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Abstract
Compared with conventional steels, press-hardened steels with an aluminium-silicon coating have a smaller welding range,
which is resulting in reduced process stability. For this reason, an analytical methodology is required, which can optimise the
welding parameters and extend the welding range significantly. Consequently, most publications focus on the variation of
welding time and welding current at a constant electrode force. This paper deals with the design of a force profile to improve
weldability and joint quality. The basis for this investigation is the identification of significant characteristic values by the
recorded process signals.
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1 Introduction

Resistance spot welding (RSW) is one of the dominating
welding processes in automotive production [1]. It can be ex-
plained by the fact that the RSW process is highly efficient and
can be automatised [2]. A vehicle has on average 2000–5000
welding spots [2]. Furthermore, different coating concepts and
materials are used [2, 3]. This results in new challenges for
resistance spot welding, such as joining of two press-hardened
steels with an aluminium-silicon coating, which is used for
patchwork blanks or hat profiles [3–7]. Compared with conven-
tional steels, the press-hardened steels have a smaller welding
range, which is reflected in an increased expulsion tendency
and a decrease in process stability [4, 8–10]. The welding pa-
rameters have a direct influence on the resistance spot welding
process [11]. For this reason, it is important to adjust these
parameters precisely to the specific material to achieve an in-
crease in process stability. The welding parameters can be

optimised by various approaches, such as simulation, design
of experiment or analysis of the process signals recorded during
welding [12, 13]. The present investigation is focused on the
process data analysis. As a result, significant characteristic
values for the design of a force profile are determined. The
developed force profile should improve the weldability with a
simultaneously increased joint quality.

2 State of the art

2.1 Influence of the electrode force on the welding
process

The electrode force is a variable in the welding process, which
affects between the electrode tips and is classified into a
squeeze, welding and holding force [11, 15]. The force is used
to ensure a uniform current introduction into the joining ele-
ments. The level of the electrode force influences the resistiv-
ity in the circuit. Consequently, there is a change in the
amount of generated heat, which is reflected in the nugget
formation, as shown in Fig. 1. All shown simulations of elec-
trode forces have the same welding current and the same
welding time [14].

As shown in Fig. 1, lowering the electrode force increases
the formation of the welding nugget and minimise the
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indentation of the electrode into the material [15, 16]. A pos-
sible consequence of maximising the nugget diameter by
selecting a low electrode force is rejected in [14]. The reason
is based on two opposing effects. (1) On the one hand, the
current density increases by a low electrode force, which leads
to earlier nugget formation [14]. (2) On the other hand, it
results in a reduction of the contact area in the faying layer
(sheet/sheet), which influences the maximum nugget width
[14]. As a result of this compromise, the maximum nugget
diameter is obtained at a specific electrode force [14].
Furthermore, it must be considered that a too low or high force
[17–19] leads to an increase in the probability of expulsion
and a reduction of the welding range [20]. A sufficient elec-
trode force is also required to compensate for a gap between
the sheets [21].

2.2 Electrode force profiles

In general, an electrode force profile is described as a variation
of the force during the whole welding process [22–24]. In this
case, the force level is adjusted and does not result from the
stiffness of the used equipment [22]. In practice, increased
electrode forces are used in the squeeze time [24]. This force
profile approach is aimed to reduce the contact resistance and,
therefore, to minimise welding expulsion in the initial welding
time [25]. During the welding time, the electrode force can be
classified into constant and variable progress. Both types in-
fluence the nugget formation and the occurrence of expulsion.
Compared with welding current, which is widely used in the
form of current programs and profiles, investigations of force
profiles have been carried out only insufficiently. However,
their influence, primarily in the welding time, is estimated to
be the most significant [11, 25].

2.3 Process data acquisition for resistance spot
welding

Process data analysis is the basis for various applications in
resistance spot welding, such as quality monitoring and adap-
tive control of the RSW process [27]. For this purpose, pro-
cess signals are required, which correlate with the nugget de-
velopment and therefore allow a prediction about the achieved
welding quality [27, 28]. Various process signals can be

recorded during the welding process, such as the mechanical
parameters (electrode displacement, electrode force) and the
electrical parameters of the welding process (voltage, current,
resistance and energy) [26, 27, 29]. The sensitivity of these
process signals to interfering effects is shown in Table 1.

