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Abstract 

Surface modification in the micro- and nanoscale can be used to control material 

properties. The application of glycosaminoglycans (GAG) for the coating and 

structuration of material surfaces offers great potential in the field of biomaterial 

research. GAG represents a unique class of bioactive polysaccharides that are able 

to specifically bind a multitude of natural binding partners like growth factors and 

adhesive proteins. Thus, it is possible to control cell behavior such like adhesion, 

growth and differentiation. The stability of material coatings and its biocompatibility 

display crucial features for the intended application of each particular biomaterial. 

Therefore, a covalent attachment of GAG to material surfaces provides an 

appropriate approach to create stable material coatings with suitable properties. 

Hence, two different approaches (oxidation and thiolation) were used for the 

chemical activation of the GAG heparin, chondroitin sulfate, hyaluronic acid (HA) and 

sulfated HA by introducing reactive functional groups into their glycan structure. The 

degree of modification was varied to investigate a possible impact on the GAG`s 

reactivity and biocompatibility. The activated GAG were subsequently immobilized to 

different model substrata by covalent reactions. This surface grafting could be 

achieved in a homogeneous approach as well as in a heterogeneous manner via 

microcontact printing. In addition, oxidized heparin was used as a cross-linker for 

succinylated gelatin to generate nanoparticles which were successfully applied as a 

template for the mineralization of hydroxyapatite. 

The homogeneously coated substrata showed distinguishable surface properties, 

such as surface topography and coating thickness. Moreover, the wettability and the 

surface zeta potential were directly related to the sulfation degree of the immobilized 

GAG and similarly supported the successful surface grafting. An increase of reactive 

groups also enhanced the amount of immobilized GAG and the resulting surface 

roughness. 

Protein adsorption experiments revealed the specific binding capability of 

immobilized HA to its natural binding partner aggrecan. Further, fibronectin 

adsorption was clearly correlated to the degree of sulfation of the immobilized GAG, 

which both indicated the maintenance of bioactivity of the modified GAG. 
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Cell experiments with human fibroblasts showed an increasing number of adhering 

cells in dependence on the sulfation degree of the immobilized GAG. Finally, cell 

growth and viability tests demonstrated that cell proliferation was higher for the 

substrata coated with sulfated GAG and not hampered by the modification of the 

GAG in general, which was taken as another evidence for the bioactivity of the 

activated GAG. Overall, oxidized and thiolated GAG are useful as building blocks for 

bioactive surface coatings of 3D-structures like nanoparticles useful in different tissue 

engineering applications. 
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Zusammenfassung 

Zur Steuerung von Materialeigenschaften können Oberflächenmodifizierungen im 

Mikro- und Nanometerbereich eingesetzt werden. Die Anwendung von 

Glykosaminoglykanen (GAG) für die Beschichtung und Strukturierung von 

Materialoberflächen besitzt ein großes Potenzial im Bereich der 

Biomaterialentwicklung. GAG stellen eine einzigartige Klasse von biologisch aktiven 

Polysacchariden dar, die fähig sind, spezifische Wechselwirkungen mit einer Vielzahl 

von natürlichen Bindungspartnern wie Wachstumsfaktoren und adhäsive Proteine 

einzugehen. Somit ist es möglich, das Zellverhalten, wie Adhäsion, Wachstum und 

Differenzierung zu steuern. Die Beständigkeit der Beschichtung und ihre 

Biokompatibilität spielen eine entscheidende Rolle für das beabsichtigte 

Anwendungsgebiet der entsprechenden Biomaterialien. Folglich bildet die kovalente 

Bindung von GAG an Materialoberflächen einen vielversprechenden Ansatz für die 

Erzeugung von beständigen Materialbeschichtungen mit genau definierten 

Eigenschaften. 

Daher wurden die GAG Heparin, Chondroitinsulfat, Hyaluronsäure (HA) und 

sulfatierte HA mittels zweier unterschiedlicher Ansätze (Oxidation und Thiolierung) 

chemisch aktiviert. Dabei wurde der Umsetzungsgrad beider Methoden variiert um 

eine mögliche Auswirkung auf die Reaktivität und die Biokompatibilität der GAG 

feststellen zu können. Die aktivierten GAG wurden anschließend durch kovalente 

Reaktionen auf verschiedenen Materialien immobilisiert. Neben der homogenen 

Beschichtung konnte die Immobilisierung auch in strukturierter Weise mittels 

Mikrokontaktdrucken durchgeführt werden. Desweiteren wurde das oxidierte Heparin 

als Vernetzer für Gelatine verwendet um Nanopartikel zu erzeugen, die anschließend 

als Vorlage für die Mineralisierung von Hydroxylapatit eingesetzt wurden. 

Je nachdem welches GAG aufgebracht wurde, zeigten die homogen beschichteten 

Oberflächen charakteristische Unterschiede in ihrer Oberflächenbeschaffenheit und 

der Beschichtungsdicke. Darüber hinaus waren die Benetzbarkeit und das 

Zetapotential der Oberflächen direkt mit dem Sulfatierungsgrad der immobilisierten 

GAG korreliert und bestätigten ebenfalls die erfolgreiche Immobilisierung der GAG. 

Eine höhere Konzentration an reaktiven Gruppen steigerte auch die Menge an 

immobilisiertem GAG und erhöhte die Oberflächenrauhigkeit. 
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Untersuchungen zur Proteinadsorption zeigten die spezifische Bindungsfähigkeit von 

immobilisierter HA zu seinem natürlichen Bindungspartner Aggrecan. Ferner 

machten Untersuchungen mit Fibronektin deutlich, dass mit steigender Sulfatierung 

des immobilisierten GAG auch die Bindung von Fibronektin zunahm. Demzufolge, 

konnte gezeigt werden, dass die spezifische Bioaktivität der modifizierten GAG 

erhalten blieb. 

Das Adhäsionsverhalten von humanen Fibroblasten zeigte eine Zunahme von Zellen 

mit ansteigendem Sulfatierungsgrad der immobilisierten GAG. Ferner zeigten auch 

Untersuchungen zum Zellwachstum, dass Substrate, welche mit höher sulfatierten 

GAG beschichtet waren, erhöhte Wachstumsraten aufwiesen. Letzteres kann als 

weiterer Nachweis für die Aufrechterhaltung der Bioaktivität der aktivierten GAG 

angesehen werden. Folglich stellen die oxidierten und thiolierten GAG 

vielversprechende Komponenten für die Bildung von bioaktiven 

Materialbeschichtungen dar. Darüber hinaus können sie auch als Bestandteil von 

3D-Strukturen wie Nanopartikeln dienen und in verschiedenen Anwendungen des 

Tissue Engineerings genutzt werden. 
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Chapter 1 

Introduction 

This cumulative thesis consists of six papers. The first manuscript is a review which 

is used as a general introduction to glycosaminoglycans and their medical 

application. The remaining five published papers are assembled as chapters 2-6 

including a summary at the beginning of each chapter. 
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Medical application of glycosaminoglycans - A review 

Alexander Köwitsch, Guoying Zhou, Thomas Groth* 

Biomedical Materials Group, Institute of Pharmacy, Martin Luther University Halle-

Wittenberg, Heinrich-Damerow-Str. 4, 06099 Halle (Saale), Germany 

E-mail: thomas.groth@pharmazie.uni-halle.de 

Phone: +49(0)345 55 28460 
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Abstract 

The characteristic molecular composition of the different glycosaminoglycans (GAG) 

is related to their role as structural components and regulators of a multitude of 

functions of proteins, cells and tissues in the human body. Therefore it is not 

surprising that GAG are widely used as coating materials for implants, components of 

3D-constructs like tissue engineering scaffolds and hydrogels, but also as diagnostic 

devices like biosensors and in controlled release applications. Beside a physisorption 

or encapsulation of GAG, these applications often require their chemical modification 

to allow a stable covalent attachment on surfaces or cross-linking reactions with 

other molecules. Then, the preservation of the functionality of GAG under 

maintenance of their biocompatibility is a challenging task and has to be addressed 

in accordance with the designated field of application. Here, we will give a brief 

overview on structure and biological functions of GAG, different methods of their 

activation and immobilization, the recent progress in GAG-related biomaterials 

development as well as some examples of their application in the field of tissue 

engineering and regenerative medicine. 

 

Keywords: Tissue engineering, Biomaterials, Glycosaminoglycans, Chemical 

modifications, Immobilization, Hydrogels, Proteoglycans, Extracellular matrix 
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1. General introduction to structure and function of glycosaminoglycans  

Glycosaminoglycans (GAG) are long-chain, unbranched polysaccharides that are 

present on the cell surface and as components of the extracellular matrix. They are 

consisting of repeating disaccharides linked by glycosidic bonds creating individual 

complex structures. Whereas proteins and nucleic acids are copied from a template 

in a series of identical steps applying the same enzymes, GAG, like other oligo- and 

polysaccharides, are assembled by different enzymes during each specific step of 

polymerization. Activated monosaccharides are polymerized by glycosyltranferases 

followed by a deacetylation/N-sulfation through N-deacetylase/N-sulfotransferase 

and epimerization by epimerases completed by O-sulfation via specific 

sulfotransferases [1]. Sulfated GAG are synthesized by specific enzymes in the Golgi 

apparatus of the cell, whereas hyaluronan (HA) is synthesized by transmembrane 

proteins called HA synthases. While HA is not linked to a protein and synthesized 

from its reducing end, the sulfated GAG are build up from the non-reducing end and 

synthesized as side chains attached to a protein forming so called proteoglycans 

(PG) [2]. The protein core is assembled and released from the endoplasmic reticulum 

(ER). Beforehand, a specific tetrasaccharide (for Hep/HS, CS/DS: Xyl-Gal-Gal-GlcA) 

is connected to a serine residue of the core protein as a linker region in the ER [3]. 

