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1. Summary

1.1. English version

Genes code the blue prints for proteins and need to undergo the molecular processes of tran-
scription and subsequent translation to result in the proteins they code for. The amount
of protein is mainly determined by the amount of available transcript. Hence, inspecting the
amount of transcript of a gene gives information about its expression level. The more transcript
is present for a gene the higher the gene is expressed and the more protein can be synthe-
sized. Proteins have different functions and are involved in different processes, like enzymes
that change the activity of proteins or transcription factors that regulate the transcriptional
process. In summary, the expression of a gene depends on other genes or their corresponding
proteins, which are regulated themselves. Hence, the regulatory interaction of genes can be
described as a network where the nodes represent the genes and the edges represent regulatory
relationships. If the expression level of one gene is changed, this change affects other genes
and thus triggers a cascade that propagates the change through the network.

The expression level of genes can be altered in response to a signal. A signal is perceived
and transduced by the corresponding signaling network. This signaling network translates the
signal into gene responses by affecting the transcription of genes that lead to an increase or
decrease in the amount of the respective transcripts.

We have developed algorithms for inspecting the responses of thousands of genes. We applied
these algorithms to study expression responses of genes from the plant species Arabidop-
sis thaliana and its closely related sister species Arabidopsis lyrata to treatment with the
signal molecule auxin. Although both species are closely related they show differences in their
genomic sequences that have to be considered.

While for the well studied species A. thaliana, the infrastructure for measuring the expression
of thousands of genes by microarrays is available and well established, it is not available for
A. lyrata. Due to the fact that no microarray is available for A. lyrata we chose the microar-
ray that was specifically designed to target transcripts of A. thaliana. We have developed the
PMP (Probe Masking Pipeline) algorithm that makes use of transcript sequences and therefore
can deal with the problems that arise due to differences in the genomic sequence of A. lyrata
and A. thaliana and provides reliable and comparable expression values for A. thaliana and
A. lyrata. The PMP is designed in a modular fashion and can be applied to different use cases.
It is capable of providing reliable expression values not only for a single species but also for
two or more species by taking their transcript sequences into account simultaneously which is
necessary for comparing gene responses of closely related species.



1. Summary

To inspect the expression responses of genes along a set of different experiments or samples
(expression profiles) or rather to inspect potential regulatory relationship of genes, we have
developed the PIF (Profile Interaction Finder) algorithm employing a linear model. The PIF
algorithm inspects the relationship of the expression profiles of genes by reconstructing the
expression profile of a gene as a linear combination of the expression profiles of other genes. We
used the inferred relationships between the genes to reconstruct networks in which the nodes
represent the genes and the edges represent the relations. To distinguish between relationships
that are inferred because of similar or opposite expression responses of genes, we incorporated
an additional set of parameters which is directly attached to the weights of the linear model.
We refer to a positive relationship if two genes show a similar expression response and to a
negative relationship if two genes show an opposite expression response. Therefore the set of
edges comprises two subsets of edges, the first representing the positive relationships and the

second representing the negative relationships.

We inferred the positive relationships of genes from different A. thaliana ecotypes, to inspect
the expression response of genes to auxin within the A. thaliana species. In performing this
intra-species comparison, we statistically evaluated the amplitudes of gene responses to auxin
and the topology of the reconstructed networks. We found evidence for the existence of natural
variation in the gene responses, especially for the genes coding for the components of the auxin
signaling network. This finding lead to a model of how responses of genes in the auxin signaling
network affect each other and downstream responding genes.

We expanded the analysis of auxin gene responses to an inter-species comparison of A. thaliana
and A. lyrata. We applied the PMP to obtain reliable estimates for gene responses of A. lyrata.
We inferred networks from gene expression profiles of both species using the PIF algorithm and
subsequently evaluated positive and negative relationships between genes. We observed that
a set of genes shows very conserved responses to auxin and concluded that this set of genes
comprises genes that might be essential for auxin response. However, we also spotted genes
showing a very different auxin response in both species and concluded that these genes might
be responsible for different downstream responses in A. thaliana and A. lyrata as proposed in
the model derived from the intra-species comparison.

We also found evidence for naturally occurring variation in the expression of reproductive traits
of different ecotypes of A. thaliana in response to ambient temperature changes. We obtained
these findings from inspecting traits measured along entire life cycles of different A. thaliana
ecotypes at different ambient temperatures. Hence, for each trait we had measurements at
different temperatures for different ecotypes of A. thaliana. To analyze the impact of ambient
temperature change on the expression of each trait in each ecotype, we fitted a linear model.
The inspection of the absolute value and the sign of slope parameter of the fitted linear model
allowed us to distinguish between traits that have always the same sign for all ecotypes or
have different signs. The second group possibly constitutes traits that show variation due to
natural variation. But to dissect the effect of the ecotype and the effect of temperature, we
presented a measure based on the intra-class correlation coefficient. To this end, we analyzed
the decomposed total variance for each of the traits in two ways: (i) for the impact of the
ecotype and (ii) for the impact of temperature. By evaluating both measures for all traits
capturing an entire life cycle, we identified the reproductive traits as highly affected by ecotype




1.1. English version

and temperature and thus as worthwhile candidate traits for further scientific investigation

and breeding.

We showed that specific biological questions lead to new bioinformatics algorithms whose
application in turn provides new insights into biological systems.




1. Summary

1.2. German version

Gene kodieren die Bauplane fiir Proteine. Durch die Transkription der Gene und die an-
schlieBende Translation des Transkriptes werden Proteine synthetisiert, wobei die Menge des
synthetisieren Proteins hauptsichlich von der Menge an verfiigharem Transkript abhéngt.
Eine Analyse der zur Verfiigung stehenden Transkriptmenge eines Genes gibt also Hinweise
auf dessen Expressionszustand. Je mehr Transkript eines Genes verfiigbar ist, desto stéarker ist
das Gen exprimiert und desto mehr Protein kann synthetisiert werden. Proteine haben ver-
schiedene Funktionen und sind in unterschiedliche Prozesse involviert, wie z.B. Enzyme, die
die Aktivitat von Proteinen verindern oder Transkriptionsfaktoren, die die Transkription der
Gene regulieren. Im Allgemeinen héngt die Expression eines Genes von anderen Genen bzw.
deren korrespondierenden Proteinen ab, die aber wiederum auch der Regulation unterliegen.
Die regulatorischen Zusammenhénge zwischen Genen lassen sich durch Netzwerke beschreiben,
in welchen die Knoten die Gene und die Kanten mogliche regulatorische Beziehungen zwischen
Genen reprasentieren. Andert sich die Expression eines Genes, wirkt sich dies auch auf die
Expression anderer Gene aus. Es wird eine Kaskade in Gang gesetzt, welche die Anderung

durch das Netzwerk propagiert.

Die Expression eines Genes kann auf ein Signal hin verédndert werden. Signale werden durch
das entsprechende Signalnetzwerk wahrgenommen und weitergeleitet. Das Signalnetzwerk
iiberfithrt das Signal in Genreaktionen, indem die Transkription der Gene beeinflusst wird.
Dies hat eine Verringerung oder Erhohung der zur Verfiigung stehenden Transkriptmenge zur
Folge.

Wir haben Algorithmen entwickelt, die der Analyse der Reaktion tausender Gene dienen.
Diese haben wir eingesetzt um die Genreaktion der nah verwandten Pflanzenspezies Ara-
bidopsis thaliana und Arabidopsis lyrata auf Behandlung mit Auxin zu studieren. Obwohl
beide Spezies nah verwandt sind, existieren nicht zu vernachléssigende Unterschiede in ihren
genomischen Sequenzen.

Fiir die gut erforschte Pflanzenspezies A. thaliana steht sowohl ein Microarray zum Messen
der Genexpression als auch die zugehorige etablierte Infrastruktur zur Verfiigung. Allerdings
ist das fiir A. lyrata nicht der Fall. Aus diesem Grund haben wir auch fiir A. lyrata auf
das Microarray, welches spezifisch zum Messen von A. thaliana-Gen-Transkripten geschaffen
wurde, zurtickgegriffen. Wir haben den PMP-(Probe Masking Pipeline)-Algorithmus entwick-
elt um Probleme zu kompensieren, die durch die genomischen Unterschiede von A. thaliana
und A. lyrata hervorgerufen werden. Hierfiithr bezieht der PMP-Algorithmus die Sequenzen der
Transkripte mit ein und liefert am Ende verlassliche und vergleichbare Genexpressionswerte
fiir A. thaliana und A. lyrata. Der PMP-Algorithmus hat durch seinen modularen Aufbau
vielfaltige Anwendungsbereiche. Er liefert nicht nur verlassliche Genexpressionswerte fiir eine
Spezies sondern auch fiir mehrere, indem er die Sequenzen der Transkripte aller Spezies gleich-
zeitig berlicksichtigt. Letzteres ist dann erforderlich, wenn die Genexpression mehrerer nah

verwandter Spezies miteinander verglichen werden soll.

Um das Expressionsverhalten von Genen iiber mehrere Experimente (Expressionsprofile) hin-
weg bzw. mogliche regulatorischen Beziehungen zwischen Genen untersuchen zukénnen, haben
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wir den PIF-(Profile Interaction Finder)-Algorithmus entwickelt. Dieser beinhaltet als Kern-
stlick ein lineares Modell, das verwendet wird, um das Expressionsprofil eines Genes durch
Linearkombination der Expressionsprofile anderer Gene zu rekonstruieren. Die so ermittelten
Beziehungen zwischen den Genen haben wir in Netzwerken dargestellt, in denen die Knoten
die Gene und die Kanten die ermittelten Beziehungen zwischen den Gene reprasentieren.