A lot of information about the nugget development as well
as the interfering effects are represented by the dynamic resis-
tance, the power and the electrode displacement [26, 28,
30–33].

2.3.1 Dynamic resistance and welding power

Dynamic resistance is the quotient of welding voltage and
welding current during the welding process [34]. The welding
power is calculated by multiplying the welding voltage and
the welding current. Both the dynamic resistance curve and
the power are used to monitor nugget development and detect
weld expulsion and are used for quality and control variables
[26, 30]. The welding power can be measured partially by the
voltage drops in the individual sheet layers [28]. By using this
method, it is possible to determine the amount of energy input
in the individual faying interfaces [28]. It is possible to detect
the formation of the nugget more precisely compared with the
full welding power [28].

2.3.2 Electrode displacement

The electrode displacement, which correlates with the thermal
expansion of the specimen, has been the object of research for
monitoring and controlling the welding process [27, 31–33,
36]. The first approaches for evaluating weld quality are based
on the maximum electrode movement and the initial expan-
sion rate of the join partners [31, 32, 35]. This was used for the
development of different control systems that utilise the elec-
trode displacement and velocity as reference curves [26, 28,
36–38]. Figure 2 shows the schematic electrode displacement
as a function of the processing time.

In the first section (1), the squeeze force is built up, and the
electrode displacement is referenced on this level. Following
(2), a welding current is introduced, and due to the thermal
expansion of the material, the electrodes are separated. After a
certain point in time, the electrodes may sink into the material
due to softening of the material [28]. In the third section (3),
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Fig. 1 Influence of the electrode force on the temperature distribution, according to [14]
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the current shut off and a controlled cooling and contraction of
the material occurs. This leads to a sinking of the electrode
displacement. A visible indentation of the electrodes in the
workpiece surface remains [31, 35].

3 Experimental investigations

3.1 Approach of the investigations

Figure 3 illustrates the approach of the investigations. First,
the influence of a constant electrode force on the welding
range was investigated. Simultaneously, the process data for
each welding spot was recorded.

The target of the investigations is to increase the welding
range and the tensile strength compared with the initial con-
dition. In general, the welding current range is defined by the
minimum spot diameter and the occurrence of expulsion. An
extension of the welding range can be achieved by shifting the
expulsion limit to higher welding currents. An optimisation
can be done by a precise adjustment of the welding parame-
ters. Therefore, a characteristic value from the process signals
must be found, which allows a prediction of the expulsion.

The characteristic value is used for the analytical conception
of a force profile to avoid early expulsion. After the concep-
tion of the force profile, the welding range and time-related
nugget growth are compared with the initial welding parame-
ter according to SEP 1220-2.

3.2 Welding equipment, material and methodology

3.2.1 Welding equipment

All welding experiments were carried out on a stationary C-
frame welding machine. The welding current was generated
by a 1 kHz Mid-Frequency Direct Current (MFDC by Bosch
PSI 6300) inverter with constant current control (CCC). The
special feature of the resistance spot welding system is the
force unit (magneticDrive® by NIMAK GmbH). The upper
electrode was positioned by a linear drive, whereas a magnetic
force control unit realised the actual force generation. By this
technology, it is possible to control the force of the electrode
dynamically during the welding process and to design a force
profile. During the welding process, four process signals were
recorded synchronously. An MFDC inverter was used to out-
put the current signal, while the voltage signal was taken

Table 1 Sensitivity of recorded quantities to interfering effects, according to [26]

Interfering effect Recorded signals

Electrode displacement Weld voltage Welding current Dynamic resistance Welding power Supplied energy

Main fluctuation + + + + + +

Shunting + + + (+)

Electrode wear + + + + +

Heat removal +

Expulsion + + + + + +

Poor fitting + + +

Thickness variation + + + + + +

Number of sheets + + + + +

Change of materials + + +

A plus (+) means that the interfering effect can be detected with the measured signals
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Fig. 2 Schematic illustration of the electrode displacement, based on [31, 35]
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directly from the electrodes. A piezoelectric measuring sensor
(Kistler AG) measured the electrode force. An absolute dis-
placement encoder determined the electrode movement (GT2
– H12 by Keyence). Data recording was carried out at a sam-
pling rate of 25.6 kHz by the WeldQAS from HKS-
Prozesstechnik GmbH. Subsequently, the individual process
variables were smoothed by low-pass filters (1000 Hz).

