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Summary 

Response to radiation is impaired in hypoxic tumors compared to normoxic tissues, limiting 

treatment outcome of patients undergoing radiotherapy. It is crucial to identify patients with 

significant tumor hypoxia before treatment and to select them for hypoxia-specific therapies to 

overcome hypoxic radiation resistance and improve prognosis. I, therefore, evaluated the hypoxia-

related proteins osteopontin (OPN), carbonic anhydrase IX (CAIX) and vascular endothelial growth 

factor (VEGF) for their prognostic impact in the radiotherapy of lung cancer. 

From 2008 to 2011 a total of 97 patients with locally advanced or metastatic bronchial carcinoma 

(non small-cell lung cancer, NSCLC, and small-cell lung cancer, SCLC) were prospectively 

investigated. All patients were treated with primary curative- or palliative-intent radiotherapy ± 

chemotherapy. OPN plasma samples were obtained before (t0), at the end (t1) and four weeks after 

radiotherapy (t2). Pre-treatment (baseline) plasma levels of CAIX and VEGF were determined. 

Plasma concentrations were detected by enzyme-linked-immuno-sorbent-assay (ELISA). Absolute 

baseline plasma protein levels were tested for correlation, their association with clinicopathological 

patient characteristics and their impact on prognosis. OPN plasma level changes over time were 

monitored and correlated with therapy response and prognosis. 

In all patient subgroups, median OPN plasma levels decreased during and after radiotherapy (n.s.). 

A positive correlation between OPN plasma levels detected at the different time points was noted 

but baseline OPN, VEGF and CAIX did not correlate. Baseline OPN plasma levels were associated 

with age (p=.03), gender (p=.03), weight loss (p=.001), lung function (FeV1, p=.002), T-stage (p=.02) 

and GTV (p=.01). Patients with distant metastases had considerably increased OPN plasma levels 

at all time points (p=.001); VEGF was significantly elevated in patients with larger GTV (p=.002) and 

low hemoglobin blood concentration (p=.04) and CAIX was related to N-stage (p=.04).  

Therapy response was associated with OPN t1 plasma levels (p=.002) and their changes during 

radiotherapy (p=.04). OS was significantly reduced in patients with high OPN t0, t1 and t2 

(p=.04, .004 and .02) plasma levels. OPN t0 (p=.02), t2 and OPN plasma level changes after 

radiotherapy (p=.002) remained independent predictors for OS in multivariate analysis. Biomarker 

combination resulted in an augmented prognostic effect with the triple marker combination VEGF-

CAIX-OPN most significantly impacting OS. OPN t1, t2 plasma levels and their changes after 

radiotherapy significantly predicted PFS (p=.02 and .001) and baseline VEGF plasma levels 

remained independent predictors for both OS (p=.004) and PFS (p=.009).  

My results suggest that elevated pre-treatment plasma levels of OPN, VEGF and CAIX indicate 

advanced tumor disease and that radiotherapy only marginally influences OPN plasma levels over 

time despite some evidence of a relation between OPN plasma levels and therapy response.  

 

Ostheimer, Christian: Prognostic and predictive significance of osteopontin and other hypoxia-related plasma 
proteins in the radiotherapy of locally advanced and metastatic bronchial carcinoma, Halle (Saale), Univ., Med. 
Fac., Diss., 79 pages, 2015
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1. Introduction:      

1.1 Tumor hypoxia: Basic principles and clinical implications  

In many human cancers, particularly lung cancer, cure rates remain low throughout stages 

[1,2] and often, treatment resistance accounts for poor prognosis and therapeutic outcome.  

In radiation oncology, a critical factor for treatment resistance is tumor hypoxia which 

constitutes an important aspect of the tumor microenvironment [3-5]. 

The discovery of the influence of oxygenation on cellular response to radiation can be 

traced back to the observations of Holthusen, Schwarz and Mottram et al. who, more than 

80 years ago, first described differing radiation sensitivity under anoxic and normoxic 

conditions. The specific relevance of tumor oxygenation for radiotherapy is outlined by 

Thomlinson and Gray [6]. The so-called “oxygen effect” belongs to the fundamental 

principles in radiation biology and is defined by the oxygen-enhancement-ratio (OER) 

which states that anoxic cells need a 2- to 3-fold higher radiation dose compared to 

normoxic cells in order to achieve the same biological effect (i.e. cell death) [7]. In other 

words, the OER predicates a 2- to 3-fold increased radio-sensitivity of well-oxygenated 

cells in comparison to anoxic cells. The responsible mechanism for increased radiation 

damage in the presence of oxygen is the formation of reactive oxygen species (ROS) 

which cause additional and permanent DNA damage, requiring lower radiation doses.  

Solid tumors however, often feature extensive hypoxia [5,8-10] which is related to an 

imbalance between oxygen demand and supply. While oxygen consumption is significantly 

increased due to rapid tumor cell proliferation, oxygen delivery is inefficient owing to 

abnormal and dysfunctional microvasculature and diminished microcirculation (i.e. 

“perfusion-related hypoxia”) [11-13]. In addition to the fluctuating and unstable blood flow, 

deteriorated diffusion geometry with an increased diffusion distance limits oxygenation, 

particularly at the proliferative edge (i.e. “invasive front”) [14-16] of malignant tumors (i.e. 

“diffusion related hypoxia”) [12,17,18]. Another aspect contributing to tumor hypoxia is 

cancer- or treatment-induced anemia which is related to a reduced oxygen-carrying 

capacity due to hemoglobin depletion [19,20] which in turn  adversely impacts prognosis in 

patients undergoing cancer treatment [4,21,22,24,25]. This underlines that tumor hypoxia 

cannot be regarded as a monocausal and constant phenomenon but rather is of dynamic 

nature with acute and chronic aspects [26,27] and both inter- and intra-tumor variation 

[28,29]. By inducing fundamental genomic and proteomic changes [12,30], hypoxia 

significantly alters the proliferative and metabolic behavior of tumor cells, that is 

compromising cell differentiation, DNA repair and apoptosis [3,31-33] and increasing 
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angiogenesis, mutability and tumor cell viability [3,12,19,20,26,27,31-39]. Ultimately, these 

alterations allow improved tumor cell adaptation to the hostile, hypoxic environment where 

hypoxia can be regarded as a “selection factor” enhancing clonal selection of well-adapted 

tumor cells and driving the tumor to a more aggressive, invasive, metastatic and highly 

malignant phenotype [40-46], featuring resistance to chemoradiotherapy [5,12,18,47-52].  

On a clinical perspective, this is of considerable importance, particularly in the 

radiotherapy of cancer [24,53-56]: Nordsmark et al. provided solid evidence that pre-

treatment hypoxia (pO2 electrode readings) is associated with inferior overall survival, 

response to radiation and tumor control in head-and-neck cancer patients including a 

subgroup of patients treated at the department of Radiation Oncology Halle [25,57,58].   

 

1.2 Detection of clinically significant tumor hypoxia: hypoxic imaging and invasive 

oxygen electrode measurements 

Being a critical factor of radiation resistance, tumor hypoxia is regarded as a major 

therapeutic target in radiation oncology. At first however, reliable and feasible methods for 

the detection and quantification of clinically significant tumor hypoxia have to be found, 

evaluated and implemented into the clinical routine.   

In the literature, different attempts to describe tumor oxygenation and to quantify tumor 

hypoxia have been investigated [59,60]. Traditionally, polarographic needle electrodes 

such as the “Sigma Eppendorf electrode system” [61], which are invasively placed into 

tumors, have been used to directly measure tissue oxygen levels in the experimental 

setting [28,62-64]. Clinically, there is evidence that pre-treatment oxygen levels, detected 

by microelectrode measurements, are of prognostic and predictive quality in different 

human cancer entities treated by radiotherapy [12,23,65]: In head and neck cancer or soft 

tissue sarcoma patients for instance, a low intra-tumoral pO2 correlated with inferior 

survival after radiotherapy [53,57]. Despite the proven validity of this method its routine 

clinical application is limited by methodological (resolution, oxygen consumption by 

microelectrodes limiting continuous oxygen measurements within tumors over time, inter-

observer variability, equipment costs, validation with other methods of measuring hypoxia 

[66-70] and biological (heterogeneity of oxygenation within tumors, i.e. location, distribution, 

level, duration and onset of hypoxia [17,64,71]) drawbacks [72,73]. In particular, the 

invasiveness and restriction of this method to easily accessible tumors as well as the 

transient nature of hypoxia underline the necessity for dynamic monitoring of tumor 

oxygenation throughout radiotherapy [12,69,74-76].  
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Consequently, imaging technologies such as magnetic resonance imaging (MRI) [19,77-

80], single-photon computed tomography (SPECT) [81] and positron emission tomography 

(PET) [82-84] using different hypoxic tracers such as 18-fluoromisonidazole (18F-MISO) 

[19,85] have been described as more feasible non-invasive approaches [85-87] to 

visualize tumor hypoxia, particularly accounting for its dynamic nature. High reproducibility 

and a good correlation with tumor oxygenation was reported for F-MISO-PET [88-90]. 

Hypoxia imaging with 18F-MISO-PET was suggested as a useful and feasible approach of 

guided dose escalation in the intensity-modulated radiotherapy of head and neck cancer 

with the goal of safely improving tumor control probability [91]. In the same tumor entity, F-

MISO-PET imaging efficiently labeled hypoxic cells, successfully predicted the risk for 

tumor recurrence after radiotherapy [92] and was able to identify head and neck cancer 

patients who benefitted from additional treatment with the hypoxic cytotoxin tirapazamine 

[93]. The potential use of hypoxic PET-imaging in radiotherapy is experimentally 

documented for different cancer entities [94,95] including malignant glioma [96], sarcoma 

[97] and non small-cell lung cancer (NSCLC) where 18F-MISO uptake correlates with 

outcome after radiotherapy [98]. To increase their sensitivity and reliability, further 

evaluation and valididation of hypoxic imaging is needed [65], preferably by correlation or 

combination with other approaches of mapping tumor hypoxia such as 

immunohistochemistry [99], polarographic needle electrodes [100] or endogenous and 

exogenous hypoxia markers [99,101-107]. Ultimately, biokinetics and application of 

hypoxic tracers has to be improved before hypoxic imaging techniques may be 

implemented into the clinical routine [85]. 

 

1.3 Extrinsic hypoxia markers    

While invasive approaches rather seem not suitable for the routine detection of tumor 

hypoxia (primarily due to their limited reach and invasive nature), so-called “extrinsic 

hypoxia markers” have amended the strategies of experimentally assessing tumor 

oxygenation in cancer patients before initiation of treatment in order to select them for 

hypoxia-specific targeted therapies which may be available in future.  

Exogenous hypoxia markers including EF5 or pimonidazole, which is the most thoroughly 

investigated, are non-physiologic substances which have to be brought into the human 

body (by injection for example) where they accumulate under hypoxic conditions by 

chemical reduction (“bio-reducible markers”) [65,108]. Besides the high spatial resolution, 

the distinct advantage of this approach is its ability to delineate real hypoxia from anoxia 
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(where exogenous hypoxia markers are not metabolized and thus do not accumulate). 

This previously has been demonstrated clinically and prognostically in patients with head 

and neck cancer [12,109].  

To some extent however, extrinsic hypoxia markers exhibit limited range and are more 

reflective of chronic rather than acute hypoxia, making them susceptible for partially 

missing oxygen tensions which might be of therapeutic relevance [76].  

Generally, they do not incorporate necrotic areas which makes the correlation and 

validation of extrinsic hypoxia markers with invasive methods of measuring tumor 

oxygenation difficult due to the missing congruency between these two methods [110,111].  

Analogue to invasive or imaging techniques, exogenously administered hypoxia markers 

suffer from depicting tumor oxygenation at a specific time point which neglects the 

dynamic and changing nature of tumor oxygenation [68,112].  

Apart from the necessity of exogenous (possibly repeated) marker injection, consecutive 

biopsy is required for evaluation of hypoxic regions, for instance by immunohistochemistry 

[12]. However, imaging methods such as hypoxic PET could, combined with extrinsic 

hypoxia markers, complement and increase the validity of this approach [102,113]. 

 

1.4 Intrinsic hypoxia-related proteins  

Unlike exogenous hypoxia markers, endogenous hypoxia-related proteins are naturally 

present in the human body where they are directly or indirectly induced by hypoxia which 

is why they are referred to as “intrinsic hypoxia markers”. For their potential relation to 

(tumor) hypoxia, these proteins have been suggested as surrogates of tumor oxygenation 

and possibly clinical radiation resistance [4,110]. Hypoxia inducible factor 1α (HIF-1α), 

glucose transporter 1 (GLUT-1), carbonix anhydrase IX (CAIX), vascular endothelial 

growth factor (VEGF) and osteopontin (OPN) constitute the best characterized hypoxia-

related molecules [65,68]. HIF-1α is the only protein which is directly stimulated by hypoxia 

[40,114-116] and its overexpression has been associated with poor prognosis, advanced 

disease, an aggressive cancer phenotype and inferior response to cancer therapy in 

different malignancies [117-122]. HIF-1α has also been linked to tumor hypoxia-related 

radiotherapy failure in head-and-neck cancer [123] an in NSCLC, there is evidence which 

suggests that the prognostic effect of HIF-1α may be augmented by a co-expression or co-

detection with other markers [124]. CAIX, GLUT-1 and VEGF are three downstream 

effectors of HIF-1α [17,110,118,125,126] and have been linked to hypoxia [12,69,110,127-
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129] and their co-expression displayed a significant association with prognosis in different 

cancer types including NSCLC [130]. 

The biological mechanism of hypoxic VEGF induction is that of a decrease in tissue 

oxygenation which triggers VEGF-mediated angiogenesis to improve perfusion and in 

consequence, restore a sufficient tissue partial oxygen pressure. A strong stimulation of 

VEGF by hypoxia was demonstrated in-vitro and in-vivo [131,132] and the prognostic 

value of VEGF overexpression and increased plasma levels has been documented for 

different types of human malignancies [133-135], including NSCLC [136-138].  

Recently, VEGF mRNA was reported to significantly decrease after surgery and to be 

associated with overall- and disease-free survival in NSCLC patients, underlining the 

prognostic and predictive potential of this biomarker [139].    

The relationship between hypoxia and CAIX, which seems to be localized primarily in 

hypoxic and necrotic tumor areas, has been well documented and tumor hypoxia 

suggested as a driving force for CAIX expression which is related to poor prognosis and 

resistance to radiotherapy in different types of cancer [73,140-142]. Interestingly, CAIX has 

been shown to most accurately predict clinically significant tumor hypoxia in NSCLC [143] 

where it is critically involved in the cellular response to hypoxia [144]. Here, it enables 

tumor cells to adapt to toxic, anoxic conditions and stimulates their migratory and invasive 

potential [145]. In the consequence, hypoxia-induced up-regulation of CAIX has been 

demonstrated to enhance tumor malignancy and increase resistance to cancer therapy 

which translates into poor prognosis and outcome in many human cancers, including lung- 

and head-and-neck cancer [140,142,144-151]. Clinically interesting is that the co-

expression of CAIX and HIF1α seems to be predictive for radioresistance in the 

radiotherapy of cancer [152,153]. Yet, some studies were not able to confirm these 

observations, suggesting a differential influence of the tumor-biological entity on the 

prognostic significance of CAIX expression [70,154,155].   

Despite the robust relation of the aforementioned markers to hypoxia in-vitro [69,110], their 

hypoxic induction in-vivo remains complex and is not free from confounding elements of 

the tumor microenvironment such as Ph [116,156-159]. Thus, in-vitro and in-vivo study 

results on the relationship of intrinsic hypoxia markers with tumor hypoxia are conflicting 

[160]: While some studies report HIF-1α levels to correlate with invasively (needle 

electrodes) detected pO2 [69,73,110,161,162], other groups report no or only weak 

correlations with tumor oxygenation [163-167]. Nevertheless, endogenously secreted 
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hypoxia-related proteins may be a promising, less invasive, feasible and untoxic approach 

to quantify tumor oxygenation [17,68,130,168,169].  

 

1.4.1 Physiological function of osteopontin and its role in malignancy 

OPN is an acidic extracellular matrix (44-75kDa) glycoprotein [171,171] and belongs to the 

SIBLING protein family [172]. Originally discovered in 1989 in bone tissue where it is 

involved in matrix turnover and bone remodeling [173-179], OPN is physiologically 

expressed in various human tissues [180,181]. OPN undergoes post-transcriptional 

modification by alternate splicing [182,183], yielding three splice variants, functionally 

different in both physiologic conditions and in malignancy [184-186]. OPN exhibits various 

active domains including a binding site for CD44 surface receptors [187,188] and a RGD 

motif [171,172] which is the major interaction site for αvβ3-integrin receptors [189].  

On the physiological level, OPN facilitates cell migration, motility, adhesion and 

chemotaxis in immune or inflammatory processes [190.192] and mediates degradation of 

the extra-cellular matrix [193-196]. It is also linked to angiogenesis [197,198] and 

participates in vascular remodeling [199-202].  

In most malignant tumors, OPN is widely overexpressed [203-207] and protein secretion is 

significantly increased [208,209] which is related to enhanced tumor cell migration, 

proliferation, invasion and metastatic spread [189,210-213]. The latter is mediated by its 

αβ-integrin and CD44 receptors [211,214-216] which induce matrix metalloproteinases and 

urokinase-plasminogen-activator in various cancer types [189,217-221], ultimately 

resulting in the degradation of extra-cellular matrix.  

Numerous in-vitro studies support the role of OPN in the enhancement of metastatic 

potential in different human cancer cell lines [222-224], including lung cancer [225] which 

is underlined by clinical investigations demonstrating a strong association of OPN with 

tumor metastasis [211,226,227].  

Increased cell survival, escape from apoptosis and growth promotion mark some of the 

major tumorigenic effects of increased OPN expression during cancer progression which 

has prognostic implications [197,198,210,228,229]. OPN also plays a critical role in the 

tumor microenvironment (“tumor-host-interface”) where it seems to exert differential 

functions depending on the source of OPN production such as in tumor-associated 

macrophages [211.217,230,231].  

Besides other cancer entities [209,211], in lung cancer, OPN is considerably 

overexpressed compared to normal lung tissue and healthy controls [186,208,232,233].  
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In (lung) cancer, both increased OPN expression and elevated plasma levels are 

significantly associated with parameters of advanced disease stage, prognosis [206,233-

236] response to chemotherapy [237-240] and outcome after surgical treatment [1]. 

