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Abstract

This work studies a possible approach to the prediction of lattice vibrations in crystals by
means of multiple scattering theory. The method of choice for the description of the elec-
tronic structure is the technique of Korring-Kohn-Rostoker (KKR) in its expression as Green
function method. To begin with, the work elaborates on numerical models of lattice vi-
brations and continues with the basic principles of linear response theory as well as the
outline of the KKR. In the following sections, equations for the calculation of phonon spec-
tra are worked out, based on these methods and using a spherical approximation of the ionic
Coulomb potential. It is shown that this approximation–commonly used in multiple scatter-
ing theory–is not sufficient for a quantitative description of lattice vibrations. As opposed to
this, a treatment of the full potential is necessary. The second part of this work deals with
the KKR description of electron-phonon interactions in superconducting thin films and their
influence on the critical temperature.

Die Vorliegende Arbeit untersucht einen möglichen Ansatz, das Problem der Gitter-
schwingungen in Kristallen ab initio im Rahmen der Vielfachstreutheorie zu behandeln. Als
methodischer Ansatz zur Beschreibung der Elektronenstruktur wurde hierfür die Korringa-
Kohn-Rostoker-Methode (KKR) mit Greenschen Funktionen gewählt. Die Arbeit stellt zu-
nächst grundlegende Verfahren zur Berechnung von Phononenspektren vor und geht danach
auf die Details der KKR und der linearen Antworttheorie ein. Danach werden auf Basis
dieser Methoden Gleichungen hergeleitet, mit welchen die Dispersionsrelationen der Gitter-
schwingungen berechnet werden können. Hierbei wurde insbesondere die effiziente Vari-
ante der KKR untersucht, in welcher die Potenziale der Ionenrümpfe als kugelsymmetrisch
angenähert werden. Es wird gezeigt, dass dieses Modell nicht ausreicht, um die Spektren
quantitativ vorherzusagen. Hingegen müssen in einem solchen Modell die asphärischen
Komponenten der Potenziale berücksichtigt werden, was im Rahmen der Full-Potential-
Methode geschehen kann. Im zweiten Teil der Arbeit wird der Einfluss der Elektron-Phonon-
Wechselwirkung auf die Sprungtemperatur von Dünnschicht-Supraleitern untersucht.
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1Introduction

Many properties of solids can only be understood if the model of a lattice of fixed ions
is augmented by the picture of nuclei oscillating around their equilibrium positions. Only
this degree of freedom allows to explain thermal expansion and phase transitions, heat ca-
pacity, thermal and acoustic conduction as well as electrical conductivity as functions of
temperature. High-technology applications of phenomena such as superconductivity and
thermoelectricity strongly depend on the electronic structure of the respective material as
well as the vibrational spectrum of the ion lattice. Besides a fundamental understanding
of these phenomena, a dedicated design of new materials requires detailed quantitative
knowledge of both aspects of the problem for complex systems. With the beginning 20th

century, first models of thermal conductivity including atomic motion appeared, one of the
most prominent beeing Einstein’s model [Ein07; SS06]. It starts from the assumption that
atoms vibrate like independent harmonic oscillators at their lattice sites (even before the
atomic structure of solids was proven) and describes their behaviour within the new quan-
tum theory of radiation developed by Planck [Pla00]. Although this model reproduces the
heat capacity at high temperatures well, it fails at low temperatures. The more advanced
model of Debye [Deb12] solves this problem by assuming a monotone dispersion relation
for two transverse and one longitudinal branch of lattice vibrations, but with a cut-off fre-
quency (Debye frequency). In the same year, Born and v. Karman [BK12; BK13] presented
the first analytical model of lattice vibrations based on harmonic forces between atoms ar-
ranged in a periodic lattice. Afterwards, the problem of predicting the lattice dynamics
of real solids was reduced to the determination of inter-atomic forces which, apart from
phenomenological models with adjustable parameters, soon became an assignment of the
arising quantum mechanics.

Despite the emergence of ever-improving experimental methods for measurements of
vibrational spectra of solids, it took a long time on the theory side to develop models capable
of reproducing correct dispersion relations without external fitting parameters, which was
mainly due to the complexity behind the different levels of abstraction of the problem. As
always, the truth lies in reasonable simplification. Until today, with few exceptions, it is a
standard procedure to describe the coupled vibrations of ions in a crystal potential by means
of classical Newtonian mechanics. This ansatz allows the calculation of dispersion relations
on the basis of force constants which parametrize the inter-atomic forces. A quantum-
mechanical treatment of the phonons as quasiparticles1 is only necessary, if the occupation
of the available vibrational states is of interest or when interactions with other excitations,
such as electrons or magnons are studied. But besides this classical level of abstraction,
however, the crystal potential or the derived force constants need a more sophisticated
model. They are, apart from simple ionic crystals, only assessable quantum-mechanically
because they are determined by the dynamic distribution of the electron gas between the
ions of the lattice.

With the development of density functional theory in the 1960s and 1970s, a new tool
for the quantum-mechanical description of materials was born which, because of its effi-
ciency, initiated a new age of computational physics and implied improved concepts for
the ab-initio theory of lattice dynamics. The Korringa-Kohn-Rostoker (KKR) method used
throughout this work is an all-electron model describing the electronic band structure of

1Throughout this work, the term ’phonon’ is often used as synonym for the collective vibrations of atoms
arranged in periodic lattice, without referring to its primary meaning of a quasiparticle.
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1. INTRODUCTION

crystals and, among many other numerical approaches, is able to make use of density func-
tional theory to achieve more accurate results with less computational work. Its conception
as a multiple-scattering theory as well as its reformulation as a Green function method
makes it very attractive for the use with disordered or low-dimensional systems. These in-
trinsic properties, however, make the application of KKR to lattice dynamics a hard task.
Therefore, a major objective of this work was to investigate the possibility to circumvent
these problems by making use of linear response theory and thus extend the possible appli-
cations of KKR.

The second part of this work concentrates on the interactions between electrons and
phonons and describes a model of this interplay using the rigid muffin tin approximation.
The latter is augmented for use with the existing KKR formalism and is optimized for ap-
plication on surfaces and layered systems. Both parts of this work have their origins in the
permanent advancement of the in-house KKR code HUTSEPOT and can be seen as progress
report of the ongoing developments. Therefore, this thesis is structured as follows: Chap-
ters 2, 3 and 4 elaborate on an overview of the theoretical foundations of lattice dynamics,
linear response theory and density functional theory, as well as an introduction to the con-
cepts of the KKR Green function method. In Chapter 5, a rigid-ion model of lattice dynamics
is developed, using the Green function of the electronic ground state to calculate the linear
response of the electron gas upon lattice distortions. Chapter 6 describes in detail the for-
malism for the Eliashberg spectral function of electron-phonon coupling for layered systems
and presents its application to inelastic tunnelling experiments. Finally, a short summary
completes the thesis.
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2Lattice dynamics from first principles

This chapter briefly outlines the present ab-initio methods (parameter-free quantum-mecha-
nical models) for determination of lattice vibrational spectra of crystalline solids. The reader
shall be introduced to the topic and the main goal of the work will become clear. For this
purpose, the quantum-mechanical description of solids will be discussed initially and an
approximation suitable for the investigation of lattice vibrations will be derived. Afterwards,
the harmonic approximation to lattice dynamics will be introduced, which allows for a
feasible solution of the equations of motion of the lattice atoms. The following section
sheds some light on how the necessary potential can be determined using self-consistent
electronic structure calculations. Additionally, the vibrational spectrum of a lattice of point
charges will be examined, which makes an important contribution to the full spectrum of a
real crystal lattice.

2.1 The problem of moving atoms

The goal of electronic structure theory lies in the correct description of the physical be-
haviour of quantum-mechanical systems containing electrons. More specifically, one is in-
terested in the physical properties and time evolution of matter build up of atoms, including
molecules and matter in all possible phases. Unless one is interested in hyperfine structure
effects or high-energy phenomena such as radioactive decay or nuclear scattering, it is suf-
ficient to assume the atomic nuclei as positive point charges with a fixed mass. Since the
development of quantum mechanics in the late 1920s, it is known that, under neglect of
relativistic effects and spin, such a system of Nn nuclei and Ne electrons can be completely
described by a Schrödinger equation

HΨ({x}, {R}, t) = i∂tΨ ({x}, {R}, t) , (2.1)

the solution of which is the electron-nuclear wave function Ψ(x,R, t). It is a function of the
coordinates {x} of the electrons, the positions {R} of all nuclei and of time t. The system
is defined by the Hamiltonian

H = T̂n + T̂e + Vee({x}) + V({R}, {x}) + Vnn({R}) + Ξ(t), (2.2)

of which the first two terms are kinetic energy operators for nuclei and electrons,

T̂n = −
Nn∑

l

~2

2Ml

∂2

∂R2
l

and T̂e = −
Ne∑

i

~2

2me

∂2

∂x2
i

(2.3)

with nuclear massesMl and the electron massme. The following terms describe the particle-
particle interactions, beginning with the interelectronic Coulomb potential

Vee({x}) =
1

2

1

4πε0

Ne∑

i 6=j

e2

|xi − xj |
. (2.4)

The second term quantifies the electron-nuclear interaction

V({R}, {x}) = − 1

4πε0

Nn∑

l

Ne∑

i

e2Zl
|Rl − xi|

(2.5)
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2. LATTICE DYNAMICS FROM FIRST PRINCIPLES

and is often referred to as external potential in electronic structure theory. This nomencla-
ture reflects the fact that the potential of the atomic nuclei alone defines the electronic
eigenstates. In contrast, the internal potential Vee({x}) depends on the distribution of
electrons and thus only implicitly on the nuclear positions. The last contributions to the
Hamiltonian are the Coulomb repulsion of the nuclei among each other,

Vnn({R}) =
1

2

1

4πε0

∑

l 6=l′

e2ZlZl′

|Rl −Rl′ |
, (2.6)

and a possible time-dependent external vector potential Ξ(t), which might result from laser
beams or other external perturbations. Apparently, there are two interacting kinds of par-
ticles with a fundamental difference: The electron’s mass is at least 1.84 × 103 [MTN12]
smaller than the mass of the nuclei. This means, although the electromagnetic forces among
these particles are of the same order of magnitude, the electrons will assume much higher
velocities and respond more quickly to external perturbations. This behaviour motivates the
assumption that the electrons move in a, possibly time-dependent, external potential de-
fined by the distribution of positively charged nuclei and assume their ground state within
a very short time compared to the time scale of nuclear motion. Since the Hamiltonian
(2.2) is a sum, the decoupling of electronic and nuclear motion results in a product wave
function

Ψ({x}, {R}, t) = χ({R}, t)ψ{R}({x}, t), (2.7)

where χ({R}, t) is a pure nuclear wave function and ψ{R}({x}, t) is a pure electronic wave
function but depends implicitly on the nuclear positions, as indicated by the subscript {R}.
This ansatz has been used in approximate ways since the emergence of quantum mechanics
and was first presented by Born and Oppenheimer [BO27], but only recently it was shown
[Kha13; KMG12] that there exists an exact factorization of the kind of Eq. (2.7). With-
out going into details, it should be mentioned that this approach allows for an exact, yet
numerically approximate, treatment of correlated electron-nuclear motion of arbitrary kind
as is especially important in the study of strong external electromagnetic fields acting on
molecules or condensed matter. Looking backwards, it is a good starting point for approxi-
mations. In many cases, the study of potential energy surfaces gives a deep insight into the
physics. Here, the motion of the nuclei is often described classically or semi-classically as
motion on a potential energy surface which is given by the instantaneous distribution of the
electrons. The latter is recalculated by solving a purely electronic Schrödinger equation at
every time step for the actual nuclear configuration.

In the case where no external time-dependent potential occurs or where the nuclear
motion is slow, the adiabatic approximation of Born and Oppenheimer is still a very good
method to obtain a simplified Schrödinger equation for the electronic system.

2.2 Adiabatic approximation

Because of its importance for the physics of condensed matter and since it is used in this
work, the adiabatic approximation shall be discussed in more detail here. The term ’adia-
batic’ refers to the assumption that, because of the big mass difference between electrons
and nuclei, no energy transfer occurs between both types of particles. This is equivalent to
the picture of electrons moving in the static Coulomb potential of fixed nuclei. Assuming a
time-independent scenario, Born and Oppenheimer divided the Hamiltonian

H = T̂n + Vnn({R})︸ ︷︷ ︸
Hn

+ T̂e + Vee({x}) + V({R}, {x})︸ ︷︷ ︸
HBO

(2.8)
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2.2. Adiabatic approximation

into a nuclear (Hn) and electronic part (HBO) and assumed that the electronic wave func-
tions ψi for a fixed set of nuclear positions {R} obey the Schrödinger equation

HBOψi({x}, {R}) = εi({R})ψi({x}, {R}). (2.9)

Under this assumption, the electronic eigenenergies εi as well as the electronic eigenstates
ψi are still functions of the nuclear coordinates, but for every set of {R} the latter are being
viewed as fixed. These solutions form a complete set of orthonormal functions, fulfilling

∫
dx1 . . . dxNe ψ

∗
i ({x}, {R})ψj({x}, {R}) = δij (2.10)

and thus can be used to construct the electron-nuclear wave function

Ψ({x}, {R}) =
∑

i

χi({R})ψi({x}, {R}) =
∑

i

Ψi (2.11)

which fulfils the Schrödinger equation

HΨ({x}, {R}) = EΨ ({x}, {R}) . (2.12)

Here, E symbolises an eigenvalue of the electron-nuclear energy spectrum. Under these
assumptions, the action of the full Hamiltonian onto the expansion coefficients of the total
wave function yields

HΨi = T̂nΨi + εi({R})Ψi + VnnΨi

= ψi({x}, {R})
[
T̂n + εi({R}) + Vnn

]
χi({R})

−
Nn∑

l

~2

2Ml

[
2
∂χi({R})
∂Rl

∂ψi({x}, {R})
∂Rl

+ χi({R})
∂2ψi({x}, {R})

∂R2
l

]

= EΨi

(2.13)

The only non-adiabatic contributions, meaning terms which result from interactions be-
tween electronic and nuclear states, are the two in the third line of the above equation.
They can be further examined by application of Eq. (2.10), giving

Eχi =
[
T̂n + εi({R}) + Vnn

]
χi({R})

−
Nn∑

l

∑

j

[
Mij

∂χi({R})
∂Rl

+Nijχi({R})
] (2.14)

with the two matrix elements

Mij =
~2

Ml

∫
dx1 . . . dxNe ψ

∗
i ({x}, {R})

∂ψj({x}, {R})
∂Rl

(2.15)

Nij =
~2

2Ml

∫
dx1 . . . dxNe ψ

∗
i ({x}, {R})

∂2ψj({x}, {R})
∂R2

l

(2.16)

As shown in [Sól09], partial integration reveals Mij to be zero under particle conserva-
tion. The second expression is finite, but results in the expectation value of the kinetic
energy of the electrons multiplied by a factor of me/Mn ≈ 10−3 . . . 10−5. Thus, it is a very
small contribution to the total energy of the lattice and its neglect seems justified as long as
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2. LATTICE DYNAMICS FROM FIRST PRINCIPLES

electron-phonon interaction is not under concern. Neglecting this term, it follows immedi-
ately that the total wave function can be written as single product of nuclear and electronic
wave functions,

Ψ({x}, {R}, t) = χ({R}, t)ψ{R}({x}, t), (2.17)

which are determined by the Schrödinger equations

[Hn + ε({R})]χ({R}) = Eχi({R}) (2.18)

HBOψ{R}({x}) = ε({R})ψ{R}({x}). (2.19)

The first equation describes the movement of nuclei on the potential energy surface ε({R})
of the electrons which is determined by the second equation in which the nuclei are con-
sidered as fixed. This is the adiabatic or Born-Oppenheimer approximation. It is one of the
basic principles that made electronic structure theory successful. In static cases, e. g. if the
ground state of the lattice is of interest, the nuclear dynamics can be completely ignored
and only the electronic Schrödinger equation has to be solved. Apart from the cases dis-
cussed in the beginning of this chapter, a classical treatment of the nuclear dynamics is often
useful. In this case, the nuclear wave function is replaced by classical point masses obeying
Newtonian dynamics, whereas the forces acting on these masses are still a result of the
instantaneous electronic states. This treatment is successfully applied to lattice vibrations,
as shown in the next section.

2.3 Lattice dynamics in the harmonic approximation

In the following, the theory of lattice dynamics of Born and v. Karman [BK12; BK13] is
presented, following the derivations from standard textbooks like [Sri90; Zim92; Gon00;
Sól07].

In order to construct a classical equation of motion for the atoms in a crystal, one needs a
proper description of the potential in which the assumed point masses move. The potential
energy of a crystal depends on the complex forces between the atoms composing it, that is,
attractive and repulsive forces between all charged particles. However, for the purpose of
deriving the equations of motion for the nuclei, it is not necessary to know the exact forces
in the first place. Within the Born-Oppenheimer approximation it is sufficient to assume
that the nuclei move on the potential energy surface defined by the ground state of the
electronic system. Thus, the potential energy of the crystal U can be written as a function
of nuclear positions only. Here and in the following, the position of a single nucleus within
a complex crystal will be written as

Xni = X0
ni + u(ni) = Rn + τi + u(ni), (2.20)

where Rn denotes the point of origin of the nth unit cell. Each cell contains 1 ≤ i ≤
N ions with basis vectors τi, such that X0

ni denotes the equilibrium position of ion (ni).
Under neglect of lattice defects and at temperatures small compared to the melting point of
the respective material, one can assume that the nuclei oscillate around their equilibrium
positions. This time-dependent relative displacement is denoted by the vector u(ni). Since
the equilibrium positions are fixed, the potential energy is a function of the {u},

U = U({u}), (2.21)
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2.3. Lattice dynamics in the harmonic approximation

which has its minimum at u(ni) = 0 ∀(n, i). This potential energy can be expanded in a
Taylor series

U = U0 + U1(u) + U2(u2) + . . .

= U0 +
∑

niα

uα(ni)
∂U

∂uα(ni)

∣∣∣∣
u=0

+
1

2

∑

niα

∑

mjβ

uα(ni)uβ(mj)
∂2U

∂uα(ni)∂uβ(mj)

∣∣∣∣
u=0

+O(u3),

which can be aborted after the quadratic term if the amplitudes {u} are small (< 1%)
compared to interatomic distances. The Greek letters denote vector components and can
take the values α ∈ {x, y, z}. The constant term U0, although it is the largest contribution to
the total energy, does not contribute to the dynamics of the system and can be omitted in this
context. The second, linear term is equivalent to the force resulting from a displacement
and gives, by definition, zero at the equilibrium positions. Neglecting third- and higher
order terms, the harmonic approximation of the crystal potential is defined as

Uharm = U2 =
1

2

∑

niα

∑

mjβ

φαβ(ni|mj)uα(ni)uβ(mj) (2.22)

with

φαβ(ni|mj) =
∂2U

∂uα(ni)∂uβ(mj)

∣∣∣∣
u=0

. (2.23)

The latter expression is also referred to as force constant matrix, since it is proportional to
the force acting on atom (ni) in direction α when atom (mj) is displaced along direction β.
This also means that the force is linearly dependent on the respective atoms’ distance from
its equilibrium position, which is why a harmonic oscillation can be expected. In order to
obtain the equation of motion of the particles, it is useful to use the Lagrange formalism.
The Lagrange function, which is the difference between kinetic and potential energy of the
system, reads

L =
1

2

∑

niα

Miu̇
2
α(ni)− 1

2

∑

niα

∑

mjβ

φαβ(ni|mj)uα(ni)uβ(mj), (2.24)

where Mi denotes the mass of the atom at site i and the kinetic energy is the sum of the
kinetic energies of all atoms. The derivative of L with respect to a displacement, as well as
the derivative with respect to a particle’s velocity,

∂L

∂uα(ni)
= −

∑

mjβ

φαβ(ni|mj)uβ(mj),
∂L

∂u̇α(ni)
= Miu̇α(ni), (2.25)

can then be used together with the Lagrange equations of the second kind

d
dt

(
∂L

∂u̇α(ni)

)
=

∂L

∂uα(ni)
(2.26)

the obtain the equation of motion describing the movement of all atoms of the system

Miüα(ni) = −
∑

mjβ

φαβ(ni|mj)uβ(mj). (2.27)
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2. LATTICE DYNAMICS FROM FIRST PRINCIPLES

Since this is an equation of motion of coupled harmonic oscillators, a reasonable ansatz for
the solutions are plane waves

uα(ni) =
Aα(i, q)√

Mi
ei(q·Rn−ωt), (2.28)

where Aα is the amplitude of the wave at site i for a given wave vector q. This approach
is also justified by a more general consideration [Fin03]: Obviously, Aα(i, q) is a function
with the periodicity of the lattice. Thus, a solution for a different lattice vector Rn −Rm is
given by

uα(n−m, i) =
Aα(i, q)√

Mi
ei(q·(Rn−Rm)−ωt). (2.29)

This is equivalent to the Bloch condition [Blo29] for electronic states in a periodic lattice.
If this approach is correct, lattice waves can be described as Bloch waves, but instead of
electronic Bloch functions, which depend on position in space, lattice Bloch waves depend
on the basis atom i. In both cases, the solutions are a result of the periodicity of the lattice.
Plugging in the functions uα(ni) into the equation of motion leads to the relation

ω2Aα(i, q) =
∑

mjβ

φαβ(ni|mj)Aβ(j, q)√
MiMj

eiq·(Rm−Rn). (2.30)

In a perfect crystal with translational symmetry, the force constants do not depend on the
absolute values of n and m but on the difference Rn −Rm. Thus, n can be set to zero and
by defining

Dij
αβ(q) =

1√
MαMβ

∑

m

φαβ(0i|mj)ei(q·Rm), (2.31)

Eq. (2.30) can be rewritten as

0 =
∑

jβ

[
Dij
αβ(q)− ω2δαβδij

]
Aβ(j, q). (2.32)

Non-trivial solutions for the Amplitudes Aα(i, q) can only exist if

det
[
Dij
αβ(q)− ω2δαβδij

]
= 0, (2.33)

which is called the phonon secular equation. It provides the solutions ω2(q) and thus the
phonon band structure. For a system with N atoms per unit cell, there exist 3N solutions,
since in three-dimensional space, the polarization vector A may take three linearly inde-
pendent directions (one longitudinal and two transverse). The lowest 3 frequencies belong
to acoustical phonons with ω → 0 for q → 0 and the other 3N − 3 solutions are optical
modes, approaching finite frequencies at the Γ point. The main problem in the theoretical
description is the calculation of the dynamical matrix D(q), which is a mass-reduced lattice
Fourier transform of the force constants.

2.4 Force constants from first principles

Despite the fact that numerous phenomenological models of lattice dynamics have been
developed since the fundamental paper of Born and v. Kármán [BK12; BK13], such as the
rigid-ion-model, shell models or dipole models, all of them had two major drawbacks: None
of them is valid for all types of solids and they depend on empiric parameters which do not
necessarily relate to the physical nature of the problem [Sri90]. As a consequence, the
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2.4. Force constants from first principles

necessity of a full quantum-mechanical description became apparent in the early 1970s and
first semi-phenomenological approaches have been presented [Sin69; Sha69; Sha74].

The calculation of phonon spectra requires on one side the treatment of the direct elec-
trostatic, long-ranging nucleus-nucleus or ion-ion repulsion which gives rise to high phonon
frequencies and can be evaluated analytically [Kel40]. This interaction, on the other hand,
is screened by the electron gas, which itself rearranges upon every lattice distortion. Be-
cause of the adiabatic principle this rearrangement can be assumed as instantaneous process
compared to the relatively slow movement of the ions. Thus, for every lattice geometry in-
duced by a lattice vibration, the electron cloud assumes a new ground state which can be
calculated by a quantum-mechanical method. The method of choice used throughout this
work is the density funtional theory (DFT), which will be presented in detail in the next
chapter. It allows for the solution of the electronic Schrödinger equation (2.9), given a
set of fixed nuclei, and delivers the electronic charge density n(x). All ab-initio methods
presented in the following rely on this tool.

2.4.1 Hellmann-Feynman theorem

A fundamental problem of quantum mechanics and especially for lattice or molecular dy-
namics is the calculation of derivatives of total energy with respect to parameters of the
Hamilton operator. In the case of forces, this is necessary because a force acting on an ion
in a molecule or solid is defined as

f = −∇E, (2.34)

where E is the total energy of the system, depending on the nuclear coordinates and the
gradient is the slope of the energy at the position of the respective ion. This problem is
adressed by the following theorem.

Consider a quantum-mechanical system described by a Hamiltonian Ĥ(λ) which de-
pends on a parameter λ. For a fixed λ, the system shall be in a stationary state Ψi(λ) with
eigenenergies εi(λ). Let Ĥ further be hermitian and let the states Ψi(λ) be normalized such
that

〈Ψi(λ)| Ψi(λ)〉 = 1. (2.35)

An example for this kind of Hamiltonian is the Born-Oppenheimer Hamiltonian introduced
in section 2.2, which depends parametrically on the nuclear positions.

The slope of the function εi(λ) can be determined by calculating its value directly for
different values of λ, which is a very cumbersome task in the case of DFT calculations. Hell-
mann [Hel37] and later, independently Feynman [Fey39] showed that the same quantity
can be obtained from a single total-energy calculation for a fixed λ by writing

dεi(λ)

dλ
=

d

dλ

〈
Ψi(λ)

∣∣∣ Ĥ(λ)
∣∣∣Ψi(λ)

〉

=

〈
dΨi(λ)

dλ

∣∣∣∣ Ĥ(λ)

∣∣∣∣Ψi(λ)

〉
+

〈
Ψi(λ)

∣∣∣∣
dĤ(λ)

dλ

∣∣∣∣Ψi(λ)

〉

+

〈
Ψi(λ)

∣∣∣∣ Ĥ(λ)

∣∣∣∣
dΨi(λ)

dλ

〉
.

(2.36)

Applying Ĥ(λ)Ψi(λ) = εi(λ)Ψi(λ) and considering that Ĥ is hermitian, this derivation can
be continued as

dεi(λ)

dλ
= εi(λ)

〈
dΨi(λ)

dλ

∣∣∣∣ Ψi(λ)

〉
+

〈
Ψi(λ)

∣∣∣∣
dĤ(λ)

dλ

∣∣∣∣Ψi(λ)

〉
(2.37)

+ εi(λ)

〈
Ψi(λ)

∣∣∣∣
dΨi(λ)

dλ

〉
. (2.38)
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2. LATTICE DYNAMICS FROM FIRST PRINCIPLES

Using the normalization (2.35), it becomes clear that under conservation of the particle
number during the variation of λ, the following statement holds:

〈
dΨi(λ)

dλ

∣∣∣∣ Ψi(λ)

〉
+

〈
Ψi(λ)

∣∣∣∣
dΨi(λ)

dλ

〉
=

d

dλ
〈Ψi(λ)| Ψi(λ)〉 = 0, (2.39)

which finally leads to the Hellmann-Feynman theorem

dεi(λ)

dλ
=

d

dλ

〈
Ĥ
〉
i

=

〈
Ψi(λ)

∣∣∣∣∣
dĤ(λ)

dλ

∣∣∣∣∣Ψi(λ)

〉
=

〈
dĤ

dλ

〉

i

. (2.40)

To calculate the forces acting on atoms in a crystal or molecule, the theorem can be applied
to the crystal Hamiltonian (2.2) or, within the adiabatic approximation, to the total energy
of the crystal

Etot = Tn + Enn({u}) + EBO({u}). (2.41)

EBO({u}) is the Born-Oppenheimer energy of the electronic system, depending parametri-
cally on the positions of all atoms, or, as denoted here, on the displacements u from their
equilibrium positions and Enn({u}) is the instantaneous Coulomb energy of the nuclei as a
function of the {u}. The force acting on an atom at the ith site in cell n is then defined as

F i
n = −∇u(ni)Etot = −∇u(ni)Enn({u})−∇u(ni)EBO({u})

= −∇u(ni)Enn({u})−
〈

Ψ[n]
∣∣∣ ∇u(ni)

[
T̂e + Vee + V({u})

] ∣∣∣Ψ[n]
〉
,

(2.42)

where the second line is a result of the Hellmann-Feynman theorem. The kinetic energy
of the nuclei does not enter the force equation since it does not depend explicitly on the
positions of the nuclei. The same argument holds for the kinetic energy of the electrons as
well as their pairwise Coulomb interaction. Thus, the resulting force reads

F i
n = −∇u(ni)Enn({u})−

〈
Ψ[n]

∣∣ ∇u(ni)EBO({u})
∣∣Ψ[n]

〉

= Zi


∑

l 6=n

∑

s 6=i
Zs

(Rn + τi + u(ni)−Rl − τs − u(ls))

|Rn + τi + u(ni)−Rl − τs − u(ls)|3

−
∫

dx n(x)
(Rl + τi + u(ni)− x)

|Rl + τi + u(ni)− x|3
]
,

(2.43)

an expression that is often referred to as electrostatic Hellmann-Feynman theorem because
it is identical to the classical electrostatic force induced by a negative charge distribution
and positive point charges.