Das Expressionsverhalten von Genen, die unter dem gleichen regulatorischen Einfluss stehen,
kann gleich oder entgegengesetzt sein. Um zwischen diesen beiden Féllen unterscheiden zu
konnen, haben wir zusétzliche Parameter, die in direkter Beziehung zu den Gewichten des
linearen Modells stehen, eingefithrt. Ist im Netzwerk eine Kante durch ein sehr &hnliches
Expressionsverhalten zweier Gene zustande gekommen, bezeichnen wir diese Beziehung als
positive Beziehung. Ist hingegen die Kante durch ein entgegengesetztes Expressionsverhal-
ten zweier Gene zustande gekommen, bezeichnen wir die Beziehung als negative Beziehung.
Im ersten Fall hat ein potentiell gemeinsamer regulatorischer Einfluss den gleichen Effekt
im Expressionsverhalten beider Gene ausgelost oder eines der Gene wirkt positiv regulierend
auf die Expression des anderen Genes. Wohingegen im zweiten Fall durch einen potentiell
gemeinsamen oder direkten regulatorischen Einfluss ein entgegengesetzter Effekt im Expres-

sionsverhalten hervorgerufen wurde.

Fiir die vergleichende Analyse des Expressionsverhalten von Genen verschiedener A. thaliana-
Okotypen unter Auxinbehandlung haben wir Genexpressionsnetzwerke fiir Okotypen basierend
auf den positiven Beziehungen rekonstruiert. Dieser Intra-Spezies-Vergleich beinhaltete die
statistische Analyse der Starke der Genexpression sowie die statistische Analyse der Topologie
der rekonstruierten Netzwerke. Wir fanden Anhaltspunkte fiir die Existenz einer natiirlichen
Variation im Expressionsverhalten der Gene, insbesondere bei Genen, welche die Komponenten
des Auxin-Signal-Netzwerkes kodieren. Diese Erkenntnis flihrte zu einem Modell, das den
Einfluss des Expressionsverhalten der Gene des Auxin-Signal-Netzwerks untereinander und
auf das Expressionsverhalten nachfolgender Gene zeigt.

Nach dem Intra-Spezies-Vergleich von A. thaliana erweiterten wir die vergleichende Analyse
auf einen Inter-Spezies-Vergleich von A. thaliana und A. lyrata. Wir wendeten den PMP-
Algorithmus an, um auch fiir A. lyrata verlédflliche Expressionswerte fiir diesen Vergleich zur
Verfiigung zu haben. Unter Verwendung des PIF-Algorithmus rekonstruierten wir Expressions-
netzwerke beider Spezies und werteten sowohl die positiven als auch die negativen Beziechungen
aus. Wir ermittelten eine Gruppen von Genen, die ein sehr dhnliches Expressionverhalten in
Bezug auf die Auxinbehandlung zeigt und folgerten, dass diese Gengruppe essenziell fiir die
Auxinantwort sein konnte. Wir ermittelten eine weitere Gruppe von Genen, die ein unter-
schiedliches Expressionsverhalten in beiden Spezies zeigten. Wir folgerten, dass diese Gene
fiir unterschiedliche nachfolgende Auxinantworten verantwortlich sein kénnten. Dies steht in
Ubereinstimmung mit dem Modell, das aus dem Intra-Spezies-Vergleich abgeleitet wurde.

Wir fanden auch Hinweise auf natiirliche Variation in der Ausbildung von Merkmalen der
reproduktiven Phase verschiedener A. thaliana-Okotypen als Reaktion auf veranderte Umge-
bungstemperaturen. Wir erlangten diese Erkenntnisse durch die Analyse von Merkmalen, die
{iber vollstandige Lebenszyklen verschiedener A. thaliana-Okotypen bei verschiedenen Umge-
bungstemperaturen gemessen wurden. Fiir jedes dieser Merkmale hatten wir Messungen fiir
die verschiedenen A. thaliana-Okotypen zu den verschiedenen Umgebungstemperaturen zur
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Verfiigung. Um den Einfluss der Umgebungstemperatur auf die Expression eines Merkmales
zu untersuchen, haben wir fiir jeden Okotypen ein lineares Modell gefittet. Durch die Analyse
der Starke und des Vorzeichens des Steigungsparameters des gefitteten linearen Modells, kon-
nten wir die Merkmale unterscheiden in solche, die in allen Okotypen das gleiche Vorzeichen
hatten und in solche die unterschiedliche Vorzeichen hatten. Die unterschiedlichen Vorze-
ichen in der letzteren Gruppe konnten auf natiirlicher (genetischer) Variation in den Okotypen
beruhen. Um aber den Einfluss der Okotypen und den Einfluss der Umgebungstemperatur
zu untersuchen, haben wir ein Mafl basierend auf dem Intra-Klassen-Korrelationskoeffizienten
entwickelt. Unter Verwendung dieses Mafles wird die Gesamtvarianz eines jeden Merkmales
zerlegt und analysiert auf (i) den Einfluss durch die Okotypen und (ii) den Einfluss durch
die Temperatur. Durch die Bewertung beider Einflussfaktoren aller Merkmale des gesamten
Lebenszyklusses, konnten wir die Merkmale, die die reproduktive Phase beschreiben als diejeni-
gen identifizieren, die am stirksten durch die Okotypen und die Umgebungstemperatur be-
influsst wurden. Diese Merkmale waren vielversprechende Kandidaten fiir nachfolgende wis-

senschaftliche Untersuchungen oder fiir die Planzenzucht.

Wir haben gezeigt, dass gezielte biologische Fragen zur Entwicklung neuer bioinformatischer
Algorithmen fiihren, deren Anwendung wiederum zu neuen Einblicken in biologische Systeme
flihrt.




2. Introduction

Organisms are organized in organs, tissues, and cells, where the cells are the smallest unit
that contains the genetic information. The genetic information is stored in form of genes in
the DNA (Deoxyribonucleic acid). Genes code blueprints for proteins that control processes
in the organism. If the information stored by a specific gene is needed then a working copy of
the respective gene is generated by transcription. Subsequently, the working copy of a gene is
translated into a protein with a specific function. Some proteins regulate the transcription of
genes, but proteins can also regulate other proteins by changing their activity. Combinations
of different genes, more precisely of proteins produced from different genes, control different
processes. Such processes could, for example, be important for the survival of the organism

or its appearance.

It was observed that organisms with nearly identical genetic information show differences in
their appearance, although they were exposed to the same environmental conditions. This
leads to the conclusion that somehow the processes and more precisely their regulatory mech-
anisms have changed. In particular, we aim at identifying the processes and understanding the
regulatory mechanisms that are behind these processes. We also aim at comparing regulatory
mechanisms of processes, to find and understand similarities and differences and their impact
on the appearance of an organism. To achieve these goals we developed various bioinformatics
algorithms that are presented in this thesis. We have designed algorithms to compute the
amount of working copies of genes from measurements and also to uncover regulatory mech-
anisms, which is to uncover the relationships of genes that determine specific processes, e.g.,

different enzymatic processes.

In this context, we developed bioinformatics algorithms to facilitate the analysis of measure-

ments from the plant genus Arabidopsis exposed to an auxin stimulus.

2.1. Biological background

This section introduces the reader into gene expression and its regulation. The introduction
also includes a general description of how signals are transduced in the plants by means of
gene expression and additionally it includes a more detailed description of this process for the

signal molecule auxin.



2. Introduction

2.1.1. Gene expression

Whenever a protein having a specific function (e.g., an enzyme) is needed then the correspond-
ing gene needs to be expressed. The process of gene expression comprises two main processes,
transcription and translation, and related post-processing steps (Figure . The expression
of a gene starts with the process of transcription, where the DNA sequence of the gene is tran-
scribed into the corresponding RNA (Ribonucleic acid) sequence. This process is driven by
the binding of transcription-regulating proteins (transcription factors) to regulatory elements
(specific short sequences) in the promoter region (upstream) of the genes. The binding of a
transcription factor to its corresponding regulatory element can either activate or repress the
transcription of a gene. Besides transcription factors, several additional proteins play a role
in the transcription process. After transcription-related post-processing steps the transcrip-
tion of the gene results in the messenger RNA (mRNA). The mRNA serves as input of the
translation process where the mRNA sequence is translated into the corresponding amino acid
sequence (AS). After several post-processing and folding steps this sequence of amino acids
results in a mature protein. Proteins are also often referred to as gene products. Proteins
have special functions, e.g., they are enzymes and catalyze enzymatic reactions or they are
transcription factors and regulate the transcription of genes.

The whole gene expression process is regulated by different specific mechanisms on the tran-

scriptional and translational level.

For simplicity, we assume a gene to be expressed whenever mRNA of this gene is present and
do not take into account whether the corresponding protein is synthesized or not. Measuring
the amount of mRNA that is available in different experimental setups in a high-throughput
manner (e.g. using expression microarrays) is more convenient than measuring complex pro-
teins. All available transcripts (mRNAs) taken together are denoted as the transcriptome.
Depending on the amount of available mRNA of a gene we can assume how strong a gene
is expressed. A gene is highly expressed if there is a high amount of its mRNA available,
whereas it is lowly expressed if there is only a low amount of its mRNA available. The set of
measurements of the amount of available mRNA of a gene in different samples (e.g., tissues
or experiments) is therefore denoted as its respective expression profile.

2.1.2. Gene expression regulation

The expression of genes is regulated by genes having transcription factor activity. The activity
of a transcription factor depends on its corresponding mRNA and protein level. The protein
level directly depends on the mRNA level and the mRNA level is controlled by transcription-
regulating proteins. The activity of transcription-regulating proteins is again regulated by
other proteins. And, additionally, proteins with specific functions are needed to produce
mRNA of the gene coding for these transcription factors. To summarize, different genes
especially their corresponding proteins and their relationships to each other have an influence
on the expression of other genes, e.g., transcription factors, and the activity of other proteins.
Hence, the regulation of gene expression constitutes a network of genes.
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Figure 2.1.: Flowchart showing the expression of a gene. Genes are regions on the DNA that
code information about proteins. The transcription of genes is regulated by transcription factors
which bind to regulatory elements in the promoter regions of genes. The binding to regulatory
elements affects the regulation and thus the transcription of genes. Transcription is the process
by which the DNA sequence of the gene is transcribed into the RNA sequence. After several post-
processing steps the transcription yields the messenger RNA (mRNA). By the translation process the
mRNA is translated into a sequence of amino acids (AS) which results in mature protein after several
steps of post-processing. Both on the transcriptional and on the translational level are mechanisms
that regulate both processes. The transcription and the translation together with their respective
post-processing steps comprise the processes of gene expression.

