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General Introduction 

The production of about 75% of all crop plant species used by humans for food consumption 

depends directly on insect pollination, which is carried out mostly by bees (Klein et al. 2007). 

Pollination services for global agricultural crop production have been estimated at €153 

billion while in Europe they exceed €20 billion (Gallai et al. 2009). The western honey bee 

(Apis mellifera) is by far the most important commercial insect pollinator due to its ability to 

increase yield in more than 90% of insect pollinated crops (Klein et al. 2007). In addition to 

the economic contribution of managed honey bee colonies as crop pollinators, their 

contribution in sustaining plant biodiversity through pollination of wild plants and to 

ecosystem services (as providers of the service of pollination) exceeds any conceivable 

monetary value (Potts et al. 2010a). Thus it is not surprising that honey bees are considered 

keystone components for ecosystem functioning.  

 

However, over the last decades severe declines of honey bee populations across some parts of 

the globe (Stokstad 2007; Neumann and Carreck 2010; Ratnieks and Carreck 2010; Potts et 

al. 2010b) have raised concerns about food security and maintenance of biodiversity (Morse 

and Calderone 2000; Moritz et al. 2010; Potts et al. 2010a). Even if overwinter colony 

mortality can be extremely variable within a geographic region and across years, there is an 

evident increase in the number of colonies that are not able to survive during winters (Dukas 

2008; vanEngelsdorp et al. 2009; Genersch et al. 2010). Reoccurring high (> 20-30%), 

overwinter colony losses are of particular concern in temperate zones both in Europe and 

North America (vanEngelsdorp et al. 2010; van der Zee et al. 2012; Spleen et al. 2013).  

 

A combination of several stressors is suspected to be involved in the elevated incidence of 

overwinter colony losses, including anthropogenic pressures such as habitat alteration and 

degradation, beekeeping practices, use of pesticides but also pathogen spread (Goulson et al. 

2015). The latter factor seems to be one of the most prominent ones as the emergence of 

several infectious diseases (EIDs) appeared to coincide with the observed elevated overwinter 

colony losses (Stokstad 2007; Schroeder and Martin 2012; González-Varo et al. 2013; 

Goulson et al. 2015). 

 

Emerging infectious diseases (EIDs) refer to any pathogen that is the causative agent of an 

infectious disease and has been recently introduced or has existed in a host population but 
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whose incidence or geographic range is increasing due to changes in its epidemiology 

(Daszak et al. 2000; Woolhouse and Dye 2001). Emerging pathogens can trigger devastating 

epidemics that could lead to severe declines and even extinction of host populations (Daszak 

et al. 2000). Recent examples include lethal chytridiomycosis, which is a cause of recent 

amphibian species declines globally (Daszak et al. 1999; Fisher et al. 2009; Blaustein and 

Johnson 2010), Ebola and the HIV/AIDS pandemic in humans (Daszak et al. 2000; Morens et 

al. 2004; Morens and Fauci 2013; WHOER Team 2014). There is a general consensus that 

EIDs threaten both wild and domestic animal health and thus they are tightly linked to the 

current biodiversity crisis (Daszak et al. 2000; Smith et al. 2006). In the USA EIDs actually 

featured in the top five causes of species extinction (Wilcove et al. 1998).  

 

Pathogen emergence has been associated with a wide range of environmental and ecological 

factors that ultimately affect transmission opportunities (Morse 1995; Daszak et al. 2001; 

Taylor et al. 2001; Jones et al. 2008). A major driver includes anthropogenic interference. 

Translocation of animals into new regions, e.g. for commercial or conservation reasons, 

increases the probability of a parasite jumping from one host species to another (Cunningham 

1996; Daszak et al. 2001). Indeed, movement of honey bee colonies between continents has 

resulted in the “pollution” of A. mellifera populations with pathogens and pests that had never 

been detected before in the host (Genersch and Aubert 2010).  

