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A B S T R A C T

In the present thesis, electronic properties of topologically non-trivial materials are in-
vestigated. Theoretical calculations of electronic band structures for various system
geometries are performed by means of an ab initio based Tight-Binding model. The re-
lated topological invariants are calculated for both insulating and metallic materials by
methods based on the Berry-phase concept. Topological phase diagrams are generated,
showing the different topological phases which can be entered by the examined systems
under a change of external parameters, such as strain, disorder or magnetic field. These
results are confirmed by simultaneous investigations of the surface electronic band struc-
ture featuring topologically protected surface states in the case of non-trivial topological
phases.

In der vorliegenden Arbeit werden die elektronischen Eigenschaften topologisch nicht-
trivialer Materialien untersucht. Unter Verwendung des auf ab initio-Rechnungen basie-
renden Tight-Binding-Modells werden für verschiedene Systemgeometrien elektronis-
che Bandstrukturen berechnet. Für isolierende und metallische Materialien werden zu-
dem die entsprechenden topologischen Invarianten mit Hilfe des Berry-Phasen-Konzepts
bestimmt. Anschliesend werden topologische Phasendiagramme erstellt, die die ver-
schiedenen topologischen Phasen zeigen, die von den untersuchten Systemen unter
Änderung externer Parameter wie der Verzerrung, Unordnung oder magnetischen Feldes
eingenommen werden können. Diese Ergebnisse werden weiterhin bestätigt durch
Berechnungen der elektronischen Bandstruktur an Oberflächen der entsprechenden Sys-
teme, die im Falle nichttrivialer topologischer Phasen topologisch geschützte Oberflächen-
zustände beinhalten.
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1
I N T R O D U C T I O N

In solid state physics, diverse properties of crystalline materials are examined. Especially
the knowledge of their electronic properties is of major interest, since it is the basis of the
whole field of electronics, a technology present in almost all aspects of our life. In the
last two decades, novel phenomena in the electronic structure of solids were discovered,
which improve our understanding of basic quantum mechanical properties of electrons
in solids. Materials featuring these phenomena are called topological.

Topological materials and in particular topological insulators (TIs) are systems whose
occupied electronic bulk states possess a unique electronic structure that can be char-
acterized by integer numbers. These integers, called invariants, cannot change their
values under a smooth change of the electronic properties of the system – the bulk
band structure. This explains why the materials are called ’topological’, reminding of
the mathematical field topology, in which the properties of objects are studied that stay
unchanged under continuous deformations.

In condensed matter, the non-trivial topological character of occupied electronic bulk
states is intimately related to the presence of surface states. These have to cross the
insulating fundamental band gap and are therefore always cut by the system Fermi en-
ergy, independent of its value. Connecting this idea with the fact that this property
does not change under a continuous variation of the system leads to the conclusion
that these surface states are peculiarly stable, especially when compared with surface
states of topologically trivial materials. The latter can be pushed completely out of the
band gap by manipulating the system. This unique property of topological materials,
connected with others, such as the spin polarization of the surface states or their sup-
pressed backscattering, makes them a very interesting object of investigations in solid
state physics, aiming at both a better understanding of basic principles of quantum
mechanical solid state systems and their application in modern technologies.

The story of topological materials began in the 1980s with the discovery of the quan-
tum Hall effect (QHE) [1] and its first theoretical explanations [2], soon leading to the so-
called TKNN invariant [3], a topological invariant that does not change its value as long
as the electronic structure is subject to only smooth changes. Today the TKNN invariant
is called the Chern number and QHE systems are considered as the first topological sys-
tems observed. While in the QHE the topologically non-trivial character is generated by
an external magnetic field and the system becomes trivial when the field is switched off,
in real topological materials the non-trivial character occurs without any external fields.
Such systems were first found in the 2000s, originally in two-dimensional (2D) and later
also in three-dimensional (3D) systems. Since then, many groups world-wide have been
investigating the special properties of topological materials and their surface states. The
behaviour of the bulk and surface electronic states under additional effects like strain,
adlayer deposition, alloying or external fields is studied. In addition, transport proper-
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introduction

ties of the systems or the possibility of switching between trivial and non-trivial phases
are probed.

For experimental investigations typically two techniques are used. The angle-resolved
photoelectron spectroscopy (ARPES) allows for the visualization of both bulk and sur-
face electronic band structures. By this technique, the presence of topologically pro-
tected surface states can be confirmed directly, along with its dispersion and special
properties such as the spin polarization [4, 5]. A second experimental technique capable
of probing especially the unique transport properties of (mostly) the surface states, is
the scanning tunelling microscopy (STM) [6–8]. Additionally, the surface states can be
visualized in real space.

Owing to their peculiar properties, topological materials are proposed to be promising
candidates for various applications. The suppressed backscattering leading to lower en-
ergy losses and the so-called spin-momentum locking – states with a given wave vector
possess a fixed spin orientation, the opposite orientation is forbidden – make topological
materials good candidates for spin generators and conductors, which could be used in
the field of spin electronics, short spintronics [9]. A second widely discussed possible
application of topological materials is their presence in future quantum computers. The
combination of a TI with a superconductor can give rise to so-called Majorana fermions
[10], which could be used as qubits of a quantum computer acting as the basic informa-
tion storage unit and replacing the classical bits of conventional computers.

In the present thesis, various properties of different topological materials are inves-
tigated by theoretical calculations. For TIs and semimetals of diverse types the topo-
logical invariants of the occupied bulk electronic states are calculated together with the
dispersion relation of the associated surface electronic states. These main properties are
investigated under different circumstances such as strain or substitutional disorder. The
materials studied are predominantely Bi-chalcogenides (e.g., Bi2Te3), rocksalt chalco-
genides (e.g., SnTe) and zincblende semiconductors (e.g., HgTe). All calculations are
performed by means of an ab initio based tight-binding (TB) model, proving excellent
for a comprehensive study of topological materials, as it unites all necessary steps in
one common model capable of simulating all possible distortions of the system as well
as the calculation of the topological invariants and the surface electronic structure.

This thesis is organized as follows: In chapter 2, the concept of Berry phase is intro-
duced and all related quantities are derived. In chapter 3, the TB model is presented,
including the modifications required for the calculation of the results of the thesis. In the
following two chapters, an overview over TIs (chapter 4) and topological metals (chapter
5) is given. As this is a cumulative thesis, published results can be found in chapter 6,
including a short comment on each of the publications. Finally, a conclusion is given in
chapter 7.

The overall aim of this thesis is to provide a better understanding of topological prop-
erties of crystalline materials, to identify the topological phases accessible in the systems
under consideration and to study the behaviour of their electronic properties during
phase transitions between various topological phases.
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2
B E R RY P H A S E , C O N N E C T I O N A N D C U RVAT U R E

2.1 introduction

The basis for understanding topological properties in solid state physics was given by
M. V. Berry. In his work [11] he introduced the geometrical phase accompanying adia-
batic changes. This phase, now called Berry phase, and the connected quantities, Berry
connection and curvature, are used for calculating the so called topological invariants,
which themselves allow to distinguish between specific topology classes.

In common physical problems, it is impossible to consider all influences of the uni-
verse on the investigated system. As an approximation, they can be either neglected
completely or they can be at least considered as parameters of the Hamiltonian describ-
ing the system. This is allowed if the parameters change slowly in comparison to the
internal degrees of freedom of the system. The Berry phase emerging in such systems
can therefore be seen as a compensation for the adiabatic approximation and it describes
the effects of the universe surrounding the otherwise decoupled system.

2.2 basic quantities

The derivation of the quantities follows the original work of Berry. Assume a Hamilto-
nian Ĥ = Ĥ (R) with R being a 3D parameter. When R = R (t) varies slowly with time
t, then the adiabatic approximation [12] can be applied. This means that a system which
starts in the state |n (R)〉 with

Ĥ (R) |n (R)〉 = En (R) |n (R)〉 (2.1)

at t = 0 stays in the same state |n (R (t))〉 for any time t. |n (R (t))〉 is then eigenstate of
Ĥ (R (t)).

The ansatz for the eigenstate |ψ (R (t))〉 of the time-dependent Hamiltonian Ĥ (R (t))
can be chosen as

|ψ (R (t))〉 = exp
{
− i

h̄

∫ t

0
En
(

R
(
t′
))

dt′
}

exp {iγn (t)} |n (R (t))〉 . (2.2)

The first phase is the common dynamical phase. The second phase factor possesses
the geometrical or Berry phase γn (t) which will be derived in the following. Since the
time-dependent Schrödinger equation

Ĥ (R (t)) |ψ (R (t))〉 = ih̄
d
dt
|ψ (R (t))〉 (2.3)

has to be satisfied by |ψ (R (t))〉, an equation for the Berry phase can be obtained by
inserting equation (2.2) into equation (2.3):

γ̇n (t) = i 〈n (R (t)) |∇Rn (R (t))〉 Ṙ (t) . (2.4)
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Assuming that the system propagates along a closed loop C in the parameter space
with R (t = 0) = R (t = T), then the total phase gathered along C can be expressed as

γn (C) = i
∮

C
〈n (R) |∇Rn (R)〉 dR. (2.5)

Since the Berry phase γn (C) has to be real, the integrand 〈n (R) |∇Rn (R)〉 has to be
purely imaginary. This is always fulfilled since

0 = ∇R1 = ∇R 〈n (R) |n (R)〉 = 〈∇Rn (R) |n (R)〉+ 〈n (R) |∇Rn (R)〉 (2.6)

and
〈∇Rn (R) |n (R)〉 = − 〈n (R) |∇Rn (R)〉 = 〈n (R) |∇Rn (R)〉∗ . (2.7)

The integrand
An (R) := i 〈n (R) |∇Rn (R)〉 (2.8)

in equation (2.5) is called Berry connection. This quantity is not gauge invariant, which
can be seen by multiplying the state |n (R)〉 by an arbitrary phase factor |n (R)〉 →
eiφ(R) |n (R)〉. The Berry connection transforms as An (R)→ −∇Rφ (R) + An (R). Since
it is often more comfortable to operate with gauge invariant quantities, the Berry curva-
ture is defined as the curl of the Berry connection, causing the gradient field −∇Rφ (R)
to vanish:

Ωn (R) := ∇R × An (R) = i 〈∇Rn (R) | × |∇Rn (R)〉 . (2.9)

This behavior is similar to the connection between the magnetic field and the vector
potential in electrodynamics.

In the following, the expression for the Berry phase will be re-written. The aim is
to get a formula for the Berry curvature which includes derivatives of the Hamiltonian
∇RĤ instead of the derivatives of the eigenstates ∇R |n (R)〉. This brings many ad-
vantages for numerical evaluation of the Berry curvature, since the derivative of the
Hamiltonian can be calculated analytically in many cases. The parameter R will be
omitted in some of the equations for simplicity.

For an arbitrary surface S having the closed line C as an edge, the application of
Stokes’ theorem to equation (2.5) gives

γn (C) =
∫

C=∂S

AdR =
∫∫

S

ΩdS = i
∫∫

S

∑
m 6=n
〈∇n|m〉 × 〈m|∇n〉 dS. (2.10)

In the last step, the completeness relation 1̂ = ∑m |m〉 〈m| was used. The m = n terms
have to vanish, since 〈∇n|n〉 is imaginary and i 〈∇n|n〉 × 〈n|∇n〉 would give an imagi-
nary contribution to the Berry phase.

By applying the gradient operator on the stationary Schrödinger equation (2.1), we
get

∇
(

Ĥ |n〉
)
= ∇ (En |n〉)⇔ ∇Ĥ |n〉+ Ĥ |∇n〉 = ∇En |n〉+ En |∇n〉 .

Multiplication by 〈m| from left leads to

〈m|∇n〉 =
〈
m|∇Ĥ|n

〉

En − Em
, (2.11)

which can be plugged into equation (2.10). The final expression for the Berry curvature
becomes

Ωn (R) = i ∑
m 6=n

〈
n (R) |∇RĤ (R) |m (R)

〉
×
〈
m (R) |∇RĤ (R) |n (R)

〉

(En (R)− Em (R))2 . (2.12)
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2.3 non-abelian formulation

This equation can be directly applied for evaluating the Berry curvature numerically,
since only the eigenstates, eigenvalues and the gradient of the Hamiltonian are used as
input. The former two can be received by solving the stationary Schrödinger equation,
the latter can be calculated analytically.

The dependence of the Berry curvature on the energy spectrum can be qualitatively
studied already in equation (2.12). Due to Em − En in the denominator, the Berry curva-
ture becomes large predominantly in the cases where the states are energetically close
to each other. Ωn diverges for degenerate states.

A further consequence of equation (2.12) is the fact that the Berry curvature of one
state n can be calculated from the properties of all other states m 6= n. This is a mani-
festation of the fact stated earlier, that the Berry phase (given by the Berry curvature) is
a kind of a compensation for the adiabatic approximation, which in this case constrains
the system to stay in the state |n (R)〉.

2.3 non-abelian formulation

The previous discussion is only valid for a single non-degenerate eigenvalue. The ap-
proach is called Abelian, because an interchange of two identical (quasi-)particles pro-
duces only a one-dimensional (1D) phase factor to the wave functions, whose multi-
plications are commutative. In a more general approach a set of N states energetically
isolated from other electronic states by a finite energy gap for any value of the parameter
R – i.e. which have no degeneracies with other states, but may be degenerate with each
other – becomes a vector. Interchanging these states can be described by matrices, whose
multiplication is not commutative [13]. Therefore the approach is called non-Abelian.

Since degeneracies occur in many systems, it is important to be able to handle them
in order to evaluate the Berry curvature for real systems. This is possible with the non-
Abelian formulation of the previous quantities [14]. For N states energetically separated
from the rest both the non-Abelian Berry connection A and Berry curvature F are
vector-valued matrices of rank N,

An,m (R) = i 〈n (R) |∇Rm (R)〉 , n, m ∈ Σ. (2.13)

and

F (R) = ∇R ×A (R)− iA (R)×A (R) , (2.14)

Fn,m (R) = i 〈∇Rn (R) | × |∇Rm (R)〉
+ i ∑

k∈Σ
〈n (R) |∇Rk (R)〉 × 〈k (R) |∇Rm (R)〉 , n, m ∈ Σ. (2.15)

Σ is the subspace of the Hamiltonian spanned by the N eigenstates. In equation (2.14)
the curl was replaced by the covariant derivative [15] DR = ∇R − iA (R)×. In the
formula for the non-Abelian Berry curvature in equation (2.15) the derivatives of the
eigenstates can be substituted by the derivative of the Hamiltonian in the same way as
in equation (2.12). The final expression which can be used for practical calculations is

Fn,m (R) = i ∑
k/∈Σ

〈
n (R) |∇RĤ (R) |k (R)

〉
×
〈
k (R) |∇RĤ (R) |m (R)

〉

(En (R)− Ek (R)) (Em (R)− Ek (R))
. (2.16)

Again, the non-Abelian Berry curvature of the states n, m ∈ Σ is partially given by the
properties of the other bands k /∈ Σ. In contrast to the Abelian Berry curvature, there is
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no longer a singularity in the formula for the non-Abelian case, since the denominator
in equation (2.16) can never equal zero.

Another difference between the Abelian and non-Abelian approach is that the non-
Abelian Berry curvature is not gauge invariant. A unitary transformation U ∈ SU(N)

of the N states yields

A′ (R) = U (R)A (R)U † (R) + i (∇RU (R))U † (R) , (2.17)

F ′ (R) = U (R)F (R)U † (R) . (2.18)

2.4 berry phase in solid state physics

In the previous section, the Berry phase and all the other quantities were derived for
general Hamiltonians with an adiabatic dependence on the parameter R. The concept
of the Berry phase should be used for solid state systems. It will be shown that the wave
vector k plays the role of the parameter R in lattice-periodic crystals [16].

We start with the Bloch theorem [17] for independent electrons under the influence
of a periodic potential V (r) = V (r + R). In this context, R is a lattice vector, not the
parameter of the Hamiltonian, as was the case in the previous section. The one-electron
wave function then satisfies

ψn,k (r) = eikrun,k (r) (2.19)

with un,k (r) being the lattice-periodic part of the wave function,

un,k (r) = un,k (r + R) . (2.20)

The wave function (2.19) can be plugged into the stationary Schrödinger equation
Ĥψn,k (r) = En,kψn,k (r). Multiplying by e−ikr from left gives then

e−ikr Ĥeikr
︸ ︷︷ ︸

ˆ̃H(k)

un,k (r) = En,kun,k (r) . (2.21)

Equation (2.21) is a new stationary Schrödinger equation with a new Hamiltonian ˆ̃H (k)
depending parametrically on the wave vector k. The new eigenvalues are the same as
the former ones, but the new eigenstates are only the periodic parts of the electronic
wave functions.

Having a Hamiltonian with a parameter k, the quantities from section 2.2 can be
defined in the same way for solid state systems:

γn = i
∮

C
dk 〈un (k) |∇kun (k)〉 , (2.22)

An (k) = i 〈un (k) |∇kun (k)〉 , (2.23)

Ωn (k) = i 〈∇kun (k) | × |∇kun (k)〉 . (2.24)

From this point of view one can understand that the Berry curvature plays a signifi-
cant role in many properties of solids, since it follows directly from the electronic band
structure, without need for additional quantities.
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3

E L E C T R O N I C S T R U C T U R E C A L C U L AT I O N S

3.1 introduction

One possibility to understand the behaviour of electrons in solids is to perform quantum
mechanical electronic structure calculations, i.e. to determine the eigenvalues and eigen-
functions of the Hamiltonian describing the solid system. Since this task would exceed
our computational capabilities in most of the cases, typically the Born-Oppenheimer
approximation [18] decoupling the electron motion from the one of the ions and the
one-electron approximation are applied. In the latter it is assumed, that the potential of
each electron can be described as a sum of the ionic potential and an effective potential
combining the coupling between the one electron considered and all the other electrons
in the crystal.

To finally calculate the electronic structure, an appropriate approach has to be chosen
from the variety of models differing in quality of description, complexity, computational
effort, etc. In this thesis the tight-binding (TB) model was used, which can be settled
approximately in the middle, concerning both the quality and the computational effort
of the model.

3.2 tight-binding

The TB model is for many reasons a suitable tool for investigating topological materials.
In the first place, the basic assumption of the model is that the wave functions of the crys-
tal electrons are similar to atomic wave functions, which is often very accurate for the
occupied states below the Fermi energy, but does not hold for excited states. Therefore,
only a part of the band structure located in the energy region of interest is considered,
neglecting the interaction with the energetically distant states (e.g., high-lying excited
states or tightly-bound low-energy core states). Since the properties of topological mate-
rials are predominantly given by the occupied states, as shown in the following chapters,
TB is a valid model to describe them.

Another advantage of the TB model is the possibility to simulate various geometries of
the investigated crystal, including bulk, surfaces, interfaces and slabs, which is very use-
ful for simulating topological materials, whose bulk and surface properties are tightly
connected with each other. TB allows to investigate these properties within a single
approach.

Finally, based on a calculation for an initial configuration performed by a more ac-
curate approach, the TB model is capable of simulating variations of this configuration,
such as strain or disorder, reliably and with low computational effort. The possibil-
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electronic structure calculations

ity to calculate and handle both electronic wave functions and Green functions for the
different geometries makes TB a versatile tool for describing topological materials.

The first widely used variant of the TB model was introduced by Slater and Koster [19].
This approach will be used, although further developed, more complicated methods are
available [20]. The original Slater-Koster method proved reliable enough for describing
various materials when based on ab initio calculations.

3.2.1 Tight-Binding Matrix

In TB it is assumed that the one-electron Hamiltonian consists of the kinetic energy of
the electron and the potential energy, which is a sum of attractive potentials localized
at the atomic positions. Since the electrons are assumed to be bound by the potential,
the electronic wave function should be similar to an atomic wave function. Therefore,
the basis set consists of sums of atomic orbitals φσ (r− Ri − tl) located at the core posi-
tions Ri + tl , multiplied by a phase factor eikRi which ensures the Bloch theorem [17] is
fulfilled. Ri denotes the vector to the i-th unit cell and tl is the vector to the l-th atom
inside the unit cell. The ansatz for the wave function is a linear combination of these
Bloch sums,

ψn,k (r) =
1√
N

∑
α

cn,α (k)∑
Ri

eikRi φσ (r− Ri − tl) . (3.1)

The summation index α in the first sum is a multiindex α = (σ, l) combining the orbital
quantum numbers σ and the atomic position tl in one primitive cell. The summation in
the second sum is over all N lattice vectors Ri of the crystal.

For further calculations it will be assumed that the atomic orbitals localized at differ-
ent sites are orthogonal,

〈
φσ′
(
r− Rj − tm

)
|φσ (r− Ri − tl)

〉
∼ δσ,σ′δRi ,Rj δl,m = δα,βδRi ,Rj . (3.2)

This is practically achieved by the Löwdin transformation [21]. The new basis set is then
a linear combination of atomic orbitals as well. These basis functions are orthogonal
but they still possess the symmetry properties of the original orbitals. Since the matrix
elements of the Hamiltonian Ĥ including the basis functions will be used as adjustable
parameters in the calculations, it is not necessary to know the precise form of the basis
functions.

Since ψn,k (r) has to be normalized,

∑
α

|cn,α (k)|2 !
= 1. (3.3)

In the following a matrix expression for the TB problem will be derived. Plugging the
ansatz (3.1) into the Schrödinger equation

〈
ψn,k|Ĥ|ψn,k

〉
= En,k (3.4)

we get

1
N ∑

α,β
c∗n,α (k) cn,β (k)×

× ∑
Ri ,Rj

eik(Ri−Rj) 〈φσ′
(
r− Rj − tm

)
|Ĥ|φσ (r− Ri − tl)

〉
= En,k. (3.5)
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3.2 tight-binding

Because of lattice periodicity, Ri = 0 can be chosen as a reference cell. The TB matrix is
then defined as

Hα,β (k) =
1
N ∑

Ri ,Rj

eik(Ri−Rj) 〈φσ′
(
r− Rj − tm

)
|Ĥ|φσ (r− Ri − tl)

〉

= ∑
Rj

e−ikRj
〈
φσ′
(
r− Rj − tm

)
|Ĥ|φσ (r− tl)

〉
. (3.6)

With the TB matrix in equation (3.6) the equation (3.5) can be written as an eigenvalue
problem for the expansion coefficients:

∑
α,β

c∗n,α (k) Hα,β (k) cn,β (k) = ∑
α,β

En (k) c∗n,α (k) cn,β (k) δα,β. (3.7)

H (k) :=
{

Hα,β (k) : α, β = 1, . . . , Nb
}

is the TB matrix and

cn (k) := {cn,α (k) : α = 1, . . . , Nb} is the vector of the expansion coefficients. Nb is the
number of basis functions considered.

The sum over all lattice cells Rj in equation (3.6) cannot be evaluated exactly in real
calculations. The number of neighbouring atoms considered has to be restricted, same
as the number of orbitals Nb considered at one atom. The description of electronic prop-
erties improves with increasing number of neighbours and orbitals considered, but the
calculation becomes computationally more demanding. Therefore the approximations
have to be chosen properly. For the systems considered in this work, nearest and next-
nearest neighbours and the atomic s, p and d atomic orbitals in the energy range of
interest are considered.

3.2.2 Slater-Koster Formalism

The TB matrix (3.6) includes the integrals
〈
φσ′
(
r− Rj − tm

)
|Ĥ|φσ (r− tl)

〉
. Since the

potential in the Hamiltonian Ĥ was supposed to be a sum of atomic potentials, these
integrals can be divided into three types. When both atomic orbitals and the potential
are localized at the same atom j = 0, the integral is called on-site integral. The corre-
sponding diagonal element Hα,α = εα has no k dependency. The case where the orbitals
are localized at different atoms but the potential is localized at the same atom as one
of the orbitals is called a two-center integral. In the third case both orbitals and the po-
tential are localized at different atoms, hence it is called a three-center integral. In this
work three-center integrals are neglected, together with the special case of two-center
integrals, where the orbitals are localized at the same atoms but the potential is at a
different one. The former are significantly smaller than the two-center integrals with
potential located at the same site as one of the orbitals, whereas the latter are a correc-
tion to the on-site integral [20], which can be treated as included in the definition of the
on-site integrals.

The matrix elements are considered as parameters of the model, won from more
sophisticated band structure calculations. The number of the two-center parameters can
be lowered significantly when considering a further approximation proposed by Slater
and Koster [19]. First, the orbital part of the basis functions has to be expressed in terms
of cubic harmonics, orienting the orbitals along Cartesian axes. When R is the vector
connecting the centers of the orbitals, the integrals can be written as a linear combination
of orbitals localized parallel and perpendicular to R with coefficients proportional to
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polynomials of direction cosines l, m, n of R. The new parameters can be written in
the form (ijα) with i, j = {s, p, d, f , ...} being the orbital angular momenta and α =

{σ, π, δ, ...} the bond type [22]. An example for an integral of two px orbitals localized
at different atoms gives

〈
px (R) |Ĥ|px (0)

〉
= l2 (ppσ) +

(
1− l2) (ppπ) . (3.8)

A full table for i = s, p, d orbitals is given in [19] and in [22] for f orbitals.

