Worst-Case Optimal Investment and Consumption
-A Study with Stochastic Interest Rates-

Dissertation
zur Erlangung des Doktorgrades der Naturwissenschaften
(Dr. rer. nat.)
der

Naturwissenschaftlichen Fakultat 11
Chemie, Physik und Mathematik

der Martin-Luther-Universitéit
Halle-Wittenberg
vorgelegt von

Frau Tina Engler
geboren am 26.05.1989 in Halle (Saale)

Gutachter:
Prof. Dr. Dr. h. c¢. Wilfried Grecksch (Martin-Luther-Universitdt Halle-Wittenberg)
Prof. Dr. Ralf Wunderlich (Brandenburgische Technische Universitidt Cottbus-Senftenberg)

Tag der Verteidigung: 08.10.2015



Danksagung

Ich méchte Herrn Prof. Dr. Dr. h. c¢. Wilfried Grecksch fiir die intensive und ziigige Betreu-
ung und die Unterstiitzung bei der Umsetzung meines Dissertationsvorhabens danken. Ich habe
unter anderem sehr von seinen umfassenden Kenntnissen iiber die Theorie der stochastischen
optimalen Steuerung gelernt und profitiert. Die zahlreichen Treffen haben mich sowohl fachlich

als auch personlich vorangebracht.

Ich danke Herrn Prof. Dr. Ralf Korn fiir die fachlichen Diskussionen, die sehr gute Zusammen-
arbeit sowie fiir das Heranfiihren an das Thema der Worst-case Portfolio Optimierung. Grofer
Dank gilt auch der Abteilung Finanzmathematik des Fraunhofer-Instituts fiir Techno- und Wirt-
schaftsmathematik in Kaiserslautern fiir die entgegengebrachte Gastfreundschaft bei meinen

Forschungsaufenthalten.

Ein herzlicher Dank gilt auch Herrn Prof. Dr. Ralf Wunderlich fiir die Ubernahme und Erstel-
lung des weiteren Gutachtens.

Weiterhin danke ich dem Leibniz Institut fiir Agrarentwicklung in Transformationsékonomien,
insbesondere Herrn Prof. Dr. Alfons Balmann fiir seine Unterstiitzung und den Freiraum in der

Gestaltung meiner Forschung.

Ich danke der Graduiertenférderungskommission der Martin-Luther-Universitidt Halle-Wittenberg
fiir die Unterstiitzung dieser Arbeit durch das Graduiertenstipendium des Landes Sachsen-
Anhalt, sowie der Stiftung Theoretische Physik/Mathematik fiir die Vergabe eines Reisestipendi-
ums, mit dem es mir ermoglicht war auf zahlreichen wissenschaftlichen Tagungen teilzunehmen

und mehrere Forschungsaufenthalte durchzufiihren.

Herzlicher Dank gilt meiner Familie fiir die Unterstiitzung, die Fiirsorge und den Zuspruch

wahrend des Studiums und der Promotion.



Contents

1st of Figureg iii
|[Chapter 1. Introduction| 1
[Chapter 2. Worst-Case Optimal Investment with a Finite Time Horizon 6

2.1. Introduction of the financial market modell 6
[2.2. 'The N-crash market with HARA utility (non-log utility)| 12
[2.3. The N-crash market with Log utility] 25
2.4. HARA utility via martingale approach| 30
[2.5. Changing market parameters and a general affine short rate modell 49
[2.6.  Appendix] o8
[Chapter 3. Worst-Case Optimal Investment and Consumption with an Infinite Time
| Horizon for Log utility Function| 83
3.1, The financial market modell 83
[3.2. The generalized Vasicek Model| 85
13.3.  The general affine short rate model| 96
[3.4.  Uncertain post-crash parameters| 101
13.5.  Appendix] 104
|Chapter 4. Conclusions| 110
[Appendix A. Basic Essentialg| 112
[A.1. Stochastic interest rate models 112
|A.2. The concept of an invariant set| 114
|A.3.  The subsolution-supersolution method| 115
|A.4.  Results from stochastic analysig| 115
|A.5. Technical results for post-crash optimization problems| 116

Bibliograp 120



List of Figures

2.1 Optimal post-crash strategy for different levels of risk aversion (p = —0.9) 47
2.2l  Comparison of conditional variances (p = —0.9) 47
2.3 Optimal post-crash strategy for different levels of risk aversion (p = —0.75) 48
2.4 Comparison of conditional variances (p = —0.75) 48
2.5 Optimal strategies (N =2, 1*=0.4,T =5, u=0.06, 01 = 0.3, a = 0.5, 48
T oy =0.050=01,p=07,7=—2) o
2.6  Optimal strategies (N =3,1*=0.4,T =5, un=0.08, 01 = 0.3, a = 2, 48
T rw=00500=01p= 05,7 =—3) —
2.7 Optimal pre-crash strategy for different levels of risk aversion (a = 2) 49
2.8 Optimal pre-crash strategy for different levels of risk aversion (a = 0.5) 49
2.9 Optimal strategies in Example [2.5.8] (1) = 0.08, o\ = 0.3, 571

1© =0.07,0" = 0.35)

2.10] Optimal strategies in Example [2.5.8] (1) = 0.08, o\ = 0.3, 57
1@ =0.1,00” = 0.25)

Optimal strategies (1)) = 0.07, ot = 0.25, 4@ = 0.07, o\” = 0.3) 101

Optimal strategies (1) = 0.07, otV = 0.25, 4 = 0.07, o\ = 0.15) 101

iii



CHAPTER 1

Introduction

The field of portfolio optimization deals with the problem of the optimal allocation of wealth
between different financial assets which are traded on a given financial market. A risk averse
investor, endowed with a certain initial wealth, is allowed to continuously invest on such assets
and/or to consume in order to maximize his expected utility of consumption over the planning
horizon or the expected utility of wealth at the terminal time, or some combination of both.
Typically, investment or consumption decisions have to be made without any knowledge about

future evolution of asset prices.

This type of continuous-time portfolio optimization problem was first investigated in a pioneer-
ing work by Merton [35]. He assumed that the prices of the risky asset follow a stochastic
process, namely a geometric Brownian motion, which satisfies a linear stochastic differential
equation. This implies that the paths of the price process are continuous and the asset prices
are logarithmic normally distributed random variables. Moreover, the investor can invest in a
non-risky asset, e.g. a savings account. For a special choice of the investor’s utility function,
Merton derived the optimal investment and consumption strategy in an explicit form by applying
stochastic optimal control theory, by applying Bellman’s principle and by solving the Hamilton-
Jacobi-Bellman (HJB) equation which is a nonlinear partial differential equation. We refer to
Fleming and Soner [16] for an introduction into the subject of stochastic optimal control. In
Merton [36] the HJB equation was derived when the asset price dynamics are modeled by a more
general stochastic process than the geometric Brownian motion. Thus, the results in Merton
[35], 36] constitute the starting point of continuous-time portfolio optimization. Thereafter, there
has been a vast stream of literature containing generalization models and methods in the field
of portfolio optimization. To mention all of them is beyond the scope of this introduction. A

survey can be found for example in [I11 22].

Amongst others, one generalization of Merton’s portfolio optimization problem concerns the as-
set price dynamics. By assuming a geometric Brownian motion for the evolution of asset prices,
one precludes the possibility of large price jumps because the price process has continuous paths.
This implies that prices cannot change in an extraordinary magnitude within a small time in-
terval. But, historical events and empirical studies have shown that they indeed show jumps,
for example, a market crash as the financial crisis starting in 2008 induced a sudden downward
jump in prices. The first ideas to overcome this modeling drawback came from Merton [37] in
the context of option pricing and from Aase [I] in the context of optimal portfolio selection.
Aase [1] extended Merton’s portfolio optimization problem by using an additional point process.

This point process then allows the prices to jump at random times. Further examples for using
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a so-called jump-diffusion process in portfolio optimization problems can be found in Jeanblanc-
Picqué and Pontier [19] and Jonek [20] where the price process is a solution of a linear stochastic
differential equation driven by a Brownian motion and a Poisson process. From today’s perspec-
tive this is the standard way to introduce the possibility of price jumps. The resulting wealth
process is again a process with discontinuous paths which can be controlled by the investor’s
investment and consumption decisions in order to maximize the expected utility of consumption
and terminal wealth. Even Lévy processes have been used in previous work for the modeling
of asset prices. Here, we refer to [§] for a survey of financial modeling with jump processes. If
practitioners model a market with jump processes they have to know the distribution of jump
times and jump heights. For example, using a Poisson process implies that the inter-arrival
times of the jumps are exponentially distributed random variables. In practice, it is not easy to
verify the distribution and corresponding parameters of price jumps since e.g. market crashes

are rather rare events.

Instead, Korn and Wilmott [29] proposed to model market crashes without any distributional
assumptions on crash times and heights, that is, they modeled crashes as uncertain, rather than
risky events as in the jump-diffusion framework above. The idea is only to assume that the
maximum number of crashes, which can occur on a given time interval, and the maximum crash
size [* are known in advance. At so-called ‘normal’ times between two jumps, the prices of the
risky assets follow a geometric Brownian motion, whereas at the crash time the asset prices
become highly correlated and lose a fraction [ € [0,1*] of their value. The investor takes an
extremely cautious attitude towards the crash uncertainty and aims to maximize his expected
utility of terminal wealth in the worst-case crash scenario. In the jump-diffusion framework, the
investor chooses strategies which hedge a crash in mean. Korn and Wilmott [29, p.1] argued that
this ‘is no real protection against the consequences of a jump at all’. In contrast, the worst-case
approach protects the investor from the worst possible crash that can happen. The investor’s
risk preferences in portfolio optimization problems are often modeled by utility functions U :
(0,00) — R, that is, strictly concave, monotonously increasing and continuously differentiable
functions. Then, on the time interval [0,7], the worst-case portfolio optimization problem by
Korn and Wilmott [29] has the form:
k;:g%) Oéréggglgl* E <U(X§Z)) ’

where k = {ki}ejo,) denotes the fraction of wealth invested in a stock, TI(z) is the set of
admissible controls under the condition that the wealth process X* = {th}tg[o,ﬂ starts in
Xé“ = x > 0. The stopping time 7 and the random variable [ denote the crash time and
height, respectively. In the problem above, note that it is assumed that at most one market
crash can happen on [0,7]. Korn and Wilmott [29] obtained the worst-case optimal investment
strategy for an investor with utility function U(x) = log(z). The worst-case optimal strategy
depends on time ¢ and is a solution of an ordinary differential equation. In Korn and Menkens
[25] the assumption of a logarithmic utility function was relaxed by considering a more general
class of utility functions, so-called HARA (hyperbolic absolute risk aversion) utility functions.
Therein, the authors used an analogue method to the Bellman principle and the classical HJB

equation to determine the optimal investment strategy. Korn and Steffensen [28] applied a
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method based on HJB-type inequalities to determine worst-case optimal portfolios in a market
model with at most n crashes. Menkens [34] considered the case where the expected return
on the risky asset is smaller than the return on the non-risky asset. Based on interpreting the
worst-case optimization problem as a controller vs. stopper game, Seifried [44] introduced a
new martingale approach and applied it to a worst-case portfolio problem for rather general
asset price dynamics. For a survey about ideas, results and methods behind the worst-case
approach in portfolio optimization with a finite time horizon we refer to [26]. Recently, further
generalizations of the worst-case optimization problem above were considered. For example,
Belak et al. [2] considered a problem with a random number of crashes and Belak et al. 3]
extended the model by introducing proportional transaction costs.

The martingale approach developed by Seifried [44] was extended by Desmettre et al. [10] in
order to solve an infinite horizon worst-case investment and consumption problem where at most
one market crash can happen. In this case the market crash is interpreted as a once-in-a-life
time event. The investor aims to maximize his expected discounted utility of consumption in the
worst-case crash scenario. The problem reads as follows:

sup inf E ( / h e U (¢, X1 dt),
(k,c)et (T1)eC 0

where ¢ = {c¢:}+>0 denotes the rate at which the investor consumes. Xhe = {th’c}tzo describes

the wealth process controlled by the investment and consumption strategy (k, ¢), € is the discount

factor and C describes the set of possible crash scenarios.

The worst-case approach introduced by Korn and Wilmott [29] was also applied in the context

of actuarial sciences, see for example Korn [23] and Korn et al. [30].

The worst-case portfolio optimization problems mentioned above allow the investor to invest
either in risky assets, which are threatened by one or more market crashes, or to invest in a
savings account. A common feature of the literature about worst-case portfolio optimization is
that the interest rate of the savings account is constant. This assumption is quite restrictive,
since interest rates indeed change randomly from time to time due to fluctuations on financial
markets.

For classical portfolio optimization problems (without asset price jumps) this restriction was
already relaxed by assuming that the instantaneous interest rate, or briefly short rate, also
follows a stochastic process. The short rate is usually denoted by 7 and the value of the savings
account is given by

t
B; = Byexp </ Ts ds>
0

for some initial value By > 0. Several short rate models, which describe the evolution of the
stochastic process {r¢}+>0, were published in the past and we refer to [, [6] for an overview. For
example, the Vasicek model [45] and the Cox-Ingersoll-Ross model [9] are classical models used
for short-rate processes. Amongst others, Korn and Kraft [24] and Kraft [3I] considered finite
time horizon portfolio optimization problems with stochastic interest rates and determined the
optimal investment strategy by applying the stochastic control approach. Therein, they inves-
tigated the problem for short rate models by Ho and Lee [I§], Vasicek [45], Dothan [12], Black
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and Karasinski [4] and Cox et al. [9]. Moreover, infinite horizon investment and consumption
problems with stochastic interest rates have been investigated in Fleming and Pang [15] and

Pang [39]. Therein, a so-called generalized Vasicek model was considered.

The aim of this thesis is to overcome the restriction of constant interest rates within the worst-
case optimization framework. We consider worst-case investment and consumption models where
the underlying interest rates of the savings account evolve randomly over time and are correlated
with the risky asset price. More precisely, we assume that the investor can invest either in a stock
or in a savings account. As proposed by Korn and Wilmott [29] the stock price is threatened by
one or more market crashes. Our contribution to previous research is that the interest rate of
the savings account is stochastic. Basically, we investigate two different worst-case optimization
problems.

First, we study a worst-case optimization problem on a finite time interval [0, T'] where at most NV
market crashes can occur and the short rate follows a Vasicek process. We determine the worst-
case optimal investment strategy which maximizes the investor’s utility of terminal wealth. We
restrict our considerations on the class of HARA utility functions. We apply stochastic opti-
mal control theory to determine the strategy which is optimal after the N-th market crash has
happened and prove a suitable verification result. In order to determine the optimal pre-crash
strategies we apply two alternative methods. The first one is based on solving a HJB-type
inequality system which is an analogue to the system considered in Korn and Steffensen [2§].
The second one recursively applies the martingale approach by Seifried [44]. Both methods are
adapted to the case of stochastic interest rates. Our main findings are an explicit characteri-
zation of the worst-case optimal investment strategy and the analysis of its actual form. If the
investor’s risk preference is modeled by a non-log HARA utility function, the optimal strategies
differ from the ones in, e.g. Korn and Steffensen [28] and Seifried [44], due to the influence of the
stochastic interest rates. The reason for this is the correlation between the Brownian motions
driving the interest rate and the stock prices. Furthermore, we obtain that a logarithmic utility
function eliminates the stochastic interest rate risk such that the optimal strategy is the same
as for constant interest rates. For the logarithmic utility function we additionally determine the
worst-case optimal strategy for a more general short rate model, namely the general affine short
rate model, and under the assumption that market parameters change at the crash time.
Second, we consider a worst-case investment and consumption problem with an infinite time
horizon, where at most one market crash can happen. Therein, the investor’s aim is to maxi-
mize his expected discounted logarithmic utility of consumption in the worst-case crash scenario.
Within this framework, we assume a generalized Vasicek model (see [15], [39]) and the general
affine short rate model. By applying stochastic optimal control theory and by solving the HJB
equation with the sub- and supersolution method, we determine the optimal strategy valid after
the market crash and the corresponding value function. Then, by applying the martingale ap-

proach we derive the worst-case optimal strategy valid before the crash.

The thesis is organised in two main chapters: Chapter [2| contains the worst-case optimal invest-
ment problem with a finite time horizon and Chapter [3]is devoted to the study of the worst-case

optimal investment and consumption problem with an infinite time horizon.
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In Section we introduce the financial market model. We give a detailed introduction to the
short rate models, we motivate the asset price dynamics and formulate the worst-case optimiza-
tion problem. In Section and in Section we derive the worst-case optimal investment
strategy for the non-log HARA utility functions and the logarithmic utility function, respec-
tively. In both sections, we solve HJB-type inequalities and prove that their solutions are equal
to the value function. Furthermore, in Section we provide an alternative way to calculate the
value function by recursive application of the martingale approach by Seifried [44]. While Section
contains the Vasicek model, we consider a general affine short rate model in Section
for logarithmic risk preferences. This section additionally contains the assumption that market
parameters, such as excess return and volatility of the stock, change after the market crash has
happened.

In Chapter [3] we proceed as follows. In Section we explain the financial market model and
precisely formulate the worst-case optimization problem. The worst-case optimal investment and
consumption strategies for the generalized Vasicek model and the general affine short rate model
are derived in Section and Section [3.3] respectively. We adapt the martingale approach by
Desmettre et al. [10] to stochastic interest rates. Section deals with a generalization of the
financial market model. We assume that market parameters may change after the market crash,
but nothing is known about them in advance, except from the fact that they take values in given
intervals. The investor takes a cautious attitude towards this uncertainty and maximizes his
expected discounted utility of consumption in the worst-case scenario with respect to the crash
and the post-crash parameters.

Finally in Chapter 4] we draw a conclusion and give remarks on possible future research.



CHAPTER 2

Worst-Case Optimal Investment with a Finite Time Horizon

2.1. Introduction of the financial market model

On the financial market, which we consider here, the investor is allowed to invest both in a savings
account and in a stock. We assume that the investor is acting on a given finite time interval
[0,7]. In contrast to the classical investment model by Merton [35], where a diffusion process
with continuous paths is used to model the stock price evolution, here, we assume that the stock
price evolution may have discontinuities, which represent crashes on the financial market. This
means, instead of a stochastic process with continuous paths, we use a stochastic process whose
paths may have sudden downward jumps. The market crashes are modeled as uncertain events,
as first Korn and Wilmott [29] proposed in their work about optimal portfolios under the threat
of a crash. Moreover, the instantaneous interest rate of the savings account is also assumed to
follow a stochastic process which is not affected by the market crashes. The investor’s aim is to
choose his investment strategy such that the expected utility of terminal wealth is maximized
in the worst-case crash scenario. In Section we model the value of the savings account
and motivate the use of stochastic interest rates. In Section we introduce the stock price
equation and then, in Section [2.1.3] we derive the investor’s wealth equation and formulate the
corresponding worst-case optimization problem.

Throughout the thesis we make the following basic assumptions:

Let (2, F,P) be a given complete probability space with filtration F = {F;},c[o,77- All processes
below are defined on this probability space. Moreover, {F; }4c[o,7] is extended to [0,7]U {oo} by
setting Foo := Fr and a process {Y; }ycpo) is extended to [0, 7] U {oo} by letting Yoo := Y7

2.1.1. The savings account with stochastic interest rates. For ¢t € [0,7] let B; denote
the value of the savings account at time t. As usual, under time-continuous interest payments

we assume that

t
B, = By exp </ rsds>,
0

where By is the given price at ¢ = 0 and r; denotes the instantaneous interest rate, which is
briefly referred to as short rate. Obviously, B = {Bi}icjo,r] is the solution of the following
differential equation:

dBt = TtBt dt. (1)

In contrast to previous financial market models within the worst-case optimization framework,
where r; = r for some given constant > 0, we assume here that the short rate r = {Tt}te[O,T]
is modeled as a stochastic process defined on the probability space (2, F,P). In the context of
pricing financial products, for example in bond pricing, different short rate models have been

established in the past. In this thesis, we consider short rate models which belong to the class

6
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of affine term structure models. Note that a short rate model is called affine if the price of a

corresponding zero coupon bond at time ¢ with maturity 7 takes the form

p(t, T) = eA(t7T)_B(t,T)rt

I

where A(t,T) and B(t,T) are some deterministic functions. In general, a sufficient condition for
a model to display this affine term structure is that it follows a stochastic differential equation
(SDE) of the form (see e.g. [5, Chp.3.2.4]):

dry = (M ()1 + Aa(t)) dt + \/E1(t)re + Ea(t) diy,

for suitable deterministic functions A1, A2, &1, &2 and a Wiener process @ = {W¢ }eo,77-

In Sections and we consider a famous special case of the affine term structure model,
namely the Vasicek model [45], where the short rate evolves as an Ornstein-Uhlenbeck process
with constant coefficients. Thus, we assume that A(t) = —a, A2(t) = arp, £1(t) = 0 and
&(t) = a% for some positive constants a, rpr, 0. More precisely, in these sections the short rate

is assumed to be a solution of the following SDE:

dry = a(ry — re) dt + o9 duy, (2)
ro=1%>0,
where 70 is some positive constant. This model was first proposed by Vasicek [45] and therefore

the solution of SDE is often called Vasicek process. Using Ito’s formula, we can calculate a

closed form solution of such that r; is given by

t
re =roe” ™ +ryr (1 —e ) + 02/ e~ =) dap,,.
0

Since the stochastic integral is a normally distributed random variable, r; is normally distributed

with mean
E(re) =% +rp (1 — e ),
and variance
Var(ry) = (ﬁ (1 — 6_2‘”) )
2a
Obviously, it holds:
tlggoE(rt) =17ry.

Hence 7y is called long term mean level of the short rate. Moreover, a > 0 denotes the speed
of reversion to rj; and o9 > 0 describes the volatility. Furthermore, the Vasicek process has the
mean reverting property, that means if 7, < ras (r¢ > 7ras), then the dt term in is positive
(negative), such that 7, is pushed closer to rp;. The Vasicek model is not only used due to its
means reversion property but also due to its analytic tractability in the context of bond pricing.
But, the model has one major drawback. Since r; is normally distributed, the short rate r; can
become negative with positive probability. Nevertheless, the Vasicek process is often used in the
literature to model short rate dynamics and can be used to approximate more realistic short rate

models (see e.g. [7]).
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In Section [2.5] we consider a financial market model with a more general short rate dynamics

than the Vasicek process. We assume an affine term structure model of the form:

dry = (A1re + o) dt + /&y + & day (3)

7"0:7'0>O,

where )\1,)\2,51,52,7“0 are given constants. For \; = —a, A2 = ary, & = ag and & = 0, the
short rate above refers to the Coz-Ingersoll-Ross process [9] which is a solution of the SDE:

dry = a(ryr — r¢) dt + o2+/r¢ diy.

In this case 74 is noncentral chi-squared distributed with mean
E(ry) =% ™ +rp (1 — e )

and variance
Var(ry) = roaf (efat — 672‘”5) + TM;C%L (1 — efa”t)2 )

The Cox-Ingersoll Ross process also has the mean reversion property with long term mean level
ry and speed of reversion a. In contrast to the Vasicek model, the diffusion coefficient contains
a square root term and the short rate is positive with probability one if 2ary; > o5 and always
nonnegative if we have the opposite inequality. Thus, in Section by considering a short rate
of the more general form , we also cover the Cox-Ingersoll-Ross model.

Since we restrict our considerations in this thesis on the models explained above, we refer to

Brigo and Mercurio [5] and Cairns [6] for other short rate models.

2.1.2. The stock price process and the modeling of market crashes. In addition
to the investment in the savings account, the investor can invest in a stock which is threatened
by significant market fluctuations, that means price jumps of extraordinary magnitude. After
his pioneering work about continuous-time portfolio optimization in [35], Merton later proposed
to use jump-diffusion processes to allow large price changes with a positive probability. This
approach assumes that market crashes are risky events. For example a Poisson process or, more
generally, a Lévy process can be used to extend classical diffusion processes. We refer to Cont
and Tankov [8] for an overview of financial modeling with jump processes. All these models
have a common assumption: the distribution of the crash time and the crash size is known. If
these information about the market crashes would be available, one could model the stock price

process, denoted by P = {P}yc[o,7, as the solution of the following jump-diffusion SDE:
dP; = P, [(p+ 1) dt + o1 dwy 4 + dQ4]
Py = pO > 0,

where p and o7 are positive constants and w; = {wl,t}te[O,T] is another Wiener process. Within

this framework, one could assume that Q = {Qt}te[o,T} is a compound Poisson process with

Nt
Qt = Z Y:LH
=1

where {N; }4c(o,7) is a Poisson process with a given intensity and independent of w1, which counts
the number of jumps and Y; > —1 are i.i.d. random variables which describe the jump size of
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the i-th jump. Using Ito’s formula one can derive the solution of the jump-diffusion SDE above

and obtain:
t 2 Ny
01
Pt=p°~eXp{/u+rs—ds+a1w1,t}~||(1+Yi)- (4)
0 2 i=1

Thus, at ‘normal times’ the stock price evolves as a geometric Brownian motion with drift (u+7)

and diffusion coefficient o1, and at jump times 7; the stock price changes in the following way
P.=P._ (14+Y;), i=1,..., N

Therefore, there is a market crash if Y; is negative. Then, the stock price loses a fraction (1+Y;) at
the crash time. Since @ is a Poisson process, the time between two market crashes is assumed to
be exponentially distributed. The jump sizes Y; are random variables with a given distribution.
But often, these information about the time and size of a crash are not available. Korn and
Wilmott [29] argued that market crashes are rare such that the distributions of crash times and
crash sizes are difficult to quantify. Instead, they proposed to model market crashes as uncertain
events, that means they assumed that there can happen a maximum number N of market crashes
on the time interval [0,T]. A second assumption is that the crash sizes are bounded from above
by some given constant. Thus, no distributional assumptions about the event ‘market crash’ were
imposed. Without any distributional assumptions on the crash time and size it is not meaningful
to solve a classical utility maximization problem as did in [35]. The idea of Korn and Wilmott
[29] was to assume that the investor takes a very cautious attitude towards the uncertain event
‘market crash’. Thus, a worst-case optimization problem was formulated. After that, the worst-
case approach was extended in several directions, but all assumed a constant interest rate of the
savings account. Here, we adopt the modeling of market crashes for a financial market model
with stochastic instantaneous interest rates.

As in Korn and Steffensen [28], we assume that there can happen at most N market crashes on
[0,T], where N is a given positive number. The i-th market crash is denoted by a pair (7,1;),
where the crash time of the first market crash 71 is a [0,7] U {oo}-valued stopping time and the
crash time of the i-th market crash 7; is a (7,1, T|U{oo}-valued stopping time (fori = 2,..., N).
Here, the event 7; = oo describes the case if no crash occurs at all. In this setting we assume
that market crashes cannot happen at the same time. The [; € [0,l*] denotes the crash size,
which is a F;,-measurable random variable. The maximum crash size {* < 1 is assumed to be
given and equal for each market crash. Now, the price of the stock at time ¢, denoted by P,
follows a geometric Brownian motion at normal times ¢ € (7;, 7;41) and at the i-th market crash
it loses a fraction [; of its value. Given a crash sequence of n < N market crashes, denoted
by (7, li)ieq1,....n}, We assume that the stock price process P = {P;},c(o,r fulfills the following

equations:
Py=p’ >0,
dP; = P, [(p+1r¢) dt + o1 dwy 4], t € (1i,Tit1), ©=0,...,n, (5)
P.=P._(1-1), i=1,...,n,

where 79 := 0 and 7,11 := T and p, o1 and p° are some positive constants, and P, :=

limg ~,, Ps. In comparison to the jump-diffusion model , the jump sizes Y; correspond to —I;
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and the jump times 7; correspond to the crash times, and the main difference is that nothing is
assumed about the distribution of these variables.

Note that the excess return in the financial market model is given by the constant p > 0.
Moreover o1 denotes the volatility of the stock price. w1 = {wi}iecpo,7) is @ Wiener process
defined on the probability space (€2, F,P), which may be correlated with the Wiener process w.
Thus, we have that

E(wlyt . 1Z)t) = pt, Vte [O,T},

where p € [—1, 1] denotes the correlation coefficient. In order to encode the information which
is available at time ¢ to the investor, we define

Ny:=#{0<s<t:P,#P,_}, (6)

which counts the market crashes until time ¢ and assume that the filtration F = {F;}ycp07) 18
generated by the processes wy, @ and N = {Nt}te[o,T}-

2.1.3. Admissible controls and the worst-case optimization problem. Now the in-
vestor’s behavior is described by a self-financing portfolio process k = {kt}te[O,T] which denotes
the fraction of his wealth invested in the stock. Accordingly, 1 — k; describes the fraction of

wealth invested in the savings account at time t. Below, we use the notation

b — <k(0)’k(1),...,k(m> :

where k() denotes the investment strategy if j market crashes can still occur, that means k:gj ) is

valid for ¢t € (Tn—j, Tn—j+1]. According to this notation, we define the set of admissible controls.

DEFINITION 2.1.1 (Admissible Control). A process k = (k(o), ED, ,k(N)), where kU) =
{k:gj)}te[oﬂ denotes the strategy which is valid on the interval (Tn_j, Tn—j41], is called admissible
control if it fulfills the following conditions:

(1) k is a F-adapted process,

2) k€ A fort e |0,T], where A C R is compact,
(2)

(3) k) < L for j = L...N,t€[0.7],

(4) For j=0,...,N: kY has continuous paths.

The set of admissible controls is denoted by II.

REMARK 2.1.2. (i) We assume that the investment strategy has to be F-adapted, which means
that the investors decides on his strategies at time t based om information until time t. Thus,
for every t € [0,T] he can conclude how many crashes still can occur. Moreover, we do not
restrict the strategies to be nonnegative. This is mainly due to the fact that the optimal strategy
after the N-th market crash can indeed be negative (see Theorem below). It would therefore
be conceptually bad to exclude negative strategies. Thus, in comparison to the literature about
worst-case optimization with constant interest rates, we allow short selling of the stock.

(ii) Note that condition together with condition implies that k,gj) 1s progressively measurable
with respect to IF.

Let N (t,n) be the set of possible crash sequences M = (7},1;)j<n on [t, T}, if there are at most

n crashes left at time ¢. Moreover, given a strategy k € II and a crash sequence M = (75,1;)j<n



2.1. INTRODUCTION OF THE FINANCIAL MARKET MODEL 11

with n < N market crashes, we denote by Xf’M the investor’s wealth at time ¢t. Using the stock
price equation , we can derive the SDE for the wealth process X*M = {th’M}te[o,T]:

XEM =40 5 0,

dxFM = x kM [rt + ukt(j)} dt + XM ok dwi g, t € (Tamjy Taji), (7)
j = O’ * 7n7
XPM = (1= 1kl =3t X0 j=1,...,n,

where 79 := 0 and 7,41 :=1T.

REMARK 2.1.3. Condition[3 in Definition implies that

T )
E(/ \k§])]mdt><oo for m=1,2,...,5=1,...,N.
0

This, together with condition@ ensures that the wealth stays nonnegative for all t € [0,T] P-a.s.

As in [26], 28], the investor’s aim is to maximize his expected utility of wealth at the terminal time
T in the worst-case scenario. Thus, the investor is extremely cautious towards the uncertainty
about the market crashes. Using the notations and definitions above, we formulate the worst-case
optimization problem:
. k,M
sup inf E (U(X ’ )>, (8)
keT1(0,20,r0) MEN(O,N) T
where U : (0,00) — R denotes the investor’s utility function, which is assumed to be strictly
concave, continuously differentiable and

lim U'(r)=0cc  and lim U'(z) = 0.

z—0+ T—00
Moreover, II(t, z,7) denotes the set of admissible controls corresponding to the condition that
Xf’M:a:and re="1.
In this thesis we model the investor’s risk preferences by so-called HARA (hyperbolic absolute
risk aversion) utility functions U. In Sections and , we assume that

U(x) = ix”, v <1,v#0. (9)
If the investor chooses a utility function of this class for a certain v < 1, then he has a hyperbolic
absolute risk aversion of (1 —~)z~! and a constant relative risk aversion (CRRA for short) of
1 — ~. Thus, these utility functions are also of CRRA-type. The higher the CRRA, the higher
the investor’s risk aversion. The measures of absolute and relative risk aversion are invariant

under positive linear transformation of the utility function U. Considering a transformed version
of (9) given by

1 1
utrens(z) i= —a7 — —, v <1,v#0,
Y 8
one eagsily obtains that

%i_r% Uens (z) = log(w).
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Thus, U(z) = log(z) corresponds to the limit case of v — 0 and will be considered in Sections

2.3 and 2.5

As in [28], we can interpret the worst-case optimization problem as a game between the
investor and the market. Here, the investor chooses the strategy k and the market chooses the
crash sequence M with at most N market crashes (7;,1;). Due to the stochastic interest rate of
the savings account, our financial market model provides a generalization of models considered
in [25] 26, 28, 29].
Now, let us define the value function for n =0,1,..., N:
n ._ : t,x,r,n k,M

Vi(t,x,r) = ke;l(lg;,r) Melj{l/ft,n)E (U(XT )) , (10)
where EH®™™ denotes the conditional expectation given that Xf M — x, 1+ = r and there are
at most n crashes left at time ¢t € [0,7]. Hence, V™ : [0,7] x Ry x R — R gives the value of
the worst-case optimal expected utility of terminal wealth if the wealth process and the short
rate process start at time ¢ with x and r, respectively, and there can happen at most n market
crashes on [t, T.

Analogously to the approach of [28], in Sections and we try to solve a so-called HJB-
inequality system in order to obtain the value function V" and the worst-case optimal strategy
for problem . First, we will use this approach to solve the worst-case optimization problem
for the class of non-log HARA utility functions in Section Afterwards, in Section we
investigate the problem for a logarithmic utility function. In Sections and we show how
to proceed using the martingale approach, which was recently developed in [44].

