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1 Introduction

One of the most important mandates for a financial company is computing and manag-
ing risk. However, as outlined, for example, by Christoffersen (2003) and McNeil et al.
(2005), portfolio theory postulates that, based on the investor’s appetite for risk, risk
associated with a certain asset can be eliminated by investing in a diversified portfolio;
therefore, this kind of risk taking will not yield excess-returns. Investors rather should
buy a combination of risk-free asset and market portfolio. Consequently, companies
need not be concerned about risk management, because the investor chooses the level
of risk. This naturally raises the question whether companies should be interested in
managing risk at all?

Indeed, in perfect markets1, risk management becomes irrelevant (cf. Fite and Pflei-
derer 1995). However, in reality, perfect markets do not exist and companies have to pay
attention to risk management. In this context, the most important factors are bankruptcy
costs, taxes, and cost of capital: A bankruptcy includes several costs such as those for
lawyers or the closure of the company. Even a rumor of possible bankruptcy can di-
minish business prospects. Tax systems allow losses to be carried forward to offset
future earnings. If we reduce the volatility of future cashflows, this will lower the fu-
ture tax payment’s net present value – and the present value of the company increases.
Risk is also introduced when there is asymmetrical information between companies
and investors, in which case raising capital may be more expensive. Typically, this is
the case after a company incurs losses and urgently needs new money. In summary,
risk management is necessary because it can lower the probability of bankruptcy, re-
duce tax payments, or prevent liquidity gaps. If we consequently agree in managing
risk, we need to assess risk first. Accordingly, this thesis is focused on the measurement
of risk.

The remainder of the introduction is structured as follows. The next section provides
a brief introduction to risk and an approach to measure risk: value at risk (VaR). Different
ways of computing VaR are examined with respect to the stylized facts of financial
time series. This section then discusses multivariate extensions as well as drawbacks
of the VaR. The second section outlines the objectives of this thesis, which includes

1A perfect market implies equal trading conditions for every market participant, no transaction costs, and
no information asymmetry.
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1 Introduction

the identification of academic voids. The final section points out the links between the
three principal self-contained chapters, summarizes each chapter, and concludes with
key findings of this thesis and suggestions for further research.

1.1 Measuring Risk with Value at Risk

Subsection 1.1.1 outlines the different kinds of risk discussed in the literature. Subsec-
tion 1.1.2 introduces the risk measure VaR. In Subsection 1.1.3, stylized facts of financial
time series are explained. Based on these, three general approaches to compute VaR are
presented in Subsection 1.1.4. Subsection 1.1.5 is focused on a portfolio point-of-view
with respect to VaR. Drawbacks and alternatives to the VaR concept are discussed in
Subsection 1.1.6.

1.1.1 Types of Risk

Economic literature discriminates between four main kinds of risk (cf. Jorion 2007).
Market risk is concerned with possible price movements in financial markets that cause
losses in the participant’s portfolio. Depending on the underlying risk factor, market
risk can be subdivided further into several categories including equity, interest, and
commodity risk (cf. Dowd 2005). This thesis is largely concerned with market risk be-
cause its management can be regarded as a decisive factor for a financial institution’s
success (cf. Cremers et al. 2012). Liquidity risk occurs when financial items cannot be
sold without allowing a discount for the counterpart. Credit risk includes a too-late re-
demption of debt, a partial or full default or a deterioration of the rating. Operational risk
involves “the risk of direct or indirect loss resulting from inadequate or failed internal
processes, people and systems or from external events.” (Basel Committee 2001, p. 2).2

Financial companies have to provide equity in order to shoulder unexpected losses re-
sulting from those risks. These regulatory requirements are fixed in Basel II/III (banks)
and Solvency II (insurances), respectively. For this purpose, obviously, the amount of
risk has to be measured.

1.1.2 Value at Risk

Because of its easy computation, a self-evident measure of risk is the variance. We
find its application in seminal work, for example, portfolio theory (Markowitz 1952) or
option pricing (Black and Scholes 1973). The use of variance is feasible as long as we
can apply Gaussian distribution because the latter is completely described by the first
and second moment, that is, mean and variance. As we will see later, this point of view
becomes very limited because, in the case of financial returns, models incorporating

2In addition, legal risks include, for example, unexpected changes in law.
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1.1 Measuring Risk with Value at Risk

higher moments (skewness and kurtosis) are more appropriate. Furthermore, whereas
the variance considers both positive and negative deviations, we are mainly interested
in the latter in terms of risk management (cf. Wagner 2000).

The main key figure used to measure (market) risk is the VaR. Assuming a certain
level of confidence 1−θ, according to Christoffersen (2003), the V aR(θ)t+1 of an asset is
defined as the number such that the probability that the asset’s next day return rt+1 will
be below−V aR(θ)t+1, is θ: Pr(rt+1 < −V aR(θ)t+1|Ωt) = θ, where Ωt is the information
set available in t. From a statistical point of view, the VaR simply corresponds to the
quantile of a distribution of returns (cf. McNeil et al. 2005). The VaR, in the broad
sense, gives the worst loss that will not be exceeded with a certain probability over a
fixed target horizon (cf. Jorion 2007). Alexander (2010), Dowd (2005), Holton (2003),
or especially, Jorion (2007), give a thorough treatment of the computational methods,
applications and drawbacks of VaR. Holton (2002) outlines that the use of VaR can be
traced back to 1922 when the NYSE asked their members for capital requirements. In
the 1980’s, financial institutions began to apply proprietary VaR measures. J.P. Morgan
and Reuters (1996) used VaR in a more professional way (RiskMetrics) and offered it as
a service to other companies.

Today, VaR is a widely accepted standard for calculating financial risk. The Basel
Committee on Banking Supervision adopted the VaR in their Basel regulations for
banks (cf. Basel Committee 2006, 2011). Furthermore, VaR can be used as a risk limit
for traders or managers because, in comparison to a stop-loss limit3, the advantage of
VaR limits is given by its prospective nature (cf. Holton 2003). In addition, VaR is a
welcome reporting tool for senior management and shareholders. This thesis discusses
applications of VaR in different financial markets.

1.1.3 Stylized Facts of Financial Time Series

The simplest way to calculate VaR is by using a Gaussian assumption for the return
distribution. Although this approach is very convenient – not least because of an easily
available extension to the multivariate case – it has serious drawbacks. Academic litera-
ture going back to Mandelbrot (1963) provides strong empirical evidence that Gaussian
distributions cannot capture appropriately the behavior of financial returns. This prob-
lem is magnified particularly when we are dealing with the tails of distributions such
as in a VaR computation.

The contradictoriness between Gaussian assumption and realized return distribution
is the consequence of the (empirically) observed stylized facts of financial time series (see
Cont (2001) for a complete list). Stylized facts are (statistical) properties of (financial)
time series, evidenced across a wide range of markets, time periods and instruments. In

3A stop-loss limit represents that amount of money that should not be exceeded by an asset’s or portfolio’s
loss.
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1 Introduction

accordance with Christoffersen (2003), we only discuss the most relevant stylized facts
of daily financial returns for which we have to account when computing VaR.

i. The unconditional distribution of financial returns is not Gaussian, because finan-
cial returns display heavy tails (sometimes referred to as fat tails or excess kurtosis).
This implies that extreme returns will occur more frequently than predicted by
Gaussian distribution. Furthermore, the empirical return distribution is much
more peaked around the mean and this shape is referred to as leptokurtic.

ii. Financial returns tend to be asymmetric or rather negatively skewed because of
extreme drops and a lack of equally large positive movements.

iii. There is almost no autocorrelation in financial returns, thus we cannot predict
future returns from their own past.

iv. The variance of financial returns shows positive correlation with its own lagged
values. This appears as volatility clusters in figures showing the returns. Even after
the standardization of returns by a time-varying measure of volatility, returns still
display heavy tails.

v. Correlation is also time-varying. In periods of crisis, correlation between assets
tends to be greater compared to regular periods.

1.1.4 Approaches to Calculate VaR

In terms of risk management, we should apply a VaR calculation method that accounts
for the stylized facts if we want to receive reliable values. There exists a great body
of literature dealing with comparisons of different VaR calculation techniques (cf., e.g.,
Abad and Benito 2013; Rachev et al. 2010; Marinelli et al. 2007; Kuester et al. 2006;
Pérignon and Smith 2008). We can break down the approaches to calculate VaR into
three categories.

The first option is to use an analytical approach. Here, a model is required that re-
produces the autoregressive properties of the time series. The most simple and viable
technique is an exponentially weighted moving average (EWMA). An EWMA applies
weighting factors to each element of a time series while the weighting factors decrease
exponentially as we move back in time. This idea is adopted as a model for the vari-
ance process by J.P. Morgan and Reuters (1996) and included in a set of risk measure-
ment methods (RiskMetrics). In this case, tomorrow’s variance is the sum of today’s
variance multiplied by λ and today’s squared return multiplied by 1 − λ. J.P. Morgan
and Reuters (1996) conduct a large study to find the best choice of the decay factor λ.
They compare the performance of different decay factors on the basis of the root mean
square error and find that choosing λ = 0.94 leads to the most accurate volatility fore-
cast. However, because volatility shows to have a long-run average, which is ignored

4



1.1 Measuring Risk with Value at Risk

by the EWMA, a broadly accepted and applied way is to model the variance with a
GARCH model (Bollerslev 1986). In contrast to the EWMA, GARCH models include
an innovation process that can be modeled with a distribution exhibiting skewness
and kurtosis.4 Referring to this, Bollerslev (1987) is the first to relax the assumption
of conditional normality and instead assumes that the standardized innovation pro-
cess follows a standardized Student’s t-distribution. Further applications can be found,
for example, in Forsberg and Bollerslev (2002), who introduce a GARCH process with
normal inverse Gaussian innovations, or in Kim et al. (2010), who apply the tempered
stable distribution. In general, parameter estimation is done by applying maximum
likelihood estimation (MLE). Alternatively, estimation can be achieved in two steps by
conducting a quasi MLE (QMLE). In this case, autocorrelation is removed first from
the time series and a distribution under consideration is used to fit the standardized
residuals. The most prominent contribution to this method is given by McNeil and
Frey (2000), who focus only on the tails (rather than the whole distribution) because
this is the important region in a VaR computation. Therefore, the authors propose to
fix a threshold u and describe all standardized residual losses exceeding u (they belong
to the distribution’s tail) with a generalized Pareto distribution. The best choice for u is
still in question (see Scarrott and MacDonald (2012) for a survey), therefore, we follow
the rule of thumb of DuMouchel (1983) and choose u such that 10% of the whole sam-
ple belong to the tail. However, scientists face the problem of consistency when using
QMLE (cf. Ling and McAleer 2003; McAleer et al. 2007; Shephard 1996).

The second approach to calculating VaR merges simulation techniques. A Monte
Carlo simulation (MCS) is based on random numbers and uses, for example, GARCH-
type models to produce a large number N of hypothetical returns. The VaR is simply
the θ · N smallest value of the ordered returns. A thorough introduction to MCS with
financial applications can be found in Glasserman (2004). The historical simulation
(HS) is based solely on the empirical distribution of the real returns generated up to
the actual date. Comparable with the MCS, given a number of observations N , the
θ ·N smallest value of the ordered returns represents the VaR. In contrast to MCS and
the analytical approach, no assumption about the underlying distribution has to be
stated. However, as argued, for example, in Pritsker (2006), a standard HS assigns an
equal weight of probability to each return. This implicitly assumes that the historical
returns are iid, which is unfeasible, because the volatility level of assets tends to change
over time (see stylized fact (iv)). As a hybrid approach, the powerful filtered historical
simulation (FHS) (cf. Hull and White 1998; Barone-Adesi et al. 1999) overcomes this
drawback and combines both GARCH framework and HS to account for changes in

4In the last several decades, a large number of GARCH based models have been put forward. Bollerslev
(2009) provides a glossary for different GARCH models. A very general overview of various classes
of volatility models can be found, for example, in Andersen et al. (2006). A detailed description of the
GARCH model and two popular extensions is given in Section 3.2.
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1 Introduction

the volatility level. Kuester et al. (2006), for example, show that FHSs are good models
for VaR calculation. In contrast to the MCS, the number of returns N is limited in case
of the (F)HS. When conducting VaR applications subsampling procedures are required.
No ultimate solution concerning the optimal length of the subsample (in some applica-
tions also referred to as the window length) exists. As outlined by Christoffersen (2003),
recommendations vary between 250 days (that corresponds to one year) and 1000 days
(4 years). Kuester et al. (2006) also note that for smaller sample sizes, calculating VaR
should become more challenging. However, even shorter and longer time periods are
of interest. Hendricks (1996), for example, computes VaR using the HS as well as a
parametric approach for window lengths between 50 and 1250 days. He finds that for
greater subsamples the VaR becomes more stable.

The third approach is to ignore the original return series and instead model the quan-
tile (the VaR) directly in an autoregressive specification. Engle and Manganelli (2004)
introduce this approach as conditional autoregressive VaR (CaViaR), and although an
elegant approach, results are mixed. Kuester et al. (2006) also find that CaViaR mod-
els are substandard. In contrast, Lima and de Néri (2007) apply a quantile regression
with ARCH effect and find a superior performance compared to techniques requiring
distributional assumptions.

1.1.5 Portfolio Point-of-View

So far, we have ignored the fifth stylized fact – the time-varying correlation. When we
examine a portfolio of assets, they will show interdependencies between each other.
These interdependencies might be rather high (in times of crisis) or low (in normal
times). Thus, considering portfolio risk, practitioners might ask for a multivariate
framework to assess downside risk instead of a univariate one. We briefly look at three
alternatives to evaluate portfolio risk.

The first way is to assume a multivariate normal distribution. Although this method
is often used in practice because of its simplicity, the other stylized facts of financial
returns are ignored. A second, broadly accepted way to evaluate risk is through the
implementation of copula methods (a copula function builds a bridge between the
marginal probability distributions of random variables and their joint distribution (see
Cherubini et al. (2004) for applications of copula models in finance)). Applying Sklar
(1959) (see McNeil et al. (2005) for an interpretation), it is possible to split risk modeling
into two consecutive steps when using a copula: the modeling of the single risk itself
and the choice of a suitable dependency structure of the single risk (the copula). Keep-
ing this in mind, univariate modelling can be seen as a first step of modelling portfolio
risk. The third way to evaluate risk is by using a multivariate GARCH-type model. This
provides a time-varying structure for the variance, as in the univariate case, and allows
assets to have dynamic correlations. Bauwens et al. (2006), for example, give a survey
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1.1 Measuring Risk with Value at Risk

on multivariate GARCH models. The dynamic conditional correlation (DCC) model of
Engle (2002a) is probably the most popular multivariate model in academia because it
offers a reasonable trade-off between adequacy and obstacles in the estimation process
(cf. McNeil et al. 2005).

Although we find elaborate approaches to model dependency in returns, there is, as
yet, no unanimity whether this portfolio point of view is desirable, or whether a uni-
variate analysis of a simple aggregation of the associated assets returns is sufficient (cf.
Berkowitz and O’Brien 2002). The type of dependency structure that should be applied
remains questionable. Furthermore, in the case of a large portfolio, the performance of
the model may be substandard. However, building a multivariate model is generally
a second step in the process of modelling financial times series. Consider, for exam-
ple, the GARCH model – more than a decade passed between the publication of the
GARCH model and its multivariate expansion. That is, when we consider new areas of
research it is reasonable to first investigate single time series. This thesis attends to the
univariate case and leaves expansions for multivariate cases for future work.

1.1.6 Drawbacks and Alternatives

Indeed, the VaR concept is very easy to understand. However, Artzner (1999) points
out that VaR is not always a coherent risk measure, because it could lack in sub additiv-
ity. Sub additivity demands the risk measure of a portfolio of assets to be smaller than
the sum over the risk measures of every single asset. This implies that diversification
should reduce risk. Second, VaR gives no idea how bad it really could be. Correspond-
ingly, Taleb (2007, p. 161) advises “Don’t cross a river if it is four feet deep on average”.
Because VaR just gives a lower bound of a possible loss, no expectation formation in
terms of a concrete value of an expected loss is involved in this risk measure.

In a consultative document, the Basel Committee (2012) suggests that we consider
expected shortfall (ES) as an alternative to VaR to measure downside risk. ES, sometimes
termed expected tail loss, conditional VaR, or average VaR, is defined as the expected value
of the loss given that VaR is exceeded: ESt+1 = −Et[rt+1|rt+1 < −V aR], where Et[.]
means taking the expectation with all information available up to and including day t
(cf. Christoffersen 2003). In contrast to VaR, ES returns a more concrete assessment of
the real risk of an asset. Furthermore, it can be shown that ES is a coherent risk measure
in terms of sub additivity (cf. Artzner 1999). However, because of its conditionality, ES
is not as comprehensive as VaR, and far less common. Hence, this thesis focusses on
VaR.

7



1 Introduction

1.2 Objective of the Thesis

The objective of this thesis is to provide new insights on risk associated with financial
markets. Companies provide equity to shoulder unexpected losses arising from risks,
therefore, an accurate assessment of this risk is maybe the most important challenge in
risk management.

Because the sovereign debt crisis led to totally new challenges, a contemporary in-
vestigation of the European government bond market is essential. Although we know
many of the characteristics of risk stemming from, for example, stock markets, less is
known about risk arising from bond markets. The investigation of the latter could lead
to fundamental implications for interest rate modeling, fixed income portfolio manage-
ment, and monetary policy making. So far, risk management concerning bonds focuses
on key aspects such as duration and convexity5. The lack of knowledge is striking
considering the fact that bond markets exceed stock markets in terms of capitalization
(cf. Laopodis 2008). This present thesis attempts to close this knowledge gap and, by
elaborating a new approach, helps convey a better understanding of risk associated
with the European government bond market. As outlined in stylized fact (i) financial
returns show a non-Gaussian behavior. Therefore, we test the Gaussian assumption
first and determine if the distribution of European government bond returns exhibits
higher moments. Based on those findings, we assess distributions matching the charac-
teristics of European government bond returns more appropriately to compute the risk
in a VaR study. Then, we are able to give an answer to the question “What is the risk of
an investment in European government bonds?”.

The second market under consideration is the electricity forward market. Although
electricity itself belongs to the group of energy commodities, electricity forwards are
settled in cash and, therefore, can be treated as financial risk. This market has some very
special and interesting characteristics, such as the non-storable nature of the underly-
ing product or the lack of an analytical connection between spot and forward price.
Electricity forward markets are a relatively new field of research and the scarce existing
research is mainly based on synthetic forwards. In contrast, we want to examine the
risk of an investment in real electricity forwards, that is, we wish to calculate the risk
an investor actually faces when trading an electricity forward. The visual inspection of
electricity forward return time series suggests the use of an autoregressive framework
for both mean and variance. Again, we compute the risk associated with an investment
in electricity forwards with a VaR calculation.

Third, this thesis provides a new way of calculating VaR in a simple but comprehen-
sive way. Although we are mainly interested in a VaR that is high enough to shoul-
der unexpected losses, the VaR should still be as low as possible, thus minimizing the

5Duration is the sensitivity of the bond’s price with regard to the interest; convexity is the second relative
derivation of the bond’s price with regard to the interest.
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1.3 Outline of the Thesis

amount of capital that has to be allocated. The solution to this catch-22 has a tremen-
dous impact on the calculation of risk and, therefore, risk management: if a company is
able to achieve both goals simultaneously, it gains a competitive advantage, since it is
able to reallocate equity to underwrite further risks. There are many sophisticated ways
to assess financial risk, but none that is concerned with this particular issue. Moreover,
it is still challenging to calculate VaR in volatile periods as during the financial crises.
Therefore, the third objective of this thesis is to define a new model for computing risk
that considers both issues. This is achieved by combining three fields of research. The
new model (a) accounts for the stylized facts of financial time series, (b) includes the
evaluation of intraday information, and (c) uses method of moments estimation for the
parametrization of a suitable distribution. Data from the stock market is used for the
empirical study because this market provides dependable and easily available data.

1.3 Outline of the Thesis

The three principal chapters in this thesis show a high degree of connection. With
regard to contents, all three chapters assess risk in different financial markets. Further-
more, the chapters are similar in their way of proceeding. First, as outlined in Sub-
section 1.1.5, this thesis is concerned with the univariate case. Initially, each chapter
is based on a thorough analysis of the relevant time series. Beside the computation of
higher moments, this includes, for example, an examination of the Lilliefors test (Lil-
liefors 1967) and the Jarque-Bera test (Bera and Jarque 1987): these are two of the promi-
nent tests for assessing normality (cf. Cottin and Döhler 2009). In each case, the analysis
shows that normality has to be rejected and higher moments causing heavy tails are an
important feature of the respective markets. Referring to this stylized fact, we, secondly,
try to find distributions matching the characteristics of the unique markets. Third, the
chapters close with a VaR computation to calculate the respective risk. In this context,
a backtesting methodology as outlined by Christoffersen (2003) is conducted to assess
VaR violations concerning the correct frequency and independence. According to the
stylized facts of the financial time series and depending on the research available from
the literature, the chapters naturally differ in the modelling method.

Research on the bond market, to date, is relatively restricted. Therefore, the first chap-
ter of this thesis starts with an unconditional modelling of European government bond
returns. Subsequently, we concentrate on the first and second stylized facts (heavy
tails and skewness), while ignoring the fourth one, in particular, and test the appro-
priateness of three distributions fitted with the maximum likelihood method.6 We use
the most convincing distribution to calculate VaR with an (unconditional) analytical

6In Chapter 4, the normal inverse Gaussian is used to model a financial time series. We abstain from
applying this distribution here, because there exists no reliable MLE (cf. Karlis 2002).
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approach. The third chapter conducts analytical as well as simulation approaches to
calculate VaR for electricity forward returns. Concerning the modelling of electricity
forwards, the literature agrees in accounting for heavy tails and conditional volatility
modelling. However, contrary to the third stylized fact (no autocorrelation in the re-
turns), we find evidence for autocorrelation in the returns. In contrast to bond and
electricity markets, the amount of literature about risk in stock markets is overwhelm-
ing. We extend the fourth stylized fact by allowing higher order moments to have a
time varying property, too. Since these conditional higher moments are not a new issue
to finance literature, we use intraday data for computation to deliver erudite forecasts
for the recent moments and consequently present a new approach to calculate VaR. The
following subsections provide summaries of the three chapters; the final subsection
summarizes the key findings and presents directions for future research.