For sulfated GAG, an alternating polymerization of glucuronic acid (GlcA) or 

galactose (KS) and a glucosamine is accomplished by designated 

glycosyltransferases. Henceforth, deacetylation/N-sulfation and epimerization of GlcA 

to iduronic acid (IdoA) is followed by O-sulfation of the growing GAG chain performed 

by epimerases and sulfotransferases, respectively [4]. This individual processing of 

the GAG leads to distinctive patterns of functionalization which is also reflected by 

their unique structures (Figure 1). 
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Figure 1: Major and variable disaccharide repeating unit of glycosaminoglycans. (X = 

-OH or –OSO3
-; Y = -Ac or -OSO3

-) 

In contrast to glycoproteins that also exhibit carbohydrate side chains, the covalently 

attached GAG side chains make up most of the molecular weight (MW) of the PG 

and are principally responsible for most of their physiological functions [5]. In addition 

to intracellular and cell-surface PG found on almost all mammalian cell surfaces, they 

are components of the extracellular matrix (ECM) [6]. Structurally, PG can be 

categorized regarding their attached GAG into heparan sulfate PG (HSPG), 

chondroitin sulfate PG (CSPG), dermatan sulfate proteoglycans (DSPG), keratan 

sulfate PG (KSPG) and hyalectans which are aggregates of HA and extracellular PG 

that can also bind to lectins [7]. Moreover, one core protein is often linked to two 

different GAG like aggrecan carrying multiple CS and KS chains. According to their 

functions, PG can be also summarized in four groups (Table 1). Extracellular PG can 

be classified into three groups according to their protein structure (Figure 2a). Firstly, 

there are the high molecular weight PG aggrecan, versican, brevican and neurocan 

that are responsible for the compressive-resistant properties of cartilage, the tensile 

strength of skin and tendon as well as the mineralization of the bone matrix [2]. 

These PGs are able to bind to lectins with a specific CRD (carbohydrate-recognition 

domain) at the C-terminus and also to HA with a specific link module at their 

N-terminal domain and thus are often referred as lecticans or hyalectans [8, 9]. 
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Furthermore, they can influence inflammation processes by the binding and 

regulation of inflammatory cytokines [10]. Secondly, small leucine-rich repeat PG 

(SLRP) like decorin and biglycan are supporting ECM components like collagens and 

are able to bind growth factors influencing several signaling cascades [11]. In 

addition, three testicans belong to the group of extracellular PG which possess a 

calcium-binding domain [12]. The pericellular or basement membrane PG (perlecan, 

agrin, collagen XV and XVIII, Figure 2b) are able to bind and cross-link many matrix 

components and cytokines like vascular endothelial growth factor (VEGF) and 

interleukin-2 (IL-2), thus, exhibiting multiple regulatory functions like maintenance of 

vascular homeostasis and control of cancer cell invasion [13, 14]. The 

transmembrane or cell-surface PG (Figure 2c) like syndecans and glypicans function 

as co-receptors for growth factors (GF) and adhesive proteins like fibronectin and 

mediate cell-cell and cell-matrix adhesions [15-17]. They can directly (binding of GF 

through HS or CS) or indirectly (in concert with integrins or GF receptors) activate 

cellular signaling cascades [18]. Furthermore, syndecans interact with other PG to 

execute endocytosis processes [19]. Inflammatory cytokines can shed the 

ectodomain of syndecans and further activate matrix metalloproteinases (MMPs), 

thus, controlling the number of active cell surface receptors [20]. Syndecans are also 

able to influence tumor growth and progression, e.g. syndecans-1 is a prognostic 

marker for several cancer types because it is solubilized by an increased heparanase 

activity [21, 22]. Serglycin, the only known intracellular PG, can also include Hep as 

GAG-side chains when assembled in mast cells of connective tissue [1, 23]. It is 

implicated in the binding and activation of inflammatory mediators [24, 25]. The 

degradation of PG usually takes place in the ECM and is executed by proteases like 

MMPs from the ADAMTS-family (a disintegrin and metalloproteinase with 

thrombospondin type I motifs), while the final breakdown of GAG takes place inside 

the lysosomes of the cell in the reverse sequence of their synthesis [26-28]. The 

latter breakdown of GAG is catalyzed either by hydrolases (e.g. heparin hydrolase, 

different exoglycosidases), which process hydrolytic cleavage or by lyases 

(heparinases, chondroitinases, hyaluronidases) that catalyze the eliminative 

cleavage of glycosidic bonds [29, 30]. A comprehensive summary of PG structure 

and function was recently published by Iozzo and Schaefer [31]. 
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Figure 2: Schematic representation of extracellular matrix proteoglycans (PG) (a), 

pericellular PG (b) and transmembrane PG (c). SLRP - Small leucine-rich repeat PG; 

LRR - Leucine-rich repeat (Adapted from [31]). 
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Table 1: Glycosaminoglycan-containing proteoglycans divided into their four main 

classes. (Adapted from [31]) 

Location/Class PG Predominant GAG 

component(s) 

Intracellular:   

Secretory Granules Serglycin Heparin 

Cell surface:   

Transmembrane Syndecans (1-4) Heparan sulfate 

NG2, Phosphacan Chondroitin sulfate 

Betaglycan Chondroitin sulfate/ 

Heparan sulfate 

GPI-Anchored Glypicans (1-6) Heparan sulfate 

Pericellular:   

Basement membrane Perlecan, Agrin, Collagen XVIII Heparan sulfate 

Collagen XV Chondroitin sulfate/ 

Heparan sulfate 

Extracellular:   

Hyalectans Aggrecan Chondroitin sulfate/ 

Keratan sulfate 

Versican, Neurocan, Brevican Chondroitin sulfate 

SLRPS (small leucine-

rich repeat 

proteoglycans) 

 

Biglycan Chondroitin sulfate 

Decorin Dermatan sulfate 

Fibromodulin, Lumican, Keratocan, 

Osteoadherin 

Keratan sulfate 

Epiphycan Chondroitin sulfate/ 

Dermatan sulfate 

Spock Testican (1-3) Heparan sulfate 
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2. Classification of glycosaminoglycans 

2.1. Heparin (Hep)/Heparan sulfate (HS) 

Hep and HS are composed of alternating saccharide units of N-acetylated or 

N-sulfated D-glucosamine that are α(1-4)- or β(1-4)-linked to uronic acids (L-iduronic 

or D-glucuronic acid). In particular, the main disaccharide of Hep is composed of 

iduronic acid (IdoA), which is sulfated at the carbon 2 (C2) and N-sulfated 

glucosamine (GlcNS). The latter is additionally sulfated at C6. On the other hand, the 

main disaccharide of HS consists of glucuronic acid (GlcA) and N-acetylated 

glucosamine (GlcNAc). The degree of sulfation of Hep is much higher than that of HS 

resulting in the highest negative charge density of all known biomacromolecules [32]. 

The sulfation pattern of Hep is more equally distributed over the whole GAG chain 

while HS shows distinct regions of high sulfation as well as segments that are lower 

or non-sulfated [33]. Hep and HS are synthesized as PG with Hep being processed 

only in connective-tissue-type mast cells or basophils while HSPG are produced in 

almost all mammalian cells [1, 34]. Thereby, Hep is synthesized on a specific core 

protein (serglycin) with a MW of up to 1000 kDa with Hep having a MW of 

60-100 kDa [35]. Upon degranulation of mast cells or basophils, Hep chains are 

cleaved resulting in MW of 5-25 kDa and stored in secretory mast cell granules from 

where they are secreted into the extracellular space [36, 37]. Hep is released from 

mast cells by exocytosis of the mast cell granules upon exogenous stimulation, e.g. 

by the interaction of antigens with cell-surface bound IgE antibodies [38]. In contrast, 

HS is attached to PG, which assemble in the basement membrane (perlecan) or as 

cell-surface PG (e.g. several syndecans). Syndecans can act as co-receptors for 

growth factor (GF) binding or as direct signal transducers and are involved in the 

assembly of focal adhesions [39, 40]. Moreover, HSPG, like syndecans and 

glypicans, modulate different endocytosis pathways controlling the uptake of 

macromolecular cargo [19]. Hep is also essential for the storage of proteases in mast 

cell granules and also plays an important role in the prevention of autolysis of these 

proteases [41]. Because of their structural similarity, HS and Hep might also have 

similar regulative effects as they are able to bind a variety of GF, and thus, induce 

GF-mediated signal transduction [42, 43]. HS and Hep play also a role during 

inflammatory reactions [44]. HSPG like perlecan are presenting chemokines to 

integrins of leukocytes that promote the transmigration of leukocytes, while Hep is 
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capable to bind L- and P-selectin to inhibit leukocyte adhesion [45-47]. Hep can also 

inhibit leukocyte adhesion by direct binding to the integrin Mac-1 [48]. Depending on 

its specific sulfation motifs, HS can activate FGF- and FGFR-signaling pathways [49, 

50]. Furthermore, HS is able to activate or inhibit cytokines like interleukins and 

tumor necrosis factor α (TNF-α) [51]. 

2.2. Chondroitin sulfate (CS)/Dermatan sulfate (DS) 

CS comprises of alternating β(1-4) GlcA and β(1-3) N-acetylgalactosamine (GalNAc) 

that can be sulfated at the carbon 4 and/or 6 of the galactosamine and additionally at 

C2 and/or C3 of the GlcA. CS is named depending on the position of sulfation, e.g. 

CS-A for single sulfation at C4 of the GalNAc or CS-C for single sulfation at C6 of the 

GalNAc [52]. DS, also known as CS-B, is composed of alternating D-GlcA or L-IdoA 

(partly sulfated at C2) and GalNAc that can be sulfated at C4 or C6 [53]. CS and DS 

vary significantly in chain length and MW from 5-70 kDa with strong deviations even 

when isolated from a single source [29, 54]. Together with the sulfation pattern, this 

might directly impact on the biological functions [54, 55]. CS and DS are essential 

elements of various PG like SLRP or transmembrane PG, e.g. phosphacan (CSPG), 

which is able to interact with neurons and neural cell adhesion molecules (NCAM) 

[56]. SLRP like decorin (DSPG) and biglycan (CSPG) interact with collagen in the 

regulation of fibrillogenesis by the association of collagens as well as protecting them 

from enzymatic cleavage [57-59]. In cartilage and skin, CS-containing PG like 

aggrecan, that is bound to long hyaluronan chains, functions as shock absorber by 

resisting compressive forces via the uptake of water or influence the tissue elasticity, 

respectively [60, 61]. The role of CS in the pathogenesis of osteoarthritis is still 

frequently discussed [62-65]. CS and DS, as major (phosphacan, NG2) or minor 

(syndecans 1 and 4) GAG component of cell-surface PG, can specifically interact 

with GF like fibroblasts growth factors FGF-1, FGF-2 and transforming growth factors 

(TGFs) that possess a heparin-binding domain [53, 66, 67]. Thus, CS/DS influence 

signaling processes in cells making them important regulators during inflammation, 

wound healing and tumor development and progression [68-70]. The sulfation of 

CS/DSPG in cancer cells was found to be significantly decreased at C4 while it was 

increased at C6 resulting in a decrease of total sulfation compared to normal cells of 

the same tissue [71]. In addition, the chain length of CS/DS and the GAG content of 

the PG, decorin and versican, was decreased significantly. 
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2.3. Keratan sulfate (KS) 

KS is composed of disaccharides of β(1-4) GlcNAc and β(1-3) galactose which both 

might be sulfated at C6. Therefore, KS is the only GAG lacking a carboxyl group. The 

MW of KS ranges from 5-25 kDa and is highly dependent on the tissue origin [72]. 