 

1.4.2 Osteopontin in tumor hypoxia 

Apart from the pivotal role of OPN in human malignancy and besides its critical impact on 

prognosis of cancer patients, this protein is also potentially valuable in radiotherapy of 

cancer for its possible association with (tumor) hypoxia [4,241-243]. Numerous studies 

suggested that both OPN expression in tumor tissue and OPN protein secretion into 

plasma are related to hypoxia. 

Evidence from different cancer entities including malignant glioma, sarcoma and lung 

cancer shows that hypoxia can induce OPN mRNA expression in tumor tissue as well as 

its secretion into plasma [25,244-249]. In cancer of the head-and-neck for instance, 

hypoxia increased OPN secretion into plasma where high OPN levels predicted poor 

survival and freedom from relapse [246] which underlines the clinical importance of the 

potential relation between elevated OPN (plasma/tumor) and hypoxia. For the same 

cancer entity, Bache et al. demonstrated that immunohistochemical OPN tumor staining 

correlated with tumor pO2, detected by oxygen electrodes. Furthermore, high OPN 

expression in tumor tissue was correlated with low hemoglobin and high HIF-1α values 

[250,251]. The same correlation with tumor pO2 could be determined for OPN plasma 

levels [241,242,246,251]. These results later were confirmed by Le et al. who reported a 

significant correlation of OPN tumor staining and tumor pO2 [247]. Overgaard et al. 

amended these findings in that he showed that high OPN plasma levels predicted poor 

disease-free survival and that only patients with high OPN plasma levels benefitted from 

the hypoxic radiosensitizer nimorazole [252,253]. Similarly, the application of the hypoxic 

cytotoxin tirapazamine (TPZ) significantly decreased OPN mRNA in nasopharyngeal 

cancer, thereby additively reducing tumor cell survival in-vitro [254.] In head and neck 

cancer however, the potential of TPZ is rather unclear [255]. 

The use of OPN plasma levels as a potential surrogate of clinically significant tumor 

hypoxia in NSCLC has been demonstrated by Le et al. In their study, they showed that 

pO2 was significantly reduced in resectable NSCLC compared to healthy lung tissue and 

that high plasma OPN levels correlated with low tumor pO2. Notably, patients with low 

OPN had a significantly reduced risk for tumor recurrence after therapy (resection) 

implying better oxygenated tumors in these patients [161].  
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These findings are complemented by the results of Li, Blasberg and Mack et al. who 

reported both significantly increased OPN expression and elevated OPN plasma levels in 

NSCLC patients (compared to healthy controls) being related to reduced therapy response 

and overall survival after chemotherapy or surgery of NSCLC [228,239,256].  

 

1.4.3 Detection and targeting of osteopontin and hypoxia-related proteins 

The quantification of the expression of endogenous hypoxia-related proteins usually 

requires tumor tissue and utilizes approaches such as immunohistochemistry.  

One clear advantage of circulating intrinsic hypoxia-related molecules including OPN, 

CAIX and VEGF is their easy detection in body fluids, primarily patient plasma or serum of 

cancer patients [257-259]. Evidence shows that the detection of biomarker levels in patient 

plasma is more reliable and should be preferred [260,261].  

The established measurement platform is that of enzyme-linked immuno-sorbent assay 

(ELISA) which is commercially available and routinely practicable in the clinical setting 

[262]. However, results on plasma marker concentration are critically dependent on the 

ELISA system used and are generally not conferrable from one ELISA to another despite 

of a correlation of plasma concentrations between ELISAs [263,264]. The latter fact might 

contribute to the difficulty of demarcating clear plasma protein level cut-off values which 

are still under investigation. Indisputable however is that both protein expression and 

plasma protein levels of the aforementioned hypoxia-related molecules are significantly 

and prognostically relevant increased in cancer patients. New developments and 

improvements of ELISA techniques, such as the use of a dual-antibody detection system, 

continuously increase the sensitivity of marker detection [265].   

After decades of research in exploiting hypoxic radiation resistance including attempts 

such as hyperbaric oxygenation and hyperthermia failed to generate clinically viable 

treatment strategies [266,267], targeting hypoxia-related proteins may open up new 

strategies in overcoming hypoxic radiation resistance [17,57,68,184,247,268].  

In a therapeutic perspective, multiple targeting approaches of OPN have been under 

investigation [269,270]. In different cancer entities, knockdown of OPN mRNA expression 

and protein levels by RNA interference (siRNA) resulted in a marked increase in tumor cell 

apoptosis, decreased invasion and cancer cell motility (by down-regulation of uPA and 

MMPs), colony formation and metastatic spread [211,271]. Solid results also exist for the 

combination with radiotherapy where silencing of OPN increased radiosensitivity [272,273].  
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Immunologic targeting of OPN showed promising results and interestingly, simultaneous 

inhibition of both OPN and VEGF by a bi-specific antibody seems to be more efficient than 

single-marker knockdown [274]. Using small RNA-endonucleases or anti-sense-

oligonucleotides on the post-transcriptional level significantly diminished OPN-promoted 

tumor growth and spread in different human malignancies [229,270,275-277].  

Despite promising results in-vitro and in-vivo, issues such as drug design, administration, 

side effects, bio-availability and specificity (in particular due to the partly bipolar function of 

tumor and host OPN) still limit the transfer from bench to bedside.  

CAIX also has been suggested as a promising targetable biomarker for its association with 

treatment-resistant hypoxic tumors [150,151,278]. In-vitro and in-vivo results demonstrated 

successful depletion of this protein by shRNA, monoclonal antibodies or small molecule 

inhibitors, resulting in tumor growth attenuation and inhibition of metastasis in different 

tumor entities, yielding (hypoxic) targeting agents for CAIX which are currently under 

preclinical and clinical investigation [150,151,279,280]. Interestingly, knockdown of CAIX 

seems to enhance the effect of the anti-VEGF antibody bevacizumab which underlines the 

clinical potential of combined targeted therapy of hypoxia-related proteins [281]. Solid in-

vitro results and first clinical evidence demonstrates radiosensitizing effects of a VEGF-

targeted therapy in combination with radiotherapy [282-284] and underline the therapeutic 

exploitation of the “hypoxic crosslink” between HIF-1α, CAIX and VEGF [285,286]. 

 

2. Purpose 

The purpose of this prospective clinical study was to evaluate the prognostic and 

predictive quality of plasma levels of the hypoxia-related proteins OPN, VEGF and CAIX in 

patients with lung cancer (SCLC and NSCLC) treated with radiotherapy with respect to the 

subgroups curative-intent NSCLC (M0-stage), palliative-intent NSCLC (M1-stage) and 

SCLC.  The following hypotheses and questions were addressed in this work: 

1. What is the plasma concentration of the aforementioned proteins and is there a 

correlation between plasma markers determined at different time points in lung 

cancer patients undergoing radiotherapy? 

2. Are pre-therapeutic plasma biomarker levels associated with clinical, pathological 

and socio-demographic patient characteristics and do elevated plasma levels 

before radiotherapy reflect advanced disease and an aggressive cancer phenotype? 
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3. Is there a difference in absolute plasma levels between M0- and M1-stage lung 

cancer patients and do elevated plasma marker levels mirror metastatic tumor 

burden?  

4. Are elevated OPN plasma levels associated with parameters of oxygenation such 

as hemoglobin and lung function? 

5. Are absolute plasma levels of the studied biomarkers, measured before 

radiotherapy, associated with prognosis and outcome after radiotherapy of lung 

cancer and does a co-detection of baseline plasma biomarkers augment the 

prognostic effect? 

6. How do OPN plasma levels change throughout and after radiotherapy (if measured 

at several time points) and are plasma level changes of prognostic and predictive 

relevance in the radiotherapy in lung cancer? 

7. Can absolute plasma biomarker levels or their changes serve as independent 

prognostic predictors of outcome after radical radiotherapy of NSCLC? 

3. Material and Methods 

The entire patient collective, patient subgroups, inclusion and exclusion criteria, indication 

for radiotherapy, treatment details and the follow-up procedure are illustrated below.  

In addition, the principle of enzyme-linked immunosorbent assay (ELISA) and the technical 

aspects of the specific ELISAs used in this study are described. The statistical methods 

and endpoints applied in this study are defined in 3.5.  

 

3.1 Patient collective, inclusion criteria, indication for radiotherapy and follow-up 

Between November 1st 2008 and December 31st 2010, 107 patients newly diagnosed with 

inoperable lung cancer (NSCLC and SCLC) who were admitted to the Department of 

Radiation Oncology of the Martin Luther University Halle-Wittenberg, Halle, Germany, 

were prospectively recruited.  

Inclusion criteria were (1) histologically (by biopsy) confirmed NSCLC or SCLC, (2) no 

prior surgery or radiotherapy, (3) indication for curative- or palliative-intent 

radio(chemo)therapy, (4) age ≥ 18 years and (5) signed informed consent.  

Of the 107 patients who met the inclusion criteria, 10 patients were excluded later due to 

patients’ death before the start of radiotherapy, abortion of radiotherapy by patient will or 

patient transfer to another hospital for radiotherapy. Thus, a total of 97 patients could be 

analyzed in this study. In each patient case, indication for radiotherapy was determined by 
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a multidisciplinary tumor board including a medical oncologist, thoracic surgeon, radiation 

oncologist, radiologist, pathologist and nuclear medicine physician.  

Patients were followed-up regularly at the Department of Radiation Oncology, Martin 

Luther University Halle-Wittenberg (initially 4 weeks after the end of radiotherapy and later 

at longer intervals). Survival status was obtained and monitored in cooperation with local 

citizen registration offices. Survival data was last updated on August 31st, 2014. 

Therapy response and tumor control evaluation usually was performed 4 weeks after 

completion of radiotherapy at affiliated hospitals by comparatively assessing CT-image 

studies from before to after radiotherapy by an experienced radiologist.   

 

3.2 Patient collective and subgroups 

The entire collective includes 97 patients (n= 81 NSCLC, n=16 SCLC). Subgroups were 

formed according to histology and presence or absence of distant metastases, yielding a 

cohort of 61 patients with NSCLC in M0-stage who were treated with curative-intent 

(radical) radiotherapy or chemoradiation and a cohort of 20 NSCLC patients with M1-

situation, treated with palliative-intent radiotherapy. The SCLC-group contained 11 patients 

with M0-stage and 5 patients in M1-stage. The entire patient collective and the three 

subgroups, i.e. curative-intent NSCLC (M0-stage), palliative-intent NSCLC (M1-stage) and 

SCLC have been analyzed separately.  

Sociodemographic data and clinical characteristics were taken from the patients’ charts 

and clinical tumor staging is based on the Union internationale contre le cancer (UICC) 

TNM classification, 7th edition. 

 

3.2.1 Entire patient collective (n=97) 

Table 1 shows sociodemographic and clinicopathological patient characteristics of the 

entire patient collective (n=97). In total, 41 patients (42%) were treated with radiotherapy 

alone while 56 patients (58%) received combined radiochemotherapy. UICC stage 

distribution was: 7 patients (7%) stage I, 3 (3%) stage II, 18 (19%) stage IIIa, 44 (45%) 

stage IIIb and 25 (26%) stage IV and among M1-stage patients, 16 (64%) had multiple and 

9 (36%) had solitary metastasis.     

 

3.2.2 Curative-intent NSCLC (M0-stage) cohort (n=61) 

Clinical and sociodemographic patient characteristics of the curative-intent NSCLC (M0-

stage) cohort are presented in Table 1. In this patient group, 19 (31%) received irradiation 
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treatment only and 42 (69%) were treated with simultaneous radiochemotherapy. UICC 

stage was: 7 patients (12%) UICC I, 2 patients (3%) UICC II, 18 patients (30%) UICC IIIa 

and 34 patients (56%) UICC IIIb. 

 

3.2.3 Palliative-intent NSCLC (M1-Stage) cohort (n=20) 

An overview of social, demographic and clinical patient characteristics of the palliative-

intent NSCLC cohort is given in Table 1. Among palliative-intent NSCLC patients, 16 (80%) 

received radiotherapy alone and 4 (20%) were treated with combined radiochemotherapy. 

All patients in this cohort were staged M1 (UICC IV) with 12 (60%) having metastases at 

multiple organ locations while 8 patients (40%) had solitary organ metastasis.  

 

3.2.4 SCLC cohort (n=16) 

Clinicopathological and sociodemographic patient characteristics of the SCLC cohort are 

shown in Table 1. Combined radiochemotherapy was administered in 10 patients (63%), 6 

patients (37%) were treated with radiotherapy alone. In this subgroup 80% of patients had 

multiple metastases and 20% had a solitary organ metastasis.  

 

3.3 Curative- and palliative-intent radiotherapy and radiochemotherapy 

All patients received a planning CT (Siemens Lightspeed RT) without contrast and the 

“Oncentra Masterplan External Beam” software (Nucletron, Elekta) was used for 

contouring and treatment planning. PTV included the macroscopic tumor as visible in CT 

image studies and regional lymph nodes with lymphatic drainage ways (plus safety 

margin). If available, CT studies were correlated with PET imaging for target volume 

delineation. The following organs at risk were contoured: ipsi- and contralateral lung, 

spinal cord, heart, esophagus and in some cases chest-wall. 

The patients were immobilized using a positioning frame (“breast board”) which was also 

in place when the planning CT image series were acquired. Radiotherapy was given as a 

3D-conformed photon technique at the Siemens “Primus” or “MX” lineac-accelerator.   

The treatment of M0-stage patients (UICC I-IIIB) consisted of a curative-intent definitive 

(radical) normofractionated (5 Fx/week) radiotherapy with a cumulative median total dose 

(TD) of 66 (59,5-66) Gy, given usually in 33 fractions with a median daily single dose (SD) 

of 2 (1,5-2,5) Gy. Radiotherapy was divided into a primary series (TD 50 Gy, SD 2 Gy) and 

a consecutive boost radiation (TD 16 Gy, SD 2 Gy) which included the tumor lesion and 

lymph nodes which were suspicious by CT or positive by PET imaging. 
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Table 1.                                                 Sociodemographic and clinical patient characteristics of the entire patient collective, the NSCLC cohort and the SCLC cohort

all patients (n=97) curative-intent NSCLC (n=61) palliative-intent NSCLC (n=20) SCLC (n=16)

sex

m 83 (86%) 51 (84%) 20 (100%) 12 (75%)

f 14 (14) 10 (16%) 0 (0%) 4 (25%)

age                                (median years, range) 65 (35-86) 65 (47-86) 64.5  (35-80) 65.5 (44-75)

smoking habits

never 11 (11%) 8 (13%) 1 (5%) 2 (13%)

former 8 (8%) 5 (8%) 1 (5%) 2 (13%)

current 77 (79%) 47 (77%) 18 (90%) 12 (75%)

unknown 1 (1%) 1 (2%) 0 (0%) 0 (0%)

weight loss1

yes 28 (29%) 13 (21%) 12 (60%) 3 (19%)

no 62 (64%) 44 (72%) 8 (40%) 10 (62%)

unknown 7 (7%) 4 (7%) 0 (0%) 3 (19%)

anemia

yes 75 (77%) 46 (75%) 16 (80%) 13 (81%)

no 22 (23%) 15 (25%) 4 (20%) 3 (19%)

hemoglobin                 (median g/dl, range) 12.1 (8.3-17.4) 12.1 (8.3-15) 12.3 (8.7-17.4) 11.9 (8.5-11.1)

FeV12  (median % of normal value, range) 67.8 (20-124%) 67.8 (27.3-124) 66.1 (20-107.6) 71.6 (35-109.2)

histology

SCC 3 37 (38%) 29 (48%) 8 (40%) n/a6

adeno-carcinoma 35 (36%) 26 (43%) 9 (45%)

large-cell-carcinoma 3 (3%) 2 (3%) 0 (0%)

nos 4 16 (17%) 1 (2%) 2 (10%)

unknown 6 (6%) 3 (5%) 5 (25%)

grading

well 2 (2%) 2 (3%) 0 (0%) 0 (0%)

moderately 22 (23%) 17 (28%) 5 (25%) 0 (0%)

poor 32 (32%) 22 (36%) 8 (40%) 2 (13%) 

undifferentiated 16 (17%) 9 (15%) 2 (10%) 5 (31%)

unknown 25 (26%) 11 (18%) 5 (25%) 9 (56%)

T-stage

T1 8 (8%) 8 (13%) 0 (0%) 0 (0%)

T2 28 (29%) 18 (30%) 6 (30%) 4 (25%)

T3 17 (18%) 10 (16%) 4 (20%) 3 (19%)

T4 43 (44%) 25 (41%) 9 (45%) 9 (56%)

Tx 1 (1%) 0 (0%) 1 (5%) 0 (0%)

N-stage

N0 16 (17%) 12 (20%) 1 (5%) 3 (19%)

N1 3 (3%) 2 (3%) 0 (0%) 1 (6%)

N2 33 (34%) 22 (36%) 10 (50%) 1 (6%)

N3 44 (45%) 25 (41%) 8 (40%) 11 (69%)

 Nx 1 (1%) 0 (0%) 1 (5%) 0 (0%)

M-Stage

M0 72 (74%) 61 (100%) 0 (0%) 11 (69%)

M1 25 (26%) 0 (0%) 20 (100%) 5 (31%)

GTV5                                   (median ml, range) 130.6 (3.3-1379.4) 140.9 (3.3-1379.4) 118 (12.8-945.1) 132.6 (7.8-578)
1 ? 10% body weight / 6 months  2 forced expiratory volume in 1 second  3 squamous-cell  carcinoma  4 not otherwise specified  5 gross tumor volume  6 not applicable  

 

 If “Eastern Cooperative Oncology Group” (ECOG) performance status allowed 

simultaneous chemotherapy, two courses of a double-agent cisplatin- (20mg/m2/body 

surface/day) and vinorelbine-based (25 mg/m2/body surface/day) regimen were carried out 

in the first and fifth treatment week (day 1-5 and day 35-40).  

In total, 16 patients (24%) received radiotherapy alone, 52 patients (76%) were treated 

with combined radiochemotherapy and of the 68 curative-intent patients, 22 (32%) were 

given neoadjuvant chemotherapy before the start of radiotherapy.   
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Palliative-intent treatment for M1-stage patients (UICC IV) normally consisted of a 

hypofractionated radiotherapy given in usually 15 fractions (5 Fx/week, monday–friday) 

with a median single dose of 3 (2,5-3) Gy up to a median total dose of 45 (30-50) Gy.  

