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Abstract/Kurzfassung

Cooperation of quantum mechanics and many-body physics stipulates enormous complex-
ity and diversity of systems in Materials Science. Mean-field theories capture some of the
electronic properties, whereas the whole complexity is encoded in the notion of electronic
correlations. With the advent of ultrafast lasers and nanoscale physics we see the manifesta-
tion of electronic correlations in molecular transport, nanoelectronics, attosecond phenom-
ena. In this thesis I view the many-body quantum systems from four diffrerent, but related
angles: equilibrium and nonequilibrium Green’s function theory, exact diagonalization and
related quantum chemical approaches, and semi-classical approaches associated with mean-
field theories. Important innovations presented here are at the merger of several formalisms:
equilibrium methods are used to get a glimpse into nonequilibrium dynamics of excitations
in Fermi liquids, or with the help of quantum chemistry methods, decay of excitations in
molecular systems is described. Vice versa, nonequilibrium Green’s function approach pro-
vides a way to construct conserving and positive definite approximations to the equilibrium
spectral properties, and complements the description of light-matter interaction covering
phenomena of photoemission and photoabsorption. For larger systems, the semi-classical
response to electron-magnetic fields is derived starting from the corresponding microscopic
expressions for linear and non-linear susceptibilities.

Der Komplexität und Diversität der für Materialwissenschaften relevanten Systeme liegt
das Zusammenspiel von Quantenmechanik und Vielteilchenphysik zugrunde. Molekularfeld-
theorien sind in der Lage einige elektronische Eigenschaften zu beschreiben, währendessen
die volle Komplexität im Begriff der elektronischen Korrelation enthalten ist. Mit dem Auf-
kommen von ultraschnellen Lasern und der Nanotechnologie hat man die Manifestation
von elektronischen Korrelationen im Ladungstransport durch einzelene Moleküle, in der
Nanoelektronik und in Phenomenen auf der Attosekunden Zeitskala erlebt. In dieser Ar-
beit betrachte ich Vielteilchen-Quantensysteme unter vier verschiedenen, jedoch nicht strikt
trennbaren, Gesichtspunkten: Theorie der Green’schen Funktionen im Gleich- und Nicht-
gleichgewicht, exakte Diagonalisierung und verwandte Methoden aus der Quantenchemie,
und semiklassische Ansätze mit den dazugehörigen Molekularfeldtheorien. Die wichtigen
Fortschritte, die in dieser Arbeit vorgestellt werden, stellen die Kombination mehrerer For-
malismen dar: Gleichgewichtsmethoden erlauben einen Einblick in die Nichtsgleichtsdyna-
mik der Anregungen in Fermiflüssigkeiten, während der Zerfall von Anregungen in moleku-
laren Systemen mithilfe von Quantenchemie beschrieben wird. Auf der anderen Seite lassen
sich Näherungen, die Erhaltungssätze und positive Definitheit erfüllen, durch den Nicht-
gleichgewichtsformalismus der Green’schen Funktionen konstruieren. Der Formalismus
ergänzt die Beschreibung von Licht-Materie-Wechselwirkung, die die Phenomene von Pho-
toemission und Photoabsorption umfasst. Für größere Systeme wird die semiklassische
Reaktion auf das Einwirken elektromagnetischer Felder von den entsprechenden mikrosko-
pischen Ausdrücken für die linearen und nichtlinearen Suszeptibilitäten hergeleitet.
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Preface

Clear notations make formulas recognizable and improve comprehension of scientific texts.
Therefore, in the preparation of this work I devoted a special attention to make notations
consistent across chapters and sections. Consider, for instance, the density-density response
function 𝜒 and its irreducible part 𝑃 related by 𝜒 = 𝑃 + 𝑃𝑣𝜒 . The irreducible part is
denoted as 𝜒𝑛𝑛 by Giuliani and Vignale [1], as 𝜒sc by Nozières and Pines [2], as𝑄 by Gross,
Runge and Heinonen [3], and as 𝑃 by Hedin [4]. I follow the latter approach here. On
the other hand, writing the random phase approximation in the form 𝜒 = 𝜒 (0) + 𝜒 (0)𝑣𝜒
emphasizes the fact that the Lindhard function (in 3d) 𝜒 (0) is the zeroth order approximation
to both 𝜒 and 𝑃 . This seems to be logical as in this way the optical form of the exact relation
𝜒 = 𝜒 (0) +𝜒 (0)(𝑣+𝑓xc)𝜒 from the time-dependent density functional theory and the Hedin
equation 𝑊 = 𝑣 + 𝑣𝑃𝑊 is preserved.

Important well established facts that do not require a proof are presented in shaded boxes.
They are included to make the exposition self-contained. Important new results are framed.
I tried to provide the full logical way to obtain them starting from basic principles. Math-
ematical and numerical details are omitted unless they are essential for the comprehension
of the idea. They can be found in the appended papers cited in bold face.

I am pleased to express my gratitude for insightful scientific discussions to Dr. Torsten
Andersen, Prof. Jamal Berakdar, Dr. Levan Chotorlishvili, Prof. Vitalii Dugaev, Prof. Eber-
hard K. U. Gross, Prof. Wolfgang Hübner, Prof. Chenglong Jia, Dr. Oleg Kidun, Prof. Jürgen
Kirschner, Dr. Georgios Lefkidis, Dr. Andrea Marini, Dr. Andriy Marko, Prof. Luca Guido
Molinari, Dr. Andrey Moskalenko, Dr. Oleksandr Ney, Dr. George Pal, Prof. A. Ravi P. Rau,
Prof. Angel Rubio, Dr. Khompat Satitkovitchai, Dr. Nicholas Sedlmayr, Prof. Hans Christian
Schneider, Dr. Frank Oliver Schumann, Michael Schüler, Stefan Stagraczyński, Dr. Gian-
luca Stefanucci, Dr. Alexander Sukhov, Dr. Anna-Maija Uimonen, Prof. Claudio Verdozzi,
Prof. Robert van Leeuwen, Jonas Wätzel, Prof. Wolf Widdra.

I would like to express my special thanks to Prof. Jamal Berakdar and Prof. Wolfgang
Hübner, Prof. Robert van Leeuwen, Prof. Angel Rubio, Prof. Hans Christian Schneider for
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and my wife Khompat, for their loving support, patience and understanding during the prepa-
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This work is dedicated to the memory of “Heavenly Hundred” killed during sad events in
the fall and winter of 2013-2014, to those who died for the freedom of my country and to a
large number of innocent ones.
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1 Introduction

Beginning of the twentieth century was the golden time of the "new physics". At the birth of
quantum mechanics the discoveries were coming at almost monthly pace. Soon after Erwin
Schrödinger in 1926 published equation baring his name, Walter Heitler and Fritz London
came up with the first quantum mechanical calculation of a many-particle system — the
hydrogen molecule. When they started their calculation they had to "struggle with the proper
formulation of the Pauli principle", which was known at that time as "a two-valuedness not
describable classically" [5], but no mathematical formulation had yet been given. 1 So, they
wrote the two-electron wave-function as a linear combination

Ψ(1, 2) = 𝑐1𝜓𝑎(1)𝜓𝑏(2) + 𝑐2𝜓𝑎(2)𝜓𝑏(1),

without making any assumption upon the value of coefficients and found two possibilities
𝑐1∕𝑐2 = ±1. The energy difference of between these two states being proportional to the
exchange integral ∬ 𝜓𝑎(1)𝜓𝑏(2)𝑣(1, 2)𝜓𝑎(2)𝜓𝑏(1) 𝑑3𝑟1 𝑑3𝑟2.

The paper was very positively accepted and is truly considered as the birth of quantum
chemistry [7]. Soon thereafter Paul A. M. Dirac in the introduction to his paper [8] pro-
claimed: "the underlying physical laws necessary for the mathematical theory of a large part
of physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be solu-
ble". By no means this declaration slowed down the pace as already in 1930 Vladimir Fock
improved the "self-consistent field" approximation of Douglas R. Hartree [9, 10]. Because
the whole bunch of one-particle states are determined by a single potential, the resulting
equations are even more simple to implement than the Hartree’s equation. The high price
due to the non-locality remained to be paid. It was so until Robert T. Sharp and George
K. Horton [11] found a way to construct a local potential minimizing the Hartree-Fock
Hamiltonian establishing, thus, the optimized effective potential method.

These examples illustrate one important philosophical concept: the reductionism. In
order to describe a complicated system one reduces it to a smaller set of properties to focus
on the essential. Already for quite small systems the many-body wave-functions are too
complex and it is required to map them onto a more elemental object such as the one-particle
density in order to make the numerical treatment feasible. Fortunately, we do not loose any
information, as Pierre C. Hohenberg and Walter Kohn proved mathematically [12]. The idea
was further corroborated by Walter Kohn and Lu Jeu Sham in the 1965 [13] in the form of
the density functional theory which is now the cornerstone of the computational physics and
chemistry.

Application of the Green’s function approach to the the many-body physics is another
typical example of the reductionism: almost all information about the observables of a many-

1“Aber es ist wünschenswert, sich wenigstens darüber klar zu werden, wie diese merkwürdige Zwei-
deutigkeit mathematisch zustande kommt” [6].
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1. Introduction

body system is contained in one and two-particle propagators. Here, a lot of input came from
particle physics after the observation that the Feynman diagram technique is equally well
applicable to the scattering problems in high-energy physics and to electrons in solids under
very normal conditions. In 1961 Julian Schwinger published a paper [14] on the Brownian
motion of a quantum oscillator. The main message of his highly mathematical work was,
however, more general: to give an action principle that would allow to compute expectation
values in the time-dependent formulation of quantum mechanics. In fact, he invented what
is now commonly known as the Keldysh contour [15], the basic concept of nonequilibrium
Green’s function theory.

"More is different" is a philosophical paper of Philip W. Anderson [16] where he refutes
mindless application of the reductionist hypothesis to science in general: the method de-
velopment is not more important than the method application. And many-body physics is
not a mere application of the Green’s function methods. Phenomenology and models devel-
opment are as productive as designing methods for their solution. The notion of the Fermi
liquid introduced by Lev Landau [17] was the reflection of an idea that elemental excitations
in the interacting electron gas — the quasiparticles — act like non-interacting particles. How
good is this approximation is possible to judge only by contrasting them with excitations in
one-dimensional systems: in Luttinger liquids the elemental excitations are given by spin
and charge density waves.

The theory of many-body systems is rich on beautiful models and elegant solutions [18].
In 1967 Philip Anderson realized that photoemission from a deep core state leads to the or-
thogonality catastrophe [19]: zero overlap of many-body states before and after the photon
absorption event. Soon thereafter a brilliant, but mathematically very involved, solution
by Philippe Nozières and Cyrano De Dominicis [20] demonstrated the power of Green’s
function approach. Interestingly, two more solutions using the so-called parquet approxima-
tion and the bosonization technique are known. They are now standard topics of books on
strongly correlated systems [21].

It is rather unexpected that "less correlated systems", typically represented by metals and
semiconductors are less susceptible to analytic methods. In 1965 Lars Hedin formulated a
system of integral equations [4] relating the one and two-particle Green’s functions and
providing a systematic way to improve upon the mean field theories. The lowest order ap-
proximation, in which the electron self-energy is given as a product of the electron Green’s
function and the screened Coulomb interaction (the so called 𝐺𝑊 approximation [22]),
demonstrated a high potential in improving results of the density functional theory. How-
ever, it is extremely difficult to go beyond.

Going "beyond" is the main topic of this work. The zero-temperature formalism is com-
mon to all the topics covered here and the emphasis is given to the time-evolution aspect of
many-body problems. It is tackled using both the equilibrium (Chapters 2 and 3) and non-
equilibrium (Chapter 4) approaches. Chapter 5 is devoted to the semi-classical and classical
descriptions of large but finite systems, again, from the many-body perspective.
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2 Equilibrium formalism

A naive thinking suggests that any mathematically valid perturbation theory should provide
an expansion of a desired quantity such as total energy or the Green’s function in terms of
some small parameter. Furthermore, one expects that the perturbative expansion is a power
series in terms of this parameter. It is often mentioned in this context that the fine-structure
constant 𝛼 ≈ 1∕137.036 is a small parameter for the perturbative expansions of quantum
electrodynamics. Or by writing the Coulomb interaction in the homogeneous electron gas
(HEG) in the form 𝛼𝑟𝑠∕𝑟 one expects to treat it as a small perturbation1.

Fortunately, the nature is not that simple. In fact, none of the statements is valid. From
mathematical point of view perturbative expansions are asymptotic expansions which often
means that the radius of convergence of a series is zero at each point. It is known, for
example, that the correlation energy of HEG in the high density limit 𝑟𝑠 ≪ 1 can be written
in the form 𝑎0 + 𝑎1 ln 𝑟𝑠 + 𝑎2𝑟𝑠 ln 𝑟𝑠 + 𝑎3𝑟𝑠 + (𝑟2𝑠 ln 𝑟𝑠). In the low density limit the gas
undergoes a phase transition to the Wigner crystal and the total energy is 𝐴1𝑟−1𝑠 +𝐴2𝑟

−3∕2
𝑠 +

𝐴3𝑟−2𝑠 + 𝐴4𝑟
−5∕2
𝑠 + (𝑟−3𝑠 ). Clearly, these are non-analytic functions and, therefore, cannot

be represented in terms of power series2.
The expression for the weak-correlation limit ensues from the infinite re-summation of

certain classes of Feynman diagrams. The re-summations are often done by replacing the
bare propagators with the "dressed" ones. The dressed propagators are typically obtained as
solutions of some integral equations and already contain an infinite number of diagrams. In
fact, it is not only the single-particle propagators that can be dressed. The same approach
is applicable to the interparticle interaction, which can also be dressed or "screened". The
interaction is of bosonic nature, and therefore the screening follows from the dressing of
the particle-hole propagator. There is no indication that the "dressing procedure" cannot be
implemented for other correlators.

Functional differentiation is a very natural tool to represent these relations. After a short
introduction of functional relations between the propagators (Sec.2.1) I present exact an-
alytical results for the enumeration of Feynman diagrams for these quantities in Sec. 2.2.
Diagrammatic solution of the 𝑆-model is given in Sec. 2.3. Finally, in the discourse of
Sec. 2.4 it is shown how non-analytic terms in the short time-limit of the electron spectral
function follow from the re-summation of diagrams using the cumulant expansion technique.

1Here, 𝛼 has a different meaning being just a numerical constant (4∕(9𝜋))1∕3 and the Seitz radius 𝑟𝑠 is a
standard measure of the electron density.

2The 𝑎0 + 𝑎1 ln 𝑟𝑠 terms in high density limit were computed by Gell-Mann and Brueckner [23] by resum-
mation of all bubble diagrams, whereas the first coefficient of the energy of the Wigner crystal was calculated
by Fuchs [24].
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2. Equilibrium formalism

2.1 Hedin’s equations

Most many-body or field theory books derive perturbative expansions in terms of propa-
gators starting from the path integral formalism. On this way the Feynman diagrams are
introduced graphically and a set of rules is given allowing to transform these into analytical
expressions. There is an alternative approach where propagators are expressed in terms of
variational derivative of a certain functional with an advantage that various integral rela-
tions between them can readily be found. It was introduced in the arsenal of the condensed
matter physics through the work of Hedin [4] and a very pedagogical introduction is due
to Strinati [25]. There is a self-contained system of five variational equations describing
many-body physics of interacting fermions:

Γ(12, 3) = 𝛿(12)𝛿(13) + 𝛿Σ(12)
𝛿𝑉 (3)

, (2.1a)

Σ(12) = 𝑖ℏ∫ 𝑊 (13)𝐺(14)Γ(42, 3)𝑑(34), (2.1b)

𝑃 (12) = −𝑖ℏ∫ 𝐺(23)𝐺(42)Γ(34, 1)𝑑(34), (2.1c)

𝛿𝐺(12)
𝛿𝑉 (3)

= ∫ 𝐺(14)𝐺(52)Γ(45, 3)𝑑(45), (2.1d)

𝛿𝑊 (12)
𝛿𝑉 (3)

= ∫ 𝑊 (14)𝑊 (52)𝛿𝑃 (45)
𝛿𝑉 (3)

𝑑(45), (2.1e)

where Γ(12, 3) is the vertex function, Σ(12) is the electron self-energy, 𝑃 (12) is the polar-
ization propagator, and 𝑉 (3) is the external [𝜑(3)] plus the induced field in the system. 3

All these quantities are functionally dependent on the external field and on the full electron
propagator 𝐺(12). By the use of chain rule

𝛿Σ(12)
𝛿𝑉 (3)

= ∫ 𝛿Σ(12)
𝛿𝐺(45)

𝛿𝐺(45)
𝛿𝑉 (3)

𝑑(45)

one arrives at the Bethe-Salpeter equation for the vertex function, and, analogically for the
screened interaction 𝑊 :

𝑊 (12) = 𝑣(12) + ∫ 𝑊 (13)𝑃 (34)𝑣(42)𝑑(34), (2.2a)

Γ(12, 3) = 𝛿(12)𝛿(13) + ∫ 𝛿Σ(12)
𝛿𝐺(45)

𝐺(46)𝐺(75)Γ(67, 3)𝑑(4567). (2.2b)

and the whole system is transformed into the system of Hedin’s equations. Setting for the
vertex function Γ = 𝛿(12)𝛿(13) leads to celebrated 𝐺𝑊 -approximation for the self-energy
and random phase approximation (RPA) for the screened interaction:

Σ(12) = 𝑖𝑊 (12)𝐺(12), 𝑃 (12) = −𝑖𝐺(21)𝐺(12). (2.3)

3For the rest of this chapter atomic units are used, i. e., 𝑒 = 𝑚𝑒 = ℏ = 1. 𝑖 = 1, 2,… stand for a collection
of space 𝐫𝑖, spin 𝜎𝑖 and time 𝑡𝑖 variables, i. e., 𝑖 ≡ (𝐫𝑖, 𝜎𝑖, 𝑡𝑖).
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Asymptotic expansions

3

−10.0
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−5.0−7.5 −2.5

Figure 2.1: The solution of Eq. (2.7) can be
represented in the following implicit form√
−𝑥 exp

[
1
2
(1+𝑥𝑦)2

𝑥

]
+
√

𝜋
2 erf

[
(1+𝑥𝑦)√

−2𝑥

]
= 𝐶 .

It is shown here for different values of 𝐶 .
The initial condition 𝑦(0) = 1 is satisfied
when 𝐶 =

√
𝜋∕2 (red curve).

2.2 Asymptotic expansions

The enumeration of Feynman diagrams for the electron propagator 𝐺(1, 2), the self-energy
operator Σ(1, 2), the effective potential 𝑊 (1, 2), the polarization 𝑃 (1, 2), and the vertex
function Γ(1; 2, 3) can be accomplished by writing Hedin’s equations in zero dimensions of
space-time where they transform into a set of ordinary differential equations (ODE) [1].

𝐺 = 𝑔 + 𝑔Σ𝐺, 𝑊 = 𝑣 + 𝑣𝑃𝑊 , Σ = 𝐺𝑊 Γ, 𝑃 = 𝓁𝐺2Γ, Γ = 1 + 𝑔2𝑑Σ
𝑑𝑔
. (2.4)

The parameter 𝓁 denotes the degeneracy due to the spin summation, and 𝑔 is the Green’s
function of interacting electrons in the Hartree approximation. The expansion of the gener-
ating functions in powers of the parameter 𝑥 = 𝑔2𝑣 yields a number of topologically distinct
diagrams with a given number of fermionic loops (corresponds to the power of 𝓁). With
Σ ≡ 𝑔𝑣𝑠(𝑥) and 𝐺 = 𝑔∕(1 − 𝑔Σ) = 𝑔∕ [1 − 𝑥𝑠(𝑥)] ≡ 𝑔𝑦(𝑥) the differential equation for the
electron propagator can be obtained:

2𝑥2
𝑑𝑦
𝑑𝑥

[𝑦𝓁 + (1 − 𝓁)] + 𝑥𝓁𝑦2 − 𝑦 [1 − 𝑥(1 − 𝓁)] + 1 = 0. (2.5)

This Abel ODE has a power series solution:

𝑦(𝑥) = 1+𝑥+(3+𝓁)𝑥2+(15+11𝓁+𝓁2)𝑥3+(105+116𝓁+26𝓁2+𝓁3)𝑥4+𝒪(𝑥5), (2.6)

where the number of 𝑚-th order Feynman diagrams with 𝑛 fermionic loops is given by the
coefficient in front of 𝓁𝑛𝑥𝑚. Enumeration of all Feynman diagrams can then be obtained by
setting 𝓁 = 1:

2𝑥2𝑦
𝑑𝑦
𝑑𝑥

+ 𝑦2𝑥 − 𝑦 + 1 = 0. (2.7)

Analytic solution of Abelian Eqs. (2.5,2.7) are rather complicated and given in terms of
Whittaker functions [26] (Fig. 2.1). This solution has interesting applications for the corre-
lated electronic calculations in realistic systems [27, 28]. Also, more insight can be obtained
by analyzing the coefficients of the power series solution of Eqs. (2.5, 2.7) and noticing a
correspondence to other combinatorics objects — the chord diagrams.
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2. Equilibrium formalism

=�ω2 ; �ω3 = +3 ;(a)

=�ω4 +2 +4 +4 +8 +8

= –2N

" + + +(N–5)� #+ : : :�ωN �ω1
N �ωN–2

�ω2 �ωN–3

�ω3 �ωN–3

�ω2
�ω2�ω2 �ωN–4

(b)

Figure 2.2: (a) Non-degenerate chord diagrams of the lowest order. (b) Graphical representation of
Eq. (2.11) that shows the relation between the non-degenerate chord diagrams and degenerate CD
that do not contain an isolated chord of length 1.

Chord diagrams are well studied combinatorics objects [29] possessing an additional al-
gebraic structure — graded co- and commutative Hopf algebra which is dual to the algebra
of Vassiliev knot invariants [30, 31]. A chord diagram is defined as 2𝑁 points on a circle
labeled 1, 2,… , 2𝑁 and joined in a pairwise fashion by 𝑁 chords. The number of such ob-
jects is given by 𝜆𝑁 = (2𝑁−1)!!. Similarly, one can compute the number of CD containing
𝑘 strands with 2𝑁 vertices

𝜆𝑁,𝑘 =
(
2𝑁 + 𝑘 − 1

2𝑁

)
(2𝑁 − 1)!!. (2.8)

The CD is called degenerate if it has at least one isolated chord, i. e. one not crossed by any
other. The number of these objects is𝜔𝑁 . By �̄�𝑁 we denote the corresponding count of non-
degenerate CD (the first few of these objects are depicted in Fig. 2.2 (a)). It is remarkable that
their number yields exactly the counting of the Feynman diagrams for the electron propagator
�̄�𝑁 = 𝑦𝑁−1 allowing to obtain an asymptotic formulas for all generating functions in (2.4).
The number of degenerate CDs that do not contain an isolated chord of length 1 is given by
an explicit formula [32]:

�̄�1
𝑁 =

𝑁∑
𝑘=0

(−1)𝑘
(
𝜆𝑁−𝑘,𝑘+1 + 𝜆𝑁−𝑘,𝑘

)
. (2.9)

Using the asymptotic expression for �̄�1
𝑁
𝜆𝑁

:

�̄�1
𝑁
𝜆𝑁

= 1
𝑒

[
1 − 3

4𝑁
− 7

32𝑁2
+…

]
(𝑁 → ∞). (2.10)

and a diagrammatic relation (Fig. 2.2 (b)) between the number of degenerate CDs that do not
contain an isolated chord of length 1 the number of non-degenerate CDs:

�̄�𝑁 = �̄�1
𝑁 − 2𝑁

[
�̄�𝑁−2 + 5�̄�𝑁−3 + (𝑁 − 5)�̄�𝑁−4

]
+… , (2.11)

we obtain:
�̄�𝑁
𝜆𝑁

= 1
𝑒

[
1 − 5

4𝑁
− 63

32𝑁2
+…

]
(𝑁 → ∞) (2.12)

This allows us to obtain the large-𝑛 behavior of the number of the Feynman diagrams of all
quantities related by the Hedin equations, see Tab. 2.1.
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Dealing with singularities

Table 2.1: Asymptotic expansion for the Feynman diagrams counting.