One should note that this theorem is only valid if it is applied to the exact eigenfunctions
of the Hamiltonian. Whereas deviations in the wave functions and thus the charge density
enter the total energy in second order, the forces are influenced in first order by these kinds
of errors [Fin03].

2.4.2 Direct methods

Among the first ab-initio methods for the treatment of lattice vibrations is the frozen phonon
approach [WM78; WM79; Sri90]: A wave moving through a crystal causes the ions to dis-
place from their equilibrium positions in a defined pattern, which is given by the amplitude
vectors (Eq. (2.28)) of the respective ions. Within the adiabatic approximation, the electron
gas assumes its ground state instantaneously at every point in time during the motion of the
ions. Thus, the total energy of the system can be calculated self-consistently at every fixed
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2.4. Force constants from first principles

time and displacement. Such a ’frozen’ vibrational mode is equivalent to a crystal lattice
with reduced symmetry and increased total energy, compared to the undistorted ground
state lattice. According to the harmonic approximation (Eq. (2.22)), the frequency ω of a
specific displacement pattern is given by

1

2
ω2
∑

s

ms |u(s)|2 = Etot(u)− Etot(0), (2.44)

in which the u denote the displacements of the ions from their respective equilibrium po-
sitions and ms refers to the ions’ masses. Etot denotes the total energy as sum of Born-
Oppenheimer energy and ion-ion energy for the distorted and undistorted lattice, respec-
tively. Due to the harmonic nature of the oscillation, total energy calculations for small u,
−u and 2u are sufficient to obtain the frequency of the mode.

In calculations using translational symmetry, the frozen mode is limited in wavelength
by the size of the supercell. Thus, this method allows the calculation of vibrational frequen-
cies only for a very limited set of q-vectors. An illustration of a supercell configuration for
a frozen phonon calculation is shown in Fig. 2.1 (a). An extension of this approach is the
planar force constant method [KM82; Sri90], which allows the calculation of the phonon
dispersion along distinct q directions by introducing effective interplanar forces which af-
fect the motion of planes of atoms perpendicular to q. The respective force constants are
equally determined via supercell calculations.

A more versatile approach was proposed by Kresse et al. [KFH95]: The displacement
u(ls) of an atom in a supercell, with l being the index of the respective unit cell and s
denoting the position within the unit cell, induces forces F ss′

ll′ between the displaced atom
and all other atoms (l′s′) within the supercell. The resulting total force on (ls) is

F l
s =

∑

l′s′

F ss′
ll′ . (2.45)

The force field F ss′
ll′ resulting from a single displacement can be obtained from a self-

consistent DFT calculation by making use of the Hellmann-Feynman theorem. By appli-
cation of the symmetry operations of the lattice, the complete force field can be calculated

u

u
u

u F12

F13
F23 F33

F32

F31F21

F22

u

a) b)

Figure 2.1: a) Frozen phonon method: A supercell of a two-dimensional lattice with an
imprinted displacement pattern for a transverse vibrational mode with wavelength λ = 4a
is shown. The corresponding undisturbed lattice would be simple quadratic with lattice
constant a. b) Finite displacement method. The displacement amplitudes are exaggerated
for the sake of clarity.
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2. LATTICE DYNAMICS FROM FIRST PRINCIPLES

with a minimum of self-consistent calculations, each with a different displacement. After-
wards, the force constants are given by

φαβ(ls|l′s′) = −

(
F ss′
l′l

)
β

uα(ls)
. (2.46)

An important criterion for the convergence of Eq. (2.31), by which the dynamical matrix is
calculated, is the size of the supercell. Its lattice constant has to be chosen big enough to
obtain negligible contributions to the force field from atoms at greater distances. This can
be a major drawback of the method, since the size of the supercells can be computationally
very demanding in some cases, especially when long-wavelength effects are to be studied.
The advantage of this method is that it can treat linear as well as non-linear effects and that
it, in principle, can be used with every computer code capable of self-consistent electronic
structure calculations.

2.4.3 Perturbation theory and linear response

To overcome the above mentioned disadvantages of supercell calculations, it is desirable to
have a method available to calculate the dynamical matrix directly from the properties of
the electronic ground state, without supercells and at arbitrary q-vectors. Starting from Eq.
(2.42), the total force on ion i in the nth unit cell is

F i
n = −∇u(ni)E

′
tot, (2.47)

where E′tot is the total energy of the crystal minus the kinetic energy of the nuclei,

E′tot = Enn + EBO. (2.48)

Thus, the force constant matrix as the negative second derivative of the force with respect
to the jth ion in cell m can be constructed out of two major contributions,

φαβ(ni|mj) =
∂2Enn

∂uα(ni)∂uβ(mj)
+

∂2EBO

∂uα(ni)∂uβ(mj)
(2.49)

=φn
αβ(ni|mj) + φe

αβ(ni|mj), (2.50)

of which the first one results from the Coulomb interactions between ions only and the
second one covers the contribution of the electronic states. From Eq. (2.42) it follows that
the force resulting from the electron cloud is

(
f in
)
α

= −∇u(ni)EBO = −
〈

Ψ[n]
∣∣∣ ∇u(ni)

[
T̂e + Vee + V({u})

] ∣∣∣Ψ[n]
〉

(2.51)

and since the kinetic energy operator as well as the electron-electron interaction do not
depend explicitly on nuclear coordinates,

∇u(ni)

[
T̂e + Vee

]
= 0 (2.52)

and the remaining expression for the αth vector component of the force, after evaluation
the expectation value, becomes

(
f in
)
α

= −
∫

Ωcryst

dx n(x)
∂V({u},x)

∂uα(ni)
. (2.53)
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2.5. Contribution of bare ions

The negative derivative of this expression gives the desired element of the electronic force
constant matrix

φαβ(ni|mj) =− ∂

∂uβ(mj)

(
f in
)
α

(2.54)

=

∫

Ωcryst

dx Kjm,β(x)
∂V({u},x)

∂uα(ni)
+

∫

Ωcryst

dx n(x)
∂2V({u},x)

∂uα(ni)∂uβ(mj)
, (2.55)

in which the quantity K is defined as

Kjm,β(x) =
∂n(x)

∂uβ(mj)
, (2.56)

describing the rate of change of the electron density at position xwhen ion (mj) is displaced
in direction β. This important result was first published in [DJ69; PCM70] and paved the
way for modern first-principles lattice-dynamical methods. The different methods which
have been developed since then mainly differ in the manner in which K is determined.
Since the density does not depend explicitly on the nuclear coordinates, but is a result of
the Schrödinger equation for a given set of positions, a prediction for its response to external
perturbations is needed.

One can apply traditional perturbation theory, which can be done in several ways. One
of them is to linearize the electronic Schrödinger equation to obtain the Sternheimer equa-
tion [Ste54], which was orignially developed for atomistic calculations and applied to lattice
dynamics via a Green function method [Zei84; BGT87]. It is successfully used to calculate
the first-order derivatives of the electronic wave functions with respect to nuclear coor-
dinates. Another possible approach to this quantity is the Hylleraas variational principle
[Hyl30], which was derived from the Reyleigh-Ritz principle. Reviews of these kinds of
methods are given in [Gon95; Gon94; BGD01].

The focus in this work lies on the methods developed by Zangwill and Soven [ZS80],
Stott and Zaremba [SZ80] and Mahan [Mah80], which are directly based on the linear
response theory developed by Kubo (see Chap. 3). Here, the perturbation of the electronic
charge density δn(x) due to an external force is given by the equation

δn(x) =

∫
dx′ χ(x,x′)δV({u},x′), (2.57)

in which δV is the perturbing external potential defining the electronic ground state and
χ(x,x′) is the linear-order response function of the electron gas. The latter is a correlation
function, which describes how strong the electron density n(x) is influenced when a per-
turbation at x′ occurs. In the context of lattice dynamics, the external perturbation δn(x) is
given by the displacement of nuclei, resulting in

Kjm,β(x) =

∫
dx′ χ(x,x′)

∂V({u},x′)
∂uβ(mj)

, (2.58)

The path to the linear response function and thus to Kjm,β will be outlined in the following
chapters. However, the contribution of the pure internuclear interaction Enn to the phonon
frequencies will be discussed first.

2.5 Contribution of bare ions

As shown in Eq. (2.50), the dynamical matrix of a crystal lattice can be written as sum
of a pure nuclear part and a part containing all contributions from interactions with and
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2. LATTICE DYNAMICS FROM FIRST PRINCIPLES

between electrons. Within the adiabatic approximation, the nuclear part φn
αβ can be treated

classically within high precision. The potential energy of the lattice upon the internuclear
Coulomb repulsion is given by

Enn =
1

2

e2

4πε0

(ls) 6=(l′s′)︷ ︸︸ ︷∑

ll′

∑

ss′

ZsZs′

|Rl −Rl′ + τs − τs′ + u(ls)− u(l′s′)| . (2.59)

In many cases (see chapter 5) it is useful to include strongly bound electrons into this clas-
sical treatment by assuming that these, together with the nuclei, compose non-polarizable
ions with an effective charge Z∗s . These ions can no longer be treated as point charges.
Instead, one can assume a static charge density

nion
ls (x) = Zsδ(x−Rl − τs − u(ls))− nc

ls(x−Rl − τs − u(ls)), (2.60)

or
nion
ls (r) = Zsδ(r − u(ls))− nc

ls(r − u(ls)) (2.61)

in cell-centred coordinates (shifting the origin of the local coordinate to the center of the
respective cell, such that x = Rl + τs + r.

Using Rydberg atomic units (e =
√

2 and ε0 = 1/4π) and introducing the definitions

Vss′ll′ (r, r′) =
2

|Rl −Rl′ + τs − τs′ + u(ls)− u(l′s′) + r − r′| (2.62)

V̊ss′ll′ (r, r′) =
2

|Rl −Rl′ + τs − τs′ + r − r′|
, (2.63)

the ion-ion potential energy can be rewritten as

Eii =
1

2

(ls)6=(l′s′)︷ ︸︸ ︷∑

ll′

∑

ss′

∫
dr

∫
dr′ nion

s (r)Vss′ll′ (r, r′)nion
s′ (r′). (2.64)

where the dependence of the energy on the core positions is explicitly addressed by the
Coulomb denominator V lsl′s′(r, r′). The symbol V̊ defined in Eq. (2.63) denotes the Coulomb
potential within a lattice in its ground state and is thus independent of the {u}. Thus, the
part of the force constants resulting only from the positively charged ionic cores reads

φion
αβ (mi|nj) = ∇uβ(mi)

(
∇uα(nj)Eii

)∣∣∣
u=0

=

∫
dr

∫
dr′ nion

i (r)
1

2

[
δmnδij

∑

l′

∑

s′

nion
s′ (r′)∂2

rαr′β
V̊ is′ml′(r, r′)

− nion
j (r′)∂2

rαr′β
V̊ ijmn(r, r′)

]
,

(2.65)

where it was made use of the relations

∇u(mi)αV ijmn(r, r′)
∣∣
u=0

= ∇rαV̊ ijmn(r, r′), (2.66)

∇u(nj)βV ijmn(r, r′)
∣∣∣
u=0

= ∇r′β V̊
ij
mn(r, r′) = −∇rβ V̊ ijmn(r, r′). (2.67)
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The dynamical matrix resulting from the ion-ion interaction is the lattice Fourier transform
of the above force constant matrix, normalized by the atomic masses (see Eq. (2.31))

ionDij
αβ(q) =

1√
MiMj

∑

n

φion
αβ (0i|nj)eiq·Rn

=
1√
MiMj

∫
dr

∫
dr′ nion

i (r)
∑

n

[
δ0nδij

∑

l′

∑

s′

nion
s′ (r′)∂2

rαr′β
V̊ is′0l′ (r, r

′)

− nion
j (r′)∂2

rαr′β
V̊ ij0n(r, r′)

]
eiq·Rn .

(2.68)

The Fourier series above can be further developed as follows:

∑

n

[
δ0nδij

∑

l′

∑

s′

nion
s′ (r′)∂2

rαr′β
V̊ is′0l′ (r, r

′)− nion
j (r′)∂2

rαr′β
V̊ ij0n(r, r′)

]
eiq·Rn

=
∑

n

δ0nδij
∑

l′

∑

s′

nion
s′ (r′)∂2

rαr′β
V̊ is′0l′ (r, r

′)eiq·Rn − nion
j (r′)

∑

n

∂2
rαr′β
V̊ ij0n(r, r′)eiq·Rn

= δij
∑

l′

∑

s′

nion
s′ (r′)∂2

rαr′β
V̊ is′0l′ (r, r

′)eiq·R0 − nion
j (r′)

∑

n

∂2
rαr′β
V̊ ij0n(r, r′)eiq·Rn

= δij
∑

s′

nion
s′ (r′)

∑

l′

∂2
rαr′β
V̊ is′0l′ (r, r

′)ei0·Rl′ − nion
j (r′)

∑

n

∂2
rαr′β
V̊ ij0n(r, r′)eiq·Rn

= 2δij
∑

s′

nion
s′ (r′)Cis

′
αβ(r, r′, q = 0)− 2nion

j (r′)Cijαβ(r, r′, q),

(2.69)

where the second derivative of the lattice Fourier transform of the Coulomb potential was
denoted as

Cijαβ(r, r′, q) =
1

2
∂2
rαr′β

∑

n

V̊ ij0n(r, r′)eiq·Rn . (2.70)

The numerical evaluation of this quantity is described in appendix A.2. The resulting ex-
pression for the ion-ion dynamical Matrix is thus

ionDij
αβ(q) =

1√
MiMj

∫
dr

∫
dr′ nion

i (r)×

×
[
δij
∑

s

nion
s′ (r′)Cisαβ(r, r′, q = 0)− nion

j (r′)Cijαβ(r, r′, q)

]
.

(2.71)

If the individual ionic densities are spherical and do not overlap, as is the case when only
core electrons are included, their Coulomb interaction is equal to the Coulomb interaction
of point charges nion

i (r) = Z∗i δ(r) with an effective ion charge Z∗i . In this case, Eq. (2.71)
simplifies to

ionDij
αβ(q) =

Z∗i√
MiMj

[
δij
∑

s

Z∗s C̃
is
αβ(q = 0)− Z∗j C̃ijαβ(q)

]
. (2.72)

with

C̃ijαβ(q) = −1

2
∂2
rαrβ

∑

n

V̊ ij0n(0, r)eiq·Rn

∣∣∣∣∣
(r=0)

= −∂2
rαrβ

∑

n

eiq·Rn

|Rn + τi − τj − r|

∣∣∣∣∣
(r=0)

.

(2.73)
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The functions C̃(q) can not be evaluated directly from Eq. (2.70) due to the long-range
nature of the unscreened Coulomb potential which causes a very slow convergence of the
Fourier series. A way out of this problem lies in the application of the Ewald summation
method [Ewa21; Ewa38; Zim92], by which the sum is split into two rapidly converging
sums over real and reciprocal lattice vectors,

∑

n

eiq·Rn

|Rn − r|
=

4π

ΩBZ

∑

k

e−|Gk+q|2/4η

|Gk + q|2
ei(Gk+q)·r +

∑

l

erfc (η |Rl − r|)
|Rl − r|

eiq·Rl . (2.74)

The sums run over all reciprocal lattice vectors Gk and real lattice vectors Rn, respectively,
arranged according to length. The summations are truncated only after complete shells of
vectors to avoid symmetry-related errors. The factor e−|Gk+q|2/4η causes a fast convergence
of the reciprocal sum with increasing Gk. The same holds for the complementary Gaussian
error function, which is defined [Bro+01] as

erfc(x) = 1− erf(x) = 1− 2√
π

∫ x

0
dt e−t

2
(2.75)

and approaches zero quickly for increasing arguments. The result of the two sums is inde-
pendent of the Ewald parameter η, which is chosen such that both sums converge rapidly
and can be aborted after few elements. The first correct result for the dynamical matrix
of ion lattices was published by Kellermann [Kel40], for which a didactic approach can be
found in [Brü82]. The resulting expression reads

C̃ijαβ(q) =
4πe2

ΩUC

∑

k

(Gk + q)α(Gk + q)β

|Gk + q|2
e−|Gk+q|2/4ηeiGk·(τi−τj)

+ e2
∑

n

eiq·Rnfαβ(Rn + τi − τj),
(2.76)

where the coefficients fαβ result from the second derivative and are given by

fαβ(x) =
xαxβ

|x|5
[
3erfc(

√
η |x|) + 2

√
η

π
|x|
(

3 + 2η |x|2
)

e−η|x|
2
]

− δαβ

|x|3
[
erfc(
√
η |x|) + 2

√
η

π
|x| e−η|x|2

]
,

(2.77)

It is important to note that C̃ijαβ(q) is not defined for q = 0, since the reciprocal sum contains
a divergent term. This is a result from the pure electrostatic derivation of this expression.
This weakness can be corrected by approaching the problem electrodynamically and taking
into account the electromagnetic field which is generated by the oscillating ions [Kel40]. In
this case, the formula for q 6= 0 stays unchanged, but one obtains the expression

C̃ijαβ(q = 0) =
4πe2

ΩUC

∑

Gk 6=0

(Gk)α(Gk)β
G2
k

e−G
2
k/4η cos(Gk · (τi − τj))

+ e2
∑

n

fαβ(Rn + τi − τj)
(2.78)

for q = 0.
It is most convenient to consider the above expression for ionic frequencies for the case

of a monoatomic cubic crystal. In this case the dynamical matrix reduces to

ionD11
αβ(q) =

(Z∗)2

M

[
C̃11
αβ(q = 0)− C̃11

αβ(q)
]
. (2.79)
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2.5. Contribution of bare ions

Fig. 2.2 (a) shows the lattice vibrational spectrum of a face-centred cubic (fcc) ion lattice
along the high-symmetry lines ∆, Σ and Λ of the first Brillouin zone. This example repre-
sents a Cu crystal with ion charge Z∗ = 11 and without valence electrons. A scheme of the
first Brillouin zone and the respective paths is shown in Fig. 2.2 (b).

Γ Γ

∆ [100] Σ [110] Λ [111]

ωp

(a) Comparison between calculated frequencies (solid lines)
of a Cu ion lattice (Z∗ = 11, face centred cubic lattice with
a lattice parameter of 6.83 a0) and experimental frequencies
(black dots). The latter refer to the right hand frequency axis
and are scaled by a factor of 6 to allow for better compara-
biltity.

U

X

WK

L

Γ
Λ

Δ

Σ

kz

kx

ky

(b) First Brillouin zone of the fcc lattice. Latin
letters denote selected points of high symmetry
and are connected by red lines for convenience.
The three high-symmetry lines Λ, Σ and ∆ cor-
respond to the paths used in (a). Of line Σ, only
the part KΓ is shown. The remaining segment
XK, reaching into the neighbouring Brillouin
Zone, is equivalent to XU.

Figure 2.2: Lattice vibrational frequencies on high symmetry lines of a simple fcc lattice.

The discussion of lattice vibrational frequencies is most transparent for lines and points
of high symmetry within the first Brillouin zone due to the existence of pure longitudinally
and transversal polarized modes. As opposed to this, mixed modes occur in arbitrary prop-
agation directions. Since the Ewald parameter η in C̃ijαβ has no influence on the converged
result, it can be chosen sufficiently large that the sum over real lattice vectors vanishes. In
case of a monoatomic lattice the phase factor eiG·(τi−τj) equals 1 and it becomes clear that
the matrix becomes diagonal in (α, β) and reduces to

ionD11
αα(q) =

4π(Z∗)2e2

MΩUC


∑

G 6=0

G2
α

G2
−
∑

G

(G+ q)2
α

|G+ q|2


 (2.80)

In the following, the behaviour of the dynamical matrix on the ∆ line shall be briefly dis-
cussed. On this path, the q vector can take values of (qx, 0, 0) with qx ∈ [0, π/a], which
means that the longitudinal mode with amplitude parallel to q is represented by α = x, and
the parallel modes are represented by α = y, z. In case of the latter, the matrix approaches

lim
q→0

[ionD11
αα(q)] ∝ lim

q→0

∑

G 6=0

G2
α

G2

[
1− G2

(G+ q)2

]
= 0 (2.81)

in the limit of long wavelength or small q. Furthermore, the matrix elements approach the
Γ point like q2, resulting in a linear behaviour of the frequency. In contrast, the limit for the
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2. LATTICE DYNAMICS FROM FIRST PRINCIPLES

longitudinal mode reads

lim
q→0

[
ionD11

αα(q)
]
∝ lim
q→0

∑

G 6=0

[(
G2
α

G2
− (G+ q)2

α

(G− q)2

)
− q2

α

q2

]
= 1, (2.82)

resulting in a finite frequency for long wavelengths.The reason for the long wavelength-
behaviour of longitudinal modes can be understood as a result of the long-range Coulomb
interaction in a positively charged ionic lattice, which behaves similar to a plasma of equally
charged Particles. Thus, the limiting frequency is given by the ion plasma frequency [Zim92]

ωp =

√
Z2e2

ε0ΩUCM
(SI units) (2.83)

ωp =

√
4π

Z2e2

ΩUCM
(ARU). (2.84)

The above described behaviour of different polarization branches is illustrated in Fig.
2.2 (a). Additionally, this plot shows the experimentally obtained phonon frequencies of
Cu [Nic+67] (black dots). These are multiplied by a factor of 6 compared to the ionic fre-
quencies and correspond to the right-hand scale. It becomes apparent that the behaviour
of measured transverse modes, apart from their absolute values, is very similar to the re-
spective ionic frequencies. This indicates that the presence of valence electrons effectively
reduces the ion charge due to screening. The effect on longitudinal modes is different: Apart
from scaling the frequencies, the valence electrons cause the longitudinal band to vanish at
the Γ point similar to transverse modes. This effect can be understood by the electrostatic
screening of the ion charge by the surrounding valence electrons and thus an effective range
decrease of the ion-ion Coulomb interaction. In the limit of long wavelengths, neighbour-
ing atoms are only weakly polarized and the effective forces between them vanish, and with
them the frequency.
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3Linear response theory from first principles

A widely used concept in physics is the assumption that a small external perturbation to
a system near its equilibrium state causes a response which can well be described as pro-
portional to the perturbation. Especially in the quantum mechanics of many-body systems,
where exact solutions of the Schrödinger equation are impossible, this is, among other per-
turbative techniques, an important approach.

A modern method for solving the Schrödinger equation, which is very common in quan-
tum chemistry and computational physics, is density functional theory. Instead of trying
to solve the Schrödinger equation for every electron in its complex environment, it allows
to determine the ground state electron density from an effective single-particle system in
which the complex interactions between electrons are mapped onto effective potentials.
This ab-initio method has been extended to time-dependent problems and can also be used
in combination with linear response theory, allowing for the determination of exited states
from ground state properties.

In this chapter, the basic principles of linear response theory are outlined and its applica-
tion to electron densities is shown. Afterwards, an introduction to density functional theory
(DFT) and its time-dependent generalization (TDDFT) is given. The last section shows
how excitations induced by external fields can be treated by combining linear response and
TDDFT.

3.1 Introduction to linear response

As first derived by R. Kubo in 1957 [Kub57; Kub66], the response to an external pertur-
bation in linear response theory is given by the so called Kubo formula. The starting point
for its derivation is a system in equilibrium state, described by the Hamiltonian Ĥo with a
complete set of eigenstates {|n〉} and eigenvalues {En}. As known from statistical quantum
mechanics [BF04], the expectation value of an operator Ô is given as

〈Ô〉 =
1

Z0
Tr
[
ρ̂0Ô

]
=

1

Z0

∑

n

〈n|Ô|n〉e−βEn , (3.1)

where Z0 =
∑

n e−βEn is the canonical partition function and β = 1/kBT . According to
this, the equilibrium density operator ρ̂0 is defined as

ρ̂0 = e−βĤ0 =
∑

n

|n〉〈n|e−βEn . (3.2)

At t = t0 a small external perturbation V (t) is acting on the system, changing the Hamilto-
nian to

Ĥ(t) = Ĥ0 + V (t)θ(t− t0). (3.3)

For V (t) is small, it is reasonable to make use of the interaction picture representation | n̂(t)〉
which is related to the time-dependent state vector |n(t)〉 by

|n(t)〉 = e−iĤ0t/~| n̂(t)〉 = e−iĤ0t/~Û(t, t0)| n̂(t0)〉 = e−iĤ0t/~Û(t, t0)|n〉 , (3.4)

| n̂(t0)〉 = eiĤ0t0/~|n(t0)〉 (3.5)
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3. LINEAR RESPONSE THEORY FROM FIRST PRINCIPLES

with a unitary operator Û(t, t0) describing the time evolution of the state |n〉 . An application
of the time-dependent Schrödinger equation i~∂t|n(t)〉 = H(t)|n(t)〉 yields

Û(t, t0) = 1− i

~

t∫

t0

dt′ eiĤ0t′/~V (t′)e−iĤ0t′/~
︸ ︷︷ ︸

V̂I(t′)

Û(t′), (3.6)

which can be solved iteratively. The smallness of VI(t) justifies the truncation of the resulting
series after the linear term, giving

Û(t, t0) = 1− i

~

t∫

t0

dt′ V̂I(t
′). (3.7)

Plugging this result into Eq. (3.1) and considering only terms linear in V̂I(t), one obtains
the Kubo formula

δ〈Ô(t)〉 = 〈Ô(t)〉 − 〈Ô〉0 =− i

~

t∫

t0

dt′
〈[
ÔI(t), V̂I(t

′)
]〉

0

=

∞∫

t0

dt′ χÔV̂ (t, t′)

(3.8)

which gives the linear response of the equilibrium quantity 〈Ô〉 to an external perturbation
V (t) in form of a retarded correlation function

χÔIV̂I
(t, t′) = − i

~
θ(t− t′)

〈[
ÔI(t), V̂I(t

′)
]〉

0
(3.9)

which is often referred to as generalized susceptibility. In the common case where the
external perturbation can be expressed a product V̂ (t) = P̂ f(t) of a time-independent
operator and an ordinary function of time, the susceptibility can be rewritten as

χÔP̂ (t, t′) = χÔP̂ (t− t′)f(t′), (3.10)

giving rise to a modification of (3.8) as

δ〈Ô(t)〉 =

∞∫

−∞

dt′ χÔP̂ (t− t′)f(t′). (3.11)

In this expression it was further assumed that the external potential V̂ was switched on at
a moment t0 so long ago that the system has reached a new steady state. This assumption
would be inappropriate when the description of such a switching process itself was of in-
terest. The above equation has the form of a convolution and thus has the simple Fourier
transform

δ〈Ô(ω)〉 = χÔP̂ (ω)f(ω), (3.12)

which shows that the frequency of the linear response is equal to the frequency of the
external perturbation.

The above description was limited to homogeneous systems with spatially independent
perturbations. Assuming instead a perturbing operator of the form

V̂ (t) =

∫
dx f(x, t)P̂ (x), (3.13)
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3.2. Electron density correlation function

Eq. (3.10) still holds and because of the linearity of the Kubo formula the following set of
equations is obtained:

δ〈Ô(x, t)〉 =

∫
dx

∞∫

t0

dt′ χ(xt,x′t′)f(x, t′)

χ(xt,x′t′) =χÔ(x)P̂ (x)(t− t′) = − i

~
θ(t− t′)

〈[
ÔI(x, t), P̂I(x

′, t′)
]〉

0
.

(3.14)

The following section will shed some light on the practical use of these equations when
applied to an ensemble of electrons in an external potential.

3.2 Electron density correlation function

One of the most important applications of linear response theory lies in the study of exci-
tations in electronic systems induced by weak external forces. It is useful to describe such
a system of interacting fermions in terms of quantum field operators. The unperturbed
Hamiltonian reads [FW71]

Ĥ0 =
∑

α=↑↓

∫
dx ψ†α(x)

1

2me

(
~
i
∇
)2

ψα(x)

+ e

∫
dx n̂(x)V(x)

+
1

2

∑

α=↑↓

∑

β=↑↓

∫
dx

∫
dx′ ψ†α(x)ψ†β(x′)ψβ(x′)ψα(x)V (x,x′),

(3.15)

in which V (x,x′) defines the Coulomb repulsion of two particles at places x and x′. The
scalar, time-independent external potential V(x) which is assumed to be diagonal in spin
space couples to the system by means of the density operator

n̂(r) =
∑

α=↑↓
ψ†α(r)ψα(r). (3.16)

V is responsible for the electronic properties of the system. For instance, in a solid this can
be the periodic potential of the atomic nuclei. An important question is how the electronic
density is influenced if a small additional potential δV(x, t) is applied. By making use of Eq.
(3.13), it becomes clear that the time-dependent operator

H ′(t) =

∫
dx δV(x, t)n̂(x) (3.17)

has to be added to the Hamiltonian Ĥ0. In anology to Eqs. (3.14), the linear response of
the electron density is found to be

δ〈n̂(x, t)〉 =

∫
dx

∞∫

t0

dt′ χ(xt,x′t′)δV(x, t′)

χ(xt,x′t′) =χn̂(x)n̂(x)(t− t′) = − i

~
θ(t− t′)

〈[
n̂I(x, t), n̂I(x

′, t′)
]〉

0
.