19 patients (66%) were treated by radiotherapy alone and 10 patients (34%) received 

simultaneous, mostly single-agent based chemotherapy together with radiotherapy; in 

summa, 9 out of 29 palliative-intent patients (31%) had chemotherapy prior to radiotherapy. 

Chemotherapy agents mainly included etoposide, carboplatin, gemcitabine and paclitaxel. 

 
3.4 Plasma sample acquisition, storage and processing 

Blood samples of all patients were obtained by peripheral venous puncture before the start 

of radiotherapy (t0 time point), preferably together with routine blood sampling, and 

baseline (i.e. pre-treatment) plasma concentrations of OPN (t0), CAIX and VEGF was 

determined by ELISA. In addition, OPN plasma levels were measured at the end (t1 time 

point) and four weeks after radiotherapy (t2 time point), usually at the first post-

radiotherapeutic follow-up at our facility. 

Blood was anticoagulated (9 ml Saarstedt monovette, Nümbercht, Germany) and 

centrifuged at 4° Celsius for 10 minutes with 4000 rpm. Plasma was removed, aliquoted 

and stored at -80° Celsius until assayed.   

Each plasma sample was measured in duplicate and blinded by a validated and 

commercially available ELISA according to the manufacturer’s instructions.  

 

3.4.1 Specifications of Human OPN ELISA Assay [287] 

OPN concentration was determined using the Human Osteopontin Assay (IBL Ltd., Japan) 

which is a solid phase sandwich ELISA utilizing two kinds of highly specific antibodies: 

Anti-human OPN (O-17) rabbit IgG affinity purified coating antibody which reacts at part of 

the N-terminal of human OPN and anti-human OPN (10A16) mouse IgG MoAb Fab’-HRP 

(labeled antibody) which reacts at part of the right side from thrombin cleavage site of 

human OPN. The quantification of absorbance is done at 450 nm and the measurement 

range is from 5 to 320 ng/ml with a sensitivity of 3.33 ng/ml and a specificity (cross 

reactivity) of 100% (human OPN), 0.2% (mouse OPN) and ≤ 0.1% (rat OPN), respectively.  

 

3.4.2 Specifications of Quantikine Human VEGF ELISA [288] 

The Quantikine Human VEGF ELISA kit (R&D Systems, USA) was used for VEGF. It is 

also a sandwich assay technique using a monoclonal mouse antibody specific for VEGF165. 
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It has been plated and immobilized onto the solid layer of the microtiter plate. The second 

antibody is polyclonal and conjugated to horseradish peroxidase as the reporter enzyme. 

The principle is analogue to that described in 3.4.1. In this assay, absorbance is measured 

at 450 nm and the minimal detectable dose of VEGF is between <5 pg/ml and <9 pg/ml 

(sensitivity). According to the manufacturer, cross-reactivity and interference with VEGF-

related factors may be observed at levels ≥500 to 4000 pg/ml (<.5% cross-reactivity) and 

the assay recognizes both natural and recombinant human VEGF (specificity).  

 

3.4.3 Specifications of Human CA IX Quantikine ELISA [289] 

For CAIX, the Human CA IX Quantikine ELISA Kit (R&D Systems, USA) was conducted. 

The solid-phase sandwich ELISA uses a monoclonal antibody specific for CAIX and has 

been immobilized on a microplate. The polyclonal detection antibody is conjugated to the 

reporter enzyme horseradish peroxidase. The sensitivity of this assay is 4.39 pg/ml, its 

range is from 15.6 to 1000 pg/ml and it is specific for natural and recombinant human 

CAIX. Cross-reactivity with available related enzymes is reported with <.5%  

3.5 Statistical analysis and endpoints   

All statistical analyses were performed using the SPSS PASW software (version 18) for 

windows (SPSS Inc., USA). P-values were two-sided and p< .05 was regarded statistically 

significant. Pearson’s test was used to test for correlation between biomarker plasma 

levels and Wilcoxon’s test compared median OPN levels before, at the end and after 

treatment in the entire patient collective and patient subgroups. 

Non-parametric tests (Mann-Whithney’s u-test, Kruskal-Wallis’ h-test) tested for 

differences in pretherapeutic (baseline) biomarker plasma levels between two groups and 

determined association of pre-treatment plasma levels with patient, disease and treatment 

characteristics in the entire patient collective and the curative-intent NSCLC M0 patient 

cohort. Due to the small patient number, the SCLC and palliative-intent NSCLC M1 cohort 

have been excluded from the aforementioned analysis.  

Biomarker plasma levels were dichotomized using the median as the cutoff value with 

“high” marker levels referring to ≥ median and “low” marker levels to < median.  

Relative changes in OPN plasma levels from one measuring time point to the other were 

divided into three categories according to the percent change based on the baseline OPN 

levels before radiotherapy (t0): fall (≥ -10%), stable (between -10% and +10%) and rise (≥ 

+10%). Follow-up time (i.e. from the start of radiotherapy until last seen) in living patients is 
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reported in months (range) and survival status of patients was last updated on August 31st 

2014. 

Primary endpoints included overall survival (OS, i.e. from the start of radiotherapy until 

death from any cause or until last seen during follow-up), progression-free survival (PFS, 

i.e. from the start of radiotherapy until any disease progress in recurring patients or until 

death or last seen during follow-up without disease progression in non-recurring patients) 

and time-to-progression (TTP, i.e. from the start of radiotherapy until any disease 

progression with death counting as a censoring variable).  

Since few patients with advanced stage lung cancer (usually stage IIIa and IIIb) achieved 

complete remission (i.e. freedom from any disease) after radiotherapy, disease-free 

survival (DFS, referring to patients with complete response only) was not evaluated in this 

study. PFS, normally referring to patients with partial remission only, in this study refers to 

all patients, regardless of their tumor response.  

Secondary endpoints were initial tumor control after radiotherapy (i.e. at the first post-

radiotherapeutic re-staging evaluation) which was classified as complete remission (no 

tumor detectable), partial remission (tumor size decrease ≥ 50%), stable disease (tumor 

size change ≤ 25%) and progressive disease (tumor size increase of > 25%) according to 

comparison of CT images from before and after radiotherapy by an experienced radiologist 

(therapy response was rated “good” if the patients had complete or partial remission after 

radiotherapy while it was categorized “poor” if stable or progressive disease was noted 

after radiotherapy); metastasis-free survival (MFS, i.e. from the start of radiotherapy until 

occurrence of distant metastasis or until death or last seen during follow-up without 

metastasis in non-metastasizing patients with local relapse counting as a censoring 

variable) and freedom from local relapse (FFLR, i.e. from the start of radiotherapy until 

local relapse or until death or last seen during follow-up without local relapse). 

Primary and secondary endpoint analysis was restricted to the entire patient collective and 

the curative-intent NSCLC (M0) cohort. SCLC and palliative-intent NSCLC (M1) patients 

were excluded from endpoint analysis for the limited patient number in these subgroups. 

Survival time is reported in median months (range) and survival curves were generated 

using the Kaplan-Meier product-limit method and differences between survival curves were 

assessed with log-rank-test. To identify prognostic factors for OS, univariate and 

multivariate analyses were performed using the Cox proportional hazard regression model. 

The relative risk and hazard ratio was evaluated with the x2-test and is reported with a 

95%-confidence interval (95%-CI). 
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3.6 Ethics vote and informed consent 

Prior to the start of the prospective recruitment of the patients, a formal proposal consisting 

of a detailed study description including the written information and consent form for the 

patient was submitted to the ethics committee of the medical faculty which approved the 

study and gave a positive vote for the project. 

Each patient who met the inclusion criteria as stated in 3.1 was offered to participate in the 

study in an informative talk given by an experienced Radiation Oncology physician 

emphasizing the voluntary nature of the project. The scientific background, purpose and 

procedure of the study was explained using a detailed written information form and written 

informed consent was obtained for each patient using the consent form.    

 

4. Results    

Absolute baseline (pre-treatment) plasma levels of OPN, VEGF and CAIX, their 

combination as well as relative OPN plasma level changes over time are described below. 

They were assessed for interrelation, association with clinicopathological patient 

characteristics and their impact on prognosis. 

4.1 Plasma marker concentration, changes and interrelation in all patients and 

subgroups   

For the pre-treatment measurement time point (t0), OPN plasma samples of all patients 

could be acquired (n=97). At the end of treatment (t1), 91 patients (94%) had OPN plasma 

samples and four weeks after radiotherapy, OPN plasma samples were available in 69 

patients (71%). Baseline VEGF and CAIX plasma samples could be obtained in 96 

patients (99%). Median absolute pre-treatment plasma concentration of OPN, VEGF and 

CAIX for the entire patient collective and for subgroups is presented in table 2.  

 

Table 2.              Median pre-treatment plasma concentration (min-ma x) of OPN (ng/ml), VEGF (pg/ml), uPa (ng/ml), uPaR (ng/ml)  and PAI (ng/ml)

 in the entire patient cohort and subgroups

all patients  plasma curative-intent NSCLC plasma palliative-intent NSCLC plasma SCLC plasma 

(n=97) samples (M0, n=61) samples (M1, n=20) samples (n=16) samples

OPN (t0)1 819.8  (223.1-4716.7 ) 97 817  (299-2441 ) 61 1049.6   (453.5-4716.7 ) 20 740.8  (400.4-2177.2 ) 16

VEGF2 89.7  (0-1078.1 ) 96 92 (0-1078.1 ) 60 113.2  (2.9-264.2 ) 20 94.6  (24.2-357.8 ) 16

CAIX2
94.8 (14.8 -1000) 96 105 (22-420) 61 76.3 (14.8-179.3) 19 123.6 (55.5-1000) 16

1 in ng/ml 2 in pg/ml  

 

Table 3 shows intra- and post-therapeutic changes in OPN plasma levels for subgroups. 

Both in the entire and the curative-intent NSCLC (M0) cohort, OPN plasma levels non-

significantly decreased during (t0 to t1) and after treatment (t1 to t2), table 3.  
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In palliative-intent (M1) and SCLC patients, median OPN plasma levels increased during 

and decreased after treatment, table 3. However, these changes remained insignificant. 

Among curative-intent NSCLC (M0) patients, 46% had decreasing, 17% had stable and 

34% had increasing OPN plasma levels during treatment (t0 to t2).  

 

Table 3.         Median OPN plasma (ng/ml) levels before (t0), at the end (t1) and four weeks after radiotherapy (t2) in the entire patient cohort and subgroups

all patients plasma curative-intent NSCLC plasma palliative-intent NSCLC plasma SCLC plasma 

 (n=97) samples  (M0, n=61) samples  (M1, n=20) samples  (n=16) samples

OPN t0       819.8  (223.1-4716.7)   97 760.9  (223.1-2441) 61 1049.6  (453.5-4716.7) 20 740.8  (400.4-2177.2) 16

OPN t1 793.1  (323-4521.6) 91 715.5  (323-2304.3) 58 1086.7  (545.7-4521.6) 18 779.4 (395.3-2420) 15

OPN t2 680.1  (71.6-4577.9) 69 632.5  (71.6-2855.8) 49 779.5  (525.4-4577.9) 9 770.5  (378.5-2415.2) 11  

 

In palliative-intent NSCLC (M0) patients, 21% had decreasing, 7% had stable and 43% 

had increasing OPN levels during treatment.  

Mean OPN plasma levels before (t0), at the end (t1) and 4 weeks after treatment (t2) were 

not significantly different. At all three time points, palliative-intent NSCLC (M1) patients had 

significantly higher OPN plasma levels compared to curative-intent NSCLC (M0) patients 

(OPN t0: 761 vs. 1050 ng/ml, p<.0001; OPN t1: 716 vs. 1087 ng/ml, p<.0001; OPN t2: 633 

vs. 780 ng/ml, p<.0001). 

In the entire patient collective, OPN plasma levels detected at either time point correlated 

with each other (t0 & t1: r=.5, p<.0001; t0 & t2: r=.3, p=.004; t1 & t2: r=.5, p<.0001) and 

median VEGF plasma levels inversely correlated with hemoglobin levels (r= -.2, p=.03).  

No significant correlation between OPN, VEGF and CAIX was found in the entire patient 

collective.  

In curative-intent NSCLC M0 patients, pre-treatment OPN (t0) plasma levels were 

positively correlated with CAIX plasma levels (r=.3, p=.03), VEGF plasma levels (r=.3, 

p=.03), end-of-treatment OPN (t1, r=.6, p<.0001) and OPN plasma concentration 4 weeks 

after radiotherapy (r=.5, p=.001). OPN t1 plasma levels also correlated with OPN plasma 

concentration 4 weeks after treatment (t2, r=.3, p=.03). An inverse correlation was 

determined between VEGF and hemoglobin concentration (r= -.3, p=.03) and between 

OPN t0 values and hemoglobin concentration (r=-.5, p=.001). A trend was noted for a 

correlation between VEGF and CAIX plasma levels (r=.2, p=.09). CAIX correlated 

positively with VEGF (r=.03, p=.02). 

In palliative-intent NSCLC M1 patients, baseline OPN plasma levels before radiotherapy 

(t0) correlated with OPN levels at the end of treatment (t1, r=.5, p=.03) and OPN 4 weeks 

after treatment (t2) trended to correlate with pre-treatment OPN (r=.6, p=.06). In this 

patient group, CAIX positively correlated with pre-therapeutic OPN (t0, r=.4, p=.04) and a 
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trend could be determined for an inverse correlation between OPN t0 and hemoglobin 

(r=.4, p=.05). VEGF also correlated with CAIX (r=.5, p=.04) and an inverse correlation was 

noted between hemoglobin blood levels and CAIX (r=.5, p=.04). 

In the SCLC patient cohort, median plasma OPN plasma levels before the start of 

radiotherapy (t0) correlated with VEGF (r=.5, p=.03) and CAIX (r=5, p=.03).  

A positive correlation was also determined for post-treatment OPN (t2) and end-of-

treatment OPN (t2, r=.8, p=.002) which also correlated with VEGF (r=.7, p=.007). 

 

4.2 Patient and treatment characteristics and their association with pre-treatment 

plasma protein levels in the entire patient collective and curative-intent NSCLC M0 

patients  

The association of pre-treatment OPN (t0), VEGF and CAIX plasma levels with 

clinicopathological and sociodemographic patient characteristics is presented in table 4 for 

the entire (n=97, left side of table) and the curative-intent NSCLC (M0) cohort (n=61, right 

side of table). Significant associations are highlighted in bold in the table. 

In the entire patient collective, the association of median pre-treatment OPN plasma levels 

with T-stage was more pronounced if T-stage was grouped together as T1-2 vs. T3-4, with 

median OPN plasma levels before treatment being 651 ng/ml (T1-2) vs. 865 ng/ml (T3-4), 

p=.003. Pre-treatment OPN plasma levels of N+ (849 ng/ml, n=80) or N2-3 (848 ng/ml, 

n=77) patients were significantly higher than those of N- (642 ng/ml, n=16) or N0-1 (652 

ng/ml, n=19) patients (p=.01 and .04). OPN plasma levels before treatment were almost 

twice as high in patients with distant metastases compared to patients in M0-stage (1140 

vs. 737 ng/ml, p=.001). Consequently, UICC stage correlated with OPN t0 plasma levels 

where higher plasma levels were found in patients with higher disease stage (UICC I-II: 

622 ng/ml, n=10 vs. UICC III: 804 ng/ml, n=62 vs. UICC IV: 1140 ng/ml, n=25, p=.001).  

When SCC histology was directly compared to adeno-carcinoma, patients with SCC (n=37) 

had higher OPN plasma levels before treatment than patients with adeno-carcinoma (n=35; 

871 vs. 706 ng/ml, p=.01) and a trend for elevated pre-treatment OPN plasma levels in 

NSCLC patients (n=81) compared to SCLC patients (n=16) was found (820 vs. 741 ng/ml, 

p.07). Anemic patients had higher VEGF levels before treatment (p=0.04) and a trend for 

higher T-stage in patients with elevated VEGF plasma levels before treatment was noted 

(T1-2: 62 ng/ml, n=35 vs. T3-4: 102 ng/ml, n=58, p=.07). 

When patients with N0-2 stage were tested against those in N3 stage, baseline CAIX 

plasma levels were significantly higher in the latter subgroup (N0-2: 66 ng/ml, n=51 vs. N3: 
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123 ng/ml, n=44; p=.004). In the direct comparison between NSCLC and SCLC, the latter 

histology was associated with higher pre-treatment CAIX plasma levels compared to the 

NSCLC histologic subtype (124 ng/ml, n=80 vs. 92 ng/ml, n=80; p=.03) and a trend for 

elevated baseline CAIX levels was noted in patients with higher tumor grade (G1-2: 91 

ng/ml, n=25 vs. G3-4: 94 ng/ml, n=47; p=.09). UICC stage was not associated with pre-

therapeutic CAIX plasma concentration (p=.7).   

Similar findings can be reported for the curative-intent NSCLC (M0) patient cohort. A trend 

for higher OPN plasma levels in patients with higher tumor grade was noted (G1-2 vs. G3-

4: 691 ng/ml, n=19 vs. 838 ng/ml, n=30, p=.08). When T1-2 was evaluated against T3-4 

stage, OPN plasma levels were significantly elevated in the latter group (658 ng/ml, n=26 

vs. 847 ng/ml, n=34, p=.007) and trend for higher VEGF levels in T3-4 stage patients (102 

pg/ml, n=34) was found compared to T1-2 stage (58 pg/ml, n=26, p=.07). A trend was also 

found for increased OPN (p=.08) in patients with N+ stage (versus N0 stage). Higher 

median OPN plasma levels were found in patients with advanced UICC stage (UICC I-II: 

595 ng/ml, n=9 vs. UICC III: 820 ng/ml, n=51, p=.003) and a trend for elevated VEGF 

plasma levels in patients with higher UICC stage was noted (p=.08). An association 

between higher T-stage and increased baseline CAIX plasma levels was determined (T1-2: 

86 ng/ml, n=25 vs. T3-4: 106 ng/ml, n=35, p=.04) and a statistical trend for higher pre-

treatment CAIX plasma levels in patients with poorly or undifferentiated tumors (G1-2: 62 

ng/ml, n=19 vs. G3-4: 106 ng/ml, n=31; p=.06) was found. Higher N-stage trended to be 

associated with CAIX (N0-2: 65 ng/ml, n=36 vs. N3: 151 ng/ml, n=25; p=.06).  

