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Abstract

In der vorliegenden Arbeit werden theoretische Untersuchungen der Transporteigenschaften
von magnetischen Nanokontakten präsentiert und neue Methoden zur Herstellung und Kon-
trolle des hochspinpolarisierten Stromes und Magnetowiederstandes vorgeschlagen. Die
Berechnungen wurden mit Hilfe von ab-initio Methoden durchgeführt, die auf der Dich-
tefunktionaltheorie (SIESTA, SMEAGOL) und Nichtgleichgewichts-Green-Funktionen For-
malismus (SMEAGOL) basieren.

Die untersuchende, zwischen zwei Co-Elektroden hängende, Au-Atomketten zeigten höhe
Magnetowiederstandratio und Spinpolarisation der Leitfähigkeit, die von der Grenzflächen-
hybridisierung zwischen Au und Co verursacht sind. Der Effekt ist stabil gegen geometrischen
Deformationen.

Spinpolarisierte Leitfähigkeit und Strom in den platten GdN - Nanokontakten, die zwis-
chen Cu-Elektroden platziert sind, werden untersucht. Es wurde festgestellt, dass das Sys-
tem ideale Spinfiltereigenschaften besitzt, was sich durch die halbmetallische Natur von GdN
erklären lässt.

Am Beispiel von Fe-Pt, Fe-Pd und Fe-Rh Nanokontakten zwischen Pt, Pd bzw. Rh
wurde gezeigt, dass sich die Stromspinpolarisation mit Hilfe vom Gate-Elektrode steuern
lässt. Es wurde gezeigt, dass die angelegte Gate-Spannung die lokalisierten spinpolarisierten
Zustände von Fe verschiebt und somit zu einer starken Änderung oder sogar Umkehrung der
Stromspinpolarisation führt.

Abstract in English

In the current work the theoretical investigations of transport properties of nano-sized mag-
netic contacts are presented and the new methods to obtain and control high spin-polarized
current and magnetoresistance are proposed. The studies were performed by means of ab-
initio methods based on the density functional theory (SIESTA, SMEAGOL) and the non-
equilibrium Green’s functions formalism (SMEAGOL).

Investigated Au atomic chain suspended between Co electrodes revealed a high magne-
toresistance ratio and a spin polarization of a conductance caused by interfacial hybridization
between Au and Co. This effect is found to be stable against geometry deformations.

Spin-polarized conductance and current in the plane GdN nanocontacts placed between
Cu electrodes were studied. It was found that the system has ideal spin-filtering properties
caused by a half-metallic nature of the GdN.

The possibility to control a current spin polarization by a gate electrode was demon-
strated in the investigations of Fe-Pt, Fe-Pd and Fe-Rh nanocontacts between Pt, Pd and
Rh electrodes respectively. It was shown that the applied gate voltage shifts the spin-
polarized confined Fe states leading to a strong change or even an inverse of the current spin
polarization.





Foreword

In the rapidly evolving world of modern electronics, one of the priority goals is the develop-
ment of technologies capable of accommodating the constant demand in rapid processing and
efficient storage of exponentially growing amounts of information, generated mostly by the
booming consumer electronics market, but also by various scientific big-data projects. [1, 2]

A vivid example of how technological demand can be a stimulus for fundamental research
is “spintronics”, an area of solid state science and electronics dealing with the use of electron
spin as an information carrier with a capability for extremely high information densities
and short switching/evolution time scales (atomic dimensions setting a spatial limit in the
Ångström range and evolution times of the order of attoseconds) [3]. Spintronics was born
with the discovery of the GMR effect in 1988 by Fert and Grünberg and eventually led, f.e.,
to the creation of spin-valve devices which found successful application in memory storage
and sensorics. Later, GMR based devices were replaced by more advanced magnetic tunnel
junction (MTJ) ones, another product of fundamental spintronics research. While the size
of the studied systems continuously schrunk, eventually reaching nano-scale dimensions, the
main principe of spintronics, meticulous control of atomic spins and spin-polarized electon
currents, remains the same, having endured decades of active research. Moreover it still
seems to offer “plenty of room at the bottom” for more fundamental studies to come.

The present thesis is committed to researching novel possibilities of controlling spin injec-
tion and transport in atomic-scale contacts – systems of both fundamental and technological
importance. The dependence of spin injection and transport on chemical composition and
geometry of nano-contacts and on external influences is inspected with the eventual goal of
finding ways to voluntary tailor the latter properties for potential technological applications.

To put the presented original research in a correct frame, the first chapter of the thesis
presents a brief historical overview of research done on the subject over the past decades.
After a short outline of the path of spin-polarized transport from discovery to technological
applications, the feasibility of controlling the latter by electronic means is discussed and a
related class of systems (planar micro- and nano-scale contacts) is introduced.

This brief introduction is followed in Chapter II by a comprehensive discussion of the
theoretical and calculation methodology employed in the present thesis. A brief introduction
to density functional theory (DFT) is followed by an overview of state-of-the-art ways of
treating electron transport with first-principles means. The chapter is finalized by a detailed
description of DFT codes used in the study and a sample workflow illustrating the capabilities
of the theoretical and numerical formalisms to describe electronic and magnetic properties
of both simple model- and complex realistic systems.

With the stage set for the presentation of original research, Chapter III addresses the
question of spin-injection in Au – Co mixed chains between Co electrodes. It is shown that
efficient spin injection in pure and mixed Au/Co nano-contacts opens a path to tailoring
spin-transport in purely metallic systems by tuning geometry and chemical composition of
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the latter. The high spin-polarization of conductance, caused by interfacial effects between
Co and Au atoms, explains the high GMR values observed in experiments. [4, 5] Moreover,
we show that high spin polarization of conductance and high GMR ratios are generally robust
against changes in geometry and chemical composition of both the electrodes and the chain.

As a logical continuation of the investigation related to spin-polarized current control
methods, in Chapter IV electric gating – an approach widely used in electronics – is shown
to be also applicable in spin-transport systems. The spin-polarization of the current through
a nano-contact is shown to depend on the bias of a gate electrode brought laterally into the
proximity of the junction. The effect of gate electrostatic field on the spin-polarized transport
properties in mixed Fe – Pt(Pd,Rh) nano-wires is studied. The redistribution of electrons in
the chain in response to the electrostatic potential imposed by the biased gate electrode is
found to be strongly spin-dependent and to result in a shift of the confined states of the
chain which act as transmission channels. Furthermore, the impact of the gate is found to
vary for chains with linear and compressed/buckled geometries. As a result, even small gate
biases are found to cause conductance changes of as much as 200%. More importantly, by
adjusting the bias the spin-polarization of conductance can be enhanced, quenched or even
reversed.

For the cases when planar contact geometry might be preferable to the single-atomic-
junction one, in Chapter V an interesting compound, GdN, is considered as a spin filter, a
choice motivated by recent experimental observations. [6] Transport properties of a junction
consisting of a GdN layer sandwiched between Cu electrodes are investigated and found
to depend strongly on the thickness of GdN. This thickness dependence is found to have
two distinct regimes. For thick layers the conductance polarization is high and governed by
the half-metallic properties of the GdN bulk, while for thin GdN layers the conductance is
found to depend on the hybridization at the GdN – Cu interface and be strongly reduced
thereby. In the thick-layer regime the conductance is found to have a ballistic character in
majority channel and be provided for by p states of GdN, while in the minority channel
the conductance has a purely tunneling character and falls off exponentially with GdN layer
thickness. This allows one to tune the spin-polarization of the current to a desired value by
adjusting the thickness of the GdN layer.

The thesis is completed by a short summary.
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Publications (Veröffentlichungen) 105

Curriculum 107





Chapter 1

Introduction

1.1 Spin-polarized transport in atomic-sized contacts

1.1.1 From discovery to application

The increased interest of the solid state physics and engineering communities in spin-polarized
electron transport can be dated back to the discovery of the giant magnetoresistance (GMR)
effect by Fert (1988) and Grünberg (1989). [7, 8] In both works the resistance of Fe/Cr lay-
ered systems has been studied in dependence of the magnetization alignment of the layers.
By that time it was already established [9] that two Fe layers divided by a Cr spacer are
antiferromagnetically coupled but could be ferromagnetically aligned by an external mag-
netic field. Fert and coworkers [7] observed a decrease of resistance of a Fe(001)/Cr(001)
bcc superlattice [grown on GaAs(001)] by a factor of two as the Fe layers’ magnetization
alignment was switched from antiparallel to parallel by exposing the sample to external
magnetic field. The dependence of resistivity of a material on the applied magnetic field
(called “magnetoresistance”) was first reported by Thomson/Kelvin [10] in 1856. However,
while ordinary (or anisotropic) magnetoresistance discovered by Thomson rarely exceeds a
few percent, the effect discovered by Fert amounted to a resistance change as high as 100%.
Since the resistance was found to depend on the relative alignment of Fe layer magnetiza-
tions rather than on the strength or direction of the applied magnetic field, a new measure
“magnetoresistive ratio” (MRR) was used to quantitatively describe the effect. From the
resistances in parallel RP and antiparallel RAP configurations the MRR can be expressed
as MRR = (RAP − RP )/RP × 100%.1 The MRR found by Baibich and coworkers was as
high as 100% which gave the effect its well-known name “giant magnetoresistance” or GMR.
The system of Baibich et al . was constructed using the so called curent-in-plane (CIP)
geometry [see Fig. 1.1(a)], meaning that the current flowed through the device parallel to
the Fe/Cr interfaces and the magnetization was directed along the [110] axis (in-plane of the
Fe films). [7]

Independently, Binasch and Grünberg [8] measured an MRR of 1.5% in a CIP Fe/Cr/Fe(110)
layered system, which was grown epitaxially on GaAs(110). Binasch and coworkers have
found the resistance of a Fe/Cr system with three Fe layers to decrease by 3% as the mag-
netization alignment of Fe layers was switched from antiparallel to parallel. Moreover, with
increasing Cr layer thickness, MR was found to decrease.

Both Fert and Grünberg groups independently came to a conclusion, that the difference

1In some definitions the RAP is taken in the denominator, which usually results in lower MRR values
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Figure 1.1: (a) CIP and (b) CPP geometries of FM/NF/FM junctions (yellow/blue/yellow
colors respectively). Bias voltage V is applied to the electrodes (red color).

in resistivity was caused by spin-dependence of the transmission of the conduction electrons
in a ferromagnet.

While in the original works of both Fert and Grünberg current-in-plane (CIP) geometry
was used (Fig. 1.1a), which was mainly motivated by available sample preparation techniques,
soon after the seminal publications several theoretical works [11, 12] suggested that the use of
current-perpendicular-to-plane geometry (CPP) [Fig. 1.1(b)] should result in still larger MRR
values, than those possible in CIP configuration, due to the differences in spin transport and
accumulation conditions for different current orientations. Subsequent experiments [13–16]
have confirmed that CPP GMR values in Fe/Cr/Fe junctions exceed several times the CIP
MRR values of the same system. [17]

Model descriptions

Since many of the main ideas put forth to describe the original planar-junction GMR exper-
iments can also be applied to spin-dependent transport through nano-contacts (as shall be
seen in the course of the present thesis) it is worthwhile to briefly introduce here the basic
semiclassical picture of the GMR effect in FM/NM/FM2 junctions. [11, 12, 18, 19]

The fact that spin plays a role in determining the resistivity or conductivity of a ferro-
magnet was introduced by Mott [20] as early as 1936, theoretically formalized by Fert and
Campbell a few decades later [21, 22] and subsequently confirmed in a series of studies of
different transitional metal alloys. [21–25] The experimental results could be accounted for
in a simplified picture of the “two-current model”. [21, 24] The basis of the model is the as-
sumption that charge carriers in different spin-channels (↑ and ↓) contribute independently
to the total current and experience different resistances from the material they propagate in
(resistivities of ρ↑ and ρ↓, respectively). Additionally, a transfer of charge carriers from one
spin channel into the other is possible by spin-mixing scattering events (resistivity of ρ��).
Within this formalism the resistivity of a ferromagnetic conductor is expressed as

ρ =
ρ↑ρ↓ + ρ��(ρ↑ + ρ↓)

ρ↑ + ρ↓ + 4ρ��
. (1.1.1)

The spin-mixing term mainly originates from the electron-magnon and electron-electron
exchange scatterings. The latter term is usually considered negligible. [24] Additionally,
in the low temperature limit, also the spin flip scattering of the conduction electrons by
magnons is frozen out, and the overall spin mixing rate becomes much smaller than the
momentum relaxation rate and the resistivity of the ferromagnet can be expressed in an
even shorter relation:

ρ =
ρ↑ρ↓
ρ↑ + ρ↓

. (1.1.2)

2ferromagnet/non-magnet/ferromagnet
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Figure 1.2: A cartoon representation of a typical transitional metal ferromagnet electronic
structure. Majority/spin-up (red) and minority/spin-down (blue) densities of dispersive s
and localized d electron states (DOS). At the Fermi level majority DOS is predominantly
of s character, allowing for long coherence lengths. Minority s–DOS at the Fermi level are
mixed with the heavy d-states, which allows them to be scattered into the bulk and shortens
their coherence/momentum relaxation lengths.

This correspond to the situation with conduction in parallel by two independent channels
as illustrated in the lower panel of Fig. 1.3(a). This simplified version of the two current
model has been generally adopted in the theories of GMR and surprisingly few models take
into account the spin mixing term as well.

An important quantity here is the asymmetry between the two channels which can be
quantified as spin asymmetry coefficients α = ρ↓/ρ↑ or alternatively β = (ρ↓−ρ↑)/(ρ↓+ρ↑) =
(α− 1)/(α + 1).

To address the physics of the difference between ρ↑ and ρ↓ one can consider single factors
which the resistivity ρσ for spin channel σ depends on. Schematically it can be written [24]
as a function of number nσ, defining the scattering efficiency of the channel, effective mass
mσ, relaxation time τσ and, most importantly, the density of states (DOS) at the Fermi level
nσ(EF ) as:

ρσ =
mσ

nσe2τσ
. (1.1.3)

For a given type of scattering potential (without spin-flip) characterized by the matrix el-
ements Vσ and in the Born approximation, relaxation time τσ can be expressed as τ−1σ ∝
|Vσ|2 nσ(EF )

While the intrinsic origins of the spin dependence of ρσ that are related to the spin
dependence of nσ and mσ cannot, in general, be neglected, in transition metals the strongest
impact comes from the dependence of the spin relaxation rate on the Fermi level DOS
(nσ(EF )) in Eq. 1.1.3. The major part of the current in a metal is carried by nearly-free
conduction electrons which can be scattered into the “heavy” d-states by impurities or by the
atoms of the ferromagnet itself (see Fig. 1.2). The electronic structure of a typical transitional
metal ferromagnet exhibits a spin-split d band. Taking as an example an element from the
second half to the transitional metal row, one can expect to find a filled majority (σ =↑) band
(residing well below the Fermi level, so that nd,↑(EF ) = 0) and a partially filled minority
band (σ =↓), residing close or at the Fermi level (high nd,↓(EF ), see Fig. 1.2) so that the s
states are hybridized with it and are more readily scattered/thermalized into the bulk. Thus
there is a general intrinsic tendency for stronger scattering and larger resistivity in the spin-↓
channel. However the largest asymmetries between ρ↓ and ρ↑ can be induced by extrinsic
effects, in particular by impurities in form of single atoms or inter-material interfaces, which
present a strong spin dependent scattering cross section. [21, 23, 24]

Resistor model. The two-current concept can be applied to understand the effect of GMR
in layered ferromagnet(FM)/non-magnet(NM) CIP systems, where, in the limit of interlayer
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Figure 1.3: Simplified current in plane (CIP) scheme of the two current model of a pure
ferromagnet (a) and magnetoresistive junction (FM/NF/FM) with ferro- (b) and antiferro-
magnetic (c) ordering of the magnetic layers. In the top sketches colors red and blue signify
the two opposite magnetization orientations of the ferromagnetic layers (rectangles) and the
conduction electron spins (arrows). Strait lines denote propagation with little scattering.
Zig-zag lines illustrate the scattering electrons with spins co-aligned with the magnetization
of the ferromagnet. In the lower sketches the top and bottom branches of the electric circuit
denote the two independent currents of minority and majority electrons.

distances being much smaller than the electron mean free path, so that inter- and intra-layer
scattering effects can be taken to have the same weight, the two-current concept translates
into the so-called “resistor model” of GMR [Fig. 1.3(b,c)]. For the case of parallel alignment
(P) of the magnetizations of neighboring ferromagnetic layersm [shown in Fig. 1.3(b)], where,
without limiting the generality, m is set to ↑], the junction has a high resistivity ρ↓↑ for spin-
↓ electrons in both layers, no matter how complex the actual scattering path (represented
by larger resistors in the equivalent electric circuit in the lower panel of Fig. 1.3). Spin-↑
electrons, on the contrary experience little resistance (ρ↑↑) in both FM layers (small resistors
in the electric circuit). Neglecting of spin-flip scattering and spin-dependent processes at
the interfaces of FM and NM films, the two-current model tells one that the resistivity in a
ferromagnet ρσ,m only depends on the mutual alignment of σ and m. For reasons of clarity
it the following notation can be introduced: ρ↑↑ = ρ↓↓ = ρ+/2 and ρ↑↓ = ρ↓↑ = ρ−/2. Then
the total resistance of the junction in P configuration can be written as:

rP =
ρ+ρ−
ρ+ + ρ−

. (1.1.4)

For the antiparallel (AP) alignment of neighboring FM layer magnetizations [Fig. 1.3(c)]
the electrons with spin-↑ feel the resistivity ρ+ when they are scattered in the FM layer
with m =↑ and resistivity ρ− when their scattering path takes them into the FM layer with
m =↓. Again, in the limit of interlayer distance being much smaller than the electron mean
free path and with no spin-flips in the system, this translates into each electron experiencing
a series of alternating ρ+ and ρ− resistivities [resistors connected serially in the equivalent
electric circuit in the lower panel of Fig. 1.3(c)]. The total resistance of the junction can
then be written as

rAP =
ρ+ + ρ−

4
. (1.1.5)

Now the resulting GMR ratio can be estimated as follows:

GMR =
rAP − rP

rP
. (1.1.6)
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Figure 1.4: Current perpendicular to plane (CPP) scheme of the two current model of a pure
ferromagnet (a) and magnetoresistive junction (FM/NF/FM) with ferro- (b) and antiferro-
magnetic (c) ordering of the magnetic layers.

Within the framework of the two-current model the same considerations hold for a junc-
tion in current perpendicular to the layer planes (CPP) configuration as is not hard to see
from the schematic representation if Fig. 1.3. The CPP geometry has been exclusively
used during the first years of the research on GMR. It was only in 1991 that GMR experi-
ments with the CPP-GMR begun to be performed. Initially this was done by sandwiching a
magnetic multilayer between superconducting electrodes, [13, 16] later by electrodepositing
multilayers into the pores of a polycarbonate membrane [15, 26] and, finally, evolved into
the nowadays ubiquitous vertical nanostructures (pillars) fabricated by e-beam lithographic
techniques. [27] In the CPP-geometry, the GMR is not only definitely higher than in CIP,
as has been briefly mentioned before, but also persists in multilayers with relatively thick
dimensions, up to the micron range. [25] The physics responsible for the high values and
larger length scales of GMR in CPP junctions was elucidated in a model proposed by Valet
and Fert. [11]

Valet-Fert model, is based on the assumption that spin-polarized currents flowing perpen-
dicularly to the layers induce spin accumulation at the layer boundaries (effects described
for single interfaces by Johnson and Silsbee [28]). The final result is that the length scale
governing the thickness dependence of GMR becomes the long spin diffusion length (related
to the spin relaxation) in place of the short mean free path in the CIP-geometry.

The physics of the spin-accumulation occurring when an electron flux crosses an interface
between a ferromagnetic (F) and a nonmagnetic (N) material is sketched for a simple case
(single interface, no interface resistance, no band bending, single polarity) in Fig. 1.5. In
Fig. 1.5, the incoming electron flux is predominantly carried by majority electrons whereas
the outgoing flux is carried equally by both spins. The result is an accumulation of spin-
up electrons at the interface and this accumulation spreads out to both sides of the F/N
interface to a distance of the order of the spin diffusion length (lsd). This inhomogeneity
of charge distribution leads to a splitting of the spin up and spin down chemical potentials
(Fermi energies) as shown in Fig. 1.5. The spin-flips incited by this out-of-equilibrium elec-
tron distribution in the spin accumulation zone serves to adjustment the current imbalance
between the incoming and outgoing spin currents. In short, the current spin-polarization
just at the interface depends on the proportion of the polarizing/depolarizing (depending on
the current flow direction) spin-flips induced by the spin accumulation.

In a multi-layer CPP-GMR junction there is an interplay between the spin accumulation
effects at successive interfaces [Figs. 1.5(b) and 1.5(c)]. Spin accumulation in the non-
magnetic spacer is larger for an AP magnetic configuration [Fig. 1.5(c)] in which the electrons
with spins that are easily injected from a FM into NM are also the ones hard to extract into
the neighboring FM with the opposite magnetization. The CPP-GMR is related to the
difference in spin accumulations in the P and AP configuration.
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A quantitative description of the process was given in a new types of transport equations
by Valet and Fert, often called drift/diffusion equations. The electrical potential is replaced
by a spin and position dependent electro-chemical potential, which is assumed to be inde-
pendent for the two spin channels. The electro-chemical potentials in different layers are
coupled by boundary conditions involving spin dependent interface resistances. To give an
example of the application of these equation to a direct FM/FM interface where the two FM
have opposite magnetization orientations, the difference between the chemical potentials ∆µ
near the interface of those two ferromagnetic films is given by

∆µ(z) =
β

1− β2
eE0lsf exp

[
z

lsf

]
, (1.1.7)

where e is the electron charge, E0 is the unperturbed electric field far from the interface,
which is related to full current density J as E0 = (1 − β2)ρFJ . ρF is an average resistivity
of the ferromagnetic film (it is similar to average resistance RF ). The origin of coordinate z
is placed at the interface between the films. Current density for spin-up J↑ and spin-down
J↓ electrons is written as

J↑(↓) = [1∓ β]
J

2

[
1± β

1∓ β
exp

[
z

lsf

]]
(1.1.8)

The splitting of chemical potentials causes accumulation of electrons with a certain spin
at the interface and causes additional interfacial resistance rSI , which significantly reduces
current asymmetry in the system [11]

rSI = 2β2ρF lsf . (1.1.9)

In the more complicate FM/NF/FM system [Figs. 1.5(b) and 1.5(c)] magnetoresistance
is determined by the interfacial resistances for (rPSI and rAPSI ). They are written as

rPSI = 2β2 ρFρN

ρF coth
[
tN
2lsf

]
+ ρN coth

[
tF
2lsf

] lsf ,
rAPSI = 2β2 ρFρN

ρF tanh
[
tN
2lsf

]
+ ρN coth

[
tF
2lsf

] lsf , (1.1.10)

where tN and tF are the thicknesses of the nonmagnetic and ferromagnetic films respectively.
It is illustrative to consider the two extreme cases, when tN , tF � lsf and tN , tF � lsf .

In the first case the two interfaces of FM/NF/FM structure are independent from each other
and, since lim coth(tN,F/2lsf →∞)→ 1,

rPSI = rAPSI = 2β2 ρFρN
ρF + ρN

lsf . (1.1.11)

Here, of course, the system does not exhibit any magnetoresistance. In the second case,
assuming that lsf/tN,F →∞, one arrives at the two current resistor model introduced above,
where spin-up and spin-down currents flow without spin-flip interaction. 3 The difference
rPSI − rAPSI , determining absolute magnetoresistance, is then given by

rPSI − rAPSI = β2 (ρF tF )2

ρN tN + ρF tF
. (1.1.12)

3Note, however, that this resistor model is a bit more complicate, than the one introduced above, since
it takes into account the resistance of nonmagnetic layers.



This simplified picture of GMR found in ordinary magnetoresistive junctions shall serve
us in the following as a fundament for the understanding for a more intricate physics leading
to giant MRR ratios in atomic scale contacts, f.e. in chapter 3.

Application of spin valves

To briefly outline the remaining history of GMR from its discovery to modern times, it has
to be mentioned that the truly general interest in this effect was incited in the community by
Parkin and coworkers [30] who in 1990 demonstrated the existence of GMR in multilayers
(Fe/Cr, Co/Ru and Co/Cr) made by the simpler and faster technique of sputtering and
explored a very broad junction/spacer thickness range finding oscillatory variation of the
magnetoresistance which reflected the oscillations of the interlayer exchange coupling as a
function of the spacer thickness. Perhaps even more importantly, Parkin et al . showed a
technological way of producing magnetic sensors, which could soon be applied in magnetic
hard disk drives increasing the areal recording density by almost an order of magnitude as
compared to the previous generation of hard drives with anisotropic magnetoresistive (AMR)
read heads (from ∼ 5 Gb/inch2 to about 100 Gb/inch2). [31]

Despite (or possibly because of) its tremendous technological significance, the technical
limitations of the GMR junctions have quickly been reached. The spin-valves used in hard
disk drive read heads typically have a GMR of no more than 15%-20% which limits the
resistance sensitivity of the device. Another restriction is the field required to switch the
junction from P to AP configuration. Thinner magnetic layers require higher magnetic
switching field or spin torques, setting the limits for the minimal bit size and the distance
needed to decouple two neighboring bits in a memory device. The need to overcome those
limitations still drive both the industry and the basic research. One of the solutions lies in the
use of atomic chains or atomic sized contacts as magnetoresistive junctions, whose quantum
properties turn them into promising candidates for information storage applications.