(3.18)

Again, causality is ensured by the Heavyside step function which ensures that only values
of δV(x, t′) for t′ < t determine the evolution of δ〈n̂(x, t). By application of Eq. (3.1) one
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3. LINEAR RESPONSE THEORY FROM FIRST PRINCIPLES

obtains

χ(x,x′, t− t′) = − i
~
θ(t− t′)

∑

j

e−βEj

Z0

[
〈Ψj | n̂I(x, t)n̂I(x

′, t′)|Ψj〉

− 〈Ψj | n̂I(x
′, t′)n̂I(x, t)|Ψj〉

] (3.19)

and inserting the completeness relation

∞∑

i=1

|Ψi〉〈Ψi| = 1̂ (3.20)

yields

χ(x,x′, t− t′) = − i
~
θ(t− t′)


∑

ij

e−βEj

Z0
〈Ψj | n̂H(x)|Ψi〉〈Ψi| n̂H(x′)|Ψj〉

−
∑

ji

e−βEj

Z0
〈Ψi| n̂H(x)|Ψj〉〈Ψj | n̂H(x′)|Ψi〉


 .

(3.21)

By a permutation of the summation indices in the second sum as well as making use of the
occupation numbers fi = e−βEi/Z0, the response function can be written as

χ(x,x′, t− t′) =− i

~
θ(t− t′)

∑

ij

(fj − fi) 〈Ψj | n̂H(x)|Ψi〉〈Ψi| n̂H(x′)|Ψj〉 ,

=− i

~
θ(t− t′)

∑

ij

(fj − fi) 〈Ψj | n̂(x)|Ψi〉〈Ψi| n̂(x′)|Ψj〉e−
i
~ (Ej−Ei)(t−t′),

(3.22)

while in the last step the definition of the Heisenberg operators was used. This expression
is often referred to as Lehmann or spectral representation [Käl52; Leh54]. By means of a
Fourier transform, the susceptibility can be written in frequency space as

χ(x,x′, ω) = lim
η→0+

∞∫

0

dt χ(x,x′, t)ei(ω+iη)t (3.23)

= lim
η→0+

∑

ij

(fj − fi)
〈Ψj | n̂(x)|Ψi〉〈Ψi| n̂(x′)|Ψj〉

Ej − Ei − ~ω − i~η
(3.24)

where the complex frequency ω + iη has been introduced to ensure convergence of the
Fourier integral. This picture has a clear physical interpretation: The density correlation
function has poles at frequencies where transitions between occupied and unoccupied states
occur and thus delivers information about excited states calculated from the ground state
eigenfunctions of the unperturbed Hamiltonian.

3.3 Time dependent density functional theory

The goal of modern electronic structure theory is to describe an ensemble of electrons and
nuclei whose behaviour is defined by the Hamiltonian (2.2). As discussed in section 2.2,
it is sufficient in most cases to consider only those parts of the operator which act on elec-
tronic coordinates, resulting in the solution of Schrödinger equation for an inhomogeneous
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3.3. Time dependent density functional theory

electron gas in an external potential. The solution of this equation is the many-particle
wave function of the Ne electrons populating the system and thus still a very complicated
object. Ψ is a function of 2 · 3Ne electronic coordinates, each of which in a numerical calcu-
lation has to be represented on a mesh of p points. This results in p6Ne floating point values
which have to be stored during a calculation, making such a calculation a hard task even for
single atoms. In contrast, the electron density, which for a normalized many-particle wave
function Ψ is given by

n(x) = Ne

∑

σ,σ2...σNe

∫
dx2 · · ·

∫
dxNe |Ψ(xσ,x2σ2 · · ·xNeσNe)|2 , (3.25)

is a simple function of space and often contains all physically relevant informations about
the system under consideration. The first theory which dealt with the density as basic
variable was proposed by Thomas and Fermi [Tho27; Fer28] but was only of limited predic-
tive power, mainly due to the neglect of exchange and correlation effects. Modern density
functional theory includes both in form of an effective potential acting on non-interacting
auxiliary particles. The following description of basic DFT closely follows the expositions in
[Gon00] and [GM12].

3.3.1 Hohenberg-Kohn theorems

In what follows, the description of electronic systems, defined by the Born-Oppenheimer
Hamiltonian

HBO = T̂e({x}) + Vee({x}) + V({R}) (3.26)

shall be of interest. The external potential V({R}) is not necessarily limited to Coulomb
interactions, but in many applications it is given by the Coulomb potential of atomic nuclei
of the system under concern. In all cases, this potential defines the system and determines
its electronic structure. The fact that this relation is invertible is one of the keys to DFT.
In their important paper from 1964 [HK64], Hohenberg and Kohn proved two theorems
which laid the foundation of modern DFT:

First, the external potential acting on the electrons in their ground state is, up to an
additive constant, defined by the electron density. Thus, the total energy can be written as
a functional of the electron density as opposed to the wave function:

E0 = 〈Ψ0|HBO|Ψ0〉 = E[n0] = T [n0] + Uee[n0] + V[n0]

=F [n0] +

∫
dr n0(x)V(x).

(3.27)

F [n] is a universal functional of the density because it is independent of the external poten-
tial and is composed of

F [n] = Te[n] + Uee[n], (3.28)

where the functional Te[n] gives the kinetic energy of the fully interacting electron gas and
Uee[n] represents the energy contributed by all other interelectronic interactions. The latter
can be further decomposed into

Uee[n] = UH[n] +K[n] =
1

2

e2

4πε0

∫
dx

∫
dx′

n(x)n(x′)

|x− x′| +K[n], (3.29)

with the first term being the classical Hartree energy and the functional K[n] containing all
remaining contributions arising from the Pauli principle as well as the correlated motion of
the electrons. V[n0] denotes the expectation value of the external potential as a functional
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3. LINEAR RESPONSE THEORY FROM FIRST PRINCIPLES

of the ground state density. The potential V(x) in Eq. (3.27) is the external potential at
point x. In case of a periodic crystal, it reads

V(x) =
1

4πε0

∑

ls

Zse

|Rl + τs − x|
, (3.30)

where the sums run over all lattice vectors Rl and site indices s within the unit cell.
The second theorem implies that the ground state density minimizes the energy func-

tional under the constraint of fixed particle number and the condition

E0 ≤ E[n]. (3.31)

In analogy to the Reyleigh-Ritz principle [Nol06] for wave functions, the density satisfies a
variational principle

δẼ[n(x)] = δ

{
E[n]− µ

∫
dx n(x)−N

}
= 0 (3.32)

where the chemical potential µ enters as Lagrange parameter which, together with Eq.
(3.27), is defined as

µ = V(x) +
δF [n]

δn(x)
. (3.33)

This scheme, in principle, offers a way to obtain the exact ground state density. A direct nu-
merical implementation is, however, a difficult task and turns out to be limited in accuracy.

3.3.2 Kohn-Sham equations

Kohn and Sham [KS65] presented an efficient numerical method at the cost of reintroducing
wave functions. They defined a reference system of non-interacting electrons obeying the
single particle Schrödinger equation ĥsφi = εiφi and

ĥs = − ~2

2me
∇2 + vs(x). (3.34)

The spin orbitals φi are then exactly given by linear combinations of Slater determinants.
Furthermore, they are assumed to represent a unique decompostion of the exact ground
state density via

n(x) =
∑

i

θ(µ− εi) |φi(x)|2 . (3.35)

The kinetic energy is given by

Ts =
∑

i

〈φi| −
~2

2me
∇2|φi〉 , (3.36)

which is different from the kinetic energy functional T [n] of the interacting system. The
universal functional F [n] can now be rewritten as

F [n] = Ts[n] + UH + Exc[n], (3.37)

where the exchange-correlation energy is defined as

EXC[n] = T [n]− Ts[n] + Uee − UH, (3.38)

containing all contributions which arise from the many-particle nature of the interacting
system. Still, an approximation for Exc has to be found, while Ts is exactly known in terms
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3.3. Time dependent density functional theory

of spin orbitals. This is useful because Ts is a much larger quantity than Exc. Apart from
that, Ts mainly accounts for density oscillations which are well described within the Kohn-
Sham scheme [PK03].

With the above definition of the universal functional F [n], Eq. (3.33) becomes in the
single-particle picture

µs = veff(x) +
δTs[n]

δn(x)
, (3.39)

where the effective Kohn-Sham potential is defined as

veff(x) = vs(x) = V(x) +
δUH[n]

δn(x)
+
δExc[n]

δn(x)

= V(x) +
1

4πε0

∫
dx′

n(x′)

|x− x′| + vxc(x).

(3.40)

Assuming that the chemical potentials µ and µs are identical under the constraint of particle
number conservation, the solutions of the single-particle Schrödinger equation

[
− ~2

2me
∇2 + veff(x)

]
φi(x) = εiφi(x) (3.41)

yield the exact ground state density

n(r) =

occ∑

i

|φi(r)|2 . (3.42)

Eqns. (3.40) to (3.42) are called the Kohn-Sham equations and have to be solved in a
self-consistent procedure. The starting point for this iterative procedure usually is an ed-
ucated guess (e.g. a sum of atomic densities) for n(x) from which the effective potential
is calculated. In the next step, a solution of Eq. (3.41) is achieved, whence a new den-
sity follows via Eq. (3.42). This procedure is repeated and finalizes after m steps when
||nm(x)− nm−1(x)|| is smaller than a predefined convergence parameter (see also Fig. 4.3
on p. 47).

The Kohn-Sham procedure was later generalized to the treatment of spin-dependent
systems by von Barth and Hedin [BH72]. In the case of collinear magnetism, in which all
magnetic moments are aligned parallel, the spin-dependent density can be expressed as

nσ(x) =

occ∑

i

|φσi (x)|2 (3.43)

where the spin index can take the two states σ =↑, ↓. The total density n(x) and the
magnetization density m(x) are expressed as

n(x) = n↑(x) + n↓(x) (3.44)

m(x) = n↑(x)− n↓(x). (3.45)

According to this description, the spin-dependent Kohn-Sham potential takes the form

vσeff(x) = V ext(x) +
1

4πε0

∫
dx′

n(x′)

|x− x′| +
δEXC[n↑(x), n↓(x)]

δnσ(x)
(3.46)

and defines the spin-dependen Kohn-Sham equations
[
− ~2

2me
∇2 + vσeff(x)

]
φσi (x) = εσi φ

σ
i (x), (3.47)

where the eigenvalues are spin-dependent, too. However, in this work only non-spin-
polarized systems are under concern.
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3.3.3 Exchange-correlation energy

Up to this point, the Kohn-Sham method is, in principle, exact. For a practical application
of the presented theory, however, an explicit expression of the exchange-correlation energy
functional Exc is needed. This is only possible in an approximative scheme, which makes
the results of DFT calculations mainly dependent on the choice of the model functional, of
which a great variety has been presented until today [SS05].

The simplest and still most frequently used in computational solid state physics has been
already proposed by Kohn and Sham and originates from Thomas-Fermi theory. The local
density approximation (LDA) foots on the assumption that the exchange-correlation energy
of a spatially slowly varying, interacting electron gas can be approximated by the respective
value of a uniform one. It is defined as

ELDA
xc [n] =

∫
dx n(x)εhom

xc (n(x)), (3.48)

where the function εhom
xc (n) is the exchange-correlation energy per particle of a homoge-

neous electron gas of density n. Consequently, the LDA exchange-correlation potential reads

vLDA
xc =

δELDA
xc [n]

δn(x)
= εhom

xc (n(x)) + n(x)
d

dn
εhom
xc (n)

∣∣∣∣
n=n(x)

. (3.49)

The function εxc(n) can be separated into an exchange and a correlation part [Lev96;
Zel06],

εhom
xc (n) = εx(n) + εc(n), (3.50)

of which the first can be derived analytically to

εx(n) = −3

4
e2

(
3

π

)1/3

n1/3, (3.51)

beeing identical to the corresponding Hartree-Fock result. For the correlation part, only
limiting cases can be expressed analytically. Very often, the Monte Carlo results of Ceper-
ley and Alder [CA80] have been used for parametric representations of εc(n), such as the
approximation of Perdew and Wang [PW92] which was used in this work.

Surprisingly, this approximation has proven as accurate enough for many systems, espe-
cially crystals, even though their density is highly inhomogeneous [JG89]. The first approx-
imations beyond LDA have been developed in form of generalized gradient approximations
(GGA) [PW86; PW89; PBE96; PBE97] which are also local but include expansions of the
gradient of the density. Further improvements have been achieved in recent years [Mat02]
by introducing hybrid functionals [Bec93] and using the Jacobs Ladder [PS01] scheme to
construct better functionals.

3.3.4 Generalization to time dependent problems

Time dependent density functional theory (TDDFT) is the natural generalization of static
DFT to time-dependent problems. As DFT can be seen as an alternative formulation of
steady-state quantum mechanics, TDDFT is an alternative to the time-dependent Schrödinger
equation as it allows the treatment of arbitrary time-dependent problems and excitations.
The first time-dependent Kohn-Sham calculations appeared more than a decade after the
introduction of standard DFT, such as [And77; ZS80], and demonstrated the power of
the method for photoabsorption calculations. However, the existence of a time-dependent
Hohenberg-Kohn theorem was assumed, but for a long time unproven. A formal proof,
which built the foundation of modern TDDFT, was given by Runge and Gross in 1984
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[RG84]. Later, the theory was also extended to spin-polarized systems [LV89] The principal
statement of the Runge-Gross theorem is that there exists a one-to-one correspondence be-
tween an external, time-dependent potential V(x, t) and the density n(x, t) for a many-body
system evolving from a fixed initial state Ψ0, which is not necessarily the ground state. The
proof is more complicated than for the Hohenberg-Kohn theorem because the total energy
is not a conserved quantity and thus no variational principle exists.

Practical use of TDDFT can be made by introducing time-dependent Kohn-Sham equa-
tions. One seeks for the solutions of the time-dependent single-particle Schrödinger equa-
tion

i
∂

∂t
φi(x, t) =

[
− ~2

2m
∇2 + veff(x, t)

]
φi(x, t), (3.52)

yielding the density

n(x, t) =
occ∑

i

|φi(x, t)|2 . (3.53)

The effective potential is, in analogy to Eq. (3.40), defined as

veff(x, t) = V(x, t) +

∫
dx′

n(x′, t)

|x− x′| + vxc(x, t). (3.54)

Since these time-dependent equations represent an initial value problem, the solutions de-
pend on the initial states φi(x, t0).

Due to causality, the exchange-correlation potential vxc(x, t) does not only depend on
the density at time t, but also on the initial interacting state Ψ0 as well as on the initial
non-interacting Kohn-Sham functions. This makes the construction of exchange-correlation
functionals for TDDFT much more difficult than in the case of static DFT. It was shown
[Lee98; MG04] that the exchange-correlation potential can be written as the functional
derivative

vxc(x, t) =
δAxc[n]

δn(x, τ)

∣∣∣∣
n=n(x,t)

(3.55)

where Axc is a quantum-mechanical action functional, derived from the Keldysh formalism
[Kel65], and τ is the Keldysh time contour parameter. However, approximations to vxc have
to be made for practical uses.

A simple way to use the functionals already known from ground state DFT is the adia-
batic approximation [MG03], which takes the density n(x, t) as input function for a ground-
state exchange-correlation potential

vadiabatic
xc (x, t) = vDFT

xc [n]
∣∣
n=n(x,t)

. (3.56)

This is a crucial approximation because it is local in time and does not take into account
the history of the system. A widely used flavour of this scheme is the adiabatic local density
approximation (ALDA),

vALDA
xc (x, t) = vLDA

xc [n]
∣∣
n=n(x,t)

(3.57)

which uses the LDA exchange-correlation functional discussed above, adding the drawbacks
of this approximation to the time-locality problem. Nevertheless, it delivers good results for
excitation energies and many related applications.

3.4 Linear response DFT

If the time-dependent external potential V(r, t) differs only by a small amount from the
external potential V(r) of the unperturbed system, it is not always necessary to solve the
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time-dependent Kohn-Sham equations. Often it is sufficient to treat the problem within the
framework of linear response theory. In fact, the interacting linear response function can be
described using the non-interacting Kohn-Sham eigensystem of the ground state [Str+12;
GK85; GK86; PGG96]. The external potential can be written as

V(x, t) = V(x) + ∆V(x, t)θ(t− t0), (3.58)

where the weak perturbation ∆V(x, t) is switched on at t = t0. At that point in time, the
system is in its ground state with its corresponding density n(x), the linear response of
which takes the form

∆n(x, t) =

∫
dx′

∫
dt′ χ(x,x′, t− t′)∆V(x, t′). (3.59)

The response function χ(x,x′, t−t′) is equal to the interacting susceptibility from Eq. (3.22).
Despite the fact that this quantity is calculated from pure ground state wave functions, it
is hard to achieve from perturbation theory. Since the density can be constructed from
non-interacting Kohn-Sham orbitals, its linear response can be written equivalently as

∆n(x, t) =

∫
dx′

∫
dt′ χKS(x,x′, t− t′)∆veff (x′, t′), (3.60)

with

∆veff(x, t) = ∆V(x, t) +

∫
dx′

∆n(x, t)

|x− x′| + ∆vxc(x, t) (3.61)

being the effective potential arising from the density perturbation ∆n(r, t). The change in
the exchange-correlation potential, using the chain rule for functional derivatives, can be
written as

∆vxc[n](x, t) =

∫
dt′

∫
dx fxc[nGS](xt,x′t′)∆n(x′, t′) (3.62)

where the so-called exchange-correlation kernel fxc is defined via a functional derivative of
the exchange-correlation potential with respect to the density, taken at the ground-state
density nGS [Str+12],

fxc[nGS](xt,x′t′) =
δvxc[n](x, t)

δn(x′, t′)

∣∣∣∣
n=nGS

. (3.63)

The advantage of this description clearly lies in the use of the correlation function χKS,
which delivers the linear response of the non-interacting system to a change in the Kohn-
Sham potential and which is, using Eq. (3.24), given in terms of ground-state Kohn-Sham
orbitals as

χKS(r, r′, ω) = lim
η→0+

∑

ij

(fj − fi)
φj(x)φ∗j (x

′)φi(x
′)φi(x)∗

εj − εi − ~ω − i~η
(3.64)

Identifying Eq. (3.59) with Eq. (3.60) and plugging in the definition of ∆veff(r, t) results,
after careful reordering, in

χ(xt,x′t′) = χKS(xt,x′t′)+

∫
dx1

∫
dt1

∫
dx2

∫
dt2 χKS(xt,x1t1)

[
fxc(x1t1, r2t2) +

δ(t1 − t2)

|x1 − x2|

]
χ(x2t2,x

′t′)

(3.65)
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or, in frequency space,

χ(x,x′, ω) = χKS(x,x′, ω)+

∫
dr1

∫
dx2χKS(x,x1, ω)

[
fxc(x1,x2, ω) +

1

|x1 − x2|

]
χ(x2,x

′, ω).

(3.66)

This equation allows to compute the fully interacting density-density response function,
using the non-interacting response function of the Kohn-Sham reference system. According
to its charicteristic form, it is often referred to as susceptiblity Dyson equation.

As opposed to the random phase approximation, which does not include exchange and
correlation, but relies on a proper reference susceptibility [FW71; BF04; Buc09], this equa-
tion is formally exact. The only approximation lies in the choice of the exchange-correlation
kernel. In the static case ω → 0, the kernel reduces to

f static
xc [nGS](x,x′) = lim

ω→0
(x,x′, ω) =

δExc[n]

δn(x)δn(x′)

∣∣∣∣
n=nGS

, (3.67)

which is the most frequently used adiabatic approximation today [GM12]. In the LDA, it
takes the form

fALDA
xc [nGS](x,x′) = δ(x− x′) d2

dn2

[
nεhom

xc (n)
]∣∣∣∣
n=nGS(x)

. (3.68)
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4The Korringa-Kohn-Rostoker Green function
method

For a practical implementation of electronic structure calculations using DFT, many different
numerical techniques have been developed over the past decades [Blü06]. One of the most
commonly used is the expansion of the single-electron wave functions into plane waves in
combination with pseudopotentials [HSC79; Van90; Laa+91]. This method replaces the
1/r singularity of the nuclear potential by an artificial soft potential which satisfies certain
boundary conditions, such that the correct charge density is obtained. Modern pseudopo-
tentials include pre-calculated pseudo wave functions which describe the core electrons and
which are not changed during the self-consistent calculation of the valence charge density.
This method is computationally very efficient and delivers accurate results for a wide range
of materials. Nevertheless, in every single case it has to be checked carefully whether the
chosen pseudopotential is appropriate for the respective task.

In contrast, all-electron methods allow for the self-consistent calculation of the core
charge density, too. In general, these methods provide a more accurate description of the
electronic structure of a material, especially in the case of 3d and 4f electrons as well as in
the description of magnetic properties [Blü06].

A common all-electron approach is the Korringa-Kohn-Rostoker Green function method
(KKR). Opposed to most other methods, Green function techniques do not solve the Kohn-
Sham equations directly, but in terms of a resolvent which is called the Green function.
Once this quantity is calculated, the charge density and other observables of the system
can be extracted from it. Some advantages of Green function methods are their ability to
treat systems with reduced symmetry, such as impurities and surfaces, elegantly without
the need to construct supercells. Another typical usage of Green function methods are
disordered materials like alloys. For these reasons, the KKR is the method of choice in this
work.

This chapter is organized as follows: The first section will give a short overview on
the general properties of Green functions and which kind of information about the system
under concern they can provide. The second part is entirely devoted to an introduction to
the Korringa-Kohn-Rostoker (KKR) Green function method. This short overview will help
the reader unfamiliar with this method to understand the subsequent chapters.

4.1 Green functions

The Green function method is a general approach to solutions of inhomogeneous differential
equations. Originally developed by George Green [Gre28] for electrostatic and magnetic
boundary value problems, it has also become an important tool in quantum field theories
and solid state physics. It is especially useful at solving problems which differ from a simpler,
already solved problem by a small external perturbation. In quantum mechanics, the Green
function is defined as resolvent of the Schrödinger equation

[
i∂t − Ĥ

]
ψ(r, t) = 0 (4.1)

by rewriting it as [
i∂t − Ĥ

]
G(t) = δ(t). (4.2)
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While the formal solution of (4.1) reads ψ(t) = e−iĤtψ(0) with ψ(0) beeing the solution of
the stationary Schrödinger equation Ĥψ = Eψ, the Green function solves (4.2) as

G(t) = −iθ(t)e−iĤt. (4.3)

This is the retarded Green function which propagates the wave function forward in time via

ψ(t) = iG(t− t′)ψ(t′). (4.4)

The advanced Green function, which corresponds to the opposite direction of time, shall
not be further discussed in this thesis. Given the case, that the Green function G0 for the
Hamiltonian Ĥ0 is known, the Green function G for the Hamiltonian Ĥ1 = Ĥ0 + ∆V is
given by the Dyson equation [Dys49]

G1(t) = G0(t) +

t′∫

0

dt′ G0(t− t′)∆V G1(t′). (4.5)

Thus, the Green function of an electron interacting with a potential ∆V can be computed
by iteration of (4.5), only requiring the green function of a free electron and the potential
∆V . In analogy, the propagation of its wave function is given by the Lippmann-Schwinger
equation [LS50; GG53]

ψ1(t) = ψ0(t) +

t∫

−∞

dt′ G0(t− t′)∆V ψ1(t′). (4.6)

In the stationary case, the Green function can be defined as the operator

G(z) = (z − Ĥ)−1, z = E + iη. (4.7)

It is clearly seen that G(z) is not defined on the real axis where z coincides with the eigen-
values εi of Ĥ. In particular within the discrete spectrum of Ĥ it has poles, but is analytical
for all energies and η 6= 0. The above expression can also be obtained directly via a Fourier
transform of G(t), where the imaginary energy iη has to be introduced to ensure the con-
vergence of the integral. For a complete set of eigenfunctions ψi(r) given in real space
notation, the Green function has the Lehmann representation

G(r, r′, z) =
∑

i

ψi(r)ψ∗i (r
′)

z − εi
. (4.8)

For r = r′ it can be rewritten as

G(r, r, z) =
∑

i

|ψi(r)|2
(

E − εi
(E − εi)2 + η2

− i
η

(E − εi)2 + η2

)
, (4.9)

where the imaginary part approaches πδ(E+ − εi) in the limit of vanishing η. From this
equation it can be seen that the local density of states can be expressed in therms of the
Green function via

d(r, E) = − 1

π
ImG(r, r, E+). (4.10)

The superscript of E+ denotes that G in the limit of η −→ 0+ is taken. By integration of
(4.10), two important quantities can be obtained. An integral over space results in the total
density of states,

d(E) =

∫
dr′ d(r′, E) = − 1

π
Im TrG(E). (4.11)
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The usage of the trace operator stresses that that the Green function does not have to be
given in its spatial basis. By integration over the Energy up to the Fermi level, the particle
density

n(r) =

∞∫

−∞

dE f(E − µ)d(r, E) = − 1

π
Im

∞∫

−∞

dE f(E − µ)Tr [r̂ G(E)] (4.12)

is obtained, while the position operator r̂ = |r〉δ(r − r′)〈r′| and the Fermi distribution
function f were used. In fact, it can be shown that a similar relation holds for all observables
of the system:

〈
Ô
〉

= − 1

π
Im

∞∫

−∞

dE f(E − µ)Tr
[
Ô G(E)

]
, (4.13)

which confirms that the Green function contains all the information of the system that
can be extracted from the wave function. For the case T = 0, the convolution with the
Fermi function can be replaced by an energy integration up to E = εF. This also makes
the energy integration an important numerical process when quantum mechanical systems
are to be described using the Green function technique. A direct integration along the
real energy axis is not possible since G(z) has its poles at discrete eigenenergies of the
Hamiltonian. Instead, one uses the fact that the Green function is analytical for energies
with non-vanishing imaginary part η.

From Eq. (4.7), it follows for the Green functions of the unperturbed and the perturbed
system that

G0(z)−1 = z −H0

G1(z)−1 = z − (H0 + ∆V ).
(4.14)

Thus, for the connection of the two,

G1(z)−1 = G0(z)−1 −∆V (4.15)

is obtained. By rearrangement, the Dyson equation for the two Green functions is found to
be

G1(z) = G0(z) + G0(z)∆V G1(z), (4.16)

which, via iteration, can be expanded into the Born series

G1(z) = G0(z) + G0(z)∆V G0(z) + G0(z)∆V G0(z)∆V G0(z) + · · · . (4.17)

Here, the first term gives the contribution of the unperturbed particle, the second term
resembles the contribution of single scattering process at the perturbing potential ∆V and
the third term a two-fold scattering event. Thus, this equation represents a general way to
find approximations to the Green function G1 which contains all possible scattering events.
The exact form of (4.17) depends on the basis in which G is chosen to be represented. This
equation becomes more convenient by introducing the transition operator or T -matrix:

G1(z) = G0(z) + G0(z)T (z)G0(z), (4.18)

which represents all possible scattering events and is defined as

T (z) = ∆V + ∆V G0(z)∆V + ∆V G0(z)∆V G0(z)∆V + · · · . (4.19)

In a similar fashion, the Lippmann-Schwinger equation for the corresponding unperturbed
and scattered wave functions reads

|ψ1〉 = |ψ0〉 + G0(z)∆V |ψ1〉
= |ψ0〉 + G0(z)∆V |ψ0〉 + G0(z)∆V G0(z)∆V |ψ0〉 + · · ·
= |ψ0〉 + G0(z)T (z)|ψ0〉 . (4.20)
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4.2 The Korringa-Kohn-Rostoker method

The Korringa-Kohn-Rostoker (KKR) method is a computational scheme to calculate the elec-
tronic structure of ordered and disordered solids. In its original form, first presented by
Korringa [Kor47] and later, independently by Kohn and Rostoker [KR54], it was a method
to solve the Schrödinger equation by making use of multiple scattering theory:

Electrons are treated as Bloch-waves moving through the crystal, where they are scat-
tered at periodically distributed nuclear potentials. During a single scattering process, the
wave experiences a phase shift and a change of momentum. This effect can by quantified
as an energy-dependent scattering matrix. Multiple scattering events of many waves with
different energies result in a specific distribution of the electrons. The general scattering
behaviour of a lattice (the structure constants) can be calculated without knowledge of the
single-scattering matrix. This separation of the influences of the atomic type on one side and
the geometry of the crystal on the other promised to make electronic structure calculations
very efficient.

Nevertheless, the numerical effort was huge before the KKR method was reintroduced
as a Green function method [Bee67], in which the crystal Green function is connected to the
Green function of the free electron by means of a Dyson equation. This advancement made
KKR calculations much more efficient and thus attractive. Another branch of efficient com-
putational schemes, the LMTO-related (linear muffin-tin orbital) methods emerged from
the original KKR method through the use of energy-independent eigenfunctions [And75;
AJ84]. Nevertheless, the KKR-GF method has been further improved by introducing meth-
ods to describe disordered [Kor58; Bee64; Sov67; Tay67] and low-dimensional systems
[DLZ06], transport properties, the ability to use the full potential instead of the muffin-tin
approximation [Zel87; Dri91; Ded+91] and screened structure constants [Szu+94; BL94]
for an even better performance.

