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Abstract 

Epigenetics has emerged to become an important field of modern medicinal chemistry 

and drug discovery. Research in this field often combines different methods such as 

computational studies, chemical synthesis, biochemical and biophysical assays, and 

cellular testing. Combination of all these approaches together is essential to identify new 

probes and study their potential in different physiological and pathological systems. The 

publications presented in this thesis focus on identifying novel inhibitors against certain 

histone deacetylases (HDAC) isoforms and exploring their potential as anticancer and 

antiparasitic agents. 

Firstly, a novel series of benzhydroxamates were identified as human HDAC inhibitors 

with decreased activity against other HDAC isoforms. These derivatives showed a strong 

HDAC8 inhibition phenotype in neuroblastoma cells. Secondly, the polypharmacology 

concept was applied to design dual-acting inhibitors of HDAC8 (as well as 6) and the 

bromodomain/PHD finger-containing protein (BRPF1). Despite their in vitro activity, the 

synthesized HDAC8/BRPF1 and HDAC6/BRPF1 dual inhibitors did not show cellular 

effects on acute myeloid leukemia cells (AML). 

Benzhydroxamates were further explored against schistosomal histone deacetylases, with 

a focus on HDAC8 (smHDAC8). Several nanomolar inhibitors were identified and 

further explored. The structure-activity relationship (SAR) of the synthesized derivatives 

was determined, and some of the novel inhibitors also showed remarkable activity in vivo 

against the parasite. Based on these smHDAC8 inhibitors, a quantitative structure-activity 

relationship (QSAR) model was generated and refined to predict the biological activity of 

novel compounds. The developed smHDAC8 inhibitors were further explored and tested 

against other parasitic infections. Some of them showed antileishmanial and cestocidal 

activity, highlighting their potential as novel antiparasitic agents. Additionally, a 

continuous assay based on a thiotrifluoroacetyled substrate was successfully applied to 

measure HDAC8 catalytic activity. The assay is compatible with different microtiter 

plates and could facilitate enzymatic testing of more HDAC inhibitors.  

Finally, the binding mode of balsalazide, a previously reported hit of the deacylase sirtuin 

5 (Sirt5), was studied, and SAR analysis identified the structural parts essential for the 

inhibitory activity. Balsalazide was also found to be selective for Sirt5 over other sirtuins 

isoforms.  

The results obtained in the current work could be potential starting points for future 

projects to optimize these novel chemotypes as HDAC inhibitors for anticancer and 

antiparasitic therapies. 

Keywords:  Epigenetics, HDAC, Anticancer, Antiparasitic, Benzhydroxamates, 

Neuroblastoma, Polypharmacology, Dual-acting inhibitors, BRPF1, Schistosomiasis, 

smHDAC8, QSAR, Antileishmanial, Cestocidal, Continuous HDAC assay, Balsalazide, 

Sirtuin 5.  
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Kurzfassung 

Die Epigenetik spielt eine wichtige Rolle in der modernen Medizinischen Chemie und 

Wirkstoffforschung. Die Forschung auf diesem Gebiet kombiniert oft verschiedene 

Methoden wie Computergestützte Studien, chemische Synthese, biochemische und 

biophysikalische Assays, sowie zelluläre Tests. Das Zusammenspiel all dieser Methoden 

ist wesentlich, um neue epigenetische Modulatoren zu identifizieren und ihr Potenzial in 

verschiedenen physiologischen und pathologischen Systemen zu untersuchen. Die in 

dieser Dissertation präsentierten Veröffentlichungen konzentrieren sich auf die 

Identifizierung neuer Inhibitoren bestimmter Histon-Deacetylasen (HDAC)-Isoformen 

und die Untersuchung ihres Potenzials als Antikrebs- und Antiparasitenmittel. 

Zunächst wurde eine neue Reihe von Benzhydroxamaten als humane HDAC-Inhibitoren 

mit verminderter Aktivität gegenüber anderen HDAC-Isoformen identifiziert. Diese 

Derivate zeigten in Neuroblastomzellen einen starken HDAC8-Hemmungsphänotypus. 

Desweiteren wurde ein polypharmakologisches Konzept angewendet, um dual wirkende 

Inhibitoren von HDAC8 (als auch 6) und der Bromodomäne und dem PHD-Finger-

enthaltenden Protein (BRPF1) zu entwickeln. Trotz ihrer in vitro-Aktivität zeigten die 

synthetisierten HDAC8/BRPF1- und HDAC6/BRPF1-Dual-Inhibitoren keine zellulären 

Wirkungen auf Zellen der akuten myeloischen Leukämie (AML). 

Benzhydroxamate wurden weiterhin gegen schistosomales HDAC8 (smHDAC8) 

untersucht und mehrere nanomolare Inhibitoren identifiziert. Untersuchungen zu 

Struktur-Aktivitäts-Beziehungen (SAR) der synthetisierten Derivate zeigten, dass einige 

von ihnen auch eine bemerkenswerte Aktivität gegen Parasiten aufweisen. Basierend auf 

diesen smHDAC8-Inhibitoren wurde ein Modell der quantitativen Struktur-Aktivitäts-

Beziehung erstellt und verfeinert, um die biologische Aktivität zukünftiger Verbindungen 

vorherzusagen. In weiterführenden Untersuchungen wurden die entwickelten smHDAC8-

Inhibitoren auch gegen andere parasitäre Infektionen getestet. Einige von ihnen zeigten 

antileishmanische und cestozide Aktivität, was ihr Potenzial als neuartige antiparasitäre 

Mittel unterstreicht. Darüber hinaus wurde ein kontinuierlicher Assay basierend auf 

einem thiotrifluoracetylierten Substrat erfolgreich angewendet, um die katalytische 

Aktivität von HDAC8 zu analysieren. Der Assay ist mit verschiedenen Mikrotiterplatten 

kompatibel und könnte die enzymatische Testung weiterer HDAC-Inhibitoren 

erleichtern. 

Abschließend wurde der Bindungsmodus von Balsalazid, einem zuvor beschriebenen 

Sirtuin 5 (Sirt5)-Hit-Inhibitor, untersucht. Eine SAR-Analyse identifizierte die für die 

Aktivität wesentlichen Strukturteile. Somit wurde auch festgestellt, dass Balsalazid für 

Sirt5 gegenüber anderen Sirtuin-Isoformen selektiv ist. 

Die in der aktuellen Arbeit erzielten Ergebnisse können potenzielle Ausgangspunkte für 

die weitere Optimierung der erhaltenen neuen Chemotypen als HDAC-Inhibitoren für 

Krebs- und antiparasitäre Therapien darstellen. 
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1. Introduction 
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1.1. Epigenetic mechanisms of gene control 

The term epigenetics was first used to study gene interactions that control the phenotypic 

changes occurring during the development of an organism. This term was later extended 

to refer to inherited factors that control gene expression without altering the DNA 

sequence and consequently determine if and when certain genes are expressed or 

repressed. The different epigenetic mechanisms that regulate gene expression include 

DNA methylation, non-coding RNAs (ncRNAs), chromatin conformation, and histone 

modification [1, 2]. DNA methylation in mammalian cells is regulated through DNA 

methyltransferase enzymes (DNMTs) which add a methyl group at the C5 position of 

cytosine in CpG dinucleotides resulting in 5-methylcytosine. DNA methylation controls 

gene transcription by altering the binding affinity of different transcription and 

recognition factors to gene promoters [3]. Non-coding RNAs are transcribed from non-

coding genome, but they are not translated to proteins. In addition to tRNA and rRNA 

and their distinct role in protein synthesis, several ncRNAs regulate gene expression at 

different levels. While long non-coding RNAs (lncRNAs) can alter the chromatin 

structure and the accessibility of transcriptional machinery to genes, endogenous small 

interfering RNAs (endo-siRNAs) and micro RNAs (miRNA) work at the post-

transcriptional level through interference with mRNA function leading to gene silencing 

[1, 4]. Human genetic material is stored in the chromosomes, which consist of compacted 

chromatin fibers. The basic structural unit of chromatin is the nucleosome, which consists 

of DNA wrapped around histone proteins. Loose chromatin structure allows active 

transcription, while further compaction into 30 nm fibers prevents the accessibility of 

RNA polymerase and transcription factors to the DNA and therefore leads to gene 

silencing [5]. As histone modifications are within the main focus of this work, it will be 

discussed in more detail.  

 

1.2. Histone post-translation modifications 

Post-translational modifications (PTMs) of histones—along with DNA methylation—are 

the most extensively studied pathways of epigenetic control of gene expression [1]. 

Histones are essential components of the compact eukaryotic genetic material as around 

147 base pairs of DNA are wrapped around eight units of histones (H3–H4 tetramer and 

two H2A–H2B dimers) to form the nucleosome [6, 7]. Histones are globular proteins rich 

in basic residues like lysine and arginine and are positively charged under physiological 

conditions. Therefore, they have strong contact with the negatively charged DNA and 

other nucleosomes leading to the compact chromatin structure [6, 7]. Histones are subject 

to many PTMs that include—but are not limited to—acetylation, methylation, 

phosphorylation, and ubiquitination (Fig. 1). These modifications constitute together 

what is called the histone code, which regulates several cellular functions under 

physiological conditions. However, deregulations in the histone code were related to 
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different pathological conditions [6, 7]. Since histone acetylation is within the main focus 

of this work, it will be discussed in more detail.  

 

Figure 1: Chromatin structure, DNA methylation and histone post translational 

modifications. (Reproduced with permission from [8], Copyright Massachusetts 

Medical Society) 

Acetylation of the lysine residues of the N-terminal tail of histones is a dynamic process 

that neutralizes the positive charge on the lysine, decreases the interaction between DNA 

and histones, and opens up the chromatin. This consequently increases the accessibility of 

the DNA by the transcription machinery leading to active transcription of the genes [6, 

9]. In addition, several transcription activators or repressors can recognize acetylated 

residues, which then work as an anchor to recruit transcriptional complexes and that 

could be associated either with increased gene expression or gene silencing [6, 9-11]. 

Different regulators work in harmony to control the state of histone acetylation (Fig. 2). 

Lysine acetyltransferases (KATs) are the writers that add the acetyl group to lysine 

residues, while lysine deacetylases (KDACs) are the erasers that remove them. 

Bromodomains are the reader proteins that can recognize the acetylated residues [7, 9]. 