3.2.2 Material

The investigations were carried out on press hardened
22MnB5+AS150 (material number: 1.5528) with an
aluminium-silicon coating on both sides. The sheet thickness
was in total 1.5 mm, which was including the coating weight
of 150 g/m2. A furnace temperature of 900 °C and a duration
time of 6 min were selected for the austenitic process of the
sheet. After the furnace process was completed, the
austenitised sheet was transferred to the forming tool. The
forming tool (press) ensured a fast and controlled cooling of
the material, which resulted in a complete martensitic structure
of the weld specimens with a hardness of about 480 HV1.

3.2.3 Methods for determining weldability

Electrode tips from CuCr1Zr were used. Prior to the determi-
nation of the weldability range, they were milled to achieve a
truncated electrode geometry with the designation B0-16-20-
50-6-36. Table 2 shows the welding parameters. To determine
the welding current range, a procedure, described in SEP
1220-2 was used [39]. In general, it is the current welding
(ΔI) range, the difference between the welding current re-
quired to produce a minimum weld spot diameter (Imin) and
the current (Imax), that caused the expulsion of liquid metal
[39, 40]. The minimum weld spot diameter, e.g. chisel test (d-
wmin), was defined as 4√t, where t is the sheet thickness [39].

For specimens welded with Imin and Imax, cross-sections were
prepared to measure the nugget width.

A detailed description of the applied determination of the
welding range is given in the following. Starting with a
welding current of 4.0 kA, two welds were performed per
current setting [39]. If at least one of them was expulsion-free,
the current was increased by 0.2 kA, and twomore welds were
made [39]. This procedure was repeated until the current set-
ting (Iu) was reached, in which both generated welds had an
expulsion [39]. Afterwards, the welding current was reduced
by a current of 0.1 kA until three expulsion-free welds could
be produced at one current level. The welding current at which
this was possible was determined as Imax defined [39]. The
range above Imax is defined as the unstable region, where
welds can occur with or without an expulsion.

3.3 Analysis of the electrode displacement

3.3.1 Displacement monitoring system

For the development of a force profile, the relationship be-
tween the adjusted force and the stiffness, i.e. displacement
signal, must be analysed. Figure 4 left panel shows the rela-
tionship between the electrode force and the measured elec-
trode displacement without a workpiece.

Figure 4 shows that there is a linear relationship between
the applied electrode force and the electrode displacement.
The stiffness of the system can be determined, as well as a
correction between the electrode force and the electrode dis-
placement. Figure 4 right panel illustrates the dependence be-
tween the set force and measured force value. The coefficient
of determination between actual and reference force value is
R2 = 99.9, which represents a high accuracy of the adjusted
force value.

1) Correlation between the process data and the occurrence of expulsion
2) Correlation between nugget growth and process data
3) Significant characteristic values for the conception of a force profile

welding ranges
acc. to SEP 1220-2

process data analysis

optimise

conception force profilevariation of the constant
electrode force1.

2.
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improved process stability, 
i. e. increased welding range 
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Fig. 3 Schematic illustration of the investigations

Table 2 Welding parameters
according to SEP 1220-2 Squeeze time

(ms)
Welding time
(ms)

Holding time
(ms)

Electrode force
(kN)

Electrode shape acc. to DIN EN ISO
5821:2010-04

300 380 200 4.5 B0-16-20-50-6-36
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3.3.2 Determination of characteristic values

The aim of the analysis of the recorded process data is the
identification of characteristic values for the design of force
profiles. Based on the literature review, it can be seen that the
electrode displacement is a significant reference parameter.
For this reason, the electrode displacement signal is described
and analysed below.

