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Chapter 1

Motivation

1.1 A prominent example

We will start the investigation by considering the ‘inevitable’ (quote E. Hairer at the Numdiff-
13 conference, see also (Simeon, 2015)) pendulum example: Consider a body whose mass m
is condensed to a single point, moving in a plane under the influence of gravitational force
m ·ggrav · (0,−1)> and attached to the origin of the coordinate system (qx, qy) by a mass-less rod
of length l, cf. Figure 1.1. Although it is possible to describe the motion of the body in time t
by means of the angle ϕmin between rod and qy-axis we will (e. g. for reasons of easier geometric
interpretation) use the given coordinate system. Postponing the derivation to the next chapter
we simply state that the motion can be described by the following ‘mixture’ of differential and
algebraic equations.

mq̈x(t) = − qx(t)√
(qx(t))2 + (qy(t))

2
λ(t) ,

mq̈y(t) = −mggrav − qy(t)√
(qx(t))2 + (qy(t))

2
λ(t) ,

(1.1a)

g ((qx(t), qy(t))) :=

√
(qx(t))2 + (qy(t))

2 − l = 0 . (1.1b)

Here and throughout the entire work the superposed dot ˙(•) := d
dt(•) denotes differentiation

with respect to time. The first two equations in (1.1) reflect Newton’s law that the product of
acceleration of a body and its mass equals the force acting on that body. In the right-hand side
of (1.1a) an additional variable λ(t) is introduced which is necessary to assure that g = 0 can
be attained for the solution. Approximating λ(t) sufficiently well becomes an important task
whenever one is interested in exactly calculating the forces in the system, i. e., the force on the
rod. Analytically there should at first sight be no difference when instead of g = 0 the third
equation is replaced by its time derivative

d

dt
g(qx(t), qy(t)) =

qx(t)q̇x(t) + qy(t)q̇y(t)√
(qx(t))2 + (qy(t))2

, (1.1c)

but we will see in a moment that Newmark integrators, numerical time integration algorithms
which are very popular in structural and multibody dynamics perform different when applied
to the system in its different formulations.

As the additional algebraic equation in (1.1) spoils the mathematical structure as a purely
differential equation one might be interested in describing the motion without such additional
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qx

qy

m

ggrav

ϕmin

lε−2

δ−1

ggrav

Figure 1.1: The mathematical pendulum

constraints. One approach (motivated by physics reasoning) might be to replace the rod by a
(again mass-less) spring with very large stiffness, cf. Figure 1.1 (gray). If that spring constant
is given by 1

ε2
for a (very small) constant 0 < ε� 1 the equations may be stated as

mq̈εx(t) = −q
ε
x(t)

ε2

√
(qεx(t))2 +

(
qεy(t)

)2 − l
√

(qεx(t))2 +
(
qεy(t)

)2 ,

mq̈εy(t) = −mggrav −
qεy(t)

ε2

√
(qεx(t))2 +

(
qεy(t)

)2 − l
√

(qεx(t))2 +
(
qεy(t)

)2 .

(1.2)

From physical intuition one might nevertheless (correctly) expect the solution of (1.2) to be
vibrating, i. e., to show high frequency, yet low amplitude oscillations, which is rather challenging
for numerical time integration schemes. So, in a fourth attempt the spring can be replaced by
a damper element with damping coefficient 1

δ , 0 < δ � 1. Omitting the derivation once more,
the motion in that case is described by the differential equation

mq̈δx(t) = −q
δ
x(t)

δ
·
qδx(t)q̇δx(t) + qδy(t)q̇y(t)

(qδx(t))2 + (qδy(t))
2

,

mq̈δy(t) = −mggrav −
qδy(t)

δ
·
qδx(t)q̇δx(t) + qδy(t)q̇y(t)

(qδx(t))2 + (qδy(t))
2

.

(1.3)

Let us assume that in its initial configuration the massm = 1 is situated at (qx, qy) = 1
2(
√

2,
√

2),
and has a velocity (q̇x, q̇y) = (−1, 1) (physical units omitted) for a given rod length l = 1 and
gravitational acceleration ggrav = 9.81. We will apply the generalized-α (CH(0.7)) algorithm of
Chung and Hulbert (1993), a member of the above mentioned Newmark family to the problem
to get an approximation to the position, velocity and acceleration coordinates of the point mass.
The constants of the physically inspired equations are set to ε2 = δ = 10−6. Having a closer
look at the substitute problems (spring or damper system, respectively) we observe that known
quantities

(qε|δx , qε|δy , q̇ε|δx , q̇ε|δy )

2



can be used to get approximations to the variables λ = λε|δ using the relations

λε :=
1

ε2

(√
(qεx)2 + (qεy)

2 − l
)
,

λδ :=
1

δ

qδxq̇
δ
x + qδy q̇y√

(qδx)2 + (qδy)
2
,

such that an estimate of the correct forces on the rod (in the fixed length model) can also be
acquired if the substitute models are solved.

In Figure 1.2 the errors in the variable λ, i. e., the difference of a reference solution of (1.1)
that has been obtained by using a standard time integration method with very low tolerances
and the numerical approximations for step size h = 2 · 10−3 and the four different formulations
are illustrated as they evolve throughout the time integration. The upper plot collects all the
data, for a better understanding in the lower four plots we zoomed in and made the data points
not in focus transparent to provide a better resolution of the transient phase.
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Figure 1.2: Errors in variable λ of the Chung–Hulbert(0.7) integrator for the pendulum bench-
mark with position or velocity constraint and the spring or damper substitute model

We hereby tacitly assume that obtaining the numerical solution did not cause any further
difficulties. One peculiar—and probably the most important—feature of Newmark-type integra-
tors can immediately be recognized: Numerical damping is the ability of the scheme to damp
out error terms or unnatural, so-called spurious oscillations and hereby most importantly sta-
bilize the time integration process itself. Straightaway, one can also see that the error terms
in the two substitute formulations are substantially bigger in the first time steps and that for
the original (index-3) and the spring model the errors are not damped out instantaneously but
instead increase in the first time steps before the numerical damping effect sets in.

Unfortunately, for large scale simulations in industrial implementations we are not in the
undoubtedly favorable position to simply compute initial values that fulfill the constraint equa-
tions exactly. It can, on the contrary, even be the case that the constraint equations are not
even known. Figure 1.3 illustrates the results in this situation: Using again the constant time
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step size h = 2 · 10−3 we performed a series of experiments for the two substitute problems (s:
spring, d: damper model) where the initial values have been perturbed like

(qε|δx , qε|δy )(0) =
(
(qx, qy)(0)

)
· (1 + ∆q) , (q̇ε|δx , q̇ε|δy )(0) = (q̇x, q̇y)(0) + ∆v · (1, 1) .

The plot shows the error of the numerical results with respect to a reference solution of (1.1)
dependent on the physical parameters ε and δ. As one would expect that error decreases as ε
and δ become smaller; this is simply a smaller modeling error. Nonetheless, if the deviation from
g|t=0 = 0 is in the magnitude of h2 the spring model (1.2) does not approximate the original
model sufficiently accurate anymore. This unfavorable behavior may be avoided if we change
to the damper model (1.3). If the deviation from d

dtg|t=0 = 0 becomes larger, even the damper
model does no longer converge.

The numerical experiments give rise to the following questions:

(a) Why and how is the influence of the initial values and initialization of the algorithm so
important? Why are there ‘humps’ in the initial errors that are later on damped out
anyway and are there ways to prevent this deficiency?

(b) Does the algorithm converge for general mechanical systems in comparable formulations
and if so which conditions on the initial values are necessary? What is the order of
convergence measured in both: time step size and parameter ε or δ, respectively?

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1
10−6

10−5

10−4

10−3

10−2

10−1

100

101

spring stiffness ε, damping coefficient δ

‖(
q x

(2
),
q y

(2
))
−

(q
ε|
δ

x
,N
,q
ε|
δ

y
,N

)‖
2

Difference of position coordinates at t = 2

∆q ∆v s./d.
0 0 s

0 0 d
h2

10 0 s
h2

10 0 d
h2

10
h
10 d

Figure 1.3: Deviation of position coordinates for the planar pendulum at final time t = 2 from
reference solution (fixed length pendulum) for disturbed initial values, time step size h = 2·10−3.

This thesis is devoted to the application and analysis of Newmark-type (or generalized-α) time
integration methods in the context of mechanical systems that, as the very simple pendulum
example, are subject to constraints on either position or velocity coordinates which are enforced
by including these constraints ‘as they are’ or by large additional force terms in the model, so-
called singularly perturbed systems. Starting with elementary properties of the method for linear
systems we will present a very broad convergence analysis which enables us to fully understand
the above observations.
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1.2 Outline

To make this thesis self-content we start by introducing the very basic concepts from mechanics
and time integration methods in Chapter 2. Basic physical principles are used to derive a
general setting on which the mechanical models are based. Systems with position constraints are
characterized as index -3, a certain type of velocity-constrained systems as index-2 differential-
algebraic equations.

Using the same principles we introduce a general framework for the two substitute problems
in Chapter 3 and classify them as singularly perturbed problems. Important analytic properties
resulting in the fundamental Rubin–Ungar Theorem are collected to gain a deeper understanding
of the mathematical structure. The theoretical findings are underlined by nontrivial analytic
and numerical examples.

Chapter 4 shall serve as an attempt to give a comprehensive overview on the developments
of Newmark-type methods in their algorithmical and application context. Here, we establish
the (mostly linear) theory of Newmark-type time integration methods and embed them within
other methods in technical simulation. The main focus lies on stability and the closely related
feature of controllable damping but we will also be able to understand the cause of spurious
oscillations and derive a new parameter set to decrease these artifacts.

In Chapter 5 convergence of the Newmark integrators in the constrained case (index-3 and
2) as well as the singularly perturbed setting is demonstrated. Hereby, we emphasize the close
relations but also distinctions of constrained vs. singularly perturbed problems on the one hand
and index-2 vs. 3 and damper vs. spring model on the other hand.

Chapter 6 is a collection of a series of important issues and solutions concerning a practical
implementation of the methods where especially the efficient solution of corrector equations in
each step is addressed. Some numerical tests for benchmarks of small and moderate size are
presented that verify the convergence theory before we summarize our findings in Chapter 7 and
give a short outlook on topics of possible further research.
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Chapter 2

Preliminaries

In the design and validation process of technical systems throughout all branches of science and
engineering the need for reliable simulations prior to the real-world construction is increasingly
important. Not only due to the high costs of physical prototyping and testing but also because
of the always new emerging technical improvements and market demands in our accelerating
world it is important to rely on numerical models and their efficient computational solution.

A particular challenge for the technical simulations lies in the robust treatment of (large)
systems of ordinary differential equations (ODEs) which can be characterized by very different
time scales. Especially in the field of biomechanical simulation, which has steadily been growing
throughout the last decade, two problem classes of this type are of particular interest:

On the one hand, stiff mechanical systems always appear when large potential forces push
the system in such a way that certain configurations become prohibitively improbable since they
can only be reached utilizing a large amount of energy. The solutions of stiff mechanical systems
show a typical behavior of large-frequencies and low-amplitude oscillations (vibrations) which
are particularly challenging for most numerical solution procedures regardless of the fact that
a good resolution of the vibrations of the system is actually not necessary at all. On the other
hand, strongly damped mechanical systems are characterized by their ability to push the systems
away from those high energy states (including the immense energy loss). Their typical solution
behavior is therefore characterized by a short transient phase with large forces in the system
which presents a challenge for many time integration algorithms as well.

In view of the application field of biomechanics, both categories are of cardinal importance
as the modeling of biological tissue is often based on equations of structural analysis (Hughes,
1987, Simeon et al., 2009) for almost incompressible materials. Models of human joints or
wobbling masses for interaction models need to take into account that living bodies are to some
extend designed to be shock absorbent and energy dissipating for otherwise the risk of injury
for regular interaction with the natural environment would be too high (Hans, 2004).

Either one of the two problem classes falls into the field of singularly perturbed problems
(SPPs) and so they are not encompassed by classical convergence theory for the numerical
solution of ODEs. In fact, it is well-known (Hairer andWanner, 2002) that the study of numerical
schemes for SPPs is almost unavoidably intertwined with the theory of differential-algebraic
equations (DAEs). So, in this introductory chapter we will give an overview on basic properties
and concepts of DAEs in mechanical system simulation and their numerical time integration,
starting with the basic physical laws determining the time evolution of most mechanical systems.

This chapter is to a great extent inspired by the review article by Arnold et al. (2011) and
the monograph by Eich-Soellner and Führer (1998).
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2.1 Multibody system models and differential-algebraic equa-
tions

Of course, the mathematical description of structures in the physical world by a set of mathe-
matical equations is always an abstraction from the real world. Since setup of industrially and
commercially appropriate mock-ups are no topic to be answered by mathematical analysis and
to circumscribe the scope of the present work, we start by formally defining what the term
‘multibody system’ here shall stand for:

Definition 2.1 (Multibody system (Eich-Soellner and Führer, 1998)).
A multibody system (model) is characterized as the collection of a finite number of (first off rigid)
bodies that are interconnected to each other by mass-less joints, bearings and force elements,
such as springs, dampers or actuators.

The first step in the modeling process of a mechanical multibody system is the definition of
a set of generalized coordinates

q = q(t) ∈ Rnq , t ∈ [t0, tend] ,

i. e., a set of continuous values that precisely define the state of the system at any point in time
t. For the pendulum example from the first chapter, we have already seen that the number of
coordinates is not fixed but depends on the engineer’s accuracy requirements, experience and
intuition. We could for example also consider a flexible pendulum with bending of the rod.

Remark 2.2 (Flexible multibody systems)
Due to an emerging demand for lightweight models (e. g. in spacecraft engineering) and high
precision mechanisms (e. g. in optomechanics and/or medical applications) the simplification to
just rigid bodies is often too restrictive and more sophisticated models from structural, thermo,
electro or fluid dynamics need to be taken into account as well (so-called multiphysics problems).
From the mathematical viewpoint this leads to coupled systems of DAEs and partial differen-
tial equations (PDEs). For the discourse in this thesis, we will always assume that q(t) ∈ Rnq
is finite-dimensional. This does not exclude PDE models from the above problem complexes,
on the contrary, but disregards the space-discretization of those models, such that we assume
that these models are already in the form of a (large) system of ODEs. We will shortly exem-
plify the semidiscretization of PDEs using the Navier–Lamé equations of structural analysis in
Example 3.19 below.

2.1.1 The equations of motion of dynamical systems in technical simulation

In simulation environments for multibody systems (see Schiehlen, 1990) the equations of motion
are usually not obtained as such but methods from graph theory are used to define the topol-
ogy of the system using the bodies as nodes/vertices connected by joints and force elements
represented by the edges of the graph. This has the advantage that for tree-structured systems
(i. e., those where the corresponding graph includes no simple cycles) it is possible to get the
dynamic equations with a computational effort that grows only linearly with the number of
bodies in the system (so-called O(N)-formalisms, see for instance (Lubich et al., 1992)). From
the perspective of numerical mathematics, those O(N)-formalisms may be regarded as a (local,
body-oriented) block Gauss elimination of the implicit equations of motion to be defined below.
The mathematical foundation of this topologic approach is the theory of bond-graphs: Seen as a
’cause and effect’-system, the connection of two bodies implements a causality assignment. The
unifying modeling language Modelica has been designed to take this matter into account when

8



describing the mathematical structure of systems not only from technical simulation but also
in a more general sense (Elmqvist et al., 1998, Olsson et al., 2012). The topological approach
saves a lot of computer memory (which also grows (just) linearly with the number of bodies).
The underlying physical principles are nevertheless constitution respectively conservation laws
using local (between pairwise two connected nodes in the graph) equilibria of forces and torques
in the mechanical system. Industrial codes sometimes even neglect certain terms, e. g. very
small accelerations, to improve the efficiency and memory demands of their models accepting
the actual violation of the physical laws. For the engineer, the design principles (and therefore
the equations as well) are hidden anyway and the programs mostly can be reckoned as ‘black
boxes’.

For a brief overview on the physical principles, we will follow Arnold (1988) and Hairer and
Wanner (2002) and use the formalism of Lagrange which is not at the basic of most multibody
system simulation environments but allows for a compact description and a great generality.
Suppose, that the kinetic energy T which comprises the contributions of (angular) velocity
terms and the potential energy V consisting of terms that stem from the configuration of the
system itself, e. g. the position in a gravitational field or bending energy in a flexible body, are
given. The Lagrange function or Lagrangian L of the system is then defined by

L := T −V .

If one assumes conservative (or natural) systems, i. e., energy conservation throughout time
evolution, Hamilton’s principle states that the time integral over the Lagrangian (the action
integral) takes a stationary (i. e., almost inevitably minimal) value:

∫ tend

t0

L(q(t), q̇(t)) dt→ stat.

The Euler equations of variational analysis (or Lagrange equations of the second kind) provide
a necessary condition for stationarity

d

dt

∂ L
∂q̇
− ∂ L
∂q

= 0 (2.1)

leading to the equations of motion

M(q(t))q̈(t) = f(q(t), q̇(t)) , (2.2)

where M(q(t)):= ∂2 T
∂q̇2

is the mass matrix (or inertia matrix) and f(q(t), q̇(t)):=− ∂2 T
∂q̇∂q q̇+ ∂ L

∂q the
generalized force vector. In this formulation the underlying physical law—Newton’s law that the
product of mass and accelerations equals the sum of forces acting on a body—is apparent. For
most systems in technical simulation there is no conservation of energy such that the right-hand
side in (2.1) has to be modified by the addition of certain force terms, see Example 2.6 below.
Because of its semi-explicit structure, (2.2) is much more practicable than (2.1) for designing
numerical methods. Throughout this thesis we assume that the kinetic energy (locally) is a
positive form in the velocity coordinates q̇. As a consequence, the mass matrix M : Rnq →
Rnq×nq is always symmetric positive definite (at least in a neighborhood of the solution).

Remark 2.3 (Autonomous systems)
In the theoretical investigation of this work we will (mainly for the sake of brevity) restrict the
analysis to the case of autonomous systems, i. e., those with mass M, force f (and constraint
function g, see below) being not explicitly dependent on the time variable t.
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Remark 2.4 (Hamiltonian systems)
The particular special case of mechanical systems we introduced so far is characterized by its
energy conservation. This property of a mechanical multibody system bears many properties
that may be exploited to design numerical schemes. Mathematically, for those systems it is
possible to define a Hamilton function or Hamiltonian H which (in classical mechanics) coincides
with the total energy of the system

H := T +V .

The above equations of motion may then be stated as

ṗ(t) = −∂H(q,p)

∂q
, q̇(t) =

∂H(q,p)

∂p
,

where the generalized momenta variables p ∈ Rnq have been introduced using the Legendre
transformation (Nolting, 2006) and coincide in most cases with the actual (physical) momenta
of the bodies. Throughout the past decade there has been a steady growth in research interest on
Hamiltonian systems since analytic properties as conservation of energy/momenta or symplec-
ticity allow for using highly sophisticated techniques. The first monograph to give an integral
overview on methods and challenges for numerical methods applied to Hamiltonian problems
is the one by Sanz-Serna and Calvo (1994). The Newmark integrators we investigate here are
explicitly not designed for energy conservation but instead usually decrease energy (mainly that
of vibrating substructures of the mechanical system); this numerical damping will be studied in
more detail in Chapter 4.

Example 2.5 (Spring pendulum)
For the (mathematical) spring pendulum example from Chapter 1 the kinetic energy is given
by T = m

2 ((q̇x(t))2 + (q̇y(t))
2). The potential energy consists of the elevation energy of the

pointmass V1 = mggravqy(t) and the energy necessary to stretch or compress the spring. Given

the spring constant ε−2, Hooke’s law states V2 = 1
2ε2

(√
(qx(t))2 + (qy(t))2 − l

)2
, such that the

Lagrangian is given by L = T −V1−V2 and from the formalism one deduces with

d

dt

∂ L
∂(q̇x, q̇y)

= (mq̈x,mq̈y) ,

∂ L
∂(qx, qy)

=


−qx

ε2

√
q2
x + q2

y − l
√
q2
x + q2

y

, −mggrav −
qx
ε2

√
q2
x + q2

y − l
√
q2
x + q2

y


 ,

that the equations of motion for the system are indeed given by (1.2). ♦

The decay of mechanical energy, or its transformation to e. g. thermal energy, is a very com-
plex process. A unified treatment, like when deriving the equations of motion for Hamiltonian
systems, is not as easily accomplished. To incorporate these effects in the mathematical models
certain heuristics and linear surrogate models are mostly applied such that involved coefficients
may be adapted to measurements. A very commonly used model will be explained in the fol-
lowing example.