1.3.1 On the Distribution of Government Bond Returns: Evidence from
the EMU

In contrast to stock markets, academic research neglects a comprehensive analysis of
bond markets risk, which seems remarkable because bond markets exceed stock mar-
kets in terms of capitalization. In Chapter 2 “On the Distribution of Government Bond
Returns: Evidence from the EMU”, we attempt to remedy this situation by studying
the returns of eleven European government bonds with maturities of one, five and ten
years. Initially, we examine whether a Gaussian hypothesis is acceptable for European
government bond returns. We present evidence for an overwhelming rejection of the
Gaussian assumption because we find great excess kurtosis and considerable skewness
in the data. Therefore, we apply three alternative distributions, all accounting for ex-
cess kurtosis and partially for skewness, to the data and find that the stable distribution
offers the best overall fit. During the financial crisis, prices of government bonds began
to behave differently, raising the question whether structural breaks occur in the time
series. By applying a Quandt likelihood ratio test, we identify structural breaks in most
of the time series and re-estimate the parameters of the distributions under considera-
tion for the time after the structural break. This second analysis confirms our previous
findings and shows that the stable distribution still offers the best fit. Next, we use
our research results to point out implications for risk management. We compare VaR
based on the alternative distributions and find that the stable distribution returns the
best results in terms of backtesting.

1.3.2 Measuring Risk in Electricity Forward Returns

A broad area of research is focused on describing spot prices of electricity. In contrast,
research about the derivative electricity market is rather scarce. In Chapter 3 “Mea-
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suring Risk in Electricity Forward Returns”, we calculate and backtest different VaR
methodologies for electricity forward contracts. In theory, there exists a strong rela-
tionship between a forward and its underlying (asset). Interestingly, this is not the
case for electricity forwards, this means it is not possible to establish an analytical rela-
tionship as, for example, in the case of stocks. In contrast to electricity forward prices
we find a high degree of seasonality and massive, sudden jumps in the corresponding
underlying, that is, the electricity spot price. This study includes data of yearly and
quarterly forward returns. Our first analysis reveals that the Gaussian hypothesis has
to be rejected. Whereas there is only negligible skewness in the data, we determine a
great excess kurtosis. Moreover, we find evidence for autocorrelation in the returns and
squared returns and, therefore, propose a conditional modelling of both corresponding
moments. A simple momentum strategy is demonstrated as a consequence of auto-
correlation in the returns. Subsequently, we use an ARMA process and describe the
variance with three different GARCH-type models7. In terms of the Bayesian infor-
mation criterion, a simple GARCH(1,1)-t specification gives the best overall ex-post fit.
This raises the question whether an autoregressive modelling of the mean is necessary.
Next, we check the forecasting abilities of the best models in a VaR study. Our initial
results are not confirmed and autocorrelation in returns indeed becomes an issue. On
average, an ARMA(1,0)-GARCH(1,1)-t model included in an FHS provides the most
reliable framework in terms of backtesting.

1.3.3 A simple NIG-type Approach to calculate Value at Risk based on
Realized Moments

Surprisingly, although we find a great number of viable ways to compute VaR, prac-
titioners prefer rather simple methods such as the Gaussian assumption or HS. Pos-
sible reasons for this include lack of comprehension or the occurrence of model risk.
Chapter 3 “A simple NIG-type approach to calculate Value at Risk based on Realized
Moments”, therefore, presents a simple but comprehensive approach to calculate VaR
even in volatile periods. First, the realized variance concept based on intraday data is ex-
panded by realized skewness and kurtosis. We need accurate forecasts to calculate VaR
for the next day, therefore, we derive forecasts of variance, skewness, and kurtosis with
a simple EWMA. Next, we use these forecasts in a method of moments to parametrize
a distribution that exhibits skewness and excess kurtosis. For this purpose, the normal
inverse Gaussian (NIG) distribution is an obvious choice because it accounts for higher
order moments and offers an explicit way to compute parameters with the method of
moments. Once parameters are calculated, the quantile (the VaR) can be computed
simply by applying the inverse function. Using intraday data from the DAX, we com-

7To avoid redundancy, please note that a detailed description of those models is given in Chapter 3.2
instead of here.
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pare the results of this VaR methodology with other models based on realized variance
and daily data on different confidence levels in terms of backtesting. Keeping in mind
that VaR should be as high as necessary, but as low as possible, we identify a superior
performance of the presented method. Although this method provides good results,
some possible modifications as well as an expansion to a multivariate application are
discussed and left for future research.

1.3.4 Key Findings and Future Research

Chapter 2 shows that using a distribution accounting for heavy tails in government
bond returns is crucial when modelling those returns and calculating VaR. However,
our analysis is unconditional because we do not consider a time-varying variance. With
regard to stylized fact (iv), a further question is whether the application of models in-
corporating a time-varying variance helps to explain more accurately the risk of gov-
ernment bond returns. In Chapter 3, we find that an autoregressive framework for the
mean as well as for the variance provides a feasible setting for calculating the risk of
electricity forward returns in terms of VaR. Because electricity markets tend to show
correlation across forwards (cf. Frestad et al. 2010; Solibakke 2010), the next step is the
application of a multivariate framework. Based on intraday data and taking the exam-
ple of a stock market, Chapter 4 shows that the NIG distribution parametrized by using
conditional forecasts for variance, skewness, and kurtosis improves VaR calculation in
such a way that the VaR is lower but still feasible in terms of backtesting. This finding
may have a striking impact on the allocation of equity in financial companies. A very
interesting feature of this proceeding is the expansion to a portfolio point of view – that
is left for future research.

Please note that, in some instances, an approach or argument may be repeated. This
redundancy is necessary to ensure that single chapters can be treated as self-contained.
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2 On the Distribution of Government
Bond Returns: Evidence from the EMU

This chapter is based on the corresponding article by Gabriel and Lau (2014).

2.1 Introduction

International bond markets clearly exceed equity markets in terms of capitalization (cf.
Laopodis 2008). Thus, investigating these markets could have important implications
for interest rate modeling, fixed income portfolio management, and monetary policy
making. However, equity markets attract considerably more attention in the finance
literature than do bond markets. The European Monetary Union (EMU) bond market
is particularly unique in that it accommodates economies with different levels of credi-
bility and fiscal discipline in one currency (cf. Beber et al. 2009).

The objective of this chapter is to investigate the statistical distribution of price chan-
ges in European government bonds. For the period 1999 to 2012, we investigate all
countries that joined the EMU before 2001. We exclude Luxembourg from our analysis
since its public debt market is negligible. The data frequency is daily bond returns with
one-, three-, five- and ten-year maturity. Descriptive statistics and tests of normality
lead to a clear rejection of the Gaussian assumption. We therefore propose alternative
distributions and fit the Student’s t, skewed Student’s t, and stable distribution to the
data. Since the Euro crisis leads to a shift in the mean and an increase in the standard
deviation, we test each time series for a structural break and separately study the crisis
period.1 Finally, a value at risk (VaR) application contributes to better understanding
the implications that can be derived from the distributional assumption.

The type of distribution of financial returns is an essential assumption for mean-
variance portfolio theory, pricing of financial derivatives, and many other applications.
Mandelbrot (1963) and Fama (1965) reject normality because heavy tails are a key fea-
ture of financial returns. They and other authors propose various distributions that
account for excess kurtosis (cf. Press 1967; Praetz 1972; Blattberg and Gonedes 1974;

1It is important to note that our analysis is based on unconditional distributions. GARCH-type models (cf.
Bollerslev 1986) are beyond the scope of the present chapter.
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Peiró 1994). However, investors not only have an aversion to the second and fourth
moment, but also a preference for positive first and third moments. Hence, skewness is
important for modeling financial returns (cf. Kon 1984; Hansen 1994; Young and Graff
1995; Peiró 1999; Rachev and Mittnik 2000; Aparicio and Estrada 2001). This branch
of the literature is mainly concerned with equity returns, whereas the EMU, which is
the market of interest in this chapter, is more often discussed in debt capital market
research.

Prior to the EMU, we observe converging yields and harmonizing prices of Euro-
denominated government bonds (cf. Baele et al. 2004; Codogno et al. 2003; Hartmann
et al. 2003). Decreasing government financing costs are one reason for the significant
growth of the European bond market (cf. Pagano and von Thadden 2004). There is a
large body of literature concerned with the European bond market and its interactions
with other major bond markets (cf. Cappiello et al. 2003; Christiansen 2007; Abad et al.
2010). Laopodis (2008) conducts an extensive empirical study of the link between Euro
and non-Euro government bonds for the period 1995 to 2006. However, he draws no
conclusions as to which distribution fits the bonds’ variation best. Rachev et al. (2003)
are the only authors who study the distribution of U.S. corporate bond returns.2

The present chapter contributes to the literature by providing a comprehensive study
of EMU bond return distributions. To the best of our knowledge, we are the first authors
to analyze the daily bond returns of all EMU countries with one-, three-, five-, and ten-
year maturity. We test alternative distributions, account for structural breaks in the time
series, and offer an application for risk management.

The remainder of this chapter is organized as follows. Section 2.2 reports some de-
scriptive statistics and tests the normality assumption. Section 2.3 presents the theory
of the proposed distributions, and Section 2.4 shows the parameter estimation results.
Section 2.5 reports the results of a Quandt likelihood ratio test to ascertain if there is
a structural break and then takes another look at the Euro crisis period. Section 2.6
presents a VaR application for government bond returns. Section 2.7 concludes.

2.2 Data and Test of Normality

In terms of capitalization, debt markets clearly exceed equity markets (cf. Laopodis
2008). Additionally, the EMU bond market is unique in providing debt for countries
with different levels of credibility and fiscal discipline in one currency (cf. Beber et al.
2009). Therefore, we study government bonds issued by EMU members.

2Rachev et al. (2003) fit the stable distribution to U.S. corporate bond indices. Interest rate risk, measured
with duration, and credit default risk are the main risk-driving factors of bonds. Using indices leads to a
clustering of duration and rating, resulting in a less than clear view of the bonds’ risk.
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The dataset consists of all countries that joined the EMU before 2001 with the exception
of Luxembourg. Countries that joined the Eurozone much later are excluded to avoid
studying time series of considerable different length. The daily zero bond returns are
provided by Datastream. The empirical study starts in 1999, when exchange rates for
prospective Euro members were fixed. The sample period is January 1, 1999 to Novem-
ber 30, 2012, resulting in 3,627 data points for each time series.3 The cross-section of
bond returns are fixed maturities of one, three, five, and ten years.

Next, we calculate the bonds’ daily return. Let yt(τ) be the yield of a bond at time t
and τ its time to maturity. At each point in time, we take the yield of the previous day
yt−1(τ1) multiplied by the initial time to maturity τ1 (= one, three, five, and ten years)
and subtract it from today’s yield yt(τ2) multiplied by the remaining time to maturity
τ2 (= τ1 − 1 day ).4 The log return rt(τ) at time t with maturity τ reads:

rt(τ) = exp(−τ2yt(τ2) + τ1yt−1(τ1))− 1. (2.1)

In this manner we calculate the log return for every bond at each point in time.
Table 2.1 summarizes some descriptive statistics of EMU bonds. The left panel of

the table shows the mean, standard deviation, skewness, and kurtosis of government
bond returns. We apply the Lilliefors and Jarque-Bera goodness-of-fit tests of normality
and report the results in the right panel (cf. Peiró 1999; Aparicio and Estrada 2001). In
Table 2.1 and henceforth, the order of the countries follows their exposure to sovereign
risk.5 The table shows that the mean is positive and close to zero for the daily bond
returns. The only exception is Greece with slightly higher and negative returns, which
we treat as a special case throughout the chapter.6 It is evident that returns increase
with time to maturity. This indicates a normal term structure for most of the time series.
Analogously, bond risk is an increasing function of time to maturity. Although yields
of the short end are more volatile, the exposure to interest rate risk is much higher for
bonds with a longer time to maturity. Values range from a low of 0.405 ·10−3 (Germany
one year) to 17.416 · 10−3 (Portugal ten years). The order of countries suggests that
standard deviation increases with exposure to interest rate and sovereign risk.

The assumption of normality indicates that returns are symmetrically distributed,
i.e., exhibit a skewness of zero. The table shows that countries with low sovereign risk
tend to have very low skewness (Germany to Belgium), whereas countries with high

3The time series for Belgium and Greece start in 2001, resulting in 3,150 data points.
4We subtract two days for a public holiday and three days for a weekend.
5The new phenomenon of sovereign risk in European government bonds is important for interpreting the
variation of returns (cf. Gomez-Puig 2009; Bernoth et al. 2004; Sgherri and Zoli 2009). We calculate the
average spread of ten-year bonds for each country over ten-year German bonds, which we assume to be
the reference.

6Due to the imminent default of Greece, results for Greek bonds are more extreme throughout the study.
For the sake of readability, we document the results for Greece only if they provide new insight.
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Table 2.1: Descriptive statistics of European government bond returns

goodness of fit

m Mean Std Skew Kurt LF JB
[103] [103]

GER 1 0.111 0.405 0.699 18.461 0.080 36,410
3 0.144 1.364 -0.109 5.408 0.044 883
5 0.174 2.370 -0.199 4.708 0.043 464

10 0.230 4.170 -0.021 5.191 0.043 725
NET 1 0.115 0.643 -0.011 22.512 0.120 57,519

3 0.147 1.557 0.194 12.273 0.068 13,015
5 0.175 2.403 -0.150 6.202 0.049 1,562

10 0.224 6.017 -0.250 11.473 0.068 10,884
FIN 1 0.118 0.586 -0.067 17.188 0.110 30,414

3 0.148 1.486 -0.297 5.969 0.047 1,384
5 0.178 2.726 -0.509 19.933 0.064 43,475

10 0.229 5.807 0.637 17.037 0.070 30,016
FRA 1 0.112 0.534 -0.206 14.684 0.105 20,651

3 0.147 1.385 -0.054 7.315 0.053 2,814
5 0.173 2.401 0.087 15.839 0.053 24,910

10 0.210 3.981 -0.396 11.879 0.044 12,005
AUS 1 0.116 0.656 0.208 18.229 0.161 35,064

3 0.152 1.336 0.041 12.719 0.148 14,271
5 0.182 2.345 -0.209 11.000 0.137 9,696

10 0.229 5.908 -0.165 9.552 0.133 6,503
BEL 1 0.119 0.677 -0.801 30.893 0.141 102,383

3 0.169 1.667 0.114 15.826 0.069 21,584
5 0.208 2.640 -0.093 10.664 0.059 7,708

10 0.268 4.676 -0.151 7.960 0.056 3,238
SPA 1 0.123 1.040 -0.750 29.064 0.170 102,979

3 0.139 2.105 1.843 45.238 0.171 271,597
5 0.144 3.122 2.041 38.123 0.145 188,900

10 0.122 5.599 0.291 12.896 0.106 14,846
ITA 1 0.127 0.744 0.547 34.413 0.166 149,266

3 0.150 2.151 1.490 38.693 0.125 193,822
5 0.162 3.410 1.894 41.167 0.107 222,254

10 0.168 5.614 0.995 28.085 0.097 95,671
IRE 1 0.153 1.647 2.886 69.022 0.209 663,589

3 0.177 4.180 3.991 93.992 0.200 1,260,538
5 0.182 4.923 1.060 43.201 0.161 244,843

10 0.110 11.848 -1.837 53.103 0.186 381,299
POR 1 0.162 2.936 -0.912 46.671 0.226 288,646

3 0.170 6.339 -2.620 101.927 0.230 1,482,741
5 0.154 8.073 -1.155 110.194 0.211 1,736,848

10 0.101 17.416 -0.523 32.179 0.175 128,796
GRE 1 -0.631 29.724 -6.020 268.212 0.409 9,244,928

3 -0.596 15.794 -3.389 184.364 0.316 4,320,463
5 -0.583 17.734 -8.747 229.126 0.295 6,747,110

10 -1.342 62.924 -2.748 182.182 0.341 4,215,222

The table reports the mean (Mean), standard deviation (Std), skewness (Skew), and kurtosis (Kurt) of
European government bond returns maturing in m years. Figures of mean and standard deviation are
multiplied by 103. For comparison, the normal distribution has zero skewness and a kurtosis of three.
The analysis includes 3,627 (3,149) observations for all countries (Belgium and Greece). LF denotes the
Lilliefors test statistic defined as max|S(x) − CDF | with S(x) the empirical cdf and CDF the cumulative
distribution function of a normal distribution with mean and standard deviation from the empirical data.
For all countries and maturities, p-values are well below 0.001 and not provided here. The critical value for
a rejection of the null hypothesis that “the data is normally distributed” at the 1% level is 0.0175 (0.0188)
for all countries (Belgium and Greece). JB denotes Jarque-Bera test statistic defined as N · (Skew2/6 +
(Kurt − 3)2/24) with N the number of observations. For all countries and maturities, p-values are well
below 0.001 and, again, not provided here. The critical value for a rejection of the null hypothesis that “the
data is normally distributed” at the 1% level is 9.4828 (9.5242) for all countries (Belgium and Greece).
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sovereign risk tend to have higher skewness (Spain to Greece). There seems to be no
clear pattern for the sign of skewness. Further tests are needed to discover whether
skewness is important for bond returns.

Assuming normality implies a kurtosis of three (Kurt = 3). By contrast, the empirical
distributions of all bond returns exhibit excess kurtosis (Kurt >> 3). Returns of Ger-
man five-year bonds (Kurt = 4.708) and Portuguese five-year bonds (Kurt = 110.194)
are the least and most heavy tailed, respectively. To sum up, the excess kurtosis im-
plies that the returns depart from normality in the tails and indicates that the Gaussian
distribution is an inappropriate assumption. Goodness-of-fit tests will provide a more
detailed picture.

The second part of Table 2.1 reports test statistics of Lilliefors and Jarque-Bera tests
of normality. The Lilliefors test statistic is defined as max|S(x) − CDF | with S(x) the
empirical cdf and CDF the cumulative distribution function of a normal distribution
with mean and standard deviation from the empirical data. The critical value for a
rejection of the null hypothesis that “the data is normally distributed” at the 1% signif-
icance level is 0.0175 (0.0188) for all countries (Belgium and Greece). The bonds with
the lowest excess kurtosis and, therefore, with the best fit are German five-year bonds.
Since the test statistic for these is well above the critical value, normality is nevertheless
rejected.

The Jarque-Bera test statistic is defined as N · (Skew2/6 + (Kurt − 3)2/24) with N

equal to the number of observations. The critical value for a rejection of the null hy-
pothesis that “the data is normally distributed” at the 1% significance level is 9.4828
(9.5242) for all countries (Belgium and Greece). Similar to the Lilliefors test, Germany’s
five-year bond offers the best fit. However, the test statistic is well above the critical
value of 9.4828 and the null hypothesis is rejected. Portuguese five-year bonds exhibit
the highest kurtosis and the worst Jarque-Bera fit. In short, Lilliefors and Jarque-Bera
tests overwhelmingly reject the Gaussian distribution for all countries and all maturi-
ties at the 1% significance level. The empirical distributions depart from the normal
distribution mainly in the tails, which is due to excess kurtosis of bond returns. Figure
2.1 illustrates the difference between the empirical and normal distribution.

As an example, Figure 2.1 shows the fit of the normal distribution for three bonds,
selected to be representative of countries with low (Germany), considerable (Spain),
and high (Greece) exposure to sovereign risk. The figure illustrates ten-year bonds
since this is the most interesting maturity for investors (cf. Codogno et al. 2003; Bernoth
et al. 2004; Gomez-Puig 2009). In the first row of Figure 2.1, the histogram of the data
and the probability density function of the normal distribution are plotted. The second
row shows the difference in frequency between the empirical and normal distributions
(cf. Young and Graff 1995) and illustrates the goodness-of-fit results reported in Table
2.1. Although the normal distribution fits the German bond somewhat better than the
Spanish bond, it still does not exactly match the empirical distribution. The normal
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Figure 2.1: Normal distribution and difference in frequency
The figure illustrates the empirical and theoretical distribution of ten year bond returns of Germany, Spain,
and Greece in the period of 1999 to 2012: 1. Histograms of daily bond returns and fitted probability
density functions of the normal distribution. 2. Difference in frequency between the empirical and normal
distribution.

density function underestimates empirical bond returns around the mean and in the
tails, while it overestimates them in the shoulders of the distribution. The leptokurtic
behavior of Greek bonds prohibits the normal density function from fitting the data in
any way.

In sum, the Lilliefors and Jarque-Bera tests overwhelmingly reject the Gaussian dis-
tribution for all countries. The graphical analysis in Figure 2.1 shows that the misspec-
ification increases with the country’s exposure to sovereign risk. Empirical bond distri-
butions depart from the normal distribution mainly in the tails due to excess kurtosis.
The clear rejection of normality forces the investor to consider alternative distributions.

2.3 Alternative Distributions of Bond Returns

The results of the former section lead to the conclusion that the normal distribution is
an inappropriate assumption for describing bond returns. However, there is no ex ante
financial theory that can aid us in choosing alternative distributions (cf. Aparicio and

18



2.3 Alternative Distributions of Bond Returns

Estrada 2001). Therefore, we focus on the empirical distributions’ departure from the
normal to identify features that the proposed distributions should have. The results of
Table 2.1 show that all bonds have considerable excess kurtosis and some bonds exhibit
skewness. Therefore, we consider one distribution that exhibits heavy tails and two that
account for skewness and heavy tails.