 

One prominent example is the ectoparasitic mite Varroa destructor, which was originally 

associated with the Asian honey bee Apis ceranae (Oudemans 1904). The mite has managed 

not only to successfully jump onto the European honey bee, A. mellifera, but also to become 

established and increase its prevalence globally (Rosenkranz et al. 2010). Within 50 years 

Varroa spread from Asia to Europe, America and recently to New Zealand due to honey bee 

importations (Ruttner and Ritter 1980; Oldroyd 1999; Zhang 2000). Due to the low resistance 

of the European honey bee to this exotic invasive pest species, Varroa has been accused of 

being responsible for the death of millions of A. mellifera colonies (Shimanuki et al. 1994; Le 

Conte et al. 2010; Rosenkranz et al. 2010). The mite’s profound negative effect on honey bee 

colony health is probably caused indirectly by the viruses that the mite vectors. Varroa’s 

ability to act as a viral reservoir and potential incubator of several honey bee RNA viruses 

gave rise to a new viral transmission route, thereby aiding the spread and re-emergence of 

several bee viruses (Tentcheva et al. 2004; Shen et al. 2005; Chen and Siede 2007; Boecking 

and Genersch 2008; Genersch and Aubert 2010). In particular one RNA virus, Deformed 
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wing virus (DWV), has been tightly linked to Varroa infestation (de Miranda and Genersch 

2010; Martin et al. 2012).  

 

DWV is a positive single-stranded RNA virus (Lanzi et al. 2006) that affects several tissues of 

a bee’s body, including the midgut and the brain (Yue and Genersch 2005; Fievet et al. 2006; 

Shah et al. 2009; Gauthier et al. 2011; Möckel et al. 2011). Clinical symptoms during overt 

infections include deformed wings and shortened abdomens (de Miranda and Genersch 2010; 

Möckel et al. 2011). Though DWV was present in A. mellifera before the arrival of Varroa, 

mainly causing covert infections with no detectable impact on colony health (Bailey and Ball 

1991; Genersch and Aubert 2010), its prevalence has dramatically increased after the 

introduction of the mite (Carreck et al. 2010; Martin et al. 2012). Additionally, it seems that 

the mite has induced changes in the epidemiology of the virus, possibly favouring the 

predominance of more virulent variants of DWV accompanied by an increase in viral titer and 

the generation of overt infections (Martin et al. 2012).  

 

Viral transmission via Varroa occurs when the mite that feeds on the haemolymph of honey 

bee pupae or adults is infected (de Miranda and Genersch 2010). However, once found in a 

colony, DWV can be also transmitted between individuals within a colony or between 

colonies by a variety of other routes. That permits the virus to persist in the host population. 

Examples of transmission routes include trophallaxis between colony members, contact with 

contaminated material, venereal transmission during mating and vertical transmission from 

mother to offspring (Chen et al. 2005; Chen and Siede 2007; Yue et al. 2007; de Miranda and 

Fries 2008). It is generally accepted that DWV serves as a predictor of overwinter colony 

decline as several studies have shown an association with colony mortality (Highfield et al. 

2009; Guzmán et al. 2010; Genersch 2010; Dainat et al. 2012; Nazzi et al. 2012; van 

Dooremalen et al. 2012). However, all evidence is correlational and a causal link between 

DWV exposure and overwinter honey bee losses is lacking.   

 

We find a quite similar story to the introduction of Varroa mites in European honey bees in 

the case of the microsporidan Nosema ceranae. Nosema ceranae was originally isolated in 

East Asia, where it was initially believed to be restricted to the Asian honey bee, A. cerana 

(Fries et al. 1996). However, studies have demonstrated that N. ceranae recently switched to 

the western honey bee A. mellifera prior to 1997 (Paxton et al. 2007), probably as a result of 

anthropogenic influences (i.e. managed apiculture), as for V. destructor (Higes et al. 2013). 
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The microsporidian has not only successfully jumped to its new host but it has also greatly 

expanded its distribution globally (Klee et al. 2007).  

 

As for all microsporidia species, N. ceranae is a unicellular, obligate intracellular pathogen 

that depends completely on host resources (Texier et al. 2010; Fries 2010; Fries et al. 2013). 

