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Abstract

We consider homoclinic solutions for Hamiltonian systems in symplectic Hilbert spaces and generalise 
spectral flow formulas that were proved by Pejsachowicz and the author in finite dimensions some years 
ago. Roughly speaking, our main theorem relates the spectra of infinite dimensional Hamiltonian systems 
under homoclinic boundary conditions to intersections of their stable and unstable spaces. Our proof has 
some interest in its own. Firstly, we extend a celebrated theorem by Cappell, Lee and Miller about the clas-
sical Maslov index in R2n to symplectic Hilbert spaces. Secondly, we generalise the classical index bundle 
for families of Fredholm operators of Atiyah and Jänich to unbounded operators for applying it to Hamil-
tonian systems under varying boundary conditions. Finally, we substantially make use of striking results by 
Abbondandolo and Majer to study Fredholm properties of infinite dimensional Hamiltonian systems.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

MSC: primary 58E05; secondary 58J30, 34G10, 47A53

1. Introduction

Let E be a real separable Hilbert space, let I := [0, 1] denote the unit interval and let S : I ×
R → S(E) be a family of bounded selfadjoint operators on E which is continuous with respect 
to the norm topology. We assume that J : E → E is a bounded operator such that J 2 = −IE , 
J T = −J , and consider differential equations of the form
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⎧⎨⎩Ju′(t) + Sλ(t)u(t) = 0, t ∈R

lim
t→±∞u(t) = 0.

(1)

Let us denote for λ ∈ I and t0 ∈ R by

Eu
λ(t0) = {u(t0) ∈ E : Ju′(t) + Sλ(t)u(t) = 0, lim

t→−∞u(t) = 0} ⊂ E,

Es
λ(t0) = {u(t0) ∈ E : Ju′(t) + Sλ(t)u(t) = 0, lim

t→+∞u(t) = 0} ⊂ E
(2)

the unstable and stable subspaces of (1). Note that (1) has a non-trivial solution if and only if 
Eu

λ(t0) ∩ Es
λ(t0) �= {0} for some (and hence any) t0 ∈ R.

If we denote by L2(R, E) and H 1(R, E) the usual spaces of maps having values in E, then we 
obtain differential operators

Aλ : H 1(R,E) ⊂ L2(R,E) → L2(R,E), (Aλu)(t) = Ju′(t) + Sλ(t)u(t) (3)

which have a non-trivial kernel if and only if (1) has a non-trivial solution (see [5]).
In [5] Abbondandolo and Majer studied Fredholm properties of the operators Aλ in relation to 
the stable and unstable subspaces (2). Their motivation came from a Morse homology in Hilbert 
spaces that they constructed in [4] (see also [8]) and where differential equations of the form (1)
naturally appear. In these works, the linear theory was developed that is necessary for the set-up 
of Morse homology on Hilbert manifolds (see [6], [7]). Applications of their theory can be found, 
e.g., in the study of periodic orbits of Hamiltonian systems, periodic solutions of wave equations 
and solutions of classes of elliptic systems as in [1], [2], [10], [23], [26], [30], [34] and [47]. 
One of the long term aims of this paper is to open up recent methods from variational bifurcation 
theory (cf. [20], [38]) to such classes of nonlinear equations by following the author’s work [52], 
where the case E = R2n was considered. Moreover, we intend to make our findings applicable to 
such Hamiltonian PDEs by using new comparison methods for the spectral flow from our paper 
[53].
In what follows, we assume that the family S : I ×R → S(E) is of the form

Sλ(t) = Bλ + Kλ(t), (4)

where

(A1) Kλ(t) is compact for all (λ, t) ∈ I ×R, and the limits

Kλ(±∞) = lim
t→±∞Kλ(t)

exist uniformly in λ,
(A2) the operators JBλ and

JSλ(±∞) := J (Bλ + Kλ(±∞))

are hyperbolic, i.e., there are no purely imaginary points in their spectra.
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We will show below that it follows from [4] that the operators Aλ are selfadjoint Fredholm op-
erators under the assumptions (A1) and (A2). Consequently, the spectral flow sf(A) is defined, 
which is a homotopy invariant for paths of selfadjoint Fredholm operators (see Section 2.2.2 be-
low).
The operator J : E → E induces a symplectic form on E by ω(u, v) = 〈Ju, v〉, which makes it 
a symplectic Hilbert space (see [15] and [36]). The Maslov index for paths of Lagrangian sub-
spaces was first generalised to infinite dimensional symplectic Hilbert spaces by Swanson in [46]. 
Here we follow the survey [22] of Booß-Bavnbek and Furutani’s approach [14]. Henceforth, let 
FL2(E, ω) denote the Fredholm Lagrangian Grassmannian of pairs of spaces (see Section 2.1). 
We will explain below that it follows from [5] that {(Eu

λ(t0), Es
λ(t0))}λ∈I is a path in FL2(E, ω), 

and so its Maslov index μMas(E
u· (t0), Es· (t0)) is defined for every fixed t0 ∈ R. Actually, it is 

readily seen that this integer does not depend on the choice of t0. The main theorem of this paper 
reads as follows.

Theorem A. If the assumptions (A1) and (A2) hold, then

sf(A) = μMas(E
u· (0),Es· (0)).

Let us point out that, in the special case E = R2n, this is a generalisation of the author’s 
previous work [52] as well as of the recent paper [25] by Hu and Portaluri.
Let us now consider for the operators Sλ(±∞) from (A2) the families of subspaces

Es
λ(±∞) = {x ∈ E : exp(tJSλ(±∞))x → 0 as t → ∞},

Eu
λ(±∞) = {x ∈ E : exp(tJSλ(±∞))x → 0 as t → −∞}.

Note that these are the stable and unstable subspaces (2) for the autonomous equations⎧⎨⎩Ju′(t) + Sλ(±∞)u(t) = 0, t ∈ R

lim
t→±∞u(t) = 0.

(5)

Moreover, it can be seen from [5] that {(Eu
λ(+∞), Es

λ(−∞))}λ∈I is a path in FL2(E, ω). We 
obtain below the following corollary of Theorem A, which was proved for E = R2n by Pejsa-
chowicz in [37].

Corollary. If (A1), (A2) hold and S0(t) = S1(t) for all t ∈ R in (1), then

sf(A) = μMas(E
u· (+∞),Es· (−∞)).

Consequently, if the path of operators A in (3) is periodic, then its spectral flow can be com-
puted from the stable and unstable spaces of the autonomous equations (5). Obviously, the latter 
spaces are much easier to obtain than those in (2) for the original problem (1). Finally, it is worth 
mentioning that, by proving the above corollary, we further show that, for E = R2n, Pejsachow-
icz’ theorem [37] can be obtained from our work [52]. To the best of our knowledge, this has not 
been noted before.
669



N. Waterstraat Journal of Differential Equations 303 (2021) 667–700
The argument for proving Theorem A partially follows an approach to the author’s work [52]
that was recently proposed by Hu and Portaluri in [25]. They pointed out that Theorem A can be 
obtained for E = R2n from Cappell, Lee and Miller’s seminal investigations about the Maslov 
index [18] in finite dimensions. As we want to use [18] as well, we in particular need to generalise 
one of the main theorems of that paper to infinite dimensions. This result is of independent inter-
est, and we now want to introduce it briefly. For every path {(�0(λ), �1(λ))}λ∈I in FL2(E, ω), 
we obtain differential operators

Qλ :D(Qλ) ⊂ L2([a, b],E) → L2([a, b],E), (Qλu)(t) = Ju′(t), (6)

on the domains

D(Qλ) = {u ∈ H 1([a, b],E) : u(a) ∈ �0(λ), u(b) ∈ �1(λ)}.

We show below that each Qλ is selfadjoint and Fredholm. Moreover, we investigate whether the 
path Q = {Qλ}λ∈I is continuous with respect to the so called gap-metric (see Section 2.2.1), in 
which case its spectral flow sf(Q) is defined. In what follows, we call a path {(�0(λ), �1(λ))}λ∈I

in FL2(E, ω) admissible if �0(0) ∩ �1(0) = �0(1) ∩ �1(1) = {0}.

Theorem B. If {(�0(λ), �1(λ))}λ∈I is an admissible path in FL2(E, ω), then the corresponding 
path of differential operators Q is a continuous path of selfadjoint Fredholm operators, and

sf(Q) = μMas(�0(·),�1(·)).

For obtaining Theorem A from Theorem B, we need to deal with the spectral flow for paths of 
operators having varying domains. This is usually a delicate problem, as apart from non-obvious 
continuity issues like in Theorem B, we also essentially loose the opportunity to apply crossing 
forms, which is probably the most powerful method for computing spectral flows (see, e.g., 
[41], [20], [21], [52]). However, when Atiyah, Patodi and Singer introduced the spectral flow 
for closed paths of selfadjoint Fredholm operators in [13], they showed that it can be computed 
as first Chern number of a family index. The latter index is an element of the odd K-theory 
group K−1(S1) ∼= Z, and a further aim of this paper is to show that an adapted construction 
can be used for non-closed paths that are continuous in the gap-topology, where we mainly 
review material from our PhD thesis [48] that has not been published yet. Let us assume that H
is a complex Hilbert space and let us denote by �(CFsa(H), GCsa(H)) the set of all paths of 
selfadjoint Fredholm operators on H that are continuous with respect to the gap-topology and 
have invertible endpoints. In what follows, we denote by K−1(X, Y) the odd K-theory group of 
a compact pair of spaces (X, Y) (cf., e.g., [32], [44]) and by ∂I the boundary of the unit interval 
I . Moreover, we use that the Chern number is an isomorphism c1 : K−1(I, ∂I) → Z (cf. [51, 
App. A]). Our construction yields a new proof of the following theorem of Nicolaescu [36].

Theorem C. There exists a map

s-ind : �(CF sa(H),GCsa(H)) → K−1(I, ∂I )

such that
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c1(s-ind(A)) = sf(A) ∈ Z

for every A ∈ �(CF sa(H), GCsa(H)).