In what follows, we need the following operator. For each v € C122([0,T] x Ry x R) we define
the operator £F by

2
Lro(t, z, ) =vi(t,z,r) + (uk + )z v (t, 2z, 7) + %kaz Vga(t, x,7)

2
o
+ porookx vy (t, 1) + al(ryr — ) vp(t, 2, 1) + ?2’0”(@ x,T).

2.2. The N-crash market with HARA utility (non-log utility)

In this section, the aim is to determine the worst-case optimal investment strategy for an investor
with a non-log utility function of HARA-type under the assumption that the short rate dynamics
is given by a Vasicek process of the form .

First of all, we give a Corollary which ensures that the value function, defined in , is well-
defined.

COROLLARY 2.2.1. For (t,z,r) € [0,T] x Ry xR and n < N, let k € II(t,x,r) be an arbitrary
admissible strategy and let M be an arbitrary crash sequence of length n on [t,T], which fulfills
the assumptions above. Moreover, let {ri}icjor) and XFM — {Xf’M}te[o,T] be given by and
(7)), respectively. Then

> < 00.

1
Et,z,r,n <‘ ; (Xéi;,M)»y
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PrOOF. Let (t,x,r) € [0,7] x Ry x R be arbitrary but fixed. For s € (75, 7j41) for some
j €40,...,n}, where 1o = t and 7,41 = T we have

s 2 s J ‘
XPM = zexp (/ ik = L (ku)* + 7 du +/ o1k dwl,u> [ - ukl=i+0).
t t

i=1
Thus, with z > 0 fixed, we obtain

L kM -1 4 ‘7% 2 T
;(XT’ )Fy - h’ ’x’yexp 7/ ko — ?(ku) + Ty du"”)// o1ky dwl,u
t t
H |1 - l k} n—i+1) |
By assumption, it holds ; € [0,1*] with I* < 1, k%) < L for all j = 1,...,n, u € [0,T] and
[

therefore 1 — likgl_iﬂ) > 0 fori=1,...,n. Moreover, we assumed that k, € A where A C R is
compact and therefore the product is bounded

n
0<JJ—ukr—)y < Ky
i=1
for some constant K7 > 0. Moreover, by Proposition in Appendix [A] we have that

T — e—a(T=1)
/ Ty du :z(l—e_“(T_t))—l-rM <(T—t) - 16)
. a a

T1_ e—a(T—u)
voy [ S,
t a

Since w and w; are correlated with coefficient p, we can replace dw,; by

pdwys+ /1 — p?dway,

where ws is a Wiener process independent of wy. Since k, € A for A C R compact, we obtain

1, kM
\(XT’ y

T oy T
< Kexp / (1-— e_a(T_“)) diy, —i—/ yorky, dwn
=:I(u)

— Kexp ( / )+ pI () du + / T i) dwz,u) < KZr,

where K > 0 is a universal constant and

Zs s = exp < /t () + pE(w)] duw + /t VT () duws

2 [ s fwran =t [(a- P a),

Then, {Zs}sep,r) is the uniquely determined solution of

dZs:Zs[(()+pI )) dwi s + /1 — p2I(s dwz,s}, Zi = 1.
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Then, Krylov [32, Chp. 5.2, Cor.12| implies

E| sup |Zs] | < oc.
selt,T]

Finally, taking the expectation on both sides of the inequality above implies that

Et,m,'r,n < 1

k,M
—(X7)
The following theorem is our main result of this chapter which determines the worst-case optimal

) < KEY"" (1 Z7]) < oo.
5

O

investment strategy in the N-crash market in an explicit form:

THEOREM 2.2.2 (Worst-Case Optimal Investment Strategy).

Assume that the short rate process {ri}cjom is a Vasicek process of the form ([2) and assume
that the wealth process XM is given by .

a) Let kio)* be given by

O« B po2ft) Y1 — exo(—a(T —
KO = s (P where 5(6) = L1 exp(-a(T — 1) (11)
and let
Ot z,r) = iaﬂg“)) () exp(B(t)r) (12)

where g () solves the ordinary differential equation (ODE for short):

2
_ %

3 11—’

J0(0) + g0 ) (w T poroaB L)

0.2
+arwBt) + 2252(75)) ~0,
gO(T) =1.

Then, VO(t,z,r) = 0°(t,x,7) and k:go)* is the optimal strategy if no crash can occur anymore.
b) Moreover, forn € {1,..., N}, define /-ct(”)* = lg:t(n)/\kt(o)*, where l%ﬁ”) is the uniquely determined

solution of

o 1= ™ n 1) n
B = = (k) = ot k") K =0, (13)
2
Ot k) 1 = (4 + poroaB()k — TH(1 =)k,
and let
ot 2,7) = ~a g™ (8) exp(B(E)r), (14)

where g™ (t) solves

2
90 + 50 ((0-+ prioaB O = Tr(a = )R

Fardl) + Z0) <0, g0(D) =1 (15)
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Then, V"(t,x,r) =v"(t,x,r) and kt(n)* forn e {l,...,N} is the worst-case optimal investment
strategy for the problem .

Before proving Theorem we state some auxiliary results which are used in the proof. First,
the following Lemma is an analogue to |28, Lemma 3] for the case of stochastic interest rates.

LEMMA 2.2.3. Let V"(t,x,r) be given by and let (1,1) be the first intervention of the market,
that means the first market crash, after time t. Then, it holds

V*t,z,r) = sup inf ELE [U XM }
( ) kell(t,z,r) MEN (t,n) ( r )

= inf sup  EMTTT [U xp }
MeN(t,n) kell(t,z,r) )

= sup inf Ebzrm |:an1(7_7 Xf,_(‘r,l)(l _ lkT)’ TT)i|
kell(t,xz,r) (m.0)

—inf sup B VO (n XPOO (1 -tk
(1) kell(t,x,r)

PRrROOF. Analogously to the literature [28, Lemma 3|, we prove the result for our model with
stochastic interest rates. Since it is rather technical, we refer to Appendix for details. O

By definition, we have that k:t(n)* = I%E”) A k:t(o)*, where /%t(") is the solution of the backward ODE
(13). By time reversion ¢t — T' — ¢, this ODE takes the form

S (n) _1 — l*hgn)

ht I* [(,U + ,0(710'2ﬂ(T — t)) <h£n) _ k;n:tl)*)
0'2 n 1) .
= 5= (W7 = 657 ] W o 1)

where hgn) = 12;§?_’t By definition, we obtain

n—1)x% 2 (n—1 0)* n—1 0)*
k’fht "= k’EILt : A k’EF)t = hg ) /\k(Tlt'

Let us define
1=

[(u + po102B(T — t)) (h(”) — k(f:l)*)
2

. ﬁ _ (n)2 _ (n—1)%2
(1) (102 1) |

Using the forward ODE , we can prove the following auxiliary result to ensure that there
exists a uniquely determined solution l%gn) of the backward ODE .

PROPOSITION 2.2.4. Let n € {1,...,N} be arbitrary but fized. Then, there exists a uniquely
determined solution l%gn) of and it holds fcﬁ”) € [0, li*) forallt€[0,T],n=1...,N.

PrOOF. We refer to Appendix for the proof. O

REMARK 2.2.5. By definition, we immediately obtain that kin)* = l%gn) A kgo)* < l% for all
t e [0,T], n € {l,...,N}. Since l;'t(n) is a solution of the ODE (13), we have that kﬁ”)* is a
deterministic function in t, and therefore k* = (k(o)*, ey k(N)*) s an admissible strategy in the

sense of Definition (2.1.1)
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PROPOSITION 2.2.6. Forn =2,...,N we define ugn) = hgn) - hgnil), where h(™ is the solution
of the corresponding equation . Then, uE”) <0 forallt € [0,T] and for alln € {2,3,...,N}.

PrOOF. We refer to Appendix for the proof. O

PROPOSITION 2.2.7. Let yp > 0. Then ugl) = hgl)—hgo) <0 forallt € [0,T], where hio) = k(TOE
and hgl) 1s the uniquely determined solution of forn=1.

PrOOF. We refer to Appendix for the proof. O

REMARK 2.2.8. By Proposition we obtained that h,ﬁ”) < hgn_l) <o < hgl) for all t

[0,T). By time reversion, this is equivalent to
W < kY << kW wee o, 1)

Note that, PropositionM wmplies that hgl) < hgo) if vp > 0 and therefore
Y <k << kY <K, vee o, T,

Now, we prove Theorem and obtain that k;n) Y= /;:t A kgo)* is indeed the worst-case optimal

investment strategy.

PROOF OF THEOREM [2.2.2]
a) Here, we investigate how the investor has to choose his strategy immediately after the N-th
market crash. Thereafter, the investor is faced with a classical stochastic optimal control problem
with a finite time horizon because no market crash can occur anymore. We solve this problem
by Dynamic Programming Principle (DPP). First, we solve the corresponding HJB equation and

prove that the solution is equal to the value function

1
VO(t,z,r) = sup inf EHE0 <U(Xk’M)> = sup E47 (T) , (17)
kell(t,z,r) MEN(,0) r kO ell(t,z,r) v g

where X ¢ denotes the wealth at time s > t if no crash can occur anymore, that means X, solves
the classical wealth equation controlled by k(©) starting at time ¢ in (z,7r) € Ry x R:

dX, = X, [n n ukgm} ds + X,01k® dwy,, X =z,
drs = a(ry — Ts) ds + o9 dbs, Te=r,
for s > t. The corresponding HJB equation is given by

sup /Jk(o)vo(t,x,r) =0, (t,z,r) € [0,T) x Ry x R, (18)
k®ecA

1
(T, z,7) = ~27, (x,r) € Ry xR.
Y

By applying a standard separation method for the case of non-log HARA utility functions, where
we assume that the solution of takes the form v0(¢, z,r) = %x”W(t, r) and W(T,r) =1 for
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all » € R, we obtain
2

Wilt,r) +~ sup pkOW (t,7) — %1( — V) E2W (L, r) + porook O W, (t,r)
k®eA

W (7)) + alryy — 1YWt ) + %WM(t, r) =0,  (t,r)€[0,T) xR,

W(T,r) =1, r e R.

Assuming that W (¢,r) > 0 for all (¢,7) € [0,7] x R, we obtain the candidate for the optimal
control by the first order optimality condition:

I + PO2 ] Wr(ta r)
et T e Wit

and, by inserting, we get the following second order partial differential equation for W:

kO (¢, r) =

Wilt,r) + 7 (W () + poroa Wy (8, 7)) KO% (¢, ) - 02%7(1 — ) (RO (8, 7)) W (E, 7)
+yrW(t,r) + a(rapr — r)We(t,r) + Z%Wrr(t, r) =0, (t,r) €0,T) xR (19)

W(T,r) =1, r € R.

By a further separation approach of the form W (t,r) = g(0(t) exp(8(t)r) with ¢(©(T) = 1 and
B(T) = 0 we arrive at:

90 +gOWr (b1 - aB®) +7)

2 2
A0 (w + po10aB(t)k" = Ty(L =) (k") + arasB(t) + “;52@)) =0,
¢ (1) =1,8(T) =0.

In order to eliminate the state variable r from the equation above, 3(t) has to fulfill

Bt) —aB(t) +v=0,  B(T)=0,
= B(t) = L1 exp(~a(T = 1))].
Thus, we obtain a linear ODE for ¢(0(t):
O+ 90t =0,  ¢O(T) =1,
where

2 2
a0 (t) = 3+ poroaBEO)K"" — Ty =Nk + aryB(t) + L (1),

Finally, this leads to an explicit formula

Ot x,r) = ia:'YW(t,r) = }yaﬂg(o) (t) exp(B(t)r) (20)

which solves the HJB equation, and since % = B(t) for all (¢,7) € [0,T] x R, the candidate

k(0% is given by

O _ % n po2(t)

(A=)t (I—7)or (21)
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Since g0 (t) = exp(ftT ) (s)ds) > 0, we obtain that W(t,r) = ¢g©(t) exp(B(t)r) > 0 for all
(t,r) € [0,T] x R. Now, it remains to show that the solution of the HIB equation is indeed
equal to the value function VO(¢,z,r), defined in (17), and that the candidate kO in is
the optimal strategy. This can be done by proving the assumptions of |24, Corollary 3.2]), which
provides such verification result. These proofs are rather technical, but standard, and therefore,
we refer to Appendix [2.6.5] Now, we conclude that the optimal strategy after the N-th market
crash is given by k(©* and that v°(t,z,7) = VO(t,2,r) and therefore, a) holds.

b) In order to show the assertion for n € {1,..., N}, we adapt the system of variational inequal-
ities from [28, Thm.2| for the case of stochastic interest rates. First, following the notation of
the literature, we define for n € {1,...,N} :

AL (t,x,r) = {/{: cA:0< Ekv"(t,x,r)} )
At o) :={keA:0< il (6, x(1 = U"kT),r) —o"(t,z,7)} .

We consider the following system of variational inequalities:

O0< sup [ﬁkv”(t, w)} : (22)
ke Al (t,x,r)

0<  sup [vnfl (t,x(1 = UkT),r) —o"(t, z,7)], (23)
ke Al (t,x,r)

0= sup |:£k1)n(t, x, T‘)i| sup [Unfl (t, LIZ‘(]_ o l*k+)’ 7,) o Un(t, z, ’I”)] ’ (24)
ke A (t,z,r) ke Al (t,z,r)

1
(T, x,r) = ;x”, (z,r) € Ry x R. (25)
and define
Pt r)i=marg sup [LRt(tar)
ke Al (t,z,r)
o (t,z,r) = i~n>fzt [UH_I(S’X;C’M“ — k), ms) — Un(S’Xf’M,Ts) < O] ) (26)

where Xf’M =zandr,=r.

By the heuristic construction of v™(¢,z,r) (see Appendix [2.6.6), we have that v"(¢,z,r), given
by (L4), indeed solves the system of inequalities (22)-(25)) for n € {1,...,N}.

Using that v™(t, x,r) is a solution of the system above, we prove that v"™ (¢, x,r) = V" (¢, x,r) and
that k:gn)* = l%ﬁn) /\kgo)* is the worst-case optimal strategy. In contrast to [28, Thm. 2|, where the
verification theorem is proved for constant interest rates and general utility functions U, here,
we prove the assertion of Theorem for the Vasicek short rate model and the special class of
HARA utility functions using the explicit form of the solution v™ of the system of inequalities.

We prove that v™ (¢, z,r) = V" (t,z,r) via induction.

First, we show that v!(t,z,r) = Vi(t,z, r):
Let (¢,z,7) € [0,T] x Ry x R be arbitrary but fixed. We denote by (7,[) the first intervention
of the market after time ¢ (that means the first market crash after time ¢ at time 7 with jump
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size 1). Let (k,(7,1)) be an arbitrary but fixed strategy, where k is chosen by the investor and
(,1) is chosen by the market. Here, we only have to consider the wealth X®™ until the first
intervention time 7 and therefore we can just denote the argument M in by (7,1), such that
the wealth and the short rate dynamics are described by:
XHD g,
de’(T’l) = Xf’(T’l) [rs + pks| ds + Xf’(T’l)alks dwy g, t<s<r
XErD = xBED k),
re=r,
drs = a(rpyr — rs) ds + oodibs, t<s<r.
Now, by applying multidimensional Ito’s formula, we obtain
dvl(s, Xf’(T’l), Ts) zﬁksvl(s, Xf’(T’l), rs)ds + v;(s, Xf’(T’l), rs)alkst’(T’l) dwn s
+ v}(s, Xf’(T’l),rs)pag dw s
+ 0 (s, XBD 1)1 = pPoydws,, t<s<T, (28)
with
vl(t, Xf’(T’l),rt) =ol(t, z, 1),
dvl(T, Xf’(T’l),rT) :UI(T, Xf’(T’l),rT) — UI(T—,XfL(T’l),rT,)
=vl(7, Xf;(T’l)(l —lk;), ) — vt (T—, Xf;(T’l),rT,).
Integrating on both sides of ([28)), leads to

Ul(T—, Xf’_(T’l) JTre) — vl (t,z,7)

:/ Cksvl(s,Xﬁ’(T’l),rs)ds

t

+/ (v}s(s,Xf’(T’l),rs)olkst’(T’l) +v%(s,Xf’(T’l),rs)pag) dwi
t

.
+/ Ui(s,Xf’(ﬂl),rs)\/l — p2ordwy s. (29)
t

Equation holds for an arbitrary but fixed strategy (k, (7,1)).
Now, we fix ks = p'(s Xi(T l), rs) = k" for ¢ < s < 7 and let (7,1) be an arbitrary but fixed
intervention by the market, then we have, by construction, that

(1)= (1)*,(7,1)
Lk 1($,X£C ,Ts) =0, t<s<r,

and k\V* € Al (s), that is
( OO l*(kgl)*)+)’rs> _ ot <s,X§(”*’(T’”,r5> 7

1), (7,1 (1)*,(7,0)
vo( () ! ) lk(l)*) )—vl(s,X;C ,rs), t<s<r.

| /\

IN
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Equation together with ks = kgl)* implies

ol (t,z,7)
k(1>* 1)
T )

(
(1)* 1 E(1)#,(7.0)
s, X, ,Ts)ds

Xk<1)* D)o kgl)*Xf(l)*7(T,z)+vi(&Xﬁ(l)*,(T,l)’Ts>pa2> dwy

/ vl(s, Xk () )V 1 — p?og dwg g
t

<0 ( k( )*,(m0) (1 _ lk(l)*)er_)

T

_/ (’Ul( Xk;(l)* (1, l) ) 1/<7§1)*Xf(1)*7(7’l) + Ui(S,Xﬁ:(l)*’(T’l),Ts)PU2> deS
t

T

-
— / v%(s, Xf(l)*’(T’l), rs)V' 1 — p?og dwss. (30)
t
Using the fact that
valj(s, x,r)T = vl(s,x, )7y, Ui(s,:c,r) = vl(s,x,r)ﬁ(s),

the stochastic integrals are equal to the term

- / Ul(sv Xéf(l)*,(ﬂ',l)’ Ts) |:<’70-1kg1)* + B(S)pO’g) dwl,s + B(S) V 1- p202 dw2,s}

(8)), dws := (dwy 5, dwa 5)T with
FT0 () 1= ! (s, XETHD ) (30rk D + B(s)po)
1570(s) = 0! (s, XEH O, ) 1= Pra(s).

In contrast to [28, Thm. 2|, we can use the knowledge about the explicit form of the function

v!(t,z,r) in order to show that

DR [— /T f(T’l)(s)dws] = 0. (31)
t

For the proof of ([31]), we refer to Appendix [2.6.8]
Taking the expectation on both sides of , leads to

(1)=*
ol () SBR[ (7 XE 00 (@ = k) )] (32)
Now, the following steps are similar to the case of constant interest rates in the literature. By
we have
vl(t,z,r) < sup EHETL [UO (7’, Xf’_(T’l)(l — lk:T),rT)} . (33)

kell(t,x,r)
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Now, taking the infimum over (7,1) on both sides of leads to

vi(t,z,7) < inf sup REHENL [vo (T, Xf’_(T’l)(l - lkT),rTﬂ . (34)
(D) keIl(t,x,r)

Moreover, taking the infimum over (7,1) on both sides of (32), we have
ol(t,z,r) < (Tlf) RtrL [Uo (7_’ Xf(_l)*’(T’l)(l _ lkgl)*),n)} (35)
and therefore
vl(t,z,r) < sup inf Eb®N [’UO <T, Xf;(77l)(1 — lkT),rTﬂ . (36)
kell(t,z,r) (Tl

Now let k € II(¢,x,r) be arbitrary but fixed. We fix the strategy (7,1) = (6,1), where 6 :=
0 (t,2,r) and [ = I (kg). Then, by definition of 6, it holds

k,(0,0)

UO(S,X;C’_(O’I)(l — 1D (kky), 7s) — v (s, X2 1) > 0, for t<s<¥, (37)
000, XD (1~ Tkg), g) — 01 (0, XD rg) < 0. (38)

For t < s < 0, kg either fulfills
0> Eksvl(s,Xf’(G’i),rs), or 0< Lrol(s, Xf’(e’[),rs). (39)

Assume the last inequality holds for k, then ks € A’l(s,Xf’(e’[), rs)L For the sake of brevity, we
write A (s) and AJ(s) instead of A (s, xkOD rs) and A’l’(s,Xf’(e’l),rs), respectively. Together
with , it follows

k,(6,0)

0 < 0%(s, X2V 1 Z 1O (k)ky),7s) — v (s, XTED 1)

9 S—

< sup vo(s,Xf’_(e’[)(l — l(l)(ks)ks), Ts) — vl(s,Xf’_(e’Z), Ts)

ko€ Al (s)
=0< sup vo(s,Xf’_(e’i)(l — 1D (k) ks),rs) — v'(s, Xf’_(g’z), Ts)
kse Al (s)
= sup (s, XE = k), 1) — 0l (5, X5 ),
ko€ A’ (s)

Here, we used that l(l)(k:s)k:s = "Iy, >0ks = I*kF. Since vl is a solution of the system of
inequalities, it follows by , that

sup [Eksvl(s,Xf’(e’Z),rs)} =0.
kse A (s)

But ks € A(s) by (37), and therefore

0= sup [ﬁksvl(saX?(ej)ﬂas)} > Eksvl(SaX§7(97Z)’TS)v
ko€ A7 (s)
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which is a contradiction to the assumption that the second inequality in holds. Thus, we
have LkSvl(s,Xf’(e’l),rs) < 0 for t < s < 6. Now, by inserting (6,1) in ([29)), we obtain by

vl (t, @, 7)

= v (0, X300 1)

[/ -
—/ Eksvl(s,Xf’(e’l),rs)ds
t
0

[ (225 XD 1ok XEOD 4035, XEOD, 1)) .
t

0 N
—/ v}(s,Xf’(e’l),rs)\/l — p2ogdws g

t
> vO(G,XgL(G’Z)(l — lkg),Tq)

0 3 B 5
_/ (U;(S,Xf’(e’l),rs)alkrst’(a’l) +vi(s7X§,(e,l)7rs)pg2) dwy 4
t

0 -
— / vl (s, XPOD 1+ )\ /1= p20y dws s. (40)

t
In Appendix we have shown that

Ehan [_ /t" £ (s) dwg] o, (41)
where f®)(s) := (£ (s), i (5)), dw, = (dwy 5, dwy ;)T with
119(s) = 0! (5, XEOD ) o1k + B(s)po)
159 (s) o= 0! (s, XEOD 1)y /T = p2B(s).
Now, taking the expectation on both sides of leads to
vl (t, x,r) > EHETL [UO(G, Xg;(e’z)(l - l~/~€9), 7“9)} (42)

= ol(t,z, 1) > inf ot [UO(T, XD lkT),rT)] . (43)

Taking the supremum on both sides of implies

vl(t,z,r) > sup inf Eb®NL [’UO(T, Xf’_(T’l)(l — lkT),rT)} ) (44)
kell(t,x,r) (m0)

If we take the supremum on both sides of , then

ol(te,r) > sup EEEL[0(0, XD (1~ Tky), )| (45)
kell(t,x,r)
= vl (t,x,r) > inf sup EH"T! [UO(T, Xf’_(T’l)(l - ”{57-),7‘7-)} . (46)

(T1) kell(t,z,r)
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Summing up, we finally obtain

v!(t,z,r) = inf sup EHZ
(1) keIl(t,x,r)

23

O (r, XE D (1 k), rT)}

= sup inf EX®N! _1}0(7', Xf’_(T’l)(l — lkT),rT)}
kell(t,x,r) (m0) -

= swp i B VO X0 - k), )|
kell(t,x,r) (m0) -

= Vit a,r),

where the first equality follows by and and the second equality follows by and
([44). The third equality follows by the fact that VO(t,z,r) = vO(t,2,7) and the fourth equality
follows by Lemma [2.2.3] Thus, we have shown that v!(t,z,7) = V1(t,z,r), where v! is given by

(14)
Finally, with ({5)), we have

Vl(t,x,r)z sup EbH®mL

kell(t,x,r)

> Etor1 {‘/'0(97 Xg(_l)*,(ﬂj)(l _ [kél)*)7 710)}

[vo(e, XFOD k), rg)]

> inf Et’z’r’l
(1)

and together with , we have

|:VO(T, Xf(_l)*’(T,l)(l _ lkg_l)*),’l})} 7

Vit xz,r) = inf Eb®"!
(1)

= l%t(l) A k:t(o)* is the optimal strategy if at most one crash still can happen.

Now, assume that v~ 1(t,z,r) = V""L(¢t,z,r). Then, we can show that v"(t,z,r) = V*(t,z,7r).

Let (¢,xz,r) € [0,T] x Ry X R and assume that n market crashes are left. Again we denote by

(7,1) the first intervention of the market after time ¢ and let (k, (7,1)) be an arbitrary but fixed

strategy. Again by using Ito’s formula, we obtain that

|:V0(T, Xk(_l)*’(T’l)(l . lkg_l)*),’l})}

T

and therefore, k:gl)*

Un(t7 Zz, T) :Un(7_7 Xk7(T7l) ’ 7“7-,)

—/ Cksvl(s,Xf’(T’l),rs)ds
t

T
[ (o206 XD ok XEC 0, XECU, )9
t

—/ o (s, XETD )T = p20g dwg .

t

(47)

First, we fix the strategy ks = p”(s,Xf’_(T’l),rs) = kgn)* for t < s < 7 and obtain by the same
arguments as above that

v (t,x,r) < inf  sup  EHTT oL (7 XI:’_(T’Z) 1—1k;),r,
( ) (.D) ken(t,z,r) [ < ( ) )}
and

sup inf EH®7"

v (t,x,r) <
kell(t,x,r) (m.0)

[v”—l(f, X5 k), 7«7)} .

T—
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By fixing the strategy (7,1) = (0,1), with 6 = 0"(¢, 2, ) and [ := (") (ky), where k € TI(t,z,7) is
arbitrary but fixed, we use again the same arguments as above and obtain
v"(t,z,7) > sup inf EHTT" |:’Un_1(’7', Xf’_(T’l)(l — lk:T),rT)} ,
kel(t,z,r) (Tl
and
v"(t,z,7) > inf sup EHT" [v”fl(r, Xf’_(T’l)(l - lkT),rT)} .
(1) kell(t,x,r)

Both together lead to

v"(t,z,r) = inf sup EHTI _v”_l(T, Xf;(T’l)(l - lkT),rT)}

(m0) kell(t,x,r)

= sup inf E®""
kell(t,z,r) (T

= sup inf EW®""

o X k) )|

VT X0 = k), )|

kel(t,z,r) ()
=V™(t,z, 1),

where the third equality follows by the assumption that v~ (¢, z,7) = V" (t,2,7) and the
fourth equality follows by Lemma [2.2.3] Thus,

v (t,x,r) =V"(t,x, 7).

Moreover, it follows that k:,g")* = /;:,gn) A k}go)* is the worst-case optimal investment strategy if at
most n market crashes still can happen. O

2.2.1. Conclusion from Theorem and comparison with the case r; = r. Theo-
rem implies that the worst-case optimal strategies can be calculated numerically. First, the
strategy after the N-th market crash is given by the solution of the classical stochastic optimal

control problem:

(O ! poaf(t)

: 1=7)et  (I=7)or

Note that k(9% is independent of w € Q as it does not depend on the short rate r4(w). This is

due to the fact that the access return p in our financial market model is assumed to be constant,
and therefore, the control variable k is not coupled with the short rate r; in the wealth equation.
Nevertheless, k(0* depends on the parameters a and o2, which determine the Vasicek process in
(2). The same is true for the worst-case optimal strategies l{:gn)* = l;:t(n)* A l{:go)*, n=1,...,N.
Here, l%t(n) can be calculated by solving the corresponding nonlinear non-autonomous ODE of the
form

() L=k

i (ot k) = ot k) K =0,

where ¢(t, k) = (u+po1o28(t) )k — %%(1 —~)k2. If we would assume that r; = r for some constant
r > 0, then the ODE above reduces to a nonlinear autonomous ODE, which is already published
in the previous literature, see e.g. [28| B3, 44]. The same applies if we especially assume that
p = 0, that means that w; and w are uncorrelated and therefore independent processes. Then,
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the strategy k:t(o)* reduces to
k(O)* — K ’
Y -y

2
and ¢ reduces to ¢(t, k) = pk — 5 (1 — )k?. Therefore, in these two special cases ODE
reduces to an autonomous ODE and the worst-case optimal strategies do not depend on the
short rate parameters anymore. Thus, the worst-case optimal strategies do not differ from the
worst-case optimal strategies for the case of constant interest rates (see e.g. [28, [33] 44]).

2.3. The N-crash market with Log utility

Here, we consider the logarithmic utility function which corresponds to the case of v = 0 of the

section before. Thus, we consider the worst-case optimization problem with
U(z) = log(x)

and with Vasicek short rate dynamics of the form . The logarithmic utility function also
belongs to the class of HARA utility functions. First of all, we obtain that the value function,
defined in (10), is well-defined for U(z) = log(x).

COROLLARY 2.3.1. For (t,z,r) € [0,T] x Ry xR and n < N, let k € II(t,z,r) be an arbitrary
admissible strategy and let M be an arbitrary crash sequence of length n on [t,T|, which fulfills
the assumptions given in Section . Moreover, let {ri}ejo,m and XEM — {Xf’M}te[o,T} be
given by and , respectively. Then,

I (‘log(X?M)D < o0,

PROOF. Let (t,z,r) € [0,T] x Ry X R be arbitrary but fixed. Then, we have

n

T 2 T ‘
X?M = zexp </ wky — %(%)2 + 7y du + / o1ky dw17u> H(l — likg“wl))
t t i=1

By k € II(t,z,r) we have that k is bounded. Moreover by Proposition and by triangle
inequality, we obtain

2

11 (T
llog(Xéi’M)’ <K+ 3 /t (%p(l —eo(T—w) 4 alkzu> dwi

T 2
2 /1= p2(1 — e T~ dupy
t a

for a sufficiently large constant K > 0. Taking the expectation on both sides and using Ito

)

1
2

isometry, leads to
R (‘log(Xéi’M)D < 0.

O

Analogously to Theorem we determine the worst-case optimal strategy for problem (8)
with logarithmic utility function by the following theorem.
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THEOREM 2.3.2.

Assume that the short rate process {ri}yc(o.1) s given by and assume that X*M is given by
(M. Moreover, let U(x) = log(z).

a) Let kt(o)* = —% and let

Wt z,7) =log(x) + WO (t, ),

where
2

WO, r) = (2’;2 n rM> (T —1) + % (r — s+ e Ty — r)) .
1

Then, VO(t,z,r) = 0°(t,z,r), where VO is defined in (10), and kt(o)* is the optimal strateqy if no
crash can occur anymore.
b) Moreover, forn € {1,...,N}, let I%gn) be the uniquely determined solution of

B = “ﬂﬁm@w%—MW”w, K =0, (48)
o08) =k — 2
with l%,go) = U%, and let
o (t, x,7) = log(z) + WM (¢, r), (49)

where

W™ (t, ) = g™ (&) + h(t, ),
T ‘7% > 2
gt = [ k) = )R s,
t
1 —a(T—1)
h(t,r):rM(T—t)+g<r—7“M+e (rM—r)>.

Then, V™ (t,x,r) = v"(t,x,r) and l%§n) is the worst-case optimal strategy if n crashes still can

happen.

In the Theorem above, we assume that there exists a uniquely determined solution of . This

assumption can be verified by the following Proposition.

PROPOSITION 2.3.3. Letn € {1,...,N}, then ODE has a uniquely determined solution l%,g”)
and for all t € [0,T] it holds

(1) k € [0, %),

PrOOF. First, note that reduces to for v = 0. By applying Proposition for
the special choice of v = 0, we immediately obtain that has a uniquely determined solution
]%gn) € [0, li*), t € [0,T]. Moreover, Proposition , Proposition and Remark are
especially true for v = 0, and therefore the assertion holds. O

PROOF OF THEOREM [2.3.2] a) Analogously to the proof of Theorem [2.2.2] we first investi-
gate how the investor has to choose his strategy immediately after the N-th market crash. After
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the N-th crash the investor is faced with a classical stochastic optimal control problem with
logarithmic utility function. By definition, the value function is given by

Voo = s B (log(Xr))
kO eTl(t,x,r)

where X, denotes the wealth at time s > ¢, that means:
dXs = X, [?3 + u k‘go)} ds + ysalk‘go) dwi s, X, ==,
drs = a(ry — Ts) ds + oo dibs, T =T.
The corresponding HJB equation is given by

sup Ek(o)vo(t,:v,'r) =0, (t,z,r) € [0,T) x Ry x R, (50)
k®ecA

(T, z,7) = log(z), (x,r) e Ry x R.

