
αi
βi
A∗iY

i − (Z(B))∗λ∗ ∈ K∗X , (5.16)

αi‖Y i‖(i)∗ = βiαi‖ai − Ai(x)‖βi−1(i) and Z∗λ∗ ∈ K∗U . We see that Z∗λ∗ ∈ L(U,R). Let us now set
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u∗ := (Z∗λ∗) ∈ K∗U , so we get λ∗(Zb) = u∗(b), with (5.15) we get

λ∗(d0 −



α1
β1
Y 1(a1)

· · ·
αp
βp
Y p(ap)

0

· · ·
0


) = u∗(b)

λ∗d0 =

p∑
i=1

λ∗i
αi
βi
Y i(ai) + u∗(b). (5.17)

Furthermore, from (5.16) with u∗ := (Z∗λ∗) we get

m∑
j=1

λ∗p+jCp+j −
p∑
i=1

λ∗i
αi
βi
A∗iY

i −B∗(u∗) ∈ K∗X with u∗ ∈ K∗U (5.18)

⇒ (Y, u∗) ∈ Bλ∗

so from (5.17) and (5.18) we find that d0 ∈ D1. Thus D2 ⊂ D1.

For proving the other direction, namely D1 ⊂ D2, we assume that b 6= 0 in (P). This assumption

depends on the next theorem.

Theorem 5.5 ([73, Theorem 2.3]). Let X and Y be real separated locally convex linear spaces, and

let the elements x ∈ X,x∗ ∈ X∗, y ∈ Y and y∗ ∈ Y ∗ be given.

(a) If there is a linear map T : X → Y with y = T (x) and x∗ = T ∗(y∗), then y∗(y) = x∗(x).

(b) If x 6= 0X , y
∗ 6= 0Y ∗ and y∗(y) = x∗(x), then there is a continuous linear map T : X → Y

with y = T (x) and x∗ = T ∗(y∗).

Now under the assumption b 6= 0 we prove the second inclusion between D1, D2.

Theorem 5.6. If b 6= 0 then D1 ⊂ D2.

Proof. Let d ∈ D1. This means d ∈ Rp+m and there exist λ∗ ∈ intK∗, and (Y, u∗) ∈ Bλ∗ such that

λ∗d =

p∑
i=1

λ∗i
αi
βi
Y i(ai) + u∗(b) ⇒ λ∗(d−



α1
β1
Y 1(a1)

· · ·
αp
βp
Y p(ap)

0

· · ·
0


) = u∗(b).
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We set

y = d−



α1
β1
Y 1(a1)

· · ·
αp
βp
Y p(ap)

0

· · ·
0


⇒ λ∗(y) = u∗(b).

Since b 6= 0 and according to Theorem 5.5 (b):

∃Z ∈ (U,Rp+m) with y = Z(b), u∗ = Z∗λ∗. (5.19)

This implies that

d−



α1
β1
Y 1(a1)

· · ·
αp
βp
Y p(ap)

0

· · ·
0


= Zb ⇒ d =



α1
β1
Y 1(a1)

· · ·
αp
βp
Y p(ap)

0

· · ·
0


+ Zb.

Now we prove that (Y,Z) ∈ B. From the definition of D1 we get that there exists some (Y, u∗) ∈ Bλ∗ .
This means that there exists u∗ ∈ L(U,R) with u∗ ∈ K∗U , αi‖Y i‖(i)∗ = βiαi‖ai − Ai(x)‖βi−1(i) and

there exists λ∗ ∈ intK∗ with

m∑
j=1

λ∗p+jCp+j −
p∑
i=1

λ∗i
αi
βi
A∗iY

i −B∗(u∗) ∈ K∗X .

Since u∗ = Z∗λ∗ from (5.19) we get

m∑
j=1

λ∗p+jCp+j −
p∑
i=1

λ∗i
αi
βi
A∗iY

i − (Z(B))∗λ∗ ∈ K∗X .

Thus (Y,Z) ∈ B and this leads to d ∈ D2.

Theorems 5.4 and 5.6 yield that D1 = D2, which confirm the representation of the elements of the

image space and its scalarized forms.

In the following we show the duality assertions for (P) and (D) starting with the weak duality. Proving

the duality assertions is similar to [49, 106], where we generalize and modify these results for our

model.
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Weak Duality

First, we prove the weak duality theorem for (P) and (D). It can be easily proved without any

convexity assumptions.

Theorem 5.7 (Weak Duality for (P) and (D)).

f [A] ∩ (f∗ [B]− (K \ {0})) = ∅. (5.20)

Proof. Let λ∗ ∈ intK∗, and let x be an arbitrary fixed element from A.

λ∗ (f(x)) ≥ inf
x∈A

λ∗ (f(x))

= inf
x∈A

 p∑
i=1

λ∗iαi‖ai −Ai(x)‖βi(i) +

p+m∑
j=p+1

λ∗jCj(x)


= inf

x∈KX
sup

u∗∈K∗U
Y ∈Y

Lλ∗(x, Y, u
∗) (see Lemma 5.2)

= inf
x∈KX

sup
u∗∈K∗U
Y ∈Y

 p∑
i=1

λ∗i
αi
βi
Y i(ai −Ai(x)) +

m∑
j=1

λ∗p+jCp+j(x) + u∗(b−B(x))


≥ inf

x∈KX

 p∑
i=1

λ∗i
αi
βi
Y i(ai −Ai(x)) +

m∑
j=1

λ∗p+jCp+j(x) + u∗(b−B(x))

 (∀u∗ ∈ K∗U , ∀Y ∈ Y)

=

p∑
i=1

λ∗i
αi
βi
Y i(ai) + u∗(b) + inf

x∈KX

[( m∑
j=1

λ∗p+jCp+j −
p∑
i=1

λ∗i
αi
βi
A∗iY

i −B∗(u∗)︸ ︷︷ ︸
∈K∗X

)
(x)
]

=


p∑
i=1

λ∗i
αi
βi
Y i(ai) + u∗(b) if (Y, u∗) ∈ Bλ∗

−∞ otherwise.

Taking into account the definition of D1 we see that:

∀d ∈ D1, ∀x ∈ A : λ∗f(x) ≥ λ∗d. (5.21)

Assuming that ∃ x ∈ A, ∃ d ∈ D1 : f(x) ∈ d− (K \ {0})

⇒ λ∗f(x) < λ∗d because λ∗ ∈ intK∗

which contradicts (5.21).

So f [A] ∩ (D1 − (K \ {0})) = ∅

⇒ f [A] ∩ (D2 − (K \ {0})) = ∅ (D2 ⊂ D1)

⇒ f [A] ∩ (f∗ [B]− (K \ {0})) = ∅ (definition of D2).
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Strong Duality

In order to prove the strong duality between (P) and (D) applying Theorem 3.37 we need additional

assumptions. Some of these assumptions (especially (C5) and (C6) in Theorem 3.37) are hard to prove,

therefore we show in the next two propositions sufficient conditions (generalized Slater conditions) for

(C5) and (C6) in Theorem 3.37.

Proposition 5.8. Let λ∗ ∈ intK∗ and assume that there exists (Ȳ , Z̄) ∈ B with

m∑
j=1

λ∗p+jCp+j −
p∑
i=1

αi
βi
λ∗iA

∗
i Ȳi − (Z̄(B))∗λ∗ ∈ intK∗X .

Put ū∗ := Z̄∗λ∗. Then Lλ∗(x, Ȳ , ū∗) −→ +∞ for ‖x‖X −→ +∞, where x ∈ KX , i.e., the

condition (C5) in Theorem 3.37 is fulfilled.

Proof. We have
m∑
j=1

λ∗p+jCp+j −
p∑
i=1

αi
βi
λ∗iA

∗
i Ȳi − (Z̄(B))∗λ∗ ∈ intK∗X . For ū∗ = Z̄∗λ∗, we can find

γ > 0 with

(
m∑
j=1

λ∗p+jCp+j −
p∑
i=1

αi
βi
λ∗iA

∗
i Ȳi −B∗(ū∗))(x) ≥ γ, ∀x ∈ KX with ‖x‖X = 1.

We consider the sequence
{
xi
}

: ‖xi‖X −→ +∞ (i −→ +∞) and then we set

x̃i :=
1

‖xi‖X
xi ⇒ ‖x̃i‖X = 1.

Lλ∗(x
i, Ȳ , ū∗) = (

p+m∑
j=p+1

λ∗jCj −
p∑
i=1

λ∗i
αi
βi
A∗i Ȳ

i −B∗(ū∗))(xi) +

p∑
i=1

λ∗i
αi
βi
Ȳ i(ai) + ū∗(b)

= ‖xi‖X(

p+m∑
j=p+1

λ∗jCj −
p∑
i=1

λ∗i
αi
βi
A∗i Ȳ

i −B∗(ū∗))(x̃i) +

p∑
i=1

λ∗i
αi
βi
Ȳ i(ai) + ū∗(b)

≥ ‖xi‖γ +

p∑
i=1

λ∗i
αi
βi
Ȳ i(ai) + ū∗(b) −→ +∞ for ‖xi‖ −→ +∞

We infer that (C5) in Theorem 3.37 is fulfilled.

The following proposition for the condition (C6) in Theorem 3.37.

Proposition 5.9. Let λ∗ ∈ intK∗ and assume that there exists x̄ ∈ KX with B(x̄)− b ∈ intKU .

Then it holds that −Lλ∗(x̄, Y, u∗) −→ +∞ for ‖(Y, u∗)‖ −→ +∞, where (Y, u∗) ∈ Bλ∗ , i.e., the

condition (C6) in Theorem 3.37 is fulfilled.
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Proof. According to the assumption there exists x̄ : B(x̄) − b ∈ intKU , then we can find δ > 0 :

u∗(b−B(x̄)) ≤ −δ for all u∗ ∈ K∗U and ‖u∗‖∗ = 1.

We take an arbitrary sequence
{

(Y k, u∗k)
}
∈ Bλ∗ with ‖(Y k, u∗k)‖∗ −→ +∞.

Considering αi‖Y i‖(i)∗ = βiαi‖ai −Ai(x)‖βi−1(i) the next two statements are fulfilled:

{‖u∗k‖}∗ −→ +∞ and
p∑
i=1

λ∗i
αi
βi
Y k
i (ai −Aix̄) is bounded.

We set also ũ∗k = 1
‖u∗k‖∗

u∗k ⇒ ‖ũ∗k‖∗ = 1, which leads to

u∗k(b−B(x̄)) = ‖u∗k‖∗ũ
∗
k(b−B(x̄)) ≤ −‖u∗k‖∗δ.

Lλ∗(x̄, Y
k, u∗k) =

p∑
i=1

λ∗i
αi
βi
Y k
i (ai −Aix̄) +

m∑
j=1

λ∗j+pCj+p(x̄) + u∗k(b−B(x̄))

≤
p∑
i=1

λ∗i
αi
βi
Y k
i (ai −Aix̄) +

m∑
j=1

λ∗j+pCj+p(x̄)− δ‖u∗k‖∗

Hence, Lλ∗(x̄, Y k, u∗k) −→ −∞when ‖(Y k, u∗k)‖∗ −→ +∞, i.e., the condition (C6) in Theorem 3.37

is fulfilled.

Under certain assumptions supposed in Propositions 5.8 and 5.9, the conditions (C5) and (C6) in

Theorem 3.37 are fulfilled. We can therefore apply Theorem 3.37 in order to prove the strong direct

duality assertion for (P) and (D), where we consider properly efficient elements f(x0) of (P) in the

sense of Definition 4.5, i.e., f(x0) ∈ EffpSch(f [A],K).

Theorem 5.10 (Strong Direct Duality for (P) and (D)). Assume that

• b 6= 0.

• For every λ∗ ∈ intK∗, there exists (Y 0, Z0) ∈ B with

m∑
j=1

λ∗p+jCp+j −
p∑
i=1

αi
βi
λ∗iA

∗
iY

0
i − (Z0(B))∗λ∗ ∈ intK∗X .

Then for every f(x0) ∈ EffpSch(f [A],K) there exists an element f∗(Y 0, Z0) ∈ EffMax (f∗[B],K)

with

f(x0) = f∗(Y 0, Z0). (5.22)

Proof. f(x0) is a properly efficient solution of (P) in the sense of Definition 4.5. f(x0) ∈ EffpSch(f [A],K),

this means that

∃ λ∗ ∈ intK∗ : λ∗(f(x0)) = inf
x∈A

λ∗(f(x))

= inf
x∈A

sup
u∗∈K∗U
Y ∈Y

Lλ∗(x, Y, u
∗)
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by taking into account Lemma 5.2. Since (C1) – (C4) and (C6) are fulfilled (see Proposition 5.9), then

according to the strong duality assertion in Theorem 3.37 there exists (Y 0, u∗0) ∈ Bλ∗ such that:

λ∗(f(x0)) =

p∑
i=1

λ∗i
αi
βi
Y 0
i (ai) + u∗0(b),

this means that f(x0) ∈ D1 and since b 6= 0 ⇒ f(x0) ∈ D2. So there exists (Y 0, Z0) ∈ B with

f(x0) =



α1
β1
Y 0
1 (a1)

· · ·
αp
βp
Y 0
p (ap)

0
...

0


+ Z0b = f∗(Y 0, Z0).

According to weak duality (Theorem 5.7) we have f [A] ∩ (f∗ [B]−K\{0}) = ∅, such that we get

for f(x0) = f∗(Y 0, Z0) (
f∗(Y 0, Z0) + (K\{0})

)
∩ f∗ [B] = ∅.

This means

f(x0) = f∗(Y 0, Z0) ∈ EffMax (f∗ [B] ,K).

For proving the converse duality, we first give the next helping result.

Lemma 5.11. d0 ∈ EffMax (D1,K) if and only if λ∗d(d
0) ≥ λ∗d(d) for all d ∈ D1, where λ∗d corre-

sponds to d according to the definition of Bλ∗d .

Proof. (a) Suppose that d0 ∈ EffMax (D1,K). If d′ ∈ d0 +K \ {0} (leading to λ∗(d′) > λ∗(d0) =∑p
i=1 λ

∗ αi
βi
Y i(ai) + u∗(b), d0 ∈ D1), then d′ /∈ D1. So, for every d ∈ D1 and all λ∗d ∈ intK∗

we have

λ∗d(d
0) ≥ λ∗d(d) =

p∑
i=1

λ∗d,i
αi
βi
Y i(ai) + u∗(b),

for every (Y, u∗) ∈ Bλ∗d .

(b) Now let d0 ∈ D1, but d0 ∈ EffMax (D1,K). Then there exists d ∈ D1 with d ∈ d0 +K \ {0}.
Then

∀λ∗ ∈ intK∗ : λ∗(d0) < λ∗(d),

which contradicts our assumption.
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Theorem 5.12 (Strong Converse Duality for (P) and (D)). Assume that

1. b 6= 0 and intK 6= ∅.

2. f [A] +K is closed.

3. There exists x0 ∈ A with B(x0)− b ∈ intKU .

4. For every λ∗ ∈ intK∗ with inf{λ∗(f(x)) | x ∈ A} > −∞, there exists (Y 0, Z0) ∈ B with

m∑
j=1

λ∗p+jCp+j −
p∑
i=1

αi
βi
λ∗iA

∗
iY

0
i − (Z0(B))∗λ∗ ∈ intK∗X .

5. Furthermore, for every λ∗ ∈ intK∗ with inf{λ∗(f(x)) | x ∈ A} > −∞, there exists xλ ∈ A
with inf{λ∗(f(x)) | x ∈ A} = λ∗(f(xλ)).