According to a recent study, it seems that N. ceranae does not differ genetically across the 

range of A. mellifera subspecies and exists as a single clonal variant across host populations 

(Pelin et al. 2015). It is transmitted horizontally per os when adult honey bees come into 

contact with contaminated faeces or via trophalaxis with infected nestmates (Fries 1988; Fries 

et al. 1996). After ingestion, spores travel through the food canal and germinate in the host 

midgut, attacking the epithelial cells of the ventriculus of adult bees. There they replicate and 

produce new spores, a process that takes approximately four days (Fries et al. 1996; Gisder et 

al. 2011). Despite the general belief that N. ceranae exhibits tissue tropism and that it is 

restricted to the host’s gut tissue (Huang and Solter 2013), a recent study suggests that N. 

ceranae can also be found in the semen of infected drones (Roberts et al. 2015).   Although 

infected honey bees do not exhibit any obvious, external disease symptoms, N. ceranae 

damages the gut tissue and has been shown to evoke a variety of physiological changes, 

including energetic stress and immune suppression (Mayack and Naug 2009; Martín-

Hernández et al. 2011; Dussaubat et al. 2012; Aufauvre et al. 2014). Earlier behavioural 

maturation (i.e. precocious foraging) and reduced lifespan of adult bees have also been 

attributed to N. ceranae infection (Higes et al. 2007; Goblirsch et al. 2013).  

 

One of the most controversial issues regarding this exotic parasite has to do with its effects on 

A. mellifera colony health. Although it is well documented that N. ceranae can affect 

negatively the health of individual bees, studies are quite contradictory when it comes to 

impact at the colony level (Higes et al. 2013). Data from Spain suggest that the presence of N. 

ceranae is highly correlated with colony losses (Martín-Hernández et al. 2007; Higes et al. 

2008; Higes et al. 2009; Higes et al. 2010; Botías et al. 2013). However, most published data 

from around the globe fail to find any link and thus its role as a predictor of colony failure has 

been ruled out (Cox-Foster et al. 2007; VanEngelsdorp et al. 2009; Gisder et al. 2010). It 

seems that, at the colony level, N. ceranae is a benign parasite and the dramatic effects 

described in Spain probably reflect local idiosyncrasies. Nonetheless, the ubiquity of this 

invasive parasite, coupled with its ability to spread rapidly and cause disease, have turned this 
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microsporidian into a pathogen of high interest among the bee-pathology research 

community.  

 

As disease emergence is a multifactorial process, understanding the various determinants that 

lead to pathogen spread and the subsequent consequences of their introduction into a host 

population means that several parameters have to be taken into consideration. For example, 

the epidemiological dynamics of a parasite depend not only on its interaction with its host but 

also on its interaction with the other pathogens that it may encounter within the same host 

environment. Parasite-parasite interactions have the potential to influence the likelihood and 

the outcome of disease emergence as they affect disease transmission and virulence (Cox 

2001; Brown et al. 2002; Mideo 2009; Alizon and Lion 2011). Thus, interactions between 

novel and existing pathogens can have a major influence on each other’s fitness, ultimately 

affecting their epidemiological patterns and distribution in a host population (Poulin 2001; 

Lawn et al. 2006; Telfer et al. 2010). Positive, synergistic, within-host associations between 

pathogens can facilitate the spread of a disease, as has been shown in the case of HIV and 

malaria in Africa (Abu-Raddad et al. 2006). Additionally, recombination events between 

newly introduced and existing strains of pathogens may result in the generation and 

emergence of new highly virulent variants (Farrer et al. 2011). On the other hand, negative 

associations can also affect the distribution of novel pathogens in a host population. Existing 

infections could prevent secondary infections from establishing through, for example, 

competitive exclusion, as has been found between Salmonella spp. (Rabsch et al. 2000).  This 

phenomenon in general has proven to be a useful control measure to contain epidemic 

outbreaks (Mead 2000; La Ragione and Woodward 2003). 