The usual separation ansatz to find a solution of this HJB equation is to assume that v0(¢,z,7) =
log(x) + WO (t,7), where WO (T, r) = 0 for all r € R. Thus, the equation above reduces to

2
Wt(O) (t7r> + sup M]{;(O) _ ﬁ(k,(O))Q +r
kO ecA 2

2
Falra — WO )+ ZWOE ) =0, (6r) €[0.7) xR
wO (T, r) =0, reR.

Now, we obtain the optimal candidate by the first order optimality condition:

k(o)* = Ll
t a%’

and it remains to find a solution of the following partial differential equation (PDE)
(0) U% (0) ©0) (¢ i
W (t,r) + ?WW (t,r) +alryy — r)W, D (t,7) + 7+ 257 = =0, (t,r)€l0,T) xR,
1
wOTry=0, reR. (51)
Now, the Feynman-Kac Theorem (see Appendix [A]Theorem [A.4.1) tells us that the unique
solution of the PDE can be written as a conditional expectation and we obtain that

wO(t,r) = 2 ( —t) + E”(/tTrSds)

(L) =4 (T )

For the calculation of E®" (ft Ts ds) we refer to Proposition |A.1.1]in Appendix |Al Thus, we
determined a solution v0(t,z,7) = log(z) + W (¢,r) of the HIB equation (50). Again, by
proving the assumptions of the Verification Theorem [A.5.2] in Appendix [A] we obtain that
VO(t,x,r) = v°(t,z,7) and that k:lfo)* = —% is the optimal strategy after the N-th market crash.
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b) Analogously to the non-log HARA utility case, we can show that v"(¢,z,r) given by is
a solution of the system of variational inequalities:

0<  sup [Lkv”(t, x, r)} ,
ke Al (t,x,r)

0<  sup [v”_l (t,x(l — l*k+),r) —v"(t, 1:,7‘)] ,
ke Al (t,x,r)

0= sup [Ekv"(t, x,r)} sup [U”_l (t,az(l —I*k™T), 7“) — v”(tjx,r)] ,
ke Al (t,x,r) ke A (t,z,r)

(T, z,7) =log(x), Y(xz,r) e Ry xR.
Moreover, we have

Y =p'(tar)=arg sup LR (ha)]
kEA! (t,z,r)

because the supremum is attained for k such that the condition v™ (¢, z,r) = v~ (¢, 2(1-1*kT), )
is fulfilled. We refer to the Appendix for details about finding the solution v"(¢,z,r) and
/;:t(n). We prove that v!(¢,z,7) = V1(¢,z,r) along the lines of the proof of Theorem

First, for arbitrary but fixed (¢,z,r) € [0,7] x Ry x R and for an arbitrary but fixed strategy
(k,(7,1)) we have

UI(T—, Xf’_(T’l) JTre) — vl (t,z,7)

:/ Eksvl(s,Xf’(T’l),rs)ds
t

n / (vi(& XEED Yok XD 4yl (s, Xf,(T,z),rs)p@) duwn s
t

-
+/ ok (s, XBTD 1)\ /1 — p2oy dwy,s.
t

By fixing ks = pl(s,Xf’_(T’l),rs) = /2:§1) for t < s < 7, where l%gl) solves , and by the same
arguments as in the proof of Theorem [2.2.2] we obtain by that

vl(t,m,r) <Y (T—,Xfil)’(T’l)(l — l/%gl)),n_>
[ (o XD kX 4 XED, ) i,
t

T ~
— / v}(s, Xf(l)’(T’l),rs)\/ 1 — p?09 dws s.

t

Using the explicit form of the function v'(t,z,r) = log(z) + W (¢,7), we easily obtain that
1
’U;(S,IL',T)J:‘ =1, v}(s,x,r) = WTgl)(Svr) = E (1 - e_a(T_8)> s
and it follows that

Eb®m1 [/ (all%gl) + Wr(s,rs)pag) dwi s + Wy (s,75)\/1 — p?09 dw275:| =0.
t
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Therefore, we have

vl(t,m,r) <inf sup EH®TTI [vo <T, XfL(T’l)(l — lkT),rTﬂ ,
(1) keIl(t,x,r)

vl(t,x,r) < sup inf Eb®T1 [vo <T, Xf’_(T’l)(l — lkT),rTﬂ .
kell(t,x,r) (m0)

Now, let k € II(t,x,r) be arbitrary but fixed. We fix the strategy (7,1) = (0,1), where
0 = 0'(t,x,r) and [ = 1M (ky). Note that 6"(¢,z,r) and I(D(k) are defined in and (27),
respectively. Then, by the same arguments as in the proof of Theorem we obtain that

v (t,z,r) > 000, XEOD (1 — Tky), rp)

0 - - -
— [ (k5 XD, 1)k XEOD 1015, XEOD, 1)) .
t

0 ~
— / vk(s, XBOD v )\ /1 — p2og dwy,s.

t
Now, by the fact that the expectation of the stochastic integrals vanish, we obtain

vl(t,z,r) > sup inf Eb®N [UO(T, Xf’_(T’l)(l — lkT),’I“T)} ,
kEH(t,(D,T) (Tvl)

vi(t,z,7) > inf sup REHENL [UO(T, X,I:’_(T’l)(l — lk‘T),’I“T)} :
(D) keIl(t,x,r)

Summing up, we obtain

vl(t,x,r) = inf sup EH! _UO(T, Xf’_(T’l)(l — lkr)ﬂ“r)}
(1,0) kell(t,z,r) -

= sup inf Eb®N1 _’UO(T, Xf’_(T’l)(l — lkr)ﬂ”r)}
kell(t,x,r) (m,0) -

= swp i B[V XPTO (- k), )|
kell(t,x,r) (m.0) -

= Vit z,7).

Note that the third equality follows by part a) and fourth equality holds because Lemma m
also holds for the logarithmic utility function. Therefore, v!(¢,z,7) = V(¢,z,7). Using the same
arguments as above, and assuming that v~ 1(¢t,z,r) = V" L(t,z,7), we arrive at v"(t,z,7) =
V™(t,z,r) and it follows that l%t(”), which is the solution of (48], is the worst-case optimal

investment strategy. (I

REMARK 2.3.4. In order to find a solution W) of the PDE in part a) of the proof, we
could also use the separation ansatz WO (t,r) = g0 (t) + B(t)r, where we conclude that 3(t) and
gO(t) are given by
1 (T I TM —a(T—
t:—[l— “(Tt)], O = (£ T—t——(l— a<Tt)>.
Bl)y=—|1-e g9+ (t) 20%+rM( ) - e
Obuviously, this separation method leads to the same result
2

1
wO(t,r) = (2/22 + ’I”M) (T —1t)+ . (7" —ry + e Ty, — 'r)) .
i
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2.3.1. Practical implication of Theorem By Theorem [2.3.2] the optimal invest-
ment strategies are determined by kio)* = % after the N-th crash and by ]Q;t(”)7 which solves ,
if n market crashes still can happen. Here, 1vve can see that the worst-case optimal strategies do
not depend on the short rate as they do not depend on parameters a, 73 and oo determining the
short rate dynamics in . Thus, in contrast to the non-log HARA utility case in Section the
logarithmic utility function eliminates the stochastic interest rate risk. We can give a heuristic
explanation, for example in the 1-crash market. There, we have for arbitrary k € II(¢,z,r) and
an arbitrary crash (7,1):

XETh = (1 - 1k, XA
where f(tk is the wealth process in a crash-free market starting in (¢,x) and controlled by k €
II(t, xz,r), and therefore

e <log(Xé,€w’(T’l)))

=E (log(1 — lk,)) + E <log(5<§“~))

T 02 T
= I (log(1 — lk;)) + log(z) + E </ ks — ?11@2 ds> +E (/ Ts ds> :
t t

Obviously, the optimal strategy k* € II(¢, x,r) which maximizes the worst-case expected utility
of terminal wealth

inf Eb®m1 <10g(X§J(T’l)))

(T
will neither depend on the short rate r,(w) itself, nor on parameters which determine the short
rate equation , because it is not affected by the market crash or by control k. Moreover, it is
important to note that the worst-case optimal strategies for an investor with a logarithmic utility
function do not differ from the strategies which are optimal on a financial market with constant
interest rates, see e.g. [28,33]. The main reason is that the logarithmic utility function eliminates
the stochastic interest rate risk. As we have mentioned in Section [2.2.1] this elimination is not
possible if the investor has a non-log HARA utility function and if p # 0.

2.4. HARA utility via martingale approach

In this section we provide an alternative proof for part b) of Theorem using the so-called
martingale approach. Recently, this method has been introduced by Seifried [44] for worst-case
optimization problems in financial markets with constant interest rates. It is based on inter-
preting the worst-case optimization problem as a controller vs. stopper game. Moreover, the
martingale approach was also used by Desmettre et al. [I0], where a worst-case lifetime con-
sumption problem is solved. If there can happen at most one market crash on the time interval,
the method contains three main steps: First, the post-crash optimization problem is solved by
using standard stochastic optimal control theory. In our case, this step corresponds to part a)
of Theorem Afterwards, they can reformulate the problem as a pre-crash problem which
can be interpreted as a controller vs. stopper game. Finally, using the notion of indifference
strategies and indifference frontier (for the detailed definition we refer to [44] or to Definition
below), they can determine the optimal pre-crash strategy.
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Here, we build on the martingale approach and the ideas in [44] and consider the worst-case
optimization problem . Note that -in contrast to the literature- we have to handle the influ-
ence of the stochastic instantaneous interest rates. First, we demonstrate the three steps of the
method for N = 1 and, using this result, we show that we can recursively apply the martingale
approach in order to provide an alternative proof for Theorem [2.2.2]

2.4.1. Martingale approach for N = 1. We consider the financial market model de-
scribed in Section for the special case N = 1 and for U(x) = %:ﬂ. The solution of the
corresponding worst-case optimization problem was published by Engler and Korn [14]. We as-
sume that at most one market crash, denoted by (7,1), can happen on the finite time interval
[0,T]. Again, 7 is a [0,7] U {oo}-valued stopping time and the crash size [ € [0,1*] is a Fr-
measurable random variable. Note that the event 7 = oo means that no crash happens at all.
Analogously to the wealth equation , given an admissible control k = (k‘(o), /-c(l)) and a crash
strategy (7,1), we formulate the SDE for the investor’s wealth X*(™) in the following way:

Xg’(T’l) — "EO > O’

ax; ) = XETO [ k] dt - xE ok dwn, e (0,7),
XED — (1 1) X5,
ax; ) = XECO [ k] dt+ Xk dwn,  te (7).
Due to the fact that we consider a one-crash market, k(1) is called pre-crash strategy, which is

valid for t € [0,7] and k(¥ is called post-crash strategy, valid for t € (r,T]. Now, problem
simplifies for N =1 to

sup  inf E (1 (Xé‘l’(”))w) . oy <1,y#0, (52)
keI(0,20,r0) (HEC  \ Y
where C denotes the set of crash scenarios (7,1):
C :={(r,l) : 7 €[0,T] U {oo} stopping time,
[ € [0,1"] F- — measurable random variable}.
In Section , we applied the classical DPP to prove part a) of Theorem and to determine

the optimal post-crash strategy k©* and the corresponding post-crash value function VO(t,z,r),

which are given by:

OSSN poaf(t)
' 1=7of  (1=7)or’

Instead of solving the HJB-inequality system, here, we determine the optimal pre-crash strategy

VOt 2, 7) = $x7g(0) (£) exp(B()r). (53)

k(M* by using the post-crash value function VO(¢, z, ) and by applying the following ideas, which
have already been applied in the case of constant interest rates (see, e.g. [10, 26, 44]). Using
the explicit structure of the post-crash value function V°, we first reformulate problem as
a pre-crash problem, which can be rewritten as a controller vs. stopper game. Afterwards, we
identify the optimal pre-crash strategy k()* via a combination of the principle of the indifference

frontier and the solution of a constrained control problem. These steps lead to an alternative
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proof of part b) of Theorem for N = 1.

Let XF = {th}te[oﬂ“] be the wealth process in a crash-free market controlled by an arbitrary
admissible pre-crash strategy k. That means, X is the uniquely determined solution of the
following SDE for ¢ € [0, T7:

dXF = XFri + pks) dt + XForksdwy g,  XE =a®,

where 7 = {r¢}e(0,7) solves (2).

At the crash time 7 the investor’s wealth equals x = (1 — lkg))Xfi(T’l) =(1- lk:(Tl))f(f(l) and
the short rate is denoted by r = r,. Then, by Lemma we can reformulate the worst-case
optimization problem as a pre-crash problem:

sup inf E (VO(T, Xf(l)(l — lk&l)),n)) .
k(W eI1(0,20,r0) (rh)eC

Since VO(t,z,r) is strictly monotone increasing with respect to z, the worst-case crash size is
I =0if k:g) < 0anditisl =10"if k:.(rl) > 0. This, can also be seen from a practical point of
view. If the investor has a negative position in the stock, he would benefit from a positive crash
height at the crash time. Thus, the worst-case for the investor is a jump of size zero. On the
other hand, if the investor holds the stock at the crash time, then the worst-case crash size is

given by the maximum crash size [*. Thus, we have for a fixed crash time 7:
VO(r, XFY (1 — kW), 1) > VO(r, XEY (1 — 1* (kW) T, ry), VL E [0,17].

Therefore, the worst-case optimization problem can be rewritten as a controller vs. stopper
game of the form:

sup  infE (Mf(l)> , where MF = VO(t, XF(L = I*(k)*), ). (54)

k(D eI1(0,20,r0) TEC

Here, the investor takes the role of the controller, who chooses his strategy k1), and the market
takes the role of the stopper, who chooses the crash time 7. Now, the aim is to solve this
controller vs. stopper game. As already mentioned above, Korn and Seifried [26] and Seifried
[44] used the notion indifference to determine the optimal pre-crash strategy for a model with
a constant interest rate. For the reader’s convenience we give the definition of an indifference
strategy here, which can also be found in [44, Chp. 4.1].

DEFINITION 2.4.1 (Indifference Strategy, cf. Seifried [44]). A pre-crash strategy k is called indif-

erence strateqy if for two stopping times 7,7 it holds
f 9y pping

E (Mf) —E (Mf,) .

If the investor applies an indifference strategy before the market crash, then he is indifferent with
respect to the crash time because he always reaches the same performance. In the next step, we
show that &), which is the uniquely determined solution of ODE ([13), is an indifference strategy.
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LEMMA 2.4.2 (cf. [14]). Let kD be the uniquely determined solution of the following ODE:

il e (o k) = ot k™) K =0, (55)

2
o
B K) =+ poraB(E)k — (1= )R,
and let MF = {Mf}tE[O’T] be given by fort €[0,T] and ME := VO(T, Xk rr). Then MFEY
is a martingale on [0,T]U{oo} and kY is an indifference strategy for the controller vs. stopper
game (54)).

REMARK 2.4.3. Note that is equal to for n = 1, and obviously, Proposition m
remains valid and it holds l%gl) €[0,2) for allt € [0,T]. Thus, kW s an admissible strategy in

the sense of Definition|2.1.1]

PROOF OF LEMMA 2.4.2] Throughout the proof we abbreviate kD by k. Asin [44], we use
a martingale argument to prove the assertion. The proof will be divided into two steps. First,
we show that MP* is a martingale on [0, 7] U {oc}, and then, we obtain the assertion by applying
Doob’s Optional Sampling Theorem.
By applying Ito’s formula, by VO(t,z,7) = %:ﬂ W (t,r), with W(t,r) = g0 (t) exp(8(t)r), and
by the fact that 12:1;F = k; we get:
amf = (VO(t, XL = 1k), ) )
1 .
= (- rhy
~y

—[* ;Y
— kW (L, r
{7(1l*kt)t (t,re)

. o2 - ~ We(t,re)
ke — 2L (1 —9)k? ki —— ) Wt
+’Y(M t 2( v)ki + po1og tW(t,r,:)) (t,7)

2
+ Wi(t,ry) + %Ww(t, re) +a(rayr — ro) Wit re) + yre W(E, rt)} dt
1 - .
+ ;(th)'y(l — U"ke)?

{(’yall%tW(t, ) + poaWy(t, Tt)> dwiy + /1 — p2oaW,.(t,re) dwg,t} .

From the post-crash problem (see proof of part a) of Theorem [2.2.2)) we have that W (t,r) solves
equation , and therefore, we have

2
Wi (t, Tt)-i-%Wrr(t, re) +a(ra — ) Wi (t,re) +yre W(t, re)

=~y (t, KOYW (t, 1),

and

(1—1*ky)
(thg)ﬁy(l — Uk )W (L, 1) {(701/%5 + P@ﬁ(ﬂ) dwy s + /1 — p2028(t) de,t} .

amF =L (X - el W, rt){v b+ (90t I) — o(t, KO } dt

1
v

2=
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Because of the fact that k; fulfills , it remains to show that:

th’AC = i(f(f)”(l — Pl YW (t,7y) - {(WTlift + P@ﬁ(ﬂ) dwi s+ /1 — pPoaf(t) dw2,t}

=MF

is a martingale. The solution of this SDE is given by

) ) ¢ R ¢
Mf = M§ -exp </ (701165 + P@ﬁ(@) dwy s +/ V1= p209f(s) dws s
~—~ 0 0

const

— ;/0 (*yall%s + pagﬁ(s))2 +(1- p2)0362(3) ds).

By Novikov’s condition (see e.g. [2I, Chp.3,Corollary 5.13]), the second factor is a martingale
and therefore M* is a martingale on [0,7]. It remains to show, that
E (M§O|IT) = ME.

By definition of M~ and by the terminal condition of ODE , given by ke = 0, we have

E (MLIFr) =E | VT, XF,rr) |Fr | = VO(T, XE,rr) = M
—_———
Fr—measurable

Thus, MFisa martingale on [0, T|U{oco}. By Doob’s Optional Sampling Theorem (see Appendix

Theorem [A.4.7]), we obtain

E <Mf) ~E (Mj?)
for all [0, 7] U {oco}-valued stopping times 7,7’. By definition, k™ is an indifference strategy for
the controller vs. stopper game ((54). O

Now, we use the notion of an indifference frontier (see for example |26 p.343]), which leads to
the fact that the optimal strategy of the controller vs. stopper game has to be an element
of a certain class of admissible strategies:

Let k) e II be an arbitrary admissible pre-crash strategy and let k™M be the solution of ODE
(B5), then MFY s a martingale on [0, 7]U{oco} by Lemma . Define n := inf{t > 0 : ky > k;}
and

i klgl) t<n
t = R .
k‘gl) t>n

Then, as in |26, Lemma 4.3|, we obtain by the martingale property of MEY and by continuity
of k) (see condition W in Definition [2.1.1) that

inf E (Mf) > inf E (Mf(l)) .
TeC TelC
The inequality implies that it is sufficient to consider pre-crash strategies k(!) for which kt(l) < l;:t(l)

for all ¢ € [0,T]. The optimal strategy cannot cross the indifference frontier k(1) because one

could improve its performance by cutting it off at I;:(l), and therefore it would not be optimal.
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Thus, the optimal pre-crash strategy is an element of the set
A(ED) = {k(l) et kY <k, vie [O,T]} .

Note that the indifference frontier k() prevents the investor from too optimistic investment in
the stock which is threatened by a market crash. The next Lemma shows that k‘gl)* = l%t(l) /\kt(o)*,

is optimal in the no-crash scenario, denoted by 7 = co, in the class A(k(1).

LEMMA 2.4.4 (cf. [14]). Let k0% be given by (G3), and let ED be the uniquely determined
indifference strategy as a solution of ODE (B3). Then, the solution of the constrained stochastic

optimal control problem:

w 2(Lestr).

ke <k tefo, T v
w.r.t de = )N(f [rs + pks| ds + Xfalks dwy s, Xy = 2°,
drs = a(ry — rs) ds + o9 dws, ro =10,

is given by k‘gl)* = l%gl) A k:go)*,

Proor. Let f/(t, x,r) denote the value function of the constrained stochastic optimal control
problem above. Here, we use again DPP and solve the corresponding HJB equation which is

given by:

sup LFO(t,xz,r) =0, (t,xz,r) € [0,T] x Ry xR,
k<k{M

1
o(T,z,r) = gmv, (x,r) e Ry x R.

By the standard separation method (¢, z,r) = %x“/g(t) exp(B(t)r) with g(t) > 0 for ¢t € [0,T7,
g(T) =1 and B(T) = 0, we reduce the HJB equation above to:

30) + () — aB(0) + 21300 + laraeB(0) + 000

_ 5 ot

+ v sup [g(t) ((u + po1oaf(t))k — (1 — ’y)k2>] =0, (t,r) € [0,T] x R,

(1) 2
K<k

Now, by the first order optimality condition, we obtain a candidate for the optimal control

1)+ % poa3(t) ~ (1)
& ‘(a—ww?*u—wm>A“' (56)

In order to eliminate the space variable r, we choose

B(t) = 11— exp(~a(T — 1))] = B(1).
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Inserting both kt(l)* and ((t) we arrive at an ODE for §(t):

2
9(t) +9() (W + 1Bk = Gl =) (k")

2
2
+ ary B(t) + 02252(t)> =0, g(T)=1.

Now, we have

3(t) = exp (/tTa(s) ds> ,

~ 2 ~ ~
() - = (1 + por0oBENKD — Ty (L =) (K2 + aragB(s) + 2
By and by the fact that 3(t) = 5(t) we obtain that

. t) ~ (1 0% , 2.(1)
p(Dx _ Iz po2Bt) \ 1) _ 0 57
'f <<1 —e? T L=ey ) M T A

is a deterministic and continuous function in ¢, since k; is deterministic and continuous.

Finally, we have that
1

0(t, 2, 1) = —x7g(t) exp(B(t)r)
v

solves the HJB equation which corresponds to the constrained optimization problem. Using the
same arguments for the verification result as in |24, Corollary 3.2], we conclude that kgl)* =

l%,f(l) A kio)* is indeed the optimal control of the constrained optimization problem. O

Using Lemma[2.4.2] the idea of the indifference frontier and Lemma [2.4.4] we provide an alterna-
tive proof of part b) of Theorem for N = 1, that means, we show that k‘gl)* is the optimal
strategy for the controller vs. stopper game (5H4).

ALTERNATIVE PROOF OF THEOREM FOR N =1, cF.[14].
First, we define

tg = inf{t € [0,7] : k% > kM1,

Since IACFE,}) =0 and k:g))* > 0 the infimum is attained at tg < T', which is the point of intersection
of l%gl) and k:go)* (if it exists).

Now, let us consider the stochastic process M*"" on the interval [ts,T]. For t € [tg,T], it holds
k:t(l)* = 12:51) A k:t(o)* = l;:il). In Lemma , we already proved that MFY g a martingale on
[0,7] U {0}, and therefore, M is a martingale on [ts,T] U {oo}. Note that if tg = 0, that
means kt(o)* > I%El) for all t € [0, 7], then MED" g martingale on [0,7] U {oo}. In particular,
this is the case if vp > 0 (see Proposition .

Now, let vp < 0 and assume that tg > 0, that means there exists a (uniquely determined)
intersection point of ]%151) and k§0)*, denoted by tg. Moreover, let us define

to == inf{t € [0, 7] : &V* > 0}.

If to > 0, then tg denotes the uniquely determined root of kt(o)* because it is strictly monotone
increasing for yp < 0.
Let us consider the stochastic process M*"" on the interval [to,ts]. For t € [to,ts] it holds
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k,gl)* = kt(o)* and we have

v
1— k0"
+ MEY ok + poaB(t))dwn + VT = PoaBlt) duws, |

AMFY" = e {—’y B0 ot kO — ot kt(o)*)} dt

With
k(o)*:L —vexp(—a(T —t
t 0_1(1 _ 7)( Y p( ( )))
we obtain
. « ¢ * po2
MEDT = pkY - exp / 2 . exp(—a(T — s))ds
t to to 1— l*kgo)* 0.1(1 _ 'Y) ( ( ))

t
exp{ = [ KO+ g+ (1= o) d

to

t
+ / (yo1 k0% + poo(s))dwr s + /1 — p209(s) dwg,s}.

to

Now, by Novikov’s condition, the last factor is a martingale on [to,ts]. As further, Mt’ffl)* is

Fs-measurable for s > tg, we have for tg < s <t < tg:
E (M |F)

I* o9

t
— M - exp p/ 72 . exp(—a(T —u)) du
to to 1—[*]{780)* 0.1(1_,}/) ( ( ))

em{—;/7wm9ww@mwf+u—fw%%ww

to

+ / (o1 k" + poaf(u))dwr , + /1 — p2o2B(u) dw2,u}
to

J(1)= s 2 l* g9
<My -expqp exp(—a(T — u)) du
to

L k0% 1(1—7)

exp{ = 5 [ ok 4 a8 + (1= )06 du

to

+/ (yo1k{O* + poaB(u))dwr y + /1 — p2o2B(u) dwz,u}
to

The inequality above holds because of two arguments: First, we observe that k&o)* < 12:181) < ll*
for u € [to,ts] and therefore, the integrand of the deterministic integral is positive. Secondly,
we only have to consider the cases v > 0,p < 0 and v < 0,p > 0 (because of yp < 0) for the
estimate of the deterministic integral. For both of these cases we easily obtain that:

t s
Mtlf)(l)* exp{p/ du} < Mt’f](l)* exp{p/ du} ,
to to
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for s < t, because Mk( " s 0if v > 0 and M, k(l)* < 0if v < 0. The arguments above imply
that E( MFY \]—') < M’“< for tg < s <t < tg. Therefore, MFY" s a supermartingale on

[to,ts]. If to = 0, we obtain, together with the martingale property on [tg,T], that MFY s
supermartingale on [0,7] U {oco}.

Otherwise if tg > 0, then we have to consider M
we have that k(o)* <0, and therefore k:gl)* = kt(o)* <0 for t € [0,t0]. For t € [0, o], we obtain:

Y on the interval [0,t0]. By definition of ¢,

cmﬁ““_d(v%tka ))

Again, by Novikov’s condition, we obtain that MY is a martingale on [0, ¢o].
Finally, MY s a supermartingale on [0,7] U {oo} (if vp > 0, it is even a martingale on
[0, T]U{o0}). Again, by Doob’s Optional Sampling Theorem for supermartingales, see Theorem

[A.4.7), we have for all 7 € [0, T] U {o0}:

ME > B (ME|F)

and therefore
(1)= (1)

E (M) 2w (M), (57)
for all [0,7] U {oc}-valued stopping times 7. The inequality implies that 7 = co is a worst-case
scenario for an investor who follows the strategy k(l)* l%( A k(o)*.

Analogously to the Indifference Optimality Principle in [26] and [44], we obtain

g () T e () 22 (k) 2 g (). )

for an arbitrary pre-crash strategy k € A(l%(l)) The second inequality holds, because k(M)* is
optimal in the no-crash scenario in the class A(l;:(l)) (see Lemma . By inequality (58),
kMW= is the optimal strategy for the controller vs. stopper game in the class A(l%(l)). Due to
the indifference frontier, that means, due to the fact that the optimal strategy is an element of

A(l%(l)), we obtain that k(U* is the optimal pre-crash strategy for the worst-case optimization
problem . O

The proof above implies that we can also determine the optimal pre-crash strategy by applying
the martingale approach. In the next section, we apply the three key steps of this section in a

recursive way.

2.4.2. The recursive application of the martingale approach for N > 1. Here, we

consider the general worst-case optimization problem again:
. k,M
sup inf E (U(X ’ )) :
EEI1(0,20,r0) MEN(O,N) r

After the (N — 1)-th market crash the investor has to ‘solve’ a worst-case optimization problem
of the form with at most one market crash. From the previous section, we already know
that after the (N — 1)-th market crash it is optimal to follow the strategy (k(M* k(©*), where
kt(l)* = l%p A kgo)* is valid before the next market crash at 7y and k(0* is valid after 7. Now,

using this optimal strategy, we additionally calculate the corresponding value function V1(t,z,r),
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which reflects the worst-case optimal utility if the process X* starts in t with value = and the
short rate process starts in r and at most one crash still can happen.

By definition, it holds:

Vit,z,r) = sup inf EHE <U(X§’M)> )
kell(t,z,r) MEN (1)

Note that V! was already determined in Section as a solution of a HJB inequality sys-
tem. Here, we demonstrate how to find V!(¢,z,r) directly, using that we already know that
(kW* k(%) is optimal and by using the value function V°, which is known from part a) of
Theorem [2.2.2] - Let (t,x,r) € [0,T] x Ry x R be arbitrary but fixed.

By Lemma [2.2.3] it holds

Vi, z,r sup inf Eber (U(xEM
( ) kell(t,z,r) MEN (1) < ( r )>

= sup inf EX%7 <V0<T, Xf’_(T’l)(l - lk:T),rT)> :
kell(t,z,r) (Tl

Now, by the fact that £()* is the worst-case optimal strategy if one crash still can happen, we

obtain

Ve = inf ESer (VO(r, X X 00— ), )

1anE“T VO k() TZ)( l*(kg)*)—‘_)ﬂ“‘r))

T

(v
meta:r (VO Xk(l)* l*(k(l)*)+),7“7)>
= inf EL (Mf ) .

Here, the second equality holds, because V? is monotone increasing in the second component.
Moreover, X FY" denotes the wealth process in a crash-free market which starts in x at time ¢
and is controlled by k(W*. Moreover, (1,1) = (7w, lx) denotes the first intervention of the market
after time ¢. The third equality holds by definition of M} (see ) The alternative proof of
Theorem in Section implies that M*"" is a supermartingale on [t, T|U{oco}. Together
with Theorem we obtain for all [t,T] U {oc}-valued stopping times 7 that

E (M’““)*) >E (Mk(”*) .

Since it is clear that the processes {X’f}se[ﬂ] and {7s}sefe,r) start in z and r at time ¢, respec-
tively, we write E instead of E»*". Now, we obtain by the inequality above and by definition of
MFE (see Lemma [2.4.2)):

oo

Vit z,r) = inf E (Mf“)*) ) (Mk“)*)

~E (VO(T XEO ))
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Using Ito’s formula, it follows that
1 = 1.(1)=
E( — (X% )7)
(7 g

1 T T o2 T
= 2"E (exp {’y/ rsds + 7/ ,uk‘gl)* — é(kgl)*)Q ds + 7/ U1k‘§1)* dw1,s}> .
Y t t t

From Proposition in Appendix [A] we know that

T 1 — e—a(T-1)
'y/ reds zyz(l — e_“(T_t)) + vy ((T —t) — -
t a

a
T
+l/‘cmﬁ(@(ﬂdes+-vq-—PdezJ.
t

Therefore
o (1 ( ~%(1)*)7>
~

1 T o?
= a7 exp / k(D — ZLy(k{D7) ds
v t 2

1 — e—a(T-1)
(1 - e T0) ey ((T - ) }

a

T T
‘E [ exp / vo1 kD + poaf(s) dwy +/ V1= p?oaf(s) dws s
t t

=11 =:15

Since w1 and ws are independent Wiener processes, we obtain

E (exp{]1 + I2}) = E (exp(1))) E (exp(12))

Due to deterministic and bounded integrands of I; and Is, we have that the stochastic integrals

I and Iy are normally distributed random variables (note that ¢ is assumed to be fixed). Thus

E (exp(I1)) = exp (E(Il) + ;Var(I1)>

T 20% (1)%32 203 2 (1)*
—exp ([ PRV 4 PR E) + poriorayB(sI ds )
t

and

1 T
= o exp (/ Y+ poroaB(s)kD* — Tyl — 5) (kD)2 ds
t

2

T
+/t arnB(s) + %52(8) d5> exp(B(t)r),
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and, we obtain the value function V1 (¢, z,7) directly:
1
Vit,x,r) = —a7gW (t) exp(B(t)r),
Y

where g™ (t) solves for n = 1. This result coincides with the result of Theorem Thus,
using the supermartingale property of the process M K" e are able to determine the value
function V1(¢,z,7) in an explicit form.

Hence, with V1(¢,2,7) and the same procedure as in Section , we determine the worst-case
optimal strategy k(®*, which is valid after the (N — 2)-th market crash, denoted by (Tn_2, In_2).
Note that in comparison to Section V! takes the role of V0.

After the (N — 2)-th market crash the investor is faced with a worst-case optimization problem
with at most two market crashes. Again, let (¢,z,7) € [0,7] x Ry x R be arbitrary but fixed
and assume that at time t there can still happen at most two market crashes and Xf’M ==z
and r; = . Then, the aim is to determine the optimal strategy k* = (k0% k(M* E)*) which is
worst-case optimal for

sup inf Et,x,r,? <U Xk,M ) ) 59
keTl(t,z,r) MEN(t,2) ( r ) (59)

Lemma implies that is equal to:
sup  inf Eb®m2 (Vl(T, x50 k), rT)) . (60)
keIl(t,x,r) (m0)
Here, (7,1) = (7n-1,In-1) denotes again the first intervention of the market after time ¢. Since
V! is monotone increasing in its second component, is equal to

sup inf B2 (VI X0 - () ), )
E@ell(tzr) T

= sup infEH®T2 (VI(T, )N(f@)(l - l*(kf))ﬂ,n)) )
k@ ell(ta,r) T

where X¥* denotes the wealth process in a crash-free market controlled by k(®with Xf@) =z

and r; = r. Now, let us define
WME = Vs, XFQ = 1"(ks)t),7s), forse[t,T), (ME = VT, XE ).

We reformulate the worst-case optimization problem with at most two market crashes as a
pre-crash problem of the form

sup infE (1Mf(2>) , (61)

E@el(tae,r) T

where the pre-crash strategy is k(2). We use that the optimal post-crash strategy (k(l)*, k(o)*)
and the post-crash value function V!(¢,z,r) are already given. Here, the notion ‘post-crash’
stands for the time after the market crash (7nx_1,Iny—1). The idea to solve the controller vs.
stopper game is the same as in the one-crash case in Section First, we determine a
strategy k2 such that the process \MF? s a martingale on [¢t,T] U {oo}.
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Assume that £®) is the uniquely determined solution of

o) 1-Ik?

i e (o kD) — ot k) K =0,

then, 1 M*? is a martingale on [t,T] U {oo}. This assertion is the analogue of the assertion in
Lemma [2.4.2] We obtain the martingale property by the following arguments:
Using Vi(t,z,7) = %:E“/W(l)(t,r), WO (t,7) = g (t) exp(B(t)r), the fact that i® >0 and by
Ito’s formula we obtain for s € [¢,T:
a (1M ) = (V2 (s, X2 (1 = k), )
1 - .
= (X a-rkPy
N
fl* 5 N
{7(1“];(2))]4122) 9(1)(3) exp(B(s)rs) +vo(t, k£2)) 9(1)(5) exp(B(s)rs)
+ 9 (s) exp(B(s)rs) + B(s)rg™ (s) exp(B(s)rs)

2
+ %52(8)9(1)(8) exp(B(s)rs) + a(rar — 15)B(s)g™ (s) exp(B(s)rs)

+ ’yrsg(l)(s) exp(ﬁ(s)rs)} ds
Logh® @y
+ ;(Xs )7(1 =1 ks )’YW (S7TS)
{(70112:9) + pagﬁ(s)) dwi s + /1 — p2o20(s) deS} .