The expression of genes can be changed as a response to a stimulus or a signal (Figure . A
stimulus can be a signal from outside or inside an organism. From the outside it can, e.g., be
a change in the ambient temperature or a change in the availability of water. From the inside
it can, e.g., be a change in the concentration of a hormone. A signal is recognized by a signal-
specific receptor. The receptor is one of the main components of the corresponding signaling
network which recognizes and processes the signal. A signaling network transduces the signal
by activating or repressing other components of the signaling network which directly regulate
the activity of other proteins or directly affect the transcription of genes. Each component
of the signaling network has a specific function and the interplay of the different components
directly determines the primary responses triggered by the signal. The primary responses lead
to additional downstream responses e.g., changes in the phenotype (physiological aspects). In
summary, the signal triggers a cascade of gene-regulatory events (signaling network) that lead
to a signal-specific response, which might be visible at the physiological (phenotypical) level.
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Figure 2.2.: Flowchart showing stimulus perception and transduction. The stimulus (signal) is
recognized by the corresponding receptor. The receptor is one component of the respective signaling
network. The signaling network plays a key role in the perception and transduction of the signal
via regulation of gene expression. After signal recognition the activated receptors activate or repress
other components of the signaling network that regulate the expression of primary response genes.
As a consequence the signal is transduced by changing the expression of primary response genes. This
causes changes in the overall RNA and protein level (Figure . This in turn causes downstream
responses, which are i.e., changes on the physiological level.

2.1.3. Auxin signaling network

A very important stimulus a plant reacts to is a change in the auxin concentration in the
cell. Auxin is a very powerful plant hormone that controls processes such as cell division,
cell differentiation, and cell elongation: essential cellular processes necessary for plant de-
velopmental events and reactions in response to environmental challenges. At the cellular
level, the auxin signal is recognized and transduced by the auxin signaling pathway (Fig-
ure . The auxin signaling pathway is a network that is formed by three main compo-
nents: (i) the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX1-5
(TIR1/AFBs) auxin receptors, (ii) AUXIN/INDOLE-3-ACEDIC ACID (AUX/IAA) family
of auxin co-receptors/transcriptional repressors, and (iii) the AUXIN RESPONSE FACTOR
(ARF) family of transcription factors (Quint et al., [2006).

ARFs regulate the transcription of auxin-responsive genes by binding to auxin-responsive el-
ements (AuxRE) located in their promoters (Guilfoyle et al., Ulmasov et al., [1999).
The central function of the auxin signaling network is to regulate the transcription of ARF-
controlled auxin-responsive genes. An AUX/TAA is bound to the ARFs as long as the auxin
concentration in the cell is low. This binding prevents the ARF to act as a transcription
factor and thus represses the transcription of the respective genes. An increase of auxin con-
centration in the cell is recognized by the auxin receptors (TIR1/AFBs), which are part of an
E3-ligase complex. The TIR1/AFBs and the AUX/TAAs form co-receptor complexes and to-
gether bind auxin molecules. To form this co-receptor complex the binding of the AUX/TAAs
to the ARFs is released and the AUX/IAAs are marked by the E3-ligase complex for degrada-
tion. The marked AUX/IAAs are subsequently degraded which results in a reduced AUX/TAA
concentration in the cell. As a consequence of the released ARF-to-AUX/IAA binding, the
transcription factor activity of the ARFs is no longer repressed and the respective auxin-
responsive genes are transcribed. This set of genes contains transcription factors, enzymes
and also genes of the AUX/IAA family. As long as the auxin level in the cell is high enough
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2.2. Objectives and outline

auxin together with the AUX/IAAs is bound to the receptors (TIR1/AFBs). If the auxin level
decreases, the newly synthesized AUX/IAAs bind to the ARFs and repress the transcription
of auxin-responsive genes. The interaction of these three main components of the auxin sig-
naling network causes an auxin-specific reaction. The three main components of receptors,
co-receptors/transcriptional repressors and transcription factors are encoded by gene families
of six, 29, and 23 known members, respectively (Chapman et al., 2009). This allows 4002 theo-
retically possible specific interaction scenarios of these three components that trigger different
gene regulation events (primary responses) which result in different downstream responses
(Calder6n Villalobos et al., [2012; Salehin et al., 2015). Hence, the auxin signal processed by
the auxin signaling network can trigger a wide variety of downstream responses (Ramos et al.,
2001; Zenser et al., 2001; Guilfoyle et al., 1998; Ulmasov et al., 1999) with some of them
leading to visible changes in the physiological phenotype of the plant.

A auxin B

auxin IAA

QYY)
N )
TIR1/AFB

auxin-responsive gene

’ ARRAN,
l M ltranscrlptlon
AUX
\ / \ IAA ltranslatlon

auxin-responsive gene

response

Figure 2.3.: The auxin signaling network. The auxin receptors (TIR1/AFBs), Auxin Response
Factors (ARFs), and auxin co-receptors/repressors (AUX/IAAs) together form the auxin signaling
network. (A) Low auxin concentration: ARFs bind to auxin responsive-elements (AuxRE) in pro-
moters of auxin-responsive genes. In case of low auxin concentration in the cell, the AUX/TAAs
repress the transcription factor activity of the ARFs by directly binding them. (B) High auxin
concentration: An increase in cellular auxin levels is perceived by the auxin co-receptor complex
that consists of a TIR1/AFBs and an AUX/TAA protein. The AUX/IAAs release the binding to
the ARFs and bind together with the auxin to the TIR1/AFBs. Simultaneously the AUX/IAAs
are tagged for degradation and their concentration in the cell is reduced. The ARFs recover their
transcription factor activity and initiate downstream auxin responses. As a direct consequence, the
ARF's could initiate the transcription of auxin-responsive genes like AUX/TAAs. The transcription
factor activity of the ARF's is repressed again by the newly synthesized AUX/IAAs when the auxin
level decreases.

2.2. Objectives and outline

Driven by one major question in auxin biology: “How can this small auxin signaling network
that consists of only three main components trigger a wide variety of downstream responses?”,
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2. Introduction

we were interested in developing biological and bioinformatics methods to study the reactions
of the model plant species Arabidopsis thaliana on application of an auxin stimulus. A. thaliana
as a model organism is well established and easy to cultivate and to handle. Additionally, it
is completely sequenced and well annotated.

We analyzed the expression levels or changes of the expression levels of genes of A. thaliana
exposed to an auxin stimulus to get insights into regulatory relationships and interactions
between genes that are involved in the auxin signaling network and genes that show primary

or downstream responses.

/ Arabidopsis thaliana

~

intra-species

comparison

inter-species J comparison
/ Arabidopsis lyrata

k N22697 J

Figure 2.4.: Comparisons performed with A. thaliana and A. lyrata and their distribution
over the world. The green and the blue rectangle contain representative ecotypes of A. thaliana
and A. lyrata. Each ecotype is shown in three copies. Hence, each ecotype is analyzed by its
three biological replicates. We performed an intra-species comparison by comparing ecotypes of
A. thaliana plants; we compared the reference ecotype Col-0 to six other A. thaliana ecotypes. We
additionally performed an inter-species comparison by comparing A. thaliana Col-0 to A. lyrata
ssp. lyrata N22697. The map shows the distribution of the analyzed A. thaliana ecotypes and
A. lyrata ssp. lyrata over the planet.

We considered different types of analyses (Figure . First, we analyzed plants of the well
studied A. thaliana reference ecotype Col-0. The analysis of gene expression levels of a single
Col-0 plant provides a snapshot of the reactions, changes in the genes expression levels, and
gene-to-gene interactions. To get information of the variation and reliability of the observed
gene interactions and thus relationships, we took multiple Col-0 plants with an identical genetic
background into account. Although these plants originate from the same seeds and were
exposed to the same conditions, they will react as individuals and will possibly show differences
in their reactions. Second, we extended this kind of analysis to six other ecotypes that are

available for A. thaliana. The reference ecotype and the other ecotypes are very similar
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2.2. Objectives and outline

in their genomic sequences but originate from different geographic locations with different
environmental factors. Analyzing these ecotypes provides information on how strong slight
differences in the genomic sequences and the adaption to different environmental factors affect
the reaction to an auxin stimulus. We did not only analyze the reference ecotype and ecotypes
separately, but also compared them based on gene expression levels to find similarities in
gene expression among the ecotypes and also differences which might be present due to the
former adaption processes to different environmental factors. This intra-species comparison
gives deep insight into the naturally occurring variation in response to an auxin stimulus.
Third, for our analyses we did not only take one species but also a second species into account
Arabidopsis lyrata. A. lyrata is a close relative of A. thaliana (Hu et al., 2011). Both species
diverged 5 Mio. years ago and show more genetic variation compared to the variation of the
ecotypes. Again, we considered to analyze the representatives of both species first separately
and second by comparing them. The inter-species comparison allows us to identify genes
that show similar auxin responses and are therefore either essential for auxin response or are

conserved primary or downstream responses.

To perform the considered analyses of the gene expression levels of several Arabidopsis plants
exposed to auxin, we selected ecotypes based on their physiological response to an auxin
stimulus. Root growth is known to be affected by auxin, therefore we selected ecotypes that

cover a wide range of different auxin-related root growth responses.

We already have published or will publish the performed analyses. We visualize their rela-
tionships which define the outline of this thesis in Figure A detailed analysis of auxin
responses within and between species, which includes transcriptomic, genomic, and physiolog-
ical data was not performed before. The performed analyses and publications highly depend
on bioinformatics knowledge and algorithms. Algorithms are needed to integrate these three
levels of data for analysis and, e.g., to inspect if the expression response of a gene is related
to its promoter sequence. We will present algorithms and measures to fulfill this task.
Whereas sequence for both the model species A. thaliana and the non-model species A. lyrata
were available, the computation of reliable microarray expression values for A. lyrata is still
an open task. The problem results from the fact that there is no microarray available for
A. lyrata and using the microarray designed for A. thaliana causes problems. Indeed there
are algorithms available to solve these problems by probe masking, but neither the number
of remaining genes nor the quality of the expression values are satisfying (Khaitovich et al.,
2004; Broadley et al., |2008; Graham et al., 2007; Hammond et al., 2005; Poeschl et al., [2013)).
We will present an algorithm that fills this gap and yields a satisfying number of genes and
additionally reliable expression values.

