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1 Introduction and Motivation

1.1 Physical Background

The Schrodinger equation was formulated for the first time by the Austrian physicist Erwin
Schrédinger in 1926. It is an evolution equation that describes, for example, how the quan-
tum state of a physical system changes over time or characterizes the motion of a charged particle
in an electric or magnetic field. Therefore, Schrédinger equations have many physical applications
and often arise in the study of quantum mechanics, plasma physics, fiber optics etc.

Referring to [76], the Schrodinger equation is the essential equation of motion in quantum
mechanics, which cannot be deduced from pure mathematics but rather should be introduced in
physics axiomatic as a basic law of wave mechanics. The wave character of matter is the reason
why the state of a physical system is modeled by a complex-valued wave function X (¢, z), the
solution of the Schrédinger equation. Based on reasons of plausibility and analogies and due to
the double-slit experiment, the relation between particles and waves is statistically interpreted
such that (under some normalization conditions) |X (¢, )|? dz indicates the probability to find a
considered particle in the line segment dz at place x at time ¢. Investigating a large number of
similar particles, it results a distribution of intensity according to | X (¢, z)|? signifying the particle
density (for more details see [76, Chapter 2]).

To depict physical systems more realistic, nonlinear differential equations have to be regarded.
Hence, mathematicians and physicists have been interested in nonlinear Schrédinger equations for
over 30 years and this subject represents a large field of research today. With lots of applications
mainly in mathematical physics, the nonlinear Schrédinger equation is a model for the propagation
of waves in nonlinear dispersive media. An important physical special case is the so-called Gross-
Pitaevskii equation including a cubic nonlinearity. This equation models the propagation of waves
in fiber optics and the envelope of water waves (compare [86]). It is used to explain the principle
of the tunnel effect and a laser beamer (see [74, 75]). Moreover, it emphasizes the concept of
waveguides by focusing or guiding waves, for example electromagnetic, acoustic or optical waves,
to transmit signals or power over long distances with high rates (compare [18, 31]).

The Schrodinger equation with such a cubic nonlinearity also describes the wave function of a
particle in a Bose-Einstein condensate, a state of matter of a dilute gas of bosons that is cooled
down near to 0K (—273,15°C). In contrast to fermions, bosons are particles following the Bose-
Einstein statistics, which signifies the statistical distribution of identical particles with integer
spin, for example photons, gluons or the still-theoretical graviton. At very low temperature most
bosons condensate in the lowest energy state that is called the ground state. In Bose-Einstein
condensates the bosons become indistinguishable, which means that they all occupy the same
quantum state. The probability to find a boson at a special point is equal everywhere within
the condensate. Thus, this idealized state at absolute zero can be characterized by only one
wave function, the solution of the Gross-Pitaevskii equation. Based on this method, one can
conclude from microscopic structures to macroscopic quantum phenomena like superfluidity or
superconductivity (compare [1, 6, 70]).

Finally, (see [5, 31]) one can model spontaneous emission and excitation, thermal fluctuation
or general random disturbances and phenomena by stochastic processes in form of additive or
multiplicative noise that leads to the theory of stochastic differential equations.
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1.2 Former and Current Investigations

We focus on the nonlinear Schrédinger equation which is part of many publications in recent years
(compare [51, 55, 92]). Throughout this thesis, we are especially interested in the power-type
nonlinearity of the form f(2) = |2|?°z with 2 € C and o > 0 (for 0 = 1 we get the so-called
Kerr-nonlinearity).

Deterministic Schrédinger equations including this kind of nonlinearity are already studied
on bounded or unbounded domains for different types of solutions, from classical solutions in
[48, 80, 97] over strong solutions in [11, 54, 96] and mild solutions in [14, 16, 40, 49] right up
to generalized (weak/variational) solutions in [36, 37, 54, 89, 94]. Their results concern local or
global existence and uniqueness of solutions, regularity properties, finite-time blow-up, smoothing
effects etc. These properties are closely related to the values of the parameter o and the spatial
dimension n, where one distinguishes three cases: the subcritical case for 0 < o < 2/n, the critical
one for o = 2/n and the supercritical case for o > 2/n.

Since physical experiments are burdened with random disturbances, stochastic Schrédinger
equations with power-type nonlinearities are treated in the case of additive noise in [21, 32], with
respect to multiplicative noise in [8, 20, 21, 81| and referring to white noise dispersion in [24, 27].
Based on the semigroup approach, similar properties of the solutions of stochastic Schrédinger
equations as in the deterministic case are obtained in these articles. Evolution equation approaches
to linear and nonlinear stochastic Schrédinger equations perturbed by cylindrical Brownian mo-
tions are given in [71, 72].

Besides the vast amount of research results concerning the Schrédinger equation, there are still
open problems. Here, we consider the variational (generalized) solution of stochastic Schrédinger
equations with power-type nonlinearity. Such a weak solution concept is very important for so-
lutions of stochastic partial differential equations which are not smooth enough to be a strong
solution. The idea is to multiply the state equation by a sufficiently smooth test function and to
transfer some differentiability to the test function through integration by parts. Observe that the
existence of a variational solution implies the existence of a mild solution, but not vice versa. So
far, variational solutions of stochastic Schrodinger equations are only investigated in [42] under
the assumption that the nonlinear drift and diffusion terms are of bounded growth and globally or
locally Lipschitz continuous. Notice that the power-type nonlinearity does not satisfy the bounded
growth and locally Lipschitz continuity assumptions from [42].

This is the first work concerning variational solutions of the stochastic Schrodinger problem
with power-type nonlinearities. Hence, we fill the gap of solution concepts of stochastic nonlinear
Schrodinger equations by investigating existence and uniqueness of variational solutions. Some-
times, the deterministic strategy can be applied to the stochastic case as well. Thus, we enlarge the
ideas of [65, pp. 131-133] concerning crucial inequalities of the power-type nonlinearity. Since other
deterministic approaches of the nonlinear Schrédinger equation fail in the case of our stochastic
problem, the transformation into a pathwise problem is one main idea of this thesis. This method
is applied to the linear Schrédinger equation in [47] and to parabolic stochastic partial differential
equations in [34], both in the context of variational solutions.

Since the Schrodinger equation cannot be classified as an elliptic, parabolic or hyperbolic
partial differential equation, it is not possible to follow a given pattern (like in [66, 95]) in order
to solve a corresponding optimal control problem. As far as we know, nobody has treated optimal
control problems of the stochastic nonlinear Schrédinger equation until now. Modest beginnings in
control theory of deterministic linear Schrédinger equations can be found in [33, 90, 102]. Besides
the unique existence of an optimal control, these articles contain gradient formulas, appropriate
necessary optimality conditions and some discretization schemes. Except for the discretization
procedure, these results are extended to the deterministic nonlinear case in [3, 68, 69]. First
studies in optimal control referring to the stochastic Schréodinger equation are suggested for the
linear case in [56, 57] and for the nonlinear case in [58].
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1.3 Structure of the Thesis

The first Chapter "Introduction and Motivation" contains some physical applications and back-
grounds of the nonlinear Schrédinger equation and useful references to former and current works
in order to classify the present thesis within the mathematical context. Now, we indicate the
structure of the dissertation to outline its content in detail.

Chapter two is called "Existence and Uniqueness Results" and covers all types of stochastic
Schrodinger problems we are concerned with. After introducing the necessary notations, we first
formulate the stochastic nonlinear Schrodinger problem

AX(t) = iAX (£) dt + iNF(t, X (8)) dt +ig(t, X(£)) AW (t),  for all t € [0, ],

with an initial condition X(0) = ¢ and homogeneous Neumann boundary conditions. Then
we define its variational solution that is the appropriate concept of solution accompanying us
throughout this work. In general, we are interested in the unique existence and some corresponding
smoothness properties of the variational solution over a finite time horizon and a bounded one-
dimensional domain.

At first, we deal with the nonlinear Schrodinger problem perturbed by additive or multiplicative
Gaussian noise in Section 2.2. We assume that X := i\ with A > 0, the drift function is represented
by the power-type nonlinearity f(-,v) := |v|>v for all v € C with ¢ > 1 and the noise term
contains the diffusion function g(-,v) := —ig(-,v) for all v € C with a Lipschitz continuous
function g(-,v) of bounded growth and the cylindrical Wiener process W (compare [59]). The
missing imaginary unit in front of the nonlinear drift term is crucial for the approach of Section
2.2 (which is applied for all & > 1). However, the appearance or disappearance of the imaginary
unit in front of the diffusion term does not imply major changes.

We proceed in the following way: Initially, we show the uniqueness of the variational solution.
Then the Schrédinger problem is approximated by the Galerkin method and a special truncation
is introduced to obtain an existence result and to state and prove some a priori estimates for the
finite-dimensional solution by enlarging the ideas of the deterministic work [65] to the stochastic
case. Thereafter, we deduce global existence of the solution of the stochastic nonlinear Schrédinger
equation by showing that X € L*(Q;C([0,T]; L*(0,1))) N L??(2 x [0, T); H(0,1)) for all p > 1.
We finish this section with possible generalizations regarding other boundary conditions, locally
Lipschitz continuous noise, more general nonlinearities and an unbounded domain.

In Section 2.3, we analyze the nonlinear Schrédinger problem with linear multiplicative noise,
where \ > 0, the drift function is the same power-type nonlinearity f(-,v) = |v|??v for all v € C
with o € (0,2), g is a special linear function in X and W represents an infinite-dimensional Wiener
process (see [60]). Due to a different approach, o is restricted to the interval (0, 2).

Referring to another stochastic process, it is possible to transfer the stochastic nonlinear
Schrédinger problem into a pathwise one. Exploiting the absence of noise and using Galerkin
approximations and compact embedding results, we obtain a priori estimates, existence and
uniqueness of the variational solution of the pathwise nonlinear Schrédinger problem. More-
over, the sequence of Galerkin approximations converges to the solution of the pathwise problem.
Then we extend the existence and uniqueness properties to the variational solution of the non-
linear Schrodinger problem with linear multiplicative noise and prove that its solution belongs to
L2(Q;C([0,T7]; L*(0,1))) N L3(2; L*°([0, T]; H'(0,1))). Finally, we state some remarks concerning
further generalizations and research perspectives analogous to the end of Section 2.2 and especially
indicate the necessary changes for other A.

Section 2.4 is devoted to the two preceding cases of Schrédinger problems with respect to
a Lipschitz continuous drift function f of bounded growth. Based on the concept of Wirtinger
derivatives, we keep our assumptions to a minimum implying the properties of Lipschitz continuity
and bounded growth that is at first proved and then illustrated by two examples. The case of
Lipschitz continuous noise of bounded growth is reduced to the results in [42], but they can also be
shown with the approach in Section 2.2. Moreover, the nonlinear Schrédinger problem perturbed
by linear multiplicative noise is handled as in Section 2.3 by the investigation of the equivalent
pathwise nonlinear Schrodinger problem.



1.3. Structure of the Thesis

The third Chapter "On a Problem of Optimal Control" possesses three sections and refers to
two selected cases of Schrédinger problems of Chapter 2 including bilinear controls. Initially, in
Section 3.1, we present the controlled Schrédinger problem and analyze the additional control term
that preserves the existence and uniqueness results. After introducing the objective functional

J(U) = ~E | XV(T) - y|* + BE / 1U(t) = T dt

for all U from the set of all admissible controls, the question of solvability of this control problem
is treated just as an appropriate gradient formula to minimize the objective functional. Currently,
this problem of optimal control can only be considered for stochastic nonlinear Schrédinger prob-
lems that can be reduced to a pathwise analogue and includes a control term that either depends
on time or on space. Thus, we treat the optimal control problem corresponding to the Schrédinger
problem with linear multiplicative noise while we refer to the power-type nonlinearity in Section
3.2 and to the Lipschitz continuous drift function of bounded growth in Section 3.3.

For both cases, we proceed in the same way: Under some stronger assumptions as in Chapter
2, we transfer the stochastic nonlinear Schrédinger problem into a pathwise one and apply the
constituted estimates in form of constants depending on various parameters. At first, we investigate
the difference of two variational solutions of Schrédinger problems referring to two admissible
controls that differ only slightly. It results a process that is also a variational solution of a pathwise
Schrédinger problem and depends continuously on the difference of the two considered controls.
For this reason, we can show that there really exists a unique optimal control which minimizes
the given objective functional.

Aiming to obtain a gradient formula, the variational solution of the complex conjugated adjoint
Schrodinger problem is regarded. We show again the uniqueness of the variational solution and
observe the corresponding Galerkin equations that possess a unique solution. Then we state
suitable a priori estimates and obtain the same convergence results for the Galerkin approximations
of the complex conjugated adjoint Schrédinger problem as in the case of the pathwise Schrédinger
problem. Thereafter, we establish analogue variational formulations of the difference process
of two variational solutions of controlled Schrédinger problems and of the complex conjugated
adjoint Schodinger problem. While calculating the gradient formula in the sense of Gateaux, we
skillfully combine these two variational formulations. This procedure arises from the deterministic
linear control theory and, therefore, we emphasize that the nonlinear terms of the state equation
are managed by a linear Taylor approximation based on Wirtinger derivatives. At the end, we
obtain a gradient formula whose structure corresponds to the linear case although the complex
conjugated adjoint Schrodinger equation differs from the linear case. As a conclusion, we formulate
a necessary optimality condition in form of a stochastic variational inequality and discuss further
generalizations.

Finally, some auxiliary results and useful hints of stochastic and functional analysis are stated in
the Appendix. There are details for deeper understanding regarding the cylindrical Wiener process
and different types of solution concepts of stochastic partial differential equations. Furthermore,
the frequently used norm square It6 formula, various important inequalities and relations of the
power-type nonlinearity and a generalized drift function are indicated. In addition, some basic
convergence results and a local martingale property are proved. The principle of Wirtinger deriva-
tives and the derivation of the complex conjugated adjoint Schrédinger equation are explained as
well.



2 Existence and Uniqueness Results

2.1 Formulation of the Problem

To avoid ambiguity, we place first some notations widely used in this dissertation. Below, the set
R4 := {z € R: 2z > 0} consists of all positive real-valued numbers. B(X) denotes the o-algebra
of all Borel measurable sets of a topological space X. The capital letter C represents a generic
positive constant, whose value may vary from line to line, and C(-) emphasizes its dependence.

Let K be a real separable Hilbert space and let H := L?*(0,1) and V := H'(0,1) be spaces of
complex-valued functions. Then the inner product in H is given by

1
(u,v) = / u(z) v(z) de, for all u,v € H,
0

where 7 is the complex conjugate of v, while the inner product in V is constituted by

(u,v)v = /0 [u(ax) o(x) + %u(m) %@(x) dz, for all u,v € V.

The norms in H and V are represented by || -|| and || -||,, respectively. Let V* be the dual space
of V and (-, -) denotes the duality pairing of V* and V. Hence, the appropriate choice of H and
V' as separable Hilbert spaces and the identification of H with its dual space H*, due to Riesz’
representation theorem, allow to work on a triple of rigged Hilbert spaces (V, H,V*). This triple
has continuous and dense embeddings each and is also known as a Gelfand triple (see [82, p. 55]).
Moreover, we introduce the operator A : V' — V* defined by the symmetric bilinear form

1
(Au,v) = iu(;zc) iﬁ(:v) dx, for all u,v €V, (2.1)

where the symmetry implies that (Au,v) = (Av,u). By definition it holds that

2

dv
= |loll¥, = [lol? and [|[Av]

dzx

Hence, A : V — V* is a linear and continuous operator which we regard with respect to homo-
geneous Neumann boundary conditions. Requiring, in addition, that Av € H for all v € V| the
eigenvalue problem Ahy = pghi for all k € N is satisfied, where (uy)ren is the increasing se-
quence of eigenvalues and (hy)ren the corresponding sequence of eigenfunctions. The real-valued
eigenvalues are given by py, := (k — 1)?72 for k = 1,2, ... and the eigenfunctions

1 k=1,
A {ﬂcos«k ~Dmr) k=23,

(Av,v) = ‘ ve < lllv, for all v e V.

form an orthonormal system in H and an orthogonal system in V since (using the Kronecker delta
d;k) we get (hj7hk)v = (hj,hk) + <Ahj,hk> = (14 p;)0, for all j,k € N. Obviously, for all
w € H and all v € V it follows that
u = (u, hk) hi, Av = Z,uk (v, hk) hy and <Av,v> = Zuk |(U, hk) |2 > 0.
k=1 k=1 k=1



2.1. Formulation of the Problem

Next, we indicate some preliminaries for the finite-dimensional approximations. For eachn € N,
we introduce the finite-dimensional space H,, := span{hq, ha,...,h,} and the orthogonal projec-
tion 7, : H — H,, constituted by

n

Tl 1= Z (u, hk) hi, for all u € H. (2.2)
k=1

It especially holds for all w € H and all h € H,, that

(Tnu, h) = (u, h), Tnul* < |lul? and ILm | 7w — ul|* = 0. (2.3)
Observe that the norms || - || and || - || are equivalent on H,,, which means that
lul® < ullfy = llul® + (Au,u) < 1+ pa)llul®,  for all u € Hy, (2.4)
since p, = max{uy : k € {1,2,...,n}}, and the operator A : H, — H,, is linear and continuous
and satisfies
n n 9 du 2
Au = Z,uk (u, hk) h, <Au,u> = Zuk ‘(u, hk)’ =|l—| >0, for all w € H,, (2.5)
k=1 k=1
and J J
(v, Au) = <Au v) < ﬁ ‘ é for all u,v € H,,. (2.6)

In the following, we consider the stochastic nonlinear Schrédinger equation
dX(t,x) = —iAX (t,x) dt +iAf(t, X (¢, z)) dt +ig(t, X (t,x)) dW ()

with initial condition X (0, -) = ¢(-) € V and homogeneous Neumann boundary conditions

= 2X(t,a:)

0
—X(t,z) T

pe =0, for all ¢t € [0,T].

=1

A precise definition of the solution of this initial-boundary value problem is given in Definition
2.1.1. Here, X is the complex-valued random wave function depending on ¢ € [0,7T] and = € [0, 1],
1 is the imaginary unit, A represents the one-dimensional negative Laplacian, which is in a formal
sense defined by (2.1), and T' > 0 is fixed. The constant A € C and the complex-valued nonlinear
drift function f will be specified in each particular section. Furthermore, let (22, F, (F¢)¢cjo,7], P)
be a filtered complete probability space and Lo(K, H) the space of all Hilbert-Schmidt operators
from K into H. We assume that the diffusion function ¢ : @x[0,T]x H — Lo(K, H) is measurable,
which means that for all s € [0, ¢] it holds that {(w, s, z) : g(w, s,x) € A} € F, x B([0,t] x H) for all
A€ B(Ly(K,H)) and all ¢t € [0,T]. As customary, we suppose the finiteness of the Hilbert-Schmidt
norm

llg(t, u ||L2 KH) Z lg(t, w)e; %, for all t € [0,7] and all v € H, (2.7)

where (e;);jen is an orthonormal basis of K (see [46, pp. 12 f.] or [82, pp. 109-113]). In order to
ensure the existence and uniqueness of the solution, g has to satisfy the subsequent assumptions:

e there exists a constant ¢, > 0 such that for a.e. w € Q, allt € [0,T] and all w,v € H
lg(t,u) = g(&, 2, (k. m) < gllu—ll?, (2.8)
e there exists a constant k, > 0 such that for a.e. w € Q,allt € [0,T] and all v € V

gt 010y < kg L+ IIVIT) - (2.9)
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The representation of the Hilbert-Schmidt norm and properties (2.8) and (2.9) of g yield for
aewe alte0,T] and all u € H

gt ONIZ, sy < Mgt ONLxcvy < g (L+101T) = kg,
gt L, ) < 2llg(tw) = g (& I, k) + 2ll9(8 )L, (i 1) < 26q]lull® + 2kg. (2.10)

Finally, let (W (t))icpo,r; be a K-valued cylindrical Wiener process adapted to the filtration
(Ft)telo,r)- Notice that a correct definition is given in Appendix A. For notational simplicity,
the explicit dependences on w € Q and = € [0,1] will be neglected such that we regard the
stochastic nonlinear Schrodinger problem

AX(t) = —iAX () dt +iNf(t, X (1)) dt + ig(t, X (£)) dW (), X(0) =g €V (2.11)

for a.e. w € Q and all ¢t € [0,7T]. Here and below, the homogeneous Neumann boundary conditions
are included implicitly in definition (2.1) of the operator A. The initial value problem (2.11) is
defined by the integral equation

X(t) :gofi/O AX(s)ds+i/\/O f(s,X(s))deri/o g(s, X (s))dW(s)

in V* for a.e. w € Q and all ¢ € [0, T, signifying the following variational formulation.

Definition 2.1.1. A process X € L*(Q;C([0,T); H)) N L?(Q x [0,T); V) is called a variational
solution of the stochastic nonlinear Schriodinger problem (2.11) if it fulfills

(X(1),v) = (¢,v) — /0 (AX (s) v>d$+z>\/0 (f(s,X(s)),v)ds

+i(£1xaxw»dw«$w)

for a.e. weQ, allt €[0,T) and allv € V.

To derive higher-order moment estimates in L?(Q; C([0,T]; H)) and L*(Q x [0,T]; V) for
p > 1, the assumption ¢ € V on the initial condition is essential. Let C(G) denote the space of
all continuous and bounded functions f : G — R. Then it holds for a bounded open set G C R
that H'(G) is continuously embedded in C'(G) because of Sobolev’s embedding theorem (compare
for example [105, p. 1029, (47) Case 5]) and C(G) itself is continuously embedded in L(G) for
all 1 < ¢ < oo. Thus, it follows from ¢ € V that ¢ € L7(0,1) for all 1 < ¢ < co. Moreover,
it is possible to generalize the initial condition ¢ € V to an JFy-measurable ¢ € L*(€;V). In
contrast, to obtain the same higher-order moment estimates in this case, one has to require that
@ € L*(Q; H) and ¢ € L?(Q;V). Consequently, for the sake of simplicity and since an Fp-
measurable initial condition ¢ € L?(; V) implies that ¢ is constant for a.e. w € €, we restrict
ourself to the case ¢ € V in this thesis.

Being interested in other solution concepts than the variational one in Definition 2.1.1, we
recommend to have a closer look at Appendix B. Here, we want to work with the variational
solution and it is necessary to understand the nature of the stochastic integral in the sense of Ito.
Under the above assumptions, the stochastic integral is defined for all £ € L?(Q x [0,7]; H) as an
H-valued Gaussian random variable with zero mean and it is given by

ATMsg }j/’ $))e; dB;(s)

with an orthonormal basis (e;);ey of K and a sequence of mutually independent real-valued
Wiener processes ((3;(t))cepo T])]EN (see Appendix A). This series converges in L?(Q; H) and one
can prove the It6 isometry

ATMaa®> (s)

(2.12)

E —E/ng NI, .10y 4
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and the Burkholder-Davis-Gundy inequality (compare [87, p. 44, Theorem 7]), which especially
states that for all stopping times 7 € [0,7] we have

2

/09(8,5(8))6”/‘/(8) <3E UO g (s, ENNZ s,y ds| - (2.13)

E sup
tel0,7]

Thus, the stochastic integral in Definition 2.1.1 obeys

( / gl X(5) dW<s>,v) - i / (005, X())es,0) dBy(s),  forall 1 € [0.7).

Notice that this kind of noise includes additive as well as multiplicative Gaussian noise. How-
ever, we think of additive Gaussian noise with g € Lo(K, H) for the time being. Therefore, let
(ex)ken be an orthonormal basis of K consisting of the eigenvectors of the covariance operator @
with corresponding eigenvalues (Ax)ren such that Qer = Agey for all k£ € N with Ay > 0, and zero
is the only accumulation point of the sequence (Ag)gen (compare Appendix A). Letting (hg)ren
be an orthonormal system of H, we consider a Hilbert-Schmidt operator ¢ from K into H (see
[46, pp. 12 f.]) which is especially constituted by

qu :zzm(u,ek)th, for all u € K.
k=1

Due to the finiteness of the Hilbert-Schmidt norm, one obtains the condition

lal e = 3 lges 2 = 32| 3" VA (eseen) ZHf nl =N <o
j=1 j=1

J=1 k=1
Hence, we get an H-valued Q-Wiener process (W(t))te[oﬂ which is represented by

oo

W(t) = gW(t) = ge;B;(t) Z VA B5(t) for all t € [0, 77, (2.14)

j=1
where (B;(t))tcjo,r) with j € {n € N: \,, > 0} are independent real-valued Wiener processes (com-
pare Appendix A). The series (2.14) even converges in L?(Q; C([0,T]; H)), and thus always has a

P-a.s. continuous modification (see [19, pp. 86-89] or [82, p. 13, Proposition 2.1.10]). To ensure
that the trajectories (X (t)):eo,r) of the stochastic nonlinear Schrédinger problem

(X(1),v) = (¢,0) —i/ot <AX(s),v>ds+i)\/0t (f(s,X(S)),v)ds—i-i(/O

for a.e. w € Q, all t € [0,T] and all v € V take values in the Sobolev space V, the assumption

o0
Dy <%0
j=1

has to be fulfilled as well, where (\;);jen are the eigenvalues of the covariance operator @ and
(15)jen are those of the negative Laplacian A with homogeneous Neumann boundary conditions.
Accordingly, due to the representation (2.14) of an H-valued Q-Wiener process, the stochastic
integral in (2.15) in the case of additive noise with W (t) = gW (t) and g € Lo(K, H) suffices

(/OtdW(s),v> (/gdW ) Zf/ v) dB;(s for all ¢ € [0, .

In [56, 57] the controlled stochastic linear Schrédinger equation

dX (t) = —iAX(t) dt + iU (t) X (t) dt + i dW (t), for all ¢ € [0, 77,

t

gdW(s),v) (2.15)

with homogeneous initial and Neumann boundary conditions is analyzed. The equation contains
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an admissible control U and is perturbed by an additive H-valued Q-Wiener process (W (t)):cjo,7]
(for more details have a closer look at [56, Chapter 2]). With the help of the Galerkin method,
the norm square It formula (C.2) and the Burkholder-Davis-Gundy inequality (2.13), it is shown
that there exists a unique variational solution X € L*(Q; C([0,T]; H)) N L?(2 x [0,T]; V), which
is especially true for the uncontrolled problem. This result can be simply expanded, for example,
by choosing a non-homogeneous initial condition ¢ € V, any kind of additive noise including
deterministic functions g in front of the Wiener process or even multiplicative noise as the following
approach suggests. Keeping these results in mind, we are interested in the unique existence of the
variational solution of the stochastic nonlinear Schrédinger problem.

2.2 Study of Lipschitz Continuous Noise

Referring to [59], we initially consider the stochastic nonlinear Schrodinger problem
dX(t) = —iAX(t)dt — M\f(X(t)) dt + g(t, X (¥)) dW (¢), X0)=peV (2.16)

for a.e. w € Q and all ¢ € [0,T]. Additionally to the notations in Section 2.1, we presume A € R
and the nonlinear drift function f : V — H to be defined by f(v) := |v|?*?v for all v € V, where
o > 1 is fixed. A more general form of the nonlinearity f is discussed in Subsection 2.2.3. In
comparison with (2.11), notice that the sign and the missing imaginary unit in front of the drift
term are necessary due to our approach, while the sign and the missing imaginary unit in front of
the diffusion term do not include major changes and are, therefore, only adjusted to the problem.
Indeed, the Schrodinger problem (2.16) is equivalent to problem (2.11) which can be seen by
choosing A := i\ and g(¢t, X (¢)) := —ig(¢t, X(¢)) in (2.11) with A > 0 and the same properties
for § as for g. For the sake of simplicity, we write A and g instead of A and §. Accordingly, a
process X € L%(Q; C([0,T); H))NL?(2x [0,T]; V) is called a variational solution of the stochastic
nonlinear Schrodinger problem (2.16) if it fulfills

(X00) = (e0) =i [ (AX()v)ds— [

0

t

(f(X(s)),v) ds+ (/Ot g(s, X (s))dW(s), v> (2.17)

for a.e. w € Q, all t € [0,7] and all v € V. Using the Galerkin method and a special truncation
function, we investigate the existence and uniqueness of the variational solution of (2.17).

At first, we point out some important properties of the nonlinear function f. Due to Lemma
D.2, it follows for all v € V' that

1
£ ()]* = / o(2) P da < sup. |o()P27HY < 920t || 220D (2.18)
xe€|0,

Hence, f : V — H is well-defined and no function from H into H. Moreover, f is not locally
Lipschitz continuous in the classical sense as in [42] because Lemma D.4 (b) and Lemma D.2 yield

1 (u) = F()]I? :/o [[u(@)*7u(@) = v(@) v ()| do

< 452 20 20\2 . 2
<do /O (lu(@) 7 + Jv(@)*7)" Ju(z) — v(2)|" dz (2.19)
<80 sup (|u(@)*” + |v(2)[*") [lu— o]
z€[0,1]
< 2200362 (||ull3? + (o)) flu — v]?, for all u,v € V.

However, we can make up for this fact by applying Lemma D.5 that results in
Re (f(u) — f(v),u—v) >0, for all u,v €V, (2.20)
and, choosing v = 0, it especially holds that
Re (f(u),u) >0, for all w € V. (2.21)
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2.2.1 Uniqueness and A Priori Estimates
While the existence of a variational solution of the stochastic nonlinear Schrédinger problem (2.17)

is shown in Subsection 2.2.2, we first investigate its uniqueness.

Theorem 2.2.1. If X € L*(Q;C([0,T]; H)) N L?(Q x [0,T); V) is a variational solution of the
Schréodinger problem (2.17), then it is unique.

Proof. Assume that X, X € L*(Q; C([0,T]; H)) N L*(Q x [0, T}; V) are two variational solutions of
the stochastic nonlinear Schrodinger problem (2.17). By denoting 60X := X — X, we get

(6X(t),v) =— i/ot (A6X (s),v)ds — A/Ot (£(X(s) = f(X(s)),v)ds
T i/ot ( [g(saX(S)) - g(S,X(S))} ej,v) dp;(s)

for a.e. w € Q, all t € [0,T] and all v € V. Applying the norm square It6 formula (C.2), which is
also known as the stochastic energy equality, we obtain

16X (t)|? :2Im/ (A6X(s),0X(s))ds — 2)\Re/ (f(X(s)) — f(X(s))ﬁX(s)) ds
0 0
+ 2Re§_:1/0 ( 95, X()) = g(s, X ()] €5, 6X(s)) dp; (s) (2.22)

[ ot X060 = 65,50

for a.e. w € Q and all ¢ € [0,T]. The first addend on the right-hand side vanishes immediately
since (Av,v) > 0 implies Im (Av,v) = 0 for all v € V, and the second one is less than or equal to
zero because of relation (2.20). Hence, we only have to regard the terms induced by noise. With
the help of the Burkholder-Davis-Gundy inequality (2.13), the definition of the Hilbert-Schmidt
norm (2.7) and the Lipschitz continuity (2.8) of g, we estimate the Ito integral in (2.22) by

Lo(K,H)

B 2Rez / ( )~ 9(s. X(3)) ej,5X<s>) a5;(s)
<2k s z / (ot x(6) - a6 X(9)] 1.6(9)) a0

1
2

ds

([t X069 - a6 X 9)] 1,60

I T
<6E / >
L 0 J_l

<om| / s, X061~ gt Ko

| I

Nl

Ly (K,H)

<FE <t€s[13?ﬂ ||§X(t)|2>’-’ (36/OTHQ(S,X(S)) *9(5,)2(5))’

1 T
<3 sup ||5X()H2+18cgE/ 16 (s)] ds.
+€[0,T] 0

16X (s)I* dS]

) 3
ds
Lo (K, H)

The Hilbert-Schmidt norm in (2.22) is treated analogously with the Lipschitz continuity (2.8) of
g such that

2

E sup /75 Hg(s,X(s)) — g(s,X(s))‘ )ds <ol /OT 16X (s)? ds.

tef0,7] Jo Lo(K,H

10
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Since for all w € L?(2;C([0,T]; H)) it holds the relation

E/ u(s)|2 ds = / Elu(s)Pds < [ B sup [[u(s)]? dt. (2.23)
s€[0,1]

it follows from equation (2.22) that
T T

E sup [|6X(®)|* < SSCgE/ 16X (s)||*ds < 38¢c, [ E sup [6X(s)|> dt.
t€[0,T] 0 0 s€[0,t]
Consequently, we deduce by Gronwall’s lemma that
E|6X(@0)|> < E sup [|6X(t)]* =0, for all t € [0,T7,
t€[0,T)
which entails that X (t) = X (¢) for a.e. w € Q and all ¢ € [0,T]. O
Hereafter, let (e;);en be an orthonormal basis of K and K, := span {ey,e2,...,e,}. Then we

use the notations ¢, := ¢, fn(u) == 7 f(u) and g, (-, u)w := 7, {g(-,v)w} for all v € H, and
all w € K,, to denote the orthogonal projections of the initial condition, the drift term and the
diffusion term on H,, (see (2.2)). The finite-dimensional Wiener process in K, is represented by

) = Zej Bj(s)

To proceed with the existence of the variational solution of the stochastic nonlinear Schrédinger
problem (2.17), we adapt the approach introduced in [42, Section 3.2]. Therefore, we extend the
Galerkin method for deterministic nonlinear Schriodinger equations (compare [36, Section 2] or [65,
pp. 131-133]) to the case of problem (2.17). For each n € N, we use the Galerkin approximations
of X(t) given by

Z Cok(t) by € Hy, for all ¢ € [0, 7] and all n € N,

where ¢, (t) == (X, (t), hi) for all k =1,2,...,n are unknown complex-valued random functions,
and consider the finite-dimensional Galerkin equations

(X ),10) = () =1 [ (AX (). b ds =X [ (Fu(Xas)) ) s
0 0 (2.24)

N (/Otgn(s,Xn(s))de(s),hk)

for a.e. we D, allt € [0,7] and all k£ € {1,2,...,n}. Furthermore, we introduce for fixed M € N
the Lipschitz continuous real-valued truncation function 1 : [0, 00) — [0, 00) by

1 0<r< M,
M) ={ M+1—r :M<r<M+1,
0 r>M+1

and choose fM : H,, — H, defined by fM(u) := ¢¥M(||u||)fn(u) for each u € H,,. Now, we deal
with the system of finite-dimensional equations

(X0 h8) = (omtt) = [ (A1) ds =2 [ (6, ) s
0
+ (/0 gn(s,XfLw(s)) de(s),hk>

forae.weQ,allt€[0,7T] and all k € {1,2,...,n}.

(2.25)

11
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Referring to the equivalence of norms (2.4) and the properties (2.18) and (2.19) of f, one can
show that the nonlinear truncated function fM : H, — H,, is Lipschitz continuous and of bounded
growth on H,, for fixed M,n € N. Because of the second property in (2.3), the Lipschitz continuity
(2.8) of g and estimate (2.10), the noise term g,, satisfies similar properties given by

n
2
Hgn(t,u)—gn(t,v)IILz(KmHn)ZZH[gn(t,u — gn(t,v)] &5 lem —g(t,v)] e}

2

<> llg(t,u) = gt 0)] e <Z:ll (t,u) = g(t,0)] ¢
j=1

= llg(t, u) — g(tav)HLz(K7H) <c¢glu-— U”

and

M-

||gn(tv u) ”%2(Kn,Hn) =

19 (t, u eJ” Z 7 {g(t, u e]}H < Z lg(t,u eJH
Jj=1 Jj=1

j=1

(2.26)
<

s

2
lg(t, we; I” = lg(t, WL, x.my < 2llull® + 2kq

Jj=1

for a.e. w € Q, all t € [0,7] and all u,v € H,. Hence, we know from the theory of finite-
dimensional stochastic differential equations with Lipschitz continuous mappings that the system
(2.25) possesses a unique solution XM € L2(Q;C([0,T]; H,)) (see [61, pp. 127-141, Theorem
4.5.3 and Exercise 4.5.5]). Due to the equivalence of the norms ||-| and ||-||v on H, (given in
(2.4)), the approximation XV is also continuous in V' and we further get XM € L2(Q2 x [0, T]; V).
These results and the fact that the equations (2.25) also hold for all v € V' (since it follows that
(u, an) = (u, v) for all u € H,, due to the first property in (2.3)) especially imply that the solution
is a variational solution.

Now, we can apply the norm square It6 formula (C.2) to get the subsequent theorems stating
uniform a priori estimates of X} in the spaces L?P(Q2; C([0,7T]; H)) and L?**(Q;C([0,T);V)) for
p > 1. At first, we prove the results for p = 1.