The main source of KS is the cornea where the highest concentration is found. Unlike 

other sulfated GAG, KS is synthesized as differently assembled saccharide chains 

connected to its core proteins [73]. Hence, three main classes of KS can be 

distinguished; in KS-I the KS is N–linked through GlcNAc to asparagine of the core 

protein, in KS-II it is O-linked through GalNAc to serine or threonine residues and in 

KS-III it is O-linked through mannose to serine [74, 75]. KS-I and KS-II can be 

distinguished by their enzymatic sensitivity, since KS-I is prone to digestion by 

keratanase I and II while KS-II is only sensitive to keratanase II [76]. Generally, KS-II 

is found in cartilage and characterized by a higher degree of sulfation and a shorter 

chain length than KS-I, which is the main KS in cornea and responsible for tissue 

hydration and corneal transparency. KS-III is found preferentially in PG of the brain 

and nervous tissue [75]. KS is a GAG component of several PG, as part of aggrecan 

in cartilage or in different SLRPs (e.g. lumican, keratocan, fibromodulin) but can be 

also found attached to proteins in brain and bone. Apart from the ECM, KS-I is also 

found intracellularly in eosinophil-specific granules [76]. A lack of lumican lead to a 

decrease in skin elasticity and opacity of the cornea by influencing the fibrillization of 

collagen [77]. Furthermore, SLRPs like fibromodulin and lumican are involved in 

osteoarthritic processes by the modulation of collagen fibrillogenesis and TGF-β 

signaling [78, 79]. Thereby, corneal KS is able to bind and interact with a multitude of 

proteins like ephrin and semaphorin [80]. Like other SLRPs, fibromodulin is able to 

bind to bone morphogenic protein BMP-2 resulting in an increased expression of the 

transcription factor RunX and Ca2+ accumulation leading to an ossification of tendon 

[81]. Lumican is able to modulate the TLR4 (Toll-like receptor 4) signal pathway in 

lumican-deficient macrophages leading to a decrease of the pro-inflammatory 

response [82]. However, KS occurrence is not limited to interstitial connective tissue 

like cartilage and can be also found as part of cell trans-membrane proteins like 

CD44 and MUC1 [74]. 
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2.4. Hyaluronan (Hyaluronic acid, HA) 

In contrast to sulfated GAG, HA is synthesized by integral membrane proteins 

(HA-synthases) from its reducing end and released to the extracellular space [83]. 

HA represents the only non-sulfated GAG and is not linked to a protein core. HA 

consists of alternating GlcA and GlcNAc monosaccharides, which are connected by 

β(1-4) and β(1-3) glycosidic bonds, respectively. The molecular weight of HA 

depends on the tissue and species origin and can reach up 12 x 106 Da in naked 

mole rats [84, 85]. In humans the MW of HA is correlated to age, especially the MW 

of cartilage HA is decreasing from 2 x 106 Da to 5 x 105 Da within a lifetime [86]. The 

highest HA concentrations in humans are found in umbilical cord, synovial fluid, skin 

and the vitreous body of the eye [61]. HA has distinct biological properties depending 

on its molecular weight (distribution). High molecular weight HA has anti-angiogenic, 

immunosuppressive and anti-inflammatory properties, while low molecular weight HA 

is highly angiogenic, immunostimulatory and exhibits pro-inflammatory properties 

[87]. In the extracellular space HA is typically bound to matrix proteins (PG), which 

are called hyaladherins [88]. This connection is often accomplished via linker 

modules of the proteins that specifically bind to a decasaccharide sequence of HA 

[89]. Thus, HA is able to bind to proteoglycans like aggrecan and versican building up 

large aggregates to provide structural integrity of cartilage, skin and other tissues by 

the inclusion of water [90]. Furthermore, the viscoelastic properties of HA solutions 

are the basis of the viscous and elastic properties of the synovial fluid [91, 92]. HA is 

a key regulator in inflammation as it is cross-linked by different hyaladherins like 

CD44 and TSG-6 (tumor necrosis factor-stimulated gene-6) building up a pericellular 

coating of cells, which not only protects from inflammatory mediators but also acts 

also as immunosuppressor as it prevents ligand access and inhibits phagocytosis by 

macrophages and monocytes [87, 93]. On the other hand, HA species of lower MW 

are known to promote inflammation processes by the interactions with TLR, the 

activation and maturation of dendritic cells and by inducing the release of 

pro-inflammatory cytokines [94]. A decrease of the mean MW of HA in synovial fluid 

by reactive oxygen species that are generated during inflammation processes is 

found in osteoarthritis (OA) patients [95]. Here, HA interactions with specific 

cell-surface receptors, notably CD44 and RHAMM (receptor for HA-mediated motility) 

play an essential role in immune response as they can lead to the internalization of 
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HA [96, 97]. The turnover of HA and its CD44-mediated endocytosis by macrophages 

is upregulated in inflammation [98]. Notably, extracellular HA binds to TLR-2 and 

TLR-4 of T cells and macrophages to induce the expression of pro-inflammatory 

cytokines and chemokines [99, 100]. Elevated serum levels of HA are also 

associated with a faster OA progression and a higher incidence of rheumatoid 

arthritis [101, 102]. HA interactions with cell surface receptors, primarily CD44 and 

RHAMM, are also associated with indispensable signaling processes regulating 

cancer cell motility, tumor progression and metastasis [103]. High HA levels in tumor 

tissue are often correlated to a poor prognosis for cancer patients [104, 105]. This is 

likely originated to the association of inflammation and cancer [106]. In detail, HA is 

capable to alter macrophage polarization to secrete pro-inflammatory factors and to 

prevent the extravasation of leukocytes leading to a chronic inflammation, which 

favours tumor proliferation and metastasis [107, 108]. Inflammatory stimuli give also 

rise to an enhanced HA synthesis as well as to the cleavage of HA via 

hyaluronidases that are most active at acidic pH, and thus, to higher extracellular HA 

concentrations, which attract more leukocytes [109, 110]. This increased distribution 

of HA in inflammation was also shown in patients with inflammatory disorders like 

asthma and Crohn`s disease [109]. 

3. Survey on medical application of native glycosaminoglycans 

In the emerging field of glycobiology, GAG play a vital and evolving role [111]. In 

particular, their multiple effects as signaling molecules, regulatory effects on protein 

activity, as structural components and effectors on cellular activity are unmatched 

[114]. Thus, GAG are extensively used in different medical applications because of 

their multiple regulatory functions, e.g. in anticoagulation of blood, inhibition of tumor 

growth and metastasis, but also control of inflammatory processes. Also, in the 

design of biomaterials the application of GAG, is a promising approach because they 

display specific interactions with a plethora of proteins and cells [112, 113]. 

3.1. Application of glycosaminoglycans as anticoagulants 

Heparin (Hep) and dermatan sulfate (DS) are two main GAG having profound 

anticoagulant and antithrombotic activities [114]. Hep, the classic anticoagulant, has 

been used to interfere with blood coagulation for over 60 years. The anticoagulant 

activity of Hep was firstly reported by Mclean in 1916 and was confirmed by many 
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other studies afterwards [115]. Nowadays, it is still the major drug for routine in 

patients during hospitalization, extracorporeal blood circulation, but also treatment of 

thrombotic diseases, such as venous thromboembolism (VTE) and as adjuvant 

therapies for atherothrombotic syndromes [116] [117]. The anticoagulant activity of 

Hep is due to its unique binding of antithrombin (ATIII) with a pentasaccharide 

sequence, which amplifies ATIII affinity to thrombin and inhibits thrombin and other 

coagulation enzymes, thus preventing blood coagulation [114]. Therefore, Hep is 

widely used as an anticoagulant in a variety of clinical applications [44, 118]. 

However, besides ATIII, it was found recently that the heparin cofactor II (HCII) is 

also an important effector component involved in inhibition of blood coagulation. 

Importantly, HCII can be activated by Hep, forming a 1:1 stable complex to inactivate 

thrombin [119]. Therefore, the blood coagulation inhibiting property of Hep is 

attributed to both the binding of ATIII as well as the activation of HCII. On the other 

hand, DS was also successfully used as anticoagulant for hemodialysis patients 

because of its property to act as an activator of HCII [120, 121]. By sulfation, it is also 

possible to add anticoagulant activity to HA [122]. However, it should be mentioned 

that the misuse of chemically modified GAG (other than Hep), as an alternative to 

overly used heparin, can lead to severe side reactions as happened in 2007/08 when 

heparin that was contaminated with oversulfated CS led to numerous death of 

patients [123, 124]. Nowadays, different methods can be applied to uncover the type 

of saccharide sequences that are responsible for the specific binding to proteins and 

particularly if this ability is maintained after modification of the GAG. The utilization of 

arrays that use specific saccharide sequences (oligosaccharides, OS) is frequently 

utilized for this purpose [125, 126]. The production of OS via enzymatic synthesis or 

the de novo synthesis of OS are both well-established and can be possibly applied to 

replace Hep by synthetic GAG [127, 128]. 