1.1.2 Current through atomic chains and point contacts

One of the reasons atomic scale contacts are believed to be promising candidates for spin-
tronics solutions is the extensive knowledge and know-how base in the field that has been
amassed by the interest of other branches of solid state science and technology in nano-
scale junctions. [32–34] Progress in experimental techniques has allowed for manipulation
of individual nano-structures (down to single atoms) on surfaces and the measurement of
their electron transmission or spin properties. To name just a few, novel effects of quan-
tized spin-polarized conductance, magnetoresistance or magnetic anisotropy of atomic-sized
objects opened new perspective on nano-scale spintronics (nano-spintronics). [5, 35, 36]

Experimental techniques

Among the methods used for investigation of atomic structures two techniques are especially
worth to be highlighted: scanning tunneling microscopy (STM) and mechanically controlled
break junction method (MCBJ). Scanning tunneling microscope was invented by Binnig and
Rohrer in 1982 [37] and is ubiquitously applied for investigation of surface morphology and
electronic structure. STM technique is based on measuring a tunnel current between an
investigated sample and the microscope tip, which is placed over the surface at a distance
of several Ångström [Fig. 1.6(a)]. When the tip is scanned along the surface, the tunnel
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Figure 1.6: Schemes of (a) scanning tunneling microscopy and (b) mechanically controlled
break junctions setups for investigation of atomic-sized structures.

current changes according to the distance between the surface and the tip and the electronic
properties of the surface in the vicinity of the tip position. This way, tunneling current
or differential conductance maps of the sample can be taken giving information about the
apparent height or the density of states of the surface. The use of spin-polarized or super-
conducting tips further enables one to measure the surface properties with spin resolution,
yielding information about the magnetic subsystem of the sample. [38] Since STM is not a
principal part of the present thesis we shall not go into more details of the technique here,
referring the reader to a number of comprehensive reviews available on the subject. [39, 40]

The second technique indispensable for the research on atomic-scale contacts is the me-
chanically controlled break junction technique (MCBJ). Nowadays widely used for fabrication
of nano-junctions it was first proposed by Moreland and Ekin in 1985. [41] The scheme of
the setup is presented in the Fig. 1.6(b). A prefabricated micro- or nano-contact is placed
on a glass support, which is fixed on an elastic substrate. A three-point suspension mecha-
nism consists of counter-supports holding the edges of the substrate and a rod, pushing up
the center of the junction, thus bending the whole sample. Bending the substrate, one can
meticulously control the gap formed between two tips of the nano-contact, placed above. If
one continuously increases the distance between the tips in contact, one can expect a forma-
tion of an atomic wire between these tips. [34, 35] This technique allows one to measure the
current or resistance (conductance) of an atomic-scale junction, but also to study transport
properties in presence of magnetic fields or an electric bias created by a third (gate) electrode
placed in the vicinity of the junction [42].

Quantized conductance

A particularly interesting effect accompanying the formation of a contact with atomic dimen-
sions is the emergence of the so-called quantized conductance with a conductance quantum
of G0 = 2e2/h, e being the electron charge and h – the Planck constant. The quantity G0

is a ballistic conductance of a single electron channel, [44] as shall be explained in more
detailed in chapter 2. In 1995 Pascual and coworkers [43] observed quantized conductance of
nano-wires created by a different technique – “drawn out” by a Pt-Ir or Au STM tip from an
Au surface. Being elongated the wire showed step-like jumps in conductance, proportional
to 2e2/h until the contact broke at a critical interatomic distance (Fig. 1.7). The plot of
the conductance shows that right before the junction breaks its conductance equals nearly
2e2/h. Taking into account, that Au has only one s conduction band, the observation of a
single-quantum conductance indicates the formation of a single-atomic gold wire spanning
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the junction. An unambiguous proof, that atomic chain contact can be reproducibly created
with an STM came a few years later from Ohnishi et al ., [32] who managed to combine
imaging of the contact geometry with conductance measurements for different thicknesses of
the nano-contact fully corroborating the results and interpretation of Pascual et al . [43]

In another pioneering work Scheer and coworkers [34] succeeded in producing Al nano-
contacts in a superconducting state using MCBJ technique. By comparing the highly non-
linear current-voltage characteristics in the superconducting state with the predictions of
the theory for a single channel superconducting contact the authors arrived at a surprising
conclusion, that at least two channels contribute to the transport even for contacts with
conductance lower than the conductance quantum G < G0. The key to understanding this
behavior was the assumption of non-ballistic character of conductance in atomic scale con-
tacts. Then several conduction channels can exist in single atom contact, formed by different
conduction states of the atom. In the case of transition non-magnetic metals, where atoms
have open s and d shell, observed conductance of point contacts is often higher, than G0 and
is not proportional to G0. Here d states give non-ballistic (and non-integer) contribution to
the conductance due to their strong localization and small interaction between them. [35]
This finding became fundamental to the deeper understanding of the quantum nature of
current through nano-scale contacts which shall also be of import for the understanding of
systems and observations described in the later chapters of the present thesis.

Spin-polarized quantized conductance

The next thing which is indispensable for the understanding of spin-polarized transmission
and conductance properties of atomic-scale junctions is where the spin degree of freedom
figures in the greater picture. In fact, if quantum system is considered in spin-polarized
approximation, spin-up and spin-down electronic states are usually considered independent
from each other. Consequently, conductance of the quantum system, according to Landauer-
Büttiker formalism [44] (see chapter 2 for more details) will be represented as a sum of



conductances of spin-up and spin-down channels. Conductance quantum of one spin channel
in this case equals G0/2 = e2/h.

It is then reasonable to assume, that it should be possible by measuring magnetic point
contacts to obtain conductance of G0/2 due to the lifting of spin degeneracy. Indeed such
observation have been reported in several works dealing with spin-polarized conductance of
magnetic atomic contacts. [36, 45, 46] However, as has been mentioned earlier, half-integer
conductance can also be caused by the non-ballistic behavior of electrons (f.e. tunneling).
Magnetic transition metals, having s and d open shells can exhibit half-integer conductance
but it is often not easy to obtain a clear answer as to the origin thereof. For example,
low temperature Fe conductance histogram obtained with the MCBJ technique has peaks
at 2.2 G0. [35, 47] Room temperature STM measurements of Ni point contact exhibit a
conductance peak at about 1.6 G0. [35, 48]

Along with experimental investigations several theoretical studies of spin-dependent prop-
erties were commenced to clarify the observations, [49–55] yielding numerous interesting
predictions. Standing waves, appearing in the atomic contact between electrodes were sug-
gested to be able to cause oscillations in conductance. [49] In the same spirit, Stepanyuk
and coworkers [50] discussed the relation between resonance states in the nano-wire and
geometry properties thereof. Also, dependence of spin-polarized quantum conductance on
geometry and chemical structure is extensively studied in the last years. It was shown, [55]
that the conductance of a junction formed by a Ni STM tip approached to a Co adatom on
a Co/Cu(111) island can exhibit values of G0/2 due to partially opened spin-up and spin-
down channels rather than due to complete dominance of only one channel. At the same
time Co adatom on a clean Cu surface revealed conductance of about G0. These results
explain experimental work of Neel [36], where the conductance G0/2 and G0 was measured
in similar systems with magnetic and non-magnetic electrodes respectively.

Dal Corso et al . [50, 52] showed the importance of spin-orbit coupling (SOC) for quantum
conductance in Pt nano-wires.4. Further investigation of spin-orbit coupling and conduc-
tance in Pt atomic wires suspended between tip-shaped leads [54] revealed colossal magnetic
anisotropy with an easy axis along the wire. It was found, that including SOC in calcula-
tions results in conductance values 15-20% lower than predicted by calculations neglecting
the SOC. At the same time, calculations including SOC predicted for Pt wires a conduction
value of (G ∼ 2G0) which is in good agreement with experimental observations. [57–59]

Spin-polarized conductance and magnetoresistance of nano-contacts

If it is possible to create nano-contacts with half-integer quantum conductance, or al least
with different contribution to total conductance from spin-up and spin-down channels, a
question arises naturally, whether such properties can be used for producing of spin-filters
or spin-valves.

One of the first experimental works, showing high magnetoresistance in the atomic con-
tacts, was performed with Ni atomic junctions by Garcia et al . [60] It was found, that Ni
nano-contact at room temperature exhibit magnetoresistance ratios up to 280% with mag-
netic field of 100 Oe applied to them. Switching the magnetization alignment of Ni electrodes
from antiparallel to parallel resulted in conductance changing from 1G0 to 3 ∼ 4G0. As in

4Despite Pt bulk metal having no magnetic moment, it is non-zero in wires. Pt atoms have a d shell
residing close to the Fermi level. In the wire geometry reduced coordination pushes the d band closer to the
Fermi level, thus causing a Stoner instability and an onset of magnetism. [56]
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Figure 1.8: (I) Schematic cross section of the whole patterned structure showing the
top/bottom Co electrodes and the 2D assembly of nanoparticles embedded in a thin alumina
layer. The circle represents the zone zoomed in the bottom drawing. (From Ref. [4]). (II)
Scanning electron micrographs of the different types of samples under study. (a) Inclined
view of a suspended Co break junction with indication of the orientation of the magnetic
field for recording the MR. (b) Top view of a nonsuspended Co bridge after measurement.
The remaining break is clearly visible. (c) Top view of a Co-Au-Co sample fabricated by
three-angle shadow evaporation. The Au areas appear in light gray (although partially cov-
ered by the Co layers), the Co areas are dark gray. (d) Inclined view of a Au-Co-Au sample
fabricated by two-angle shadow evaporation after dismounting from the cryostat with the
break visible at the right interface (arrow). Here the lower part of the metal film consists of
Au, the upper parts, and the nanobridge of Co. (From Ref. [5]).

the case of planar systems studied by Fert and Grünberg, GMR in atomic Ni wire was ex-
plained by strong backscattering of electrons in the antiparallel configuration. Later, in the
theoretical work Rocha et al . [53] have given a detailed explanation for the high magne-
toresistance in Ni point contacts. Authors investigated pure and oxidized Ni atomic-wire
contacts and showed that oxidation may lead to an increase in magnetoresistance from 40%
in pure to 450% in oxidized Ni wires.

A class of atomic-scale contact systems bearing a closer resemblance to the original planar
GMR junctions (FM/NM/FM) which should be mentioned here as it shall be the focus of
chapter 3 are mixed Au-Co nano-contacts. [4, 5] Bernand-Mantel and coworkers [4] have
found that transport through a paramagnetic gold cluster, embedded in an alumina layer and
sandwiched between cobalt electrodes exhibits nonzero magnetoresistance, which is ascribed
to the presence of spin injection from magnetic cobalt electrodes into the paramagnetic gold
cluster and its subsequent spin transfer to the other electrode (Fig. 1.8(a)). Since gold has a
mean spin diffusion length of about 100 nm, [61] it is not surprising that two ferromagnetic
Co electrodes and an Au nano-particle should exhibit magnetoresistive behavior, especially
in the tunneling geometry, which is the case in the latter experiment.

More interestingly, experiments by Egle and coworkers [5] have shown that the magne-
toresistance values of a Co-Au-Co break junction (Fig. 1.8(b)) are excessively high (up to
100% in contact and 14000% in tunneling regimes respectively). This suggests that the spin
injection from one cobalt electrode into the gold cluster and its coherent transfer to the
detecting electrode are extremely efficient in that particular system.

It is the strive to understand the nature of this high magnetoresistance in Co-Au-Co nano-



contacts that motivated us to perform a theoretical investigation of this class of systems,
which is the subject of chapter 3. We were able to relate this effect to the interfacial
interaction of Co and Au electronic states, which leads to the spin-valve effect in the nano-
contact.

1.2 Electric control of the transport properties of nano-

contacts.

At present, almost any electronic device contains transistors – basic elements of current
manipulation. A transistor consists of three electrodes, two of which are used as source
and drain of the current while the third electrode is used to control and manipulation the
latter. Transistors can be separated into two types: bipolar and field transistors. In a bipolar
transistor the control of the current is performed by direct injection of current carriers into
the base region of the device. In field transistors current from the source to the drain is
controlled through potential manipulation achieved by applying a voltage/bias to the third
electrode, which is called gate.

As nano-science progressed enough to make fabrication of nano-scale three-terminal de-
vices feasible the idea of using the gate electrode for controlling nano-junctions became
an attractive option for investigating electronic and transport properties on the atomic
scale. [42, 62–69] There are several techniques for fabrication of three-terminal nanometer
sized devices. [63] All of them have planar structure, where the gate is a part of a sub-
strate, separated from the nano-contact by a dielectric decoupling layer. The first technique,
which is called electromigration technique, is based on breaking a wire by a high density cur-
rent. [64] As the tips of the wire are etched away a nano-gap or contact between two parts
of the wire is formed. The second option of a technique based on depositing molecules or
nano-particles into a preformed gap. The gate in the latter two approaches is represented by
an Al plane with alumina insulating layer. The third technique is based on the mechanically
controllable break junction method [1.6(b)] already introduced above. [42] Nano-contact is
placed on a SiO2 slab, grown on a Si wafer, which plays the role of a gate. This technique
has an advantage of atomic wires being creation with tunable length or distance between
electrodes. [42]

1.2.1 Single electron tunneling, Coulomb blockade

To better understand the elementary parts of the process of conduction in an atomic-scale
junction and ways of controlling it with a gate electrode, one has to consider the basic aspects
of nano-contact electronic structure and the interaction of single electrons with it. A good
exemplifying subject for this is the effect of Coulomb blockade in quantum dots [63]. If
the system can be viewed as quantum dot with a discrete electron spectrum connected to
metallic electrodes with an infinite spectrum of an electron band (Fig. 1.9), the gate with
an external bias applied serves to rigidly shift the quantum dot’s energy levels, which can
result in the quantum dot becoming charged. Since the gate has no direct contact to the
dot, the degree of its influence on the dot can vary depending on the system. The relation
between the energy level shift and the change of the gate voltage is called the gate coupling
parameter β = ∆E/∆VG.

Energy Eadd, required to add one electron to the system with N electrons by the definition
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Figure 1.9: Schematic representation of the elastic transport in three electrode quantum
system in (a) transmitting and (b) blocking modes. Voltage VSD, applied to the source and
drain causes electrons flow through the quantum dot. Current can flow only in the case,
when chemical potential µ(N) of the dot is between Fermi levels of the electrodes (a). Shift
of the chemical potential is proportional to the gate voltage VG with coefficient β – gate
coupling parameter [63].

equals to the chemical potentials of the system with N + 1 electrons. On the other hand
Eadd = ∆ + Ec, where ∆ is the distance between Nth and (N+1)th energy levels ∆ of the
dot, Ec = e2/C is a charging energy, C being the full capacitance of the dot. [63, 70] If
we neglect the dot’s self-capacitance then the total C = CS + CD + CG can be taken to be
the sum of mutual capacitances CS, CD and CG of the dot with the source, drain and gate
electrodes respectively. The gate coupling coefficient can be also derived through the mutual
capacitances as β = CG/(CS + CD + CG).

Hybridization of the quantum dot and the electrodes leads to a broadening of the dot’s
energy levels. If one assumes, that the dot is weakly coupled to the electrodes then the
broadening is much smaller, than the distance between levels.5 If the scattering of electrons
in the contact can be considered elastic, the energy of the electron is conserved in the
act of tunneling. In that case, at small source-drain voltage VSD, tuning gate voltage VG
and measuring differential conductance dI/dV , one can obtain symmetrical narrow peaks
(Coulomb oscillations), spaced by the voltage value Eadd/βe [Fig. 1.10(b)], which correspond
to the voltages, at which the chemical potential of the dot is aligned with the electrodes’
Fermi levels (Fig. 1.9). In that regime the band diagram forms a cascade in which the current
can flow through the single electronic state [single-electron tunneling, Fig. 1.9(a)]. In other
cases, when chemical potential is not in between the electrodes’ Fermi levels the current can
not flow [Fig. 1.9]. Such effect is called Coulomb blockade, which was theoretically predicted
by Averin and Likharev [71] and experimentally found by Fulton et al . [72]

Varying VSD and VSD one can obtain so-called stability diagram [Fig. 1.10(a)], from which
several important characteristics of the measured system can be deduced. Mentioned before
peaks [Fig. 1.10(b)] turn into lines, separating regions with high current (gray) from the
Coulomb blockade regions of zero current (black), which are called also Coulomb diamonds.
Lines with positive and negative slopes correspond to chemical potential of the dot aligned

5Other possibile coupling regimes are discussed in details in Ref. 63.
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Figure 1.10: Electron transport through a weakly coupled quantum dot; the gate voltage
probes three different charge states. (a) Conductance map of the differential conductance,
dI/dVSD ,versus VSD and VG (stability diagram). The edges of the diamond-shaped regions
(black) correspond to the onset of current (gray). Diagonal lines emanating from the dia-
monds (white) indicate the onset of transport through excited states. (b) Coulomb peaks
in differential conductance, dI/dVSD, versus gate voltage (small bias voltage). Adapted
from Ref. 63.
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Figure 1.11: Stability diagram for C60 gated MCBJ device at 4.2 K at two positions (a and
b) of source-drain displacement. x0 represents the initial displacement. From Ref. 42.

along the Fermi level of the source and drain respectively. From here positive and negative
slopes can be determined as α+ = CG/(CG + CD) and α− = −CG/CS respectively. Conse-
quently, measuring experimentally these slopes one can determine gate coupling parameter
β = α+α−/(α+ − α−). In Fig. 1.10(a) one can see also white lines, which are parallel to the
borders between regions of high and zero current. They represent transmission through ex-
cited states of the dot, when those appear between the Fermi levels of the electrodes. [63, 70]

1.2.2 Application and achievements

Discovery of single electron tunneling made it possible to create single-electron transistors
(SET) [72] – devices, where tunneling current through a single state of a quantum dot is
controlled by a gate bias voltage. SET found their application in various precise electronic
analog devices: supersensitive electrometers, single-electron thermometers, infrared radiation
detectors. [70] The use of SET in logic devices has also been extensively discussed. [70, 73, 74]

Coming back to the main subject of the present work – atomic-scale junctions – one
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Figure 1.12: (a) Setup of a single-atom electrochemically switched transistor. Two gold
electrodes brought close to each other are immersed in electrolyte and a point contact is
electrochemically deposited in the gap between them. Electrodeposition is controlled by
a gate bias applied to a gate electrode. (b) The deposition of the last atom bridging the
contact can be reversibly controlled by the gate bias. The tunneling current is extremely
sensitive to the creation of recomposition of the point contact. (c) Experimentally measured
tunneling current in dependence on the gate bias. Extremely fast switching times can be
achieved. Adapted from Ref. 62.

experimental work is particularly worth mentioning. Champagne and coworkers [42] used
the MCBJ technique to investigate transport through a C60 molecule enclosed between gold
electrodes with a Si gate. Obtained stability diagram (Fig. 1.11) reveals Coulomb diamonds
with one Coulomb oscillation peak. The gate coupling parameters determined from the
slopes of the diagram lines showed that, f.e., by applying a gate voltage of ±12 V one can
obtain a shift of C60 molecular levels by 168 meV. It was also shown, that changing the
distance between electrodes affects mutual capacitances and the energy levels of the molecule.
Therefore, a single-molecule device can show interesting transistor-like properties which can
be controlled not only by gate voltage, but also by varying the distance between electrodes.
Such dependence of electronic and transport properties on the geometry of the system has
set another accent for the work presented here.

Another type of single electron transistor was studied recently by Obermair and col-
leagues. [62] A silver point-contact is electrochemically deposited between two gold electrodes
brought close together and immersed in electrolyte (AgNO3 + HNO3). The electrodeposition
is precisely controlled by a bias applied to a third gate electrode [see sketch of the experiment
in Fig. 1.12(a)]. The deposition of the last Ag atom bridging the point contact creates a
single-atom conduction channel [Fig. 1.12(b)]. If a voltage of 10 − 40 mV is applied across
the nano-junction, the creation of the bridge can be traced by a jump in conductance from
0 to 1 G0 = 2e2/h. The most exciting thing is that the creation of the bridge is a reversible
process. By reversing the bias applied to the gate the atom bridging the junction can be
removed thus decoupling the electrodes and closing the conduction channel [Fig. 1.12(b)].
Dependence of the current through such a junction of the bias applied to the gate measured
by Obermair et al . is shown in Fig. 1.12(c). Application of an oscillating gate voltage results
in a binary switching of the junction current almost instantaneously following the gate bias
change. This finding presents a concept of a novel single-atom transistor which could find
application in binary logic devices. The authors also note the potential of the device to reach



ultra-high switching frequencies of ∼ 1012 Hz.

1.2.3 Gate controlled spin-polarized current

Since the feasibility of controlling single electron states in nano-contacts by means of elec-
tric gating is now established, one can also speculate that in magnetic system, where spin
degeneracy is lifted, it might be possible to control single spin states. As the spintronics
progressed, theoretical [66, 67, 69] and experimental [67, 68] investigations of gate influence
on spin-polarized quantum dots in Coulomb blockade regime received more attention. For
example, it was shown theoretically, [69] that tunneling magnetoresistance (TMR) in a fer-
romagnetic quantum dot can be significantly increased (by a factor of 2) in the Coulomb
blockade regime due to high-order tunneling processes. Later, an increase of the TMR by
20% caused by the Coulomb blockade was observed experimentally in Co− Al−O granu-
lar films. [67] One should especially highlight a few of the studies, recently performed and
devoted to gate-control of spin states in nano-contacts. [65, 75–77] Kim et al . [65] reported
observing half-integer G0/2 conductance, caused by Coulomb blockade of a spin-split state
in a quantum dot. In another work, Hauptmann and coworkers [75] report on the manip-
ulation of an unpaired single spin. The spin state was read out using Kondo effect, which
can be especially strong in a system with strong coupling between the quantum dot and
the electrodes. Anomalous magnetoresistance effect was observed in SET constructed from
Co electrodes and a carbon nano-tube as a quantum dot. [76, 78] Hysteretic dependence of
conductance on external magnetic field strength did not show the usual behavior with two
maxima corresponding to coercive fields, but had only one loop with two saturation levels
of conductance. The authors argue that this characteristic of the junction could have useful
technological applications. The origin of such untypical hysteresis is still under debate. Pos-
sible explanations could be the presence of a strong spin-orbit interaction in the nano-contact
or exchange biasing of magnetic electrodes due to the formation of an antiferromagnetic oxide
layer. [76, 78]

The abundance of possibilities of controlling electron transport through an atomic-scale
junction was the main motivation for another part of the present thesis. In particular,
in Chapter 4 the influence of gate electrostatic potential on the spin-polarized transport
through transitional-metal-alloy atomic chains between metallic electrodes is studied. Strong
dependence of both magnitude and sign of the spin polarization of conductance is found on
the magnitude of the applied gate bias. The relation is established between such behavior
and the spin-dependent charge screening, caused by the spin-polarization of the electronic
structure of magnetic transitional metal atoms making up the junction. The choice of alloyed
wires/chains as a test subject is not random. A careful investigation show that alloyed chains
are much more sensitive to the gate field, than the pure chains, due to a stronger localization
of electronic states.

1.3 Spin polarization in planar tunnel contacts

1.3.1 Amorphous barrier

Until now we have been discussing the possibilities to control spin-polarized electron trans-
port in predominantly metallic atomic-scale junction. The main properties of the junction
exploited there were the geometric factor and the matching of the electronic structures of the



constituent parts of the nano-contact. Another class of systems which cannot be ignored in a
discussion of spin-polarized transport properties are layered ferromagnet/insulator junctions.
The interest in them dates back to the late 1970-s, when the spin dependence of conductance
in such systems was first discovered. [79, 80] Tedrow and Meservey [79] have shown in 1971
that polarization of Ni in a Al/Al2O3/Ni layered system affects the current through this
system. Thereupon the authors have proposed a method for investigation of spin-dependent
properties of materials [79]. Later, in 1975, Julliere [80] observed a difference of about 14%
in resistances of Fe/Ge/Co junctions with parallel and antiparallel magnetization alignment
of Fe and Co layers at T = 4.2 K.

After the discovery of GMR and its application in spin-valve-based devices, magnetic
tunnel junctions (MTJ) started to draw attention as an alternative way to obtain high
magnetoresistance values. Moodera et al . [81] have shown in 1995 that at room temperature
CoFe/Al2O3/Co multilayers, featuring amorphous alumina (Al2O3) as an insulator, had a
magnetoresistance value about 11.8%. Later studies reported reaching magnetoresistance
values of 50 − 60% at room temperature in systems where CoFe electrodes were spaced
by an amorphous alumina barrier. [82, 83] Another amorphous insulator layer, which was
intensively studied as a candidate material for MTJ devices, is TiOx. [84–86] TMR values
observed in junctions based thereon were as high as 150% at low and 15 − 20% at room
temperatures. Particular MTJs used were based on La2/3Sr1/3MgO3 (LSMO) electrodes
with a TiOx insulator barrier in between. [84–86]

1.3.2 Jullier model

To describe TMR in systems with amorphous tunnel barriers Julliere proposed a model
which is still ubiquitously used. [80] In systems where the insulating layer is thick enough
to inhibit coherent electron transport the film can be treated as a simple energy barrier. If
at the same time the system does not exhibit spin-flip scattering, the tunneling probability
for the electrons is independent for the two spin channels and is proportional to the density
of states (DOS) at the Fermi level in majority and minority channels of the ferromagnetic
leads (Fig. 1.13). Accordingly, TMR can be expressed through the polarizations of the DOS
at the Fermi level D(EF ) in the two electrodes PL and PR as

TMR =
2PLPR

1− PLPR
, (1.3.1)

PL,R =
D↑L,R(EF )−D↓L,R(EF )

D↑L,R(EF ) +D↓L,R(EF )
. (1.3.2)

Using the Wentzel-Kramers-Brillouin (WKB) approximation, [87] one can also estimate
the effective height of the potential barrier posed for the tunneling electrons by the isolating
layer. Obtained energy barrier heights of MTJ with alumina film ranged between 0.7 and
1.0 eV. [85, 88] TiO films exhibit much lower effective barrier heights of about 0.1 eV, [85, 86]
and consequently, smaller resistances, which made TiO based MTJ the main candidate for
practical application in spintronic devices. For example, it allowed to reach areal data storage
density of 100− 130 Gbit/inch2 in magnetic hard disk drives. [85, 89, 90]
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Figure 1.13: Schematic representation of ferromagnet-insulator-ferromagnet (F/I/F) MTJ
in frames of Julliere model. (a) Parallel and (b) antiparallel alignment of electrodes magne-
tization

1.3.3 Symmetry filtering barrier

Despite the fact that amorphous-barrier based MTJs have found successful application, TMR
of these junctions was in practice relatively low, of the order of 15 − 25%, [86, 91] which
severly limited the minimum size and maximum switching speed of a single bit in a real
devices.

