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CHAPTER 1

Introduction

The �eld of portfolio optimization deals with the problem of the optimal allocation of wealth

between di�erent �nancial assets which are traded on a given �nancial market. A risk averse

investor, endowed with a certain initial wealth, is allowed to continuously invest on such assets

and/or to consume in order to maximize his expected utility of consumption over the planning

horizon or the expected utility of wealth at the terminal time, or some combination of both.

Typically, investment or consumption decisions have to be made without any knowledge about

future evolution of asset prices.

This type of continuous-time portfolio optimization problem was �rst investigated in a pioneer-

ing work by Merton [35]. He assumed that the prices of the risky asset follow a stochastic

process, namely a geometric Brownian motion, which satis�es a linear stochastic di�erential

equation. This implies that the paths of the price process are continuous and the asset prices

are logarithmic normally distributed random variables. Moreover, the investor can invest in a

non-risky asset, e.g. a savings account. For a special choice of the investor's utility function,

Merton derived the optimal investment and consumption strategy in an explicit form by applying

stochastic optimal control theory, by applying Bellman's principle and by solving the Hamilton-

Jacobi-Bellman (HJB) equation which is a nonlinear partial di�erential equation. We refer to

Fleming and Soner [16] for an introduction into the subject of stochastic optimal control. In

Merton [36] the HJB equation was derived when the asset price dynamics are modeled by a more

general stochastic process than the geometric Brownian motion. Thus, the results in Merton

[35, 36] constitute the starting point of continuous-time portfolio optimization. Thereafter, there

has been a vast stream of literature containing generalization models and methods in the �eld

of portfolio optimization. To mention all of them is beyond the scope of this introduction. A

survey can be found for example in [11, 22].

Amongst others, one generalization of Merton's portfolio optimization problem concerns the as-

set price dynamics. By assuming a geometric Brownian motion for the evolution of asset prices,

one precludes the possibility of large price jumps because the price process has continuous paths.

This implies that prices cannot change in an extraordinary magnitude within a small time in-

terval. But, historical events and empirical studies have shown that they indeed show jumps,

for example, a market crash as the �nancial crisis starting in 2008 induced a sudden downward

jump in prices. The �rst ideas to overcome this modeling drawback came from Merton [37] in

the context of option pricing and from Aase [1] in the context of optimal portfolio selection.

Aase [1] extended Merton's portfolio optimization problem by using an additional point process.

This point process then allows the prices to jump at random times. Further examples for using

1



1. INTRODUCTION 2

a so-called jump-di�usion process in portfolio optimization problems can be found in Jeanblanc-

Picqué and Pontier [19] and Jonek [20] where the price process is a solution of a linear stochastic

di�erential equation driven by a Brownian motion and a Poisson process. From today's perspec-

tive this is the standard way to introduce the possibility of price jumps. The resulting wealth

process is again a process with discontinuous paths which can be controlled by the investor's

investment and consumption decisions in order to maximize the expected utility of consumption

and terminal wealth. Even Lévy processes have been used in previous work for the modeling

of asset prices. Here, we refer to [8] for a survey of �nancial modeling with jump processes. If

practitioners model a market with jump processes they have to know the distribution of jump

times and jump heights. For example, using a Poisson process implies that the inter-arrival

times of the jumps are exponentially distributed random variables. In practice, it is not easy to

verify the distribution and corresponding parameters of price jumps since e.g. market crashes

are rather rare events.

Instead, Korn and Wilmott [29] proposed to model market crashes without any distributional

assumptions on crash times and heights, that is, they modeled crashes as uncertain, rather than

risky events as in the jump-di�usion framework above. The idea is only to assume that the

maximum number of crashes, which can occur on a given time interval, and the maximum crash

size l∗ are known in advance. At so-called `normal' times between two jumps, the prices of the

risky assets follow a geometric Brownian motion, whereas at the crash time the asset prices

become highly correlated and lose a fraction l ∈ [0, l∗] of their value. The investor takes an

extremely cautious attitude towards the crash uncertainty and aims to maximize his expected

utility of terminal wealth in the worst-case crash scenario. In the jump-di�usion framework, the

investor chooses strategies which hedge a crash in mean. Korn and Wilmott [29, p.1] argued that

this `is no real protection against the consequences of a jump at all'. In contrast, the worst-case

approach protects the investor from the worst possible crash that can happen. The investor's

risk preferences in portfolio optimization problems are often modeled by utility functions U :

(0,∞) → R, that is, strictly concave, monotonously increasing and continuously di�erentiable

functions. Then, on the time interval [0, T ], the worst-case portfolio optimization problem by

Korn and Wilmott [29] has the form:

sup
k∈Π(x)

inf
0≤τ≤T,0≤l≤l∗

E
(
U(Xk

T )
)
,

where k = {kt}t∈[0,T ] denotes the fraction of wealth invested in a stock, Π(x) is the set of

admissible controls under the condition that the wealth process Xk = {Xk
t }t∈[0,T ] starts in

Xk
0 = x > 0. The stopping time τ and the random variable l denote the crash time and

height, respectively. In the problem above, note that it is assumed that at most one market

crash can happen on [0, T ]. Korn and Wilmott [29] obtained the worst-case optimal investment

strategy for an investor with utility function U(x) = log(x). The worst-case optimal strategy

depends on time t and is a solution of an ordinary di�erential equation. In Korn and Menkens

[25] the assumption of a logarithmic utility function was relaxed by considering a more general

class of utility functions, so-called HARA (hyperbolic absolute risk aversion) utility functions.

Therein, the authors used an analogue method to the Bellman principle and the classical HJB

equation to determine the optimal investment strategy. Korn and Ste�ensen [28] applied a
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method based on HJB-type inequalities to determine worst-case optimal portfolios in a market

model with at most n crashes. Menkens [34] considered the case where the expected return

on the risky asset is smaller than the return on the non-risky asset. Based on interpreting the

worst-case optimization problem as a controller vs. stopper game, Seifried [44] introduced a

new martingale approach and applied it to a worst-case portfolio problem for rather general

asset price dynamics. For a survey about ideas, results and methods behind the worst-case

approach in portfolio optimization with a �nite time horizon we refer to [26]. Recently, further

generalizations of the worst-case optimization problem above were considered. For example,

Belak et al. [2] considered a problem with a random number of crashes and Belak et al. [3]

extended the model by introducing proportional transaction costs.

The martingale approach developed by Seifried [44] was extended by Desmettre et al. [10] in

order to solve an in�nite horizon worst-case investment and consumption problem where at most

one market crash can happen. In this case the market crash is interpreted as a once-in-a-life

time event. The investor aims to maximize his expected discounted utility of consumption in the

worst-case crash scenario. The problem reads as follows:

sup
(k,c)∈Π

inf
(τ,l)∈C

E
(∫ ∞

0
e−εtU(ctX

k,c
t ) dt

)
,

where c = {ct}t≥0 denotes the rate at which the investor consumes. Xk,c = {Xk,c
t }t≥0 describes

the wealth process controlled by the investment and consumption strategy (k, c), ε is the discount

factor and C describes the set of possible crash scenarios.

The worst-case approach introduced by Korn and Wilmott [29] was also applied in the context

of actuarial sciences, see for example Korn [23] and Korn et al. [30].

The worst-case portfolio optimization problems mentioned above allow the investor to invest

either in risky assets, which are threatened by one or more market crashes, or to invest in a

savings account. A common feature of the literature about worst-case portfolio optimization is

that the interest rate of the savings account is constant. This assumption is quite restrictive,

since interest rates indeed change randomly from time to time due to �uctuations on �nancial

markets.

For classical portfolio optimization problems (without asset price jumps) this restriction was

already relaxed by assuming that the instantaneous interest rate, or brie�y short rate, also

follows a stochastic process. The short rate is usually denoted by rt and the value of the savings

account is given by

Bt = B0 exp

(∫ t

0
rs ds

)
for some initial value B0 > 0. Several short rate models, which describe the evolution of the

stochastic process {rt}t≥0, were published in the past and we refer to [5, 6] for an overview. For

example, the Vasicek model [45] and the Cox-Ingersoll-Ross model [9] are classical models used

for short-rate processes. Amongst others, Korn and Kraft [24] and Kraft [31] considered �nite

time horizon portfolio optimization problems with stochastic interest rates and determined the

optimal investment strategy by applying the stochastic control approach. Therein, they inves-

tigated the problem for short rate models by Ho and Lee [18], Vasicek [45], Dothan [12], Black
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and Karasinski [4] and Cox et al. [9]. Moreover, in�nite horizon investment and consumption

problems with stochastic interest rates have been investigated in Fleming and Pang [15] and

Pang [39]. Therein, a so-called generalized Vasicek model was considered.

The aim of this thesis is to overcome the restriction of constant interest rates within the worst-

case optimization framework. We consider worst-case investment and consumption models where

the underlying interest rates of the savings account evolve randomly over time and are correlated

with the risky asset price. More precisely, we assume that the investor can invest either in a stock

or in a savings account. As proposed by Korn and Wilmott [29] the stock price is threatened by

one or more market crashes. Our contribution to previous research is that the interest rate of

the savings account is stochastic. Basically, we investigate two di�erent worst-case optimization

problems.

First, we study a worst-case optimization problem on a �nite time interval [0, T ] where at most N

market crashes can occur and the short rate follows a Vasicek process. We determine the worst-

case optimal investment strategy which maximizes the investor's utility of terminal wealth. We

restrict our considerations on the class of HARA utility functions. We apply stochastic opti-

mal control theory to determine the strategy which is optimal after the N -th market crash has

happened and prove a suitable veri�cation result. In order to determine the optimal pre-crash

strategies we apply two alternative methods. The �rst one is based on solving a HJB-type

inequality system which is an analogue to the system considered in Korn and Ste�ensen [28].

The second one recursively applies the martingale approach by Seifried [44]. Both methods are

adapted to the case of stochastic interest rates. Our main �ndings are an explicit characteri-

zation of the worst-case optimal investment strategy and the analysis of its actual form. If the

investor's risk preference is modeled by a non-log HARA utility function, the optimal strategies

di�er from the ones in, e.g. Korn and Ste�ensen [28] and Seifried [44], due to the in�uence of the

stochastic interest rates. The reason for this is the correlation between the Brownian motions

driving the interest rate and the stock prices. Furthermore, we obtain that a logarithmic utility

function eliminates the stochastic interest rate risk such that the optimal strategy is the same

as for constant interest rates. For the logarithmic utility function we additionally determine the

worst-case optimal strategy for a more general short rate model, namely the general a�ne short

rate model, and under the assumption that market parameters change at the crash time.

Second, we consider a worst-case investment and consumption problem with an in�nite time

horizon, where at most one market crash can happen. Therein, the investor's aim is to maxi-

mize his expected discounted logarithmic utility of consumption in the worst-case crash scenario.

Within this framework, we assume a generalized Vasicek model (see [15, 39]) and the general

a�ne short rate model. By applying stochastic optimal control theory and by solving the HJB

equation with the sub- and supersolution method, we determine the optimal strategy valid after

the market crash and the corresponding value function. Then, by applying the martingale ap-

proach we derive the worst-case optimal strategy valid before the crash.

The thesis is organised in two main chapters: Chapter 2 contains the worst-case optimal invest-

ment problem with a �nite time horizon and Chapter 3 is devoted to the study of the worst-case

optimal investment and consumption problem with an in�nite time horizon.
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In Section 2.1 we introduce the �nancial market model. We give a detailed introduction to the

short rate models, we motivate the asset price dynamics and formulate the worst-case optimiza-

tion problem. In Section 2.2 and in Section 2.3 we derive the worst-case optimal investment

strategy for the non-log HARA utility functions and the logarithmic utility function, respec-

tively. In both sections, we solve HJB-type inequalities and prove that their solutions are equal

to the value function. Furthermore, in Section 2.4, we provide an alternative way to calculate the

value function by recursive application of the martingale approach by Seifried [44]. While Section

2.2- 2.4 contains the Vasicek model, we consider a general a�ne short rate model in Section 2.5

for logarithmic risk preferences. This section additionally contains the assumption that market

parameters, such as excess return and volatility of the stock, change after the market crash has

happened.

In Chapter 3 we proceed as follows. In Section 3.1 we explain the �nancial market model and

precisely formulate the worst-case optimization problem. The worst-case optimal investment and

consumption strategies for the generalized Vasicek model and the general a�ne short rate model

are derived in Section 3.2 and Section 3.3, respectively. We adapt the martingale approach by

Desmettre et al. [10] to stochastic interest rates. Section 3.4 deals with a generalization of the

�nancial market model. We assume that market parameters may change after the market crash,

but nothing is known about them in advance, except from the fact that they take values in given

intervals. The investor takes a cautious attitude towards this uncertainty and maximizes his

expected discounted utility of consumption in the worst-case scenario with respect to the crash

and the post-crash parameters.

Finally in Chapter 4, we draw a conclusion and give remarks on possible future research.



CHAPTER 2

Worst-Case Optimal Investment with a Finite Time Horizon

2.1. Introduction of the �nancial market model

On the �nancial market, which we consider here, the investor is allowed to invest both in a savings

account and in a stock. We assume that the investor is acting on a given �nite time interval

[0, T ]. In contrast to the classical investment model by Merton [35], where a di�usion process

with continuous paths is used to model the stock price evolution, here, we assume that the stock

price evolution may have discontinuities, which represent crashes on the �nancial market. This

means, instead of a stochastic process with continuous paths, we use a stochastic process whose

paths may have sudden downward jumps. The market crashes are modeled as uncertain events,

as �rst Korn and Wilmott [29] proposed in their work about optimal portfolios under the threat

of a crash. Moreover, the instantaneous interest rate of the savings account is also assumed to

follow a stochastic process which is not a�ected by the market crashes. The investor's aim is to

choose his investment strategy such that the expected utility of terminal wealth is maximized

in the worst-case crash scenario. In Section 2.1.1, we model the value of the savings account

and motivate the use of stochastic interest rates. In Section 2.1.2, we introduce the stock price

equation and then, in Section 2.1.3, we derive the investor's wealth equation and formulate the

corresponding worst-case optimization problem.

Throughout the thesis we make the following basic assumptions:

Let (Ω,F ,P) be a given complete probability space with �ltration F = {Ft}t∈[0,T ]. All processes

below are de�ned on this probability space. Moreover, {Ft}t∈[0,T ] is extended to [0, T ]∪{∞} by
setting F∞ := FT and a process {Yt}t∈[0,T ] is extended to [0, T ] ∪ {∞} by letting Y∞ := YT .

2.1.1. The savings account with stochastic interest rates. For t ∈ [0, T ] let Bt denote

the value of the savings account at time t. As usual, under time-continuous interest payments

we assume that

Bt = B0 exp

(∫ t

0
rs ds

)
,

where B0 is the given price at t = 0 and rs denotes the instantaneous interest rate, which is

brie�y referred to as short rate. Obviously, B = {Bt}t∈[0,T ] is the solution of the following

di�erential equation:

dBt = rtBt dt. (1)

In contrast to previous �nancial market models within the worst-case optimization framework,

where rt ≡ r for some given constant r > 0, we assume here that the short rate r = {rt}t∈[0,T ]

is modeled as a stochastic process de�ned on the probability space (Ω,F ,P). In the context of

pricing �nancial products, for example in bond pricing, di�erent short rate models have been

established in the past. In this thesis, we consider short rate models which belong to the class

6



2.1. INTRODUCTION OF THE FINANCIAL MARKET MODEL 7

of a�ne term structure models. Note that a short rate model is called a�ne if the price of a

corresponding zero coupon bond at time t with maturity T takes the form

p(t, T ) = eA(t,T )−B(t,T )rt ,

where A(t, T ) and B(t, T ) are some deterministic functions. In general, a su�cient condition for

a model to display this a�ne term structure is that it follows a stochastic di�erential equation

(SDE) of the form (see e.g. [5, Chp.3.2.4]):

drt = (λ1(t)rt + λ2(t)) dt+
√
ξ1(t)rt + ξ2(t) dw̃t,

for suitable deterministic functions λ1, λ2, ξ1, ξ2 and a Wiener process w̃ = {w̃t}t∈[0,T ].

In Sections 2.2, 2.3 and 2.4, we consider a famous special case of the a�ne term structure model,

namely the Vasicek model [45], where the short rate evolves as an Ornstein-Uhlenbeck process

with constant coe�cients. Thus, we assume that λ1(t) ≡ −a, λ2(t) ≡ arM , ξ1(t) ≡ 0 and

ξ2(t) ≡ σ2
2 for some positive constants a, rM , σ2. More precisely, in these sections the short rate

is assumed to be a solution of the following SDE:

drt = a(rM − rt) dt+ σ2 dw̃t, (2)

r0 = r0 > 0,

where r0 is some positive constant. This model was �rst proposed by Vasicek [45] and therefore

the solution of SDE (2) is often called Vasicek process. Using Ito's formula, we can calculate a

closed form solution of (2) such that rt is given by

rt = r0e
−at + rM (1− e−at) + σ2

∫ t

0
e−a(t−u) dw̃u.

Since the stochastic integral is a normally distributed random variable, rt is normally distributed

with mean

E(rt) = r0e−at + rM
(
1− e−at

)
,

and variance

V ar(rt) =
σ2

2

2a

(
1− e−2at

)
.

Obviously, it holds:

lim
t→∞

E(rt) = rM .

Hence rM is called long term mean level of the short rate. Moreover, a > 0 denotes the speed

of reversion to rM and σ2 > 0 describes the volatility. Furthermore, the Vasicek process has the

mean reverting property, that means if rt < rM (rt > rM ), then the dt term in (2) is positive

(negative), such that rt is pushed closer to rM . The Vasicek model is not only used due to its

means reversion property but also due to its analytic tractability in the context of bond pricing.

But, the model has one major drawback. Since rt is normally distributed, the short rate rt can

become negative with positive probability. Nevertheless, the Vasicek process is often used in the

literature to model short rate dynamics and can be used to approximate more realistic short rate

models (see e.g. [7]).
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In Section 2.5, we consider a �nancial market model with a more general short rate dynamics

than the Vasicek process. We assume an a�ne term structure model of the form:

drt = (λ1rt + λ2) dt+
√
ξ1rt + ξ2 dw̃t (3)

r0 = r0 > 0,

where λ1, λ2, ξ1, ξ2, r
0 are given constants. For λ1 = −a, λ2 = arM , ξ1 = σ2

2 and ξ2 = 0, the

short rate above refers to the Cox-Ingersoll-Ross process [9] which is a solution of the SDE:

drt = a(rM − rt) dt+ σ2
√
rt dw̃t.

In this case rt is noncentral chi-squared distributed with mean

E(rt) = r0e−at + rM
(
1− e−at

)
and variance

V ar(rt) = r0σ
2
2

a

(
e−at − e−2at

)
+ rM

σ2
2

2a

(
1− e−at

)2
.

The Cox-Ingersoll Ross process also has the mean reversion property with long term mean level

rM and speed of reversion a. In contrast to the Vasicek model, the di�usion coe�cient contains

a square root term and the short rate is positive with probability one if 2arM > σ2
2 and always

nonnegative if we have the opposite inequality. Thus, in Section 2.5, by considering a short rate

of the more general form (3), we also cover the Cox-Ingersoll-Ross model.

Since we restrict our considerations in this thesis on the models explained above, we refer to

Brigo and Mercurio [5] and Cairns [6] for other short rate models.

2.1.2. The stock price process and the modeling of market crashes. In addition

to the investment in the savings account, the investor can invest in a stock which is threatened

by signi�cant market �uctuations, that means price jumps of extraordinary magnitude. After

his pioneering work about continuous-time portfolio optimization in [35], Merton later proposed

to use jump-di�usion processes to allow large price changes with a positive probability. This

approach assumes that market crashes are risky events. For example a Poisson process or, more

generally, a Lévy process can be used to extend classical di�usion processes. We refer to Cont

and Tankov [8] for an overview of �nancial modeling with jump processes. All these models

have a common assumption: the distribution of the crash time and the crash size is known. If

these information about the market crashes would be available, one could model the stock price

process, denoted by P = {P}t∈[0,T ], as the solution of the following jump-di�usion SDE:

dPt = Pt− [(µ+ rt) dt+ σ1 dw1,t + dQt] ,

P0 = p0 > 0,

where µ and σ1 are positive constants and w1 = {w1,t}t∈[0,T ] is another Wiener process. Within

this framework, one could assume that Q = {Qt}t∈[0,T ] is a compound Poisson process with

Qt :=

Nt∑
i=1

Yi,

where {Nt}t∈[0,T ] is a Poisson process with a given intensity and independent of w1, which counts

the number of jumps and Yi > −1 are i.i.d. random variables which describe the jump size of
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the i-th jump. Using Ito's formula one can derive the solution of the jump-di�usion SDE above

and obtain:

Pt = p0 · exp

{∫ t

0
µ+ rs −

σ2
1

2
ds+ σ1w1,t

}
·
Nt∏
i=1

(1 + Yi). (4)

Thus, at `normal times' the stock price evolves as a geometric Brownian motion with drift (µ+rt)

and di�usion coe�cient σ1, and at jump times τi the stock price changes in the following way

Pτi = Pτi−(1 + Yi), i = 1, . . . , Nt.

Therefore, there is a market crash if Yi is negative. Then, the stock price loses a fraction (1+Yi) at

the crash time. Since Q is a Poisson process, the time between two market crashes is assumed to

be exponentially distributed. The jump sizes Yi are random variables with a given distribution.

But often, these information about the time and size of a crash are not available. Korn and

Wilmott [29] argued that market crashes are rare such that the distributions of crash times and

crash sizes are di�cult to quantify. Instead, they proposed to model market crashes as uncertain

events, that means they assumed that there can happen a maximum number N of market crashes

on the time interval [0, T ]. A second assumption is that the crash sizes are bounded from above

by some given constant. Thus, no distributional assumptions about the event `market crash' were

imposed. Without any distributional assumptions on the crash time and size it is not meaningful

to solve a classical utility maximization problem as did in [35]. The idea of Korn and Wilmott

[29] was to assume that the investor takes a very cautious attitude towards the uncertain event

`market crash'. Thus, a worst-case optimization problem was formulated. After that, the worst-

case approach was extended in several directions, but all assumed a constant interest rate of the

savings account. Here, we adopt the modeling of market crashes for a �nancial market model

with stochastic instantaneous interest rates.

As in Korn and Ste�ensen [28], we assume that there can happen at most N market crashes on

[0, T ], where N is a given positive number. The i-th market crash is denoted by a pair (τi, li),

where the crash time of the �rst market crash τ1 is a [0, T ] ∪ {∞}-valued stopping time and the

crash time of the i-th market crash τi is a (τi−1, T ]∪{∞}-valued stopping time (for i = 2, . . . , N).

Here, the event τi = ∞ describes the case if no crash occurs at all. In this setting we assume

that market crashes cannot happen at the same time. The li ∈ [0, l∗] denotes the crash size,

which is a Fτi-measurable random variable. The maximum crash size l∗ < 1 is assumed to be

given and equal for each market crash. Now, the price of the stock at time t, denoted by Pt,

follows a geometric Brownian motion at normal times t ∈ (τi, τi+1) and at the i-th market crash

it loses a fraction li of its value. Given a crash sequence of n ≤ N market crashes, denoted

by (τi, li)i∈{1,...,n}, we assume that the stock price process P = {Pt}t∈[0,T ] ful�lls the following

equations:

P0 = p0 > 0,

dPt = Pt [(µ+ rt) dt+ σ1 dw1,t] , t ∈ (τi, τi+1), i=0, . . . , n, (5)

Pτi = Pτi−(1− li), i=1, . . . , n,

where τ0 := 0 and τn+1 := T and µ, σ1 and p0 are some positive constants, and Pτi− :=

lims↗τi Ps. In comparison to the jump-di�usion model (4), the jump sizes Yi correspond to −li
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and the jump times τi correspond to the crash times, and the main di�erence is that nothing is

assumed about the distribution of these variables.

Note that the excess return in the �nancial market model is given by the constant µ > 0.

Moreover σ1 denotes the volatility of the stock price. w1 = {w1,t}t∈[0,T ] is a Wiener process

de�ned on the probability space (Ω,F ,P), which may be correlated with the Wiener process w̃.

Thus, we have that

E(w1,t · w̃t) = ρt, ∀ t ∈ [0, T ],

where ρ ∈ [−1, 1] denotes the correlation coe�cient. In order to encode the information which

is available at time t to the investor, we de�ne

Ñt := #{0 < s ≤ t : Ps 6= Ps−}, (6)

which counts the market crashes until time t and assume that the �ltration F = {Ft}t∈[0,T ] is

generated by the processes w1, w̃ and Ñ = {Ñt}t∈[0,T ].

2.1.3. Admissible controls and the worst-case optimization problem. Now the in-

vestor's behavior is described by a self-�nancing portfolio process k = {kt}t∈[0,T ] which denotes

the fraction of his wealth invested in the stock. Accordingly, 1 − kt describes the fraction of

wealth invested in the savings account at time t. Below, we use the notation

k =
(
k(0), k(1), . . . , k(N)

)
,

where k(j) denotes the investment strategy if j market crashes can still occur, that means k(j)
t is

valid for t ∈ (τN−j , τN−j+1]. According to this notation, we de�ne the set of admissible controls.

Definition 2.1.1 (Admissible Control). A process k =
(
k(0), k(1), . . . , k(N)

)
, where k(j) =

{k(j)
t }t∈[0,T ] denotes the strategy which is valid on the interval (τN−j , τN−j+1], is called admissible

control if it ful�lls the following conditions:

(1) k is a F-adapted process,

(2) kt ∈ A for t ∈ [0, T ], where A ⊂ R is compact,

(3) k
(j)
t < 1

l∗ for j = 1, . . . N, t ∈ [0, T ],

(4) For j = 0, . . . , N : k(j) has continuous paths.

The set of admissible controls is denoted by Π.

Remark 2.1.2. (i) We assume that the investment strategy has to be F-adapted, which means

that the investors decides on his strategies at time t based on information until time t. Thus,

for every t ∈ [0, T ] he can conclude how many crashes still can occur. Moreover, we do not

restrict the strategies to be nonnegative. This is mainly due to the fact that the optimal strategy

after the N -th market crash can indeed be negative (see Theorem 2.2.2 below). It would therefore

be conceptually bad to exclude negative strategies. Thus, in comparison to the literature about

worst-case optimization with constant interest rates, we allow short selling of the stock.

(ii) Note that condition 1 together with condition 4 implies that k
(j)
t is progressively measurable

with respect to F.

Let N (t, n) be the set of possible crash sequences M = (τj , lj)j≤n on [t, T ], if there are at most

n crashes left at time t. Moreover, given a strategy k ∈ Π and a crash sequence M = (τj , lj)j≤n
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with n ≤ N market crashes, we denote by Xk,M
t the investor's wealth at time t. Using the stock

price equation (5), we can derive the SDE for the wealth process Xk,M = {Xk,M
t }t∈[0,T ]:

Xk,M
0 = x0 > 0,

dXk,M
t = Xk,M

t

[
rt + µk

(j)
t

]
dt+Xk,M

t σ1k
(j)
t dw1,t, t ∈ (τn−j , τn−j+1), (7)

j = 0, . . . , n,

Xk,M
τj = (1− ljk(n−j+1)

τj )Xk,M
τj− , j = 1, . . . , n,

where τ0 := 0 and τn+1 := T .

Remark 2.1.3. Condition 2 in De�nition 2.1.1 implies that

E
(∫ T

0
|k(j)
t |m dt

)
<∞ for m = 1, 2, . . . , j = 1, . . . , N.

This, together with condition 3, ensures that the wealth stays nonnegative for all t ∈ [0, T ] P-a.s.

As in [26, 28], the investor's aim is to maximize his expected utility of wealth at the terminal time

T in the worst-case scenario. Thus, the investor is extremely cautious towards the uncertainty

about the market crashes. Using the notations and de�nitions above, we formulate the worst-case

optimization problem:

sup
k∈Π(0,x0,r0)

inf
M∈N (0,N)

E
(
U(Xk,M

T )
)
, (8)

where U : (0,∞) → R denotes the investor's utility function, which is assumed to be strictly

concave, continuously di�erentiable and

lim
x→0+

U ′(x) =∞ and lim
x→∞

U ′(x) = 0.

Moreover, Π(t, x, r) denotes the set of admissible controls corresponding to the condition that

Xk,M
t = x and rt = r.

In this thesis we model the investor's risk preferences by so-called HARA (hyperbolic absolute

risk aversion) utility functions U . In Sections 2.2 and 2.4, we assume that

U(x) =
1

γ
xγ , γ < 1, γ 6= 0. (9)

If the investor chooses a utility function of this class for a certain γ < 1, then he has a hyperbolic

absolute risk aversion of (1 − γ)x−1 and a constant relative risk aversion (CRRA for short) of

1 − γ. Thus, these utility functions are also of CRRA-type. The higher the CRRA, the higher

the investor's risk aversion. The measures of absolute and relative risk aversion are invariant

under positive linear transformation of the utility function U . Considering a transformed version

of (9) given by

U trans(x) :=
1

γ
xγ − 1

γ
, γ < 1, γ 6= 0,

one easily obtains that

lim
γ→0

U trans(x) = log(x).
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Thus, U(x) = log(x) corresponds to the limit case of γ → 0 and will be considered in Sections

2.3 and 2.5.

As in [28], we can interpret the worst-case optimization problem (8) as a game between the

investor and the market. Here, the investor chooses the strategy k and the market chooses the

crash sequence M with at most N market crashes (τi, li). Due to the stochastic interest rate of

the savings account, our �nancial market model provides a generalization of models considered

in [25, 26, 28, 29].

Now, let us de�ne the value function for n = 0, 1, . . . , N :

V n(t, x, r) := sup
k∈Π(t,x,r)

inf
M∈N (t,n)

Et,x,r,n
(
U(Xk,M

T )
)
, (10)

where Et,x,r,n denotes the conditional expectation given that Xk,M
t = x, rt = r and there are

at most n crashes left at time t ∈ [0, T ]. Hence, V n : [0, T ] × R+ × R → R gives the value of

the worst-case optimal expected utility of terminal wealth if the wealth process and the short

rate process start at time t with x and r, respectively, and there can happen at most n market

crashes on [t, T ].

Analogously to the approach of [28], in Sections 2.2 and 2.3, we try to solve a so-called HJB-

inequality system in order to obtain the value function V n and the worst-case optimal strategy

for problem (8). First, we will use this approach to solve the worst-case optimization problem

for the class of non-log HARA utility functions in Section 2.2. Afterwards, in Section 2.3, we

investigate the problem for a logarithmic utility function. In Sections 2.4 and 2.5, we show how

to proceed using the martingale approach, which was recently developed in [44].

In what follows, we need the following operator. For each v ∈ C1,2,2([0, T ]× R+ × R) we de�ne

the operator Lk by

Lkv(t, x, r) =vt(t, x, r) + (µk + r)x vx(t, x, r) +
σ2

1

2
k2x2 vxx(t, x, r)

+ ρσ1σ2kx vxr(t, x, r) + a(rM − r) vr(t, x, r) +
σ2

2

2
vrr(t, x, r).

2.2. The N-crash market with HARA utility (non-log utility)

In this section, the aim is to determine the worst-case optimal investment strategy for an investor

with a non-log utility function of HARA-type under the assumption that the short rate dynamics

is given by a Vasicek process of the form (2).

First of all, we give a Corollary which ensures that the value function, de�ned in (10), is well-

de�ned.

Corollary 2.2.1. For (t, x, r) ∈ [0, T ] × R+ × R and n ≤ N , let k ∈ Π(t, x, r) be an arbitrary

admissible strategy and let M be an arbitrary crash sequence of length n on [t, T ], which ful�lls

the assumptions above. Moreover, let {rt}t∈[0,T ] and X
k,M = {Xk,M

t }t∈[0,T ] be given by (2) and

(7), respectively. Then

Et,x,r,n
(∣∣∣∣1γ (Xk,M

T )γ
∣∣∣∣) <∞.
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Proof. Let (t, x, r) ∈ [0, T ] × R+ × R be arbitrary but �xed. For s ∈ (τj , τj+1) for some

j ∈ {0, . . . , n}, where τ0 = t and τn+1 = T we have

Xk,M
s = x exp

(∫ s

t
µku −

σ2
1

2
(ku)2 + ru du+

∫ s

t
σ1ku dw1,u

) j∏
i=1

(1− lik(n−i+1)
τi ).

Thus, with x > 0 �xed, we obtain∣∣∣∣1γ (Xk,M
T )γ

∣∣∣∣ = |γ−1|xγ exp

(
γ

∫ T

t
µku −

σ2
1

2
(ku)2 + ru du+ γ

∫ T

t
σ1ku dw1,u

)
·
n∏
i=1

|1− lik(n−i+1)
τi |γ .

By assumption, it holds li ∈ [0, l∗] with l∗ < 1, k(j)
u < 1

l∗ for all j = 1, . . . , n, u ∈ [0, T ] and

therefore 1− lik(n−i+1)
τi > 0 for i = 1, . . . , n. Moreover, we assumed that ku ∈ A where A ⊂ R is

compact and therefore the product is bounded

0 <
n∏
i=1

(1− lik(n−i+1)
τi )γ ≤ K1

for some constant K1 > 0. Moreover, by Proposition A.1.1 in Appendix A, we have that∫ T

t
ru du =

r

a
(1− e−a(T−t)) + rM

(
(T − t)− 1− e−a(T−t)

a

)

+ σ2

∫ T

t

1− e−a(T−u)

a
dw̃u.

Since w̃ and w1 are correlated with coe�cient ρ, we can replace dw̃t by

ρ dw1,t +
√

1− ρ2 dw2,t,

where w2 is a Wiener process independent of w1. Since ku ∈ A for A ⊂ R compact, we obtain∣∣∣∣1γ (Xk,M
T )γ

∣∣∣∣
≤ K exp


∫ T

t

γσ2

a
(1− e−a(T−u))︸ ︷︷ ︸

=:Ĩ(u)

dw̃u +

∫ T

t
γσ1ku︸ ︷︷ ︸
=:I(u)

dw1,u


= K exp

(∫ T

t
[I(u) + ρĨ(u)] dw1,u +

∫ T

t

√
1− ρ2Ĩ(u) dw2,u

)
≤ KZT ,

where K > 0 is a universal constant and

Zs : = exp

(∫ s

t
[I(u) + ρĨ(u)] dw1,u +

∫ s

t

√
1− ρ2Ĩ(u) dw2,u

− 1

2

∫ s

t
[I(u) + ρĨ(u)]2 du− 1

2

∫ s

t
(1− ρ2)Ĩ2(u) du

)
.

Then, {Zs}s∈[t,T ] is the uniquely determined solution of

dZs = Zs

[
(I(s) + ρĨ(s)) dw1,s +

√
1− ρ2Ĩ(s) dw2,s

]
, Zt = 1.
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Then, Krylov [32, Chp. 5.2, Cor.12] implies

E

(
sup
s∈[t,T ]

|Zs|

)
<∞.

Finally, taking the expectation on both sides of the inequality above implies that

Et,x,r,n
(∣∣∣∣1γ (Xk,M

T )γ
∣∣∣∣) ≤ KEt,x,r,n (|ZT |) <∞.

�

The following theorem is our main result of this chapter which determines the worst-case optimal

investment strategy in the N -crash market in an explicit form:

Theorem 2.2.2 (Worst-Case Optimal Investment Strategy).

Assume that the short rate process {rt}t∈[0,T ] is a Vasicek process of the form (2) and assume

that the wealth process Xk,M is given by (7).

a) Let k
(0)∗
t be given by

k
(0)∗
t =

µ

(1− γ)σ2
1

+
ρσ2β(t)

(1− γ)σ1
, where β(t) =

γ

a
[1− exp(−a(T − t))] (11)

and let

v0(t, x, r) =
1

γ
xγg(0)(t) exp(β(t)r) (12)

where g(0)(t) solves the ordinary di�erential equation (ODE for short):

ġ(0)(t) + g(0)(t)

(
γ(µ+ ρσ1σ2β(t))k

(0)∗
t − σ2

1

2
γ(1− γ)(k

(0)∗
t )2

+ arMβ(t) +
σ2

2

2
β2(t)

)
= 0,

g(0)(T ) = 1.

Then, V 0(t, x, r) = v0(t, x, r) and k
(0)∗
t is the optimal strategy if no crash can occur anymore.

b) Moreover, for n ∈ {1, . . . , N}, de�ne k(n)∗
t := k̂

(n)
t ∧k

(0)∗
t , where k̂

(n)
t is the uniquely determined

solution of

k̇
(n)
t =

1− l∗k(n)
t

l∗

(
φ(t, k

(n)
t )− φ(t, k

(n−1)∗
t )

)
, k

(n)
T = 0, (13)

φ(t, k) : = (µ+ ρσ1σ2β(t))k − σ2
1

2
(1− γ)k2,

and let

vn(t, x, r) =
1

γ
xγg(n)(t) exp(β(t)r), (14)

where g(n)(t) solves

ġ(n)(t) + g(n)(t)

(
γ(µ+ ρσ1σ2β(t))k

(n)∗
t − σ2

1

2
γ(1− γ)(k

(n)∗
t )2

+ arMβ(t) +
σ2

2

2
β2(t)

)
= 0, g(n)(T ) = 1. (15)
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Then, V n(t, x, r) = vn(t, x, r) and k
(n)∗
t for n ∈ {1, . . . , N} is the worst-case optimal investment

strategy for the problem (8).

Before proving Theorem 2.2.2, we state some auxiliary results which are used in the proof. First,

the following Lemma is an analogue to [28, Lemma 3] for the case of stochastic interest rates.

Lemma 2.2.3. Let V n(t, x, r) be given by (10) and let (τ, l) be the �rst intervention of the market,

that means the �rst market crash, after time t. Then, it holds

V n(t, x, r) = sup
k∈Π(t,x,r)

inf
M∈N (t,n)

Et,x,r,n
[
U(Xk,M

T )
]

= inf
M∈N (t,n)

sup
k∈Π(t,x,r)

Et,x,r,n
[
U(Xk,M

T )
]

= sup
k∈Π(t,x,r)

inf
(τ,l)

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
= inf

(τ,l)
sup

k∈Π(t,x,r)
Et,x,r,n

[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
.

Proof. Analogously to the literature [28, Lemma 3], we prove the result for our model with

stochastic interest rates. Since it is rather technical, we refer to Appendix 2.6.1 for details. �

By de�nition, we have that k(n)∗
t = k̂

(n)
t ∧ k

(0)∗
t , where k̂(n)

t is the solution of the backward ODE

(13). By time reversion t→ T − t, this ODE takes the form

ḣ
(n)
t = −1− l∗h(n)

t

l∗

[
(µ+ ρσ1σ2β(T − t))

(
h

(n)
t − k

(n−1)∗
T−t

)
− σ2

1

2
(1− γ)

(
h

(n)2
t − (k

(n−1)∗
T−t )2

)]
, h

(n)
0 = 0. (16)

where h(n)
t := k̂

(n)
T−t. By de�nition, we obtain

k
(n−1)∗
T−t = k̂

(n−1)
T−t ∧ k

(0)∗
T−t = h

(n−1)
t ∧ k(0)∗

T−t.

Let us de�ne

f (n)(t, h(n)) := −1− l∗h(n)

l∗

[
(µ+ ρσ1σ2β(T − t))

(
h(n) − k(n−1)∗

T−t

)
− σ2

1

2
(1− γ)

(
h(n)2 − k(n−1)∗2

T−t

)]
.

Using the forward ODE (16), we can prove the following auxiliary result to ensure that there

exists a uniquely determined solution k̂(n)
t of the backward ODE (13).

Proposition 2.2.4. Let n ∈ {1, . . . , N} be arbitrary but �xed. Then, there exists a uniquely

determined solution k̂
(n)
t of (13) and it holds k̂

(n)
t ∈ [0, 1

l∗ ) for all t ∈ [0, T ], n = 1 . . . , N .

Proof. We refer to Appendix 2.6.2 for the proof. �

Remark 2.2.5. By de�nition, we immediately obtain that k
(n)∗
t = k̂

(n)
t ∧ k(0)∗

t < 1
l∗ for all

t ∈ [0, T ], n ∈ {1, . . . , N}. Since k̂
(n)
t is a solution of the ODE (13), we have that k

(n)∗
t is a

deterministic function in t, and therefore k∗ = (k(0)∗, . . . , k(N)∗) is an admissible strategy in the

sense of De�nition 2.1.1.
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Proposition 2.2.6. For n = 2, . . . , N we de�ne u
(n)
t := h

(n)
t −h

(n−1)
t , where h(n) is the solution

of the corresponding equation (16). Then, u(n)
t ≤ 0 for all t ∈ [0, T ] and for all n ∈ {2, 3, . . . , N}.

Proof. We refer to Appendix 2.6.3 for the proof. �

Proposition 2.2.7. Let γρ ≥ 0. Then u
(1)
t := h

(1)
t −h

(0)
t ≤ 0 for all t ∈ [0, T ], where h

(0)
t := k

(0)∗
T−t

and h
(1)
t is the uniquely determined solution of (16) for n = 1.

Proof. We refer to Appendix 2.6.4 for the proof. �

Remark 2.2.8. By Proposition 2.2.6, we obtained that h
(n)
t ≤ h

(n−1)
t ≤ · · · ≤ h

(1)
t for all t ∈

[0, T ]. By time reversion, this is equivalent to

k̂
(n)
t ≤ k̂(n−1)

t ≤ · · · ≤ k̂(1)
t , ∀t ∈ [0, T ].

Note that, Proposition 2.2.7 implies that h
(1)
t ≤ h

(0)
t if γρ ≥ 0 and therefore

k̂
(n)
t ≤ k̂(n−1)

t ≤ · · · ≤ k̂(1)
t ≤ k

(0)∗
t , ∀t ∈ [0, T ].

Now, we prove Theorem 2.2.2 and obtain that k(n)∗
t = k̂t ∧ k(0)∗

t is indeed the worst-case optimal

investment strategy.