Let us emphasize that the novelty in our proof of Theorem C is the particular form of the 
family index s-ind(A) ∈ K−1(I, ∂I) which is substantially used in the proof of Theorem A in 
Section 5.2. That our construction of s-ind(A) can be convenient in applications to differential 
operators was already demonstrated in [50] and [51], where a previous version of Theorem C and 
s-ind(A) for paths of selfadjoint Fredholm operators having a fixed domain have been applied to 
compute spectral flows.
Let us outline the structure of the paper. The content is rather technical and requires a couple 
of preliminaries, and so we begin in the next section with a recap of the spectral flow and the 
Maslov index. In the section on the spectral flow, we will recall several facts about the gap-metric 
on the space of selfadjoint Fredholm operators. Afterwards, we introduce Theorem A, B and C 
in detail and prove them in the order B, C, A. However, we want to point out that B and C are 
independent of each other and so the reader might also read C before B.
Finally, we want to make a few remarks on our notation. In general, H is a real or complex 
Hilbert space unless otherwise stated. However, if we require the Hilbert space to be real, we 
denote it by E instead of H . The symbols L(H) and GL(H) stand for the bounded and invertible 
operators on H , respectively. Moreover, BF(H) denotes the subspace of L(H) of all bounded 
Fredholm operators. In this paper, we mostly deal with unbounded operators, and we denote by 
C(H) ⊃ L(H) the closed operators on H . As usual, σ(S) stands for the spectrum of S ∈ C(H), 
and S∗ denotes its adjoint. However, also here we use a different notation for real Hilbert spaces 
E, where the adjoint will be denoted by ST as for the transpose of a real matrix. This is in 
accordance with the notation in [52], where we considered the equations (1) in finite dimensions. 
Finally, the identity on E is denoted by IE , which we abbreviate by I2n in the case that E = R2n.

Acknowledgement

There was a further assumption in Theorem A in a previous version of this work, which 
required that the relative dimension (25) vanishes. We want to thank Hermann Schulz-Baldes 
(Erlangen) who explained to us that this actually follows from (A1) and (A2).

2. Preliminaries: Maslov index and spectral flow

2.1. Fredholm Lagrangian Grassmannian and the Maslov index

The aim of this section is to recall some basic facts about the Maslov index for paths of Fred-
holm pairs of Lagrangian subspaces in a symplectic Hilbert space. There are different notions of 
symplectic Hilbert spaces (see e.g. [16]), but here such spaces are Hilbert spaces (E, 〈·, ·〉) with 
an invertible bounded operator J : E → E such that J T = −J and J 2 = −IE , where J T denotes 
the adjoint of J . The corresponding symplectic form on E is given by ω(x, y) = 〈Jx, y〉. Our 
main reference in this section is Furutani’s work [22], who defines a symplectic Hilbert space as 
a pair (E, ̃ω) where ω̃ is a non-degenerate skew-symmetric bounded bilinear form. Of course, 
our form ω has all these properties. Moreover, it is shown in [22] that every ω̃ is of the form of 
our ω for some operator J which has the above properties if we just modify the scalar product of 
E to an equivalent one.
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An important observation, here and below, is that the set of all closed subspace G(E) in a Hilbert 
space E is canonically a metric space with respect to the gap-metric

dG(U,V ) = ‖PU − PV ‖, U,V ∈ G(E), (7)

where PU and PV denote the orthogonal projections onto U and V , respectively. Actually, G(E)

is an analytic Banach manifold (see [9]), which however, will not be needed in this paper. Instead, 
we now suppose that E is a symplectic Hilbert space and consider a submanifold of G(E). Let 
us first recall that a closed subspace L ⊂ E is called Lagrangian if

L = L◦ := {x ∈ E : ω(x, y) = 0 for all y ∈ E}.
Henceforth, we will hardly make use of this definition, but use the elementary fact that L ∈ G(E)

is Lagrangian if and only if

L⊥ = J (L), (8)

where L⊥ denotes the orthogonal complement with respect to the scalar product 〈·, ·〉 of E ([22, 
Prop. 1.7]). Note that the set of all Lagrangian subspaces �(E, ω) of E inherits a metric from 
G(E), but let us mention in passing that the topology of �(E, ω) depends substantially on the 
dimension of E. Indeed, if E is of finite dimension, then �(E, ω) has an infinitely cyclic funda-
mental group and an isomorphism to the integers is given by the Maslov index [11]. In contrast, 
if E is of infinite dimension, as we usually assume in this paper, then �(E, ω) is contractible 
as a consequence of Kuiper’s Theorem (see [22, Thm. 1.14]). However, �(E, ω) contains an 
interesting subset which is topologically non-trivial and has shown a lot of times to be the right 
setting for generalising the Maslov index to infinite dimensions.
Let us recall that two subspaces L, M ∈ G(E) are a Fredholm pair if

dim(L ∩ M) < ∞ and codim(L + M) < ∞,

and the index of a Fredholm pair is defined by

ind(L,M) = dim(L ∩ M) − codim(L + M).

It is often required in the definition of a Fredholm pair that L +M is closed. That this is redundant 
was explained, e.g., in [14].
For a fixed W ∈ �(E, ω), we denote by FLW(E, ω) the set of all L ∈ �(E, ω) such that (L, W)

is a Fredholm pair, and we note that

ind(L,W) = 0, L ∈FLW(E,ω), (9)

by (8) (see [35, (1.3)]). It can be shown that FLW(E, ω) is an open subset of �(E, ω), and 
moreover, it has an infinitely cyclic fundamental group by [22, Thm. 1.54]. The Maslov index 
extends to this infinite dimensional setting as integer valued invariant μMas(�, W) for paths �
in FLW(E, ω). Its heuristic interpretation is as in the finite dimensional case, namely, it is the net 
number of intersections of �(λ) and W whilst λ travels along the unit interval. The construction 
of the Maslov index consists of two parts. Firstly, there is a map from FLW(E, ω) to a set UJ of 
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unitary operators on a complex Hilbert space. Secondly, there is a winding number for paths of 
operators in UJ . The composition of these maps is the Maslov index and indeed reduces to the 
classical one if E is of finite dimension. We recap this construction from [22] in Appendix A, 
where we need it to prove Lemma A.1 which is crucial in the final step of the proof of Theorem 
A. Apart from this, we will not use any particular details about the construction, but just need the 
following three basic properties which can all be found in [22]:

(i) If �(λ) ∩ W = {0} for all λ ∈ I , then μMas(�, W) = 0.
(ii) The Maslov index is additive under the concatenation of paths, i.e.

μMas(�1 ∗ �2,W) = μMas(�1,W) + μMas(�2,W)

if �1, �2 : I → FLW(E, ω) are two paths such that �1(1) = �2(0).
(iii) If � : I × I →FLW(E, ω) is a homotopy such that �(s, 0) and �(s, 1) are constant for all 

s ∈ I , then

μMas(�(0, ·),W) = μMas(�(1, ·),W).

Finally, given the fact that the fundamental group of FLW(E, ω) is infinitely cyclic, it is not 
difficult to see that μMas actually provides an explicit isomorphism between FLW(E, ω) and 
the integers (see [22, §3]).
As in the finite dimensional case, the Maslov index can be generalised to pairs of subspaces. 
Note that the diagonal � in E × E is a Lagrangian subspace, when E × E is considered as 
symplectic Hilbert space with respect to the symplectic form ωE×E = ωE × (−ωE). It is readily 
seen that �1(λ) × �2(λ) ∈ FL�(E × E, ωE×E) if (�1(λ), �2(λ)) ∈ FL2(E, ω), where the 
latter set denotes the set of all Fredholm pairs of Lagrangian subspaces of E. The Maslov index 
of a path of pairs (�1, �2) in FL2(E, ω) is defined as the Maslov index of �1 × �2 as a path 
in FL�(E × E, ωE×E). It is shown in [22, Prop. 2.32] that μMas(�1, �2) = μMas(�1, W) if 
�2 ≡ W is a constant path, so that this is indeed an extension of the Maslov index for paths in 
FLW(E, ω). Of course, we obtain as immediate results from the above properties (i)-(iii)

(i’) If �1(λ) ∩ �2(λ) = {0} for all λ ∈ I , then μMas(�1, �2) = 0.
(ii’) The Maslov index is additive under the concatenation of paths, i.e.

μMas((�1,�2) ∗ (�̃1, �̃2)) = μMas(�1,�2) + μMas(�̃1, �̃2)

if (�1, �2), (�̃1, �̃2) : I → FL2(E, ω) are two pairs of paths such that (�1(1), �2(1)) =
(�̃1(0), �̃2(0)).

(iii’) If (�1, �2) : I × I →FL2(E, ω) is a homotopy such that �1(s, 0), �2(s, 0), �1(s, 1) and 
�2(s, 1) are constant for all s ∈ I , then

μMas((�1(0, ·),�2(0, ·))) = μMas((�1(1, ·),�2(1, ·))).

As π1(FL2(E, ω)) ∼= Z by [35, Cor. 1.6] if E is of infinite dimension, the following assertion 
is an immediate consequence of the definition of μMas on FL2(E, ω) and the fact that it is an 
isomorphism π1(FLW(E, ω)) → Z for fixed Lagrangian subspaces W .
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Theorem 2.1. The Maslov index

μMas : π1(FL2(E,ω)) →Z

is an isomorphism if E is of infinite dimension.

Note that Theorem 2.1 is wrong for finite dimensional spaces E. Indeed, if E = R2n, then 
FL2(R2n, ω) = �(R2n) × �(R2n) and consequently

π1(FL2(R2n,ω)) = π1(�(R2n)) × π1(�(R2n)) = Z⊕Z.

2.2. The spectral flow in the gap metric

2.2.1. Fredholm operators and the gap metric
In this section, we consider (possibly) unbounded operators T : D(T ) ⊂ H → H , which are 

defined on a dense subspace D(T ) of the Hilbert space H which can be either real or complex. 
Let us recall that T is closed if its graph, which we henceforth denote by graph(T ), is a closed 
subspace of H × H . Note that the set C(H) of all closed operators on H can be canonically 
embedded into the Grassmannian G(H × H) and so inherits a metric. In other words,

dG(S,T ) = ‖Pgraph(S) − Pgraph(T )‖, S, T ∈ C(H), (10)

defines a metric on C(H), which is called the gap-metric. The topologies induced by the operator 
norm and the gap-metric on the subset of bounded operators L(H) ⊂ C(H) are equivalent (see 
[29, Rem. IV.2.16]). In particular, every norm-continuous family of operators in L(H) is also 
continuous in C(H). In what follows, we will use this fact without further reference. Finally, 
note that even though G(H × H) is complete, (C(H), dG) is not, which is readily seen by con-
sidering a sequence of graphs that converges in G(H × H) to a space which has a non-trivial 
intersection with {0} × H .
There are two subsets of C(H) that will be of particular interest for us. Firstly, let us recall that a 
densely defined operator T is called selfadjoint if it is symmetric and D(T ) = D(T ∗), where T ∗
denotes the adjoint of T . Clearly, every selfadjoint operator is closed, and in what follows we de-
note by Csa(H) ⊂ C(H) the subset of all selfadjoint operators. Secondly, an operator T ∈ C(H)

is Fredholm if its kernel and its cokernel are of finite dimension. The difference of these numbers 
is the index of T . Let us point out that every Fredholm operator has a closed range im(T ) ⊂ H

(see [24]). Henceforth, we denote by CF(H) ⊂ C(H) the subset of all Fredholm operators, and 
by CFk(H) the elements in CF(H) of index k ∈ Z. Note that there is an important difference 
between the previous definitions: a selfadjoint operator is automatically closed, whereas we re-
quire a Fredholm operator to be closed in its definition. In what follows, we will be in particular 
interested in the intersection of Csa(H) and CF(H), i.e. the set of selfadjoint Fredholm operators, 
which we denote by CF sa(H). Note that every element of CF sa(H) has Fredholm index 0, i.e. 
CF sa(H) ⊂ CF0(H). The next lemma, that we will use several times below, gives a complete 
characterisation of which elements of CF0(H) actually belong to CF sa(H).