Failure to maintain the equilibrium between these key players—and consequently 

dysfunctional acetylation levels—is linked to dysregulated gene expression and several 

pathologies such as inflammatory and metabolic disorders, cardiovascular diseases, and 

cancer [7, 11-15]. 
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Figure 2: Main regulators of histone acetylation. (Reproduced with permission from 

[16]) 

It is worth mentioning that the abbreviations KATs and KDACs are more scientifically 

correct since these enzymes can acetylate and deacetylate lysine residues in histones and 

other non-histone proteins, as will be discussed later. However, as the terms histone 

acetyl acetyltransferases (HATs) and histone deacetylases (HDACs) are more common, 

they will be used to refer to these enzymes from now on. In addition to the acetyl group, 

these enzymes can also catalyze the addition and removal of other acyl groups on lysine 

residues creating distinct post-translational modifications [17]. 

 

1.3. Modulators of histone acetylation 

1.3.1. Histone acetyltransferases 

The “writers” histone acetyltransferases are a group of enzymes capable of transferring 

an acetyl group from cofactor acetyl coenzyme A (Ac-CoA) to lysine. They all have an 

acetyltransferase domain but are further classified into families and subtypes depending 

on sequence similarity, presence of other domains, and their cellular locations [18]. They 

can acetylate histone and other non-histone proteins such as p53 and assemble with other 

proteins and transcription factors into large multi-subunit protein complexes modulating 

their substrate specificity. Dysregulated HAT activity has been linked to inflammatory 

diseases, neurological disorders, and malignancies [11, 18]. 
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1.3.2. Histone deacetylases 

On the contrary, histone deacetylases are responsible for the removal of acyl (mostly 

acetyl) groups from lysine residues. Their substrates include histones and many non-

histone proteins, such as p53, cytoskeleton proteins, RNA processing enzymes, and 

proteins involved in cell signaling and apoptosis [17]. Given the wide variety of their 

substrates, HDACs are involved in the regulation of multiple cellular functions, and like 

HATs, some HDACs work through the formation of large multiprotein complexes [17]. 

The human genome encodes 18 HDACs differing in size, cellular distribution, substrate, 

acyl group removed, and mechanism of catalytic activity. The two major categories of 

HDACs are the classical isoforms and sirtuins [17]. Classical histone deacetylases—for 

which the abbreviation HDACs will refer from now on—are 11 enzymes that have zinc 

ion in the active site responsible for their catalytic activity (Fig. 3A). These 

metalloenzymes differ in size, cellular localization, and substrates; however, they all have 

a conserved deacetylase domain. They are further classified—based on their similarity to 

yeast analogs—to classes I (HDACs 1-3, 8), IIa (HDACs 4, 5, 7, 9), IIb (HDACs 6, 10), 

and IV (HDAC11) [19-21]. Non-classical HDACs (class III) got the sirtuin nomenclature 

due to their homology to the yeast silent information regulator 2 (SIR2). These seven 

isoforms depend on nicotinamide adenine dinucleotide (NAD+) for their deacetylase 

activity (Fig. 3B), as the nicotinamide moiety is cleaved and the acyl group is transferred 

from the lysine to ADP-ribose. Sirtuins share a conserved catalytic core formed of a 

Rossmann fold domain and a zinc-binding domain, with the active site lying at the 

interface between them [22, 23]. HDACs and sirtuins are involved in the regulation of 

different physiological functions, and their uncontrolled activity is linked to many 

pathological disorders. As a result, their structure, substrates, biological roles, and 

relation to disease were extensively studied, and many informative reviews on HDACs 

(such as [16, 17, 24-28]) and sirtuins (such as [22, 23, 29-31]) are available. Of particular 

interest for this work are class I HDAC8, class IIb HDAC6 and Sirt5; therefore, they 

will be discussed in more detail. 
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Figure 3: A. Mechanism of zinc ion mediated deacetylation by HDACs. B. 

Mechanism of NAD+ mediated deacylation by sirtuins. 

1.3.2.1. HDAC6 

HDAC6 is the largest member of classical HDACs as it has 1215 amino acids. This 

isoform also has a unique structure as it contains two distinct catalytic domains; CD1 and 

CD2. CD2 is responsible for histone and tubulin deacetylase activity and has specificity 

for different substrates, whereas CD1 is more specific for peptide substrates having a C-

terminal acetyllysine residue [32]. HDAC6 interacts with ubiquitin through its zinc-finger 

ubiquitin-binding domain at its C-terminal, mediating interaction with the ubiquitin-

proteasome and aggresome pathways to clear misfolded proteins [33]. HDAC6 is mainly 

found in the cytoplasm interacting with cytosolic proteins and substrates but can also 

shuttle between the cytoplasm and the nucleus in response to cellular signaling. Its main 

substrate is α-tubulin; however, it deacetylates other non-histone substrates such as 

cortactin, β-catenin, and Hsp90 and interacts with several proteins regulating its 

deacetylase activity [33]. As a result, HDAC6 plays specific physiological roles in 

different cellular pathways and is linked to a variety of human diseases such as cancer, 

neurodegenerative diseases, immunological disorders, and human rare diseases [32-34]. 

1.3.2.2. HDAC8 

HDAC8 is perhaps one of the most studied HDAC isoforms. Although it belongs to class 

I classical HDACs, this 377 amino acids long isoform has unique structural and 

functional features that distinguish it from HDACs 1-3. Firstly it lacks the C-terminal 

protein-binding domain of other HDACs, and it is X-linked in humans [35]. Unlike 

HDACs1-3, which are exclusively located in the nucleus, HDAC8 could also be found in 

the cytoplasm, where it deacetylates many non-histone proteins such as cortactin, 

estrogen related receptor alpha (ERRα), SMC3 (subunit of the cohesin complex), and p53 

https://en.wikipedia.org/wiki/Cohesin
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at specific lysine residues. However, it is still a discussion if histones are bona fide 

HDAC8 substrates in vivo [35]. HDAC8 controls diverse processes such as sister 

chromatid separation, energy homeostasis, microtubule integrity, and muscle 

contraction. In addition, mutations in HDAC8 were linked to Cornelia de Lange 

syndrome (CdLS). Dysregulated HDAC8 is correlated with childhood neuroblastoma and 

T-cell lymphoma [35, 36].  

1.3.2.3. Sirtuin 5 

Sirt5 is one of the mitochondrial sirtuins isoforms but could also be found in the 

cytoplasm. Although it shares the main structural features of the catalytic active site with 

other sirtuins, it has unique arginine and tyrosine residues in the deep end of the 

substrate-binding pocket; therefore, it can specifically recognize negatively charged acyl-

lysine groups (Fig. 4) [37]. Sirt5 was found to have strong deacylase activity in vitro and 

in vivo against malonyl, succinyl, and glutaryl modifications of lysine residues but much 

weaker deacetylase activity compared with other sirtuins [37]. Sirt5 regulates several 

metabolic enzymes such as carbamoyl phosphate synthetase 1 (CPS1), succinate 

dehydrogenase (SDH), and 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), and 

consequently plays a role in the regulation of several cellular processes like ammonia 

detoxification, ketone body formation, reactive oxygen species (ROS) management and 

fatty acid oxidation. Dysregulated Sirt5 was linked to metabolic disorders, cancer, 

Alzheimer’s disease, and Parkinson’s disease [37-39]. 

 

Figure 4: Crystal structure (PDB code: 3RIY) of Sirt5 with a succinyl-lysine peptide 

(yellow sticks) and NAD+ (cyan sticks) showing the interaction of Sirt5 unique 

Arg105 and Tyr102 residues with the negatively charged carboxylate of the succinyl 

group. 
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1.3.3. Bromodomains 

Besides writers and erasers, the reader bromodomains also contribute to acetylation 

equilibrium through recognizing ε-N-acetylated lysine residues, and—together with other 

epigenetic readers—they are responsible for the recruitment of transcription factors to 

chromatin [40]. Bromodomains are proteins that have around 110 amino acids and 

usually occur as an integral part of larger protein complexes. The human proteome 

contains 61 bromodomains which are present within 46 different proteins and are 

classified into eight distinct families, with the Bromodomain and Extra-Terminal (BET, 

family II) and CREB binding protein/ E1A-associated protein p300 (CBP/EP300, family 

III) are the most extensively studied and characterized bromodomains  [40, 41]. The 

majority of bromodomains have conserved asparagine and tyrosine residues responsible 

for the recognition of the acetyllysine; however, due to other structural differences, they 

vary in their substrate specificity. While some can recognize many acetylated substrates, 

others are specific to a certain acetylated lysine residue in a specific protein [41]. As for 

HATs and HDACs, bromodomains can read acetyl modifications also in non-histone 

proteins such as CREB binding protein (CREBBP) and recognize the acetylated lysine on 

p53 in response to cellular stress. Bromodomains are involved in the regulation of 

different cellular processes and are linked to different human pathologies such as 

autoimmune diseases and cancer [40-43]. The bromodomain and PHD finger-containing 

protein (BRPF) family is within the focus of this work and will be discussed in more 

detail.  

1.3.3.1 Bromodomain and PHD finger-containing protein (BRPF) 

The human BRPF family has a high degree of sequence homology within their 

bromodomains and shares a conserved domain structure of two N-terminal PHD domains 

linked with a zinc finger (recognize unmodified histone H3), a bromodomain (recognize 

acetylated lysine in H2A, H3, and H4 histones) and PWWP domain (recognize 

trimethylated 36th lysine residue of the histone H3) [44]. Three members of this family 

have been identified, namely BRPF1, 2, and 3, and they act as a scaffold for the 

recruitment and assembly of the histone acetyltransferases of the MYST family. Once the 

MYST HATs are recruited to histone through the bromodomain, they start to acetylate 

more residues creating a positive feedback loop and resulting in recruitment and 

stabilization of more HATs on the chromatin (Fig. 5) [44, 45]. This, in turn, locally 

increases the acetylation resulting in the up-regulation of gene expression. One clear 

example is BRPF1, which links the monocytic leukemic zinc finger (MOZ) catalytic 

HAT subunit to the inhibitor of growth 5 (ING5) and the human Esa1-associated factor 6 

ortholog (hEaf6) subunits, forming quaternary complex, thereby promoting its HAT 

activity [45]. The activity of BRPF-containing HAT complexes was related to the 

regulation of hematopoiesis, and dysregulation was linked to acute myeloid leukemia 

(AML) [44-47]. 
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Figure 5: BRPF1 recruits the MOZ HAT complex to acetylated histone allowing 

further acetylation. (Reproduced with permission from [45]) 
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1.4. HDACs and their inhibition in human pathologies 

As previously mentioned, HDACs are major epigenetic players, and their dysregulation 

could increase the acetylation state and alter the expression of different genes leading to 

different pathological conditions. Their direct substrates also include many cellular non-

histone proteins, meaning that they control many metabolic and physiological processes 

whose disturbance could cause various pathologies. Indeed, aberrant HDACs activity was 

linked to neurodegenerative [48, 49] and metabolic diseases [50], cardiovascular [51, 52] 

and inflammatory [53, 54] disorders, immune response to viral infection [55, 56], rare 

diseases [33] and most notably cancer [57, 58]. In addition, major human parasites also 

depend on HDACs and other epigenetic modulators for their survival and growth [59, 

60]. Within the main focus of this work are HDAC inhibitors (HDACi) as anticancer and 

antiparasitic agents; therefore, they will be discussed in more detail. 