Proof of Theorem 2.2.2.

a) Here, we investigate how the investor has to choose his strategy immediately after the N -th

market crash. Thereafter, the investor is faced with a classical stochastic optimal control problem

with a �nite time horizon because no market crash can occur anymore. We solve this problem

by Dynamic Programming Principle (DPP). First, we solve the corresponding HJB equation and

prove that the solution is equal to the value function

V 0(t, x, r) = sup
k∈Π(t,x,r)

inf
M∈N (t,0)

Et,x,r,0
(
U(Xk,M

T )
)

= sup
k(0)∈Π(t,x,r)

Et,x,r
(

1

γ
X
γ
T

)
, (17)

where Xs denotes the wealth at time s ≥ t if no crash can occur anymore, that means Xs solves

the classical wealth equation controlled by k(0) starting at time t in (x, r) ∈ R+ × R:

dXs = Xs

[
rs + µk(0)

s

]
ds+Xsσ1k

(0)
s dw1,s, Xt = x,

drs = a(rM − rs) ds+ σ2 dw̃s, rt = r,

for s ≥ t. The corresponding HJB equation is given by

sup
k(0)∈A

Lk(0)v0(t, x, r) = 0, (t, x, r) ∈ [0, T )× R+ × R, (18)

v0(T, x, r) =
1

γ
xγ , (x, r) ∈ R+ × R.

By applying a standard separation method for the case of non-log HARA utility functions, where

we assume that the solution of (18) takes the form v0(t, x, r) = 1
γx

γW (t, r) and W (T, r) = 1 for
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all r ∈ R, we obtain

Wt(t, r) + γ sup
k(0)∈A

[
µk(0)W (t, r)− σ2

1

2
(1− γ)(k(0))2W (t, r) + ρσ1σ2k

(0)Wr(t, r)

]
+ γrW (t, r) + a(rM − r)Wr(t, r) +

σ2
2

2
Wrr(t, r) = 0, (t, r) ∈ [0, T )× R,

W (T, r) = 1, r ∈ R.

Assuming that W (t, r) > 0 for all (t, r) ∈ [0, T ] × R, we obtain the candidate for the optimal

control by the �rst order optimality condition:

k(0)∗(t, r) =
µ

(1− γ)σ2
1

+
ρσ2

(1− γ)σ1
· Wr(t, r)

W (t, r)
,

and, by inserting, we get the following second order partial di�erential equation for W :

Wt(t, r) + γ (µW (t, r) + ρσ1σ2Wr(t, r)) k
(0)∗(t, r)− σ2

1

2
γ(1− γ)(k(0)∗(t, r))2W (t, r)

+ γrW (t, r) + a(rM − r)Wr(t, r) +
σ2

2

2
Wrr(t, r) = 0, (t, r) ∈ [0, T )× R (19)

W (T, r) = 1, r ∈ R.

By a further separation approach of the form W (t, r) = g(0)(t) exp(β(t)r) with g(0)(T ) = 1 and

β(T ) = 0 we arrive at:

ġ(0)(t) + g(0)(t)r
(
β̇(t)− aβ(t) + γ

)
+ g(0)(t)

(
γ(µ+ ρσ1σ2β(t))k

(0)∗
t − σ2

1

2
γ(1− γ)(k

(0)∗
t )2 + arMβ(t) +

σ2
2

2
β2(t)

)
= 0,

g(0)(T ) = 1, β(T ) = 0.

In order to eliminate the state variable r from the equation above, β(t) has to ful�ll

β̇(t)− aβ(t) + γ = 0, β(T ) = 0,

⇒ β(t) =
γ

a
[1− exp(−a(T − t))] .

Thus, we obtain a linear ODE for g(0)(t):

ġ(0)(t) + g(0)(t)α(0)(t) = 0, g(0)(T ) = 1,

where

α(0)(t) := γ(µ+ ρσ1σ2β(t))k
(0)∗
t − σ2

1

2
γ(1− γ)(k

(0)∗
t )2 + arMβ(t) +

σ2
2

2
β2(t).

Finally, this leads to an explicit formula

v0(t, x, r) =
1

γ
xγW (t, r) =

1

γ
xγg(0)(t) exp(β(t)r) (20)

which solves the HJB equation, and since Wr(t,r)
W (t,r) = β(t) for all (t, r) ∈ [0, T ]× R, the candidate

k(0)∗ is given by

k
(0)∗
t =

µ

(1− γ)σ2
1

+
ρσ2β(t)

(1− γ)σ1
. (21)
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Since g(0)(t) = exp(
∫ T
t α(0)(s) ds) > 0, we obtain that W (t, r) = g(0)(t) exp(β(t)r) > 0 for all

(t, r) ∈ [0, T ]×R. Now, it remains to show that the solution (20) of the HJB equation is indeed

equal to the value function V 0(t, x, r), de�ned in (17), and that the candidate k(0)∗ in (21) is

the optimal strategy. This can be done by proving the assumptions of [24, Corollary 3.2]), which

provides such veri�cation result. These proofs are rather technical, but standard, and therefore,

we refer to Appendix 2.6.5. Now, we conclude that the optimal strategy after the N -th market

crash is given by k(0)∗ and that v0(t, x, r) = V 0(t, x, r) and therefore, a) holds.

b) In order to show the assertion for n ∈ {1, . . . , N}, we adapt the system of variational inequal-

ities from [28, Thm.2] for the case of stochastic interest rates. First, following the notation of

the literature, we de�ne for n ∈ {1, . . . , N} :

A′n(t, x, r) :=
{
k ∈ A : 0 ≤ Lkvn(t, x, r)

}
,

A′′n(t, x, r) :=
{
k ∈ A : 0 ≤ vn−1

(
t, x(1− l∗k+), r

)
− vn(t, x, r)

}
.

We consider the following system of variational inequalities:

0 ≤ sup
k∈A′′n(t,x,r)

[
Lkvn(t, x, r)

]
, (22)

0 ≤ sup
k∈A′n(t,x,r)

[
vn−1

(
t, x(1− l∗k+), r

)
− vn(t, x, r)

]
, (23)

0 = sup
k∈A′′n(t,x,r)

[
Lkvn(t, x, r)

]
sup

k∈A′n(t,x,r)

[
vn−1

(
t, x(1− l∗k+), r

)
− vn(t, x, r)

]
, (24)

vn(T, x, r) =
1

γ
xγ , (x, r) ∈ R+ × R. (25)

and de�ne

pn(t, x, r) := arg sup
k∈A′′n(t,x,r)

[
Lkvn(t, x, r)

]
,

θn(t, x, r) := inf
s:s≥t

[
vn−1(s,Xk,M

s (1− l∗k+
s ), rs)− vn(s,Xk,M

s , rs) ≤ 0
]
, (26)

l(n)(k) := l∗1k≥0, (27)

where Xk,M
t = x and rt = r.

By the heuristic construction of vn(t, x, r) (see Appendix 2.6.6), we have that vn(t, x, r), given

by (14), indeed solves the system of inequalities (22)-(25) for n ∈ {1, . . . , N}.
Using that vn(t, x, r) is a solution of the system above, we prove that vn(t, x, r) = V n(t, x, r) and

that k(n)∗
t = k̂

(n)
t ∧k

(0)∗
t is the worst-case optimal strategy. In contrast to [28, Thm. 2], where the

veri�cation theorem is proved for constant interest rates and general utility functions U , here,

we prove the assertion of Theorem 2.2.2 for the Vasicek short rate model and the special class of

HARA utility functions using the explicit form of the solution vn of the system of inequalities.

We prove that vn(t, x, r) = V n(t, x, r) via induction.

First, we show that v1(t, x, r) = V 1(t, x, r):

Let (t, x, r) ∈ [0, T ] × R+ × R be arbitrary but �xed. We denote by (τ, l) the �rst intervention

of the market after time t (that means the �rst market crash after time t at time τ with jump
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size l). Let (k, (τ, l)) be an arbitrary but �xed strategy, where k is chosen by the investor and

(τ, l) is chosen by the market. Here, we only have to consider the wealth Xk,M until the �rst

intervention time τ and therefore we can just denote the argument M in (7) by (τ, l), such that

the wealth and the short rate dynamics are described by:

X
k,(τ,l)
t = x,

dXk,(τ,l)
s = Xk,(τ,l)

s [rs + µks] ds+Xk,(τ,l)
s σ1ks dw1,s, t < s < τ

Xk,(τ,l)
τ = X

k,(τ,l)
τ− (1− lkτ ),

rt = r,

drs = a(rM − rs) ds+ σ2dw̃s, t < s ≤ τ.

Now, by applying multidimensional Ito's formula, we obtain

dv1(s,Xk,(τ,l)
s , rs) =Lksv1(s,Xk,(τ,l)

s , rs) ds+ v1
x(s,Xk,(τ,l)

s , rs)σ1ksX
k,(τ,l)
s dw1,s

+ v1
r (s,X

k,(τ,l)
s , rs)ρσ2 dw1,s

+ v1
r (s,X

k,(τ,l)
s , rs)

√
1− ρ2σ2 dw2,s, t < s < τ, (28)

with

v1(t,X
k,(τ,l)
t , rt) =v1(t, x, r),

dv1(τ,Xk,(τ,l)
τ , rτ ) =v1(τ,Xk,(τ,l)

τ , rτ )− v1(τ−, Xk,(τ,l)
τ− , rτ−)

=v1(τ,X
k,(τ,l)
τ− (1− lkτ ), rτ )− v1(τ−, Xk,(τ,l)

τ− , rτ−).

Integrating on both sides of (28), leads to

v1(τ−, Xk,(τ,l)
τ− , rτ−)− v1(t, x, r)

=

∫ τ

t
Lksv1(s,Xk,(τ,l)

s , rs) ds

+

∫ τ

t

(
v1
x(s,Xk,(τ,l)

s , rs)σ1ksX
k,(τ,l)
s + v1

r (s,X
k,(τ,l)
s , rs)ρσ2

)
dw1,s

+

∫ τ

t
v1
r (s,X

k,(τ,l)
s , rs)

√
1− ρ2σ2 dw2,s. (29)

Equation (29) holds for an arbitrary but �xed strategy (k, (τ, l)).

Now, we �x ks = p1(s,X
k,(τ,l)
s− , rs) = k

(1)∗
s for t ≤ s ≤ τ and let (τ, l) be an arbitrary but �xed

intervention by the market, then we have, by construction, that

Lk
(1)∗
s v1(s,Xk(1)∗,(τ,l)

s , rs) = 0, t ≤ s ≤ τ,

and k(1)∗
s ∈ A′′1(s), that is

0 ≤ v0
(
s,Xk(1)∗,(τ,l)

s (1− l∗(k(1)∗
s )+), rs

)
− v1

(
s,Xk(1)∗,(τ,l)

s , rs

)
,

≤ v0
(
s,Xk(1)∗,(τ,l)

s (1− lk(1)∗
s ), rs

)
− v1

(
s,Xk(1)∗,(τ,l)

s , rs

)
, t ≤ s ≤ τ.
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Equation (29) together with ks = k
(1)∗
s implies

v1(t, x, r)

= v1(τ−, Xk(1)∗,(τ,l)
τ− , rτ−)

−
∫ τ

t
Lk

(1)∗
s v1(s,Xk(1)∗,(τ,l)

s , rs) ds

−
∫ τ

t

(
v1
x(s,Xk(1)∗,(τ,l)

s , rs)σ1k
(1)∗
s Xk(1)∗,(τ,l)

s + v1
r (s,X

k(1)∗,(τ,l)
s , rs)ρσ2

)
dw1,s

−
∫ τ

t
v1
r (s,X

k(1)∗,(τ,l)
s , rs)

√
1− ρ2σ2 dw2,s

≤ v0
(
τ−, Xk(1)∗,(τ,l)

τ− (1− lk(1)∗
τ ), rτ−

)
−
∫ τ

t

(
v1
x(s,Xk(1)∗,(τ,l)

s , rs)σ1k
(1)∗
s Xk(1)∗,(τ,l)

s + v1
r (s,X

k(1)∗,(τ,l)
s , rs)ρσ2

)
dw1,s

−
∫ τ

t
v1
r (s,X

k(1)∗,(τ,l)
s , rs)

√
1− ρ2σ2 dw2,s. (30)

Using the fact that

v1
x(s, x, r)x = v1(s, x, r)γ, v1

r (s, x, r) = v1(s, x, r)β(s),

the stochastic integrals are equal to the term

−
∫ τ

t
v1(s,Xk(1)∗,(τ,l)

s , rs)
[(
γσ1k

(1)∗
s + β(s)ρσ2

)
dw1,s + β(s)

√
1− ρ2σ2 dw2,s

]
= −

∫ τ

t
f (τ,l)(s)dws,

where f (τ,l)(s) := (f
(τ,l)
1 (s), f

(τ,l)
2 (s)), dws := (dw1,s, dw2,s)

T with

f
(τ,l)
1 (s) := v1(s,Xk(1)∗,(τ,l)

s , rs)
(
γσ1k

(1)∗
s + β(s)ρσ2

)
,

f
(τ,l)
2 (s) := v1(s,Xk(1)∗,(τ,l)

s , rs)
√

1− ρ2σ2β(s).

In contrast to [28, Thm. 2], we can use the knowledge about the explicit form of the function

v1(t, x, r) in order to show that

Et,x,r,1
[
−
∫ τ

t
f (τ,l)(s)dws

]
= 0. (31)

For the proof of (31), we refer to Appendix 2.6.8.

Taking the expectation on both sides of (30), leads to

v1(t, x, r) ≤ Et,x,r,1
[
v0
(
τ,X

k(1)∗,(τ,l)
τ− (1− lk(1)∗

τ ), rτ

)]
. (32)

Now, the following steps are similar to the case of constant interest rates in the literature. By

(32) we have

v1(t, x, r) ≤ sup
k∈Π(t,x,r)

Et,x,r,1
[
v0
(
τ,X

k,(τ,l)
τ− (1− lkτ ), rτ

)]
. (33)
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Now, taking the in�mum over (τ, l) on both sides of (33) leads to

v1(t, x, r) ≤ inf
(τ,l)

sup
k∈Π(t,x,r)

Et,x,r,1
[
v0
(
τ,X

k,(τ,l)
τ− (1− lkτ ), rτ

)]
. (34)

Moreover, taking the in�mum over (τ, l) on both sides of (32), we have

v1(t, x, r) ≤ inf
(τ,l)

Et,x,r,1
[
v0
(
τ,X

k(1)∗,(τ,l)
τ− (1− lk(1)∗

τ ), rτ

)]
(35)

and therefore

v1(t, x, r) ≤ sup
k∈Π(t,x,r)

inf
(τ,l)

Et,x,r,1
[
v0
(
τ,X

k,(τ,l)
τ− (1− lkτ ), rτ

)]
. (36)

Now let k ∈ Π(t, x, r) be arbitrary but �xed. We �x the strategy (τ, l) = (θ, l̃), where θ :=

θ1(t, x, r) and l̃ = l(1)(kθ). Then, by de�nition of θ, it holds

v0(s,X
k,(θ,l̃)
s− (1− l(1)(ks)ks), rs)− v1(s,X

k,(θ,l̃)
s− , rs) > 0, for t ≤ s < θ, (37)

v0(θ,X
k,(θ,l̃)
θ− (1− l̃kθ), rθ)− v1(θ,X

k,(θ,l̃)
θ− , rθ) ≤ 0. (38)

For t ≤ s < θ, ks either ful�lls

0 > Lksv1(s,Xk,(θ,l̃)
s , rs), or 0 ≤ Lksv1(s,Xk,(θ,l̃)

s , rs). (39)

Assume the last inequality holds for k, then ks ∈ A′1(s,X
k,(θ,l̃)
s , rs). For the sake of brevity, we

write A′1(s) and A′′1(s) instead of A′1(s,X
k,(θ,l̃)
s , rs) and A′′1(s,X

k,(θ,l̃)
s , rs), respectively. Together

with (37), it follows

0 < v0(s,X
k,(θ,l̃)
s− (1− l(1)(ks)ks), rs)− v1(s,X

k,(θ,l̃)
s− , rs)

≤ sup
ks∈A′1(s)

v0(s,X
k,(θ,l̃)
s− (1− l(1)(ks)ks), rs)− v1(s,X

k,(θ,l̃)
s− , rs)

⇒ 0 < sup
ks∈A′1(s)

v0(s,X
k,(θ,l̃)
s− (1− l(1)(ks)ks), rs)− v1(s,X

k,(θ,l̃)
s− , rs)

= sup
ks∈A′1(s)

v0(s,X
k,(θ,l∗)
s− (1− l∗k+

s ), rs)− v1(s,X
k,(θ,l∗)
s− , rs).

Here, we used that l(1)(ks)ks = l∗1ks≥0ks = l∗k+
s . Since v1 is a solution of the system of

inequalities, it follows by (24), that

sup
ks∈A′′1 (s)

[
Lksv1(s,Xk,(θ,l̃)

s , rs)
]

= 0.

But ks ∈ A′′1(s) by (37), and therefore

0 = sup
ks∈A′′1 (s)

[
Lksv1(s,Xk,(θ,l̃)

s , rs)
]
≥ Lksv1(s,Xk,(θ,l̃)

s , rs),
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which is a contradiction to the assumption that the second inequality in (39) holds. Thus, we

have Lksv1(s,X
k,(θ,l̃)
s , rs) ≤ 0 for t ≤ s < θ. Now, by inserting (θ, l̃) in (29), we obtain by (38)

v1(t, x, r)

= v1(θ,X
k,(θ,l̃)
θ− , rθ)

−
∫ θ

t
Lksv1(s,Xk,(θ,l̃)

s , rs) ds

−
∫ θ

t

(
v1
x(s,Xk,(θ,l̃)

s , rs)σ1ksX
k,(θ,l̃)
s + v1

r (s,X
k,(θ,l̃)
s , rs)ρσ2

)
dw1,s

−
∫ θ

t
v1
r (s,X

k,(θ,l̃)
s , rs)

√
1− ρ2σ2 dw2,s

≥ v0(θ,X
k,(θ,l̃)
θ− (1− l̃kθ), rθ)

−
∫ θ

t

(
v1
x(s,Xk,(θ,l̃)

s , rs)σ1ksX
k,(θ,l̃)
s + v1

r (s,X
k,(θ,l̃)
s , rs)ρσ2

)
dw1,s

−
∫ θ

t
v1
r (s,X

k,(θ,l̃)
s , rs)

√
1− ρ2σ2 dw2,s. (40)

In Appendix 2.6.8 we have shown that

Et,x,r,1
[
−
∫ θ

t
f (k)(s)dws

]
= 0, (41)

where f (k)(s) := (f
(k)
1 (s), f

(k)
2 (s)), dws := (dw1,s, dw2,s)

T with

f
(k)
1 (s) := v1(s,Xk,(θ,l̃)

s , rs) (γσ1ks + β(s)ρσ2) ,

f
(k)
2 (s) := v1(s,Xk,(θ,l̃)

s , rs)
√

1− ρ2β(s).

Now, taking the expectation on both sides of (40) leads to

v1(t, x, r) ≥ Et,x,r,1
[
v0(θ,X

k,(θ,l̃)
θ− (1− l̃kθ), rθ)

]
(42)

⇒ v1(t, x, r) ≥ inf
(τ,l)

Et,x,r,1
[
v0(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
. (43)

Taking the supremum on both sides of (43) implies

v1(t, x, r) ≥ sup
k∈Π(t,x,r)

inf
(τ,l)

Et,x,r,1
[
v0(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
. (44)

If we take the supremum on both sides of (42), then

v1(t, x, r) ≥ sup
k∈Π(t,x,r)

Et,x,r,1
[
v0(θ,X

k,(θ,l̃)
θ− (1− l̃kθ), rθ)

]
(45)

⇒ v1(t, x, r) ≥ inf
(τ,l)

sup
k∈Π(t,x,r)

Et,x,r,1
[
v0(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
. (46)
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Summing up, we �nally obtain

v1(t, x, r) = inf
(τ,l)

sup
k∈Π(t,x,r)

Et,x,r,1
[
v0(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
= sup

k∈Π(t,x,r)
inf
(τ,l)

Et,x,r,1
[
v0(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
= sup

k∈Π(t,x,r)
inf
(τ,l)

Et,x,r,1
[
V 0(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
= V 1(t, x, r),

where the �rst equality follows by (34) and (46) and the second equality follows by (36) and

(44). The third equality follows by the fact that V 0(t, x, r) = v0(t, x, r) and the fourth equality

follows by Lemma 2.2.3. Thus, we have shown that v1(t, x, r) = V 1(t, x, r), where v1 is given by

(14)

Finally, with (45), we have

V 1(t, x, r) ≥ sup
k∈Π(t,x,r)

Et,x,r,1
[
V 0(θ,X

k,(θ,l̃)
θ− (1− l̃kθ), rθ)

]
≥ Et,x,r,1

[
V 0(θ,X

k(1)∗,(θ,l̃)
θ− (1− l̃k(1)∗

θ ), rθ)
]

≥ inf
(τ,l)

Et,x,r,1
[
V 0(τ,X

k(1)∗,(τ,l)
τ− (1− lk(1)∗

τ ), rτ )
]
,

and together with (35), we have

V 1(t, x, r) = inf
(τ,l)

Et,x,r,1
[
V 0(τ,X

k(1)∗,(τ,l)
τ− (1− lk(1)∗

τ ), rτ )
]

and therefore, k(1)∗
t = k̂

(1)
t ∧ k

(0)∗
t is the optimal strategy if at most one crash still can happen.

Now, assume that vn−1(t, x, r) = V n−1(t, x, r). Then, we can show that vn(t, x, r) = V n(t, x, r).

Let (t, x, r) ∈ [0, T ] × R+ × R and assume that n market crashes are left. Again we denote by

(τ, l) the �rst intervention of the market after time t and let (k, (τ, l)) be an arbitrary but �xed

strategy. Again by using Ito's formula, we obtain that

vn(t, x, r) =vn(τ−, Xk,(τ,l)
τ− , rτ−)

−
∫ τ

t
Lksv1(s,Xk,(τ,l)

s , rs) ds

−
∫ τ

t

(
vnx(s,Xk,(τ,l)

s , rs)σ1ksX
k,(τ,l)
s + vnr (s,Xk,(τ,l)

s , rs)ρσ2

)
dw1,s

−
∫ τ

t
vnr (s,Xk,(τ,l)

s , rs)
√

1− ρ2σ2 dw2,s. (47)

First, we �x the strategy ks = pn(s,X
k,(τ,l)
s− , rs) = k

(n)∗
s for t ≤ s ≤ τ and obtain by the same

arguments as above that

vn(t, x, r) ≤ inf
(τ,l)

sup
k∈Π(t,x,r)

Et,x,r,n
[
vn−1

(
τ,X

k,(τ,l)
τ− (1− lkτ ), rτ

)]
and

vn(t, x, r) ≤ sup
k∈Π(t,x,r)

inf
(τ,l)

Et,x,r,n
[
vn−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
.
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By �xing the strategy (τ, l) = (θ, l̃), with θ = θn(t, x, r) and l̃ := l(n)(kθ), where k ∈ Π(t, x, r) is

arbitrary but �xed, we use again the same arguments as above and obtain

vn(t, x, r) ≥ sup
k∈Π(t,x,r)

inf
(τ,l)

Et,x,r,n
[
vn−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
,

and

vn(t, x, r) ≥ inf
(τ,l)

sup
k∈Π(t,x,r)

Et,x,r,n
[
vn−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
.

Both together lead to

vn(t, x, r) = inf
(τ,l)

sup
k∈Π(t,x,r)

Et,x,r,n
[
vn−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
= sup

k∈Π(t,x,r)
inf
(τ,l)

Et,x,r,n
[
vn−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
= sup

k∈Π(t,x,r)
inf
(τ,l)

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
= V n(t, x, r),

where the third equality follows by the assumption that vn−1(t, x, r) = V n−1(t, x, r) and the

fourth equality follows by Lemma 2.2.3. Thus,

vn(t, x, r) = V n(t, x, r).

Moreover, it follows that k(n)∗
t = k̂

(n)
t ∧ k(0)∗

t is the worst-case optimal investment strategy if at

most n market crashes still can happen. �

2.2.1. Conclusion from Theorem 2.2.2 and comparison with the case rt ≡ r. Theo-
rem 2.2.2 implies that the worst-case optimal strategies can be calculated numerically. First, the

strategy after the N -th market crash is given by the solution of the classical stochastic optimal

control problem:

k
(0)∗
t =

µ

(1− γ)σ2
1

+
ρσ2β(t)

(1− γ)σ1
.

Note that k(0)∗ is independent of ω ∈ Ω as it does not depend on the short rate rt(ω). This is

due to the fact that the access return µ in our �nancial market model is assumed to be constant,

and therefore, the control variable k is not coupled with the short rate rt in the wealth equation.

Nevertheless, k(0)∗ depends on the parameters a and σ2, which determine the Vasicek process in

(2). The same is true for the worst-case optimal strategies k(n)∗
t = k̂

(n)∗
t ∧ k(0)∗

t , n = 1, . . . , N .

Here, k̂(n)
t can be calculated by solving the corresponding nonlinear non-autonomous ODE of the

form

k̇
(n)
t =

1− l∗k(n)
t

l∗

(
φ(t, k

(n)
t )− φ(t, k

(n−1)∗
t )

)
, k

(n)
T = 0,

where φ(t, k) = (µ+ρσ1σ2β(t))k− σ2
1
2 (1−γ)k2. If we would assume that rt ≡ r for some constant

r > 0, then the ODE above reduces to a nonlinear autonomous ODE, which is already published

in the previous literature, see e.g. [28, 33, 44]. The same applies if we especially assume that

ρ = 0, that means that w1 and w̃ are uncorrelated and therefore independent processes. Then,
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the strategy k(0)∗
t reduces to

k
(0)∗
t ≡ µ

(1− γ)σ2
1

,

and φ reduces to φ(t, k) = µk − σ2
1
2 (1 − γ)k2. Therefore, in these two special cases ODE (13)

reduces to an autonomous ODE and the worst-case optimal strategies do not depend on the

short rate parameters anymore. Thus, the worst-case optimal strategies do not di�er from the

worst-case optimal strategies for the case of constant interest rates (see e.g. [28, 33, 44]).

2.3. The N-crash market with Log utility

Here, we consider the logarithmic utility function which corresponds to the case of γ = 0 of the

section before. Thus, we consider the worst-case optimization problem (8) with

U(x) = log(x)

and with Vasicek short rate dynamics of the form (2). The logarithmic utility function also

belongs to the class of HARA utility functions. First of all, we obtain that the value function,

de�ned in (10), is well-de�ned for U(x) = log(x).

Corollary 2.3.1. For (t, x, r) ∈ [0, T ] × R+ × R and n ≤ N , let k ∈ Π(t, x, r) be an arbitrary

admissible strategy and let M be an arbitrary crash sequence of length n on [t, T ], which ful�lls

the assumptions given in Section 2.1. Moreover, let {rt}t∈[0,T ] and Xk,M = {Xk,M
t }t∈[0,T ] be

given by (2) and (7), respectively. Then,

Et,x,r,n
(∣∣∣log(Xk,M

T )
∣∣∣) <∞.

Proof. Let (t, x, r) ∈ [0, T ]× R+ × R be arbitrary but �xed. Then, we have

Xk,M
T = x exp

(∫ T

t
µku −

σ2
1

2
(ku)2 + ru du+

∫ T

t
σ1ku dw1,u

) n∏
i=1

(1− lik(n−i+1)
τi ).

By k ∈ Π(t, x, r) we have that k is bounded. Moreover by Proposition A.1.1 and by triangle

inequality, we obtain∣∣∣log(Xk,M
T )

∣∣∣ ≤K +
1

2

∣∣∣∣∫ T

t

(σ2

a
ρ(1− e−a(T−u)) + σ1ku

)
dw1,u

∣∣∣∣2
+

1

2

∣∣∣∣∫ T

t

σ2

a

√
1− ρ2(1− e−a(T−u)) dw2,u

∣∣∣∣2 ,
for a su�ciently large constant K > 0. Taking the expectation on both sides and using Ito

isometry, leads to

Et,x,r,n
(∣∣∣log(Xk,M

T )
∣∣∣) <∞.

�

Analogously to Theorem 2.2.2, we determine the worst-case optimal strategy for problem (8)

with logarithmic utility function by the following theorem.
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Theorem 2.3.2.

Assume that the short rate process {rt}t∈[0,T ] is given by (2) and assume that Xk,M is given by

(7). Moreover, let U(x) = log(x).

a) Let k
(0)∗
t ≡ µ

σ2
1
and let

v0(t, x, r) = log(x) +W (0)(t, r),

where

W (0)(t, r) =

(
µ2

2σ2
1

+ rM

)
(T − t) +

1

a

(
r − rM + e−a(T−t)(rM − r)

)
.

Then, V 0(t, x, r) = v0(t, x, r), where V 0 is de�ned in (10), and k(0)∗
t is the optimal strategy if no

crash can occur anymore.

b) Moreover, for n ∈ {1, . . . , N}, let k̂(n)
t be the uniquely determined solution of

k̇
(n)
t =

1− l∗k(n)
t

l∗

(
φ(k

(n)
t )− φ(k̂

(n−1)
t )

)
, k

(n)
T = 0, (48)

φ(k) : = µk − σ2
1

2
k2,

with k̂
(0)
t := µ

σ2
1
, and let

vn(t, x, r) = log(x) +W (n)(t, r), (49)

where

W (n)(t, r) = g(n)(t) + h(t, r),

g(n)(t) =

∫ T

t
µk̂(n)

s −
σ2

1

2
(k̂(n)
s )2 ds,

h(t, r) = rM (T − t) +
1

a

(
r − rM + e−a(T−t)(rM − r)

)
.

Then, V n(t, x, r) = vn(t, x, r) and k̂
(n)
t is the worst-case optimal strategy if n crashes still can

happen.

In the Theorem above, we assume that there exists a uniquely determined solution of (48). This

assumption can be veri�ed by the following Proposition.

Proposition 2.3.3. Let n ∈ {1, . . . , N}, then ODE (48) has a uniquely determined solution k̂(n)
t

and for all t ∈ [0, T ] it holds

(1) k̂
(n)
t ∈ [0, 1

l∗ ),

(2) k̂
(n)
t ≤ k̂(n−1)

t ≤ · · · ≤ k̂(1)
t ≤ k(0)∗.

Proof. First, note that (13) reduces to (48) for γ = 0. By applying Proposition 2.2.4 for

the special choice of γ = 0, we immediately obtain that (48) has a uniquely determined solution

k̂
(n)
t ∈ [0, 1

l∗ ), t ∈ [0, T ]. Moreover, Proposition 2.2.6, Proposition 2.2.7 and Remark 2.2.8 are

especially true for γ = 0, and therefore the assertion holds. �

Proof of Theorem 2.3.2. a) Analogously to the proof of Theorem 2.2.2, we �rst investi-

gate how the investor has to choose his strategy immediately after the N -th market crash. After
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the N -th crash the investor is faced with a classical stochastic optimal control problem with

logarithmic utility function. By de�nition, the value function is given by

V 0(t, x, r) = sup
k(0)∈Π(t,x,r)

Et,x,r
(
log(XT )

)
,

where Xs denotes the wealth at time s ≥ t, that means:

dXs = Xs

[
rs + µk(0)

s

]
ds+Xsσ1k

(0)
s dw1,s, Xt = x,

drs = a(rM − rs) ds+ σ2 dw̃s, rt = r.

The corresponding HJB equation is given by

sup
k(0)∈A

Lk(0)v0(t, x, r) = 0, (t, x, r) ∈ [0, T )× R+ × R, (50)

v0(T, x, r) = log(x), (x, r) ∈ R+ × R.

The usual separation ansatz to �nd a solution of this HJB equation is to assume that v0(t, x, r) =

log(x) +W (0)(t, r), where W (0)(T, r) = 0 for all r ∈ R. Thus, the equation above reduces to

W
(0)
t (t, r) + sup

k(0)∈A

[
µk(0) − σ2

1

2
(k(0))2

]
+ r

+ a(rM − r)W (0)
r (t, r) +

σ2
2

2
W (0)
rr (t, r) = 0, (t, r) ∈ [0, T )× R,

W (0)(T, r) = 0, r ∈ R.

Now, we obtain the optimal candidate by the �rst order optimality condition:

k
(0)∗
t ≡ µ

σ2
1

,

and it remains to �nd a solution of the following partial di�erential equation (PDE)

W
(0)
t (t, r) +

σ2
2

2
W (0)
rr (t, r) + a(rM − r)W (0)

r (t, r) + r +
µ2

2σ2
1

= 0, (t, r) ∈ [0, T )× R,

W (0)(T, r) = 0, r ∈ R. (51)

Now, the Feynman-Kac Theorem (see Appendix A,Theorem A.4.1) tells us that the unique

solution of the PDE (51) can be written as a conditional expectation and we obtain that

W (0)(t, r) =
µ2

2σ2
1

(T − t) + Et,r
(∫ T

t
rs ds

)
=

(
µ2

2σ2
1

+ rM

)
(T − t) +

1

a

(
r − rM + e−a(T−t)(rM − r)

)
.

For the calculation of Et,r
(∫ T

t rs ds
)
we refer to Proposition A.1.1 in Appendix A. Thus, we

determined a solution v0(t, x, r) = log(x) + W (0)(t, r) of the HJB equation (50). Again, by

proving the assumptions of the Veri�cation Theorem A.5.2 in Appendix A, we obtain that

V 0(t, x, r) = v0(t, x, r) and that k(0)∗
t ≡ µ

σ2
1
is the optimal strategy after the N -th market crash.
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b) Analogously to the non-log HARA utility case, we can show that vn(t, x, r) given by (49) is

a solution of the system of variational inequalities:

0 ≤ sup
k∈A′′n(t,x,r)

[
Lkvn(t, x, r)

]
,

0 ≤ sup
k∈A′n(t,x,r)

[
vn−1

(
t, x(1− l∗k+), r

)
− vn(t, x, r)

]
,

0 = sup
k∈A′′n(t,x,r)

[
Lkvn(t, x, r)

]
sup

k∈A′n(t,x,r)

[
vn−1

(
t, x(1− l∗k+), r

)
− vn(t, x, r)

]
,

vn(T, x, r) = log(x), ∀(x, r) ∈ R+ × R.

Moreover, we have

k̂
(n)
t = pn(t, x, r) := arg sup

k∈A′′n(t,x,r)

[
Lkvn(t, x, r)

]
,

because the supremum is attained for k such that the condition vn(t, x, r) = vn−1(t, x(1−l∗k+), r)

is ful�lled. We refer to the Appendix 2.6.7 for details about �nding the solution vn(t, x, r) and

k̂
(n)
t . We prove that v1(t, x, r) = V 1(t, x, r) along the lines of the proof of Theorem 2.2.2.

First, for arbitrary but �xed (t, x, r) ∈ [0, T ] × R+ × R and for an arbitrary but �xed strategy

(k, (τ, l)) we have

v1(τ−, Xk,(τ,l)
τ− , rτ−)− v1(t, x, r)

=

∫ τ

t
Lksv1(s,Xk,(τ,l)

s , rs) ds

+

∫ τ

t

(
v1
x(s,Xk,(τ,l)

s , rs)σ1ksX
k,(τ,l)
s + v1

r (s,X
k,(τ,l)
s , rs)ρσ2

)
dw1,s

+

∫ τ

t
v1
r (s,X

k,(τ,l)
s , rs)

√
1− ρ2σ2 dw2,s.

By �xing ks = p1(s,X
k,(τ,l)
s− , rs) = k̂

(1)
s for t ≤ s ≤ τ , where k̂(1)

s solves (48), and by the same

arguments as in the proof of Theorem 2.2.2, we obtain by that

v1(t, x, r) ≤ v0
(
τ−, X k̂(1),(τ,l)

τ− (1− lk̂(1)
τ ), rτ−

)
−
∫ τ

t

(
v1
x(s,X k̂(1),(τ,l)

s , rs)σ1k̂
(1)
s X k̂(1),(τ,l)

s + v1
r (s,X

k̂(1),(τ,l)
s , rs)ρσ2

)
dw1,s

−
∫ τ

t
v1
r (s,X

k̂(1),(τ,l)
s , rs)

√
1− ρ2σ2 dw2,s.

Using the explicit form of the function v1(t, x, r) = log(x) +W (1)(t, r), we easily obtain that

v1
x(s, x, r)x = 1, v1

r (s, x, r) = W (1)
r (s, r) =

1

a

(
1− e−a(T−s)

)
,

and it follows that

Et,x,r,1
[∫ τ

t

(
σ1k̂

(1)
s +Wr(s, rs)ρσ2

)
dw1,s +Wr(s, rs)

√
1− ρ2σ2 dw2,s

]
= 0.
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Therefore, we have

v1(t, x, r) ≤ inf
(τ,l)

sup
k∈Π(t,x,r)

Et,x,r,1
[
v0
(
τ,X

k,(τ,l)
τ− (1− lkτ ), rτ

)]
,

v1(t, x, r) ≤ sup
k∈Π(t,x,r)

inf
(τ,l)

Et,x,r,1
[
v0
(
τ,X

k,(τ,l)
τ− (1− lkτ ), rτ

)]
.

Now, let k ∈ Π(t, x, r) be arbitrary but �xed. We �x the strategy (τ, l) = (θ, l̃), where

θ = θ1(t, x, r) and l̃ = l(1)(kθ). Note that θn(t, x, r) and l(1)(k) are de�ned in (26) and (27),

respectively. Then, by the same arguments as in the proof of Theorem 2.2.2, we obtain that

v1(t, x, r) ≥ v0(θ,X
k,(θ,l̃)
θ− (1− l̃kθ), rθ)

−
∫ θ

t

(
v1
x(s,Xk,(θ,l̃)

s , rs)σ1ksX
k,(θ,l̃)
s + v1

r (s,X
k,(θ,l̃)
s , rs)ρσ2

)
dw1,s

−
∫ θ

t
v1
r (s,X

k,(θ,l̃)
s , rs)

√
1− ρ2σ2 dw2,s.

Now, by the fact that the expectation of the stochastic integrals vanish, we obtain

v1(t, x, r) ≥ sup
k∈Π(t,x,r)

inf
(τ,l)

Et,x,r,1
[
v0(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
,

v1(t, x, r) ≥ inf
(τ,l)

sup
k∈Π(t,x,r)

Et,x,r,1
[
v0(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
.

Summing up, we obtain

v1(t, x, r) = inf
(τ,l)

sup
k∈Π(t,x,r)

Et,x,r,1
[
v0(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
= sup

k∈Π(t,x,r)
inf
(τ,l)

Et,x,r,1
[
v0(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
= sup

k∈Π(t,x,r)
inf
(τ,l)

Et,x,r,1
[
V 0(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
= V 1(t, x, r).

Note that the third equality follows by part a) and fourth equality holds because Lemma 2.2.3

also holds for the logarithmic utility function. Therefore, v1(t, x, r) = V 1(t, x, r). Using the same

arguments as above, and assuming that vn−1(t, x, r) = V n−1(t, x, r), we arrive at vn(t, x, r) =

V n(t, x, r) and it follows that k̂(n)
t , which is the solution of (48), is the worst-case optimal

investment strategy. �

Remark 2.3.4. In order to �nd a solution W (0) of the PDE (51) in part a) of the proof, we

could also use the separation ansatz W (0)(t, r) = g(0)(t) +β(t)r, where we conclude that β(t) and

g(0)(t) are given by

β(t) =
1

a

[
1− e−a(T−t)

]
, g(0)(t) =

(
µ

2σ2
1

+ rM

)
(T − t)− rM

a

(
1− e−a(T−t)

)
.

Obviously, this separation method leads to the same result

W (0)(t, r) =

(
µ2

2σ2
1

+ rM

)
(T − t) +

1

a

(
r − rM + e−a(T−t)(rM − r)

)
.



2.4. HARA UTILITY VIA MARTINGALE APPROACH 30

2.3.1. Practical implication of Theorem 2.3.2. By Theorem 2.3.2, the optimal invest-

ment strategies are determined by k(0)∗
t ≡ µ

σ2
1
after the N -th crash and by k̂(n)

t , which solves (48),

if n market crashes still can happen. Here, we can see that the worst-case optimal strategies do

not depend on the short rate as they do not depend on parameters a, rM and σ2 determining the

short rate dynamics in (2). Thus, in contrast to the non-log HARA utility case in Section 2.2, the

logarithmic utility function eliminates the stochastic interest rate risk. We can give a heuristic

explanation, for example in the 1-crash market. There, we have for arbitrary k ∈ Π(t, x, r) and

an arbitrary crash (τ, l):

X
k,(τ,l)
T = (1− lkτ )X̃k

T

where X̃k
t is the wealth process in a crash-free market starting in (t, x) and controlled by k ∈

Π(t, x, r), and therefore

Et,x,r
(

log(X
k,(τ,l)
T )

)
= E (log(1− lkτ )) + E

(
log(X̃k

T )
)

= E (log(1− lkτ )) + log(x) + E
(∫ T

t
µks −

σ2
1

2
k2
s ds

)
+ E

(∫ T

t
rs ds

)
.

Obviously, the optimal strategy k∗ ∈ Π(t, x, r) which maximizes the worst-case expected utility

of terminal wealth

inf
(τ,l)

Et,x,r,1
(

log(X
k,(τ,l)
T )

)
will neither depend on the short rate rt(ω) itself, nor on parameters which determine the short

rate equation (2), because it is not a�ected by the market crash or by control k. Moreover, it is

important to note that the worst-case optimal strategies for an investor with a logarithmic utility

function do not di�er from the strategies which are optimal on a �nancial market with constant

interest rates, see e.g. [28, 33]. The main reason is that the logarithmic utility function eliminates

the stochastic interest rate risk. As we have mentioned in Section 2.2.1, this elimination is not

possible if the investor has a non-log HARA utility function and if ρ 6= 0.

2.4. HARA utility via martingale approach

In this section we provide an alternative proof for part b) of Theorem 2.2.2 using the so-called

martingale approach. Recently, this method has been introduced by Seifried [44] for worst-case

optimization problems in �nancial markets with constant interest rates. It is based on inter-

preting the worst-case optimization problem as a controller vs. stopper game. Moreover, the

martingale approach was also used by Desmettre et al. [10], where a worst-case lifetime con-

sumption problem is solved. If there can happen at most one market crash on the time interval,

the method contains three main steps: First, the post-crash optimization problem is solved by

using standard stochastic optimal control theory. In our case, this step corresponds to part a)

of Theorem 2.2.2. Afterwards, they can reformulate the problem as a pre-crash problem which

can be interpreted as a controller vs. stopper game. Finally, using the notion of indi�erence

strategies and indi�erence frontier (for the detailed de�nition we refer to [44] or to De�nition

2.4.1 below), they can determine the optimal pre-crash strategy.
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Here, we build on the martingale approach and the ideas in [44] and consider the worst-case

optimization problem (8). Note that -in contrast to the literature- we have to handle the in�u-

ence of the stochastic instantaneous interest rates. First, we demonstrate the three steps of the

method for N = 1 and, using this result, we show that we can recursively apply the martingale

approach in order to provide an alternative proof for Theorem 2.2.2.