Figure 5 left panel shows a characteristic curve of the elec-
trode displacement during the welding process. As an exam-
ple, characteristic values during the welding time are defined
in the detail view in Fig. 5 right panel. The expansion of the
material due to Joule heating leads to a vertical displacement
of the upper electrode and can be divided into two regions.
Within the first region, the electrode displacement reaches a
maximum described as smax at time tmax. After exceeding this
maximum, the electrodes begin to sink into the material in the
second region. The delta of the electrode displacement be-
tween the time of the displacement maximum and the end of
the welding time is defined as Δs. The rate of expansion vexp
is the quotient of the maximum electrode displacement at the
time of the maximum and is assumed to be linear. The inden-
tation rate vind is determined by the quotient ofΔs andΔts and

is considered to be linear. In case of an expulsion, the point of
time is automatically detected and analysed. In addition, the
process variables’ welding current and voltage are used to
determine the total energy at the time tmax. The aim of the
analysis of the recorded process data is the identification of
characteristic values for the design of force profiles. Based on
the literature review, it can be seen that the electrode displace-
ment is a significant reference parameter.

4 Results

4.1 Initial condition

The initial condition was determined according to the param-
eters of the SEP 1220-2. During the evaluation, an unstable
range was defined in addition to the welding range. This de-
scribes the part of a welding range diagram inwhich expulsion
can arise in a non-reproducible way. It is a special character-
istic of press-hardened components and does not occur with
galvanised steel grades. Figure 6 shows the measured welding
range of the reference parameters.
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The result shows that the minimum spot diameter of
4.9 mm is achieved at a welding current of 4.6 kA. The max-
imumwelding current is reached at 6.0 kA, where the welding
specimens have an average spot diameter of 6.2 mm.
Therefore, a welding range (ΔI) of 1.4 kA and an unstable
current range (IU) of 0.8 kA was determined. In this unstable
range, welds with and without expulsion can occur. In the
following, the influence of different electrode force levels on
the range of the welding range is examined.

4.2 Influence of the electrode force on the welding
range

Figure 7 illustrates the determined welding ranges as a func-
tion of the selected constant electrode force of 2.5 kN, 3.5 kN,
4.5 kN and 5.5 kN. Each bar of the chart symbolises a welding
range, as shown in Fig. 6.

It is obvious that by increasing the electrode force, the
lower quality limit is shifted to higher welding currents. This
fact can be explained by the relationship between the applied
electrode force level and the resulting electrical resistance. As
a result, an increasing electrode force results in a smaller
amount of heat, which leads to a smaller spot diameter [14,
43]. Compared with the reference range, the upper-quality
limit shifts to higher welding currents for a force level of 3.5
kN. Contrary to the literature [18, 19], the risk of spattering

(Imax) increases with increasing electrode force at the same
current, i.e. between the welding current ranges of 3.5 kN
and 5.5 kN. Expulsion occurs although the spot diameter de-
creases with increasing electrode force, cf. nugget diameter of
Imax. Only the hypothesis of Davies could be an approach that
with an increase in electrode force, the melt is squeezed out of
the joining zone [17]. This hypothesis is discussed in more
detail in Section 4.3.

The evaluation of the welding range analysis indicates that
a variation of the electrode force between 2.5 and 5.5 kN does
not provide sufficient information for the design of the force
profile. Therefore, the effect of a constant electrode force was
investigated in an extended range from 2.0 to 6.0 kN. The
purpose is to estimate the influence of the electrode force on
the size of the spot diameter. It is expected that an increase in
the spot diameter will result in low electrode forces because of
the indirectly proportional relationship between force and
electrical resistance. The results of this investigation confirm
this hypothesis, as shown in Fig. 8. The quality limits of the
welding range with 4.5 kN were chosen as a reference.