Praetz (1972) and Blattberg and Gonedes (1974) propose Student’s t distribution for
modeling financial returns. The density function of the Student’s t distribution with
unit variance and zero mean is

g(X | η) = Γ ((η + 1)/2)√
π(η − 2)Γ(η/2)

(
1 + X2

η − 2

)−(η+1)/2

(2.2)

with Γ being the Γ-function and 2 < η < ∞ the degrees of freedom. A small value
of η implies excess kurtosis. The normal distribution is a special case of Student’s t
distribution if η tends to infinity.

Since Kon (1984), it has been standard practice to account for asymmetry when de-
scribing financial returns. Extending the density function in equation (2.2) by a skew-
ness parameter λ results in the skewed Student’s t distribution, which is able to capture
both skewness via λ and excess kurtosis via η. Following Hansen (1994), the density of
the skewed Student’s t distribution is

g(X | η, λ) =


bc

(
1 + 1

η−2

(
bX+a
1−λ

)2
)−(η+1)/2

, X < −a/b,

bc

(
1 + 1

η−2

(
bX+a
1+λ

)2
)−(η+1)/2

, X ≥ −a/b
(2.3)

with 2 < η <∞ and −1 < λ < 1. The constants a, b, and c are given by

a = 4λc(η − 2)
(η − 1) ,

b2 = 1 + 3λ2 − a2, and

c = Γ ((η + 1)/2)√
π(η − 2)Γ(η/2)

.

A positive value of λ implies positive skewness and vice versa. By setting λ = 0, the
skewed Student’s t distribution nests the Student’s t distribution.7

7We decide against a more general formulation of the Student’s t distribution that allows more extreme
values of the tail parameter and the nonexistence of the first moment as using such a formulation would
imply that the parameters are no longer comparable to the parameters of the skewed Student’s t distri-
bution.
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The (α-)stable distribution can also exhibit skewness and excess kurtosis (cf. Young
and Graff 1995; Rachev and Mittnik 2000). Its four parameters are the index of stability
(α), and skewness (β), scale (γ), and location (δ) parameters. In general, there is no
closed-form solution, but it is possible to provide the characteristic function. A random
variable X is viewed as stable if its characteristic function is (cf. Nolan 2001)

E exp(itX) =

exp
(
−γα|t|α[1+iβ(tan πα

2 )(sign t)((γ|t|)1−α−1)]+iδt
)
, α 6= 1,

exp
(
−γ|t|[1+iβ 2

π
(sign t)(ln|t|+ln γ)]+iδt

)
, α = 1

(2.4)

with 0 < α ≤ 2, −1 ≤ β ≤ 1, γ > 0, and δ ∈ R. The skewness increases with |β|. As
α tends to 2, the distribution becomes Gaussian and β loses its influence. Lower values
of α indicate heavy tails. The second moment does not exist for α < 2 or, rather, the
variance is infinite. For α < 1, the stable distribution has no mean either. In contrast
to the skewed Student’s t distribution, it is not possible to model non-heavy-tailed but
skewed returns with this distribution.

The focus of this article is to apply the more popular skewed and fat-tailed distribu-
tions, including the Student’s t and the stable model. These distributions have a long
history in academia and are prominent in the financial return literature (see Section 2.1).
They provide the foundation for a wide range of commercial applications by leading
risk management service providers (cf. Rachev et al. 2010). To ensure consistency, we
consider the extension of the Student’s t distribution by the third moment and include
the skewed Student’s t distribution in our analyses.

2.4 Estimation of Parameters and Goodness-of-Fit Tests

We now present the results of the empirical study. Table 2.2 reports the parameters esti-
mated with maximum likelihood.8 We assume the returns to be “significantly different
from normality” if they:

1. are skewed (λ 6= 0 for the skewed Student’s t or β 6= 0 for the stable distribution)
or

2. exhibit excess kurtosis (η < 30 for the Student’s t and skewed Student’s t or α < 2
for the stable distribution).

We identify skewness and excess kurtosis if these values are outside the 95% (99%)
confidence interval of the estimated parameters, which is indicated by an ∗ (∗∗). The
results in Table 2.2 show that the location parameter µ is close to zero and positive for
all countries with the exception of Greece. The stable location parameter δ is close to

8We first standardize the data for the estimation of the Student’s t and skewed Student’s t distribution.
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Table 2.2: Parameter estimation for European government bonds

t Skewed t Stable

m µ σ η λ η δ γ β α
[103] [103] [103] [103]

GER 1 0.11 0.41 3.22∗∗ 0.05∗∗ 3.23∗∗ 0.10 0.20 0.13∗ 1.64∗∗

3 0.14 1.36 5.22∗∗ -0.02 5.22∗∗ 0.17 0.84 -0.12 1.80∗∗

5 0.17 2.37 6.18∗∗ -0.03 6.35∗∗ 0.25 1.51 -0.21∗ 1.84∗∗

10 0.23 4.17 5.73∗∗ -0.03 5.88∗∗ 0.37 2.63 -0.24∗∗ 1.82∗∗

NET 1 0.12 0.64 2.60∗∗ 0.01 2.60∗∗ 0.11 0.25 0.00 1.43∗∗

3 0.15 1.56 3.45∗∗ -0.01 3.45∗∗ 0.17 0.83 -0.05 1.66∗∗

5 0.18 2.40 4.36∗∗ -0.04∗ 4.36∗∗ 0.24 1.40 -0.13 1.73∗∗

10 0.22 6.02 3.53∗∗ -0.03 3.53∗∗ 0.35 3.21 -0.10 1.66∗∗

FIN 1 0.12 0.59 2.72∗∗ -0.04∗∗ 2.72∗∗ 0.14 0.24 -0.09∗ 1.44∗∗

3 0.15 1.49 4.79∗∗ -0.04 4.79∗∗ 0.19 0.90 -0.13 1.76∗∗

5 0.18 2.73 4.00∗∗ -0.05∗ 4.01∗∗ 0.28 1.55 -0.19∗ 1.77∗∗

10 0.23 5.81 3.43∗∗ -0.04∗ 3.43∗∗ 0.41 3.05 -0.16∗∗ 1.67∗∗

FRA 1 0.11 0.53 2.77∗∗ 0.06∗∗ 2.77∗∗ 0.09 0.23 0.12∗∗ 1.46∗∗

3 0.15 1.39 4.30∗∗ -0.01 4.30∗∗ 0.17 0.81 -0.07 1.75∗∗

5 0.17 2.40 4.48∗∗ -0.01 4.48∗∗ 0.22 1.42 -0.10 1.79∗∗

10 0.21 3.98 4.88∗∗ 0.00 4.88∗∗ 0.23 2.41 0.00 1.81∗∗

AUS 1 0.12 0.66 2.40∗∗ -0.10∗∗ 2.37∗∗ 0.17 0.17 -0.19∗∗ 1.02∗∗

3 0.15 1.34 2.43∗∗ 0.00 2.43∗∗ 0.15 0.36 0.00 1.02∗∗

5 0.18 2.35 2.48∗∗ 0.01 2.48∗∗ 0.16 0.66 0.00 1.01∗∗

10 0.23 5.91 2.59∗∗ 0.01 2.59∗∗ 0.18 1.77 0.00 1.01∗∗

BEL 1 0.12 0.68 2.44∗∗ 0.02 2.44∗∗ 0.11 0.24 0.07 1.42∗∗

3 0.17 1.67 3.51∗∗ -0.02 3.51∗∗ 0.21 0.89 -0.10 1.69∗∗

5 0.21 2.64 3.88∗∗ -0.03 3.89∗∗ 0.28 1.48 -0.13 1.73∗∗

10 0.27 4.68 4.30∗∗ -0.03 4.34∗∗ 0.40 2.72 -0.14 1.75∗∗

SPA 1 0.12 1.04 2.29∗∗ -0.09∗∗ 2.28∗∗ 0.19 0.27 -0.13∗∗ 1.14∗∗

3 0.14 2.11 2.29∗∗ -0.04∗∗ 2.29∗∗ 0.19 0.58 -0.10∗∗ 1.21∗∗

5 0.14 3.12 2.42∗∗ -0.03∗ 2.42∗∗ 0.21 1.02 -0.10∗∗ 1.29∗∗

10 0.12 5.60 2.78∗∗ -0.03∗ 2.78∗∗ 0.27 2.37 -0.08∗ 1.42∗∗

ITA 1 0.13 0.74 2.32∗∗ -0.01 2.32∗∗ 0.13 0.22 0.00 1.33∗∗

3 0.15 2.15 2.53∗∗ -0.03 2.53∗∗ 0.19 0.82 -0.09∗ 1.49∗∗

5 0.16 3.41 2.71∗∗ -0.02 2.71∗∗ 0.23 1.44 -0.11∗ 1.56∗∗

10 0.17 5.61 2.84∗∗ -0.04∗ 2.84∗∗ 0.29 2.50 -0.11∗ 1.57∗∗

IRE 1 0.15 1.65 2.18∗∗ 0.01 2.18∗∗ 0.15 0.36 0.00 1.16∗∗

3 0.18 4.18 2.18∗∗ -0.01 2.18∗∗ 0.18 0.93 0.00 1.22∗∗

5 0.18 4.92 2.32∗∗ -0.02 2.32∗∗ 0.26 1.49 -0.08∗ 1.38∗∗

10 0.11 11.85 2.24∗∗ -0.04∗∗ 2.24∗∗ 0.38 3.04 -0.10∗∗ 1.26∗∗

POR 1 0.16 2.94 2.10∗∗ 0.00 2.10∗∗ 0.17 0.38 -0.07∗∗ 0.85∗∗

3 0.17 6.34 2.11∗∗ 0.02 2.11∗∗ 0.14 0.97 0.00 0.99∗∗

5 0.15 8.07 2.16∗∗ -0.01 2.16∗∗ 0.15 1.60 0.00 1.12∗∗

10 0.10 17.42 2.24∗∗ -0.01 2.24∗∗ 0.12 4.11 0.00 1.10∗∗

GRE 1 -0.63 29.72 2.00∗∗ -0.45∗∗ 2.00∗∗ 0.12 0.25 0.00 0.77∗∗

3 -0.60 15.79 2.03∗∗ -0.22∗∗ 2.03∗∗ 0.21 1.07 -0.11∗∗ 0.94∗∗

5 -0.58 17.73 2.04∗∗ -0.17∗∗ 2.04∗∗ 0.30 1.67 -0.11∗∗ 1.00∗∗

10 -1.34 62.92 2.01∗∗ -0.16∗∗ 2.01∗∗ 0.37 3.31 -0.10∗∗ 0.99∗∗

The table reports the estimated parameters of the Student’s t (t), skewed Student’s t (Skewed t), and stable
(Stable) distribution. The analysis includes European government bond returns maturing in m years. For
the estimation of the Student’s t and skewed Student’s t distribution, the data is standardized first ((X-
µ)/σ). 2 < η < ∞ is the degree of freedom of the Student’s t and skewed Student’s t distribution. As η
tends to infinity the Student’s t distribution becomes Gaussian. −1 < λ < 1 is the skewness parameter of
the skewed Student’s t distribution. δ ∈ R and γ > 0 are the location and scale parameters of the stable
distribution, respectively. −1 ≤ β ≤ 1 and 0 < α ≤ 2 denote its skewness parameter and index of stability.
Lower numbers of α indicate heavy tails. As α tends to 2, the distribution becomes Gaussian and β loses
its influence. µ, σ, γ, and δ are multiplied by 103. An ∗ (∗∗) implies statistical significance of non-normality
(η < 30, λ 6=0, α < 2, and β 6=0) at a 95% (99%) confidence level.
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2 On the Distribution of Government Bond Returns: Evidence from the EMU

zero and positive for all countries. Remember that the first moment does not exist if
α < 1, which might be responsible for the difference between the first moment (µ) and
the stable location parameter (δ).

Not surprisingly, scale parameters increase with time to maturity and sovereign risk,
as do the standard deviations (see Table 2.1). The bond with the lowest (highest) stan-
dard deviation is the German one-year (Portuguese ten-year) with σ = 0.41 · 10−3

(σ = 17.42 · 10−3). Keeping in mind that the second moment does not exist for the
stable distribution, scale parameters still imply the same interactions. They range from
γ = 0.20 · 10−3 for the German one-year bond to γ = 4.11 · 10−3 for the Portuguese
ten-year one.

Skewness parameters of the skewed Student’s t distribution are close to zero for all
countries with the exception of Greece. Austrian one-year bonds (λ = −0.10∗∗) have
the lowest estimate and French one-year bonds (λ = 0.06∗∗) the highest. However,
the departure from normality (λ 6= 0) is mainly insignificant. Only 17 (11) of 44 skew-
ness parameters are significantly different from normality at a 95% (99%) confidence
level. Estimates of the skewness parameter β of the stable distribution imply similar
results. Parameters reflect almost symmetric returns, ranging from β = −0.19∗∗ (Aus-
trian one-year) to β = 0.12∗∗ (French one-year). Altogether, only 21 (12) of 44 skewness
parameters are significantly different from normality at a 95% (99%) confidence level.
In sum, skewness appears to play a minor role in European government bond returns.

All alternative distributions have a kurtosis parameter for providing a better fit in
the tails. According to expectations, estimates of the parameter η are almost identical
for the Student’s t and skewed Student’s t distribution (see Section 2.3). Parameter es-
timates range from η = 6.35∗∗ (German five-year) to η = 2.10∗∗ (Portuguese five-year),
implying considerably heavy tails. For all countries and maturities, the tail parameter
is significantly different from normality at the 99% confidence level. The tail param-
eters of the stable distribution show similar characteristics. Parameter estimates for α
indicate heavy tails among all bond returns and vary between α = 1.84∗∗ (German five-
year) and α = 0.85∗∗ (Portuguese one-year). Analogous to the other distributions, tail
parameters are significantly different from normality at a 99% confidence level for all
countries and maturities, leading to the conclusion that a tail parameter is necessary
for matching the characteristics of government bond returns. Goodness-of-fit tests will
provide insight into the reliability of the parameter estimation.

Table 2.3 reports statistics and p-values of a χ2 goodness-of-fit test. The test follows
a χ2 distribution with degrees of freedom depending on the number of parameters
and with the null hypothesis that “the empirical distribution equals the distributional
assumption.” Note that the p-value of the French ten-year bond for the Student’s t dis-
tribution (p = 0.355) is higher than the p-value for the skewed Student’s t distribution
(p = 0.336), although the test statistic is identical (Stat = 29.64). Following the argu-
ment of parsimony, the difference in p-values is due to the various degrees of freedom.
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Table 2.3: χ2 goodness-of-fit test

t skewed t stable

m stat p stat p stat p

GER 1 33.11 0.321 26.31 0.554 35.68 0.228
3 33.51 0.204 32.52 0.198 58.80 0.075
5 45.44 0.061 41.99 0.076 67.28 0.067

10 36.79 0.153 32.54 0.235 57.33 0.088
NET 1 47.78 0.147 47.04 0.132 35.31 0.250

3 33.93 0.295 32.48 0.272 52.13 0.109
5 24.99 0.614 22.55 0.684 51.32 0.094

10 35.57 0.191 31.62 0.257 59.95 0.096
FIN 1 89.72 0.002 78.94 0.004 65.43 0.077

3 51.19 0.035 47.10 0.031 80.13 0.053
5 72.74 0.004 67.47 0.006 56.03 0.065

10 42.47 0.101 42.93 0.066 50.08 0.110
FRA 1 71.27 0.011 62.35 0.021 62.47 0.087

3 23.75 0.701 24.02 0.610 54.42 0.096
5 31.04 0.326 30.33 0.299 27.01 0.387

10 29.64 0.355 29.64 0.336 31.71 0.297
AUS 1 221.87 0.001 243.09 0.000 209.07 0.033

3 385.67 0.000 386.60 0.000 274.61 0.013
5 444.19 0.000 438.74 0.000 283.37 0.016

10 422.50 0.000 418.84 0.000 394.94 0.013
BEL 1 68.28 0.044 67.95 0.029 33.11 0.317

3 22.40 0.760 23.25 0.668 29.34 0.361
5 31.46 0.349 32.01 0.286 39.35 0.193

10 34.28 0.210 33.62 0.235 49.19 0.115
SPA 1 242.41 0.002 242.98 0.002 95.35 0.049

3 157.98 0.007 162.80 0.006 57.98 0.092
5 109.88 0.007 120.26 0.009 79.56 0.064

10 129.59 0.001 115.66 0.000 114.19 0.028
ITA 1 108.25 0.020 108.37 0.011 35.58 0.272

3 48.13 0.156 48.26 0.118 23.69 0.542
5 51.35 0.066 49.18 0.079 29.64 0.363

10 61.64 0.014 64.12 0.018 37.25 0.228
IRE 1 241.65 0.011 241.82 0.005 57.06 0.108

3 178.33 0.006 176.81 0.005 40.27 0.235
5 115.46 0.014 113.37 0.005 42.71 0.207

10 206.47 0.004 208.11 0.003 51.12 0.131
POR 1 858.42 0.001 858.40 0.000 147.55 0.030

3 423.80 0.002 420.14 0.005 70.70 0.096
5 204.65 0.007 205.04 0.008 42.78 0.201

10 285.68 0.004 287.42 0.002 74.48 0.090
GRE 1 7,370.08 0.000 38,248.24 0.000 39.30 0.251

3 1,360.60 0.001 1,571.63 0.000 54.06 0.138
5 765.19 0.006 913.97 0.002 44.10 0.172

10 1,772.95 0.001 1,890.03 0.000 31.23 0.265

The table shows the test statistics (Stat) and p-values (p) of a χ2 goodness-of-fit test of European govern-
ment bond returns maturing in m years. We test the null hypothesis that “the empirical distribution equals
the distributional assumption.” The test follows a χ2 distribution with p−k−1 degrees of freedom, where
p = 30 is the number of intervals and k is the number of parameters estimated for each distribution. De-
grees of freedom are 26 for the Student’s t (t), 25 the for skewed Student’s t (Skewed t) and 25 for the stable
(Stable) distribution. For the sake of consistency, all p-values are calculated with simulation techniques for
all distributions based on 1,000 repetitions.
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2 On the Distribution of Government Bond Returns: Evidence from the EMU

The Student’s t distribution offers the best fit for the Belgium three-year bond. With a
low test statistic of 22.40, the null hypothesis cannot be rejected at a 5% level. The table
reports the worst fit for high sovereign risk countries. With a test statistic of 858.42,
the null hypothesis has to be rejected for Portuguese one-year bonds. In summary, the
Student’s t distribution provides a poor fit for European government bond returns. For
24 (17) of a total of 44 bonds, the null hypothesis cannot be rejected at the 1% (5%)
significance level.

The skewed Student’s t distribution offers similar results. It fits the Belgium three-
year bond best and the Portuguese one-year bond worst. Overall, for 22 (17) bonds,
the null hypothesis cannot be rejected at the 1% (5%) significance level. This is slightly
worse than the fit of the Student’s t distribution and somewhat surprising at first sight.
Since the skewed Student’s t distribution has an additional parameter, one would ex-
pect it to provide a better fit. There are two reasons for this underperformance. First,
skewness plays only a minor role in European government bonds and the additional
parameter does not result in a better fit of the distribution. Second, the poorer p-values
might be due to simulated test statistics.

The results of the stable distribution are considerably different. This distribution fits
the Italian three-year bond best (Stat = 23.69); however, even for the Austria ten-year
bond (Stat = 394.94), the stable distribution cannot be rejected at the 1% level. In sum,
the assumption of stable distributed returns cannot be rejected for any (37) bond(s) at
the 1% (5%) level.

Table 2.3 reveals the following conclusions. (1) High exposure to sovereign risk yields
a worse fit of the Student’s t and skewed Student’s t distribution; on the other hand,
however, the stable distribution’s fit does not seem to depend on sovereign risk. (2) The
skewed Student’s t provides an even worse fit than the Student’s t distribution, mean-
ing that skewness plays a minor role in European government bond returns. (3) The
stable distribution outperforms both alternative distributions. At the 1% significance
level, it cannot be rejected for any bond.

Figure 2.2 illustrates parameter estimation results and goodness-of-fit tests. Follow-
ing the design of Figure 2.1, Figure 2.2 presents plots of the goodness of fit of the Ger-
man, Spanish, and Greek ten-year bonds. Since the stable distribution offers the best
fit of the alternative distributions, the figure shows its probability density function and
difference in frequency.

In comparison to Figure 2.1, we see a slight improvement in the fitting of the Ger-
man bond’s empirical distribution. The stable distribution captures the peaked returns
around the mean better and no longer overestimates the shoulders of the distribution.
The plot shows a similarly clear improvement for Spain. A closer look reveals that
the stable distribution can capture the departure from normality in the tails. Even for
the special case of Greece, the alternative distribution offers a reasonable fit. Consid-
ering the difference between the empirical and normal distribution of Greek returns,
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Figure 2.2: Stable distribution and difference in frequency
The figure illustrates the empirical and theoretical distribution of ten year bond returns of Germany, Spain,
and Greece in the period of 1999 to 2012: 1. Histograms of daily bond returns and fitted probability
density functions of the stable distribution. 2. Difference in frequency between the empirical and stable
distribution.

the improvement is remarkable. In particular, the stable distribution does a good job
of describing the peaked returns around the mean. Figure 2.2 supports the conclusion
drawn from Table 2.3: the stable distribution clearly improves the fit for European bond
returns.

2.5 Euro Crisis

From an investor’s perspective, the Euro crisis reveals the existence of sovereign risk
in Euro bonds. Due to a change of market circumstances, these bond returns begin to
behave differently, i.e., the spreads of sovereign risky government bonds increase and
yields diverge significantly, leading to the conclusion that structural breaks occur in the
time series. The issue to address is whether the significant parameters of skewness and
kurtosis are in fact caused by a structural break in the time series. It might well be that
(the weak evidence of) skewness is due to a shift in the mean, and that excess kurtosis
is the consequence of an increase of standard deviation.
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Table 2.4: QLR test results and corresponding headline
m date news

GER

Risk and reward: Worried about credit risk? (Flight to quality draws
yields to historic low level.)