2.4.1. Martingale approach for N = 1. We consider the �nancial market model de-

scribed in Section 2.1 for the special case N = 1 and for U(x) = 1
γx

γ . The solution of the

corresponding worst-case optimization problem was published by Engler and Korn [14]. We as-

sume that at most one market crash, denoted by (τ, l), can happen on the �nite time interval

[0, T ]. Again, τ is a [0, T ] ∪ {∞}-valued stopping time and the crash size l ∈ [0, l∗] is a Fτ -
measurable random variable. Note that the event τ = ∞ means that no crash happens at all.

Analogously to the wealth equation (7), given an admissible control k = (k(0), k(1)) and a crash

strategy (τ, l), we formulate the SDE for the investor's wealth Xk,(τ,l) in the following way:

X
k,(τ,l)
0 = x0 > 0,

dX
k,(τ,l)
t = X

k,(τ,l)
t

[
rt + µk

(1)
t

]
dt+X

k,(τ,l)
t σ1k

(1)
t dw1,t, t ∈ (0, τ),

Xk,(τ,l)
τ = (1− lk(1)

τ )Xk,(τ,l)
τ− ,

dX
k,(τ,l)
t = X

k,(τ,l)
t

[
rt + µk

(0)
t

]
dt+X

k,(τ,l)
t σ1k

(0)
t dw1,t, t ∈ (τ, T ].

Due to the fact that we consider a one-crash market, k(1) is called pre-crash strategy, which is

valid for t ∈ [0, τ ] and k(0) is called post-crash strategy, valid for t ∈ (τ, T ]. Now, problem (8)

simpli�es for N = 1 to

sup
k∈Π(0,x0,r0)

inf
(τ,l)∈C

E
(

1

γ

(
X
k,(τ,l)
T

)γ)
, γ < 1, γ 6= 0, (52)

where C denotes the set of crash scenarios (τ, l):

C :={(τ, l) : τ ∈ [0, T ] ∪ {∞} stopping time,

l ∈ [0, l∗]Fτ −measurable random variable}.

In Section 2.2, we applied the classical DPP to prove part a) of Theorem 2.2.2 and to determine

the optimal post-crash strategy k(0)∗ and the corresponding post-crash value function V 0(t, x, r),

which are given by:

k
(0)∗
t =

µ

(1− γ)σ2
1

+
ρσ2β(t)

(1− γ)σ1
, V 0(t, x, r) =

1

γ
xγg(0)(t) exp(β(t)r). (53)

Instead of solving the HJB-inequality system, here, we determine the optimal pre-crash strategy

k(1)∗ by using the post-crash value function V 0(t, x, r) and by applying the following ideas, which

have already been applied in the case of constant interest rates (see, e.g. [10, 26, 44]). Using

the explicit structure of the post-crash value function V 0, we �rst reformulate problem (52) as

a pre-crash problem, which can be rewritten as a controller vs. stopper game. Afterwards, we

identify the optimal pre-crash strategy k(1)∗ via a combination of the principle of the indi�erence

frontier and the solution of a constrained control problem. These steps lead to an alternative
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proof of part b) of Theorem 2.2.2 for N = 1.

Let X̃k = {X̃k
t }t∈[0,T ] be the wealth process in a crash-free market controlled by an arbitrary

admissible pre-crash strategy k. That means, X̃k is the uniquely determined solution of the

following SDE for t ∈ [0, T ]:

dX̃k
t = X̃k

t [rt + µkt] dt+ X̃k
t σ1kt dw1,t, X̃k

0 = x0,

where r = {rt}t∈[0,T ] solves (2).

At the crash time τ the investor's wealth equals x = (1 − lk(1)
τ )X

k,(τ,l)
τ− = (1 − lk(1)

τ )X̃k(1)
τ and

the short rate is denoted by r = rτ . Then, by Lemma 2.2.3, we can reformulate the worst-case

optimization problem (52) as a pre-crash problem:

sup
k(1)∈Π(0,x0,r0)

inf
(τ,l)∈C

E
(
V 0(τ, X̃k(1)

τ (1− lk(1)
τ ), rτ )

)
.

Since V 0(t, x, r) is strictly monotone increasing with respect to x, the worst-case crash size is

l = 0 if k(1)
τ < 0 and it is l = l∗ if k(1)

τ ≥ 0. This, can also be seen from a practical point of

view. If the investor has a negative position in the stock, he would bene�t from a positive crash

height at the crash time. Thus, the worst-case for the investor is a jump of size zero. On the

other hand, if the investor holds the stock at the crash time, then the worst-case crash size is

given by the maximum crash size l∗. Thus, we have for a �xed crash time τ :

V 0(τ, X̃k(1)

τ (1− lk(1)
τ ), rτ ) ≥ V 0(τ, X̃k(1)

τ (1− l∗(k(1)
τ )+), rτ ), ∀l ∈ [0, l∗].

Therefore, the worst-case optimization problem (52) can be rewritten as a controller vs. stopper

game of the form:

sup
k(1)∈Π(0,x0,r0)

inf
τ∈C

E
(
Mk(1)

τ

)
, where Mk

t := V 0(t, X̃k
t (1− l∗(kt)+), rt). (54)

Here, the investor takes the role of the controller, who chooses his strategy k(1), and the market

takes the role of the stopper, who chooses the crash time τ . Now, the aim is to solve this

controller vs. stopper game. As already mentioned above, Korn and Seifried [26] and Seifried

[44] used the notion indi�erence to determine the optimal pre-crash strategy for a model with

a constant interest rate. For the reader's convenience we give the de�nition of an indi�erence

strategy here, which can also be found in [44, Chp. 4.1].

Definition 2.4.1 (Indi�erence Strategy, cf. Seifried [44]). A pre-crash strategy k is called indif-

ference strategy if for two stopping times τ, τ ′ it holds

E
(
Mk
τ

)
= E

(
Mk
τ ′

)
.

If the investor applies an indi�erence strategy before the market crash, then he is indi�erent with

respect to the crash time because he always reaches the same performance. In the next step, we

show that k̂(1), which is the uniquely determined solution of ODE (13), is an indi�erence strategy.
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Lemma 2.4.2 (cf. [14]). Let k̂(1) be the uniquely determined solution of the following ODE:

k̇
(1)
t =

1− l∗k(1)
t

l∗

(
φ(t, k

(1)
t )− φ(t, k

(0)∗
t )

)
, k

(1)
T = 0, (55)

φ(t, k) = (µ+ ρσ1σ2β(t))k − σ2
1

2
(1− γ)k2,

and let Mk = {Mk
t }t∈[0,T ] be given by (54) for t ∈ [0, T ] and Mk

∞ := V 0(T, X̃k
T , rT ). Then M k̂(1)

is a martingale on [0, T ] ∪ {∞} and k̂(1) is an indi�erence strategy for the controller vs. stopper

game (54).

Remark 2.4.3. Note that (55) is equal to (13) for n = 1, and obviously, Proposition 2.2.4

remains valid and it holds k̂
(1)
t ∈ [0, 1

l∗ ) for all t ∈ [0, T ]. Thus, k̂(1) is an admissible strategy in

the sense of De�nition 2.1.1.

Proof of Lemma 2.4.2. Throughout the proof we abbreviate k̂(1) by k̂. As in [44], we use

a martingale argument to prove the assertion. The proof will be divided into two steps. First,

we show that M k̂ is a martingale on [0, T ]∪{∞}, and then, we obtain the assertion by applying

Doob's Optional Sampling Theorem.

By applying Ito's formula, by V 0(t, x, r) = 1
γx

γW (t, r), with W (t, r) = g(0)(t) exp(β(t)r), and

by the fact that k̂+
t = k̂t we get:

dM k̂
t =d

(
V 0(t, X̃ k̂

t (1− l∗k̂t), rt)
)

=
1

γ
(X̃ k̂

t )γ(1− l∗k̂t)γ{
γ
−l∗

(1− l∗k̂t)
˙̂
ktW (t, rt)

+ γ

(
µk̂t −

σ2
1

2
(1− γ)k̂2

t + ρσ1σ2k̂t
Wr(t, rt)

W (t, rt)

)
W (t, rt)

+Wt(t, rt) +
σ2

2

2
Wrr(t, rt) + a(rM − rt)Wr(t, rt) + γrtW (t, rt)

}
dt

+
1

γ
(X̃ k̂

t )γ(1− l∗k̂t)γ{(
γσ1k̂tW (t, rt) + ρσ2Wr(t, rt)

)
dw1,t +

√
1− ρ2σ2Wr(t, rt) dw2,t

}
.

From the post-crash problem (see proof of part a) of Theorem 2.2.2) we have that W (t, r) solves

equation (19), and therefore, we have

Wt(t, rt)+
σ2

2

2
Wrr(t, rt) + a(rM − rt)Wr(t, rt) + γrtW (t, rt)

= −γφ(t, k
(0)∗
t )W (t, rt),

and

dM k̂
t =

1

γ
(X̃ k̂

t )γ(1− l∗k̂t)γW (t, rt)

{
γ
−l∗

(1− l∗k̂t)
˙̂
kt + γ

(
φ(t, k̂t)− φ(t, k

(0)∗
t )

)}
dt

+
1

γ
(X̃ k̂

t )γ(1− l∗k̂t)γW (t, rt)
{(
γσ1k̂t + ρσ2β(t)

)
dw1,t +

√
1− ρ2σ2β(t) dw2,t

}
.
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Because of the fact that k̂t ful�lls (55), it remains to show that:

dM k̂
t =

1

γ
(X̃ k̂

t )γ(1− l∗k̂t)γW (t, rt)︸ ︷︷ ︸
=M k̂

t

·
{(
γσ1k̂t + ρσ2β(t)

)
dw1,t +

√
1− ρ2σ2β(t) dw2,t

}

is a martingale. The solution of this SDE is given by

M k̂
t = M k̂

0︸︷︷︸
const

· exp

(∫ t

0

(
γσ1k̂s + ρσ2β(s)

)
dw1,s +

∫ t

0

√
1− ρ2σ2β(s) dw2,s

− 1

2

∫ t

0
(γσ1k̂s + ρσ2β(s))2 + (1− ρ2)σ2

2β
2(s) ds

)
.

By Novikov's condition (see e.g. [21, Chp.3,Corollary 5.13]), the second factor is a martingale

and therefore M k̂ is a martingale on [0, T ]. It remains to show, that

E
(
M k̂
∞|FT

)
= M k̂

T .

By de�nition of Mk
∞ and by the terminal condition of ODE (55), given by k̂T = 0, we have

E
(
M k̂
∞|FT

)
= E

V 0(T, X̃ k̂
T , rT )︸ ︷︷ ︸

FT−measurable

|FT

 = V 0(T, X̃ k̂
T , rT ) = M k̂

T .

Thus,M k̂ is a martingale on [0, T ]∪{∞}. By Doob's Optional Sampling Theorem (see Appendix

A, Theorem A.4.7), we obtain

E
(
M k̂
τ

)
= E

(
M k̂
τ ′

)
for all [0, T ] ∪ {∞}-valued stopping times τ, τ ′. By de�nition, k̂(1) is an indi�erence strategy for

the controller vs. stopper game (54). �

Now, we use the notion of an indi�erence frontier (see for example [26, p.343]), which leads to

the fact that the optimal strategy of the controller vs. stopper game (54) has to be an element

of a certain class of admissible strategies:

Let k(1) ∈ Π be an arbitrary admissible pre-crash strategy and let k̂(1) be the solution of ODE

(55), thenM k̂(1) is a martingale on [0, T ]∪{∞} by Lemma 2.4.2. De�ne η := inf{t ≥ 0 : kt > k̂t}
and

k̃t :=

k
(1)
t : t < η

k̂
(1)
t : t ≥ η

.

Then, as in [26, Lemma 4.3], we obtain by the martingale property of M k̂(1) and by continuity

of k(1) (see condition 4 in De�nition 2.1.1) that

inf
τ∈C

E
(
M k̃
τ

)
≥ inf

τ∈C
E
(
Mk(1)

τ

)
.

The inequality implies that it is su�cient to consider pre-crash strategies k(1) for which k(1)
t ≤ k̂

(1)
t

for all t ∈ [0, T ]. The optimal strategy cannot cross the indi�erence frontier k̂(1), because one

could improve its performance by cutting it o� at k̂(1), and therefore it would not be optimal.
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Thus, the optimal pre-crash strategy is an element of the set

A(k̂(1)) :=
{
k(1) ∈ Π : k

(1)
t ≤ k̂

(1)
t , ∀ t ∈ [0, T ]

}
.

Note that the indi�erence frontier k̂(1) prevents the investor from too optimistic investment in

the stock which is threatened by a market crash. The next Lemma shows that k(1)∗
t = k̂

(1)
t ∧k

(0)∗
t ,

is optimal in the no-crash scenario, denoted by τ =∞, in the class A(k̂(1)).

Lemma 2.4.4 (cf. [14]). Let k(0)∗ be given by (53), and let k̂(1) be the uniquely determined

indi�erence strategy as a solution of ODE (55). Then, the solution of the constrained stochastic

optimal control problem:

sup
kt≤k̂(1)t ,t∈[0,T ]

E
(

1

γ
(X̃k

T )γ
)
,

w.r.t dX̃k
s = X̃k

s [rs + µks] ds+ X̃k
s σ1ks dw1,s, X̃0 = x0,

drs = a(rM − rs) ds+ σ2 dw̃s, r0 = r0,

is given by k
(1)∗
t = k̂

(1)
t ∧ k

(0)∗
t .

Proof. Let Ṽ (t, x, r) denote the value function of the constrained stochastic optimal control

problem above. Here, we use again DPP and solve the corresponding HJB equation which is

given by:

sup
k≤k̂(1)t

Lkṽ(t, x, r) = 0, (t, x, r) ∈ [0, T ]× R+ × R,

ṽ(T, x, r) =
1

γ
xγ , (x, r) ∈ R+ × R.

By the standard separation method ṽ(t, x, r) = 1
γx

γ g̃(t) exp( ˜β(t)r) with g̃(t) > 0 for t ∈ [0, T ],

g̃(T ) = 1 and β̃(T ) = 0, we reduce the HJB equation above to:

˙̃g(t) + [
˙̃
β(t)− aβ̃(t) + γ]g̃(t)r + [arM β̃(t) +

σ2
2

2
β̃2(t)]g̃(t)

+ γ sup
k≤k̂(1)t

[
g̃(t)

(
(µ+ ρσ1σ2β̃(t))k − σ2

1

2
(1− γ)k2

)]
= 0, (t, r) ∈ [0, T ]× R,

g̃(T ) = 1, β̃(T ) = 0.

Now, by the �rst order optimality condition, we obtain a candidate for the optimal control

k
(1)∗
t =

(
µ

(1− γ)σ2
1

+
ρσ2β̃(t)

(1− γ)σ1

)
∧ k̂(1)

t . (56)

In order to eliminate the space variable r, we choose

β̃(t) =
γ

a
[1− exp(−a(T − t))] = β(t).
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Inserting both k(1)∗
t and β̃(t) we arrive at an ODE for g̃(t):

˙̃g(t) + g̃(t)

(
γ(µ+ ρσ1σ2β̃(t))k

(1)∗
t − σ2

1

2
γ(1− γ)(k

(1)∗
t )2

+ arM β̃(t) +
σ2

2

2
β̃2(t)

)
= 0, g̃(T ) = 1.

Now, we have

g̃(t) = exp

(∫ T

t
α̃(s) ds

)
,

α̃(s) : = γ(µ+ ρσ1σ2β̃(s))k(1)∗
s − σ2

1

2
γ(1− γ)(k(1)∗

s )2 + arM β̃(s) +
σ2

2

2
β̃2(s).

By (56) and by the fact that β̃(t) = β(t) we obtain that

k
(1)∗
t =

(
µ

(1− γ)σ2
1

+
ρσ2β(t)

(1− γ)σ1

)
∧ k̂(1)

t = k
(0)∗
t ∧ k̂(1)

t

is a deterministic and continuous function in t, since k̂t is deterministic and continuous.

Finally, we have that

ṽ(t, x, r) =
1

γ
xγ g̃(t) exp(β(t)r)

solves the HJB equation which corresponds to the constrained optimization problem. Using the

same arguments for the veri�cation result as in [24, Corollary 3.2], we conclude that k(1)∗
t =

k̂
(1)
t ∧ k

(0)∗
t is indeed the optimal control of the constrained optimization problem. �

Using Lemma 2.4.2, the idea of the indi�erence frontier and Lemma 2.4.4, we provide an alterna-

tive proof of part b) of Theorem 2.2.2 for N = 1, that means, we show that k(1)∗
t is the optimal

strategy for the controller vs. stopper game (54).

Alternative Proof of Theorem 2.2.2 for N = 1, cf.[14].

First, we de�ne

tS := inf{t ∈ [0, T ] : k
(0)∗
t ≥ k̂(1)

t }.

Since k̂(1)
T = 0 and k(0)∗

T > 0 the in�mum is attained at tS < T , which is the point of intersection

of k̂(1)
t and k(0)∗

t (if it exists).

Now, let us consider the stochastic process Mk(1)∗ on the interval [tS , T ]. For t ∈ [tS , T ], it holds

k
(1)∗
t = k̂

(1)
t ∧ k

(0)∗
t = k̂

(1)
t . In Lemma 2.4.2, we already proved that M k̂(1) is a martingale on

[0, T ] ∪ {∞}, and therefore, Mk(1)∗ is a martingale on [tS , T ] ∪ {∞}. Note that if tS = 0, that

means k(0)∗
t ≥ k̂

(1)
t for all t ∈ [0, T ], then Mk(1)∗ is a martingale on [0, T ] ∪ {∞}. In particular,

this is the case if γρ ≥ 0 (see Proposition 2.2.7).

Now, let γρ < 0 and assume that tS > 0, that means there exists a (uniquely determined)

intersection point of k̂(1)
t and k(0)∗

t , denoted by tS . Moreover, let us de�ne

t0 := inf{t ∈ [0, T ] : k
(0)∗
t ≥ 0}.

If t0 > 0, then t0 denotes the uniquely determined root of k(0)∗
t because it is strictly monotone

increasing for γρ < 0.

Let us consider the stochastic process Mk(1)∗ on the interval [t0, tS ]. For t ∈ [t0, tS ] it holds
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k
(1)∗
t = k

(0)∗
t and we have

dMk(1)∗
t = Mk(1)∗

t ·

{
−γ l∗

1− l∗k(0)∗
t

k̇
(0)∗
t + γφ(t, k

(0)∗
t )− γφ(t, k

(0)∗
t )

}
dt

+Mk(1)∗
t ·

{
(γσ1k

(0)∗
t + ρσ2β(t))dw1,t +

√
1− ρ2σ2β(t) dw2,t

}
.

With

k̇
(0)∗
t =

ρσ2

σ1(1− γ)
(−γ exp(−a(T − t)))

we obtain

Mk(1)∗
t =Mk(1)∗

t0 · exp

{∫ t

t0

γ2 l∗

1− l∗k(0)∗
s

· ρσ2

σ1(1− γ)
exp(−a(T − s)) ds

}

· exp

{
− 1

2

∫ t

t0

(γσ1k
(0)∗
s + ρσ2β(s))2 + (1− ρ2)σ2

2β
2(s) ds

+

∫ t

t0

(γσ1k
(0)∗
s + ρσ2β(s))dw1,s +

√
1− ρ2σ2β(s) dw2,s

}
.

Now, by Novikov's condition, the last factor is a martingale on [t0, tS ]. As further, Mk(1)∗
t0 is

Fs-measurable for s ≥ t0, we have for t0 ≤ s ≤ t ≤ tS :

E
(
Mk(1)∗
t |Fs

)
= Mk(1)∗

t0 · exp

{
ρ

∫ t

t0

γ2 l∗

1− l∗k(0)∗
u

· σ2

σ1(1− γ)
exp(−a(T − u)) du

}

· exp

{
− 1

2

∫ s

t0

(γσ1k
(0)∗
u + ρσ2β(u))2 + (1− ρ2)σ2

2β
2(u) du

+

∫ s

t0

(γσ1k
(0)∗
u + ρσ2β(u))dw1,u +

√
1− ρ2σ2β(u) dw2,u

}
≤Mk(1)∗

t0 · exp

{
ρ

∫ s

t0

γ2 l∗

1− l∗k(0)∗
u

· σ2

σ1(1− γ)
exp(−a(T − u)) du

}

· exp

{
− 1

2

∫ s

t0

(γσ1k
(0)∗
u + ρσ2β(u))2 + (1− ρ2)σ2

2β
2(u) du

+

∫ s

t0

(γσ1k
(0)∗
u + ρσ2β(u))dw1,u +

√
1− ρ2σ2β(u) dw2,u

}
= Mk(1)∗

s .

The inequality above holds because of two arguments: First, we observe that k(0)∗
u ≤ k̂

(1)
u < 1

l∗

for u ∈ [t0, tS ] and therefore, the integrand of the deterministic integral is positive. Secondly,

we only have to consider the cases γ > 0, ρ < 0 and γ < 0, ρ > 0 (because of γρ < 0) for the

estimate of the deterministic integral. For both of these cases we easily obtain that:

Mk(1)∗
t0 exp

{
ρ

∫ t

t0

. . . du

}
< Mk(1)∗

t0 exp

{
ρ

∫ s

t0

. . . du

}
,
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for s ≤ t, because Mk(1)∗
t0 > 0 if γ > 0 and Mk(1)∗

t0 < 0 if γ < 0. The arguments above imply

that E
(
Mk(1)∗
t |Fs

)
≤ Mk(1)∗

s for t0 ≤ s ≤ t ≤ tS . Therefore, Mk(1)∗ is a supermartingale on

[t0, tS ]. If t0 = 0, we obtain, together with the martingale property on [tS , T ], that Mk(1)∗ is a

supermartingale on [0, T ] ∪ {∞}.
Otherwise if t0 > 0, then we have to consider Mk(1)∗ on the interval [0, t0]. By de�nition of t0
we have that k(0)∗

t ≤ 0, and therefore k(1)∗
t = k

(0)∗
t ≤ 0 for t ∈ [0, t0]. For t ∈ [0, t0], we obtain:

dMk(1)∗
t = d

(
V 0(t, X̃k(1)∗

t , rt)
)

= Mk(1)∗
t

{
(γσ1k

(0)∗
t + ρσ2β(t))dw1,t +

√
1− ρ2σ2β(t) dw2,t

}
.

Again, by Novikov's condition, we obtain that Mk(1)∗ is a martingale on [0, t0].

Finally, Mk(1)∗ is a supermartingale on [0, T ] ∪ {∞} (if γρ ≥ 0, it is even a martingale on

[0, T ]∪{∞}). Again, by Doob's Optional Sampling Theorem for supermartingales, see Theorem

A.4.7, we have for all τ ∈ [0, T ] ∪ {∞}:

Mk(1)∗
τ ≥ E

(
Mk(1)∗
∞ |Fτ

)
and therefore

E
(
Mk(1)∗
τ

)
≥ E

(
Mk(1)∗
∞

)
, (57)

for all [0, T ] ∪ {∞}-valued stopping times τ . The inequality implies that τ =∞ is a worst-case

scenario for an investor who follows the strategy k(1)∗
t = k̂

(1)
t ∧ k

(0)∗
t .

Analogously to the Indi�erence Optimality Principle in [26] and [44], we obtain

inf
τ∈C

E
(
Mk(1)∗
τ

) (57)

≥ E
(
Mk(1)∗
∞

)
≥ E

(
Mk
∞

)
≥ inf

τ∈C
E
(
Mk
τ

)
. (58)

for an arbitrary pre-crash strategy k ∈ A(k̂(1)) The second inequality holds, because k(1)∗ is

optimal in the no-crash scenario in the class A(k̂(1)) (see Lemma 2.4.4). By inequality (58),

k(1)∗ is the optimal strategy for the controller vs. stopper game in the class A(k̂(1)). Due to

the indi�erence frontier, that means, due to the fact that the optimal strategy is an element of

A(k̂(1)), we obtain that k(1)∗ is the optimal pre-crash strategy for the worst-case optimization

problem (52). �

The proof above implies that we can also determine the optimal pre-crash strategy by applying

the martingale approach. In the next section, we apply the three key steps of this section in a

recursive way.

2.4.2. The recursive application of the martingale approach for N > 1. Here, we

consider the general worst-case optimization problem (8) again:

sup
k∈Π(0,x0,r0)

inf
M∈N (0,N)

E
(
U(Xk,M

T )
)
.

After the (N − 1)-th market crash the investor has to `solve' a worst-case optimization problem

of the form (52) with at most one market crash. From the previous section, we already know

that after the (N − 1)-th market crash it is optimal to follow the strategy (k(1)∗, k(0)∗), where

k
(1)∗
t = k̂

(1)
t ∧ k

(0)∗
t is valid before the next market crash at τN and k(0)∗ is valid after τN . Now,

using this optimal strategy, we additionally calculate the corresponding value function V 1(t, x, r),
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which re�ects the worst-case optimal utility if the process Xk,M starts in t with value x and the

short rate process starts in r and at most one crash still can happen.

By de�nition, it holds:

V 1(t, x, r) = sup
k∈Π(t,x,r)

inf
M∈N (t,1)

Et,x,r,1
(
U(Xk,M

T )
)
.

Note that V 1 was already determined in Section 2.2 as a solution of a HJB inequality sys-

tem. Here, we demonstrate how to �nd V 1(t, x, r) directly, using that we already know that

(k(1)∗, k(0)∗) is optimal and by using the value function V 0, which is known from part a) of

Theorem 2.2.2. Let (t, x, r) ∈ [0, T ]× R+ × R be arbitrary but �xed.

By Lemma 2.2.3 it holds

V 1(t, x, r) = sup
k∈Π(t,x,r)

inf
M∈N (t,1)

Et,x,r,1
(
U(Xk,M

T )
)

= sup
k∈Π(t,x,r)

inf
(τ,l)

Et,x,r
(
V 0(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

)
.

Now, by the fact that k(1)∗ is the worst-case optimal strategy if one crash still can happen, we

obtain

V 1(t, x, r) = inf
(τ,l)

Et,x,r
(
V 0(τ,X

k(1)∗,(τ,l)
τ− (1− lk(1)∗

τ ), rτ )
)

= inf
τ
Et,x,r

(
V 0(τ,X

k(1)∗,(τ,l)
τ− (1− l∗(k(1)∗

τ )+), rτ )
)

= inf
τ
Et,x,r

(
V 0(τ, X̃k(1)∗

τ (1− l∗(k(1)∗
τ )+), rτ )

)
= inf

τ
Et,x,r

(
Mk(1)∗
τ

)
.

Here, the second equality holds, because V 0 is monotone increasing in the second component.

Moreover, X̃k(1)∗ denotes the wealth process in a crash-free market which starts in x at time t

and is controlled by k(1)∗. Moreover, (τ, l) = (τN , lN ) denotes the �rst intervention of the market

after time t. The third equality holds by de�nition of Mk
t (see (54)). The alternative proof of

Theorem 2.2.2 in Section 2.4.1 implies thatMk(1)∗ is a supermartingale on [t, T ]∪{∞}. Together
with Theorem A.4.7, we obtain for all [t, T ] ∪ {∞}-valued stopping times τ that

E
(
Mk(1)∗
τ

)
≥ E

(
Mk(1)∗
∞

)
.

Since it is clear that the processes {X̃k
s }s∈[t,T ] and {rs}s∈[t,T ] start in x and r at time t, respec-

tively, we write E instead of Et,x,r. Now, we obtain by the inequality above and by de�nition of

Mk
∞ (see Lemma 2.4.2):

V 1(t, x, r) = inf
τ
E
(
Mk(1)∗
τ

)
= E

(
Mk(1)∗
∞

)
= E

(
V 0(T, X̃k(1)∗

T , rT )
)

= E
(

1

γ

(
X̃k(1)∗
T

)γ)
.
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Using Ito's formula, it follows that

E
(

1

γ
(X̃k(1)∗

T )γ
)

=
1

γ
xγE

(
exp

{
γ

∫ T

t
rs ds+ γ

∫ T

t
µk(1)∗

s − σ2
1

2
(k(1)∗
s )2 ds+ γ

∫ T

t
σ1k

(1)∗
s dw1,s

})
.

From Proposition A.1.1 in Appendix A, we know that

γ

∫ T

t
rs ds =γ

r

a
(1− e−a(T−t)) + γrM

(
(T − t)− 1− e−a(T−t)

a

)

+

∫ T

t
σ2β(s) (ρdw1,s +

√
1− ρ2dw2,s).

Therefore

E
(

1

γ

(
X̃k(1)∗
T

)γ)
=

1

γ
xγ exp

{∫ T

t
γµk(1)∗

s − σ2
1

2
γ(k(1)∗

s )2 ds

+ γ
r

a
(1− e−a(T−t)) + γrM

(
(T − t)− 1− e−a(T−t)

a

)}

· E

exp


∫ T

t
γσ1k

(1)∗
s + ρσ2β(s) dw1,s︸ ︷︷ ︸

=:I1

+

∫ T

t

√
1− ρ2σ2β(s) dw2,s︸ ︷︷ ︸

=:I2


 .

Since w1 and w2 are independent Wiener processes, we obtain

E (exp{I1 + I2}) = E (exp(I1))E (exp(I2)) .

Due to deterministic and bounded integrands of I1 and I2, we have that the stochastic integrals

I1 and I2 are normally distributed random variables (note that t is assumed to be �xed). Thus

E (exp(I1)) = exp

(
E(I1) +

1

2
V ar(I1)

)
= exp

(∫ T

t
γ2σ

2
1

2
(k(1)∗
s )2 + ρ2σ

2
2

2
β2(s) + ρσ1σ2γβ(s)k(1)∗

s ds

)
,

and

E (exp(I2)) = exp

(∫ T

t
(1− ρ2)

σ2
2

2
β2(s) ds

)
,

and,

E
(

1

γ

(
X̃k(1)∗
T

)γ)
=

1

γ
xγ exp

(∫ T

t
γ(µ+ ρσ1σ2β(s))k(1)∗

s − σ2
1

2
γ(1− γ)(k(1)∗

s )2 ds

+

∫ T

t
arMβ(s) +

σ2
2

2
β2(s) ds

)
exp(β(t)r),
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and, we obtain the value function V 1(t, x, r) directly:

V 1(t, x, r) =
1

γ
xγg(1)(t) exp(β(t)r),

where g(1)(t) solves (15) for n = 1. This result coincides with the result of Theorem 2.2.2. Thus,

using the supermartingale property of the process Mk(1)∗ we are able to determine the value

function V 1(t, x, r) in an explicit form.

Hence, with V 1(t, x, r) and the same procedure as in Section 2.4.1, we determine the worst-case

optimal strategy k(2)∗, which is valid after the (N−2)-th market crash, denoted by (τN−2, lN−2).

Note that in comparison to Section 2.4.1, V 1 takes the role of V 0.

After the (N − 2)-th market crash the investor is faced with a worst-case optimization problem

with at most two market crashes. Again, let (t, x, r) ∈ [0, T ] × R+ × R be arbitrary but �xed

and assume that at time t there can still happen at most two market crashes and Xk,M
t = x

and rt = r. Then, the aim is to determine the optimal strategy k∗ = (k(0)∗, k(1)∗, k(2)∗) which is

worst-case optimal for

sup
k∈Π(t,x,r)

inf
M∈N (t,2)

Et,x,r,2
(
U(Xk,M

T )
)
. (59)

Lemma 2.2.3 implies that (59) is equal to:

sup
k∈Π(t,x,r)

inf
(τ,l)

Et,x,r,2
(
V 1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

)
. (60)

Here, (τ, l) = (τN−1, lN−1) denotes again the �rst intervention of the market after time t. Since

V 1 is monotone increasing in its second component, (60) is equal to

sup
k(2)∈Π(t,x,r)

inf
τ
Et,x,r,2

(
V 1(τ,X

k(2),(τ,l)
τ− (1− l∗(k(2)

τ )+), rτ )
)

= sup
k(2)∈Π(t,x,r)

inf
τ
Et,x,r,2

(
V 1(τ, X̃k(2)

τ (1− l∗(k(2)
τ )+), rτ )

)
,

where X̃k(2) denotes the wealth process in a crash-free market controlled by k(2)with X̃k(2)
t = x

and rt = r. Now, let us de�ne

1M
k
s := V 1(s, X̃k

s (1− l∗(ks)+), rs), for s ∈ [t, T ], 1M
k
∞ := V 1(T, X̃k

T , rT ).

We reformulate the worst-case optimization problem with at most two market crashes (59) as a

pre-crash problem of the form

sup
k(2)∈Π(t,x,r)

inf
τ
E
(

1M
k(2)

τ

)
, (61)

where the pre-crash strategy is k(2). We use that the optimal post-crash strategy (k(1)∗, k(0)∗)

and the post-crash value function V 1(t, x, r) are already given. Here, the notion `post-crash'

stands for the time after the market crash (τN−1, lN−1). The idea to solve the controller vs.

stopper game (61) is the same as in the one-crash case in Section 2.4.1. First, we determine a

strategy k̂(2) such that the process 1M
k̂(2) is a martingale on [t, T ] ∪ {∞}.
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Assume that k̂(2) is the uniquely determined solution of

k̇
(2)
t =

1− l∗k(2)
t

l∗

(
φ(t, k

(2)
t )− φ(t, k

(1)∗
t )

)
, k

(2)
T = 0,

then, 1M
k̂(2) is a martingale on [t, T ] ∪ {∞}. This assertion is the analogue of the assertion in

Lemma 2.4.2. We obtain the martingale property by the following arguments:

Using V 1(t, x, r) = 1
γx

γW (1)(t, r), W (1)(t, r) = g(1)(t) exp(β(t)r), the fact that k̂(2)
s ≥ 0 and by

Ito's formula we obtain for s ∈ [t, T ]:

d
(

1M
k̂(2)

s

)
=d
(
V 1(s, X̃ k̂(2)

s (1− l∗k̂(2)
s ), rs)

)
=

1

γ
(X̃ k̂(2)

s )γ(1− l∗k̂(2)
s )γ{

γ
−l∗

(1− l∗k̂(2)
s )

˙̂
k(2)
s g(1)(s) exp(β(s)rs) + γφ(t, k̂(2)

s ) g(1)(s) exp(β(s)rs)

+ ġ(1)(s) exp(β(s)rs) + β̇(s)rg(1)(s) exp(β(s)rs)

+
σ2

2

2
β2(s)g(1)(s) exp(β(s)rs) + a(rM − rs)β(s)g(1)(s) exp(β(s)rs)

+ γrsg
(1)(s) exp(β(s)rs)

}
ds

+
1

γ
(X̃ k̂(2)

s )γ(1− l∗k̂(2)
s )γW (1)(s, rs){(

γσ1k̂
(2)
s + ρσ2β(s)

)
dw1,s +

√
1− ρ2σ2β(s) dw2,s

}
.

Using that g(1)(s) solves (15) for n = 1 and using that β(s) is a solution of

β̇(s)− aβ(s) + γ = 0, β(T ) = 0,

we have

d
(

1M
k̂(2)

s

)
=

1

γ
(X̃ k̂(2)

s )γ(1− l∗k̂(2)
s )γW (1)(s, rs){

γ
−l∗

(1− l∗k̂(2)
s )

˙̂
k(2)
s + γ(φ(t, k̂(2)

s )− φ(t, k(1)∗
s )

}
ds

+
1

γ
(X̃ k̂(2)

s )γ(1− l∗k̂(2)
s )γW (1)(t, rs){(

γσ1k̂
(2)
s + ρσ2β(s)

)
dw1,s +

√
1− ρ2σ2β(s) dw2,s

}
=1M

k̂(2)

s

{(
γσ1k̂

(2)
s + ρσ2β(s)

)
dw1,s +

√
1− ρ2σ2β(s) dw2,s

}
.

By Novikov's condition, it follows that the process 1M
k̂(2) is a martingale on [t, T ]. The martin-

gale property between T and ∞ holds because k̂(2)
T = 0 and

E
(

1M
k̂(2)

∞ |FT
)

= E

V 1(T, X̃ k̂(2)

T , rT )︸ ︷︷ ︸
FT−measurable

|FT

 = V 1(T, X̃ k̂(2)

T , rT ) = 1M
k̂(2)

T .
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This shows that 1M
k̂2 is a martingale on [t, T ]∪{∞}. Doob's Optional Sampling Theorem again

implies

E
(

1M
k̂(2)

τ

)
= E

(
1M

k̂(2)

τ ′

)
,

for all [t, T ] ∪ {∞}-valued stopping times τ, τ ′. By de�nition, k̂(2) is an indi�erence strategy for

the controller vs. stopper game (61). Analogously to the construction of an indi�erence frontier

on page 34, we conclude that the optimal strategy k(2)∗ has to be an element of the set

A(k̂(2)) = {k(2) ∈ Π : k(2)
s ≤ k̂(2)

s ,∀s ∈ [t, T ]}.

Now, let us determine the optimal strategy in the no-crash scenario τ =∞ in the class A(k̂(2))

for the controller vs. stopper game (61), that means

sup
k(2)∈A(k̂(2))

E
(

1M
k(2)

∞

)
= sup

k(2)∈A(k̂(2))

E
(
V 1(T, X̃k(2)

T , rT )
)

= sup
k(2)∈A(k̂(2))

E
(
U(X̃k(2)

T )
)
.

The optimal strategy of this constrained optimization problem is given by k(2)∗
s = k̂

(2)
s ∧ k(0)∗

s

(see Lemma 2.4.4 and replace k̂(1) by k̂(2)). By similar arguments as in the proof on page 36, we

show that k(2)∗
s is optimal for the controller vs. stopper game (61):

Proof for optimal strategy after τN−2. Let t ∈ [0, T ] be arbitrary but �xed. De�ne

t
(2)
S := inf{s ∈ [t, T ] : k(0)∗

s ≥ k̂(2)
s }

and let us consider 1M
k(2)∗ on [t

(2)
S , T ]∪{∞}. On [t

(2)
S , T ] we have that k(2)∗

s = k̂
(2)
s and therefore

1M
k(2)∗ is a martingale on [t

(2)
S , T ] ∪ {∞}. If t(2)

S = t we immediately have that 1M
k(2)∗ is a

martingale on [t, T ] ∪ {∞}. This is especially the case if γρ ≥ 0. Thus, throughout the rest of

this proof we assume that γρ < 0 and t(2)
S > t. Then, we de�ne

t0 := inf{s ∈ [t, T ] : k(0)∗
s ≥ 0}

and we consider 1M
k(2)∗ on [t0, t

(2)
S ]. Since k(1)∗

s = k
(0)∗
s on [t0, t

(1)
S ] and t0 ≤ t(2)

S ≤ t
(1)
S , where

t
(1)
S := inf{s ∈ [t, T ] : k(0)∗

s ≥ k̂(1)
s },

we especially have that k(2)∗
s = k

(1)∗
s = k

(0)∗
s on [t0, t

(2)
S ]. For s ∈ [t0, t

(2)
S ], it holds

d
(

1M
k(2)∗
s

)
= 1M

k(2)∗
s ·

{
−γ l∗

1− l∗k(0)∗
s

k̇(0)∗
s + γφ(s, k(0)∗

s )− γφ(s, k(0)∗
s )

}
ds

+ 1M
k(2)∗
s ·

{
(γσ1k

(0)∗
s + ρσ2β(s))dw1,s +

√
1− ρ2σ2β(s) dw2,s

}
.

Using the same arguments as on page 36, we have that 1M
k(2)∗ is a supermartingale on [t0, t

(2)
S ].

If t0 = t, then it is a supermartingale on [t, T ] ∪ {∞}.
Now, let us consider the case t0 > t. For s ∈ [t, t0], it holds k(2)∗

s = k
(0)∗
s ≤ 0 and k(1)∗

s = k
(0)∗
s .

On [t, t0], we obtain

d
(

1M
k(2)∗
s

)
= d

(
V 1(s, X̃k(2)∗

s , rs)
)

= 1M
k(2)∗
s

{
(γσ1k

(0)∗
s + ρσ2β(s))dw1,s +

√
1− ρ2σ2β(s) dw2,s

}
,
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and, therefore, 1M
k(2)∗ is a martingale on [t, t0]. All together, we conclude that 1M

k(2)∗ is a

supermartingale on [t, T ] ∪ {∞}. If γρ ≥ 0, then it is even a martingale. By Doob's Optional

Sampling Theorem (see Theorem A.4.7), we obtain

E
(

1M
k(2)∗
τ

)
≥ E

(
1M

k(2)∗
∞

)
,

for all [t, T ] ∪ {∞}-valued stopping times τ and

inf
τ
E
(

1M
k(2)∗
τ

)
≥ E

(
1M

k(2)∗
∞

)
≥ E

(
1M

k(2)

∞

)
≥ inf

τ
E
(

1M
k(2)

τ

)
for all k(2) ∈ A(k̂(2)). By the fact that the optimal strategy for the controller vs. stopper game

(61) has to be an element of the set A(k̂(2)) (see construction of the indi�erence frontier), we

have that k(2)∗
s = k̂

(2)
s ∧ k(0)

s is optimal for (61).

Finally k∗ = (k(0)∗, k(1)∗, k(2)∗) is the worst-case optimal strategy for

sup
k∈Π(t,x,r)

inf
M∈N (t,2)

Et,x,r,2
(
U(Xk,M

T )
)
.

�

Again, one can determine the corresponding value function V 2(t, x, r) and afterwards one can

determine k(3)∗, valid after the (N − 3)-th market crash using similar arguments as above. The

general recursive procedure for an arbitrary N ≥ 1, can be written in the following scheme:

Initialization (After the N -th market crash):

Solve the classical stochastic optimal control problem

V 0(t, x, r) = sup
k(0)∈Π(t,x,r)

Et,x,r
(
U(XT )

)
,

where X denotes the wealth process if no crash can occur anymore.

Output: k(0)∗ and V 0(t, x, r).

