
Applied Mathematics and Computation 420 (2022) 126561 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Full state approximation by Galerkin projection re duce d order 

models for stochastic and bilinear systems 

Martin Redmann 

a , ∗, Igor Pontes Duff b 

a Martin Luther University Halle-Wittenberg, Institute of Mathematics, Theodor-Lieser-Str. 5, Halle 06120 Saale, Germany 
b Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany 

a r t i c l e i n f o 

Article history: 

Received 12 April 2021 

Revised 14 July 2021 

Accepted 27 July 2021 

Available online 30 October 2021 

MSC: 

60H10 

65C30 

93A15 

93C10 

93D20 

93E15 

Keywords: 

Model order reduction 

Stability analysis 

Error bounds 

Stochastic and bilinear systems 

Galerkin projection 

a b s t r a c t 

In this paper, the problem of full state approximation by model reduction is studied for 

stochastic and bilinear systems. Our proposed approach relies on identifying the dominant 

subspaces based on the reachability Gramian of a system. Once the desired subspace is 

computed, the reduced order model is then obtained by a Galerkin projection. We prove 

that, in the stochastic case, this approach either preserves mean square asymptotic stabil- 

ity or leads to reduced models whose minimal realization is mean square asymptotically 

stable. This stability preservation guarantees the existence of the reduced system reacha- 

bility Gramian which is the basis for the full state error bounds that we derive. This error 

bound depends on the neglected eigenvalues of the reachability Gramian and hence shows 

that these values are a good indicator for the expected error in the dimension reduction 

procedure. Subsequently, we establish the stability preservation result and the error bound 

for a full state approximation to bilinear systems in a similar manner. These latter results 

are based on a recently proved link between stochastic and bilinear systems. We conclude 

the paper by numerical experiments using a benchmark problem. We compare this ap- 

proach with balanced truncation and show that it performs well in reproducing the full 

state of the system. 
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1. Introduction 

Galerkin approximation is an important methodology to obtain surrogate models for high fidelity systems. It relies on 

the fact that, in many applications, the state of the system is well approximated in a lower-dimensional subspace. In other

words, for x (t) ∈ R 

n with n � 1 , there exist V ∈ R 

n ×r such that x (t) ≈ V ̂  x (t) . The choice of the right basis V plays a crucial

role in the approximation quality. Several approaches to construct the dominant subspaces have been proposed for deter- 

ministic linear systems, see, e.g., [6] . Among them, a commonly used approach is the proper orthogonal decomposition 

(POD) [10,18] , which identifies dominant subspaces empirically by extracting them from snapshot matrices. These empirical 

methods have been successfully used in many applications. However, they are input-dependent in the setup of control sys- 

tems, i.e., the quality of reduced order model (ROM) will depend on the choices of inputs used to generate the snapshots.

In the setup of stochastic systems considered in this paper, a POD approach would require the simulation of an enormous
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amount of samples being numerically costly in practice. Moreover, a deeper theoretical analysis of such empirical methods 

is often not feasible. 

Given stability in the original model, it is of interest to preserve this property in the reduced system. Galerkin methods

have been shown to preserve stability for deterministic linear dissipative systems, see, e.g., [29] . Additionally, the authors 

in [22] propose a POD scheme combined with linear matrix inequalities to construct ROMs that are locally stable in a non-

linear deterministic setting. In general, Krylov based methods for deterministic linear [15] and bilinear systems [11] do not 

guarantee stability in the ROM. However, in [23] , the authors have proposed equivalent dissipative realizations to arbitrary 

Galerkin projected linear systems that are stable. To the authors’ knowledge, stability preservation using Galerkin projections 

has not been studied in the literature of stochastic systems. 

In this work, we focus on model order reduction of linear stochastic and bilinear systems aiming for a full state ap-

proximation. Therefore, we study a Galerkin approach based on the dominant reachability subspaces, which leads to input- 

independent projections, i.e., the corresponding ROMs are (pathwise) accurate for a large set of inputs. This approach relies 

on the computation of the reachability Gramian of the underlying dynamical system. These Gramians are encoded by gen- 

eralized Lyapunov equations and, hence, can be computed in a numerically efficient way in large-scale settings (see, e.g., 

the review papers [8,30] for low-rank methods). Once the Lyapunov equation is solved, the dominant subspaces are then 

identified by the span of eigenvectors of the Gramian associated with the large eigenvalues. Hence, the ROM is obtained

by projecting the dynamical system onto the identified subspace. We show that this procedure either preserves the un- 

derlying stability or at least ensures the existence of the reduced order Gramian, which is vital for the error analysis. As a

consequence, the minimal realization of the reduced model is stable. Subsequently, we propose error bounds for the approx- 

imation, which show how the reduction error is related to the neglected eigenvalues of the Gramian. It is worth noticing

that this approach has already been successfully applied in the literature of deterministic linear time-invariant systems, e.g., 

in the context of structured systems [31] , and port-Hamiltonian systems [21] . However, to the authors knowledge, the sta-

bility analysis and error bounds for stochastic and bilinear systems considered in this paper have not even been established 

for deterministic linear systems so far. 

It is worth mentioning that one way to address the problem of full state approximation is to use balanced truncation,

see [19] for deterministic linear systems and [1,3,7,24] for stochastic and bilinear systems. This method is generally suit- 

able when one wants to approximate a quantity of interest y (t) = Cx (t) , with C ∈ R 

p×n and p � n . For this method, one

needs to compute the observability Gramian in addition to the reachability Gramian. Subsequently, a ROM is obtained by 

Petrov-Galerkin projection based on these two Gramians. One advantage of balanced truncation is that it is, under some 

mild conditions, stability preserving [4,20] and it guarantees error bounds [7,14,26] . However, whenever, p ≈ n , it suffers

from the issue that the computation of the observability Gramian is not feasible in practice since low-rank methods are no

longer applicable in this context. This scenario is given if the full state shall be approximated, since C = I in this case. For

the deterministic linear case, the authors in [9] propose a scheme enabling the computation of the Petrov-Galerkin projec- 

tion without the explicit computation of the observability Gramian. The approach is numerically feasible but costly since 

it relies on a quadrature scheme using the low-rank factors of the reachability Gramian pre-multiplied by shifted systems. 

Additionally, those results are no longer applicable for stochastic and bilinear systems. 

The paper is organized as follows. In Section 2 , we present the main setup for linear stochastic systems with zero initial

states and the concept of mean square asymptotic stability along with some literature results. Then, in Section 3 , we de-

scribed the proposed Galerkin projection based procedure using the reachability Gramian. Additionally, an interpretation of 

the dominant subspaces is derived therein. Section 4 is dedicated to showing the properties of the ROM for zero initial data.

First, we prove that this procedure either constructs a reduced model which is mean square asymptotically stable or a ROM

which has a realization satisfying the desired stability property. It is worth noticing that modified versions of those results 

are also valid for the class of deterministic bilinear systems, which we also establish in this paper. In Subsection 4.2 , we

derive bounds for the approximation error and their relation to the neglected singular values of the reachability Gramian. In 

Section 5 , the presented results are extended to the case of stochastic systems with non-zero initial conditions. This exten-

sion relies on splitting the general system into two subsystems. One being uncontrolled including the initial data x 0 and the

other one being the previously studied control system with zero initial condition. In particular, the results of Section 4 are

transferred to the subsystem involving x 0 . In Section 6 , similar results for the class of bilinear systems, including stabil-

ity preservation and error bounds, are derived. In Section 7 , some numerical experiments are conducted to illustrate the 

performance of the proposed approach and in order to compare it with balanced truncation. 

2. Linear stochastic systems and mean square stability 

2.1. Stochastic problem setup 

We consider the following linear stochastic systems 

dx (t) = [ Ax (t) + Bu (t)] dt + 

q ∑ 

i =1 

N i x (t) dW i (t) , t ≥ 0 , (1) 

where we assume that A, N i ∈ R 

n ×n and B ∈ R 

n ×m are constant matrices and its initial condition are assumed to be zero, i.e.,

x (0) = 0 . Later, we generalize the results to the case where non-zero initial conditions are considered. The vectors x and u
2 



M. Redmann and I.P. Duff Applied Mathematics and Computation 420 (2022) 126561 

 

 

 

 

 

V  

 

 

 

 

 

 

 

 

 

are called state and control input, respectively. Moreover, let W = 

(
W 1 , . . . , W q 

)� 
be an R 

q -valued standard Wiener process 

for simplicity of the notation. The results can be extended to square integrable Lévy processes with mean zero and general

covariance matrix (see, e.g., [24] ). All stochastic processes appearing in this paper, are defined on a filtered probability space(
�, F , (F t ) t≥0 , P 

)
1 In addition, W is (F t ) t≥0 -adapted and its increments W (t + h ) − W (t) are independent of F t for t, h ≥ 0 .

Throughout this paper, we assume that u is an (F t ) t≥0 -adapted control that is square integrable, meaning that 

‖ 

u ‖ 

2 
L 2 

T 
:= E 

∫ T 

0 
‖ 

u (s ) ‖ 

2 
2 ds < ∞ 

for all T > 0 , where ‖ ·‖ 2 denotes the Euclidean norm. Moreover, ‖ ·‖ F will denote the Frobenius norm, whereas ‖ ·‖ rep-

resents an arbitrary matrix/vector norm. The aim is to identify a low-dimensional subspace V of R 

n that approximates 

the manifold of the state x . Choosing a matrix V ∈ R 

n ×r of orthonormal basis vectors of V , an approximation of the form

 ̂  x (t) ≈ x (t) can be constructed. Inserting this approximation into the original system (1) , we enforce a Petrov-Galerkin

condition by multiplying the residual with V � leading to a ROM 

d ̂  x (t) = [ ̂  A ̂

 x (t) + 

ˆ B u (t)] dt + 

q ∑ 

i =1 

ˆ N i ̂  x (t ) dW i (t ) , t ≥ 0 , (2) 

where ˆ A = V � AV , ˆ B = V � B , ˆ N i = V � ˆ N i V and ˆ x (t) ∈ R 

r , ̂  x (0) = 0 , with r � n . Our main goal is to construct the matrix V , such

that, the approximation error is small for every input u considered. 

2.2. Mean square asymptotic stability and generalized Lyapunov operators 

We introduce the fundamental solution � to (1) . It is defined as the R 

n ×n -valued solution to 

�(t, s ) = I + 

∫ t 

s 

A �(τ, s ) dτ + 

q ∑ 

i =1 

∫ t 

s 

N i �(τ, s ) dW i (τ ) , t ≥ s. (3) 

It is the operator that maps the initial condition x 0 to the solution of the homogeneous state equation, i.e., u ≡ 0 , with initial

time s ≥ 0 . We additionally define �(t) := �(t, 0) . Moreover, notice that we have �(t, s ) = �(t)�−1 (s ) . 

Throughout this paper, we assume that the uncontrolled state Eq. (1) is mean square asymptotically stable, i.e, 

E ‖ �(t) ‖ 2 � e −ct for some constant c > 0 . With λ(·) denoting the spectrum of a matrix/operator, this is equivalent to 

λ( K ) ⊂ C −, (4) 

where K := I � A + A � I + 

∑ q 
i =1 

N i � N i and · � · is the Kronecker product of two matrices, see for instance [13,17] . Moreover,

the system is called mean square stable if λ( K ) ⊂ C −. Notice that λ(K) = λ(L A + �N ) , where the generalized Lyapunov

operator L A + �N is defined by X 
→ L A (X ) = AX + XA 

� and X 
→ �N (X ) = 

∑ q 
i =1 

N i XN 

� 
i 

. In Section 3 , we will introduce a

reduced system which does not necessarily preserve (4) but it is always mean square stable, i.e., K can additionally have 

eigenvalues on the imaginary axis. Therefore, we need the following sufficient conditions for mean square stability. 

Lemma 2.1. Given a matrix Y ≥ 0 , let us assume that there exists X > 0 such that 

L A (X ) + �N (X ) ≤ −Y. 