The use of crystalline rather than amorphous barriers in MTJ junctions allowed to signif-
icantly enhance the TMR due to the symmetry-dependent scattering therein. Butler et al .
predicted Fe/MgO/Fe junctions to have extremely high magnetoresistances, exceeding those
observed in amorphous-barrier junctions by 2 to 3 orders of magnitude. [92] For physical
reason for such impressive values of MRR was the fact that for parallel alignment of the lead
magnetizations, conductance was provided mainly by majority ∆1 symmetry states (s, p, d)
which have the lowest decay rate in MgO. Minority channels provide conductance through
the resonance interfacial states, which are significant only for small thicknesses of the MgO
layer. Antiparallel alignment of electrodes’ magnetizations leads to a partial blocking of the
conductance in both of spin channels due to band mismatch. ∆1 symmetry band, existing
in the spin-up channel of the first electrode, does not align with any of the bands in the
spin-up channel of the second one. Note, that Julliere’s model is not applicable here due
to the crystal structure of the barrier and the different properties of bands with different
symmetries. In general, one can say, that MgO barrier filters the current according to both
the symmetry of the band and the direction of spin.

This prediction was corroborated experimetally in 2004 by Parkin et al . [93] MgO films
grown by molecular beam epitaxy on a CoFe substrate showed TMR values up to 220% at
room temperatures and up to 300% at 4K. In further investigations TMR values of up to
600% could be obtained with amorphous CoFeB electrodes and MgO tunnel barriers. [94–96]
Experimentally measured dependence of the barrier resistance on the thickness of thereof
gives quite low values of the effective barrier height (about 0.39 eV). [91, 96] Such low values
of the barrier height promoted the use of such MTJ in real spintronic devices. In 2007
Yuasa suggested an effective technological method for commercial mass production of such
MTJs which eventually led to the creation of hard disk drives with areal density exceeding
500 Gbit/inch2.



1.3.4 Spin-filtering materials

The main property, which leads to the high TMR values in Al2O3 and MgO based MTJs
is the active participation of the barrier itself in the process of spin-filtering of the current.
In alumina-based MTJ spin polarization is provided only by the spin-polarized electronic
structure of the leads, while in MgO-based MTJ both the electrodes and the barrier take
part in creation of the spin-polarized current. If the efficiency of the spin-filtering by the
barrier could be increased even further, f.e. by using as a barrier materials with a spin-split
band gap, metallic electrodes could be even made to be non-magnetic. In this case the
spin-filtering job would be performed by the tunnel barrier alone. The transport properties
of such a junction are studied in Chapter. 5 by the example of a GdN tunneling barrier
sandwiched between Cu leads.

Such MTJs could be used not solely in a magnetic storage device but also as a spin
filter for producing spin-polarized current, which could then be used in another part of the
device. For example, one of the standing problems of magnetic storage devices at present
consist in finding more efficient ways of switching the magnetization direction of the leads
MTJs used, e.g., in non-volatile magnetic random access memory (MRAM). Here one bit
is represented by low or high resistance of an MTJ with parallel or antiparallel alignment
of lead polarizations. [31, 91, 97] Currently, magnetization switching in MTJs is performed
by a current-induced magnetic field, which requires large currents for practical applica-
tion. A different path for switching magnetization direction in a material lies via the use
of spin-transfer-torque (STT). [98–101] The latter hinges on the use spin-polarized currents.
Injection of spin-polarized electrons into a ferromagnetic material causes a reorientation of
the magnetization of the latter to match the spin polarization of the injected electrons (due
to spin-dependent scattering).

Besides MRAM, STT found its application in the new variant of non-volatile memory –
Racetrack Memory. [97–99, 102] In this case domain walls separating regions with opposite
magnetization are created along a permalloy wire. Pulses of spin-polarized current created
in a spin-filter are then used to move the domain walls along the wire.

We can therefore see that spin-filtering materials can play an extremely important role
in a further development of novel spintronic applications.

Spin splitting of the band gap as a spin filter

To illustrate the concept of a spin-split band gap acting as a spin filter, one of the most
successful class of spin-filtering materials studied at present can be taken as an example
– semiconducting Eu chalcogenides. The first experimental work on such compounds was
published by Esaki et al . in 1967, [103] in which the authors studied electron tunneling
through EuS and EuSe layers. It was found that with temperature falling below the Curie
point in both compounds the resistance of the junctions suddenly decreased. Moreover,
applying magnetic field caused further decrease of the resistance at temperatures below the
Curie point. Such behavior was explained by Moodera et al . [104, 105] In ferromagnetic (or
ferrimagnetic) state below Curie temperature the band gap of the semiconductor has a spin
splitting, which can be further increased by the application of a magnetic field. Because
of that the tunneling probability for one of the spin channels becomes higher due to the
reduction of the energy barrier. This leads to an increase in the tunneling current (Fig. 1.14).
But even more important for us is the fact that along with the increase of the tunneling
current the spin-polarization of the latter was also significantly increased, which was deduced
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Figure 1.14: Schematic representation of Fowler–Nordheim spin-filtering mechanism of EuS
or EuSe. The spin-splitting of the band structure and especially the spin-dependence of the
band gap gives different transmission probabilities to electrons in different spin channels [91].

experimentally from the observation of increased TMR valued in the junction. [91] This effect
received the name of Fowler–Nordheim tunneling. [106] In their theoretical treatise Moodera
et al . estimated the spin polarization of the current in EuS and EuSe tunnel junction to be
as high as 80 and 97%, respectively. [104, 105]

Note, that the influence of magnetic field is much more pronounced in EuSe than in EuS.
At zero field and low temperature EuSe has an antiferromagnetic spin ordering structure
which changes to ferrimagnetic or ferromagnetic in an external magnetic field. [107] This
drastically changes the spin splitting of the band structure. EuS is ferromagnetic even in
absence of a magnetic field and, consequently, the changes induced by the magnetic field are
small.

Another Eu compound exhibiting high spin polarizations of the current is europium
oxide (EuO). It was found that this compound has a larger exchange splitting than EuS
and EuSe, [107, 108] although the measured current polarization was smaller in EuO than
in EuS and EuSe (29%-41%). [107, 109] The authors speculate that this contradiction is
due to defects appearing in the process of growth of EuO films and oxidation of EuO to
Eu2O3, which is nonmagnetic. Recent theoretical works [110] showed excellent spin-filtering
properties of ideal EuO between Cu electrodes, where spin polarization of the current reaches
several hundred percent.

Understanding the concept of the gap induced spin-filtering shall help us to understand
the physics of electron tunneling in GdN compounds discussed in Chapter. 5.

Determining spin polarization of the tunneling current

According to Moodera [107], estimation of the spin polarization of the current through a
tunneling barrier at low voltages can be obtained using the Simmons relation: [111]

J(φ) =
( e
h

)2 3
√

2mφ

2s
V exp

[
4πs

h

√
2mφ

]
, (1.3.3)

where e and h are electron charge and the Plank’s constant, m – the mass of electron, s –
the thickness of the tunnel barrier, φ – the height of the tunnel barrier and V is the applied
voltage. Applying this relation to the current above the Curie temperature, one can estimate
the average effective barrier height φ. Below the Curie point the total current is higher due
to the lowering of the resistance in one of the spin channels, as was already discussed above.



The spin splitting can therefore be taken to be 2δ at low temperatures. Then taking current
as a sum of spin-up J↑ and spin-down J↓ currents and knowing the average barrier height
φ one can apply the Simmons relation to J↑(φ − δ) and J↓(φ + δ) . The currents and spin
polarization (SP ) can then be obtained from the standard relation

SP =
J↑ − J↓
J↑ + J↓

. (1.3.4)

1.3.5 Gadolinium nitride – a spin-filter material candidate

As already briefly mentioned above, Chapter. 5 of the present thesis is devoted to spin-
filtering properties of gadolinium nitride – another interesting compound that can be used
as a tunneling barrier. It is ferromagnetically ordered with Gd showing a magnetic moment of
7 µB per unit cell and a half-metallic electronic structure. [6, 112–115] Minority spin channel
has a gap at the Fermi level and behaves like a semiconductor, while majority channel has
a semimetal electronic structure. Possible applications of the half-metallicity of GdN in a
spin-filter device were already suggested by Duan and coworkers. [6] In recent works [116–
118] transport properties of GdN films were investigated experimentally and Ludbrook and
coworkers [116] were able to achieve a tunneling magnetoresistance ratio (TMR) of 35%.
Later, Pal et al . and Senapati et al . [117, 118] reported observing a spin-polarization of
conductance reaching 90% in a GdN film sandwiched between NbN electrodes.

Despite the fact that GdN was extensively studied in last years there is a definite lack
of theoretical investigations of the transport and spin-filtering properties of the compound
which would give a quantitative or qualitative description of the dependence of spin-filtering
properties of GdN on different characteristics of the system, such as the lattice parameter
or barrier thickness. In the present thesis (see chapter 5) a detailed explanation of GdN
transport properties is given in dependence on the GdN layer thickness and the possibility
to achieve spin-filtering efficiency of 100% is highlighted.



Chapter 2

Theoretical framework of the study

Let us now spend a few lines to establish the theoretical framework which shall be used
throughout the remainder of the thesis. Since the main subject of the present work is
spin-dependent transport of electrons from one electrode trough an atomic-scale contact
to another electrode, it is paramount that the theoretical treatment chosen can correctly
describe three main things: the geometric shape of the system at the atomic level, its
electronic structure and the transport of electrons under equilibrium and non-equilibrium
conditions. Here density functional theory (DFT) shall be used to correctly capture the first
two properties of the studied systems and the non-equilibrium Green’s function (NEGF)
method along with different model treatments shall be applied to describe the last one. This
chapter starts with a very brief introduction to DFT followed by a more elaborate description
of the electron scattering problem and the NEGF formalism. Finally some technical details
of the implementation of the above formalisms are given.

2.1 Many-particle problem

The problem of correctly describing the electronic structure and as a consequence also the
geometry of an atomic scale system is the problem of correctly capturing the many-electron
physics with available means. The Hamiltonian of a many-particle system Ĥ, consisting of
electrons and ions, can be written as a sum of three components: electron-electron interaction
Ĥee, ion-ion interaction Ĥii, and electron-ion interaction Ĥei

1:

Ĥ = Ĥee + Ĥii + Ĥei, (2.1.1)

where

Ĥee =
Ne∑
k

−~2

2m
∇2

rk
+

1

2

Ne∑
k 6=l

e2

|rk − rl|
, (2.1.2)

Ĥii =

Ni∑
K
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2MK

∇2
rK

+
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2
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K 6=L

QKQL

|rK − rL|
, (2.1.3)

Ĥei =
Ne∑
k

Ni∑
K

eQK

|rk − rK |
. (2.1.4)

1Here and further we use Gaussian-CGS unit system
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Here Ne and Ni are the numbers of electrons and ions in the system, RK ,MK , QK are
position, mass and charge of the K-th ion and rk,m, e are position, mass and charge of the
k-th electron respectively. ~ is the Planck constant.

To obtain any observable value of the system it is “enough” to solve the many-particle
Schrödinger equation, which for the case of total energies reads as

ĤΨtot(r1..rNe , r1..rNi
) = EΨtot(r1..rNe .r1..rNi

), (2.1.5)

The eigenvalues and eigenvectors of the Hamiltonian operator shall then give information
about the states available to the system. However solving the equation exactly for all Ni

ions and Ne electrons in a solid body of any significant size is unthinkable. The first approx-
imation that is usually made to simplify the problem is the adiabatic Born-Oppenheimer
approximation which hinges in the assumption that since ions have a much larger mass than
electrons one can consider them “frozen” on the time scale relevant for the electronic sub-
system. Under this assumption one can split the total wave-function onto ion and electron
parts and solve only electron problem with ions coordinates as a parameters:

Ĥe({r})Ψe(r1..rNe , {r}) = Ee({r})Ψe(r1..rNe , {r}), (2.1.6)

where Ψe(r1..rNe , {r}), Ĥe({r}) andEe({r}) are the wave function, Hamiltonian and eigenen-
ergy of the electron subsystem respectively and {r} – the set of ions coordinates, taken as
parameters. Then the electronic Hamiltonian can be represented a Hamiltonian of electrons
moving in an external potential Vei produced by the ions.

Ĥe({r}) =
Ne∑
k

−~2

2m
∇2

rk
+

1

2

Ne∑
k 6=l

e2

|rk − rl|
+ Vei({r}), (2.1.7)

Vei({r}) =
Ne∑
k

Ni∑
K

eQK

|rk − rK |
. (2.1.8)

Having ions out of the picture one is still left with an equation congaing a vast number of
variables. Solving Eq. 2.1.7 analytically is an impossible task and this is where the density
functional theory shows its usefulness.

2.2 Density functional theory

Taking a careful look at Eq. 2.1.7 one can notice that the main problem in solving it lies
in the term describing the electron-electron interaction. First attempts to approximate the
problem resulted in the creation of the Thomas-Fermi and the Hartree models. [119, 120]
The ideology of the approach is somewhat akin to the Born-Oppenheimer approximation
in that the many-body Schrödinger equation is reduced to the equation describing the evo-
lution of a single electron in an effective potential field created by all the other electrons
via the electron-electron interaction. The Hohenberg-Kohn density functional theory (be-
ing an exactification of both the Thomas-Fermi and the Hartree theories) was developed
by Kohn and Hohenberg around 1964 [121]. It recasts the problem of the solution of a
many-electron Schrödinger equation in terms of the electronic density distribution E[n(r)]
and a universal functional of the density Exc [n(r)]. Thus it becomes possible to replace the
necessarily approximate solution of a many-body Schrödinger equation by a problem of find-
ing adequate approximations to the exchange functional and then solving a single-particle
electronic equation.



2.2.1 Hohenberg-Kohn theorems and Kohn-Sham equations

The basis of the density functional theory are the two Hohenberg-Kohn theorems, which
justify the use of electron density n(r) as a key object of the system instead of its many-
body wave function. [121]

Theorem 1 states that the electron density n(r) of the system of N electrons moving in
an external potential v(r) is a unique functional of the latter potential and vice versa.

This theorem implies, that both Hamiltonian and total energy of the system are also
unique functionals of the electron density:

E[n] =
〈
Ψ
∣∣∣Ĥ[n]

∣∣∣Ψ〉 =

∫
v(r)n(r)dr + F [n], (2.2.1)

where F [n(r)] is an unknown, but otherwise universal functional of the electron density n(r)
only.

Theorem 2. For a given external potential v(r) and number of particles N there is a
functional F [n] such, that E[n] in Eq. 2.2.1 gives the ground state energy for the correct
ground state electron density n(r).

Functional F [n] can be written as

F [n] = 〈Ψ, (T + U)Ψ〉 , (2.2.2)

where T and U are the kinetic energy and the Coulomb interaction operators, Ψ is the ground
state wave-function of the system. It is convenient to extract the classical Coulomb energy
from U , so that the ground state energy can be written as

E[n] =

∫
v(r)n(r)dr +

e2

2

∫
n(r)n(r′)

|r − r′|
drdr′ + T [n] + Exc[n]. (2.2.3)

Here the second term is the classical Coulomb energy and the third term is the kinetic
energy of noninteracting electrons. Fourth term is an exchange-correlation energy, which is
the non-classical part of Coulomb interaction.

For practical use Kohn and Sham derived a set of equations similar to the single-particle
Schrödinger equation. [122] Assuming a constant number of particles∫

n(r)dr = N, (2.2.4)

one needs to find n(r), which minimizes E[n]:

δ {E[n]− µN} = 0, (2.2.5)

where µ is a Lagrange multiplier (or physically the chemical potential). The last equation
can be rewritten as ∫

δn(r)

{
ϕeff (r, n[r]) +

δT [n]

δn(r)

}
dr = 0. (2.2.6)

Here, effective potential ϕeff (r, n[r]) comprises external, Coulomb and exchange-correlation
potentials:

ϕeff (r, n[r]) = v(r) + e2
∫

n(r′)

|r − r′|
dr′ +

δExc[n]

δn(r)
− µ. (2.2.7)



Then, equation (2.2.6) is rewritten as

δT [n]

δn(r)
+ ϕeff (r, n[r]) = 0. (2.2.8)

This equation can be seen as an equations of motion of noninteracting electrons in an ef-
fective potential ϕeff (r, n[r]) with kinetic energy, represented by the first term. The solution
of the equation can be provided by the Schrödinger equation{

−~2

2m
∇2 + ϕeff (r, n[r])

}
ψi(r) = εiψi(r), (2.2.9)

where the electron density is

n(r) =
Ne∑
i

|ψi(r)|2 . (2.2.10)

These two equations are called Kohn-Sham equations and are meant to be solved self-
consistently. The difficulty in this problem is that the exchange-correlation potential µxc =
δExc[n]/δn(r) while formally exact cannot realistically be evaluated in a simple. Thus,
as already remarked at the end of the previous section, finding adequate simplification to
Exc[n(r)] is essential for DFT to be a useful tool.

2.2.2 LDA and LSDA approximations

Since it is impractically hard if not impossible to calculate exchange-correlation potential
exactly, one usually resorts to certain approximations of that functional. One of the simplest
ones is the so called the local density approximation (LDA), proposed by Kohn and Sham
[122] for systems with slowly-varying electron density. One can expand exact exchange-
correlation energy of the system in powers of density gradient and taking first term, one can
write:

Exc[r] =

∫
εxc(n(r))n(r)dr. (2.2.11)

This is equivalent to an assumption that the exchange-correlation energy of an electron at
position r is the same as the exchange-correlation energy of an electron in a uniform electron
gas of density n(r). Exchange-correlation potential is then calculated as:

vxc(r) =
δ {εxc(n(r))n(r)}

δn(r)
. (2.2.12)

Dependence of εxc(n(r)) on n(r) can be formalized fitting exact calculations of exchange-
correlation energy to the homogeneous electron gas model. Some of the methods and de-
scriptions thereof can be found in Refs. 123 and 124. Surprisingly, such crude approximation
gives quite good agreement with experiments for many systems. Most of them are metals,
where the density of electrons indeed varies slowly in space.

In the case of spin-polarized systems, the energy depends on spin-up n↑ and spin-down
n↓ electron densities as:

E[n↑, n↓] = T [n↑, n↓] +

∫
vext(r)n(r)dr +

e2

2

∫ ∫
n(r)n(r′)

|r − r′|
drdr′ + Exc[n↑, n↓], (2.2.13)



where the total density is n(r) = n↑(r) +n↓(r). Exchange-correlation potential for majority
or minority channel is calculated as a variational derivative with respect to majority or
minority electron density respectively:

µ↑(↓)xc (r) =
δExc[n↑(r), n↓(r)]

n↑(↓)(r)
. (2.2.14)

In LDA approximation for spin-polarized systems (LSDA) exchange-correlation potential
for spin-up or spin-down channel depends locally on the majority or minority electron density.
There are several realizations, based on LDA functionals. [125, 126]

2.2.3 GGA approximation

As the LDA approximation performs well in and was developed predominantly for systems
with slow-varying electron density, in many real systems, such as atoms or molecules, where
electron density experiences strong oscillations, LDA is not applicable. Then the second order
of the exchange-correlation expansion, taking into account the variation of electron density
through the gradient thereof, can be used. It is called generalized gradient approximation
and has the form

EGGA
xc =

∫
f(n↑, n↓,∇n↑,∇n↓)dr. (2.2.15)

This approximation allowed to obtain results, for example, for molecules, such as ground
state energies or geometries, which are in good agreement with experiments. One of the
most successful parametrizations of the GGA functional to date belongs to Perdew, Burke
and Erzernhof (PBE). [127]

2.2.4 Correlated systems, LDA+U

One of main problem of LDA consists in it failure to correctly describe strongly-correlated
systems. For example, for d or f shells of many elements the mean-field character of LDA
approximation does not capture the strong localization of the orbitals. The idea of correction
to the LDA approximation, suggested in 1991 by Anisimov, Zaanen and Andersen, [128] is
to add an orbital-dependent potential U to the LDA energy in Hubbard form, that describes
Coulomb interaction of strongly-correlated shell

EC =
1

2
U
∑
i 6=j

ninj, (2.2.16)

where ni(j) are the occupancies of the orbitals. Since if this form is used, the total energy of
Coulomb interaction happens to be accounted for twice, it should be subtracted, for which
a double-counting correction can be used in the following form:

Edc =
1

2
UN(N − 1), (2.2.17)

where N =
∑

i ni is the total number of electrons in the considered system or subsystem.
Resulting total energy of the system can be written as

ELDA+U = ELDA +
1

2
U
∑
i 6=j

ninj −
1

2
UN(N − 1). (2.2.18)
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Figure 2.1: Schematic view of two-electrode system under the bias.

The energies of orbitals can be found as derivatives of ELDA+U with orbital occupancies ni:

εi = εLDA + U(
1

2
− ni). (2.2.19)

Orbital-dependent single-particle effective potential has a similar form:

vi(r) = vLDA(r) + U(
1

2
− ni). (2.2.20)

One can see that both energy and potential have discontinuities at integer numbers of
particles. According to Refs. 129 and 130 this jumps reflect the behavior of exact DFT poten-
tial, while LDA potential has continuous dependence on the orbital occupations. Therefore,
one can say that U correction allows to restore the exact behavior to the LDA potential.

Besides U the LDA+U formalism has another parameter J which is responsible for the
exchange interaction in correlated shells. Exact treatment requires the considered Coulomb
and exchange interactions to be considered to be orbital-dependent (Umm′ and Jmm′). In
that case the single-particle potential can be written as

Vmσ(r) = VLDA(r) +
∑
m′

(Umm′ − Ueff )nm−σ+

+
∑
m 6=m′

(Umm′ − Jmm′ − Ueff )nmσ + Ueff

(
1

2
− nmσ

)
− 1

4
J (2.2.21)

A more detailed descriptions of these methods can be found in Ref. 131. Correct choice
of DFT treatment is indispensable for reliable description of the ground state electronic
properties. In our case correctly capturing the electronic structure of the nano-scale junctions
shall be the basis for the correct description of the electron transport therein.

2.3 Electron transport problem

2.3.1 Landauer-Büttiker approach

In our treatment of electron transport through atomic-scale junctions we shall rely on the
transport formalism of Landauer and Büttiker [44], which is based on the idea that the con-
ductance of a system consisting of a contact between two leads is determined by scattering
properties (electrons transmission probability) of the contact. The current between elec-
trodes (reservoirs) in this interpretation, in turn, can be caused by the difference between the
chemical potentials of the latter. The basic concepts of Landauer-Büttiker formalism can be



illustrated by a simple example of a two-electrode system with chemical potentials µ1 and µ2,
which are shifted with respect to each other due to applied bias voltage V = (µ1−µ2)/(−e)
(Fig. 2.1), where e is the electron charge. We consider elastic scattering, so that the energy
of electrons passing through the contact is conserved. Therefore the contribution to the
current from electrons with energies of less than µ2 being scattered from right to left and
from left to right electrodes cancel each other out. In the energy range µ2 < E < µ1 they
are injected from the left electrode into the contact area and can then tunnel on to the right
electrode. The resulting current is then: [131]

Iinj =
2e2V

h
, (2.3.1)

where h is the Planck’s constant. If we assume that the transmission probability of the
contact T is not dependent on the energy, then we can write, that the total current is
I = TIinj. From here we arrive at Landauer’s formula for the conductance of a system as

C =
I

V
=

2e2T

h
. (2.3.2)

For a contact with one conduction channel, which has ballistic transport properties, T =
1(ideal transmission) and this equation gives a value of G0 = 2e/h called “the conductance
quantum”. One can observe such conductance values in the periodic systems, such as chains,
where each conduction band gives contribution G0 to the conductance in the case of spin-
degenerate states or G0/2 = e2/h per spin.

A more general formula for current taking into account the energy dependence of trans-
mission T (E) can be written as an integral over E from µ2 to µ1. If further the occupation
of electron states of the left(right) electrodes are determined by Fermi (or other temperature
dependent) distribution functions fl(r)(E, t) the integration limits [µ1, µ2] are replaced by
(−∞, ∞) and equation (2.3.1) takes the form [131]:

I =
2e2

h

∫ ∞
−∞

T (E) (fl(E − µ1)− fr(E − µ2)) dE. (2.3.3)

2.3.2 Scattering matrix

As we have seen, to determine conductance and current of a system, we need to calculate
the system’s transmission probability T . There are several ways to do that. First of all,
we consider a one-dimensional toy model and a method, based on the scattering matrix
approach, to show the connection between scattering properties and conductance.