  

1.4.1. HDAC inhibitors as anticancer agents 

Although examined for many other purposes, HDAC inhibitors were most extensively 

investigated as anticancer agents. HDAC inhibitors were found to cause cancer cell death 

through different mechanisms such as interference in cell cycle and mitosis, altering 

chromatin structure, increasing the expression of tumor suppressor genes, reactive 

oxygen species (ROS) production, cell cycle arrest, angiogenesis inhibition, and 

apoptosis induction [17]. These effects were mainly observed for hematological 

malignancies where HDACi found their greatest therapeutic success as antiproliferative 

agents leading to five regulatory approved HDAC inhibitors for cancer chemotherapy. 

Moreover, many others are in preclinical and clinical development—either as single 

agents or in combination therapy—for oncology [17, 61].  

HDAC inhibitors generally have three main structural components; zinc-binding group, 

linker, and capping group (Fig. 6A) and are traditionally classified according to their 

zinc-binding group to hydroxamic acid derivatives, benzamides (better described as 

ortho-aminoanilides), cyclic peptides, and carboxylic acid derivatives [61]. Also, some 

“unusual” HDACi containing other zinc binders such as thiols [62, 63], amides [64], acid 

hydrazides [65, 66], and ketones [67] have also been reported. FDA-approved drugs 

SAHA (Suberanilohydroxamic acid), belinostat, pracinostat, and panobinostat are all 

hydroxamates, while the depsipeptide romidepsin is reduced to the active thiol, and the 

five of them are approved for blood malignancies (Fig. 6B) [61]. Additionally, the ortho-

aminoanilide tucidinostat (Fig. 6B) was approved by the china food and drug 

administration (CFDA) for treating peripheral T-cell lymphoma [17]. However, these 

inhibitors showed some serious dose-limiting adverse effects such as bone marrow 

toxicity, thrombocytopenia, and cardiac abnormalities, which were attributed to systemic 

HDAC inhibition of multiple isoforms [27, 68].  



11 

 

It was then suggested that isoform-selective HDAC inhibitors could have a better safety 

profile than pan HDAC inhibitors through inhibition of specific isoforms associated with 

certain malignancies [27]. Moreover, due to different expression levels of HDAC 

subtypes in various tumors, developing inhibitors to target certain HDAC isoforms is of 

particular interest as these “probes” could identify the specific functions of these isoforms 

and the potential therapeutic benefits of their inhibition. Advances in structural biology 

and the increasing availability of crystal structures of different HDAC isoforms identified 

specific structural features that could be—and have already been—used to achieve 

isoform selectivity, at least in vitro [27]. Accordingly, many studies reported 

modifications in the cap group size and nature, linker length and type, and zinc-binding 

group to address the specific structural features of many HDAC isoforms [17, 27, 61, 68]. 

It is also worth mentioning that some of the developed “isoform-selective” inhibitors did 

not show the expected cellular antiproliferative effect, raising a debate whether the pan 

HDAC inhibitors—with their previously mentioned side effects—are still therapeutically 

more valuable [69, 70]. The quest for selective HDAC6 and 8 inhibitors—in particular—

is highly active given their established role in different disorders, limited side effects that 

result from their inhibition or knockdown, and their applicability for selective targeting. 

Due to their importance for the current work, selective HDAC6 and 8 inhibitors are going 

to be discussed in more detail. 
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Figure 6: A. General structure features of HDAC inhibitors. B. HDAC inhibitors 

approved as anticancer agents. 

 

1.4.1.1. Selective HDAC6 inhibitors and their potential as anticancer agents 

Major HDAC6 substrates are various non-histone proteins involved in many cellular 

function ns, and dysregulation of this isoform was linked to many tumors. In addition, 

knockdown of this isoform did not have a toxic effect on mice [71] but showed 

antiproliferative effects against some cancer cell lines [72, 73], suggesting that HDAC6 

selective inhibition could lead to anticancer agents with fewer side effects. Encouraged 

by the available HDAC6 crystal structures—mainly for the CD2 deacetylase domain—

with different inhibitors, many efforts were devoted to developing inhibitors with 

preferential HDAC6 activity over other isoforms. Although the hydroxamic acid moiety 

was mainly used as a zinc-binding group, other non-hydroxamates were also reported 

[62]. To gain selectivity over other subtypes, HDAC6 selective inhibitors usually contain 

a relatively bulky—and in some examples a bifurcated cap group—to interact with the 
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large surface regulation domain of the enzyme. Additionally, HDAC6 has a wide 

hydrophobic channel that can accommodate either aromatic or longer aliphatic linkers 

[74]. Indeed, many HDAC6 selective inhibitors were reported showing nanomolar 

inhibitory activity, excellent selectivity over other isoforms in biochemical assays (Fig. 

7), and some also exhibited promising in vitro activity against some cancer cell lines [62, 

75-86]. Some recently published studies have however shown that selective HDAC6 

inhibition in cells is not sufficient for an anticancer effect and that the observed 

antiproliferative effect of reported HDAC6 inhibitors might be the result of inhibiting 

other HDACs or other off-targets [70, 87]. Complying with that, it was shown that the 

selective HDAC6 inhibitor ricolinostat showed minimal clinical activity as a single agent, 

but this activity was enhanced—with an acceptable toxicity profile—by using it in 

combination therapies with other anticancer agents such as the proteasome inhibitor 

bortezomib or the alkylating agent bendamustine [72, 88, 89].  
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Figure 7: Examples of reported selective HDAC6 inhibitors. 
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1.4.1.2. Selective HDAC8 inhibitors as potential anticancer agents 

HDAC8 was found to be overexpressed and upregulated in different human cancers such 

as colon cancer and neuroblastoma, whereas its knockdown with RNA interference 

(RNAi) decreased cellular proliferation and was effective against some cancer cell lines 

[36]. The majority of the reported HDAC8 inhibitors contain the hydroxamic acid group 

as the zinc binder, but other non-hydroxamates were also reported (reviewed in [36, 90]). 

Crystal structures of HDAC8 with different inhibitors revealed some unique structural 

determinants that could be utilized to design more selective inhibitors. The most 

important structural feature of HDAC8 is the “HDAC8 specific pocket” formed between 

L1 and L6 loops and the catalytic tyrosine [91]. Selective HDAC8 inhibitors could 

acquire an “L”-shaped confirmation so that the cap group can interact with this specific 

pocket. However, these L-shaped inhibitors cannot bind to other HDAC isoforms, as their 

L1 and L6 loops hinder the binding (Fig. 8) [36, 91]. In addition, the tunnel leading to the 

HDAC8 active site is shallow and hydrophobic. Therefore, inhibitors with shorter 

hydrophobic linkers and suitable cap groups—to address the selectivity pocket—are 

expected to be more active on HDAC8 [36]. Many virtual screening campaigns and 

computational approaches were initiated to find and design selective HDAC8 inhibitors 

[92-96], and numerous probes (Fig. 9 and 10) emerged that showed preferential in vitro 

inhibition of HDAC8 compared to other isoforms ([64, 96-105] and were reviewed in 

[36, 90]). Additionally, the selective HDAC8 inhibitor PCI-34051 was shown to induce 

apoptosis in cell lines derived from T-cell lymphomas or leukemias [101] and, selective 

HDAC8 inhibition was demonstrated to have antineuroblastoma activity [106]. 

 

Figure 8: A. Surface depiction of smHDAC8 binding side in complex with a 

previously reported selective HDAC8 inhibitor [91, 107] (PDB ID 5FUE). The 

capping group (teal sticks) occupies the HDAC8-specific pocket formed between L1 

(green), L6 (blue) and Tyr341 (yellow). B. L-shaped conformation of this selective 

HDAC8 inhibitor. 
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Figure 9: Examples of hydroxamic acid derivatives reported as selective HDAC8 

inhibitors. 

 

 

 

Figure 10: Examples of non-hydroxamates reported as selective HDAC8 inhibitors. 
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Some benzohydroxamates were also reported to possess promising activity toward 

both HDAC6 and HDAC8 isoforms, with good selectivity against HDAC1-3 (Fig. 11) 

[74, 108-110]. Furthermore, it was shown that modifications at C2, C4, or C5 of the alkyl 

linker of the pan inhibitor vorinostat could confer in vitro HDAC6/8 selectivity over 

other isoforms [111-113]. 

 

Figure 11: Examples of reported selective HDAC6/8 inhibitors. 
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1.4.2. HDAC inhibitors as antiparasitic agents 

Neglected parasitic diseases affect hundreds of millions of people and cause high 

morbidity and mortality. Therefore they are considered a serious health concern, 

especially in poor and developing countries. Lack of vaccines and the limited number of 

available drugs led to extensive use of the exciting therapies raising the problem of drug 

resistance and consequently therapy failure. Available drugs also need long regimes, are 

usually active against only specific live stages of the parasites, and sometimes have 

severe side effects [59]. As a result, there is an urgent need to identify new antiparasitic 

agents with novel mechanisms of action. In this regard, the “piggyback” approach or 

repurposing of already approved drugs—that could have an antiparasitic effect—would 

be very useful as it could decrease the time and costs to develop novel antiparasitic 

agents [114]. Anticancer agents are attractive for this approach since cancer cells and 

parasites have many similarities including high metabolic and reproductive activity and 

the ability to survive within the host immune system [115]. In addition, parasites usually 

have a complex lifecycle characterized by several morphologically distinct forms which 

imply a tight control of gene expression. As a result, epigenetic modulators—especially 

histone deacetylases—were suggested as potential targets for antiparasitic therapy [59, 

60]. Indeed, homologs of human HDACs were identified and characterized in major 

human parasites, and their inhibition with HDACi resulted—in some cases—in 

antiparasitic effects. While the current work focuses on HDAC inhibitors for 

schistosomiases, leishmaniasis, and cestode infections, HDACi for other parasitic 

infections such as malaria [116-121], trypanosomiasis [114, 122-124], and toxoplasmosis 

[125, 126] were also reported and reviewed [59, 60, 127].   