With an electrode force below 4.5 kN, a minimum spot
diameter (lower quality limit) is always reached for a welding
current of 4.5 kA. It can be assumed that the required mini-
mum spot diameter is already obtained at welding currents
lower than 4.5 kA. Similarly, the same characteristic can be
observed at the upper-quality limit of 5.9 kA. A reduction of
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the electrode force leads to a significant increase in the spot
diameters. It is expected that with three expulsion-free welds
at the quality limits, an increase in the welding range com-
pared with the reference can be assumed. This hypothesis is
satisfied for all electrode forces in the range between 2.8 and
4.4 kN. At the force level of 2.4 kN, expulsion was detected at
the lower quality limit. The same is displayed for the lowest
electrode force of 2.0 kN at the upper-quality limit. It can be
concluded that welding without expulsion is not possible with
electrode forces below 2.4 kN.

4.3 Analysis of weld expulsion formation

The requirements for the formation of expulsion are one of the
unexplained phenomena of resistance spot welding, whose
cause has so far only been approximated by theoretical con-
siderations [18, 44]. Based on process data analysis, it is
intended to determine whether there is a correlation between
the formation of expulsion and the characteristic values in the
electrode displacement. A correlation between the time of
expulsion and the time of the maximum displacement tmax

was investigated. Figure 9 left panel shows an example of
two welds with the same welding parameters, where one is
expulsion-free and the other is an expulsion.

Both lines follow the same progression up to the time of
expulsion. The cause of the expulsion cannot be determined

from the graph. The comparison of the expulsion and the
displacement maximum at tmax shows that expulsion occurred
only after reaching the displacement maximum. This correla-
tion is visualised of 127 expulsion welds in Fig. 9 right panel.
The evaluation of the process data was carried out indepen-
dently of the selected electrode force level. It is shown that the
time of expulsion always formed after reaching the displace-
ment maximum. The expansion of the welding nugget leads to
an expansion of the electrodes up to the time tmax. After the
maximum is exceeded, this relationship reversed, and the elec-
trodes sank more deeply into the softened material. This in-
creased the external pressure on the welding nugget, which
had to be compensated by the nugget. In this phase, the
welding nugget and the welding process is highly sensitive
to interfering effects, which increases the risk of expulsion.

In addition to the time correlation of the expansion maxi-
mum and the risk of expulsion, the process data were analysed
with regard to the characteristic values maximum electrode
displacement (smax) and displacement delta (Δs), as shown in
Fig. 10.

The development of the maximum displacement (Fig. 10
left panel) indicated that the maximum increases in proportion
to the welding current and approaches a limit value for expul-
sion (approx. 180 μm). As a result of a continuous current
increase, the maximum electrode displacement rise and the
welding process begins to become unstable. The unstable
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range in the welding range is also detectable. The same rela-
tionship can be observed in the sinking characteristics of the
electrodes. If a delta is exceeded a limit during the sinking
movement, expulsion formation is very probable.

From this correlation, the hypothesis can be derived that an
unstable process behaviour arises, when the maximum elec-
trode displacement and significant displacement delta exceeds
an upper limit value. It is also noticeable that the plotted limit
value of the maximum electrode displacement and the dis-
placement delta are very close to each other. The hypothesis
can be specified by assuming that expulsion occurs when the
previous expansion is fully compensated by the indentation of
the electrodes. Considering, the determined welding ranges
can also be explained in more detail. To achieve a specific
displacement delta, higher welding currents are required for
welding with low electrode forces. Thus, the upper-quality
limit of the welding range is shifted upwards by low electrode
forces and the achievable spot diameter increases.

4.4 Design of a theoretical force profile

By the previously determined results, an appropriate force
profile has been developed, which allows an increase in the

welding range. The following restrictions for the design of a
force profile must be observed:

& The electrode force at the beginning of the current input
must ensure a high energy input in order to initiate early
nugget formation.

& The selected electrode force should be within 2.5 kN and
4.5 kN.

& After reaching the maximum displacement, a degressive
force level is recommended that does not fall below the
value of 2.5 kN at any time.

& The processed signal of the electrode movement must be
used in the design.

Figure 11 shows the theoretical approach for designing a
force profile for the press-hardened 22MnB5 with aluminium-
silicon coating.

The welding process is separated into two phases: first, the
phase of material heating and second the phase of the nugget
formation and its growth.