Generating function Asymptotic ×(2𝑛 + 1)!!
𝑒

𝐺 1 − 5
4𝑛

− 23
32𝑛2

− 𝑜(𝑛−2)

Σ, 𝜒 2𝑛
[
1 − 5

4𝑛
− 23

32𝑛2
− 𝑜(𝑛−2)

]
Γ 2(𝑛 − 1)

[
1 − 7

4𝑛
− 27

32𝑛2
− 𝑜(𝑛−2)

]

2.3 Dealing with singularities

Introduction of the Green’s function methods in the electronic structure calculations is the
most striking achievement of the field-theoretic methods on par with the density functional
theory having immediate technological applications [22]. Even in the lowest (beyond the
mean field) order one obtains significant improvements of e. g. the band gap through the
correlational shifts (Δ). Including higher-order diagrams (vertex correction) is numerically
demanding and generates asymptotic series. Despite non-convergence, the asymptotic ex-
pansion is useful when truncated to a finite number of terms. This is the reason for popular-
ity of first-order methods such as 𝐺𝑊 approximation in condensed matter, molecular and
atomic physics. Emerging implementation of the higher-order (vertex correction) approx-
imations for realistic systems are plagued with numerical difficulties such that systematic
investigation of the convergence is not possible. Here I demonstrate that Hamiltonian de-
scribing a core electron coupled to a single plasmonic excitation not only leads to exactly
solvable model, but also allows to realize a solution purely diagrammatically.

Model specification and known results The model originates in the work of Lundqvist [33]
who considered coupling of the deep hole to plasmonic excitations in metals. Similar to the
coupling to particle-hole excitations giving rise to the singularities in x-ray absorption and
emission spectra [19, 34–37] the model permits the analytic solution [38, 39].

The Hamiltonian of the Lundqvist 𝑆-model in its simplest form reads:

̂ = 𝜖𝑐†𝑐 + 𝑐𝑐†𝛾(�̂� + �̂�†) + Ω�̂�†�̂�, (2.13)

where 𝑐 is the creation operator of the deep hole with energy 𝜖, �̂�† is the bosonic creation
operator of the plasmon with the energy Ω.

The Hamiltonian (2.13) is quite versatile and is applicable to other scenarios such as resonant-
tunneling through a single level coupled to wide-band phonons [40]. Remarkably, also the
two particle Green’s function can be found analytically [41], the model can be solved at finite
temperatures, and its non-equilibrium properties have also been studied thoroughly [42, 43].
I will return to this model in a more general setup in the next section where a realistic plas-
mon dispersion in 3d homogeneous electron gas will be considered.
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�6 �4 �2 0 2

0.001

0.01

0.1

1

10

Ω
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Ω
�

Exact
sc-GW

=
2

1 Im g(0)

Figure 2.3: (Color online) Spectral function at different levels of theory: exact (full line),
self-consistent first-order (short dashes), zeroth iteration (long dashes).

We define the following Green’s function

𝑔(𝑡 − 𝑡′) = −𝑖
⟨
𝜓||𝑇{𝑐(𝑡) 𝑐†(𝑡′)}||𝜓⟩,

where |𝜓⟩ is the exact ground state of the no-hole system. By writing the cumulant expansion
for the Green’s function

𝑔(𝑡) = 𝑔(0)(𝑡)𝑒𝐶(𝑡)

and observing that only a single diagram contributes to the cumulant function resulting in

𝐶(𝑡) = −
( 𝛾
Ω

)2 (
1 + 𝑖Ω𝑡 − 𝑒𝑖Ω𝑡

)
. (2.14)

one obtains the well known spectral function

𝐴(𝜔) =
∞∑
𝑛=0

( 𝛾
Ω

)2𝑛
𝑛!

exp
[
−
( 𝛾
Ω

)2]
𝜔 − 𝜖 −

( 𝛾
Ω

)2Ω + 𝑛Ω − 𝑖𝜂
. (2.15)

It is depicted at Fig. 2.3 together with the zeroth order and spectral function from the self-
consistent𝐺𝑊 calculation (sc-𝐺𝑊 ). The results are plotted for a strongly correlated regime
(𝛾 > Ω) and can be characterized as follows: (i) The spectral function consist of a main peak
shifted by the energy of Δ𝜔 = 𝛾2

Ω compared to the noninteracting case; (ii) the quasiparticle
peak is followed by the ladder of plasmonic satellites; (iii) the self-consistent 𝐺𝑊 method
predicts the satellites, however, the position even of the main peak is wrong. This inaccuracy
is the main motivation for performing higher-order diagrammatic calculations.

Diagrammatic properties The ground state is a no-hole state. Therefore, 𝑐†|𝜓⟩ vanishes
and the non-interacting time-ordered Green’s function only consists of the hole propagator:

𝑔(0)(𝑡 − 𝑡′) = 𝑖𝜃(𝑡′ − 𝑡)𝑒−𝑖𝜖(𝑡−𝑡′),

10



Dealing with singularities

This fact simplifies diagrams considerably: (i) in the expansion for the Green’s function
(𝑔) and the self-energy (Σ) all intermediate points are time-ordered (Fig. 2.4); (ii) diagrams
containing loops necessarily yield a zero contribution. These properties allow to write the
self-energy for this model explicitly. Because there is no spatial degrees of freedom, the
problem is similar to that of the Feynman diagrams enumeration considered in the previous
section. Here, we present an analytic solution of a more complicated one-dimensional case,
i. e. we treat the time argument explicitly.

Let Σ(𝑛,𝛼)(𝜔) be an 𝑛th-order self-energy term corresponding to a particular diagram
which will be denoted as 𝛼. We will prove below that the corresponding expression in the
frequency representation is given by the product of the Green’s functions:

Σ(𝑛,𝛼)[𝑔;𝜔] = (𝛾2)𝑛
2𝑛−1∏
𝑖=1

𝑔(𝜔 + 𝑘(𝑛,𝛼)𝑖 Ω), (2.16)

where the integer number of absorbed plasmons in each fermionic line (𝑘(𝑛,𝛼)𝑖 ) is computed
as a number of bosonic lines crossing each vertical line (Fig. 2.4). 2𝑛 − 1 vertical lines are
positioned such that they cut each fermionic line. This equation can be derived by using
the nonequilibrium Green’s function formalism (more on that in chapter 4). Let a vertical
line separate times lying on the forward and backward branches of the Keldysh contour in
a expression for the lesser self-energy (Σ<). Consider, for instance, a third vertical line at
Fig. 2.4. It contributes 𝑔<(𝑧− 𝑦1 − 𝑦2 − 𝑦3)𝑊 <(𝑦1)𝑊 <(𝑦2)𝑊 <(𝑦3) to Σ<. Here, 𝑊 <(𝑦) =
𝛾2𝛿(𝑦 + Ω) is the lesser bosonic propagator. Performing three frequency integrals (over 𝑦1,
𝑦2, 𝑦3) we obtain a contribution proportional to 𝑔<(𝑧 + 3Ω). Similar considerations can be
repeated for each vertical line and fermionic propagator yielding in total 2𝑛 − 1 terms for
each 𝑛th-order self-energy diagram Σ<(𝑧) =

∑2𝑛−1
𝑖=1 𝑓𝑖(𝑧)𝑔<(𝑧 + 𝑘𝑖Ω). Now, since 𝑓𝑖(𝑧) are

non-singular the generic expression for the time-ordered self-energy (2.16) is obtained.
Expansion (2.16) is a new exact result for the 𝑆-model which also permits generaliza-

tions for more general scenarios, e. g., interaction with phonons [44]. Electronic spectra of
numerous realistic materials have been rationalized in terms of the time-ordered [45–48]
or retarded [49] cumulant expansions which, we see above, are exact for the considered
model. The presence of multiple plasmonic satellites is a marked feature of these materials.
The plasmon dispersion is the only modification needed for generalization to this case. It

t´t
t(1)t(2)

t(3)

t(4)

g(z+Ω)

g(z+2Ω)

g(z+3Ω)
g(z+2Ω)

g(z+Ω)

Σ(z)=(γ2)3g(z+Ω)g(z+2Ω)g(z+3Ω)g(z+2Ω)g(z+Ω)

t<t (4)<t (3)<t (2)<t (1)<t´

Figure 2.4: Example of the self-energy in time domain. The system only contains holes. Therefore
there is only one possible time-ordering as shown below the diagram. Bosonic propagators are
denoted as wavy-lines. In view of the time-ordering for fermionic lines, only the negative time part
of the bosonic propagator is used. It means that in the frequency space one needs to take into
account only the 𝛿(𝜔 + Ω) part of its spectral function.
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g1g1

g2

g1 g1g1
g2 g2 g2g2

g3
g1 g1

g1

g1 g2g2
g3

g1

g1

g2 g2
g3

g1(1) = (2) =

(3) = +

+ +

(4) = + 6 + 7 + 13

g1 g2 g3 g4

Figure 2.5: Four lowest orders of the diagrammatic expansion of the self-energy for the 𝑆-model in
frequency space. Notice that two diagrams of the third-order containing loops are not shown
because they are equal to zero. The fourth-order self-energy is given in terms of chord diagrams
with color-coding. Only one representative for each class is shown. Due to the absence of loops an
isomorphism between the Feynman diagrams and the chord diagrams can be established.

amounts to introducing additional sums over the plasmonic moment at each vertex, but does
not change the diagrammatic structure.

Eq. (2.16) serves as the starting point for numerics; complexity goes into the generation
of Feynman diagrams and determination of the coefficients 𝑘(𝑛,𝛼)𝑖 . This is second impor-
tant ingredient of our approach. By iterating the variational equations using MATHEMATICA
computer algebra system we obtain diagrams shown at Fig. 2.5. The chord diagram repre-
sentation is natural in this case because according to the analysis above the fermionic loops
yield zero contribution. In order to further facilitate the interpretation of the graphs in fre-
quency space we use a color coding for the coefficients 𝑘(𝑛,𝛼)𝑖 entering the Green’s function
arguments. The graphs were generated by our symbolic algorithm in MATHEMATICA com-
puter algebra system. Conversion from the time to frequency domains is likewise performed
using a symbolic algorithm. The self-energy accurate to the sixth order comprises 1, 1, 4,
27, 248, and 2830 diagrams of the first to sixth orders, respectively, and has the following
algebraic representation:

Σ = 𝛼𝑔1 + 𝛼2𝑔2𝑔21 + 𝛼
3 (𝑔22𝑔31 + 3𝑔22𝑔3𝑔

2
1
)

+ 𝛼4
(
𝑔32𝑔

4
1 + 6𝑔32𝑔3𝑔

3
1 + 7𝑔32𝑔

2
3𝑔

2
1 + 13𝑔22𝑔

2
3𝑔4𝑔

2
1
)

+ 𝛼5
(
𝑔42𝑔

5
1 + 9𝑔42𝑔3𝑔

4
1 + 23𝑔42𝑔

2
3𝑔

3
1 + 26𝑔32𝑔

2
3𝑔4𝑔

3
1

+ 15𝑔42𝑔
3
3𝑔

2
1 + 58𝑔32𝑔

3
3𝑔4𝑔

2
1 + 45𝑔22𝑔

3
3𝑔

2
4𝑔

2
1 + 71𝑔22𝑔

2
3𝑔

2
4𝑔5𝑔

2
1
)

+ 𝛼6
(
𝑔61𝑔

5
2 + 12𝑔51𝑔

5
2𝑔3 + 48𝑔41𝑔

5
2𝑔

2
3 + 72𝑔31𝑔

5
2𝑔

3
3

+ 31𝑔21𝑔
5
2𝑔

4
3 + 39𝑔41𝑔

4
2𝑔

2
3𝑔4 + 194𝑔31𝑔

4
2𝑔

3
3𝑔4 + 183𝑔21𝑔

4
2𝑔

4
3𝑔4

+ 90𝑔31𝑔
3
2𝑔

3
3𝑔

2
4 + 313𝑔21𝑔

3
2𝑔

4
3𝑔

2
4 + 145𝑔21𝑔

2
2𝑔

4
3𝑔

3
4

+ 142𝑔31𝑔
3
2𝑔

2
3𝑔

2
4𝑔5 + 310𝑔21𝑔

3
2𝑔

3
3𝑔

2
4𝑔5 + 470𝑔21𝑔

2
2𝑔

3
3𝑔

3
4𝑔5

+ 319𝑔21𝑔
2
2𝑔

2
3𝑔

3
4𝑔

2
5 + 461𝑔21𝑔

2
2𝑔

2
3𝑔

2
4𝑔

2
5𝑔6

)
+ (𝛼7), (2.17)
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Figure 2.6: Spectral function of the 𝑆-model at different levels of theory: exact (full line),
self-consistent third-order (short dashed), sixth-order (long dashed), zeroth iteration (dotted) for the
following values of parameters: 𝜖 = 0, Ω = 1, 𝛾 = 0.65, 𝜂 = 0.03.

where 𝑔𝑘 ≡ 𝑔(𝜔+ 𝑘Ω). Setting all 𝑔𝑘 ≡ 1 we obtain a generating function for the enumera-
tion of all chord diagrams (cf. Eq. (2.6) and set 𝓁 = 1 there):

𝑦(𝛼) = 𝛼 + 𝛼2 + 4𝛼3 + 27𝛼4 + 248𝛼5 + 2830𝛼6 + (𝛼7).
Our explicit form for the self-energy dictates that the singularities of Σ should be located

exactly at the Green’s function poles. Physically it is wrong as it is well known that the self-
energy poles lie between the poles of the corresponding exact Green’s function [50]. These
two facts can be reconciled noticing that already starting with the second order

Σ(2)(𝜔) = (𝛾2)2𝑔(𝜔 + Ω)𝑔(𝜔 + 2Ω)𝑔(𝜔 + Ω)

the self-energy contains higher-order poles in the frequency domain. They are responsible
for the shift of quasiparticle energies.

Self-consistent calculation Assume that in the course of a self-consistent calculation an
approximation for the Green’s function, 𝑔(𝑖)(𝜔), has been obtained. Using the diagrammatic
expansion viz. Eq. (2.17) we compute an approximation to the self-energy Σ[𝑔(𝑖)](𝜔∗) at a
chosen frequency point. The point 𝜔∗ should belong to the domain where the perturbative
expansion converges. In order to obtain the self-energy in the vicinity of Green’s function
poles where the series diverge we perform the Padé approximation Σ[𝑔(𝑖)](𝜔∗) → Σ̃(𝑖)(𝜔)
and use the new self-energy in order to update the Green’s function according to the Dyson
equation

𝑔(𝑖+1)(𝜔) = 1
𝜔 − 𝜖 − Σ̃(𝑖)(𝜔)

. (2.18)

Iterations are started from the noninteracting Green’s function 𝑔(0)(𝜔) = (𝜔 − 𝜖 − 𝑖𝜂)−1
and typically converge within some tens of cycles. The quality of the resulting spectral
function strongly depends on the order of perturbative expansions and on the strength of
the electron-plasmon scattering 𝛾 . For weakly correlated regime 𝛾 ≃ 0.1Ω already the
𝐺𝑊 approximation faithfully reproduces the exact spectral function. This approximation

13
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ceases to be valid in the correlated regime as Fig. 2.3 demonstrates. The energy of the main
quasiparticle peak is the major discrepancy. However, for 𝛾 = 0.65 already third-order
treatment yields very good results for its energy and strength (Fig. 2.6, short dashed line).
The first satellite, which has a rather large contribution to the density of states at this value
of 𝛾 (notice logarithmic scale), represents a substantially more complicated feature. It can
only be captured with the self-energy accurate to the 6th order (long dashed line). However,
even 3111 diagrams are not sufficient to reproduce the second-order satellite. With the help
of more optimized algorithms we may extend the calculations to higher orders in order to
predict position of even more satellites. However, any symbolic algorithm based on the
Hedin’s equations (2.1) will eventually hit the wall as the number of diagrams grows super-
exponentially (Tab. 2.1).

In summary, it is more than computational complexity that prevents applications of
many-body perturbation theory beyond the leading order. Resulting asymptotic series lead
to Green’s functions with incorrect physical properties: non-positive densities, higher-order
poles already for the second order. Some of these aspects will be re-iterated and studied in
details in subsequent chapters. Here, we proposed to use the Padé approximation to reg-
ularize the electron self-energy. With the help of nonequilibrium Green’s function theory
the self-energy of the 𝑆-model was derived explicitly and a connection of its diagrammatic
expansion to a certain class of chord diagrams was demonstrated. Our symbolic algorithm
generates analytical expressions up to the sixth order in the electron-plasmon interaction.
For 𝜔∗ ≫ 𝛾2

Ω the series converge rapidly, however, there are no interesting spectral features
in this domain. Therefore, to recursively update the Green’s function in the whole spectral
range the self-energy is regularized before plugging it in into the Dyson equation. In this
way, even in the correlated regime (𝛾 = 0.65Ω) our approach allows to accurately describe
the quasiparticle peak and the first-order satellite. Hence, for realistic electronic structure
calculations and self-consistent methods the Padé approximation is unavoidable.

2.4 Time-evolution of excitations in normal Fermi liquids

In the previous section we considered a very simplified model describing the coupling of the
electronic and bosonic degrees of freedom. The cumulant expansion (2.14) gives an exact
solution in this case. I will demonstrate now that the method is beneficial for other scenarios
as well. The approach gained its wide recognition after Nozières and de Dominicis [36]
proposed an exact solution of a complex integral equation for the cumulant function 𝐶(𝑘, 𝑡)
for the Fermi edge singularity model. Other numerous results are summarized in [2].

Fluctuation potential and the 𝐺𝑊 approximation

Typically the method is applied to systems which allow for a distinct separation of the Hamil-
tonian into the parts allowing for the analytical treatment and a coupling that needs to be
treated perturbatively. Consider a generalization of the 𝑆-model (2.13) — the electron-
boson Hamiltonian with dispersion

̂ =
∑
𝑘
𝜖𝑘𝑐

†
𝑘𝑐𝑘 +

∑
𝑞
𝜔𝑞 �̂�

†
𝑞 �̂�𝑞 +

∑
𝑘,𝑘′

∑
𝑞
𝑞𝐤,𝐤′(�̂�†𝑞 + �̂�𝑞)𝑐†𝑘𝑐𝑘′ . (2.19)

Here 𝜔𝑞 describes the energies of bosonic excitations, 𝜖𝑘 = 𝑘2∕2 is the usual particle
dispersion in a weakly interacting Fermi liquid, and 𝑞𝐤,𝐤′ is the fluctuation potential [51]
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with matrix elements:

𝑞𝐤,𝐤′ = 4𝜋|𝐤 − 𝐤′|2 𝜌𝑞𝐤−𝐤′ , (2.20)

where 𝜌𝑞𝐤 are the matrix elements of fluctuation density. The choice of the interaction form
is not arbitrary: it guarantees that the lowest order diagram for (𝑘, 𝑡) in the model (2.19)
corresponds to the 𝐺𝑊 approximation for the initial fermionic system:

Σ(𝑘, 𝑡) = 𝑖∫ 𝑑𝐪
(2𝜋)3

(𝐪 − 𝐤, 𝑡 + 𝛿)0(𝐪, 𝑡), 𝛿 → +0, (2.21)

with the screened Coulomb interaction given by:

(𝑘, 𝜔) = 𝑣(𝑘) + 𝑣2(𝑘)𝜒(𝑘, 𝜔) = 𝑣(𝑘) +
∑
𝑞

2𝜔𝑞||𝑉 𝑞
𝑘 |2

𝜔2 − 𝜔2
𝑞
, (2.22)

where 𝑣(𝑘) = 4𝜋∕𝑘2 is the Coulomb potential, 𝑉 𝑞
𝑘 ≡ 𝑞𝐤′+𝐤,𝐤′ and 𝜒(𝑘, 𝜔) is the full bosonic

propagator or the density-density response function in this particular case. The latter is
related by the fluctuation-dissipation theorem to the dynamical structure factor:

(𝑘, 𝜔) = − 1
𝜋

Im𝜒(𝑘, 𝜔),

and the static structure factor is defined as

(𝑘) = 1
𝑛 ∫

∞

0
𝑑𝜔(𝑘, 𝜔). (2.23)

The cumulant function 𝐶(𝑘, 𝑡) can be written very accurately in terms of the dynamical
structure factor (𝑘, 𝜔):

𝐶(𝑘, 𝑡) = −
∑
𝑞
𝑣2(𝑞)∫

∞

0
𝑑𝜔 (𝑞, 𝜔)𝑓(𝜖|𝐤| − 𝜖|𝐤+𝐪| − 𝜔, 𝑡), (2.24)

where 𝑓 (𝜈) is defined as:

𝑓 (𝜈) ≡ ∫
𝑡

0
𝑑𝜏 ∫

𝜏

0
𝑑𝜏′ 𝑒𝑖𝜈(𝜏−𝜏

′) = 1 + 𝑖𝜈𝑡 − 𝑒𝑖𝜈𝑡

𝜈2
. (2.25)

The central quantity of this study — the dynamical structure factor — although expressed
almost identically in the many-body perturbation and in the cumulant expansion theories,
originates from different approximations. In the former case it is the vertex function in the
expression for the self-energy that is neglected, while for the latter it is assumed that the
Hamiltonian can be written in the electron-boson form (2.19). Under some circumstances
the model (2.19) is exact: typically this is the case when certain matrix elements of the
Coulomb interactions between a test particle (such as a deep core hole [38] or a high-energy
photoelectron [51]) are vanishingly small. For a more general scenario, such as considered
here, the accurateness of (2.19) is less obvious [47, 52, 53]. In view of this fact it is in-
teresting to consider the connections with other theories. Parallels between the cumulant
expansion and the many-body perturbation theories (MBPT) in terms of the electron self-
energy were explored by Aryasetiawan et al. [45], Kas et al. [49].
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Short time limit

As a first application we compute the leading expansion coefficients4 of the cumulant func-
tion in the short-time limit:

𝐶(𝑘, 𝑡) = −𝜎
2(𝑘)
2!

𝑡2 +
𝑐3(𝑘)
3!

𝑡3 +… (2.26)

The prefactor of the quadratic decay (Eq. (3.23)) can be computed by evaluating the second
derivative of (2.24) at 𝑡 = 0:

𝜎2 = 𝑛
∑
𝑞
𝑣2(𝑞)(𝑞). (2.27)

It follows then that 𝜎2 is independent of 𝑘 and coincides with the local contribution to the
zeroth spectral moment of the electron self-energy obtained by Vogt et al. [54]. The long
wave-length expression in Eq. (2.23) follows from the exactness of the random phase ap-
proximation (RPA) in this limit.

It is not obvious from the outset that the 𝑐3(𝑘) coefficient should take a finite value: this
heavily relies on the exact form of the structure factor in the asymptotic (𝑞 → ∞) limit. By
using the 𝑓 -sum rule:

∫
∞

0
𝑑𝜔𝜔(𝑞, 𝜔) = 𝑛𝜖𝑞 , (2.28)

where 𝑛 is the electron density we obtain:

𝑐3(𝑘) = −𝑖𝑛
∑
𝑞
𝑣2(𝑞)

[(
𝜖|𝐤| − 𝜖|𝐤+𝐪|)(𝑞) + 𝜖𝑞]. (2.29)

In the simplest case of a hole state at the band’s bottom the convergence of the integral
regardless of the system’s dimension (𝑧) is guaranteed by the limit

lim
𝑞→∞

𝑞𝑧+1
[(𝑞) − 1

]
= −𝜋2𝑧𝑛𝑔(0), (2.30)

where 𝑔(0) is the value of the pair correlation function for two electron at the same position
and 𝑧 is the dimensionality of a system. For 𝑘 > 0 the term linear in 𝑘 vanishes after the
angular integration and we finally obtain the 𝑘-independent result:

𝑐3 = 𝑖𝑛
∑
𝑞
𝑣2(𝑞) 𝜖𝑞

[(𝑞) − 1
]
. (2.31)

Finally we notice that the leading terms of Eq. (2.24) in the long time-limit are the constant
and the linear ones, i. e., 𝐶(𝑘, 𝑡)

𝑡→∞
←←←←←←←←←←←←←←←←←←←→ 𝛾 − 𝑖Σ(𝑘, 𝜖𝑘) 𝑡 as expected from the exponential

quasiparticle decay.
In the 𝑡 → 0 case, the non-analytic terms originate from the coupling to the particle-

hole (𝑝–ℎ) continuum. We can split the momentum integration into a finite interval 𝑞 < 𝑞𝑐
yielding just the well-behaved analytic part of 𝐶(𝑘, 𝑡) and the interval extending to infinity.
The value of 𝑞𝑐 can always be chosen large enough so that the real part of the dielectric
function on the second interval approaches unity. This considerably simplifies the dynamical
structure factor which results now from the imaginary part of the Lindhard formula:

4Such expansion does not imply analyticity of the function in vicinity of 𝑡 = 0. Just the opposite, higher
expansion coefficients diverge starting from 𝑐6 in 2d case and from 𝑐7 in 3d based on very general properties of
the density-density response function (Im𝜒(𝑘, 𝜔) ∼ 𝜔−4−𝑑∕2 [1]).
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𝑆(𝑞, 𝜔) = 1
𝜋

1
𝑣(𝑞)

𝛼𝑟𝑠
𝑞3

(
1 − 1

4

(
𝑞 − �̃�

𝑞

)2
)
,

where the tilde denotes the use of rescaled quantities, i. e. 𝑞 = 𝑞𝑘𝐹 , 𝜔 = �̃�𝜖𝐹 .