Lemma 2.2. If T ∈ CF0(H) is symmetric, then T ∈ CF sa(H). In other words, a symmetric 
Fredholm operator of index 0 is selfadjoint.
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Proof. As T is symmetric, we see that ker(T ) ⊂ (imT )⊥, and since both spaces are of the same 
dimension for Fredholm operators of index 0, this shows that

(imT )⊥ = ker(T ). (11)

We now claim that every symmetric Fredholm operator which satisfies (11) is selfadjoint, where 
we follow an argument that we have learnt from the proof of Proposition 3.1 in [42]. We let 
u ∈ D(T ∗) and note at first that 〈u, T v〉 = 〈w, v〉 for w = T ∗u ∈ H and all v ∈ D(T ). As im(T )

is closed, we see from (11) that there are w1 ∈ ker(T ) and u1 ∈ D(T ) such that w = w1 + T u1. 
Therefore,

〈u − u1, T v〉 = 〈T ∗u,v〉 − 〈T u1, v〉 = 〈w − T u1, v〉 = 〈w1, v〉, (12)

and the latter term vanishes for all v ∈ im(T ) ∩D(T ) by (11).
By (11), every v ∈ D(T ) can be written as v = v1 + v2 where v1 ∈ ker(T ) and v2 ∈ im(T ). As 
ker(T ) ⊂ D(T ), we see that actually v2 ∈ im(T ) ∩D(T ). Hence, by (12),

〈u − u1, T v〉 = 〈u − u1, T v2〉 = 0, v ∈D(T ),

and so u − u1 ∈ (imT )⊥ = ker(T ) ⊂ D(T ), where we have used once again (11). Since u1 ∈
D(T ), we finally obtain u ∈D(T ) and so T is selfadjoint. �

As usual, if T : D(T ) ⊂ H → H and S : D(S) ⊂ H → H are densely defined, their com-
position T S is an operator on D(T S) = S−1(D(T )). We note the following simple corollary of 
Lemma 2.2 for later reference.

Corollary 2.3. If T ∈ CF sa(H) and M ∈ GL(H), then M∗T M ∈ CF sa(H).

If W ⊂ H is a dense subset that is a Hilbert space in its own right, then we can consider

BF sa(W,H) := {T ∈ L(W,H) : T Fredholm, T ∗ = T }, (13)

where the adjoint is meant as adjoint of an unbounded operator on H with dense domain W . 
Note that BF sa(W, H) inherits a topology from the space of bounded operators L(W, H). On 
the other hand, BF sa(W, H) is a subset of CF sa(H) and so one might ask about the relation of 
the different topologies. This was answered by Lesch in [33, Prop. 2.2] as follows.

Theorem 2.4. The canonical inclusion

BF sa(W,H) ⊂ CF sa(H)

is continuous.

In particular, any path in BF sa(W, H) is also continuous with respect to the gap-topology, 
which we will use below in the proof of Theorem A.
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2.2.2. The spectral flow
The reader who is well acquainted with the spectral flow as introduced in [17] will just need 

to skim through the rest of this section to become familiar with our notations. Let us point out 
that we denote, as in previous sections, parameters by λ. We are aware that it is common in the 
literature to use t instead, but this would clash with the variable t in (1). In particular, let us 
emphasize that in what follows, λ is never an element of the spectrum of an operator.
We recall at first that for every selfadjoint Fredholm operator T there is ε > 0 and a neighbour-
hood NT ,ε ⊂ CF sa(H) such that ±ε /∈ σ(S) and the spectral projection χ[−ε,ε](S) is of finite rank 
for all S ∈ NT ,ε . If now A : I → CF sa(H) is a path, then there are 0 = λ0 < λ1 < . . . < λN = 1
such that the restriction of A to [λi−1, λi] is contained in a neighbourhood NTi,εi

for some 
Ti ∈ CF sa(H) and εi > 0. We set

sf(A) =
N∑

i=1

(
dim(im(χ[0,εi ](Aλi

)) − dim(im(χ[0,εi ](Aλi−1))
)
. (14)

Note that the dimensions of the images of the spectral projections in (14) are just the number of 
eigenvalues in [0, εi] including their multiplicities.
It was first observed by Philips in [39] that this definition does not depend on the choices of the 
numbers λi and εi . Note that, roughly speaking, the spectral flow is the net number of eigenvalues 
of A0 that cross zero whilst the parameter λ travels along the interval I . The most important 
properties of the spectral flow are

(i) If Aλ is invertible for all λ ∈ I , then sf(A) = 0.
(ii) If A1 and A2 are two paths in CF sa(H) such that A1

1 = A2
0, then

sf(A1 ∗A2) = sf(A1) + sf(A2).

(iii) Let h : I × I → CF sa(H) be a homotopy such that h(s, 0) and h(s, 1) are invertible for all 
s ∈ I . Then

sf(h(0, ·)) = sf(h(1, ·)).

Let us point out that the first two properties are immediate consequences of the definition (14), 
whereas the third one requires a little bit of work. Actually, it is easy to see that the homotopy 
invariance even holds when the endpoints are not invertible as long as the dimension of the 
kernels of h(s, 0) and h(s, 1) are constant. This is obvious from the interpretation of the spectral 
flow, and also easy to see from the proof of (iii) in [39]. Let us finally note the following stability 
property of the spectral flow for later reference (cf. [27, Lemma 2.1]).

Lemma 2.5. Let A : I → CF sa(H) be gap-continuous and Aδ = A + δIH for δ ∈R. Then

sf(A) = sf(Aδ)

for any sufficiently small δ > 0.
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We will need below a characterisation of the spectral flow that is due to Lesch [33]. Let us 
denote by �(CF sa(H), GCsa(H)) the set of all paths in CF sa(H) having invertible endpoints. 
Note that a selfadjoint Fredholm operator is invertible if and only if its kernel is trivial. Let 
P+, P− and P0 be three orthogonal projections in H such that P+, P− have infinite dimensional 
kernel and range, and dim(imP0) = 1. We also assume that these projections are complementary, 
which means that the products of each two of them vanish and that P+ + P0 + P− is the identity 
IH . Then

Aλ = P− + (λ − 1

2
)P0 + P+ (15)

is a path of bounded selfadjoint operators which is invertible as long as λ �= 1
2 . For λ = 1

2 the 
image of P0 is the kernel and cokernel of A 1

2
and so this operator is Fredholm. As the canonical 

inclusion of the bounded selfadjoint Fredholm operators BFsa(H) into CF sa(H) is continuous 
by [33, Prop. 2.2], we see that Anor := {Aλ}λ∈I is a path in CF sa(H). The reader will have no 
difficulty to see from (14) that sf(Anor ) = 1. The following theorem was proved by Lesch in 
[33].

Theorem 2.6. Assume that μ : �(CF sa(H), GCsa(H)) → Z is a map that has the same proper-
ties (ii) and (iii) as the spectral flow. If μ(Anor) = 1, then

μ = sf : �(CF sa(H),GCsa(H)) → Z.

The reader should not be puzzled that the property (i) is not mentioned in Theorem 2.6, as it 
follows from (ii) and (iii). Indeed, it is readily seen from (ii) that the spectral flow of a constant 
path vanishes. As every path of invertible operators can be contracted to a point by a homotopy 
of invertible operators, (i) now follows from (iii).
Finally, let us consider the case of a path A in CF sa(E), where E is a real Hilbert space. In this 
case there are two ways to define the spectral flow of A. Firstly, as we previously allowed our 
Hilbert spaces to be real or complex, we can use (14) as introduced above. Secondly, we can 
consider the complexification EC = E + iE of E which is canonically a complex Hilbert space. 
The complexified operators AC

λ are in CF sa(EC), and so the spectral flow of the complexified 
path AC = {AC

λ }λ∈I is defined as well. As the complex dimensions of eigenspaces of AC
λ are 

equal to the real dimension of the eigenspaces of Aλ, we see from (14) that

sf(A) = sf(AC). (16)

Even though the operators for studying the equations (1) are defined in real Hilbert spaces, one of 
our topological constructions below requires operators in complex Hilbert spaces. The obtained 
equation (16) will become important in that step.

3. Theorem B

We now have recalled all necessary preliminaries for discussing Theorem B. Let (E, ω) be 
a symplectic Hilbert space and {(�0(λ), �1(λ))}λ∈I a path in FL2(E, ω). As before, we let 
J : E → E be the almost complex structure induced by ω and assume that J is compatible with 
the scalar product of E, i.e. J 2 = −IE and J T = −J . Now we consider for a, b ∈ R, a < b, the 
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differential operators (6) and our first aim is to show that the Fredholm and Lagrangian properties 
of (�0(λ), �1(λ)) are strictly related to the Fredholmness and selfadjointness of Qλ.

Lemma 3.1. The operator Qλ belongs to CF sa(L2([a, b], E)) if and only if

(�0(λ),�1(λ)) ∈ FL2(E,ω).

Proof. We first note that the kernel of Qλ is isomorphic to �0(λ) ∩�1(λ). Moreover, it is readily 
seen that the range of Qλ is J (�0(λ) + �1(λ)) ⊕ V , where

V =
⎧⎨⎩w ∈ L2([a, b],E) :

b∫
a

w(s) ds = 0

⎫⎬⎭ .

Thus the kernel and cokernel of Qλ are of finite dimension if and only if (�0(λ), �1(λ)) is a 
Fredholm pair. Next, we note that for u, v ∈ D(Qλ)

〈Qλu, v〉L2([a,b],E) =
b∫

a

〈Ju′(t), v(t)〉dt = 〈Ju(b), v(b)〉 − 〈Ju(a), v(a)〉 +
b∫

a

〈u(t), J v′(t)〉dt.