Theorem 2.2.2. Let M,n € N be arbitrarily fired. Then there exists a positive constant C
depending on cg, kg and T such that

B sup || XM < Cleg, ke, )1+ [10]?].
te[0,T

Proof. For the sake of simplicity, we use the notation Y (¢) := X (), apply the stochastic energy
equality (C.2) to (2.25) and get

|(Y (&), ki) | = | (s i) | —|—21m/0 (AY (s), (Y (s), hg) hy.) ds
~9\Re / MY () (£2(Y (), (V(5), hi) hie) ds

noopt (2.27)
+2Re§_;/o (9n(5,Y (5))es, (Y(5), hi) ha) dB;(s)

« 3 Hon(s. ey ) s

for ae. w e, allt€[0,7] and all k € {1,2,...,n}. By summation over all £ from 1 until n, we

12
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obtain

YOI = lleal? +2Im/ <AY(5),Y(S)>dS*2ARe/ MY () (Y (9)), Y (s)) ds
W (2.28)
+2Re;/0 (9n(s,Y (s))e;, Y (5)) dB;(s) / g (s, Y ()12, 56,0, 10,y 45

for a.e. w € 2 and all ¢ € [0,7]. Due to the second property in (2.5), Im AY (s),Y(s)) = 0
such that the second term on the right-hand side equals zero. Moreover, (IY'(s)|]|]) = 0 by
definition and Re (f,,(Y(s)), Y (s)) = Re (f(Y (s)),Y (s)) > 0 because of the ﬁrst property in (2.3)
and relation (2.21). Thus, it only remains

2 2 e i s s))e; n (S,
YOI < lleonl” +2R Jz_:l/o (9n(s,Y (5))es, Y (s)) dB;(s /Ilg Y ()2, k1,

for a.e. w € Q and all t € [0,T]. Analogously to the proof of uniqueness, the Burkholder-Davis-
Gundy inequality (2.13) yields

n

E sup 2ReZ/O (gn(s,Y(s))ej7Y(s)) dpg;(s)

t€[0,T] j=1

1
2

<6E

T
/0 [ERCS (O AP, ||Y<s>||2ds]

3 T
<E (sup Y()IF) (36/ IIgn(s,Y(s))l22(Kn,Hn>d5>
te[0,T] 0

1 T
<3E swp YOI +18E [ lgals. YD, 1,
te[0,T) 0

Nl

such that "
B sup [V < 2ol + 355 / l9n (5, Y D2, i1, s

tefo,T

We deduce by inequality (2.26), the estimate ||¢,||? < ||¢||? (see (2.3)) and relation (2.23) that

T
E sup HY(L‘)H2 < 2||<,0n||2 + 76k, T + 76cgE/ HY(S)H2 ds
te[0,7] 0
T
< 2||p||? + 76k, T +76c, | E sup ||Y(s)|?dt.
0 s€[0,t]

Finally, the application of Gronwall’s lemma results in

E sup V(1) < Cleg, kg, T) [1+ Il
t€[0,T)

and the assertion follows with Y'(t) = XM (¢). O

n

Theorem 2.2.3. Let M,n € N be arbitrarily fized. Then there exists a positive constant C
depending on cg, kg and T such that

B s [XY O < Clegskos D [1+ 11017 ]

13
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Proof. We denote again Y (t) := X (t), consider (2.25), apply the norm square It6 formula (C.2)
and receive equation (2.27) for a.e. w € Q, all t € [0,7] and all k € {1,2,...,n}. Multiplication
with the real-valued eigenvalues py of A and summing up from k£ =1,2,...,n leads to

zn:uky(y(t Z”k ons i) | +21m/ <AY Z“k ). h,) hk>ds
k=1
—2)\Re/ MY ()l (fn Zuk ), hk> ds
+2ReZ/ <gn (s,Y(s eJ,Zuk ), hi hk) dgB;(s)
+ / SO b | (90, Y () ) s

j=1k=1

for a.e. w € Q and all t € [0,7]. Observing the first relation in (2.5), the second term on
the right-hand side vanishes once more and, because of the first property in (2.3), it holds that
(fn(Y(5)), (Y(5), hi) hie) = (f(Y(5)), (Y(s), hx) hi). Thus, by relations (2.5) of the operator A,

we write

2 2 t
v = | o] - 2rre [ v (06, ave) as
+gReZ / (g (5. Y (5))ej, AY (5)) By (s) (2.29)

2

gnsY()) il|| ds

>

for a.e. w € Q and all ¢ € [0,7]. Lemma D.6 implies that the second term on the right-hand side is
less than or equal to zero. Due to the definition of the Hilbert-Schmidt norm (2.7), it only remains

0
%Y(t)

<[] +2meS [y avipancs

t
4 / g, Y ()2, (v ds

for a.e. w € Q and all ¢t € [0,7]. Taking into account the Burkholder-Davis-Gundy inequality
(2.13), property (2.6) of A and the bounded growth (2.9) of g, we see

n

E sup 2ReZ/0 (gn(s,Y(s))e;, AY (s)) dB;(s)

t€[0,T]

j=1
21 5 2 2
<6E / gnsY( Nesl| || =) ds
T
2 % T %
<FE (SUP 87Y(t) > ( / llg(s, Y ( ))||L2Kv)ds>
tefo, 7] || 9T
1 0 2 r 2
<-F su —Y(t +18kE/ 14+ Y (s ds
R Pl | (I E)IR)

and

T
B s [ 1ot YOy ts < E [ (14 YOI as

te[0,T]

14
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Based on )

)

O =Y + |5

the inequality ||%<pn||2 < Hd%gow (given by (2.3)), Theorem 2.2.2 and the relation (2.23), we
conclude

2

0 d r
E s |2y <2 Lol + 38kgE/ (1 + |\Y(s)||2v) ds
tefo,T] || O dx 0
d 112 T T 2
<2|l—p| + 38krgT+38k:gE/ ||Y(3)H2ds+38k:gE/ —Y(s)|| ds
dﬂ: 0 0 (917
d |7 T o 2
<2 | Sl +Cleg, kg, T) [1 + Hw\ﬂ 38k, [ E sup | —v(s)|| dt.
dx 0 selo,t] || OT
Hence, Gronwall’s lemma entails
) ? 2
B sup |2y (1) < Clegs ko T) [T+l ] -
tE[O,T] 6$
Together with Theorem 2.2.2 and Y (¢) := X (¢), we obtain the result of Theorem 2.2.3. O

Having shown the uniform boundedness of the solution X of (2.25) in L??(9;C([0,T); H))
and L% (Q;C([0,T];V)) for p = 1, we are also able to establish uniform boundedness results for
p > 1. These a priori estimates are necessary to prove the existence of the variational solution of
the stochastic nonlinear Schrédinger problem (2.17). To ensure the existence of the integrals in
the following theorems, we use a localizing argument.

Remark 2.2.4. Let (u(t)):epo,1) be an H-valued process with
I

sup |Ju(t)]|* < oo, for a.e. w e L

t€[0,T]

Then we introduce for R € N the stopping time

T : sup Jlu(d)]? < R?,
u t€[0,T]
= 2.30
n inf {t € [0, 7] : [[u(@®)|]* > R?} : sup |u(®)|]* > R*. (2:30)
te[0,T]

Notice that (T;)r is an increasing sequence with

lim 75 =1, for a.e. w € Q. (2.31)

R—

Theorem 2.2.5. Let M,n € N be arbitrarily fived and p > 1. Then there exists a positive constant
C depending on p,cq, kg and T such that

2
E swp [ XM O] < Cw.eq kg, T) [1+110177].
t€[0,T]

Proof. The beginning is identical to the proof of Theorem 2.2.2. We denote Y (¢) := XM (¢) and
start with equation (2.28) given by

YOI =llenll® + QIm/O (AY(5),Y (s)) ds — 2/\Re/0 VMY ($)]) (F2(Y (5)), Y (5)) ds

#2Re} / (90 (5, Y (5))e;, Y (5)) dBj (5) + / l9n (5, Y ()2, (11 5

15
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for a.e. w € Q and all ¢ € [0, 7], where Im (AY (s),Y (s)) = 0 because of the second property in
(2.5). Then we use the Itod formula for F'(x) = 2P with p > 1 and obtain

1Y ()77 = ll¢all?? — 27p Re / GV ) (Y ()Y ()Y ()20 ds

2R} [ (gnlo Vis)es Y () IV (920 45,5
S (2.32)

+p(p—1) Re/o Z (gn(sv}/(s))ej, Y(s))2 HY(S)HQ(P*Z) ds

=1
. J

[ o 5.V DI sy 1Y ()P0 s
for a.e. w € Q and all ¢ € [0, T]. Observe that the term with the nonlinearity f, obeys

—2pRe [ MY (F ()Y ) Y ()7 ds

t
== 2pRe [ WMV (). Y)Y ()0 ds <0

because of the first property in (2.3) and relation (2.21). The last two terms in (2.32) reduce to

n

po=1)Re [ 3 (s, Y (e, V() [V(5) 20 ds

j=1

0 [ o6 YOI I 0
<(p*-p) /Ot ||gn(s,Y(5))||%2(KmHn) 1Y ()27 ds

+p/0t Hgn(S,Y(s))”%Q(KmHH) [V ()[2@D ds
<p? /Ot lgn (s, Y(S))”%Q(Kn,Hn) 1Y (5)[)2®~ D ds.

Consequently, it holds that

Y @)1 < llpnll®” + 2pReZ/ (gn(s, Y (5))es, Y () [V ()PP~ 1 dB;(s)
j=1"" (2.33)

t
+p° /O g (s, Y (DI, (5, 11, 1Y ()27~ ds

for a.e. w € Q and all ¢ € [0,7]. In the following, we use the notation a A b := min{a, b} for all
a,b € R, the stopping time 7 := 7} for R € N (compare (2.30) in Remark 2.2.4) and the estimate

tAT % % tAT %
([ o) <e | s o) (2 vers)
0 SE[0,tAT] 0

1 ) 72 tAT 9
<3E sw YO+ LE [ y)ras
0

s€[0,tAT]

(2.34)

for v > 0. The Burkholder-Davis-Gundy inequality (2.13), Young’s inequality, estimate (2.10),

16
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Lemma D.1 and relation (2.34) lead to

B s e [ (0¥ (e, YO YOI ds0)

s€[0,tAT]

tAT
< 6pE / las Y DI, e ||Y<s>||4p—2ds}

1
2

1
<o [ gt YOI eyt + 2L [ v as]
N 12p Jo ’ La(K.H) 2p Jo

1
‘24p tAT 2 71 tAT 2
<op |3 [ @I eI ass 2ot [ vl
L <P Jo p 0

=

1 tAT
<2%P6KE\/p(t A T) +6/p 2P +2p—1]7 E (/ 1Y (s)|* dS)
0

1 tAT
<PPOVIT 4 5B swp [V +1sp (27 2B [ [v(9)ds
0

S€[0,tAT]

1 tAT
= Clp kg TV 38 sup YOI+ Clpe) [ Y ) ds.
0

s€[0,tAT]

Moreover, Young’s inequality with p > 1, estimate (2.10) and Lemma D.1 yield

E swp p / lgn(r, Y ODIE i, 1.0 1Y ()20 dr

S€[0,tAT]

tAT tAT
<P [ lale YO ds+plo =B [ [V (5)|ds
tAT tAT
<20 [ (V)P + ) dsplo—DE [ ¥ (s) s
tAT
<PPT +p(e 4= E [ ¥ () ds

tAT
—O(p, kg T) + Clp.cy) E / 1Y (s)[2* ds.
0

Based on (2.33), [|¢n]|?? < ||¢]/?” (due to the second property in (2.3)) and

tAT tAT t
E/ ||u(s)|\2pds=/ E||u(s)\|2pds§/ E sup |u(s)|? dr (2.35)
0 0 0 s€[0,rAT]
for all u € L?(Q;C([0,T]; H)), we obtain
tAT
B s VI <2l + Clorky T) 4 Ol [ IV (s)P7ds
0

s€[0,tAT]

¢
g2Hap|\2p+0(p,kg,T)+C(p7cg)/ E sup ||Y(s)||* dr.
0

s€[0,rAT]

Applying Gronwall’s lemma and replacing ¢ by T', we receive

E sup V()% < Clpyeg by, T) [1+ 1]
s€[0,TAT)

Finally, letting R — oo, using (2.31) and the notation Y (t) = XM (t), we get

E sw [ XM O] < Cw,cq ke, T) [1+110177] . O
t€[0,T]
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Theorem 2.2.6. Let M,n € N be arbitrarily fived and p > 1. Then there exists a positive constant
C depending on p,cg,ky and T' such that

2
E sup [XMO|F < C g ke, T) [1 4 101%] .
te[0,T]

Proof. Remembering the notation Y (¢) := XM (t), we start our considerations with equation (2.29)
from the proof of Theorem 2.2.3 given by

v = |5hen]| —2ame [oraven (0 AT b
+2Re2/ gn(s,Y (s))ej, AY (s)) dB;(s / gn 5,Y(s))es]|| ds
for a.e. w € Q and all ¢ € [0,T]. The Ito formula for F(x) := P with p > 1 entails
2p 2p t 2(p—1)
v @] =[]~ 2ore [ avem goenaven| gy e
2pR - [ Y AY 0 Y 2(p_l)d
et} [ (oY (s A7) lre)| e
t n 8 2(p—2) (2.36)
oo — l)Re/O CIRCEREOL P I
2 2(p—1)
+p / Llgals. Y| [ 2y s

for a.e. w € Q and all ¢t € [0,T]. Due to Lemma D.6, the second term on the right-hand side is less
than or equal to zero such that we only have to investigate the last three terms induced by noise.
For the Ito integral we apply the Burkholder-Davis-Gundy inequality (2.13), property (2.6) of the
operator A, the bounded growth (2.9) of g, Young’s inequality and Lemma D.1 to receive for the
stopping time 7 := 75 for R € N (see (2.30) in Remark 2.2.4) that

9 2(p—1)
sup QpReZ/ gn(r,Y (r))e;, AY (1)) Ha Y(r) ag;(r)
sE[Ot/\T]
tAT n 2 P 4p—2 2
< -
<6pE / Dlguls. Y Desl| || v (s as
tAT 5 8 4p—2 %
< —_
_GPE/O lg(s, Y ()7, kv 8xy(8) dsl
tAT ) a 2 a 4p—2 %
< —_ —_
<6p\/hy E /0 1+ Y (s)l +HaxY(s) ‘&CY(S) s
1 tAT 6p—2 tAT 6 4p %
<6p\/ky E — Y (s)[|*” —Y
6p t/\T )+ 2p/0 1Y (s)||*F ds + 5 /0 o (s)|| ds
T AT g 4p 3
<6/2pk, |VT + E / Y (s) |4pds +\/3p 1E / 5. Y ()] ds
0
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2.2. Study of Lipschitz Continuous Noise

Therefore, relation (2.34) implies

2(p—1)

sup 2pReZ/ gn(r, Y (7))ej, AY (r ))Haa Y (r) dg;(r)

se[o tAT]

§6\/2pk:gT+§E sup HY(3)||2P—|—36pk:gE/ 1Y (s)]|2ds
s€[0,T 0

2p
ds

2Y(s)

1 0
+-F sup %Y(s) o

tAT
+ 36pk,(3p — I)E/
2 SE[0,tAT] 0

T
=0, kg, T) + 5 1B sup Y (s )||2P+C(p,kg)E/ 1Y ()] ds
0

s€[0,T]
1 9 2p tA 2p
+-FE sup ||=—Y(s)| +C(p, k‘g)E/ ds.
2 sefo,tnr] || O 0

The same calculations like in the case of the stochastic integral indicate that the last two terms
n (2.36) suffice

2(p—2)

g dr

%Y(r)

2(p—1)
dr

E sup p(p—1)Re /OS Z ‘(gn(r,Y(r))ej,AY(r)) ‘2

s€[0,tAT]

sup p/
sE [0,tAT]

tAT 1
<p’E / >
0o =

j=1

%Il o

lgalr, Y| |- ()

2 2(p—1)

g ds

0
% [gn(s,Y(s))ej} %Y(S)

0

tAT 2(p—1)
<PB [ s YOl | 557 )

ds
<p%k E/ <1+|Y ok +’ 2)’

tAT
<pk,T +pk‘gE/0 1Y (s)]1?P ds + p(3p — 2)kgE/0

2(p—1)

g ds

ox

0
%Y(S)

—Y(s)

2p

0
%Y(s) ds

T t o 2p
= Clphy T) + Clp k) [ V)P ds+ o) [ || 2y (o) ds
0 0

Combining these estimates, using the inequality H 6%4,0” H2p < H %(p”zp (compare the second prop-

erty in (2.3)), relation (2.35) and the result of Theorem 2.2.5, we obtain from equation (2.36)

) 2p
Sy o il <2H oul| +C ke T+ B sup [¥(5)>
SE[0,tAT] Ox oz s€[0,T7]
T t 8 2p
FCOR)E [ YOI ds+ Cwk)E [ |y ds
0 0

a | 2
< . '3
<2| 7|+ Clocp k) [1 4 el
t o 2p
+ C(p, kg)/ E sup ||[==Y(s)| dr
0 s€[0,rAT] z

Applying Gronwall’s lemma and replacing ¢ by T, it results that

9 o
2
SV ()| < Cwieo kg, T) [1+ 101

E  sup 3
x

s€[0,TAT]
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2.2. Study of Lipschitz Continuous Noise

Letting R — oo and taking into account (2.31) and the notation Y (t) = XM (¢), we finally get

2p

0
XN < Oy ke, T) [+ 0]

E sup 9pin
x

te[0,T)

Hence, together with Theorem 2.2.5 it follows that

2
Ets[%%] HXrJLV[(t)HVp < C(p,cg, kg, T) [1 + ”‘P”%/p} . O
€10,

Based on Theorems 2.2.5 and 2.2.6, we can conclude similar results of Theorems 2.2.2 and
2.2.3 as well. A short proof indicates how to proceed in this case.

Corollary 2.2.7. From the uniform a priori estimates of the solution XM of problem (2.25) in
L*(Q;C([0,T); H)) and L*(Q; C([0,T); V) for p > 1 we can deduce uniform estimates for p =1,
which are given by

E sup [[X20)]* < Cocg, by T) [1 4+ 0l]]
te[0,T7]

2
B sup XY@}, < Ceg kg T) [1+ ell]
t€[0,T]

Proof. Using Young’s inequality ab < %ap + %bq with a,b > 0, p,g > 1 and % + % = 1 for
a:=||XM@)|?*and b := 1, we get

M 2 1 M 2p p—1

ol < Lo+ 2oL

Hence, the application of the supremum over all ¢ € [0, T] and the mean value yield

2 1 2 p—1
£ s XM < LE s X + 2L < Oy, ) L+ 0l
te[0,7] D tefo,1]
By choosing a := HX,]IV[ (t)”i,, the analogue result for the norm in V' is true. O

All the preceding estimates can be summarized in the following way.

Corollary 2.2.8. For each M,n € N arbitrarily fived and p > 1, the solution XM of the
stochastic nonlinear Schrédinger problem (2.25) is uniformly bounded in L*?(Q;C([0,T); H)) and
L?(Q;C([0,T); V) and, therefore, also in L?P(2 x [0,T); H) and L?**(Q x [0,T]; V).

2.2.2 Existence of the Variational Solution

Based on the unique existence and the uniform a priori estimates of the sequence of variational
solutions ((X,")nen) 5,y Of the finite-dimensional stochastic nonlinear Schrédinger problem (2.25)
in the last subsection, we are now able to show the unique existence of the variational solution
of the finite-dimensional problem (2.24) and of the infinite-dimensional problem (2.17) thereafter.
The proofs rely on the approach in [42, Section 3].

Theorem 2.2.9. For each fited n € N and p > 1 there ewists a unique variational solution
X, € L*(Q;C([0,T); H)) N L*(Q x [0,T); V) of the stochastic nonlinear Schrédinger problem
(2.24), which satisfies the estimates

E sup [|Xa()* < Clp,cg, kg, T) [1+ 6]
te[0,T]

T
B [ X 01 dt < Coey by T) 141617
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2.2. Study of Lipschitz Continuous Noise

Proof. Let n € N be arbitrarily fixed. Thanks to the first and second property in (2.3), the
uniqueness of the variational solution follows similarly to the proof of Theorem 2.2.1. Therefore,
we first consider the stopping time 7y := 7% for u := XM which is equal to the stopping time in
(2.30) for R = M. From the definition of 7a;, Markov’s inequality and Theorem 2.2.2 we obtain

P(ry <T) <P < sup || XM(@)|° > M2>
t€[0,7] (2.37)
Hz Cleg, kg, T)

1 M 2
<-—F Sllp] | X3 @) < oz [1 + [l ] .

M2 cor
Thus, the increasing sequence of stopping times (7a7) converges P-a.s. to T. Let QM be the set
of all w € Q such that XM (w, -) satisfies (2.25) for all ¢ € [0, 7] and all k € {1,2,...,n}, XM (w, -)

has continuous trajectories in H and takes values in L?([0,77]; V). We introduce ' :=3,_, @M
with P(Q)) = 1. Furthermore, we define

oo M
S = U U {weQ g =Tand3t€[0,T]: XK (w,t) # X} (w,t)}.
M=1K=1

It holds that P(S) = 0 because otherwise there exist two natural numbers Ky, My with Ky < My
such that the set

Sy, Ko = {w €7k, =Tand It €[0,T]: XKo(w,t) # X,]Lwo(w,t)}
has the probability P(Su,,k,) > 0. Denoting for all ¢ € [0,T]

Xfo(w,t) :WESMO,KM
XMo(wt) :we YN\ Sy ko

X (w,t) = {
we see that for all w € Sy, i, there exists a ¢ € [0,T] such that X*(w,t) # XMo(w,t). This

contradicts the almost sure uniqueness of the variational solution of (2.25) for M = My and it
follows that P(S) = 0. Letting

Q":Q’ﬂ([j{TMT}\S)’
M=1

using (2.37) and the definition of S, we get
PQ")= lim P{ry=T}\S)=1— lim P(ry <T)=1.
M —o0 M —o0

Choosing now an w € ", there exists an My € N such that 75y = T for all M > Mj. Therefore,
M (|| XM (s)||) =1 for all s € [0,T] and all M > My, and consequently

(6N, 00) = () =1 [ (A () s =X [ (5K (5)) ) ds
0 0

([ o) o))

for all ¢t € [0,T7], all M > My and all k € {1,2,...,n}. For this fixed w € Q" we define
Xo(w, )= XM(w, ), for all t € [0,T] and all M > M. (2.38)

Hence, we have

(X (), 1) :(@n,hk)—i/o <AXn(s),hk>ds—/\/0 (Fu(Xon(5)), ) ds

o t (5., (5) A7, 5). . )
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2.2. Study of Lipschitz Continuous Noise

forall we Q”,all t € [0,T) and all k € {1,2,...,n}. This equals equation (2.24), which does not
only hold for the eigenfunctions (hx)re{1,2,....n} but also for all v € V' (since for all u € H, it follows
that (u, m,v) = (u,v) by the first property in (2.3)). Due to the properties of (X2 (¢));e(o,r), the
process (X, (t)):epo, ) is H-valued, F x B([0, T])-measurable, adapted to the filtration (F):efo, 17,
has almost surely continuous trajectories in H and takes values in L2([0,T]; V). Because of (2.38),
it results for all p > 1 that

lim sup ||X](¢) — Xn(t)||2p =0, for a.e. w € Q,
M—=00te(0,1]
T
: 2
A}lgloo ; X () — Xn(t)HV? dt =0, for a.e. w € Q.

Finally, the application of Fatou’s lemma, Theorems 2.2.2 and 2.2.3 for p = 1 and Theorems 2.2.5
and 2.2.6 for p > 1 yield

E sup |X,(®)|*’ =FE lim sup HX,]L”(t)HQPSIiminfE sup HX,]IW(t)HQp
te[0,T) M—ro0te(0,T] M—=oo  ¢e0,7)

< Cpyey kg, T) [1+ 11l
E/T|Xn(t)|%/pth]V}im /T||X;Vf(t)||37dt§1imme/T||ng(t)y|3’dt
0 —o0Jo M—oo Jo
< g,k T) [1+ 6l

Thus, X,, € L*(Q;C([0,T); H)) N L?*(2 x [0,T); V) is the unique variational solution of the
finite-dimensional problem (2.24) for all p > 1. O

Now, we state our main result concerning the unique existence of the variational solution of
the infinite-dimensional stochastic nonlinear Schrédinger problem (2.17).

Theorem 2.2.10. For all p > 1 the stochastic nonlinear Schrédinger problem (2.17) possesses a
unique variational solution X € L?P(Q;C([0,T); H)) N L?P(2 x [0,T); V), which satisfies

E sup [[X(1)[% < C(p,cg kg, T) [1+110l]
t€[0,T]

T
B [ IXOI dt < Clpvcys by T) [1+ 6l?]

Moreover, the sequence of Galerkin approzimations (X, )nen converges to the variational solution
X of problem (2.17) strongly in L?(Q; C([0,T]); H)) and weakly in L? (2 x [0,T]; V).

Proof. Tt suffices to focus on the existence of the variational solution because the uniqueness can
be found in Theorem 2.2.1. We know from Theorem 2.2.9 that there exists a unique variational
solution X,, € L*(Q;C([0,T); H)) N L?**(Q x [0,T]; V) of problem (2.24) and its corresponding
uniform a priori estimates. With respect to the definition of f,(u) and g,(-,u)w for all v € H,
and all w € K, and because of the first property in (2.3), we write the stochastic nonlinear
Schrodinger problem (2.24) in the equivalent form

(Xn(t)v hk) = (Qona hk) - Z/ <AXH(S)’ hk> ds — )\/ (f(Xn(s))7 hk) ds
0 0 (2.39)

N (/Otg(s,Xn(s))de(s),hk)

for a.e. w € Q, all t € [0,7] and all & € {1,2,...,n}. Due to (2.18) and Theorem 2.2.9 (for
p = 20 + 1), the nonlinear drift term obeys

T T
E / I (Xu (@) dt < 227+ B / 1Xu (527 dt < Co,c4,ky, T) [1+ 0l (2.40)
0 0
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2.2. Study of Lipschitz Continuous Noise

which implies the uniform boundedness of (f(X,)), in L?(Q x [0,T]; H). Hence, based on its
structure, we do not need any condition of bounded growth for the nonlinear drift term. The
property (2.10) and Theorem 2.2.9 (for o = 1) lead to

T T
B [ ot X))t < 20T+ 2608 [ X0 < Clegb T) [1+11617].

which entails that (g(-, X)), is uniformly bounded in L?(Q x [0,T]; L2(K, H)).

First, we fix p > 40. By the above uniform boundedness properties and Lemma F.1, it follows
that there exist a subsequence of (X,,),, which we denote for simplicity by (X, ), as well, and
functions Z € L2 (2 x [0,T); V), f* € L*(Q x [0,T]; H) and g* € L*(Q x [0,T); Ly(K, H)) such
that we receive for n — oo that

X, —~Z in L2(Q x [0,T]; H), L*(Q x [0,T);V) and L*(Q x [0,T]; V),  (2.41)
f(Xp) = f* in L*(Q x [0,T]; H), (2.42)
g(-, Xp) = g* in L*(Q x [0,T]; Ly(K, H)). (2.43)

Taking n — oo in (2.39) and using these weak convergence results, we get for a.e. (w,t) € Qx[0, 7]
and all £ € N that

(Z(8), 1) = (o, hy) — i /0 (AZ(s), hy.) ds — A /O (£(5), hn) ds + ( /O 7(s) dW(s),hk). (2.44)

There exists an F;-measurable process for all ¢ € [0, 7], which has in H almost surely continuous
trajectories, is equal to Z(t) for a.e. (w,t) € Q x [0, T] and is equal to the right-hand side of (2.44)
for a.e. w € Qand all t € [0,T] (see [87, p. 73, Theorem 2]). We denote this process by (Z(t)):cjo,1
and get for a.e. w € Q, all t € [0,7] and all £ € N that

t t t
(Z(t), hi) = (o, h) fi/ <AZ(5),hk>d5—)\/ (f*(s), hy) ds + (/ g (s) dW(s),hk). (2.45)
0 0 0
Next, we denote by Z,, := 7,7 and ¢} (- )w := m,{g*(-)w} for all w € K,, the finite-dimensional

approximations of Z and g*(-)w, respectively. Regarding (2.24) and (2.45) for Z,(t), using the
stochastic energy equality (C.2) and summing up over all k = 1,2,...,n, it follows that

1) = Zu(OI =21m [ (A1X0(5) = Zu(5)] X (5) = Zu()) ds
2Re [ ((60(9) - F(5), X0 (s) - Zu(s) ds
0

2R 3 [ (f90(0 X0 (9) = 25y X 9) = Z,(5)) 08 ()
“2Re Y0 [ (6001 Xal) — Zu(s)) )
j=n+170

t
+ / 9 (5: X (5)) — G2 (I, a5

+/o D D l(gn(s)es. e[ ds

j=n+1k=1

for a.e. w € Q and all t € [0,7]. Regarding each time the first property in (2.3) and (2.5)
of the orthogonal projection m, and the operator A, choosing £(t) := exp{—2(1 + ¢,)t} for all
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2.2. Study of Lipschitz Continuous Noise

€ [0,T7], applying the It6 formula to F(¢,n(t)) := £(t)n(t) with n(t) = || X, (t) — Zn(t)||2 and
taking expectation, we obtain

EE(T) | Xo(T) = Zu(D)|> = — 2(1 + ¢,) E / E(1) 1 Xn(t) — Za(t)|> it
T
~2ERe [ €(0) (FXu(0) = 1*(0). X 1) = Zu(0)
L E / £) lgn(t, Xu () — g2, i, 11,

+E/§ Zzy (t)es, )| dt.

j=n+1k=1

For the sake of brevity, we omit to write the dependence on ¢ € [0, 7] in the following two auxiliary
results. Property (2.20) entails

— 2\Re (f(X f X = Zy)
— — 2\Re (f(X n),Xn — 7o) = 2ARe (f(Zn) — £(2), Xn — Z2)
—2)\Re(f(Z ~ 7Z,)
—2)\Re(f(Zn) ,Xn—z)—2ARe(f(Z)—f*,Xn—Zn)
<N f(Zn) - f(Z)||2+||X = Zul* = 22Re (F(2) — ", X = Zn),

and, regarding the second property in (2.3) and the Lipschitz continuity (2.8) of g, it results that
Ign (- Xn) = 0l 2o iy < N9 Xn) = 0" I17, (50,10)
= (90, X0) —9(.2).9(-, X0) =9, 2)) 1, .11y
+(9(.2) = g% 90 X0) —9(-. D) , e iy
+ (90 X0) =9"90.2) = 9") L k)
=g+, Xn) —g(-, Z)”%Q(K,H) + (9, Xn) — 9" 9(+, Z) - 9*)L2(K,H)
+ (902 2) = 9%, 90 X0) =) ey — 190 2) = 9" )
<20 |1 X0 — Zul 4 260120 — 217 + (90 X0) — 990 D)~ 6 s
+(90.2) = 9%,9( . X0) = 9") o sery — 1902 2) = 912, k.-
Hence, it remains from (2.46) that

EE(T) || Xn(T) = Zu(T)|?
T T
<[ 601X - Z@I dt+ NE [ €0 17200 - 1ZO) de
0 0
— 2\FRe / €0 (F(Z(1) — F* (1), Xnlt) — Zu()) dt
T 2
w2, [ )12, - 200 e (247
B €0 (6 X(0) = 570,000 Z0) = 57(0) 1 e )
T
LB / (1) (9(t. Z(1)) — " (1), 9(t, X () — 9" (1)) 1, g

T
‘E/o &) llg(t. 2(0) — " (I2, KHdt+E/f S S (o e i) [P

j=n+1k=1
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2.2. Study of Lipschitz Continuous Noise

Due to the monotone convergence theorem and since g* € L?(Q x [0,T]; Lo(K, H)), we have for
n — oo that

E/g ZZ| ej,hk‘dt<E/§ leg (t)e;||* dt — 0.
Jj=n+1k=1 j=n+1
We use that Z,, = 7,7 and 2p > 80 > 4 to state
Zn, Z € LP(Qx [0,T]; V) — L*(Q x [0,T); V) — L*(Q x [0,T]; H)

and
12a(t) — 211 = (12006~ 2011P)” < (21201 + 20 20)1F)
< (112@IP)" = 16)120)".

Observe that 16| Z(¢)||* is an integrable majorant for || Z, (t) — Z(t)||* over  x [0,T] and that (by
the third property in (2.3)) | Z,(¢t) — Z(t)|| — O for a.e. w € Q and all t € [0,7] as n — oo such
that Lebesgue’s dominated convergence theorem entails

T

T
lim E [ ||Z.(t)— Z(t)||*dt = E/ lim [|Z,(t) — Z(t)||*dt = 0. (2.48)
0 0 n—oo

n—oo

Based on relation (2.19), the fact that £(¢t) < 1for all ¢ € [0, T] and the Cauchy-Schwarz inequality,
we have

B [ €015(Zu(0) - f(20)
0

T
<2908 [ (1201 +1Z01) 170 - 2] (249
. 3 T 3
<252 <E |z = 1z00%) dt) (E | iz~ Z<t>||4dt>
This yields
F(Z) = £(2) i L2Qx[0,T):H) asn — o (2:50)

due to Z,,Z € L?P(Q x [0,T];V) — L3 (Q x [0,T];V) and (2.48). Moreover, it holds that
Zy—Z — 0in L*(Q x [0,T); H) (since Z, = 7, 2), Xy — Zn = (Xpn — 2)+ (Z - Z,) — 0 in
L*(Q2 x [0,7]; H) (by the last result and (2.41)) and g(-, X,,) — ¢* in L*(Q x [0, T); L2(K, H))
(see (2.43)). Thus, writing the non-positive terms in (2.47) on the left-hand side, it follows for
n — oo that

T
EE&(T) | Xn(T) = Za(T)|I* =0, E/ () 1 Xn(t) = Zn()|* dt — 0,

0

and, therefore,
T
E/ 1 X, (£) — Zn(t)]| dt — 0. (2.51)
0
Furthermore, we obtain
T 2
B [0 Lt 20) = 6" (Ol 0 = 0.

which implies
g(t, Z(t)) = g (¢), for a.e. (w,t) € Q x[0,T].
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Now, consider n € L?(Q x [0,T]; H) to be a simple function. Hence, it is uniformly bounded with
respect to the variables w and ¢. Relation (2.19) and the Cauchy-Schwarz inequality lead to

T
E / (F(Xa(t) — F(Za(t)),n(t)) dt

<B / @) 1F(Xn (1) — £(Zn(t))] dt

T
<220 [ (o)l (151 +12,017) 1X,0) = Z,(0)] d
§2<’+20<E / ||n<t>||2(|Xn<t>|2va+||Zn<t>||2v“)2dt> (E / ||Xn<t>—zn<t>||2dt>

5 - 3 T :
gnga(E / n(t)|2<||Xn<t>||4vf’+||Zn<t>||4v")dt> (E / ||Xn<t>zn<t>||2dt> -

As aresult of (2.51) and the fact that (X,,),, and (Z,,),, are bounded sequences in L’ (Qx [0, T]; V)
(due to Theorem 2.2.9 and the embedding L??(Q x [0,T]; V) < L4 (Q x [0,T]; V)), we conclude

T
B [ (Xu0) = 120 n0) it 0 as o

for each simple function n € L?(Q x |
(2.42)) and f(Z,) — f(Z) — 0 (by (2.
n€ L3 x [0,T]; H) that

,T]; H). Based on the weak convergences f(X,) — f* (by

0
50)) in L2(Q2 x [0, T); H), it follows for each simple function

T
0=lim B [ (F(X0(0) ~ F(Za(0). (1))
= Jim B [ (FC50) = FOa0) de+ B [ (70— £(20).0(0) i
T
lim B[ (F(Z(0) ~ f(Za(0) () de

n—oo O
— B / (F7(5) — F(Z(1),n(t)) dt.
0

However, the set of simple functions is dense in the space L?(Q x [0,T]; H), so we deduce

T
E/ (f () = f(Z(t)),n(t)) dt =0, for all n € L*(Q x [0,T]; H).
0
Thus,
f(Z(t) = f*(1), for a.e. (w,t) € Q% [0,T7.
Then equation (2.45) coincides for a.e. w € Q, all ¢ € [0,T] and all k¥ € N with

(Z(8), b)) = (0, 1) —i/o <AZ(3),h;€>ds—)\/O (F(Z(s)). he) ds + (/0 g(s,Z(s))dW(s),hk>.

