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Abstract

Protein kinase C-related kinase 1 (PRK1) has been shown to be involved in the regulation

of androgen receptor signaling and has been identified as a novel potential drug target

for prostate cancer therapy. Due to the absence of the PRK1 crystal structure multiple

PRK1 homology models were generated in order to address the problem of protein

flexibility. An in-house library of compounds tested on PRK1 was docked into generated

homology models. In most cases the correct pose of the inhibitor could be identified by

ensemble docking, while there was still a challenge of finding a reasonable scoring function

able to rank compounds according to their biological activity. Thus, we estimated the

binding free energy for our dataset of structurally diverse PRK1 inhibitors using the

MM-PB(GB)SA and QM/MM-GBSA methods after energy minimization in implicit

solvent. The QSAR model was designed on the basis of calculated binding free energy

scores in order to predict the pIC
50

values of novel compounds. The obtained results

demonstrate that a good correlation between calculated and experimental pIC
50

values

could be derived. Furthermore, the developed approach was tested on a set of diverse

PRK1 inhibitors taken from literature, which resulted in a significant correlation. The

method is computationally inexpensive and can be applied as post-docking filter in

virtual screening as well as for optimization of PRK1 inhibitors. Next, the developed

approach was applied in a prospective way for the virtual screening of two external

datasets containing compounds which were not tested on PRK1 previously. A number of

highly potent PRK1 inhibitors were identified by this screening, proving the outstanding

performance of the method. Finally, four crystal structures of PRK1 that were recently

released were used to evaluate the accuracy of the predicted homology model of PRK1.

The comparison shows a high similarity of the experimental data to the PRK1 homology

models, especially the inhibitor binding was accurately modeled. The experimental data

further support our findings about the PRK1 flexibility.

Key words: kinase, PRK1, epigenetics, prostate cancer, homology model, docking,

virtual screening, QSAR, MM-PBSA, MM-GBSA
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CHAPTER 1

Introduction

1.1 Kinase

1.1.1 Kinases and Their Role in Signal Transduction

Protein kinases are enzymes that transfer a phosphate group from “-phosphate of

adenosine-5’-triphosphate (ATP) to protein substrates covalently attaching it to one of

three amino acids (serine, threonine or tyrosine) that have a free hydroxyl group (see

Figure 1.1).

Figure 1.1: Kinase catalytic reaction. The mechanism of phosphate group transfer catalyzed
by kinase is shown as phosphorylation of a serine residue.

Phosphorylation of proteins by kinases has been shown to play a significant role

in signal transduction cascades by regulating versatile cellular processes such as cell

proliferation, di�erentiation and apoptosis.[1, 2] These processes show a remarkable

degree of coordination and the activity of kinases is highly regulated. Deregulation of

1
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kinase function or abnormal phosphorylation has been implicated in various pathological

conditions such as cancer, infectious diseases as well as in metabolic, immunological

and neurological disorders. Therefore, protein kinases have become one of the most

prospective therapeutic drug targets.[1–3] A majority of cancers usually arise from events

that activate kinases, cause their overexpression or disable their intracellular inhibition.[4]

Because of its important physiological and pathological role, the regulation of kinase

activity is an important therapeutic strategy for the treatment of many diseases.

1.1.2 Kinase Structure

Being one of the largest and diverse protein families, kinases mediate a large number

of biological processes. Manning et al. have defined 518 kinases encoded in the human

genome including tyrosine, serine/threonine and dual-specificity kinases.[5]

Despite the remarkable sequence diversity within this enzyme class, they share a

universal secondary structure of the catalytic domain. Typically, kinase consists of two

subunits – a catalytic and a regulatory domain. The catalytic domain consists of N-

and C-terminal lobes connected by the so-called hinge region (see Figure 1.2). The

N-terminal lobe is made of a 5-stranded —-sheet, a conserved –≠helix (helix C) and

a magnesium-positioning loop (MPL). The area between them forms the active site

harboring the ATP molecule. The ATP-binding pocket together with less conserved

adjacent pockets is often considered as the target site for drug design. The C-terminal

lobe is larger than the N-terminal domain and it is mainly –-helical.

The activation loop is a flexible loop, which plays a role in kinase regulation. Typically,

kinases are strongly activated when a characteristic residue at the activation loop (serine,

threonine or tyrosine) is phosphorylated. The N terminus of the activation loop contains

the conserved DFG (Asp-Phe-Gly) motif, which can adopt so-called "in" and "out"

conformations switching an active or inactive kinase state.

The glycine-rich loop (G-loop or P-loop) is another highly conserved kinase motif. It

contains a typical sequence GxGxxG, which gives it an extra flexibility. The G-loop can
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adopt its conformation depending on the compound occupying the ATP-binding site.

Figure 1.2: The structure of a kinase catalytic domain is exemplary shown for PKC-iota
(PDB ID: 3A8W) in complex with ATP (green sticks). The protein is displayed as ribbon
colored through the rainbow spectrum from blue at the N terminus to red at the C terminus.

The structure of the kinase catalytic domain is highly conserved across the protein

kinase genome. Moreover, the residues within the ATP binding cleft are highly conserved

among various kinase families. This makes the search for highly selective ATP-competitive

inhibitors challenging. Nevertheless, there are certain di�erences in regions adjacent

to the binding cleft, which ATP does not occupy (see Figure 1.3). Such less conserved

parts of the protein provide an opportunity for the design of selective ATP-competitive

inhibitors. Thus, a detailed knowledge of the protein structure is needed to assist the

rational design of kinase inhibitors.
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Figure 1.3: The schematic representation of characteristic ATP binding mode divided into
subregions. The main structural elements are labeled.

1.1.3 Types of Kinase Inhibitors

Protein kinases are considered as a very promising drug targets.[3] During the last years,

more than 20 kinase inhibitors have been approved by the Food and Drug Administration

(FDA) for the treatment of various cancers,[6] and even more compounds are now in

clinical trials. Nevertheless, kinase inhibitors are facing few major challenges in cancer

therapy. One is that cancer’s adaptive behavior can lead to the development of drug

resistance. To overcome this problem new strategies, more e�ective than selective

inhibitors, are now considered (e.g. combination of few therapies, using of multi-targeted

or "group-selective" agents).[7–9]

Other problems are poor kinase selectivity and o�-target e�ects. The majority of

known kinase inhibitors address the ATP binding pocket, which is highly conserved

within the human kinome. The strategies to optimize selectivity can include targeting of

less conserved regions adjustment to ATP, targeting other pockets or stabilizing inactive

kinase conformation. Three major types of kinase inhibitors are discussed below.
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1.1.3.1 Type I Inhibitors (ATP-Competitive)

The initial strategy used in drug discovery was aimed to find small molecules which mimic

ATP binding. Such compounds target the ATP binding site of the enzyme in its active

form and are referred to as type I inhibitors. The active form is characterized by an open

conformation of the activation loop, when the conserved aspartate-phenylalanine-glycine

(DFG) residues are situated at the beginning of the activation loop. An example of

type I inhibitor is the natural product staurosporine (see Figure 1.4a). It inhibits Ca2+-

dependent protein kinase C (PKC) in the nanomolar range.[10] However, structure activity

relationship (SAR) study showed that staurosporine and its analogs are non-selective

inhibitors and target most of the kinases.[11] Since the specific interactions between

an ATP-mimetic ligand and a protein kinase in its active site are often very similar

for multiple kinases, it is clear why type I inhibitors su�er often from cross-reactivity.

Moreover, such inhibitors have to compete with millimolar intracellular ATP levels.[12]

Furthermore, recent immense investigations, aiming to find ATP-mimicking inhibitors,

has led to a crowded intellectual property (IP) space, leaving few space for innovation.

Despite all before-mentioned problems, the ATP-competitive compounds still remain

very promising type of kinase inhibitors and have a potential in drug discovery. In order

to improve selectivity of type I inhibitors, the less conserved areas of the kinase domain

can be targeted, such as the hydrophobic pocket, the entrance to which is controlled by

the so-called "gatekeeper residue" (see Figure 1.3); solvent-exposed region; di�erences

in conformations of glycine-rich loop (G-loop) or flexibility of hinge region. [13–16]

Interestingly, some of type I inhibitors have very good selectivity profile, for example,

JAK inhibitor CP-690550 (Tofacitinib) [17–19] or dibenzepinones as inhibitors of p38

kinase.[20]
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Figure 1.4: Di�erent type of kinase inhibitors: a) non-selective type I inhibitor staurosporine
in complex with PKC-theta (PDB ID: 1XJD); b) Abl kinase domain in complex with type II
inhibitor imatinib (PDB ID: 2HYY); c) type III inhibitors CI-1040 and BBM and the binding
mode of BBM bound to MEK1 in complex with ATP (PDB ID: 1S9J). Ligand carbon atoms
are colored in cyan; ATP and protein ribbon - in dark gray. The ribbon of hinge region,
–C-helix and activation loop is colored in orange, red and blue, correspondingly.
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1.1.3.2 Type II Inhibitors

The first kinase inhibitor to reach the market was Imatinib (Gleevec, Novartis, see

Figure 1.4b). Imatinib targets Bcr-Abl fusion protein and was approved for the treatment

of chronic myeloid leukemia (CML).[21] Structural studies demonstrated that Imatinib

stabilizes an inactive form of kinase, which is characterized by a closed conformation

of the activation loop (DFG-out).[22] Such type of compounds, classified as type II

inhibitors, usually occupy not only the ATP binding site like classical type I inhibitors

do, but also extend their interactions to the hydrophobic pocket available in the inactive

form. These inhibitors usually have advantageous pharmacological properties, however,

the mutation resistance to type II inhibitors can quickly develop. In general, type II

inhibitors are less promiscuous than ATP-competitive type I, but absolute selectivity has

not been achieved.[19]

1.1.3.3 Type III Inhibitors

The emerged e�orts directed towards the development of selective kinase inhibitors

have lead to the new classes of inhibitors, which target less conserved regions outside

ATP-binding pocket. Thus, a number of so-called type III inhibitors, which bind to an

allosteric site of a kinase beyond the gatekeeper residue and do not interact with hinge

region, were discovered.[23] The allosteric site is formed when the kinase adopts inactive

(DFG-out) conformation. Type III inhibitors stabilize the inactive conformation, thus

preventing the enzymatic activity of kinase. These compounds have the highest degree of

selectivity, they can be designed for a particular kinase. Examples of allosteric inhibitors

are shown on Figure 1.4c. These are MEK1 and MEK2 inhibitors such as BBM and

CI-1040. BBM occupies a pocket adjacent to the ATP binding site as it is shown on

Figure 1.4c.[24] Despite all advantages of type II or type III inhibitors, their design can

be hampered by the di�culty to predict whether it is favorable or not for the individual

kinase to adopt the DFG-out conformation and form a complex with such a compound.
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1.2 Protein Kinase C Related Kinase 1

Protein kinase C-related kinase 1 (PRK1), also known as PKN1 or PKN–, is a serine/-

threonine kinase and and belongs to the PKC super family. The PRK cDNA was first

isolated in 1994 from a human hippocampal cDNA library.[25] Mammalian PRK/PKN

family has three isoforms, which show di�erent enzymatic properties, tissue distributions,

and varied functions [26]:

PRK1 [=PKN–/PAK1/PKN1]

PRK2 [=PKN“/PAK2/PKN2]

PRK3 [=PKN—]

PRK1 is found in di�erent eukaryotic organisms and its sequence is highly conserved

during evolution.

1.2.1 Structure of PRK1

Figure 1.5: Schematic representation of the structural features of PRK1 protein (aa=amino
acid).

Typically, PRKs consist of three highly conserved region (see Figure 1.5):

1) a unique regulatory region at the N-terminal half of the protein containing three

homologous stretches rich in charged amino acids (antiparallel coiled-coil antiparallel

coiled-coil (ACC) domains) followed by a leucine zipper-like sequence;

2) C2-like auto-inhibitory domain sensitive to arachidonic acid;

3) a single polypeptide chain with C-terminal catalytic domain (also known as kinase
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domain).[26, 27] The catalytic domains of PRKs have high sequence homology to

that of the PKC family members (see Table 1.1).

Table 1.1: Examples of PKC structures available in the PDB, which share high sequence
identity with PRK1.

PDB ID Protein
kinase C Ligand Resolution,

Å
Identities,

%

1XJD PKC-theta Staurosporine 2.00 50
2JED PKC-theta Nvp-Xaa228 2.32 50
2I0E PKC-beta BIM 2.60 48
3IW4 PKC-alpha Nvp-Aeb071 2.80 48
3A8X PKC-iota Phosphorylated peptide 2.00 41

1.2.2 PRK1 Function

PRK1 is a protein kinase involved in Rho- and androgen receptor-mediated signaling

pathways.[26, 28–34] It is able to shuttle between the nucleus and the cytoplasm[35] and

can be activated by phospholipids[36], arachidonic acid [37] and Rho GTPase.[27, 38]

PRK1 and PRK2 have been reported to phosphorylate class IIa histone deacetylases

(HDACs) -5, -7 and -9 at a threonine residue positioned within the nuclear localization

signal of the protein.[39] The microarray analysis of PRK1 gene expression showed high

levels of PRK1 in various malignancies, but especially in ovarian serous carcinomas.[40]

Additionally, the role of PRK1 in the development of Germinal centers by regulating Akt

kinase downstream has been described.[41] Furthermore, it was shown that activation of

PRK1 kinase stimulates androgen receptor (AR) activity and is implicated in tumori-

genesis.[32] Metzger et al. have demonstrated that PRK1 levels correlate with Gleason

scores of prostate carcinomas[42] and knockdown of PRK1 gene or inhibition of PRK1

with known kinase inhibitors such as Ro-318220 blocks propagation of AR-induced tumor

cell production (United States Patent Application 20070196882 Schüle and Metzger).

The AR is a nuclear receptor, that is activated by androgenic hormones testosterone or
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dihydrotestosterone (androgens). The main function of AR is to modulate gene expression

which controls diverse biological functions including cell growth and di�erentiation,

development, and function of male reproductive and accessory sex tissues. Androgen

receptor signaling pathway plays an important role in the development and progression

of prostate cancer[43, 44] which is the second leading cause of cancer deaths in men

worldwide.[45] During androgen-dependent progression, the growth and survival of

prostate cancer cells are critically dependent on androgens. An activation of AR initiates

a series of events leading to the regulation of the target genes. When the AR is inactive,

it is bound to heat-shock proteins in the cytoplasm of prostate cells. The binding of

the androgen dihydrotestosterone into the receptor’s binding site causes dissociation of

AR from the heat shock proteins, dimerization and translocation of the complex into

the nucleus, where it binds to the androgen-response elements, thereby activating genes

involved in cell growth.[46]

Androgen ablation therapy, which is also called hormone therapy, is the most common

clinical procedure, aiming to control/stop the growth of cancer cells. Most prostate

cancers respond to this therapy. However, in some cases prostate cancer cells can recur

even when using AR antagonists and reducing androgen levels. At this point, the

prostate cancer becomes androgen-independent (also referred to as androgen-resistant or

castration-resistant prostate cancer (CRPC)) and it can further progress and metastasize.

Despite the recent advances in research on prostate cancer, the molecular mechanism

for the tumor reoccurrence is not entirely understood. The studies show that androgen

receptors can be transactivated in the absence or very low amount of androgens. The

aberrant AR signaling involves several, non-mutually-exclusive mechanisms including

extracellular peptides such as Insulin-like growth factor, Epidermal growth factor and

Interleukin-6, which can also activate the intracellular kinase signaling cascades responsible

for cell proliferation and transcription initiation.[43]

Additionally, with biochemical assays it was speculated that PRK1 kinase controls

the activity of AR in addition to ligands in hormone-dependent proliferation of prostate
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cancer cells.[32] In 2008 Schüle et al. have shown that PRK1 phosphorylates histone H3

upon ligand dependent recruitment to AR target genes.[42] In turn, phosphorylation of

H3T11 increases demethylation of Lys 9 (K9) by Jumonji C (JmjC)-domain-containing

protein (JMJD2C), which promotes AR-dependent gene expression and tumor cell

proliferation.[47] Furthermore, PRK1 may directly phosphorylate JMJD2C, thereby

stimulating its activity.[48] The function of PRK1 is schematically shown in Figure 1.6.