Then for every f∗(Y 0, Z0) ∈ EffMax (f∗[B],K) there is an element f(x0) ∈ EffpSch(f [A],K) with

f∗(Y 0, Z0) = f(x0). (5.23)

Proof. Let d0 := f∗(Y 0, Z0) ∈ EffMax (f∗[B],K). That means d0 is a (maximal) efficient element

of f∗[B]. Then it is also a (maximal) efficient element of D2, and since b 6= 0 then d0 is a (maximal)

efficient element of D1 too. This yields according to Lemma 5.11 λ∗d(d
0) ≥ λ∗d(d) for all d ∈ D1 and

all λ∗d ∈ intK∗. Then we can state that d0 := f∗(Y 0, Z0) ∈ f [A] +K, otherwise

if d0 /∈ f [A] +K, since f [A] +K is closed and convex we get according to Theorem 3.23 that

there exists λ∗1 ∈ Rp+m \ {0} and a real number γ with

∀w ∈ f [A] +K : λ∗1(d
0) < γ ≤ λ∗1(w). (5.24)

We can conclude that λ∗1 ∈ K∗ \ {0} , because of (5.24) and the cone properties of K.

Furthermore, from (5.21) we get for d0 ∈ D1 and for all λ∗2 ∈ intK∗ that

∀w ∈ f [A] +K : λ∗2(d
0) ≤ λ∗2(w). (5.25)

Taking α ∈ (0, 1), we consider λ∗α := αλ∗2 + (1− α)λ∗1. Then it holds that λ∗α ∈ intK∗.

By applying λ∗α to d0 we get

λ∗α(d0) = αλ∗2(d
0) + (1− α)λ∗1(d

0)

< αλ∗2(f(x)) + (1− α)λ∗1(f(x)) = λ∗α(f(x)) , ∀x ∈ A (5.26)

The inequality (5.26) is directly concluded from (5.24), (5.25) and from the fact that 0 ∈ K. This

implies that inf{λ∗α(f(x)) | x ∈ A} > −∞ for λ∗α ∈ intK∗. Then according to Assumption 5.

there exists an element xλ ∈ A with

inf{λ∗α(f(x)) | x ∈ A} = λ∗α(f(xλ)). (5.27)
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From (5.26) and (5.27) we get that

λ∗α(d0) < λ∗α(f(xλ)). (5.28)

Furthermore, from the strong duality we get that

f(xλ) ∈ D1

with the corresponding λ∗α. Then by Lemma 5.11

λ∗α

(
f(xλ)

)
≤ λ∗α(d0),

which contradicts (5.28).

Thus, d0 = f∗(Y 0, Z0) ∈ f [A] +K, that means there exists x0 ∈ A with f∗(Y 0, Z0) ∈ f(x0) +K,

i.e.,

f(x0) ∈ f∗(Y 0, Z0)−K.

On the other hand, weak duality (Theorem 5.7) yields that

f(x0) /∈ f∗(Y 0, Z0)− (K \ {0}). (5.29)

Hence,

f∗(Y 0, Z0) = f(x0). (5.30)

Furthermore, from (5.21) and (5.30) we obtain for λ̄∗ ∈ intK∗ (which corresponds to

(Y 0, Z0) ∈ B):

∀x ∈ A : λ̄∗(f(x0)) = λ̄∗(f∗(Y 0, Z0)) ≤ λ̄∗(f(x)).

Then according to Definition 4.5 we get f(x0) ∈ EffpSch(f [A],K).

Linearization of the Multiobjective Approximation Problem (P)

It will be very interesting if the extended multiobjective approximation problem (P) can also be solved

as a multiobjective linear problem. This would enable us to make use of the well-known methods of

the widely developed theory of multiobjective linear optimization.

In the following, we show that this is possible for some special cases of (P), where block norms are

used in the objective function, see also [72, 89].

Block norms are norms with polyhedral unit balls, for example the Manhattan norm and the maximum

norm are block norms. It is also convenient to mention that every norm can be described through its

unit ball and conversely. Therefore we describe the block norm through the structure of its polyhedral
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unit ball in this approach. A polyhedral set can be characterized as the intersection of closed half spaces

or as the convex hull of its extreme points. For a better overview see for example [100].

We take the following special case: βi = 1 and αi = 1 for i ∈ Ip = {1, · · · , p}, x ∈ Rn1 , ai ∈
Rn2 , Ai ∈ L(Rn1 ,Rn2).

f(x) =



‖A1(x)− a1‖1
· · ·

‖Ap(x)− ap‖p
Cp+1(x)

· · ·
Cp+m(x)


(5.31)

Furthermore, for each i ∈ Ip let the norms ‖ · ‖i : Rn2 → R in (5.31) be block norms described through

their unit balls Bi. These unit balls Bi are described through their extremal points bi1, · · · , biqi ∈ Rn2

by

Bi = {y ∈ Rn2 | 〈bij , y〉 ≤ γij , γij ∈ R, j = 1, · · · , qi}. (5.32)

The corresponding dual norms ‖ · ‖i∗ are also block norms described through their unit balls B∗i , which

are again described through their extremal points b̃i1, · · · , b̃iq̃i ∈ Rn2:

B∗i = {y ∈ Rn2 | 〈b̃ij , y〉 ≤ γ̃ij , γ̃ij ∈ R, j = 1, · · · , q̃i} (5.33)

The multiobjective location and approximation problem with the objective function described in (5.31)

can be transformed into a multiobjective linear program described as follows:

(PL )

{
Minimize FL (z) := (t1, · · · , tp, tp+1, · · · , tp+m) : Rn3 → Rp+m

subject to z ∈ A ,
(5.34)

for some feasible set A , which will be described next together with n3.

The variables t1, · · · , tp are real numbers, for which the following inequalities hold

‖Ap(x)− a1‖1 ≤ t
1

· · ·
‖Ap(x)− ap‖p ≤ t

p.

(5.35)

For tp+1, · · · , tp+m it hold that tp+j = Cp+j(x), for each j ∈ Im.

The inequalities (5.35) are restrictions for the problem (PL ). However, these restrictions are not

linear. Our next aim, is to reformulate the restrictions (5.35) in the linear form using the dual norms.

We know from the definition of the dual norm that

‖x∗‖∗ = sup
‖x‖≤1

x∗(x) or ‖x‖ = sup
‖x∗‖∗≤1

x(x∗)
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Applying this on (5.35) we get the following p inequalities:

sup
‖Y i∗‖i∗≤1

Y i∗(Ai(x)− ai) ≤ ti, i ∈ Ip, (5.36)

where Y i∗ ∈ Rn2 . In order to get rid of the supremum in (5.36), the number of the inequalities is

doubled to 2 · p as follows

Y i∗(Ai(x)− ai) ≤ ti (5.37a)

‖Y i∗‖i∗ ≤ 1 (5.37b)

The inequalities (5.37a) are now linear. The inequalities (5.37b) mean that Y i∗ ∈ B∗i for i ∈ Ip. Thus,

from (5.33) the variables Y i∗ fulfill the inequality system:

Y i∗(b̃ij) ≤ γ̃ij , (5.38)

where γ̃ij ∈ R for i = 1, · · · , p and j = 1, · · · , q̃i.
Now all the restrictions Y i∗(Ai(x)− ai) ≤ ti, Y i∗(b̃ij) ≤ γ̃ij for i = 1, · · · , p and j = 1, · · · , q̃i are

linear.

Let n3 := n1 + p · (n2 + 1). Then the set A can be described as

A = {z ∈ Rn3 | z = (x, t1, · · · , tp, Y 1∗, · · · , Y p∗), with x ∈ Rn1 , t1, · · · , tp ∈ R,

Y 1∗, · · · , Y p∗ ∈ Rn2 ,∀ i = 1, · · · , p, ∀ j = 1, · · · , q̃i :

Y i∗(Ai(x)− ai) ≤ ti, Y i∗(b̃ij) ≤ γ̃ij}. (5.39)

We conclude that the problem (P) is able to be linearized in the special case described above (with

βi = 1 and block norms), i.e., it is possible to transform the problem (P) to a multiobjective linear

problem (PL ) (given in (5.34)) with n1 + p · (n2 + 1) = n3 variables, and p +
∑p

i=1 q̃i linear

restrictions.

Among the well known methods for solving multiobjective linear problems, we suggest the online

solver BENSOLVE. BENSOLVE is an open solver project based on Benson’s outer approximation

algorithm:

http://www.bensolve.org/

Benson’s algorithms and its extensions can be found in [83].
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5.3 Duality-based Characterizations of Solutions of Multiobjective
Location Problems

The purpose of this section is to discuss the characterizations of solutions of Multiobjective Location

Problems. If we observe the multiobjective location problems described below, we note that they are

also a special case of the problem (P) introduced in (5.6). We focus on the solutions of multiobjective

location problems in the original space, since it is more convenient, due to the nature of location

problems, to derive algorithms for computing the set of optimal solutions in the original space in

difference to the image approaches, for example Benson’s algorithm. Thus we study the sets of minimal

and weakly minimal solutions of such multiobjective location problems.

In this section, first using duality assertions we give the characterizations obtained in [46] for minimal

solutions of multiobjective location problems. Then using reducibility results we give a new characteri-

zation of weakly minimal solutions of multiobjective location problems [3]. These results are used in

Chapter 6 in order to derive implementable algorithms for solving the extended multiobjective location

problems through decomposition.

A multiobjective location problem, which is a special case of (P) from Section 5.2, can be described

as the following: Let p ≥ 2, we consider the existing facilities

a1 = (a11, a
1
2), · · · , ap = (ap1, a

p
2) ∈ R2,

and denote Ea := {a1, · · · , ap}.
The multiobjective single-facility location problem is to find a new location x ∈ R2 by considering the

functions fi(x) := ‖x− ai‖, i ∈ Ip, where ‖ · ‖ is a norm in R2.

The primal objective function of a multiobjective location problem can be described by

fIp(x) :=


‖x− a1‖
· · ·

‖x− aP ‖

 . (5.40)

We observe that the function given by (5.40) is a special case of (5.4) by taking m = 0, βi = 1,

‖ · ‖(i) = ‖ · ‖ and Ai = I for i ∈ Ip.
We consider the following multiobjective location problem

(P1) Eff(fIp [R2],Rp+). (5.41)

As mentioned above, it is appreciable to find the set of minimal solutions of the planar multiobjective

location problem in the original space, i.e., the set Min(R2, fIp) (see(4.3)). Many characterization of

the set of minimal solutions of a planar multiobjective location problem (P1) can be found in the

literature, for instance in [21, 46, 80, 120] and the references cited in these papers. We introduce the
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characterization of the set of minimal solutions Min(R2, fIp) of the multiobjective location problem

(P1) used in Gerth and Pöhler [46], and then we give a new result for characterizing the set of weakly

minimal solutions Minw(R2, fIp) of (P1).

This characterization (see [46]) is based on the duality assertions shown in Section 5.2. Its geometrical

structure is related to the the maximum norm (‖ · ‖∞) or the Manhattan norm (‖ · ‖1). Thus, from

now on we set the norms used in (5.40) to be either the Manhattan norm or the maximum norm. This

does not weaken our problem or limit it when we consider the importance of these two norms. The

Manhattan norm is very useful for representing the street nets and the electronic semiconductor, which

match many applications, while the maximum norm is an approximation of the p-norms.

It is meaningful to study the dual problem to the primal multiobjective location problem (P1). Taking

into account the construction of the dual problem in Section 5.2, we get the following dual objective

function concerning the dual problem to the primal problem (P1) with the maximum norm or the

Manhattan norm

f∗Ip(Y ) =


Y1(a

1)

· · ·
Yp(a

p)

 ,

with the dual feasible set

BIp = {Y := (Y 1, · · · , Y p), Y i ∈ L(R2,R1) : ∃λ∗ ∈ intRp+ with
p∑
i=1

λ∗Y i = 0, ‖Y i‖∗ ≤ 1};

where ‖ · ‖∗ is the dual norm of the given norm. Note that the maximum norm and the Manhattan norm

are dual to each other. This means if we use the maximum norm in (5.40), then the norm used in BIp is

the Manhattan norm and conversely.

The dual problem of (P1) is

(D1) EffMax (f∗[BIp ],R
p
+)

Before going through the geometrical algorithm for characterizing the set of minimal solutions of

(P1), we introduce the next basic theorem for characterizing a minimal solution x ∈ Min(R2, fIp).

For p existing facilities a1, · · · , ap, we say that a point x = (x1, x2) ∈ R2 satisfies the condition C(x)

if and only if for every existing facility ai there exists aj such that

‖x− ai‖+ ‖x− aj‖ = ‖ai − aj‖. (5.42)

Theorem 5.13 ([21]). x = (x1, x2) is a minimal solution of (P1) with the maximum norm or

Manhattan norm, if and only if x satisfies the condition C(x).
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Proof. Let x be a given point such that condition C(x) holds. We suppose that x is not a minimal

solution, which means that there exists a point y such that ‖y−ai‖ ≤ ‖x−ai‖ for all i = 1, · · · , p and

‖y−as‖ < ‖x−as‖ for some s. Since C(x) holds, there exists a facility at with ‖x−as‖+‖x−at‖ =

‖as − at‖. But this leads to

‖y − as‖+ ‖y − at‖ < ‖x− as‖+ ‖x− at‖ = ‖as − at‖

which contradicts the triangle inequality. So x is a minimal solution.

Let x0 = (x01, x
0
2) be a given point, for which the condition C(x) does not hold. We want to prove that

there is some point, which dominates x0. Define Q1, Q2, Q3 and Q4 as the four ordinary quadrants of

R2 with the point x0 as the origin.

C(x) does not hold, that means there is a facility ai = (ai1, a
i
2) such that for all aj ∈ {1, · · · , p}:

‖x0 − ai‖+ ‖x0 − aj‖ > ‖ai − aj‖

Without loss of generality, let ai ∈ Q1. We consider the following three cases:

• Case 1: ai1 = x01, a
i
2 > x02

• Case 2: ai1 > x01, a
i
2 = x02

• Case 3: ai1 > x01, a
i
2 > x02

Since Case 2 is a complete analog of Case 1, we shall only consider Case 1 and Case 3.

Case 1: For all facilities aj in Q3 and Q4 we have

‖x0 − ai‖1 + ‖x0 − aj‖1 = ‖ai − aj‖1

Therefore, there are no facilities in Q3 and Q4. Since not all facilities are on a line, there is a

facility in intQ1 or intQ2. Without less of generality, we assume that intQ1 contains a facility.

Let

c := min
ai1>x

0
1

(ai1 − x01), d := min
ai2>x

0
2

(ai2 − x02).

Define the point y0 = (y01, y
0
2) as the following. If d ≤ c, then y0 is intersection of the lines

x− y = x01 − x02 and y = x02 + d. If d > c, then y0 is intersection of the lines x− y = x01 − x02
and x = x01 + c. Note that ‖x0 − y0‖ > 0. We prove now that y0 dominates x0. For all facilities

aj in Q2 we have aj1 ≤ x01 and aj2 ≥ x02 + d. Therefore,

‖y0 − aj‖ = (y01 − a
j
1) + (aj2 − y

0
2) and ‖x0 − aj‖ = (x01 − a

j
1) + (aj2 − x

0
2).
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Since x01 − x02 = y01 − y02 , we have ‖x0 − aj‖ = ‖y0 − aj‖. For all aj in intQ1 we have

aj1 ≥ x01 + c and aj2 ≥ x02 + d, therefore

‖x0 − aj‖ = ‖y0 − aj‖+ ‖x0 − y0‖ > ‖y0 − aj‖.

Since intQ1 contains at least one facility we have proven that y0 dominates x0.

Case 3: Again, we define y0 as in Case 1 and prove that y0 dominates x0. There can be no facilities

in Q3 since for all facilities aj in Q3 we have

‖x0 − ai‖+ ‖x0 − aj‖ = ‖ai − aj‖.

For all facilities aj in Q2 we have ‖x0− aj‖ = ‖y0− aj‖ using the same argument as in Case 1.