Example 2.6 (Rayleigh-dissipation function (Nolting, 2006))
A prominent type of non-conservative forces in mechanical systems is realized by additional force
terms that linearly depend on the generalized velocities. From a physical viewpoint they corres-
pond to the concept of a dissipation function of Rayleigh type: Define an additional potential
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term D :=1
2 q̇
>Dq̇ with a given symmetric positive semi-definite matrix D ∈ Rnq×nq and use the

modified Euler equations
d

dt

∂ L
∂q̇
− ∂ L
∂q

= −∂D
∂q̇

.

It is easy to show that with this construction it holds

d

dt
(T +V) = −D ,

whenever the kinetic energy is a quadratic form in the generalized velocities q̇. So, the dissipation
function may be seen as a measure for the energy loss (or its conservation) in the system.
Note, that the dissipative forces are not present in the model if the generalized velocities q̇ lie
in the nullspace of D. In the literature, Rayleigh damping is occasionally simply referred to
as ‘damped extension’ (of an undamped system). Sometimes, researchers only use the term
‘Rayleigh damping’ if D := d1∂f/∂q + d2M, d1, d2 > 0, is a linear combination of the mass
matrix and the (tangent) stiffness matrix of the system (Hughes, 1987). This approach bears
the advantage that only two parameters need to be fitted to the model and that for sufficiently
smooth L a (local) diagonalization of the system is possible which is important for reduced order
modeling (e. g. Craig–Bampton).

It is also possible to generalize the approach to variable (but still symmetric and positive
semi-definite) matrices D = D(t, q): If we consider once again the mathematical pendulum (see
Chapter 1) the concept of a Rayleigh dissipation function can be used to obtain the dynamic
equations in case of the (mass-less) damper system. To this end, we define

D(qx(t), qy(t)) :=
1

δ
· 1

(qx(t))2 + (qy(t))2

(
(qx(t))2 qx(t)qy(t)
qx(t)qy(t) (qy(t))

2

)
,

such that Dq̇ vanishes if and only if the velocity vector q̇ and the pendulum’s rod are perpen-
dicular. With that definition, we get exactly the equations (1.3) stated in the first chapter.

♦

2.1.2 Differential-algebraic equations

In case of mechanical multibody systems without tree structure it is often necessary to add
algebraic conditions, constraints, that realize the closed loops in the topology while still allowing
for global parameterization of the kinematics. The equations of motion can then be described
as DAEs which in a very general form may be stated as

F (x(t), ẋ(t)) = 0, x(t0) = x0 ∈ Rnx , t ∈ [t0, tend] (2.3)

with a function F : R2nx → Rnx and a singular Jacobian E := ∂F /∂ẋ with 0 < rank E < nx.
Including the two bounds just for a moment, we can already see that the analytic properties
of solutions to DAEs range from that of ODEs (rank E = nx) to the solutions of nonlinear
equations (rank E = 0). To classify the ‘difficulty’ of a DAE or how far away it is from the
simple solution of an ODE, the concept of the index has been established.

Definition 2.7 (Differentiation index (Brenan et al., 1996)).
The minimum number of times that (possibly just parts of) (2.3) must be differentiated with
respect to the time variable t in order to determine ẋ(t) as a continuous function of x (and t)
is called the differentiation index of the DAE (if such a number exists).
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The explicit form
ẋ(t) = χ(t,x(t)) x(t0) = x0, (2.4)

determined from this differentiation procedure (index-reduction) is called the underlying dif-
ferential equation. The somewhat vague formulation ‘in order to determine’ is in the literature
sometimes also stated as ‘such that algebraic manipulations allow for an extraction of an explicit
form (2.4)’ (cf. Hairer and Wanner, 2002). The assembly of F (x, ẋ) and (all) its necessary time
derivatives is called the derivative array of (2.3). From Definition 2.7 we see that for DAEs of
differentiation index higher than one the time derivatives may imply additional algebraic condi-
tions. These so-called hidden constraints also impose conditions on the initial values x0; DAEs
of differentiation index higher than one are therefore considered as ‘higher index DAEs’. Initial
values fulfilling all (i. e., also hidden) constraints are said to be consistent. A direct application
(or straightforward extension) of ODE time integration methods to higher index DAEs is in-
clined to fail or at least severely suffer from problems such as order reduction (Petzold, 1982,
Brenan et al., 1996), see below. From that perspective, systems of differentiation index three
fairly represent the frontier between well- and ill-posed problems and some researchers strongly
recommend to perform analytic transformations or stabilization techniques instead of tackling
these problems directly. With respect to that, the equations of motion of multibody system in
descriptor form (see (2.12) below) are extraordinary: We will show that they are of differentia-
tion index three but due to their special structure one can indeed (yet it is not common practice)
treat them directly.

As it is possible (and most often the case anyway) to separate solely algebraic equations from
the remaining part of a DAE, the following semi-explicit system can be seen as a rather natural
special case:

ẏ(t) = ϕ(y(t), z(t)) , (2.5a)
0 = ψ(y(t), z(t)) , (2.5b)

where x=: (y, z)> is a partitioning of x into differential variables y and algebraic variables z.

Remark 2.8 (Index concepts in the literature)
We introduced the concept of the differentiation index in Definition 2.7 because it is the most
commonly used and the easiest verifiable one. There are, nevertheless, some other ways to
define the index of a DAE, and we enumerate the most important ones here. The starting
point of DAE theory was probably the work of Gantmacher (1959) who studied linear, constant
coefficient systems

E1ẋ(t) + E2x(t) = b(t) . (2.6)

A transformation of the matrix pencil (E1,E2) to Weierstrass canonical form allows to separate
E1 into a regular and a nilpotent part. The order of nilpotency of the latter one defines the
nilpotency index. Kunkel and Mehrmann (2006) introduced the strangeness index which allows
for a direct extension to linear systems with time dependent coefficient matrices and also relies
on the construction of an appropriate canonical form. From a functional analytic viewpoint, the
most important index concept is the perturbation index (Hairer et al., 1989a). If one adds a
(sufficiently small) function to the right-hand side(s) of (2.3) or (2.5) this index indicates the
lowest order of derivatives of these perturbations which are needed to obtain an upper bound
for the difference of the solutions to the original and the perturbed problem. Pantelides (1988)
proposed an algorithm to detect loops in the dependency graphs of the variables and used
that to define a structural index which is an appealing approach for multibody systems since
O(N)-formalisms track these dependencies anyway.
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All these different index concepts have in common that (i) for linear systems (2.6) they
coincide (or at least can be treated equivalently) and (ii) they serve as a measure of how well
the problem is posed and/or a measure of the distance to the ODE case. Whenever we just use
the term ‘index’ we refer to the differentiation index of the system.

Example 2.9 (Hessenberg systems (Clark (1988), Hairer and Wanner (2002, Sect. VII.1)))
If we consider the splitting given by (2.5) we can state explicit conditions such that the system
is of index one or two: From a time differentiation of (2.5b) we obtain

0 = ψy · ẏ +ψz · ż = ψy ·ϕ(y, z) +ψz · ż , (2.7)

where (·)z|y denotes partial derivatives and the time dependence is omitted for readability. If
now

ψz is invertible, (2.8)

the Implicit Function Theorem allows for an explicit form to express ż in terms of y and z. More
precisely, in order to show also the existence of a solution on a finite time interval it is adequate
even to postulate that the inverse ψz remains bounded in a sufficiently large neighborhood of
the (consistent) initial values. If (2.8) does not hold and ψ does not explicitly depend on z,
(2.7) reduces to the hidden constraint

0 = ψy ·ϕ(y, z) .

In this case
regularity of ψyϕz (2.9)

is a sufficient condition for index two since another differentiation then leads to
(
ψyϕz

)
ż = −ψyy (ϕ,ϕ) ,

(
(∂(ψy ·w1)/∂y)w2 =:ψyy(w1,w2) for any w1, w2 ∈ Rny

)

such that under the stated regularity assumption (2.9) the system can be solved for ż.
To further generalize to index-3 problems one is demanded to consider a different structure,

namely Hessenberg systems of size three, i. e.,

ẏ(1)(t) = ϕ(1)(z(t),y(1)(t),y(2)(t)) ,

ẏ(2)(t) = ϕ(2)( y(1)(t),y(2)(t)) ,

0 = ψ ( y(2)(t)) .

Here, requiring that
ψy(2) ·ϕ

(2)

y(1)
·ϕ(1)

z is invertible (2.10)

is a sufficient condition to obtain a system of index three, as can be seen by differentiating the
last equation twice to get

0 = ψy(2)y(2)(ϕ
(2),ϕ(2)) +ψy(2)ϕ

(2)

y(1)
ϕ(1) ,

which with z̄ := z, ȳ := (y(1),y(2))>, ϕ̄ := (y(1),y(2))>, ψ̄ := ψ is the situation of the index-1
Hessenberg systems and ψ̄z̄ = ψy(2)ϕ

(2)

y(1)
ϕ

(1)
z is invertible by (2.10). ♦

Coming back to the simulation of mechanical systems we may require that the generalized
coordinates q(t) fulfill a given set of nλ > 0 (constraint) equations Rnλ 3 g(q(t)) = 0, nλ < nq.
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These constraints restrict the (position) degrees of freedom of the system such that the kinematics
take place in an (nq − nλ)-dimensional manifold

Ms :={q ∈ Rnq : g(q) = 0} ⊆ Rnq .

We will assume that the constraints g = 0 are sufficiently smooth such that all terms that
appear in the remainder of this section are well-defined and bounded, in particular g should be
twice continuously differentiable.

The main idea in the physical modeling process is to simply add terms or, more specifically,
forces to the right hand side of (2.2) that ‘push’ the components of the mechanical system
in a way to keep them on the manifold Ms. Here, the nomenclature ‘s’ refers to the stiff
mechanical systems to be introduced in Chapter 3. From physical intuition it is a reasonable
requisite that these newly introduced forces do not corrupt the energy behavior of the system.
In order not to introduce any work, which would imply the imposition or withdrawal of energy,
those forces must always remain orthogonal to the movements. This D’Alembert’s principle
is mathematically equivalent to the introduction of an extended Lagrangian (or the classical
Lagrangian in the context of constrained minimization problems)

L L+ g(q(t))>λ(t) . (2.11)

For later reference, we also introduce the constraint Jacobian

G(q) :=
∂g(q)

∂q
∈ Rnλ×nq , rank G(q) = nλ ,

where the full-rank (or Grübler-) condition on G ensures that there are no redundancies or
contradictions in the constraint equations.

Formulations of equations of motion Including the constraint forces from (2.11), the equa-
tions of motion of a constrained mechanical system (the index-3 formulation or descriptor form
(Luenberger (1977), Brenan et al. (1996)) or Lagrange equations of the first kind or Euler–
Lagrange equations) read

M(q(t))q̈(t) = f(q(t), q̇(t))−G>(q(t))λ(t) ,
g(q(t)) = 0 .

}
(2.12)

A justification for the name ‘index-3 formulation’ will be given in Proposition 2.11. After
comparing with (2.5) and using the condensed state vectors y := (q, q̇)>, z := λ we observe
the semi-explicit form of the equations of motion since M(q) is invertible (in a sufficiently
large neighborhood of the solution). A differentiation of the constraints leads to the index-2
formulation

M(q(t))q̈(t) = f(q(t), q̇(t))−G>(q(t))λ(t) ,
G(q(t))q̇(t) = 0 .

}
(2.13)

Note that the hidden constraints introduce ‘another’ constraint manifold for the velocities q̇,
which we call

Md := {(q,v) : G(q)v = 0} ⊆ R2nq

due to its close relationship to the damped systems. Note that the junction of both, the tangent
bundle

T Ms := {(q,v) : g(q) = G(q)v = 0} ⊆ R2nq ,

is invariant under the exact flow of (2.12) (presuming consistent initial values). On the other
hand the flow of (2.13) only preserves the manifold Md (as long as all terms remain well-defined)
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and the position constraints g = 0, have no relevance in the index-2 case, which we will address
in Theorem 2.12 below. Finally, yet another time differentiation of the constraints defines the
index-1 formulation

M(q(t))q̈(t) = f(q(t), q̇(t))−G>(q(t))λ(t) ,
G(q(t))q̈(t) + R(q(t))(q̇(t), q̇(t)) = 0 ,

}
(2.14)

where the curvature term (tensor) R has been introduced to collect the second order derivatives
of g. It satisfies

∂(G(q)u(1))

∂q
u(2) = R(q)(u(1),u(2)) for all u(1), u(2) ∈ Rnq .

All three formulations are analytically equivalent (and so equally solvable) if the initial values
are consistent to DAE (2.12); yet (2.14) is always well-defined even if the velocity constraints are
violated. The acceleration constraints of (2.14) are sometimes difficult and costly to calculate
such that many commercial multibody system codes avoid them. Nevertheless, for an exact
calculation of consistent initial values (for given q0, q̇0) one has to solve the linear system

(
M(q0) G>(q0)
G(q0) 0

)(
q̈(t0)
λ(t0)

)
=

(
f(q0, q̇0)

−R(q0)(q̇0, q̇0)

)
(2.15)

with a saddle-point structured matrix that is always non-singular under the above assumptions
on M and G. Commercial codes sometimes employ heuristics to obtain consistent initial values
(Leimkuhler et al., 1991, Eich-Soellner and Führer, 1998) but the above saddle-point matrix is
often needed in the time integration process anyway. Note that O(N)-formalisms usually work
without explicitly forming the matrices M or G.

Remark 2.10 (Restriction to scleronomic constraints)
In view of Remark 2.3, we also assume that the constraint equations g(q(t)) = 0 do not explicitly
depend on the time variable t (scleronomic constraints). This restriction is somewhat stronger
than just requiring autonomy of an ODE system since the variable t would also enter algebraic
equations and hidden constraints.

More precisely, in the ODE case (2.2) an initial value problem with explicit time dependency
in the form

M(t, q(t))q̈(t) = f(t, q(t), q̇(t)) , q(t0) = q0 , q̇(t0) = q̇0, t ∈ [t0, tend]

can equivalently be transformed into an autonomous equation by treating the time variable t as
a dependent variable of τ := t. This extension of the state vector to q̄(τ) := (q(τ), t(τ))> as well
as adding the trivial equation t′′(τ) := d2 t/( dτ2) = 0 results in the problem
(

M(t(τ), q(τ))
1

)
q̄′′(τ) =

(
f(t(τ), q(τ), q′(τ))

0

)
, q̄(t0) =

(
q0

t0

)
, q̄′(t0) =

(
q̇0

1

)
,

for τ ∈ [t0, tend] and with the same analytic solution. However, a simple treatment like this
is no longer possible if one deals with non-autonomous and rheonomic constrained mechanical
systems (i. e., non-scleronomic constraints g = g(t, q) and explicitly time dependent mass matrix
M = M(t, q) and force vector f = f(t, q, q̇)). In (2.12), the matrix function G is defined as
the constraint Jacobian ∂g/∂q. A formal application of the above procedure would result in the
DAE system

(
M(t(τ), q(t))

1

)
q̄′′(τ) =

(
f(t(τ), q(τ), q′(τ))

0

)
−
(

G>(t(τ), q(τ))
∂g/∂t

)
λ̄(τ) ,

g(t(τ), q(τ)) = 0 .
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Even though the basic mathematical structure (symmetric positive definite matrix on the left
hand side, full rank condition of constraint Jacobian) remains the same, additional coupling
of t′′(τ) and ∂g/∂t causes the solutions not to be the same any longer (Arnold, 2016). This
problem transfers to the penalty techniques which we will introduce in the next chapter.

Note that we explicitly exclude non-holonomic constraints that depend on the generalized
velocities q̇ (and cannot be transformed into a purely position-dependent constraint by integra-
tion).

In a very broad setting, called ‘general mechatronic systems’, additional first order equations
(e. g. for electronic substructures, thermo-elements or control states)

ẋ(t) = χ(t,x(t), q(t), q̇(t), q̈(t),λ(t),y(t)) (2.16)

are included in the system description, possibly alongside corresponding control and output
equations. A comprehensive study of these systems is given by Brüls (2005). For systems with
friction models the generalized force vector f might also depend on the Lagrange multipliers λ
in a nonlinear way and the Grübler condition has to be extended to this setting, too. Last, in
its most general form the relation between position coordinates q and velocity variables, here
denoted as v = q̇, may include another semi-linear relation v(t) = Ω(t, q(t))q̇(t) such that even
the consideration of second order equations embodies a simplification.

Proposition 2.11
The equations of motion in descriptor form are at most of differentiation index three.

Proof. The assertion follows from the observation that (2.12) can be brought into Hessenberg
structure (see Example 2.9) using the partitioning of the state vector into z := λ, y(1) := q̇,
y(2) := q and defining the new right-hand sides by ϕ(1) := M−1(f −G>λ), ϕ(2) := q̇, ψ := g.
The index-3 condition (2.10) transforms to

ψy(2) ·ϕ
(2)

y(1)
·ϕ(1)

z = G(q) · Inq ·M−1(q)G>(q) is invertible,

which is fulfilled as long as the Grübler condition holds and M−1 is well-defined.

Note that the full-rank condition on G is sufficient but not necessary for Proposition 2.11.
The system is already at most of index three if only the saddle-point matrix in (2.15), for all q
and q̇, is invertible. We also emphasize that from Proposition 2.11 it follows that the equations
of motion (in either formulation) locally have a unique solution.

Using (2.14), the Lagrange multipliers λ(t) may theoretically at any point in time and any
space vector (q(t), q̇(t))> be solved for

λ(t) =
[
(GM−1G>)−1

(
GM−1f + R

)]
(q(t), q̇(t)) ,

which can then be inserted into the first set of equations in (2.12). Thus, the solution may
be acquired using only two analytic time derivatives of the original equations. Führer and
Leimkuhler (1991) call the resulting equations the ’underlying’ system of the DAE (2.12) even
though it does not coincide with the definition (2.4). Although it is used by many researchers
for the integration of multibody systems this approach suffers from a sincere drawback that we
are going to discuss in a little more detail:
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Drift-off phenomenon A differentiation of the constraints analytically does not affect the
solution of the DAE. However, one cannot expect a numerical scheme to do the same since the
differentiation leads to a nonlinear change of the state variables in a numerical code. Moreover,
and even more importantly, computer methods are subject to discretization and roundoff errors
such that the analytic nature of this reformulation gets lost anyway. If we can only assure the
estimates ‖G(qm)vm‖ ≤ c for the numerical approximations qm, vm to q, q̇ at the mth grid
point tm, (m = 1, . . . , n, see below), 0 < c� 1, we only get an estimation like

‖g(qn)‖ ≤ ‖g(q0)‖︸ ︷︷ ︸
=0

+

∫ tn

t0

c dt = c · (tn − t0) ,

since

g(q(t)) = g(q(t0)) +

∫ t

t0

( d

dτ ′
g(q(τ ′))

)∣∣∣
τ ′=τ

dτ = g(q0) +

∫ t

t0

G(q(τ))q̇(τ) dτ ,

by the Fundamental Theorem of Calculus. In general one can prove the following result.

Theorem 2.12 (Drift-off in mechanical systems (Hairer and Wanner, 2002, Theorem VII.2.1.))
Apply a p-th order convergent numerical method (cf. Definition 2.16 below) to the index-1
formulation (2.14) with consistent initial values. Then the numerical approximations (qn,vn)>

to the solution (q(tn), q̇(tn))> at tn = t0 +nh satisfy on any bounded time interval the estimates

‖g(qn)‖ ≤ hp(C1(tn − t0) + C2(tn − t0)2) , ‖G(qn)vn‖ ≤ hpC3(tn − t0) . (2.17)

For the index-2 formulation (2.13) the error growth in the position constraints is only linear

‖g(qn)‖ ≤ C4h
p(tn − t0) (2.18)

with constants Ci > 0, i = 1, . . . , 4, that are uniformly bounded and do not depend on the time
interval.

Practically, the constants in the error estimations of numerical integrators do indeed depend
on the length of the time interval (even exponentially); drift-off is nevertheless a different quality
of error since the algebraic equations are actually a part of the given system. Numerical expe-
riments for real-world applications show that the influence of drift-off-induced errors is often a
more serious problem than inaccuracy of the method. In the important special case of linear
constraints (i. e., constant constraint Jacobian G) also the hidden constraints are linear and—
since most time integration methods preserve linear invariants—there is, at least for carefully
acquired initial-values, no danger of drift-off.