In the phase of heating, the high energy input into the
material must take place, and a uniform contact surface be-
tween the electrode and sheet metal must be achieved. Thus, a
low electrode force is used first to achieve fast heating of the
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material to remove the coating over a large area in the faying
interfaces. With the beginning of the nugget formation, a high
energy input must be ensured, which supports rapid nugget
growth. The nugget formation can be detected by the electrode
displacement and the dynamic resistance signal [28, 45]. The
maximum electrode displacement is reached when the expan-
sion rate slows down, and a turning point in the displacement
signal is formed. The material begins to soften, and the elec-
trodes start to sink into the material (displacement delta). In
this phase, it is essential to stabilise the welding process, es-
pecially at high welding currents, to minimise the indentation
of the electrodes. For this purpose, the electrode force has to
be degressive, but must not fall below 2.4 kN. By progressive-
ly reducing the electrode force, a high current density is
sustained, thereby increasing the energy input.

4.5 Modelling a variable electrode force profile

The upper-quality limit (Imax) of the SEP reference range is
used to design the force profile. Figure 12 shows the electrode
displacement and the dynamic resistance at a welding current
of 6.0 kA.

It is shown that the nugget was formed in the time between
35 and 50 ms (dotted lines), according to [28, 45]. In the
process of the electrode displacement, the maximum displace-
ment is reached at a welding time of about 120 ms (dotted
line). Subsequently, the electrode displacement stagnates for
30 ms and then drops down. To stabilise the welding process,
the maximum displacement and the sinking displacement
must be reduced. In the following, the force profile is deter-
mined from the progression of the electrode displacement and
dynamic resistance. Based on the theoretical consideration
and SEP reference signals, a force profile was designed, as
shown in Fig. 13.

In order to provide a basis for comparison with the
reference parameter, the squeeze, welding and holding
times were equal. During the squeeze time, an electrode

force of 4.6 kN is selected to provides an initial
stabilisation of the dynamic resistance, according to
[46]. In the phase of heating the material, i.e. in the first
50 ms of the current flow, a high energy input should be
generated. For this purpose, the electrode force is set at
2.6 kN. The restriction of a minimum force of 2.5 kN is
thus respected. The electrode force is kept constant for
25 ms because, in this time, the dynamic resistance
reached the maximum and the largest amount of heat is
generated (cf. Fig. 12, red circle). Until the nugget is
developed (50 ms), the force is increased to replace the
aluminium-silicon coating over a large area (faying inter-
face). By the time of nugget initiation, after approximately
50 ms, the electrode force is increased to 3.6 kN.
Subsequently, the electrode force is degressive until the
current is switched off to decrease the sinking of the dis-
placement curve.

4.6 Solution for an extended welding range

For the realisation of the force profile, the upper-quality limit
(Imax) of the reference welding range is compared with the
designed force profile. Figure 14 illustrates the measured force
curves of the initial condition and the optimised force profile.
For both conditions, the same welding currents of 6.0 kA and
welding times of 380 ms were used.

Figure 14 right panel shows the SEP1220-2 parameter with
a constant force of 4.5 kN. For this case, the applied force
shows only a marginal variation of 50 N. Also, the theoretical
force profile is precisely reproduced by the force unit of the
welding machine. The applied force values and times were
selected to ensure the restrictions to design a force profile from
Section 4.4 compares the initial state with the optimised force
profile for electrode displacement, dynamic resistance and the
total energy (Fig. 15).

The nugget formation can be detected by the electrode
displacement and the dynamic resistance signal [22] (1). It

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

]
mµ[ )s( tne

mecalpsid

welding time (ts) [ms]

 reference -   (displacement 6.0 kA)

0 50 100 150 200 250 300 350
100

150

200

250

300

350

400

R( ecnatsi ser ci
m anyd

d
]

Oµ[ )

welding time (ts) [ms]

 reference - (resistance  - 6.0 kA)Fig. 12 Upper-quality limit (Imax)
of the SEP reference SEP1220-2
with a force of 4.5 kN. Left:
Displacement. Right: Dynamic
resistance and total power input,
acc. to [42]

113Weld World (2021) 65:105–117



can be detected that an earlier nugget formation takes place in
the electrode force profile. The displacement shows that a
lower displacement maximum is reached by using the force
profile (2). Furthermore, after reaching the displacement max-
imum, the applied digressive force compensated the sinking
movement of the electrode into the material (3). The maxi-
mum displacement is correlated to a rapid power decrease in
the faying interface (4). At the end of the welding time, the
dynamic resistance is slightly above the reference at the same
welding current (5). Also, nugget cross-sections were created
with respect to welding time and force changes, as shown in
Fig. 16.