 

4.3 Univariate analysis of plasma biomarker levels and their changes in the entire 

patient collective and in the curative-intent NSCLC M0 patient cohort 

Absolute plasma biomarker levels and their relative changes were tested for an 

association with the primary and secondary endpoints in the entire patient collective and in 

the curative-intent NSCLC (M0) patient cohort. Median follow-up in surviving patients was 

41 (12 – 66) months and at the time of the last survival data update (08-2014), 81 patients 

(84%) already had died. In 59%, death was cancer-related, in 7% it was not cancer-related 

and in 34% the cause of death remained unspecified.  

 

4.3.1 Initial tumor control and response to radiotherapy 

Follow up data on initial tumor control at the first post-radiotherapy response evaluation (4-

6 weeks after the end of radiotherapy) was available in 71 patients (73%). 
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In the entire patient cohort, 2 patients (2%) had complete and 51 patients (53%) had 

partial remission; 13 patients (13%) had stable and 5 patients (5%) had progressive 

disease. Good therapy response was noted in 55% of patients (n=53) while 19% (n=18) 

showed poor response to radiotherapy. In 27% of cases, no information on tumor control 

was available. 

Among curative-intent NSCLC M0 patients, complete remission could be achieved in 2 

(3%), partial remission in 36 patients (59%); 9 patients (15%) had stable and 2 (3%) 

progressive disease. Therapy response was good in 36 patients (62%) while it was poor in 

11 patients (18%). 20% of patients had no data on tumor control after radiotherapy. 

In the entire patient collective, both tumor control and therapy response was not 

associated with OPN t0, t1, t2, CAIX and VEGF plasma levels (p=.8, .9, .3, .7 and 

p=.6, .5, .6, .7). However, median end-of-treatment OPN plasma levels (t1) were 

significantly elevated in patients with poor tumor control (p=.01): Patients with progressive 

disease after radiotherapy (n=5) had the highest OPN plasma levels at the end of 

treatment (1585.1 ng/ml), followed by patients with stable disease (n=12, 961.8 ng/ml), 

partial remission (n=50, 714.5 ng/ml) and those with complete remission (n=2, 815.3 

ng/ml), figure 1a. Accordingly, OPN plasma levels at the end of treatment (t1) were 

significantly higher in non-responding patients compared to responding patients (1184.2 vs. 

715.5 ng/ml, p=.002), figure 1b.  

Relative OPN plasma level changes after radiotherapy (t1 to t2) were not related to tumor 

control and therapy response (p=.2, and .4) but intratherapeutic plasma level changes (t0 

to t1) were associated with therapy response: Responding patients had a median 

decrease in OPN t0 to t1 plasma levels by -4.7% as opposed to a median increase by 

+14.7% which was noted in non-responding patients (p=.04), figure 1c. 

In addition, relative OPN t0t1 plasma levels were related to tumor control, however, these 

findings remained a statistical trend (p=.1): Patients with progressive disease (n=5) after 

radiotherapy had a median OPN plasma level change from before (t0) to the end of 

radiotherapy (t1) by +43.7%, patients with stable disease (n=13) had a median increase by 

+14.4%. OPN t0t1 plasma levels of patients with partial remission (n=50) decreased by -

4.2% and patients with complete remission (n=2) displayed a median decrease in their 

intratherapeutic plasma levels by -15.9%, figure 1d. 

In cross-table analysis, among responding patients, 30 had low (i.e. below the) median 

OPN t1 levels and 22 had OPN t1 plasma levels above the median while among non-

responding patients, 13 had OPN t1 plasma levels above and 4 below the median (p=.01). 



22 
 

Table 4.            Association of pre-treatement OPN (t0), VEGF and Association of pre-treatement OPN (t0), VEGF and CAIX plasma

                            CAIX plasma levels with clinicopathological patient levels with clinicopathological  patient characteristics in the

                            characteristics in the entire patient cohort (n=97) curative-intent NSCLC M0 patient cohort (n=61)

                               

Characteristic OPN VEGF CAIX Characteristic OPN VEGF CAIX

ng/ml pg/ml ng/ml ng/ml pg/ml ng/ml

age .03 .2 .2 age .09 .3 .8

> median 886 (n=50) 72 (n=48) 106 (n=49) > median 831 (n=30) 67 (n=30) 109 (n=31)

≤ median 744 (n=47) 99 (n=46) 88 (n=47) ≤ median 726 (n=31) 95 (n=31) 86 (n=30)

Sex .03 .2 .3 Sex .9 .4 .5

male 850 (n=83) 92 (n=82) 98 (n=82) male 746 (n=51) 88 (n=51) 104 (n=51)

female 678 (n=14) 70 (n=14) 95 (n=14) female 768 (n=10) 86 (n=10) 85 (n=10)

FeV11 .002 .8 .8 FeV11 .01 .5 .1

> median 690 (n=44) 92 (n=43) 93 (43) > median 691 (n=29) 60 (n=29) 96 (n=29)

≤ median 910 (n=44) 87 (n=42) 98 (n=44) ≤ median 848 (n=28) 118 (n=28) 93 (n=29)

weight loss2 .001 .3 .6 weight loss2 .001 .7 .6

yes                            999 (n=28) 79 (n=27) 90 (n=27) yes 1001 (n=13) 93 (n=13) 106 (n=13)

no 726 (n=62) 102 (n=61) 93 (n=62) no 692 (n=43) 88 (n=43) 86 (n=44)

hemoglobin .3 .04 .7 hemoglobin .6 .04 .6

> median 791 (n=51) 72 (n=51) 95 (n=50) > median 712 (n=32) 57 (n=32) 110 (n=32)

≤ median 849 (n=46) 102 (n=43) 97 (n=46) ≤ median 770 (m=28) 104 (n=28) 86 (n=29)

histology .1 .3 .6 histology .2 .08 .8

SCC3 871 (n=37) 107 (n=37) 86 (n=37) SCC3 820 (n=29) 107 (n=29) 86 (n=20)

adeno-carcinoma 706 (n=35) 88 (n=33) 92 (n=34) adeno-carcinoma 706 (n=25) 88 (n=25) 110 (n=26)

large-cell-carcinoma 652 (n=3) 356 (n=3) 183 (n=3) large-cell-carcinoma 507 (n=2) 44 (n=2) 123 (n=2)

SCLC 866 (n=16) 122 (n=16) 109 (n=16) nos n/a (n=1) n/a (n=1) n/a (n=1)

unknown 626 (n=6) 33 (n=5) 83 (n=6) unknown 460 (n=3) 24 (n=3) 109 (n=3)

Grading .7 .4 .3 Grading .3 .4 .2

well (G1) 844 (n=2) 35 (n=2) 76 (n=2) well (G1) 844 (n=2) 35 (n=2) 86 (n=2)

moderate (G2) 712 (n=22) 94 (n=22) 91 (n=22) moderate (G2) 691 (n=17) 85 (n=17) 62 (n=17)

poor (G3) 855 (n=32) 100 (n=32) 90 (n=31) poor (G3) 830 (n=21) 92 (n=21) 96 (n=22)

undifferentiated (G4) 858 (n=16) 90 (n=16) 106 (n=16) undifferentiated (G4) 841 (n=9) 83 (n=9) 114 (n=9)

nos4 671 (n=25) 60 (n=25) 89 (n=24) unknown 706 (n=11) 72 (n=11) 171 (n=11)

T-stage .02 .3 .3 T-stage .02 .4 .1

T1 561 (n=8) 64 (n=8) 54 (n=8) T1 561 (n=8) 64 (n=8) 54 (n=8)

T2 677 (n=28) 62 (n=27) 86 (n=26) T2 690 (n=18) 58 (n=18) 115 (n=18)

T3 919 (n=17) 107 (n=17) 190 (n=17) T3 847 (n=10) 97 (n=10) 177 (n=10)

T4 1034 (n=43) 97 (n=41) 103 (n=42) T4 840 (n=24) 102 (n=24) 96 (n=25)

 Tx n/a (n=1) n/a (n=1) n/a (n=1) N-stage .4 .3 .3

N-stage .08 .7 .04 N0 651 (n=12) 85 (n=12) 74 (n=12)

N0 642 (n=16) 78 (n=16) 76 (n=16) N1 805 (n=2) 88 (n=2) 86 (n=2)

N1 850 (n=3)  88(n=3) 109 (n=3) N2 852 (n=22) 102 (n=22) 64 (n=22)

N2 867 (n=33) 102 (n=33) 62 (n=32) N3 768 (n=24) 67 (n=24) 151 (n=25)

N3 825 (n=44)  72 (n=44) 123 (n=44) Nx n/a (n=1) n/a (n=1) n/a (n=1)

Nx n/a (n=1) n/a (n=1) n/a (n=1) GTV5 .03 <.0001 .6

M-stage .001 .2 .3 > median 819 (n=30) 132 (n=30) 86 (n=31)

M0 737 (n=72) 83 (n=71) 100 (n=72) ≤ median 677 (n=30) 52 (n=30) 108 (n=30)

M1 1140 (n=25) 133 (n=23) 92 (n=24)

GTV5 .01 .002 .5

> median 859 (n=48) 126 (n=47) 105 (n=47)

≤ median 689 (n=47) 58 (n=47) 93 (n=47)
1 forced expiratory volume in 1 second 2 ≥ 10% body weight / 6 months  3 squamous-cell  carcinoma  4 not otherwise specified  5 gross tumor volume   

Relative intratherapeutic OPN (t0 to t1) plasma level changes were associated with 

therapy response in cross-table analysis: Among responding patients, 29 had decreasing 

and 23 had increasing OPN t0t1 plasma levels, while in non-responding patients, 13 had 

increasing and 4 decreasing OPN t01 plasma levels (p=.02).  
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When patients were classified in rising vs. falling vs. stable intratherapeutic OPN (t0t1) 

plasma levels, among responding patients, 23 had falling, 13 had stable and 16 had 

increasing OPN t0t1 plasma levels while in non-responding patients, 4 had falling, 3 had 

stable and 11 had increasing OPN t0t1 plasma levels (p=.07). 

In curative-intent NSCLC (M0) patients, absolute OPN, CAIX and VEGF plasma levels 

were not associated with tumor control or therapy response but a trend was noted for 

better therapy response in patients with decreasing intratherapeutic OPN (t0 to t1) plasma 

levels: OPN plasma levels in responding patients decreased by -3.6% during radiotherapy 

while they increased by 14.9% in non-responding patients (p=.04).  

In cross-table analysis, a significant association between therapy response and relative 

intratherapeutic OPN plasma level changes (t0 to t1) was observed: Among responding 

patients, 16 had decreasing, 10 stable and 11 increasing OPN plasma levels during 

radiotherapy while in non-responding patients, 2 had falling, 1 stable and 8 increasing 

OPN plasma levels (p=.03). Tumor control was not related to OPN plasma level changes. 
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4.3.2 Overall survival (OS) 

Median OS was 11 (0 – 66) months in all patients and in curative-intent NSCLC M0 

patients, it was 16 (1 – 66) months. In the latter subgroup, 50 deaths (82%) were 

registered at the last survival data update and 56% of deaths were cancer-related, 8% 

were not cancer-related and in 64% of cases, death cause could not be specified.  

Cancer-specific survival (i.e. disease-specific survival) was 7 (0 – 37) months in the entire 

patient cohort (n=57) and it was 13 (2 – 37) months in the curative-intent cohort (n=14). 

In the entire patient collective, absolute OPN plasma levels before (t0), at the end (t1) and 

4 weeks after radiotherapy (t2) were associated with OS. Patients with high pre-treatment 

OPN plasma levels (i.e. t0 ≥ median, n=57) had a median OS of 7.6 months compared to 

patients with low t0 plasma levels (i.e. < median, n=40) who lived 16.1 months (p=.04). 

Patients with elevated baseline OPN plasma levels also had a significantly increased risk 

of death compared to patients with low OPN t0 levels (rr=1.6, 95%-CI [1.01-2.5], p=.04), 

figure 2a. OS was 6.9 months in patients with elevated OPN t1 plasma levels (n=46) as 

opposed to 15.7 months in patients with low OPN plasma levels at the end of treatment 

(n=45, p=.004). Patients also had a significantly increased risk of death if their plasma 

levels were elevated at the end of treatment (t1, rr=1.9, 95%-CI [1.2-3], p=.005), figure 2b.  

Superior OS was also found in patients with low OPN plasma levels 4 weeks after 

radiotherapy (t2) when compared to patients with high plasma levels (25.5 months, n=35 

vs. 11.8 months, n=34, p=.02) who also had a significantly increased risk of death (rr=1.8, 

95%-CI [1.1-3.1], p=.03), figure 2c. Absolute CAIX and VEGF plasma levels before 

treatment were not associated with OS in all 97 patients (p=.7 and p= .5). No survival 

differences were determined in patients with increasing, stable or decreasing OPN plasma 

levels during treatment (t0 to t1, p=.8) but a trend for superior survival was noted in 

patients with falling (n=37) or stable (n=7) post-therapeutic OPN plasma levels compared 

to patients with increasing (n=26) plasma levels from t1 to t2 time point (p=.09). The latter 

patients also had an increased risk of death (rr=1.2, 95%-CI [.7-2.1], p=.07), figure 2d. 

In the curative-intent NSCCL M0 cohort, OPN baseline (t0) and t1 plasma levels were not 

associated with OS but I found a trend for prolonged survival in patients with low post-

treatment (t2) OPN plasma levels (26.5 months, n=27 vs. 12.7 months, n=22, p=.08) and 

an increased risk of death in patients with high OPN t2 plasma levels (rr=1.7, 95%-CI [.9-

3.2], p=.09), figure 3a.  

Median pre-treatment plasma levels of VEGF and CAIX were not associated with OS. 
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Figure 2 Association of plasma marker levels with overall survival (OS) in the entire patient collective (n=97).

2a baseline OPN (t0) plasma levels and overall survival in Cox proportional hazards model 

2b end-of-treatment OPN (t1) plasma levels and overall survival in Cox proportional hazards model  

2c post-treatment OPN (t2) plasma levels and overall survival in Kaplan Meier analysis 

2d increasing vs. stable vs. decreasing post-treament OPN (t1 to t2) plasma levels and overall survival in Cox proportional hazards model 

2a 2b

2d2c

 

 

Relative OPN plasma level changes during radiotherapy (t0 to t1) were not related to 

survival but patients with increasing OPN plasma levels after treatment (t1 to t2) had a 

poorer OS than patients with decreasing post-treatment OPN plasma levels (10.9 months, 

n=18  vs. 26.5  months, n=29, p=.1), figure 3b. This trend was more pronounced if 

patients were divided into increasing (n=16) vs. stable (n=5) vs. decreasing (n=28) OPN t1 

to t2 plasma levels as defined in 3.5 (13 vs. 14.4 vs. 15.7 months, p=.07), figure 3c.  

 

4.3.3 Progression-free survival (PFS) 

Median PFS was 6 (0 – 65) months in all patients. In this group, 47 patients (49%) 

developed a disease progress during follow-up (n=23: 24% local relapse, n=11: 11% 

distant metastasis, n=13: 13% both), 19 patients (20%) remained without progressive 
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disease during follow-up (i.e. until death or last seen) and in 31 patients (32%), no data on 

disease progress was available. 

In curative-intent NSCLC M0 patients, median PFS was 9 (1 – 65) months and disease 

progress during follow-up was noted in 26 patients (43%). 18 patients (30%) had no 

disease progress until their death or last seen during follow-up and disease progress data 

was missing in 17 patients (28%). In this patient group, 23% (n=14) had local, 7% (n=4) 

distant and 13% (n=8) had both local and distant disease progression. 

Figure 3 Association of plasma marker levels with overall 

survival (OS) in the curative-intent (NSCLC M0) 

cohort (n=61).

3a post-treatment OPN (t2) plasma levels and overall survival in  

      Kaplan Meier analysis

3b increasing vs. decreasing post-treament OPN (t1 to t2) plasma 

      levels and overall survival in Cox proportional hazards model  

3c increasing vs. stable vs. decreasing post-treament OPN 

     (t1 to t2) plasma levels and overall survival in Cox proportional

     hazards model 

3a 3b

3c

 

 

In the entire patient cohort, elevated OPN plasma levels at the end of (t1) and four weeks 

after radiotherapy (t2) were significantly associated with PFS. 

Patients with elevated end-of-treatment OPN plasma levels (t1, n=46) had a median PFS 

of 5.6 months compared to patients with OPN t1 levels below the median (n=45, 9.1 
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months, p=.02). The former patients also had a significantly elevated risk for disease 

progression (rr=1.7, 95%-CI [1.1-2.7], p=.02), figure 4a.  

Patients with low OPN plasma levels four weeks after the end of radiotherapy (t2, n=35) 

had a median PFS of 12.2 months as opposed to patients with elevated OPN t2 levels 

(n=34, 7.5 months, p=.04) who also had a significantly increased risk for disease progress 

(rr=1.7, 95%-CI [1.1-3], p=.04), figure 4b. A trend for reduced PFS in patients with 

elevated pre-treatment OPN plasma levels (t0, n=49) compared to patients with low 

baseline plasma OPN levels (n=48) was noted (p=.06), figure 4c. Absolute pre-treatment 

VEGF and CAIX plasma levels were not associated with PFS (p=.77 and p=.97).  

Relative OPN plasma level changes during treatment (t0 to t1) did not show any relation to 

PFS but post-radiotherapy OPN level changes (t1 to t2) were significantly related to PFS. 

Patients with increasing post-treatment OPN plasma levels (n=26) had a median PFS of 

5.2 months compared to 9.1 months in patients with stable (n=7) and 15.6 months in 

patients with decreasing OPN t1t2 plasma levels (n= 37, p=.03). Correspondingly, a trend 

for an elevated relative risk for disease progression in patients with increasing OPN t1t2 

plasma levels (rr=1.5, 95%-CI [.9-2.5], p=.05) was observed, figure 4d. 

In the curative-intent NSCLC M0 patient cohort, absolute pre-treatment plasma levels of 

OPN, VEGF and CAIX were not associated with PFS (p=.5, p=.8 and p=.5).  

OPN plasma levels at the end of (t1) and four weeks after radiotherapy (t2) were also not 

related to PFS (p=.4 and p=.1). Relative OPN plasma level changes after (t1 to t2) but not 

during radiotherapy (t0 to t1, p=.9) were associated with PFS. A trend for prolonged PFS 

was noted in patients with decreasing (n=29) compared to increasing OPN plasma levels 

(n=18) after treatment (t1t2, 14.3 months vs. 5.3 months, p=.08). The latter patients also 

had an increased risk for disease progression (rr=1.7, 95%-CI [.9-3.3], p=.09).  