For the purpose of a thorough overview we also mention that it is possible to solve the
equations of motion (2.12) using ODE methods only, within the framework of local minimal
coordinates: Despite the fact that a global parameterization of the motion by variables of di-
mension nq − nλ, i. e., exactly the number of degrees of freedom, so-called minimal coordinates,
is sometimes impossible and in most cases computationally difficult, one can locally parameter-
ize the constraint manifold Ms to get a description of the model that is free of constraints. The
work of Wehage and Haug (1982) may be seen as the starting point for the concept of coordinate
partitioning where a subset of the given coordinates is chosen in each time step such that a
complete regular system can be determined.

If we are given a (possibly local) set of minimal coordinates x(t) ∈ Rnq−nλ , trivially, the
relation

g(q(x(t))) = 0 ⇒ d

dt
g(q(x(t))) = G(q(x(t))) · ∂q

∂x
· ẋ(t) = 0
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holds. The conclusio is apparently fulfilled if N := ∂q
∂x ∈ R(nq−nλ)×nq is a nullspace matrix of G,

i. e., G·N = 0 for any argument in a neighborhood of the current state. Here, q(x(t)) denotes the
dependence of the generalized coordinates on x. So, another variant of local minimal coordinates
is given by the tangent space parameterization (Potra and Rheinboldt, 1991): A linearization
of the constraint equations around a point in state-space allows for a local re-parameterization
orthogonal to the tangent-bundle T Ms and so local coordinates with a coordinate transform by
the nullspace matrix N. This procedure is at the core of proving the asymptotic expansions for
the singular SPPs in Chapter 3 and directly related to the mass-orthogonal projection technique
of the next section. In a more abstract and more general setting constrained dynamic equations
may always be viewed as ODEs on manifolds which also offers specific choices for local minimal
coordinates (Rheinboldt, 1984). Either way, a formulation in terms of (local) minimal coordi-
nates leads to the so-called (local) state space form (or Lagrange equations of second kind) of
the multibody system

ẋ(t) = f̄(x(t)) x(t0) = x0 , (2.19)

which for later reference is displayed as an explicit first order system. In practical applications,
it is often advised to use redundant coordinates q anyway since then the system matrices M
and G might be sparse leading to smaller computational cost even for larger systems.

Example 2.13 (Minimal coordinates for the mathematical pendulum)
For the example of the point mass under gravitational force in Chapter 1 the kinetic and potential
energy are given by

T =
m

2
((q̇x(t))2 + (q̇y(t))

2) , V = mggravqy(t) .

Using the geometric relations qx(t) = l sin(ϕmin(t)), qy(t) = −l cos(ϕmin(t)) the Lagrangian is
given by

L = lm
2ggrav cos(ϕmin(t)) + lϕ̇2

min(t)

2
.

Without friction, the above formalism states the differential equation

ϕ̈min(t) = −ggrav

l
sin(ϕmin(t)) .

♦

Remark 2.14 (Overdetermined systems, stabilized formulations)
Yet another approach to realize a stable and manageable numerical solution of constrained
mechanical systems is to consider the constraint equations on different levels simultaneously
(Führer and Leimkuhler, 1991). Because in that case more equations need to be solved for than
there are variables, we end up with an overdetermined system (Campbell, 1987). There are
different ways to approach this generic problem class: One is to fix certain equations in the
system (usually some of the constraints) and solve the remaining part only in a least squares
sense (Barrlund, 1991). Other researchers view an overdetermined system as an approximation
problem that can be addressed using methods from nonlinear optimization or inverse problems.
A linear combination of the constraints on all three levels is the method suggested by Baumgarte
(1972), but it bears the drawback that finding good parameters is a nontrivial task and that
artificial high-frequency responses add to the system making the numerical treatment more
difficult (Ascher et al., 1994).

A very common approach in case of multibody system simulation is to add new variables to
the system (that should vanish for the exact solution) such that one obtains a system with the
same number of equations and unknowns again. The most common way for achieving this is
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due to Gear et al. (1985) and called stabilized index-2 formulation or Gear–Gupta–Leimkuhler
formulation: Here, one takes into account the position and velocity constraints and adds an
additional Lagrange multiplier µ ∈ Rnλ that is then coupled to the trivial relation q̇ = v with
the velocity v ∈ Rnq :

q̇(t) = v(t)−G>(q(t))µ(t) ,
M(q(t))v̇(t) = f(q(t),v(t))−G>(q(t))λ(t) ,

g(q(t)) = 0 ,
G(q(t))v(t) = 0 .

The stabilized index-2 formulation may also be seen as a generic way of ensuring the invariant
G(q)q̇ = 0 by a Lagrange multiplier technique (Simeon, 2013). In the literature, the notion of
stabilized index-2 formulation is introduced in different ways: Sometimes the velocity relation
is multiplied by M(q) (or a lumped version of it), see (Hairer and Wanner, 2002, Sect. VII.1).
A practical drawback of Gear–Gupta–Leimkuhler formulation is that often G is not at hand in
the computational realization but there exists techniques using the Jacobian (of the nonlinear
systems occuring in the time integration) to approximate it (see Arnold et al., 2011). In the
original work Gear et al. (1985) propose to use a staggered procedure to obtain the numerical
solution in each time step which may be interpreted as a projection after one constraint is already
fulfilled. As projection techniques in a broader sense are also a common way to realize constraint
enforcement and, as we will see in the next chapters, that for initial values away from T Ms it
is important to have ‘the natural way’ of finding corresponding values fulfilling the constraints,
we will shortly present the most important details on this matter in the next section.

2.1.3 Projection onto the constraint manifold

Given (poorly chosen) initial values or rough numerical approximations to the state variables
(q̄, v̄) ≈ (q(t), q̇(t)) one is faced with the problem of finding a genuine way to relate them to
certain values fulfilling the constraints. To simplify notations we start with the introduction of
the Delassus matrix (Brogliato, 2013):

S(q) :=
[
GM−1G>

]
(q) . (2.20)

Note that since M is symmetric and positive definite and we assume the Grübler condition,
S is always well-defined and non-singular. A (nonlinear) projection onto T Ms may now be
accomplished using the following mappings.

Mass-orthogonal projection: Define

q = π(q̄) := q̄ −
[
M−1G>S−1

]
(q)ν such that g(π(q̄)) = 0 . (2.21)

for the position variables q̄ and (afterwards)

v = Pv̄ with P := I−
[
M−1G>S−1G

]
(q) ∈ Rnq×nq (2.22)

for the velocity variables.

Remark 2.15 (Well-definition and interpretation of the projection map)
(a) The definition of π is implicit: Formally, to obtain the projected values one has to solve

the system of nonlinear equations

0 = Ψ0(q,ν; q̄) :=

(
q −

(
q̄ −

[
M−1G>S−1

]
(q)ν

)

g(q)

)
, (2.23)
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which is locally uniquely solvable within a neighborhood of (q̄,0)> as long as ‖g(q̄)‖ � 1
because Ψ0(q̄,ν; q̄) = (0, g(q̄))> and the Jacobian

∂Ψ0(q,ν; q̄)

∂(q,ν)
=

(
I

[
M−1G>S−1

]
(q)

G(q) 0

)
+O(1) · ‖ν‖

=

(
I 0

G(q) I

)(
I
[
M−1G>S−1

]
(q)

0 −I

)
+O(1) · ‖ν‖

is non-singular as it can be decomposed into the product of regular matrices. Well-
definition of π in a sufficiently small neighborhood of Ms thus follows from the Im-
plicit Function Theorem. Note that one might also take a different argument q̃ ∈ Ms

of [M−1G>S−1] in (2.21). As long as q̃ and q (or q̃ and q̄ respectively) are sufficiently
close to each other it is still guaranteed that the projection is well-defined. In the analysis
in Chapter 5 below we will use both cases: Once the implicit nonlinear projection π has
been applied to find consistent initial values for a constrained mechanical system (2.12)
one can use the analytic solution q̃ := q(t) to define the projection.

(b) Matrix P is always well-defined and a projector onto the tangential space T qM
s =

ker G(q), because Pv = v if and only if v ∈ T qM
s and P2 = P, as can easily be

verified. Note that
P · [M−1G>](q) = 0 . (2.24)

(c) From a theoretical viewpoint, the definition of the nonlinear projection π might also be
stated as a minimization problem: If we presume the solution q∗ := π(q̄) known a-priori
it is solution of the constrained minimization problem

min
q∈Rnq

‖q̄ − q‖∗ , s. t. g(q) = 0 , (2.25)

where the norm ‖•‖∗ :=
√

(•)>M(q∗)(•) is mass-matrix induced. If, on the other hand,
we consider the above case where the argument q in (2.23) is to be replaced by q̃ ∈ Ms

the norm in (2.25) is induced by M(q̃).

For the definition of P one equivalently minimizes for given v̄ ∈ Rnq the norm

min
v∈Rnq

‖v̄ − v‖∗ , s. t. G(q)v = 0

with linear constraints, such that the solution is given by the linear relation in (2.22).
In the literature this form of projection is therefore often denoted as M-orthogonal or
mass-orthogonal projection. From that point of view the variable ν in the definition of
π is just another Lagrange multiplier from the constrained minimization problem (2.25)
and the entire construction of π and P an explicit solution of the necessary condition for
stationarity. Note that these necessary conditions have again the saddle-point matrix from
(2.15) at their core. From physical as well as mathematical point of view this definition
is the most natural choice because (i) it is invariant under affine transformations of the
coordinates (Lubich, 1991) and (ii) as the norm is mass-induced it is a minimal-work
approximation: If we view the projection as the physical process of moving the bodies to
a consistent position, this one requires the least energy.
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Ms :={q : g(q) = 0}

T q(t)M
s

π(q̄) =: q(t)

q̄

M(q(t))-orthogonal

Ms :={q : g(q) = 0}

v̄

v̄ T q(t)M
s

Pv̄ =: q̇(t)

q̄

Figure 2.1: Projections and projectors to the constraint manifold

2.2 Numerical methods

After this overview on the theoretical basis of physical multibody system modeling in technical
simulation we will now turn our attention to the numerical solution of the equations of motion.
To keep the presentation compact we will mainly concentrate on the ODE case. So, for first
order systems we refer to the state space form (2.19). We also exclude any detailed software
aspects as, for instance, step size strategies. Since the time integration methods of Newmark-
type are going to be introduced in detail in Chapter 4 this will only be a very basic summary
for an easier reference in the next chapters. For a more detailed discussion of the methods and
original literature we refer to the monographs of Hairer et al. (1993) and Hairer and Wanner
(2002).

The very basic idea of almost all time integration methods for initial value problems is
to simply follow the flow of the ODE/DAE: Taking the initial value x0 = x(t0) as a first
‘approximation’ we advance forward in time in N > 0 steps of length h := (tend − t0)/N to
acquire numerical approximations xn ≈ x(tn), tn = t0 + nh, n = 1, . . . , N , one after another.
To value the accuracy of the method the following two fundamental concepts of consistency and
convergence are necessary.

Definition 2.16 (Consistency, Convergence).

(a) A numerical scheme has order of consistency p ≥ 0 if there exists a constant h0 > 0 such
that the numerical solution after one step for all h ∈ (0, h0] fulfills the estimate

‖x1 − x(t1)‖ ≤ Chp+1 ,

where C > 0 is a (problem dependent, bounded) constant that does not depend on the
time step size h. If p ≥ 1, the method is consistent.

(b) If for all h ∈ (0, h0] the approximations fulfill the estimate

‖xn − x(tn)‖ < C̃hp, (C̃ > 0, n = 0, 1 . . . , N) (2.26)

the method has order (of convergence) p. If (2.26) holds for any p > 0 the method is said
to be convergent.

For some methods, so-called multistep methods more than one approximation at a previous
step is necessary. For the definition of consistency in that case we consider the solution for
all t ≤ t0 to be exactly given (and extend x(t) to this time interval if necessary). So, for this
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family of methods the order of convergence may depend on the initialization. For some more
complex schemes one may obtain different orders for different components of the state vector
as, for example, in multibody dynamics the Lagrange multipliers are defined on acceleration
level. If the order of the method drops when applied to certain problem classes (beyond the
classical setting) one speaks of order reduction. The usual assumption on the problem involves
a Lipschitz condition on f̄ with respect to the Picard–Lindelöf Theorem that ensures unique
solvability of the system. To obtain high-order results f̄ is typically assumed to have smooth
bounded derivatives to a certain order.

2.2.1 Time integration schemes in technical simulation

The design of numerical schemes for problems of multibody dynamics is subject to characteristic
demands of this problem class: As more complex models may take into account impact problems,
unilateral constraints and discontinuous control states and rely on data base look-ups and inter-
polations for input values, the systems fall short of the strong smoothness assumptions needed
for high order methods. Additionally, there are uncertainties in the parameters and the external
inputs, and sometimes insufficient mathematical models (cf. Example 2.6). Moreover, for mul-
tiphysics problems the order (in space and time) of the method is bounded inasmuch as there
is an additional spatial error, i. e., an error of the space discretzation (see Example 3.19 below)
and yet another error source from the coupling of sub-systems in co-simulation applications.

Due to a theorem of Dahlquist (1963) the order of so-called unconditionally stable multi-
step methods is bounded by two and, especially in structural dynamics applications, the actual
computational models use local linearizations of f̄ (Hoff and Pahl, 1988b), resulting in an order
reduction to at most order two for most schemes. Eberhard and Schiehlen (1998) propose a
hierarchical development of models where components of the system are modeled at different
levels of accuracy and detail such that accuracy is less an issue than a reliable rough approxima-
tion of the solution. In conclusion, for applications in multibody dynamics often it is not useful
to design high order methods as one cannot benefit from their superior convergence properties
and it is recommended to use robust and efficient methods of order p = 1, 2. It might also
seem rather rudimentary that in this thesis we only consider a fixed time step size h, but with
regards to real time and large scale applications this reflects the current state-of-the-art in some
branches.

Onestep methods The first family of numerical procedures for initial value problems for
ODEs we will turn our attention to are (implicit) Runge–Kutta methods. Applied to second
order systems (2.2) and with the initialization q0 := q(t0), v0 := q̇(t0) one step is described by

Q
(i)
n = qn + h

∑s
j=1 aijQ̇

(j)
n , Q̇

(i)
n = vn + h

∑s
j=1 aijQ̈

(j)
n , (i = 1, . . . , s) ,

qn+1 = qn + h
∑s

i=1 biQ̇
(i)
n , vn+1 = vn + h

∑s
i=1 biQ̈

(i)
n ,

(2.27)

where the stage vectors (Q
(i)
n , Q̇

(i)
n , Q̈

(i)
n )> satisfy the equilibrium condition

M(Q(i)
n )Q̈

(i)
n = f(Q(i)

n , Q̇
(i)
n ) .

(For this discussion we disregard explicit Runge–Kutta methods, i. e. methods (2.27) with
aij = 0, j < i, due to their inferior stability properties.) For later reference we state that
the stability function R : C → C of the Runge–Kutta method with the Runge–Kutta matrix
A := (aij)i,j=1,...,s ∈ Rs×s and the weight vector b := (bj)j=1,...,s ∈ Rs is defined as

R(z) :=
det(Is − zA + z11b>)

det(I− zA)
,
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where Is denotes the identity matrix in Rs×s and 11 := (1, . . . , 1)> ∈ Rs. The stability region S
of a Runge–Kutta method is the set of all z ∈ C with |R(z)| ≤ 1; if {z : <(z) ≤ 0} ⊆ S, the
method is A-stable; if additionally limz→∞R(z) = 0, it is called L-stable; I-stability is given if
R · i ⊆ S. The coefficients of the methods are usually summarized in a so-called Butcher tableau

c A

b>
,

where the stage vector c ∈ Rs is defined by ci :=
∑s

j=1 aij , i = 1, . . . , s. From (2.27) we see

that the stage vectors Q(i)
n serve as approximations to q(tn + cih) such that a more detailed

notion of consistency–stage order–is helpful here. In short, stage order ps ≥ 0 implies that for
the application to quadrature problems the Runge-Kutta method’s stage vectors Q̇

(j)
n , Q̈

(j)
n ,

j = 1, . . . , s, are order ps approximations to the solution. This property can also be expressed
in terms of the coefficients:

Definition 2.17 (Stage order).
The Runge–Kutta method with coefficients (A, b, c) has stage order ps ≥ 0 if

s∑

j=1

aijc
k−1
j =

cki
k

for i = 1, . . . , s, k = 1, . . . , ps .

The most commonly used (implicit) Runge–Kutta methods are Radau-, Gauss- and Lobatto
methods that originate from the corresponding quadrature rules and are favored for their high
(stage) order and stability properties. In view of the rather low accuracy requirements in tech-
nical simulation we just state that the (second order) trapezoidal rule falls into the family of
Lobatto-IIIA methods, the implicit midpoint-rule is a one-stage method of Gauss type and the
(only first order) implicit Euler scheme is a Radau-IIA method. The same is true for the algo-
rithm RADAU5 (Hairer and Wanner, 2002) which is a fifth order implicit Runge–Kutta code
that is very often used as a reference for numerical experiments.

Especially higher order implicit Runge–Kutta methods have the drawback of high compu-
tational cost as all stage vectors are coupled and so each step involves the solution of a very
large nonlinear system. There are several approaches known from the literature to remedy this
problem: Diagonally implicit (DIRK) methods allow for a staggered procedure: The stage vec-
tors are computed consecutively such that at least the dimension of the systems is lowered.
For Rosenbrock and Rosenbrock–Wanner methods, on the other hand, the nonlinear systems are
linearized such that each step requires only the solution of a large linear system.

Linear multistep methods A methodology that allows for high order and small nonlinear
systems is given by linear multistep methods. Instead of computing stage vectors in each time
step one re-uses approximations at previous time steps. This comes at the cost of additional
work for initialization, more complex code for variable step size implementations and worse
stability properties. If a multistep method employs k > 1 states from previous time steps, it is
called k-step method. These methods are also preferable because the equilibrium condition is
at the new time instance tn+1 which is beneficial for DAEs since then the constraints are always
exactly fulfilled. For Runge–Kutta methods this requires so-called stiff accuracy. In the class of
linear multistep methods backward-differentiation formulae, BDF methods (also called Gear’s
methods) are most commonly used in the context of DAE simulation. As their name suggests
they are based on backward finite difference approximations of the first derivative. The BDF
‘one-step’ method coincides with the implicit Euler scheme and the two-stage BDF scheme, in
short BDF(2), is given by

3
2xn+1 − 2xn + 1

2xn−1 = hf̄(xn+1) . (2.28)
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Methods for second order systems The relation between the time derivative of position
coordinates and velocities is so simple that it seems rather artificial to consider this equation
explicitly as a part of the differential equation. As also ODEs and DAEs of second order are
historically very important whenever a mechanically motivated model needs to be solved, there is
a large variety of methods tailored to mechanical systems. Newmark methods in the generalized
form of Chung and Hulbert (1993) are the main concern of this thesis; so we postpone their
introduction to Chapter 4 below. Within the class of linear multistep methods there are second-
derivative multistep methods (of Enright) and second-order BDF-type methods (see Hairer and
Wanner, 2002, Sect. V.3) but they are not that commonly used in the multibody dynamics
community. An exception might be methods of Verlet-type and some specialized schemes for
Hamiltonian problems, but they lack the strong stability properties needed for many large-scale
or very stiff problems in engineering.

In the family of onestep methods the concept of partitioned Runge–Kutta methods is at
the basis for the construction of specialized methods for second order systems (Runge–Kutta–
Nyström methods): The left- and right-hand side of (2.27) then involve different Runge–Kutta
parameters A, b and so provide more degrees of freedom when optimizing the parameters to
specific needs.

Using the same idea within the context of linear multistep methods goes back to the work
of Dahlquist (1959). With the representation given by Console and Hairer (2014), partitioned
linear multistep methods for the coupled system

q̇(t) = v(t) ,

v̇(t) = f(t, q,v)

can be expressed as

k∑

i=0

αqi qn+i−k+1 = h

k∑

i=0

βqi vn+i−k+1 ,

k∑

i=0

αvi vn+i−k+1 = h
k∑

i=0

βvi f(tn+i−k+1, qn+i−k+1,vn+i−k+1)

(2.29)

for the two parameter sets (αqi , β
q
i )i=0,...,k, (αvi , β

v
i )i=0,...,k with αqk , α

v
k 6= 0. In Chapter 4 we

will see that Newmark time integrators fall into that framework of (generalized) linear multistep
methods.