NET
FIN 1 17/05/2007
FRA
AUS

GER

3 02/06/2008
Just bury it: It is time to accept that the Lisbon treaty is dead. The Euro-
pean Union can get along well enough without it. (Lehman bankruptcy
rumors)

NET
FIN
FRA

AUS 3,5 That’s all, folks: For the euro to survive, Italy must not fail. That will
require leadership and courage. (Berlusconi resigned)

BEL all 10/11/2011
ITA all

SPA all 09/07/2012
The flight from Spain: Spain can be shored up for a while; but its woes
contain an alarming lesson for the entire euro zone.

IRE all 01/07/2011
Can Europe’s recovery last? Only if its governments take advantage of
sunnier times to make deeper reforms. (Rescue aid for Bank of Ireland
approved.)

POR all 16/01/2012
A false dawn: The recession has been mild so far. But things are likely
to get much worse. (S&P downgrade of Portugal)

GRE 1,5 13/10/2011
Nowhere to hide: Investors have had a dreadful time in the recent past.
The immediate future looks pretty rotten, too. (Rumors about Greece’
debt cut)
Central bankers to the rescue? They can buy a little time, but the real
remedy must come from Western politicians. (Once again the ECB
bought government bonds on the secondary market.)

3 04/08/2011

10 01/12/2011
Is this really the end? Unless Germany and the ECB move quickly, the
single currency’s collapse is looming. (Greek credit tranche of 8 billion
Euro)

The Table reports the date resulting from the QLR test. “all” indicates maturities of one, three, five, and
ten years. The news reported are title page headlines of “The Economist”. Notes of the authors are given
in parenthesis.

Since the existence and, if found, exact date of the structural breaks are unknown, a
Quandt likelihood ratio (QLR) statistic is calculated for each time series. To do this, we
exclude the first and last three months of the data. For each remaining data point, we
perform a Chow (1960) test with null hypothesis being “no structural break in the time
series.” The maximum of all Chow test statistics corresponds to the QLR test statistic.
If the maximum is greater than a critical value at a significance level of 1%, we reject
the null hypothesis and report the corresponding date in Table 2.4.9 Bonds showing a
structural break at the same date are grouped in the table. In addition, we report news
headlines that might help explain the considerable rise or fall of yields in the right

9In this case, we refrain from giving critical values and test statistics.
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2.5 Euro Crisis

column of the table. In sum, 31 of 44 time series show evidence of a structural break in
the data.

For instance, the table reveals a straightforward link between yield movements and a
news headline for Portugal on 14/01/2012. This structural break (Table 2.4; 16/01/2012)
is due to a considerable increase in yields in the subsequent period. The increased
yields, in turn, might well be caused by the S&P downgrade of Portugal that domi-
nated the newspaper headlines that week.

Subsequently, we reestimate the parameters for the period after the structural break
(if one is found). Those periods correspond to the financial crisis in the Eurozone. Like
Table 2.2, Table 2.5 reports the maximum likelihood parameter estimates of the Stu-
dent’s t, skewed Student’s t, and stable distribution. An ∗ (∗∗) indicates that the param-
eter is significantly different from normality at a 95% (99%) confidence level.

Depending on the exposure to sovereign risk, Table 2.5 documents a considerable
positive shift in location parameters. The mean parameter of Portuguese five-year
bonds varies from µ = 0.15 · 10−3 (whole time series) to µ = 2.07 · 10−3 (after structural
break). Greece is the only country that experiences a drastic negative shift in the loca-
tion parameter. Not surprisingly, the standard deviation increases considerably during
the period of the Euro crisis and depends on the exposure to sovereign risk. Table 2.5
reports a slight increase of σ = 0.41 · 10−3 to σ = 0.48 · 10−3 for German one-year bonds
and a clear increase of σ = 17.42·10−3 to σ = 39.77·10−3 for Portuguese ten-year bonds.
The same results hold for scale parameters of the stable distribution.

By studying the skewness parameters λ and β, we can discover if a shift of the lo-
cation parameter in the time series causes the skewness in daily returns. For the slight
negative shift of Finnish one-year bonds (from µ = 0.12 · 10−3 to µ = 0.10 · 10−3), the
former significant negative skewness parameter (λ = −0.04∗∗) does indeed become in-
significant (λ = −0.03). In contrast, the skewness parameters of Irish one-, three-, and
five-year bonds become significant after the structural break. Altogether, we find weak
evidence for skewness in the bonds, which add support to the findings of Section 2.4.

Are the significant excess kurtosis parameters of the whole sample period due to an
increase of standard deviation during the Euro crisis period, similar to the findings of
the skewness parameters? We find overwhelmingly clear evidence that the answer to
this question is no. The kurtosis parameters (λ and α) are still significantly different
from normality at a 99% confidence level for all time series and all alternative dis-
tributions. In sum, we find strong evidence for heavy tails even after correcting for
structural breaks in the data. In Table 2.6 we report the test statistics and p-values of χ2

goodness-of-fit tests with null hypothesis being that “the empirical distribution equals
the distributional assumption.” Since the parameters are estimated for the period af-
ter each structural break, the lengths of the time series differ. Hence, the p-values gain
credibility because they are invariant to time series length.
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Table 2.5: Parameter estimation for European government bonds after structural
break

t Skewed t Stable

m µ σ η λ η δ γ β α
[103] [103] [103] [103]

GER 1 0.09 0.48 2.73∗∗ 0.11∗∗ 2.73∗∗ 0.05 0.20 0.23∗∗ 1.48∗∗

3 0.17 1.42 4.68∗∗ 0.01 4.69∗∗ 0.15 0.85 0.08 1.76∗∗

NET 1 0.10 0.69 2.60∗∗ 0.07∗∗ 2.60∗∗ 0.06 0.27 0.16∗ 1.44∗∗

3 0.17 2.04 2.98∗∗ 0.01 2.98∗∗ 0.14 0.95 0.07 1.54∗∗

FIN 1 0.10 0.72 2.93∗∗ -0.03 2.92∗∗ 0.12 0.33 -0.08 1.48∗∗

3 0.17 1.67 3.83∗∗ 0.01 3.83∗∗ 0.16 0.93 0.09 1.67∗∗

FRA 1 0.10 0.51 2.86∗∗ 0.08∗∗ 2.86∗∗ 0.06 0.23 0.17∗ 1.49∗∗

3 0.18 1.58 3.48∗∗ 0.02 3.49∗∗ 0.14 0.83 0.10 1.65∗∗

AUS 1 0.10 0.80 2.40∗∗ -0.02 2.40∗∗ 0.11 0.23 -0.09∗ 1.09∗∗

3 0.17 1.69 2.49∗∗ 0.04 2.49∗∗ 0.13 0.60 0.11 1.37∗∗

5 0.32 3.08 2.67∗∗ 0.07 2.66∗∗ 0.20 1.22 0.20 1.39∗∗

BEL 1 0.11 0.86 2.18∗∗ 0.13∗∗ 2.18∗∗ 0.05 0.19 0.19 1.20∗∗

3 0.39 2.79 2.32∗∗ 0.02 2.33∗∗ 0.30 0.81 0.09 1.25∗∗

5 0.58 4.32 2.53∗∗ 0.04 2.53∗∗ 0.47 1.57 0.09 1.34∗∗

10 0.87 7.48 2.70∗∗ -0.02 2.69∗∗ 0.88 3.00 0.00 1.37∗∗

ITA 1 0.29 1.83 3.16∗∗ 0.06 3.16∗∗ 0.22 0.88 0.00 1.48∗∗

3 0.59 5.40 3.10∗∗ -0.00 3.10∗∗ 0.60 2.56 -0.11 1.50∗∗

5 0.77 8.28 3.27∗∗ 0.02 3.28∗∗ 0.67 4.13 -0.09 1.56∗∗

10 1.23 12.46 3.79∗∗ 0.02 3.81∗∗ 0.77 6.86 0.08 1.65∗∗

IRE 1 0.57 3.41 2.30∗∗ 0.11∗∗ 2.28∗∗ 0.32 0.90 0.19∗ 1.19∗∗

3 1.30 9.66 2.25∗∗ 0.15∗∗ 2.24∗∗ 0.44 2.36 0.22∗ 1.21∗∗

5 1.52 9.92 2.27∗∗ 0.14∗∗ 2.25∗∗ 0.61 2.30 0.23∗∗ 1.07∗∗

10 1.09 30.00 2.87∗∗ 0.02 2.87∗∗ 0.95 13.21 0.13 1.45∗∗

POR 1 0.76 5.05 2.54∗∗ 0.08 2.52∗∗ 0.56 1.82 0.27∗ 1.35∗∗

3 1.68 15.03 2.62∗∗ 0.11 2.60∗∗ 0.59 5.74 0.32∗ 1.38∗∗

5 2.07 18.98 3.35∗∗ 0.05 3.33∗∗ 1.68 9.72 0.12 1.58∗∗

10 1.36 39.77 3.75∗∗ 0.04 3.77∗∗ -0.41 21.64 0.15 1.61∗∗

GRE 1 -6.56 95.60 2.03∗∗ -0.28∗∗ 2.02∗∗ -0.26 2.90 -0.09 0.63∗∗

3 -5.34 45.55 2.36∗∗ -0.13∗∗ 2.36∗∗ -1.45 13.70 -0.16 1.29∗∗

5 -5.31 52.84 2.54∗∗ -0.14∗∗ 2.56∗∗ 0.48 19.11 -0.15 1.38∗∗

10 -8.89 193.85 2.11∗∗ -0.15∗∗ 2.10∗∗ 5.03 26.76 -0.14 0.93∗∗

The table reports the estimated parameters of the Student’s t (t), skewed Student’s t (Skewed t), and stable
(Stable) distribution for the period after the structural break. The analysis includes countries and matu-
rities (m) where the QLR test (see Table 2.4) indicates a structural break, namely Germany, Netherlands,
Finland, and France (one and three years), Austria (one, three, and five year), and Belgium, Italy, Ireland,
Portugal, and Greece (all maturities). For the estimation of the Student’s t and skewed Student’s t distri-
bution, the data is standardized first ((X-µ)/σ). 2 < η < ∞ is the degree of freedom of the Student’s t
and skewed Student’s t distribution. As η tends to infinity the Student’s t distribution becomes Gaussian.
−1 < λ < 1 is the skewness parameter of the skewed Student’s t distribution. δ ∈ R and γ > 0 are the
location and scale parameters of the stable distribution, respectively. −1 ≤ β ≤ 1 and 0 < α ≤ 2 denote
its skewness parameter and index of stability. Lower numbers of α indicate heavy tails. As α tends to 2,
the distribution becomes Gaussian and β loses its influence. µ, σ, γ, and δ are multiplied by 103. An ∗ (∗∗)
implies statistical significance of non-normality (η < 30, λ 6=0, α < 2, and β 6=0) at a 95% (99%) confidence
level.
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Table 2.6: χ2 goodness-of-fit test after structural break

t skewed t stable

m stat p stat p stat p

GER 1 52.05 0.070 33.54 0.314 23.61 0.542
3 28.20 0.406 28.32 0.372 36.68 0.208

NET 1 58.86 0.046 47.23 0.079 25.76 0.463
3 33.73 0.257 33.80 0.249 31.93 0.289

FIN 1 79.09 0.006 77.35 0.006 66.95 0.063
3 58.59 0.009 58.64 0.000 67.33 0.061

FRA 1 61.90 0.021 55.85 0.016 47.42 0.134
3 23.78 0.674 23.03 0.684 26.60 0.439

AUS 1 127.47 0.005 133.92 0.002 88.61 0.062
3 48.03 0.131 49.08 0.055 30.07 0.340
5 43.93 0.131 48.80 0.037 29.50 0.316

BEL 1 73.36 0.058 74.97 0.031 21.69 0.557
3 41.03 0.268 40.18 0.222 13.63 0.820
5 42.56 0.196 42.11 0.128 23.24 0.502

10 34.89 0.317 34.66 0.248 25.69 0.405
ITA 1 47.39 0.047 46.10 0.033 39.84 0.163

3 35.82 0.192 35.85 0.153 32.58 0.263
5 42.52 0.084 41.93 0.051 42.09 0.121

10 32.66 0.248 31.75 0.194 33.47 0.205
IRE 1 64.99 0.072 56.27 0.078 23.09 0.499

3 64.52 0.082 57.68 0.077 16.16 0.749
5 129.67 0.009 130.29 0.002 46.94 0.140

10 47.14 0.073 47.56 0.042 41.05 0.157
POR 1 36.88 0.295 39.28 0.164 17.62 0.693

3 35.49 0.273 37.55 0.147 20.92 0.609
5 27.62 0.491 28.73 0.381 27.14 0.328

10 17.66 0.925 17.39 0.885 18.69 0.692
GRE 1 511.87 0.001 1,303.68 0.000 36.62 0.225

3 90.00 0.018 66.94 0.020 30.34 0.313
5 38.65 0.258 26.78 0.582 19.40 0.684

10 154.40 0.013 172.60 0.004 27.98 0.383

The table shows the test statistics (Stat) and p-values (p) of a χ2 goodness-of-fit test for countries and ma-
turities (m) where the QLR test (see Table 2.4) indicates a structural break, namely Germany, Netherlands,
Finland, and France (one and three year), Austria (one, three, and five year), and Belgium, Italy, Ireland,
Portugal, and Greece (all maturities). We test the null hypothesis that “the empirical distribution equals
the distributional assumption.” The test follows a χ2 distribution with p−k−1 degrees of freedom, where
p = 30 is the number of intervals and k is the number of parameters estimated for each distribution. De-
grees of freedom are 26 for the Student’s t (t), 25 the for skewed Student’s t (Skewed t) and 25 for the stable
(Stable) distribution. For the sake of consistency, all p-values are calculated with simulation techniques for
all distributions based on 1,000 repetitions.

Compared to the whole sample period, the goodness-of-fit statistics for the Euro crisis
are even more pronounced. The stable distribution, for instance, offers the best fit for
Belgian three-year bonds (p = 0.820). In comparison to the best fit of the whole series
(p = 0.542, Italian three-year bonds), this is a clear improvement. The worst fit after
the structural break is for Austrian one-year bonds (p = 0.062). However, the null
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hypothesis can no longer be rejected at the 5% level. In contrast, the worst fit of the
whole series (p = 0.013, Austrian ten-year bonds) is rejected at the 5% level.

Overall, the fit of the alternative distributions clearly improves after correcting for
the structural break. The Student’s t distribution cannot be rejected at the 1% (5%)
significance level for 26 (21) of a total of 31 bonds. We obtain similar results for the
skewed Student’s t distribution; it cannot be rejected at the 1% (5%) significance level
for 25 (19) bonds. The stable distribution cannot be rejected at the 5% significance level
for any bond. We further conclude that the goodness of fit diminishes with exposure to
sovereign risk. After correcting the time series for structural breaks, the mean shifts and
some skewness parameters become insignificant. The overall evidence for skewness is
weak. The empirical distribution’s deviation mainly occurs in the tails. Therefore, ex-
cess kurtosis is highly relevant for an alternative distribution: all proposed alternative
distributions exhibit this feature. However, the stable distribution clearly offers the best
fit.

2.6 Implications for Risk Management

The previous sections underline the importance of considering higher-order moments
when describing European government bond returns. We now analyze the conse-
quence for downside risk when assuming different distributions. Since the VaR is the
most widely used tool in risk management (cf. Ammann and Reich 2001), we apply
VaR calculations when investigating whether the alternative distributions are able to
adequately capture the bond risk. Note that the 99% confidence level is crucial for VaR
calculations (cf. Berkowitz and O’Brien 2002).

In light of their importance for fixed income management, bonds maturing after
ten years are predominantly discussed in finance literature (cf. Codogno et al. 2003;
Bernoth et al. 2004; Gomez-Puig 2009). As we do in Figure 2.1 and 2.2, we again exam-
ine a country with low (Germany), considerable (Spain), and high (Greece) exposure to
sovereign risk. We use a rolling window approach for all three time series to account
for the shift in parameters (see Section 2.5). We take the first 100 returns, fit the dis-
tribution, and calculate the 0.01 quantile (that is, the VaR at a 99% confidence level for
the 101st day). If the return on the 101st day does (not) exceed the VaR, we assign a
one (zero) to the date. We continue rolling this window until the end of the time series.
Thus, a hitting sequence is generated consisting of ones and zeros.

Three standard techniques dominate analyses of hitting sequences (cf. Christoffersen
2003). First, an unconditional coverage test determines if the expected fraction of VaR
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violations θ differs significantly from the realized fraction πreal. In the limit, the result-
ing test-statistic

LRuc = −2 ln[(1− θ)T0θT1/((1− T1/T )T0(T1/T )T1)] (2.5)

follows a χ2 distribution with one degree of freedom. T1 (T0) is the number of times the
VaR is (not) violated and T = T1 + T0 is the total number of VaR observations.

The unconditional converge test provides no information on whether VaR violations
are clustered. Therefore, we formulate the independence test statistic

LRind = −2 ln[L(π̂)/((1− π̂01)T00 π̂T01
01 (1− π̂11)T10 π̂T11

11 )]. (2.6)

L(π̂) is the likelihood under the alternative hypothesis of equation (2.5), T00 (T01) is
the number of observations where no (a) VaR violation follows no violation, T10 (T11)
is the number of observations where no (a) VaR violation follows a violation, π̂01 =
T01/(T00 + T01), and π̂11 = T11/(T10 + T11). As for the unconditional coverage test, the
test statistic is χ2 distributed with one degree of freedom.

The conditional coverage test combines the insights of the unconditional and inde-
pendence test in one test statistic:

LRcc = LRuc + LRind. (2.7)

The test statistic is χ2 distributed with two degrees of freedom.
Table 2.7 sets out the VaR calculations at the 99% confidence level for ten-year bonds

of Germany, Spain, and Greece. πreal (θ) is the realized (expected) ratio of VaR viola-
tions, punc, pind, and pcc represent the p-values of the unconditional, independence, and
conditional coverage test with the null hypothesis being that “the VaR model is cor-
rect.” At the 5% significance level, we reject the skewed Student’s t model only for the
Spanish bond in case of the unconditional test. This confirms our finding that skewness
is not an important issue in European government bond returns. The strong result of
the stable distribution, which almost realizes the expected violation rate (πreal = 0.0101
and θ = 0.01), is remarkable. The Student’s t and stable distribution cannot be rejected
at the 5% significance level for any country and therefore both provide a reliable frame-
work for the VaR calculations. Since the stable distribution offers the best fit and pro-
vides the greatest p-values in VaR calculations, we propose using the stable distribution
for risk management purposes.
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Table 2.7: VaR calculation

distribution πreal θ punc pind pcc

GER t 0.0118 0.01 0.2935 0.3273 0.3564
skewed t 0.0118 0.01 0.2935 0.4999 0.4587
stable 0.0121 0.01 0.2250 0.3153 0.2893

SPA t 0.0077 0.01 0.1624 0.1967 0.1638
skewed t 0.0062 0.01 0.0177 0.6081 0.0528
stable 0.0101 0.01 0.9655 0.3555 0.6519

GRE t 0.0135 0.01 0.0753 0.5538 0.1725
skewed t 0.0121 0.01 0.2756 0.0733 0.1110
stable 0.0135 0.01 0.0753 0.3022 0.1207

The table reports a comparison of VaR calculations at the 99% confidence level for a maturity of ten years
for German, Spanish, and Greek government bond returns assuming the Student’s t (t), skewed Student’s
t (Skewed t), and stable (Stable) distribution. πreal (θ) gives the realized (expected) ratio of VaR violations,
punc, pind, and pcc represent the p-values of the unconditional, independence, and conditional coverage
test (cf. Christoffersen 2003) with null hypothesis being that “the VaR model is correct.”

2.7 Conclusion

The assumption that financial returns follow a Gaussian distribution, implicitly or ex-
plicitly, is frequently made in the finance literature. However, this assumption of nor-
mality has important consequences for portfolio theory, derivative pricing, and other
financial applications. Whereas a large body of literature is concerned with the empiri-
cal distribution of equity returns, little is known about the distribution of bond returns.
This is surprising, as international bond markets exceed international equity markets
in terms of capitalization.

In the present chapter, we remedy this situation by studying the distribution of daily
European government bond returns in the period of 1999–2012. We find that the Lil-
liefors and Jarque-Bera tests overwhelmingly reject the Gaussian distribution for all
countries. The empirical distribution departs from the normal distribution mainly in
the tails due to the excess kurtosis of bond returns. Therefore, the kurtosis parameters
of the Student’s t, skewed Student’s t, and stable distribution are highly significant,
whereas we find only weak evidence for the significance of skewness parameters.

The goodness-of-fit tests show that sovereign risk is a crucial factor in bond returns.
Hence, the importance of flexibility in the tails increases with exposure to sovereign
risk. The stable distribution clearly offers the best fit of the tested alternatives. We
find a shift in location parameters and a drastic increase of scale parameters caused by
the Euro crisis. Due to this shift, some skewness parameters become insignificant and
the overall evidence for their influence remains weak. However, even after correcting
the time series for structural breaks, excess kurtosis parameters are highly significant.
Indeed, the goodness of fit of the stable distribution becomes even better.
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2.7 Conclusion

Taking excess kurtosis of bond price variations into account has immediate conse-
quences for risk management. We show in a VaR application that risk management
clearly improves when assuming the stable distribution for EMU bonds.
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3 Measuring Risk in Electricity Forward
Returns

This chapter is based on the corresponding working paper by Laitenberger and Lau
(2014).