Figure 1.6: Schematic representation of PRK1 function. The structural unit of the
chromatin, termed the nucleosome, comprises DNA wrapped around the octamer histone
consisting of histones H3, H4, H2A and H2B. PRK1 phosphorylates histone H3 at threonine
11 (H3T11), which leads to an increased demethylation of histone H3 at lysine 9 (H3K9) and
subsequent activation of androgen receptor target genes.

The role of PRK1 in androgen-independent prostate cancer is not entirely understood.

It is known that PRK1 can be activated by Rho family GTPases and mediates such

processes as cell migration and tumor cell invasion, which contribute to metastasis

formation.[34, 49] In a recent study a novel mechanism for PRK1-controlled migration of

androgen-independent prostate cancer cells was revealed, showing that PRK1 controls

migration and invasion but not proliferation of PC-3M-luc2 cells.[50] Schüle et al. have

demonstrated that PRK1 depletion in mice or inhibition with lestaurtinib leads to a

dramatic decrease in the tumor cells ability to metastasize.[50] These findings indicate

an important role of PRK1 in the hormone-resistant prostate cancer.

In summary, PRK1 is considered as a promising therapeutic target, and the discovery

of potent and selective PRK1 inhibitor may lead to the development of clinical PRK1

modulators for the treatment of certain neoplasms. The availability of small molecule

inhibitors of PRK1 that are selective and bioavailable will represent a major breakthrough

in this field.
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1.3 Virtual Screening in Drug Design

1.3.1 Molecular Docking

Molecular docking is one of the main techniques used in structure-based drug discovery.[51–

55] Di�erent studies have shown that docking-based virtual screening (VS) of large

compound databases can be applied e�ectively for the identification of novel hits.[56–58]

Despite its great potential, the method has a number of drawbacks and limitations.[59–61]

The two major tasks of molecular docking include the determination of the correct ligand

orientation within the protein active site and the assessment of the protein-ligand a�nity.

Whereas docking methods already show good results in the prediction of binding modes,

the second task still remains a key challenge in computational chemistry. Considering

the balance between the accuracy of calculations and the computational cost, scoring

functions were developed on the basis of simplified empirical force fields or potentials of

mean force using certain approximations, e.g. they usually do not take solvation e�ects

or protein flexibility into account. Thus, accurate prediction of the binding a�nity using

docking methodologies remains an elusive goal and there is the need of more precise

methods for its evaluation.

1.3.2 Improvement of Virtual Screening Predictions: Ensemble Docking

Various approaches were developed in order to improve the docking performance, e.g.

docking to an ensemble of protein structures, normalizing docking scores, or using

rescoring procedures. Di�erent studies have shown that docking methods perform well in

reproducing ligand binding poses for experimentally derived structures, however, they can

fail if a protein structure was solved in the presence of a very di�erent compound.[62] It is

known, that during ligand binding conformational changes of a protein can occur. In fact,

even small changes in a receptor structure can be important for ligand binding. Thus,

using rigid receptor structures can hamper correct ligand docking, for example, the active

ligands will not be docked correctly into a receptor or can be scored poorly. One of the

approaches, which handle protein flexibility, is the so called "ensemble docking".[63–65]
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Here, a ligand is docked into several protein structures/conformations in order to identify

the best-scored pair of protein conformation and ligand binding mode. In the present

work we used an ensemble of PRK1 homology models refined in the presence of active

inhibitors from di�erent chemical classes for docking studies.

1.3.3 Improvement of Virtual Screening Predictions: Rescoring of Docking Results

Correct ranking of compounds according to their binding a�nity is another critical

issue. Over the last years a large e�ort has been undertaken to address this question.

The approaches vary from simple methods like rescoring of poses with external scoring

functions, consensus scoring, normalization, etc.[66] to more sophisticated and power-

demanding calculations of binding free energy (BFE) such as linear interaction energy

(LIE), molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) or molecular

mechanics generalized Born surface area (MM-GBSA), free-energy perturbation (FEP)

and thermodynamic integration (TI).[67–70] Although some studies show successful

examples of lead optimization using FEP and TI methods, they are still rarely applied in

the drug discovery process, mainly due to the high computational costs. Nevertheless,

the recent increase in computing power made it possible to apply some BFE calculation

methods on quite large compound datasets. This allows using them not only on the late

stages of drug discovery, but also as a tool for post-processing of VS results. The number

of studies, reporting on the successful application of MM-PBSA, MM-GBSA methods for

the estimation of protein-ligand binding a�nities is increasing, and automated procedures

for BFE estimation applicable for a large compound selection have been developed.[71–77]

Traditionally, molecular mechanics Poisson-Boltzmann (generalized Born) surface area

(MM-PB(GB)SA) calculations are carried out using a number of snapshots derived from

equilibrated molecular dynamics (MD) simulation. Various studies have demonstrated

the e�cacy of this approach for predicting binding a�nities,[74, 75, 78, 79] however, it is

usually applied for a small subset of molecules due to the limitations in computational

power. Recent publications report that the calculation of BFE using a single snapshot
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derived from a short complex minimization in implicit solvent, in some cases combined

with short MD simulation, can also result in a good correlation with experimental

data.[80–84]

Furthermore, the combined quantum mechanics/molecular mechanics (QM/MM) scor-

ing function implemented in AMBER[85] was tested for calculation of the binding

a�nity.[86, 87] This method allows treating a small part of the complex, e.g. the ligand

and residues of the active site, with semi-empirical quantum mechanics (QM) calcula-

tions, while the remaining part is treated by classical molecular mechanics as a fixed

charge background. Such a procedure considers electronic e�ects such as polarization

[88–91] and charge transfer[92] for the selected part of the complex, which can play an

important role in ligand binding to the target, and which are usually not considered in

classical BFE calculations. Moreover, the support of QM/MM implicit solvent simula-

tions was implemented into generalized Born surface area method, resulting in mixed

quantum mechanics/molecular mechanics generalized Born surface area (QM/MM-GBSA)

approach.[93]

Most of the studies using MM-PBSA, MM-GBSA approaches for BFE calculations show

good results for congeneric series of compounds in a given receptor or for structurally

diverse ligands, but with known binding modes taken from the protein data bank

(PDB).[71, 75, 94] However, in a VS experiment usually a large set of diverse inhibitors is

fitted into the protein structure and the ligand conformation is usually selected according

to the best docking score. In the current study we wanted to test the performance of

di�erent BFE calculation methods such as MM-PBSA, MM-GBSA, QM/MM-GBSA

on their ability to predict the relative binding a�nity of structurally di�erent PRK1

inhibitors from in-house and published datasets. Furthermore, we included inactive

compounds in our studies in order to see which of the approaches performs best in

discrimination. The BFE model showing the best performance in enrichment studies

as well as in the prediction of the biological activity represents a valuable tool for

optimization of PRK1 inhibitors.



CHAPTER 2

Materials and Methods

Starting from 1990s new methods like combinatorial chemistry and high-throughput

screening (HTS) were widely used for searching of drugs. Although these techniques were

proven to be successful in identification of new biologically active compounds, they have

a number of limitations such as low success ratio, expensive and time consuming assay

development and screening procedures. Hence, the alternative approaches driving the

initial phases of drug discovery process were developed. One of these is virtual screening

(VS) - a computational tool for the rapid in silico estimation of large chemical databases

aiming to identify bioactive compounds prior to biological testing, thus, saving time and

costs. Due to the recent advances in computer technology, VS has become an important

part of modern drug design pipelines. Historically, VS approaches are divided into two

categories - ligand- and structure-based. The next sections are describing methods used

in the current work.

2.1 Ligand-Based Virtual Screening

When the structure of the biological target is not known or when there is not enough

structural information about it, but there is one or more ligand available, then ligand-

based computational methods can be employed. Ligand-based approaches rely on the

“similar property principle” [95], according to which compounds that are more similar

15
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with respect to their chemical structures are more likely to possess similar properties.

Due to the lack of structural information about PRK1, ligand-based virtual screening

methods were employed at the initial stages of the work. Based on 2D chemical fingerprints

or 3D molecular shape-based representations of the initial hit, a similarity search was

performed to find compounds that match a given query the best. MOLPRINT 2D,[96,

97] a fast fragment-based similarity screening method, has been applied for a search of

compounds similar to PRK1 inhibitors HA-1077 and H-7 (see Figure 3.2a). The similarity

search algorithm of MOLPRINT 2D is based on atom environments, information-gain-

based feature selection, and a naive Bayesian classifier. The Tanimoto coe�cient [98] is

used to compare fingerprints and to give a quantitative measure of the similarity.

Following the same principle, MACCS key fingerprints (MOE 2012) [99] were used

for similarity comparison and database filtering for another PRK1 inhibitor, namely

CP-690550 (see Figure 3.2b). The Tanimoto similarity metric with 85% threshold was

used.

2.2 Homology Modeling

Structure-based design refers specifically to the three dimensional structure of the protein.

However, the structures of many proteins still remain unsolved. During the last years the

number of protein sequences in Universal Protein Resource have dramatically increased.

In release 2014_03 of 19 March 2014, UniProtKB/Swiss-Prot, a protein sequence database

which includes reviewed, manually annotated entries, contained 542,782 entries.[100] At

the same time, total amount of experimentally determined structures deposited in PDB

was much lower (98,900 structures).[101] One possible solutions which can help to fill

the huge gap between annotated sequences and available 3D structures, is homology

modeling. This approach is based on the observation that proteins with similar sequences

have similar structures. Generally, it comprises the following steps:

1. Search for an available template structure which shares su�cient sequence identity

with a given target protein (30% and more).
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2. Sequence alignment of target and template proteins.

3. Building a model based on target-template alignment and 3D structure of template.

4. Refining and validation of the model.

These steps can be repeated until a su�cient model is achieved.[102] Furthermore,

techniques like modeling using multiple templates, modeling of a protein-ligand complex

and loop refining can improve the quality of the resulting model.

2.2.1 PRK1 Homology Modeling Using PKC-theta Template

Until August 2014, no three-dimensional structural information was available for the

catalytic domain of PRK1. Thus, we applied comparative (homology) modeling techniques

for PRK1 structure prediction. To identify which experimentally known 3D structure can

serve as a template to generate a homology model of PRK1, a basic local alignment search

tool (BLAST) search was carried out through the National Center for Biotechnology

Information (NCBI) web site.[103, 104] The sequence of human PRK1 kinase domain

(UniProt ID Q16512, residues 610-940) was used as a query. The structures available

in the PDB, showing the highest similarity to the PRK1 sequence, belong to the PKC

family. It was revealed that all these structures show the active kinase conformation.

Among them, the crystal structure of PKC-theta (PDB code: 2JED, resolution 2.32 Å)

was chosen as template as it shows the highest sequence identity with PRK1 (50%) and

covers 99% of the whole sequence query. The homology model building was carried out

using the MODELLER 9v8 software.[105]

The sequence alignment of PRK1 and PKC-theta was made using the default align2d

parameters in MODELLER (see Figure 2.1). Based on the PKC-theta template structure

and the alignment file, five models of PRK1 were generated. The model with the lowest

value of the MODELLER objective function or the discrete optimized protein energy

(DOPE) assessment score was chosen for further analysis.[106] The model was evaluated

with the DOPE potential (see Figure 2.2). Further refinement was proceeded using

Protein Preparation Wizard of Schrödinger Suite 2012.[107] Hydrogen atoms and partial
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charges were assigned and the model was energy minimized applying the OPLS2005 force

field.[108, 109]

Figure 2.1: Sequence alignment between PRK1 and PKC-theta (PDB code: 2JED) gener-
ated using align2d in MODELLER.

The quality of the model (further referred to as "hm_prk1") was analyzed by means of

Protein Report tool implemented in Maestro v9.3.[107] Furthermore, the stereochemical

analysis of the hm_prk1 with the PROCHECK [110] program (shown on Figure 2.3)

confirmed that the model is reasonable. It shows that 93 % of the phi and psi angle

values of the protein backbone are located in the most favored regions, and 5.6% in

additionally allowed regions, two residues in generally allowed regions and one residue in

the disallowed region. However, the outlier is not located in the binding pocket.

The stability of the derived homology model (hm_prk1) was examined by means of MD

simulation using AMBER 12.[112] The root mean square deviation (RMSD) plot showed

that the protein backbone atoms remained stable (near 2.5 Å) after the equilibration

period (see Figure 2.4a).



2.2 Homology Modeling 19

Figure 2.2: The evaluation of PRK1 homology model with DOPE potential.

2.2.2 PRK1 Binding Pocket Refinement

The binding site of the initially generated PRK1 model (hm_prk1) was refined by

including structural information about the ligand (i.e. staurosporine) using MODELLER

9v8. For this the crystal structure of PKC-theta in complex with staurosporine at 2 Å

resolution (PDB code: 1XJD) was taken from the PDB. The sequence of PRK1 was

aligned to the initial model from the previous step (hm_prk1) and to the edited 1XJD

structure containing residues of the binding site. Next, the alignment file and modeling

script were modified for including the ligand into the refined homology model. The

relative orientation of the ligand and the target was specified by restrained ligand-protein

interactions within the binding site (hinge region residue Ser698). The conformation of

the ligand was assumed to be rigid. Five models were generated and the best model was

selected according to the lowest DOPE assessment score. Thus, a new homology model

of PRK1 (hm_STU) with bound ligand was obtained. In a similar way, the binding site

of PRK1 model (hm_prk1) was refined in the presence of other inhibitors (HA-1077,
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Figure 2.3: PROCHECK stereochemical analysis of the initial PRK1 homology model
(hm_prk1, model was built using PKC-theta 2JED as a template). The Ramachandran plot
shows the phi-psi torsion angles for all residues in the structure. The coloring on the plot
represents the di�erent regions as described by Morris et al. [111]: the red areas are "core"
regions representing the most favorable combinations of phi-psi values. Usually, 90% or more
of the residues in "core" regions represent good stereochemical quality.

Nvp-Xaa228, CP-690550,[19] GSK-690693[19]). The choice of the ligands for refinement

was based on the structural diversity of the compounds as well as on di�erent binding

modes observed for these inhibitors, which could not be reproduced correctly by docking

into a single protein structure. Furthermore, the residues 887-940 of the C-terminal loop

were included in the model hm_2esm_l, whose structure was refined with the inhibitor

HA-1077. Totally, six homology models were built. The stability of the models was

confirmed through 10 ns of molecular dynamics simulation. All models gave relatively

stable trajectories which were stabilized at RMSD
heavy atoms

= 2≥3 Å (see Figure 2.4b-f).
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Figure 2.4: RMSD plot for MD simulations of di�erent PRK1 homology models: a) hm_-
prk1, initial PRK1 homology model generated using template PKC-theta 2JED; b) hm_2esm
refined with ligand HA-1077; c) hm_2jed refined with ligand Nvp-Xaa228 (BIM1 analog);
d) hm_CP refined with ligand CP-690550; e) hm_GSK refined with ligand GSK-690693; f)
hm_STU refined with ligand staurosporine. The black line represents RMSD calculated for
protein backbone heavy atoms (C–, C, N).
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2.3 Structure-Based Virtual Screening

2.3.1 Molecular Docking

Molecular docking is one of the main structure-based methods used in drug design and

also in this study. It is a powerful and cost-e�ective technique, which intents to predict the

geometry and strength of interaction between a ligand and a biological target. Docking

algorithms are able to virtually screen large compound libraries in a reasonable amount

of time, giving as a result a list of ranked compounds. This allows one to prioritize

and select best-hit compounds for biological testing. Notwithstanding, limitations and

drawbacks in molecular docking exist. For example, most of docking programs do not

take into consideration protein flexibility, thus, neglecting ligand-induced conformational

changes in proteins, which can be critical for the correct ligand binding. In general, the

best docking quality is received when the docked compound is similar to the one in the

used crystal structure.

There are many di�erent docking tools based on various algorithms for scoring and

pose generation, which have been investigated in recent years.[113–115] The two critical

parts of docking process are the ability to predict the proper pose of a bound ligand and

the correct binding strength, which should distinguish ligands from non-binding "decoys".