3.2.3 Spin-Orbit Coupling

The Schrödinger equation, which is the basis for the TB model, does not account for
relativistic effects. Since they play a very important role for TIs, the spin-orbit coupling
(SOC) correction to the Schrödinger equation will be expressed in terms of the TB matrix.
The derivation follows reference [23].

For simplicity, four orbitals
(
s, px, py, pz

)
are chosen as a basis. When spin should

be treated in the TB model, the basis has to be doubled. In our example we get(
s↑, p↑x, p↑y, p↑z , s↓, p↓x, p↓y, p↓z

)
as a new basis, where the spin eigenvalue ↑, ↓ is measured

against the z direction. In the new basis, the rank of the TB matrix is doubled and it
acquires the form

H = H
TB

+ H
SO

=

(
H↑↑ H↑↓

H↓↑ H↓↓

)
. (3.9)

H
TB

consists of two copies of the original TB matrix at the matrix diagonal:

H
TB

=




H↑
TB

0

0 H↓
TB


 , H↑

TB
= H↓

TB
. (3.10)

The SOC part of the Hamiltonian in the on-site approximation can be written as

ĤSO = λL̂ · Ŝ, (3.11)

assuming a spherical symmetric potential. L̂ and Ŝ are the angular momentum and spin
operator, respectively, λ the SOC parameter. Since ĤSO is not diagonal in the chosen
basis set, it has to be transformed in order to evaluate ĤSO. For this purpose the basis
functions will be expressed in terms of total angular momentum states. The scalar
product in equation (3.11) can be substituted by

L̂ · Ŝ =
1
2
(

Ĵ2 − L̂2 − Ŝ2) (3.12)

using the total angular momentum Ĵ = L̂ + Ŝ. From equation (3.12) it is obvious that
the s orbitals have no SOC, since they have no angular momentum. The elements of
ĤSO containing p orbitals are more complicated to derive. First the p orbitals will be
expressed as linear combinations of spherical harmonics:

px =
1√
2
[−Y1,1 + Y1,−1] ,

py =
i√
2
[Y1,1 + Y1,−1] , (3.13)

pz = Y1,0.
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3.2 tight-binding

The spin can be attached to spherical harmonics on the same footing as for the atomic
orbitals. Therefore, we get Y↑l,m and Y↓l,m in the new basis. Since the SOC operator is
diagonal in the total angular momentum representation, the aim is now to express the p
orbitals in this representation. For this, the spherical harmonics are expressed as linear
combinations of total angular momentum states using the Clebsch-Gordan coefficients
[24]:

Φ 3
2 , 3

2
= Y↑1,1,

Φ 3
2 , 1

2
=

1√
3

Y↓1,1 +

√
2√
3

Y↑1,0,

Φ 3
2 ,−1

2
=

√
2√
3

Y↓1,0 +
1√
3

Y↑1,−1,

Φ 3
2 ,−3

2
= Y↓1,−1, (3.14)

Φ 1
2 , 1

2
=
−1√

3
Y↑1,0 +

√
2√
3

Y↓1,1,

Φ 1
2 ,−1

2
=
−
√

2√
3

Y↑1,−1 +
1√
3

Y↓1,0.

Resolving equation (3.14) for the spherical harmonics and plugging them into equation
(3.13) leads to

p↑x =
1√
2

{
−Φ 3

2 , 3
2
+

1√
3

Φ 3
2 ,−1

2
−
√

2√
3

Φ 1
2 ,−1

2

}
,

p↓x =
1√
2

{
− 1√

3
Φ 3

2 , 1
2
−
√

2√
3

Φ 1
2 , 1

2
+ Φ 3

2 ,−3
2

}
,

p↑y =
i√
2

{
Φ 3

2 , 3
2
+

1√
3

Φ 3
2 ,−1

2
−
√

2√
3

Φ 1
2 ,−1

2

}
,

p↓y =
i√
2

{
1√
3

Φ 3
2 , 1

2
+

√
2√
3

Φ 1
2 , 1

2
+ Φ 3

2 ,−3
2

}
, (3.15)

p↑z =

√
2√
3

Φ 3
2 , 1

2
− 1√

3
Φ 1

2 , 1
2
,

p↓z =

√
2√
3

Φ 3
2 ,−1

2
+

1√
3

Φ 1
2 ,−1

2
.

In the basis of total angular momentum the eigenvalues of the spin-orbit operator have
the form

〈L · S〉 = h̄2

2
{j (j + 1)− l (l + 1)− s (s + 1)} . (3.16)

Now it is straight forward to calculate the non-zero elements of the SOC part of the TB
matrix:

〈
p↑x|HSO|p↑y

〉
=
〈

p↑y|HSO|p↓z
〉
= −

〈
p↓x|HSO|p↓y

〉
= −

〈
p↓y|HSO|p↑z

〉
= −iλ,

〈
p↑x|HSO|p↓z

〉
= −

〈
p↓x|HSO|p↑z

〉
= λ. (3.17)

The elements for a TB model including d and f orbitals in its basis set can be found
in reference [25]. At this point it has to be recalled, that by this method only on-site
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elements of the SOC are introduced to the TB model. SOC connecting orbitals localized
at different sites is neglected here.

3.2.4 Exchange Interaction

In the last years of the 19th century, Pieter Zeeman observed a broadening of the spectral
lines of different gases when put into a magnetic field [26]. Later it turned out that
the broadening is in reality a splitting of the spectral lines, given by the loss of spin
degeneracy when a magnetic field is turned on. It is coupled to the electrons via the
magnetic moment connected to the electron spin. Therefore, the electronic states with
spin oriented anti-parallel to the magnetic field are energetically favoured against the
states with parallel spin orientation. Using the same description, also magnetic materials
can be simulated, assigning local magnetic fields to each atom, originating from their
magnetization. In TB, such behaviour can be easily described by adding an exchange or
Zeeman term ĤXC to the TB matrix [27],

ĤXC = −VXC · σ. (3.18)

σ is the vector of the Pauli matrices. In VXC the strength of the magnetic field or the
magnetization and the value of the coupling constants are condensed. The vector can
also possess different size and direction for different atoms, thus allowing also the mod-
elling of different magnetic structures such as ferromagnets or antiferromagnets, next to
the effect of a constant external magnetic field.

3.2.5 Optimization of the Slater-Koster Parameters

In the original work of Slater and Koster [19] it was proposed to fit the two-center in-
tegrals (now called Slater-Koster (SK) or TB parameters) to a measured or calculated
band structure at high symmetry points in the Brillouin zone (BZ). The TB model was
then meant to be used to interpolate the band structure between these points. Today, it
is much easier to calculate the band structure in the whole BZ with more sophisticated
methods. Therefore, the TB model is used to obtain additional information, mostly
when the original structure becomes a subject to small changes. The SK parameters are
commonly fitted to a density-functional theory (DFT) bulk band structure. In the TB
model one can then easily calculate the effect of e.g. strain or alloying, or consider vari-
ous geometries like surfaces or interfaces, which requires transferable SK parameters.

In this work, the SK parameters were fitted to a DFT band structure using the Monte
Carlo method implemented in the form of the Metropolis algorithm [28], typically used
to find the global minimum of a given function. Here, the input are the DFT band ener-
gies at discrete points in the BZ. The points are usually located at high symmetry lines,
but this does not have to be the case in general. With a starting set of the SK parame-
ters the TB band energies can be calculated. The mean square error of the TB energies
compared to the DFT energies is the fitness function f which has to be minimized by
the Monte Carlo procedure,

f =
1
N

N

∑
i=1

√
(ETB (ki)− EDFT (ki))

2. (3.19)

After calculating the starting value of f denoted by f0, a random SK parameter is
changed by a random value chosen from a reasonable interval (mostly between -0.5 eV
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Figure 3.1: Calculated band structure of HgTe along the high symmetry lines of the BZ,
without SOC. Red: TB, black: Korringa-Kohn-Rostocker DFT-based method.
Figure from [TR1].

and 0.5 eV). Then, the next iteration f1 is calculated from equation (3.19). If f1 < f0

then the new values of the SK parameters are taken for the next iteration. Otherwise it
is chosen randomly whether the new or the old set of SK parameters is kept, with the
probability for keeping the new values being

p = e−
f1− f0

κ . (3.20)

κ is a parameter controlling the acceptance probability. In a Monte Carlo calculation
minimizing the energy of a system, f would be the energy and κ = kBT the virtual
temperature.

This procedure is repeated, until a satisfying value of the error f is achieved. In
the beginning κ takes on higher values, which increases the probability of taking SK
parameters which are worse than the previous iteration, thus avoiding getting trapped
near local minima of f . κ is decreased with higher iteration count, ensuring that the
system stays near a global minimum. The proper values of the parameters have to
be chosen carefully, depending on many properties of the system such as the number
of atoms, SK parameters, quality of the initial values, etc. Usually, 8000 iterations are
needed to get a good set of SK parameters.

When SOC is considered, which is always the case for topological materials, it proved
to be useful to first do the fitting procedure neglecting SOC in both TB and DFT cal-
culations. In a second step, the values of the SOC parameters are chosen in order to
reproduce the splitting of degenerate bands at some high symmetry points of the BZ
(mostly Γ). Figure 3.1 shows the result of the optimization for HgTe as an example.

25



electronic structure calculations

At this point it has to be stated, that in general the valence bands are modelled much
better than the conduction bands in TB, owing to the choice of the basis set. The “tightly
bound” atomic orbitals can reproduce the energetically lower valence bands very well,
but the accuracy in modelling the unoccupied states is much worse. This is discussed
e.g., in reference [29]. The authors add an excited atomic s? state to the basis set in
order to get better results also for the conduction bands. Considering more neighbours
or orbitals with higher angular momentum can also improve the results, as shown in
the references [30, 31]. Klimeck et al. [30] also used a genetic algorithm as an alternative
to the Monte Carlo algorithm to get the SK parameters. A completely different basis set
used widely in the context of topological materials are the maximally localized Wannier
functions (MLWFs) [32], because some of the topological invariants can be calculated in
a more straightforward way by this approach.

3.2.6 Strain

Having established all the parameters of the TB model using a DFT based calculation,
it is possible to use the model for making predictions for special cases differing slightly
from the original one. A possible alteration of the system is the application of strain
in different directions, which may in reality come from a substrate or from ambient
pressure. In this work, the influence of strain on the electronic structure was modelled
by the Harrison d−2 rule [29, 33]. This predicts for the SK parameters (ijα) to depend
on distance as follows:

(ijα)strained =

(
dunstrained

dstrained

)2

(ijα)unstrained . (3.21)

dstrained and dunstrained are the inter-atomic distances in the strained and unstrained case,
respectively. Equation (3.21) shows the expected behaviour of the SK parameters – orig-
inally integrals – which become smaller with increasing distance between the overlap-
ping orbitals. A more complicated dependence of the SK parameters on the inter-atomic
distance d is assumed by Papaconstantopoulos and Mehl [20],

(ijα) =
(
eijα + fijαd + gijαd2) exp

(
−h2

ijαd
)

F (d) . (3.22)

F (d) is a cut-off function and e, f , g and h are the fitting parameters. The number of
fitting parameters is four times higher compared with the original set of SK parameters,
making the optimization procedure much more demanding. The advantage of this
approach is the high transferability of the parameters, which can be used for geometries
with different inter-atomic distances once calculated.

3.2.7 Alloys

Another possibility of a variation of the original system which can be studied by the TB
model is a substitutional alloy. One way to model a binary alloy would be a supercell
which can be repeated periodically [34]. When large enough, the disorder in the alloy
can be described sufficiently. In addition, different local environments of the different
atoms can be simulated, including the short-range order [35]. A critical aspect is that
the calculation becomes expensive because of the large number of atoms in the supercell
leading to large TB matrices. Furthermore, the concentration of the binary alloy can be
varied only in discrete steps.
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Another way of simulating disordered systems is to define some kind of a lattice-
periodic virtual potential effectively describing the system. The lattice periodicity is
restored in the model, but the key difficulty is transferred to the estimation of the effec-
tive potential. In this work the virtual-crystal approximation (VCA) and the coherent-
potential approximation (CPA) are used, owing to its low computational cost for the
former and reliable results for the latter. In both approximations only the effect of the
impurities on the potential can be simulated, not the lattice deformation around single
impurities. This would be possible in the supercell approach.

3.2.7.1 Virtual Crystal Approximation

In the VCA approach [36, 37] it is assumed that the potential of the alloy is given as
a combination of the potentials of the pure compounds. Mostly, a linear scaling of the
potential with the concentration is assumed. When the concentration of compound A
and B is x and 1− x respectively, then the potential of AxB1−x is given as

VVCA = xVA + (1− x)VB. (3.23)

This transfers to the TB model via the same linear dependence of all parameters, i.e.
SK, SOC and exchange parameters, on the concentration. The biggest advantage of this
treatment is the possibility to calculate the eigenenergies and eigenvectors, which can
be used for further calculations of e.g., topological invariants. VCA works well when
both compounds possess similar band structures and the SK parameters do not differ
strongly. If the band structures of the pure compounds are qualitatively different, then
the result of a linear interpolation between them can give questionable results, as is for
example the case in CuNi [38], even though Cu and Ni are neighbours in the periodic
table.

3.2.7.2 Coherent Potential Approximation

An improvement to the VCA is the CPA, introduced by Soven [39] for electronic systems.
Some applications and a description of the CPA in terms of Green functions can be
found in the references [40–43]. In the CPA, the substitutional alloy is treated as an
effective periodic medium surrounding the site where one of the original atoms is placed.
The potential of the medium can be estimated by exploiting the condition of vanishing
scattering from the original atom (treated as an impurity in the medium) averaged by
the composition. In this work, only the diagonal disorder was treated within the CPA.
The off-diagonal k dependent part of the TB matrix was estimated using the VCA. A
possibility to include also off-diagonal disorder in the CPA is described in reference [44].

The derivation of the CPA in the single-site approximation – as used in this work –
follows reference [41]. The hat sign marking operators will be omitted in this section for
simplicity. Assuming a disordered crystal AxB1−x with atom A located at each lattice
site with the probability x ∈ [0 : 1] and atom B with probability 1− x, the Hamiltonian
describing the crystal has the form

H = H0 + V = H0 + ∑
n

Vn (3.24)

with Vn is VA(VB) for the atom A(B) located at the site n. H0 is the off-diagonal periodic
part of the Hamiltonian and V represents the diagonal random part. The resolvent of
the Hamiltonian H is

G (z) = (z− H)−1 . (3.25)
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z = E+ iη is a complex energy. The ensemble average of G defines the energy dependent
self-energy Σ which describes an effective medium with restored lattice periodicity:

〈G (z)〉 =
〈
(z− H)−1

〉
≡ [z− H0 − Σ (z)]−1 . (3.26)

In the next step H can be re-written by adding and subtracting an energy-dependent
periodic potential Ṽ (z) = ∑n Ṽn (z):

H =
[
H0 + Ṽ (z)

]
+ ∑

n
Vn − Ṽn (z)

= H̃ (z) + V ′ (z) . (3.27)

Ṽ (z) will be an initial approximation to the self-energy Σ. V ′ (z) = ∑n Vn − Ṽn (z) =

∑n vn (z) describes the scattering off the real atoms A and B embedded within the effec-
tive medium, which now acts as a reference. The resolvent of the effective medium is

G̃ (z) =
(
z− H̃

)−1 (3.28)

and is connected to the resolvent of the original disordered system via the Dyson equa-
tion (with the z dependence omitted for simplicity)

G = G̃ + G̃V ′G = G̃ + G̃TG̃. (3.29)

T is the scattering operator given by

T = V ′ + V ′G̃T = ∑
n

vn + ∑
n

vnG̃ ∑
m

vm + . . . (3.30)

Decomposing T into the sum of contributions from the individual sites

T = ∑
n

Tn (3.31)

leads to

Tn = vn
[
1 + G̃T

]
= tn

[
1 + G̃ ∑

m 6=n
Tm

]
. (3.32)

tn is a single-site scattering operator taking on values tA
n or tB

n when the atom A or B is
located at the site n. It can be written as

tn = vn + vnG̃vn + . . . =
[
1− vnG̃

]−1 vn = vn + vnG̃tn (3.33)

and seen as a part of equation (3.30) which gives only the pure contribution of the site n
to the total scattering operator T. Iterating equation (3.32) leads to a series for the total
scattering operator in terms of the single-site contributions

T = ∑
n

tn + ∑
n

tnG̃ ∑
m 6=n

tm + . . . (3.34)

From averaging equation (3.29) it follows that

〈G〉 = G̃ + G̃ 〈T〉 G̃, (3.35)

thus introducing the ensemble-averaged total scattering operator. Using Eqs. (3.26) and
(3.35) it is possible to derive the following formula for the self-energy,

Σ = z− H0 − 〈G〉−1 = Ṽ + 〈T〉
(
1 + G̃ 〈T〉

)−1 . (3.36)
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The self-energy is therefore given as the initial periodic potential Ṽ – which can be seen
as a first approximation to the self-energy – plus the effect of the averaged scattering
relative to the effective potential Ṽ.

At this point, the CPA is introduced by claiming that the scattering has to vanish on
average,

〈T〉 = 0, (3.37)

which is equivalent to the equality of the averaged Green function of the disordered
medium 〈G〉 and the Green function of the effective medium G̃. By this requirement,
we get a set of coupled equations, which can be solved for Σ self-consistently.

Thus, the problem of calculating the averaged total scattering operator to evaluate
equation (3.36) remains. Averaging equation (3.31) leads to

〈T〉 = ∑
n
〈Tn〉 (3.38)

〈Tn〉 can be calculated from equation (3.32) by rearranging the formula for the covariance
of two random variables a and b [45], 〈ab〉 = 〈a〉 〈b〉+ 〈(a− 〈a〉) (b− 〈b〉)〉:

〈Tn〉 = 〈tn〉
[

1 + G̃ ∑
m 6=n
〈Tm〉

]
+

〈
(tn − 〈tn〉) G̃ ∑

m 6=n
(Tm − 〈Tm〉)

〉
(3.39)

with the average scattering operator 〈tn〉 connected to the site n being

〈tn〉 = xtA
n + (1− x) tB

n . (3.40)

In the next step, the second fluctuation-like term in the right-hand side of equation
(3.39) will be neglected, which is called the single-site approximation. Combined with
the equality

∑
m 6=n
〈Tm〉 = 〈T〉 − 〈Tn〉 (3.41)

it leads to
〈Tn〉 =

[
1 + 〈tn〉 G̃

]−1 〈tn〉
[
1 + G̃ 〈T〉

]
. (3.42)

Eqs. (3.36) and (3.38) allow to re-write the self-energy Σ as a sum of site-dependent
terms,

Σ = ∑
n

Ṽn +
[
1 + 〈tn〉 G̃

]−1 〈tn〉 , (3.43)

which is the final equation of the CPA in the single-site approximation. The CPA con-
dition becomes 〈tn〉 = 0 for all sites n. By exploiting the periodicity of the reference
medium, it is sufficient to do the calculation only at one site, e.g., n = 0, which is a
significant simplification of the problem.

In the TB approach the Hamiltonian H becomes the TB matrix and G̃ the Green
function of the reference medium, respectively. The CPA equations can be solved self-
consistently by choosing the VCA as an initial approximation to the potential Ṽn. By
iteration, a vanishing scattering matrix is achieved and the Green function G̃ of the ref-
erence medium can be calculated. The effect of the complex self-energy describing the
reference medium is both a shift of the electronic energies and life-time broadening of
the states. Since the CPA is a Green function approach, the electronic band structure has
to be calculated via the spectral density

N (E, k) = − 1
π
=Tr G̃ (E + iη, k) . (3.44)
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Usually the CPA gives better results than the VCA, but the main disadvantage of CPA
in this work is the unavailability of eigenfunctions, which are crucial for calculating the
topological invariants. Therefore, both methods are used dependent on the context, the
former for a detailed electronic band structure and the latter to get topological invariants
of disordered systems.

3.2.8 Semi-Infinite Crystals and their Interfaces

To calculate the surface electronic structure a renormalization scheme for semi-infinite
crystals was used [46]. In this procedure, the crystal is formed by atomic layers ordered
parallel to the surface. Since atoms from one atomic layer are assumed to interact only
with atoms from a finite number of neighbouring layers, so-called principal layers are
constructed from the atomic layers in a way that one principal layer interacts only with
the adjacent principal layers. The equation defining the Green function

(
z− Ĥ

)
Ĝ = 1̂ (3.45)

can then be written in a matrix representation



As −Bs 0 0 . . .
−Bs† A −B 0 . . .

0 −B† A −B . . .
0 0 −B† A . . .
...

...
...

...
. . .



·




G00 G01 G02 G03 . . .
G10 G11 G12 G13 . . .
G20 G21 G22 G23 . . .
G30 G31 G32 G33 . . .

...
...

...
...

. . .




=




1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .




,

(3.46)
with the abbreviations

As = z− Hs
00 (3.47)

Bs = Hs
01 (3.48)

Bs† = Hs†
01 (3.49)

A = z− H11 (3.50)

B = H01 (3.51)

B† = H†
01. (3.52)

The principal-layer index is a multi-index combining the atomic layer, atom type and
orbital.

Equation (3.46) cannot be solved by simple inversion, because the dimension of the
matrices is infinite, owing to the semi-infinite geometry. Instead, many equations for
the block matrices can be extracted, e.g.,

As = 1 + BsG10 (3.53)

AG10 = Bs†G00 + BG20. (3.54)

Combining these two equations leads to
(

As − Bs A−1Bs†
)

G00 = 1 + Bs A−1BG20. (3.55)

By defining

Es
1 = As − Bs A−1Bs† (3.56)

As
1 = Bs A−1B (3.57)
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3.2 tight-binding

equation (3.55) becomes
Es

1G00 = 1 + As
1G20 (3.58)

which possesses the same structure as equation (3.53). New in equation (3.58) is the
fact, that the zeroth (surface) principal layer is now coupled to the second bulk principal
layer with a decreased interaction. By the same procedure, similar renormalization
can be found for equations containing block matrices of the bulk layers. By iteration,
the effective inter-layer interaction A1, As

1 becomes small and vanishes for an infinite
number of iterations. The Green function of the surface principal layer is then given as

G00 = (Es
i )
−1 (3.59)

assuming that the interaction is sufficiently small after the i-th iteration. In a similar
way the Green function of a bulk principal layer Gnn for n→ ∞ can be calculated. Other
blocks can be obtained by applying suitable transfer matrices to already known blocks.

Having constructed the whole Green function Glm

(
E, k‖

)
, the surface electronic struc-

ture can be obtained as the spectral density same as in section 3.2.7.2:

N0 (E, k) = − 1
π
=Tr G00 (E + iη, k) . (3.60)

By the same procedure also an interface of two different materials can be simulated.
There is a similar renormalization scheme for the interface of two layered materials, each
occupying one semi-infinite half-space [47]. The spectral density is again calculated from
the Green function as in equation (3.44).

Another possibility to calculate the electronic structure of a crystal surface of a layered
material would be a slab. Because of the finite dimension of the TB matrix, the energy
eigenvalues can be calculated as for a bulk system. The main disadvantage of this
treatment is the non-vanishing interaction between both slab surfaces, which manifests
itself in artificial gaps, which can be mostly observed in surface states. Since these
finite-size effects could influence the results of this work, the semi-infinite approach was
chosen for most of the surface and interface calculations.

3.2.9 Berry Curvature in the Tight-Binding Model

After addressing all common aspects of the TB model, the problem of calculating the
Berry curvature will be discussed. We will follow the derivation of Gradhand et al. [48].

The first problem is that the Berry curvature is defined for the lattice periodic part of
the Bloch wave functions un,k (r), whereas the result of TB calculations are the full wave
functions ψn,k (r). The connection between the two is given by the Bloch theorem

ψn,k (r) = eikrun,k (r) . (3.61)

By plugging equation (3.61) into the definition of the Berry connection, equation (2.23),
we get two terms:

An (k) = i
∫

EZ
d3r u∗n,k (r)∇kun,k (r)

= i
∫

EZ
d3r ψ∗n,k (r) eikr∇k

[
e−ikrψn,k (r)

]

=
∫

EZ
d3r ψ∗n,k (r) rψn,k (r) + i

∫

EZ
d3r ψ∗n,k (r)∇kψn,k (r) . (3.62)
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The first one is called the dipole contribution and the second one gradient contribution.
Since we have no knowledge about the spatial distribution of ψ∗n,k (r) the dipole con-
tribution cannot be calculated in the TB approach. The term will be neglected in all
calculations, since it is approximately one order of magnitude smaller than the gradient
contribution [49].

The gradient contribution of the Berry curvature is given as the curl of the connection,
i.e.

Ωn (k) = i
∫

EZ
d3r ∇kψ∗n,k (r)×∇kψn,k (r) . (3.63)

In the TB model this becomes

Ωn (k) =
i
N ∑

Ri

∑
α

[
−iRi × (∇kcn,α (k)) c∗n,α (k)−

−iRi ×
(
∇kc∗n,α (k)

)
cn,α (k) +

(
∇kc∗n,α (k)

)
× (∇kcn,α (k))

]
.

The first two terms vanish since

∑
α

(∇kcn,α (k)) c∗n,α (k) = ∇k ∑
α

|cn,α (k)|2 −∑
α

cn,α (k)
(
∇kc∗n,α (k)

)

= −∑
α

cn,α (k)
(
∇kc∗n,α (k)

)
.