For small momenta the computation can be performed explicitly yielding the leading term:

𝐶(0, 𝑡) = − 8
45

(𝛼𝑟𝑠)2
(2𝑖𝑡
𝜋

)5∕2
. (2.32)

Such time-dependence is easy to reconcile with well known asymptotic behavior of the elec-
tron self-energy as a function of frequency [54, 55]:

Im Σ̃(𝑘, �̃�)
𝜔→∞
←←←←←←←←←←←←←←←←←←←←←←→= −(𝜔−3∕2).

To see the connection we express asymptotically the spectral function as𝐴(𝑘, 𝜔) ∼ 𝐶∕𝜔2+3∕2

and perform the Fourier transform. Since at 𝜔 → −∞ the spectral function decays faster it
is sufficient to perform the transform on a semi-bounded interval:

𝐴(𝑘, 𝑡) ∼ ∫
∞

𝜔𝑐

𝑑𝜔
2𝜋

𝐶
𝜔7∕2

𝑒−𝑖𝜔𝑡.

Among several resulting terms one has to pick up the one independent of the cut-off 𝜔𝑐 . It
exhibits the same time-dependence and the density scaling ∼ (𝛼𝑟𝑠)2 as Eq. (2.32).

To summarize, Eqs. (2.27, 2.29, 2.31) provide analytic expressions for the coefficients
of the holonomic part of the electron spectral function at short times. The leading term of
the nonholonomic part is given by Eq. (2.32). To study the opposite limit it is convenient to
work in the frequency representation.

Quasiparticle decay and Paley-Wiener theorem

It is commonly believed that HEG in two or three dimensions serves as a perfect illustration
of the Fermi liquid concept [1], that is a many-body fermionic systems with long-lived exci-
tations: quasiparticles. Two marked properties distinguish them from other excited states:
i) they can be brought in a direct correspondence with real particles (electrons) of a ficti-
tious non-interacting many-body system; ii) they are characterized by the life-time, which
tends to infinity as the particle’s energy approaches the Fermi level (𝜖𝐹 ). It also implies that
asymptotically the decay is exponential exp(−𝛾𝑡), with the decay constant being quadrati-
cally dependent on the energy (𝛾(𝜖) ∼ 𝜖2∕𝜖𝐹 ). At 𝜖 → 𝜖𝐹 this constant can be computed
perturbatively, and it is sufficient to consider the lowest-order term giving a non-vanishing
imaginary part of the self-energy. In view of this it is intriguing that a rigorous proof can be
given that the lowest-order diagram yield the spectral function inconsistent with the asymp-
totic exponential decay.

To do so we recall that pronounced features in the spectral function appear at energies𝐸𝑘
that are approximately given by 𝐸𝑘 = 𝜖𝑘+Σ(𝑘,𝐸𝑘), where ImΣ(𝑘, 𝜔) ∼ 𝛿(𝜔− 𝜖|𝐤+𝐪|±𝜔𝑞).
These resonances are surrounded by the incoherent background which has the same extent
as the self-energy:

𝐴(𝑘, 𝜔) = 1
𝜋
|Im(𝑘, 𝜔)| = 1

𝜋
|ImΣ(𝑘, 𝜔)||𝜔 − 𝜖𝑘 − ReΣ(𝑘, 𝜔)|2 + |ImΣ(𝑘, 𝜔)|2 . (2.33)
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Figure 2.7: a) First and b) second order hole scattering mechanisms. While the two excitations in b)
carry in total the same momentum as a single excitation in a) the energy transfer is much larger.
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Figure 2.8: Monte-Carlo calculation for 3d HEG at 𝑟𝑠 = 5 density of the first and second order
self-energy diagrams. The Fermi energy is set to zero.

In the lowest order of the screened interaction a particle can only loose its energy (𝜖𝑘) by
generating a single bosonic excitation 𝜔𝑞 . Since only a finite momentum can be transfered
also 𝜔𝑞 is finite and, thus, the self-energy has a semi-bounded support (limited from below)
(Fig. 2.7). From this, in view of (2.33) follows 𝐴(𝑘, 𝜔) = 0 for 𝜔 < 𝜔∗(𝑘).

According to the Paley-Wiener theorem [56] the Fourier transform of 𝐴(𝑘, 𝜔) behaves
as 𝐴(𝑘, 𝑡)

𝑡→∞
←←←←←←←←←←←←←←←←←←←→ exp(−𝐵𝑡𝛼) (0 < 𝛼 < 1) for large times: a result in a clear contradiction with

the Fermi liquid theory. Quasiparticle calculations of the two-dimensional surface bands by
Gumhalter [57] give an example of realistic spectral function (in the frequency domain) and
survival probability (in the time domain) in this approximation.

The paradox is resolved by considering the second-order self-energy Σ[0,0]:

Σ(2)(1, 2) = 𝑖2∬ 0(1+, 4)0(1, 3)0(3, 4)0(4, 2)0(3+, 2) 𝑑(34). (2.34)

Our representation of the screened Coulomb interaction allows to compute the electronic
self-energy relatively easy using the MATHEMATICA computer algebra system. The remain-
ing momentum integrals are performed using the Monte-Carlo approach (Fig. 2.8).

In agreement with our simple argument we see that the phase-space for the first order pro-
cesses is limited. The same is observed in the simplest second order process (it includes also
contribution from two bare interaction lines) in view of the same arguments. The existence
of a critical upper momentum for the plasmons also restricts the phase-space available for the
ℎ → ℎ+2𝑝𝑙 scattering. The situation is completely different for the ℎ → ℎ+ (𝑝–ℎ) + (𝑝–ℎ)
events: even though the hole can only loose a finite momentum the shares of each exci-
tation can be large (Fig 2.7b), resulting in an arbitrarily large energy transfer. Hence, the
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Figure 2.9: Exact first order self-energy of the 3d HEG at 𝑟𝑠 = 5 density. The Fermi energy is set to
zero. The real part is shown without including the static (exchange) part. The values are
𝑒𝑥 = −1.490𝜔𝑝 and 𝑒𝑥 = −0.225𝜔𝑝 for 𝑘 = 0.4𝑘𝐹 and 𝑘 = 1.6𝑘𝐹 , respectively. The plasmon
energy in the long wave-length limit is 𝜔𝑝 = 2.103𝜖𝐹 .

self-energy has an unbounded support, the Paley-Wiener theorem cannot be applied and the
Fermi liquid behavior is restored in the second order.

Our analysis is also important for practical calculations since it allows to determine a
priori where a certain diagram might contribute. It is interesting to notice a sequence of
plasmonic peaks in the sea of 𝑝–ℎ excitations. By expanding the cumulant function𝐶(𝑘, 𝑡) ∼
𝑒𝑖𝜔𝑝𝑡 and computing the Fourier transform one sees that their weight decays as 𝑒−𝑎𝑎𝑛∕𝑛!.
Therefore, plasmons will only be important at low orders whereas the tails of the spectral
functions are shaped by the 𝑝–ℎ scattering mechanisms which lead to the power-law decay.
Where such a crossover occurs depends, of course, on the specific system parameters.

The phase-space arguments provide a partial account of the problem. The inclusion of
matrix elements can modify the self-energy substantially as the comparison of Fig. 2.8 and
Fig. 2.9 shows. This can be best seen at the Fermi level (set to zero in our calculations).
While both methods lead to a vanishing self-energy in this limit, the way how it approaches
zero is rather different. Realistic calculations of next order diagrams are also feasible as will
be demonstrated in Chapter 4.

To summarize, in this section we studied the electron spectral function in the frequency
space by considering the diagrammatic expansion of the self-energy up to the second order
in the screened Coulomb interaction. We have shown on the basis of the Paley-Wiener
theorem that in the first order, as implemented in typical one-shot 𝐺0𝑊 0 calculations, the
quasiparticle decay at long times must deviate from exponential. On the other hand, the
inclusion of the second order terms leads to a spectral function different from zero on the
whole frequency axis. This is consistent with the exponential decay postulated by the Landau
theory of the Fermi liquids.
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3 Exact propagators from quantum chemistry

Working with dressed correlation-functions is a great possibility of many-body perturbation
theory. It is very easy, for example, to find the screened Coulomb interaction for a homoge-
neous system: in the random phase approximation the integral equation for the polarization
function, if recasted in the momentum space, turns into the algebraic one. For inhomoge-
neous periodic systems the idea is still fruitful, but not free from numerical complications:
while for the electron Green’s function (and the self-energy) it is sufficient to know its rep-
resentation 𝐺(𝐤, 𝜔) in the first Brillouin zone, the polarization propagator must be known at
all values of the momentum transfer, i. e. 𝜒𝐆,𝐆′(𝐪, 𝜔). Here 𝐆 and 𝐆′ are reciprocal lattice
vectors, and 𝐤 and 𝐪 belong to the first Brillouin zone. This is due to the fact that for the
calculation of the self-energy the integration over the whole momentum space is performed
requiring the knowledge of the screened interaction at all momenta [22].

The problem aggravates in the case of finite systems. There, the supercell calculations
are still possible, but seem to be an overshoot as the periodicity is lost. The methods of
quantum chemistry provide a more convenient way to evaluate the screening in molecules
and clusters. The idea is based on the exact Lehmann representation of the particle-hole
propagator. Its constituents, the excited states and the transition matrix elements are read-
ily computed using methods derived either from the configuration interaction (CI) or the
equation of motion coupled-cluster (EOM-CC) approaches. For them the whole ladder of
approximations, ranging from the virtually exact full CI to the simplest configuration in-
teraction singles (CIS) is known. They are very controllable in terms of the accuracy and
performance. Excited states can also be obtained from the time-dependent density functional
theory which makes the approach suitable for the treatment of correlated solids [58, 59].

The following sections present the material in logical, but not exactly chronological or-
der: the theory and the computational method is first applied to small systems that permit
exact diagonalization study [3] (Sec. 3.2), then the method is pushed to its computational
limits: the decay of hybridized electronic states of a Na cluster on the Cu(001) surface [4]
(Sec. 3.3) and superatomic molecular orbitals of the C60 molecule: peculiar long-lived elec-
tronic states in fullerenes [5] (Sec. 3.4). In both cases, it considerably enhances the efficiency
of the conventional 𝐺𝑊 approach and shows the feasibility of a high-level correlated cal-
culation for large systems without periodicity.

3.1 Fluctuation-dissipation theorem

If a system obeys the detailed balance condition and in an equilibrium it responses to a
small perturbation in the same way as it does to a spontaneous fluctuation the fluctuation-
dissipation theorem can be proven. Consider a quantum system at zero temperature and
two operators �̂� (the observable) and �̂� (the perturbation) such that their averages over the
ground state are zero. For a weak time-dependent perturbation �̂�𝐹 (𝑡) the linear relation
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between them is given in terms of the retarded response function:

⟨�̂�⟩(𝑡) = ∫
∞

−∞
𝜒𝐴𝐵(𝜏)𝐹 (𝑡 − 𝜏) 𝑑𝜏, (3.1)

which is itself an average over the ground state of the commutator:

𝜒𝐴𝐵(𝜏) = − 𝑖
ℏ
𝜃(𝜏)⟨[�̂�(𝜏), �̂�(0)]⟩. (3.2)

Now set �̂� ≡ �̂�† and compute the spectrum of time-dependent fluctuations of �̂�:

𝑆𝐴𝐴†(𝜔) = 1
2𝜋 ∫

∞

−∞
⟨�̂�(𝜏)�̂�(0)⟩𝑒𝑖𝜔𝜏𝑑𝜏. (3.3)

The fluctuation-dissipation theorem (FDT) then reads

Im𝜒𝐴𝐴†(𝜔) = −𝜋
ℏ
𝑆𝐴𝐴†(𝜔). (3.4)

By the detailed balance condition the probabilities 𝑃𝑚𝑛 and 𝑃𝑛𝑚 of the transition between
two quantum states 𝑚 and 𝑛 are equal. Take these states to be the eigenstates of the unper-
turbed Hamiltonian. In this case the response function can be represented in terms of the
eigenstates — the Lehmann representation. The proof of FDT (3.4) amounts to showing that
the left and the right side of this identity is given by the Fermi Golden rule formula:

𝑆𝐴𝐴†(𝜔) =
∑
𝑛
|𝐴0𝑛|2𝛿(𝜔 − 𝜔0𝑛), (3.5)

where 0 denotes the ground state. In the Chapter 4 we will see examples where response
functions cannot be represented in this form. However, this can only occur for approximate
correlators of the many-body perturbation theory. Exact correlators can always be written
in this form provided conditions for the FDT hold. For the following discussion we will
explicitly need the density-density response function, i. e. �̂� = �̂�† = 𝛿�̂� ≡ �̂� − ⟨�̂�⟩:

𝜒R(𝜏) ≡ 𝜒𝑛𝑛(𝜏) = − 𝑖
ℏ
𝜃(𝜏)⟨[𝛿�̂�𝐻 (𝜏), 𝛿�̂�𝐻 (0)]⟩. (3.6)

In the previous chapter we operated with various propagators using functional relations
among them. It is time now to introduce these quantities explicitly. The time-ordered cor-
relators are the main constituents of the equilibrium many-body perturbation theory:

𝜒(1, 2) = − 𝑖
ℏ
⟨𝑇 [𝛿�̂�𝐻 (1), 𝛿�̂�𝐻 (2)]⟩, (3.7)

𝐺(1, 2) = − 𝑖
ℏ
⟨𝑇 [�̂�𝐻 (1), �̂�†

𝐻 (2)]⟩. (3.8)

Σ𝑐(1, 2) = − 𝑖
ℏ
⟨𝑇 [�̂�𝐻 (1), �̂�†𝐻 (2)]⟩irr, (3.9)

22



Fluctuation-dissipation theorem

where Σ𝑐 denotes the correlated part of the self-energy. Its expression excludes the reducible
diagrams, i. e., the expansion of the self-energy (3.9) contains all the diagrams of the two-
particle-one-hole (2𝑝1ℎ) correlation function [60] in which the entrance and exit channels
cannot be separated by cutting one Green’s function line [50, 61]. I adopt here the shorthand
notations 𝐱𝑖 ≡ (𝐫𝑖, 𝜎𝑖), 𝑖 ≡ (𝐱𝑖, 𝑡𝑖), etc., and express the field operators in the Heisenberg
picture �̂�𝐻 (1) as an expansion over real [𝜙∗

𝑖 (𝐱) = 𝜙𝑖(𝐱)] basis functions:

�̂�𝐻 (1) =
∑
𝑖
𝑐𝑖(𝑡1)𝜙𝑖(𝐱1), �̂�†

𝐻 (1) =
∑
𝑖
𝑐†𝑖 (𝑡1)𝜙𝑖(𝐱1).

In following 𝐻 index on creation and annihilation operators is consistently removed. The
constituents of the response function and the self-energy are defined as follows:

�̂�(𝐱) = �̂�†(𝐱)�̂�(𝐱), (3.10)

�̂�(𝐱) = ∫ 𝑑𝐲 𝑣(𝐱, 𝐲)�̂�†(𝐲)�̂�(𝐲)�̂�(𝐱). (3.11)

This allows to write the real space representation of the propagators:

𝜒(𝐱1, 𝐱2;𝜔) =
𝐷1∑
𝑖𝑗𝑘𝑙

{ 𝐷𝑁∑
𝑛≠0

⟨0𝑁|𝑐†𝑖 𝑐𝑗|𝑛𝑁⟩⟨𝑛𝑁|𝑐†𝑘𝑐𝑙|0𝑁⟩ [ 1
𝜔 − 𝐸𝑛

− 1
𝜔 + 𝐸𝑛

]}
×𝜙𝑖(𝐱1)𝜙𝑗(𝐱1)𝜙𝑘(𝐱2)𝜙𝑙(𝐱2), (3.12)

𝐺(𝐱1, 𝐱2;𝜔) =
𝐷1∑
𝑖𝑗

{𝐷𝑁+1∑
𝑝

⟨0𝑁|𝑐𝑖|𝑝𝑁 + 1⟩⟨𝑝𝑁 + 1|𝑐†𝑗 |0𝑁⟩
𝜔 − 𝜀+𝑝

+
𝐷𝑁−1∑
𝑞

⟨0𝑁|𝑐†𝑖 |𝑞 𝑁 − 1⟩⟨𝑞 𝑁 − 1|𝑐𝑗|0𝑁⟩
𝜔 − 𝜀−𝑞

}
𝜙𝑖(𝐱1)𝜙𝑗(𝐱2). (3.13)

The summations are performed over the single particle states (𝐷1), over the states of the
Hilbert space of𝑁-particle system (𝐷𝑁 ), over the Hilbert space of the ionized states (𝐷𝑁−1),
and over the electron-attached states (𝐷𝑁+1). The self-energy cannot be explicitly written in
such a form because reducible diagrams must be excluded. We see that matrix elements of
creation and annihilation operators are important ingredients of the Lehmann representation.
For the following discussion it is useful to define these quantities explicitly:

𝑄𝑛
𝑖𝑗 = ⟨𝑛𝑁|𝑐†𝑖 𝑐𝑗|0𝑁⟩, 𝐸𝑛 = 𝐸𝑁

𝑛 − 𝐸𝑁
0 − 𝑖𝛿; (3.14a)

𝑋𝑝
𝑖 = ⟨𝑝𝑁 + 1|𝑐†𝑖 |0𝑁⟩, 𝜀+𝑝 = 𝐸𝑁+1

𝑝 − 𝐸𝑁
0 − 𝑖𝛿; (3.14b)

𝑌 𝑞𝑖 = ⟨𝑞 𝑁 − 1|𝑐𝑖|0𝑁⟩, 𝜀−𝑞 = 𝐸𝑁
0 − 𝐸𝑁−1

𝑞 + 𝑖𝛿; (3.14c)

𝑋𝑝
𝑖𝑗 = ⟨𝑝𝑁 + 2|𝑐†𝑖 𝑐†𝑗 |0𝑁⟩, �̄�+𝑝 = 𝐸𝑁+2

𝑝 − 𝐸𝑁
0 − 𝑖𝛿; (3.14d)

𝑌 𝑞𝑖𝑗 = ⟨𝑞 𝑁 − 2|𝑐𝑖𝑐𝑗|0𝑁⟩, �̄�−𝑞 = 𝐸𝑁
0 − 𝐸𝑁−2

𝑞 + 𝑖𝛿. (3.14e)
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3. Exact propagators from quantum chemistry

3.2 Lehmann representation of the electronic self-energy

The exact self-energy has a Lehmann representation. This will be explicitly demonstrated in
the next chapter. Approximate theories do not necessarily have this property because MBPT
does not respect Fermi Golden rule form. There are, however, two approximations that do
permit to write an explicit expression for the �̂�(𝐱) operators and such that reducible diagrams
are excluded per construction. They correspond to two possibilities to factorize the product
of three field operators in (3.11) or to factorize the 2𝑝1ℎ-Green’s function.

In the spectral representation of the self-energy it is convenient to separate the particle
and the hole terms as it was done for the Green’s function (3.13):

Σ𝑐(𝐱1, 𝐱2;𝜔) =
∑
𝜈

𝑉 𝜈
+ (𝐱1)𝑉

𝜈
+ (𝐱2)

𝜔 − 𝜔+
𝜈

+
∑
𝜈

𝑉 𝜈
− (𝐱1)𝑉

𝜈
− (𝐱2)

𝜔 − 𝜔−
𝜈

. (3.15)

For the (𝑝–ℎ)–𝑝 factorization following expressions hold [3]:

𝑉 𝑛𝑝
+ (𝐱) =

𝐷1∑
𝑖𝑗𝑘𝑙

𝑋𝑝
𝑖 ⟨𝑖𝑗|𝑘𝑙⟩𝑄𝑛

𝑘𝑙𝜙𝑗(𝐱), 𝜔+
𝑛𝑝 = 𝐸𝑛 + 𝜀+𝑝 , (3.16a)

𝑉 𝑛𝑞
− (𝐱) =

𝐷1∑
𝑖𝑗𝑘𝑙

𝑌 𝑞𝑖 ⟨𝑖𝑗|𝑘𝑙⟩𝑄𝑛
𝑘𝑙𝜙𝑗(𝐱), 𝜔−

𝑛𝑞 = 𝜀−𝑞 − 𝐸𝑛. (3.16b)

where the Coulomb matrix elements are defined as

⟨𝑖𝑗|𝑘𝑙⟩ = ∫ 𝑑(𝐫1𝐫2)
𝜙𝑖(𝐫1)𝜙𝑗(𝐫1)𝜙𝑘(𝐫2)𝜙𝑙(𝐫2)|𝐫1 − 𝐫2| . (3.17)

As can be seen from Eq. (3.15) the self-energy matrix is symmetric, complex, non-hermitian.
As a function of frequency it has poles in the complex upper half-plane for 𝜔 < −(𝐸IP+𝐸1)
and in the lower half-plane for 𝜔 > −(𝐸EA − 𝐸1). 𝐸IP, 𝐸EA and 𝐸1 denote the ionization
potential, electron affinity, and the energy of the first excited state. Thus, the energy gap
for the self-energy in 𝐺𝑊 approximation is larger than that for the Green function. For the
(𝑝–𝑝)–ℎ factorization we additionally need the two-particle matrix elements [60]:

𝑉 𝑝𝑞
+ (𝐱) =

𝐷1∑
𝑖𝑗𝑘𝑙

𝑌 𝑞𝑙 ⟨𝑖𝑗|𝑘𝑙⟩𝑋𝑝
𝑖𝑘𝜙𝑗(𝐱), 𝜔+

𝑝𝑞 = �̄�+𝑝 − 𝜀−𝑞 , (3.18a)

𝑉 𝑞𝑝
− (𝐱) =

𝐷1∑
𝑖𝑗𝑘𝑙

𝑋𝑝
𝑙 ⟨𝑖𝑗|𝑘𝑙⟩𝑌 𝑞𝑖𝑘𝜙𝑗(𝐱), 𝜔−

𝑞𝑝 = �̄�−𝑞 − 𝜀+𝑝 . (3.18b)

Eqs. (3.15, 3.16, 3.18) are main results of this section. They allow to assess the validity of
the approximate self-energies on the basis of configuration interaction calculations and to
perform calculations for larger systems where quantum chemistry approach provides a viable
alternative to the random phase approximation calculations of the response function.
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Lehmann representation of the electronic self-energy

Application

We demonstrate that for molecular systems the self-energy in the𝐺𝑊 approximation can be
exactly computed by using the Configuration Interaction (CI) method. The method found
its broad application in quantum chemistry where, however, it is rarely used without any
additional truncation of the full Hilbert space. A full CI wave function includes all possible
Slater determinants which can be formed for a given number of electrons and orbitals. Thus,
the full CI method provides an exact treatment of electron correlations by diagonalizing the
many-body Hamiltonian within the space spanned by the given one-electron basis set [62,
63]. As a result of iterative diagonalization it gives the ground state energy and the energy
of the lowest excited states. Due to the efficient implementations [64] the method can be
applied for the benchmarking of small systems (usually described by localized Gaussian
basis functions).