2.2.2 Stiffness and strongly attractive systems

In the above sections we already used the term ‘stiff’ to describe that a problem has a charac-
teristic challenging nature concerning its numerical treatment. A strict definition of stiffness is
very difficult as it has to take into account that stiffness may depend on dimension, initial value,
smoothness and may even vary throughout time. We will use the very pragmatic and historically
first explanation given by Curtiss and Hirschfelder (1952, not explicitly stated in the reference)
that for stiff systems certain implicit solvers, in particular BDF, perform tremendously better
than explicit ones.

There is a quasi-consensus on the terminology when dissipative systems are solved. Yet, there
is still active research on a mathematically profound definition of ‘stiffness‘ (Söderlind et al.,
2015). Some researchers, see the above reference, argue that stiff mechanical systems (where the
stiffness is of physical nature and not to be confused with the numerical term stiffness) are not
to be considered as stiff since they are too close to being ill-conditioned.
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Dissipative systems are characterized by their fundamentally different behavior forward (at-
tractive, stable) or backward (repulsive, unstable) in time. The strongly attractive mechanical
systems that are one main subject of this thesis fall into this spectrum: As they describe how
external impacts on the mechanical system are damped out, a time inversion leads to an expo-
nential growth of even smallest excitations. From their nature they are strongly connected to
and sometimes used for the consistent initialization of DAEs (Brenan et al., 1996, Leimkuhler
et al., 1991) as will become clear in Theorem 3.8. Problems of a similar mathematical structure
also appear in chemical reaction kinetics where certain reactions happen orders of magnitude
faster than others. The spectrum of the Jacobian of the right-hand side for this type of problem
is exactly on or very close to the negative real axis which allows for certain specialized techniques
for their numerical solution. In particular, within certain limitations, it is even possible to design
explicit methods with many stages that are still stable for these problems (Medovikov, 1998,
Abdulle, 2002).

2.2.3 Highly oscillatory systems

The numerical treatment of problems with high frequency oscillations is probably one of the
most difficult but also most important tasks when any continuous phenomena in the natural
sciences need to be analyzed or simulated by means of numerical procedures (Petzold et al.,
1997). Prior to the selection of an appropriate algorithm one is always confronted with certain
questions on what one expects it to achieve. If it is indeed essential to resolve the oscillations
to acquire useful information from the model it is in most cases quite unavoidable to put large
computational effort into the calculations. Hughes (1987) and Cardona and Géradin (1994)
advise to use approximately ten points to render one period of oscillation sufficiently. For the
stiff mechanical systems of the next section this requirement is not even worth discussing.

For applications in multibody system dynamics a fine resolution of high frequency oscillations
is never the aim of the engineer. On the one hand the reason for that lies in the lower accuracy
requirements (see Section 2.2.1). On the other hand one should not forget that the simulation
run is usually just a small fraction of the design process. Mostly, the results are further processed
as input for optimization algorithms or as control variables of other components of a complex
system. For control theory applications non-oscillating inputs are usually favored due to stability
issues even if that assumption is provably wrong (Siciliano and Book, 1988).

Since highly oscillatory systems are an immense field of research we give only an enumeration
of the most important approaches. This section is based on the review articles (Petzold et al.,
1997, Cohen et al., 2006, Abdulle et al., 2012) where more detailed information and further
references can be found.

The challenging character of highly oscillatory problems obligates specialized solutions for
the problem at hand. There is no, and probably will not ever be, an all-purpose method for
oscillatory problems. As the goal usually is a stable integration using large time steps the
methods are often referred to as ‘long-time-step methods’. A classification of those methods
may be based on typical properties of the problem as

(a) one constant high frequency in the model,

(b) one almost constant high frequency that is (i) time dependent or (ii) state dependent,

(c) weak coupling of oscillatory and non-oscillatory components or

(d) linear highly oscillatory terms,

(e) Hamiltonian systems allowing to take advantage of structural properties (symmetries, time-
reversibility, adiabatic invariants/effective Hamiltonians),
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among others. A very general framework is the heterogeneous multiscale method (HMM) (E
and Engquist, 2003) that covers problems from (a)-(d). For the application of HMM to highly-
oscillatory problems one typically adapts methods from the classical theory of averaging methods
(Arnold, 1988, Sanders et al., 2007) to construct a so-called macroscopic model that is easier to
tackle. This procedure is carried out using small time steps to locally resolve the model accurately
and then average the right-hand sides to evolve in time with a superimposed second method,
called macro-solver. In the context of the stiff mechanical systems of this thesis, those methods
have been applied by Ariel et al. (2012). A special case tailored for the use in mechanical system
simulation is the mollified impulse method that is analyzed in detail by Calvo and Sanz-Serna
(2009), see also the analysis of a projected analogon by Lubich and Weiss (2014). Within this
framework of numerical averaging techniques (somewhat a limit case) fall stroboscopic methods
(Minorsky, 1962, Petzold, 1981) that are based on a discrete sampling of the right hand side at
exactly the same phase but are restricted to methods from problem classes (a) and (b).

Problems from (c) and (d) are often approached using general multiscale or multirate tech-
niques. A starting point for the mathematical analysis is the work of Gear and Wells (1984).
For Hamiltonian problems (e) there has been large progress in the construction of so-called
variational integrators (Lew et al., 2004). These methods follow the ‘discretize first’ approach:
Instead of applying numerical schemes to the necessary conditions of the Hamiltonian principle
the energy or Lagrangian of the model itself is discretized and the system solved using a dis-
crete variational principle. Within this area fall energy-momentum methods (Simo and Tarnow,
1992) where the focus is on preservation of symmetries of the system, e. g. angular momentum
or energy.

At last, there are also many regularization approaches that act on the equations before a
numerical scheme is applied. For the problems considered in this work quasistatic approaches
(Jahnke et al., 1993) are naturally of interest: Sometimes it is computationally cheaper to
consider the limit case of infinite stiffness (infinite frequencies) leading to additional constraints
in the system. An established way is Guyan (also: Irons–Guyan) reduction for linear systems
that is mathematically based on Schur complements of the system matrices. Model reduction
techniques as Craig–Bampton or static condensation fall into this branch as well (Hughes, 1987).
The exactly opposite approach is also used in practical simulations: For a large class of systems
it is possible to define a cut-off frequency f0 > 0 and regulate all higher modes to coincide with
f0.

The concern of this thesis is to evaluate how far it is possible to rely on the given equations
and Newmark integration methods while ensuring a stable and accurate numerical solution
measured with respect to the limit of infinite stiffness. In the next chapter we establish the
analytic foundations concerning the two ‘stiff’ problem classes in mechanical system simulation.
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Chapter 3

Singularly perturbed systems in
multibody dynamics

This chapter is devoted to the analysis of the mathematical structure, inherent in the two substi-
tute problems from Chapter 1. In particular, we will see that for very large spring or damping
constants, both physically motivated models may be characterized as singularly perturbed prob-
lems (SPPs). We will start by formally introducing the broad concept of SPPs, highlight the
degenerated class of singular SPPs and then come back to the physical modeling of mechanical
systems by means of singular force terms.

The introduction of this chapter is to some extend based on the monograph of O’Malley
Jr. (1991). The analysis of analytic properties of the mechanical systems with singular force
terms is mainly based on work of Lubich (1993) and Stumpp (2008). In this work, we will
only consider perturbation problems for ODEs, recognizing that a series of problems for partial
differential equations (PDEs) may be studied using similar techniques. At any rate, from a
computational viewpoint, we already cover the important case of large ODE systems stemming
from finite-element or finite-difference discretizations, see Example 3.19 below and (Simeon,
2013, Altmann, 2015) for a comprehensive discussion on the relations of DAE and PDE-models
in technical simulation.

Assumption 3.1. From now on we will always assume that there is a sufficiently small but
positive constant ε0 > 0, depending on the problem under consideration, such that the parameter
ε (resp. δ in Section 3.2 below) can be estimated by ε0:

0 < ε, δ < ε0

3.1 Singularly perturbed systems

The field of perturbation analysis deals with dynamic problems, i. e., mainly differential equa-
tions, depending on small parameters. So, methods from this field always come into play when
there are negligibly small parameters or unproportionally large ones, respectively, or more than
one characteristic scale, in time or space, is present. Often, SPPs represent a regularization
(Bornemann, 1998) of a given unperturbed problem and are therefore artificially introduced.

To understand the essence of SPPs, at first we consider the regular perturbation problem

q̈ε(t) + εqε(t) = 0 , qε(0) = q0, q̇
ε(0) = q̇0 (3.1)

with a small (perturbation-) parameter 0 < ε� 1 and the exact solution

qε(t) =
√
q2

0 + ε−1q̇2
0 cos(

√
εt+ ϕ0) , ϕ0 = atan2(−q̇0,

√
εq0) ,
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where we assume that atan2(x, y) coincides with arctan(x/y) for x, y ∈ R, y > 0.
If ε approaches zero, the solution qε(t) tends uniformly on any finite time interval towards

the solution of q̈0(t) = 0, q0(0) = q0, q̇0(0) = q̇0, i. e., the system that is obtained if one formally
sets ε to zero. This result is independent of the specific values of q0, q̇0 and the higher order
derivatives of qε(t) are bounded independently of ε.

If, on the other hand, we consider the coefficient of qε(t) in (3.1) (3.1) to become very large
replacing ε by ε−1, we get after rescaling the problem

q̇ε(t) = vε(t) , εv̇ε(t) + qε(t) = 0 , qε(0) = q0 , q̇ε(0) = q̇0 . (3.2)

Its solution shows a highly oscillatory behavior as ε→ 0. In particular, no upper bound on the
derivatives of qε(t) can be determined unless the initial values are chosen to be exactly zero.
Indeed, when formally plugging in ε = 0, we no longer deal with a differential equation but
instead have an algebraic relation that determines q0(0) ≡ 0 and leaves no degrees of freedom
for the initial values. We will see below that (3.2) is already the degenerate case of a singular
SPP but the main features are apparent: For ε→ 0 there is no uniform convergence towards a
smooth function and for ε = 0 the equation degenerates.

In a more general way, and remembering (2.5), we state the problem class as

ẏε(t) = ϕ(yε(t), zε(t); ε) ,
εżε(t) = ψ(yε(t), zε(t); ε)

(3.3)

for yε ∈ Rny , zε ∈ Rnz , t ∈ [t0, tend], t0 < tend, and given initial values at t0. In the literature yε

are usually called the slow or smooth variables whereas zε are denoted as fast or sharp variables.
The reduced problem is obtained if ε is formally set to zero

ẏ0(t) = ϕ(y0(t), z0(t); 0) ,
0 = ψ(y0(t), z0(t); 0) .

(3.4)

As we have already seen, one cannot expect the solutions of (3.3) always to converge uniformly
to solutions of the reduced system (3.4) which follows simply from a dimension argument: Ini-
tial values of the reduced problem are constrained to fulfill (at least) ψ = 0 whereas for the
original problem the choice is, or appears to be, free of any additional conditions. The goal of
perturbation theory lies in finding a way to express the limiting behavior of the systems in a
very general way. Practically this is done by searching for series expansions

yε(t) = y0(t) +

∞∑

i=1

εiyi(t)

︸ ︷︷ ︸
=:ysm(t)

+ ybl(t) , zε(t) = z0(t) +
∞∑

i=1

εizi(t)

︸ ︷︷ ︸
=:zsm(t)

+ zbl(t) ,

where (ysm(t), zsm(t))> is called the outer expansion and (ybl(t), zbl(t))> is called boundary
layer. If the coefficients yi, zi, i = 1, 2, . . ., of the outer expansion are bounded on [t0, tend]
we call (ysm(t), zsm(t))> smooth expansion. The crucial part of the analysis of SPPs is usually
the estimation of the boundary layer. For stable regular SPPs, see Definition 3.2 below, one
can show that it is negligible apart from a small region near t0. For later reference, we call
(y0(t), z0(t))> the slow solution or, with respect to (2.5) the DAE solution. In the literature,
smooth or slow solutions are sometimes also called averaged solution. As this is technically not
always justified we use the upper nomenclature. For an analysis of the relationship between
averaged and smooth motion in the context of stiff mechanical systems, see (Reich, 1995, Ariel
et al., 2012, Brumm and Weiss, 2014).
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Definition 3.2 (Singularly perturbed system (SPP)).
The system (3.3) with ny ≥ 0, nz ≥ 1 is called (regular) singularly perturbed system if the
reduced problem (3.4) has a solution (y0(t), z0(t))> and the Jacobian J := ∂ψ/∂zε is non-
singular in a sufficiently small neighborhood of (y0(t), z0(t))>. If, additionally, there exists a
β > 0 such that in that neighborhood all eigenvalues λi, i = 1, 2, . . . , nz, of J fulfill

<(λi) ≤ −β ,
the SPP is called stable.

Note that by (2.8), Definition 3.2 implies that the reduced problem is of index one. Having
a look at (3.2), and interpreting qε as the slow, vε as the fast variable, we see that J ≡ 0 is
obviously singular. As we will see in Chapter 4, (3.2) is not only an exemplary representative for
equations in mechanical system analysis but is in fact the standard problem in the investigation
of numerical time integration schemes. So, there is need to broaden the scope of problems under
consideration.

Definition 3.3 (Singular singularly perturbed system).
We will call an SPP singular if for ε > 0 for the reduced problem (3.4) a differential-algebraic
system of index two or higher is attained. If the limiting problem is of index one it is called
regular (or just singularly perturbed system).

Note that, to keep the representation compact, for both definitions we neglected the initial
values which may have an effect on the class and, more importantly, have to be taken into
account to define what is meant by ‘the solution’ of the reduced problem. We will always
assume that the initial values of the SPPs are sufficiently close to consistent initial values of the
reduced problem where in Assumption 5.25 below we will fix what we mean by ‘sufficiently’ in
the context of singularly perturbed mechanical systems. Note also that for nonlinear systems
the character (singular or regular SPP) may change throughout time evolution. This leads to
the theory of so-called shock layers which lies beyond the scope of this work.

Remark 3.4 (Alternative characterization of singular SPPs)
In textbooks on SPPs (O’Malley Jr., 1991, Shchepakina et al., 2014) the characterization of
singular SPPs follows the somewhat more vague definition given by Flaherty and O’Malley Jr.
(1980). Here, singular SPPs are characterized by the fact that solutions of the reduced problem
locally define a nontrivial manifold. So, in this more general sense, the class of singular SPPs
may even include problems without a well-defined differentiation index at all. To ensure well-
posedness there are usually additional contractivity assumptions on the problem imposed or
explicit nonlinear transformations constructed such that well-definition of the slow motion is
guaranteed.

In the above definition we follow Becker et al. (2014), see also the introduction to Chap. VI
in (Hairer and Wanner, 2002), p. 452 in (Petzold et al., 1997) and (Gu et al., 1989). Other
researchers refer to this problem class as SPPs ‘in the critical case’ motivated by the work of
Vasil’eva and Butuzov (1980) or ‘non-standard’ SPPs (Etchechoury and Muravchik, 2003). Note
also that sometimes regular (but non-stable) SPPs are also considered as singular ones.

Remark 3.5 (Singularly perturbed DAEs)
As mechanical multibody systems in their general form are often subject to constraint equations,
the consideration of just the ODE case falls short of giving a comprehensive description. To give
a more generic definition one can also consider the perturbed problem class of DAE-type

ẏε(t) = ϕ(yε(t), zε(t), ε) ,

0 = ψ̄(yε(t), zε(t), żε(t), ε)
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as has been done by Yan (1997) and Higueras (2001). As analytic and numerical properties
of index-1 DAEs are very similar to those of ODEs and many techniques and results can be
transferred to this case, we will also widen Definition 3.3 in the sense that if for ε > 0 the
problem already is an index-1 DAE, we still use the term ‘regular SPP’.

A general extension of the classical theory of SPPs to singularly perturbed DAEs is difficult
as the singular character—non-uniform or even no convergence towards the reduced problem—
can occur even if ∂ψ̄/∂ż = Inz . As a result, the literature on the subject is rather sparse and
mostly concentrated on special cases. Rheinboldt and Simeon (1999) propose a problem class
structured like
(

Mrigid(qslow, qfast) C>(qslow, qfast)
C(qslow, qfast) M∆

)(
q̈slow

q̈fast

)

=

(
f rigid(qslow, qfast, q̇slow, q̇fast) ,

f∆(qslow, qfast, q̇slow, q̇fast)−∇ 1
ε2
U(qfast)

)

−G>(qslow, qfast)λ ,

g(qslow, qfast) = 0 .

(3.5)

which can be seen as a DAE extension of the stiff mechanical systems we are going to review
in detail in Section 3.3. Typically, for being able to carry out the analysis, one imposes a
transversality condition as stated by Simeon (2013, p. 177) or Bornemann (1998, page 21, Def-
inition 3): The manifold defined via the (hard) constraints g = 0 and the manifold stemming
from the (weak) constraints imposed by the stiff potential 1

ε2
U(qfast) should intersect in a ‘non-

flat’ (Bornemann, 1998) way. Roughly speaking, this simply implies that g = 0 and ∇U = 0
do not contradict one another or coincide. In the original work, Rheinboldt and Simeon (1999)
restrict the analysis to linear stiff force terms such that the transversality condition may be
verified more easily. Note the strong connection between the transversality condition and the
existence of a reparameterization in terms of local minimal coordinates, preserving the struc-
ture of the mechanical systems. Practically, (3.5) is very important since it represents flexible
multibody systems in their most general form (Simeon, 2013).

Yen and Petzold (1998) are also concerned with highly oscillatory DAEs with SPP character
but their analysis is mainly guided by computational considerations. Weber et al. (2012) propose
quasistatic approaches, i. e., generic ways of computationally obtaining the limiting system for
ε→ 0 without explicitly deriving its equations.

In the next two sections we introduce two prototypical problem classes that appear in me-
chanical system simulation. Both are derived starting from the principle that a certain type
of constraints is supposed to be approximately conserved by the model via the introduction of
singular force terms. Notice that from now on we disregard the DAE case or ‘hard constraints’
and assume that, without the singular forces, the system may always be described by an ODE
(2.2).

Judging from the great improvement for numerical methods conserving given quantities
or invariants of systems, this may seem rather artificial and as if the problems are made more
difficult than necessary using this approach. But one should always keep in mind: (a) Sometimes
the mathematical structure of the two problem classes is somewhat hidden and the involved
quantities, i. e., primarily g, G and the exact value of the perturbation parameter, are not
known or difficult to acquire. (b) Also, modeling mechanical systems using ‘hard constraints’ is
itself always an abstraction from the physical world or as van Kampen and Lodder (1984) put
it: ‘The constraints of classical mechanics are [always] idealizations of stiff springs’. Judging
from the great progress of parallel computing in recent years, it should also be noted that the
replacement of joints by spring-dampers is in fact easily parallelizable, and that data-exchange
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in a complex simulation environment might be easier if the coordinates have a straightforward
geometric interpretation.

3.2 Strongly damped mechanical systems

The problem class, to which we refer here as strongly damped mechanical systems is a gener-
alization of the damped pendulum from Chapter 1 not only with regards to the mathematical
structure but also from the viewpoint of mechanical modeling: To derive the equations of motion
of strongly damped mechanical systems, we make use of a Rayleigh dissipation function that
penalizes if the generalized velocities of the mechanical system violate some hidden substitutes
of holonomic constraints. An archetypical application case is the simulation of biomechanical
systems with articular surfaces or cartilage tissue by means of soft constraints as proposed by
Hans (2004).