For n=1,. . . ,N (After the (N − n)-th market crash):

(1) Apply the martingale approach to determine k(n)∗ using V n−1:

a) Reformulation as controller vs. stopper game

sup
k∈Π(t,x,r)

inf
M∈N (t,n)

Et,x,r,n
(
U(Xk,M

T )
)

= sup
k(n)∈Π(t,x,r)

inf
τ
E
(
n−1M

k(n)

τ )
)
,

with

nM
k
t := V n(t, X̃k

t (1− l∗(kt)+), rt).

b) Assume that k̂(n) solves (13), then n−1M
k̂(n) is a martingale.

c) Indi�erence frontier: k(n)∗ is an element of

A(k̂(n)) := {k(n) ∈ Π : k(n)
s ≤ k̂(n)

s , ∀s ∈ [t, T ]}.

d) k(n)∗
t := k̂

(n)
t ∧ k

(0)∗
t is optimal in the no-crash scenario (see Lemma 2.4.4).

e) Show supermartingale property of n−1M
k(n)∗ and it follows that k(n)∗ is optimal.



2.4. HARA UTILITY VIA MARTINGALE APPROACH 45

(2) Determine V n(t, x, r) by the following calculation:

V n(t, x, r) = sup
k∈Π(t,x,r)

inf
M∈N (t,n)

Et,x,r,n
(
U(Xk,M

T )
)

(62)

= sup
k∈Π(t,x,r)

inf
(τ,l)

Et,x,r
[
V n−1(τ,Xk,(τ,l)

τ− (1− lkτ ), rτ )
]

= inf
τ
Et,x,r

[
V n−1(τ, X̃k(n)∗

τ (1− l∗(k(n)∗
τ )+), rτ )

]
= inf

τ
Et,x,r

[
n−1M

k(n)∗
τ

]
= Et,x,r

[
n−1M

k(n)∗
∞

]
= Et,x,r

[
V n−1(T, X̃k(n)∗

T , rT )
]

=
1

γ
xγg(n)(t) exp(β(t)r).

Output: k(n)∗ and V n(t, x, r).

end

Remark 2.4.5. First, we give some arguments for the proofs in part (1) of the scheme above.

The reformulation in (a) holds due to Lemma 2.2.3 and by the monotonicity of V n−1 in its second

component. The proof of the fact that n−1M
k̂(n) is a martingale in (b) works again by applying

Ito's formula and by using that g(n−1)(t) and β(t) are given (see e.g. page 42). The indi�erence

frontier of the controller vs. stopper game in c) results from the martingale property of n−1M
k̂(n)

and (d) follows in the same way as in Lemma 2.4.4. In order to show the supermartingale

property of n−1M
k(n)∗, we can proceed as before: First one de�nes

t
(n)
S = inf{s ∈ [t, T ] : k(0)∗

s ≥ k̂(n)
s }.

Then, we obtain that n−1M
k(n)∗ is a martingale on [t

(n)
S , T ] ∪ {∞}. For γρ ≥ 0, we have that

k
(n)∗
s = k̂

(n)
s on [0, T ] ∪ {∞} (see Remark 2.2.8), and in that case t

(n)
S = t. Thus, for γρ < 0

and t
(n)
S > t, we again de�ne t0 as before. Moreover, we have to note that t

(n)
S ≤ t

(n−1)
S because

of the following two facts. First, k
(0)∗
s is monotone increasing for γρ < 0 and k̂

(n)
s is monotone

decreasing. Second, we have that k̂
(n)
s ≤ k̂(n−1)

s . Thus, it follows that k
(n−1)∗
s = k

(0)∗
s on [t0, t

(n)
S ]

and we can show the supermartingale property of n−1M
k(n)∗ on [t0, t

(n)
S ] using the same arguments

as above. Finally, if t0 > t, we can also show the martingale property on [t, t0] using again that

k
(n−1)∗
s = k

(0)∗
s on this interval. All together, leads to the supermartingale property of n−1M

k(n)∗

on [t, T ] ∪ {∞} and it follows that k(n)∗ is worst-case optimal by the Indi�erence Optimality

Principle.

Moreover, we give a short explanation for (62). The �rst equality holds by de�nition of V n and

the second holds by Lemma 2.2.3. Moreover the third equality follows by the fact that k(n)∗ is

worst-case optimal and V n−1 is monotone increasing in its second component, whereas the fourth

equality holds by de�nition of nM
k. Due to the fact that n−1M

k(n)∗ is a supermartingale, the

worst-case scenario is the no-crash scenario τ =∞ and therefore the �fth equality holds. Finally

the sixth equality follows again by de�nition. Since

Et,x,r
[
V n−1(T, X̃k(n)∗

T , rT )
]

= Et,x,r
(

1

γ
(X̃k(n)∗

T )γ
)
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we obtain the last equality by Ito's formula and using the same arguments as on page 40.

With the procedure above we demonstrated how we can apply the martingale approach in a re-

cursive way to determine the optimal strategies k(n)∗ which are valid if n crashes still can occur.

The main issue of this procedure is the determination of the value function V n using the knowl-

edge that k(n)∗ is worst-case optimal und using the supermartingale property. This allows to

obtain the value function V n in an explicit form by applying Ito's formula and Proposition A.1.1.

Remark 2.4.6 (Log utility via martingale approach). Here, we emphasize that the recursive

application of the martingale approach works analogously for an investor with a logarithmic utility

function. The solution k(0)∗ and the corresponding value function V 0(t, x, r) is again obtained by

solving the so-called post-crash optimization problem and it is already given in part a) of Theorem

2.3.2. After reformulating the worst-case optimization problem as a controller vs. stopper game,

one can again show an analog version of Lemma 2.4.2, which ensures that the uniquely determined

solution k̂(n) of the ODE:

k̇
(n)
t =

1− l∗k(n)
t

l∗

(
φ(k

(n)
t )− φ(k̂

(n−1)
t )

)
, k

(n)
T = 0, φ(k) := µk − σ2

1

2
k2,

is an indi�erence strategy (that means one shows that n−1M
k̂(n) is a martingale on [0, T ]∪{∞}).

In contrast to the non-log HARA utility case, we even obtain that the process n−1M
k(n)∗ is

a martingale and, therefore, k
(n)∗
t = k̂

(n)
t is the worst-case optimal strategy. Again using Ito's

formula, one can determine V n(t, x, r) = log(x)+W (n)(t, r) in an explicit form, where W (n)(t, r)

is given as in Theorem 2.3.2. Thus, the recursive application of the martingale approach is an

alternative way to prove Theorem 2.3.2.

2.4.3. Discussion and numerical examples. In this section, we discuss properties of the

optimal strategies for the non-log HARA utility case, which we obtained in the previous sections.

By Theorem 2.2.2 we have that the optimal strategy after the N -th market crash is given by

k
(0)∗
t =

µ

(1− γ)σ2
1

+
ρσ2β(t)

(1− γ)σ1
.

Now, we analyse the in�uence of the utility preferences of the investor on this strategy. Note that

1−γ represents the investor's relative risk aversion, the higher 1−γ the higher the risk aversion.

In the case of constant interest rates, we easily see, that k(0)∗ = µ((1− γ)σ2
1)−1 is constant with

respect to time and monotone increasing with respect to γ. That means, the higher the investor's

risk aversion, the lower the investment in the stock. This standard monotonicity behavior might

vanish when considering stochastic interest rates.

Proposition 2.4.7. Let k(0)∗
t,γ1

and k
(0)∗
t,γ2

be given by (11) for given γ1 and γ2, respectively. If

ρ > − µa

σ1σ2(1− e−aT )
, (63)

then for γ1 < γ2 it holds: k
(0)∗
t,γ1

< k
(0)∗
t,γ2

for all t ∈ [0, T ] (standard monotonicity behavior). On

the other hand, if

ρ ≤ − µa

σ1σ2(1− e−aT )
, (64)



2.4. HARA UTILITY VIA MARTINGALE APPROACH 47

then, there exists a uniquely determined intersection point S ∈ [0, T ] and it holds for γ1 < γ2:

k
(0)∗
t,γ1
≤ k(0)∗

t,γ2
for t ∈ [S, T ] (standard monotonicity behavior) and k

(0)∗
t,γ1
≥ k(0)∗

t,γ2
for t ∈ [0, S].

Proof. If the parameters ful�ll the inequality (63), then for all t ∈ [0, T ] we obtain:

∂

∂γ

(
µ

σ2
1(1− γ)

+
ρσ2β(t)

σ1(1− γ)

)
=
aµ+ (1− e−a(T−t))ρσ1σ2

a(γ − 1)2σ2
1

> 0.

Thus, if the parameters ful�ll (63), we observe the standard monotonicity behavior (the higher

the risk aversion 1 − γ, the lower the investment in the stock). Now, let us consider the case

where the parameters ful�ll (64). Let β̃(t) := 1
a(1− e−a(T−t)). Since ρ < 0, (64) is equivalent to

β̃(0) ≥ − µ

σ1σ2ρ
> 0.

Now, using the fact that β̃(t) is monotone decreasing with β̃(T ) = 0, we obtain that there exists

a uniquely determined point S ∈ [0, T ] such that β̃(S) = − µ
σ1σ2ρ

, and thus,

k
(0)∗
S,γ1

=
µ

σ2
1(1− γ1)

+
ρσ2γ1β̃(S)

σ1(1− γ1)
=

µ

σ2
1(1− γ2)

+
ρσ2γ2β̃(S)

σ1(1− γ2)
= k

(0)∗
S,γ2

.

and the intersection point S is given by

S =
1

a

(
log

(
1 +

µa

σ1σ2ρ

)
+ aT

)
.

Obviously, S is independent of the choice of γ1, γ2. One can easily show for γ1 < γ2, that

k
(0)∗
t,γ1
≤ k(0)∗

t,γ2
for t ∈ [S, T ] (standard monotonicity behavior) and k(0)∗

t,γ1
≥ k(0)∗

t,γ2
for t ∈ [0, S]. �

Figure 2.1 shows the optimal strategies k(0)∗
t,γ for market parameters which ful�ll the condition

(64). For t ∈ [S, T ], we observe: the higher the risk aversion the lower the investment in the

stock. For t ∈ [0, S], we have the contrary, which means that a more risk averse investor invests

more in the stock than an investor with a lower risk aversion. It is worth mentioning, that

the investor has no riskless asset in the �nancial market model. Thus, for certain parameters

(which ful�ll condition (64)), it is less risky to invest in the stock, than in the bank account with

stochastic instantaneous interest rates.
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Figure 2.1. Optimal post-crash

strategy k
(0)∗
t,γ for di�erent values

of γ and for parameters µ = 0.03,
σ1 = 0.2, a = 0.5, σ2 = 0.1, T = 5,
ρ = −0.9 with S = 1.42.
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Figure 2.2. Comparison of con-

ditional variances V ar(log(PT )|Ft)
and V ar(log(Bt)|Ft) for parame-

ters σ1 = 0.2, a = 0.5, σ2 = 0.1,
T = 5, ρ = −0.9.
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Another heuristic explanation for this e�ect might show Figure 2.2, where V ar(log(PT )|Ft) and
V ar(log(BT )|Ft) are plotted. Therein, one can see that the variance of the savings account is

higher than the variance of the stock price for small t.

If we consider a �nancial market model, where the condition (63) is ful�lled, then we obtain the

standard behavior with respect to the investor's risk aversion. An Example is shown in Figure

2.3, where it holds: the higher the risk aversion, the lower the stock investment for all t ∈ [0, T ].

Figure 2.4 shows that the variance of the stock is greater than the variance of the bank account

for all t ∈ [0, T ].
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Figure 2.3. Optimal post-crash

strategy k
(0)∗
t,γ for di�erent values

of γ and for parameters µ = 0.03,
σ1 = 0.2, a = 0.5, σ2 = 0.1, T = 5,
ρ = −0.75.
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Figure 2.4. Comparison of con-

ditional variances V ar(log(PT )|Ft)
and V ar(log(Bt)|Ft) for parame-

ters σ1 = 0.2, a = 0.5, σ2 = 0.1,
T = 5, ρ = −0.75.

Analogously to the strategy k(0)∗, valid after the N -th market crash, we illustrate the strategies

k
(n)∗
t = k̂

(n)
t ∧ k

(0)∗
t which are worst-case optimal if n ≥ 1 market crashes still can happen. Note,

that k̂(n)
t is the uniquely determined solution of the ODE (13) which we calculate numerically.
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Figure 2.5. Optimal strategies for

market parameters: N = 2, l∗ =
0.4, T = 5, µ = 0.06, σ1 = 0.3, a =
0.5, rM = 0.05, σ2 = 0.1, ρ = 0.7
and risk preference: γ = −2.
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Figure 2.6. Optimal strategies for

market parameters: N = 3, l∗ =
0.4, T = 5, µ = 0.08, σ1 = 0.3, a =
2, rM = 0.05, σ2 = 0.1, ρ = −0.5
and risk preference: γ = −3.

In Figure 2.5, we consider a �nancial market where at most N = 2 market crashes can happen

and we plotted k(0)∗, k̂(1) and k̂(2). Note, that if there still can happen two market crashes, it
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is worst-case optimal to follow k̂
(2)
t ∧ k

(0)∗
t . If the �rst crash has happened, the investor changes

his strategy to k̂(1)
t ∧ k

(0)∗
t . After the second market crash, it is optimal to follow the strategy

k
(0)∗
t . S1 and S2 refer to the uniquely determined intersection points t(1)

S and t(2)
S , which were

mentioned in Remark 2.4.5. These intersection points do not exist in Figure 2.6. Therein, we

consider a �nancial market model with at most N = 3 market crashes. Since, γρ ≥ 0, we have

that k̂(3)
t ≤ k̂

(2)
t ≤ k̂

(1)
t ≤ k

(0)∗
t for all t ∈ [0, T ] (see Remark 2.2.8). Thus, if there are n crashes

left, it is worst-case optimal to follow the indi�erence strategy k̂(n).

Analogously to the analysis in Figure 2.1 and Figure 2.3, we consider how the worst-case optimal

strategies depend on the investor's risk aversion 1− γ in Figure 2.7 and Figure 2.8. For the sake

of simplicity, we consider �nancial markets with at most one market crash. The sensitivity of

optimal strategies in the case of constant interest rates was already considered in [44, Chp.6.2].

Both �gures below show the worst-case optimal investment strategies k(1)∗
t = k̂

(1)
t on a �nancial

market with parameters:

N = 1, l∗ = 0.4, T = 5, µ = 0.08, σ1 = 0.3, rM = 0.05, σ2 = 0.1, ρ = −0.8.
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Figure 2.7. Optimal pre-crash

strategy k
(1)∗
t for a = 2 and di�er-

ent values of γ.
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Figure 2.8. Optimal pre-crash

strategy k
(1)∗
t for a = 0.5 and dif-

ferent values of γ.

Note, that in Figure 2.7 we used a speed of reversion a = 2 and in Figure 2.8 we used a = 0.5. In

Figure 2.7, we observe the standard monotonicity behavior as in [44, Chp.6.2], that means, the

higher the risk aversion 1− γ the lower the investment in the stock for all t ∈ [0, T ]. A contrary

behavior can be seen in Figure 2.8, where the speed of reversion is lower. Here, one can see that

at a certain point of time, the investor with a higher risk aversion invests more in the stock than

the investor with a lower risk aversion. Compare for example the blue and the yellow line: The

investor with risk level γ = −0.5 invests less in the stock than the investor with risk level γ = −4

until time t ≈ 1.4. Again, note that in our �nancial market model there is no riskless asset due

to the considered short rate model. If the short rate becomes more risky, for example due to a

lower speed of reversion a, then for small t, it may be more risky to invest in the savings account

than in the stock.

2.5. Changing market parameters and a general a�ne short rate model

In this section, we consider again the worst-case optimization problem (8) with a logarithmic

utility function. But, in contrast to the previous sections, we assume that the short rate process is
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a solution of SDE (3), such that the Cox-Ingersoll-Ross model is also covered by the considerations

in this section.

Furthermore, we extend the �nancial market model by assuming changing market parameters at

the crash time. In our previous considerations, the market crash only causes a sudden downward

jump of the price process. Before and after this crash the stock price process follows the SDE

given in (5). Now, we assume that the crash has one more impact on the stock price dynamics,

namely that the crash might also cause a change in the market parameters µ and σ1. This

concept was already considered in the literature about worst-case optimization with constant

interest rates (see e.g. [25, 33]). For the sake of simplicity we consider a �nancial market model

where at most one market crash can occur, which is denoted by the pair (τ, l).

2.5.1. The generalized �nancial market model. Here, we assume that the short rate

process {rt}t∈[0,T ] is given by the SDE (3), that is:

drt = (λ1rt + λ2) dt+
√
ξ1rt + ξ2 dw̃t,

r0 = r0 > 0,

for suitable constants λ1, λ2, ξ1, ξ2 and r0, where ξ2 ≥ 0. First, we have to ensure that there

exists a uniquely determined solution of the SDE (3). If ξ1 = 0, then there exists a uniquely

determined solution of the SDE because the coe�cients ful�ll the classical Lipschitz and growth

conditions. If ξ1 6= 0, the di�usion function
√
ξ1r + ξ2 is, in general, not Lipschitz continuous.

Moreover, we have to ensure that the process ξ1rt + ξ2 is nonnegative. In this chapter, our basic

assumption on the parameters is that

ξ1λ2 − λ1ξ2 >
ξ2

1

2
.

Under this assumption, Proposition A.1.2 in Appendix A provides the existence of a unique

solution of SDE (3) that remains in the domain

D := {r ∈ R : ξ1r + ξ2 > 0}.

While the short rate dynamics is not a�ected by the market crash, we assume that the stock

price loses a fraction l ∈ [0, l∗] of its value and the market parameters may change at the crash

time. That is,

P0 = p0,

dPt = Pt

[
(µ(1) + rt) dt+ σ

(1)
1 dw1,t

]
, t ∈ (0, τ),

Pτ = Pτ−(1− l),

dPt = Pt

[
(µ(0) + rt) dt+ σ

(0)
1 dw1,t

]
, t ∈ (τ, T ].

In the market before the market crash the excess return and the volatility of the stock are given

by the positive constants µ(1) and σ(1)
1 , respectively. After the crash, the market conditions may

change to µ(0) and σ(0)
1 . For example, one could assume that the stock price after a crash is more

volatile than before, then σ(0)
1 > σ

(1)
1 .
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Now, analogously to (7), the investor's wealth Xk,(τ,l) = {Xk,(τ,l)}t∈[0,T ], given a strategy k =

(k(0), k(1)) and a market crash (τ, l), evolves as

X
k,(τ,l)
0 = x0 > 0,

dX
k,(τ,l)
t = X

k,(τ,l)
t

[
rt + µ(1)k

(1)
t

]
dt+X

k,(τ,l)
t σ

(1)
1 k

(1)
t dw1,t, t ∈ (0, τ), (65)

Xk,(τ,l)
τ = (1− lk(1)

τ )X
k,(τ,l)
τ− ,

dX
k,(τ,l)
t = X

k,(τ,l)
t

[
rt + µ(0)k

(0)
t

]
dt+X

k,(τ,l)
t σ

(0)
1 k

(0)
t dw1,t, t ∈ (τ, T ].

On a market with at most one market crash and logarithmic utility function, the worst-case

optimization problem (8) simpli�es to:

sup
k∈Π(0,x0,r0)

inf
(τ,l)∈C

E
(

log(X
k,(τ,l)
T )

)
. (66)

We de�ne the corresponding value function

V 1(t, x, r) := sup
k∈Π(t,x,r)

inf
(τ,l)∈C

Et,x,r,1
(

log(X
k,(τ,l)
T )

)
,

where C denotes the set of crash scenarios and Π is the set of admissible controls (see De�nition

2.1.1). The following Corollary ensures that the value function above is well-de�ned.

Corollary 2.5.1. For (t, x, r) ∈ [0, T ] × R+ × R, let k ∈ Π(t, x, r) be an arbitrary admissible

strategy and let (τ, l) ∈ C be an arbitrary crash scenario on [t, T ]. Moreover, let {rt}t∈[0,T ] and

Xk,(τ,l) = {Xk,(τ,l)
t }t∈[0,T ] be given by (3) and (65), respectively. Then

Et,x,r,1
(∣∣∣log(X

k,(τ,l)
T )

∣∣∣) <∞.
Proof. For the proof we refer to Appendix 2.6.9. �

In this section, we use the martingale approach to determine the worst-case optimal strategy

k∗ = (k(0)∗, k(1)∗). We proceed as in Section 2.4.1. First, we determine the optimal post-crash

strategy k(0)∗ by DPP, then we reformulate the problem and determine the worst-case optimal

pre-crash strategy k(1)∗. The main di�erence to Section 2.4.1 is how to determine the post-crash

value function V 0 in the case of the a�ne model (3) and how to determine k(1)∗ under changing

market parameters.

2.5.2. The optimal post-crash strategy k(0)∗. As in the proof of part a) of Theorem

2.3.2, the investor is faced with a classical stochastic optimal control problem after the crash.

Here, the corresponding value function V 0(t, x, r) takes the form

V 0(t, x, r) = sup
k(0)∈Π(t,x,r)

Et,x,r
(
log(XT )

)
, (67)

where Xs denotes the wealth at time s ≥ t, that is:

dXs = Xs

[
rs + µ(0)k(0)

s

]
ds+Xsσ

(0)
1 k(0)

s dw1,s, Xt = x,

drs = (λ1rs + λ2) ds+
√
ξ1rs + ξ2 dw̃s, rt = r.
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The corresponding HJB equation is given by

v0
t (t, x, r) + rxv0

x(t, x, r)

+ sup
k(0)∈A

[
µ(0)k(0)xv0

x(t, x, r) +
(σ

(0)
1 )2

2
(k(0))2x2v0

xx(t, x, r)

+ ρσ
(0)
1

√
ξ1r + ξ2k

(0)xv0
xr(t, x, r)

]
+ (λ1r + λ2)v0

r (t, x, r) +
ξ1r + ξ2

2
v0
rr(t, x, r) = 0, (t, x, r) ∈ [0, T )× R+ × R,

v0(T, x, r) = log(x), (x, r) ∈ R+ × R.

Applying the standard separation ansatz for logarithmic utility functions, that is v0(t, x, r) =

log(x) +W (0)(t, r) with W (0)(T, r) = 0 for all r ∈ R, implies that the optimal candidate is given

by

k
(0)∗
t ≡ µ(0)

(σ
(0)
1 )2

and the equation above reduces to

W
(0)
t (t, r) + r +

1

2

(
µ(0)

σ
(0)
1

)2

+ (λ1r + λ2)W (0)
r (t, r) +

ξ1r + ξ2

2
W (0)
rr (t, r) = 0, (68)

(t, r) ∈ [0, T )× R,

W (0)(T, r) = 0, r ∈ R.

By the linear ansatz W (0)(t, r) = A(t)r +B(t), with A(T ) = B(T ) = 0, we obtain that

A(t) =
1

λ1

(
eλ1(T−t) − 1

)
,

B(t) =
λ2

λ2
1

(
eλ1(T−t) − 1

)
− λ2

λ1
(T − t) +

1

2

(
µ(0)

σ
(0)
1

)2

(T − t).

Finally, we obtained a solution of the HJB equation, which is given by

v0(t, x, r) = log(x) +W (0)(t, r), W (0)(t, r) = A(t)r +B(t).

Now, it remains to verify that the solution of the HJB equation is equal to the value function

V 0 and that the candidate k(0)∗ is indeed the optimal post-crash strategy. We apply Corollary

A.5.3 and show the requirements in Appendix 2.6.10.

2.5.3. Reformulation. Again, using the optimal post-crash strategy k(0)∗ and the post-

crash value function V 0(t, x, r) = log(x) + A(t)r + B(t), which is monotone increasing in its

second component, we reformulate the worst-case optimization problem (66) as a controller vs.

stopper game:

sup
k(1)∈Π(0,x0,r0)

inf
τ∈C

E
(
Mk(1)

τ

)
, where Mk

t := V 0(t, (1− l∗(kt)+)X̃k
t , rt) (69)

and X̃k denotes the wealth process in a crash-free market, that means it ful�lls

dX̃k
t = X̃k

t

[
rt + µ(1)kt

]
dt+ X̃k

t σ
(1)
1 kt dw1,t, X̃k

0 = x0, (70)
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and {rt}t∈[0,T ] is given by (3).

In order to solve the controller vs. stopper game above, we formulate an analogue of Lemma

2.4.2 for the generalized market with logarithmic utility. First, we obtain a su�cient condition

for a pre-crash strategy to be an indi�erence strategy in the sense of De�nition 2.4.1:

Lemma 2.5.2. Let k̂(1) be the uniquely determined solution of the ODE

k̇
(1)
t =

1− l∗k(1)
t

l∗

µ(1)k
(1)
t −

1

2
(σ

(1)
1 )2(k

(1)
t )2 − 1

2

(
µ(0)

σ
(0)
1

)2
 , k

(1)
T = 0, (71)

and let Mk = {Mk
t }t∈[0,T ] be given by (69) and Mk

∞ := V 0(T, X̃k
T , rT ). Then, M k̂(1) is a mar-

tingale on [0, T ] ∪ {∞} and k̂(1) is an indi�erence strategy for the controller vs. stopper game

(69).

Remark 2.5.3. Here, k̂(1) is admissible in the sense of De�nition 2.1.1. With similar arguments

as in the proof of Proposition 2.2.4, there exists a uniquely determined solution k̂(1) of ODE (71)

with k̂
(1)
t ∈ [0, 1

l∗ ) for all t ∈ [0, T ].

Proof of Lemma 2.5.2. We show that M k̂(1) is a martingale on [0, T ]∪{∞}. Throughout
the proof we abbreviate k̂(1) by k̂. By V 0(t, x, r) = log(x) + W (0)(t, r) and by applying Ito's

formula we obtain

dM k̂
t =d

(
V 0(t, (1− l∗k̂t)X̃ k̂

t , rt)
)

=

{
− l∗

1− l∗k̂t
˙̂
kt + µ(1)k̂t −

1

2
(σ

(1)
1 )2k̂2

t

+W
(0)
t (t, rt) + rt + (λ1rt + λ2)W (0)

r (t, rt) +
ξ1rt + ξ2

2
W (0)
rr (t, rt)

}
dt

+ {σ(1)
1 k̂t +

√
ξ1rt + ξ2ρW

(0)
r (t, rt)} dw1,t

+
√
ξ1rt + ξ2

√
1− ρ2W (0)

r (t, rt) dw2,t.

Since W (0)(t, r) is a solution of PDE (68), we obtain

W
(0)
t (t, rt) + rt + (λ1rt + λ2)W (0)

r (t, rt) +
ξ1rt + ξ2

2
W (0)
rr (t, rt) = −1

2

(
µ(0)

σ
(0)
1

)2

.

By assumption, k̂t ful�lls (71) such that the dt-coe�cient vanishes and it remains to show that

the solution of

dM k̂
t ={σ(1)

1 k̂t +
√
ξ1rt + ξ2ρW

(0)
r (t, rt)} dw1,t

+
√
ξ1rt + ξ2

√
1− ρ2W (0)

r (t, rt) dw2,t

is a martingale on [0, T ]. Since E(rt) is given in Proposition A.1.2 and since W (0)
r (t, rt) = A(t),

we immediately obtain that

E
(∫ T

0
(σ

(1)
1 k̂t +

√
ξ1rt + ξ2ρA(t))2 dt

)
≤
∫ T

0
2(σ

(1)
1 k̂t)

2 + 2(ξ1E(rt) + ξ2)ρ2A2(t) dt <∞,
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and

E
(∫ T

0
(ξ1rt + ξ2)(1− ρ2)A(t)2 dt

)
=

∫ T

0
(ξ1E(rt) + ξ2)(1− ρ2)A(t)2 dt <∞,

and it follows that M k̂ is a martingale on [0, T ]. By de�nition of M k̂
∞ and by k̂T = 0, we also

have

E
(
M k̂
∞|FT

)
= E

(
V 0(T, X̃ k̂

T , rT )|FT
)

= V 0(T, X̃ k̂
T , rT ) = M k̂

T .

Thus, M k̂ is a martingale on [0, T ] ∪ {∞}.
By Doob's Optional Sampling Theorem, we obtain

E
(
M k̂(1)

τ

)
= E

(
M k̂(1)

τ ′

)
,

for all [0, T ]∪{∞}-valued stopping times τ, τ ′. By de�nition, k̂(1) is an indi�erence strategy. �

Let kM := µ(1)

(σ
(1)
1 )2

. Then, we can easily see, that kM is the classical optimal investment strategy

in a crash-free market.

By applying the invariance argument, we can show that k̂(1)
t ∈ [0, kM ] for all t ∈ [0, T ] if condition

(72) in the following Proposition is ful�lled.

Proposition 2.5.4. Let k̂(1) be the uniquely determined solution of (71) and let kM = µ(1)

(σ
(1)
1 )2

.

Moreover, assume that

µ(1)

σ
(1)
1

− µ(0)

σ
(0)
1

≥ 0. (72)

Then k̂
(1)
t ∈

[
0, kM

]
for all t ∈ [0, T ].

Proof. We refer to Appendix 2.6.11 for the proof. �

Remark 2.5.5. If the inequality (72) is not ful�lled, there might exist an intersection point tS of

k̂
(1)
t and kM on [0, T ]. Since k̂

(1)
t , as a solution of an autonomous �rst order ODE, is monotone

decreasing on [0, T ] and since k̂
(1)
T = 0 ≤ kM , we have that tS is uniquely determined and

k̂
(1)
t ≥ kM ∀ t ∈ [0, tS ],

k̂
(1)
t ≤ kM ∀ t∈ [tS , T ].

Now, we can apply the notion of an indi�erence frontier, which was already explained in Section

2.4. As in [26],[44], we obtain by the martingale property of M k̂(1) , that

inf
τ∈C

E(M k̃
τ ) ≥ inf

τ∈C
E(Mk

τ ),

where k is an arbitrary admissible pre-crash strategy and k̃ is de�ned, as before, by

k̃t :=

kt : t < η

k̂
(1)
t : t ≥ η

, η := inf{t ≥ 0 : kt > k̂t}.

We conclude that the worst-case optimal pre-crash strategy is an element of the set

A(k̂(1)) :=
{
k ∈ Π : k

(1)
t ≤ k̂

(1)
t , ∀ t ∈ [0, T ]

}
.
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For a detailed explanation of the idea of the indi�erence frontier we refer to the literature [26, 44]

or to Section 2.4.1. In order to apply the Indi�erence Optimality Principle below, we �rst

determine the optimal pre-crash strategy in the no-crash scenario in the class A(k̂
(1)
t ). This

leads to the constrained optimization problem

sup
kt≤k̂(1)t ,t∈[0,T ]

E
(

log(X̃k
T )
)

w.r.t. (3), (70).

By DPP and similar ideas as in the post-crash problem, we obtain that the strategy k(1)∗
t =

k̂
(1)
t ∧ kM is optimal in the no-crash scenario τ = ∞. Now, we show that k(1)∗ is worst-case

optimal for the controller vs. stopper game (69).

2.5.4. The worst-case optimal pre-crash strategy.

Theorem 2.5.6. Suppose that k̂(1) is the uniquely determined solution of (71). Let

k
(1)∗
t := k̂

(1)
t ∧ kM .

Then k(1)∗ is the optimal pre-crash strategy for the worst-case optimization problem. Moreover,

k
(0)∗
t ≡ µ(0)

(σ
(0)
1 )2

is the optimal post-cash strategy.

Proof. Since kM > 0 is constant, the proof is similar to the proof of [44, Thm.5.1]. After

showing the supermartingale property of Mk(1)∗ , we apply the indi�erence optimality principle

to obtain the assertion.

The proof works with similar arguments as the proof on page 36. The key assumption, that

M k̂(1)
t is a martingale, is ful�lled. For the sake of completeness, we give some details of the proof.

Let us de�ne

tS := inf{t ∈ [0, T ] : kM ≥ k̂(1)
t }.

Again, tS denotes the uniquely determined point of intersection of kM and k̂(1)
t if it exists. By

Lemma 2.5.2, Mk(1)∗ is a martingale on [tS , T ] ∪ {∞} because k(1)∗
t = k̂

(1)
t on [tS , T ] ∪ {∞}. If

(72) is ful�lled, we immediately obtain that tS = 0 and Mk(1)∗ is a martingale on [0, T ] ∪ {∞}.
Now, let us assume that

µ(1)

σ
(1)
1

− µ(0)

σ
(0)
1

< 0,

and that tS > 0. Then, on [0, tS ], we have that k(1)∗
t = kM and by Ito's formula:

dMk(1)∗
t =

1

2

(
µ(1)

σ
(1)
1

)2

− 1

2

(
µ(0)

σ
(0)
1

)2
 dt

+
{
σ

(1)
1 kM +

√
ξ1rt + ξ2ρW

(0)
r (t, rt)

}
dw1,t

+
√
ξ1rt + ξ2

√
1− ρ2W (0)

r (t, rt) dw2,t.
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Due to the fact that the stochastic integral above is a martingale on [0, tS ], we have for 0 ≤ s ≤
t ≤ tS :

E
(
Mk(1)∗
t |Fs

)
= Mk(1)∗

0 +
t

2

(µ(1)

σ
(1)
1

)2

−

(
µ(0)

σ
(0)
1

)2


+ E
(∫ t

0

{
σ

(1)
1 kM +

√
ξ1ru + ξ2ρW

(0)
r (u, ru)

}
dw1,u

+
√
ξ1rt + ξ2

√
1− ρ2W (0)

r (u, ru) dw2,u|Fs
)

≤Mk(1)∗
0 +

s

2

(µ(1)

σ
(1)
1

)2

−

(
µ(0)

σ
(0)
1

)2


+

∫ s

0

{
σ

(1)
1 kM +

√
ξ1ru + ξ2ρW

(0)
r (u, ru)

}
dw1,u

+
√
ξ1rt + ξ2

√
1− ρ2W (0)

r (u, ru) dw2,u = Mk(1)∗
s .

Therefore,Mk(1)∗ is a supermartingale on [0, T ]∪{∞} and by Doob's Optional Sampling Theorem

for supermartingales (see Appendix A, Theorem A.4.7), we have for all [0, T ] ∪ {∞}-valued
stopping times τ :

E
(
Mk(1)∗
τ

)
≥ E

(
Mk(1)∗
∞

)
.

Analogously to the Indi�erence Optimality Principle in [26] and [44], we obtain

inf
τ∈C

E
(
Mk(1)∗
τ

)
≥ E

(
Mk(1)∗
∞

)
≥ E

(
Mk
∞

)
≥ inf

τ∈C
E
(
Mk
τ

)
.

for an arbitrary pre-crash strategy k ∈ A(k̂(1)). The second inequality holds, because k(1)∗ is

optimal in the no-crash scenario in the class A(k̂(1)). Since the optimal strategy for the controller

vs. stopper game is an element of the class A(k̂(1)), we have that k(1)∗ is the optimal strategy,

and it is the worst-case optimal pre-crash strategy for the problem (66). �

2.5.5. Discussion and numerical examples. We have shown that k(1)∗
t = k̂

(1)
t ∧ kM ,

where k̂(1) is the uniquely determined solution of (71) and kM = µ(1)

(σ
(1)
1 )2

, is the worst-case optimal

pre-crash strategy and k(0)∗ = µ(0)

(σ
(0)
1 )2

is the optimal post-crash strategy for (66).

Remark 2.5.7. Comparing the result for the worst-case optimization problem (66) with the worst-

case optimal strategies from the literature, where constant interest rates are used, we obtain the

following points:

• The worst-case optimal strategy k∗ = (k(0)∗, k(1)∗) for the problem with stochastic inter-

est rates equals the strategy in the case of constant interest rates (see e.g. [33]). The

explanation is the same as the one already mentioned in Section 2.3.1: Due to the loga-

rithmic utility function we can additively separate the control variable k from the short

rate rt, which means that the maximization of the goal function does not depend on

the short rate, neither through rt(ω) itself nor through the parameters which determine
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the short rate equation. Again, the logarithmic utility function eliminates the stochastic

interest rate risk. Further, if the short rate would somehow be a�ected by the market

crash, this e�ect might vanish.

• Nevertheless, we had to show the martingale property in Lemma 2.5.2 and the super-

martingale property in Theorem 2.5.6 taking into account that the short rate is stochastic

and that it follows a general a�ne model of the form (3).

• If µ(1) = µ(0) and σ
(1)
1 = σ

(0)
1 , then ODE (71) coincides with ODE (48) for n = 1 and

k
(1)∗
t = k̂

(1)
t .

For the logarithmic utility case, the optimal strategies do not di�er from the ones with constant

interest rates. Nevertheless, we give a short illustration of them. Similar plots can be found for

example in [25].

Example 2.5.8. Here, we use ODE (71) to calculate the indi�erence strategy k̂(1) and the cor-

responding optimal pre-crash strategy k(1)∗ = k̂
(1)
t ∧ kM numerically . In Figure 2.9 and Figure

2.10 we plotted the optimal strategy in a crash-free market kM (blue dashed line), the optimal

pre-crash strategy k(1)∗ (pink solid line) and the optimal post-crash strategy k(0)∗ (yellow solid

line) for T = 10, a maximum crash size l∗ = 0.4 and for di�erent choices of market parameters.
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Figure 2.9. Optimal strategies for

market parameters µ(1) = 0.08,

σ
(1)
1 = 0.3, µ(0) = 0.07, σ

(0)
1 = 0.35.
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Figure 2.10. Optimal strategies

for market parameters µ(1) = 0.08,

σ
(1)
1 = 0.3, µ(0) = 0.1, σ

(0)
1 = 0.25.

In Figure 2.9 we assumed that the market after the crash is worse than before (lower excess

return, higher volatility). The market parameters ful�ll (72) and therefore k̂
(1)
t ∈ [0, kM ] for all

t ∈ [0, T ]. On the other hand, in Figure 2.10, we assumed that the market after the crash is better

than before (higher excess return, lower volatility). There exists an intersection point of k̂(1) and

kM , such that the optimal pre-crash strategy is to follow kM for t ≤ tS ≈ 2 and to follow k̂
(1)
t for

t ≥ tS. Once the market crash has happened, the investor changes to k(0)∗.
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2.6. Appendix

2.6.1. Proof of Lemma 2.2.3.

For the readers convenience we repeat the assertion of Lemma 2.2.3:

Let V n(t, x, r) be given by (10) and let (τ, l) be the �rst intervention after time t. Then, we have

V n(t, x, r) = sup
k∈Π

inf
M∈N (t,n)

Et,x,r,n
[
U(Xk,M

T )
]

= inf
M∈N (t,n)

sup
k∈Π

Et,x,r,n
[
U(Xk,M

T )
]

= sup
k∈Π

inf
(τ,l)

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
= inf

(τ,l)
sup
k∈Π

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
Proof. Since the short rate dynamics is not a�ected by the market crash, the proof works

in the same manner as in [28, Lemma 3]. In contrast to this literature the in�mum above is

taken over the pairs (τ, l), which denote the �rst intervention after time t.

Let ε > 0 and let (τ, l) be a given �rst intervention. Now, we choose a strategy k∗, which is
ε
4 -optimal until time τ in the sense that

sup
k

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
≤ Et,x,r,n

[
V n−1(τ,X

k∗,(τ,l)
τ− (1− lk∗τ ), rτ )

]
+
ε

4
. (73)

Moreover, we choose a strategy k∗∗, which is arbitrary until τ and ε
4 -optimal after the intervention

(τ, l), that means

sup
k

inf
M∈N (τ,n−1)

Eτ,X
k,M
τ ,rτ ,n−1

[
U(Xk,M

T )
]

≤ inf
M∈N (τ,n−1)

Eτ,X
k∗∗,M
τ ,rτ ,n−1

[
U(Xk∗∗,M

T )
]

+
ε

4
. (74)

Now, let k be a given portfolio strategy. Then, we de�ne an ε
4 -optimal �rst intervention strategy

(τ∗, l∗) in the following sense

inf
(τ,l)

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
≥ Et,x,r,n

[
V n−1(τ∗, X

k,(τ∗,l∗)
τ∗− (1− l∗kτ∗), rτ∗)

]
− ε

4
, (75)

and for an arbitrary but �xed �rst intervention strategy (τ, l), we de�ne a strategyM∗ ∈ N (τ, n−
1), which is ε

4 -optimal after (τ, l) in the following sense

inf
M∈N (τ,n−1)

Eτ,X
k,M
τ ,rτ ,n−1

[
U(Xk,M

T )
]

≥ Eτ,X
k,M∗
τ ,rτ ,n−1

[
U(Xk,M∗

T )
]
− ε

4
. (76)
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With these de�nitions we obtain the following inequalities:

sup
k

inf
M∈N (t,n)

Et,x,r,n
[
U(Xk,M

T )
]

≥ inf
M∈N (t,n)

Et,x,r,n
[
U(Xk∗∗,M

T )
]

≥ inf
M∈N (t,n)

Et,x,r,n
[
Eτ,X

k∗∗,M
τ ,rτ ,n−1

[
U(Xk∗∗,M

T )
]]

≥ inf
(τ,l)

Et,x,r,n
[

inf
M∈N (τ,n−1)

Eτ,X
k∗∗,M
τ ,rτ ,n−1

[
U(Xk∗∗,M

T )
]]

(74)

≥ inf
(τ,l)

Et,x,r,n
[
sup
k

inf
M∈N (τ,n−1)

Eτ,X
k,M
τ ,rτ ,n−1

[
U(Xk,M

T )
]]
− ε

4

= inf
(τ,l)

Et,x,r,n
[
V n−1(τ,Xk,(τ,l)

τ , rτ )
]
− ε

4

= inf
(τ,l)

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
− ε

4

(75)

≥ Et,x,r,n
[
V n−1(τ∗, X

k,(τ∗,l∗)
τ∗− (1− l∗kτ∗), rτ∗)

]
− ε

2
.

The second inequality follows by the tower property of the conditional expectation.

Thus, we have

sup
k

inf
M∈N (t,n)

Et,x,r,n
[
U(Xk,M

T )
]

≥ Et,x,r,n
[
V n−1(τ∗, X

k,(τ∗,l∗)
τ∗− (1− l∗kτ∗), rτ∗)

]
− ε

2
.