The final expression for the Berry curvature in TB is

Ωn (k) = i∇kc†
n (k)×∇kcn (k) . (3.64)

Using a similar equality as in equation (2.11),

c†
m (∇kcn) =

c†
m

(
∇kH

)
cn

En − Em
, (3.65)

we obtain

Ωn (k) = i ∑
m 6=n

c†
n (k)

(
∇kH (k)

)
cm (k)× c†

m (k)
(
∇kH (k)

)
cn (k)

(En − Em)
2 . (3.66)

It is straightforward to evaluate this formula, since the expansion coefficients cn (k) and
energies En (k) are the results of the diagonalization of the TB matrix H (k) and the
gradient of the TB matrix can be calculated analytically from equation (3.6):

∇Hα,β (k) = −i ∑
Rj

Rje−ikRj
〈
φσ′
(
r− Rj − tm

)
|H|φσ (r− tl)

〉
. (3.67)

3.2.10 Conclusion

In this chapter, a TB model for the electronic properties of periodic crystals was intro-
duced. It is based on a set of non-overlapping atomic orbitals. The TB parameters can
be obtained from fitting the TB band structure to a DFT band structure. It is possible to
calculate the electronic properties for different geometries, including semi-infinite crys-
tals having an interface to vacuum or an interface between two semi-infinite crystals.
The properties of systems with substitutional disorder can be modelled using the VCA
or CPA.
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On top of this, the model also allows to obtain the quantities connected to the topo-
logical character of the electronic states. The key quantity which can be computed is the
Berry curvature, whose integrals over closed surfaces (mostly the BZ) are topological
invariants characterizing the different topological phases.

All this information can be calculated together in the present version of the TB model
and therefore it is well suited for exploring topological materials. Different types of
these systems will be introduced in the next chapter.

After discussing features which recommend the TB model to be chosen in the present
work, also the shortcomings of the model should be discussed. Approximations and
problems connected to the basic TB model are mentioned in the first place.

Since TB is based on a single-particle approximation, correlation effects are neglected.
This can lead to inaccuracies when calculating the properties of heavier elements, yet it
is possible to account for these effects by adding correction terms to the on-site matrix
elements as was done for example in [50].

The assumption of a finite localized orthogonal basis set, the two-center approxima-
tion and a finite number of interacting neighbours determine the quality of description
of the electronic properties. The occupied bands are typically reproduced very well
by the model, but it fails when considering excited states. The quality of the model
can be increased by considering a non-orthogonal basis set which increases the number
of parameters, by introducing additional excited orbitals to the basis set, typically an
s? orbital, or by increasing the number of neighbours considered, which significantly
increases both the number of parameters and the computational effort.

After mentioning the basic problems which arise when using the TB model, in the
following, the approximations introduced during the application of the model to special
systems and the emerging inaccuracies will be discussed.

First of all, when considering geometries different to the infinite-bulk geometry, al-
ways the bulk SK parameters were used and no relaxation of the lattice was assumed.
This is indeed a crucial approximation, which can lead for example to a badly described
surface electronic structure. Therefore, especially in the case of surfaces and interfaces,
mainly qualitative results can be achieved. Improvements would be accomplished by
distance dependent SK parameters and by lattice relaxation calculations prior to the
electronic structure calculation. However, the computational effort would then increase
rapidly and it would probably be better to turn completely to a DFT-based model. A
further improvement would be the self-consistent calculation of the interface charge [51]
to reach charge neutrality. In this way the surface states can be for example shifted in
energy towards the experimental values.

The problems of simulating strain and structural disorder were already discussed in
sections 3.2.6 and 3.2.7. It should be stated here that both aspects could be described
better by using distance-dependent SK parameters in combination with lattice relaxation,
as was also the case for the different geometries discussed earlier.

The last source of possible problems is the procedure of parameters fitting. Since the
original DFT band structure is not reproduced exactly by the TB model, it is conceivable
that some properties of the fitted bands, for example the band inversion in TIs, are
not described correctly. These properties have to be checked carefully before using the
parameters for further calculations.

Finally, the issue of integrating quantities dependent on the TB-calculated wave func-
tion and energies should be addressed. In order to calculate e.g., the averaged Green
function within the CPA scheme or the Chern number of a Weyl semimetal (WSM) (see
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section 5.3), a numerical integration on a k mesh in the BZ has to be performed. Mostly,
the Gaussian quadrature rule [52] with 24 k points for each dimension of the integration
area is used. In the case of the topological invariants (which are integers by definition),
the error is typically less than 10−4.

34



4

C L A S S E S O F T O P O L O G I C A L I N S U L AT O R S

4.1 introduction

In solid state physics, topological insulators (TIs) are a recent hot topic. There is much
effort put into understanding the underlying principles of TIs, describing the key prop-
erties, finding the criteria to distinguish between topologically trivial and non-trivial
insulators and finally proposing and confirming real materials with non-trivial proper-
ties, using both theoretical and experimental techniques. In the past 35 years, many
topological phases have been discovered in crystalline systems and even more are yet
to be found. In the next chapter the different topological phases will be presented time-
ordered. For detailed information see e.g., the references [53–56].

4.2 integer quantum hall effect

The whole field of TIs was opened by the discovery of the QHE by von Klitzing, Dorda
and Pepper [1] in 1980. The authors found experimentally, that for a 2D electron gas in
a strong perpendicular magnetic field, the longitudinal conductivity vanishes for some
values of the magnetic field and simultaneously the perpendicular Hall conductivity
becomes quantized as νe2/h, ν being an integer.

The first theoretical explanation for the effect was given by Laughlin [2]. Free electrons
in a uniform magnetic field have quantized energy levels, called Landau levels, which
are highly degenerate. When the Fermi energy lies between two Landau levels, then the
number of completely filled Landau levels ν is the filling factor. It turns out that ν is a
topological invariant, in the context of TIs called the Chern number or TKNN invariant
(after Thouless, Kohmoto, Nightingale and den Nijs). In their work [3] Thouless et al.
show that ν is the number of conductivity quanta e2/h carried by the edge state of the
QHE system and that it can be calculated as an integral of the Berry curvature, see.
section 4.3.

The fact that the Hall conductivity in the QHE is due to surface states can be seen
from a semi-classical perspective. Inside the material, the electrons propagate on closed
circles, owing to the Lorentz force [57]. Electrons located near the probe boundary
bounce back from it during their cyclotron motion and therefore propagate along the
boundary as a 1D edge channel. There is one edge channel with a conductivity of e2/h,
also called skipping-orbit, for each occupied Landau level. Such a relationship between
the value of the bulk topological invariant and the number of edge states is called bulk-
boundary correspondence [53].
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4.3 chern insulators

An external magnetic field is often necessary to realize the integer QHE. The first theo-
retical proposal of a QHE realization without any external magnetic field was given by
Haldane in 1988 [58]. Haldane constructed a TB model of a 2D hexagonal lattice with
two different atomic species. The net magnetic field vanishes, but there is a periodic
time-reversal symmetry (TRS) breaking magnetic flux perpendicular to the lattice, which
manifests itself in complex-valued next-nearest neighbours hopping elements. Depend-
ing on the model parameters, the topological invariant – the Chern number – can take
values of 0 and ±1. Therefore, the Haldane model is a true TI in the modern sense.

Even though Chern insulators are the first discovered type of TIs, realistic systems
were proposed theoretically in recent years [59–62] in magnetically doped 2D TI systems.
The first experimental realization of a Chern insulator succeeded in 2013 in magnetically
doped thin (Bi,Sb)2Te3 layers. The Hall conductivity was measured to be e2/h, exactly
as in the case of the QHE, but without any external magnetic field [63].

Chern Number and Surface States

The Chern number is an integer-valued topological invariant which characterizes 2D TIs
with broken TRS. Assuming a 2D system with a BZ in the kx-ky plane, the Chern number
can be calculated as the integral of the z-component of the Berry curvature Ωz

n (k) with
the area of integration being the whole BZ:

cn =
1

2π

∫

BZ
d2k Ωz

n. (4.1)

Equation (4.1) gives the Chern number of the n-th band, which is assumed to be isolated
from other bands in this expression.

The calculation of Kohmoto [64] shows that the Chern number has to be integer-
valued. Plugging the definition of the Berry curvature, equation (2.9), into equation
(4.1), we get

cn =
1

2π

∫

BZ
d2k [∇k × An (k)]z (4.2)

with An (k) being the Berry connection. Using the fact that owing to its periodicity the
2D BZ has the same geometry as a torus, which does not have any boundary, cn = 0
when the Berry connection is unique and smooth in the whole BZ. Therefore, the system
can be topologically non-trivial only when the periodic part of the Bloch functions un,k
cannot be defined smoothly and uniquely in the whole BZ.

For the further calculation the BZ can be divided into two parts HI and HI I with an
interface ∂H. For HI an U(1) gauge to the wave functions uI

n,k is chosen such that they
become unique and smooth on HI . A different gauge is chosen on HI I , after which uI I

n,k
is unique and smooth in this region. Therefore, there is a phase mismatch at ∂H,

uI I
n,k = eiχ(k)uI

n,k, (4.3)

with a continuous χ (k). For the gauge-dependent Berry connection at k ∈ ∂H we get:

AI I
n (k) = AI

n (k)−∇kχ (k) . (4.4)

Applying Stokes’ theorem in both parts of the BZ yields

cn =
1

2π

∫

∂H
dk
[

AI
n (k)− AI I

n (k)
]
=

1
2π

∆χ. (4.5)
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∆χ is the phase change gathered along ∂H. Since uI/I I
n,k was chosen uniquely, the phase

change can only be
∆χ = 2πn, n ∈ Z. (4.6)

The Chern number of an isolated band is therefore always an integer. The total Chern
number of an insulator is calculated as [65]

C = ∑
n

cn. (4.7)

The sum in equation (4.7) is over all bands below the Fermi energy, which is located in
the band gap in the case of an insulator. The total Chern number can also be calculated
using the non-Abelian Berry curvature F [66] containing the adiabatic properties of all
occupied bands:

C =
1

2π

∫

BZ
[Tr [F (k)]]z d2k. (4.8)

At this point it is worth noting the effect of TRS on the Chern number. The effect on
the Berry curvature is [67]

Ωn (k) = −Ωn (−k) . (4.9)

Since the Chern number is given as a BZ integral over the Berry curvature, the contri-
butions at the wave vectors k and −k cancel each other, resulting in a vanishing Chern
number. Therefore, to realize a non-zero Chern insulator, TRS has to be broken, for
example by an external magnetic field or by a magnetization.

Exactly as in the QHE case, the number of surface states in Chern insulators is given
by the Chern number, which is the bulk-boundary correspondence [53]. A mathematical
proof was given by Hatsugai in 1993 [68]. For the Haldane model, this correspondence
was demonstrated by Thonhauser and Vanderbilt who investigated the surface electronic
structure of the model [69]. A typical dispersion of a surface state emerging in Chern
insulators is shown in Fig. 4.1.

4.4 2d time-reversal invariant topological insulators

Similar to the QHE, being the quantized equivalent of the Hall effect, the quantum spin
Hall effect (QSHE) is the quantized equivalent of the spin Hall effect (SHE). In the
SHE, the electrons with opposite spin orientations are deflected in opposite directions
due to the SOC which works as a k and spin dependent effective magnetic field [70],
similar to the Mott scattering [71]. The Hall voltage is zero, but there is a finite spin
Hall conductivity. This quantity cannot be measured directly but via the inverse SHE
[72]. In the topological quantized variant of the SHE, the transverse spin conductivity is
quantized and robust against impurities.

Time-reversal invariant TIs or TIs of the QSHE type in 2D were first proposed by
Kane and Mele in 2005 [73]. They investigated the basic properties in a TB model
of a honeycomb lattice with SOC. The Kane-Mele model can be seen as two copies
of the Haldane model, one copy for each spin orientation. The SOC then acts as an
effective magnetic field with opposite sign for both spin orientations. The first real
system proposed in the same year was graphene, yet it turned out the spin-orbit induced
energy gap is too small, approximately 25 µeV for room temperature applications [74].
In 2006 a layered system of HgTe quantum wells between CdTe layers was proposed
as a suitable system for an experimental realization [75] and it was confirmed one year
later by König et al. [76].
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Figure 4.1: Surface BZ of the 1D edge of a Chern insulator featuring one surface state
connecting the valence bands with the conduction bands, from [53]. Accord-
ing to the bulk-boundary correspondence, the Chern number of the occupied
bulk bands must be C = 1.

Z2 Invariant

Kane and Mele also settled the Z2 invariant ν as the characteristic topological invariant
for the 2D TIs of the QSHE type [73]. It can be calculated from the eigenfunctions of the
occupied bands, when TRS is present in the system. The only possible values of ν are 0
and 1. If ν = 0, the system is trivial and it is non-trivial for ν = 1.

The Z2 invariant characterizes 2D TIs with TRS. This condition is crucial, the invariant
cannot be defined when TRS is broken. After the first definition of the Z2 invariant [73],
many alternative ways of calculating it in real systems were proposed [77–81].

The equation most frequently used to define the invariant was introduced by Fu and
Kane [77]:

(−1)ν =
4

∏
i=1

√
det [w (Γi)]

Pf [w (Γi)]
. (4.10)

Each Γi is a so-called time-reversal invariant momentum (TRIM), which is a point in the
reciprocal space where k = −k + G, with G being a reciprocal lattice vector, see Fig. 4.2.
w (k) is a N × N matrix (N the number of occupied bands) defined as

wmn (k) = 〈um,−k| θ̂ |un,k〉 , (4.11)

with the periodic wave functions um,k and the time-reversal operator θ̂ = −iσ̂yK̂ [82].
Here σ̂y and K̂ denote the Pauli matrix and the complex conjugation, respectively. The
Pf operator is the Pfaffian, which is only defined at the TRIMs.

The crucial point in equation (4.10) is the fact, that the branch of the square root has
to be chosen continuously between the TRIMs. Therefore, the evaluation is not trivial
and it does not suffice to calculate the wave functions at the TRIMs, but the phase of
the states um,k has to be chosen continuous between the TRIMs. Therefore, the wave
functions have to be calculated for a large number of wave vectors k located between
the TRIMs, complicating the evaluation of the equation.
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Figure 4.2: A quadratic 2D BZ with its TRIMs Γi.

An equivalent expression, similar to equation (4.1) for calculating the Chern number,
is the Fu-Kane formula [77]:

ν =
1

2π

[
∑
n

{∮

∂BZ1/2

dl An (k)−
∫

BZ1/2

d2k Ωn (k)
}]

mod 2. (4.12)

Here, the Z2 invariant is expressed as a difference of two integrals over one half of the
BZ with the integrands being the Berry connection and the Berry curvature. The wave
functions have to fulfil the time reversal constraint

∣∣∣uI
n (−k)

〉
= θ̂

∣∣∣uI I
n (k)

〉
,
∣∣∣uI I

n (−k)
〉
= −θ̂

∣∣∣uI
n (k)

〉
. (4.13)

The Fu-Kane formula, equation (4.12), can be further discretized according to Fukui
and Hatsugai [78]. In this approach, the integration area denoted by B−, green in Fig.
4.3 a), is divided into a relatively small number of plaquettes for which an integer valued
quantity is calculated. The resulting Z2 invariant ν is given as a sum of these integers,
modulo 2.

First, the BZ is divided into three parts: B±s , the two halves of the BZ which are
connected by the TRS, and B0

s , which is the set of all TRIMs in the BZ, see Fig. 4.3 a) for
more details. The discrete lattice points kl belong to one of the three parts. The states at
the lattice points have to fulfil the time reversal constraint, equation (4.13):

|n (−kl)〉 = θ̂ |n (kl)〉 , kl ∈ B−s (4.14)

and
|2n (kl)〉 = θ̂ |2n− 1 (kl)〉 , kl ∈ B0

s . (4.15)

In the next step, using the multiplet of the 2N occupied states ψ = (|n1〉 , . . . |n2N〉), the
link variable

Uµ (kl) = N−1
µ (kl)det

[
Ψ† (kl)Ψ

(
kl + sµ

)]
(4.16)
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Figure 4.3: a) The division of the BZ into the three parts B±s (red and blue dots) and B0
s

(black dots). B± are the upper and lower halves of the BZ. Figure from [78].
b) Field strength F12 through a plaquette variable.

with the normalization Nµ (kl) =
∣∣det

[
Ψ† (kl)Ψ

(
kl + sµ

)]∣∣ can be defined. sµ is a vector
connecting two neighbouring lattice points, µ = 1, 2. The phase of the link variable, the
gauge potential

Aµ (kl) = ln Uµ (kl) , −π < −iAµ (kl) ≤ π, (4.17)

can be seen as a phase change of the states when going from kl to kl + sµ. The field
strength F12 through a plaquette variable when going along a closed rectangle spanned
by the vectors s1 and s2, see Fig. 4.3 b), is defined as

F12 (kl) = ln
[
U1 (kl)U2 (kl + s1)U−1

1 (kl + s2)U−1
2 (kl)

]
(4.18)

The values of F12/i have to be in the (−π, π) branch of the logarithm. Using the gauge
potential, the field strength can be redefined as

F12 (kl) = ∆1A2 (kl)− ∆2A1 (kl) + 2πin12 (kl) , (4.19)

with ∆µ being the discretized differential operator with the following effect on the func-
tion f : ∆µ f (kl) = f

(
kl + sµ

)
− f (kl) [83]. The integral field n12 (kl) was introduced to

ensure that the field strength stays in the correct branch.
Equation (4.19) establishes a relationship similar to that between the Berry connection

and curvature: the field strength F12 and the gauge potential Aµ are the discretized
Berry curvature and connection [84]. Thus, the Fu-Kane formula (4.12) can be rewritten
in discretized form,

ν =
1

2πi

[
∑

kl∈∂B−
A1 (kl)− ∑

kl∈B−
F12 (kl)

]
mod 2. (4.20)

The sum of the field strength in all plaquettes in the lower half of the BZ B− can be
rewritten by using equation (4.19):

∑
kl∈B−

F12 (kl) = ∑
kl∈∂B−

A1 (kl) + 2πi ∑
kl∈B−

n12 (kl) . (4.21)

Most of the contributions to the sum of the field strength vanish, because the phase dif-
ferences between two neighbouring lattice points occur always twice but with opposite
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sign, owing to the opposite orientation of the vector sµ. Only contributions from the
horizontal boundaries of B− do not cancel.

Plugging equation (4.21) into equation (4.20) leads to the final result for the Z2 invari-
ant via the discretized Fu-Kane formula:

ν =

[
− ∑

kl∈B−
n12 (kl)

]
mod 2. (4.22)

Equation (4.22) was directly implemented in the TB code and used for calculating
the Z2 invariants of TIs. The advantage of this approach is the possibility to calculate
the integrals in equation (4.12) on a coarse mesh, since the result is always an integer
and the result is exact for a dense enough mesh. One still has to be careful and check
for convergence, since it is a priori not clear when the Fu-Kane-Formula is reproduced
correctly by its discretized version, equation (4.20).

Evolution of Wannier-Function Centers

A second method to calculate the Z2 invariants used in this work is tracking the evo-
lution of Wannier function centers, also called the maximally localized Wannier func-
tion (MLWF) method. The approach was proposed by Yu et al. [85] and is based on the
idea of calculating the evolution of the Wannier function centers during a time-reversal
pumping process [77].

Wannier functions in cell R are Fourier transforms of the Bloch functions Ψn,k (r) [86],

〈r|R, n〉 = Wn (r− R) =
A

(2π)2

∫

BZ
dke−ik·RΨn,k (r) . (4.23)

A is the area of the 2D unit cell.
A system at a TRIM is doubly Kramers degenerate and therefore, there exist pairs

of Wannier functions with the same center 〈R, n| X̂ |R, n〉, X̂ is the position operator.
During an adiabatic evolution in k, the degeneracy of the centers is lifted until another
TRIM is reached. Then the centers are degenerate again, but it can happen that the
partners sharing the same center are different from the pair at the original TRIM. In
this case a partner-switching process occured and the system is topologically non-trivial
with ν = 1; see [77] for details.

The centers and their evolution between ky = 0 and ky = π/ay are calculated directly
for effective 1D systems with fixed ky. The position operator is defined as

X̂ = ∑
i,α

e−iδkx Rx
i |α, i〉 〈α, i| (4.24)

with the basis set of atomic orbitals |α, i〉 = φσ (r− Ri − tl). δkx = 2π/Nxax with the
number of cells along the x direction Nx and the lattice constant ax. The eigenvalues of
X̂ are e−iδkx Rx

i with the phase representing a position. They are the centers of MLWFs.
Since the Z2 is a property of occupied states only, the position operator has to be

projected onto the occupied bands by

P̂ky = ∑
n∈occ,kx

|Ψn,k〉 〈Ψn,k| , (4.25)

giving
X̂P
(
ky
)
= P̂ky X̂P̂ky . (4.26)
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Plugging in the TB ansatz, equation (3.1), leads to its matrix form

X̂P
(
ky
)
=





0 F0,1 0 . . . 0 0
0 0 F1,2 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 FNx−2,Nx−1

FNx−1,0 0 0 . . . 0 0





. (4.27)

Fi,i+1 are 2N × 2N matrices with the elements

Fn,m
i,i+1

(
ky
)
= ∑

α

c∗n,α

(
ki

x, ky

)
cn,α

(
ki+1

x , ky

)
(4.28)

expressing overlaps of states at neighbouring discrete k points along the x axis, ki
x =

2π/Nxax.
In the next step the product of the overlap matrices

D
(
ky
)
= F0,1F1,2F2,3 . . . FNx−2,Nx−1FNx−1,0 (4.29)

can be defined, which is a 2N × 2N matrix with the eigenvalues

λD
m
(
ky
)
=
∣∣∣λD

m

∣∣∣ eiθD
m(ky), m = 1, . . . , 2N. (4.30)

The phases of the eigenvalues,

θD
m
(
ky
)
= =

[
log λD

m
(
ky
)]

, (4.31)

are the centers of the Wannier functions, whose evolution along ky gives the Z2 invariant.
In [85] and [87] it is further shown that D

(
ky
)

is equal to a U (2N) Wilson loop for
the non-Abelian Berry connection

D
(
ky
)
= P exp

[∫

Cky

−iA (k) dk

]
(4.32)

with a fixed contour parallel to the kx axis.
Finally, as stated above, pairs of Wannier function centers are degenerate at the TRIMs

ky = 0 and ky = π, but they are independent for ky values between the TRIMs. Two
centers can differ by a multiple of 2π when coming together at the second TRIM. By
folding the θ-ky plane to form a cylinder with the θ = −π and θ = π lines glued together,
a pair of Wannier function centers can be viewed to enclose the cylinder an integer
number of times. The Z2 invariant is given as the total number of times the pairs of
centers wind around the cylinder, modulo two. A graphical evaluation of the invariant
is to plot the Wannier function centers θD

m against ky. At an arbitrary θ a horizontal line
is drawn. The Z2 invariant can then be calculated by counting the number of crossings
between the centers and the reference line, modulo two. For an example see Fig. 4.4.

When this procedure for calculating the topological invariants should be implemented
in the TB model, an additional gauge fixing has to be applied to the eigenvectors cn,α of
the TB matrix, in order to assure the continuity of the states in the BZ. This is achieved
by the so-called parallel transport gauge, described by A. Soluyanov [88]. Considering
a single band, the states at k and k + ∆k differ by a U (1) phase

φ = = log 〈un (k) |un (k + ∆k)〉 . (4.33)
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a) b)

-π

0

π

Θ

−1
2 0

k3/b3

−1
2 0

k3/b3

Figure 4.4: Calculated Wannier function centers for two distinct time-reversal invariant
planes of Bi2Te3. a) The blue reference line is crossed once between two
TRIMs, indicating ν = 1. b) The reference line has no crossings with the
Wannier function centers, the Z2 invariant ν = 0.

To ensure the parallel transport, the overlap 〈un (k) |un (k + ∆k)〉 should be positive real,
assuring the change of the state is perpendicular to the state itself. This can be fixed by
the transformation

u′n (k) = e−iφun (k) . (4.34)

In the non-Abelian case of a set of 2N occupied states, the requirement is that the
overlap matrix Fn,m

i,i+1 in equation (4.28) is Hermitian with positive eigenvalues. This can
be achieved by singular value decomposition, in which a matrix M is decomposed to
M = VΣW† with V and W unitary and Σ positive real diagonal. Rotating the states at
k + ∆k by U = WV† ensures the desired properties.

In the TB model, both methods for calculating the Z2 invariants were implemented
successfully. For the systems studied, both procedures give identical results, thus prov-
ing their reliability in predicting the topological character of real insulating materials.

Surface States

When the investigated system is a non-trivial TI, then by bulk-boundary correspondence
there has to be an odd number of surface state pairs connecting the valence and the
conduction bands at any edge of the 2D system. Due to the Kramers theorem [89] each
pair of the surface states has to fulfil En,k = En,−k. In addition, both surface states have
a crossing at a surface TRIM. A typical shape of the surface band structure is presented
in Fig. 4.5. This can be also seen as a pair of 1D states propagating along the edge of the
2D system. The states forming the pair move in opposite directions and carry oppositely
oriented spin, obeying the TRS.
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Figure 4.5: A pair of surface states connecting the valence and conduction bands at the
edge of a 2D topological insulator of the QSHE type, from [53].