3.2. Application of glycosaminoglycans as anti-inflammatory agents 

Apart from their anticoagulant activity, GAG are also implicated in inflammatory 

processes, exhibiting an anti-inflammatory potential, as demonstrated in many 

experimental studies and clinical trials (Figure 3) [55, 129-131]. For instance, Hep 

has shown beneficial effects in the treatment of asthma and ulcerative colitis 

diseases [132, 133], while CS can help patients with knee and hand osteoarthritis 

[55]. In general, GAG can bind and interact with a wide range of proteins including 
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ECM adhesive proteins (e.g. collagen, fibronectin, laminin), as well as cytokines, 

growth factors, chemokines and enzymes to modulate biological processes such as 

migration, homing, growth and differentiation of leukocytes, which are associated 

with inflammation [134, 135]. For example, both CS and Hep can bind to L- and P-

selectin, which impairs leukocyte adhesion, activation and transmigration activities 

[136]. Furthermore, both CS and Hep can mediate anti-inflammatory effects by 

inhibition of nuclear factor-κB (NF-κB) translocation, which is a crucial transcription 

factor of many pro-inflammatory mediators, leading to suppression of 

pro-inflammatory cytokine production [137]. By contrast, high molecular weight HA 

(HMW-HA) prevents inflammatory responses through interactions with CD44, which 

translates the signals from HA to down-regulate leukocyte activation, growth, and 

differentiation [94]. Although there is great potential of above-mentioned GAG as 

anti-inflammatory agents, it should be noted that some GAG also exhibited pro-

inflammatory effects, depending on their specific structures or under specific 

conditions. For example, HS on the endothelial surface can interact with selectins 

and presents chemoattractants, promoting leukocyte recruitment, activation and 

transmigration [138]. The effects of HA in modulating inflammation are even 

depending on its molecular weight [94]. Upon injury, the production of HMW-HA 

increases immediately serving as anti-inflammatory molecules via specific 

interactions with CD44. However, the HMW-HA is rapidly cleaved into fragmented 

low-molecular weight HA (LMW-HA), which functions as pro-inflammatory effector 

through interactions with toll-like receptors (TLR) on leukocytes, which activate the 

release of pro-inflammatory effectors [94]. Thus, the involvement of various GAG in 

inflammation is complex and represents both pro- and anti-inflammatory mediators 

(Figure 3). 
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Figure 3: Schematic diagrams of anti- and pro-inflammatory effects of hyaluronic 

acid (HA), chondroitin sulfate (CS) and heparin (Hep). (A) Functions of HA. During 

inflammation, the inflammatory stimuli trigger increased production levels of high 

molecular-weight HA (HMW-HA). However, HMW-HA can be catabolized into 

fragmented low molecular-weight HA (LMW-HA) in the presence of mediators such 

as hyaluronidases and reactive oxygen species (ROS). HMW-HA can bind to CD44 

receptor and down-regulate pro-inflammatory cytokine production, exhibiting 

anti-inflammatory activities; LMW-HA promotes inflammatory responses through toll-

like receptors (TLRs) on macrophages and regulates pro-inflammatory gene 

expression [94]. (B) Anti-inflammatory activities of CS in osteoarthritis. Cartilage 

damage results in extracellular matrix fragments (EMFs) that can activate 

chondrocytes by increasing the translocation of nuclear factor-κB (NF-κB) in 

chondrocytes, synovial macrophages and synoviocytes. The activated cells will 

release pro-inflammatory cytokines and matrix metalloproteinases (MMPs), 

exacerbating inflammation and cartilage destruction. CS can elicit anti-inflammatory 

effects by inhibition of the NF-κB translocation, leading to suppression of pro-

inflammatory cytokine production and decrease of osteoarthritis (adapted from [137]). 

(C) Anti-inflammatory effects of Hep. In response to inflammatory stimuli, 

macrophages can produce chemokines that attract more leukocytes into the inflamed 

tissues. Hep can bind to L- and P-selectin, but also the chemokines, which can 

impair leukocyte adhesion, activation and transmigration activities. As a 

consequence, the lesser activation and infiltration of leukocytes results in attenuation 

of chemokine and pro-inflammatory cytokine release (adapted from [139]). 

3.3. Application of glycosaminoglycans as antitumor agents 

Due to the specific biologic roles of GAG in regulating growth factor signalling, cancer 

cell behaviour, inflammation and tumor progression and metastasis, GAG are 

involved in multiple cancer-related processes [21, 140]. Thus, they also play an 

important role in the prognosis and progress of cancer as their composition, 

distribution, molecular weight and sulfation display distinct changes [141]. Expression 

changes in GAG and their related enzymes can contribute to different steps of tumor 

progression, which have been endowed a predictive value for the clinical outcome of 

cancer [27]. For instance, high levels of HA expression are normally correlated to a 

poor prognosis for cancer patients [104, 105]. On the other hand, GAG and GAG-
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based molecules have been considered as promising molecules for antitumor 

therapeutics, in particular Hep and CS [21, 142]. The antitumor effects of Hep are 

linked to its anticoagulant activity that can decrease thrombin generation and fibrin 

formation around tumor cells, but also by inhibition of heparanase as well as 

interfering with P-selectin-HSPG interactions to suppress cancer growth and 

metastasis [140]. Therefore, Hep and also HS are promising biomolecules for the 

development of anticancer therapeutics because they play a decent role in GF-driven 

signaling processes involved in tumor onset and progression [143]. Consequently, 

modified LMW-Hep was introduced as an orally active anti-cancer drug for prevention 

of lung cancer [144, 145]. By contrast, CS has been proven a potential anticancer 

therapeutics because of its anti-angiogenic effects during tumor progression [146]. 

On the other hand, HA has been exploited as tumor-specific targeting molecular for 

chemotherapy delivery of anti-cancer agents to CD44-expressing tumor cells owing 

to the HA-CD44 interactions [103]. 

3.4. Application of glycosaminoglycans as promoter of cell growth and differentiation 

in tissue engineering  

The proliferation and differentiation of cells within artificial scaffolds is required for the 

engineering of functional tissues. GAG, as natural ECM components, have attractive 

properties such as nontoxicity, excellent biocompatibility, anticoagulant and antitumor 

activity, as well as being regulators of cell growth and differentiation, making them 

great candidates for tissue engineering applications [147-149]. Various studies 

reported that GAG support proliferation and differentiation of different cell types, but 

affect also remodeling of tissues like bone mineralization and osteoclastogenesis 

[150, 151]. It was also shown that the incorporation of GAG like Hep into collagen 

scaffolds significantly enhanced osteoblastic differentiation of mesenchymal stem 

cells (MSCs) both in vitro and in vivo situations [152, 153]. Because of affinity of GF 

to heparin, Hep-based hydrogels have been increasingly employed as growth factor 

carriers and scaffolds for tissue regeneration [148]. By contrast, HS has been shown 

to act as a substitute for exogenously applied GF in driving rat bone marrow stem 

cells into osteogenic lineage [151]. In addition, HA and CS are potent regulators in 

dealing with skeletal and skin diseases owing to their modulation of skin and bone 

precursor cell activation and their subsequent differentiation and gene expression 

[150]. Overall, the multiple biological activities of GAG bear promising prospects for 
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pure GAG and GAG-based materials in tissue engineering applications ranging from 

in vitro to in vivo generation of functional substitutes for tissue regeneration [147]. 

4. Chemical alteration and bioactivity of modified glycosaminoglycans 

4.1. Chemical modification of glycosaminoglycans for covalent and physical 

immobilization 

Application of GAG in sensing devices, as bioactive coating of implants and tissue 

engineering scaffolds or for formation of hydrogels by covalent linkage or physical 

interactions often requires chemical modifications. GAG exhibit several functional 

groups that can be used for chemical modifications (Figure 4). The reducing end of 

the GAG chain, an aldehyde functionality (open saccharide ring) in equilibrium with a 

hemiacetal (closed saccharide ring), can be used to attach GAG chains to 

nucleophiles like amine- or hydrazide-functionalized substrata (substances and 

surfaces), which results in end-on (single point) attached GAG [2]. The latter option is 

highly depending on the MW of the GAG and the ionic strength of the applied 

medium. The possibility of reaction is declining with an increase in chain length and 

the presence of a closed conformation which becomes entropically favoured with the 

decrease of repelling negative charges that can be screened by counterions in 

dependence on the ionic strength of the aqueous solvent [154, 155]. For this reason, 

the reducing end is not extensively used for chemical reactions of native GAG with 

larger molecular weight. However, the covalent reaction of the reducing end of low 

MW (degraded GAG) or de novo synthesized OS is an efficient way to immobilize 

them via the reactions described above to solid substrata [156, 157]. An advantage 

of the attachment of GAG in an end-on configuration is the maintenance of their 

bioactivity as they are not altered in their native structure and thus be able to interact 

with their natural binding partners, e.g. growth factors, adhesive proteins and 

enzymes [158, 159]. For example, the reducing end of CS was alkynated and linked 

to poly(lactid acid) (PLA) by click chemistry to form a copolymer that can form 

micelles in water which could be used as drug delivery systems [160]. 



24 
Chapter 1 – Medical application of glycosaminoglycans 
 

 

 

Figure 4: Summary of major chemistries used for the modification and coupling of 

glycosaminoglycans (GAG). 

Apart from KS, GAG present carboxyl moieties that can be used for a variety of 

chemical modifications. Naturally, GAG are present in aqueous solutions but for 

modifications of the carboxylates it is also possible to use polar organic solvents like 

dimethylformamide (DMF), which was used for esterification of HA, resulting in 

products like HYAFF that represents HA with benzoyl side group [161]. The 

esterification of the carboxyl groups with alkyl halides in dimethylsulfoxide (DMSO) 

resulted in amphiphilic hyaluronic acid derivatives [162]. Most importantly, carboxyl 
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groups of GAG are functionalized with carbodiimide-mediated reactions, which allow 

to introduce specific functionalities or cross-linkers via reaction with an amine or a 

hydrazide [163]. EDC- or EDC/NHS-mediated reactions can be used for chemical 

modification and to covalently link GAG to scaffolds or matrices to alter mechanical 

properties or facilitate the binding of bioactive molecules like GF [164, 165]. As an 

alternative route, the use of triazine mediated functionalization of carboxyl groups 

has been considered, as well [166]. 

The hydroxyl groups of the polysaccharide structure are also frequently used for 

further chemical modification that may help to immobilize them on substrata or cross-

linking them with other molecules by physical interactions. In addition, such 

modifications may affect the bioactivity of GAG. The sulfation of GAG`s hydroxyl 

groups and especially its specific sulfation pattern play an essential role in the ability 

to bind GF as it was shown for sulfated HA and oversulfated CS towards TGF-β1 

[167] and with specific OS of CS for neuronal growth factors, respectively [168]. 