The right hand side of this equation is equal to 〈u, Qλv〉L2([a,b],E) for all u, v ∈ D(Qλ) if and 
only if

〈Jx, y〉 = 〈J x̃, ỹ〉 = 0, for all x, y ∈ �0(λ), x̃, ỹ ∈ �1(λ),

which means that J�1(λ) = �1(λ)⊥ and J�0(λ) = �0(λ)⊥. Hence, by (8), Qλ is symmetric if 
and only if �0(λ) and �1(λ) are Lagrangian. Let us point out that we now have already shown 
that (�0(λ), �1(λ)) ∈ FL2(E, ω) if Qλ ∈ CF sa(L2([a, b], E)).
By a standard argument, Qλ is closed if �0(λ), �1(λ) ∈ G(E). Thus, it follows from the first 
step of our proof that Qλ is Fredholm if (�0(λ), �1(λ)) is a Fredholm pair. Moreover, if 
(�0(λ), �1(λ)) ∈ FL2(E, ω), then, by (9),

ind(Qλ) = dim(�0(λ) ∩ �1(λ)) − codim(�0(λ) + �1(λ)) = 0.

Therefore, Qλ ∈ CF sa(L2([a, b], E)) by Lemma 2.2. �
By the previous lemma, the operators Qλ are in CF sa(L2([a, b], E)). Our Theorem B now 

shows that these operators actually define a path in CFsa(L2([a, b], E)) whose spectral flow 
can be computed by the Maslov index. Let us recall from the introduction that we call a path 
{(�0(λ), �1(λ))}λ∈I in FL2(E, ω) admissible if �0(0) ∩ �1(0) = �0(1) ∩ �1(1) = {0}.

Theorem B. Let {(�0(λ), �1(λ))}λ∈I be an admissible path in FL2(E, ω). Then the path Q in 
(6) is continuous in CF sa(L2([a, b], E)) and

sf(Q) = μMas(�0(·),�1(·)).
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Proof. We first note that the theorem can be proved by using a symplectic reduction along the 
lines of Steps 3 and 4 of [36, Thm. 6.2]. Alternatively, it suffices to follow the argument in the 
proof of Theorem 1.1 in [27] as follows. At first it can be shown that the Maslov index is uniquely 
determined by the properties (i’)-(iii’) in Section 2.1 and the fact that there is an admissible path 
in FL2(E, ω) having Maslov index 1. The preliminary Lemma 2.5 in [27] still holds in infinite 
dimensions when using [22, Rem. 1.33] and [40]. Moreover, a path of Maslov index 1 was 
constructed in Example 2.31 in [22]. Now define a map that associates to each admissible path 
in FL2(E, ω) the spectral flow of Q in (6). This map has the properties (i’)-(iii’) by (i)-(iii) in 
Section 2.2.2. For the path in Example 2.31 of [22], the spectra of the corresponding operators 
Qλ can easily be explicitly computed, which then confirms that sf(Q) = 1 in this case and proves 
the spectral flow formula in Theorem B. The asserted continuity of Q can be obtained verbatim 
as in Proposition 2.3 of [27]. �
4. Theorem C

In this section, we let H be a complex Hilbert space unless otherwise stated. The index bundle 
for families of bounded Fredholm operators in a Hilbert space was independently introduced by 
Atiyah and Jänich in the sixties (see [12] and [28]). It assigns to any family L : X → BF(H) of 
bounded Fredholm operators on H a K-theory class ind(L) ∈ K(X) which has several properties 
that are similar to the Fredholm index of a single operator. The index bundle was later generalised 
to families of Fredholm operators in Banach spaces (see [54]), and to morphisms between Banach 
bundles in [49]. Let us briefly recall the latter construction, as we will need it below in the 
definition of the index bundle for gap-continuous families.
Let E and F be Banach bundles over a compact and connected base space X and let L : E → F
be a bundle morphism which is Fredholm in every fibre. It was shown in [49] that there is a finite 
dimensional subbundle V ⊂ F such that

im(Lλ) + Vλ = Fλ, λ ∈ X. (17)

As V is finite dimensional, there is a bundle morphism P : F → F such that P 2 = P and 
im(Pλ) = Vλ, λ ∈ X. Hence the composition

E L−→ F IF−P−−−→ V ′

is a surjective Banach bundle morphism onto V ′ = im(IF − P). As the fibrewise kernels of 
surjective Banach bundle morphisms are Banach bundles (see [31]), and ker((IFλ

− Pλ) ◦ Lλ) =
L−1

λ (Vλ), we obtain a subbundle

E(L,V) := L−1(V) ⊂ E .

It is readily seen that

dim(E(L,V)) = ind(Lλ) + dim(V), λ ∈ X, (18)

where ind(Lλ) denotes the Fredholm index of the operator Lλ.
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Let us now assume that Y ⊂ X is a closed subset of X such that Lλ is invertible for all λ ∈ Y . 
Then L induces a morphism L : E(L, V) → V between finite dimensional vector bundles, which 
is an isomorphism over Y . Hence we obtain a K-theory class (cf. [51, App. A])

ind(L) = [E(L,V),V,L] ∈ K(X,Y ),

which we call the index bundle of L. This definition is sensible as it can be shown that ind(L)

does not depend on the choice of the bundle V in (17).

4.1. The index bundle for gap-continuous families

Let us now consider a gap-continuous family A : X → CF(H) of Fredholm operators on H
which are parametrised by a compact space X. The aim of this section is to generalise the index 
bundle of Atiyah and Jänich to this setting of unbounded Fredholm operators, where we follow 
[48] (see also [19]). Note that the domains D(Aλ) are not constant and so the classical construc-
tion cannot be adapted straight away just by using graph norms. The key step of our approach 
is the construction of the domain bundle, for which we want to recall at first the following well 
known theorem that can be found, e.g., in [45, Thm. 3.2].

Theorem 4.1. Let p : E → X be a surjective map from some set E to a topological space X, and 
let J be an index set. Let {Uj }j∈J be an open cover of X, and suppose that we are given for 
each Uj a Banach space Ej and a bijection

ϕj : p−1(Uj ) → Uj × Ej

such that p = p1 ◦ ϕj on p−1(Uj ), where p1 : Uj × Ej → Uj denotes the projection onto the 
first component. Moreover, we assume that, for each pair Ui, Uj such that Ui ∩ Uj �= ∅, the map

Ui ∩ Uj → GL(Ej ,Ei), λ �→ (ϕi ◦ ϕ−1
j )λ

is continuous with respect to the norm topology.
Then there exists a unique topology on E making it into the total space of a Banach bundle with 
projection p and trivialising covering {Uj }j∈J .

If A : X → CF(H) is continuous with respect to the gap-topology on CF(H), then there is 
a family of projections P : X → L(H × H) such that im(Pλ) = graph(Aλ). It follows from the 
Neumann series that for every λ0 ∈ X there is an open neighbourhood Uλ0 such that

Pgraph(Aλ0 ) |graph(Aλ): graph(Aλ) → graph(Aλ0)

is an isomorphism for all λ ∈ Uλ0 , and the map

Uλ0 � λ �→ (Pgraph(Aλ0 ) |graph(Aλ))
−1 ∈ L(graph(Aλ0),H × H)

is continuous with respect to the norm topology on the latter space (see [9] or [48, §6.1]). We 
now consider the disjoint union
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D(A) :=
∐
λ∈X

D(Aλ)

and in what follows we denote by π : D(A) → X the canonical surjection. We define

τλ0 : π−1(Uλ0) → Uλ0 × graph(Aλ0), τλ0(λ,u) = (λ,Pgraph(Aλ0 )(u,Aλu)),

and note that graph(Aλ0) ⊂ H × H is a Banach space as Aλ0 is a closed operator. It is readily 
seen that these maps satisfy all assumptions of Theorem 4.1. Hence we obtain a Hilbert bundle 
π : D(A) → X, which we call the domain bundle of the family A. Moreover, A canonically 
induces a bundle morphism between D(A) and the product bundle X × H , which is a Fredholm 
morphism if A : X → CF(H) is a family of Fredholm operators. Hence we can apply the index 
bundle construction for Fredholm morphisms between Banach bundles from above to obtain a 
K-theory class

ind(A) ∈ K(X,Y ),

which we henceforth call the index bundle of the family A : X → CF(H).
The following properties of the index bundle are straightforward consequences of the corre-
sponding rules for Fredholm morphisms (cf. [49]).

• If Aλ ∈ CF(H) is invertible for every λ ∈ X, then

ind(A) = 0 ∈ K(X,Y ).

• Let A1, A2 : X → CF(H) be such that A1,λ and A2,λ are invertible for all λ ∈ Y . Then

ind(A1 ⊕A2) = ind(A1) ⊕ ind(A2) ∈ K(X,Y ).

• If h : I × X → CF(H) is continuous and h(s, λ) is invertible for all s ∈ I and λ ∈ Y , then

ind(h(0, ·)) = ind(h(1, ·)) ∈ K(X,Y ).

• If (X′, Y ′) is another compact pair and f : (X′, Y ′) → (X, Y) continuous, then (f ∗A)λ =
Af (λ) defines a gap-continuous family f ∗A : X′ → CF(H) such that (f ∗A)λ is invertible 
for all λ ∈ Y ′. Moreover,

ind(f ∗A) = f ∗ ind(A) ∈ K(X′, Y ′).

We will need in the proof of Theorem A the following important property of the index bundle, 
which was not shown in [48] in this generality.

Lemma 4.2. Let A : X → CF(H) be gap-continuous and such that Aλ is invertible for all λ ∈
Y ⊂ X. If M, N : X → GL(H) are continuous families of invertible operators on H , then MAN

is gap-continuous, and

ind(MAN) = ind(A) ∈ K(X,Y ).
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Proof. Note that

graph(MλAλNλ) = {(u,MλAλNλu) : u ∈ N−1
λ (D(Aλ))} = {(N−1

λ v,MλAλv) : v ∈ D(Aλ)}

=
(

N−1
λ 0
0 Mλ

)
graph(Aλ) =: Uλ graph(Aλ) ⊂ H × H,

and so {UλPgraph(Aλ)U
−1
λ }λ∈X is a continuous family of oblique projections onto

{graph(MλAλNλ)}λ∈X in L(H × H). By [29, Thm. I.6.35], the corresponding orthogonal pro-
jections Pgraph(MλAλNλ) onto graph(MλAλNλ) satisfy

‖Pgraph(MμAμNμ) − Pgraph(MλAλNλ)‖ ≤ ‖UμPgraph(Aμ)U
−1
μ − UλPgraph(Aλ)U

−1
λ ‖, μ,λ ∈ X,

and consequently {Pgraph(MλAλNλ)}λ∈X is continuous. This shows that MAN is gap-continuous.
For the second claim, we just need to note that, by Kuiper’s Theorem, M and N are homotopic 
to the constant family Gλ = IH , λ ∈ X. Hence we obtain by the homotopy invariance

ind(MAN) = ind(A) ∈ K(X,Y ),

where the continuity of the homotopy follows as in the first part of this proof. �
4.2. Spectral flow and the index bundle

We now consider families A : X → CF sa(H), and we assume again that Y ⊂ X is a closed 
subset such that Aλ is invertible for λ ∈ Y . We set

Â : X ×R→ CF(H)

where D(Â(λ,s)) = D(Aλ) for (λ, s) ∈ X ×R and

Â(λ,s) = Aλ + i s IH .