Then, we have λ( K ) ⊂ C −. 

Proof. An algebraic proof can be found in [4] , Corollary 3.2. We refer to [24] , Lemma 6.12 for a probabilistic approach. �

Let α(L A + �N ) := max {� (μ) : μ ∈ λ(L A + �N ) } be the spectral abscissa of the operator L A + �N , with � (·) being the

real part of a complex number. Since the stability of a stochastic system is related to the eigenvalues of L A + �N , we for-

mulate the following result. 

Lemma 2.2. There exists V 1 ≥ 0 , V 1 � = 0 , such that L A (V 1 ) + �N (V 1 ) = α(L A + �N ) V 1 . 

Proof. A proof in a more general framework can be found in [13] , Section 3.2. We also refer to [4] , Theorem 3.1 and the

references therein. �

Finally, spectral properties of the Kronecker matrix involving both the reduced and the original model matrices are re- 

quired. 

Lemma 2.3. Given that the full model is mean square asymptotically stable, whereas the reduced system is just mean square

stable, i.e., we have 

λ

( 

I � A + A � I + 

q ∑ 

i =1 

N i � N i 

) 

⊂ C − and λ

( 

I � ˆ A + 

ˆ A � I + 

q ∑ 

i =1 

ˆ N i �
ˆ N i 

) 

⊂ C −. 
1 (F t ) t≥0 is right continuous and complete. 

3 
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Then, it holds that 

λ

( 

I � A + 

ˆ A � I + 

q ∑ 

i =1 

ˆ N i � N i 

) 

⊂ C −. 

Proof. A probabilistic version can be found in [24] , Lemma 6.12 and an algebraic approach is given in [4] , Proposition 3.4. �

3. Dominant subspaces and reduced order model 

3.1. Dominant subspaces of (1) 

We identify the redundant information in the system by using the reachability Gramian 

P := E 

∫ ∞ 

0 

�(s ) BB 

� �� (s ) ds. 

Notice that P exists due to the exponential decay of the fundamental solution �. Practically, one can compute P by solving a

generalized Lyapunov equation. Using Lemma A.1 with s = 0 , ˆ A = A , ˆ B = B , ˆ N i = N i and t → ∞ , we obtain that the reachability

Gramian is a solution of the following generalized Lyapunov equation 

AP + PA 

� + 

q ∑ 

i =1 

N i P N 

� 
i = −BB 

� . (5) 

Let x (t, x 0 , u ) , t ≥ 0 , denote the solution of (1) with initial value x 0 and control u . Then, for z ∈ R 

n , we have 

sup 

t∈ [0 ,T ] 
E | 〈 x (t, 0 , u ) , z〉 2 | ≤

(
z � P z 

) 1 
2 ‖ 

u ‖ L 2 
T 

(6) 

using the results in [25] . Let (p k ) k =1 , ... ,n be an orthonormal basis of R 

n consisting of eigenvectors of P . Then, the state

variable can be written as 

x (t, 0 , u ) = 

n ∑ 

k =1 

〈 x (t, 0 , u ) , p k 〉 2 p k . 

Setting z = p k in (6) , we obtain 

sup 

t∈ [0 ,T ] 
E | 〈 x (t, 0 , u ) , p k 〉 2 | ≤ λ

1 
2 

k 
‖ 

u ‖ L 2 
T 
, (7) 

where λk is the corresponding eigenvalue. Consequently, we see that the direction p k is completely irrelevant if λk = 0 . On

the other hand, if λk is not zero but small, then a large component in the direction of p k requires a large amount of energy

by (7) . Therefore, the eigenspaces of P belonging to the small eigenvalues can also be neglected. 

A ROM can now be obtained by removing the unimportant subspaces from (1) . This is done by first diagonalizing P . If P 

is diagonal, we have that p k is the k th unit vector and the diagonal entries of P indicate the relevance of the respective unit

vector. A reduced system can then be easily derived by truncating the components of x associated to the small/zero entries

λk of a Gramian of the form P = diag (λ1 , . . . , λn ) . 

3.2. Reduced order model by Galerkin projection 

We introduce the eigenvalue decomposition of the reachability Gramian as follows 

P = S � �S, 

where S −1 = S � and � = 

[
�1 0 

0 �2 

]
= diag (λ1 , . . . , λn ) is the matrix of eigenvalues of P . For simplicity, let us assume that

the spectrum of P is ordered, i.e., λ1 ≥ . . . ≥ λn ≥ 0 so that �2 contains the small eigenvalues. Let us do a state space

transformation using the matrix S. The transformed state variable then is x b = Sx . Plugging this into (1) , we find 

dx b (t) = [ A b x b (t) + B b u (t)] dt + 

∑ q 
i =1 

N i,b x b (t ) dW i (t ) , t ≥ 0 , 

x (t) = S � x b (t) , 
(8) 

where the balanced matrices are given by 

A b := SAS � = 

[
A 11 A 12 

A 21 A 22 

]
, B b := SB = 

[
B 1 

B 2 

]
, N i,b := S N i S 

� = 

[
N i, 11 N i, 12 

N i, 21 N i, 22 

]
. (9) 
4 
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We refer to (9) as the balanced realization of the linear stochastic system. The fundamental solution of the balanced real-

ization is �b = S�S � which can be seen by multiplying (3) with S from the left and with S � from the right. Therefore, the 

reachability Gramian of (8) is 

P b := E 

∫ ∞ 

0 

�b (s ) B b B 

� 
b �

� 
b (s ) ds = SP S � = �. (10) 

We partition x b = 

[
x 1 
x 2 

]
, where x 1 and x 2 are associated to �1 and �2 , respectively. Now, exploiting the insights of

Section 3.1 , x 2 barely contributes to the system dynamics. We obtain the reduced system by truncating the equation re-

lated to x 2 in (8) . Furthermore, we set the remaining x 2 components equal to zero. This yields a reduced system (2) with

matrices 

ˆ A = A 11 = V 

� AV, ˆ B = B 1 = V 

� B, ˆ N i = N i, 11 = V 

� N i V, (11) 

where V are the first r columns of S � = 

[
V S 2 

]
. 

In large-scale settings, the reachability Gramian can be computed using low-rank methods (see [8,30] ), i.e., we find a

matrix Z P ∈ R 

n ×l , with l � n , such that P ≈ Z P Z 
� 
P . Consequently, in this setup, the Galerkin projection can be identified using

the singular value decomposition of Z P . 

4. Properties of the reduced system 

4.1. Mean square stability and reduced order Gramian 

In this section, we study stability preservation and the existence of the Gramian for the reduced system in (11) . The next

result guarantees mean square stability. 

Proposition 4.1. Suppose that �1 = diag (λ1 , . . . , λr ) > 0 . Then, the reduced order system (2) with ˆ A = A 11 and ˆ N i = N i, 11 , intro-

duced in (9) , is mean square stable, i.e., 

λ(I � A 11 + A 11 � I + 

q ∑ 

i =1 

N i, 11 � N i, 11 ) ⊂ C −. 

Proof. According to (10) , the balanced reachability Gramian is the diagonal matrix � of eigenvalues of P . Using the partition

of the balanced matrices in (9) , we therefore have [
A 11 A 12 

A 21 A 22 

][
�1 0 

0 �2 

]
+ 

[
�1 0 

0 �2 

][
A 

� 
11 A 

� 
21 

A 

� 
12 A 

� 
22 

]
+ 

q ∑ 

i =1 

[
N i, 11 N i, 12 

N i, 21 N i, 22 

][
�1 0 

0 �2 

][
N 

� 
i, 11 

N 

� 
i, 21 

N 

� 
i, 12 

N 

� 
i, 22 

]

= −
[

B 1 B 

� 
1 B 1 B 

� 
2 

B 2 B 

� 
1 B 2 B 

� 
2 

]
. 

The left upper block of the above equation is 

A 11 �1 + �1 A 

� 
11 + 

q ∑ 

i =1 

N i, 11 �1 N 

� 
i, 11 = −B 1 B 

� 
1 −

q ∑ 

i =1 

N i, 12 �2 N 

� 
i, 12 ≤ 0 . 

Since �1 > 0 by assumption, Lemma 2.1 yields the claim. �

Using Proposition 4.1 and Lemma 2.2 , the reduced order system is asymptotically mean square stable if and only if 0 �∈
λ(I � A 11 + A 11 � I + 

∑ q 
i =1 

N i, 11 � N i, 11 ) . With the following example it is shown that the zero eigenvalue can indeed occur. 

Example 4.2. Let N i = 0 , A = 

[
0 −10 

1 −10 

]
and B = 

[
0 

10 

]
. Then, system (1) is already balanced since the reachability Gramian

is given by 

P = 

∫ ∞ 

0 

e As BB 

� e A 
� s ds = 

[
50 0 

0 5 

]
. 

Moreover, we have rank ( 
[
B AB 

]
) = 2 which means that the system is reachable or locally reachable if N i were non zero.

According to Section 3.2 the reduced matrices are A 11 = 0 , B 1 = 0 and N i, 11 = 0 . Consequently, the reduced system is not

asymptotically stable and the reachability of the system is also lost since the reduced system is uncontrolled. 

Example 4.2 shows a difference to balanced truncation for stochastic systems, where mean square asymptotic stability 

is preserved under relatively general conditions [4,5] . Mean square asymptotic stability ensures the existence of the reacha- 

bility Gramian 

ˆ P := E 

∫ ∞ 

0 
ˆ �(s ) B 1 B 

� 
1 

ˆ �� (s ) ds , where ˆ � represents the fundamental solution of the reduced system. However,

asymptotic stability is only a sufficient condition for ˆ P to exist. The next example illustrates such a scenario. 
5 
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Example 4.3. Let N i = 0 , A = 

[
−1 −1 

−1 −1 

]
and B = 

[
1 

1 

]
. Then, we have 

�(t) = e At = 

[
e −2 t +1 

2 
e −2 t −1 

2 
e −2 t −1 

2 
e −2 t +1 

2 

]
and �(t) B = 

[
e −2 t 

e −2 t 

]
. 

Clearly, � does not decay exponential to zero but �B does. Therefore, the reachability Gramian exist and is P = [
0 . 25 0 . 25 

0 . 25 0 . 25 

]
, whereas the set of solutions to (5) is given by P + y 

[
−1 1 

1 −1 

]
, y ∈ R . 

Example 4.3 emphasizes that it is important to distinguish between a Gramian (given by an integral representation) and a 

solution of a Lyapunov equation. The next theorem proves that even if the reduced system is not mean square asymptotically

stable, the existence of the reduced order reachability Gramian can be guaranteed. This is one of the main results of the

paper which is also vital for later considerations, where we prove an error bound in which 

ˆ P is involved. 

Theorem 4.4. Given the reduced system (2) with matrices ˆ A = A 11 , ˆ B = B 1 , ˆ N i = N i, 11 defined in (9) and �1 = diag (λ1 , . . . , λr ) >

0 . Moreover, let ˆ � denote the fundamental solution to this reduced order system. Then, there is a constant c > 0 such that

E 

∥∥ ˆ �(t) B 1 
∥∥2 

F 
� e −ct . Hence, the reachability Gramian ˆ P := E 

∫ ∞ 

0 
ˆ �(s ) B 1 B 

� 
1 

ˆ �� (s ) ds exists and satisfies 

A 11 ̂
 P + 

ˆ P A 

� 
11 + 

q ∑ 

i =1 

N i, 11 ̂
 P N 

� 
i, 11 = −B 1 B 

� 
1 . (12) 

Proof. We set ˆ K := I � A 11 + A 11 � I + 

∑ q 
i =1 

N i, 11 � N i, 11 and consider the case that the reduced system is mean square

asymptotically stable, i.e., 0 �∈ λ( ̂  K ) . According to Section 2.2 this is equivalent to E 

∥∥ ˆ �(t) 
∥∥2 

F 
� e −ct implying E 

∥∥ ˆ �(t) B 1 
∥∥2 

F 
�

e −ct . Given this condition the infinite integral ˆ P exists. Moreover, using Lemma A.1 with A = 

ˆ A = A 11 , B = 

ˆ B = B 1 and

N i = 

ˆ N i = N i, 11 and exploiting that the left hand side of (58) tends to zero if t → ∞ , we see that ˆ P solves (12) . 