1.4.2.1. HDAC inhibitors as antischistosomal agents 

Schistosomiasis affects about 240 million people worldwide and is prevalent in poor 

tropical and subtropical areas [128]. The infection is caused by blood flukes from the 

genus Schistosoma, mainly S. mansoni, S. haematobium, and S. japonicum. Efforts to 

control schistosomiasis rely almost exclusively on preventive/curative chemotherapy 

through mass drug administration of praziquantel [129], which raises the concern of the 

development of drug resistance [130]. 

In schistosomes, several orthologs of the human enzymes have been characterized, 

belonging to classes I, II, and III [131, 132]. Class I smHDACs are expressed in all life 

cycles of the parasite, with the smHDAC8 isoform being the most abundant, whereas its 

human counterpart (hHDAC8) usually shows a lower level of expression in human cells 

compared to HDAC,1 and 3 [133]. This isoform has then a specific function for the 

parasite and could, therefore, be the perfect target for novel antischistosomal therapy 

[133, 134]. Indeed, many smHDAC8 inhibitors (Fig. 12) were reported showing in vitro 

inhibition of enzymatic activity accompanied by phenotypic effects such as impaired 

viability of different life stages of the parasite, decreased egg production, and 

morphological alterations in the adult worms [59, 135-138]. 
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Figure 12: Examples of reported smHDAC8 inhibitors. 

 

1.4.2.2. HDAC inhibitors as antileishmanial agents 

Leishmaniasis affects around one million people per year and is caused by parasites from 

the genus Leishmania; such as L. donovani, L. braziliensis, and L. amazonensis. There 

are three forms of leishmaniasis; visceral, cutaneous, and mucocutaneous. Visceral 

leishmaniasis or kala-azar is the most severe form, while cutaneous leishmaniasis is 

considered the most common [139]. Unfortunately, there is a limited number of drugs for 

the treatment of leishmaniasis such as amphotericin B, miltefosine, paromomycin, and 

antimony agents. These drugs require a long period of treatment and have a severe 

toxicity profile [60]. Epigenetic targets, and especially HDACs, could represent a novel 

therapeutic target in leishmaniasis as three genes in the Leishmania genome were found 

to encode NAD+-dependent deacetylases, while four genes encode class I and II zinc-

dependent deacetylases [127]. Previous studies showed that Leishmania are susceptible to 

HDAC inhibition, and some HDAC and sirtuins inhibitors have antileishmanial action on 

specific life forms of the parasites (Fig. 13) [59, 60, 140-142]. However, it was also 

shown that the clinically approved HDAC inhibitors vorinostat, belinostat, panobinostat 

and romidepsin are ineffective against Leishmania [143]. 
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Figure 13: Examples of reported HDAC and sirtuins inhibitors showing 

antileishmanial activity. 

 

1.4.2.3. HDAC inhibitors against cestode infections 

Echinococcosis is a zoonotic disease caused by parasite tapeworms of the genus 

Echinococcus and is estimated to affect around one million people globally. It occurs in 

two forms; either cystic or alveolar. Likewise, Taeniasis (cysticercosis) is an intestinal 

infection with cestodes from the genus Taenia affecting 2.5-8 million people worldwide. 

If the larvae are transmitted to the brain, they cause neurocysticercosis, characterized by 

convulsions and epilepsy [144, 145]. These parasitic infections are classified as neglected 

tropical diseases and are prevalent in underdeveloped countries where hygienic standards 

are relatively lower. Treatment options are limited and include praziquantel, niclosamide, 

and albendazole [144, 145]. However, these antiparasitic agents are not well-tolerated by 

some patients and require prolonged treatment regimens. Additionally, they are not 
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highly effective, which necessitates the search for alternative therapies [146]. Encouraged 

by establishing HDACs as potential targets for trematodes infections (schistosomiasis), 

various genes encoding class I and II HDACs in some cestodes were identified and 

characterized, and their transcriptional expression levels throughout several 

developmental stages of Echinococcus spp. were analyzed. Moreover, the pan-HDAC 

inhibitor trichostatin A (TSA) was found to decrease parasite viability and induce 

morphological alterations on the parasites. These results suggested that HDACs represent 

potential drug targets in cestodes [146]. 
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1.5. Bromodomains and their inhibition in human pathologies 

Although the physiological and pathological functions of many bromodomains are yet to 

be fully identified and understood, the role of certain bromodomain families in some 

human pathologies was revealed. Being the most druggable, BET bromodomains were 

the most extensively studied acetyl readers, and their roles—not only in cancer [147-149] 

but also in renal [150], neurological [151], and other disorders [152]—were discussed. 

Lots of small molecules were identified as BET inhibitory probes with various selectivity 

profiles against different subfamily members, and some of them are now evaluated in 

preclinical and clinical phases against various malignancies (reviewed in [153-155]). 

Additionally, other bromodomains outside the BET family also received some interest, 

and selective inhibitors were successfully developed for some of them and showed 

potential therapeutic effects, mainly against tumors (reviewed in [156, 157]). As 

previously mentioned, the BRPF family is within the focus of this work, and their 

inhibitors for anticancer therapy will be discussed in more detail.  

 

1.5.1. BRPF bromodomain inhibitors and their potential as anticancer agents 

Over the last decade, many groups identified and optimized different chemical scaffolds 

as BRPF bromodomain inhibitors (Fig. 14). Given the highly conserved acetyllysine 

binding pocket, selectivity against other bromodomains, especially BET, has to be 

carefully considered. BRPF inhibitors containing 1,3-dimethyl benzimidazolone scaffold 

were reported showing not only high potency and selectivity for the BRPF family but in 

some cases also subtype selectivity for BRPF1. Optimization of these inhibitors afforded 

compound (51, Fig. 14) with improved potency, selectivity, and pharmacokinetic profile 

[158, 159]. Very recently, another derivative (52, Fig. 14) was reported to inhibit 

hepatocellular carcinoma (HCC) development in vitro and in vivo [160]. Moreover, two 

groups independently utilized this scaffold to design dual targeting inhibitors of the 

bromodomains of both BRPF1/2 and the transcription factor TRIM24 (53 and 54, Fig. 

14). The optimized inhibitors were selective against these bromodomains and showed 

cellular activity. Compound (54) also showed modest activity against some cancer cell 

lines but was ineffective against breast cancer cell line MCF-7 [161-164]. 

Another group reported the discovery and optimization of pan BRPF inhibitors 

containing 1,3-dimethylquinolin-2-one scaffold, showing low nanomolar potency against 

BRPFs and excellent selectivity. The optimized inhibitor (55, Fig. 14) had good 

biopharmaceutical properties and displayed functional activity in cellular assays against 

cancer cell lines [47, 165]. Moreover, a hit-to-lead campaign identified 1,4-dimethyl-2,3-

dioxo-quinoxaline (56, Fig. 14) and 2,4-dimethyloxazole derivatives as low micromolar 

probes for BRPF1 with good selectivity [166, 167]. 
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Figure 14: Examples of reported BRPF bromodomain inhibitors. 
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1.6. Polypharmacology approach in drug design 

Multifactorial diseases such as inflammation, cancer, neurodegenerative, and metabolic 

disorders have a complex nature; therefore, it is challenging to completely cure such 

diseases through specific modulation of a single target. Indeed, many single agents for 

these diseases suffered from clinical failure and therapeutic resistance [168]. Other 

alternatives could be combination therapy by using different drugs to modulate different 

targets or designing therapeutic multitarget agents capable of simultaneously inhibiting 

multiple targets; an approach called polypharmacology. Multitarget drugs could have 

some advantages over drug cocktails, such as fewer side effects and drug-drug 

interactions, better patient compliance, and lower pharmacokinetic complexity. 

Accordingly, many reviews discussed the strategies to design multitarget agents as well 

as their potential in various multifactorial diseases [168, 169]. However, while designing 

dual-acting probes is a promising approach, achieving clinical effectiveness is still 

challenging, and many aspects have to be considered. Merging or fusing two scaffolds 

usually results in a bigger and more complex structure and could be associated with 

decreased drug-like properties. Another critical issue is balancing the activities on both 

targets since incorporating a second pharmacophore could interfere with the binding of 

the original one. Other challenges also include non-specific binding and different 

expression levels of targeted proteins [170-172].  

Since dual-target epigenetic agents—and more specifically dual HDAC/BRD 

inhibitors—are within the main focus of this work, they will be discussed in more detail. 

  

1.6.1. Dual HDAC/BRD inhibitors 

Several genetic, epigenetic, and metabolic pathways could be dysregulated leading to 

cancer formation. For such a multifactorial disease, combination therapies of different 

modulators could achieve better clinical results than monotherapy, especially against 

solid and resistant tumors [168]. Over the past decade, lots of efforts were dedicated to 

designing dual-acting epigenetic inhibitors, targeting either two epigenetic modulators or 

epigenetic and metabolic pathways (reviewed in [173-175]). Being already approved for 

cancer treatment, no wonder that HDACi have received a great interest in this regard. 

Several dual-acting HDACi were designed to interact with a second target such as 

kinases, metalloproteinases, and topoisomerases, and some of them have already 

progressed to clinical trials (reviewed in detail in [176-179]). Similarly, bromodomains 

also got some interest, and some dual bromodomain/kinase inhibitors were investigated 

[180-183].  

Of particular relevance to the current work are the attempts to design dual HDAC/BRD 

epigenetic inhibitors. Many groups rationalized the design of dual HDAC/BET inhibitors 

by changing the cap group of HDACi, mostly SAHA, to a reported BRD4 inhibiting 
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pharmacophore [184-189]. Indeed, the authors were not only able to achieve dual 

inhibitory activity for some compounds (57-60, Fig. 15) but also promising in vitro 

activity against some cancer cell lines. However, the results failed to show superior or 

synergistic activity over the original HDAC or BRD inhibitors. Also, the selectivity 

profile of these dual inhibitors on different HDAC isoforms was not optimal [184-189]. 