Using that g™ (s) solves for n = 1 and using that ((s) is a solution of

B(s)—ap(s)+vy=0,  B(T)=0,

we have

a (M) =L &P - RO s,

2

—[* - “ .
{7(1[*%(2))/‘69) + (ot kP) — o(t, kY )} ds

T+ - Ry WO ()
N
{(701%2) + P025(3)> dwi s+ /1 — p?020(s) dwzs}
=1M§(2) {(7017;‘9) + 0025(3)) dwi s + /1 — p?020(s) dw2,s} .

By Novikov’s condition, it follows that the process 1M’%(2) is a martingale on [t, T]. The martin-

gale property between 1" and oo holds because l%(TQ ) =0 and

E <1M§<§” yfT) —E | v, XED vp) | Fr | = VI, XE9 rp) = 1R

JFr—measurable
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This shows that 1 M*° is a martingale on [¢, T|U{oco}. Doob’s Optional Sampling Theorem again
implies

E <1Mf(2)) —E (1Mff2)) ,
for all [t,T] U {oo}-valued stopping times 7,7". By definition, k® is an indifference strategy for

the controller vs. stopper game . Analogously to the construction of an indifference frontier
on page , we conclude that the optimal strategy k2* has to be an element of the set

A(E®) = (k@ e 11 : kP < kP Vs € [t,T]}.

Now, let us determine the optimal strategy in the no-crash scenario 7 = oo in the class A(l%@))
for the controller vs. stopper game , that means

sup E (1M!f<§2)) = sup E (Vl(T, Xé,cw(g),rT)) = sup E (U( ~i’}@))) .
k) eA(kR) k) eA(kR) k) eA(k®R)
The optimal strategy of this constrained optimization problem is given by kzg)* = /%9) A k‘go)*

(see Lemma and replace k) by ]%(2)). By similar arguments as in the proof on page , we
show that kgz)* is optimal for the controller vs. stopper game (61)):

PROOF FOR OPTIMAL STRATEGY AFTER Tn_2. Let ¢ € [0, 7] be arbitrary but fixed. Define
@ = inf{s € [t,T] : k0" > k)

and let us consider 1 M*®" on [t(SQ), T)U{co}. On [t(SQ), T we have that k2" = i:®) and therefore

{M*" is a martingale on [t(52),T] U {oo}. If tg) = t we immediately have that ;M*®” is a

martingale on [¢,T] U {oc}. This is especially the case if yp > 0. Thus, throughout the rest of
this proof we assume that yp < 0 and tg) > t. Then, we define

to == inf{s € [t,T] : k0" > 0}
and we consider 1Mk(2)* on [to,tgz)]. Since k:gl)* = k:go)* on [to,tgl)] and tg < tgz) < tfgl), where
10 = inf{s € [t,T] : k0" > kD},
we especially have that B = k" = k9% on [to,t(;)]. For s € [tg,t(SQ)], it holds
d (1Mf(2)*> = M {_71;%0)*%0)* +70(s, k") = o (s, kgo)*)} ds
+MEYT {(701/€§0)* + poaB(s))dwis + /1 — p2o2B(s) dw2,s} :

Using the same arguments as on page , we have that 1Mk<2)* is a supermartingale on [to, tg)].
If ty = t, then it is a supermartingale on [¢t,T] U {oco}.

Now, let us consider the case tog > t. For s € [t, tg], it holds k:gQ)* = k‘go)* < 0 and k‘gl)* = kﬁ")*.
On [t, to], we obtain

a (1) =d (Vi XE )

=M { ok + paaB(s)dwi s + /1= pPaaB(s) duwn,s |
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and, therefore, (MEP" g g martingale on [t,%p]. All together, we conclude that MEP" s a
supermartingale on [t, 7] U {oo}. If 7p > 0, then it is even a martingale. By Doob’s Optional
Sampling Theorem (see Theorem [A.4.7)), we obtain

E (1Mf<2)*) >E (1M§§2)*) :
for all [¢t,T] U {oo}-valued stopping times 7 and
infE <1Mf(2)*) >E <1M§<§2)*) >E <1Mf<§2)) > infE (1Mf<2))
T T

for all £ e A(];:(Q)). By the fact that the optimal strategy for the controller vs. stopper game
has to be an element of the set A(k®) (see construction of the indifference frontier), we
have that kgz)* = 12:9 A kgo) is optimal for .

Finally k&* = (k(©* k(M* k(2)*) is the worst-case optimal strategy for

sup inf Ebem2 (U(xEMY) .
kell(t,z,r) MEN(,2) ( ( r )>

O
Again, one can determine the corresponding value function V2(¢,z,r) and afterwards one can

determine k®)*, valid after the (N — 3)-th market crash using similar arguments as above. The

general recursive procedure for an arbitrary N > 1, can be written in the following scheme:

Initialization (After the N-th market crash):

Solve the classical stochastic optimal control problem

VO(t,z,r)=  sup  E(U(X71)),
kO el(t,z,r)

where X denotes the wealth process if no crash can occur anymore.
Output: £O% and VO(t, z,r).

For n=1,...,N (After the (N — n)-th market crash):
(1) Apply the martingale approach to determine k(™* using V"~

a) Reformulation as controller vs. stopper game

P e
kel (t,z,r) MEN (tn) kM el(ta,r) T

with
DME =V, XE(L = (k) T), ).

b) Assume that k(M) solves , then n,lMl%m) is a martingale.
¢) Indifference frontier: k* is an element of

AGEMY = (6 e T2 K0 < b s € 1, T]).

d) kt(n)* = I%t(n) A kéo)* is optimal in the no-crash scenario (see Lemma [2.4.4).
e) Show supermartingale property of ,,_1 M K" and it follows that k(™* is optimal.
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(2) Determine V" (t,z,r) by the following calculation:

V*(t,x,r) = sup inf  Etern (p(xkM o
( ) kell(t,z,r) MEN (t,n) ( (X7 )) (62)

— sup inf ]Et,:l:,r |:Vn_1(7', Xfi(T,l)(]_ — lkT)a’rT)i|
kell(t,x,r) (m0)

= inf Bho [V"—I(T, XET(q - l*(l{:(")*)ﬂ,r,)}

N
= ir;f EbEr {n_le(n)*}

)
— Rtar {onfé" ]

b [y T )
- ixvgw (t) exp(B(t)r).

Output: kM* and V™ (t,z,7).
end

REMARK 2.4.5. First, we give some arquments for the proofs in part (1) of the scheme above.
The reformulation in (a) holds due to Lemmam and by the monotonicity of V"1 in its second
component. The proof of the fact that n_lMi“(n) is a martingale in (b) works again by applying
Ito’s formula and by using that ¢~V (t) and B(t) are given (see e.g. page , The indifference
frontier of the controller vs. stopper game in c) results from the martingale property of n_lM'%(n)
and (d) follows in the same way as in Lemma . In order to show the supermartingale

property of n_le(n)*, we can proceed as before: First one defines
19 —inf{s € [, T] : KO > &}

Then, we obtain that a1 ME s g martingale on [t(Sn),T] U {oco}. For vyp > 0, we have that
B = k5 on [0,T] U {oo} (see Remark , and in that case tgn) =t. Thus, for yp < 0
and tfgn) > t, we again define tg as before. Moreover, we have to note that t(sn) < tgn_l) because

(n)

of the following two facts. First, kgo)* 15 monotone increasing for yp < 0 and kS is monotone
decreasing. Second, we have that l%ﬁ") < l%ﬁ”‘l). Thus, it follows that kﬁ”‘l)* = kgo)* on [tg,t(sn)]
and we can show the supermartingale property ofn_le(n)* on [to, tfgn)] using the same arguments
as above. Finally, if to > t, we can also show the martingale property on [t,to] using again that
kﬁ”‘l)* = kgo)* on this interval. All together, leads to the supermartingale property of n_le(n)*
on [t,T) U {co} and it follows that k"™* is worst-case optimal by the Indifference Optimality
Principle.

Moreover, we give a short explanation for (62)). The first equality holds by definition of V" and
the second holds by Lemma . Moreover the third equality follows by the fact that k(™* is
worst-case optimal and V"' is monotone increasing in its second component, whereas the fourth
equality holds by definition of ,M*. Due to the fact that n,le(n)* 1s a supermartingale, the
worst-case scenario is the no-crash scenario T = oo and therefore the fifth equality holds. Finally

the sizth equality follows again by definition. Since

x,r n— ok (n)* T.r 1 - (n)*
B [V @ R )] = B (L)
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we obtain the last equality by Ito’s formula and using the same arguments as on page [{0

With the procedure above we demonstrated how we can apply the martingale approach in a re-
cursive way to determine the optimal strategies k(™* which are valid if n crashes still can occur.
The main issue of this procedure is the determination of the value function V" using the knowl-
edge that k(™* is worst-case optimal und using the supermartingale property. This allows to
obtain the value function V" in an explicit form by applying Ito’s formula and Proposition [A.1.1]

REMARK 2.4.6 (Log utility via martingale approach). Here, we emphasize that the recursive
application of the martingale approach works analogously for an investor with a logarithmic utility
function. The solution k(0% and the corresponding value function VO(t,z,r) is again obtained by
solving the so-called post-crash optimization problem and it is already given in part a) of Theorem
[2.3.9 After reformulating the worst-case optimization problem as a controller vs. stopper game,
one can again show an analog version of Lemmal|2./.%, which ensures that the uniquely determined
solution k™ of the ODE:

N B

R 2
by (o) = ek K =0, (k) = k= T,

is an indifference strategy (that means one shows that w1 MF™ s o martingale on [0,TTU{cc}).
In contrast to the non-log HARA wutility case, we even obtain that the process n,le(n)* 18

o martingale and, therefore, k§n)* = /;:gn) 18 the worst-case optimal strategy. Again using Ito’s

n)

formula, one can determine V™ (t, xz,r) = log(x)+ W™ (t,7) in an explicit form, where W) (t,r)
is given as in Theorem [2.3.2. Thus, the recursive application of the martingale approach is an

alternative way to prove Theorem[2.5.2

2.4.3. Discussion and numerical examples. In this section, we discuss properties of the
optimal strategies for the non-log HARA utility case, which we obtained in the previous sections.
By Theorem we have that the optimal strategy after the N-th market crash is given by

0% _ % poaB(t)
! (1—9y)ot  (I=9)or

Now, we analyse the influence of the utility preferences of the investor on this strategy. Note that

1 — represents the investor’s relative risk aversion, the higher 1 —~ the higher the risk aversion.
In the case of constant interest rates, we easily see, that k(0* = p((1 —~)o?)~!is constant with
respect to time and monotone increasing with respect to 4. That means, the higher the investor’s
risk aversion, the lower the investment in the stock. This standard monotonicity behavior might

vanish when considering stochastic interest rates.

ProproSITION 2.4.7. Let kt(ov)l* and kg: be given by for given v1 and 7o, respectively. If
na

0102(1 — e‘“T)’

p>— (63)
then for y1 < 72 it holds: k’g),y)l* < k,g%* for all t € [0,T] (standard monotonicity behavior). On
the other hand, if

na

< — 64
= o109(1 —e Ty’ (64)
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then, there exists a uniquely determined intersection point S € [0,T] and it holds for y1 < 7a:

k:g)%* < kt(% fort € [S,T] (standard monotonicity behavior) and kt(%* > kg)y): fort€0,9].

PROOF. If the parameters fulfill the inequality , then for all ¢ € [0, T] we obtain:
9 ( Iz po2B(t) ) _ap+ (1= TN poioy
Oy \of(l—7) o1(l-7) a(y —1)%07

Thus, if the parameters fulfill , we observe the standard monotonicity behavior (the higher

the risk aversion 1 — +, the lower the investment in the stock). Now, let us consider the case
where the parameters fulfill (64). Let B(t) == 11— e~T=1)). Since p < 0, is equivalent to

By > ——L— >o.
0102p

> 0.

Now, using the fact that 3(t) is monotone decreasing with 5(T) = 0, we obtain that there exists

a uniquely determined point S € [0,7] such that B(S) = —Ul‘;w, and thus,
(0% _ p n poay1B(S) _ P i poay23(S) _ 0
ot (l—m)  oi(l=m)  of(1—ne)  oi(l—ne) O

and the intersection point S is given by

1
S:<10g<1+ Ka )+aT).
a 0102p

Obviously, S is independent of the choice of 71,72. One can easily show for v; < 72, that

k,g?j < k:ﬁov): for t € [S,T] (standard monotonicity behavior) and k,gow)l* > kg: fort€[0,5]. O

Figure shows the optimal strategies k§(2* for market parameters which fulfill the condition
(64). For ¢ € [S,T], we observe: the higher the risk aversion the lower the investment in the
stock. For ¢ € [0, S], we have the contrary, which means that a more risk averse investor invests
more in the stock than an investor with a lower risk aversion. It is worth mentioning, that
the investor has no riskless asset in the financial market model. Thus, for certain parameters
(which fulfill condition (64])), it is less risky to invest in the stock, than in the bank account with
stochastic instantaneous interest rates.

0.08  sox
o
< = Sl Bank Account
3 S 0.06f
E 3
k] 8
& '%>T-s 0.04f
g o
£ 5
3 0.02}
0 1 s 2 3 4 5 0 1 2 3 4 5
time time
Figure 2.1. Optimal post-crash Figure 2.2. Comparison of con-
strategy kﬁoﬂz* for different values ditional variances Var(log(Pr)|F+)
of v and for parameters yu = 0.03, and Var(log(B;)|F;) for parame-
01=02,a=05,0,=0.1,T =5, ters 07 = 0.2, a = 0.5, 05 = 0.1,

p=—09 with § = 1.42. T =5 p=-009.
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Another heuristic explanation for this effect might show Figure where Var(log(Pr)|F;) and
Var(log(Br)|F:) are plotted. Therein, one can see that the variance of the savings account is
higher than the variance of the stock price for small .

If we consider a financial market model, where the condition is fulfilled, then we obtain the
standard behavior with respect to the investor’s risk aversion. An Example is shown in Figure
where it holds: the higher the risk aversion, the lower the stock investment for all ¢ € [0, T7.
Figure shows that the variance of the stock is greater than the variance of the bank account

for all t € [0,T].

fraction of wealth

time

Figure 2.3. Optimal post-crash
strategy k,SOW)* for different values
of v and for parameters u = 0.03,
01=02,a=05,0,=01,T=035,
p = —0.75.

Analogously to the strategy k@ valid after the N-th market crash, we illustrate the strategies
k‘gn)* = /Act(n) A k‘go)* which are worst-case optimal if n > 1 market crashes still can happen. Note,
that l%,E") is the uniquely determined solution of the ODE which we calculate numerically.

0.051

0.03r

0.01-

-001} _ o

fraction of wealth
N

oD
-k
~(2)
-k

—-0.03-

—-0.05-

0 1 2 $S 3 4
time

Figure 2.5. Optimal strategies for
market parameters: N = 2, [* =
04, T =5, u=0.06,01 =0.3,a=
0.5, rpy = 0.05, 00 = 0.1, p = 0.7
and risk preference: v = —2.

In Figure [2.5] we consider a financial market where at most N = 2 market crashes can happen
and we plotted k(©)*, ED and k@), Note, that if there still can happen two market crashes, it

fraction of wealth

cond. Variancew.r.t F;

0.02-

o

Q

o<}
T

o

Q

>
T

o
R

—  Stock

—_ Bank Account

time

Figure 2.4. Comparison of con-
ditional variances Var(log(Pr)|F:)
and Var(log(B)|F:) for parame-
ters o1 = 0.2, a = 0.5, 05 = 0.1,
T =5, p=—-0.75.

0.3r

0.2r
—_ k(O)*
J— R(l)
J— R(Z)

0.1 _ R<3)

e
0 1 2 3 4
time

Figure 2.6. Optimal strategies for
market parameters: N = 3, [* =
04, T =5, 4=0.08,01 =03,a=
2, rapr = 0.05, 02 = 0.1, p = —0.5
and risk preference: v = —3.
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is worst-case optimal to follow ]2:,52) A k}go)*‘ If the first crash has happened, the investor changes
his strategy to l%gl) A k:t(o)*. After the second market crash, it is optimal to follow the strategy
k,gg)*. S1 and Sy refer to the uniquely determined intersection points t(sl) and tg), which were
mentioned in Remark These intersection points do not exist in Figure 2.6] Therein, we
consider a financial market model with at most N = 3 market crashes. Since, vp > 0, we have
that l%t(g) < 1%152) < l%gl) < k:go)* for all t € [0,7] (see Remark . Thus, if there are n crashes

left, it is worst-case optimal to follow the indifference strategy k(™.

Analogously to the analysis in Figure 2.1]and Figure[2.3] we consider how the worst-case optimal
strategies depend on the investor’s risk aversion 1 — v in Figure and Figure For the sake
of simplicity, we consider financial markets with at most one market crash. The sensitivity of
optimal strategies in the case of constant interest rates was already considered in [44, Chp.6.2].

Both figures below show the worst-case optimal investment strategies kgl)* = k:t(l) on a financial

market with parameters:

N=110"=04,T=05,u=0.08 01 =0.3, 7y =0.05, 02 =0.1,p = —0.8.

0.3r

fraction of wealth
fraction of wedlth

time time
Figure 2.7. Optimal pre-crash Figure 2.8. Optimal pre-crash
strategy k\* for a = 2 and differ- strategy k" for a = 0.5 and dif-
ent values of ~. ferent values of ~.

Note, that in Figure 2.7] we used a speed of reversion a = 2 and in Figure 2.8 we used a = 0.5. In
Figure we observe the standard monotonicity behavior as in [44] Chp.6.2], that means, the
higher the risk aversion 1 — « the lower the investment in the stock for all ¢ € [0,T]. A contrary
behavior can be seen in Figure [2.8] where the speed of reversion is lower. Here, one can see that
at a certain point of time, the investor with a higher risk aversion invests more in the stock than
the investor with a lower risk aversion. Compare for example the blue and the yellow line: The
investor with risk level v = —0.5 invests less in the stock than the investor with risk level v = —4
until time ¢ &~ 1.4. Again, note that in our financial market model there is no riskless asset due
to the considered short rate model. If the short rate becomes more rigky, for example due to a

lower speed of reversion a, then for small ¢, it may be more risky to invest in the savings account
than in the stock.
2.5. Changing market parameters and a general affine short rate model

In this section, we consider again the worst-case optimization problem with a logarithmic

utility function. But, in contrast to the previous sections, we assume that the short rate process is
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a solution of SDE , such that the Cox-Ingersoll-Ross model is also covered by the considerations
in this section.

Furthermore, we extend the financial market model by assuming changing market parameters at
the crash time. In our previous considerations, the market crash only causes a sudden downward
jump of the price process. Before and after this crash the stock price process follows the SDE
given in . Now, we assume that the crash has one more impact on the stock price dynamics,
namely that the crash might also cause a change in the market parameters p and o;. This
concept was already considered in the literature about worst-case optimization with constant
interest rates (see e.g. [25, B33]). For the sake of simplicity we consider a financial market model

where at most one market crash can occur, which is denoted by the pair (7,1).

2.5.1. The generalized financial market model. Here, we assume that the short rate
process {7t }yejo,r] is given by the SDE (3], that is:

dry = ()q?"t + )\2) dt + /&1 + Eo dwy,

ro=1%>0,

for suitable constants A1, Ao, &1, & and 70, where & > 0. First, we have to ensure that there
exists a uniquely determined solution of the SDE . If & = 0, then there exists a uniquely
determined solution of the SDE because the coefficients fulfill the classical Lipschitz and growth
conditions. If & # 0, the diffusion function /&7 + & is, in general, not Lipschitz continuous.
Moreover, we have to ensure that the process £17¢ + & is nonnegative. In this chapter, our basic

assumption on the parameters is that

&
§1A2 — Mi&a > 5
Under this assumption, Proposition in Appendix [A] provides the existence of a unique

solution of SDE that remains in the domain
D:={reR:&r+& >0}

While the short rate dynamics is not affected by the market crash, we assume that the stock
price loses a fraction [ € [0,[*] of its value and the market parameters may change at the crash
time. That is,

Py =1,

dP, = P, [(u(l) + ) dt + ng) dwlyt} , te(0,7),
P =P (1-1),

dP, = P, [(u(o) +ry)dt + Jgo) dwl,t} , te(r,T].

In the market before the market crash the excess return and the volatility of the stock are given

by the positive constants x(!) and agl), respectively. After the crash, the market conditions may

(

change to 19 and 010). For example, one could assume that the stock price after a crash is more

volatile than before, then ago) > ng).
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Now, analogously to , the investor’s wealth X*(70) = {Xk’(T’l)}te[Qﬂ, given a strategy k =
(k©), kM) and a market crash (7,1), evolves as

X(];’(T’l) — xO > 0’

dx D = x kD [n + wmglq dt + X WY ot e (0,7), (65)
XED = (1~ D) XED)

ax; 0 = x4 Ok | at + XEV RO duwny, te (7T,

On a market with at most one market crash and logarithmic utility function, the worst-case
optimization problem simplifies to:
sup inf E (log(X;,i’(T’l))) . (66)
kell(0,20,r9) (r.hec
We define the corresponding value function
Vit,z,r):= sup  inf EH®"I <log(X§’(T’l))> ,
kel(t,z,r) (TD)eC

where C denotes the set of crash scenarios and II is the set of admissible controls (see Definition
2.1.1). The following Corollary ensures that the value function above is well-defined.

COROLLARY 2.5.1. For (t,x,r) € [0,T] x Ry x R, let k € II(t,z,r) be an arbitrary admissible

strategy and let (7,1) € C be an arbitrary crash scenario on [t,T]. Moreover, let {rt},co1) and

Xk — {Xf’(T’l)}te[()’T] be given by and (65), respectively. Then

Eb®m1 (’log(X;’(T’l))D < 00.

PROOF. For the proof we refer to Appendix [2.6.9] O

In this section, we use the martingale approach to determine the worst-case optimal strategy
k* = (k(o)*, k(l)*). We proceed as in Section First, we determine the optimal post-crash
strategy k(©* by DPP, then we reformulate the problem and determine the worst-case optimal
pre-crash strategy k(V*. The main difference to Section is how to determine the post-crash
value function VY in the case of the affine model and how to determine k(M* under changing

market parameters.

2.5.2. The optimal post-crash strategy k(»*. As in the proof of part a) of Theorem
the investor is faced with a classical stochastic optimal control problem after the crash.
Here, the corresponding value function VO(t,z,r) takes the form

Vo(t,x,r) = sup EHDT (log(YT)) , (67)
kO eTl(t,x,r)

where X, denotes the wealth at time s > ¢, that is:

dX, = X, [n n u<0>k§0>} ds + X0\ kO dwy,, X, =z,

s

drs = ()\175 + )\2) ds 4+ \/&1Ts + & dwg, Ty =T.
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The corresponding HJB equation is given by

v (t, o, 1) + ravd(t, z,r)

0)\2
+ sup M(O)k(ﬂ)xvg(t,m,r)+m(/€(0))2$200x(t7$77’)
k(0eA 2
+ o0 VET T BROd, 1,2, 7)
517’ + 62

(T, z,7) = log(z), (z,r) € Ry x R.

Applying the standard separation ansatz for logarithmic utility functions, that is vO(¢,z,7) =
log(z) + WO (t,r) with WO(T,r) = 0 for all 7 € R, implies that the optimal candidate is given
by

0 _ i

t = 0
(012

and the equation above reduces to

2

1 (0)

Wi () +r + (%) + (Aar + X)W O () + %WT@ (t,7) =0, (68)
91

(t,r) € [0,T) xR,
wO (T, =0, reR.
By the linear ansatz W (t,) = A(t)r + B(t), with A(T) = B(T) = 0, we obtain that

Alt) = - (hr0 1),

2
A _ A 1 (po
B(t) = 3 (e)‘l(T b 1) - f(:r—t) +3 (m) (T —t).
1

91
Finally, we obtained a solution of the HJB equation, which is given by
Ot z,r) =log(z) + WO, r), WOt r) = At)r + B(t).

Now, it remains to verify that the solution of the HJB equation is equal to the value function
V0 and that the candidate £(©* is indeed the optimal post-crash strategy. We apply Corollary

and show the requirements in Appendix [2.6.10]

2.5.3. Reformulation. Again, using the optimal post-crash strategy k(®*

and the post-
crash value function VO(¢,z,r) = log(z) + A(t)r + B(t), which is monotone increasing in its
second component, we reformulate the worst-case optimization problem as a controller vs.

stopper game:

sup inf E (Mf(l)> . where  MF = VO(t, (1 — I*(k) ") XF, ) (69)
k() eT1(0,209,70) Tel

and X* denotes the wealth process in a crash-free market, that means it fulfills

dXk = Xk [rt + u(l)kt] dt + XFo WPk, dwr,,  XE =2, (70)
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and {7¢},e(0.7) is given by (3).

In order to solve the controller vs. stopper game above, we formulate an analogue of Lemma
for the generalized market with logarithmic utility. First, we obtain a sufficient condition
for a pre-crash strategy to be an indifference strategy in the sense of Definition [2.4.1}

LEMMA 2.5.2. Let kY be the uniquely determined solution of the ODE

2

: 1— 1k 1 1 p©

Y= WORY = PR - 5 By ) ] R =0 @
l 2 2 Ugo)

and let M* = {MF},cj01) be given by and ME .= VO(T, Xk rr). Then, MFY s @ mar-

tingale on [0,T] U {oo} and kD s an indifference strategy for the controller vs. stopper game

REMARK 2.5.3. Here, kD s admissible in the sense of Definition . With similar arguments
as in the proof of Proposition there exists a uniquely determined solution k) of ODE
with l%t(l) €[0,£) forall t € [0,T).

PROOF OF LEMMA 2521 We show that M*" is a martingale on [0,T]U{o0}. Throughout
the proof we abbreviate k() by k. By VO(t,z,7) = log(z) + WO(¢,r) and by applying Ito’s

formula we obtain

amf =d (VO(t, (1 = k) XF, o) )

l* A ~ 1 1) ~
= _fey 4+ p WDy — = (0V)2R2
{ 1 — Ik, t T HR 2( 1 )7k;

F WOt it Oare+ 2 WO 1) + STy 0, ”)} “

+ {0k + VEr + WO (t,r)} dun,y
+ \/517% + 52\/1 - pQW,SO) (t,7e) dway.
Since W) (t,r) is a solution of PDE (68), we obtain

2
1 (0)
Wt(o)(tﬂ’t) L+ (Alrt + >\2)Wr(0)(t’rt) + %W;g)(t,ﬁ) = —5 <M(O)> .
01

By assumption, ky fulfills such that the dt-coefficient vanishes and it remains to show that
the solution of

dMF ={o\V ke + VErre + EpW O (t,70)} dwry
+ Ve + V1= pPPWO(t, 1) dwsy

is a martingale on [0, 7). Since E(r;) is given in Proposition and since W, (t,re) = A(2),
we immediately obtain that

T
E </ (Ugl)ift + V& + EapA(t))? dt)
0

T
< / 2o W) + 2&E(r) + £2)p* A2(t) db < oo,
0




2.5. CHANGING MARKET PARAMETERS AND A GENERAL AFFINE SHORT RATE MODEL 54

and
T T
E (/0 (&Gre+ &) (1= p*)A(t)? dt) = /O (E1E (1) + &) (1 — p?)A(t)? dt < oo,

and it follows that M is a martingale on [0,7]. By definition of Mfo and by kp = 0, we also
have
E (MLIFr) =B (VO(T, X5, r0)| Fr) = VO(T, XE,rr) = M.

Thus, M is a martingale on [0,7] U {oo}.
By Doob’s Optional Sampling Theorem, we obtain

B (15) =& (15")

for all [0, T]U{oo}-valued stopping times 7, 7. By definition, k@ is an indifference strategy. O

Let kM := (“((11)))2. Then, we can easily see, that kM is the classical optimal investment strategy
91

in a crash-free market.

By applying the invariance argument, we can show that /;:,gl) € [0, kM] for all t € [0, T7] if condition

in the following Proposition is fulfilled.

PROPOSITION 2.5.4. Let k(1) be the uniquely determined solution of and let kM = (:;%32
Moreover, assume that
(1) (0)
[ 1
— ——=2>0. (72)
J§1) U§O)
Then l%ﬁ” € [0,kM] for all t € [0,T).
PrOOF. We refer to Appendix [2.6.11] for the proof. O

REMARK 2.5.5. If the inequality 1s not fulfilled, there might exist an intersection point tg of

l%t(l) and kM on [0,T]. Since IQ:EI), as a solution of an autonomous first order ODE, is monotone

decreasing on [0,T] and since /%(Tl) =0 < kM, we have that tg is uniquely determined and

Now, we can apply the notion of an indifference frontier, which was already explained in Section
As in [26],[44], we obtain by the martingale property of Mk(l), that

>
EEIEE(MT> EGIE’E(MT)’
where k is an arbitrary admissible pre-crash strategy and k is defined, as before, by

~ ki <

ki =< . , n:i= inf{t >0:k > i’u‘t}
k:gl) tt>n

We conclude that the worst-case optimal pre-crash strategy is an element of the set

A(RD) = {k et kY <ikW, wvie [o,T]} .



2.5. CHANGING MARKET PARAMETERS AND A GENERAL AFFINE SHORT RATE MODEL 55

For a detailed explanation of the idea of the indifference frontier we refer to the literature |26, 44]
or to Section 2.4.I] In order to apply the Indifference Optimality Principle below, we first
determine the optimal pre-crash strategy in the no-crash scenario in the class .A(l%gl)). This
leads to the constrained optimization problem

sup E (log(f(éi)) wr.t. @), (70).

ke <k tef0, 1]

By DPP and similar ideas as in the post-crash problem, we obtain that the strategy kgl)* =

*

]%t(1) A kM is optimal in the no-crash scenario 7 = co. Now, we show that k£M* is worst-case

optimal for the controller vs. stopper game .

2.5.4. The worst-case optimal pre-crash strategy.

THEOREM 2.5.6. Suppose that kD s the uniquely determined solution of , Let

B = D A KM,

Then kW* is the optimal pre-crash strategy for the worst-case optimization problem. Moreover,
k,go)* = (“(g)) 1s the optimal post-cash strategy.
g

PROOF. Since kM > 0 is constant, the proof is similar to the proof of [44, Thm.5.1]. After
showing the supermartingale property of M k“)*, we apply the indifference optimality principle
to obtain the assertion.

The proof works with similar arguments as the proof on page The key assumption, that
M FY s a martingale, is fulfilled. For the sake of completeness, we give some details of the proof.
Let us define

= inf{t € [0,T] : kM > kM.

Again, tg denotes the uniquely determined point of intersection of k™ and l%él) if it exists. By
Lemma [2.5.2, M*"" is a martingale on [tg,T] U {oco} because klgl)* = l%t(l) on [tg,T|U{oo}. If
is fulfilled, we immediately obtain that tg = 0 and M*"" is a martingale on [0,T]) U {oo}.
Now, let us assume that

(1) (0)
S <O
01 01

and that tg > 0. Then, on [0,tg], we have that kgl)* = kM and by Ito’s formula:

P 2
amF =0 (B ) () Y

2\,m) "2,

{ M 4 Ve + EapW O (t,r, } dwn

+Var + &1 - pPwO(t, 1) dwa,;.
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Due to the fact that the stochastic integral above is a martingale on [0, tg], we have for 0 < s <
t<tg:

o (Mtk(l)*|}'s)
(5 5)
2 (.0 O
n (/ { WM Jerr, + EapW O (u, 7 }dwl,u
+V&r+ V1= WO (u,r,) dw2,u|fs>
: O\* [0\
45 ((5p) - ()
+/0 {01 KM+ Ery + EpW, O (u, } dw

+ \/flrt + 52\/1 p2W, 0)(u Ty) dwa ,, = Mk(l)*

Therefore, M*"" isa supermartingale on [0, T]U{oco} and by Doob’s Optional Sampling Theorem
for supermartingales (see Appendix [A] Theorem [A.4.7), we have for all [0,7] U {oco}-valued

stopping times 7:
E (Mf‘”") >E (MJ;E”*) .
Analogously to the Indifference Optimality Principle in [26] and [44], we obtain

ng B (ur") 2B (M) 2B (M) 2 mfE (017).

for an arbitrary pre-crash strategy k € A(l%(l)). The second inequality holds, because k(M)* is
optimal in the no-crash scenario in the class A(k(1). Since the optimal strategy for the controller
vs. stopper game is an element of the class .A(l;:(l)), we have that k()* is the optimal strategy,
and it is the worst-case optimal pre-crash strategy for the problem ([66)). (I

2.5.5. Discussion and numerical examples. We have shown that k,gl)* = 12,51) A KM,

where k() is the uniquely determined solution of and kM = (“((11)))2 , is the worst-case optimal
91

pre-crash strategy and k(0* = (“((00)))2 is the optimal post-crash strategy for (66)).
91

REMARK 2.5.7. Comparing the result for the worst-case optimization problem with the worst-
case optimal strategies from the literature, where constant interest rates are used, we obtain the

following points:

o The worst-case optimal strategy k* = (/<J(0)"‘7 k(l)*) for the problem with stochastic inter-
est rates equals the strategy in the case of constant interest rates (see e.g. [33]). The
ezplanation is the same as the one already mentioned in Section[2.3.1: Due to the loga-
rithmic utility function we can additively separate the control variable k from the short
rate ¢, which means that the mazximization of the goal function does not depend on

the short rate, neither through ri(w) itself nor through the parameters which determine
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the short rate equation. Again, the logarithmic utility function eliminates the stochastic
interest rate risk. Further, if the short rate would somehow be affected by the market
crash, this effect might vanish.

o Nevertheless, we had to show the martingale property in Lemma and the super-
martingale property in Theorem[2.5.6| taking into account that the short rate is stochastic
and that it follows a general affine model of the form .