Reliable expression values are the basis for further analyses like comparing expression pro-
files using clustering algorithms or inferring gene-to-gene relationships from co-expression net-
works. For clustering genes using hierarchical clustering algorithms various distance measures
are available (Yona et al., 2006]), but none of these addresses that the clustering might be bi-
ased by noise. Whereas hierarchical clustering algorithms allow for studying co-expressions of
genes on a global level, algorithms, like the Local Context Finder (LCF, Katagiri et al., 2003]),
are available to perform a local and more detailed analysis of gene co-expression and thus
potential regulatory relationships. The LCF is capable of inferring gene-to-gene relationships
from gene expression profiles that are due to positive regulation events, but neglects existing
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Figure 2.5.: Flowchart showing the relationship of the presented publications. Boxes either
in green or blue contain information about the respective publication and chapter it is presented
in. The green color shows publications that have their main focus on biology and are attempted for
readers with biological background, but highly depend on bioinformatics knowledge. The blue color
shows publications that have their main focus on bioinformatics, but depend on the biological input
data/biological question. The small puzzle-like pieces show the type of data that is analyzed in the
respective publications. Publications are linked by black arrows to show their dependencies.

negative regulation events. We will present an algorithm that can handle also negative regu-
lation events. Gene-to-gene relationships are transferred into a network for a more intelligible
representation. We will present a measure to compare two networks based on their topology.

In “Natural variation of transcriptional auxin response networks in Arabidopsis thaliana”
(Delker et al., 2010), the first mainly biology-focused work, we performed intra-species com-
parisons of A. thaliana representatives to get a basic understanding on how the components
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of auxin signaling network interact. We included expression, sequence, and physiological data
to analyse how the auxin treatment affects the interaction of these components and and the
remaining genes. We describe the bioinformatics algorithms used and analyses performed in
more detail in chapter 3] and give a short introduction in section [2.2.1}

To enable the inter-species comparison of A. thaliana and A. lyrata representatives by inte-
grative analyses of expression and sequence data, we developed and published two new bioin-
formatics algorithms, the PMP and the PIF. We developed the “Probe Masking Pipeline”
(PMP) to address and overcome the problem of computing reliable expression values for a
sufficient number of genes of the non-model species A. lyrata. We published the PMP in “Op-
timized probe masking for comparative transcriptomics of closely related species” (Poeschl et
al., |2013)). We give a short introduction into this publication in section and present the
full article in chapter 4] For a more comprehensive analysis of gene expression profiles, which
also includes negative regulation events besides positive regulation events, we introduced the
“Profile Interaction Finder” (PIF) in “Explaining gene responses by linear modeling” (Poeschl
et al., 2014). We give a short introduction into this publication in section and present
the full article in chapter

To make the inter-species comparison more accurate we additionally introduce two measures
for quantifying the diversity of expression and promoter sequences of genes in both species.
We will publish the inter-species comparison together with selected and new introduced bioin-
formatics algorithms in “Variation of IAA-induced transcriptomes pinpoints the AUX/IAA
network as a potential source for inter-species divergence in auxin signaling and response”
(Trenner et al., in prep.). We give a short introduction into this work in section and
present the full article in chapter [6]

Previous analyses (Balasubramanian et al., [2006; Delker et al., 2010) proved that ecotypes of
A. thaliana show variations in, e.g., root growth, hypocotyl elongation or flowering time in
response to auxin treatment. In the last work (Ibafiez et al., 2015)) presented in this thesis,
we address the question if this natural variation can also be observed in the development
of other traits of A. thaliana. We inspected the physiological responses of ten A. thaliana
ecotypes exposed to different ambient temperatures. To perform the analyses, we measured
34 traits including hypocotyl length and flowering time. We addressed the question of natural
variation by inspecting how strong the slight differences in the genomic sequence affect the
temperature-related response (observable in the traits) of the individual ecotypes. This study
provides a deeper insight into which phenotypes are affected at different ambient temperatures,
which phenotypes show the same temperature-related differences for all ecotypes and which
phenotypes show temperature-related differences in a subset of ecotypes. The last group might
be determined by the genome of the ecotypes and thus be worthwhile candidates for existing
natural variation. We addressed the task on quantifying the variance of phenotype expression
due to a change in ambient temperature and proposed a measure that fulfills this task in
“Developmental plasticity of Arabidopsis thaliana accessions across an ambient temperature
range” (Ibanez et al., 2015), which is a pre-print that will be re-submitted soon. We give a
short introduction into this work in section and present the full article in chapter

The reader will be introduced into the publications comprising this work (Figure by the
following subsections giving a more detailed overview on the objectives and methods addressed
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in these works. The full articles describing the complete work are presented in chapters 3
to 7.

2.2.1. Natural variation of transcriptional auxin response networks in
Arabidopsis thaliana

The main objective of this first biology-focused work (Delker et al., 2010)) is to determine
whether natural intra-species variation of physiological and molecular auxin responses occurs
in A. thaliana. Furthermore, we intend to analyze at which molecular levels within the hierar-
chical signaling network variation can occur and which signaling components might contribute
to natural variation visible on the physiological level.

These analyses are supposed to provide an overall view and a basic understanding of auxin
responses, especially of the components of the auxin signaling network. This knowledge will

be the basis for further studies on natural variation of auxin responses.

The question of potential natural variation is initially addressed by classic physiological auxin
response assays which are followed by extensive transcriptional profiling of auxin-induced
changes of transcriptomes in different ecotypes of A. thaliana at different time points (control

and 0.5, 1 and 3 h post induction) in three biological replicates each.

In the following we will outline the bioinformatics methods that were used to address these

objectives in this intra-species comparison.

Bioinformatics methods

To answer the main question of whether natural intra-species variation of physiological and
molecular auxin responses occurs in A. thaliana, we decided to cluster on the one hand ecotypes

and on the other hand genes based on their auxin response.

By literature research we found an bioinformatics algorithm proposed as the Local Context
Finder (LCF) by Katagiri et al. (2003)) that fulfills our needs and seems promising in assisting to
answer our questions. The Local Context Finder (LCF) algorithm is generally used to generate
co-expression networks. In contrast to other co-expression algorithms where the co-expression
of ecotypes or genes is studied on a global level using conventional clustering methods like
HCLUST (Murtagh et al., 2011) or HOPACH (Laan et al., 2003), the LCF algorithm per-
forms a local, more precise analysis of potential ecotype or gene regulation relationships. An
important advantage of the LCF algorithm is the translation of multidimensional relationships
between expression profiles into a network that makes complex interactions more intelligible.
In these networks ecotypes or genes are the nodes and edges represent mathematical relations
between nodes. Whenever two nodes are connected in a network we can hypothesize that there

might be some biological reason or process which relates these two nodes to each other.

To reduce the effect of possible noise and to filter for robust co-expressions relations of ecotypes
or genes, we implemented the LCF algorithm and extended the LCF algorithm by the suggested
sampling-with-replacement (bootstrapping) step (Katagiri et al.,|2003). We additionally linked
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the LCF algorithm to the scriptable network visualization program Graphviz (Gansner et al.,
2000) to allow a co-expression analysis and visualization in a high-throughput manner.

The comparison of gene expression profiles is valuable to detect similarities and differences
between the ecotypes but does not consider the actual level of gene expression. Hence, we
needed a second measure to assess quantitative differences of gene expression levels among
ecotypes. To asses and detect differentially expressed genes we used well established statistical
testing procedures, ANOVA for two-way testing and a Student’s ¢ test for small sample sizes
(Opgen-Rhein et al., 2007)) for one-way testing.

To answer the second, more specialized question on which molecular levels within the hierar-
chical signaling network variation can occur and which signaling components might contribute
to variability on the physiological level, we focused on a subset of genes coding the components
of the auxin signaling network (section[2.1.3). To analyse the expression profiles of the selected
genes by means of co-expression networks, we applied the LCF algorithm. We studied the re-
sulting networks, where the nodes represent the genes and the edges represent the inferred
interactions, and compared their topology among the ecotypes. To analyse the gene interac-
tions we introduced an hypergeometric test to asses how likely the number of common edges
occurs by chance. For analysis of the gene responses we additionally introduced a modified
Student’s t test to identify differently responding genes of two ecotypes.

Results, discussion, and conclusions

We could answer the main research questions in a combination of applying existing and es-
tablished algorithms and measures, and of applying modified or extended versions of existing
algorithms and measures. From applying the LCF algorithm on the ecotypes, we found that
the ecotypes form subgroups, where different subgroups show different behaviors on the tran-
scriptional level. This might indicate that there is intra-species natural variation which occur
due to differences at the transcriptional level. We additionally found by applying the LCF
algorithm, and known and newly introduced statistical testing procedures that transcriptional
differences already occur in the auxin signaling network which is the beginning of auxin re-
sponse. Hence, we proposed that due to differences in the expression of genes contained in the
auxin signaling network, the auxin signal transmission differs between ecotypes causing clearly
distinguishable physiological phenotypes. With these findings we proposed a model showing
that the expression levels of the auxin co-receptors/transcription repressors (AUX/IAAs) and
transcription factors (ARFs), and consequently their interaction, affect the regulation of the
transcription of downstream genes that cause physiological responses.