Recently, two groups have reported dual HDAC/BRD4 based on the scaffold of the BETi 

(+)-JQ1. Both compounds (61 and 62, Fig. 15) showed not only a balanced activity on 

BRD4 and class I HDACs but also a superior anticancer activity in pancreatic cancer 

cells compared to the parent compounds alone [190, 191]. Very recently, three dual 

HDAC/BRD4 inhibitors were reported based on the mode of binding of the BET 

inhibitor ABBV-744. The compounds were designed either as a pan HDAC, selective 

HDAC1, or selective HDAC6 inhibitor (63, 64, and 65 respectively, Fig. 15), and they 

showed a submicromolar antiproliferative activity against AML cell line MV-4-11 [192]. 
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Figure 15: Some previously reported dual HDAC/BRD inhibitors. 
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2. Objectives of the work 
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As previously mentioned and discussed in the introductory part, epigenetics emerged as a 

promising field of modern medicinal chemistry research. On the one hand, some 

epigenetic anticancer agents—mainly histone deacetylases inhibitors—have already been 

approved for the treatment of various cancer types, encouraging researchers to deeply 

investigate epigenetic pathways, fully reveal their mechanisms and develop more 

therapies. On the other, the side effects and limitations associated with the current 

epigenetic agents also stimulated further research to overcome them and develop novel 

therapies with improved safety and effectiveness.  

Therapeutic applications of epigenetic modulators are not limited to the field of 

oncology, as there is increasing evidence of their significance in different human 

pathologies. One example is human parasitic infections, widely considered as a 

promising field for the therapeutic potential of epigenetic modulators, especially HDAC 

inhibitors. Following that, the main objective of the current work is to design and 

synthesize novel inhibitors of histone deacetylases and evaluate their biological activity 

as anticancer and antiparasitic agents. To achieve that, the following specific objectives 

are applied: 

Since dysregulated HDAC8 is correlated with childhood neuroblastoma, we firstly set to 

investigate the potential of HDAC8 inhibitors against this malignancy. Novel hHDAC8 

inhibitors will be designed based on the available hHDAC8 structures while taking 

advantage of the structural differences between the different HDAC isoforms to achieve 

an acceptable selectivity profile. The synthesized compounds will be tested for their in 

vitro activity against the different HDAC isoforms to determine their inhibitory potency 

as well as their selectivity profile. Additionally, phenotypic screening in neuroblastoma 

cell lines will be carried out to assess the anticancer activity of the new compounds. 

Another idea is to apply the polypharmacology concept to design and synthesize novel 

dual inhibitors of HDACs and BRPF bromodomains. Here, the design of the dual 

inhibitors is based on previously reported inhibitors of both targets as well as their crystal 

structures. Modeling studies will guide the optimization process to achieve a balanced 

activity on both targets. The synthesized dual inhibitors will first be tested in biochemical 

and biophysical assays for their activity against HDACs and BRPF bromodomains. 

Phenotypic screening in acute myeloid leukemia cell lines will be additionally performed 

to test the antileukemic activity of the dual agents.  

Another focus will be on the development of HDAC inhibitors for an antiparasitic 

therapy. Previously reported smHDAC8 inhibitors will be optimized in this project. 

Different computational approaches such as binding free energy calculations, QSAR 

analysis, and docking studies will be implemented to explain the activity of the reported 

inhibitors and to suggest novel derivatives, whereas the mode of binding will be 

confirmed using cocrystallization studies. The newly synthesized derivatives will be 
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evaluated for their inhibitory activity against both parasitic and human HDAC isoforms, 

in addition to their cellular activity against the Schistosoma parasite. 

Since HDACi have been shown to hold potential for the treatment of major parasitic 

diseases, other than schistosomiasis, the synthesized HDAC inhibitors will be further 

tested for their antileishmanial and cestocidal activity. 

Since many compounds will be developed in the different projects by applying modern 

medicinal chemistry methods, it is also necessary to use in vitro screening assays that are 

able to handle such number of compounds. To achieve this the idea was also to develop a 

continuous assay to allow for rapid determination of histone deacylase activity.  

In the last project of the current work a series of novel derivatives of the Sirt5 hit 

balsalazide are planned to be synthesized in collaboration with the group of Prof. Bracher 

from LMU Munich. The obtained results should be used to set up protein-ligand models 

able to rationalize the biological activities.  
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3. Results and Discussions 

The results of this thesis include the following scientific 

manuscripts: 
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Abstract 

Histone deacetylases (HDACs) are important modulators of epigenetic gene regulation 

and additionally control the activity of non-histone protein substrates. While for HDACs 

1−3 and 6 many potent selective inhibitors have been obtained, for other subtypes much 

less is known on selective inhibitors and the consequences of their inhibition. The present 

report describes the development of substituted benzhydroxamic acids as potent and 

selective HDAC8 inhibitors. Docking studies using available crystal structures have been 

used for structure-based optimization of this series of compounds. Within this study, we 

have investigated the role ofHDAC8 in the proliferation of cancer cells and optimized 

hits for potency and selectivity, both in vitro and in cell culture. The combination of 

structure-based design, synthesis, and in vitro screening to cellular testing resulted in 

potent and selective HDAC8 inhibitors that showed anti-neuroblastoma activity in 

cellular testing. 
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Abstract 

Histone modifying proteins, specifically histone deacetylases (HDACs) and 

bromodomains, have emerged as novel promising targets for anticancer therapy. In the 

current work, based on available crystal structures and docking studies, we designed dual 

inhibitors of both HDAC6/8 and the bromodomain and PHD finger containing protein 1 

(BRPF1). Biochemical and biophysical tests showed that compounds 23a,b and 37 are 

nanomolar inhibitors of both target proteins. Detailed structure-activity relationships were 

deduced for the synthesized inhibitors which were supported by extensive docking and 

molecular dynamics studies. Cellular testing in acute myeloid leukemia (AML) cells 

showed only a weak effect, most probably because of the poor permeability of the 

inhibitors. We also aimed to analyse the target engagement and the cellular activity of the 

novel inhibitors by determining the protein acetylation levels in cells by western blotting 

(tubulin vs histone acetylation), and by assessing their effects on various cancer cell lines. 
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Abstract 

Schistosomiasis is a major neglected parasitic disease that affects more than 265 million 

people worldwide and for which the control strategy consists of mass treatment with the 

only available drug, praziquantel. In this study, we chemically optimized our previously 

reported benzhydroxamate-based inhibitors of Schistosoma mansoni histone deacetylase 

8 (smHDAC8). Crystallographic analysis provided insights into the inhibition mode 

ofsmHDAC8 activity by the highly potent inhibitor 5o. Structurebased optimization of 

the novel inhibitors was carried out using the available crystal structures as well as 

docking studies on smHDAC8. The compounds were evaluated in screens for inhibitory 

activity against schistosome and human HDACs (hHDAC). The in vitro and docking 

results were used for detailed structure activity relationships. The synthesized compounds 

were further investigated for their lethality against the schistosome larval stage using a 

fluorescence-based assay. The most promising inhibitor 5o showed significant dose-

dependent killing of the schistosome larvae and markedly impaired egg laying of adult 

worm pairs maintained in culture. 
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Abstract 

Histone-modifying proteins have been identified as promising targets to treat several 

diseases including cancer and parasitic ailments. In silico methods have been 

incorporated within a variety of drug discovery programs to facilitate the identification 

and development of novel lead compounds. In this study, we explore the binding modes 

of a series of benzhydroxamates derivatives developed as histone deacetylase inhibitors 

of Schistosoma mansoni histone deacetylase (smHDAC) using molecular docking and 

binding free energy (BFE) calculations. The developed docking protocol was able to 

correctly reproduce the experimentally established binding modes of resolved 

smHDAC8–inhibitor complexes. However, as has been reported in former studies, the 

obtained docking scores weakly correlate with the experimentally determined activity of 

the studied inhibitors. Thus, the obtained docking poses were refined and rescored using 

the Amber software. From the computed protein–inhibitor BFE, different quantitative 

structure–activity relationship (QSAR) models could be developed and validated using 

several cross-validation techniques. Some of the generated QSAR models with good 

correlation could explain up to ~73% variance in activity within the studied training set 

molecules. The best performing models were subsequently tested on an external test set 

of newly designed and synthesized analogs. In vitro testing showed a good correlation 

between the predicted and experimentally observed IC50 values. Thus, the generated 

models can be considered as interesting tools for the identification of novel smHDAC8 

inhibitors. 
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Abstract 

The protozoan parasite Leishmania braziliensis is a major causative agent of the 

neglected tropical diseases Cutaneous and Mucocutaneous Leishmaniases in the New 

World. There are no vaccines to prevent the infection and the treatment relies on few 

drugs that often display high toxicity and costs. Thus, chemotherapeutic alternatives are 

required. Histone Deacetylases (HDACs) are epigenetic enzymes involved in the control 

of chromatin structure. In this work, we tested an in-house library of 78 hydroxamic acid 

derivatives as putative inhibitors of L. braziliensis HDACs (HDACi). The compounds 

were evaluated in relation to the toxicity to the host cell macrophage and to the 

leishmanicidal effect against L. braziliensis during in vitro infection. Eight HDACi 

showed significant leishmanicidal effects and the top 5 compounds showed effective 

concentrations (EC50) in the range of 4.38 to 10.21 μM and selectivity indexes (SI) from 

of 6 to 21.7. Analyses by Transmission Electron Microscopy (TEM) indicated induction 

of apoptotic cell death of L. braziliensis amastigotes with a necrotic phenotype. An 

altered chromatin condensation pattern and cellular disorganization of intracellular 

amastigotes was also observed. A tight connection between the mitochondrion and 

nuclear protrusions, presumably of endoplasmic reticulum origin, was found in parasites 

but not in the host cell. In flow cytometry (FC) analyses, HDACi promoted parasite cell 

cycle arrest in the G2-M phase and no changes were found in macrophages. In addition, 

the direct effect of HDACi against the promastigotes showed apoptosis as the main 

mechanism of cell death. The FC results corroborate the TEM analyses indicating that the 

HDACi lead to changes in the cell cycle and induction of apoptosis of L. braziliensis. The 

production of nitric oxide by the infected macrophages was not altered after treatment 

with the top 5 compounds. Taken together, our results evidenced new HDACi as 

promising agents for the development of new treatments for American Tegumentary 

Leishmaniasis caused by L. braziliensis. 
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Abstract 

Background 

Echinococcosis and cysticercosis are neglected tropical diseases caused by cestode 

parasites (family Taeniidae). Not only there is a small number of approved anthelmintics 

for the treatment of these cestodiases, but also some of them are not highly effective 

against larval stages, such that identifying novel drug targets and their associated 

compounds is critical. Histone deacetylase (HDAC) enzymes are validated drug targets in 

cancers and other diseases, and have been gaining relevance for developing new potential 

anti-parasitic treatments in the last years. Here, we present the anthelmintic profile for a 

panel of recently developed HDAC inhibitors against the model cestode Mesocestoides 

vogae (syn. M. corti). 