Despite the e�orts applied for improvement of various scoring functions, they still fail to

predict binding a�nities accurately.[51] However, a particular scoring function developed

for a given protein target, can perform very well.[116]

Various approaches were suggested for the improvement of the docking performance:

• docking to several protein conformations, so-called "ensemble docking"

• rescoring experiment, where poses generated by docking with one scoring function

are evaluated using another scoring function [117, 118]

• the development of scoring functions for a certain target class, etc.

A large number of docking programs have been developed in last years. In the current
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work the docking calculations were performed using the Glide program implemented

in Schrödinger Suite 2012,[119] since di�erent studies evaluating docking performance

demonstrated that this program often shows the best docking accuracy.[113–115, 120–

122] Similar observations were made for PRK1 docking taking other programs such as

GOLD[123–125] or ParaDocks.[126, 127] The following paragraph describes the docking

settings used in this work.

The receptor grid box coordinates were centered on the ligand in the binding pocket

and the hydrogen bond constraint was defined at the hinge residue Ser698. All other

parameters for the grid generation were kept as default. The ligands were prepared using

LigPrep[128] within the Schrödinger utility MAESTRO by generation of ionization and

tautomeric states at pH 7.4 and with less than 10 low-energy ring conformations. All

ligands were energy-minimized using the MMFFs force field implemented in MAESTRO.

The Glide standard precision mode (GlideSP) was used for flexible ligand docking. The

options were set to penalize non-planar conformations of amide bonds and to enhance

planarity of conjugated pi groups. In order to optimize highly strained ligand geometries,

the post-docking minimization including five poses per ligand was applied. Compounds

were docked into each of the protein structures and the top-scoring pose for each ligand

was kept for further analysis. In case of ensemble docking, the docking results for di�erent

homology models were merged and the best-scored solution for each ligand was selected.

2.3.2 Pharmacophore-Based Virtual Screening

Another structure-based method used in this work is pharmacophore-based VS. The

concept of pharmacophore is defined as "an ensemble of steric and electronic features

that is necessary to ensure the optimal supramolecular interactions with a specific

biological target and to trigger (or block) its biological response".[129] The pharmacophore

chemical features are represented by hydrogen bonds, charge interactions and hydrophobic

areas. The pharmacophore-based methods are generally categorized as ligand-based and

structure-based:
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• In the ligand-based pharmacophore model the chemical features essential for bio-

activity are extracted and superposed from a set of active molecules. This method

requires a set of known reference compounds.

• The structure-based pharmacophore model requires the 3D structure of macromolec-

ule or macromolecule–ligand complex and the pharmacophoric features are defined

as interaction points between the macromolecular target and ligand.

At this stage of the work the structure-based pharmacophore modeling was the method

of choice, because this tool provides detailed structural information, which is essential

for understanding the protein-ligand interactions and it can be helpful in further lead

optimization. Moreover, this approach has a number of advantages:

• it is universal (pharmacophore can represent not only bound, but also unknown

molecules)

• it is simple (the method ensures computationally e�cient virtual screening)

• it is comprehensive and editable (features can be added and removed, feature

tolerance can be tuned)

The generated pharmacophore model can be used as a query for further virtual screening

of 3D chemical databases in order to identify molecules with similar chemical features.

This process is called "pharmacophore-based virtual screening". In the current study the

inte:ligand software LigandScout[130] was used for pharmacophore generation and VS. It

is an e�cient tool, which has been successfully applied in several virtual and experimental

HTS projects.[131]

In order to identify molecules with similarity to PD-0166285, an inhibitor identified

by our in vitro screening, a structure-based pharmacophore[129] model was used. For

the generation of the pharmacophore query we used the docking solution of compound

PD-0166285 in the PRK1 model. The Inte:Ligand software LigandScout[130] was used for

pharmacophore generation and virtual screening. A seven-point pharmacophore consisting
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of such chemical features as hydrogen bonds, charge interactions and hydrophobic areas

was automatically generated using LigandScout. Furthermore, several features were

enabled as optional, i.e. positive charge on the amine group and hydrophobic areas on Cl

atoms of compound PD-0166285 (see Figure 2.5). Exclusion volumes were generated to

take the shape of the binding pocket into account. The generated pharmacophore model

was used as a query for further virtual screening of di�erent 3D chemical databases.

Figure 2.5: Pharmacophore model of compound PD-0166285 generated and refined using
the program LigandScout. Hydrogen bond features are shown as green (donor) and red
(acceptor) arrows; positive ionizable feature is shown in blue color; hydrophobic and exclusion
volumes are indicated as yellow and grey spheres, respectively.

2.4 Molecular Dynamics Simulations

MD simulations can be used for the characterization of energetic and dynamics of protein-

ligand complexes at atomic resolution. In MD simulations, Newton’s equation of motion

is solved numerically for an atomic resolution representation of the system including

surrounding solvent and ions based on a force field description of intra- and intermolecular

interactions. Both the protein and ligand molecule are fully flexible during the simulation,

which is often neglected by the docking process.
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In this work MD simulations were used to examine the stability of the homology models

and of the derived PRK1-inhibitor complexes as well as for binding free energy estimation.

The MD simulations were carried out using AMBER 12[112] and the AMBER �99SB[132]

force field. The molecular mechanics (MM) parameters for the ligands were assigned

with antechamber, divcon and parmcheck modules.[133, 134] The explicit solvent model

TIP3P was used.[135] The protein or protein-ligand complex was placed in a box of water

molecules with a margin of 10 Å. Four steps of minimization each of 3000 iterations (500

of steepest descent and 2500 of conjugate gradient) were carried out. In the first step

water molecules and ions were minimized while protein atoms (protein plus ligand atoms

in case of complexes) were restrained to the initial coordinates with a force constant 10

kcal·mol-1·Å-2. In the second step, the protein side-chains were minimized together with

the solvent (protein backbone and ligand atoms were restrained). During the next step,

only a weak restrain of 0.01 kcal·mol-1·Å-2 was applied on the protein backbone (ligand

was released). Finally, all restraints were removed and the entire system was minimized.

The temperature of the system was then equilibrated at 300 K through 100 ps of MD

using 2 fs time steps. A constant volume periodic boundary was set to equilibrate the

temperature of the system by the Langevin dynamics[136] using a collision frequency

of 2 ps-1. During the temperature equilibration routine, the protein/complex in the

solvent box was restrained to the initial coordinates with a weak force constant of 10

kcal·mol-1·Å-2. To avoid inaccurate calculations of pressure, the next 100 ps of MD were

run at constant volume. The pressure of the solvated system was equilibrated at 1 bar

in constant pressure periodic boundary by an isotropic pressure scaling method with

pressure relaxation time of 1 ps.

Before running free MD simulations, the system was slowly equilibrated in four steps

(each 100 ps) using constraints like in minimization steps. The time step was set to 2

fs with a cut-o� of 9 Å for the non-bonded interaction, and SHAKE[137] option was

employed to keep all bonds involving hydrogen atoms rigid. Electrostatic interactions

were computed using the Particle Mesh Ewald method.[138] Each MD simulation was
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performed for 10 ns.

2.5 MM-PBSA and MM-GBSA Approaches for BFE Calculations

The free energy calculations were used to calculate the relative BFE of various ligands

using the MM-PB(GB)SA methods. The MM-PB(GB)SA approach employs molecular

mechanics (MM), the generalized Born (GB) or the Poisson Boltzmann (PB) model

and solvent accessibility (SA) method to compute the free energy of a biomolecule

by combining molecular mechanics calculations and continuum solvation models. The

molecular dynamics coupled with MM-PB(GB)SA estimation is a valuable tool for the

investigation of the experimental protein-ligand binding a�nities and can serve as a

powerful tool for the predicting of correct ligand ranking.[75]

According to the MM-PB(GB)SA method, the BFE between ligand and receptor

(∆Gbind) is computed as a sum of the changes of the gas-phase molecular mechanics

energies (∆EMM ), polar and nonpolar solvation energy (∆Gsolv) and conformational

entropy (≠T∆S) upon binding, see Equation (2.1):[139, 140]

∆Gbind = ∆EMM + ∆Gsolv ≠ T∆S (2.1)

∆EMM = ∆Einternal + ∆EvdW + ∆Eele (2.2)

∆Gsolv = ∆EP B/GB + ∆GSASA (2.3)

∆GSASA = “SASA + b (2.4)

Correspondingly, ∆EMM includes the di�erences in bond, angle, dihedral energies

(∆Einternal), van der Waals (∆EvdW ) and electrostatic energies (∆Eele), see Equa-

tion (2.2). The polar solvation contribution is usually computed by solving the generalized

Born (GB) or Poisson-Boltzmann (PB) equation, while the nonpolar term is determined

as a linear function of the solvent-accessible surface area (SASA),[141] see Equations (2.3)
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and (2.4).

The entropic contribution to binding ≠T—S can be calculated using normal-mode

analysis on a set of conformational snapshots taken from MD simulations. However, such

calculations are computationally expensive and usually give large error bars. Thus, the

entropic contribution was not evaluated in this work assuming that it is equivalent for a

congeneric ligand series.[67, 142, 143]

In this work, the single trajectory approach for MM-PB(GB)SA calculation is used. It

means, that MD simulation is performed on the protein-ligand complex only, and the

snapshots taken from this trajectory are used for the free energy calculation following

the equations described above.

2.5.1 BFE Calculations for Compounds from Biomol Kinase Library

The MD and BFE evaluation were performed on 14 top-scored molecules received after

the docking of the Biomol kinase library into the homology model of PRK1 (hm_STU) in

order to see whether this approach is able to estimate the biological activity of compounds.

The Biomol library was used because the experimental data were available from the

previous work.[144] The protocol for complex preparation and MD simulations was

already described in Section 2.4. The MD simulation for each complex was performed on

an ensemble of PRK1-ligand complexes in water for 10 ns (RMSD plots for proteins and

ligands are shown in Figure A.1, see Appendix). MM-PBSA and MM-GBSA calculations

were carried out using a) the last frame of the minimized structure or b) the MD

trajectory, where the last 5 ns (50 frames) were taken for the ligand-binding a�nity

estimation by the calculating energy components from equations 2.1-2.4 via MM-PBSA

and MM-GBSA algorithms using the MMPBSA.py script implemented in AMBER 12

software package.[112] The internal, van der Waals and electrostatic terms, representing

the gas-phase molecular mechanics energies (∆EMM ) were calculated using the SANDER

module with infinite cut-o� for the long range non-bonded interactions. The polar

solvation free energy was computed via Poisson-Boltzmann (PB) or generalized Born
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(GB) solvation models using the modified GB model developed by Nguyen and Simmerling

(igb=8),[145] and the PB model developed by Tan and Luo.[146] The salt concentration

for GB and ionic strength for PB were set to 0.15 M; the interior (solute) and external

(solvent) dielectric constants to 1.0 and 80, correspondingly; other parameters were kept

default. The non-polar solvation term was calculated according to the equation 2.4 using

solvent-accessible surface area (SASA) computed via the molsurf routine with default

parameters “=0.0072 and constant b=0. The entropic contribution was not calculated,

assuming that investigated compounds may exhibit similar entropy contributions to

binding, since they are congeneric and bind to the same protein binding site.[67]

2.5.2 BFE Calculations for Rescoring of Docking Results

Additionally, the BFE calculations were used in this work as a post-processing tool for

re-ranking of docking poses and predicting of the binding a�nity. In this case, the MM-

PB(GB)SA calculation is done for a single snapshot of an energy-minimized protein-ligand

complex obtained after ligand docking. Such a method requires much less computational

resources than traditional BFE calculations after performing MD simulations, therefore

it can be applied for the rescoring of thousands docking solutions after virtual screening.

Furthermore, the rescoring using MM-PB(GB)SA has shown to be more accurate than

simple scoring, since it considers protein flexibility and solvation e�ects. Recent studies

have demonstrated that this method results in a significant correlation with experimental

data and in many cases it can be applied for the identification of the correct ligand

binding mode.[75, 81, 82, 142]

The next paragraphs describe the settings used for the BFE calculations for the

rescoring of the docking results. The selected top-scored docking solutions for each

compound with the corresponding model were subjected to further refinement by means

of energy minimization and rescoring using three approaches for BFE calculations, namely

MM-PBSA, MM-GBSA and QM/MM-GBSA. Force field parameters were assigned for

ligand and protein using the Leap module in AMBER12.[112] General Amber Force Field
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(GAFF)[133] and AM1-BCC[147] charges were used for ligands and AMBER �99SB[132]

force field for proteins. The minimization of protein-ligand complexes was done in an

implicit solvent. The complex was minimized for 5000 steps of steepest descent and 5000

steps of conjugate gradient algorithm. Next, the binding free energy calculations were

performed. Only one snapshot per complex derived after minimization was used for it.

The MMPBSA.py script implemented in AMBER 12 was used for the calculation of

energy components from equations (1)-(3). The internal, van der Waals and electrostatic

terms, representing the gas-phase molecular mechanics energies (∆EMM ) were calculated

using the SANDER module with 16 Å cut-o� for the long range non-bonded interactions.

The polar solvation free energy was computed via implicit solvation models like Poisson-

Boltzmann (PB) or generalized Born (GB) applying the following parameters: modified

GB model developed by Onufriev et al.[148] (GBOBC2, igb=5), salt concentration for

GB and ionic strength for PB of 0.15 M, internal dielectric constant of 1.0 for solute and

80 for implicit PB solvent, other parameters were kept default. The nonpolar solvation

term was determined from the solvent-accessible surface area (SASA) computed via the

molsurf routine following equation (4), where “ was set to 0.0072 and constant b to 0

(default values).

The combined quantum mechanics/molecular mechanics generalized Born (QM/MM-

GBSA) calculations were done analogically to MM-GBSA with only one di�erence –

the QM part was specified for the ligand and was treated with semi-empirical method

(RM1),[149] while the remaining atoms were treated with �99SB force field. Representing

the ligand using QM method allows to eliminate general problem of ligand force field

deficiencies. Analogically to the previous BFE calculations (see 2.5.1), the entropic

contribution to binding was not evaluated.

2.6 PRK1 in vitro Assay

Screening was carried out using the LanthaScreenTM Eu Kinase Binding Assay Kit

(Invitrogen) with final assay concentrations of 5 nM for PRK1 (Proqinase, Freiburg), 2
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nM LanthaScreen Eu-anti-GST Antibody (Invitrogen) and 10 nM Kinase Tracer 236

(Invitrogen). The assay was performed in 384-well microtiter plates (Perkin Elmer,

Rodgau) with a final assay volume of 15 µL (1% (v/v) DMSO). Detection was performed

with EnVision 2102 Multilabel Reader (PerkinElmer, Rodgau, Excitation: 340 nm, 1st

Emission: 665 nm, 2nd Emission: 615 nm, Delay Time 100 µs, Integration Time 200

µs). IC
50

values were determined using Graphpad Prism 5.0 (La Jolla, USA), where the

half maximal inhibitory concentration (IC
50

) is the concentration of compound at which

PRK1 activity is inhibited by 50%.



CHAPTER 3

Results and Discussion

3.1 PRK1 Inhibitors Identified by in vitro Screenings

As of October 2010, when the project started, only few PRK1 inhibitors were described in

literature. Some of the well-known PKC inhibitors such as staurosporine [150], Ro-318220

[42], bisindolylmaleimide (BIM) I and H-7 [151], as well as Rho kinase/ROCK inhibitors

Y-27632 [152], HA-1077 and Y-32885 [153] were reported to inhibit also PRK1 (see Figure

3.1). However, these compounds are known as non-selective kinase inhibitors. Since

they inhibit PRK1 in an ATP-competitive manner, they may interact with the catalytic

domain of PRK1-related kinases in a similar way.

In order to identify novel PRK1 inhibitors, a focused library screening was initiated

and performed by the group of Prof. Jung at the University of Freiburg (Institute of

Pharmaceutical Sciences). The screening set included the Biomol kinase and phosphatase

inhibitor library (n=84) as well as an in-house library of commercially available and

generic compounds (n=200) which have been used to profile di�erent kinases before.

The initial screening was done at 100 nM inhibitor concentration. It identified highly

potent nanomolar PRK1 inhibitors such as staurosporine and related analogs - K252a,

lestaurtinib, PKC-412, Ro-318220 and BIM I.[144] Later on, few compounds from Biomol

dataset were retested at higher concentrations based on the results of docking and BFE

32
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Figure 3.1: PRK1 inhibitors known from the literature as of 2010.

calculations (see Section 3.3 for more details), which identified low micromoloar inhibitors

H-7 and HA-1077 (see Figure 3.2a and Table 3.3 for activities).