For all facilities aj in Q4 we have aj1 ≥ x01 + c and aj2 ≤ x02: therefore

‖y0 − aj‖ = (aj1 − y
0
1) + (y02 − a

j
2) and ‖x0 − aj‖ = (aj1 − x

0
1) + (x02 − a

j
2).

Since x01 − x02 = y01 − y02 again we have ‖x0 − aj‖ = ‖y0 − aj‖. For all facilities aj in intQ1

we have aj1 ≥ x01 + c and aj2 ≥ x02 + d. Therefore

‖x0 − aj‖ = ‖y0 − aj‖+ ‖x0 − y0‖ > ‖y0 − aj‖.

Since intQ1 contains at least one facility we have proven that y0 dominates x0.

Theorem 5.13 leads to a significant result, that is the whole set of minimal solutions can not lie outside a

rectangle, whose lines correspond to the level lines of the dual norm of the given norm, which contains

the existing facilities a1, · · · , ap. This rectangular set will be often used by our algorithms and results

in order to characterize the set of minimal and weakly minimal solution of the multiobjective location

problem (P1). Therefore, we describe it geometrically and analytically as follows:

Geometrically, the level lines mentioned above are the lines going through the existing points

a1, · · · , ap, which are either:

• The lines (x1 = ai1 and x2 = ai2 for i ∈ Ip) which are parallel to the level lines of the maximum

norm, when we use the Manhattan norm in the objective function described in (5.41). In this

case, the smallest rectangular constructed by these lines containing a1, · · · , ap is denoted by

N∞ and called the maximum rectangular hull of the existing facilities a1, · · · , ap.

• Or the lines (x1 + x2 = ai1 + ai2 and x1 − x2 = ai1 − ai2 for i ∈ Ip ) which are parallel to the

level lines of the Manhattan norm, when we use the maximum norm in (5.41). In this case,

the smallest rectangular constructed by these lines containing a1, · · · , ap is denoted by N1 and

called the Manhattan rectangular hull of the existing facilities a1, · · · , ap.
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N1(Ea)

a1

a4

a3

a2

a5

a6

N∞(Ea)

a1

a4

a3

a2

a5

a6

Figure 5.1: The Manhattan rectangular hull and the maximum rectangular hull of the points a1, · · · , a5.

Figure 5.1 illustrates the above described Manhattan rectangular hull (on the left side) and the maximum

rectangular hull (on the right side) with the constructing lines. Moreover, see Figure 5.2 in order to com-

pare the Manhattan rectangular hull and the maximum rectangular hull with the well-known convex hull.

N1

N∞

a1

a2

a3

Figure 5.2: The convex hull, the Manhattan rectangular hull and the maximum rectangular hull of the

points a1, a2, a3.

From now on we set the maximum norm ‖ · ‖∞ to be used in (5.40). Now we define the Manhattan

rectangular hull N1 mathematically (the maximum rectangular hull N∞ can be analogously described

in a similar even easier way). In the following we drop the index in N1 taking into account that N
without any index is understood as the Manhattan rectangular hull.
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L′(`′(a1))

L′(`′(a2))

L′′(`′′(a1))

L′′(`′′(a2))

a1

a4

a3

a2

a5

Figure 5.3: The lines L′(ai), L′′(ai)

The Manhattan rectangular hull of any nonempty bounded subset A of R2 is defined as the intersec-

tion of all Manhattan closed balls containing A, i.e.,

N (A) :=
⋂{

B(x, r)
∣∣x ∈ R2, r > 0, A ⊂ B(x, r)

}
,

where B(x, r) := {y ∈ R2 | ‖y − x‖1 6 r}. Now, we describe the Manhattan hull analytically by

introducing the linear functions `′ : R2 → R and `′′ : R2 → R, given by

`′(x) := −x1 + x2 and `′′(x) := x1 + x2

for all x = (x1, x2) ∈ R2. It can be easily seen that

N(A) = {x ∈ R2| inf`′(A) 6`′(x)6 sup`′(A), inf`′′(A) 6`′′(x)6 sup`′′(A)}. (5.43)

Geometrically, the level sets of the linear functions `′ and `′′ play an important role for describing the

rectangular Manhattan hull and for deriving later results. For any real number α we denote

L′6(α) := {x ∈ R2 | `′(x) 6 α}, L′′6(α) := {x ∈ R2 | `′′(x) 6 α},

L′>(α) := {x ∈ R2 | `′(x) > α}, L′′>(α) := {x ∈ R2 | `′′(x) > α}.
(5.44)

We observe that these level sets are closed half-planes, which are bounded by straight-lines parallel to

the first bisector and the second bisector of the plane, respectively:

L′(α) := {x ∈ R2 | `′(x) = α}, L′′(α) := {x ∈ R2 | `′′(x) = α}. (5.45)



5 . 3 D U A L I T Y- B A S E D C H A R A C T E R I Z AT I O N S O F S O L U T I O N S O F M U LT I O B J E C T I V E L O C AT I O N P R O B L E M S 69

In terms of level sets, N (A) can be expressed (see [3])

N (A) = L′>
(
inf`′(A)

)
∩ L′6

(
sup`′(A)

)
∩ L′′>

(
inf`′′(A)

)
∩ L′′6

(
sup`′′(A)

)
, (5.46)

which shows that N (A) is a polyhedral set, as being the intersection of four closed half-planes. More

precisely it is a rectangle, a line segment or a singleton.

In [46] a characterization of the set Min(R2, fIp) is given. We use the Manhattan hull of the existing

facilities, denoted for simplicity by

N := N ({a1, · · · , ap})

and certain sets related to the structure of the subdifferential of the maximum norm. More precisely, for

each i ∈ Ip one defines four open sets bounded by the straight lines L′(`′(ai)) and L′′(`′′(ai)) passing

through ai and being parallel to the first and the second bisectors of the plane, namely

S1(a
i) := {x ∈ R2 | ai2 − x2 > |ai1 − x1|} = intL′6(`′(ai)) ∩ intL′′6(`′′(ai))

S2(a
i) := {x ∈ R2 | x2 − ai2 > |ai1 − x1|} = intL′>(`′(ai)) ∩ intL′′>(`′′(ai))

S3(a
i) := {x ∈ R2 | ai1 − x1 > |ai2 − x2|} = intL′>(`′(ai)) ∩ intL′′6(`′′(ai))

S4(a
i) := {x ∈ R2 | x1 − ai1 > |ai2 − x2|} = intL′6(`′(ai)) ∩ intL′′>(`′′(ai))

and then, for every r ∈ {1, 2, 3, 4}, one constructs the set

Sr := {x ∈ N | ∃ i ∈ Ip : x ∈ Sr(ai)} = N ∩
(
∪pi=1Sr(a

i)
)
.

The following preliminary result was established in [46].

Lemma 5.14 ([46]). The set of minimal solutions of the multiobjective location problem (P1) with

the maximum norm has the following representation:

Min(R2, fIp) =
[
(clS1 ∩ clS2) ∪

(
(N \ S1) ∩ (N \ S2)

)]
∩
[
(clS3 ∩ clS4) ∪

(
(N \ S3) ∩ (N \ S4)

)]
.

As we see, Lemma 5.14 generates the set of minimal solutions of the multiobjective location problem

(P1), noticing that the set N := N ({a1, · · · , ap}) determined in (5.46) is a closed rectangle, possibly

degenerated into a line segment or a singleton.

Remark 5.15. We can formulate the characterization of solutions of (P1) given in Lemma 5.14

analogously also for the multiobjective location problem (P1) with Manhattan norm. We observe only

that the structure of the sets S1(ai) – S1(ai) is different.

In order to learn more about the structure of the set of minimal solutions generated by Lemma 5.14, we

introduce the following characterizing result.
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a1

a4

a3

a2

a5

a6

a1

a4

a3

a2

a5

a6

Figure 5.4: The set of minimal solutions Min(R2, fIp) of (P1) with the maximum norm and the

Manhattan norm.

Lemma 5.16 ([4, Lemma 3.2]). The set of minimal solutions Min(R2, fIp) of the multiobjective

location problem (P1) with the maximum norm has the following properties:

1. Ea ⊂ Min(R2, fIp).

2. Min(R2, fIp) can be represented as a finite union of (possibly degenerated) rectangles in the

plane.

3. Min(R2, fIp) = Minp(R2, fIp).

The previous lemma creates the basis of the ability to partition the set Min(R2, fIp) into convex sets,

which is our result in Section 6.1. This partition plays the key role for the decomposition methods for

solving extended multiobjective location problems in Section 6.2.

Our aim now, is to prove that the Manhattan rectangular hull N is actually the set of weakly minimal

solutions of the multiobjective location problem (P1). To this end, we introduce a result on the

structure of Manhattan hulls [3], which can be also used for not necessarily finite sets.

Lemma 5.17 ([3]). If A is a nonempty compact subset of R2, then

N (A) =
⋃

x,y∈A
N ({x, y}). (5.47)

Proof. Assume that A ⊂ R2 is a nonempty compact set. According to its definition, the hull operator

N (·) is isotonic, i.e., N (S) ⊂ N (A) for every nonempty bounded set S ⊂ A. Hence for all x, y ∈ A
we have N ({x, y}) ⊂ N (A), which entails the inclusion ”⊃” in (5.47). Notice that this inclusion is

still true even if A is not closed.
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Now let us prove the inclusion ”⊂” in (5.47). By compactness of A and continuity of `′ and `′′, we can

choose four (not necessarily distinct) points :

a′ ∈ argmin
a∈A

`′(a), a′ ∈ argmax
a∈A

`′(a), a′′ ∈ argmin
a∈A

`′′(a), and a′′ ∈ argmax
a∈A

`′′(a).

On the one hand, by (5.43) we can deduce that

N (A) = {x ∈ R2 | `′(a′) 6 `′(x) 6 `′(a′), `′′(a′′) 6 `′′(x) 6 `′′(a′′)}

= N ({a′, a′, a′′, a′′}).

On the other hand, it is a simple exercise of planar geometry to check that

N ({a′, a′, a′′, a′′}) =
⋃

x,y∈{a′,a′,a′′,a′′}

N ({x, y}).

Thus the inclusion ”⊂” in (5.47) holds true.

Furthermore, we state that the multiobjective location problem (P1) is Pareto reducible, since all

distance functions fi(x) = ‖x− ai‖ given in (5.40) are convex for i ∈ Ip, (cf. Corollary 4.19). This

implies due to (4.20) that the equality

Minw(R2, fIp) =
⋃

∅6=I⊂Ip

Min(R2, fI) (5.48)

holds for the problem (P1).

Now, with the help of the Pareto reducibility of the problem (P1), Lemma 5.17 and the characterization

of the set of minimal solutions of (P1) in Lemma 5.14, we introduce the following characterization of

the set of weakly minimal solutions of the multiobjective location problem (P1).

Theorem 5.18 ([3]). The following properties hold for the multiobjective location problem (P1) with

the maximum norm:

1. For every index set I ⊂ Ip with cardinality |I| ∈ {1, 2},

Minw(R2, fI) = Min(R2, fI) = N ({ai | i ∈ I}).

2. The set of weakly minimal solutions is given by

Minw(R2, fIp) =
⋃

I⊂Ip,|I|=2

Min(R2, fI) = N ({a1, · · · , ap}) =: N .

Proof. In order to prove 1, consider a set I ⊂ Ip with |I| ∈ {1, 2}.
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If |I| = 1, then I = {i} for some i ∈ Ip and, in view of (4.12) and taking into account that ‖v‖∞ = 0

if and only if v = (0, 0), it is easily seen that

Minw(R2, fI) = Min(R2, fI) = argmin
x∈R2

fi(x) = {ai} = N ({ai}).

If |I| = 2, then we have Minw(R2, fI) = Min(R2, fI) according to Corollary 4.18, since for every

i ∈ I the distance function fi(·) = ‖ ·−ai‖∞ is convex and attains its minimal value on R2 at a unique

point, namely ai. On the other hand, by applying Lemma 5.14 for the bicriteria location problem

(PI), one can check geometrically that Min(R2, fI) = N ({ai | i ∈ I}). We are now going to prove

2. Observe that given any I ⊂ Ip with |I| = 2 it follows from 1 that Min(R2, fi) ⊂ Min(R2, fI) =

Min(R2, fI) = N ({ai | i ∈ I}) for each i ∈ I . Hence⋃
I⊂Ip
|I|=2

Min(R2, fI) =
⋃
I⊂Ip

16|I|62

Min(R2, fI) =
⋃
I⊂Ip

16|I|62

N ({ai | i ∈ I}).

On the other hand, as a direct consequence of Lemma 5.17 we infer that⋃
I⊂Ip,16|I|62

N ({ai | i ∈ I}) = N ({a1, · · · , ap}).

Thus, one of the claimed equalities holds true:⋃
I⊂Ip,|I|=2

Min(R2, fI) = N ({a1, · · · , ap}). (5.49)

Further we observe that, in view of (4.12), we have Min(R2, fI) ⊂ Minw(R2, fIp) for any nonempty

I ⊂ Ip. Thus (5.49) entails

N ({a1, · · · , ap}) ⊂ Minw(R2, fIp). (5.50)

By applying Lemma 5.14 to any subproblem (PI) with ∅ 6= I ⊂ Ip, we deduce that

Min(R2, fI) ⊂ N ({ai | i ∈ I}). (5.51)

Since the problem (P1) is Pareto reducible and the Manhattan hull operator N (·) is isotone, it follows

from (5.51) and the equality (5.48) that

Minw(R2, fIp) ⊂
⋃

∅6=I⊂Ip

N ({ai | i ∈ I}) ⊂ N ({a1, · · · , ap}). (5.52)

Finally, from (5.50) and (5.52) we conclude that

Minw(R2, fIp) = N ({a1, · · · , ap})

as claimed. Thus the assertion 2 is true.
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Figure 5.5: The set of (weakly) minimal solutions of (P1) with the maximum norm and the Manhattan

norm.

The results Lemma 5.17 – Theorem 5.18 can be analogously developed for the multiobjective location

problem (P1) with the Manhattan norm using the maximum rectangular hull N∞.

Example 5.19. For the points a1, · · · , a6 in the plane (see Figure 5.5), we can compute the set of

minimal solutions of the multiobjective location problem (P1) concerning a1, · · · , a6 with both the

maximum norm and the Manhattan norm by applying Lemma 5.14. Furthermore, if we compute the

Manhattan rectangular hullN1 and the maximum rectangular hullN∞, we obtain by Theorem 5.18 the

set of weakly minimal solutions of the multiobjective location problem (P1) concerning a1, · · · , a6.

Figure 5.5 on the left, shows the set of the minimal solutions with respect to the maximum norm in

dark orange, as well as the set of weakly minimal solutions in light orange, which coincides with

the the Manhattan rectangular hull N1 of the points a1, · · · , a6. On the right, we see the set of the

minimal solutions with respect to the Manhattan norm in dark cyan, as well as the set of weakly

minimal solutions in light cyan, which coincides with the maximum rectangular hull N∞ of the points

a1, · · · , a6.



CHAPTER 6

Decomposition Methods for
Multiobjective Single-Facility Location

Problems

In this chapter, we develop decomposition algorithms for solving extended multiobjective location

problems (a special case of (P) with αi = 1, βi = 1, Ai = I and the norms ‖ · ‖(i) are either ‖ · ‖1
for i = 1, . . . , p or ‖ · ‖∞ for i = 1, . . . , p) by dividing it into simpler subproblems. One of these

subproblems is the multiobjective location problem, which we introduced as (P1) with the objective

function defined in (5.40).

In Section 5.3 we derived a duality-based characterization of the solution set Min(R2, fIp) of (P1). In

order to develop a decomposition method for the extended multiobjective location problem, a partition

of the solution set Min(R2, fIp) of the subproblem (P1) is important. Implementable algorithms

for this partition are given in Section 6.1. Furthermore, we develop decomposition algorithms (with

different applications) for solving the extended multiobjective location problem (see [1, 2, 3, 4, 51])

using this partition in Section 6.2.