When patients were classified according to their relative OPN plasma level changes after 

radiotherapy in increasing vs. stable vs. decreasing OPN t1t2 levels, the effect on PFS 

was more pronounced. Patients with increasing OPN t1t2 plasma levels (n=16) had a 

median PFS of 6.2 months, median PFS in patients with stable plasma levels (n=5) was 

10.3 months and 22 months in patients with decreasing plasma levels (n=28) after 

radiotherapy (p=.009). Patients with decreasing OPN plasma levels after radiotherapy also 

had the lowest risk for disease progression, followed by patients with stable and those with 

increasing OPN t1t2 plasma levels whose relative risk was elevated by a factor 1.9 (95%-

CI [1.1-3.8], p=.02), figure 5.  
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Additionally, patients whose relative increase in OPN t1t2 plasma levels was higher than 

the median increase of all patients had a significantly reduced PFS compared to patients 

whose plasma level increase was lower than the median increase (6.3 months, n=21 vs. 

15.7 months, n=26, p=.04). The relative risk for disease progression was also significantly 

elevated on the former patient group (rr=1.9, 95%-CI [1.02-3.6], p=.04). 

 

4.3.4 Time to progression (TTP) 

Median TTP in the entire patient collective was 7 (0 – 17) months and in the curative-intent 

patient cohort it was 9 (2 – 17) months.  

TTP was not associated with absolute baseline plasma levels of OPN (t0, p=.2), VEGF 

(p=.2) and CAIX (p=.4) or with end-of-treatment (t1) and post-treatment (t2) OPN plasma 

levels (p= .6 and .7). 
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Figure 5 Association of plasma marker levels with progression-free survival (PFS) in the 

curative-intent (NSCLC M0) cohort (n=61).

Increasing vs. stable vs. decreasing post-treament OPN (t1 to t2) plasma levels and 

progression-free survival in Cox proportional hazards model 

5

 

 

Relative OPN plasma level changes during (t0 to t1) and after radiotherapy (t1 to t2) were 

not related to TTP (p=.2 and .5) even though patients with increasing OPN plasma levels 

during and after treatment had an overall reduced TTP and an increased risk for 

progression compared patients with decreasing or stable OPN plasma levels in the same 

timeframe.  

In the curative-intent patient cohort, median post-treatment OPN (t2), pre-treatment OPN 

(t0), CAIX and VEGF plasma levels were not linked to TTP (p=.7, .4 and .5) but patients 

with elevated end-of-treatment (t1) OPN plasma levels had a significantly reduced TTP 

compared to patients with low OPN t2 plasma levels (8.8 months, n=12 vs. 5.3 months, 

n=12, p=.04). Also, patients with increasing OPN plasma levels during therapy (t0 to t1, 

n=9) had an inferior TTP compared to patients with stable (n=4) or decreasing (n=12) 
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plasma levels (5.3 vs. 8.8 vs. 14.9 months, p=.01). No correlation of relative OPN plasma 

level changes after radiotherapy (t1 to t2) and TTP was determined (p=.4).  

 

4.3.5 Metastasis-free survival (MFS) 

Median MFS in the entire patient collective was 12 (0 – 66) months and in 24 patients 

(24%), distant metastasis occurred during follow-up. In NSCLC M0 patients, MFS was 16 

(3 – 66) months (12 patients developed distant metastasis during follow-up, 20%).  

Table 5 shows the association of absolute OPN plasma levels and their changes with MFS. 

In all patients, VEGF and CAIX plasma levels as well as OPN t0t1 plasma level changes 

were not related to MFS and in curative-intent NSCLC (M0) patients, MFS was not 

associated with baseline OPN, CAIX and VEGF plasma levels.  

 

4.3.6 Freedom from local relapse (FFLR) 

In the entire patient cohort, median FFLR was 9 (1 – 66) months and 36 patients (37%) 

were diagnosed with local relapse during follow-up. In the curative-intent NSCLC M0 

cohort median FFLR was 12 (2 – 66) months and 22 patients (36%) had local recurrence 

during follow-up. The association of absolute baseline biomarker plasma levels and 

relative OPN plasma level changes with FFLR is presented in table 6. 

In the entire patient cohort, absolute plasma biomarker levels of OPN, CAIX and VEGF 

were not associated with FFLR (OPN t0, t1, t2: p=.2, .3, .3; CAIX: p=.7; VEGF: p=.5). 

Relative OPN plasma level changes during radiotherapy (t0 to t1) were not related to 

FFLR (p=.9).  

In the curative-intent patient cohort (NSCLC M0), no correlation between FFLR and 

absolute plasma concentration of OPN, CAIX and VEGF was found (OPN t0: p=.6, t1: p=.7, 

t2: p=.5, CAIX: p=.4, VEGF: p=.3). Relative OPN plasma level changes during 

radiotherapy (t0t1) were not associated with FFLR (p=.5).  

 

4.4 Univariate analysis of the association of clinical patient characteristics with 

prognosis in the entire and curative-intent NSCLC M0 patient cohort 

Clinical patient and tumor characteristics have been tested for their association with 

prognosis in both the entire and the curative-intent NSCLC M0 patient cohort with 

restriction to OS and PFS as the primary endpoints in univariate analysis. 

In the entire collective, weight loss (p=.02), T-stage (p=.003), M-stage (p<.0001), UICC- 

stage (p<.0001) and GTV (p<.0001) but not N-stage (p=.16), histology (p=.8) or grade 
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(p=.21) were associated with OS in univariate analysis. A trend for reduced OS in patients 

with N+ stage compared to N0 stage was noted (p=.05). Weight loss (p=.02), T-stage 

(p=.02), N-stage (p=.04) and GTV (p=.001) were significantly associated with PFS in the 

entire patient collective and a trend for reduced PFS in patients with hemoglobin levels 

below the median (compared to above the median) was noted (p=.05). 

 

Table 5.           Association of median OPN plasma levels and their changes with metastasis-free survival (MFS) in 

the entire (left side) and the curatvive-intent patient cohort (right side)

MFS p 1 rr 2 95%-CI p 3 MFS p 1 rr 2 95%-CI p 3

OPN t0 .04 OPN t0t1 .06

<median 16.2 (n=20) increase 12.2 (n=8)

≥median 5.6 (n=22) 2.1 .98-4.3 .05 decrease 39.4 (n=17) .36 .12-1.1 .07

OPN t1 .02 OPN t1t2 .04

<median 15.7 (n=20) increase 5.3 (n=7) 3.5 1.2-10.1 .02

≥median 6.4 (n=20) 2.3 1.1-4.7 .02 decrease 39.4 (n=15)

OPN t2 .06 OPN t1t2 .05

<median 16.2 (n=19) increase 12.2 (n=3) 2.9 .7-11.2 .09

≥median 7.9 (n=16) 2.1 .9-4.8 .07 stable 16 (n=4)

decrease 23.7 (n=17)

OPN t1t2 .05

increase 15.7 (n=12) 2.2 .97-5.1 .05

decrease 7.5 (n=21)

OPN t1t2 .04

increase 11 (n=7) 2.4 .9-6.4 .06

stable 12.2 (n=6)

decrease 20.1 (n=22)
1
 p-va lue referring to di fferences  in MFS according to high vs . low OPN plasma levels  

2
 relative risk 

3
 p-va lue referring to rr  

 

Table 6.         Association of median OPN plasma levels and their changes with freedom from local relapse

(FFLR) in the entire (left side) and the curative-intent patient cohort (right side)

FFLR p 1 rr 2 95%-CI 3 p 4 FFLR p 1 rr 2 95%-CI 3 p 4

OPN t1t2 .02 OPN t1t2 .01

increase 8.8 (n=16) 2.4 1.1-5 .03 increase 9.8 (n=13) 3 1.2-7.3 .01

decrease 13.8 (n=26) decrease 16.2(n=21)

OPN t1t2 .004 OPN t1t2 .002

increase 6.2 (n=15) 2.6 1.2-5.6 .01 increase 6.2 (n=11) 3.7 1.5-9.5 .007

stable 10.7 (n=4) stable 16.2 (n=4)

decrease 16.7 (n=27) decrease 25.7 (n=21)
1 p-va lue referring to di fferences  in FFLR according to OPN plasma levels  2 relative risk 3 95-confidence interval
4  p-va lue referring to relative risk  

 

In the curative-intent NSCLC M0 patient group, T-stage (p=.003), grade (p=.02), UICC 

stage (p=.02) and GTV (p=<.0001) but not weight loss (p=.25), N-stage (p=.66) or nodal 

involvement (i.e. N0 vs. N+, p=.93) significantly predicted OS in the univariate analysis.  
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For the association of clinicopathological parameters with PFS in this patient group, 

significant results could be determined for GTV (p=.002), UICC stage (p=.04) and T-stage 

(p=.03) while a trend was noted for inferior PFS with poorer tumor differentiation (p=.06).  

 

4.5 Multivariate and combined analysis of plasma biomarker levels and their 

changes in the curative-intent NSCLC M0 patient cohort  

Relative OPN plasma level changes and absolute OPN, CAIX and VEGF plasma levels 

have been evaluated for their association with prognosis (overall-, OS, and progression-

free survival, PFS) in multivariate analysis including known prognostic and clinical factors. 

Additionally, biomarker combination of baseline (i.e. pre-treatment) OPN, CAIX and VEGF 

plasma levels was assessed for their prognostic quality in multivariate analysis. Since the 

informative value of prognostic models is most useful in patients treated with curative-

intent, the aforementioned analyses have been restricted to the NSCLC M0 patient cohort. 

Both palliative-intent and SCLC patients (in order to ensure adequate homogeneity of the 

studied patient cohort) have been excluded from uni- and multivariate analysis. 

 

4.5.1 Absolute plasma OPN levels in a multivariate prognostic model 

A prognostic baseline model for OS was created which consisted of the factors anemia 

(yes vs. no), gender (male vs. female), forced expiratory volume (FeV1, above vs. below 

median), tumor grading (G1 vs. G2 vs. G3 vs. G4), age (above vs. below median), OPN t0 

plasma levels (above vs. below median), weight loss (yes vs. no), T-stage (T1 vs. T2 vs. 

T3 vs. T4) and N-stage (N0 vs. N1 vs. N2 vs. N3).  

Then, a stepwise backward logistic regression was used to determine the parameters 

which most significantly predicted OS. The final model (p<.0001, table 7) included anemia 

(p=.02), gender (p=.09), weight loss (p=.006), grade (p=.004), age (p=.03), T-stage 

(p<.0001) and OPN t0 (p=.02). N-stage (p=.5) and FeV1 (p=.8) were not significantly 

associated with OS and thus have been removed from the prognostic model.   

When T-stage was replaced by gross-tumor-volume (GTV, above vs. below median) and 

N-stage was replaced by nodal involvement (N0 vs. N+) in the same baseline model, the 

final model (p<.0001) consisted of grade (p=.04) and GTV (p<.0001) only while all other 

parameters including OPN t0 (p=.5) were removed from the initial model. 

When baseline OPN (t0) plasma levels were replaced by end-of-treatment OPN (t1) 

plasma levels in the same initial model, they did not prove to be independently associated 
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with OS in multivariate analysis (p=.3). Only weight loss (p=.04), grade (p=.005) and T-

stage (p<.0001) remained independent predictors for OS in the final model (p<.0001).  

I finally tested post-treatment OPN (t2) plasma levels in the same baseline prognostic 

model and found it was significantly associated with OS. The final model (p=.001) 

consisted of OPN t2 (rr=2.6 for patients with plasma levels above the median, 95%-CI [1.2-

5.6], p=.01) and T-stage (rr=1.5 for T4-stage patients, 95%-CI [.5-4.7], p=.003).  

For PFS, the same multivariate prognostic models have been calculated and evaluated. 

In the baseline model consisting of anemia, FeV1, age, gender, tumor grading, T-stage, N-

stage, weight loss and pre-treatment OPN plasma levels (t0), only age (p=.08), grading 

(p=.02), T-stage (p=.01) and weight loss (p=.06) remained in the final model (p=.009) after 

a stepwise logistic regression. OPN t0 plasma levels remained insignificant (p=.3).  

When T-stage was replaced by GTV in the same model, the final model (p=.007) consisted 

of GTV only which significantly predicted PFS (p=.009; rr=2.2, 95%-CI [1.2-4.1]). 

When OPN t0 plasma levels were replaced by end-of treatment OPN plasma levels (t1) in 

the same baseline model, only weight loss (p=.04), grading (p=.005), T-stage (p<.0001) 

and N-stage (p=.007) significantly predicted PFS in the final model (p<.0001) while OPN t1 

plasma levels were not significant (p=.4). Substituting T-stage by GTV resulted in a 

change of the final model (p<.0001) which then contained grading (p=.03) and GTV 

(p<.0001) only. When absolute OPN plasma levels four weeks after treatment (t2) were 

evaluated in the same baseline prognostic model for PFS, the final model (p=.001) 

consisted of T-stage (p=.003; rr=1.2, 95%-CI [1.1-4.2] for T2-3 vs. T1; rr=2.6, 95%-CI [1.2-

5.7] for T4 vs. T1) and OPN t2 plasma levels (p=.02; rr=2.6, 95%-CI [1.2-5.7]).  

When T-stage was replaced by GTV in the same model, only the latter parameter 

remained significant (p=.003; rr=2.9, 95%-CI [1.5-5.8]) in the final model (p=.002) while 

OPN dropped out of the model due to low significance (p=.9).  

 

Table 7.         Multivariate Cox regression model for overall survival in curative-intent

NSCLC M0 patients

Variable Compared Subject Hazard 95%-CI p

groups group2 ratio3

anemia yes vs. no yes 2.8 1.2-6.6 .02

sex male vs. female female .4 .1-1.1 .09

weight loss yes vs. no yes 3.6 1.5-9 .006

grade 1 vs. 2 vs. 3 vs. 4 1 .04 .006-.3 .004

age above vs. below median above median 2.3 1.1-4.7 .03

T-stage T1 vs. T2 vs. T3 vs. T4 T4 6.3 1.6-25.8 <.0001

OPN t01
above vs. below median above median 2.5 1.6-12.3 .02

1 osteopontin before treatment  2discriminated or favored subgroup  3 >1 reflecting an increased risk 

of death, <1 reflecting a  reduced risk of death  
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4.5.2 Relative OPN plasma level changes in a multivariate prognostic model 

For the evaluation of the prognostic quality of relative OPN plasma level changes over 

time, the latter have been integrated in the same prognostic baseline model, consisting of 

gender, anemia, FeV1, grading, age, T-stage, N-stage and in addition, OPN t0t1 plasma 

level changes (increase vs. decrease). 

After a stepwise regression, only grading (p=.002) and T-stage (p<.0001) but not OPN 

level changes (t0 to t1 time point, p=.8), FeV1 (p=.9), age (p=.5), N-stage (p=.3), anemia 

(p=.6) or gender (p=.8) were significantly associated with OS in the final model (p<.0001).  

When T-stage was replaced by gross tumor volume (GTV), the final model (p<.0001) 

contained grading (p=.03) and GTV (p<.0001) while the other clinical factors including 

OPN t0t1 were removed. 

Different prognostic models have been further calculated such as a model initially including 

OPN t0t1, gender, weight loss, grading, T-stage and N-stage. However, intratherapeutic 

OPN t0t1 plasma level changes did not prove as an independent predictor for OS besides 

weight loss (p=.08), grading (p=.002) and T-stage (p=.001) in any model. 

When intratherapeutic OPN plasma level changes (to to t1 time point) were grouped in 

decreasing vs. stable vs. increasing plasma levels during radiotherapy and included into 

the same prognostic model with gender, anemia, FeV1, grading, age, T- and N-stage, only 

grade and T-stage (p<.0001) remained significant predictors for OS in the final model 

(p<.0001) while relative OPN t0t1 plasma level changes remained insignificant (p=.3). 

When weight loss was added and T-stage replaced by GTV in the same model with OPN 

t0t1 (increase vs. stable vs. decrease), anemia, FeV1, age, gender and grade, the final 

model which significantly predicted OS (p<.0001) consisted of GTV (p<.0001), N-stage 

(p=.004), gender (p=.02) and OPN t0t1 plasma level changes (p=.05). 

The same prognostic model was used to evaluate the predictive quality of post-treatment 

OPN plasma level changes (t1 to t2, increase vs. decrease). The initial model included the 

latter in addition to anemia, FeV1, age, gender, weight loss, T-stage, grading and N-stage. 

The final model (p=.002) consisted of T-stage which remained the only independent 

predictor for OS (p=.004) while all other parameters, including OPN (p=.1), were not 

significantly associated with prognosis. When T-stage was replaced by GTV in the same 

model, only the latter significantly predicted OS in the final model (p<.0001).  

When post-treatment OPN plasma level changes, grouped into increasing vs. stable vs. 

decreasing OPN levels from t1 to t2 time point, were analyzed in the same prognostic 

model together with anemia, FeV1, age, gender, weight loss, grading, T-stage and N-



35 
 

stage, the final model (p<.0001) consisted of T-stage (p<.0001), gender (p=.06), anemia 

(p=.03) and post-treatment OPN t1t2 plasma levels (p<.0001) which significantly predicted 

OS (rr=6.02, 95%-CI [2.3-15.6], table 8. When T-stage was replaced by GTV in the same 

model, the final model which significantly predicted OS (p=.002) consisted of GTV (p=.001) 

and OPN t1t2 plasma levels (rr=2.1, 95%-CI [1.1-4.3], p=.06). 

PFS was evaluated, using the same baseline prognostic model consisting of anemia, 

FeV1, age, gender, weight loss, tumor grade, T-stage, N-stage and relative OPN t0t1 

plasma level changes (i.e. increase vs. decrease). The final model (p=.008) contained 

grade (p=.02) and T-stage (p=.02) which significantly predicted PFS while relative OPN 

t0t1 plasma level changes remained without significance (p=.09).  

When T-stage was replaced by GTV in the same model, only grade (p=.06) and GTV 

(p=.001) remained in the final model (p=.002). 