As for many other electronic-structure methods, the introduction of density functional
theory improved the results of KKR calculations significantly by replacing the Schrödinger
equation by the effective Kohn-Sham equations. In order to give an introduction to elec-
tronic structure calculations with the KKR-GF method, Both single-atom and multiple-site
scattering are discussed in the following.

4.2.1 Single potential scattering

For the description of scattering processes of electrons at a single perturbing potential it is
suggestive to use free space as reference System. The Green function of the free electron
can be obtained by using the spectral representation. The Schrödinger equation of the free
particle reads

Ĥ|k〉 = ε|k〉 , Ĥ = −∇2, (4.21)

and its solutions in real space representation are plane waves

ψk(r) = 〈r|k〉 =
1

(2π)3/2
eik·r, (4.22)

which are characterized by the momentum quantum numbers k and a continuous eigen-
value spectrum ε(k) = k2 = k2. For the corresponding spectral representation it follows

Gf(r, r
′, E) = 〈r|Gf(E

+)
∣∣r′
〉

(4.23)

= lim
η→0+

∑

k

〈r|k〉〈k|r′〉
k2

0 + iη − k2
(4.24)

=
1

(2π)3
lim
η→0+

∫
dk

eik·(r−r′)

k2
0 − k2 + iη

, (4.25)
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where E = k2
0 was defined. The integral over k-space can be reformulated into a contour

integral in the complex plane and solved by making use of the residue theorem. The final
result for the free-particle propagator [Gon00] is obtained as

Gf(r, r
′, E) = − 1

4π

eik0|r−r′|

|r − r′| (4.26)

and depends only on |r − r′|. Direction and absolute position are irrelevant because the
constant potential of free space is invariant under rotation and translation.

When single as well as multiple scattering at central potentials comes into play, the
expansion of the Green function into eigenfunctions of the angular momentum operator
has proven to be very useful. In the case of free electrons, it can be constructed by using
the angular momentum expansion of a plane wave,

eik·r = 4π
∞∑

`=0

∑̀

m=−`
i`j`(kr)Y`m(θ(r), φ(r))Y`m(θ(k), φ(k)) (4.27)

= 4π
∑

L

i`j`(kr)YL(r̂)YL(k̂). (4.28)

jl is the spherical Bessel function and the Y`m(θ, φ) are spherical harmonics. In the second
line, the combined index L = (`,m) ∀ |m| ≤ ` of the angular momentum and magnetic
quantum numbers has been introduced and the sum runs over all possible combinations
of them. Additionally, the short form r̂ for the angles (θ, φ) connected to the vector r in
spherical coordinates, was introduced. Using this expansion, the Green function can be
expressed as

Gf(r, r
′, E) =

∑

L

gL(r, r′, E)YL(r̂)YL(r̂′) (4.29)

were
gL(r, r′, E) = −i

√
Ej`(
√
Er<)h`(

√
Er>). (4.30)

Here, h` = j` + in` is the spherical Hankel function and n` the spherical Neumann function.
r< means the smaller of the two values r and r′, and vice versa. Being a result of the
diverging character of the Hankel function, this distinction is strictly necessary to ensure
convergence of the series [Gon00].

By means of this representation, the discussion of the scattering process at a spheri-
cally symmetric potential becomes feasible, because the angular momentum is a conserved
quantity during the process and the angular momentum components of the scattered wave
can be treated individually [Gon92]. Additionally, the following considerations shall be
restricted to potentials with a limited range a, which are given by

V (r) =

{
V (r) r ≤ a
0 r > a.

(4.31)

The radial wave function u`(r, E) resulting from this type of potential is determined by the
radial Schrödinger equation

[
−1

r
∇2r +

`(`+ 1)

r2
+ V (r)− E

]
u`(r, E) = 0. (4.32)

This equation has two linearly independent solutions which are often referred to as regular
and irregular solution due to their behaviour at the origin of the potential. For r > a, both
solutions can be determined from the free-space solutions using the Lippmann-Schwinger
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equation. Inside the potential region, the Schrödinger equation is solved numerically,
whereby the boundary conditions are defined by the solutions for r > a.

The regular solution outside the potential is given by the Lippmann-Schwinger equation

R`(r, E) = j`(
√
E, r) +

a∫

0

dr′ r′2gL(r, r′, E)V (r′)R`(r
′, E), (4.33)

which, using the angular momentum representation (4.30), can be rewritten as

R`(r, E) = j`(
√
E, r)− ih`(

√
E, r)

√
E

a∫

0

dr′ r′2j`(
√
E, r′)V (r′)R`(r

′, E). (4.34)

Comparing this equation to (4.20), it follows that

R`(r, E) = j`(
√
E, r)− i

√
Et`(E)h`(

√
E, r) (4.35)

with the single-scattering t-matrix in angular momentum representation

t`(E) =

a∫

0

dr′ r′2j`(
√
E, r′)V (r′)R`(r

′, E). (4.36)

The numerical integration of Eq. (4.32) from r = 0 to r = a yields R`(r, E) inside the
potential, which has to be normalized to match the scattering solution at r = a. This
function behaves like rl+1 for r → 0. The second, irregular solution behaves like

H`(r, E) = −i
√
Eh`(

√
Er) (4.37)

outside the potential region. Its counterpart inside the potential can be calculated by inte-
grating Eq. (4.32) inwards and behaves like r−` as r approaches 0.

The angular-dependent solutions of the Schrödinger equation are spherical harmonics,
which allow to construct the full solutions of the single potential scattering Problem as

RL(r, E) =
∑

L

R`(r, E)

r
YL(r̂) =

∑

L

R`(r, E)YL(r̂),

HL(r, E) =
∑

L

H`(r, E)

r
YL(r̂) =

∑

L

H`(r, E)YL(r̂).

(4.38)

The functions R and H of the right side will be used subsequently. The Green function of
the single scattering problem can now be constructed via the Dyson equation, using the
Green function of free space (4.29) and the t-matrix (4.36) as

GS(r, r′, z) = −√z
∑

L

R`(r<, z)H`(r>, z)YL(r̂)YL(r̂′). (4.39)

4.2.2 Multiple scattering theory

Multiple scattering theory is the natural generalization of single potential scattering to an
array of scatterers. In case of crystalline solids, these are atoms arranged in a Bravais lattice.
In order to discuss the scattering properties of a crystal, it is intuitively accessible to consider
first the Green function of a free particle in empty space, which shall be divided into disjunct
cells, as shown in Fig. (4.1). Every cell is identified by an index n and its point of origin by
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Rn

Rm

r

r'

rn

rm0

Figure 4.1: Division of space into
disjunct cells arranged in a peri-
odic 2-dimensional lattice. Rn and
Rm denote lattice vectors, r and
r′ are points within the cells, po-
sitioned relative to their respective
origins. rn denotes the total vector
Rn + r.

a lattice vectorRn. A point within a cell is denoted by the relative vector r and the absolute
position rn = Rn + r. The Green function of free space Gf(rn, rn′ , z) can now be written
in terms of cellular coordinates. If the two vectors point into the same cell (n = n′), Eq.
(4.29) can be written as a single center expansion

Gnf,S(r, r′, z) = Gf,S(rn, rn, z) = −ik
∑

L

YL(r̂)jn` (kr<)hn` (kr>)YL(r̂′), (4.40)

where the superscripts of the Bessel and Hankel functions indicate that their points of ori-
gin are identical to their respective cell’s origin. In case the two spatial arguments of the
free particle propagator point in different cells n and n′, it can be written as a two-center
expansion

Gnn′f,M(r, r′, z) =
∑

LL′

YL(r̂)jn` (kr)gnn
′

f,LL′(z)j
n′
`′ (kr

′)YL′(r̂
′). (4.41)

This expression was obtained by expanding the Hankel functions as

hn
′
` (
√
z
∣∣Rnn′ + r

′∣∣)YL( ̂Rnn′ + r′) =
i√
z

∑

L′

gnn
′

LL′(z)j
n′
` (
√
zr′)YL′(r̂

′) (4.42)

where the real-space structure constants of free space have been introduced as

gnn
′

LL′(z) = −4πi(1− δnn′)
∑

L′′

i−`+`
′−`′′h`′′(

√
z |Rnn′ |)YL′′(R̂nn′)C

L′′
LL′ (4.43)

using the Gaunt coefficients

CL
′′

LL′ =

∫
dr̂ YL(r̂)YL′(r̂)YL′′(r̂). (4.44)

All information about the lattice is contained in the structure constants, which depend on
the relative position Rnn′ of pairs of cells. The Green function can now be written as

Gf(rn, rn′ , z) = δnn′Gnf,S(r, r′, z) + Gnn′f,M(r, r′, z). (4.45)

For the description of multiple scattering of electrons in a crystal, the latter is divided into
disjunct space-filling cells in a way that every atom is centred in one cell. This is usually
achieved by a Voronoi construction [FH08], which in the case of mono-atomic lattices is
equivalent to Wigner-Seitz cells. The three common approximations for the single scattering
potentials in such a lattice are shown in Fig. 4.2. For the sake of simplicity, only crystals
with single atoms per unit cell shall be discussed here.

In the muffin-tin approximation [Sla53] (Fig. 4.2 a), the single scattering potentials
V n(r) = V (rn) equal the spherical atomic potentials V (r) inside a sphere with a radiusRMT

which is chosen such that the muffin-tin sphere coincides with every side of the Wigner-Seitz
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4. THE KORRINGA-KOHN-ROSTOKER GREEN FUNCTION METHOD

cell at most in one point, respectively. The potential outside the spheres is chosen to be
constant and equal to V (RMT ). Consequently, besides the well-known spherical potential
within the spheres, an interstitial region between them remains and has to be considered
separately when integrals over the cell are taken. This approximation was used in the
original derivation of the KKR method.

a) b) c)

bounding sphere

interstitial

moon regions

Figure 4.2: Different approximations for single scattering potentials arranged in a
crystalline solid: a) Muffin-tin approximation, b) atomic sphere approximation, c) full-
potential method.

In contrast, the atomic sphere approximation (ASA, Fig. 4.2 b) assumes a spherical
potential confined by a sphere with a Wigner-Seitz radius RWS which is defined [AM05]
such that the volume of the sphere coincides with the total volume of the cell. Thus, the
interstitial region becomes small and can be neglected, while the integration of the Green
function over the sphere often yields good results for the total charge and density of states.
As a drawback, the spheres overlap, what makes this approximation advisable only in the
case of slowly varying potentials and densities at the cell boundary, which is often the case
for metals.

For systems with highly anisotropic densities, the full potential method is appropriate,
since it takes into account the non-spherical symmetry of an atom due to its neighbouring
scatterers. All components of the single scattering potential V (r) =

∑
L VL(r)YL(r̂) are

included and it is no longer assumed to be of spherical symmetry. Likewise, it is limited in
range only by the boundaries of the Wigner-Seitz cell (Fig. 4.2 c). Full-potential calcula-
tions are computationally more expensive but result in a very accurate description of the
electronic structure.

For the sake of simplicity, the following description of multiple scattering theory is re-
stricted to the MT approximation. The Green function of an array of scattering potentials
V n(r) is defined by

[
−∇2 + V n(r)− z

]
G(rn, r

′
n′ , z) = −δnn′δ(r − r′). (4.46)

For n 6= n′, the Schrödinger equation becomes homogeneous, which implicates that G can
be expanded in terms of the regular solutions in analogy to Eq. (4.41). For n = n′, Eq.
(4.46) yields the inhomogeneous equation which describes the single scatter and its Green
function can be expanded in regular and irregular Solutions. Thus,

G(rn, r
′
n′ , z) = δnn′GS(rn, r

′
n′ , z) + GM(rn, r

′
n′ , z)

= − i
√
zδnn′

∑

L

RnL(r<, z)H
n
L(r>, z) +

∑

LL′

RnL(r, z)Gnn
′

LL′(z)R
n′
L′(r

′, z), (4.47)

where the abbreviations RnL(r) = Rn` (r)YL(r̂) and Hn
L(r) = Hn

` (r)YL(r̂) for the regular
and irregular solutions have been introduced. The Gnn

′
LL′(z) are the structure constants of
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4.2. The Korringa-Kohn-Rostoker method

the crystal, which can be calculated from their free space pendants by setting up a Dyson
equation which relates the Green functions of both systems via the scattering potentials,

G(rn, r
′
n′ , z) = Gf(rn, r

′
n′ , z) +

∑

n′′

∫
dr′′ Gf(rn, r

′′
n′′ , z)V

n′′(r′′)G(r′′n′′ , r
′
n′ , z). (4.48)

Through algebraic conversions, using the definition of the t-matrix (4.36) and the Lippmann-
Schwinger equation (4.34), the structure constants are given by

Gnn
′

LL′(z) = gnn
′

LL′(z) +
∑

n′′

∑

L′′

gnn
′′

LL′′(z)t
n′′
L′′(z)G

n′′n′
L′′L′(z) (4.49)

and written in a matrix form, a solution can be obtained via a matrix inversion

G(z) =
[
g−1(z)− t(z)

]−1
, (4.50)

where all quantities are matrices in (nn′) and (LL′) and

{t(z)}nn′LL′ = tn` (z)δnn′δLL′ . (4.51)

The inversion becomes cumbersome for large matrices in (nn′). In order to accelerate this
procedure, the translational symmetry of the lattice can be used to achieve a representation
in reciprocal space via lattice Fourier transforms of the form

gLL′(k, z) =
∑

n

gnn
′

LL′(z)e
ik·Rnn′ , (4.52)

where n′ can be chosen arbitrarily, because gnn
′

LL′(z) only depends on the difference vector
Rnn′ . The inverse transformation is given by

gnn
′

LL′(z) =
1

ΩBZ

∫

BZ
dk gLL′(k, z)e

−ik·Rnn′ , (4.53)

where ΩBZ denotes the volume of the first Brillouin zone and the integral is taken right
there. In practice, the structure constants gf,LL′(k, z) are calculated using an Ewald sum-
mation technique so that convergence is reached after summing over a finite cluster of
scatterers. The real space structure constants are then obtained by a matrix inversion and
transformation into real space as

Gnn
′

LL′(z) =
1

ΩBZ

∫

BZ
dk e−ik·Rnn′

{[
Î− g(k, z)t(z)

]−1
g(k, z)

}

LL′
, (4.54)

so that only a matrix in (LL′) needs to be inverted. Its dimensions are limited since the
t-matrix vanishes for angular momentum indices above `max = 2 . . . 4, depending on the
system.

The reciprocal space representation is also important in a different context: An im-
portant part of electronic structure theory is the band structure given as the electronic
eigenenergies ε(k) as function of a vector within the first Brillouin zone. This quantity can
be obtained by introducing the scattering path operator τnn′ . The T -operator given in Eq.
(4.19) is

T (z) = V + V G(z)V

= V + V Gf(z)T (z),
(4.55)
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where in the second line the free particle propagator was used. Instead of using the total
potential V =

∑
n Vn of the crystal lattice, this equation can be written in terms of single

scattering potentials as

T (z) =
∑

n

(Vn + Vn Gf(z)T (z))

=
∑

nn′

τnn′(z).
(4.56)

The scattering path operator introduced in the second line is connected to the single scat-
tering t-matrices via

τnn′(z) = tn(z)δnn′ + tn(z)Gft
n′(z)>(1− δnn′)

+
∑

n′′

tn(z)Gf(z)t
n′(z)>(1− δnn′)Gf(z)t

n′′(z)>(1− δn′n′′) + · · · , (4.57)

which shows vividly that τnn′ describes all possible scattering events which can occur for a
particle travelling from cell n to cell n′. Using the formerly introduced matrix notation, the
last expression can be written as

τ (z) =
[
t−1(z)−Gf(z)

]−1
. (4.58)

This equation gives the fundamental insight that all scattering processes and thus the mo-
tion of electrons in a crystal are determined by the scattering properties of the single atoms,
given by the t-matrix, and the spatial arrangement of the latter, represented by the free
particle propagator Gf . Using again a Fourier representation of τnn

′
LL′(z) and Gnn′fLL′(z) and

restricting z to real energies, it can be found that

τ (k, ε) =
[
t−1(ε)−Gf(k, ε)

]−1 (4.59)

where again all objects are matrices in (LL′). This equation provides non-trivial scattering
solutions only if

det
[
t−1(ε)−Gf(k, ε)

]
= 0, (4.60)

the latter being called the KKR secular equation because of its importance for the electronic
band structure ε(k) which can be obtained by variation of k for constant energy or vice
versa.

4.2.3 Self-consistent KKR scheme

The full performance of the KKR Green function method is exploited when it is used together
with DFT. To do so, the radial Schrödinger equation (4.32) is replaced by a radial Kohn-
Sham equation, which means that the atomic potential is replaced by the effective Kohn-
Sham potential. Therefore, the following working scheme for practical electronic structure
calculations is implemented: Initially, a guess for the effective potential Vin(r) within the
cells is provided for which often the potential resulting from a self-consistent single-atom
DFT calculation is used. With this potential, the radial Kohn-Sham equation is solved to
obtain the regular RL(r, z) and the irregular HL(r, z), as well as the t-matrix. The latter is
calculated only for the valence electrons, since the core wave functions are highly localized
and a multiple scattering description is not necessary. The same, in a later step, holds for
the Green function. These quantities are evaluated for typically around 30 values of z on
a complex energy contour. The most demanding part of the calculation is the evaluation
of the structure constants, which is done via a Brillouin zone integration using Eq. (4.54).
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convergence

calculate new potential from total density

integrate SG for 
core wave 
functions and 
density 

valence charge density

Green function structure constants

wave functions and t-matrixinput potential
Vin(r) RL(r, z), HL(r, z), t(z)

G(z) =
⇥
g�1
f � t(z)

⇤�1G(z) = GS(z) + GM(z)

nv(r) = � 1

⇡
Im

EFZ

Eb

dz GS(r, r0, z)
nc(r)

generate new input potential

n(r) = nv(r) + nc(r);

self-consistency reached

kVout(r) � Vin(r)k  " ?

Vin(r) = F [Vout(r)]

no

yes

Vout(r) = Vc +

Z
n(r)n(r0)
|r � r0| + vxc[n](r)

Figure 4.3: A typical algorithm for self-consistent calculations using the KKR-GF
method. The effective Kohn-Sham potential is updated and mixed from step to step.
Alternatively, the old and new charge density can be mixed an used as input for the
next iteration. The one of the most frequently used mixing algorithm is Broyden’s
Method [Bro65].

The number of k-points needed for this procedure depends mainly on the imaginary part
of the complex energy z at which it is done. At large distances from the real axis, the
structure constants as well as the Green function are smooth and less k-points are necessary.
Afterwards, all necessary quantities for constructing the Green function via Eq. (4.47) are at
hand. First, the density of states can be calculated using Eq. (4.11). Using this information,
the Fermi level can be determined by integration of the density of states,

Ne =

∫ Et

−∞
dE d(E). (4.61)

If Ne equals the core charge Z, then Et = εF. Afterwards, a complex contour integration of

Figure 4.4: Typical circular inte-
gration path for the evaluation of
the valence charge density using
Eq. (4.62). For optimal perfor-
mance, the structure constants for
the Green function at integration
points far away from the real axis
can be calculated with less k-points
then in the vicinity of it.

the Green function from the bottom of the valence band Eb up to the Fermi energy,

nv(r) = − 1

π
Im

[Eb,εf ]∫

C

dz G(r, r, z), (4.62)
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is performed to obtain the valence charge density nv(r). The integration contour C is
chosen such that the majority of integration points are located far away from the real axis
where the Green function is smooth. The choice of this kind of integration path allows to
reduce the necessary number of integration points from several 1000 near the real axis to
typically 20-30 [MP06].

The core charge density nc(r) is obtained separately by summing over the quares of the
absolute values of the core wave functions. Finally, the obtained total charge density n(r) =
nc(r) + nv(r) is used to calculate the potential via the Poisson equation. The complete
Kohn-Sham potential Vout(r) is obtained by adding the exchange-correlation potential as
functional of the density. This potential is used to construct a new input potential for
the algorithm. Only when ‖Vout(r) − Vin(r) ≤ ε‖, where ε is a predefined convergence
parameter, the procedure finalizes and the potential is self-consistent up to an accuracy
determined by ε. A summary of the described procedure is given in Fig. (4.3).

The converged Green function of a material is the basis for the calculation of response
functions. The next chapter describes how it can be used to determine the response of an
electron gas to a perturbation in the external potential.
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5Application to lattice dynamics

Methods for the calculation of phonon dispersions within the scope of DFT exist since the
late 1970s (see Chap. 2). However, it was not until the 1990s that the required evaluation
of forces with the necessary precision became available as part of the KKR method. The
so far used and in many applications very successful ASA and MT approximations in which
atomic potential as well as valence charge density are assumed to be of spherical symmetry
allow for good band structure calculations, but their simplifications are too crude to obtain
the necessary accuracy required for lattice relaxations and force calculations with direct
methods.

The crucial breakthrough was the development of a KKR method for the full Wigner-
Seitz cell, the Full-Potential (FP) method [Zel87; GZN88; Dri91], which on one side avoids
the interstitial and moon regions of the spherical ASA and MT cells, and on the other in-
corporates the aspherical components of potentials and charge densities. This new method
allowed, besides the lattice relaxation at impurities and vacancies, the calculation of phonon
frequencies [Ded+91; Zel+98; Asa+99; PZD02]. The latter have been obtained, in anal-
ogy to the finite-displacement method using supercells, by the displacement of a single atom
from its equilibrium position within a finite cluster and subsequent calculation of all result-
ing force constants. Due to the shift of the atom from the equilibrium position (usually
the center) of its cell, the angular momentum cutoff (`max) has to be chosen rather high.
Additionally, the cluster has to be large enough to ensure a decay of the forces between
the displaced atom and the other cluster atoms to negligible values at its boundary. This
reduces the field of application of this method to very simple systems.

The idea behind the work in hand is to use the linear-response principle to circumvent
the finite-displacement method and thus to avoid the problems connected with reduced
symmetry and off-center expansions of densities and potentials, whereby for a start the FP
method should be relinquished.

The chapter is structured as follows: In the first part, a first-principles rigid-ion model
for the dynamical matrix is derived, which is independent of the KKR at the first place.
Afterwards, the necessary formalism for the change of the valence charge density upon a
periodic lattice distortion is developed using linear response theory and the KKR formalism.
The last part focuses on details of the implementation, test calculations and an outlook for
further developments based on the tests.

5.1 Rigid-core model for force constants

According to Eqs. (2.23) and (2.42), the harmonic force constants are given as the second
derivative of the potential energy of the crystal with respect to the displacements of atomic
nuclei. This energy can be written as the sum of the direct Coulomb repulsion of the nuclei

Enn =
1

2

(ls)6=(l′s′)︷ ︸︸ ︷∑

ll′

∑

ss′

ZsZs′V lsl′s′(0, 0) (5.1)
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on one side, and the potential-energy part of the Born-Oppenheimer energy in cell-centred
coordinates

EBO = Eee + Ene + Exc[n] (5.2)

=
1

2

∑

ll′

∑

ss′

∫
dr

∫
dr′ nls(r)V̊ss′ll′ (r, r′)nl′s′(r

′) (5.3)

+
∑

ll′

∑

ss′

∫
dr

∫
dr′ Zsδ(r)V̊ss′ll′ (r + u(ls), r′)nl′s′(r

′) + Exc[n] (5.4)

on the other. Here, the electron density at unit cell l and site s was denoted as

nls(r) = n(Rl + τs + r) (5.5)

and for the Coulomb interaction the definitions (2.62) and (2.63),

Vss′ll′ (r, r′) =
2

|Rl −Rl′ + τs − τs′ + u(ls)− u(l′s′) + r − r′|
V̊ss′ll′ (r, r′) =

2

|Rl −Rl′ + τs − τs′ + r − r′|
,

have been used. Again, the first quantity denotes the Coulomb potential experienced by two
point charges with their respective coordinates given in cell-centred coordinates and which
are displaced from their equilibrium positions by the displacement vectors u. The second
quantity denotes the potential of two particles in their equilibrium positions.

The first derivative of the energy expressions above with respect to an infinitesimal
nuclear displacement u(mi) results in the negative force acting on the nucleus at position
Rm + τi. According to the Hellmann-Feynman theorem, only terms which are explicitly
dependent on u(mi) survive in the force, resulting in Eq. (2.43).

To overcome the problems which are related to an aspherical distortion of the core
electrons, a rigid-core model in which the core electrons move rigidly with the nuclei and
are not polarizable upon external perturbations is used. For this purpose, the electron
density is divided into valence and core parts,

n(x) = nc(x) + nv(x), (5.6)

where the core density nc(x) is made up of deep-lying and strongly localized states. By
definition, nc vanishes at the cell boundary. Additionally, only spherical contributions to the
density shall be included in nc(x), which is common for KKR calculations. Which electrons
can be treated as core or valence states must be decided according to these conditions for
every material under concern.

To be able to cope with the problems associated with the calculation of forces mentioned
in Sec. 2.4.1, the core electron density and the nucleus can be combined into an ionic core,
the density of which is given by

nion
ls (r − u(ls)) = Zsδ(r − u(ls))− nc

s(r − u(ls)). (5.7)

In this model, often referred to as rigid-ion or rigid-core model, the core electrons are as-
sumed to move rigidly together with the nucleus as it moves around its equilibrium position.
This dependence on the nuclear coordinates is explicitly expressed by the appearance of the
displacement vector in the above expression and has to be taken into account in the applica-
tion of the Hellmann-Feynman theorem. For the calculation of forces which occur when the
nucleus moves out of its equilibrium position it is, under the above assumptions, sufficient

50



5.2. Contribution of valence electrons

to calculate the forces on the ion core as a whole. Forces between the nucleus and its sur-
rounding core electrons are treated as internal forces and do not have to be evaluated. The
advantage of this method lies in the fact that big errors in the force exerted on the nucleus
due to an inaccurate description of the core density are avoided [Zec01]. The total charge
of the core is given by ∫

Ωcell

dr nion
ls (r) = Z∗s . (5.8)

Using the above definitions, the potential energy of the crystal can be written as

Etot = Eion−ion + Eion
BO, (5.9)

in which the first term denotes the direct Coulomb repulsion of the non-overlapping ion
cores, consisting of the positive nuclei and the rigidly bound core electrons. Its contribution
to the dynamical matrix has already been discussed in sect. 2.5.

5.2 Contribution of valence electrons

The second term in Eq. (5.9) is the rigid-ion version of the Born-Oppenheimer energy
which, due to the separation of the density, consists of four terms:

Eion
BO = Env + Ecv + Evv + Exc[n

c + nv]

= −
∑

ll′

∑

ss′

∫
dr

∫
dr′ Zsδ(r − u(ls))V̊ss′ll′ (r, r′)nv

l′s′(r
′)

+
∑

ll′

∑

ss′

∫
dr

∫
dr′ nc

s(r − u(ls))V̊ss′ll′ (r, r′)nv
l′s′(r

′)

+
1

2

∑

ll′

∑

ss′

∫
dr

∫
dr′ nv

ls(r)V̊ss′ll′ (r, r′)nv
l′s′(r

′)

+
∑

ls

∫
dr [nc

s(r − u(ls)) + nv
ls(r)] εhom

xc (nc
s(r − u(ls)) + nv

ls(r)).

(5.10)

The first term denotes the direct Coulomb interaction between positive nuclei and valence
electrons. Its dependence on the nuclear displacements is taken into account via the delta
distribution which describes the spatial dependence of the nuclear charge. The second term
describes the interaction energy between core and valence electrons. The following expres-
sion represents the classical Hartree energy of the valence electrons and does not depend
explicitly on the nuclear coordinates. The last line represents the exchange-correlation en-
ergy of the electronic system. It is important to note that nc and nv are self-consistent
solutions for the undisturbed crystal. The rigid-ion model assumes that the core electrons
do not change their relative distribution but are shifted rigidly with their respective nu-
clei, which is why the core density depends explicitly on the displacement vector u. This
assumption can not be made for the valence electrons, which will assume a new minimum-
energy configuration according to the perturbed crystal lattice. This adiabatic change has
to be calculated self-consistently using linear response theory. Thus, the ground state of the
valence electrons does not depend explicitly on the nuclear coordinates, but implicitly.

The interaction among the valence electrons (third line) is not explicitly dependent on
the nuclear coordinates and subsequently will not contribute to the forces after application
of the Hellmann-Feynman theorem. Therefore, after evaluating the delta distribution, the
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terms of the effective electronic contribution to the total energy relevant for force calcula-
tions can be written as

Eion
BO = −

∑

ll′

∑

ss′

Zs

∫
dr′ V̊ss′ll′ (u(ls), r′)nv

l′s′(r
′)

+
∑

ll′

∑

ss′

∫
dr

∫
dr′ nc

s(r − u(ls))V̊ss′ll′ (r, r′)nv
l′s′(r

′)

+
∑

ls

∫
dr [nc

s(r − u(ls)) + nv
ls(r)] εhom

xc [nc
s(r − u(ls)) + nv

ls(r)].