Methodology/Principal findings 

Phenotypic screening was performed onM. vogae by motility measurements and optical 

microscopic observations. Some HDAC inhibitors showed potent anthelmintic activities; 

three of them -entinostat, TH65, and TH92- had pronounced anthelmintic effects, 

reducing parasite viability by ~100% at concentrations of ≤ 20 μM. These compounds 

were selected for further characterization and showed anthelmintic effects in the 

micromolar range and in a time- and dose-dependent manner. Moreover, these 

compounds induced major alterations on the morphology and ultrastructural features of 

M. vogae. The potencies of these compounds were higher than albendazole and the 

anthelmintic effects were irreversible. Additionally, we evaluated pairwise drug 

combinations of these HDAC inhibitors and albendazole. The results suggested a positive 

interaction in the anthelmintic effect for individual pairs of compounds. Due to the 

maximum dose approved for entinostat, adjustments in the dose regime and/or 

combinations with currently-used anthelmintic drugs are needed, and the selectivity of 

TH65 and TH92 towards parasite targets should be assessed. 

Conclusion, significance 

The results presented here suggest that HDAC inhibitors represent novel and potent drug 

candidates against cestodes and pave the way to understanding the roles of HDACs in 

these parasites. 
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Abstract 

We developed a one-step direct assay for the determination of histone deacylase (HDAC) 

activity by substituting the carbonyl oxygen of the acyl moiety with sulfur, resulting in 

thioacylated lysine side chains. This modification is recognized by class I HDACs with 

different efficiencies ranging from not accepted for HDAC1 to kinetic constants similar 

to that of the parent oxo substrate for HDAC8. Class II HDACs can hydrolyze 

thioacylated substrates with approximately 5−10-fold reduced kcat values, which 

resembles the effect of thioamide substitution in metallo-protease substrates. Class IV 

HDAC11 accepts thiomyristoyl modification less efficiently with an ∼5-fold reduced 

specificity constant. On the basis of the unique spectroscopic properties of thioamide 

bonds (strong absorption in spectral range of 260−280 nm and efficient fluorescence 

quenching), HDAC-mediated cleavage of thioamides could be followed by 

ultraviolet−visible and fluorescence spectroscopy in a continuous manner. The HDAC 

activity assay is compatible with microtiter plate-based screening formats up to 1536-

well plates with Z′ factors of >0.75 and signal-to-noise ratios of >50. Using thioacylated 

lysine residues in p53-derived peptides, we optimized substrates for HDAC8 with a 

catalytic efficiency of >250000 M−1 s−1, which are more than 100-fold more effective 

than most of the known substrates. We determined inhibition constants of several 

inhibitors for human HDACs using thioacylated peptidic substrates and found good 

correlation with the values from the literature. On the other hand, we could introduce N-

methylated, N-acylated lysine residues as inhibitors for HDACs with an IC50 value of 1 

μM for an N-methylated, N-myristoylated peptide derivative and human HDAC11. 
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Abstract 

We report here an extensive structure-activity relationship study of balsalazide, which 

was previously identified in a high-throughput screening as an inhibitor of Sirt5. To get a 

closer understanding why this compound is able to inhibit Sirt5, we initially performed 

docking experiments comparing the binding mode of a succinylated peptide as the natural 

substrate and balsalazide with Sirt5 in the presence of NADþ. Based on the evidence 

gathered here, we designed and synthesized 13 analogues of balsalazide, in which single 

functional groups were either deleted or slightly altered to investigate which of them are 

mandatory for high inhibitory activity. Our study confirms that balsalazide with all its 

given functional groups is an inhibitor of Sirt5 in the low micromolar concentration range 

and structural modifications presented in this study did not increase potency. While 

changes on the N-aroyl-b-alanine side chain eliminated potency, the introduction of a 

truncated salicylic acid part minimally altered potency. Calculations of the associated 

reaction paths showed that the inhibition potency is very likely dominated by the stability 

of the inhibitor-enzyme complex and not the type of inhibition (covalent vs. non-

covalent). Further in-vitro characterization in a trypsin coupled assay determined that the 

tested inhibitors showed no competition towards NADþ or the synthetic substrate 

analogue ZKsA. In addition, investigations for subtype selectivity revealed that 

balsalazide is a subtype-selective Sirt5 inhibitor, and our initial SAR and docking studies 

pave the way for further optimization 
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4. Summary of the results 

The results obtained are briefly summarized in this part. 
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4.1. Identification of novel epigenetic modulators for the 

anticancer therapy 

The results obtained in studies 3.1 and 3.2 are going to be briefly discussed in this part. 

The main focus of these studies was the design and synthesis of probes that could inhibit 

distinct HDAC isoforms and evaluating their biological activity in some cancer cell lines. 

  

4.1.1. Identification of novel hHDAC8 inhibitors with potential anti-neuroblastoma 

activity 

Based on our previously reported smHDAC8 inhibitors [107], we explored the potential 

of benzhydroxamates as inhibitors of the homologous human isoform. Docking studies of 

the initial hits highlighted that lipophilic interactions of the capping group with the 

residues lining the HDAC8-specific pocket might be exploited to design HDAC8-

selective inhibitors. Docking studies revealed that meta-substituted benzhydroxamates 

could not fit in the narrow pocket of HDAC1, explaining the in vitro selectivity over 

HDAC1. To further explore the structure-activity relationship of HDAC8 inhibitors, we 

synthesized different series of inhibitors. The linker was changed from amide in the 

original hits to amine, inverse amide, and ether linkers in the newly synthesized 

derivatives (Fig. 16). Different substituents—at the 4-position of the benzhydroxamic 

acid core—and cap groups were also included to maximize the interactions in the 

hydrophobic side pocket of HDAC8. 

 

Figure 16: Design strategy of novel HDAC8 inhibitors. 

Compared to the original hits, two compounds from the amine series 8b and 8f showed 

increased in vitro HDAC8 activity and better selectivity against HDAC1 and 6. This 

improvement was also observed for one compound from the ether series (20a), while for 

the inverse amide series, the increase in HDAC8 activity was accompanied by decreased 

selectivity against HDAC6 12b. The most promising compounds (Fig. 17) were then 

tested for their cellular effects, where they showed target engagement and 

hyperacetylation of HDAC8 and HDAC6 substrates but no effect on HDAC1 substrate. 
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Treating neuroblastoma cells with the compounds showed upregulation of specific 

differentiation marker genes and impaired colony formation ability, indicating a 

remarkable HDAC8 inhibition phenotype. The compounds also showed a relatively weak 

cytotoxic effect on normal human cell lines, highlighting the potential of selective HDAC 

inhibitors to target neuroblastoma with minimum side effects. 

 

Figure 17: The most promising HDAC8 inhibitors for the treatment of 

Neuroblastoma. 

 

4.1.2. Identification of dual targeting inhibitors of histone deacetylase 6/8 and 

bromodomain BRPF1, and their potential as antileukemic agents 

Here, we build on the results obtained in the previous study and explore the 

polypharmacology concept as an interesting, but also challenging, approach to develop 

more effective epigenetic therapies. We aimed to design dual inhibitors of specific 

HDAC isoforms and the bromodomain and PHD finger-containing protein 1 (BRPF1). 

Therefore, we started by merging the essential structural features of our previously 

reported HDAC8 inhibitors with a BRPF1 binding scaffold to come up with dual 

inhibitors for both targets (Fig. 18) using different linkers to link both parts. The in vitro 

activity of the synthesized compounds on both targets revealed that linker nature is a 

limiting factor to get a balanced activity on both targets. While compounds containing 

amine and inverse amide linkers showed strong HDAC8 inhibition accompanied with 

weak BRPF1 activity, compounds bearing a sulfamoyl linker displayed a submicromolar 

inhibition of both targets. Docking studies in BRPF1 revealed that the bent conformation 

adopted by the sulfonamide derivatives resembles that of the cocrystallized ligand and is 

more favorable for BRPF1 binding. On the other side, the conformation adopted by 

amide derivatives leaves the benzhydroxamic acid moiety solvent exposed (Fig. 19). One 

of the best compounds was 23a showing a submicromolar inhibition of HDAC8 and 

BRPF1 and a low in vitro activity against HDAC1 and 6 (Fig. 18). 
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Figure 18: Pharmacophore merging to design a dual HDAC8/BRPF1 inhibitor. 

 

Figure 19: A. Predicted binding mode of derivative 23a (bearing sulfamoyl linker 

and showing the bent conformation, green sticks) in BRPF1 (PDB ID: 5MYG). B. 

Predicted binding mode of another derivative (having an amide linker, and showing 

the benzhydroxamic acid moiety solvent exposed, cyan sticks) in BRPF1. The 

ligands are shown as green sticks, side chains of binding site residues as white sticks, 

and water molecules as red spheres. Yellow-dashed lines indicate hydrogen bond 

interactions and cyan-dashed lines π-π stacking interactions. 
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We then extended the scope to include HDAC6 as a target for our inhibitors. The 

substitution pattern on the benzhydroxamic acid moiety was changed from meta- to para 

position to shift the HDAC activity more towards HDAC6 (Fig. 20). The sulfamoyl 

linker was either kept as such or increased in length to include an additional methylene 

group. The sulfonamide derivative 37 appeared to be the best HDAC6/BRPF1 dual 

inhibitor showing a submicromolar in vitro inhibitory activity against both targets (Fig. 

20). Meanwhile, the derivative bearing an additional methylene group in the linker 

showed an enhanced in vitro HDAC6 activity, albeit a diminished binding to BRPF1. 

Docking studies and molecular dynamic simulations revealed that—owing to the 

flexibility of the additional methylene group in the linker—the preferred conformation 

could not be adopted, and the benzhydroxamic acid moiety is again solvent-exposed.  

 

Figure 20: Changing the substitution pattern to design dual HDAC6/BRPF1 

inhibitor. 