Since span{hi, ha, ..., hy,...} is dense in V, the above equation also holds for all v € V. Hence,
X := Z is the variational solution of the stochastic nonlinear Schrédinger problem (2.17), and
X € L3(Q;C([0,T); H)) N L*(Q x [0,T]; V) for fixed p > 40.

For p € [1,40) we use the continuous embedding result L8 (Q x [0, T]; V) — L?*(Q2x[0,T]; V).
Consequently, weak convergence in L3 (2x [0, T]; V) implies weak convergence in L2 (2x [0, T]; V)
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(see [104, p. 265, Proposition 21.35 (c)]). By now, we only know that a subsequence of (X,),
converges to X strongly in L2(Q2 x [0,7]; H) (since X,, — X = (X, — Z,) + (Z, — X) — 0 in
L*(Q x [0,T);H) by Z,, = m,Z = 7, X and (2.51)) and weakly in L?(Q x [0,7]; V). In fact, the
whole sequence has these properties. Observe that every subsequence of (X,,), has a subsequence
which converges strongly to the same limit X (the unique solution of the Schrodinger problem) in
L?(Q x [0,T]; H). Hence, the whole sequence (X,,),, converges strongly to X in L?(Q x [0,T]; H)
(compare [103, p. 480, Proposition 10.13 (1)]). Furthermore, every subsequence of (X,,), has, in
turn, a subsequence which converges weakly to the same limit X in L2(2 x [0,7]; V). Hence, the
whole sequence (X,,), converges weakly to X in L?(2 x [0,7]; V) (see [103, p. 480, Proposition
10.13 (2)]). Using the weak convergence of (X,,), to X in L?P(Q x [0,7]; V) for all p > 1 and the
result of Theorem 2.2.9, we get

T T
B[ IX@IFd < tmint B [ X0 d < Coeg ko D [141617]. @252
0 n—roo 0

Similarly to Theorem 2.2.2 and Theorem 2.2.5, the estimate

B sup [[X(8)|% < C(picy ki, T) |1+ 1]
te[0,T)

for all p > 1 can be shown. Therefore, it holds that X € L?(Q; C([0,T]; H)) N L?*(2 x [0,T]; V).
To verify the strong convergence of (X,,), to X in L?(Q; C([0,T]; H)), we take equations (2.17)
and (2.24), apply the stochastic energy equality (C.2) to their difference and obtain

() = X 0)17 = llo = el + 21 [ (ALX(5) = X, (0)] X(5) = Xo () s
~2ARe / (FX()) = FalXa(s)) X(5) = Xo(s)) ds
+ 2Rez / — (s, Xu(5))] €5, X (5) = Xu(s)) dB; (5)

(2.53)
+ 2Re Z / (5,X(s))ej, X(s) — X, (s)) dB;(s)

Jj=n+1

<[ Z||[g<s,x<s>>—gn<s,xn<s>>} oI ds
/ > lgls, X (5D s

j=n+1

for a.e. w € Qand all t € [0, T]. Based on the series representation, the first term on the right-hand
side converges to zero as n — oo and the second one vanishes because of

X( Z hk hy + Z hk hi,
k=1 k=n+1

the eigenvalue equation Ahy = prhi for all £ € N and the orthogonality of the eigenfunctions
(hi)ken. Due to the third property in (2.3) and relation (2.51) with Z,,(s) = 7, Z(s) = m, X (s),
it results for n — oo that

T 2
E / 1X(s) — X (s)] ds

T T (2.54)
ng/O ||X(s)—7rnX(s)||2ds+2E/O 7 X (5) — X (s)|2 ds — 0.
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The Cauchy-Schwarz inequality yields

E sup —2)\Re / (F(X(5)) — FulXa(5)), X(5) — Xu(5)) ds

t€[0,T]

<O\E / 1F(X(8)) = FalXn()] 1 X(5) = Xu(s)l]ds

1
2

T % T
gw(E / ||f(X(S))fn(Xn(5))ll2d8> (E / ||X<s>xn<s>2ds> ,

which converges to zero as n — oo because the first expression in parentheses is bounded (com-
pare (2.3), (2.40) and (2.18), (2.52)), while the second one goes to zero (by (2.54)). Using the
Burkholder-Davis-Gundy inequality (2.13), we get

B sup 2ReY” [ (1966, X(5) = gu5. X ()] e X (o) = X,(5)) 43y 0

te[0,T) =

N|=

T n
<O6E [/O Z Ilg(s, X (5)) = gn(s, Xn())] 517 [ X (5) = Xn(s)[|” dSI

2

[N

<E (; sup ||X(t)—Xn(t)|2> (72/0 Zng(s,X(s))—gn(s,Xn(s))}ejlzds)

t€[0,T)

1 T
<3P s [X(0) = X0 + 365 / g g5, X(5)) — gn(s, Xa(s))] 511 ds.

Relations (2.2) and (2.3), the definition of g,(-,u)w for all w € H,, and all w € K, Cauchy’s
Double Series Theorem (see [30, p. 22]) and the Lipschitz continuity (2.8) of g entail

T n
B[St X0 o XDl s

TS 2 2
<2E / >~ (llgls, X (5))es = mafg(s, X (s)esHP + lmu{g(s, X ()€} = guls, Xu()es ) ds
j=1

2

T ©o° e}
SQE/ Dol DC (gls, X(9)eg ) b ds
0 j=1llk=nt1
T o0 n 2
+2E / S (lgls, X () = g(s, Xn(s)ej, h) h|| ds
0 j=1llk=1
§2E/ > 2 als X()es hu) | ds
0 j=1k=n+1

T oo ©o

28 [ 503 |(lato. X)) ~ ol X o) ) ds

j=1k=1

:2E/0 Z Z’(g(s,X(s))ej7hk>|2ds—|—2E/0 llg(s, X (s)) —g(s,Xn(s))Hiz(K’H) ds

k=n+1j=1

T o o0 ) T
§2E/0 Z Z’(g(s,X(s))ej7hk)| ds—l—QCgE/O ||X(s)—Xn(s)||2ds.

k=n+1j=1
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This expression also converges to zero as n — oo because of relation (2.54), the fact that
g€ L*(Q x [0,T]; La(K, H)) and the rest of a convergent series goes to zero. Furthermore, the
Burkholder-Davis-Gundy inequality (2.13) leads to

E sup 2Re Z /0 (9(s, X (s))ej, X(s) — Xn(s)) dB;(s)

t€[0,T7 J=nt1

2

T e
<6E / > llgls X(8))esl 11X (s) = Xn(s)])” ds

Jj=n-+1

Nl
N|=

2[5 ol X(5)e s

j=n+1

<E <1 sup ||X(t)—Xn(t)||2>

2 te[0,T)

1 T
<LE sup X0 - X017+ 368 [ D gl X()eylds,
t€[0,T) 0 j—n+1

where the same argument of a convergent series is valid such that

T
E/ Z ||9(37X(5))6j||2ds —0 as n — 0o.
0 .
j=n+1

Finally, equation (2.53) given by the stochastic energy equality results in

E sup [|[X() - X,(O)]* =0  asn — oo.
t€(0,T]

Thus, the sequence of Galerkin approximations (X, ), converges to the variational solution X of
problem (2.17) strongly in L?(2;C([0,7]; H)) and weakly in L?(Q x [0,T]; V). O

2.2.3 (Generalizations

Instead of homogeneous Neumann boundary conditions, we can also think of homogeneous Dirich-
let boundary conditions (for the deterministic two-dimensional case see [11, 96]) or periodic bound-
ary conditions (the deterministic one-dimensional case can be found in [36, 94]). The only thing
that changes is the explicit form of the eigenvalues and eigenfunctions of the operator A. However,
all their properties are retained which means that there still exists an increasing sequence of real-
valued eigenvalues and the corresponding eigenfunctions are orthonormal in H and orthogonal in
a space V that is adjusted to the boundary conditions. Then all results of this section for the
stochastic nonlinear Schrédinger problem remain the same.

Furthermore, during this work, we use Lipschitz continuity and bounded growth conditions
of the diffusion function g. These assumptions can be weakened to local Lipschitz continuity in
Ly(K, H) and bounded growth in Lo(K, H) and Lo (K, V).

Corollary 2.2.11. The results of Section 2.2 and, therefore, especially of Theorem 2.2.10 also
hold if we replace conditions (2.8) and (2.9) by the following assumptions:

e for each L € N there exists a constant cg 1, > 0 such that for a.e. w € Q, allt € [0,T] and
all u,v € H with ||u|| < L and ||v|| < L

lg(t,w) = g(t, L, k) < cgollu— o],
e there exists a constant kg > 0 such that for a.e. w € Q, allt € [0,T], allu € H and allv € V

gt I, re.mry < g (1+ [lul?) and — lg(t, V)L, vy < kg (L+0I5) -
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Proof. At first, we use the Galerkin method and, secondly, we apply the truncation function to the
drift term f as well as to the diffusion term g. Then we obtain again globally Lipschitz continuous
functions fM and gM for fixed M,n € N and can proceed as in the present issue. We immediately
get the unique existence of the variational solution of the truncated finite-dimensional problem
and can extend this result to the finite-dimensional and, thereafter, to the infinite-dimensional
problem as described in the current section. Hence, the same results as in the case of a globally
Lipschitz continuous function g hold. O

The discussion of more general types of nonlinearities f is another possible extension of our
stochastic Schrédinger problem.

Corollary 2.2.12. All assertions of the current section remain true if we exchange the power-
term f(v) = |v|*°v for all v € V and 0 > 1 by a nonlinear function f : V. — H defined by
f() :== F(|v|*)v, where F : [0,00) — [0,00) is once continuously differentiable with F'(z) >0 for
each x > 0, and there exist C' > 0 and o > 1 such that

|F(21) — F(z2)| < C (1 + |z1]77" + |z2|77 ") |21 — 22, for all z1,29 > 0. (2.55)
The case 0 = 1 may also be included by assuming that F is globally Lipschitz continuous.

Proof. Assumption (2.55) substitutes the inequality from Lemma D.4 (b). With the help of Lemma
D.2 and Young’s inequality, one can verify the analogues of (2.18) and (2.19)

IF (@)l < Clo) (1 + [lvll7*) for all v € V,
£ () = f)ll < Clo) (1 + [ul7 + l0IF7) llu = vll, for all u,v € V.

These inequalities permit to derive similar estimates as (2.40) and (2.49) needed in Theorem 2.2.10.
The result from Lemma D.5 is replaced by

Re{(F(\z1|2)zl — F(\z2|2)22) (z1 — 5)} >0, for all 2z, 29 € C,

which is proved analogously to Lemma D.5 while using the fact that F' is an increasing and positive
function. Moreover, the inequality from Lemma D.6 is exchanged by

Re { (F(|v]*)v, Av)} >0, for each v € V such that Av € H,

which is shown similarly to Lemma D.6 since F' and F are positive functions. Further details of
the derivation of these inequalities can be found in Appendix E. O

The case F(x) = x° with ¢ > 1 corresponds to f(v) = |v|?*?v which obeys (2.55) since
|29 — 25| < o|r1]° Y21 — 22|, which can be seen by applying inequality (D.1) for x = a>1
with x2 # 0 and s = ¢. Such nonlinearities appear, for example, in the deterministic articles
[55, 79, 80]. We can also take a polynomial of the form F(z) = A\ + A\ix + Aaz? with A\; > 0
for k = 0,1,2, which represents a cubic-quintic nonlinearity mentioned in [7, 17]. In that case
our method also works and yields the same results. Without loss of generality, this idea can be
transferred to polynomials of finite degree with positive coefficients and also to linear combinations
of power-type nonlinearities of the form

F(z) = Z Az, for fixed m € N,
k=1

with A, > 0 and o}, > 1 for k = 1,2,...,m like in [78, 93, for m = 2].

Due to our approach, we have considered the stochastic nonlinear Schrédinger problem over a
bounded one-dimensional domain. It would also be interesting to investigate this problem over an
unbounded domain G C R. However, notice that there is a lack of compactness of the embedding
H'(G) — L?(G) such that the main idea of Lemma D.2 does not work any longer and we do not
have a countable spectrum of eigenvalues and eigenfunctions in this case.
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Remark 2.2.13. Taking R instead of the interval (0,1) with H := L*(R) and V := H'(R), we
can further ensure the same results of the variational solution as in Section 2.2 if we

e use the continuous embedding V- — C(R) (see [105, p. 1027, (45d)]) such that we have an
analogue of Lemma D.2 in form of

sup [v(2)|? < c|vl%, forallveV,
z€R

e regard the continuity of the embedding V — H (see [105, p. 1027, (45¢)]),

e replace the operator A in our Schridinger equation by A := A+ P, where P € L] _(R) is
bounded from below and satisfies P(x) — oo as |x| — oo such that A has a purely discrete
spectrum of eigenvalues and a complete set of eigenfunctions (see [84, p. 249, Theorem
XII1.67]).

2.3 A Pathwise Approach for Linear Multiplicative Noise

Based on [60], we regard the nonlinear Schrédinger equation perturbed by linear multiplicative
Gaussian noise

dX(t) = —iAX(t) dt + irf(X dt+sz t) dB;(t) (2.56)

for a.e. w € Qand all ¢ € [0, T] with initial condition X (0) = ¢ € V and the notations from Section
2.1. Let A € R, the nonlinear drift function f : V — H be again of the form f(v) := |v|??v for all
v €V with o € (0,2), (8;)jen be independent real-valued Wiener processes and B := [y, fa, . ..’
such that (B(t))¢cjo, 7] generates an increasing family of o-algebras (F3)ic(o,77- Furthermore, for
all j > 1let b; : Q x [0,T] — R be Fi-adapted processes satisfying

240 [T 9
E | exp Sy ]E_l/o bj(s)ds < o0, (2.57)
which especially implies that

oo T
Z/ b?(s) ds < o0, for a.e. w € Q. (2.58)

Thus, the Schrédinger equation (2.56) is a special case of the Schrédinger equation in (2.11) with
a power-type nonlinearity f(t, X (t)) := |X(¢)|*? X (t) and the noise term

/OTgu, Z/ by(£)X (1) d; (1),

which is composed of a countably infinite set of linear multiplicative Wiener noises. The case of
a finite set is included by assuming that b;(t) = 0 for all j > m with m € N. Analogously, we
define a variational solution of the stochastic nonlinear Schrédinger equation (2.56) with initial
condition ¢ € V as a process X € L?(;C([0,T]; H)) N L?(2 x [0, T]; V) which fulfills

(X(t),v) = (p,v) — /0 (AX(s),v) dS—i—ZA/Ot (f(X(s)),v)ds
+zZ/ ),0) d; (5

forae.weQ,allte[0,7T] and all v € V.

(2.59)
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Remark 2.3.1. Let (2.57) and by association (2.58) be satisfied. Then the H-valued integral
Z / s)dB; (s for all t € [0, T,
0

defines a continuous local martingale with respect to the sequence of stopping times (Tar)men given
by

oo LT

T :Z/ b3(s)ds < M,
j=1"0

o) t o0 T
inf te[O,T]:Z/ bi(s)ds > M :Z/ bi(s)ds > M
=170 =170

for all M € N (compare [12, Lemma 2.1]). Notice that (Tar)men is an increasing sequence which
converges P-a.s. to T and (due to (2.58)) it holds that

p([j{TM_T})_l.

M=1

Tar =

If, additionally, X € L?(Q;C([0,T]; H)), one can also show that

Z/ b (s)X (s) dB;(s), for all t € (0,77,

is a local martingale with the same sequence of stopping times (Tar)men (compare Appendiz G).

We investigate the existence and uniqueness of the variational solution of (2.59) by transforming
this problem into a pathwise one, derive the properties of the solution of the pathwise problem and
then transfer the results to the stochastic problem (2.59). Therefore, we first regard the process

Y (t) := exp ”Z/ bi(s 5712/ 5) dB;(s (2.60)

for a.e. w € Q and all ¢t € [0, 7], whose absolute value (needed later on) is given by
I [T
Y (t)| = exp —5 Z/o bi(s)ds ¢, for a.e. w € Q and all ¢t € [0,T7].

Observe that it is possible to write Y (¢) := exp{—Z(¢)} with

1, ~ [
:2;/0 bj(s)ds—i-z;/o by(s) dB; (s)

Applying the 1t6 formula for F(z) := e~ yields the differential
Zb2 (t)ydt —i Y b)Y (t)dB;(t),  Y(0)=1.
j=1

Thus, the process (Y (t))¢cjo,7] is the solution of the stochastic linear differential equation
j=1-% /bQ ds—zZ/ by (s)Y (s) dB; (s) (2.61)
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for a.e. w € Q and all ¢ € [0, T], where the stochastic integrals in (2.60) and (2.61) are real-valued
local martingales with a sequence of stopping times (7as) amren as stated in Remark 2.3.1. Moreover,
we introduce for a.e. w € Q and all ¢t € [0, 7

B(t) ::W:exp szl/o bi(s)ds ¢, (2.62)

where (B(t)):epo,) is Fi-adapted and 0 < B(t) < B(T) < oo for a.e. w € Q and all ¢ € [0,77].
Now, we consider the pathwise nonlinear Schrédinger problem

(Z(t),v) = (¢,v) —i/o <AZ(5),v>d8+i)\/O B(s)(f(Z(s)),v) ds (2.63)

for a.e. w € Q, all t € [0, 7] and all v € V. Initially, the focus is on the existence and uniqueness of
the variational solution Z of the pathwise Schrédinger problem (2.63), which can be extended to
the variational solution X of the stochastic Schrodinger problem (2.59) thereafter. As we verify
in Subsection 2.3.2, the solution of the stochastic problem (2.59) is given by

X(t, )= lim ZENTw, )

A S AT for a.e. w € Q and all t € [0,T].

2.3.1 Investigation of the Pathwise Problem

First, we investigate the uniqueness of the variational solution of the pathwise nonlinear Schro-
dinger problem (2.63) (for a.e. w € Q arbitrarily fixed).

Theorem 2.3.2. If Z € C([0,T]; H) N L*([0,T); V) is a variational solution of the pathwise
Schrédinger problem (2.63), then it is unique.

Proof. Assume that there are two variational solutions Z, Z € C([0,T); H)N L*([0,T]; V) of prob-
lem (2.63). By denoting 07 := Z — Z, we get

(62(t),v) = / (A52(s),v) ds + iA / B(s)(f(2(s)) - f(2(s)),v) ds
for all ¢t € [0,T] and all v € V. Applying the energy equality, we obtain

16Z(t)||> = 2Im/0 <A6Z(s),6Z(s)>ds—2)\Im/O B(s)(f(Z(s)) — f(Z(s)),0Z(s)) ds

for all ¢ € [0,7T], where the first addend on the right-hand side vanishes immediately because
Im (Av,v) = 0 for all v € V. Due to 0 < B(s) for all s € [0,¢] and Lemma D.4 (a), we conclude

6z = - 2>\Im/ (s)) — f(Z(s)),02(s)) ds

<o [ B0) Hf<Z<s>> — 1(2()||162(s)l ds

1

<5) /Ot B(s) Uol <|Z(s,x)|2” + |Z(s,x)|20)2 16Z(s,z)|? dx] " 162(s)l| ds

IE[Oal] aZE[O,l]

t
§5)\/ B(s) ( sup |Z(s,z)]*" + sup |Z(87x)|20> 162 (s)II* ds
0
for all ¢ € [0,T]. Lemma D.3 further yields
T T .
/ sup |Z(s,z)[* ds < oo and / sup |Z(s,x)[* ds < oo.
0 z€[0,1] 0 z€[0,1]

Hence, we deduce by Gronwall’s lemma for integrable functions (see [53, p. 479, Lemma A.1]) that
16Z(t)||> = 0 for all t € [0, T] and, consequently, Z(t) = Z(t) for all t € [0, 7). O
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To show the existence of the variational solution of the pathwise nonlinear Schrédinger problem
(2.63), we adapt the Galerkin method for deterministic nonlinear Schrédinger equations (compare
[36] with o = 1) to the case of problem (2.63) with o € (0,2). For each n € N, we consider the
finite-dimensional Galerkin equations corresponding to the pathwise Schrédinger problem (2.63)

(Zn(t), b)) = (ons i) —i/o (AZn(s),hk.>ds+i>\/O B(8)(fn(Zn(5)), hi) ds (2.64)

forallt € [0,7] and all k € {1,2,...,n}, where ¢, :== m,p and f,(u) := m, f(u) for all u € H,, are
the orthogonal projections of ¢ € V and f(u) € H on the finite-dimensional space H,, (see (2.2)).
The subsequent theorems state uniform a priori estimates of the Galerkin approximations Z,, in
the spaces H and V.

Theorem 2.3.3. Let n € N be arbitrarily fized. Then the Schridinger problem (2.64) possesses a
unique solution Z, € C([0,T]; H) and

1Za@I* < llell?, for all t € [0, T].

Proof. We introduce the mapping F, : [0,T] x H,, — H,, defined by F,,(¢t,u) := B(t) fn(u) for all
t € [0,7] and all u € H,,. Regard that for each fixed ¢t € [0, T] and each uy,us € H,, we have by
the second property in (2.3), Lemma D.4 (a), Lemma D.2 and the equivalence of the norms || - ||
and || - ||v on H,, (see (2.4))

1F(t ur) = Fo(t,u2)|[? = B2(t)[| fa(ur) = fulu2) | < B2(T)|[f(u1) — f(u2)]?

25 !
< TBT) / (Jur ()27 + Jua (2) [27)* [ (2) = o (@) d
0
25
< 532(T) sup (Ju1(2)[* + uz(2)[*7) [lur — us|?
z€[0,1]

< 25- 2277 BA(T) (|fun [y + [ually7) [lur — ua||?
<25- 2277 BA(T) (1+ p1n)* ([[ua|* + fluzl*) llur — ua .

Hence, the mapping F, (¢, -) : H, — H, is locally Lipschitz continuous for each fixed ¢ € [0, T].
Combining this result with definition (2.62) of B(t), it follows that F,, : [0,T] x H,, — H, is con-
tinuous in time and space. Therefore, the existence of a local (strong) solution Z,, € C([0,0]; Hy)
with ¢ € (0,7 of

¢ ¢
Zn(t) = @ — z/ AZ,(s)ds + i)\/ F,.(s,Zy(s)) ds, for all ¢ € [0, 4], (2.65)
0 0

in H,, is ensured by Peano’s theorem for mappings which are locally Lipschitz continuous on H,,
(see [28, p. 214216, especially Theorems 2.3.1 and 2.3.4]). With the help of the second property
in (2.3), the uniqueness of the solution of (2.65) can be established analogously to the proof
of Theorem 2.3.2. Obviously, Z,, fulfills (2.64) and we can apply the energy equality to (2.64).
Summing over all £ =1,2,...,n, we receive

1Zn (D17 = llenl® +21m/ (AZ0(5), Zn(s)) ds — 2>\Im/IB(S)(f”(Zn(S)LZn(S)) ds
0 0
for all ¢ € [0,6]. Since (AZ,(s), Z,(s)) >0 (by the second property in (2.5)) and

B(5)(fa(Zn(5)): Zu(s)) = B(s)(f(Zn(5)), Zu(s)) = 0,
(due to the first property in (2.3)), both imaginary parts vanish and it only remains

1Za )17 = llenll?, for all ¢ € [0, 4].
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Because of [|¢,]|? < ||¢||? (see the second property in (2.3)), it further holds that
1Za@®I? < llell?, for all ¢ € [0, 4].

In order to get a global solution, we successively consider this problem over the interval [kd, (k+1)d]
for all K = 1,2,...,m until we reach the final time T" € (md, (m + 1)d] after finitely many steps
m € N. For each fixed k € {1,2,...,m} the same procedure with the initial condition Z,(kd)
yields a unique local (strong) solution Z,, € C([k6, (k+1)d]; H,,) and the estimate || Z,(t)|> < |||
for all ¢ € [kd, (k + 1)d]. Hence, the composition of these solutions enables us to extend the local
solution Z,, on [0, ] to a global solution on [0, 7. O

Corollary 2.3.4. The uniform a priori estimate of the sequence of Galerkin approximations (Z,)n
in H can be raised to the higher power 2p for each p > 1. Thus, we additionally get the boundedness
of (Zp)n in L?**([0,T); H) for all p > 1.

Theorem 2.3.5. Let n € N be arbitrarily fixed. Then there exists a positive constant C' depending
on o such that the solution Z, of (2.64) satisfies the estimate

. 2 2(2+40)
1221} < C@) (Il + ABT) [0l + ABT)T7 gl =), for all t € [0,T].

Proof. To prove the boundedness of Z,, in V' as well, remember the equivalent representation of
(2.64) as the integral equation

Zn (%) :gan—i/o AZ,(s) ds+i)\/o B(s)fn(Zn(s)) ds

in V* for all ¢t € [0,T]. Using the absence of noise, we write

& 20(1) = —iAZ(0) + DB (Z(D),  Za(0) = .

Unless noted otherwise, each relation in this proof is valid for a.e. ¢ € [0,7]. Multiplication with
%Zn (t) and the properties of the Gelfand triple (V, H, V*) yield

|22 L (42,0, 32,0} + 280) (1 Zu(0). 52,0

The definition (2.1) of A and the first property in (2.3) entail

o

2
En =—19 (;JEZn(t)7 O?xaath(t)> +iAB(1) (f(Zn(t)), ;Zn(t))

Regarding that A, B(t) € Ry and taking the imaginary part, the left-hand side vanishes and

0 J 0 0
0=t {i( L0, 2220} oasom i (520, 52.0))
P 9 9 9 (2.66)
=~ Ro (- 2ult) g 5 20l0)) + ABORe (£(2,(0). 52000 )
Due to Re{ab} = 1(ab+ ab) for a,b € C, it holds for b := a; = %a that
d d
Re{aa;} = %(aat +aa;) = %ﬁ(aﬁ) = %£|a|2. (2.67)

Using this result for a := 8%Zn(t, x) and the fact that the representation of the Galerkin approxi-
mations is separated in time and space such that the order of differentiation and integration can
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be simply changed, the first term on the right-hand side suffices
0 0 0 0 0 0
—Zn(t), —=Z,(t) | = —Zn(t), = =—Z,(t
I“3<ax T ()> I“3<ax ®: 5 ax ())
1
0 0 0 —
- Gzt L L7 )b d
jﬁ Re{éh: (4:2) 57 g Zn' z)} *
! /1 o]0 Cgp Ld
2 ), Ot|0x
Moreover, applying (2.67) to a := Z,(t,x), the second term results in

mewm»azﬁoz/l%@m%m{%@@;am@}m
/ﬂzu@ ( ()tzum+2();zﬁ@>m

Zn(t, )

1 o7 o 20 0 -
1+0 /0 (|Zn [Z(t,2)7 Zn(t,2)7] + | Zn(t, 2)|*7 = [Zn(t,;v) Zn(t7x):|>d$

m/ Zut ) 212022 + 120 2) 2 2 (2t ) )dx

“a o) %Uzn(tvx)l?“lzn(t»wn?] = gy () 1t o).

Thus, we conclude from equation (2.66) that

D d ([}
— B el 7 2420 .
B0 5 ([ 12ut0Pe o)

Integration with respect to the time variable yields

0 0 2 A t d 1 yoon
' = 1+J/O B(s) - </O |Z (5, )] dx) ds,

—Z,(t —Zn(0
ox n(®) ox n(0)
where from now on each relation is valid for all ¢ € [0, T] in this proof. Due to integration by parts
on the right-hand side, we receive
( | Z,, (¢, )| T2 dx)

o > o
szn(t) - Hal'
</ |Z,,(0,z)[*127 da:)
0
{ } (/ |Z,, (s, )| T2 da:) ds
1 0
A

< Z 2420
L </|ntxﬂ m)

since (by assumption (2.57) and notation (2.62)) we have

d 2 2
O<£ _exp{aZ/ b } UZb 0, fora.e.sE[O,T].

Because of the initial condition Z,,(0) = ¢, it follows that

) 2 d | A
il <=0, 4—73 Z,(t,z)*?7 d
ao] @] + comm ([ 1meora).
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Based on Lemma D.2 and Lemma D.1, we see

1 1
/ |Zn(t,x)|2+2” dx < (/ Zn(t,:r)|2dx> sup |Z,(t, x)|2”
0 0

z€0,1]
. N
<120 12,00 (12:(001+2 5 2.0]) (269
<2120 + 212,017 | L 2000

This implies that

9y (t) 2 <||& 2+ &l AB(T)|| Zn (1)[IPF) + 2 AB(T)[| Zn (8)[|>+7 9y (t) ’
oz " =gz 1+o " 140 " ox "
d 2
<||—=on AB(T)|| Z,, ()] > +7)
_dew + B Zu (1)
2—¢g [ 220 \ 27 2 22400 o || O 2
B(T) 77 || Z, ()| > + = || —2Z,
+5 (1+0> (AB(T)) 77 | 2, (1) |52

due to Young’s inequality. Since ||Z,(t)||?> < ||¢||? for all ¢ € [0,7] (compare Theorem 2.3.3) and
the exponents 2(1 4+ o) and % with o € (0,2) are positive, it also holds that

o (2+0)
1Za@) PO+ < [P0, 1 Z, ()55 < g 7, forall t € [0, T,
(see Corollary 2.3.4) and, therefore,
2 2
o\ |9 d i 2(1+0)
1—=)|=2z, <=0, =
( 2)‘3;«2 (®) —Hdg:“" el
2
2—¢g [ 220 \ %7 2 2(240)
(== AB(T))75 |lo| 27 .
L2270 (20) Byl

By using the relation H%cpnw < H%@HQ (compare the second property in (2.3)), we infer for all
t € 0,T) that

2 9 (\
<
T 2-0
d
< -
<o) (Hdﬁ

Since | Z, ()13 = | Z.(t)|> + H%Zn(t)||2, it follows together with Theorem 2.3.3 that

2 20

L3
dep

2(2+0)

)“ (AB(T)) == o] 55

|>

%Zn(t)

l1+o l1+o

20 . 2
T+ 2 B@ |l >> T (

2
. 2 2(2+09)
+AB(T) || *M ) + AB(T) =7 ||| 2 > .

- 2 2050)
1221} <€) (Ilell} + AB@) o7 + ABT) =7 o] ), forall t€ [0,7). O

Corollary 2.3.6. The uniform a priori estimate in V can also be raised to the power 2p for each
p > 1. Hence, we get the boundedness of (Z,,)n in L*([0,T];V) as well.

Next, we investigate some special properties of (Z,)nen to conclude the existence of the vari-
ational solution of the Schrédinger problem (2.63).

Corollary 2.3.7. The sequence of Galerkin approzimations (Z,), of the pathwise Schrédinger
problem (2.64) is bounded in C([0,T); H), L*([0,T); H) and L*([0,T);V). Moreover, (Z,), is
relatively compact in L*([0,T); H).
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Proof. Theorems 2.3.3 and 2.3.5 imply the boundedness of (Z,,),, in C([0,T]; H), L*([0,T]; H) and
L2([0,T); V). Referring to the Galerkin equations (2.64), applying the Cauchy-Schwarz inequality
for square integrable functions and the triangle inequality, we get for all s,¢ € [0,7] with s < ¢

2
1Zn(t) — Zn(s)]

2. < H—z’/ (AZ,(r) = AB(r) fn(Zn(r))) dr

V*

<(t—s) / 1AZ0 (r) = AB(r) fa( Za() I3 dr

Ve + N B2(1) [ fn(Za ()]

< 2(t—s)/s (1420 (r) 2 )dr.

The continuity of the operator A (compare Section 2.1) and of the embedding H — V* with
embedding constant C' := Cy v« and the second property in (2.3) lead to

120 () = Zn(s)]

t .

vo<2(t-9) [ (101 + ¥B0C 1.(Zu)) dr
<(t=5)C [ (IZa0)E + N B ) 15(Za(r) )

Lemma D.2 entails for all r € [0, T] the estimate

2 o 2 o p 2(2041
1F(Za ()P = (120 ()27 Za ()| < s%p”wn(m)ﬁ@ ) <927 7, ()72
x€|0,

such that

120(6) = Zu(o)- < ¢ = 9)C [ (12,0 + 27 R BD) 2,0

Hence, the boundedness results in Theorem 2.3.5 and Corollary 2.3.6 yield the equicontinuity of
(Zy)n in C([0,T7]; V*). Since the embedding V' < H is compact, we finally obtain by a theorem due
to Dubinskij that (Z,,), is relatively compact in L?([0,T]; H) (see [99, p. 132, Theorem 4.1]). O

Now, we proceed with the existence of the variational solution Z of problem (2.63).

Theorem 2.3.8. Let (Z,), be the sequence of variational solutions of the finite-dimensional
Galerkin equations (2.64). Then it holds that

(a) (Zn)n converges strongly in L*([0,T); H) and weakly in L*([0,T); V) to the variational solu-
tion Z of the pathwise nonlinear Schrédinger problem (2.63),

(b) Z € L*°([0,T]; V) and especially

. 2 2(2+0)
esssup [Z2)} < C0) (ol + AB@) o7 + OBINT= ol 7).
€10,

(c) (Zn)n also converges to Z in C([0,T); H).

Proof. (a) We derive some convergence results in L2([0,T]; H) and L?([0,7]; V) and then we take
n — oo in the Galerkin equations

(Zo(t), 1) = (o, hox) — i /O (AZ(s), hy) ds + iX /O B(s) (fu (Zn(s)), hy) ds

for all t € [0,T] and all k € {1,2,...,n}. First, observe that

On =@ in H as n — oo.
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By Corollary 2.3.7 there exist a subsequence (Z, ), of (Z,), and a function Z € L?([0,T]; V)
such that

Zpr — Z in L2([0,T); H) as n' — oo, (2.70)
Zpr = Z in L2([0,T]; V) as n' — oo (2.71)
and
T ~
/ 1Zo (1) — ZW)2dt >0 as n’ — . (2.72)
0

The strong convergence implies the almost sure convergence of a further subsequence (Z,,/ ), of
(Zn’)n’ Wlth

Zon(t,z) — Z(t, ), for a.e. (t,x) € [0,T] x [0,1] as n” — oco.
Therefore, we obtain
B(t)f(Znr (t,2)) = B#)f(Z(t,z)), for a.e. (t,z) € [0,T] x [0,1] as n” — oc.

Lemma D.2 and the estimate given in Theorem 2.3.5 yield the uniform integrability condition
T ) T 1 )
| 1Oz @a = [ [ (B0 00z )] de e

T
gBQ(T)/ ( sup |zn,,(t,g;)|2<20+1>> dt
0

z€[0,1]

T
<920+ g2 / 1Zur (I3 dt < C(o, A, ¢, B(T))
0

for all n” € N. Then by [63, p. 72, Lemma 2.3] we receive
Bf(Zn) — Bf(Z) in L([0,T); H) as n"" — oc. (2.73)

Abbreviating Y, (s) := B(s)f(Zn(s)) and Y (s) := B(s)f(Z(s)) for all s € [0,t] and choosing
t € [0,T], we deduce with the help of the Cauchy-Schwarz inequality and Y,,» € L?([0,T]; H) that

/OT /Ot Y, (s)ds

This result also holds for Y such that we infer

2 T t T
dtg/ t/ ||Ynu(s)||2dsdt§T2/ Vo ()| dt < oo
0 0 0

t t
/ Y, (s)ds € L*([0,T]; H)  and / Y(s)ds € L*([0,T]; H).
0 0
Because of (2.73), we know that
T ~
/ (Yo (s) = Y(s),&(s)) ds — 0, for all ¢ € L*([0,T); H) as n” — oo.
0
Choosing £(s) = 1jg4(s)v with v € V and ¢ € [0,T], we have

T 5 t -
/ (Yo (s) = Y (s), Lo 4(s)v) ds = / (Yo (s) = Y(s),v)ds =0 as n” — oo,
0 0

which means that

(/Ot an(s)ds,v> = /Ot (Yo (s),v) ds — /Ot (Y(s),v)ds = (/Otf/(s) d&v)
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for all t € [0, 7] and all v € V' as n” — oo. Furthermore, since each weakly convergent sequence

is bounded, there exists a majorant
1
T 2
1
| <T> (/ IYn"(8)||2d8> vl < C,
0

(o)

which is independent of ¢ € [0, 7] and, therefore, integrable. Thus, Lebesgue’s dominated conver-
gence theorem implies for all v € V' that

T t T ¢
lim (/ Y, (s)ds, v) dt = / lim (/ Yo (s)ds v) dt = / (/ Y (s)ds, v) dt.
n’’—oo Jq 0 n'’—o0 0 0

This especially entails the convergence

// dsdt—>/ /B ),v) dsdt

for all v € V as n” — oco. Let k € N be fixed and consider v = hy, in the above convergence (for
n'' sufficiently large such that n” > k). Then using the first property of (2.3) with n := n”, it
results for n” — oo that

/OT/OtB(s)(fnu(Znu( ), he) ds dt = // (5)), he) ds dt
4// ). hi) ds dt.