Taking the supremum on both sides leads to

sup
k

inf
M∈N (t,n)

Et,x,r,n
[
U(Xk,M

T )
]

≥ sup
k

Et,x,r,n
[
V n−1(τ∗, X

k,(τ∗,l∗)
τ∗− (1− l∗kτ∗), rτ∗)

]
− ε

2
. (77)

Moreover, for an arbitrary but �xed �rst intervention (τ, l) after t, it holds

inf
M∈N (t,n)

sup
k

Et,x,r,n
[
U(Xk,M

T )
]

≤ sup
k

Et,x,r,n
[
U(Xk,M∗

T )
]

≤ sup
k

Et,x,r,n
[
Eτ,X

k,M∗
τ ,rτ ,n−1

[
U(Xk,M∗

T )
]]

(76)

≤ sup
k

Et,x,r,n
[

inf
M∈N (τ,n−1)

Eτ,X
k,M
τ ,rτ ,n−1

[
U(Xk,M

T )
]]

+
ε

4

≤ sup
k

Et,x,r,n
[
V n−1(τ,Xk,(τ,l)

τ , rτ )
]

+
ε

4

= sup
k

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
+
ε

4
.
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Thus,

inf
M∈N (t,n)

sup
k

Et,x,r,n
[
U(Xk,M

T )
]

≤ sup
k

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
+
ε

4
.

Taking the in�mum over the �rst intervention (τ, l) on both sides leads to

inf
M∈N (t,n)

sup
k

Et,x,r,n
[
U(Xk,M

T )
]

≤ inf
(τ,l)

sup
k

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
+
ε

4
. (78)

Now, we conclude that

sup
k

inf
M∈N (t,n)

Et,x,r,n
[
U(Xk,M

T )
]

(77)

≥ sup
k

Et,x,r,n
[
V n−1(τ∗, X

k,(τ∗,l∗)
τ∗− (1− l∗kτ∗), rτ∗)

]
− ε

2

≥ inf
(τ,l)

sup
k

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
− ε

2

≥ inf
(τ,l)

Et,x,r,n
[
V n−1(τ,X

k∗,(τ,l)
τ− (1− lk∗τ )), rτ )

]
− ε

2

(73)

≥ inf
(τ,l)

sup
k

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− )(1− lkτ ), rτ )

]
− 3ε

4

(78)

≥ inf
M∈N (t,n)

sup
k

Et,x,r,n
[
U(Xk,M

T )
]
− ε

≥ sup
k

inf
M∈N (t,n)

Et,x,r,n
[
U(Xk,M

T )
]
− ε,

and analogously

inf
M∈N (t,n)

sup
k

Et,x,r,n
[
U(Xk,M

T )
]

(78)

≤ inf
(τ,l)

sup
k

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
+
ε

4

(73)

≤ inf
(τ,l)

Et,x,r,n
[
V n−1(τ,X

k∗,(τ,l)
τ− (1− lk∗τ ), rτ )

]
+
ε

2

≤ sup
k

inf
(τ,l)

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
+
ε

2

≤ sup
k

Et,x,r,n
[
V n−1(τ∗, X

k,(τ∗,l∗)
τ∗− (1− l∗kτ∗), rτ∗)

]
+
ε

2

(77)

≤ sup
k

inf
M∈N (t,n)

Et,x,r,n
[
U(Xk,M

T )
]

+ ε

≤ inf
M∈N (t,n)

sup
k

Et,x,r,n
[
U(Xk,M

T )
]

+ ε.
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Thus, the inequalities

sup
k

inf
M∈N (t,n)

Et,x,r,n
[
U(Xk,M

T )
]

≥ inf
(τ,l)

sup
k

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
− ε

2

≥ sup
k

inf
M∈N (t,n)

Et,x,r,n
[
U(Xk,M

T )
]
− ε

and

inf
M∈N (t,n)

sup
k

Et,x,r,n
[
U(Xk,M

T )
]

≤ sup
k

inf
(τ,l)

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
+
ε

2

≤ inf
M∈N (t,n)

sup
k

Et,x,r,n
[
U(Xk,M

T )
]

+ ε

hold for any ε > 0 and we have that

sup
k

inf
M∈N (t,n)

Et,x,r,n
[
U(Xk,M

T )
]

= inf
(τ,l)

sup
k

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
,

inf
M∈N (t,n)

sup
k

Et,x,r,n
[
U(Xk,M

T )
]

= sup
k

inf
(τ,l)

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
.

Moreover, by the fact that

sup
k

inf
M∈N (t,n)

Et,x,r,n
[
U(Xk,M

T )
]

≤ inf
M∈N (t,n)

sup
k

Et,x,r,n
[
U(Xk,M

T )
]

≤ sup
k

inf
M∈N (t,n)

Et,x,r,n
[
U(Xk,M

T )
]

+ ε,

for any ε > 0, we �nally obtain

V n(t, x, r)
(10)
= sup

k
inf

M∈N (t,n)
Et,x,r,n

[
U(Xk,M

T )
]

= inf
M∈N (t,n)

sup
k

Et,x,r,n
[
U(Xk,M

T )
]

= sup
k

inf
(τ,l)

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
= inf

(τ,l)
sup
k

Et,x,r,n
[
V n−1(τ,X

k,(τ,l)
τ− (1− lkτ ), rτ )

]
.

�

2.6.2. Proof of Proposition 2.2.4.

We prove the assertion for the corresponding forward ODE (16) via induction. For the readers

convenience we repeat the de�nition of f (n)(t, h(n)):

f (n)(t, h(n)) := −1− l∗h(n)

l∗

[
(µ+ ρσ1σ2β(T − t))

(
h(n) − k(n−1)∗

T−t

)
− σ2

1

2
(1− γ)

(
(h(n))2 − (k

(n−1)∗
T−t )2

)]
.
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For n = 1 we have to consider the following ODE

ḣ
(1)
t = f (1)(t, h

(1)
t ), h

(1)
0 = 0. (79)

By de�nition we have that k(0)∗
T−t is continuous in t, and therefore f (1) : R+×R→ R is continuous

in t and h(1) and continuously di�erentiable in h(n). Thus, f (1) is locally Lipschitz continuous

in h(1). Thus, there exists a uniquely determined local solution of (79) (see e.g. [42, Thm.

2.2.2]). Now, we show that the solution exists for all t ≥ 0. Let [0, t+) be the maximal interval

of existence and let h(1) be a maximal solution. Assume that t+ <∞. Choose J1 := [0, t+], then

we have

f (1)(t, h(1))h(1) = −σ
2
1

2
(1− γ)h(1)4 +

3∑
j=0

sj(t)(h
(1))j ≤ CJ1 ∀t ∈ J1, h

(1) ∈ R,

because −σ2
1
2 (1− γ) < 0 and sj(t) are continuous functions in t and therefore we can choose CJ1

such that the above inequality holds. Then, we easily obtain with ϕt := (h
(1)
t )2 for all t ∈ [0, t1],

t1 < t+ arbitrary but �xed, that

ϕ̇t ≤ 2CJ1

and therefore

ϕt ≤ 2CJ1(t+ − t0), ∀t ∈ [0, t1].

Thus, limt→t+ |h
(1)
t | 6= ∞, which is a contradiction to the assumption that t+ < ∞. Therefore,

t+ =∞ and there exists a uniquely determined global solution h(1) of (79). Thus, the assertion

holds for n = 1. Now, assume that the assertion holds for (n− 1), that means

ḣ
(n−1)
t = −1− l∗h(n−1)

t

l∗

[
(µ+ ρσ1σ2β(T − t))

(
h

(n−1)
t − k(n−2)∗

T−t

)
− σ2

1

2
(1− γ)

(
(h

(n−1)
t )2 − (k

(n−2)∗
T−t )2

)]
, h

(n−1)
0 = 0,

has a uniquely determined solution h(n−1)
t . Under this assumption, we want to show that

ḣ
(n)
t = −1− l∗h(n)

t

l∗

[
(µ+ ρσ1σ2β(T − t))

(
h

(n)
t − k

(n−1)∗
T−t

)
(80)

− σ2
1

2
(1− γ)

(
(h

(n)
t )2 − (k

(n−1)∗
T−t )2

)]
, h

(n)
0 = 0.

has a uniquely determined solution h(n)
t . The right hand side f (n) : R+×R→ R is continuous in

t and h(n) (because, by assumption, k(n−1)∗
T−t = h

(n−1)
t ∧ k(0)∗

T−t is continuous in t) and continuously

di�erentiable in h(n). Therefore f (n)(t, h(n)) is locally Lipschitz continuous in h(n). Using the

same arguments as above, one can easily see that there exists a uniquely determined solution of

(80) on the maximal interval of existence [0,∞). By time reversion, we obtain the existence and

uniqueness of a solution k̂(n)
t of (13) on (−∞, T ].
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In the following two steps, we show that k̂(n)
t ∈ [0, 1

l∗ ) . Step 1 shows that k̂(n)
t ∈ [0, 1

l∗ ] for all

t ∈ [0, T ] via induction over n, while Step 2 shows that k̂(n)
t < 1

l∗ by contradiction.

Step 1: By an invariance argument in the sense of qualitative theory of ODE's, we show that

h
(n)
t ∈ [0, 1

l∗ ] for all t ≥ 0, n ∈ {1, . . . , N}. For a detailed de�nition of an invariant set and for

the theorem which is used for the proof, we refer to Appendix A.2.

Let D := [0, 1
l∗ ]. We show that D is positively invariant for (16), that means h(n)

t ∈ D provided

that h(n)
0 ∈ D, for n = 1, . . . , N . We prove this via induction.

Let n = 1. Then, f (1)(t, 1
l∗ ) · y ≤ 0 for all t ∈ R, y ∈ ND( 1

l∗ ) = (0,∞), where ND(h) denotes the

set of outer normals on D. Moreover,

f (1)(t, 0) · y =
1

l∗
σ2

1

2
(1− γ)

(
−k(0)∗

T−t

)2
· y ≤ 0, ∀ t ∈ R, y ∈ ND(0) = (−∞, 0).

By Theorem A.2.3, we obtain that D is positively invariant for (16) with n = 1 and therefore,

h
(1)
t ∈ D for all t ≥ 0. Thus the assertion holds for n = 1. Now, assume that the assertion holds

for n− 1, that means h(n−1)
t ∈ D. The aim is to show that D is positively invariant for

ḣ
(n)
t = f (n)(t, h

(n)
t ), h

(n)
0 = 0.

Obviously, f (n)(t, 1
l∗ ) = 0 for all t ∈ R and therefore f (n)(t, 1

l∗ )·y ≤ 0 for all t ∈ R and y ∈ ND( 1
l∗ ).

Moreover,

f (n)(t, 0) =
1

l∗

[
(µ+ ρσ1σ2β(T − t))k(n−1)∗

T−t − σ2
1

2
(1− γ)(k

(n−1)∗
T−t )2

]
.

Since 1
l∗ > 0, it remains to show that

(µ+ ρσ1σ2β(T − t))k(n−1)∗
T−t − σ2

1

2
(1− γ)(k

(n−1)∗
T−t )2 ≥ 0, ∀ t ∈ R.

In order to show this inequality, we di�erentiate between two cases:

Case 1. For t ∈ R it holds that h(n−1)
t ≥ k(0)∗

T−t and therefore k(n−1)∗
T−t = k

(0)∗
T−t.

Then, we obtain

(µ+ ρσ1σ2β(T − t))k(n−1)∗
T−t − σ2

1

2
(1− γ)(k

(n−1)∗
T−t )2

= (µ+ ρσ1σ2β(T − t))k(0)∗
T−t −

σ2
1

2
(1− γ)(k

(0)∗
T−t)

2

=
1

2

(µ+ ρσ1σ2β(T − t))2

σ2
1(1− γ)

≥ 0.

Case 2. For t ∈ R it holds that h(n−1)
t ≤ k(0)∗

T−t and therefore k(n−1)∗
T−t = h

(n−1)
t .

Since h(n−1)
t ≥ 0, we have that k(0)∗

T−t ≥ 0 which is equivalent to

µ+ ρσ1σ2β(T − t) ≥ 0.
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Thus, we obtain

(µ+ ρσ1σ2β(T − t))k(n−1)∗
T−t − σ2

1

2
(1− γ)(k

(n−1)
T−t )2

= h
(n−1)
t

[
µ+ ρσ1σ2β(T − t)− σ2

1

2
(1− γ)h

(n−1)
t

]
≥ h(n−1)

t

[
µ+ ρσ1σ2β(T − t)− σ2

1

2
(1− γ)k

(0)∗
T−t

]
= h

(n−1)
t

[
1

2
(µ+ ρσ1σ2β(T − t))

]
≥ 0.

Case 1 and Case 2 together yield:

(µ+ ρσ1σ2β(T − t))k(n−1)∗
T−t − σ2

1

2
(1− γ)(k

(n−1)∗
T−t )2 ≥ 0, ∀ t ∈ R,

and therefore

f (n)(t, 0) · y ≤ 0, ∀t ∈ R, y ∈ ND(0).

Finally, we have

f (n)(t, h(n)) · y ≤ 0, ∀ t ∈ R, h(n) ∈ ∂D, y ∈ ND(h(n)),

and therefore, by Theorem A.2.3, we obtain that D is positively invariant for (16), and �nally

h
(n)
t ∈ [0, 1

l∗ ] for all t ≥ 0. By time reversion we obtain that k̂(n)
t ∈ [0, 1

l∗ ] for all t ∈ (−∞, T ].

Step 2: Here, we show that k̂(n)
t < 1

l∗ for all t ∈ [0, T ] for arbitrary but �xed n ∈ {1, . . . , N}.
Let t̃ := inf{t ∈ [0, T ] : k̂

(n)
t ≤ 1

l∗ − δ, k̂
(n)
s ≤ 1

l∗ − δ, ∀s ∈ [t, T ]} for some δ > 0. Since k̂(n)
T = 0

and by continuity of k̂(n)
t , the in�mum is attained at some t̃. First, we show that k̂(n)

t̃
≤ 1

l∗ − 2δ

for some δ > 0 if k̂(n)
s ≤ 1

l∗ − 2δ for s ∈ [t̃, T ], and in a second step we deduce that t̃ = 0 by

contradiction.

(1) Here we show that k̂(n)

t̃
≤ 1

l∗ − 2δ:

By de�nition, we have for t ∈ [t̃, T ] that k̂(n)
t < 1

l∗ , and therefore, we obtain together with (13):

d

dt
log(1− l∗k̂(n)

t ) = −F (t, k̂
(n)
t ), F (t, k̂(n)) := −

(
φ(t, k̂(n))− φ(t, k̂

(n−1)∗
t )

)
.

Integrating on both sides and using that k̂(n)
s < 1

l∗ for s ∈ [t̃, T ] leads to∫ T

t̃

d

ds
log(1− l∗k̂(n)

s ) ds = −
∫ T

t̃
F (s, k̂(n)

s ) ds

⇔ log(1− l∗k̂(n)
T )− log(1− l∗k̂(n)

t̃
) = −

∫ T

t̃
F (s, k̂(n)

s ) ds

⇔ log(1− l∗k̂(n)

t̃
) =

∫ T

t̃
F (s, k̂(n)

s ) ds.
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Moreover, by Step 1, we know that k̂(n)
t ∈ [0, 1

l∗ ] for all t ∈ [0, T ]. Since F (s, k) is a continuous

function in k, we have |F (s, k̂
(n)
s )| ≤M for all s ∈ [0, T ], and we obtain

1− l∗k̂(n)

t̃
= exp

{∫ T

t̃
F (s, k̂(n)

s ) ds

}
≥ exp

{∫ T

t̃
−M ds

}
= exp{−M(T − t̃)} ≥ e−MT

Thus, with δ̃ := 1
2e
−MT , we have

1− l∗k̂(n)

t̃
≥ 2δ̃ ⇔ k̂

(n)

t̃
≤ 1

l∗
− 2δ, δ :=

δ̃

l∗
> 0 (81)

(2) We show that t̃ = 0 by contradiction:

Assume that t̃ > 0, then inequality (81) implies

k̂
(n)

t̃
≤ 1

l∗
− 2δ,

because k̂(n)
s < 1

l∗ for s ∈ [t̃, T ]. By continuity, there exists t′ < t̃, such that k̂(n)
t′ ≤

1
l∗ − δ which

is a contradiction to the de�nition of t̃. Thus, t̃ = 0 and therefore, k̂(n)
t < 1

l∗ for all t ∈ [0, T ].

2.6.3. Proof of Proposition 2.2.6.

Here, we prove the assertion:

Let u(n)
t := h

(n)
t − h

(n−1)
t , where h(n) is the solution of the corresponding equation (16). Then,

u
(n)
t ≤ 0 for all t ∈ [0, T ], n ∈ {2, 3, . . . , N}.

Proof. We prove the assertion via induction. First, by de�nition, we have for arbitrary n:

h
(n)
t = u

(n)
t + h

(n−1)
t , (82)

h
(n)
t − k

(n−1)∗
T−t = h

(n)
t − h

(n−1)
t + h

(n−1)
t − k(n−1)∗

T−t = u
(n)
t + h

(n−1)
t − k(n−1)∗

T−t , (83)

(h
(n)
t )2 − (k

(n−1)∗
T−t )2 = (h

(n)
t )2 − (h

(n−1)
t )2 + (h

(n−1)
t )2 − (k

(n−1)∗
T−t )2,

= u
(n)
t (h

(n)
t + h

(n−1)
t ) + ((h

(n−1)
t )2 − (k

(n−1)∗
T−t )2), (84)

and therefore, by (16) and (82)-(84) and with ν(T − t) := µ+ ρσ1σ2β(T − t) it holds for n ≥ 2:

u̇
(n)
t = f (n)(t, h

(n)
t )− f (n−1)(t, h

(n−1)
t )

= −1− l∗(u(n)
t + h

(n−1)
t )

l∗

·
[
ν(T − t)

(
u

(n)
t + h

(n−1)
t − k(n−1)∗

T−t

)
− σ2

1

2
(1− γ)

(
u

(n)
t

(
h

(n)
t + h

(n−1)
t

)
+
(

(h
(n−1)
t )2 − (k

(n−1)∗
T−t )2

))]
+

1− l∗h(n−1)
t

l∗

·
[
ν(T − t)

(
h

(n−1)
t − k(n−2)∗

T−t

)
− σ2

1

2
(1− γ)

(
(h

(n−1)
t )2 − (k

(n−2)∗
T−t )2

)]
=: f

(n)
d (t, u

(n)
t ),

u
(n)
0 = h

(n)
0 − h(n−1)

0 = 0.
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First, we show that u(2)
t ≤ 0 by showing that E := (−∞, 0] is positively invariant for

u̇
(2)
t = f

(2)
d (t, u

(2)
t ), u

(2)
0 = 0. (85)

Here, we have

f
(2)
d (t, 0) =− 1− l∗h(1)

t

l∗
·
[
ν(T − t)

(
h

(1)
t − k

(1)∗
T−t

)
− σ2

1

2
(1− γ)

(
(h

(1)
t )2 − (k

(1)∗
T−t)

2
)]

+
1− l∗h(1)

t

l∗
·
[
ν(T − t)

(
h

(1)
t − k

(0)∗
T−t

)
− σ2

1

2
(1− γ)

(
(h

(1)
t )2 − (k

(0)∗
T−t)

2
)]

=
1− l∗h(1)

t

l∗

[
σ2

1(1− γ)k
(0)∗
T−t · k

(1)∗
T−t −

σ2
1

2
(1− γ)(k

(1)∗
T−t)

2 − σ2
1

2
(1− γ)(k

(0)∗
T−t)

2

]
=

1− l∗h(1)
t

l∗

[
− σ2

1

2
(1− γ)

(
k

(1)∗
T−t − k

(0)∗
T−t

)2
]
≤ 0.

The last inequality holds because h(1)
t ∈ [0, 1

l∗ ) and 1 − γ > 0. We obtain that E is positively

invariant for (85), because

f
(2)
d (t, 0) · y ≤ 0, ∀t ∈ R, y ∈ NE(0) = (0,∞),

and it follows that u(2)
t = h

(2)
t − h

(1)
t ≤ 0 for all t ∈ [0, T ], and the assertion holds for n = 2.

Now, we assume that the assertion holds for n− 1, that is u(n−1)
t = h

(n−1)
t − h(n−2)

t ≤ 0. Then,

the aim is to show that E is positively invariant for

u̇
(n)
t = f

(n)
d (t, u

(n)
t ), u

(n)
0 = 0.

It holds

f
(n)
d (t, 0) =− 1− l∗h(n−1)

t

l∗

·
[
ν(T − t)

(
h

(n−1)
t − k(n−1)∗

T−t

)
− σ2

1

2
(1− γ)

(
(h

(n−1)
t )2 − (k

(n−1)∗
T−t )2

)]
+

1− l∗h(n−1)
t

l∗

·
[
ν(T − t)

(
h

(n−1)
t − k(n−2)∗

T−t

)
− σ2

1

2
(1− γ)

(
(h

(n−1)
t )2 − (k

(n−2)∗
T−t )2

)]
=

1− l∗h(n−1)
t

l∗

·
[
ν(T − t)

(
k

(n−1)∗
T−t − k(n−2)∗

T−t

)
− σ2

1

2
(1− γ)

(
(k

(n−1)∗
T−t )2 − (k

(n−2)∗
T−t )2

)]
=

1− l∗h(n−1)
t

l∗

(
k

(n−1)∗
T−t − k(n−2)∗

T−t

)
·
[
ν(T − t)− σ2

1

2
(1− γ)

(
k

(n−1)∗
T−t + k

(n−2)∗
T−t

)]
.

By de�nition and by the assumption h(n−1)
t ≤ h(n−2)

t , we conclude that

k
(n−1)∗
T−t = h

(n−1)
t ∧ k(0)∗

T−t, k
(n−2)∗
T−t = h

(n−2)
t ∧ k(0)∗

T−t
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and hence that

k
(n−1)∗
T−t ≤ k(n−2)∗

T−t . (86)

Moreover, by de�nition, it holds

k
(n−1)∗
T−t ≤ k(0)∗

T−t, k
(n−2)∗
T−t ≤ k(0)∗

T−t.

Thus,

ν(T − t)− σ2
1

2
(1− γ)

(
k

(n−1)∗
T−t + k

(n−2)∗
T−t

)
≥ ν(T − t)− σ2

1

2
(1− γ)2 · k(0)∗

T−t = 0, (87)

and by h(n−1)
t < 1

l∗ , by (86) and (87), we obtain the following inequality:

f
(n)
d (t, 0) =

1− l∗h(n−1)
t

l∗

(
k

(n−1)∗
T−t − k(n−2)∗

T−t

)
·
[
ν(T − t)− σ2

1

2
(1− γ)

(
k

(n−1)∗
T−t + k

(n−2)∗
T−t

)]
≤ 0.

Finally, we conclude that

f
(n)
d (t, 0) · y ≤ 0, ∀t ∈ R, y ∈ NE(0)

and it follows that u(n)
t = h

(n)
t − h

(n−1)
t ≤ 0 for all t ∈ [0, T ]. �

2.6.4. Proof of Proposition 2.2.7.

Here we prove the assertion:

Let γρ ≥ 0. Then u(1)
t := h

(1)
t − h

(0)
t ≤ 0 for all t ∈ [0, T ], where h(0)

t := k
(0)∗
T−t and h

(1)
t is the

uniquely determined solution of (16) with n = 1.

Proof. By de�nition we have

ḣ
(0)
t =

ρσ2

σ1(1− γ)
γ exp(−at), h

(0)
0 = k

(0)∗
T =

µ

σ2
1(1− γ)

> 0,

ḣ
(1)
t =

1− l∗h(1)
t

l∗
· σ

2
1

2
(1− γ)

(
h

(1)
t − k

(0)∗
T−t

)2
, h

(1)
0 = 0.

With u(1)
t := h

(1)
t − h

(0)
t , we have u(1)

0 = − µ
σ2
1(1−γ)

and

u̇
(1)
t = ḣ

(1)
t − ḣ

(0)
t

=
1− l∗

(
u

(1)
t + h

(0)
t

)
l∗

· σ
2
1

2
(1− γ)

(
u

(1)
t

)2
− ρσ2

σ1(1− γ)
γ exp(−at)

=: f
(1)
d (t, u

(1)
t ) (88)

In order to show that u(1)
t ≤ 0, we use again the invariance argument. Let E := (−∞, 0]. Then,

E is positively invariant for (88), because γρ ≥ 0 implies

f
(1)
d (t, 0) · y = − σ2

σ1(1− γ)
exp(−at) γ · ρ︸︷︷︸

≥0

·y ≤ 0, ∀t ∈ R, ∀y ∈ NE(0) = (0,∞).

By Theorem A.2.3, we have that E is positively invariant for (88), that means u(1)
t ≤ 0 for all

t ∈ [0,∞). �
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2.6.5. Veri�cation argument for the post-crash problem.

Here we apply the Veri�cation Theorem A.5.2, which was formulated in [24, Corollary 3.2] for a

more general stochastic optimal control problem. First, we have to prove several conditions for

the stochastic optimal control problem (17) on the relevant interval [t0, T ] with 0 ≤ t0 < T .

i) k(0)∗ is progressively measurable.

ii) for all n ∈ N the integrability condition

E
(∫ T

t0

|k(0)∗
t |n dt

)
<∞

is satis�ed.

iii) The corresponding state process {X∗t }t∈[t0,T ], controlled by k(0)∗, satis�es

Et0,x0
(

sup
t∈[t0,T ]

|X∗t |n
)
<∞.

iv) v0(t, x, r) = 1
γx

γg(0)(t) exp(β(t)r) is an element of C1,2,2([t0, T ]×R+×R) and it is a solution

of the HJB equation.

v) For all (t, x) ∈ [t0, T )× R and for all k(0) ∈ Π(t, x, r), there exists a q > 1, such that

E

(
sup
s∈[t,T ]

∣∣v0
(
s,Xs, rs

)∣∣q) <∞.

vi) k(0)∗
s ∈ arg maxk∈A Lkv0(s,X

∗
s, rs) for all s ∈ [t0, T ].

Remark 2.6.1. As in the model of [24], we can treat the post-crash problem as if the state process

consists only of Xt, because rt, as a solution of (2), has a uniquely determined solution and it

holds E (maxt0≤s≤T |rs|q) <∞ for q ∈ N (see for example [32, Chp. 5.2, Corollary 12]).

All the steps work in the same way as for the model of [24], but for the sake of completeness we

show it here.

Proof of i): k
(0)∗
t = µ

(1−γ)σ2
1

+ ρσ2β(t)
σ1(1−γ) is a deterministic and continuous function, and therefore

it is progressively measurable.

Proof of ii): Due to that fact that k(0)∗
t is bounded on [0, T ], we immediately obtain the integra-

bility condition for all n ∈ N.
Proof of iii): Here, we consider the wealth equation

dX
∗
t = X

∗
t

[
rt + µk

(0)∗
t

]
dt+Xtσ1k

(0)∗
t dw1,t, X

∗
t0 = x.

By Corollary A.5.1, there exists a uniquely determined solution given by

X
∗
t = x0 · exp

(∫ t

t0

rs + µk(0)∗
s − σ2

1

2
(k(0)∗
s )2 ds+

∫ t

t0

σ1k
(0)∗
s dw1,s

)
,

because k(0)∗
t is bounded on [0, T ] and

∫ t
t0
|rs| ds < +∞, P- a.s., for all t ∈ [t0, T ]. Obviously,

X
∗
t > 0 P- a.s for t ∈ [t0, T ]. Now, let n ∈ N be arbitrary but �xed. Then, we have the following
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estimate with a universal constant K > 0:

X
∗n
t = xn0 · exp

(
n

∫ t

t0

rs + µk(0)∗
s − σ2

1

2
(k(0)∗
s )2 ds+ n

∫ t

t0

σ1k
(0)∗
s dw1,s

)
≤ K · exp

(
n

∫ t

t0

rs ds+ n

∫ t

t0

σ1k
(0)∗
s dw1,s

)
≤ K exp

(
2n

∫ t

t0

rs ds

)
+K exp

(
2n

∫ t

t0

σ1k
(0)∗
s dw1,s

)
.

By Proposition A.1.1 in Appendix A, it holds∫ t

t0

rs ds =
r0

a
(1− e−a(t−t0)) + rM

(
(t− t0)− 1− e−a(t−t0)

a

)
+ σ2

∫ t

t0

1− e−a(t−s)

a
dw̃s.

Thus,

X
∗n
t ≤ K exp

(∫ t

t0

h1(s) dw̃s

)
+K exp

(∫ t

t0

h2(s) dw1,s

)
,

where h1(s) := 2nσ2a
(
1− ea(t−s)) and h2(s) := 2nσ1k

(0)∗
s are deterministic and bounded func-

tions on [0, T ]. With

exp

(∫ t

t0

h1(s) dw̃s

)
= exp

(∫ t

t0

1

2
h2

1(s) ds

)
· exp

(
−
∫ t

t0

1

2
h2

1(s) ds+

∫ t

t0

h1(s) dw̃s

)
and with

Z1,t := exp

(
−
∫ t

t0

1

2
h2

1(s) ds+

∫ t

t0

h1(s) dw̃s

)
,

which is a solution of

dZ1,t = Z1,th1(t) dw̃t, Z1,t0 = 1,

we have by [32, Chp. 5.2, Cor. 12]:

E
(

max
t∈[t0,T ]

Z1,t

)
<∞.

Analogously, with

Z2,t := exp

(
−
∫ t

t0

1

2
h2

2(s) ds+

∫ t

t0

h2(s) dw1,s

)
,

we obtain E
(
maxt∈[t0,T ] Z2,t

)
<∞. Now, we can conclude that

X
∗n
t ≤ K exp

(∫ t

t0

1

2
h2

1(s) ds

)
· Z1,t +K exp

(∫ t

t0

1

2
h2

2(s) ds

)
· Z2,t

≤ K · max
t∈[t0,T ]

(Z1,t) +K max
t∈[t0,T ]

(Z2,t),

because h1(t) and h2(t) are deterministic and bounded functions. Taking the supremum on the

left hand side and the expectations on both sides leads to

Et0,x0
(

sup
t∈[t0,T ]

X
∗n
t

)
≤ KEt0,x0

(
sup

t∈[t0,T ]
(Z1,t)

)
+KEt0,x0

(
sup

t∈[t0,T ]
(Z2,t)

)
< +∞,

and iii) follows.
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Proof of iv): We have already shown that v0(t, x, r) = 1
γx

γg(0)(t) exp(β(t)r) solves the HJB

equation (18).

Proof of v): The candidate of the value function is given by

v0(t, x, r) =
1

γ
xγg(0)(t) exp(β(t)r),

where g(0)(t) = exp(
∫ T
t α(0)(s) ds) and β(t) = γ

a [1− exp(−a(T − t))] are deterministic and

bounded functions. Let k(0) ∈ Π(t, x, r) be arbitrary but �xed. Then, we have that |k(0)
s | ≤ K

for some K < ∞. Let (t′, x′, r′) ∈ [t0, T ] × R+ × R be arbitrary but �xed. Then, we have with

constants Ki > 0:∣∣v0(t,Xt, rt)
∣∣ = |γ−1| ·Xγ

t exp

(∫ T

t
α(0)(s) ds+

γ

a
[1− exp(−a(T − t))] rt

)
≤ K1 · exp

(
γ

∫ t

t′

[
rs + µk(0)

s −
σ2

1

2
(k(0)
s )2

]
ds+ γ

∫ t

t′
σ1k

(0)
s dw1,s

)
· exp

(γ
a

[1− exp(−a(T − t))] rt
)

≤ K2 · exp

(
γ

∫ t

t′
rs ds+ γ

∫ t

t′
σ1k

(0)
s dw1,s

)
· exp

(γ
a
rt

)
· exp

(
−γ
a

exp(−a(T − t))rt
)
.

Again, by Proposition A.1.1, we obtain

exp(−a(T − t)) · rt = exp
(
−a(T − t′)

)
r′ +

∫ t

t′
arM exp (−a(T − s)) ds

+

∫ t

t′
σ2 exp (−a(T − s)) dw̃s.

Now, we obtain∣∣v0(t,Xt, rt)
∣∣

≤ K3 · exp

(
γ

∫ t

t′
rs ds+ γ

∫ t

t′
σ1k

(0)
s dw1,s +

γ

a

(
r′ +

∫ t

t′
a(rM − rs) ds+

∫ t

t′
σ2 dw̃s

))
· exp

(∫ t

t′
−γ
a
σ2 exp (−a(T − s)) dw̃s

)
≤ K4 · exp

(
γ

∫ t

t′
σ1k

(0)
s dw1,s +

γ

a

∫ t

t′
σ2 dw̃s

)
· exp

(∫ t

t′
−γ
a
σ2 exp (−a(T − s)) dw̃s

)

= K4 · exp

∫ t

t′
γσ1k

(0)
s︸ ︷︷ ︸

:=h3(s)

dw1,s

 · exp

∫ t

t′

γ

a
σ2 (1− exp (−a(T − s)))︸ ︷︷ ︸

:=h4(s)

dw̃s


≤ K5 · Z3,t
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where

Z3,t := exp

(∫ t

t′
h3(s) + ρh4(s) dw1,s +

∫ t

t′

√
1− ρ2h4(s) dw2,s

− 1

2

∫ t

t′

[
(h3(s) + ρh4(s))2 + (

√
1− ρ2h4(s))2

]
ds

)
.

Z3 is a solution of the SDE

dZ3,t = Z3,t(h3(t) + ρh4(t)) dw1,t + Z3,t

√
1− ρ2h4(t) dw2,t, Z3,t′ = 1,

and now, by [32, Chp.5.2,Cor.12], we conclude that

E

(
sup

t∈[t′,T ]
|Z3,t|2

)
<∞.

With ∣∣v0(t,Xt, rt)
∣∣2 ≤ K2

5 · Z2
3,t ≤ K2

5 sup
t∈[t′,T ]

Z2
3,t, ∀t ∈ [t′, T ]

we have

E

(
sup

t∈[t′,T ]

∣∣v0(t,Xt, rt)
∣∣2) ≤ K2

5E

(
sup

t∈[t′,T ]
Z2

3,t

)
<∞,

and therefore v) follows for q = 2.

Proof of vi):

This condition is ful�lled (see page 16).

Obviously, the function U(x) = 1
γx

γ with γ < 1, γ 6= 0, does not ful�ll the growth condition

(158), which is required for applying Theorem A.5.2. Nevertheless, we can replace this condition

if we can show that the functional

J(t, x, r; k) := Et,x,r
(

1

γ
X
γ
T

)
is well-de�ned for all admissible controls k ∈ Π(t, x, r). For further details about models in which

the utility function does not satisfy the growth conditions, we refer to Kraft [31, p.18]. In our

case, we can show that J(t, x, r; k) is well-de�ned using the explicit expression of the solution

of the wealth equation and the short rate equation and the conditions of an admissible control

strategy (see De�nition 2.1.1).

By proving the conditions i)- vi), we now apply Theorem A.5.2. Note that our control problem

does not include a running utility such that the function L in Theorem A.5.2 is equal to zero.

Moreover, in our case we have that Q , [t0, T )×O and O , (0,∞)×R. Since Xt > 0 P-a.s. for
every t ∈ [0, T ] and k ∈ Π(t, x, r), the process (Xt, rt) never leaves the set O and therefore η , T ,

where η is de�ned in (156). Now, we obtain that v0(t, x, r) is indeed equal to the post-crash

value function and k(0)∗
t is the optimal post-crash strategy.
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2.6.6. Heuristic characterization of vn(t, x, r)- The non-log utility case. Here, we

want to characterize a candidate for the value function V n ∈ C1,2,2 which solves the system:

0 ≤ sup
k∈A′′n(t,x,r)

[
Lkvn(t, x, r)

]
, (89)

0 ≤ sup
k∈A′n(t,x,r)

[
vn−1

(
t, x(1− l∗k+), r

)
− vn(t, x, r)

]
, (90)

0 = sup
k∈A′′n(t,x,r)

[
Lkvn(t, x, r)

]
sup

k∈A′n(t,x,r)

[
vn−1

(
t, x(1− l∗k+), r

)
− vn(t, x, r)

]
, (91)

vn(T, x, r) =
1

γ
xγ . (92)

We can do this using analogous arguments as in [28, Section 4]. Let (t, x, r) ∈ [0, T ] × R+ × R
and n ∈ {1, . . . , N} be arbitrary but �xed. Let us start with the inequality (90). In contrast

to [28, Section 4], this inequality has the positive part k+ instead of k. Assuming that the

candidate vn is strictly monotone increasing in x we easily have, for arbitrary but �xed (t, x, r),

that vn−1 (t, x(1− l∗k+), r)−vn(t, x, r) is constant for k ≤ 0 and strictly monotone decreasing in

k for k ≥ 0. Therefore, the supremum in (90) is taken for the smallest k for which k ∈ A′n(t, x, r),

that is, for which the inequality

vnt (t, x, r) + a(rM − r)vnr (t, x, r) +
σ2

2

2
vnrr(t, x, r)

≥ −x(µk + r)vnx(t, x, r)− σ2
1

2
k2x2vnxx(t, x, r)− ρσ1σ2kxv

n
xr(t, x, r) (93)

holds. With a second assumption that vn(t, x, r) is concave in x, we have that vnxx(t, x, r) < 0.

Thus, the right hand side of the inequality, as function of k, is a parabola opens upward. Note

that if the inequality holds for k ∈ [k′, 0] with k′ ≤ 0, then the supremum is attained for all

k ∈ [k′, 0] due to the positive part. Especially, the supremum in (90) is attained for the smallest

value k for which (93) holds as an equality. Analogously to the literature, we can separate the

(t, x, r) space into the set Y(n), where the right hand side of inequality (90) is strictly positive,

and its complement. That means

Y(n) :=

{
(t, x, r) : sup

k∈A′n(t,x,r)

[
vn−1

(
t, x(1− l∗k+), r

)
− vn(t, x, r)

]
> 0

}
.

For (t, x, r) /∈ Y(n), k and vn are determined by the following equalities:

vn−1(t, x(1− l∗k+), r) = vn(t, x, r),

vnt (t, x, r) + a(rM − r)vnr (t, x, r) +
σ2

2

2
vnrr(t, x, r)

= −x(µk + r)vnx(t, x, r)− σ2
1

2
k2x2vnxx(t, x, r)− ρσ1σ2kxv

n
xr(t, x, r). (94)

By the complementarity condition (91), we have to require for (t, x, r) ∈ Y(n), that

sup
k∈A′′n(t,x,r)

[
Lkvn(t, x, r)

]
= 0. (95)



2.6. APPENDIX 73

Ignoring the condition k ∈ A′′n(t, x, r) and using the �rst order optimality condition, we obtain a

candidate

k = −v
n
x(t, x, r)µ+ ρσ1σ2v

n
xr(t, x, r)

σ2
1xv

n
xx(t, x, r)

. (96)

If k, given by (96), ful�lls the condition k ∈ A′′n(t, x, r), that means, if

vn(t, x, r) ≤ vn−1(t, x(1− l∗k+), r),

then the supremum in (95) is attained in (96). Otherwise, since Lkvn(t, x, r) is monotone in-

creasing in k for

k < −µv
n
x(t, x, r) + ρσ1σ2v

n
xr(t, x, r)

σ2
1xv

n
xx(t, x, r)

,

and since vn−1(t, x(1 − l∗k+), r) is monotone decreasing in k, it follows that the supremum in

(95) is attained for k, for which

vn(t, x, r) = vn−1(t, x(1− l∗k+), r).

In this case k and vn are determined by the following equalities:

vn(t, x, r) = vn−1(t, x(1− l∗k+), r),

Lkvn(t, x, r) = 0.

Summarizing, for (t, x, r) ∈ Y(n), k and vn are either determined by

k = −µv
n
x(t, x, r) + ρσ1σ2v

n
xr(t, x, r)

σ2
1xv

n
xx(t, x, r)

, (97)

0 = Lkvn(t, x, r),

or by

vn(t, x, r) = vn−1(t, x(1− l∗k+), r), (98)

0 = Lkvn(t, x, r).

But, the last equalities also determine k and vn for (t, x, r) /∈ Y(n) (see (94)). As in the literature

[28], we can now separate the (t, x, r) space into the set

Z(n) =

{
(t, x, r) : k(t, x, r) = −µv

n
x(t, x, r) + ρσ1σ2v

n
xr(t, x, r)

σ2
1xv

n
xx(t, x, r)

, 0 = Lkvn(t, x, r)

}
and its complement, where k and vn are determined by

vn(t, x, r) = vn−1(t, x(1− l∗k+), r),

0 = Lkvn(t, x, r).

By the proof of part a) in Theorem 2.2.2, we know that v0(t, x, r) given by (12) and k(0) given

by (11) is the usual solution of the HJB equation

0 = Lk(0)v0(t, x, r), v0(T, x, r) =
1

γ
xγ , (t, x, r) ∈ [0, T ]× R+ × R,

k(0) = arg sup
k∈A

[
Lkv0(t, x, r)

]
= −µv

0
x(t, x, r) + ρσ1σ2v

0
xr(t, x, r)

σ2
1xv

0
xx(t, x, r)

.
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Thus, for n = 0 we have that Z(0) is the whole (t, x, r) space. For n > 0, we demonstrate how

we derived vn(t, x, r) heuristically and afterwards we obtain that vn, given by (14), is a solution

of the system of inequalities (89)-(91). Analogously to the case of n = 0, we assume that the

solution takes the form

vn(t, x, r) =
1

γ
xγg(n)(t) exp(β(t)r),

with g(n)(T ) = 1 and β(T ) = 0. By inserting vn(t, x, r) and its derivatives in (97) for (t, x, r) ∈
Z(n) and in (98) for (t, x, r) /∈ Z(n), and by assuming that k(n)∗(t, x, r) ≥ 0 for (t, x, r) /∈ Z(n)

(this will be shown later), we obtain:

k
(n)∗
t =


µ+ρσ1σ2β(t)
σ2
1(1−γ)

: (t, x, r) ∈ Z(n),

k̂
(n)
t := 1

l∗

[
1−

(
g(n)(t)

g(n−1)(t)

) 1
γ

]
: (t, x, r) /∈ Z(n).

(99)

Moreover, for both cases, we have to require that 0 = Lk
(n)∗
t vn(t, x, r). This is equivalent to

vnt (t, x, r) + x(µk
(n)∗
t + r)vnx(t, x, r) +

σ2
1

2
(k

(n)∗
t )2x2vnxx(t, x, r)

+ ρσ1σ2k
(n)∗
t xvnxr(t, x, r) + a(rM − r)vnr (t, x, r) +

σ2
2

2
vnrr(t, x, r) = 0.

Now, by inserting vn(t, x, r) and its derivatives and by dividing by 1
γx

γ exp(β(t)r) 6= 0, we obtain

ġ(n)(t) + g(n)(t)

(
γ(µ+ ρσ1σ2β(t))k

(n)∗
t − σ2

1

2
γ(1− γ)(k

(n)∗
t )2 + arMβ(t) +

σ2
2

2
β2(t)

)
+ g(n)(t)r

(
β̇(t)− aβ(t) + γ

)
= 0, β(T ) = 0, g(n)(T ) = 1.