3.1 Introduction

This chapter investigates the risks of an investment in electricity forwards. From a
financial point of view, an investment in “electricity” can only be done indirectly by
investing in a financial derivative of the underlying asset “electricity.” That is, due
to its inherent non-storability, the commodity “electricity” is basically useless on the
spot market as a financial asset. Nonetheless, investing in electricity forwards could
be a portfolio diversification strategy or a means of hedging a given exposure to elec-
tricity risk. Since the hedge usually will not be perfect, distribution of the returns of
the investment in the electricity forward is of interest. Given the modern approach to
risk management, it is especially the risks in the tails of the distribution that are im-
portant. These are generally measured with the value at risk (VaR). We study a wide
range of different models accounting for time variation in daily returns of one-year and
one-quarter forwards. We find that considering ARMA as well as GARCH effects im-
proves VaR calculation and recommend applying a filtered historical simulation using
an ARMA(1,0)-GARCH(1,1)-t model.

A forward on electricity is a contract for the delivery of a certain amount of elec-
tricity each day of a delivery period, typically one day, one week, one quarter, or one
year. Electricity forwards are usually settled in cash against the average spot price
of the delivery period, which is why they are sometimes also called swaps (cf. Benth
and Koekebakker 2008). In markets free of arbitrage, the forward and spot prices of
financial assets have a simple analytical relationship. Due to storage costs, this rela-
tionship is less straightforward for commodities. However, electricity is non-storable –
or, can be stored, but only at an unreasonably high cost – and thus must be consumed
the moment it is produced. Consequently, there is no analytical link between forward
and spot prices in the case of electricity (cf. Benth and Meyer-Brandis 2009; Pirrong
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and Jermakyan 1999; Vehviläinen 2002). The absence of seasonal patterns in forward
prices in contrast to spot prices (cf. Garcia 2005; Weron 2009) is further proof of this
phenomenon. Furthermore, while forward prices generally are non-skewed, Bessem-
binder and Lemmon (2002) discuss the possibility that large upward spikes in marginal
production costs can result in skewed spot prices. Thus, the only sort of relationship
that can be established between electricity forwards and spot prices involves the risk
premium, that is, the spread between the spot price and the forward price (cf. Benth
et al. 2008; Bessembinder and Lemmon 2002; Shawky et al. 2003; Longstaff and Wang
2004).

This chapter describes the distributions of electricity forward returns traded on the
NASDAQ OMX Commodities Europe. There is a considerable body of literature on
the non-Gaussian behavior of electricity spot prices. For example, Byström (2005) and
Chan and Gray (2006) analyze spot prices in an AR-GARCH framework with general-
ized extreme-value-distributed innovations. Weron (2009) uses regime-switching mod-
els to capture jumps and seasonal patterns. In contrast, there is very little literature on
forward returns. Solibakke (2010) uses a GARCH(1,1) framework to describe electricity
forward returns, but makes no mention as to how the dataset was created. Our work is
most closely related to that of Frestad et al. (2010). Frestad et al. (2010) and Andresen
et al. (2010) both model the entire forward curve dynamic by fitting a smooth curve
approximation to the set of observed real forward prices. This approximated forward
curve displays the prices for contracts for the delivery on a single date, while the real
forwards are always for delivery over a certain period, with weekly periods common
in the short end and yearly contracts common in the long end. In a second step, the au-
thors derive prices for synthetic contracts with delivery over non-overlapping periods
and a fixed time to maturity from the curve. Subsequently, they analyze the distribu-
tional properties of the time series of these synthetic forwards.

Due to the small number of traded contracts and the limited liquidity of some of
them, the results of Frestad et al. (2010) might be affected by their construction of the
forward curve. Clearly, there are many ways to construct a forward curve from a fi-
nite set of observed forward prices (cf. Fleten and Lemming 2003). Furthermore, the
prices of the synthetic forwards will vary depending on the methodology employed
for their derivation.1 The forward curve approach is a good choice when properties of
the entire forward curve are described. With respect to risk management, however, a
procedure that takes into account the individual characteristics of the forward contracts
seems more appropriate. Unlike Frestad et al. (2010), we operate on the real forwards
F (t, T−t), where t denotes the time index and T the expiration date of the forward. As t
progresses, the time remaining before contract maturation decreases. This is in contrast

1Consider, for instance, a small horizontal shift of the curve in Frestad et al.’s Figure 2 (2010, p.62). This
would produce a considerable change in the values of the synthetic contracts.
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to Frestad et al. (2010), who model synthetic contracts with a fixed time to maturity τ .
With real data in discrete time, trend effects like the maturity effect2 might be present.
Hence, we use only real data in our analysis. We compute the returns with successive
prices for every forward separately and obtain the returns series a trader would realize
when investing in these contracts.

It is well known that financial time series data exhibit time-varying distributional
properties, such as volatilities. Therefore, it is natural to apply conditional techniques
for estimating the means and volatilities of the returns. We employ a broad set of
GARCH processes to model the variance process of forward prices, whereas the mean is
described by an ARMA framework. A side benefit of this approach is the elimination of
any maturity effects that might be present in the data. Although we first look for mod-
els well suited for describing the entire distribution, our main objective is to discover
the best model for analyzing the tails of the distribution in terms of a VaR calculation.
We use conditional models based on data encompassing a window of 100 days prior
to the forecasting period, since the returns display strong shifts in volatility. We find
weak autocorrelation in the returns and strong autocorrelation in the squared returns.
The best model in terms of VaR calculation is a model that uses an ARMA component
to forecast the mean and a GARCH component that takes the persistent volatility into
account.

The next section presents the econometric models considered. In Section 3.3, the data
are described, along with some essential statistics, after which we demonstrate a simple
momentum trading strategy, ending with a comparison of the models. After choosing
the best models, we use them in Section 3.4 to calculate and backtest VaR. The last
section summarizes our results.

3.2 The Econometric Models

In this section we briefly discuss the different frameworks used to model the dynamics
of daily electricity forward returns. In Subsection 3.3.2 we find evidence for autocorre-
lation in the returns, as well as heavy tails and time-varying volatility. Based on this,
we first consider the following standard ARMA(n,m) specification for a series of returns
{rt}:

rt = ω + εt +
n∑
i=1

airt−i +
m∑
j=1

bjεt−j (3.1)

with n,m ≥ 0 as the orders of the autoregressive and moving average process, ai and
bj as their coefficients, and constant ω. εt is the conditional innovation process with

2The maturity effect, sometimes called the Samuelson effect, manifests as an increase in volatility when
approaching the end of the contract (cf. Samuelson 1965). The evidence for these effects in commodities
is mixed (cf. Bessembinder et al. 1996; Duong and Kalev 2008).
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zero mean and variance σ2
t . In addition to the Gaussian, we also study t-distributed

innovations with ν > 2 degrees of freedom. We use three of the most popular models
(cf. Engle and Ng 1993; Ederington and Guan 2010) to describe the time-conditional
variance σ2

t :
1) GARCH(p,q) (cf. Bollerslev 1986)

σ2
t = κ+

p∑
k=1

ckσ
2
t−k +

q∑
l=1

dlε
2
t−l (3.2)

with a constant κ > 0. p, q ≥ 1 are the orders of the GARCH process and ck ≥ 0, k =
1, .., p, and dl ≥ 0, l = 1, .., q are their coefficients with

∑p
k=1 ck +

∑q
l=1 dl < 1.

2) EGARCH(p,q) (cf. Nelson 1991)

log σ2
t = κ+

p∑
k=1

ck log σ2
t−k +

q∑
l=1

dl

[ |εt−l|
σt−l

− E
( |εt−l|
σt−l

)]
+

q∑
l=1

el
εt−l
σt−l

(3.3)

where E
(
|εt−l|
σt−l

)
=


√

2/π Gaussian innovation distribution,√
ν−2
π

Γ(1/2(ν−1))
Γ(1/2ν) Student innovation distribution,

and Γ the Γ

function. The EGARCH volatility model allows positive and negative shocks to have
different impacts on the conditional volatility. The conditional variance is modeled
in a logarithmic way so that no estimation constraints need be imposed to avoid the
variance becoming negative.

3) GJR-GARCH(p,q) (cf. Glosten et al. 1993)

σ2
t = κ+

p∑
k=1

ckσ
2
t−k +

q∑
l=1

dlε
2
t−l +

q∑
l=1

el1t−lε2t−l (3.4)

where 1t−l =

1 εt−l < 0,
0 otherwise

, and dl + el ≥ 0, l = 1, .., q as well as
∑p
k=1 ck +

∑q
l=1 dl +

1/2
∑q
l=1 el < 1. The GJR-GARCH is a second way of modeling asymmetries in the

variance process. This model deals with the asymmetry of volatility shocks by using
different residual signs.

Bollerslev et al. (1992) state that including only lower-order lags in ARMA as well
as in GARCH models is sufficient. We follow this advice and apply the three different
ARMA-GARCH frameworks with all combinations (with(out) ω, n,m = 0, .., 3, and
p, q = 1, 2, 3) and with Gaussian and t innovations on every time series by maximizing
the log likelihood function (LLF). Overall, this results in fitting 1,728 different mod-
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els for each time series. In addition to the corresponding LLF value, we calculate the
Akaike information criterion (AIC) and the Bayesian information criterion (BIC):

AIC = −2vLLF + 2NoP and (3.5)

BIC = −2vLLF +NoP ∗ log(NoO) (3.6)

where vLLF is the final value of the maximized LLF, NoP the number of parameters
estimated in the model, and NoO the number of observations. We prefer the BIC for
measuring the goodness of fit of our models because it (i) penalizes free parameters
more severely than does the AIC and (ii) takes the NoO into account. Since we want
a parsimonious model that has good fitting characteristics for all analyzed time series,
we choose the model with the smallest sum of BICs across all 18 time series (one-year
contracts) and 28 time series (one-quarter contracts), respectively.

3.3 Empirical Analysis

In this section we present the data and the results of tests for normality and autocorre-
lation. We then demonstrate a simple momentum trading strategy. Finally, we fit the
models to the data.

3.3.1 Data

We analyze the distribution of daily real-world forward returns. The underlying prices
are obtained from NASDAQ OMX Commodities Europe. NASDAQ OMX Commodi-
ties Europe provides data for one-year, one-quarter, one-week, and one-day forwards.
In the case of a one-week forward, for example, the forward is settled in cash against
the daily system price on every day of the delivering period, that is, one week. The
time series of one-week and, especially, of one-day forwards are rather short because
they are only traded for a couple of days before the delivery period starts, yielding too
little data for a thorough analysis. Therefore, in this chapter, we concentrate on for-
ward prices for one-year and one-quarter contracts because they provide a sufficiently
long trading history – up to five years. We analyze 18 (28) time series of one-year (one-
quarter) contracts. The first one-year (one-quarter) contract delivers in the year 1999
(first quarter 2006), the last one-year (one-quarter) contract delivers in the year 2016
(last quarter 2012).3 In Appendix A.1 a complete list of all forwards including start and
end dates of trading as well as the resulting numbers of observations is provided.

3 In 2006, the predecessor company of NASDAQ OMX Commodities Europe, Nord Pool, changed parts
of its product range and in the course of doing so redefined all products. Contracts with a delivery date
before 2006 were listed in NOK/Mwh, whereas from 2006 on, prices are given in e/Mwh.
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When considering strategies for investing in forward contracts, the strategy’s “return”
needs to be clearly defined. The forward price is usually set in such a way that only a
small margin payment is made at inception of the contract. Taking the return of such
a strategy would amount to investing (almost) zero today and receiving a positive or
negative payment in the future. Obviously, for such an investment, the return cannot
be computed. We thus take the logarithm of the ratio of the forward prices at the two
dates, which we call log returns in analogy to the standard definition of returns. Using
this form of log returns is equivalent to assuming that the investment in the forward
position is collateralized with an amount of cash equal to the forward price, which
corresponds to a margin of 100%. For the sake of simplicity, we ignore interest earned
on the collateral.

3.3.2 Properties of the Data

Table 3.1 shows the statistics of the Lilliefors (1967) test for the one-year forward con-
tracts. On a 1% significance level, the normal hypothesis can be rejected in 17 of 18
cases. The table also shows the results of a Breusch-Godfrey test (cf., e.g., Greene 2003)
for autocorrelation in returns and squared returns up to lag three under the null hy-
pothesis of no correlation. Especially when looking at higher lags, there is evidence of
autocorrelation in the returns in about half the time series when we assume a signifi-
cance level of 5%. Thus, an autoregressive framework seems appropriate. An intuitive
argument in favor of considering autoregressive effects in the mean is the continuously
declining time to maturity (cf. Ng and Pirrong 1994). Assuming, for example, a con-
stant spot price, one would expect a smooth convergence of the forward price toward
the spot price in time, as is the case for bonds. Support for this reasoning is found in
the empirical work of Shawky et al. (2003), who show that the risk premium between
spot and forward prices decreases as time passes. Considering the squared returns, we
have to reject the null hypothesis on a 5% significance level for all lags for all time se-
ries. This suggests the presence of autocorrelation in the squared returns, which causes
volatility clustering. Figure 3.1 illustrates this clustering using the series of ENOYR-07
as an example. Furthermore, the figure reveals particularly high volatility near the end
of maturity. This observation contravenes the theory that volatility declines gradually
because of the smoothing of expectations. The increase in volatility could be due to the
maturity effect, as described in the introduction to this chapter. In summary, autore-
gressive volatility modeling is the best, if not the only, choice.

Table 3.2 sets out the findings for the one-quarter forward contracts. On a 1% sig-
nificance level, the normal hypothesis is rejected in 25 of 28 cases. The results of the
Breusch-Godfrey test for autocorrelation in the returns are not as straightforward as
they were for the one-year contracts. We find evidence for autocorrelation in only about
one-third of the time series. In the squared returns, a very high degree of autocorrela-
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Table 3.1: Tests for normality and autocorrelation in one-year forward returns
autocorr returns autocorr sq returns

Lillief. lag 1 lag 2 lag 3 lag 1 lag 2 lag 3

FWYR-99 *0.053 0.425 0.670 0.817 **0.007 **0.003 **0.004
FWYR-00 **0.088 0.062 *0.049 *0.041 **0.001 **0.000 **0.000
FWYR-01 **0.115 **0.001 **0.000 **0.000 **0.000 **0.000 **0.000
FWYR-02 **0.115 0.191 0.064 *0.024 **0.000 **0.000 **0.000
FWYR-03 **0.173 **0.008 **0.001 **0.000 **0.000 **0.000 **0.000
FWYR-04 **0.095 0.355 *0.038 *0.016 **0.000 **0.000 **0.000
FWYR-05 **0.062 0.502 **0.002 **0.001 *0.017 **0.000 **0.000
ENOYR-06 **0.091 0.233 0.276 0.373 *0.011 *0.026 **0.000
ENOYR-07 **0.102 **0.000 **0.000 **0.001 **0.000 **0.000 **0.000
ENOYR-08 **0.074 **0.010 *0.024 0.051 **0.000 **0.000 **0.000
ENOYR-09 **0.116 0.201 0.433 0.543 **0.000 **0.000 **0.000
ENOYR-10 **0.116 0.784 0.145 0.232 **0.001 **0.000 **0.000
ENOYR-11 **0.089 0.178 **0.000 **0.001 **0.001 **0.000 **0.000
ENOYR-12 **0.069 0.407 *0.028 0.067 *0.011 **0.000 **0.000
ENOYR-13 **0.056 0.792 0.098 0.121 *0.027 **0.001 **0.000
ENOYR-14 **0.073 0.234 0.072 0.152 **0.000 **0.000 **0.000
ENOYR-15 **0.080 0.117 **0.002 **0.002 **0.000 **0.000 **0.000
ENOYR-16 **0.070 0.061 0.180 0.073 **0.000 **0.000 **0.000
The first column of the table shows the name of the product, that is, ENOYR (Electricity Nordic Year) or
FWYR (Forward Year), together with the corresponding year (see footnote 3). The second column contains
the Lilliefors test statistic on the normal distribution for all one-year forward returns. An * (**) means sta-
tistical significance at the 5% (1%) level, meaning that the data are not Gaussian. The other columns show
the p-values of a Breusch-Godfrey serial correlation Lagrange multiplier test to detect autocorrelation in
the returns and squared returns for lags from one to three under the null hypothesis of no correlation.
Again, an * (**) means statistical significance at the 5%(1%) level.

tion appears in all lags for almost all time series, that is, in most instances, the null
hypothesis is rejected. The presence of autocorrelation in both cases justifies the use of
an autoregressive framework for both, as was the case for one-year contracts.

Table 3.3 contains the average mean, variance, skewness, and kurtosis of the returns
of one-year and one-quarter forward contracts across all time series. For the one-year
forward contracts, we find mean, variance, and skewness close to zero, but high excess
kurtosis. In comparison to the one-year contracts, the one-quarter forward contracts
show greater mean, variance, and skewness, but all three moments are still small. The
kurtosis is smaller, but still much greater than 3, indicating excess kurtosis. These re-
sults are in accordance with those of Frestad et al. (2010) and Shawky et al. (2003), who
find non-normality in the forward data in terms of kurtosis, but no asymmetry. Thus,
to keep things simple, we refrain from modeling skewness in our analyses.
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Figure 3.1: Returns of ENOYR-07
The figure shows the log returns of ENOYR-07.

3.3.3 A Simple Momentum Trading Strategy

As a consequence of autocorrelation in the returns, we investigate the possibility of
achieving positive returns by applying momentum trading strategies. The finance lit-
erature contains a great deal of work on this topic in the context of stock markets. We
provide only a brief review of some of the more important contributions. Conrad and
Kaul (1988) and Lo and MacKinlay (1989) remark that it is possible to predict short-
term returns of stocks. Jegadeesh and Titman (1993) report that momentum investing
generates positive returns. Kwon and Kish (2002) use some simple trading rules and
outperform a buy-and-hold strategy for the NYSE value-weighted index.

However, the main difference between stock markets and electricity forwards is that
stock markets have (or can have) a very long time horizon of several decades while
we have only up to five years of electricity trading data. Because we find evidence
of autocorrelation in the returns in the last subsection – in other words, we can, to
some extent, predict tomorrow’s return based on today’s return, we try the following
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3.3 Empirical Analysis

Table 3.2: Tests for normality and autocorrelation in one-quarter forward returns
autocorr returns autocorr sq returns

Lillief. lag 1 lag 2 lag 3 lag 1 lag 2 lag 3

ENOQ1-06 **0.107 0.823 0.898 0.799 0.059 **0.001 **0.000
ENOQ2-06 **0.087 **0.001 **0.004 **0.003 **0.000 **0.000 **0.000
ENOQ3-06 **0.088 0.560 0.617 0.809 **0.000 **0.000 **0.000
ENOQ4-06 **0.128 0.072 **0.009 **0.000 **0.000 **0.000 **0.000
ENOQ1-07 **0.127 **0.006 **0.008 **0.006 *0.021 **0.001 **0.000
ENOQ2-07 **0.088 *0.032 0.099 0.122 **0.000 **0.000 **0.000
ENOQ3-07 **0.082 *0.012 *0.036 0.052 **0.000 **0.000 **0.000
ENOQ4-07 **0.060 0.280 0.459 0.615 **0.000 **0.001 **0.000
ENOQ1-08 **0.068 0.239 0.489 0.434 **0.000 **0.000 **0.000
ENOQ2-08 **0.089 0.114 0.101 0.081 **0.000 **0.000 **0.000
ENOQ3-08 **0.088 0.873 0.603 0.328 **0.000 **0.000 **0.000
ENOQ4-08 **0.093 0.457 0.733 0.836 **0.000 **0.000 **0.000
ENOQ1-09 **0.127 0.454 0.601 0.805 **0.000 **0.000 **0.000
ENOQ2-09 **0.100 0.853 0.946 0.255 **0.000 **0.000 **0.000
ENOQ3-09 **0.075 0.456 0.576 0.384 *0.026 **0.000 **0.000
ENOQ4-09 **0.075 0.604 0.867 0.708 **0.008 **0.000 **0.000
ENOQ1-10 **0.053 0.851 0.978 0.971 0.371 *0.014 *0.024
ENOQ2-10 **0.057 0.926 0.772 0.568 0.306 0.120 0.125
ENOQ3-10 **0.061 0.551 *0.029 0.066 0.087 *0.011 **0.003
ENOQ4-10 **0.054 0.976 0.075 0.146 0.066 0.080 *0.026
ENOQ1-11 **0.065 0.071 *0.012 **0.009 0.151 **0.000 **0.000
ENOQ2-11 **0.058 *0.019 *0.028 *0.021 *0.018 **0.000 **0.000
ENOQ3-11 *0.041 0.220 0.472 0.701 0.076 **0.005 **0.001
ENOQ4-11 *0.039 0.506 0.139 0.178 0.118 *0.013 **0.010
ENOQ1-12 **0.047 0.403 0.259 0.299 **0.007 **0.000 **0.001
ENOQ2-12 **0.062 0.179 0.357 0.550 **0.002 **0.001 **0.000
ENOQ3-12 **0.047 0.179 0.218 0.370 **0.004 **0.007 **0.003
ENOQ4-12 *0.035 0.415 **0.010 *0.021 **0.002 **0.004 **0.006
The first column of the table shows the name of the product, that is, ENOQ (Electricity Nordic Quarter),
together with the corresponding quarter. The second column contains the Lilliefors test statistic on the
normal distribution for all one-quarter forward returns. An * (**) means statistical significance at the 5%
(1%) level, meaning that the data are not Gaussian. The other columns show the p-values of a Breusch-
Godfrey serial correlation Lagrange multiplier test to detect autocorrelation in the returns and squared
returns for lags from one to three under the null hypothesis of no correlation. Again, an * (**) means
statistical significance at the 5% (1%) level.