Comparison of approximations As a prototypical system I consider the widely studied Na+9
cluster [65]. For the current purpose it is advantageous for several reasons: i) it contains a
small number of electrons making it accessible to full CI [3, 4], ii) it can be seen as a general-
ization of 3d HEG to a finite number of particles (the jellium model [66]). In accordance with
the prediction of the jellium model the 8 valence electrons complete the 1𝑠2 and 1𝑝6 shells
typical for a spherical Coulomb potential well. Because the Na+9 cluster has nearly spherical
shape, this explains its high stability and large electron affinity. The energy of the highest oc-
cupied molecular orbital (HOMO) is −7.00 eV, and the lowest unoccupied molecular orbital
(LUMO) is at −2.57 eV. These energies also yield good estimates for the electron affinity
and ionization potential that come out as a result of this CI calculation. We use an algorithm
by Olsen et al. [63] based on the graphical unitary group approach [62] for the generation of
the restricted active space (RAS) and full CI Hamiltonians. The calculations are performed
for each spin multiplicity separately using spin-adapted basis functions [67]. The configura-
tion interaction including single, double, triple, and quadruple excitations (CISDTQ) in the
subspace of 12 orbitals and 4 electron pairs is the highest level correlated method we use for
this system. It yields 𝐸𝐼𝑃 = 6.93 eV and 𝐸𝐸𝐴 = 2.77 eV.

Let us compare the self-energy of the cluster computed using the (𝑝–ℎ)–𝑝 (𝐺𝑊 approx-
imation) and (𝑝–𝑝)–ℎ (ladder approximation) factorizations with the exact self-energy from
the inversion of the Dyson equation. The quasiparticle energy corrections resulting from the
real part of self-energy are slightly overestimated on the 𝐺𝑊 level leading to the value of
HOMO-LUMO gap of 4.05 eV compared to 4.17 eV according to the graphical solution of
the Dyson equation as depicted on Fig. 3.1.

In order to get a better insight about the accuracy of the 𝐺𝑊 approximation we plot the
state-resolved (diagonal) elements of the self-energy (Fig. 3.1). Although the differences are
more pronounced here, the𝐺𝑊 self-energy in the vicinity of the corresponding states yields
a good estimate of their life-times. This finding supports the use of the 𝐺𝑊 approximation
for calculations of life-times in order to describe time-resolved two-photon photoemission
experiments in systems with simple electronic structure.

Total energy The electron Green function (3.13) and self-energy (3.15) allow to compute
the total energy of the system in a variety of ways. The Galitskii-Migdal equation requires
the knowledge of the spectral function only. In our approach it translates into:

𝐸𝐺𝑀 = 1
2

[
𝑇 +

𝐷𝑁−1∑
𝑞

(
𝜀−𝑞

𝐷1∑
𝛼
𝑌 𝑞𝛼 𝑌

𝑞
𝛼

)]
, (3.19)
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Figure 3.1: Left: The spectral function of the exact (solid), (𝑝–ℎ)–𝑝 (dashed) and (𝑝–𝑝)–ℎ
(dash-dotted) self-energies. Right: The diagonal matrix elements of the self-energy of the Na+9
cluster from the inversion of the Dyson equation (exact) compared to the 𝐺𝑊 approximation.
Computations are performed using the CISDTQ method. The straight lines demonstrate the
graphical solution of the Dyson equation.

where 𝑇 is the one-particle part of the energy of the system. The total energy in the form
given by Eq. (3.19) does not provide a test of the𝐺𝑊 approach accuracy since it depends on
the quantities that are directly obtained from the diagonalization of the many-body Hamil-
tonian. Here I use a more universal approach that allows to directly test the accuracy of the
𝐺𝑊 self-energy based on the following expression (cf. Eq. (7) of Ref. [4] and Eq. (3) of
Ref. [68]) for the correlated part of the total energy:

𝐸𝑐 = − 𝑖
2𝜋 ∫

∞

−∞
𝑑𝜔 1

2
Tr
[
𝚺(𝜔)𝐆(𝜔)

]
. (3.20)

By substituting here the expressions for the matrix elements of the Green function 𝐆(𝜔)
and the electron self-energy 𝚺(𝜔) in Eq. (3.20) and performing the frequency integration we
obtain:

𝐸𝑐 =
𝐷𝑁∑
𝑛≠0

𝐷𝑁+1∑
𝑝

𝐷𝑁−1∑
𝑞

𝐷1∑
𝛼

𝐷1∑
𝛾

𝐷2∑
𝑖𝑗

[
𝑋𝑝
𝛼𝑌

𝑞
𝛾 ⟨𝛼𝛾|𝑖𝑗⟩𝑄𝑛

𝑖𝑗

]2
(𝜀−𝑞 − 𝜀+𝑝 ) − 𝐸𝑛

. (3.21)

3.3 Decay of hybridized electronic states of a Na cluster on
Cu(001)

Physics of atoms or clusters of them adsorbed on metal surfaces is very rich. Electronic
correlations often play a decisive role in phenomena accompanying the adsorption. They
strongly influence the geometry of the constituent system and modify the single-particle
electronic properties such as density of states or band structure. Excited transient states,
localized on an adsorbate are very often invoked as intermediate states in scanning tunnel-
ing microscope manipulations of individual adsorbates and chemical reactions. The devel-
opment of time-resolved two-photon photoemission (TR-2PPE) has allowed for the direct
study of the transient states at surfaces and their life-times [69].
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Decay of hybridized electronic states of a Na cluster on Cu(001)

Figure 3.2: (Calculated isosurfaces of the electron density in the metal-adsorbate system minus
superposition of bare-metal and free cluster densities. Three snapshots of the geometry
optimization (models A, B, C) of Na+9 @Cu(001) surface are shown (shortest distances between Na
atoms and the top Cu plane are a) ℎ1=6.023 Å, b) ℎ1=4.894 Å, c) ℎ1=3.096 Å).

The standard theoretical approach to compute the electron-electron scattering rate is
the 𝐺𝑊 approximation known from many-body perturbation theory [4, 22]. The complete
absence of translational invariance in such systems makes the use of the reciprocal space
methods very difficult and calls for the development of new methods working solely in the
real space representation. In the previous section (see also Ref. [3]) I have outlined a 𝐺𝑊
computational scheme based on a quantum chemistry approach. The use of CI for the com-
putation of the screened Coulomb interaction enables us to treat extremely large systems
and to properly account for the symmetry of the system in order to reduce the computa-
tional effort. Thus, we completely abandon the random phase approximation (RPA) usually
adopted in condensed matter physics for the computation of𝑊 . While for bulk systems this
is still a necessity, a CI approach proves to be a much more efficient tool for the evaluation
of 𝑊 in the systems without periodicity and, thus, for the description of inelastic electron
scattering processes. The idea to use methods outside of many-body perturbation theory in
order to facilitate the 𝐺𝑊 computations is not new. In particular, time-dependent density
functional theory was used to derive expressions for the many-body vertex, polarizability,
and self-energy functions [58] or to go beyond the RPA in the computation of the electronic
screening in confined systems [70].

The non-self-consistent 𝐺0𝑊 calculations of the electronic self-energy shown here are
performed staring from the mean-field electronic structure. The spectral representation of
the electronic Green’s function is obtained by summation over the single particle states
(𝜙𝛼, 𝜀𝛼), eigenstates of the Hartree-Fock (HF) Hamiltonian. This method is applied to the
test case of a Na+9 cluster adsorbed on Cu(001) surface. The geometry optimization per-
formed with the GAUSSIAN 03 quantum chemistry package. Excited states and correspond-
ing transition densities are computed using symmetry-adapted cluster expansion (SAC-CI)
method [71]. The (001) surface of Cu is represented by a Cu54 cluster with 5 × 5, 4 × 4,
3 × 3, and 2 × 2 atoms in the first, second, third, and forth layers, respectively (Fig. 3.2).

Due to the delocalization of the valence electrons the Na+9 cluster investigated in this
work (Fig. 3.2) is well described by the jellium model and can be considered as an artificial
atom with occupied 1𝑠 and 1𝑝 states typical for the spherical potential well [72]. In contrast
to Cu(111), the surface states of Cu(001) are mostly located inside the bulk continuum [73],
i. e., express themselves as resonance states. One of the questions that arises is whether
the hybridized electronic states described above can indeed be observed using a cluster ap-
proach. At first sight there is little hope to separate these states from a huge number of unoc-
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3. Exact propagators from quantum chemistry

Figure 3.3: Partly occupied Wannier
functions (WF) for the optimized geometry
of Na+9 @Cu(001) (model D). 𝑑- and 𝑠-bands
of Cu give rise to five atom-centered 𝑑
orbitals (one located on the central Cu atom
is shown in red and blue) and to a single 𝑠
orbital centered in one of the two interstitial
sites (not shown). Besides the WFs located
on each Na atom there are 4 symmetrically
situated orbitals (3 are shown as a green
cloud) above the last Cu plane originating
from the hybridization of surface states with
the unoccupied states of the Na+9 cluster.

cupied molecular orbitals. One can use some localization techniques in order to analyze the
system in terms of localized molecular orbitals. Their applicability, however, is limited to
occupied orbitals only. Thus, we construct “partly occupied Wannier orbitals” [74], in this
way prove the existence of the excited hybridized adsorbate states and get a clear picture of
chemical bonding (Fig. 3.3).

The computation of the imaginary part of the self-energy is performed using 240 excited
states from the SAC-CI calculation within the active space comprising 26 occupied and 86
virtual molecular orbitals. The state and energy resolved electronic self-energy (Fig. 3.4)
gives access to life-times of excited states directly measurable in TR-2PPE experiments.
The convergence of our calculations is tested on model A (Fig. 3.4, inset B). We find that
the self-energy is very sensitive to the geometry of the system, systems further away from the
equilibrium geometry have larger self-energy corrections. This is in line with the common
knowledge in quantum chemistry that indicates a degradation of the accuracy of mean-field
methods for stretched geometries. Although the broadening of the states obtained with our
method is dependent on the state symmetry and energy, inset A on Fig. 3.4 enables us to
make a statement about the average life-time of the quasiparticle states above the Fermi
level. Based on the broadening of 20 to 40 meV we deduce the life-time to be of the order
of 33 to 16.5 fs.

Summarizing, for the optimized geometry the life-time of excited states is larger than re-
ported in the literature for Cs@Cu(001) (6±4 fs), but in line with the results for Cs@Cu(111)
system (15±6 fs) [75, 76]. The variety of relaxation times in aforementioned systems indi-
cates a delicate interplay among various factors such as details of the geometric and elec-
tronic structure, position of excited states with respect to bulk band structure etc., and sug-
gests that only ab initio methods accounting for all these factors can provide an adequate
description of the experiment.

3.4 Superatom molecular orbitals of C60 molecule

The quasiparticle decay times in a Buckminsterfullerene can be likewise computed from
first principles based on the many-body perturbation theory. A particularly lucid represen-
tation arises when the broadening of the quasiparticle states is plotted in the angular mo-
mentum (𝓁) and energy (𝜀) coordinates [5]. In this representation the main spectroscopic
features of the fullerene consist of two occupied nearly parabolic bands, and delocalized
plane-wave-like unoccupied states with a few long-lived electronic states (the superatom
molecular orbitals, SAMOs) embedded in the continuum of Fermi-liquid states. SAMOs
were recently discovered experimentally by M. Feng, J. Zhao, and H. Petek using scan-
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Superatom molecular orbitals of C60 molecule

Figure 3.4: Energy and state resolved electronic self-energy for the converged geometry (model D).
The black curve shows the energies of the quasiparticle states, its intersection with the self-energy
curves yields an approximate solution of the Dyson equation for the imaginary part of the state
energy. Panel (a) shows the main result of this work, the broadening of quasiparticle states. It can
be seen that the life-times are highly sensitive to the geometrical structure of the system. Panel (b)
shows the convergence of ImΣ(𝜔) for the highest occupied molecular orbital (HOMO) of model A
with the number of excited states included in the calculation (𝐷𝑁 = 60, 90, 120, 180, 210, 240).

ning tunneling spectroscopy [77] as universal characteristics of C60 molecules and their
aggregates. Further experiments on endohedral systems [78] and calculations for a series of
quasi-spherical molecules [79] showed that SAMOs are associated with the whole system
(rather then with a particular atom), have a well defined spherical symmetry (Fig. 3.5, an-
gular momentum 𝓁 = 0, 1, 2, principal quantum number 𝑛 = 3) and are capable of forming
chemical bonds. Being markedly different from other unoccupied delocalized states they
hold a promise for unique applications in molecular electronics. Hitherto theory was not
able to answer why these states are so resilient to the chemical environment and why their
character is not washed out by the hybridization. The clarification of these issues is of a
critical importance for the SAMO-mediated charge transport [80].

Results of quantum chemical calculations for C60 molecule using a recently developed
self-energy formalism resolve these issues. We have shown [60] that the spectral function
for a large class of relevant electronic systems can be represented in the form

𝐀𝛼(𝑡) = exp
(
−𝛾𝛼

𝑡2

𝑡 + 𝜏𝛼

)
, (3.22)

where the set-in time of the exponential decay is given by 𝜏𝛼 = 2𝛾𝛼∕𝜎2𝛼𝛼. The spectral
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Figure 3.5: Single-particle states of C60 molecule. Each group of the degenerate states is
represented by a cylinder and is characterized by the averaged orbital momentum 𝓁 (𝑥-axis), the
energy (𝑦-axis), the energy uncertainty 𝜎 (atomic units (a.u.), 𝑧-axis or colour coding) and the
orbital momentum uncertainty (𝛿𝓁, the area of the cylinder base). 𝓁 and 𝛿𝓁 are determined by
projecting the states onto the spherical harmonics 𝜙𝛼 =

∑
𝓁
∑𝓁
𝑚=−𝓁 𝐶

𝛼
𝓁,𝑚𝑌𝓁,𝑚 and interpreting∑𝓁

𝑚=−𝓁 |𝐶𝛼𝓁,𝑚|2 as a probability to be in the angular momentum state 𝓁.

function 𝐀𝛼(𝑡) has the following short and long time-limits:

𝑑
𝑑𝑡

𝐀𝛼(𝑡)
𝑡→0
→ −𝜎2𝛼𝛼𝑡, (3.23)

𝐀𝛼(𝑡)
𝑡→∞
→ 𝑒−𝛾𝛼𝑡, (3.24)

meaning that for short times (𝑡 ≪ 𝜏𝛼) we have the quadratic decay

𝐀𝛼(𝑡) ∼ 1 − 𝜎2𝛼𝛼𝑡
2∕2. (3.25)

𝜎2𝛼𝛼 is the central quantity for our theory. It can be determined as follows. A simple
substitution of the asymptotic expansions into the Dyson equation leads to the exact relations
between the spectral moments of the self-energy𝚺(𝜔) and of the spectral function𝐀(𝜔) [54]:

𝐌(0) = 𝐈, 𝚺∞ = 𝐌(1) − 𝜀, (3.26)
𝚺(0) = 𝐌(2) − [𝐌(1)]2, (3.27)

where 𝚺∞ is the frequency independent real part of the self-energy [81]. 𝜀 is a diagonal
matrix with the elements given by the zeroth-order state energies. By defining the ma-
trix of the spectral functions in terms of the imaginary part of the single-particle Green
function (𝐀(𝜔) = 1

𝜋
|Im𝐆(𝜔)|) and likewise for the spectral function of the self-energy

(𝐒(𝜔) = 1
𝜋
|Im𝚺(𝜔)|), and by the use of the superconvergence theorem [82] one can redefine
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the matrices in terms of the frequency integrals:

𝐌(𝑛) = ∫
∞

−∞
𝑑𝜔𝜔𝑛𝐀(𝜔), 𝑛 = 0…2, (3.28)

𝚺(0) = ∫
∞

−∞
𝑑𝜔 𝐒(𝜔). (3.29)

Using the spectral representation of the self-energy (3.15), the frequency integral is ex-
pressed in terms of the matrix elements 𝑉±. They are should be written in a finite basis
and coupled with an appropriate approximation for the self-energy operator. We consider
the 𝐺𝑊 0 [83] approximation and treat the screened Coulomb interaction on the random
phase approximation level. This is equivalent to the configuration interaction singles (CIS)
treatment of the excited states. The final result can be expressed in terms of populations 𝑛𝑖
and the Coulomb matrix elements only:

𝜎2𝛼𝛽 = 2
∑
𝑖

∑
𝑗,𝑘

⟨𝛼𝑖|𝑗𝑘⟩⟨𝛽𝑖|𝑗𝑘⟩𝑛𝑘(1 − 𝑛𝑗). (3.30)

The main computational burden in this approach is the transformation of the Coulomb matrix
elements from the atomic to molecular orbital basis which scales as (𝑁5). Very large
basis sets (up to 6-311++G(3df,3pd)) resulting in 𝑁 = 2340 functions for C60 were needed
to obtain convergent results. Integral transformations for this number of basis functions
is not feasible with any standard quantum chemistry package and required a parallelized
implementation fully accounting for the symmetry of the system [84].

My calculations clearly indicate a peculiarity of SAMOs: a strong localization in the
energy domain (cf. 𝜎HOMO = 16.0 eV and 𝜎SAMOd

= 6.1 eV) (Fig. 3.5) or their extended
life-time even in comparison with the life-time of HOMO or LUMO states. This finding en-
dorses the potential of SAMOs as transport channels in molecular electronic devices, since
the energy is hardly dissipated during the short transport time. Our results are also unex-
pected from the Landau’s theory of Fermi liquids [2] and illustrate that finite systems possess
electronic excitations that differ drastically from quasiparticles in extended matter. Namely,
a particle excitation may decay into two particles and one hole. This process may recur for
many generations or it may stop after a few. For the former case a large number of many-
particle peaks form a Lorentzian envelope, the so-called quasiparticle. If the decay stops
after a finite number of branchings, only Dirac peaks appear in the single particle spectrum
(denoting a localization in the Fock space). A decisive discriminating factor was shown to
be the particle’s energy (𝜖) [85]. Our ab initio approach suggests that it is actually the kinetic
energy 𝜖𝐾 that governs the decay. We find that even though the energies of electrons with
different radial character may be very similar, their kinetic energy is substantially different
(as follows from the specific form of the Kohn-Sham potential for this system [86]). It im-
poses strong restrictions on the Coulomb matrix elements and leads to the localization of
SAMOs in the Fock space. This hints on the prolonged life-times and stipulates the observed
high stability of these states.
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Time-resolved spectroscopies such as attosecond streaking [87] or two-photon photoemis-
sion [88] (TR-2PPE) allow to trace the dynamics of electronic excitations in real time. As
the measurements inadvertently drive the system out of equilibrium, the many-body wave-
function describing the whole system evolves in time. The evolution is reflected in a number
of observables like the total energy, dipole moment or the spectral density, etc. The equilib-
rium theory such as presented in the previous chapter can only be applied when the external
influence already ceased to act. One can still substantiate the theory in the limit of weak
or slowly varying in time perturbations. But it is impossible to do so for intrinsically non-
equilibrium experimental conditions, such as during the transport measurements: even in
the steady regime the system is out of equilibrium.

The non-equilibrium Green’s function (NEGF) approach allows to tackle exactly these
scenarios [89]. Unlike the ordinary 𝑇 = 0 MBPT with propagators being formally func-
tions of two real times, but practically only depending on their difference, the propagators
of NEGF theory are defined on the Keldysh contour. The time is then an abstract complex
quantity, whereas projections on the real time axis define Green’s functions with different
orderings of the time-arguments. Consequently, one works with a set of four Green’s func-
tions, but diagrammatic rules and the whole methodology remain unchanged.

The propagators contain now a lot more of information: to elucidate consider the elec-
tron spectral function which is natural to define in energy 𝜔 and time 𝑇 coordinates. The
dependence on 𝑇 reflects the transient behavior of the system during the perturbation, while
the 𝜔-dependence results from the Fourier transform with respect to the relative time coor-
dinate 𝑡:

𝐴(𝑇 , 𝜔) = 𝑖∫ 𝑑𝑡
2𝜋
𝑒𝑖𝜔𝑡

[
𝐺> − 𝐺<

] (
𝑇 + 𝑡

2
, 𝑇 − 𝑡

2
)
.

At equilibrium the lesser 𝐺<(𝑡1, 𝑡2) and the greater 𝐺>(𝑡1, 𝑡2) functions only depend on the
time difference and, thus, are reduced by the fluctuation-dissipation theorem to the prod-
uct of the hole/particle distribution function and the difference of the retarded and advanced
components, i. e., the whole expression is reduced to spectral function of the equilibrium the-
ory. In the non-equilibrium regime the two-arguments 𝐴(𝑇 , 𝜔) contains information about
both: the transient electronic structure and the time-dependent distribution function. It be-

−∞ t‒

+∞t+

Figure 4.1: The Keldysh time-loop contour . The forward branch is denoted with a “−” label
while the backward branch is denoted by a “+” label.
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Figure 4.2: Sketch of the coincidence electron spectrometer.

comes evident when one considers the generalized Kadanoff-Baym Ansatz (GKBA) [90]:
−𝑖𝐺<(𝑡1, 𝑡2) = 𝐺R(𝑡1 − 𝑡2)𝐺<(𝑡2) − 𝐺<(𝑡1)𝐺A(𝑡1 − 𝑡2). This approximation will be used
in the following sections together with the requirement on the theory to be conserving at
one and two-particle levels [91, 92] to devise a practical numerical scheme applicable for
equilibrium and non-equilibrium situations [6, 7] (Sec. 4.2).

Positive definiteness of spectral functions is another requirement that perturbation theo-
ries should fulfill. A model example presented in Sec. 2.3 demonstrates that its violation is
a direct consequence of the asymptotic character of perturbative series. In Sec. 4.3 I zoom
into the origin of this problem. A diagrammatic solution using the NEGF tools [8] is then
illustrated by the vertex function calculations for the homogeneous electron gas.

Evolution of a quantum state on the Keldysh contour is very similar to the preparation
and observation of a wave packet in scattering experiments [93, 94]. That is why it is nat-
ural to apply the machinery of NEGF theory to the process of electron photoemission. In
Sec. 4.4 I focus on one particular experiment (Fig. 4.2) where two electrons are observed in
coincidence after a quantum system absorbs one photon, the so-called double photoemission
(DPE). As the minimal coupling of the incident laser field to any many-body system is of
the single-particle type, the simultaneous emission of two electrons must be mediated by the
electron-electron interaction [95] and is a manifestation of extrinsic losses in a single pho-
toemission [96, 97]. Diagrammatic formulation of the plasmon assisted DPE is the major
innovation here [9].

4.1 Correlators on the Keldysh contour

In Chapter 3 the time-ordered correlators 𝜒(1, 2), 𝐺(1, 2) and Σ𝑐(1, 2) have been defined as
the ground state average of products of field operators (Eqs. (3.7)-(3.9)). They all depend
on two time-arguments and, therefore, can be written in the following generic form:

ℱ (𝐱1𝑡1, 𝐱2𝑡2) = −𝑖⟨Ψ0|𝑇 [𝒻†
𝐻 (𝐱1𝑡1)𝒻𝐻 (𝐱2𝑡2)]|Ψ0⟩irr , (4.1)

where ⟨⋯⟩irr signifies that after the correlator was computed according to the Wick’s theo-
rem some reducible diagrams need to be removed. 𝑇 denotes the time-ordering operator.