. ]sz)z (,u)( ) and 0_§1) = 050)7 then ODE coincides with ODE forn =1 and
k; k:t .

For the logarithmic utility case, the optimal strategies do not differ from the ones with constant
interest rates. Nevertheless, we give a short illustration of them. Similar plots can be found for
example in [25].

ExaMpPLE 2.5.8. Here, we use ODFE to calculate the indifference strategy D and the cor-
responding optimal pre-crash strategy kV* = 12:251) A KM numerically . In Figure and Figure
2.10] we plotted the optimal strateqy in a crash-free market k™ (blue dashed lme) the oplimal
pre-crash strategy k(M (pink solid line) and the optimal post-crash strategy k© * (yellow solid
line) for T =10, a maximum crash size I* = 0.4 and for different choices of market parameters.

0.8} 15y
3 3 1
2 2
B k]
5047 S
8 osl
o\ oL
0 2 4 6 8 10 0 2 4 6 8 10
time time
Figure 2.9. Optimal strategies for Figure 2.10. Optimal strategies
market parameters u(l) = 0.08, for market parameters u(l) = 0.08,
oM =03, 4 =0.07, o{” = 0.35. o =03, u© =0.1, o\” = 0.25.

In Figure |2.9 we assumed that the market after the crash is worse than before (lower excess
return, hzgher volatility). The market pammeters fulfill (72) and therefore k( ) ¢ € [0, kM] for all
t € [0,T]. On the other hand, in Fzgure we assumed that the market after the crash is better
than before (higher excess return, lower volatility). There exists an intersection point of kD and
EM | such that the optimal pre-crash strategy is to follow k™ fort < tg ~ 2 and to follow l%gl) for
t > tg. Once the market crash has happened, the investor changes to k(0%
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2.6. Appendix

2.6.1. Proof of Lemma [2.2.3l
For the readers convenience we repeat the assertion of Lemma [2.2.3}
Let V™ (¢, x,r) be given by and let (7,1) be the first intervention after time ¢. Then, we have

V*(t,x,r) =sup inf EbHZ"" [U xkM }
( ) kell MEN (t,n) ( T )

= inf supEH®"" [U Xk’M}
MeN(tm) pelt Xr™)

= sup inf Eb®"" [V"_I(T, Xf’,(T’l)(l — k), 7"7)]
kell (1,0)

= inf sup Eb®"" [Vn_l(T, Xf’_(T’l)(l - lk‘r)>r7')]
(Tvl) kell

PROOF. Since the short rate dynamics is not affected by the market crash, the proof works
in the same manner as in |28, Lemma 3|. In contrast to this literature the infimum above is
taken over the pairs (7,1), which denote the first intervention after time ¢.

Let ¢ > 0 and let (7,1) be a given first intervention. Now, we choose a strategy k*, which is

Z-optimal until time 7 in the sense that

T—

sup EH®" [V”_I(T, Xk’(T’l)(l —lk;), rT)}
k

* €
< Et,m,r,n |:Vn—1(7_’ Xf_y(T,l)(l _ lk:), TT)i| + Z
Moreover, we choose a strategy k™, which is arbitrary until 7 and §-optimal after the intervention

(73)

(7,1), that means

k,M
Sup lnf ET7XT 77"7'7”7/—1 |:U(X§2,M)j|
k. MeN(r,n—1)
L
< inf E™XT
MeN (t,n—1)

M sk
el [U(Xéi M )} n Z. (74)

Now, let k be a given portfolio strategy. Then, we define an F-optimal first intervention strategy

(T4, lx) in the following sense
inf B2 |V (n X (1= te), )|

(1,0) T‘
g

Za
and for an arbitrary but fixed first intervention strategy (7,1), we define a strategy M* € N (7,n—

(75)

Tx—

> EbTTn |:an—1(7_*7 Xk’(T*’l*)(l _ l*kT*)’ TT*)i| _

1), which is §-optimal after (7,1) in the following sense

inf ]ET,X.]:’]M,TT,nfl |:U(Xk;,M>:|
MeN (r,n—1) T

> BTt o) - 2 (76)
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With these definitions we obtain the following inequalities:

f e gxpt
1P B (UK

> inf Et,x,r,n |:U Xk**,M ]
- MG%(t,n) ( T )

I e ) {U(Xk**7M>}
T MeN(tn) T

> inf EPErn | inf RS rensl [U (xXkM )}
- (T,Z) MeN (rn—1) T
>

£ Etarm £ ET,X&’]W,T'T,nfl |:U Xk’M} N
- (El) |:S1]1pM€/\}'I(1Tn 1) ( T )

= inf ELZT [V” 1(7- Xk (m.0) 7‘7)} _ ¢

£
4

(,0) 4
— f]Etmrn n—1 X ( 1) 1—”437- - _E
e L |
© .
= B [V, XET (1 = k), ) - S

The second inequality follows by the tower property of the conditional expectation.

Thus, we have

f Et,x,r,n |:U Xk:,M ]
Sllip MG%(t n) ( T )

> B [V, X (1= k), )] - 5

Taking the supremum on both sides leads to

£ B o (xR
RSV )

2 sup Et,I,T,n |:an1(7_*’ X’r (_7—*7 *)(1 - l k'r*) TT* ):| - E
X 2

Moreover, for an arbitrary but fixed first intervention (7,[) after ¢, it holds

: f Et,x,r,n |:U Xk,M ]
MEI./{lf(t,n) Sl]ip ( T )

< sup Et,x,r,n [U(X;’M*)}
k

k,M* *
< sup Et,x,r,n |:ET,XT rrmn—1 [U(X;’M )]:|
k

) kM £
< sup EH®rn inf ErXEM e n—1 [U Xk,M} €
n kp |:M€./\/'(T,n—1) ( T ) + 4

< sup B [V (r, XEOD )] 4 2
k

= sup IDIZERE [V"_I(T, Xf’_(T’l)(l —lk.), ’I“T)} + E.
& 4

59

(77)
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Thus,

inf  sup B [U(XpM)]
MeN () K &™)
< sup B [Vt (r X (1= k), ) |+ 7
k
Taking the infimum over the first intervention (7,1) on both sides leads to

inf Et,x,r,n _U Xk’M ]
Melj{lf(t,n)sip L ( T )

< inf sup EH-&n V’"”_l('r7 Xf’_(T’l)(l —lk;), rT)} + <
Dk 4

Now, we conclude that

sup inf EtOTM _U(Xéi’M)]

k MeN(t,n)
(77)
S SupEtzrn |:Vn 1(7_*7Xk(‘r*,*)(1_l*kT*)vrT*)} _E
. 2

> f Etz LN R Vet 1 ka(Tvl) 1— ”{37— S - E
o [ X0t

> fEt{ETn n—1 X (71)1_lk* - _E

> inf B8 [V X200 - k) )] -

(3) 3e

S f Et:crn Ve 1 Xk(Tl) 1_lk _

> infsup BV [V X2 (1 dk) )| <

ke, M

S inf Et,m,r,n U(XE _

> At sup { (X7 )} €

> inf Et,m,r,n U Xk’M — €,

- Sl;ip Meljl\q/(t,n) [ ( T )} N

and analogously

. t,x,rn k,M
T U
n
< nfsupEtmT”[V" Y X5 k( l)(l—lk) )} 4 <
(D) & 4

3 €

< inf S |V X001k )|+ o

< it P [V X000 1) )| 4 S

< sup inf X7 [Vt (m, XEOD (1~ 1k, ), e | + S
sup f B0 [V X (= U)o | 45

< sup EH® " [V” 1(7'*,X (el )( l*/{IT*),TT*)} —I—%

k
)

NI

su inf EHTTR {U xkM } +e
kp MeN (t,n) ( T )

< inf supELZT [U xkM } + €.
MeN (t,n) kp ( T )

60

(78)
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Thus, the inequalities

inf ESere U(xpt
1P it B (U]

> inf sup EH&" [V”fl(T, Xf’_(T’l)(l —1lkr),r7)| — =
(D) 2

> inf Et,:p,r,n [U Xk,M :| —c
=50 N () (X77)

and
inf Ebern | (XM
MeI/\I}(t,n)Sl,ip [ (X7 )]
k,(7,0)

< sup inf EH®"" [V"fl(T, X720 (1 = k), Tr)} + s
k(T 2

< inf supELEOP [U XM }—Fs
_Melj{l/(tm) 1;? ( T )

hold for any € > 0 and we have that

inf Et7m,r’n U Xk,M — inf Et,z,r,n anl 7Xk7(7'71) 1_lk7_7 Il
sup | infES [U(XG)] = infsup B [V XDtk o)

inf  sup Ebomn [U xhM } — sup inf Eb®Tn [v"—l X501 k), . } :
MeN(tn) (X7 ) e (1) ( ( ),77)

Moreover, by the fact that

inf ESere \U(xpt
1P B (UK

< inf Et,:v,r,n |:U Xk,M }
< s, B (VO

<swp inf B UM e,
=50 N () (X77)

for any € > 0, we finally obtain

n (L0 . t:prn[ kM}
Vot z,r) = £ Etern [g(xh
(t,2,7) Sl;pMelj{l/’(t,n) (X7™)

_ inf s Et,:c,r,n |:U Xk,M ]
MeN () 3 (X7™)

= sup inf Eb#n [V"—l(f, xBD k), rT)}
E (T
k(rd)

= inf sup EH*"" [V”_I(T, X207 (1 - lkT),rT)} .
() &

2.6.2. Proof of Proposition [2.2.4]
We prove the assertion for the corresponding forward ODE via induction. For the readers
convenience we repeat the definition of f( (¢, h(™):
1— 1M 1)
£, ) 1= =2 [w + po10aB(T — 1)) (B — KE0)
- T (02 - ) |
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For n = 1 we have to consider the following ODE
it = O n?), g =o. (79)

By definition we have that k:g]f; is continuous in ¢, and therefore f() : R, x R — R is continuous
in t and AV and continuously differentiable in 2. Thus, f() is locally Lipschitz continuous
in A, Thus, there exists a uniquely determined local solution of (see e.g. [42, Thm.
2.2.2]). Now, we show that the solution exists for all ¢ > 0. Let [0,¢1) be the maximal interval
of existence and let 2(!) be a maximal solution. Assume that t+ < co. Choose J; := [0,¢1], then

we have

FO @, WM = -3 ( p(D4 4 Z WY <oy vte bYW eR

2
because — % (1 —7) < 0 and s(t) are continuous functions in ¢ and therefore we can choose C,
such that the above inequality holds. Then, we easily obtain with ¢ : (h( ) )2 for all t € [0,11],
t; < t* arbitrary but fixed, that

Sbt g 20J1
and therefore
0y <20, (tT —to), vt € [0, t1].

Thus, lim;_,;+ |h§1)| # 0o, which is a contradiction to the assumption that ¢t* < oco. Therefore,
tT = 0o and there exists a uniquely determined global solution Y of . Thus, the assertion
holds for n = 1. Now, assume that the assertion holds for (n — 1), that means

1—+pmb

A = _71; [(,u + po1o23(T —t)) <h§n71) - kg;:m*)

0'2 n— n—2)* n—
R (G- | =0,

(

has a uniquely determined solution htn_l). Under this assumption, we want to show that

* ”)
oy 1—1"h R
A = —Tt [(u+p01025(Tt)) (hg s ) =
2
%

L) (07 - D) | o

has a uniquely determined solution hgn). The right hand side f : R, x R — R is continuous in
t and k(™ (because, by assumption, kgﬂn:tl)* = hﬁ"*” A k:( ) , is continuous in ¢) and continuously
differentiable in h("). Therefore f(™ (t, h(")) is locally Llpschltz continuous in h™. Using the
sanie arguments as above, one can easily see that there exists a uniquely determined solution of
on the maximal interval of existence [0 oo) By time reversion, we obtain the existence and

uniqueness of a solution k of . on (—
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In the following two steps, we show that l%ﬁn) €[0,%) . Step 1 shows that l%gn) € [0, £] for all

t € [0,T] via induction over n, while Step 2 shows that /%t(n) < ll by contradiction.

Step 1: By an invariance argument in the sense of qualitative theory of ODE’s, we show that
h§”) € [0, %] forall t > 0, n € {1,...,N}. For a detailed definition of an invariant set and for
the theorem which is used for the proof, we refer to Appendix [A.2]

Let D := [0, ll*] We show that D is positively invariant for (L6]), that means hgn) € D provided
that h(()n) € D,forn=1,...,N. We prove this via induction.

Let n = 1. Then, fM(t,£) -y <0forallt € R, y € Np(£) = (0,00), where Np(h) denotes the

set of outer normals on D. Moreover,
102

Wt 0).y=—-L

By Theorem [A.2.3| we obtain that D is positively invariant for (16 with n = 1 and therefore,
hgl) € D for all ¢ > 0. Thus the assertion holds for n = 1. Now, assume that the assertion holds

for n — 1, that means hﬁ”*” € D. The aim is to show that D is positively invariant for

(1-1) (—k‘TOE)z y<0, ViER,yeNp(0)=(—oo,0).

" = M), wgY =o.

Obviously, f(™(t, l%) = O forall t € R and therefore f(™)(t, l%)y <Oforallt c Randy € /\/’D(%*)-
Moreover,

™)(t,0) = - T — i) _ Ty (D2
S (t,0) = I (1 + poro25( ) T—t 9 ( 7)( T—t )7 |-
Since l% > 0, it remains to show that

2
n—1)* o n—1)*
(14 por0aB(T — )kFZ = T =) (k") 20, VieR.

In order to show this inequality, we differentiate between two cases:

Case 1. For t € R it holds that h\" " > K\ and therefore kir"* = k{0,

Then, we obtain

2
n—1)% o n—1)x*
(1 porraB(T = )G = S (1 = (R
2
% g *
= (u + po102B(T — 1))k — 71(1 — ) (kL)

_ L(u+po102B(T — t))° > 0.

2 o3(1—7)

Case 2. For t € R it holds that h{" ™" < k% and therefore k{7, = (™Y,

Since hgnfl) > 0, we have that k:gro)t > 0 which is equivalent to

,Lt+p0'10'2ﬁ(T — t) > 0.
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Thus, we obtain

(n—1)x _ 0% (n—1)y2
(1 + poroaB(T — ) kyp_, " — ?(1 =Nk 7)

r 2
1 [t praoaB(T - 0) = (1= )

r 2
> B |+ poroaB(T — ) — ZL(1 - ’Y)k(TO)’;}

n— 1
=10 [0+ porcas(r — )] 20

Case 1 and Case 2 together yield:

2
n—1)x (o} n—1)x
(1 + poro2B(T — t))k(T_tl) - —21 (1-— 'y)(k(T_tl) )>>0, VteR,

and therefore
FM@,0)-y <0, VteR,yeNp0).
Finally, we have
FP@ ™).y <0, VeeR,A™ cdD,y e Np(h™),

and therefore, by Theorem we obtain that D is positively invariant for (16]), and finally
h§”) € [0, #] for all ¢ > 0. By time reversion we obtain that l%t(”) € [0, £] for all ¢t € (—o0,T].

Step 2: Here, we show that l;:t(n) < ll* for all t € [0, T for arbitrary but fixed n € {1,..., N}.
Let  := inf{t € [0, 77 : l%t(") <i-54 WM < & —0,Vs € [t,T]} for some § > 0. Since ]%57) =0
1
*

and by continuity of l;:t(n), the infimum is attained at some ¢. First, we show that i) <% —-26
t =0 by

t
for some 6 > 0 if l%ﬁ”) < ll* — 26 for s € [t,T], and in a second step we deduce that
contradiction.

(1) Here we show that l%én) < & =24

, T that l;‘t(n) < l%, and therefore, we obtain together with :

- Fl=

By definition, we have for ¢ €

— e~

Slog(1 = 1K) = =FA), FOAY) = = (00 h) - oK)

Integrating on both sides and using that i < ll* for s € [t,T] leads to

T d R T R
/ log(l—l*kgn))ds:—/ F(s, kM) ds
i ds 7

T
& log(1 — I'EY) —log(1 — "KM = — / F(s, k) ds
t

T
& 1og(1—l*k§")):f F(s, kM) ds.
t
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Moreover, by Step 1, we know that I;:t(") € [0, ] for all ¢ € [0,T]. Since F(s, k) is a continuous
function in k, we have |F (s, l%ﬁ”))| < M for all s € [0,T], and we obtain

T T
1-— l*ktgn) = exp {x F(s, kM) ds} > exp {[ —Mds}
7 i

=exp{-M(T — )} > e MT
Thus, with § := %e*MT, we have
_9
=5

SR |
1—l*k§)226@k§)§l—*—25, §i=—>0 (81)

(2) We show that = 0 by contradiction:
Assume that ¢ > 0, then inequality implies
1

7.(n)
kf S I*

— 95,

because k™ < li* for s € [t,T]. By continuity, there exists ' < ¢, such that l%i,n) < ll* — 0 which
is a contradiction to the definition of . Thus, £ = 0 and therefore, l;:én) < & forall t € 0, 7).

2.6.3. Proof of Proposition [2.2.6}
Here, we prove the assertion:
Let ugn) = hgn) — hgnil), where (™ is the solution of the corresponding equation . Then,
W™ <0forallte0,T],ne{23,... N}

PRrROOF. We prove the assertion via induction. First, by definition, we have for arbitrary n:
WP~ ) 4 D) )
Y R Y S IS T
(") = (k) = ()2 = (") 4 (V) = ()2,
= (" 4 B () = (52, (84)
and therefore, by and (82)-(84) and with v(T —t) := p + po1028(T — t) it holds for n > 2:
iy = F ) = )

1=+ aY)
l*

: l:V(T — 1) (uﬁ") +hY - k(T”jt”*)

=T =) () (R ) 4 (0 = D)) ]

1—1epimY
_|_ PR S—

l*
n— n—i)* 02 n— n—2)%
-[u(T—t) (h"™Y = kD7) = T =) ()2 = e? )2)]
= £, ™),

R R )
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First, we show that u§2) < 0 by showing that E := (—o0, 0] is positively invariant for

W? = fP,u?), WP =o. (85)

Here, we have

@y LU [y o (y2 _ (2
17(t,0) (T =) (D = K25) = ZE1 = ) ()2 = (d3)2)

l*
1—1*hiY 1) 0\ o7 (Dy2 (002
+ — v(T —t) (ht — kT—t) - ?(1 =) ((ht )" — (kpZy) )

I
—_
|
~
*
>
-~
—
~—
| —
[l V)

2 2
0)x* 1)% g 1)% g 0)*
(1= R = TR ) - T )
R N De ()2
S - S (- k) <o
The last inequality holds because hgl) € [0, li*) and 1 —~ > 0. We obtain that E is positively
invariant for , because
F2(8,0) -y <0, Ve Ry € Np(0) = (0,00),

and it follows that u§2) = h§2) - hgl) <0 for all t € [0,T], and the assertion holds for n = 2.
Now, we assume that the assertion holds for n — 1, that is ugn_l) = hin_l) — hgn_Q) < 0. Then,

the aim is to show that F is positively invariant for

a” = £ ™), g =0,

It holds
n 1— l*h(nfl)
77,0 = - it —
n— n—1)x* o2 n— n—1)x*
|0 (i - K2 = T (002 - 05
1—r<p" Y
_|_ P S—
l*
n— n—2)x o} n— n—2)x
| o (i <) = - (02 - 05
C1—rpimY

l*
n—1)* n—2)x 02 n—1)x* n—2)x
| =0 (e ) = B (e - )

. 1- l*hl(gnil) (n—1)x (n—2)x
R

2
o n—1)x* n—2)x
- [v<T—t> = T =) (R R )]
By definition and by the assumption hgnfl) < hg"ﬂ), we conclude that

n—1)x% n—1 0)* n—2)% n—2 0)*
k’EF—t "= h§ " kgfzw k’EF—t = h§ "A k’EFZt
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and hence that
A (36)
Moreover, by definition, it holds

n—2)*
D KDL R A

Thus,
2

2
”2( )(k(”l)*+k:( ))ZV(T—t)—%(l—y)Q-kg)E:O, (87)

and by hgnil) < li*v by and , we obtain the following inequality:

v(T —t) —

(n—1)

n 1—10*h n—1)x* n—2)%*
1470, 0) =———2— (k)" = k)
2

: [V(T—t)—(;l(l—'y) (kg? Dr . pln—2)> )] <o0.
Finally, we conclude that
F(8,0)-y <0, Ve R,y e Np(0)
and it follows that u§") = hgn) - hgn_l) <0 for all t € [0,T]. O
2.6.4. Proof of Proposition
Here we prove the assertion:

Let vp > 0. Then u,gl) = hgl) — hgo) < 0 for all t € [0,T], where hio) = k:%)f; and hgl) is the
uniquely determined solution of with n = 1.

PrOOF. By definition we have

O _ P92 exp(—at), RO _ s _ A 0,
! 01(1_7)7 (~at) 0 r o2(1—7)
U 11 o 1 0)% 2 1
hg):thl(l—’Y)(hg)—k(th) , h(()):()
With o = 20 — h© we have ) = — 2 and

0 7 o)
051) _ hgn B hgo)
= (P 0) e :
_ VOl (W\* _ __ Po2 _
= e 5 (1= (") = 2 rew(-at)
= 0 uf) (88)
(1

In order to show that wu, ) < 0, we use again the invariance argument. Let E := (—00,0]. Then,

FE is positively invariant for , because vp > 0 implies
FP0) -y = —— T2 exp(—at)y - py <0, Vi €R,Vy e Np(0) = (0,00).
o1(1—7) ~~
>0
By Theorem , we have that F is positively invariant for , that means ugl) < 0 for all

t €1[0,00). O
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2.6.5. Verification argument for the post-crash problem.
Here we apply the Verification Theorem which was formulated in [24] Corollary 3.2] for a
more general stochastic optimal control problem. First, we have to prove several conditions for
the stochastic optimal control problem on the relevant interval [to, 7] with 0 < to < T.

i) k(% is progressively measurable.
ii) for all n € N the integrability condition

T
E (/ (0% dt> < o0
to

is satisfied.
iii) The corresponding state process {X; }eefto, 17> controlled by k(O gatisfies

Efo-wo [ sup [X;[" | < oc.
te(to,T)
iv) o0(t,z,r) = %aﬂg(o) (t) exp(B(t)r) is an element of C122([tg, T] x Ry x R) and it is a solution
of the HJB equation.
v) For all (t,z) € [to, T) x R and for all kO € II(t, z,7), there exists a ¢ > 1, such that

E ( sup {vo (S,XS,Y’S)‘q> < 00.

s€(t,T]

vi) B0 e arg maxye 4 LF00(s, X ., 7) for all s € [to, T).

REMARK 2.6.1. As in the model of [2])], we can treat the post-crash problem as if the state process
consists only of X, because T¢, as a solution of , has a uniquely determined solution and it
holds E (maxy,<s<7 |Ts|9) < 0o for q € N (see for ezample [32, Chp. 5.2, Corollary 12]).

All the steps work in the same way as for the model of [24], but for the sake of completeness we

show it here.

Proof of H) kgo)* = (1_5)02 + 5 f(zlﬁffy)) is a deterministic and continuous function, and therefore
it is progressively measurallole.
Proof of: Due to that fact that kgo)* is bounded on [0, T], we immediately obtain the integra-
bility condition for all n € N.

Proof of [it}): Here, we consider the wealth equation
dy: = yr |:?t + ,Uzk?lgo)*] dt —I-YtO'lkilSO)* dwlyt, Y:O = x.

By Corollary there exists a uniquely determined solution given by
. ¢ 52 ¢
X, =x0-exp </ 7 + k(0 — ?1(1950)*)2 ds —I—/ o1 k0 dw1,3> ,
to to

because kgo)* is bounded on [0,7] and ftto |Ts| ds < 400, P- a.s., for all t € [tg, T]. Obviously,
X; > 0P-asfor t € [to,T]. Now, let n € N be arbitrary but fixed. Then, we have the following
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estimate with a universal constant K > 0:

t 2 t
X" =al-exp <n/ 7o + pkO* — %(k‘go)*)Q ds + n/ o1 k(O dwl,s>

to to

t t
< K -exp <n/ Tods + n/ alk:go)* dw1,5>
to to
¢ t
< Kexp <2n/ T ds> + K exp <2n/ Jlk‘go)* dwl,s) )
to to

By Proposition in Appendix[A] it holds
t 1 — ¢—alt—to) t ] — g—alt—s)
/ Tsds :T—O(l — ety 4y, ((t —tg) — e )y 02/ e d.
to to

a a a

t t
X" < Kexp (/ hi(s) dﬁ)s> + K exp </ ha(s) dw1,5> ,
to to

where hi(s) := 2n2 (1 — e®t=%)) and hy(s) := 2no1k"" are deterministic and bounded func-
tions on [0,7]. With

t t 1 t 1 t
exp ( hi(s) dﬁzs> = exp < ih%(s) ds) - exp (— 5]1%(5) ds+ [ hi(s) d’LZ)3>

to to to to

Thus,

and with

t 1 t
Zl,t = exp <—/ ih%(S) ds + / hl (S) d'lI)s> s
to to

which is a solution of
le,t = Zl,thl(t) dwtv Zl,to = 17

we have by [32, Chp. 5.2, Cor. 12]:
E ( max Zl,t) < 0.
te(to,T)

Analogously, with

t 1 t
ZQ,t = exp <—/ ih%(s) ds +/ hQ(S) dw175> ,
to to

we obtain E (maxte[to’T] Zg’t) < 0o. Now, we can conclude that

— ‘1 "1
X, < Kexp (/ ih%(s) ds) ~Z1t + Kexp </ ghg(s) ds> Loy

to to

< K- max (Z14) + K max (Zay),

te(to,T) te(to,T)
because hi(t) and ho(t) are deterministic and bounded functions. Taking the supremum on the

left hand side and the expectations on both sides leads to

[to-o < sup X:n> < KE'o-®o ( sup (217,5)) + Kt ( sup (Z27t)> < +o0,

te(to,T) te(to,T) te(to,T)

and follows.
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Proof of : We have already shown that v%(t,z,r) = %x”g(o) (t) exp(B(t)r) solves the HIB
equation (|18)).

Proof of @ The candidate of the value function is given by
1
Ot ) = ;w”g(o) () exp(B(t)r),

where ¢ (t) = exp(ftT a9 (s)ds) and B(t) = Il — exp(—a(T —t))] are deterministic and
bounded functions. Let k(9 € TI(t,z,7) be arbitrary but fixed. Then, we have that |k‘§0)] <K
for some K < oco. Let (t/,2/,7") € [to,T] x Ry x R be arbitrary but fixed. Then, we have with
constants K; > 0:

T
00t X0, 70)| = |7 X exp </t a©(s) ds + g [1 — exp(—a(T — t))]rt>

t 2 t
< Kjp-exp <7/ [T‘s + ngo) - ?(kgo))Q] ds + 7/ Ulklgo) dw1,3>
t t’

exp (2 [1 - exp(~a(T — 1))]7¢)

a
t t ~
< Ko -exp <7/ Tsds + 7/ alkg‘)) dwl,s) - exp <,?t)
tl t/ a
- exp (—1 exp(—a(T — t))?t> :
a
Again, by Proposition [A.1.1], we obtain
t

exp(—a(T —t)) - 7 =exp (—a(T — t')) r' + / arpr exp (—a(T — s)) ds

t/
t
+ / ogexp (—a(T — s)) dws.
tl
Now, we obtain

‘vo(t)ytthM

t t t t
< Kj3-exp ’y/ Tsds + ’y/ alkgo) dwy s + 7 <r' +/ a(ry —Ts) ds +/ o9 dws>>
t/ tl a tl t/

t
- exp </ —gag exp (—a(T — s)) d’LZ)s>
tl
¢ v [t by
< Ky -exp (’y/ Ulkrgo) dwy s + / 09 dd}s> - exp </ ——ogexp (—a(T — s)) d’LZ)S>
# a Jy # a

t t
= Ky -exp yo kO dwi s | - exp / 102 (1 —exp(—a(T —s))) dws
t R,(—)/ t/ a
:=hs(s

:=hy(s)
< Ks-Z3;
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where

Z3 4 :=exp </t,t hs(s) + pha(s) dwy s + /t/t V1= p?hy(s) dwa,s
=5 [ [+ o) + (VI )] as).

2
Z3 is a solution of the SDE

dZ3y = Z34(h3(t) + pha(t)) dwi s + Z3 47/ 1 — p2ha(t) dway, Zzp =1,
and now, by [32, Chp.5.2,Cor.12], we conclude that

E( sup |Z34* ] < o0.
te(t!,|T]
With
‘vo(t,yt,ﬂ)f <KZ?. Z?at < KZ? sup Zgjt, vt e [t',T]
telt' | T)

we have

E| sup ‘vo(t,yt,ﬂ)f < K2R | sup Z2,| < oo,
te[t!,T) te[t', 7]

and therefore |v|) follows for ¢ = 2.

Proof of :

This condition is fulfilled (see page [16)).

Obviously, the function U(z) = %:ﬁ with v < 1,7 # 0, does not fulfill the growth condition
, which is required for applying Theorem Nevertheless, we can replace this condition
if we can show that the functional

J(t,x,r; k) = BT <1X%>
Y

is well-defined for all admissible controls k € II(¢, z, 7). For further details about models in which
the utility function does not satisfy the growth conditions, we refer to Kraft |31, p.18]. In our
case, we can show that J(¢,z,r;k) is well-defined using the explicit expression of the solution
of the wealth equation and the short rate equation and the conditions of an admissible control
strategy (see Definition [2.1.1)).

By proving the conditions — , we now apply Theorem . Note that our control problem
does not include a running utility such that the function L in Theorem is equal to zero.
Moreover, in our case we have that Q = [tg,T) x O and O 2 (0,00) x R. Since X; > 0 P-a.s. for
every t € [0,T] and k € TI(¢, z,7), the process (X¢,7;) never leaves the set O and therefore n = T,
where 7 is defined in (I56). Now, we obtain that v°(t,z,r) is indeed equal to the post-crash

value function and k;o)* is the optimal post-crash strategy.
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2.6.6. Heuristic characterization of v"(¢,z,r)- The non-log utility case. Here, we
want to characterize a candidate for the value function V™ € C1??2 which solves the system:

0< sup [Lkv”(t, x,r)} , (89)
ke Al (t,x,r)
0<  sup [v”_l (t,x(l — l*k+),r) —v"(t, x, 7‘)] , (90)
ke Al (t,x,r)
0= sup [Lkv"(t, x,r)} sup [U”_l (t,x(1 = k™), r) —o"(t, z,7)], (91)
ke Al (t,x,r) ke A (t,z,r)
1
v (T, z,r) = —2”. (92)
v

We can do this using analogous arguments as in [28, Section 4|. Let (¢,z,7) € [0,T] x Ry x R
and n € {1,..., N} be arbitrary but fixed. Let us start with the inequality . In contrast
to [28, Section 4], this inequality has the positive part k" instead of k. Assuming that the
candidate v is strictly monotone increasing in = we easily have, for arbitrary but fixed (¢, z,7),
that v"~! (¢, (1 — I*k™),r) —v™(t, z,7) is constant for & < 0 and strictly monotone decreasing in
k for k > 0. Therefore, the supremum in is taken for the smallest k for which k € A/, (¢, x,7),
that is, for which the inequality

2

v (t,x,r) + alra —r)v) (t,x,r) + %v:fr(t, x,r)

2
> —x(pk + r)vy(t,x,r) — %/{:Qva;‘I(t,x, r) — poioskxvl, (t, z,T) (93)

holds. With a second assumption that v"(¢,x,r) is concave in z, we have that v} (t,z,7) < 0.
Thus, the right hand side of the inequality, as function of k, is a parabola opens upward. Note
that if the inequality holds for k € [k/,0] with ¥ < 0, then the supremum is attained for all
k € [K',0] due to the positive part. Especially, the supremum in is attained for the smallest
value k for which holds as an equality. Analogously to the literature, we can separate the
(t,z,7) space into the set (™) where the right hand side of inequality is strictly positive,
and its complement. That means

AR {(t,x,r) : sup [v”_l (t,z(1 = U"kY),r) —o"(t, 2, 7r)] > 0} :
ke Al (t,z,r)

For (t,z,r) ¢ Y™ k and v" are determined by the following equalities:

ot x(1 = 1K), ) = 0" (t, @, ),
o2
v (t,x,r) + alry — r)v) (t,x,r) + ?211,7},"(15, x,r)

2
= —x(pk +r)vy(t,z,r) — %k:Q:E%ZI(t,x, r) — poioskxvl, (t,z, 7). (94)

By the complementarity condition (91]), we have to require for (¢,z,r) € V™) that

sup [Ekv”(t,x,r)} =0. (95)
ke Al (t,z,r)
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Ignoring the condition k& € A’ (¢, x,r) and using the first order optimality condition, we obtain a

candidate

v (t, z, )+ poroavl.(t,x,T)
o2z (t,z,r)

If k, given by (96), fulfills the condition k € A//(t,x,r), that means, if

= (96)

vtz r) <0Vt 2(1 = TR, ),
then the supremum in is attained in (96)). Otherwise, since LFy™(t, 2, 7) is monotone in-
creasing in k for
pol(t,z,r) + porogvl.(t,x,r)

k< —
J%mvgx (t,z,7)

)

and since v~ (t,z(1 — [*k*),r) is monotone decreasing in k, it follows that the supremum in
is attained for k, for which

" (t,x,r) = 0"t (1 — IR, ).
In this case k and v™ are determined by the following equalities:
vtz r) = 0"t 2(1 = TR, ),
Lk, x,r) = 0.
Summarizing, for (¢, z,r) € Y™k and v™ are either determined by

pol(t, z,r) + poroavl.(t, x,r)

k= 97
o2z (t,z,r) ’ (97)
0= L:kv”(t,:c,r),
or by
v (t,x,r) = v”_l(t, x(1—1"k"),r), (98)

0= Ekv"(t, xz,T).
But, the last equalities also determine k and v for (t,z,7) ¢ Y™ (see (94)). As in the literature
[28], we can now separate the (¢, x,r) space into the set

20 = {(t,x,r) Dkt z,r) = —W;L(t’gj’g) + po1oavy, (¢, z, 1)
01 xvgz (t> xz, ’I”)

L0 = LR (e, x,r)}
and its complement, where k and v™ are determined by
" (t,x,r) = ot (1 — IR, ),
0= LFv"(t, 2, r).