Table 3.3: Mean, variance, skewness, and kurtosis of forward returns
mean variance skewness kurtosis
[103] [103]

one year 0.057 0.125 −0.059 9.796
[−0.575; 0.643] [0.043; 0.237] [−0.988; 0.436] [5.001; 12.577]

one quarter 0.101 0.308 −0.324 6.615
[−0.598; 0.861] [0.122; 0.463] [−0.778; 0.104] [4.333; 8.749]

The table shows the average mean, variance, skewness, and kurtosis of one-year and one-quarter forward
returns. Numbers in brackets are 0.15 and 0.85 quantiles. The figures of mean and variance are multiplied
by 103. Normal-distributed returns would show zero skewness and a kurtosis of 3.
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3 Measuring Risk in Electricity Forward Returns

simplest momentum trading strategy. If the first forward return is positive (negative),
buy (sell) the forward. If the second forward return is positive (negative) again, stay
long (short) in this forward. If the second forward return is negative (positive), close
the long (short) position and take a short (long) position in this forward. Continue in
this way. We compare this strategy with a simple buy-and-hold strategy. In the case
of the one-year forwards, we obtain, in sum, a positive return in 13 of 18 time series
with the momentum strategy. The buy-and-hold strategy gives a positive return for
only half the time series (9 of 18). The results for the one-quarter forwards are even
more noteworthy: with the momentum strategy, 21 of 28 time series yield a positive
return, whereas only 13 of 28 time series have a positive return when we use the buy-
and-hold strategy. Across all time series, applying a momentum strategy on one-year
(one-quarter) forward returns yields an average annual return of 7.6% (11.2%) per time
series; a buy-and-hold strategy generates 1.4% (5.1%).

3.3.4 Fitting the Models

In this subsection we discover which models fit the data best. Table 3.4 shows the best
10 models for the one-year forwards in terms of the BIC, as well as the best model with
respect to the LLF and the AIC. An ARMA(0,0)-GARCH(1,1)-t specification without ω
is the best model for one-year forwards (BIC=-90339.31). This is almost the simplest
model and it excludes the ARMA process. Gaussian-based models perform signifi-
cantly worse than their corresponding t-models; thus, Gaussian models do not appear
in the table. Only at the sixth and seventh positions do we begin to find models that

Table 3.4: Models with best goodness of fit for one-year forward returns
model LLF AIC BIC (rank)

ARMA(0,0)-GARCH(1,1)-t 45406.07 -90668.14 -90339.31 (1)
ARMA(0,0)-GARCH(1,1)-t(ω) 45437.83 -90695.66 -90284.62 (2)
ARMA(0,0)-EGARCH(1,1)-t 45435.17 -90690.34 -90279.30 (3)
ARMA(0,0)-GJR(1,1)-t 45422.58 -90665.16 -90254.12 (4)
ARMA(0,0)-GARCH(2,1)-t 45418.20 -90656.40 -90245.37 (5)
ARMA(0,1)-GARCH(1,1)-t 45416.69 -90653.38 -90242.34 (6)
ARMA(1,0)-GARCH(1,1)-t 45415.92 -90651.84 -90240.80 (7)
ARMA(0,0)-EGARCH(1,1)-t(ω) 45468.80 -90721.61 -90228.36 (8)
ARMA(0,0)-GARCH(1,2)-t 45406.24 -90632.47 -90221.44 (9)
ARMA(0,0)-GJR(1,1)-t(ω) 45454.89 -90693.77 -90200.52 (10)
ARMA(3,3)-EGARCH(3,3)-t(ω) 45701.38 -90754.75 -89275.01 (870)
ARMA(3,1)-EGARCH(3,3)-t 45674.29 -90808.58 -89575.46 (673)
This table shows the best 10 models in terms of the BIC as well as the best AIC and LLF model. In addition
to the model specification, the value of the log likelihood function (LLF), the Akaike information criterion
(AIC), and the Bayesian information criterion (BIC) are given. All three numbers determine the sum over
all one-year forward return time series.
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include ARMA parts, which suggests disregarding autoregressive effects in the mean.
Incorporating asymmetric volatility in a model generally yields higher LLF values com-
pared to the simpler GARCH model, but the corresponding GARCH model has the
smaller BIC value. The last two rows of the table show the best models in terms of LLF
value and AIC. In both cases, the ARMA and the GARCH models include more lags.
Generally, these models provide a better fit in the LLF value because they are more
flexible but, simultaneously, the BIC value always increases. Byström (2003) also uses
a GARCH(1,1) model to describe the volatility of forward returns. In contrast to our
model, however, he finds that using the Student’s t distribution does not yield superior
results.

Table 3.5 shows the results for the one-quarter forwards. Again, we find an AR-
MA(0,0)-GARCH(1,1)-t specification without ω to be the best model on average. Gen-
erally, the results are very similar to those for the one-year forwards: incorporating
ARMA effects leads to weaker BIC values and applying asymmetric volatility models
or including more lags leads to greater LLF values on the one hand, but greater BIC
values on the other.

Even though we find evidence of autoregressive effects in the mean (see Subsection
3.3.2), the question is whether an ARMA specification really helps explain the risk of
electricity forward returns. To answer this question we conduct a VaR analysis in the
next section.

Table 3.5: Models with best goodness of fit for one-quarter forward returns
model LLF AIC BIC (rank)

ARMA(0,0)-GARCH(1,1)-t 45822.45 -91420.90 -90930.71 (1)
ARMA(0,0)-GARCH(1,1)-t(ω) 45868.37 -91456.75 -90844.01 (2)
ARMA(0,0)-GARCH(2,1)-t 45844.66 -91409.32 -90796.58 (3)
ARMA(0,0)-GJR(1,1)-t 45839.71 -91399.42 -90786.68 (4)
ARMA(0,1)-GARCH(1,1)-t 45835.85 -91391.71 -90778.96 (5)
ARMA(1,0)-GARCH(1,1)-t 45835.53 -91391.05 -90778.31 (6)
ARMA(0,0)-EGARCH(1,1)-t 45834.53 -91389.05 -90776.31 (7)
ARMA(0,0)-GARCH(1,2)-t 45832.36 -91384.73 -90771.99 (8)
ARMA(0,0)-GARCH(2,1)-t(ω) 45891.33 -91446.66 -90711.37 (9)
ARMA(0,0)-GJR(1,1)-t(ω) 45887.90 -91439.80 -90704.51 (10)
ARMA(3,3)-EGARCH(3,3)-t(ω) 46213.76 -91419.51 -89213.65 (1190)
ARMA(2,2)-EGARCH(3,1)-t(ω) 46088.78 -91505.56 -90034.98 (414)
This table shows the best 10 models in terms of the BIC as well as the best AIC and LLF model. In addition
to the model specification, the value of the log likelihood function (LLF), the Akaike information criterion
(AIC), and the Bayesian information criterion (BIC) are given. All three numbers determine the sum over
all one-quarter forward return time series.
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3 Measuring Risk in Electricity Forward Returns

3.4 Value at Risk Calculation

In the previous section, we learn that – based on the BIC – we need to refrain from
modeling autocorrelation in the returns when taking a parsimonious approach to de-
scribe the forward returns ex post; possibly, however, the BIC just overemphasizes the
number of parameters in our models. We need to discover whether accounting for
autocorrelation in the returns is important for forecasting in an ex ante assessment. Ad-
ditionally, in this setting, we need to examine which variance model captures the for-
ward returns best. Therefore, we use the 10 best specifications from the last subsection
to calculate VaR for confidence levels of 95% and 99% in an out-of-sample study and
perform state-of-the-art backtesting. In addition to the basic model, we apply a filtered
historical simulation (FHS), as well as extreme value theory (EVT), to the standardized
returns. Both models provide a reasonable balance in the tradeoff between feasibility
and accuracy and are broadly accepted in the finance literature (cf., e.g., Kuester et al.
2006; Rachev et al. 2010); Solibakke (2010), for example, also applies these models to
electricity data.

3.4.1 Value at Risk Methodologies

Calculating the VaR of electricity forward returns is not without some difficulty: (i) in
contrast to stocks, for which there are decades’ worth of data, time series of electricity
forward prices tend to be relatively short; and (ii) with the decreasing time to maturity,
a key figure crucial for the valuation changes over time (a stock basically remains the
same the whole time). In the following, we briefly discuss three approaches to calculat-
ing the VaR.

The first option is to combine different time series to obtain one long series. In re-
gard to point (i) above, this makes sense, but such is not the case in regard to point (ii).
Because every time series belongs to a certain product, or rather a certain period of bal-
ancing, we would be combining time series of returns that have considerably different
maturities.

Let rt,j be the tth return of a time series j. We want to calculate VaR for the return
in t + 1 of j. Another possibility is to use all returns rt+1,1, ..., rt+1,j−1 to compute VaR
because, in this case with regard to (ii), we would be looking at the returns of forwards
with the same time to maturity. This approach is reasonable if we have a great number
of time series j, such as in the case of one-day or one-week forwards. However, this
approach is not appropriate for one-year (one-quarter) forwards where we have only
18 (28) time series.

Consequently, although we have shorter time series compared to those for stocks, we
calculate VaR with a rolling-window approach by looking at each time series separately
and using the following techniques to compute VaR. By fitting the models on the return
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series, we obtain forecasts for the mean (µt+1) and standard deviation (σt+1). Given a
confidence level 1 − θ, this immediately yields the VaR in case of the basic ARMA-
GARCH-t model:

V aRt+1(θ) = −
(
µt+1 + σt+1T

−1
ν (θ)

)
(3.7)

where T−1
ν (θ) is the θ quantile of the Student’s t distribution with ν degrees of freedom.

The FHS introduced by Hull and White (1998) and Barone-Adesi et al. (1999) com-
bines GARCH-type models with a simulation approach. Barone-Adesi et al. (2002),
Giannopoulos and Tunaru (2005), and Pritsker (2006) provide applications for finan-
cial data. The returns of the times series are standardized with information from the
ARMA-GARCH fitting in order to receive iid returns. Let N be the length of the time
series. The standardized empirical θ · N -quantile is denoted as qfhs(θ). The VaR is
calculated as

V aRt+1(θ) = − (µt+1 + σt+1qfhs(θ)) . (3.8)

The final approach under consideration is based on EVT. EVT has been used on fi-
nancial data for more than 20 years (cf., e.g., Longin 1996; Gençay and Selçuk 2004; Gilli
2006). The core concept is that only the tails of the distribution are of interest because
this is the important region when calculating VaR. Given a threshold u, the distribu-
tion of the losses exceeding u4 can be described with a generalized Pareto distribution
Gβ,ξ(x) (for a detailed derivation, see McNeil 1999). This strategy is called peaks over
threshold. The estimation of β > 0 and ξ ≥ 0 is done by MLE. The corresponding quan-
tile G−1

β̂,ξ̂
(θ) is calculated as

G−1
β̂,ξ̂

(θ) = u+ β̂

ξ̂

((
N

Nu
(1− θ)

)−ξ̂
− 1

)
(3.9)

with Nu as the number of observations exceeding u, β̂ > 0 and ξ̂ ≥ 0. With regard
to conditional volatility modeling, McNeil and Frey (2000) present a quasi MLE-based
VaR as

V aRt+1(θ) = −
(
µt+1 + σt+1G

−1
β̂,ξ̂

(θ)
)
. (3.10)

3.4.2 Backtesting

We now describe and apply three state-of-the-art techniques for backtesting VaR (for
a detailed description of the following three backtesting methods, see Christoffersen
2003). Taking the first 100 returns of each time series, we fit the models to the data
and calculate VaR as described in Subsection 3.4.1. Then, we check whether the return
violates the VaR on the next day. If it does (not), we note a 1 (0). Next, we skip the first

4We choose u in such a way that 10% of the data exceeds u (cf. Subsection 1.1.4).
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and include the 101st return and re-estimate the model. In this way, we apply a rolling
window to the whole time series, thus achieving a hitting sequence that is analyzed
as follows. First, we perform an unconditional coverage test to determine whether
the expected fraction of VaR violations θ differs significantly from the realized fraction
π. Under the null hypothesis θ = π, the resulting test statistic of the unconditional
coverage test is χ2 distributed with one degree of freedom.

The unconditional coverage test contains no information if VaR violations occur in
clusters. For example, if θ = 5% and we find five violations in 100 observations we
accept a VaR model if we are basing our decision on the unconditional coverage test
because, in this case, π = θ. If these five violations appear on five days in a row, we
will have serious doubts about our model. In the event of finding such a correlation
in the violations, we can simply use this information to build a smarter model. To
account for this kind of violation clustering, we use the independence test. Under the
null hypothesis of independence, the test statistic is χ2 distributed with one degrees of
freedom.

The third test under consideration is the conditional coverage test, which combines
both of the above tests. Its test statistic is χ2 distributed with two degrees of freedom.

This backtesting methodology differs from that of Frestad et al. (2010). Since in their
paper a smooth forward curve approximation is used to calculate synthetic forward re-
turns, they refrain from accounting for autocorrelation both in the returns and squared
returns. Hence, for them, it is feasible to split the data into two separate, fixed periods,
one for estimation and the other for validation of the model. Since we use real-world
data, we employ ARMA-GARCH modeling and calculate a conditional forecast for the
mean and variance for every single day in a unique way. Thus, we need to employ a
different backtesting methodology, one that involves rolling windows.

Table 3.6 shows the evaluation of the VaR hitting sequences of the 10 best models
from Table 3.4 on a confidence level of 95% for all one-year forward time series. We
also test the best models in terms of LLF and AIC, but they have clearly worse perfor-
mance and so those results are not shown here. punc, pind, and pcc denote the average
p-values of the different tests (unconditional coverage, independence, and conditional
coverage) over all 18 one-year forward time series and pav gives the average over those
three average p-values. To get a picture of the variation, the number in brackets shows
for how many of the 18 time series the model is rejected on a 5% significance level. For
instance, an average p-value of 0.5 might follow from p-values where one half is 0 and
the second half is 1 (this implies rejection of the model in 50% of the cases at any signif-
icance level) or results from a series of identical p-values all displaying 0.5. We prefer
the latter, of course, because it suggests that the model is feasible for every time series.
We also analyze the FHS and EVT approaches described in the last subsection.

In most instances, the basic model performs more poorly than either of the other
models. We find that the best model is an ARMA(1,0)-GARCH(1,1)-t in combination
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Table 3.6: VaR calculation on a 95% level (one-year forwards)
punc pind pcc pav

ARMA(0,0)-GARCH(1,1)-t basic 0.232 (8) 0.389 (0) 0.215 (7) 0.279
FHS 0.624 (1) 0.477 (2) 0.555 (0) 0.552
EVT 0.627 (1) 0.457 (2) 0.540 (1) 0.542

ARMA(0,0)-GARCH(1,1)-t(ω) basic 0.224 (8) 0.423 (2) 0.207 (4) 0.284
FHS 0.572 (1) 0.469 (1) 0.549 (1) 0.530
EVT 0.574 (1) 0.491 (2) 0.519 (2) 0.528

ARMA(0,0)-EGARCH(1,1)-t basic 0.364 (4) 0.318 (2) 0.284 (4) 0.322
FHS 0.112 (10) 0.292 (1) 0.109 (10) 0.171
EVT 0.101 (9) 0.260 (2) 0.089 (10) 0.150

ARMA(0,0)-GJR(1,1)-t basic 0.263 (8) 0.353 (3) 0.270 (5) 0.295
FHS 0.549 (1) 0.528 (2) 0.562 (1) 0.546
EVT 0.582 (1) 0.456 (1) 0.529 (1) 0.522

ARMA(0,0)-GARCH(2,1)-t basic 0.222 (10) 0.446 (0) 0.212 (7) 0.293
FHS 0.567 (1) 0.465 (1) 0.524 (0) 0.519
EVT 0.576 (1) 0.494 (0) 0.532 (1) 0.534

ARMA(0,1)-GARCH(1,1)-t basic 0.244 (7) 0.420 (2) 0.291 (7) 0.318
FHS 0.467 (1) 0.489 (1) 0.501 (1) 0.486
EVT 0.489 (1) 0.423 (2) 0.459 (2) 0.457

ARMA(1,0)-GARCH(1,1)-t basic 0.228 (7) 0.388 (1) 0.253 (7) 0.289
FHS 0.522 (1) 0.635 (0) 0.593 (0) 0.583
EVT 0.551 (1) 0.496 (2) 0.532 (1) 0.526

ARMA(0,0)-EGARCH(1,1)-t(ω) basic 0.477 (2) 0.216 (8) 0.227 (7) 0.307
FHS 0.122 (9) 0.214 (6) 0.105 (13) 0.147
EVT 0.131 (7) 0.214 (5) 0.109 (11) 0.151

ARMA(0,0)-GARCH(1,2)-t basic 0.290 (4) 0.434 (1) 0.327 (4) 0.350
FHS 0.399 (1) 0.475 (0) 0.446 (2) 0.440
EVT 0.438 (1) 0.422 (1) 0.420 (2) 0.427

ARMA(0,0)-GJR(1,1)-t(ω) basic 0.372 (2) 0.365 (5) 0.332 (3) 0.356
FHS 0.541 (1) 0.445 (0) 0.517 (1) 0.501
EVT 0.554 (1) 0.460 (1) 0.517 (1) 0.510

This table shows the backtesting results of the 10 best models with regard to the whole time series (see
Table 3.4) on a confidence level of 95% for all one-year forward time series. puc, pind, and pcc denote the
average p-values from the different tests (unconditional coverage, independence, and conditional cover-
age) over all 18 time series and pav gives the average over those three average p-values. The number in
brackets is the number of times the model is rejected on a 5% significance level. Backtesting is conducted
for the basic model, FHS, and EVT.

with a FHS. This model has the highest p-value for the independence test (pind = 0.635)
and the conditional coverage test (pcc = 0.593) and returns the greatest average p-value
(pav = 0.583). Only the p-value of the unconditional coverage test is lower than that
of the other models, but it is still high (punc = 0.522). On a 5% significance level, this
model has to be rejected only once for the unconditional coverage test and never for the
other tests, superior results compared to any other model.

Table 3.7 shows the backtesting results on a confidence level of 99%. Compared to the
95% confidence level, the results are mixed: we find some very strong VaR approaches
but also some weak ones, the latter especially when we calculate VaR with the EVT.
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Table 3.7: VaR calculation on a 99% level (one-year forwards)
punc pind pcc pav

ARMA(0,0)-GARCH(1,1)-t basic 0.616 (1) 0.692 (0) 0.669 (0) 0.659
FHS 0.523 (0) 0.556 (0) 0.564 (0) 0.548
EVT 0.134 (7) 0.420 (1) 0.182 (5) 0.245

ARMA(0,0)-GARCH(1,1)-t(ω) basic 0.487 (2) 0.745 (0) 0.623 (0) 0.618
FHS 0.453 (0) 0.588 (0) 0.544 (0) 0.528
EVT 0.087 (9) 0.404 (1) 0.140 (4) 0.210

ARMA(0,0)-EGARCH(1,1)-t basic 0.147 (11) 0.259 (3) 0.113 (11) 0.173
FHS 0.070 (15) 0.208 (6) 0.064 (15) 0.114
EVT 0.015 (16) 0.225 (6) 0.026 (16) 0.089

ARMA(0,0)-GJR(1,1)-t basic 0.499 (1) 0.573 (3) 0.555 (3) 0.542
FHS 0.419 (1) 0.538 (2) 0.514 (3) 0.490
EVT 0.058 (13) 0.392 (2) 0.106 (10) 0.185

ARMA(0,0)-GARCH(2,1)-t basic 0.606 (1) 0.688 (0) 0.691 (0) 0.661
FHS 0.587 (0) 0.592 (0) 0.651 (0) 0.610
EVT 0.120 (7) 0.441 (1) 0.200 (5) 0.254

ARMA(0,1)-GARCH(1,1)-t basic 0.568 (1) 0.702 (0) 0.656 (0) 0.642
FHS 0.464 (3) 0.562 (0) 0.548 (1) 0.524
EVT 0.108 (10) 0.390 (1) 0.157 (7) 0.219

ARMA(1,0)-GARCH(1,1)-t basic 0.599 (1) 0.730 (0) 0.688 (0) 0.672
FHS 0.422 (4) 0.529 (0) 0.505 (2) 0.485
EVT 0.113 (9) 0.404 (1) 0.159 (6) 0.225

ARMA(0,0)-EGARCH(1,1)-t(ω) basic 0.221 (12) 0.390 (2) 0.218 (10) 0.276
FHS 0.125 (12) 0.224 (8) 0.155 (13) 0.168
EVT 0.014 (16) 0.198 (5) 0.026 (16) 0.079

ARMA(0,0)-GARCH(1,2)-t basic 0.573 (0) 0.694 (0) 0.667 (0) 0.645
FHS 0.456 (4) 0.562 (1) 0.566 (3) 0.528
EVT 0.098 (10) 0.396 (1) 0.168 (9) 0.220

ARMA(0,0)-GJR(1,1)-t(ω) basic 0.474 (1) 0.523 (4) 0.522 (2) 0.506
FHS 0.380 (1) 0.482 (2) 0.433 (3) 0.432
EVT 0.074 (13) 0.356 (2) 0.110 (12) 0.180

This table shows the backtesting results of the 10 best models with regard to the whole time series (see
Table 3.4) on a confidence level of 99% for all one-year forward time series. punc, pind, and pcc denote the
average p-values from the different tests (unconditional coverage, independence, and conditional cover-
age) over all 18 time series and pav gives the average over those three average p-values. The number in
brackets is the number of times the model is rejected on a 5% significance level. Backtesting is conducted
for the basic model, FHS, and EVT.