We can consider a more general situation where the time arguments lie on an arbitrary
contour (such as shown at Fig. 4.1). In the following I adhere to notations of Stefanucci and
van Leeuwen [89], denote points on the contour as 𝑧𝑖 ∈ , and introduce the order relation
𝑧𝑖 ≺ 𝑧𝑗 and the corresponding contour-ordering operator  .
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The definition of the correlator (4.1) is then naturally extended

ℱ (𝐱1𝑧1, 𝐱2𝑧2) = −𝑖⟨Ψ0| 𝒻𝐻 (𝐱1𝑧1)𝒻
†
𝐻 (𝐱2𝑧2)|Ψ0⟩irr , (4.2)

where the contour Heisenberg picture is introduced with the help of the contour evolution
operators

𝒻𝐻 (𝐱𝑧) = ̂ (𝑧0, 𝑧)𝒻𝐻 (𝐱)̂ (𝑧, 𝑧0). (4.3)

We see that for each real time point correspond two points on the Keldysh contour
(Fig. 4.1) such that 𝑡− precedes 𝑡+ (𝑡− ≺ 𝑡+). Thus, it is natural to introduce four possi-
ble correlators ℱ 𝛼𝛽(𝐱1𝑧1, 𝐱2𝑧2) (𝛼, 𝛽 = ±) according to the branch to which 𝑧1 and 𝑧2
belong to. In these notations the time-ordered correlator has its both time-arguments on
the forward branch and denoted as ℱ −−, whereas the anti-time-ordered correlator has two
time arguments on the backward branch, i. e. ℱ ++. They are known to us from standard
(equilibrium) formulation of MBPT. ℱ −+ and ℱ +− have slightly different meaning and are
denoted as the lesser and greater correlators:

ℱ <(𝐱1𝑧1, 𝐱2𝑧2) = +𝑖⟨Ψ0|𝒻†
𝐻 (𝐱2𝑧2)𝒻𝐻 (𝐱1𝑧1)|Ψ0⟩irr , (4.4)

ℱ >(𝐱1𝑧1, 𝐱2𝑧2) = −𝑖⟨Ψ0|𝒻𝐻 (𝐱1𝑧1)𝒻
†
𝐻 (𝐱2𝑧2)|Ψ0⟩irr . (4.5)

In frequency space and at zero temperature−𝑖𝐺<(𝜔) is the spectral function below the Fermi
energy, whereas 𝑖𝐺>(𝜔) is the spectral function above the Fermi energy.

From physical perspective all observables are given by the retarded correlation func-
tions, that is between an excitation and the system’s response is a causal relation. It can be
expressed in terms of already defined correlators on the Keldysh contour:

ℱ R(𝐱1𝑡1, 𝐱2𝑡2) = ℱ 𝛿(𝐱1𝑡1, 𝐱2𝑡2)𝛿(𝑡1 − 𝑡2)
+ 𝜃(𝑡1 − 𝑡2)

[
ℱ >(𝐱1𝑡1, 𝐱2𝑡2) −ℱ <(𝐱1𝑡1, 𝐱2𝑡2)

]
, (4.6)

where ℱ 𝛿 is the instantaneous function. It vanishes for the electron propagator and is equal
to the bare Coulomb interaction for the screened Coulomb interaction. To make the pic-
ture complete one considers the anti-causal relations described by the advanced correlators
ℱ A(𝐱1𝑡1, 𝐱2𝑡2) = ℱ R(𝐱1𝑡2, 𝐱2𝑡1).

Diagrammatically the non-equilibrium Green’s function theory is not different from its
equilibrium counterpart. Also equations of motion on the Keldysh contour have the same
functional form. The difference is in the way how products and convolutions are evaluated.
They are known as Langreth rules. Consider, for instance, the convolution of two functions
on the contour

𝑐(𝑧1, 𝑧2) = ∫ 𝑑𝑧 𝑎(𝑧1, 𝑧) 𝑏(𝑧, 𝑧2).

Following identities hold
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𝑐<(𝑡1, 𝑡2) = ∫ 𝑑𝑡
[
𝑎<(𝑡1, 𝑡)𝑏A(𝑡, 𝑡2) + 𝑎R(𝑡1, 𝑡)𝑏<(𝑡, 𝑡2)

]
, (4.7)

𝑐R(𝑡1, 𝑡2) = ∫ 𝑑𝑡 𝑎R(𝑡1, 𝑡)𝑏R(𝑡, 𝑡2). (4.8)

The products 𝑐(𝑧1, 𝑧2) = 𝑎(𝑧1, 𝑧2)𝑏(𝑧2, 𝑧1) are evaluated as follows

𝑐<(𝑡1, 𝑡2) = 𝑎<(𝑡1, 𝑡2)𝑏>(𝑡2, 𝑡1), (4.9)
𝑐>(𝑡1, 𝑡2) = 𝑎>(𝑡1, 𝑡2)𝑏<(𝑡2, 𝑡1). (4.10)

Other identities are listed in Ref. [89].

4.2 Conserving approximations

In this section I present a general approach for 𝐺𝑊 calculations of quasiparticle (QP) prop-
erties, in which an accurate screened Coulomb potential is calculated based on consistency
requirements between the single-particle Green’s function (determined by the self-energy)
and the screened potential (determined by the density-density correlation function). Such
an approach is particularly well suited for metal clusters, which combine features of finite
systems with those of extended ones [65, 98, 99].

The calculation of the screened Coulomb potential is the main difference of our ap-
proach from standard 𝐺𝑊 -RPA and its selectively improved versions. The motivation for
this change in approach is that 𝑊 as computed in the 𝐺𝑊 -RPA is an auxiliary quantity,
which lacks some of the properties of a physical screened potential [100]. To be more
specific, 𝐺𝑊 -RPA does not obey the charge/current conservation law as it applies to the
density-density correlation function, unless the screened potential 𝑊 is calculated from
single-particle Green’s function in the Hartree approximation [91]. This approximation,
however, is clearly not good enough for clusters. Using Green’s functions determined self-
consistently instead of the Hartree Green’s function seems to be a straightforward improve-
ment for the calculation of𝑊 , but it leads to a violation of the 𝑓 -sum rule [92], and therefore
is in conflict with our goal of improving the quality of the screened Coulomb potential.

To obtain a screened Coulomb potential that does not violate sum rules, we choose the
self-energy first, and obtain the consistent screened potential (including vertex corrections):

𝑊 R(1, 2) = 𝑣(1, 2) + ∫ d(34) 𝑣(1, 3)𝜒R(3, 4)𝑣(4, 2), (4.11)

by the physical constraint that the polarization function (or density-density correlation func-
tion) fulfills charge/current conservation [91, 101]. This can be achieved by determining the
density-density correlation function as a functional derivative of the Green’s function with
respect to an external potential [91, 102]:

𝜒R(1, 2) =
𝛿⟨�̂�(1)⟩
𝛿𝜑(2)

||||𝜑=0 . (4.12)
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Using the functional derivative technique, the concept of Φ-derivability is not explicitly
needed [103], if one starts from conserving Green’s functions, as is the case in our cal-
culations. The functional derivative is computed by solving a linearized quantum-kinetic
equation for the one-particle Green’s function in the presence of a weak external potential
𝜑 with a generalized quasiparticle ansatz.

In the previous chapters I have already demonstrated that in the framework of MBPT
the quality of approximations for the self-energy and the irreducible polarization function is
controlled by the level of approximation adopted for the calculation of the vertex function Γ.
One can also use general criteria derived from physical conservation laws or invariance prin-
ciples. Such an approach has been used for transport calculations [91] and electronic struc-
ture calculations [92, 101, 104]. Since the conservation laws imply important consistency
conditions for the one and two-particle correlation functions [91, 101], they prevent a choice
of the vertex contributions that optimizes, say, the one-particle properties at the cost of the
two-particle correlation functions. The choice of vertex corrections, which are inconsistent
in the sense that they do not obey the charge-current conservation law, may be suitable for a
particular calculation, but such a choice is more likely to encounter problems with calcula-
tions where both the single-particle quantities (i. e., 𝐺 and Σ) and the two-particle quantities
(i. e., 𝑊 and 𝑃 ) are intimately connected. The question of consistency between the differ-
ent “ingredients” for the calculation also arises if one uses, for instance, density-functional
based single-particle states as input in 𝐺𝑊 calculations, which are then used as input to
Bethe-Salpeter equation calculations [22].

Quantum kinetics

In our basis function representation, the single-particle density matrix is given in terms of a
single-particle nonequilibrium Green’s function

𝑖𝐺<𝑛2𝑛1(𝑡, 𝑡) = −⟨�̂�𝑛1𝑛2(𝑡)⟩ = −⟨𝑐†𝑛1(𝑡)𝑐𝑛2(𝑡)⟩, (4.13)

where 𝑐†𝑛 and 𝑐𝑛 are the creation and the annihilation operators of particles in the molecular
orbital 𝑛, respectively.

In the following, I relate the determination of 𝜒R to a quantum-kinetic calculation of a
nonequilibrium Green’s function under the action of a weak external field 𝜑. For this, we
start from the time-dependent Hamiltonian �̂�(𝑡) = �̂�0 +

∑
𝑛1𝑛2

𝜑𝑛1𝑛2(𝑡)𝑐
†
𝑛1
𝑐𝑛2 with

�̂�0 =
∑
𝑛1𝑛2

𝑇𝑛1𝑛2𝑐
†
𝑛1
𝑐𝑛2 +

1
2

∑
𝑛1…𝑛4

⟨𝑛1𝑛2|𝑣|𝑛4𝑛3⟩𝑐†𝑛1𝑐†𝑛2𝑐𝑛3𝑐𝑛4 , (4.14)

where �̂� is the kinetic part, which in our case includes the core potential, and 𝑣 is the bare
Coulomb matrix element. With this Hamiltonian, the Green’s function (4.13) evolves in
time according to

𝑖 𝜕
𝜕𝑡1

𝐺<𝑛1𝑛2(𝑡1, 𝑡2) = 𝛿(𝑡1 − 𝑡2)𝛿𝑛1𝑛2 +
∑
𝑛3

(𝑇 + 𝜑)𝑛1𝑛3(𝑡1)𝐺
<
𝑛3𝑛2

(𝑡1, 𝑡2)

+
∑
𝑛3

∫ d𝑡3
(
ΣR
𝑛1𝑛3

(𝑡1, 𝑡3)𝐺<𝑛3𝑛2(𝑡3, 𝑡2) + Σ<𝑛1𝑛3(𝑡1, 𝑡3)𝐺
A
𝑛3𝑛2

(𝑡3, 𝑡2)
)
. (4.15)

There is also the adjoint equation, corresponding to the derivative with respect to 𝑡2. For the
evaluation of Eq. (4.15) we use a relation (4.6) between the components of 𝐺, 𝑊 and Σ on
the Keldysh contour and recall that the instantaneous HF self-energy is given by:

ΣHF
𝑛1𝑛2

(𝑡1) = −𝑖
∑
𝑛3𝑛4

[⟨𝑛1𝑛3|𝑣|𝑛2𝑛4⟩ − ⟨𝑛1𝑛2|𝑣|𝑛3𝑛4⟩]𝐺<𝑛3𝑛4(𝑡1, 𝑡1). (4.16)
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Finally, for Σ≷(𝑡1, 𝑡2) we use the 𝐺𝑊 form

Σ≷𝑛1𝑛2(𝑡1, 𝑡2) = 𝑖
∑
𝑛3𝑛4

𝐺≷𝑛3𝑛4(𝑡1, 𝑡2)⟨𝑛1𝑛2|𝑊 ≶(𝑡2, 𝑡1)|𝑛3𝑛4⟩. (4.17)

Similarly for the imaginary part of the retarded correlated self-energy we have

ImΣ𝑐𝑛1𝑛1(𝜔) =
∑
𝑛2

∫ d𝜔′

𝜋
[
𝑛B(𝜔′) + 𝑛F(𝜔 + 𝜔′)

]
Im𝐺R

𝑛2𝑛2
(𝜔 + 𝜔′) Im⟨𝑛1𝑛1|𝑊 R(𝜔′)|𝑛2𝑛2⟩,

(4.18)

where 𝑛B(𝜔) and 𝑛F(𝜔) are the Bose and Fermi distribution functions, respectively, i. e.
𝑛B/F(𝜔) = [exp 𝛽𝜔 ± 1]−1. The real part of Σ𝑐(𝜔) is calculated from a Kramers-Kronig
transformation.

Equation (4.15) for the dynamical Green’s functions depending on two real time argu-
ments is an extremely complex integro-differential equation, whose solution is possible only
for small or homogeneous systems [105]. For systems of intermediate size, our aim is to de-
velop a flexible approximate numerical scheme which works only with Green’s functions
depending on a single time argument. We introduce approximations, so that the resulting
equations depend only on𝐺R(𝑡1− 𝑡2), i. e., the equilibrium retarded Green’s function, whose
Fourier transformation𝐺R(𝜔) has a simple physical interpretation, instead of 𝐺R(𝑡1, 𝑡2). An
important consequence of this approximation is that the equilibrium 𝐺R(𝑡1 − 𝑡2) does not
need to be calculated together with the dynamical Eq. (4.15). Rather, the response of the
system described by Eq. (4.15) now becomes implicitly dependent on 𝐺R(𝜔).

Here, I concentrate on the numerical procedure for a consistent “one-shot”𝐺𝑊 calcula-
tion. Using HF spin orbitals as single-particle quantum numbers, the retarded GF becomes
diagonal

𝐺R (HF)
𝑛1𝑛2

(𝜔) = 1
(𝜔 + 𝑖𝛾) − 𝜖HF𝑛1

𝛿𝑛1𝑛2 . (4.19)

In equilibrium, this corresponds also to a diagonal kinetic Green’s function

𝐺< (HF)
𝑛1𝑛2

(𝜔) = 2𝜋𝑖𝑓 (HF)
𝑛1𝑛2

𝛿(𝜔 − 𝜖HF𝑛1 ) (4.20)

𝑓 (HF)
𝑛1𝑛2

= 𝑛F(𝜖HF𝑛1 ) 𝛿𝑛1𝑛2 , (4.21)

Employing Eq. (4.20) as a description of the HF ground state, we determine the dielectric
function via Eq. (4.12). To do this, we need several additional steps and an approximation
for the two-time kinetic Green’s function. We first note that, to first order in the weak per-
turbation, only density fluctuations, i. e., averages of the form ⟨�̂�𝑛1𝑛2(𝑡)⟩ with 𝑛1 ≠ 𝑛2, are
driven away from their equilibrium value (4.21), while the level occupations ⟨�̂�𝑛1𝑛1⟩ remain
equal to 𝑓 (HF)

𝑛1𝑛1 = 𝑛F(𝜖HF𝑛1 ) for all times.
Transcribing this back into the language of Green’s functions using Eq. (4.13), we need

to calculate off-diagonal matrix elements 𝑖𝐺<𝑛1𝑛2(𝑡, 𝑡). The quantum kinetic equation for these
quantities is derived by subtracting Eq. (4.15) and the adjoint equation, making the substi-
tution 𝑡 = (𝑡1 + 𝑡2)∕2 and 𝜏 = 𝑡1 − 𝑡2 and finally considering the equal-time limit 𝜏 = 0:

(
𝑖 𝜕
𝜕𝑡

− 𝜖HF𝛼
)
𝐺<𝛼 (𝑡) + 𝑛𝛼Ω

eff
𝛼 (𝑡) = 𝑆𝛼(𝑡). (4.22)

Here, 𝛼 = (𝑛1, 𝑛2) is a pair-state index for the off-diagonal Green’s function, 𝜖HF𝛼 = 𝜖HF𝑛1 −𝜖HF𝑛2
the energy difference between two levels, and 𝑛𝛼 = 𝑛F(𝜖𝑛1)−𝑛F(𝜖𝑛2) is the difference in level
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distribution between the two spin-orbitals of the pair state. The latter quantity is sometimes
referred to as the Pauli-blocking factor. The generalized driving term

Ωeff
𝛼 (𝑡) = 𝑖𝜑𝛼(𝑡) +

∑
𝛽
(𝑣dir𝛼𝛽 − 𝑣

exc
𝛼𝛽 )𝐺

<
𝛽 (𝑡) (4.23)

contains Coulomb enhancement contributions involving direct and exchange terms:

𝑣dir𝛼𝛽 ≡ 𝑣dir(𝑛1𝑛2)(𝑛3𝑛4)
= ⟨𝑛1𝑛3|𝑣|𝑛2𝑛4⟩, 𝑣exc𝛼𝛽 ≡ 𝑣exc(𝑛1𝑛2)(𝑛3𝑛4)

= ⟨𝑛1𝑛2|𝑣|𝑛3𝑛4⟩. (4.24)

The right hand side of Eq. (4.22) is the correlation term

𝑆𝑛1𝑛2(𝑡) =
∑
𝑛3

∫
𝑡

−∞
d𝑡
[
Σ>𝑛1𝑛3(𝑡, 𝑡)𝐺

<
𝑛3𝑛2

(𝑡, 𝑡) + 𝐺<𝑛1𝑛3(𝑡, 𝑡)Σ
>
𝑛3𝑛2

(𝑡, 𝑡) − (≶↔≷)
]

(4.25)

that accounts for interaction effects beyond HF. For the self-energies, we use Eq. (4.17).

Generalized Kadanoff-Baym ansatz

The aim of our approach is to reduce the computational complexity of the Green’s functions
depending on two time arguments by splitting the problem into the the determination of the
equilibrium𝐺R(𝜔) from the calculation of the density-response function, i. e.,𝐺<(𝑡, 𝑡) in the
presence of an external perturbation. The main approximation involved is that the two-time
Green’s functions𝐺<(𝑡, 𝑡), which are contained in the correlation contribution (4.25) need to
be related to the dynamics of the density response, i. e., the time-diagonal Green’s function
by virtue of Eq. (4.13). To this end, GKBA in the following form [106] is employed:

𝐺≷𝑛1𝑛2(𝑡, 𝑡) = 𝑖𝐺R
𝑛1𝑛1

(𝑡 − 𝑡)𝐺≷𝑛1𝑛2(𝑡) − 𝑖𝐺
≷
𝑛1𝑛2

(𝑡)𝐺A
𝑛2𝑛2

(𝑡 − 𝑡) . (4.26)

To evaluate the correlation contribution using GKBA I substitute for the retarded 𝐺R and
advanced 𝐺A Green’s functions the Hartree-Fock Green’s functions in the time domain and
obtain:

𝑆𝑛1𝑛2(𝑡) = 𝑖
∑
𝑛3𝑛4𝑛5

∫
𝑡

−∞
𝑑𝑡
[
𝑒−𝑖(𝜖𝑛4−𝜖

∗
𝑛2
)(𝑡−𝑡)⟨𝑛1𝑛3|𝑊 <(𝑡, 𝑡)|𝑛4𝑛5⟩𝐺<𝑛3𝑛2(𝑡)𝐺>𝑛4𝑛5(𝑡)

+ 𝑒−𝑖(𝜖𝑛1−𝜖
∗
𝑛5
)(𝑡−𝑡)⟨𝑛3𝑛2|𝑊 <(𝑡, 𝑡)|𝑛4𝑛5⟩𝐺<𝑛1𝑛3(𝑡)𝐺>𝑛4𝑛5(𝑡) − (≶↔≷)

]
. (4.27)

Because we wish to determine the linear density response to the weak external perturbation,
𝑆(𝑡) is linearized with respect to the off-diagonal 𝐺≷s that are driven by 𝜑. In the spirit of
linear response, the Green’s functions appearing in one term together with one off-diagonal
Green’s function are replaced by the equilibrium relations 𝐺<𝑛1𝑛1 = −𝑖(1 − 𝑓𝑛1) and 𝐺>𝑛1𝑛1 =
−𝑖𝑓𝑛1 , where we have defined 𝑓𝑛1 ≡ 𝑓 (HF)

𝑛1𝑛1 ; and use 𝐺>𝑛1𝑛2(𝑡) = 𝐺<𝑛1𝑛2(𝑡) for 𝑛1 ≠ 𝑛2.
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4. Nonequilibrium approach

The density-density response

The equation for 𝜒R is obtained by functional differentiation of Eq. (4.22) with respect
to 𝜑(𝑡′) and letting 𝜑 → 0 afterwards. This is done by replacing everywhere the term
𝛿𝐺<𝑛1𝑛2(𝑡)∕𝛿𝜑𝑛3𝑛4(𝑡

′) with −𝑖⟨𝑛1𝑛2|𝜒R(𝑡 − 𝑡′)|𝑛3𝑛4⟩. In the correlation contributions, terms
such as 𝛿𝑊 ≷∕𝛿𝜑 are consistently neglected, because we assume that the external potential
is weak enough as not to cause changes in the screening properties of the system [107]. The
resulting equation can be cast in the form(

𝑖 𝜕
𝜕𝑡

− 𝜖HF𝛼
)
𝜒R
𝛼𝛽(𝑡, 𝑡

′) + 𝑛𝛼
(
𝛿𝛼𝛽 +

∑
𝛾
(𝑣dir𝛼𝛾 − 𝑣

exc
𝛼𝛾 )𝜒

R
𝛾𝛽(𝑡, 𝑡

′)
)

=
∑
𝛾 ∫

𝑡

−∞
d𝑡Δ𝛼𝛾 (𝑡, 𝑡)𝜒R

𝛾𝛽(𝑡, 𝑡
′). (4.28)

The correlation kernel Δ only depends on the time-difference allowing us to perform the
Fourier transformation of Eq. (4.28) with respect to time and to determine the frequency-
dependent 𝜒R by

(𝜔 − 𝜖HF𝛼 )𝜒R
𝛼𝛽(𝜔) + 𝑛𝛼

(
𝛿𝛼𝛽 +

∑
𝛾
(𝑣dir𝛼𝛾 − 𝑣

exc
𝛼𝛾 )𝜒

R
𝛾𝛽(𝜔)

)
=
∑
𝛾
Δ𝛼𝛾 (𝜔)𝜒R

𝛾𝛽(𝜔). (4.29)

The integration of terms contributing to Δ is quite tedious and presented in full in [7].
Equation (4.29) completes the development of our method: it allows to determine 𝜒R

and therefore via Eq. (4.11) the retarded screened potential 𝑊 R. This in turn enters the
calculation of the equilibrium Green’s function via the Dyson equation and (4.18). Thus, we
have access to single-particle properties of a system [6] (density of states) via the Green’s
function and to neutral excited states [7] via the density-density response function on equal
footing.

The real part of Δ contributes to transition-energy renormalizations and the imaginary
part to resonance broadening. The diagonal contributions Δ𝛼=𝛾 only shift and broaden two-
particle resonances whereas the off-diagonal Δ𝛼≠𝛾 together with 𝑣dir𝛼𝛾 and 𝑣exc𝛼𝛾 can lead to
collective features in the Im𝜀−1(𝜔) spectrum. We reiterate that the quasiparticle properties
are conserving on the one and two-particle levels in the sense of Baym and Kadanoff because
the one-particle Green’s function is calculated from a dielectric function (density response-
function) that is related by a functional differentiation to a one-particle conserving equation
of motion for 𝐺<.

Figure 4.2 shows the comparison between the experimental and the theoretical cross
sections of the optical absorption of Na+21 cluster. The measured spectrum displays a large
absorption line centered around 2.74 eV [108]. Two different cluster geometries were used
in the calculation: one corresponding to a prolate (i. e., elongated) cluster and one structure
with C6v symmetry. The qualitative agreement between theory and experiment is very good
with respect to the position and the shape of the peak for the prolate Na+21.

In summary, I have presented an approach to compute the absorption and quasiparticle
spectra for finite systems based on a linear response theory for the dynamical electron-hole
coherences in the presence of an external field. Using a quasiparticle ansatz in the quantum
kinetic equation for the electron-hole coherence, which includes HF and scattering contribu-
tions, allows us to derive a Bethe-Salpeter equation for the electron-hole correlation function
with a complex, frequency-dependent kernel yielding the scattering (or correlation) contri-
butions to the electron-hole coherence dynamics.
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Positive definite approximations

Figure 4.3: Measured (a) and computed (b) absorption cross section for Na+21. The experimental
result is adapted from Ref. [108]. The theoretical spectra are calculated for the prolate cluster (solid
line), and the structure with C6v symmetry (dashed line). The insets show the cluster geometries
with distances in Å.

4.3 Positive definite approximations

In Section 2.2 I have already emphasized the asymptotic character of perturbative expan-
sions. Important observation was made for the electron gas by Minnhagen [109]. He no-
ticed that the straightforward inclusion of vertex corrections beyond the 𝐺𝑊 level leads
to negative spectral densities in some frequency regions. Such unpleasant property is not
limited to the electron gas as it has also been observed in a study of vertex corrections in
finite systems [110, 111]. This deficiency not only prohibits the usual probability interpre-
tation of the spectral function but also generates Green’s functions with the wrong analytic
properties. In particular the latter feature prevents an iterative self-consistent solution of
the Dyson equation since the analytic properties deteriorate with every self-consistency cy-
cle. This problem was circumvented in Sec. 2.2 by performing calculations in the frequency
domain where perturbative expansions are known to converge and by making an analytic
continuation using the Padé approximation.