Additionally, the sulfation of HA been shown to promote stem cell differentiation 

[169]. However, sulfation is mainly applied to the non-sulfated HA to mimic the 

capacity of the sulfated GAG. On the other hand, sulfation is leading to an increased 

negative charge of the GAG chain, which further increases ionic interaction relevant 

for coating methods like layer-by-layer technique (LbL) [170]. The sulfation can be 

also tailored to obtain a desired sulfation degree and distinguished sulfation pattern 

[171]. Furthermore, cyanogen bromide can be applied to modify the vicinal hydroxyls 

of the uronic acid units in GAG like HA applying an amidation reaction [172]. The 

hydroxyls of GAG can be also modified to generate free aldehyde moieties by 

peroxidate-mediated cleavage of the carbon-carbon bond [173]. The latter can be 

functionalized with amine- or hydrazide-containing substrata [174-176]. Moreover, it 

is possible to obtain free amino groups by the deacetylation of the N-acetylated 

glucosamine by hydrazinolysis, which will also result in a degradation of GAG [177, 

178]. Thereafter, the free amino groups can be used for covalent attachment to 

aldehydes and carboxyl moieties, respectively. Basically, the reaction with a 

substrate can be performed after previous functionalization of GAG or in situ by 

applying the reagent together with the GAG, e.g. when using EDC/NHS mediated 

coupling reactions of GAG with amino-modified surfaces [179, 180]. 
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4.2. Bioactivity and functionality of activated glycosaminoglycans 

The preservation of the bioactivity of GAG including the specific interaction with 

numerous cytokines, matrix proteins and cell surface receptors is a major 

prerequisite for their use in various biomedical applications. Furthermore, the 

functionality of GAG which have been modified to have additional functions has to be 

determined. Thus, the testing of bioactivity of chemically altered GAG is of major 

importance. Studies on measuring the affinity of protein ligands to GAG and 

experiments with cells can be used as a benchmark to compare the bioactivity of 

natural and functionalized GAG. 

There are several tools to obtain information about the GAG binding affinity to their 

native binding partners (NBP). Qualitative information can be derived from simple 

characterization methods like fluorescence microscopy, when a label is introduced to 

a distinct target protein or the GAG, which are specifically binding to each other 

[181]. Quantitative fluorometric methods exploit changes of the intrinsic fluorescence 

of tryptophan and tyrosine in proteins upon binding of GAG and can be used for 

affinity measurements in solution [182]. Furthermore, toluidine blue can be utilized to 

quantify polyanions like GAG which are immobilized to solid substrates [183]. More 

sophisticated methods like high performance liquid chromatography (HPLC), 

electrophoresis and mass spectrometry can be used and combined to quantify the 

amount of GAG [184-186]. Mass spectrometry, especially in tandem with liquid 

chromatography, can be used to obtain the precise amount and composition of the 

GAG`s disaccharide content [187-189]. Generally, a prerequisite for the latter 

methods is the depolymerisation of the GAG. Other methods like surface plasmon 

resonance (SPR) and quartz-crystal microbalance (QCM) are applied to generate 

comprehensive quantitative data by the studying the adsorption of GAG to a NBP or 

vice versa. The measured signal is directly related to the amount of adsorbed binding 

partner of the GAG and thus revealing the GAG`s activity. For instance, ATIII, growth 

factors like FGFs or adhesive proteins like FN, which all possess Hep-binding 

domains can be used to assay the bioactivity of Hep and its derivatives [159, 190, 

191]. Likewise, the activity of degrading enzymes like hyaluronidase towards 

functionalized GAG can uncover their remaining bioactivity [158]. The measurement 

of anticoagulant activity of Hep (as a complex with ATIII) can be performed by using 

thrombin and activated factor X (FXa) and specific chromogenic peptides [192]. 
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In clinic, the effectiveness of heparin can be monitored with coagulation test like 

activated clotting time or thrombin time [193]. More complex trials and the 

combination of different cell types are used to investigate multifaceted process like 

inflammation [194]. 

The biodegradability of native GAG is also limiting certain biomedical applications as 

they can be degraded quickly within 24 h like in the case of HA [195]. Thus, chemical 

modifications can also lead to a desired prolongation of the half-life in tissue 

engineering applications especially because carboxyls are active sites of eliminative 

degradation mechanism by lyases [29, 196, 197]. Further, an additional sulfation of 

hydroxyls of GAG like HA can delay their degradation by enzymes like hyaluronidase 

[198]. Recently, end-on immobilized HA has shown to be easily degradable by 

hyaluronidase while side-on immobilized HA with higher degree of conjugation was 

not digested at all [158]. Adsorption studies with aggrecan and the adhesion of 

fibroblasts on surface-immobilized thiolated and oxidized HA showed the 

maintenance of bioactivity of such modified HAs [199]. 

The application of modified GAG is closely related to their designated function which 

might be most notable in case of Hep. Periodate-oxidized Hep was found to have 

reduced or no anticoagulant activity because an additional cleavage of the glycosidic 

bond is occurring adjacent to the N-sulfated glucosamine residues (GlcNS3S or 

GlcNS3S6S) which is crucial for the binding of ATIII [200, 201]. Thus, the manner of 

immobilization (end-on or side-on) of Hep plays a crucial role for its anticoagulant 

property [159]. On the other hand, LMW-Hep can be used as well because beside its 

specific anticoagulant activity, it is still able to bind GF like FGF2, e.g. for promoting 

vascularization in vivo [202, 203]. It was also shown that the utilization of a part of the 

carboxyl groups of Hep does not seem to hamper the antithrombotic properties as 

shown for EDC/NHS-immobilized Hep to amino groups of collagen, which inhibited 

platelet adhesion [204]. Furthermore, the ability of Hep to bind and protect GF from 

proteolysis or denaturation was proven in a similar EDC/NHS-cross-linked 

Hep-collagen scaffold, which was successfully loaded with VEGF and FGF2 and 

significantly supported early vascularization in vivo [205]. 

Importantly, the toxicity of the activated GAG towards cells has to be determined as 

well. In general, this is conducted by in vitro cell studies as any cytotoxic effect can 



28 
Chapter 1 – Medical application of glycosaminoglycans 
 

 

be revealed by comparative studies with functionalized and native GAG (or a positive 

control, in case the native GAG is not applicable) [160, 199]. 

5. Applications of glycosaminoglycans in 2D and 3D systems in tissue 

engineering and regenerative medicine 

To utilize the beneficial properties of GAG for TE applications, they are usually 

immobilized on different material surfaces or integrated into various scaffold and 

hydrogel systems. The rationale behind the application of GAG as biomaterials is 

justified by their potential function as a matrix component and/or as a binding partner 

of cytokines and cell receptors. On the one hand, PG containing CS and DS are able 

to bind water and interact with collagens contributing greatly to the structural 

organization in most tissues [60]. Moreover, PG can bind matrix components like GF 

and other cytokines protecting them from proteolysis, thus playing an important role 

in signal transduction [16, 31]. Furthermore, the interaction with cellular receptors like 

integrins can regulate cell adhesion, proliferation and motility [1, 17]. The specific 

binding capacity of PG is mostly based on the attached GAG, although the protein 

core itself is able to interact with binding partners like HA [206]. The functionalization 

of GAG is usually required to generate stable GAG-coated implants and/or functional 

scaffolds. Furthermore, functionalized GAG can be used to cross-link forming 

hydrogels, which can be used for microscopic and macroscopic encapsulation of 

labile bioactive factors like cytokines and cells for the replacement and regeneration 

of tissues. Therefore, different experimental set-ups have been designed to 

immobilize or cross-link GAG. The application of GAG as biomaterials can be 

distinguished between more fundamental research strategies, e.g. changing material 

properties for the interaction with NBP or cells in vitro, and subsequent clinical 

research which results in an in vivo application. The employment of GAG in vitro 

encompass all surface modifications that are performed to transfer GAG properties to 

the material itself as homogeneous or heterogeneous (structured) surface coatings. 

The intended in vivo application is then tested in living organisms to obtain the 

efficacy and its overall effect in the proposed biological system. Another classification 

is presented by their way of immobilization/linkage into covalently attached 

(chemisorbed) GAG and physically linked (physisorbed) GAG. Depending on its 

application, a permanent coating of biomaterial surfaces requires an immobilization 

procedure that results in a sufficiently stable attachment of the GAG. Therefore, it is 
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important to know the bonding forces that are present at different interfaces 

depending on the type of surface, the solvent and GAG. An overview of selected 

GAG-related utilization as biomaterials and for tissue engineering applications can be 

found in Table 2. 

Table 2: Summery of glycosaminoglycan application in biomedical applications. 

Glycosaminoglycan 

conjugate 

Type of 

application 

Target tissue / 

Application method 

Reference 

Biotinylated HA/CS Material coating In vitro Biosensor [158] 

Carbodiimide-

immobilized Hep 

Material coating Increase of blood 

compatibility 

[204] 

Carbodiimide-

immobilized HA 

Surface structuring In vitro Biosensor [180] 

CHI / HA-Paclitaxel 

multilayers 

Implant coating Drug delivery [224] 

CHI / GAG multilayers Implant coating Reduction of platelet 

adhesion and 

inflammation 

[129, 209] 

CHI / HA multilayers Implant coating Antibacterial / anti-

adhesive 

[225] 

Collagen / HA 

multilayers 

Implant coating Decrease of foreign 

body response 

[218] 

Gelatin methacrylate + 

HA-/CS-methacrylate 

Hydrogel Cartilage 

regeneration 

[226] 

Chemically cross-linked 

Hep + Hep-binding GFs 

Hydrogel GF delivery, 

synthetic ECM 

[191, 227] 

Cross-linked thiolated 

HA, CS, Hep, gelatin 

Biodegradable 

hydrogel 

Drug / GF delivery, 

Tissue regeneration 

[228-230] 

Cross-linked CS-tyramine Hydrogel Drug delivery [231, 232] 
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Cross-linked aldehyde 

HA 

Hydrogel Vocal cord/fold 

regeneration 

[174, 233] 

Gelatin – aldehyde Hep 

+FGF-2 

Injectable hydrogel Neovascularization [203] 

Chemically cross-linked 

HA/CS 

Hydrogel 

matrix/particles 

Wound dressing, 

skin regeneration 

[174, 234-236] 

Chemically cross-linked 

HA (+ stem cells, 

HyStem®) 

Injectable/ 

Implantable 

hydrogels 

Osteoarthritis 

(Synvisc®), Cartilage 

regeneration 

(Hyalograft®), bone 

regeneration / 

vascular graft 

(HYAFF®) 

[237-242] 

Maleimide-crosslinked 

thiolated Hep 

Hydrogel Glutathione-sensitive 

release of Hep 

[243] 

Collagen-Hep Porous scaffold Subcutaneous / 

Neovascularization 

[205] 

Collagen-CS Porous scaffold Neovascularization, 

Bone regeneration 

[244] 

Collagen-HA Porous scaffold Bone regeneration [223] 

Genipin cross-linked 

HA, CS 

Porous scaffold Cartilage 

regeneration 

[245] 

Carbodiimide-

crosslinked HA, CS, 

DS, CHI, gelatin 

Porous scaffold Cartilage 

regeneration 

[246, 247] 

Electrospun collagen-

GAG (HA, CS) 

Porous mesh Artificial ECM, 

Cartilage 

regeneration 

[248-250] 

Crosslinked Collagen-

HS matrices + bFGF 

Porous scaffold Enhancement of 

angiogenesis / 

regeneration 

[165] 

Hep/poly-L-arginine Microcapsules GF delivery [211, 212] 
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CHI-CS Nanoparticles GF delivery, bone 

regeneration 

[251] 

HA-DEAP Nanoparticles pH-responsive drug 

delivery 

[252] 

HA-lipid vesicles Nanoparticles Drug delivery, 

cancer therapy 

[253] 

Thiolated Hep-gold Nanoparticles Drug delivery, 

cancer therapy, 

biosensor 

[254] 

HA-Hep Nanoparticles 

(Nano-/microgels) 

GF delivery [255] 

Thiolated Hep-PEG Nanoparticles 

(Nanogels) 

Drug delivery, 

cancer therapy 

[256] 

Abbreviations: GAG – Glycosaminoglycans; Hep – Heparin; HS – Heparan sulfate; 

CS – Chondroitin sulfate; DS – Dermatan sulfate; HA – Hyaluronic acid; CHI – 

Chitosan; ECM – Extracellular matrix; GF – Growth factor; bFGF – Basic fibroblast 

growth factor; DEAP - 3-(diethylamino)propyl amine; PEG – Poly(ethylene glycol). 