Let ψin(x) be the state of a particle (free electron, e.g.) with a wave number k, approach-
ing a rectangle potential barrier V (x) (Fig. 2.2). The state of the particle after scattering is
ψout(x). Then, in terms of plane waves we can write{

ψin(x) = A1e
ikx +B1e

−ikx

ψout(x) = A2e
−ikx +B2e

ikx
(2.3.4)

If we put B1 = 0, then we have only incoming wave from left. Outgoing wave consists
of transmitted and reflected waves with coefficients B2 and A2 respectively. We can define
reflection and transmission amplitude as:

r11 =

(
A2

A1

)
B1=0

and t21 =

(
B2

A1

)
B1=0

, (2.3.5)
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Figure 2.2: One dimensional scattering problem

respectively. If A1 = 0, then we have incoming wave from right, so:

r22 =

(
B2

B1

)
A1=0

and t12 =

(
A2

B1

)
A1=0

(2.3.6)

A matrix, composed from these coefficients gives us a connection between incoming and
scattered states and is called S −matrix or scattering matrix:

Ŝ =

(
r11 t12

t21 r22

)
,

(
A2

B2

)
= Ŝ

(
A1

B1

)
(2.3.7)

In this case we can define the conductance from left to right as C21 = e2

h
|t21|2, where

e is the electron charge and h – the Planck’s constant. In general, when the system has a
complex structure and many available channels including spin channels, coefficients t and
r can themselves be matrices, depending on energy. In that case, according to Landauer-
Büttiker formalism, total transmission is defined as:

T (E) =
∑
σ

∑
i

Tiσ(E) =
∑
σ

Tr[t̂σ(E)t̂†σ(E)], (2.3.8)

where σ denotes the spin channel and Tiσ is the transmission probability of i-th channel and
σ-th spin direction. Then the zero-bias conductance can be defined as

C =
e2

h
T (Ef ) =

G0

2
T (Ef ). (2.3.9)

Here G0 = 2e2

h
is again the unit of quantum conductance. The total conductance can be

calculated using Eq. (2.3.3) and Eq. (2.3.2).

2.3.3 Non-equilibrium Keldysh-Green’s functions formalism

In the first approximation, the states of the leads are often considered unchanged by the
process of electron transmission (current flow). This assumption is especially valid for small
biases, when the system is not brought far out of the equilibrium. For larger biases or for
systems with an intricate electronic structure at the Fermi level (sensitive chemical potential)
a more elaborate approach is necessary, taking into account the dynamics (in a sense, the
time dependence) of conductance.

In quantum mechanics, the time dependence can be treated in Schrödinger, Heisenberg
or interaction pictures. If we take the Hamiltonian of the non-equilibrium system to be
Ĥ(t) = Ĥ0 + V̂ (t), where Ĥ0 is the (known) Hamiltonian of the equilibrium system, which



does not depend on time, and V̂ (t) is the non-equilibrium part, carrying the time dependence.
The transformation of wave functions and operators from the Schrödinger to the interaction
pictures is then made by

|ψI(t)〉 = eiĤ0t |ψS(t)〉

ÂI(t) = eiĤ0tÂS(t)e−iĤ0t

where |ψI(t)〉 and |ψS(t)〉 are the wave functions in the interaction and the Schrödinger
pictures respectively. The Heisenberg and interaction pictures are connected via the per-
turbation V̂ (t). The transformation rule can be expressed through the evolution operator
Ŝ(t, t′), which depends on the perturbation in the interaction picture V̂I(t): [132]

Ŝ(t, t′) =


∑∞

n=0(−i)n
∫
t>τn>...>τ1>t′

dτn...dτ1V̂I(τn)...V̂I(τ1) = T̂ exp
{
−i
∫ t
t′
V̂I(τ)dτ

}
, t > t′∑∞

n=0 i
n
∫
t<τn<...<τ1<t′

dτn...dτ1V̂I(τn)...V̂I(τ1) = ˆ̃T exp
{
i
∫ t′
t
V̂I(τ)dτ

}
, t < t′

,

(2.3.10)
where T̂ is time-ordering operator, which arranges the operators V̂I(τn) according to time τn
in the integration, as we expand the exponent into the Taylor’s series. Respectively, operator
ˆ̃T orders the operators in reverse order. Note, that operator Ŝ is unitary Ŝ(t, t′) = Ŝ−1(t′, t)
and has group properties Ŝ(t, t′)Ŝ(t′, t′′) = Ŝ(t, t′′). Such arrangement is needed due to
the non-commutative properties of perturbation V̂I(t) at different time points. Therefore,
relation between the Heisenberg and the interaction pictures for wave functions takes the
form

|ψI(t)〉 = Ŝ(t,−∞) |ψI(−∞)〉 ≡ Ŝ(t,−∞) |ψH〉 , (2.3.11)

where |ψH〉 is a wave function in the Heisenberg pictures. We can declare the Heisenberg
wave function as equal to the wave function in the interaction picture in the past at t = −∞,
before the perturbation V̂ (t) was switched on. Transformation rule for the operators can then
be written as

ÂH(t) = Ŝ(−∞, t)ÂI(t)Ŝ(t,−∞). (2.3.12)

Here we also imply, that ÂI(−∞) = ÂH(−∞).
As we see, operator Ŝ determines the evolution of the wave functions and operators in

time from −∞ to t, which can be regarded as a transformation between Heisenberg and
interaction pictures.

A many-body quantum system can be described in the framework of Green’s functions
formalism. The Green’s function is expressed through field operators in the Heisenberg
picture ψ̂H(r, t) as

G(r, t; r′, t′) = −i Tr
{
ρ0T̂

[
ψ̂H(r, t) ψ̂†H(r′, t′)

]}
, (2.3.13)

where ρ0 is the density matrix in the Heisenberg picture, taken by our convention at time
t = −∞, when the system is in equilibrium steady state (perturbation V̂ (−∞) = 0).

Let us consider the equilibrium and non-equilibrium Green’s functions. If we switch the
perturbation V̂ (t) on adiabatically starting from t = −∞ then the system always stays in
an equilibrium steady state |Φ(t)〉 and the Green’s function can be written as an average in
this state instead of using the trace of the density matrix. In the interaction picture, using
the Ŝ operator:

G(r, t; r′, t′) =
〈

ΦI(∞)
∣∣∣ T̂ [Ŝ(∞,−∞) ψ̂I(r, t) ψ̂

†
I(r
′, t′)

] ∣∣∣ ΦI(−∞)
〉
. (2.3.14)
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Figure 2.3: Closed integration contour C0

Here one can use a trick to replace the state 〈ΦI(∞)| at time t =∞ by the state at time
t = −∞ using the Ŝ operator. [131, 132] It can be done due to the assumption, that system
is always in equilibrium state and the states of the system differ only by a phase factor.
Therefore:

G(r, t; r′, t′) =

〈
ΦI(−∞)

∣∣∣ T̂ [Ŝ(∞,−∞) ψ̂I(r, t) ψ̂
†
I(r
′, t′)

] ∣∣∣ ΦI(−∞)
〉

〈
ΦI(−∞)

∣∣∣ Ŝ(∞,−∞)
∣∣∣ ΦI(−∞)

〉 . (2.3.15)

Such view of the Green’s function simplifies calculations, since the quantum state of the
system at time t = −∞ can be assumed known.

Nevertheless, the adiabatic limit is not always applicable. In the non-adiabatic case the
system is not in equilibrium state and one can not apply the simplification to Eq. (2.3.14).
Instead, the exact transformation

〈ΦI(∞)| = 〈ΦI(−∞) | Ŝ(−∞,∞) (2.3.16)

has to be substituted into expression (2.3.14). Operator Ŝ then has, according to (2.3.10),
inverse time-ordering, since it propagates the state from ∞ to −∞. Being placed to the left
and outside the direct time-ordering operator T̂ (see Eq. (2.3.17)) it cannot be brought into
the square brackets, since it has reverse time ordering by the definition (2.3.10). Therefore,
at first, we have direct time-ordered integration from −∞ to ∞, then the inverse one from
∞ to −∞. Such time-ordered integration can be considered as integration along a contour C
(denoted as T̂c), which is called Schwinger-Keldysh contour, [133, 134] with evolution matrix
Ŝc:

G(r, t; r′, t′) = −i
〈

ΦI(−∞)
∣∣∣ Ŝ(−∞,∞)T̂

[
Ŝ(∞,−∞)ψ̂I(r, t)ψ̂

†
I(r
′, t′)

] ∣∣∣ ΦI(−∞)
〉

= −i
〈

ΦI(−∞)
∣∣∣ T̂c [Ŝc(−∞,−∞)ψ̂I(r, t)ψ̂

†
I(r
′, t′)

] ∣∣∣ ΦI(−∞)
〉

= −i Tr
{
ρ0T̂c

[
Ŝc(−∞,−∞)ψ̂I(r, t)ψ̂

†
I(r
′, t′)

]}
(2.3.17)

where we replaced the average in state |ΦI(−∞)〉 by an average with trace of the density
matrix in the past ρ0 = ρ(−∞) which are equivalent, since in the past the system has a
well-defined equilibrium ground state. It is not necessary to know the density matrix ρ(−∞),
if we know it at time t = 0, which is already earlier than te = min(t, t′), we can perform the
integration along a closed contour C0, starting at t = 0 and ending at t = 0. The latest time
point of the integration can be chosen as tl = max(t, t′) (Fig. 2.3).

As a result, we can write the Green’s function with a closed contour time ordering

G(r, t; r′, t′) = −i Tr
{
ρ(0)T̂c

[
Ŝc(0, 0)ψ̂I(r, t)ψ̂

†
I(r
′, t′)

]}
. (2.3.18)

Let us denote the integration contour as C with forward C+ and backward C− branches.
On this contour our Green’s function can be written as a set of real-time Green’s functions



without contour ordering operations

G(r, t; r′, t′) =



GT (r, t; r′t′) = −i
〈
T̂
[
ψ̂H(r, t)ψ̂†H(r′, t′)

]〉
, t, t′ ∈ C+

G<(r, t; r′t′) = i
〈
ψ̂†H(r′, t′)ψ̂H(r, t)

〉
, t ∈ C−, t′ ∈ C+

G>(r, t; r′t′) = −i
〈
ψ̂H(r, t)ψ̂†H(r′, t′)

〉
, t ∈ C+, t

′ ∈ C−
GT̃ (r, t; r′t′) = −i

〈
ˆ̃T
[
ψ̂H(r, t)ψ̂†H(r′, t′)

]〉
, t, t′ ∈ C−

(2.3.19)

where T̂ and ˆ̃T are forward and backward time-ordering operators respectively. One can
introduce Green’s functions obtained as linear comminations of the above functions which
are called “Keldysh rotations”: [134, 135]

GR = GT −G< = G> −GT̃ ,

GA = GT −G> = G< −GT̃ ,

GK = G> +G< = GT +GT̃ ,

(2.3.20)

where GR and GA are retarded and advanced Green’s functions, GK is Keldysh-Green’s
function. In more detailed view they can be written as

GR(r, t; r′, t′) = −iΘ(t− t′)
〈{

ψ̂H(r, t)ψ̂†H(r′, t′)
}〉

,

GA(r, t; r′, t′) = iΘ(t′ − t)
〈{

ψ̂H(r, t)ψ̂†H(r′, t′)
}〉

,

GK(r, t; r′, t′) =
〈[
ψ̂H(r, t)ψ̂†H(r′, t′)

]〉
.

(2.3.21)

If Green’s function g of a non-perturbed system is known, then to obtain the Green’s
function of an interacting system G one need to solve the Dyson equation: [131, 136]

G = g + gΣG = g +GΣg,

G = (g−1 − Σ)−1,
(2.3.22)

where Σ is the self-energy, which includes the perturbation of the system. Regarding to
mentioned above GR, GA and GK , using Langreth rules, [131, 137, 138] one can show, that

GK = GRΣKGA,

G≶ = GRΣ≶GA.
(2.3.23)

This equation is a special case of the Keldysh quantum kinetic equation for the non-
equilibrium Green’s function, used in mesoscopic transport.

Usually, the transport problem is considered as a stationary one, so the Green’s functions
depends only on the time difference t − t′. Therefore, it is convenient to perform a Fourier
transformation of the quantities and to work in energy (frequency) domain with a parameter
E instead of t−t′. Retarded and advanced Green’s functions due to their analytic properties
in upper and lower half planes respectively have a simple form in the E-domain, which makes
their calculation simpler. In operator view one can write

ĜR(E) =
1

E − Ĥ0 − Σ̂R(E)
= ĜA(E)†,

ĜK(E) = ĜR(E)Σ̂K(E)ĜA(E),

Ĝ≶(E) = ĜR(E)Σ̂≶(E)ĜA(E).

(2.3.24)



Note, that ΣR and ΣA have also analytic properties in upper and lower half planes respec-
tively, while GK , G≶, ΣK and Σ≶, in general, could have non-analytic features in both half
planes.

In the equilibrium case, when the system has a well-defined chemical potential µ, one
can show, that

ĜK(E) = [1− 2f(E − µ)][ĜR(E)− ĜA(E)],

Ĝ<(E) = −f(E − µ)[ĜR(E)− ĜA(E)],

Ĝ>(E) = [1− f(E − µ)][ĜR(E)− ĜA(E)],

(2.3.25)

where f(E) is the Fermi distribution function.

2.3.4 Non-equilibrium Green’s function method for transport cal-
culations

In two preceding section we have briefly introduced a way to use the non-equilibrium Green’s
function (NEGF) method for calculation of the transmission probability of the system and
the Landauer-Büttiker approach for calculation of current and conductance. Now we shall
apply the NEGF method to the calculation of conductance of the same model system as
discussed in Sec. 2.3.1 (two electrodes and a contact between them, as shown in Fig. 2.1).
Here we give a general explanation of the approach [131], and the particularities of its
realization in the transport code “Smeagol” shall be given later.

Model Hamiltonian of the system can be written as

Ĥ(t) = Ĥc +
∑
i=L,R

[Ĥi + V̂i(t)], (2.3.26)

where Ĥc is a Hamiltonian of the contact, Ĥi are the Hamiltonians of the left and the right
electrodes/reservoirs i = L,R and V̂i(t) are the interactions between the contact and the
electrodes. These quantities can be written in the second quantization notation as

Ĥc =
∑
q′,q

εq′q ĉ
†
q′ ĉq,

Ĥi =
∑
ki

εki ĉ
†
ki
ĉki ,

V̂i =
∑
ki,q

Jkiq(t)ĉ
†
ki
ĉq + H.c.

(2.3.27)

Here electrodes are assumed to be in equilibrium state, so their Hamiltonians can be diago-
nalized and written in a second quantization form through the eigenvalues εki .

Let gRki and gKki be the retarded and Keldysh Green’s functions of the electrodes in diagonal
representation with respect to eigenstates, numbered by ki

gRki(t− t
′) = −iΘ(t− t′)e−iεki (t−t′),

gKki (t− t
′) = −i[1− 2fi(εki)]e

−iεki (t−t
′).

(2.3.28)

In absence of a direct interaction between electrodes the self-energies of the latter can be
expressed as

Σ
R/K
q′q,i (t, t′) =

∑
ki

Jq′ki(t
′)g

R/K
ki

(t− t′)Jkiq(t). (2.3.29)



If the interaction between the electrodes and the contact does not depend on time, one can
make a Fourier transformation of the Green’s functions, as has been done in the previous
section. Using the relation between retarded, advanced and Keldysh Green’s functions in
equilibrium (2.3.25), the relation between the self-energies of the electrodes may be written
as

Σ̂K
i (E) = [1− 2f(E − µ)][Σ̂R

i (E)− Σ̂A
i (E)],

Σ̂<
i = −f(E − µ)[Σ̂R

i (E)− Σ̂A
i (E)],

Σ̂>
i = [1− f(E − µ)][Σ̂R

i (E)− Σ̂A
i (E)].

(2.3.30)

Thus, Keldysh lesser (<) and greater (>) self-energies can be obtained from the retarded
or advanced ones, which can be calculated, in turn, as matrix products of the electrodes’
Green’s functions and the interaction part of the Hamiltonian, using relation (2.3.29). Often,
the quantity Γ̂i(E) = i[Σ̂R

i (E) − Σ̂A
i (E)], called the broadening matrix or hybridization

function, is used in the notation, which can be treated as a quantity describing the hopping
of electrons from the electrodes onto the contact. As the hybridization function is just a
complex part of the self-energy it describes the effect the electrodes have on the central
contact. In the simplest case, hybridization function shows the broadening of the levels of
the contact.

Now one can write an expression for the lesser Green’s function of the contact2 from
Eq. (2.3.24):

Ĝ<
C(E) = −iĜR(E)

∑
i=L,R

Σ̂<
i (E)ĜA(E). (2.3.31)

From Eq. (2.3.29) we can see, that self-energies and, consequently, Green’s function of the
contact depend only on the basis states of the contact numbered by q. Since investigated
sample contacts are usually small atomic-sized object, its basis-set has a limited number of
basis functions. Therefore, Green’s function matrix Gq′q (retarded, Keldysh, lesser,... etc.)
has a relatively small size, which allows to use this method in numeric computations.

Finally we should determine the physical quantities which have importance in the analysis
of the electronic properties of quantum systems. Time dependent occupation of the system’s
states is given by

nq(t) =
〈
ĉ†q(t)ĉq(t)

〉
= −i G<

qq(t, t
′) |t=t′ . (2.3.32)

In the stationary case one can calculate the density of states projected onto the basis state
q through the retarded Green’s function after Fourier transformation to the energy domain

Dq(E) = − 1

π
Im[GR

q q(E)]. (2.3.33)

The current can be found using Eq. (2.3.3), where the transmission is determined by the
formula of Fisher and Lee: [139]

T (E) = Tr
[
Γ̂LĜ

A
CΓ̂RĜ

R
C

]
. (2.3.34)

2Keldysh and greater Green’s functions look the same



2.4 Calculation methods

2.4.1 SIESTA

For the calculation of electronic structure in the present work the code SIESTA was used. [140,
141] The code is based on the density functional theory (DFT) and uses localized atomic
orbitals (LCAO) as a basis-set, which is constructed using Troullier-Martins pseudopoten-
tials [142] and Kleinman-Bylander projectors. [143] To achieve good completeness of the
basis each atomic orbital can be represented as a sum of several numeric radial functions
(called ζ-s). [141, 144, 145] SIESTA, as is usual for DFT codes, uses a self-consistent loop
where the initial guess of charge distribution is used for calculation of the energy spectrum
and the new wave functions, which are then utilized for calculation of the charge distribution,
which is used as the new input to the cycle.

Let us mention a few important aspects of the SIESTA method. In many cases one can
split electrons in atoms into two parts: valence electrons, which occupy the outer orbitals and
take part in chemical interactions and bonding, and core electrons, occupying lower orbitals
and resisting external influences. To exclude from the computation these core electrons
and reduce computational cost SIESTA uses pseudopotentials, which represent the nuclear
potential(∼ 1/r) screened by the core electrons. In this case pseudopotential Vl depends
on the angular momentum of the orbital, and has a non-local form (one can say, that the
potential becomes an operator). Usually core electrons have small radii of their orbitals,
and therefore, the pseudopotential differs from the real all-electron potential one only inside
some small radius rcore. Using as an input the semi-local Troullier-Martins pseudopotential
[142] the form of the potential can be transformed into a fully nonlocal one by the method
of Kleinman-Bylander. The operator of the semilocal pseudopotential can be transformed
to

V̂PS = Vlocal(r) + V̂ KB, (2.4.1)

where

V̂ KB =

lKB
max∑
l=0

l∑
m=−l

NKB
l∑

N=1

∣∣χKBlmn〉 vKBln 〈
χKBlmn

∣∣ , (2.4.2)

where
∣∣χKBlmn〉 is the projector of Kleinman-Bylander and

vKBln = 〈φln|δVl(r)|φln〉 ,
δVl(r) =Vl(r)− Vlocal(r),
χKBlmn(r) =δVl(r)φln(r)Ylm(r̂).

(2.4.3)

Here Ylm(r̂) is spherical harmonic, φln(r) are transformed eigenstates of the atom with
semilocal pseudopotential (see Ref. 143). Potential Vlocal is chosen to be equal Vl for r > rcore.
Consequently, δVl(r) = 0 for r > rcore and the Kleinman-Bylander projectors are zero for
these distances. Therefore one needs to care only about long range Vlocal, while the projectors
have very localized form and can be easily calculated.

Another important thing, that we should consider are the basis functions. Since in
the atomic systems electron states can change their form due to interactions, it could be
not enough to have atomic orbitals as a basis-set. For polarized orbitals, one can include
additional orbital with higher angular momentum into the basis-set. This can be done
by including Kleinman-Bylander projector with angular momentum l + 1, where l is an



angular momentum of the considered polarized orbital. Second way to account polarization
of the orbitals is chosen to solve atomic Schrödinger equation with an electric field. Found
eigenstate with momentum l + 1 is added to the basis.

To have more flexibility in radial dependence of the basis functions SIESTA uses the
so-called “split-valence” scheme, initially developed in quantum chemistry. [146] The idea
is to include in the basis additional radial function (multiple ζ-basis). This function by
construction reproduces the tail of the atomic orbital for r > rs, where rs is a “split-radius”,
and has smooth behavior for r < rs. Let φ1ζ

l (r) be the main atomic orbital, then φ2ζ
l (r)

component in SIESTA is parameterized as: [141, 144, 145]

φ2ζ
l (r) =

{
rl(al − blr2), r < rs

φ1ζ
l (r), r ≥ rs

(2.4.4)

Taking into account the previous considerations, within the frameworks of SIESTA
Schrödinger’s equation with DFT Hamiltonian Ĥ of the quantum system can be written
as

Ĥ
∑
i

ψi(r) = Ŝ
∑
i

ψi(r), (2.4.5)

where Ŝ is an overlapping matrix, since the LCAO basis used is not necessarily orthogonal.
The Hamiltonian itself has the form of

Ĥ = T̂ +
∑
i

V̂ KB
i +

∑
i

V local
i (r) + VH(r) + Vxc(r), (2.4.6)

where nuclear and core electron potentials are represented by the local V local
i (r) and non-

local V̂ KB
i pseudopotentials described above. T̂ = − ~2

2m
∇2 is the kinetic energy operator.

VH(r) and Vxc(r) are the Hartree and exchange-correlation potentials of the electron system.
Summation is done over the atom index i.

Matrix elements of operators T̂ , V̂ and Ŝ can be partially calculated in reciprocal space
and stored in memory for further use, which significantly reduces the time of calculation.
Matrix elements of the other Hamiltonian terms

∑
i V

local
i (r), VH(r), Vxc(r) are calculated on

a real-space grid. Moreover, potential V local
i (r) is transformed by adding to it a potential

created by valence electrons of the atom V atom
i (r). Therefore, resulting potential

V NA
i = V local

i (r) + V atom
i (r) (2.4.7)

is a potential of a neutral atom and it equals zero outside the sphere with radius rc,imax –
the maximal cutoff radius of the basis functions of atom i. The same potential is subtracted
from the Hartree potential

δV (r) = VH(r)−
∑
i

V atom
i (r). (2.4.8)

Potential V NA
i (r) is short-range by construction, so it is stored as a function on an r grid.

The last two terms δV (r) and Vxc(r) require total density ρ(r) for the calculation, which is
calculated from the density matrix ρµν as

ρ(r) =
∑
µν

ρµνφ
∗
ν(r)φmu(r), (2.4.9)
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Figure 2.4: Schematic representation of system. Red circle - scattering part, blue circles -
electrodes principal layers.

where the indices µ and ν are the common indexes for basis functions φν(r) and φµ(r). Here
the density matrix is calculated as

ρµν =
∑
k

cµknkc
∗
νk, (2.4.10)

where nk is the occupation of k-th eigenstate of the Hamiltonian, cµk and cνk are coefficients
of expanded eigenstate ψk(r) in a basis,

ψk(r) =
∑
µ

φµ(r)cµk. (2.4.11)

Usually density matrix is a sparse matrix, since atoms orbitals overlap only with nearest
neighbors. This sparsity makes the total density calculation for an N -atom system an O(N)
process and thus very efficient.

2.4.2 Smeagol

The code Smeagol was developed on the basis of SIESTA for the calculation of transport
properties using non-equilibrium Keldysh-Green’s function formalism. [147, 148] Smeagol
uses DFT, LCAO bases and pseudopotentials. NEGF part of the code is based on the
scheme described in Sec. 2.3.4.

Let us briefly consider the NEGF implementation in Smeagol. The first step done in
the calculation is the division of the system into “principal layers”, which interact only with
their respective neighbors (Fig. 2.4). This reduces the number of non-zero matrix elements in
both the Hamiltonian and the Green’s functions. Electrodes are assumed to have a periodic
structure, which allows to calculate their Green’s functions recursively.

The total system then consists of three principal parts: the two electrodes and the contact
scattering region. The Hamiltonian matrix may then be written in a schematic way as:

Ĥtot =

 HL HLC 0

HCL HC HCR

0 HRC HR

 =



. . . . . . .

. H0L H1L 0 0 0 .

. H†1L H0L HLC 0 0 .

. 0 HCL HC HCR 0 .

. 0 0 HRC H0R H1R .

. 0 0 0 H†1R H0R .

. . . . . . .


(2.4.12)

Here H0L, H0R are the Hamiltonians of left and right electrodes’ principal layers, HC –
the central contact Hamiltonian, H1L, H1R – interactions between the principal layers of the



electrodes, HLC , HRC – interactions between the contact and the closest electrodes’ principal
layer and HL, HR – the full Hamiltonians of the electrodes. The retarded Green’s function
ĜR(E) of the full system can be written as

[(E + iδ)Ŝ − Ĥtot]Ĝ
R(E) = Î , (2.4.13)

where I is the identity matrix, δ → 0+, Ŝ is the overlapping matrix, E is the energy. In a
more detailed matrix form, separating the scattering part and the electrodes: (E + iδ)ŜL − ĤL (E + iδ)ŜLC − ĤLC 0

(E − iδ)ŜCL − ĤCL (E + iδ)ŜC − ĤC (E + iδ)ŜCR − ĤCR

0 (E − iδ)ŜRC − ĤRC (E + iδ)ŜR − ĤR


 ĜL ĜLC ĜLR

ĜCL ĜC ĜCR

ĜRL ĜRC ĜR

 =

Î 0 0

0 Î 0

0 0 Î

 ,

(2.4.14)
where ĜL, ĜR and ĜC are the Greens functions of left and right electrodes and the contact
respectively. ĜLC , ... are the corresponding mixed Green’s functions. We are interested
in obtaining the Green’s function of the central contact ĜC . As it was already shown in
Sec. 2.3.4, due to the absence of a direct interaction between the electrodes, Green’s function
of the contact can be simply expressed through the self-energies as

ĜR
C(E) = [(E + iδ)ŜC − ĤC − Σ̂R

L(E)− Σ̂R
R(E)]−1 (2.4.15)

Here Σ̂R
L(E) and Σ̂R

R(E) are the retarded self energies of left and right electrodes:

Σ̂R
L(E) = ((E + iδ)ŜCL − ĤCL)ĜR

L((E + iδ)ŜLC − ĤLC),

Σ̂R
R(E) = ((E + iδ)ŜCR − ĤCR)ĜR

R((E + iδ)ŜRC − ĤRC),
(2.4.16)

where ĜR
L , ĜR

R are the Green’s functions of left and right electrodes respectively. The Green’s
functions of the electrodes are calculated separately and stored to be reused in other calcu-
lations with the same electrodes but different central contacts. Self-energies however have
to be recalculated in each separate case since they depend on the interaction between the
contact and the electrodes. Once the self-energies of the system have been calculated, the
transmission probability can be determined from Eq. (2.3.34).