6.1 Partition Algorithm for Multiobjective Location Problems

Now we consider the multiobjective location problem (P1) with the maximum norm or the Manhattan

norm. As mentioned above the problem (P1) is intensively studied in Section 5.3. The duality-based

characterization of the solutions set Min(R2, fIp) of (P1) is given in Lemma 5.14.

Our goal is to find an algorithm, to partition the set Min(R2, fIp), which is generally not convex, and

divide it into a finite number of convex subsets. These subsets are (possibly degenerated) rectangles,

which can be constructed using the structure of the geometrical characterization of Min(R2, fIp), see

Lemma 5.14 and Lemma 5.16.

In order to formulate the partition algorithm (Algorithm 6.3), we take a look on a method, which serves

74
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to be an efficient reduction step for our partition algorithm. This method is an algorithm for computing

all efficient elements of the discrete set Ea = {a1, · · · , ap} with respect to a certain cone in R2. That

is the Jahn-Graef-Younes method, (see [73, 74] and [4]). The Jahn-Graef-Younes method can be

formulated for some proper, pointed, closed and convex cone. Other versions, which are developed

in [4], formulate the algorithm after sorting the set of the facilities a1, · · · , ap within the set Ea. The

version we introduce next, also developed in [4], uses contrarily to the other versions the special

structure of the cones K1, · · · ,K4 defined below.

K1 := R+ × R+, K2 := R− × R−,

K3 := R− × R+, K4 := R+ × R−.

For the notations used in the algorithm, we define Eaj = {a1j , · · · , a
p
j} for j = 1, 2, where ai =

(ai1, a
i
2) ∈ Ea, i ∈ Ip. We can now easily order the components within the sets Ea1 and Ea2 .

Algorithm 6.1 ([4]). Input: Ea = {a1, · · · , ap} and K ∈ {K1,K2,K3,K4}.

1 Choosing the cone K from {K1,K2,K3,K4}:
If K = K1 or K = K3, then reorder the existing facilities such that a12 ≤ · · · ≤ a

p
2.

If K = K2 or K = K4, then reorder the existing facilities such that a12 ≥ · · · ≥ a
p
2.

2 Let T := {a1} and l = 2.

3 For all i := 2, · · · , p:

• If K = K1, then check:

If al2 = ai2 and al1 > ai1, then T := (T \ {al}) ∪ {ai} and l := i.

If al2 < ai2 and al1 > ai1, then T := T ∪ {ai} and l = i.

• If K = K2, then check:

If al2 = ai2 and al1 < ai1, then T := (T \ {al}) ∪ {ai} and l := i.

If al2 > ai2 and al1 < ai1, then T := T ∪ {ai} and l = i.

• If K = K3, then check:

If al2 = ai2 and al1 < ai1, then T := (T \ {al}) ∪ {ai} and l := i.

If al2 < ai2 and al1 < ai1, then T := T ∪ {ai} and l = i.

• If K = K4, then check:

If al2 = ai2 and al1 > ai1, then T := (T \ {al}) ∪ {ai} and l := i.

If al2 > ai2 and al1 > ai1, then T := T ∪ {ai} and l = i.

Output: T = Eff(Ea,K), i.e., the set of efficient elements of the discrete set Ea in the image space.
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The problem (P1) is reduced by considering the objectives which correspond only to the facilities ai

from Ea which belong to T = Eff(Ea,K) (the output of Algorithm 6.1).

The following theorem which is proved in [4] shows that the set of minimal solutions of (P1) does not

change by applying the reduction introduced in Algorithm 6.1.

Theorem 6.2 ([4, Theorem 11]). Let i0 ∈ Ip. Then it holds that

ai
0 ∈ Ea \

(
4⋃
r=1

Eff(Ea,Kr)

)
⇔ Min(R2, fIp) = Min(R2, fIp\{i0}).

In the following, we formulate the partition algorithm (Algorithm 6.3) of the set of minimal solutions of

(P1). We first apply Algorithm 6.1 for reducing the number of the facilities, then we proceed with the

other steps, which provide the partition of the set Min(R2, fIp) into (possibly degenerated) rectangles.

The advantage of applying Algorithm 6.1, as the first step in the partition algorithm (Algorithm 6.3),

comparing with no reduction for the problem (P1); or even the advantage of applying this version

comparing with the first versions of the Jahn-Graef-Younes method is the remarkable improvement in

the computational order by the implementationi of our partition algorithm (see [4]).

The Partition Algorithm for Min(R2, fIp) with Manhattan Norm

Now we formulate our partition algorithm (also called the Geometric Rectangular Decomposition

Algorithm [4]) for computing the set of minimal solutions Min(R2, fIp) of the problem (P1) with the

Manhattan norm ‖ · ‖1 and then dividing it into a finite union of (possibly degenerated) rectangles.

Algorithm 6.3 ([4]). Input: (P1) concerning the existing facilities Ea = {a1, · · · , ap} and the norm

‖ · ‖1.

1 Compute for all r = 1, 2, 3, 4 the set

Tr := Eff(Ea,Kr)

through Algorithm 6.1.

2 Define the new set of existing facilities through

Ẽa :=

4⋃
r=1

Tr ⊂ Ea.

Let k := |Ẽa| and Ik := {1, · · · , k}, where k ≤ p. Then there exist ãi := (ãi, ãi) belonging to

Ea, such that

Ẽa = {ã1, · · · , ãk} ⊂ Ea ⊂ R2.

iSee Section 6.3.
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3 Sort the components ã1i , · · · , ãki , (i = 1, 2) of the existing facilities from the new set Ẽa and

eliminate the duplicated values. The new ordered values of the components ãj1 are denoted by

x1 < · · · < xs1 , and the new ordered values of the components ãj2 are denoted by y1 < · · · < ys2

for s1, s2 ≤ k and j ∈ Ik.

4 Define the four elements e1, e2, e3, e4 as the following:

e1 := (x1, y1), e
2 := (xs1 , ys2), e3 := (xs1 , y1), e

4 := (x1, ys2).

Compute the sets:

T̃1 := {b ∈ T2 | e1 ∈ b+ intK2},

T̃2 := {b ∈ T1 | e2 ∈ b+ intK1},

T̃3 := {b ∈ T4 | e3 ∈ b+ intK4},

T̃4 := {b ∈ T3 | e4 ∈ b+ intK3}.

Introduce the sets Ci := ∅, i = 1, . . . , s1.

Now, for all i = 1, . . . , s1, for all j = 1, . . . , s2:

(a) Define

Dr :=
{

(xi − b1, yj − b2) | b := (b1, b2) ∈ T̃r
}

for all r = 1, 2, 3, 4.

If (0, 0) ∈ Dr, for some r ∈ {1, 2, 3, 4}, then go to (f).

(b) Define bool1 := 0 and bool2 := 0.

If there exists β ∈ D1 such that β ∈ K2 holds, then define bool1 := 1.

If bool1 = 1, then check:

If there exists β ∈ D2 such that β ∈ K1 holds, then define bool2 := 1.

If bool2 = 1, then go to (d), else go to (c).

(c) If bool1 = 0, then bool1 := 1, else check:

If there exists β ∈ D1 such that β ∈ intK2 holds, then define bool1 := 0.

Define bool2 := 0. If bool1 = 1, then bool2 := 1 and check:

If there exists β ∈ D2 such that β ∈ intK1 holds,

then define bool2 := 0.
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If bool2 = 1, then go to (d), else choose the next point.

(d) Define bool1 := 0 and bool2 := 0.

If there exists β ∈ D3 such that β ∈ K4 holds, then define bool1 := 1.

If bool1 = 1, then check:

If there exists β ∈ D4 such that β ∈ K3 holds, then define bool2 := 1.

If bool2 = 1, then go to (f), else go to (e).

(e) If bool1 = 0, then bool1 := 1, else check:

If there exists β ∈ D3 such that β ∈ intK4 holds, then define bool1 := 0.

Define bool2 := 0. If bool1 = 1, then bool2 := 1 and check:

If there exists β ∈ D4 such that β ∈ intK3 holds, then define bool2 := 0.

If bool2 = 1, then go to (f), else choose the next point.

(f) Define Ci := Ci ∪ {yj} and choose the next point.

5 Define

Cmin
i := min Ci and Cmax

i := max Ci

for all i ∈ {1, . . . , s1}. Now, consider two cases:

Case 1: Let s1 = 1. Then define

R∗1 := conv {(x1, Cmin
1 ), (x1, Cmax

1 )} and R∗2 := ∅.

Case 2: Let s1 ≥ 2. Define

Ci := max
{
Cmin
i , Cmin

i+1

}
and Ci := min

{
Cmax
i , Cmax

i+1

}
for all i ∈ {1, . . . , s1 − 1}. Moreover, define

R∗2 :=

s1−1⋃
i=1

conv {(xi, Ci), (xi, Ci), (xi+1, Ci), (xi+1, Ci)} and R∗1 := ∅.

Now check:



6 . 1 PA R T I T I O N A L G O R I T H M F O R M U LT I O B J E C T I V E L O C AT I O N P R O B L E M S 79

If Cmin
1 < C1, thenR∗1 := R∗1 ∪ conv {(x1, C1), (x1, Cmin

1 )}.

If Cmax
1 > C1, thenR∗1 := R∗1 ∪ conv {(x1, C1), (x1, Cmax

1 )}.

If Cmin
s1 < Cs1−1, thenR∗1 := R∗1 ∪ conv {(xs1 , Cs1−1), (xs1 , Cmin

s1 )}.

If Cmax
s1 > Cs1−1, thenR∗1 := R∗1 ∪ conv {(xs1 , Cs1−1), (xs1 , Cmax

s1 )}.

Suppose that s1 ≥ 3 holds. In addition, check for all i ∈ {2, . . . , s1 − 1} :

If Cmin
i < C∗ := min{Ci−1, Ci}, thenR∗1 := R∗1 ∪ conv {(xi, C∗), (xi, Cmin

i )}.

If Cmax
i > C∗ := max{Ci−1, Ci}, thenR∗1 := R̃∗1 ∪ conv {(xi, C∗), (xi, Cmax

i )}.

If Ci−1 > Ci, thenR∗1 := R∗1 ∪ conv {(xi, Ci), (xi, Ci−1)}.

If Ci−1 < Ci, thenR∗1 := R∗1 ∪ conv {(xi, Ci−1), (xi, Ci)}.

Output: The whole set of minimal solutions Min(R2, fIp) = R∗1 ∪R∗2 of the problem (P1) as a union

of rectangles, possibly degenerated.

x

y

x1 x2 x3 x4 x5

y1

y2

y3

y4

y5

e1 e3

e2e4 N∞(Ea)

a1

a2

a3

a4

a5

a6

R∗1

R∗2

Figure 6.1: Output of the Algorithm 6.3

For an applied example of the output of Algorithm 6.3 see Figure 6.1.
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The correctness of the partition Algorithm (Algorithm 6.3)

We observe that Algorithm 6.3 divide the set of minimal solutions Min(R2, fIp) (of the multiobjective

location problem (P1)) into a finite number of rectangles, represented in the setR∗1 of all vertical line

segments and the set R∗2 of all rectangles and all horizontal line segments. The correctness and the

analysis of Algorithm 6.3 is extensively studied in [4]. But it is important to mention the following

result, which state that Algorithm 6.3 indeed generate the whole set of minimal solutions, which is

given through Lemma 5.14.

Taking into account the reduction result, i.e. Theorem 6.2, let

Ĩ :=

{
i ∈ Ip | ai ∈

4⋃
r=1

Eff(Ea,Kr)

}
,

then the following result holds:

Theorem 6.4 ([4, Theorem 18]). LetR∗1 andR∗2 be generated by Algorithm 6.3. Then we have:

Min(R2, fIp) = Min(R2, fĨ) = R∗1 ∪R∗2.

The Partition Algorithm for Min(R2, fIp) with Maximum Norm

Analogously to Algorithm 6.3 we can derive an algorithm to partition the set Min(R2, fIp) into a finite

union of closed rectangles, possibly degenerated, while using the maximum norm in fIp . There is a

possibility to do this by means of the grid composed by the two families of the straight lines L′(`′(ai))

and L′′(`′′(ai)), passing through ai for all i ∈ Ip, which are defined in (5.45). However, here we

benefit simply from the implementable form of Algorithm 6.3 and profit from the relation between

Manhattan and maximum norms described as follows:

If T is a linear transformation with,

T :=
1

2

(
1 1

−1 1

)
, (6.1)

then according to [52] and [76] we get for some x1, x2 ∈ R2 the relation

‖x1 − x2‖∞ = ‖Tx1 − Tx2‖1.

With the help of the linear transformation T defined in (6.1), we can simply apply Algorithm 6.3 also

for the maximum norm.

Figure 6.2 shows an example of the set of the minimal solutions with the maximum norm decomposed

through the partition algorithm into (possibly degenerated) rectangles.
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a6
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Figure 6.2: Example for the partition algorithm with the maximum norm.

6.2 Decomposition Methods for the Extended Multiobjective Location
Problems

Consider a special case of the extended multiobjective approximation and location problem (P) with

the objective function defined in (5.4) (namely by taking αi = 1, βi = 1, Ai = I and the norms ‖ · ‖(i)
are either ‖ · ‖1 for i = 1, . . . , p or ‖ · ‖∞ for i = 1, . . . , p). Our next aim is to use the results derived

in Section 5.3 and Section 6.1 to develop a decomposition method for solving a special case of the

problem (P), namely an extended multiobjective location problem. We present several possibilities to

derive decomposition algorithms for solving this problem.

Furthermore, through a numerical example we show, that our decomposition method is also able to be

applied by considering attraction and repulsion facilities in a location model. This field of the location

theory appears in many applications, for example, when the distances to pollution stations or nuclear

plants are desired to be maximal (see e.g. [75]).

We consider a special case of (P) by taking αi = 1, βi = 1, Ai = I and the norms ‖ · ‖(i) are either

‖ · ‖1 for i = 1, . . . , p or ‖ · ‖∞ for i = 1, . . . , p with a bounded feasible set X ⊂ R2:

(P2) Eff(fIp+m [X],Rp+m+ ), (6.2)

where the objective function is given by

fIp+m(x) =



‖x− a1‖
· · ·

‖x− ap‖
Cp+1(x)

· · ·
Cp+m(x)


. (6.3)
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What we do now, as insinuated in the beginning of this chapter, is decomposing the problem (P2) by

dividing it into a multiobjective location subproblem (by selecting the criteria 1, · · · , p in (6.3)) and a

multiobjective linear subproblem (by selecting the criteria p+ 1, . . . , p+m). The first problem, which

we denoted above as (P1), is extensively studied in Section 5.3. The set of its minimal solution is

successfully decomposed into closed and convex subsets in Section 6.1 through Algorithm 6.3.

The next algorithm for solving the problem (P2) introduces in detail the above described decomposing

method. For the feasibility of this algorithm we suppose that N ⊂ X .

Algorithm 6.5. Input: The existing facilities Ea = {a1, . . . , ap} and the extended multiobjective

location problem (P2) with the maximum norm or the Manhattan norm.

1 Decompose (P2) into two problems:

The first problem is a multiobjective location problem (P1) : Eff(fIp [X],Rp+) with the

multiobjective function:

fIp(x) =


‖x− a1‖
· · ·

‖x− ap‖

 .

The second problem is a multiobjective linear problem (PC) : Eff(C[X],Rm+ ), where

C(x) =


Cp+1(x)

· · ·
Cp+m(x)

 .

2 Generate the Manhattan rectangular hull N1(Ea) by using the analytical characterization (5.43)

(when the maximum norm is used in (6.3)), or alternatively the Maximum rectangular hull

N∞(Ea) (when the Manhattan norm is used in (6.3)).