5.1. Immobilization of glycosaminoglycans on implants, scaffolds and other surfaces 

The physisorption of GAG to charged or functionalized substrata is related to their 

molecular weight and the inherent negative charge density, which can be used for 

electrostatic attraction to and ion pairing with the charged material surface. Even a 

simple physical adsorption of GAG to cell culture substrata may also improve the 

response of cells. For example, it was shown that sulfated HA, which was physically 

adsorbed to tissue culture plastic can promote keratinocyte differentiation and 

modulated the expression of Wnt and Notch3 [207]. The alternating adsorption of 

oppositely charged polyelectrolytes to generate multilayers on various material 

surfaces like inorganic materials, metals and polymers by the so called 

Layer-by-Layer method (LbL) was introduced by Decher et al. [208] and also applied 

for GAG like HA, Hep and others [175, 209, 210]. One benefit of the multilayer 

approach is the possible inclusion of bioactive molecules like GF and other 

chemokines to support adhesion, proliferation or differentiation of cells as also 

reported for microcapsules applying biodegradable GAG like heparin [211-214]. 

Furthermore, the mechanical properties like stiffness can be controlled not only by 
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the choice of GAG but also by application of chemically functionalized GAG and in 

situ or subsequent chemical cross-linking [215]. Recently, this was achieved by 

reversible disulfide bridging for thiolated HA/PLL (Poly-L-lysine) multilayers [216] and 

by the Schiff base formation between collagen and aldehyde containing GAG [175]. 

Another application, especially of multilayer-assembled or -coated microcapsules/-

beads, represents the transport of drugs since the association with specific binding 

molecules like GAG can prevent drugs from fast release and degradation and act as 

a target-oriented delivery system [217]. Multilayer coatings made of GAG showed in 

vitro and in vivo macrophage activation and decrease of capsule formation in vivo, 

which is related to their anti-inflammatory properties [129, 218]. 

For biomedical applications, a certain durability of the coating plays a crucial role. 

Thus, the chemical surface grafting of GAG is desired for a majority of TE 

applications in 2D. On the other hand, also the physically adsorbed build-up of 

polymer as multilayers can lead to adsorption of considerable amounts of GAG which 

might be further stabilized by covalent cross-linking [216]. For both methods it might 

be necessary to change the inherent substrate properties for the interaction with the 

GAG. The latter can be achieved by different surface treatments, e.g. the application 

of plasma treatment [219], the adsorption via coating techniques like spin-coating 

[220], the preadsorption of a specific polymer like poly(ethylene) imine (PEI) [210], 

the chemical grafting of self-assembled monolayers of silanes to glass and silicon or 

thiols to gold [221, 222]. For instance, a prior treatment of glass or silicon with an 

amino-terminated silane is allocating amino groups to the surface which can be used 

for the carbodiimide-initiated coupling of carboxyl groups of GAG to create covalently 

immobilized GAG surfaces. The latter procedure was applied to specifically couple 

HA to a surface which was structured by microcontact printing of the amino silane to 

study the interaction of cancer cells in vitro [180]. Another example is the EDC-driven 

biotinylation of HA and CS which enables specific binding to streptavidin-modified 

surfaces for the fabrication of biosensing tools [158]. 

As major components of the ECM of bone and skin exhibiting unique functions, GAG 

in combination with collagen I are widely used for the design of implant materials 

[150, 165, 223]. 
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5.2. Glycosaminoglycans as building blocks for formation of hydrogels and porous 

scaffolds 

Hydrogels present a promising type of biomaterial because they can host labile 

factors like cytokines, but also cells for transplantation without any damage. In 

addition, in situ gelling systems can be injected into the pathological site allowing 

minimal invasive procedures. The requirements for hydrogel properties are closely 

related to its location and its mode of action in the body [257]. The application of 

natural polymers like GAG as building blocks for hydrogels is especially desirable 

with regard to their utilization in vivo as drug or GF release system and as scaffold for 

the regeneration of soft tissue which both require biocompatibility, bioactivity and a 

specific biodegradability [258]. 

For example, maleimide-functionalized Hep was cross-linked with different 

PEG-thiols to form glutathione-sensitive reversible hydrogels [243]. Hydrogels 

prepared from methacrylated HA and CS together with methacrylated gelatin 

provided a supportive environment for the deposition of cartilage-like matrix [226]. 

GAG-based hydrogels can be used as drug release system as shown for 

cross-linked CS, tyramine-cross-linked CS or various Hep hydrogels [148, 231, 259]. 

In a different approach, methacrylated Hep was copolymerized with 

PEG-methacrylate to form hydrogels that are able to bind basic FGF to induce hMSC 

differentiation [191]. Aldehyde-containing Hep was cross-linked with chitosan to 

obtain hydrogels which were utilized for the controlled release of FGF2 to induce 

vascularization in vivo [203]. Also, injectable hydrogels composed of thiolated GAG 

and acrylated PEG-polymers could be used for the controlled release of GF like 

FGFs [228]. 

Cell-supportive, in situ cross-linking GAG-gelatin hydrogels with varying mechanical 

properties showed tissue-like properties 8 weeks after injection with fibroblasts in 

vivo [229]. Furthermore, vinyl ester composites of HA as thiol-ene component were 

successfully applied for two-photon polymerization to create 3D hydrogel scaffolds 

with specific mechanical properties [260]. Aldehyde-HA was cross-linked to form 

tuneable viscoelastic hydrogels which showed improved restoration of rabbit vocal 

cord [174, 233]. HA or HA-based hydrogels are extensively used for cartilage 

regeneration and replacement. Cross-linked HA (Hylan GF 20, Synvisc®) has been 
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used for two decades to relieve pain of osteoarthritis patients with modest success 

[237, 238]. An alkylated HA-alginate hydrogel was used to treat cartilage defects in a 

rat model [261]. Esterified HA (HYAFF®) scaffolds in combination with (stem) cells 

are promising materials for bone regeneration and as vascular graft [240, 241, 262]. 

HYAFF® combined with autologous chondrocytes (Hyalograft® C) was successfully 

applied to repair cartilage defects [239]. Moreover, chemically cross-linked HA and 

CS hydrogel films were used to make wound dressings [234, 235]. In situ 

cross-linkable hydrogels of HA (HyStem®) mimicking the ECM can be customized 

with different cells from various tissue origin to be applied ex vivo and in vivo [263]. In 

addition, hydrazide-functionalized HA was cross-linked with a bifunctional 

PEG-ketone to obtain hydrogel scaffolds with potential use in TE of bone [242]. 

The fabrication of porous scaffolds can be achieved by the lyophilization of a (mixed) 

polymer-containing solution [264, 265]. The pore size and interconnectivity of porous 

scaffolds is closely related to the implicated application, e.g. for the TE of bone and 

skin. The porosity and pore size of GAG based scaffolds can be controlled by the 

cooling rate, the total time and the final temperature of the freeze-drying process 

[266]. Porous collagen-GAG scaffolds seeded with endothelial cells and hMSCs have 

shown improved vascularization in vitro and in vivo with potential application for bone 

defects [244]. Biocompatible and porous collagen-GAG (CS, HA) nanofiber scaffolds 

have been generated by electrospinning, an electrostatic technique which generates 

polymer fibers with nanometer diameter, to mimic the structural properties of the 

ECM [248, 249, 267]. HA and CS were coupled to collagen II sponges with genipin to 

obtain cross-linked scaffolds which represent promising candidates for cartilage 

regeneration [245]. It was also shown that covalently attached CS increased the 

water binding capacity and decreased the tensile strength of porous collagen 

matrices [268]. Furthermore, photo-cross-linked fibrous meshes of thiolated HA and 

acrylated PEG were used to produce HA-scaffolds for different TE applications [250]. 

GAG-based biomaterials can be also constituted of more than two main components, 

especially when a scaffold should allow cell proliferation and differentiation to replace 

damaged tissue [269]. Hence, CS, HA and silk fibroin were cross-linked by 

carbodiimide chemistry to obtain porous scaffolds which were successfully applied 

for skin regeneration together with fibroblasts in a rat model [236]. By making use of 
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the same chemistry, CS and HA were cross-linked with gelatin and chitosan to obtain 

scaffolds for the replacement of cartilage defects in a rabbit model [247]. 

Similarly, CS and DS were coupled to chitosan scaffolds which exhibited a 

synergistic effect of CS and DS in increasing ECM synthesis when seeded with 

chondrocytes [246]. 