Since Smeagol is a DFT-based method, physical quantities depending on electron density
should be determined self-consistently in a loop. In SIESTA the density is calculated from
the density matrix, which is derived from the wave-functions. In Smeagol the density matrix
of the contact is calculated from the lesser Green’s function of the contact as

ρ̂C = − i

2π

∫
dE Ĝ<

C(E), (2.4.17)

and substituted into the SIESTA part for further calculations in the loop. In the equilibrium
case lesser Green’s function can be expressed through retarded Green’s function according
to Eq (2.3.25) as (note that ĜR

C(E) = ĜA†
C (E)):

Ĝ<
C(E) = −2iIm[ĜR

C(E)]. (2.4.18)



Due to analytic properties of the retarded Green’s function, its integration can be per-
formed along the contour in the upper complex plane, which should include all occupied
states of the system, corresponding to the poles of ĜR

C(E).
If the bias voltage V is non-zero, Hamiltonian of the system can be written as follows:

Ĥ =

ĤL + ŜLeV/2 ĤLC 0

ĤCL ĤC ĤCR

0 ĤRC ĤR − ŜReV/2

 . (2.4.19)

In Smeagol a bias voltage V applied between the leads is considered to result in a shift of
the electronic structure of the electrodes by ±V/2. Interaction Hamiltonians ĤLC , ĤRC , ...,
however, remain the same. This approximation allows to calculate self-energies only for
zero-bias and then reuse them for different biases:

Σ̂L,R(E, V ) = Σ̂L,R(E ∓ eV/2, 0). (2.4.20)

The density matrix of the biased system is no more an equilibrium one. Therefore, one
needs to integrate the non-equilibrium Green’s function in its general form (see, for example,
Eq. (2.3.31)). To simplify integration in Eq. (2.4.17) one can split the integral in two parts.
Writing the expression (2.3.31) as

Ĝ<
C = i[ĜR

C(Γ̂L + Γ̂R)ĜR†
C f(E − µL) + ĜR

CΓ̂RĜ
R†
C (f(E − µR)− f(E − µL))], (2.4.21)

where the term ĜR
CΓ̂RĜ

R†
C (f(E−µL)−f(E−µR)) is subtracted and added to the equation (we

omit the dependence on E for simplicity). Taking into account, that Γ̂L + Γ̂R = i[(ĜR†
C )−1−

(ĜR
C)−1] the expression (2.4.22) can be rewritten as

Ĝ<
C = −2iIm[ĜR

C ]f(E − µL) + iĜR
CΓ̂RĜ

R†
C (f(E − µR)− f(E − µL)). (2.4.22)

We see, that the first term is just an equilibrium lesser Green’s function with chemical
potential µL (see Eq. (2.4.18)). Now we can write the expression for non-equilibrium density
matrix as a sum of the equilibrium part ρ̂eqC and a non-equilibrium correction ρ̂neC :

ρ̂C = ρ̂eqC + ρ̂neC , (2.4.23)

where

ρ̂eqC = − 1

π

∫
dE Im[ĜR

C(E)]f(E − µL), (2.4.24)

ρ̂neC =
1

2π

∫
dE ĜR

C(E)Γ̂R(E)ĜR†
C (E)(f(E − µR)− f(E − µL)). (2.4.25)

Integration in ρ̂neC can be performed in narrow range of energies along the real axis, which
for example at zero temperature equals V = µL − µR. If we assume, that in equilibrium
the system had a Fermi energy of EF , then after applying a bias according to Eq. (2.4.19)
µL = EF + V/2 and µR = EF − V/2. Therefore, for calculation non-equilibrium correction
ρ̂neC integration can be performed from EF−V/2 to EF +V/2. Calculation of ρ̂eqC is performed
in the same way as in Eq. (2.4.17).
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Figure 2.5: Results of transport calculations of (a-c) pure Au and (d-f) mixed Au-Co chains.
(a,d) I(V) characteristic, (c,e) transmission probabilities for bias voltages 0.0 and 0.6 V,
PDOS of (c) Au and (f) Co atoms in pure Au and Au-Co chains, respectively.

2.5 Typical calculation workflow

To illustrate how the formalism described above works in practice let us consider a simple
system and see what is necessary to calculate its electronic and magnetic properties and the
electron conduction through it. A traditional prototypical system used for benchmarking
transport calculations are gold atomic chains and nano-contacts, for they allow a good
comparison to analytical calculations and basic physical considerations [148, 149].

As a first example we choose a pure infinite monatomic linear gold chain with an equi-
librium interatomic distance of 2.4 Å. In Fig. 2.5(a-c) transport and electronic structure
calculations are presented. The chain has a non-magnetic electronic configuration which
leads to non-spin-polarized quantum conductance of the chain. Let us consider the zero-
bias transmission plotted with solid lines in Fig. 2.5(b). As was mentioned in Sec. 2.3.1,
according to Landauer-Büttiker approach, each electron band can form a transport channel
with conductance G0/2 per spin. This statement is excellently illustrated in Figs. 2.5(b)
and 2.5(c) where the energy-resolved transmission shows a perfect match with s and d pro-
jected densities of states. The band edges in 2.5(c) defined by Van Hove singularities exactly
correspond to the step-like onsets in transmission. Within the energy range of each band
transmission has a ballistic character and thus exhibits constant behavior.
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lation geometries are sketched in the insets of corresponding sub-figures.

However, if we apply a bias voltage U to a stretch of the chain comprising 5 gold atoms,
the narrow d band of the left and right parts shall shift with respect to each other by
e ·U eV disturbing the ballistic nature of the transmission. The resulting transmission curve
is shown in Fig. 2.5(b) with a dashed line. Due to the smearing of transmission band edges
the transmission peaks loose their exact G0/2 quantization. This band behavior affects the
I(V) characteristic, causing a change of the I(V) curve slope at U = 0.1 V.

Since the main subject of the present thesis is spin-polarized transport, it is only reason-
able to include a magnetic component in our test system. To do so, let us replace one of the
gold atoms of the chain discussed above with a single Co impurity (Fig. 2.5(d-f)). In this
case translation symmetry is broken, so the nature of the zero-bias conductance differs from
the pure ballistic one. The energy-resolved transmission probability (Fig. 2.5(e)) becomes
spin-dependent and not strictly quantized in units of G0/2. The differences in transmission
are caused by the spin-split d states of Co (Fig. 2.5(f)). The anti-resonance character of
transmission in the minority channel [150] at 0.25 eV is caused by scattering of electrons at
localized minority s − d hybridized states of Co. We can also observe large resonance and
small anti-resonance features in the majority channel at energies of −1.2 and −1.75 eV re-
spectively, which are also a consequence of electron scattering by Co d states. If we consider
the I(V) characteristic, we can see that with increasing bias voltage the spin splitting of
the current increases which is caused by the influence of the anti-resonance in the minority
channel.

To see whether our theoretical and numerical formalisms perform equally well with more
realistic systems we present here the calculations of a gold nano-contact consisting of a 3-
atomic gold chain suspended between pyramidal gold electrodes (see inset in Fig. 2.6(a)), a
geometry mimicking the gold break-junctions used obtained in experiments [5]. The trans-
mission of such a junction (shown in Fig. 2.6(a)) has a uniform structure around the Fermi-
level with a magnitude of roughly G0/2, which is an evidence of the ballistic nature of
conductance therein, caused by the strong coupling between the s shells of Au atoms in the
chain forming a conduction channel. The peak at −1.2 eV is caused by resonant tunneling
through the d states which are located lower than in the infinite chain due to the interaction
of chain atoms with the electrodes.

Replacing one of the chain atoms with a Co (Fig. 2.6(b)) significantly changes the trans-
mission characteristics. As was the case for an infinite chain, we can observe in the minority
channel peaks and depletion regions which have resonance and anti-resonance natures. Both
majority and minority channels have a peak at−1.2 eV caused by resonant tunneling through



the d states of Au atoms and Co majority d states, located approximately at the same en-
ergy. Significant quantitative differences with respect to an infinite chain are also caused by
the strong interaction with electrodes.

We can thus see that theoretical and numerical methods used in the present work give
reasonable results agreeing well with basic physical consideration for simple model systems
and are also able to capture the complex intricacies of the electronic and transport properties
of larger and more realistic setups, allowing one to analyze their transport and electronic
properties.





Chapter 3

Spin-injection in mixed Au-Co chains
between Co electrodes

Having established the historical motivation and the theoretical framework let us move on to
the main subject of the present thesis – spin dependent transport in atomic-scale contacts.

The first original chapter of the present thesis shall be devoted to the emergence of high
spin polarization of conductance in Co-Au nano-contacts. As was already briefly mentioned
in the introduction the interest in this particular system is motivated by the recent works of
Bernand-Mantel and coworkers [4] who have studied electron transport through a paramag-
netic gold cluster sandwiched between cobalt electrodes and have found it to exhibits nonzero
magnetoresistance, which was ascribed to the presence of spin injection from magnetic cobalt
electrodes into the paramagnetic gold cluster and the subsequent spin transfer to the other
electrode. With its band structure dominated by s-electrons at the Fermi level and the d
bands lying deeper down the energy scale, gold has a relatively low rate of inelastic electron
scattering, and especially with electron-electron and electron-phonon interaction frozen out
and low impurity density the spin-relaxation times are relatively long. [151] Thus, with gold
having a mean spin diffusion length of about 100 nm, [61] it is not surprising that two ferro-
magnetic Co electrodes and an Au nano-particle should exhibit magnetoresistive behavior,
especially in the tunneling geometry, which is the case in the latter experiment. However,
followup experiments by Egle and coworkers [5] have shown that magnetoresistance ratios of
a Co-Au-Co break junctions are excessively high (up to 100% in contact regime and 14000%
in tunneling geometry). This suggests that apart from efficient spin diffusion in Au, the spin
injection from cobalt into gold should be extremely efficient in that particular system.

A set of very similar systems (Cu, Al and Si chains between Co electrodes) has been
investigated theoretically in the past [152]. In that study, however, no system was found to
exhibit a magnetoresistance ratio exceeding 50%, which might be partially due to unrealistic
unrelaxed geometries used due to the limitations of the employed method.

This discrepancy of experiment and existing theory was a further motivation for choosing
Au-Co nano contacts as one of the subjects of this thesis. As shall be shown presently, the
uniqueness of the above-mentioned system (gold chain connecting cobalt electrodes) lies in
the efficient hybridization-driven spin injection into the gold contact from cobalt electrodes.
A theoretical explanation of such behavior shall be given in the present chapter relating
it to the strong interaction between cobalt and gold s − d states in the junction region.
Furthermore, the evolution of conductance with the stretching of the contact shall be traced.
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Figure 3.1: (a) Geometry of the nano-contact: a pure 3-atomic Au wire between Co elec-
trodes, side view. (b) Unit cell geometry of the electrode - top view. (c) Dependence of
relaxed interlayer/interatomic distances (h1, h2, ...) in the contact on the distance between
electrodes d.

3.1 Calculation details

Transport calculations for this system were performed within the framework of the for-
malisms described in Chapter. 2 and according to the workflow in Sec. 2.5.

As an exchange-correlation functional we used the Perdew-Zunger’s scheme of local den-
sity approximation LDA, [124] which is known to be a good choice for the description of
structural and electronic properties of 5d systems. For temperature smearing the Methfessel-
Paxton method with 600K was chosen. As the LCAO basis set we chose a double-ζ basis
including s and d shells for both Co and Au with additional polarized orbital for s shells.
Scalar-relativistic pseudo-potentials with 3d, 4s and 5d, 6s valence orbitals were chosen for
cobalt and gold respectively. For transport calculations, upon checking the convergence, a
5×5 k-point grid in the plane perpendicular to the transport direction (z-axis) was chosen.
Relaxation of electrodes was performed with SIESTA code with 4 × 4 × 1 and 4 × 4 × 3
k-points meshes for electrode and contact relaxations respectively.

3.2 Pure gold chain between cobalt electrodes

We shall start the discussion with the simplest case of the system – a pure 3-atomic gold
chain suspended between pyramid-shaped cobalt electrodes.

3.2.1 Geometry of the system

The geometry used in calculations is shown in Fig. 3.1(a). The nano contact was modeled by
a 3-atom gold chain suspended between hcp Co(001) tips. The tips were represented by Co
pyramids containing 10 atoms in two hcp layers. The pyramids themselves were adsorbed
on hcp Co(001) slabs. [153, 154] To accommodate electronic relaxations at the surface and
mitigate the effect of the super-cell interaction the slabs were taken to be 8 layers thick and
4 × 4 atoms in cross-section perpendicular to the transport direction, which is sufficient to



decouple the super-cell images of nanocontacts from each other. With respect to the axis of
the nano-contact (passing through the gold atoms) the system had a C3v symmetry. In the
following we shall denote outer (tip) and central atoms of the gold chain as AuT and AuC

respectively. The underlying pyramid cobalt atoms shall be denoted as CoP. The distance
between electrodes defining the stretching of the chain shall be referred to as d. In the
following, we shall denote the systems by the distance between electrodes. In all calculations
the geometries of the electrodes and the gold chain were relaxed until the residual forces
were no larger than 0.01 eV/Å.

To investigate the dependence of transport characteristics on the stretching of the con-
tact, calculations were performed for different fixed distances d between the electrodes (see
Fig. 3.1(a)), ranging from 15.00 Å to 16.6 Å. The geometry of the chain was kept linear
during stretching. The dependence of relaxed interatomic distances in the contact on the
distance between electrodes has a quite linear character (Fig. 3.1(c)). The “softer” bonds
between Au atoms, as well as the AuT − CoP bond closely follow the changes of d. The
interlayer bonds in the pyramid are already much stiffer and the lower layer of the pyramid
is almost unaffected by contact’s length change. This shows that the nature of interatomic
bonds is not altered in the process of stretching and the orbital overlap can be expected to
change likewise, i.e. smoothly. The restriction of the linearity of the chain is assumed solely
for the sake of a clearer qualitative picture of the nano-contact’s physics. It shall be shown
that fully unconstrained relaxation of the contact (allowing the chain to buckle and assume
a zig-zag configuration) does not significantly change the results and conclusions obtained.

3.2.2 Magnetic moments of the junction

Supporting the assumption of a smooth change in electronic properties of the chain with
stretching, magnetic moments in the system are found to only weakly depend on the stretch-
ing of the contact. The bottom layer of the Co pyramids has a spin moment of 2.0 µB (for
reference, hcp Co bulk value is 1.71 µB) which shows no dependence on d. The moments of
CoP atoms increase from 2.11 µB to 2.19 µB as the contact is stretched from 15.0 to 16.6 Å,
reflecting the bond stretching and reduction of coordination. At the same time, the induced
moment of AuT atoms reduces from 0.11 µB to 0.05 µB. Central gold atom AuC is practically
unpolarized at all stretching distances d.

3.2.3 Spin-polarized conductance

It is known, that Co bulk with an hcp structure has a ferromagnetic ordering of spins, [153,
154] so in our calculations atomic spins within each electrode are ferromagnetically aligned.
To study the electronic properties of the junction and the conductance thereof we have
performed transport calculations for the case of parallel spins alignment of both electrodes.

Calculated energy-resolved zero-bias transmission of the system described above (for a
sketch see Fig. 3.1(a)) is shown in Fig. 3.2(a) for different inter-electrode distances d. It can
be seen, that stretching of the contact has a pronounced influence on the energy position
of the minority transmission peak, while majority conductance remains flat and almost
unchanged. If we calculate the conductance polarization at the Fermi level as

P =
T ↑(EF )− T ↓(EF )

T ↑(EF ) + T ↓(EF )
, (3.2.1)
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where T ↑ and T ↓ are the Fermi level transmission coefficients of majority and minority spin
channels respectively, we shall find (inset of Fig. 3.2(a)) that it is rather high, reaching 80%
and furthermore changes significantly as the contact is stretched. Large spin polarization of
conductance is caused by the low amplitude of minority spin channel transmission around the
Fermi level (see Fig. 3.2(a)) and therefore is a consequence of strong scattering of minority
electrons. This result is quite interesting, since the DOS of Co is dominated by the half-filled
minority d-band at the Fermi level and one could expect minority d-electrons to strongly
contribute to Fermi level transmission through direct orbital overlap, as it is observed in
pure Co infinite chain. [51, 155] It turns out, that the conduction of a Au chain between Co
electrodes, conduction of a pure Co nano-contact and the conduction of Co chain between
planar electrodes are distinctly different and governed by different physical aspects of the
electronic structure and bonding. Authors in the Ref. [152] present the conductance of a
pure linear Co chain attached to planar Co electrodes which exhibits practically no polar-
ization. Our calculation of such a pure Co nano contact with a more realistic pyramid-like
lead geometry is presented in Fig. 3.3. Here the geometry is very similar to the case for the
Co/Au/Co nano-contact in Fig. 3.1 with an inter-electrode distance d = 15.0Å. We see, that
the junction has weak opposite polarization to the one found in Co/Au/Co system. This is
a clear indication that geometry, rather than just chemistry plays a determining role in the
shaping of the spin-polarization of conductance. How exactly that works shall be shown in
the next sections.

Another effect which should be noted from the outset is the strong change of the spin-
polarization of conductance in a Co/Au/Co nanocontact with increasing inter-lead distance
d (inset in Fig. 3.2(a)). It falls from almost 80% to 30% as the inter-electrode distance is
increased from 15.4 to 15.8 Å and is subsequently restored to almost 90% as the stretching
continues towards 16.2 Å. From the energy resolved transmission curves (Fig. 3.2(a)) it can
be deduced that this jump in polarization is caused by a pronounced peak in the transmission
crossing the Fermi level in the minority channel as the contact is stretched. At the same time,
majority transmission is comparable with G0 and only slightly changes during stretching.
Such closeness of the transmission coefficient to G0 can be ascribed to the presence of ballistic
transport in the majority channel.

3.2.4 Projected density of states analysis

To understand this behavior of the transport properties, let us consider the projected density
of states (PDOS) of the contact’s gold atoms (AuC and AuT) and the neighboring cobalt
atoms of the electrodes CoP (Fig. 3.2(b-d)). Majority states of the contact atoms, similarly
to the majority transmission, are flat and featureless around the Fermi energy (shown in
Fig. 3.4(a)). They are mostly of s-character and are not affected by the stretching of the
contact. Their extended wave functions can provide transport almost without scattering
due to the strong overlap (and robust band formation). Thus, to explain the conductance
polarization we shall concentrate on minority PDOS.

Comparing transmission and PDOS in Fig. 3.2 one immediately notices that the minority
transmission peak can be correlated with the peaks in dz2-states of CoP and AuT atoms as
well as with s-states of the AuC atom. Other symmetries also show traces of hybridization,
but to a significantly smaller degree and thus we do not show them here, so as not to overload
the figures. Note, that the amplitude of the dz2-states peak at the CoP atom is several times
larger, than that of the same state at AuT and AuC atoms. The amplitude of the peak in



0.8

0.6

0.4

0.2

0.0

0.2

0.10

0.05

0.00

0.05

1.0

1.0

1.0–1.0–1.5–2.0

0.5

0.5–0.5

0.0

0.0

0.5

minority

minority

majority

minority
majority

majority
15.4 Å
15.8 Å
16.2 Å

(c)

(b)

(a)(a)

PD
O

S 
(e

V
–1

)
PD

O
S 

(e
V

–1
)

PD
O

S 
(e

V
–1

)

AuC, s-states

AuT, s-states

CoP, dz2-states

E ‒ EF (eV)

Figure 3.4: (a) Projected density of dz2-states of Co atoms in contact with the Au wire
(dashed line) and dz2-state of the same atoms in absence of the Au chain (solid line). (b)
s states of tip Au atom and (c) s states of central Au atom for different distances between
electrodes. Positions of peaks around the fermi level are highlighted by vertical black lines.
The splitting of the band/levels is shown by horizontal arrows.

s-states of the AuC atom, on the contrary, has the same order as the dz2-states peak of CoP.
Appearance of the peaks in all contact atoms can be related to a hybridization of the AuC

atom’s s-states and the dz2-states of AuT and CoP atoms. Large difference in amplitudes
of the peaks in PDOS on CoP and AuT atoms can be ascribed to two facts. Firstly, gold
atoms have practically no d-states at the Fermi energy. Hybridization of AuC and AuT

atoms is weak and therefore we observe the small amplitude of dz2 peaks in AuT atoms. And
secondly, AuC atom’s s-states have long “tails” and can hybridize with cobalt d minority
states directly.

To understand the origin of the peaks that we observe in Fig. 3.2 we shall take a look at
the PDOS on a larger energy scale (Fig. 3.4(c)). Analyzing the stretching-induced dynamics
of the position of the peaks around −1.5 eV and at the Fermi level we see that the former
shift to higher energies as the inter-electrode distance is increased, while the latter shift
downward. This behavior is consistent with the picture, where both sets of peaks belong
to the same state split by the interatomic interaction (horizontal arrows). Thus, as the
contact is stretched, the interatomic distance increases, reducing the orbital overlap and the
states gradually coalesce into single atomic-like levels. So, the origin of these peaks that we



observe in Fig. 3.2 can be the splitting of the sdz2 hybridized state of the AuC atom due to
the interaction of the latter with its neighbors.

Though the physics described above gives a feasible explanation to the movement of the
peak, it has to be mentioned, that other possible explanations to the origin and movement
of the peak close to the Fermi level could exist. For example, the s-states of the gold chain
could be subject to confinement between the two cobalt electrodes. As was shown in recent
works, [49, 50, 156] standing waves could exist in a chain nano-contact between electrodes
and have a quantized spectrum. Therefore, conductance may exhibit peaks at energies,
corresponding to the energies of these confined states. However, the motion of the lower
peak in Fig. 3.4(c) to higher energies (around −1.5 eV) would still have to be explained by
the decrease of interaction between the central and the neighboring atoms.

A careful look at Figs. 3.4(a) and 3.4(b) will reveal that the minority states of the AuT

atom are dominated by the interaction with CoP dz2 states (dashed line). Comparing this
density of states (Fig. 3.4(a), dashed line) with the dz2-states of the same atom in absence
of a chain (Fig. 3.4(a), solid line), we can see, that the structure of the DOS is similar.
The only minor difference is in the position of the peaks above the Fermi level. For the
single electrode these peaks are located closer to the Fermi level, than in the contact system.
Primarily, the difference in positions of the peaks is explained by hybridization between
cobalt and gold states. As the contact is stretched, the distances between the AuT atom and
underlying cobalt atoms change from 2.3 Å to 2.5 Å, which corresponds to the presence of a
tight chemical s− d bond. Removing the gold tip atom obviously breaks that bond, leading
to a shift of the d-states of cobalt to lower energies.

In a recent theoretical work [157] it was shown, that pure Co atomic-sized contacts show
small spin-polarization of conductance at the Fermi level in contact regime. Nevertheless,
in tunnel regime the spin-polarization reaches 100%. This effect comes from different decay
lengths of majority (mostly of s-character) and minority (d-character) states of the contact.
In the present case minority d-states of Co play a key role in shaping the conductance
through the nano-contact. From Fig. 3.4(a) it can also be noted that dz2-states of cobalt are
partially-filled and split into bonding and anti-bonding states. The hollow between them
falls on the Fermi level, leaving it mostly depleted. The interaction between AuT and CoP

atoms mostly manifests itself in the mixing of s and dz2 states of these atoms. The s states
of the AuT atom are localized by the s − d hybridization, which “draws” them away from
the Fermi energy, leaving the latter devoid of minority s electrons (Fig. 3.4(b)).

Putting together the puzzle we can conclude that the Fermi level transmission of the
contact is mostly determined by the s band in the majority channel. The d minority states
are strongly localized and thus the conduction in the majority channel is dominant at the
Fermi energy, resulting in a high positive polarization. One could say that s− d interaction
at the Au-Co interface acts like as a ”blocking” mechanism for conductance in the minority
channel. A similar effect has been reported in a theoretical study of Cu chains between
planar Co leads. [152] Cu s-states were shown to be the main channel of conductance at the
Fermi level. However, due to the more localized nature of Cu s-states as compared to gold,
and likely due to the absence of a pyramid, in their study the hybridization at the interface
was much weaker, and consequently a much weaker magnetoresistance ratio was obtained
[15% versus 73% in our case (see Sec. 3.2.5)].

Taking one step back we can summarize that the transport through a gold chain sus-
pended between two Co electrodes is defined by the interaction between the Co and the tip
Au atoms. High spin-polarization of the conductance is caused by strongly suppressed mi-
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nority and practically unaffected majority s-states of the tip Au atom. Another significant
contribution to conductance is made by the peaks in dz2-states of tip gold and neighboring
Co atoms along with the s-states peak of the central atom. All of them appear due to inter-
atomic orbital hybridization and form additional conductance channels in the contact. With
the stretching of the contact, due to the weakening of the bonding between the atoms, the
conductance peaks move in energy, altering the current polarization as they pass through
the Fermi energy.