By the proof of part a) in Theorem we know that v%(t,z,7) given by and k(© given
by is the usual solution of the HJB equation

1
0= Ek(o)vo(t,x,r), (T, z,7) = =27, (t,z,7) €[0,T] x Ry x R,
Y

0 0

v (t,x,r Vot T, T

k’(o) = arg sup [ﬁkvo(t,x,r)} — _M x( ) 2) +0p0102 xr( ) )
keA 01 0Vzg (t, Ly T)
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Thus, for n = 0 we have that Z(© is the whole (t,x,r) space. For n > 0, we demonstrate how
we derived v" (¢, z,7) heuristically and afterwards we obtain that v", given by (14), is a solution
of the system of inequalities (89)-(91). Analogously to the case of n = 0, we assume that the

solution takes the form
1
o*(t,,r) = —a7g" () exp(B(t)r),
Y
with ¢()(T) = 1 and B(T) = 0. By inserting v" (¢, z,7) and its derivatives in for (t,z,r) €
Z(™) and in for (t,x,7) ¢ 2", and by assuming that k™*(t,z,7) > 0 for (¢t,z,r) ¢ Z™
(this will be shown later), we obtain:

e | R () € 20,
k n)* _

ki )= ll* [1 - (g(gn—l()t()t)) ﬂ/} () ¢ 20

kgn)*

Moreover, for both cases, we have to require that 0 = £ v"™(t,x,r). This is equivalent to

2
v () + w(,uk'tn)* + r)ul(t,x,r) + ﬁ(kﬁ”)*)%%gx(t, x,r)

2
2
+ p0102k§n)*xvgr(t, x,r) 4+ a(ry — r)vr(t,z,r) + %vfr(t, z,7) = 0.

Now, by inserting v" (¢, z, r) and its derivatives and by dividing by %:ﬂ exp(B(t)r) # 0, we obtain

2
+ g™ (B®) —aBt) +7) =0, BT) =0,6")(T) = 1.

In order to eliminate r, we choose (t) as given in and therefore B(t)—aﬁ(t)+7 =0,8(T)=0
and the equation above reduces to the ordinary differential equation for g™ (t) given in (13).
Thus, we obtain that 0 = L’kin)*v"(t,x, r). Now, for (t,z,7) ¢ Z(") we have that

1
n)* 7.(n 1 g(n) t K

o2 % o2
ARORYIRI0 (w + po102B()k™ = Th(L = ) (k") + arnB(t) + ;ﬁ%))

where ¢(™(¢) fulfills (I5)). Using (15) and (I00), we have for ™ for tx,r) ¢ ZM:
g t

o 11 gm0 Y [E00g 00 - g @V
k™

I* v

N 9= (1) gD (¢)2

_ Ly (L6 (670N (1) — g™ gD ()
(oo )'<v oINS g1 (1)? |
=(4)
where
N 2 2
(A) = = (u+ poroaB)R" + T =) ()2 = Zarai() - ~ 220
102
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Thus, /;:gn) has to fulfill the equation:

n 1—l*k() ~(n n—1)% ~(n
B = e (ot ) = oK) R =

Note that the terminal condition l%c(pn) = 0 follows by ¢ (T) = 1 and therefore

1

(n) kl
cmy L[ g"™(T) _
k= | <g(n—1>(T) =0

By definition of {”" in (1) and by (99) we finally obtain that

kt(o)* (t,x,r) € 200

k,(")* _
Bt a,r) ¢ 20

In order to show that v"(t,z,r) € C1%2, given by , is a solution of the system —, it
remains to show that k:t(n)* is indeed equal to

B A RO

We can see this by the following arguments. Let n € {1,..., N} be fixed. First, one can easily
show that ]%gn) is strictly monotone decreasing with ]%;n) = 0. Now, we show that

Z0 — {(t,,r) B > k;t(“)*}.

Let (¢, 2',r") € {(t,z,r) : l%t(") > k: } Then, we have by the fact that k‘(n) > 0 (see Proposition
"(t' 2/ (1 — I*k),r") is monotone decreasing in k:

- by the fact that v
kY > Kl
= (k) = (k)T
(A A G 01 i Rl It (Y R AT O R AP0 ISRV (el
= k" e AL 2 ).

Since

L5 _ BFpo1oaB(t) _ pop(tal,r) + porosg, (¢, ' 1)
v U%(l - 7) U%xlvgz (t/’ $/, TI)

and LK on (¢ 2/ 1') = 0, it follows that (¢, 2/, 1) € 2,
Now, let (t/,2,7') € Z("). Then, by definition, it holds

A e TR e U R SV
oix'vl, (¥, ! r')

Ar (' 2 r')
and LR (¥, 2/, ') = 0. k:t(,o)* e A(t',2',r") implies

N (=R =0 2 ) = 0N 2 (1= PR, ). (101)
Now, assume that l%g,n) < ki,o)*, then (l%é,n))Jr < (kﬁ,o)*)*. Since v~ 1(t, z,r) is strictly monotone

increasing in x, we obtain

N2 (1= R ) <o TN 2 (L= R, ),
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which is a contradiction to (101)). Thus, l%i,n) > kﬁ,o)* and therefore (t',2',r") € {(t,z,r) : 12;,5") >
0)*

3SUSY

Summing up, we obtained that v™(t,z,7) € C1%2, given by (14), is a solution of the system

22)-9.

REMARK 2.6.2. (1) By Proposz'tz'on we have that ]%gn) > 0, which justifies the assump-

tion that k:t(n)* >0 for (t,x,7) & 2™ (see assumption before (99))

(2) If yp > 0, then kt(n)* = /;:t(n) forallt € 0,T), n=1,...,N, and therefore Z™) = for
n=1,...,N. (see Remark

(3) Korn and Steffensen [28] characterized the solution of the system of inequalities and
note that -in their model with a constant interest rate-, the set Z") is the whole (t,z,)
space for n =0 and for n > 0 the set Z(™ is empty. The authors also mentioned that
‘examples where neither Z nor its complement are empty for a given n may require
a generalized model, such as, e.g., the case of crashed coefficients where the diffusion
coefficients react on crashes’ ({28, p.2020]).
Here, we characterized a solution of a model where neither ZM) nor its complement are
empty for a given n. This effect is due to the short rate model. (An example for the
case where neither Z™ nor its complement are empty is illustrated in Figure ,

2.6.7. Characterization of v"(¢,z,7) - The Log utility case. Analogously to Section
we can separate the (¢,z,r) space into the set Zmn), given by

Z(n) — {(t’xjr) . k(t,fl%T) _ _’Ux( 7397T)/‘1’+p0-10'2vx7’( 7$ar)70 — Ek’l)”(t,l‘,r)}

ol (t, @,7)

and its complement, where k and v™ are determined by
" (t,x,r) = 0"t (1 = IR, ),
0= Lo (t,z,r). (102)
Inspired by the case n = 0, we try the ansatz of the form
0" (t, x, ) = log(z) + WM (¢, r) with W™(T,r) =0, reR.

Then, for (t,z,7) € Z(™ we obtain that k™*(t,z,7) = L= k}go)*. For (t,z,7) ¢ 2", EM* ig
1

determined by the condition v™(¢,z,r) = v 1(¢t,2(1 — I*kT),r), and therefore, we have

kt(o)* (t,x,r) € Z(n)

(2, r) = .
ll* (1 — exp (W(”) (t,r) — W("*l)(t, r))) (tyx,r) ¢ FAD)

In contrast to the case of non-log HARA utility functions, we assume that Z(™ is empty for

n > 0. Now, by inserting v" (¢, z,7) and k(™* in condition (102), we obtain the following PDE
2

o1

S (k) =0, (t,r) €[0,T] xR,

2
Wt(n) + %WT(Z,L) +a(ry — T‘)Wvgn) +r+ ,uk:gn)* —
W(T,r)=0, reR.
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Since the short rate dynamics is not affected by the market crash, we try the following separation
ansatz for W™ (t,r) of the form

WO () = g™ (&) + h(t,r), g"(T) =0, W(T,r) =0, r €R,

where the function h(¢,r) does not depend on the remaining number of crashes n. Thus, for
(t,z,7) ¢ 2 we obtain

B (2, r) = K = ll (1 —exp (9(”) (t) - 9(”_1)@))) ’

and ¢(™(t) is given by

2
71

90 = =k + ) (1) =0,

and h(t,r) has to fulfill the following PDE

2
0= hy(t,r) + %hw(t, )+ a(ra — Phe(tr) +1r,  (67) €[0,T] x R,

0=hT,r), reR.

By applying Feynman-Kac Theorem (see Appendix Theorem , we obtain that
T
1
h(t,r) = Eb" (/ Ts ds) = (T —t)+ =(r —rar 4+ e T (ry — 1))
t a

is a solution of the PDE above. Thus, v™(t, z,r) = log(x)+ W™ (t,r) with W™ (¢, r) = ¢ (¢) +
h(t,r) fulfills (102). Using these calculations, we obtain that kzgn)* is determined by the following
ODE

i (n)* 1 n n— G\ G\
B = e (00 — ") 67(0) 5000
x7.(n)*
1—-1*k n)x n—1)x )%
= (o) = ok ), K =0,

where (k) = puk — Sk,

2.6.8. Proof of and . Here, the aim is to show that the expectation of stochastic
integrals, which appear in the proof of the verification theorem vanish, that means we show

that and hold. First, we prove that holds:
0
EbT [/ f(k)(s) dws] =0.
t
F®O(s) = (P (s), £1(5)), dws 1= (dwr ., dwss)T with
£P(5) = 0} (5, XEOD 1)) (you ks + B(s)po)

£ (s) = vl (s, XBOD 1) \/T= p20af(s),

where 6 = 0'(t,z,r) (for fixed (t,z,7)) and | = [*1y,5¢ and k € II(t,z,r) arbitrary but fixed.
Since 6 is given by (26]), we can interpret 6 as a first exit time of the process

<v0(s, XBOD (1 — k), ry) — 0l (s, XHOD, 7’5)>

s>t
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from the open set Ry. By [46, Chp.1,Example 3.3] we know that 6 is a stopping time. Thus,
we have to consider a stochastic integral, where the upper limit is a stopping time. Using [I7,
Chp.4,Thm. 4.3], it remains to show that

- . .
}E_/t |f1(k)(s)|2ds_<oo and Eu |f2(k)(s)|2ds}<oo.

Let k£ € II be arbitrary but fixed, then we have

r pT h T -
B| [ 1P as =E[/ |v1<svxf’<9’”,rs>walksw(s)poz)|2ds]
LJt B t

T -
_ / (o} (5, XBOD 1 )R |k + B(s)pos|? ds
' <Ki

T ~
< K;-E [/ \Ul(s,Xf’(e’l),rs)\zds}
t

<K;-E
s€[t,T)

T N
/ sup ]vl(s,Xf’(a’l),rs)Pds] . (103)
¢
Now, we use that we already have the explicit structure of v™(¢, z,r), that is
1
v (t,x,r) = Za7g™) (t) exp(B(t)r),
Y

where g (t) < K for all t € [0, 7] and some positive constant K (™. We show that

E | sup |vl(s,X‘f’(9’Z),rs)|2 < 0. (104)
s€LT)

For some constant K9 > 0 it holds
[0 (s, XEOD, ) = |y (XEOD) g0 (s) exp(B(s)r)
< K (XECD) exp(B(s)r,).

Now, we use the same methods as on page 70| and obtain (104) by using the solution Xf’(e’l) and
rs of the corresponding SDE’s. Together with (103) we have

- -
E / 1B ()2 ds | < oo.
L/t J
Analogously, we prove that
T '
/ P (s)2 ds| < oo
t |
and finally obtain that
0
ELe L [/ f(k)(s)dws] =0
t

by [17, Chp.4,Thm. 4.3]. Moreover, for an arbitrary but fixed strategy (7,1), we can prove (31]),
that is

E

Et,x,r,l |:_/ f(T,l)(S)dws:| =0,
t
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where f(T0(s) := (£ (s), £79(s)), dws := (dw.s, dws )T with
fl(T,l)(S) — U1(87X§:(1)*7(T7l),rs) (,yo_lk,gl)* + 5(5)90'2) ’
F570 () = 0 (s, XD ) V1= 202 ().

This can be done in the same manner as above. Thus we omit it here.
Note that the stochastic integrals in also vanish with the same arguments as above.

2.6.9. Proof of Corollary Here, the aim is to show for arbitrary but fixed (¢,x,r) €
[0,7] x Ry x R and k € II(t,z,7) and (7,1) € C:

Rt ()log(X;’(T’l))D < o0,

where {r¢},c[0,7) and Xk () = {Xf’(T’l)}te[o,T} are given by and (65)), respectively.

Proor. By Proposition in Appendix , we have that E/" (rf) < oo for all s > ¢, and
therefore,

T I 1
R </ |76 ds> < 2/ E"" (r2) ds+ §(T —t) < o0
t t

T
:>/ Irs| ds < o0 P—a.s.
t

By Corollary the SDE has a uniquely determined solution and with Xf’(T’l) =(1-
lkg_l))ka(Tvl)

277, we obtain for a [¢,T]-valued stopping time 7 and a universal constant X > 0:

T (0)y2 T
XEOD = kD exp < / (OO — @(k50>)2 +ry) du+ / oV 0 dw17u>

=z(1—1kW)
2y </ ’U(l)]ﬁ(xl) B <012 (kqgl))z du + / O—g)kq(;l) dwl,u
t t

T 0 T
A VEO dwy , + / ru du>.
t

T
+/ 7| du
¢

1T,
+2/t rudu.

Since k = (K@, k(M) € II(¢, z,r), we obtain

/ ail)kqgl) dw1
0

T Wm0 LM o
/ oV kW dwy / o1 kD) dwy
0 T

+ 5 u )
Taking the expectation on both sides leads to

T 1 g
bzl ()log(Xéi’( ’l))D < K+ iE (/t (Ugl)kq(})ydu)

+ 1IE (/T(U(O)k(o))2 du) + I/TE(T‘2)dU < 0
2 . 1 u 2 ' u :

Here, we used that the Ito Isometry also holds for stochastic integrals where the limits of the

T
log(X3 )| < K+ / o VKO dwy,

2

+

1
<K+ -
< +2

integration are stopping times (see for example [I7, Thm 4.2,Chp.4]). In the no-crash scenario
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T = oo we have

T ()52 T
Xéi’(T’l) =T -exp (/t (M(l)kq(}) - (012 ) (kqﬂl))z +7y) du +/t Uil)kvgl) deU)

and the assertion follows by the same arguments as above. O

2.6.10. Verification argument for post-crash problem (67). Here we show, that we

are allowed to apply Corollary in Appendix [A]for our post-crash optimization problem. In

order to apply this, it remains to show that the candidate for the optimal control k; " =

(0)x p©)

(@)

and the candidate for the value function v%(t,z,r) = log(x) + A(t)r 4+ B(t) fulfill the following
assumptions on the relevant time interval [to, T):

i)
ii)

iii)

iv)

kO ig progressively measurable: This is obviously met.

For all initial conditions 79 > 0 and z¢ > 0, the corresponding state processes {Ts} and {X}
with 74, = 7o and Xy, = xo have a pathwise unique solution {rs}ser, 77 and {Xs}sepo,n):
At the beginning of Section we already mentioned that the short rate equation has
a pathwise unique solution. Since fOT [Ts| ds < oo P-a.s. the requirements of Corollary
are fulfilled, and therefore, the wealth equation has a unique solution for every k() ¢
II(to, xo,70)-

Obviously E (ftf |k:£0)|4 ds) < oo for all k©) e (tg, zo, 70).

The utility functional

J(to, o, r0; k) := RE'o-T0;r0 (1og(YT))

is well defined for each initial value (g, 2o, 70) and each k € II(to, xo,70): This can be shown
by the same arguments as in the proof of Corollary [2.5.1]

Let O, :=O0N{y = (z,r) € R?: |y| < p,dist(y,00) > p~'} for p € N, where O = R} x R,
and let 6, be the first exit time of (s, X5,7s) from Q, := [to,T —p~ ') x Op. Note that
Qp is not empty for p € N with p > p := (T — to)~t. Moreover, 0, — T P-as. for
p — 0o. Now, we have to show that {v° (GP,YZP,?QP)}I,EN is uniformly integrable, given that
WO(t,z, ) = log(x) + A(t)r + B(t) and X denotes the wealth process controlled by k(O)*,
We prove that

sup E (\vo(ép,yzp,?gp)]2> < 00.

p>p

Let p > p be arbitrary but fixed. Using the explicit solution of the state equation X, using
the inequality (a + b+ ¢+ d)? < 4(a? + b + ¢? + d?), by the fact that 0, € [to,T) and by
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Cauchy-Schwarz inequality, we obtain that
0(p * = V2
07 (0p, X, 75, )]

1@\
log(zo) + (0p — to)i o T B(6p)
g1

2

017
/ Tsds
to

t
/ o\ VO quyy
to

0, 0,
+ / Tods + / ago)k(o)* dwi s + A(0,)To

to to

P

2
+4

0, 2
/ U%O)k(o)* dwy

to

1 (p©
< 4 |log(zo) + (6p — 750)5 oy | T B +4
g1

+ 4| A(0,)7, |
2

T
§K1+4(T—to)/ 7s|*ds +4 sup +K2|F9p|2a

to te[to,T]

where

WG
Kl =4 sup log(,jljo) + (t — t0)§ W + B(t) )
telto,T) 01

Ky:=4 sup |A(t)]
te(to,T)

Now, taking the expectation on both sides, leads to
E (100 (6p, X3, 70,)%)

T
< K +4(T—t0)/ E|rs|2ds+4E< sup

t
/ U§0)k(0)* dwl,s
to te[to,T] to

2
) + K2E|F9p|2

)

t
/ AV EO* quyy

to

T
< K; +4(T—t0)/ E[7s|?ds +4E | sup
to te[to,T]

+ Ky sup (E|Ft|2)
t€to,T)

=: K3 < .
The, inequality above holds for all p > p. Hence, we obtain:

supE (\vo(ﬁp,yzp,?gp)lz) < 00.
p>p

I . . . .1 . ~*
This implies uniformly integrability of the sequence of random variables {v°(6,, X 6,:70,) }p-
Note that the uniformly integrability is a key tool to prove Corollary For further
details we refer to the literature [31].

By showing conditions i)-v), we obtain that k(9* is a weak admissible control (for Definition

we refer to Appendix . Thus, we can apply Corollary and obtain that k(O* is the

0

optimal strategy after the market crash and the solution of the HJB equation v" coincides with

the post-crash value function V0.
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2.6.11. Proof of Proposition Here, we prove the following assertion:

Let k() be the uniquely determined solution of (71) and let kM = ( :;)))2. Moreover, assume
that
1) (0)
p g
O'gl) O’%O)

Then & € [0,kM] for all ¢ € [0, T).

Proor. If kM > L then the assertion follows by the fact that l%il) €0, 1) forall t € [0, 7).
Now, let kM < % In this case, we prove the assertion by showing that the solution hgl) of the
corresponding forward equation of (71)), given by

i = FORD), R =0,

where

2
- 1—I*h 1 1 ( u©

1) — MWy 2 My2p2 L[ H
f (h) T ,U, h 2(01 ) h 2 <g§0)> 9

fulfills hgl) € [0,kM] for t € [0,T]. This will be done by the invariance argument. Let D :=
[0, £M]. On the one hand, we have that

0 1 (@)

f (0)-y:ﬁ ) -y <0, VyENﬁ(O):(_Ooao)a

g1
and, on the other hand,
2 2
- 1—[*pM 1) (0)
FOWN) -y =~ (“(1)> - (“) y<0, VyeNyEM) = (0,00).
01

20+ o0

By Theorem in Appendix , we obtain that hil) € [0,kM] for all t € [0,T] if (105) holds.
By time reversion the assertion follows.

]



CHAPTER 3

Worst-Case Optimal Investment and Consumption with an

Infinite Time Horizon for Log utility Function

3.1. The financial market model

In this chapter, we consider an infinite horizon financial market model where the investor is again
allowed to invest in a savings account and in a stock, but in contrast to Chapter [2] he additionally
can consume a fraction of his wealth. Here, we assume that at most one market crash can happen
which is modeled as an uncertain event. This market crash causes a sudden downward jump in
the stock price evolution. The short rate dynamics of the savings account evolves as a stochastic
process with continuous paths which is not affected by the market crash. The investor is acting on
an infinite time interval and he aims to maximize his expected discounted utility of consumption
in the worst-case crash scenario by choosing an investment and consumption strategy. Using the
same notation as in Chapter [2] we specify the short rate models, which we use in this chapter, in
Section 3.1.1] In Section we define the stock price process and in Section we present
the investor’s wealth equation and the corresponding worst-case investment and consumption

problem.

3.1.1. The short rate models. The value of the savings account {B;}¢>¢ is assumed to
follow the differential equation . In this chapter, we consider two different short rate models.
In Section we assume that the short rate follows a slightly more general process than the
Vasicek process which we already used in the previous chapter. That is, we assume the process
{r+}+>0 to be a solution of the SDE:

dry = f(r¢) dt + oo duy, ro =17, (106)

where f € C'(R) and ¢ < f.(r) < c1, where cy, ¢y are constants. Again, oo denotes the volatil-
ity. This type of short rate model was already considered in [I5] and [39] in the context of a
similar investment consumption model, but without the possibility of a market crash. Fleming
and Pang [I5] and Pang [39] refer to the above short rate model as generalized Vasicek model.
Note that for f(r) = a(ryr — r) we obtain the classical Vasicek model with a speed of reversion

a to the long term mean level ryy.

In Section [3.3] we assume that the short rate follows an affine model. Analogously to Section
[2.5] we assume that the process {ri};>0 is a solution of the SDE (3):

dry = ()\17“75 + )\2) dt + / 517} + 52 dy, ro = T‘O,

where A\, Ao, &1, &, 70 are given constants. Within this model, we also cover the well-known
Cox-Ingersoll-Ross process.

83
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3.1.2. The stock price process. In order to model the stock price evolution, we make two
basic assumptions which are valid for the rest of this chapter. First, as in [I0], we assume that
there can happen at most one market crash on the infinite time interval. Thus, in this chapter
the market crash is a once-in-a-lifetime event. The crash is represented by the pair (7,1) € C’,

where
C':={(r,1): 7 € [0,¢], stopping time,
l € [0,1"] F-- measurable random variable}. (107)

As in the previous chapter, we emphasize that 7 = oo describes the case if no crash occurs at all
and the random variable [ € [0,1*] denotes the crash size, where the maximum crash size I* <1
is given. Additionally, we assume that the drift and the volatility of the price process will change
at time 7. The concept of changing market parameters was already applied and motivated in
Section[2.5] Now, we obtain the equations which describe the evolution of the stock price process
{Pi}eo:

Py =7,

P, = P, [(u“) +re)dt + otV dwu} . te(0,7),
P=P (1-1)
dP, = P, [(u(o) + 7)) dt + O'go) dwu} , t € (1,00],

where p() > 0 and 0'§1) > 0 denote the market parameters valid before the crash, and p(® >0

and Ugo) > 0 denote the market parameters valid after the crash. Again, the Wiener processes

wy and W may be correlated with correlation coefficient p € [—1, 1].

3.1.3. Admissible controls and the worst-case optimization problem. In contrast
to the previous chapter, the investor’s behavior is described by the portfolio process k = {ki}+>0
and by the consumption process ¢ = {¢;}1>0. k¢ denotes the fraction of wealth invested in the
stock and ¢; denotes the rate at which the investor consumes. Accordingly, 1 — k; is the fraction
of wealth invested in the savings account. We denote the investment and consumption strategy
valid for t € [0,7] by (kM ¢M) and the strategy valid for ¢t € (r,00] by (k°,¢®) . Thus, we
call (KM, M) and (K, ¢(©) pre- and post-crash strategy, respectively. Below, we define the
admissible control space.

DEFINITION 3.1.1 (Admissible control). A process (k,c) = (k) ¢© kM M) where the post-
crash strategy (K0, c(0)) is valid for t € (1,00] and the pre-crash strategy (kM) c¢) is valid for
t € [0,7], is called admissible control if k = (KO, k(M) is nonnegative and is admissible in the
sense of Deﬁm'tion and c = (C(O), 0(1)) fulfills the following conditions:

(1) ¢ is a F-adapted process,
(2) 0 < ¢t <C forallt >0 for a sufficiently large constant C,

The set of admissible controls is denoted by II.

REMARK 3.1.2. Note that the filtration F = {Fi}1>0 is again generated by the processes wi, W
and N, where N is again the counting process defined in @
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Given a market crash (7,1) and a self-financing investment consumption strategy (k, ¢), we denote

the investor’s wealth at time ¢ by X; and obtain the corresponding wealth equation:
Xy = 20 > 0,
axX; = X [ro+ p kD = V] @t + Xio{ kY dwrs, e (0,7),
X, =01-1kW)X,_,
dX, = X, [rt + u OO — ch>] dt + X0k dwy,, te (r,00).

Again, the short rate process {r:}+>0 is not affected by the market crash. Note that the wealth
equation of this chapter slightly differs from the one in the previous chapter because consumption
reduces the investor’s wealth. Using the dynamics above, we formulate the worst-case optimiza-
tion problem. Here, the investor wants to maximize his expected discounted logarithmic utility
of consumption over an infinite time interval in the worst-case crash scenario. Thus, we formulate

the following worst-case optimization problem:

sup inf E </ e “'log(cs Xy) dt) ) (108)
(k,c)€(z0,r0) (T,1)EC! 0

where ¢ > 0 denotes the discount factor. II(z°,7°) denotes the set of admissible controls,
corresponding to the condition that Xy = 2 and ry = r?. The worst-case optimization problem
above provides a generalization of the problem considered in [I0] where constant interest rates
are used in a similar infinite time horizon model. Note that Desmettre et al. [10] extended the
martingale approach of Seifried [44] for the infinite time horizon problem and interpreted it as
a controller vs. stopper game. In this thesis, we already used the martingale approach to solve
the finite time horizon problem considered in Chapter [2| In this chapter, we apply the method
again for problem (|108]).

In the next section, we investigate the worst-case optimal investment and consumption behavior

if the short rate ry follows the generalized Vasicek process specified in ((106)).

3.2. The generalized Vasicek Model
Here, we assume that the short rate r; will change according to , that is
dry = f(r) dt + og divg, 19 =10,
where o9 > 0 and
fe Cl(R), 2 < fr(r) <ec, VrekR. (109)

We conclude from condition that f(r) is globally Lipschitz continuous and fulfills the
growth condition |f(r)] < C(1 + |r|) for some constant C' > 0. By the classical existence and
uniqueness theorem for SDEs (see e.g. [38, Theorem 5.2.1]), there exists a uniquely determined
solution {r;}+>0 of equation (106)).

The aim of this section is to solve the worst-case optimization problem under the generalized
Vasicek model. As in [10] and [44], and as in Section 2.4 we apply the following steps. First, we
solve the post-crash optimization problem which is a classical infinite horizon stochastic optimal
control problem. Afterwards, we reformulate the problem as a pre-crash problem which is
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interpreted as a controller vs. stopper game. Using the martingale approach we finally obtain

the worst-case optimal pre-crash strategy.

3.2.1. The post-crash optimization problem. The aim of this section is to find the
optimal post-crash strategy (k:(o)*,c(o)*) by using stochastic optimal control theory. After the
market crash, the investor has to ‘solve’ a classical stochastic optimal control problem with initial

values z and 7 over an infinite time interval. Let us define the posit-crash value function by
0 _ N () <
Vi(x,r) = sup E e “log(c; ' X¢)dt ), (110)
(k) c(0) el (z,r) 0

where X; denotes the wealth at time ¢ if no crash can occur anymore, that means X; is assumed
to solve the following wealth equation controlled by (k(o), c(o)), starting in = and the short rate

process starts with value r:

dX, = X, [ﬂ +p OO — c§°)} dt + X0 Ok dwr,,  Xo=u, (111)
dry = f(Ty) dt + oa(pdwi s + /1 — p? dway), To=T.

REMARK 3.2.1. The post-crash value function VO(x,r) depends on the initial values of the post-
crash dynamics, given by arbitrary x € Ry and r € R, that will later represent the wealth and

the short rate at the crash time, respectively.

The corresponding HJB equation to the post-crash problem ({110} is given by

(0)y2
sup [u(o)k(o)xvg(x, r) + @(k(o))2x2v2$(x, )+ pa§o)02k¢(0)xv%(m, T)
E®eA

+ sup [log(c(o)x) — A0 (2, r)
0(0)20
2
+ ravd(z, ) + f(r)d(z,r) + %v?r(x,r) —e¥(z,r) =0, (t,z) e Ry xR, (112)

In order to find a solution of the HJB equation above, we apply the separation ansatz v°(x,7) =
Blog(x) + W(r), where B € R,W € C?(R), and obtain the reduced HJB equation:

0
00 5 _ T o2 Oy _ o0)
p kY B 5 (kY")°B| + sup [|log(c'") — VB

c¢(0)>0

sup
EOecA

o2
+rB+ f(r)W,(r) + EQWW(m —¢e(Blog(z) + W(r)) +log(x) =0, reR.

By choosing B = %, we eliminate the state variable . Furthermore, we obtain the following
candidates for the optimal post-crash strategy:
(0)
O = “(0) POl (113)
(017)?
Inserting these candidates, leads to an ODE for W of the form

2
%WW(T) FFWe(r) —eW(r) +Q(r) =0, reR, (114)
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where

T2

1 M(O) ? T
71

This kind of ODE was already investigated in [I5] and [39] in the context of a similar model by
means of a sub- and supersolution method. For the definition of a subsolution and a supersolution
we refer to Appendix We apply this method to get an existence result of a function W €
C%(R) such that (114) is fulfilled.
Let L : C*(R) — C(R) with
2
92
LW .= EWTT + f(T)Wr,
and
h(r,W) = Q(r) — eW.
Then, we rewrite the differential equation (114)) briefly as:
—LW = h(r,W). (116)

By Definition in Appendix we obtain that W is a subsolution of (116) if —LW <
h(r,W) and W is a supersolution if —LW > h(r,W) for all » € R. This is used to prove the

following two Lemma.
LEMMA 3.2.2. Suppose that € — 2cy > 0. Then, there exist constants ay,as < 0 such that
W(r) := asr?® + ay (117)
is a subsolution of (116]).
ProoOF. By the mean value theorem, by and by ag < 0, we have
—LW = —o3as — 2f(r)agr
= —oay — 2097 (fr(&)r + £(0))

< —0%042 — 2a97%¢y — 2007 f(0).

Moreover, it holds

2e 0§0)

2
1 (0)
h(r,W) = —eagr? + g + — <M> +log(e) = 1 — eay.
Thus, condition —LW < h(r, W) holds, if we have that:

1 (0

2
1 (
s (e — 2¢) r? — <2a2f(0)+>r—a§a2— . —log(e) +1+ea; <0.
5 2¢ 0.50)

Since € — 2¢; > 0 and as < 0, we obtain the inequality above by choosing a1 < 0 sufficiently
small. That means W given by (117) is a subsolution of (116]). O

Analogously, we determine a supersolution.

LEMMA 3.2.3. Suppose that € — 2cy > 0. Then, there exist constants B1, B2 > 0 such that

W(r) := Bor® + B (118)
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is a supersolution of (116]).

PrROOF. Analogously to the Lemma before, we use the mean value theorem, the condition
(109) and the fact that 52 > 0 and obtain

—LW > —03 83 — 2Br%c1 — 2321 £(0).
Now, —LW > h(r, W) holds, if we have that
2 1 2 POy
Bo(e —2c1)r* — | 282f(0) + = ) r — 0502 — — @ —log(e) +1+¢p1 > 0.
€ 2¢e o

Since € — 2¢1 > 0 and 2 > 0 we can choose 1 > 0 sufficiently large such that the inequality
holds. U

REMARK 3.2.4. Since az, a1 < 0 and Ba, 1 > 0, we conclude that W(r) < W(r) for all r € R.
Thus, (W, W) is an ordered pair of sub- and supersolution (see Definition .

Since we were able to find a sub- and supersolution, we can apply the Theorem by Fleming
and Pang [15] to show the following existence result.

THEOREM 3.2.5. Let € — 2¢; > 0. Then, the ODE (114) has a classical solution W € C?(R)
such that

W(r)<W(r) <W(r), VreR, (119)
where W (r) and W (r) are given by (117) and (118)), respectively.

ProOOF. First, we define
_ 2
H(r,w,p) i= — [~ (p + 2w — Q).
2

Then, ODE (114) can be rewritten as
Wy = H(r, W,W,.), reR.

Obviously, H(r,w,p) is strictly increasing with respect to w, because € > 0. Let I, := [—m,m]

for m € N. Moreover, define

M = max { sup |W(r)|, sup |W(r) } .
TEIm TEIm

Let m € N be fixed. We have that |f(r)] < C1(m) and |Q(r)| < Cy(m) for all r € I,,. Then, for
r € I, and |w| < 3M, it holds

|H (r,w, p)| < % (LF (r)llpl + elw] +[Q(r)])

02
2 - 2 ~
< —QCl(m)\p! + f2(3€M + Cz(m))
02 03
1

< P+ C3(m),

where C3(m) := %(35M+C~’2(m) + (él(;n))Q). Defining C; := ﬁ and Cay(m) := é?é:n), we obtain
2 2

|H(r,w,p)| < C1(p® + C2(m)),  for 1€ Iy, |w| < 3M.
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By the fact that (W, W), given by (117) and (118)), is an ordered pair of sub- and supersolution
of (116)), the assertion follows by Theorem [A.3.2] O

Now, using Theorem , we conclude that v%(z,r) = log(z) + W (r) is a solution of the HIB
equation (T12)). Now, it remains to verify that v®(z,r) is indeed equal to the value function
VO(z,r) and that the candidates given in are the optimal post-crash strategies. In order
to prove such verification result, we first need an analogue estimate for W,.(r) as in [39]. This

estimate is given in the following Lemma.