Following the framework of a Rayleigh dissipation function from Example 2.6, defining the
state dependent dissipation function

D :=
1

2δ

∥∥∥G(qδ(t))q̇δ(t)
∥∥∥

2

2
,

and δ · ∂D
∂q̇δ

= [G>G](qδ)q̇δ, we attain the system

M(qδ(t))q̈δ(t) = f(qδ(t), q̇δ(t))− 1

δ
G>(qδ(t))G(qδ(t))q̇δ(t) , (3.6)

where instead of ε we used δ > 0 as perturbation parameter to distinguish from the stiff me-
chanical systems in Section 3.3 below and for easier reference. With the partitioning yδ := qδ,
zδ :=vδ := q̇δ, and recalling that M(qδ) is symmetric positive definite, this system is of the form
(3.3) and we have

∂ψ(yδ, zδ)

∂zδ
=
∂
(
[M−1G>G](qδ)q̇δ

)

∂q̇δ
+O(δ) = [M−1G>G](qδ) +O(δ) ∈ Rnq×nq ,

which is clearly rank-deficient for δ → 0 such that the system is no regular SPP. If instead
we formally introduce the ‘multiplier-like’ variables λδ := 1

δG(qδ)q̇δ, (3.6) may equivalently be
stated as

M(qδ(t))q̈δ(t) = f(qδ(t), q̇δ(t))−G>(qδ(t))λδ(t) , (3.7a)

δλδ(t) = G(qδ(t))q̇δ(t) , (3.7b)

which we will call the ‘index-1 formulation’ of (3.6). That (3.7) is in fact of index one can be
verified by time differentiation of (3.7b) which yields

λ̇
δ
(t) =

1

δ
G(qδ(t))q̈δ(t) + R(qδ(t))(q̇δ(t), q̇δ(t)) ,

or by considering (3.7) as a Hessenberg system with constraint 0 = ψ := G(qδ)q̇δ − δλδ, and
invertible constraint Jacobian −δ · Inλ .

Note that the modeling process includes the introduction of a dissipation function. So—
by construction—the analytic solution of the system for δ > 0 loses energy if we assume a
conservative system in absence of the singular force terms. As a consequence of Corollary 3.9
below, we will nevertheless see that in the limit case δ → 0 the solution approaches the DAE-
solution in index-2 formulation and so the energy loss/energy error vanishes as well. A formal
insertion of δ = 0 in (3.7) shows that (2.13) in fact describes the corresponding slow motion. As
a consequence, strongly damped mechanical systems are singular SPPs.
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Remark 3.6 (Stable behavior of solutions)
From the viewpoint of analytic stability one may argue that (3.6) is not singular in the sense that
it shows an unstable behavior or a degenerate boundary layer response. It is, on the contrary,
possible (Stumpp, 2008, Lemma 4) to transform (3.6) to the form

ẏδ(t) = ϕ̃(yδ(t), zδ(t), δ) ,

δżδ(t) = W(yδ(t))zδ(t) + δψ̄(yδ(t), zδ(t), δ) ,
(3.8)

with a function ϕ̃ : Rnq+nλ ×Rnq−nλ → Rnq+nλ and a symmetric and positive definite matrix
W : Rnq−nλ → Rnλ×nλ . So, in view of Definition 3.2, we are dealing with a regular SPP after a
nonlinear coordinate transformation. Etchechoury and Muravchik (2003) present a generic way
and conditions such that such a transformation to a regular (and stable) SPP is always possible.
In conclusion, we see that Definition 3.3 depends on the specific choice of coordinates and may
change using analytic transformations. Judging from the fact that we used the differentiation
index for the definition, this comes without surprise since analytic transformations, differentia-
tions, are the core of index-reduction. Kramer (2006) studies linear multistep methods (BDF)
for the solution of SPPs that may be lipeomorphically transformed to a stable SPP and calls
these systems quasi singularly perturbed. (Recall that a lipeomorphism is a homomorphism
which is Lipschitz continuous and has a Lipschitz continuous inverse.)

System (3.8) is not the only nonlinear coordinate transform that simplifies the situation: The
following lemma shows that, for the purpose of analysis, it suffices to consider linear damping
terms and a clear separation of the velocity coordinates.

Lemma 3.7 (Strongly damped mechanical systems: Alternative formulation (Stumpp, 2008,
Lemma 3))
For given (q0,v0)> ∈ Md there exists, locally but independent of δ > 0, a smooth coordinate
change y = y(q), z = z(q, q̇), such that in the new coordinates the Rayleigh dissipation function
may be written as

D = D(z) =
1

2δ
‖z⊥‖22 ,

where z = (z‖, z⊥)> is partitioned in components z‖ ∈ Rnq−nλ in direction of velocities ‘con-
sistent’ with Md and z⊥ ∈ Rnλ in normal direction. In the transformed variables, the strongly
damped system (3.6) reads

H(y(t))ẏ(t) = z(t) ,

M̃(y(t))ż(t) = f̃(y(t), z(t))− 1

δ

(
0 0
0 Inλ

)
z(t)

with M̃ := H−>(y)M(y)H−1(y) and f̃ := H−>
(
f(y,H−1(y)z)−M(y)∂H

−1(y)
∂y (H−1(y)z, z)

)
.

The matrix H ∈ Rnq×nq is implicitly defined: Let

[G>G](q) =: Q>(q)

(
0 0
0 [LL>](q)

)
Q(q) (3.9)

be a separation of G>G’s singular and regular parts with an orthogonal matrix Q ∈ Rnq×nq .
The (nλ × nλ)-block [LL>] is symmetric and regular and may again be decomposed into its
Cholesky factors L. Matrix H is then constructed as

H(q) :=

(
Inq−nλ 0

0 L>

)
Q(q) .
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To avoid confusion, we omitted the superscript δ in this lemma. Note that a splitting like in
(3.9) is only possible if the full-rank condition on G remains fulfilled. The limiting behavior of
(3.6) can be described as follows.

Theorem 3.8 (Smooth motion, invariant manifold (Stumpp, 2004, 2008))
For arbitrary fixed imax ≥ 1 and each pair (q0

0, q̇
0
0)> ∈ R2nq satisfying

G(q0
0)q̇0

0 = 0 ∈ Rnλ ,

there exists a pair (qδ0, q̇
δ
0)>, unique to order O(δimax), and with

q̇0
0 − q̇δ0 ∈ O(δ) ∩

(
T q00 M

d
)M(q00)−⊥

(3.10)

such that the solution (qδ(t), q̇δ(t))> of (3.6) with initial values (qδ0, q̇
δ
0)> is smooth in the sense

that it has bounded derivatives to order imax and allows for an expansion of the form

qδ(t) = q0(t) + δq1(t) + . . .+ δimaxqimax(t) +O(δimax+1) ,

q̇δ(t) = q̇0(t) + δq̇1(t) + . . .+ δimax q̇imax(t) +O(δN+1) ,
(3.11)

where qi(t), i ≥ 0, are independent of δ > 0 and exist on finite time intervals. In particular,
q0(t) = q(t), t ∈ [t0, tend], is the solution of the index-2 equations of motion of the corresponding
constrained system. All values (qδ0, q̇

δ
0)> form a (2nq − nλ)-dimensional manifold Mδ ⊂ R2nq ,

which is invariant under the flow of (3.6) to terms in O(δimax+1).

Corollary 3.9 (Rubin–Ungar Theorem (I))
The well-defined solutions of the equations of motion of strongly damped mechanical systems
(3.6) with initial values qδ(t0) = q(t0), q̇δ(t0) = q̇(t0) that are consistent to the DAE system
(2.12), uniformly on any finite time interval [t0, tend], approach the solutions of the equations of
motion in their index-2 form (2.13). The differences of position and velocity coordinates remain
in O(δ). The result remains true if the deviation of (qδ0, q̇

δ
0)> from Md is O(δ).

Note that the consistency with the position constraints g(qδ0) = 0 is imposed to guarantee
that the solution to the DAE exists, i. e., that all involved values are always well-defined. If we
only required consistency with the velocity constraint G(qδ(t0))q̇δ(t0) = 0 we would possibly
face a severe drift-off from g = 0 as in the index-2 case in (2.13) such that the arguments
might not remain within the domain of f , M or G respectively. Note also that we adapted the
original statement of the theorem from Stumpp (2008) to indicate the correspondence to the
stiff mechanical systems below. Equation (3.10) implies that only projection at velocity level,
i. e., using P is necessary, cf. Figure 3.1.

g = 0

{q : (q,vδ) ∈ Md}
qδ

vδ

Pvδ

π

Figure 3.1: Schematic illustration of projections and projectors in (2.21) and (2.22)

33



Example 3.10 (Attractive invariant manifold for two test problems)

(a) Inclined plane
If, instead of a circle, the motion of the point mass in the pendulum example (1.1) is
constrained to the plane 0 = g(qx, qy) = qx − qy, the equations of motion describe a
pointmass sliding without any friction on an inclined surface. Taking initial conditions
qx(0) = qy(0) = q̇x(0) = q̇y(0) = 0, the solution can be calculated analytically:

qx|y(t) = −ggrav

4
t2 , t ≥ 0 ,

which corresponds to the slow motion component q(t). For the strongly attractive systems,
and taking for simplicity unit constants ggrav = m = 1, we get the system

q̈δx(t) = 1
δ (q̇δy(t)− q̇δx(t))

q̈δy(t) = −1 + 1
δ (q̇δx(t)− q̇δy(t)) .

With the initial values (qδx(0), qδy(0)) = (q0
x, q

0
y), (q̇δx(0), q̇δy(0)) = (q̇0

x, q̇
0
y) this system can

once again be solved analytically:

qδx(t) =− t
2

4
+

1

8

(
−δ2 + 2δ(q̇0

x − q̇0
y + t) + 4(2q0

x + q̇0
xt+ q̇0

yt)
)

+
1

8
δ
(
δ − 2q̇0

x + 2q̇0
y

)
e−

2t
δ ,

qδy(t) =− t
2

4
+

1

8

(
δ2 − 2δ(q̇0

x + q̇0
y − t) + 4(2q0

y + q̇0
xt+ q̇0

yt)
)

︸ ︷︷ ︸
smooth motion

−1

8
δ
(
δ − 2q̇0

x + 2q̇0
y

)
e−

2t
δ

︸ ︷︷ ︸
boundary layer

.

Clearly, the nonsmooth part, i. e., the boundary layer solution component, vanishes if the
condition on the initial velocities

δ

2
= q̇0

x − q̇0
y (3.12)

holds. That means that all higher order coefficients in the series expansion of Theorem 3.8
vanish for this linear example. In addition, we note the following two observations:

(i) (3.12) does not exactly describe the constraint equation on velocity level G(q)q̇ = 0
but instead a O(δ) deviation from it.

(ii) Inserting these analytic solutions into the original constraint equations 0 = qx − qy
reveals a linear drift-off:

g(qδx(t), qδy(t)) = 2δt .

This is the general situation for singular SPPs with fast and slow variables and an
attractive invariant manifold (Nipp, 2002).

Notice that the boundary layer components are independent of the position variables
(qx, qy)

>. This is due to G being constant which is an important special case as we will
see in Example 3.19.

(b) Mathematical pendulum
For the pendulum equations (1.1) no analytic solution can be determined. Nevertheless, it
is possible to equate the initial values of the coefficients in (3.11) to get an arbitrarily close
approximation to the smooth motion. We consider the initial values of the DAE system
as in Chapter 1. To obtain smooth initial values for (1.3), the series expansion (3.11) is
inserted into (3.7) and all involved quantities are expanded into Taylor series with respect
to δ.
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Equating the coefficients shows that (qi(t), q̇i(t))>, i = 0, 1, . . ., may be defined recur-
sively as solutions to index-2 DAEs of the form (2.13), once the preceding coefficients
(qj(t), q̇j(t))>, j = 0, 1, . . . , i − 1, and their time derivatives are considered as known
quantities. As for the computation of consistent initial values in (2.15), this leads to a
generic way to compute the initial values to arbitrary order in terms of powers of δ. The
additional condition (3.10) is necessary for uniqueness of the initial values. For the chosen
setting we get for i = 1, 2, . . . the additional equations q̇ix(t0) = q̇iy(t0). Note, however, that
the computation of higher order derivatives may require very involved computations. In
fact, obtaining the solution (qi(t), q̇i(t))> without prior knowledge of preceding coefficients
involves the solution of an index-(2 + 2k) DAE system. Note also that Mδ imposes no
restrictions on the position coordinates, i. e., (qix(t0), qiy(t0))>, i = 1, 2, . . ., may be chosen
freely. With respect to approximating the true pendulum motion, it is of course reasonable
to let them simply vanish. For the first four series coefficients, we obtain

q̇1
x(0) = q̇1

y(0) =
√

2− ggrav
2 , q̇2

x(0) = q̇2
y(0) =

3ggrav√
2
,

q̇3
x(0) = q̇3

y(0) =
3(8+g2grav)

2
√

2
, q̇4

x(0) = q̇4
y(0) = 27

√
2ggrav .

Note that even for this very small example with nq = 2 and only the consideration of
the first five summands in the series expansion (3.11) this involves a quite large effort.
To obtain one next coefficient in the series expansion a consistent initialization of a DAE
system of index two is necessary which involves computation of higher order derivatives of
all preceding coefficient functions.

In Figure 3.2 it is illustrated how the choice of initial values close to Mδ influences the
growth in the norm of derivatives of qδ at t = 0. The singular force terms in (3.6) cause
higher order derivatives of the the solution of the SSP system to grow by a factor of δ−1

with each time derivation. For δ = 10−4 which is a rather large value this already causes
the seventh derivative of qδ(t) at t = 0 to be larger than 1020. As a comparison we also
added the norm of time derivatives of the constrained mechanical system indicated by “q
(DAE).”

♦

Remark 3.11 (Convergence results for Runge–Kutta methods for strongly damped mechanical
systems)
Stumpp (2006) analyzes certain Runge–Kutta methods when applied to the problem class

M(qδ(t))q̈δ(t) = f(qδ(t), q̇δ(t))− 1

δ
D(q(t))q̇δ(t) ,

where D : Rnq → Rnq×nq maps onto symmetric positive semidefinite matrices of constant rank
nλ. For D(q) := [G>G](q) this exactly coincides with (3.6). If the Runge–Kutta method
with invertible Runge–Kutta matrix A that has no eigenvalues on the negative real axis is of
stage order 1 ≤ ps ≤ p − 1 for the order p of the method and the initial values (qδ0,v

δ
0)> =

(qδ(t0), q̇δ(t0))> lie on Mδ, it is shown that the errors when applied to (3.6) and to the index-2
DAE (2.13) are related like

qδn − qδ(tn) = qn − q(tn) +O(δhps) , vδn − q̇δ(tn) = vn − q̇(tn) +O(δhps) , (3.13)

for sufficiently small time step size h > 0. The initial values of (2.13) are hereby defined by
projecting (qδ0,v

δ
0)> onto Md using the projections π and P from Section 2.1.3, cf. Theorem 3.8.

Moreover, this result can be extended to the case of initial values of (3.6) deviating from Md
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‖n-th derivative of (qδ(0))‖2
derivative imax = 0 imax = 1 imax = 2 imax = 3 imax = 4 q (DAE)

2nd 9.8 7.2 7.2 7.2 7.2 7.2
3rd 49,367.2 7 30.2 30.3 30.3 30.2
4th 4.9e+8 2.9e+5 62.9 201.9 201.9 201.9
5th 4.9e+12 2.9e+9 1.6e+6 1,381 1,547.4 1,548
6th 4.9e+16 2.9e+13 1.6e+10 5.3e+6 27,225.7 13,197
7th 4.9e+20 2.9e+17 1.6e+14 5.3e+10 2.2e+8 1.4e+5

Figure 3.2: ‘Smooth initial values’ for the strongly damped pendulum example

by O(h). Using π and P, it is possible to uniquely define initial values (qδ,proj
0 ,vδ,proj

0 )> ∈ Mδ

and show the estimate

‖qδn − qδ,proj
n ‖+ ‖vδn − vδ,proj

n ‖ ≤ C(h%n + δps+1) ,

where C > 0 is a constant, (qδ,proj
n ,vδ,proj

n )>, n = 1, 2, . . ., denote Runge–Kutta solutions with
initialization (qδ,proj

0 ,vδ,proj
0 )>, and |R(∞)| < % < 1 is a constant that depends on the Runge–

Kutta method and the relation h/δ. Practically, this imposes the existence of a constant C̃ > 0
such that the above result is valid as long as 0 < δ < C̃h. For a comparison with the slow
motion (q(t), q̇(t))> the above estimate leads to the result

‖qδn − q(tn)‖+ ‖vδn − q̇(tn)‖ ≤ C(h%n + δ + hpDAE2) ,

where pDAE2 denotes the order of the Runge–Kutta method when applied to (2.13). For more
details see also the comprehensive discussion in (Stumpp, 2004).

3.3 Stiff mechanical systems

In this section we draw our attention to the generalization of the spring pendulum example. As
we have seen in Example 2.5, the physical principles are given by the Lagrange formalism as
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presented in Section 2.1.1 and it is not necessary to consider additional dissipative or external
forces. To penalize deviations from the position constraint manifold Ms, an additional potential
term

U :=
1

2ε2
‖g(qε(t))‖22 (3.14)

is added to the Lagrangian L of the system. In the literature U is sometimes also called fictitious
potential (Bayo et al., 1988, Arnold, 1989, Kurdila et al., 1993). Since U does not explicitly
depend on the generalized velocities, from (2.1) and ε2· ∂ U∂qε = G(qε)g(qε) we derive the equations
of motion for stiff mechanical systems

M(qε(t))q̈ε(t) = f(qε(t), q̇ε(t))− 1

ε2
G>(qε(t))g(qε(t)) . (3.15)

Systems of this type ‘naturally’ appear in molecular dynamics where molecules form steep poten-
tial vaults almost constraining the motion and leading to high frequency oscillations. Another
occurrence in molecular dynamics is bond stretching with bond angle bending where substitute
models using constraints cannot be applied (Reich, 1995). As flexible multibody systems, the
simulation of compressible fluids (Ebin, 1977) and, as our pendulum example, replacement and
regularization models for constrained systems also fall into this framework, there has been much
more research on stiff mechanical systems throughout the last decades than for strongly damped
mechanical systems. Some researchers use the duality of (3.15) and the index-3 formulation of
equations of motion (2.12) to study the numerical properties of DAE time integration methods;
for HHT methods of the next chapter this has been carried out by Cardona and Géradin (1994)
and for a large class of implicit Runge–Kutta methods by Lubich (1993), see Remark 3.20 below.

To classify (3.15) as a singular SPP, we use the partitioning yε := qε, zε := vε = q̇ε and
obtain a system of the form (3.3) with ε being replaced by ε2 and

∂ψ(yε, zε)

∂zε
= −∂[M−1G>g](qε)

∂vε
+O(ε2) = O(ε2) .

In the limit case ε → 0, rank-deficiency, even vanishing, is observed. Thus, (3.15) is also a
singular SPP. Equivalently to (3.7) we can again introduce an artificial Lagrange multiplier
λε(t) ∈ Rnλ and obtain Hairer’s reformulation (Hairer et al., 1989a, Lubich, 1993)

M(qε(t))q̈ε(t) = f(qε(t), q̇ε(t))−G>(qε(t))λε(t) , (3.16a)

ε2λε(t) = g(qε(t)) , (3.16b)

which can easily be seen to be, for each finite value of ε > 0, a DAE of index one, since a
differentiation of (3.16b) leads to the differential equation

λ̇
ε
(t) =

1

ε2
G(qε(t))q̇ε(t)

for determining λε(t). In view of the index-1 condition (2.8) above, the matrix ψz = −ε2I is
evidently invertible. It is, nevertheless, a singularly perturbed (DAE) problem and the main
advantage of this reformulation lies, from the viewpoint of numerical analysis, in the closer
connection to the standard form of the index-3 DAE (2.12) and computational advantages. In
conclusion, (3.16) is a singular SPP as (3.7) and we will also refer to it as the ‘index-1 formulation’
of the SPP (3.15).

Remark 3.12
It might at first glance seem rather arbitrary to scale the penalizing potential by a factor of ε−2

instead of just ε−1, corresponding to the factor δ−1 in (3.6). It is nevertheless beneficial to hold
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to this approach for more than just consistency with the literature: When the stiff forces are
scaled by ε−2, the oscillations induced by the leading linear part scale with ε rather than

√
ε.

As a result, the derivatives of qε(t), cf. Example 3.10(b), grow with each time derivation by a
factor of ε−1 as the δ−1 in Figure 3.2. Even more important, the singular behavior imposes a
restriction on the ratio of time step size h for numerical methods and the penalty parameter:
In Remark 3.11 we saw that the results are valid for 0 < δ < C̃h. The corresponding results
for stiff mechanical systems are due to the work of Lubich (1993) and will be summarized in
Remark 3.20. If one is to resolve the oscillations, we have already mentioned in Section 2.2.3
that the time step size needs to be of the same order as the frequency of the oscillations. Either
way, a scaling with ε−2 appears to be the natural choice.