3 Compute the solution set of minimal solutions of (P1) represented in the set Min(X, fIp)

through Lemma 5.14 (according to this characterization, the set Min(X, fIp) is always contained

in N ).

4 Divide Min(X, fIp) through Algorithm 6.3 into nonempty, possibly degenerated rectangles

R1, . . . ,Rl belonging toR∗1, R∗2, so we get

Min(R2, fIp) = R∗1 ∪R∗2 =

l⋃
i=1

Ri.

5 Minimize the multiobjective function C(x) of the problem (PC) over the setsRi ⊂ R∗1 ∪R∗2
for i = 1, . . . , l. In other words, compute l solution sets by solving each of the l subproblems

Eff(C[Ri],Rm+ ).
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6 Compute the following set:

Eff

(
l⋃

i=1

Eff(C[Ri],Rm+ ),Rm+

)
=: E . (6.4)

Output: x0 with f(x0) ∈ E is a minimal solution of the extended problem (P2), i.e., x0 ∈
Min(X, fIp+m).

In order to prove that a solution x0 with f(x0) ∈ E is a minimal solution of the extended problem (P2)

we introduce a corresponding result given in [51]. This result is proved for a general multiobjective

function fIq : Y → Rq defined on a nonempty set Y with fIq := (f1, . . . , fp, fp+1, . . . , fp+m) (where

p,m, p + m = q ∈ N) and the restriction set ∅ 6= X ⊂ Y . Initially, we say that the multiobjective

function fIq fulfils the domination property over the set X , if

∀x ∈ X ∃x̃ ∈ Min(X, fIq) : f(x) ∈ f(x̃) + Rq+. (6.5)

A multiobjective function fIq fulfils according to [58] the domination property over the set X , if X is

compact and fIq is continuous on X .

Now the following result from [51, Theorem 2.9, Corollary 2.10] can be introduced.

Theorem 6.6 ([51]). Let l ∈ N and Z1, . . . , Zl nonempty subsets of X such that Min(X, fIp) =⋃l
i=1 Zi holds. If fIq\p fulfils the dominance property (6.5) over Zi for all i = 1, . . . , l, then for all

x0 ∈ Min(X, fIp) with

fIq\p(x
0) ∈ Eff

(
l⋃

i=1

Eff(fIq\p [Zi],R
m
+ ),Rm+

)

it holds that

x0 ∈ Min(X, fIq).

According to Theorem 6.6 and by replacing the sets Zi by the rectanglesRi ⊂ R∗1∪R∗2 for i = 1, . . . , l

which are generated by Algorithm 6.3, we conclude that x0 with f(x0) ∈ E (given by (6.4)) is a

minimal solution of the extended problem (P2), i.e., x0 ∈ Min(X, fIp+m). Note that the function

C ∈ L(X,Rm) in the extended problem (P2) is continuous and the rectangles R1, . . . ,Rl are

compact.

Remark 6.7.

• Step 2 in Algorithm 6.5 computes the Manhattan rectangular hull N1(Ea), which serves

not only characterizing the set of minimal solution in the coming Step 3 , but also gives the

advantage in Algorithm 6.5 of generating the set of weakly minimal solutions Minw(X, fIp) by
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Theorem 5.18. In addition, according to (4.12) the elements of N1(Ea) are also weakly minimal

solutions of the extended problem (P2). That means it holds that

N1(Ea) ⊂ Minw(X, fIp+m)

• For the implementation of the Steps 2 – 4 see Section 6.3.

Furthermore, we have the possibility to derive additional algorithms for generating minimal solutions

of (P2) starting with the first steps of Algorithm 6.5. For example, if we consider the results presented

in Theorem 4.13 and Corollary 4.14, then instead of doing Step 5 in Algorithm 6.5 we are able to

minimize the scalarized version of the multiobjective problem (PC) over the rectanglesRi ⊂ R∗1∪R∗2,

i ∈ {1, . . . , l} =: Il. The following algorithm describes this method, see also [3].

Algorithm 6.8 ([3]). Input: The existing facilities Ea = {a1, · · · , ap} and the problem (P2) with the

maximum norm or the Manhattan norm.

1 Do the Steps 1 , 2 , 3 and 4 from Algorithm 6.5.

2 Choose some positive numbers α1, · · · , αm according to the importance of the cost functions

Cp+1, · · · , Cp+m.

3 For every i ∈ Il find an optimal solution of the scalar optimization problem, which is the

weighted sum of the cost functions Cp+1, · · · , Cp+m, as the following:

xi ∈ argmin
x∈Ri

m∑
j=1

αjCp+j(x).

4 Find i0 ∈ Il such that

m∑
j=1

αjCp+j(x
i0) = min

i∈Il

min
x∈Ri

m∑
j=1

αjCp+j(x)

 .

Output: xi0 as a minimal solution of the extend problem (P2), i.e., xi0 ∈ Min(X, fIp+m).

Remark 6.9. The solution xi0 obtained from Step 4 in Algorithm 6.8 is the solution of the scalarized

multiobjective problem (PC) obtained through the decomposition in Algorithm 6.5, i.e.,

xi0 ∈ argmin
x∈R∗1∪R∗2

m∑
j=1

αjCp+j(x) = argmin
x∈Min(R2,fIp )

m∑
j=1

αjCp+j(x). (6.6)

From (6.6), Theorem 4.13 and Corollary 4.14 we state that xi0 is a minimal solution of the original

problem (P2), that means xi0 ∈ Min(X, fIp+m). Hence, we can conclude that Algorithm 6.8 generates

minimal solutions of the original problem (P2).
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Figure 6.3: Illustration of Example 6.10.

In this section we present, in addition, two examples. The following example (Example 6.10) serves

rather introducing an implemented special case of Algorithm 6.5. The second example (Example 6.11)

is an example about applying Algorithm 6.5 and Algorithm 6.8 by considering attraction and repulsion

facilities.

Example 6.10. Given the points a1, . . . , a7, which are located in the plane as the following (see

Figure 6.3):

a1 = (1, 5), a2 = (4, 6), a3 = (2.5, 2),

a4 = (5.5, 3), a5 = (6, 5), a6 = (8, 4.5), a7 = (8.5, 3).

We consider additionally the cost function C(x) = x1 +2x2 for x = (x1, x2) ∈ R2. Then the extended

multiobjective location problem with the maximum norm of the type (P2) is to minimize the vector-

valued function fIp+m = (f1, . . . , f8) : R2 → R10 over the whole plane R2, where fi(x) := ‖x−ai‖∞
for all i ∈ Ip := {1, . . . , 7} and f8(x) := C(x).

By solving this problem with Algorithm 6.5 (for m = 1), we obtain the set of minimal solutions

Min(R2, fIp) divided into eight (possibly degenerated) rectanglesR1, · · · ,R8 through Step 3 and
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Step 4 of Algorithm 6.5, where

R1 := conv{(2.5, 2), (3.25, 2.75)},

R2 := conv{(2, 4), (1, 5)},

R3 := conv{(3.25, 2.75), (2, 4), (3.25, 5.25), (4.5, 4)},

R4 := conv{(3.25, 5.25), (4, 6), (6.25, 3.75), (5.5, 3)},

R5 := conv{(5.5, 4.5), (6.25, 3.75), (6.75, 4.25), (6, 5)},

R6 := conv{(6.75, 4.25), (7.25, 3.75), (7.5, 4), (7, 4.5)},

R7 := conv{(7.5, 4), (8, 4.5)},

R8 := conv{(7.5, 4), (8.5, 3.5)}.

Figure 6.3 shows the output of these two steps. By minimizing the cost function C(x) over each of the

setsRj , j ∈ {1, . . . , 8} := Il we get the eight minimal values

xj ∈ argmin
x∈Rj

C(x)

for j ∈ Il. This implies the values:

x1 = (2.5, 2), x2 = (2, 4), x3 = (3.25, 2.75), x4 = (5.5, 3),

x5 = (6.25, 3.75), x6 = (7.25, 3.75), x7 = (7.5, 4), x8 = (8, 4.5).

Then we apply Step 6 of Algorithm 6.5 in the scalar form (since m = 1):

C(x0) = min
j∈Il

{
C(xj)

}
. (6.7)

We compute the minimum from (6.7) and we obtain the point x1, which is the facility a3. Then through

Theorem 4.13 the following relation holds

x0 = a3 ∈ argmin
x⊂Min(R2,fIp )

C(x) ∈ Min(R2, fIp+m).

If we generalize the cost functions Cp+j , (j ∈ Im) in (6.3) to be not necessarily linear, for example,

concave functions, then as mentioned above we are able to apply Algorithm 6.8 by considering

repulsion facilities in addition to the criteria 1, . . . , p in (6.3) (see also [3, Remark 5.1]).

It is also important to mention that this problem is a nonconvex multiobjective optimization problem

Example 6.11 gives a numerical application of the above mentioned problems. It is also a direct

application of Lemma 5.14, Theorem 5.18, Algorithm 6.3 and Algorithm 6.8.
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Example 6.11 ([3]). We want to locate a new facility x ∈ R2 with minimal distances to six existing

facilities (p = 6 attraction points)

a1 = (0, 3), a2 = (5, 0.5), a3 = (2.5, 1.5),

a4 = (3, 3.5), a5 = (7, 3.5), a6 = (5.5, 3.5).

Concerning these points a1, . . . , a6, we consider the following distances using the maximum norm

fi(x) := ‖x− ai‖∞, ∀x ∈ R2, ∀ i ∈ Ip := {1, . . . , 6}.

In addition to the attraction points a1, . . . , a6, we consider two repulsion points (i.e., undesirable

facilities)

b1 := (5, 5) and b2 := (1, 1),

and we want to maximize the distance from the new location point x to each of the points b1 and b2.

By considering the Euclidean distance, which is appropriate to model the propagation of waves, we

obtain two (m = 2) concave criteria

fp+i(x) := −‖x− bi‖2, ∀x ∈ R2, ∀ i ∈ Im := {1, 2}.

This problem, involving the attraction points a1, . . . , a6 as well as the repulsion points b1, b2, leads

us to a multiobjective optimization problem, where the vector-valued objective function fIp+m :=

(f1, . . . , f8) : R2 → R8 over the set R2 is given by

fIp+m(x) =



‖x− a1‖∞
· · ·

‖x− a6‖∞
−‖x− b1‖2
−‖x− b2‖2


.

The resulting problem is the following extended multiobjective location problem:

(P2)

{
Minimize fIp+m(x)

subject to x ∈ R2.

Since in practice the repulsion points are not equally undesirable, we assign to b1 and b2 certain weights

and apply rather Algorithm 6.8.

According to the first steps of the decomposition Algorithm 6.8, we minimize the vector-valued function

fIp = (f1, . . . , f6) : R2 → R6 over R2 (i.e., we solve the multiobjective location problem of the type

(P1) obtained from decomposing (P2)).

The set of weakly minimal solutions is computed by generating the Manhattan hull:

Minw(R2, fIp) = N := conv{(0, 3), (3.75, 6.75), (7.5, 3), (3.75,−0.75)}.
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Figure 6.4: The sets of minimal and weakly minimal solutions of the location problem (P1).

Then applying Algorithm 6.3 we obtain the set of minimial solutions (also using Lemma 5.14) divided

into closed (possibly degenerated) rectangles.

More precisely, we obtain the set of minimal solutions Min(R2, fIp) divided into six closed rectangles,

two of them being degenerated into line segments:

R1 := conv{(0, 3), (0.5, 3.5), (1.75, 2.25), (1.25, 1.75)},

R2 := conv{(1.75, 2.25), (2.5, 3), (3.25, 2.25), (2.5, 1.5)},

R3 := conv{(2.5, 3), (3, 3.5), (5, 1.5), (4.5, 1)},

R4 := conv{(4.25, 2.25), (5.5, 3.5), (6.25, 2.75), (5, 1.5)},

R5 := conv{(4.5, 1), (5, 0.5)},

R6 := conv{(6.25, 2.75), (7, 3.5)}.

We have Min(R2, fIp) =
⋃6
j=1Rj . This decomposition of the set of minimal solutions and the

Manhattan hull N = Minw(R2, fIp) are shown in Figure 6.4.

Now, according to Step 2 in Algorithm 6.8, we assign to b1 and b2 certain weights, as for instance
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Figure 6.5: The minimal solution a2 of the extended location problem.

α1 = 2 and α2 = 1 and minimize the weighted sum function, h : R2 → R, defined for all x ∈ R2 by

h(x) :=
m∑
i=1

αifp+i(x) = −2‖x− b1‖ − ‖x− b2‖

over the set Min(R2, fIp).

It is quite easy to minimize the concave function h over Min(R2, fIp) =
⋃6
j=1Rj , since for every

j ∈ {1, . . . , 6} a minimum point xj of h over the closed (possibly degenerated) rectangleRj can be

chosen among the extreme points ofRj . The extreme points xj generated by Algorithm 6.3 are listed

in the following table:

R1 R2 R3 R4 R5 R6

xj (0, 3) (2.5, 1.5) (4.5, 1) (5, 1.5) (5, 0.5) (7, 3.5)

h(xj) -13.01 -10.18 -11.56 -11.03 -13.03 -11.50

Finally, we get a minimal solution of the extended multiobjective location problem (P2), namely

xj0 = x5 = (5, 0.5) = a2 ∈ Min(R2, fIp+m). Figure 6.5 shows the level curves of the objectives fp+1

and fp+2 at xj0 = a2.
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6.3 Implementations with MATLAB

It is now clear that finding new results and algorithms is not enough to convince the decision makers

and the investors. The implementation of these algorithms encourage not only them but also the

researchers themselves. Developing such programs performs many functions, they help to make sure

that the algorithms are accurate and faultless, they check the generality and they accelerate the work.

Furthermore, the visualization made in many programs gives a graphical variant for the solutions,

which is very useful also for the researchers to develop new results out of that. This holds in all applied

mathematical branches, but since location theory becomes more important in the modern industry,

many programmers have improved a lot of solving algorithms and visualized them.

The algorithms presented in the previous sections are implemented in a new software with the name

FLO - Facility Location Optimizer developed by Christian Günther. Furthermore, in this software FLO

many other well-known algorithms are included. In the following we describe the software FLO, but

first we give additionally a short overview of a well-known software for solving location problems.

LoLA and LoLoLA

LoLA (Library of Location Algorithms) is one of the older software libraries, which are designed to

solve location problems by suggesting an optimal location for the wanted facility (or facilities) for a

specified location problem. Actually, it is a long list of algorithms, which are available in LOLA. Briefly

we can say, LoLA can solve median and center SFLPs with or without restrictions using different

distances, multi-facility center problems, discrete problems and network problems. The software was

developed in the university of Kaiserslautern (Working group: Optimization).

During the ongoing project ”StanLay” the working group optimization is developing the new software

package LoLoLA - Library of Location and Layout Algorithms as a replacement. The new software is

supposed to include the algorithms given in LOLA with a new interface and better features. It is based

on Python language and supposed to be released this year.

FLO - Facility Location Optimizer

FLO is a practical MATLAB user interface to compute and plot the solutions of many types of

location optimization problems. The software was developed by Christian Günther from Martin Luther

University (see [51]).

By running the software we get two windows. The main window shows the locations and the solution

sets and the outputs of the algorithms. The second window is the module window, where the types

of the problems and the parameter are determined. We can see a screenshot of both windows of the

software FLO in Figure 6.6.
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Figure 6.6: The main window of the Software FLO.
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According to the current version of the software we can locate the existing facilities directly on the

coordinate system in the main window, or we can give its coordinates manually. This can also be made

directly on a loaded real map by choosing the corresponding option.

Some of the type of the location problems, which can be solved by FLO, are listed below.

• Median and center single-facility location problem with different distance functions such as

norms and polyhedral gauges.