This could be due to using 100 values to find the 99% VaR, which is not optimum
because it means expecting only one VaR violation when using only 10 values for the
parametrization. Because it is difficult, in general, for any model to hit exactly one
violation in 100 data points, as the 99% confidence level demands, we do not attach
much importance to punc. Again, we favor an ARMA(1,0)-GARCH(1,1)-t framework,
but this time it is our basic model. It has the highest average p-value (pav = 0.672),
highest p-value for the independence test (pind = 0.730), and second highest p-value for
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the conditional coverage test (pcc = 0.688). As stated, we are not overly concerned that
punc is not the best value for this setting, but it is still very high (punc = 0.599).5

The results for the one-quarter forward time series of the 10 best models from Table
3.5 can be found in Table A.2 and A.3 in the appendix. To summarize, we again find
that an ARMA(1,0)-GARCH(1,1)-t in combination with a FHS is the best model for cal-
culating VaR on a confidence level of 95%. At the 99% level, many models return strong
results, among them the same FHS as for the 95% level. Hence, if a risk manager wants
to use only one model for all contracts and confidence levels, we recommend the FHS
with ARMA(1,0)-GARCH(1,1)-t. Note that this result differs from the result in Subsec-
tion 3.3.4 where we fit the whole time series. Although when we fit the whole time
series an autoregressive modeling of the mean is negligible, we find that considering
these effects improves downside risk management in terms of VaR.

3.5 Conclusion

In this chapter, based on daily data, we calculate the risk of 18 one-year and 28 one-
quarter forward return time series from the electricity exchange NASDAQ OMX Com-
modities Europe. In contrast to other work on this topic, we use real-world data in-
stead of synthetic ones. First, we find excess kurtosis in the data, whereas skewness is
negligible. Because of autocorrelation in the returns as well as in the squared returns,
we propose using ARMA-GARCH frameworks. When fitting the whole distribution,
a simple GARCH(1,1) model with t distributed innovations provides the best average
fit in terms of the BIC for both types of forwards. Hence, the question is whether an
ARMA modeling of the mean is necessary. Next, we use a rolling-window approach to
calculate VaR for confidence levels of 95% and 99% and backtest our computations. We
find that considering ARMA effects improves downside risk management in terms of
VaR and recommend employing a FHS with an ARMA(1,0)-GARCH(1,1)-t model for
both types of forwards.

5At this stage, we consider only the downside risk of a forward contract, which is important for the buyer.
From the seller’s perspective, we need to look at the right side of the distribution because this is the
downside-risk-relevant side for sellers. It is straightforward that we find similar results when we calculate
the VaR for this side of the distribution because the distribution of returns is symmetric. The results are
not given here.
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4 A simple NIG-type approach to calculate
Value at Risk based on Realized
Moments

This chapter is based on the corresponding article by Lau (2015).

4.1 Introduction

Despite well-known drawbacks, such as the lack of subadditivity (cf. Artzner 1999),
value at risk (VaR) is still the dominant method in risk management for estimating
downside risk. Assuming a certain level of confidence 1 − θ, V aR(θ)t+1 of an asset is
defined as the number such that the probability that the asset’s next day return rt+1 will
be below−V aR(θ)t+1 is θ: Pr(rt+1 < −V aR(θ)t+1|Ωt) = θ, where Ωt is the information
set available in t. From a statistical point of view, VaR is closely related to the quan-
tile function F−1 of a distribution of returns: V aR(θ)t+1 = −F−1(θ). Although there
are numerous and sophisticated methods for calculating VaR, its computation is often
based on simple concepts such as Gaussian assumptions or historical simulations (cf.
Pritsker 2006). The inherent complexity of the more accurate models is at least one rea-
son for their infrequent use, with the result that an incorrect (but clear) VaR method is
employed. Another, more objective, explanation for avoidance of using the more com-
plex models is model risk, that is, the fewer the parameters employed in an estimate,
the less there is to go wrong. Nevertheless, strong empirical evidence from as early
as Mandelbrot (1963) argues that the Gaussian distribution is unable to correctly cap-
ture the characteristics of financial returns. Gaussian distributions cannot reproduce
stylized facts (cf. Cont 2001) of financial time series such as autocorrelation and lep-
tokurtosis, which is particularly problematic when dealing with the distribution tails
that typically occur in a VaR.

The end goal of VaR is to determine the regulatory capital required to cover unex-
pected losses resulting from risks. These regulatory requirements are set out in Basel
II/III for banks and in Solvency II for insurance. Because equity is expensive, it is desir-
able to assign only that amount of it that is necessary (but sufficient) to cover losses. To
calculate this amount, we need, essentially, a model that is accurate; better yet would be
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one that also keeps the VaR as low as possible. This chapter offers an alternative method
for calculating VaR that is simple yet comprehensive, keeps the VaR comparably small,
and works even in volatile periods. Based on intraday data from the Deutsche Aktien
Index (DAX), we compute forecasts for the empirical moments and use them to param-
eterize the normal inverse Gaussian (NIG) distribution within a method of moments.
Once this is complete, obtaining the VaR is easy.

Recent efforts to calculate VaR utilize parametric models based on the theory of
realized variance (RV). RV (cf. Andersen and Bollerslev 1998; Andersen et al. 2003;
Barndorff-Nielsen and Shephard 2002) is defined as the sum of squared intraday re-
turns over a specified time interval, for example, one day.1 RV is a reliable model-free
proxy for the actual (non-observable) variance. To calculate VaR within a given finan-
cial return time series, a standard procedure is to include RV as an external variable in
an ARCH process so as to model the variance more accurately. This concept, known
as GARCH-X, can be traced back to Engle (2002b). Shephard and Sheppard (2010)
state that the squared return term in a GARCH-X model has only marginal explanatory
power. The authors thus introduce a high-frequency-based volatility (HEAVY) model
that calculates tomorrow’s variance only as a function of today’s variance and today’s
realized variance. Furthermore, Hansen et al. (2012) formulate the realized GARCH as
a generalization of the GARCH-X. Nevertheless, there is some disagreement in the lit-
erature as to whether RV actually improves VaR calculations. Giot and Laurent (2004)
compare VaR calculations with ARCH models and RV models and find no improve-
ment in the latter. Clements et al. (2008) argue that models incorporating RV improve
VaR calculations in the case of currencies. Beltratti and Morana (2005) investigate long-
memory models with high-frequency data and identify superior performance.

A smaller strand of the literature takes a different approach and allows higher mo-
ments to have a time-varying property. Time-varying moments are not a new concept
(cf. Turtle et al. 1994; Bond and Patel 2003), but Brooks et al. (2005) are the first to build
a structured framework for a time-varying kurtosis and provide applications for differ-
ent daily financial returns. Incorporating realized skewness and kurtosis in models is
a straightforward expansion of RV, according to Amaya et al. (2013), who use both to
predict stock returns. As for time-varying moments, Liu (2012) applies the Cornish and
Fisher (1937) (CF) approximation to standardized realized higher moments when cal-
culating VaR. In this chapter, we use the flexible NIG distribution (cf. Barndorff-Nielsen
1997), which provides clearly better results in terms of backtesting.

In Section 4.2 of this chapter, we derive the theoretical background and build the
model. Section 4.3 provides a description and analysis of the data. We then compute,

1The term realized volatility, which is more common in the literature, is merely the positive square root of
the realized variance.
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backtest, and compare the VaR to the results of other VaR methodologies. The conclud-
ing section discusses possible extensions of the presented method.

4.2 Building the Model

4.2.1 Standardized Realized Moments

The availability of intraday data has resulted in this information being integrated in
several recent models. Along with meeting the statistical demand of using all available
data, RV can also serve as a model-free proxy for the actual (non-observable) variance.
pt,i is the ith price on day t. The ith intraday log return on day t is

rt,i = ln pt,i − ln pt,i−1. (4.1)

The realized variance is simply calculated as the sum over N squared returns:

RVt =
N∑
i=1

r2
t,i. (4.2)

With regard to the ordinary moments, generalizing this concept to realized moments
yields:

RM(or)t =
N∑
i=1

rort,i (4.3)

with RM(or) the realized moment of order or = 1, 2, 3, .... Obviously, choosing or = 2
results in RVt.

In Subsection 4.2.3, we calculate the parameters of a distribution with a method
of moments procedure, for which we need standardized rather than unstandardized
moments. The term standardized realized moments refers to realized variance, realized
skewness, and realized kurtosis, the latter two of which are standardized by definition.
Amaya et al. (2013) define standardized realized skewness and kurtosis as follows:

RSt =
√
N
∑N
i=1 r

3
t,i

RV
3/2
t

(4.4)

and

RKt =
N
∑N
i=1 r

4
t,i

RV 2
t

. (4.5)

The purpose of dividing the realized 3rd (4th) moment by RV
3/2
t (RV 2

t ) is to achieve
standardization similar to that of ordinary moments. Scaling by

√
N (N ) ensures that

RSt (RKt) is on a daily level.
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4.2.2 Forecasting realized moments

In Subsection 4.2.1, we calculate only today’s realized moments. To compute the VaR
for the next day, we need accurate forecasts of tomorrow’s realized moments. Ever
since the seminal work of Engle (1982) and Engle and Bollerslev (1986), it has become
standard procedure in financial time series analysis to use a time-varying variance. The
idea of constructing a time-varying framework for the kurtosis to allow for separate
behavior dates back to Brooks et al. (2005). A simple but nonetheless feasible updating
scheme is the exponentially weighted moving average (EWMA) adapted by J.P. Morgan
and Reuters (1996) to the variance of the daily return rt:

σ2
t+1 = λtσ

2
t + (1− λt)r2

t . (4.6)

Given yesterday’s variance forecast for today σ2
t and today’s squared return r2

t , the
variance forecast for tomorrow is σ2

t+1. 0 < λt < 1 is the decay factor. To begin with, we
use RVt instead of r2

t in Equation (4.6) because RVt is a better proxy for the recent vari-
ance than is the squared return. Applying and extending the EWMA for the remaining
higher realized moments is straightforward. According to Liu (2012),

M(or)t+1 = λor,tM(or)t + (1− λor,t)RM(or)t (4.7)

with M(or)t (M(or)t+1) as yesterday’s (today’s) forecast for the realized moment of
order or for today (tomorrow) and RM(or)t as today’s realized moment of order or,
although we are primarily interested in or = 2, 3, 4. As for λor,t, we assess two different
strategies. (1) λor,t is fixed to λ = 0.94 for all ors and ts as suggested by RiskMetrics
for the variance. If this strategy is undertaken, note that λ is not estimated as in other
empirical work and the amount of data needed for the calculation decreases dramati-
cally. (2) Find the optimal λor,ts for each equation or in every t by minimizing average
squared errors using the information set available up to and including time t.2

After forecasts for the realized moments are obtained, we use them to compute fore-
casts for the standardized realized moments by simply replacing the sums (

∑N
i=1 r

or
t,i) in

Equations (4.2), (4.4), and (4.5) with the forecasts for the realized moments (M(or)t+1).
We denote those forecasts as vt+1 (variance), st+1 (skewness), and kt+1 (kurtosis). Fi-
nally, we apply them to parameterize a distribution that accounts for higher-order mo-
ments. The NIG distribution is described in the next subsection.

2To guarantee at least some persistence in the variance process, λor,t can be bounded above 0.5. However,
in this study we use 0 < λor,t < 1.
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4.2.3 Normal Inverse Gaussian Distribution

For a distribution to be appropriate for our purposes, it must fulfill the following crite-
ria:

1. have broad acceptance in the finance literature,

2. exhibit higher moments, and

3. provide a simple, closed method of moments estimation.

The NIG distribution meets all three requirements. Because of its flexibility, the NIG
distribution is often used in a wide range of financial applications. Forsberg and Boller-
slev (2002) formulate a GARCH process with NIG innovations to model daily Euro/U.S.
dollar exchange rates. Venter and de Jongh (2002) compare VaR based on the NIG distri-
bution with extreme value theory-VaR and find in favor of the former. Chen et al. (2005)
calculate VaR with the NIG distribution for exchange rate and German bank portfolio
data using adaptive volatility estimation and show a perfect fit for their model. Chen
and Lu (2012) investigate simulated and real-world data and find that NIG-based VaR
estimation is robust and accurate for a forecasting horizon of one day. (For other ap-
plications, see, e.g., Lillestøl 2000; Aas et al. 2006; Eriksson et al. 2009.) Using a NIG
distribution instead of a Gaussian distribution results in a more reasonable modeling
of financial returns and therefore contributes to a more realistic VaR calculation.

The NIG distribution (cf., e.g., Paolella 2007) has four parameters: steepness (α),
asymmetry (β), scale (δ) and location (µ). The density can be written as

fNIG(x;α, β, δ, µ) =
αδ exp

(
δ
√
α2 − β2 + β(x− µ)

)
π
√
δ2 + (x− µ)2 K1(α

√
δ2 + (x− µ)2) (4.8)

with x ∈ R, α > 0, 0 ≤ |β| < α, δ > 0, µ ∈ R, and K1 as the modified Bessel function
of the third type with index one. A smaller value of α implies a fat-tailed density. An
increasing value of |β| yields skewness. Given the parameters of the NIG distribution,
it is possible to calculate the central moments as follows (cf. Kalemanova et al. 2007)

m = µ+ δ
β

γ
, (4.9)

v = δ
α2

γ3 , (4.10)

s = 3 β

α
√
δγ
, and (4.11)

k = 3 + 3
(

1 + 4
(
β

α

)2) 1
δγ
. (4.12)
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Parameter estimation of the NIG distribution is typically performed with maximum
likelihood, but this is not always feasible because of the complexity of the likelihood (cf.
Karlis 2002). By solving Equations (4.9)–(4.12) for the parameters, we obtain a closed
analytical method of moments solution under rather fair conditions3 (k − 5

3s
2 − 3 > 0

and 3k − 4s2 − 9 > 0)4:

µ̂ = m− 3s
√
v

3k − 4s2 − 9 , (4.13)

δ̂ =
33/2

√
v(k − 5

3s
2 − 3)

3k − 4s2 − 9 , (4.14)

β̂ = s
√
v(k − 5

3s
2 − 3)

, and (4.15)

α̂ =
√

3k − 4s2 − 9
√
v(k − 5

3s
2 − 3)

. (4.16)

When considering short time horizons such as daily, the mean of returns is dominated
by the variance. Therefore, rejection of a zero mean return hypothesis is not possible
(cf. Christoffersen 2003). Thus, the mean m is set to 0.

4.2.4 Value at Risk

Once we have the forecast for the standardized realized moments (vt+1, st+1, and kt+1),
we parameterize the NIG distribution with Equations (4.13)–(4.16). In this way, we
estimate the future return distribution for t+1. On a confidence level (1 − θ), the VaR
for the next day is

V aRNIG(θ)t+1 = −F−1
NIG(θ; α̂, β̂, δ̂, µ̂) (4.17)

where F−1
NIG(θ; α̂, β̂, δ̂, µ̂) is the θ-quantile of the NIG distribution. This model is called

RM-EWMA-NIG. In general, the approach described in this chapter can incorporate
any distribution as long as the method of moments can be feasibly implemented.

As in Liu (2012), we can expand the Gaussian distribution to account for higher mo-
ments by utilizing the CF approximation (cf. Cornish and Fisher 1937). In this case, the
unknown quantile z̃θ can be approximated as

z̃θ ≈ zθ + 1
6(z2

θ − 1)st+1 + 1
24(z3

θ − 3zθ)(kt+1 − 3)− 1
36(2z3

θ − 5zθ)s2
t+1 (4.18)

3The conditions are rather fair because they simply demand that returns should not be much skewed while
their kurtosis is low. However, later we find that high third moments tend to coincide with high fourth
moments (see Figure 4.1).

4Ralf Werner offers a free NIG Toolbox that includes this computation. Eriksson et al. (2009) provide a
solution for the method of moments that differs slightly from the one used here. This difference is simply
a result of using excess kurtosis instead of kurtosis.
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with zθ the θ-quantile of the standard normal distribution; consequently,

V aRCF (θ)t+1 = −z̃θ
√
vt+1. (4.19)

This model is referred to as RM-EWMA-CF. Note that neither procedure needs a com-
plex numerical optimization algorithm.

We compare the models with one semi-parametric and two parametric models. For
this purpose, we choose models that are easy to estimate but also allow higher moments
and a time-varying variance. Based on the GARCH-X of Engle (2002b), Shephard and
Sheppard (2010) drop the squared return term because it had only marginal explanatory
power. They formulate the HEAVY model as

vt+1 = ω + αHRVt + βHvt (4.20)

with ω, αH ≥ 0 and βH ∈ [0, 1). The second part of their model provides a specification
for RVt+1 to calculate multistep-ahead forecasts, which is not required in our case.5 We
calculate

V aRHEAV Y (θ)t+1 = −tθ,ν
√
vt+1 (4.21)

where tθ,ν is the θ-quantile of the t-distribution with ν degrees of freedom.
We are interested in discovering whether using intraday data actually improves the

VaR. Thus, the fourth model under consideration is a GARCH(1,1) framework with
t-distributed residuals and daily data (T-GARCH). We replace vt+1 in Equation (4.21)
with the GARCH forecast to calculate the VaR. A filtered historical simulation (cf. Hull
and White 1998; Barone-Adesi et al. 1999) that includes the same T-GARCH process is
the final and most complex alternative (T-FHS). The VaR is calculated as in Equation
(4.21), but we use the N · (1 − θ)th value from the list of the descending ordered stan-
dardized returns instead of tθ,ν . This model produces very good results (cf. Kuester
et al. 2006). However, in their analysis, Kuester et al. (2006) assume a skewed t instead
of a t-distributed innovation process in the GARCH model. Since it is well established
that heavy tails are far more crucial in financial modeling than skewness, we refrain
from modeling skewness. We use the data from 250 (1, 000) days to compute the RV
(daily) models. When we fix λ to 0.94, the data for one day are sufficient for calculating
the VaR for the RM-EWMA models.

Using intraday data, by definition, means that there is a great deal of data to be
processed. What would happen if we instead use end-of-day data in the RM-EWMA
models? That is, we could simply replace the realized moments in Equation (4.7) by
the daily end-of-day return to the power of the order of the corresponding moment.
However, this approach returns very poor p-values in the evaluation process. Squared

5Kevin Sheppard’s website offers the MFE Toolbox, which includes the code for the HEAVY model.
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returns, for instance, tend to be a very noisy indicator of variance (cf. Andersen et al.
2001) and, consequently, computed forecasts will be not reliable. RV – on the other
hand – is a reliable proxy for the actual variance and is, therefore, the better choice.

4.3 Empirical Analysis

4.3.1 Data

This analysis uses intraday data for the DAX from January 2, 2006 through December
30, 2011.6 Note that this time span includes the financial crisis, which was an extremely
volatile period. On a typical working day the first (final) value is fixed at 9 a.m. (5:45
p.m.); no trading occurs on weekends or public holidays. The time series provides one
unique value for every second.

To simplify the calculation, we abstain from using an elaborate sampling algorithm
(see Zhang et al. 2005). As the sampling interval tends toward zero (due to market
microstructure noise), the RV is a biased estimator of variance. We sample every 300th

value (this corresponds to sampling every 5 minutes).7

The unconditional higher-order moments of the end-of-day data show minimal skew-
ness (0.1006) and considerable kurtosis (8.9781), which is typical for financial time se-
ries. This supports the use of sophisticated distributions, such as the NIG distribution,
that exhibit higher moments to model the data. To decide whether to choose a con-
ditional or unconditional model, we must determine if there is autocorrelation in the
data. Figure 4.1 shows the realized moments for the entire period. All three panels are
dominated by fluctuations at the end of 2008. The figure nicely reveals how peaks in the
realized variance coincide with peaks in both other realized moments. Autocorrelation
is obviously an issue for the realized variance and 4th moment, but no concrete conclu-
sion can be drawn as to whether autocorrelation is present in the realized 3rd moment,
thus necessitating statistical tests. An analysis of the ACFs and PACFs reveals that the
realized variance exhibits strong autocorrelation, while we find weak (considerable)
autocorrelation in the realized 3rd (4th) moment.8

Table 4.1 shows the p-values of Ljung-Box and Breusch-Godfrey tests with the null
hypothesis of no autocorrelation in the realized mean9, realized variance, and realized
3rd and 4th moment. For the realized mean, the Breusch-Godfrey test clearly suggests
acceptance of the null hypothesis for the first three lags. The p-value of the Ljung-Box
test is 0.0476, indicating that the null hypothesis is barely rejected, assuming a signif-

6The data are provided by the Karlsruhe Institute of Technology (KIT).
7This sampling frequency is in accordance with the literature (cf. Andersen and Bollerslev 1998). However,
the results are robust to variations in sampling frequency.

8ACFs and PACFs are provided in the appendix.
9This is the sum over all sampled returns of one day.
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Figure 4.1: Realized moments
The figure shows realized variance, realized 3rd, and realized 4th moment (all on a log scale y-axis for
clarity). Corresponding formulas are given in Equation (4.3).

icance level of 0.05. However, due to the clear result from the Breusch-Godfrey test
and based on the extant literature, we abandon modeling the realized mean and subse-
quently assume it to be zero (see Subsection 4.2.3). For all other realized moments, the
null hypothesis is rejected at a significance level of 0.05 for all tests. This result differs
from Liu (2012), who finds no evidence of autocorrelation in the realized 3rd moment
when analyzing the intraday data of IBM. In any event, modeling conditional skew-
ness in this instance comes at no additional cost, in contrast to ARCH processes, where
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4 A simple NIG-type approach to calculate Value at Risk based on Realized Moments

Table 4.1: Tests on autocorrelation in realized moments
Breusch-Godfrey

LB lag 1 lag 2 lag 3

Realized mean 0.0476 0.2955 0.4882 0.6997
Realized variance 0.0000 0.0000 0.0000 0.0000
RM(3) 0.0000 0.0050 0.0157 0.0000
RM(4) 0.0000 0.0000 0.0000 0.0000

The table shows p-values of the Ljung-Box (LB) test and Breusch-Godfrey test with lags from 1 to 3 under
the null hypothesis of no autocorrelation in the realized moments.

additional parameters always increase the difficulty of estimation. In summary, auto-
correlation is a crucial feature of our data. We consider this property by including the
EWMA approach (see Subsection 4.2.2) in our model to compute conditional forecasts
for the realized moments. In the event the null hypothesis is accepted, we would need
to use an unconditional rather than a conditional model.