One of the most important properties of the topological surface states is their stability
and robustness against impurities. By bulk-boundary correspondence, there have to be
surface states at the edge of a non-trivial system. Since the invariant remains unchanged
as long as the fundamental band gap does not close and the TRS is preserved, the
existence of the surface states is secured unless an external perturbation breaking the
previous conditions is applied to the system.

In addition, even backscattering of the edge states, which could be caused by impuri-
ties, is forbidden, as long as TRS is present. This means the impurities have to possess
zero magnetic moments. A proof of this fact is given in reference [90]. Consider n sur-
face states propagating at the edge in one direction are described by |Φ〉 and other n
states propagating in the opposite direction by |Ψ〉, connected by the time-reversal op-
erator θ̂: |Ψ〉 = θ̂ |Φ〉. Since the time-reversal operator consists of a product of a unitary
transformation U and the complex conjugation K̂ [82],

〈
θ̂α|θ̂β

〉
=
〈
K̂α|K̂β

〉
= 〈β|α〉 (4.35)

holds for arbitrary states |α〉 and |β〉. Assuming now a time-reversal invariant pertur-
bation V̂ satisfying

[
V̂, θ̂

]
= 0, e.g., an impurity, then the matrix element 〈Ψ| V̂ |Φ〉

describing the backscattering of the surface states reads

〈Ψ| V̂ |Φ〉 = (−1)n 〈Ψ| V̂ |Φ〉 . (4.36)

Here, equation (4.35) and θ̂2 = −1 for an odd number of fermions and θ̂2 = 1 for an
even number of fermions were used. Equation (4.36) establishes that backscattering is
forbidden by TRS for an odd number n of surface state pairs, especially n = 1. This
exactly corresponds to the prediction based on the value of the Z2 invariant: if non-
trivial, then there is an odd number of surface state pairs at the edge with forbidden
backscattering, leading to a constant resistance independent of the perturbation of the
system. This proof relies on one-particle scattering without electron-electron interaction.
Effects of more complicated many-particle scattering processes are discussed e.g., in
reference [90].
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4.5 3d time-reversal invariant topological insulators

Soon after the discovery of time-reversal invariant TIs in 2D systems, in 2007 a gener-
alization to three dimensions was published [79, 91, 92]. As in the 2D case, the time-
reversal invariance is the key symmetry for this type of TIs. The first realistic material,
Bi1−xSbx was proposed to be a 3D TI in 2007 [93] and it was confirmed by ARPES in 2008

[94]. Soon, many more systems were proposed to be TIs, in particular the chalcogenides
Bi2Te3, Bi2Se3 and Sb2Te3 [95, 96], which are now the mostly investigated 3D TIs.

Z2 Invariants for 3D Topological Insulators

The mathematical classification of 3D TIs is similar to the 2D case, but with need for
four distinct Z2 invariants in 3D. A derivation of the invariants was given by Roy [92].
Assuming a cubic BZ

{
−π ≤ kx, ky, kz ≤ π

}
for simplicity, there are six independent

time-reversal invariant planes kx = 0, kx = π, ky = 0, ky = π, kz = 0, kz = π which are
mapped on themselves under time-reversal. For each of these planes Z2 invariants ν1,
ν̃1, ν2, ν̃2, ν3 and ν̃3 can be calculated exactly as in the 2D case, since each of the planes
possesses the same torus topology as a 2D BZ.

For further derivation it is useful to discuss an alternative way of calculating the Z2

invariant [92, 97]. In time-reversal invariant systems, it is possible to decompose the
eigenstates of the Hamiltonian into two groups I and I I, connected with each other
by the time-reversal operator. For each of these groups a Chern number CI/I I can be
calculated. The sum CI + CI I is zero because of TRS but the difference gives the Z2

invariant as
ν =

1
2
(CI − CI I) mod 2. (4.37)

This approach is similar to that in section 4.6. In this case, the quantity 1
2 (CI − CI I)

would be the spin Chern number when the states in the groups I and I I differ in the
sign of their spin eigenvalue.

After introducing a way of calculating the Z2 invariant via the Chern numbers, it can
be shown that ν1, ν̃1, ν2, ν̃2, ν3 and ν̃3 are not independent. First, consider a composite
plane S = S′ ∪ S′′ ∪ S′′′ with S′ =

{
k : ky = 0

}
, S′′ =

{
k : ky > 0, kz = π

}
and S′′′ ={

k : ky < 0, kz = −π
}

, as in Fig. 4.6 (a). The plane S is time-reversal invariant and
therefore a Z2 invariant ν (S) can be associated with it. Furthermore, because of the
periodicity of the BZ, the composition S′′ ∪ S′′′ is equivalent to the kz = π plane. From
equation (4.37) it follows that

ν (S) = ν2 + ν̃3, (4.38)

the sum of the invariants of the two time-reversal invariant planes.
In the following step, the composite plane S can be deformed continuously in a

way that it is always time-reversal invariant (see Fig. 4.6 (b)), until it takes the form
S̃ = S̃′ ∪ S̃′′ ∪ S̃′′′ with S̃′ = {k : kz = 0}, S̃′′ =

{
k : ky = π, kz > 0

}
and

S̃′′′ =
{

k : ky = −π, kz < 0
}

, i.e. the composition of the kz = 0 and ky = π planes
(Fig. 4.6 (c)). Therefore,

ν
(
S̃
)
= ν̃2 + ν3. (4.39)

Since the deformation is continuous, the Z2 invariant cannot change its value: ν (S) =
ν
(
S̃
)
. The same procedure for the other time-reversal invariant planes in the BZ leads

to
ν1 − ν̃1 = ν2 − ν̃2 = ν3 − ν̃3, (4.40)
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Figure 4.6: Composite time-reversal invariant plane S. (a) Before, (b) during and (c) after
the continuous deformation, from [92].
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4.6 3d topological crystalline insulators

demonstrating the dependence of the invariants. Therefore, from the original six in-
variants four independent Z2 invariants |ν1 − ν̃1|, ν̃1, ν̃2 and ν̃3 suffice to describe 3D
time-reversal invariant TIs. Usually, the notation

ν0 (ν1, ν2, ν3)

is used for the quadruple of invariants.
The system is topologically non-trivial, when one of the invariants has a non-zero

value. When ν0 = 1, the system is a strong topological insulator (STI), otherwise it is a
weak topological insulator (WTI). The invariant ν0 is therefore often called the strong
invariant.

Surface States

The surface states of 3D time-reversal invariant TIs connect the bulk valence and con-
duction bands, similar to the 2D case [91]. Since TRS is present, the surface states have
to be Kramers degenerate with a double degeneracy at the surface TRIMs. These de-
generacy points are called Dirac points and the surface states the Dirac cones, owing
to the conical shape of the surface state, see Fig. 4.7 a), and to the fact that the disper-
sion of the surface state is similar to the dispersion of massless fermions which can be
described by a massless Dirac equation near the Dirac point [98]. In this low-energy
picture, spin-momentum locking shows up, which means the spin is oriented in-plane,
tangential to the Dirac cone, rotating clockwise or anti-clockwise along a constant energy
cut of the Dirac cone [4]. In real systems, due to additional symmetries (e.g., rotations),
the spin-momentum locking occurs perfectly only along high-symmetry lines (e.g., in
mirror-planes). As can be seen in e.g., Bi2Te3, even a non-vanishing out-of plane spin
component is possible [99].

Surfaces of TIs can feature more than one Dirac cone in the surface BZ. In STIs, there
is an odd number of Dirac cones in the surface BZ at each crystal surface. The double
degeneracy at the surface TRIM is protected, as long as TRS is not broken. Therefore,
the surface states of TIs are robust to time-reversal invariant disorder, as was already
discussed for the 2D case. However, there is a difference between the 1D edge states of
2D TIs and 2D surface states of 3D TIs. Backscattering is forbidden by TRS for both 1D
and 2D surface states but in the 2D case surface states scattering from the wave vector
k into k′ 6= −k is allowed, leading to a lesser robustness against impurities compared
with the 1D edge states, for which only the wave vectors k and −k are possible.

In contrast to STIs, the protection of the surface states in WTIs is reduced. WTIs
can be seen as a stacking of planes of 2D time-reversal invariant TIs having no surface
states at the surface perpendicular to the stacking direction, see Fig. 4.7 b). In the
surfaces parallel to the stacking direction, an even number of Dirac cones is located at
the surface TRIMs in each surface BZ. The surface states have to cross at non-TRIM
points, at which the degeneracy is not protected by TRS. Weak disorder can split this
degeneracy, which would lead to an insulating behaviour, even at the surface.

4.6 3d topological crystalline insulators

In TIs, time-reversal is not the only symmetry operation which can produce topological
phases. Spatial symmetries of the crystal lattice can be also used to define topological
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Figure 4.7: a) A typical shape of a surface state in TIs. Near the crossing (Dirac point)
the shape is conical and can become warped at energies above or below the
Dirac point. Figure from [TR2]. b) WTI, seen as a stacking of 2D time-
reversal invariant TIs. Blue and red arrows sketch the propagation of the
surface states into opposite directions, depending on the spin orientation.

classes with surface states protected by the given symmetry. In the original paper of
Fu [100] from 2011 mostly rotational symmetries are discussed. Yet since the discovery
of the first realistic material being a topologically crystalline insulator (TCI) – SnTe,
both predicted theoretically [101] and confirmed experimentally [102] in 2012 – with
surface states protected by the mirror symmetry of the crystal, predominantly mirror
symmetry protected TCIs were investigated. In the following, TCIs will always mean
mirror-symmetric TCIs.

Mirror Chern Number

The mirror Chern number is a topological invariant used to characterize TCIs. It was
introduced by Teo, Fu and Kane [103] to characterize the surface states in Bi1−xSbx.

Similar to 3D time-reversal symmetric TIs, only special planes in the BZ are consid-
ered. In this case these are the cuts of the mirror planes with the BZ. The states with
wave vectors in the mirror plane are the eigenstates of the mirror operator, having eigen-
values of ±i. Following the idea of the spin Chern number [97], the states can be divided
into two groups according to their mirror eigenvalue. For each group the Chern num-
ber is calculated, considering only the states with the same mirror eigenvalue. In the
presence of TRS, C+i + C−i = 0, but the mirror Chern number

nM =
1
2
(C+i − C−i) (4.41)

can be non-zero.
Since there are often multiple non-equivalent mirror planes present in the crystal

lattice, the mirror Chern numbers for all these mirror planes should be calculated to
fully characterize the topological phase of the system and to get the full information
about the surface states, pointed out by Kim et al. in 2015 [104].
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Figure 4.8: BZ of a face-centred cubic lattice. The green plane – a cut of the mirror plane
with the BZ – is the integration area for calculating the mirror Chern number.
The surface states occur at the mirror line (green) in the surface BZ (red) of
each surface perpendicular to the mirror plane.

Surface States

In analogy to Chern insulators the number of surface states in TCIs is given by the mirror
Chern number (bulk-boundary correspondence). Here, the prediction holds only for the
surfaces perpendicular to the mirror plane of interest. The modulus of the mirror Chern
number is equal to the number of surface state pairs located at mirror lines, which are
the projections of the mirror plane onto the surface BZ, see Fig. 4.8. On these lines, all
crossings of the surface states are protected by the mirror symmetry, which is the reason
for the surface of TCIs being metallic, as long as the mirror symmetry is preserved.
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5

T O P O L O G I C A L S E M I M E TA L S

5.1 introduction

Besides insulating materials, the interest in topological characterization of metals is
growing rapidly. In the following, metal will be understood as a material in which –
in the investigated energy region – for each energy value bulk states exist at this en-
ergy. This means that there is no global band gap in the investigated part of the band
structure.

The most important members of the topological metals group are topological Dirac
semimetals (TDSs) (section 5.2) and WSMs (section 5.3). These topological phases pos-
sess robust Dirac cones in their bulk band structure and can be characterized by topo-
logical invariants. In addition to the unusual bulk states, they also feature surface states
which show unique transport properties.

5.2 topological dirac semimetals

The key feature of TDSs is the existence of topologically protected Dirac cones within
the 3D bulk. Therefore, this class of materials is often called “3D graphene”, reminding
of the 2D Dirac cones in graphene [105]. Similar to it, also TDSs should possess novel
interesting transport properties, calculated e.g. for Cd3As2 [106]. A comprehensive clas-
sification of TDSs depending on the crystal symmetry was given by Yang and Nagaosa
in 2014 [107] as well as by Yang, Morimoto and Furusaki in 2015 [108].

A Dirac cone can be observed in bulk of 3D TIs, when the system is tuned exactly
to the quantum critical point where the transition between a TI and a normal insulator
occurs [109]. At this point, the valence and conduction bands touch and form a 3D Dirac
cone. Unfortunately, this point in the topological phase diagram can be achieved exper-
imentally only by very accurate tuning and it would then still be vulnerable to weak
perturbations. In contrast, the Dirac cones in TDSs are protected by crystal symmetries
and their splitting by symmetry-conserving perturbations is prohibited.

Yang and Nagaosa [107] studied general systems with TRS and inversion symmetry
(IS). These two symmetries require En,σ (k) = En,−σ (−k) and En,σ (k) = En,σ (−k).
Combined they give En,σ (k) = En,−σ (k), therefore the bands are doubly degenerate at
each k. An accidental band crossing (ABC) would lead to a four-fold degeneracy at the
crossing point. Assuming additional rotational symmetries, the ABCs can exist for a
finite range of system-controlling parameters. The authors discuss two types of Dirac
semimetals. In the first case, a single Dirac cone is located at a TRIM. In the second case
a pair of Dirac cones exists on a rotational axis (e.g. kz), see Fig. 5.1 left. Then the kz = 0
plane features no crossings of the conduction and valence bands and various topological
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Figure 5.1: Left: Cubic bulk BZ with a pair of Dirac cones (blue) located at the kz axis.
Topological invariants can be calculated for the kz = 0 plane (green). Right:
Surface BZ of the (100) surface with projected bulk kz axis (red), bulk Dirac
cones (blue) and the kz = 0 plane (green). If the topological invariants calcu-
lated for the bulk kz = 0 plane posses non-trivial values, then there would
be surface states located at its projection onto the surface BZ (green line).

invariants can be calculated, when the plane possesses the required symmetries. Since
a TR-symmetric system is considered, a Z2 invariant can be defined. When kz = 0 is a
mirror plane, then the mirror Chern number can be calculated.

The Dirac cones in TDSs are always doubly degenerate (with a four-fold degenerate
Dirac point), in contrast to e.g. WSMs with non-degenerate bands (except at crossings,
i.e., at Weyl points), see section 5.3. In the literature [107, 108], by assuming the presence
of both TRS and IS, the twofold degeneracy of all bands is assured. This does not mean
that the presence of IS is necessary for TDSs. Twofold degenerate bands in special
regions in the BZ can be achieved by the presence of other crystalline symmetries, for
example screw axes or glide planes, even if IS is violated. Therefore, TDSs can exist also
in systems without an inversion center, e.g., in strained HgTe, see section 6.5.

Surface States

Topologically non-trivial TDSs possess very interesting surface properties. From the
bulk-boundary correspondence it follows, that surface states protected by symmetry
should exist at surfaces which are perpendicular to the plane for which the invariants
were calculated. For an example see Fig. 5.1. For a system in which a mirror Chern
number can be calculated, the behaviour of the surface states is exactly the same as in
TCIs, section 4.6. If only the Z2 invariant can be calculated and is equal 1, then there is
one pair of surface states with opposite spin orientation at the projection line with the
Dirac point located at a TRIM, exactly as it is the case for 2D time-reversal invariant TIs.
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The protection of the surface states by symmetry is in both cases valid only at the
projection line. The surface states exist also in regions out of this line, but their crossings
are not protected because the protecting symmetry is not present in these regions.

5.3 weyl semimetals

Another type of metallic materials which can be characterized by topological invariants
are the Weyl semimetals (WSMs). The name was first put by Wan et al. in 2011 [110].
While the bulk Dirac cones of TDSs can be in a low-energy limit described by the four-
component Dirac equation, the properties of the Weyl fermions can be described by the
Weyl equation, which is a two-component analogue of the Dirac equation for massless
particles. Therefore, the key difference between TDSs and WSMs is that the Dirac cones
are twofold degenerate with a fourfold degenerate crossing in the case of a TDS and
non-degenerate with a twofold degenerate crossing in the case of a WSM. Since all bulk
bands are doubly degenerate in a crystal with both TRS and IS, at least one of these
symmetries has to be broken in order to realize a WSM.

The emergence of WSMs can be well understood by looking at the phase transition
from a TI phase to a topologically trivial insulating phase. Assuming that the system is
controlled by an external parameter m, then the WSM phase exists for a finite range m1 <

m < m2. m1 and m2 are the critical points at which the valence and conduction bands
touch. For m < m1 the system is in one insulating phase and for m > m2 in another,
see Fig. 5.2 (a). Such phase transitions between topologically distinct insulating and
metallic phases existent for a finite parameter range as phase boundary were discussed
by Murakami in 2007 [111], later described in more detail [112, 113].

After the first proposal of WSMs in pyrochlore iridates [110], other systems were in-
vestigated theoretically, e.g., noncentrosymmetric TIs [114] or Hg1−x−yCdxMnyTe [115],
with broken IS in the former case and TRS broken by doping with Mn atoms which
carry a finite magnetic moment in the latter. The first WSM confirmed experimentally
by ARPES is TaAs [116, 117], which was proposed theoretically by different groups [118,
119].

Topological Charge

The reason for the existence of the WSM phase in a finite region of the topological phase
diagram is the fact that the Weyl points carry a topological charge to which a Chern
number can be assigned. An effective Hamiltonian for a Weyl fermion has the form
[120]

Hk = vijkiσj, i, j = x, y, z, (5.1)

with vij being velocities, k the wave vector and σj Pauli matrices, satisfying the condition
det

[
vij
]
6= 0. This effective Hamiltonian is the Weyl Hamiltonian and describes two

bands with a linear dispersion crossing each other at k = 0. A special case with vij =
1
2 δij

was discussed already by Berry [11] in 1984. He showed that the Berry curvature of the
two bands is

Ω± (k) = ±
k

2k3 , (5.2)

which has the same structure as the magnetic field of a magnetic monopole with a
magnetic charge of ∓ 1

2 [121]. Therefore, by analogy it can be stated that the Weyl points
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Figure 5.2: Phase transition between two topologically non-equivalent insulating phases
controlled by the parameter m. a) The system is not invariant under IS. At
m = m1 the bulk bands form Dirac points with a four-fold degeneracy. In-
creasing m leads to a splitting of each Dirac point into two-fold degenerate
Weyl points. Other pairs of Weyl points meet for m = m2 and they annihilate
again. The system enters an insulating phase for m > m2. b) The system
is invariant under IS and the bands are always two-fold degenerate, WSM
phase cannot exist in a finite range of parameter values. Figure taken from
[111].

are the monopoles of the Berry curvature field. In equation (5.2) + (−) denotes the band
energetically above (below) the Weyl point located at E = 0 and k = 0.

A sphere in k space with a finite radius surrounding the Weyl point has a closed
surface S. Integrating the projection of the Berry curvature Ω− of the occupied (lower)
band onto the surface normal n over the whole surface S gives the Chern number

c =
1
2

∫

S
d2k Ω−(k)·n. (5.3)

By this procedure, Weyl points can be found as in equation (4.1) also in bulk band
structures of real materials. It is necessary to ensure that the sphere is small enough to
surround a single Weyl point. Otherwise, the result would be the sum of the topological
charges of the enclosed Weyl points.

The fact that each Weyl point possesses a Chern number explains their robustness,
since the Chern number can only change in discrete steps. In a WSM this is only possible
when two Weyl points with an opposite topological charge (Chern number) meet. Then
the pair of Weyl points annihilates and the bands can acquire a mass, i.e. a band gap
opens up [113, 114] (m = m1 or m = m2 in Fig. 5.2 (a)).

Surface States

Similar to TDSs, also WSMs possess surface states attributed to the existence of a non-
zero Chern number. The following explanation is based on that given in [110] and can
be understood by means of Fig. 5.3. For simplicity, a cubic bulk BZ with two Weyl points
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Figure 5.3: Bottom: A cubic BZ with two Weyl points (red dots) enclosed by cylinders
(green) with a calculated Chern numbers ±1. Top: (001) surface Fermi sur-
face with the projections of the Weyl points (red dots), cylinders (black loops)
and a Fermi arc (orange) connecting the both Weyl point projections.

is considered. A cylinder oriented along the kz direction encloses one Weyl point. The
surface of the cylinder is a closed surface because of the periodicity of the BZ. Therefore,
the Chern number can be calculated on this surface via equation (5.3), which is also the
topological charge of the enclosed Weyl point. Introducing a (001) surface leads to a
surface BZ, onto which the Weyl points and the cylinder are projected. The projection
of the cylinder is a closed loop C with the projection of the Weyl point inside. By
bulk-boundary-correspondence, if the Chern number is ±1, then a surface state has to
cross the bulk band gap somewhere along the loop C. This surface state will cross any
constant energy E in the bulk band gap. Therefore, when plotting a constant energy cut
for any bulk band gap energy, the loop C will always cut a surface state at one point, as
long as the cylinder is small enough to encircle only one Weyl point. If both Weyl points
with opposite topological charges would lie inside the cylinder, then the Chern number
would be zero and no surface states would cut the loop C in the constant energy cut.
From this follows that, when the Fermi energy is equal to the Weyl point energy, the
surface states are open lines connecting the projections of the Weyl points with opposite
topological charges, hence called Fermi arcs.

Such a form of a Fermi surface is unique in the field of condensed matter physics
and promises interesting new properties, such as anisotropic surface charge and spin
transport. Furthermore, when a time-reversal symmetric system is considered, then for
each Weyl point located at a wave vector k there is a Weyl point located at −k having
the same topological charge. Therefore, there are at least four Weyl points in the BZ
when TRS is present. In reality, there are mostly even more Weyl points in the bulk BZ
of a WSM [110, 114, 117] produced by additional crystal symmetries (e.g., reflections
or rotations). As stated earlier, the Weyl point projections onto the surface BZ with
different topological charges have to be connected by Fermi arcs when the Fermi energy
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equals the Weyl point energy. Interestingly, it is not obvious which pairs of Weyl point
projections have to be connected by the arcs. This can depend strongly on the choice of
crystal termination, as was shown e.g., for TaP in [119]. In this compound, different pairs
of Weyl point projections are connected by Fermi arcs for different crystal terminations
(Ta or P). This fact can even restore the picture of Fermi lines being closed, when a
crystal with both top and bottom surface is considered (as it is the case in slabs or thin
films). Assuming two pairs of Weyl points, there are four Fermi arcs in total, two from
the top and two from the bottom surface. Since different pairs of Weyl point projections
are connected at the different surfaces, the four Fermi arcs establish a closed Fermi line.
This will be discussed in more detail in section 6.5.
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6
P U B L I C AT I O N S

6.1 introduction

In this chapter, selected publications are presented, which provide main results of the
cumulative thesis. The investigated topics roughly follow the evolution of general inter-
est of the topological materials community, beginning with the TIs and TCIs and ending
– for the time being – with topological semimetals which are in the focus of the recent
investigations.

6.2 pressure-induced topological phase transitions in rocksalt chal-
cogenides

This work [TR3], which was done in collaboration with the group of Silvia Picozzi from
the University of L’Aquila in Italy, was motivated by the discovery of the first TCI, SnTe,
in 2012 [101]. The main goal of the project was to investigate the electronic properties
of other rocksalt chalcogenides similar to SnTe (PbTe, PbSe, PbS, and GeTe) and to
understand the microscopical reasons for some of the materials being TCIs and others
being normal insulators. Furthermore, the transition from a normal insulator to a TCI
could be achieved by simulating hydrostatic pressure.

The first result of the work was that strong SOC is not the only reason for a system
being topologically non-trivial, as is often stated in the literature. In the case of rocksalt
chalcogenides also an asymmetry in the s-p hybridization plays an important role: the
sC pA and sA pC hybridizations differ sizeably. C and A denote the cation and anion,
respectively.

The magnitude of the influence of the asymmetry on the electronic band structure
can be further increased by hydrostatic strain, which was simulated by both DFT- and
TB-based calculations. In the TB scheme, the bulk band structure was calculated for
different lattice constants, identifying the phase transition point where the valence and
conduction bands touch at the L point in the BZ, see Fig. 6.1, not shown in the publica-
tion. In addition, the mirror Chern number was calculated for all materials and lattice
constant values, indicating that after passing the critical point the systems (with the ex-
ception of GeTe) become TCIs with mirror Chern number nM = −2, same as SnTe under
ambient conditions.