T T
/ (Zn (1), hyy) dt — / (Z(t), hy,) dt as n” — oo,
0 0

and (2.1) and (2.71) lead to

0 d
/ / AZnN hk dsdt / / (am n” d hk> ds dt
a T
—>/ / ( hk)dsdt:/ /(AZ ), hy.) ds dt
Ox 0 0

as n” — co. Then we have by (2.64) that

/OT (Zur (1), ) dt = /T (s k) dt—z/ / (AZur (), 1) ds dt

LA / / o (Zur (5)), ) ds dt

for all k € {1,2,...,n"}. Taking n” — oo and applying the above convergence results, we obtain

/OT(Z(t),hk)dt /T(%hk)dt—z//QlZ )l ds

—l—z)\/ / B(s hk) dsdt

for all £k € N. We deduce for a.e. t € [0,7] and all k € N that

o (8)ds

From (2.70) we get

(Z(t), h) = (gp,hk)—i/o <AZ(5),hk>ds+i/\/0 B(s)(f(Z(s)), hv) ds.
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Since span{hi, ha,...,h,,...} is dense in V, the last equation holds for all v € V as well.
Moreover, there exists a process Z € C([0,T); H) N L?([0,T]; V) such that Z(t,z) = Z(t,z)
for a.e. (t,z) € [0,T] x [0, 1] and

(Z(t),v) = (¢,v) —i/o <AZ(8),v>ds—|—i)\/O B(s)(f(Z(s)),v)ds

for all t € [0,T] and all v € V (compare [87, p. 73, Theorem 2]). Thus, Z is the variational
solution of the pathwise Schrédinger problem (2.63) that is especially unique by Theorem 2.3.2.
Observe that every subsequence of (Z,), has a subsequence which converges strongly to the same
limit Z in L2([0,7); H). Hence, the whole sequence (Z,),, converges strongly to Z (compare [103,
p. 480, Proposition 10.13 (1)]). Furthermore, every subsequence of (Z,,),, has a subsequence which
converges weakly to the same limit Z in L?([0,7]; V). Hence, the whole sequence (Z,),, converges
weakly to Z (see [103, p. 480, Proposition 10.13 (2)]).

(b) Now, we establish that Z € L>°([0,7]; V). On the one hand, we apply Lemma F.2 for (Z,),,
which is bounded in L*([0,T7; V) due to the estimate given in Theorem 2.3.5. And on the other
hand, we take into consideration that (Z,),, converges weakly to Z (the unique variational solution
of the pathwise Schrédinger equation) in L?([0,T]; V) (compare part (a) of this theorem). Thus,
there exist a subsequence (Zz)n of (Z,), and a function Z € L*°([0,7];V) such that for all
ve L2([0,T); V) — L'([0,T]; V)

T T
/ (Zﬁ(t),v)vdt%/ (Z(t),v)vdt as i — 00
0 0
T T
/ (Zﬁ(t),v)vdt%/ (Z(t),v),, dt  asn— oc.
0 0

T ~
/O 12(t) - Z()| dt = 0.

which means that Z can be a.s. identified with a function belonging to L>°([0,7]; V). By Lemma
F.2 and Theorem 2.3.5, we also have

and

Accordingly,

esssup || Z(t)||3 < hmmfesssupHZ t)|I%

t€[0,T) n=0  tel0,T]
- 20240)
< C(@) (I¢lly + ABD) el + MBD) 77 o] = ).

(c) Next, we show that the sequence of Galerkin approximations (Z,,),, converges to the variational
solution Z of the pathwise problem (2.63) in C([0,7]; H). In part (a), we proved the strong
convergence

Zy — 7 in L2([0,T); H) as n — oo. (2.74)

Notice that (2.64) holds for all k£ € {1,2,...,n} but it is easy to deduce that it also holds for all
v € V since (u,mv) = (u,v) for all u € H, (by the first property in (2.3)). Then we use (2.63)
and (2.64), apply the energy equality and get for all ¢t € [0,T]

1Z(t) = Zu@®)I* =l — onll® + 21111/ (A(Z(s) = Zu(s)), Z(s) = Zn(s)) ds
2)\Im/ () = fu(Zn(9)), Z(s) —Zn(s)) ds.

The second term on the right-hand side vanishes because of

Z(s =3 (z ), hi) hi, + Z ), hi) b,

k=1 k=n+1
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the eigenvalue equation Ahy = pghy for all k& € N and the orthogonality of the eigenfunctions
(hi)ken. With the notation IL,,(s) := f(Z(s)) — fn(Zn(s)), we obtain

t
1Z() = Zun(O]* = llo = ¢al® = QMIH/O B(s)(In(s), Z(s) = Zn(s)) ds,
and the Cauchy-Schwarz inequality yields

sup || Z(t) — Zu(1)]*
t€[0,T]

. ; (2.75)
<[lp — @ull? + 2AB(T) ( / L, (s)]? ds>

( / 12(s) Zn<s>||2ds>

By the second property in (2.3) and Lemma D.2; it follows that
r 2 T 2
| ol = [ 1560 - (2] s
0 0
T
(L ZEDIP + 11 falZa())I7) ds

T

(1N + 17Zalo) ) ds

T
2/ / |Z (s, z)|?2o+Y) dx—i—/ | Z (s, 2)|22o+D) dx) ds
0

T
2/ < sup |Z(s, )% 4 sup |Z,(s,z)|?@0FD > ds
0

z€[0,1] z€[0,1]

<2

<2

J
J

o 2(20+1 2(20+1
<22 [T (2 + 17,0

< 227D T esssup (12527 + 12,0 152))
t€[0,T]

which implies the boundedness of the sequence

(/ ||Hn<s>||2ds> =(/ IIf(Z(S))—fn(Zn(S))|2d8>

n

by a constant independent of n € N (due to Theorem 2.3.5 and statement (b) of this theorem).
Since ||¢ — ¢nl| = 0 as n — oo (compare the third property in (2.3)), it finally results from (2.74)
and (2.75) that

sup ||Z(t) — Z,(t)]|> =0 as n — oo. O
te[0,T)

2.3.2 Results of the Stochastic Schrodinger Problem

Finally, we indicate an approximation result which implies the existence and uniqueness of the vari-
ational solution of the stochastic nonlinear Schrédinger problem (2.59) with linear multiplicative
Gaussian noise.

Theorem 2.3.9. Let (Tar)men be the sequence of stopping times in Remark 2.3.1. Then it holds
that

X, )= 1 _

() Mlinoo Y(t/\TM) ’

Thus, if (2.57) is satisfied, X € L*(;C([0,T); H)) N L2(2 x [0,T); V) is the unique variational
solution of the stochastic nonlinear Schrédinger problem (2.59) and X € L?(Q; L>=([0,T);V)).

for a.e. w € Q and all t € [0,T].
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Proof. Using stochastic analysis (especially the Ito calculus) for (2.59), we compute

= (¢,v) —i/o (AX(s)Y(s),v) d8+i)\/0 (f(X(s)Y(s),v)ds

for a.e. w € Q, all t € [0, Ty] with fixed M € N and all v € V. The appearance of a quadratic
covariation term is justified by [77, pp. 48 f.]. The notation Z(t, -) := X (¢, - )Y (¢t) leads to the
pathwise nonlinear Schrédinger problem

t t
(Z(t),v) = (¢,v) —z'/ (AZ(s),v) ds—i—i)\/ B(s)(f(Z(s)),v) ds
0 0
for a.e. w € Q, all t € [0,Ty] with fixed M € N and all v € V, which we have investigated
in Subsection 2.3.1. Thus, the statements of this theorem result from similar statements of the
pathwise Schrédinger problem (2.63). The uniqueness of the solution bases on Theorem 2.3.2 and
the existence relies on Theorem 2.3.8 and the transformation formula

X(t,):Z)(/t(’tj): t,-)exp Z/zﬂ ds—HZ/ s) dp;(s

for a.e. w € Q and all ¢t € [0, Tps] with fixed M € N. In addition, for a.e. w € Q there exists an
M,, € N such that for all M > M, it holds that Tp; = T (see Remark 2.3.1) and we can define
the solution of (2.59) by

X(t,-)= lim Z{t AT, o)

A S EAT) for a.e. w e Q and all ¢t € [0,77.

Hence, it holds that

E sup X2 =F lim swp |X@| < E(B(T) sw 120 ) = le|*E (B7(T))
te[0,7T] 2 te[0,Tar]

since ||Z(t)||* = ||¢||? for all ¢ € [0,T] (which follows from the energy equality applied to the
variational solution Z of the pathwise problem (2.63)). In order to prove that X € L?(Q2x[0,T];V),
we use that (Z,,),, converges weakly to Z in L2([0,T]; V) (compare Theorem 2.3.8 (a)) and satisfies
the estimate of Theorem 2.3.5 such that

T T
E / IX(®)2 dt = E Jim / IX(6)]2 dt
0 M —o00 0

<E<Bim / |z<t>||2vdt> <E<B (T) lim inf ||Zn<t>||2vdt>

n— oo

<C@T [llelly £ (B (1)) + Mgl B (B%““)(T)) 77 o B (B ()]

From these results we get X € L2(;C([0,7]; H)) N L*(Q x [0,T); V). Moreover, we obtain by
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Theorem 2.3.8 (b) that

Eesssup | X(1)[3 = B lim_esssup [ X(8)[3 < E (Bim ess sup ||Z(t)||’é>
te[0,T] 0 te[0,Tr] tel0,7)

1 o 1 o 2 2(24+0) 2+o
<C(0) [lelly B (BF(T)) + Alll** ) B (B71+(T)) 4275 |lg| = B (B7E (D)) |
and, therefore, X € L?(Q; L°°([0,T];V)) as well. O

2.3.3 Extensions

Analogously to Subsection 2.2.3, all results of this section are also valid in the case of homogeneous
Dirichlet and periodic boundary conditions. Furthermore, the stochastic nonlinear Schrédinger
problem is necessarily considered over a finite time horizon and a bounded one-dimensional domain
throughout this section. This is important since we use the compact embedding V' — H at the
end of the proof of Corollary 2.3.7 to show the relative compactness of the sequence of Galerkin
approximations (Z,), in L?([0,T]; H). However, due to this relative compactness result, we can
not simply generalize x € (0,1) to the unbounded space domain x € R like in the last paragraph
of Subsection 2.2.3.

If A = 0, we are in the case of the linear Schrédinger problem that simplifies our considerations.
Moreover, the case A < 0 in (2.59) can be investigated with the methods of the present issue.

Corollary 2.3.10. Regarding A < 0 in the stochastic nonlinear Schrédinger problem (2.59), we
obtain analogue results as in Section 2.3. However, one has to be careful in deriving an analogue
estimate as in Theorem 2.3.5 which requires, besides (2.57), another similar assumption on the
coefficients in front of the Wiener process in form of

2
2—¢

T oo
/ Z b?(s) ds < o0, for a.e. w € Q. (2.76)
o \i4
Analogue statements of Theorem 2.3.9 apply as well under the additional assumptions
oo T T oo
E | exp (1+U)Z/ b?(s)ds / Zb?(s)ds < 00,
j=170 0 j=1

2
2—o

240X [T Tl
E | exp 2_02/0 b?(s)ds /0 Zb?(s) ds | < oo.
j=1 j=1

(2.77)

Proof. Investigating the case A < 0 in the stochastic nonlinear Schrédinger problem (2.59), we
usually have to regard the absolute value of A while estimating from above, for example, in the
proof of Theorem 2.3.2, Corollary 2.3.7 and part (c) of Theorem 2.3.8. However, what makes the
difference for A < 0 is the proof of Theorem 2.3.5. We need to have a closer look at relation (2.68)
since for A < 0 the two terms that vanish in (2.68) are now the relevant terms. Using inequality
(2.69), the result

d o0
0< %B(s) = B(s)ajz::lb?(s) < 00, for a.e. s € (0,77,
and Young’s inequality, we get coefficients containing the expressions

2
2—o

p1(t) ::/O Zb?(s) ds and p2(t) ::/0 Zb?(s) ds.
j=1 j=1
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Applying Gronwall’s lemma, we estimate them by the majorants p;(T) and po(7T) and that is why
we have to assume the finiteness of these majorants for a.e. w € Q. The first integral p;(T) is
finite by (2.58), which follows from (2.57), and the finiteness of the second integral ps(T') is the
new assumption (2.76). Thus, the solutions Z,, of the Galerkin equations satisfy for all ¢ € [0, T
and each n € N (arbitrarily fixed) the estimate

12,11 < C@ ) (el + 1A [1+ o BT ()] ol
FINEE [+ @B ()] Il 5 ).

To further ensure analogue results of Theorem 2.3.9 for A < 0, we use the last inequality and have
to guarantee the existence of

E (Bi(T)) 7 E (B%(H‘U)(T)pl(T)) and E (B%(T)pQ(T)) .

Plugging in B(T), p1(T) and p2(T), one observes that condition (2.57) implies the existence of
the first mean value and the two conditions in (2.77) entail the existence of the last two mean
values. O

Knowing now that we can choose A € R without any restrictions, it arises the question if the
problem is also well-defined for A € iR or A € C.

Corollary 2.3.11. We can also take )\ := iX and \ € R, in the stochastic nonlinear Schridinger
problem (2.59) to obtain the statements of Theorem 2.5.9 under the restriction that o € [1,2).

Proof. Using the ideas from Section 2.2, we obtain for o € [1,2) (because of Lemma D.6) that
there exists a unique variational solution X € L2(2; C([0,T]; H)) N L*(Q x [0, T]; V) with

T
1 1
E sw |[X(1)]2 < |¢IE (B2 (T)), E/Iuﬁm%ﬁﬁﬂw%E@%@D-
te[0,T] 0

Moreover, X € L?(Q; L*>([0,T];V)) since

1
Eesssup | X (1)} < ¢l E (B#(T)).
t€[0,T]

Due to this approach, it is not possible to choose A < 0 here. O

Inspired by [78, 93], we can treat combined power-type nonlinearities as well.

Corollary 2.3.12. By considering combined power-type nonlinearities

m

flv) = Zx\k|v|2"’“v, for allv € V and fized m € N,
k=1
with o, € (0,2) and A\, € R\ {0} or A\ = iXe with A\ € Ry for k=1,2,...,m, we obtain similar
results as in the current section.

Proof. For each t € [0,T] and all k =1,2,...,m we have to introduce

1 o0 t
B P 2
k(1) [V (t)[20x €Xp Uk;/o bj(s) ds

and replace the nonlinear term in the current section by m nonlinear terms. Thus, the pathwise
problem has the form

V) = vfit svsim ts s)129% Z(s).v) ds
(Z(8),v) = (¢,0) A¢Mu>d+§mémuwm|mxw
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2.4. Case of a Lipschitz Continuous Drift Term

for a.e. w e Q, all t € [0,7] and all v € V. One determines that under the assumption

2
E *"’“Z/ b3(s < 00, forall k=1,2,...,m, (2.78)

_Jk

the approach from this section also works and yields similar results. Notice that also a combination
of positive and negative (Ax)req1,2,..,m} can be considered. For the sake of simplicity, one can
arrange them for 7 < m in the way that (Ax)req1,2,...,,} are positive and (Ap)refrs1,r42,...,m} are
negative. Then one needs condition (2.78) for all £k = 1,2,...,m and one has to generalize the
assumptions (2.76) and (2.77) for all kK =r + 1,7 + 2,...,m analogously. However, in the case of
combined power-type nonlinearities we cannot mix Az € R\ {0} and Ay, := i\, with A\, € R,. We
have to assume that for all A\ := Re Ax + ¢Im Ay it holds that Re Ay - Im A\, = 0, which implies
that it is not allowed to choose complex-valued numbers. O

,,,,,

2.4 Case of a Lipschitz Continuous Drift Term

After the investigation of the power-type nonlinearity f : V — H given by f(v) = |[v|?*°v with
o > 1in Section 2.2 and o € (0,2) in Section 2.3, we are interested in nonlinear terms f that are
Lipschitz continuous and of bounded growth. We still regard the stochastic nonlinear Schrédinger
problem

(X(t),v) = (¢,v) —z'/ot (AX(s),v) ds—H'/\/Ot (f(s,X(s)),v) ds—&-i(/otg(s,X(s))dW(s),v)

for a.e. w € Q, all t € [0,7] and all v € V with the notations from Section 2.1. For the sake of
brevity, we denote f(¢,z) := f(t,2,%) := f(w,t,2,%) for all w € , all t € [0,T] and all z € C. We
assume that f: Q x [0,7] x C x C — C satisfies |f(-,0)| < C, is measurable (which means that
for all s € [0,¢] it holds that {(w,s,2) : f(w,s,z) € A} € F, x B([0,t] x C) for all A € B(C) and
all t € [0,T)), differentiable in the sense of Wirtinger and fulfills

’aﬁzf(t,z) <C, and ;ff(t 2)| <

<, forallt € [0,7] and all z € C.  (2.79)

Now, we consider f( -, z) for z = X (¢) and write f(-, X (¢)). Hence, f(t, X (t)) isin L2(Q2x[0,T]; H)
if X (t) satisfies these assumptions. Initially, we indicate that f is indeed Lipschitz continuous and
of bounded growth. For the sake of simplicity, the dependence on the time variable ¢ € [0,T] is
neglected.

Lemma 2.4.1. The condition |f(-,0)| < C and the boundedness of the absolute values of the first
Wirtinger derivatives (2.79) imply that the nonlinear function f is Lipschitz continuous in H and
of bounded growth in H and V, which means that there exist positive constants c¢, ks such that

||f(-,u)—f(~,v)||2§0f||u—v||2, for all u,v € H,
||f('=u)||2§kf (1+||uH2)7 for all uw € H,
1FCol2 <ks (L4 02),  forallveV.

Proof. In advance, remember that f(-,z) = f(-,z2,%) for all z € C. With the help of the differ-

ential quotients
f('vzlazl) — f('722721)

0
I _ 9. _
1952 21 — 2o 8zf( 22,%1)
and _ _ 5
lim f(.’ZQ’Z,l)if(”ZQ’ZQ) = —f(-,29,%Z2)
z1—22 Z1 — 22 0z
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2.4. Case of a Lipschitz Continuous Drift Term

for all z1, z5 € C and the boundedness of the first absolute Wirtinger derivatives by

0
'azf('?ZQazl) SC7

0
<C and ‘azf(~,2272’2)

we get the Lipschitz continuity (by regarding only the positive part of the square root)

‘f('azl)_f('722)| = |f('7zl721)_f('722752)‘
<Uf(z,71) = f( 22, 20) [+ 1f (00 22,21) — f( 22, Z2))|
§O|21—22|+O|21—§2‘ S\/@|Zl—2’2‘.

Taking zo = 0, the bounded growth especially follows by |f(-,0)| < C since

FCoz)l < TFC20) = FCL 0+ (50 < Verla [ +C < \/k»;(l+|21|)~ (2.80)

Accordingly, the Lipschitz continuity and the bounded growth of the nonlinear function f entail
the Lipschitz continuity and the bounded growth in the square of its H-norm since for all u,v € H
it holds that

L, U) — "U2: 1 L,ulr)) — "U(E2£C c IULC—’U(E2£E:C U,—’U2
1 su) = (50l /Olf(,()) f(»())|d§f/0|() (@)]"de = cf | [
1 1
||f('au)H2:/0 |f(~,u(a:))|2dx§kf/0 (1+ [u(@)?) do = kg (1 + [Jul®) -

Moreover, we obtain for all functions z(xz) € C which are once continuously differentiable with
respect to x that

d _
I C x| = | 1 @560

(s zw) (o) + (st z))) (20

< % (-, 2(x),2(x)) ‘ddz(x) - %f( ,z(a:%z(w))Hz(@
<cC %z(m) +c';;z(x) < er %z(z) < \/? %Z(l‘) :

Together with the bounded growth (2.80), we deduce

d 2

@) + | ()

d 2
< ky (1 +|2(2)]* + ‘dxz(a:) ) .
Hence, the bounded growth of f in the square of its V-norm results for all v € V since
2
) dx

2
)m:mu+wm- 0

2

1ol =150+ 7o)

- /01 <|f(~,v(9:))|2 + ‘(fxf(»v(x))

< kf/ol <1+|v(x)|2—|— ‘;mv(x)

To illustrate that the conditions on the nonlinear complex-valued function f are satisfiable,
some examples shall be given here. Without loss of generality, we consider functions f(z) which do
not explicitly depend on the time variable t € [0, T]. If all conditions are fulfilled, we multiply f(z)
by a function h(t) being bounded and F;-measurable for all ¢ € [0, 7] such that all assumptions
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2.4. Case of a Lipschitz Continuous Drift Term

on f in Lemma 2.4.1 transfer to f(z)h(t). The properties we have to check are that |f(0)] < C,
measurability, differentiability in the sense of Wirtinger and boundedness of the absolute values
of its first derivatives. In [83] the functions

2 2
fi(z) = 14|_Z||Z|22 and f2(2) = (1- e 17l )z, for all z € C,

are indicated as corrections to the cubic nonlinearity |z|?z for large wave amplitudes. Indeed, they
behave like that for z € C with small absolute values |z| and, because of its physical importance,
we emphasize that this cubic nonlinearity, also called Kerr nonlinearity, is a special case of this
thesis. Back on the examples, one immediately sees that f1(0) = f2(0) = 0, that especially implies
its boundedness from above, and that the functions are measurable since they are continuous
and deterministic. From the continuity of the functions we also get their real differentiability
and, since the considered functions f; and f; are not complex differentiable in each point of an
open set (as shown in the following), the introduction of Wirtinger derivatives is a useful kind
of representation. Now, let z := x + iy and let u; and v; denote the real and imaginary part of
fj for j = 1,2, respectively. We verify that the Cauchy-Riemann equations (u;), = (v;), and
(uj)y = —(vj), are not satisfied (compare Appendix H). Therefore, we write

22 x2+2
fi(z) = & = Y

o 1+|z|2z_ 1+:c2+y2(x+ly)

and deduce

3 2 2 3
ul:Refl(z):lg:_;_faj_yy27 vlzlmfl(z):%.
Its partial derivatives with respect to x and y are given by
322 + 92 + 2 + 2222 + o 2xy
N R R
22 4+ 3y% + 2t + 22%y% + 2zy
(v1)y = y (n)e =

(1+x2+y2)2 (1+$2+y2)2

The second function , 5 o
B = (1= )z = (e iy

possesses the real and imaginary part
—x2 2 g2 g2
us = Re fo(z) = (l—e Y )a:, vy =Im fo(z) = (1—e v )y
Calculating its derivatives with respect to x and y, it results that

(ug), =1+ e~ v’ (2302 - 1), (ug)y = e‘m2_y22xy,

(0a)y =14+ (22— 1),  (vg)e=e % ¥ 20y

Hence, the two nonlinear functions f;(z) with j = 1,2 fulfill the first Cauchy-Riemann equation
(uj)z = (vj)y for x = y and the second one (u;), = —(v;), either for x = 0 or for y = 0. Only
if both equations are satisfied, the complex differentiability is guaranteed, which is just given in
the point of origin + = y = 0. Since this is no open set, the functions f;(z) for j = 1,2 are
nowhere holomorphic (compare Appendix H). Nevertheless, the real differentiability in the sense
of Wirtinger can be considered. Using z and its complex conjugated variable Z as if they were
independent of each other (compare Corollary H.7), one can calculate the absolute values of the
first Wirtinger derivatives to see their boundedness. The first function obeys

|Z|2 2

2°Z
hiz) = 1+ 22" 1+22
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2.4. Case of a Lipschitz Continuous Drift Term

and, therefore,

0 21221 + |2]?) — |2|* 20z|2 + |24

0 ol < [AEOT D el ol

0z (1+12?) 14222 + |2|

0 £(2) 22(1+ |2)?) — 22|22 | 2|2 2|2|?

—_— A = =

oz (1+[2[2)2 T+202P+2)f T 14222 =

Moreover, we get that
fo(z) = (1— 67‘2‘2),2 =(1—-e*)z

can be estimated by

0 2 2 |Z|2 | |2
= le lFP 1212 21— e 1#7| < 1< 1<2
‘8zf2(z) ‘e S e
0 2 Els | 2|2
_ = —|Z| 2 = < _— <
oz 12() 77 el = 14122 = 8

2.4.1 Effect of Lipschitz Continuous Noise

Based on the notations in Section 2.1, we focus on the stochastic nonlinear Schrédinger equation
dX(t) = —iAX(t)dt + iAf(t, X(t))dt + ig(t, X (t)) AW (), for all t € [0,T7,

with initial condition X(0) = ¢ € V, A € C and a drift function f : Q x [0,T) x H — H as
described at the beginning of this section. Our aim is to investigate the unique existence and some
smoothness properties of the variational solution of

(X(t),v) = (o) —i/o <AX(8),v>ds—|—i)\/O (f(s,X(s)),v) ds

wi ([ oo xtnaws).0)

for a.e. w € Q, all ¢ € [0,7] and all v € V, which reminds of the results in [42]. Therefore, we
show that the conditions of Theorem 1 and 2 in [42] are fulfilled. At first, the initial condition
p € V is Fyp-measurable. As already stated in Section 2.1, the one-dimensional negative Laplacian
A:V — V* formally defined by the symmetric bilinear form (2.1), is a linear continuous operator
which possesses a discrete spectrum of eigenvalues and a complete orthonormal set, of corresponding
eigenfunctions in H. Referring to (2.8) and (2.9), the diffusion function g is assumed to be Lipschitz
continuous in Lo(K, H) and of bounded growth in Lo(K, V). Analogue properties of the drift
function f are inferred by Lemma 2.4.1.

Choosing now f := Af with A € C as the nonlinear diffusion function in (2.81), the statements
of Lemma 2.4.1 transfer to f and, therefore, the assumptions of Theorem 1 and 2 in [42] are
satisfied. Hence, we conclude some useful results:

(2.81)

e The stochastic nonlinear Schrodinger problem (2.81) possesses a unique variational solution
X € L3(Q;C([0,T); H)) N L%(Q x [0,T); V) (see [42, Theorem 1]). To mention only some of
the main arguments, this assertion is shown by the application of the Galerkin method, the
stochastic energy equality (C.2), the Burkholder-Davis-Gundy inequality (2.13), Gronwall’s
lemma and some weak convergence results.

e It holds that X € L*(Q;C([0,T); H)) for all p > 1 (compare [42, Theorem 2|). There, the
It6 formula, Holder’s inequality and the method of stopping times are additionally used.

Besides, these results are also true for locally Lipschitz continuous nonlinear drift and diffusion
functions f and g that are of bounded growth as above. This is proved in [42, Theorem 5| with
the help of a truncation function yielding globally Lipschitz continuous drift and diffusion terms.
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2.4. Case of a Lipschitz Continuous Drift Term

Then the above existence and uniqueness statements are applied to the truncated equation and
due to stopping times, Markov’s inequality, an appropriate change of the universal set 2 and again
some weak convergence results (see the approach in Subsection 2.2.2), the claim is verified.

Proceeding with the stochastic nonlinear Schrédinger problem (2.81) as in Section 2.2, we
obtain similar boundedness results. By regarding that A € C (that is reflected in the norm square
Ito formula generating the real and the imaginary part of the nonlinear term) and exploiting
Lemma 2.4.1 (especially the Lipschitz continuity in H and the bounded growth in H and V), it
follows that the solution X,, of the corresponding Galerkin equations of (2.81) fulfill

B sup | Xa(®)* < O, | ks g,y T) [1+ ]
t€[0,T]

2 2
B sup X0 < O Nokyscoubys ) [14+ 21

for each p > 1 and each n € N arbitrarily fixed. Based on Theorem 2.2.10, we extend these results
to the solution X of the stochastic nonlinear Schrédinger problem (2.81) by verifying that for each
p > 1 there exists a unique variational solution X € L?P(;C([0,T); H)) N L*(Q x [0,T); V) with

E sup [IX(0)™ < C(p, N, by, cq0 kg, T) [1+ )]
t€[0,T]

T
B [ IXOIR dt < C N ky.cgo b T) [1+ 1l

2.4.2 Perturbation by Linear Multiplicative Noise

Since the approach of Section 2.3 is restricted to Schrodinger equations with linear multiplicative
noise, it can also be applied to

(X(1),v) = (¢,v) — / (AX(s),v)ds+ i) (f(s,X(s)),v) ds

+z2/ ), ) dB; (s)

for a.e. w € Q, all t € [0,T] and all v € V| where the power-type nonlinearity f in equation (2.59)
is replaced by a nonlinear function f(t,z2) := f(t, 2z, %) for all z € C which satisfies the conditions of
the current section. Resuming Lemma 2.4.1, it follows from |f(-,0)| < C and the differentiability
of f:Qx[0,T] x H— H in the sense of Wirtinger with bounded absolute values of its first
derivatives that f is Lipschitz continuous in H and of bounded growth in H and V. Using these
properties, we work with absolute values and that is why we can take \ € C here. Therefore, the
real as well as the imaginary part of the nonlinear term appear while applying the energy equality.

Regarding again the process (Y (t))icjo,7] given by (2.60), the pathwise nonlinear Schrédinger
problem for Z(t, -) = X (¢, - )Y (¢) has the form

(Z(t),v) = (¢,v) —i/ot (AZ(s),v) ds +iX /Ot <f <s, igi;) Y(s),v) ds (2.83)

for a.e. w € Q, all ¢ € [0,7] and all v € V. Using the Lipschitz continuity, one shows the
uniqueness of the variational solution Z € C([0,T]; H) N L?([0,T]; V) analogously to Theorem
2.3.2. The corresponding Galerkin equations for each n € N are stated by

(2.82)

Zn(s)

(Zn(t) 1) = (s i) — i /0 (AZp(s), by ds + iX / (fn <s Y"(S))Y(s),hk) s (2.80)

for all t € [0,T] and all k € {1,2,...,n}, where ¢, = 7, and fo(-,u) := 7, f(-,u) for all
u € H, (compare (2.2)). Exploiting the properties (2.3) of the orthogonal projection 7,, the
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2.4. Case of a Lipschitz Continuous Drift Term

Lipschitz continuity and the bounded growth of f, the theory of finite-dimensional stochastic
differential equations (see [61, pp. 127-141, Theorem 4.3.5 and Exercise 4.5.5]) yields that there
exists a unique solution Z,, € C([0,T]; H,) of problem (2.84). Due to the equivalence of the norms
||l and || ||v on H,, (compare (2.4)), the Galerkin approximations Z, are also continuous in V'
and we further get Z, € L?([0,7];V). That is why we can apply the energy equality. Similarly
to the proofs of Theorems 2.3.3 and 2.3.5, we get for all ¢ € [0,T] and each n € N arbitrarily fixed

1Za@I? < CON k. T) (L4 1I9IP] . 1Za®I} < CON K, T) [T+ 10| (285)

(by using Lemma 2.4.1 and 0 < |Y(¢)|*> < 1 for all ¢ € [0,7]). Furthermore, it is possible to
verify the same results as in Corollaries 2.3.4, 2.3.6 and 2.3.7. The sequence of Galerkin approx-
imations (Zy,), of the pathwise nonlinear Schrédinger problem (2.84) is bounded in C([0,T]; H),
L?P([0,T); H) and L??([0,T]; V) for all p > 1 and relatively compact in L2([0,T]; H).

Now, we need to have a closer look at the results of Theorem 2.3.8, especially the convergence
of the nonlinear drift term. Since in a reflexive space each bounded sequence possesses a weakly
convergent subsequence, and f is of bounded growth, we conclude

//(f”< ())> () hk>d3dt //(( j))Y(S),hk>dsdt
S [ [ reremsa .

We wish to get f*(s) = f ( Z(S)) and that is why we consider

/OTT/Ot<f( S)Y hk>dsdt—/0 /( ( Z)Y(S),hk)dsdt
t({ ( ;S) ( )}Y(s),ho ds dt

(
(s 2y (}Z,())H Y ()] s

T ,t T 3 T
s/o /Oﬁllan(s)—Z(s)||dsdtg@T(/O 1dt> (/O | Zr (t) — Z(2)|| dt)

1
i T
= /G T? </O ||Zn,(t)—Z(t)||2dt> —~0  asn — oo

(due to (2.72)). Hence, we know that

[ L0658 oo [ [ (2 oo o

Together with the results from the proof of Theorem 2.3.8 (a), we deduce that the sequence of
variational solutions (Z, ), of the finite-dimensional Galerkin equations (2.84) converges strongly
in L2([0,T]; H) and weakly in L?([0,7]; V) to the variational solution Z of the pathwise problem
(2.83). Statements (b) and (c) of Theorem 2.3.8 are deduced similarly as in Section 2.3 such that
Z € L=([0,T); V) with

1
2

esssup | Z(1)|} < liminf esssup | Zy (913 < CON, by, T) [1+ 161 ]
te[0,T) n' =00 tc(0,T]
and the sequence (Z,,),, also converges to Z in C([0,T]; H) (because of the Lipschitz continuity).
Finally, we transfer the results from the pathwise problem (2.83) to the stochastic nonlinear
Schrodinger problem (2.82). Following the ideas of the proof of Theorem 2.3.9, one obtains that
there exists a unique variational solution X € L?(Q;C([0,T]; H)) N L?(Q x [0,T]; V) of problem
(2.82), if condition (2.57) is satisfied, and especially X € L?(Q; L>([0,T]; V)).
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3 On a Problem of Optimal Control

3.1 Controlled Schrodinger Problem

In order to deal with optimal control problems, we have to introduce some further notations. Let
U be the set of all admissible controls defined by

U= {U QO x[0,T] x[0,1] =Ry : U(t) € V is Fr-adapted,
(3.1)
Joay >0:U(t,z) <oy P-as., Jazg >0: H;U(t)H < g P—a.s.}
x

such that U € U is a bounded stochastic process. Then it is possible to formulate the stochastic
nonlinear Schrédinger problem corresponding to the control U € U constituted by

(XY (@), v) = (¢,v) —i/ <AXU(5),U> ds +i/ (U(s)XY(s),v) ds
0 0 (3.2)

+ A /Ot (f(s,XY(s)),v)ds +i(/otg(s,XU(s)) dW(s),v)

for a.e. w € Q, all t € [0,7] and all v € V. Since the complex-valued wave function now depends
on an arbitrary admissible control U € U, it is particularly called XY. For the sake of brevity,
problem (3.2) will be referred to as controlled Schrodinger problem in the following. To further
ensure the unique existence of the variational solution of problem (3.2) as in the previous chapter,
we have to state some results and estimates of the additional control term

t
z/ (U(s)XY(s),v) ds, forae weQ, allt€[0,T] and all v e V. (3.3)
0

At first, we emphasize the Lipschitz continuity in H and the bounded growth in H and V.
Because of the boundedness of U(s,z) from above by a; > 0 P-as. for all s € [0,7] and all
x € [0, 1], it follows that

1T () [h(s) = v(s)]I* < af a(s) —v(s)lI*,  for all h(s), v(s) € H,
IU()R()]” < aflla(s)]” < af (L+ [as)]) for all h(s) € H.

Due to Lemma D.2 and the upper bounds a7 > 0 and ay > 0 given in (3.1), we further get

2

)61 =10 + || 75000 o66) + U6 | 0t

2 , P
Q?@% [v(s,z)]| > +2 HU(S) [(%U(S)}
< (20 +403) ||U(S)||‘2/ <2(af+203) (1+]v(s)}), for all v(s) € V.

< +2| 206
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3.1. Controlled Schrédinger Problem

Now, we indicate the inequalities that are necessary to obtain the uniqueness of the variational
solution and a priori estimates in H and V. Since U € U is real-valued, we deduce for all h(s) € H
that

t t 1
2Im/0 (U(s)h(s),h(s)) ds = 2/0 /0 U(s,z)Im |h(s,z)|" deds = 0. (3.4)

As will be seen in the following, we are limited to the pathwise approach of the controlled Schro-
dinger problem (see Section 2.3). Since one cannot obtain uniform a priori estimates in V' without
any restriction to the control U € U, we state a lemma including an important case differentiation.
A further case will be treated in Subsection 3.2.5.

Lemma 3.1.1. Let the control U € U satisfy one of the following conditions
1) Ut z) =Ui(t), (i) U(t,z) = Us(x).
Then for all v € L2([0,T]; H') := {v € L*([0,T]; H) : v € L*([0,T]; H)} with a representation

that is separated in time and space and ||[v(t)||> = C (independent of t) for all t € [0,T)] it holds
that

' 9
2Re/0 (U(S)U(SL asv(s)) ds < o), forallt € [0,T).