3.2.5 Magnetoresistance

Having understood the electronic mechanisms determining the nano-contact’s conductance
we now turn to a quantity which is relevant for actual applications – the magnetoresistance.
To estimate magnetoresistance ratio (MRR) we need to calculate conductance through the
systems for the cases of parallel and antiparallel mutual alignments of the electrodes’ mag-
netizations (see the sketch in Fig. 3.5(b)). Due to technical intricacies of the method, calcu-
lations for systems with differently aligned electrode magnetizations are rather unreliable (in
the super-cell part of the calculation a sharp domain wall occurs between one lead and the
super-cell image of the other one). Thus to estimate the MRR we replace semi-infinite Co
electrodes with a Co slab deposited on a paramagnetic substrate (see sketch in Fig. 3.5(a)).
As a nonmagnetic material for the substrate we chose Cu, since the lattice of a Cu(111)
surface is close to the hcp-stacked Co of our magnetic nano-contact. The same localized
basis (with added p-shells) was used for Cu as for Co and the whole system was allowed
to relax with the same residual force restrictions as were applied for the Co electrodes (see
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Figure 3.6: Current-voltage characteristics for Co/AAA/Co system for different distance d
between electrodes.

Sec. 3.2.1). The geometry of the contact pyramid and the Au chain were found to be not
(or only negligibly) affected by the substitution of a part of Co with Cu.

To see whether Co/Au nano-contacts can be well approximated by the hybrid Cu/Co/Au
system, we compare the conductance through both systems with parallel alignment of elec-
trode magnetizations (Fig. 3.5(a)). The energy resolved conductance curves for both systems
behave qualitatively the same. They have flat majority parts and strong depletions in the mi-
nority channels at the Fermi level. Thus, for all means and purposes, the hybrid Cu/Co/Au
system seems to behave very similar to a system with bulk Co electrodes, which not only
justifies the use of Cu/Co/Au systems for calculations but could also have important implica-
tions for the choice of the system geometry in the experiments. Additionally, the similarity in
conductance between Co and Co/Cu leads further supports our statement about the defining
role of the Co–Au interface in the formation of spin-polarized conductance.

Turning finally to the MRR, we calculate the energy resolved zero bias transmission for
parallel and antiparallel lead-magnetization orientations for the nano-contact with d = 15.4 Å
(dashed red and solid blue curves in Fig. 3.5(b), respectively). The Fermi level transmission
for the parallel configuration is found to be almost twice as high for the antiparallel one. In
antiparallel configuration Co-Au interaction between d and s-states at the interface causes a
decrease (or “blocking”) of the conductance in both of channels. The MRR can be estimated
from spin-resolved transmission coefficients as [53]

MRR =
T↑↑(Ef )− T↓↑(Ef )

T↓↑(Ef )
,

where T↑↑(Ef ) and T↓↑ are the zero-bias transmissions at the Fermi level for parallel and
antiparallel configurations of electrode magnetization alignments, respectively. In our case
we arrive at a value of 73%, which is close to the experimentally observed one [5].

3.2.6 I(V) characteristics

While zero bias or equilibrium transport is an illustrative quantity to link electronic and
magnetic properties of the nano-contact to its conductance, in real experiments a finite bias
is usually applied between the leads of a junction. It is thus important to understand how
the transport properties change in the non-equilibrium case. In Fig. 3.6 current-voltage
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characteristics of the Co/Au nano-contact are presented for different lead separations d
ranging from 2.2 to 3.0 Å. One can see, that majority electron I(V) dependence is quite
linear, since majority conductance is almost flat around the Fermi level. Minority I(V)
dependence exhibits a slight nonlinearity, which is due to the presence of the localized peak
in minority DOS. Otherwise, also the minority I(V) curve is nearly linear, which allows us to
conclude that the conductance and magnetoresistance properties of such a junction described
above (see Fig. 3.2(a)) are robust and persist over a wide range of applied biases.

3.3 Modified Co-Au junctions

Another simplification which we have introduced in the beginning of the chapter and which
we now have to get rid of, is the assumption of the linearity of the chain and the homogeneity
of its chemical composition. To make sure, that such spin-filtering behavior as has been
discussed above and ascribed to the interaction of Co and Au at the interface of the contact
can exist in other geometries and stoichiometries of the contact, we performed calculations
allowing an unconstrained relaxation to all the atoms of the contact and varying the chemical
composition of the latter.

3.3.1 System with mixed Co-Au electrode

To start introducing variations slowly, the first system addressed was constructed in the
same way, as the one we have been discussion up to now, but with mixed Au-Co contact
pyramids where the CoP layer of atoms was replaced with gold (see sketch in Fig. 3.7). For
the rest of the chapter we shall use a short-hand notation for the systems according to their
layer-wise chemical composition (“A” standing for Au and “C” – for Co), so that the new
system shall be denoted as CA/AAA/AC, while the original one would have been called
CC/AAA/CC. Calculations were performed, as above, for different inter-electrode distances
d. The range of d-s was chosen to keep the junction in contact regime and ranged from 16.5
to 18 Å. The interlayer distances of the equilibrium structure are presented in Fig. 3.7. Note
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that, in contrast to the previous system, the distance between Co and Au pyramid layers h3
changes weaker.

Spin-polarization of conductance of the CA/AAA/AC junction (see Fig. 3.8(a)) was found
to be less (with values of ∼ 50%) than in the case of CC/AAA/CC (90%). However, the
physics of the process is exactly the same as in the previous case. Minority d-states of cobalt
atoms neighboring to gold in this system are similar to CoP d-states in the system with full
cobalt electrodes, discussed in details above (Fig. 3.8(b)). Partially-filled minority Co dz2-
states hybridize with s-states of gold atoms, which leads to polarizations of these states at
the Fermi level (Fig. 3.8(d)). In contrast to CC/AAA/CC, here the gold atoms have a lower
symmetry. So here not only dzz, but also dxz, dyz-symmetry states of cobalt significantly
contribute to the hybridization with gold and, consequently, to the conductance. So, we can
see a rise of transmission around −0.2 eV and corresponding peaks in dxz, dyz-states of CoP

atom and s-states of AuP atom.

Moreover, one can see, that transmission in the CA/AAA/AC system is much less sen-
sitive to the stretching of the contact than in Co/AAA/Co. One can relate this observation
to a change of bonding between Co and Au layers of the pyramids. As already mentioned,
conductance in minority channel is determined by Co-Au interaction. Since the distance
between Au and Co layers (h3 for CA/AAA/AC) changes less, than the h2 distance in
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CC/AAA/CC (distance between tip Au and pyramid Co atom), interaction between Co and
Au remains almost unaffected by the stretching, which explains the robust behavior of the
transmission.

3.3.2 Other modifications of Au-Co junction

Other modifications of the Co-Au junction which we shall consider (see Fig. 3.9) include
the possibility for a Co atom to be incorporated into the Au chain (CC/ACA/CC and
CC/ACC/CC), the possibility for the chain to buckle assuming a zigzag configuration
(CC/AAA/CC) and the case of a longer 5-atom gold chain to be formed (CC/AAAAA/CC).

Mixed chains

The system with a mixed cobalt-gold wire between cobalt electrodes also shows high spin
polarization. We find that the presence of cobalt atoms in the wire (Fig. 3.9(a)) and on the
tip of one of the electrodes does not significantly affect the interaction of the pyramid cobalt
and gold atoms and does not give significant contribution to the conductance. We can see
quite high spin-polarization of conductance in mixed Au-Co chains (Fig. 3.9(a,b)), about
50− 60%, which is a result of a depletion in s-states at the tip gold atoms, caused by s− d
hybridization in minority channel between cobalt and gold.

Zigzag chain

If we allow the chain to deviate from the linear geometry and relax into a zigzag configu-
ration (Fig. 3.9(c)) we find that the spin-polarization of conductance reaches 90% and the
energy-dependent transmission coefficient behavior is practically identical to the one in the
case of the linear gold contact. This is consistent with an idea that the s-shell participating
in conductance is spherically symmetric and not strongly susceptible to deviations from the
linear geometry. The inter-site electron hopping in that case depends only on the distance
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sketch of the system’s geometry.

between the sites. An overall decreasing of the conductance with respect to previous con-
sidered systems is caused by the fact, that in zigzag configuration dz2 orbitals of Au atoms
decrease their overlap along with the fraction of conductance for which they were responsible.

5-atomic Au chains

It is also worth mentioning that Au is known as a material of choice to construct longer
monatomic chains (up to 7-9 atoms). [32] Our calculations yield high conductance polariza-
tion for a 5-atomic linear Au chain between Co electrodes (Fig. 3.9(d)). A peak, observed
at the Fermi level, has the same origin as the moving peak, discussed in Sec. 3.2. Note, that
in the 5-atomic gold chain standing waves can have more modes, than in a 3-atomic chain.
Therefore, one can observe more moving peaks in the energy-resolved transmission during
the stretching of the chain.

3.3.3 Tunnel Au-Co junction

Another interesting system to consider, is a Co-Au tunnel junction – a junction where the
largest interatomic gap is too big for the atomic orbitals to overlap and thus disallows the
direct hopping of electrons. Transmission in this case has a tunneling character. We calculate
the spin-polarized conductance and tunnel magnetoresistance(TMR) for a system shown in
the inset of Fig. 3.10(b) using the same technique, as in Sec. 3.2.5. The distance between tip
gold atoms was chosen to be 4.8 Å. Calculations were performed for parallel and antiparallel
alignment of the electrodes’ magnetization.

In Fig. 3.10(a) energy-resolved transmission for majority and minority channel is pre-
sented. Estimated zero-bias spin-polarization of conductance is this case reaches 98%. In
Fig. 3.10(b) total transmission for parallel and antiparallel magnetization alignments of elec-
trodes is shown. Zero-bias TMR, calculated by the same formula, as in section 3.2.5 reaches
400% in the tunnel regime. Our analysis shows that if the distance between electrodes is
further increased, the TMR remains practically at the same level, while conductance itself
follows the expected exponential decay rule.





Chapter 4

Gate control of 5d-3d metal
nano-contacts

While it is extremely important to be able to “program” magnetic properties into atomic-
scale junctions at construction stage (which can be done, e.g . by tuning the chemical compo-
sition and geometry of the junction, as has been discussed in the previous chapter), it is even
more important and challenging to devise a way of dynamically and reversibly tuning those
properties after the junction has been completed or incorporated into a device. Electronic
properties of electronic transistor units are ubiquitously controlled by applying an external
bias to the system by means of an additional gate electrode. As has been mentioned in
the introductory chapter, modern fabrication technologies allow one to create atomic scale
contacts with a third electrode placed in proximity for electronic or electrochemical gat-
ing. In this chapter we address the question of affecting the spin-polarized transport in
nano-junctions by a gate bias.

As a test system we choose alloyed 3d − 4d and 3d − 5d metallic chains suspended
between metallic pyramid-shaped leads, no unlike the geometry used in the previous chapter
for Co/Au nano-contacts. In particular we start with Fe-Pt chains between Pt leads and
after a detailed discussion thereof show briefly that Fe-Pd and Fe-Rh mixed chains behave
in a similar fashion.

The choice of Fe/4d, 5d alloys is motivated by their robust magnetic properties which have
been extensively studied both experimentally [35, 57] and theoretically [54, 158]. Contrary to
the case of Co/Au studied in the previous chapter, where the spin-polarization of conductance
was determined almost exclusively by the Co/Au interface here we aim at having a system
in which the leads are non-magnetic and the spin-dependent properties stem from the local
magnetism of the chain atoms, which we shall attempt to control by an external gate bias.

4.1 Settings of the calculations

All transport calculations and relaxations were performed in the same manner as discussed
in Chapter 3. As an LCAO basis set we have chosen double-ζ 3d shell and double-ζ 4s
polarized shell for Fe atom and double-ζ 5d shell and double-ζ 6s polarized shell for Pt
atom. For Pd and Rh we have chosen double-ζ 4d shell and double-ζ 5s polarized shell.
Relaxations of electrodes and nano-contacts were performed with 5×5×1 and 5×5×3 k-
point grids respectively, with a restriction on residual forces of 0.01 eV/̊A.

For investigation of electronic effects, related to the influence of a gate bias, we used
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state-of-the-art functionality available in SMEAGOL code [148]. The gate is represented by
a finite volume in space next to the nano contact with added constant background charge.
In the calculation an electrostatic potential, created by the charged gate area is added to
the Hartree potential which is then used in the DFT-NEGF scheme, as described in the
Sec. 2.4.2. To keep the whole system neutral, a charge opposite to the gate charge is added
to the nano-contact. In the following discussion, the gate charge is measured in units of
proton charge p = −qe, where qe is, of course, the electron charge.

4.2 Fe-Pt atomic contact

4.2.1 Geometry

The geometry of the system was chosen as 5-atom Fe-Pt mixed chain placed between Pt
electrodes constructed from an fcc(001) slab and a 14-atom tip above (Fig. 4.1(a)). Lattice
constant for the slab construction was taken to be 3.90 Å, which is the equilibrium bulk
lattice constant calculated with SIESTA. The tip had 3 layers with 9, 4 and 1 atoms in
each layer respectively. To imitate the electrode surface, we have taken a unit cell of the
slab part of the electrode with a thickness of 8 atomic layers and 4× 4 atoms in cross-
section perpendicular to the transport direction (z). Before the final construction of the
nano-contact the electrode was fully relaxed.

The Fe-Pt chain consisted of 3 Fe and 2 Pt atoms and was suspended between two
electrodes in such a way that edge Fe replaced the apex Pt atoms in the tips of the electrodes
(Fig. 4.1(a)). We shall denote the central Fe atom as FeC and the neighboring Pt atom as



PtN. The chain and the 4 tip-pyramid atoms in contact with it were then allowed to relax
without constraints. The dependence of the chain’s geometry (parametrized by bond angles
as shown in Fig. 4.1(a)) on the inter electrode distance (2d) is presented in Fig. 4.1(b). The
distortion of the chain was compared to the one an infinite chain would exhibit (Fig. 4.1(c))
if it had the same projected inter-Fe distance d (projection of the Fe-Fe distance onto the
axis of the chain, that is). Note, however, that the gate bias can affect the geometry of
the contact in which case the actual d might deviate from the one obtained in the original
relaxation. In our study d ranged from 2.6Å to 4.75 Å.

Relaxation of the system

In Fig. 4.1(b) the dependence of the chain’s relaxed geometry parameters on d is shown.
Angles α and β determine nano-contact’s bond angles Fe-Pt-Pt and Fe-Fe-Pt respectively,
as shown in Fig. 4.1(b). The ideal chain used for comparison is characterized by the zig-zag
angle γ (Fig. 4.1(c)).

Relaxation results in Fig. 4.1(b) show that the dependence of the bond angle β (Fe-Fe-Pt)
in the nano-contact is close to the dependence of the bond angle γ in the infinite chain, while
dependence of the bond angle α (Fe-Pt-Pt) significantly differs from the case of the infinite
chain. In the Fig. 4.1(b) we can distinguish 3 regions (marked by numbers 1− 3), where the
chain of the nano-contact has three types of structure. At large inter-electrode distances the
chain stays linear (1) with equidistantly placed atoms, a geometry which persists down to d
values of 4.75Å. As the chain is further compressed the Pt atoms are pushed out from the
line of the contact (2). This configuration is still largely similar to the compressed infinite
chain and persists in the range of distances from 4.75Å to about 4.25Å. Further compression
destroys the linearity of the contact altogether, shifting also the FeC atom away from the
axis of the contact (3) and making the angles α and β deviate from each other. This type
of the structure is observed for d < 3.9Å.

One interesting tendency that can be pointed out is that rather than keeping angles α
and β close and gradually reducing them both, the contact, upon being squeezed, prefers
to buckle out and keep both angles large. As our analysis has shown, such difference is
caused by energetic properties of the chain: infinite chain has unstable configuration at
d = 3.4Å ∼ 3.6Å and, consequently, in the case of unconstrained relaxation nanocontact
tends to avoid this configuration. Another reason for it is the attraction between the Pt
atoms of the chain and the electrode pyramids. As soon as the PtN atoms are forced by
compression out of their place on the axis of the contact they start feeling the pull of the
electrodes and are compelled to increase both angles α and β. Apart from the increased
bonding angles, the PtN − FeC distance is increased accordingly which is of importance for
the transport properties of such a junction.

Gate geometry

To simulate the presence of a gate electrode acting on the contact, a rectangular volume
with homogeneous charge spread over it is placed close to the chain. In our calculation the
box had dimensions of 4.0 × 1.5 × 4.6 Å and resided some 2.8 Å away from the axis of the
contact as shown in Fig. 4.1(a).
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4.2.2 Magnetic configuration

Another crucial aspect of the system is its magnetic behavior. The Fe-Pt mixed systems
are known for their rich variety of magnetic properties [159–162]. One property which shall
be of special interest to us is the ferro-antiferromagnetic(FM-AFM) transition which can
occur as the system’s geometry is changed. In Fig. 4.2) the exchange coupling strength
(energy difference between FM and AFM configurations per two magnetic Fe atoms) of
the neighboring Fe atoms in an infinite Fe-Pt chain and in contact geometry is shown as a
function of the bond angles. In a linear Fe-Pt chains the spins of Fe atoms are very weakly
super-exchange-coupled through the Pt atomic orbitals. If the chain is compressed and starts
to buckle the antiferromagnetic exchange dominates at bond angles γ >∼ 110◦ anti-aligning
the neighboring Fe spins. For more compact chains the direct interaction of Fe atoms coming
closer to each other prevails and the exchange turns ferromagnetic. The behavior of Fe-Fe
coupling in the nano contact is rather similar to the one exhibited by an infinite chain. At β
angles exceeding ∼ 100◦ the spins of neighboring Fe atoms are aligned antiparallel with each
other while at smaller angles the ferromagnetic coupling prevails. Note, that the Fe-Fe-Pt
angles β and γ were chosen as a parameters of the exchange interaction dependence, since
the resulting spin alignment can be considered as competition of direct and super-exchanges,
the latter of which can be parametrized by the Fe-Fe-Pt bond angle. In the following we shall
discuss the effect of the gate bias on magnetic properties of both FM and AFM configurations
of the chain to better understand the physical origins of the effects, but we shall keep in
mind that for a larger part of the d value range the ground state of the contact’s chain is
antiferromagnetic, although for the compressed junction the ferromagnetic Fe spin alignment
is more favorable.

4.2.3 Gate influence

Now let us see whether the magnetic properties of the nanocontact chain are susceptible to
the influence of an external bias induced by the gate electrode. The dependence of magnetic
moments of FeC and PtN atoms on the inter-electrode distance measure d is shown in Fig. 4.3
for ferro- (FM) and antiferromagnetic (AFM) alignment of Fe spins in the contact and for
different applied gate biases (actually gate charges qg). Applied gate bias causes very weak
change of the exchange energy of the nanocontact, so we will not pay attention to it, but
the magnetic moments of the atoms FeC and PtN are quite significantly affected by the gate.
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The strongest change caused by the gate is observed for the FeC atom (Figs. 4.3(a,c)), where
the difference in magnetic moments between neutral and gated contacts reaches 0.1µB. The
influence of the stretching of the contact on its magnetic moments is not monotonous. As was
discussed in the previous section, for shorter chain distances, the distance between FeC and
PtN is expanded due to attraction of the PtN atoms by pyramids, which leads to the isolation
of FeC and an increase of the absolute value of the magnetic moment. For d = 3.5Å−4.25Å,
until the chain becomes linear, the distance between FeC and PtN gradually decreases, which
leads to a decrease in the moment of the FeC atom.

Pt atoms have no magnetic moment in a bulk, but their magnetic configuration is unstable
due to a relatively high density of d states near the Fermi level. In low-dimensional systems,
such as chains, or in the presence of magnetic atoms nearby, Pt can thus easily acquire
a significant non-zero magnetic moment. In our case two magnetic Fe atoms are located
near each PtN atom. In the AFM configuration the two anti-aligned magnetic moments of
neighboring Fe atoms compete for the right to induce magnetization of PtN. Since edge Fe
atoms have a larger coordination numbers than FeC, their magnetic moments are smaller
than that of FeC. Thus the induced magnetic moment on PtN shall be co-aligned with the
moment of FeC. However, since for shorter distances PtN is shifted closer to the electrode, as
discussed above, the influence of the edge Fe atom in compressed contacts shall be comparable
with that of the central FeC atom and the total induced magnetization of PtN could be close
to zero or even co-aligned with the edge Fe atoms. The increase of magnetization of PtN

in an FM contact with increasing d might also seem contra-intuitive at first, but it can be
explained by the increasing degree of isolation of PtN as the contact is stretched. With
increasing d the magnetization induced on PtN by neighboring Fe atoms is reduced, but the
reduced coordination of PtN brings Pt closer to the verge of Stoner instability increasing its
magnetic moment to 0.6µB − 0.9µB.

It is also apparent the the last point (d = 4.75Å) of the AFM (and in case of FeC also the
FM) configuration deviates from the common tendency of magnetic moment behavior. For
this distance one can observe a reversal of magnetic moment behavior with applied gate bias
in AFM configuration and a definite change of the trend in FM configuration. Moreover,
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reaction of the Pt atom is more pronounced, than the reaction of central Fe atom. Such
behavior will be explained further on in detail. Here we shall only mention, that this is due
to a qualitative change in the electronic structure of the contact taking place as the chain
switches from zigzag to linear configuration.

One general statement that can be made for all configurations and distances is that the
gate bias has a pronounced influence on the magnetic moment of the atoms of the chain.
With the possible exception of d = 4.75Å mentioned above, a positive bias tends to reduce
the magnetization of both Fe and Pt atoms, while a negative one enhances it. The physics of
this effect lies in the phenomenon of field screening, but before we elaborate on that subject
let us first take a look at a second effect of the external bias – the change of the junction’s
transport properties under the influence of the gate. The subsequent discussion of the field
screening in the chain shall then shed light on the common origin of both effects.

4.2.4 Spin-polarized electron transport under bias

Let us start by considering the of gating on the equilibrium (zero bias) transport properties
of a Fe-Pt junction. In Figs. 4.4(a,b) spin-resolved zero-bias conductances of FM and AFM
configurations of the nano-contact are given as a function of d for different gate charge values.

The trend with increasing of the distance d for both configuration is a slight reduction of
the conductance, which can be ascribed to the gradual decrease of the direct overlap between
the next-nearest neighbors in the chain. Important fact is that the minority conductance
decays faster, which leads to a change in conductance spin-polarization (Fig. 4.4(c,d) for
AFM and FM configurations respectively), defined as

P =
C↑ − C↓

C↑ + C↓
, (4.2.1)
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where C↑ and C↓ are conductances of the spin-up and spin-down channels respectively. Upon
stretching, the conductance polarization grows from nearly zero to about 50 − 70%. This
can be ascribed to the fact, that in a compressed contact PtN atoms form a direct almost
non-spin-polarized bridge between the electrodes opening an additional conductance channel
and at the same time decreasing the conductance polarization. At larger distances electron
tunneling path inevitably goes through strongly magnetic Fe atoms, thus the conductance
in different spin channels shall be more different.

Coming back to the external bias we note that the effect of gating is very different
at different distances. In general, we can see, that in both FM and AFM configurations
compressed contacts (d < 3.5Å) are much less susceptible to external gating than the contacts
with distances in the 3.9Å − 4.75Å range. For example, in the AFM configuration, which
is the ground state in most of the d-range (Fig. 4.4(a)), conductance in both spin channels
of a short chain is barely changed by 5% by a gate charge of ±1p. At d = 4.2Å, however,
applying a gate charge of 1p increases majority conductance by a factor of two while the
minority channel is almost unaffected. This alone is already a clear indication that gating is
a valid option for tuning the spin-polarization of conductance in Fe-Pt junctions.

Here again the behavior of a liner chain under gating is different from the rest of the
d range. For instance in the AFM configuration, as has just been mentioned, the minority
conductance is generally less susceptible to gating than the majority one. At d = 4.75Å,
on the contrary, majority conductance practically does not change under external gate bias,
while in the minority channel we see a jump from 0.1 e2/h to 0.3 e2/h and then a drop to
0.2 e2/h (variation of 200%) as the gate charge is changed from −1 p to 0 p to 1 p.

In contrast to AFM configuration, conductance of the FM one shows strong changes in
the minority channel (up to 2.5 times) for the distances in the 3.5Å−4.75Å range, while the
majority channel is significantly affected only for at d = 4.75Å (Fig. 4.4(b)).

To look more carefully into the origin of the gate-induced changes in conductance char-
acteristics of the system we plot in Fig. 4.5 the energy-resolved transmission probability of
an AFM contact for d = 3.9Å, 4.25Å and 4.75Å at different gate charges (−1 p, 0 p and
1 p). At smaller d the physics was found to be the same.

First of all let us remark, that at above distances the exchange coupling between Fe
atoms in the system is as high as 0.2eV − 0.4eV, which means that AFM configuration is
stable and cannot be changed by a any reasonable external field.

Comparing Figs. 4.5(a) and 4.5(b) we find that at both d = 3.9Å and 4.25Å the trans-
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mission curves are alike and are changed smoothly by a gate bias, especially at and around
the Fermi level. Majority channel transmission is found to be uniformly increased and
the minority channel is only weakly affected. The picture of transmission for d = 4.75Å
(Fig. 4.5)(c)) is quite different, however. The majority transmission in this case remains
almost unchanged, while in the minority channel we can see a peak, moving through the
Fermi level as the gate charge is changed. This causes the jump in minority conductance
and conductance spin-polarization mentioned above (Fig. 4.4(a)). To understand where the
smooth increase/decrease of conductance in the first two cases and the strong change in the
third case come from we first have to determine what part of the nano-contact and in which
way is affected by the bias created by the gate electrode.