Let us consider the case of 0 ∈ λ( ̂  K ) = λ( ̂  K 

� ) . If further B 1 = 0 , the result of this theorem is true. Therefore, we addition-

ally assume that B 1 � = 0 . Then, by Lemma 2.2 , there exists ˆ V ≥ 0 such that 

L A � 
11 
( ̂  V ) + �N � 

11 
( ̂  V ) = A 

� 
11 ̂

 V + 

ˆ V A 11 + 

q ∑ 

i =1 

N 

� 
i, 11 

ˆ V N i, 11 = 0 . (13) 

Moreover, according to the proof of Proposition 4.1 , we have 

A 11 �1 + �1 A 

� 
11 + 

q ∑ 

i =1 

N i, 11 �1 N 

� 
i, 11 = −B 1 B 

� 
1 −

q ∑ 

i =1 

N i, 12 �2 N 

� 
i, 12 =: −R. (14) 

We observe that 

−〈 R, ̂  V 〉 F = 〈L A 11 
(�1 ) + �N 11 

(�1 ) , ̂  V 〉 F = 〈 �1 , L A � 
11 
( ̂  V ) + �N � 

11 
( ̂  V ) 〉 F = 0 . 

Using the properties of the trace this yields ∥∥∥ ˆ V 

1 
2 B 1 

∥∥∥2 

F 
+ 

q ∑ 

i =1 

∥∥∥ ˆ V 

1 
2 N i, 12 �

1 
2 

2 

∥∥∥2 

F 
= tr ( ̂  V 

1 
2 B 1 B 

� 
1 

ˆ V 

1 
2 ) + 

q ∑ 

i =1 

tr ( ̂  V 

1 
2 N i, 12 �2 N 

� 
i, 12 

ˆ V 

1 
2 ) 

= 〈 R, ̂  V 〉 F = 0 . 

This implies that 

ˆ V B 1 = 0 and 

ˆ V N i, 12 �
1 
2 

2 
= 0 . (15) 

The case ˆ V > 0 is excluded since then it holds that B 1 = 0 . Therefore, we consider the scenario in which 

ˆ V does not have

full rank. We then assume that ˆ V is an eigenvector with maximal rank, i.e., for any other eigenvector ˜ V ≥ 0 corresponding

to the zero eigenvalue, we have rank ( ̃  V ) ≤ rank ( ̂  V ) . 

Introducing the eigenvalue decomposition of ˆ V : 

ˆ V = 

[
ˆ V 1 

ˆ V 2 

][ ˆ D 0 

0 0 

][
ˆ V 

� 
1 

ˆ V 

� 
2 

]
= 

ˆ V 1 ̂
 D ̂

 V 

� 
1 , (16) 

ˆ D > 0 , we find a basis of the kernel by the columns of ˆ V 2 , i.e., ker ( ̂  V ) = im ( ̂  V 2 ) . Inserting (16) into (15) yields 

ˆ V 

� 
1 B 1 = 0 and 

ˆ V 

� 
1 N i, 12 �

1 
2 = 0 . (17) 

2 

6 
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We use a state space transformation based on 

ˆ S = 

[
ˆ V � 
1 

ˆ V � 
2 

]
involving the following matrices 

ˆ S A 11 ̂
 S � =: 

[
ˆ A 11 

ˆ A 12 

ˆ A 21 
ˆ A 22 

]
, ˆ S N i, 11 ̂

 S � =: 

[
ˆ N i, 11 

ˆ N i, 12 

ˆ N i, 21 
ˆ N i, 22 

]
, ˆ S �1 ̂

 S � =: 

[
ˆ P 11 

ˆ P 12 

ˆ P � 12 
ˆ P 22 

]
, 

ˆ S B 1 = 

[
ˆ V 

� 
1 B 1 

ˆ V 

� 
2 B 1 

]
= 

[
0 

ˆ V 

� 
2 B 1 

]
, ˆ S N i, 12 �

1 
2 

2 
= 

[ 

ˆ V 

� 
1 N i, 12 �

1 
2 

2 

ˆ V 

� 
2 N i, 12 �

1 
2 

2 

] 

= 

[
0 

ˆ V 

� 
2 N i, 12 �

1 
2 

2 

]
, 

(18) 

where (17) was exploited. We multiply (14) with 

ˆ S from the left and with 

ˆ S � from the right and obtain [
ˆ A 11 

ˆ A 12 

ˆ A 21 
ˆ A 22 

][
ˆ P 11 

ˆ P 12 

ˆ P � 12 
ˆ P 22 

]
+ 

[
ˆ P 11 

ˆ P 12 

ˆ P � 12 
ˆ P 22 

][
ˆ A 

� 
11 

ˆ A 

� 
21 

ˆ A 

� 
12 

ˆ A 

� 
22 

]
+ 

∑ q 
i =1 

[
ˆ N i, 11 

ˆ N i, 12 

ˆ N i, 21 
ˆ N i, 22 

][
ˆ P 11 

ˆ P 12 

ˆ P � 12 
ˆ P 22 

][
ˆ N 

� 
i, 11 

ˆ N 

� 
i, 21 

ˆ N 

� 
i, 12 

ˆ N 

� 
i, 22 

]
= −

[
0 0 

0 

ˆ R 

] (19) 

with 

ˆ R = 

ˆ V � 2 B 1 B 
� 
1 

ˆ V 2 + 

∑ q 
i =1 

ˆ V � 2 N i, 12 �2 N 

� 
i, 12 

ˆ V 2 ≥ 0 . Before we evaluate the blocks of (19) , we show that 

ˆ A 12 = 

ˆ V 

� 
1 A 11 ̂

 V 2 = 0 and 

ˆ N i, 12 = 

ˆ V 

� 
1 N i, 11 ̂

 V 2 = 0 . (20) 

To do so, we show that the kernel of ˆ V is invariant under multiplication with A 11 and N i, 11 . Let z ∈ ker ( ̂  V ) . Then, we obtain 

0 = z � 

( 

A 

� 
11 ̂

 V + 

ˆ V A 11 + 

q ∑ 

i =1 

N 

� 
i, 11 

ˆ V N i, 11 

) 

z = 

q ∑ 

i =1 

z � N 

� 
i, 11 

ˆ V N i, 11 z = 

q ∑ 

i =1 

∥∥∥ ˆ V 

1 
2 N i, 11 z 

∥∥∥2 

2 

implying that ˆ V N i, 11 z = 0 . Using this fact provides that 

0 = 

( 

A 

� 
11 ̂

 V + 

ˆ V A 11 + 

q ∑ 

i =1 

N 

� 
i, 11 

ˆ V N i, 11 

) 

z = 

ˆ V A 11 z. 

Hence, we have A 11 ker ( ̂  V ) , N i, 11 ker ( ̂  V ) ⊂ ker ( ̂  V ) . Since the columns of ˆ V 2 span ker ( ̂  V ) and due to the invariance, there exist

suitable matrices ˜ A 11 and 

˜ N i, 11 such that 

A 11 ̂
 V 2 = 

ˆ V 2 ̃
 A 11 and N i, 11 ̂

 V 2 = 

ˆ V 2 ̃
 N i, 11 . (21) 

Exploiting that ˆ V � 
1 

ˆ V 2 = 0 gives us (20) . Moreover, we see that ˆ A 22 = 

ˆ V � 
2 

A 11 ̂
 V 2 = 

ˆ V � 
2 

ˆ V 2 ̃  A 11 = 

˜ A 11 and similarly ˆ N i, 22 = 

˜ N i, 11 using

that ˆ V � 2 
ˆ V 2 = I. Taking (20) into account, the left upper block of (19) is 

ˆ A 11 ̂
 P 11 + 

ˆ P 11 ̂
 A 

� 
11 + 

∑ q 
i =1 

ˆ N i, 11 ̂
 P 11 ̂

 N 

� 
i, 11 

= 0 

⇔ 

ˆ P −1 
11 

ˆ A 

� 
11 + 

ˆ A 11 ̂
 P −1 
11 

+ 

∑ q 
i =1 

ˆ P −1 
11 

ˆ N i, 11 ̂
 P 11 ̂

 N 

� 
i, 11 

ˆ P −1 
11 

= 0 . 
(22) 

The evaluation of the right upper block yields 

ˆ A 11 ̂
 P 12 + 

ˆ P 11 ̂
 A 

� 
21 + 

ˆ P 12 ̂
 A 

� 
22 + 

∑ q 
i =1 

[
ˆ N i, 11 0 

][ ˆ P 11 
ˆ P 12 

ˆ P � 12 
ˆ P 22 

][
ˆ N 

� 
i, 21 

ˆ N 

� 
i, 22 

]
= 0 

⇔ 

ˆ A 

� 
21 = −

(
ˆ P −1 
11 

ˆ A 11 ̂
 P 12 + 

ˆ P −1 
11 

ˆ P 12 ̂
 A 

� 
22 + 

∑ q 
i =1 

[
ˆ P −1 
11 

ˆ N i, 11 0 

][ ˆ P 11 
ˆ P 12 

ˆ P � 12 
ˆ P 22 

][
ˆ N 

� 
i, 21 

ˆ N 

� 
i, 22 

])
. 

(23) 

Finally, the right lower block is given by 

ˆ A 21 ̂
 P 12 + 

ˆ A 22 ̂
 P 22 + 

ˆ P � 12 ̂
 A 

� 
21 + 

ˆ P 22 ̂
 A 

� 
22 + 

q ∑ 

i =1 

[
ˆ N i, 21 

ˆ N i, 22 

][ ˆ P 11 
ˆ P 12 

ˆ P � 12 
ˆ P 22 

][
ˆ N 

� 
i, 21 

ˆ N 

� 
i, 22 

]
= − ˆ R . (24) 

We set ˆ P 22 = 

ˆ P 22 − ˆ P � 
12 

ˆ P −1 
11 

ˆ P 12 , ˆ N i, 21 = 

ˆ N i, 21 − ˆ P � 
12 

ˆ P −1 
11 

ˆ N i, 11 and insert (23) into (24) in order to obtain 

ˆ A 22 ̂
 P 22 + ̂

 P 22 ̂
 A 

� 
22 − ˆ P � 12 ( ̂  A 

� 
11 ̂

 P −1 
11 + 

ˆ P −1 
11 

ˆ A 11 ) ̂  P 12 + 

q ∑ 

i =1 

[
ˆ N i, 21 

ˆ N i, 22 

][ ˆ P 11 
ˆ P 12 

ˆ P � 12 
ˆ P 22 

][
ˆ N 

� 
i, 21 

ˆ N 

� 
i, 22 

]

+ 

q ∑ 

i =1 

[
ˆ N i, 21 

ˆ N i, 22 

][ ˆ P 11 
ˆ P 12 

ˆ P � 12 
ˆ P 22 

][
−( ̂  P � 12 

ˆ P −1 
11 

ˆ N i, 11 ) 
� 

0 

]
= − ˆ R . 