Succeeding in vitro screenings performed over the next few years identified a number

of PRK1 inhibitors with di�erent sca�olds and potency, see Figure 3.2. Their activities

are summarized in Table 3.3. Depending on the information available at a certain time,

di�erent in silico approaches (ligand- and structure-based) were applied at various project

stages. They are described in more detail in the following sections.
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Figure 3.2: PRK1 inhibitors identified by in-house in vitro screenings performed by the
group of Prof. Jung at the University of Freiburg (Institute of Pharmaceutical Sciences): a)
focused library screening of Biomol database 2010; b) screening 2012; c) screening 2013.

3.2 PRK1 Homology Modeling

3.2.1 PRK1 Homology Modeling using PKC-theta as a Template

The three dimensional structure of the PRK1 molecule is the prerequisite for structure-

based drug design. Despite its early identification and importance in cancer research
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there was no crystal structure of PRK1 catalytic domain available until recently (PRK1

structures 4OTD, 4OTI, 4OTG, 4OTH were released in the PDB on 27th August, 2014,

see Section 3.7). Thus, the homology modeling methodology was used to predict the 3D

structure of PRK1.

Studies have shown that protein structure can often be predicted with an accuracy

equivalent to a low-resolution X-ray structure, when a template with over 30% of protein

sequence identity is given.[154] Since PRK1 shares high sequence similarity with PKC

family (around 50%, see Table 1.1) and approximately 40% sequence similarity with

other kinase families such as protein kinase A (PKA) and protein kinase B (PKB), its

structure can be reliably predicted.

The NCBI BLAST search identified structures available in the PDB which share

the high similarity with PRK1 and which belong to the PKC family. Among them,

crystal structure of PKC-theta (PDB code: 2JED) was chosen as a template as it shows

high sequence identity with PRK1 (50%), good resolution (2.32 Å) and complete set of

coordinates. The PRK1 homology model (hm_prk1) was built, refined and evaluated as

described in Methods Section 2.2.1.

3.2.2 Refinement of PRK1 Homology Model with Ligands in the Binding Pocket

The secondary structure prediction is an easy task for the program when a highly similar

template sequence is given. However, the conformation of side chain residues can di�er

from ones in the crystal structure. In fact, even small changes in the receptor structure

can be important for ligand binding. Since in most drug discovery frameworks the protein

is kept rigid, it is necessary to develop a high-quality model of the binding site.

Initially, a homology model (hm_prk1) was generated based on the template PKC-

theta (PDB code: 2JED), which shares high sequence identity with PRK1. However, not

all PRK1 inhibitors could be docked into this initial model correctly. The reason for

that can be that the binding pocket of the homology model adopts another conformation

that certain compound requires for tight binding. It is known that during ligand binding
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conformational changes of the protein can occur. Proteins adapt their structure to the

bound ligand. Thus, the docking method can fail to recognize an active ligand when a

protein structure was solved in the presence of a very di�erent compound. One possible

solution to overcome this problem is to build a homology model, which would have a

conformation of the binding pocket adopted to the presence of a given ligand.

Thus, the conformation of residues in ATP-binding pocket of model hm_prk1 was

adjusted to the presence of several structurally di�erent inhibitors. As a template for

this refinement the conformation of binding pocket and ligand was taken from crystal

structures of homologous kinases. In this way, six PRK1 homology models were generated

(see Table 3.1 for details). All models were obtained by refinement of the initial PRK1

homology model (hm_prk1) by including active ligands into the binding pocket using

the program MODELLER 9v8 as described in Methods Section 2.2.2. Using an ensemble

of induced fit models increases conformational sampling of the binding site, which leads

to improved pose prediction and scoring performance.

Table 3.1: Model names, binding pocket template structures and inhibitors used for
refinement of the homology models. The initial model was generated on the basis of PKC-
theta as template structure.

Model name
Crystal structure
used for refinement
(PDB ID)

Binding pocket
template Inhibitor

hm_2esm/
hm_2esm_l 2ESM ROCK1 HA-1077

hm_2jed 2JED PKC-theta Nvp-Xaa228
(BIM1 analog)

hm_CP 3LXN TYK2 CP-690550
hm_GSK 3D0E AKT2 GSK-690693
hm_STU 1XJD PKC-theta Staurosporine

The superposed structures of the six PRK1 homology models are shown in Figure

3.3. The models were superimposed by backbone C– atoms, as shown in Figure 3.3a,
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which resulted in RMSD values in the range of 1.26-2.55 Å. The ATP-pocket residues

superimposed by all atoms in the binding site are shown in Figure 3.3b (RMSD in the

range of 0.74-2.50 Å). All models share a high similarity of the ATP binding site and

only minor deviations are observed for some side chains and the G-loop.

Figure 3.3: Comparison of the generated PRK1 homology models: a) structures of six
PRK1 homology models, shown as colored ribbons, after superimposition on the backbone
C– atoms (the C-tail is omitted for clarity); b) conformation of ATP-binding site residues
from di�erent PRK1 homology models superimposed by using all pocket residues (the C-tail
flanking ATP-binding pocket is shown).

It is worth to note that PRK1, as well as other members of AGC kinase family

(e.g. PKA, PKC, RSK, SGK, GRK and PKB) are characterized by the presence of a

C-terminal regulatory region (C-tail),[155] which is involved in the regulation of enzyme

activity.[156, 157] The C-tail is flanking the ATP-binding pocket and can insert the

conserved phenylalanine residue into it (see Figure 3.3b), while many other kinases have

open solvent channel at this place. However, the C-terminus of the catalytic domain

of AGC kinases is often disordered and not visible in the electron density. Due to

the flexibility and lack of structural information, the C-tail (residues 887-940) was not

considered in most models except in one (hm_2esm_l). The docking experiments showed
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that certain conformations of this loop could hinder the docking of some inhibitors which

extend its interactions into the solvent-accessible channel (e.g. TAE-684, VX-680 or

sunitinib). Furthermore, this loop can undergo large rearrangements, thus, it is often not

resolved in crystal structures of protein kinases, what impedes its modeling. Nevertheless,

the analysis of complexes with isoquinoline derivatives available in PDB showed that

a certain conformation of Phe904 of the C-terminal loop (see Figure 3.4) can play an

important role in pose identification and scoring of this type of inhibitors, which is

discussed later. In order to take this possibility into account, we decided to keep one

model (hm_2esm_l) containing C-tail residues.

Figure 3.4: Comparison of the ATP-binding pockets of two PRK1 homology models -
hm_STU refined with staurosporine in the binding site (light grey ribbon and sticks; the
C-terminal flexible loop, modeled from PKC theta 2JED, is shown in figure for comparison,
but it was deleted due to uncertainty in its structure) and hm_2esm_l refined in the presence
of HA-1077 (purple ribbon and sticks). The docking solutions of compound HA-1077 with
hm_STU and hm_2esm_l are shown in cyan and magenta sticks, respectively. Hydrogen
bonds between inhibitor and the kinase are displayed as dashed lines.

3.3 Molecular Dynamics and BFE Calculations for Top-Scored Biomol Compounds

As described in Section 3.1 the initial screen of Biomol kinase and phosphatases inhibitor

library identified only staurosporine analogs as highly potent PRK1 inhibitors (IC
50

< 100 nM). Thus, in the next step, we performed in silico docking studies for Biomol
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database in order to test and validate initially generated PRK1 homology models. The

binding modes of known kinase inhibitors received after the docking into PRK1 were

compared to those solved crystallographically with related kinases. Short conclusions

include following:

1) Staurosporine and its analogs have massive rings (indole, carbazole), which usually

extend into the binding pocket much farther than the adenosine moiety of ATP and

are known to cause conformational changes of neighboring enzyme residues known

as "induced fit".[158] Thus, these compounds could not have been docked correctly

into initial PRK1 homology model (hm_prk1) generated using default Modeller

settings. Thereby, the binding pocket of the homology model was refined for the

presence of staurosporine and hm_STU was generated (see Sections 2.2.2 and 3.2.2

for details), which resulted in better docking poses for this compound class.

2) The compounds with high molecular weight (here staurosporine and analogs) usually

show good docking scores. It is common limitation of scoring functions to favor

towards larger molecules [159] and accurate binding-a�nity prediction still remains

a challenging issue in molecular docking.[160]

Interestingly, the docking of Biomol database into PRK1 homology model refined with

staurosporine (hm_STU) revealed another compound class (isoquinoline derivatives)

among the top-scored molecules. In order to estimate the stability of the complexes

and ligand binding a�nity we decided to perform molecular dynamics simulation with

subsequent BFE calculations for fourteen compounds from the Biomol screening set

top-ranked by GlideSP score. The methodology is described in detail in Methods Sections

2.4 and 2.5.1. Since the bioassay threshold of the initial screening was set to 100 nM,

several compounds have been retested at the concentration up to 5 µM based on their low

values of calculated binding a�nities according to generalized Born or Poisson-Boltzmann

approaches (GBTOT and PBTOT score, respectively) as well as their availability. Thus,

four compounds were retested (SP600125, HA-1077, H-7 and SB216763) and two of them,
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namely isoquinoline derivatives HA-1077 and H-7, were shown to inhibit PRK1 with IC
50

values of 1945 nM and 658 nM (pIC
50

5.71 and 6.18, correspondingly), confirming the

binding free energy calculation results, see Table 3.2.

Table 3.2: MM/PB(GB)SA calculations for 14 top-scored by GlideSP compounds from
Biomol set. The BFE calculations were done using 50 frames taken from MD simulation
according to generalized Born or Poisson-Boltzmann approaches (the scores are abbreviated
as "GBTOT md 50f" and "PBTOT md 50f", respectively) as well as using only one frame after
the complex minimization before the MD was performed ("GBTOT Emin 1f" and "PBTOT
Emin 1f"). The compounds which were retested on PRK1 are selected with a red frame.

Name pIC
50

glideSP
score

GBTOT
md 50f

PBTOT
md 50f

GBTOT
Emin

1f

PBTOT
Emin

1f

kkal/mol

Staurosporine 9.10 -12.17 -58.48 -56.78 -53.77 -57.66
Lestaurtinib 8.07 -11.74 -45.58 -37.69 -55.81 -47.08
K252a 8.49 -11.04 -47.77 -38.44 -49.53 -29.55
Ro-318220 7.11 -10.82 -41.05 -31.01 -46.95 -42.37
PKC-412 7.85 -10.68 -46.78 -37.51 -49.11 -32.06
SP600125 -9.53 -29.09 -23.20 -27.16 -24.79
H-9 -8.91 -20.81 -36.06 -36.04 -56.44
HA-1004 -8.46 -25.08 -29.58 -36.74 -34.61
HA-1077 5.71 -8.44 -26.82 -29.34 -30.68 -37.79
H-8 -8.33 -20.22 -21.41 -20.61 -25.69
PD-98059 -8.23 -23.47 -15.94 -25.20 -18.91
H-7 6.18 -8.18 -20.29 -25.79 -27.42 -29.33
LY-294002 -8.12 -32.36 -28.83 -29.82 -25.57
SB216763 -7.99 -36.82 -27.19 -39.34 -28.94

r2 0.86 0.90 0.75 0.81 0.22

Furthermore, it is worth noting that BFE scores were able to discriminate highly potent

(IC
50

<100 nM) PRK1 inhibitors from moderately potent, thus, low nanomolar inhibitors

staurosporine and analogs usually show GBTOT scores in a range of -40 kkal/mol or
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lower, and PBTOT scores less than -30 kkal/mol. Interestingly, GlideSP scoring gave a

good correlation (r2 = 0.86) with experimental activities, see Figure 3.17a. Typically,

docking scoring functions have been designed for generating an accurate poses for ligands

and database enrichment. Nevertheless, studies have shown that in some cases the

scoring function, e.g. Glide, can result in a good correlation with experimental activities,

especially, for simple cases when the set of ligands share a common structure.[161, 162]

In addition, a strong correlation (r2 = 0.90) is observed between the calculated

BFE scores "GBTOT md 50f" and experimentally-derived pIC
50

values for seven PRK1

inhibitors from Biomol kinase set, see Figure 3.17b.

Figure 3.5: Regression and corresponding correlation coe�cients r2 are shown between
the observed pIC50 of 7 compounds from Biomol database top-scored by GlideSP versus:
a) glideSP docking score; b) binding free energy score (GBTOT) calculated by MM-GBSA
method using 100 snapshots after molecular dynamics simulation.

3.4 Initial Virtual Screenings to Search for PRK1 Inhibitors

Considering that at the start of the project most of the known PRK1 inhibitors from

the literature or in-house library screening were staurosporine analogs, we decided to

search for compounds with a distinct sca�old. Therefore we took the isoquinolines HA-

1077 and H-7, the pyrrolopyrimidine CP-690550 and the pyridopyrimidinone derivative

PD-0166285, which were identified by in vitro screenings at di�erent project stages, and

carried out similarity- and pharmacophore-based virtual screenings.
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3.4.1 Similarity-Based Virtual Screening for Isoquinolines HA-1077 and H-7

First, a fast fragment-based similarity screening method MOLPRINT 2D,[96, 97] which

is based on atom environments, was applied for a search of compounds similar to the

PRK1 inhibitors HA-1077 and H-7. This method is based on ligand information only

and follows the molecular similarity principle, i. e. the compounds that are more

similar with respect to their chemical structures are more likely to possess similar

properties. After the screening of ZINC [163] drug-like database 1000 hits with the

highest Tanimoto score were selected. After the correction of protonation states and

removing of duplicates from the database, the 825 compounds left were docked with

GlideSP into the PRK1 model refined with ligand HA-1077 (hm_HA). The binding poses

of the best-ranked molecules were visually analyzed and 23 compounds were selected for

purchase. However, only four of them were finally available from commercial suppliers

for biological testing. These compounds, like HA-1077, comprise an isoquinoline sca�old

and were evaluated for PRK1 inhibition. Experimental results revealed that three of

these compounds (Ambnee93542761, F2458-0011, F2457-0067, see Figure 3.6) are weak

micromolar inhibitors of PRK1 with IC
50

s below 100 µM (hit rate 75 %), showing worse

activity on PRK1 than the initial compounds HA-1077 and H-7 used in this virtual

screening. Their activities are summarized in Table 3.3.

Figure 3.6: Isoquinoline derivatives H-7, HA-1077 and inhibitors identified by similarity
search using ligand-based fingerprint method MOLPRINT 2D.
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3.4.2 Similarity Search for Pyrrolopyrimidine Derivative CP-690550

A further ligand-based VS method using MACCS (Molecular ACCess System) keys

fingerprints implemented in MOE [99] was applied for a search of compounds similar

to the PRK1 inhibitor CP-690550 (Tofacitinib). Screening of the ZINC [163] drug-like

database identified 500 compounds, which were subsequently docked into the PRK1

homology model refined in the presence of ligand CP-690550 (hm_CP). The best-scored

solutions were visually inspected and 27 hits were selected. Among them 18 compounds

were ordered and tested in vitro for PRK1 inhibition. As a result, nine pyrrolopyrimidine

analogs (hit rate 50 %) showed inhibitory activity in the range of 1-56 µM (see Figure

3.7 and Table 3.3).

Figure 3.7: PRK1 inhibitors CP-690550 and other pyrrolopyrimidine derivatives, which
were identified by similarity search using MACCS fingerprints combined with docking into
PRK1 homology model.
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3.4.3 Pharmacophore-Based Virtual Screening for PD-0166285

With intention to identify further hits and to increase the chemical diversity of our

dataset, we applied a structure-based pharmacophore model generated from another PRK1

inhibitor with a 8-methylpyrido[2,3-d]pyrimidin-7(8H)-one sca�old, namely PD-0166285.

The ligand was docked into the initially generated PRK1 model (hm_prk1) and the

predicted pose was compared with a reference crystal structure of an analogous compound

with the related kinase phosphoinositide-dependent kinase-1 (PDK1) (PDB code: 1M52).