 

Table 8. Multivariate Cox regression model for overall survival in curative-

intent NSCLC M0 patients (n=61)

Variable Compared Subject Hazard 95%-CI p

groups group1 ratio2

OPN t1t23 increase vs. stable .9 .2-4.4 <.0001

stable vs. increase 6.02 2.3-15.6

decrease

T-stage T1 vs. T2 vs. T3 1.5 .4-5.2 <.0001

T3 vs. T4 T4 1.8 .6-5.6

gender male vs. female female .4 .13-1.1 .065

anemia yes vs. no yes 2.6 1.1-6.2 .034
1 discriminated or favored subgroup  2 reflected in increased (>1) or reduced (<1) ri sk of death
3 osteopontin plasma level  changes  (increase, +10%; decrease, -10%; s table, between +10% 

rise and -10% fa l l ) from the end (t1) to four weeks  after treatment (t2)  

 

Intratherapeutic OPN plasma level changes were further grouped in increasing vs. stable 

vs. decreasing t0t1 plasma levels and were included in the same baseline model. 

The final model only consisted of T-stage (p=.02) and grade (p=.004) which significantly 

predicted PFS (p=.008) while OPN t0t1 plasma levels did not reach statistical significance 

(p=.24). When T-stage was replaced by GTV in the same model, only the latter parameter 

(p=.001) and grade (p=.06) remained in the final model (p=.002) which significantly 

predicted PFS (OPN t0t1, p=.3). 

I then included post-treatment OPN plasma level changes (t1t2 increase vs. decrease) in 

the same model. The final model (p=.02) consisted of T-stage (p=.03) and OPN t1t2 

plasma levels (p=.07) which predicted PFS. Patients with increasing OPN plasma levels 

after radiotherapy had an increased risk to die by a factor 1.9 (95-% CI [.9-4.1] and the 
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relative risk to die was 1.4 (95%-CI [1.1-4.8] in T3/T4-stage patients compared to T1/T2-

stage patients. When GTV was included in the same model instead of T-stage, only GTV 

remained in the final model (p=.003) as an independent significant predictor for PFS 

(rr=2.7; 95%-CI [1.4-5.5], p=.004).     

OPN t1t2 plasma levels then were further grouped in increasing vs. stable vs. decreasing 

plasma levels after treatment and were included in the same baseline model.  

I found that in the final model which significantly predicted PFS (p=.001), both T-stage 

(p=.006) and OPN t1t2 (p=.001) were independent predictors for PFS, table 9. 

Replacing T-stage by GTV resulted in a change in the final prognostic model (p=.001) 

which then consisted of OPN t1t2 plasma levels (rr=3; 95%-CI [1.5-6.3], p=.004) and GTV 

(rr=3; 95%-CI [1.5-6.3], p=.003).  

 

Table 9. Multivariate Cox regression model for progression-free survival 

(PFS) in curative-intent NSCLC M0 patients (n=61)

Variable Compared Subject Hazard 95%-CI p

groups group1 ratio2

OPN t1t23 increase vs. stable .5 .1-2.4 .001

stable vs. increase 4.1 1.8-8.9

decrease

T-stage T1 vs. T2 vs. T3 1.2 .3-4.4 .006

T3 vs. T4 T4 1.4 .4-4.6
1
 discriminated or favored subgroup  

2
 reflected in increased (>1) or reduced (<1) ri sk of 

death 
 3 

osteopontin plasma level  changes  (increase, +10%; decrease, -10%; s table,

between +10%  ri se and -10% fa l l ) from the end (t1) to four weeks  after treatment (t2)  

 

4.5.3 Absolute baseline CAIX and VEGF plasma levels in a multivariate prognostic 

model 

Baseline, i.e. pre-radiotherapy, plasma levels of VEGF and CAIX have also been 

assessed for their prognostic impact on OS and PFS in a multivariate analysis using the 

same prognostic model as described above. 

When pre-treatment VEGF plasma levels were evaluated together with other potential 

prognostic factors for OS including age, gender, anemia, weight loss, T-stage, N-stage, 

grade and FeV1, the final model which significantly predicted OS (p<.0001) contained T-

stage (p<.0001), grade (p=.002), weight loss (p=.007), age (p=.08) and VEGF (p=.07). 

When T-stage was replaced by GTV in the same model, the final model (p<.0001) then 
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consisted of gender (p=.03), weight loss (p=.07), GTV (p<.0001) and VEGF (p=.004) 

which remained independent predictors for OS, table 10. 

VEGF was also evaluated for its impact on PFS in a multivariate analysis using the same 

prognostic model. After a stepwise backwards logistic regression, only T-stage (p=.01), 

grade (p=.01), weight loss (p=.04) and age (p=.1) remained in the final model which 

significantly predicted PFS (p=.006). When T-stage was replaced by GTV in the same 

model, the final model (p=.003) now included VEGF (p=.009; rr=.4, 95%-CI [.2-.8] for 

VEGF levels below the median), gender (p=.05; rr=.4, 95%-CI [.2-1] for female gender) 

and GTV (p=.001; rr=3.4, 95%-CI [1.7-7.1] for GTV above the median).  

I then evaluated baseline CAIX plasma levels using the same prognostic model and found 

that it was not significant (p=.71) while age (p=.06), weight loss (p=.03), grade (p=.001) 

and T-stage (p=.001) significantly predicted OS in the final model (p<.0001). 

 

Table 10. Multivariate Cox regression model for overall survival in curative-

intent NSCLC M0 patients (n=61)

Variable Compared Subject Hazard 95%-CI p

groups group1 ratio2

VEGF above vs. below .4 .2-.7 .004

below median median

GTV3 above vs. above 4.9 2.3-10.4 <.0001

below median median

gender male vs. female female .4 .2-.9 .03

weight loss yes vs. no yes 2 .9-4.2 .07
1
 discriminated or favored subgroup  

2
 reflected in increased (>1) or reduced (<1) ri sk of death

3 gross  tumor volume  

 

Exchanging T-stage by GTV changed the final model (p=<.0001) which then only 

consisted of grade (p=.04) and GTV (p=.001). 

For PFS, similar results were found: the baseline prognostic model which initially included 

CAIX plasma levels, age, gender, weight loss, anemia, T-stage, N-stage, grade and FeV1 

consisted of age (p=.08), weight loss (p=.06), grade (p=.02) and T-stage (p=.01) after the 

logistic regression (p=.009) while CAIX remained insignificant (p=.6).  

Replacing T-stage by GTV resulted in a final model for PFS (p=.007) which only contained 

GTV as an independent predictor for PFS (p=.009; rr=2.2, 95%-CI [1.2-4.1] for GTV higher 

than the median). 
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4.5.4 Combination of OPN, CAIX and VEGF and their impact on OS and PFS 

Combined biomarker baseline (pre-therapeutic) plasma levels were evaluated for OS and 

PFS, i.e. the double-biomarker pairs OPN-VEGF, OPN-CAIX and VEGF-CAIX and the 

triple combination OPN-VEGF-CAIX. Each biomarker pair was analyzed according to the 

plasma concentration based on the median, yielding 4 subgroups for double-biomarker 

pairs and 6 subgroups for the triple marker combination (i.e. plasma levels of all markers 

above the median vs. plasma levels all biomarkers below the median vs. intermediate 

groups with one plasma marker below or above the median and vice versa). 

For the pairs OPN-VEGF (p=.62) and VEGF-CAIX (p=.98), no significant differences in OS 

were found in subgroups. OS however, significantly differed between subgroups for OPN-

CAIX: Median OS was 29.6 (16.7-42.5) month in the group with plasma levels of both 

biomarkers below the median, it was 26 (20.1-32) months in the group OPN high/CAIX low, 

15.7 (7.9-23.5) months in the group OPN low/CAIX high and 6.7 (0-12.7) months in the 

group with plasma levels of both markers above the median (p=.03). Accordingly, the 

relative risk to die was significantly different, figure 6a. Compared to patients with plasma 

levels of both markers below the median, patients whose plasma levels were higher than 

the median had a significantly increased risk of death (rr=1.3, 95%-CI [1.1-2.6], p=.04). 

The triple biomarker combination OPN-CAIX-VEGF showed a significantly different OS of 

subgroups (p=.02), figure 6b: Median OS was 41.3 (9.9-72.1) months in patients with low 

plasma levels of all three markers compared to 5.3 (4.5-6.1) months in patients with high 

plasma levels of all three biomarkers.  

 

Figure 6 Association of combined plasma marker levels with OS in n=61 curative-intent NSCLC M0 patients in Cox regression analysis.

6a Absolute pre-therapeutic plasma levels of the double biomarker combination OPN and CAIX (high  refers to plasma levels above the median, low  refers to plasma levels below the median).

6b Absolute pre-therapeutic plasma levels of the triple biomarker combination OPN, VEGF and CAIX (high  refers to plasma levels above the median, low  refers to plasma levels below the median).

8a 8b
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The latter patient group also had a significantly increased risk to die compared to the index 

group of patients with low levels of all markers (rr=2.7, 95%-CI [1.1-7.6], p=.04), table 11. 

Median PFS was not significantly different between subgroups for the double biomarker 

combination OPN-VEGF (p=.91) and VEGF-CAIX (p=.8). However, a trend (p=.07) for 

superior PFS in patients with low plasma levels of OPN-CAIX was noted: Median PFS was 

14.3 (9.7-18.8) month in patients with low plasma levels of both OPN and CAIX, it was 

10.2 (3-17.4) month in patients with high OPN/low CAIX plasma concentration, 5.6 (3.8-7.4) 

months in patients with high CAIX/low OPN plasma levels and 5.2 (2.7-7.8) months in 

patients with high plasma levels of both OPN and CAIX. Accordingly, the relative risk of 

death was increased in patients with high levels of both CAIX and OPN compared to 

patients with low plasma levels of both markers (rr=1.1, 95%-CI [.5-2.1], p=.09). 

 

Table 11. Overall survival (Kaplan-Meier analysis) and hazard ratio

(Cox proportional hazards model) in curative-intent

NSCLC M0 patients (n=61) according to plasma levels of

the triple biomarker combination

Plasma Median OS1 Hazard 95%-CI3 p 4

level (range) ratio2

all markers low5 41.3 (9.9-72.1) n/a7 n/a n/a

OPN high6, VEGF low, 17.5 (5.8-27.6) 1.5 .47-4.7 .5

CAIX low

OPN high, VEGF high, 22.9 (.9-45.1) .83 .32-2.2 .71

CAIX low

OPN high, VEGF low, 16 (6.7-24.6) 1.6 .52-5 .41

CAIX high

OPN low, VEGF high, 36.9 (0-110.4) .4 .08-1.8 .22

CAIX low

OPN low, VEGF low, 25.5 (4.5-46.4) .47 .14-1.6 .23

CAIX high

OPN low, VEGF high, 14.3 (4.1-24.4) 2.1 .74-5.8 .17

CAIX high

all markers high 5.3 (4.5-6.1) 2.7 1.1-7.6 .04
1 overa l l  surviva l  in months  2 reflecting the risk to die in comparison to the subgroup with

low levels  of a l l  three markers  as  the comparison group (va lues  >1 increased risk, <1 

reduced risk) 
3
 confidence interval  

4
 p-va lue corresponds  to hazard ratio which is  

referring to the comparison group with low levels  of a l l  three markers  5 below the median
6 pre-treatment (OPN t0), above the median 7 not appl icable  
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The triple biomarker combination OPN-VEGF-CAIX non-significantly impacted PFS which 

was highest in patients with low plasma concentration of all three biomarkers (41.3 [0-108] 

months) and lowest in patients with high plasma levels of OPN-VEGF-CAIX (4.9 [2.2-7.5] 

months, p=.11). The latter patients also had an elevated risk to die (rr=1.6, 95%-CI [.6-4.2], 

p=.15) compared to patients with low plasma levels of all three biomarkers. 

 

4.5.5 Combined analysis of baseline OPN, CAIX and VEGF plasma levels in a 

multivariate prognostic model 

Pre-treatment (baseline) plasma levels of OPN, VEGF and CAIX have been evaluated in 

combination for their impact on OS and PFS in multivariate analysis. 

At first, I included absolute baseline plasma levels of pre-therapeutic OPN (t0), CAIX and 

VEGF in the same prognostic model for OS as described above (i.e. containing age, 

gender, weight loss, FeV1, tumor grade, N-stage, T-stage and anemia). 

After stepwise logistic regression, T-stage (p<.0001), grade (p=.002), weight loss (p=.002), 

age (p=.08), gender (p=.08), anemia (p=.09), OPN (p=.02) and VEGF (p=.04) were 

independent predictors for OS in the final model (p<.0001), table 12.  

With T-stage replaced by GTV in the same baseline model, the final model which 

significantly predicted OS (p<.0001), included VEGF (p=.004), gender (p=.03), weight loss 

(p=.07) and GTV (p<.0001). 

For the evaluation of PFS, the initial model included the same clinicopathological 

parameters and in addition, OPN t0, CAIX and VEGF plasma levels as described above.  

After a stepwise logistic regression, only age (p=.09), weight loss (p=.05), grade (p=.03) 

and T-stage (p=.008) remained in the final model which significantly predicted PFS 

(p=.006) while VEGF (p=.2), CAIX (p=.7) and OPN (p=.2) were not significant.  

When T-stage was replaced by GTV in the same baseline model, the final model (p=.003) 

consisted of VEGF (rr=.4, 95%-CI [.2-.8] for plasma levels below the median, p=.009), 

gender (rr=.4, 95%-CI [.2-1.1] for female patients, p=.05) and GTV (rr=3.5, 95%-CI [1.7-7.1] 

for GTV above the median, p=.001). OPN and CAIX remained insignificant (p=.3 and .6). 

Since only the triple marker combination OPN-VEGF-CAIX and the double marker 

combination OPN-CAIX but not OPN-VEGF and VEGF-CAIX significantly impacted OS 

(trend for PFS) in the univariate analysis (4.5.4), only the combination OPN-CAIX and the 

triple combination have been evaluated in multivariate analysis for OS and PFS using the 

same prognostic model described above (containing anemia, FeV1, age, gender, T-stage, 

weight loss, tumor grade and N-stage). 
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Table 12. Multivariate Cox regression model for overall survival in curative-

intent NSCLC M0 patients (n=61)

Variable Compared Subject Hazard 95%-CI3 p

groups group1 ratio2

anemia yes vs. no yes 2 .9-4.3 .09

age above vs. above 1.9 .9-3.9 .08

below median median

Grade G1-2 vs. G1-2 .05 .007-.3 .002

G3-4

T-stage T1-2 vs. T3-4 3.7 1.1-14.4 <.0001

T3-4

VEGF above vs. below .4 .2-.9 .04

below median median

OPN t0 above vs. below .07 .5-.2 .02

below median median

gender male vs. female male 2.5 .9-7.4 .08

weight loss yes vs. no yes 4.8 01.08.2013 .002
1 discriminated or favored subgroup  2 reflected in increased (>1) or reduced (<1) ri sk of death
3
 confidence interval  

 

After a stepwise backward logistic regression, the final model which significantly predicted 

OS (p<.0001) consisted of anemia (p=.1), T-stage (p=.001) and OPN-CAIX (p=.002) which 

were all independent predictors for OS. When T-stage was replaced by GTV in the same 

model, the final model (p<.0001) contained anemia (p=.11), OPN-CAIX (p=.03) and GTV 

(p=.001). Replacing N-stage (i.e. N0, N1, N2, N3) by nodal status (N0 vs. N+) resulted in a 

change in the final model (p<.0001), now consisting of anemia (p=.08), OPN-CAIX (p=.03), 

GTV (p<.0001) and nodal status (p=.08), table 13, figure 7. 

 

Table 13. Multivariate Cox regression model for overall survival in curative-intent 

NSCLC M0 patients (n=61)

Variable Compared Subject Hazard 95%-CI3 p

groups group1 ratio2

anemia yes vs. no yes 1.9 .9-4.9 .08

GTV4 above vs. above 3.8 1.8-7.9 <.0001

below median median

nodal status N0 vs. N+ N0 .4 .2-1.1 .08

OPN t0-CAIX OPN-CAIX low  vs. OPN-CAIX 2.1 1.2-4.9 .03

OPN-CAIX high vs. high

OPN high/CAIX low

vs. OPN low/CAIX high
1
 discriminated or favored subgroup  

2
 reflected in increased (>1) or reduced (<1) ri sk of death

3 
confidence interval  

4 
gross  tumor volume  
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Figure 7 Association of combined plasma marker levels OPN and CAIX with OS in n=61 curative-

intent NSCLC M0 patients in multivariate Cox regression analysis.

Absolute pre-therapeutic plasma levels of the double biomarker combination OPN and

CAIX (high refers to plasma levels above the median, low refers to plasma levels

below the median).  

 

I then evaluated the prognostic impact of the triple biomarker combination OPN-VEGF-

CAIX in the same multivariate model for OS. 

After a stepwise backward logistic regression, the final model (p=.001) contained T-stage 

(p=.002), OPN-VEGF-CAIX (p=.005) and N-stage (p=.08).  

Compared to patients with low plasma levels of all three markers, those with high levels of 

OPN-VEGF-CAIX had a significantly elevated risk to die (rr=9.1, 95%-CI [1.1-19.3]) as had 

patients with higher T-stage (rr=3.3, 95%-CI [1.1-15.2] for T2; rr=3.9, 95%-CI [1.3-15.7] for 

T3-4). When T-stage was replaced by GTV in the same baseline model, the final model 

which significantly predicted PFS (p<.0001) then contained N-stage (p=.001, rr=.1, 95%-CI 

[.03-.39] for patients with N0 compared to N+), GTV (p<.0001, r=6.3, 95%-CI [2.6-15.3] for 
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patients with GTV higher than the median) and OPN-VEGF-CAIX (p=.006, rr=8.8, 95%-CI 

[1.7-44.9] for patients with high plasma levels of all three markers).    

For PFS, also the double and triple combination OPN-CAIX and OPN-VEGF-CAIX were 

evaluated in a multivariate analysis. 

If OPN-CAIX was integrated in the baseline model including age, gender, FeV1, weight 

loss, T-stage, N-stage, grade and anemia, the final model (p=.02) consisted of the 

independent prognostic factors T-stage (p=.04) and OPN-CAIX (p=.03).  

When T-stage was replaced by the GTV, the final model (p=.007) included GTV only 

(rr=2.2, 95%-CI [1.2-4.1], p=.009) while OPN-CAIX remained insignificant (p=.11). 