Proof. Let v € L?([0,T]; H') with a representation that is separated in time and space (in this
thesis we consider Galerkin approximations) and ||v(¢)||? = C' (independent of ¢) for all ¢ € [0, 7.

(i) At first, let U(s,z) = Ui (s) such that there is no dependence on the space variable. Because
of relation (2.67), it follows for all ¢ € [0, 7] that

2Re /Ot (U(s)v(s), 858@(5)> ds = 2/: Uy(s) Re <U(s), (,fsu(s)) ds

:/Ot Ui(s) (js ||11(s)||2> ds = /Ot Ur(s) (;SC) ds =0 < an [lo(®)].

(ii) The second case U(s,z) = Us(x) implies that there is no dependence on the time variable.
Moreover, the control does not depend on w € 2 due to the presumed F;-adaptedness. Thus,
equation (2.67) and the boundedness Uz(x) < a; for all z € [0, 1] yield for all ¢ € [0,T]

2Re/t<U(s)()a >d3—2//U2 Re{vsx)aa (,x)}da:ds
//U2 ( (s, )|)dxds—/o CZ(/O Us(2) [u(s, 2)° dm)ds

:/ Us(2) |o(t, 2)[? dm—/ Us(2) [0(0, 2) 2 d < an [|o(t)]?. .
0 0

Based on the continuous embedding H < V* with the embedding constant C' = Cuy~, we
show the equicontinuity in C([0,T]; V*) (for the pathwise controlled Schrédinger problem) by

[U(r)o(r)]

The control term (3.3) also converges to the desired expression. If v, — v in L2([0,T]; H) as
n — oo, we get for all k € {1,2,...,n} that

/ot (U(s)vn(s), hy,) ds = /0 (0n(s), U(s)hx) ds — / () ds = /ot (U)ol ) ds

for a.e.t € [0,T] as n — co. Next, while proving the convergence in C ([0, T]; H), the term resulting
from the control is treated in the same way like the term induced by the nonlinearity. Resumed,

e < CP U )| < C2af lo(r)|* < C%ai llo(r)]ly,,  forall v(r) € V-
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3.2. Pathwise Problem with Power-Type Nonlinearity

the preceding statements of the additional control term (3.3) in the Schrédinger problem (3.2)
compared to (2.12) fit into the approaches of the existence and uniqueness results of Chapter 2.
Now, we concentrate on minimizing the objective functional

T
J(U) = ~E | XV(T) —y||2+ﬁE/O () = T(0)|2 dt (3.5)

relative to the control U € U (compare [3, 102]). Here, XU is the variational solution of the
controlled Schrédinger problem (3.2), the coefficients 7,8 € R, and the functions y € V and
T € L2(Q x [0,T]; L*([0,1];R)) € L*(Q2 x [0,T); H) are given. Notice that the functional (3.5)
does not only depend on the control U but also on the solution XY of problem (3.2). Hence,
minimizing the objective functional (3.5) is equivalent to finding a variational solution XY of the
controlled Schrédinger problem (3.2) which is a best approximation of a given function y with
respect to the final time 7', while U shall not vary too much from Y.

Optimal control problems for solutions of partial differential equations do not always have a
solution. Thus, we are first interested in the solvability of the control problem (3.5). We denote
R := RU{—00, 00} and refer to an existence and uniqueness theorem that is signified in [41, 68, 90]
and explicitly shown in [9].

Theorem 3.1.2. 'Let B be a uniformly convex Banach space and S a bounded closed subset of
B. Furthermore, let F : S — R be a lower semi-continuous functional which is bounded from
below and p > 1. Then there ezists a dense subset D C B such that for each x € D the functional
F(s)+ ||s — z||%; attains its minimum over S, which means that there exists an s(z) € S such that

F(s(2)) + |ls(@) = 2lly = nf {F(s) +[|s — 2l }.

If p > 1, then s(x) is unique. DBesides, each minimizing sequence converges strongly and the
function x — s(x) is continuous on D.

Here, the Banach space B := L*(Q x [0,T]; H) = L*(Q x [0, 7] x [0,1]) is especially a Hilbert
space and, therefore, uniformly convex. The set of all admissible controls I/ represents the subset
S C B which is bounded and closed by definition. Moreover, the functional F := vE || XY(T)—y||?
is a mapping from U into R, bounded from below by F' > 0 and p = 2. Hence, if we succeed in
showing the lower semi-continuity of F' (see Subsection 3.2.2), the above theorem states that there
exists a dense subset D C B such that for each T € D the functional J(U) = F(U) + B||U — Y||%
attains its unique minimum over . This means that there exists a unique element U* € U/ such
that

JU) = FU") +BU* =TI} = inf {F@)+ 81U - T3} = int JU),

where U* especially depends on 1.

In the following, we consider the pathwise controlled Schrodinger problem, which results from
the stochastic one perturbed by linear multiplicative noise, with power-type nonlinearity (compare
Section 2.3). Thereafter, we resume the results for a nonlinear Lipschitz continuous drift term in
the case of the pathwise controlled Schrodinger equation (compare Subsection 2.4.2).

3.2 Pathwise Problem with Power-Type Nonlinearity

The controlled Schrédinger problem with power-type nonlinearity f(v) = |v|??v for o € (0,2) and
linear multiplicative noise is given by

(XY(t),v) :(gp,v)—i/ <AXU(8),v>ds+i/ (U(s)XY(s),v) ds
0 0
¢ 0t (3.6)
7 Yis)),v)ds+i i(s Yis),v (s
i) [ (V). 0) s+ ;/OW(X (),0) dB; (s)

IBidaut [9], p. 23, Théoréme 4.2
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3.2. Pathwise Problem with Power-Type Nonlinearity

for a.e. w € Q, all t € [0,7] and all v € V (see Section 2.3). Without loss of generality, we
first observe the case A € Ry that is generalized in Subsection 3.2.5. Additionally to the former

assumptions, we require
oo T
2
Z/ bj(s)ds < C
j=1"0

independent of w € ), which represents a specialization of (2.58) and particularly implies that
oo LT
B(T) = exp UZ/ b3(s)ds ¢ < exp{oC}=: Cp. (3.7)
j=1"0

Due to the transformation formula ZY (¢, -) = XY (¢, - )Y (t) (compare Section 2.3), problem (3.6)
is equivalent to the pathwise controlled Schrodinger problem

(ZY(t),v) = (¢,v) —i/ <AZU(S),v>ds+i/ (U(s)ZY(s),v) ds .
0 0 3.8

+i/\/0 B(s)(f(2Y(s)),v) ds

for all t € [0,7] and all v € V. Observe that all relations are valid for a.e. w € Q arbitrarily fixed
while considering pathwise problems. As indicated in Sections 2.3 and 3.1, problem (3.8) possesses
a unique variational solution ZY € C([0,7]; H) N L?([0,T]; V) if the admissible control satisfies
U(s,z) =Uy(s) or U(s,z) = Us(x).

Since we are not interested in the explicit form of constants below, we generalize the results of
Section 2.3 and hereafter based on constants depending on various parameters. Therefore, we list
the crucial arguments that are

e the power o € (0,2) and the prefactor A € Ry of the nonlinearity f : V — H in (3.6), (3.8),

e the initial condition ¢ € V of the controlled Schrédinger problems (3.6), (3.8),

e the constant v € R} and the function y € V given in the objective functional (3.5),

e the bounds a; > 0, ay > 0 characterizing the set of admissible controls ¢ (compare (3.1)),

e the upper bound Cp of B(T) given in (3.7) and the final time T > 0.

Applying the energy equality to (3.8), we remember the well-known relation
12U ®)|° = o, forall ¢ € [0,T]. (3.9)

Due to the uniform a priori estimate in Theorem 2.3.5, the variational solutions ZU for each
n € N of the corresponding Galerkin equations of the pathwise controlled Schrédinger problem
(3.8) fulfill

2(240)

2 o _2 2(2+0)
125 <C@) (Ielly + ar el + ABD) ol + AB(T) = o] =)
<C(o,\ p,a1,Cp), for all t € [0,T].

Taking into account the convergence results of Theorem 2.3.8 (a) and (b), it follows that

T T
/0 |2 @)}, dt < timint 0 128 ()|, dt < C(o, N g, 00, C,T) (3.10)
and, analogously,
ess sup HZU(t)H?/ < lim inf ess sup ||Zg(t)”ff < C(o, A, p,01,CB). (3.11)
t€[0,T] nO0 te(0,7)
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3.2. Pathwise Problem with Power-Type Nonlinearity

3.2.1 Difference of Two Controlled Schrédinger Problems

By choosing © € [0,1] and 0U € U, we obtain a further admissible control U + ©46U that is
supposed to differ slightly from U € U if © > 0 is sufficiently small. Hence, we regard the
pathwise controlled Schrodinger problem corresponding to U 4+ ©6U € U constituted by

(ZU+O (1), ) = (p, ) — Z‘/t<AZU+@6U(5),U> ds +i/t((U+ Q8 ) (s) 2V +9U (5, v) ds
0 0 (3.12)

+ i)\/o B(s)(f(ZU+@6U(s)),U) ds

for all t € [0,7] and all v € V. Analogously to problem (3.8), there exists a unique variational
solution ZU+©V ¢ C([0,T); H) N L?([0,T]; V) of problem (3.12) if the related admissible control
(U+04U)(s, z) depends only on the time variable s € [0, T or only on the space variable z € [0, 1].
Now, we investigate 67 := ZY+©9%U _ ZU that denotes the difference of two variational solutions
ZY and ZY+9% corresponding to problems (3.8) and (3.12), respectively.

Theorem 3.2.1. There exists a unique variational solution 67 € C([0,T]; H) N L*([0,T}; V) of
the pathwise Schrédinger problem

(62(t),0) = — i / (A5Z(s),v) ds + i / (U + O5U)()52(s), v) ds
0 0 (3.13)

Jri/o (GJU(S)ZU(S),U) ds+i/\/0 B(s)(f(ZU+@6U(s))—f(ZU(s)),v) ds

for allt € [0,T] and allv e V.

Proof. Since ZY,ZV+9%U ¢ C([0,T); H) N L?*([0,T); V) are the unique variational solutions of
problems (3.8) and (3.12), it follows that the composition 6Z = ZUT9U — ZU also belongs to
C([0,T); H) N L%([0,T]; V) because

I

)

2
sup [[6Z()|]° <2 sup [|ZVFOV )| +2 sup ||ZY(¢)
te[0,T] te[0,T] te[0,T]

/T 16Z()])% dt < 2 /T | 20499 ()2, dit + 2 /T 1Z2Y (0)][5, dt. (3.14)
0 0 0
By definition, §Z is the unique variational solution of
(6Z(t),v) = (ZU+@5U(t),U) —(ZY(t),v)
= (p,v) — i/t (AZY+9U (5),v) ds —I—i/t (U +©6U)(s)Z2V T (s),v) ds
0 0
+ i)\/ B(s)(f(ZU+@5U(s)),v) ds — (¢,v) —I—i/ <AZU(S),U> ds
0 0
- z/ (U(s)ZY(s),v) ds — i)\/ B(s)(f(Z2Y(s)),v) ds
0 0
. z/ (A52(s),v) ds + z/ (U + ©5U)(5)52(s), v) ds
0 0
+i/ (08U (s)2Y (s),v) ds + M/ B(s)(f(Z2V T2V (s)) — f(ZY(s)),v) ds
0 0

for all ¢ € [0,7] and all v € V', which verifies equation (3.13). O

Due to the boundedness of the admissible control éU (¢, ) from above by o3 > 0 P-a.s. for all
t € [0,T] and all = € [0,1], we conclude the existence of ||[6U ||z ([0,77x[0,1]) for a.e. w € Q. Thus,
we have the following continuous dependence of Z on the control U € U.
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3.2. Pathwise Problem with Power-Type Nonlinearity

Theorem 3.2.2. There exists a positive constant C' such that
2 2
I6Z1)|° < C(o, N\, ¢,01,Cp,T) O3 16U 7.0 (0, 77% 0,17 » for allt €10,T). (3.15)

Proof. Initially, we apply the energy equality to (3.13) and receive
t t
16Z(t)|)* = ZIm/ (A6Z(s),6Z(s)) ds — 2Im/ (U +©8U)(s)6Z(s),6Z(s)) ds
—2Im/ (06U (5) 2V (s), 6 2(s)) ds (3.16)

— 2)\Im/ (f(ZUTU(s)) — f(Z2Y(s)),0Z(s)) ds

for all ¢ € [0,7]. The first two terms on the right-hand side vanish by Im (Av,v) =0 for all v € V
and (3.4). Based on relation (3.9), the third term on the right-hand side in (3.16) obeys

—ZIm/ (06U (5) 2" (s),62(s)) ds§2/ 106U (s) 2V (s)]] 152 (s)]| ds
0 0
S U S 2 S ‘ S 2 S
s/o 05U ()27 (s)|| d +/0 162(s)|% d
T t
<O 00 o115 01 / 12V )| ds + / 152(s)|2 ds

t
I T €2 6V 0.y 011 + / 162(5)|2 ds.

Taking into account the power-type nonlinearity f(v) := |v|>**v with o € (0,2), Lemma D.4 (a)
and Lemma D.2, the last term on the right-hand side in (3.16) results in

— 2 [ Bl)(F(2770 (s) ~ £(2V(9).52(9) ds

<2\B(T) /0 1279 (s)) = £(27(s))| 162 (s)]| ds

<BAB(T) /Ot Uol (|ZU+@5U(5,;C)|2" + |ZU(5,;1:)|2")2 62(s, z)|? dx} " 162(s)|| ds

t
SS)\B(T)/ sup |ZU"’®‘5U(3,96)|2 + sup |ZY(s, )| 2 16Z(s)|? ds
0 \z€[0,1] z€[0,1]

w127 G) 162 ds

<5-2°AB(T) /t (Iz7+ @)y
0

<5-2°AB(T) esssup (HZU"'G‘;U(t)Hf/U + HZU(t)Hf/U> / 16Z(s)||? ds.
te[0,T] 0

Due to relation (3.11) applied for ZUV and ZV+9%U it follows that

t t

—2)\Im/ B(s)(f(ZU+@6U(s)) — f(ZU(s)),(SZ(s)) ds < C(O’,)\,(,O7OZ1,CB)/ ||5Z(s)||2ds.

0 0

Consequently, it holds for all ¢ € [0, 7] that
t
121 < 61T 62 13U 1 o 10, + [+ CloApran. Co)] [ 162())P s,

and Gronwall’s lemma implies

18Z(t)]* < C(0, A, ¢, 01,CB, T) O 6U |70 (0.1 [0.1]) - for all t € [0, 7). O
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3.2. Pathwise Problem with Power-Type Nonlinearity

Introducing the space L([0,T]; V') := {v € L*([0,T]; V) : Zv € L*([0,T]; V*)}, we show that
87 € L?([0,T); V') and an analogue variational formulation to (3.13) for v € L2([0,T]; V).

Theorem 3.2.3. It holds that 6Z € L*([0,T]; V') and, referring to problem (3.13), we get that

(5Z(t),v(t)) = /Ot <§Sv(s), 5Z(S)> ds — z'/ot (ASZ(s),v(s)) ds

t

i / (U +O8U)(5)52(s), v(s)) ds + i / (06U (5)2V (s), v(s)) ds (3.17)
0

0
1A / B(s)(£(Z2U+O (5)) — £(2V(s)), 0(s)) ds

for allt € [0,T) and all v € L*([0,T]; V').

Proof. The pathwise Schrodinger problem (3.13) is equivalent to the integral equation
t t t
SZ(t) = — i / ASZ(s)ds + i / (U + O5U) ()02 (s) ds + i / 05U (5)2Y () ds
0 0 0

LA / B(s) [J(ZU+99 (s)) — £(2Y(s))] ds

in V* for all ¢t € [0,7]. Observe that this equation does not possess any noise term. Hence, we
formally differentiate with respect to the time ¢ and receive the symbolic initial value problem

%52(“ = —iA0Z(t) +i(U + ©U)(t)dZ(t) + 03U (t) 2" (t)
+iAB(t) [£(ZV V(1) — f(ZY(1)] (3.18)
5Z(0) =0

in V* for all t € [0,T]. Having already shown that §Z € L%([0,7]; V) (compare Theorem 3.2.1),
it suffices to verify that 2627 € L?([0,T];V*) in order to obtain the result §Z € L2([0,T]; V’).
Therefore, we consider the differential equation in (3.18), take the norm square in V* and integrate
over all ¢ € [0, such that

T 8 2 T )
/0 G20t = /0 |~ i[4s2) - @ + esv)1)52(1) - O5U(1) 2" (1)
~AB() [£(27+ 0 1) ~ £z o) ]| ar

2
V*

gs/OT [I462(0)

+AZBA(1) || (27900 (1) — (27 (1))

2 (U +05U))0Z ()| + ||0sU () ZY (1))

2
V*} dt.

The continuity of the operator A : V' — V* (compare Section 2.1) and of the embedding H — V*
with embedding constant C' = Cp v+, the boundedness of the admissible controls U(t,z) and
dU(t,z) by a; > 0 P-a.s. for all t € [0,7] and all z € [0, 1], Lemma D.4 (a) and Lemma D.2 entail

’

2

9570

T
o dt gs/o [\|5Z(t)||’é+202a§ 162(t)? + C*0%a? | 2V ()|

v
+5-229\2B2(T)C? (||ZU+@5U(t)}|‘;“ + ||ZU(t)y|‘;") ||§Z(t)||2} dt
<C(o,\¢,01,Cp,T,C,0)
due to (3.9), (3.10), (3.11), (3.14) and (3.15). Thus, we conclude that %62 € L%([0,T); V*) and,
therefore, 6Z € L%([0,T); V'), which proves the first assertion.
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3.2. Pathwise Problem with Power-Type Nonlinearity

To show the representation (3.17), we replace ¢ by s in the differential equation of (3.18),
multiply by v € L?([0,T]; V'), use the properties of the Gelfand triple (V, H,V*) and integrate
over all s € [0,¢] such that

t a ) t ) t
/0 <085Z(s),v(s)> ds = — Z/o <A5Z(s), v(5)> ds + Z/o ((U + @6U)(s)§Z(s),v(s)) ds
+i / (05U (5)2" (s), v(s)) ds (3.19)
+ix / B(s)(f(2V+99 (s)) — £(2Y(5)), (s)) ds

for all ¢ € [0,7] and all v € L2([0,T]; V'). Notice that §Z and v are measurable in time and space

and that
(o200 s < [

/Ot <§S(5Z(s),v(s)>ds g/ot :
2 1

1 t t
g—/ ds—l—f/ lo(s)[12 ds < o
2 0 Vo 2 0

since §Z,v € L%([0,T); V). Hence, the order of integration can be changed (by Tonelli’s theorem)
and integration by parts with respect to the time variable yields

0

S37(5)| [lo(s)lly ds

V*
0

[ (52060009 ) ds = (5201.000) — (6200),000) — [ ( Fots).02(6) s

Regarding that §Z(0) = 0, relation (3.19) implies the representation (3.17) given by

(6Z(t),v(t)) :/o <§9U(5),§Z(5)>dsi/o (A8Z(s),v(s)) ds
+i/ (U +©6U)(s)6Z(s),v(s)) ds +i/ (@5U(8)ZU(8),U(S)) ds
0 0
i) [ B (27O (5) = 127 (). 0(5) ds

for all t € [0,7] and all v € L%([0,T]; V’). Besides, this equation coincides with the variational
formulation (3.13) by identifying v € L?([0,T]; V') with v € V. O

3.2.2 Continuity of the Objective Functional

Since we deal with the pathwise controlled Schrodinger problem (3.8) in this section, it is useful
to consider the pathwise analogue of the objective functional (3.5). Due to the transformation
formula ZY (t, -) = XY(t, - )Y (t), it is given by

ZY(T)
Y (T)

2 T
J(U) =~E H —y|| + ﬁE/ |U(t) = Y()|)? dt, for all U € U. (3.20)
0

Referring to Theorem 3.1.2 and its subsequent deliberations, we only have to show the lower

semi-continuity of
2

U
2 (1) , forall U e U, (3.21)

Y(T)
to ensure the unique existence of an optimal control. Thus, by verifying the continuity of F', its
lower semi-continuity is especially satisfied.

FO) =+ |
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3.2. Pathwise Problem with Power-Type Nonlinearity

Theorem 3.2.4. The functional F : U — R, defined by (3.21), is continuous in U.

Proof. Due to definition (3.1) of the set U of admissible controls, we establish that for U, U € U
with 5

%6U

06U := 10Ul L (axo. 11 x 0,17y T ’ (3.22)

Lo (Qx[0,T]x[0,1])

it holds that
lim |F(U+46U)— F(U)| =0.
|8U|—0
Therefore, we consider

2 2

F(U + 6U) — F(U) nyHZU;?gT) _ 7EHZYU((TT)) _
(A - )

Because of ||ul|? - [|v]|* = Re (u — v,u+v) for all u,v € H and the Cauchy-Schwarz inequality, it
follows that

F(U+6U)—F(U)ZWERG(ZUHU(T) Z9(T) z2VHY(T) | ZY(T) )

vy v v v @

<~ <E H ZU+5U(T) _ ZU(T) 9y

P} (o[ £

2\ 3
Y V(D) > |
Choosing © =1 and 0U € U such that [0U| — 0, then U + U € U and we can state an analogue
result as in Theorem 3.2.2 for AZ := ZU+9U — ZU_ Thus, it follows that

ZU+5U(T) _ ZU(T) 2

V(T

d

CRGIVAGTER

E
<C(o, A\ p,a1,Cp,T) ||5U‘|ioc(9x[o,:r]><[o,1])
C(o,\, @, 01,Cp, T)|SU2.

IN

Moreover, equality (3.9) entails

2
<4FE

2 2

ZU+5U(T) ZU(T) N 2E||2yH2

Y() V(D)

_2y

EH ‘ZUHU(T) Z2Y(T)

Y (T) Y (T)
— 4B (T) [E |2V v ()| + B ||ZU(T)||2} 4 8E |y

+4E‘

1 2 2
=8B~ (T) [lell” + 8lyl” < Clo, ¢,y,CB).
By taking the square roots of the last two estimates, we deduce

< 1i — < I =0.
0‘\5}}&0‘F(U+5U) F(U)|_Ié}}r‘gOC(a,)\,go,'y,y,al,C’B,T)MU\ 0 O

For the sake of completeness, we further state the continuity of the objective functional (3.20).
Theorem 3.2.5. The objective functional J : U — R, defined by (3.20), is continuous in U.

Proof. Using notations (3.21) and (3.22), we obtain for U, U € U that

T
J(U +6U) = J(U) = F(U +6U) — F(U) + BE/O (||(U +0U) () — T@)° - |U() — T(t)||2> dt.
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3.2. Pathwise Problem with Power-Type Nonlinearity

Taking into account that U, U and Y are real-vaued and due to [lul|? — [[v[|* = Re (v — v,u + v)
for all u,v € H and the Cauchy-Schwarz inequality, the last term obeys

T
BE / (I + o0ty = Y@ = U (1) = T(O)]]*) at

—BE /T 16U (t))? dt + 2BE/T (SU(t),U(t) — (1)) dt
0 0

T T % T 2
<8 [ 18U+ 28 (E | 1wl dt) (E | 1w -l dt) .

from above by oy > 0 P-a.s. for all t € [0,7]
1; L2([0,1;R)) € L*(Q x [0,T]; H) lead to

The triangle inequality, the boundedness of U (t, x)
and all z € [0,1] and the fact that T € L2(Q x [0, T

T T T
Ky ::E/ ||U(t)—T(t)||2dt§2E/ |\U(t)||2dt+2E/ T ()] dt < o
0 0 0

Hence, based on the continuous embedding L> (€2 x [0, T] x [0,1]) < L*(Q x [0,T] x [0,1]) with
embedding constant C, it follows that

0< lim
[8U|—0

. 2
< \6}}|H—1>0 (ﬁ 16U 1 22(0x (0,71 x[0,17) + 28Ku,x H5U||L2(Qx[o,T]x[o,1]))

58 [ (1w +80)(0) = X@)I° - [U0) = T a

. —2 2 -
< \53}20 (60 16U |7 o [0,71x[0,1)) T 28Ku,xC H(SU”L‘”(QX[QT]X[O:”))

__9 —
< I C"|6U|? 4+ 2BKyxC |6U|) = 0.
< Jim (6C°5UP + 26K0xC|oU))

Together with the result of Theorem 3.2.4, we get
lim |J(U +0U) — J(U)| = 0. O

[6U|—0
The continuity result in Theorem 3.2.4 particularly implies the lower semi-continuity of the
functional F. Thus, all assumptions of Theorem 3.1.2 are fulfilled and we deduce the existence of
a unique element U* € U that minimizes the objective functional (3.20). Therefore, it is worth
asking for a necessary condition of an optimal control that requires the complex conjugated version
of the adjoint Schrédinger problem.

3.2.3 Complex Conjugated Adjoint Schrédinger Problem

Now, we investigate the complex conjugated adjoint problem of the pathwise controlled Schrédin-
ger problem (3.8) and deduce its appropriate concept of solution. Notice that, in general, it is
not possible to establish the adjoint equation of each stochastic partial differential equation with
the present approach (see Remark 1.1). That is the reason why we exclude general multiplicative
noise here. Choosing again w € () arbitrarily fixed such that each relation holds for a.e. w € €Q,
the variable ®U : 2 x [0, 7] x [0,1] — C has to fulfill the complex conjugated adjoint Schrédinger
problem of (3.8) given by

%@U( t) = — iADY () + iU (1) DY (t) + iAo + 1) B(£)| 2V ()7 @V (¢)
+ixeB@)| 2V ()" (2Y (1) 9V (1), (3.23)
g L (T)

(1) =2 i [
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3.2. Pathwise Problem with Power-Type Nonlinearity

in V* for all t € [0,T] (compare Appendix I). The complex conjugated adjoint Schrédinger equa-
tion and its appropriate final condition, which is adjusted to the considered objective functional,
can be obtained by the method of Lagrange multipliers (compare for example [95, pp. 96 f.]).
Integration by parts motivates the concept of solution of the final value problem (3.23) in the
following sense.

Definition 3.2.6. A process ®U € C([0,7T]; H) N L%([0,T); V) is called a variational solution of
the complex conjugated adjoint Schridinger problem (3.23) if it fulfills

U T
(®Y(t),v) = — 2@71/(171)(23/(%) y,v) +i/t (ADY(s),v) ds

’ T 20
—i/t (U(S)Q)U(s),v)ds—i/\(a%—l)/t B(s)(|2Y(s)| " @Y (s),v) ds  (3.24)

- i)\o/t B(S)(|ZU(S)’2(U_1)(ZU(S))z@T(S),U) ds

forae.weQ, allt€0,T] and allv e V.

The next aim is to show the unique existence of the variational solution of (3.24) (for a.e. w €
arbitrarily fixed). At first, we are concerned with its uniqueness.

Theorem 3.2.7. If ®Y ¢ C([0,T]; H) N L3([0,T); V) is a variational solution of the complex
conjugated adjoint Schrédinger problem (3.24), then it is unique.

Proof. Assume that there are two variational solutions ®Y ®Y ¢ C([0,T]; H) N L*([0,T}; V) of
problem (3.24). Thus, by denoting §®Y := &Y — ®Y and regarding that §®Y(T) = 0, we get

T T
(62Y(t),v) :i/t (A50Y (s),v)ds — z[ (U(s)60Y (s),v) ds
T / 20
fz')\(aJrl)/t B(s)(|ZU(s)| 6@Y(s),v) ds

- i)\a/t B(s)(‘ZU(s)|2(o_1) (ZU(S))QW(S),U) ds

for all t € [0,T] and all v € V. The application of the energy equality yields

1687 (1) _—QIm/ (4507 (s), 68V (s )>ds—|—2lm/ (5)50Y (s), 50V (s)) ds
+2\(o + 1) Im/ )(|Z2Y (s | 750Y (s),6®Y(s)) ds
—|—2)\alm/ |ZU |2(J_1)(ZU(S))QW(S),(S(I)U(S)) ds

for all ¢ € [0,7]. Writing the imaginary parts under the integral signs and observing that
Im (Av(s),v(s)) = 0 for all v(s) € V and Im{h(s)h(s)} = Im|h(s )| = 0 for all h(s) € H,
the first three imaginary parts on the right-hand 51de Vamsh and it only remains

T
|50V (1) :2/\U/t B(s) Im{(yzU(s)F("‘”(ZU(S))25¢U(S),5¢U(S))}ds
T U 2(c—-1) /U 25T U
§2)\0/t B(S)H|Z (s)] (2V(s))” 50 (S)H 1507 (s)|| ds

<22 /tT B(s) || 20 ()7 (27 () 527 s) | s + /tT |50Y (5)|| ds
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3.2. Pathwise Problem with Power-Type Nonlinearity

for all ¢ € [0,T]. Using Lemma D.2, it follows that

H|ZU(3),2<cr—1)(ZU(S))Q&IW(S)H2 - /01 |12V (s, 2)|"" |60Y (5, 2)[" da

2
)

< (Lo 12l ) a2 2

which results in
T
|50V (1) g/ (142272262 B2(s) | 2V (s)||37 ) 90V () ds,  for all ¢ € [0,7].
t

Assuming that the variational solutions ®Y, ®5 € C([0,T]; H) N L*([0,T]; V), it also holds that
§@Y € 0([0,T); H) N L2([0,T]; V) and, therefore,

PNIE: T 2012 212 U g U 2
|58V (1) g/o (14+227202B%(s) | 2 (S)HV)TZ%?S]W@ (|| ds

such that the right-hand side is independent of t. Hence, we take the supremum over all ¢ € [0, T
and obtain

T
sup ||oa? (1)])” < / (142272262 B2(s) | 2V (5)|[y ) sup [|o@? (r)]|” ds.
te[0,T] 0 rel0,s]

Finally, Gronwall’s lemma implies that

168V (1)]|* < sup |[§8Y(1)|* =0,  forall ¢ € [0,T],
t€[0,T)
and, consequently, §®U (t) = &Y (t) — @Y (¢t) = 0 for all ¢ € [0, 7). O

To show the existence of the variational solution ®V € C([0,T]; H) N L?([0,T]; V) of the com-
plex conjugated adjoint Schrédinger problem (3.24), we proceed with the corresponding Galerkin
equations for each n € N which are given by

(@Y (t), hy) = — 2iy 1 (wn {ZYU((TT)) — y} ,hk) +i/tT (ADY (s), hy,) ds
_ z'/tT (1 U (5)8Y ()}, ) ds
—iXo +1) /tT B(s) (wn {|ZU(5)|2"<1>£{(3)} : hk) ds
—iXo /tT B(s) <7rn {‘ZU(S)|2(071)(ZU(S))szig(s)} ’ hk) ds

(3.25)

forallt € [0,7]) and all k € {1,2,...,n}. Observe that this finite-dimensional system is equivalent
to the integral equation

1 ZU(T)

@g(t)z—Qi'y?(T) 7Tn{ YD) —y}+i/tTA<I>g(s)ds—i/tTwn{U(s)tI)g(s)}ds

—iAo +1) /tT B(s)m, {|ZU(5)|2J<I>,({(5)} ds
—ido /T B(s) T, {]ZU(S)‘Q(U_U (ZU(S))2 @75{(5)} ds

t
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3.2. Pathwise Problem with Power-Type Nonlinearity

in V* for all ¢ € [0,7]. Since it does not include any noise term, we differentiate this equation
with respect to the time variable ¢ and obtain

%@5{( t) = —iADY (1) + im (U (1)} + iAo + 1B m {|27(1) 28 () }
+ixaB(t)m {27 ] (27 ()" 9T (1)}, (3.26)
1 ZV(T)
dY(T) = — 2iy 4R Tn { Y y}

in V* for all t € [0,T]. Plugging in the series representations of the orthogonal projection m,, (see
(2.2)) and of the Galerkin approximations

chk hy, € H,, for all t € [0, 7] and all n € N, (3.27)

where ¢, (t) := (@f{(t), hk) for all k =1,2,...,n, and splitting (cuk)k=1,2,...n in real and imag-
inary part, problem (3.26) represents a 2n-dimensional linear homogeneous system of ordinary
differential equations with bounded coefficients and appropriate final value conditions. Such a
system possesses exactly one 2n-dimensional solution in C1([0,T]; H) that are the real and imag-
inary parts of (¢pk)k=1,2,....n. These coefficients

enk(t) := Re{cnr(t)} + i Im{cni (t)}, forall k=1,2,...,n
can finally be composed in form of (3.27) to the unique solution ®7 € C*([0,T]; H) of the Galerkin

equations (3.25). Now, we state uniform a priori estimates of the Galerkin approximations ®Y in
H and V to deduce that the solution is a variational one.

Theorem 3.2.8. Let n € N be arbitrarily fivzed. Then there exists a positive constant C such that
H<I>T[{(t)H2 < C(o, N\ 0,7,y,01,Cp,T), for all t € [0, T]. (3.28)

Proof. Initially, observe that problem (3.26) (given in differential form) and problem (3.25) (stated
in integral form) are equivalent. Thus, we multiply the differential equation in (3.26) by ®Y(¢)
and use the properties of the Gelfand triple (V, H,V*) such that

(5r280.250)) == i(488(0).24(0) + i(m (UL 0} 8E0)
+iXo + 1)B(t) <7rn {\ZU(t)F”@g(t)} ,@,l{(t))
+iXoB(t) (m {yzU(t) 27 (20 (1)) @(t)} LoV (t)> .
Notice that each relation in this proof holds for all ¢ € [0, 7. By the first equality in (2.3), we get
(Fr220.080) = - iast0.2%(0) + (WP (). 35 (1)

+iXo + DB (|27 )oY (1), Y (1))
+ixeB()(|2V 0 (2Y (1) B (1), ®Y (1)).

Taking the real part of this equation and observe that Re{iz} = Im{z} for all z € C and

re (grot0.0%0) = 3 [ (et .ot + (st gatw)] - 34 Ieto)?
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3.2. Pathwise Problem with Power-Type Nonlinearity

since the representation of ®U(¢) is separated in time and space, it follows that

1d

L9V = - 1 (AL (), V(1) + Im (U ()8 (1), 2V ()
o

+ Ao + DB Im (|27 (1) @Y (), @Y (1))
+2eB(t)Im (|27 ()27 (2Y (1) 2 2T (1), @Y (1)).

Like in the proof of uniqueness, the first three imaginary parts on the right-hand side vanish and
% [0V (1)]|* = 2)0 B(1) Im/ol 12V (t,2)| P77V (2Y (¢, 2))? (BT (¢, 7)) *da
— 2\ B(1) /O 1 129 (t, )" Im { (2Y(t,2))* (@U (¢, x))2} dz
= 2\0B(t) /01 129 (t,2)| "7 Im {T(¢, 2) } da.

Renaming t by s and integrating over all s € [t,T], we deduce

v 2— v 2: g ' S 1 stQ(Uil)m S, T T das.
oY@ = ot ol =25 [ B [ |27 i (s, } o d

With the help of the substitutions
s:=T—r and g(T —1t):=g(T — (T —1t)) =g(t) (3.29)

for functions g : [0,7] — C such that

/tT g(s)ds = — /O g(T —7r)dr = /OTt g(T —r)dr = /OTt g(r) dr, (3.30)

T—t

we rearrange the final value problem

[of @) = @ (D)]* - 20 / " B(s) / 127 )P I (T (s, )} s,
U 2
{5 v}
Hi)g(T — t)H2 = Hég(O)HZ —2)\o /OT_tB(r) /01 ‘ZU(T,I)‘Q(U_I) Im {f(r,m)} dx dr,

2% (0)
T = -y
Y(0)
Remembering that I'(r,z) = (ZU(’I’,I))2 (@(r, x))2 and referring to Lemma D.2, we estimate

from above by

1
Y(T)?

[2Y(T)|” = 44°

into the initial value problem

2
1

Y (0)]

2

- 2
|25 ) =42

} 9 ~ 9 T—t 1 e
@g(T—t)H < &Y +2>\J/ B(r)/ |2Y (r, )| |8Y (r, 2) | da dr
0 0

A
=

.
=

IA
=)

)
e

T—t
s+ 2080 [ <sup \zw,x)\%) 89| ar
0

z€(0,1]
T—t

DO + 2 oBo) [ 1270780 o
0

A
&

-
e
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3.2. Pathwise Problem with Power-Type Nonlinearity

Because of B(0) = B(T) < Cp_(compare (3.7)) and relation (3.11), which particularly holds for
the time transformed variable ZV since

ess sup HZU(T)Hff = esssup HZU(S)H?/U < esssup HZU(S)Hf/U < C(o, A\ p,a1,Cp), (3.31)
rel0,T—t] s€[t,T] s€[0,T]

we further get

T—t
H@g(T — t)H2 < H@,[{(O)H2 + 2"“)\03(0) < ess sup ||ZU(7‘)Hf/0> / ||i>g(7')||2dr
ref0,7—1] 0

< Hég(O)HQ + C(o, N\, ¢,01,Cp) /OT_t Hég(r)Her.
With Gronwall’s lemma we conclude
Hég(T—t)‘r < H@g(O)HQC(a,)\,go,al,CB,T)
such that resubstitution yields
[2Y(0)|)* < |@Y(D)|)” Clo, A, ¢, a1, Cp, T).