The pharmacophore model (see Figure 2.5) was generated using LigandScout[130] as it

is described in Methods Section 2.3.2. Various chemical libraries from three di�erent

suppliers (ChemBridge, Life Chemicals and Enamine) were used for the screening process.

The compounds with a Pharmacophore Fit Score of over 55 were selected for further

docking experiments. The docking to the PRK1 model was done using GlideSP. Seven of

the top-scored molecules comprising several novel sca�olds were purchased for further

biological validation; two of them (compounds CB-5743914 and CB-6046000, see Figure

3.8) showed an IC
50

in the low micromolar range (see Table 3.3).

Figure 3.8: PD-0166285 and inhibitors identified by pharmacophore-based virtual screening.

3.5 Post-Processing of Docking Results Using BFE Calculations

The virtual screenings described in the previous sections have shown that the methods

used here were able to identify compounds which inhibit PRK1, however, they are still

not accurate enough to discriminate highly active PRK1 inhibitors from moderately or
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low active ones. The results clearly demonstrate that the choice of compounds for testing

based simply on docking score and visual inspection may be not su�cient criteria to

find highly potent PRK1 inhibitors such as the staurosporine derivatives. Thus, there is

still a need of finding reasonable methodology, which should be able to distinguish the

biological activities of compounds.

With the aim to prioritize potential activities of compounds, an approach was developed,

which combines a structure-based virtual screening together with rescoring methodology

using binding free energy calculations. It can be applied as an e�cient tool for lead

structure identification and prioritizing compounds for further biological validation, and

it is described in the following sections.

3.5.1 Studied Dataset

As of 2010, when we started the project, there were a few PRK1 inhibitors available

in public databases such as ChEMBL (38 compounds, see Appendix Table A.1). Only

one inhibitor (CHEMBL38380 = fasudil, HA-1077)[164] had the half maximal inhibitory

concentration (IC
50

, nM) reported, other compounds had determined dissociation con-

stant (K
d

, nM, 11 inhibitors including staurosporine analogs lestaurtinib, midostaurin,

ruboxistaurin),[165] residual activity (RA, %, 3 compounds, quinazolines published by

Tasler et al.)[166] or inhibition values (%, 23 compounds).[167–170]

Since our study includes the prediction of relative binding free energies, the ideal

dataset for this purpose should contain homogenous data, where compounds were tested

under the same assay conditions and have measured activities of the same type. Thus,

we decided to use as a training set our in-house library of compounds, which were

tested on PRK1 in a LanthaScreenTM competitive binding assay and have measured IC
50

values (see Section 2.6 for assay conditions). It is worth to note, that most of the PRK1

inhibitors registered in ChEMBL (2010) with reported IC
50

or K
d

values, were included

in our datasets (test or training set, see the descriptions below).
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Table 3.3: PRK1 inhibitors from DS1 along with experimental activity and standard error
of mean (SEM). IC50 values were determined in a PRK1 in vitro assay as described in the
Methods Section.

Name Supplier IC50,
nM

±SEM,
nM pIC50 Screen a

Staurosporine Biomol 0.8 0.2 9.10 1
K252a Biomol 3.2 0.6 8.49 1
Lestaurtinib Biomol 8.6 0.9 8.07 1
PKC-412 Biomol 14.2 1.5 7.85 1
Ro-318220 Biomol 78.3 8.6 7.11 1
CP-690550 Sigma-Aldrich 129 29 6.92 3
BIM IV Sigma-Aldrich 154.2 49 6.81 3
BIM I Biomol 579 140 6.24 2
H-7 Biomol 658.5 456 6.18 2
PZ0151 Sigma-Aldrich 1060 140 5.97 5
Calbiochem681640 Calbiochem 1441 220 5.84 3
HA-1077 Biomol 1945 465 5.71 2
CB-5743914 ChemBridge 2940 420 5.53 6
CB-6046000 ChemBridge 5350 1880 5.27 6
PD-0166285 Tocris 5517 2471 5.26 3
Z1039084878 Enamine 6210 3180 5.21 5
CB-76536004 ChemBridge 13090 2660 4.88 5
Z991906728 Enamine 26400 2770 4.58 5
Ambnee93542761 Ambinter 29330 4110 4.53 4
Z1139202903 Enamine 31470 4590 4.50 5
CB-85384930 ChemBridge 34020 11820 4.47 5
CB-38374289 ChemBridge 42560 11650 4.37 5
Z1129905037 Enamine 53380 5970 4.27 5
F2458-0011 Ambinter 53730 9590 4.27 4
Z1139203558 Enamine 55730 11520 4.25 5
F2457-0067 Ambinter 70300 7340 4.15 4
Quercetin Biomol Inhib.b > 5 µM 3
K252c Sigma-Aldrich Inhib.b > 1µM 3

a (1) compounds identified by in vitro screening of Biomol kinase and phosphatase inhibitor screening
set at 100 nM threshold concentration; (2) compounds from Biomol screening, for which full IC50
measurement was carried out; (3) other known kinase inhibitors tested in vitro on PRK1; (4) inhibitors
identified by similarity search using isoquinoline derivative H-7 (5) inhibitors identified by similarity
search using CP-690550; (6) compounds identified by pharmacophore-based virtual screening using
PD-0166285 as query. Compounds are named by trade name or by supplier name with code (most of
compounds were purchased from commercial suppliers ChemBridge, Life Chemicals, Amber Chemical,
Enamine).

b Compounds showed inhibition of PRK1, however, full IC50 measurement was not performed.
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The compounds for training set were collected from a number of in vitro screenings

carried out in our laboratory (Data Set 1, DS1). As it was described in Section 3.1, initially,

the Biomol kinase and phosphatase inhibitor screening set (84 compounds), containing

some generic kinase inhibitors, was tested at 100 nM threshold concentration.[144] This

screen has identified the highly potent PRK1 inhibitors staurosporine, Ro318220, K252a

and lestaurtinib as well as some moderately active inhibitors (e.g. HA-1077, H-7 and

BIM I, see Figure 3.2a). Later on, further in vitro tests identified PRK1 inhibitors

showing diverse chemical structures (e.g. PD-0166285 and CP-690550, see Figures 3.2b-

c). With the intention to identify more diverse inhibitors and to increase the range of

activity within the dataset, several virtual screening campaigns were initiated. Since

staurosporine analogs represent a well-studied class of non-selective kinase inhibitors,

we decided to focus our attention on compounds with distinct sca�olds and binding

modes. Therefore we took the isoquinolines HA-1077 and H-7, the pyrrolopyrimidine

CP-690550 and the pyridopyrimidinone PD-0166285 and carried out similarity and

pharmacophore-based virtual screenings as it is described in Section 3.4. The identified

hits were docked into the PRK1 homology models using GlideSP. The top-ranked binding

poses were visually analyzed and some compounds were purchased and evaluated for

PRK1 inhibition. Several of them showed an inhibition in the micromolar range (e.g.

isoquinolines Ambnee93542761, F2458-0011, F2457-0067; pharmacophore hits CB-5743914

and CB-6046000; pyrrolopyrimidiness PZ0151, Z1039084878 and others; see Table 3.3).

The virtual screenings and in vitro tests, applied on di�erent stages of the project,

expanded our dataset to 328 compounds (28 actives and 300 inactives). Among them

26 compounds were shown to inhibit PRK1 with IC
50

values in the range of 0.8 nM -

70 µM (see Table 3.3). Additionally, two compounds showed inhibition of PRK1 at 5

µM (quercetin) and 1 µM (K252c). PRK1 inhibitors representing diverse hinge-binding

sca�olds, which compose the training set DS1, are shown in Figure 3.9. For the structures

of all 28 PRK1 inhibitors see Figures 3.2, 3.6, 3.7 and 3.8.
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Figure 3.9: Representative PRK1 inhibitors from DS1, showing di�erent hinge-binding
sca�olds.

3.5.2 Docking Into a Single Protein Conformation

In the docking studies we first investigated the performance of each homology model

separately. Because there was no experimentally determined structure for PRK1 available,

the ability to reproduce the correct docking pose of known inhibitors was evaluated by

comparing with binding modes taken from crystal structures of homologous kinases with

the same or a closely related inhibitor. The results show that a proper pose can be

identified by Glide for a given inhibitor when the correct protein conformation is used.

However, the particular model can be limited to the usage for compounds similar to the

one used in induced-fit modeling. For example, the side chain of Phe904 within the C-

terminal flexible loop (C-tail) is exposed into the ATP-binding pocket in homology model

refined for HA-1077 (hm_2esm_l, see the Section 3.2.2 which describes the homology

model refinement and Figure 3.4 for details). The phenylalanine makes typical "edge-to-

face" aromatic interaction with the ligands HA-1077 and H-1152P in crystal structures

with PKA or Rho kinase (PDB structures 1Q8U, 1Q8W, 2ESM, 2GNI) as well as in
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the homology model of PRK1 with HA-1077. Such a conformation of Phe904 plays an

important role in the identification of the correct pose and scoring of compounds similar

to HA-1077 during the docking. At the same time, the size of the pocket of hm_2esm_l

is too small to accommodate large ligands like staurosporine and its analogs. Conversely,

the homology model refined with staurosporine (hm_STU) has a larger ATP-binding

pocket with Phe904 pointing outside of it, thus, the flipped HA-1077 conformation is

usually observed as a result of docking to hm_STU (see Figure 3.4).

The observations clearly show that using only one protein conformation can result in

Figure 3.10: Enrichment plot showing the percentage of actives found at a given percentage
of the ranked database for DS1 (a-c) and DS2 (d). The plot compares the performance
of: a) docking of DS1 into each single homology model; b) ensemble docking of DS1 using
all six homology models versus the two best single models; c) ensemble docking of DS1
using di�erent scoring methods – docking score (GlideSP) or BFE scores (MM-PBSA, MM-
GBSA, QM/MM-GBSA); d) ensemble docking of DS2 versus the two best single models.
The theoretical perfect curve, when all known PRK1 binders are ranked among the top
of database, is shown in brown. In some cases the percentage of active compounds or
screened database is not reaching 100%, implicating that Glide did not return poses for some
compounds.
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an inaccurate prediction of ligand binding poses and, subsequently, in low enrichment

factors, especially when a diverse set of ligands is docked (see Figure 3.10a). Furthermore,

the incorrectness on the stage of docking can mislead further rescoring experiments. It is

worth to note that although some models yield lower enrichment than others, they still

can be used in VS or ensemble docking since they can represent a more unique protein

conformation that is able to recognize certain types of compounds.

3.5.3 Docking Into an Ensemble of PRK1 Conformations

There are several reasons why docking programs fail to identify the correct ligand pose.

Besides the limitations of common scoring functions, the reason may lie in using a wrong

protein conformation. The docking methods can fail to recognize an active ligand when

some residues in the binding pocket occupy the ligand binding space. To overcome this

problem we docked all compounds tested on PRK1 from DS1 in all six PRK1 homology

models, see Section 3.2.2 for the details of homology modeling. An ensemble of protein

conformations provides a degree of receptor flexibility, which is often not considered

in docking experiments. The optimal docking mode was then selected according to

the best GlideSP score. The analysis of ensemble docking results shows an overall

improvement in the ranking of active ligands, which are distributed among 30% of the

top-ranked compounds in the database (see Figure 3.10b). In comparison, the best

single homology model (hm_2jed) has actives distributed among the top 35% of the

database. Even though in this case the di�erence is not dramatic, it is important that

using multiple models leads to better pose prediction for structurally diverse groups of

inhibitors. However, if the best performing model for a certain compound class is known,

it is computationally favorable to use single receptor docking.

Furthermore, the docking results were evaluated by plotting receiver operating charac-

teristic (ROC) curves, which show the distribution of true positives versus false positives.

The corresponding area under the curve (AUC), which describes the quality of enrichment,

was calculated. These data are summarized in Figure 3.11, illustrating that the ensemble
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docking approach (AUC=0.96) outperforms single protein models (AUC=0.45 ≥ 0.94).

Figure 3.11: Receiver operating characteristic (ROC) curves showing the fraction of true
positives (TPR = true positive rate) versus the fraction of false positives (FPR = false
positive rate). The plot compares the performance of: a) docking of training set DS1 into
each single homology model and ensemble of six homology models; b) ensemble docking of
DS2 versus two best performing single models. The theoretical perfect curve, when all known
PRK1 binders are ranked among the top of database, is shown in brown. In some cases TPR
or FPR is not reaching maximum value of 1, implicating that Glide did not return poses for
some compounds. Correspondingly, AUC values for c) DS1 and d) DS2 are confirming that
ensemble docking outperforms docking into individual protein models (di�erent models are
colored as it is shown on ROC curves).

3.5.4 BFE Calculation for Rescoring of Docking Results

The results of previous VS experiments and biological tests showed that relying only

on the docking score might be insu�cient for correct ligand scoring according to the

biological activity. Even though some of the hits derived from ligand- and pharmacophore-

based screening were active on PRK1, they appeared to be weaker PRK1 inhibitors

compared to the corresponding query compounds. The ability to estimate the activity
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of a compound is one of the critical VS tasks, which aims to reduce the time and costs

needed for inhibitor development. Thus, we decided to test the performance of some

BFE assessment methods on known PRK1 inhibitors.

DS1, containing 26 active PRK1 inhibitors with available IC
50

values, was used for the

calculation of binding free energies using a fast post-processing approach. The top Glide

docking solution for each compound in the corresponding homology model was selected

and submitted for the energy minimization using an implicit solvent model. After this,

the binding free energy was evaluated using the MM-PB(GB)SA or QM/MM-GBSA

protocol for one snapshot derived after the minimization. In order to investigate the

performance of di�erent scoring methods on enrichment and correlation with biological

activity, the results for di�erent homology models were combined and the best pose of

each ligand was selected according to Glide score.

3.5.4.1 Accuracy of Docking/Scoring Methods in Enrichment Performance

The virtual screening performance was evaluated by the ability to enrich known actives

among the top ranked compounds in the database comprising experimentally validated

active and inactive PRK1 inhibitors. The enrichment plot shown in Figure 3.10c indicates

that rescoring of poses with MM-PB(GB)SA or QM/MM-GBSA performed worse in the

discrimination of active from inactive compounds in comparison to the Glide score. Inter-

estingly, several studies report a better discrimination of known actives from decoys while

using MM-PB(GB)SA rescoring methodologies as compared to the AutoDock score.[74,

171] However, the screening performance is usually target- and dataset-dependent, which

probably can explain success in some cases and failure in others. Nevertheless, the

work by Graves et al.[172] shows contradicting results - rescoring introduces many false

positives, especially among the top ranked ligands, as compared to simpler docking

protocols. The reason may lie in larger errors when internal energies of the receptor

structure are introduced. Also wrong ligand parameterization or electrostatics treatment

might be responsible for larger errors. In addition, minimization of the complex allows
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the adjustment of the binding site for bigger ligands, including false positives.

3.5.4.2 Estimating the Biological Activity of PRK1 Inhibitors

We have analyzed the performance of di�erent approaches for their ability to correctly

estimate the experimental inhibition data. The results for some single homology models

show low correlation with experimental pIC
50

values (see Table 3.4), demonstrating that

the protein conformation plays an important role in the ligand pose prediction and BFE

calculation. Even though, some improvement of correlation was observed for the models

with good enrichment (e.g. hm_2jed and hm_CP), when the rescoring with MM-PBSA

was done (r2 = 0.47, RMSE = 1.03, q2

LOO = 0.37 and r2 = 0.51, RMSE = 0.99,

q2

LOO = 0.43, for hm_2jed and hm_CP, respectively).

Table 3.4: Summary of r2 correlation coe�cients for di�erent scoring methods using single
homology models or ensemble of six homology models.

Correlation coe�cient (r2)

Model name glide_SP MM-GBSA MM-PBSA QM/MM-
GBSA

hm_2esm_l 0.51a 0.15 0.02 0.17
hm_2esm 0.18 0.45 0.63 0.59
hm_2jed 0.05 0.29 0.47 0.44
hm_CP 0.32 0.25 0.51 0.40
hm_GSK 0.14 0.39 0.37 0.57
hm_STU 0.30 0.32 0.31 0.54
ensemble 0.42 0.42 0.61 0.53

a Note: Glide did not return poses for some of compounds

Interesting results have been observed for the rescoring of ensemble docking solutions

(see Figure 3.12). The best correlation coe�cient (r2 = 0.61, RMSE = 0.89, q2

LOO = 0.56)

was obtained when the MM-PBSA method was applied for post-processing (see Figure

3.12c).