4.2.5 Spin-dependent screening of the gate

Let us start by taking a look at the shape of the electrostatic potential created by the gate
and at the charge redistribution in the system that this added potential creates. Electrostatic
potential distribution in a plane containing the axis of the contact and passing through the
center of the gate electrode is plotted in Fig. 4.6(a). Here the system is characterized by
d = 4.25Å and a gate charge of 1p. The color in the figure encodes the magnitude of the
potential added by the presence of the gate and the arrows visualize the gradient thereof, i.e.
the inverse electric field (the length of the arrows is proportional to the field strength). As
we can see, the central Fe atom is located in the region with the highest induced potential
shift (0.4V − 0.7V). Neighboring Pt atoms already feel a much smaller imposed potential



(0.2V − 0.4V). The tip Fe and the contact pyramid atoms feel the gate bias in a much
lesser extent than FeC and PtN atoms and thus play a much lesser role on the gate-induced
transmission and magnetism changes. We shall thus concentrate in the following on the
gate-induced changes in occupation and DOS of the latter two atoms.

The electrons of the nano-contact respond to the presence of the added potential by
redistributing and trying to screen the field of the latter. In magnetic nano-structures,
redistributions of majority and minority electrons can be different, which always has a strong
impact on the magnetism of the system [159, 163, 164]. Figs. 4.6(b) and 4.6(c) show the
redistribution of the majority (ρ↑) and minority (ρ↓) valence electron densities in response

to the field caused by a gate charge of 1p (∆ρ↑(↓) = ρ
↑(↓)
1p − ρ

↑(↓)
0p ). For both channels a

general trend can be established. The positive charge of the gate draws electrons from the
lead bath into the contact region. The redistribution seems to involve orbitals of different
symmetries: strongly localized screening charge in the vicinity of the atoms (∼ 1Å) and the
radial non-uniformity thereof hints that the orbitals being populated there are mostly of d
and partially p character. At larger distances from the atom cores the screening charge is
more spatially uniform and can be attributed to s orbitals being populated. This conclusion
is also confirmed by our orbital population analysis which shall be presented shortly. While
the chain gain electrons through screening, the tip atoms in the contact pyramid show a
mild depletion of electron charge.

From the first glance at Figs. 4.6(b) and 4.6(c) it also becomes apparent that the screening
of the gate bias is strongly spin-dependent. In the majority electron channel the electron
density is unanimously higher at both Fe and Pt atoms of the chain. Minority electrons, on
the contrary, show a mixed behavior at Fe atoms, where the more localized orbitals show a
depletion while the screening charge reaches further away from the atoms into the vacuum.
An even stronger depletion can be observed for Pt atoms atoms of the chain.

Table 4.1: Change of orbital occupations due to applying a gate with charge 1.0p to the
systems with d = 4.25Å and d = 4.75Å. Arrows denote spin channel.

d 4.25Å 4.75Å

s p d
∑

s p d
∑

FeC
↑

0.131 0.022 0.040 0.193 0.076 0.033 −0.004 0.105

FeC
↓

0.056 0.033 −0.027 0.062 0.121 0.029 −0.005 0.145

PtN
↑

0.012 0.002 0.033 0.047 0.004 0.003 −0.020 −0.013

PtN
↓

0.009 0.004 0.001 0.014 0.075 0.012 0.031 0.118

Thus, while in total both spin channels gain electrons due to the screening, the relative
occupation of the orbitals in the minority channel is obviously changed, which is likely to
change both static and transport magnetic properties of the contact. To put a quantitative
hand on the gate-induced orbital population change we resort to the Mulliken analysis of
the system [165]. Orbital occupations of FeC and PtN atoms presented in Tab. 4.1 for two
stretching distances d = 4.25Å and 4.75Å. We see that our visual analysis of the charge
redistribution diagram was correct: the total number of electrons is increased by a positive
gate bias at both FeC and PtN. The main changes can be attributed to the s electrons, which
are generally more mobile, and partially p electrons. The behavior of d orbitals is, however



of much greater interest to us, for here we see a pronounced difference between different
spin channels and also between different contact stretching distances d. We can see that,
for example, at the central FeC atom in a contact with d = 4.25Å the number of majority
d electrons is increased, while the minority d orbital is even slightly depleted. Such relative
change of the momentum carrying d orbitals easily explains the change in both the magnetic
moment discussed and the conductance as discussed in the previous two sections (the latter
is determined by the relative change in the orbitals of all symmetries, not just d).

Another important insight that we get from the Mulliken analysis is that at d = 4.75Å,
linear chain configuration that has consistently refused to follow the general gate-dependence
trend, the screening is predominantly done by minority electrons, while in all the other cases
majority electron redistribution prevails. The physical reason for that as shall be discussed
presently by considering the energy resolved density of states of the contact.

4.2.6 Analysis of the density of states

To understand the behavior of the magnetism and the conductance displayed above, we turn
our attention to the electronic structure of the nano-contact with and without the gate bias
applied. Since p electrons seem to play a lesser role than s states in the process of screening
(as can be deduced from Tab. 4.1), we shall concentrate in our analysis on s and d states
alone. Nevertheless, our calculations show that the conclusions attained for s electrons hold
as well for the p electron states in the system.

In Fig. 4.7 the density of s and d states are plotted for FeC and PtN atoms of the system
with d = 4.25Å. Let us concentrate on the symmetry projected DOS (PDOS) behavior
in the vicinity of the Fermi level, since both elastic conductance and magnetism are most
susceptible to the changes happening there.

In the PDOS of the Fe we see that the gate bias causes a strong shift of the unoccupied
majority s states peak residing close to the Fermi level (from 0.6 eV to 0.2 eV as the gate
bias changes from −1 p to 1 p). This is accompanied by an increase of PDOS around the
Fermi level. Exactly the same trend is observed for majority dz2orbital, since the two orbitals
are strongly hybridized in the chain geometry (having the same rotational symmetry with
respect to the z axis, maximized for the ideally linear case). Other symmetries of the d
shell are much less susceptible to external gating which can be seen in the plot of the total
d PDOS in Fig. 4.7(c): strong peak around 0.4 eV and smaller one around 0.8 eV move to
0.2 eV and 0.6 eV respectively. At the same time for Pt we only see significant changes in
the PDOS of the s− d hybridized band below 0.5 eV and no significant changes around the
Fermi level (Fig. 4.7(d-f)), which barely has any effect on conductance. Minority channel
orbitals of both FeC and PtN are fairly featureless and thus do not respond to the gate bias.

The fact that the transmission properties of the junction are governed by the PDOS of
the FeC atom is supported by the similarity of the conductance curves in Fig. 4.5 with the
s− d hybridized PDOS in Fig. 4.7(a,b). Thus we see that the gate-bias-controlled increase
in majority conductance of the system is due to the gate field induced shift of the s−d state
at the Fermi level. This also directly explains the change in magnetic moment of the FeC

atom under the influence of the gate shown in Fig. 4.3.

A similar analysis can be done for the nano-contact with a linear chain configuration
at d = 4.75Å, PDOS of which is shown in Fig. 4.8. Remembering its distinctly different
conductance behavior it is not surprising to find that the PDOS of both FeC and PtN of a
linear contact are quite different from what we had for a zig-zag configuration at d = 4.25Å.
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Although majority electrons here behave fairly similar to the case of a zig-zag chain, the
Fermi level of FeC is dominated by a pronounced minority s peak, which also shifts under
gate bias. Since it exceeds in amplitude both majority s and d PDOS it also is responsible
for the bias-dependent changes in conductance of the junction. Moreover, the PDOS of PtN

is much richer on features in the case of a linear chain (Fig. 4.7(d-f)). Here as well the Fermi
level PDOS is dominated by minority s electrons which are hybridized by bonding with the
s-states of FeC and shift together with the latter under applied gate bias.

The nature of these peaks discussed above is easily explained by the example of the sys-
tem with d = 4.75Å. As it was already discussed in Refs. 49, 50, standing waves caused by
confinement between two electrodes can appear in the nano-contact and affect its conduc-
tance. If we compare positions of the peaks on Fe and neighboring Pt atoms, we notice that
these confined states appear as a split version of the hybridized s−dz2 states in the 3-atomic
part (Fe-Pt-Pt) of the whole chain, enclosed between two tips. The reason why we only see
the interaction of the 3 atoms and not all 5 of them is that these 3 central atoms have the
lowest coordination number while tip Fe atoms are multiply bonded to the next layer of the
electrode pyramids and are strongly affected by that bonding.

We thus see that the electrostatic potential introduced by the gate electrode can strongly
influence electronic states in the nano-contact and by that change the magnetism and spin-
dependent conductance properties of the latter.

Before we move on there are still two remarks to make which should increase the generality
of above conclusions. Firstly, a careful observer might remark that the junction in our
calculations could easily be influenced by the potential from of the gate in the neighboring
unit cell. The latter would be an artifact of calculation and thus not physical. However, our
convergence check with respect to the lateral size of the super-cell shows that the results
discussed above are already representative and do not qualitatively change with the size
of the cell. Another potential ambiguity is the choice of the gate electrode position. To
test the robustness of our results we carried out similar calculations as presented above
for systems where the gate electrode was located closer to the chain or out of the plane of
deformation of the contact wire. The result of conductance calculation were almost the same
as shown above. This is also an important hint that the observed effects are really due to
the gate potential affecting the confined states in the junction and not due to the local bond
polarization which would be rather geometry-dependent.

4.2.7 I(V) characteristic

Now that we know that gating can affect the electronic structure of and equilibrium con-
ductance through the nano-junction, it is interesting to take a look at the bias dependence
of the I(V) characteristics of the discussed systems. The spin-resolved I(V) curves for dif-
ferently stretched contacts are plotted in Fig 4.9. Here we present both fully-self-consistent
non-equilibrium calculation results (markers in Fig. 4.9) and the estimates (lines) done by
integrating the zero-bias transmission around the Fermi level using Eq. (2.3.3). It is appar-
ent, that small biases (0.1− 0.3V), when the electronic structure of the leads is not strongly
changed by the applied bias, equilibrium and non-equilibrium currents are very close to each
other. Therefore, simple and quite precise estimation of I(V) characteristics can be done
using zero-bias transmission.

The I(V) characteristic of the system have a nearly linear character, which is due to the
fact, that transmission-energy dependencies for these systems are relatively smooth around
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Figure 4.10: Dependence of the current spin polarization on the bias voltage and the gate
charge for the distances d = 3.90Å− 4.75Å respectively.

the Fermi level. Gate induced motion of the PDOS and transmission peaks leads to a
accompanying change in the slope of the I(V) curve for the corresponding channel. So we
see a pronounced influence of the gate bias on majority I(V) curves for the junctions with
d = 3.90 and 4.25Å and for the minority I(V) curve for the d = 4.75Å case. Any non-
linearity of the I(V) curves are due to the sensitivity of the PDOS of the contact atoms
to the bias applied between the electrodes, which is only really pronounced in the case of
minority electrons of the d = 4.75Å system.

Otherwise, applying a gate voltage between −1 p and 1 p we can change the majority
I(V) slope for d = 3.9Å and 4.25Å by a factor of two (Fig. 4.9(a,b)). For the minority I(V)
of the d = 4.75Å system this behavior is slightly more erratic, but for certain voltages the
I(V) slope can be changed by as much as 200% with the same gate biases as discussed above
(Fig. 4.9(c)).

Since the I(V) characteristics of the contact are sensitive to the gate bias, and moreover
this sensitivity is spin-selective, we can expect the spin-polarization of the current through
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the junction to be equally sensitive to the gate voltage applied. We present in Fig. 4.10
the spin-polarizations as a function of applied inter-lead bias and for different gate biases
for the three junctions described above. For d = 3.90 and 4.25Å the spin polarization of
the current is practically independent of the inter-lead bias but is very sensitive to the gate
bias and to the junction geometry. By carefully choosing d and gate bias we can thus tune
the spin-polarization of the current in a wide range of values (0 to 45%). For d = 4.75Å
the situation is a bit more tricky. Here as well applying a gate bias can help one tune the
polarization of the current by an order of magnitude (from 5 to 60%). The polarization
dependence is, however, not constant with the inter-lead bias. Such behavior is caused by
the described peak in the transmission, integration of which in Eq. (2.3.3).

4.2.8 The role of Pt in mixed chains

Before we move on to further generalizing the above observations by considering other sys-
tems than just Fe-Pt we should spend a few lines to elaborate on the reason, why we have
chosen mixed Fe-Pt chains as our test subject in the first place. The reason shall become
clear if we consider the difference in conductances of mixed Fe-Pt and pure Fe chains between
Pt electrodes. We replaced Pt atoms by Fe in the system with d = 4.25Å and performed test
calculation of transport. In this case the system has stable FM configuration. It was found,
that total transmission of such system is 2 times higher, but the effect of the gate is less, which
in relative values becomes negligible [Fig. 4.11(a)]. From the energy resolved transmission
one can see, that minority channel is nearly 4 times larger, than the minority transmission
of Pt-Fe mixed contact [Fig. 4.5(b)], but majority one remains at almost the same level.
Large value of the minority transmission is connected with a presence of large density of
p-states near the Fermi-level in the pure Fe contact, but in the mixed chain p-states of Fe



are hybridized with p states of Pt, which are mostly unoccupied and consequently shifted
above the Fermi level. The second reason, why the pure Fe contact has larger conductance
is a stable FM configuration, which allows it to form minority p conducting channel. In the
case of AFM mixed Fe-Pt contact the central atom has electronic structure inverted by spin.
Therefore, electron hopping from atom to atom in the same channel is suppressed.

Also it was found, that p-states of Fe has less response to the gate, than s-states. Since
in the pure Fe contact p-states give main contribution in the transport, the transmission and
conductance are less affected by the gate.

As a summary, one can underline the most important results. The electronic structure
of the Pt-Fe nanocontact is strongly affected by the magnitude of the gate potential, while
the direction of the electric field and, therefore, electronic polarization of the contact are
much less important. The shift of the Hartree potential, caused by the gate potential,
leads to a shift of the spin-polarized confined states of the Pt-Fe chain, which causes spin-
dependent changes in the conductance due to resonant tunneling. The role of the Pt atom
in the mixed contact is connected with the presence of the AFM stable configuration and
mismatching of electronic states, which leads to the creation of more localized confined states
due to the reduced electron hopping between atoms. Another effect of Pt, which will be a
subject of future investigations, is a high magnetic anisotropy, which can fix atomic magnetic
moments along a certain direction, thus providing a measure of spin-dependent properties
in experiments.

4.3 Fe-Pd contact

While we have seen that contrary to mixed Fe-Pt, pure Fe chain contacts do not exhibit
strong susceptibility to gating, there are other classes of systems that are worth considering.
One would be a mixed system, where a 3d element (we remain with Fe) is interspaced with
a 4d element (for example, Pd or Rh). Being almost isoelectronic to Pt, Pd and Rh are
non-relativistic and more compact, which makes them interesting candidates to check the
generality of our conclusions.

4.3.1 Geometry

Let us start by considering a contact with geometry similar to the above one (see Fig. 4.1)
but consisting of Pd electrodes and a 5-atomic mixed Fe-Pd chain. The equilibrium bulk
lattice constant of Pd obtained in our calculations is 3.86Å. We shall again denote the
atoms of the chain as FeC for central Fe and PdN for neighboring Pd atoms (instead of PtN

in Fig. 4.1).

Since Pd has the same valence shell occupation as Pt, certain similarities in electronic
structure of Fe-Pt and Fe-Pd systems can be expected to be found. It must, however, be
noted that the relativistic nature of Pt often leads to significant differences in the properties
of nanostructures comprised thereof. [166] Looking at the relaxed bond angles α (Fe-Pd-Pd)
and β (Fe-Fe-Pd) and comparing them with the bond angle γ of an infinite Fe-Pd chain
(Fig. 4.12(a)), we can see that the angle β behaves similarly to γ, while α reveals a more
complicate behavior even than in the case of Fe-Pt. One difference in the relaxation of Fe-Pd
nano-contact from the Fe-Pt is that its chain stays buckled (α 6= β) right up to the point
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when it becomes linear (α = β = 180◦) while in Fe-Pt almost-linear contacts already assume
a geometry closely resembling Fe-Pt infinite chains.

4.3.2 Gating Fe-Pd nano-contacts

For the calculation of transport and magnetic properties under the influence of a gate bias
the same technique was used as previously described for Fe-Pt systems in Sec 4.2. The size
of the gate was 4.0 × 1.5 × 3.9 Å3 and the distance between the gate and the contact axis
was 3.0Å.

Let us consider the magnetic properties of the Fe-Pd nano-contact and compare them
with those of an infinite Fe-Pd chain. Fig. 4.12(b) shows the exchange energy values for the
nano-contact and the infinite chain as a function of the bond angles β and γ. The infinite
chain exhibits a feature-rich behavior having angle ranges with both FM and AFM coupling
with FM–AFM transitions at γ ≈ 120◦ (d = 3.8Å) and γ ≈ 157◦ (d = 4.4Å). Dependence
of the exchange energy on bond angle β in a Fe-Pd nano-contact is, however, significantly
different. In contrast to Fe-Pt system, Fe-Pd nano-contact has no FM–AFM transition and
stays AFM-coupled in the whole stretching range. Nonetheless, one can see some correlations
between the nano-contact and the infinite Fe-Pd chain, for example the peaks of exchange
energy in both systems at bond angles β, γ ≈ 130◦.

4.3.3 Transport calculations

Similar to the case of the Fe-Pt system, in Fe-Pd nano-contacts we have found strong de-
pendence of conductance on the applied gate bias. In Fig. 4.13(a) we plot the spin-resolved
conductance of the Fe-Pd junction as a function of the stretching parameter d for differ-
ent gate charge values. One can see, that most significant changes of the conductance are
observed for the distances d = 2.4Å, 4.0Å and 4.6Å. Majority conductance for d = 2.4Å
decreases with increasing of the minority conductance as the gate charge is changed from
−1 to 1 p, which causes a sharp increase of the conductance spin-polarization from −20 to
−60% calculated as per Eq. (4.2.1) and plotted in Fig. 4.13(b). Even more interestingly, for
the distances d = 4.0Å and 4.6Å an increase of the majority and a decrease of the minority
conductance can be observed, which causes conductance spin-polarization to switch from
−20 to 20%. Therefore, we see that changing the gate bias one can tune not only the degree
of the spin-polarization of conductance but also its sign.
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To briefly illustrate the physical mechanism behind the polarization switching let us
consider the behavior of the PDOS of the contact at the Fermi level (Fig. 4.14) since it defines
the conductance. In the majority channel of the Fe-Pd system with d = 4.0Å (Fig. 4.13(a))
the main strongest influence from the gate bias is received by the dz2states FeC while in the
minority channel the s states of PdN change most. However, our analysis shows that dz2-
states of FeC contribute the least to the total conductance, which is primarily determined by
the strong overlap of s and p (mainly pz) and thus the response of the majority electrons to the
gate bias is determined mostly by s electrons, the PDOS of which is slightly increased at PdN

and decreased at FeC resulting in an unchanged net majority conductance. In the minority
channel the change of the s states of PdN is much more pronounced. Following the s-PDOS
the minority conductance decreases with increasing gate bias. The asymmetric response of
majority and minority channels is what makes the spin-polarization of conductance change so
rapidly. For the contact with d = 4.6Å the picture is more complicated, since the individual
atoms are less screened from the influence of the gate and more of the orbital symmetries
are susceptible to gating. The net result is, however close to the case of d = 4.0Å, i.e. the
spin-polarization of conductance can be switched and subsequently increased if the bias is
swept from −1 p to 1 p.

As a side remark, one can note that a priori no general statement can be made about
which orbitals play the most important role in any particular case. Due to a slight zigzag
structure of the chain with d = 4.0Å (α = 150◦, β = 120◦) the overlap of pz symmetry states
is lower, than it can be for the linear chain. The states px and py, in turn, lie perpendicular
to the transport direction and, therefore, have even smaller overlapping. Consequently, a
logical thing to conclude would be that main the contribution to the conductance is given
by s-states of Pd and Fe atoms. However, the system with d = 4.6Å has a linear structure
and, therefore, overlap of pz symmetry orbitals is maximal. Moreover, the p orbitals have a
larger radius, than s orbitals. Consequently, the hopping integral between p orbitals will be
larger in the case of a linear structure, than the hopping integral between s orbitals. From
here one can say, that, despite magnitude of p PDOS on Pd and Fe atoms is relatively small,
p-states (mainly pz) give significant contribution to the conductance.

To address the question of finite-inter-lead-bias current, we present I(V) characteristics for
the systems which have proven to be most responsive to the external bias – the nanocontacts
with d = 4.0Å and 4.6Å – in Fig. 4.15. Here, as in the case of Fe-Pt the current calculated
from the zero-bias transmission characteristics coincides well with the fully self-consistently
calculated non-equilibrium current. We thus kept the amount of numerically intensive non-
equilibrium calculations to a minimum necessary to ascertain the convergence and have
calculated the full range of the curves presented in Fig. 4.15 from the zero-bias transmission
curves.

Looking at Fig. 4.15 one can see that I(V) dependence behaves almost linearly, as was
the case for Fe-Pt. According to the conductance, presented at the Fig. 4.13(a), slope angle
of I(V) lines differs by a factor of two for different gate charges in the minority channel
for d = 4.0Å (Fig. 4.15(a)) and the majority one for d = 4.6Å (Fig. 4.15(b)). Since I(V)
characteristics are linear, their spin polarization doesn’t depend on voltage and equals to
the spin polarization of the conductance and with the latter can be deliberately tuned in a
wide range by choosing the appropriate gate bias.

To conclusion, conductance of the Fe-Pd nano-contact can also be significantly influenced
by gating the junction. Despite the general similarity of electronic structure of Pt and Pd,
slight differences (f.e. strong s−p hybridization) give raise to new effects in the conductance
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Figure 4.15: I(V) characteristics for Fe-Pd nano-contact with different distances (a,b) d =
4.0Å, 4.6Å respectively and for different gate charges, calculated by the equilibrium method.

of a Fe-Pd junction, such as the change of spin-polarization sign. Test calculations with
pure Fe chain between Pd electrodes showed similar effect, as were found in pure Fe chains
between Pt electrodes, i.e. large amplitude of p-states near the Fermi level, which form an
efficient conduction channel but are only weakly affected by the gate.

4.4 Rh-Fe atomic contact

For completeness we also investigated the conductance through Rh-Fe mixed chains between
Rh electrodes with an equilibrium lattice constant of 3.740Å, which were constructed anal-
ogous to the ones discussed above.

As in the previous systems magnetic configuration of Rh-Fe nano-contact was found to
be AFM in the investigated d range of 2.4Å to 4.0Å. At the same time an infinite Rh-Fe
chain reveals a FM–AFM transition at d = 3.4Å, which is close to the FM–AFM transition
geometries of the Fe-Pt and Fe-Pd infinite chains.

We plot in Fig. 4.16(a) the conductance of the Fe-Rh nano-contact for three different
distances d in dependence on the gate charge. Most significant changes are observed for
d = 4.0Å where we can see that the spin-polarization of the conductance changes its sign
due to an increase in majority and a decrease in minority conductances. We find that such
behavior is caused by a slightly different reactions of s− dz2-hybridized states of the RhN in
different spin channels. Looking at the PDOS in Fig. 4.16(b) one can see that with changing
of the gate charge the majority s-states peak around the Fermi level is shifted to lower
energies increasing the Fermi level PDOS, which leads to an increase in transmission and
consequently the conductance. Minority peak in s and dz2-states around the Fermi level
moves away from the Fermi level faster, which causes decreasing of the minority PDOS at
the Fermi level and thus also the conductance of the minority channel. Regarding another
electronic states we can say, that, as it follows from our analysis, their contribution to the
conductance is significantly lower due to low magnitude of PDOS on the Fermi level.

Equilibrium I(V) characteristic and bias voltage dependent spin polarization calculated
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port.

for Fe-Rh junctions with d = 4.0Å and 4.6Å are presented in Fig. 4.17. As we see, I(V)
characteristics have a slight deviation from the linear structure, which affects the spin polar-
ization dependence on the bias voltage. As already mentioned, the systems have a peak in
transmission at the Fermi level which moves under the applied gate bias. Therefore, we see
the same effect as in the Fe-Pt system. The polarization is reduced due to an integration of
the peak in transmission. For the system with d = 4.0Å the spin-polarization goes to zero
with increasing gate bias. For d = 4.6Å the spin polarization goes toward a value of 20%.

4.5 Summary

To summarize the chapter, we have shown by the example of mixed Fe-Pt/Pd/Rh nano-
contacts shaped as mixed chains between non-magnetic (Pt/Pd/Rh) electrodes, that due to
a direct coupling of the chains to the electrodes (strong coupled quantum dot) the systems
form conducting channels with relatively high transmission. At the same time due to the
appearance of confined states in the chain transmission at some energies has a resonant
tunneling character. Magnetic splitting of the states due to the presence of magnetic Fe atoms
causes a difference in Fermi level transmission in different spin channels. Most importantly,
applied gate bias was shown to induce a shift of the confined states thus directly affecting
the conductance. The latter can be thus tuned within a factor of 2 in different spin channels
and its polarization can be enhanced by as much as 200%, quenched or even reversed in sign.

We hope that this investigation shall incite further interest in gate-control over the spin-
polarized transport in atomic-scale junctions and belt both science and technology towards
on the way towards the creation of new gate-manipulated spintronic devices.
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Chapter 5

GdN-based systems as a spin-filter
devices

Up to now, when we were speaking of nano-scale contacts we have been implying single-
atomic junctions, where the magnetic properties of the junction and its spin-filtering char-
acteristics stemmed from the atomic dimensions of the contact’s geometry perpendicular to
the direction of electron transport. It is, however not always advantageous to work which
such junctions, especially when what one requires is ease of production or higher current
throughputs. In those cases it is often better to resort to atomic-scale planar junctions,
where atomic-scale refers to the lateral dimensions of the junction only in the direction
of electron transport, which in itself can lend the system unique electronic and magnetic
properties.