• Median and center single-facility location problem with restrictions (variable facilities, barriers).

• Multiobjective location problems with Manhattan and the maximum distances.

• Extended multiobjective location problems with an additional linear cost function.

• Multiobjective location problems involving attraction and repulsion points.

Concerning this thesis, the following results are implemented in FLO: Lemma 5.14, Theorem 5.18,

Algorithm 6.1, Algorithm 6.3, Algorithm 6.5 in the case m = 1 (Example 6.10), Algorithm 6.8 and

Example 6.11.

By choosing the desired type of the problem in the module-window, for example multiobjective location

problem with the maximum norm, the software can generate the set of minimal and weakly minimal

solutions and partition the set of minimal solutions into possibly degenerated rectangles. This was

shown in Figure 6.2.

An access to FLO and more details about this software can be found under the following link:

http://www.project-flo.de/

Furthermore, some additional features and advantages are emphasized in the following remark.

Remark 6.12.

• As mentioned above, the user can deal directly with a real map, which can be loaded by the

software. The location of the facilities and the solution sets of the solutions can be visualized

with different colors on the real map.

• The software can show the set of (weakly) minimal solutions with different distance functions in

the same coordinate system (or directly on a map). Moreover, FLO can plot the convex hull and

the level lines of the objective function. The intersections of these sets of the solutions and the

convex hull can be of huge interest for the decision maker, when there are difficulties choosing

the norm. (Note that the convex hull is sufficient for considering the set of minimal solutions for

the p-norms).
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• The ability of changing the algorithm settings with detailed information of the outcome of the

algorithms.

• Options of customizing the interface and the language.



CHAPTER 7

Duality-based Algorithms for
Multi-Facility Location Problems

Multi-facility location problems are an important class of location problems, since most of the applica-

tions are not limited to locate only one new facility, but generally more. The problem is summarized

by finding the location of a set of N new facilities x1, . . . , xN with respect to p existing facilities

such that the distances are minimal. This kind of problems are also called N-Location problems,

multi-Weber problems or multi-facility location-allocation problems and were formulated first by

Cooper in 1963 [22]. Two examples of such problems are mentioned in Section 2.2.

Aspiring to accuracy this study is not going to ignore the distances between the new facilities to each

other, like some previous works did. We set that the distances from the new to the existing facilities as

well as the distances under the new facilities have to be minimized simultaneously.

There are many approaches for solving multi-facility location problems, for instance, the heuristics

methods (integer programming) as in [23, 79], methods based on a decomposition into smaller multi-

facility location problems as in [15] or the generalizations of Weiszfeld’s methods as in [70].

In this chapter, we study scalar as well as multiobjective multi-facility location problems. We convert

the scalar multi-facility location problem into a single-facility approximation problem in a higher

dimension motivated by [103] and [107]. We use the method of the partial inverse by Spingarn [105],

which we introduced in Section 3.4, in order to develop a convenient proximal point algorithm for

solving the scalar multi-facility location problem converted into a single-facility approximation problem

in a higher dimension.

Proximal point algorithms for solving single-facility location problem or the generalizations of the

Fermat-Weber-Problem (such as (P1) introduced in (2.3)) were studied for example by [7, 8, 9, 107] as

extensions of the results in [64, 66, 87]. The idea of the solutions is formulating the optimality condition

for the problem using the subdifferential calculus, then the application of a suitable Spingarn’s partial

inverse method for solving the optimality conditions approximately.

Starting from [107, Section 4] and [50, Section 5.10] we formulate a proximal point algorithm for a

multi-facility location problem by converting it into a scalar approximation problem. We derive the

94
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optimality conditions and define a suitable operator in order to apply Spingarn’s method.

Thereafter we discuss multiobjective multi-facility location problem and develop an interactive proce-

dure for solving such problems using the results for the scalar multi-facility location problems.

7.1 A Proximal Point Algorithm for Scalar Multi-Facility Location
Problems

Let X = Rn and N ≥ 2. In a scalar multi-facility location problem we locate a set of N new facilities

New := {x1, · · · , xN} ⊂ X with respect to a set Ea = {a1, · · · , ap} of p existing facilities given in

X . We point out that the results of this section can be derived also for Hilbert spaces.

The search for the new facilities is with the consideration of the minimization of both: the distances be-

tween the new and the existing facilities and the distances between the new facilities among each other.

Also we suppose that the costs of building the N new facilities are ci ∈ X for i ∈ {1, · · · , N} =: IN .

We assign to each distance the weights hij > 0 and wkl > 0. These weights can represent, for instance,

accruing costs between the locations i, j and k, l respectively. These costs can also be proportional

to the distances between these locations. Then we can define the objective function of the scalar

multi-facility location problem as

f(New,Ea) :=
N∑
i=1

ci
T
xi +

N∑
i=1

p∑
j=1

hij‖xi − aj‖+
N−1∑
k=1

N∑
l=k+1

wkl‖xk − xl‖. (7.1)

Furthermore, we suppose that xi ∈ Di ⊂ X , where Di is a convex and closed set with non-empty

interior, for each i ∈ IN .

A feasible set D of the the scalar multi-facility location problem can be obtained from the sets

D1, . . . , DN as

D1 × · · · ×DN =: D ⊂ XN , (7.2)

where XN :=

N times︷ ︸︸ ︷
Rn × · · · × Rn.

Then the scalar multi-facility location problem can be described as

(MFP)

{
Minimize f(New,Ea)

subject to New ∈ D.
(7.3)

Remark 7.1. Taking the feasible set D with the specific structure given in (7.2) is new and different

from the above mentioned literature. They chose the feasible set to be the intersection of the sets Di.

The advantage of building the Cartesian product of the sets Di is considering the case when Di are, for

instance, disjoint or they have no convenient intersection.
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We can see through the next proposition that the set D is convex, closed and has nonempty interior,

which are very important assumptions in order to solve the problem with the proposed method of

Spingarn (for applying the optimality conditions and being able to use the sum rule).

Proposition 7.2. Let Di for i = 1, · · · ,m be convex and closed subsets of Rk with nonempty interiors

and let D be the Cartesian product of the sets Di, i.e.,

D := {x = (x1, . . . , xm) | xi ∈ Di, (i = 1, · · · ,m)}.

Then the set D is convex, closed and has nonempty interior in Rk·m.

Proof. The convexity and the closedness of D can be easily shown (see also [123]). Now we prove that

D has a nonempty interior. Since the sets Di have nonempty interiors, then in every set Di there is an

interior point xi with a neighborhood of it Ui contained in Di. Then for the point x = (x1, . . . , xm) ∈
D there exists a neighborhood, which is the open set U := U1 × · · · × Um contained in D since

Ui ⊂ Di. Then we conclude that x is an interior point of D.

Converting to a Single-Facility Approximation Problem with Higher Dimensions

We can exchange (MFP) with an equivalent single-facility median problem by defining a new variable

z := (x1, . . . , xN ) ∈ XN , i.e.,

z = (x11, . . . , x
1
n, · · · , xN1 , . . . , xNn ) (7.4)

The distances between the new and the existing facilities can be converted through the matrices

H i ∈ L(XN , X) for i ∈ IN , which consists of the zero matrices O ∈ L(X,X) and the identity matrix

I ∈ L(X,X) next to each other with I in the digit i, i.e., for each i ∈ IN :

H i := (O, · · · , O, I︸︷︷︸
digit i

, O, · · · , O). (7.5)

Doing the same for the distances between the new facilities among each other we get the matrices

W kl ∈ L(XN , X), which consist of the zero matrices with the identity matrix I in the digit k and −I
in the digit l:

W kl := (O, · · · , O, I︸︷︷︸
digit k

, O, · · · , O, −I︸︷︷︸
digit l

, O, · · · , O), (7.6)

for k = 1, · · · , N − 1 and l = k + 1, · · · , N .

Furthermore, let

c := (c1, . . . , cN ) ∈ XN (7.7)
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The new objective function with the new variable z = (x1, · · · , xN ) ∈ XN , which is equivalent to

(7.1), can be formulated as follows

f1(z, Ea) := cT z +

N∑
i=1

p∑
j=1

hij‖H iz − aj‖+

N−1∑
k=1

N∑
l=k+1

wkl‖W klz‖, (7.8)

with z, c ∈ XN , ai ∈ X and hij ≥ 0, wkl ≥ 0.

Using the objective function defined in (7.8), the problem (MFP) is equivalent to the following

single-facility approximation problem in a higher dimension, namely in XN :{
Minimize f1(z, Ea)

subject to z ∈ D.
(7.9)

We observe that this problem is a special case of (P1) defined in (2.3).

In order to solve this problem using the proximal point algorithm illustrated in Section 3.4, we use an

indicator function (defined in (3.3)) in order to obtain an unrestricted problem. The objective function

of the unrestricted problem is

f2(z, Ea) := cT z +
N∑
i=1

p∑
j=1

hij‖H iz − aj‖+
N−1∑
k=1

N∑
l=k+1

wkl‖W klz‖+ XD(z). (7.10)

This leads us to a single-facility approximation problem in a higher dimension given by

(SFPHD)

{
Minimize f2(z, Ea)

subject to z ∈ XN .
(7.11)

The problem (SFPHD) in (7.11) is equivalent to the problem (MFP) in (7.3).

The Optimality Conditions

Under the given assumptions we observe that the objective function f2 described in (7.10) is convex,

where the norm terms and the linear term are convex. The indicator function is also convex, since

the set D is convex (see Proposition 7.2). Thus, the sufficient and necessary optimality condition

for an optimal point z0 ∈ XN with respect to the problem (SFPHD) is the following subdifferential

condition:

0 ∈ ∂f2(z0, Ea). (7.12)

For computing the subdifferential of f2(z0, Ea) given in (7.10) we have to apply the Subdifferential

Sum Rule (see (3.40)). The assumptions of Theorem 3.31 are fulfilled, where D has nonempty interior

according to Proposition 7.2. Therefore, we compute the subdifferential of the norm parts and of the

indicator function.
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The subdifferential of the indicator function for the set D coincides with the normal cone ND with

respect to the set D (cf. (3.42)). This means

∂XD(z0) = ND(z0) =

{z∗ ∈ XN | 〈z∗, z − z0〉 ≤ 0 ∀z ∈ D} if z0 ∈ D,

∅ otherwise.
(7.13)

Hence, the condition (7.12) can be described equivalently by

αij ∈ ∂(hij‖H iz0 − aj‖) i = 1, . . . , N ; j = 1, . . . , p, (7.14)

βkl ∈ ∂(wkl‖W klz0‖) k = 1, . . . , N − 1; l = 1, . . . , N, (7.15)

γ ∈ ND(z0) (7.16)

c+
N∑
i=1

p∑
j=1

αij +
N−1∑
k=1

N∑
l=k+1

βkl + γ = 0 (7.17)

Spingarn’s Problem

In order to apply the method of the partial inverse, we introduce a space E with the corresponding

complementary subspaces A and B (see Section 3.4). These spaces with the help of an operator T are

our tool for reformulating the optimality conditions given in (7.14) - (7.17) in a more practical way.

In the above mentioned literature there are many possibilities for defining the spaces E, A and B. We

follow the method introduced in [107] and apply it for our problem (SFPHD).

For defining the space E, we consider again the objective function described in (7.10):

f2(z, Ea) = cT z +
N∑
i=1

p∑
j=1

hij‖H iz − aj‖+
N−1∑
k=1

N∑
l=k+1

wkl‖W klz‖+ XD(z).

First, we compute the number of the addends in the objective function in (7.10). In the first term

cT z and in the last term XD(z) there is only one addend. In the second term:
N∑
i=1

p∑
j=1

hij‖H iz − aj‖

we have N · p addends. The third term
N−1∑
k=1

N∑
l=k+1

wkl‖W klz‖ is assorted lexicographically and has

N(N−1)
2 addend, since k = 1, · · · , N − 1 and l = 1, · · · , N . Thus, we can give the matrices W kl a

new index µ from 1 till N(N−1)
2 =: t, i.e., Wµ (µ = 1, · · · , t) are now the matrices

W 1 := W 12, W 2 := W 13, · · · ,W t := WN(N−1).

We do the same to the weights wkl for k = 1, · · · , N − 1 and l = 1, · · · , N and give them the new

index µ from 1 till N(N−1)
2 = t and get

w1 := w12, w2 := w13, · · · , wt := wN(N−1).
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If we put

q := Np+ t+ 2 (7.18)

then we can introduce the space E as follows

E := {e = (e1, · · · , eq) | ei ∈ X (i = 1, · · · , q)} ⊂ Xq, (7.19)

where X = Rn. The space E is a Hilbert space equipped with the usual scalar product.

Furthermore, we define an operator S : E→ XN in order to describe the complementary subspaces A
and B of E:

S(e) :=

N∑
i=1

p∑
j=1

(H i)T e(i−1)p+j +

t∑
µ=1

(Wµ)T eNp+µ + eNp+t+1 + eNp+t+2, (7.20)

where e ∈ E. Now we define the subspaces A and B of E using the following abbreviations

xi1(z) := (H iz, · · · , H iz) ∈ Xp, i = 1, . . . , N,

x2(z) := (W 1z, · · · ,W tz) ∈ Xt, t =
N(N − 1)

2
,

x3(z) := (z, z) ∈ X2.

Considering the previous indications we now define A and B by

A := {y = (y1, · · · , yq) ∈ E | y = (x11(z), · · · , xN1 (z), x2(z), x3(z)), z ∈ XN}, (7.21)

B := {p = (p1, · · · , pq) ∈ E | S(p) = 0}. (7.22)

Our aim now is to prove that A⊥ = B and to conclude that A⊕ B = E.

Take y = (y1, · · · , yq) ∈ A and v = (v1, · · · , vq) ∈ E, then

〈y, v〉 =
N∑
i=1

p∑
j=1

〈H iz, v(i−1)p+j〉+
t∑

µ=1

〈Wµz, vNp+µ〉+ 〈z, vNp+t+1〉+ 〈z, vNp+t+2〉 (7.23)

=

N∑
i=1

p∑
j=1

〈z, (H i)T v(i−1)p+j〉+

t∑
µ=1

〈z, (Wµ)T vNp+µ〉+ 〈z, vNp+t+1〉+ 〈z, vNp+t+2〉

= 〈z, S(v)〉. (7.24)

If v ∈ B then 〈y, v〉 = 0, then v ∈ A⊥, which means that B ⊂ A⊥. If v ∈ A⊥, then 〈y, v〉 = 0 for

all y ∈ A and consequently for all z ∈ XN from (7.24), i.e., 〈z, S(v)〉 = 0 for all z ∈ XN . Hence

S(v) = 0, which implies that v ∈ B and A⊥ ⊂ B. Hence, A⊥ = B. From the closedness of the

subspaces A and B we get A⊕ B = E.

We proceed to the proximal step in the PPA and define the set-valued operator T on the space E, whose

components are related to the subdifferentials of the particular terms in the objective function.
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For y(i−1)p+j := H iz, (i = 1, . . . , N ; j = 1, . . . , p), and yNp+µ := W klz, (µ = 1, . . . , t) and

yNp+t+s := z, (s = 1, 2) we define:

T :E⇒ E (7.25)

y → T (y) = (T1(y1), · · · , Tq(yq)), (7.26)

where

T(i−1)p+j(y(i−1)p+j) := ∂(hij‖y(i−1)p+j − aj‖), i = 1, . . . , N ; j = 1, . . . , p (7.27)

TNp+µ(yNp+µ) := ∂(wµ‖yNp+µ‖), µ = 1, . . . , t (7.28)

TNp+t+1(yNp+t+1) := ND(yNp+t+1), (7.29)

TNp+t+2(yNp+t+2) := c. (7.30)

If we put

αij := (H i)T p0(i−1)p+j ∈ T(i−1)p+j(y(i−1)p+j), (7.31)

βµ := Wµp0Np+µ ∈ TNp+µ(yNp+µ), (7.32)

γ := p0Np+t+1 ∈ TNp+t+1(yNp+t+1), (7.33)

c := p0Np+t+2 ∈ TNp+t+1(yNp+t+1), (7.34)

y0 = (x11(z
0), · · · , xN1 (z0), x2(z

0), x3(z
0)), (7.35)

then the optimality conditions in (7.14) - (7.17) can be reformulated as:

Find (y0, p0) ∈ A× B s.t. p0 ∈ T (y0). (7.36)

So the problem (7.12) ( or equivalently the conditions (7.14) - (7.17) ) is equivalent to (7.36). If one of

them has a solution, then the other one has a solution as well, i.e., the solution can be obtained from

one of them.