2.2.2. Optimized probe masking for comparative transcriptomics of closely
related species

The key question of this part of the project (Poeschl et al.,2013) was, “How to compare gene
expression values of different species when a microarray is available only for one species?”.
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We provided a solution and demonstrated its utility for the well known model plant A. thaliana
and its closely related sister species Arabidopsis lyrata (both treated with auxin, and samples
taken at three time points 0 h, 1h and 3h in three replicates each). A. thaliana and A. lyrata
both diverged about 5 Mio. years ago. While still closely related, A. thaliana and A. lyrata
show considerable differences in numerous physiological and morphological traits. Further-
more, the genome size of A. lyrata is considerably larger but the genomes still show a high
level synteny (i.e., co-localization of genes). Using sequence information we determined or-
thologous gene pairs between both species which are the basis of the proposed algorithm.
Orthologous genes are genes in different species that originated from a common gene in their
last common ancestor. Orthologs often, but not always, have the same function (Fang et al.,
2010)).

The cheapest way to analyze samples taken from a non-model species is not to design a new
microarray but to use an existing microarray of a closely related (model) species and to perform
hybridization of control and auxin treated samples from both species on the same microarray
architecture. In case of the non-model species A. lyrata this is the ATH1 microarray from
Affymetrix (Redman et al., [2004) specifically designed for the model species A. thaliana. This
microarray contains probe sets of small oligonucleotide sequences that specifically target the
transcript of a unique gene or the transcripts of a gene family of A. thaliana. But species-
specific differences in the sequences of the genes or more precisely in the transcripts of genes
can cause problems, such as the following: (i) lower hybridization accuracy of probes due to
mismatches or deletions, (ii) probes binding multiple transcripts of different genes, and (iii)
probes binding transcripts of non-orthologous genes. All three aspects can have considerable
impact on the accuracy of transcript level detection and need to be addressed in cross-species

microarray analyses.

Bioinformatics methods

The key question of this work evolved into a more specific question of how to allow for the direct
comparison of expression values of genes from closely related species measured on the same
microarray. There are bioinformatics algorithms available that compute expression values for
the mRNAs of genes of non-model species measured on microarrays that are not designed for
them. However they mostly concentrate on the problem of lower hybridization accuracy and
neglect the other two aspects mentioned before. We were faced with the challenge to develop a
bioinformatics algorithm that addresses all three problems and yields reliable gene expression

values.

One of the available algorithms is a sequence-based approach proposed by Khaitovich et al.
(2004). This algorithm uses three sets of sequences, the sequences of the microarray probes,
the sequences of the transcripts of A. thaliana and the sequences of the transcripts of A. lyrata
to determine which probe likely binds to which transcripts. Inspired by this sequence-based
approach, we based our new probe masking algorithm, the probe masking pipeline (PMP), on
sequences of probes and transcripts, too. But we solved the task of determining which probe
binds to which transcript in a different way.

Khaitovich et al. (2004) went for comparing the sequences of the transcripts of two species
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first, to determine orthologous genes and to identify and keep identical regions. Subsequently,
Khaitovich et al. (2004) determined the probe-to-ortholog sequence relation by comparing the
probe sequences and the kept identical regions. In contrast, we decided to first compare the
sequences of probes and transcripts to use as many sequence information as possible and post-
process the results in the PMP.

We designed the PMP in a modular fashion that allows us to specifically address and solve
all three mentioned problems. First, we aligned the sequences of the probes to the sequences
of the transcripts of both species allowing at most one mismatch. Second, we removed probes
that do not show any similarity to a transcript. We processed the remaining probes that show
high similarity to at least one transcript according to a decision tree presented in Poeschl et al.
(2013) to determine if they provide reliable or unreliable hybridization intensities. Finally, the
PMP retained only probes that are orthologous gene pair-specific and can be used for the
comparative gene expression analysis. The mismatch that we allowed in the comparison of the
probes and the transcripts could cause probes to show an artificially decreased hybridization
intensity, because the hybridization was not perfect. This causes no problems if fold changes
are used for comparing genes by their responses. But problems arise, if actual expression
values are used in the comparison. Therefore, we proposed a correction of the hybridization
intensities on the probe level based on a fit of a fourth-degree polynomial. We included the
correction of the intensities of the probes as an additional step in the RMA-normalization
procedure (Irizarry et al., 2003)). The correction was necessary for direct comparison of the
expression values of A. thaliana and A. lyrata in chapters [5] and [6]

We compared our algorithm with the sequence-based approach proposed by Khaitovich et al.
(2004) and a genomic DNA hybridization-based approach proposed by Hammond et al. (2005).
The sequence-based approach addresses the first and the last problem and has very stringed
settings for the sequence comparisons. The hybridization-based approach addresses only the
first problem. It requires the user to set a hybridization intensity threshold. Intensity values
below this threshold are discarded.

We were also faced with the challenge to validate and to compare the output of the three
algorithms. We compared the resulting number of genes and the expression responses of 40
randomly selected genes. We also compared the computed expression responses with indepen-
dent wet-lab (RT-qPCR) produced expression values to assess the validity of the computed

microarray expression values.

Results, discussion, and conclusions

By comparing our algorithm with the two previously published algorithms, we found that
both sequence-based algorithms yield fewer genes than the hybridization-based algorithm.
Our sequence-based algorithm including the relaxed sequence comparison results in signifi-
cantly more genes retained for the analysis than the sequence-based algorithm by Khaitovich
et al. (2004). We could also show that both sequence-based algorithms yield comparable and
more reliable expression response values than the hybridization-based algorithm. Our new
algorithm yields as many genes as possible that also have reliable expression responses. By
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using this algorithm for probe masking and additional probe intensity normalization, compar-
ative transcriptomics of two or more closely related species via classic microarray approaches
becomes feasible.

2.2.3. Explaining gene responses by linear modeling

Co-expression on the simplest level addresses genes that show the same expression response
over time or to treatment. The expression of these genes is putatively triggered by the same
biological process or stimulus and can indicate a function of genes in the same signaling or
response pathway. The relationship of co-expressed genes can be studied on a global level using
conventional clustering methods like HCLUST (Murtagh et al., 2011) or HOPACH (Laan et
al., [2003). But for a more precise analysis of potential gene regulation relationships, a study
on the local level is needed as provided by the Local Context Finder (LCF) algorithm proposed
by Katagiri et al. (2003).

In more detail, the LCF algorithm reconstructs the high dimensional expression profile of a
gene as a linear combination of the expression profiles of other genes. These relations can
be translated into graphical representations, where the nodes represent the genes and the
edges represent the mathematically inferred relations. In a network representation, genes that
contribute to the reconstruction of a specific gene would have a directed edge pointing to
the specific gene. Genes that are connected in a network have similar expression profiles and
therefore show similar expression responses. The biological assumption is that genes showing
similar expression profiles and thus responses, are either regulated by the same regulatory
acting gene or regulate each other.

Bioinformatics methods

For a more comprehensive analysis of gene expression responses we wanted to include the
knowledge that gene regulation networks often function in both up- and down-regulation to
initiate response, which the LCF cannot do.

We proposed a new bioinformatics algorithm, the Profile Interaction Finder (PIF, Poeschl et al.
(2014))) that now incorporates both directions of gene responses. We based the reconstruction
of a gene expression profile on the same mathematical model using linear combinations as
proposed by Katagiri et al. (2003). In more detail, we used a linear model and incorporated
the constraints that the weights have to be positive and have to sum up to one. To model
the possible opposite direction of responses, we extended the model by an additional set of
parameters directly coupled to the weights. This extended linear model is still a convex linear
combination which can be solved analytically.

In contrast to the LCF algorithm, the PIF algorithm comes in two variants.

We make use of the assumption that genes that are closely connected in biological pathways,
and thus have a biological relationship, will also tend to have similar expression patterns in
the first variant of PIF algorithm. We therefore feed the PIF algorithm with the expression
profiles of all genes to compute gene-to-gene co-expression networks that reflect this assump-
tion. In the gene-to-gene co-expression networks, gene expression profiles are reconstructed
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using the expression profiles of other genes. These reconstructed networks consist of genes and
edges connecting genes that show a response either in the same or in the opposite direction.
These networks could serve as starting point for elucidating possible functions of unknown
genes by incorporating their (co-expression) network relation to known and thus annotated
genes. The networks could also give hints to possible regulatory relations between connected
and not connected genes.

We were also faced with the challenge to identify genes that respond due to a specific experi-
mental condition, which in other words means, genes that show a very condition-, treatment-,
or stimulus-specific expression profile. Therefore, in the second variant, the input of the PIF
algorithm comprises not only the expression profiles of the genes but also pre-defined, artifi-
cially created, condition-specific prototype profiles. In this variant the gene expression profiles
are reconstructed from these condition-specific prototype profiles. Hence, we used the PIF
algorithm to generate gene-to-treatment networks that represent gene-to-treatment relation-
ships. Based on the inferred treatment relationships from the gene-to-treatment networks we

assigned genes to clusters.

Results, discussion, and conclusions

We showed that the PIF algorithm is capable of producing biologically relevant results when
applied to reconstructing gene-to-gene networks and clustering genes according to their re-
sponse to experimental conditions. We applied the PIF algorithm, in both variants, to the
A. thaliana and A. lyrata data set described in section By applying the PIF algorithm
with very stringent parameters to reduce the inference of false positive relations in the first
variant, we generated gene-to-gene co-expression networks of all genes in the data set. For
15 % of the genes we found strong evidence for possible regulatory connections to other genes.
For the A. thaliana and A. lyrata data set, we found that 36 % of these genes are “regulated”
by genes showing an opposite expression response. We would have missed these relations
when applying only the LCF algorithm instead of the PIF algorithm to this data set. From a
biological point of view, we identified a reasonable number of genes that are potentially up or

down regulated by the presence or absence of other genes or their gene products.

For application of the second variant of the PIF algorithm we created prototype profiles ac-
cording to the time point of post treatment with auxin. Using these time point-dependent
prototype profiles we were able to cluster genes according to the time they needed for their
response to auxin. Response can result in increased or reduced gene expression. Besides
identifying genes that showed the same direction as the prototype profiles, we additionally
identified relations of gene expression and prototype profiles showing opposite directions. We
found a reasonable number of genes that are only or additionally down regulated at a specific

time point.