Due to the second relation in (2.3) and equality (3.9), it follows that

2 2

1 ZY(T) N ZY(T)
oY (T)||” = 492 Wn{ —y} SM"BG(T)H -y
” | Y (T)? Y (T) Y(T)
1 ZY(T) 2 9 1 1 (3.32)
<8+2B% — 8~2B+ = 2 2
<892BH(T) <H D ) = s2mE ) (B Il + 1ol
< 0(0'74107773/’03)7
and we finally obtain
2% (1)||" < C(o, A, 0,7, y,01,Cp, T),  forall t € [0,T). O

Corollary 3.2.9. Since the constant on the right-hand side of (3.28) is independent of t € [0, T,
we especially deduce the uniform boundedness of the solution ®U of the Galerkin equations (3.25)
in C([0,T); H) and L*([0,T); H). Moreover, the independence of the constant in (3.28) of w €
induces the uniform boundedness of ®7 in L*(Q; C([0,T); H)) and L*(Q x [0, T); H) as well.

Next, we show the uniform a priori estimate of the variational solution ®Y of the Galerkin
equations (3.25) in V.

Theorem 3.2.10. Let n € N be arbitrarily fivzed. Then there exists a positive constant C' such
that
H(I)g(t)Hf/ S C(O—v>‘750373y7a130427037T)3 fO?” all t € [OvT] (333)

Proof. By starting with the Galerkin equations (3.25) and regarding the first property of the
orthogonal projection in (2.3), it results that

U (U e U o g U
(@5 (t), hie) = (@5 (T), hie) +i (ADY (s), hi)ds — i (U(s)®y, (s), hy) ds
T
4A(a+1)/t B(s)(|127 (s)|*7 ®Y (s), h) ds
T 2(c—1) 22—
—z’)\a/t B(s)(|12Y (5)* 0 (2Y ()2 U (s), by ds,

(®L(T), hie) = — 2iy L (ZYU((TT)) -, hk>~
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3.2. Pathwise Problem with Power-Type Nonlinearity

Notice that each relation in this proof holds for all ¢t € [0,7] and all k € {1,2,...,n}. Due to the
substitutions (3.29) and relation (3.30) from the proof of Theorem 3.2.8, we transform this final
value problem into the initial value problem

(ég(T—t),hk):(ég(O),hk)H/ - <A<i>,’{(r),hk>dr—¢/ B (T(r)BY (), hy) dr
0 0
T—t
7’L'/\(0'+1)/ B(T)(|ZU(T’)|26(I~)7I{(T),}L]€) dr
0
_ i)\a/o B)(|129 )P (29 (1) Y (1), by .

. T O
(B Oh) =207 ( o m).

Now, we apply the energy equality and then we multiply the obtained equation with p; and sum
up over all Kk =1,2,...,n such that

zn:#k ‘(éf{(T — ), hy)

’ 2

k=1
=3 e | (@5 0). )| 722;%1111/ (ABY (1), (Y (), hi) ) dr
= T— t
+2Z,uk1m/ (r), (BY (), h) ) dr (3.34)
+2X\(o + 1) Zuklm/ B(r) (|27 () |7 @Y (r), (9 (r), hi) h) dr
+ 2)@2;% Im/ |ZU ’2(071) (ZU(T'))Q@(T), ((i)g(r), hi) hi) dr.

With the help of the second equality in (2.5), the term on the left-hand side and the first one on
the right-hand side obey

n _ 9 9 -
> (BT 0. ~| ot

2 n
o Sw|aromf < |Zao)|
k=1

In the following, all the other terms on the right-hand side are successively regarded in detail. At
first, we investigate the second term on the right-hand side of (3.34) including the operator A.
Because of the first equality in (2.5), we get

n T—t
2> qu Im/ (AT (r), (®Y (r), ht,) hu ) dr
k=1 0
T—t n
:—21m/ (Z%( hj,zuk ), hi) hk>dr
0 =1
T—t n 5 n
==2m | D g () hy) D (BT (1) he) (g, ) dr
j=1 k=1
n T—t 2
:—QZM?/O Im‘(fbg(r),hj)’ =0.
j=1

Based on the first property in (2.5), property (2.6) and definition (2.1) of the operator A and the
application of the product rule for derivatives, it results for the third term on the right-hand side
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of (3.34) that

QZuk Im/ ) (U(T)Ci)g(r), (<i>7[{(7”)7 hi) hi) dr
k=1 0
T—t Tt B
:21111/0 < Zuk ), he) hk> d7’721m/ (U(r)@Y (r), A®Y (r)) dr

—9Tm /OT_t (ABY (r), U (r)®Y (r)) dr = 2Tm /T_t (;x [O(T)ci),f{(r)} : gxég(m> dr

—zxm/OT_t ( {aiﬁ(r)} éﬁ{(r),a%éff( )) dr+21m/T t( (r) {;C@U( )] ,giéﬁ{(r)) dr.

Due to relation (3.4), the second term vanishes such that it only remains

2>t [ @00 @) =2 [ ([ 00)] a0, 28 ) ar

x

Now, we have to remember the case differentiation for U € U (compare Lemma 3.1.1).

(i) If U(r,z) = U, (r), then B%Ul (r) = 0 and, therefore, it holds that

2Im/T t[axU ] ( Yir ),iéﬁ(ﬂ)dro.

(ii) If U(r, ) = Uy(z) = Us(z), the boundedness ||%U2H < ay and Lemma D.2 yield

T—t a - a -y T—t 8 U U
=z =z <
2Im/0 ( [&xUQ} @, (r), 5‘:5(1)" (7“)) dr < 2/0 {52%(]2] oY <I> (r)|| dr
T—t 8 - 2 T—t a U 2
< -
_/O {axUz] o (r) dr+/() 8:1:(1) (r)|| dr
T—t a 2 B 9 T—t a u 2
< —U- o (T, d +/ <I> d
[ el (o ot Yoo [ 2t o
) T—t 2 T—t a - 2
<
_2a2/0 n(r)Hverr/O ax(I) (r)|| dr
T—t 9 9 - 2
zzag/ ‘ n(r)H dr+[1+2a§]/ 28U ar.
0 0 (9:5

The estimates of the last two terms on the right-hand side of (3.34) are similar but of considerable
length. Thus, we present the approach for one term and only state the result for the other. Due
to the second equality in (2.5), the fourth term on the right-hand side of (3.34) fulfills

Mo +1) Z,ukh'n/ 2 (|29 ()27 @Y (r), (DY (1), hx) h) dr
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The first integrand satisfies by Lemma D.2

2

0 T = o=
‘396 [EMGIREHGI
1 2 1 2
:/ £|ZU(7‘,$)|2U fﬂ{(r,x) 2dJC—|- |ZU(7",:13)|4t7 ﬁég(r,x) dx
0 Ox 0 ox
1 g Nt ) \ 9 9 (3.35)
7U a U U o U
S/0 %|Z (r, )] @y, (ryz)| dr+ <x2%1?1]|2 (r,z)| ) ’axcb (r)
</1 3|ZU(T )% 2 oY (r, ) 2d:c+22"||ZU(r || 0 —oU(r) i
- 0 833 ’ n ’ 8_([;

Denoting v, : dwv we get for all v € V' that

2

off = ool (0 + 07)

2 d 2
= ‘ v7T%) = 40?0V |Re{vT, }|*.

dx'

Therefore, we deduce (again by Lemma D.2)

1
/0 %‘ZU(T,;U)‘Q @T({(r,aﬁ)rdm
1 o— 5 _ 2
:402/ ‘ZU(T,m) oy RQ{ZU(T,J?) l:aasz(T,Jf)]} @g(r,x)rdz
0
L 10-2| 9 2 2
§402/ ‘ZU(r,x) —ZY(r,z) @g(r,x)‘ dx
0 Ox
§402<sup ‘ZU(r,x)r(z D)/ EZU(r,:zc) @g(r,x)‘zdm
z€[0,1] 0 |0z
20-1 2| 500|200 (1] 9 su U 2
<4.2°"¢ HZ (7“)HV / %Z (r,x) ‘CIDn(nx)‘ dx
0
with
. 1 9 - 2 . 2
Z(r) ::/ axZU(Tx ‘fb rx)‘ dx < ‘ 8xZU(T) sup ,l{(r,a:)‘
0 z€[0,1] i (3.36)
9 U U zu a7 9 v
<2220 o, -2z, st + | 2ete]
such that relation (3.35) results in
9 o0/ (2050 ’ 20 2 || 50 (1" 16U (1P 020 21| ZU 0 zv |
’%UZ (r)] @n(r)}H < 42202 ||2V)|| @Y || 422 1+ 407 |2 @’ il P A0

Hence, the fourth term on the right-hand side of relation (3.34) satisfies

T— t B ~
Ao +1 Zuklm/ P (|29 ()27 @Y (r), (DY (r), h) h) dr

+ Ao +1)B(0) /OT_t <1 +2% [1+407] HZUO“)

4o

<4.22\(0 + 1)023(0)/ HZU(r
0

2

9 gu dr.

%(I)n (7’)

5) |
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Finally, the fifth term on the right-hand side of (3.34) is estimated analogously to the fourth term.
We obtain

® (1), (7 (r), hi) hye) dr

% e U201 ZU ’ 3 e HU ’
<oB) [ | (1270 (2 ) S )| dreaoBo) [ Zalm)| ar
The product rule for derivatives and relation (3.36) imply
177 @ ) 8] 2
Ox "
! 0 SU 2(c—1) 2 SU 41z 2
:/ a—’Z (r,x)’ ‘Z (7‘7{E)‘ ’@n(r,x)‘ dx
0 xr
Lo 14eo-1)| 0 50 o|? 2
—|—/ ’ZU(r,x)’ ax(z (r,z)) S(r, )| da
8 5 2
/ |ZU 4(0 1)|ZU )|4 £¢g(r,x) dx
201 21 || U 0|27V 5 2 || 5U 9 & U ?
<4-2 [1+|0—1|]HZ (T)HV I(r)+2%||Z (7") Sl ()
<492 [1 4]0 —1]%] HZU H +229 [5+ 4|0 — 1]2] H (r)H4U 950 () i
v |0z " ’
and it follows that
2Aazﬂk Im/ 27 )P (0 ()2 BT (), (8 (), ) )
_ T—t B 2
<4227\ [1+ |0 — 1] B(O)/ HZU r)H dr
0
B T—t B a 2
+)\aB(0)/ <1+22” [5+ 4|0 — 1] HZU(r H )‘ ()| dr.
0 61‘
Summarized, equation (3.34) results in
9 &u ’ 9 zv o’ N R PR 2 U &
’833(1) (T - SHaxq’n(O) 21 [ 80| dr+[1+2a2]/0 8 ()| dr
- T—t, _ 4o ) . 2
+4-22”A(a+1)023(0)/0 HZU(r)HV H@,’{(r)H dr
T—t 2
+)\(0+1)B(0)/0 (1+22U [1+407] HZU(r )';CN @) dr
Tr—t 40 | ~
+4-22 00 [1+ |0 — 12] B(O)/ HZU(T H
0
> o 2 21| U 9 zvoal
+)\JB(0)/ 1422 [5 4 4o — 1] HZ (r) H T8V ar
0 ox
This equation is simplified to
9 v ’ 9 zv 0|’ s v s 0 zu |
Hal@n(T—t) SH&E@"(O) + Kl(r)Hfbn(r)H art | Ra) S0 ()| ar,
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3.2. Pathwise Problem with Power-Type Nonlinearity

where the coefficients are given by

40

Ky (r) : =202 4+ 4-227 A0 B(0) [o(c+1)+1+4|o—1] HZU(T)

)

v

Ky(r) : = 14202 + AB(0) {20 F14 22“((0 +1)[1+40%] + 0 [5+4]0 — 17 ) HZU(r)

40
1% } '
Keeping in mind that B(0) = B(T) < C (compare (3.7)) and relation (3.31), it holds that

f(l(r) S 0(07)\7@,@17@2,03) = Kl, KQ(T) S C(O’, )\,(p70[1,042,CB) =: KQ (337)
such that
9 zu ’ 9 zu ’ - U 2 e U ’
Tour | <|Zé K 3 H K/ 2§ :
lgava—o| <|gavo| «x [ oo arm [ | et a
Now, Gronwall’s lemma implies that
9 zu ’ 9 zu ’ - U 2
Zevr—ov| <(|Ld K & H K,TY,
Pl _<H8x vo) +m [ o) dr>exp{ .7}
and resubstitution yields
d v 3 vl T2
H@mq)"(t) < H@JC(I)”(T) —|—K1/t | @5 ()" ds | exp {K2T}
0 2 T 2
< Haq),[{(T) +K1/ H‘Pf{(s)” ds | exp{K T}
€T 0
SC(@)\,%’Y,%al’O&%CB,T)
due to the estimates (3.28), (3.37) and since (by relations (3.32) and (3.11))
0 2 . ) 0 > a |
—oU(T)|| <8y?B=(T)|B=(T) ||=—2Y(T —
et < ()( o) |5ez @ + |1
1 1 2
< 8v°B7(T) (Bi (T) <esssup HzU(t)HV) + |y||‘é)
te(0,T)
S C(Uv>\a wvvayaalaCB)'
Consequently, it holds that
U2 U 12 9 +u ?
|5 @), = ||e5 @) + %rbn(t) < C(o, M\ 0,7, y,a1,a0,Cp,T), forall t € [0,7]. O

Corollary 3.2.11. Since the constant on the right-hand side of relation (3.33) is again indepen-
dent of t € [0,T) and w € Q, we generalize the result of Theorem 3.2.10 to the uniform boundedness
of the solution ®U of the Galerkin equations (3.25) in C([0,T];V) and L*([0,T); V) as well as in
L2(Q;C([0,T); V) and L*(2 x [0,T]; V).

Knowing that the Galerkin approximations ®¢ of the complex conjugated adjoint Schrédinger
problem (3.25) are uniformly bounded in H and V', we receive the same boundedness and conver-
gence results as for the pathwise Schrédinger problem (see Subsection 2.3.1, especially Corollary
2.3.7 and Theorem 2.3.8). That is why we will not reproduce the proofs here and instead only
state some remarks.
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3.2. Pathwise Problem with Power-Type Nonlinearity

Theorem 3.2.12. The sequence of variational solutions (®Y), of the Galerkin equations (3.25)
is bounded in C([0,T); H), L*([0,T); H) and L*([0,T); V) and relatively compact in L*([0,T]; H).
Furthermore, it holds that

(a) (®Y), converges strongly in L*([0,T); H) and weakly in L?([0,T); V) to the variational so-
lution ®Y of the complex conjugated adjoint Schrédinger problem (3.24),

(b) ®Y € L*°([0,T); V) and especially

€ssSsup H(I)U(t)H%/ < C<Ua )‘7 7Y, 01, (2, CB7T)7
te[0,T]

(c) (®Y), also converges to ®V in C([0,T); H).

The proof is nearly identical to the proofs of Corollary 2.3.7 and Theorem 2.3.8. Since the
complex conjugated adjoint Schrédinger problem is linear, we obtain the weak convergences in
L2([0,T); H) and L?([0,T); V) by the appropriate boundedness results. Nevertheless, we need the
relative compactness in L?([0,7]; H) to show the strong convergence in L?([0,7]; H) in part (a)
and to verify part (c) of the preceding theorem.

Finally, we state a similar result to Theorem 3.2.3 for the complex conjugated adjoint variable
®Y containing an equivalent variational formulation of (3.24) for v € L?([0,7];V'). Observing
that this is a final value problem, the proof proceeds in the same way as the proof of Theorem
3.2.3 and is, therefore, omitted too.

Theorem 3.2.13. It holds that ®Y € L?([0,T]; V') and we obtain from equation (3.24) that

(@0 0.00) = = 201 s (Gt = o)) - | (ot s

—i—i/t <A<I>U(s),v(s)>ds—i/t (U(s)2Y(s),v(s)) ds

. (3.38)
e+ 1) [ BE(2 )70 0).0) ds

— i)\o/t B(S)(|ZU(S)’2(U_1)(ZU(S))2¢T(S),U(S)) ds

for all t € [0,T) and all v € L?([0,T); V).

This representation coincides with the variational formulation (3.24) of the complex conjugated
adjoint Schrédinger problem by identifying v € L2([0, T]; V') with v € V.
3.2.4 Gradient Formula

As known from the finite-dimensional analysis, a gradient formula in the sense of Gateaux or
Fréchet represents an opportunity to calculate an extreme value. In this case we search for an
optimal control U* € U such that the objective functional (3.20) will be minimized. Referring
to the approaches in the deterministic articles [3, 33, 102], we deduce a gradient formula by
combining the variational solutions of 6Z = ZU+®U _ ZU and of the corresponding complex
conjugated adjoint variable ®U.

Theorem 3.2.14. Let the above assumptions be satisfied and o € [%,2). Then the Gdteaux
differential of the objective functional (3.20) is given by

T T
§J(U;0U) = ERe/ (@Y (2) ﬁ(t),aU(t))dtHﬂE/ (U®) —Y(t),0U (1)) dt
0 0
for all OU e U.
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3.2. Pathwise Problem with Power-Type Nonlinearity

Proof. The Gateaux differential of the objective functional (3.20) at U € U in the direction §U € U
is defined by
J(U 4+ 06U) - J(U)

5 .
If the limit exists for all U € U, we say that J is Gateaux differentiable at U € U. At first, we
calculate the numerator that is given by

ZU+@5U (T)
I
2|

Y(T)

(e

0J(U;6U) = éim0
—

2

J(U + 607 — J(U) =1 E H wom | " + 0s0)(®) - () dt

—BE/ WU(t) — T de

2
() y)

- HY(T)
+BE / " (1w + esv)(0) — YOI - [0 - TO) de

Disregarding the time variable, for the time being, and using the notation ZUV+®%U = §7 4+ ZU,

the first expression in parentheses is rewritten as

zv " sz zv sz zV zv Zv
=\t~ vy t5 v - |5 v v

5 Y

Y Y Y Y Y Y Y Y

_ (92 8z | Z2v sz (32 ZU

“\v'y y Yy vy Y
AR VAY VA

= — 2 —_— —_

7] +2me (50 %)

because (u, v)+(v, u) = (u, v)+(u, v) =2Re (u, v) for all u,v € H. Furthermore, by remembering
that the admissible controls are real-valued, it holds that

(U +68U) —T|> — U~ T|?= (08U +U —1,0U +U - T) — (U ~",U~17)
=02 |0U|* +20(U — 1,6U).

’62 ZU 2_’

Thus, it results that

U
J(U+6sU) - J(U) = VE( (1) |162(T )||2)+27ERe(Z (1) 5Z(T))

vy Yy (3.39)

T T
+,8@2E/0 |\6U(t)||2dt+2ﬁ6E/o (U(t) — T(2),6U (1)) dt.

Being interested in the Gateaux differential, we have to divide this expression by © and take the
limit for ® — 0. Since the second term on the right-hand side would cause problems, we do some
calculations to reformulate this term. Therefore, we replace v by §Z in the variational formulation
(3.38) of the complex conjugated adjoint Schrodinger problem and obtain for all ¢ € [0, T

U T
(87 (1), 52(1)) = — 2iv Y(IT) (ZY((TT)) _ y,éZ(T)) _ /t <iaz(s), @U(s)> ds

i /f (ADY (5),62(s)) ds — i /t (U()8Y (5),52(s)) ds

T 20
fi/\(a+1)/t B(s)(|Z2Y(s)| " @Y (s),62(s)) ds
T PR
o /t B(s)(|12Y () (2Y ())> 3V (s), 62(s)) ds
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3.2. Pathwise Problem with Power-Type Nonlinearity

Choosing t = 0 and using the properties of the inner product in H, it holds that

0=— m(ZYU((TT)) —y, ‘;Z((TT))) - /OT <§Saz(s), <I>U(8)> ds

+i/0 <A<I>U(s),§Z(s)>ds—z’/O (@Y (s),U(s)5Z(s)) ds

. (3.40)

— iMoo + 1)/ B(s)(@Y(s), |ZU(5)’205Z(5)) ds
0

Cide / B(s)(@U(s), |2V ()| (20 (s))* 62(s)) ds.

0
Its complex conjugated equation is given by
. (ZU(T) 6Z(T) /o
0227( YD) -y, YD) > 7/0 <88($Z(s),<I>U(s)>ds
T T
- z/ (AU (s),6Z(s))ds + z/ (®Y(s),U(s)8Z(s)) ds
0 0 (3.41)

+i)\(0+1)/0 B(s)(®U(s), |2V (s)|*762(s)) ds

. T =0 U 2(0-1) (7 2
Jrl)\a/o B(s)(®U(s),|2Y(s)| (ZU(s))"6Z(s)) ds.

Regarding that (u,v) + (u,v) = 2Re (u,v) = 2Re (u,v) and (u,v) — (u,v) = 2iIm (u,v) for all
u,v € H and

(3T (s), |29 ()| (Z0(5)) % 62(s)) = (3Y(s), |27 ()" (2Y(5))*5Z(5)),

we get by subtracting equation (3.40) from equation (3.41) that

0 =4iyRe (ZYU((;;) -, (Sf(%)> + 2iIm/OT <§95Z(s),<I>U(s)>ds

T T
-2 Re/ (ADY(s),6Z(s)) ds + 2i Re/ (®Y(s),U(s)6Z(s)) ds
0 0 (3.42)

T 2
+2iMo + 1) Re /0 B(s)(aV(s), |2V (5)|**52(s)) ds

. T U U 2(oc—1) U 2 ==
+21)\0Re/0 B(s)(®Y(s),| 2" (s)| (Z2%(s))"6Z(s)) ds.

Next, we substitute v with ®V in the variational formulation (3.17) of the solution §Z of the
difference of two controlled Schrédinger problems, which entails for all ¢ € [0, T]

t o ] t
(62(t), @Y (¢)) :/0 <85<I>U(s),6Z(s)>ds—@/O (AsZ(s),®Y(s)) ds

+z'/0 (U+068U)(s)5Z(s), @Y (s)) ds
—I—Z'/O (@6U(5)ZU(S),¢>U(S)) ds

i) [ B (7270 (5) = 127 (9)),0 (5)) ds.
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3.2. Pathwise Problem with Power-Type Nonlinearity

Observe (u,v) = (v,u) for all u,v € H such that for ¢ = T this relation is equivalent to

0=-— 217<ZYU(%) -y, 55((TT))> + /OT <§S<I>U(s),5Z(s)>ds

T T
- 2/0 <A<I)U(s), 5Z(s)> ds —|—z'/0 (@U(s), U+ @5U)(s)5Z(s)) ds

T (3.43)
+i/0 (®U(s),06U(s)ZY(s)) ds
T
+ i ; B(s)(®V(s), f(ZUT6V(s5)) — f(2Y(s))) ds
and its complex conjugated equation is constituted by
L (ZV(T)  8Z(T) 1O auia 5200 ds
=Sy Yy )+ [ (g0 s o
T T
i / (ADY(s),62(s)) ds — i / (8Y(s), (U + O5U)(5)62(s)) ds
0 0 (3.44)
~i [ @V, 000527 (5) ds
—iA / F(2U00 (5)) - §(27(s)) ds.
Subtracting equation (3.43) from equation (3.44) leads to
U T
0 =4ivRe (Zy((TT)) -y, (SYZ((TT))> +2iIm/0 <§SCI>U(5),5Z(S)>d5
T T
+2iRe / (ADV(s),52(s)) ds — 2i Re / (@Y (s), (U + O8T)(5)52(s)) ds
0 0 (3.45)
- 2iRe/O (@Y (s), 08U (s)ZY(s)) ds
T
~2iARe A B(s)(@Y(s), (ZU+O (5)) — f(2V(s)) ds.
Finally, adding equations (3.42) and (3.45) yields
o ZY(T) 8Z(T)
o=sinme( Sy~ 1)
—l—ZzIm/ ®Y(s),07(s ds—|—221m/ —0Z(s),®Y(s) )ds
(3 i) [ [Gar)
—22Re/ (@7 (s), O5U ()52 (s)) ds—QiRe/ (8Y(s), 05U () 2V (s)) ds
0 0 (3.46)

T
~2iRe [ B(s)(@V(5), (2010 (5) ~ £(27 () ds
T
+2iN(o + 1) Re/o B(s)(®Y (s), |2V (s)|*762(s)) ds

. r U U 2(oc—1) U 25
+22)\0Re/0 B(s)(®Y(s), |2Y(s)| (Z2%(s))"6Z(s)) ds
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3.2. Pathwise Problem with Power-Type Nonlinearity

We reverse one partial integration with respect to the time by

QZIm/ <asq>U( ),62(s )>ds—|—221m/ <6Z( X (s)>ds

=2iIm (®Y(T),6Z(T)) — 2iIm (®Y(0),52(0))
—QZIm/ <6Z ), @Y (s >ds—|—2zlm/ <6Z( ), ®U (s )>ds

ZY(T)

= —4iyRe ( )
Y(T) (T)

Hence, taking expectation of equation (3.46) divided by 2¢ results in
ZY(T) 6Z(T)
nere (S -0 Vi)

T T
:ERe/ (®Y(s), 00U (s)5Z(s)) d5+ERe/ (®Y(s),00U(s)ZY (s)) ds
0 0
T
ABRe [ B(5)(8V(5), F(2770 (5)) = (27 (3)) ds
T
— Ao+ l)ERe/O B(s)(@Y(s), |ZU(5)]2"52(5)) ds

()" (2Y(5))52(s)) ds

—)\aERe/O B(s)(2Y(s),

Now, the numerator of the Gateaux differential (3.39) is rewritten as
J(U +08U) — J(U) =7E (B (1) 62(T)?) +562E/ 16U (8| dt
T
+ ERe / (@7 (1), 05U (1) 2V (1)) dt (3.47)
0
T
+ 2B®E/ (U(t) = Y(t),0U(t)) dt + Ry + Rs
0
with
T
Ry ::ERe/ (@Y(t),00U (t)6Z(t)) dt
0
T
Ry = \ERe / B(0)(8Y (1), F(ZU+O (1)) — §(2Y (1)) dt
0

— Ao+ 1)ERe /T B(t)(®V (), |27 (t)[* 52 (t)) dt
0

— AcERe / "B (@Y (1), |2V (2V (1) 52 ) de

To calculate the Gateaux differential, we have to divide the terms on the right-hand side of (3.47)
by © and investigate its limit with respect to © — 0. At first, we state by Theorem 3.2.2 that

2 . 2
0< lim QVE( (1) [|6Z(T)]| ) < lim C(o, X, ¢,7,01,Cp, T) O [|0U| L= (20,7 x[0,17) = 0-

Furthermore, we obtain

. 1 2 r 2 1 r 2 _
lim £ 50 E/O 15U ()| dt—(_l)lgloﬁ(aE/O 16T ()12 dt = 0,
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3.2. Pathwise Problem with Power-Type Nonlinearity

and it obviously holds that

1 T T
lim —F Re / (®Y(t),00U(t)ZY (t)) dt = ERe / (®Y(t),6U(t)ZY (1)) dt
0 0

0—0 0
and

lim —Q,BGE/ t),0U(t)) dt = ZﬁE/ —Y(t),5U(t)) dt.

00 0O
Therefore, the Gateaux differential for all 6U € U reduces to
T
0J(U;0U) = ERe/ (® Y(t),0U(t)Z (t))dt

+2BE/ £),8U(t)) dt + lim 2222
0—-0

Based on Theorem 3.2.2 and estimate (3.28) combined with the result of Theorem 3.2.12 (a), the
term R; is estimated from above by

Ry <E/T |(@Y (1), 05U ()52 (1)) | dt
0

T
<O H5U||L°°(Q><[O,T]><[O,1]) E/o ’@U(t)a 0Z(t)) ’ dt

. Voo
2
<Oy (£ 970 ) (2 [z a)

2
< C(Ua )‘7 7Y, o, CB7 T) 92 H6U||L°°(Q><[O,T]><[O,l]) :
Thus, it follows that

0 < lim @

. 2 _
650 S Cl)anOC(07 )‘a ©,7,Y, a1, CBa T) @ ||5UHL°°(Q><[O,T]><[O,1]) - Oa

which implies

The last term Ry obeys

— AERe / TB(t) (@U(t),f(zl”@w(t)) — 2V (1) — (0 + )| 27 ()75 2(1)
0 (3.48)

—olzV @) (ZU(t))257(t)> dt.
Taking into account that f(v) = f(v,?) = |[v|?*?v = v"T1%7 for all v € C and applying the linear
Taylor series expansion of f(ZUT©%V(¢)) at the point ZY(¢) in Lagrange form, we get for ¥ € (0, 1)
and based on the Wirtinger derivatives (see Appendix H) that
HE @) =1 0) + (4 012 7920 + o2 D[ (2 ) 570
+ 20 o+ 1)|2Y (1) + 052(1)[* V(2T (1) + 952(1)) (52(1))>
1 o— _
+ 52000 +1)|2Y () + 962t 02 (2Y (1) + 95 2(t)) 52(1) 52()
1 o— _
+ 50l = 1)| 2V (1) + Vot 0" (2Y (1) + 952(1))” (5Z(1))>.
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3.2. Pathwise Problem with Power-Type Nonlinearity

Plugging this expansion in (3.48), only the quadratic remainders are left such that, by denoting
Z(t) == ZY(t) + 96 Z(t), it results that
1 T U 2(0-1) = 2
Ry =Z\oERe [ B(t) (q> ORCERNELG] Z(t) (5Z(t))
0 o _
20+ )20V 2()62(4)5Z(t)

+ (o= D20 (21)" (Z(1))*) at.

Writing the inner product as an integral, enlarging the real part by the absolute value and regarding
that |0 — 1| <o + 1 for o € [$,2), we entail

|20’71

Ry < )\oB E/ / |<1>Utx|[a+1|z 16Z(t, )|
+2(0+ 1)|Z(t,2) 7 52(t,2)

Ho — 1|2t ) |5Z(t,x)|2} dz dt

<2\o(0 + 1)B(T) E/T /1 BV (t,2)| | 2(t, ) |7 |6Z(t, 2)|* da dt.
0 0

For o = % it holds that }Z(t, :v)|2071 = 1. Moreover, if o € (%, 2), the application of Lemma D.2
leads to
T 20—1
Ry <2)o(c+1)B(T) E/ sup |®U(t,x)’ sup |Z(t,z)] 7 16Z(t)|]* dt
0 z€[0,1] z€]0,1]

<2v2\o (o + 1)B(T) E/OT oY), (mzl[lol?ﬂ |Z(t,x)¢2"‘1> 162 (¢)|| dt.
Since ¥ € (0,1), it especially follows by Lemma D.1 for o € (,2) that
|2(t,2) [ =27 (ta) + 952, 2) 7 < (|27 ()| + 9]0z, x)|)20_1
<2271 (|29 () [+ oz o))
=221 (| 2V (4, 2) 7 + | 2040 (1) - 2V (8, 2) )
<921 (]ZU(t,x)f”_l + (]ZU+@5U(t,x)| + ]ZU(t,x)DzUl)
<9201 (|ZU(t, 2)|?7 7 220! (|ZU+@5U(t,:E)|2071 + |ZU(t,x)|2"*1)) .
We resume by Lemma D.2 that

20—1 §22(20_1) Sup ’ZU+®5U(t7x)|2071 +22o‘—1 [1 +220‘—1] sup |ZU(t
z€[0,1]

sup |Z(t, )| ki
z€[0,1] z€[0,1]

<22(20 1)HZU+®5U HQU 1+22(2a 1)[ 920~ 1] HZU H% 1
<C() (27 @y + 127 @) -

Hence, with relation (3.11), Theorem 3.2.12 (b) and finally Theorem 3.2.2 we deduce
Ry <C(0,\,Cp) / lo?@|l, (127 @y~ + 127 @1y ™) oz at

T
SC(Ua)‘7@777y7a15a27cB7T)E/ ||§Z(t)||2dt
0

2
< C(Ua A, 7Y, a1, 2, Cp, T) Ch ||6UHL°°(Q><[O,T]><[O,1]) :
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3.2. Pathwise Problem with Power-Type Nonlinearity

We see that

Oglim@

. 2 -
oy < éliﬂoc(ffa A @7y, a1, a0,Cp,T) © H5U||Loo(9x[o,T]x[o,1]) =0

and, therefore,

Ry
lim ~2 = 0.
@lglo C] 0

Thus, the Gateaux differential of the objective functional (3.20) has the form
T T
§J(U;6U) = ERe/ (@Y(t),6U(t)ZY (1)) dt + QBE/ (U®t) = Y(t),6U(t)) dt
0 0

= ERe/T (@Y (1) ZU(1),8U(t)) dt + QﬁE/T (U(t) = Y(t),8U(t)) dt
0 0

for all U e U. O

Now, we generalize the result of Theorem 3.2.14 for the objective functional (3.5) corresponding
to the stochastic controlled Schrédinger problem (3.6) by applying the transformation formula
ZU(tv ) = XU(tv : )Y(t)

Corollary 3.2.15. Under the above assumptions and the restriction of o € [%,2), the Gateaux
differential of the objective functional (3.5) is constituted by

§J(U;6U) = ERe/T (@Y (1) XU (1) Y (t),6U(t)) dt + 25E/T (U(t) —T(t),6U(t)) dt  (3.49)
0 0

for all SU € U.

Summarized, Theorem 3.1.2 entails that the optimal control problem (3.5) based on the con-
trolled Schrédinger problem (3.6) has a unique solution for a.e. T € L2(Q x [0,7]; H). Using the
pathwise approach and the variational solutions of the difference of two controlled Schrédinger
problems (3.17) and of the complex conjugated adjoint Schodinger problem (3.38), we obtain the
Gateaux differential (3.49) of the objective functional (3.5) in Corollary 3.2.15. Since relation
(3.49) holds for all §U € U, it is especially true for arbitrary controls U € U and for the optimal
control U* € Y that minimizes the objective functional (3.5). Hence, it follows that

SJ(U*U-U*)>0, forallUel.

This inequality is equivalent to the following necessary condition of optimality that we indicate in
form of a stochastic variational inequality (compare [66, 95]), which can only be solved numerically.

Corollary 3.2.16. Denoting X* := XU and ®* := ®V" and observing that ®*(t) is only Frp-
measurable, the necessary optimality condition for the optimal control problem (3.5), (3.6) is con-
stituted by

E/OT (Re {E [@*(t)| F] X*(1) ?(t)} n 26(U*(t) _E[Y®)| F) ),U(t) - U*(t)) dt >0 (3.50)

forallU e U.

The left argument of the inner product in (3.50) defines a linear continuous functional of the
Fi-adapted processes in L?(2 x [0, T]; H). By Riesz’ representation theorem, we can identify this
functional with the gradient of the form

Re {E[*(0] F) X)) Y (1)} +28(U" () - E[Y(1)| ] )

for all w € Q, all t € [0,T] and all z € [0, 1].
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In Lemma 3.1.1 we presumed that the control U € U depends either on the time variable
t € [0,T] or on the space variable 2 € [0,1]. That is the reason why we indicate how inequality
(3.50) simplifies for these two special cases.

(i) Firstly, let U(t,x) = Uy(t) =: U(t) and, therefore, Y (¢, z) = Y(t), then (3.50) is equivalent to

T 1 o
E/O /0 Re{E[(I)*(L:c)\]—‘t]X*(t,x)Y(t)}(U(t)—U (1)) da dt
T 1
+2/3E/0 /0 (0" ()~ BIYWIA]) (U@) - U (1) deds
1

—E/OTRe{/ E[(IJ*(t,x)|]-'t]X*(Lx)de(t)} (U(t) = U*(t)) dt

0
T
+ 25E/0 <U*(t) — E[Y(#)|F] ) (U(t) — U*(¢)) dt > 0.

Thus, it follows the necessary optimality condition

[Re{/olE[@*(t,xﬂ}}]

for a.e. w € Q and Lebesgue almost all ¢ € [0, 7.