In order to eliminate r, we choose β(t) as given in (11) and therefore β̇(t)−aβ(t)+γ = 0, β(T ) = 0

and the equation above reduces to the ordinary di�erential equation for g(n)(t) given in (15).

Thus, we obtain that 0 = Lk
(n)∗
t vn(t, x, r). Now, for (t, x, r) /∈ Z(n), we have that

k(n)∗(t, x, r) = k̂
(n)
t :=

1

l∗

1−

(
g(n)(t)

g(n−1)(t)

) 1
γ

 , (100)

where g(n)(t) ful�lls (15). Using (15) and (100), we have for k̂(n)
t for (t, x, r) /∈ Z(n):

˙̂
k

(n)
t = − 1

l∗
1

γ

(
g(n)(t)

g(n−1)(t)

) 1
γ
−1 [

ġ(n)(t)g(n−1)(t)− g(n)(t)ġ(n−1)(t)

g(n−1)(t)2

]

= − 1

l∗

(
1− l∗k̂(n)

t

)
·

(
1

γ

g(n−1)(t)

g(n)(t)
·

[
ġ(n)(t)g(n−1)(t)− g(n)(t)ġ(n−1)(t)

g(n−1)(t)2

])
︸ ︷︷ ︸

:=(A)

,

where

(A) =− (µ+ ρσ1σ2β(t))k̂
(n)
t +

σ2
1

2
(1− γ)(k̂

(n)∗
t )2 − 1

γ
arMβ(t)− 1

γ

σ2
2

2
β2(t)

+ (µ+ ρσ1σ2β(t))k
(n−1)∗
t − σ2

1

2
(1− γ)(k

(n−1)∗
t )2 +

1

γ
arMβ(t) +

1

γ

σ2
2

2
β2(t).
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Thus, k̂(n)
t has to ful�ll the equation:

˙̂
k

(n)
t =

1− l∗k̂(n)
t

l∗

(
φ(t, k̂

(n)
t )− φ(t, k

(n−1)∗
t )

)
, k̂

(n)
T = 0.

Note that the terminal condition k̂(n)
T = 0 follows by g(n)(T ) = 1 and therefore

k̂
(n)
T =

1

l∗

1−

(
g(n)(T )

g(n−1)(T )

) 1
γ

 = 0

By de�nition of k(0)∗
t in (11) and by (99) we �nally obtain that

k
(n)∗
t =

k
(0)∗
t : (t, x, r) ∈ Z(n)

k̂
(n)
t : (t, x, r) /∈ Z(n)

.

In order to show that vn(t, x, r) ∈ C1,2,2, given by (14), is a solution of the system (22)-(24), it

remains to show that k(n)∗
t is indeed equal to

k̂
(n)
t ∧ k

(0)∗
t .

We can see this by the following arguments. Let n ∈ {1, . . . , N} be �xed. First, one can easily

show that k̂(n)
t is strictly monotone decreasing with k̂(n)

T = 0. Now, we show that

Z(n) = {(t, x, r) : k̂
(n)
t ≥ k(0)∗

t }.

Let (t′, x′, r′) ∈ {(t, x, r) : k̂
(n)
t ≥ k(0)∗

t }. Then, we have by the fact that k̂(n)
t′ ≥ 0 (see Proposition

2.2.4), by the fact that vn(t′, x′(1− l∗k), r′) is monotone decreasing in k:

k̂
(n)
t′ ≥ k

(0)∗
t′

⇒ (k̂
(n)
t′ )+ ≥ (k

(0)∗
t′ )+

⇒ vn−1(t′, x′(1− l∗(k(0)∗
t′ )+, r′) ≥ vn−1(t′, x′(1− l∗(k̂(n)

t′ )+, r′) = vn(t′, x′, r′)

⇒ k
(0)∗
t′ ∈ A′′n(t′, x′, r′).

Since

k
(0)∗
t′ =

µ+ ρσ1σ2β(t′)

σ2
1(1− γ)

= −µv
n
x(t′, x′, r′) + ρσ1σ2v

n
xr(t

′, x′, r′)

σ2
1x
′vnxx(t′, x′, r′)

and Lk(0)∗vn(t′, x′, r′) = 0, it follows that (t′, x′, r′) ∈ Z(n).

Now, let (t′, x′, r′) ∈ Z(n). Then, by de�nition, it holds

k(t′, x′, r′) = −v
n
x(t′, x′, r′)µ+ ρσ1σ2v

n
xr(t

′, x′, r′)

σ2
1x
′vnxx(t′, x′, r′)

= k
(0)∗
t′ ∈ A′′n(t′, x′, r′)

and Lkvn(t′, x′, r′) = 0. k(0)∗
t′ ∈ A′′n(t′, x′, r′) implies

vn−1(t′, x′(1− l∗(k(0)∗
t′ )+), r′) ≥ vn(t′, x′, r′) = vn−1(t′, x′(1− l∗(k̂(n)

t′ )+), r′). (101)

Now, assume that k̂(n)
t′ < k

(0)∗
t′ , then (k̂

(n)
t′ )+ < (k

(0)∗
t′ )+. Since vn−1(t, x, r) is strictly monotone

increasing in x, we obtain

vn−1(t′, x′(1− l∗(k(0)∗
t′ )+), r′) < vn−1(t′, x′(1− l∗(k̂(n)

t′ )+), r′),
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which is a contradiction to (101). Thus, k̂(n)
t′ ≥ k

(0)∗
t′ and therefore (t′, x′, r′) ∈ {(t, x, r) : k̂

(n)
t ≥

k
(0)∗
t }.
Summing up, we obtained that vn(t, x, r) ∈ C1,2,2, given by (14), is a solution of the system

(22)-(24).

Remark 2.6.2. (1) By Proposition 2.2.4, we have that k̂
(n)
t ≥ 0, which justi�es the assump-

tion that k
(n)∗
t ≥ 0 for (t, x, r) /∈ Z(n) (see assumption before (99))

(2) If γρ ≥ 0 , then k
(n)∗
t = k̂

(n)
t for all t ∈ [0, T ], n = 1, . . . , N , and therefore Z(n) = ∅ for

n = 1, . . . , N . (see Remark 2.2.8)

(3) Korn and Ste�ensen [28] characterized the solution of the system of inequalities and

note that -in their model with a constant interest rate-, the set Z(n) is the whole (t, x, r)

space for n = 0 and for n > 0 the set Z(n) is empty. The authors also mentioned that

`examples where neither Z(n) nor its complement are empty for a given n may require

a generalized model, such as, e.g., the case of crashed coe�cients where the di�usion

coe�cients react on crashes' ([28, p.2020]).

Here, we characterized a solution of a model where neither Z(n) nor its complement are

empty for a given n. This e�ect is due to the short rate model. (An example for the

case where neither Z(n) nor its complement are empty is illustrated in Figure 2.5).

2.6.7. Characterization of vn(t, x, r) - The Log utility case. Analogously to Section

2.6.6, we can separate the (t, x, r) space into the set Z(n), given by

Z(n) =

{
(t, x, r) : k(t, x, r) = −v

n
x(t, x, r)µ+ ρσ1σ2v

n
xr(t, x, r)

σ2
1xv

n
xx(t, x, r)

, 0 = Lkvn(t, x, r)

}
and its complement, where k and vn are determined by

vn(t, x, r) = vn−1(t, x(1− l∗k+), r),

0 = Lkvn(t, x, r). (102)

Inspired by the case n = 0, we try the ansatz of the form

vn(t, x, r) = log(x) +W (n)(t, r) with W (n)(T, r) = 0, r ∈ R.

Then, for (t, x, r) ∈ Z(n) we obtain that k(n)∗(t, x, r) = µ
σ2
1

= k
(0)∗
t . For (t, x, r) /∈ Z(n), k(n)∗ is

determined by the condition vn(t, x, r) = vn−1(t, x(1− l∗k+), r), and therefore, we have

k(n)∗(t, x, r) =

k
(0)∗
t : (t, x, r) ∈ Z(n)

1
l∗

(
1− exp

(
W (n)(t, r)−W (n−1)(t, r)

))
: (t, x, r) /∈ Z(n)

.

In contrast to the case of non-log HARA utility functions, we assume that Z(n) is empty for

n > 0. Now, by inserting vn(t, x, r) and k(n)∗ in condition (102), we obtain the following PDE

W
(n)
t +

σ2
2

2
W (n)
rr + a(rM − r)W (n)

r + r + µk
(n)∗
t − σ2

1

2
(k

(n)∗
t )2 = 0, (t, r) ∈ [0, T ]× R,

W (T, r) = 0, r ∈ R.
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Since the short rate dynamics is not a�ected by the market crash, we try the following separation

ansatz for W (n)(t, r) of the form

W (n)(t, r) = g(n)(t) + h(t, r), g(n)(T ) = 0, h(T, r) = 0, r ∈ R,

where the function h(t, r) does not depend on the remaining number of crashes n. Thus, for

(t, x, r) /∈ Z(n), we obtain

k(n)∗(t, x, r) = k
(n)∗
t =

1

l∗

(
1− exp

(
g(n)(t)− g(n−1)(t)

))
,

and g(n)(t) is given by

ġ(n)(t) = −µk(n)∗
t +

σ2
1

2
(k

(n)∗
t )2, g(n)(T ) = 0,

and h(t, r) has to ful�ll the following PDE

0 = ht(t, r) +
σ2

2

2
hrr(t, r) + a(rM − r)hr(t, r) + r, (t, r) ∈ [0, T ]× R,

0 = h(T, r), r ∈ R.

By applying Feynman-Kac Theorem (see Appendix Theorem A.4.1), we obtain that

h(t, r) = Et,r
(∫ T

t
rs ds

)
= rM (T − t) +

1

a
(r − rM + e−a(T−t)(rM − r))

is a solution of the PDE above. Thus, vn(t, x, r) = log(x)+W (n)(t, r) withW (n)(t, r) = g(n)(t)+

h(t, r) ful�lls (102). Using these calculations, we obtain that k(n)∗
t is determined by the following

ODE

k̇
(n)∗
t = − 1

l∗
exp

(
g(n)(t)− g(n−1)(t)

)
(ġ(n)(t)− ġ(n−1)(t))

=
1− l∗k(n)∗

t

l∗

(
φ(k

(n)∗
t )− φ(k

(n−1)∗
t )

)
, k

(n)∗
T = 0,

where φ(k) := µk − σ2
1
2 k

2.

2.6.8. Proof of (31) and (41). Here, the aim is to show that the expectation of stochastic

integrals, which appear in the proof of the veri�cation theorem 2.2.2, vanish, that means we show

that (31) and (41) hold. First, we prove that (41) holds:

Et,x,r,1
[∫ θ

t
f (k)(s) dws

]
= 0.

f (k)(s) := (f
(k)
1 (s), f

(k)
2 (s)), dws := (dw1,s, dw2,s)

T with

f
(k)
1 (s) := v1(s,Xk,(θ,l̃)

s , rs) (γσ1ks + β(s)ρσ2) ,

f
(k)
2 (s) := v1(s,Xk,(θ,l̃)

s , rs)
√

1− ρ2σ2β(s),

where θ = θ1(t, x, r) (for �xed (t, x, r)) and l̃ = l∗1kθ≥0 and k ∈ Π(t, x, r) arbitrary but �xed.

Since θ is given by (26), we can interpret θ as a �rst exit time of the process(
v0(s,Xk,(θ,l̃)

s (1− l∗k+
s ), rs)− v1(s,Xk,(θ,l̃)

s , rs)

)
s≥t
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from the open set R+. By [46, Chp.1,Example 3.3] we know that θ is a stopping time. Thus,

we have to consider a stochastic integral, where the upper limit is a stopping time. Using [17,

Chp.4,Thm. 4.3], it remains to show that

E
[∫ T

t
|f (k)

1 (s)|2 ds
]
<∞ and E

[∫ T

t
|f (k)

2 (s)|2 ds
]
<∞.

Let k ∈ Π be arbitrary but �xed, then we have

E
[∫ T

t
|f (k)

1 (s)|2 ds
]

= E
[∫ T

t
|v1(s,Xk,(θ,l̃)

s , rs) (γσ1ks + β(s)ρσ2) |2 ds
]

= E

∫ T

t
|v1(s,Xk,(θ,l̃)

s , rs)|2 · |γσ1ks + β(s)ρσ2|2︸ ︷︷ ︸
≤K1

ds


≤ K1 · E

[∫ T

t
|v1(s,Xk,(θ,l̃)

s , rs)|2 ds
]

≤ K1 · E

[∫ T

t
sup
s∈[t,T ]

|v1(s,Xk,(θ,l̃)
s , rs)|2 ds

]
. (103)

Now, we use that we already have the explicit structure of vn(t, x, r), that is

vn(t, x, r) =
1

γ
xγg(n)(t) exp(β(t)r),

where g(n)(t) ≤ K(n) for all t ∈ [0, T ] and some positive constant K(n). We show that

E

[
sup
s∈[t,T ]

|v1(s,Xk,(θ,l̃)
s , rs)|2

]
<∞. (104)

For some constant K2 > 0 it holds

|v1(s,Xk,(θ,l̃)
s , rs)| = |γ−1|

(
Xk,(θ,l̃)
s

)γ
g(1)(s) exp(β(s)rs)

≤ K2

(
Xk,(θ,l̃)
s

)γ
exp(β(s)rs).

Now, we use the same methods as on page 70 and obtain (104) by using the solution Xk,(θ,l̃)
s and

rs of the corresponding SDE's. Together with (103) we have

E
[∫ T

t
|f (k)

1 (s)|2 ds
]
<∞.

Analogously, we prove that

E
[∫ T

t
|f (k)

2 (s)|2 ds
]
<∞

and �nally obtain that

Et,x,r,1
[∫ θ

t
f (k)(s)dws

]
= 0

by [17, Chp.4,Thm. 4.3]. Moreover, for an arbitrary but �xed strategy (τ, l), we can prove (31),

that is

Et,x,r,1
[
−
∫ τ

t
f (τ,l)(s)dws

]
= 0,
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where f (τ,l)(s) := (f
(τ,l)
1 (s), f

(τ,l)
2 (s)), dws := (dw1,s, dw2,s)

T with

f
(τ,l)
1 (s) := v1(s,Xk(1)∗,(τ,l)

s , rs)
(
γσ1k

(1)∗
s + β(s)ρσ2

)
,

f
(τ,l)
2 (s) := v1(s,Xk(1)∗,(τ,l)

s , rs)
√

1− ρ2σ2β(s).

This can be done in the same manner as above. Thus we omit it here.

Note that the stochastic integrals in (47) also vanish with the same arguments as above.

2.6.9. Proof of Corollary 2.5.1. Here, the aim is to show for arbitrary but �xed (t, x, r) ∈
[0, T ]× R+ × R and k ∈ Π(t, x, r) and (τ, l) ∈ C:

Et,x,r,1
(∣∣∣log(X

k,(τ,l)
T )

∣∣∣) <∞,
where {rt}t∈[0,T ] and X

k,(τ,l) = {Xk,(τ,l)
t }t∈[0,T ] are given by (3) and (65), respectively.

Proof. By Proposition A.1.2 in Appendix A, we have that Et,r
(
r2
s

)
<∞ for all s ≥ t, and

therefore,

Et,r
(∫ T

t
|rs| ds

)
≤ 1

2

∫ T

t
Et,r

(
r2
s

)
ds+

1

2
(T − t) <∞

⇒
∫ T

t
|rs| ds <∞ P− a.s.

By Corollary A.5.1 the SDE (65) has a uniquely determined solution and with Xk,(τ,l)
τ = (1 −

lk
(1)
τ )X

k,(τ,l)
τ− , we obtain for a [t, T ]-valued stopping time τ and a universal constant K > 0:

X
k,(τ,l)
T = Xk,(τ,l)

τ exp

(∫ T

τ
(µ(0)k(0)

u −
(σ

(0)
1 )2

2
(k(0)
u )2 + ru) du+

∫ T

τ
σ

(0)
1 k(0)

u dw1,u

)
= x(1− lk(1)

τ )

· exp

(∫ τ

t
µ(1)k(1)

u −
(σ

(1)
1 )2

2
(k(1)
u )2 du+

∫ τ

t
σ

(1)
1 k(1)

u dw1,u

+

∫ T

τ
µ(0)k(0)

u −
(σ

(0)
1 )2

2
(k(0)
u )2 du+

∫ T

τ
σ

(0)
1 k(0)

u dw1,u +

∫ T

t
ru du

)
.

Since k = (k(0), k(1)) ∈ Π(t, x, r), we obtain∣∣∣log(X
k,(τ,l)
T )

∣∣∣ ≤ K +

∣∣∣∣∫ τ

0
σ

(1)
1 k(1)

u dw1,u

∣∣∣∣+

∣∣∣∣∫ T

τ
σ

(0)
1 k(0)

u dw1,u

∣∣∣∣+

∫ T

t
|ru| du

≤ K +
1

2

∣∣∣∣∫ τ

0
σ

(1)
1 k(1)

u dw1,u

∣∣∣∣2 +
1

2

∣∣∣∣∫ T

τ
σ

(0)
1 k(0)

u dw1,u

∣∣∣∣2 +
1

2

∫ T

t
r2
u du.

Taking the expectation on both sides leads to

Et,x,r,1
(∣∣∣log(X

k,(τ,l)
T )

∣∣∣) ≤ K +
1

2
E
(∫ T

t
(σ

(1)
1 k(1)

u )2 du

)
+

1

2
E
(∫ T

t
(σ

(0)
1 k(0)

u )2 du

)
+

1

2

∫ T

t
E(r2

u) du <∞.

Here, we used that the Ito Isometry also holds for stochastic integrals where the limits of the

integration are stopping times (see for example [17, Thm 4.2,Chp.4]). In the no-crash scenario
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τ =∞ we have

X
k,(τ,l)
T = x · exp

(∫ T

t
(µ(1)k(1)

u −
(σ

(1)
1 )2

2
(k(1)
u )2 + ru) du+

∫ T

t
σ

(1)
1 k(1)

u dw1,u

)
and the assertion follows by the same arguments as above. �

2.6.10. Veri�cation argument for post-crash problem (67). Here we show, that we

are allowed to apply Corollary A.5.3 in Appendix A for our post-crash optimization problem. In

order to apply this, it remains to show that the candidate for the optimal control k(0)∗
t ≡ µ(0)

(σ
(0)
1 )2

and the candidate for the value function v0(t, x, r) = log(x) + A(t)r + B(t) ful�ll the following

assumptions on the relevant time interval [t0, T ]:

i) k(0)∗ is progressively measurable: This is obviously met.

ii) For all initial conditions r0 > 0 and x0 > 0, the corresponding state processes {rs} and {Xs}
with rt0 = r0 and Xt0 = x0 have a pathwise unique solution {rs}s∈[t0,T ] and {Xs}s∈[t0,T ]:

At the beginning of Section 2.5 we already mentioned that the short rate equation (3) has

a pathwise unique solution. Since
∫ T

0 |rs| ds < ∞ P-a.s. the requirements of Corollary

A.5.1 are ful�lled, and therefore, the wealth equation has a unique solution for every k(0) ∈
Π(t0, x0, r0).

iii) Obviously E
(∫ T

t0
|k(0)
s |4 ds

)
<∞ for all k(0) ∈ Π(t0, x0, r0).

iv) The utility functional

J(t0, x0, r0; k) := Et0,x0,r0
(
log(XT )

)
is well de�ned for each initial value (t0, x0, r0) and each k ∈ Π(t0, x0, r0): This can be shown

by the same arguments as in the proof of Corollary 2.5.1.

v) Let Op := O ∩ {y = (x, r) ∈ R2 : |y| < p, dist(y, ∂O) > p−1} for p ∈ N, where O = R+ × R,
and let θp be the �rst exit time of (s,Xs, rs) from Qp := [t0, T − p−1) × Op. Note that

Qp is not empty for p ∈ N with p > p̃ := (T − t0)−1. Moreover, θp → T P-a.s. for

p→∞. Now, we have to show that {v0(θp, X
∗
θp , rθp)}p∈N is uniformly integrable, given that

v0(t, x, r) = log(x) + A(t)r + B(t) and X
∗
denotes the wealth process controlled by k(0)∗.

We prove that

sup
p>p̃

E
(
|v0(θp, X

∗
θp , rθp)|

2
)
<∞.

Let p > p̃ be arbitrary but �xed. Using the explicit solution of the state equation X
∗
, using

the inequality (a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2), by the fact that θp ∈ [t0, T ) and by
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Cauchy-Schwarz inequality, we obtain that

|v0(θp, X
∗
θp , rθp)|

2

=

∣∣∣∣ log(x0) + (θp − t0)
1

2

(
µ(0)

σ
(0)
1

)2

+B(θp)

+

∫ θp

t0

rs ds+

∫ θp

t0

σ
(0)
1 k(0)∗ dw1,s +A(θp)rθp

∣∣∣∣2

≤ 4

∣∣∣∣∣∣log(x0) + (θp − t0)
1

2

(
µ(0)

σ
(0)
1

)2

+B(θp)

∣∣∣∣∣∣
2

+ 4

∣∣∣∣∫ θp

t0

rs ds

∣∣∣∣2 + 4

∣∣∣∣∫ θp

t0

σ
(0)
1 k(0)∗ dw1,s

∣∣∣∣2
+ 4

∣∣A(θp)rθp
∣∣2

≤ K1 + 4(T − t0)

∫ T

t0

|rs|2 ds+ 4 sup
t∈[t0,T ]

∣∣∣∣∫ t

t0

σ
(0)
1 k(0)∗ dw1,s

∣∣∣∣2 +K2|rθp |2,

where

K1 : = 4 sup
t∈[t0,T ]

∣∣∣∣∣∣log(x0) + (t− t0)
1

2

(
µ(0)

σ
(0)
1

)2

+B(t)

∣∣∣∣∣∣
2

,

K2 : = 4 sup
t∈[t0,T ]

|A(t)|2.

Now, taking the expectation on both sides, leads to

E
(
|v0(θp, X

∗
θp , rθp)|

2
)

≤ K1 + 4(T − t0)

∫ T

t0

E|rs|2 ds+ 4E

(
sup

t∈[t0,T ]

∣∣∣∣∫ t

t0

σ
(0)
1 k(0)∗ dw1,s

∣∣∣∣2
)

+K2E|rθp |2

≤ K1 + 4(T − t0)

∫ T

t0

E|rs|2 ds+ 4E

(
sup

t∈[t0,T ]

∣∣∣∣∫ t

t0

σ
(0)
1 k(0)∗ dw1,s

∣∣∣∣2
)

+K2 sup
t∈[t0,T ]

(
E|rt|2

)
=: K3 <∞.

The, inequality above holds for all p > p̃. Hence, we obtain:

sup
p>p̃

E
(
|v0(θp, X

∗
θp , rθp)|

2
)
<∞.

This implies uniformly integrability of the sequence of random variables {v0(θp, X
∗
θp , rθp)}p.

Note that the uniformly integrability is a key tool to prove Corollary A.5.3. For further

details we refer to the literature [31].

By showing conditions i)-v), we obtain that k(0)∗ is a weak admissible control (for De�nition

we refer to Appendix A.5). Thus, we can apply Corollary A.5.3 and obtain that k(0)∗ is the

optimal strategy after the market crash and the solution of the HJB equation v0 coincides with

the post-crash value function V 0.
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2.6.11. Proof of Proposition 2.5.4. Here, we prove the following assertion:

Let k̂(1) be the uniquely determined solution of (71) and let kM = µ(1)

(σ
(1)
1 )2

. Moreover, assume

that

µ(1)

σ
(1)
1

− µ(0)

σ
(0)
1

≥ 0. (105)

Then k̂(1)
t ∈

[
0, kM

]
for all t ∈ [0, T ].

Proof. If kM ≥ 1
l∗ , then the assertion follows by the fact that k̂(1)

t ∈ [0, 1
l∗ ) for all t ∈ [0, T ].

Now, let kM < 1
l∗ . In this case, we prove the assertion by showing that the solution h(1)

t of the

corresponding forward equation of (71), given by

ḣ
(1)
t = f̃ (1)(h

(1)
t ), h

(1)
0 = 0,

where

f̃ (1)(h) := −1− l∗h
l∗

µ(1)h− 1

2
(σ

(1)
1 )2h2 − 1

2

(
µ(0)

σ
(0)
1

)2
 ,

ful�lls h(1)
t ∈ [0, kM ] for t ∈ [0, T ]. This will be done by the invariance argument. Let D̃ :=

[0, kM ]. On the one hand, we have that

f̃ (1)(0) · y =
1

2l∗

(
µ(0)

σ
(0)
1

)2

· y ≤ 0, ∀y ∈ ND̃(0) = (−∞, 0),

and, on the other hand,

f̃ (1)(kM ) · y = −1− l∗kM

2l∗

(µ(1)

σ
(1)
1

)2

−

(
µ(0)

σ
(0)
1

)2
 y ≤ 0, ∀y ∈ ND̃(kM ) = (0,∞).

By Theorem A.2.3 in Appendix A, we obtain that h(1)
t ∈ [0, kM ] for all t ∈ [0, T ] if (105) holds.

By time reversion the assertion follows.

�



CHAPTER 3

Worst-Case Optimal Investment and Consumption with an

In�nite Time Horizon for Log utility Function

3.1. The �nancial market model

In this chapter, we consider an in�nite horizon �nancial market model where the investor is again

allowed to invest in a savings account and in a stock, but in contrast to Chapter 2, he additionally

can consume a fraction of his wealth. Here, we assume that at most one market crash can happen

which is modeled as an uncertain event. This market crash causes a sudden downward jump in

the stock price evolution. The short rate dynamics of the savings account evolves as a stochastic

process with continuous paths which is not a�ected by the market crash. The investor is acting on

an in�nite time interval and he aims to maximize his expected discounted utility of consumption

in the worst-case crash scenario by choosing an investment and consumption strategy. Using the

same notation as in Chapter 2, we specify the short rate models, which we use in this chapter, in

Section 3.1.1. In Section 3.1.2 we de�ne the stock price process and in Section 3.1.3 we present

the investor's wealth equation and the corresponding worst-case investment and consumption

problem.

3.1.1. The short rate models. The value of the savings account {Bt}t≥0 is assumed to

follow the di�erential equation (1). In this chapter, we consider two di�erent short rate models.

In Section 3.2, we assume that the short rate follows a slightly more general process than the

Vasicek process which we already used in the previous chapter. That is, we assume the process

{rt}t≥0 to be a solution of the SDE:

drt = f(rt) dt+ σ2 dw̃t, r0 = r0, (106)

where f ∈ C1(R) and c2 ≤ fr(r) ≤ c1, where c1, c2 are constants. Again, σ2 denotes the volatil-

ity. This type of short rate model was already considered in [15] and [39] in the context of a

similar investment consumption model, but without the possibility of a market crash. Fleming

and Pang [15] and Pang [39] refer to the above short rate model as generalized Vasicek model.

Note that for f(r) = a(rM − r) we obtain the classical Vasicek model with a speed of reversion

a to the long term mean level rM .

In Section 3.3, we assume that the short rate follows an a�ne model. Analogously to Section

2.5, we assume that the process {rt}t≥0 is a solution of the SDE (3):

drt = (λ1rt + λ2) dt+
√
ξ1rt + ξ2 dw̃t, r0 = r0,

where λ1, λ2, ξ1, ξ2, r
0 are given constants. Within this model, we also cover the well-known

Cox-Ingersoll-Ross process.

83
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3.1.2. The stock price process. In order to model the stock price evolution, we make two

basic assumptions which are valid for the rest of this chapter. First, as in [10], we assume that

there can happen at most one market crash on the in�nite time interval. Thus, in this chapter

the market crash is a once-in-a-lifetime event. The crash is represented by the pair (τ, l) ∈ C′,
where

C′ := {(τ, l) : τ ∈ [0,∞], stopping time,

l ∈ [0, l∗]Fτ - measurable random variable}. (107)

As in the previous chapter, we emphasize that τ =∞ describes the case if no crash occurs at all

and the random variable l ∈ [0, l∗] denotes the crash size, where the maximum crash size l∗ < 1

is given. Additionally, we assume that the drift and the volatility of the price process will change

at time τ . The concept of changing market parameters was already applied and motivated in

Section 2.5. Now, we obtain the equations which describe the evolution of the stock price process

{Pt}t≥0:

P0 = p0,

dPt = Pt

[
(µ(1) + rt) dt+ σ

(1)
1 dw1,t

]
, t ∈ (0, τ),

Pτ = Pτ−(1− l),

dPt = Pt

[
(µ(0) + rt) dt+ σ

(0)
1 dw1,t

]
, t ∈ (τ,∞],

where µ(1) > 0 and σ(1)
1 > 0 denote the market parameters valid before the crash, and µ(0) > 0

and σ(0)
1 > 0 denote the market parameters valid after the crash. Again, the Wiener processes

w1 and w̃ may be correlated with correlation coe�cient ρ ∈ [−1, 1].

3.1.3. Admissible controls and the worst-case optimization problem. In contrast

to the previous chapter, the investor's behavior is described by the portfolio process k = {kt}t≥0

and by the consumption process c = {ct}t≥0. kt denotes the fraction of wealth invested in the

stock and ct denotes the rate at which the investor consumes. Accordingly, 1− kt is the fraction
of wealth invested in the savings account. We denote the investment and consumption strategy

valid for t ∈ [0, τ ] by (k(1), c(1)) and the strategy valid for t ∈ (τ,∞] by (k0, c(0)) . Thus, we

call (k(1), c(1)) and (k0, c(0)) pre- and post-crash strategy, respectively. Below, we de�ne the

admissible control space.

Definition 3.1.1 (Admissible control). A process (k, c) = (k(0), c(0), k(1), c(1)), where the post-

crash strategy (k(0), c(0)) is valid for t ∈ (τ,∞] and the pre-crash strategy (k(1), c(1)) is valid for

t ∈ [0, τ ], is called admissible control if k = (k(0), k(1)) is nonnegative and is admissible in the

sense of De�nition 2.1.1 and c = (c(0), c(1)) ful�lls the following conditions:

(1) c is a F-adapted process,

(2) 0 ≤ ct ≤ C for all t ≥ 0 for a su�ciently large constant C,

The set of admissible controls is denoted by Π.

Remark 3.1.2. Note that the �ltration F = {Ft}t≥0 is again generated by the processes w1, w̃

and Ñ , where Ñ is again the counting process de�ned in (6).
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Given a market crash (τ, l) and a self-�nancing investment consumption strategy (k, c), we denote

the investor's wealth at time t by Xt and obtain the corresponding wealth equation:

X0 = x0 > 0,

dXt = Xt

[
rt + µ(1)k

(1)
t − c

(1)
t

]
dt+Xtσ

(1)
1 k

(1)
t dw1,t, t ∈ (0, τ),

Xτ = (1− lk(1)
τ )Xτ−,

dXt = Xt

[
rt + µ(0)k

(0)
t − c

(0)
t

]
dt+Xtσ

(0)
1 k

(0)
t dw1,t, t ∈ (τ,∞].

Again, the short rate process {rt}t≥0 is not a�ected by the market crash. Note that the wealth

equation of this chapter slightly di�ers from the one in the previous chapter because consumption

reduces the investor's wealth. Using the dynamics above, we formulate the worst-case optimiza-

tion problem. Here, the investor wants to maximize his expected discounted logarithmic utility

of consumption over an in�nite time interval in the worst-case crash scenario. Thus, we formulate

the following worst-case optimization problem:

sup
(k,c)∈Π(x0,r0)

inf
(τ,l)∈C′

E
(∫ ∞

0
e−εt log(ctXt) dt

)
, (108)

where ε > 0 denotes the discount factor. Π(x0, r0) denotes the set of admissible controls,

corresponding to the condition that X0 = x0 and r0 = r0. The worst-case optimization problem

above provides a generalization of the problem considered in [10] where constant interest rates

are used in a similar in�nite time horizon model. Note that Desmettre et al. [10] extended the

martingale approach of Seifried [44] for the in�nite time horizon problem and interpreted it as

a controller vs. stopper game. In this thesis, we already used the martingale approach to solve

the �nite time horizon problem considered in Chapter 2. In this chapter, we apply the method

again for problem (108).

In the next section, we investigate the worst-case optimal investment and consumption behavior

if the short rate rt follows the generalized Vasicek process speci�ed in (106).

3.2. The generalized Vasicek Model

Here, we assume that the short rate rt will change according to (106), that is

drt = f(rt) dt+ σ2 dw̃t, r0 = r0,

where σ2 > 0 and

f ∈ C1(R), c2 ≤ fr(r) ≤ c1, ∀r ∈ R. (109)

We conclude from condition (109) that f(r) is globally Lipschitz continuous and ful�lls the

growth condition |f(r)| ≤ C(1 + |r|) for some constant C > 0. By the classical existence and

uniqueness theorem for SDEs (see e.g. [38, Theorem 5.2.1]), there exists a uniquely determined

solution {rt}t≥0 of equation (106).

The aim of this section is to solve the worst-case optimization problem (108) under the generalized

Vasicek model. As in [10] and [44], and as in Section 2.4, we apply the following steps. First, we

solve the post-crash optimization problem which is a classical in�nite horizon stochastic optimal

control problem. Afterwards, we reformulate the problem (108) as a pre-crash problem which is
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interpreted as a controller vs. stopper game. Using the martingale approach we �nally obtain

the worst-case optimal pre-crash strategy.

3.2.1. The post-crash optimization problem. The aim of this section is to �nd the

optimal post-crash strategy (k(0)∗, c(0)∗) by using stochastic optimal control theory. After the

market crash, the investor has to `solve' a classical stochastic optimal control problem with initial

values x and r over an in�nite time interval. Let us de�ne the post-crash value function by

V 0(x, r) = sup
(k(0),c(0))∈Π(x,r)

E
(∫ ∞

0
e−εt log(c

(0)
t Xt) dt

)
, (110)

where Xt denotes the wealth at time t if no crash can occur anymore, that means Xt is assumed

to solve the following wealth equation controlled by (k(0), c(0)), starting in x and the short rate

process starts with value r:

dXt = Xt

[
rt + µ(0)k

(0)
t − c

(0)
t

]
dt+Xtσ

(0)
1 k

(0)
t dw1,t, X0 = x, (111)

drt = f(rt) dt+ σ2(ρ dw1,t +
√

1− ρ2 dw2,t), r0 = r.

Remark 3.2.1. The post-crash value function V 0(x, r) depends on the initial values of the post-

crash dynamics, given by arbitrary x ∈ R+ and r ∈ R, that will later represent the wealth and

the short rate at the crash time, respectively.

The corresponding HJB equation to the post-crash problem (110) is given by

sup
k(0)∈A

[
µ(0)k(0)xv0

x(x, r) +
(σ

(0)
1 )2

2
(k(0))2x2v0

xx(x, r) + ρσ
(0)
1 σ2k

(0)xv0
xr(x, r)

]
+ sup
c(0)≥0

[
log(c(0)x)− c(0)xv0

x(x, r)
]

+ rxv0
x(x, r) + f(r)v0

r (x, r) +
σ2

2

2
v0
rr(x, r)− εv0(x, r) = 0, (t, x) ∈ R+ × R. (112)

In order to �nd a solution of the HJB equation above, we apply the separation ansatz v0(x, r) =

B log(x) +W (r), where B ∈ R,W ∈ C2(R), and obtain the reduced HJB equation:

sup
k(0)∈A

[
µ(0)k(0)B − (σ

(0)
1 )2

2
(k(0))2B

]
+ sup
c(0)≥0

[
log(c(0))− c(0)B

]
+ rB + f(r)Wr(r) +

σ2
2

2
Wrr(r)− ε (B log(x) +W (r)) + log(x) = 0, r ∈ R.

By choosing B = 1
ε , we eliminate the state variable x. Furthermore, we obtain the following

candidates for the optimal post-crash strategy:

k(0)∗ =
µ(0)

(σ
(0)
1 )2

, c(0)∗ = ε. (113)

Inserting these candidates, leads to an ODE for W of the form

σ2
2

2
Wrr(r) + f(r)Wr(r)− εW (r) +Q(r) = 0, r ∈ R, (114)
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where

Q(r) :=
1

2ε

(
µ(0)

σ
(0)
1

)2

+
r

ε
+ log(ε)− 1. (115)

This kind of ODE was already investigated in [15] and [39] in the context of a similar model by

means of a sub- and supersolution method. For the de�nition of a subsolution and a supersolution

we refer to Appendix A.3. We apply this method to get an existence result of a function W ∈
C2(R) such that (114) is ful�lled.

Let L : C2(R)→ C(R) with

LW :=
σ2

2

2
Wrr + f(r)Wr,

and

h(r,W ) := Q(r)− εW.

Then, we rewrite the di�erential equation (114) brie�y as:

−LW = h(r,W ). (116)

By De�nition A.3.1 in Appendix A.3, we obtain that W is a subsolution of (116) if −LW ≤
h(r,W ) and W is a supersolution if −LW ≥ h(r,W ) for all r ∈ R. This is used to prove the

following two Lemma.

Lemma 3.2.2. Suppose that ε− 2c1 > 0. Then, there exist constants α1, α2 < 0 such that

W (r) := α2r
2 + α1 (117)

is a subsolution of (116).

Proof. By the mean value theorem, by (109) and by α2 < 0, we have

−LW = −σ2
2α2 − 2f(r)α2r

= −σ2
2α2 − 2α2r (fr(ξ)r + f(0))

≤ −σ2
2α2 − 2α2r

2c1 − 2α2rf(0).

Moreover, it holds

h(r,W ) = −εα2r
2 +

r

ε
+

1

2ε

(
µ(0)

σ
(0)
1

)2

+ log(ε)− 1− εα1.

Thus, condition −LW ≤ h(r,W ) holds, if we have that:

α2 (ε− 2c1) r2 −
(

2α2f(0) +
1

ε

)
r − σ2

2α2 −
1

2ε

(
µ(0)

σ
(0)
1

)2

− log(ε) + 1 + εα1 ≤ 0.

Since ε − 2c1 > 0 and α2 < 0, we obtain the inequality above by choosing α1 < 0 su�ciently

small. That means W given by (117) is a subsolution of (116). �

Analogously, we determine a supersolution.

Lemma 3.2.3. Suppose that ε− 2c1 > 0. Then, there exist constants β1, β2 > 0 such that

W (r) := β2r
2 + β1 (118)
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is a supersolution of (116).

Proof. Analogously to the Lemma before, we use the mean value theorem, the condition

(109) and the fact that β2 > 0 and obtain

−LW ≥ −σ2
2β2 − 2β2r

2c1 − 2β2rf(0).

Now, −LW ≥ h(r,W ) holds, if we have that

β2 (ε− 2c1) r2 −
(

2β2f(0) +
1

ε

)
r − σ2

2β2 −
1

2ε

(
µ(0)

σ
(0)
1

)2

− log(ε) + 1 + εβ1 ≥ 0.

Since ε − 2c1 > 0 and β2 > 0 we can choose β1 > 0 su�ciently large such that the inequality

holds. �

Remark 3.2.4. Since α2, α1 < 0 and β2, β1 > 0, we conclude that W (r) ≤ W (r) for all r ∈ R.
Thus, (W,W ) is an ordered pair of sub- and supersolution (see De�nition A.3.1).

Since we were able to �nd a sub- and supersolution, we can apply the Theorem A.3.2 by Fleming

and Pang [15] to show the following existence result.

Theorem 3.2.5. Let ε − 2c1 > 0. Then, the ODE (114) has a classical solution W̃ ∈ C2(R)

such that

W (r) ≤ W̃ (r) ≤W (r), ∀r ∈ R, (119)

where W (r) and W (r) are given by (117) and (118), respectively.

Proof. First, we de�ne

H̄(r, w, p) :=
2

σ2
2

[−f(r)p+ εw −Q(r)] .

Then, ODE (114) can be rewritten as

Wrr = H̄(r,W,Wr), r ∈ R.

Obviously, H̄(r, w, p) is strictly increasing with respect to w, because ε > 0. Let Im := [−m,m]

for m ∈ N. Moreover, de�ne

M ≡ max

{
sup
r∈Im

|W (r)|, sup
r∈Im

|W (r)|
}
.

Let m ∈ N be �xed. We have that |f(r)| ≤ C̃1(m) and |Q(r)| ≤ C̃2(m) for all r ∈ Im. Then, for
r ∈ Im and |w| ≤ 3M , it holds

|H̄(r, w, p)| ≤ 2

σ2
2

(|f(r)||p|+ ε|w|+ |Q(r)|)

≤ 2

σ2
2

C̃1(m)|p|+ 2

σ2
2

(3εM + C̃2(m))

≤ 1

σ2
2

p2 + C̃3(m),

where C̃3(m) := 2
σ2
2
(3εM+ C̃2(m)+ (C̃1(m))2

2 ). De�ning C1 := 1
σ2
2
and C2(m) := C̃3(m)

C1
, we obtain

|H̄(r, w, p)| ≤ C1(p2 + C2(m)), for r ∈ Im, |w| ≤ 3M.
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By the fact that (W,W ), given by (117) and (118), is an ordered pair of sub- and supersolution

of (116), the assertion follows by Theorem A.3.2. �

Now, using Theorem 3.2.5, we conclude that v0(x, r) = 1
ε log(x) + W̃ (r) is a solution of the HJB

equation (112). Now, it remains to verify that v0(x, r) is indeed equal to the value function

V 0(x, r) and that the candidates given in (113) are the optimal post-crash strategies. In order

to prove such veri�cation result, we �rst need an analogue estimate for W̃r(r) as in [39]. This

estimate is given in the following Lemma.

Lemma 3.2.6. Let ε − 2c1 > 0 and let W̃ (r) be a classical solution of (114) such that W (r) ≤
W̃ (r) ≤W (r) for all r ∈ R, where (W,W ) is given by (117) and (118), respectively. Then,

W̃ 2
r (R) ≤

3∑
i=0

ν2iR
2i, ∀R ∈ R,

where ν6 > 0 and ν2i ≥ 0 (i = 0, 1, 2) are constants.

Proof. The idea of the proof is similar to that in [39, Lemma 1.44] and we refer to Appendix

3.5.1 for the proof. �

Theorem 3.2.7 (Veri�cation Theorem). Let ε− 2c1 > 0 and let W̃ (r) be a classical solution of

(114) such that (119) holds. Moreover, let

v0(x, r) =
1

ε
log(x) + W̃ (r).