We additionally demonstrated the applicability and the utility of the PIF algorithm on a second
data, which is a synthesis data set comprising samples of different tissues of Apis mellifera
treated with different pathogens (The Trans-Bee workshop|2014]).

21



2. Introduction

Hence, we concluded that the PIF algorithm in its two variants is applicable for a more
comprehensive and complex analysis of gene-to-gene and gene-to-treatment relationships, and
produces biologically relevant results.

2.2.4. Variation of IAA-induced transcriptomes pinpoints the AUX/IAA network
as a potential source for inter-species divergence in auxin signaling and
response

A key question in auxin biology is still: “Do auxin signaling and response contribute to adap-
tive processes to local environmental changes?”. By studying the auxin gene responses in eco-
types of the model plant A. thaliana, Delker et al. (2010|) detected remarkably high variation
in the auxin response among the A. thaliana ecotypes for early auxin signaling components.
These findings lead to a model which illustrates the hypothesis that the expression levels of the
auxin co-receptors/transcription repressors (AUX/IAAs) and auxin response factors (ARFs)
and consequently their interactions contribute to variations observed on the gene expression
level and on the physiological level, e.g., reduced root growth.

In this work (Trenner et al., [in prep.), we went from the ecotype level to the genus level
and compared auxin responses of the closely related sister species A. thaliana and A. lyrata.
We combined physiological, transcriptomic and genomic information to inspect variations of
auxin responses in both species. The increased genetic variation between the two Arabidopsis
species allowed (i) the identification of genes with different or similar auxin response in both
species. Genes with a similar response in both species might constitute essential or conserved
auxin response genes. We furthermore aimed (ii) at exploiting the genetic variation in the pro-
moter sequences to identify regulatory elements that might contribute to similar or differential
auxin responses. And finally (iii) we aimed at testing whether the previously proposed model
which identifies the expression level of the early auxin signaling components as the source of
downstream variation could be verified on the species level that has higher genetic variation.

We addressed and assessed these tasks on the A. thaliana and A. lyrata expression data set
already used in section [2.2.2]

The basis to face these three tasks are reliable expression values not only for the model species
A. thaliana but also for the non-model species A. lyrata. We addressed and solved the problem
of getting reliable expression values particularly for the non-model species A. lyrata in Poeschl
et al. (2013) presented in section and chapter

Bioinformatics methods

To study the patterns of expression response of genes on a global level and to identify genes
with different or similar auxin responses (i) we choose HCLUST (Murtagh et al., 2011) a
hierarchical clustering approach. To cluster together genes whose expression values change
across treatments/over time in a similar fashion, the Pearson correlation coefficient is a valid
measure (Yona et al., 2006)). However, to avoid the clustering of the expression profiles to be
biased by noise, we proposed a modified version of the Pearson correlation coefficient. For
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this modified correlation coefficient we proposed to compute the co-variances of the replicate

means of each time point and to use all individual measurements to compute the variances.

The expression of a gene is substantially influenced by the binding of transcription factors to
regulatory elements in the promoters of genes. Alterations in the promoter region of a gene
especially at regulatory sites, might affect the transcription of the respective gene. Changes
occurring at regulatory sites can alter the transcriptional process by preventing or altering
binding of transcription factors and thus affect transcription.

To identify potential sources for the distinct transcriptional behavior and to exploit the genetic
variation in the promoter sequences (ii) we analyzed the presence of known regulatory elements
within the promoter regions of the genes. To this end, we extracted the motif sequences of
auxin related elements from a database (Yilmaz et al., [2011)) and literature. Motifs can have
unspecific positions, where various nucleotides are tolerated for binding, thus we represented
the sequences of the motifs by regular expressions to perform inexact pattern matching on
the promoter sequence. We found no clear pattern of motif occurrence that could explain the
auxin-related expression responses of the genes in the clusters resulting from the HCLUST
approach. To complete the analysis on regulatory elements we applied a statistical model-
based de-novo motif discovery approach (Grau et al., [2013).

To exploit the genetic variation in the promoter sequences (ii) on a more general level and
to assess the relationship between the diversity of the promoter sequence and the diversity
in expression response of orthologous genes we introduced measures for both diversities. To
measure the diversity of two promoter sequences of an orthologous gene pair we selected a k-
mer-based correlation coefficient proposed by Vinga et al. (2003]). To asses the diversity on the
gene expression level we used the newly introduced modified Pearson correlation coefficient.

To inspect if early auxin signaling components could be the source of downstream varia-
tion (iii), we again used the modified Pearson correlation coefficient to cluster auxin co-
receptors/transcription repressors (AUX/IAAs) genes. The AUX/TAA genes are classical and
conserved auxin response genes (Paponov et al., |2008) and were identified in Delker et al.
(2010) to be highly variable in their gene expression and thus be a potential source for down-
stream variations on the expression and physiological level.

To identify genes with expression profiles that are either positively or negatively correlated
to individual AUX/IAA gene clusters, we used the Profile Interaction Finder (PIF) algorithm
which we introduced in section and present in chapter

Results, discussion, and conclusions

The global clustering approach revealed groups of genes with similar and distinct expression
response patterns. Among the group with similar and thus conserved auxin response we could
identify members of prominent auxin-response gene families and also several genes with so far

unknown function.

The analysis of the presence of known auxin-related regulatory elements in the promoters of
the genes revealed no clear pattern that could explain the expression responses of the genes
in the specific clusters. This indicates either a highly complex regulation involving multiple
regulatory elements and/or the presence of additional, so far, unidentified regulatory elements.
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From de-novo motif discovery we identified variants of known regulatory elements that are
annotated to be auxin-related, which might indicate a high variability in certain nucleotides
putatively accounting for differential binding affinities of distinct auxin-related transcription
factors (ARF) (Boer et al., 2014). While we identified modified motifs of known regulatory
elements, we also discovered potentially new motifs that might contribute to auxin signaling.
Hence, these newly discovered motifs need to be validated experimentally to verify their roles
and effects in auxin signaling transduction.

By addressing question (iii) and clustering the expression responses of the AUX/TAA gene
family we identified three main types of clusters: clusters containing AUX/IAA genes specif-
ically induced in A. lyrata, clusters containing genes primarily induced in A. thaliana, and
one large cluster containing AUX/IAA genes showing conserved and significant induction in
both species. By inspecting the expression profiles of the AUX/IAA genes and the remaining
genes using the PIF algorithm, we identified known auxin-related genes that show the same
classical auxin response profile like the conserved AUX/TAA genes in the large cluster. This
group of genes seems to be part of a conserved auxin response in both species. AUX/TAA
gene clusters with species-specific gene induction showed correlations to auxin-relevant genes
involved in biosynthesis, signaling, transport, and response. Positive and negative correlations
of downstream-responding genes to AUX/IAA genes indicate that variations in the begin-
ning of auxin signaling may reach downstream genes and thus may contribute to differences
observed at the physiological level.

Hence, our analyses, which integrated information from genomic, transcriptomic and physio-
logical level, identified new possibly auxin response-related regulatory elements and the gene
families of the auxin signaling network as potential source for adaptation.

2.2.5. Developmental plasticity of Arabidopsis thaliana accessions across an
ambient temperature range

Changes in ambient temperature can affect plant growth and development, and flowering pro-
cesses (CaraDonna et al., 2014; Fitter et al., 2002). Hence, it becomes increasingly important
to get a deeper understanding of developmental temperature responses.

Most of our present knowledge about molecular responses to ambient temperature signaling
has been gained from studies in A. thaliana. Model temperature-related phenotypes such as
hypocotyl elongation (Gray et al., [1998]) and alterations in flowering time have been stud-
ied to identify components of the molecular signal transduction that are involved in trig-
gering temperature-related responses. However, considerable naturally occurring variation in
temperature-related traits like hypocotyl elongation and flowering time has been demonstrated
(Balasubramanian et al., 2006; Delker et al., [2010). Higher temperatures result in higher lev-
els of endogenous auxin that mediate parts of the temperature-related response e.g. dramatic
hypocotyl elongation (Franklin et al., 2011)). Natural variation in temperature-related traits
might be due to local adaptation processes of diverse A. thaliana ecotypes to their environ-
ments and indicates a high degree of freedom in the development of traits.
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Future challenges in sciences and plant breeding will, however, require a systematic assessment
of temperature-related variations of developmental phenotypes across a complete life cycle. As
such, on the biological side, we aim at (i) identifying phenotypes that are sensitive to ambient
temperature changes. We also aim at investigating (ii) which phenotypes are robustly affected
by temperature within all ecoytpes and (iii) which phenotypes are affected in only one or
few ecotypes. Changes in robustly affected phenotypes in all ecotypes could be mainly due
to general thermodynamic effects, but changes of phenotypes in few ecotypes could be due
to natural variation in temperature-related responses. These natural variations might be
consequences of adaptation processes of the affected ecotypes to cope with local climate or

general environmental conditions.

In this work (Ibanez et al.,[2015), we addressed these questions by profiling 34 developmental
and morphological-associated traits (phenotypes) in the vegetative and reproductive growth
phases of ten A. thaliana ecotypes which were grown at 16, 20, 24, and 28 °C.

Bioinformatics methods

To address the three main biological questions and to perform a systematic assessment of
the variations of the 34 phenotypes measured for ten A. thaliana ecotypes at four different
temperatures we focused on the application of descriptive statistical methods.

The main challenge was to select or extend descriptive statistical methods that on the one
hand can be used to address the three questions and on the other hand are intuitively and
easy to interpret and to visualize. Therefore, we conducted linear regression analyses to ad-
dress question (i). We fitted linear models to measure the trend of phenotype variation of
each ecotype across the four ambient temperatures. We used the slope, provided by the fitted
linear model, to analyse the direction and strength of the phenotype variation. As an example,
considering the number of days a plant needs to start flowering, a change in ambient tempe-
rature could cause a prematurely (positive slope) or delayed (negative slope) flowering of the
plants. Both parameters of the linear model, the intercept and the slope, are perfectly suited
for visualization and to give an impression of the trend of change in a phenotype across the
four temperatures.