(ii) Secondly, let U(t,z) = Ua(z) =: U(z) and Y(¢,x) = Y () which are deterministic now (see
Lemma 3.1.1). Then we conclude by reasons of measurability that relation (3.50) reduces to

E/OT/()lRe{E[QJ*(t,z)U-}]

+28E /0 /0 (U* () - (@) (U() - U*(x)) da dt

X+ (t, ) de(t)} + 25(U*(t) — B[Y(t)|F] )} (U(t) — U (1)) >0

X+ (¢, x)?(t)}(U(x) — U*(x)) da dt

— /01 /OT Re {E (E [@*(t, :Z:)F(t,:z:)?(tﬂ ft])} dt (U(a:) o U*(z)) da
+ 28T /01 (U* () = T (@) (U(z) — U*(2)) da
= </OTRe{E(<I>*(t)

3.2.5 Further Remarks

X*(t)?(t))}dt + 28T (U — 1), U — U*> > 0.

In Section 3.2, we considered the controlled Schrédinger problem (3.6) and the corresponding
pathwise controlled Schrodinger problem (3.8) for A € R. Without loss of generality, we can vary
this prefactor of the nonlinear term (compare Subsection 2.3.3). Thus, it is possible to treat the
case A < 0 in the controlled Schrédinger problem (3.6) analogously to Section 3.2. The only thing
we have to take care of is to proceed to |\| after enlarging the real and imaginary parts by the
absolute values. However, remember the additional assumptions in Corollary 2.3.10 ensuring the
unique existence of the variational solution of problem (3.6).

Furthermore, we can take into account the case A = i\ with A € R as an appropriate prefactor
of the nonlinear term in the controlled Schrédinger problem (3.6) and (3.8), respectively. Although
we follow the approach of Section 3.2, we refer to Corollary 2.3.11 and choose o € [1,2) to apply
Lemma D.6 and exploit the ideas of the uniform a priori estimate in V' from Section 2.2. Therefore,
we do not need the case differentiation for the control term stated in Lemma 3.1.1 and the a priori
estimate in V simplifies for each n € N (arbitrarily fixed) to

128 @), < Claz, T) ||gll? < Clp,as,T),  forall ¢ € [0,T].
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3.2. Pathwise Problem with Power-Type Nonlinearity

Observe that the real and imaginary parts swap after replacing A by i\ with A > 0 in problem
(3.6) and the analogue of the complex conjugated adjoint Schrédinger problem (3.38) is given by

(@U(t),v(t))z—%fyy(lT)(Z; . ) < ),@U(s)>ds
+z/ (ADY(s) ds—z/T s),v(s)) ds

o) [ B2 678 6006 s

(3.51)

T PR
+Xa/t B(s)(|129 (5)]* (2 ()2 3V (s), v(s)) ds

for all t € [0, 7] and all v € L%([0,T]; V).

Consequently, in both cases (A < 0 and A = i\ with A > 0), the optimal control problem
(3.5), (3.6) possesses a unique solution U* € U that minimizes the objective functional (3.5).
By combining the variational formulation (3.17) of the difference 6Z = ZU+9U — ZU of the two
controlled Schrédinger problems (3.8) and (3.12) and the variational formulation (3.38) and (3.51),
respectively, of the complex conjugated adjoint Schrédinger problem, we obtain the same gradient
formula (3.49) in the sense of Gateaux as in the case A € Ry.

Corollary 3.2.17. Let the above assumptions be satisfied and regard the controlled Schridinger
problem (3.6) and (3.8), respectively, for the case A < 0 and o € [%,2) or the case A\ = i\ with

A€ Ry and o € [1,2). Then the Gateauz differential of the objective functional (3.5) has the form

T T
6J(U;0U) = ERe / (@Y (1) XU ()Y (t),0U(t)) dt + 28E / (U(t) — Y (t),86U(t)) dt
0 0

for all 6U € U.

From the pure mathematical point of view, we can think of one more case of admissible
controls U € U for the pathwise controlled Schrédinger problem (3.6). Having investigated the
two cases (i) and (ii) in Lemma 3.1.1, there arises the idea of combining them in the way that
U(s,z) = U1(s)Uz(x). Analogously to the calculation in case (ii) and due to integration by parts
with respect to the time variable, it holds for all v € L?([0,T]; H') with a representation that is
separated in time and space and for all ¢ € [0, 7] that

2Re /0 t (U(s)v(s), (,iv(s)) ds
_2/(: Ul(s)/olUg(x) Re{v(s,x) aasv(s,x)}dxds - /Ot Ul(s)% (/01 Us(2) |v(s,x)|2dm> ds
— UL (1) (/01 Us(a) [o(t, )| dx) —U1(0) (/01 Us(z) |v(0,x)|2d1:>

—/Ot (stl( )) (/01 Us(2) |v(s,x)|2dx> ds.

By definition, U(s,z) = Uy(s)Uz(x) > 0 P-a.s. for all s € [0,¢] and all z € [0,1], which implies
that Uy (s) and Uy (x) have the same signs. Thus, assuming that, < +-Ui(s) also has the same sign as
Us(z) for all s € [0,¢] and all = € [0, 1], we can neglect the last two terms on the right-hand side
since they are negative ones. We conclude for all ¢ € [0, T] that

9 Re /Ot (U(s)v(s), (iv(s)) ds < U (1) </01 Us() [o(t, 2) 2 da;)

:/0 Ut ) [o(t, @) do < ax o))
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3.3. Pathwise Problem with Lipschitz Continuous Drift Term

Corollary 3.2.18. We can add a third case of admissible controls U € U in Lemma 3.1.1.
Presuming that U(t,z) = Ui (t)Usz(z) and its differentiability with respect to the time variable
t €10,T) such that %U(t,w) = [4U,(t)] Us(x) > 0, the methods of Lemma 3.1.1 also work. For
all v € L*([0,T); H') with a representation that is separated in time and space it follows that

2Re/0 (U(S)U(5)7 88811(8)> ds < o lu(®)])?, for all t € [0, 7).

In this case, the necessary optimality condition for the optimal control problem (3.5), (3.6)
results immediately from (3.50) and is given by

[Re {E [®*(t,z)| ] X*(t,z) ?(t)} + Qﬂ(U*(m) — E[Y(t,z)| F] )} (U(t,z) - U*(t,2)) >0

for a.e. w € Q, Lebesgue almost all ¢ € [0, 7] and = € [0, 1] and for all U € Y.

As indicated at the beginning of Subsection 3.2.3, there are problems in generally establishing
the complex conjugated adjoint Schriodinger equation with the present approach in Appendix
I. Section 3.2 illustrates that the method applies for the controlled Schrédinger problem with
linear multiplicative noise and power-type nonlinearity since it can be transformed into a pathwise
controlled Schrédinger problem such that we can use the corresponding a priori estimates (compare
Section 2.3). Thus, it arises the question if there is a chance to treat the controlled Schrédinger
problem with Lipschitz continuous nonlinear drift term of bounded growth that will be answered
in the following section.

3.3 Pathwise Problem with Lipschitz Continuous Drift Term

The following deliberations are based on Section 2.4 including the existence and uniqueness results
of the stochastic nonlinear Schrédinger problem with a drift function f that is Lipschitz continuous
and of bounded growth, while its prefactor A is assumed to be complex-valued. Due to Section
3.1, we already know that there exists a unique variational solution of this Schrédinger problem
including an additional control term of the form (3.3). Moreover, Theorem 3.1.2 ensures that there
exists a unique optimal control U* € U that minimizes the objective functional (3.5) given by

T
J(U):7E||XU(T)—yH2+,8E/ U~ T@)|dt,  forall Uecl,
0

if we can show the lower semi-continuity of F(U) = vE || XY(T) — yH2 for all U € Y. In order to
exploit the pathwise approach of Section 3.2, we consider the controlled Schrodinger problem with
linear multiplicative noise (compare Subsection 2.4.2). We remember Lemma 2.4.1 implying the
Lipschitz constant c¢ and the growth constant ky, which appear as parameters in the constants
while estimating the function f(¢,z) = f(¢,2,%z) for all ¢t € [0,T] and all z € C. Notice that we
only indicate the results and emphasize the changes to Section 3.2 to prevent redundancy.

Referring to Section 3.2 and the relation ZY (¢, -) = XY (¢, - )Y (t), we transfer the controlled
Schrodinger problem with linear multiplicative noise

t

Y(),v) = v—it Y(s),v)ds +i $)XY(s),v)ds
(XU (0.0) = () = [ (AXU()0)ds 41 [ WX (9).0)d

’ (3.52)

t 00 t
—l—i)\/ (f(s,XY(s)),v)ds —l—zZ/ b;(s)(XY(s),v) dB;(s)
0 =Jo
for a.e. w € Q, all t € [0,T] and all v € V, into the pathwise controlled Schrédinger problem

(27 (1)) = (,v) i/ot <AZU(3),v>ds+i/Ot (U()2" (3), v) ds
[ (58) )
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3.3. Pathwise Problem with Lipschitz Continuous Drift Term

for a.e. w € Q (arbitrarily fixed), all ¢ € [0,T] and all v € V. Due to the uniform a priori estimates
(2.85), it results for all ¢ € [0, 7] that

1ZU@)|° < C(N, .k, T) and esssup |2V ()5 < CAL @, a1, k7, ). (3.54)
te[0,T
Analogously to Subsection 3.2.1, there exists a unique variational solution §Z = ZU+®U _ zU

with §Z € C([0,T]; H) N L2([0,T); V) of the pathwise Schrédinger problem
(6Z(t),v) = / (A8Z(s),v) ds + z/t (U +©6U)(s)6Z(s),v) ds
/ (06U (s)2Y(s),v) ds (3.55)

o 0 (5 )

for all ¢ € [0,T] and all v € V. This solution depends continuously on the control éU € U in the
way that there exists a positive constant C' such that

HéZ(t)HZ S 0(07 |)‘|a @, Cf, kfa CB7T) @2 ||6U||i°©([0,T]><[O,1]) ’ for all t € [O’T]’ (356)

where we exploit the first estimate in (3.54), the Lipschitz continuity of f and take A € C into
account (that is reflected in the energy equality containing the real and the imaginary part of the
nonlinear term). Now, it is possible to show that §Z € L?([0,T]; V') and the generalization of the
variational formulation (3.55) is given by

(0(t),v(t)) =/ <§S (s),6Z(s )>ds—i/0 (AsZ(s),v(s)) ds
+i /O (U +©8U)(s)0Z(s),v(s)) ds +1 Ot (06U (5)2Y(s),v(s)) ds  (3.57)

o f (0 F) o (7)) e

for all t € [0,7] and all v € L?([0,T];V’). On the one hand, we need these results (especially
inequality (3.56)) to show the continuity of the objective functional (3.20) given by

2

ZY(T) g 2
J(U)=+FE — + BE |U(t) — Y ()| dt, for all U e U.
Y (T) 0
This particularly implies the continuity and, therefore, also the lower semi-continuity of
zv(r) |
F(U)=~E — for all U .
(U) =~ H Y (T) ) or a eU

Hence, we can apply Theorem 3.1.2 that ensures the unique existence of the optimal control
U* € U, which minimizes the objective functional (see Subsection 3.2.2). On the other hand, we
require the representation (3.57) to calculate a gradient formula of the objective functional (3.20)
in order to obtain a necessary optimality condition.

Therefore, we analyze the complex conjugated adjoint Schrodinger problem (see Subsection
3.2.3). For simplified spelling, we introduce the notation of the Wirtinger derivatives by

- ZU(t)> 0 — 0 — _

v\t | = [ u(t u=—f{tu(t), vt ,
(15 ) = e O vy = 3T COOTO|
i (128 = Z sttt = 9t 000),50)

TNTYO ) 0w =g T 00T = 200 =200
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3.3. Pathwise Problem with Lipschitz Continuous Drift Term

Thus, the complex conjugated adjoint problem of the pathwise controlled Schrédinger problem
(3.53) is constituted by

o) . : — ZV(t)\ 1
aqI>U(zs) = —iADOY (1) +iU()®Y (t) + i) f, (t, Y(ﬂ) 0] oY (1)
‘ Z9t)\ 1 —
+iX £ (t, %0 %cb (t),
.1 [zY(T)
¥ =20 515 | Ty -]

in V* for all ¢ € [0,7] (for further details we refer to Appendix I). We say that a process
oY € C([0,T); H) N L*([0,T]; V) is a variational solution of this complex conjugated adjoint
Schrédinger problem, if it fulfills

U T
(@Y (t),v) —21‘71<Zy((;;) y,v) +i/t (AdY(s),v) ds

Y (T)
(.5 svi)e o

i/T (U(s)8Y(s), v) ds—z'X/

(0 () stgan)

for all t € [0,T] and all v € V. Regarding that A € C, with the consequence that we get the real
and imaginary parts after applying the energy equality, and using the fact that the absolute values
of the first Wirtinger derivatives are assumed to be bounded by

(6.0 = |50, <c

<O Il =| o)

for all ¢ € [0,7] and all v € C (compare (2.79)), we deduce the results of Subsection 3.2.3
for the complex conjugated adjoint problem (3.58) of the pathwise controlled Schrédinger prob-
lem with Lipschitz continuous drift term of bounded growth. Thus, we obtain that if there
exists a variational solution of (3.58), then it is unique. With the help of the Galerkin method,
we reduce the infinite-dimensional complex conjugated adjoint Schrédinger problem to a finite-
dimensional system of ordinary differential equations that possesses a unique solution and yields
®Y € C1([0,T); H) for each n € N. Furthermore, we verify for arbitrarily fixed n € N that

|8Y 1)||* < C(o, [\, .7 9, iy, C', C, T), for all t € [0,T].

To state a uniform a priori estimate in V' as well, we have to assume that the drift function f is
twice continuously differentiable and that the absolute values of the second derivatives of f in the
sense of Wirtinger are also bounded, which means that

0?2 ’ 0 0 1"
e = gt <C' Il = |2 5w < o

5 o o (3.59)
| fou(t, )] = ‘(%%f(tvv) <c”, | foo(t,0)| = '(%Qf(tﬂf) <c”

for all t € [0,7] and all v € C. Observe that the two examples of functions in Section 2.4 satisfy
these assumptions. Now, we get for (arbitrarily fixed) n € N that

||(I)g(t)”f/ < C(O—, ‘)\|’ LYY, 01, C2, kfa Cla C//a CBa T)a forall t € [Oa T]
Analogously to Theorem 3.2.12 the sequence of variational solutions (®Y),, of the corresponding

Galerkin equations of (3.58) is bounded in C([0,T]; H), L*([0,T]; H) and L*([0,T];V). More-
over, this sequence is relatively compact in L?([0,7]; H) and, therefore, converges strongly in
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3.3. Pathwise Problem with Lipschitz Continuous Drift Term

L3([0,T); H) and weakly in L2([0,7]; V) to the variational solution ®V of the complex conjugated
adjoint Schrédinger problem (3.58). We also receive that ®Y € L>°([0,7]; V) with

ess[su]i) H<I>U H‘z/ < C(o, |\, 0,7y, 01,00, kf, C",C",Cp, T) (3.60)
te[0,T

and that (®V),, converges to ®U in C([0,7]; H). To calculate the gradient formula, we prove that
®Y € L2([0,T); V') and the generalization of the variational formulation (3.58) is given by

(@ 0,000) =~ 207 g (S =) = [ Zo 09 )as

v [ (A0 ) 0000 ds / " (U6)9V(5)00) s
A (59) e
Y(s
‘M/t (f”(’ZYé)))Y( ECROE
for all ¢ € [0,7] and all v € L?([0,7]; V') (compare Theorem 3.2.13).

By skillfully combining the variational formulations (3.57) and (3 61), it is possible to establish
the Gateaux derivative

(3.61)

J(U +©sU) — J(U)
e

of the objective functional (3.20) at U € U in the direction §U € U. With the same approach as
in Subsection 3.2.4, the numerator has the form

6J(U36U) = lim
—

J(U +O50) — J(U) =B (BH(T) [62(T) ) + €7 E/ 15U @) de
+ ERe /OT (®Y(t),00U (1) ZY (t)) dt
+280F /O (U = T(),6U(0) dt + Ry + P,
where

R, = ERe / ’ (®Y(1),06U(t)6Z(t)) dt
0

and (based on X := A1 +i)3) the varied expression

Ry ::AlERe/OT <<I>U(t),f (t, ZU;G(:“)) _f (t’ ZYU(S;)>
(120520, 20 T,

T U+05U U
Tl m | (q)U(”’f (’”Z ;u) (t)> - (t’ Zyé?

—f ( ZU()> 0Z(t) ( A (t)éZ(t))dt
Y ) v U Y0 ) Y
Dividing each term by © and taking the limit with respect to © — 0, we do the same calculations as

before. Thus, we only emphasize the approach for the new term Ry. The linear Taylor series expan-
sion of the drift function f(¢,v(t)) = f(t,v(t),v(t)) for all t € [0,7] and v(t) = ZVTOU ()Y ~1(¢)
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3.3. Pathwise Problem with Lipschitz Continuous Drift Term

at the point ZY(t)Y ~1(¢) in Lagrange form for 9 € (0, 1) is constituted by

f (t, ZUW‘SU@)) _; (t, ZU@)) i (t’ ZU(t)) 62(0) , (t, ZU(t)) 52(1)

Y Y (1) Y(t) ) Y1) Yo ) v
+ %fm, (t, z U(t);(gaz (t>> ((5YZ((;‘))))22
32 (1, 20020 220 240
+ %fm—, (t, ZU(”;(Z;‘SZ (t)> (&Z(%)));.

Using this representation in Ry, only the quadratic remainders are left. For all ¢ € [0,7] and all
complex-valued functions v(t) we denote V2f(t,v(t)) == fuu(t,v(t)) + 2fus(t,v(t)) + fou(t, v(t))
and regard that the absolute values of the second Wirtinger derivatives are bounded (see (3.59))
such that

IV2F(t, ()] = |fou(t, v(1) + 2fus(t, 0(t)) + foa(t, 0(t))] < 4C”.

Hence, enlarging the real and imaginary part in Ry by the absolute value, it holds that
T /1
Ry < C(o, |\, C",Cp) E/ / oY (t, z)| 16Z(t, )| dz dt.
o Jo

Now, we take the supremum of ®Y(¢,x) over all z € [0, 1], apply Lemma D.2 and use inequalities
(3.60) and (3.56) such that

R2 < C(Jv |)‘|730777y7a17a27cf7kfvclvc/lchvT) @2 ||§UH§,OO(Q><[0,T]><[071]) .

This yields

and we conclude the same results as in Subsection 3.2.4.

Theorem 3.3.1. Under the given assumptions and the condition that the Lipschitz continuous
drift function f of bounded growth is twice continuously differentiable with bounded absolute values
of the first and second Wirtinger derivatives, the Gateauz differential of the objective functional
(3.20) with respect to the pathwise controlled Schridinger problem (3.53) is given by

T T
§J(U;6U) = ERe/ (@Y () ZU(t),6U(t)) dt + QﬂE/ (U(t) = T(t),0U(t)) dt
0 0

for all U € U. Based on the transformation formula ZUY(t, ) = XY(t, -)Y(t), the Gdteaus
differential of the objective functional (3.5) with respect to the controlled Schrédinger problem
(3.52) is constituted by

T T
§J(U;0U) = ERe/ (PY() XU )Y (t),0U(t)) dt + QﬂE/ (U®) —Y(t),0U (1)) dt
0 0

for all U € U. Thus, with the notation X* := XU and ®* := ®Y", the necessary optimality
condition for the optimal control problem (3.5), (3.52) can be stated by

E/OT (Re {E [*(1)] Fi] X*(1) ?(t)} + 26(U*(t) — E[Y(#)|F] ),U(t) - U*(t)) dt >0

forallU e U.
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4 Conclusion and Outlook

Nonlinear stochastic differential equations are current objects of mathematical research. Hence,
there is a multitude of scientific papers containing such equations with Lipschitz continuous non-
linearities of bounded growth whose solution follows immediately from the classical existence and
uniqueness theory of stochastic partial differential equations. Here, we considered the stochastic
Schrédinger equation with drift term in form of the power-type nonlinearity f(v) = |v|?>?v for all
v € C and o > 0 that does not fulfill these assumptions. Nevertheless, this nonlinear equation
of Schrodinger type is realistic and motivated by physical applications. Due to the mathematical
point of view, we also took Lipschitz continuous drift functions of bounded growth into account.

In the first part of this thesis, we proved the unique existence of the variational solution of the
stochastic nonlinear Schrédinger problem over a finite time horizon and a bounded one-dimensional
domain. Based on Galerkin approximations, truncation techniques, stopping times, useful inequal-
ities of the nonlinear terms etc., we gained the unique existence of the variational solution of the
finite-dimensional equations and corresponding uniform a priori estimates. Thereafter, these re-
sults were extended to the variational solution of the stochastic nonlinear Schrédinger equation
by a combination of further estimates and useful embedding and convergence results.

In the special case of linear multiplicative Gaussian noise, we established an equivalent pathwise
nonlinear Schrédinger problem. The corresponding smoothness results, which are distinctive for
the pathwise problem, were transferred to the stochastic case and led to properties we required to
treat an optimal control problem in the second main part. We searched for an optimal control that
minimizes a given objective functional depending on the control and the solution of the controlled
Schrodinger problem. Whether there exists such an optimal control is a common question in
optimal control theory. Referring to the difference process of two controlled Schrédinger problems
and the complex conjugated adjoint Schrédinger problem, whose unique existence of the variational
solution we have also proved, we calculated a gradient formula in the sense of Gateaux and inferred
a necessary optimality condition.

Summarized, we successfully treated the unique existence of the variational solution of the
stochastic nonlinear Schrédinger problem and investigated a corresponding problem of optimal
control for some convenient cases. Observe that this is the first work which is concerned with
the variational solution of stochastic Schrodinger equations including a non-Lipschitz continuous
drift term. Moreover, we do not know any article that deals with optimal control problems for
the stochastic nonlinear Schrédinger equation. Hence, this dissertation broadens the mathemat-
ical horizon in the field of stochastic analysis, especially stochastic differential equations, and
establishes a basis for future research works, for example, on the following subjects:

e Additive Gaussian noise: Unfortunately, it is not possible to handle the controlled Schro-
dinger problem with additive Gaussian noise with the present approach. Although the
method in Appendix I yields the appropriate complex conjugated adjoint Schrodinger equa-
tion, there are difficulties in deriving a priori estimates for the solution of its Galerkin
equations. However, under sufficient conditions, it is also possible to transfer the nonlinear
Schréodinger problem with additive noise into a pathwise problem by introducing a new vari-
able defined by the state variable minus the noise term (see [38] and a special case of [43]).
Investigating the characteristic smoothness properties of this pathwise Schrédinger problem
and extending them to the stochastic case, the control problem should be solvable.
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4. Conclusion and Outlook

e Fractional noise: We suggest to investigate the nonlinear Schrédinger problem perturbed by
linear fractional white noise. Introducing an appropriate definition of the stochastic integral
and using the methods of [50, pp. 179-182], it is also possible to transfer this fractional
Schrédinger problem into a pathwise one (compare [45]). Then the present ideas for the
problem of optimal control should be applicable.

e More general nonlinearities: Although including many types of nonlinearities, the discussion
of more general nonlinear drift terms is another research perspective. For example, the
discussion of nonlinearities like in the deterministic works [13], [14, Section 3.2], [15, 73, 96,
97] etc. would be interesting.

e Multi-dimensional case: After the generalization from the bounded domain z € [0, 1] to the
unbounded domain x € R (while ensuring a discrete spectrum of eigenvalues and a complete
set of eigenfunctions), one could also think of multi-dimensional domains with respect to
the space variable. However, observe that the continuous embedding H'(G) < LP(G) for
G C R™ depends on p and the dimension n of the domain (see [2, pp. 97-99, Theorem 5.4
and Remark 5.5]). Referring to the semigroup approach, the nonlinear Schrodinger equation
on multi-dimensional domains is treated, for example, in the deterministic works [49, 51, 55]
and in the stochastic articles [20, 21, 32].

e Other solution concepts: In order to obtain the complex conjugated adjoint Schrédinger
equation, the present approach in Appendix I only works for the controlled Schrédinger
problem with additive or linear multiplicative noise. For general multiplicative noise, the
stochastic nonlinear Schrodinger problem has to be regarded with respect to other concepts
of solutions (compare Section 1.2 and Appendix B). Proceeding, for example, to the mild
solution, auxiliary results like Strichartz estimates (for € R™) and properties of strongly
continuous groups can be applied. Moreover, the complex conjugated adjoint Schrodinger
equation can be established by another procedure as a forward-backward stochastic Volterra
integral equation (see [4]) which may be a starting point to solve corresponding problems of
optimal control.

e Numerical implementation: Since our stochastic nonlinear Schrédinger equations cannot be
solved analytically, it is necessary to approximate them or particularly the nonlinearity. First
deterministic approaches were conducted in [36, 37] in the 1970s and deepened by numerical
simulations for the deterministic Schrédinger equation in [33, 90, 91] and for the stochastic
case in [22, 23, 25, 26] at the beginning of the 21st century. They often used truncation
methods to show the unique existence of the solution. Applying, for example, the cut-off
function

Pro(t) := {7’|5§3| Su()] >

for r € R} and v(t) € V to the Kerr-nonlinearity (power-type nonlinearity for o = 1), we get
a Lipschitz continuous function of bounded growth we can work with. In order to model and
simulate the solution of the Galerkin equations of the stochastic nonlinear Schrédinger prob-
lem and the corresponding problem of optimal control, we propose discretization schemes,
truncation techniques, linearization procedures, splitting methods or other types of approx-
imations (we refer to the ideas in the above mentioned articles and to [10, 44, 67]). Notice
that, for example, the Wong-Zakai approximation (see [98, 100]) represents a method to
discretize the Wiener process such that it results a differentiable version, which allows to
solve the problem as in the deterministic case.

e Other types of control: Here, we considered a bilinear control term (linear in U and XY),
which physically modifies the external potential. We can also imagine control terms that
are not linear in both variables anymore, some kind of additive control (which appears as an
inhomogeneity on the right-hand side of the state equation), control on the boundary (like
in [101, 106]) etc.
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e Other objective functionals: Within the framework of this thesis, there arises the question of
other objective functionals aiming to minimize or maximize its value over a given set. Due to
the unique existence of the optimal control, we considered a regularized objective functional
such that the solution of the stochastic nonlinear Schrédinger problem represents a best
possible approximation of a given function at the final time 7. To control the Schrédinger
equation such that the solution XY approximates a given function at the final point ¢t = T
physically means to control the matter and, therefore, the electron flux. In one-dimensional
bounded domains, one can think of potential wells where the electrons are captured. To
obtain a special final state, one can apply electric or magnetic fields which are reflected as
additional potentials in the Schrodinger equation. Other objective functionals with physical
motivation are, for example, functionals including running costs, a best possible approxi-
mation of the solution of the stochastic nonlinear Schrodinger problem to given functions
on the boundary (compare [57, 58]), functions of the variational solution of the stochastic
nonlinear Schrédinger problem and/or the control or even a combination of them.

Although the stochastic nonlinear Schrédinger equation is extensively studied during the last
years, there is still a multitude of open problems. Maybe one or another of these questions can be
solved based on this thesis.
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A Cylindrical Wiener Process

All the following results are extracted from [82, Chapter 2 and Appendix B], where one can find
more details and the corresponding proofs. Let K and H be two real separable Hilbert spaces
with inner products (-, - )k and (-, -) and norms | - ||k and || - ||, respectively. Furthermore, let
L(K, H) be the space of all linear and bounded operators from K into H, L(K) := L(K, K) and
(ex)ken an orthonormal basis of K. Then the covariance operator of a K-valued Gaussian random
variable is a non-negative, symmetric operator () € L(K) with finite trace, which means that for
all u,v € K it holds that

(Qu,u)K >0, (Qu,v)K = (u,Qv)K, tr@ := Z (Qek,ek)K < 00

k=1

(compare [82, p. 6 and p. 109]). For each covariance operator Q) € L(K) there exists an orthonormal
basis (eg)ren of K representing the eigenfunctions of () and a corresponding sequence of eigenvalues
(Mk)ken such that Qep = Agey for all k € N with Ay, > 0, and zero is the only accumulation point
of the sequence (A;)ren (see [82, p. 9, Proposition 2.1.5]). Then a K-valued Q-Wiener process
can be represented by

W(t) = VArerBi(t), for all t € [0, 7],
k=1

where (8 (t))iepo, ) With k£ € {n € N: X, > 0} are independent real-valued Wiener processes. This
series even converges in L?(Q; C([0,7T]; K)), and thus always has a P-a.s. continuous modification
(see [19, pp. 86-89] and [82, p. 13, Proposition 2.1.10]).

Next, (referring to [82, pp. 110 {.]) an operator S € L(K, H) is called Hilbert-Schmidt operator
from K into H, in the following S € Lo (K, H) for short, if its Hilbert-Schmidt norm satisfies

oo
HSHQLQ(K,H) = Z [Sex||? < oo.
k=1

If @ € L(K) is non-negative and symmetric, then there exists exactly one element Q% € L(K),
which is also non-negative and symmetric, such that Q% o Q% = Q. Additionally, if trQ < oo,
it results that Q% € Ly(K) := Ly(K, K) with Q%3 ) = trQ and S0 Q% € Ly(K, H) for all
S e L(K, H) (see [82, p. 25, Proposition 2.3.4]). Thus, the Q-Wiener process can be equivalently
stated by

W(t) = frBil(t), for all ¢ € [0, 7], (A.1)
k=1

where (fi)ren is an orthonormal basis of (the separable Hilbert space) Q2 (K) =: K, with inner
product (uo,vo)KD = (Q*%UO,Q*%%)K for all wg, vy € Ko (Q*% is the pseudo inverse of Q%
in the case that @ is not one-to-one). Since the inclusion Ky C K defines a Hilbert-Schmidt
embedding from Ky to K, which means that the mapping from Ky to K is a Hilbert-Schmidt
operator, the series (A.1) converges in L?(2; K) (compare [82, p. 27 and p. 39]).
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A. Cylindrical Wiener Process

Now, if @ has no finite trace any longer and is no covariance operator anymore, this con-
vergence gets lost. However, we can introduce another Wiener process, the so-called cylindrical
one. Therefore, let K be a further Hilbert space and J : Ky — K; another Hilbert-Schmidt
embedding, which always exist, for example by choosing K := K, a sequence («;);en of positive
real-valued numbers such that Z 2,05 <ocoand J: Ky — K by

) :Zaj(uO,fj>K0 fj, for all ug € Ky
(see [82, p. 39, Remark 2.5.1]). Then the process

- i JfuBr(t),  forallt e [0,T), (A.2)

is called a cylindrical Wiener process in K. This series converges in the space of all Kj-valued
continuous, square integrable martingales on [0, T]. Defining Q1 := JJ*, we obtain @ € La(K})
and, in particular, (A.2) is a Q1-Wiener process on K;. Moreover, it holds that

Qi (K1) =J(Ky)  and  |uollx, = HQ;EJUOH — | Juoll 3, forall ug € Ko,
K, Ql Ki
1
which implies that J : Ko — Q7 K is an isometry (see [82, p. 40, Proposition 2.5.2]).

Based on [19, pp. 90-96], [39, pp. 23-61] or [82, pp. 21-34], a process (®(t)):c0, 7] is integrable
with respect to a Q-Wiener process (VNV(t))te[O’T] on Kif ®:Qx[0,T] — La(Ko, H) is predictable

and satisfies
T
P (/0 H<I>(s)||%2(K07H) ds < oo) =1.

Here, a predictable process is an arbitrary measurable mapping from (Q2x [0, T'], Pr) into (H, B(H))
with Pr = o ({(s,t] x F: 0<s<t<T,F € Fs} U{{0} x Fy : Fy € Fo}). Then the stochastic
integral is defined by

/ B(s)dW (s) := / Lo, (5)2(s) dW (s), for all t € [0,T7,
0 0

where (7,,)nen is an increasing sequence of stopping times with respect to (F3).e[0,) given by

t
i int {1 € 0.71: [ 100, 05 > 0} AT.

Since the cylindrical Wiener process (W (t)):c[o,7) is a @1-Wiener process on K, we conclude that
(®(t))teo,r) is integrable with respect to (W (t))¢c(o,7] by replacing Ko = Q2 (K) by Q% (K1). The
fact that (J fx)ken is an orthonormal basis of J(Ky) = Q%(Kl) yields that ® € Ly(Qz(K), H) if
and only if doJ 1 € LQ(Q% (K1), H). Thus, (see [82, p. 42]) we can define

/t O(s)dW(s) := /t ®(s) o J LW (s), for all ¢t € [0, T]. (A.3)
0 0

Remark A.1. 'If Q is a covariance operator on K, the standard Q-Wiener process can also be
considered as a cylindrical Wiener process by setting J = 1 : Ko — K where I is the identity map.
In this case both definitions of the stochastic integral coincide.

Remark A.2. Combining the representation (A.2) of a cylindrical Wiener process and the defi-
nition (A.3) of its stochastic integral, we get for all t € [0,T] that

/th>(8)dW(8) 1=/Ot (s)oJ tdW (s Z/ Yo J LT f, dBi(s) Z/ $) o dBu(s).

1Prévot & Rockner [82], p. 42, Remark 2.5.3 (2)
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B Concepts of Solutions

There are several types of solutions for stochastic differential equations. In the following, some of
them are introduced and can be found, for example, in [19, 42, 46, 62, 82]. Therefore, let K and
H be two real separable Hilbert spaces with inner products (-, -)x and (-, -) and corresponding
norms || - ||k and [ - ||, respectively. Let T' € R, be fixed and (W (t));cjo,r] a K-valued cylindrical
Q-Wiener process (see Appendix A) on a complete filtered probability space (Q, F (Ft)efo,1)> P).
Then we consider the following problem of a stochastic differential equation

dX(t) = [CX(t) + F(X ()] dt + B(X(£))dW (),  X(0)=¢ (B.1)

in H for all t € [0,T], where C : D(C) C H — H is the infinitesimal generator of a strongly
continuous semigroup (S¢)¢cjo,7) of linear operators on H, ' : H — H is B(H)-measurable,
B:H — L(K,H) and ¢ is an H-valued Fjp-measurable random variable. Assuming that all the
following integrals are well-defined, we introduce the concepts of solutions.

Definition B.1. 'A D(C)-valued predictable process (X (t))icpo,r) is said to be an analytically
strong solution of problem (B.1) if

X(t):§+/0 [CX(s) + F(X(s))] ds+/0 B(X(s)) dW (s)

P-a.s. for each t € [0,T].

Definition B.2. 2An H-valued predictable process (X (t))eepo,1) i called an analytically (or gen-
eralized) weak solution of problem (B.1) if

(X(5.0) = (€.0) + / [(X(5),C°C) + (F(X(s)).¢)] ds + / (B(X(s)) dW(s),C)

P-a.s. for eacht € [0,T] and ( € D(C*)={ve H: C*v e H}.
Definition B.3. 3 An H-valued predictable process (X ())teqo, 1) 15 called a mild solution of problem
(B.1) if
X(t) = Si&+ /Ot Si_sF(X(s))ds + /Ot Si—sB(X (s)) dW(s)
P-a.s. for each t € [0,T].

Finally, the variational solution is introduced. On that account, let (V, H,V*) be a triple of
rigged Hilbert spaces with compact embeddings each (see [82, p. 55] or [104, pp. 416 {.]). Moreover,
let C be a linear continuous operator A : V' — V* which defines the bilinear form (Au,v) for all
u,v e V.

IPrévot & Réckner [82], pp. 133 f., Definition F.0.2
2Prévot & Rockner [82], p. 134, Definition F.0.3
3Prévot & Rockner [82], p. 133, Definition F.0.1

92



B. Concepts of Solutions

Definition B.4. *5A4 continuous H-valued predictable process (X (t))tefo,1), which is also mea-
surable with respect to time and takes values in V, is said to be a variational solution of problem

(B.1) if

(X(5.0) = (£.0) + / [(AX(s).¢) + (F(X(5)),¢)] ds + / (B(X(s)) dW (s),C)

P-a.s. for eacht € [0,T] and ( € V.

Notice that every analytically strong solution of problem (B.1) is also an analytically weak
solution and the concepts of a mild and an analytically weak solution are equivalent. Furthermore,
every variational solution is a mild solution, but not vice versa. However, if the operator C' = A
and D(C) = {v € V: Cv € H}, then the variational solution is an analytically weak solution as
well. For more relations between the different types of solutions we recommend [19, p. 115-149],
[46, p. 63-73] or [62, Chapter 2].

Remark B.5. (a) Without loss of generality, we can also regard complex Hilbert spaces which
can be handled by the partition in real and imaginary part.