To further confirm the results, also the surface electronic structure was calculated for
different values of the lattice constant, showing surface states crossing the whole band
gap only in the TCI phase. The crossings occur only in the mirror lines (X-Γ) of the
surface BZ, as is typical for TCIs, see Fig. 2 of the publication [TR3].
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lattice constant a. a0 is the equilibrium lattice constant.
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By means of a comprehensive theoretical investigation, we show that external pressure can induce topological
phase transitions in IV–VI semiconducting chalcogenides with a rocksalt structure. These materials satisfy
mirror symmetries that are needed to sustain topologically protected surface states, at variance with time-reversal
symmetry that is responsible for gapless edge states in Z2 topological insulators. The band inversions at high-
symmetry points in the Brillouin zone that are related by mirror symmetry are brought about by an “asymmetric”
hybridization between cation and anion sp orbitals. By working out the microscopic conditions to be fulfilled in
order to maximize this hybridization, we identify materials in the rocksalt chalcogenide class that are prone to
undergo a topological phase transition induced by pressure and/or alloying. Our model analysis is fully confirmed
by complementary advanced first-principles calculations and ab initio-based tight-binding simulations.
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I. INTRODUCTION

Semiconducting IV–VI chalcogenides CA (C = Ge, Sn, Pb
and A = S, Se, Te) represent an attractive class of materials,
due to their unique structural and electronic properties.
The most interesting compounds—SnTe, GeTe, and the lead
chalcogenides PbA—display a rocksalt structure.1 Both SnTe
and GeTe have been long known for their ferroelectric
properties in the low-temperature distorted structure,2 whereas
PbA possess potential relevance for thermoelectric and op-
toelectronic applications3. Their outstanding properties have
been characterized by a variety of experimental techniques.3,4

In parallel, a large number of theoretical investigations, carried
out with different methods ranging from tight-binding (TB) to
density-functional theory (DFT) calculations, have addressed
their peculiar electronic structure.5–10 Interest in this material
class has been renewed because of relativistic effects that are
relevant for future spintronic devices. For example, a giant
Rashba effect has been predicted in the ferroelectric phase of
bulk GeTe,11 while SnTe is a topological crystalline insulator
(TCI) with spin-polarized surface states.12,13 These observa-
tions motivated us to investigate the possibility of topological
phase transitions in this class of narrow-gap semiconductors.

In the Z2 class of topological insulators (TIs), time-reversal
symmetry ensures topologically protected edge states.14,15 An
odd number of Dirac cones pinned at time-reversal-invariant
momenta (TRIM), as found, e.g., in Bi1−xSbx and Bi2Se3,14,15

distinguishes a Z2 TI from a conventional band insulator. In
contrast, crystal symmetries play a central role in the class of
TCIs.16,17 Beside symmetry requirements, band inversions in
the bulk insulating electronic structure and strong spin-orbit
coupling (SOC) are needed for metallic surface states to
appear. In face-centered-cubic (fcc) TCIs, a mirror symmetry
causes the appearance of an even number of Dirac cones on
surfaces preserving the symmetry [see Figs. 1(a) and 1(b)].
These cones are situated off the TRIM X within the �-X
line of the surface Brillouin zone.12 Since all members of
the cubic IV–VI class share the same crystal symmetries,
all of them and their alloys may be prone to topological
phase transitions. Such transitions, characterized by a nonzero
mirror Chern number,12,18 have been proposed for PbTe and

PbSe under pressure,10,12 and were experimentally observed in
ternary alloys Pb1−xSnx(Se,Te) as a function of doping.19–22

These findings are not simply explained by the SOC strength:
Although SOC in Pb (Z = 82) is larger than in Sn (Z = 50),
PbTe is nonetheless a conventional band insulator, as opposed
to the TCI SnTe. This clearly calls for a deeper understanding
of the microscopic origin of the band inversions.

In this paper we show that in principle all members of the
rocksalt chalcogenide class can be turned into TCIs under
pressure, with the only exception of GeTe. The methods
used comprise advanced first-principles simulations and ab
initio-based TB calculations. Consistent with sophisticated
GW computations,10 we find that the fundamental gap of
lead chalcogenides shrinks upon applying external pressure,
closes at a critical pressure, and subsequently reopens with
an inverted band character. This behavior is typical of a
topological phase transition and is exemplified for PbTe in
Fig. 2, where a relativistic TB scheme6 for the semi-infinite
system was used.23,24 As long as the fcc structure is preserved,
these band inversions cause metallic surface states [Fig. 2(c)].

To benchmark the reliability of our predictions, we per-
formed accurate DFT calculations with hybrid functionals,25 as
implemented in VASP.26–28 These improve significantly with re-
spect to local-density or generalized-gradient approximations,
especially for narrow-gap semiconductors.9,29 For PbTe, we
find the fundamental band gap at L to close at a volume ratio of
V/V0 = 0.91 [V0 is the equilibrium volume; see also Fig. 2(b)]
that is accompanied by band inversion (Fig. 3). This finding
corroborates the topological phase transition deduced from TB
calculations (cf. Fig. 2). At variance with PbTe, hole pockets
appear in the electronic structure of GeTe, concomitantly with
the pressure-induced closure of the fundamental gap, thus
triggering a semimetallic state instead of a TCI. These essential
differences require clarification in a microscopic picture.

II. SEMI-EMPIRICAL DISCUSSION

Many peculiar electronic properties of PbA were resolved
by noting that the Pb-6s band lies below the top of the
valence band. The existence of an occupied cation-s band
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FIG. 1. (Color online) (a) Crystal structure and (b) Brillouin
zone of rocksalt chalcogenides, showing one mirror plane (green)
containing the high-symmetry points �, L, and X as well as their
projection onto the [001] surface. Schematic representation of the
band structure at the L point in the topologically trivial phase (c) and
upon pressure-induced enhancement of sp hybridization (d). Dashed
lines separate occupied from unoccupied energy levels.

leads to strong level repulsion at L, explaining the narrow
band gap Eg and its unusual ordering within the series.8,9

The central role of s electrons can be deduced within the
framework of linear combinations of atomic orbitals.30 The
only nonzero matrix elements at L in the nearest-neighbor
approximation are those describing the hybridization between
cation (anion) s and anion (cation) p states. Because of
SOC, this hybridization close to the Fermi energy involves
mainly a combination of atomiclike p states on C and A sites,
with a total angular momentum j = 1/2, namely, |±1/2〉 =
(|px, ∓ 1/2〉 ± i |py, ∓ 1/2〉+ |pz, ± 1/2〉)/√3, and ener-
gies ε̄p,A(C) = εp,A(C) ± 2λA(C); here, εp,A(C) and λA(C) are the
orbital energy and the SOC constant of the C (A) ion, respec-
tively. In the atomic limit, corresponding to the topologically
trivial phase, �0 ≡ ε̄p,C − ε̄p,A > 0 means occupied A and
unoccupied C p shells [Fig. 1(c)]. The hybridization with the
s states pushes both C and A p levels to higher energies; this
energy shift is roughly proportional to the squared effective
hopping interaction tsp and inversely proportional to the
energy differences �1 ≡ ε̄p,C − εs,A and �2 ≡ ε̄p,A − εs,C.
The energy gap at L can then be approximated as Eg ≈ �0 +
10t2

sp(�−1
1 − �−1

2 )/3. Hence, for band inversion to occur, two
conditions have to be satisfied: (1) The energy separation
�0 between p states must be sufficiently small, and (2)
the sp hybridization should be strongly “asymmetric.” This
asymmetry is realized if �1 � �2, i.e., if the cation (anion)
s level is energetically close to (far from) the anion (cation)
p states.

The band gap is directly related to the �k · �p Hamiltonian at
L, ̂H = mσz;5,12 σz = ±1 corresponds to the p character on
C and A sites, respectively. A negative m ≡ Eg/2 implies that
conduction and valence bands at L derive respectively from A
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FIG. 2. (Color online) Topological phase transition in PbTe upon
pressure, calculated by a TB method. For selected volume ratios
V/V0, the spectral density of the topmost layer of the (001) surface
is represented in a color scale [(b), in states /eV ]. Topological trivial
phases with mirror Chern number 0 appear for the equilibrium volume
(a) and close to the critical pressure (b). A topological nontrivial
phase (c) shows a mirror Chern number of −2. Its Dirac surface state
is depicted in a constant-energy cut around X at EF −0.05 eV [inset
in (c)]. A k path shown also in (c) is marked by arrowed lines. The
k axis common to (a)–(c) shows 2/5 of the M-X and X-� lines around
X [cf. Fig. 1(b)].

and C ions. A reversal of m in the presence of the fcc-structure
mirror symmetries implies a topological phase transition with
an associated change of the mirror Chern number.12 A large
SOC is required to fulfill the first condition. The second
condition, on the other hand, could in principle be controlled
by alloying ternary solid solutions CxC′

1−xA (along the path
pursued in Refs. 19–22) or CAxA′

1−x .31 Because the band
inversion is proportional to the strength of the sp hybridization,
tsp ∝ d−2, a straightforward way to induce a topological phase
transition is to apply external pressure.10,12,30

Guided by these considerations, we performed an empirical
screening within the rocksalt chalcogenide class, using differ-
ent TB and ab initio-based TB parametrizations6,30,32 (Table I).
Trends are consistent and allow to loosely identify three
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TABLE I. Estimated relevant quantities from Harrison’s (Ref. 30) and Lent’s (Ref. 6, in brackets) parametrizations. Values in square
brackets were obtained from first principles by projecting DFT bands on a TB model using maximally localized Wannier-functions (Ref. 32).
SOC and lattice constants a0 are taken from Refs. 33 and 1, respectively.

PbTe SnTe PbS PbSe GeTe

�0 (eV) 0.71 1.35 3.15 2.09 1.19
(1.72) (0.95) (3.92) (3.29) (0.28)
[2.68] [1.8] [4.72] [4.00] [1.64]

�1 (eV) 10.08 10.71 13.77 13.29 10.55
(12.70) (13.13) (16.25) (15.75) (11.92)
[12.16] [11.31] [15.21] [15.10] [10.29]

�2 (eV) 4.32 4.75 1.89 2.95 6.63
(7.16) (6.69) (5.59) (5.18) (8.51)
[5.80] [5.44] [4.37] [4.84] [5.68]

a0 (Å) 6.462 6.327 5.936 6.124 6.009

subclasses: (i) The first subclass, comprising PbTe and SnTe,
is characterized by a relatively small �0 (mainly due to the
large λTe) and similar differences �−1

1 − �−1
2 . In this respect,

the main reason why SnTe is a TCI but PbTe is not could
be the smaller equilibrium volume of the former with respect
to the latter. In turn, a relatively small pressure could tune the
topological transition in PbTe,12 and the doping-dependent
topological transition in Pb1−xSnxTe could be ascribed to a

(chemical) pressure effect. (ii) The second subclass comprises
PbS and PbSe and shows �0’s approximatively twice as large
as those of the first subclass, due to smaller λA. However, �2

is much smaller than �1; it is thus very likely that a reduction
of the lattice constant and the associated increase of tsp could
result in band inversion (due to the strongly asymmetric sp

hybridization) and, hence, in a topological phase transition.
(iii) GeTe, belonging to the third class, even though displaying

FIG. 3. (Color online) DFT electronic structures of selected rocksalt chalcogenides for different volume ratios V/V0, with band characters
highlighted by a color scale (anions: blue; cations: red).
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a small �0, does not seem to fulfill condition (2) above. Thus,
a reopening of the gap is unlikely and a transition to a metallic
state is expected upon applying pressure (Fig. 3).

III. RESULTS

Our DFT calculations confirm this scenario. The band
inversion is highlighted for PbA at selected volumes (Fig. 3).
For PbTe, the closure of the band gap shows up at a critical
volume of 0.92V0; hence, the band inversion has already
occurred at a volume ratio V/V0 = 0.91 (pressure ∼4 GPa),
with a predominant Te character in the conduction band at
L. The negative gap increases upon further decreasing the
volume (V/V0 = 0.86 in Fig. 3). Indeed, the atomic and
orbital resolved character of the valence (conduction) band
at L shows a predominant Pb-s and Te-p (Pb-p and Te-s)
contribution at V0, whereas an opposite character appears
below the critical volume.34 The same trend with pressure
holds for both PbS and PbSe, with critical volumes of about
0.94V0 and 0.96V0 (TB: 0.91V0 and 0.96V0; pressure 4.2–6.3
and ∼2.4 GPa), respectively. The predicted critical pressures
can be compared with those at which PbA undergo structural
transitions, hence losing the fcc-structure symmetry required
for the TCI transition; these are 2.98 GPa,35 6.01 GPa,36 and
6.05 GPa (Ref. 37) for A = S, Se, Te, respectively. Hence,
in principle, the topological transition may be observed in
high-pressure experiments on PbSe and PbTe, for which
structural transitions happen at higher pressures than the
predicted critical ones. For GeTe, on the other hand, the gap
closes at a critical volume of 0.9V0 (pressure ∼5 GPa). This
finding is consistent with the smaller hybridization asymmetry.
Furthermore, since the j = 1/2 and j = 3/2 manifolds in
the conduction bands are close in energy due to small λGe,
a further increase of pressure pushes them both below the
anion p states, thus turning GeTe into a semimetal (Table I
and Fig. 3).

To provide further support for the pressure-induced topo-
logical phase transitions, we performed relativistic TB calcu-
lations for bulk PbTA and GeTe. The mirror Chern number
is computed in the spirit of the spin Chern number.38 Since
the Bloch states are eigenstates of both the Hamiltonian and
the mirror operator,39 we separate them into two categories

with mirror eigenvalues ±i and calculate the Berry curvature
for both. The integral of the Berry curvature over the
intersection of the mirror plane with the Brillouin zone yields
Chern numbers n±i , from which the mirror Chern number
cm ≡ (n+i − n−i)/2 is obtained.18 While GeTe is always
topologically trivial, we find a mirror Chern number of −2
for band-inverted PbA. In summary, the numerical calculations
corroborate the microscopic picture derived above.

IV. CONCLUSIONS

In conclusion, we have shown that a strongly asymmetric
sp hybridization and a sizable SOC are necessary conditions
for band inversions to occur at the L points and the related
TCI state to arise in rocksalt chalcogenides. By performing
a thorough analysis of pressure effects in the entire family
of fcc chalcogenides, we verify the topological nature of the
transition, as shown by nonzero mirror Chern numbers and
gapless edge states at (001) surfaces. In principle, the predicted
TCI transition may be experimentally investigated in PbTe and
PbSe by using infrared or Raman spectroscopy, as recently
proposed for pressure-induced transitions of Z2 topological
order.40,41 Furthermore, we suggest that topologically trivial
lead chalcogenides could be turned into a topologically
nontrivial state upon a combination of applied pressure and
alloying through anion substitution, a yet unexplored path
to engineer a TCI.42 This scenario may be relevant for the
experimental search of conducting edge states, as the carrier
concentration, largely determined by the presence of cation or
anion vacancies, can be easily controlled in lead chalcogenides
during the crystal growth,3 as opposed to SnTe, where a
high concentration of cation vacancies is frequently found,
resulting in an undesirable p-type degenerate conducting
behavior.

ACKNOWLEDGMENTS

This work is supported by the Priority Program 1666
“Topological Insulators” of the DFG. We acknowledge
PRACE for awarding us access to resource MareNostrum
based in Spain at Barcelona Supercomputing Center (BSC-
CNS).

1Semiconducting II–VI, IV–VI, and V–VI Compounds, edited by
N. K. Abrikosov, V. F. Bankina, L. V. Poretskaya, L. E. Sheliniova,
and E. V. Shudnova (Plenum, New York, 1968).

2M. E. Lines and A. M. Glass, Principles and Applications of
Ferroelectrics and Related Materials (Clarendon, Oxford, UK,
1977).

3Lead Chalcogenides: Physics and Applications, edited by
D. Khokhlov (Taylor & Francis, New York, 2003).

4R. Dornhaus and G. Nimitz, in Narrow-Gap Semiconductors,
Springer Tracts in Modern Physics Vol. 98, edited by G. Höhler
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publications

6.3 dual topological character of chalcogenides : theory for b i2 te3

The next publication [TR2] was motivated by unclear results of different groups con-
cerning the splitting of the Dirac point of a Z2 TI when doped by magnetic impurities.
For example, Chen et al. [122] presented a clear evidence of Dirac cone splitting in Fe
doped Bi2Se3, but Schlenk et al. [123] found no splitting in the ARPES spectra measured
on their probes of the same material. In our work we have shown that the magnetic
ordering of the impurities is crucial for the behaviour of the surface state band structure,
the possible effects ranging from splitting of the Dirac cone to an unsplit but shifted
Dirac point, thus possibly explaining both of the experimental results.

Instead of modelling magnetic impurities with the CPA or in a supercell, the effect
of magnetism was simulated by an exchange term in the TB model, having the same
effect as an effective external magnetic field. The TI studied was Bi2Te3 and the effective
magnetic field was chosen to be oriented in different directions, especially parallel and
perpendicular to the considered mirror planes of Bi2Te3.

In a clean system, not only TRS but also other symmetries of the point group of the
crystal are present. This consideration leads to the fact that time-reversal symmetric
TIs do not belong only to one topological Z2 class but they can also be TCIs. Bi2Te3

possesses three non-equivalent mirror planes perpendicular to the (111) surface. The
mirror Chern number for these planes reads n M = −1, in consonance with the fact that
there is one surface state at the Γ point of the surface BZ of the (111) surface. We called
such TIs dual because of their affiliation to the two distinct groups of TIs.

Applying a magnetic field to the TI breaks the TRS and makes it impossible to calcu-
late the Z2 invariant, which is not even defined in this case. But in a special case, in
which the magnetic field is oriented perpendicular to a mirror plane, it is possible to
calculate the mirror Chern number, since the mirror symmetry is preserved in this case.
The result is again n M = −1, indicating that there should be no splitting of the Dirac
point for this magnetic field orientation. This was also shown by calculating the surface
electronic structure.

A splitting of the Dirac point is possible when both the mirror symmetry and TRS are
broken, e.g. by a magnetic field oriented not perpendicular to the mirror plane. These
findings lead to the conclusion that it is important to investigate the possible ordering
of the magnetic impurities in order to understand their influence on the surface states
of the TI.
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A topological insulator is realized via band inversions driven by the spin-orbit interaction. In the case of
Z2 topological phases, the number of band inversions is odd and time-reversal invariance is a further
unalterable ingredient. For topological crystalline insulators, the number of band inversions may be even
but mirror symmetry is required. Here, we prove that the chalcogenide Bi2Te3 is a dual topological
insulator: it is simultaneously in aZ2 topological phase withZ2 invariants ðν0; ν1ν2ν3Þ ¼ ð1; 0 0 0Þ and in a
topological crystalline phase with mirror Chern number −1. In our theoretical investigation we show in
addition that the Z2 phase can be broken by magnetism while keeping the topological crystalline phase. As
a consequence, the Dirac state at the (111) surface is shifted off the time-reversal invariant momentum Γ̄;
being protected by mirror symmetry, there is no band gap opening. Our observations provide theoretical
groundwork for opening the research on magnetic control of topological phases in quantum devices.

DOI: 10.1103/PhysRevLett.112.016802 PACS numbers: 73.20.At, 71.70.Ej, 75.70.Rf

Introduction.—Z2 topological insulators are band insula-
tors featuring surface states that are spin polarized and cross
the fundamental band gap [1,2]. This is a consequence of an
odd number of inversions of bulk bands that are driven by
the spin-orbit interaction alone or in combination with
crystal lattice distortions [3–5] or chemical disorder [6,7].
The odd number of bulk-band inversions distinguishes aZ2

topological insulator phase from a conventional band
insulator phase, as has been proven for the Z2 topological
insulators BixSb1−x and the chalcogenides Bi2Se3, Sb2Te3
and Bi2Te3 [6,8,9]. The Dirac surface state of a Z2

topological insulator is located at a time-reversal invariant
momentum (TRIM) of the two-dimensional Brillouin zone.
Since it is protected by time-reversal symmetry, the surface
state is robust against time-reversal-invariant perturbations
(e.g., nonmagnetic adatoms).
Narrow band gap semiconductors, like SnTe, show an

even number of band inversions [10] and, thus, do not
belong to the Z2 topological class (ν0 ¼ 0). However, they
show a Dirac surface state that is protected by crystal
symmetry, rather than by time-reversal symmetry. Hence,
they belong to the class of topological crystalline insulators
[11]; their mirror Chern number is −2 [10,12]. The two
Dirac surface states are located within a mirror plane
perpendicular to the surface but not necessarily at a
TRIM of the two-dimensional Brillouin zone.
An insulator that belongs simultaneously to theZ2 phase

and to the topological crystalline phase—a dual topological
insulator—would allow us to manipulate its topological
phase, and consequently its conducting Dirac surface state,
by magnetism, either by an external magnetic field or by
doping with magnetic atoms. Applying a magnetic field
perpendicular to amirror plane of the crystal latticewould on
one hand break time-reversal symmetry and, as a

consequence, destroy theZ2 topological phase. On the other
hand, themirror symmetry is maintained and the topological
crystalline phase is kept. The Dirac surface state that is still
protectedbymirrorsymmetrywouldbeshiftedoff theTRIM,
without opening of a band gap (Fig. 1). Applying amagnetic
fieldwith a componentwithin themirrorplanewoulddestroy
both the Z2 phase and the topological crystalline phase; a
band gap will open up in the Dirac state, leading to a
conventional insulator phase [13].
In this Letter, we prove that the exemplary chalcogenide

Bi2Te3 is such a dual topological insulator: besides being in
its well-established Z2 phase, it is simultaneously in the
topological crystalline phase. Teo et al. have predicted that
Bi1−xSbx is a dual topological insulator [6]. On top of this,
we show by theoretical electronic structure calculations that
the above sketched scenario of magnetic control of topo-
logical phases holds. Furthermore, Bi2Te3 has Z2 invari-
ants of ðν0; ν1ν2ν3Þ ¼ ð1; 0 0 0Þ; consequently, a Dirac
surface state would exist on any crystal truncation plane.
In other words, a sphere made of Bi2Te3 would show a
Dirac state anywhere on its surface. In contrast, a topo-
logical crystalline insulator would show a Dirac state only
in surface planes normal to the mirror plane. Hence, a
Bi2Te3 sphere in a magnetic field perpendicular to the
mirror plane would host Dirac states only on circles that lie
within the mirror plane.

Z2 invariant and mirror Chern number.—To prove that
Bi2Te3 is a dual topological insulator we first calculate the
Z2 invariant and the mirror Chern number for the bulk
system, using a first-principles-based tight-binding method
(see the Supplemental Material [14]). The Z2 invariants are
computed to ðν0; ν1ν2ν3Þ ¼ ð1; 0 0 0Þ, in agreement with
earlier calculations [8,15]. For the computation of the
mirror Chern number [6], we consider a mirror plane
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perpendicular to the (111) surface [like for the (001) surface
of SnTe [10,16]; left in Fig. 2]. The mirror Chern number
equals −1 and is interpreted as follows. On one hand, its
modulus gives the number of nonequivalent Dirac surface
states, as has been established in Ref. [6]; indeed,
Bi2Te3ð111Þ hosts a single Dirac state. On the other hand,
its sign gives the chirality of the spin texture of the Dirac
surface state: the spin polarization of the Dirac states rotates
clockwise about the surface normal at energies above the
Dirac point. Already these findings prove that Bi2Te3 is a
dual topological insulator, that is both a Z2 topological
insulator and a topological crystalline insulator.
Now we show that the Z2 topological phase can be

broken while keeping the topological crystalline phase. For

this purpose we mimicked an external magnetic field by
adding a Zeeman term to the tight-binding Hamiltonian. In
this case, time-reversal symmetry is broken [17] and a Z2

invariant cannot be defined. If the magnetic field (i.e., an
axial vector) is perpendicular to the mirror plane, the
reflection symmetry is maintained and the mirror Chern
number is still computed to −1, proving the topological
crystalline phase. If the magnetic field lies within the mirror
plane, both time-reversal and mirror symmetry are broken:
neither the Z2 invariant nor the mirror Chern number can
be defined in this case.
These findings suggest that the topological character

of Bi2Te3 can be controlled by magnetism: from a
dual topological insulator (no magnetic field) via a
solely topological crystalline insulator (magnetic field
perpendicular to mirror plane) to a conventional insulator
(magnetic field within mirror plane).

Surface electronic structure.—The next step is to show how
the Dirac surface state of Bi2Te3 is affected by the
topological character. We computed the electronic structure
of Bi2Te3ð111Þ, using the tight-binding method and a
renormalization scheme for semi-infinite systems [18].
Without magnetic field, the well-known Dirac surface state
with its unique spin texture [15,19] has its Dirac point
located very close to the valence band in the pocket at Γ̄, the
center of the surface Brillouin zone (right in Fig. 2). This
electronic state is mostly affected by magnetism in an (E, k)
region close to its Dirac point; hence, a zoom into this
region is indispensable (rectangle in Fig. 2). In the
following, we present exemplary results for a magnetic
field with 0.03 eV Zeeman energy.
For a magnetic field B⃗ perpendicular to the mirror plane,

the surface state is shifted off the TRIM by δk ¼ 0.01 Å−1
(Fig. 3); this displacement lies within the mirror plane (here:
ky). There is no band gap opening [compare (e) and (f) in
Fig. 3]; the Dirac point “survives,” which indicates a
topological nontrivial phase. In contrast, the dispersion
along the magnetic field (here: kx, i. e., normal to the

FIG. 1 (color online). Variation of a Dirac surface state’s dispersion with respect to the topological phase (schematic): without
magnetic field (left, B⃗ ¼ 0: dual topological insulator), with magnetic field perpendicular to a mirror plane (center, B⃗⊥ mirror plane:
topological crystalline insulator), and with magnetic field within the mirror plane (right, B⃗∥ mirror plane: conventional insulator). The
dispersions calculated from Fu’s model [20] are shown in perspective view. The inset displays the surface Brillouin zone. The M̄-Γ̄-M̄
direction lies within a mirror plane.