The Proximal Step

Observing (7.27) - (7.29), the set-valued operator T is composed by subdifferentials, therefore it is

maximal monotone. But the PPA solves the equations of the kind 0 ∈ T (v). In order to bring the

problem (7.36) to this form, we use the method of Spingarn illustrated in Section 3.4.

Applying the equivalence (3.57) in Theorem 3.41, the problem in (7.36) is equivalent to

Find (y0, p0) ∈ A× B s.t. 0 ∈ TA(y0 + p0), (7.37)

where TA is the partial inverse of T w.r.t A. By considering the iterations in Section 3.4, we state that

the problem we have to solve now is solving

p̃k ∈ T (ỹk) with ỹk + p̃k = yk + pk.
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Which is denoted above as the proximal step. For that it holds that

p̃ ∈ T (ỹ) ⇔ p̃i ∈ Ti(ỹi) for i = 1, · · · , q.

Considering the last formulation of the optimality conditions, we define the iteration for the PPA:

p̃k(i−1)p+j ∈ ∂(hij‖ỹk(i−1)p+j − a
j‖) (7.38a)

with p̃k(i−1)p+j + ỹk(i−1)p+j = pk(i−1)p+j + yk(i−1)p+j , (7.38b)

p̃kNp+µ ∈ ∂(wµ‖ỹkNp+µ‖) (7.39a)

with p̃kNp+µ + ỹkNp+µ = pkNp+µ + ykNp+µ, (7.39b)

p̃kNp+t+1 ∈ ND(ỹkNp+t+1) (7.40a)

with p̃kNp+t+1 + ỹkNp+t+1 = pkNp+t+1 + ykNp+t+1, (7.40b)

p̃kNp+t+2 = c (7.41a)

with ỹkNp+t+2 = pkNp+t+2 + ykNp+t+2 − c (7.41b)

for i = 1, . . . , N ; j = 1, . . . , p; µ = 1, . . . , t.

In the following, we have to compute the subdifferentials in (7.38)− (7.40).

The Subdifferential for the Norm Parts and the Indicator Function

(a) Computing the subdifferential of the norm parts in (7.38) and (7.39)

For computing the subdifferential in (7.38), we discuss two cases:

I) ỹk(i−1)p+j − a
j 6= 0

In this case the structure of the subdifferential of the norm (see Lemma 3.32) provides the next

two statements

‖p̃k(i−1)p+j‖∗ = hij , (7.42)〈
p̃k(i−1)p+j , ỹ

k
(i−1)p+j − a

j
〉

= hij‖ỹk(i−1)p+j − a
j‖ (7.43)
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From (7.43) and the consideration of (7.38b) and the multiplication with 1
hij

we get

〈
p̃k(i−1)p+j

hij
, pk(i−1)p+j + yk(i−1)p+j − a

j︸ ︷︷ ︸
:=b(i−1)p+j

− p̃k(i−1)p+j〉

= ‖
︷ ︸︸ ︷
pk(i−1)p+j + yk(i−1)p+j − a

j − p̃k(i−1)p+j‖ (7.44)

We observe that (cf. (3.14))

B∗[0, 1] = {z∗ ∈ XN : ‖z∗‖∗ ≤ 1} (later only B∗) (7.45)

and apply the Cauchy-Schwartz-inequality, (i.e., 〈x, y〉 ≤ ‖x‖ · ‖y‖) in an inner-product space:

〈z∗, z〉 ≤ ‖z∗‖∗ · ‖z‖ ⇒

〈z∗, z〉 ≤ ‖z‖ (7.46)

now from (7.44) with the consideration of the previous inequality (7.46) leads to

〈
p̃k(i−1)p+j

hij
, b(i−1)p+j− p̃k(i−1)p+j〉 = ‖b(i−1)p+j− p̃k(i−1)p+j‖ ≥ 〈z

∗ , b(i−1)p+j− p̃k(i−1)p+j〉.

This means

〈
p̃k(i−1)p+j

hij
− z∗ , b(i−1)p+j − p̃k(i−1)p+j〉 ≥ 0, ∀z∗ ∈ B∗

〈
p̃k(i−1)p+j

hij
− z∗ ,

b(i−1)p+j

hij
−
p̃k(i−1)p+j

hij
〉 ≥ 0, ∀z∗ ∈ B∗

〈
p̃k(i−1)p+j

hij
−
b(i−1)p+j

hij
, z∗ −

p̃k(i−1)p+j

hij
〉 ≥ 0, ∀z∗ ∈ B∗

and concerning the best approximation of
b(i−1)p+j

hij
with respect to B∗ in Pre-Hilbert spaces the

last inequality is equivalent to

p̃k(i−1)p+j = hij PB∗(
b(i−1)p+j

hij
). (7.47)

II) ỹk − aj = 0

For this case, we get the structure of the subdifferential of the norm also from Lemma 3.32 as

p̃k(i−1)+j ∈ hij ∂‖0‖ = {z∗ ∈ XN | ‖z∗‖∗ ≤ hij}, (7.48)

which leads to

‖p̃k(i−1)+j‖∗ ≤ hij . (7.49)
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Now from (7.38b) and the assumption that is ỹk = aj (of the case II)) we get

p̃k(i−1)+j = pk(i−1)+j + yk(i−1)+j − aj (7.50)

from (7.49) and (7.50):

‖b(i−1)p+j‖∗ := ‖pk(i−1)+j + yk(i−1)+j − a
j‖∗ = ‖p̃k(i−1)+j‖∗ ≤ hij . (7.51)

By summarizing both cases I) and II) for the norm parts in (7.38) we find:

b(i−1)p+j := pk(i−1)+j + yk(i−1)+j − a
j

p̃k(i−1)+j :=

b(i−1)p+j : ‖ b(i−1)p+j

hij
‖∗ ≤ 1

hij PB∗(
b(i−1)p+j

hij
) : ‖ b(i−1)p+j

hij
‖∗ > 1.

Analogously to the result of computing the norm parts in (7.38), the subdifferential in (7.39) is

computed as follows

bNp+µ := pkNp+µ + ykNp+µ

p̃kNp+µ :=

bNp+µ : ‖ bNp+µwµ
‖∗ ≤ 1

wµ PB0(
bNp+µ
wµ

) : ‖ bNp+µwµ
‖∗ > 1.

(b) Computing the subdifferential of the indicator function in (7.40)

That is to solve

p̃kNp+t+1 ∈ ND(ỹkNp+t+1),

with

p̃kNp+t+1 + ỹkNp+t+1 = pkNp+t+1 + ykNp+t+1.

By reformulating the last equation:

p̃kNp+t+1 = pkNp+t+1 + ykNp+t+1 − ỹkNp+t+1

and then

pkNp+t+1 + ykNp+t+1 − ỹkNp+t+1 ∈ ND(ỹkNp+t+1)

pkNp+t+1 + ykNp+t+1 ∈ ỹkNp+t+1 +ND(ỹkNp+t+1)

pkNp+t+1 + ykNp+t+1 ∈ (I +ND)(ỹkNp+t+1).

Since the inverse of (I +ND) is the projection onto the set D, we can write

ỹkNp+t+1 := PD(pkNp+t+1 + ykNp+t+1) (7.52)

and p̃kNp+t+1 can be obtained from ỹkNp+t+1 as follows

p̃kNp+t+1 = pkNp+t+1 + ykNp+t+1 − ỹkNp+t+1. (7.53)
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The Projection Step (The Projection on the Subspaces)

For an arbitrary element v ∈ E with v = vA + vB, vA ∈ A and vB ∈ B, we have

vA = (x11(z), · · · , xN1 (z), x2(z), x3(z)) ∈ A (7.54)

with

xi1(z) := (H iz, · · · , H iz) ∈ XN i = 1, . . . , N

x2(z) := (W 1z, · · · ,W tz) ∈ Xt t =
N(N − 1)

2

x3(z) := (z, z) ∈ X2.

We apply the definition of the operator S given in (7.20) on v ∈ E with v = vA + vB, where vA ∈ A
and vB ∈ B:

S(v) = S(vA) (S(vB) = 0) (7.55)

S(v) =

N∑
i=1

p∑
j=1

(H i)T v(i−1)p+j +

t∑
µ=1

(Wµ)T vNp+µ + vNp+t+1 + vNp+t+2 (7.56)

S(vA) =
N∑
i=1

p∑
j=1

(H i)T vA(i−1)p+j +
t∑

µ=1

(Wµ)T vANp+µ + vANp+t+1 + vANp+t+2 (7.57)

Considering (7.54), then (7.57) leads to

S(vA) =

N∑
i=1

p∑
j=1

(H i)TH iz +

t∑
µ=1

(Wµ)T Wµz + z + z

=

p( N∑
i=1

(H i)TH i

)
+

t∑
µ=1

(Wµ)T Wµ + 2I

 z
=: Φz

with

Φ := p

(
N∑
i=1

(H i)TH i

)
+

t∑
µ=1

(Wµ)T Wµ + 2I (7.58)

and by putting

S(v) = S(vA) =
N∑
i=1

p∑
j=1

(H i)T v(i−1)p+j +

t∑
µ=1

(Wµ)T vNp+µ + vNp+t+1 + vNp+t+2

=: u (7.59)

then we state that z can be obtained from solving the following equation being obtained from (7.58)

and (7.59):

Φz = u. (7.60)
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In order to solve this equation we want to study the regularity of the operator Φ, this is to study weather

det(Φ) 6= 0.

Because of the special structure of the matrices H i and Wµ = W kl we have

p∑
j=1

N∑
i=1

(H i)TH i = p


E O · · · O

O E · · · O
...

. . .
...

O · · · O E

 =: pI(nN,nN),

t∑
µ=1

(Wµ)T Wµ =


(N − 1)E −E · · · −E
−E (N − 1)E · · · −E

...
. . .

...

−E · · · −E (N − 1)E


(nN,nN)

.

Then Φ can be obtained as
rE −E · · · −E
−E rE · · · −E

...
. . .

...

−E · · · −E rE


(nN,nN)

with r = p+ (N − 1) + 2 > 0

for a multi-facility problem is p ≥ 1 and N ≥ 2 and so

r > N − 1, and r > 4. (7.61)

Proposition 7.3. For N ≥ 2 it holds

det Φ = det


rE −E · · · −E
−E rE · · · −E

...
. . .

...

−E · · · −E rE

 6= 0.

Proof. In order to compute the determinant of the matrix Φ we begin with the switch of N − 1 rows,

in the way that the odd rows go up and the even rows go down. In the same way we switch N − 1

columns in the way that the odd columns go to the left and the even columns go to the right. In this

way the matrix Φ has the new form:

Φ =

(
M r
N 0

0 M r
N

)
(nN,nN)

with M r
N =


r −1 · · · −1

−1 r · · · −1
...

. . .
...

−1 −1 · · · r


(N,N)

.
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If we leave the first row and multiplicate the rest with r and add to the first row, then the determinant of

M r
N can be obtained as the following

det(M r
N ) =

1

rN−1
det


r −1 · · · −1

0 r2 − 1 · · · −(r + 1)
...

. . .
...

0 −(r + 1) · · · r2 − 1


=

1

rN−1
r det

(
(r + 1)M r−1

N−1
)

=
1

rN−2
(r + 1)N−1 det

(
M r−1
N−1

)
.

r = −1 makes this determinant equal to zero, and since r > 3 we have to prove that det(M r
N ) 6= 0 by

induction:

1. For N = 2 and r > 3 we have:

det(M r
2 ) = (r + 1) det(M r−1

1 )

= (r + 1)(r − 1)

= r2 − 1

⇒ det(M r
2 ) > 0

2. It holds that det(M r
N ) 6= 0 for N = k and r > k − 1:

det(M r
k ) =

1

rk−2
(r + 1)k−1 det

(
M r−1
k−1
)
6= 0

3. We want now to prove that det(M r
k+1) 6= 0 for N = k + 1 and r > k:

det(M r
N ) =

1

rN−2
(r + 1)N−1 det

(
M r−1
N−1

)
det(M r

k+1) =
1

rk−1
(r + 1)k detM r−1

k

Let us put s := r − 1 then s > k − 1:

det(M r
k+1) =

1

(s+ 1)k−1
((s+ 1) + 1)k det(M s

k)

We see that 1
(s+1)k−1 ((s+ 1) + 1)k 6= 0 and also det(M s

k) 6= 0 for s > k− 1 thus we conclude

that det(M r
N ) 6= 0.

Then det(Φ) = (det(M r
N ))2 6= 0.
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Now the operator Φ is invertible, since det(Φ) 6= 0. Hence, we have a solution of (7.60), which

represents the projection of v ∈ E onto the subspace A:

z : = Φ−1 u

= Φ−1

 N∑
i=1

p∑
j=1

(H i)T v(i−1)p+j +
t∑

µ=1

(Wµ)T vNp+µ + vNp+t+1vNp+t+2

 ,

where

vA = (y1, · · · , yq)

:= (x11(z), · · · , xN1 (z), x2(z), x3(z)) ∈ A

with

xi1(z) := (H iz, · · · , H iz) ∈ XN i = 1, . . . , N

x2(z) := (W 1z, · · · ,W tz) ∈ Xt t =
N(N − 1)

2

x3(z) := (z, z) ∈ X2.

Since A⊕ B, the projection of v ∈ E onto the subspace B can be computed as

vB = v − vA (7.62)

The points p̃k and ỹk have the relation (see (3.58)):

ỹk + p̃k = yk + pk, (yk ∈ A, pk ∈ B)

and through the additivity of the projection on a linear subspace we obtain

ỹk = yk + pk − p̃k

PA(ỹk) = PA(yk) + PA(pk)− PA(p̃k)

yk+1 − yk = −PA(p̃k).

and a PPA (with the illustration of the iterations) for solving the problem (SFPHD) or (MFP) is ready

to be introduced.

A PPA for solving the problem (MFP)

The Algorithm 7.4 is a version of the PPA for computing an approximate solution of a multi-facility

location problem (MFP) in (7.3) converted into the approximation problem (SFPHD) in (7.11). By

considering the sum yk + pk as a variable our PPA is described as follows.
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Algorithm 7.4. Input: The problem (MFP), i.e., the sets New = {x1, · · · , xN}, Ea = {a1, · · · , ap},
ci, hij and wkl for i ∈ IN , j ∈ Ip, k = 1, · · · , N − 1, l = k + 1, · · · , N .

1 The initialization

• Convert the problem (MFP) into the form (SFPHD), i.e., compute H i, W kl for i ∈ IN ,

k = 1, · · · , N − 1, l = k + 1, · · · , N .

• Give the matrices W kl for k = 1, · · · , N − 1 and l = 1, · · · , N a new numbering from 1

till N(N−1)
2 =: t.