Note that Â(λ,s) is invertible if s �= 0 as Aλ is selfadjoint. Hence, Â(λ,s) is in CF(H) for all 
(λ, s) ∈ X ×R.

Lemma 4.3. The family Â : X ×R → CF(H) is gap-continuous.

Proof. We let λ0 ∈ X, s0 ∈ R, and obtain from the triangle inequality

dG(Aλ + is IH ,Aλ0 + is0 IH ) ≤dG(Aλ + is IH ,Aλ0 + is IH )

+dG(Aλ0 + is IH ,Aλ0 + is0 IH ).
(19)

By [29, Thm. IV.2.17], we have

dG(Aλ + is IH ,Aλ0 + is IH ) ≤ 2(1 + s2) dG(Aλ,Aλ0). (20)

For the remaining term, we note that the family of isomorphisms
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Us : H × H → H × H, Us(u, v) = (u, v − i(s − s0)u)

maps graph(Aλ0 + is IH ) to graph(Aλ0 + is0 IH ). Hence U−1
s Pgraph(Aλ0+is0 IH )Us is an oblique 

projection onto graph(Aλ0 + is IH ). Now use the corresponding argument in the proof of 
Lemma 4.2. �

Note that, as Â(λ,s) is invertible for all (λ, s) that are outside of the compact space X × {0}, 
it is clear that there is a finite dimensional subspace V ⊂ H such that (17) holds. Hence the 
domain bundle E(Â, V ) is defined and Â induces a Fredholm morphism E(Â, V ) → �(V ), 
where �(V ) now denotes the product bundle with fibre V over X ×R. Consequently, we obtain 
an odd K-theory class

s-ind(A) := [E(Â,V ),�(V ), Â] ∈ K(X ×R, Y ×R) = K−1(X,Y ),

which we call the index bundle of the selfadjoint family A. Finally, it is readily seen that the 
properties of the index bundle from Section 4.1 carry over to s-ind(A). Moreover, we obtain 
from Corollary 2.3 and Lemma 4.2 the following result.

Lemma 4.4. Assume that A : X → CF sa(H) is such that Aλ is invertible for all λ ∈ Y . Let 
M : X → GL(H) be a family of bounded invertible operators and let us denote by M∗

λ the 
adjoint of Mλ. Then

s-ind(M∗AM) = s-ind(A) ∈ K−1(X,Y ).

In order to discuss Theorem C, we now consider the case that (X, Y) = (I, ∂I). Note that 
there is an isomorphism c1 : K−1(I, ∂I) → Z (cf. [51, App. A]). Hence we can assign to any 
path in CF sa(H) having invertible endpoints an integer as first Chern number of its index bundle.

Theorem C. Let A = {Aλ}λ∈I be a path in CF sa(H) such that A0 and A1 are invertible. Then

sf(A) = c1(s-ind(A)) ∈Z.

Proof. We recall from Section 2.2.2 that �(CF sa(H), GCsa(H)) denotes the set of all paths in 
CF sa(H) having invertible endpoints. We set

μ : �(CF sa(H),GCsa(H)) →Z, μ(A) = c1(s-ind(A)) ∈ Z

and now show that μ satisfies all assumptions of Theorem 2.6. Firstly, the homotopy invariance 
directly follows from the corresponding property of the index bundle. For the additivity under 
concatenation, it can first be shown that if A ∈ �(CF sa(H), GCsa(H)), f1, f2 : I → I are con-
tinuous functions such that f1(0) = 0, f2(1) = 1, f1(1) = f2(0), and if Af1(1) ∈ GCsa(H), then

s-ind((f1 ∗ f2)
∗A) = s-ind(f ∗

1 A) + s-ind(f ∗
2 A) ∈ K−1(I, ∂I ). (21)

This follows by using elementary homotopies as in [41, Prop. 4.26] and the fact that the 
domain bundle D(A) is trivial as the base space I × R is contractible. Let now A1, A2 ∈
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�(CF sa(H), GCsa(H)) be such that the concatenation A1 ∗A2 is defined. We define two func-
tions f1, f2 : I → I by f1(t) = 1

2 t , f2(t) = 1
2 (t + 1), and note that f1 ∗ f2 is the identity on I , 

as well as f ∗
i (A1 ∗ A2) = Ai for i = 1, 2. The additivity under concatenation now follows by 

applying (21) to f1, f2 and A := A1 ∗A2. Finally, we consider the path Anor = {Aλ}λ∈I in (15), 
and recall that Aλ is not invertible if and only if λ = λ0 := 1

2 . The kernel and cokernel of Aλ0 are 
the one-dimensional space V := im(P0) and so this space satisfies (17). Thus

s-ind(A) = [�(V ),�(V ), Â |V ] = [�(C),�(C), κ] ∈ K−1(I, ∂I ),

where

κ : I ×R→ C, κ(λ, s) = λ − λ0 + is.

As the first Chern number on K−1(I, ∂I) is given by the winding number (cf. [51, (30)]), this 
yields

μ(A) = c1(s-ind(A)) = 1

2πi

∫
S1

1

z − λ0
dz = 1 ∈Z,

and so Theorem C is shown. �
Let us point out that it follows from (16) that if E is a real Hilbert space and A = {Aλ}λ∈I a 

path in CF sa(E), then

sf(A) = c1(s-ind(AC))). (22)

5. Theorem A

5.1. Setting and statement

Let E be a symplectic Hilbert space with symplectic form ω(x, y) = 〈Jx, y〉E , where J :
E → E is a bounded linear operator such that J 2 = −IE and J T = −J . We let S : I ×R → S(E)

be a family of selfadjoint operators on E and consider the differential operators

Aλ : H 1(R,E) ⊂ L2(R,E) → L2(R,E), (Aλu)(t) = Ju′(t) + Sλ(t)u(t). (23)

In what follows, we assume that

Sλ(t) = Bλ + Kλ(t), (λ, t) ∈ I ×R,

where

(A1) Kλ(t) is compact for all (λ, t) ∈ I ×R, and the limits

Kλ(±∞) = lim
t→±∞Kλ(t)

exist uniformly in λ,
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(A2) the operators JBλ and

JSλ(±∞) := J (Bλ + Kλ(±∞))

are hyperbolic, i.e., there are no purely imaginary points in their spectra.

The next two lemmas show that the spectral flow and the Maslov index in Theorem A are well 
defined.

Lemma 5.1. The operators Aλ are selfadjoint Fredholm operators under the assumptions (A1) 
and (A2).

Proof. Let us recall that two closed subspaces V, W ⊂ E are called commensurable if the dif-
ference of their orthogonal projections PV − PW is compact. Their relative dimension is defined 
by

dim(V ,W) = dim(W ∩ V ⊥) − dim(W⊥ ∩ V )

which is a finite number (see [3, §2]). By (A2), the operators JSλ(±∞) have no spectra on the 
imaginary axis. Hence there are splittings

E = V −(JSλ(+∞)) ⊕ V +(JSλ(+∞)) = V −(JSλ(−∞)) ⊕ V +(JSλ(−∞)), (24)

where V −(JSλ(±∞)) and V +(JSλ(±∞)) denote the invariant subspaces of JSλ(±∞) with 
respect to the negative and positive complex half-plane, respectively. Moreover, by (A1), the 
operators JSλ(+∞) − JSλ(−∞) are compact, which implies that the same is true for the dif-
ferences of their spectral projections onto V −(JSλ(+∞)) and V −(JSλ(−∞)) (see, e.g., [5, 
Lemma 3.2]). Hence these spaces are commensurable by [5, Lemma 3.3] and so their relative 
dimension is defined.
It was proved in [5, Thm. B] that the operators Aλ are Fredholm under the assumptions (A1)-
(A2) and their Fredholm index is given by

ind(Aλ) = dim(V −(JSλ(+∞)),V −(JSλ(−∞))). (25)

We now claim that ind(Aλ) = 0. Let us note at first that V −(−AT ) = V −(A)⊥ for any hy-
perbolic operator A on E (see, e.g., [5, §1]). Hence, for A = JSλ(±∞), V −(JSλ(±∞))⊥ =
V −(Sλ(±∞)J ). By (8), we see that the number (25) vanishes if

JV −(JSλ(±∞)) = V −(Sλ(±∞)J ), (26)

i.e. if V −(JSλ(±∞)) are Lagrangian subspaces of E. To show this equality, we only need to 
note that

J−1(μ − JSλ(±∞))−1J = (μ − Sλ(±∞)J )−1
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for any μ /∈ σ(JSλ(±∞)). Therefore, if P1 and P2 denote the spectral projections onto 
V −(JSλ(±∞)) and V −(Sλ(±∞)J ), respectively, we get that J−1P1J = P2. Hence, as J−1 =
−J , P2 projects onto

J−1 im(P1) = J im(P1) = JV −(JSλ(±∞))

and (26) and so (25) is shown.
Finally, it is readily seen that Aλ is symmetric by integration by parts. Hence, it follows from 
Lemma 2.2 that these operators are selfadjoint Fredholm operators. �

Note that each Aλ has the same domain H 1(R, E) which makes it easy to show A = {Aλ}λ∈I

is a continuous path in BF sa(H 1(R, E), L2(R, E)). Hence, by Theorem 2.4, we see that A is 
continuous in CF sa(L2(R, E)), and so the spectral flow sf(A) is defined.

Lemma 5.2. If (A1) and (A2) hold, then (Eu
λ(t0), Es

λ(t0)) ∈ FL2(E, ω) for any λ ∈ I and t0 ∈ R.