LEMMA 3.2.6. Let € — 2¢1 > 0 and let W(r) be a classical solution of (T14) such that W (r) <
W (r) < W(r) for all v € R, where (W, W) is given by (I17) and (T18)), respectively. Then,

3
WZ(R) < Z voiR*, VRER,
=0
where vg > 0 and v2; > 0 (i = 0,1,2) are constants.

PRrROOF. The idea of the proof is similar to that in [39, Lemma 1.44] and we refer to Appendix
for the proof. O

THEOREM 3.2.7 (Verification Theorem). Let & — 2¢; > 0 and let W (r) be a classical solution of
(114) such that (119) holds. Moreover, let

1 .
0(z,7) = z log(x) + W(r).
Then
(1) For every strategy (k@ c(0)) € 11, with

E®" < / eetylog(cgmxt)ydt) < 00 (120)
0
1t holds

0z, ) > ES" (/ e et log(cgo)yt) dt) :
0

and %X, 7)) = ¢, then (K©O*, ¢9*) € I and

W (x, ) = ES" (/ e et log(cgo)*yz) dt> ,
0

where X~ = {X, }i>0 solves SDE (T11)) which is controlled by (k(©*, (0%, Thus, v0(z,r) =
VO(x,r), where VO(z,r) is the post-crash value function (110)).

PrOOF. The proof is technical but standard. Thus, we refer to Appendix for the
proof. O

In the next section, we use the explicit structure of the post-crash value function in order to

reformulate the worst-case optimization problem.

3.2.2. Reformulation of the Worst-Case Problem. Analogously to Section we
reformulate the worst-case optimization problem (108) as a pre-crash problem. Let X = {Xt}tzo
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be the wealth process in a crash-free market controlled by an arbitrary admissible pre-crash
strategy (K1), ¢M). That means, X solves

X, = X, [rt + W — ch] dt + X0V dwy,, X = af (121)

)

dry = f(r) dt 4+ oo diy, ro = V.

At the crash time 7 the investor’s wealth is given by = = (1 — lkﬁl))f(f and the short rate is given
by r = r;. The performance of the optimal post-crash strategy at the crash time is then given
by VO((1 — lkzg))f(ﬁrf), where VO(z,r) = Llog(z) + W(r). Obviously, VO(x,r) is monotone

increasing in . Thus,
VO — 1M X, ) > VO((1L =KX r),  WELe [0,17].

Since k:,gl) > 0 for all t > 0, the worst-case crash size is given by | = [*. Using the inequality

above, we reformulate the worst-case optimization problem (108)) as a pre-crash problem of the
form:
T 1) ~ -
sup inf E (/ e ¢t log(cg )Xt) dt + e V(1 - l*k:g))XT,rT)> . (122)
(kW ,cM)el(20,r0) Tec! 0
The pre-crash problem ([122)) can be interpreted as a controller vs. stopper game, where the
investor chooses (k(1), M) and the market chooses the crash time 7. As in Section , this
problem will be solved by a martingale approach developed in [44] for the finite time horizon and
in [I0] for the infinite time horizon.

In what follows, we write (k, ¢) instead of (k) ¢(1)) to denote the pre-crash strategy. Moreover,
we define the process M*<¢ = {M}**};>¢ by:

t ~ ~
Mtk’c = / e log(cs Xs) ds + e SVO(1 — I*ky) Xy, 7¢), t>0,
0

such that (122)) is given by

sup  inf E (Mf’c) . (123)
(k.c)€T(20,r0) TEC!

3.2.3. The worst-case optimal pre-crash strategy. As in [I0] and [44], we use the

concept of indifference and the Indifference Optimality Principle to determine the worst-case

optimal pre-crash strategy. Here, a pre-crash strategy (k,c) is called indifference strategy if
() =21

for two stopping times 7,7’. This definition is similar to the literature [L0, 44] where constant

interest rates are used and is already applied in Section [2.4]

Moreover, it implies that a pre-crash strategy, which is an indifference strategy, makes the investor

indifferent with respect to the crash time 7, because he reaches the same performance for two

different (arbitrary) stopping times.

Due to the infinite time horizon and the time-independent market coefficients, we can assume

that the worst-case optimal pre-crash strategy (k,c) does not depend on time t. Moreover we

assume that it will not depend on the short rate ;. Below, we will see that the optimal pre-crash

strategy fulfills these assumptions.
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Now, we formulate a sufficient condition for a strategy to be such indifference strategy.

LEMMA 3.2.8. Let € —3c1 > 0 and let (l;:, ¢) be a constant admissible pre-crash strategy such that
H(k, &) =0, where

(152 (0) 2
c 1 (077) c 1 (pu
— W 21 J g2 2~ (2
H(k,c) '_10g<1—l*k:>+€ (,u k 5 k) . <0’§0)>
— log(e) + 1. (124)

Then, MFe s g uniformly integrable martingale and (/%, ¢) € 11 is an indifference strategy for the
controller vs. stopper game (123)).

REMARK 3.2.9. Note that for an arbitrary but fized ¢ > 0 it holds limk/%* H(k,¢) = o0 and

2 2
X é ¢ 1 (p© 1 (p©
- Y-S (B <—— =) <
H(0,¢) = log <€> - % <a(0) +1< 2\ o) = 0.
1 1
Thus, for each ¢ > 0 there exists k € [0, %) such that H(k,&) =0.

PROOF OF LEMMA B2.8l Let (k, ¢) be a solution of H(k,é) = 0. By the definition of M*=<,

we obtain:
AMF = et 1og(eX,) dt + d (e‘“VO((l ~ k)X, 7‘t>> )

where X is the wealth process in a crash-free market controlled by (k,é) (see (121))). Using
VO(z,r) = Llog(z) + W (r) and using that W € C?(R), we apply Ito’s formula and obtain

Lo C 1 ~ (J(l))QA ¢ Tt
M —p—et c _ N O ! 2| _¢,
dM, e {Og<1—l*k>+5<u k 5 k €+€

2
+ f(Tt)Wr(Tt) + %Ww(rt) - EW(rt)} dt

o8 ) _
+e <Uik + U2PWT(H)> dwy ¢ + e oa/1 — pPWe(ry) dws .

Now, we use that W (r) is a solution of the ODE (114) and, therefore, we have

2
3 (0)
et SN o VLA N
5 Wi (1) + f(re) Wy (re) —eW (re) + e (09)) log(e) + 1.

Thus,
= SO )
dM,;° =e™c %k + aopWi(r1) | dwi g+ e aar/1 — p2W,(r1) dwa .
Now, we define

ia t o .
1Mt R / e &° ?k‘ -+ O‘Q,OWT(TS) deS,
0

o t -
2Mtk’c :=/ efssazmwr(rs)dw%’
0
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such that Mtk”’a = Mg’é+1Mf’é+2Mtk’é. Let us consider the quadratic variation process of 1Mf“’é,

which is given by

- / EN : 2
<1Mk’c>t :/ o283 %k‘—i—pagWr(rs) ds
0
and we define

- - (1) : 2
(L MF4y ::/ e 28 <U;k +p02Wr(rs)> ds.
0
Lemma implies

A 1 . o] -
E <<1Mkvc>oo> < g(a§1)k)2 +2p%02F (/ e 25TV 2 (1) ds)
0

3
1 . o9 ]
< =3 (oil)kz)2 + 2p2o'§/ e 28 E vy B (r?l) ds.
0 i=0

By Lemma in Appendix |A} it holds for any integer m > 0 and any € > 0 that E (r?m) <
Agm) if c; <0and E (r?m) < Aém)ezm(cﬁg)s if ¢ > 0, where Agm), Agm) are positive constants
independent of time s. Thus, for ¢; < 0 we immediately obtain that
. 1 . 00 _
E <<1Mk’c>oo> < —3(051)145)2 + 2p20§/ e %Ay ds < oo,
€ 0
where A is a positive constant. We assumed that € — 3¢y > 0. Thus, if ¢; > 0 there exists € > 0
such that € — 3(c; + €) > 0 and we obtain
» 1 A oo 3 N
E <<1Mk’c>oo> < 6—3(051)16)2 + 2p20§/0 e~ 28 Z VgiAg)em(Cl“)s ds < oo.
i=0

Analogously to the definition of (; M ]%’é>oo, we define (oM kc>oo and by similar arguments we
obtain that

E <<2M’576>00> < o0.

Now, we apply the Burkholder-Davis-Gundy inequality (see e.g. [43, Chp.IV]) and we conclude
that there exist constants C* (i = 1,2) such that

7. A 2 . oA
E <<sup |Z~Mf’C|> ) < C'E ((iMk’C>oo) <o, i=1,2.
t>0

Since Mtkc = M§’6+1Mtk’é+2Mtk’é, we obtain that the process M*¢is dominated by an integrable
random variable M, that is for all £ > 0 it holds

ke ke
| M) < |My*°

+ sup |1Mtk’6 + sup |2Mf’é| =: M,
>0 >0
with E (]\7[ ) < o0. Therefore, M ke s a uniformly integrable martingale which implies that it

is closed by a random variable M(foc = limy 00 ]\lf’é a.s.(see Theorem . We apply Doob’s
Optional Sampling Theorem (see Theorem [A.4.6) and we get:

E (vaé) —E (Mk> .

T
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By definition, it follows that (k,¢) is an indifference strategy. O

REMARK 3.2.10. In Section 2.4 we obtained that there exists a uniquely determined indifference
strategy which s a solution of an ODE. For the case of mazimizing the lifetime consumption,
an indifference strategy (k,¢) has to fulfill H(k,é) = 0 and therefore, there ewist infinitely many
strategies (/;;, ¢) which are indifference strategies. Thus, the main difference to Section 15 the
sufficient condition for a pre-crash strategy to be an indifference strategy: In Section k is the
uniquely determined solution of an ODE and in this Chapter, (/;:, ¢) is an indifference strategy if
H(k,¢)=0.

Now, having a sufficient condition for a pre-crash strategy to be an indifference strategy, we use
the notion of an indifference frontier which was defined [10] for the infinite time horizon. Note,
that we already applied the concept of an indifference frontier and the Indifference Optimality
Principle in Section and for the finite time horizon model. Analogously to [10, Lemma
4.2|, let us consider the indifference frontier:

Let (k, ¢) be an indifference strategy and (k, ¢) € II be an arbitrary admissible pre-crash strategy
and let 0 := inf{t > 0: k; > k} and let

~ ke t<nm - e t<nm
k‘t: N 5 Ct — . .
k :t>n ¢ :t>n

Then, by the same arguments as in the proof of [10, Lemma 4.2], one can show that

T

inf E(M*®) > inf E(M*). (125)

The proof of the inequality above works in the same way as in the literature because it needs the
right continuity of the pre-crash strategy, the fact that M ke s a uniformly integrable martingale
and that VO(x,r) is monotone increasing in x. By Definition , Theorem and Lemma
the requirements for the proof are given. As in [10, @4], an indifference strategy (k,¢) can
be interpreted as a frontier that prevents too bold investment decisions (cf. [10, p.13]).

By , we can restrict our considerations on strategies that are dominated by an indifference
strategy because all other strategies would provide worse performances. In order to do this, we
define the set of such strategies by

A(k) = {(k,c) ET: ks <k, \ﬁzo}.

Next, we apply the Indifference Optimality Principle (see [10, Proposition 5.1|) to identify the
worst-case optimal pre-crash strategy. This principle provides a sufficient condition for a pre-
crash strategy (k,c) to be optimal in the worst-case scenario: An indifference strategy (k,é) =
(k*,c*) is the worst-case optimal investment consumption strategy for (L08), if it is optimal in
the no-crash scenario 7 = oo in the class of all strategies respecting the associated indifference

frontier, that means:
E(ME) SE(MES),  V(kc) € AKRY).

The following Theorem provides the worst-case optimal pre-crash strategy for the controller vs.
stopper game (122)) by using the Indifference Optimality principle.
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THEOREM 3.2.11. Let € — 3¢y > 0 and let H(k,c) be given by (124). Moreover, we define

(1
m := min l, kM with kM = H .
I* (1))2

(o

(1) Suppose that there exists k € [0,m] such that H(k,e) = 0. Then, k is uniquely deter-
mined and (k*,c*) = (k,€) is a worst-case optimal pre-crash strategy for ([L10)).

(2) If there is no k € [0,m] such that H(k,e) = 0, then (k*,c*) = (k™ &) is the worst-case
optimal pre-crash strategy for .

Proor. First, by Remark there exists a « € [0, &) such that H(k,e) = 0.
Now, we prove (1):
Assume that there exists a k € [0, m] such that H(k,e) = 0. For k € [0,m] it holds

0 I* 1
_ L@ ()42
—akH(k:,s)—l_l*k—Fs(u (0q )k:)>0.

Therefore, if there exists a root x € [0, m] of H(k,¢), then & is uniquely determined on [0, m]. By
Lemma (k,€) is an indifference strategy. Now, we show that (k,e) is an optimal strategy
in the no-crash scenario 7 = oo in the class A(x). In order to do this, we consider the following
constrained stochastic optimal control problem:

sup E <M§oc) = sup E (/OO e log(ci Xy) dt) . (126)

(k,c)EA(K) (k,c)EA(K) 0

Similar to [27], where the authors showed that investment and consumption decisions can be
separated for general optimal control problems with logarithmic utility function, we obtain for
an arbitrary but fixed admissible pre-crash strategy (k,c¢) € A(k):

E( [ et log(eX d)
(/0 e “"log(cy Xy) dt
o) t
=E </0 e et (log(ct) —/0 Cs ds) dt)
o0 t t
+IE(/0 et (1og(:c0)+/0 rs+¢(k3)ds+/0 oWk, deS) dt),

where (k) == p(Wk — ﬁk‘?. Thus, maximizing the expectation in (126) is equivalent to
maximize the first and the second summand above to obtain the optimal consumption and
investment decision, respectively. Considering the first summand above, the optimal consumption
strategy is given by ¢ = ¢ (see e.g. [27, Thm.2|). Since 1 is concave and strictly monotone
increasing for k < kM and since, by assumption, k < k™, we obtain for all strategies k € A(k)
that ¥ (ks) < (k) for all s > 0 and

E (/Otd)(kzs) ds + /Ot ok, deS) ~E </0tq/)(ks) ds)
<E </Ot¢(m) ds> —E (/Otzp(ﬁ) ds+/0ta§1)f<;dw17s) .
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This implies that the second summand fulfills the inequality

o0 t t
E (/ e—ct <log(x0) +/ rs + (ks) ds +/ ok, deS) dt)
0 0 0
%) t t 1
<E </ e et (log(xo) —I—/ s + (k) ds +/ 05 'k dw1,s> dt>
0 0 0

for all k € A(k) and therefore (k,¢) is the optimal strategy for the constrained problem ({126].
Now, we apply the Indifference Optimality Principle (see e.g. [10, Prop.5.1]) and obtain that
(k*,c*) = (k,€) is the optimal strategy for the controller vs. stopper game (122)), because

inf E (Mf’c> <E (Mff) <E(MSF) = inf E (M), Y (kc) e Alx).

Tel! Tel!

Note that the second inequality holds because (k, ) is optimal in the no-crash scenario and the
equality above is true because (k,¢) is an indifference strategy.

Thus, (k,¢€) is a worst-case optimal pre-crash strategy for problem ([108)).

Now, we prove (2):
Suppose that there is no x € [0,m] such that H(x,e) = 0. Since H(0,e) < 0, it follows that
H(kM,e) < 0. By Ito’s formula, we obtain

1 , y
M = Mg SHEM )(1— ) My 4 oM

where

LA ¢ oL _
1M ::/ e &* %kM—i—angr(rs) dwn s,
0

t
2]\415{]\{78 ::/ e_ESJQMWT(TS) dws,s.
0

In order to apply Doob’s Optional Sampling Theorem, we show that MK e = {MtkM’E}tzo is a
supermartingale which is closed by a random variable (we refer to Definition for details).
Since (kM ¢) is time independent, one can apply the same arguments as in the proof of Lemma,
in order to show that the processes | M K. and 1 MY < are uniformly integrable martingales
with

kM B
E (sup|iM; | ) < oo, i=1,2.
>0
Using the martingale property of ;M*" and o M*"" and H(kM &) < 0 we obtain
, 1 y ,
B (M7AIF) < Mg+ HEM o) (1= =)+ M e = e,
€

for s < t, which implies that MK ig a supermartingale. Since 1M’“M’€ and ngM’E are

. . . . kJW € . k;lw I3
uniformly integrable martingales, we obtain by Theorem that | M" © = limy_yo0 1M,
Y M M M
and o MF"e = limy_,o QMtk © a.s. exist and E\lMéCo “l < oo and E’QM!:O ‘] < oo, and
therefore,
, M M 1
ME"S = Tim M{° = My 4 —HEY ) + 1ML +oME

— 00 g
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M
a.s. exists and E\M!fo | < 0o. Moreover, for each ¢ > 0 it holds

y 1 V
M > My ZHEY ) 4 M oMy
1 y
= My + —H(KY, ) +E ((\ME R ) +E (oME e R) =B (MER).
Definition implies that M ke g a supermartingale which is closed by the random variable
M
MZE" <. By Doob’s Optional Sampling Theorem (see e.g. Theorem , we obtain

E <Mf“vf) >E (Mc’foM’5> (127)

for all stopping times 7. This inequality implies that 7 = oo is a worst-case scenario for an
investor who follows the strategy (k*, ¢) before the market crash.
Moreover, we have that (kM| ¢) is optimal in the no-crash scenario, that is, (k* ¢) is the optimal

control of the problem

sup E <M§oc) = sup E </ e~ log(c: Xy) dt) .
(k,c)€Il(xY,r0) (k,c)ell(zY,r0) 0

Finally, we obtain

inf B (M) <E (M) <E(ME'S) < inf B (M), v(koe

Tel! Tel!
Note, that the second inequality holds because (k;M ,€) is optimal in the no-crash scenario and
implies the third inequality. Thus, (k™ ¢) is the optimal strategy for the controller vs.
stopper game and therefore, it is the worst-case optimal strategy for problem (108)). O

EXAMPLE 3.2.12. Let us consider a market which becomes worse after the market crash has

il) < a§0) then there exists k € [0,m] such that

happened. If for ezample p™ > p© and o
H(k,e) = 0, because H(0,e) < 0, H(k™,e) > 0 and H(k,e) is strictly monotone increasing
for k € [0,m]. Thus, we can apply part (1) of the Theorem above and obtain that (k,€) is the

worst-case optimal pre-crash strategy for problem (108]).

3.3. The general affine short rate model

In Section we investigated the finite time horizon worst-case optimization problem under an
affine short rate model. Here again, we consider this short rate model for the infinite horizon
worst-case optimization problem . We assume that the short rate process {r:};>o is a
solution of the SDE

dry = (M7¢ + A2) dt + /&1y + & diby, ro = 10, (128)

where the constants Ay, Ao, &1, & fulfill condition in Proposition in Appendix [A|such
that there exists a uniquely determined solution of the SDE above. Again, we will determine
the optimal pre- and post-crash strategy of the worst-case optimization problem by means
of the same steps as in the previous section. First, let us consider the post-crash optimization

problem.

3.3.1. The post-crash optimization problem. The aim of this section is to find the
optimal post-crash Strategy (k(9*, ¢(9*) under the affine short rate model. As in section [3.2.1]
we use standard stochastic optimal control theory. Analogously, for (z,7) € Ry x R we define
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the post-crash value function as follows:
o0 0)~=
VO(z,r) = sup E ( / et log(c\ VX)) dt) (129)
(k) ()T (x,r) 0

with respect to the post-crash wealth and short rate dynamics:
dX, = X, [ﬂ +p OO — cﬁo)} dt + X0\ Ok dwy X, =z, (130)

dry = (Mre 4+ Xo) dt + &y + & (pdwi g + /1 — p? dway), To=T.
The corresponding HJB equation to the post-crash problem above is given by:
0)1.(0) .., 0 (050))2 0)Y2,.2,,0
sup | p Ok 20l(x, ) + T(k( 22200 (2, 7) —|—p01 \/517“4—52/{:( 02
E®eA
+ sup [log(c(o)x) — D200z, 7)| 4 rzod(z,r)
0(0)20
§ir + &2 W0
2
By the standard ansatz for the Log utility case, we set v’(x,r) = Blog(x) + W(r), where
B € R, W € C?(R). Then, we obtain:

+ (A7 + X))z, 1) + O (z,r) —ev¥(x,r) =0, (t,z) e Ry xR.

sup

(o”)?
pOrOp (k2B
KO A 2

+ sup [log(c(o)) ~AB| +rB
>0

&ir+ &
2

+ (A1 + X)W (r) + Wy (r) — e (Blog(z) + W(r)) +log(x) =0, reR.

As in the previous section, we eliminate x by choosing B = % and obtain the candidates

L0 — ﬂ

(01")?

Due to the fact that the stochastic control k(© is not coupled with short rate in the wealth

equation , we obtain the same candidates for the optimal post-crash strategy as in Section
Inserting the candidates leads again to an ODE for W:

Gr+&

2
where Q(r) is given by . In comparison to , the coefficient of the second derivative in
depends on r, whereas the coefficient of the first derivative is explicitly given as a linear

O — ¢

W () + (M1 + X)W (1) — eW (r) + Q(r) = 0, reR, (131)

function in r. Under the assumption that e # A1, we assume that the solution of (131 is a linear

function in r, that is
W(r) = arr + ao. (132)

Inserting W and its derivatives in (131]) and comparing the coefficients, leads to

2
1 1 A2 1 (p©
“= e(e — )’ =7 e(e — M) + 2 <U§0) +log(e) —1
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Thus, we find an explicit solution of the HJB equation given by v*(z,7) = 1log(z) + W (r). The
following theorem implies that v0 is indeed equal to the post-crash value function and that the
candidates k£©* and ¢(O* are the optimal post-crash strategies.

THEOREM 3.3.1. Let e — \; > 0 and let W be given by - Moreover, let v°(z,r) = L log(z)+
W (r). Then, the assertion (1) and (2) in Theorem hold. Thus, v°(z,r) = VO (x,r), where
VO(x,r) is the post-crash value function given by -

PRrROOF. The method of the proof of Theorem carries over to this proof. We have used
only the fact that E (rs) and E (rf) are given in Proposition in Appendix (Il

3.3.2. Reformulation of the worst-case problem. For the sake of brevity, we write
(k, ¢) instead of (k1) ¢(M)) for the pre-crash strategies and we define for ¢ > 0:

t
Mf’C = / =S log(cs Xs) ds 4+ e SVO((1 — 1" k) Xy, 1), t>0,
0
where the wealth and the short rate evolve as
dX; = X |:7't + Wk — ct] dt + thgl)kt dwy ¢, Xo=2">0,

dry = (Mire + Xo) dt + v/ &re + Ea(pdwi s + /1 — p? dway), ro = 1" > 0.

Since VO(z,r) is strictly monotone increasing in z, and using the same arguments as in Section
we reformulate the worst-case optimization problem (108)) as a controller vs. stopper game
of the form

sup inf E (Mk C) (133)
(k,c)ell(20,r0) TEC!

3.3.3. The worst-case optimal pre-crash strategy. We obtain a sufficient condition for

a pre-crash strategy to be an indifference strategy.

LEMMA 3.3.2. Lete—\; > 0, and let (k: ¢) be a constant pre-crash strategy such that H(k,é) = 0,
where H is gien by - Then, Mk = {M”c c}t>0 is a uniformly integrable martingale and
(k:, ¢) € 11 is an indifference strategy for the controller vs. stopper game (133)).

ProOOF. The proof works with the same ideas as in Lemma [3.2.8] Using that VO(z,7) =
1 log(xz) + W (r), where W (r) = a1 4 ap, and applying Ito’s formula leads to

. A (1)y2 A
ke _ —et c L (017) 29 e
dM;"" =e [log (1 —l*l%) + - <u k 5 k 5 + 5

&ire + &2
2

+ (M7t 4 X)W (1) + 22 W, (1) — EW(rt)] dt

o8 )
—et <U;k + V& + §2pWr(7’t)> dwy ¢

+e e + &1 — pPWi(ry) dway.

Now, under the condition that € # A1, we have that W(T) = a1r + ag is a solution of the ODE
(131)) and therefore, since H (12:, ¢) = 0, the dt coefficient vanishes and it remains to show that

M = My"© + 1M, 4 oM,
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where

- t oL
\MF ::/ e cs <ék+ﬂa1\/€m+§2 dwy s,
0

. t
thk’C = / e—as\/l — p2a1 \/517“3 + & d'LU275,
0

is a uniformly integrable martingale. Note, that the difference to the proof of Lemma is
that the square root of r; occurs in the stochastic integrals. Again, we consider the quadratic
variation process of 1 M*¢ and s M*¢ and obtain

0 (1) 2
¢ —2%s | O 7
(M. = /0 e (; k+ﬂa1\/§1rt+§2> ds,

and therefore,
E (MR L) < 1
1 oo — 63
Proposition in Appendix [A] implies that
A
E(rs) = P + 22 (e/\ls — 1) .
A1
Under the assumption that € — A1 > 0, we obtain that

E <<1M’576>00> < .

(k)2 + ! (pa1)?&s + 2(pay)*&E (/Ooo e *rg d8> :

93

Analogously, we obtain E <<2M kc>oo> < 00. Again, by the Burkholder-Davis-Gundy inequality
it follows

E <sup hMtk’é]) < 00, E (sup lthk’é> < 00,
>0 >0

such that M*¢ is dominated by an integrable random variable. It follows that M ke ig g uniformly
i

integrable martingale. Theorem implies that it is closed by a random variable Mclfoc =
lims o0 Mf’c. Doob’s Optional Sampling Theorem (see Theorem } implies

E (Mf»é) —E (Mf)

for two stopping times 7, 7/. Therefore, the pre-crash strategy (l;:, ¢) is an indifference strategy. [

REMARK 3.3.3. Lemma provides a sufficient condition for a pre-crash strategy to be an
indifference strategy. This condition does not differ from the indifference condition in Section
[3.2 That means the short rate model has no influence on the indifference condition. By means
of the indifference frontier, which we already explained in Section we know that the optimal

pre-crash strategy (k*,c*) has to be an element of the set

Alk) = {(k,c) ell:k <k, wzo}.

THEOREM 3.3.4. Let ¢ — A1 > 0 and let H(k,c) be given by (124). Then, the worst-case optimal

pre-crash strategy for problem (108)) under the affine short rate model is determined by statement

(1) and (2) of Theorem[3.2.11]
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ProOF.
(1): By Lemma we have that M"™*¢ is a uniformly integrable martingale. Then, the proof
follows by the same steps as in the proof of Theorem
(2): Since 1M K2 and o M*"¢ are uniformly integrable martingales (we refer to the proof of
Lemma7 we use the same steps as in Theorem to show that M*" ¢ is a supermartin-
gale which is closed by a random variable. The remaining steps of the proof are equal to the

previous section. O

3.3.4. Discussion and numerical examples. Theorem [3.2.11]and Theorem [3.3.4) provide
the optimal pre-crash strategy (k(M*, ¢(D*) for the generalized Vasicek model and for the affine
short rate model, respectively. For both models, it is optimal to invest a constant fraction of

wealth  (in case (1)) or kM (in case (2)) in the stock and to consume at a rate ¢()* = ¢ before
0)x __ (0)
)+ — ( :50))2

the market crash. After the crash has happened, it is optimal to invest a fraction k

and continue consuming at a rate O* = ¢,

REMARK 3.3.5. The following remarks are valid for the worst-case optimization problem (|108))
both under the generalized Vasicek model from Section and the affine short rate model of this

section.

a) As in Section the optimal strategies neither depend on the short rate ri(w) itself nor on
the parameters which determine the short rate equation. This is due to the logarithmic utility
function which eliminates the stochastic interest rate risk.

b) An investor with logarithmic utility function can separate the consumption decision from the
investment decision (cf. [27]) such that it is optimal to consume at a rate € before and after

the market crash.

In the following example, we give a short illustration of the optimal strategies. In Figure [3.I]and
Figure[3.2] we assume that the maximum crash size is given by {* = 0.4 and the discount factor
is given by € = 0.1. Therein, we calculate the optimal investment strategy in a crash-free market
kM the optimal pre-crash strategy kMW* the optimal post-crash strategy k©* and the optimal
consumption strategy ¢(9* = ¢* In Figure we assume that the market after the crash is
worse than before (higher volatility). In this case, there exists k € [0,m] such that H(k,e) =0
(see Example[3.2.12)). Part (1) of Theorem [3.2.11]implies that it is optimal to invest and consume
along the indifference strategy (k,¢) before the market crash. Contrary, in Figure[3.2], we assume
that the volatility after the crash is lower than before. Here, we obtain that x > m such that
we apply part (2) of Theorem , which implies that it is optimal to invest a fraction k™ of
wealth in the stock before the crash.
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3,
1 YT
o
—T 2r —
— KDey
0.5+ — KO
— D= 1+
ot 0
time time
Figure 3.1. Optimal strategies Figure 3.2. Optimal strategies
with market parameters pu(!) = with market parameters p() =
0.07, oV = 025, p© = 0.07, 0.07, oV = 0.25, p© = 0.07,
o\ = 0.3. o\ = 0.15.

3.4. Uncertain post-crash parameters

Here, we extend the worst-case optimization problem of Section [3.3] Therein, we assumed that
the post-crash parameters p(9) and O’%O) are given quantities. That means, we assumed that the
investor has full information about the market, especially about the drift and the volatility of
the asset price process, after a significant market crash, that is modeled as a ‘once in a lifetime’
event. Thus, it is self-evident to assume that the drift and the volatility are also uncertain pa-
rameters. The modeling of uncertain post-crash parameters and the corresponding worst-case

optimization problem will be subject of this section.

The stock price process P = {P;}+>0 is again given as in Section . But now, we assume that
the post-crash parameters (p(0), O‘%O)) are Fr- measurable random variables on a given interval.
That is, we assume that

(19,0\") € [u,7] x [0,5] =: P,

where 0 < w<n and 0 < g < 7 are given.
As before, we assume that the risky asset loses a fraction [ € [0,1*] of its value at the crash time 7
(1)

and we assume that pre-crash parameters (1), o) will change at the crash time to (u(%), 0%0)).
In order to allow that the market parameters do not change, we assume that

(uM, o) e P. (134)

The investor takes a cautious attitude towards the uncertainty about the market crash (7,1)
and towards the uncertainty about the post-crash parameters (,u(o), Ugo)). He wants to maximize
his expected discounted utility of consumption over an infinite time interval in the worst-case
scenario with respect to (7,1) € C' and (u(o),ag))) € P. Then, the corresponding worst-case
optimization problem is given by:

sup inf E (/ e log(c X¢) dt) , (135)
(k,c)€ll(z0,r0)  (T)EC’ 0
(1@ ,0{")eP
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where
Xo=1">0,
dX; = X, [rt + M(l)kt(l) — cgl)] dt + Xtagl)k:gl) dwiy, te(0,7),
Xy = (1= kM) X,
dX; = X; [rt + M<°>k§°) - cgo)] dt + Xtago)kt(o) dwy ¢, te (1,00,

and the short rate process {r; };>0 is assumed to be a solution of SDE (128)). The set of admissible
controls II is given by Definition and the set of market crash scenarios C’ is given by (107).

The Post-Crash Oplimization Problem.

Suppose that the investor has wealth x > 0 and interest rate r at the crash time 7. Again, he
is faced with a stochastic optimal control problem over an infinite time interval starting with
initial wealth x and interest rate r. The post-crash wealth dynamics depends on the post-crash
parameters (,u(o),ago)). Thus, the post-crash value function now depends on = and r and on

(1), O’go)) and we define
VO(z, r,u(o),ogo)) = sup E (/ e et log(cgo)yt) dt)
(k) ) el (z,r) 0

with respect to the post-crash dynamics:
dX: =X, [ﬂ + M(O)k£0) — C§O):| dt + ytag)) k‘go) dw ¢, X ==z,

dry = (Mg + Xo) dt + /&y + Ea(pdwiy + /1 — p? dway), To = 1.

(0)

For given post-crash parameters (,u(o), 0, ), which are available at the crash time, the stochastic
optimal control problem can be solved as in Section Assuming that € — A; > 0, we obtain
that the optimal post-crash strategy is given by

(0)
0)x(,,0) 0y _ _H )% (,,0) 0y _
ES (™ 077) (ago))Q’ M (poy7) =,

and the post-crash value function is given by
1 -
Vo(a,ru®,0\") = ~log(a) + W(r, u®, 01",
where W (r, n(0, 050)) solves ODE ([131) and is given by

2
. 1 1 A 1 [ p©
Wi(r (0),0(0):77’+7 ———+ — | | +logle) -1
(rp 1) ee — \p) elee—N) | 2 Ugo) g(e)
Thus, the investor’s optimal post-crash strategy is the classical Merton strategy depending on
the relevant post-crash parameters (,u(o), ago)). Based on the post-crash value function, we re-
formulate the worst-case optimization problem (135 by identifying the worst-case scenario of
the crash size | € [0,1*] and the worst-case scenario with respect to the post-crash parameters

(u®,0”) e P.
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Reformulation.