 

As honey bees are susceptible to a wide range of pathogens and pests (Evans and Schwarz 

2011), co-infections are commonly observed in nature, both at the colony and individual 

levels (Cox-Foster et al. 2007; Chen et al. 2009; Runckel et al. 2011). However, studies 

exploring interactions between pathogens and how these affect their epidemiological 

dynamics and subsequently shaping their community structure and distribution are lacking. 

An important observation after N. ceranae emergence in A. mellifera population was that it 

seems to be gradually replacing, at least in some regions of the world, Nosema apis (Klee et 

al. 2007; Higes et al. 2013), which is the native microsporidian infecting the western honey 

bee (Zander 1909; Bailey 1955). Thus the invasive pathogen did not only manage to become 

widespread but it is also becoming gradually the major microsporidian of the honey bee in 
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many regions of the world (Chen et al. 2008; Jara et al. 2012; Botías et al. 2012; Fernández et 

al. 2012; Meixner et al. 2014). This apparent gradual dominance of N. ceranae over N. apis 

had been initially attributed to a higher virulence exhibited by N. ceranae (Paxton et al. 2007; 

Martín-Hernández et al. 2011; Williams et al. 2014). However, recent studies from USA 

addressing the comparative virulence of the two microsporidia show little difference in 

virulence between the two pathogens (Milbrath et al. 2015; Huang et al. 2015). Whether these 

discrepancies in results reflect continental differences between European (former studies) and 

American (recent studies) host-pathogen strains needs to be investigated. Nevertheless, these 

contradictory results highlight the need for future research that must focus on other 

mechanisms besides host mortality when trying to explain the infection pattern of these two 

microsporidia, such as differences in parasite growth or transmission.  

 

As a step towards understanding this apparent replacement of the native N. apis by the 

invasive N. ceranae, the first two chapters (chapter I and II) of this thesis try to identify 

factors that are driving their epidemiological dynamics and distribution. More specifically, 

because of the still open question of the possibly greater virulence of N. ceranae over N. apis, 

the first (I) chapter of this thesis tests the hypothesis proposed by Huang et al. (2015) that N. 

ceranae is more virulent than N. apis for honey bees in Europe by performing mortality 

bioassays using a European honey bee strain and European isolates of Nosema spp.  

 

The second (II) chapter addresses the role of co-infections in shaping pathogen distribution 

patterns in a host community. Previous studies have shown that when these two pathogens are 

introduced simultaneously to a host, N. apis and N. ceranae growth trajectories proceed 

independently, even when introduced at unequal frequencies (Forsgren and Fries 2010). 

However, little is known about the growth response of these parasites under alternative 

infection regimes, particularly during sequential infection. My study focuses on how 

differences in exposure sequence affect interaction outcomes, with implications of 

interspecific interactions on shaping patterns of parasite prevalence in nature.  

 

Additionally, as interactions between infectious agents are not restricted between 

taxonomically closely related species (Cox 2001) and given that both N. ceranae and DWV 

are frequently found within the same host (Fürst et al. 2014), occupying similar niches (i.e. 

gut cells) (Fries 2010; Möckel et al. 2011), I further explored the interaction dynamics 

between these two emergent pathogens (Chapter III). Previous field studies have linked 
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Nosema spp. infection with increased susceptibility to other pathogens, including DWV 

(Cornman et al. 2012), while a recent correlational study by Costa et al. (2011) showed a 

negative association between N. ceranae and DWV loads, suggesting antagonistic 

interactions. However, there is a lack of studies examining the outcome of concomitant DWV/ 

N. ceranae infections under control laboratory conditions despite their importance since they 

can potentially affect disease dynamics of both emerging pathogens. This is addressed in 

chapter III of the thesis, where, using sequential infections under a reciprocally crossed 

experimental design, I explore the nature of their between-species interactions.  

 

Disease dynamics is not only affected by within-host interactions but also by between host-

interactions. In order to established and spread in a (new) population, a pathogen has to 

transmit to susceptible hosts (Woolhouse et al. 2005). Hence factors that enhance 

transmission opportunities also represent important parameters in disease emergence. 