The compounds were then tested for their cytotoxic effect in acute myeloid leukemia cell 

lines where they showed some activity only at high concentrations. However, one of the 

negative controls—lacking the hydroxamic acid moiety—showed a modest anticancer 

effect. Therefore, we hypothesized that the lack of cellular activity is perhaps a result of 

decreased permeability. This was further supported by target engagement studies which 

showed that the most in vitro active HDAC6 inhibitor (44b, HDAC6 IC50 value: 152 nM) 

could not induce tubulin hyperacetylation. Then, we tried to mask the hydroxamic acid 

moiety by synthesizing the corresponding ester prodrugs, a reported approach to 

overcome decreased cellular uptake and poor tissue penetration caused by the highly 

polar hydroxamic acid group. Unfortunately, these masked hydroxamates showed activity 

only at high concentrations. The results presented in this study showed how challenging 

the polypharmacology approach is and that merging two active pharmacophores does not 

guarantee a balanced and potent activity on both targets.    
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4.2. Identification of novel epigenetic modulators for human 

parasitic infections 

The results obtained in studies 3.3-3.6 are going to be briefly discussed in this part. The 

main focus of these studies was to design novel more potent smHDAC8 inhibitors for 

schistosomiasis and explore their potential against other parasites. 

 

4.2.1. Identification of novel smHDAC8 inhibitors and their antischistosomal 

activity 

Here we follow up on our previous studies [107, 193], where we identified Schistosoma 

mansoni histone deacetylase 8 (smHDAC8) as a validated target for the antischistosomal 

therapy and identified some benzhydroxamates as smHDAC8 inhibitors such as the lead 

compound TH65. Structural studies showed that the hydrophobic biphenyl capping group 

of TH65 could occupy an HDAC8-specific pocket and undergo extensive interactions 

with the hydrophobic amino acids lining the pocket. We then synthesized different 

derivatives where the capping group was varied to include different substituted phenyl, 

biphenyl, bicyclic and tricyclic rings (Fig. 21). Moreover, we synthesized some 

derivatives with an inverted amide linker to benefit from the reported HDAC8 inhibitory 

activity of our previous inverse amides. The chemical optimization was guided by 

docking studies, and the synthesized inhibitors were screened for their in vitro activity 

against smHDAC8 and other human HDACs. The new derivatives retained the 

nanomolar inhibition of both sm- and hHDAC8 and generally showed a decreased 

activity against HDAC1 and 6. 
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Figure 21: Design strategy to obtain novel smHDAC8 inhibitors. 

We then evaluated the activity of the newly synthesized compounds on S. mansoni 

schistosomula using Alamar Blue-based assay, where some derivatives showed a more 

remarkable effect than the lead compounds. Compound 5o (Fig. 22) with the 

dibenzofuran capping group was the most active with an EC50 of 3.5 µM on 

schistosomula. However, its lipophilicity and poor solubility hampered further in vivo 

studies, whereas the activity on schistosomula could not be retained using more soluble 

analogs. Crystal structure of smHDAC8 in complex with 5o confirmed our docking 

results and emphasized the importance of the hydrophobic interactions between the 

capping group and HDAC8 side pocket. 

 

Figure 22: smHDAC8 inhibitor 5o showing the best activity on schistosomula S. 

mansoni. 
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4.2.2. Development and validation of QSAR models for smHDAC8 inhibitors 

In study 3.4 different in silico methods were used to aid in designing new smHDAC8 

inhibitors. Firstly, PDB entries of smHDAC8-ligand complexes were carefully examined, 

and the protein structure PDB ID 6HRQ was selected, as it showed the best cross-

docking results (RMSD values ≤ 2 Å). Our docking protocol was then validated, as it 

could reproduce the experimentally determined binding mode of the already reported 

ligands (RMSD values ≤ 2 Å). Our previously reported hydroxamates [107] (training set) 

were then docked to 6HRQ, but we found a poor correlation between the docking scores 

(Glide-SP) and experimentally reported activities. As a result, the affinities of these 

ligands to smHDAC8 were further analyzed and different models were used to estimate 

the binding free energy of each docking pose. 

The computationally estimated binding free energies were then used to generate QSAR 

models and—to improve the performance—the effect of considering further computed 

2D descriptors was also investigated. Continuous improvement of the initial models 

through including 2D descriptors and removing some outliers led to the final satisfactory 

model with improved correlation with the biological data and good cross-validation 

results (97, Fig. 23). To further evaluate the best QSAR models, some of the smHDAC8 

inhibitors developed in study 3.3 were utilized as a test set. As in the training set, the 

same protocols for docking and binding free energy calculations were applied to the test 

set, and their predicted pIC50 values were calculated. The difference between 

experimentally determined and predicted pIC50 values was low (< 0.7 log unit) indicating 

that the models have a good predictive ability and could be further used to predict the 

activity of future smHDAC8 inhibitors. 
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pIC50_pred = 3.45878 − 0.03231 * ∆G + 11.84528 * PEOE_VSA_FPPOS 

 

Figure 23: Equation of model 97 & correlation plot between the experimental pIC50 

values (X-axis) and the calculated pIC50 values (Y-axis) for the training set 

molecules (blue points) using model 97 as well as the distribution of the newly 

designed set of molecules (orange points) along the linear regression line. 

 

4.2.3. HDAC inhibitors are potential antileishmanial and cestocidal agents 

In study 3.5 we aimed to determine the potential effects of HDAC inhibitors on 

Leishmania braziliensis. Firstly, the hydroxamates that we previously developed and 

optimized for HDAC8 ([107] and study 3.3) were tested for their cytotoxic effects on the 

host cells macrophages. The least toxic compounds were then tested in an infection assay 

on the amastigotes, where eight compounds showed a significant leishmanicidal effect. 

Five of them showed EC50 values between 4 and 10 μM and selectivity index values 

between 6 and 22 over the host cells macrophages. The ultrastructural changes exerted by 

HDAC inhibitors on the amastigotes were then investigated and an altered chromatin 

condensation pattern and cellular disorganization were observed. Similar effects were not 

observed in the host cells. Our next step was to assess the direct effects of HDAC 

inhibitors on the extracellular promastigotes, where cell cycle arrest in the G2-M phase 

and apoptosis were observed as the main mechanisms of cell death. Also, nitric oxide 

production by the infected macrophages was not altered after treatment with the 

inhibitors, suggesting a possible direct leishmanicidal effect. Altogether, our results 

highlight the potential of HDACi as possible candidates for antileishmanial therapy. 
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The pan HDAC inhibitor Trichostatin A was reported to decrease the viability of some 

cestode parasites, cause significant morphological alterations and increase acetylation of 

total proteins [146]. In study 3.6, we followed up on these results and aimed to test the 

effect of class I and II selective HDAC inhibitors on cestode parasites represented by the 

larva stage of Mesocestoides vogae. While class II HDAC inhibitors (mainly designed as 

selective HDAC6 inhibitors) did not have a significant effect on parasite viability and 

morphology, some class I selective inhibitors—including the ones that we previously 

optimized as smHDAC8 inhibitors—showed a potent cestocidal activity. The most active 

compounds were TH65, TH92, and interestingly the HDAC1,2,3 inhibitor entinostat, 

showing anthelmintic effect in a time- and dose-dependent manner as well as extensive 

damage on the tegument and other morphological alterations. Their in vitro IC50 values 

on the larva were then determined and the anthelmintic agent albendazole were included 

as a reference. The three inhibitors showed low micromolar IC50 values and were more 

potent than albendazole (Fig. 24). Moreover, their anthelmintic effect was found to be 

irreversible. Finally, different combinations of these inhibitors with albendazole were 

tested and all the combinations were found to have potent, time-dependent anthelmintic 

effects. The results presented in this study help reveal the role of HDACs in cestodes and 

thus, aid in novel cestocidal agents development. 

 

Figure 24: Anthelmintic dose-dependent effect of selected HDAC inhibitors and 

albendazole (ABZ). The anthelmintic dose-dependent effect was determined for the 

selected HDAC inhibitors (A) TH65, (B) TH92, and (C) entinostat, and (D) the 

current anthelmintic drug ABZ at 6 days of incubation. 
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4.3. Development of continuous assay to monitor HDAC 

activity  

In almost all of the previous studies, we determined the activity of our HDAC8 inhibitors 

using a discontinuous assay in which the HDAC catalyzed reaction was coupled to a 

proteolytic reaction using the protease trypsin, specific for the free lysine side chain in 

the reaction product, followed by fluorescence-based readout for the proteolytic reaction. 

To enable us to screen more compounds, we aimed in study 3.7 to develop a continuous 

and direct assay for the determination of HDAC activity. Direct assays are easier because 

there is no coupling with another enzymatic reaction, and it is also possible to see kinetic 

effects in the progress curves. Therefore, substrates with lysine residues carrying 

different acyl groups including thioacetyl and thiotrifluoroacetyl moieties were 

synthesized (peptides I and II, Fig. 25). Thioamide bonds have unique spectroscopic 

properties since they have a UV absorption wavelength different from their reaction 

products, and they are also efficient fluorescence quenchers. Therefore, HDAC-mediated 

cleavage of thioamides could be followed by ultraviolet−visible and fluorescence 

spectroscopy continuously. Our results showed that substrates having a thiotrifluoroacetyl 

group were more widely accepted and hydrolyzed by different HDAC isoforms than their 

thioacetyl analogs. Even within the same class, while HDAC8 efficiently hydrolyzed 

both thioacyl groups, HDAC1 did not recognize these modifications. Interestingly, it was 

also found that HDAC11, a fatty acid deacylase, could accept a thiomyristoyl substrate. 

Surprisingly, introducing a methyl group on the nitrogen of the scissile amide bond 

resulted in peptides that are no longer HDAC substrates but could inhibit their enzymatic 

activity. HDAC11 was then shown to be efficiently inhibited by an N-methylated 

derivative of a myristoylated substrate with an IC50 value of almost 1 μM. 

 

Figure 25: Structure of some thioacylated peptide derivatives used in this study 

(Abz = 2-aminobenzoyl, Ac = acetyl). 