• Take z1 ∈ XN , p1 ∈ B and set:

(p1 + y1)(i−1)p+j = p1(i−1)p+j + H iz1

(p1 + y1)Np+µ = p1Np+µ + Wµz1

(p1 + y1)Np+t+s = p1Np+t+s + z1

for i = 1, . . . , N ; j = 1, . . . , p; µ = 1, . . . , t; s = 1, 2

• Compute Φ−1

2 The Proximal Step

• For i = 1, . . . , N ; j = 1, . . . , p; µ = 1, . . . , t set

b(i−1)p+j := pk(i−1)+j + yk(i−1)+j − a
j

p̃k(i−1)+j :=

b(i−1)p+j : ‖ b(i−1)p+j

hij
‖∗ ≤ 1

hij PB0(
b(i−1)p+j

hij
) : ‖ b(i−1)p+j

hij
‖∗ > 1.

bNp+µ := pkNp+µ + ykNp+µ

p̃kNp+µ :=

bNp+µ : ‖ bNp+µwµ
‖∗ ≤ 1

wµ PB0(
bNp+µ
wµ

) : ‖ bNp+µwµ
‖∗ > 1.

• For s = 1 set

p̃kNp+t+1 = pkNp+t+1 + ykNp+t+1 − PD(pkNp+t+1 + ykNp+t+1)

• For s = 2 set

p̃kNp+t+2 = c

3 The Projection Step

Compute
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• p̃k := Φ−1(

N∑
i=1

p∑
j=1

(H i)T pk(i−1)p+j +

t∑
µ=1

(Wµ)T pkNp+µ + pkNp+t+1 + pkNp+t+2︸ ︷︷ ︸
:=σ1

).

• zk+1 := zk − p̃k

• pk+1 + yk+1 := p̃k +
(
x11(z

k − 2p̃k), · · · , xN1 (zk − 2p̃k), x2(z
k − 2p̃k), x3(z

k − 2p̃k)
)

4 A Stop Criterion:

Stop, if for a given value ε > 0:

‖σ1‖+ ‖p̃k‖ = ‖S(p̃k)‖+ ‖p̃k‖ < ε

and

‖(pk+1 + yk+1)− (pk + yk)‖ < ε.

Otherwise, set k = k + 1 and go back to Step 2 .

Output: zk the approximate solution of the condition (7.12), which solves the problem (SFPHD).

Duality for Scalar Multi-Facility Location Problem

After finding a solution procedure for solving scalar multi-facility location problems through the

proximal point algorithm, we take a look on duality for this problem (see Section 5.1).

We consider the primal approximation problem in (7.9) with the objective function

f1(z, Ea) := cT z +

N∑
i=1

p∑
j=1

hij‖H iz − aj‖+

N−1∑
k=1

N∑
l=k+1

wkl‖W klz‖. (7.63)

This function is of the form of the objective function in (5.1) such that it is possible to apply the duality

results given in Section 5.1.

For KXN ⊂ XN , B ∈ L(XN , XN ), b ∈ XN , we suppose that the feasible set D has the following

structure:

D := {z ∈ XN | z ∈ KXN , B(z)− b ∈ KXN }.

According to the assumptions of our problem in (7.9) the spaces X and V from (5.1) are equal to XN

in this case.

For the primal problem given in {
Minimize f1(z, Ea)

subject to x ∈ D,
(7.64)
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we introduce the following dual problem{
Maximize f∗1 (y, u, v)

subject to x ∈ D∗,
(7.65)

where

f∗(y, u, v) :=
N∑
i=1

p∑
j=1

hijyij(a
j) + v(b)

and

D∗ := {(y, u, v) | y = (y11, · · · , yNp), yij ∈ L(X,R), u = (u11, · · · , ut) = (ukl) ∈ L(X,R),

hij‖yj‖∗ ≤ hij , wkl‖ukl‖∗ ≤ wkl, v ∈ K∗XN ,

c−
N∑
i=1

p∑
j=1

hij(H
i)T yij +

N−1∑
k=1

N∑
l=k+1

wkl(W
kl)Tukl −BT v ∈ K∗XN }.

Remark 7.5. The duality statements given in Chapter 5 hold also for the primal problem (7.64) and

the dual problem (7.65). Taking into account that the scalar multi-facility location problem (MFP)

given in (7.3) is equivalent to the approximation problem (7.9) we get weak (and under additional

assumptions) strong duality statements for the problems (7.3) and (7.65). These duality statements can

be used for deriving a slopping criteria in the proximal point algorithm (Algorithm 7.4) much the same

as in [49].

7.2 An Interactive Procedure for Solving Multiobjective Approximation
Problems

This section is devoted to taking a look at solving multiobjective location problems by using a suitable

scalarization and the proximal point algorithm (Algorithm 7.4).

An interactive procedure for solving (P2), given in (2.4), through the PPA is introduced in [49, 107]

for two types of assumptions. We want to find such an approach for a multiobjective multi-facility

location problem.

The scalar multi-facility location problem (MFP) described in (7.3) depends on the choice of the

weights hij , wkl. If the decision maker is not able to give concrete values for these weights, then it is

very convenient to study a multi-facility location problem with a vector-valued objective function.

A multiobjective multi-facility location problem, concerning the new facilities New = {x1, · · · , xN}
from X = Rn and the exiting facilities Ea = {a1, · · · , ap} and ci ∈ X (i ∈ IN ), can be formulated

for s := Np+ t+N as follows (cf. (7.1)):

F (New,Ea) := (F11, . . . , F1p, . . . , FN1, . . . , FNp, F
′
12, . . . , F

′
N,N−1, F

′′
1 , . . . , F

′′
N ) : X → Rs

(7.66)
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with

Fij(New,Ea) := ‖xi − aj‖,

F ′kl(New,Ea) := ‖xk − xl‖,

F ′′i (New,Ea) := ci
T
xi

for all i = 1, . . . , N , j = 1, . . . , p, k = 1, . . . , N − 1, l = k + 1, . . . , N with t = N(N−1)
2 and

s = Np+ t+N .

In order to formulate the multiobjective multi-facility location problem we introduce a proper, convex,

pointed and closed cone K ⊂ Rs with intK 6= ∅. The multiobjective multi-facility location problem

is given by

(MMFP)

{
Minimize F (New,Ea)

subject to x ∈ D,
(7.67)

where D ⊂ XN is defined as in (7.2). Note that the minimum in (7.67) is to be understood with respect

to the cone K.

According to Theorem 4.12 with the fact that F (New,Ea) is Rs+-convex (which can be easily ob-

served), we know that there exists λ∗ ∈ K∗ \ {0} such that we get the scalarized problem: Minimize F (New, λ∗) :=
N∑
i=1

p∑
j=1

hij‖xi − aj‖+
N−1∑
k=1

N∑
l=k+1

wkl‖xk − xl‖+
N∑
i=1

λ∗i c
iTxi

subject to x ∈ D,
(7.68)

where

λ∗ := (h11, . . . , hNp, w12, . . . , wN,N−1, λ
∗
1, . . . , λ

∗
N ) ∈ K∗ \ {0},

where hij , wkl, λ∗i ∈ R for all i = 1, . . . , N , j = 1, . . . , p, k = 1, . . . , N − 1, l = k + 1, . . . , N . For

the problems (7.67) and (7.68) it holds that for every minimal solution of the multiobjective problem

(MMFP) given in (7.67) there exits a functional λ∗ ∈ K∗ \ {0} such that it is also a minimal solution

of the scalarized problem (7.67). It is important to mention that hij , wkl in (7.68) can be selected

according to the choice of λ∗ from the dual cone in contrast to the weights hij , wkl in (7.1) which are

determined by the decision maker.

We observe that the problem obtained is a scalar multi-facility location problem of the type (7.1).

Therefore, we convert this problem to an approximation problem as in Section 7.1. This means we set

z = (x1, . . . , xN ) ∈ XN and c = (c1, . . . , cN ) ∈ XN as shown in (7.4), (7.7) and define the matrices

H i and W kl for all i = 1, . . . , N , j = 1, . . . , p, k = 1, . . . , N − 1, l = k + 1, . . . , N as in (7.5)
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and (7.6) respectively. Furthermore, we define the set D ⊂ XN as in (7.2). This implies the problem Minimize F (z, λ∗) :=
N∑
i=1

p∑
j=1

hij‖H iz − aj‖+
N−1∑
k=1

N∑
l=k+1

wkl‖W klz‖+
N∑
i=1

λ∗i c
T z

subject to z ∈ D.
(7.69)

For deriving an interactive procedure for solving the multiobjective multi-facility location problem

(MMFP) we define the optimal-value function

φ(λ∗) := inf{F (z, λ∗) | z ∈ D}, (7.70)

and the optimal set mapping ψ : D ⇒ R with

ψ(λ∗) := {z ∈ D | F (z, λ∗) = φ(λ∗)}. (7.71)

In [49, Section 4.2.3] continuity properties of the mappings φ and ψ are shown, namely the continuity

of φ and the upper continuity of ψ (see [49, Definition 4.2.7]). These stability properties are fulfilled

for the problem (7.69) such that it is possible to derive an effective algorithm for solving (MMFP).

Taking into account these continuity properties we formulate the following interactive solution proce-

dure for the multiobjective approximation problem (MMFP) given in (7.67). This interactive procedure

uses a scalarization by means of linear continuous functionals and the PPA (Algorithm 7.4) in order to

solve (MMFP) involving the decision maker by accepting solutions according to his preferences.

Algorithm 7.6 (An Interactive Procedure for Solving (MMFP)).

1 • Choose λ̄∗ ∈ intK∗.

• Compute the approximate solution (y0, p0) of the scalarized problem (7.69) with Algo-

rithm 7.4.

• If the solution (y0, p0) is accepted by the decision maker, then STOP.

2 Set k = 0 and t0 = 0. Choose ¯̄λ∗ ∈ intK∗, ¯̄λ∗ 6= λ̄∗.

3 Choose tk+1 with tk < tk+1 < 1, set λ∗k := λ̄∗ + tk+1(
¯̄λ∗ − λ̄∗) and compute an approximate

solution (yk+1, pk+1) with Algorithm 7.4 and (yk, pk) as a starting point. If an approximate

solution is not found for t > tk, then go to Step 1 .

4 If the point (yk+1, pk+1) is accepted by the decision maker, then STOP.

5 • If tk+1 = 1, then go to Step 1 .

• Otherwise, set k = k + 1 and go to Step 3 .
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Remark 7.7. A similar approach can be developed for solving the multiobjective location and approxi-

mation problem (P) defined in (5.6).

Consider a special case of (P) with x, a1, · · · , ap ∈ X = Rn,Ai ∈ L(X,X), βi = 1 and ‖·‖(i) = ‖·‖
for i ∈ Ip. The assumptions (A4) and (A5) are still holding. We refer also that concerning the case

βi > 1 another version of the PPA can be derived for more general assumptions (cf. [49]).

We minimize the vector-valued objective function f(x) from (5.4) over a convex and closed setD ⊂ X .

From Section 5.2 we know that there exists λ∗ ∈ intK∗ such that we get the scalarized problem
Minimize f(x, λ) :=

p∑
i=1

λ∗i ‖Ai(x)− ai‖+
m∑
j=1

λ∗p+jCp+j(x)

subject to x ∈ D.
(7.72)

We observe that the problem (7.72) is a special case of (7.68). Thus we can apply Algorithm 7.6 for

solving the special case of the multiobjective location and approximation problem (P) mentioned

above.



CHAPTER 8

Conclusions and Outlook

Conclusions

The results of this thesis can be summarized as follows:

• In this thesis we studied a class of extended multiobjective location and approximation problems

(P), where the objective function includes distances as well as cost functions. This class is very

important and has a lot of applications, for instance, in economy, engineering and physics. In

particular, we gave an example for an application in radiotherapy treatment.

The structure of the objective function in (P) is more useful for the decision maker because

the cost functions are included in the vector-valued objective function as additional criteria,

which is different to the known literature. This model is more natural than to study the sum of a

cost function and a vector of approximation terms in the objective function. Furthermore, by

using this structure of the objective function it is possible to apply reducing methods (studied

in Section 4.3) and to derive decomposition algorithms, that provide minimal solutions of the

extended multiobjective location problem.

• We proved duality assertions for the problem (P) using generalized Lagrange duality in Sec-

tion 5.2. For proving strong duality statements we have shown that the assumptions (C5) and

(C6) in Theorem 3.37 are fulfilled under generalized Slater conditions.

• A brief overview of the linearization ability of the problem (P) using block norms is given. Then

the well-know algorithms for solving multiobjective linear optimization problems can by applied,

for example the open solver BENSOLVE (which is based on Benson’s outer approximation

algorithm).

• In Section 5.3 we studied the multiobjective location problem (P1) (given in (5.41)). We studied

the duality-based geometrical structure of the set of minimal solutions of (P1), and we derived

the following new results:

114
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– We characterized the set of weakly minimal solutions of (P1) with help of the Pareto

reducibility of (P1), and we proved that this set coincides with the Manhattan (or the

maximum) rectangular hull of the exiting facilities.

– We derived an implementable partition algorithm (Algorithm 6.3) for decomposing the set

of minimal solutions of (P1) (which is generally not convex).

• The partition algorithm is the base for developing decomposition algorithms of the extended

multiobjective location problems (P2) (given in (6.2)). These decomposition algorithms gen-

erate minimal solutions of the extended problem (P2) taking into account the decomposition

results in Section 4.3.

• We gave numerical implementable examples of the application of the previous decomposition

algorithms, especially for solving location problems where attraction and repulsion points are

involved.

• Scalar multi-facility location problems are also studied in this thesis. First, we transformed

the multi location problem into a single-facility approximation problem in higher dimensions.

Second, we used the method of the partial inverse by Spingarn and a corresponding proximal

point algorithm for solving scalar multi-facility location problems.

• Furthermore, we showed that multiobjective multi-facility location problems can be solved

through an interactive procedure using the PPA developed for the scalar multi-facility location

problem.

Outlook

During this study we have discovered several interesting topics that can be investigated in the future.

Some of these interesting research points are listed below.

• Deriving duality assertions for extended multiobjective location and approximation problems

involving gauges instead of norms.

• It is also interesting to derive duality assertions for extended multiobjective location and approxi-

mation problems formulated by considering some uncertainties (duality for robust multiobjective

optimization problems).

• The extended multiobjective location and approximation problems can be studied with not

necessarily linear additional cost functions, but with more general nonlinear additional functions.

• Developing proximal point algorithms for scalar and multiobjective multi-facility location

problems involving mixed gauges.
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• The linearization approach that we introduced for (P) can be extended by applying different

methods of multiobjective linear programming. Furthermore, we can derive decomposition

algorithms (and apply the results of Section 6.2) for the resulting multiobjective linear problem.

• The possibility of applying our partition and decomposition algorithms on extended multiobjec-

tive location problem where forbidden regions are considered.

• Some of the results of this thesis are shown in general spaces. It would be interesting to use

these results for deriving algorithms for solving approximation problems in general spaces.
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problems. In: A. Göpfert et al. (eds.) Methods of Multicriteria Decision Theory. Deutsche

Hochschulschriften 2398, Hänsel-Hohenhausen-Verlag, pp. 203 – 211, 1997.

[8] H. Benker, A. Hamel, Chr. Tammer. A proximal point algorithm for control approximation

problems. Operation Research, 43, pp. 261 – 280, 1996.

[9] H. Benker, A. Hamel, Chr. Tammer. An algorithm for vectorial control approximation problems.

In: G. Fandel, T. Gal (eds.) Multiple Criteria Decision Making. Springer, Berlin, pp. 3 – 12, 1997.

[10] H. P. Benson. An outer approximation algorithm for generating all efficient extreme points in the

outcome set of a multiple objective linear programming problem. Journal of Global Optimization,

13, pp. 1 – 24, 1998.

117



B I B L I O G R A P H Y 118

[11] J.-M. Bonnisseau, B. Crettez. On the characterization of efficient production vectors. Economic

Theory, 31, pp. 213 – 223, 2007.
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[62] J-B. Hiriart-Urruty, C. Lemaréchal. Convex Analysis and Minimization Algorithms I. Springer-

Verlag, Berlin, 1993.
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