(5.11)

The first derivative with respect to a displacement of ion i in cell m in direction α, uα(im),
gives the respective component of the force acting on the same ion. Using the Hellmann-
Feynman theorem, one obtains

−F el
α (mi) = Zi

∑

ls

∫
dr
[
∂rαV̊ isml(u(mi), r)

]
nv
ls(r)

−
∑

ls

∫
dr

∫
dr′ [∂rαn

c
i (r − u(mi))] V̊ isml(r, r′)nv

ls(r
′)

−
∫

dr [∂rαn
c
i (r − u(mi))] vhom

xc [nc
i (r − u(mi)) + nv

mi(r)] ,

(5.12)

where in the first line relation (2.67) was used to use r as differentiation variable. In order
to avoid the numerical derivation of the nuclear charge density, the second term can also
be rewritten as

(2)F el
α (mi) =

∑

ls

∫
dr

∫
dr′ [∂rαn

c
i (r − u(mi))] V̊ isml(r, r′)nv

ls(r
′)

=
∑

ls

∫
dr

∫
dr′ ∂rα

[
nc
i (r − u(mi))V̊ isml(r, r′)

]
nv
ls(r

′) (∗) (5.13)

−
∑

ls

∫
dr

∫
dr′ nc

i (r − u(mi))
[
∂rαV̊ isml(r, r′)

]
nv
ls(r

′).

Writing all three components of the force in vector form, the first term (∗) reads

(∗) =
∑

ls

∫
dr′ nv

ls(r
′)

∫
dr ∇r

[
nc
i (r − u(mi))V̊ isml(r, r′)

]

which, according to Gauss’s divergence theorem, can be rewritten in form of a surface
integral over the boundary of the Wigner-Seitz cell,

(∗) =
∑

ls

∫
dr′ nv

ls(r
′)

∫
dS

[
nc
i (r(S)− u(mi))V̊ isml(r(S), r′)

]
= 0.

(5.14)

This expression gives zero because the core charge density vanishes at the surface by defi-
nition. Thus,

−F el
α (mi) = Zi

∑

ls

∫
dr
[
∂rαV̊ isml(u(mi), r)

]
nv
ls(r)

+
∑

ls

∫
dr

∫
dr′ nc

i (r − u(mi))
[
∂rαV̊ isml(r, r′)

]
nv
ls(r

′)

−
∫

dr [∂rαn
c
i (r − u(mi))] vhom

xc [nc
i (r − u(mi)) + nv

mi(r)] .

(5.15)

52



5.2. Contribution of valence electrons

During the development of the numerical details of the method it turned out that the
angular-momentum expansion of ∂rαV̊ isml(r, r′) converges very slowly. For this reason, Eq.
(5.12) will be used in the following, although it leads to a second derivative of the core
charge density in the next step:

Continuing from this equation, the electronic contribution to the linear-order force con-
stants are obtained by means of Eq. (2.23) and result in

φion
αβ (mi|nj) = Zi

∑

ls

∫
dr
[
∂rαV̊ isml(0, r)

]
u=0
Kjn,β(r, ls)

− δmnδijZi
∑

ls

∫
dr
[
∂rα∂rβ V̊ isml(0, r)

]
u=0

nv
ls(r

′)

∑

ls

∫
dr

∫
dr′ [∂rαn

c
i (r)] V̊ isml(r, r′)Kjn,β(r′, ls)

− δmnδij
∑

ls

∫
dr

∫
dr′

[
∂rβ∂rαn

c
i (r)

]
V̊ isml(r, r′)nv

ls(r
′)

−
∫

dr fxc[n(r)]∂rαn
c(r)Kjn,β(r,mi)

+ δmnδij

∫
dr fxc[n(r)]∂rαn

c(r)∂rβn
c(r)

=
6∑

k=1

φ
el(k)
αβ (mi|nj)

(5.16)

Here, the quantity K denotes the derivative of the valence charge density with respect to
a displacement of the ion at Rn + τj + u(nj). Its approximation by linear response theory
will be discussed in detail in the next section.

A lattice Fourier transform of the above expression leads to the electronic part of the
dynamical matrix. How this can be achieved shall be illustrated for the first term of Eq.
(5.16):

el(1)D̂ij
αβ(q) = =

∑

n

φ
el(1)
αβ (0i|nj)eiq·Rn

= Zi
∑

n

eiq·Rn
∑

ls

∫
dr
[
∂rαV̊ is0l (0, r)

]
Kjn,β(r, ls)eiq·Rle−iq·Rl .

The unit factor appended at the end will be useful to transform the two functions ∂V̊ and
K which depend on vectors between different lattice points:

el(1)D̂ij
αβ(q) = Zi

∫
dr
∑

ls

[
∂rαV̊ is0l (0, r)

]
eiq·Rl

︸ ︷︷ ︸
=
∑
s Cisα (r,q)

∑

n

Kjn,β(r, ls)eiq·(Rn−Rl)

︸ ︷︷ ︸
=Kjβ(r′,q,s)

,

where the Fourier-transformed K can be obtained as shown because the sum running over
all lattice vectors Rn is independent of the second lattice point l. The function C(r, q),
which is the derivative of the FT of the lattice potential, is derived in App. A. Thus,

el(1)D̂ij
αβ(q) = Zi

∫
dr
∑

s

Cisα (r, q)Kjβ(r′, q, s). (5.17)

Similar transformations can be made with terms 3 and 5 of the force constants (5.16). The
remaining terms 2, 4 and 6 are diagonal with respect to site and lattice point, which has the
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5. APPLICATION TO LATTICE DYNAMICS

consequence that their FT is not q-dependent. Thus, the electronic part of the dynamical
matrix can be summarized as

elDij
αβ(q) =

1√
MiMj

[
elD̂ij

αβ(q)− δijelD̂ii
αβ(q = 0)

]
, (5.18)

which is very similar to the expression for the ionic contribution (2.72) The argument q = 0
shall symbolize that this function is independent of q. The q-dependent contribution reads

elD̂ij
αβ(q) = Zi

∫
dr
∑

s

Cisα (r, q)Kjβ(r, q, s) (5.19)

+

∫
dr

∫
dr′ [∂rαn

c
i (r)]

∑

s

V̊ isml(r, r′, q)Kjβ(r′, q, s) (5.20)

−
∫

dr fxc[n(r, i)]∂rαn
c
i (r)Kjβ(r, q, i), (5.21)

whereas the q-independent part is given by

elD̂ii
αβ(q = 0) = Zi

∫
dr
∑

s

[
∂rα∂rβ V̊ isα (0, r)

]
nv
s(r) (5.22)

+

∫
dr

∫
dr′

[
∂rα∂rβn

c
i (r)

]∑

s

V̊ is00(r, r′)nv
s(r
′) (5.23)

−
∫

dr fxc[n(r, i)]∂rαn
c
i (r)∂rβn

c
i (r). (5.24)

In practice, there is no need to calculate the q-independent part since it is determined by
the behaviour of the acoustic modes for long wavelengths: The transverse modes have to
approach zero and the longitudinal modes have to approach the value of the ion plasma
frequency, such that the total dynamical matrix approaches zero for q → 0.

Still, the missing piece is the response of the valence charge density to the displacement
of an ion, K. Its derivation is discussed in the following chapters.

5.2.1 Perturbation of the valence charge density

To implement TDDFT in its linear response version into a multiple scattering scheme, several
adaptations are necessary. In this work, only the static response of the electronic system

χ(x,x′) = χ(x,x′, ω = 0), (5.25)

shall be under concern. The neglect of the frequency dependence of the susceptibility is
crucial, but a good approximation for density perturbations on a time scale which is slow
compared to relaxation times of the density. Lattice vibrations are an example for this kind
of perturbation. The goal is to obtain a computationally feasible scheme for the calcula-
tion of the static interacting susceptibility, starting from the static Kohn-Sham susceptiblity,
herafter beeing referred to as polarization function

Π(x,x′) = χKS(x,x′, ω = 0). (5.26)

The above introduced quantity K is defined as

Kjn,β(r′, l′s′) =
∂nv

l′s′(r
′)

∂uβ(nj)
(5.27)
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5.2. Contribution of valence electrons

and describes the change of the valence charge density nv(r, l′s′) in cell l′ and place s′ under
an infinitesimal displacement of ion j in cell n in direction β.

According to section 3.4, the perturbation of the total charge density, induced by a small
change of the potential, can be described using linear response theory and is given as

δn(x) =

∫
dx′ χ(x,x′)δV ext(x′) (5.28)

in terms of the periodic nuclear potential V ext and the electronic susceptibility which is
defined by

χ(x,x′) = Π(x,x′) +

∫
dx1 Π(x,x1)

∫
dx1 Fxc(x1,x2)χ(x2,x

′), (5.29)

F (x1,x2) = fALDA
xc (x1,x2) +

2

|x1 − x2|
. (5.30)

The variation of the charge density is the sum of the variations of both core and valence
density. Likewise, the non-interacting Kohn-Sham susceptibility χKS can be written as sum
of the polarization functions of core and valence electrons, respectively,

δn(x) = δnc(x) + δnv(x) (5.31)

Π(x,x′) = Πc(x,x′) + Πv(x,x′), (5.32)

where the latter division follows directly from the definition of the non-interacting suscepti-
bilty as a sum over states (Eq. (3.64)). Since the change of the core density is described as
rigid shift, only the polarization function of the valence density is needed in the following.
For the moment, it shall be assumed that this quantity is known. Sect. 5.2.2 describes in
detail how it can be obtained from the single-particle Green function.

Under the assumption that the interacting susceptibility can be similarly written as sum
χ = χc + χv of a core and a valence part, the change of the valence charge density reads in
linear order

δnv(x) =

∫
dx′ χv(x,x′)δV ext(x′). (5.33)

The valence susceptibilty χv correctly incorporates the interaction with core electrons and
is given by the Dyson-like equation

χv(x,x′) = Πv(x,x′) +

∫
dx1 Πv(x,x1)

∫
dx2 F (x1,x2)χ(x2,x

′) (5.34)

Combining the last equation with Eqs. (5.33) and (5.27) and turning back to cell-centred
coordinates

Π(x,x′) = Π(Rn + τi + r,Rn′ + τj + r′) = Πij
nn′(r, r

′), (5.35)

this approach results in a change of the valence charge density given by

Kjn,β(r′, l′s′) =
∂nv

l′s′(r
′)

∂uβ(nj)

=
∑

l′s′

∫
dr′ Πss′

ll′ (r, r′)
∂V ext(r′, l′s′)

∂uβ(nj)

+
∑

l1s1

∫
dr1

∑

l2s2

∫
dr2 Πss1

ll1
(r, r1)F s1s2l1l2

(r1, r2)×

×
∑

l′s′

∫
dr′ χs2s

′

l2l′
(r2, r

′)
∂V ext(r′, l′s′)

∂uβ(nj)
.

(5.36)
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5. APPLICATION TO LATTICE DYNAMICS

By comparison with Eq. (5.28), it becomes apparent that the last line can can be replaced
by

∑

l′s′

∫
dr′ χs2s

′

l2l′
(r2, r

′)
∂V ext(r′, l′s′)

∂uβ(nj)
=
∂nl2s2(r2)

∂uβ(nj)

=
∂nc

l2s2
(r2 − u(nj))

∂uβ(nj)
+Kjn,β(r2, l2s2),

(5.37)

where the rigid-core approximation was used again for the derivative of the core charge
density with respect to an ionic displacement. After careful reordering of indices, Eq. (5.36)
can be turned in to a compact linear integral equation for the change of the valence charge
density,

Kjn,β(r, ls) = Ijsnl (r) +
∑

l′s′

∫
dr′ Ass

′
ll′ (r, r′)Kjn,β(r′, l′s′). (5.38)

The inhomogeneity Ijsnl (r) is the the offspring of the polarization function in the suscepti-
bility Dyson equation (5.34) and contains all terms which are independent of K,

Ijsnl (r) =
∑

l′s′

∫
dr′ Πss′

ll′ (r, r′)
∂V ext(r′, l′s′)

∂uβ(nj)
(5.39)

+
∑

l′s′

∫
dr′ Πss′

ll′ (r, r′)
∑

l′′1s′′

∫
dr′′ F s

′s′′
l′l′′ (r′, r′′)∂rβn

n
j (r′′). (5.40)

The kernel of the equation is given by

Ass
′

ll′ (r, r′) =
∑

l′′s′′

∫
dr′′ Πss′′

ll′′ (r, r′′)F s
′′s′
l′′l′ (r′′, r′) (5.41)

and the potential F , using the respective coordinates, reads

F s
′s′′
l′l′′ (r′, r′′) = V̊s′s′′l′l′′ (r′, r′′) + δl′l′′δs′s′′δ(r

′ − r′′)fALDA
xc (r′, r′′, l′s′). (5.42)

K only depends on the relative positions of the displaced ion and the respective point Rl +
τs + r at which the density is probed, allowing for the lattice Fourier transform

Kjβ(r, q, s) =
∑

n

Kjn,β(r, ls)eiq·(Rn−Rl) =
∑

n

Kjn,β(r, 0s)eiq·(Rn). (5.43)

Using this approach, a Fourier representation of the integral equation can be found in a way
similar to the dynamical matrix (p. 53) and is given by

Kjβ(r, q, s) = Ijs(r, q) +
∑

s′

∫
dr′ Ass

′
(r, r′, q)Kjβ(r′, q, s′) (5.44)

whith the respective inhomogeneity and kernel

Ijs(r, q) =
∑

s′

∫
dr′ Πss′(r, r′, q)Cjs′ext(r

′, q) (5.45)

−
∑

s′

∫
dr′ Πss′(r, r′, q)

∫
dr′′ ∂rβn

c
j(r
′′)V s′j(r′, r′′, q) (5.46)

−
∫

dr′ Πsj(r, r′, q)∂rβn
c
j(r
′)fxc[n(r′, s′)]δsj (5.47)

Ass
′
(r, r′, q) = −

∑

s′′

∫
dr′′ Πss′′(r, r′′, q)V s′s′′(r′′, r′, q) (5.48)

+ Πss′(r, r′, q)fxc[n(r′, s′)]. (5.49)
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5.2. Contribution of valence electrons

All quantities which enter this equation can be obtained from a self-consistent KKR calcula-
tion. While the calculation of the charge density was already discussed in chap. 4, the next
section explains how the polarization function Π can be constructed from the KKR Green
function. The Fourier transform of the Coulomb potential, V ss′(r, r′, q), is described in
App. A.2. The function Cjs′ext is the lattice Fourier transform of the derivative of the external
potential with respect to an atomic displacement and is closely related to the derivative Cj
used in the dynamical matrix (5.21). Both are discussed in App. A.3.

5.2.2 A Green function formulation of the non-interacting susceptibility

The solution of the self-consistent KKR equations results in the single-particle Green func-
tion of a crystal, describing the properties of single electrons moving in an effective poten-
tial. To obtain a corresponding representation of the polarization function, a good starting
point is its description in terms of Kohn-Sham eigenfunctions in Eq. (3.64),

Π(x,x′) = lim
η→0+


∑

ij

fi
φj(x)φ∗j (x

′)φi(x
′)φi(x)∗

εi − εj − ~ω − i~η

−
∑

ij

fj
φj(x)φ∗j (x

′)φi(x
′)φi(x)∗

εi − εj − ~ω − i~η




= ΠA(x,x′) + ΠB(x,x′).

(5.50)

The susceptibilty has been split into two terms again because they have to be treated seper-
ately. Following [Gon00], the Residue theorem can be used to obtain the auxiliary formula

1

εi − εj + 2iη
=

1

2πi

∮

C

dz

(z − εi − iη)(z − εj + iη)
, (5.51)

where the integral is taken on a closed contour C within the complex energy plane. Using
this result and keeping in mind that the limit η → 0 is taken, the first part of Eq. (5.50) can
be expressed as

ΠA(x,x′) = lim
η→0+

∑

ij

fi
φj(x)φ∗j (x

′)φi(x
′)φi(x)∗

εi − εj − ~ω − i~η

=
1

2πi
lim
η→0+

∑

ij

fi

∮

C
dz

φj(x)φ∗j (x
′)φi(x

′)φi(x)∗

(z − εi − iη)(z − εj + iη)
.

(5.52)

The actual shape of the contour can be chosen accordingly to match certain boundary
conditions. Since the response function of the valence electron density shall be obtained,
the integration can be restricted to an energy interval between the bottom of the valence
band Eb and the Fermi level Ef . Now summation and integration can be exchanged, giving

ΠA(x,x′) =
1

2πi
lim
η→0+

[Eb,Ef ]∮

c1

dz
∑

ij

φj(x)φ∗j (x
′)φi(x

′)φi(x)∗

(z − εi − iη)(z − εj + iη)
. (5.53)

The integration only includes occupied states of the valence band, which is why the occu-
pation numbers fi can be omitted. A schematic view of the integration contour c1 used
here, lying within the upper half of the complex plane, is given in Fig. 5.1 (left panel).
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Figure 5.1: Different contours for complex energy integration. Diagram adapted
from [Gon00].

Comparing this to the spectral representation of the Green function in terms of Kohn-Sham
orbitals,

G(x,x′, z) =
∑

i

φi(x)φ∗i (x
′)

z − εi
. (5.54)

the first part of the static response function is obtained as

ΠA(x,x′) =
1

2πi
lim
η→0+

[Eb,Ef ]∮

c1

dz G(x,x′, z − iη)G(x′,x, z + iη). (5.55)

In a similar fashion, the second term of Eq. (5.50) can be written as

ΠB(x,x′) = − lim
η→0+

∑

ij

fj
φj(x)φ∗j (x

′)φi(x
′)φi(x)∗

εi − εj − ~ω − i~η

=
1

2πi
lim
η→0+

[Eb,Ef ]∮

c2

dz
∑

ij

φj(x)φ∗j (x
′)φi(x

′)φi(x)∗

(−z + εi + iη)(z − εj + iη)
,

(5.56)

where the negative sign was absorbed by the denominator and the integration contour c2,
as shown in Fig. 5.1 (left panel), was used. Summing up, the total valence susceptibility
reads

Π(x,x′) =
1

2πi
lim
η→0+




[Eb,Ef ]∮

c1

dz G(x,x′, z − iη)G(x′,x, z + iη)

+

[Eb,Ef ]∮

c2

dz G(x,x′, z − iη)G(x′,x, z + iη)


 .

(5.57)

Taking the limit η → 0+ reshapes the contours such that the opposed branches near the real
axis cancel each other. Thus, the integrals can now be taken over the open contours c′1 and
c′2, as sketched in Fig. 5.1 (right panel),

Π(x,x′) =
1

2πi




[Eb,Ef ]∫

c′1

dz G(x,x′, z)G(x′,x, z) +

[Eb,Ef ]∫

c′2

dz G(x,x′, z)G(x′,x, z)


 . (5.58)
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5.2. Contribution of valence electrons

To make the contours symmetric with respect to the real axis, c′1 can be reversed under
change of the sign of the first integral,

Π(x,x′) =− 1

2πi




[Eb,Ef ]∫

−c′1

dz G(x,x′, z)G(x′,x, z)

−
[Eb,Ef ]∫

c′2

dz G(x,x′, z)G(x′,x, z)


 .

(5.59)

The second integration can be done, without changing its value, using the contour−c′1 when
the complex conjugate of the energy argument of the Green function is used. Additionally,
using the relation [Zab+05]

G(x,x′, z) = G(x′,x, z∗)∗ (5.60)

gives

Π(x,x′) = − 1

2πi

[Eb,Ef ]∫

−c′1

dz
[
G(x,x′, z)G(x′,x, z)− G(x,x′, z)∗G(x′,x, z)∗

]

=
i

π

[Eb,Ef ]∫

−c′1

dz Im
{
G(x,x′, z)G(x′,x, z)

}
(5.61)

This expression is valid for the real-space representation of Π. The next section shows how
the corresponding reciprocal-space expression needed for Eq. (5.44) as well as its angular
momentum expansion is derived.

5.2.3 Reciprocal space and angular momentum representation

In order to account for the crystal lattice structure, the arbitrary vector x is replaced by
cell-centered coordinates

x = Rn + τx + r (5.62)

whereRn denotes a lattice vector pointing to cell n and τs represents coordinates of ion sites
indexed by s within every unit cell. r then is a vector relative to the center of the respective
cell and, within the atomic sphere approximation (ASA), is limited in its length by the
Wigner-Seitz radius RWS(i) of each ion. Using this representation, Π can be transformed
into its reciprocal space representation via the Bloch-Fourier transform

Πss′(r, r′, q) =
∑

n

Πss′
nn′(r, r

′)eiq·Rnn′ =
∑

n

Πss′
nn′(r, r

′)eiq·Rn , (5.63)

where the second cell index n′ has been set to zero because Πss′
nn′ depends only on the

difference Rnn′ rather than on the coordinates of the individual cells. Defining the Green
function products

P ss
′

nn′(r, r
′, z) = Gss′nn′(r, r′, z)Gs

′s
n′n(r′, r, z), (5.64)

P
ss′

nn′(r, r
′, z) = Gss′nn′(r, r′, z)∗Gs

′s
n′n(r′, r, z)∗, (5.65)
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Eq. (5.61) in cell-centred coordinates reads

Πss′
nn′(r, r

′) =
i

2π

[Eb,Ef ]∫

−c′1

dz
[
P ss

′
nn′(r, r

′, z)− P ss
′

nn′(r, r
′, z)

]
(5.66)

For the lattice Fourier transformation of this equation, the following convolution theorem
[Buc12a] for two lattice-periodic functions f1 and f2,

∑

n

f1(Rn)f2(−Rn)eiq·Rn =
1

ΩBZ

∫
dk f1(k)f2(k − q), (5.67)

comes in useful to transform the first term in the square brackets of Eq. (5.66) and yields

P ss
′
(r, r′, z, q) =

∫

ΩBZ

dk

ΩBZ
Gss′(r, r′, z,k)Gs′s(r′, r, z,k − q), (5.68)

where the lattice Fourier transform of the Green function is given by

Gss′(r, r′, z,k) =
∑

n′

Gss′nn′(r, r′, z)eik·Rn′

∣∣∣∣∣
n=0

. (5.69)

The lattice point index n on the right side can be chosen arbitrarily because Gnn′ depends
only on the difference Rn −Rn′ . The direct transformation of the second term reads

P
ss′

(r, r′, z, q) =
∑

n′

Gss′0n′(r, r
′, z)∗Gs′sn′0(r′, r, z)∗eiq·Rn′

=
∑

n′

G(r + τs, r
′ + τs′ +Rn′ , z)

∗G(r′ + τs′ +Rn′ , r + τs, z)
∗eiq·Rn′ ,

(5.70)

which, due to inversion symmetry1, is equivalent to

P
ss′

(r, r′, z, q) =
∑

n′

G(r+τs, r
′+τs′−Rn′ , z)

∗G(r′+τs′−Rn′ , r+τs, z)
∗e−iq·Rn′ . (5.71)

Furthermore, the inversion symmetry of the Green function

G(x,x′, z) = G(−x,−x′, z), (5.72)

gives rise to the relations [Win13]

P
ss′

(r, r′, z, q) =
∑

n′

G(−r − τs,−r′ − τs′ +Rn′ , z)
∗×

× G(−r′ − τs′ +Rn′ ,−r − τs, z)∗e−iq·Rn′

=
∑

n′

[
G(−r − τs,−r′ − τs′ +Rn′ , z)×

×G(−r′ − τs′ +Rn′ ,−r − τs, z)eiq·Rn′
]∗

= P (−r − τs,−r′ − τs′ , z, q)∗

= P ss
′
(−r,−r′, z, q)∗.

(5.73)

1The requirement of inversion symmetry is, in principle, not necessary but allows for a more condensed
notation of the formalism. Within the scope of the materials tested in the following, the assumption is valid
without restrictions.
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Using the Fourier representation has the advantage that spatial integrals over the polariza-
tion function or related quantities, which are taken over the whole crystal, can be trans-
formed into integrals over the first Brillouin zone. According to Eq. (4.47), (4.52) and
(5.62), the Fourier transformed Green function for a complex lattice is given by

Gss′(r, r′, z,k) = − i
√
zδss′

∑

L

RsL(r<, z)H
s
L(r>, z)

+
∑

LL′

RsL(r, z)Gss
′

LL′(z,k)Rs
′
L′(r

′, z),
(5.74)

or equally

Gss′(r, r′, z,k) =
∑

LL′

YL(r̂)Gss′LL′(r, r′, z,k)YL(r̂′), (5.75)

using the expansion coefficients

Gss′LL′(r, r′, z,k) = −i
√
zδss′δLL′R

s
`(r<, z)H

s
` (r>, z) +Rs`(r, z)G

ss′
LL′(z,k)Rs

′
`′ (r
′, z) (5.76)

which can be obtained by using
∑

L fLL =
∑

LL′ fLL′δLL′ in the single-site term of G. The
functions P ss

′
(r, r′, z, q) which have been defined in Eq. (5.68) can thus be written as

P ss
′
(r, r′, z, q) =

∫

ΩBZ

dk

ΩBZ

∑

L1L′1

YL1(r̂)Gss′L1L′1
(r, r′, z,k)YL′1(r̂′)×

×
∑

L2L′2

YL2(r̂′)Gs′sL2L′2
(r′, r, z,k − q)YL′2(r̂),

(5.77)

where the site indices (s, s′) above the wave functions account for the different atomic types
within the unit cell. By making use of the relation

YL′(r̂)YL′′(r̂) =
∑

L

YL(r̂)CLL′L′′ (5.78)

where CLL′L′′ are Gaunt coefficients, defined by an integral over the unit sphere

CLL′L′′ =

∫
dr̂ YL(r̂)YL′(r̂)YL′′(r̂), (5.79)

the P can be expanded in spherical harmonics via

P ss
′
(r, r′, z, q) =

∑

LL′

YL(r̂)YL′(r̂
′)



∑

L1L′1

∑

L2L′2

CLL1L′2
CL
′

L′1L2
×

×
∫

ΩBZ

dk

ΩBZ
Gss′L1L′1

(r, r′, z,k)Gs′sL′2L2
(r′, r, z,k − q)




=
∑

LL′

YL(r̂)P ss
′

LL′(r, r
′, z, q)YL′(r̂

′),

(5.80)

where the summation within the square brackets is finite because the Gaunt coefficients
CLL′L′′ are non-zero only for |`′ − `′′| ≤ ` ≤ `′ + `′′ [MP06]. The coefficients P ss

′
LL′ are then
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5. APPLICATION TO LATTICE DYNAMICS

given by

P ss
′

LL′(r, r
′, z, q) =

[
δL1L′1

δL2L′2
δss′zR

s
`1(r<, z)H

s′

`′1
(r>, z)R

s′
`2(r<, z)H

s
`′2

(r>, z) (5.81)

+ δL1L′1
δss′
√
zRs`1(r<, z)H

s
`1(r>, z)R

s
`2(r′, z)Rs`′2

(r, z)

∫
dk

ΩBZ
GssL2L′2

(z,k)

+ δL2L′2
δss′
√
zRs`2(r<, z)H

s
`2(r>, z)R

s
`1(r, z)Rsl`′1

(r′, z)

∫
dk

ΩBZ
GssL1L′1

(z,k)

+ Rs`1(r, z)Rs
′

`′1
(r′, z)Rs

′
`2(r′, z)Rs`′2

(r, z)

∫
dk

ΩBZ
Gss

′

L1L′1
(z,k)Gs

′s
L2L′2

(z,k − q)

]
.

All required quantities for the calculation of these coefficients can be obtained from a self-
consistent KKR calculation.

Using relation (5.73) and the symmetry relations of spherical harmonics, the angular
momentum expansion of Eq. (5.71) is obtained as

P
ss′

(r, r′, z, q) = P s
′s(−r,−r′, z, q)∗

=
∑

LL′

YL(−r̂)P s
′s
LL′(r, r

′, z, q)∗YL′(−r̂′)

=
∑

LL′

(−1)`+`
′
YL(r̂)P s

′s
LL′(r, r

′, z, q)∗YL′(r̂
′).

(5.82)

Combining the formulas derived above leads to the handy expansion of the polarization
function

Πss′(r, r′, q) =
∑

LL′

YL(r̂)Πss′
LL′(r, r

′, q)YL′(r̂
′) (5.83)

with expansion coefficients

Πss′
LL′(r, r

′, q) =
i

2π

[Eb,Ef ]∫

−c′1

dz
[
P ss

′
LL′(r, r

′, z, q)− (−1)`+`
′
P s
′s
LL′(r, r

′, z, q)
]
. (5.84)

5.3 Implementation

The implementation of the above presented equations was done as part of the permanent
enhancement and improvement of the in-house screened KKR code HUTSEPOT, which has
been developed in Halle since 2000 and is a collection of contributions of many developers2

(hence the name). It allows an efficient, full-relativistic treatment of complex magnetic
systems, including strong correlations, self-interaction correction and dynamic spin exita-
tions. Traditionally, the potentials are described using ASA and MT approximations, but
also the treatment of potentials of arbitrary shape has been made possible recently. The
module PHON, developed as part of this work, uses the self-consistently calculated Green
function of HUTSEPOT in AS approximation as input and computes the Fourier-transformed
polarization function from it. The latter is then used, together with the Fourier-transformed
lattice potential, to solve the Susceptibility Dyson Equation. For this purpose, initially an
efficient Broyden scheme was implemented to solve the equation iteratively, but turned out
to be unstable under certain conditions. In the present version, the discretised equation is
solved by matrix inversion. These and other details of the implementation will be elabo-
rated on on the following pages.