FIG. 2 (color online). Left: perspective view of Bi2Te3. Each of
the quintuple layers shown consists of twoBi atoms (largemagenta
spheres) and three Te atoms (small brown spheres). The shaded
green area depicts the yzmirror plane of the crystal (z along [111]).
Right: Dirac surface state in Bi2Te3ð111Þ, obtained from tight-
binding calculations. The spectral density of the topmost quintuple
layer is shown as color scale (in states per eV) along a K̄-Γ̄-M̄ path
of the two-dimensionalBrillouin zone (inset).Theyellow rectangle
highlights the (E, k) area addressed in Fig. 3.
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mirror plane) is gapped, with an energy splitting of about
34 meV [(b) in Fig. 3].
For B⃗ within the mirror plane (here: normal to the

surface, i.e., along the z direction), Bi2Te3 becomes a
conventional insulator: a band gap opens in the entire
Brillouin zone [panels (d) and (h) in Fig. 3]. The gap width
is smallest at the “avoided Dirac point” at Γ̄, with a
magnitude of 9 meV.
For B⃗ along the y direction (i.e., within both the surface

plane and the mirror plane), a tiny gap shows up, with a
width of 0.3 meV [panel (c) in Fig. 3]. Hence, also in this
setup, Bi2Te3 is in principle a conventional insulator;
however, the gap width is much smaller than the thermal
energy of 25 meVat room temperature. Thus, this band gap
is not relevant in device applications. A closer analysis
reveals that this gap is due to spin-orbit coupling, while that
for B⃗∥z⃗ is attributed to exchange splitting.
These electronic structure calculations for the (111)

surface fully confirm the considerations based on the
topological invariants. We provide further qualitative sup-
port by a model Hamilton operator for a two-dimensional
electron gas [20] that has been extended to account for
magnetism.

Model calculations.—To investigate the effect of the
topological character on the Dirac state we derived a
k⃗ · p⃗ model Hamilton operator [21]; magnetism is mim-
icked by a Zeeman term (see Supplemental Material [14]).
This operator without the Zeeman term agrees within third
order of the wave vector components with that derived by
Fu [20].
The model Hamilton operator illustrates in the case of

zero magnetic field the different dispersions of the Dirac
state along the two different high symmetry lines Γ̄-M̄ and
Γ̄-K̄ in the surface Brillouin zone, cf., the warping in Figs. 1
and 2. The spin structure of the Dirac state, especially the
out-of-plane component, fits to experimental findings
[9,22]. If magnetism is taken into account, the Hamilton
operator is not invariant under time-reversal and one
expects a gap to open up at the Dirac point (Fig. 1).
However, for a magnetic field pointing perpendicular to a
mirror plane, there is no gap but the Dirac point is shifted
within the mirror plane. These findings are in line with
the tight-binding calculations and corroborate the dual
topological character of Bi2Te3.
Because the magnetism-induced band gaps are small, the

contours of the Dirac surface state in constant energy cuts

FIG. 3 (color online). Dispersion of the Dirac state at Bi2Te3ð111Þ for different magnetic configurations. Only a small part of the two-
dimensional Brillouin zone (indicated in Fig. 2) is displayed (top row: kx; bottom row: ky; the respective zeroes are indicated by vertical
dash-dotted lines). Without magnetic field [B⃗ ¼ 0, (a) and (e)], Bi2Te3 is in its dual topological phase (Dirac point at k⃗∥ ¼ 0). For an in-
plane magnetic field B⃗∥x⃗ [(b) and (f)] it stays in its topological crystalline phase; the inset in (f) zooms into the Dirac point shifted along
ky. For both B⃗∥y⃗ [(c) and (g)] and B⃗∥z⃗ [(d) and (h)] the topological phase is trivial: there is no Dirac point [cf. the zoom into the tiny band
gap in (c)]. The color scale, in states per eV, displays the spectral density of the topmost quintuple layer. In regions in which the Dirac
state hybridizes with bulk electronic states, the spectral density becomes blurred.
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may be used as a signature for a shift of the Dirac point.
These contours can be investigated in very high resolution
photoelectron spectroscopy [23]. For B⃗ ¼ 0, the circular
contours at energies close to the Dirac point become
hexagonally warped at increased energies (Fig. 4a).
These ‘snowflake’ shapes are distorted for in-plane mag-
netic fields [(b) and (c)] and show in addition centers
shifted in direction perpendicular to B⃗.

Concluding remarks.—Our investigations prove theoreti-
cally that the topological character of dual topological
insulators can be manipulated by magnetism: from the dual
“Z2 plus crystalline” phase via the topological crystalline
phase to the conventional insulating phase. The associated
opening of a band gap in the Dirac state could be exploited
in device applications. Although our study provides strong
support for this scenario—by means of model calculations
and semi-empirical calculations for the realistic system
Bi2Te3—experimental verification is necessary, for exam-
ple by means of photoelectron spectroscopy [24]. An
alternative is Landau level spectroscopy [25] which has
been applied to the Dirac surface state of Bi2Se3 [26] and to
BiTeI [27].
Considering transport measurements, the dual topologi-

cal character of Bi2Te3ð111Þ thin films suggests a new
setup for the quantum anomalous Hall effect, as has been
proposed by Liu et al. [28]. So far, it was believed the
quantum anomalous Hall effect requires an external mag-
netic field perpendicular to the film to achieve an insulating
state [29,30]. As shown by Liu and co-workers, an in-plane
magnetic field also results in a nonzero Hall conductance,
provided the field is not perpendicular to a mirror plane. If
the field is in-plane and perpendicular to a mirror plane,
Bi2Te3 is a topological crystalline insulator—shown in this
Letter—and, as a consequence, the Dirac surface state is
not gapped and the Hall conductance vanishes.
In this Letter, we consider magnetism brought about by

an external magnetic field, resulting in small band gaps in
the Dirac surface state (Fig. 3). In view of applications,
larger gap widths are obtained by doping the topological

insulator with magnetic constituents [31,32]. By control-
ling the directions of the magnetic moments by an external
magnetic field, the topological character can be varied from
topologically crystalline to trivial, provided the doping
maintains the mirror symmetry.
This work focuses on Bi2Te3; calculations of the

topological invariants for the other chalcogenides
—Sb2Te3 and Bi2Se3—prove that these are also dual
topological insulators. This is expected for they show
the same crystal symmetry and the same topology of the
bulk electronic structure (e.g., the band inversion at the
Brillouin zone center).
A question arises whether there exist, besides the

chalcogenides, other dual topological insulators. One might
expect that each Z2 topological insulator with band
inversions in a mirror plane could be a dual topological
insulator. In a detailed theoretical investigation, Teo et al.
have shown that Bi1−xSbx (x > 0.03) is a strong topological
insulator with Z2 invariants (1;1 1 1) and mirror Chern
number −1 [6].

This work is supported by the Priority Program 1666
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TIGHT-BINDING CALCULATIONS

The empirical tight-binding method interpolates the
band structure that has been determined by advanced
first-principles methods. We adopted Slater-Koster pa-
rameters from Ref. [1], including spin-orbit coupling, and
checked the band structure against our first-principles
Korringa-Kohn-Rostoker and vasp calculations [2–4].
The agreement puts our tight-binding approach on a firm
and reliable basis. The bulk bands are obtained by diago-
nalization of the Hamilton operator matrix in the basis of
Bloch states Φα(~k), with α a compound index of orbital

and atom; ~k is the wavevector.

An external magnetic field ~B is mimicked by adding
a Zeeman term ∝ ~σ · ~B to the otherwise ‘nonmagnetic’
Hamilton matrix. We varied both strength and direction
of ~B to change the topological phase of Bi2Te3.

The electronic structure of the (111) surface has been
obtained for the semi-infinite system, using a renormal-
ization scheme for the Green function [5, 6]. This scheme

gives the layer-resolved block Gαl,βm(E,~k‖) of the Green

function matrix (l and m layer indices; ~k‖ surface-parallel
wavevector). The spectral density is then computed from

Nαl(E,~k‖) = − 1

π
lim
η→0+

Im tr Gαl,αl(E + iη,~k‖). (1)

Appropriate partial traces allow to decompose the spec-
tral density with respect to spin projection, orbital, etc.
The limit η → 0+ is not taken but typically η = 0.1 meV.
The dispersion of the Dirac state shows up as maxima
in Nαl(E,~k‖) of surface layers and agrees well with those
obtained from our first-principles KKR (semi-infinite sys-
tem) and vasp (slab of at least 6 quintuple layers) cal-
culations. The tight-binding parameters of the quintuple
layer were not changed with respect to those of the bulk.
In the calculations of the surface state dispersion we used
extremely fine E and ~k meshes to reveal or exclude open-
ings of tiny band gaps.

The spin texture of the Dirac state is investigated by
means of spin-resolved spectral densities, with spin pro-
jections along the Cartesian axes and for an external
magnetic field along x (within the surface but perpen-
dicular to the mirror plane), y (within the surface and
within the mirror plane) and z (normal to the surface
and within the mirror plane). In Figure 1 we show spin

differences Sj ,

Sj(E,~k‖) = − 1

π
lim
η→0+

Im tr [σjG(E + iη,~k‖)], j = x, y, z,

(2)

where G is the surface block of the Green function ma-
trix. We focus on the region close to the Dirac point of
pure Bi2Te3 where warping is of minor importance and
the spin texture is essentially determined by the Rashba
Hamilton operator H0 +Hsoc

1 , defined in the Section on
model calculations.

Without magnetic field we find the standard Rashba
spin texture, with clockwise rotation of the spin. The
degree of spin polarization in the upper Dirac cone is 68 %
in the vicinity of the Dirac point (at kx = 0.024 Å−1).

CALCULATION OF THE Z2 INVARIANT AND
THE MIRROR CHERN NUMBER

The tight-binding method allows a fast and reliable
computation of topological invariants [7]. The Z2 in-
variant is calculated from the Fu-Kane formula [8] dis-
cretized according to Fukui and Hatsugai [9]. For suf-

ficiently dense ~k meshes we compute the Z2 invariants
(ν0; ν1 ν2 ν3) = (1; 0 0 0) for Bi2Te3 without magnetic
field. Note that a Z2 invariant can only be defined if
time-reversal symmetry is not broken.

In the calculation of the mirror Chern number, we fol-
low the idea of the spin Chern number [10]. The Bloch

states with wavevector ~k within the considered mirror
plane are eigenstates of both the Hamiltonian and the
mirror operator [11]. This allows us to divide the Bloch
states into two categories: one with mirror eigenvalue +i,
the other with eigenvalue −i. The ~k-dependent Berry
curvature is calculated for both of them. The weighted
sum of the Berry curvature over a discrete ~k set in the
intersection of the mirror plane with the Brillouin zone
gives the Chern number n±i for each category. The mir-
ror Chern number is then defined as [12]

cm ≡
n+i − n−i

2
. (3)

We calculate the mirror Chern number for a mesh of
100×100 k-points, getting cm = −1 for Bi2Te3 both with-
out and with magnetic field perpendicular to the mirror
plane (relative error less than 10−4). From this we con-
clude that the surface state is protected by the mirror
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FIG. 1. (Color) As Figure 3 of the paper but for the spin-resolved dispersion of the Dirac state at the (111) surface of Bi2Te3.
The color scale (in units of states/eV) displays the ‘Rashba’ component of the spin textures, that is the y component Sy for kx
(upper row) and the x component Sx for ky (lower row) of the spin differences, eq. (2). The rectangles display zooms into the
(E, k) region at the Dirac point.

symmetry even with finite magnetic field. Note that a
mirror Chern number can be defined only if the mirror
symmetry is not broken.

MODEL CALCULATIONS

The model Hamiltonian H, derived within ~k · ~p theory,
consists of four terms,

H = H0 +Hsoc
1 +Hsoc

3 +Hmag. (4)

H0 mimics the dispersion of the electron gas without
spin-orbit coupling (SOC). Hsoc

1 is the spin-orbit inter-

action in first order in the wavevector ~k‖ = (kx, ky),

Hsoc
1 = α1(kxσy − kyσx) (5)

(σx, σy, σz Pauli matrices). α1 is the Rashba parameter.
The third-order term of the SOC reads

Hsoc
3 = α2

[
(k2x + k2y)kxσy − (k2y − k2x)kyσx

]

+ α3(k2x − 3k2y)kxσz
(6)

The terms with σx and σy are isotropic. If merged with
Hsoc

1 , they yield a quadratic k-dependence of the effective

Rashba parameter [13, 14]. The term with σz introduces
the warping of the Dirac cone and tilts the electron spin
out of the xy plane [3, 15].

The coupling of the electron spin to an external mag-
netic field ~B or to magnetic impurities is accounted for
by a Zeeman term,

Hmag ∝ ~σ · ~B. (7)

The parameters α1 etc. for Bi2Te3 were taken from
Ref. [13], with the purpose to reproduce reasonably the
dispersion of the Dirac state and providing general in-
sights rather than perfectly reproducing experimental
data.
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6.4 nontrivial interface states confined between two topological insulators

6.4 nontrivial interface states confined between two topological in-
sulators

After having investigated some common properties of Z2 TIs and TCIs, in the next
project [TR4] we concentrated on their common interfaces. Already in 2011 Takahashi
and Murakami [124] have shown that at a common interface of two TIs the interface
states can still cross the band gap without splitting when they possess opposite spin
chiralities, i.e. the rotation directions of spin polarization along the Fermi line of the
Dirac cones. When the spin chiralities are identical, then the surface states split and
their topological character is lost. This behaviour was explained by the mirror Chern
number whose sign is connected to the spin chirality. Assuming a common mirror
plane for both systems, the difference of the mirror Chern numbers gives the number of
interface states connecting the valence and conduction bands without any splitting.

Following the ideas of Takahashi and Murakami we modelled an interface of a Z2 TI
Bi2Te3 with the TCI SnTe. Both compounds were brought together with their (111) sur-
faces. The topological invariants were calculated for both materials, confirming previous
findings. For Bi2Te3 (ν0 ; ν1 ν2 ν3 ) = (1; 000), n M = −1 and for SnTe (ν0 ; ν1 ν2 ν3 ) =

(0; 000), n M = −2, indicating that there are two surface states at the free (111) sur-
face of SnTe, having the same spin chirality as the one surface state of Bi2Te3. By the
sum rule for mirror Chern numbers of Takahashi and Murakami there should be one
interface state crossing the band gap at the Bi2Te3/SnTe interface.

These considerations based on the calculations of bulk topological invariants were
confirmed by the calculation of the interface electronic structure. The strength of the
coupling between the two systems was continuously increased from zero to the full
coupling, in order to visualize the process of annihilation of the surface states located at
Γ, showing that for small coupling strength there is an avoided-crossing-like signature,
whereas for a fully coupled systems the surface states are completely shifted out of the
band gap. There is one interface state left, localized at the M point of the interface BZ.

In addition, the same calculation was performed for a Bi2Te3/Sb2Te3 interface, show-
ing that both surface states annihilate leaving no interface state left because the sub-
systems possess the same mirror Chern number. This confirms the results of reference
[124].
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Tomáš Rauch,1 Markus Flieger,1 Jürgen Henk,1 and Ingrid Mertig1,2

1Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany
2Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany

(Received 19 July 2013; revised manuscript received 25 October 2013; published 17 December 2013)

By ab initio based tight-binding calculations, we show that nontrivial electronic states exist at an interface of a
Z2 topological insulator and a topological crystalline insulator. At the exemplary (111) interface between Bi2Te3

and SnTe, the two Dirac surface states at the Brillouin zone center � annihilate upon approaching the semi-infinite
subsystems but one topologically protected Dirac surface state remains at each time-reversal invariant momentum
M . This leads to a highly conducting spin-momentum-locked channel at the interface but insulating bulk regions.
For the Sb2Te3/Bi2Te3 interface, we find complete annihilation of Dirac states because both subsystems belong to
the same topology class. Our proof of principle may have impact on planar electric transport in future spintronics
devices with topologically protected conducting channels.

DOI: 10.1103/PhysRevB.88.245120 PACS number(s): 73.20.At, 71.70.Ej

I. INTRODUCTION

Three-dimensional topological insulators are a new class of
materials that are characterized by an insulating bulk but highly
conducting surface states.1 These surface states bridge the
fundamental band gap and are topologically protected against
perturbations. Two classes of three-dimensional topological
insulators (TIs) are currently investigated with great effort: Z2

TIs rely on time-reversal symmetry and an odd number of band
inversions in the bulk Brillouin zone; topological crystalline
insulators (TCIs)2 require a crystal symmetry, in particular,
mirror symmetry, but may possess an even number of band
inversions. Brought about by the spin-orbit interaction, the
fundamental band gaps of TIs are small compared to those of
typical band insulators (100–250 meV).

Prominent examples for Z2 TIs are the chalcogenides
Bi2Se3, Bi2Te3, and Sb2Te3, each showing a band inversion at
the center � of the bulk Brillouin zone. They are characterized
by Z2 topological invariants (ν0; ν1 ν2 ν3) = (1; 0 0 0) (see
Ref. 3) and have a single Dirac surface state at the center
� of their (111) surface’s Brillouin zone. The spin chirality
of these surface states is dictated by those p orbitals that
make up the inverted band gap; thus, it is identical among
the chalcogenides.4–6 As a consequence, the two Dirac
surface states at a common interface of two chalcogenide
TIs annihilate because the two subsystems are in the same
topological phase. They would not annihilate if their spin
chirality would be opposite;7 however, such a Z2 TI is yet
unknown.

One representative of a TCI with mirror symmetry is
SnTe,8,9 showing band inversions at the L points of the
bulk Brillouin zone. For a mirror plane that is spanned by
four L points, the relevant topological invariant—the mirror
Chern number—equals −2. Thus there are two Dirac points
associated with that plane. For the (001) surface, these are
close to the time-reversal invariant momentum (TRIM) X. This
crystal orientation does not fit to the commonly investigated
(111) orientation of the chalcogenides which is naturally
induced by their quintuple-layer geometry. Therefore, to form
a common interface of SnTe and Bi2Te3, one should choose the
(111) surface of SnTe that also shows two Dirac surface states,
one at � (as, e. g., Bi2Te3), another at M; these states have

identical spin chirality. Because the chalcogenides are also
topological crystalline insulators, with a mirror Chern number
of −1 (see Ref. 10), the spin chiralities of the surface states
of SnTe and Bi2Te3 are identical as well. As a consequence,
surface states annihilate at a common interface of SnTe and
Bi2Te3.

From these considerations, the question arises whether all
Dirac surface states of Bi2Te3(111) and SnTe(111) annihilate
at a common interface. Or do only two of them obliterate
each other and does one nontrivial surface state remain (see
Fig. 1)? In this Paper, we provide a proof of principle by
means of ab initio based tight-binding calculations that the
pair of Dirac surface states at � indeed annihilates but the
Dirac surface state at M “survives.” This remaining electronic
state is topologically protected by mirror symmetry and results
in a highly conducting channel at the interface of two bulk
topological insulators. This conductance channel with spin-
momentum locking could be utilized in future electronics.
For comparison, the Sb2Te3/Bi2Te3 interface shows complete
annihilation of Dirac states because both subsystems belong
to the same topology class, resulting in an entirely insulating
system.

The paper is organized as follows. Theoretical aspects
are addressed in Sec. II, in which we provide details of the
electronic structure calculations (Sec. II A) and topological-
invariant calculations (Sec. II B). Results are discussed in
Sec. III. For the topological heterophase system SnTe/Bi2Te3,
we address the annihilation and survival of the Dirac states
(Sec. III A 1), a model Hamiltonian (Sec. III A 2), and the
localization of the Dirac states (Sec. III A 3). The complete
annihilation of Dirac states in the topological iso-phase system
Sb2Te3/Bi2Te3 is presented in Sec. III B. A sum rule for the
number of Dirac states at an interface is given in Sec. III C,
before concluding with Sec. IV.

II. THEORETICAL ASPECTS

A. Tight-binding calculations

The purpose of our approach is to support our main
statement of annihilation of a pair of Dirac states and the
survival of one Dirac state. To do so, the method accounts for

1098-0121/2013/88(24)/245120(9) 245120-1 ©2013 American Physical Society
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FIG. 1. (Color online) Topologically nontrivial electronic states
at the (111) surfaces of the Z2 topological insulator Bi2Te3 and
the topological crystalline insulator SnTe (left) as well at their
common interface (right). Bi2Te3(111) hosts one state (red arrows),
while SnTe(111) hosts two states (red and green arrows). Upon
formation of an interface, the “red” surface states annihilate but the
“green” SnTe-derived state survives. Spin and momentum are locked:
states propagating to the left are spin up (small blue arrows), states
propagating to the right are spin down (small red arrows). Te, Bi, and
Sn atoms are displayed in brown, magenta, and grey, respectively.

the correct boundary conditions of an interface48 and relies
on a tight-binding parametrization, which works also well for
other chalcogenides and rocksalt insulators.11

The empirical tight-binding method interpolates the band
structure that has been determined by advanced first-principles
methods. We adopted Slater-Koster parameters, from Ref. 12
for Bi2Te3 as well as from Ref. 13 for SnTe. The parameters
for Sb2Te3 have been fitted to an ab initio band structure using
a Monte Carlo method.14,15 Spin-orbit coupling is treated as in
Ref. 16. All parameter sets yield good agreement, in particular
for the important energy range near the fundamental band
gap.17

The resulting band structures were checked against our
first-principles Korringa-Kohn-Rostoker, VASP, and WIEN2K

calculations.11,18–20 The agreement puts our tight-binding
approach on a firm and reliable basis. The bulk bands are
obtained by diagonalization of the Hamilton operator matrix
in the basis of Bloch states �α(�k), with α a compound index
of orbital, spin orientation, and atom; �k is the wave vector.

The electronic structures of the (111) surfaces and interfaces
have been obtained for the semi-infinite systems, using a
renormalization scheme for the Green function, originally

developed for surfaces21,22 and later extended to interfaces.23

A description of this scheme is rather lengthy; therefore we
provide a sketch here. The system is decomposed into principal
layers in such a way that only adjacent principal layers interact,
making the Hamiltonian matrix H block-tridiagonal. These
interactions are reduced by a renormalization process using
the defining matrix equation

G(z,�k‖)[z1 − H(�k‖)] = 1, (1)

in which z = E + iη, η > 0, is a complex energy argument.
For vanishing interlayer interaction, this scheme yields layer-
resolved blocks Glm(z,�k‖) of the Green function matrix which
is indexed by compound indices α and β (l and m principal
layer indices; �k‖ surface-parallel wave vector). Surface and
interface states appear “naturally” in this procedure, e. g.,
without additional treatment.24

The layer-resolved spectral density is then computed from

Nl(E,�k‖) = − 1

π
lim

η→0+
Im trα Gll(E + iη,�k‖). (2)

Appropriate partial traces allow to decompose the spectral
density with respect to, e. g., spin projection and orbital.

The spin texture of the Dirac states is investigated by means
of spin-resolved spectral densities, with spin projections typi-
cally along the Cartesian axes. Instead of the spin polarization,
we use spin differences:

�Sl(E,�k‖) = − 1

π
lim

η→0+
Im trα [�σGll(E + iη,�k‖)], (3)

where �σ is the vector of Pauli matrices. The limit η → 0+ in
Eqs. (2) and (3) is not taken but typically η = 2 meV.

The dispersions of the Dirac states show up as maxima in
Nαl(E,�k‖) of the interface layers; they agree well with those
obtained from our first-principles Korringa-Kohn-Rostoker
(semi-infinite system) and VASP (slab of at least six quintuple
layers) calculations for Bi2Te3 and Sb2Te3. For SnTe, we
checked also the electronic structure of the (001) surface and
found agreement with that reported in Ref. 8.

The lattice constants of Bi2Te3 and SnTe show a mismatch
of about 2 %. We assume that SnTe(111) adopts the in-plane
lattice constant of Bi2Te3; the out-of-plane (interlayer) dis-
tance is chosen to conserve the volume of the bulk unit cell. The
tight-binding parameters of SnTe have, thus, been scaled using
Harrison’s d−2 law.25 SnTe remains a topological crystalline
insulator in this distorted phase but with a reduced width of the
fundamental band gap (250 meV → 40 meV). Although the
Slater-Koster parameters at the surface or interface are taken
from bulk values, the surface electronic structures agree with
those reported earlier.8,19 The valence band maxima of the
bulk systems have been aligned to the common Fermi level in
the interface system, in accordance with the “common anion
rule” (see Ref. 26).

Concerning the SnTe/Bi2Te3 interface, the outermost SnTe
layer is made of Te atoms.49 The distance between these atoms
and the outermost Te atoms of Bi2Te3 is assumed identical to
that between the outermost Te atoms of adjacent quintuple
layers of Bi2Te3 (i. e., the van der Waals gap). Therefore
the Slater-Koster parameters at the interface are identical to
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those describing the coupling between two quintuple layers of
Bi2Te3.