(b) In this thesis we consider the variational solution of a Schridinger equation. Hence, the
operator A changes into iA := —i/\, which is the infinitesimal generator of a strongly continuous
group (St)iejo.1) of linear operators on H. The first three solution concepts can be transferred for
C :=iA and the last one for A = iA.

4Prevot & Rockner [82], p. 73, Definition 4.2.1
5Grecksch & Lisei [42], p. 634, Formula (2)
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C Norm Square It6 Formula

Initially, the definition of a progressively measurable process is stated.

Definition C.1. !Let E be a separable Banach space. Then a stochastic process (X (t))ie(o,1) s
called progressively measurable if the mapping

Qx[0,1] = (E,B(E),  (w,s) = X(w,s)
is (F¢ x B([0,¢]))-measurable for each t € [0,T], which means that
{(w,s): X(w,s) € A, s <t} € Fr x B(]0,1]), for all A € B(E).

Now, we introduce the norm square Ito formula for a Hilbert space H, which is used several
times throughout this work.

Lemma C.2. 2Let H be a real separable Hilbert space with inner product (-, -), V a reflexive
Banach space and V* the dual space of V' such that (V, H,V*) defines a Gelfand triple and (-, -)
denotes the duality pairing of V* and V. Moreover, let K also be a real separable Hilbert space,
Xo € L?(Q; H) be Fo-measurable, Y € L*(Q x [0,T];V*) and Z € L?(Q x [0,T]); Lo(K, H)) be
progressively measurable processes and (W (t))icjo,r) @ K-valued Fi-adapted cylindrical Wiener
process. We define

X(t):=Xo+ /Ot Y (s)ds+ /Ot Z(s)dW (s)

in V* for a.e. w € Q and all t € [0,T], and we choose the progressively measurable version of
X e L2(Qx [0,T]; V). Then (X (t))ieo,r) is an H-valued continuous Fy-adapted process with

E sup X1 < oo,
t€[0,T]

and it holds the following Ité formula for the square of its H-norm

1X ()1 = 11X +2/ (Y(s) >d5+2/0 (Z(S)dW(S)aX(S))Jr/O 1Z() 7o a1y ds (C.1)

P-a.s. for allt € [0,T].

Regarding the definition of a cylindrical Wiener process with an orthonormal basis (e;);jen
of K and a sequence of independent real-valued Wiener processes ((3;(t)):co,r7)jen (compare
Appendix A), the stochastic integral is given by

/0 (Z(s)dW (s) Z/ s)ej, X(s)) dB;(s), for all t € [0, 7).

Since we are dealing with complex separable Hilbert spaces, we are interested how the norm square
It6 formula changes in this case.

IDa Prato & Zabczyk [19], p. 75
2Prévot & Rockner [82], p. 75, Theorem 4.2.5
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C. Norm Square It6 Formula

Remark C.3. Replace the real separable Hilbert spaces H and V in Lemma C.2 by complex
separable Hilbert spaces, let all the other assumptions of Lemma C.2 be satisfied (let especially K
be a real separable Hilbert space) and consider the problem

X(t) = Xo+ /0 [Y1(s) + iYa(s)]ds + /O [Z1(5) +iZ2(5)]dW (s)

in V* for a.e. w € Q and all t € [0,T). Then all the assertions of Lemma C.2 are still true and
(by choosing the progressively measurable version of X € L*(Q x [0,T];V)) the norm square Ito
formula (C.1) changes to

X (2)|I? :||X0||2+2Re/0 <Y1(s),X(s)>ds—21m/0 (Ya(s), X (s)) ds
+2Re/ (Z1(s)dW(s), X (s)) fQIm/ (Z2(s)dW (s), X (s)) (C.2)
0 0

t
4 / 1Z4(5) + iZa(3) 1%, i1

P-a.s. for all t € [0,T].
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D Important Inequalities

Here, we provide some results used throughout the thesis.
Lemma D.1. Let z,y > 0 and g > 0, then (x 4+ y)? < 27 (27 + y9).
Proof. The relation 0 < z + y < 2max{z,y} implies for ¢ > 0 that
(z+y)? < 27 (max{z, y})" < 27 (27 + 7). O
Lemma D.2. Forv eV it holds that

dv
sup o) < Jol (1oll-+2 5[ ) <2001

z€]0,1]
Proof. The first inequality follows from [36, Lemma 1.1] and the second one is obvious. O

Lemma D.3. For o € (0,2) and Z € C([0,T]; H) N L*([0,T]; V) we have

T (e
sup Z<s>||2”+( / ||z<s>||‘éds> ]
s€[0,T] 0

where C(o,T) := 2°T max{2° ! + 1; 207177},

T
/ sup |Z(s,z)|** ds < C(0,T)
0 z€[0,1]

Proof. Taking into account that o € (0,2) and using Lemma D.2, Lemma D.1, the property that
-2 Z(s)||” < || Z(s)||{ and Holder’s inequality for integrable functions, we write

T
/ sup |Z(s,z)[* ds
0 z€[0,1]

< [ (121 + 21261 | 2260

)ds

r 20 o T s o a
/O||Z<s>|| ds+2/0 12(s)]

<27 —Z(s)

or

ds]

T 2
<27 |T sup [Z(s)|[*" +27 sup || Z(s)|7T" "% (/ IIZ(8)||2vd8>
s€[0,T] s€[0,T 0

Now, we apply the inequality ab < %aQ + %bQ for a,b € R and obtain

T
/ sup |Z(s,z)|* ds
0 z€[0,1]

o o 1 o 1 —0 T ’
sup [ Z(s)[]*7 + 2 (2 sup [Z(s)|1? +35T (/ IZ(S)||2vd5> )1
s€[0,7) s€[0,T) 0

T o
sup [|1Z(s)[* + ( / Z<s>||2vds> ]
s€[0,T] 0

By choosing C(0,T) := 2°T max{2°~! + 1;2° 71T}, the assertion ensues. O

<297

<2°Tmax {27 '+ 1;277'777}
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D. Important Inequalities

Lemma D.4. For z1, 25 € C the following inequalities are fulfilled

() [[21P721 = |22 2| < 5 (|21 + |227) [21 — 2], for all o € (0,2),

(b) ’|21|2"zl — |z2|2”z2| <20 (|zl|2" + \z2|2") |21 — 23], for all o > %

Proof. (a) In the case |z1| = |z2| the inequality is obvious. Hence, without loss of generality, we

2

z
<1- |2

P for all o € (0,2). Then we have
2

21

consider |z1| < |z2| that entails 1 —
22

|[21°7 21 — |22 22| = ||21*" (21 — 22) + 22 (|21]*7 — |22|*")]
= [|211*7 (21 — 22) + 22 (|21]7 + |22]) (|21]7 = [22|7)]

|21]7 2
‘Q - ‘22|2

| 22| 2

o o o z E
= |z1]* |21 — 22| + |22 21! (J21]7 + |22]7) (|21] % + [22]%) (1— ’1 )

< 21?7 |21 — 22| + |22 2T (J21]7 + |22]7)

21

)

z

< a1z = 2ol + [22] 5 (|21]7 + [22]7) (21]2 + |22/ %) (1 -

= 217|210 = 22| + |22/ % (|21]” + |2217) (121 % + [22]F) (2] — |2al)

< 21?7 |21 = 22| + |22/ % (|21]7 + [22]7) (|21]% + |22]%) |22 — 2]

3 g o 3
- (\Zl|20 +121]27|22]7 + [21]7|22]7 + |21 |22]27 + |22|2U) |21 — 2|
5

<35 (I + 122[7) |21 — 2],
where we used Young’s inequality at the final step.
(b) Initially, we prove the auxiliary inequality

¥ —1<s(z—1)z"1, for all x > 1 and all s > 1. (D.1)

Therefore, we regard F : [1,00) — R defined by F(x) := (s — 1)z — sz*~! + 1 with F(1) = 0.
Calculating its first derivative, we get F’(z) = s(s — 1)z 2(z — 1), which is non-negative for all
x > 1 and all s > 1. This implies that F is a monotonically increasing real-valued function on
[1,00) and F(x) > F(1) for all > 1. Thus, we obtain inequality (D.1) by rearranging the relation

F(z)=(s—1)z* —s2* ' +1>0= F(1), for all z > 1 and all s > 1.

Now, we face the assertion of our lemma and assume that |z1]| > |22| and 23 # 0 since in the case
|z1| = |z2| or |z2| = 0 the inequality is obvious. Due to

[I2117 21 — 227 22| < |21*7]21 — 22| + (|21 — [22]*7) |22

and inequality (D.1) applied for 2 = 21| and s = 20 that yields
22
1
|21%7 — |22]27 < 20 (|21] = |22]) |21)?7 7 < 20|21 — 20|21 [*77E, for all o > 2

we receive with Young’s inequality that
212721 = |22[* 22| < (|21* + 20|21 > z2]) |21 — 22
20 — 1 1
< (|Z1|2(7 + 20 |: 020 |Z1|2l7 + 20_|2’2|20:|) ‘Zl — 22

<20 (|21]*7 + |22]7) |21 — 2. O
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D. Important Inequalities

Lemma D.5. Let z; and zy be two complex-valued numbers and o > 0, then
Re {(|21]*721 — |22|*722) (z1 — 23) } > 0.

Proof. Expressing z1,22 € C in polar coordinates, it results that z; := ri[cosa; + isinag] and
29 1= ra[cos ag + isin ap] with 71,79 > 0 and aq, as € [0,27). By using the Pythagorean identity,
trigonometric formulas and taking into account that the codomain of the cosine function is [—1, 1],
we compute

Re {(|21]*721 — |22|*722) (21 — %2) }

737 [cos ap + i sin a)) -

=Re{(r}""'[cosa; +isina;] —
(r1 [cos ag — isinag] — ra[cos aa — isin ag])}

=Re {r{7*? — 137 ry [cos(ar — az) + isin(a; — as)]

— 37T [eos(ar — ) —isin(ag — ag)] + 13712}
= rf‘”rz — rf"“rz cos(ag — a2) — Tlrg"ﬂ cos(ay — ag) + r%"”
> rf”+2 — r%"“rg — rﬂ‘%”“ + r%"” = (r%"“ — r%”“) (ri —r2) > 0. O

Lemma D.6. Let v € V such that Av € H and let 0 > 1, then Re{(|v|2"v,Av)} > (.
Proof. Observe that Re {(|v|??v, Av) } = Re {(Av, [v[*?v)} = Re {(Av, |[v|*?v)}. For the sake of
simplicity, we omit to write the dependence of v € V on the space variable x in this proof. It

holds that |[v|?°v € V for all v € V such that the definition of the operator A and the relation
L2 = (L) v+ v (4L7) entail for o > 1 that

(Av, [o70) = (Av, [v>"0) = /01 (ddxv) ((Z(mff“)) iz

! d \? d d
_ 2(o—1)72 20 T
/0 [a|v| v <dazv) + (o +1)|v] (dxv) (dxv> dx

1 1 2
d d d
:a/o v|2("_1)v<dxv) |:’U ((mv> —I—U(dxv>} dm—i—/o |v|?® e dx
! d d ! d |
=0 ; v|2(”1)v<dmv) <dsc|v|2> dz+/() lv|?? e dzx.
Because of
Re Lo (L) Lo () o ()] 21 (o
V\a’) )~ 2"\’ \a’)| T2\ )
one obtains by taking the real part that
Re {(Av, [v]*7v)} = /1|2<”‘”R v (o)L (Lpp d+/1||2”d K
e v, |v]|*7v —aov eqv| v Tl x Ov 0| 4

2
dx,

s

1ot d 2 L d
= Z =D Z?) d 20
20/0 |v] (dxlvl ) w+/0 i b

|2(a’—1

which is non-negative. In the special case o = 1 the term |v ) does not appear such that the

same calculations yield
1 [/ d 2 ! d |?
A 2 == — |v]? 2 > 0.
Re { (Av, |v[*v) } 2/0 (dx|v> dm—i—/o ] o dx >0 O

s
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E Details of Generalized Drift Function

We can choose f : V — H defined by f(v) := F(|v|?)v for the nonlinear drift term in the stochastic
Schrodinger problem (2.17). Here, F : [0,00) — [0,00) is once continuously differentiable with
F'(z) > 0 for all z > 0, and there exist C' > 0 and o > 1 such that

|F(21) — F(22)| < C (1+ 21|77 + |22]771) |21 — 2], for all z1,x2 > 0. (E.1)

Under the assumption of globally Lipschitz continuity, the case o = 1 may also be included. Now,
we indicate how to derive the necessary inequalities stated in the proof of Corollary 2.2.12.

Lemma E.1. Under the above conditions it holds that

IF (@)l < Clo) (1 + w7, for allv eV,
1f (w) = @) < Clo) (1+ [ulli7 + [0lF7) [lu = o], for allu,v € V.

Proof. We begin with an auxiliary statement. Based on relation (E.1), Young’s inequality and
Lemma D.2, it results for all v € V' that

[F(o?)|* = [ |F(jo(@)]?) - F(0) + F(0)|* da

<202 /1 (1 + |v(:,;)|2<ff*1>)2 o(z)|* da: + 2F2(0)
0

§402/0 (Jo(@)|* + [v(2)]*) dz + 2F2(0)

<4C? sup (jo@)l*+1o(@)[*7) +2F(0)
ze|0,

-1 1
<4C? sup (U +Z i |v(m)4‘7> +2F2(0)
z€(0,1] o o

_2(F2( 0)+2027 2

<C(o) (14 [lvl[) -

1
+220+1020+ H ” )

g

Then Lemma D.2; the last estimate and Young’s inequality are used to derive

1 ()I|? = !F<|v<x>|2>!2|v<x>|2dx<sup [o()? |F|v W[* de < 2]l0))? ||F(j0f?)]”
0

z€[0,1]

- 20 20 +2
<20(0) (Joll? + Ib]l2+2) < 20(0) (

20 +1 20’+1

o |4“+2) o) (1+ o]+

for all v € V| which implies the analogue of (2.18) given by
If@)] < Clo) (1+ |loIFT), for all v € V.

99



E. Details of Generalized Drift Function

Alternatively, we can proceed like in the auxiliary inequality such that
1 1
2 2
IIf(v)HQZ/0 [F(Jo(x)?)] Iv(fv)\zdfff:/0 |F(Jo(x)?) = F(0) + F(0)| [v(x)|? dz
1 1
<2 [ |F(o@)?) - PO [o@)P dz+2 [ [FOPlo(@) do
0 0
1 2
<20 [ (14 0@ ) ofa) oo do + 2620 o]
0

S402/0 (lo@)* + [o(@)[*7) [v(x)]* dz + 2F2(0)||v]®

< 40? sup (
z€[0,1]

oc—1 1
( +U+
] g

v(@)|* + [o@)[*) [lv]* + 2F*(0) ]|

<407 sup
z€[0,1

v(%)“”) [vl* + 2F*(0) ]|

—1 1
<2 (P 20Tt e ) e
o o
<C(o) (L+ [loI¥) v, for all v € V.
This inequality and relation (E.1) are necessary to calculate for all u,v € V that

I1f(w) = f(v)|I” :/o |[F(lu(@)?) — F(lo(@)[*)] u(z) + F(jo(@)?) [u(z) - v(z)]| de
<2/1 |F(lu(x)[?) — F(lo(2)?)|* |U(’l?)|2d$+2/1 |F(lo(@)?)| Ju(z) - v()|* da
—Jo 0

<2 sup |u(@)]? [F(juP) - F(o)])” +2C(0) (1 + [0]47) flu— o]

x€|0,

2 2 ' 2(o—1) 2(o—1) 2 2 212
<aC?uly [ (1 @ P+ @) ) = [ofa) P da

+2C(0) (1+ [[0]¥7) [lu = v]*.

Having a closer look at the first term and using Lemma D.2 and Young’s inequality, it holds for
all u,v € V that

1 9 )
AP ulfy [ (14 @) + o)) fute)? o) da
<16C2 Jull} / (14 @) 1= + (@) D) (ju(@)] + @) u(@)] - o) deo

<1607 [ull} / (14 (@)D 4 o(@) D) 2 (Ju(@)  + [o(@) ) [u(z) - v(@)] de
0

<32C2ul} sup (14 [ul@) ) + (@) V) sup (Ju(@)? + |o(@)) flu - vl
z€0,1] z€[0,1]
o 4(oc—1 4(c—1 2
<1622 Culfd (1 -+ luly ™ + oI5 ) (ulld + 1) flu = o]
o o o— o— o— 2
<2740 (lully + ol ol + lalld? + llli 210l + Tl ol = + lalld )3 ) = ol

o o 2
<C(0) (L4 ully? + [[w]l¥7) [lu —of*

Thus, we get
1f(w) = fF()]I* < Clo) 1+ [ully? + [lolli7) lu =], for all u,v, €V,
and, therefore, the analogue of (2.19) stated by
1£(w) = @)l < C(o) (1 + [ulliZ + [[0]57) flu — v], for all u,v € V. O
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E. Details of Generalized Drift Function

Lemma E.2. Moreover, we get results analogous to Lemma D.5 and Lemma D.6 constituted by

Re {(F(|z1]*)21 — F(|22|*)22) (71 — 72) } > 0, for all z1, 2 € C,
Re { (F(|v]*)v, Av)} >0, for each v € V' such that Av € H.
Proof. To show the first result, we regard the trigonometric representation of two complex-valued
numbers z1 := 71 [cos a1 +isin ap] and z5 := ro[cos ag+isin ag] with 1,79 > 0 and a1, ay € [0, 27),

follow the ideas of Lemma D.5 and use the fact that F' is an increasing and positive function. Then
we obtain

Re {(F(|z11*)21 — F(|22|*)22) (71 — 22) }
Re{(F( ri[cos ay +isinag] — F(r3)rafcos ag + i sin ozg]) .
[

(r cos g — isinay| — refcos ag — isinag})}

Re {F(r})rf — F(r{)rir2 [cos(an — az) — isin(oq — )]

— F(r3)rirs [cos(ar — as) — isin(aq — ag)] + F(r3)r3 }
F(ri)rs
> F(r%)r% - F(r%)rlm - F(’I"%)T’l’l"g + F(r%)rg = (F(r%)rl — F(r%)rg) (ri —re) > 0.

— F(T%)T‘ﬂ"g cos(ay — ag) — F(T%)rlrg cos(ay — ag) + F(r%)r%

Furthermore, since F' and F’ are positive functions and due to

e f (0 00} = 5 | (o)) )+ (o) )| = 5

one proves similarly to Lemma D.6 that
Re {(F(|v]*)v, Av)} = Re { (Av, F(|v|2)v)} = Re {(Av, F(|v[*)v) }
=Re {<Av,F(\v|2)v>} = Re {/01 (jxv(m)) (jq: [F(v(x)z)v(x)]> dx}

~Re { [ () [( F6)| ) (@R ) e + (e (;ﬁcm)] dx}

=/(jy . I)F) (slo) {(;‘;m))v<w>}dx+/01F<v<x>|2> L) ds
_;/Ol(jF o >< (@ 2) dx—i—/OlF(|v(:E)|2) %v(:ﬂ) S >0
for all v € V such that Av € H. O
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F Basic Convergence Results

Lemma F.1. Let (u,), be a bounded sequence in L?"(Q x [0,T); V) with p > 1. Then there ewist
a subsequence (Up ) of (un)n and a function u € L*(Q x [0,T]; V) such that (u, ), converges
weakly to u in L2(Q x [0,T); H), L?(Q x [0,T];V) and L**(Q x [0,T); V).

Proof. Notice that L??(Q x [0,T];V) is a reflexive Banach space (see [29, p. 100, Corollary 2]).
Hence, (referring to [104, p. 258, Proposition 21.23 (i)]) there exist a subsequence (s )n Of (tn)n
and a function u € L?P(Q x [0, T]; V) such that (u, ), converges weakly to u in L?"(Q x [0,T]; V).
Using the continuity of the embeddings

L?P(Qx[0,T]; V) < L*(Q x [0,T); V) — L*(Q x [0,T); H),

we obtain the weak convergences of (uy ),/ to u in L?(Q x [0,T]; V) and L*(Q x [0,T]; H) as well
(compare [104, p. 265, Proposition 21.35 (c)]). O

Lemma F.2. Let H be a complex separable Hilbert space with appropriate norm || .||y and let
(un)n be a bounded sequence in L™([0,T);H). Then there exist a subsequence (Un)n of (Un)n
and a function w € L*°([0,T); H) such that

T T
/ (uns(t), h)H dt — / (u(?), h)H dt, for all h € L*([0,T]; H) as n’ — oo.
0 0

Moreover,

esssup ||u(t )||H < hmlnfesssup [l (¢ )||§{
te[0,T] n' =00 te(0,T]

Proof. The proof relies on the duality (L'([0,T];H))* = L>=([0,T]; H*) (stated in [104, p. 449,
Problem 23.12 d]). By Riesz’ representation theorem, there exists a unique correspondence between
the elements v € ‘H and u* € H* given by

u*(h) = (u, h)H, for all h € H, (F.1)
and
[ [l32+ = llull2

Hence, there exists a bounded sequence (u}), in L*([0,T];H*) corresponding to the bounded
sequence (u, ), from L>([0,T]; H) such that

uy (t)(h) = (un(t),h),,, for a.e. t €[0,T], all h € H and all n € N, (F.2)

n

and
llur ()12 = llwn(®) |3, for a.e. t € [0,T] and all n € N. (F.3)

Regarding the weak* sequential compactness of L> ([0, T]; H*) = (L' ([0, T]; H))* (see [104, p. 449,
Problem 23.12 e]), we derive the existence of a subsequence (ur,), of (u}), and a function
u* € L>®([0,T]; H*) such that

w2 in L>=([0,T); H*) as n’ — oo,

n
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F. Basic Convergence Results

which means that
T T
/ ur, (t)(h) dt — / u*(t)(h)dt, for all h € L*([0,T]; H) as n’ — oco. (F.4)
0 0

We apply again the correspondence (F.1) between the elements of H and H* to obtain the existence
of a function u € L>([0,T]; H) such that

u*(t)(h) = (u(t),h), for a.e. t € [0,7] and all h € H, (F.5)

and
" @l = @, for ae. t € [0,7] (F.6)

Thus, plugging (F.2) and (F.5) in (F.4), the first assertion ensues
T T
/ (uns (2), h)H dt — / (u(t), h)H dt, for all h € L*([0,T];H) as n’ — oc.
0 0

Moreover, (by [104, p. 261, Proposition 21.26 (b)]) we have

esssup |u*(8) |13y = w70 o,77:20+) < Hminf [Jug, [ Zoe (o, 739¢+) = lim inf esssup [y, (£)][13,.-
tE[O,T] n’—oo n’—oo tE[O,T]

Here, the application of (F.3) and (F.6) yields

esssup ||u(t)[|3; < lim inf ess sup [|un: ()]|3- -
€[0T n' =00 4e0,T]

103



G Local Martingale Property

To prove the results of Remark 2.3.1, let b, : Q x [0, T] — R be F;-adapted processes for all j > 1
that satisfy

00 AT
Z/ b?(s) ds < o0, for a.e. w € Q.
=170

Furthermore, let the increasing sequence of stopping times (7as)aren be defined by

o T

T Z/ b?(s)ds<M,

—1 /0

T = o PR
inf te[O,T]:Z/ b(s)ds > M Z/ b3(s)ds > M.

j=1"9 j=1"0

Lemma G.1. The sequence of stopping times (Tar)pen converges P-a.s. to T and
P(U {TM:T}> =1
M=1

Proof. The increasing sequence of stopping times obeys

M—o0 M—o0

00 T
lim P(Ty <T) < lim P Z/ bi(s)ds > M
=170

e} [e%s} T
=P| N Z/ bi(s)ds>M p | =0
M=1 | j=1"0

due to the sequential continuity of the probability. Thus, the monotonically decreasing and non-
negative sequence (T — Ty ) men converges in probability to zero since

lim P(T —Tay >0)= lim P(|T—Ty|>0) =0
M—o00 M—o0

includes that
lim P(|T—Tu|>¢e)=0, for all € > 0.
M — o0

The monotony of the sequence yields

N}im P(|T —Tyu| > €)= lim P(sup T’7;L|25>0, for all € > 0,
bde el

li
M —o0 n>M

such that (7a)men converges P-a.s. to T because of [88, p. 333, Lemma 14.1.2]. Moreover, the
sequential continuity of the probability is used to obtain

PO =n) = i pO=n =1 pr<nion
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G. Local Martingale Property

Lemma G.2. If X € L?(Q;C([0,T); H)), it holds that

Z/ b(s)X (s) dB;(s), for all t € 0,77,

is a local martingale with respect to the sequence of stopping times (Tas)men-

Proof. To show that the stochastic process (I (t))tefo,m is a local martingale, we have to ensure that
the corresponding sequence of stopping times (7as)aren converges P-a.s. to T' (compare Lemma
G.1) and I(t) is F;-adapted such that the stopped process I(tATu)is a martingale for all M € N,
which means that the F;-adapted process I(t/\TM) is integrable in the sense that E| I(tATy)|| < oo
for all t € [0,7] and fulfills E(I(t A Tar)|Fy) = I(r A Tas) P-as. forall 0 < r <t < T (see [87,
p. 40, Definition 3 and 4]).

Being an Ito integral, the stochastic process I(t) is Fy-adapted. Due to the Cauchy-Schwarz
inequality, the independence of the Wiener processes, the Itd isometry and the assumptions on
the sequence of stopping times (7ar)amren and the process (X (t))¢eo,77, it holds for all M € N that

~ S tAT M t/\TM 2\ 2
B||fen T =B ;/O bi(s)X(s)dB;(s)|| < | E Z/ X(5) dB; (s)
1| o ¢ 2 2
= E/O JZI/O ]l[O,TM](S) bj(S)X(S) dﬁj(s) dx
1 : 2\ ?
= /O;E/O1[0,TM](5)bj(S)X(S)dﬁj(S) dz
1 3
= / / 0,731 (8) b3 (8)| X (5)|* ds dz
0 4=
00 AT 3
<|EX [ toma @ B)1X )P ds
j=1"0
< (2| o pron X [T o] ) < var (Et:;;%]"X@Q) o

Since the Ito6 integral itself is a martingale, we finally show with probability one for 0 <r <t < T
the martingale condition

tATM
E(E(t A Tar)| ) Z/ X(s) dB;(s)| Fr

z;/ov IL[QTM] (S) b](S)X(S) dﬁ](s) _/—-',,

/O T Lio,73,1(8) bj ()X (s) dB;(s)

<.
I
—

rATm _
/ b;i(s)X(s)dB;(s) =1I(rATu). O

0

<.
I
—
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H Wirtinger Derivatives

The Wirtinger calculus is mostly applied in the theory of functions and can be found, among
others, in [35, 64, 85]. This concept of real differentiability of a complex-valued function is closely
connected with complex differentiability and the Cauchy-Riemann equations. First, we define a
real differentiable function (based on [85, pp. 57-59]). Thus, let D be an open subset of C and let
f D — C be a complex-valued function, meaning that f := u+iv with Re(f) = v and Im(f) = v.

Definition H.1. The function f is real differentiable in zo = xo + iyo € D if there exist in z
continuous functions f1, fo: D — C such that

f(z) = f(20) + (& = 20) f1(2) + (¥ — wo) f2(2), for all z =z +iy € D.
f1 and fy are not uniquely determined, however their values in zg are constituted by
0 0
fl(ZQ) = %(2’0) =: fat(ZQ) and fQ(Z()) = 87':5(20) = fy(ZO) (H].)

That is why we understand Definition H.1 in the following way (compare [85, pp. 57-59, Satz 1.4.1
and Satz 1.4.2]). A function f is real differentiable in zg € D if there exist a (uniquely determined)
R-linear mapping 7' : C — C and a function R : D — C that is continuous in zg such that

f(z) = f(z0) + T(z — z0) + R(2)(z — 20), for all z =z +1iy € D,
where T'(z —z9) 1= ( —0) f1(20) + (¥ —y0) f2(20) = (x—0) f2(20) + (¥ —¥0) fy(20) and R(z) := 0,

R(2) = (x —z0)(f1(2) — fl(Zo)Z):rz(j/ —y0)(f2(2) — f2(20))7 for all = £ %,

Now, the relations in (H.1) are equivalent to the differentiability of the real-valued functions
u and v with f, = u, + v, and f, = uy + iv,. To avoid the partition in real and imaginary
part v and v and in the real coordinates x and y, we write z — zg = %(z — 20+ Z— %) and
Y — Yo = 5:(2 — 20 — (Z — Z0)). Plugging this in Definition H.1 yields an equivalent formulation

f(2) = f(z0) + (x — o) f1(2) + (y — o) f2(2)
= Jlz0) + 3z = 20+ 2= T + 5 — 20— (E - ()
= J(z0) + (= = )5 Lf1(2) = ifale)] + (2 = )5 [a(e) +ifa(2)]

Remark H.2. The function f is real differentiable in z9 € D if there exist in zo continuous
functions f1, fo: D — C such that

F(2) = f(z0) + (2 — 20) f1(2) + (Z — ) fa(2), for all z € D.

Here, the values fi(z) and fa(z) are uniquely determined by the function f and given by

file) = 5(fil) ~ifa(e0))  amd folzo) = g (ilzo) +ifal0).  (H2)
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H. Wirtinger Derivatives

Definition H.3. ! The values f1(z0) and f2(z0) of a function f that is in 2o real differentiable are
called Wirtinger derivatives of f in zy and are denoted by

fuo) = L) = fzo) and o) = L (z0) = fo(z0),

Consequently, we call a function f : D — C that is real differentiable in the way of Remark H.2
to be differentiable in the sense of Wirtinger. Referring to (H.1), the relations (H.2) imply that

1

. 1 .
fz:§(fz_zfy) and fzzﬁ(fw+7'fy)-

From Remark H.2, we further deduce the connection between real and complex differentiability.

Definition H.4. 2The function f : D — C is in 29 € D complex differentiable if f is real
differentiable in zy and
of

5(20) =0. (H.3)

Then f'(z0) = %(zo) and the differential operator % =1 (% —I—i%) is called operator of the

z
Cauchy-Riemann equation.

For the sake of completeness, the Cauchy-Riemann equations are stated. They follow from as-
sumption (H.3) since

1 1 1
0= %J; = i(fz +ify) = §(Uz + vy + i(uy +ivy)) = i(um — vy + i(uy +vg)).
This equals zero if and only if u, = v, and u, = —v,, which are called the Cauchy-Riemann

equations. The following result concerning complex differentiable functions is Liouville’s theorem.

Theorem H.5. 3:4If f : D — C is complex differentiable in each point of D and bounded, then f
18 constant.

Remark H.6. A function f: D — C which is complex differentiable in each point of D is called
holomorphic. The assumption of a bounded function f is equivalent to f' = 0.

Summarized, the concept of Wirtinger derivatives is a useful tool to represent the real differ-
entiability of a complex-valued function in complex coordinates. Besides basic properties of the
Wirtinger derivatives like linearity, satisfaction of the sum, product, quotient and chain rule and
the behavior under conjugation, there is an important result used multiple times in this work.

Corollary H.7. 51t is allowed to differentiate the function f with respect to the complex conjugated
variables z and Z as if they were independent of each other.

'Lieb & Fischer [64], p. 20, Definition 5.1

2Lieb & Fischer [64], pp. 20 f., Theorem 5.1 and Definition 5.2
3Lieb & Fischer [64], p. 22, Satz 5.3

4Remmert & Schumacher [85], p. 218, Satz 8.3.5

SRemmert & Schumacher [85], p. 61
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I Complex Conjugated Adjoint Equation

Based on [3, 49, 52, 86] and [95, pp. 216 {.], we establish the complex conjugated adjoint Schrédinger
equation in the following way. Choosing g = 0, which means that we only take the deterministic
part of the controlled Schrédinger equation (3.2), and denoting the solution with XY as well, we
start our considerations with the symbolic form

dXY(t) = —iAXY () dt +iU®)XY () dt +irf(t, XY () dt

for a.e. w € Q and all ¢t € [0,7]. Remembering the notations from Sections 2.1 and 3.1, we
equivalently write

2

%XU(M) = i%XU(t,x) +iU(t2) XY (t,x) +iNf (6, XY (t,2), XU (t,x))

as an equation in V*. To be as general as possible, we choose A € C that includes all considered
cases. Disregarding the time and space arguments, renaming y := XY and multiplying with the
imaginary unit, we obtain
F(t,x,y, Y, Yows §) = Y + You + Uy + M (-, 4,7) = 0.
Now, the adjoint equation is calculated by
) 0 0 0 =20
0=—(FnY)= | -D;=— + D? —+D— | (i we Uy + M (-, u,9)]0Y),

where D; and D, are total derivatives with respect to the time ¢ and the space x and the operator
D obeys D[z] = Z for all z € C. Simplification yields

0= —Dyfin”] + D3[n"] + Un + A (;yf(-,y,y)) n’ +D [A (%f(n.%@ﬁ) WU] "
= —iny +nge +Un” + A (aayf(-,y,y)) 17+ A (aayf(-,y,y)) .

Multiplying this equation with 4 and writing XY instead of y, it results that

0 — —( 0 —\ —
U_ _ U _ 7.0 _ U U
un —_an_ZUU _Z)‘<a)(Uf(aX aXU))T] — A (a)(Uf(',XU,XU)>77U’
where we use the symbolic notation

0
oxv

9
XD 9xU

=XV

f(~,XU,ﬁ) = % (-,v,0)

I o .
f(-,XU,XU) = %f(~,v,v)

Regarding the time variable again, we receive the adjoint Schrodinger equation

G 0 =i 0~ 0 (0 ir (5 (X0, X7(0) ) o 0

- (S (X 0. X7(0) ) 770

in V* for a.e. w € Q and all ¢ € [0,77].
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I. Complex Conjugated Adjoint Equation

Remark 1.1. Without loss of generality, it is allowed to start with the deterministic part of the
controlled Schriodinger equation in order to calculate its adjoint equation because

e additive noise vanishes by considering differences,
e for linear multiplicative noise we deal with the pathwise problem having no noise term at all,

e general multiplicative noise is excluded (since it requires another approach based on forward-
backward stochastic differential equations).

Here, we investigate the complex conjugated adjoint Schriédinger equation. Therefore, we
create the complex conjugated equation of (I.1)

— T\ — ) _
0=m?+77§{m+U77U+A(ayf(-,y,y))nU+A(ayf(ny,y))nU-

Introducing the complex conjugated adjoint variable ®V := 1)U, renaming XV = y and multiplying
with the imaginary unit, it follows that

~( 0 — 0 0\ —
U_ 65U 176U o . U, U
¢t —Z@zz+lU¢ +1)\<8)(Uf(,XU7XU))¢ +Z)\<a)(Uf(,X 7XU))¢U
Finally, we take into account the dependence on the time variable and state the complex conjugated
adjoint Schrédinger equation

Q@U(t) = —iADY(t) + iU (t)DY (t) + iX (aXan(t, XU(t),XU(t))> oY (t)

ot (L3)

+iA (aiUf(t,XU(t),XU(t))> DU (t)

in V* for a.e. w € Q and all ¢ € [0, T], which obviously is the complex conjugated equation of (I1.2).
Being especially interested in the power-type nonlinearity

F(XY(0),X7(1) = XU @)P7XY (1) = (XY (1) (XY ()"

with the Wirtinger derivatives

MiUf(XU(t),ﬁ(t)) — (0 +1)(XY®)(XT®) = (0 + )| XT(t)[*,
M%f(ﬂ(t)ﬁ(t» = o (XV(0) (XUW) T = o|xV )"V (xV (1),
the complex conjugated adjoint Schrodinger equation (I.3) results in

0 ~ -
52" () = —iABY (1) +iU ()Y (1) +iN(o + )| XY ()70 (t)
+ide| XU (XY (1) BT (1)
in V* for a.e. w € Q and all ¢ € [0, T]. Moreover, starting from the pathwise controlled Schrédinger
equation

dzV(t) = —iAZY (t)dt + iU (t)ZY (t) dt + iAB(t) f(ZY (t), ZU (1)) dt, for all t € [0, 77,

with ZY(t, -) = XY(t, - )Y (t) and f(ZU(t),ﬁ(t)) = |ZY(t)|?? ZY (t), the corresponding complex
conjugated adjoint Schrédinger equation satisfies

0 ~ o

527 (6) = —iA2? (1) +iU () 2" (1) + (o + 1)B(6)| 2 ()| *7 &Y (t)

+ide B2V @)V (29 (1) 0 1)

in V* for all ¢ € [0,T], while w € Q is chosen arbitrarily fixed (see Section 2.3).
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