Furthermore, we investigated the e�ect of other descriptors like partial charges or
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Figure 3.12: Regression and corresponding correlation coe�cients r2 are shown for the
ensemble docking results. The plots represent the correlation between observed pIC50s for 26
compounds of DS1 and di�erent scores: a) docking score glide_SP; binding free energy scores
calculated by b) MM-GBSA method (GBTOT score); c) MM-PBSA method (PBTOTscore);
d) QM/MM-GBSA method (QM/GBTOT score).

number of rotatable bonds on the predicted BFE scores. In order to include the partial

charges we constructed a simple predictive quantitative structure activity relationship

(QSAR) model based on two descriptors, namely MM-PBSA score “PBTOT” and partial

charges “FCharge” (QSAR_model_1), using MOE[99] PLS methodology, which resulted

in correlation coe�cient r2 = 0.66 with root mean square error RMSE = 0.82 and

cross-validated correlation coe�cient q2

LOO = 0.57.[173, 174] Next, we tested the number
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of rotatable bonds “brotN” on the QSAR model as descriptor containing information on

molecular flexibility and compound’s conformational space. The most interesting results

were found when this descriptor was combined with QM/MM-GBSA score “QM/GBTOT”

(QSAR_model_2), which led to an improvement of the correlation to r2 = 0.68, RMSE =

0.80 and q2

LOO = 0.61. Other tested descriptors, such as logP, solvent accessible surface

area or number of heavy atoms, did not improve the quality of the QSAR model (results

are not shown).

Furthermore, di�erent combinations of descriptors were tested on the model’s predictive

power. Finally, the QSAR_model_3 containing four descriptors (MM-PBSA score

“PBTOT”, QM/MM-GBSA score “QM/GBTOT”, number of rotatable bonds “brotN”

and Glide score “glideSP_score”) was developed, which resulted in a correlation r2 = 0.78,

RMSE = 0.66, q2

LOO = 0.70 between the predicted and experimental pIC
50

(Figure

3.13). The following equation describes the estimated linear model (QSAR_model_3):

pIC
50

= ≠1.77015 ≠ 0.36664 ◊ glideSP _score ≠ 0.03968 ◊ PBTOT

≠ 0.04309 ◊ QM/GBTOT ≠ 0.17230 ◊ b_rotN, (3.1)

where the relative importance of descriptors is 0.776953 (glideSP_score), 1.000000

(PBTOT), 0.975233 (QM/GBTOT) and 0.706790 (b_rotN).

Interestingly, the most potent inhibitors (IC
50

<100 nM) have a calculated pIC
50

higher or close to 7, which is in correspondence with the experimental values for these

compounds (see Table 3.5 ). Thus, the value of pIC
50

>7 could be used as a threshold for

the predicted pIC
50

in order to prioritize compounds for further synthesis or purchase.

Such a strategy of rescoring the docking solutions and calculating a predicted pIC
50

using the developed QSAR model can be especially suitable on the stage of compound

optimization, where highly potent inhibitors are of interest.



3.5 Post-Processing of Docking Results Using BFE Calculations 56

Figure 3.13: Regression and corresponding correlation coe�cients r2 are shown between the
observed pIC50 versus predicted pIC50 by QSAR_model_3 using four descriptors (glideSP-
PBTOT-QM/GBTOT-brotN).

Table 3.5: Comparison of the measured pIC50 versus the predicted values by the QSAR_-
model_3 for the most potent PRK1 inhibitors from DS1.

Name IC50, nM pIC50
Predicted pIC50
(QSAR_model_3)

Staurosporine 0.8 9.10 8.70
K252a 3.2 8.49 7.48
Lestaurtinib 8.6 8.07 7.90
PKC-412 14.2 7.85 7.84
Ro-318220 78.3 7.11 6.90
CP-690550 120 6.92 6.54

3.5.5 Validation of the Results

The performance of our protocol for virtual screening and rescoring using MM-PB(GB)SA,

QM/MM-GBSA methodologies was further evaluated on an external test dataset (DS2)

containing 20 diverse PRK1 inhibitors (representative inhibitor structures can be found

in Figure 3.14) and 52 inactive compounds.[19] Twenty compounds from DS2 were shown
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to inhibit PRK1 in the range between 1.3 nM and 5 µM (see Table 3.6). It is worth

to note that inhibitors from the second dataset are more chemically diverse and have

less significant variation in their inhibitory potency in comparison to DS1, which poses

a number of challenges in docking and rescoring experiments. The structures of all 20

PRK1 inhibitors from DS2 can be found in Figure A.2, see Appendix.

Table 3.6: Biological activity of 20 PRK1 inhibitors published by Davis et al.[19]

Name Kd, nM pKd

Staurosporine 1.3 8.89
CEP-701 5.3 8.28
PKC-412 9.3 8.03
GSK-690693 34 7.47
CP-690550 170 6.77
CHIR-258 180 6.74
A-674563 210 6.68
TAE-684 340 6.47
LY-333531 350 6.46
KW-2449 580 6.24
R406 660 6.18
Sunitinib 710 6.15
BIBF-1120_deriv 740 6.13
TG-101348 1100 5.96
VX-680 1500 5.82
SU-14813 1900 5.72
JNJ-28312141 2400 5.62
SKI-606 2900 5.54
Flavopiridol 3500 5.46
LY-317615 5100 5.29

Even when the inhibitor data of Davis et al. were not obtained in the same assay

we used, it can be assumed that the values from both assays are comparable. This
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Figure 3.14: The representative subset of PRK1 inhibitors from DS2.

is supported by very similar values obtained for the standard inhibitors staurosporine

(IC
50

= 0.8 ± 0.2 nM, K
d

= 1.3 nM) and PKC-412 (IC
50

= 14.2 ± 2.5 nM, K
d

= 9.3 nM).

Correspondingly, all compounds of DS2 were docked to all six PRK1 homology models

and then the top Glide solutions were rescored using binding free energy calculations

after complex minimization. The procedure was done as described in Methods Section

2.5.2.

Similar to the docking of the first dataset, using an ensemble of protein conformations

improves the enrichment compared to rigid receptor docking (see Figure 3.10d) and
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performs better in identifying a ligand conformation similar to the bioactive one (as

compared with known crystal structures). The area under the ROC curve (AUC) for

ensemble docking results is equal to 0.85, which outperforms the best single homology

models hm_STU and hm_CP (AUC=0.75 and 0.69, correspondingly, see Figure 3.11).

The correlation between the experimental pIC
50

and those predicted by the developed

QSAR_model_3 was only moderate (r2 = 0.45, RMSE = 0.71, q2

LOO = 0.29, r2

0

= 0.40),

nevertheless, some trends could be observed (see Figure 3.15a). Therefore, we analyzed

the model for outliers, which were detected by large Z-scores. The Z-score represents the

absolute di�erence between the predicted value of the model and the observed biological

activity divided by the square root of the mean square error of the dataset. The Z-scores

were calculated using the QSAR module of MOE. A compound was considered an outlier

if the Z-score was higher than 2.5. Only one outlier was identified, namely compound

LY-317615. The comparison of structures of PRK1 with the inhibitor LY-317615 before

and after the minimization shows that the refining of the complex led to conformational

changes within the protein-inhibitor complex, which resulted in a strong interaction

pattern between ligand and receptor (Figure 3.16). This could in part explain the highly

favorable scores for this compound. However, LY-317615 inhibits PRK1 with K
d

= 5100

nM and it represents the least potent inhibitor in DS2, suggesting that the binding mode

of this compound could be incorrectly predicted or other factors could play a role during

the ligand binding, e.g. entropy changes or presence of water in the binding pocket.

Removal of compound LY-317615 improved the results - the correlation coe�cient r2

became equal to 0.68 and the cross-validation correlation coe�cient q2

LOO to 0.59 (see

Figure 3.15b), which is slightly lower than for the validation set. The removal of three

duplicates from DS2 (staurosporine, PKC-412 and CP-690550) resulted in correlation

r2 = 0.49, RMSE = 0.51 and q2

LOO = 0.26. It is worth to note, that DS2 has a more

narrow range of activities (1.3 nM - 5 µM) in comparison to DS1 (0.8 nM - 70 µM),

which may be one possible reason for the weaker statistical data. As the results indicate,

the MM-PB(GB)SA, QM/MM-GBSA rescoring approach is not accurate enough to
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Figure 3.15: Regression between the observed pKd of PRK1 inhibitors from the test set DS2
versus predicted pIC50 by QSAR_model_3: a) using the data of all 20 active compounds;
b) after removing the outlier (compound LY-317615). The optimal regression line of the
model is shown as solid black line and the regression through the origin of the coordinate
system is shown as dashed black line.

Figure 3.16: Conformations of compound LY-317615 before (light grey protein and cyan
ligand) and after (purple protein and magenta ligand) minimization of the complex along
with interacting residues of the binding site are shown. Hydrogen bonds between the inhibitor
and the kinase are displayed as dashed lines.
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distinguish the compounds with similar binding a�nities, but it can be used to separate

strong PRK1 inhibitors from moderate or weak binders.

Since the data of DS1 and DS2 were obtained in di�erent assays and reported K
d

values of DS2 can di�er from IC
50

values of DS1, we additionally generated a QSAR

model for DS2. Correspondingly, the same methodology and descriptors were used as

for DS1 (QSAR_model_3, MM-PBSA and QM/MM-GBSA scores, number of rotatable

bonds and Glide score). The resulting QSAR model showed slightly di�erent coe�cients

for the individual descriptors. This resulted in a correlation coe�cient of r2 = 0.53,

RMSE = 0.66, and q2

LOO = 0.12 for the 20 compounds of DS2 with reported activities.

After the removal of one outlier (LY-317615, same outlier as observed in the prediction)

the correlation was improved to r2 = 0.73, RMSE = 0.49 and q2

LOO = 0.53 (data not

shown).

Furthermore, the predictive ability of the QSAR_model_3 was tested using Golbraikh-

Tropsha criteria.[175–177]

They consider that a model with a good predictive power should satisfy the following

conditions:

1) squared correlation coe�cient between predicted and observed activities r2 > 0.6;

2) squared cross-validation correlation coe�cient q2 > 0.5;

3) one of coe�cients of determination for regressions through the origin (either pre-

dicted vs. observed activities r2

0

or observed vs. predicted activities r
Õ

2

0

) should

have value close to r2;

4) (r2 ≠ r2

0

)/r2 or (r2 ≠ r
Õ

2

0

)/r2 < 0.1 and 0.85 < k or kÕ > 1.15, where k and kÕ are

slopes of the regression line through the origin.

The calculated parameters for the test dataset and the satisfactory conditions are

summarized in Table 3.7, indicating that the derived model has a good predictive power.

Notably, the obtained data show that the most potent inhibitors (K
d

<100 nM) from
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Table 3.7: Results of the validation of QSAR_model_3 on the test set DS2.a

Criteria Calculated value Satisfactory value

r2 0.677 >0.6

q2

LOO 0.586 >0.5

r2

0

0.675
(r2

0

or r
Õ

2

0

) ¥ r2

r
Õ

2

0

0.574

k 0.952
0.85 Æ (k or kÕ) Ø 1.15

kÕ 1.042

|r2

0

≠ r
Õ

2

0

| 0.101 < 0.3

(r2 ≠ r2

0

)/r2 0.003
one of this criteria < 0.1

(r2 ≠ r
Õ

2

0

)/r2 0.152

a Golbraikh-Tropsha criteria were used.

DS2 have a predicted pIC
50

more than 7 (see Table 3.8), which is in accordance with

the results for DS1. These observations demonstrate that the model can be used for the

prediction of biological activity and especially for the design of highly potent inhibitors.

Table 3.8: Comparison of measured data versus predicted pIC50 by QSAR_model_3 for
the most potent PRK1 inhibitors from DS2.

Name Kd (PRK1), nM pKd (PRK1) pIC50 predicted

Staurosporine 1.30 8.89 8.18
CEP-701 5.30 8.28 7.82
PKC-412 9.30 8.03 8.05
GSK-690693 34.00 7.47 7.27
CP-690550 170.00 6.77 6.55
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3.6 Application of the Model on External Datasets

3.6.1 Selleck Kinase Inhibitor Set

In the previously described study the predictive ability of the model was tested in a

retrospective way on a set of PRK1 inhibitors with known activities taken from the

article of Davis et al.[19] It is a common procedure used to establish and validate the

predictive power of QSAR model prior to its use for external predictions. However, true

validation is prospective experimental validation. Thus, in the next study the docking-

minimization-rescoring procedure was applied on external dataset of 355 commercially

available kinase inhibitors from Selleck Chemicals.[178] This library contains structurally-

diverse, medicinally active, and cell permeable kinase inhibitors, which target di�erent

kinase families including receptor tyrosine kinases (RTKs), PKC, Janus kinase (JAK),

cyclin-dependent kinase (CDK), etc. Most of inhibitors are ATP-competitive and some

of them have been approved by the FDA.

Thus, following the rescoring procedure, compounds were docked into six PRK1

homology models, poses were minimized using implicit solvent model and BFE calculation

was performed. Noteworthy, only few compounds among the top hits have predicted

pIC
50

more than 7 and these are already known PRK1 inhibitors such as staurosporine,

GSK-690693, or related analog of BIM - enzastaurin.[19] Thus, we decided to purchase

and test compounds distinct from the well explored staurosporine-like structures, namely,

we selected 5 compounds with diverse sca�olds - S4 (GSK-690693), S5, S6, S7 (A-674563),

S10 (formulas are not shown since the results are unpublished). As we can see from the

results of biological screening (Table 3.9), all tested compounds showed binding to PRK1

in submicromolar or nanomolar range (hit rate 100%), with only one exception - weak

binder S6, for which IC
50

could not have been determined.

Interestingly, the measured K
d

values for compounds GSK-690693 and A-674563 di�er

from corresponding IC
50

values (34 versus 270.1±31.12 nM and 210 versus 149±20.30

nM), indicating that these measurements do not have direct relationship. According to
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Cheng and Pruso� [179] K
d

of an inhibitor is equal to the IC
50

only when noncompetitive

or uncompetitive kinetics apply. Despite these limitations, it is often assumpted in

computational chemistry that K
d

and IC
50

values reflect the same rank order. Here,

we could observe that even though the estimated K
d

s for compounds GSK-690693 and

A-674563 di�er by several times from their calculated IC
50

s, both are of the same

submicromolar order. Furthermore, it is known that the IC
50

value for a compound

may vary depending on experimental and incubation conditions under which the value is

determined.[180] Thus, for the correct interpretation of the results it is always better to

compare IC
50

values from the same experiment.

In summary, the presence of actual PRK1 inhibitors among the best-ranked compounds

as well as experimental results for five tested compounds proved that rescoring methodo-

logy was able to identify potent nanomolar PRK1 inhibitors among the top hits, which

were ranked superior to glide scoring.

3.6.2 GSK Published Kinase Inhibitor Set

The next library, on which the rescoring methodology was applied was taken from the

GlaxoSmithKline (GSK) published kinase inhibitor set (PKIS). It contains 367 ATP-

competitive protein kinase inhibitors, which were recently released by GlaxoSmithKline

for public screening as a resource to develop probes for the untargeted kinome.[181]

This library contains compounds which have been published in scientific literature and

are accompanied with target and activity annotation, including data about inactive

compounds. The GSK PKIS set is available free of charge in screening quantities (10 µL

of a 10 mM solution in dimethyl sulfoxide (DMSO)) under agreement. The structures

of compounds were downloaded from ChEMBL website [182, 183] and the rescoring

methodology was applied as it was described previously. The top-scored molecules

with the highest predicted pIC
50

values were visually analyzed and 25 compounds

(pIC
50_predicted

=4.84 ≥ 7.02) were selected for biological testing (see Table 3.10), eight of

them (hit rate 32%) showed binding to PRK1. The formulas of compounds are not shown
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since the results are unpublished. The IC
50

values calculated from the concentration-

inhibition response curve for seven PRK1 inhibitors are ranged from 40 nM to 5 µM (see

Table 3.10) with GSK2 and GSK5 being the most potent of these compounds (68.1±12.7

and 40±8.7 nM, respectively). These results are encouraging and can serve as a starting

point for the next step of compound optimization in order to achieve a higher potency and

selectivity to PRK1, which should involve close cross-disciplinary collaboration between

computational, medicinal and biochemists and should be extended in further studies.