When the triple plasma marker combination OPN-VEGF-CAIX was assessed using the 

same baseline model, the final model (p=.06) contained T-stage (p=.05) and OPN-VEGF-

CAIX (p=.06). When T-stage was replaced by GTV in the same baseline model, the final 

model which significantly predicted PFS (p=.01) consisted of gender (p=.04), OPN-VEGF-

CAIX (p=.006) and GTV (p=.001). In this model, female patients had a lower risk to die 

(rr=.4, 95&-CI [.2-.9]) while patients with a GTV above the median had increased risk of 

death (rr=3.7, 95%-CI [1.7-8.2]. Patients whose OPN-VEGF-CAIX were lower than the 

median had a reduced risk of death by a factor .15 (95%-CI [.04-.58]).     

 

5. Discussion 

In the following section, the results of this work are discussed and interpreted against the 

background of the current literature and the limitations of this work are clarified. 

 

5.1 Influence of radiotherapy on the OPN plasma level course over time 

This is the first work to evaluate the serial detection of OPN plasma levels before, during 

and after radical radiotherapy for lung cancer [290,291]. 

I found that OPN plasma levels remained mostly constant during radiotherapy in both 

curative-intent (M0) NSCLC patients (from 761 ng/ml, t0 to 716 ng/ml, t2) and palliative-

intent (M1) NSCLC patients (from 1050 ng/ml, t0 to 1087 ng/ml, t1).  

In the entire patient collective, OPN plasma levels slightly decreased during treatment 

whereas a considerable decline in OPN plasma levels was noted after radiotherapy 

(median -113 ng/ml). However, in both the entire patient collective and in subgroups the 

aforementioned overall OPN plasma level changes remained insignificant, which is 

consistent with the findings of Snitcovsky et al. who reported pre- and post-treatment OPN 

plasma levels in patients with head-and-neck cancer undergoing radiochemotherapy not to 
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be significantly different [238]. Nevertheless, my results could indicate that in non-

metastasized patients, OPN plasma levels decrease during radiotherapy because the 

primary tumor, as the main source for (increased) OPN, shrinks in response to radiation 

while in metastasized patients, the failure to decrease of OPN levels may be related to 

their metastatic tumor load not being affected by radiation treatment [292,293]. This 

hypothesis is substantiated by my finding that OPN plasma levels not only further 

decreased after the end of radiotherapy but also that the most prominent OPN plasma 

level decrease could be observed after radiotherapy in NSCLC M0 patients (from 716 

ng/ml, t1 to 633 ng/ml, t2). This is in accordance with the results of Blasberg et al. who 

reported a significant reduction in OPN plasma levels after resection of early stage NSCLC 

[256]. In contrast to the work of Blasberg however, in my study, patients were diagnosed 

with advanced-stage NSCLC and treatment was radiotherapy. Assuming that the 

malignant tumor is the primary source of increased OPN plasma concentration, it is 

conceivable that an early and significant decrease in OPN plasma levels may be observed 

after surgical removal of the tumor whereas with radiotherapy, tumoricidal effects are not 

as instant since tumor shrinkage occurs over the whole treatment course and tumor 

regression continues after the end of radiotherapy. This is supported by my finding that 

most prominent OPN level changes were noted after radiotherapy and stands in line with 

the results of Blasberg et al. who also observed the most obvious plasma level changes 

when OPN was evaluated after treatment [256]. 

 

5.2 Baseline biomarker plasma levels and their interrelation 

Baseline OPN, VEGF and CAIX plasma levels in this study were 830 ng/ml, 90 pg/ml and 

95 pg/ml (entire patient collective). Comparison with marker plasma levels published 

elsewhere is difficult due to the plasma level dependency on the ELISA system used [264]. 

The biomarkers investigated in this study and OPN in particular, have been shown to be 

expressed in numerous human tissues where they are involved in various physiological 

and pathological processes including infections and sepsis [294,295], lung disease 

[295,296], vascular disease, inflammation, autoimmune [297] and cardiovascular diseases 

where OPN is crucially involved artherosclerotic plaque formation [200-202,298]. 

Evidently, OPN has many sources and can also be elevated in benign disease as well 

which is why this protein is considered a multi-modal mediator [296,298] and despite its 

crucial role in cancer [189,299] cannot be regarded as a cancer-specific marker, limiting 

the informative value of crude biomarker plasma levels alone.  



45 
 

Nevertheless, the majority of studies demonstrated that OPN, VEGF and CAIX expression 

and circulating levels are considerably increased in (lung) cancer patients distinguishing 

them from healthy controls [133,135,208,300-304].  

Despite the fact that clear cut-off values discriminating healthy individuals from cancer 

patients are not known so far [301], OPN expression and plasma levels have been 

suggested as a potential diagnostic tool in some human cancer entities [302-305]. 

In my work, only cancer patients were evaluated and a control group of healthy individuals 

for comparison of median OPN plasma levels was not used which can be regarded as a 

weak point. Since numerous studies demonstrated an overexpression of OPN in various 

human cancers, including lung cancer [206,232,300,306] and showed that OPN plasma 

levels are significantly elevated in cancer patients compared to healthy controls [233,307], 

scientific evidence is sufficient to dispense with a healthy control group in this study.  

Most of the patients in this study had additional comorbidities. Therefore an effect of the 

latter on overall biomarker plasma levels may not be excluded. It also cannot be answered 

by this work whether these effects are of clinical significance or not but since most 

published studies show that for instance OPN plasma levels are considerably elevated in 

cancer patients, the impact of benign comorbidities on overall OPN plasma levels in my 

patient collective might be rather of fluctuating nature and supposedly negligible small.  

In my study, I found a positive correlation between OPN plasma levels measured at 

different time points and baseline OPN, VEGF and CAIX were positively interrelated which 

strengthens the rationale for a co-detection of these biomarkers [308]. 

Phuoc et al. reported an inverse correlation between VEGF and CAIX in renal cell cancer 

patients [308]. Notably, I determined an inverse correlation between hemoglobin levels 

and both OPN (p=.08) and VEGF (p=.04) which could be indicative of a poor oxygenation 

status of patients [129,251,309,310]. In the context of a rather poorly oxygenated patient 

with a tumor featuring extensive hypoxia and neo-angiogenesis, reflected by increased 

overall plasma concentrations of OPN, VEGF and CAIX (HIF-1α mediated), my finding that 

OPN and VEGF were linearly correlated in curative-intent NSCLC M0 patients could be 

indicative of the cooperative role of these proteins in tumor growth [51,311-314] 

 

5.3 Pre-therapeutic plasma biomarker levels as indictors of advanced disease and 

biologically aggressive tumor behavior 

In this work, baseline (i.e. pre-treatment) plasma levels of OPN, VEGF and CAIX were 

evaluated for their association with clinicopathological patient and tumor characteristics. 
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OPN plasma levels were higher in male (p=.03) and in older patients (p=.03, entire patient 

collective and p=.09, NSCLC M0 cohort) which is in contrast to prior studies reporting no 

significant correlation between OPN plasma levels and age in cancer patients 

[239,240,256]. One study however, reported a significant age-dependent increase in OPN 

expression and serum levels which negatively impacted muscle regeneration in the 

context of inflammation [315].  

In my patient collective, median OPN plasma levels were significantly higher in patients 

with squamous-cell carcinoma compared to adenocarcinoma (p=.01) and a trend for 

higher OPN plasma levels in NSCLC was noted in comparison to SCLC histology (p=.07).  

A differential OPN expression in lung cancer was published before [232]: Zhang et al. 

reported a predominant expression of OPN in squamous-cell carcinoma (69%) and a lower 

expression in adenocarcinoma (21%); the lowest OPN expression rate was found in SCLC 

(11%) which is supportive of my results. 

High OPN plasma levels were associated with low hemoglobin levels (p=.08), poor lung 

function (p=.002 and .01), weight loss (p=.001), high tumor grade (p=.08), large tumor 

volume (GTV, p=.01 and .03), higher UICC-stage (p=.001 and .003) and T-stage (p=.02).  

VEGF plasma levels were also related to GTV (p=.002 and <.0001), T-stage (p=.07) and 

UICC-stage (p=.08) and elevated baseline CAIX plasma levels were found in patients with 

higher N-stage (p=.04, .06 and .004), grade (p=.09 and .06), T-stage (p=.04) and SCLC 

histology (p=.03) which is in accordance with the current literature reporting a significant 

association of increased VEGF with advanced tumor disease [301,316].  

Interestingly, Fuhrmann-Benzakein et al. reported baseline VEGF plasma levels to be 

significantly related to tumor metastasis [316] which is contrasting my results where 

baseline VEGF plasma levels were not significantly different in M0- and M1-stage patients. 

The aforementioned findings could in summa be indicative of a rapidly progressing, highly 

invasive tumor [311] with an aggressive and biologically unfavorable phenotype [317-320] 

which exhibits extensive hypoxia and angiogenesis and is accompanied by a significant 

paraneoplastic systemic inflammatory reaction which in turn drives (muscle) wasting and 

cachexia [321]. These observations are in accordance with current literature, confirming 

the association of elevated OPN plasma levels with characteristics of advanced disease in 

(lung) cancer patients [206,236,303,307,318,319,322,323].  

In my work, it is demonstrated that median OPN plasma levels before (t0), at the end (t1) 

and four weeks after completion of radiotherapy (t2) are significantly higher in 

metastasized (M1-stage) NSCLC patients compared to those with M0-stage (p<.0001). 
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These findings are concordant with the current literature, reporting significantly increased 

(plasma/tumor) OPN in metastatic patients which is of prognostic relevance in many 

human cancers including lung cancer [325-328], underlining the association of OPN with 

the metastatic and invasive cancer phenotype [40,222,224,292,303,307,328,329].   

 

5.4 The predictive power of the biomarkers OPN, VEGF and CAIX in the radiotherapy 

of NSCLC 

Apart from the prognostic quality of OPN, VEGF and CAIX plasma levels, their predictive 

power has been evaluated in this work. 

Previously, Poon et al. investigated a substantial number of studies on the prognostic and 

predictive effects of circulating VEGF in cancer patients. He found that apart from its 

association with advanced disease stage, which is in accordance with my own results (4.2 

and 5.3), VEGF might be useful in predicting tumor response after cancer therapy [330]. 

In the curative-intent (NSCLC M0) patient collective in my study, absolute biomarker 

plasma levels were not associated with tumor control and therapy response after 

radiotherapy but OPN plasma levels at the end of radiotherapy (t1) were significantly lower 

in responding patients who achieved complete or partial remission after radiotherapy in the 

entire patient collective (p=.002): Among non-responders, significantly more patients had 

elevated OPN t1 plasma levels when compared to responding patients (p=.01). 

No significant relation between absolute CAIX, VEGF and OPN plasma levels and TTP or 

FFLR in the entire or curative-intent patient cohort was found. However, NSCLC-M0 

patients with high OPN plasma levels at the end of radiotherapy (t1) had a significantly 

shorter TTP compared to patients with low OPN t1 plasma levels (p=.04). This finding 

agrees with current literature, suggesting a negative influence of elevated baseline OPN 

on tumor recurrence, freedom-from-relapse and event-free survival in cancer patients 

[209,323,331]. 

Interestingly, not post-treatment OPN plasma level changes (t1 to t2) but intra-therapeutic 

plasma level changes were significantly related to therapy response in the entire patient 

collective (p=.04). Decreasing OPN plasma levels were noted in responding patients as 

opposed to increasing plasma levels in non-responders. Analog findings could be obtained 

in curative-intent NSCLC M0 patients, however they remained a statistical trend (p=.05). 

Yet, cross-table analysis revealed a significantly higher number of patients with increasing 

OPN plasma levels during radiotherapy (t0 to t1) in the non-responders group (p=.03). 
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In the entire patient cohort, no association between relative OPN plasma level changes 

during or after radiotherapy and TTP was observed but increasing OPN plasma levels 

from the end of therapy (t1) to four weeks after radiotherapy (t2) significantly predicted 

shorter time to local progression (FFLP, p=.02 and .004) and were associated with an 

increased risk of relapse after radiotherapy (rr=2.4, p=.03; rr=2.6, p=.01).  

In curative-intent NSCLC M0 patients, TTP was lower in patients with increasing OPN 

plasma levels during but not after radiotherapy (p=.01). FFLR was almost double in 

patients with decreasing OPN plasma levels after radiotherapy compared to those with 

increasing OPN t1 to t2 plasma levels (p=.01 and p=.002). The latter patients also had a 

significantly elevated risk of local relapse (rr=3, p=.03 and rr=3.7, p=.007). 

To the author’s knowledge, this is the first study to suggest a potential predictive quality of 

OPN plasma levels and their changes after radiotherapy of NSCLC. My findings amend 

previously published data on the association of increased absolute, mostly pre-therapeutic 

OPN levels with reduced disease-/relapse-free survival and cancer progression [323].  

In the surgical therapy of NSCLC, Takenaka et al. reported preoperative OPN plasma 

levels to significantly predict prognosis [332] and Blasberg et al. suggested increasing 

OPN plasma levels after resection of early-stage NSCLC as indicators of tumor recurrence 

[256]. In head-and-neck cancer, both pre- and post-treatment OPN plasma levels 

significantly predicted tumor response after chemoradiotherapy [237].  

Hui et al. not only reported a significant association of baseline OPN plasma levels with 

tumor control after radiotherapy of nasopharyngeal carcinoma but also observed a more 

than doubled complete response rate in patients with low baseline OPN plasma levels 

compared to patients with high pre-treatment plasma OPN (88% vs. 40%, p=.009) [245]. 

However in my work, both the small patient numbers of compared subgroups and the 

insufficient follow-up data on tumor control which was available in 73% of curative-intent 

patients, needs to be considered when interpreting the results presented here.  

Therapy response evaluation in my work was restricted to a single time point 4-6 weeks 

after radiotherapy following the rationale that radiation-induced inflammation and edema in 

tumor-surrounding tissue disappears and tumor regression continues after the end of 

radiotherapy. Evaluation of tumor control at more than one time point after radiotherapy 

however, is critical since patients will have received widely differing treatments after the 

end of radiotherapy. Nevertheless, the predictive potential of absolute OPN plasma levels 

and their changes remains to be investigated by larger studies incorporating more 

measurement time points in order to validate the hypotheses generated by this study.  
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5.5 The prognostic value of serial plasma OPN detection in the curative-intent 

radiotherapy of NSCLC 

This is the first study to evaluate the prognostic impact of sequential detection of OPN 

plasma levels before, at the end of and four weeks after radiotherapy of lung cancer. 

In the chemotherapy of NSCLC, a significant association of baseline OPN plasma levels 

and both OS and PFS has been reported by several studies [239,240]. Interestingly, Mack 

et al. observed no association between baseline VEGF plasma levels and outcome in 

NSCLC patients treated with chemotherapy [239] despite the clinical significance of the 

cooperative role of OPN and VEGF in lung cancer biology [311,312].  

Also in other tumor entities such as head-and-neck cancer or malignant melanoma, 

elevated pre-treatment OPN plasma levels were linked to inferior prognosis, underlining 

the prognostic potential of serial detection of this biomarker [209,238,252,333]. 

Here, I found that in the entire patient collective but not in the curative-intent patient cohort, 

absolute OPN plasma levels before (t0), at the end of (t1) and four weeks after 

radiotherapy (t2) were significantly related to survival (OPN t0, t1 and t2: p=.04, .004 

and .02) with elevated plasma levels being associated with an increased risk of death (t0: 

rr=1.6, p=.04; t1: rr=1.9, p=.005 and t2: rr=1.8, p=.03). In the curative-intent NSCLC (M0) 

cohort, a trend for lower OS in patients with high post-treatment OPN plasma levels (t2) 

was noted (p=.08). In both the entire and the curative-intent NSCLC-M0 patient cohort, 

absolute baseline VEGF and CAIX plasma levels were not related to survival. 

Similar findings could be obtained for PFS: Both end-of-treatment (t1) OPN plasma levels 

and those measured four weeks after radiotherapy (t2) were significantly associated with 

tumor progression (p=.02 and .04) in the entire patient cohort while baseline (t0) plasma 

levels of OPN, VEGF and CAIX did not show a relationship with PFS as it was in the 

curative-intent NSCLC-M0 patient cohort. Unlike my own findings, current literature 

suggests a negative prognostic impact of elevated tumor expression and plasma levels of 

VEGF and CAIX in (lung) cancer [137,138,169,303,308]. 

In both the entire and curative-intent NSCLC (M0) patient cohort in my study, OPN plasma 

level changes during radiotherapy (t0 to t1) were not related to OS or PFS. However, a 

trend for reduced OS in patients with increasing post-treatment OPN plasma levels (t1 to 

t2) was noted in the entire (p=.07) and the curative-intent cohort (p=.07). A significant 

association between OPN plasma levels changes after radiotherapy (t1 to t2) and PFS 

was determined in both the entire (p=.03) and the curative-intent NSCLC (M0) cohort 

(p=.009). Patients with increasing OPN plasma levels after treatment had a reduced PFS 
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and an increased risk for tumor progression compared to patients with stable or falling 

OPN t1 to t2 plasma levels (rr=1.5, p=.05, entire patient collective; rr=1.9, p=.02).  

Since in my study, OS, PFS and MFS were best in patients with decreasing OPN plasma 

levels after radiotherapy, intermediate in patients with stable and worst in patients with 

increasing post-treatment OPN plasma levels, it can be assumed that while decreasing 

OPN plasma levels after radiotherapy indicate a major reduction in tumor volume (good 

response to radiotherapy), stable post-treatment OPN plasma levels might reflect residual 

or a less radiation-responsive tumor. Increasing OPN plasma levels after radiotherapy 

might be related to a largely radio-resistant, progressive tumor and / or growth of initially 

present but occult micrometastasis [334], translating into poor OS, PFS and MFS.  

Since OPN plasma levels have been shown to be associated with parameters of advanced 

disease as well as tumor burden in cancer patients and since patients with higher T-stage 

(p=.003 and .007), larger tumor volume (GTV) and lymphonodal spread (p=.01, .04 

and .08) in my study had significantly elevated OPN plasma levels in both the entire and 

the curative NSCLC M0 patient cohort, it needs to be discussed to what extent OPN 

plasma levels are affected by tumor volume and its changes during or after radiotherapy. 

Assumed that OPN merely is a surrogate of tumor burden, relative OPN plasma level 

changes would then rather reflect tumor volume changes during or after radiotherapy.  

In this case, decreasing OPN plasma levels after treatment might simply be an expression 

of tumor shrinkage, translating into a superior prognosis [335,336]. 