Using (22) for the above relation leads to 

ˆ A 22 ̂
 P 22 + ̂

 P 22 ̂
 A 

� 
22 + 

q ∑ 

i =1 

[
ˆ N i, 21 

ˆ N i, 22 

][ ˆ P 11 
ˆ P 12 

ˆ P � 12 
ˆ P 22 

][
ˆ N 

� 
i, 21 

ˆ N 

� 
i, 22 

]
= − ˆ R . 
7 
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We add and subtract 
∑ q 

i =1 
ˆ N i, 22 ̂

 P 22 ̂
 N 

� 
i, 22 

resulting in 

ˆ A 22 ̂
 P 22 + ̂

 P 22 ̂
 A 

� 
22 + 

q ∑ 

i =1 

ˆ N i, 22 ̂
 P 22 ̂

 N 

� 
i, 22 + 

q ∑ 

i =1 

[
ˆ N i, 21 

ˆ N i, 22 

][ ˆ P 11 
ˆ P 12 

ˆ P � 12 
ˆ P � 12 

ˆ P −1 
11 

ˆ P 12 

][
ˆ N 

� 
i, 21 

ˆ N 

� 
i, 22 

]
= − ˆ R . 

[
ˆ P 11 

ˆ P 12 

ˆ P � 
12 

ˆ P � 
12 

ˆ P −1 
11 

ˆ P 12 

]
is positive semidefinite since it holds that 

[
y � z � 

][ ˆ P 11 
ˆ P 12 

ˆ P � 12 
ˆ P � 12 

ˆ P −1 
11 

ˆ P 12 

][
y 
z 

]
= y � ˆ P 11 y + 2 y � ˆ P 12 z + z � ˆ P � 12 ̂

 P −1 
11 

ˆ P 12 z = 

∥∥∥ ˆ P 
1 
2 

11 
y + 

ˆ P 
− 1 

2 

11 
ˆ P 12 z 

∥∥∥2 

2 
≥ 0 , 

where 

[
y 

z 

]
is an arbitrary vector of suitable dimension. Therefore, we have 

ˆ A 22 ̂
 P 22 + ̂

 P 22 ̂
 A 

� 
22 + 

q ∑ 

i =1 

ˆ N i, 22 ̂
 P 22 ̂

 N 

� 
i, 22 = −

( 

ˆ R + 

q ∑ 

i =1 

[
ˆ N i, 21 

ˆ N i, 22 

][ ˆ P 11 
ˆ P 12 

ˆ P � 12 
ˆ P � 12 

ˆ P −1 
11 

ˆ P 12 

][
ˆ N 

� 
i, 21 

ˆ N 

� 
i, 22 

]) 

≤ 0 (25) 

and 

ˆ P 22 > 0 since it is the inverse of the right lower block of 

[
ˆ P 11 

ˆ P 12 

ˆ P � 12 
ˆ P 22 

]−1 

. By Lemma 2.1 , this implies λ(I � ˆ A 22 + 

ˆ A 22 �

I + 

∑ q 
i =1 

ˆ N i, 22 �
ˆ N i, 22 ) ⊂ C −. Let ˆ �2 denote the fundamental solution of the system with matrices ( ̂  A 22 , ˆ N i, 22 ) . Moreover, we

set ˆ B 2 := 

ˆ V � 
2 

B 1 . Then, we can express 

E 

∥∥ ˆ �(t) B 1 

∥∥2 

F 
= E 

∥∥ ˆ S � ( ̂  S ̂  �(t) ̂  S � ) ̂  S B 1 

∥∥2 

F 
= E 

∥∥∥∥( ̂  S ̂  �(t) ̂  S � ) 

[
0 

ˆ B 2 

]∥∥∥∥2 

F 

. (26) 

We partition 

ˆ S ̂  �(t) ̂  S � = 

[
ˆ �11 (t) ˆ �12 (t) 
ˆ �21 (t) ˆ �22 (t) 

]
and find the associated equation by multiplying the one for ˆ � with ˆ S from the 

left and 

ˆ S � from the right resulting in [
ˆ �11 

ˆ �12 

ˆ �21 
ˆ �22 

]
= 

[
I 0 

0 I 

]
+ 

∫ t 

0 

[
ˆ A 11 0 

ˆ A 21 
ˆ A 22 

][
ˆ �11 

ˆ �12 

ˆ �21 
ˆ �22 

]
ds + 

q ∑ 

i =1 

∫ t 

0 

[
ˆ N i, 11 0 

ˆ N i, 21 
ˆ N i, 22 

][
ˆ �11 

ˆ �12 

ˆ �21 
ˆ �22 

]
dW i (s ) . (27) 

Evaluating the right upper block and subsequently the right lower block of (27) , we see that ˆ �12 = 0 and 

ˆ �22 = 

ˆ �2 . There-

fore, (26) becomes 

E 

∥∥ ˆ �(t) B 1 

∥∥2 

F 
= E 

∥∥ ˆ �2 (t) ̂  B 2 

∥∥2 

F 
. (28) 

In addition, we obtain the following rank relation 

r 0 := rank ( 
[
B 1 A 11 B 1 . . . A 

r−1 
11 

B 1 

]
) = rank ( 

[
ˆ S B 1 ( ̂  S A 11 ̂

 S � ) ̂  S B 1 . . . ( ̂  S A 11 ̂
 S � ) r−1 ˆ S B 

]
) 

= rank ( 
[

ˆ B 2 
ˆ A 22 ̂

 B 2 . . . ˆ A 

r−1 
22 

ˆ B 2 

]
) = rank ( 

[
ˆ B 2 

ˆ A 22 ̂
 B 2 . . . ˆ A 

r 2 −1 
22 

ˆ B 2 

]
) , (29) 

where r 2 is the number of rows/columns of ˆ A 22 . If there is no zero eigenvalue of the Kronecker matrix associated to

( ̂  A 22 , ˆ N i, 22 ) , then 

ˆ �2 decays exponentially and the claim of this theorem follows by (28) . If the projected system still has a

zero eigenvalue, then by Lemma 2.2 , there is ˆ V 22 ≥ 0 , ˆ V 22 � = 0 , such that 

ˆ A 

� 
22 ̂

 V 22 + 

ˆ V 22 ̂
 A 22 + 

q ∑ 

i =1 

ˆ N 

� 
i, 22 

ˆ V 22 ̂
 N i, 22 = 0 . 

Now, one can further project down the reduced system with matrices ( ̂  A 22 , ˆ B 2 , ˆ N i, 22 ) by the same type of state space trans-

formation as in (18) based on the factor of the eigenvalue decomposition of ˆ V 22 instead of ˆ S and based on (25) instead

of (14) . Notice that ˆ V 22 cannot have full rank since else we have ˆ B 2 = 

ˆ V � 
2 

B 1 = 0 which, together with (17) , implies B 1 = 0 .

One proceeds with this procedure until a mean square asymptotically stable subsystem is achieved. Such a subsystem exists 

since if one reaches a system of dimension r 0 , then it holds that r 2 = r 0 in (29) . This local reachability condition combined

with (25) is equivalent to mean square asymptotic stability, see [13] , Theorem 3.6.1. Since (28) is then also obtained with

the mean square asymptotically stable subsystem, the result follows which completes the proof. �

Remark 1. The only structure of the reduced system that was used in the proof of Theorem 4.4 is the existence of an

equation of the form (14) . Therefore, this theorem can be extended to any reduced system for which there exists a matrix
ˆ X > 0 such that 

ˆ A ̂

 X + 

ˆ X ̂

 A 

� + 

q ∑ 

i =1 

ˆ N i ̂
 X ̂

 N 

� 
i ≤ − ˆ B ̂

 B 

� . 
8 
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The following implication of Theorem 4.4 shows the square mean asymptotic stability of the ROM (11) is preserved in

some extended way. 

Corollary 4.5. Suppose that the reduced system (2) with matrices ˆ A = A 11 , ˆ B = B 1 � = 0 and ˆ N i = N i, 11 defined in (9) , and associ-

ated to the fundamental solution ˆ �, is not mean square asymptotically stable. If we further have that �1 > 0 , then there exists

 0 ∈ R 

r×r 0 , r 0 < r, with V � 
0 

V 0 = I leading to a projected system 

ˆ A 0 = V � 
0 

A 11 V 0 , ˆ B 0 = V � 
0 

B 1 and ˆ N 0 ,i = V � 
0 

N i, 11 V 0 , associated to the

mean square asymptotically stable fundamental solution ˆ �0 . Moreover, it holds that 

ˆ �(t) B 1 = V 0 ̂
 �0 (t) ̂  B 0 . 

Proof. As in (26) , we can write ˆ �(t) B 1 = 

ˆ S � ( ̂  S ̂  �(t) ̂  S � ) ̂  S B 1 with the orthogonal matrix ˆ S � = 

[
ˆ V 1 ˆ V 2 

]
. Following the steps of 

the proof of Theorem 4.4 , we see that ˆ �(t) B 1 = 

ˆ V 2 ̂  �2 (t) ̂  B 2 , where ˆ B 2 = 

ˆ V � 
2 

B 1 and where ˆ �2 is the fundamental solution for

the system with matrices ˆ V � 2 A 11 ̂
 V 2 and 

ˆ V � 2 N i, 11 ̂
 V 2 . If ˆ �2 is mean square asymptotically stable, we have that V 0 = 

ˆ V 2 . Else, by

the proof of Theorem 4.4 , the projection procedure can be repeated until an mean square asymptotically stable subsystem 

is achieved. In this case, V 0 is the product of matrices like ˆ V 2 . �

Corollary 4.5 shows that the obtained ROM always has a mean square asymptotically stable realization. In other words, 

the procedure described in Section 3 produces a ROM that is either mean square asymptotically stable or that can be further

reduced to a mean square asymptotically stable system without an additional approximation error given that x 0 = 0 . 

The following corollary will be useful for interpreting error bounds for the approximation error in Section 4.2 . 

Corollary 4.6. Given the assumptions of Theorem 4.4 , we have that 

tr ( ̂  P ) ≤ tr (�1 ) , 

where ˆ P is the reachability Gramian of the reduced system with coefficients ˆ A = A 11 , ˆ B = B 1 and ˆ N i = N i, 11 . 

Proof. As in the proof of Theorem 4.4 , three cases need to be considered. Let us first assume that the reduced system is

mean square asymptotically stable, i.e., 0 �∈ λ( ̂  K ) . Subtracting (12) from (14) we see that �1 − ˆ P satisfies 

A 11 (�1 − ˆ P ) + (�1 − ˆ P ) A 

� 
11 + 

q ∑ 

i =1 

N i, 11 (�1 − ˆ P ) N 

� 
i, 11 = −

q ∑ 

i =1 

N i, 12 �2 N 

� 
i, 12 =: −R 2 . (30) 

Now, Eq. (30) is uniquely solvable. According to Section 3.1 , this solution is represented by E 

∫ ∞ 

0 
ˆ �(s ) R 2 ̂  �� (s ) ds ≥ 0 . There-

fore, we have that �1 ≥ ˆ P implying the claim of this corollary. Now, let us study the case of 0 ∈ λ( ̂  K ) . B 1 = 0 implies that
ˆ P = 0 leading to �1 ≥ ˆ P . It remains to consider the case of an unstable reduced system with B 1 � = 0 . We use the arguments

of the proof of Theorem 4.4 and assume w.l.o.g. that the projected reduced system with matrices ( ̂  A 22 , ˆ B 2 , ˆ N i, 22 ) and funda-

mental solution 

ˆ �2 is already mean square asymptotically stable. Else we could project down the reduced system further 

and the same arguments apply as the ones we use below. Integrating both sides of (28) over [0 , ∞ ) and using the definition

of the Frobenius norm, we obtain 

tr 

(
E 

∫ ∞ 

0 

ˆ �(t) B 1 B 

� 
1 

ˆ �� (t) dt ︸ ︷︷ ︸ 
= ̂ P 

)
= tr 

(
E 

∫ ∞ 

0 

ˆ �2 (t) ̂  B 2 ̂
 B 

� 
2 

ˆ �� 
2 (t) dt ︸ ︷︷ ︸ 

=: ̂ P 2 

)
. 

Due to the mean square asymptotic stability, we know that ˆ P 2 is the unique solution to 

ˆ A 22 ̂
 P 2 + 

ˆ P 2 ̂  A 

� 
22 + 

q ∑ 

i =1 

ˆ N i, 22 ̂
 P 2 ̂  N 

� 
i, 22 = − ˆ B 2 ̂

 B 

� 
2 . 