Furthermore, it is interesting to note that rescoring of docked molecules using BFE

calculations resulted in ranking of active compounds higher in the hit list compared to

glideSP score, e.g ranks of the some of good-scored compounds (glideSP = -10 and less)

were lowered (pIC
50

predicted around 5.5 ≥ 6) and otherwise, compounds with moderate

docking scores (glideSP ≥ -9) got higher ranks in rescoring, see Table 3.10. These results

suggest that despite of limitation of both docking and BFE calculation approaches, the

combination of these two methodologies can be especially useful to assist in the selection

of potentially interesting compounds for biological tests.
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3.7 PRK1 Crystal Structures Released

As it was mentioned in Section 3.2 there was no PRK1 crystal structure available when the

project started. That is why homology models were used in the current work. However,

in August 2014 a paper was published describing crystal structures of PRK1 in complex

with clinical compounds lestaurtinib and tofacitinib as well as staurosporine analog

Ro-318220 and apo-structure.[184] Later on, the structures were deposited in protein

databank under PDB codes 4OTD, 4OTG, 4OTH and 4OTI, see Table 3.11 for more

details.

Table 3.11: Crystal structures of PRK1.

PDB Code Resolution, Å Ligand

4OTD 2.00 apo-structure
4OTI 1.93 Tofacitinib
4OTG 2.60 Lestaurtinib
4OTH 1.80 Ro-318220

In their study Chamberlain et al.[184] highlight the major role of kinase plasticity,

showing that PRK1 is able to adapt to ligands and exhibit various conformational changes

with the main motions in the region of G-loop and C-tail. Such PRK1 disordering can be

demonstrated by comparison of structures 4OTI, 4OTH, and 4OTG as shown on Figures

3.17a and 3.17b. It is worth noting that authors’ observations concerning the C-terminus

of the catalytic domain (C-tail), which can adopt di�erent conformations depending on

inhibitor-bound state and place phenylalanine in the ATP-binding site or out of it, are in

correspondence with our previous findings (see Section 3.2.2).

3.7.1 Comparison of PRK1 Crystal Structures to Homology Models

Furthermore, we compared the crystal structures of PRK1 with our homology models.

Figure 3.18 displays their superposition using all C
alpha

atoms. The calculated RMSD

values show that the overall di�erence between models and crystal structures range from
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Figure 3.17: PRK1 conformational flexibility on example of G-loop and C-tail motions: a)
superposition of PRK1 structures 4OTI and 4OTH co-crystallized with tofacitinib (light grey
protein and magenta ligand) and Ro-318220 (pale green protein and cyan ligand), showing
a large conformational shift of G-loop; b) conformational changes of C-tail is shown on
superposition of structures 4OTG and 4OTH co-crystallized with lestaurtinib (light grey
protein and magenta ligand) and Ro-318220 (pale green protein and cyan ligand). The
binding of lestaurtinib to PRK1 caused substantial C-tail disordering, which is no longer
visible in the electron density.[184]

1.43 Å (hm_STU with 4OTG) to 2.35 Å (hm_2esm with 4OTH). The most remarkable

conformational di�erences can be observed at loop regions which are known to be flexible,

e.g. at the activation loop or glycine-rich loop (G-loop).

Since in structure-based drug design the primary interest is in analyzing the binding

site of a protein, it is important that the binding pocket of the homology model is

accurately predicted. In order to analyze the di�erences within the binding pockets,

they were superposed using C
alpha

atoms as it is shown on Figure 3.19, demonstrating

RMSD values in a range from 0.57 Å (hm_2jed with 4OTH) to 1.54 Å (hm_CP or

hm_GSK with 4OTH). These values are not significantly di�erent as those observed

for the homology models or crystal structures themselves, and represent the receptor

flexibility, demonstrating that binding site can adapt to di�erent ligands. These findings

are in agreement with our previous conclusions concerning protein flexibility, which is

currently one of the major pitfalls in the structure-based drug design. Thus, in order
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Figure 3.18: The superimposition of PRK1 homology models (grey ribbon) and crystal
structures (pale green ribbon) by all Calpha atoms.

to account for the induced fit e�ect in rigid-docking approach, it is rational to use few

protein structures for the docking of structurally-diverse ligands, which was the case for

PRK1 (see Section 3.5.3).

Figure 3.19: The superimposition of PRK1 homology models (grey ribbon and atoms) and
crystal structures (pale green ribbon and atoms) by pocket residues using Calpha atoms. The
key residues in the binding pocket are shown. G-loop is omitted for clarity.The corresponding
RMSD values are shown.

As we could see from the comparison of PRK1 binding pockets, the most accurate
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homology model is hm_2jed, which can be well superposed to crystal structure of PRK1

with Ro-318220, PDB code 4OTH (RMSD = 0.57 Å for binding pocket C
alpha

atoms).

This is not surprising since the hm_2jed was generated and refined using the highly

similar template PKC-theta (PDB code 2JED) complexed with Ro-318220 analog - ligand

NVP-XAA228.

Figure 3.20: The superimposition of PRK1 homology model hm_2jed (grey protein and
magenta ligand NVP-XAA228) and crystal structure 4OTH (pale green protein and cyan
ligand Ro-318220) by the pocket residues using Calpha atoms. The key residues in the binding
pocket are shown. C-tail is omitted for clarity.

3.7.2 Comparison of Docking and Crystallographic Poses of Ro-318220, Lestaurtinib and

Tofacitinib

Next, we compared the ligand conformations of Ro-318220, lestaurtinib and tofacitinib

(CP-690550) identified crystallographically (PDB structures 4OTH, 4OTG and 4OTI,

correspondingly) to the binding modes of these compounds predicted by the docking

program Glide.

In general, the structures of PRK1 with above mentioned inhibitors solved crys-

tallographically are consistent with binding modes for these ligands known from the

literature.[184] As we can see from Figures 3.21 to 3.23 the top-scored poses from the
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ensemble-based docking (ligands are depicted in magenta) show overall agreement to the

corresponding crystal structures (ligands are depicted in cyan). There is no significant

di�erence in conformations of ligand cores which interact with the hinge region, however,

there are some di�erences in conformations of ligand rotatable bonds (see docking solu-

tions for Ro-318220 and lestaurtinib), which have also impact on the RMSD values, see

Table 3.12. Usually, it is more challenging for the docking program to predict the binding

positions correctly for a compound with many rotatable bonds, due to the increased

number of degrees of freedom to be explored.[185]

Table 3.12: The root mean square deviation (RMSD) between crystallographic pose and
docked pose of ligands Ro-318220, lestaurtinib and tofacitinib. The docking pose of each
ligand was selected as the best scored ensemble docking solution, the corresponding homology
model is indicated. The RMSD value was calculated using all heavy atoms.

Ligand RMSD, Å Crystal structure
PDB code Homology model

Ro-318220 2.61 4OTH hm_2jed
Lestaurtinib 2.04 4OTG hm_2esm
Tofacitinib 1.16 4OTI hm_CP

Ro-318220 (bisindolylmaleimide IX), lestaurtinib and tofacitinib inhibit PRK1 with

IC
50

s of 78.3±8.6, 8.6±0.9, 129±29 nM, correspondingly (see Table 3.3). The staurospor-

ine analog, Ro-318220 is a well-known specific PKC inhibitor[186] with no significant

PKC isoform selectivity, which also shows potent inhibition against MAPKAP-K1b,[187]

MSK1,[188] GSK3—[189] and S6K1.[190] The crystal structure of Ro-318220 in complex

with PRK1 as well as docking solution of this compound into PRK1 homology model

(RMSD
Ro-318220

= 2.61 Å, see Table 3.12 and Figure 3.21) is consistent with known

binding modes for staurosporine analogs, exhibiting classical hydrogen bond interactions

with the hinge backbone (residues Glu702 and Ser704) as well as numerous hydrophobic

interactions which indole rings make with non-polar residues of the binding pocket. In the

crystal structure 4OTH the propyl carbamimidothioate flexible chain of Ro-318220 makes
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further hydrogen bond to Asp708 in the ribose pocket, whereas in the docking solution it

is positioned between Asn751 and Asp764 replacing the position of the conserved water

molecule which is observed in the X-ray structure. The waters were not considered in

homology modeling due to the uncertainties in the exact water location as well as its role

in ligand binding. Taking into account absence of water and conformational flexibility of

propyl carbamimidothioate chain of Ro-318220, it is not surprising that docking program

identified another solution able to fit into the binding site.

Figure 3.21: Comparison of the binding mode of compound Ro-318220 observed in crystal
structure (PDB code 4OTH, protein is shown in pale green and ligand in cyan) and the
top-scored by glideSP pose from the ensemble docking (hm_2jed is colored in grey and
ligand in magenta). The conserved water interacting with Asn751 and Asp764 derived from
the structure 4OTH is shown.

Lestaurtinib is another staurosporine analog discussed here. It has been described

as orally available and potent inhibitor of kinases TrK[191], FLT3,[192] JAK2[193] and

PRK1.[144] Lestaurtinib was initially developed for the treatment of acute myelogenous

leukemia (AML) bearing FLT3 activating mutations,[194, 195] however, the results of

phase III clinical trial showed no increase in response rates or prolong of survival of

patients with FLT3 mutant AML in first relapse.[196] Additionally, lestaurtinib has been
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tested in phase II study (NCT00081601, see http://www.cancer.gov/clinicaltrials) for the

treatments of the hormone refractory recurrent prostate cancer, showing no significant

prostate specific antigen (PSA) response; however, it was speculated that PSA may be

not an adequate indicator of response for prostate cancer treatment.[197] Thus, there

was no adequate study performed to identify the response of prostate cancer on the

treatment with lestaurtinib. The binding mode of lestaurtinib is similar to staurosporine

or its analogs, e.g. Ro-318220, exhibiting two hydrogen bond interactions between lactam

amide group and hinge residues Glu702 and Ser704, and numerous hydrophobic contacts

between the large planar aromatic system of the inhibitor and non-polar residues in

the binding pocket (RMSD
lestaurtinib

= 2.04 Å, see Table 3.12 and Figure 3.22). The

hydroxymethyl group of lestaurtinib is predicted by the docking program to interact with

side chain of Asn751 (see magenta ligand on Figure 3.22), while in the crystal structure

4OTG it is pointing towards the glycine-rich loop (see cyan ligand on Figure 3.22).

Figure 3.22: Comparison of the binding mode of compound lestaurtinib observed in crystal
structure (PDB code 4OTG, protein is shown in pale green and ligand in cyan) and the
top-scored by glideSP pose from ensemble docking (hm_2esm is colored in grey and ligand
in magenta). G-rich loop is omitted for clarity.

Tofacitinib (CP-690550) is an ATP-competitive pan-JAK inhibitor,[17, 198] which
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is of particular interest due to its outstanding kinome selectivity for JAK, TYK and

PRK kinases.[19, 165] In November 2012 it has been approved by the US FDA for the

treatment of severe rheumatoid arthritis (RA) with inadequate response or intolerance to

methotrexate therapy.[199–201] It is marketed by Pfizer under the trade names Xeljanz

and Jakvinus. Tofacitinib has been also studied for the treatment of other autoimmune

diseases, e.g. psoriasis[202] and inflammatory bowel disease,[203] as well as for the

prevention of organ transplant rejection.[17, 204] The crystal structure of PRK1 with

tofacitinib (PDB code 4OTI) and the top-scored docking solution with homology model

hm_CP show almost identical conformations of tofacitinib with RMSD
tofacitinib

of 1.16

Å (see Table 3.12 and Figure 3.23).

Figure 3.23: Comparison of the binding mode of compound tofacitinib observed in crystal
structure (PDB code 4OTI, protein is shown in pale green and ligand in cyan) and the
top-scored by glide_SP pose from ensemble docking (hm_CP is colored in grey and ligand
in magenta).

This binding mode is also in agreement with previously solved X-ray structures of

tofacitinib with JAK1, JAK3 and TYK2 tyrosine kinases (PDB codes 3EYG, 3LXK

and 3LXN, respectively). The pyrrolopyrimidine sca�old of the inhibitor forms classical

two hydrogen bond interactions to the hinge region of PRK1 (residues Glu702 and
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Ser704), the 4-methyl-piperidine ring makes hydrophobic contacts with surrounding

residues in the lipophilic cavity (e.g. Met701, Leu753, Leu627, Val635, Ala763) ideally

filling the underlying pocket, and the terminal cyanoacetamide functionality is situated

under the glycine-rich loop (G-loop) forming polar contacts with main chain of Gly634,

Lys634, Val635, thus, stabilizing the G-loop which is known to be conformationally

flexible and may form interactions with diverse ligands. The SAR studies for tofacitinib

has shown that the cyanoacetamide side chain plays an important role in the binding

and ensures an optimal balance between ligand a�nity, selectivity and pharmacokinetic

properties.[17] The above-described features of tofacitinib ensure the high degree of shape

complementarity and, as a result, its exclusive kinome selectivity.

In summary, we could show that the homology models can be e�ectively used to

reproduce known ligand binding modes, nevertheless, some di�erences between the

predicted and experimental binding poses could be observed, as it is shown above.

Various factors can a�ect the docking prediction, e.g. model quality, absence/presence

of water, receptor and ligand flexibility. These aspects should be considered whenever

possible.



CHAPTER 4

Conclusions

4.1 Application of Computer-Based Approaches to Search for Novel PRK1 Inhibitors

4.1.1 Structure-Based and Ligand-Based VS

The present study describes the application of computer-aided drug design approaches

for the search of novel inhibitors of protein kinase C-related kinase 1 (PRK1). Various

approaches were applied for this purpose: homology modeling, ligand- and structure-

based virtual screening as well as binding free energy calculations for predicting the

biological activity.

PRK1 has been shown to be implicated in numerous cellular processes and is particularly

associated with prostate cancer, which makes it an attractive target for an anticancer

drug development. Despite the profound e�ect of PRK1 on the propagation of androgen

receptor driven cancer cell proliferation, there was little information available about the

PRK1 structure and its inhibitors. Due to the absence of a 3D structure of PRK1 at the

start of the project, we first developed a homology model of this enzyme. Docking studies

for known active and inactive compounds from our in-house library were performed. We

observed that the correct pose of kinase inhibitors could be identified in most cases by

the docking programs, but this conformation was not always found to be top ranked,

especially if the protein adopted another conformation than the specific ligand requires.
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Thus, multiple protein models based on inhibitor-bound conformational states of PRK1

were introduced in order to address protein flexibility. The results showed improved

docking performance in pose prediction and enrichment when an ensemble of protein

conformations was used.

Next, structure-based and ligand-based virtual screenings were applied to search

for novel PRK1 inhibitors. These included similarity search using ligand fingerprints

MOLPRINT2D and MACCS keys followed by ligand docking as well as pharmacophore-

based VS. The hits identified in VS experiments were further tested for their in vitro

biological activity. Several PRK1 inhibitors with di�erent sca�olds and potency have

been identified by these initial screenings, see Section 3.4.

4.1.2 Prediction of the Biological Activity

Another question we addressed in this work was the prediction of the biological activity

of novel compounds. The initial model based only on the docking scores could not

explain the activity of compounds as shown by the results of our previous ligand-based or

pharmacophore-based VS. The compounds, which were selected on the basis of favorable

docking scores, were shown to be only moderately active. Thus, there is a need for more

sophisticated methods that are able to evaluate the activity of compounds. The application

of binding free energy calculations using MM-PBSA and MM-GBSA approaches after

molecular dynamics simulation, which was performed for a small subset of 14 compounds

from Biomol library (see Section 3.3), has proven the potential for activity prediction.

However, such an approach is time-demanding and cannot be performed for a large

dataset. In order to find the optimal balance between the invested time and the quality

of the results, we tested the application of BFE calculations using a simplified method

which excludes molecular dynamics and explicit solvent (see Section 3.5).