Therefore, a potential “tumor volume effect” on OPN plasma levels should be investigated 

in future studies in order to determine the correlation between OPN plasma level- and 

tumor volume changes during radiotherapy. Assessment of tumor volume (i.e. GTV) and 

its changes by integration of serial CT- or preferably PET imaging at the time of OPN 

readings during and after radiotherapy could prove to be a suitable approach. 

Nevertheless, multivariate analyses in my study demonstrate that baseline OPN plasma 

levels (t0, p=.02), end-of-treatment OPN (t1, p=.01) and relative OPN plasma level 

changes after radiotherapy (t1t2, p<.0001) remained significant predictors for OS 

independent from other prognostic factors such as GTV (p<.0001), T-stage (p<.0001) or N-

stage (p=.004, 4.5.1 and 4.5.2) which, in part, reflect tumor volume. Accordingly, post-

treatment OPN (t2, p=.02) and relative OPN plasma level changes after radiotherapy (t1t2, 

p=.007 and p=.004) were predictive for PFS beyond T-stage (p=.003 and .006) or GTV 

(p=.003), 4.5.2 and 4.5.1. 
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5.6 The prognostic role of serial OPN detection in tumor metastasis 

In the entire patient collective, MFS was considerably shorter in patients with elevated 

OPN plasma levels before (t0, p=.04), at the end of treatment (t1, p=.02) and four weeks 

after radiotherapy (t2, p=.07). The risk to die from metastasis during follow-up was also 

significantly increased in patients with high pre-treatment (rr=2.1, p=.05) and end-of-

treatment OPN plasma levels (rr=2.3, p=.02). In the curative-intent NSCLC patient cohort, 

absolute plasma levels of OPN, VEGF and CAIX were not associated with MFS. 

The current literature mostly evaluated absolute pre-treatment OPN plasma levels.  

Here, I report that increasing OPN plasma levels after radiotherapy (t1 to t2) translate into 

a reduced MFS compared to patients with stable or decreasing post-treatment OPN 

plasma levels (entire patient cohort, p=.04). Similar findings could be obtained for curative-

intent NSCLC (M0) patients: Patients with increasing post-treatment OPN plasma levels 

had a shorter MFS and an increased risk of death (rr=3.5, p=.02) than patients with 

decreasing (or stable) OPN plasma levels after therapy (p=.04 and p=.05). 

In summa, my findings that not only pre-treatment OPN was significantly higher in 

metastasized patients (5.3) but also that OPN levels after radiotherapy and particularly 

their increase was significantly associated with reduced MFS and the development of 

metastasis during follow-up, strengthens and amends current literature where OPN 

plasma levels have been shown to be associated with tumor metastasis in many human 

cancers [40,292,327,328,337]. In patients with hepatocellular carcinoma for instance, OPN 

overexpression was associated with early disease recurrence, occurrence of metastasis 

and poor survival [229]. Interestingly, the role of metastasis-promoting OPN in the context 

of tumor hypoxia has been demonstrated for many human cancers [338,339]. 

My results underline the crucial role of OPN in cancer progression and dissemination 

where an induction of this protein has been associated with the metastatic and invasive 

(lung) cancer phenotype [269,292,325,340-342]. Against this background, it needs to be 

discussed whether OPN plasma levels merely reflect metastatic tumor burden which is 

supported by the fact that in my study, elevated (pre-treatment) OPN plasma levels were 

significantly increased in M1-stage patients and that M0- and M1-stage patients did not 

significantly differ in tumor size (T stage) or nodal involvement (N stage). The prognostic 

effects of OPN might then rather be surrogative of metastatic tumor load [293,325]. 

However, I demonstrated that OPN plasma levels and particularly their changes were also 

of prognostic significance in non-metastasized (M0) curative-intent NSCLC patients (4.3, 

4.5 and 5.5). In this patient collective, increasing OPN plasma levels after radiotherapy 
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significantly correlated with poor prognosis, that is MFS (besides OS and PFS). Since the 

majority of (lung) cancer patients die as a result of distant metastasis, monitoring of OPN 

plasma levels after definitive radiotherapy of NSCLC may help to identify patients with a 

high risk for the development of metastasis and death [326,335], prompting more rigorous 

systemic therapy after radiotherapy. 

 

5.7 The use of a co-detection of the potential hypoxia-related proteins OPN, CAIX 

and VEGF for a plasma hypoxia score in the curative-intended radiotherapy of 

NSCLC   

With respect to the intricacy of tumor hypoxia and the fact that none of the studied hypoxia 

markers can be currently considered “gold standard” in the detection of tumor hypoxia or a 

direct surrogate of the latter [69,160], a combination of hypoxia-related proteins could 

integrate different aspects of tumor hypoxia and hypothetically prove to be more robust in 

predicting prognosis than a single marker [65]. The association of tumor hypoxia with OPN 

and CAIX expression [161] and the cooperative role of OPN and VEGF in lung cancer 

[311,343] further support the hypothesis that OPN (together with other hypoxia-related 

proteins [344]), might be a potential predictor of clinically significant tumor hypoxia [249]. 

In the literature, there is solid evidence for a relation of OPN, VEGF and CAIX with 

prognosis in (lung) cancer patients undergoing treatment [130,137,138,169,208,301,323, 

345-347]. Yet, most of these studies were single marker based and investigated the 

prognostic value of baseline circulating biomarkers in surgery or chemotherapy of cancer 

[140,238,246]. Thus, equivalent data for the radiotherapy of NSCLC, particularly the 

prognostic effect of a co-detection of the aforementioned biomarkers, is still missing [348].  

In my study, unlike OPN, baseline VEGF and CAIX plasma levels were not related to OS, 

PFS or MFS in univariate analysis (entire and curative-intent NSCLC cohort).  

However, when I evaluated baseline VEGF and CAIX plasma levels in multivariate 

analysis, I found that VEGF (and OPN) but not CAIX significantly predicted OS and PFS 

(p=.004 and .009) independent from GTV (p<.0001 and .001) and other prognostic factors 

(4.5.3). One explanation for the lack of a significant association of VEGF and CAIX with 

prognosis in my study could be the limited patient number of compared subgroups. This is 

underlined by my finding that VEGF and CAIX trended to be related to prognosis and 

suggests that significant results could be obtained in studies with higher patient numbers.   

The rationale for a co-detection of baseline plasma levels of OPN, VEGF and CAIX is 

based on their cooperative role in cancer progression such as tumor neo-vascularization 
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[256,349,311] which is of clinical importance [119] on the one hand and on the correlation 

of the biomarkers reported in this study (4.1) on the other hand. Additional support for a 

combination of the aforementioned biomarkers comes from the fact that each single 

marker has been related to prognosis in cancer patients in the literature previously.  

I assumed that co-detection of the aforementioned biomarkers could provide additional 

prognostic information, augmenting the prognostic value of a single biomarker in the 

curative-intent radiotherapy of NSCLC. My results show that when plasma levels of OPN 

and CAIX were combined, the double marker combination had an increased prognostic 

effect with elevated plasma levels of both biomarkers being associated with a significantly 

increased risk of death (4.5.4). The prognostic effect was more pronounced when all three 

markers were combined, yielding a median OS of 41 months in patients with low 

compared to 5 months in patients with high plasma levels of all three markers (4.5.4). 

In the multivariate analysis, combined plasma levels of OPN-CAIX and also the triple 

biomarker combination OPN-VEGF-CAIX significantly predicted OS and PFS independent 

from know prognostic factors such as T-stage, N-stage or GTV (4.5.5). 

These findings support the hypothesis that the prognostic effect of a co-detection of the 

studied biomarkers could be superior and more robust than single biomarker evaluation 

which is strengthened by the literature [350]. Phuoc et al. for instance reported a superior 

prognostic impact of the co-expression of VEGF and CAIX in renal cell carcinoma [308].  

The combined evaluation of OPN, VEGF and CAIX is further supported by the clinically 

relevant relation between VEGF and CAIX as downstream effectors of HIF 1α in the 

cellular response to hypoxia on the one hand [120,351] and by the cooperative role of 

OPN and VEGF in tumor growth and neo-angiogenesis [51,312-314] on the other hand. 

Interestingly, co-expression of OPN and VEGF has been suggested as a surrogate marker 

of tumor recovery after radiotherapy [313,314] and also for VEGF and CAIX, co-

expression has been linked to response after radiotherapy of NSCLC. 

These observations are supported by my findings that both OPN and VEGF were 

positively correlated and that OPN plasma level increases after radiotherapy were related 

to reduced OS and PFS [311] which could indicate remaining or recurrent disease after 

radiotherapy with the underlying cause being hypoxic radiation resistance of the tumor. 

Thus, my data in principle justifies further combined evaluation of the hypoxia-related 

proteins OPN, VEGF and CAIX, for instance as part of an individual prognostic hypoxia 

patient profile, i.e. “plasma hypoxia score” [344,352], helping to identify patients with 

significant hypoxic tumor burden before the start of radiotherapy.   
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Incorporating other methods of detection of clinically significant tumor hypoxia such as 

exogeneous hypoxia markers [353] or hypoxia-specific imaging [354-356] could enhance 

the validity of this approach by integrating different aspects of hypoxia such as dynamic 

changes in tumor oxygenation and re-oxygenation, monitored for instance by sequential F-

MISO-PET readings [357,358]. Ultimately, this could provide useful information for 

selecting patients with largely hypoxic tumors for anti-hypoxic treatment approaches [359] 

which may be available in future [184,270,360].  

Numerous studies for instance reported first promising results in targeting OPN and other 

hypoxia-related proteins, thereby opening up a therapeutic perspective besides the 

potential prognostic and predictive role of these biomarkers [40,269,361]. Kou et al. for 

instance followed an immunologic approach by developing a bi-specific antibody targeting 

both OPN and VEGF which resulted in a significant reduction of tumor volume, 

microvessel density and metastatic lesions in hepatocellular carcinoma patients [274].  

 

5.8 Methodological limitations of this work 

When interpreting the results of this work, all limitations inherent to such prospective study 

design have to be considered. The overall patient number (n=97) and particularly the 

number of patients in the respective subgroups was small which underlines the exploratory 

character of this work and limits the conclusions made when interpreting my results.  

The basis of this study was a heterogeneous patient collective consisting of non-

metastasized (M0) patients treated with curative-, metastasized (M1) patients treated with 

palliative intent (NSCLC and SCLC). This implies that both histology and treatment 

concepts (radiation dose, anti-cancer agents) were different among patients and 

additionally, some patients (even though constituting only a minor part of the entire patient 

collective) previously received induction chemotherapy. To reduce this bias and to ensure 

adequate patient collective homogeneity for statistical analysis, patient subgroups have 

been formed according to histology and M-status, yielding three subgroups (NSCLC-M0, 

curative-intent cohort; NSCLC-M1, palliative-intent cohort and SCLC cohort) which have 

been evaluated separately. Increasing patient cohort homogeneity however, comes at the 

cost of smaller patient numbers in subgroups. 

The impact of biomarker plasma levels on the clinical endpoints OS, PFS, FFLR, tumor 

control, MFS and TTP has been evaluated in univariate and multivariate analysis which 

have been restricted to the entire patient collective (to ensure endpoint evaluation in a 

patient collective with adequate size) and the curative-intent NSCLC M0 patient cohort.  
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The latter patient cohort constitutes the main subject group of survival and clinical outcome 

analyses in this study since NSCLC M0-stage patients are of particular interest in radiation 

oncology for their curative treatment chance. Thus, both prognostic and predictive 

biomarkers are of considerable value in these patients. 

Due to the limited value of prognostic biomarkers in palliative-intent patients (poor 

prognosis and survival time, absence of indication for curative-intent treatment), the latter 

have been excluded from endpoint analyses. Also the SCLC cohort has been excluded 

from analysis of the association of baseline protein levels with clinical patient 

characteristics and survival analysis for the small patient number in this group (n=16).  

While follow-up time (median 41 months in surviving patients) and integrity of survival data 

in this study was solid to allow adequate conclusions on the impact of biomarker plasma 

levels on patient survival, clinical data on therapy response, tumor progression and 

remission was rather incomplete. Since the patient number with available follow-up data 

on tumor control was small, particularly the evaluation of the endpoints TTP and FFLR is 

critical. In addition, re-staging and therapy response evaluation after radiotherapy was 

carried out in a decentralized manner. Hospitals taking over patients for follow-up care 

after radiotherapy were responsible for imaging studies and their assessment (without 

central review). This may have compromised standardization of tumor response evaluation.    

The primary endpoint cancer(disease)-specific survival was not analyzed in this work 

because in  most patients, death was clearly cancer-related so that overall and cancer-

specific survival can be regarded as almost identical in the studied patient collective. 

The statistical concern may be raised that the number of statistical tests relative to the 

number of events might imply a risk of mass significance. As part of the present 

prospective pilot study, I evaluated a number of clinical factors and biomarkers in an 

exploratory session in univariate analysis. In the multivariate analysis, the number of 

factors entered into the model appears adequate with regard to the number of events. 

However, future studies will require stricter biometric study planning. 

In order to evaluate the prognostic impact of relative OPN plasma level changes over time, 

patients have been grouped into increasing vs. decreasing (vs. stable) intra- or post-

therapeutic OPN plasma levels. In future studies, patient subgroups with falling or rising 

OPN plasma levels during or after radiotherapy could also be further classified by OPN 

velocity [362]. In this work, it is demonstrated that OPN plasma level changes over time, 

particularly in the post-radiotherapy time window, possess prognostic and maybe 

predictive quality. At this point, it is difficult to envision how to individualize radio-oncologic 
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therapies according to post-radiotherapy biomarker plasma level changes. However, not 

only OPN plasma level changes during and after radiotherapy but also absolute pre-

treatment plasma levels were evaluated. While (high) baseline OPN levels before 

radiotherapy (indicating a hypoxic, aggressive and radioresistant cancer phenotype) could 

influence radiotherapy individualization by means such as hypoxic modification during 

radiotherapy, which might be available in future, post-treatment OPN level changes 

(identifying patients with high risk for death and relapse after radiotherapy) could help in 

the decision-making process for ongoing (intensified) cancer treatment after radiotherapy. 

As far as biomarker plasma samples are concerned, the number of both baseline samples 

which were acquired before the start of radiotherapy and of those obtained at the end of 

radiotherapy was sufficient whereas a total of 69 patients (71%) had OPN plasma samples 

four weeks after radiotherapy. The reduced number of OPN t2 plasma samples can be 

explained by logistic problems and loss of follow-up in some patients which limits the 

prognostic conclusions based on post-treatment OPN plasma levels.   

Another constraining factor is the fact that after the end of radiotherapy, patients will have 

received widely differing therapies according to their tumor situation during follow-up. 

However, since the last measurement time point for OPN was 4 weeks after radiotherapy, 

the majority of patients probably will not yet have started with ongoing consolidation 

treatment, especially because treatment response evaluation by post-radiotherapy imaging 

(i.e. re-staging) usually is not performed earlier than 4-6 weeks after radiotherapy. 

In summa, further larger, preferably multi-center prospective studies utilizing pre-hoc 

biometric study planning are needed to validate the results of this study which was a 

hypothesis-generating study. Additionally, verification of the results and corroboration of 

the hypotheses generated by this study in an independent data set would be desirable.  

 

6. Conclusions 

My results suggest that baseline plasma levels of OPN and the other investigated 

biomarkers reflect tumor biology and disease extent. Here, increased plasma levels could 

indicate an aggressive, biologically unfavorable and invasive cancer phenotype, advanced 

disease stage and extensive hypoxia [46]. Consequently, detection of baseline biomarker 

levels before radiotherapy might help selecting patients with radioresistant tumors who 

need individualized and more rigorous treatment, i.e. radiation dose escalation in hypoxic 

tumor areas or hypoxia modification using hypoxic radiosensitizers [252].  



57 
 

In contrast, relative OPN plasma level changes during and especially after radiotherapy 

provide additional prognostic information beyond T-stage, N-stage and tumor volume 

(GTV). Increasing post-treatment plasma levels are associated with poor OS, PFS and 

MFS which could be indicative of tumor persistence or recurrence and a high risk for the 

development of distant disease spread (i.e. metastasis) after radiotherapy [227,325].  

Thus, monitoring OPN plasma levels during and after radiotherapy could be potentially 

useful in the decision-making process for consolidating treatment after definitive 

radiotherapy of NSCLC in order to ultimately reduce both death and relapse rates [256]. 
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Theses 

 

1. OPN plasma levels do not significantly change during radiotherapy, but notably 

(even though not significantly) decrease after radical radiotherapy of NSCLC. 

2. OPN plasma levels before, during and after radiotherapy are interrelated, OPN 

baseline plasma levels are positively correlated with CAIX and VEGF in NSCLC 

M0 patients and baseline VEGF and OPN inversely correlate with hemoglobin. 

3. Baseline OPN plasma levels are associated with age, gender, poor patient 

oxygenation (FeV1, hemoglobin) and clinical parameters indicating advanced / 

aggressive tumor disease (T-stage, weight loss); OPN plasma levels at all 

measurement time points are significantly elevated in metastasized NSCLC 

patients (compared to M0-stage patients). 

4. Baseline OPN, VEGF and CAIX plasma levels are related to tumor burden (i.e. 

metastasis, tumor volume/GTV, N-stage) and absolute OPN (but not CAIX and 

VEGF) plasma levels before, at the end and 4 weeks after radiotherapy predict 

MFS as do OPN plasma level changes after radical radiotherapy of NSCLC.  

5. Baseline biomarker plasma levels are not associated with tumor control and 

therapy response after radiotherapy but end-of-treatment OPN plasma levels 

predict tumor response and time to progression in NSCLC M0 patients. 

6. Decreasing OPN plasma levels during radiotherapy predict superior therapy 

response and time to progression, post-treatment OPN plasma level changes 

are related to tumor control (freedom from local relapse) in NSCLC M0 patients. 

7. Absolute OPN plasma levels before, 4 weeks after radiotherapy and relative 

OPN plasma level changes after therapy remain independent predictors for OS 

after radical radiotherapy of NSCLC. 

8. Baseline VEGF, CAIX plasma levels and OPN plasma level changes during 

radiotherapy are not associated with OS or PFS (univariate analysis).   

9. OPN plasma levels at the end, 4 weeks after radiotherapy and post-treatment 

OPN plasma level changes predict PFS after radical radiotherapy of NSCLC. 

10. The prognostic effect of a single biomarker is augmented by combining 

biomarkers with the triple marker combination OPN-VEGF-CAIX showing the 

most prominent impact on prognosis (OS / PFS) in both univariate and 

multivariate analysis.
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