To identify phenotypes that show significant variation in their response to temperature changes,
we additionally assessed the variances using one-way ANOVAs. However, a change of a phe-
notype can be due to the genome of an ecotype (genotype), or the temperature, or a mixture
of both. In order to quantify the distinct influences of genotype and temperature on a given
phenotype and to answer questions (ii) and (iii), we determined modified version of the intra-
class correlation coefficients Agen and Atemp using squared differences similar to the ANOVA
framework used in Donner et al. (1980). For instance, to compute Agen for a given phenotype
and temperature, we estimated the total variance of the measurements for all ten ecotypes.
We decomposed this total variance into two fractions, the between variance which measures
the variance between the ten ecotypes, and the within variance which measures the variance
within the ten ecotypes. To yield Agen, we computed the ratio of the between variance and the
total variance. Hence, A\gen measures the proportion of the between variance contained in the
total variance. Therefore, Agen ranges from 0 to 1. While a Agen, value = 1 indicates a strong
genotype effect on the observed variability of the phenotype, no effect of natural variation on
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the phenotypic differences can be assumed for Agen, = 0. The same scheme holds for Atemp,
which measures the effect of temperature for a given phenotype and a given ecotype. Both
measures have the advantage that they are in the range of 0 to 1 and that a pair of Atemp and
Agen is related to one phenotype. We made use of this advantage by visualizing both measures
together in a 2D-scatter plot to inspect and identify possible relationships of genotype and
temperature effect.

Results, discussion, and conclusions

The selection of descriptive statistical methods that are intuitive to interpret and easy to
visualize, made the interpretation and the inspection of their outcomes straightforward. By
inspecting slope values and Agen and Atemp values, we found temperature-related variations for
almost all of the 34 phenotypes. This shows the fundamental impact of ambient temperature on
plant physiology. In more detail, for phenotypes measuring the leaf production phase we found
a high temperature but small genotype effect. This could indicate either a highly conserved
regulation within A. thaliana ecotypes or a regulation due to general thermodynamic effects
on metabolic rates and enzyme activities. In contrast, we found a higher effect of the genotype
than of the temperature for phenotypes measuring senescence. For phenotypes representing
the reproductive phase such as flowering time we found both a high genotype and a high
temperature effect. Phenotypes that show a high degree of genotype and temperature effects
might rather be influenced by one or more specific genes that contribute to trait expression
in a quantitative manner. It has been shown by Koini et al. (2009) and Kumar et al. (2012)
that there are central signaling elements which are involved in the induction of flowering time.
Natural variation in temperature-related responses could be caused by different polymorphisms
of signaling or response genes ranging from alteration in gene sequence to expression level
polymorphism (Delker et al., |2011) due to adaption to local environmental conditions. As
they provide keys to altered temperature responses that could be utilized in specific breeding

approaches, these genes would thus be of high interest.

In conclusion linear models and the quantification of variances between genotypes and temper-
atures (Agen and Aemp values) have been shown to be useful approaches to perform a systematic
assessment of a phenotypic data set covering the whole life cycle of different A. thaliana eco-
types. The application of these methods allowed us to identify phenotypes whose temperature-
related changes are possibly due to natural variation and thus driven by the genotypes.

2.2.6. Applications beyond Arabidopsis and auxin

The methods and bioinformatics algorithms we introduced are neither restricted to Arabidop-
sts and nor to auxin treatment.

For instance, the PMP (Poeschl et al., 2013) is composed of modules. These modules are
replaceable by other modules as long as these modules fulfill the recommended interface re-
quirements. Also, the modules themselves can solve various different tasks. The first module
can be used to verify selected primers for RT-qPCR. Input primer sequences are compared to
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available transcriptomes and thus be checked for cross-hybridization. Another specific appli-
cation of the first and the second module is that they can be used to re-annotate the probes
on microarrays if new genome annotations are available. For example, we used the first and
second module of the PMP to re-annotate a tiling microarray used for honey bee to measure
gene expression (Dussaubat et al., 2012). This data set was part of the honey bee synthesis
data set analysed for the project Trans-Bee (The Trans-Bee workshop||2014)). This synthesis
data set besides the A. thaliana and A. lyrata data set was used in Poeschl et al. (2014) to
show that the introduced PIF algorithm provides biological relevant information. The synthe-
sis data set included data sets measured on different platforms for different tissues of bees that
were exposed to different pathogens and viruses. To make the data sets comparable, we trans-
formed the provided fold changes, which represent the change between treatment and control
sample, into relative ranks. In Poeschl et al. (2014]) we showed that the PIF algorithm is also
applicable to data matrices containing relative ranks and provides biological information that

can be used for further gene analyses.

Hence, we presented bioinformatics algorithms that are not only designed for one special
purpose but can be applied to address various tasks.
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3.1. Abstract

Natural variation has been observed for various traits in Arabidopsis thaliana. Here, we in-
vestigated natural variation in the context of physiological and transcriptional responses to
the phytohormone auxin, a key regulator of plant development. A survey of the general ex-
tent of natural variation to auxin stimuli revealed significant physiological variation among
20 genetically diverse natural accessions. Moreover, we observed dramatic variation on the
global transcriptome level after induction of auxin responses in seven accessions. Although
we detect isolated cases of major-effect polymorphisms, sequencing of signaling genes revealed
sequence conservation, making selective pressures that favor functionally different protein vari-
ants among accessions unlikely. However, coexpression analyses of a priori defined auxin
signaling networks identified variations in the transcriptional equilibrium of signaling compo-
nents. In agreement with this, cluster analyses of genome-wide expression profiles followed by
analyses of a posteriori defined gene networks revealed accession-specific auxin responses. We
hypothesize that quantitative distortions in the ratios of interacting signaling components con-
tribute to the detected transcriptional variation, resulting in physiological variation of auxin

responses among accessions.

3.2. Introduction

Naturally occurring genetic variation has been reported for numerous phenotypes in Ara-
bidopsis thaliana. In addition to various developmental traits, response phenotypes that are
primarily correlated with adaptations to natural environments have been under investigation.
The stimuli triggering the respective responses ranged from pathogens or effectors to different
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3. Natural variation of auxin response

light conditions, abiotic stress, and a variety of other environmental perturbations (reviewed
in Alonso-Blanco et al., 2009)).

The translation of a stimulus into cellular responses is often mediated by plant hormones.
Auxin in particular is known to be a potent regulator of various aspects of plant devel-
opment (Delker et al., |2008). At the cellular level, auxin responses are initiated by alter-
ing the expression of a multitude of genes, which requires the proteolytic degradation of
transcriptional repressors by the 26S proteasome (Quint et al., [2006). In the absence of
auxin, AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins repress auxin signaling by
heterodimerization with transcription factors of the AUXIN RESPONSE FACTOR (ARF)
family (Tiwari et al., |2003)). With increasing auxin levels, the Aux/IAA proteins bind to the
auxin receptors. These consist of a small family of F-box proteins (TRANSPORT INHIBITOR
RESPONSE1/AUXIN SIGNALING F-BOX PROTEIN [TIR1/AFB]) that integrate into func-
tional S-phase kinase-associated protein, Cullin, F-box (SCF)TIR1/AFB complexes (Dhar-
masiri et al., 2005b; Dharmasiri et al., [2005a; Kepinski et al., 2005; Parry et al., [2006) and
confer substrate specificity to the complex. Aux/TAA proteins are recruited for polyubiquiti-
nation and are subsequently degraded by the proteasome (Ramos et al., 2001; Zenser et al.,
2001). This allows the ARF transcription factors to initiate downstream auxin responses by
regulating the expression of auxin-responsive genes (Guilfoyle et al., [1998; Ulmasov et al.,
1999)). Such auxin responses can be summarized as cell division, cell differentiation, and cell
elongation: essential cellular processes that can translate into an array of different physiological
phenotypes.

Many plant developmental events and reactions in response to environmental cues are tightly
regulated by auxin and other phytohormones. Natural variation in hormone responses, how-
ever, has not been studied in detail as yet (Maloof et al., 2001} Delker et al., 2008)). Phytohor-
mones usually act via extensive reprogramming of expression patterns for a unique cassette
of genes (Nemhauser et al., |2006). Up to now, the intraspecific variation in phytohormone-
induced transcriptional responses has only been assessed for salicylic acid (SA; Leeuwen et al.,
2007)). For other phytohormones (e.g., auxins), the impact or even presence of natural variation
has hardly been approached experimentally at all. While it is obvious that natural variation
should exist for pathways that specifically regulate adaptation to certain natural environment
perturbations, it is uncertain whether this is also true for essential conserved messenger sys-
tems that transduce multiple environmental or developmental signals into specific responses.
As such, the auxin signaling pathway is an ideal model to study naturally occurring genetic

variation of essential messenger systems.

We have investigated the natural variation in auxin responses and signaling at the physiolog-
ical, population genetic, and transcriptional levels. First, classic physiological auxin response
assays were used to assess the general extent of natural variation. Second, nucleotide diversi-
ties were estimated for early auxin signaling elements to determine potential differences in the
signaling ability of natural accessions. Third, network analyses of ATH1-based transcriptional
profiles were used to investigate the variation and outcomes in global transcriptome changes
of seven accessions in response to an auxin stimulus. Finally, based on our data, we present a
model to explain the observed variation in various response levels.

32



3.3. Results

3.3. Results

3.3.1. Natural variation of physiological auxin responses

The high degree of natural variation observed for numerous physiological traits prompted us to
study the physiological responses to auxin in 20 different accessions, which represent a maximal
degree of genetic diversity (Clark et al., [2007). We performed standard bioassays to quantify
root inhibition and hypocotyl elongation in response to auxin and found significant differences
between accessions with respect to absolute root length and growth responses (Figure
see Supplemental Figures online). Phenotypic variation in root growth was higher in
response to the synthetic auxins naphthylacetic acid (NAA) and 2,4-D than to the natural
auxin IAA (Figures 1A-1C). This phenomenon is likely attributable to a slower removal via
catabolization of the synthetic auxins, whereas a large excess of IAA is usually rapidly removed
by conjugation to amino acids, sugars, or direct oxidation (Delker et al., 2008]). High tempera-
tures promote auxin-mediated hypocotyl elongation by increasing endogenous auxin contents
(Gray et al., |1998; Stavang et al., 2009)). To analyze potential variations in the response
to resulting increased endogenous auxin levels, plants were grown at elevated temperatures
(29°C) and the increase in hypocotyl elongation was quantified for each accession and found to
differ significantly in many pair-wise comparisons (Figure ; see Supplemental Figure
online). Remarkably, individual accessions varied in their responses depending on the spe-
cific auxin and type of assay (root versus hypocotyl assays). One can assume, therefore, that
the mechanisms underlying the variations in response to different auxins are not uniformly

regulated but rather result from complex mechanisms in a tissue-specific manner.