The approach presented in this work employs the estimation of binding free energy using

MM-PBSA, MM-GBSA and QM/MM-GBSA calculations after a short minimization of

protein-ligand complex using an implicit solvent model. The results demonstrate that
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using only one snapshot derived after the minimization is su�cient to provide a reasonable

prediction of the binding free energy, but only if the correct starting conformation is

used. Therefore, in the absence of crystal structures, docking to ensemble of homology

models can increase the chance to obtain the correct pose for the ligands.

We observed that a significant correlation between calculated relative binding free

energies derived from the MM-PBSA calculations or predicted pIC
50

by developed QSAR

models and experimental IC
50

values for PRK1 inhibitors can be obtained (r2 = 0.61 us-

ing MM-PBSA approach and r2 = 0.78 using QSAR_model_3 on the training set). The

results of the validation on a test dataset, containing diverse PRK1 inhibitors with repor-

ted K
d

values, confirmed the good predictive ability of the final QSAR model (r2 = 0.68,

q2 = 0.59, r2

0

= 0.67 using QSAR_model_3, one outlier) Furthermore, the approach was

able to distinguish potent PRK1 inhibitors (IC
50

<100 nM) from moderate/weak binders

(IC
50

>100 nM). Nevertheless, despite the good results in the predicting the biological

activities of known PRK1 inhibitors, the above-described rescoring methodology has the

disadvantage of weaker discriminating power between active and inactive compounds if

compared to the GlideSP score. Thus, the suggested virtual screening strategy for the

search of potential PRK1 inhibitors should comprise a combination of ensemble docking

methodology with subsequent rescoring of the preselected best-scored compounds from

the previous step. Moreover, the compiled in house library of 28 PRK1 inhibitors and 300

true decoys together with the developed approach for predicting the biological activity

could be especially useful in the further optimization step of PRK1 kinase inhibitors.

Furthermore, the rescoring methodology developed in this work was validated on two

external datasets (see Section 3.6), which resulted in the identification of a number of

highly potent PRK1 inhibitors, proving the validity of the model.

4.1.3 Comparison of Di�erent VS Approaches to Search for PRK1 Inhibitors

In summary, we could see that di�erent virtual screening approaches such as pharmacophore-

or similarity-based methods as well as docking followed by the rescoring using BFE calcu-
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lations were successfully applied for a search of new PRK1 inhibitors. The resulting hit

rates were found to be in a range of 29 to 100 % (see Table see Table 4.1). These numbers

are obviously higher than the hit rate of in vitro screening using kinase-focused Biomol

library (≥3 %, see Table 4.1). In comparison, the average hit rate of high-throughput

screening (HTS) may vary from 0.1 to 2 % depending on the assay conditions and the

target.[205] These observations clearly show that the performance of virtual screening,

which utilizes knowledge about the structure of a target or its inhibitors, exceeds the

performance of random screening, thus, improving the time and cost e�ciency of lead

discovery process.

Table 4.1: The overview of the screening performance using di�erent approaches for a search
of PRK1 inhibitors. The overall hit rate (the number of compounds that bind to PRK1, "�
of active", divided by the number of experimentally tested molecules, "� of tested") and the
potency of identified inhibitors ("Activity range", measured as IC50) are shown.

Method Ligand/
Database

� of
tested

� of
active

Hit
rate

Activity
range, IC50

Focused library
screening

Biomol Kinase
Inhibitor Set 287 9 3 % 0.8 nM ≥ 2 µM

Similarity-based VS
(MOLPRINT2D
fingerprints)

HA-1077, H-7 4 3 75 % 29 ≥ 70 µM

Similarity-based VS
(MACCS
fingerprints)

CP-690550 18 9 50 % 1 ≥ 56 µM

Pharmacophore-
based VS PD-0166285 7 2 29 % 3 ≥ 5 µM

Ensemble docking
+BFE rescoring

Selleck Kinase
Inhibitor Set 5 5 100 % 11 ≥ 270 nM

Ensemble docking
+BFE rescoring

GSK Kinase
Inhibitor Set 25 8 32 % 40 nM ≥ 5 µM

Even though such approaches as similarity- or pharmacophore-based VS followed by

docking were successful in the identification of the molecules which bind to PRK1, they

were not able to discriminate compounds by their activities - the hits found by these



4.1 Application of Computer-Based Approaches to Search for Novel PRK1 Inhibitors 81

screenings were micromolar PRK1 inhibitors. The choice of compounds for in vitro testing

in this case was based on a high docking score and visual inspection of ligand-receptor

interactions, thus, there may be a few reasons why these approaches failed to identify

highly potent PRK1 inhibitors:

• Scoring. The primary task of the docking score is the accurate pose prediction and

enrichment of active compounds among the top-ranked compounds in a database;

docking score is not very e�ective in predicting the biological activity of compounds,

especially for structurally diverse molecules.

• Protein flexibility. If a wrong conformation of the protein binding pocket is used in

the docking experiment, the program may fail to recognize the correct ligand binding

mode. Most of the docking methodologies are sensitive for structural distortions

of the binding pocket and require a high-quality structure of the receptor, which,

ideally, must be co-crystallized with a ligand similar to docked compounds.

• Pose prediction. The correct pose of the inhibitor may be not identified in case if

the active ligand conformation was not sampled or it was not ranked as the best

one.

In contrast to the initial similarity- or pharmacophore-based VS, the docking combined

with BFE rescoring was able to identify novel nanomolar PRK1 inhibitors, as it was

shown on example of Selleck and GSK database screening (Sections 3.6.1 and 3.6.2).

However, some false positives were present among the selected hits (see the results for

GSK kinase inhibitor set, Table 3.10). As it was discussed previously (see Section 3.5.4.1),

the rescoring using minimization and BFE calculations may, first, allow the protein to

adjust for bigger ligands and, second, introduce larger errors when the energy of the

receptor is taken into account. As we could see from the results for GSK kinase inhibitor

set, the compounds selected for in vitro test had wide range of predicted pIC
50

values

(4.84 ≥ 7.02, see Table 3.10) while most of false-positive hits had predicted pIC
50

less

than 6. In this case the selection of compounds was guided also by their availability.



4.2 Analysis of PRK1 Crystal Structures 82

Since the GSK PKIS set is available free of charge, we decided to test 25 compounds

out of 367, which showed the best activity predictions including poorly predicted hits

(predicted pIC
50

of 4 ≥ 5). However, when only a small number of compounds can be

tested, it is recommended to use higher threshold for the predicted pIC
50

.

Following these observations, next recommendations can be concluded in order to

improve the VS performance:

• Such approaches as similarity-, pharmacophore- or docking-based VS can be e�ect-

ively used for the identification of PRK1 inhibitors, nevertheless, their scores usually

do not reflect the biological activity of the compounds. In order to prioritize hits for

further testing and to improve the screening success, ligand- and structure-based VS

methodologies should be combined with post-processing approaches, e.g. rescoring

using BFE calculations. The combination of di�erent methodologies may help to

compensate the disadvantages of each individual method.

• If the highly active hits are of interest, it is recommended to select compounds with

predicted pIC
50

(QSAR_model_3) above 6.

4.2 Analysis of PRK1 Crystal Structures

The recently released crystal structures of PRK1 (apo- and holo-, see Section 3.7) were

compared to the homology models developed in this work as well as to the corresponding

docking poses for ligands Ro-318220, lestaurtinib and tofacitinib. The results show

no significant di�erence between the experimentally-determined and predicted PRK1

structures, especially in the region of the ATP-binding pocket (RMSD
pocket Calpha

=

0.57 Å ≥ 1.54 Å). Another important finding underlines the role of protein flexibility

for ligand binding, showing that the loops of PRK1 outlining the ATP-binding pocket

(e.g. C-tail and G-loop) may adopt di�erent conformations and such conformational

di�erence should be taken into account during the docking experiments, especially when

structurally-diverse compounds are investigated. The ligand poses generated by the

docking program overall are in agreement with poses determined crystallographically,
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exhibiting minor di�erences in conformations of rotatable bonds, which can be explained

by the ligand flexibility or absence of the water molecules in the model. In general,

the current findings demonstrate the usefulness of PRK1 homology models, which were

shown to be e�ectively applied in virtual screenings.

4.3 Design of New PRK1 Inhibitors

During the last years a number of PRK1 inhibitors were identified using both in vitro and

in silico screening techniques. These compounds represent di�erent chemical classes and

display various potency and selectivity on PRK1. The knowledge about the structure and

activity of known PRK1 inhibitors as well as the analysis of their common and distinct

features can be further utilized for the design of novel compounds which aim to inhibit

PRK1 potently and selectively.

Below, the general conclusions and recommendations for the design of novel PRK1

inhibitors are discussed using tofacitinib (CP-690550) as an example. Tofacitinib repres-

ents one of the most potent PRK1 inhibitors identified. Being type I inhibitor, which

often su�ers from cross-reactivity, it has an exceptional selectivity profile (see Figure

4.1) and it represents an attractive lead for further SAR studies and optimization for

PRK1. The ATP-binding pocket of PRK1 was compared to JAK and possible strategies

for chemical modifications of tofacitinib were suggested.

1. The known PRK1 inhibitors are ATP-competitive and target active form of the

kinase (type I inhibitors). The crystal structures of PRK1 as well as of related kinases

PKC, PKA are solved in their active conformation. Furthermore, it is not known whether

PRK1 is able to adopt inactive conformation, which seriously hampers the development of

type II inhibitors. Moreover, the discovery of type I inhibitors tofacitinib and BIBW-2992

proved that it is possible to reach high selectivity levels comparable to most of type II

inhibitors.[19]

2. All known PRK1 inhibitors interact with the hinge region - di�erent hinge binding

motifs can be studied in SAR on tofacitinib. The additional hydrogen, halogen or hydro-
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Figure 4.1: Kinome interaction maps for PRK1 inhibitors staurosporine and CP-690550
(tofacitinib) tested in a comprehensive analysis of kinase inhibitor selectivity by Davis at
al.[19] The red circles indicate the a�nity of a compound to a kinase, the bigger circle means
higher a�nity.

phobic interactions with the hinge region or surrounding residues might be introduced to

tofacitinib by derivatizing of pyrrolopyrimidine sca�old with small substituents (chloro,

methyl or amino groups), see positions 1 and 2 in Figure 4.2a. Additionally, changing of

the pyrrolopyrimidine ring to a pyrrolopyridine might influence the PRK1/JAK selectivity

ratio, since the pyrrolopyrimidine nitrogen of tofacitinib (see position 3 in Figure 4.2a)

is known to interact with a conserved water molecule which is present in the JAK and

TYK2 crystal structures (PDB codes: 3EYG, 2FUP, 3LXK and 3LXN) but not in PRK1

(PDB code: 4OTI), which has a Phe910 residue of the C-tail at this position, see Figure

4.2b.

3. Most of the potent PRK1 inhibitors make additional hydrogen bonds to polar

residues in the ATP sugar binding region (e.g. Asp708, Asp750). The di�erences at

these positions can be further exploited in order to improve the PRK1/JAK selectivity

(these residues are mutated to Cys909 and Arg953 in JAK3, see Figure 4.2b). The
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Figure 4.2: Structure and binding mode of PRK1 inhibitor tofacitinib (CP-690550): a) the
chemical structure of tofacitinib and the positions for the suggested modifications to this
compound; b) the comparison of ATP-binding pockets of JAK3 kinase (PDB code: 3LXK,
light grey protein and magenta ligand, the conserved water interacting with tofacitinib is
depicted as a red sphere) and PRK1 (PDB code: 4OTI, pale green protein and cyan ligand)
in complex with tofacitinib.

hydrogen-bond donating groups can be introduced to tofacitinib in order to target the

residues Asp708 or Asp750 by modifying compound at positions 4 and 5 (amino-methyl

group and methyl of piperidine, see Figure 4.2a).

4. The hydrophobic pockets I and II (see Figure 1.3) are often explored to modulate

selectivity of kinase inhibitors. The derivatization of the tofacitinib pyrrolopyrimidine

(or, alternatively, pyrrolopyridine) sca�old with various hydrophobic groups including

chloro, bromo, fluoro substituents can be done in order to target these pockets.

5. Another distinct feature of PRK1, as well as other AGC kinases, is the presence of

the C-terminal tail which can insert Phe904 into the ATP-binding pocket, while many

other kinases including JAKs are solvent-accessible at this region (see Figure 4.2b). Like

it was shown for inhibitors such as H-7 and HA-1077, the isoquinoline sca�old makes

aromatic interaction with Phe904. The pyrrolopyrimidine sca�old and the amino-methyl

group of tofacitinib are also able to form van der Waals contacts to the side chain of
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Phe904, see crystal structure 4OTI.[184] Di�erent C-tail conformations and possibility of

interactions with Phe904 should be considered during the design of potent and selective

PRK1 inhibitors.

6. The glycine-rich loop (G-loop) is known to adopt di�erent conformations and to play

a role in selectivity modulation.[206] The alpha cyano acetamide moiety of tofacitinib

fits well into the small pocket formed by G-loop and the catalytic Lys650 and makes

numerous contacts with G-loop residues, which might be one of the reasons for its high

kinome selectivity. The replacement of the cyano acetamide moiety of tofacitinib (see

position 6 in Figure 4.2a) to other chemical groups with similar features might help to

understand the structure-activity relationships better and to design new compounds with

improved selectivity to PRK1.

In summary, tofacitinib as well as other PRK1 inhibitors identified in the current work

can be further explored in structure-activity relationships studies and serve as a starting

point for lead optimization in order to improve potency and selectivity for PRK1.
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Figure A.1: Root mean square deviation plots (RMSD, Å, y-axis) for 14 Biomol compounds
for which 10 ns MD simulation (Time, ps, x-axis) was performed (RMSD for ligand is shown
in red and for protein in black).
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Table A.1: Compounds from ChEMBL database, which were tested on PRK1 before the
year 2011 and have reported activity. Duplicates were removed, e.g. when the same ChEMBL
compound was tested in one assay, but has few di�erent publication records; or when the
same ChEMBL compound has few entries for residual activity.[166]

N ChEMBL
ID Name Standard

type Relation Standard
value

Standard
units Year

1 38380 Fasudil IC
50

= 1700 nM 2003
2 388978 Staurosporine K

d

= 1.3 nM 2008
3 603469 Lestaurtinib K

d

= 5.3 nM 2009
4 608533 Midostaurin K

d

= 9.3 nM 2008
5 1240703 CGP-52421 K

d

= 57 nM 2009
6 522892 Dovitinib K

d

= 180 nM 2008
7 221959 Tofacitinib K

d

= 200 nM 2008
8 91829 Ruboxistraurin K

d

= 350 nM 2008
9 535 Sunitinib K

d

= 710 nM 2008
10 572878 Tozasertib K

d

= 1500 nM 2008
11 1721885 K

d

= 1900 nM 2008
12 428690 Alvocidib K

d

= 3500 nM 2008
13 595373 RAa = 68-97 % 2009
14 595143 RA = 83-99 % 2009
15 604483 RA = 91-99 % 2009
16 1234815 Inhibition = -9 % 2008
17 1241674 Inhibition = 1 % 2008
18 1233882 Inhibition = 2 % 2008
19 1230790 Inhibition = 3 % 2008
20 1081312 Inhibition = 5 % 2008
21 1233881 Inhibition = 6 % 2008
22 1241578 Inhibition = 6 % 2008
23 1077739 Inhibition = 9 % 2009
24 521179 SR-3677 Inhibition < 10 % 2008
25 1254209 Inhibition = 18 % 2009
26 1170139 Inhibition = 28 % 2010
27 1081678 Inhibition < 50 % 2009
28 1078665 Inhibition < 50 % 2009
29 1164180 Inhibition < 50 % 2010
30 1163565 Inhibition < 50 % 2010
31 1165499 Inhibition < 50 % 2010
32 1164181 Inhibition < 50 % 2010
33 1164265 Inhibition < 50 % 2010
34 1082758 Inhibition = 53 % 2010
35 1163566 Inhibition = 82 % 2010
36 577784 BX-795 Inhibition = 84 % 2009
37 1171523 Inhibition = 85 % 2010
38 379300 A-443654 Inhibition = 100 % 2009

a RA = residual activity
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Figure A.2: PRK1 inhibitors identified by comprehensive assay set for protein kinases by
Davis et al.[19] (test set, DS2).
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