Since the main subject of the present work is spin-polarized electron transport, we are
particularly interested in the magnetic properties of planar junctions. As already briefly
discussed in the introductory chapter, with regard to spin-polarized transport layered ferro-
magnet/insulator junctions deserve special attention. [79–86]

In this chapter we shall tackle the spin-filtering properties of gadolinium nitride – a
compound that has a high potential to be used as an efficient spin-filtering tunneling barrier.
It is ferromagnetically ordered with Gd showing a magnetic moment of 7 µB per unit cell
and a half-metallic electronic structure [6, 112–115] with a gap at the Fermi level in minority
spin channel. It is this half-matallicity which makes GdN a promising candidate material for
spin-filter devices, as was already suggested by Duan and coworkers. [6] In recent works [116–
118] transport properties of GdN films were investigated experimentally and Ludbrook and
coworkers [116] were able to achieve a tunneling magnetoresistance ratio (TMR) of 35%.
Later, Pal et al . and Senapati et al . [117, 118] reported observing a spin-polarization of
conductance reaching 90% in a GdN film sandwiched between NbN electrodes.

Despite such extensive interest in GdN in recent years, there is a definite lack of theoretical
investigations of the transport and spin-filtering properties of the compound which would
give a quantitative or qualitative description of the dependence of spin-filtering properties
of GdN on different characteristics of the system, such as the lattice parameter or barrier
thickness. In the present a detailed explanation of GdN transport properties is given in
dependence on the GdN layer thickness and the possibility to achieve spin-filtering efficiency
of 100% is highlighted.
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Figure 5.1: (color online) (a) Sketch of the studied system – a Cu/GdN/Cu planar nano-
contact. (b) Top view of the last Cu layer and the first GdN layer at the Cu/GdN interface.
Black frames denote one unit cell, used for calculation.

5.1 Details of calculations

For the calculation of the self-consistent electronic structure and geometry of the systems
once again the SIESTA code was used. [140, 141] Transport calculations were performed
using the SMEAGOL code. [147, 148]

As an LCAO basis-set for Gd 6s double-ζ and 6p, 5d, 4f single-ζ basis orbitals were
chosen. The basis for N consisted of 2s, 2p double-ζ and 3d single-ζ orbitals. For Cu we
chose to include 4s, 3d double-ζ and 4p single-ζ.

For the exchange-correlation functional we chose the GGA approximation, since it is
known to be more accurate in the description of electronic structure. In the particular case
of GdN, GGA yields a gap of 0.68 eV in the minority channel, which is in good agreement with
previous studies. [6, 112–115] At the same time, LDA approximation predicts the electronic
structure to be metallic in both spin channels.

Since Gd has strongly localized f valence states, one’s calculations need to be able to
account of the strong on-site correlation of the f -shell. To this end, GGA+U approximation
was used with U = 6.7 and J = 0.7 as per Ref. 167, where these parameters were calculated
from first principles.

5.2 Thin GdN film between plane Cu contacts

5.2.1 Geometry of the system

The considered model of a planar GdN contact was constructed as an fcc (001) slab of GdN
placed between two Cu(001) electrodes, as shown in Fig. 5.1. A calculation of GdN bulk
yields an equilibrium lattice constant of 5.027 Å. The length of face diagonal of Cu(001) is
aCu ·
√

2 = 5.191Å, which is 5% more, than the lattice constant of GdN bulk. Therefore, GdN
films can be epitaxially grown on Cu surface at a 45◦ to Cu(001) lattice with a reasonable
mismatch. To simulate this, the lattice constant of GdN was stretched to match that of Cu
fcc face diagonal. A number of layers in the GdN slab varied from 1 to 19 in bilayer steps.
The interlayer distances of GdN were allowed to relax freely, thus simulating the case when
GdN is grown epitaxially in Cu(001) and subsequently capped again by Cu to form a contact
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Figure 5.2: Energy-resolved transmission probability of a Cu/GdN/Cu tunneling junction
for (a) 1, 3, 5 layers of GdN and (b) 13, 15, 17 layers of GdN.

junction. Our cartesian reference frame had its xy plane parallel to the Cu–GdN interface
and the electron transport was considered to take place along the z direction.

5.2.2 Spin-polarization of conductance

Let us start by considering electron transmission through a Cu/GdN/Cu junction with a
varying thickness of the GdN layer. In Fig. 5.2 the energy-resolved transmission curves for
thin (1-5 layers) and thick (13-17 layers) films of GdN are presented. It is apparent that for
thin films transmission is practically flat in a wide energy range (Fig. 5.2(a)). The increase of
GdN thickness is accompanied by a decrease of transmission amplitude in both spin channels
while the shape of the transmission’s energy-dependence remains largely unaltered. One may
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thus see the GdN slab as a tunneling barrier of a homogeneous structure. Transmission of
systems with thick GdN films (Fig. 5.2(b)) has a more complicate form and there the GdN
electronic structure plays principal role. One can also note a growing difference between
majority and minority transmissions with increasing GdN-slab thickness, which is directly
reflected in the spin-polarization of conductance.

Fig. 5.3 shows the zero-bias conductance (transmission at the Fermi-level) of a Cu/GdN/Cu
nano-junction as a function of GdN layer thickness. The conductance is split into ma-
jority and minority electron contributions (blue triangles and red squares, respectively)
and is given in logarithmic scale. The spin-polarization of conductance, calculated as
P = (G↑−G↓)/(G↑+G↓)×100% (where G↑ and G↓ are the conductance values in spin-up and
spin-down channels, respectively) is plotted in green circles with a corresponding axis on the
right. It can be seen that with increasing number of layers the total conductance decreases.
The noteworthy fact is, however, that while minority conductance shows a continuous expo-
nential decay with thickness (linear behavior in log scale), majority conductance “saturates”
at 0.007 e2/h when the thickness of GdN exceeds ∼ 15 layers. Therefore, the difference in
conductance between spin-up and spin-down channels gradually increases, reaching several
orders of magnitude and causing the spin-polarization of conductance to approach 100%.

Thus the GdN-thickness dependence of conductance has two distinctly different behavior
ranges. For thinner slabs, the transport shall be determined mostly by the interface effects,
while for thicker slabs the tunneling can be expected to approach slab-GdN characteristics.
Judging from the curves in Fig. 5.3, for GdN the boundary between those two regimes can
be drawn at about 12-15 layers. We shall attempt to understand the electronic properties
responsible for the conductance characteristics in both regimes.

5.2.3 Ballistic view of transport

Since we are interested in GdN’s impressive spin-filtering ability we shall start by analyzing
the bulk-like conductance, which is observed for thicker GdN slabs. Even without having a
detailed knowledge of the electronic structure of GdN, but only from analyzing the thickness
dependence of conductance (Fig. 5.3) we can surmise, that the exponential decay of zero-
bias minority conductance is caused by a band gap, while constant majority conductance
is a hint, that conductance channels exist in GdN bulk for majority electrons around EF .
According to Landauer and Büttiker [44], ballistic conductance of the system is determined
by the conductance channels, which could be analyzed by considering the density of states
and band structure of the bulk of the system.

First of all, let us take a look at the symmetry decomposed projected density of states
(PDOS) of GdN-bulk. In Fig. 5.4 the LDOS of px, py, pz states of N and dxy, dxz, dyz of Gd
are shown. The densities of states of other orbitals are too small to be discernible at the
scale of the graph and are thus omitted, as they are unlikely to significantly contribute to
the ballistic transport. As it was mentioned, GdN and Cu lattices have a mismatch of about
5%, thus GdN/Cu is strained in the plane of the interface. This distortion has an effect
of raising the degeneracy between of px, py and pz states of N (green dotted and solid red
curves in Fig. 5.4(a), respectively) as well as of dxy and dxz, dyz states of Gd (green dotted
and solid red curves in Fig. 5.4(b), respectively). Corresponding p and d states of N and Gd
in bulk GdN are degenerate and are shown with shaded areas in Figs. 5.4 (a) and (b).

To understand the ballistic transport in GdN and Cu we need to consider their band
structures. For simplicity we shall neglect here the distortion of GdN, caused by the Cu–
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GdN lattice mismatch, since the difference caused thereby is of quantitative character and
shall not affect the qualitative understanding. In Figs. 5.5(a) and 5.5(b) the band structures
of GdN and Cu bulks along several high-symmetry lines of the Brillouin zone are presented.1

In Fig. 5.5(b) we can see that the Fermi-level of Cu-bulk is crossed only by the ∆1 band,
which is comprized mostly of sp states. These states have almost free-electron behavior,
which is reflected in the almost spherical Fermi surface of Cu which is almost spherical [168].
Consequently, interaction of GdN and Cu states can be considered as interaction of GdN
states with free-like sp-electrons, injected from the Cu slab.

In Fig.5.5(a) we can see that the Fermi-level of GdN is crossed by majority ∆1 and
∆5 valence bands close to the Γ point (red lines). These bands form hole pockets [115] of
the Fermi-surface and mainly represent p states of N. Conduction bands crossing the Fermi
level near the X point and form electron pockets are ∆′2 band of Gd dxy states. Another
conduction band Z along the X–W direction, which is a continuation of the ∆5 band, is
represented by px, py states of N.

If we consider the band structure of a GdN slab(001) projected onto the (001) plane
((kx, ky) in our cartesian frame), the Brillouin-zone of the system shall have the shape of a
square. In Fig. 5.6(a) the Fermi-surfaces of GdN and Cu slabs are presented. Symmetry point
X of the GdN bulk Brillouin-zone is projected onto the M point of the square Brillouin-zone.
Fermi-surface of GdN has several separate sheets (red areas in the Fig. 5.6(a)). Central part
around the Γ point is represented by p states of N and dxy states of Gd. Other four parts in
the M point reflections with coordinates (±π/a,±π/a) and (±π/a,∓π/a) will be represented
by Gd(dyz),N(py, pz) and Gd(dxz),N(px, pz) states respectively. The Fermi-surface of the Cu
slab has no features and looks like a uniform background (light-green area in Fig. 5.6(a)),
represented mostly by conduction sp states. Thus we see that in ballistic approximation
electron conduction is supported by the GdN bands overlapping with Cu states, i.e. states
around the Γ point and near the M point reflections.

To assess the energy dependence of conductance let us look at the band structure of Cu
and GdN slabs along the X–Γ–M–X line in the Brillouin zone shown in Fig. 5.6(b). Cu states

1A more detailed band structure can be found in Ref. 115, 168.
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are represented by a uniform background, since we assume the Cu slab to be semi-infinite.
GdN slab is taken as a thin film, Therefore the band-structure looks like a set of dispersion
lines. The highest density of band-lines of GdN (and, therefore, density of states) can be
observed in majority channel (red lines) at the Fermi level in the vicinity of the Γ point
of the square Brillouin-zone. Those are the states (mostly N p and Gd dxy) which can be
expected to contribute most to the conductance of the system. The M point can also give a
contribution (through Gd dxz and dyz states), but it should be much smaller. It can also be
seen, that minority channel can give contribution to the ballistic transmission at the energies
outside of the band gap (for this GdN slab the gap ranges from −0.2 to 0.2 eV. For these
energies minority transmission should be determined also primarily by Γ point states.

5.2.4 Hybridization and tunneling effects

It must be noted, however, that even at large thicknesses of GdN the conductance is not
determined solely by the bulk-like-GdN band structure, but also by the electron injection
dynamics from Cu into GdN, which is in turn determined by the hybridization and band
alignment at the interface. This hybridization is even more important for electron transport
through thin GdN layers, since then it becomes the main factor determining the transmission
properties of the junction. To understand the electronic structure of the interface we plot
in Fig. 5.7(a-c) the symmetry decomposed projected density of states of the interface Cu,
Gd and N atoms (particular atoms are marked with arrows in the inset) of a Cu/GdN/Cu
junction with a 19-layer-thick GdN slab. As was the case with the band structure, Cu
atoms at the interface have a relatively flat LDOS around the Fermi level with comparable
densities of s, p and d electrons, providing a good basis for hybridization with GdN. Gd
atoms at the interface, similar to the bulk ones, have a fairly low density of states around



the Fermi level. Compared to bulk (gray shaded area in Fig. 5.72) the d states of interface
Gd are slightly shifted, due to a mild hybridization with Cu. However only majority dz2 ,
dxz,yz and dx2−y2 are non-vanishing, and even they have a fairly small density, only weakly
contribution to the conduction through the interface. The p states, on the contrary, are non-
zero in both spin channels (while their density in bulk is almost zero at the Fermi level) due
to hybridization with Cu atoms. In particular, p LDOS (mainly pz, as could be expected)
exceeds the density of d states in both spin channels, thus contributing to conductance, but
reducing the polarization thereof. The main hybridization effect, however, can be traced in
the density of p states of interface N atoms. Even in GdN bulk, minority p LDOS is the
dominant contribution at the Fermi level. At the interface not only is the majority pz LDOS
greatly enhanced, but in the minority channel pz states are filled by the overlap with Cu
states. Thus nitrogen p states exceed by almost an order of magnitude the density of any
other GdN state at the interface. This efficient hybridization of both majority and minority
p states of N with Cu determine the conductance at the interface, drastically reducing its
polarization for thin GdN junctions.

To see how deep into GdN the hybridization goes we plot in Fig. 5.7(d) and (e) the
value of the spin-resolved local density of states at EF of the dominant hybridized orbitals
(N-pz and Gd-dz2 are shown as representative examples) for different layers of GdN. High at
the interface due to hybridization with Cu, both N-pz and Gd-dz2 LDOS decay as one goes
deeper into the GdN slab, achieving their respective equilibrium bulk values by about the
5-th layer. Thus the “direct” electron injection length from Cu into GdN can be estimated
to be about 10− 15 Å. For system with comparable GdN layer thickness the transport shall
be determined by the interface properties, rather than by the properties of GdN bulk. A
careful examination of conductance behavior with GdN thickness (shown in Fig. 5.3) will
reveal at a thickness of about 10 layers (twice 5) a small bend in the exponential decay of
the minority and a saturation of majority conductances.

At the end of this section one can summarize, that GdN films between Cu electrodes
exhibit spin-filtering properties due to differences in majority and minority electron tunnel-
ing, resulting in spin-polarization of conductance reaching 100%. At the Cu/GdN interface,
electrons are injected from Cu primarily into p states of N and dz2 and pz states of Gd. At
GdN thicknesses exceeding 5-10 monolayers the gap opens in the minority LDOS, leading to
an exponential decay of minority-channel conductance. The tunneling of majority electrons
carries a resonant character (based on the GdN bulk electronic levels/bands) and saturates
at GdN thicknesses over 10 − 15 monolayers. At those thicknesses the spin-polarization of
conductance reaches 100%, producing a nigh-perfect spin-filtering junction.

5.2.5 I(V) characteristics

To give a more application-oriented overview of Cu/GdN/Cu junctions we investigate the
behavior of the system under applied bias voltage performing non-equilibrium calculation
for biases ranging from 0.0 to 0.5 V. The I(V) curves shown in Fig. 5.8 have a nearly
linear structure reflecting the flatness of the non-equilibrium energy-resolved transmission
probability around the Fermi level (not shown here). For the voltage range 0.4 − 0.5 V we

2In fact, the shaded area represents the d LDOS of the central atom of the 19-atom slab and slightly
deviates from the true bulk density shown in Fig. 5.4, exhibiting several peaks, which we ascribe the formation
of quantum well states in the finite-thickness GdN slab. The same holds for the appearance of similar peaks
in the px,y density of states of N (see shaded area in Fig. 5.7(c))
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see that minority I(V) lines of the system with 11-19 monolayers slightly curve up, showing
the influence of the edge of a minority GdN bands.

5.3 Gd-N chains

While our investigation of GdN was mainly motivated by its exceptional spin-filtering prop-
erties in layered-junction geometry, it is conceptually intriguing to see what transmission
and spin-filtering properties are exhibited by GdN atomic chains.

We have therefore performed transport calculations for a planar infinite zigzag GdN
chain. The chain was constructed of alternating Gd and N atoms ordered in a zig-zag or
linear fashion along the z axis (Fig. 5.9). Calculations were performed for different distances
between neighboring Gd atoms d. The N atoms were always allowed to assume equilibrium
positions by fully relaxing the system. The only constrain imposed was the requirement for
the system to stay planar in the yz plane. In this manner, electronic structure and transport
properties were obtained for differently stretched GdN chains.

Energy of the chain and equilibrium width h (extent of the zig-zag along the y axis) are
presented in Fig. 5.9(a) (black circles and gray rectangles, respectively). The chain has a
global energy minimum at d = 3.8 Å, which corresponds to a zigzag structure with parameter
h = 1.2 Å. Transition to a linear structure is rather sharp and occurs after a small energetic
barrier at about d = 4.2 Å.

The coupling between Gd atoms was found to be ferromagnetic regardless of the stretch-
ing parameter d, while N atoms were always coupled antiferromagnetically to Gd. Such
GdN magnetic structure coincides with the bulk one. Magnetic moments of N and Gd in
the chain are slightly larger, than they are in the bulk (0.75 µB and 7.75 µB vs 0.25 µB and
7.25 µB respectively), and remain constant practically in the whole studied range of d (from
3.2 Å to 4.4 Å). The chain, similar to the GdN bulk, has a gap in minority DOS around the
Fermi level for all studied stretching parameters d. The filled minority band is not affected
by stretching, which results in the magnetic moment of the whole system staying constant at
(7.0 µB) during stretching. Despite the changes in geometry of the zig-zag chain, stretching-
induced charge transfer within the chain is small, keeping partial magnetic moments of Gd
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and N constant.

The spin-resolved conductance and its resulting spin-polarization are presented in Fig. 5.9(b)
and (c), respectively. In agreement with the gap in minority DOS, the minority channel has
zero conductance practically in the whole studied stretching range, which results in a 100%
spin-polarization of conductance, making a GdN chain as good a spin-filter as the planar
GdN junctions are. There is, however, one intriguing feature in conduction at d = 4.3 Å.
This configuration corresponds to a linear chain and displays an insulating behavior in both
spin-channels suppressing conductance altogether (Fig. 5.9(b)). While this feature might
have been of interest to technological applications, d = 4.3 Å is also very close to the point
of structural instability of the chain and thus we shall leave its detailed discussion to be a
matter of future studies.

Analysis of the projected density of states of Gd and N has shown that the conductance
of majority electrons is mostly contributed to by the hybridization of N-p and Gd-s, d states
(plotted in Figs. 5.10(upper and middle panels) for d = 3.8 Å, 4.0 Å and 4.3 Å (Figs. 5.10(a,b)
and (c), respectively). The N-p states are mainly represented by py, pz symmetries, reflecting
the geometry of the chain lying in the yz plain. Gd d states are mostly represented by dz2 , dyz
and dx2−y2 states. A narrow majority PDOS peak at 0.4 eV for a chain of d = 3.8 Å (which
is in fact a narrow band) moves towards the Fermi-level and expands during the stretching of
the chain to d = 4.0 Å forming an additional conductance channel. This explains the increase
of majority-spin conduction, as can be observed in Fig. 5.9(b). The shift of that peak can
also explain the observed insulating behavior at d = 4.3 Å. As the chain is stretched from
4.0 Å to 4.3 Å the above-mentioned band shifts away from the Fermi level leaving it devoid
of conductance channels (Fig. 5.10(c)).

We thus see that GdN chain share the exceptional spin-filtering properties of planar
GdN junctions. Moreover, the adjustability of the chain shape by stretching opens the
possibility of switching the transmission properties of the chain between highly spin-polarized
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conducting and non-conducting states.





Conclusion

In the present work, ways of creating and controlling spin-polarized currents in mixed mag-
netic 1D and 2D systems were investigated. Using a combination of the non-equilibrium
Green’s function formalism with density functional theory realized in the Smeagol code we
performed a series of calculation to understand the behavior of electronic and transport
properties of Au – Co nano-contacts, mixed Fe – Pt/Pd/Rh atomic-scale junctions under the
influence of a gate electrode bias and planar GdN magnetic tunnel junctions between Cu
electrodes.

We find that Au chains suspended between Co electrodes reveal high spin-polarization of
conductance due to the strong spin-dependent hybridization of Co – d states and Au – s states
at the Co – Au interface. Each of the two Co – Au interfaces plays the role of a spin-filter,
which polarizes the current along the magnetization of the neighboring electrode. Resulting
GMR values reach 70% in ballistic and 400% in tunnel regimes (the latter can be achieved,
f.e., by over stretching or braking the Au chain). Obtained results explain the surprisingly
high GMR values measured previously in similar systems.

As an extension of the set of tools for tuning the spin-polarization of conductance we
look into the possibility of affecting the latter with gate bias voltage in a tree-terminal
device scheme. The junction itself is represented by a mixed Fe – Pt(Pd,Rh) chain suspended
between Pt(Pd,Rh) electrodes. The gate is considered as a third electrode brought laterally
into the proximity of the chain and put under bias. The redistribution of electrons in the
chain in response to the electrostatic potential imposed by the biased gate electrode is found
to be strongly spin-dependent and to result in a shift of the confined states of the chain
which act as transmission channels. Furthermore, the impact of the gate is found to vary for
chains with linear and compressed/buckled geometries. As a result, even small gate biases
can cause conductance to change by as much as 200%. More importantly, by adjusting the
bias the spin-polarization of conductance can be enhanced, quenched or even reversed which
is exactly what is required for potential atomic-scale spintronic applications.

For the cases when planar contact geometry might be preferable to the single-atomic-
junction one, we consider an interesting compound, GdN, for the role of a spin filter. Trans-
port properties of a junction consisting of a GdN layer sandwiched between Cu electrodes are
investigated and found to depend strongly on the thickness of the GdN layer. This thick-
ness dependence is found to have two distinct regimes. For thick layers the conductance
polarization is high and governed by the half-metallic properties of the GdN bulk, while for
thin GdN layers the conductance is found to depend on the hybridization at the GdN – Cu
interface and be strongly reduced thereby. We find, that in the thick-layer regime the con-
ductance has a ballistic character in majority channel and is provided for by p states of GdN,
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while in the minority channel the conductance has a purely tunneling character and falls off
exponentially with GdN layer thickness. This allows one to tune the spin-polarization of the
current to a desired value by adjusting the thickness of the GdN layer. Obtained results of
spin polarization dependence on thickness of the layer are in good agreement with recently
performed experiments.
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Schlüsseltechnologien / Key Technologies 74, ca. 1000 pp (2014) (2014).

[132] A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski. Methods of Quantum Field
Theory in Statistical Physics. Dover Books on Physics. Dover Publications Inc. (1975).

[133] J. Schwinger. Brownian Motion of a Quantum Oscillator . J. Math. Phys., 2, 407
(1961).

[134] L. V. Keldysh. Diagram Technique for Nonequilibrium Processes. J. Exp. Theor. Phys.,
20, 1018 (1965).

[135] A. I. Larkin and Y. N. Ovchinnikov. Nonlinear conductivity of superconductors in the
mixed state. J. Exp. Theor. Phys., 41, 960 (1976).

[136] J. Maciejko. An Introduction to Nonequilibrium Many-Body Theory . Springer (2007).

[137] D. Langreth and J. Wilkins. Theory of Spin Resonance in Dilute Magnetic Alloys .
Phys. Rev. B, 6, 3189 (1972).

[138] D. C. Langreth. Linear and Nonlinear Response Theory with Applications . Linear
Nonlinear Electron Transp. Solids, pp. 3–32 (1976).

[139] D. Fisher and P. Lee. Relation between conductivity and transmission matrix . Phys.
Rev. B, 23, 6851 (1981).

[140] P. Ordejón, E. Artacho and J. Soler. Self-consistent order-N density-functional calcu-
lations for very large systems. Phys. Rev. B, 53, R10441 (1996).

http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1088/0022-3719/5/13/012
http://dx.doi.org/10.1088/0022-3719/5/13/012
http://dx.doi.org/10.1103/PhysRevB.22.3812
http://dx.doi.org/10.1103/PhysRevB.22.3812
http://www.ncbi.nlm.nih.gov/pubmed/10062328
http://www.ncbi.nlm.nih.gov/pubmed/10062328
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.48.16929
http://dx.doi.org/10.1103/PhysRevB.48.16929
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://juser.fz-juelich.de/record/151915
http://juser.fz-juelich.de/record/151915
http://dx.doi.org/10.1063/1.1703727
http://archive.org/details/Joseph_Maciejko___An_Introduction_to_Nonequilibrium_ManyBody_Theory
http://dx.doi.org/10.1103/PhysRevB.6.3189
http://dx.doi.org/10.1007/978-1-4757-0875-2_1
http://dx.doi.org/10.1103/PhysRevB.23.6851
http://www.ncbi.nlm.nih.gov/pubmed/9982701
http://www.ncbi.nlm.nih.gov/pubmed/9982701


[141] J. M. Soler, E. Artacho, J. D. Gale, A. Garćıa, J. Junquera, P. Ordejón and D. Sánchez-
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[148] A. R. Rocha, V. M. Garćıa-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrer and S. San-
vito. Spin and molecular electronics in atomically generated orbital landscapes . Phys.
Rev. B, 73, 085414 (2006).

[149] J. L. Mozos, P. Ordejón, M. Brandbyge, J. Taylor and K. Stokbro. Simulations of
quantum transport in nanoscale systems: application to atomic gold and silver wires .
Nanotechnology, 13, 346 (2002).

[150] W. Porod, Z.-A. Shao and C. Lent. Resonance-antiresonance line shape for transmis-
sion in quantum waveguides with resonantly coupled cavities . Phys. Rev. B, 48, 8495
(1993).

[151] S. Heers. Effect of spin-orbit scattering on transport properties of low-dimensional
dilute alloys . Schlüsseltechnologien / Key Technologies. Forschungszentrums Jülich
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