Proof. Abbondandolo and Majer showed in [5, Thm. D] that (Eu
λ(t0), Es

λ(t0)) is a Fredholm pair 
if and only if Aλ is Fredholm. Hence, by Lemma 5.1, it remains to show that Eu

λ(t0), Es
λ(t0) ∈

�(E, ω). We consider the differential equations u′(t) − A(t)u(t) = 0, where A is a continuous 
path of operators such that the limits limt→±∞ A(t) exist and are hyperbolic. It was shown in [5, 
Thm. 2.1] that the stable and unstable spaces Es(A, t0) and Eu(A, t0) of such an equation satisfy

Es(−AT , t0) = Es(A, t0)
⊥, Eu(−AT , t0) = Eu(A, t0)

⊥.

We set A(t) := JSλ(t) and obtain

E
s/u
λ (t0)

⊥ = Es/u(JSλ, t0)
⊥ = Es/u(SλJ, t0).

Clearly, u is a solution of u′(t) − Sλ(t)Ju(t) = 0 if and only if v(t) := Ju(t) satisfies Jv′(t) +
Sλ(t)v(t) = 0. Hence

E
s/u
λ (t0)

⊥ = Es/u(SλJ, t0) = JE
s/u
λ (t0),

which shows that these spaces are Lagrangian by (8). �
Finally, it follows from [5, Thm. 3.1] that (Eu

λ(t0), Es
λ(t0)) ∈ FL2(E, ω) depends con-

tinuously on Sλ : R → S(E) with respect to the L∞-topology on C(R, S(E)). Hence 
{(Eu

λ(t0), Es
λ(t0))}λ∈I is a continuous family in FL2(E, ω), and so the Maslov index is defined. 

The main theorem of this paper, which we prove in the following section, now reads as follows:

Theorem A. Let S : I × R → S(E) be a continuous family of bounded selfadjoint operators 
satisfying the assumptions (A1) and (A2). Then

sf(A) = μMas(E
u· (0),Es· (0)).

Let us now consider the equations (1) under the additional periodicity assumption
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(A3) S0(t) = S1(t) for all t ∈R,

which implies that the path A of operators in (23) is periodic, i.e. A0 = A1. The autonomous 
systems

⎧⎨⎩Ju′(t) + Sλ(±∞)u(t) = 0, t ∈ R

lim
t→±∞u(t) = 0,

(27)

have the stable and unstable spaces

Es
λ(±∞) = {x ∈ E : exp(tJSλ(±∞))x → 0 as t → ∞} = V −(JSλ(±∞))

Eu
λ(±∞) = {x ∈ E : exp(tJSλ(±∞))x → 0 as t → −∞} = V +(JSλ(±∞)),

where V +(JSλ(±∞)) and V −(JSλ(±∞)) are as in (24). The following corollary generalises 
the main theorem of [37] from R2n to symplectic Hilbert spaces.

Corollary. If (A1)-(A3) hold, then

sf(A) = μMas(E
u· (+∞),Es· (−∞)).

Proof. We take a similar approach as in [25, Prop. 3.3] and consider for t0 > 0 the concatenation 
γ1 ∗ γ2 ∗ γ3 of the paths

γ1 = {(Eu
0 (λ · t0)),Es

0(−λ · t0)}λ∈I , γ2 = {(Eu
λ(t0),E

s
λ(−t0))}λ∈I ,

γ3 = {(Eu
1 ((1 − λ)t0),E

s
1(−(1 − λ)t0))}λ∈I .

We need to verify that they are in FL2(E, ω), and firstly note that we have seen in the proof of 
Lemma 5.2 that all of these spaces are Lagrangian. Hence we only need to show that each pair 
of unstable and stable spaces in γ1, γ2 and γ3 is Fredholm.
Let us consider γ2 and leave γ1 and γ3 to the reader as the argument is similar and actually 
simpler. We set Aλ(t) = Sλ(t − 2t0) for t ∈ R, as well as

Es(Aλ, t0) = {u(t0) ∈ E : Ju′(t) + Aλ(t)u(t) = 0, u(t) → 0, t → +∞} ⊂ E,

and note that Es(Aλ, t0) = Es
λ(−t0), where the latter space is the stable space in Theorem A. By 

(A1), the operators Aλ(t) −Sλ(t) = Kλ(t −2t0) −K(t) are compact, and so [5, Thm. 3.6] implies 
that Es(Aλ, t0) and Es

λ(t0) are commensurable. Moreover, (Eu
λ(t0), Es

λ(t0)) is a Fredholm pair 
by Lemma 5.2. Now we just need to recall that if V, W, Z ⊂ E are subspaces such that V, W are 
commensurable and (Z, V ) is a Fredholm pair, then (Z, W) is a Fredholm pair as well (see [3, 
Prop. 2.2.1]). Hence (Eu

λ(t0), Es
λ(−t0)) = (Eu

λ(t0), Es(Aλ, t0)) ∈ FL2(E, ω).
As {(Eu

λ(0), Es
λ(0))}λ∈I is homotopic to γ1 ∗ γ2 ∗ γ3, we obtain from the homotopy invariance 

and the concatenation property of the Maslov index, as well as (46),
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μMas(E
u· (0),Es· (0)) = μMas(γ1) + μMas(γ2) + μMas(γ3)

= μMas(γ2) = μMas(E
u· (t0),E

s· (−t0)),

where we have used that S0 = S1 and so γ1 = −γ3.
Finally, it was shown in [5, Thm. 2.1] that Eu

λ(±t) → Eu
λ(±∞) and Es

λ(±t) → Es
λ(±∞) in 

G(E) for t → ∞. As the stable and unstable spaces depend continuously on the asymptotically 
hyperbolic family Sλ by [5, Thm. 3.1], this shows that

μMas(E
u· (0),Es· (0)) = μMas(E

u· (+∞),Es· (−∞)).

Consequently, the corollary follows from Theorem A. �
Let us point out that, in the special case where E is of finite dimension, this corollary also 

shows that the main theorem of [37] follows from our previous work [52], which was not known 
before.

5.2. Proof of Theorem A

We split the proof into four steps. Our aim of the first three steps is to prove the following 
weaker version of Theorem A.

Theorem 5.3. If the assumptions of Theorem A hold and the differential equations (1) only have 
the trivial solution for λ = 0 and λ = 1, then

sf(A) = μMas(E
u· (0),Es· (0)).

For proving Theorem 5.3, we begin by considering the Maslov index and apply in our first 
step an idea of Hu and Portaluri from [25]. Then Theorem B will be used in the second step to 
join the Maslov index with the spectral flow of a path of differential operators having varying 
domains. The index bundle construction and Theorem C will show in the third step that this 
spectral flow is actually sf(A), which shows Theorem 5.3. Finally, in the fourth step, we lift the 
additional assumption in Theorem 5.3 and obtain Theorem A in its full generality.

5.2.1. Step 1: from μMas(E
u· (0), Es· (0)) to Q

We have noted above that {(Eu
λ(0), Es

λ(0))}λ∈I is a continuous path in FL2(E, ω). Hence by 
Theorem B we have for every fixed t0 > 0

μMas(E
u· (0),Es· (0)) = sf(Q), (28)

where Q = {Qλ}λ∈I is the path of operators

Qλ : D(Qλ) ⊂ L2([−t0, t0],E) → L2([−t0, t0],E)

defined by Qλu = Ju′ on the domains

D(Qλ) = {u ∈ H 1([−t0, t0],E) : u(−t0) ∈ Eu(0), u(t0) ∈ Es(0)}.
λ λ
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5.2.2. Step 2: from Q to A0

We consider the differential operators

A0
λ :D(A0

λ) ⊂ L2([−t0, t0],E) → L2([−t0, t0],E), (A0
λu)(t) = Ju′(t) + Sλ(t)u(t),

on the domains

D(A0
λ) = {u ∈ H 1([−t0, t0],E) : u(−t0) ∈ Eu

λ(−t0), u(t0) ∈ Es
λ(t0)}.

Let � : [−t0, t0] → GL(E) be given by

{
J�′

λ(t) + Sλ(t)�λ(t) = 0, t ∈ [−t0, t0],
�λ(0) = IE

(29)

and define a family of isomorphisms M : I → GL(L2([−t0, t0], E)) by

(Mλu)(t) = �−1
λ (t) u(t).

We note that by (29)

(�T
λ (t)J�λ(t))

′ = (�′
λ(t))

T J�λ(t) + �T
λ (t)J�′

λ(t)

= (JSλ(t)�λ(t))
T J�λ(t) + �T

λ (t)J 2Sλ(t)�λ(t) = 0,

and see from the initial value in (29) that �T
λ (t)J�λ(t) = J for all t ∈ [−t0, t0] and λ ∈ I . Hence

�−1
λ (t) = −J�T

λ (t)J, (�−1
λ (t))T = −J�λ(t)J, (λ, t) ∈ I × [−t0, t0]. (30)

We now claim that

A0
λ = MT

λ QλMλ, λ ∈ I. (31)

Indeed, we first see that

D(MT
λ QλMλ) = M−1

λ D(Qλ)

= {u ∈ H 1([−t0, t0],E) : u(−t0) ∈ �λ(−t0)E
u
λ(0), u(t0) ∈ �λ(t0)E

s
λ(0)}

= {u ∈ H 1([−t0, t0],E) : u(−t0) ∈ Eu
λ(−t0), u(t0) ∈ Es

λ(t0)} = D(A0
λ),

where we have used that �λ(t)E
s/u
λ (0) = E

s/u
λ (t) for all t ∈ R. Furthermore, it follows from (30)

that for t ∈ [−t0, t0]
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(MT
λ QλMλu)(t) = −J�λ(t)J (J (�−1

λ (t))′u(t) + J�−1
λ (t)u′(t))

= Ju′(t) − J�λ(t)J (J (−J (�′
λ(t))

T J )u(t))

= Ju′(t) − J�λ(t)J (−(J�′
λ(t))

T u(t))

= Ju′(t) − J�λ(t)J (Sλ(t)�λ(t))
T u(t)

= Ju′(t) − J�λ(t)J�λ(t)
T Sλ(t)u(t)

= Ju′(t) + J (�λ(t)
T J�λ(t))

T Sλ(t)u(t)

= Ju′(t) + JJ T Sλ(t)u(t)

= Ju′(t) + Sλ(t)u(t) = (A0
λu)(t).