Comparing this equation with (25) , we find that ˆ P 2 ≤ ˆ P 22 = 

ˆ P 22 − ˆ P � 
12 

ˆ P −1 
11 

ˆ P 12 ≤ ˆ P 22 . We exploit (18) leading to tr ( ̂  P ) ≤ tr ( ̂  P 22 ) ≤
tr ( ̂  P 22 ) + tr ( ̂  P 11 ) = tr ( ̂  S �1 ̂

 S � ) = tr (�1 ) . �

4.2. Error bounds 

In this subsection, we derive error bounds for the model reduction procedure proposed in Section 3 . We begin with an

error bound that is general in the sense that it only requires the existence of the Gramians P and 

ˆ P and does not exploit any

further structure of the reduced system. Once this general bound is established, an error estimate for the choice in (11) is

given allowing to identify the scenarios in which this ROM leads to a good approximation. The next result characterizes the

error in a full state approximation. Notice that we use similar techniques as in [7,28] , where output errors were considered.

However, we state the following proposition under milder assumptions. 

Proposition 4.7. Suppose that � denotes the fundamental solutions of (1) , and ˆ � denotes the fundamental solutions of (2) ob-

tained by Galerkin projection using V ∈ R 

n ×r with V � V = I. Moreover, let x and ˆ x represent the solutions to both systems. If there
9 
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is a constant c > 0 such that E ‖ �(t) B ‖ 2 , E 

∥∥ ˆ �(t) ̂  B 
∥∥2 � e −ct and if x 0 = 0 and ˆ x 0 = 0 , we have 

sup 

t∈ [0 ,T ] 
E 

∥∥x (t) − V ̂

 x (t) 
∥∥

2 
≤

(
tr (P ) + tr ( ̂  P ) − 2 tr (P 2 V 

� ) 
) 1 

2 ‖ 

u ‖ L 2 
T 
, 

where the matrices P := E 

∫ ∞ 

0 �(s ) BB � �� (s ) d s , ˆ P := E 

∫ ∞ 

0 
ˆ �(s ) ̂  B ̂  B � ˆ �� (s ) d s , P 2 := E 

∫ ∞ 

0 �(s ) B ̂  B � ˆ �� (s ) d s satisfy 

AP + PA 

� + 

q ∑ 

i =1 

N i P N 

� 
i = −BB 

� , (31a) 

ˆ A ̂

 P + 

ˆ P ̂  A 

� + 

q ∑ 

i =1 

ˆ N i ̂
 P ̂  N 

� 
i = − ˆ B ̂

 B 

� , (31b) 

AP 2 + P 2 ̂  A 

� + 

q ∑ 

i =1 

N i P 2 ̂  N 

� 
i = −B ̂

 B 

� . (31c) 

Proof. It can be shown that the solution of (1) is given by 

x (t) = �(t ) x 0 + 

∫ t 

0 

�(t , s ) Bu (s ) ds, 

see, e.g., [13] . Setting the initial states in (1) and (2) equal to zero and using the solution representations for both systems,

we obtain by the triangle inequality that 

E 

∥∥x (t) − V ̂

 x (t) 
∥∥

2 
≤ E 

∫ t 

0 

∥∥(
�(t, s ) B − V 

ˆ �(t, s ) ̂  B 

)
u (s ) 

∥∥
2 
ds 

≤ E 

∫ t 

0 

∥∥�(t, s ) B − V 

ˆ �(t, s ) ̂  B 

∥∥
F 
‖ 

u (s ) ‖ 2 ds. 

We apply the inequality of Cauchy-Schwarz and obtain 

E 

∥∥x (t) − V ̂

 x (t) 
∥∥

2 
≤

(
E 

∫ t 

0 

∥∥�(t, s ) B − V 

ˆ �(t, s ) ̂  B 

∥∥2 

F 
ds 

) 1 
2 

‖ 

u ‖ L 2 t 
. 

The definition of the Frobenius norm and properties of the trace operator yield 

E 

∥∥�(t, s ) B − V 

ˆ �(t, s ) ̂  B 

∥∥2 

F 
= tr 

(
E 

[
�(t, s ) BB 

� �� (t, s ) 
])

+ tr 
(
V E 

[
ˆ �(t, s ) ̂  B ̂

 B 

� ˆ �� (t, s ) V 

� ])
− 2 tr 

(
E 

[
�(t, s ) B ̂

 B 

� ˆ �� (t, s ) 
]
V 

� ). 
Using Corollary A.2 , �(t, s ) and 

ˆ �(t, s ) can be replaced by �(t − s ) and 

ˆ �(t − s ) above. Writing the resulting trace expres-

sions by the Frobenius norm again, we obtain 

E 

∥∥x (t) − V ̂

 x (t) 
∥∥

2 
≤

(
E 

∫ t 

0 

∥∥�(t − s ) B − V 

ˆ �(t − s ) ̂  B 

∥∥2 

F 
ds 

) 1 
2 

‖ 

u ‖ L 2 t 

= 

(
E 

∫ t 

0 

∥∥�(s ) B − V 

ˆ �(s ) ̂  B 

∥∥2 

F 
ds 

) 1 
2 

‖ 

u ‖ L 2 t 

≤
(

E 

∫ ∞ 

0 

∥∥�(s ) B − V 

ˆ �(s ) ̂  B 

∥∥2 

F 
ds 

) 1 
2 ‖ 

u ‖ L 2 t 
. 

The infinite integral above exists due to the exponential decay of �B and 

ˆ � ˆ B . Taking the supremum over [0 , T ] , inserting

the definition of the Frobenius norm and exploiting that V � V = I, we obtain 

sup 

t∈ [0 ,T ] 
E 

∥∥x (t) − V ̂

 x (t) 
∥∥

2 
≤

(
tr (P ) + tr ( ̂  P ) − 2 tr (P 2 V 

� ) 
) 1 

2 ‖ 

u ‖ L 2 
T 
. 

The infinite integrals P , ˆ P and P 2 satisfy (31) due to Lemma A.1 using the exponential decay of �B and 

ˆ � ˆ B . �

Remark 2. Under the assumptions of Proposition 4.7 , the solutions of (31) are not necessarily unique as Example 4.3 shows.

Uniqueness can be ensured if we further have that � and 

ˆ � decay exponentially in the mean square sense. 

Based on the result in Proposition 4.7 , we now find an error bound for the reduced system introduced in Section 3.2 .

Output error bounds for balanced truncation in the same norm based on different choices of Gramians are proved in [7,27] .
10 
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The error analysis for the scheme in Section 3.2 is more challenging since less structure than in the case of balanced trun-

cation can be exploited which is a method where the reachability and observability Gramian are both diagonal and equal 

(after a balancing transformation). Moreover, in contrast to balanced truncation, we need to discuss the case in which mean 

square asymptotic stability is not preserved. 

Theorem 4.8. Let x be the solution to the mean square asymptotically stable system (1) and ˆ x the solution to (2) with zero

initial states and with ˆ A = A 11 , ˆ B = B 1 , ˆ N i = N i, 11 being submatrices of the balanced partition in (9) . Let � = diag (�1 , �2 ) be the

matrix of ordered eigenvalues of the reachability Gramian P with �1 = diag (λ1 , . . . , λr ) > 0 . Let S � = 

[
V S 2 

]
denote the factor

of the associated eigenvalue decomposition of P . Then, it holds that 

sup 

t∈ [0 ,T ] 
E 

∥∥x (t) − V ̂

 x (t) 
∥∥

2 
≤

(
tr ( ̂  P − �1 ) + tr (�2 W 0 ) 

) 1 
2 ‖ 

u ‖ L 2 
T 
, (32) 

where ˆ P is the reduced reachability Gramian and 

W 0 = I + 2 A 

� 
12 Y 2 + 

q ∑ 

i =1 

N 

� 
i, 12 

(
2 Y 

[
N i, 12 

N i, 22 

])
. 

The matrix Y = 

[
Y 1 Y 2 

]
is defined as the unique solution to 

A 

� 
11 Y + Y A b + 

q ∑ 

i =1 

N 

� 
i, 11 Y N i,b = −(SV ) � = −

[
I 0 

]
. (33) 

If it moreover holds that 0 �∈ λ(I � A 11 + A 11 � I + 

∑ q 
i =1 

N i, 11 � N i, 11 ) , then ˆ Q can be introduced as the positive semidefinite solu-

tion to 

A 

� 
11 

ˆ Q + 

ˆ Q A 11 + 

q ∑ 

i =1 

N 

� 
i, 11 

ˆ Q N i, 11 = −I. (34) 

Hence, the error bound becomes 

sup 

t∈ [0 ,T ] 
E 

∥∥x (t) − V ̂

 x (t) 
∥∥

2 
≤ ( tr (�2 W) ) 

1 
2 ‖ 

u ‖ L 2 
T 
, 

where the weight is 

W = I + 2 A 

� 
12 Y 2 + 

q ∑ 

i =1 

N 

� 
i, 12 

(
2 Y 

[
N i, 12 

N i, 22 

]
− ˆ Q N i, 12 

)
. 

Proof. Since the original model is asymptotically mean square stable and due to Theorem 4.4 , the assumptions of

Proposition 4.7 are met such that we have 

sup 

t∈ [0 ,T ] 
E 

∥∥x (t) − V ̂

 x (t) 
∥∥

2 
≤

(
tr (P ) + tr ( ̂  P ) − 2 tr (P 2 V 

� ) 
) 1 

2 ‖ 

u ‖ L 2 
T 
. 

Notice that P uniquely solves (31a) . Since the ROM is mean square stable by Proposition 4.1 and due to Lemma 2.3 P 2 is

also the unique solution to (31c) . However, there can still be infinitely many other solutions to (31b) besides ˆ P . Using the

balanced realization in (9) , the error bound then becomes 

sup 

t∈ [0 ,T ] 
E 

∥∥x (t) − V ̂

 x (t) 
∥∥

2 
≤

(
tr (�) + tr ( ̂  P ) − 2 tr (S � X V 

� ) 
) 1 

2 ‖ 

u ‖ L 2 
T 
, (35) 

where � and X = SP 2 uniquely solve 

A b � + �A 

� 
b + 

q ∑ 

i =1 

N i,b �N 

� 
i,b = −B b B 

� 
b , (36) 

A b X + X A 

� 
11 + 

q ∑ 

i =1 

N i,b X N 

� 
i, 11 = −B b B 

� 
1 . (37) 

By Lemma 2.3 , there is a unique solution to (33) which we can use to rewrite tr (S � XV � ) = tr (Y B b B 
� 
1 
) . Based on the partition

(9) , we evaluate the first r columns of (36) and obtain 

−B b B 

� 
1 = A b 

[
�1 

0 

]
+ �

[
A 

� 
11 

A 

� 
12 

]
+ 

q ∑ 

i =1 

N i,b �

[
N 

� 
i, 11 

N 

� 
i, 12 

]

= 

[
A 11 

A 21 

]
�1 + 

[
�1 A 

� 
11 

�2 A 

� 
12 

]
+ 

q ∑ 

i =1 

([
N i, 11 

N i, 21 

]
�1 N 

� 
i, 11 + 

[
N i, 12 

N i, 22 

]
�2 N 

� 
i, 12 

)
. 
11 
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Inserting this into tr (Y B b B 
� 
1 ) yields 

−tr (S � X V 

� ) = tr 

( 

Y 

[ [
A 11 

A 21 

]
�1 + 

[
�1 A 

� 
11 

�2 A 

� 
12 

]
+ 

q ∑ 

i =1 

([
N i, 11 

N i, 21 

]
�1 N 

� 
i, 11 + 

[
N i, 12 

N i, 22 

]
�2 N 

� 
i, 12 

)] ) 

= tr 

( 

�1 

[ 

Y 

[
A 11 

A 21 

]
+ A 

� 
11 Y 1 + 

q ∑ 

i =1 

N 

� 
i, 11 Y 

[
N i, 11 

N i, 21 

]] ) 

+ tr 

( 

�2 

[ 

A 

� 
12 Y 2 + 

q ∑ 

i =1 

N 

� 
i, 12 Y 

[
N i, 12 

N i, 22 

]] ) 

. 