Changes in host behaviour can directly affect contact rates and exposure risk. Thus the ability 

of a novel pathogen to modify a host’s behaviour, such as its mobility or habitat preference, 

could be an effective mean to increase its chances to spread in a host population (Poulin 2006; 

Schmid-Hempel 2011). On the other hand the ability of a host to modify its behaviour in 

response to an infection could be proven beneficial for containing the spread of the disease in 

the population (Poulin 2006; Schmid-Hempel 2011). Therefore, modifications in host 

behaviour following the introduction of a pathogen to a new host species could be an 

important predictor of its establishment in the host population.  

 

In eusocial insects such as honey bees where highly related individuals live in densely packed 

colonies and exhibit complex social organisation, behaviour plays an important role in disease 

dynamics. The high density of individuals within a colony results in high rates of contacts 

among nestmates, increasing exposure and transmission relative to solitary animals (Schmid-

Hempel 1998). Yet they have also evolved a suit of behavioural patterns that depend on 

cooperation between individuals in order to counteract this increased exposure risk (Cremer et 

al. 2007). These anti-parasite behaviours are part of a wider complex of physiological and 

behavioural collective defence mechanism exhibited by social insects and known as “social 

immunity” (Cremer et al. 2007; Evans and Spivak 2010). Examples include hygienic practices 

such as allo- or self-grooming and removal of infected brood or nestmates (Cremer et al. 

2007).  
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However, these behavioural defences could also work to the benefit of the pathogen by 

increasing its transmission. If, for example, an infected individual becomes the target of 

increased grooming, this can increase the likelihood of healthy nestmates becoming exposed 

to a disease (e.g. through licking). In addition to sanitary measures, the spatial and 

behavioural compartmentalisation observed in colonies of many eusocial insects seems to 

serve as an important mechanism affecting disease dynamics (Cremer et al. 2007; Evans and 

Spivak 2010). Honey bee workers, exhibit age-related biases in task performance, known as 

temporal polyethism (Winston 1987). This task specialisation affects directly disease 

dynamics as members of the same age group interact more frequent with each other than with 

members of other age groups, creating a heterogeneous interaction network within the colony 

(Naug and Smith 2007; Naug 2008; Stroeymeyt et al. 2014). Young bees performing nurse 

tasks are found mainly in the centre of the colony, where the brood is located, while foragers, 

who are the oldest members of the colony, operate mainly outside or in the peripheral of the 

nest (Seeley 1982). Hence, age-structure seems to serve as a kind of barrier to pathogen 

transmission while at the same time maximises colony efficiency (Naug 2008; Evans and 

Spivak 2010). Furthermore, the system seems also to be highly flexible in response to 

stressors, including diseases (Oster and Wilson 1978; Huang and Robinson 1992; 

Woyciechowski and Moroń 2009). It has been shown that Nosema spp. infected individuals 

become foragers to an earlier age than their healthy nestmates and thus they spend less time 

performing nurse tasks and minimizing infection risk of the young members of the nest 

(Woyciechowski and Kozłowski 1998; Goblirsch et al. 2013).  

 

As any behavioural response due to, or directed against, a pathogen can impact the course of a  

disease within a honey bee population, it is becoming apparent that investigations tackling the 

issue of disease spread of emerging pathogens such as N. ceranae and DWV should take into 

account alterations in host behaviour. This was addressed in the fourth (IV) chapter of this 

thesis, where I recorded behavioural modifications in honey bee workers after infection with 

DWV and N. ceranae. The aim was to identify which behavioural responses are triggered 

under the pressure of these two emerging pathogens, focusing both on social and temporal 

polyethism patterns. 
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Abstract 

Nosema apis and Nosema ceranae are gut parasites that infect western honey bees (Apis 

mellifera) worldwide. N. ceranae is an exotic infectious disease agent of A. mellifera, having 

been originally described in the Asian honey bee (Apis cerana), while N. apis is native to the 

western honey bee. To better understand the dynamics and epidemiology of the two 

pathogens, we examined the impact of European isolates of both Microsporidia on the 

longevity of European A. mellifera in a controlled laboratory experiment. N. ceranae caused 

slightly higher host mortality compared to N. apis, but differences in virulence were subtle 

and non-significant. Variation across published studies may reflect geographic differences in 

the coadaptation of hosts and parasites and seasonal differences in host susceptibility. 
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Abstract  