5.3. Glycosaminoglycans as a component of micro- and nanoparticles 

Micro- and nanoparticles (NP) can be administered to the blood circulation of patients 

and pass through capillary vessels allowing their systemic distribution in the body of 

patients, but also a targeted delivery to penetrate tissue barriers, particularly with 

nano-sized particles [270]. Different types of NP have been used for drug 

encapsulation and surface immobilization. The NP itself can be a product of a 

component (e.g. metal, synthetic polymers) which is coated with one or more 

biopolymers (e.g. GAG) or it can be formed directly by the physical or chemical 

cross-linking of one (or more) component(s) which can be considered as nano- or 

microparticles as they are colloidally stable systems with a diameter up to the 

micrometer range [217, 271, 272]. In addition to the intended target site, the 

nanoparticle activity, stability and body distribution is highly depending on the size 

and the surface zeta potential, e.g. larger NP tend to aggregate and a lower 

(negative) zeta potential increases the half-life of NP [273, 274]. Notably, in 

cancerous tissue the vascularization is abnormal resulting in large vessel junctions 

(<1200 nm) which can be penetrated by NP that cannot invade into normal tissue 

(5-10 nm junctions) [274, 275]. Hence, GAG-NP are applied as transport and release 

system for GF and drugs but also as inducers of apoptosis in cancer cells [252, 254]. 

Nanogels with a mean diameter of around 200 nm were prepared by cross-linking of 

thiolated Hep, followed by induction of glutathione mediated release of Hep that lead 

to  the inhibition of cancer cell proliferation [256]. Moreover, HA was conjugated to 

lipid-based NP for the specific delivery of siRNA to cancer cells that overexpress CD 

44 to induce gene silencing [253]. Physically formed NP of chitosan and CS were 

successfully used for the release of platelet lysate which represents a promising 

system for bone-TE [251]. Interestingly, NP consisting of a cross-linked hydrogel of 

HA and Hep can be also used as controlled release system for Hep binding GF like 

BMP-2 [255]. A microgel formed by the cross-linking of oxidized HA and a 
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bifunctional hydrazide linker is a promising candidate for vocal fold regeneration 

[174]. In a combined approach, Hep-poly-L-arginine capsules were assembled by 

applying a multilayer coating of Hep and poly-L-arginine to Hep-CaCO3 particles and 

further used for the delivery of TGF-β1 [211]. 

6. Summary and future aspects 

GAG have been used so far in a variety of biomedical applications primarily for drug 

delivery and tissue engineering (TE) purposes. Because of their multifunctional 

properties playing a crucial role in a multitude of biological processes, but also their 

biocompatibility and biodegradability they are attractive to promote stem cell 

differentiation and tissue regeneration. Although, the current adoption of these 

properties to biomaterials and tissue engineering scaffolds is very promising, the 

translation from in vitro systems to clinical applications still remains a demanding 

mission. 

Thereby, the biomedical application of GAG is still confronted partly with the animal 

origin leading to varying batch-to-batch composition regarding degree of sulfation 

and a broad molecular weight distribution of GAG, but also a potential risk of 

contaminations with infectious agents. On the other hand, some of them like HA can 

be already produced by biotechnological approaches with high purity and better 

controlled chemical composition. Moreover, several approaches exist to synthesize 

bioactive oligosaccharides that represent active domains of GAG [128] or to make 

semi-synthetic GAG based on natural polysaccharides occurring in plants and 

animals in larger quantities [276, 277]. In addition, the possibility to combine GAG 

with a multitude of other materials, being it biological derived or synthetically 

manufactured ones, gives rise to diverse adjustments to aim for various tissue and 

for different functions. In our opinion, despite the increasing amount of commercially 

available GAG-based products, this is not yet mirroring their peerless capability as 

biomaterials for drug delivery or TE applications. Therefore, it is important to support 

the continual efforts in research and development of GAG-based biomaterials to 

cope with the needs of an increasingly aging society and improved medical care for 

treatment of traumata and cancer. 
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Chapter 2 

Summary - Bioactivity of immobilized hyaluronic acid derivatives regarding protein 

adsorption and cell adhesion: 

The first paper was aimed to show the possibility to immobilize hyaluronic acid (HA) 

covalently onto different model substrata and study the bioactivity of immobilized HA 

towards the specific binding of aggrecan and cell adhesion to human fibroblasts. 

Therefore, HA was chemically modified either by oxidation to obtain aldehyde-HA 

(aHA) or by thiolation to obtain thiol-HA (tHA). The oxidation process of HA was 

carried out applying a specific amount of sodium periodate to cleave the C-C-bond 

between the vicinal hydroxyl groups of the glucuronic acid residues. The tHA was 

prepared by using the disulfide-containing, dihydrazide cross-linker 

3,3`-dithiobis(propanoic hydrazide) that was attached to the carboxyl groups of the 

glycans backbone by carbodiimide chemistry. Subsequently, the reducing agent 

dithiothreitol was applied to generate the free thiols. The aldehyde group 

concentration of aHA was determined by Schiff`s reagent while the thiol group 

concentration of tHA was quantified by Ellman assay. Furthermore, the chemical 

structure, degree of modification and molecular weight of aHA and tHA were 

obtained from FT-IR, 1H-NMR and field-flow fractionation, respectively. The modified 

HA derivatives were covalently immobilized on model surfaces like amino-terminated 

self assembled monolayers (SAM) for aHA or vinyl-terminated SAM and gold for tHA. 

The HA-coated substrata were analyzed by different physical methods such as water 

contact angle measurements, ellipsometry and atomic force microscopy. The 

bioactivity of aHA and tHA towards their natural binding partner aggrecan was 

studied by surface plasmon resonance. The obtained binding constants demonstrate 

that the immobilized modified HA is still capable to bind aggrecan when compared to 

native HA. Dermal human fibroblasts were used as a model cell to study the 

influence of chemical modification and immobilization of HA on cell adhesion and 

spreading. A lower number of cells and a more round cell shape were observed on 

HA-modified surfaces compared to amino and vinyl-terminated glass and silicon 

surfaces. Immunofluorescence staining revealed that adhesion of fibroblast seeded 

on HA-modified surfaces was mediated primarily by HA receptor CD44 indicating that 

bioactivity of HA was not significantly reduced by its chemical modification. 
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In this study it was found that modification of HA, either by oxidation or thiolation, and 

subsequent immobilization did not impair the binding activity to aggrecan or the 

interaction with natural receptor CD44. Thus, the results support the further use of 

this kind of chemical conjugation to other biomolecules especially 

glycosaminoglycans. 
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Chapter 3 

Summary - Synthesis of thiolated glycosaminoglycans and grafting to solid surfaces: 

In this publication the glycosaminoglycans (GAG) hyaluronic acid (HA), sulfated HA, 

chondroitin sulfate (CS) and heparin were chemically thiolated and subsequently 

immobilized to model substrata. The aim of this study was to investigate and 

characterize the capability of thiolated GAG (tGAG) modified by two different degree 

of thiolation to be covalently attached to vinyl-terminated self-assembled monolayers 

via thiol-ene reaction. For the thiolation, GAG were conjugated with different ratios of 

a disulfide containing cross-linker which was subsequently reduced by dithiothreitol 

(DTT) to generate free thiols. The tGAG were characterized in terms of chemical 

composition, chemical structure and molecular weight by 1H-NMR, Raman 

spectroscopy and field-flow fractionation, respectively. The results of 1H-NMR 

showed that the cross-linker was successfully introduced in two distinguishable 

extents to the GAG. The latter was also confirmed by Ellman`s assay which was 

used to quantify the thiol concentration of tGAG. Moreover, the thiolation led to an 

increase of the molecular weight of the tGAG as not all of the introduced disulfides 

were cleaved by the reducing agent DTT. The tGAG were immobilized onto 

vinyl-terminated substrata by homogeneous immobilization from solution as well as in 

a structured manner with microcontact printing. The tGAG-treated surfaces showed a 

significant decrease in wetting behavior assessed by water contact angle 

measurements. The wettability was always more increased with an increase in 

thiolation of the tGAG but also seemed to be dependent on the molecular weight and 

sulfation of the tGAG. Furthermore, ellipsometry showed an increase in layer 

thickness after immobilization of the tGAG. The results showed that the surface 

coverage was improved with a higher degree of thiolation and increasing molecular 

weight of the tGAG. Confocal laser scanning microscopy was used to demonstrate 

that the microcontact printing of fluorescein-labeled tCS to vinyl-terminated glass 

could be used to create microstructured surfaces for biosensor applications to detect 

specific binding partners or to monitor the mobility of cells. 
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Supporting information – Synthesis of thiolated glycosaminoglycans and grafting to 

solid surfaces: 

 

Figure S1: Metabolic activity of human fibroblasts seeded on surfaces coated with different 

thiolated glycosaminoglycans after 24 h and 48 h (tHep – thiolated heparin, tCS – thiolated 

chondroitin sulfate, tsHA – thiolated sulfated hyaluronic acid, tHA – thiolated hyaluronic acid). 

 

Figure S2: Phase contrast images of human fibroblasts after 24 h adhesion on surfaces 

coated with different thiolated glycosaminoglycans (tHep – thiolated heparin, tCS – thiolated 

chondroitin sulfate, tsHA – thiolated sulfated hyaluronic acid, tHA – thiolated hyaluronic acid). 
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Figure S3: Phase contrast images of human fibroblasts after 48 h adhesion on surfaces 

coated with different thiolated glycosaminoglycans (tHep – thiolated heparin, tCS – 

thiolated chondroitin sulfate, tsHA – thiolated sulfated hyaluronic acid, tHA – thiolated 

hyaluronic acid). 

 

Figure S4: Full Raman spectra of thiolated and native glycosaminoglycans (tHep – 

thiolated heparin, tCS – thiolated chondroitin sulfate, tsHA – thiolated sulfated hyaluronic 

acid, tHA – thiolated hyaluronic acid). 
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Chapter 4 

Summary – Effect of immobilized thiolated glycosaminoglycans on fibronectin 

adsorption and behavior of fibroblasts: 

In this paper the biological activity of surface-coupled thiolated glycosaminoglycans 

(tGAG) was investigated in terms of fibronectin adsorption as well as adhesion and 

proliferation of fibroblasts. 

The glycosaminoglycans (GAG) hyaluronic acid (HA), sulfated HA, chondroitin 

sulfate (CS) and heparin were chemically thiolated with two different degree of 

thiolation and subsequently immobilized to model substrata. The thiol concentration 

of the tGAG was determined by Ellman`s reagent. The tGAG were applied to 

vinyl-terminated surfaces (glass or silicon) and gold to create GAG-coated substrata. 

Measurements of water contact angle (WCA), surface zeta potential (ZP) and atomic 

force microscopy (AFM) were used for surface characterization as biomaterial 

properties like wettability, charge and topography represent important modulators of 

protein adsorption and cellular adhesion. Water contact angle measurements 

revealed that the tGAG exhibiting a higher thiol concentration resulted in more 

wettable GAG-modified surfaces. The surface potential of GAG with a higher degree 

of sulfation possessed a more negative surface potential. Furthermore, AFM 

measurements showed that tGAG with higher thiol concentration and exhibited a 

higher surface roughness. 