Nevertheless when judging the numerical results later on, one should always keep in mind
that a reduction of the penalty parameter ε for the stiff systems by a factor c ∈ R corresponds
to a multiplication of the perturbation parameter δ by

√
c – judging from the absolute value of

the penalizing force terms.

Remark 3.13 (‘Takens-chaos’: Analytically inherent singular behavior)
Proving the physically intuitive fact that for conservative systems and initial values that are
consistent with the corresponding constrained mechanical systems to (3.15) approach solutions
of (2.12) for ε→ 0 has long been an open mathematical question. Rubin and Ungar (1957) gave
a first mathematically rigorous proof using functional analytic techniques as the Arzéla/Ascoli
Theorem for convergence in function spaces. They already pointed out the importance of the
analysis in case of consistent initial values as opposed to those violating velocity constraints, as
then only weak or no convergence can be proven.

There have been many extensions and alternative proofs employing methods from various
fields as averaging (Arnold, 1989) or energy principles (Kurdila et al., 1993). To our knowledge
the first proof based on singular perturbation theory and involving the existence of a series
expansion like in (3.11) has been published by Lötstedt (1979). This approach bears the ad-
vantages that not only it includes the nontrivial observation that solutions starting in T Ms are
not optimally smooth in the sense that of all possible initial configurations they are the least
oscillating, but also provides techniques to construct such initial values. In Theorem 3.16 we
will use the formulation and proof of the Rubin–Ungar Theorem as presented by Lubich (1993)
which is in parts based on the work of Lötstedt (1979) before we construct smooth(er) initial
values for the stiff spring pendulum in Example 3.17.

In contrast to the analytic transformation from Remark 3.6, in case of stiff mechanical
systems it is not known in general how to find a smooth coordinate change such that (3.15) may
be interpreted as a regular SPP. On the one hand, this is already evident as the spectrum of stiff
mechanical systems for very small perturbation parameter ε lies very close to the imaginary axis
and so does not impose stable, i. e., attractive, behavior of the dynamical system. Moreover, in
case of initial values deviating too much from the constraints (but still bounded energy in the
system), there are examples (Bornemann, 1998, Chap. 2 §4) where the limiting behavior is no
longer uniquely determined since resonances lead to chaotic oscillations. This phenomenon was
first studied in detail by Takens (1980) and is therefore named ‘Takens-chaos’.

As in Lemma 3.7 it is also possible to reformulate the equations of motion of stiff mechanical
systems such that the singular forces enter linearly and define a partitioning into stiff and
nonstiff variables. Since U only depends on position variables, the position-velocity relation
remains unchanged.

Lemma 3.14 (Alternative formulation of stiff mechanical systems (Lubich, 1993, Lemma 2.1))
For given q0 ∈ Ms, there exists, locally but independent of ε, a coordinate change z = z(q),
or q = q(z), respectively, with q(0) = q0 and as often continuously differentiable as ∇2 U , such
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that in the new coordinates z the potential takes the form

U(q(z)) =
1

2ε2
‖z⊥‖22 ,

where z = (z‖, z⊥)> is partitioned in components z‖ ∈ Rnq−nλ parallel to Ms and z⊥ ∈ Rnλ
orthogonal to it. In terms of z(t), the equations of motion of the stiff mechanical system read

M̂(z(t))z̈(t) = f̂(z(t), ż(t))− 1

ε2

(
0 0
0 Inλ

)
z(t) (3.17)

with M̂(z) := (∂q/∂z)>M(q(z))(∂q/∂z), f̂(z, ż) := (∂q/∂z)f(q(z), q̇(z, ż)).

Remark 3.15 (Linear singular perturbations and flexible multibody systems)
For linear elasticity problems in flexible multibody dynamics, see Example 3.19 below, the
structure of (3.17) is sometimes already the situation at hand, if the elastic deformations are
defined such that their vanishing implies that the system moves like the gross motion alone, i. e.,
like a rigid system without flexible components (Simeon, 2013).

This problem class is also appealing because the Hessian of U is constant. We will see in
the following theorem that, as for the strongly damped counterpart in Theorem 3.8, consistent
initial values (for the DAE case) do not necessarily result in a smooth solution. In molecular
and flexible multibody dynamics this matter can sometimes be diminished by adding so-called
correcting potentials (Reich, 1995). For problems with constant Hessian ∇2 U those correction
terms vanish, i. e., the solution is already smooth.

Theorem 3.16 (Smooth motion (Lubich, 1993))
For each pair (q0

0, q̇
0
0)> satisfying

g(q0
0) = G(q0

0)q̇0
0 = 0

and arbitrarily given imax > 0 there exist (qε0, q̇
ε
0)> which are unique to O(ε2·imax), and with

q0
0 − qε0, q̇0

0 − q̇ε0 ∈ O(ε2) ∩
(
T q00 M

s
)M(q00)-⊥

(3.18)

such that the solution (qε(t), q̇ε(t))> of (3.15) with initial values (qε0, q̇
ε
0)> is smooth and allows

for an expansion of the form

qε(t) = q0(t) + ε2q1(t) + . . .+ ε2·imaxqimax(t) +O(ε2·imax+2) ,

q̇ε(t) = q̇0(t) + ε2q̇1(t) + . . .+ ε2·imax q̇imax(t) +O(ε2·imax+2) ,
(3.19)

where qi(t), i ≥ 0, are ε-independent and exist on finite time intervals. In particular, q0(t) =
q(t), t ∈ [t0, tend], is the solution of the index-3 equations of motion of the corresponding
constrained system (2.12).

All pairs (qε0, q̇
ε
0)> form a 2(nq − nλ)-dimensional manifold Mε ⊂ R2nq , which is invariant

under the flow of (3.15) up to terms of order O(ε2·imax+2).

Instead of giving a formal proof to this theorem, we come back once again to the planar
stiff pendulum. In the following example we show that there is no need to compute an analytic
expression for the solution to get initial values that allow for a smooth analytic solution, i. e.,
one with arbitrarily many, ε-independently-bounded derivatives. It is, on the contrary, possible
to derive such initial values using only the involved functions M, f and g and their derivatives,
respectively. One should nevertheless keep in mind that for a large scale computer model in a
technical simulation it is prone trying to find initial values that lie ‘exactly on’ Mε, yet alone
sufficiently close to it such that the numerical procedures are not negatively influenced.
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Example 3.17 (Smooth motion of the stiff spring pendulum)
A formal insertion of the series ansatz (3.19) into the equations of motion for the stiff mechanical
system and expansion with respect to powers of ε2 allows to equate series coefficients recursively:
The ε−2-term vanishes iff

G>(q0)g(q0) = 0 ⇔ g(q0) = 0 .

Equating the ε0-terms
M(q0)q̈0 = f(q0, q̇0)−G>(q0)G(q0)q1 ,

we almost obtain the descriptor form already. To attain a uniquely solvable system we formally
introduce the variable Rnλ 3 λ0(t) := G(q0(t))q1(t) and arrive at (2.12) for q = q0(t). Consid-
ering the solution (q0(t), q̇0(t), q̈0(t))> to be known, equating the ε2-terms gives another system
of the same structure

M(q0) · q̈1 = f1(q1, q̇1; q0, q̇0, q̈0)−G>(q0) G(q0)q2

︸ ︷︷ ︸
=:λ1

, (3.20)

where f1 is linear in q1, q̇1. Together with the above definition of λ0 as a constraint equation this
is again an index-3 differential-algebraic system providing a unique solution q1. By induction,
this procedure may be extended to arbitrary order qk. Note however, that for the definition of
q2 (or—more precisely—the definition of f2), the fourth order derivatives of q0 and the second
derivatives of λ0 are needed. Altogether, the definition of qk involves the solution of a sequence
of k − 1 index-3 or one (large) index-(2k + 3) system and is therefore beyond the capacity of
what one can expect from a numerical algorithm. After the formal derivation of qk, k = 0, 1, . . .,
finishing a formal proof of Theorem 3.16 mostly copes with the estimation of the remainder in
truncated series expansions using Lemma 3.14 above to basically deal with linear problems. The
entire proof can be found in (Lubich, 1993, Theorem 2.2).

Coming back to the pendulum example, for q(0) = 1
2(
√

2,
√

2)>, q̇(0) = (−1, 1)>, we get
(1.1a), (1.1b) to determine q0. The solution of the saddle-point problem (2.15) can be used to
obtain

q̈0(0) =

( ggrav
2 −

√
2

−ggrav
2 −

√
2

)
,

λ0(0) =
(q0
y)

2
(
(q̇0
x)2 − ggravq

0
y

)
+ (q0

x)2
(

(̇q0
y)

2 − ggravq
0
y

)
− 2q0

xq
0
y q̇

0
xq̇

0
y

(
(q0
x)2 + (q0

y)
2
)3/2

∣∣∣
t=0

= 2−
√

2
2 ggrav .

To derive initial values for q1, we use (3.20) which for this very simple problem already reads
(
q̈1
x

q̈1
y

)
=

λ0

(
(q0
x)2 + (q0

y)
2
)3/2

(
q0
y(q

0
yq

1
x − q0

xq
1
1)

q0
x(q0

xq
1
y − q0

yq
1
x)

)
−G>(q0)λ1

and an index reduction to obtain initial values for the system with G(q0)q1 = λ0 includes two
time differentiations of λ0(t) and so on. Carefully equating terms with ε4 and always adding a
condition that the initial values lie in the M(q)-orthogonal complement of Ms gives the following
set of initial values:

qε(0) =

(√
1/2√
1/2

)
+ ε2

(√
2− ggrav

2√
2− ggrav

2

)
+ ε4

(
−3ggrav√

2
− 3ggrav√

2

)
+O(ε6) ,

q̇ε(0) =

(
−1
1

)
+ ε2


−

3g2grav+4
√

2ggrav+8

2
√

2

−3g2grav+4
√

2ggrav+8

2
√

2


+ ε4

(
9
2ggrav

(
ggrav + 2

√
2
)

9
2ggrav

(
ggrav + 2

√
2
)
)

+O(ε6) .

(3.21)
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Note that the orthogonality conditions in (3.18) imply the unique definition of corresponding
smooth initial values and coincide with (q0

0, q̇
0
0)> being the projected values of (qε0, q̇

ε
0)> using

the techniques of Section 2.1.3. Notice also that the same result can be acquired using Hairer’s
reformulation (3.16) and a series ansatz for λε. This approach is arguably easier to use from a
practical point of view because the definition of λk does not have to be imposed in each induction
step.
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Figure 3.3: Numerical solution of pendulum equations using ode113.m and different initial values

In Figure 3.3 we illustrate the influence of the choice of initial values on the behavior of the
solution. We used the MatlabTM integration method ode113.m (Shampine and Reichelt, 1997)
with very low tolerances ’AbsTol’=’RelTol’=1e-12, ’InitialStep’=1e-14 and the moderate
value ε = 10−2 to compute very accurate solutions to the stiff system with (a) initial values that
were perturbed by 0.05 · (1, 1)> on position and velocity level, respectively, (b) consistent initial
values, (c) using the initial values from (3.21) truncating after the ε2-terms and (d) with the
computed smooth initial values. The number of function evaluations of ode113.m—the probably
most viable way to measure computational cost–dropped from 4924 for perturbed values, to 3339
for consistent initialization to 2331 and 1653 respectively for the smooth initial values. To obtain
the results in the lower row of Figure 3.3, we enlarged the system by adding new variables for
the accelerations q̈ε. The numerical cost was comparable to the above experiment (5993, 4527,
3315, 2009) but zooming in for t ∈ [1.75, 2], q̈εx ∈ [−4.7,−4.5] reveals the stronger tendency
towards oscillations for the third choice. One should nevertheless emphasize that Theorem 3.16
is mainly of mathematical interest and that for practical computations it is neither possible to
obtain smooth initial values nor to hope that the computation is accurate enough to validate
the assertion. ♦
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Corollary 3.18 (Rubin–Ungar Theorem (II))
The well-defined solutions of the equations of motion of stiff mechanical systems (3.15) with
consistent initial values q(t0), q̇(t0) approach for ε → 0 uniformly on the finite time interval
[t0, tend] the solutions of the equations of motion in descriptor form (2.12). The difference of
approximates and limit solutions ‖qε(t)−q(t)‖ remain inO(ε2), ‖q̇ε(t)−q̇(t)‖ inO(ε). The result
remains true if the deviation of qε0 and q̇ε0 from Ms and Tπqε0 M

s is O(ε2), O(ε) respectively.

Note that even for consistent initial values, Theorem 3.16 does not provide a O(ε2)-estimate
for the errors ‖q̇ε(tn) − q̇(tn)‖ on velocity level. This is only true for smooth solutions. In
particular, this implies that

‖P(q(t))q̇ε(t)−q̇(t)‖ = ‖P(q(t))(q̇ε(t)−q̇(t))‖ = O(ε2), while ‖q̇ε(t)−q̇(t)‖ = O(ε) in general.
(3.22)

A more detailed analysis is given by Bornemann (1998).

Example 3.19 (Stiff mechanical systems in flexible multibody systems)
In the simulation of (bio-) mechanical systems the consideration of just rigid bodies is often
insufficient to determine the time evolution of a complex system. The simulation of these flexible
multibody systems often leads to stiff mechanical systems which is why we give a very concise
overview here. Flexible structures or tissue can be described using the Navier–Lamé equations

ρü(x, t) = divΣ(u(x, t)) + β(x, t) , x ∈ Ω , t ∈ [t0, tend] ,

u(x, t) = u0(x, t) , x ∈ Γ0 , Σ(u(x, t))n(x) = τ (x, t) , x ∈ Γ1 ,
(3.23)

of structural dynamics or variants of it. In PDE (3.23), u : R3×[t0, tend] → R3 is the displace-
ment of each point of the body, ρ is the mass density and Σ:=Λ1·(trace(ε))I+2Λ2·ε : R3 → R3×3

is the St. Venant–Kirchhoff stress tensor with Lamé constants Λ1, Λ2 ∈ R and the Green–
Lagrangian strain tensor ε := 1

2(∇u+∇u> +∇u>∇u). Γ0 and Γ1 with Γ0 ∪ Γ1 = ∂Ω are the
Dirichlet and Neumann boundaries of the bounded domain Ω ⊂ R3 that represents the flexi-
ble body and β : R3×[t0, tend] → R3 is the vector of external and internal forces. Through β,
the Dirichlet data u0, and the Neumann velocity field τ the body is usually coupled to other
structures in the ODE- or DAE-model. Depending on the geometry and coupling conditions
there are many numerical approaches to (3.23). Most common is a semidiscretization tech-
nique (method-of-lines) where the PDE is transformed to a system of ODEs: Based on the weak
formulation

∀v ∈ V0 :

∫

Ω
ρv>ü dx+

∫

Ω
Σ(u) : ε(v) dx =

∫

Ω
v>β dx+

∫

Γ1

v>τ ds , (3.24)

or more abstract ∀v ∈ V0 : 〈ρü,v〉+ a(u,v) = 〈l,v〉 for a suitable Sobolev space V0, nonlinear
functionals a(·, ·) and 〈·, ·〉, and an element l ∈ V0 dependent on β and τ , see (Simeon, 2013)
for details.

The basis of the Galerkin-approach (Hughes, 1987) lies at restricting (3.24) to a finite di-
mensional ansatz space Vh,0 of appropriately chosen functions vi, i = 1, . . . , nd := dimVh,0,
i. e.,

∀vi ∈ Vh,0 : 〈ρü,vi〉+ a(u,vi) = 〈l,vi〉 .

The displacement u is then approximated by a linear combination uh(t,x) :=
∑nd

j=1 qj(t) ·vj(x)
of the elements of Vh,0. If internal damping is neglected, this leads to a second order system

M(q(t))q̈(t) + K(q(t))q(t) = f(t, q(t)) , t ∈ [t0, tend] , (3.25)
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where q(t) = (qi)i=1,...,nd
contains the coefficients in the approximation of u by uh and

M = (〈ρvj ,vi〉)i,j=1,...,nd
, K = (a(vj ,vi))i,j=1,...,nd

, f = (〈l,vi〉)i=1,...,nd

are the locally assembled mass and stiffness matrix and f is called load vector. In many ap-
plications the gross motion is much larger than the deformations u and it suffices to consider
linear elasticity: The strain tensor is truncated after the second summand and a(·, ·) and 〈·, ·〉
become bilinear forms. As a result, M and K, sometimes even f , are independent of the state
vector q and need to be assembled only once.

Whether or not (3.25) may be regarded as a stiff mechanical system in the above sense may
now depend on various components: The decisive factor is whether certain time scales in the
system are considerably separated from others, or, for linear elasticity, there is a substantial
gap in the eigenvalue spectrum of (M,K). In practice, this depends on model parameters as
material or geometry and the ansatz functions/the semidiscretization procedure (including the
triangulation of Ω). For rod or shell models the separation is typically given since bending
modes usually show much smaller frequencies than shearing or elongation modes. Becker (2012)
studies almost incompressible media where the bulk modulus is very large and the system may
therefore be treated as a singularly perturbed system. For an application in biological tissue
simulation we refer to Simeon et al. (2009).

At last, we note that linear elasticity theory leads to linear stiff potential forces and corre-
sponds to a quadratic penalizing potential which bears several advantages from a computational
viewpoint. Note also that the discretization in space introduces an additional spatial error in
the numerical solution. ♦

Remark 3.20 (Convergence results for Runge–Kutta methods and stiff mechanical systems)
In (Lubich, 1993) a large class of Runge–Kutta methods is analyzed for stiff mechanical systems
of the form

M(qε(t))q̈ε(t) = f(qε(t), q̇ε(t))− 1

ε2
∇U(qε(t)) ,

where the (slightly more general) potential U attains a local minimum along an (nq − nλ)-
dimensional manifold. The results we present in the next chapters for Newmark integration
methods also apply in this setting.

Let a Runge–Kutta method with classical order p and stage order 1 ≤ ps ≤ p be given that is
I-stable and has an invertible Runge–Kutta matrix A with no eigenvalues on the imaginary axis.
If the initial values (qε0,v

ε
0)> lie on the manifold Mε of smooth motion we get the equivalent to

the estimate (3.13)

qεn − qε(tn) = q0
n − q(tn) +O(ε2hps−2) , vεn − q̇ε(tn) = v0

n − q̇(tn) +O(ε2hps−2) ,

to relate errors of the method for application to (3.15) and those for (2.12) with initial values
attained by mass orthogonal projection. When the initial values deviate from Mε by terms of
magnitude O(h2) for position and O(h) for velocity coordinates, the discrete dynamical system
defined by the Runge–Kutta method has an attractive invariant manifold and one can show the
estimates

‖qεn − qε,proj
n ‖+ ‖vεn − vε,proj

n ‖ ≤
{
C(h%n + εps) for even ps ,

C(h%n + hεps−1) for odd ps ,
(3.26)

where (qε,proj
0 ,vε,proj

0 )> ∈Mε are uniquely defined by the projection to consistent values π(qε0),
Pvε0 and their counterparts on Mε. % < 1 is again a number that depends on the method and
the ratio of time step size h and penalty parameter ε. In particular, from this result we conclude
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that the error, measured as deviation from the solution of the corresponding index-3 DAE, can
be estimated like

‖qεn − q(tn)‖+ ‖vεn − q̇(tn)‖ ≤ C(h%n + hpDAE3 + ε2) ,

where pDAE3 denotes the order (for position and velocity coordinates) of the method when
applied to the index-3 problem (2.12). There are various convergence results from the literature
(Hairer et al., 1989a, Lubich, 1993, among others) proving that order reduction occurs even for
families of stiffly accurate collocation methods which are commonly reckoned as the most robust
and reliable methods.

The proof of the main result (3.26) is based on methods from (Hairer et al., 1988): It
is shown that the numerical solutions may be expanded into a series in powers of ε2 as the
smooth solution in (3.19). Since the methods are linear, this result shows that the errors for
the coefficients (qi, q̇i)> may be studied independently. So, convergence for (3.15) is directly
related to convergence for DAE systems of high index 3, 5, 7, . . ., see Example 3.17.

Scholz (1989) and Simeon (1998) use the test equation of Prothero–Robinson where the
leading stiff terms are only linear to analyze Runge–Kutta and Rosenbrock methods for stiff
mechanical systems. The error analysis is substantially simplified and reveals that local errors
dominate the numerical behavior of the methods since other error sources get damped out by
the L-stable methods. From that observation it becomes evident that the stage order plays such
an important role in the above estimates.