2[Lüd+01], [Lüd+05], [Hug+07], [Buc+09], [Kha+09]
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5.3. Implementation

Angular momentum representation of the dynamical matrix

In order to perform efficient numerical calculations of the electronic part of the dynam-
ical matrix, it is necessary to introduce spherical coordinates and to expand all involved
quantities as linear combinations of spherical harmonics. The change of the valence charge
density, as well as the bare Coulomb potential can be written as

Kjβ(rs, q) =
∑

L

Kjβ,L(rs, q)YL(r̂), (5.85)

V is(r, r′, q) =
∑

LL′

V is
LL′(r, r

′, q)YL(r̂)YL′(r̂
′), (5.86)

(5.87)

The calculation of the first quantity is discussed below, whereas the second one is discussed
in appendix A.2. The adiabatic exchange-correlation kernel is expanded in a similar fashion,

fxc[n(r, i)] =
∑

L

f ixc,L(r)YL(r̂). (5.88)

In this case, the expansion coefficients are given by

f ixc,L(r) =

∫
dr̂ YL(r̂)fxc[n(r, r̂, i)] (5.89)

and have to be approximated numerically using a combination of radial and angular inte-
gration methods (see App. B).

Analogously, the valence charge density is expanded as

nv
i (r) =

∑

L

nv
L(r, i)YL(r̂), (5.90)

opposed to the spherical core electron density, which can be written as

nc
i (r) = nc

0(r, i)Y0(r̂). (5.91)

Since Y0(r̂) = 1/
√

4π is a constant, the gradient of a spherical symmetric function is given
by

∇rnc
i (r) =

r̂√
4π

d

dr
nc

0(r, i). (5.92)

The unit vector r̂ can be represented as

r̂ =
r

r
=

√
4π

3



Y11(r̂)
Y1−1(r̂)
Y10(r̂)


 , (5.93)

leading to a component of the gradient

∂rαn
c
i (r) =

1√
3

d

dr
nc

0(r, i)YLα(r̂), Lα =





(1, 1), α = 1
(1,−1), α = 2
(1, 0), α = 3

(5.94)

where Lα refers to the angular momentum index combination for the respective direction
α. Using the relations given above, the q-dependent part of the electronic contribution to
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5. APPLICATION TO LATTICE DYNAMICS

the dynamical matrix (Eq. (5.21)) in terms of angular momentum eigenfunctions is given
by

elD̂ij
αβ(q) = Zi

∫
dr r2

∑

s

∑

L

Cisα,L(rr, q)KjβL(rs, q) (5.95)

+
1√
3

∫
dr r2

[
d

dr
nc
i (r)

] ∫
dr′ r′2

∑

s

∑

L

V is
Lα,L(r, r′, q)KjβL(r′s, q) (5.96)

− 1√
3

∫
dr r2

∑

LL′

f ixc,L(r)

[
d

dr
nc
i (r)

]
KjβL′(ri, q)CLαLL′ . (5.97)

Susceptibility Dyson equation

In a similar fashion, the Dyson equation which describes the variation of the valence charge
density can be expanded in terms of spherical harmonics. Then, the angular momentum
components of K are given by

Kjβ,L(rs, q) = IjsL (r, q) +
∑

s′

∑

L′

RASA∫

0

dr′ r′2Ass
′

LL′(rr
′, q)Kjβ,L′(r′s′, q) (5.98)

with the inhomogeneity

IjsL (r, q) =
∑

s′

RASA∫

0

dr′ r′2
∑

L′

Πss′
LL′(rr

′, q)Cjs′ext,L′(r
′, q)

− 1√
3

∑

s′

RASA∫

0

dr′ r′2
∑

L′

Πss′
LL′(rr

′, q)

RASA∫

0

dr′′ r′′2V s′j
L′Lβ

(r′r′′, q)
d

dr′′
nc
i (r
′′)

− 1√
3

RASA∫

0

dr′ r′2
∑

L′

Πsj
LL′(rr

′, q)
∑

L′′

C
Lβ
L′L′′f

j
xc,L′′(r

′)
d

dr′
nc
j(r
′)

(5.99)

and kernel

Ass
′

LL′(rr
′, q) = −

∑

s′′

∑

L′′

RASA∫

0

dr′′ r′′2Πss′′
LL′′(rr

′′, q)F s
′′s′
L′′L′(r

′′r′, q), (5.100)

using

F s
′′s′
L′′L′(r

′′r′, q) = V s′′s′
L′′L′(r

′′r′, q) + δs′s′′δ(r
′ − r′′)

∑

L1

fs
′

xc,L1
(r′)CL1

L′L′′ . (5.101)

Additionally, the radial coordinate has to be discretised in a practical calculation. Thus,
r ∈ [0, RASA] is replaced by Nr values of ra with a ∈ {1 . . . Nr}] which satisfy Eq. (B.4).
Using this discrete mesh, all radial integrations can be approximated via the Gauss-Legendre
method described above and replaced by weighted sums. The discretised Dyson equation
reads

Kjβ,L(ra, s, q) = IjsL (ra, q) +
∑

s′

∑

L′

Nr∑

b=1

r2
bwbA

ss′
LL′(rarb, q)Kjβ,L′(rbs′, q) (5.102)
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5.3. Implementation

with Gaussian integration weights wb. By further introducing general indices µ = (s, L, a)
and ν = (s′, L′, b) (µ, ν ∈ [1, N ] and N = Nsite · Lmax ·Nr), all quantities can be written in
vector or matrix representation as follows:

Kjβ,L(ras, q) = Kµ(jβ, q) = [K(jβ, q)]µ (5.103)

IjL(ras, q) = Iµ(j, q) = [I(j, q)]µ (5.104)

Ass
′

LL′(rarb, q)r2
bwb = Aµν(q) = [A(q)]µν (5.105)

This way, Eq. (5.102) can be written in the form

Kµ(jβ, q) = Iµ(j, q) +
N∑

ν=1

Aµν(q)Kν(jβ, q) (5.106)

or, in matrix notation, as

K(jβ, q) = I(j, q) +A(q) ·K(jβ, q). (5.107)

The latter equation shows that K(jβ, q) is the solution of the linear equation system

I(j, q) = [1−A(q)] ·K(jβ, q), (5.108)

in which 1 is the identity matrix. Systems of this type can be efficiently solved using LAPACK
[Ang+90] routines.

5.3.1 Test calculations

Polarization function

To test the correct computation of the polarization function, a sum rule introduced by Ter-
akura [AT79; Ter+82; SW85] comes in handy. It states, that the density of valence states at
the Fermi energy can be obtained from a spatial integration of the polarization function,

∫
dr′ Π(r, r′, q = 0) = −dv(r, εF). (5.109)

A proof of this expression [SW85; Buc12a] shall be given in real space, starting from Eq.
(5.61)

∫
dx′ Π(x,x′) = − 1

2πi

[Eb,Ef ]∫

−c′1

dz

∫
dx′

[
G(x,x′, z)G(x′,x, z)− G∗(x,x′, z)G∗(x′,x, z)

]
.

Using the Lehmann representation of the Green function, it can be written in terms of Kohn-
Sham orbitals ψi,

G(x,x′, z) =
∑

i

φi(x)φi(x
′)∗

z − εi
. (5.110)

As a result of the orthonormality of the KS orbitals, the space integral of the product of two
Green functions can be evaluated as

L(x, z) =
∑

i

φi(x)φi(x)∗

(z − εi)2
, (5.111)
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such that Eq. (5.110) can be written as

∫
dx′ Π(x,x′) = − 1

2πi

[Eb,Ef ]∫

−c′1

dz [L(x, z)− L(x, z)∗] . (5.112)

As L is identical to the energy derivative of the Green function,

L(x, z) = − d

dz
G(x,x, z), (5.113)

the integral can be easily evaluated to
∫

dr′ Π(x,x′, q = 0) =
1

2πi
[−G(x,x, εF) + G(x,x, εF)∗ + G(x,x, Eb)− G(x,x, Eb)∗]

= − 1

π
Im G(x,x, εF), (5.114)

which is the local density of states at εF. This sum rule can be implemented into a test
calculation by plugging in the angular momentum expansion of the susceptibility. For the
total valence DOS, one obtains

dv(εF) = −
∫

dr

∫
dr′ Π(r, r′, q = 0)

= −
∫

dr

∫
dr′

∑

LL′

ΠLL′(r, r
′, q = 0)YL(r̂)YL′(r̂

′)

= −
RASA∫

0

dr r2

RASA∫

0

dr′ r′2
∑

LL′

ΠLL′(r, r
′, q = 0)

∫
dr̂′ YL(r̂)

∫
dr̂′ YL′(r̂)

= − 1

4π

RASA∫

0

dr r2

RASA∫

0

dr′ r′2Π00(r, r′, q = 0). (5.115)
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Nk
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Nk

Nk

Nk
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Nk

Figure 5.2: Total density of states of Cu at E = εF depending on the number of energy integration
points NE. Points of different colors correspond to k-meshes of increasing density (the lines are
guides to the eye).

66



5.3. Implementation

Interestingly, the value for the total DOS depends only on the coefficient with ` = `′ = 0.
Fig. 5.2 shows resulting values for different k-meshes as function of the number of

energy points NE. All calculations used the same semicircular integration contour with
gaussian weights and the highest density of integration points near the real axis. While
using only 5 points leads to identical results for all k-meshes, the values of d(εF) varied quite
remarkably with increasingNE. The most stable results have been achieved withNk = 2.3×
107 (black), while the deviations from the almost linear run seen here become strongest for
the sparse k-meshes. This behaviour obviously is a consequence of the analytical properties
of the Green function. As described in section 4.2.3, the Green function shows more features
near the real axis and is smooth far away from it. At the same time, for the exact evaluation
of its run at small imaginary energies, the Brillouin zone integration in Eq. (5.82) has to be
performed on a much denser mesh of integration points to obtain a converged result at a
specific complex energy. The more energy points are used on the contour, the more energy
points lie in the region near the real axis and the Brillouin zone integration becomes more
important.

This test indicates that a very dense k-mesh is needed to obtain a converged polarization
function at high NE, but it only allows to draw conclusions about the integrated ` = 0
component of it. A better evaluation of its spatial dependence can be obtained using the
Terakura formula for the local density of states:

dv(r, εF) = −
∫

dr′ Π(r, r′, q = 0)

= −
∫

dr′
∑

LL′

ΠLL′(r, r
′, q = 0)YL(r̂)YL′(r̂

′)

= −
RASA∫

0

dr′ r′2
∑

LL′

ΠLL′(r, r
′, q = 0)YL(r̂)

∫
dr̂′ YL′(r̂)

= − 1√
4π

RASA∫

0

dr′ r′2
∑

L

ΠL0(r, r′, q = 0)YL(r̂). (5.116)

Fig. 5.3 shows results for Cu on a line from r = 0 to r = rWS linking two next neighbours.
As a reference, the local DOS (black dots) has been calculated from the Green function using
Eq. (4.10). In order to obtain the correct value on the real axis, an analytic continuation
scheme has been used (formula 25.2.67 in [AS72]). The results obtained from the sum
rule are plotted as coloured lines. The left panel shows results for NE = 12 with different
values of `max in different colours. The ratios between exact DOS and sum rule are plotted
as dashed lines in the respective colours. The curves are very similar for `max ∈ [0 . . . 3]
(green) as well as `max ∈ [4 . . . 6] (blue). The only major dependence on `max appears at
the step from `max = 3 to `max = 4, where the deviation from the exact density is reduced
by 50%. This is still true for polarization functions obtained with higher numbers of energy
points, shown in the right panel (always using `max = 4). The smallest deviation (< 5%) is
achieved using NE = 90 and Nk = 2.3 × 107, whereas an even larger number of k-points
(red curve) leads to a large error in the polarization function, in conformity with Fig. 5.2.

Charge density response

The response of the charge density upon a wave-like perturbation of the external potential
was defined as

Kjβ(r, q, s) =
∑

n

Kjn,β(r, 0s)eiq·(Rn) =
∑

n

eiq·(Rn)
∂nv

s′ 6=s(r
′)

∂uβ(nj)
. (5.117)
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d
r

r r

Figure 5.3: Local density of states of Cu at E = εF. The black line has been calculated directly
from the Green function by means of Eq. (4.10), using an extrapolation formula to obtain the value
on the real axis (see text). (a) Coloured lines denote the local DOS obtained from the Terakura sum
rule, Eq. (5.116), for different values of `max used in the expansion of the polarization function. The
dashed lines denote the ratio between the reference DOS and the Terakura value for `max = 6. The
curves from ` = 4 to ` = 6 differ by less then 1 %. (b) Different colours denote variable densities of
the k-mesh and energy points (see key). All curves have been evaluated using ` = 4.

In the limit q → 0, the charge density experiences a perturbation of infinite wavelength,
which corresponds to a displacement of all ions in the same direction and thus to a shift
of the whole crystal. In that case, K(r, q → 0) must become equal to the gradient of the
ground state valence charge density,

lim
q→0
K(r, q) =

d

dr
nv(r). (5.118)

This relation allows to check the result of the susceptibility Dyson equation. Fig. 5.4 shows
this comparison for different metals on a line from nucleus to WS radius in (001) direction.
All calculations have been performed using 200 radial mesh points and `max = 4, such
that the result was converged with respect to these parameters. The number of energy
integration points was NE = 90 and a k-mesh of 2.3 × 107 points was used. In all cases,
the derivative of the charge density is plotted black and K(r, q → 0) is shown as red curve.
The qualitative agreement between the two curves is good, indicating that the presented
formalism, in principle, delivers reasonable results. Nevertheless, deviations from the ideal
curve, depending on radius and element type, are obvious. Extrema of K(r, q → 0) differ
in height and position compared to ∇nv(r). Although the difference between both curves
becomes small at large radii compared to intermediate radii, the relative deviation is largest
for r → RWS. The ratio between both values,

∆WS =
K(RWS, q → 0)

∇nv(RWS)
(5.119)

is given next to each graph, respectively. The strongest deviations are found for the alkali
metals Li and K with ∆WS ≈ 24 and ∆WS ≈ −48, whereas in the case of the tested 3d
elements K(RWS, q → 0) is always smaller than the respective ∇nv(RWS) with a best value
of ∆WS ≈ 0.77 for Cu.
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Figure 5.4: Comparison between exact gradient of the valence charge density (black
lines) and extrapolation of K to q = 0 (red lines) for different metals. Qualitatively,
the runs of both respective functions are similar. For small and large radii, both curves
are almost indistinguishable. At medium radii, the curves show the same characteristic
features, but with slightly different peak positions and heights. At a closer look, it turns
out that the ratio between both curves is largest at the Wigner-Seitz radius (denoted as
∆WS). The ratio of the integrated quantities (see text) is given as ∆int.

The deviation in this region is important because the values at large radii give the biggest
contribution in volume integrals over the Wigner-Seitz cell. K(r, q) enters the dynamical
matrix as a factor and thus even small deviations have a crucial influence on the resulting
phonon frequencies. Thus, the influence on the exchange-correlation part of the dynamical
matrix (Eq. 5.97) is expected to be small, since the gradient of the core charge density
quickly approaches zero for large radii, opposed to the other terms (5.96 and 5.95) in
which the integrals are taken over products of coulomb terms and K(r, q). Due to the
integral form of the dynamical matrix, it seems also useful to compare the integrated values
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of K(r, q). The resulting ratio,

∆int =

RWS∫
0

dr r2K(r, q → 0)

RWS∫
0

dr r2∇nv(r)

, (5.120)

is also given in Fig. 5.4. In this case, Cu and Fe show ratios of ≈ 1.0 and also V has a
reasonable ∆int of 1.29. Opposed to this, the light elements Li, K, and Al show far worse
values of this ratio. This contrast possibly originates in the fact that the valence bands of
these elements are dominated by weakly localized s and p states, whereas the 3d elements
are dominated by strongly localized valence states. Basically, the KKR method is better
suited for the description of localized states, especially when used with ASA and MT ap-
proximation. Nevertheless, the ratio ∆WS is more important for the quality of the resulting
dynamical matrix. The fact, that the ratio between ∇n(r) and K(r, q) is worst at large radii
indicates that the used approximation for the scattering potential (ASA) is problematic since
at large radii, the exact potential and density differ widely from spherical symmetry.

Phonon dispersions

The above presented test results show, on one side, that non-interacting susceptibilities are
numerically manageable and can be improved through refinement of computational param-
eters. Apart from that, it is obvious that the result of the valence charge density response
function K is questionable and its deviation from optimum depends on the respective mate-
rial. The remaining question is, how strong this deviation affects the calculation of phonon
frequencies. In the following, some example calculations are shown, beginning with the
material which gave the best results, Copper. Fig. 5.5 (a) shows the eigenvalues of both

Γ Γ

∆ [100] Σ [110] Λ [111]

Γ Γ

∆ [100] Σ [110] Λ [111]

Figure 5.5: (a) The plot shows the eigenvalues of both ionic part (straight lines) and elec-
tronic part (dashed lines) of the dynamical matrix of Copper on high-symmetry lines of the
fcc Brillouin zone. All values of the electronic part have been shiftet such that the transverse
branches approach zero at the Γ point. (b) The resulting frequencies as square root of the
eigenvalues. The frequencies of the valence part have been reduced by a factor of 1.56 such
that the longitudinal modes of both parts coincide at Γ. The residual frequencies, obtained
from the difference of both dynamical matrices, are plotted as thick coloured lines.
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parts of the dynamical matrix of a Cu bulk crystal

D11
α,β(q) =ion D11

α,β(q)−el D11
α,β(q), (5.121)

as a function of q-vectors on selected high-symmetry lines of the first Brillouin zone of
the fcc lattice. The solid lines denote the eigenvalues of the ion part ionD11

α,β(q), which
are basically the square of the vibrational frequencies of the bare ion lattice. The three
branches are denoted by labels ’L’ for longitudinal and, respectively, ’T1’ or ’T2’ for the
transverse branches. The latter are degenerate on the (100) and (111) lines.

The eigenvalues of the valence part elD11
α,β(q) are plotted as coloured dashed lines,

where blue denotes longitudinal modes and red as well as green transverse modes. Ob-
viously the behaviour of the valence part is very similar to the ion part, but all eigenval-
ues seem enhanced by a nearly q-independent factor. Ideally, ion and valence eigenvalues
should coincide at Γ and run close to each other such that the eigenvalues of the resulting
difference matrix provide the correct phonon dispersion. This is not the case, as the valence
ω2
L at Γ is 56% larger than the respective ion value. Nevertheless, the general behaviour as

well as the symmetry of the modes are correct.
In order to allow for a better comparison of both parts, the right panel (b) shows the

resulting phonon frequencies. Black lines again represent the frequencies of the bare ion
lattice and are obtained by taking the square root of the eigenvalues of the respective dy-
namical matrix ionDij

α,β(q). To match the condition of the acoustic sum rule

lim
q→0

Dij
α,β(q) = 0, (5.122)

elDij
α,β(q) has to coincide with the ion part at Γ. For this purpose, the valence part has been

reduced by a factor of f ≈ 0.64. Thus, the coloured dashed lines denote the frequencies of
this augmented matrix. Now the frequencies are equal at the Γ-point, but the valence fre-
quencies at finite q-vectors are almost always higher than their ionic counterparts, although
the opposite should be true. Thus, the resulting dynamical matrix

fD11
α,β(q) = ionD11

α,β(q)− f · elD11
α,β(q), (5.123)

has the wrong sign. For the sake of clearness, the frequencies which result from the matrix
−fD11

α,β(q) are shown in Fig. 5.5 (b) as thick coloured lines.
The fact that the valence eigenvalues are bigger than the ionic ones essentially means

that the scaling with a constant factor f is wrong. Indeed, the dynamical matrix needs
a q-dependent correction to match the vibronic properties of the electron gas. The large
deviation at Γ can be directly related to the differences between K(r, q = 0) and ∇nv(r) in
Fig. 5.4.

Another 3d element with similar values of integrated K(r, q = 0) and integrated gradi-
ent of the valence charge density is Fe. Fig. 5.6 (a) shows the eigenvalues of both parts of
the dynamical matrix on high-symmetry lines within the BZ of the BCC crystal. As expected
for this Bravais lattice, electronic as well as ionic eigenvalues are threefold degenerate at
high-symmetry points H and P. While the ionic eigenvalues at both points are equal, the
valence values in P are higher than in H. Thus, the resulting frequencies (Fig. 5.6 (b)) in P
are lower than at H, in correspondence with the experimental results.

In the fashion of Cu, the run of the transverse modes of the valence matrix is very similar
to the ionic values, but,besides the difference in overall scaling, several distinctions become
apparent: the transverse valence mode on the ∆ line does not approach H like q2, but ap-
proximately linear. Moreover, the transverse mode T1 on the Σ line is too high compared to
T2 and to the respective ionic mode. Nevertheless, the greatest discrepancy appears in the
longitudinal mode near the Γ point. The electronic eigenvalues assume maxima between
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Γ Γ

∆ [100] [311] Λ [111] Σ [110]

Γ Γ

∆ [100] [311] Λ [111] Σ [110]

Figure 5.6: Fe. (a) Eigenvalues of both ionic and electronic parts of the dynamical matrix for
Fe, similar to Fig. 5.5. (b) Resulting phonon frequencies. For comparison, neutron scattering
data from [MSN67] are plottet as circles (Filled circles for longitudinal modes, empty circles
for transverse modes. On the Σ line, only the T2 branch is shown.)

center and boundary of the BZ and thus decrease towards Γ, instead of approaching the ion
plasma frequency. The resulting value at Γ is by a factor of appr. 12 smaller then the respec-
tive longitudinal ionic mode. For that reason it is not useful to scale the valence eigenvalues
by a constant factor similar to Cu when it comes to plotting the phonon frequencies in panel
(b) of Fig. 5.6. The plot shows ionic (black lines) and valence frequencies (dashed lines)
as well as the resulting frequencies of the total dynamical matrix (straight coloured lines).
For better comparison, experimentally measured frequencies, taken from [MSN67], are in-
dicated by black dots. The latter are scaled by a factor of 3 for clearness and they indicate
that the ab-initio frequencies show, at least far from the zone centre, correct behaviour.

The phonon dispersions obtained for other tested elements show, in principle, the same
problem: The symmetry properties of the electronic part of the dynamical matrix is similar
to the ionic one. Near the BZ boundary, the run of the modes is quite similar, although
the absolute values of the electronic part are to small compared to the ionic part, causing
too large values of the resulting phonon frequencies. In the long-wavelength limit, the
longitudinal mode of electronic and ionic matrix differ largely, instead of both approaching
the ion plasma frequency. This limit can be, to some extend, compared with the q → 0 limit
of K. Table 5.1 shows the ratio between K(q → 0, RWS) and ∇n(RWS) on one side, and
the ratio between the longitudinal eigenvalues of ionD11

α,β(q) and elD11
α,β(q) on the other.

Especially for the smaller values of ∆WS a correlation with
(
ωel

Γ /ω
ion
Γ

)2 is recognizable.
Since ∆WS is only the deviation of K at RWS and does not include smaller radii, a more
obvious correlation can not be expected. Particularly the large values of ∆WS in Nb, Li and
K are clearly overestimating the deviation of the dynamical matrix at Γ (as already can be

Element Fe V Cu Al Ag Nb Li K
|∆WS| 0.088 0.37 0.77 2.47 2.71 8.03 24.00 48.36(

ωel
Γ /ω

ion
Γ

)2 0.079 0.384 1.56 1.08 3.35 1.92 4.248 2.454

Table 5.1: Comparison between ∆WS (see Eq. (5.119)) and the ratio between the eigenvalues of
electronic and ionic part of the dynamical matrix for the longitudinal branch at the Γ point.
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estimated from Fig. 5.4). This correlation is a significant hint to the discrepancies in K
beeing the reason for the errors in the phonon dispersions.

5.3.2 Conclusion and Outlook

The results shown here represent the status quo of an ongoing development. Much time
was invested in development and testing of the formalisms for the linear response of the
charge density and the dynamical matrix. So far, the results question the chosen methods,
but if and how they can be improved becomes apparent on closer consideration of possible
sources of errors:

The choice of the exchange-correlation kernel. The choice of LDA as approxima-
tion to the exchange-correlation potential may be questioned with respect to the validity of
the Hellmann-Feynman-Theorem. Since LDA is, strictly speaking, only valid for a homoge-
neous electron gas, it does not lead to the exact ground state density which is a basis for
the validity of the HFT. As shown in [Gon00], this is not a problem since the HFT holds
exactly within the LDA. In the same sense, the choice of the simplest approximation for an
exchange-correlation kernel fxc is a possible source of errors. Its essential simplification lies
in the assumption that the rate of change of the exchange-correlation potential is indepen-
dent of the rate of change of the external potential. This limitation is indeed crucial when
it comes to the description of numerous dynamic processes where the perturbation of the
external potential is of high amplitude. Nevertheless, this adiabatic LDA kernel has proven
very useful [BGD01] because lattice vibrations which can be described within the harmonic
approximation live on time scales in which the electron gas can be regarded as static. Thus,
it is unlikely that the use of a frequency-dependent kernel would improve the results.

Geometric problem of ASA: Moon regions and interstitials A fundamental property
of the atomic sphere approximation is the overlap between neighbouring atomic spheres on
on side and the interstitial regions on the other. In the current version of the formalism,
both issues are not addressed. All integrals are taken over the Wigner-Seitz spheres and ne-
glect the interstitial regions completely. Also the Moon regions cause a wrong assignment
of integration regions and a double-counting of contributions from them. In order to elim-
inate these problems, one has to introduce near-field corrections into the formalism. Test
calculations using the Muffin-Tin approximation with larger interstitial regions but without
moon regions showed similiar results to ASA. This indicates that the limitation of a spherical
cell boundary is important, but not crucial for the observed results. In order to improve the
numerical accuracy, it would be easier to augment the formalism for space-filling cells using
shape functions instead of the introduction of near-field corrections. This solution also has
the advantage to be applicable to the next point:

Spherical density and spherical potential. As mentioned before, the HFT is only
valid for the exact ground-state wave function and thus the exact ground-state charge den-
sity. Errors in the charge density enter the HF forces in linear order. In the MT or ASA
approximation, the charge density is always of spherical symmetry, and thus causes errors
in the forces. Despite this fact, it still seems possible to obtain reasonable forces from KKR
methods applying MT or ASA approximations [Zec01] if a rigid-ion model is used. The
problem increases, when the derivative of the force is taken to calculate the harmonic force
constants. Here, the linear response K of the charge density to a lattice distortion enters
and increases the errors caused by the spherical density. The errors in K are most likely
caused by the spherical density in combination with the non-spherical derivatives of the
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core charge density (Eq. (5.94)) and the Coulomb potential (Eq. (2.70)). In the long-
wavelength limit, these result in non-spherical contributions to K which are not part of the
derivative of the spherical valence density. This problem can not be avoided by cutting off
the angular momentum summation in the susceptibility dyson equation at ` = 0 because of
the almost vanishing spherical contributions of the above mentioned derivatives.