At the crash time, the investor has wealth z = (1 — le))XT and he is faced with a short rate
r = r,. Note, that X = {Xt}tzo denotes the wealth process in a crash-free market (see e.g.
(121)). We reformulate the problem as a pre-crash problem of the form:

sup inf E(/ e et Iog(cgl)f(t)dt
(kW) ,c(M)ell(z0,70)  (HDEC 0
(1 .0)eP

e V(1 = kN X, 7, 1O, a§°>)>.

Since Vo(x,r,u(o),ago)) is monotone increasing in x, we obtain that [ = [* is the worst-case
scenario with respect to the crash size. The worst-case post-crash parameters are given by the
pair (i, ), because they minimize the function W (r, 0, ogo)) for any arbitrary but fixed r € R.
For the sake of brevity, we write (k,¢) instead of (k(), ¢(1)) for the pre-crash strategies and the

pre-crash problem above reads as the following controller vs. stopper game:

sup inf E (Mfc) ,
(k,c)ell(z9,r0) Tel!

where
t
Mtk’C s = / e “*log(cs Xs) ds + e_atVO((l —U"k) Xy, e, p1,0), t>0.
) 154

The worst-case optimal pre-crash strategy
Let H(k, ¢) be defined as in (T24)), where u(9) and U%O) are replaced by p and @, respectively. Then,
we obtain the following sufficient condition for a pre-crash strategy (12:, ¢) to be an indifference

strategy.

COROLLARY 3.4.1. Let ¢ — A\y > 0, and let (l;:,é) be a constant pre-crash strategy such that
H(/%,é) =0, where H is given by

1 (0(1))2 c 1 /pN2
L op_ (o)) e 1 B\
) 2 (u B (7) log(e) + 1. (136)

c
H(k,c) _10g<1—l*k

Then, Mk = {M’;’é}tz() 15 a uniformly integrable martingale and (l;:,é) € Il is an indifference

strategy for the controller vs. stopper game.

PROOF. By replacing 1) and Ugo) by p and @ in the proof of Lemma , we immediately
obtain the assertion. O

Again, by the concept of an indifference frontier (see Section and Section and by the
same arguments as in Theorem [3.2.11] we identify the worst-case optimal pre-crash strategy.

COROLLARY 3.4.2. Let € — A1 > 0 and let H(k,c) be given by (136]). Moreover, let
1 1)
m::min{,k‘M}, M= B
I* (09))2
Then, (k*,c*) = (k, ) is a worst-case optimal pre-crash strategy, where k € [0, m] is the uniquely
determined solution of H(k,e) = 0.
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PROOF. Obviously, we have that H(k,¢) is strictly monotone increasing in k for 0 < k < m,
H(0,¢) < 0 and limk/%* H(k,e) = oco. If kM < ll*? we additionally obtain by assumption ((134)):

2
M oy _ o MY L L ptV A%
H(k",e) = —log (1—U"k )+£ (0’51) —(:) > 0.

g

Thus, there exists a uniquely determined & € [0, m] such that H(k,e) = 0 and therefore, (k, &) =
(k,e) is an indifference strategy. Moreover, (k,e) is optimal in the no-crash scenario in the
class A(k). The indifference optimality principle implies that (k,e) is a worst-case optimal

strategy. Il

The result of this section is, that the investor’s optimal investment strategy before the market
crash is given by k:]gl)* = k , where k € [0,m] fulfills H(x,e) = 0. Note, that k(D* not only
depends on the worst-case scenario with respect to the crash size, given by [*, but also on the
worst-case scenario with respect to the post-crash parameters, given by (u,@). Furthermore, the
optimal pre-crash consumption strategy is given by CEI)* = . After the market crash, the optimal

investment strategy is the classical Merton strategy with the relevant market parameters:

(0)x _ M(O)

NG
Due to the logarithmic utility function the optimal post-crash consumption strategy is again
given by cgo)* =e.

3.5. Appendix
3.5.1. Proof of Lemma

PROOF. Let W (r) be a classical solution of (114) with
W(r) < W(r) <W(r). (137)

Let R > 0 be fixed. Since W(r) is a solution of

o2
0= ?QWM(T) + f(r)W,(r) —eW(r)+ Q(r), VreR,

we can integrate over [0, R] and obtain

W (R) = W, (0) + = _E/RW(T) dr—/RQ(T) dr—/Rf(r)Wr(r) dr} .

Analogously, for fixed R < 0 we integrate over [R, 0] and obtain

WT(R):WT(O)—O_Q% /W dr—/Q dr—/f ]

Wr(0)+02% _5/0 W(r)dr—/o Q(T)dr—/o f(r)Wr(r)dr]
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Then, for arbitrary but fixed R € R, it holds

~ 2
\WAR)(
R 2
2W2(0 r)dr — dr — W,.(r) d
< r /Q(r) r /Of(r) r)dr
R 2
2W2(0 {3 W(r 3
< 5 / dr| + A
2
3 W,.(r)dr| |.
" /0 F )V (r) dr ]
By
VAN
Q(T):?6 0 +g+10g(5)—1,
0
it holds

/ORQ(T) dr 2

2
where my := = and ma : 215 <“22;) +log(e) — 1. Moreover, by (137)) we have
1

SR/ |mar + ma|? dr < 3m1R4+2 m3R?,
0

(W (r)| < W (r)| + [W(r), VreR.
Thus,

<R/ )| + W (r)))? dr,

) dr

S 2R/ 'YQT + '}/1 dT = *72R6 + 2’}/1R2
0

where 72 := |az| + 82| and 41 = || + [Bi]-
Moreover, integrating by parts, and using assumption (109) leads to

R B 5 5 R _
/0 FWolr) dr| = [F(R)W(R) — F(O)TV(0) - / fo ()W (r) dr
< |fR)IW(R)| + £(0) r+/ 5
< (@R + [(0)) (122 + 1) + | F(0) W (0)] + / £
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(138)

(139)

(140)

(141)
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where ¢ := max{|c1|, |c2|}. Moreover, using ([140)), we have

’/(]Rf(r)W Dar|

3| @RI + [FO))? (B2 + 11)? + | FO)W(0) + \ / fr

gl

3[4(5232+|f(0)l2)( 2RY 4 2) 4 [FO)W(O)P + 2R /0 2r mdr]

IN

3
Zﬁ R (142)
Finally, by (]138]),(]139]),(]141]) and (142)), we obtain:

3
V2 R) S ZV%R%.
=0

3.5.2. Proof of Theorem [3.2.71

PROOF. The proof works with the same arguments as in [39, Thm.4.2]. Therein, the control
variable k is coupled with the stochastic interest rate in the wealth equation. This is not the
case for our wealth equation (111). This fact makes the proof a bit easier. For the readers
convenience, we note that the candidate for the value function is given by

O, r) = élog(x) L),

where W is a classical solution of ([14) with W (r) < W(r) < W(r) and (W, W) are given by
(117) and (118]), respectively.

Let (k(o),c(o)) € II be an arbitrary admissible control, then we can apply Ito’s formula and
obtain:

d (70 (X¢, 7)) = e~ dv’ (X4, 7y) — ee” "0 (X, Ty) dt (143)

and using that v*(x,r) solves the HJB equation (112)), we obtain
(0)y2
d* (X, 7) = | p OO X 00 4+ 2L G 5 r kN2, + po Voo k VX 00, + 7 X 0

2
+ f(?t)vg + %’UO - cg )Xtv } dt + GE )k,fo)thg dwy ¢ + 0’21)9 dy

< ev? dt —log(cVX,) dt + oV kX 00 dwr  + o900 diy. (144)

Let M4 := {M3}7>0 be defined by

T 0 (O)es s 0 T 0
M/Zé L= / 6751‘/0'5 )klg )Xtvg(Xh?t) det = ;/ eigtklg )d’th,
0 0



3.5. APPENDIX 107

then, M4 is a martingale because k(®) € TI. Moreover, let M := {ME}7> be defined by
T o T -
MYB : :/ e_atagvg(Xt,?t)dzZJt = 02/ e "W, (7¢) daiy.
0 0
Using Lemma [3.2.6] and Lemma we obtain
T
E / e WR(Fy) dt
0
T - T 3 '
_ / e~ 2R (W,?(@) dt < / e S WE (7F) dt < oo, VT >0,
0 0 i=0

and therefore M P is a martingale. Thus, E(M4') = 0 and E(MEF) = 0 for all T > 0. Multiplying
(144) by e, integrating over [0,7] and taking the expectation leads to:

T T
E (/ e et de(Xt,rt)> -E </ ee (X, T) dt)
0 0
B
<-E e “log(c; " X¢)dt | .
0

Together with (143)) this yields
T
vz, r) > E </ e et log(cgo)yt) dt> +E (efETUO(YT,FT)) , VT > 0. (145)
0

In the next step, we show that

T—o0 T—o0

_ 1 _ N
limsupe *TE (UO(XT,FT)) = limsupe *TE <6 log (XT) + W (TT)> > 0.

Since W(?T) > W(rr) = 042?% + a1, where a1, as < 0, we verify that

limsup e "E(W (7)) > limsupe " (wE(F7) + a1) . (146)
T—o0 T—o0
By Lemma in Appendix [A] we have
A 1 <0
Ef3) <q b= (147)

Ape2@taT . > ’
for any € > 0. Together with (146]) and if ¢; < 0, we immediately conclude that
limsup e STE(W (7r)) > limsup e <7 (apA1 + 1) = 0,
T—o00 T—o0
because ag < 0. Since we assumed that € —2¢; > 0, there exists € > 0, such that e —2(c;+¢€) > 0.
Thus, if ¢; > 0, it holds
limsup e T E(W (Fr)) > limsup [agAge*STez(cﬁg)T +eTay| =0.
T—o0 T—00
Thus we have shown that
lim sup e *TE(W (77)) > 0. (148)
T—o0
Using the same steps as in [39] p.11-12], one can show that
limsup e *"E (log(Xr))) > 0.

T—oo
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Together with ((148)), we obtain

_ 1 _ .
limsupe 'E (UO(XT,FT)) = limsupe *'E < log(X7) + W(T‘T)> > 0.
T—o0 T—o0 e
Now letting 7' — oo and taking lim sup in (145)) leads to
o
W(z,7) > E (/ e et log(cgo)yt) dt) .
0

Thus, part (1) of Theorem holds. Now we will show part (2).

Obviously, the strategies

0)* (¥ pl 0)* (7
EO*(X,,7) = ( (0))2’ X, T) =
o1
are admissible in the sense of Definition and fulfill condition ((120]). Moreover, we have
(0(0))2 0
kO ¢ arg max Ok 200 4 1T(k(0))2x2v2x + pa% )Jgk(o)xvgr )
k

9% € arg max [log(c(o):c) — C(O)xvg} .
c(0)>0

Now, denote by Y: the wealth process controlled by (k(o)*, c(o)*). Then, inequality (144)) becomes

an equality of the form
dv*(X;,7) = e’ dt — log(cﬁo)*yr) dt + a§°)k§°)*i’fv2 dwy ¢ + oov? diby.

Due of the fact that (k(0* ¢(0%) € II, we know that the last two summands are martingales.

With the same arguments as before we obtain:
T
Oz, r) =E </ e et log(cgo)*yr) dt) +E (e_aTUO(Y*T,?T)> , VT > 0.
0
Let us show that
— 1 o -
liminf e *TE (vO(XT,FT)) = liminf e *TE ( log(X,) + W(rt)> <0.
T—o00 T—o0 £
By W(?T) < W(?T) = ﬁz??p + 51, where 51,62 > 0, we get
liminf e *"E(W (77)) < liminf e *"E (Bo7% + 1)
T—o0 T—o0
= liminf e 7 (BQE(FQT) + B1).
T— 00
If ¢; <0, then by (147)), we immediately conclude that
lim inf e_ETE(W(FT)) < liminfe " (B2A1 + B1) =0,
T—o0 T—o0

because (2 > 0. We know, by the assumption € — 2¢; > 0, that there exists a € > 0 such that
e —2(cp + €) > 0. Thus, for the case ¢; > 0 we obtain

lim inf e *TE(W (7)) < lim inf |:ﬂ2A2€7€T€2(61+€)T +e B =o0.
T—o0 T—o0
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Moreover, we have

E (log(X7))

T
=log(z) + E (/O
T )
= log(z) + E (/0 Ttdt> + (; <(Z 0))> 6) T
T (0) 2
<tosta) 32 [ ) + (i +3 <(5§o>)> ) !

1. =
liminf e *TE < log(XT)> <0.
€

T—o00

(0)y2 T
0

Thus,

Finally, we conclude that

— 1 —x ~
liminf e *TE (vO(XT,?T)) = liminf e *TE ( log(X;) + W(?‘t)> <0,
€

T—oo T—oo

which yields
0(z,7) <E </ e et log(cgo)*yr) dt) :
0

Combined with part (1) we have

’UO(:L‘, r) = Vo(ac, T).



CHAPTER 4

Conclusions

The aim of this thesis was to investigate how an investor has to invest and consume optimally in
a financial market in which the stock price is threatened by market crashes, which are modeled
as uncertain events with an unknown probability distribution of crash times and crash sizes.
The investor takes a cautious attitude towards this uncertainty which leads to the worst-case
optimization approach. The main contribution to existing research in the field of worst-case
portfolio optimization is the extension of the financial market model by a stochastic interest rate
risk. In previous work in this field a constant interest rate is used for the savings account. For
both the finite time horizon and the infinite time horizon model, we considered different short
rate models: The Vasicek model, the affine short rate model and a generalized Vasicek model.
In Chapter [2, the investor is acting on a finite time interval and he maximizes his expected
utility of terminal wealth in the worst-case crash scenario. We determined the solution of the
corresponding worst-case optimization problem
. k,M
IR G )
for both utility functions U(z) = %m”, v# 0,7 <1, and U(z) = log(z). Under the Vasicek short
rate model, we applied two methods, the variational inequality approach and the martingale
approach and obtained explicit optimal strategies. After the N-th market crash it is optimal to
invest a fraction of wealth
RO P po2f(t)
(1=7)of  (1=7)o

in the stock, whereas, if n < N crashes still can occur, then it is optimal to invest the fraction

in the stock, where k™ is a uniquely determined solution of a nonlinear non-autonomous ODE.
If the investor has a non-log HARA utility function and if the short rate and the stock are
correlated, the worst-case optimal strategies do not depend on the short rate r(w) itself, but on
the speed of reversion a and the volatility oo which determine the Vasicek process. Numerical
experiments have shown that an investor with higher risk aversion may invest more in the stock
than an investor with lower risk aversion if, for example, the parameter a is sufficiently small.
This is due to the fact that there exists no riskless asset in the financial market model. If the
interest rate becomes too risky, e.g. through a low speed of reversion, the risk averse investor
invests more in the stock. This behaviour of course differs from the results from previous work
with a constant interest rate, where the savings account is a riskless asset. If the investor’s risk
preferences are represented by a logarithmic utility function or if the short rate and the stock

price are uncorrelated, then the optimal strategies are equal to the optimal strategies obtained

110
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for a constant interest rate. Thus, the strategies do not depend on the short rate, neither through
r¢(w) itself nor through short rate parameters.
In Chapter [3|, we determined an investment and consumption strategy, which is optimal for the

infinite horizon worst-case optimization problem

sup inf E (/ e " log(ci Xy) dt) ,
0

(k,c)€(z0,r0) (T1)€C
where market parameters of the stock price equation may change at the crash time. For both the
generalized Vasicek model and the affine short rate model, it is optimal to consume at a rate ¢
before and after the market crash and it is optimal to invest at the constant rate k(V* = x A kM
before the crash and k(0* = /J,(O)(O'go))_z after the crash. Due to the logarithmic utility function,
the worst-case optimal strategies do not depend on the short rate itself or on the parameters which
determine the short rate model, and they are equal to the optimal strategies from previous work
with a constant interest rate. Thus, the logarithmic utility function eliminates the stochastic
interest rate risk and it allows to separate the investment decision from the consumption decision
such that it is optimal to consume at a rate € over the whole time interval.
Based on the research in this thesis, we mention two examples for further research in the field of
worst-case optimization under stochastic interest rate risk. First, one could consider the finite
time horizon non-log HARA utility model from Chapter [2] and replace the Vasicek model by an
affine short rate model. For the logarithmic utility function, this was already done in Section
For the non-log HARA utility case one could apply the martingale approach. The first step
of the method requires to solve the post-crash optimization problem. If the supremum in the
corresponding HJB equation is attained, then it reduces to a nonlinear second order PDE in
(t,z,7). If the stock price and the affine short rate are uncorrelated, then one obtains a classical
solution v¥ € C122([0, T] x Ry x R). Otherwise, if they are correlated, it needs, from the present
point of view, further intensive research to show existence of a classical solution. Possibly one
can only show existence of a generalized solution, for example a viscosity solution, which is not
necessarily in C1%2, In that case, v°(¢, z,7) would not be smooth enough to apply Ito’s formula
in the proof of the indifference condition.
A second direction is to consider the infinite time horizon model with a non-log HARA utility
function and with a Vasicek short rate model. As above, one first has to solve a classical stochastic
control problem, which is the first step of the martingale approach. The resulting HJB equation
is again a nonlinear PDE in (z,r) which needs an existence result of either a classical solution or
a generalized solution. The latter case prohibits the application of Ito’s formula in subsequent
steps of the martingale approach.



APPENDIX A

Basic Essentials

A.1. Stochastic interest rate models

PROPOSITION A.1.1. Let a, 7y, 02 be given positive constants and let w0 = {wt}tG[O,T] be a Wiener
process on the probability space (Q, F,P). Then the uniquely determined solution rs of the SDE:

drs = a(ryr — rs) ds + oo dibs, s>t
re =1 >0,
is given by

S

ro= ey (100 4o / T —
t
Moreover, we have the following properties:
i)
E (rs) = roe” % + (1 — e™%),
i)
/T rs ds Z%“ —e T ) ey ((T - 1-@””)
t

i)
r 1
EY" (/ Ts ds) == (r —ry+ e_a(T_t)(rM — r)) + (T —t).
. a
where EY" denotes the conditional expectation given that ry = r.

ProoF. The solution given above is the uniquely determined solution due to Lipschitz con-
tinuity of the coefficients of the SDE. Assertion i) immediately follows. The second assertion
follows by the following calculations

T T T T s
/ reds = / ree” %570 dg 4 / ra(l— e*“(sft)) ds + o9 / / e~ gipy, ds
¢ ¢ ¢ ¢t Ji

T T T T
= / ree” 570 ds 4 / ra(l— e_a(s_t)) ds + o9 / / e~ U5 g dap,
¢ ¢ t Ju
)

1— efa(Tft

=1 e T0) oy ((T 1)~ )

T 1 _ e—a(T—u)
oy [ S an,
t a
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The second equality holds by Fubini’s Theorem for stochastic integrals. The third assertion
follows by the fact that the expectation of the stochastic integral vanishes. O

PROPOSITION A.1.2. Let W = {w¢}>0 be a Wiener process on the probability space (0, F,P) and
let M1, g, &1,& be constants, such that

2

§1d2 — M2 > %1 (149)

Then, the SDE
drs = (\irs + Ao) ds + /€5 + Egdiy, s>t

re=1r >0,

has a uniquely determined solution in D = {r € R: &r + & > 0} and for this solution it holds
&iry + & > 0 for all t almost surely. Moreover

Et,r (7’ ) — re (S t) + 12 (e/\l(sft) o 1) ,
1

EbT (7‘3) _ T2€2)\1(S_t) + eQ)q(s—t)/ e—2>\1(u—t) ((2>\2 —|—£1)E(’l‘u) +£2) du
t

PrROOF. For £; = 0 the assertion follows by similar arguments as in Proposition (A.1.1).
Thus, throughout the proof we assume that &; # 0. Here, we apply the main theorem from [13]
Chp.4]. Therein, the assertion holds if for all r with £ + £ = 0 it holds & (A7 + A2) > % By
assumption, we have for & # 0:

()4
By the theorem in [I3, Chp.4|, we obtain that there is a uniquely determined solution of SDE
and &1 + & > 0 for all ¢ almost surely.

Since
rs:r+/ (AM7y + A2) du+/ Vs + & dily,
t

we calculate the first and the second moment by the following arguments. Assuming that
EY"(rs) < oo for all s > t, we obtain that the expectation of the stochastic integral vanishes.
Therefore, by taking the expectation and by defining m1(s) := Eb"(rs), we obtain

ml(s) = /\1m1(3) + Ag, ml(t) =r.
This yields

A
— Al(sft) 2 Al (sft) o
mi(s) =re + N (6 1) .

By applying Ito’s formula, we obtain

r2= g2 / [+ A2)2r + €17 + 6] du + 2Tum i

t

Now, we define ma(s) := E“"(r2) and obtain

ma(s) = 2A1ma(s) + (2A2 + &1)ma(s) + e, my(t) =17,
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and therefore,

m2(s) _ ,r2€2)\1(s—t) + e?)q(s—t)/ e—2>\1(u—t)((2)\2 + 51)m1(u) + 52) du.
t

]

LEMMA A.1.3 (Cf. [39, Lemma 3.1]). Let w be a Wiener process and assume that oo > 0 and
f(r) € CYR) with c3 < f,(r) < c1, where 1, co are constants. Then, the SDE

dry = f(ry) dt 4+ oo diy, ro =12,

possesses a unique solution. In addition, for any € > 0 and any integer m > 0, it holds
Elre[*™ < A, if a<o,
E|r|?™ < Age2mler+lt, if >0,

where A1, Ay are positive constants which are independent of t.

A.2. The concept of an invariant set

We introduce the concept of invariance in the sense of qualitative theory of ODE’s. Here, we
only give results which we use in this thesis. For the whole theory of invariance we refer to the
literature [42, Chapter 7]. The following definitions and theorems can be found in [42, Chp.
7.1-7.3]. Therein the authors consider the following initial value problem for an open set G C R"

and a continuous function f: R x G — R™
T = f(t,x), z(to) = xo, (150)
where ¢ € G and ¢y € R. Let x(t; to, o) be the unique solution of problem ([150)) on the maximal

interval of existence J4 (to, o) := [to, t+(to, Z0))-

DEFINITION A.2.1 (Cf. A2, Def.7.1.1.]). Let D C G. D s called positively invariant for (150)),
if z(t;to, x0) € D for all t € Jy(to,xo) provided that xo € D. Accordingly, D is called negatively
wnvariant, if the solution is uniquely determined to the left. D is called invariant, if D is both

positive and negative invariant.
Moreover, we need the following definition:

DEFINITION A.2.2 (Cf. [42] Def.7.1.2.]). Let D C R™ be closed and x € OD. A vector y € R",
y # 0, is called outer normal to the set D in x, if By, (x+y)ND = (). The set of outer normals
in x is denoted by Np(x). (Byy,(x +y) denotes the open ball with radius |y|a and centre x +y.)

In this, these we only consider invariance in the context of convex and closed sets. We repeatedly
apply the following theorem:
THEOREM A.2.3. Let D C G be closed and convex. Then,

(1) D is positively invariant for (150)),
(2) (f(t,x)ly) <0 forallt eR, x € dD, y € Np(x)

are equivalent.
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A.3. The subsolution-supersolution method

For an overview of the theory of nonlinear parabolic and elliptic equations and the subsolution-
supersolution method we refer to [40]. In this thesis, we apply a result from [I5], where a second
order differential equation of the form

Wy = H(r, W, W,.), reR, (151)
is considered.

DEFINITION A.3.1 (Subsolution and supersolution, cf. [15, Def.3.1]). A function W is said to be
a subsolution of (151) on the whole real line if

W,, > H(r,W,W,).
W is a supersolution if
W,. < Hr, W,T7,).

In addition, (W, W) is said to be an ordered pair of subsolution/supersolution of (151)) if they

also satisfy
W(r) < W(r), Vr e R.

THEOREM A.3.2 (cf. [I5] Thm.3.8]). Suppose H(r,w,p) is strictly increasing with respect to w
and suppose that for each m € N there exist constants C1(m) > 0 and Ca(m) > 0 such that

|H (r,w, p)| < C1(m)(p* + Ca(m)),
for all v € I, := [—m,m| and

w| < 3max{sup [W(r)|, sup [W(r)|},

re€lm r€lm

where (W, W) is an ordered pair of subsolution/supersolution of (151)) on R. Then, (151) has a
solution W (r) such that

W(r) <W(r) < W(r).
A.4. Results from stochastic analysis

THEOREM A.4.1 (Feynman-Kac Formula, see e.g. [46, Chp.7, Thm.4.1]). Let b : [0, T|xR"™ — R",
o:[0,T] x R" — R™™ ¢ h:[0,T] x R" - R, and g : R — R be uniformly continuous
maps. Moreover, assume that c is bounded and that there exists a constant L > 0 such that for
p(t,r) =b(t,r),0(t,r),h(t,r) gt r):
‘g@(t,’l‘)-g@(t,’l“,” §L(r—r’), Vt € [O,T],T,’r’, ER,
lp(t,0)| < L, vt € [0,T].

Then, the PDE
wy + %tr(ﬂ(t, r)o(t,r) wer) + (b(t,7), we) + c(t, r)w + h(t,r) =0,
(t,r) € 0,T] x R™, (152)
wli=r = g(r), r R,
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admits a unique viscosity solution w and it has the following representation
w(t,r)=E </T h(s, 7o) I Wm de gs o g(rr)e™ i C(“’T“)d“> , (153)
t
(t,r) € [0,T] x R",
where Ty is the (unique) strong solution of the following SDE:
drs = b(s,Ts) ds + o(s,Ts)dWs, s € [t,T],
T=r,

with (t,r) € [0,T) x R™ and W an m- dimensional standard Brownian motion. In addition, if
(152)) admits a classical solution, then (153) gives that classical solution.

For the definition of the notion of viscosity solution and for the proof of the Theorem above we

refer to the literature, e.g. [46].

DEFINITION A.4.2 (Cf. [41]). A martingale Y is said to be closed by a random variable Yoo if
E(|Ys|) <00 and Y = E(Yoo|Fp), 0 <t < 0.

DEFINITION A.4.3 (Cf. [41]). A supermartingale Y is closed by a random variable Yoo if E(|Yso|) <
oo and Yy > E (Y| Ft) for each t > 0.

DEFINITION A.4.4 (Uniformly Integrability). A process Y = {Yi}ier, is called uniformly inte-

grable if E (’Yt’]l\Yt|>n) converges to zero as n — oo uniformly in t, that is,
i sup (Y2l Ljyi5n) =0,

where the supremum is over [0,T] in the case of a finite time interval I = [0,T], and over [0, c0)

if the process is considered on 0 <t < oo.

THEOREM A.4.5 (Cf. [41], Thm. 1.12]). LetY be a right continuous martingale which is uniformly
integrable. Then Y = limy_,oo Y; a.s. exists, E (|?|) < 00, and Y closes Y as a martingale.

THEOREM A.4.6 (Doob’s Optional Sampling Theorem, cf. [41, Thm. 1.16]). Let Y be a right
continuous martingale (respectively a supermartingale), which is closed by a random variable Yo .
Let S and T be two stopping times such that S <T a.s.. Then Ys and Yr are integrable and

YS = (Z)E (YT|.F5) y a.s.

THEOREM A.4.7 (41l Thm. 1.17]). Let Y be a right continuous supermartingale (resp. martin-
gale), and S and T be two bounded stopping times such that S < T a.s. Then Ys and Yr are

integrable and
Ys > E (Yr|Fs), a.s.(resp.=).
A.5. Technical results for post-crash optimization problems

In this subsection we give the setting and a verification theorem of [24] which is applied for our
post-crash optimization problems. Throughout this section we look at a state process given by

a general controlled SDE of the form
dYy = A(t, Yy, ke) dt + (¢, Yz, k) AW, (154)
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with initial value of Y3, = yo and a d-dimensional control process k = {ki}yc1, 1), Where [to, T]
is the relevant time interval. A control k is a progressively measurable process with k; € U C R?
for all t € [to,T]. Let Qo := [to,T) x R"™, n € N. Then, the coeflicient functions

A@()XU%RTL,
Y :Qy x U— RO™,

are assumed to be continuous and for all v € U, let A(+,-,v) and (-, -, v) be in C(Q,). Moreover,
a control k is called admissible control if

(1) for all yp € R™ the corresponding controlled SDE ((154)) with initial condition Y;, = yo
admits a pathwise unique solution {Ytk}tg[toj],
(2) for all ¢ € N the condition

E (/tT |k:s|‘1ds> < oo (155)

is satisfied,
(3) the corresponding state process Y* satisfies

Efo%o [ sup |Y¥?)] < oco.
te(to,T)

The set of admissible controls is denoted by A(tg, yo).

In our post-crash optimization problems (see for example (17))), we have to handle a controlled
SDE where the coefficients does not satisfy the usual Lipschitz and growth conditions. Thus,
we cannot apply standard existence and uniqueness theorems. Nevertheless, it is a linear SDE
with a stochastic coefficient, where we can apply the following Corollary, which was proved in
[24, Corollary 3.1]|. Here, we state the version for bounded admissible controls k.

COROLLARY A.5.1 (Variation of constants by [24]). Let (to,y0) € [0,T) x R™, and let Agj),
j=1,....d, Ao, BEZJ), i =1,....m, 5 =1,...,d and Bél), 1 = 1,...,m be progressively

measurable real-valued processes satisfying the integrability conditions

T d )
/ STIAP) + Azl | ds <o, P—as.

to j=1
T m d o m )
/ (B2 4+ 37 (BY)? | ds <00, P—aus.
to \i=1j=1 i=1

Further, let k be a control with property (155)). Then the linear controlled SDE
dYy = VF [(A] ke + Agy) dt + (Buiky + Boy) dWy

admits the uniquely determined solution

t 1
Ytk = %Yo eXp(/ <A/1,sk5 + AQ,S - §|B1,sks + BQ,S’2> ds
to

t
+/ (B sks +Bz,s)’dWs>.

to
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In order to formulate the verification theorem by Korn and Kraft [24], we have to introduce the
setting of a more general stochastic optimal control problem: Let O be an open subset of R™.
In the case of O # R", they assume that the boundary 9O is a compact (n — 1) dimensional
C3-manifold. Moreover, let Q := [to,T) x O and let

=inf{t € [to,T]: (t,Y;) ¢ Q}. (156)

Let L and ¥ be continuous, real valued functions satisfying the polynomial growth conditions
Lt y,0)| < C(L+ Jy[ + [v]9), (157)
(W (t,y)| < CA+yl?), (158)

on Q@ x U and Q, for some constants ¢ € N and C' > 0. Then, the utility functional for the
general stochastic optimal control problem, is defined by

n
ﬂm%%%ﬂwm</L@ﬁ%@%+WmﬁD,

to
which will be maximized by choosing an admissible control £*. The value function is then defined
by

V(t,y):= sup J(t,y;k), (t,y) € Q.
keA(ty)

With ¥* := ¥¥/, the general differential operator is defined by

AkG( ) Gt t y Z E@j t y7 ylyj (tay) + ZAl(tvyak)Gyz(t>y)
i,j=1 i=1

Using this general setting, we now formulate the verification theorem, which we applied for our
special setting (see e.g. Section [2.1]).

THEOREM A.5.2 (Verification Theorem by [24]). Consider a linear controlled SDE with coeffi-
cients satisfying the assumptions of Corollary[A.5.1. Assume, further, that the functions L and
U satisfy the growth conditions and ([158). Let G € C123(Q) N C(Q) be a solution of the
following HJB equation:

sup { A"G(t,y) + L(t,y) } =0, (ty) € Q. (159)
keU
G(t.y) =¥(ty),  (ty) € ([to, T) x 00) U ({T} x O).

Assume that for all (t,y) € Q and all admissible controls k € A(t,y) there exists a ¢ > 0, such
that

E( sup ]G(S,YS)]‘Z> < 0.

s€[to,T)

Then, it holds:

i) G(t,y) = J(t,y; k) for all (t,y) € Q and k € A(t,y).
i) If for (t,y) € Q there exists a control k* € A(t,y) with

k: € arg max (A”G(S,Y;k*) + L(s, ﬂk*av)>
ve
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for all s € [t,n], then G(t,y) =V (t,y) = J(t,y; k*), that means k* is an optimal control and

G is equal to the value function V.

For L = 0, Kraft [31] has proven a variant of the above Theorem. In order to formulate this
verification result, we need the definition of a weakly admissible control:
Given a candidate G for the value function, a control k is called weakly admissible if it has the
following properties (see [31], p.18]):
i) k is progressively measurable,
ii) for all initial conditions yo > 0 the corresponding state process Y* with Y, = yo has a
pathwise unique solution {Y}* Feelto, T
i) E (ftf g4 ds) < 0,
iv) the utility functional J(to, yo; k) is well-defined.
v) {G(6p, Y(f;)}p is uniformly integrable, where for p € N: ), := min{6,7,} and n, denotes the
first exit time of (s, Y) from @), where

Qp:=[to, T —p ) x O,
Op:=0n{z e R": |z| < p,dist(z,00) > p~'}.

The set of weakly admissible controls is denoted by A(to, yo)- Note that the increasing sequence
of bounded sets O, is used to approximate the set O by letting p — oco. Moreover, for p — oo
one has 7, — T P-a.s. For further details, we refer to [31, p.11ff]. Now, we can formulate a
variant of the above Theorem.

COROLLARY A.5.3 (Verification Theorem by [31]). Assume that L = 0 and consider a linear
SDE whose coefficients meet

T m ) m d o
Bl [ (@m0 as) <.
o\ =1 i=1 j=1
and the requirements of Corollary [A.5.1. Besides, assume that there ezists a function G €

C12(Q) N C(Q) that solves the HIB equation ([159). Further, suppose that for (t,y) € Q there
exists a weakly admissible control k* € A(t,y) with
k; € arg max (A”G(s, Ysk*)> ,
for all s € [t,n]. Then, the following results are valid:
i) G(t,y) > J(t,y: k) for all (t,y) € Q and k € A(t,y).
ii) Besides, k* is an optimal control among all weak admissible controls and G corresponds to

the value function of the optimization problem over all weak admissible controls.
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