To perform the transition from two separate surfaces to
a joint interface, we scale the tight-binding parameters that
mediate the hopping between the two half-spaces by a factor
κ , with κ = 0 (κ = 1) for zero (full) coupling; confer the bond-
cutting mechanism in Ref. 27. This procedure can be viewed
as letting the surfaces approach in real space (schematically
shown Fig. 1): κ = 0 mimics an infinite distance. NB: we
could have used Harrison’s d−2 scaling (see Ref. 25), with
identical results for the most important cases: vanishing and
full coupling.

The tight-binding parameters of the surface or interface
layers were not changed with respect to those of the bulk.
The (111) surfaces of both the chalcogenides and SnTe show
band bending due to their polar nature. For Bi2Se3(111), the
band bending region extends about 200 Å (see Ref. 28), and
we expect a similar width for Bi2Te3. Because the Dirac
surface state is strongly located in the first quintuple layer
(see below) it is mildly affected by the band bending. In the ab
initio calculations reported in Ref. 19, in which the potentials
of the first five quintuple layers are allowed to differ from
those in the bulk, no clear indication for band bending was
found. Although these two findings seem to contradict each
other, they both support to neglect the band bending in the
description of the Dirac surface state of Bi2Te3 for the time
being.

Concerning SnTe, an appropriate ab initio description re-
quires advanced exchange-correlation functionals, e. g., hybrid
functionals11 [the self-consistent calculation for SnTe(001)
reported in Ref. 8 relies on the generalized gradient ap-
proximation]. This makes such advanced density-functional
calculations computationally very demanding for the bulk
system but nearly impossible for a surface system. Our
tight-binding approach is numerically much less demanding
and, importantly, it reproduces very well the bulk electronic
structure of Ref. 11 and the Dirac surface states of SnTe(001)
reported in Refs. 8 and 9.

Hybrid functionals give a better description of the fun-
damental band gap than the often used local density ap-
proximation for the exchange-correlation functional. This is
in particular important for small-gap semiconductors (here,
SnTe). A too small band gap would result in a distorted
dispersion relation of the topologically protected surface
states.

Being computationally demanding, a hybrid-functional
calculation mimicking a surface system might be performed
for a slab with small thickness. Therefore surface states located
at either side of the slab would hybridize and show artificial
band gaps due to quantum confinement. These gaps could
be significantly wide for weakly localized surfaces states,
as would be the case for the surface state in SnTe(111)
at M , as we will see below. In our study on Bi2Te3/SnTe
interfaces, the opening up of band gaps is a crucial point;
artificial band gaps would make the interpretation difficult
and, thus, should be avoided. In our approach, this problem is
overcome by the renormalization technique for semi-infinite
systems.

For the band alignment, we follow the common anion rule
(see Refs. 29–31), discussed in the supplement of Ref. 26. This

rule applies to interfaces of insulators with a common anion.
In this case, the valence electronic states are primarily derived
from the anion orbitals (Te) whereas the conduction bands are
primarily derived from the cation orbitals. Consequently, the
valence states should be similar, leading to a smaller offset of
the valence bands than of the conduction bands. Taskin et al.
argue that the band bending shows up mainly in Bi2Te3 rather
than in SnTe (see Ref. 26).

B. Calculation of Z2 invariants and mirror Chern numbers

The tight-binding method allows a fast and reliable compu-
tation of topological invariants.3 The Z2 invariant is calculated
from the Fu-Kane formula32 discretized according to Fukui
and Hatsugai.33 For sufficiently dense �k meshes we compute
the Z2 invariants (ν0; ν1 ν2 ν3) = (1; 0 0 0) for Bi2Te3 and
Sb2Te3 as well as (0; 0 0 0) for SnTe.

In the calculation of the mirror Chern number, we follow
the idea of the spin Chern number.34 The considered mirror
plane is normal to a (111) surface plane; in reciprocal space,
it comprises the � and M points of the surface Brillouin zone
(confer Fig. 1 in both Ref. 8 and 10). The Bloch states with
wave vector �k within this mirror plane are eigenstates of both
the Hamiltonian and the mirror operator.35 This allows us to
divide the Bloch states into two categories: one with mirror
eigenvalue +i, the other with eigenvalue −i. The �k-dependent
Berry curvature is calculated for both of them. The weighted
sum of the Berry curvature over a discrete �k set in the
intersection of the mirror plane with the Brillouin zone gives
the Chern number n±i for each category. The mirror Chern
number is then obtained from4

cm ≡ n+i − n−i

2
. (4)

We calculate the mirror Chern number for a mesh of 100 × 100
k points, getting cm = −1 for Bi2Te3 and Sb2Te3 as well as
−2 for SnTe, with a relative error less than 10−4.
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(a) Bi2Te3

kx

(b) SnTe

Γ

K

M

(c) Bi2Te3/SnTe

FIG. 2. (Color online) Electronic structure of (a) the Bi2Te3(111)
surface, (b) the SnTe(111) surface, and (c) a Bi2Te3/SnTe(111)
interface. The spectral densities of the outermost surface layers [(a)
and (b)] or the SnTe interface layer (c) are shown as color scale
(in states/eV) for a constant energy of 0.08 eV (i. e., within the
fundamental band gap). In each panel, the same part of the hexagonal
Brillouin zone is displayed; high-symmetry points and the Brillouin
zone edge are indicated by grey dots and lines, respectively. Arrows
mark surface and interface states.
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FIG. 3. (Color online) Electronic structure of a Bi2Te3/SnTe(111) interface, obtained from tight-binding calculations. The spectral densities
of the outermost Bi2Te3 [top, (a)–(d)] and SnTe [bottom, (e)–(h)] interface layers are shown as color scale (in units of states/eV) for a K-�-M
path in the two-dimensional Brillouin zone [inset in (e)]. The coupling strength κ of the semi-infinite systems increases from left to right (κ = 0
uncoupled; κ = 1 fully coupled). The horizontal lines mark the energy of 0.08 eV used in Fig. 2. Arrows in (a), (d), (e), and (h) point towards
Dirac surface or interface states (also indicated in Fig. 2).

III. DISCUSSION AND RESULTS

A. Interface electronic structure of SnTe(111)/Bi2Te3(111)

1. Annihilation and survival of Dirac states

The surface band structure of Bi2Te3(111) shows the
well-known Dirac surface state, with its Dirac point close to
the valence bands at �. In a constant energy cut (CEC), this
state results in a slightly warped36 circular shape [red arrow in
Fig. 2(a)]. The (111) surface of SnTe hosts two Dirac states:
the state at � produces a circular shape in a CEC [red arrow
in Fig. 2(b)], the equivalent states at M show up as ellipses
[green arrows in Fig. 2(b)].

Upon approaching the two semi-infinite systems, that is by
increasing κ to 1, the two circular contours at � disappear but
the structures at M remain [green arrows in Fig. 2(c)]. This
“annihilation” of the pair of states at � can be interpreted
by opening of a band gap in the two respective surface
states.

This scenario is illustrated by the interface electronic
structure for selected coupling strengths κ (see Fig. 3). For κ =
0, we find the surface band structures of Bi2Te3 and SnTe, both

showing a Dirac surface state at � bridging the fundamental
band gap (red arrows in a and e). The Dirac points are close
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FIG. 4. (Color online) Spin-resolved electronic structure of
(a) Bi2Te3(111), (b) SnTe(111), and (c) Bi2Te3/SnTe(111). The
spectral spin differences of the outermost surface layer [(a) and
(b); κ = 0] and the SnTe interface layer [(c), κ = 1], presented
as color scale (in units of states/eV), are resolved with respect to
the Rashba component of the spin polarization. Arrows mark Dirac
surface or interface states, as in Fig. 3.
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to the valence bands, in Bi2Te3, or to the conduction bands, in
SnTe. With increasing κ , the Bi2Te3 layer “picks up” spectral
weight from SnTe, seen by the pale colors, and vice versa.

A first important observation is that a band gap opens up
in the � surface states because these states have identical spin
chirality; compare Figs. 3(a) and 3(b) as well as Figs. 3(e)
and 3(f). The width of this band gap increases with κ

[Figs. 3(c) and 3(g)], so that for full coupling these surface
states merge with the bulk-state continuum and are entirely
shifted out of the fundamental band gap [Figs. 3(d) and 3(h)].
The band gap opening is accompanied by the formation of
Rashba-type dispersions, clearly seen in Fig. 3(f). Such a
dispersion has been observed for surface states in Au(111)
and Bi/Ag(111).37,38 The hybridization of the two Dirac states
turns their linear dispersion of massless relativistic Fermions
into the spin-orbit-split dispersion of massive electrons.

Another striking feature is that the SnTe surface state at
M [green arrow in Fig. 3(e)] “survives” the formation of the
interface [green arrows in Figs. 3(d) and 3(h)]. More precisely,
its dispersion does not change significantly with κ [Figs. 3(e)–
3(h)], which is readily explained by the considerable local
band gap around M . It is this Dirac interface state that forms
a topologically protected conducting channel in an otherwise
insulating system. In contrast, the two Dirac surface states at
� in Bi2Te3/Sb2Te3 annihilate upon increasing the coupling
κ because both subsystems are in the same topological phase
(see Sec. III B).

In view of applications, the spin textures of the surface
and interface states are essential quantities; in particular, spin-
momentum locking could be used in spintronics devices.39 The
spin polarization of the Bi2Te3(111) Dirac state is of Rashba
type: the spin is mostly in-plane and perpendicular to �k‖ [see
Fig. 4(a)]; the degree of spin polarization equals 53 %, in
agreement with first-principles calculations.19,40 Along K-�,
it is tilted out-of-plane due to warping (not shown here).19,36

The � surface state of SnTe(111) shows the same spin
chirality as its counterpart in Bi2Te3 [see Fig. 4(b)], which is
indicated by the identical sign of their mirror Chern number.50

At the energy of the constant energy cuts of Fig. 2, the spin
helicity of all Dirac states is clockwise. Note within this respect
that Figs. 4(a) and 4(b) show facing surfaces. The surface states
are almost completely spin polarized (93 % close to �, 98 %
close to M); the state at M displays an out-of-plane component
of 15 % on the M-K line.

The spin-momentum locking of the surviving interface state
at M is proven in Fig. 4(c). In the SnTe interface layer, the
Rashba spin polarization is 98 % along �-M; along M-K it
equals 90 %, with an out-of-plane contribution of 21 %. In the
adjacent Bi2Te3 quintuple layer, these numbers are slightly less
(77 %, 81 %, and 10 %, respectively). This large degree of spin
polarization lends itself support for spintronics applications.

2. Model Hamiltonian

The Dirac states at M are well described by the Hamiltonian
(in atomic units; � = me = 1)

̂H = k2
x

2m�
x

+ k2
y

2m�
y

+ αxykxσy + αyxkyσx + αxzkxσz, (5)

which has been derived from �k · �p theory for the point group
Cs (see Refs. 35 and 41). �k‖ is centered at M , the σ ’s
are Pauli matrices. A fit to the tight-binding bands yields
effective masses of m�

x = −0.01 and m�
y = −0.03, which

indicate almost linear dispersion. The spin-orbit parameters
read αxy = 0.89 eV Å, αyx = 3.31 eV Å, and αxz = 0.77 eV Å.
The in-plane α’s are strongly anisotropic, as expected from the
elongated CECs. αyx is even larger than the “giant” Rashba
parameter of Bi/Ag(111) (3.05 eV Å, Ref. 38).

3. Surface and interface localization of Dirac states

We investigated the localization of the Dirac states for the
uncoupled (κ = 0) and the fully coupled (κ = 1) systems. For
the surface system SnTe(111), the Dirac surface state with a
Dirac point at � is strongly localized at the surface (top row
in Fig. 5); this is deduced from the color saturation decreasing
from (a) to (c) and almost zero spectral weight in (d) and (e).
The other Dirac state, with a Dirac point at M , is comparably
weakly localized at the surface, as seen by the nonzero but
small spectral weight in (d) and (e).

The Dirac surface state in Bi2Te3(111) is strongly localized
within the topmost quintuple layer (bottom row in Fig. 5),
in agreement with earlier calculations. This state shows
significant spectral weight (large color saturation) only in the
first quintuple layer (f) but almost zero spectral weight in the
deeper layers [(g)–(j)]. The layers chosen for panels [(a)–(e)],
for SnTe(111), have almost the same distance from the surface
atomic layer as the central atomic layers of the quintuple layers
of Bi2Te3; this facilitates comparing the decay of the surface
states in both compounds.

For the interface system SnTe(111)/Bi2Te3(111) (see Fig. 6,
κ = 1), the Dirac state with Dirac point at M , which is derived
from the surface state in SnTe(111), survives, while the other
two surface states annihilate. Its weak localization at the
SnTe(111) surface (top row in Fig. 5) is also seen in the Bi2Te3

half-space; more precisely, it shows weak but nonzero spectral
weight in the deeper layers, for example in (d) and in (i).

The Dirac surface state of Bi2Te3 can be “buried,” that is,
it is shifted from the outermost into deeper quintuple layers,
by surface modification.18 Attaching a SnTe half-space to the
surface of Bi2Te3 may be viewed as a drastic surface alteration,
which suggests a “burying” of the Dirac state. Inspection of
Figs. 6(f)–6(j), however, shows no indication of a shift to
deeper layers.

B. Interface electronic structure of Sb2Te3(111)/Bi2Te3(111)

For comparison with SnTe(111)/Bi2Te3(111), we calcu-
lated the electronic structure and its evolution with κ for
Sb2Te3(111)/Bi2Te3(111). Since both subsystems belong to
the same class of topological insulators—both their Z2 invari-
ants and mirror Chern numbers are identical—the Dirac sur-
face states of the uncoupled systems annihilate upon contact.

For the uncoupled subsystems, we find the established Dirac
surface states of Sb2Te3(111) and Bi2Te3(111) with their Dirac
points at � [κ = 0, panels (a) and (e) in Fig. 7]. Increasing the
coupling strength κ opens up band gaps at the Dirac points
[(b) and (f)], whose widths increase with κ [e. g., (c) and
(g)]. In other words, the lower and the upper part of the Dirac
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FIG. 5. (Color online) Localization of the surface states of SnTe(111) [top row, (a)–(e)] and Bi2Te3(111) [bottom row, (f)–(j)] for κ = 0
(i. e., uncoupled semi-infinite subsystems). For SnTe, spectral densities are shown for the second (a), the fourth (b), the seventh (c), the ninth
(d), and the twelfth (e) double layer, counted from the surface. For Bi2Te3, spectral densities are shown for the first five quintuple layers,
counted from the surface (f). The color scale in (a) gives the spectral density in states per eV; the two-dimensional Brillouin zone is sketched
in (f).
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FIG. 6. (Color online) Localization of interface states of SnTe(111)/Bi2Te3(111) for κ = 1 (i. e., fully coupled semi-infinite subsystems).
Panels and insets as in Fig. 5.
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FIG. 7. (Color online) Interface electronic structure of Sb2Te3(111)/Bi2Te3(111). Spectral densities of the outermost quintuple layers of
Sb2Te3 [top row, (a)–(d)] and Bi2Te3 [bottom row, (e)–(h)] are shown for selected coupling strength κ , as indicated in each panel (κ = 0 for
no coupling, i. e., separate surfaces; κ = 1 for fully coupled subsystems). The color scale in (a) gives the spectral density in states per eV; the
two-dimensional Brillouin zone is sketched in (e).

cones detach; the lower part is shifted towards the valence
bands while the upper part is shifted towards the conduction
bands. For full coupling, κ = 1, the Dirac states are completely
removed from the fundamental band gaps and merge with the
bulk states, making the entire system insulating.

C. Sum rule for the Dirac states

The annihilation and survival of the Dirac states at a
common interface with preserved mirror symmetry can be
understood by means of a sum rule for the associated mirror
Chern numbers.7 For Bi2Te3 and SnTe, the Bloch states with
mirror eigenvalue +i possess the Chern numbers nBiTe

+i =
−1 and nSnTe

+i = −2, respectively. At the common interface,
nSnTe

+i − nBiTe
+i = −1 holds, which indicates that one interface

state with eigenvalue +i survives. The same rule applies
for the Bloch states with eigenvalue −i; thus, there exists
one topologically protected interface state with this mirror
eigenvalue, too.

Concerning Sb2Te3 and Bi2Te3, nSbTe
±i = nBiTe

±i = ∓1 holds
because both subsystems show identical mirror Chern num-
bers. For the interface, this leads to nBiTe

±i − nSbTe
±i = 0 which

implies that Dirac states do not “survive,” in agreement with
the electronic-structure calculations (Fig. 7).

IV. CONCLUDING REMARKS

The Dirac surface states of Z2 topological insulators are
protected by time-reversal symmetry which makes them
robust against structural disorder. In the present study, the
remaining Dirac interface state is topologically protected by
mirror symmetry because it is derived from the topological
crystalline insulator SnTe. Hence, structural disorder which
breaks the reflection symmetry would lead to opening of a
band gap at the Dirac point. Since the Dirac point lies within
the conduction bands, in-plane transport would be marginally
affected by this band gap. Hence, a Bi2Te3/SnTe(111) interface
is expected suitable for future electronic applications. In
a recent transport experiment on a SnTe/Bi2Te3(111) pn

junction,26 a signature of a conducting interface channel has
not been found, which is attributed to electric decoupling of
the subsystems due to doping.

To experimentally prove our theoretical findings, one could
think of a film geometry investigated by angle-resolved
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photoelectron spectroscopy in the soft x-ray regime.42 This
range of photon energies overcomes the too small electron
mean free path in the vacuum ultraviolet range43 and the
too small photoionization cross sections in the hard x-ray
regime, thus allowing Fermi surface mapping at the buried
interface. Depth selectivity could be achieved by soft x-
ray standing wave spectroscopy, e. g., Refs. 44 and 45.
Considering spin-dependent transport, the interface state could
be proven in (SnTe/Bi2Te3)n heterostructures: the conduc-
tance parallel to the interfaces increases with the number

of interfaces in steps of the conductance quantum. The
spin polarization could be probed by the inverse spin Hall
effect.46
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6.5 spin chirality tuning and topological semimetals in strained

hgtex s1-x

The last publication [TR1] may be regarded as the central one, in a way it summarizes
the contents of the whole thesis. We managed to predict different insulating and metallic
topological phases – by calculating their topological invariants and surface state prop-
erties – in one system: HgTexS1−x under strain. Nearly all the features of the TB code
developed for the thesis, such as the modelling of strain and disorder, were used in this
work.

The starting points were the ideal HgTe and HgS. HgTe is a semimetal but the bands
are inverted at the Fermi energy. Therefore, opening up a band gap, e.g., by strain in an
appropriate direction, can make HgTe a TI. In contrast, HgS is already a TI, even without
strain. This is due to an unusual ordering of the Γ7 and Γ8 bands. Γ7 being energetically
above Γ8 can be described by an effective negative SOC constant for the p bands. This
effect comes from a hybridization with the d bands which favour E (Γ7 ) > E (Γ8 ).

A very interesting implication from the negative SOC constant is the opposite spin
chirality of the surface state of HgS, compared with most of the other TIs, such as the
chalcogenides. There are very few TIs with this property found so far.

Based on these ideas, we carried out a series of calculations to simulate the effects of
mixing HgTe and HgS. In addition, we applied uniaxial strain α in the (001) direction,
accompanied by an opposite strain β in the plane perpendicular to the (001) direction.
For the parameters x ∈ [0; 1 ] and β ∈ [0.97; 1.03 ] we calculated the Z2 invariant and
the mirror Chern number, provided the system showed an insulating band gap. For
all parameters the surface electronic structure for both surface terminations (Hg and
TexS1−x) of the (001) surface was calculated.

As a first result we confirmed that both HgS and strained HgTe (β > 1.0) are TIs
with Z2 invariants (1; 000) but a different mirror Chern number; n M = −1 for HgTe
and n M = +1 for HgS. This was further confirmed by the opposite spin chirality of the
surface states of both materials. These two topological phases occupy large regions of
the phase diagram and they touch at β = 1.0 and x ≈ 0.15, where the effective p SOC
vanishes, see Fig. 1 in [TR1].

Surprisingly, we also found two different semimetallic topological phases. Applying
tensile strain in (001) direction to HgTe (β < 1.0, x = 1.0) opens up a band gap at the
Γ point, but there is still a crossing of the bands on the Γ-Z line in the BZ. The system
becomes a topological Dirac semimetal (TDS), which is confirmed by the Z2 invariant
ν = 1 for the k z = 0 plane in the BZ. The corresponding surface states are visible at
a surface perpendicular to this plane, e.g., the (100) surface. The results of a surface
electronic structure calculation featuring both surface and bulk Dirac states are shown
in Fig. 6.2, not shown in the publication.

A second topological semimetallic phase – the Weyl semimetal (WSM) – was found
near the x ≈ 0.15 line (vanishing SOC) for β > 1.0. Exactly as shown in Fig. 5.2
a), the two distinct TI phases with different mirror Chern numbers are separated by a
finite region, the WSM phase. In HgTexS1−x a total of eight Weyl points were found, all
located in the k x-ky plane. For each of them the topological charge or Chern number was
calculated, by integrating the Berry curvature on a small sphere in k space surrounding
the Weyl points, getting +1 or −1 as a result. The surface electronic structure of the
(001) surface shows surface states, whose Fermi energy cuts are the Fermi arcs. For
both terminations, four Fermi arcs connect the eight Weyl point projections. Each Fermi
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Figure 6.2: Surface electronic structure of the (100) surface (TexS1−x termination) of
strained (β = 0.97) HgTe along two perpendicular directions in the surface
BZ. In both figures a Dirac cone like surface state can be seen. In addition,
the projections of the bulk Dirac cones onto the surface are visible in the left
figure.

arc connects two Weyl point projections with opposite Chern number. Interestingly, by
considering a real material with both top and bottom surface, the Fermi energy cut of
the whole material consists of an overlay of the calculations for both surfaces. Then, the
usual picture of Fermi lines being closed is restored, as different pairs of Weyl point
projections are connected by one Fermi arc at differently terminated surfaces.
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By means of detailed electronic structure calculations, we show that strained HgTexS1−x alloys show a
surprisingly rich topological phase diagram. In the strong topological insulator phase, the spin chirality of
the topological nontrivial surface states can be reversed by adjusting the alloy concentration x and the
strain. On top of this, we predict two semimetallic topological phases, namely, a Dirac semimetal and a
Weyl semimetal. The topological phases are characterized by their Z2 invariants and their mirror Chern
numbers.