Then

(1) For every strategy (k(0), c(0)) ∈ Π, with

Ex,r
(∫ ∞

0
e−εt| log(c

(0)
t Xt)| dt

)
<∞ (120)

it holds

v0(x, r) ≥ Ex,r
(∫ ∞

0
e−εt log(c

(0)
t Xt) dt

)
.

(2) If k(0)∗(Xt, rt) ≡ µ(0)

(σ
(0)
1 )2

and c(0)∗(Xt, rt) ≡ ε, then (k(0)∗, c(0)∗) ∈ Π and

v0(x, r) = Ex,r
(∫ ∞

0
e−εt log(c

(0)∗
t X

∗
t ) dt

)
,

where X
∗

= {X∗t }t≥0 solves SDE (111) which is controlled by (k(0)∗, c(0)∗). Thus, v0(x, r) =

V 0(x, r), where V 0(x, r) is the post-crash value function (110).

Proof. The proof is technical but standard. Thus, we refer to Appendix 3.5.2 for the

proof. �

In the next section, we use the explicit structure of the post-crash value function in order to

reformulate the worst-case optimization problem.

3.2.2. Reformulation of the Worst-Case Problem. Analogously to Section 2.4.1, we

reformulate the worst-case optimization problem (108) as a pre-crash problem. Let X̃ = {X̃t}t≥0
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be the wealth process in a crash-free market controlled by an arbitrary admissible pre-crash

strategy (k(1), c(1)). That means, X̃ solves

dX̃t = X̃t

[
rt + µ(1)k

(1)
t − c

(1)
t

]
dt+ X̃tσ

(1)
1 k

(1)
t dw1,t, X̃0 = x0, (121)

drt = f(rt) dt+ σ2 dw̃t, r0 = r0.

At the crash time τ the investor's wealth is given by x = (1− lk(1)
τ )X̃τ and the short rate is given

by r = rτ . The performance of the optimal post-crash strategy at the crash time is then given

by V 0((1 − lk(1)
τ )X̃τ , rτ ), where V 0(x, r) = 1

ε log(x) + W̃ (r). Obviously, V 0(x, r) is monotone

increasing in x. Thus,

V 0((1− lk(1)
τ )X̃τ , rτ ) ≥ V 0((1− l∗k(1)

τ )X̃τ , rτ ), ∀l ∈ [0, l∗].

Since k(1)
t ≥ 0 for all t ≥ 0, the worst-case crash size is given by l = l∗. Using the inequality

above, we reformulate the worst-case optimization problem (108) as a pre-crash problem of the

form:

sup
(k(1),c(1))∈Π(x0,r0)

inf
τ∈C′

E
(∫ τ

0
e−εt log(c

(1)
t X̃t) dt+ e−ετV 0((1− l∗k(1)

τ )X̃τ , rτ )

)
. (122)

The pre-crash problem (122) can be interpreted as a controller vs. stopper game, where the

investor chooses (k(1), c(1)) and the market chooses the crash time τ . As in Section 2.4, this

problem will be solved by a martingale approach developed in [44] for the �nite time horizon and

in [10] for the in�nite time horizon.

In what follows, we write (k, c) instead of (k(1), c(1)) to denote the pre-crash strategy. Moreover,

we de�ne the process Mk,c = {Mk,c
t }t≥0 by:

Mk,c
t :=

∫ t

0
e−εs log(csX̃s) ds+ e−εtV 0((1− l∗kt)X̃t, rt), t ≥ 0,

such that (122) is given by

sup
(k,c)∈Π(x0,r0)

inf
τ∈C′

E
(
Mk,c
τ

)
. (123)

3.2.3. The worst-case optimal pre-crash strategy. As in [10] and [44], we use the

concept of indi�erence and the Indi�erence Optimality Principle to determine the worst-case

optimal pre-crash strategy. Here, a pre-crash strategy (k, c) is called indi�erence strategy if

E
(
Mk,c
τ

)
= E

(
Mk,c
τ ′

)
for two stopping times τ, τ ′. This de�nition is similar to the literature [10, 44] where constant

interest rates are used and is already applied in Section 2.4.

Moreover, it implies that a pre-crash strategy, which is an indi�erence strategy, makes the investor

indi�erent with respect to the crash time τ , because he reaches the same performance for two

di�erent (arbitrary) stopping times.

Due to the in�nite time horizon and the time-independent market coe�cients, we can assume

that the worst-case optimal pre-crash strategy (k, c) does not depend on time t. Moreover we

assume that it will not depend on the short rate rt. Below, we will see that the optimal pre-crash

strategy ful�lls these assumptions.
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Now, we formulate a su�cient condition for a strategy to be such indi�erence strategy.

Lemma 3.2.8. Let ε− 3c1 > 0 and let (k̂, ĉ) be a constant admissible pre-crash strategy such that

H(k̂, ĉ) = 0, where

H(k, c) := log

(
c

1− l∗k

)
+

1

ε

(
µ(1)k − (σ

(1)
1 )2

2
k2

)
− c

ε
− 1

2ε

(
µ(0)

σ
(0)
1

)2

− log(ε) + 1. (124)

Then, M k̂,ĉ is a uniformly integrable martingale and (k̂, ĉ) ∈ Π is an indi�erence strategy for the

controller vs. stopper game (123).

Remark 3.2.9. Note that for an arbitrary but �xed ĉ > 0 it holds limk↗ 1
l∗
H(k, ĉ) =∞ and

H(0, ĉ) = log

(
ĉ

ε

)
− ĉ

ε
− 1

2ε

(
µ(0)

σ
(0)
1

)2

+ 1 ≤ − 1

2ε

(
µ(0)

σ
(0)
1

)2

≤ 0.

Thus, for each ĉ > 0 there exists k̂ ∈ [0, 1
l∗ ) such that H(k̂, ĉ) = 0.

Proof of Lemma 3.2.8. Let (k̂, ĉ) be a solution of H(k̂, ĉ) = 0. By the de�nition of Mk,c,

we obtain:

dM k̂,ĉ
t = e−εt log(ĉX̃t) dt+ d

(
e−εtV 0((1− l∗k̂)X̃t, rt)

)
,

where X̃ is the wealth process in a crash-free market controlled by (k̂, ĉ) (see (121)). Using

V 0(x, r) = 1
ε log(x) + W̃ (r) and using that W̃ ∈ C2(R), we apply Ito's formula and obtain

dM k̂,ĉ
t =e−εt

{
log

(
ĉ

1− l∗k̂

)
+

1

ε

(
µ(1)k̂ − (σ

(1)
1 )2

2
k̂2

)
− ĉ

ε
+
rt
ε

+ f(rt)W̃r(rt) +
σ2

2

2
W̃rr(rt)− εW̃ (rt)

}
dt

+ e−εt

(
σ

(1)
1

ε
k̂ + σ2ρW̃r(rt)

)
dw1,t + e−εtσ2

√
1− ρ2W̃r(rt) dw2,t.

Now, we use that W̃ (r) is a solution of the ODE (114) and, therefore, we have

σ2
2

2
W̃rr(rt) + f(rt)W̃r(rt)− εW̃ (rt) +

rt
ε

= − 1

2ε

(
µ(0)

σ
(0)
1

)2

− log(ε) + 1.

Thus,

dM k̂,ĉ
t =e−εt

(
σ

(1)
1

ε
k̂ + σ2ρW̃r(rt)

)
dw1,t + e−εtσ2

√
1− ρ2W̃r(rt) dw2,t.

Now, we de�ne

1M
k̂,ĉ
t :=

∫ t

0
e−εs

(
σ

(1)
1

ε
k̂ + σ2ρW̃r(rs)

)
dw1,s,

2M
k̂,ĉ
t :=

∫ t

0
e−εsσ2

√
1− ρ2W̃r(rs) dw2,s,
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such thatM k̂,ĉ
t = M k̂,ĉ

0 +1M
k̂,ĉ
t +2M

k̂,ĉ
t . Let us consider the quadratic variation process of 1M

k̂,ĉ,

which is given by

〈1M k̂,ĉ〉t =

∫ t

0
e−2εs

(
σ

(1)
1

ε
k̂ + ρσ2W̃r(rs)

)2

ds

and we de�ne

〈1M k̂,ĉ〉∞ :=

∫ ∞
0

e−2εs

(
σ

(1)
1

ε
k̂ + ρσ2W̃r(rs)

)2

ds.

Lemma 3.2.6 implies

E
(
〈1M k̂,ĉ〉∞

)
≤ 1

ε3
(σ

(1)
1 k̂)2 + 2ρ2σ2

2E
(∫ ∞

0
e−2εsW̃ 2

r (rs) ds

)
≤ 1

ε3
(σ

(1)
1 k̂)2 + 2ρ2σ2

2

∫ ∞
0

e−2εs
3∑
i=0

ν2iE
(
r2i
s

)
ds.

By Lemma A.1.3 in Appendix A, it holds for any integer m > 0 and any ε̃ > 0 that E
(
r2m
s

)
≤

Λ
(m)
1 if c1 < 0 and E

(
r2m
s

)
≤ Λ

(m)
2 e2m(c1+ε̃)s if c1 ≥ 0, where Λ

(m)
1 ,Λ

(m)
2 are positive constants

independent of time s. Thus, for c1 < 0 we immediately obtain that

E
(
〈1M k̂,ĉ〉∞

)
≤ 1

ε3
(σ

(1)
1 k̂)2 + 2ρ2σ2

2

∫ ∞
0

e−2εsΛ̄1 ds <∞,

where Λ̄1 is a positive constant. We assumed that ε− 3c1 > 0. Thus, if c1 > 0 there exists ε̃ > 0

such that ε− 3(c1 + ε̃) > 0 and we obtain

E
(
〈1M k̂,ĉ〉∞

)
≤ 1

ε3
(σ

(1)
1 k̂)2 + 2ρ2σ2

2

∫ ∞
0

e−2εs
3∑
i=0

ν2iΛ
(i)
2 e2i(c1+ε̃)s ds <∞.

Analogously to the de�nition of 〈1M k̂,ĉ〉∞, we de�ne 〈2M k̂,ĉ〉∞ and by similar arguments we

obtain that

E
(
〈2M k̂,ĉ〉∞

)
<∞.

Now, we apply the Burkholder-Davis-Gundy inequality (see e.g. [43, Chp.IV]) and we conclude

that there exist constants Ci (i = 1, 2) such that

E

((
sup
t≥0
|iM k̂,ĉ

t |
)2
)
≤ CiE

(
〈iM k̂,ĉ〉∞

)
<∞. i = 1, 2.

SinceM k̂,ĉ
t = M k̂,ĉ

0 +1M
k̂,ĉ
t +2M

k̂,ĉ
t , we obtain that the processM k̂,ĉ is dominated by an integrable

random variable M̄ , that is for all t ≥ 0 it holds

|M k̂,ĉ
t | ≤ |M

k̂,ĉ
0 |+ sup

t≥0
|1M k̂,ĉ

t |+ sup
t≥0
|2M k̂,ĉ

t | =: M̄,

with E
(
M̄
)
< ∞. Therefore, M k̂,ĉ is a uniformly integrable martingale which implies that it

is closed by a random variable M k̂,ĉ
∞ = limt→∞M

k̂,ĉ
t a.s.(see Theorem A.4.5). We apply Doob's

Optional Sampling Theorem (see Theorem A.4.6) and we get:

E
(
M k̂,ĉ
τ

)
= E

(
M k̂,ĉ
τ ′

)
.
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By de�nition, it follows that (k̂, ĉ) is an indi�erence strategy. �

Remark 3.2.10. In Section 2.4 we obtained that there exists a uniquely determined indi�erence

strategy which is a solution of an ODE. For the case of maximizing the lifetime consumption,

an indi�erence strategy (k̂, ĉ) has to ful�ll H(k̂, ĉ) = 0 and therefore, there exist in�nitely many

strategies (k̂, ĉ) which are indi�erence strategies. Thus, the main di�erence to Section 2.4 is the

su�cient condition for a pre-crash strategy to be an indi�erence strategy: In Section 2.4, k̂ is the

uniquely determined solution of an ODE and in this Chapter, (k̂, ĉ) is an indi�erence strategy if

H(k̂, ĉ) = 0.

Now, having a su�cient condition for a pre-crash strategy to be an indi�erence strategy, we use

the notion of an indi�erence frontier which was de�ned [10] for the in�nite time horizon. Note,

that we already applied the concept of an indi�erence frontier and the Indi�erence Optimality

Principle in Section 2.4 and 2.5 for the �nite time horizon model. Analogously to [10, Lemma

4.2], let us consider the indi�erence frontier:

Let (k̂, ĉ) be an indi�erence strategy and (k, c) ∈ Π be an arbitrary admissible pre-crash strategy

and let η := inf{t ≥ 0 : kt > k̂} and let

k̃t =

kt : t < η

k̂ : t ≥ η
, c̃t =

ct : t < η

ĉ : t ≥ η
.

Then, by the same arguments as in the proof of [10, Lemma 4.2], one can show that

inf
τ
E(M k̃,c̃

τ ) ≥ inf
τ
E(Mk,c

τ ). (125)

The proof of the inequality above works in the same way as in the literature because it needs the

right continuity of the pre-crash strategy, the fact thatM k̂,ĉ is a uniformly integrable martingale

and that V 0(x, r) is monotone increasing in x. By De�nition 3.1.1, Theorem 3.2.7 and Lemma

3.2.8 the requirements for the proof are given. As in [10, 44], an indi�erence strategy (k̂, ĉ) can

be interpreted as a frontier that prevents too bold investment decisions (cf. [10, p.13]).

By (125), we can restrict our considerations on strategies that are dominated by an indi�erence

strategy because all other strategies would provide worse performances. In order to do this, we

de�ne the set of such strategies by

A(k̂) :=
{

(k, c) ∈ Π : kt ≤ k̂, ∀t ≥ 0
}
.

Next, we apply the Indi�erence Optimality Principle (see [10, Proposition 5.1]) to identify the

worst-case optimal pre-crash strategy. This principle provides a su�cient condition for a pre-

crash strategy (k, c) to be optimal in the worst-case scenario: An indi�erence strategy (k̂, ĉ) =

(k∗, c∗) is the worst-case optimal investment consumption strategy for (108), if it is optimal in

the no-crash scenario τ = ∞ in the class of all strategies respecting the associated indi�erence

frontier, that means:

E(Mk,c
∞ ) ≤ E(Mk∗,c∗

∞ ), ∀ (k, c) ∈ A(k∗).

The following Theorem provides the worst-case optimal pre-crash strategy for the controller vs.

stopper game (122) by using the Indi�erence Optimality principle.



3.2. THE GENERALIZED VASICEK MODEL 94

Theorem 3.2.11. Let ε− 3c1 > 0 and let H(k, c) be given by (124). Moreover, we de�ne

m := min

{
1

l∗
, kM

}
with kM :=

µ(1)

(σ
(1)
1 )2

.

(1) Suppose that there exists κ ∈ [0,m] such that H(κ, ε) = 0. Then, κ is uniquely deter-

mined and (k∗, c∗) = (κ, ε) is a worst-case optimal pre-crash strategy for (108).

(2) If there is no κ ∈ [0,m] such that H(κ, ε) = 0, then (k∗, c∗) = (kM , ε) is the worst-case

optimal pre-crash strategy for (108).

Proof. First, by Remark 3.2.9, there exists a κ ∈ [0, 1
l∗ ) such that H(κ, ε) = 0.

Now, we prove (1):

Assume that there exists a κ ∈ [0,m] such that H(κ, ε) = 0. For k ∈ [0,m] it holds

∂

∂k
H(k, ε) =

l∗

1− l∗k
+

1

ε

(
µ(1) − (σ

(1)
1 )2k

)
> 0.

Therefore, if there exists a root κ ∈ [0,m] of H(k, ε), then κ is uniquely determined on [0,m]. By

Lemma 3.2.8, (κ, ε) is an indi�erence strategy. Now, we show that (κ, ε) is an optimal strategy

in the no-crash scenario τ =∞ in the class A(κ). In order to do this, we consider the following

constrained stochastic optimal control problem:

sup
(k,c)∈A(κ)

E
(
Mk,c
∞

)
= sup

(k,c)∈A(κ)
E
(∫ ∞

0
e−εt log(ctX̃t) dt

)
. (126)

Similar to [27], where the authors showed that investment and consumption decisions can be

separated for general optimal control problems with logarithmic utility function, we obtain for

an arbitrary but �xed admissible pre-crash strategy (k, c) ∈ A(κ):

E
(∫ ∞

0
e−εt log(ctX̃t) dt

)
= E

(∫ ∞
0

e−εt
(

log(ct)−
∫ t

0
cs ds

)
dt

)
+ E

(∫ ∞
0

e−εt
(

log(x0) +

∫ t

0
rs + ψ(ks) ds+

∫ t

0
σ

(1)
1 ks dw1,s

)
dt

)
,

where ψ(k) := µ(1)k − (σ
(1)
1 )2

2 k2. Thus, maximizing the expectation in (126) is equivalent to

maximize the �rst and the second summand above to obtain the optimal consumption and

investment decision, respectively. Considering the �rst summand above, the optimal consumption

strategy is given by c = ε (see e.g. [27, Thm.2]). Since ψ is concave and strictly monotone

increasing for k < kM and since, by assumption, κ ≤ kM , we obtain for all strategies k ∈ A(κ)

that ψ(ks) ≤ ψ(κ) for all s ≥ 0 and

E
(∫ t

0
ψ(ks) ds+

∫ t

0
σ

(1)
1 ks dw1,s

)
= E

(∫ t

0
ψ(ks) ds

)
≤ E

(∫ t

0
ψ(κ) ds

)
= E

(∫ t

0
ψ(κ) ds+

∫ t

0
σ

(1)
1 κ dw1,s

)
.
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This implies that the second summand ful�lls the inequality

E
(∫ ∞

0
e−εt

(
log(x0) +

∫ t

0
rs + ψ(ks) ds+

∫ t

0
σ

(1)
1 ks dw1,s

)
dt

)
≤ E

(∫ ∞
0

e−εt
(

log(x0) +

∫ t

0
rs + ψ(κ) ds+

∫ t

0
σ

(1)
1 κ dw1,s

)
dt

)
for all k ∈ A(κ) and therefore (κ, ε) is the optimal strategy for the constrained problem (126).

Now, we apply the Indi�erence Optimality Principle (see e.g. [10, Prop.5.1]) and obtain that

(k∗, c∗) = (κ, ε) is the optimal strategy for the controller vs. stopper game (122), because

inf
τ∈C′

E
(
Mk,c
τ

)
≤ E

(
Mk,c
∞

)
≤ E (Mκ,ε

∞ ) = inf
τ∈C′

E (Mκ,ε
τ ) , ∀ (k, c) ∈ A(κ).

Note that the second inequality holds because (κ, ε) is optimal in the no-crash scenario and the

equality above is true because (κ, ε) is an indi�erence strategy.

Thus, (κ, ε) is a worst-case optimal pre-crash strategy for problem (108).

Now, we prove (2):

Suppose that there is no κ ∈ [0,m] such that H(κ, ε) = 0. Since H(0, ε) < 0, it follows that

H(kM , ε) < 0. By Ito's formula, we obtain

MkM ,ε
t = MkM ,ε

0 +
1

ε
H(kM , ε)(1− e−εt) + 1M

kM ,ε
t + 2M

kM ,ε
t ,

where

1M
kM ,ε
t :=

∫ t

0
e−εs

(
σ

(1)
1

ε
kM + σ2ρW̃r(rs)

)
dw1,s,

2M
kM ,ε
t :=

∫ t

0
e−εsσ2

√
1− ρ2W̃r(rs) dw2,s.

In order to apply Doob's Optional Sampling Theorem, we show that MkM ,ε = {MkM ,ε
t }t≥0 is a

supermartingale which is closed by a random variable (we refer to De�nition A.4.3 for details).

Since (kM , ε) is time independent, one can apply the same arguments as in the proof of Lemma

3.2.8 in order to show that the processes 1M
kM ,ε and 1M

kM ,ε are uniformly integrable martingales

with

E
(

sup
t≥0
|iMkM ,ε

t |
)
<∞, i = 1, 2.

Using the martingale property of 1M
kM ,ε and 2M

kM ,ε and H(kM , ε) < 0 we obtain

E
(
MkM ,ε
t |Fs

)
≤MkM ,ε

0 +
1

ε
H(kM , ε)(1− e−εs) + 1M

kM ,ε
s + 2M

kM ,ε
s = MkM ,ε

s ,

for s ≤ t, which implies that MkM ,ε is a supermartingale. Since 1M
kM ,ε and 2M

kM ,ε are

uniformly integrable martingales, we obtain by Theorem A.4.5 that 1M
kM ,ε := limt→∞ 1M

kM ,ε
t

and 2M
kM ,ε := limt→∞ 2M

kM ,ε
t a.s. exist and E|1MkM ,ε

∞ | < ∞ and E|2MkM ,ε
∞ | < ∞, and

therefore,

MkM ,ε
∞ := lim

t→∞
MkM ,ε
t = MkM ,ε

0 +
1

ε
H(kM , ε) + 1M

kM ,ε
∞ + 2M

kM ,ε
∞



3.3. THE GENERAL AFFINE SHORT RATE MODEL 96

a.s. exists and E|MkM ,ε
∞ | <∞. Moreover, for each t ≥ 0 it holds

MkM ,ε
t > MkM ,ε

0 +
1

ε
H(kM , ε) + 1M

kM ,ε
t + 2M

kM ,ε
t

= MkM ,ε
0 +

1

ε
H(kM , ε) + E

(
1M

kM ,ε
∞ |Ft

)
+ E

(
2M

kM ,ε
∞ |Ft

)
= E

(
MkM ,ε
∞ |Ft

)
.

De�nition A.4.3 implies that MkM ,ε is a supermartingale which is closed by the random variable

MkM ,ε
∞ . By Doob's Optional Sampling Theorem (see e.g. Theorem A.4.6), we obtain

E
(
MkM ,ε
τ

)
≥ E

(
MkM ,ε
∞

)
(127)

for all stopping times τ . This inequality implies that τ = ∞ is a worst-case scenario for an

investor who follows the strategy (kM , ε) before the market crash.

Moreover, we have that (kM , ε) is optimal in the no-crash scenario, that is, (kM , ε) is the optimal

control of the problem

sup
(k,c)∈Π(x0,r0)

E
(
Mk,c
∞

)
= sup

(k,c)∈Π(x0,r0)

E
(∫ ∞

0
e−εt log(ctX̃t) dt

)
.

Finally, we obtain

inf
τ∈C′

E
(
Mk,c
τ

)
≤ E

(
Mk,c
∞

)
≤ E

(
MkM ,ε
∞

)
≤ inf

τ∈C′
E
(
MkM ,ε
τ

)
, ∀ (k, c) ∈ Π.

Note, that the second inequality holds because (kM , ε) is optimal in the no-crash scenario and

(127) implies the third inequality. Thus, (kM , ε) is the optimal strategy for the controller vs.

stopper game (122) and therefore, it is the worst-case optimal strategy for problem (108). �

Example 3.2.12. Let us consider a market which becomes worse after the market crash has

happened. If for example µ(1) ≥ µ(0) and σ
(1)
1 ≤ σ

(0)
1 then there exists κ ∈ [0,m] such that

H(κ, ε) = 0, because H(0, ε) < 0, H(kM , ε) > 0 and H(k, ε) is strictly monotone increasing

for k ∈ [0,m]. Thus, we can apply part (1) of the Theorem above and obtain that (κ, ε) is the

worst-case optimal pre-crash strategy for problem (108).

3.3. The general a�ne short rate model

In Section 2.5, we investigated the �nite time horizon worst-case optimization problem under an

a�ne short rate model. Here again, we consider this short rate model for the in�nite horizon

worst-case optimization problem (108). We assume that the short rate process {rt}t≥0 is a

solution of the SDE

drt = (λ1rt + λ2) dt+
√
ξ1rt + ξ2 dw̃t, r0 = r0, (128)

where the constants λ1, λ2, ξ1, ξ2 ful�ll condition (149) in Proposition A.1.2 in Appendix A such

that there exists a uniquely determined solution of the SDE above. Again, we will determine

the optimal pre- and post-crash strategy of the worst-case optimization problem (108) by means

of the same steps as in the previous section. First, let us consider the post-crash optimization

problem.

3.3.1. The post-crash optimization problem. The aim of this section is to �nd the

optimal post-crash Strategy (k(0)∗, c(0)∗) under the a�ne short rate model. As in section 3.2.1,

we use standard stochastic optimal control theory. Analogously, for (x, r) ∈ R+ × R we de�ne
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the post-crash value function as follows:

V 0(x, r) = sup
(k(0),c(0))∈Π(x,r)

E
(∫ ∞

0
e−εt log(c

(0)
t Xt) dt

)
(129)

with respect to the post-crash wealth and short rate dynamics:

dXt = Xt

[
rt + µ(0)k

(0)
t − c

(0)
t

]
dt+Xtσ

(0)
1 k

(0)
t dw1,t, X0 = x, (130)

drt = (λ1rt + λ2) dt+
√
ξ1rt + ξ2 (ρ dw1,t +

√
1− ρ2 dw2,t), r0 = r.

The corresponding HJB equation to the post-crash problem above is given by:

sup
k(0)∈A

[
µ(0)k(0)xv0

x(x, r) +
(σ

(0)
1 )2

2
(k(0))2x2v0

xx(x, r) + ρσ
(0)
1

√
ξ1r + ξ2k

(0)xv0
xr(x, r)

]
+ sup
c(0)≥0

[
log(c(0)x)− c(0)xv0

x(x, r)
]

+ rxv0
x(x, r)

+ (λ1r + λ2)v0
r (x, r) +

ξ1r + ξ2

2
v0
rr(x, r)− εv0(x, r) = 0, (t, x) ∈ R+ × R.

By the standard ansatz for the Log utility case, we set v0(x, r) = B log(x) + W (r), where

B ∈ R,W ∈ C2(R). Then, we obtain:

sup
k(0)∈A

[
µ(0)k(0)B − (σ

(0)
1 )2

2
(k(0))2B

]
+ sup
c(0)≥0

[
log(c(0))− c(0)B

]
+ rB

+ (λ1r + λ2)Wr(r) +
ξ1r + ξ2

2
Wrr(r)− ε (B log(x) +W (r)) + log(x) = 0, r ∈ R.

As in the previous section, we eliminate x by choosing B = 1
ε and obtain the candidates

k(0)∗ =
µ(0)

(σ
(0)
1 )2

, c(0)∗ = ε.

Due to the fact that the stochastic control k(0) is not coupled with short rate in the wealth

equation (130), we obtain the same candidates for the optimal post-crash strategy as in Section

3.2.1. Inserting the candidates leads again to an ODE for W :

ξ1r + ξ2

2
Wrr(r) + (λ1r + λ2)Wr(r)− εW (r) +Q(r) = 0, r ∈ R, (131)

where Q(r) is given by (115). In comparison to (114), the coe�cient of the second derivative in

(131) depends on r, whereas the coe�cient of the �rst derivative is explicitly given as a linear

function in r. Under the assumption that ε 6= λ1, we assume that the solution of (131) is a linear

function in r, that is

W̃ (r) = a1r + a0. (132)

Inserting W̃ and its derivatives in (131) and comparing the coe�cients, leads to

a1 =
1

ε(ε− λ1)
, a0 =

1

ε

 λ2

ε(ε− λ1)
+

1

2ε

(
µ(0)

σ
(0)
1

)2

+ log(ε)− 1

 .
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Thus, we �nd an explicit solution of the HJB equation given by v0(x, r) = 1
ε log(x) + W̃ (r). The

following theorem implies that v0 is indeed equal to the post-crash value function and that the

candidates k(0)∗ and c(0)∗ are the optimal post-crash strategies.

Theorem 3.3.1. Let ε−λ1 > 0 and let W̃ be given by (132). Moreover, let v0(x, r) = 1
ε log(x)+

W̃ (r). Then, the assertion (1) and (2) in Theorem 3.2.7 hold. Thus, v0(x, r) = V 0(x, r), where

V 0(x, r) is the post-crash value function given by (129).

Proof. The method of the proof of Theorem 3.2.7 carries over to this proof. We have used

only the fact that E (rs) and E
(
r2
s

)
are given in Proposition A.1.2 in Appendix A. �

3.3.2. Reformulation of the worst-case problem. For the sake of brevity, we write

(k, c) instead of (k(1), c(1)) for the pre-crash strategies and we de�ne for t ≥ 0:

Mk,c
t :=

∫ t

0
e−εs log(csX̃s) ds+ e−εtV 0((1− l∗kt)X̃t, rt), t ≥ 0,

where the wealth and the short rate evolve as

dX̃t = X̃t

[
rt + µ(1)kt − ct

]
dt+ X̃tσ

(1)
1 kt dw1,t, X0 = x0 > 0,

drt = (λ1rt + λ2) dt+
√
ξ1rt + ξ2(ρ dw1,t +

√
1− ρ2 dw2,t), r0 = r0 > 0.

Since V 0(x, r) is strictly monotone increasing in x, and using the same arguments as in Section

3.2.2, we reformulate the worst-case optimization problem (108) as a controller vs. stopper game

of the form

sup
(k,c)∈Π(x0,r0)

inf
τ∈C′

E
(
Mk,c
τ

)
. (133)

3.3.3. The worst-case optimal pre-crash strategy. We obtain a su�cient condition for

a pre-crash strategy to be an indi�erence strategy.

Lemma 3.3.2. Let ε−λ1 > 0, and let (k̂, ĉ) be a constant pre-crash strategy such that H(k̂, ĉ) = 0,

where H is given by (124). Then, M k̂,ĉ = {M k̂,ĉ}t≥0 is a uniformly integrable martingale and

(k̂, ĉ) ∈ Π is an indi�erence strategy for the controller vs. stopper game (133).

Proof. The proof works with the same ideas as in Lemma 3.2.8. Using that V 0(x, r) =
1
ε log(x) + W̃ (r), where W̃ (r) = a1r + a0, and applying Ito's formula leads to

dM k̂,ĉ
t =e−εt

[
log

(
ĉ

1− l∗k̂

)
+

1

ε

(
µ(1)k̂ − (σ

(1)
1 )2

2
k̂2

)
− ĉ

ε
+
rt
ε

+ (λ1rt + λ2)W̃r(rt) +
ξ1rt + ξ2

2
W̃rr(rt)− εW̃ (rt)

]
dt

+ e−εt

(
σ

(1)
1

ε
k̂ +

√
ξ1rt + ξ2ρW̃r(rt)

)
dw1,t

+ e−εt
√
ξ1rt + ξ2

√
1− ρ2W̃r(rt) dw2,t.

Now, under the condition that ε 6= λ1, we have that W̃ (r) = a1r + a0 is a solution of the ODE

(131) and therefore, since H(k̂, ĉ) = 0, the dt coe�cient vanishes and it remains to show that

M k̂,ĉ
t = M k̂,ĉ

0 + 1M
k̂,ĉ
t + 2M

k̂,ĉ
t ,
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where

1M
k̂,ĉ
t :=

∫ t

0
e−εs

(
σ

(1)
1

ε
k̂ + ρa1

√
ξ1rt + ξ2

)
dw1,s,

2M
k̂,ĉ
t :=

∫ t

0
e−εs

√
1− ρ2a1

√
ξ1rs + ξ2 dw2,s,

is a uniformly integrable martingale. Note, that the di�erence to the proof of Lemma 3.2.8 is

that the square root of rt occurs in the stochastic integrals. Again, we consider the quadratic

variation process of 1M
k̂,ĉ and 2M

k̂,ĉ and obtain

〈1M k̂,ĉ〉∞ =

∫ ∞
0

e−2εs

(
σ

(1)
1

ε
k̂ + ρa1

√
ξ1rt + ξ2

)2

ds,

and therefore,

E
(
〈1M k̂,ĉ〉∞

)
≤ 1

ε3
(σ

(1)
1 k̂)2 +

1

ε
(ρa1)2ξ2 + 2(ρa1)2ξ1E

(∫ ∞
0

e−2εsrs ds

)
.

Proposition A.1.2 in Appendix A implies that

E(rs) = r0eλ1s +
λ2

λ1

(
eλ1s − 1

)
.

Under the assumption that ε− λ1 > 0, we obtain that

E
(
〈1M k̂,ĉ〉∞

)
<∞.

Analogously, we obtain E
(
〈2M k̂,ĉ〉∞

)
<∞. Again, by the Burkholder-Davis-Gundy inequality

it follows

E
(

sup
t≥0
|1M k̂,ĉ

t |
)
<∞, E

(
sup
t≥0
|2M k̂,ĉ

t |
)
<∞,

such thatM k̂,ĉ is dominated by an integrable random variable. It follows thatM k̂,ĉ is a uniformly

integrable martingale. Theorem A.4.5 implies that it is closed by a random variable M k̂,ĉ
∞ :=

limt→∞M
k̂,ĉ
t . Doob's Optional Sampling Theorem (see Theorem A.4.6) implies

E
(
M k̂,ĉ
τ

)
= E

(
M k̂,ĉ
τ ′

)
for two stopping times τ, τ ′. Therefore, the pre-crash strategy (k̂, ĉ) is an indi�erence strategy. �

Remark 3.3.3. Lemma 3.3.2 provides a su�cient condition for a pre-crash strategy to be an

indi�erence strategy. This condition does not di�er from the indi�erence condition in Section

3.2. That means the short rate model has no in�uence on the indi�erence condition. By means

of the indi�erence frontier, which we already explained in Section 3.2, we know that the optimal

pre-crash strategy (k∗, c∗) has to be an element of the set

A(k̂) :=
{

(k, c) ∈ Π : kt ≤ k̂, ∀t ≥ 0
}
.

Theorem 3.3.4. Let ε− λ1 > 0 and let H(k, c) be given by (124). Then, the worst-case optimal

pre-crash strategy for problem (108) under the a�ne short rate model is determined by statement

(1) and (2) of Theorem 3.2.11.
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Proof.

(1): By Lemma 3.3.2, we have that Mκ,ε is a uniformly integrable martingale. Then, the proof

follows by the same steps as in the proof of Theorem 3.2.11.

(2): Since 1M
kM ,ε and 2M

kM ,ε are uniformly integrable martingales (we refer to the proof of

Lemma 3.3.2), we use the same steps as in Theorem 3.2.11 to show thatMkM ,ε is a supermartin-

gale which is closed by a random variable. The remaining steps of the proof are equal to the

previous section. �

3.3.4. Discussion and numerical examples. Theorem 3.2.11 and Theorem 3.3.4 provide

the optimal pre-crash strategy (k(1)∗, c(1)∗) for the generalized Vasicek model and for the a�ne

short rate model, respectively. For both models, it is optimal to invest a constant fraction of

wealth κ (in case (1)) or kM (in case (2)) in the stock and to consume at a rate c(1)∗ = ε before

the market crash. After the crash has happened, it is optimal to invest a fraction k(0)∗ = µ(0)

(σ
(0)
1 )2

and continue consuming at a rate c(0)∗ = ε.

Remark 3.3.5. The following remarks are valid for the worst-case optimization problem (108)

both under the generalized Vasicek model from Section 3.2 and the a�ne short rate model of this

section.

a) As in Section 2.5 the optimal strategies neither depend on the short rate rt(ω) itself nor on

the parameters which determine the short rate equation. This is due to the logarithmic utility

function which eliminates the stochastic interest rate risk.

b) An investor with logarithmic utility function can separate the consumption decision from the

investment decision (cf. [27]) such that it is optimal to consume at a rate ε before and after

the market crash.

In the following example, we give a short illustration of the optimal strategies. In Figure 3.1 and

Figure 3.2, we assume that the maximum crash size is given by l∗ = 0.4 and the discount factor

is given by ε = 0.1. Therein, we calculate the optimal investment strategy in a crash-free market

kM , the optimal pre-crash strategy k(1)∗, the optimal post-crash strategy k(0)∗ and the optimal

consumption strategy c(0)∗ = c(1)∗. In Figure 3.1 we assume that the market after the crash is

worse than before (higher volatility). In this case, there exists κ ∈ [0,m] such that H(κ, ε) = 0

(see Example 3.2.12). Part (1) of Theorem 3.2.11 implies that it is optimal to invest and consume

along the indi�erence strategy (κ, ε) before the market crash. Contrary, in Figure 3.2, we assume

that the volatility after the crash is lower than before. Here, we obtain that κ > m such that

we apply part (2) of Theorem 3.2.11, which implies that it is optimal to invest a fraction kM of

wealth in the stock before the crash.
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0

0.5

1

time

cH1L*

kH0L*

kH1L*=k

kM

Figure 3.1. Optimal strategies

with market parameters µ(1) =

0.07, σ
(1)
1 = 0.25, µ(0) = 0.07,

σ
(0)
1 = 0.3.

0

1

2

3

time

cH1L*

kH0L*

k

kH1L*=kM

Figure 3.2. Optimal strategies

with market parameters µ(1) =

0.07, σ
(1)
1 = 0.25, µ(0) = 0.07,

σ
(0)
1 = 0.15.

3.4. Uncertain post-crash parameters

Here, we extend the worst-case optimization problem of Section 3.3. Therein, we assumed that

the post-crash parameters µ(0) and σ(0)
1 are given quantities. That means, we assumed that the

investor has full information about the market, especially about the drift and the volatility of

the asset price process, after a signi�cant market crash, that is modeled as a `once in a lifetime'

event. Thus, it is self-evident to assume that the drift and the volatility are also uncertain pa-

rameters. The modeling of uncertain post-crash parameters and the corresponding worst-case

optimization problem will be subject of this section.

The stock price process P = {Pt}t≥0 is again given as in Section 3.1. But now, we assume that

the post-crash parameters (µ(0), σ
(0)
1 ) are Fτ - measurable random variables on a given interval.

That is, we assume that

(µ(0), σ
(0)
1 ) ∈ [µ, µ]× [σ, σ] =: P,

where 0 ≤ µ ≤ µ and 0 < σ ≤ σ are given.

As before, we assume that the risky asset loses a fraction l ∈ [0, l∗] of its value at the crash time τ

and we assume that pre-crash parameters (µ(1), σ
(1)
1 ) will change at the crash time to (µ(0), σ

(0)
1 ).

In order to allow that the market parameters do not change, we assume that

(µ(1), σ
(1)
1 ) ∈ P. (134)

The investor takes a cautious attitude towards the uncertainty about the market crash (τ, l)

and towards the uncertainty about the post-crash parameters (µ(0), σ
(0)
1 ). He wants to maximize

his expected discounted utility of consumption over an in�nite time interval in the worst-case

scenario with respect to (τ, l) ∈ C′ and (µ(0), σ
(0)
1 ) ∈ P. Then, the corresponding worst-case

optimization problem is given by:

sup
(k,c)∈Π(x0,r0)

inf
(τ,l)∈C′

(µ(0),σ
(0)
1 )∈P

E
(∫ ∞

0
e−εt log(ctXt) dt

)
, (135)
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where

X0 = x0 > 0,

dXt = Xt

[
rt + µ(1)k

(1)
t − c

(1)
t

]
dt+Xtσ

(1)
1 k

(1)
t dw1,t, t ∈ (0, τ),

Xτ = (1− lk(1)
τ )Xτ−,

dXt = Xt

[
rt + µ(0)k

(0)
t − c

(0)
t

]
dt+Xtσ

(0)
1 k

(0)
t dw1,t, t ∈ (τ,∞],

and the short rate process {rt}t≥0 is assumed to be a solution of SDE (128). The set of admissible

controls Π is given by De�nition 3.1.1 and the set of market crash scenarios C′ is given by (107).

The Post-Crash Optimization Problem.

Suppose that the investor has wealth x > 0 and interest rate r at the crash time τ . Again, he

is faced with a stochastic optimal control problem over an in�nite time interval starting with

initial wealth x and interest rate r. The post-crash wealth dynamics depends on the post-crash

parameters (µ(0), σ
(0)
1 ). Thus, the post-crash value function now depends on x and r and on

(µ(0), σ
(0)
1 ) and we de�ne

V 0(x, r, µ(0), σ
(0)
1 ) := sup

(k(0),c(0))∈Π(x,r)

E
(∫ ∞

0
e−εt log(c

(0)
t Xt) dt

)
with respect to the post-crash dynamics:

dXt = Xt

[
rt + µ(0)k

(0)
t − c

(0)
t

]
dt+Xtσ

(0)
1 k

(0)
t dw1,t, X0 = x,

drt = (λ1rt + λ2) dt+
√
ξ1rt + ξ2(ρ dw1,t +

√
1− ρ2 dw2,t), r0 = r.

For given post-crash parameters (µ(0), σ
(0)
1 ), which are available at the crash time, the stochastic

optimal control problem can be solved as in Section 3.3.1. Assuming that ε− λ1 > 0, we obtain

that the optimal post-crash strategy is given by

k(0)∗(µ(0), σ
(0)
1 ) =

µ(0)

(σ
(0)
1 )2

, c(0)∗(µ(0), σ
(0)
1 ) = ε,

and the post-crash value function is given by

V 0(x, r, µ(0), σ
(0)
1 ) =

1

ε
log(x) + W̃ (r, µ(0), σ

(0)
1 ),

where W̃ (r, µ(0), σ
(0)
1 ) solves ODE (131) and is given by

W̃ (r, µ(0), σ
(0)
1 ) =

1

ε(ε− λ1)
r +

1

ε

 λ2

ε(ε− λ1)
+

1

2ε

(
µ(0)

σ
(0)
1

)2

+ log(ε)− 1

 .
Thus, the investor's optimal post-crash strategy is the classical Merton strategy depending on

the relevant post-crash parameters (µ(0), σ
(0)
1 ). Based on the post-crash value function, we re-

formulate the worst-case optimization problem (135) by identifying the worst-case scenario of

the crash size l ∈ [0, l∗] and the worst-case scenario with respect to the post-crash parameters

(µ(0), σ
(0)
1 ) ∈ P.



3.4. UNCERTAIN POST-CRASH PARAMETERS 103

Reformulation.

At the crash time, the investor has wealth x = (1 − lk(1)
τ )X̃τ and he is faced with a short rate

r = rτ . Note, that X̃ = {X̃t}t≥0 denotes the wealth process in a crash-free market (see e.g.