4.3.2 Backtesting

We calculate the VaR for the next day according to Equations (4.17), (4.19), and (4.21)
for all models. If the next day’s return violates this VaR, 1 (otherwise 0) is noted. This
procedure is carried out for the full time series so as to generate a hitting sequence.

This chapter employs a state-of-the-art technique for backtesting VaR violations. For
a detailed description of the following three tests, please refer to Christoffersen (2003).
T0 (T1) is the number of 0s (1s) and T = T0 + T1. An unconditional coverage (uc) test is
initially performed to determine if the expected fraction of VaR violations θ differs from
the realized fraction θreal = T1/T . Under the null hypothesis θ = θreal the likelihood
ratio test-statistic

LRuc = −2 ln

 (1− θ)T0θT1(
T0
T

)T0 (T1
T

)T1

 (4.22)

is asymptotically χ2 distributed with one degree of freedom and compared to a critical
value of a given significance level. However, the uc test contains no information on
a clustering of VaR violations. To check for such dependence in the violations, we
conduct the independence (ind) test. Let Tij , i, j = 0, 1 be the number of observations
where a j follows an i. Under the null hypothesis of independence, the likelihood ratio
test statistic is

LRind = −2 ln


(
T0
T

)T0 (T1
T

)T1

(
T00

T00+T01

)T00 ( T01
T00+T01

)T01 ( T10
T10+T11

)T10 ( T11
T10+T11

)T11

 . (4.23)
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4.3 Empirical Analysis

Again, the statistic is asymptotically χ2 distributed with one degree of freedom. To
account for both demands – correct fraction and independence – simultaneously, the
conditional coverage (cc) test combines both of the above tests:

LRcc = LRuc + LRind. (4.24)

Consequently, its test statistic is χ2 distributed with two degrees of freedom.
The fourth backtest is the dynamic quantile (dq) test of Engle and Manganelli (2004)10.

Given the VaR confidence level 1 − θ, we redefine the hitting sequence (see above) by
subtracting θ from each item of the sequence. The expected value of this modified hit-
ting sequence, as well as its conditional expectation given any information known at
time t, must be zero. Moreover, the modified hitting sequence must be uncorrelated
with its lagged values and lagged VaRs. If these conditions are satisfied, the VaR val-
uations are uncorrelated and will have the correct fraction of violations. To verify this,
we set up a regression framework for the modified hitting sequence and include the
last four values of both explanatory variables. Under the null hypothesis that all coeffi-
cients of this regression are zero, we can then construct a likelihood ratio test that is χ2

distributed with six degrees of freedom.

4.3.3 Results

Even a simple Gaussian assumption will suffice to calculate VaR for lower confidence
levels (cf. Jorion 2007). This is because, even though financial returns are leptokurtic,
cdfs of empirical and Gaussian distributions tend to intersect around their 0.05 quantile
(this corresponds to the VaR on a 95% confidence level). Therefore, this chapter focuses
on higher confidence levels. Table 4.2 shows the results of backtests at confidence levels
of (1 − θ) = 0.99, 0.995, and 0.999. p-values are given for uc, ind, cc, and dq tests with
the null hypothesis that the VaR model cannot be rejected.

For the 0.99 confidence level, the T-FHS and the RM-EWMA-NIG prove to be the best
models. θreal is close to θ, resulting in high p-values for the uc test (puc = 0.6101 and
puc = 0.5417). Both models pass the ind, cc, and dq tests with high p-values not less than
0.5. The third best is the HEAVY model, which shows high p-values, except for the dq
test (pdq = 0.2347). Nevertheless, pdq is still well above a significance level of 0.1. The
HEAVY model has the highest p-value for the uc test (puc = 0.7334) because it meets
the expected fraction of violations very well (θreal = 0.011). At the significance level of
0.1, we must reject all other models for at least one test. The RM-EWMA-NIG model,
where we fix λ, does surprisingly well. Given a 0.05 significance level, we cannot reject
the model. The RM-EWMA-CF model fails the dq test (pdq = 0.0007). When we fix λ,
the model passes the dq test, but still has to be rejected due to weak results in the uc

10Simone Manganelli’s website offers a code for the dq test.
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4 A simple NIG-type approach to calculate Value at Risk based on Realized Moments

Table 4.2: Backtests on VaR calculations with confidence levels of 0.99, 0.995, and
0.999

θreal θ puc pind pcc pdq

0.99
T-GARCH 0.0055 0.010 0.0759 0.7812 0.1992 0.7932
T-FHS 0.0086 0.010 0.6101 0.6620 0.7981 0.9695
HEAVY 0.0110 0.010 0.7334 0.5774 0.8080 0.2347
RM-EWMA-CFλ=0.94 0.0023 0.010 0.0009 0.9054 0.0042 0.1555
RM-EWMA-NIGλ=0.94 0.0078 0.010 0.4180 0.6911 0.6658 0.0572
RM-EWMA-CF 0.0078 0.010 0.4180 0.6911 0.6658 0.0007
RM-EWMA-NIG 0.0117 0.010 0.5417 0.5504 0.6945 0.9448

0.995
T-GARCH 0.0023 0.005 0.1339 0.9054 0.3229 0.9233
T-FHS 0.0039 0.005 0.5678 0.8428 0.8329 0.9942
HEAVY 0.0070 0.005 0.3286 0.7208 0.5821 0.8787
RM-EWMA-CFλ=0.94 0.0016 0.005 0.0418 0.9369 0.1257 0.5936
RM-EWMA-NIGλ=0.94 0.0039 0.005 0.5678 0.8428 0.8329 0.9531
RM-EWMA-CF 0.0047 0.005 0.8774 0.8119 0.9606 0.0000
RM-EWMA-NIG 0.0039 0.005 0.5678 0.8428 0.8329 0.9977

0.999
T-GARCH 0.0016 0.001 0.5547 0.9369 0.8373 0.8131
T-FHS 0.0016 0.001 0.5547 0.9369 0.8373 0.6617
HEAVY 0.0016 0.001 0.5547 0.9369 0.8373 0.9186
RM-EWMA-CFλ=0.94 0.0008 0.001 0.7987 0.9684 0.9672 0.9989
RM-EWMA-NIGλ=0.94 0.0016 0.001 0.5547 0.9369 0.8373 0.8051
RM-EWMA-CF 0.0063 0.001 0.0001 0.7508 0.0003 0.0000
RM-EWMA-NIG 0.0008 0.001 0.7987 0.9684 0.9672 0.9985

The table shows backtesting results for the T-GARCH, T-FHS, HEAVY, RM-EWMA-CF, and RM-EWMA-
NIG models assuming confidence levels of 0.99, 0.995, and 0.999. The subscript λ = 0.94 indicates that
the decay factor is fixed. θreal (θ) represents the realized (expected) fraction of VaR violations. p-values
are given for unconditional coverage (uc), independence (ind), conditional coverage (cc), and dynamic
quantile (dq) tests with the null hypothesis that the VaR model cannot be rejected: p ≤ 0.01 (dark gray),
0.01 < p ≤ 0.05 (medium gray), and 0.05 < p ≤ 0.1 (light gray).

and cc tests (puc = 0.0009 and pcc = 0.0042). The T-GARCH is only average because it
misses the expected fraction of violations (θreal = 0.0055).

The results are not significantly different at the 0.995 confidence level. The T-FHS
and the RM-EWMA-NIG models are still the best, but the RM-EWMA-NIG model with
fixed λ is not too far behind. All three models pass all tests with high p-values of not less
than 0.5. The HEAVY and T-GARCH models also perform better at this level, though
the former is still superior. The performance of the RM-EWMA-CF models improves,
especially the version with fixed λ, but it is nonetheless still weak. Not surprisingly,
because fewer violations are expected and occur, across all models, the p-values of the
ind test (and in most instances for the dq test) are high.

At the 0.999 confidence level, all analyzed models do well. Because of hitting θ prop-
erly and violations occurring even less frequently, p-values are higher than 0.5 across
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4.4 Conclusion

all models – with one exception. The RM-EWMA-CF model fails three of four tests at a
0.01 significance level because it clearly misses the expected fraction of violations.

In summary, three models cannot be rejected at the 0.1 significance level for all tests:
the T-FHS, the RM-EWMA-NIG, and the HEAVY models. The results of the RM-
EWMA-NIG model with fixed λ are remarkable, considering that we use no optimiza-
tion algorithm for the variance.

Figure 4.2 shows the returns and the corresponding VaRs for confidence levels of
0.99, 0.995, and 0.999 for RM-EWMA-NIG and T-FHS, which are the superior models.
In general, both models show a similar pattern and adjust rapidly to changes in volatil-
ity. The VaR of RM-EWMA-NIG tends to respond more sensitively to massive price
fluctuations and appears slightly more “jumpy”. This is due to the non-mean-reverting
nature of the EWMA, in contrast to the GARCH models. From the perspective of the
requirement that a VaR should be as high as necessary but as low as possible, the VaR
of RM-EWMA-NIG recovers much faster from shocks, while the VaR of T-FHS tends to
remain at a high level. Particularly at the 0.999 confidence levels, both models show a
conspicuously different pattern in the last half of 2011, during which there was a long
period of high price fluctuation. The VaR of T-FHS during this period looks more jumpy
and stays at a high level, whereas the VaR of RM-EWMA-NIG has one high amplitude
and decreases more or less constantly to a normal level, which appears to be the more
appropriate behavior. In general, the VaR of T-FHS seems to show higher values than
the VaR of RM-EWMA-NIG. To quantify this visual impression, we calculate the aver-
age VaR as the average over all VaRs. For the important confidence levels of 0.99 and
0.999, the average VaR is much lower for the RM-EWMA-NIG (0.03663 and 0.07107)
compared to the T-FHS (0.04008 and 0.09038); that is, utilizing the T-FHS would re-
quire too much equity to back up risk compared to the RM-EWMA-NIG.

4.4 Conclusion

Gaussian distributions do not adequately capture the behavior of financial returns, es-
pecially when it comes to the tails of a distribution, which is the important region in
risk management and for a VaR. The fit is poor because financial returns exhibit kurto-
sis and occur in volatility clusters. The literature contains many methods designed to
take these stylized facts into account, but the models are often complex and sometimes
barely feasible. This chapter presents an alternative approach for VaR calculation based
on realized moments that even works in extremely volatile periods. We compute fore-
casts for the realized moments with an EWMA and use them to parameterize the NIG
distribution in a method of moments.

Using this technique, we calculate the VaR for the DAX at confidence levels of 0.99,
0.995, and 0.999. Although our alternative VaR methodology is comparatively simple,
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4.4 Conclusion

our results, in terms of backtesting, stack up well against the long-established T-FHS.
Even if we fix the decay factor of the EWMA, and thus simplify the presented method
by considerably reducing the amount of data required, the results are still convincing.
The VaR is closely linked to the amount of (equity) capital a financial company must
provide. In light of the maxim that a VaR should be as high as necessary but as low
as possible, the RM-EWMA-NIG model is the best choice for its calculation because its
average VaR is lower than the one from the T-FHS.

Although the presented approach already shows very interesting results, there are
a few extensions that might further improve it. Replacing the simple EWMA forecast
for the moments with a more sophisticated realized GARCH (cf. Hansen et al. 2012),
HEAVY, or Corsi (2009) type forecast will allow mean reversion for the moments and
enable the derivation of multistep-ahead forecasts. But doing so will, of course, require
more complex estimation techniques. Although the NIG distribution is widely used
for financial data, we could use other distributions that meet the criteria outlined in
Subsection 4.2.3. For example, one possible second candidate is the tempered stable
distribution. A convenient feature of the method presented in this chapter is that it
can encompass a portfolio point of view with realized co-variance, co-skewness, and
co-kurtosis.
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A Appendix Chapter 3

Table A.1: Length of one-year and one-quarter forward time series
one-year Start End Obs. one-quarter Start End Obs.

FWYR-99 10/27/1997 12/28/1998 291 ENOQ1-06 01/02/2004 12/30/2005 502
FWYR-00 10/28/1997 12/28/1999 540 ENOQ2-06 01/02/2004 03/31/2006 567
FWYR-01 09/07/1998 12/27/2000 578 ENOQ3-06 01/02/2004 06/30/2006 625
FWYR-02 03/01/1999 12/21/2001 706 ENOQ4-06 01/02/2004 09/29/2006 690
FWYR-03 01/17/2000 12/23/2002 734 ENOQ1-07 03/01/2005 12/29/2006 502
FWYR-04 01/02/2001 12/23/2003 742 ENOQ2-07 03/01/2005 03/30/2007 566
FWYR-05 01/02/2002 12/28/2004 745 ENOQ3-07 03/01/2005 06/29/2007 625
ENOYR-06 01/02/2003 12/28/2005 748 ENOQ4-07 03/01/2005 09/28/2007 690
ENOYR-07 01/02/2004 12/27/2006 751 ENOQ1-08 01/02/2006 12/28/2007 501
ENOYR-08 01/03/2005 12/21/2007 750 ENOQ2-08 01/02/2006 03/31/2008 562
ENOYR-09 01/02/2006 12/23/2008 751 ENOQ3-08 01/02/2006 06/30/2008 625
ENOYR-10 06/15/2006 12/28/2009 891 ENOQ4-08 01/02/2006 09/30/2008 691
ENOYR-11 06/15/2006 12/28/2010 1,142 ENOQ1-09 01/02/2007 12/30/2008 502
ENOYR-12 01/02/2007 12/28/2011 1,256 ENOQ2-09 01/02/2007 03/31/2009 565
ENOYR-13 01/02/2008 06/06/2012 1,115 ENOQ3-09 01/02/2007 06/30/2009 624
ENOYR-14 01/02/2009 06/06/2012 863 ENOQ4-09 01/02/2007 09/30/2009 690
ENOYR-15 01/04/2010 06/06/2012 612 ENOQ1-10 01/02/2008 12/30/2009 503
ENOYR-16 01/03/2011 06/06/2012 360 ENOQ2-10 01/02/2008 03/31/2010 566

ENOQ3-10 01/02/2008 06/30/2010 625
ENOQ4-10 01/02/2008 09/30/2010 691
ENOQ1-11 01/02/2009 12/30/2010 503
ENOQ2-11 01/02/2009 03/31/2011 567
ENOQ3-11 01/02/2009 06/30/2011 626
ENOQ4-11 01/02/2009 09/30/2011 692
ENOQ1-12 01/04/2010 12/30/2011 505
ENOQ2-12 01/04/2010 03/30/2012 570
ENOQ3-12 01/04/2010 06/06/2012 612
ENOQ4-12 01/04/2010 06/06/2012 612

This table shows start and end dates of all one-year and one-quarter forward time series. Obs. is number
of observations.
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Table A.2: VaR calculation on a 95% level (one-quarter forwards)
punc pind pcc pav

ARMA(0,0)-GARCH(1,1)-t basic 0,390 (6) 0,371 (3) 0,295 (8) 0,352
FHS 0,579 (0) 0,391 (6) 0,446 (3) 0,472
EVT 0,625 (0) 0,379 (5) 0,464 (2) 0,489

ARMA(0,0)-GARCH(1,1)-t(ω) basic 0,455 (6) 0,374 (4) 0,335 (9) 0,388
FHS 0,566 (0) 0,371 (6) 0,439 (5) 0,459
EVT 0,568 (0) 0,398 (7) 0,432 (5) 0,466

ARMA(0,0)-GARCH(2,1)-t basic 0,394 (6) 0,372 (3) 0,300 (8) 0,355
FHS 0,555 (0) 0,394 (5) 0,460 (4) 0,470
EVT 0,569 (0) 0,410 (5) 0,469 (2) 0,483

ARMA(0,0)-GJR(1,1)-t basic 0,448 (6) 0,316 (5) 0,316 (9) 0,360
FHS 0,465 (2) 0,477 (4) 0,458 (4) 0,467
EVT 0,471 (0) 0,529 (3) 0,479 (2) 0,493

ARMA(0,1)-GARCH(1,1)-t basic 0,351 (6) 0,332 (3) 0,259 (8) 0,314
FHS 0,587 (0) 0,443 (4) 0,515 (3) 0,515
EVT 0,514 (0) 0,467 (4) 0,503 (4) 0,495

ARMA(1,0)-GARCH(1,1)-t basic 0,358 (6) 0,358 (3) 0,285 (8) 0,334
FHS 0,610 (0) 0,432 (4) 0,534 (3) 0,526
EVT 0,579 (0) 0,437 (4) 0,513 (2) 0,510

ARMA(0,0)-EGARCH(1,1)-t basic 0,286 (6) 0,273 (8) 0,224 (10) 0,261
FHS 0,099 (16) 0,314 (7) 0,096 (18) 0,170
EVT 0,099 (16) 0,334 (4) 0,107 (16) 0,180

ARMA(0,0)-GARCH(1,2)-t basic 0,366 (7) 0,419 (3) 0,351 (8) 0,379
FHS 0,539 (2) 0,466 (5) 0,464 (2) 0,490
EVT 0,502 (1) 0,472 (4) 0,462 (3) 0,478

ARMA(0,0)-GARCH(2,1)-t(ω) basic 0,475 (6) 0,365 (4) 0,352 (8) 0,397
FHS 0,518 (0) 0,377 (5) 0,418 (4) 0,438
EVT 0,506 (0) 0,424 (5) 0,429 (4) 0,453

ARMA(0,0)-GJR(1,1)-t(ω) basic 0,470 (3) 0,287 (5) 0,315 (6) 0,358
FHS 0,493 (2) 0,389 (3) 0,421 (4) 0,434
EVT 0,507 (2) 0,369 (3) 0,414 (4) 0,430

This table shows the backtesting results of the 10 best models with regard to the whole time series (see
Table 3.5) on a confidence level of 95% for all one-quarter forward time series. punc, pind, and pcc denote
the average p-values from the different tests (unconditional coverage, independence, and conditional cov-
erage) over all 28 time series and pav gives the average over those three average p-values. The number in
brackets is the number of times the model is rejected on a 5% significance level. Backtesting is conducted
for the basic model, FHS, and EVT.
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Table A.3: VaR calculation on a 99% level (one-quarter forwards)
punc pind pcc pav

ARMA(0,0)-GARCH(1,1)-t basic 0,565 (0) 0,666 (2) 0,691 (1) 0,641
FHS 0,603 (0) 0,614 (3) 0,656 (1) 0,624
EVT 0,229 (5) 0,440 (2) 0,296 (3) 0,322

ARMA(0,0)-GARCH(1,1)-t(ω) basic 0,505 (0) 0,653 (2) 0,635 (1) 0,598
FHS 0,662 (0) 0,630 (3) 0,686 (1) 0,659
EVT 0,216 (4) 0,464 (1) 0,289 (3) 0,323

ARMA(0,0)-GARCH(2,1)-t basic 0,609 (0) 0,651 (1) 0,702 (1) 0,654
FHS 0,592 (0) 0,615 (3) 0,665 (1) 0,624
EVT 0,217 (5) 0,444 (2) 0,294 (4) 0,318

ARMA(0,0)-GJR(1,1)-t basic 0,552 (2) 0,539 (6) 0,542 (4) 0,544
FHS 0,525 (2) 0,577 (3) 0,546 (3) 0,549
EVT 0,183 (7) 0,455 (2) 0,236 (7) 0,291

ARMA(0,1)-GARCH(1,1)-t basic 0,521 (0) 0,622 (2) 0,592 (1) 0,578
FHS 0,573 (0) 0,603 (2) 0,628 (1) 0,601
EVT 0,236 (8) 0,451 (2) 0,304 (7) 0,331

ARMA(1,0)-GARCH(1,1)-t basic 0,536 (0) 0,638 (2) 0,610 (1) 0,595
FHS 0,555 (0) 0,607 (2) 0,633 (1) 0,598
EVT 0,197 (7) 0,441 (2) 0,278 (7) 0,306

ARMA(0,0)-EGARCH(1,1)-t basic 0,047 (20) 0,276 (4) 0,058 (20) 0,127
FHS 0,029 (20) 0,277 (5) 0,037 (21) 0,114
EVT 0,010 (26) 0,311 (6) 0,017 (26) 0,113

ARMA(0,0)-GARCH(1,2)-t basic 0,582 (1) 0,654 (2) 0,706 (1) 0,647
FHS 0,554 (2) 0,623 (2) 0,636 (2) 0,604
EVT 0,183 (7) 0,420 (1) 0,240 (6) 0,281

ARMA(0,0)-GARCH(2,1)-t(ω) basic 0,526 (0) 0,649 (1) 0,654 (1) 0,610
FHS 0,635 (0) 0,628 (2) 0,690 (1) 0,651
EVT 0,201 (8) 0,464 (1) 0,279 (4) 0,315

ARMA(0,0)-GJR(1,1)-t(ω) basic 0,445 (3) 0,538 (4) 0,520 (5) 0,501
FHS 0,543 (2) 0,551 (4) 0,536 (3) 0,543
EVT 0,185 (7) 0,448 (2) 0,251 (9) 0,295

This table shows the backtesting results of the 10 best models with regard to the whole time series (see
Table 3.5) on a confidence level of 99% for all one-quarter forward time series. punc, pind, and pcc denote
the average p-values from the different tests (unconditional coverage, independence, and conditional cov-
erage) over all 28 time series and pav gives the average over those three average p-values. The number in
brackets is the number of times the model is rejected on a 5% significance level. Backtesting is conducted
for the basic model, FHS, and EVT.
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Figure B.1: Autocorrelation functions
The figure shows the autocorrelation function of realized variance, realized 3rd and realized 4th moment.
Dotted lines define the 95% confidence interval.
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Figure B.2: Partial autocorrelation functions
The figure shows the partial autocorrelation function of realized variance, realized 3rd and realized 4th

moment. Dotted lines define the 95% confidence interval.
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