The newly developed HDAC8 assay is compatible with microtiter plate-based screening 

formats up to 1536-well plates, and the inhibition constants for several reported HDAC8 

inhibitors could be reproduced. Some peptides derived from p53—one of the known in 

vivo HDAC8 substrates— were then modified by introducing thioacyl moieties and a 

thiotrifluoroacetylated substrate (peptide III, Fig. 25) was obtained that is more than 

100-fold more effective than most of the known substrates reported to date. 
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4.4. Exploring structure activity relationship of a series of 

derivatives based on a sirt5 hit 

The aim of study 3.8 was to get a deeper look at the previously reported Sirt5 hit 

balsalazide (Fig. 26) [194], explain its activity against the enzyme, and explore the 

possibility of further optimization to get more potent derivatives. Docking studies 

suggested that the carboxylate group on the β-alanine side chain of the compound 

interacts with the basic residue Arg105 (Fig. 26), also responsible for the binding of 

dicarboxylated substrates. A series of balsalazide derivatives was hence designed and 

synthesized in which single functional groups were either deleted or minimally altered in 

order to explore the structure-activity relationship. Although none of the new analogs 

showed a superior activity over the initial hit, it was noted that—in accordance with the 

docking studies—the amide and carboxylate groups on the β-alanine side chain are 

crucial for the activity, and derivatives lacking these functionalities showed a reduced 

Sirt5 inhibitory activity. Therefore, the carboxylic acid in the β-alanine-derived side 

chain has to be present and at an appropriate distance to the aromatic ring. Replacement 

of the amide bond with an ether or a secondary amine as well as inverting its orientation 

also led to a decreased activity. Interestingly, changes on the salicylic acid part were 

tolerated to some extent. Removing either the aromatic hydroxy or carboxylic, or both of 

them resulted in no major drop in inhibitory activity compared to balsalazide which also 

showed subtype selectivity for Sirt5 over Sirt1, 2, and 3 and no competition towards 

NAD+. Our results suggest that balsalazide could represent a useful chemical tool for 

investigating the physiological roles of Sirt5. 

 

Figure 26: Structure of balsalazide and its docking pose in Sirt5 in the presence of 

NAD+ (carbon atoms of NAD+ are colored salmon, hydrogen bonds are shown as 

black lines and distances are given in Å). 
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Advances in proteomics and molecular biology have revealed plenty of proteins that 

could represent potential drug targets for human diseases. However, the exact role of 

many of these proteins in different pathological conditions is yet to be revealed. 

Therefore, it is crucial to develop chemical probes that could potently and selectively 

inhibit a specific target. Such a challenging task requires a concerted effort that 

includes—but is not limited to—in silico approaches, drug design, chemical synthesis, in 

vitro biochemical and biophysical assays, target engagement studies, and phenotypic 

screening. The results presented in the current work highlight the combination of these 

approaches to identify and optimize novel modulators of some epigenetic key players, 

mainly histone deacetylases, and explore their potential as anticancer and antiparasitic 

agents.  

1- We combined structure-based design, synthesis, and in vitro screening and identified 

several benzhydroxamates as low nanomolar inhibitors of human HDAC8. We could also 

show that some of them exhibited decreased activity against HDAC1 and 6, and our 

docking studies could explain this preferential in vitro activity of our inhibitors on 

HDAC8. Cellular activity of the new inhibitors was then confirmed using target 

engagement studies and phenotypic screening against neuroblastoma cells, where some 

derivatives showed a strong HDAC8 inhibition phenotype. One possible future extension 

of this work could be to evaluate these inhibitors in other cancer cell lines such as colon, 

lung, breast, pancreatic cancers where HDAC8 is reported to be overexpressed. 

Hydroxamates are indeed potent zinc chelators, but they also have many off-targets as 

well as suboptimal pharmacokinetic properties [20]. Since the HDAC8 inhibitors 

explored in this work are solely hydroxamates, it would be interesting to design inhibitors 

containing other zinc binders—some are already reported, see introduction part 1.4.1.2— 

for HDAC8 activity and antineuroblastoma effect. One possible starting point could be 

further optimization of some previously reported amino acid-derived HDAC8 inhibitors 

[64]. Crystal structures of these inhibitors with HDAC8 are available, paving the way for 

a structure-guided optimization process. As a hot topic in drug discovery, targeted protein 

degradation could represent another promising application of our HDAC8 inhibitors. It is 

chemically feasible to functionalize our inhibitors and attach them to different E3 ligase 

warheads to synthesize HDAC8 PROTACs (proteolysis targeting chimeras). This 

strategy could then be used to evaluate the effect of HDAC8 degradation in various 

cellular systems including cancer cell lines.  

2- We applied the polypharmacology concept to our HDAC8 inhibitors by merging their 

most essential structural features with a BRPF1 bromodomain-inhibiting scaffold to 

synthesize dual HDAC8/BRPF1 inhibitors. HDAC6 was also in our scope, as we were 

able—through simple structure modifications—to shift the activity towards this isoform 

and obtain dual HDAC6/BRPF1 inhibitors. In vitro assays identified some derivatives 

with submicromolar IC50 values against the targets, and modeling studies explained the 

results and guided the optimization process. Regarding cellular activity, neither our dual 

inhibitors nor their prodrug form showed effects in acute myeloid leukemia cells where 
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BRPF1 inhibitors are reportedly active. Possible reasons could be limited cellular 

permeability or the inability of the dual inhibitors—at the tested concentrations—to 

interact with their targets. Cellular permeability could be determined and perhaps 

enhanced by using some drug delivery formulations or other prodrug forms. However, 

the second reason illustrates one of the major challenges of designing dual-acting 

inhibitors. It is extremely challenging to balance the activity on two different targets. 

Simple structure modifications were found to enhance the activity on one but abolish the 

affinity to the other. In other words, the low nanomolar activity of the parent compounds 

could not—in our work—be achieved for the dual inhibitors. Although some recent 

reports showed dual HDAC/BET inhibitors with superior activity over the original 

inhibitors (see introduction part 1.6.1), this was not the case for the majority of studies, 

highlighting a serious challenge for designing dual-acting agents. Also, one should not 

forget that some of the reported very potent “isoform-selective” HDAC inhibitors showed 

some cellular antiproliferative effects only at higher concentrations at which they act non-

selectively on different HDAC isoforms in the cells [70]. For future dual-acting agents, it 

is then to be discussed if it is more therapeutically beneficial to use pan or selective 

HDAC inhibitors, with which targets they should be combined, and in which cell lines 

they could be tested. 

3- We optimized our previously reported smHDAC8 inhibitors and studied their 

structure-activity relationship. A combination of docking and cocrystallization studies 

enabled further exploration of their binding mode, while the enzymatic assays showed 

their preferential activity for sm- and hHDAC8 over the human isoforms HDAC1 and 6. 

We identified one compound with an EC50 value in the low micromolar range against the 

parasitic larva and observed that lipophilicity is a determining factor for activity against 

the parasite. On the one hand, conferring lipophilicity to smHDAC8 inhibitors is feasible, 

as bulky hydrophobic capping groups could be accommodated in the active site. On the 

other, very high lipophilicity would decrease water solubility and hinder in vivo testing. 

Although our attempts to prepare a formulation for our most active compound were not 

successful, future collaboration with working groups in the pharmaceutical technology 

field could be beneficial in this regard.   

4- In line with the structure-guided optimization and chemical synthesis, the developed 

smHDAC8 inhibitors were utilized to build a QSAR model to help us predict the activity 

of future planned derivatives. A poor correlation between the docking scores of the 

inhibitors and their biological activity was observed; therefore, binding free energy 

calculations were used to re-score the poses. Using the new scores—and through a 

continuous optimization process—an acceptable model with a reliable predictive ability 

was developed. This model presents another tool to aid in identifying novel smHDAC8 

inhibitors. Although obtaining good smHDAC8 activity using hydroxamates-based 

inhibitors is a feasible target, selectivity against other human isoforms, especially 

hHDAC8, is challenging. It would be interesting to investigate if QSAR models could be 

generated to predict HDAC selectivity. 
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5- We again utilized our smHDAC8 inhibitors, but this time to investigate if they could 

be beneficial against other parasitic infections, namely leishmaniasis and cestode 

infections. Firstly some compounds showed a significant leishmanicidal effect against 

amastigotes with EC50 values in the low micromolar range. Moreover, the host cells did 

not show the phenotypic effects observed in the parasites, indicating a potential safety 

margin. Secondly, we moved to cestode parasites and observed an anthelmintic activity in 

a time- and dose-dependent manner. Some of our inhibitors have also better IC50 values 

on the larva stage of Mesocestoides vogae than the anthelmintic agent albendazole, and 

combinations of this drug with our inhibitors are even more potent. The results confirmed 

that the “Piggyback” approach (see introduction part 1.4.2) could be applied to identify 

new antiparasitics for schistosomiasis, leishmaniasis, and cestode infections. It is also to 

be noted that many epigenetic targets, and especially histone deacetylases, were 

identified in other human parasites such as Plasmodium sp. and Trypanosoma sp. In some 

cases, their 3D structures were either determined through crystallographic studies or 

generated via homology modeling. This could pave the way for a structure-guided 

optimization process to develop potent HDAC inhibitors against these parasites. Since 

some antiparasitic therapies involve a combination of drugs to achieve better efficacy and 

overcome resistance, this could also be applied to HDAC inhibitors. They could be either 

tested in combination therapy or merged with other antiparasitic scaffolds to generate a 

potential dual-acting antiparasitic agent.     

6- To facilitate enzymatic testing of more HDAC inhibitors, we aimed to develop a direct 

assay to measure HDAC activity. Some modified peptide substrates containing thioacetyl 

and thiotrifluoroacetyl groups were synthesized to enable us to monitor the hydrolysis 

reaction via UV absorbance or fluorescence. The results showed that HDAC8 is 

especially capable of hydrolyzing both groups efficiently, while HDAC1 did not accept 

the modified substrates. Highly efficient thiotrifluoroacetyled HDAC8 substrates were 

identified, and the scalability of our assay was proved, enabling highly effective 

microtiter plate-based inhibitor screening projects. While it is intended to use this assay 

system for future testing of HDAC8 inhibitors, it would be interesting to develop a 

similar assay for other HDAC isoforms. Interestingly, HDAC11 was shown to be 

efficiently inhibited by an N-methylated derivative of a myristoylated substrate. That 

could also be the starting point to develop new inhibitors for this isoform. 

7- Docking studies were performed on balsalazide—a previously reported Sirt5 hit—to 

get an idea about its mode of binding and different derivatives were then synthesized to 

study their structure-activity relationship. Although the new compounds were not as 

active as the original hit, the essential functional groups of the compounds were 

identified. Balsalazide was also shown to be selective for Sirt5 over other sirtuin 

isoforms. Since the crystal structure of this isoform is available, further structure-guided 

optimization could be carried out to identify more potent derivatives. These could then be 

used as probes to study the effect of Sirt5 inhibition in different biological systems. 
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