A promising solution for this problem is the implementation of the full-potential method
which uses space-filling, non-overlapping cells as well as densities and potentials without
spherical symmetry. An efficient self-consistent FP algorithm has been implemented into
the HUTSEPOT code recently. Instead of spherically symmetric scattering centres it uses
the full Wigner-Seitz cells, the complex boundary of which is taken into account via shape
functions

Θ(r) =

{
1; r ∈ ΩWS

0; r /∈ ΩWS
. (5.124)

By the expansion of those in terms of spherical harmonics

Θ(r) =
∑

L

ΘL(r)YL(r̂), (5.125)

all integrals over the Wigner-Seitz cell occuring in the dynamical matrix or the linear re-
sponse formalism can be kept but have to be rewritten using shape functions and an the
integration radius of the bounding sphere of the cell. By acknowledging aspherical expan-
sion terms in the potential

V (r) =
∑

L

vL(r)YL(r̂) (5.126)

during the solution of the single site scattering problem, the representation of the respec-
tive non-spherically symmetric coefficients of regular and irregular solutions has to be aug-
mented by an additional angular momentum expansion

RL(r, E) =
∑

L′

RLL′(r, E)YL′(r̂) (5.127)

HL(r, E) =
∑

L′

HLL′(r, E)YL′(r̂). (5.128)

As a consequence thereof, the representations of charge density and polarization function
as well as K have to be rewritten in terms of the additional indices, which can be done
straightforwardly. This enhancement of the formalism will increase the computational effort
needed for the evaluation of polarization function and subsequent quantities considerably.
Parts of the additional costs may be decreased by using the full-charge-density approxi-
mation [VKS97] instead of the full-potential scheme. This approach still uses non-spherical
densities and space-filling cells, but uses only the spherical component of the potential, as is
done in MT and ASA. Benchmark calculations in [Asa+99] have shown that this simplified
approach still generates results with extremely high accuracy.
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6Electron-Phonon Interaction in superconducting
metals

The interaction between electronic and vibrational states affects almost all physical prop-
erties of solids and has been studied since the 1920s. It plays an important role in the
description of transport processes. The effect that an electron moving through a lattice of
positive ions distorts this lattice has two important consequences: The momentum of the
electron can be degraded due to energy dissipation into the lattice, which gives the main
contribution to electrical resistivity at high temperatures. Opposed to this, at very low tem-
peratures, the electron-phonon interaction can lead to an effective reduction of the Coulomb
repulsion between two electrons, leading to the formation of Cooper pairs and thus reduc-
ing the electrical resistance to zero. Superconductivity, discovered in 1911 [DK10], was
not understood on a microscopic scale until the 1950s, when Cooper, Bardeen and Schri-
effer developed their theory based on electron-phonon interaction [Coo56; BCS57]. They
considered an electron gas whose particles did not only interact via the screened coulomb
interaction, but also exchanged virtual phonons (see Fig. 6.1). In a simple picture, one
electron in state |k〉 distorts the lattice and thus creates a phonon of frequency q. A sec-
ond electron |k′〉 responds to the resulting charge imbalance and annihilates the phonon
[BK09] such that k− k′ = q. The authors showed that these bound states become energet-
ically favourable when the interaction is attractive for states near the Fermi level, opening
an energy gap ∆ and creating a new ground state with fundamentally different properties
than the Fermi gas. The BCS theory was able to predict the superconducting transition

k1

k′
1

k2

k′
2

q

Figure 6.1: Feynman diagram of the electron-
phonon interaction which induces the creation
of a Cooper pair. Here, space and time are rep-
resented by the horizontal and vertical axis, re-
spectively. The trajectory of both electrons k1
and k2 is changed due to the exchange of a vir-
tual phonon with wave vector q, leading to an
effective attraction between the electrons. Both
scattering processes are considered elastic, such
that q = k1 − k′1 = k′2 − k2.

temperature TC as well as the gap for a wide range of metals. However, it failed for some
heavy metals, such as Hg and Pb, because the theory was constructed without a detailed
picture of the electron-phonon interaction. In particular, it ignored the retardation between
emission and absorption of the virtual phonon as well as the limited lifetime of the cooper
pairs.

These problems have been addressed by Eliashberg [Éli60; Éli61; Éli62] who developed
self-consistent equations for the determination of ∆ and TC . In his picture, which is based
on Green function techniques, the electron-phonon interaction is described by a spectral
function α2(ω)F (ω), which is related to the interaction strength λ by

λ = 2

∫
dω

ω
α2(ω)F (ω). (6.1)
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6. ELECTRON-PHONON INTERACTION IN SUPERCONDUCTING METALS

Here, F (ω) is the phonon density of normal modes at frequency ω and α2(ω) is a weighting
function describing the coupling strength to electronic states. An interesting way to derive
this function named after Eliashberg, is the following (after [Gon00]):

An important effect of the electron-phonon interaction is that it slows down the electrons
near the Fermi energy in a metal, without causing energy dissipation. In a physical picture,
this reduction of velocity is caused by the local distortion of the lattice by the electrons
moving through it, which causes higher forces between ions and electrons. For a metal with
an approximate free electron dispersion, the Fermi velocity is given by vF = ~kF/m with m
beeing the effective mass of an electron under neglect of the electron-phonon interaction.
Since the Fermi momentum kF remains unchanged, the effect can be interpreted as beeing
caused by a larger effective mass of the electrons, and is related to the electron-phonon
coupling constant via

m∗ = m(1 + λ). (6.2)

This effect is also connected to the density of states at the Fermi level, as

d(E) =
ΩUC

(2π)3

∫
dE

∫

S(E)

dSk(E)

~|vk|
. (6.3)

The effects on the electronic system caused by electron-phonon interaction can be better
understood by examining the electronic self-energy. If the electronic states of a material can
be described by the single-particle equation

[
− ~

2me
∇2
r + Veff(r)

]
ψk(r) = Ekψk(r), (6.4)

in wich Veff(r) is the self-consistent and energy-independent effective single-particle poten-
tial in which the electron moves. The energy of the electron in state |k〉 is given by Ek, but
this is not equal to the difference between the total energy of the system ENe and an equal
system without the electron |k〉 , or a system with an additional electron ENe+1. Instead,
the system would relax into a different ground state. The energy difference can be written
as

ENe+1 − ENe = Ek + Σ(k, E), (6.5)

where the additional term Σ(k, E) is called the self-energy of the electron in state |k〉 .
The energy of an electron k which is added to an electronic system in its ground state

must lie above the Fermi level. If this electron emits a phonon and gets shifted to the state
k′, the self-energy related to this process is given by

∑

k′

∑

j

∣∣∣M j
kk′

∣∣∣
2 1− fk′
E − Ek′ − ~ωjk′−k

, (6.6)

which is the golden-rule expression obtained from a perturbative treatment of this process
[Sca69]. The factor (1 − fk′) emerges from the condition that |k′〉 has to be unoccupied
to allow the scattering to happen. The energy is quantified by the electron-phonon matrix

element
∣∣∣M j

kk′

∣∣∣
2

which expresses the interaction energy of the two states which are coupled

by a phonon of band/polarization index j and wave vector k′ − k. Under consideration of
the fact, that after the addition of |k〉 no more scattering from occupied states |k′〉 into |k〉
is allowed, the electron-phonon contribution to the self-energy in lowest order reads

Σep(k, E) =
∑

k′

∑

j

∣∣∣M j
kk′

∣∣∣
2
[

1− fk′
E − Ek′ − ~ωjk′−k

− fk′

Ek′ − E − ~ωjk′−k

]
. (6.7)
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In order to simplify the evaluation of this expression, it is useful to replace the sum over
states by an integration over constant energy surfaces,

∑

k

→
∫

dE
∑

k

δ(E − Ek) =

∫
dE

VUC

(2π)3

∫

E

dSk(E)

~vk
, (6.8)

where dSk(E) is a surface element of the constant-energy surface related to E, oriented in
direction k. Adding an additional integration over ω results in the expression

Σep(k, E) =

∫
dω

∫
dE′

VUC

(2π)3

∫

E′

dSk(E′)

~vk

∑

j

∣∣∣M j
kk′

∣∣∣
2
δ(ω − ωjk′−k)×

×
[

1− fk′
E − E′ − ~ωjk′−k

− fk′

E′ − E − ~ωjk′−k

] (6.9)

The major contribution to the energy integration occurs around the region E ± ~ω. The
phonon energy ~ω varies in the range of meV, whereas the electronic eigenenergies occur
in an interval of several eV. Thus, under the assumption that the electron-phonon matrix
elements are constant near the Fermi surface, it is sufficient to evaluate the integrals there.
Introducing the auxiliary quantity

α2
k(ω)F (ω) =

VUC

(2π)3

∫

εF

dSk(εF)

~vk

∑

j

∣∣∣M j
kk′

∣∣∣
2
δ(ω − ωjk′−k), (6.10)

the electron-phonon self energy is obtained as

Σep(k, E) = ~
∫

dω α2
k(ω)F (ω) ln

∣∣∣∣
E − ~ω
E + ~ω

∣∣∣∣ . (6.11)

The k-dependent spectral function defined in (6.10) is a key value in the Eliashberg theory
of electron-phonon coupling. It measures the scattering rate of electrons in state |k〉 with
phonons of frequency ω. It can be used to obtain the electron-phonon coupling constant λ:
Using Eq. (6.2), the Fermi velocity renormalized due to electron-phonon coupling reads

v∗k = ~k/m∗ = vk/(1 + λk) =
1

~
∇kEk/(1 + λk). (6.12)

Together with Eq. (6.5) one obtains

λk =
−∂Σep(k, E)

∂E

∣∣∣∣
E=εF

, (6.13)

which results in the k-dependent mass enhancement factor

λk = 2

∫
dω

ω
α2
k(ω)F (ω). (6.14)

The related k-independent quantities from Eq. (6.1) can be obtained by averaging over the
full Brillouin zone. The averaged λ can be used to determine the superconducting gap ∆
and the critical Temperature TC, for which numerous approximation formulas exist [Car90].
Due to the decreased Fermi velocity, the electron-phonon interaction also influences the
density of states at the Fermi level, which results in a similar expression for the effective
mass:

d∗(εF) =
∑

k

δ(Ek − εF) =
VUC

(2π)3

∫

εF

dSk(εF)

~v∗k
(6.15)

=d(εF)(1 + λ). (6.16)
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Both phenomena strongly depend on the electron-phonon coupling strength λ, the pre-
diction of which by ab-initio methods is a challenging task until today. A general problem in
this case is that the distortion of the lattice by an electron lies beyond the scope of the Born-
Oppenheimer approximation [Gon00]. A possible way out of this dilemma is the develope-
ment of a density functional theory of the superconducting state [OG88]. Nevertheless, it
is possible to approximate λ using ’classical’ band structure methods.

6.1 Eliashberg function in rigid muffin-tin approximation

To start with, the definition of the Eliashberg function as given by McMillan [McM68] reads

α2(ω)F (ω) =
1

(2π)6πNd(εF)

∫
dk

∫
dk′

∑

j

∣∣∣M j
kk′

∣∣∣
2
δ(~ω − ~ωjq)×

× δ(Ek − εF)δ(Ek′ − εF)

(6.17)

where M j
kk′ is the probability amplitude of a phonon of band index j for scattering an

electron k into the state k′ and N denotes the number of unit cells. The frequency of this
phonon is ωjq with q = k − k′. The main problem in the determination of this function
lies in the calculation of the matrix elements which have already been used in Eq. (2.16).
Gaspari and Gyorffy [GG72] showed how the strength of the electron-phonon interaction
can be calculated using only the phase shifts obtained from multiple scattering calculations.
Later the theory was applied to a rigid muffin-tin electronic band structure method [GG74],
which allowed to calculate the coupling parameter using the electronic band structure ob-
tained using multiple scattering theory and the phonon band structure from experimental
measurements. This formulation can readily be applied for use with the KKR method. In
the above formulation, the matrix elements have been classified by the band index j for
convenience. This band index is equivalent to a combination of polarization index α and
site index s of a displaced ion within the unit cell. Within this notation, an electron-phonon
matrix element can be written as

|Mkk′ |2 =

〈
k

∣∣∣∣
∂vseff

∂uα(s)

∣∣∣∣k′
〉〈

k′

∣∣∣∣∣
∂vs

′
eff

∂uβ(s′)

∣∣∣∣∣k
〉

(6.18)

=

∫
dr ψ∗k(r)

∂vseff(r)

∂uα(s)
ψk′(r)

∫
dr′ ψ∗k′(r

′)
∂vs

′
eff(r′)

∂uα(s′)
ψk(r′), (6.19)

where vseff is the effective single-particle potential within the muffin-tin sphere of ion s.
Within the rigid muffin-tin scheme it is assumed that the ion moves rigidly with the associ-
ated potential, allowing for the the approximation

∂vseff(r)

∂uα(s)
≈ ∂vseff(r)

∂rα
. (6.20)

To further rearrange Eq. (6.19), it is useful to replace the phonon dynamical matrix by the
so-called phonon Green function. As the name suggests, it can be derived in analogy to
the electronic Green function by starting with the secular equation (2.32) of the harmonic
approximation [Gon00],

∑

jβ

[
Dij
αβ(q)− ω2δαβδij

]
Aβ(j, q) = 0. (6.21)

Here, D denotes the dynamical matrix of the system, s and s′ identify lattice sites and greek
letters represent directions of displacements. In a supermatrix notation, using the combined
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indices µ = (s, α) and ν = (s′, β), it can be rewritten as
∑

ν

[
Dµν(q)− ω2δµν

]
Aν(q) = 0 (6.22)

or [
D(q)− ω2I

]
A(q) = 0, (6.23)

where I is a unit In analogy to electronic systems (see sect. 4.1), instead of calculating the
eigenvalues of the dynamical matrix D(q), the equation can be solved with help of a Green
function, given by

D(q, ω) = lim
η→0

[
D(q)− (ω2 + iη)I

]−1 (6.24)

with matrix elements
[D(q, ω)]µν = Dss′αβ(q, ω). (6.25)

Using the above definitions, the Eliashberg function can be written as

α2(ω)F (ω) =
1

(2π)6πNd(εF)

∑

ss′

∑

αβ

∫
dk

∫
dk′ Im

{
Dss′αβ(k − k′;ω)

}
×

×
〈
k

∣∣∣∣
∂vs(r)

∂rα

∣∣∣∣k′
〉〈

k′

∣∣∣∣∣
∂vs′(r

′)

∂r′β

∣∣∣∣∣k
〉
δ(Ek − εF )δ(Ek′ − εF).

(6.26)

By using the Fourier transformation

Dss′αβ(q;ω) =
1

N2

∑

ll′

Dsl,s′l′αβ (ω)e−iq·Rll′ , (6.27)

with Rll′ = Rl −Rl′ , the above equation can be written in terms of the real-space phonon
green function,

α2(ω)F (ω) =
1

(2π)6πN3d(εF)

∑

ss′

∑

ll′

∑

αβ

∫
dk

∫
dk′ e−i(k−k′)·Rll′ Im Dsl,s′l′αβ (ω)×

×
〈
k

∣∣∣∣
∂vs(r)

∂rα

∣∣∣∣k′
〉〈

k′

∣∣∣∣∣
∂vs′(r

′)

∂r′β

∣∣∣∣∣k
〉
δ(Ek − εF)δ(Ek′ − εF).

(6.28)

In real space representation, the electron-phonon matrix elements used so far can be written
as 〈

k

∣∣∣∣
∂vs(r)

∂rα

∣∣∣∣k′
〉

=

∫
dr ψk(r)

∂vs(r)

∂r′β
ψ∗k′(r). (6.29)

For periodic boundary conditions one has
∫

dk → VUC

(2π)3

∫

BZ
dk , (6.30)

where V is the unit cell volume.
By using the definition of the real-space electronic Green function

Im G(rls, r
′
l′s′ ;E) = −π 1

N(2π)3

∫
d3kψ∗k(rls)ψk(r′l′s′)δ(Ek − E), (6.31)

with rls = Rl + τs + r, and using Bloch’s theorem

ψk(rls) = ψk(r −Rl − τs) = e−ik·Rlψk(rs), (6.32)
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the Eliashberg function can be represented in terms of Green functions as

α2(ω)F (ω) =
1

N(2π)3n(εF)

∑

ss′

∑

ll′

∑

αβ

∫
drls

∫
dr′l′s′ Im G(rls, r

′
l′s′ ; εF)×

× ∂v(rls)

∂(rls)α
Im Dls,l′s′αβ (ω)

∂v(r′l′s′)

∂(r′l′s′)β
Im G(r′l′s′ , rls; εF).

(6.33)

Here,
∫

drls denotes integration over the muffin-tin sphere of the sth ion within the lth unit
cell. This formulation is ready to be used with the KKR method.

One form of the Green function, as it is used within the KKR, was given in chapter 4 as

G(rls, r
′
l′s′ ;E) =

∑

L1L2

RlsL1
(r;E)Gls,l

′s′

L1L2
(E)Rl

′s′+
L2

(r′;E) (6.34)

−
√
E
∑

L

δll′δss′R
ls
L (r<;E)H ls+

L (r>;E). (6.35)

It is an expansion in terms of spherical harmonics using the regular and irregular solutions
RL(r, E) and HL(r, E) together with the structure constants Gls,l

′s′

L1L2
(E) of the crystal. Al-

ternatively, a similar expansion can be constructed using the scattering path operator τ ,
reading

G(rls, r
′
l′s′ ;E) =

∑

L1L2

Z lsL1
(r;E)τ ls,l

′s′

L1L2
(E)Z l

′s′+
L2

(r′;E) (6.36)

−
∑

L

δll′δss′Z
ls
L (r<;E)J ls+

L (r>;E). (6.37)

ZL(r, E) and JL(r, E) are the so-called regular and irregular scattering solutions of the
radial Schrödinger equation and are related to the ’normal’ solutions via the single-site t-
matrix (see [Zab+05]). Using Eq. (6.36) can substantially simplify the evaluation of the
spectral function (6.33), since the radial functions are real and the imaginary part of the
last term in Eq. (6.36) for real energies vanishes. Thus, the Eliashberg function can be
expressed by

α2(ω)F (ω) =
1

N(2π)3d(εF)

∑

ll′

∑

ss′

∑

αβ

Im Dls,l′s′αβ (ω)
∑

L1L2
L3L4

Im τ ls,l
′s′

L1L2
(εF)Im τ l

′s′,ls
L3L4

(εF)×

×
{∫

d3rlsZ
s
L1

(rls; εF)
∂vµ(rls)

∂(rls)α
Zs+
L4

(rls; εF)

}
×

×
{∫

d3r′l′s′Z
s′+
L2

(rl′s′ ; εF)
∂vν(r′jν)

∂(r′jν)β
Zs
′
L3

(rl′s′ ; εF)

}
.

(6.38)

Introducing the short form

AlsLL′(εF) =

∫
drls Z

s
L(rls; εF)

∂vµ(rls)

∂(rls)α
Zs+
L′ (rls; εF), (6.39)

the spectral function becomes

α2(ω)F (ω) =
1

N(2π)3d(εF)

∑

ll′

∑

ss′

∑

αβ

Im Dls,l′s′αβ (ω)×

×
∑

L1L2
L3L4

Im
{
τ ls,l

′s′

L1L2
(εF)}

}
Im

{
τ l
′s′,ls
L3L4

(εF)}
}
×

×AlsL1L4
(εF)Al

′s′
L2L3

(εF).

(6.40)
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This is the final formula for the Eliashberg function in the real space representation and can
be directly implemented into the KKR code. From this expression, it is easy to derive the
spectral function for a single atom (ls):

α2(ω)F (ω)sl =
1

N(2π)3d(εF)

∑

l′

∑

s′

∑

αβ

Im Dls,l′s′αβ (ω)×

×
∑

L1L2
L3L4

Im
{
τ ls,l

′s′

L1L2
(εF)

}
Im

{
τ l
′s′,ls
L3L4

(εF)
}
×

×AlsL1L4
(εF)Al

′s′
L2L3

(εF).

(6.41)

This real-space representation serves as a starting point for various useful reciprocal-space
representations. Using the lattice Fourier transform of the scattering path operator,

τ ls,l
′s′

LL′ (E) =
∑

k

τ ss
′

LL′(k;E)eik·Rll′ (6.42)

as well as the inverse transform of the phonon Green function (6.27), one has

α2(ω)F (ω) =
1

N(2π)3d(εF)

∑

ll′

∑

ss′

∑

αβ

∑
q

kk′

eiRij ·(q+k−k′)Im Dss′αβ(q;ω)×

×
∑

L1L2
L3L4

Im
{
τ ss
′

L1L2
(k; εF)

}
Im

{
τ s
′s
L3L4

(k′; εF)
}
×

×AsL1L4
(εF)As

′
L2L3

(εF)

(6.43)

and due to the lattice identity
1

N

∑

l

eik·Rl = δk,0 (6.44)

the k-averaged Eliashberg spectral function

α2(ω)F (ω) =
1

(2π)3d(εF)

∑

ss′

∑

αβ

∑

q,k

Im Dss′αβ(q;ω)×

×
∑

L1L2
L3L4

Im
{
τ ss
′

L1L2
(k; εF)

}
Im

{
τ s
′s
L3L4

(q + k; εF)
}
×

×AsL1L4
(εF)As

′
L2L3

(εF)

(6.45)

From this formulation, the k-dependent Eliashberg function follows straightforwardly as

α2
k(ω)F (ω) =

1

(2π)3d(εF)

∑

ss′

∑

αβ

∑

q

Im Dss′αβ(q;ω)×

×
∑

L1L2
L3L4

Im
{
τ ss
′

L1L2
(k; εF)

}
Im

{
τ s
′s
L3L4

(q + k; εF)
}
×

×AsL1L4
(εF)As

′
L2L3

(εF).

(6.46)

The above formula can also be adapted for the description of Systems with reduced sym-
metry, such as surfaces. The latter are only periodic in directions parallel to the surface,
such that a Fourier transform is only properly defined for these directions. An example for
a possible surface structure is shown in Fig. 6.2, where every layer is identified by an index
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p. The zwo-dimensional lattice within each layer is spanned by primitive lattice vectors a1

and a2. Every lattice point Th within a layer can be described by a linear combination of
these two vectors. A summation over all possible lattice points, including all layers is thus
rewritten as ∑

l

Rl −→
∑

p

∑

h

(Th +Np) (6.47)

Here, Np is a vector perpendicular to the surface whose length is defined as the distance of
the pth layer from the top layer. In the case of complex materials, it is possible that a three-
dimensional unit cell contains several layers. The 3D site vectors τs, denoting the positions
of ions within the cell, can be expressed as vectors tζ(p) parallel to the layers. Now ζ is an
index which denotes the ions within each layer p. Thus, a sum over the positions of all ions
within the crystal is written as

∑

l

∑

s

(Rl + τs) −→
∑

p

∑

h

∑

ζ(p)

(Th + tζ +Np). (6.48)

Using this convention, an Eliashberg function for surfaces can be formulated. In order to

p=1

p=2

p=3

p=4

p=5

𝜏(1,1)
𝜏(1,2)

𝜏(2,1) 𝜏(2,2)

𝜏(3,1)
𝜏(3,2)

𝜏(4,1) 𝜏(4,2)

a1

Figure 6.2: Notation scheme for
sites in a layered system with two-
dimensional periodicity. Index p
denotes the layer and τ indicates
individual sites within the layers.
In this illustration, the system is pe-
riodic from left to right, but aperi-
odic from top to bottom

define it analogously to the bulk case, one introduces a two-dimensional Fourier transform
of the Green functions, which for phonons reads

Dpζ,qηαβ (q‖;ω) =
1

N 2

∑

hh′

Dls,l′s′

αβ (ω)e−iq‖·Thh′ . (6.49)

Here, all 3D lattice indices on the right side are functions of the layer (l = l(p,m), l′ =
l′(q, n), s = s(p, ζ) and s′ = s′(q, η) and N denotes the number of 2D lattice points. q‖ is an
arbitrary vector within the first two-dimensional Brillouin zone.

Then, the equation (6.40) can be rewritten as

α2(ω)F (ω) =
1

(2π)3d(εF)

∑

ζη

∑

αβ

∑

p,q

∑

q‖,k‖

Im Dpζ,qη
αβ (q‖;ω)×

×
∑

L1L2
L3L4

Im {τpζ,qηL1L2
(k‖; εF)}Im {τ qη,pζL3L4

(q‖ + k‖; εF)}×

×ApζL1L4
(εF)AqηL2L3

(εF).

(6.50)

Again, for an atom in the layer p and position ζ at the wave vector k‖ the Eliashberg function
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is given by

{
α2
k‖

(ω)F (ω)
}ζ
p

=
1

(2π)3d(εF)

∑

η

∑

αβ

∑

q

∑

q‖

Im Dpζ,qη
αβ (q‖;ω)×

×
∑

L1L2
L3L4

Im {τpζ,qηL1L2
(k‖; εF)}Im {τ qη,pζL3L4

(q‖ + k‖; εF)}×

×ApζL1L4
(εF)AqηL2L3

(εF).

(6.51)

The following section shows the application of this formalism to thin Pb films on Cu(111).

6.2 Application to Pb/Cu(111) islands

While the density of phonon modes is accessible via neutron scattering experiments, the
Eliashberg spectral function α2F (ω) is not, since the electron-phonon coupling has no direct
influence on the scattering behaviour of neutrons, which interact with atomic nuclei. The
spectral function can be measured indirectly by tunneling measurements of the electronic
density of states of a superconductor when using the inverse gap equations [MR65]. Since
several superconducting gaps may exist, this procedure is prone to failure. A direct access
to α2F (ω) can be achieved by inelastic tunnelling spectroscopy. This can be done by using a
scanning tunneling microscope (STM), which additionally allows measurements with high
spatial resolution [Bin+82]. In order to probe the electronic DOS of the sample, the tip-to-
sample bias U is varied in a range of several eV while the tunnelling conductance, dI/dU is
recorded. In Tersoff-Hamann theory of the STM [TH85], under the assumption that the DOS
of the tip is constant, this value is directly proportional to the DOS at the sample as long as
the bias is smaller than the work function of the surface [Wie94]. In this spectroscopy mode,
only elastic tunnelling processes are of importance. Opposed to this, the measurement of
phonon excitations requires the detection of inelastic tunnelling. Since these processes
typically contribute by a few percent to the dI/dU -curve, a lock-in amplifier is used to
record the second derivative d2I/dU2 of the tunnelling current. Small excitations due to
electron-phonon interaction appear as peaks at the voltage corresponding to the phonon
energy.

These kind of measurements have been realized for the first time by [Sch+15; Sch14]
for Pb islands on a Cu(111) surface. Lead is a prototype for strong-coupling supercon-
ductors [Hei+10] with a bulk coupling constant of λ = 1.55 [DK10; DS75]. However,
the formation of the superconducting gap below TC often causes quasiparticle peaks which
dominate the d2I/dU2-spectra. Therefore, Pb/Cu(111) is an ideal system to study electron-
phonon effects because due to the proximity effect, Pb stays in the normal conducting phase.

It is well known that the vertical confinement of electronic degrees of freedom in thin
Lead films causes the forming of quantum well states (QWS), which have a strong influence
on the growth characteristics of such films under ultra-high vacuum conditions. At room
temperature, the growth mode of Pb on Cu(111) is of Stranski-Krastanov type [Sch14],
meaning that after a complete wetting layer has been deposited, islands start to grow. The
thickness distribution of the latter is non-statistical: When QWS occur near the Fermi level,
the redistribution of electronic states makes such layer numbers energetically unfavourable.
The growing behaviour and its interference with QWS was studied in [OVM02]. This work
and the corresponding experimental study [Sch14; Sch+15] aim to investigate the influence
of the QWS on the electron-phonon coupling.
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6.2.1 Quantum well states

Since the smallest wave lengths of Bloch electrons in metals (Fermi wavelength, λF =
h/
√

2meEF) are of the same order of magnitude as the lattice constant, a confinement of
the material to very thin films can lead to a discretisation of electronic states with wave
vectors parallel to the film normal. The most simple model for the description of those
states is one of the oldest in quantum mechanics, the particle in a box.

Instead of this potential well with infinite walls, a real system is bound by potential
barriers of finite energy which allow for tunneling and result in slightly different energy
levels compared to the box model.

In case of Pb on Cu(111) the depth of the potential well is given by the available elec-
tronic states at the metal-metal interface as well as the work function of the Pb surface
(W = 4.25 eV [Tha75]). Fig. 6.3 shows the electronic band structure of both metals in
(111) direction. In Lead, an sp-type band crosses the fermi level. Electrons from these
states can only enter the Cu substrate if there are available states, which is not the case be-
tween -1 eV and 3.8 eV. This potential barrier of 4.8 eV is of roughly the same height as the
work function at the Pb surface. Ignoring this finite potential barrier and applying the box
model, the possible wave vectors due to the boundary condition of inpenetrable potential
walls are determined by the Pb film thickness L · dML where L is the number of layers and
dML = 2.86 Å [Klu46] is the distance between neighbouring Pb(111) layers. The resulting
wave numbers are

kln =
nπ

LdML
, n ∈ (6.52)

with a main quantum number n. Assuming a quadratic dispersion of the quasi-free band in
(111)-direction and kF = 1.585 Å−1 [Sch14], the resulting energy levels read

Eln =
~2

2me

(
k2
ln − k2

F

)
. (6.53)

Figure 6.3: (a) Electronic states of bulk Pb and Cu in (111) direction. States from
the s-like band in Pb cannot propagate into the band gap of Cu (shaded in green) and
experience an effective potential barrier. (b) Energy of the QWS (grey lines) for different
quantum numbers plotted with respect to the width of the potential well. Every curve
corresponds to the quantum number where it intersects with the upper x-axis. Circles
mark the energies where the width of the potential well is an integer multiple of the layer
distance dL. The colours of filled circles refer to the states emerging at the experimentally
probed layer heights. Figures adapted from [OVM02].
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Fig. 6.3 (b) shows all possible QWS for layers up to L = 16 ML thickness and all
quantum numbers within an energy range from -1 eV to +3 eV around the Fermi level.
Grey lines show the energy-curves with respect to film thickness for all quantum numbers,
whereas circles mark the energies occuring at integral layer numbers. The coloured points
refer to the film thicknesses probed in the experiments.

Instead of this potential well with infinite walls, the real system is bound by potential
barriers of finite energy which allow for tunneling and result in slightly different energy
levels compared to the box model. However, it was shown that the particle-in-a-box model
is very well applicable for Pb/Cu, at least in the energy range of 1 eV around the Fermi level
[OVM02]. For instance, the QWS at E = 0.774 eV, which is constant in energy for all even
layer numbers, was found only 0.1 eV below [OVM02; Sch+15; Sch14].