The non-positivity of spectral functions is not pertinent to single-particle properties.
Starting from Hubbard [112] who introduced what is now known as the local field factor,
numerous works were devoted to the diagrammatic computations of the density response
function [1]. In a full generality the frequency dependent first-order results were obtained by
Holas, Aravind, and Singwi [113]. In Fig. 4.4 we depict its momentum and energy resolved
spectral function computed according to their expression. The pink shaded area denotes a
part of the particle-hole continuum where the 1st order spectral function is negative. This
fact again prevents any self-consistent calculations where screening is treated beyond RPA.
To resolve this issue we first inspect the positivity property of exact correlators and use this
fact to modify MBPT to generate positive definite approximations.
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4. Nonequilibrium approach

Positivity of the exact self-energy and response function

From the Dyson equation on the Keldysh contour one can show [89] that in equilibrium
following relations hold:

𝐺≶(𝜔) = 𝐺R(𝜔)Σ𝑐,≶(𝜔)𝐺A(𝜔), (4.30)

where Σ𝑐 is the correlation self-energy. Since 𝐺A(𝜔) = [𝐺R(𝜔)]† the PSD of ∓𝑖𝐺≶ implies
that ∓𝑖Σ𝑐,≶ is PSD and vice versa. The PSD property of the exact 𝑖𝜒≶(𝜔) is manifested
from the Lehmann representation of this quantity. It is instead less obvious to prove the
PSD property from the diagrammatic expansion. Here we provide such a proof and bring to
light a diagrammatic structure which forms the basis of a general scheme to construct PSD
approximations.

Consider for definiteness a ℱ < correlator (4.4), the same reasoning applies to ℱ >. We
can use the standard assumption of the zero-temperature Green’s function formalism that
Ψ0 can be obtained by evolving backward the noninteracting ground state Φ0 from a distant
future time 𝜏 (with 𝜏 → ∞) to the arbitrary initial time 𝑡0 using an interaction which is
switched-on adiabatically. Eq. (4.4) becomes (the limit 𝜏 → ∞ is implied)

ℱ <(1, 2) = 𝑖
[∑

𝑖
⟨Φ0|̂ (𝜏, 𝑡2)𝒻†(𝐱2)̂ (𝑡2, 𝜏)|𝜒𝑖⟩⟨𝜒𝑖|̂ (𝜏, 𝑡1)𝒻(𝐱1)̂ (𝑡1, 𝜏)|Φ0⟩]

irr
.

(4.31)
Here we inserted a completeness relation

∑
𝑖 |𝜒𝑖⟩⟨𝜒𝑖| = 1 (the sum runs over all states 𝜒𝑖 in

Fock space) and used the group property ̂ (𝑡1, 𝑡0)̂ (𝑡0, 𝜏) = ̂ (𝑡1, 𝜏) and ̂ †(𝑡0, 𝜏)̂ (𝑡0, 𝑡2) =̂ (𝜏, 𝑡2). Let 𝒞𝑖 denote an operator acting on the noninteracting ground state and producing
the intermediate states, i. e., |𝜒𝑖⟩ = 𝒞𝑖|Φ0⟩. It can be expanded in terms of the annihila-
tion and creation operators. The intermediate states differ by the number of holes (𝑀) and
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Figure 4.4: (Color online) Distribution of positive (green) and negative (pink) values of the first
order spectral function in 𝑘 − 𝜔 plane.
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Positive definite approximations

particles (𝑁) they contain with respect to the ground state Φ0

𝒞𝑖|Φ0⟩ = 𝑐†𝑞𝑁 … 𝑐†𝑞1𝑐𝑝𝑀 … 𝑐𝑝1|Φ0⟩ ≡ |𝜒 (𝑁,𝑀)
𝑝𝑞 ⟩. (4.32)

Relation between 𝑁 and 𝑀 is fixed by the nature of operators 𝒻 in the correlator. For
example, for self-energy we have 𝑀 = 𝑁 + 1 (cf. Eq. 3.10), and for the density response
𝑀 = 𝑁 (cf. Eq. 3.11). With these definitions the completeness relation reads

∑
𝑖
|𝜒𝑖⟩⟨𝜒𝑖| → ∞∑

𝑁=0

1
𝑀!𝑁!

∑
𝑝𝑞

|𝜒 (𝑁,𝑀)
𝑝𝑞 ⟩⟨𝜒 (𝑁,𝑀)

𝑝𝑞 | = 𝐼. (4.33)

Defining the amplitudes

𝑆(𝑁,𝑀)
𝑝𝑞

∗(1) ≡ ⟨𝜒 (𝑁,𝑀)
𝑝𝑞 |̂ (𝜏, 𝑡1)𝒻(𝐱1)̂ (𝑡1, 𝜏)|Φ0⟩,

𝑆(𝑁,𝑀)
𝑝𝑞 (2) ≡ ⟨Φ0|̂ (𝜏, 𝑡2)𝒻†(𝐱2)̂ (𝑡2, 𝜏)|𝜒 (𝑁,𝑀)

𝑝𝑞 ⟩,
the lesser correlator takes the following compact form

ℱ <(1, 2) = 𝑖
[ ∞∑
𝑁=0

1
𝑀!𝑁!

∑
𝑝𝑞
𝑆(𝑁,𝑀)
𝑝𝑞 (2)𝑆(𝑁,𝑀)

𝑝𝑞
∗(1)

]
irr
. (4.34)

The adiabatic assumption implies that turning the interaction slowly on and off the state Φ0
changes at most by a phase factor: ̂ (𝜏,−𝜏)|Φ0⟩ = 𝑒𝑖𝛼|Φ0⟩. Hence we can rewrite the
amplitudes as

 (𝑁,𝑀)
𝑝𝑞

∗(𝐱1𝑡1) =
⟨Φ0| {

𝑒−𝑖 ∫ 𝜏−𝜏 𝑑𝜏�̂�(𝜏)𝑐†𝑝1(𝜏
+)… 𝑐†𝑝𝑀 (𝜏

+)𝑐𝑞1(𝜏)… 𝑐𝑞𝑁 (𝜏)𝒻(𝐱1𝑡1)
}|Φ0⟩⟨Φ0| {

𝑒−𝑖 ∫ 𝑇−𝑇 𝑑𝜏�̂�(𝜏)}|Φ0⟩ ,

 (𝑁,𝑀)
𝑝𝑞 (𝐱2𝑡2) =

⟨Φ0|̄ {
𝑒𝑖 ∫ 𝜏−𝜏 𝑑𝜏�̂�(𝜏)𝒻†(𝐱2𝑡2)𝑐†𝑞𝑁 (𝜏)… 𝑐†𝑞1(𝜏)𝑐𝑝𝑀 (𝜏

+)… 𝑐𝑝1(𝜏
+)|Φ0⟩⟨Φ0|̄ {

𝑒𝑖 ∫ 𝜏−𝜏 𝑑𝜏�̂�(𝜏)}|Φ0⟩ ,

with  and ̄ the time-ordering and anti-time-ordering operators respectively. The time ar-
gument in the fermion creation and annihilation operators specifies the position of the opera-
tors on the time axis, and 𝜏+ denotes a time infinitesimally larger than 𝜏. Thus,  (𝑁,𝑀)∗ and (𝑁,𝑀) have a typical form of interacting time-ordered, anti-time-ordered Green’s functions,
respectively. Hence they can be expanded diagrammatically using Wick’s theorem [114].
An example of  , ∗ diagrams for the self-energy is illustrated in Fig. 4.5 and resembles
half a Σ diagram. The left-half corresponds to  (𝑁,𝑀)∗ with lines given by noninteracting
time-ordered Green’s functions 𝑔−− whereas the right-half corresponds to  (𝑁,𝑀) with lines
given by noninteracting anti-time-ordered Green’s functions 𝑔++.

It is now easy to show that 𝑖ℱ <(𝜔) is PSD. By Fourier transforming  with respect to 𝑡2
and ∗ with respect to 𝑡1 we find (omitting the dependence on the spatial and spin variables)

𝑖ℱ <(𝑡1, 𝑡2) =
∞∑
𝑁=1

1
𝑀!𝑁! ∫ 𝑑𝜔

2𝜋
𝑑𝜔′

2𝜋
𝑒−𝑖𝜔𝑡2+𝑖𝜔

′𝑡1
∑
𝑝𝑞

 (𝑁,𝑀)
𝑝𝑞 (𝜔) (𝑁,𝑀)∗

𝑝𝑞 (𝜔′). (4.36)
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Figure 4.5: Diagrammatic structure of the functions 𝑆(1) and 𝑆∗(2) for the lesser self-energy. The
external vertex points 1 and 2 have times on the − and + branch respectively. Green’s functions are
denoted by the lines with arrows, while wavy lines correspond to the bare interparticle interaction.

In equilibrium 𝑖ℱ < is invariant under time translations, i. e., it depends on 𝑡1 − 𝑡2 only.
Imposing time translational invariance on the r.h.s. leads to

∞∑
𝑁=1

1
𝑀!𝑁!

∑
𝑝𝑞

 (𝑁,𝑀)
𝑝𝑞 (𝜔) (𝑁,𝑀)∗

𝑝𝑞 (𝜔′) =  (𝜔)𝛿(𝜔 − 𝜔′) (4.37)

with  some matrix function of the frequency 𝜔. Since for 𝜔 = 𝜔′ the l.h.s. is a sum of
PSD matrices we conclude that  is PSD. Inserting Eq. (4.37) back into Eq. (4.36) we see
that  (𝜔) is the Fourier transform of 𝑖ℱ < which, therefore, is PSD too.

In more general terms Eq. (4.37) tells us that 𝑖ℱ < correlator (4.4) can be written in the
Fermi Golden rule form (3.5). In Ref. [8] rules are formulated to turn an arbitrary diagram-
matic approximation into PSD form. It rests on the following observations (We consider
again only the case of lesser correlators. Greater correlators can be treated similarly.):

– For each diagram forming an approximation for ℱ < specify position on the Keldysh
contour for each vertex. This amounts to distributing pluses (time arguments on the
backward branch) and minuses (forward branch) among the vertices. It can be shown
that isolated islands of pluses or minuses are not permitted.

– In this way a lesser diagram corresponds to the sum of all possible partitions such as
shown at Fig. 4.6.

– Each partition consists of two halves with internal time-vertices on opposite branches
of the Keldysh contour.

– Analyze the full set of half-diagrams and amend it in such a way that the correlator
can be represented as a sum of squares, i. e. in the form (4.37).

A requirement that the resulting approximation contains a minimal set of diagrams makes
the treatment rather involved. Therefore, in the next section we only present results of such
an analysis for the second-order self-energy.
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Figure 4.6: Next to leading order self-energy
in the screened interaction 𝑊 . Since 𝑊 is
non-local in time, the thick wavy lines
denoting the screened interaction can
connect points on different branches of the
Keldysh contour.
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Vertex corrections in the homogeneous electron gas

Application of the rules to the full first and second order self-energy leads to PSD self-energy
containing terms of the third and fourth orders. The numerical implementation of them is
rather demanding. We observe, however, that the exclusion of the last two partitions of
Fig. 4.6 leads to a much simpler PSD self-energy shown in Fig. 4.7 (Left). This self-energy
too goes beyond the 𝐺𝑊 approximation, but the vertex correction is only partial.

We evaluate these diagrams for the 3d HEG using the analytical frequency and numer-
ical Monte-Carlo momentum integrations, Fig. 4.7 (Right). The method was developed in
Ref. [2], however, the analytical frequency integration part had to be substantially extended.
As expected, the rate operator is everywhere positive despite a large negative contribution of
the second order term. We notice an almost complete cancellations of different order terms
beyond the singularities, i. e. 𝜔 > 𝜖𝑘 + Ω(0) for particle (𝑘 > 𝑘𝐹 ) and 𝜔 < 𝜖𝑘 − Ω(0) for
hole (𝑘 < 𝑘𝐹 ) states, where Ω(0) is the plasmon energy in the long wave-length limit. High
accuracy of the Monte-Carlo integration was required to get the cancellations properly. This
is especially important at metallic densities where different orders have comparable contri-
butions. Due to the density scaling the first order self-energy (∼ 𝛼𝑟𝑠) becomes dominant
at large densities (𝑟𝑠 → 0), while the third order (∼ (𝛼𝑟𝑠)3) is largest in the correlated low
density regime (𝑟𝑠 → ∞).

In summary, in standard MBPT approximations the straightforward inclusion of ver-
tex corrections inevitably ruin the PSD property and, hence, our additional diagrams must
be included. Remarkably, these diagrams are of higher order. For instance, the inclusion
of the full first-order vertex leads to diagrams of the fourth order in the screened interac-
tion. Required computational power to numerically evaluate them is immense. Fortunately,
excluding some partitions allows us to construct an approximation containing diagrams of
maximally third order. They are feasible for numerics as our calculations for the 3d HEG
demonstrate. Even though we only presented in detail the formalism for the spectral func-
tion, the same ideas apply to the spectrum of the density response function [115].
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Figure 4.7: Left: Leading order beyond-𝐺𝑊 self-energy with the PSD property. Thick wavy lines
denote the screened Coulomb interaction in the random phase approximation. Right: The rate
operator 1

2Γ(𝑘, 𝜔) = −ImΣR(𝑘, 𝜔) of the homogeneous electron gas at the density of 𝑟𝑠 = 4 and
𝑘 = 1.2𝑘𝐹 (the energy 𝜔 is measured with respect to 𝜇). Different line-styles denote contributions
of different orders: full, dotted and dashed lines stand for first, second and third order, respectively.
Thick solid line denotes the sum of all contributions. The inset magnifies the region of the
logarithmic singularity. Notice the almost complete cancellation of Σ𝑐,>(𝑘, 𝜔) for 𝜔 > 𝜖𝑘 + Ω(0).
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4.4 Processes involving emission of particles

Scattering experiments deliver the most detailed information on the structure of matter. For
instance, the fully resolved spectra of an electron emitted from an electronic system upon
photon or particle impact encode the spin and momentum-resolved spectral properties of
the sample [116–120]. For direct information on the two-particle properties the detection of
a correlated electron pair is necessary which is usually performed in a one-photon double-
electron emission [119] or in a swift particle-impact double-electron emission experiment
[121].

Initial state preparation: Let the wave-function |Ψ0⟩ and corresponding energy 𝐸0 be the
quantum state of a target with the Hamiltonian �̂� in remote past (𝑡 = −∞). We will use
the letters (𝑎𝑏𝑐𝑑) for general orbitals, (𝑖𝑗𝑛𝑚) for bound orbitals and bold-face letters for
continuum states. When the system is perturbed by the interaction with external fields it
evolves to a new state. As a typical mechanism we consider here the light-matter interaction

�̂�(𝑡) = (Δ̂𝑒−𝑖𝜔𝑡 + Δ̂†𝑒𝑖𝜔𝑡)𝑒𝜂𝑡, Δ̂ =
∑
𝑎𝑏

Δ𝑎𝑏𝑐†𝑎𝑐𝑏. (4.38)

In this expression �̂�(𝑡) is adiabatically turned on allowing to introduce a typical interaction
time ∼ (2𝜂)−1. The form (4.38) permits generalizations such as the process of impact ion-
ization caused a projectile particle (e. g. an electron distinguishable from electrons of the
system) impinging on the target system.

From the first-order time-dependent perturbation theory we obtain the approximate eigen-
state |Ψ̃(+)⟩ of the full Hamiltonian �̂� + �̂�(𝑡) at time 𝑡 = 0:

|Ψ̃(+)⟩ = |Ψ0⟩ + lim
𝜂→0

1
𝐸0 + 𝜔 − �̂� + 𝑖𝜂

Δ̂|Ψ0⟩. (4.39)

Observables: Assuming we know the quantum state of the target at 𝑡 = 0 some observables
can be computed. Since we are interested in photoemission these are the expectation values
of the current operators. The one-electron current 𝐽𝐤 (as in the single photoemission (SPE)
experiment) is defined as the number of electrons𝑁𝐤 with a given momentum 𝐤 outside the
target divided by the effective interaction time (2𝜂)−1. There is a detailed discussion [93] on
why electrons in the sample give a negligible contribution to the current. Same arguments
are valid for the two-electron case. Thus, we analogically define the two-electron current
(double photoemission (DPE) experiment) as

𝐽𝐤𝟏,𝐤𝟐 = lim
𝜂→0

2𝜂⟨�̂�𝐤𝟏�̂�𝐤𝟐 − 𝛿𝐤1,𝐤2�̂�𝐤𝟏⟩. (4.40)

In the expression above (and all subsequent derivations) we do not explicitly spell out the
spin quantum numbers. The dependence on the spin can be recovered by substituting the
continuum quantum numbers like 𝐤 by 𝐤𝜎 (likewise for bound indices). The second term
excludes the one-electron current in the case when two momenta are equal. Eq. (4.40) gives
access to the differential cross-section through the following relation:

𝑑2𝜎
𝑑𝐤𝟏𝑑𝐤𝟐

= 𝜔
𝐼
𝐽𝐤𝟏,𝐤𝟐 , (4.41)
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where 𝐼∕𝜔 is the photon flux density [122]. For the velocity gauge Δ̂ = 1
𝑐
𝐀𝟎 ⋅ �̂�, 𝐼 =

𝜔2𝐴2
0

2𝜋𝑐 ,
where 𝐀𝟎 is the amplitude of the vector potential.

The average in Eq. (4.40) is performed over the perturbed state (4.39):

𝐽𝐤𝟏,𝐤𝟐 = lim
𝜂→0

2𝜂
⟨
Ψ0

|||Δ̂† 1
𝐸0 + 𝜔 − �̂� − 𝑖𝜂

𝑐†𝐤𝟏𝑐
†
𝐤𝟐
𝑐𝐤𝟐𝑐𝐤𝟏

1
𝐸0 + 𝜔 − �̂� + 𝑖𝜂

Δ̂|||Ψ0

⟩
, (4.42)

where we used the usual anti-commutation relations for the fermionic operators. The current
is quadratic in Δ̂ or linear in the number of absorbed photons. The first order in Δ̂ gives the
linear conductivity current and is of no interest here [96].

Final state specification: Equation (4.42) describes all possible processes leading to the
emission of two-electrons including those in which the target is left in an unbound state,
i. e. emission of more then two particles. They have to be excluded by the assumption
𝑐𝐤|Ψ2+

𝛽 ⟩ = 0, where Ψ2+
𝛽 is the state of the system after the ionization event. One can show

that it imposes following restrictions on the Green’s functions:

𝐺<𝐤𝑎(𝜔) = 0, 𝐺<𝑎𝐤(𝜔) = 0, (4.43)

lim
𝑟1→∞

𝐺<(𝑥1𝑡1, 𝑥2𝑡2) = lim
𝑟1→∞

𝐺<(𝑥2𝑡2, 𝑥1𝑡1) = 0. (4.44)

These conditions are important when treating photoemission diagrammatically.

Diagrammatic approach

Eq. (4.42) when transformed to the time domain gives rise to the ground state correlator:

𝑍(𝑡, 𝑡′) = ⟨Ψ0|𝑐†𝑏 (𝑡)𝑐𝑎(𝑡)𝑐†𝐤𝟏(0)𝑐†𝐤𝟐(0)𝑐𝐤𝟐(0)𝑐𝐤𝟏(0)𝑐†𝑐 (𝑡′)𝑐𝑑(𝑡′)|Ψ0⟩, (4.45)

where the field operators are in the Heisenberg representation and 𝑡, 𝑡′ ∈ (−∞, 0] are phys-
ical times. For clarity, we omitted the indices in the notation of the correlator. It can be
evaluated diagrammatically by adiabatically switching on the interaction in the remote past,
i. e. �̂�𝛿 = �̂�0 + 𝑒−𝛿|𝑡|�̂�1. Now the average is performed over the non-interacting ground
state |Φ0⟩ and the times 𝑡−2 ≺ 𝑡+1 lie on forward, backward branches of Keldysh contour 𝛾
(Fig. 4.1), respectively:

𝑍(𝑡, 𝑡′) =
⟨
Φ0

|| {
𝑒−𝑖 ∫𝛾�̂�𝛿(𝑡) 𝑑𝑡𝑐†𝑏 (𝑡+)𝑐𝑎(𝑡+)

× 𝑐†𝐤𝟏(0)𝑐
†
𝐤𝟐
(0)𝑐𝐤𝟐(0)𝑐𝐤𝟏(0)𝑐

†
𝑐 (𝑡

′
−)𝑐𝑑(𝑡

′
−)
}||Φ0

⟩
. (4.46)

 here is the usual contour ordering operator [89] with the order relation ≺. �̂�𝛿 is such that
it is equal to the Hamiltonian of noninteracting system �̂�0 in the remote past and is identical
to �̂� at 𝑡 = 0. Notice that it is different from adiabatic switching on of the electromagnetic
field in Eq. (4.39). |Φ0⟩ is the ground state of �̂�0. Using Wick’s theorem we can contract
the product of field operators in order to express the correlator in terms of products of single-
particle Green’s functions. Zeroth order obviously yields four fermionic lines. However, if
we use restrictions (4.43) any zeroth order diagram vanishes. This is easy to understand
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Figure 4.8: Second order diagrams (in bare Coulomb interaction) representing the DPE process.
Notice that not all combinations of pluses and minuses are possible because Coulomb interaction
can only connect vertices on the same branch of the Keldysh contour. (a) Diagram vanishes
according to the assumption (4.43) for dressed GFs. (b) Diagram vanishes because it contains an
isolated island of minuses. (c) and (d) are the lowest order non-zero diagrams. The remaining two
are obtained by permuting 𝐤𝟏 and 𝐤𝟐.

by comparing with SPE case. There, no-zero contributions are coming from the following
contraction: ⟨

𝑐†𝑏 (𝑡+)𝑐𝑎(𝑡+)𝑐
†
𝐩(0)𝑐𝐩(0)𝑐

†
𝑐 (𝑡

′
−)𝑐𝑑(𝑡

′
−)
⟩
.

This is the only combination that results in greater GFs when one of the arguments is a
scattering state (and is compatible with (4.43)). In particular, the above contraction equals
to

𝑔>𝑎𝐩(𝑡)𝑔
<
𝑑𝑏(𝑡

′ − 𝑡)𝑔>𝐩𝑐(−𝑡
′).

In DPE two creation operators with continuum state indices need to be contracted with
two annihilation operators on the positive track. However, there is only one such oper-
ator. Hence, 0th order in interaction is zero. The argument that excludes the first order
diagram is slightly different and is based on the fact that bare interaction is instantaneous,
i. e. corresponding time-arguments necessarily lie on the same, positive or negative, track.

Second order non-vanishing contributions contain products of two Coulomb interaction
operators (e. g. at contour times 𝑡+ and ̄̄𝑡−) and already a familiar product of six operators
as in Eq. (4.46). From all possible contractions (they yield eight fermionic lines) we have to
exclude many terms. Some of them immediately vanish because of the assumption (4.43)
for non-interacting GF. Others, represent the Hartree-Fock renormalization of two fermionic
lines and likewise vanish because of the same assumption for the full fermionic propagators
(Fig. 4.8 (a)). Then, there are diagrams (Fig. 4.8 (b)) containing isolated islands of pluses
and minuses which also vanish because otherwise the two-particle current cannot be written
in the Fermi Golden rule form, see Sec. 4.3 and Ref. [8]. Finally, there are only four direct
and eight exchange non-zero diagrams. Two of them are depicted at Fig. 4.8 (c,d).
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Figure 4.9: Diagrams for the plasmon
assisted photoemission. SPE setup: only the
primary (a), secondary electron (b) is
observed, the fate of another electron is not
specified. (c) DPE setup: both, primary and
secondary electrons are observed in
coincidence.