The first r columns of (33) yield 

−tr (S � X V 

� ) = −tr (�1 ) + tr 

( 

�2 

[ 

A 

� 
12 Y 2 + 

q ∑ 

i =1 

N 

� 
i, 12 Y 

[
N i, 12 

N i, 22 

]] ) 

. 

Inserting this into the bound in (35) leads to 

tr (�) + tr ( ̂  P ) − 2 tr (S � X V 

� ) = tr ( ̂  P − �1 ) + tr 

( 

�2 

[ 

I + 2 A 

� 
12 Y 2 + 2 

q ∑ 

i =1 

N 

� 
i, 12 Y 

[
N i, 12 

N i, 22 

]] ) 

, 

which proves (32) . 

Now let us consider the case where 0 �∈ λ(I � A 11 + A 11 � I + 

∑ q 
i =1 

N i, 11 � N i, 11 ) , i.e., the reduced system is mean square

asymptotically stable by Proposition 4.1 and Lemma 2.2 . Therefore, (34) has a unique positive semidefinite solution 

ˆ Q . Sub-

tracting the left upper r × r block of (36) from (31b) , we find 

A 11 ( ̂  P − �1 ) + ( ̂  P − �1 ) A 

� 
11 + 

q ∑ 

i =1 

N i, 11 ( ̂  P − �1 ) N 

� 
i, 11 = 

q ∑ 

i =1 

N i, 12 �2 N 

� 
i, 12 . 

Hence, we have 

tr ( ̂  P − �1 ) = −tr 

( [ 

A 

� 
11 

ˆ Q + 

ˆ Q A 11 + 

q ∑ 

i =1 

N 

� 
i, 11 

ˆ Q N i, 11 

] 

( ̂  P − �1 ) 

) 

= −tr 

( 

ˆ Q 

[ 

A 11 ( ̂  P − �1 ) + ( ̂  P − �1 ) A 

� 
11 + 

q ∑ 

i =1 

N i, 11 ( ̂  P − �1 ) N 

� 
i, 11 

] ) 

= −tr 

( 

�2 

q ∑ 

i =1 

N 

� 
i, 12 

ˆ Q N i, 12 

) 

, 

which concludes the proof of this theorem. �

Theorem 4.8 is a vital since it shows the relation between the truncated eigenvalues contained in �2 and the error of the

model reduction procedure. By Corollary 4.6 , we know that tr ( ̂  P − �1 ) ≤ 0 and therefore (32) shows that the error between

x and V ̂  x is small if �2 has small diagonal entries. Consequently, the reduced system is accurate if only the small eigenvalues

of P are neglected. Moreover, this tells us that the reduced order dimension r can be chosen based on the eigenvalues of

P since their order is a good indicator for the error. Certainly, the error bound representation in Proposition 4.7 is more

suitable for practical computations than the one in Theorem 4.8 . This is because one only needs to solve for ˆ P and P 2 
satisfying (31b) and (31c) in addition to the Gramian P which is already computed within the model reduction procedure. 

5. Full state approximation for general initial conditions 

In different applications, it is required to apply MOR to stochastic systems with non-zero initial conditions, see, e.g., 

[2] for a MOR approach in the context of efficiently solving stochastic optimal control problems. So far, the case of x 0 = 0

has only been considered here. However, the above results can be transferred to a scenario of general initial states, since the

reduction of the control part with x 0 = 0 , represented by (1) , can be separated from the reduction of the subsystem involving

a the non-zero initial data. To illustrate this, let x (t, x 0 , u ) denote the solution to (1) with general x 0 = X 0 v 0 . Here, we allow

investigating several initial states at the same time which are spanned by the columns of a matrix X 0 . The matrix/vector

multiplication X v then expresses the respective linear combination of these columns. We can now see that x (t, x , u ) =
0 0 0 

12 
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x (t) + x x 0 (t ) , where x (t ) = x (t, 0 , u ) is the solution to (1) with x (0) = 0 and x x 0 (t) = x (t, x 0 , 0) is the homogeneous part of

the equation involving the initial state, i.e., 

dx x 0 (t) = Ax x 0 (t) dt + 

q ∑ 

i =1 

N i x x 0 (t) dW i (t) , x x 0 (0) = x 0 = X 0 v 0 , t ≥ 0 . (38) 

Consequently, a reduced order approximation can be found by x (t, x 0 , u ) ≈ ˆ x (t, x 0 , u ) := V ̂  x (t) + V x 0 ̂  x x 0 (t) , where ˆ x is the

reduced state associated to x (see Section 3.2 ) and ˆ x x 0 is a low dimensional approximation of x x 0 . How V x 0 and ˆ x x 0 are

constructed will be discussed in the following and relies on the same ideas used in the previous sections. A modification of

the Gramian and the error norm then allows to establish similar results as proved in Section 4 . 

Let us introduce the Gramian 

P x 0 := E 

∫ ∞ 

0 

�(s ) X 0 X 

� 
0 �

� (s ) ds 

for (38) which, by Section 3.1 , satisfies 

AP x 0 + P x 0 A 

� + 

q ∑ 

i =1 

N i P x 0 N 

� 
i = −X 0 X 

� 
0 . (39) 

Given an orthonormal basis (p x 0 ,k ) k =1 , ... ,n of eigenvectors of P x 0 with associated eigenvalues (λx 0 ,k 
) k =1 , ... ,n , we have ∫ T 

0 

E 

∣∣〈 x x 0 (t) , p x 0 ,k 〉 2 
∣∣2 

dt = 

∫ T 

0 

E 

∣∣〈 �(t) X 0 v 0 , p x 0 ,k 〉 2 
∣∣2 

dt 

= 

∫ T 

0 

E 

∣∣〈 v 0 , X 

� 
0 �

� (t) p x 0 ,k 〉 2 
∣∣2 

dt (40) 

≤ p � x 0 ,k 

∫ ∞ 

0 

E 

[
�(t) X 0 X 

� 
0 �

� (t) 
]
dt p x 0 ,k ‖ 

v 0 ‖ 

2 
2 = λx 0 ,k ‖ 

v 0 ‖ 

2 
2 , 

exploiting that x x 0 (t) = �(t) x 0 and using the inequality of Cauchy-Schwarz. Inequality (40) shows that eigenspaces corre-

sponding to small λx 0 ,k 
are less relevant in the system dynamics motivating the same type of ROM like in Section 3.2 . Let

us introduce the eigenvalue decomposition of the Gramian 

P x 0 = S � x 0 
�x 0 S x 0 , S � x 0 

= 

[
V x 0 	 

]
, �x 0 = 

[
�x 0 , 1 

�x 0 , 2 

]
with V x 0 ∈ R 

n ×r x 0 , �x 0 , 1 
∈ R 

r x 0 ×r x 0 and with �x 0 , 2 
∈ R 

(n −r x 0 ) ×(n −r x 0 ) being the matrix of small eigenvalues of P x 0 . Now, we

find a good approximation of x x 0 by V x 0 ̂  x x 0 , where ˆ x x 0 is the r x 0 -dimensional solution to 

d ̂  x x 0 (t) = 

ˆ A x 0 ̂  x x 0 (t ) dt + 

q ∑ 

i =1 

ˆ N x 0 ,i ̂  x x 0 (t ) dW i (t ) , ˆ x x 0 (0) = 

ˆ X 0 v 0 , t ≥ 0 , (41) 

where the ingredients of (41) are given by 

ˆ A x 0 = A 

(x 0 ) 
11 

= V 

� 
x 0 

AV x 0 , 
ˆ X 0 = X 0 , 1 = V 

� 
x 0 

X 0 , ˆ N x 0 ,i = N 

(x 0 ) 
i, 11 

= V 

� 
x 0 

N i V x 0 . (42) 

The reduced order matrices in (42) result from the transformed coefficients 

S x 0 AS � x 0 
= 

[
A 

(x 0 ) 
11 

	 

	 	 

]
, S x 0 X 0 = 

[
X 0 , 1 

	 

]
, S x 0 N i S 

� 
x 0 

= 

[
N 

(x 0 ) 
i, 11 

N 

(x 0 ) 
i, 12 

	 	 

]
. (43) 

Now, we are able to conduct a stability and error analysis for (38) . We start the preservation of stability as a consequence

of Theorem 4.4 . 

Theorem 5.1. Given the solution ˆ x x 0 to the reduced system (41) with matrices ˆ A x 0 = A 

(x 0 ) 
11 

, ˆ N x 0 ,i 
= N 

(x 0 ) 

i, 11 
and initial conditions

spanned by the columns of ˆ X 0 = X 0 , 1 . If �x 0 , 1 
> 0 , then there is a constant c > 0 such that E 

∥∥ ˆ x x 0 (t) 
∥∥2 

2 
� e −ct . 

Proof. With the arguments of Section 3.2 , it is known that the realization in (43) has the Gramian �x 0 , i.e., 

−
[

X 0 , 1 X 

� 
0 , 1 	 

	 	 

]
= 

[
A 

(x 0 ) 
11 

	 

	 	 

][
�x 0 , 1 

�x 0 , 2 

]
+ 

[
�x 0 , 1 

�x 0 , 2 

][
A 

(x 0 ) 
11 

� 
	 

	 	 

]

+ 

∑ q 
i =1 

[
N 

(x 0 ) 
i, 11 

N 

(x 0 ) 
i, 12 

+ 	 	 

][
�x 0 , 1 

�x 0 , 2 

][ 

N 

(x 0 ) 
i, 11 

� 
	 

N 

(x 0 ) 
i, 12 

� 
	 

] 

. 
13 
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The left upper block of this equation yields 

A 

(x 0 ) 
11 

�x 0 , 1 + �x 0 , 1 A 

(x 0 ) 
11 

� + 

q ∑ 

i =1 

N 

(x 0 ) 
i, 11 

�x 0 , 1 N 

(x 0 ) 
i, 11 

� = −X 0 , 1 X 

� 
0 , 1 −

q ∑ 

i =1 

N 

(x 0 ) 
i, 12 

�x 0 , 2 N 

(x 0 ) 
i, 12 

� 
. 

This is the same type of equation like in (14) allowing to conduct the proof with exactly the same arguments as in

Theorem 4.4 . Therefore, we know that E 

∥∥ ˆ �(t) X 0 , 1 
∥∥2 

F 
� e −ct , where ˆ � is the fundamental solution to the ROM. This im-

plies the result of this theorem. �

We can see that Theorem 5.1 ensures mean square asymptotic stability of the ROM at least for the initial conditions of

interest. This result is also essential for the existence of the reduced order Gramian needed for the error bound that follows

next. We now analyze the error between (38) and (41) . Following the steps of the proof in Proposition 4.7 , we have ∫ T 

0 

E 

∥∥x x 0 (t) − V x 0 ̂  x x 0 (t) 
∥∥2 

2 
dt = 

∫ T 

0 

E 

∥∥(
�(t) X 0 − V x 0 

ˆ �(t) ̂  X 0 

)
v 0 

∥∥2 

2 
dt 

≤
∫ T 

0 

E 

∥∥�(t) X 0 − V x 0 
ˆ �(t) ̂  X 0 

∥∥2 

F 
dt ‖ 

v 0 ‖ 

2 
2 

≤
(
tr (P x 0 ) + tr ( ̂  P x 0 ) − 2 tr (P x 0 , 2 V 

� 
x 0 

) 
)‖ 

v 0 ‖ 

2 
2 , (44) 

where ˆ P x 0 := E 

∫ ∞ 

0 
ˆ �(s ) X 0 , 1 X 

� 
0 , 1 

ˆ �� (s ) ds and P x 0 , 2 := E 

∫ ∞ 

0 �(s ) X 0 X 
� 
0 , 1 

ˆ �� (s ) ds . Based on Theorem 4.8 , we can express (44) us-

ing the matrix of truncated eigenvalues �x 0 , 2 
of P x 0 . Consequently, there is a matrix W x 0 such that ∫ T 

0 

E 

∥∥x x 0 (t) − V x 0 ̂  x x 0 (t) 
∥∥2 

2 
dt ≤ tr 

(
�x 0 , 2 W x 0 

)‖ 

v 0 ‖ 

2 
2 . (45) 

This indicates that the truncated eigenvalues of P x 0 determine the error in approximating x x 0 by V x 0 ̂  x x 0 . Therefore, the re-

duced dimension r x 0 is supposed to be chosen such that �x 0 , 2 
has small entries only. This then leads to a small error

according to (45) . 