(121)). We reformulate the problem (135) as a pre-crash problem of the form:

sup
(k(1),c(1))∈Π(x0,r0)

inf
(τ,l)∈C′

(µ(0),σ
(0)
1 )∈P

E
(∫ τ

0
e−εt log(c

(1)
t X̃t) dt

+ e−ετV 0((1− lk(1)
τ )X̃τ , rτ , µ

(0), σ
(0)
1 )

)
.

Since V 0(x, r, µ(0), σ
(0)
1 ) is monotone increasing in x, we obtain that l = l∗ is the worst-case

scenario with respect to the crash size. The worst-case post-crash parameters are given by the

pair (µ, σ), because they minimize the function W̃ (r, µ(0), σ
(0)
1 ) for any arbitrary but �xed r ∈ R.

For the sake of brevity, we write (k, c) instead of (k(1), c(1)) for the pre-crash strategies and the

pre-crash problem above reads as the following controller vs. stopper game:

sup
(k,c)∈Π(x0,r0)

inf
τ∈C′

E
(
Mk,c
τ

)
,

where

Mk,c
t : =

∫ t

0
e−εs log(csX̃s) ds+ e−εtV 0((1− l∗kt)X̃t, rt, µ, σ), t ≥ 0.

The worst-case optimal pre-crash strategy

LetH(k, c) be de�ned as in (124), where µ(0) and σ(0)
1 are replaced by µ and σ, respectively. Then,

we obtain the following su�cient condition for a pre-crash strategy (k̂, ĉ) to be an indi�erence

strategy.

Corollary 3.4.1. Let ε − λ1 > 0, and let (k̂, ĉ) be a constant pre-crash strategy such that

H(k̂, ĉ) = 0, where H is given by

H(k, c) = log

(
c

1− l∗k

)
+

1

ε

(
µ(1)k − (σ

(1)
1 )2

2
k2

)
− c

ε
− 1

2ε

(µ
σ

)2

− log(ε) + 1. (136)

Then, M k̂,ĉ = {M k̂,ĉ}t≥0 is a uniformly integrable martingale and (k̂, ĉ) ∈ Π is an indi�erence

strategy for the controller vs. stopper game.

Proof. By replacing µ(0) and σ(0)
1 by µ and σ in the proof of Lemma 3.3.2, we immediately

obtain the assertion. �

Again, by the concept of an indi�erence frontier (see Section 3.2 and Section 3.3) and by the

same arguments as in Theorem 3.2.11, we identify the worst-case optimal pre-crash strategy.

Corollary 3.4.2. Let ε− λ1 > 0 and let H(k, c) be given by (136). Moreover, let

m := min

{
1

l∗
, kM

}
, kM :=

µ(1)

(σ
(1)
1 )2

.

Then, (k∗, c∗) = (κ, ε) is a worst-case optimal pre-crash strategy, where κ ∈ [0,m] is the uniquely

determined solution of H(k, ε) = 0.



3.5. APPENDIX 104

Proof. Obviously, we have that H(k, ε) is strictly monotone increasing in k for 0 ≤ k ≤ m,

H(0, ε) < 0 and limk↗ 1
l∗
H(k, ε) =∞. If kM < 1

l∗ , we additionally obtain by assumption (134):

H(kM , ε) = − log
(
1− l∗kM

)
+

1

2ε

(µ(1)

σ
(1)
1

)2

−
(µ
σ

)2

 > 0.

Thus, there exists a uniquely determined κ ∈ [0,m] such that H(κ, ε) = 0 and therefore, (k̂, ĉ) =

(κ, ε) is an indi�erence strategy. Moreover, (κ, ε) is optimal in the no-crash scenario in the

class A(κ). The indi�erence optimality principle implies that (κ, ε) is a worst-case optimal

strategy. �

The result of this section is, that the investor's optimal investment strategy before the market

crash is given by k(1)∗
t ≡ κ , where κ ∈ [0,m] ful�lls H(κ, ε) = 0. Note, that k(1)∗ not only

depends on the worst-case scenario with respect to the crash size, given by l∗, but also on the

worst-case scenario with respect to the post-crash parameters, given by (µ, σ). Furthermore, the

optimal pre-crash consumption strategy is given by c(1)∗
t ≡ ε. After the market crash, the optimal

investment strategy is the classical Merton strategy with the relevant market parameters:

k
(0)∗
t ≡ µ(0)

(σ
(0)
1 )2

.

Due to the logarithmic utility function the optimal post-crash consumption strategy is again

given by c(0)∗
t ≡ ε.

3.5. Appendix

3.5.1. Proof of Lemma 3.2.6.

Proof. Let W̃ (r) be a classical solution of (114) with

W (r) ≤ W̃ (r) ≤W (r). (137)

Let R > 0 be �xed. Since W̃ (r) is a solution of

0 =
σ2

2

2
Wrr(r) + f(r)Wr(r)− εW (r) +Q(r), ∀ r ∈ R,

we can integrate over [0, R] and obtain

W̃r(R) = W̃r(0) +
2

σ2
2

[
ε

∫ R

0
W̃ (r) dr −

∫ R

0
Q(r) dr −

∫ R

0
f(r)Wr(r) dr

]
.

Analogously, for �xed R < 0 we integrate over [R, 0] and obtain

W̃r(R) = W̃r(0)− 2

σ2
2

[
ε

∫ 0

R
W̃ (r) dr −

∫ 0

R
Q(r) dr −

∫ 0

R
f(r)Wr(r) dr

]
= W̃r(0) +

2

σ2
2

[
ε

∫ R

0
W̃ (r) dr −

∫ R

0
Q(r) dr −

∫ R

0
f(r)Wr(r) dr

]
.
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Then, for arbitrary but �xed R ∈ R, it holds∣∣∣W̃r(R)
∣∣∣2

≤ 2W̃ 2
r (0) +

8

σ4
2

∣∣∣∣ε∫ R

0
W̃ (r) dr −

∫ R

0
Q(r) dr −

∫ R

0
f(r)Wr(r) dr

∣∣∣∣2
≤ 2W̃ 2

r (0) +
8

σ4
2

[
3ε2

∣∣∣∣∫ R

0
W̃ (r) dr

∣∣∣∣2 + 3

∣∣∣∣∫ R

0
Q(r) dr

∣∣∣∣2
+ 3

∣∣∣∣∫ R

0
f(r)W̃r(r) dr

∣∣∣∣2 ]. (138)

By

Q(r) =
1

2ε

(
µ(0)

σ
(0)
1

)2

+
r

ε
+ log(ε)− 1,

it holds ∣∣∣∣∫ R

0
Q(r) dr

∣∣∣∣2 ≤ R ∫ R

0
|m1r +m2|2 dr ≤

2

3
m2

1R
4 + 2m2

2R
2, (139)

where m1 := 1
ε and m2 := 1

2ε

(
µ(0)

σ
(0)
1

)2

+ log(ε)− 1. Moreover, by (137) we have

|W̃ (r)| ≤ |W (r)|+ |W (r)|, ∀r ∈ R. (140)

Thus, ∣∣∣∣∫ R

0
W̃ (r) dr

∣∣∣∣2 ≤ R ∫ R

0
(|W (r)|+ |W (r)|)2 dr,

≤ 2R

∫ R

0
γ2

2r
4 + γ2

1 dr =
2

5
γ2

2R
6 + 2γ2

1R
2, (141)

where γ2 := |α2|+ |β2| and γ1 := |α1|+ |β1|.
Moreover, integrating by parts, and using assumption (109) leads to∣∣∣∣∫ R

0
f(r)W̃r(r) dr

∣∣∣∣ =

∣∣∣∣f(R)W̃ (R)− f(0)W̃ (0)−
∫ R

0
fr(r)W̃ (r) dr

∣∣∣∣
≤ |f(R)||W̃ (R)|+ |f(0)W̃ (0)|+

∣∣∣∣∫ R

0
fr(r)W̃ (r) dr

∣∣∣∣
≤ (c̃|R|+ |f(0)|)(γ2R

2 + γ1) + |f(0)W̃ (0)|+
∣∣∣∣∫ R

0
fr(r)W̃ (r) dr

∣∣∣∣ ,
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where c̃ := max{|c1|, |c2|}. Moreover, using (140), we have∣∣∣∣ ∫ R

0
f(r)W̃r(r) dr

∣∣∣∣2
≤ 3

[
(c̃|R|+ |f(0)|)2 (γ2R

2 + γ1)2 + |f(0)W̃ (0)|2 +

∣∣∣∣∫ R

0
fr(r)W̃ (r) dr

∣∣∣∣2
]

≤ 3

[
4(c̃2R2 + |f(0)|2)(γ2

2R
4 + γ2

1) + |f(0)W̃ (0)|2 + 2c̃R

∫ R

0
γ2

2r
4 + γ2

1 dr

]
≤

3∑
j=0

ν̃2jR
2j . (142)

Finally, by (138),(139),(141) and (142), we obtain:

W̃ 2
r (R) ≤

3∑
i=0

ν2iR
2i.

�

3.5.2. Proof of Theorem 3.2.7.

Proof. The proof works with the same arguments as in [39, Thm.4.2]. Therein, the control

variable k is coupled with the stochastic interest rate in the wealth equation. This is not the

case for our wealth equation (111). This fact makes the proof a bit easier. For the readers

convenience, we note that the candidate for the value function is given by

v0(x, r) =
1

ε
log(x) + W̃ (r),

where W̃ is a classical solution of (114) with W (r) ≤ W̃ (r) ≤ W (r) and (W,W ) are given by

(117) and (118), respectively.

Let (k(0), c(0)) ∈ Π be an arbitrary admissible control, then we can apply Ito's formula and

obtain:

d
(
e−εtv0(Xt, rt)

)
= e−εt dv0(Xt, rt)− εe−εtv0(Xt, rt) dt (143)

and using that v0(x, r) solves the HJB equation (112), we obtain

dv0(Xt, rt) =

[
µ(0)k

(0)
t Xtv

0
x +

(σ
(0)
1 )2

2
(k

(0)
t )2X

2
t v

0
xx + ρσ

(0)
1 σ2k

(0)
t Xtv

0
xr + rtXtv

0
x

+ f(rt)v
0
r +

σ2
2

2
v0
rr − c

(0)
t Xtv

0
x

]
dt+ σ

(0)
1 k

(0)
t Xtv

0
x dw1,t + σ2v

0
r dw̃t

(112)

≤ εv0 dt− log(c
(0)
t Xt) dt+ σ

(0)
1 k

(0)
t Xtv

0
x dw1,t + σ2v

0
r dw̃t. (144)

Let MA := {MA
T }T≥0 be de�ned by

MA
T : =

∫ T

0
e−εtσ

(0)
1 k

(0)
t Xtv

0
x(Xt, rt) dw1,t =

σ
(0)
1

ε

∫ T

0
e−εtk

(0)
t dw1,t,
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then, MA is a martingale because k(0) ∈ Π. Moreover, let MB := {MB
T }T≥0 be de�ned by

MB
T : =

∫ T

0
e−εtσ2v

0
r (Xt, rt) dw̃t = σ2

∫ T

0
e−εtW̃r(rt) dw̃t.

Using Lemma 3.2.6 and Lemma A.1.3, we obtain

E
∫ T

0
e−2εtW̃ 2

r (rt) dt

=

∫ T

0
e−2εtE

(
W̃ 2
r (rt)

)
dt ≤

∫ T

0
e−2εt

3∑
i=0

ν2iE
(
r2i
t

)
dt <∞, ∀T ≥ 0,

and therefore MB is a martingale. Thus, E(MA
T ) = 0 and E(MB

T ) = 0 for all T ≥ 0. Multiplying

(144) by e−εt, integrating over [0, T ] and taking the expectation leads to:

E
(∫ T

0
e−εt dv0(Xt, rt)

)
− E

(∫ T

0
εe−εtv0(Xt, rt) dt

)
≤ −E

(∫ T

0
e−εt log(c

(0)
t Xt) dt

)
.

Together with (143) this yields

v0(x, r) ≥ E
(∫ T

0
e−εt log(c

(0)
t Xt) dt

)
+E

(
e−εT v0(XT , rT )

)
, ∀T ≥ 0. (145)

In the next step, we show that

lim sup
T→∞

e−εTE
(
v0(XT , rT )

)
= lim sup

T→∞
e−εTE

(
1

ε
log
(
XT

)
+ W̃ (rT )

)
≥ 0.

Since W̃ (rT ) ≥W (rT ) = α2r
2
T + α1, where α1, α2 < 0, we verify that

lim sup
T→∞

e−εTE(W̃ (rT )) ≥ lim sup
T→∞

e−εT
(
α2E(r2

T ) + α1

)
. (146)

By Lemma A.1.3 in Appendix A, we have

E(r2
T ) ≤

Λ1 : c1 ≤ 0

Λ2e
2(c1+ε̃)T : c1 > 0

, (147)

for any ε̃ > 0. Together with (146) and if c1 ≤ 0, we immediately conclude that

lim sup
T→∞

e−εTE(W̃ (rT )) ≥ lim sup
T→∞

e−εT (α2Λ1 + α1) = 0,

because α2 < 0. Since we assumed that ε−2c1 > 0, there exists ε̃ > 0, such that ε−2(c1 + ε̃) > 0.

Thus, if c1 > 0, it holds

lim sup
T→∞

e−εTE(W̃ (rT )) ≥ lim sup
T→∞

[
α2Λ2e

−εT e2(c1+ε̃)T + e−εTα1

]
= 0.

Thus we have shown that

lim sup
T→∞

e−εTE(W̃ (rT )) ≥ 0. (148)

Using the same steps as in [39, p.11-12], one can show that

lim sup
T→∞

e−εTE
(
log(XT ))

)
≥ 0.
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Together with (148), we obtain

lim sup
T→∞

e−εTE
(
v0(XT , rT )

)
= lim sup

T→∞
e−εTE

(
1

ε
log(XT ) + W̃ (rT )

)
≥ 0.

Now letting T →∞ and taking lim sup in (145) leads to

v0(x, r) ≥ E
(∫ ∞

0
e−εt log(c

(0)
t Xt) dt

)
.

Thus, part (1) of Theorem 3.2.7 holds. Now we will show part (2).

Obviously, the strategies

k(0)∗(Xt, rt) ≡
µ(0)

(σ
(0)
1 )2

, c(0)∗(Xt, rt) ≡ ε

are admissible in the sense of De�nition 3.1.1 and ful�ll condition (120). Moreover, we have

k(0)∗ ∈ arg max
k(0)

[
µ(0)k(0)xv0

x +
(σ

(0)
1 )2

2
(k(0))2x2v0

xx + ρσ
(0)
1 σ2k

(0)xv0
xr

]
,

c(0)∗ ∈ arg max
c(0)≥0

[
log(c(0)x)− c(0)xv0

x

]
.

Now, denote byX
∗
t the wealth process controlled by (k(0)∗, c(0)∗). Then, inequality (144) becomes

an equality of the form

dv0(X
∗
t , rt) = εv0 dt− log(c

(0)∗
t X

∗
t ) dt+ σ

(0)
1 k

(0)∗
t X

∗
t v

0
x dw1,t + σ2v

0
r dw̃t.

Due of the fact that (k(0)∗, c(0)∗) ∈ Π, we know that the last two summands are martingales.

With the same arguments as before we obtain:

v0(x, r) = E
(∫ T

0
e−εt log(c

(0)∗
t X

∗
t ) dt

)
+ E

(
e−εT v0(X

∗
T , rT )

)
, ∀T ≥ 0.

Let us show that

lim inf
T→∞

e−εTE
(
v0(X

∗
T , rT )

)
= lim inf

T→∞
e−εTE

(
1

ε
log(X

∗
t ) + W̃ (rt)

)
≤ 0.

By W̃ (rT ) ≤W (rT ) = β2r
2
T + β1, where β1, β2 > 0, we get

lim inf
T→∞

e−εTE(W̃ (rT )) ≤ lim inf
T→∞

e−εTE
(
β2r

2
T + β1

)
= lim inf

T→∞
e−εT

(
β2E(r2

T ) + β1

)
.

If c1 ≤ 0, then by (147), we immediately conclude that

lim inf
T→∞

e−εTE(W̃ (rT )) ≤ lim inf
T→∞

e−εT (β2Λ1 + β1) = 0,

because β2 > 0. We know, by the assumption ε − 2c1 > 0, that there exists a ε̃ > 0 such that

ε− 2(c1 + ε̃) > 0. Thus, for the case c1 > 0 we obtain

lim inf
T→∞

e−εTE(W̃ (rT )) ≤ lim inf
T→∞

[
β2Λ2e

−εT e2(c1+ε̃)T + e−εTβ1

]
= 0.
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Moreover, we have

E
(

log(X
∗
T )
)

= log(x) + E

(∫ T

0

[
rt + µ(0)k

(0)∗
t − (σ

(0)
1 )2

2
(k

(0)∗
t )2

]
dt

)
− E

(∫ T

0
c

(0)∗
t dt

)

= log(x) + E
(∫ T

0
rt dt

)
+

1

2

(
(µ(0))

σ
(0)
1

)2

− ε

T

≤ log(x) +
1

2
E
(∫ T

0
r2
t dt

)
+

1

2
+

1

2

(
(µ(0))

σ
(0)
1

)2

− ε

T

Thus,

lim inf
T→∞

e−εTE
(

1

ε
log(X

∗
T )

)
≤ 0.

Finally, we conclude that

lim inf
T→∞

e−εTE
(
v0(X

∗
T , rT )

)
= lim inf

T→∞
e−εTE

(
1

ε
log(X

∗
t ) + W̃ (rt)

)
≤ 0,

which yields

v0(x, r) ≤ E
(∫ ∞

0
e−εt log(c

(0)∗
t X

∗
t ) dt

)
.

Combined with part (1) we have

v0(x, r) = V 0(x, r).

�



CHAPTER 4

Conclusions

The aim of this thesis was to investigate how an investor has to invest and consume optimally in

a �nancial market in which the stock price is threatened by market crashes, which are modeled

as uncertain events with an unknown probability distribution of crash times and crash sizes.

The investor takes a cautious attitude towards this uncertainty which leads to the worst-case

optimization approach. The main contribution to existing research in the �eld of worst-case

portfolio optimization is the extension of the �nancial market model by a stochastic interest rate

risk. In previous work in this �eld a constant interest rate is used for the savings account. For

both the �nite time horizon and the in�nite time horizon model, we considered di�erent short

rate models: The Vasicek model, the a�ne short rate model and a generalized Vasicek model.

In Chapter 2, the investor is acting on a �nite time interval and he maximizes his expected

utility of terminal wealth in the worst-case crash scenario. We determined the solution of the

corresponding worst-case optimization problem

sup
k∈Π(0,x0,r0)

inf
M∈N (0,N)

E
(
U(Xk,M

T )
)

for both utility functions U(x) = 1
γx

γ , γ 6= 0, γ < 1, and U(x) = log(x). Under the Vasicek short

rate model, we applied two methods, the variational inequality approach and the martingale

approach and obtained explicit optimal strategies. After the N -th market crash it is optimal to

invest a fraction of wealth

k
(0)∗
t =

µ

(1− γ)σ2
1

+
ρσ2β(t)

(1− γ)σ1

in the stock, whereas, if n ≤ N crashes still can occur, then it is optimal to invest the fraction

k
(n)∗
t = k̂

(n)
t ∧ k

(0)∗
t

in the stock, where k̂(n) is a uniquely determined solution of a nonlinear non-autonomous ODE.

If the investor has a non-log HARA utility function and if the short rate and the stock are

correlated, the worst-case optimal strategies do not depend on the short rate rt(ω) itself, but on

the speed of reversion a and the volatility σ2 which determine the Vasicek process. Numerical

experiments have shown that an investor with higher risk aversion may invest more in the stock

than an investor with lower risk aversion if, for example, the parameter a is su�ciently small.

This is due to the fact that there exists no riskless asset in the �nancial market model. If the

interest rate becomes too risky, e.g. through a low speed of reversion, the risk averse investor

invests more in the stock. This behaviour of course di�ers from the results from previous work

with a constant interest rate, where the savings account is a riskless asset. If the investor's risk

preferences are represented by a logarithmic utility function or if the short rate and the stock

price are uncorrelated, then the optimal strategies are equal to the optimal strategies obtained
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for a constant interest rate. Thus, the strategies do not depend on the short rate, neither through

rt(ω) itself nor through short rate parameters.

In Chapter 3, we determined an investment and consumption strategy, which is optimal for the

in�nite horizon worst-case optimization problem

sup
(k,c)∈Π(x0,r0)

inf
(τ,l)∈C′

E
(∫ ∞

0
e−εt log(ctXt) dt

)
,

where market parameters of the stock price equation may change at the crash time. For both the

generalized Vasicek model and the a�ne short rate model, it is optimal to consume at a rate ε

before and after the market crash and it is optimal to invest at the constant rate k(1)∗ = κ∧ kM

before the crash and k(0)∗ = µ(0)(σ
(0)
1 )−2 after the crash. Due to the logarithmic utility function,

the worst-case optimal strategies do not depend on the short rate itself or on the parameters which

determine the short rate model, and they are equal to the optimal strategies from previous work

with a constant interest rate. Thus, the logarithmic utility function eliminates the stochastic

interest rate risk and it allows to separate the investment decision from the consumption decision

such that it is optimal to consume at a rate ε over the whole time interval.

Based on the research in this thesis, we mention two examples for further research in the �eld of

worst-case optimization under stochastic interest rate risk. First, one could consider the �nite

time horizon non-log HARA utility model from Chapter 2 and replace the Vasicek model by an

a�ne short rate model. For the logarithmic utility function, this was already done in Section

2.5. For the non-log HARA utility case one could apply the martingale approach. The �rst step

of the method requires to solve the post-crash optimization problem. If the supremum in the

corresponding HJB equation is attained, then it reduces to a nonlinear second order PDE in

(t, x, r). If the stock price and the a�ne short rate are uncorrelated, then one obtains a classical

solution v0 ∈ C1,2,2([0, T ]×R+×R). Otherwise, if they are correlated, it needs, from the present

point of view, further intensive research to show existence of a classical solution. Possibly one

can only show existence of a generalized solution, for example a viscosity solution, which is not

necessarily in C1,2,2. In that case, v0(t, x, r) would not be smooth enough to apply Ito's formula

in the proof of the indi�erence condition.

A second direction is to consider the in�nite time horizon model with a non-log HARA utility

function and with a Vasicek short rate model. As above, one �rst has to solve a classical stochastic

control problem, which is the �rst step of the martingale approach. The resulting HJB equation

is again a nonlinear PDE in (x, r) which needs an existence result of either a classical solution or

a generalized solution. The latter case prohibits the application of Ito's formula in subsequent

steps of the martingale approach.



APPENDIX A

Basic Essentials

A.1. Stochastic interest rate models

Proposition A.1.1. Let a, rM , σ2 be given positive constants and let w̃ = {w̃t}t∈[0,T ] be a Wiener

process on the probability space (Ω,F ,P). Then the uniquely determined solution rs of the SDE:

drs = a(rM − rs) ds+ σ2 dw̃s, s ≥ t

rt = r > 0,

is given by

rs = e−a(s−t)rt + rM

(
1− e−a(s−t)

)
+ σ2

∫ s

t
e−a(s−u) dw̃u.

Moreover, we have the following properties:

i)

E (rs) = r0e
−as + rM (1− e−as),

ii) ∫ T

t
rs ds =

rt
a

(1− e−a(T−t)) + rM

(
(T − t)− 1− e−a(T−t)

a

)

+ σ2

∫ T

t

1− e−a(T−u)

a
dw̃u,

iii)

Et,r
(∫ T

t
rs ds

)
=

1

a

(
r − rM + e−a(T−t)(rM − r)

)
+ rM (T − t).

where Et,r denotes the conditional expectation given that rt = r.

Proof. The solution given above is the uniquely determined solution due to Lipschitz con-

tinuity of the coe�cients of the SDE. Assertion i) immediately follows. The second assertion

follows by the following calculations∫ T

t
rs ds =

∫ T

t
rte
−a(s−t) ds+

∫ T

t
rM (1− e−a(s−t)) ds+ σ2

∫ T

t

∫ s

t
e−a(s−u) dw̃u ds

=

∫ T

t
rte
−a(s−t) ds+

∫ T

t
rM (1− e−a(s−t)) ds+ σ2

∫ T

t

∫ T

u
e−a(s−u) ds dw̃u

=
rt
a

(1− e−a(T−t)) + rM

(
(T − t)− 1− e−a(T−t)

a

)

+ σ2

∫ T

t

1− e−a(T−u)

a
dw̃u

112



A.1. STOCHASTIC INTEREST RATE MODELS 113

The second equality holds by Fubini's Theorem for stochastic integrals. The third assertion

follows by the fact that the expectation of the stochastic integral vanishes. �

Proposition A.1.2. Let w̃ = {w̃t}t≥0 be a Wiener process on the probability space (Ω,F ,P) and

let λ1, λ2, ξ1, ξ2 be constants, such that

ξ1λ2 − λ1ξ2 >
ξ2

1

2
. (149)

Then, the SDE

drs = (λ1rs + λ2) ds+
√
ξ1rs + ξ2 dw̃t, s ≥ t

rt = r > 0,

has a uniquely determined solution in D = {r ∈ R : ξ1r + ξ2 > 0} and for this solution it holds

ξ1rt + ξ2 > 0 for all t almost surely. Moreover

Et,r (rs) = reλ1(s−t) +
λ2

λ1

(
eλ1(s−t) − 1

)
,

Et,r
(
r2
s

)
= r2e2λ1(s−t) + e2λ1(s−t)

∫ s

t
e−2λ1(u−t) ((2λ2 + ξ1)E(ru) + ξ2) du.

Proof. For ξ1 = 0 the assertion follows by similar arguments as in Proposition (A.1.1).

Thus, throughout the proof we assume that ξ1 6= 0. Here, we apply the main theorem from [13,

Chp.4]. Therein, the assertion holds if for all r with ξ1r+ ξ2 = 0 it holds ξ1(λ1r+ λ2) >
ξ21
2 . By

assumption, we have for ξ1 6= 0:

ξ1

(
−λ1

ξ2

ξ1
+ λ2

)
>
ξ2

1

2
.

By the theorem in [13, Chp.4], we obtain that there is a uniquely determined solution of SDE

(3) and ξ1rt + ξ2 > 0 for all t almost surely.

Since

rs = r +

∫ s

t
(λ1ru + λ2) du+

∫ s

t

√
ξ1rs + ξ2 dw̃u,

we calculate the �rst and the second moment by the following arguments. Assuming that

Et,r(rs) < ∞ for all s ≥ t, we obtain that the expectation of the stochastic integral vanishes.

Therefore, by taking the expectation and by de�ning m1(s) := Et,r(rs), we obtain

ṁ1(s) = λ1m1(s) + λ2, m1(t) = r.

This yields

m1(s) = reλ1(s−t) +
λ2

λ1

(
eλ1(s−t) − 1

)
.

By applying Ito's formula, we obtain

r2
s = r2 +

∫ s

t
[(λ1ru + λ2)2ru + ξ1ru + ξ2] du+

∫ s

t
2ru
√
ξ1ru + ξ2 dw̃u.

Now, we de�ne m2(s) := Et,r(r2
s) and obtain

ṁ2(s) = 2λ1m2(s) + (2λ2 + ξ1)m1(s) + ξ2, m2(t) = r2,
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and therefore,

m2(s) = r2e2λ1(s−t) + e2λ1(s−t)
∫ s

t
e−2λ1(u−t)((2λ2 + ξ1)m1(u) + ξ2) du.

�

Lemma A.1.3 (Cf. [39, Lemma 3.1]). Let w̃ be a Wiener process and assume that σ2 > 0 and

f(r) ∈ C1(R) with c2 ≤ fr(r) ≤ c1, where c1, c2 are constants. Then, the SDE

drt = f(rt) dt+ σ2 dw̃t, r0 = r0,

possesses a unique solution. In addition, for any ε̃ > 0 and any integer m > 0, it holds

E|rt|2m ≤ Λ1, if c1≤ 0,

E|rt|2m ≤ Λ2e
2m(c1+ε̃)t, if c1> 0,

where Λ1,Λ2 are positive constants which are independent of t.

A.2. The concept of an invariant set

We introduce the concept of invariance in the sense of qualitative theory of ODE's. Here, we

only give results which we use in this thesis. For the whole theory of invariance we refer to the

literature [42, Chapter 7]. The following de�nitions and theorems can be found in [42, Chp.

7.1-7.3]. Therein the authors consider the following initial value problem for an open set G ⊂ Rn

and a continuous function f : R×G→ Rn:

ẋ = f(t, x), x(t0) = x0, (150)

where x0 ∈ G and t0 ∈ R. Let x(t; t0, x0) be the unique solution of problem (150) on the maximal

interval of existence J+(t0, x0) := [t0, t+(t0, x0)).

Definition A.2.1 (Cf. [42, Def.7.1.1.]). Let D ⊂ G. D is called positively invariant for (150),

if x(t; t0, x0) ∈ D for all t ∈ J+(t0, x0) provided that x0 ∈ D. Accordingly, D is called negatively

invariant, if the solution is uniquely determined to the left. D is called invariant, if D is both

positive and negative invariant.

Moreover, we need the following de�nition:

Definition A.2.2 (Cf. [42, Def.7.1.2.]). Let D ⊂ Rn be closed and x ∈ ∂D. A vector y ∈ Rn,
y 6= 0, is called outer normal to the set D in x, if B|y|2(x+ y)∩D = ∅. The set of outer normals
in x is denoted by ND(x). (B|y|2(x+ y) denotes the open ball with radius |y|2 and centre x+ y.)

In this, these we only consider invariance in the context of convex and closed sets. We repeatedly

apply the following theorem:

Theorem A.2.3. Let D ⊂ G be closed and convex. Then,

(1) D is positively invariant for (150),

(2) (f(t, x)|y) ≤ 0 for all t ∈ R, x ∈ ∂D, y ∈ ND(x)

are equivalent.
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A.3. The subsolution-supersolution method

For an overview of the theory of nonlinear parabolic and elliptic equations and the subsolution-

supersolution method we refer to [40]. In this thesis, we apply a result from [15], where a second

order di�erential equation of the form

Wrr = H̄(r,W,Wr), r ∈ R, (151)

is considered.

Definition A.3.1 (Subsolution and supersolution, cf. [15, Def.3.1]). A function W is said to be

a subsolution of (151) on the whole real line if

W rr ≥ H̄(r,W,W r).

W is a supersolution if

W rr ≤ H̄(r,W,W r).

In addition, (W,W ) is said to be an ordered pair of subsolution/supersolution of (151) if they

also satisfy

W (r) ≤W (r), ∀r ∈ R.

Theorem A.3.2 (cf. [15, Thm.3.8]). Suppose H(r, w, p) is strictly increasing with respect to w

and suppose that for each m ∈ N there exist constants C1(m) > 0 and C2(m) ≥ 0 such that

|H̄(r, w, p)| ≤ C1(m)(p2 + C2(m)),

for all r ∈ Im := [−m,m] and

|w| ≤ 3 max{ sup
r∈Im

|W (r)|, sup
r∈Im

|W (r)|},

where (W,W ) is an ordered pair of subsolution/supersolution of (151) on R. Then, (151) has a
solution W (r) such that

W (r) ≤W (r) ≤W (r).

A.4. Results from stochastic analysis

Theorem A.4.1 (Feynman-Kac Formula, see e.g. [46, Chp.7, Thm.4.1]). Let b : [0, T ]×Rn → Rn,
σ : [0, T ] × Rn → Rn×m, c, h : [0, T ] × Rn → R, and g : R → R be uniformly continuous

maps. Moreover, assume that c is bounded and that there exists a constant L > 0 such that for

ϕ(t, r) = b(t, r), σ(t, r), h(t, r), g(t, r):

|ϕ(t, r)− ϕ(t, r′)| ≤ L(r − r′), ∀t ∈ [0, T ], r, r′ ∈ R,

|ϕ(t, 0)| ≤ L, ∀t ∈ [0, T ].

Then, the PDE

wt +
1

2
tr(σ(t, r)σ(t, r)Twrr) + 〈b(t, r), wr〉+ c(t, r)w + h(t, r) = 0,

(t, r) ∈ [0, T ]× Rn, (152)

w|t=T = g(r), r ∈ R,
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admits a unique viscosity solution w and it has the following representation

w(t, r) = E
(∫ T

t
h(s, rs)e

−
∫ s
t c(µ,rµ) dµ ds+ g(rT )e−

∫ T
t c(µ,rµ) dµ

)
, (153)

(t, r) ∈ [0, T ]× Rn,

where rs is the (unique) strong solution of the following SDE:

drs = b(s, rs) ds+ σ(s, rs)dWs, s ∈ [t, T ],

rt = r,

with (t, r) ∈ [0, T ) × Rn and W an m- dimensional standard Brownian motion. In addition, if

(152) admits a classical solution, then (153) gives that classical solution.

For the de�nition of the notion of viscosity solution and for the proof of the Theorem above we

refer to the literature, e.g. [46].

Definition A.4.2 (Cf. [41]). A martingale Y is said to be closed by a random variable Y∞ if

E(|Y∞|) <∞ and Yt = E (Y∞|Ft), 0 ≤ t <∞.

Definition A.4.3 (Cf. [41]). A supermartingale Y is closed by a random variable Y∞ if E(|Y∞|) <
∞ and Yt ≥ E (Y∞|Ft) for each t ≥ 0.

Definition A.4.4 (Uniformly Integrability). A process Y = {Yt}t∈I , is called uniformly inte-

grable if E
(
|Yt|1|Yt|>n

)
converges to zero as n→∞ uniformly in t, that is,

lim
n→∞

sup
t

E
(
|Yt|1|Yt|>n

)
= 0,

where the supremum is over [0, T ] in the case of a �nite time interval I = [0, T ], and over [0,∞)

if the process is considered on 0 ≤ t <∞.

Theorem A.4.5 (Cf. [41, Thm. I.12]). Let Y be a right continuous martingale which is uniformly

integrable. Then Y = limt→∞ Yt a.s. exists, E
(
|Y |
)
<∞, and Y closes Y as a martingale.

Theorem A.4.6 (Doob's Optional Sampling Theorem, cf. [41, Thm. I.16]). Let Y be a right

continuous martingale (respectively a supermartingale), which is closed by a random variable Y∞.

Let S and T be two stopping times such that S ≤ T a.s.. Then YS and YT are integrable and

YS = (≥)E (YT |FS) , a.s.

Theorem A.4.7 ([41, Thm. I.17]). Let Y be a right continuous supermartingale (resp. martin-

gale), and S and T be two bounded stopping times such that S ≤ T a.s. Then YS and YT are

integrable and

YS ≥ E (YT |FS) , a.s. (resp. =).

A.5. Technical results for post-crash optimization problems

In this subsection we give the setting and a veri�cation theorem of [24] which is applied for our

post-crash optimization problems. Throughout this section we look at a state process given by

a general controlled SDE of the form

dYt = Λ(t, Yt, kt) dt+ Σ(t, Yt, kt) dWt, (154)
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with initial value of Yt0 = y0 and a d-dimensional control process k = {kt}t∈[t0,T ], where [t0, T ]

is the relevant time interval. A control k is a progressively measurable process with kt ∈ U ⊂ Rd

for all t ∈ [t0, T ]. Let Q0 := [t0, T )× Rn, n ∈ N. Then, the coe�cient functions

Λ : Q0 × U → Rn,

Σ : Q0 × U → R(n,m),

are assumed to be continuous and for all v ∈ U , let Λ(·, ·, v) and Σ(·, ·, v) be in C(Q0). Moreover,

a control k is called admissible control if

(1) for all y0 ∈ Rn the corresponding controlled SDE (154) with initial condition Yt0 = y0

admits a pathwise unique solution {Y k
t }t∈[t0,T ],

(2) for all q ∈ N the condition

E
(∫ T

t0

|ks|q ds
)
<∞ (155)

is satis�ed,

(3) the corresponding state process Y k satis�es

Et0,y0
(

sup
t∈[t0,T ]

|Y k
t |q
)
<∞.

The set of admissible controls is denoted by A(t0, y0).

In our post-crash optimization problems (see for example (17)), we have to handle a controlled

SDE where the coe�cients does not satisfy the usual Lipschitz and growth conditions. Thus,

we cannot apply standard existence and uniqueness theorems. Nevertheless, it is a linear SDE

with a stochastic coe�cient, where we can apply the following Corollary, which was proved in

[24, Corollary 3.1]. Here, we state the version for bounded admissible controls k.

Corollary A.5.1 (Variation of constants by [24]). Let (t0, y0) ∈ [0, T ) × Rn, and let A
(j)
1 ,

j = 1, . . . , d, A2, B
(i,j)
1 , i = 1, . . . ,m, j = 1, . . . , d and B

(i)
2 , i = 1, . . . ,m be progressively

measurable real-valued processes satisfying the integrability conditions∫ T

t0

 d∑
j=1

|A(j)
1,s|+ |A2,s|

 ds <∞, P− a.s.

∫ T

t0

 m∑
i=1

d∑
j=1

(B
(i,j)
1,s )2 +

m∑
i=1

(B
(i)
2,s)

2

 ds <∞, P− a.s.

Further, let k be a control with property (155). Then the linear controlled SDE

dY k
t = Y k

t

[
(A′1,tkt +A2,t) dt+ (B1,tkt +B2,t)

′dWt

]
admits the uniquely determined solution

Y k
t = y0 exp

(∫ t

t0

(
A′1,sks +A2,s −

1

2
|B1,sks +B2,s|2

)
ds

+

∫ t

t0

(B1,sks +B2,s)
′ dWs

)
.
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In order to formulate the veri�cation theorem by Korn and Kraft [24], we have to introduce the

setting of a more general stochastic optimal control problem: Let O be an open subset of Rn.
In the case of O 6= Rn, they assume that the boundary ∂O is a compact (n − 1) dimensional

C3-manifold. Moreover, let Q := [t0, T )×O and let

η := inf{t ∈ [t0, T ] : (t, Yt) /∈ Q}. (156)

Let L and Ψ be continuous, real valued functions satisfying the polynomial growth conditions

|L(t, y, v)| ≤ C(1 + |y|q + |v|q), (157)

|Ψ(t, y)| ≤ C(1 + |y|q), (158)

on Q × U and Q, for some constants q ∈ N and C > 0. Then, the utility functional for the

general stochastic optimal control problem, is de�ned by

J(t0, y0; k) := Et0,y0
(∫ η

t0

L(s, Y k
s , ks) ds+ Ψ(η, Y k

η )

)
,

which will be maximized by choosing an admissible control k∗. The value function is then de�ned

by

V (t, y) := sup
k∈A(t,y)

J(t, y; k), (t, y) ∈ Q.

With Σ∗ := ΣΣ′, the general di�erential operator is de�ned by

AkG(t, y) := Gt(t, y) +
1

2

n∑
i,j=1

Σ∗i,j(t, y, k)Gyiyj (t, y) +
n∑
i=1

Λi(t, y, k)Gyi(t, y).

Using this general setting, we now formulate the veri�cation theorem, which we applied for our

special setting (see e.g. Section 2.1).

Theorem A.5.2 (Veri�cation Theorem by [24]). Consider a linear controlled SDE with coe�-

cients satisfying the assumptions of Corollary A.5.1. Assume, further, that the functions L and

Ψ satisfy the growth conditions (157) and (158). Let G ∈ C1,2(Q) ∩ C(Q) be a solution of the

following HJB equation:

sup
k∈U

{
AkG(t, y) + L(t, y)

}
= 0, (t, y) ∈ Q, (159)

G(t, y) = Ψ(t, y), (t, y) ∈ ([t0, T )× ∂O) ∪ ({T} × O).

Assume that for all (t, y) ∈ Q and all admissible controls k ∈ A(t, y) there exists a q > 0, such

that

E

(
sup

s∈[t0,T ]
|G(s, Ys)|q

)
<∞.

Then, it holds:

i) G(t, y) ≥ J(t, y; k) for all (t, y) ∈ Q and k ∈ A(t, y).

ii) If for (t, y) ∈ Q there exists a control k∗ ∈ A(t, y) with

k∗s ∈ arg max
v∈U

(
AvG(s, Y k∗

s ) + L(s, Y k∗
s , v)

)
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for all s ∈ [t, η], then G(t, y) = V (t, y) = J(t, y; k∗), that means k∗ is an optimal control and

G is equal to the value function V .

For L ≡ 0, Kraft [31] has proven a variant of the above Theorem. In order to formulate this

veri�cation result, we need the de�nition of a weakly admissible control:

Given a candidate G for the value function, a control k is called weakly admissible if it has the

following properties (see [31, p.18]):

i) k is progressively measurable,

ii) for all initial conditions y0 > 0 the corresponding state process Y k with Yt0 = y0 has a

pathwise unique solution {Y k
t }t∈[t0,T ],

iii) E
(∫ T

t0
|ks|4 ds

)
<∞,

iv) the utility functional J(t0, y0; k) is well-de�ned.

v) {G(θp, Y
k
θp

)}p is uniformly integrable, where for p ∈ N: θp := min{θ, ηp} and ηp denotes the
�rst exit time of (s, Ys) from Qp, where

Qp : = [t0, T − p−1)×Op,

Op : = O ∩ {x ∈ Rn : |x| < p, dist(x, ∂O) > p−1}.

The set of weakly admissible controls is denoted by Ã(t0, y0). Note that the increasing sequence

of bounded sets Op is used to approximate the set O by letting p → ∞. Moreover, for p → ∞
one has ηp → T P-a.s. For further details, we refer to [31, p.11�]. Now, we can formulate a

variant of the above Theorem.

Corollary A.5.3 (Veri�cation Theorem by [31]). Assume that L ≡ 0 and consider a linear

SDE whose coe�cients meet

E

∫ T

t0

 m∑
i=1

(B
(i)
2,s)

2 +
m∑
i=1

d∑
j=1

(B
(i,j)
1,s )4

 ds

 <∞,

and the requirements of Corollary A.5.1. Besides, assume that there exists a function G ∈
C1,2(Q) ∩ C(Q) that solves the HJB equation (159). Further, suppose that for (t, y) ∈ Q there

exists a weakly admissible control k∗ ∈ Ã(t, y) with

k∗s ∈ arg max
v∈U

(
AvG(s, Y k∗

s )
)
,

for all s ∈ [t, η]. Then, the following results are valid:

i) G(t, y) ≥ J(t, y; k) for all (t, y) ∈ Q and k ∈ Ã(t, y).

ii) Besides, k∗ is an optimal control among all weak admissible controls and G corresponds to

the value function of the optimization problem over all weak admissible controls.
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