Hence (31) is shown, which implies by Corollary 2.3 that each A0
λ is a selfadjoint Fredholm 

operator. Moreover, A0 is a gap-continuous path in CF sa(L2([−t0, t0], E)) by Lemma 4.2, and 
so the spectral flow sf(A0) is defined.
The claimed equality sf(A0) = sf(Q) is also readily seen from (31). Indeed, we just need to 
note that M is homotopic in GL(L2([−t0, t0], E)) to the constant path IL2([−t0,t0],E). Hence the 
homotopy invariance of the spectral flow yields

sf(Q) = sf(MT QM) = sf(A0),

where the continuity of the homotopy follows once again from Lemma 4.2. This equality was 
the aim of this second step of our proof.

5.2.3. Step 3: from A0 to A
The aim of our third step is to show that

sf(A0) = sf(A), (32)

which we will do by using (16), the index bundle for gap-continuous families and Theorem C. 
Consequently, we need to work with the complexifications of A0 and A. In order to simplify 
our notation, we denote in this step EC by H , but we do not introduce new symbols for the 
complexifications of operators and their domains.
The following technical lemma is needed below.

Lemma 5.4. Let A = {Aλ}λ∈X be a gap-continuous family in CF sa(H). Then there are 
λ1, . . . , λm ∈ X such that

V := ker(Aλ1) + · · · + ker(Aλm) (33)

satisfies

im(Aλ) + V = H, λ ∈ X. (34)
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Proof. We note at first that the assertion is obviously true if Aλ is invertible for all λ ∈ X. Let us 
now assume that there is λ0 ∈ X such that ker(Aλ0) �= {0}. Let

ψ :D(A) |U→ U × graph(Aλ0)

be a trivialisation of the domain bundle D(A) in a neighbourhood U of λ0, and let us consider 
the bounded Fredholm operators Lλ := Aλ ◦ψ−1

λ : graph(Aλ0) → H for λ ∈ U . If P denotes the 
orthogonal projection onto the closed subspace im(Aλ0) ⊂ H , then the composition

graph(Aλ0)
Lλ0−−→ H

P−→ im(Aλ0)

is surjective. By [24, Thm. XI.6.1], there exists a bounded right inverse M , i.e. (P ◦ Lλ0) ◦ M =
Iim(Aλ0 ). As GL(im(Aλ0)) is open in L(im(Aλ0)) in the norm topology, we see that there is a 
neighbourhood Uλ0 ⊂ U such that (P ◦ Lλ) ◦ M ∈ GL(im(Aλ0)) for all λ ∈ Uλ0 . Consequently, 
P ◦ Lλ is surjective or, equivalently,

im(Aλ) + ker(Aλ0) = im(Lλ) + ker(Aλ0) = H, λ ∈ Uλ0,

where we have used that im(Aλ0)
⊥ = ker(Aλ0).

Let us now denote by � ⊂ X the set of all λ ∈ X such that ker(Aλ) is non-invertible. As the 
set of invertible elements in C(H) is open by [29, Thm. IV.5.2.21], we see that � is closed as 
preimage of a closed set under the continuous map A : X → CF sa(H). Hence, as X is compact, 
we can find λ1, . . . , λm such that the corresponding neighbourhoods {Uλi

}i=1,...,m from the first 
step of the proof are a finite open cover of �. Finally, we set as in (33)

V := ker(Aλ1) + · · · + ker(Aλm)

and note that this space indeed satisfies (34). �
In what follows, we denote by p : L2(R, H) → L2([−t0, t0], H) the restriction to the interval 

[−t0, t0]. Let us recall that

D(A0
λ) = {u ∈ H 1([−t0, t0],H) : u(−t0) ∈ Eu

λ(−t0)
C, u(t0) ∈ Es

λ(t0)
C}

and D(Aλ) = H 1(R, H). We define for λ ∈ I a map

ιλ : D(A0
λ) →D(Aλ)

by extending u ∈ D(A0
λ) to the whole real line by its boundary values as follows. If u(−t0) ∈

Eu
λ(−t0)

C , we can extend u to the interval (−∞, −t0) as solution of the differential equation 
Ju′(t) + Sλ(t)u(t) = 0. Similarly, u can be extended to [t0, +∞) as u(t0) ∈ Es

λ(t0)
C . Note that 

ιλ(u) is indeed in H 1(R, H) = D(Aλ) due to the exponential decay of solution curves starting 
from Es

λ(t0)
C in the positive direction, or from Eu

λ(−t0)
C in the negative direction (see [5, Thm. 

2.1]). Moreover, ιλ is injective as obviously p ◦ ιλ = I 0 , and the diagram
D(Aλ)
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D(A0
λ)

A0
λ

ιλ

L2([−t0, t0],H)

D(Aλ)
Aλ

L2(R,H)

p (35)

is commutative. Finally,

ιλ(ker(A0
λ)) = ker(Aλ), λ ∈ I, (36)

and so A0
λ is invertible if and only if Aλ is invertible. In particular, as A has invertible endpoints 

by assumption, the same is true for A0. Hence s-ind(A) and s-ind(A0) are defined, and by The-
orem C we now need to show that these classes coincide in K−1(I, ∂I) for proving (32).
We now consider as in Section 4.2 the corresponding families of operators

Â0
(λ,s) : D(Â0

(λ,s)) ⊂ L2([−t0, t0],H) → L2([−t0, t0],H), Â0
(λ,s) = A0

λ + isIH

Â(λ,s) : D(Â(λ,s)) ⊂ L2(R,H) → L2(R,H), Â(λ,s) = Aλ + isIH

from the construction of the index bundle for selfadjoint operators, which are parametrised by 
(λ, s) ∈ I × R. Let us recall that D(Â(λ,s)) = D(Aλ) and D(Â0

(λ,s)) = D(A0
λ) for all (λ, s) ∈

I ×R.
By Lemma 5.4, there are λ1, . . . , λm ∈ I such that if we let V ⊂ L2([−t0, t0], H) be the sum of 
the ker(A0

λi
) and W the sum of the ker(Aλi

) for i = 1, . . . , m, then

im(Â0
(λ,s)) + V = L2([−t0, t0],H), im(Â(λ,s)) + W = L2(R,H), (λ, s) ∈ I ×R.

We set

W0 = {χ[−t0,t0] u : u ∈ W }, W1 = {χR\[−t0,t0] u : u ∈ W },

where χ[−t0,t0] and χR\[−t0,t0] are characteristic functions. Note that there is a canonical injective 
linear map M : V → W0 ⊕ W1 onto W0 such that p ◦ M = IV . Moreover, since W ⊂ W0 ⊕
W1, we see that the latter space is transversal to the image of Â as in (17) and so the bundle 
E(Â, W0 ⊕ W1) is defined.
If now u ∈ E(Â0, V )(λ,0), then Â0

(λ,0)u ∈ V and so M(Â0
(λ,0)u) ∈ W0 ⊂ W0 ⊕W1. On the other 

hand, Â(λ,0)(ιλu) ∈ W0 which shows that ιλ(E(Â0, V )(λ,0)) ⊂ E(Â, W0 ⊕ W1)(λ,0). Moreover, 

as (35) is commutative, p(Â(λ,0)(ιλu)) = Â0
(λ,0)u and so Â(λ,0)(ιλu) = M(Â0

(λ,0)u), where we 
use that Â(λ,0)(ιλu) ∈ W0 and M ◦ p |W0= IW0 .

As Â(λ,s) and Â0
(λ,s) are invertible for s �= 0, it is now readily seen that the maps ιλ, λ ∈ I , 

extend to an injective bundle morphism ι : E(Â0, V ) → E(Â, W0 ⊕ W1) such that we have a 
commutative diagram
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E(Â0,V )
Â0

ι

�(V )

M

E(Â,W0 ⊕ W1)
Â

�(W0 ⊕ W1)

(37)

As ι is injective, E0 := ι(E(Â0, V )) is a subbundle of E(Â, W0 ⊕ W1). Let E1 be a comple-
mentary bundle, i.e. E0 ⊕ E1 = E(Â, W0 ⊕ W1). Since Â(E0) ⊂ W0 by the commutativity of 
(37),

Â : E0 ⊕ E1 → �(W0 ⊕ W1)

is of the form

Â =
(
Â |E0 C

0 B

)
(38)

for bundle morphisms B : E1 → �(W1) and C : E1 → �(W0). Moreover, as ker(Â) = ker(Â |E0

) by (36), the morphism B : E1 → �(W1) is injective. By (18),

dim(W0) = dim(V ) = dim(E(Â0,V )) = dim(E0), dim(W0 ⊕ W1) = dim(E0 ⊕ E1),

which implies that dim(E1) = dim(W1) and shows that B is an isomorphism.
We now deform C in (38) linearly to 0 and obtain from the homotopy invariance of K-theory 
[51, Lemma 7.1]

s-ind(A) = [E(Â,W0 ⊕ W1),�(W0 ⊕ W1), Â] = [E0 ⊕ E1,�(W0 ⊕ W1), Â]
= [E0 ⊕ E1,�(W0 ⊕ W1), Â |E0 ⊕B] = [E0,�(W0), Â |E0 ] + [E1,�(W1),B]
= [E0,�(W0), Â |E0 ].

Finally, we note that ι : E(Â0, V ) → E0 and M : �(V ) → �(W0) are bundle isomorphisms. 
Hence the commutativity of (37) implies that

[E0,�(W0), Â |E0 ] = [E(Â0,V ),�(V ), Â0] = s-ind(A0).

Now (32) follows from Theorem C. In summary, the first three steps of our proof have shown 
Theorem 5.3.

5.2.4. Step 4: non-admissible paths
The aim of this step is to lift the assumption that A has invertible endpoints, i.e., we want to 

obtain Theorem A from Theorem 5.3.
As the Fredholm property is stable under small perturbations by [24, Thm. XVII.4.2], there is 
δ > 0 such that

h(λ, s) = Aλ + sδIL2(R,E)
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is Fredholm for all (λ, s) ∈ I × [−1, 1]. Moreover, since 0 is either in the resolvent set or an 
isolated eigenvalue of finite multiplicity for selfadjoint Fredholm operators, we can assume that 
h(0, s) and h(1, s) are invertible if s �= 0. Finally, we assume that δ is sufficiently small for 
Lemma 2.5 to hold.
The stable and unstable subspaces for the corresponding differential equations⎧⎨⎩Ju′(t) + (Sλ(t) + sδI2n)u(t) = 0, t ∈ R

lim
t→±∞u(t) = 0

yield a two parameter family

(Eu
(λ,s)(0),Es

(λ,s)(0)) ∈FL2(E,ω), (λ, s) ∈ I × [−1,1],

such that

(Eu
(λ,0)(0),Es

(λ,0)(0)) = (Eu
λ(0),Es

λ(0)), (39)

where (Eu
λ(0), Es

λ(0)) are the stable and unstable spaces in Theorem A. Using the notation from 
Section A.2, we have

μMas(E
u
(0,·)(0),Es

(0,·)(0)) = μ
(−,0)
Mas (Eu

(0,·)(0),Es
(0,·)(0)) + μ

(+,0)
Mas (Eu

(0,·)(0),Es
(0,·)(0)),

μMas(E
u
(1,·)(0),Es

(1,·)(0)) = μ
(−,0)
Mas (Eu

(1,·)(0),Es
(1,·)(0)) + μ

(+,0)
Mas (Eu

(1,·)(0),Es
(1,·)(0)).