6. Full state approximation for bilinear systems 

Besides the above extension to arbitrary initial states in stochastic systems, a discussion of the proposed results for the 

class of bilinear systems follows. We consider the Galerkin projection based model reduction scheme that was studied in 

Section 3.2 for deterministic bilinear dynamical systems governed by 

˙ z (t) = Az(t) + Bu (t) + 

m ∑ 

i =1 

N i z(t) u i (t) , t ≥ 0 . (46) 

Roughly speaking, (46) is obtained by replacing the white noise processes 
dW i 
dt 

in (1) ( q = m ) by the i th component u i of the

control vector u ∈ L 2 T , which we assume henceforth to be deterministic. Transferring the results from the linear stochastic to

the deterministic bilinear case is not trivial, since from the theoretical point of view (46) and (1) are very different, since

white noise is not a function. However, due to the recently shown relation between stochastic and bilinear systems in [26] ,

we are able to establish the results of the previous sections for (46) in a similar manner. Let us assume that the matrix A is

Hurwitz, i.e., λ(A ) ⊂ C −. Writing the solution z = z(·, z 0 , B ) to (46) dependent on the initial state z 0 and the input matrix B ,

λ(A ) ⊂ C − implies 

‖ 

z(t, z 0 , 0) ‖ 2 � e −ct , c > 0 , 

for all z 0 ∈ R 

n if 
∫ ∞ 

0 ‖ u (s ) ‖ 2 2 ds < ∞ , i.e., the homogeneous equation is asymptotically stable with exponential decay, see [26] .

If N i for all i = 1 , . . . , m is sufficiently small, A being Hurwitz implies mean square asymptotic stability in the sense of (4) .

This can be, e.g., seen by the sufficient condition for (4) in [13] , Corollary 3.6.3, see also [32] . We can now control the

matrices N i by recalling (46) with γ > 0 resulting in 

˙ z (t) = Az(t) + [ 
1 

γ
B ][ γ u (t)] + 

m ∑ 

i =1 

[ 
1 

γ
N i ] z(t)[ γ u i (t)] , (47) 

compare also with [3,12] , where this technique has also been used. If γ is sufficiently large, (4) can be guaranteed for the

pair (A, 1 
γ N i ) which provides the existence of a unique solution to 

AP γ + P γ A 

� + 

1 

γ 2 

m ∑ 

i =1 

N i P γ N 

� 
i = − 1 

γ 2 
BB 

� . (48) 

According to Section 3.1 , P γ is the reachability Gramian of the stochastic system (1) with coefficients (A, 1 
γ B, 1 

γ N i ) . Choosing

P γ for γ = 1 as a reachability Gramian in the context of model reduction for bilinear systems was first proposed in [1] and,
14 
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e.g., further investigated in [3] . By [26] we know that P γ takes a similar role as in the stochastic case (compare with (7) ),

i.e., it characterizes redundant information in (46) by 

sup 

t∈ [0 ,T ] 

∣∣〈 z(t, 0 , B ) , p γ ,k 〉 2 
∣∣ ≤ λ

1 
2 

γ ,k 
exp 

{ 

0 . 5 γ 2 
∥∥u 

0 
∥∥2 

L 2 
T 

} 

γ ‖ 

u ‖ L 2 
T 
, (49) 

where (p γ ,k ) is an orthonormal basis of eigenvector of P γ with associated eigenvalues (λγ ,k ) and u 0 the vector of controls

entering the bilinear part of the equation, i.e., 

u 

0 = (u 

0 
1 u 

0 
2 . . . u 

0 
m 

) � with u 

0 
i ≡

{
0 , if N i = 0 

u i , else . 
(50) 

Therefore, the eigenspaces of P γ corresponding to the zero eigenvalues are irrelevant for the system dynamics. Moreover, 

assuming that the control energy is sufficiently small, (49) tells us that z(·, 0 , B ) is small in the direction of p γ ,k if λγ ,k is

small. Therefore, these eigenspaces can also be seen as less relevant in (46) and can hence be removed leading to ROMs.

A somehow different way of characterizing unimportant states in a bilinear equation was discussed in [3,16] , where local

estimates for the reachability energy based on P γ , γ = 1 have been shown. 

Remark 3. So far, we observed some essential differences between stochastic and bilinear systems. System (46) only requires 

A to be Hurwitz instead of (4) . On the other hand, we consider a family of Gramians for the bilinear case depending on γ
rather than a fixed Gramian. Although the characterization of irrelevant states are similar in both cases, the exponential in 

(49) indicates that we need a certain smallness assumption on u 0 and γ in order to make our arguments valid. 

The above considerations motivate to conduct the same reduced order modeling procedure as explained in Section 3.2 . 

We introduce the eigenvalue decomposition of 

P γ = S � γ

[
�γ , 1 0 

0 �γ , 2 

]
S γ , 

where �γ , 1 > 0 contains the large and �γ , 2 the small ordered eigenvalues of P γ . Using the partition 

S γ AS � γ = 

[
A 

(γ ) 
11 

A 

(γ ) 
12 

A 

(γ ) 
21 

A 

(γ ) 
22 

]
, S γ B = 

[
B 

(γ ) 
1 

B 

(γ ) 
2 

]
, S γ N i S 

� 
γ = 

[
N 

(γ ) 
i, 11 

N 

(γ ) 
i, 12 

N 

(γ ) 
i, 21 

N 

(γ ) 
i, 22 

]
(51) 

the eigenvectors associated to small eigenvalues of P γ are then truncated, resulting in the reduced model 

˙ ˆ z γ (t) = A 

(γ ) 
11 

ˆ z γ (t) + B 

(γ ) 
1 

u (t) + 

m ∑ 

i =1 

N 

(γ ) 
i, 11 ̂

 z γ (t ) u i (t ) , t ≥ 0 . (52) 

The properties of (52) can now be immediately transferred from the considerations in the stochastic case. By Proposition 4.1 ,

we have 

λ(I � A 

(γ ) 
11 

+ A 

(γ ) 
11 

� I + 

1 

γ 2 

m ∑ 

i =1 

N 

(γ ) 
i, 11 

� N 

(γ ) 
i, 11 

) ⊂ C −. (53) 

Example 4.2 shows that eigenvalues on the imaginary axis can occur in (53) , but they can be excluded by Lemma 2.2 if 0 �∈
λ(I � A 

(γ ) 
11 

+ A 

(γ ) 
11 

� I + 

1 
γ 2 

∑ m 

i =1 N 

(γ ) 
i, 11 

� N 

(γ ) 
i, 11 

) . However, even though there is a zero eigenvalue, the existence of the reduced

order Gramian can be guaranteed using the arguments of Theorem 4.4 . 

In order to keep the discussion around the error bound for bilinear systems short, we do not discuss the scenario of a

zero eigenvalue (53) in detail. Therefore, let us exclude this case below. We can now transfer the result of Proposition 4.7 to

the bilinear case by the results of [26] . 

Proposition 6.1. Let z be the solution to (46) with λ(A ) ⊂ C − and let ˆ z γ represent the solution to (52) . Moreover, let γ > 0 such

that 

λ(I � A + A � I + 

1 

γ 2 

m ∑ 

i =1 

N i � N i ) ⊂ C −

and that the ROM coefficients satisfy 

0 �∈ λ

( 

I � A 

(γ ) 
11 

+ A 

(γ ) 
11 

� I + 

1 

γ 2 

m ∑ 

i =1 

N 

(γ ) 
i, 11 

� N 

(γ ) 
i, 11 

) 

. 

Given zero initial states to both equations and V γ ∈ R 

n ×r being the first r columns of the factor S � γ of the eigenvalue decomposition

of P γ (unique solution to (48) ), we have 

sup 

t∈ [0 ,T ] 

∥∥z(t) − V γ ˆ z γ (t) 
∥∥

2 
≤

(
tr (P γ ) + tr ( ̂  P γ ) − 2 tr (P 

γ , 2 V 

� 
γ ) 

) 1 
2 exp 

{ 

0 . 5 γ 2 
∥∥u 

0 
∥∥2 

L 2 
T 

} 

γ ‖ 

u ‖ L 2 
T 
, 
15 
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where P γ , 2 and ˆ P γ are the unique solutions to 

AP γ , 2 + P γ , 2 A 

(γ ) 
11 

� + 

1 

γ 2 

m ∑ 

i =1 

N i P γ , 2 N 

(γ ) 
i, 11 

� = − 1 

γ 2 
B B 

(γ ) 
1 

� 
, 

A 

(γ ) 
11 

ˆ P γ + 

ˆ P γ A 

(γ ) 
11 

� + 

1 

γ 2 

m ∑ 

i =1 

N 

(γ ) 
i, 11 

ˆ P γ N 

(γ ) 
i, 11 

� = − 1 

γ 2 
B 

(γ ) 
1 

B 

(γ ) 
1 

� 
. 

Proof. Given the assumptions P γ , P γ , 2 and 

ˆ P γ exist. The result is then a direct consequence of Corollary 4.3 in [26] . �

Theorem 6.2. Under the assumptions of Proposition 6.1 , we have 

sup 

t∈ [0 ,T ] 

∥∥z(t) − V γ ˆ z γ (t) 
∥∥

2 
≤

(
tr (�γ , 2 W γ ) 

) 1 
2 exp 

{ 

0 . 5 γ 2 
∥∥u 

0 
∥∥2 

L 2 
T 

} 

γ ‖ 

u ‖ L 2 
T 
, (54) 

where the weight is 

W γ = I + 2 A 

(γ ) 
12 

� 
Y γ , 2 + 

1 

γ 2 

m ∑ 

i =1 

N 

(γ ) 
i, 12 

� 
(

2 Y γ

[
N 

(γ ) 
i, 12 

N 

(γ ) 
i, 22 

]
− ˆ Q γ N 

(γ ) 
i, 12 

)
. 

Above, Y γ = 

[
Y γ , 1 Y γ , 2 

]
and ˆ Q γ are defined as the unique solutions to 

A 

(γ ) 
11 

� 
Y γ + Y γ A 

(γ ) 

b 
+ 

1 

γ 2 

m ∑ 

i =1 

N 

(γ ) 
i, 11 

� 
Y γ N 

(γ ) 

i,b 
= −

[
I 0 

]
, 

A 

(γ ) 
11 

� 
ˆ Q γ + 

ˆ Q γ A 

(γ ) 
11 

+ 

1 

γ 2 

m ∑ 

i =1 

N 

(γ ) 
i, 11 

� 
ˆ Q γ N 

(γ ) 
i, 11 

= −I, 

where we set A 

(γ ) 

b 
:= S γ AS � γ and N 

(γ ) 

i,b 
:= S γ N i S 

� 
γ . 

Proof. The result directly follows from the proof of Theorem 4.8 in which B and N i need to be replaced by 1 
γ B and 

1 
γ N i . �

As in the stochastic framework, we can conclude that truncating the small eigenvalues of P γ leads to small diagonal

entries of �γ , 2 and hence to a small error in the dimension reduction according to Theorem 6.2 given that the exponential

in (54) is not too dominant. Therefore, the eigenvalues of P γ can be used as a criterion to determine a suitable reduced

order dimension r. 