6.2.2 Phonon dispersion/Bulk calculations

In order to calculate the Eliashberg function using the above presented formalism, the
phonon Green function of Pb was needed on a dense mesh of k-points within the first Bril-
loin zone. Since at that time it was not possible to calculate the phonon dispersion within
the KKR scheme, the direct method by Kresse et al. [KFH95] (see p. 17) was used. The
force matrix (Eq. (2.45)) has been generated using the pseudopotential Code VASP (Vienna
Ab initio Simulation Package [KH93; KH94; KF96a; KF96b]) in the following way: Due to
the long-range interactions in Pb, a supercell of 7×7×7 bulk unit cells of fcc Pb (a = 4.9508
Å) was constructed, in which one atom has been displaced from its equilibrium position in
direction of its next neighbour by ≈ 0.05 Å. Then a self-consistent total-energy calculation
has been performed using PAW (Projector-Augmented Wave method [Blö94; KJ99; Höl10])
pseudopotentials for the description of the ion potentials and the LDA [PZ81] as approxima-
tion of the exchange-correlation potential. The semicore d-states where treated as valence
electrons. Due to the size of the supercell, the k-point mesh for the Brillouin-zone inte-
gration consisted only of 4x4x4 Monkhorst-Pack special points [MP76]. This is possible
because of the small Brillouin Zone and preferable considering the computational resources
needed for an accurate calculation with 343 atoms. After convergence of the self-consistent
cycle, the forces exerted by the displaced atom on all other atoms within the supercell have
been calculated via the Hellmann-Feynman theorem. The convergence of this force matrix
was tested with respect to the maximum energy of the plane waves used to describe the
wave functions. It was found that Emax = 250 eV was sufficient to provide a well-converged
set of force constants for further processing into a dynamical matrix (see p. 17). This step
was done using the open source PHON-code [Alf09], which provides the required symmetry
operations and Fourier transformations.

Fig. 6.4 shows the resulting phonon dispersion on selected high-symmetry lines of the
fcc Brillouin zone. Red lines represent the calculated modes and black dots plot experi-
mental frequencies from [Ste+67]. In contrast to other elemental superconductors, DFT
calculations for Pb often failed to reproduce the strong coupling due to the prominent
anomalies in its phonon dispersion. In the present case, the theoretical curves resemble
the main features which are typical for Pb, such as the local minima (a) of both longitudi-
nal and transverse modes at X as well as the shoulder (b) of the longitudinal mode between
Γ and X. Both are Kohn anomalies [Koh59; Dal08] and reflect the strong electron-phonon
interaction at the Fermi surface. At the same time, the Kohn anomalies near L are not
reproduced by the calculation, the frequencies of the transverse branches near the zone
boundary are too high and the longitudinal modes tend to lower frequencies than experi-
mentally measured. This behaviour is due to several reasons: The correct reproduction of
Kohn anomalies is only possible when the Fermi surface is sampled with high resolution,
with a dense k-mesh and a carefully chosen smearing parameter [Dal08]. Since they are
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Figure 6.4: Phonon fre-
quencies (E = ~ω) of Pb on
high-symmetrie lines of the
fcc Brillouin zone. Circles
denote experimental data
from [Ste+67], measured
via neutron scattering at 80
K. The lines show the re-
sults of the present super-
cell calculation.

so prominent in Pb, this element needs more k-points than most other metals to calculate
accurate phonon frequencies. Due to the high atomic number of Pb, the general agreement
between theory and experiment can be improved by including spin-orbit coupling [Hei+10;
Ver+08; Dal08] using semi- or fully relativistic approaches.

The influence of SOC on the electron-phonon coupling strength was studied by Chulkov
[Hei+10]. Neglecting the influence of SOC on the electronic density of states at the Fermi
surface and the electron-phonon matrix elements, they found an increase of λ by 25%
alone due to the renormalization of the phonon dispersion due to the inclusion of SOC,
compared to a non-relativistic calculation. One has to note that their phonon frequencies
without SOC are appr. 8–15% higher than the experimental values and including SOC
caused a softening such that the renormalized frequencies agreed well with experiment. In
our case, high-frequency-modes are too low (mainly longitudinal), whereas the lower-lying
transverse modes are mostly too high. Thus, an inclusion of SOC would probably lead to a
cancellation of errors and would have a smaller impact on the coupling strength.

Fig. 6.5 shows the phonon density of states (PDOS) as well as α2F (ω) of bulk Pb.
The black line represents the PDOS calculated from the theoretical phonon dispersion by
making use of the tetrahedron integration method [JA71; LT72]. The green line shows the

Figure 6.5: Phonon density of states and Eliashberg function of bulk Pb from
theory and experiment. The measured PDOS is taken from neutron scattering data
[SAN67], whereas α2F (ω) is obtained from tunneling measurments [DK10]. The
curves are normalized for the sake of better comparability.
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integrated Eliashberg function, computed via Eq. (6.45) from the phonon Green function as
well as electronic Green function and electron-phonon matrix elements from self-consistent
KKR calculations, and is basically a slightly renormalized version of the PDOS.

In contrast, the experimental PDOS is shown as red circles (data taken from neutron
scattering experiments [SAN67], lines are guide to the eye) and the Eliashberg function
measured via tunneling currents [DK10] is plotted as blue squares. The overall agreement
between theory and experiment is good. The maximum of the lower transverse modes
is shifted to higher frequencies and broadened, compared to the experimental data and
the second peak, which is mainly due to the high-frequency longitudinal modes, is shifted
to lower frequencies. This corresponds to the differences in experimental and calculated
phonon dispersions. The deviations lead to a reduced contribution of the transverse modes
to the overall coupling strength and an increased contribution of the longitudinal modes.
The resulting coupling strength for bulk Pb is λ = 1.08, whereas the experimental result is
λ = 1.55 [DR75]. The large difference can not only be explained by the differences in the
phonon dispersions, but also originates in the neglect of SOC in the electron-phonon matrix
elements due to the differences in the electronic band structure and Fermi surface caused
by SOC. Another important influence is given by the RMTA used here, which does not allow
the redistribution of the electron gas due to moving atoms, but rather restricts its changes
to a rigid shift of the electronic wave functions within the MT sphere of the atom. Still, this
work aims to emphasize the effects of quantum well states on the electron-phonon coupling
instead of reproducing the exact experimental value.

6.2.3 Surface and film calculations

To investigate whether pure surface states have an influence on the electronic DOS near the
Fermi level, a calculation for a Pb(111) surface with a semi-infinite slab construction was set
up first. For this purpose, a KKR formalism specially designed for surfaces and interfaces was
used, which is able to efficiently treat two-dimensional periodic and semi-infinite surface
structures by means of a screening transformation [Szu+94; Ern07; Lüd+01]. The unit
cell for this calculation is a slab of 23 monolayers of Pb(111) and 4 layers of empty spheres
ontop, as sketched in Fig. 6.6 (b). For the calculation of the structure constants, the bottom
of the slab is terminated with a Pb substrate with bulk T̂ -matrix to simulate the scattering
behaviour of a real semi-infinite surface. In the same sense, the top side is terminated
by a semiinfinite vacuum matrix. This kind of calculation can only be done properly with
two-dimensional periodicity. 3d-calculations work with alternating slabs of vacuum and
substrate, both of finite thickness. In this case, the potential within the vacuum region is
treated wrongly and effects the correct representation of surface states. In the same way,
artificial states due to the vertical confinement of the material may occur.

Fig. 6.6 (a) shows the resulting local DOS of the three layers closest to the surface
(green) as well as the second vacuum layer (blue) which is the region in which the real
system is probed by the STM tip. In comparison, the red curve shows the Pb-bulk DOS.
As expected, the LDOS converges to the bulk run with increasing layer index. The vacuum
curve is naturally of lower amplitude and shows less features since only weakly localized
states propagate into the vacuum. All spectra have in common that there are no prominent
features close to the Fermi level.

DFT-calculations of Pb(111) on Cu are a difficult task due to the incommensurable lat-
tices of the metals (aCu = 3.61Å, aPb = 4.95Å). To maintain the two-dimensional periodicity,
a very large supercell of 8× 8 Pb unit cells (and 11× 11 Cu unit cells) parallel to the surface
and a reasonable number of layers would be necessary, and even in this case the lattices
would be subject to strain. Hence, it was decided to simulate the Pb islands as freestanding
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Figure 6.6: (a) Layer-resolved
DOS of a Pb(111) surface com-
pared to bulk-Pb. For the sake
of discriminability, the different
curves of the layer-DOS (labeled
with the layer index) are shifted
by 3 eV each. By way of compar-
ison, the local DOS of the second
vacuum layer above the surface
is plotted in blue. (b) Longitu-
dinal section of the semi-infinite
Pb(111) surface slab with vac-
uum layers.

layers with two-dimenional periodicity and semi-infinite vacuum parts above and below the
Pb slabs.

The calculations have been performed for island thicknesses of L = 11 . . . 14 ML since
these showed the strongest enhancement of electron-phonon coupling in the experiments.
The results are condensed in Fig. 6.7: Panel (a) shows dI/dU tunneling spectra for differ-
ent numbers of Pb layers. These measurements have been performed with tip-to-surface
separations of a few dML and can, if no significant scattering processes occur, be interpreted
as mapping of the local electronic DOS above the Pb surface [TH85].

In contrast, panel (b) shows the calculated local electronic DOS of the second vacuum
layer above the Pb slab. The qualitative agreement with the measurements is remarkably
good. The four main peaks above the Fermi level are comparable in both datasets and can
be identified as quantum well states P1 . . . P4 in Fig. 6.3 (b). Both experimental and the-
oretical peak positions differ slightly from the predictions of the particle-in-a-box model,
since the potential well is not infinitely deep. The differences between DFT and experiment
are most likely due to the effective potential wall positions: The calculation did not con-
sider that the layer distances near the surface differ from their respective bulk values due to
surface relaxations. Additionally, the description of the charge density above the surface is
not accurate within the framework of LDA, which is designed for the description of slowly
varying densities and tends to underestimate the drop of the charge density with increasing
distance from the surface. Both effects may have an influence on the width of the appro-

Figure 6.7: Measured and theoretical QWS for different layer numbers of Pb. (a) dI/dU -
spectra of the tunneling current for Pb islands of 11 to 14 ML thickness. (b) Local DOS of
the second vacuum layer near the Fermi energy, calculated for the same layer numbers. (c)
Calculated Eliashberg functions as well as coupling parameters for the same systems.
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6.2. Application to Pb/Cu(111) islands

priate model potential well in an order of magnitude of 1%, which is enough to cause a
substantial shift of the QWS. However, the qualitative agreement with experiment is quite
well and also the QWS below εF fit in this scheme.

Fig. 6.3 (c) shows the calculated Eliashberg functions of the layer system together
with the resulting coupling parameters. These spectral functions have been obtained by
making use of the Fourier transform 6.49 and the layer-sum 6.50. In agreement with the
experimental findings, the spectral functions and the resulting coupling parameters are
scaled in proportion with the peak hight at the Fermi level. Whereas λ is increased by 21%
for L = 12 ML and L = 14 ML compared to the bulk value of λ = 1.08, a layer thickness of
L = 13 ML leads to an increase of 65% and for the case of L = 11 ML a more than doubled
coupling strength is observed.

The qualitative agreement between experiment and theory shows that the spectra shown
in Fig. 6.3 (a) can indeed be interpreted as mappings of the electronic DOS. This propor-
tionality of λ and d(EF) was also predicted by [Bru+09] and shows that the enhancement
of the coupling in thin Pb layers is a purely electronic effect, since in all cases the Fourier-
transformed phonon green function of bulk Pb was used. This result was also supported
experimentally: d2I/dU2-spectra which measured α2F (ω) showed the same peak positions
and thus the same van-Hoove singularities in the phonon spectrum for all layer thicknesses
[Sch14].

The observed enhancement of the electron-phonon coupling strikingly shows the close
connection between the coupling parameter λ, the DOS at Fermi level and the effective
mass of the electrons involved in the interaction (Eq. (6.2)). A QWS is strongly located
and thus has a flat dispersion, giving rise to a peak in the DOS. The curvature of such a
flat band is smaller than the curvature of the nearly-free-electron-like sp band in Pb, giving
rise to a higher effective mass. If a QWS is located close to the Fermi level, due to Eq.
(6.16) this results in an increased DOS at εF and an increased electron-phonon coupling.
The experimentaly measured enhancement of λ was 2–3 times higher than predicted by the
calculations. The dI/dU -spectra show QWS of lower width than the theoretical DOS. This
leads to higher effective masses and higher electron-phonon coupling.

6.2.4 Summary and Outlook

It was shown that the Tersoff-Hamann interpretation of the dI/dU -spectra as well as the ab-
initio calculations lead to commensurable results and that the local density of states near the
Fermi energy is dominated by quantum well states originating from the spatial confinement
of sp-like electrons in thin Pb films. The enhancement of the electron-phonon coupling due
to the QWS measured by d2I/dU2 spectroscopy was confirmed theoretically and could be
ascribed to changes of the electronic states as a consequence of the appearance of QWS.

The applied method was well suited for the analysis of the experimental data and to
reproduce the relative changes of the coupling parameter λ. Still, the used Rigid-Muffin-
Tin approximation offers only a simplified solution of the electron-phonon problem since
the change of the charge density induced by the shift of an atom is not self-consistently
calculated. Therefore, in many cases and also here, it delivers values for λ which are too
small. Among many improved methods (see e.g. [Win81] for a short review), the linear
response method of Winter [Win81] appears to be best-suited to be made use of in the
formalism presented above, because it uses a similar approach as described in Chap. 5
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7Conclusion

The main goal of the work at hand was to improve the description of lattice vibrations in
the context of Korringa-Kohn-Rostoker (KKR) multiple scattering theory. At this, priority
was given to the development of a linear response theory for the parameter-free prediction
of phonon spectra of crystals, where the focus was on metals. Furthermore, the numerical
description of electron-phonon interactions was a substantial part of this work.

In order to point towards general concepts and problems associated with the numerical
treatment of lattice vibrations, Chap. 5.17 introduced the harmonic approximation as well
as established techniques for ab-initio calculations of force constants. Chap. 3 aimed to
introduce the reader to the basics of both linear response theory and as density functional
theory whereof the latter is the foundational principle of the ab-initio calculations discussed
in this thesis. Moreover, with time-dependent density functional theory a method was pre-
sented which elegantly allows to combine both concepts. With multiple scattering theory,
Chap. 4 detailed a numerical principle which is, despite its age, a powerful implementa-
tion of density functional theory and is renowned for allowing accurate total energy and
band structure calculations. At this, the formulation of the KKR method as a Green-function
approach was stressed, having established it as an efficient and versatile tool.

After these foundational parts, Chap. 5 first elaborated on recent developments in the
description of lattice dynamics based on KKR. So far, those have been limited to the direct
method, computing real space force constants via supercell calculations, and the required
numerical effort is high due to the large number of atoms within the unit cell or cluster and
because of the necessary full-potential (FP) treatment of the scattering sites. To begin with,
a rigid-ion model of lattice dynamics was derived which is suitable for the use with with the
KKR. This led to a formulation of the dynamical matrix based on the Hellmann-Feynman
theorem. The most interesting input quantity for these equations is the differential variation
of the charge density upon an oscillatory distortion of the crystal lattice. In order to com-
pute this function K(q) self-consistently, a linear response approach was developed, starting
from the KKR Green function of the electronic ground state of the system under concern.
Afterwards, details of the implementation of the algorithm into the KKR code HUTSEPOT
applying the atomic sphere approximation were presented. The test calculations revealed a
good convergence behaviour of K with respect to numerical parameters. Nevertheless, the
charge density variations differed quantitatively from expected results, strongly influencing
the predicted phonon dispersions.

The last chapter, however, dealt with low-temperature superconductivity and the un-
derlying electron-phonon interaction. The purpose of this part of the work was the im-
plementation of the rigid muffin tin approximation to the Eliashberg spectral function for
low-dimensional systems and for use in the HUTSEPOT code. After a detailed derivation of
the formalism, the latter was applied to the interpretation of elastic and inelastic tunnelling
measurements of Pb islands on a Cu(111) surface. It was possible to show how the emer-
gence of quantum well states can influence the strength of electron-phonon coupling and
thus TC due to changes of the electronic density of states at the Fermi level.

Summarising, it was possible to show that the method developed in Chap. 5 delivers
promising results, the quality of which was limited by restrictions of the atomic sphere ap-
proximation. The latter uses a spherically symmetric representation of the charge density
as well as the ionic potential, giving rise to large errors in the Hellmann-Feynman forces.
A substantial improvement requires the application of a full potential or full charge density
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approximation. Fortunately, the formalism is designed such that it can be adjusted to sup-
port these varieties of KKR. This extension of the code is planned for the near future and
is expected to allow a linear-response treatment of lattice dynamics with KKR. Although
there are numerically less expensive techniques for the computation of lattice-dynamical
properties, such as pseudopotential methods, advantages of a treatment within KKR lie in
the high precision of this all-electron method as well as the ability to deal with disordered
and low-dimensional systems.

The rigid muffin tin approximation used in Chap. 6 for the description of electron-
phonon interactions was able to explain the realtive heights of α2F (ω) due to varying den-
sity of states at the Fermi energy, but has its weaknesses when it comes to the prediction
of absolute values of λ and TC, depending on the element. This is caused by the simplified
description of the change of the valence charge density induced by the displacement of ions
due to lattice waves. This aspect can be greatly improved by implementing the methods
developed in Chap. 5, allowing for a self-consistent calculation of electron-phonon matrix
elements with linear response theory. This approach is planned to be advanced in the future
to enhance the versatility of HUTSEPOT in respect of the description of superconductors.
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ACoulomb potential

A.1 Ewald summation technique

An important problem in solid state physics is the evaluation of sums over charges in an
infinite crystal lattice. The prototypical lattice sum appears in the expression for the total
electrostatic energy of a lattice of point charges

U =
1

2

∑

s

∑

s′

∑

l

ZsZs′

|τs − τs′ +Rl|
, (A.1)

where s and s′ denote sites within a unit cell and l indicates the position of the unit cell
with respect to the point of origin. Because of the long-ranging coulomb interaction the
evaluation of this sum is tricky: It is conditionally convergent, meaning that the value
of its partial sums strongly depends on the order of summation. An elegant solution to
this problem was pointed out by P. P. Ewald [Ewa21]. Without going into details of its
derivation, Ewald, in principle, used a replacement of the kind

1

r
=
f(r)

r
+

1− f(r)

r
, (A.2)

where f(r) = erfc(αr), to split the sum into two rapidly converging sums over real and
reciprocal lattice vectors, resulting in

U = Ur + Uk + Uself + Udipol. (A.3)

The real space term reads

Ur =
1

2

∑

ss′

∑

l

ZsZs′
erfc (α |τs − τs′ +Rl|)
|τs − τs′ +Rl|

, (A.4)

in which the self-interaction term with τs − τs′ +Rl = 0 is omitted. Opposed to this, the
reciprocal contribution is given by

Uk =
2π

ΩWS

∑

n

e−G
2
n/4α

2

G2
n

∑

ss′

ZsZs′e
−iGn·(τs−τs′ ). (A.5)

Since the self-interaction was omitted in the real space term, it is taken account of via the
remaining two terms,

Uself =− α√
π

∑

s

Z2
s

Udipol =
2π

3ΩWS

(∑

s

Zsτs

)2

.

This expression is independent of the Ewald parameter α, the value of which should be
chosen such that real and reciprocal sum converge most rapidly. The Ewald method can
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also be used to calculate the potential at a point r within a crystal of point ions which,
omitting the constant self-energy contribution, results in

V ext(r) =
∑

s

∑

l

Zs
|Rl + τs − r|

=
∑

s

∑

l

Zs
erfc(α |Rl + τs − r|)
|Rl + τs − r|

+
4π

ΩBZ

∑

n

e−G
2
n/4α

2

G2
n

∑

s

Zse
iGn·(r−τs). (A.6)

A.2 Fourier transform of the Coulomb potential

An important part of the susceptibility Dyson equation is the Bloch-Fourier transform of
the Coulomb denominator, for which an angular momentum representation is needed. In
atomic rydberg units, the Coulomb potential is given as

V (x,x′) =
2

|x− x′| = V ss′
nn′(r, r

′) =
2

|r + τs +Rn − r′ − τs′ −Rn′ |
(A.7)

and its Fourier representation is defined as

V ss′(r, r′, q) = 2
∑

n

eiq·Rn

|r + τs +Rn − r′ − τs′ |
. (A.8)

Using the same procedure which leads to Eq. (A.6), this potential can be expressed as the
Ewald sum [Zim92]

V ss′(r, r′, q) = 2
∑

R

erfc(η |r − r′ + τs − τs′ −R|)
|r − r′ + τs − τs′ −R|

eiq·R

+
8π

ΩUC

∑

G

e|G+q|/4η2

|G+ q|2
ei(G+q)·(r−r′+τs−τs′ ).

(A.9)

Nevertheless, a numerical quadrature of this expression in order to obtain coefficients for
an expansion in terms of spherical harmonics is computationally very demanding. An al-
ternative approach can be constructed [Buc12b] starting from the Green function of free
space, which is given by

Gf(x,x
′, E) = − 1

4π

eik|x−x′|

|x− x′| , k =
√
E (A.10)

and is related to the Coulomb potential via

V (x,x′) = −8π lim
E→0
Gf(x

′,x′, E). (A.11)

The angular momentum representation of the free particle propagator in real space can be
written as

Gss′f,nn′(r, r
′, E) = − δnn′δss′ ik

∑

L

YL(r̂ns)j`(krns<)h`(krns>)YL(r̂′ns)

+ (1− δnn′δss′)
∑

LL′

YL(r̂ns)j`(krns)g
ss′
f,LL′,nn′(E)j`′(kr

′
n′s′)YL′(r̂

′
n′s′)

(A.12)

where s and s′ are basis site indices and the factor (1 − δnn′δss′) has been taken out of the
structure constants, compared to Eq. (4.45) and the definition rns = x−Rn−τs was used.
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The spherical Hankel functions are defined as h`(x) = j`(x) + in`(x). In the limit of small
arguments, the spherical Bessel and Neumann functions are given by

j`(x) ≈
√

π

2x

(x
2

)`+ 1
2 1

Γ
(
`+ 3

2

) (A.13)

n`(x) ≈
√

1

2πx

(
2

x

)`+ 1
2

Γ

(
`+

1

2

)
, (A.14)

using the Euler gamma function Γ. Using the Legendre duplication formula [Leg09]

Γ(`+
1

2
) = 21−2`√πΓ(2`)

Γ(`)
, (A.15)

the single-site part of the Green function in the zero energy limit reads

− δnn′δss′ i
∑

L

r`ns>

r`+1
ns>

1

2`+ 1
YL(r̂ns)YL(r̂′ns). (A.16)

In the same limit, the product of two spherical Bessel functions appearing in the multiple
scattering part of Eq. (A.12) can be expressed as

(r)`(r′)`
′

Γ̃(`+ 1)Γ̃(`′ + 1)
k`+`

′
(A.17)

where the modified Euler function reads

Γ̃(`) =
2`√
π

Γ

(
`+

1

2

)
= 21−2` (2`− 1)!

(`− 1)!
. (A.18)

The structure constants of free space are given as

gss
′

LL′,nn′(E) = −4πi
∑

L′′

i−`+`
′−`′′h`′′(

√
z |Rnn′ + τs − τs′ |)YL′′

(
̂Rnn′ + τs − τs′

)
CL
′′

LL′

(A.19)
and in the limit of vanishing energy one has

h`(kr) = −iΓ̃(`)(kr)−`−1. (A.20)

The selection rule of the Gaunt coefficients `′′ ≤ ` + `′ causes a cancellation of the above
divergence for k → 0 in the multiple scattering part of the green function. Furthermore,
only terms with `′′ = `+ `′ survive the limit. As a consequence, the structure constants can
be simplified to

gLL′(R
ss′ , E) = −4πk`

′′
Γ̃(`′′)i−`+`

′−`′′
`′′∑

m′′=−`′′

YL′′(R̂
ss′)

|Rss′ |`′′+1
CL
′′

LL′ , `′′ = `+ `′, (A.21)

where R is an arbitrary lattice vector, replacing the former Rnn′ = Rn −Rn′ , and Rss′ =
R+τs−τs′ was defined. To construct the lattice Fourier transform of the Coulomb potential,
Eq. (A.8), only the part of the Green function which depends on a lattice vector enters the
lattice sum. Thus, the Fourier-transformed structure constants read

gss
′

LL′(q, E) = −4πk`
′′
Γ̃(`′′)i−`+`

′−`′′
`′′∑

m′′=−`′′
Dss′
L′′(q)CL

′′
LL′ , `′′ = `+ `′, (A.22)
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using

Dss′
L′′(q) =

∑

R,Rss′ 6=0

YL′′(R̂
ss′)

|Rss′ |`′′+1
eiq·R. (A.23)

Using the following definition, in which the diverging powers of k are omitted,

Ass
′

LL′(q) = −4πΓ̃(`′′)i−`+`
′−`′′

`′′∑

m′′=−`′′
Dss′
L′′(q)CL

′′
LL′ , `′′ = `+ `′, (A.24)

the Fourier transform of the Coulomb potential can be constructed via the following set of
equations:

V ss′(r, r′, q) =
∑

LL′

YL(r̂)V ss′
LL′(r, r

′, q)YL′(r̂
′) (A.25)

V ss′
LL′(r, r

′, q) = 8π

(
δss′δLL′

−1

2`+ 1

r`<

r`+1
>

−Ass′LL′(q)
(r)`(r′)`

′

Γ̃(`+ 1)Γ̃(`′ + 1)
k`+`

′

)
. (A.26)

A.3 Derivatives

Several expressions in this work contain derivatives of the Fourier-transformed lattice po-
tential, such as the dynamical Matrix Eq. (5.21). As already mentioned above, the Fourier
transform can be obtained in the same way as Eq. (A.6), giving

V̊ss′0l (0, r, q) =
∑

l

eiq·Rl

|Rl + τs′ − τs + r|

=
∑

l

eiq·Rl erfc(η |Rl + τs′ − τs + r|)
|Rl + τs′ − τs + r|

+
4π

ΩBZ

∑

n

e−(Gn+q)2/4η2

|Gn + q|2
ei(Gn+q)·(τs−τs′−r).

(A.27)

Due to the uniform convergence of the Ewald series [Cam63], the derivative with respect
to the αth component of the local spatial coordinate r,

Css′α (r, q) =
∂

∂rα
V̊ss′0l (0, r, q) (A.28)

can now directly be calculated and leads to the result

Css′α (r, q) =
∑

l

eiq·Rl (Rlss′(r))α

|Rlss′(r)|3
[

2√
π
e−η

2|Rlss′ (r)|2 |Rlss′(r)| η + erfc(η |Rlss′(r)|)
]

− i
4π

ΩWS

∑

G

(G + q)α

|G + q|2
e−|G+q|2/4ηei(G+q)·(τs−τs′−r) (A.29)

with Rlss′(x) = Rl + τs′ − τs + x. Css′α (r, q) can be efficiently expanded in spherical
harmonics to separate radial and angular coordinates using Lebedev quadrature (see App.
B).
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B.1 One-dimensional integration

For all radial integrations a Gauss-Legendre quadrature [Bro+01] has been used. This
method approximates an integral of a function f(x) over an interval [a, b] as

b∫

a

dx f(x) =
b− a

2

1∫

−1

dz f

(
b− a

2
z +

a+ b

2

)
(B.1)

≈
n∑

i=1

wif

(
b− a

2
zi +

a+ b

2

)
=

n∑

i=1

wif(xi). (B.2)

The integration weights are given as

wi =
b− a

(1− z2
i )P ′n(zi)2

(B.3)

with the associated Legendre polynomials P ′n(zi). The zi are the ith roots of the respective
polynomials and define the radial mesh by means of

xi =
b− a

2
zi +

a+ b

2
. (B.4)

The benefit of this procedure is that the integration weights have to be calculated only once
since all quantities with spatial dependence use the same radial mesh. Additionally, the
distribution of mesh points is advantageous for the functions used here. The Gaussian mesh
is most dense at radii near the origin, where potentials change most rapidly and near the
cell boundary, where the contribution of the integrand is largest.

B.2 Angular integration

In cases where the angular part of volume integrals can not be reduced to sums over an-
gular momentum indices by utilizing the orthogonality relations of spherical harmonics, a
numerical treatment is necessary. Here, the method of Lebedev and Laikov has been used.
They developed a highly efficient mesh of quadrature points and weights wi for angular
integration on a sphere by using the symmetry properties of the octahedral point group
[LL99; Leb75; Leb76], resulting in the quadrature formula

∫
dr̂ f(r̂) =

2π∫

0

dθ

π∫

0

dφ f(θ, φ) sin θ =

Nr̂∑

i=1

wi,r̂f(r̂i). (B.5)
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