There is increasing appreciation that hosts in natural populations are subject to infection by 

multiple parasite species. Yet the epidemiological and ecological processes determining the 

outcome of mixed infections are poorly understood. Here, we use two intracellular gut 

parasites (Microsporidia), one exotic and one co-evolved in the western honey bees (Apis 

mellifera), in an experiment in which either one or both parasites were administered either 

simultaneously or sequentially. We provide clear evidence of within host competition; order 

of infection was an important determinant of the competitive outcome between parasites, with 

the first parasite significantly inhibiting the growth of the second, regardless of species. 

However the strength of this ‘priority effect’ was highly asymmetric, with the exotic Nosema 

ceranae exhibiting stronger inhibition of Nosema apis than vice versa. Our results reveal an 

unusual asymmetry in parasite competition that is dependent on order of infection. When 

incorporated into a mathematical model of disease prevalence, we find asymmetric 

competition to be an important predictor of the patterns of parasite prevalence found in nature. 

Our findings demonstrate the wider significance of complex multi-host multi-parasite 

interactions as drivers of host-pathogen community structure. 
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Abstract 

Two pathogens co-infecting a common host can either interact positively (facilitation), 

negatively (competition) or act independently. A correlative study has suggested that two 

pathogens of the honey bee, Nosema ceranae and Deformed wing virus (DWV), interact 

negatively within a host (Costa et al. 2011). To test this hypothesis, we sequentially co-

infected honey bees with these pathogens in a reciprocally crossed experimental design. Prior 

establishment in the host ventriculus by N. ceranae inhibited DWV while prior infection by 

DWV did not impact N. ceranae, highlighting an asymmetry in the competitive interaction 

between these emerging pathogens. 
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Abstract 

Task allocation in social insect colonies is generally organised into an age-related division of 

labour, termed the temporal polyethism schedule, which may in part have evolved to reduce 

infection of the colony’s brood by pests and pathogens. The temporal polyethism schedule is 

sensitive to colony perturbations that may lead to adaptive changes in task allocation, 

maintaining colony homeostasis. Though social insects can be infected by a range of 

parasites, little is known of how these parasites impact within-colony behaviour and the 

temporal polyethism schedule. We use honey bees (Apis mellifera) experimentally infected by 

two of their emerging pathogens, Deformed wing virus (DWV), which is relatively 

understudied concerning its behavioural impact on its host, and the exotic 

microsporidian Nosema ceranae. We examined parasite effects on host temporal polyethism 

and patterns of activity within the colony. We found that pathogens accelerated the temporal 

polyethism schedule, but without reducing host behavioural repertoire. Infected hosts 

exhibited increased hyperactivity, allocating more time to self-grooming and foraging-related 

tasks. The strength of behavioural alterations we observed was found to be pathogen specific; 

behavioural modifications were more pronounced in virus-treated hosts versus N. ceranae-

treated hosts, with potential benefits for the colony in terms of reducing within-colony 

transmission. Investigating the effects of multiple pathogens on behavioural patterns of social 

insects could play a crucial role in understanding pathogen spread within a colony and their 

effects on colony social organisation. 

 

Keywords: Host, Pathogen, Multiple infection, Apis mellifera, Nosema ceranae, Deformed 

wing virus 
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Synthesis 

Apiculture has a long history, with honey and wax being important trade products in human 

societies since the ancient years (Roffet-Salque et al. 2015). Thus it is not surprising that 

honey bee biology and health has been the focus of many studies for centuries (Bloch et al. 

2010). Until a few decades ago, most infections of the honey bee (other than the bacterial 

‘foulbroods’) were considered harmless and easy to treat by beekeepers (Bailey et al. 1981; 

Chen and Siede 2007). Currently honey bee pathogens are the subject of renewed interest.  