DOI: 10.1103/PhysRevLett.114.236805 PACS numbers: 73.20.At, 71.70.Ej, 71.70.Fk, 73.43.-f

Introduction.—Topological insulators (TIs) are bulk
insulators that possess a topologically nontrivial band
structure. As a consequence, these materials host spin-
polarized and topologically protected surface states that
cross the fundamental band gap [1,2]. Experimental and
theoretical investigations have focused on Z2 TIs and on
topological crystalline insulators (TCIs). The former exist if
time-reversal symmetry is unbroken; they are characterized
by the Z2 topological invariant ν and show an odd number
of band inversions at time-reversal invariant momenta in
the bulk Brillouin zone [3–5]. Probably the most prominent
three-dimensional TIs in this class are the Bi chalcogenides,
e.g., Bi2Se3 and Bi2Te3 [6]. Topological crystalline insula-
tors, on the other hand, rely on unbroken crystal sym-
metries [7], typically a mirror symmetry. A prominent
topological crystalline insulator is SnTe [8]. The relevant
topological invariant is the mirror Chern number.
Topologically nontrivial surface states show up on any
surface perpendicular to the mirror plane. Their Dirac
points are then located on the line that is the intersection
of the mirror plane with the surface Brillouin zone (BZ). It
turned out that some compounds fall into both classes; for
example, Bi2Te3 is both a TI and a TCI [9].
A mirror Chern number provides information on both the

number and the spin chirality of the topologically nontrivial
surface states. More precisely, its modulus gives the
number of topologically nontrivial surface states, whereas
its sign tells whether their spin chirality is clockwise or
anticlockwise in the upper part of the Dirac cone [5].
Topological insulators investigated so far have a clockwise
spin chirality, which is explained by the orbital composition
of the surface states: the Dirac cones are composed mostly
of orbitals aligned normal to the surface (e. g., pz orbitals)
[10]. In contrast, surface-parallel orbitals (e.g., px and py)
favor anticlockwise chirality. Furthermore, one can attrib-
ute a positive (negative) spin-orbit coupling constant with
clockwise (anticlockwise) spin chirality to p orbitals. These
considerations immediately suggest studying the properties

of TIs with anticlockwise spin chirality [11]. On top of this,
it is desirable to tune the spin chirality, which is important
for applications.
Among the first systems investigated in this context are

HgTe quantum wells sandwiched between CdTe layers
[12,13]. Strained HgTe films are three-dimensional TIs
with clockwise spin chirality [14–17]. The similar com-
pound HgS is a TI as well [18], even if unstrained, but its
spin chirality is opposite to that of HgTe [20–22]; such an
effective negative spin-orbit coupling is acquired by
hybridization of the p orbitals with energetically close d
orbitals [23].
In this Letter, we report on strained alloys with the zinc

blende structure. We show theoretically that the spin
chirality of HgTexS1−x compounds can be tuned, that is
reversed, by application of moderate strain in the [001]
direction, and by changing the composition x. Moreover,
these materials exhibit a surprisingly rich topological phase
diagram that not only shows TCIs but also topological
semimetals: a Weyl semimetal [24] and a Dirac semimetal
phase [25]. Thus, the topological properties and, conse-
quently, the spin-dependent transport properties of these
systems can be adjusted by two external parameters: strain
and composition. These findings are important for both
device applications and fundamental condensed-matter
physics.
Theoretical.—In an initial step, we performed first-

principles electronic structure calculations [26] based on
the multiple-scattering theoretical formulation of density
functional theory (DFT) [34]. We applied the generalized
gradient approximation as introduced by Perdew et al.
(Ref. [35]). Our homemade Korringa-Kohn-Rostoker com-
puter program package [36–38] accounts for relativistic
effects, in particular the essential spin-orbit interaction, by
solving the Dirac equation. The lattice constants for HgTe
(6.461 Å) and HgS (5.850 Å) are chosen to match the
experimental lattice parameters [39,40]. The DFT band
structure of HgTe fits very well to the angle-resolved
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photoelectron spectroscopy measurements [14,41,42] near
the Γ point of the BZ. Since HgS is very similar to HgTe,
we believe that we also get the correct band structure for
this case.
Subsequently, tight-binding parametrizations in the

Slater-Koster framework [43] were obtained using the
DFT results as input. The parameters have been optimized
by Monte Carlo simulations [44]. These tight-binding
Hamiltonians are then used for all further calculations.
The HgTexS1−x alloys were simulated by the virtual

crystal approximation and the coherent potential approxi-
mation (CPA) [45,46], both giving similar results. A strain
α in the [001] direction accompanied by an opposite strain
β in the in-plane directions was applied; the volume of the
unit cell is not conserved. The elastic constants for HgTe
and HgS taken from Ref. [47] were linearly interpolated
with the concentration x.
Both HgTe and HgS crystallize in the zinc blende

structure, which lacks inversion symmetry. The (001)
surface is terminated either by a Hg or by a TexS1−x layer.
The surface electronic structure has been calculated for
semi-infinite systems using Green function renormalization
[48]. The dispersion, spin texture, and orbital composition
of the surface states are obtained from the layer-resolved
spectral density.
For building up a topological phase diagram, we varied

the concentration x from 0 to 1 in steps of 0.1 and the strain
β from 0.97 to 1.03 in steps of 0.01. For all nonmetallic
systems we calculated the Z2 invariant and the mirror
Chern numbers cm for the two mirror planes perpendicular
to the (001) surface, using the virtual crystal approxima-
tion. The phase diagram shows five topological phases,
which are discussed in the following (Fig. 1).
Spin chirality tuning.—Unstrained HgTe is a semimetal:

at the BZ center Γ the bulk bands at the Fermi level are

fourfold degenerate and are inverted; that is, the Γ6 band
has a lower energy than the Γ8 band [15,16]. This
degeneracy is lifted by positive in-plane strain (β > 1),
making HgTe a strong TI with Z2 invariant ν ¼ ð1; 0; 0; 0Þ
and a TCI with mirror Chern number cm ¼ −1. Hence,
positively strained HgTe is a TI with clockwise spin
chirality. The computed surface electronic structure
(Fig. 2) fits well to that of Wu et al. (Ref. [17]). Thus,
our approach reproduces the topological aspects reported
earlier.
HgS is a strong TI with counterclockwise spin chirality

[20,21,49], which is confirmed by our calculations: ν ¼
ð1; 0; 0; 0Þ and cm ¼ þ1. The spectral density of the S-
terminated (001) surface hosts a topological nontrivial
surface state at Γ̄ whose spin chirality is opposite to that
of strained HgTe (Fig. 2). Application of both positive and
negative in-plane strain does not change the topological
properties (green area in Fig. 1).
With two similar systems but with opposite spin chirality

at hand, one is able to tune—more precisely, reverse—the
spin texture of the topologically nontrivial surface state by
alloying. The topological phase transition cm ¼ −1⟷þ 1
is accompanied by a closing of the fundamental band gap
and by a vanishing effective spin-orbit coupling. For the
unstrained alloy HgTexS1−x this transition takes place at the
critical concentration xc ≈ 0.15, for which the p bands are
sixfold degenerate at Γ, indicating a semimetallic system.
Calculations performed within the coherent potential
approximation instead of the virtual crystal approximation
yield an xc of about 0.20. These numbers set the approxi-
mate range for experimental realization of the spin chirality

FIG. 1 (color online). Topological phase diagram of strained
HgTexS1−x alloys. Parameters are the concentration x and the
strain β. The phases are indicated by colors: strong TI (STI) with
mirror Chern number cm ¼ −1 (red), strong TI with cm ¼ þ1
(green), Dirac semimetal (yellow), Weyl semimetal (WSM)
(gray), and normal semimetal (blue).

FIG. 2 (color online). Surface electronic structures of positively
strained HgTe (left, β ¼ 1.03) and unstrained HgS (right), with
Te- or S-terminated (001) surfaces, respectively. The spin-
resolved spectral density of the topmost layer is shown along
a part of the Ȳ–Γ̄–Ȳ line of the surface Brillouin zone. The so-
called Rashba component of the spin polarization (in plane,
perpendicular to the wave vector) is given by the color scale with
red positive and blue negative, in states per eV.

PRL 114, 236805 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
12 JUNE 2015

236805-2

86



reversal. The bulk band structure near the phase transition is
shown in Fig. 3.
Upon the application of strain to HgTexS1−x two

topological semimetallic phases emerge: a Dirac semimetal
and a Weyl semimetal.
Dirac semimetal.—This phase shows up for positive

spin-orbit coupling (SOC) and negative strain (yellow area
in Fig. 1). The application of negative strain to HgTe splits
the degeneracy at Γ but, in contrast to positive strain, there
is no fundamental band gap. More precisely, the valence
and conduction bands touch at two points on the Z–Γ–Z
line, forming a pair of Dirac points (Fig. 4). The associated
wave vectors are connected with each other by time-
reversal symmetry [here k ¼ ð0; 0;�kzÞ]. The respective
Z2 invariant νz is thus calculated for the plane with k ¼
ðkx; ky; 0Þ (Ref. [25]). Owing to the zinc blende lattice, the
kz ¼ 0 plane is not a mirror plane of the sample, leading to
νz ¼ 1, which indicates that positively strained HgTe is a
topological Dirac semimetal. Any surface perpendicular to

the kz ¼ 0 plane features both topologically protected bulk
and surface states (not shown here).
Weyl semimetal.—This phase requires either broken

time-reversal symmetry or broken inversion symmetry
(as is the case for a zinc blende lattice). In a Weyl
semimetal, the fundamental band gap does not reopen
immediately at the phase transition; instead, each point at
which the valence and the conduction band touch splits into
a pair of Weyl points that carry opposite topological
charges (Chern numbers �1). The associated topologically
nontrivial surface states connect the projections of the Weyl
points in the bulk onto the surface BZ, leading to so-called
Fermi arcs with unique transport properties. These fasci-
nating features are investigated with great effort [50–53].
For positively strained HgTexS1−x, we found Weyl

semimetal phases in a region of concentrations with small
effective SOC. Starting at β ¼ 1.03 and x ¼ 0.0 (HgS) in
the topological phase diagram (gray area in Fig. 1), a phase
transition takes place at xc ≈ 0.08. There, the valence and
conduction bands touch at four points on the Γ–K lines,
which are cuts of the kz ¼ 0 plane with the (110) or the
(11̄0) mirror plane in the BZ, respectively. Hence, there is a
fourfold degeneracy at these points. Upon increasing x,
these points split into pairs of twofold degenerate touching
points; the bands there disperse linearly, forming Dirac
cones. The topological charges associated with these Weyl
points are calculated to be �1.
These bulk properties are nicely supported by the

electronic structure of the (001) surface (Fig. 5). For
Fermi energy cuts, the spectral densities show Fermi arcs
that connect projections of the Weyl points onto the surface
BZ. A further increase of x shifts the Weyl points within the
kz ¼ 0 plane towards the Γ–X lines. The four pairs touch
(but do not recombine because the touching Weyl points
possess the same topological charge), exactly for vanishing
SOC (xc ≈ 0.15). For positive SOC (x > 0.15), the Weyl

FIG. 3. Bulk band structures of unstrained HgTexS1−x for
x ¼ 0.10 (left), x ¼ 0.15 (center), and x ¼ 0.20 (right). The
spin-orbit coupling almost vanishes at x ¼ 0.15, and the
system is close to the phase transition. One fifth of the X–Γ
and the Γ–L lines is shown.

FIG. 4. Bulk band structure of negatively strained HgTe. The
Dirac point on the Γ–Z line shows up for β < 1. One fifth of the
X–Γ and the Γ–Z lines is shown.

FIG. 5 (color online). Electronic structure of the (001) surface
of positively strained HgTe0.11S0.89 with β ¼ 1.03. The spectral
density of the topmost layer is given by the color scale (in states
per eV). Left: TeS termination. Right: Hg termination. Red dots
mark the position of the Weyl points on the surface BZ; their
topological charges �1 are indicated. The arrows sketch the spin
polarization. a is the lattice constant.
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points emerge again. The Fermi arcs have a reversed spin
polarization, owing to the change of sign of the SOC.
Eventually, at x ≈ 0.24, the pairs of Weyl points recombine
at the mirror lines and the system enters the strong TI phase
for x > 0.24.
It turned out that the Fermi arcs connect different pairs of

Weyl points, depending on the surface terminations
(Fig. 5). The Fermi arcs are reminiscent of Dirac strings
that connect oppositely charged Dirac monopoles; this
picture is supported by the spin polarization that follows
a Fermi arc’s line (arrows in Fig. 5).
Concluding remarks.—Strained HgTexS1−x alloys show

a surprisingly rich topological phase diagram: besides a
reversal of the spin chirality in the strong topological
insulator phase, we predict two semimetallic topological
phases, namely, a Dirac semimetal and a Weyl semimetal.
These findings call for experimental verification, for
example. by spin- and angle-resolved photoelectron spec-
troscopy [54,55]. In transport measurements, all the phases
would have different signatures. In Weyl semimetals, the
surface contribution should be highly anisotropic because
of the shape of the Fermi arcs, which could be detected by
surface sensitive measurements. In contrast, the anisotropy
should nearly vanish in topological Dirac semimetals, since
the Fermi lines are closed. Finally, for the STI phases, the
bulk contribution should vanish because of the insulating
bulk nature. This would not be the case in the semimetallic
phases.
Positive or negative strain may be introduced by

appropriate substrates, as is successfully done for HgTe
sandwiched between CdTe (Ref. [14]). With the
assumption that the lattice constant of HgTexS1−x varies
linearly with x, we propose GaSb with a lattice constant of
6.1 Å [56] as a substrate for the Weyl semimetal phase. To
achieve the topological Dirac semimetal phase, we propose
Cd0.7Zn0.3Te (lattice constant 6.364 Å [57]) as a suitable
substrate. Figure S3 of the Supplemental Material [58]
provides in-plane lattice constants for the entire topological
phase diagram.
In our work, the alloy was simulated mainly by the

virtual crystal approximation. A big advantage is the
possibility of calculating the topological invariants from
eigenstates and eigenvalues combined with the fact that we
do not need to construct large supercells. In the DFT
approach, different methods for simulating alloys are
possible. One is to construct a supercell, where the atoms
of compound A are exchanged by compound B according
to the given concentration. The system is then lattice
periodic. The biggest disadvantage of this approach is
the need for large supercells, which can become computa-
tionally demanding. It was used to calculate, e.g., the
properties of HgxZn1−xTe [15], which is similar to the
system we investigate. Another possibility is the CPA.
Since this method is based on a Green function approach, it
is well suited for our Korringa-Kohn-Rostoker package.

The next step would be to calculate the properties of alloys
using the CPA directly within DFT.
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Tomáš Rauch,1 Steven Achilles,1 Jürgen Henk,1 and Ingrid Mertig1, 2

1Institute of Physics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany∗
2Max Planck Institute for Microstructure Physics, Halle (Saale), Germany

(Dated: May 22, 2015)

FIRST-PRINCIPLES ELECTRONIC
STRUCTURE CALCULATIONS

For the ab initio determination of the bulk electronic
structures, we performed density-functional calculations
using a homemade screened Korringa-Kohn-Rostoker
(KKR) computer code. In the muffin-tin approxima-
tion, the potential is approximated spherical within site-
centered spheres and constant otherwise. It turned out
that four spheres have to be used within the elementary
unit cell of HgTe and HgS: one for Hg, one for Te or S,
and two ‘empty’ spheres to account for the interstitial
region.

We have performed both scalar-relativistic and fully
relativistic calculations. In the former, which relies on
the Schrödinger equation, spin-orbit coupling is not taken
into account. For the latter, we solve the Dirac equation
which per se includes all relativistic effects, in particular
spin-orbit coupling.

The self-consistent solution of the Kohn-Sham equa-
tion requires integration over energy and the Brillouin
zone. The integration over energy is performed in the
complex energy plane. The contour consists of a semi-
circle, a straight line parallel to the real axis, and Mat-
subara frequencies. Forty complex energy points between
the bottom of the valence bands and the Fermi level have
been used. The integration over the first Brillouin zone
is done on a 48× 48× 48 mesh.

The band structure is obtained by solving a non-linear
eigenvalue problem for 300 real energies, each associated
with 1280 wavevectors along the high symmetry lines.

TIGHT-BINDING CALCULATIONS

The main results of this work are achieved by means of
an ab-initio based tight binding (TB) model. First, the
band structures of HgTe and HgS with and without SOC
were calculated in the KKR method. Then, the Slater-
Koster (SK) parameters of a next-nearest neighbor TB
model were optimized using a Monte Carlo method, us-
ing the KKR bands as reference. To describe relativistic
effects in the TB model, the spin-orbit coupling constant
λ for the p orbitals is set to reproduce the Γ7–Γ8 band
gap of the KKR calculations. The results of this opti-
mization are shown in Figs. S1 and S2.
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FIG. S1. Bulk band structure of HgTe without spin-orbit cou-
pling in the region of the p bands. Black: density-functional
calculations; red: tight-binding calculations. Inset: bulk band
structures with spin-orbit coupling included.
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FIG. S2. As Figure S1 but for HgS.

Strain

Strain has been applied in the [001] direction, described
by a parameter α. This ‘out-of plane’ strain is accompa-
nied by in-plane strain β. The parameters α and β are
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TABLE I. Slater-Koster tight-binding parameters for HgTe
and HgS. Es, Ep, Ed are the on-site energies, λp is the spin-
orbit coupling of the p orbitals. The subscript of the Slater-
Koster parameters indicates the atom: 1 for Hg, 2 for Te or
S, respectively. All numbers in eV.

HgTe HgS
Es

1 −1.034 −1.284
Es

2 −10.343 −11.691
Ep

1 3.896 5.075
Ep

2 −1.650 −1.184
Ed

1 −6.552 −6.365
Ed

2 9.713 6.176
λp 0.29 −0.053

(ssσ)12 0.730 1.429
(spσ)12 1.623 1.849
(psσ)12 0.775 0.774
(sdσ)12 1.225 0.837
(dsσ)12 −0.696 −0.921
(ppσ)12 1.431 1.942
(ppπ)12 −0.923 −0.629
(pdσ)12 −0.084 0.660
(dpσ)12 0.378 0.917
(pdπ)12 0.608 0.174
(dpπ)12 −0.291 −0.457
(ddσ)12 −0.904 −0.370
(ddπ)12 −0.870 −0.291
(ddδ)12 1.107 −0.135
(ssσ)11 −0.090 −0.232
(spσ)11 −0.352 0.029
(sdσ)11 −0.231 0.028
(ppσ)11 0.435 0.551
(ppπ)11 −0.267 −0.172
(pdσ)11 −0.571 −0.256
(pdπ)11 0.299 −0.243
(ddσ)11 0.094 −0.121
(ddπ)11 −0.110 0.085
(ddδ)11 −0.052 0.003
(ssσ)22 −0.039 −0.302
(spσ)22 0.004 0.361
(sdσ)22 0.596 −0.563
(ppσ)22 0.280 0.857
(ppπ)22 0.118 −0.066
(pdσ)22 0.601 −1.649
(pdπ)22 0.076 0.242
(ddσ)22 −0.370 −0.838
(ddπ)22 −0.756 0.245
(ddδ)22 0.115 −0.007

defined as

a‖ = βa, (S1)

a⊥ = αa, (S2)

with a being the original lattice constant of the un-
strained cubic system; a‖ and a⊥ are the in-plane and
out-of plane lattice constants of the strained sample, re-
spectively. The relation of α and β is given by the elastic
constants C11 and C12 [1],

α = 1− 2(β − 1)
C12

C11
. (S3)
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FIG. S3. Same as Figure 1 of the Paper but with in-plane
lattice constants a‖ (in Å) for each point in the topological
phase diagram.

To account for the distance-dependence of the TB pa-
rameters we applied Harrison’s rule,[2]

(SK)strained =

(
dunstrained
dstrained

)2

(SK)unstrained, (S4)

in which (SK) denote a SK parameter in Table I. dstrained
and dunstrained are the interatomic distances for the
strained and the unstrained sample, respectively.

Assuming the lattice constant of unstrained
HgTexS1−x depends linearly on x, we calculate the
in-plane lattice constants a‖ for each point of the topo-
logical phase diagram (Fig. S3). This information may
be helpful in finding suitable substrates for experimental
realizations of strained samples.

Alloying

The alloying of HgTe and HgS was simulated by both
the virtual crystal approximation (VCA) and the coher-
ent potential approximation (CPA) [3, 4].

In the VCA for HgTexS1−x, the TB parameters and
the elastic constants are scaled linearly with the concen-
tration x. This approach allows to calculate both the
band structure and the eigenstates; the latter serve as
input for the subsequent calculations of the topological
invariants.

In the CPA, the alloying is described by a complex self-
energy which is added to the Hamiltonian matrix. The
self-energy is calculated self-consistently for a given x and
accounts for renormalization of the band energies and
lifetime broadening. The electronic structure is obtained
from the resulting Green function from the Bloch spectral
density. Being a Green function approach, the CPA does
not allow to calculate the topological invariants.

Typically, the CPA provides a better description of
the alloys than the VCA, with the drawback that the
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topological invariants cannot be calculated. Since these
invariants are essential for the present investigation, we
checked the VCA results versus the CPA results. Of par-
ticular importance are the critical concentration xc at
which a topological phase transition takes place and the
fundamental band gap closes. The xc’s of VCA and CPA
differ by less than 0.05.

Topological invariants

To build up a topological phase diagram, we varied the
alloy concentration x and the strain β.
Z2 invariants were calculated for all insulating samples,

using two methods. The first calculational scheme, pro-
posed by Fukui and Hatsugai [5], relies on the Fu-Kane
expression [6] and uses a discrete wavevector mesh in the
BZ. In the second approach, the evolution of Wannier
function centers along lines in the BZ has been tracked
[7]. Both methods yield identical results.

For the calculation of mirror Chern numbers we follow
the concept of spin Chern numbers [8]. For all wavevec-
tors k in a mirror plane, the Bloch states are classified
according to their mirror eigenvalue ±i. For each class
the Chern number c±i is calculated as an integral of the
Berry curvature [9] over the intersection of the BZ with
the mirror plane. The mirror Chern number cm is the
difference of the two Chern numbers,

cm =
1

2
(c+i − c−i) . (S5)

Surface electronic structure

A nontrivial topological phase is accompanied by the
emergence of topological surface states that are protected
by a symmetry of the system (here: time reversal and
mirror symmetries); this is the bulk-boundary correspon-
dence. To corroborate and check the topological phase
diagram—which is obtained from electronic structure cal-

culations for the bulk—we computed the electronic struc-
ture of (001) surfaces.

For this purpose we utilized a Green function renor-
malization scheme [10, 11] which mimics semi-infinite
systems. The outcome is the layer-resolved Green func-
tion matrix Glm(E,k‖); l and m denote layers, while the
‘internal’ indices of G are orbital and atom. The sur-
face electronic structure is then obtained from the layer-
resolved spectral density of the topmost layer (l = m =
0),

N0(E,k||) = − 1

π
Im trG00(E + iη,k‖). (S6)

η is a small offset from the energy axis, leading to a
broadening of the spectral density (η = 0.0005 eV). The
orbital composition and the spin texture of the surface
states is deduced from partial traces in eq. (S6).
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C O N C L U S I O N S

In the present work, various properties of different topological insulators (TIs) and
metals were studied within an ab initio based tight-binding (TB) model. The Slater-
Koster (SK) parameters were either extracted from pre-calculated ab initio band struc-
tures or taken from literature. In the TB model, the effects of several perturbations of
the initial system, such as strain, disorder or an external magnetic field, were analysed.
The aim of these simulations was the investigation of topological properties and their
variation upon specific modifications. For each value of system parameters, e.g., the lat-
tice constant or defects concentration, topological invariants of the bulk electronic states
were calculated, primarily as an integrated Berry curvature, which is well accessible in
the TB model. In addition, the surface electronic structure was calculated for different
parameter sets. The connection between topological invariants and surface states was
proved and the properties of the latter were probed under different conditions. Being a
cumulative thesis, this work includes results published in peer-reviewed journals.

The first publication (section 6.2) showed the possibility of tuning the different materi-
als with rocksalt structure from a normal insulating phase to a topologically crystalline
one by increasing the ambient pressure. The pressure necessary to enter the TCI phase
was explained microscopically by examining the properties of the hybridized s-p orbitals
of different compounds. Thus, PbTe, PbS and PbSe were proposed to become topolog-
ically crystalline insulators (TCIs) under hydrostatic pressure, next to the previously
known SnTe.

In the second study (section 6.3), the possibility of characterizing Z2 TIs also by the
mirror Chern number, which is the invariant for TCIs with mirror symmetries, was
examined for the example of Bi2Te3. A very important result of this work is the fact
that magnetic fields or a magnetization oriented perpendicular to a mirror plane of the
system do not break the corresponding mirror symmetry. The mirror Chern number is
still well defined in this case and the Dirac point of the surface state is protected by the
symmetry, as it is otherwise not the case for an arbitrary oriented magnetic field. These
findings explain the existence of ungapped surface states in Z2 TIs, even when time-
reversal symmetry is broken by magnetic impurities, a magnetic toplayer or an external
magnetic field.

An interface between a Z2 TI and a TCI was modelled in the next paper (section
6.4). Based on a previous discussion of interface states of TIs being preserved or an-
nihilated depending on the respective topological invariants of the two materials form-
ing the interface, the interface between Bi2Te3 and SnTe was studied. A global mir-
ror symmetry was identified allowing for the calculation of the mirror Chern num-
bers that read nM = −1 for Bi2Te3 and nM = −2 for SnTe. The number of interface
states is given by the modulus of the total mirror Chern number across the interface,∣∣nint

∣∣ =
∣∣∣nBi2Te3

M − nSnTe
M

∣∣∣ = 1. This was confirmed by an electronic structure calcula-
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tion for the interface, showing only one interface state. The other two surface states that
occur at the free surfaces of the respective materials annihilate each other during the
interface formation.

Finally, in the last publication (section 6.5) the topological properties were calculated
in a disordered HgTexS1−x system for a phase diagram spanned by concentration x
and strain in (001) direction. First, the known facts of negatively strained HgTe and
unstrained HgS being TIs with opposite spin chirality of the surface states were con-
firmed by calculations of the topological invariants and the surface electronic structure.
The phase boundary of these phases is located at x ≈ 0.15 across which the effective
spin-orbit coupling (SOC) constant of the p orbitals changes sign. A second, even more
important result of the work was the identification of two additional topological phases;
the Weyl semimetal (WSM) and the topological Dirac semimetal (TDS) phase. The Weyl
points in the WSM phase are located in the kx-ky plane and their projections can be ob-
served in the surface electronic structure of the (001) surface. Each Weyl point possesses
a topological charge of ±1. In addition, the Weyl point projections are connected by sur-
face states whose Fermi energy cut forms open lines connecting Weyl point projections
with opposite topological charges, called the Fermi arcs. The second metallic phase,
the TDS, was found for negatively strained HgTe, featuring doubly degenerate bands
crossing on the Γ-Z line of the Brillouin zone (BZ). The dispersion of the bulk bands
in the vicinity of the crossings is linear, forming the bulk Dirac states. The topological
character was confirmed by calculating the value of the Z2 invariant for the kx-ky plane
as ν = 1. Owing to these findings, the (100) surface features the projections of the two
bulk Dirac states as well as the surface state emerging from the topologically non-trivial
character of the kx-ky plane.

Summarizing, the bulk topological invariants and the surface electronic structure were
investigated in this work. Since the topological materials should be used in real-world
applications, the transport properties of both the bulk and surface Dirac states have to be
studied. Therefore, the next step based on the current results is to calculate the transport
properties of the topological materials for different geometries, especially parallel and
perpendicular to the surface. This is possible for the ballistic regime by means of a
Green function approach in the TB model. In this way all the topological properties can
be calculated in one common model, including electronic and spin transport.
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