Schneider (1995) extended, almost without any changes, the results to a class of multistep
Runge–Kutta methods and pointed out that the I-stability can even be relaxed to so-called Id-
stability, i. e., stability on the imaginary axis for all z with |z| > d, d > 0. Finally, note that as
for strongly damped systems we get a condition of the form 0 < ε < C̃h for some constant C̃
for the above estimates to hold.

Remark 3.21 (Mixed formulation)
An obvious question is whether one should consider using both kinds of singular regularizing
force terms, i. e., the system

M(q)q̈ = f(q, q̇)− 1

δ
G>(q)G(q)q̇ − 1

ε2
G>(q)g(q) , (3.27)

comprising stiff (spring-element) terms as well as strongly attractive damping. Kurdila et al.
(1993) prove convergence and stability for this formulation, in case that without penalizing
potential or dissipation the system is conservative, by the construction of a suitable Lyapunov
function. Usually, (3.27) is only used as a stabilization of the stiff or strongly attractive system to
either stabilize the time integration itself since the highly oscillatory terms in (3.15) are difficult
to tackle or to avoid drift-off in case of an integration of (3.6) (Hans, 2004).

Going even one step further one might as well incorporate the constraints on acceleration
level (2.14) and include a corresponding inertia penalty by a adding a so-called ‘fictitious kinetic
energy term’ to the Lagrangian in the system (Bayo et al., 1988). The resulting equations of
motion then read

([
M + 1

ζG
>G
]

(q)
)
q̈ = f(q, q̇)−G>(q)

(
1

ε2
g(q) +

1

δ
G(q)q̇ +

1

ζ
R(q)(q̇, q̇)

)
, (3.28)

with yet another penalty constant ζ > 0, but the numerical challenges as well as problems like
drift-off (for relatively large ε), numerical instability due to the ill-posed nature of the problems
and the lack of a suitable way of choosing the parameters appropriately remain. Note the
connection to the regularization methods from DAE time integration as Gear–Gupta–Leimkuhler
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and Baumgarte formulation. A thorough analysis for this two or even three penalty parameters
appears to be rather complicated. So, mostly one parameter is supposed to cause the singular
perturbation and the others are regarded as stabilizations. For the case of weak damping and
Hamiltonian systems, see for instance the work of Modin and Söderlind (2011). In case of
stabilization of stiff systems one typically chooses 1/δ := 2ξε−1 with a parameter 0 ≤ ξ < 1 to
control the amount of damping, cf. Remark 4.18 below. Kurdila et al. (1993) propose to include
even further parameters to scale the constraints in order to have control on the eigenvalues. An
also frequently used approach is the augmented Lagrangian method where constraints and stiff
potentials are both used for computational advantages.

At last, although beyond the scope of the present work, we also mention that in mechani-
cal engineering and biomechanics it is a common approach to approximate impact models by
locally active force laws of spring-damper type. Here, many models are known in the literature
and provide suitable parameter choices based on material laws (Hertz damping, Hunt–Crossley
impact, Kelvin–Voigt material, etc.).
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Chapter 4

The Newmark time integration family

In this chapter we consider the general second order differential-algebraic initial value problem

M(q(t))q̈(t) = F (q(t), q̇(t),λ(t)) ,

0 = Φ(q(t), q̇(t),λ(t)) , q(t0) = q0, q̇(t0) = q̇0, (t ∈ [t0, tend])
(4.1)

with regular mass matrix M : Rnq → Rnq×nq , generalized force vector F : R2nq+nλ → Rnq and
constraint function Φ : R2nq+nλ → Rnλ which are, at first, all assumed to be sufficiently smooth.
For the ODE-case, nλ might be zero. In this general form we can cope with the index-1, 2 and
3 formulations of Chapters 2 and 3 (and could even with nonholonomic constraints or friction
forces) in one unified framework.

4.1 The algorithm

In the numerical solution procedure we acquire approximations qn, vn, λn for the position
coordinates q(tn), the generalized velocities q̇(tn) and the Lagrange multipliers λ(tn) on an
equidistant time grid {tn}Nn=0, tn = t0 + nh, n = 0, 1, . . . , N , h := (tend − t0)/N , as well as
accelerations v̇n ≈ q̈(tn) via the recursion formulae

qn+1 = qn + hvn + h2(1
2 − β)an + h2βan+1 , (4.2a)

vn+1 = vn + h(1− γ)an + hγan+1 , (4.2b)
(1− αm)an+1 + αman = (1− αf )v̇n+1 + αf v̇n , (4.2c)

M(qn+1)v̇n+1 = F (qn+1,vn+1,λn+1) ,
0 = Φ(qn+1,vn+1,λn+1) .

}
(4.2d)

The first two equations are in the literature referred to as Newmark’s method (Newmark, 1959,
originally introduced in 1952) and they form the starting point of a huge variety of time integra-
tion methods for problems in structural dynamics as they have been proposed in the 1960’s to
1990’s, see (Hilber et al., 1977, Wood et al., 1981, Hoff and Pahl, 1988b) and the overview given
by Hughes (1987). We adapt the terminology ‘Newmark-type’ here and throughout the present
work. Equations (4.2a) and (4.2b) may simply be gained by using a combination of the explicit
Euler scheme and a θ-method in the acceleration-like variables an ∈ Rnq . We refer to them as
‘acceleration-like’ because they are, as will become clear below, only a low order approximation
to the actual acceleration q̈(tn) coupled through equating two linear combinations in (4.2c).
Note that the introduction of an, n ≥ 0, makes (4.2) a multistep method, although it allows
for an easy onestep representation and—more importantly—a onestep-like implementation, see
Remark 4.2 below.
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As given in (4.2), the algorithm has four free parameters. Apart from the classical Newmark
scheme, see Remark 4.1 below, all methods of practical relevance are of second order, which we
will see in Section 5.1 to be generally the case, as long as the second order condition

γ =
1

2
−∆α for ∆α := αm − αf (4.3)

is fulfilled. The probably most common parameter choice, the Chung–Hulbert algorithm (CH(%∞)
method, generalized-α method)

αm =
2%∞ − 1

%∞ + 1
, αf =

%∞
%∞ + 1

, β =
1

4

(
1

2
+ γ

)2

=
1

(%∞ + 1)2
(4.4)

due to Chung and Hulbert (1993) is a one-parameter family with %∞ ∈ [0, 1], called the numerical
damping parameter. Note that in literature sometimes the roles of αm and 1 − αm as well as
αf and 1 − αf are interchanged (Jansen et al., 2000, Rang, 2013) leading to the parameters
αm = 2−%∞

1+%∞
, αf = 1

1+%∞
, β = 1

4(1 +αm−αf )2, γ = 1
2 −αf +αm. The methods are nevertheless

equivalent.

Remark 4.1 (The classical Newmark scheme: Derivation and prominent special cases)
In the original work, Newmark (1959) introduces solely the position and velocity updates (4.2a)
and (4.2b) which one obtains as a special case of the (4.2) for αm = αf . For these parameters
the acceleration-like variables an become unnecessary since they coincide with v̇n not taking
into account the initialization procedure. The original development of the method is based on a
representation of q(t) in the form

q(tn+1)︸ ︷︷ ︸
≈qn+1

= q(tn)︸ ︷︷ ︸
≈qn

+h q̇(tn)︸ ︷︷ ︸
≈vn

+

∫ tn+1

tn

(tn+1 − τ) q̈(τ)︸︷︷︸
≈ā(τ)

dτ , q̇(tn+1)︸ ︷︷ ︸
≈vn+1

= q̇(tn)︸ ︷︷ ︸
≈vn

+

∫ tn+1

tn

q̈(τ)︸︷︷︸
≈â(τ)

dτ ,

(4.5)
where the functions ā, â : [tn, tn+1]→ Rnq serve as non-discrete approximations of q̈(τ). Using
the approximation ā(τ) = â(τ) ≡ an and carrying out the integration in (4.5) leads to the
explicit Euler method with γ = β = 0. Equivalently, ā = â = an+1, and so γ = 1, β = 1

2 is the
implicit Euler method.

All three approximations with ā = â and

a) ā(τ) =

{
an τ ∈ [tn, tn + h/2]

an+1 else

b) ā(τ) = an +
(τ − tn)(an+1 − an)

h

c) ā(τ) ≡ an + an+1

2

lead to γ = 1
2 and a) β = 1

8 (step function approximation), b) β = 1
6 ( linear acceleration method),

and c) β = 1
4 (constant acceleration method, trapezoidal rule, Verlet scheme for unconstrained

systems and F = F (q), RATTLE in the constrained case). Keeping ā as above and â(τ) ≡ an
is equivalent to β = 0 and commonly known as Störmer’s method which for velocity-independent
F = F (q) then coincides with the explicit central difference scheme. At last, γ = 1

2 , β = 1
12 is

known as Fox–Goodwin scheme or royal-road method and designed to minimize period errors
(Fox and Goodwin, 1949). ‘The’ Newmark method (or average constant acceleration method)
is a family with parameter choices γ ∈ [1

2 , 1], β = 1
4(1

2 + γ)2, see Example 4.17 below. The
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case γ = 1
2 plays an important role because only in that setting the methods are second order

accurate. The reason to even consider implicit methods that are only of first order lies in the
improved stability behavior or numerical damping, which will become evident in Section 4.2.

The algorithm in the above general form, i. e., with the four parameters β, γ, αm, and αf
has first been introduced by Chung and Hulbert (1993) as a special case of the six-parameter
algorithm of Hoff and Pahl (1988a). The derivation of that algorithm was based on a subspace
collocation approach adapting methods from finite-element analysis (moment-matching for an
arbitrary weighting function) within the framework introduced by Zienkiewicz (1977).

Remark 4.2 (Characterization as a multistep method)
Following the idea of Erlicher et al. (2002) we state the above algorithm in the form of a
partitioned linear multistep method. The position and velocity updates (4.2a) and (4.2b) on
two consecutive time steps allow for an elimination of the acceleration-like variables an such
that we obtain a three-level recursion that only includes position and velocity variables. In the
same way (see Arnold and Brüls, 2007) we can use (4.2b) and (4.2c) to eliminate an−1, an and
an+1 such that we arrive at the relations

2∑

i=0

αqi qn+i−1 = h
2∑

i=0

βvi vn+i−1 ,

2∑

i=0

αvi vn+i−1 = h
2∑

i=0

βvi v̇n+i−1

(4.6)

with

αq0 = 2γ − 1 , αq1 = γ − 1 , αq2 = γ ,

βq0 =
1 + 2β − 2γ

2
, βq1 =

1− 4β + 2γ

2
, βq2 = β ,

αv0 = −αm , αv1 = 2αm − 1 , αv2 = 1− αm ,
βv0 = αf (1− γ) , βv1 = 1− γ + αf (2γ − 1) , βv2 = γ(1− αf ) .

Additionally, the equilibrium conditions (4.2d) remain valid and define the acceleration variables
v̇n+1 and Lagrange multiplier vectors λn+1 while also ensuring constraint fulfillment. So, a
comparison with (2.29) shows that algorithm (4.2) falls into the class of partitioned linear two-
step methods. Note that when given as in (4.6) within the initialization of the algorithm there
is an additional degree of freedom because instead of just setting a0 one has to compute values
for q1 and v1 to start the algorithm. Note also that in the literature the classification of the
algorithm is handled differently as it combines properties of onestep as well as multistep methods.
Hughes (1987) uses the term ‘onestep-multivalue method’ to characterize Newmark integrators.

Remark 4.3 (Extension to nonlinear systems)
Originally the above method has been introduced for linear systems

Mq̈(t) + Dq̇(t) + Kq(t) = f(t) , (4.7)

where only the load vector f explicitly depends on time. These systems usually appear in large
scale semi-discretized finite-element simulations in structural dynamics, cf. Example 3.19. In
their original work, Chung and Hulbert (1993) used a different formulation imposing the equi-
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librium condition, also called collocation or balance equation, at a shifted time instance tn+1−αf .

Man+1−αm + Dvn+1−αf + Kqn+1−αf = f(tn+1−αf ) ,

where tn+1−αf := αf tn + (1− αf )tn+1 ,

qn+1−αf := αfqn + (1− αf )qn+1 ≈ q(tn+1−αf ) ,

vn+1−αf := αfvn + (1− αf )vn+1 ≈ q̇(tn+1−αf ) ,

an+1−αm := αman + (1− αm)an+1 ≈ q̈(tn+1−αf ) .

(4.8)

Note that the indices are just notations; only variables with integer-subscripts are relevant for
later use. The linear structure of (4.8) leaves some freedom when extending the algorithm
to general nonlinear systems. A direct transition to nonlinear systems—and the way it has
originally been proposed by Hulbert and Chung (1996), see also (Hilber and Hughes, 1978,
Erlicher et al., 2002, Rang, 2013)—would lead to an algorithm where the equilibrium condition
(4.2d) is to be replaced by

M(qn+1−αf )an+1−αm = F (qn+1−αf ,vn+1−αf ,λn+1−αf ) ,

0 = Φ(qn+1−αf ,vn+1−αf ,λn+1−αf ) ,
(4.9)

and λn+1−αf :=αfλn+(1−αf )λn+1. Note that the (true) acceleration variables v̇n are no longer
present in this form and are typically not computed. We call (4.8) and (4.9) the one-leg version
of Newmark integrators (Hairer and Wanner, 2002) or midpoint collocation with regards to the
work of Hilber and Hughes (1978). Note, in particular, that for linear systems, trapezoidal rule
and implicit midpoint rule lead to the same algorithm.

Another way of extending to nonlinear systems and implementing the algorithms is given if
the acceleration update (4.2c) is plugged into the equilibrium condition, i. e.,

(1− αm)Man+1 + αmMan = (1− αf )F (qn+1,vn+1,λn+1) + αfF (qn,vn,λn) ,

0 = (1− αf )Φ(qn+1,vn+1,λn+1) + αfΦ(qn,vn,λn) ,
(4.10)

called the modified residual equations (Brüls and Golinval, 2006) as is preferred among others
by Lunk and Simeon (2006) and Jay and Negrut (2007).

For nonconstant mass matrix it is not obvious which arguments q of M are to be taken
in the left-hand-side of (4.10). Simply inserting q(n−1)+1−αf and qn+1−αf would make the
computations dependent on qn−1 which would destroy the beneficial onestep implementation
structure, see Remark 4.19 below. Jay (2011) proposed to calculate the arguments q as explicit
Euler predictors using only qn and vn. For the HHT method to be defined in Example 4.17 below
we have αm = 0 and this is no issue. On the other hand, for αf = 0, which is commonly known as
WBZ or Bossak–Newmark algorithm, see below, the equilibrium condition for all formulations is
to be taken at tn+1 and (4.2), (4.9), and (4.10) coincide for constant M. Note that all algorithms
in this remark are just O(h2)-perturbations of each other. For nonstiff nonlinear ODE systems
the convergence results, for instance of Erlicher et al. (2002), are valid for all these formulations.
We also refer to (Brüls, 2005, Section 3.3.2) and (Géradin and Rixen, 2015, Remark 7.3) for a
discussion of the different formulations.

Taking the collocation point for the equilibrium at t = tn+1 is advantageous for many reasons:
(a) Nonconstant mass matrices are easily and straightforwardly incorporated, (b) constraint
enforcement for all approximations on the time grid is a reasonable requirement, (c) for general
mechatronic systems with control feedback, exact knowledge of the accelerations on the time
grid is very important (Brüls and Arnold, 2008), the same is true for the forces of models in
sustainability analysis, (d) for some large scale PDE or control problems it is not easy to obtain
force terms at intermediate values, and (e) as BDF methods using a residual formalism (Arnold
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et al., 2011) are the most common implicit integrators in multibody dynamics, the adaptation of
existing code for the use of Newmark-type integrators seems easier using the approach favored
in this thesis.

Remark 4.4 (Industrial implementations)
As they have originally been introduced for problems of structural dynamics, Newmark-type
integrators are usually available for commercial simulation environments for partial differential
equations. The simulation platform ComSol-Multiphysics (COMSOL (2008), COMSOL (2012))
offers a Chung–Hulbert(%∞) algorithm with local error estimation for the simulation of dynami-
cal models. Newmark integrators, as variable time step HHT methods, see Example 4.17 below,
are also implemented for the time integration of large scale finite element models in the finite-
element tool Abaqus (SIMULIA (2011)). The MSC software collection uses an averaged version
of the classical Newmark method for large finite-element transient analysis (MSC-Nastran) and
Newmark and HHT in modified residual form for simulations in MSC-Adams, see (MSC-Software
(2012)) and the description by Negrut et al. (2005). LS-DYNA (Livermore Software Tech.-Corp.,
2006/2007) ‘implicit-dynamics’ computations also use Newmark as the default time integration
scheme.

In the Matlab-based multibody simulation tool NEWEUL-M2 (Kurz et al., 2010) there are
variable step size implementations of the classical Newmark scheme as well as HHT and Chung–
Hulbert(%∞) method. The first multibody simulation environment using the version of Newmark
methods for DAEs as they are presented here is the CAE (computer aided engineering) software
MECANO (Samtech (2015), Brüls (2005)). The simulation platform RecurDyn (RecurDyn
(2015)) also offers the possibility to use a Chung–Hulbert(%∞) method for computational models.
Its ‘Hybrid Integrator’ is a Newmark integration scheme with the parameters β and γ chosen
as for the Chung–Hulbert(%∞) method (Sanborn et al., 2014). The free simulation environment
FreeDyn (Nachbagauer et al., 2015) uses a variant of HHT as it is proposed by Negrut et al.
(2005). The multibody simulation tool Universal Mechanism (Universal Mechanism (2015)) uses
a variation of Park’s method (Fung and Tong, 2001) which is closely related to the ’classical‘
integration scheme of Newmark.

4.2 Linear stability analysis and optimal parameter choice

4.2.1 Linear test equation and stability

The study of stability for algorithms designed for ordinary differential equations is inevitably
linked to the famous test equation

ẋ(t) = λx(t) , x(0) = x0 , <λ ≤ 0, , (4.11)

of Dahlquist (1963). As the norm of the analytic solution x(t) = x0 e−λt of (4.11) is non-
increasing, linear stability of a numerical procedure is defined as the property of providing
bounded solutions for the application to (4.11). Typically, this leads to restrictions on the
product z̃ := hλ of step size and stiffness parameter. For Runge–Kutta methods, one step is
given by x1 = R(z̃) · x0 with the stability function R(z̃) such that the stability region S indeed
describes the region of all hλ giving stable solutions in the above sense.

For second order differential equations the test equation is also due to Dahlquist (1978) and
given by the harmonic oscillator (3.2)

q̈(t) + ω2q(t) = 0 , q(0) = 0 , q̇(0) = q̇0 , (4.12)
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where the singular perturbation parameter is replaced by its inverse ω = ε−1. The analytic
solutions are of the form

q(t) = C1 sin(ωt) + C2 cos(ωt) (4.13)

with C1, C2 ∈ R depending on the initial data. Again stability is by definition given if the
approximations remain bounded; we will introduce more detailed stability concepts in Defini-
tion 4.7. The consideration of (4.11) and (4.12) is motivated by the fact that in a neighborhood
of equilibrium points both test equations resemble the leading term of any ODE after local line-
arization and decomposition. We will see in Chapter 5 that this classical consideration already
covers the governing linear part of the analysis for the singularly perturbed mechanical systems.

Gladwell and Thomas (1980) propose to consider the test equation

q̈(t) + 2ξq̇(t) + (ξ2 + ω2)q(t) = 0 (4.14)

in order to relate the second order integration methods directly to those for first order equations.
Its analytic solution comprises terms of the form e−ξt · sin(ωt) and e−ξt · cos(ωt) and therefore
resembles the numerical behavior for damped oscillations as in the scalar case (4.12) with λ =
ξ ± iω. This approach allows the definition of stability regions as for first order equations: The
stability region for (4.2) comprises all points (hξ0, hω0) ∈ R2 such that the algorithm provides
stable solutions for (4.14) with ξ = ξ0, ω = ω0, and step size h ≥ 0.

A straightforward application of the Newmark integrator (4.2) to (4.12) leads to the linear
recursion formula (Chung and Hulbert, 1993)




1 0 −β
0 1 −γ

(1− αf )z2 0 1− αm






qn+1

hvn+1

h2an+1


 =




1 1 0.5− β
0 1 1− γ

−αfz2 0 −αm






qn
hvn
h2an


 , (4.15)

where the variable z := hω has been introduced. For later reference the linear operator of the
recursion is denoted by T(z).