 

This has happened in part because new tools in biology led to the identification of existing 

and novel pathogens and provided a new appreciation of their uses in addressing a wide range 

of fundamental questions in the evolutionary biology of social insects (Schmid-Hempel 1994; 

Cremer et al. 2007; Singh et al. 2010; Runckel et al. 2011), and in part because there is a 

pressing need to find out more about their role in the global pollinator biodiversity crisis at a 

time when outbreaks of (re)emerging infections have been associated with unusual high 

mortality of honey bee colonies (Cox-Foster et al. 2007; Paxton 2010; Schroeder and Martin 

2012). Nonetheless, within this new and growing field of bee pathology, knowledge gaps 

remain substantial with regard to concurrent multi-parasite infections.  

 

Whether and to what extent the coexistence of multi-parasite infections influences not only 

parasite infracommunity structure and dynamics but also the health of their host is still largely 

unexplored in honey bees. The work presented in the current thesis, pursued in close 

collaboration with several colleagues, provides new insights on the interactions that occur 

when a bee host is infected with more than one infectious agent. In particular, it focused on 

two pathogens that recently emerged in honey bees: the microsporidan N. ceranae and the 

virus DWV. I used a series of experimental infections coupled with survival and behavioural 

experiments which allowed me to specify the nature of the relationship between co-infecting 

microsporidia and/or viruses and to investigate their consequences on within-colony honey 

bee behaviour. The implications of my PhD work relate to the understanding of 

epidemiological factors that shape parasite communities within a host population and that will 

help to re-evaluate the role of diseases in honey bees as tractable experimental models in 

biology.  
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First I show a lack of significant difference in virulence in terms of induced host mortality 

between N. ceranae and N. apis (Chapter I), which is in agreement with two recent studies 

from the US (Milbrath et al. 2015; Huang et al. 2015). My study expands their results as I 

used a European honey bee strain and European isolates of N. ceranae. At the same time my 

paper rejects the hypothesis of Huang et al. (2015) of “continental differences”. My results 

highlight the idea that the suggested competitive advantage of N. ceranae over N. apis and the 

apparent replacement of N. apis by N. ceranae in some regions of the world cannot be 

explained by increased host mortality induced by N. ceranae, as has commonly been reported 

in recent years. Thus future research must focus on other mechanisms besides host mortality. 

 

This provided the basis for an experimental investigation of the within-host interaction 

dynamics between these two gut parasites (chapter II). I demonstrated that parasite 

competition critically depends on order of infection (priority effect), and that the exotic 

microsporidian species is a better competitor than the native species. An important aspect of 

the research was the implementation of a mathematical modelling approach. By incorporating 

empirical findings into a mathematical model of disease prevalence I found that asymmetric 

competition contributes significantly to the observed patterns of prevalence of these two 

pathogens in nature. The study highlights the importance of taking within-host interactions 

into account when investigating distribution patterns of emerging infectious diseases. It also 

emphasises that knowledge of complex multi-species interaction is critical for gaining a better 

understanding of host-parasite community structure.  

 

Focusing again on multiple infections within adult worker bees, I extended our studies by 

examining the role of priority effects in interactions between pathogens that are not 

taxonomically related, namely the microsporidian N. ceranae and the virus DWV (Chapter 

III). My results revealed once again an asymmetric competitive interaction that depends 

strongly on order of infection. Interestingly, competitive suppression was found to affect only 

the virus while the microsporidian was unaffected. These results provide important 

information as they suggest that the presence of N. ceranae may play an important role in 

structuring the dynamics of DWV loads in honey bee colonies.  

 

Negative associations between pathogens may arise due to one of three well described 

mechanisms of competition i.e. exploitation competition for host resources, apparent 

competition by stimulation of host immune responses, and interference competition through 
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e.g. secretion of toxic molecules (Read and Taylor 2001). Although in the current work I do 

not explicitly explore the processes behind the observed competitive asymmetry, I have 

attempted to identify and discuss the possible key mechanisms that may be responsible 

(Chapter II, Chapter III).  