Notice that the above results can be generalized to non-zero initial states, since a general system can be decomposed 

into (46) with zero initial data and 

˙ z z 0 (t) = Az z 0 (t) + 

m ∑ 

i =1 

N i z z 0 (t) u i (t) , z(0) = z 0 = X 0 v 0 . (55) 

Now, establishing the MOR scheme for (55) the same way as for the stochastic setting in Section 5 provides the desired

extension. 

7. Numerical experiments 

In this section, we test the efficiency of the proposed method (see Sections 3.2 and 6 ), denoted here by OS , in some

numerical examples. We compare the results with the ones obtained by applying the standard balanced truncation method 

for a full state approximation, denoted here by BT (see, e.g., [3] for the bilinear and [7] for the stochastic case). All the

simulations are done on a CPU 2.6 GHz Intel® Core TM i5, 8 GB 1600 MHz DDR3, MATLAB 

R © 9.1.0.441655 (R2016b). 

For this study, we consider a standard test example representing a 2D boundary controlled heat transfer system; see, 

e.g., [3] . Its dynamics is governed by the heat equation subject to Dirichlet and Robin boundary conditions, i.e., the following

boundary value problem 

∂ t x = �x, in (0 , 1) × (0 , 1) , 
n · ∇x = 0 . 8 u 1 x on 
1 , 

x = u 2 , on 
2 , 

x = 0 , on 
3 , 
4 , 

where 
1 = { 0 } × (0 , 1) , 
2 = (0 , 1) × { 0 } , 
3 = { 1 } × (0 , 1) and 
4 = (0 , 1) × { 1 } . In this system, there are two source

terms, namely u 1 and u 2 , which are applied at the boundaries 
1 and 
2 , respectively. A semi-discretization in space using 

finite differences with k = 20 grid points results in a control system of dimension n = 400 of the form 

˙ x = Ax (t) + Nx (t ) u 1 (t ) + Bu 2 (t) . (56) 

We refer to [3] for more details on the matrices in (56) . 
16 



M. Redmann and I.P. Duff Applied Mathematics and Computation 420 (2022) 126561 

Fig. 1. Decay of singular values σk : the blue curve corresponds to eig P. The red curve corresponds to 
√ 

eig PQ . (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Stochastic example: Error bounds and the max value of the 

mean error for OS and BT for the simulation presented in 

Fig. 2 with zero initial condition. 

Method Error bound max mean error 

OS 5 . 46 · 10 −3 3 . 56 · 10 −4 

BT 5 . 63 · 10 −3 2 . 05 · 10 −4 

Fig. 2. Stochastic simulation: pointwise mean error between the original model and the ROMs for the input u 2 (t) = u (t) = e −
1 
2 t sin (10 t) and zero initial 

condition. 

 

 

7.1. Stochastic example 

7.1.1. Zero initial condition 

First, we consider that the boundary 
1 is a perturbed by noise, i.e., u 1 = 

dW 

dt 
with W being a standard Wiener process.

Hence the resulting dynamical stochastic system is of the form 

dx (t) = [ Ax (t) + Bu 2 (t)] dt + Nx (t ) dW (t ) , t ≥ 0 . 

Additionally, we first assume that x (0) = 0 before we study a non-zero initial state. In order to apply BT , we additionally

need to compute the observability Gramian Q , which satisfies the following Lyapunov equation 

A 

� Q + QA + 

q ∑ 

i =1 

N 

� 
i QN i = −I (57) 
17 
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Fig. 3. Decay input-independent part of error bound for OS and BT computed for different orders r = 1 , . . . , 25 . 

Fig. 4. Stochastic simulation: pointwise mean error between the original model and the ROMs for the initial condition x (0) = 0 . 1 / [1 . . . 1 / ] � and input 

u 2 ≡ 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

with q = 1 and N 1 = N. This method was studied in detail in [7] . However, solving (57) leads to much higher computational

cost especially due to the full-rank right hand side which does not allow the usage of low-rank solvers. Fig. 1 depicts the

decay of the eigenvalues/singular values of P as well as the decay of square root of the eigenvalues of P Q (Hankel singular

values). As shown in Theorem 4.8 , the eigenvalues of P play an important role in the error bound for OS and provide an

intuition for the expected error. Similarly, the Hankel singular values are also associated the error bound for BT , see [7] . The

decay of both curves in Fig. 1 indicates that a small reduction error can already be achieved for small r. 

For this example, we compute reduced systems of order r = 25 for both OS and BT . As a next step, we compare the

quality of the reduced-order systems by simulating their responses for the input u 2 (t) = u (t) = e −
1 
2 

t sin (10 t) . To determine

the transient response, we apply a semi-implicit Euler-Maruyama scheme with step size h = 1 / 256 and simulate the original

system and the reduced-order models in the time interval [0,1]. Additionally, those simulations are done using 10 5 samples. 

The mean error between the original and the reduced models are depicted in Fig. 2 as well as the error bounds from

Proposition 4.7 . Table 1 presents the numerical values for the error bounds and max mean error for both methods. We

notice that both reduced models are able to follow the behavior of the original system. Furthermore, this figure shows 

that the two methods, BT and OS , provide very similar quality reduced models in terms of the magnitude of the error, an

observation we also made with other test examples. However, we note that BT is a numerically more expensive method, 

since one needs to additionally solve for Q . 

Additionally, for different reduced orders varying in the range r = 1 , . . . , 25 , the input-independent part of the error

bound given in Proposition 4.7 is computed in Fig. 3 , i.e., for each reduced order r we plot the value 

E(r) = 

(
tr (P ) + tr ( ̂  P (r ) V (r ) � V (r )) − 2 tr (P 2 (r ) V (r ) � ) 

)1 
2 
, 
18 
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Fig. 5. Bilinear simulation: pointwise error between the original model and the ROMs for the input u (t) = e −
1 
2 t sin (10 t) . 

Table 2 

Stochastic example: Error bounds and the L 2 error for OS 
and BT for the simulation presented in Fig. 4 with non-zero 

initial condition. 

Method Error bound L 2 error 

OS 1 . 24 · 10 −4 5 . 50 · 10 −5 

BT 1 . 25 · 10 −4 4 . 76 · 10 −5 

Table 3 

Bilinear example: Error bounds and the L ∞ error for OS and 

BT for the simulation presented in Fig. 5 . 

Method Error bound L ∞ error 

OS 5 . 46 · 10 −3 3 . 56 · 10 −4 

BT 5 . 63 · 10 −3 2 . 05 · 10 −4 

 

V  

 

 

 

 

 

 

 

 

 

 

 

where V (r) is the reduced basis of order r, and 

ˆ P (r) , P 2 (r) are the solutions of (31b) and (31c) . Notice that we added

 (r) � V (r) in the second summand of the error bound since V (r) � V (r) � = I for BT . As expected, the bound decays if the

reduced order is increased for both OS and BT . 

7.1.2. Non-zero initial condition 

Now, we consider the same dynamical stochastic system presented in the previous section. Additionally, we assume that 

the initial temperature constant in space, leading to the initial condition 

x (0) = X 0 v 0 , 

with X 0 = 

[
1 . . . 1 

]� 
and v 0 = 0 . 1 . As shown in Section 5 , the control subsystem with zero initial condition can be

decoupled from the initial condition subsystem (38) . Hence, for the initial condition subsystem, we employ the reduction 

scheme presented in that section. Firstly, we compute the Gramian P x 0 solving the Lyapunov Eq. (39) . Based on this Gramian,

we are able to construct reduced order models for (38) via OS . Once again we compare the proposed methodology with BT
using the Gramians P x 0 and Q . For the initial condition subsystem, the singular value curves for OS and BT have a similar

behavior as in the case of a zero initial condition ( Fig. 1 ). Therefore, they are omitted here. For this example, we com-

puted reduced models of order r x 0 = 20 . We compare the quality of reduced models (41) by simulating 10 5 samples using

a semi-implicit Euler-Maruyama scheme with step size h = 1 / 256 . In Fig. 4 , we depict the pointwise mean error between

the original system (38) and reduced models of the form (41) . Also, Table 2 presents the numerical values for the L 2 error

bounds (from inequality (44) ) and the L 2 error for both methods. Once again, both reduced models are able to follow the

behavior of the original system. Furthermore, for this simulation, BT and OS , provide very similar quality reduced models 

regarding the magnitude of the error. However, BT is more numerically expensive due to the computation of Q . 

7.2. Bilinear example 

As our second numerical example, we consider the heat transfer system in (56) with u 2 = u 1 = u . For the bilinear exam-

ple, we assume that the initial condition is zero. As a consequence, this leads to a bilinear system having only one input. For
19 
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Fig. 6. Bilinear simulation: time domain pointwise error for different reduced orders using OS . 

 

 

 

 

 

 

 

 

 

 

 

 

this example, we need to solve the Lyapunov equation in (48) . To this aim, we set γ = 1 leading to the same reachability

and observability Gramians as for the stochastic example. Hence, Fig. 1 also gives the decay of singular values for OS and

BT . Similarly, Fig. 3 shows the decay of the input-independent part of the error bound from Proposition 6.1 . 

As in the previous example, we obtain reduced systems of order r = 25 by using OS and BT and compare their quality

by simulating their responses for the input u (t) = e −
1 
2 

t sin (10 t) . To determine the transient response, we use the MATLAB®-

solver ode45 to simulate the original system and the reduced-order models in the time interval [0,10]. The results are 

depicted in Fig. 5 . Table 5 presents the numerical values for the error bounds and max error for both methods. Similar to

the stochastic example, we notice that the two methods, BT and OS , provide very similar quality reduced models in terms

of the magnitude of the error. Once again, we note that BT is a computationally more expensive method, since one needs

the solution to the additional Lyapunov equation in (57) . Finally, Fig. 6 shows the simulation of the error for reduced models

obtained by OS with different orders. As expected, the error decays once the order is increased. 

Appendix A. Matrix differential equations and their solutions 

Lemma A.1. Let � be the fundamental solution of (1) defined in (3) and let ˆ � be the one of system (2) . Suppose that B and B̂

are matrices of suitable dimension. Then, the R 

n ×r -valued function E 

[
�(t, s ) B ̂  B � ˆ �� (t, s ) 

]
, t ≥ s , satisfies 

X (t) = B ̂

 B 

� + 

∫ t 

s 

AX (τ ) dτ + 

∫ t 

s 

X (τ ) ̂  A 

� dτ + 

q ∑ 

i =1 

∫ t 

s 

N i X (τ ) ̂  N 

� 
i dτ. (58) 

Proof. The result is a direct consequence of [7] , Proposition 4.4 or [28] , Lemma 2.1. �

Corollary A.2. Given the assumptions in Lemma A.1 , we find that 

E 

[
�(t, s ) B ̂

 B 

� ˆ �� (t, s ) 
]

= E 

[
�(t − s ) B ̂

 B 

� ˆ �� (t − s ) 
]
, t ≥ s. (59) 

Proof. Setting X(t) := E 

[
�(t ) B ̂  B � ˆ �� (t ) 

]
, by Lemma A.1 we find that 

X (t − s ) = B ̂

 B 

� + 

∫ t−s 

0 

AX (τ ) dτ + 

∫ t−s 

0 

X (τ ) ̂  A 

� dτ + 

q ∑ 

i =1 

∫ t−s 

0 

N i X (τ ) ̂  N 

� 
i dτ. 

Setting v = τ + s , by substitution, we see that 

X (t − s ) = B ̂

 B 

� + 

∫ t 

s 

AX (v − s ) dv + 

∫ t 

s 

X (v − s ) ̂  A 

� dv + 

q ∑ 

i =1 

∫ t 

s 

N i X (v − s ) ̂  N 

� 
i dv . 

Consequently, both sides of (59) satisfy (58) . Therefore, they are equal. �
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