Let us now consider the two-parameter family

{(Eu
(λ,s)(0),Es

(λ,s)(0))}(λ,s)∈I×I

on the smaller rectangle I × I ⊂ I × [−1, 1]. By the homotopy invariance, the Maslov index of 
the path obtained from restricting this family to the boundary of I × I vanishes. Hence, it follows 
from the concatenation property, (39), (46) and (47) that

μMas(E
u· (0),Es· (0)) = μ

(+,0)
Mas (Eu

(0,·)(0),Es
(0,·)(0)) + μMas(E

u
(·,1)(0),Es

(·,1)(0))

− μ
(+,0)
Mas ((Eu

(1,·)(0),Es
(1,·)(0))).

As

μMas(E
u
(·,1)(0),Es

(·,1)(0)) = sf(h(·,1)) = sf(Aδ) = sf(A)

by Theorem 5.3 and Lemma 2.5, we obtain

μMas(E
u· (0),Es· (0)) = μ

(+,0)
Mas (Eu

(0,·)(0),Es
(0,·)(0)) + sf(A) − μ

(+,0)
Mas (Eu

(1,·)(0),Es
(1,·)(0)).

We now claim that
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μ
(+,0)
Mas (Eu

(0,·)(0),Es
(0,·)(0)) = μ

(+,0)
Mas (Eu

(1,·)(0),Es
(1,·)(0)) = 0, (40)

which will prove Theorem A.
We consider the paths of operators h(0, ·), h(1, ·) : [−1, 1] → CF sa(E) which have invertible 
endpoints. By Theorem 5.3, we see that

sf(h(0, ·)) = μMas(E
u
(0,·)(0),Es

(0,·)(0)), sf(h(1, ·)) = μMas(E
u
(1,·)(0),Es

(1,·)(0)).

On the other hand, it readily follows from the definition of the spectral flow (14) that

sf(h(0, ·)) = dim ker(A0) and sf(h(1, ·)) = dim ker(A1).

Hence

μMas(E
u
(0,·)(0),Es

(0,·)(0)) = dim ker(A0) = dim(Eu
0 (0) ∩ Es

0(0))

= dim(Eu
(0,0)(0) ∩ Es

(0,0)(0)),

as well as

μMas(E
u
(1,·)(0),Es

(1,·)(0)) = dim ker(A1) = dim(Eu
1 (0) ∩ Es

1(0))

= dim(Eu
(1,0)(0) ∩ Es

(1,0)(0)).

Since

dim(Eu
(0,s)(0) ∩ Es

(0,s)(0)) = dim ker(h(0, s)) = 0,

dim(Eu
(1,s)(0) ∩ Es

(1,s)(0)) = dim ker(h(1, s)) = 0

for s �= 0, (40) follows from Lemma A.1.

Appendix A. Construction of the Maslov index and a simple lemma

A.1. Construction of the Maslov index

The aim of this section is to briefly recap the construction of the Maslov index from [22]. Let 
us point out that an alternative construction of the Maslov index in this setting can be found in 
[43].
Let E be a real separable Hilbert space with scalar product 〈·, ·〉. Let ω : E × E → R be a 
symplectic form on E such that ω(x, y) = 〈Jx, y〉 for a bounded operator J : E → E such that 
J 2 = −IE and J T = −J . We can regard E as complex Hilbert space through the almost complex 
structure J , where the complex inner product is given by 〈·, ·〉J = 〈·, ·〉 − iω(·, ·). In what follows 
we denote by U(EJ ) the unitary operators on E, and set

UF (EJ ) = {U ∈ U(EJ ) : U + IE Fredholm}.
The first important step in the construction is to show that there is a winding number w for 
paths in UF (EJ ) which is defined as follows (see [22, §2.1]). If d : I → UF (EJ ) is a path, then 
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there is a partition 0 = λ0 < λ1 < · · · < λm−1 < λm = 1 of I and positive numbers 0 < εj < π , 
j = 1, . . . , m, such that for λj−1 ≤ λ ≤ λj

ei(π±εj ) /∈ σ(d(λ)) (41)

and ∑
|θ |≤εj

dim ker(d(λ) − ei(π+θ)) < ∞. (42)

Now the winding number of d is defined by

w(d) =
m∑

j=1

(k(λj , εj ) − k(λj−1, εj )), (43)

where

k(λ, εj ) =
∑

0≤θ≤εj

dim ker(d(λ) − ei(π+θ)), λj−1 ≤ λ ≤ λj . (44)

It is shown in [22, Prop. 2.3] that w(d) does only depend on the path d and neither on the partition 
0 = λ0 < λ1 < · · · < λm−1 < λm = 1 nor on the numbers εj in (41) and (42). Let us point out 
that there are different limits for the sums in (42) and (44), and the latter is the number of all 
eigenvalues of d(λ) between −1 and ei(π+εj ). Hence, roughly speaking, w(d) is the number of 
eigenvalues of d(0) crossing −1 whilst the parameter λ travels along the unit interval.
Let now W ∈ �(E, ω) be a fixed Lagrangian subspace. The Souriau map is defined by

SW(W̃ ) = −(IE − 2P
W̃

)(IE − 2PW),

where PW and P
W̃

are the orthogonal projections onto W and W̃ , respectively. Of course, SW is 
defined for any closed subspace W̃ of E, but it is shown in [22, §1.5] that SW maps �(E, ω) into 
U(EJ ). Moreover, SW(FLW(E, ω)) ⊂ UF (EJ ) and, for any W̃ ∈FLW(E, ω),

dimR(W̃ ∩ W) = dimC ker(SW (W̃ ) + IE). (45)

In other words, the dimension of the intersection W̃ ∩W is the multiplicity of −1 as an eigenvalue 
of SW(W̃ ) ∈ UF (EJ ).
Finally, the Maslov index of a path � : I → FLW(E, ω) is defined as the composition

μMas(�,W) = w(SW(�(·))) ∈Z.

Note that it follows from the definition of the winding number that the Maslov index has indeed 
the heuristic interpretation that we mentioned in Section 2.1, i.e. it is the net number of non-
trivial intersections of �(λ) with W whilst λ travels along the unit interval. Finally, let us note 
that if −� : I → FLW(E, ω) denotes the reverse path −�(λ) = �(1 − λ), λ ∈ I , then
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μMas(−�,W) = −μMas(�,W). (46)

This is an immediate consequence of (43) and the injectivity of the Souriau map SW .

A.2. A simple lemma

For a path � : I →FLW(E, ω) and λ0 ∈ I , we denote by

μ
(+,λ0)
Mas (�,W) and μ

(−,λ0)
Mas (�,W)

the Maslov index of the restriction of � to [λ0, 1] and [0, λ0], respectively. Note that, by the 
concatenation property, we have

μMas(�,W) = μ
(+,λ0)
Mas (�,W) + μ

(−,λ0)
Mas (�,W),

and moreover, it is readily seen from (46) that

μ
(+,λ0)
Mas (−�,W) = −μ

(−,λ0)
Mas (�,W),

μ
(−,λ0)
Mas (−�,W) = −μ

(+,λ0)
Mas (�,W).

(47)

It is an interesting question to determine the contributions of μ(±,λ0)
Mas (�, W) to μMas(�, W). We 

will not deal with this question in its full generality, but note the following special case that we 
need in the proof of Theorem A.

Lemma A.1. Let � : I → FLW(E, ω) be a path and let λ0 ∈ I be the only parameter value 
where � and W intersect non-trivially.

• If

μMas(�,W) = dim(�(λ0) ∩ W),

then

μ
(−,λ0)
Mas (�,W) = dim(�(λ0) ∩ W), μ

(+,λ0)
Mas (�,W) = 0.

• If

μMas(�,W) = −dim(�(λ0) ∩ W),

then

μ
(−,λ0)(�,W) = 0, μ

(+,λ0)(�,W) = −dim(�(λ0) ∩ W).
Mas Mas
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Proof. We only need to prove the first assertion as this implies the second one by (46) and (47). 
We set d(λ) = SW(�(λ)), λ ∈ I . By the concatenation property of the Maslov index, we can 
assume without loss of generality that there is 0 < ε < π such that ei(π±ε) /∈ σ(d(λ)) and

dim ker(d(λ0) + IE) =
∑
|θ |≤ε

dim ker(d(λ) − ei(π+θ)) < ∞ (48)

for all λ ∈ I . Therefore

dim(�(λ0) ∩ W) = μMas(�,W) = k(1, ε) − k(0, ε)

=
∑

0≤θ≤ε

dim ker(d(1) − ei(π+θ)) −
∑

0≤θ≤ε

dim ker(d(0) − ei(π+θ)).
(49)

As dim(�(λ0) ∩ W) = dim ker(d(λ0) + IE) by (45), we see from (48) that dim(�(λ0) ∩ W) is 
an upper bound for

∑
0≤θ≤ε

dim ker(d(1) − ei(π+θ)) and
∑

0≤θ≤ε

dim ker(d(0) − ei(π+θ)).

Hence (49) implies that

∑
0≤θ≤ε

dim ker(d(1) − ei(π+θ)) = dim(�(λ0) ∩ W),
∑

0≤θ≤ε

dim ker(d(0) − ei(π+θ)) = 0.

As by (45) and (48),

∑
0≤θ≤ε

dim ker(d(λ0) − ei(π+θ)) = dim ker(d(λ0) + IE) = dim(�(λ0) ∩ W),

we obtain

μ(+,λ0)(�,W) =
∑

0≤θ≤ε

dim ker(d(1) − ei(π+θ)) −
∑

0≤θ≤ε

dim ker(d(λ0) − ei(π+θ)) = 0

as well as

μ(−,λ0)(�,W) =
∑

0≤θ≤ε

dim ker(d(λ0) − ei(π+θ)) −
∑

0≤θ≤ε

dim ker(d(0) − ei(π+θ))

= dim(�(λ0) ∩ W). �
Finally, let us note that a corresponding statement holds for the relative Maslov index as well, 

which follows straight from its definition.
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