Fibronectin (FN) adsorption onto tGAG-coated gold sensors were used to obtain 

information about the capability of the immobilized tGAG to bind to FN. It was found 

that the amount of adsorbed FN increased with sulfation degree of tGAG having the 

most adsorbed FN on the heparinized surfaces. The tGAG-functionalized surfaces 

with higher degree of sulfation also promoted fibroblast adhesion under serum-free 

conditions. A pre-adsorption of FN supported the cell adhesion on all tGAG surfaces. 

Metabolic activity measurements showed that cell growth was enhanced for tGAG up 

to a certain thiolation degree. In the end, thiolation of GAG did not hamper their 

bioactivity towards proteins and cells, which make them highly interesting for 

biomimetic surface modification of implants and tissue engineering scaffolds. 
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Chapter 5 

Summary – Functionality of surface-coupled oxidised glycosaminoglycans towards 

fibroblast adhesion: 

The aim of this work was to functionalize different glycosaminoglycans (GAG) by 

applying periodate-mediated oxidation to obtain reactive aldehydes which can be 

used to covalently attach the GAG to amino-terminated substrata. Moreover, the 

biological properties of the glycanized substrata should be examined towards 

fibroblast adhesion. 

The GAG hyaluronan (HA), sulfated hyaluronan (HAS), chondroitin sulfate (CS) and 

heparin (HEP) were oxidized with sodium periodate to generate aldehydes (aGAG) 

by cleaving the C2-C3 bond of the uronic acid monomers of GAG. The chemical 

structure, molecular weight and the aldehyde concentration of the newly synthesized 

aGAG were determined with FT-IR, field-flow fractionation and UV-Vis spectroscopy 

applying Schiff`s reagent, respectively. A decrease of the molecular weight of aGAG 

compared to native GAG was found because periodate-oxidation also occurred at the 

glycosidic linkage between monosaccharides. The newly introduced aldehydes were 

confirmed by a new carbonyl shoulder in FT-IR and quantified by Schiff`s reagent to 

range from a concentration of 8.2×10-4 mol/g (aHAS) to 12.9×10-4 mol/g (aCS). 

The aGAG were directly immobilized to amino-terminated model substrata from 

solutions with a concentration of 4 mg/mL for overnight and the formed imine bond 

was subsequently reduced by sodium cyanoborohydride to yield a stable secondary 

amine. The successful immobilization of aGAG was confirmed by water contact 

angle, zeta potential (ZP), ellipsometry measurements and atomic force microscopy 

(AFM). The wettability of the amino-terminated glass was significantly decreased by 

the immobilization of aGAG in relation to their sulfation. Also ZP of the surfaces were 

dependent on the sulfate content of the immobilized aGAG. Thus, aHEP was 

characterized as most wettable surface and displayed the most negative surface 

charge. The thickness of surface layers measured by ellipsometry indicated a 

predominant side-on immobilization of all aGAG as it was ranging between 0.36 nm 

for aHAS and 1.94 nm for aCS-coated substrata. AFM studies revealed that the 
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immobilization of aHA led to a rather smooth surface coating with a low surface 

roughness while immobilization of sulfated aGAG was characterized by surfaces 

exhibiting granular structures with higher roughness. 

Human fibroblast adhesion was studied under serum-free conditions to learn about 

the bioactivity of the immobilized aGAG. It was found that the increase in sulfation 

degree of aGAG was accompanied by increased adhesion and spreading of cells. 

This was additionally confirmed by a stronger expression of focal adhesions and 

cytoskeletal structures visualized with immunofluorescence staining. By contrast, cell 

adhesion and spreading were lower on aHA. Moreover, it was shown that cells in 

contact with aHA revealed a stronger expression of CD44, which might represent an 

alternative mechanism of cellular adhesion.  

The results show that aGAG can be successfully applied for the development of 

bioactive surface coatings which could be applied as a biomimetic microenvironment 

to engineer surfaces of implants and scaffolds for tissue regeneration. 
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Chapter 6 

Summary – Novel mineralized heparin–gelatin nanoparticles for potential application 

in tissue engineering of bone: 

In this publication nanoparticles (NPs) were produced by the cross-linking of 

succinylated gelatin (s-GL) with oxidized heparin (a-HEP) and subsequently used as 

a nano-template for the mineralization of hydroxyapatite (HAP). 

Gelatin was partially succinylated with succinic anhydride to increase its solubility at 

room temperature. The uronic acid residues of heparin were partially oxidized with 

sodium periodate to generate aldehyde groups which can be used as a cross-linker 

that can react with s-GL to form nanoparticles via Schiff base linkage. The aldehyde 

group concentration of a-HEP and the amino group concentration of s-GL were 

determined with Schiff test and TNBS assay, respectively. 

The polymer solution concentrations, feed molar ratios and pH conditions were 

varied to obtain a broad range of NPs. The preparation of NPs was conducted by 

using s-GL solutions of pH ranging from 2.5 to 10.0. Then, different ratios of a a-HEP 

solution (5% w/v in water) were added to the stirred s-GL solution. Nanoparticles 

were obtained with a spheroid shape of an average size of 196 nm at pH 2.5 and 

202 nm at pH 7.4. These NPs had a positive zeta potential of 7.3±3.0 mV and a 

narrow distribution with PDI 0.123 at pH 2.5, while they had a negative zeta potential 

of -2.6±0.3 mV and formed aggregates (PDI 0.257) at pH 7.4. Thus, the NPs 

prepared at pH 2.5 with a mean particle size of 196 nm were further used for 

mineralization studies. Therefore, the pH of a s-GL/a-HEP NP-solution was adjusted 

to 10.0 with ammonium hydroxide and calcium nitrate and ammonium phosphate 

were added to obtain a CA/P-ratio of 1.67. Samples of the solution were taken out 

after different time points (0.5 h, 1 h, 4 h and 24 h), freeze-dried and applied to 

Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). FT-IR 

showed the appearance of specific phosphate-associated bands which indicated the 

formation of HAP. Unlike for s-GL/a-HEP NPs which are composed of amorphous 

polymers lacking of a crystalline phase, it was found specific peaks in the XRD 

spectra after 24 h mineralization which could be associated with the formation of 

HAP. 
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HAP coated s-GL/a-HEP NPs developed in this study may be used as osteoinductive 

fillers enhancing the mechanical properties of injectable hydrogels or as potential 

multifunctional device for nanotherapeutic approaches. 
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Figure S1: Zeta potential of succinylated gelatin at 1 mg/mL in 50 mM NaCl solution. 
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Chapter 7 

Summary and future perspectives 

This PhD thesis was aimed to develop stable material coatings consisting of the 

natural biopolymers called glycosaminoglycans (GAG). Therefore, two different 

modification strategies were applied to generate reactive and functional GAG. The 

selected GAG represented heparin, chondroitin sulfate, hyaluronic acid (HA) and a 

chemically sulfated HA. In the first approach, a small cross-linker was introduced to a 

portion of the GAG carboxyl groups and then subsequently cleaved to generate free 

thiol species. On the other hand, the carbon-carbon bond of the uronic acid 

saccharide moieties was cleaved by sodium periodate to generate free aldehyde 

functionalities. Both strategies were applied at two different ratios to obtain GAG with 

different amount of reactive functional groups. Consequently, the modified GAG were 

applied to different model substrata (glass, silicon and gold) to produce “glycanized” 

substrata that reflect the specific properties of the applied GAG. The immobilization 

of the functional GAG was achieved by covalent attachment of thiolated GAG to 

vinyl-terminated glass or silicon via thiol-ene click reaction or the reductive amination 

of the aldehyde GAG to amino-terminated substrata. Further, it was shown that the 

thiolated GAG can be immobilized in a heterogeneous manner via microcontact 

printing. The characterization of the modified substrata demonstrated an increased 

layer thickness as well as specific topographical structures for the different type of 

GAG that were immobilized. In addition, the surfaces represented the increasing 

sulfation of the immobilized GAG by an increase in surface wettability and a more 

negative zeta potential. 

To determine the bioactivity of the fabricated GAG coatings, their interaction with 

natural binding proteins fibronectin (FN) and aggrecan was assessed by in situ 

measurements with surface plasmon resonance monitoring. It was found that an 

increased sulfation of the immobilized GAG improved the binding of FN and that 

aggrecan was bound to the modified HA derivatives in comparable amounts as to the 

native HA. Furthermore, cell adhesion and cell growth experiments were conducted 

to investigate the biological activity and the cytotoxicity of the glycanized substrata. 

Moreover, it was shown that cell adhesion on the HA coated surfaces was possibly 

mediated by the specific interaction of HA with its cell surface receptor ligand CD44. 
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Cell viability and cell growth studies revealed that especially the GAG having a lower 

degree of modification retained their bioactivity indicated by support of cell adhesion 

and proliferation on the GAG-modified substrata. 

The activation of GAG by either oxidation or thiolation is a facile way to obtain 

reactive biopolymers that can be subsequently used for covalent surface grafting as 

well as cross-linking to other reactive species. The ability to control the degree of 

modification by thiolation or oxidation is offering a wide range of possible applications 

combining them with biological derived or synthetic materials. Since thiols can be 

transformed to disulfides by pH variation or under mild oxidizing conditions the 

cross-linking of the thiolated GAG can be applied for the subsequent stabilization of 

multilayer coatings or for the generation of hydrogels. Furthermore, the thiols are 

able to bind several proteins and growth factors which also offer free thiol moieties. 

The aldehyde heparin was applied as a cross-linker of succinylated gelatin to form 

nanoparticles as a template for the mineralization of hydroxyapatite. The use of 

oxidized heparin is avoiding the necessity of an additional cross-linking agent and 

allowing an additional uploading of growth factors exhibiting a heparin-binding 

domain e.g. FGF-2 or BMP-2. These approaches might also be use to guide stem 

cell differentiation into osteogenic or chondrogenic lineage, thus, being capable of 

promoting tissue regeneration. Furthermore, it is possible to use the oxidized GAG 

for the formation of hydrogels or scaffolds by cross-linking them with (poly)amine or 

hydrazide compounds. 

The presented surface modification approaches represent a promising tool to 

produce stable GAG coatings for biomedical implants in the field of tissue 

engineering. Moreover, the generation of heterogeneous GAG coatings by 

microcontact printing represents a fast approach to produce biosensing tools that 

might be useful for the detection of the metastatic activity of cancer cells.  
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