Figure 16 shows that the force profile removes the coating
in the faying interface over a larger area, as well as an earlier
nugget initialisation starts (36 ms). As a result of the reduced
electrode force, higher vertical growth of the welding nugget
is visible (60 ms). At a welding time of 380 ms, the nugget
width is smaller of the force profile compared with the refer-
ence. According to Zhang et al. [21], a maximum nugget
width can be achieved depending on the electrode face diam-
eter. This leads to the conclusion that the force profile needs a
higher welding current until the maximum nugget diameter is
achieved. Figure 17 compares the determined welding ranges
for the force profile and the reference. The force profile has an
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average electrode force of 3.1 kN during the welding time,
which was used as a corresponding constant force parameter.

The largest welding range of 3.0 kA is achieved with the
force profile. At the constant electrode forces of 3.1 kN and
4.5 kN, the welding range is reduced to 2.3 kA and 1.4 kA
respectively. In addition to increased process reliability, the
electrode force profile also leads to an increase in the nugget
diameters. The determined nugget diameters at the upper cur-
rent limit are 7.0 mm for the force profile, 6.7 mm for an
electrode force of 3.1 kN and 6.0 mm for a force of 4.5 kN.

In addition, the tensile shear forces were determined at the
welding range limit (Fig. 18).

At the lower current limits (Imin), the maximum tensile
shear forces are between 15.3 and 17.8 kN. The lowest tensile
force is achieved in the force profile. It can be explained that
the average spot diameter is smaller than in the other per-
formed tests. Smaller spot diameter is due to the subsequent
welding of the shear tensile specimens after the welding range
determination. As a result, there is a difference in spot diam-
eter of ± 0.1 mm compared with the welding range.
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Consequently, the weld spot has a reduced cross-sectional
area, which reduces the shearing force of the specimen.

At the upper current limits (Imax), the maximum shear ten-
sile forces are between 24.2 and 29.0 kN. Also, the maximum
shear tensile force is influenced by the diameter of the spot. In
the case of the force profile, the average point diameter is
around 7.1 mm, while by the constant electrode force of 3.1
kN and 4.5 kN, the average point diameters are 6.5 mm and
6.1 mm.

5 Conclusion

For the analytical compilation of a force profile, characteristic
values were extracted from the process analysis, which allows
the prediction of the formation of expulsion. It was demon-
strated that the electrode displacement is suitable as a control
variable for the design of a force profile. By a detailed obser-
vation of the electrode displacement, it is possible to estimate
the resulting welding range for 22MnB5+AS150. The analy-
sis showed that when a specific sinking displacement was
exceeded, an increased spatter formation occurred. The ap-
plied approach is based on the compensation of the sinking
of the electrodes by a specific reduction of the electrode force,
which led to a process stabilisation. In addition, the maximum
expansion of the electrode displacement must be limited.
Furthermore, it has to be considered that after reaching the
maximum electrode displacement, the force level should only
decrease to increase the process stability. Also, after reaching
the maximum electrode displacement, the force level should
only decrease to improve the process stability. Comparing the
force profile (ø3.1 kN) to the initial state (SEP1220-2), the
welding current range could be increased from 1.2 to 3.0
kA. If only the influence of an electrode force is considered,
it is shown that even with a constant electrode force of 3.1 kN,
a welding current range of 2.3 kA could be produced.
Consequently, it must be clarified whether the force profile
can achieve an improvement of the welding current range
under industrial conditions. In further work, the results will
be investigated on poor fit-up conditions and other materials.
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