Example of plasmon assisted DPE

As an example we consider the processes depicted in Fig. 4.9. The diagrams show a very
common situation where a primary electron excited by the laser pulse is loosing its energy
on the way to the detector by exciting a secondary electron (the so-called extrinsic energy
loss [97, 123, 124]). There could be either bare or screened Coulomb interaction between
the two electrons. In the latter case some resonant phenomena related to the excitation of
e. g. plasmon are expected. The SPE case (Figs. 4.9 (a, b)) is identical to the process of
secondary electron excitation considered by Caroli et al. [96]. All DPE processes covered by
the diagram at Fig. 4.9 (c) form a subset of the SPE process. The only difference between the
two scenarios is whether primary, secondary or both electrons are observed in the detector.
Using energy flows as shown in Fig. 4.10 (Left) the following expression for the two-particle
current is obtained

𝐽𝐤𝟏𝐤𝟐 = 2𝜋 ∫
𝜇

−∞

𝑑𝜁
2𝜋 ∫

𝜇

−∞

𝑑𝜁
2𝜋 ∫

∞

0

𝑑𝜉
2𝜋

𝛿(𝜉 + 𝜀𝐤𝟏 − 𝜔 − 𝜁 ) 𝛿(𝜀𝐤𝟐 − 𝜉 − 𝜁)

× ∫ 𝑑(𝑥𝑥′𝑧𝑧′)⟨𝜒 (−)
𝐤1

|𝑥′⟩𝑊 −−
𝑧′𝑥′(𝜉)𝑊

++
𝑥𝑧 (𝜉)⟨𝑥|𝜒 (−)

𝐤𝟏
⟩

× ⟨𝜒 (−)
𝐤2

|𝑧′⟩𝐴𝑧′𝑧(𝜁)⟨𝑧|𝜒 (−)
𝐤𝟐

⟩[𝐺−−(𝜔 + 𝜁 )Δ̂𝐴(𝜁 )Δ̂†𝐺++(𝜔 + 𝜁 )
]
𝑥′𝑥
, (4.47)

where 𝐴(𝜁) is the spectral function and 𝜒 (−)
𝐤 is the one-electron scattering function with

asymptotic momentum 𝐤 that fulfills incoming boundary conditions. We evaluate this equa-
tion for a spherically symmetric jellium model of the C60 molecule [86, 125]. The optical
response of this system is dominated by the plasmon resonance at 𝜔𝑝 ∼ 22 eV. Therefore,
a strong modification of the double photoemission due to the excitation of this mode can
be expected. This is indeed the case as comparison of bare Coulomb, plasmonic and total
contributions shows, Fig. 4.10 (Right). Our results also show excellent agreement with a
coincidence DPE experiment performed on the surface-deposited C60 molecule [126].

In summary, we derive the diagrammatic expansions for one- and two-particle currents
starting from the time-dependent perturbation theory and using the adiabatic switching of
the electron-electron interaction. Hence, we have electromagnetic field switched on at the
remote past (as 𝑒𝜂𝑡) and independently adiabatically switched on the interaction such that
the total Hamiltonian takes a form �̂�𝛿 = �̂�0 + 𝑒−𝛿|𝑡|�̂�1. The diagrammatic structure of
one- and two-particle currents is surprisingly simple: one starts with the density-density
response function 𝜒< which necessarily contains two blocks associated with the forward
(“−”) and backward (“+”) parts of the Keldysh contour. Requesting that one or two lines
flowing from “−” to “+” blocks are associated with scattering states (with momenta 𝐤𝑖)
one obtains exactly the diagrams for SPE and DPE currents showing the close connection
between these types of light-matter interaction. It is not difficult to generalize this approach
to an arbitrary number of particles. Finally, we presented a detailed analysis of the plasmon-
assisted DPE and showed that if one of the emitted particles is unobserved, its diagrammatic
representation reduces to the one describing external losses in the SPE process considered
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Figure 4.10: Left: Energy flows DPE diagram describing a related plasmon assisted process.
Right: The symmetrized two-electron current as a function of the photoelectron energies
(energy-sharing diagram) for typical parameters: 𝜔 = 2.0 and 𝜔𝑝 = 0.8. (a) The process is
mediated by the pure Coulomb interaction. (b) Pure plasmonic contribution. (c) Total (bare
Coulomb and plasmonic contributions) signal including the interference terms. (d) Equal energy
sharing (𝜀𝐤1 = 𝜀𝐤2) for the current and trace of the two-particle spectral density (shaded curve).

by Caroli et al. [96]. Plasmon pole approximation was employed to derive computationally
manageable expressions which were applied to the simple and yet realistic jellium model of
the C60 molecule.
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5 Classical and semi-classical approaches

The dielectric response of electronic matter encoded in the density-density response function
𝜒(𝐫, 𝐫′;𝜔) is a key quantity for a wide range of phenomena including the energy 𝜔 and
momentum 𝐤 exchange with a traversing particle and the refraction and absorption of light.
Recent reviews on the interaction of nanoparticles with light [127] or electrons [128] provide
an overview on these topics including the relevance for the nanotechnology and plasmonics.
In the previous chapters I have presented the diagrammatic and configuration interaction
approaches to the computation of dielectric response. They can efficiently be applied to
either homogeneous systems or finite systems containing just a small number of electrons.
However, in many relevant experimental situations such as nanoplasmonics a typical system
does not fall in either category. Even though the size of a system does not permit a quantum-
mechanical treatment gross features of its density-density response can be captured by the
semi-classical approximation. The time-dependent density functional theory provides an
exact relation between the density-density response function and the Kohn-Sham response
function [𝜒(𝐫, 𝐫′, 𝜔)]−1 = [𝜒 (0)(𝐫, 𝐫′, 𝜔)]−1 − 𝑣(𝐫 − 𝐫′) − 𝑓𝑥𝑐(𝐫, 𝐫′, 𝜔), where the non-local
exchange-correlation kernel 𝑓𝑥𝑐(𝐫, 𝐫′, 𝜔) plays a crucial role [59]. For vanishing exchange
correlation kernel the theory reduces to random phase approximation for the Kohn-Sham
ground state. In the long range limit it is nothing else as the classical theory of the collective
oscillations.

There is a lot subtleties in going from the density-density response to realistic observ-
ables such as linear and non-linear optical cross-sections. I illustrate these technicalities
by computing the angular resolved second harmonic generation from spherical particles
(Sec. 5.1). The effect — nonlinear Mie scattering from spherical particles [10] — is very
interesting from theoretical point of view and has a lot of practical applications [129]. Since
SHG response from centrosymmetric systems is forbidden within the electric dipole approx-
imation, its description must involve a nonlocal electron response to an external electrical
field [130]. Our theory rests on the surface sheet model which assumes inversion symmetry
breaking on the surface of a sphere. Thus, the system is characterized by just few material
constants. In the following sections another step towards ab initio description of nanosys-
tems is made: I will show how the theory can be further generalized to include all kinds of
many-body effects beyond the random phase approximation (Sec. 5.2) and how the linear
and non-linear optical responses can be computed starting from the ground state electron
density and its gradient [11, 12] (Sec. 5.3).

5.1 Nonlinear Mie scattering from spherical particles

We describe second harmonic generation (SHG) from spherical particles using a classical
electrodynamics approach. Although it is well known that SHG response from centrosym-
metric systems is forbidden within the electric dipole approximation I show how the inver-
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Incident wave Scattered
wave

Einc

Binc

z

x

εa

er

e�

e�

χ(2ω)

Figure 5.1: Scattering of light by a sphere. The sphere of radius 𝑎 is characterized by the dielectric
constants at fundamental and double frequency 𝜖(𝜔), 𝜖(2𝜔) respectively, and by the tensor of
surface second-order nonlinear susceptibility 𝜒 (2𝜔).

sion symmetry breaking on the surface of a sphere leads to this nonlinear optical process.
Presented theoretical analysis unifies existing theories which are valid in the special cases of
small particle size (Rayleigh limit), small refraction index [131, 132], radiation by non-local
dipole and quadrupole moments [130] and constitutes a non-linear generalization of the lin-
ear Mie theory. Since the original publication the method was extended by several authors:
de Beer and Roke included the sum-frequency generation mechanism into the considera-
tions [133], the cylindrical geometry was treated by Dadap [134] and finally the theory for
arbitrarily shaped particles was developed by de Beer, Roke, and Dadap [135]. In turn, I will
present a generalization to include quantum mechanical and many-body effects in Sec. 5.2
and illustrate the method with a realistic example in Sec. 5.3.

Already on classical level important observations can be made: absence of signal in
the strict forward 𝜃 = 0◦ and backward 𝜃 = 180◦ directions, shape resonance phenomena
leading to the SH intensity oscillations as a function of size parameter 𝑘𝑎, existence of the
transition regime between Rayleigh and Mie theories, interference between different multi-
pole contributions leading to peaks in angular distributions. These findings were confirmed
in numerous experimental works [136–139].

Theory

Let us consider the scattering geometry of the problem as shown on Fig. 5.1. The theory
consists of three steps as follows.

Firstly, we solve a problem of the electromagnetic field scattering by a sphere (Mie theory)
in order to find electric fields close to its surface. We represent the electric and the magnetic
fields as expansions in terms of vector spherical harmonics1:

𝐄𝑖 =
1
2
∑
𝑙,𝑚
𝐶(𝑙)

[
𝑎𝑖(𝑙,𝑚)𝑓

(𝑖)
𝑙 (𝑘𝑟)𝐗𝑙,𝑚(𝜃, 𝜙) + 𝛼𝑖𝑏𝑖(𝑙,𝑚)∇ × 𝑓 (𝑖)

𝑙 (𝑘𝑟)𝐗𝑙,𝑚(𝜃, 𝜙)
]
, (5.1)

𝑐𝐁𝑖 =
1
2
∑
𝑙,𝑚
𝐶(𝑙)

[
𝑏𝑖(𝑙,𝑚)𝑓

(𝑖)
𝑙 (𝑘𝑟)𝐗𝑙,𝑚(𝜃, 𝜙) + 𝛽𝑖𝑎𝑖(𝑙,𝑚)∇ × 𝑓 (𝑖)

𝑙 (𝑘𝑟)𝐗𝑙,𝑚(𝜃, 𝜙)
]
, (5.2)

1They are defined in Ref. [140] (Eq. 9.119) as 𝐗𝑙,𝑚(𝜃, 𝜙) =
1

𝑙(𝑙+1)
𝐋𝑌𝑙,𝑚(𝜃, 𝜙), 𝐋 = 1

𝑖
(𝐫 × ∇), 𝑙 ≥ 1. The

absence of the 𝑙 = 0 term results in the absence of an isotropic contribution to SHG.
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where 𝐶(𝑙) =
√
4𝜋(2𝑙 + 1)𝑖𝑙, 𝛼𝑖 = 𝛼𝑖(𝑘), 𝛽𝑖 = 𝛽𝑖(𝑘), and 𝑘𝑖 are constants that depend on

the medium being considered. Outside the sphere we have 𝑘𝑜𝑢𝑡 = 𝜔
𝑐

= 𝑘, while inside
𝑘𝑖𝑛 =

√
𝜖(𝜔)𝜔

𝑐
= 𝑛𝑘 = 𝑘1, where we also introduce the complex refraction index 𝑛. The

index 𝑖 refers to the incident (𝑖 ≡ 𝑖𝑛𝑐), the scattered (𝑖 ≡ 𝑠𝑐), or the internal (𝑖 ≡ 𝑖𝑛) fields.
The functions 𝑓 (𝑖) are different depending on the region we consider: 𝑓 (𝑖𝑛𝑐,𝑖𝑛)

𝑙 = 𝑗𝑙 (spherical
Bessel function of the first kind) and 𝑓 (𝑠𝑐)

𝑙 = ℎ(1)𝑙 (spherical Hankel function of the first kind).
The expansion coefficients are determined by four boundary conditions:

𝐧 × (𝐄𝑠𝑐 + 𝐄𝑖𝑛𝑐) = 𝐧 × 𝐄𝑖𝑛, (5.3a)
𝐧 ⋅ (𝐃𝑠𝑐 + 𝐃𝑖𝑛𝑐) = 𝐧 ⋅ 𝐃𝑖𝑛, (5.3b)
𝐧 × (𝐁𝑠𝑐 + 𝐁𝑖𝑛𝑐) = 𝐧 × 𝐁𝑖𝑛, (5.3c)
𝐧 ⋅ (𝐁𝑠𝑐 + 𝐁𝑖𝑛𝑐) = 𝐧 ⋅ 𝐁𝑖𝑛. (5.3d)

𝐧 = 𝐞𝑟 is a vector normal to the surface. Solution of the boundary value problem allows to
express coefficients of the scattered and inner fields via the incident field.

In the second step of the calculation we determine the sources of the second harmonic
fields, namely the surface charge 𝜎 and the surface current 𝐣𝑠, which are expanded in terms
of spherical harmonics 𝑌𝑙,𝑚(𝜃, 𝜙) and vector spherical harmonics:

𝜎(𝜃, 𝜙) = 1
2
∑
𝑙,𝑚
𝜎𝑙,𝑚𝑌𝑙,𝑚(𝜃, 𝜙), (5.4a)

𝐣𝑠(𝜃, 𝜙) = 1
2
∑
𝑙,𝑚

[
𝑗∥𝑙,𝑚𝐗𝑙,𝑚(𝜃, 𝜙) + 𝑗

⟂
𝑙,𝑚𝐗𝑙,𝑚(𝜃, 𝜙) × 𝐧

]
(5.4b)

In each point of the surface of the sphere the 𝐞𝑥, 𝐞𝑦, 𝐞𝑧 unit vectors of the local coordinate
system point along 𝐞𝜃 , 𝐞𝜙, 𝐞𝑟 respectively. For the 𝐶4𝑣 symmetry of the surface layer2 the
only non-zero nonlinear tensor elements are 𝜒𝑧𝑥𝑥 = 𝜒𝑧𝑦𝑦, 𝜒𝑧𝑧𝑧, and 𝜒𝑥𝑧𝑥 = 𝜒𝑦𝑧𝑦. According
to the surface sheet model SHG takes place in a thin layer at the surface. The second order
polarization 𝐏2𝜔 is expressed via the electric field on the outer surface of the sphere 𝐄𝑠:

𝑃 𝑟2𝜔 = 𝜒𝑧𝑥𝑥𝐸
𝜃
𝑠𝐸

𝜃
𝑠 + 𝜒𝑧𝑦𝑦𝐸

𝜙
𝑠 𝐸

𝜙
𝑠 + 𝜒𝑧𝑧𝑧𝐸𝑟

𝑠𝐸
𝑟
𝑠 ,

𝑃 𝜃2𝜔 = 𝜒𝑥𝑧𝑥𝐸
𝑟
𝑠𝐸

𝜃
𝑠 ,

𝑃 𝜙2𝜔 = 𝜒𝑦𝑧𝑦𝐸
𝑟
𝑠𝐸

𝜙
𝑠 .

The surface density is then 𝜎 = 𝐧 ⋅ 𝐏2𝜔 and the surface current 𝐣𝑠 = −2𝑖𝛿𝜔𝐧 × (𝐏2𝜔 × 𝐧),
where 𝛿 is the thickness of the surface layer where SHG takes place. In order to find the
coefficients of the expansion 𝜎𝑙,𝑚 and 𝑗∥𝑙,𝑚 we re-expand the electric field on the surface

𝐄𝑠 = 𝜖𝐸𝑟
𝑖𝑛𝐞𝑟 + 𝐸

𝜃
𝑖𝑛𝐞𝜃 + 𝐸

𝜙
𝑖𝑛𝐞𝜙

|||𝑟=𝑎 in terms of vector spherical harmonics [141] as:

𝐄𝑠 =
∑
𝑙,𝑚
𝐴(1)
𝑙,𝑚𝐘

(1)
𝑙,𝑚 + 𝐴(0)

𝑙,𝑚𝐘
(0)
𝑙,𝑚 + 𝐴(−1)

𝑙,𝑚 𝐘(−1)
𝑙,𝑚 . (5.5)

The third step of the calculation is very similar to the first one. We find the second har-
monic fields from the known surface charge and the current by solving a boundary condition
problem:

𝐧 × (𝐄𝑜𝑢𝑡 − 𝐄𝑖𝑛) = 0, (5.6a)
2Since SHG cannot distinguish isotropic and 𝐶4𝑣 symmetry within the electric-dipole approximation, we

work with 𝐶4𝑣 symmetry without loss of generality.
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Figure 5.2: Left: angular distribution of the SHG intensity for water droplets as a function of
particle size parameter laying within the range 0.001 < 𝑘𝑎 < 5.0. At each value of 𝑘𝑎 the angular
distribution is normalized, so that the maximum value is unity. At 𝑘𝑎 ∼ 1.0 the distribution starts to
vary with the particle size indicating that the Rayleigh theory ceases to be valid. Right: integrated
SH intensity 𝑃2𝜔(𝑘𝑎). At small particle size parameter the Rayleigh theory is valid, yielding (𝑘𝑎)6
scaling. Intensity is normalized so that 𝑃2𝜔(1.0) = 1.0.

𝐧 ⋅ (𝐃𝑜𝑢𝑡 − 𝐃𝑖𝑛) = 𝜎, (5.6b)
𝐧 × (𝐇𝑜𝑢𝑡 −𝐇𝑖𝑛) = 𝐣𝑠, (5.6c)
𝐧 ⋅ (𝐁𝑜𝑢𝑡 − 𝐁𝑖𝑛) = 0. (5.6d)

Calculations show that only the 𝑗∥ component of the surface current contributes to the re-
sults. Lastly, we determine the angular distribution of the intensities in the far field approx-
imation using the asymptotic expansions of the Hankel functions and their derivatives. The
numerical algorithm based on the theory can be outlined as follows:

– Find coefficients of the surface electric field 𝐄𝑠 expansion (Eq. 5.5).

– Compute the surface charge 𝜎 and the current 𝐣𝑠 using Clebsch-Gordan algebra (Eqs. 5.4).

– Find coefficients of the SH electric field 𝐄𝑜𝑢𝑡 expansion and compute the angular de-
pendence of SHG in far field approximation.

Numerical results

We study the angular distribution and the intensity of SHG radiated in a unit solid angle for
different sizes of particles. Water droplets of the size parameter ranging from 𝑘𝑎 = 10−3
to 𝑘𝑎 = 200.0 with 𝑛(𝜔) = 1.326 − 1.250 ⋅ 10−7𝑖 and 𝑛(2𝜔) = 1.350 − 1.580 ⋅ 10−9𝑖
(complex refraction index approximately corresponds to the wave-length of incident light
𝜆 = 800 nm) are considered. The number of significant terms in the multipole expansion
(Eqs. 5.4) varies depending on the value of 𝑘𝑎. For 𝑙 > 𝑘𝑎 the terms decrease rapidly,
whereas for 𝑙 ≪ 𝑘𝑎 they have comparable amplitudes. Only the 𝜒 (2𝜔)

𝑧𝑧𝑧 tensor element is
assumed to be non-zero. The theory is valid in the regime of small particle sizes (𝑘𝑎 < 1,
Rayleigh limit) as well as for large particles. In the former case the angular distribution of
SH intensity remains independent on the size parameter, the integrated intensity grows as
𝑃2𝜔(𝑘𝑎) ∼ (𝑘𝑎)6 (Fig. 5.2), in agreement with Ref. [130]. The small-𝑘𝑎 expansion of the
first few coefficients of the SH electric field 𝐄𝑜𝑢𝑡:
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𝑏𝑜𝑢𝑡1,0 =
√

24
𝜋

𝑛2(𝜔)𝜒𝑧𝑧𝑧
(𝑛2(𝜔) + 2)(2𝑛2(𝜔) + 3)(𝑛2(2𝜔) + 2)

(𝑘𝑎)4, (5.7a)

𝑏𝑜𝑢𝑡2,0 =
√

3
10𝜋

𝑛2(𝜔)𝜒𝑧𝑧𝑧
(𝑛2(𝜔) + 2)2(2𝑛2(2𝜔) + 3)

𝑖(𝑘𝑎)4, (5.7b)

𝑏𝑜𝑢𝑡2,2 = −
√

9
20𝜋

𝑛2(𝜔)𝜒𝑧𝑧𝑧
(𝑛2(𝜔) + 2)2(2𝑛2(2𝜔) + 3)

𝑖(𝑘𝑎)4 (5.7c)

shows that in the lowest order of 𝑘𝑎 the SH radiation results from the excitation of dipole and
quadrupole moments, which have a comparable strength, as has been shown in Ref. [130].
The scaling of the SH power should be contrasted with the linear Rayleigh scattering, which
is known to scale as 𝑃𝜔(𝑘𝑎) ∼ (𝑘𝑎)4.

5.2 Semi-classical sources

The theories based on classical electrodynamics rely on the knowledge of the frequency-
dependent dielectric function and the non-linear optical susceptibility tensor. With the fab-
rication processes being perfected and the system tending smaller and smaller sizes one may
wonder to which extent quantum effects are important and whether it is justified to use the
same susceptibility tensor to describe semi-infinite and finite size systems on the nanometer
range. To shed light on these issues, it is desirable to have a quantum theory for the non-
linear response on the nanoscale. The fully atomistic approach seems to be out of reach
for present computers, as currently maximally hundreds of atoms are possible to treat using
quantum chemistry codes. Yet, the outstanding question is, how important are the electronic
correlation effects and is there possibly a way to stay on the solid quantum theory basis while
treating larger systems?

There is an affirmative answer to these questions as was demonstrated recently in the
linear optics case by Prodan and Nordlander [142]. They succeeded to push the limits of the
time-dependent density functional theory (TDDFT) to metallic systems containing millions
of atoms. But at the same time they demonstrated that for these system sizes the semi-
classical approach becomes very accurate. This is a marked finding as it allows to replace
the complicated sum-over-states quantum mechanical expression [143] for the polarizability
tensor with a single integral equation. Consequently, there is only one parameter in the
theory: the ionic density distribution. With some reasonable assumptions about the ionic
density such as in the jellium model3 we can obtain the ground state electronic density from
the solution of the Kohn-Sham equations and express the response function in its terms.

In the following I formulate integral equations describing linear and non-linear responses
of electrons to the optical field generalizing the work of Liebsch and Schaich [146] to in-
clude many-body correlation effects. Finally I introduce the semi-classical approximation.
It implies the high frequency limit and enables to express the source terms entering these
equations solely in terms of electron density, its gradients and parameters of external pertur-
bation. Explicit calculations, rather laborious for the second order response, were performed
in a sequence of works [11, 12].

3This assumption is reasonable even for molecular structures, as we have shown recently [79, 86] for
fullerenes. The usefulness of the jellium model was demonstrated by the pioneering works of Ekardt on sodium
clusters [66, 144] or of Puska and Nieminen on C60 [145].
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Integral equations

Before considering any approximations let us write integral response equations in full gen-
erality. At the introduction to this chapter I have presented an algebraic equation that relates
the full density-density and the Kohn-Sham response functions. In fact, it is only a formal
writing as it presumes that these functions are invertible. It is well known, however, that at
least 𝜒(𝐫, 𝐫′;𝜔) is singular; perfectly valid mathematically is the integral form:

𝜒(𝐫, 𝐫′;𝜔) = 𝜒 (0)(𝐫, 𝐫′;𝜔)

+ ∫ 𝑑𝐫1∫ 𝑑𝐫2 𝜒 (0)(𝐫, 𝐫1;𝜔)
(
𝑣(𝐫1 − 𝐫2) + 𝑓𝑥𝑐(𝐫1, 𝐫2;𝜔)

)
𝜒(𝐫2, 𝐫′;𝜔), (5.8)

here 𝑣(𝐫 − 𝐫1) is the Coulomb potential and 𝜒 (0)(𝐫, 𝐫′;𝜔) is the non-interacting density-
density response function and 𝑓𝑥𝑐(𝐫, 𝐫′;𝜔) is the Fourier transform from the time to fre-
quency domain of the exchange-correlation kernel.

A rigorous definition of the kernel is not merely 𝑓𝑥𝑐(𝐫𝑡, 𝐫′𝑡′) = 𝛿2𝐴𝑥𝑐∕𝛿𝑛(𝐫𝑡)𝛿𝑛(𝐫′𝑡′)
but, as R. van Leeuwen showed [147, 148] requires use of the Keldysh formalism. Setting
the kernel to zero corresponds to the random phase approximation.