Additional evidence for intraspecific variation in auxin responses was obtained by analysis of
the activation of the synthetic auxin reporter construct DR5:GUS in three accessions that dif-
fered significantly in their response to IAA-induced root growth inhibition (see Supplemental
Figure online). The analysis of several independent and homozygous T3 lines revealed
considerable differences among Fei-0, Sha, and Col-0 in histochemical -glucuronidase (GUS)
assays (Figure ; see Supplemental Figure online). The extent of DR5 promoter acti-
vation was determined by quantitative (qQ)RT-PCR of GUS expression after mock treatment
or treatment with three different IAA concentrations. Col-0 showed the strongest response in
auxin-induced expression changes, whereas the levels in Sha were significantly lower. Fei-0 ex-
hibited GUS expression responses intermediate to Col-0 and Sha (Figure ) In addition, we
analyzed two known endogenous auxin-responsive genes, GH3.1 and IAA2, in the transgenic
DR5:GUS lines. The expression response of GHS3.1 showed similar results to those already
detected for the GUS gene. Even although the accession-specific differences in the expression
response of TAA2 were not quite as distinct, the general trend in expression responses was
confirmed. Here, too, significant differences between Col-0 and the other two accessions were

detectable (Figure [B.IJF).

Alterations in the expression responses could be the result of differences in endogenous auxin
concentrations causing hypersensitive/hyposensitive reactions to an additional exogenous auxin
stimulus. Therefore, we quantified free IAA levels in 7-d-old seedlings and were unable to iden-
tify significant differences among the seven accessions that were further analyzed in this study
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Figure 3.1.: Natural Variation in Physiological Auxin Responses. (A) to (D) Physiological

auxin responses of 20 Arabidopsis accessions were determined in root growth inhibition and hypocotyl
elongation assays of 8- and 10-d-old seedlings (n = 12), respectively. Black bars highlight accessions
that were subsequently analyzed for whole genome transcriptome changes. Error bars show SD.
Experiments were repeated twice with similar results. Data of absolute root and hypocotyl lengths
and statistical analyses are shown in Supplemental Figures to online. (A) to (C) Bars
represent mean root length of treated roots as a percentage of untreated roots. (D) Hypocotyl
elongation of seedlings grown at 29°C is given in % relative to seedlings grown at 20°C. (E)
Histochemical detection of GUS activity after 3 h of mock treatment (-TAA) or treatment with
1 uM TAA (+IAA). Three seedlings of a single representative T3 line are shown for each accession.
All independent T3 lines for each accession are shown in Supplemental Figure online. (F)
Quantification of GUS, IAA2 and GHS3.1 expression by qRT-PCR 1 h post induction (p.i.) with
0.1, 1 and 10 pM TAA, respectively. Mean log fold changes (treatment versus mock) in expression
were determined by analysis of eight, six, and seven independent T3 lines for Fei-0, Sha, and Col-
0, respectively. Error bars denote SE. Significant differences from Col-0 expression responses were
assessed by two-way ANOVA and are marked by asterisks.
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Figure 3.2.: Accession-Specific Differences in Auxin-Induced Transcriptional Changes. (A)
Differentially expressed genes with a significant (P < 0.05; Benjamini-Hochberg corrected) expression
change of at least twofold (i.e., Alog, > 1) compared with untreated plants were categorized by the
number of accessions in which they were differentially expressed. (B) Bar plots show the number
of differentially expressed genes in individual expression profiles. The fraction of genes that is
specifically regulated in an individual accession is indicated in gray (black numbers), whereas the
fraction of genes also differentially expressed in Col-0 is marked in black (white numbers).

(see Supplemental Figure online). Thus, auxin responsiveness is most likely not affected
by endogenous TAA levels in these accessions.

3.3.2. Arabidopsis accessions differ in auxin-induced transcriptional changes

The expression data of the DR5:GUS transgenic lines suggested that differences in auxin sen-
sitivity and expression responses might contribute to the observed variation. To gain a more
global insight into the differential auxin responses on a transcriptional level, we performed
ATH1-based expression profiling of auxin responses with a set of 7 of the 20 accessions that
differed in their phenotypic auxin response (Figure . To avoid potential secondary effects,
we performed a time-course analysis that focused on the early transcriptional changes induced
by auxin. Seven-day-old Arabidopsis seedlings were treated with 1 uM TAA, and samples
were taken before induction (0 h) and at 0.5, 1, and 3 h post induction (hpi). Auxin-induced
transcriptional changes were detectable in all seven accessions, with an average of 651 genes
that showed a significant (Benjamini-Hochberg-corrected P < 0.05) auxin response of at least
twofold change in expression levels at 3 hpi. Surprisingly, many of these genes are differen-
tially expressed in three or fewer accessions, whereas only ~100 genes showed a twofold or
higher expression change in all seven accessions (Figure ) Auxin-induced transcriptional
responses of 17 arbitrary genes of the latter group were independently reexamined across all
time points by qRT-PCR. The relatively high correlation coefficient of ry = 0.8 (Spearman cor-
relation coefficient) between both data sets offered further validation of the microarray data
(see Supplemental Figure online) and indicated the robustness of the expression levels
detected by microarray analysis (Czechowski et al., [2004).

While the total number of genes with an auxin-induced transcriptional response was similar
for 0.5 and 1 hpi, the numbers of differentially expressed genes increased notably 3 h after the
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auxin stimulus. This is in agreement with previously published data (Goda et al., [2008) and
most likely denotes the establishment of secondary responses following an auxin treatment.
To obtain further insight into the apparent diversity of the transcriptome, we compared the
differentially expressed genes between all analyzed accessions. The overlap of individual ac-
cessions with Col-0 ranged from only 34% (Sha; 3 hpi) up to 77% (Fei-0; 0.5 hpi). Hence, a
relatively large proportion of genes showed an auxin-induced expression change in one or more
accessions other than Col-0 or were specifically induced in a single accession (Figure [3.2B).

The variation in differentially expressed genes could be indicative of hypersensitive and hy-
posensitive auxin responses on the expression level. To address this hypothesis, we compared
the number of differentially expressed genes as well as the respective amplitudes of expres-
sion changes between all accessions. In both cases, significant differences were observed (see
Supplemental Figure online). However, no clear correlation between the number of dif-
ferentially induced genes and median fold changes in expression was observed; thus, based on
this criterion, we could not justify the classification in truly hyperresponsive or hyporespon-
sive accessions. As such, the variation in the total number of genes as well as the different
degrees of accession specificity and Col-0 overlap can serve only as general indicators for a
high variability in auxin-induced transcriptional changes in different Arabidopsis accessions.

3.3.3. Intraspecific variation of whole genome responses

Whole genome expression profiles of all accessions at individual time points were compared
to further assess the degree of natural variation. Identification of common patterns in such
complex data sets is usually complicated by the multidimensional nature of the data. Thus,
we used the Local Context Finder (LCF; Katagiri et al., 2003), a nonlinear dimensionality
reduction method for pattern recognition. In contrast to other coexpression algorithms, an
important advantage of the LCF is the translation of multidimensional relationships between
expression profiles into a two-dimensional network that makes complex interactions more intel-
ligible. To reduce the effect of possible noise and to filter for robust coexpressions, we applied
a bootstrapping procedure as suggested by Katagiri et al. (2003). Expression profiles are pre-
sented as nodes within the LCF-generated networks, and interconnections between them are
presented as directed edges.

LCF analysis of whole genome transcriptome profiles separated the seven analyzed accessions
into three groups (Figure [3.3]A). Bay-0 and Sha represent one isolated group, and C24 and
Fei-0 constitute another. The third group is formed by Col-0 and Bur-0. Bl-1 shows no clear
affiliation with a specific group, and Bl-1 nodes share edges with all accessions except Fei-0
(Figure . While edges within each group were quite frequent, considerably fewer edges
connect nodes of one group with nodes of another. In general, all nodes of an accession are
tightly linked to each other regardless of the time point. Edges between nodes of different
accessions can only be detected for identical time points (Figure . This illustrates a tight
temporal regulation of auxin responses and argues against delays or shifts in the kinetics of
auxin responses as the cause for the observed variation. In summary, global auxin-induced
expression changes among Arabidopsis accessions differ considerably in comparison with each
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Figure 3.3.: Intraspecific Variation in Whole Genome Transcriptome Profiles. (A) Profiles
for individual accessions were compared by LCF. Similarities in profiles of an individual accession at
different time points post induction are indicated by solid lines; dashed lines represent similarities
between different accessions at similar time points. Edge colors specify similarities between acces-
sions within a subgroup (black) or between accessions of another subgroup (green). (B) Tabular
presentation of edges detected within the LCF network. Black/dark green and gray/light green
squares denote the presence of two edges and one edge between nodes, respectively; black/gray
squares represent edges within the same subgroup; green squares represent edges between different
subgroups.

other as well as with the reference accession Col-0, illustrating the large potential for variation

in the regulation of diverse auxin-regulated processes.

3.3.4. Sequence diversity of auxin signaling genes

The SCFTIRI/AFB_qopendent signaling pathway regulates the expression of auxin response
genes (Quint et al., 2006). A possible cause for the above-described natural variation in the
transcriptional and subsequent physiological auxin responses, therefore, may be variations
at the level of early signaling events. It is likely that slight changes in