 

Future research attention should be given on unravelling the resource or mechanism that 

limits the replication success of competitors. The availability of new tools in biology, 

including next-generation sequencing, proteomics, cell cultures models and improved 

microscopy will enable more focused experiments to understand the mechanisms in operation 

under the presented study system. As both Nosema spp. and DWV are obligate intracellular 

pathogens (Fries et al. 1996; de Miranda and Genersch 2010), the unit of infection is the cell. 

Tracking the real time the course of mixed infections and visualising what is happening at the 

within-cell level will give a more complete picture of how Nosema spp. and DWV interact 

within the host. For example, exploring whether a pathogen is able to infect a cell that has 

already been infected by another pathogen will help determine if the two pathogens compete 

over space (cell pool) within the host or inside co-infected cells. Flow cytometry methods 

could also be valuable to determine the number of cells infected by the two pathogens while 

the infections spread within the host and reveal whether the abundance of host resources 

represents a limiting factor (e.g. see Tromas et al. 2014). Finally as the honey bee genome has 

now been sequenced and annotated (Honey bee genome sequencing consortium, 2006; Elsik 

et al. 2014), identifying genome-wide gene expression patterns under single and co-infection 

conditions will give critical insight into the role of the host-immune system in shaping the 

observed competitive outcomes.  

 

An important question that derives from the presented chapters is whether the antagonistic 

relationship among Nosema spp. or between N. ceranae and DWV translates into competition 

for transmission between the co-infecting pathogens. The transmission rate is an important 

epidemiological parameter that determines community infrastructure, pathogen ecology and 

evolution (Poulin 2006; Schmid-Hempel 2011). Hence, determining whether within-host 

dynamics alter the between-host transmission of Nosema spp. and DWV under co-infection 

conditions is urgently needed. Studies across different host-parasite systems have shown that 

within-host competition and pathogen transmission are tightly linked and co-infection has the 

potential to change rates of pathogen transmission (e.g. de Roode et al. 2005; Karvonen et al. 

2011). However, a recent study of Abkallo et al. (2015) focusing on different strains of the 
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rodent malaria parasite Plasmodium yoelli found that, even if different strains compete within 

the same host, there was no relationship between parasite growth rate and transmission.  

 

Finally, disease dynamics in a community are affected not only by within-host but also by 

between-host interactions. For that reason, in the last presented study (Chapter IV), I 

examined how exposure to N. ceranae and DWV, two emerging honey bee pathogens with 

distinct pathologies, administrated singly or combined, affect the honey bee’s temporal 

polyethism schedule. In addition, I explored how these two prominent pathogens can shape 

social behaviours and activity patterns within a colony, traits that represent important 

mechanisms for maintaining colony homeostasis (Seeley 1982; Winston 1987; Johnson 2010) 

but have been largely ignored in bee pathology research.  

 

My results reveal behavioural modulations that could potentially benefit the colony in terms 

of reduced within-colony transmission. These insights pave the way for further studies on the 

role of host behavioural modifications in pathogen spread within a colony. Incorporating new 

technologies, such as automated observation technologies that track continuously a large 

number of individuals (e.g. Mersch et al. 2013), into future studies would be beneficial for 

constructing networks of interactions between infected and healthy nestmates. This 

information could improve our understanding of the strategies employed by both the host and 

the parasite in relation to disease transmission and generate novel insights into the factors that 

affect parasite community structure and assembly. Theoretical epidemiological modelling 

could also supplement empirical studies to obtain predictions regarding the observed 

behavioural modification on exposure and maintenance of pathogens in the population (e.g. 

Theis et al. 2015).  

 

Overall in the presented work I tried to link within-host and behavioural dynamics so as to 

bring new insights to the epidemiology of emerging pathogens, using honey bees as a model 

system. As a next step, research should focus on how these within-host interactions and 

behavioural alterations affect the between-host transmission of both emerging pathogens so 

we can understand and maybe predict their evolutionary trajectories. 
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