Let us consider the response of the system subject to the harmonic electric field oscil-
lating at the frequency 𝜔, i. e. 𝜑(0)(𝐫; 𝑡) = 𝜑(0)(𝐫) 𝑒−𝑖𝜔𝑡. Then, the induced density which
oscillates at the frequency of the applied field is given by:

𝛿𝑛(1)(𝐫) = ∫ 𝑑𝐫′𝜒(𝐫, 𝐫′;𝜔)𝜑0(𝐫′) = ∫ 𝑑𝐫′𝜒 (0)(𝐫, 𝐫′;𝜔)𝜑(1)(𝐫′), (5.9)

where 𝜑(1)(𝐫) is the induced local field oscillating at the fundamental frequency and consist-
ing of the external potential plus the Hartree potential corresponding to the induced density:

𝜑(1)(𝐫) = 𝜑(0)(𝐫) + ∫ 𝑑𝐫′
(
𝑣(𝐫 − 𝐫′) + 𝑓𝑥𝑐(𝐫, 𝐫′;𝜔)

)
𝛿𝑛(1)(𝐫′). (5.10)

The induced density oscillating at the double frequency results from the non-linear process
described by the 𝜒 (0)

2 response function and from the linear response to the local field 𝜑(2)(𝐫)
oscillating at 2𝜔:

𝛿𝑛(2)(𝐫) = ∫ 𝑑𝐫′∫ 𝑑𝐫′′𝜒 (0)
2 (𝐫; 𝐫′, 𝐫′′;𝜔)𝜑(1)(𝐫′)𝜑(1)(𝐫′′)

+ ∫ 𝑑𝐫′𝜒 (0)(𝐫, 𝐫′;𝜔)𝜑(2)(𝐫′). (5.11)

Because there is no external field at 2𝜔 the local field at this frequency is given by the Hartree
potential:

𝜑(2)(𝐫) = ∫ 𝑑𝐫′
(
𝑣(𝐫 − 𝐫′) + 𝑓𝑥𝑐(𝐫, 𝐫′;𝜔)

)
𝛿𝑛(2)(𝐫′). (5.12)

Equations (5.9) and (5.10) yield the integral equation for the linear density:

𝛿𝑛(1)(𝐫) = 𝜉(1)(𝐫) + ∫ 𝑑𝐫′∫ 𝑑𝐫′′𝜒 (0)(𝐫, 𝐫′;𝜔)
(
𝑣(𝐫′ − 𝐫′′) + 𝑓𝑥𝑐(𝐫′, 𝐫′′;𝜔)

)
𝛿𝑛(1)(𝐫′′),

(5.13)
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while eqs. (5.11) and (5.12) result in the integral equation for the second harmonic density:

𝛿𝑛(2)(𝐫) = 𝜉(2)(𝐫) + ∫ 𝑑𝐫′∫ 𝑑𝐫′′𝜒 (0)(𝐫, 𝐫′;𝜔)
(
𝑣(𝐫′ − 𝐫′′) + 𝑓𝑥𝑐(𝐫, 𝐫′′;𝜔)

)
𝛿𝑛(2)(𝐫′′).

(5.14)
We defined the source terms following [146] as:

𝜉(1)(𝐫) = ∫ 𝑑𝐫′𝜒 (0)(𝐫, 𝐫′;𝜔)𝜑(0)(𝐫′), (5.15)

𝜉(2)(𝐫) = ∫ 𝑑𝐫′∫ 𝑑𝐫′′𝜒 (0)
2 (𝐫; 𝐫′, 𝐫′′;𝜔)𝜑(1)(𝐫′)𝜑(1)(𝐫′′). (5.16)

Eqs. (5.13, 5.15) and eqs. (5.14, 5.16) are essentially exact. When coupled with an appropri-
ate approximation for the non-interacting response functions and the exchange-correlation
functional𝐴𝑥𝑐 they allow to completely describe the linear and the second-harmonic optical
responses.

We start from the microscopic expressions for the noninteracting first order linear
(known as Lindhard function for the homogeneous electron gas in three dimensions):

𝜒 (0)(𝐫, 𝐫′;𝜔) = 2
∑
𝑖,𝑗

𝑓𝑖 − 𝑓𝑗
𝜔 + 𝐸𝑖 − 𝐸𝑗 + 𝑖𝜂

𝜓𝑖(𝐫)𝜓∗
𝑗 (𝐫)𝜓𝑗(𝐫

′)𝜓∗
𝑖 (𝐫

′), (5.17)

and the second order non-linear:

𝜒 (0)
2 (𝐫; 𝐫′, 𝐫′′;𝜔) =

∑
𝑖,𝑗,𝑘

𝜓∗
𝑘 (𝐫)𝜓𝑖(𝐫)𝜓

∗
𝑖 (𝐫

′)𝜓𝑗(𝐫′)𝜓∗
𝑗 (𝐫

′′)𝜓𝑘(𝐫′′)
2𝜔 + 𝐸𝑖 − 𝐸𝑘 + 𝑖𝜂

×
( 𝑓𝑘 − 𝑓𝑗
𝜔 + 𝐸𝑗 − 𝐸𝑘 + 𝑖𝜂

−
𝑓𝑗 − 𝑓𝑖

𝜔 + 𝐸𝑖 − 𝐸𝑗 + 𝑖𝜂

)
(5.18)

response functions. In this expressions 𝑓 is the Fermi function and 𝑖, 𝑗, 𝑘 refer to the col-
lections of quantum numbers that uniquely characterize the electronic states of the system.
The infinitesimally small positive number 𝜂 shifts the poles from the real axis and ensures,
thus, the causality of the response function.

To stay completely at the microscopic level one needs some method to perform the sum-
mation over the infinite number of unoccupied states for the calculation of the response
functions. Fortunately a trick suggested by Zangwill and Soven [149] allows to completely
avoid explicit sums. This allowed for example Prodan and Nordlander to treat very large
spherical systems at the TDDFT level [142].

We go one step further and introduce the semi-classical approximation |𝐸𝑖 − 𝐸𝑗| ≪ 𝜔.
This high frequency condition allows us to approximate the denominator in (5.17) as

𝑓𝑖 − 𝑓𝑗
𝜔 + 𝐸𝑖 − 𝐸𝑗

≈
𝑓𝑖 − 𝑓𝑗
𝜔

(
1 −

𝐸𝑖 − 𝐸𝑗
𝜔

)
. (5.19)

In the series of works we derived the semi-classical approximation for the 𝜉(1)(𝐫) [11]:
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𝜉(1)(𝐫) = 1
𝜔2

(
∇𝑛(𝐫) ⋅ ∇𝜑(0)(𝐫) − 𝑛(𝐫)Δ𝜑(0)(𝐫)

)
(5.20)

and for the second-harmonic generation source term 𝜉(2)(𝐫) [12]:

𝜉(2)(𝐫) = 1
2𝜔4

∇ ⋅
(
∇𝜑(1)(𝐫)

[
𝑛(𝐫)Δ𝜑(1)(𝐫) +

(
∇𝜑(1)(𝐫) ⋅ ∇𝑛(𝐫)

)]
+ 1

4
𝑛(𝐫)∇

(
∇𝜑(1)(𝐫)

)2). (5.21)

These results raise the question of whether it is sufficient to know the unperturbed ground
state density to obtain the lowest order approximation for an arbitrary response function.
We recall that from the point of view of the diagrammatic perturbation theory [150] SHG
comprises three processes in which the 2𝜔 photon is emitted before, between or after the
absorption of two 𝜔-photons. Consequently, one might wonder if each diagram of this ex-
pansion can also be expressed in terms of 𝑛(𝐫). As was demonstrated in Ref. [12], the answer
is negative, one additionally needs the one-particle density matrix 𝛾(𝐫, 𝐫′) whose diagonal
elements are given by 𝑛(𝐫). This comes not as a surprise if we consider the analogy with
the orbital-free kinetic density functional theory [151] where this matrix enters the kinetic
energy term.

Although quite technical, the derivation of Eq. (5.21) in Ref. [12] has its own merits as
it establishes the equivalence between classical approaches of Wang, Chen and Bower [152]
and Apell [153] and the high-frequency semi-classical expansion if the local fields effects
are neglected. Finally, we notice that expressions (5.20) and (5.21) can be further simplified
in the case of spherical symmetry. This will be demonstrated in the next section where
numerical results for a realistic system are presented.

5.3 Linear scaling approach

Quantum theory accounts inherently for the non-locality of the dielectric function that can
in principle be calculated fully ab initio. However, due to enormous computational cost a
fully atomistic approach is feasible only for small molecular systems. Over the years several
authors perfected the method (now the treatment of systems containing millions of electrons
is possible [142]), and applied it to a range of geometries: starting from the simple spherical
symmetry (spherical clusters, nanoshells) to systems without any symmetry [154] and used
theories from the random phase approximations (RPA) to time-dependent density functional
theory (TDDFT).

In this section we deal with a situation where a system has dimensions prohibitively
large for atomistic approach, but still is treatable on quantum level within the jellium model.
For frequencies of external fields 𝜔 exceeding the single-particle gap 𝐸𝑔 (𝜔 ≫ 𝐸𝑔) the
semi-classical approximation becomes well justified and allows to formulate an integral
equation for the optical response as was demonstrated for a number of relevant geometries
by Mukhopadhyay and Lundqvist [155]. In comparison with RPA or TDDFT this semi-
classical approximation (SCA) is substantially simpler as it is free from summations over
the electronic states. Recent comparison of the two approaches reveals a remarkable agree-
ment between them [142]. This is mostly expressed in the energy positions of collective
resonances. Quantum effects such as discreteness of the electronic structure are manifested
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as small deviations at the resonances’ wings. In the case of abruptly varying density (ex-
pressible as a combination of the step-functions) the SCA integral equation can be reduced
to an algebraic one. Analytical solutions in this case are in agreement with the classical Mie
theory using the Drude dielectric function.

In view of its simplicity and accuracy SCA is potentially a practical tool for nano-
plasmonics. However, its use was hindered by the difficulties of solving the integral equation
and was considered to be a formidable task [156]. In fact, conventional methods require dis-
cretization of the integral equation and solution of the resulting system of linear equations.
The method unfavorably scales as (𝑁3) with the number of mesh points and is, thus, not
practical for large systems, where one necessarily uses very fine meshes to describe non-
smooth electron densities at the interfaces. Here we go one step further towards analytic
solution of the problem for systems with symmetries. I show that the SCA integral equa-
tion can be reduced to a system of two coupled differential equations. Although in general
their solution cannot be obtained analytically it still presents a huge computation saving as
the problem can be solved with (𝑁) complexity. Below we discuss a linear scaling ap-
proach for the calculation of the multipole linear and second harmonic optical response in
the semi-classical approximation and apply it the icosahedrally ordered Na−2869 cluster.

Solution of generic integral equation

Equations obtained in the previous section simplify considerably if some symmetry assump-
tions are used. We consider below the case of spherical symmetry although axial symmetry
can be treated similarly. After expansion of all quantities in terms of spherical harmonics and
performing the integrations over the angular degrees of freedom one obtains the following
generic integral equation for the induced densities [11, 12]:

𝛼(𝑟;𝜔) = 𝛼(0)(𝑟;𝜔)
[
1 − ∫

∞

0
d𝑟′𝐺(𝑟, 𝑟′) 𝛼(𝑟′;𝜔)

]
, (5.22)

where 𝛼(0)(𝑟;𝜔) is a known function of the ground state density distribution 𝑛(𝑟) and the
unknown function 𝛼(𝑟;𝜔) typically has a meaning of the 𝓁-component of the induced density
(𝛿𝑛(1)𝓁0 or 𝛿𝑛(2)𝓁0). The𝜔 parameter is in general a complex number as it includes also the small
broadening 𝑖𝜂. Therefore, the response functions are also complex. The Green’s function
has the following structure:

𝐺(𝑟, 𝑟′) = 𝑓 (𝑟) 𝑔(𝑟′) 𝜃(𝑟 − 𝑟′) − ℎ 𝜃(𝑟′ − 𝑟), (5.23)

𝑓 (𝑟) and 𝑔(𝑟) are typically given by the power functions. Eq. (5.22) belongs to the class of
the Fredhoml integral equations of the second kind [157]. The analytical solution of our par-
ticular form is not known and one has to resort to numerical methods. A standard approach,
also broadly used for the computations of the polarizabilities [142, 156], is the quadrature
method. Here one proceeds by using some quadrature rules for the integral, discretizing the
kernel, and by posing the problem as a system of linear algebraic equations. The advantage
of this approach is its universality, however, it is obliterated by the high computational cost.
A mesh containing𝑁 point leads to a system of𝑁 linear equations which can only be solved
at (𝑁3) cost. A further disadvantage of the method is in the difficulty to apply an iterative
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refinement procedure: It is often necessary to obtain the solutions for a large number of 𝜔-
values. For finite 𝜂 response functions are continuous functions of the frequencies. Thus,
one might want to use a known solution at 𝜔 = 𝜔𝑖 to find a solution for a neighboring point
𝜔 = 𝜔𝑖+1. The implementation of this approach within the quadrature approach requires
the use of sophisticated methods, and also may suffer from instabilities and cannot be im-
plemented within standard numerical libraries. Therefore we propose a method that is free
from these deficiencies: i) it scales linearly with the number of mesh points; ii) the iterative
refinement can be implemented straightforwardly; and iii) the method is numerically stable.

Let us write (5.22) in the form:

𝛼(𝑟;𝜔) = 𝛼(0)(𝑟;𝜔) [1 + ℎ 𝑎(𝜔)] − 𝛼(0)(𝑟;𝜔)∫
𝑟

0
d𝑟′

[
𝑓 (𝑟) 𝑔(𝑟′) + ℎ

]
𝛼(𝑟′;𝜔). (5.24)

If 𝑎(𝜔) = ∫ ∞
0 𝛼(𝑟;𝜔)d𝑟 were a known function Eq. (5.24) would belong to the type of the

Volterra integral equations of the second kind with a degenerate kernel [157] which admits
an analytic solution. Let us assume that on the 𝑛th iteration step an approximate value 𝑎(𝑛) has
already been known. We solve the integral equation (5.24) in a standard way by introducing
the two auxiliary functions:

𝑤1(𝑟, 𝜔) = ∫
𝑟

0
d𝑟′𝑔(𝑟′)𝛼(𝑟′;𝜔), (5.25a)

𝑤2(𝑟, 𝜔) = ∫
𝑟

0
d𝑟′𝛼(𝑟′;𝜔). (5.25b)

Then the unknown function is given by

𝛼(𝑟;𝜔) = 𝛼(0)(𝑟;𝜔)
[
1 + ℎ 𝑎(𝑛)(𝜔) − 𝑓 (𝑟)𝑤1(𝑟, 𝜔) − ℎ𝑤2(𝑟, 𝜔)

]
(5.26)

and the improved approximation to 𝑎(𝜔) by

𝑎(𝑛+1)(𝜔) = lim
𝑟→∞

𝑤2(𝑟, 𝜔). (5.27)

Two auxiliary functions can be found as solutions to the system of the ordinary differential
equations:

𝑤′
1(𝑟, 𝜔) = 𝛼(0)(𝑟;𝜔) 𝑔(𝑟)

[
1 + ℎ 𝑎(𝑛)(𝜔) − 𝑓 (𝑟)𝑤1(𝑟, 𝜔) − ℎ𝑤2(𝑟, 𝜔)

]
, (5.28a)

𝑤′
2(𝑟, 𝜔) = 𝛼(0)(𝑟;𝜔)

[
1 + ℎ 𝑎(𝑛)(𝜔) − 𝑓 (𝑟)𝑤1(𝑟, 𝜔) − ℎ𝑤2(𝑟, 𝜔)

]
. (5.28b)

These relations are derived by differentiating (5.25) and using (5.26). To solve (5.28)
with the initial conditions 𝑤𝑖(𝑟, 𝜔) = 0 the standard forth-order Runge-Kutta method can
be used. This turned out to be a good compromise between the speed and the accuracy. Let
us focus now on the second component of our approach: the iterative update of 𝑎(𝜔). To
explicitly show the functional dependence of 𝑤2(𝑟, 𝜔) on 𝑎(𝜔) it can be written as:

𝑎 = lim
𝑟→∞

𝑤2[𝑎](𝑟, 𝜔). (5.29)

This relation can be viewed as a nonlinear algebraic equation for the complex 𝑎(𝜔). In
general, the brute-force update (5.27) does not achieve convergence; with only one starting
point it is successful under special conditions only. Therefore, we use here a simple and an
efficient method for finding the complex roots based on a quadratic interpolation with three
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Figure 5.3: Left: Geometrical structure of 10-shell icosahedral Na−2869 cluster. Right: The optical
response obtained by solving Eq. 5.22. The solid line: the standard jellium model, the dotted line:
𝑎𝑠 = 0.95𝑎𝑛𝑛, the short dashed line: 𝑎𝑠 = 𝑎𝑛𝑛, the long dashed line: 𝑎𝑠 = 1.05𝑎𝑛𝑛.

distinct points needed to start the iteration. This approach is known as the Müller’s method.
The convergence can be greatly accelerated if already known 𝑎(𝜔𝑖) is used to initialize the
computation of 𝑎(𝜔𝑖+1):

𝑎(1)(𝜔𝑖+1) = 𝑎(𝜔𝑖), 𝑎(2,3)(𝜔𝑖+1) = (1 ± 𝜆)𝑎(𝜔𝑖),

where 𝜆 is a small parameter (typically 𝜆 = 0.1). Our numerical tests indicate an excellent
stability of the method. Typically one𝜔-point is converged with an accuracy of 10−12 within
10 iteration and the whole calculation linearly scales with the number of mesh points. This
makes it a perfect candidate for the investigation of the optical properties of complex 3d-
objects not necessarily possessing a high symmetry. Here, we demonstrate the usability of
our approach by applying it to a spherically symmetric metal cluster.

Numerical results

We apply our theory to Na−2869 cluster. It is remarkable as it simultaneously posses a magic
structural number of the atoms and has completely filled electronic shells [158]. The atoms
are organized according to an icosahedral symmetry: a central atom is surrounded by 12
neighboring atoms at the corners of the icosahedron, this 13-atom core is covered by a sec-
ond layer of 42 atoms, forming again a perfect icosahedron, and so on (Fig. 5.3 (Left)). The
standard jellium model assumes that ionic density is homogeneously distributed within the
volume of a sphere and abruptly drops to zero at its boundaries [159]. The electronic proper-
ties are then determined by a single parameter: the ionic density 𝑛(𝑖)(𝑟) which is selected to
match the bulk value (for Na 𝑟𝑠 = 3.96) and, hence, is related to the bulk lattice constant (for
Na 𝑎𝑏 = 4.230 Å) and to the number of valence electrons per unit cell. For our comparative
study we fix the averaged ionic density and adjust all the other parameters. As anticipated,
the ionic density exhibits an oscillatory behavior (Fig. 5.4).

Ground state electronic properties Let us assess the influence of the ionic density oscilla-
tions on the electronic properties by comparing electronic distributions (Fig. 5.4) resulting
from the self-consistent LDA calculations based on the jellium model for the ionic density
and on the realistic ionic density derived by smearing out the positive charges at idealized
icosahedral positions. Our LDA calculations use the same exchange-correlation potential
and the methodology as in Ref. [159]. The radial Kohn-Sham (or Schrödinger) equations
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Figure 5.4: Electronic structure of the Na−2869 cluster corresponding to different approximations to
the ionic density: solid line denotes the self-consistent Kohn-Sham potential, the electronic states
for 𝓁 = 0 shown as thin dashed lines; the filled area denotes the converged electronic density; the
long-dashed line shows the ionic density; the dotted line marks the ideal jellium background.

are solved by the renormalized Numerov method [160] using the Pulay method [161] to
accelerate the convergence.

Our calculations reveal interesting features of the jellium model approach. We find that
the electronic density reproduces closely the oscillations of the positive background. The
oscillations are in-phase, their magnitude is damped compared to the ionic distribution, and
they are also reflected in the Kohn-Sham potential. In the next paragraph we will argue that
they are also manifested in the optical response. In the asymptotic region the electron and
the ionic densities are almost indistinguishable. We also notice that the spill-off region is
significantly extended compared to the standard jellium model. This is in the first place a
geometric not an electronic effect which originates from the deviation of the cluster’s shape
from the spherical or, in other words, from the reduced coordination number of the surface
atoms. The Kohn-Sham potential for the system with a realistic ionic density is shallower
compared to the standard jellium model. Consequently, the work-function in the latter case
is increased by roughly 1 eV.

Linear optical properties Variation of the electronic density has a profound impact on the
optical response, Fig. 5.3 (Right). The optical spectrum in all four scenarios is characterized
by a major surface plasmon resonance at around classical value 𝜔𝑠 = 𝜔𝑝∕

√
3 and some

features at the bulk plasmon frequency 𝜔𝑝. Such “artificial features” were also observed
in metallic shell systems. For our system they are only visible when plotted on the log-
scale. We performed a sequence of calculations by varying the broadening parameter and
found only a tiny influence of the spectrum. This signifies the intrinsic broadening of the
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Figure 5.5: Left: The second-order
non-linear 𝓁 = 1 (left) and 𝓁 = 2 (right)
optical response of the icosahedral Na−2869
cluster based on the standard jellium model
(black solid line) and on the realistic ionic
density (red dashed line).
Right: Corresponding source terms
𝜉(2)𝓁 (𝑟, 𝜔∗) and the resulting induced
densities 𝛿𝑛(2)𝓁 (𝑟, 𝜔∗) for a particular
frequency value 𝜔∗ = 5.75 eV.

optical absorption peaks in SCA. Contrary to fully quantum approach where finite systems
necessarily possess electronic excitations of the discrete spectrum the response function in
SCA has branch-cuts rather than poles. This can be traced back to a specific form of the free
term 𝛼(0)(𝑟;𝜔) in the SCA integral equation having a branch-cut in the complex 𝜔-plane.
The broadening of the excited states in the optical experiments is associated with different
factors: the temperature, disorder, the electronic correlations. Our results emphasize the
role of geometric ordering.

Second harmonics generation Computation of the second order optical processes is more
involved. It includes several steps:

i) The integral equation (5.13) is solved with a source term (5.20). It yields the first
order density 𝛿𝑛(1)(𝐫) and, therefore, the local potential 𝜑(1)(𝐫);

ii) Eq. (5.21) is applied to generate the source term for the equation (5.14);

iii) This integral equation is solved similarly to (5.13) in order to obtain 𝛿𝑛(2)(𝐫).

Results of this program are shown at Fig. 5.5. For linear optical absorption the spill-off of
the electron density in realistic systems mostly leads to the broadening of the surface plas-
mon resonances. To illustrate this fact for the second-harmonic generation we choose the
off-resonance value of the frequency (𝜔∗ = 5.75 eV) and plot the source 𝜉(2)𝓁 (𝑟, 𝜔∗) and
the induced density 𝛿𝑛(2)𝓁 (𝑟, 𝜔∗). Numerous features associated with slow electronic den-
sity variations within the cluster are visible. They contribute to the optical absorption in
the off-resonance regime. However, the relative weight of these oscillations decreases when
the frequency approaches the resonance. The spectrum at the resonance is dominated by
fast density variations at the surface. It is interesting to observe that two different excita-
tion mechanisms (the quadrupole transition at 𝜔 or 2𝜔 frequency) lead to almost identical
frequency dependence. Unlike in the linear case, the efficiency of the frequency conver-
sion vanishes at the plasmon resonance and has two pronounced peaks at the energy slightly
below and above. We also do not observe a strong correlation between the source and the in-
duced density as in the off-resonant linear case (cf. blue and green curves). The complicated
radial dependence is the result of the derivatives of the induced density and the potential in
the non-linear source terms.
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6 Conclusions

The new developments presented here are methodological to a large extend, and partly nu-
merical. Both are interwound such that a progress in theory was supported by numerical
calculations, and, vice versa, larger capabilities of modern computers stipulated new the-
oretical questions. We have seen following examples: using a computer algebra system
enabled us to generate Feynman diagrams starting from the Hedin equations (Section 2.1)
and to explicitly evaluate frequency integrals in higher order Feynman diagrams. Inspect-
ing the results we were able to prove a more general statement about the self-energy of the
𝑆-model (Section 2.3). Same approach enabled us to resolve a controversy related to the
Paley-Wiener theorem and decay of quasiparticle states in 3d homogeneous electron gas
(Section 2.4). Finally, by improving the Monte-Carlo integrator we were able to evaluate
a subset the self-energy diagrams up to the third order (Section 4.3). Inclusion of the third
order diagrams was required to resolve a problem of negative spectral densities from di-
agrammatic expansions (Section 4.3). Understanding the fundamental role of the Fermi
Golden rule (Section 3.1) in its resolution gave a hint on the diagrammatic structure of the
two-particle current (Section 4.4). From another side, numerical obstacles in application of
methods of MBPT to larger systems called for the development of semi-classical methods
(Section 5.2). Even very large systems were possible to treat thanks to the linear scaling
approach (Section 5.3).
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