(
qn hvn h2an

)>
 
(
qn+1 hvn+1 h2an+1

)>
= T(z)

(
qn hvn h2an

)>
,

T(z) =




1 0 −β
0 1 −γ

(1− αf )z2 0 1− αm



−1


1 1 0.5− β
0 1 1− γ

−αfz2 0 −αm




=




αfβz
2 + αm − 1

(αf − 1)βz2 + αm − 1

αm − 1

(αf − 1)βz2 + αm − 1

αm + 2β − 1

2 ((αf − 1)βz2 + αm − 1)
z2γ

(αf − 1)βz2 + αm − 1
1− z2(αf − 1)γ

(αf − 1)βz2 + αm − 1

0.5
(
2− z2(αf − 1)

)
γ

((αf − 1)βz2 + αm − 1)
+ 1

z2

(αf − 1)βz2 + αm − 1
− z2(αf − 1)

(αf − 1)βz2 + αm − 1

(αf − 1)(2β − 1)z2 + 2αm
2 ((αf − 1)βz2 + αm − 1)



,

(4.16)

where we assume β, γ 6= 0, αm, αf 6= 1 as will become evident in the analysis below. To study
the error growth, eigenvalues of T(z) need to be estimated because they govern the behavior of
(4.15) for repeated application. As the entries of the three-by-three update formula depend on
five parameters, the calculations are very involved. Following Brüls (2005), a condensed way of
providing the characteristic polynomial is given by χT(µ) =

[
Pαf (Pγ + P1Pβ)z2 + P 2

1Pαm
]

(µ),
where

Pαm(µ) = (1− αm)µ+ αm , Pαf (µ) = (1− αf )µ+ αf , Pγ(µ) = γµ+ 1− γ ,
Pβ(µ) = βµ+ 1

2 − β , P1(µ) = µ− 1 .

Before we start the stability analysis we will have a closer look at the generalized-α algorithm.
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Example 4.5 (Stability of the CH(%∞) algorithm)
To illustrate the stability—more precisely: the damping properties—of the numerical integration
schemes, it has become common practice to plot the maximum absolute value of the eigenvalues
of the amplification matrix T = T(z) as a function of z = hω. In Figure 4.1 we illustrate
this numerical damping behavior for the CH(%∞) method (4.3), (4.4) using different values of
the parameter %∞. Now the reference to %∞ as ‘numerical damping’ becomes clear as this
parameter controls the amount of damping in the high frequency regime. Judging from this

10−1 101 103 105
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0.5

1

z = hω

%(T)
BDF k = 1, . . . , 5

RADAU5 (|R(i z)|)
%∞ = 0.99
%∞ = 0.6
%∞ = 0.4
%∞ = 0

Figure 4.1: Spectral radii of amplification matrices for varying values of %∞

illustration, it would appear reasonable to prefer %∞ ≈ 1 because q(t) in (4.13) is periodic,
i. e., its local minima/maxima do not decrease in absolute value over time. Nevertheless, in
practical implementations and for highly nonlinear or large scale problems the lack of numerical
damping of CH(%∞) with %∞ ≈ 1 leads to undesired amplification of oscillations and therefore
nonphysical behavior of the numerical approximations such that numerical damping becomes a
desirable feature. We will come back to this topic in Remark 4.20. Note that from the definition
of z it follows that larger step sizes not only imply a more effective solution, as less integration
steps are needed, but also more damping. ♦

Remark 4.6 (Alternative scaling)
Studying the relative growth in (qn, hvn, h

2an)> is the ‘classical way’ of analyzing the stability of
integration methods from structural dynamics and appears natural since all involved quantities
have the same physical units. Of course, any rescaling of these variables has no influence on
the asymptotic behavior. For the analysis of constrained mechanical systems, it is convenient
to rescale by ω2 and h−2, respectively, so Arnold et al. (2016) propose the mapping




z−2 0 −β
0 1 −γ

1− αf 0 1− αm





ω2qn+1
1
hvn+1

an+1


 =



z−2 1 1

2 − β
0 1 1− γ
−αf 0 −αm





ω2qn
1
hvn
an


 . (4.17)

Note that this only results in a similarity transformation of the iteration matrix T(z), the
spectrum remains unchanged. Nevertheless, for some choices of scaling the relations, entries of
T(z) might become unbounded for z →∞ which is an important limit case in the analysis.

The acceleration-like variables an are just low-order approximations of q̈ which may motivate
to disregard them from this map. Following the multistep representation of Erlicher et al. (2002),
Kettmann (2009) derives the recursion in form (z2qn, z

2qn−1, hvn−1), such that only second order
values enter the recursion and the multistep character of the schemes becomes explicitly present,
see the argumentation for the second order Prothero–Robinson problem in Example 5.28 below.
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Definition 4.7 (Stability notions).
(a) (Dahlquist (1956), see also Hairer et al. (1993)) A time integration method for second

order systems is called zero stable (or stable for h→ 0) if numerical solutions of (4.12) for
ω = 0, in exact arithmetics, remain bounded for arbitrary initializations of the method
and h→ 0.

(b) It is called stable at infinity if numerical solutions of (4.12) for ε→ 0 (or ω →∞), in exact
arithmetics, remain bounded for arbitrary initializations and strictly stable at infinity if
they even tend towards zero for n→∞.

(c) (Dahlquist, 1978) The method is called unconditionally stable if for fixed ω the solutions
remain bounded for all values of the time step size h > 0.

Remark 4.8

(a) In honor of Dahlquist, zero stability is sometimes also referred to as D-stability or—in
the literature on Newmark-type methods—just ‘stability’. The necessity for zero stability
of the integrators reflects them being multistep methods, cf. Remark 4.2, as for onestep
methods zero stability is no part of the numerical analysis.

(b) In classical textbooks (e. g. Hairer et al., 1993) the above stability notions are introduced
by means of so-called ρ- and σ-polynomials and a corresponding (strong) root condition.
We use the above definitions as they are more intuitive.

(c) The unconditional stability for the methods under consideration is directly related to I-
stability of numerical methods for first order systems. The test equation (4.14), as well
as (4.26) below, allow for a definition of A- and L-stability for those methods as well. In
fact, one can show that (4.2) is A-stable if it is unconditionally stable. Whenever solutions
tend towards zero for n → ∞, ω 6= 0, the methods are called absolutely stable (Petzold
et al., 1997).

(d) Concerning the order and stability there are the two fundamental results called ‘Dahlquist
barriers’ giving bounds for the highest attainable order of stable linear multistep methods.
The first theorem is due to Dahlquist (1956) and states the maximum order of zero stable k-
step methods to be k+2 for even k and k+1 if k is odd. Moreover, explicit linear multistep
methods have at most order k. Methods (4.2) are two-step such that this barrier implies
a theoretical maximum order of four. More regulative is the second barrier (Dahlquist,
1963) which bounds the maximum order of an unconditionally (A-)stable method by two.
This theorem has also been extended to methods for second order systems by Dahlquist
(1978) and Hairer (1979). The ‘best’ unconditionally stable multistep method, judging
from the error constant, is the trapezoidal rule.

If the method being analyzed is stable at infinity, the absolute value of the onestep amplifi-
cation mapping, i. e., the spectral radius of the amplification matrix is called numerical damping
rate, cf. Example 4.5.

As the three-by-three structure collecting (error-) growth on position, velocity and acceler-
ation level is prototypical for the analysis of time integration methods for mechanical problems
and two eigenvalues are always close to one, the following notions have been established.

Definition 4.9 (Principal and spurious roots).
Branches of complex conjugated eigenvalues of the amplification matrices in the low frequency
range are called principal roots of (4.16). If there is a single real-valued eigenvalue for z → 0,
this branch is denoted as the spurious root.
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Throughout the development of time integration methods in structural dynamics there has
been a recurring discussion on the influence of the spurious root (see for example Hulbert and
Chung, 1994). To gain reasonable accuracy, it is recommended that the principal roots remain
complex under the Nyquist frequency. For the trapezoidal rule, i. e., (4.4) for %∞ = 1, the
principal roots are complex and of absolute value one coinciding for z = 0 at +1 and at −1
for z → ∞; the spurious root is identically −1 but of no concern at all since for all classical
Newmark methods (αm = αf ), it is possible to fully describe the discrete dynamics by means of
a two-by-two recursion formula. Note that the terms are not used consistently in the literature.
Sometimes (e. g. Gladwell and Thomas, 1980) principal roots are defined as those root branches
that dominate the stability behavior, i. e., those of maximal absolute value, possibly in the
high-frequency range.

Lemma 4.10 (Zero stability, cf. (Erlicher et al., 2002) and (Arnold and Brüls, 2007))
The methods of the Newmark time integration family (4.2) are zero stable provided that

αm ≤
1

2
(4.18)

or
αm = αf

is fulfilled.

Proof. A scaled form of the onestep mapping (4.16) for ω = 0 has the form



qn+1

vn+1

an+1


 =




1 h 1−αm−2β
2(1−αm) h

2

0 1 1−αm−γ
1−αm h

0 0 −αm
1−αm




︸ ︷︷ ︸
=:T0(h)



qn
vn
an


 . (4.19)

In the limit case limh→0 T0(h) becomes a diagonal matrix whose asymptotic growth under self
multiplication is governed by the spurious root µ3 = −αm

1−αm . The norm of (limh→0 T0(h))n,
n ≥ 0, can be estimated by one provided that αm ≤ 1

2 as stated. Note that for αm = 1
2 it holds

µ3 = −1.
For αm = αf , the specific value of αm is of no concern at all since then the mapping can be

expressed as R2 → R2 and only the two principal eigenvalues µ1 = µ2 = 1 are present.

Remark 4.11 (Zero stability)

(a) The proofs of zero stability of Erlicher et al. (2002) and Arnold and Brüls (2007) rely
on representations of the algorithms where the acceleration-like variables an have been
eliminated. In that case, one can ensure stability by checking the strong root condition,
i. e., a criterion on the multiplicity of zeros of characteristic polynomials of the respective
difference equations (Hairer et al., 1993). Note that in (4.19) the mapping has an eigen-
value of absolute value one and modulus two, cf. Hairer (1979) and (Hairer et al., 1993,
Definition III.10.1).

(b) In view of Definition 4.9, the double eigenvalue at hω = z = 0 branches for z > 0 into the
principal roots while the spurious root-branch stems from µ3.

(c) The spurious root µ3 depends only on—and vanishes with—the parameter αm. In the
literature zero spurious roots for h → 0 have been favored by many authors, see for
instance the discussion of Hoff and Pahl (1988a) and may be seen as one of the major
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reasons for the popularity of the Newmark scheme and HHT, compared to WBZ. Only
for %∞ = 1

2 , the CH(%∞) method also has this property which in the context of linear
multistep and general linear methods is denoted as optimal zero stability (Strehmel et al.,
2012). A justification will be given in Section 4.2.2.

As the stability analysis of multistep methods reduces to the question of whether eigenvalues
have absolute values greater than one and an analytic derivation of these eigenvalues is rather
cumbersome, we will use the following result which allows us to give an answer without explicit
knowledge of the roots.

Lemma 4.12 (Routh–Hurwitz criterion (Schwarz (1956), formulation adapted from Prüß et al.
(2008)))
For the given polynomial

p(ζ) = ζn + a1,1ζ
n−1 + a0,2ζ

n−2 + a1,2ζ
n−3 + . . .

with positive real-valued coefficients ai,j , i = 0, 1, j = 1, 2, . . ., define the Hurwitz-matrix
(ai,j)i,j=1,...,n via the recursion

a0,1 := 1, ai+1,j :=

{
ai−1,j+1 − riai,j+1 if ai,1 6= 0

0 else
with ri :=

ai−1,1

ai,1
, i, j > 0 .

Then the following two assertions are equivalent:

(a) All roots ζi, i = 1, . . . , n, of p(ζ) = 0 have negative real part.

(b) a1,i > 0 for i = 1, . . . , n.

For n = 3, we infer that a3ζ
3 + a2ζ

2 + a1ζ + a0 has only roots in the left halfplane iff ai > 0,
i = 0, 1, 2, 3, and a1a2 > a0a3.

Corollary 4.13 (Eigenvalues of a cubic polynomial (Hughes, 1987))
All roots of the cubic polynomial

p(µ) = µ3 + b2µ
2 + b1µ+ b0 , bi ∈ R, i = 0, 1, 2 ,

lie in the interior of the unit circle if

1 + b0 + b1 + b2 > 0 , 3− 3b0 − b1 + b2 > 0 , 3 + 3b0 − b1 − b2 > 0 ,
1− b0 + b1 − b2 > 0 , and 1 + b0b2 > b20 + b1 .

(4.20)

Proof. We introduce the ‘Greek-Roman transformation’ (Hairer et al., 1993, proof of Theo-
rem III.3.5)

µ :=
1 + ζ

1− ζ , ζ =
µ− 1

µ+ 1
, (4.21)

which maps the interior of the unit circle to the left halfplane, see Figure 4.2. So, |µ| < 1 is
equivalent to <ζ < 0 such that Lemma 4.12 can be applied. It holds

(1− ζ)3 · p(1+ζ
1−ζ )

= (1− b0 + b1 − b2)︸ ︷︷ ︸
=a3

ζ3 + (3 + 3b0 − b1 − b2)︸ ︷︷ ︸
=a2

ζ2 + (3− 3b0 − b1 + b2)︸ ︷︷ ︸
=a1

ζ + (1 + b0 + b1 + b2)︸ ︷︷ ︸
=a0

,

such that (4.20) follows from the Routh–Hurwitz criterion and a1a2 − a0a3 = 8(1 − b20 − b1 +
b0b2).
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Figure 4.2: µ and ζ plane for the transformation in (4.21)

Lemma 4.14 (Strict stability (Erlicher et al., 2002, Arnold and Brüls, 2007))
The Newmark algorithm (4.2) is strictly stable at infinity provided that

αf <
1

2
, β >

γ

2
, γ >

1

2
(4.22)

hold. Second order accurate methods are strictly stable at infinity if

αm < αf <
1

2
, β >

1

4
+

1

2
(αf − αm) .

Proof. The iteration matrix for z →∞ can be explicitly calculated

T(∞) := lim
z→∞

T(z) =




−αf
1−αf 0 0
−γ

β(1−αf ) 1− γ
β 1− γ

2β
−1

β(1−αf ) − 1
β 1 + 1

2β


 , (β, 1− αf 6= 0) . (4.23)

Note that it does not depend on the parameter αm. Clearly, one eigenvalue is given by the (1, 1)-
entry, which implies the stability condition αf <

1
2 . The conditions stated by Corollary 4.13

take the form

(i)
1

β(1− αf )
> 0,

(ii)
2(γ − αf )

β(1− αf )
> 0,

(iii)
4β − 1− αf (4γ − 2)

β(1− αf )
> 0,

(iv)
(2αf − 1)(2γ − 4β)

β(1− αf )
> 0,

(v)
(2γ − 1)(αf − 2α2

f − 2β + 2αfγ)

4β2(1− αf )2
> 0.

With αf < 1
2 , the first inequality may be simplified to (i’) β > 0, which further reduces (ii) to

(ii’) γ > αf and inequalities (iii-v) to (iii’) 2αf + 4β− 4αfγ > 1 and, as stated, 2β > γ, 2γ > 1.
The conditions of (4.22) are enough since (i’-iii’) are an upshot of the three inequalities. For the
second set of inequalities we refer to the direct proof of Arnold and Brüls (2007, Lemma 1).
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Figure 4.3: Newmark integrators that lack unconditional stability

Stability, even strict stability, at infinity and zero stability are nonetheless no sufficient condi-
tions for (4.2) to be unconditionally stable. As an example, in Figure 4.3, we illustrate Newmark
schemes that are stable at zero and infinity but possess an instability interval for certain values
of z = hω, (Id-stability, see (Schneider, 1995)). To construct the methods, we modified the pa-
rameter αm ≤ 1

2 of the CH(%∞) algorithm (4.4) while keeping all other parameters unchanged.
Note that αm < 0 is no extraordinary parameter choice as for %∞ < 1

2 also the CH(%∞) method
uses such a setting and that the order of the above methods is just one.

Lemma 4.15 (Unconditional stability (compare Erlicher et al., 2002))
The Newmark algorithm (4.2) is unconditionally stable if it is stable at infinity and

1

2
− αm + αf ≤ γ (4.24)

is fulfilled. For second order Newmark integrators, stability at infinity plus zero stability are
equivalent to unconditional stability.

The proof employs the same techniques as the proof of Lemma 4.14 but the conditions are
more involved since they depend on another value z 6= 0. Note that conditions (4.18) and (4.22)
justify the assumptions β, γ 6= 0, αm, αf 6= 1 respectively.

Definition 4.16.
Whenever the stability conditions (4.18), (4.22) and (4.24) are fulfilled, we will from now on
simply refer to the integrators as stable Newmark methods.

Example 4.17 (Specific parameter choices and variants)
(a) Trapezoidal rule and the ‘classical’ Newmark integrator:

The only non-damping member of practical relevance is attained for the parameter choice
β = 1

4 , γ = 1
2 , αm = αf , see Remark 4.1. Geometrically, this relates to the approximation

of the state variables by means of using trapezoidals to approximate the underlying integral
equations. In view of Lemma 4.10, the method is zero stable as well as unconditionally
stable and so stable at infinity, but it lacks strict stability at infinity. The ‘classical
Newmark’ or ‘Newmark-β integrator’ (Newmark, 1959, Erlicher et al., 2002) uses

γ = −1

2
+

2

1 + %2∞
, β =

(γ + 1/2)2

4
=

1

(1 + %2∞)
, %∞ ∈ [0, 1] .

The conditions for stability at infinity and unconditional stability reduce to γ ≥ 1
2 , β ≥

γ
2 ,

cf. Figure 4.4 (a).
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(b) The HHT and WBZ algorithms:
The first algorithm in the present setting to combine second order accuracy and controllable
damping is the so-called HHT(αHHT) method of Hilber et al. (1977) which depends on one
parameter αHHT ∈ [0, 1

3 ].

αm = 0, αf = −αHHT , β =
(1− αHHT)2

4
, γ =

1

2
− αHHT ,

or, in terms of the numerical damping %∞ ∈ [1
2 , 1],

αm = 0, αf =
1− %∞
1 + %∞

, β =
1

(1 + %∞)2
, γ =

3− %∞
2 + 2%∞

, %∞ ∈ [1
2 , 1] .

Note that numerical damping ranges only from one to 0.5; instantaneous annihilation is
not possible. To remedy this, Wood et al. (1981) proposed a family of algorithms (Bossak–
Newmark, WBZ(αWBZ)) with αf = 0,

αm =: αWBZ ∈ [−1, 0] , αf = 0 , β =
(1− αWBZ)2

4
, γ =

1

2
− αWBZ ,

or analogously

αm =
%∞ − 1

%∞ + 1
, αf = 0 , β =

1

(1 + %∞)2
, γ =

3− %∞
2 + 2%∞

, %∞ ∈ [0, 1] .

The parameters of the Bossak–Newmark method equal the ones of the Chung–Hulbert
method for maximum damping %∞ = 0. For z → ∞, the spurious root of the Bossak–
Newmark algorithm always tends towards zero.

All the above algorithms are unconditionally stable and strictly stable at infinity if the
trapezoidal rule %∞ = 1 is omitted. In Figure 4.4 (b), the parameter progressions for the
classical schemes are illustrated. Note that, because for all methods (4.3) and β = 1

4(1
2 +γ)2

are fulfilled, the plot is sufficient to describe the methods. The latter relation is called
optimal dissipation relation in the literature and marks, where the principal roots become
real for z →∞. This requirement has been the main design concept for the development of
the three families. Note also that the trapezoidal rule is not unique in this representation:
For the CH(%∞) method it is formally obtained with αm = αf = 1

2 , while for HHT and
WBZ it corresponds to αm = αf = 0.

(c) Third order consistent methods:
As for applications in structural dynamics, simulation of constrained systems, and for
the singularly perturbed mechanical systems from Chapter 3, it is unavoidable to rely on
stable methods. The second Dahlquist barrier forbids to employ methods of higher order
than two. Being dependent on four parameters, it is nevertheless possible to construct
parameter settings such that third order consistency is attained. For methods from—
or closely related to—(4.2), this has been done by Hilber and Hughes (1978) and Hoff
and Pahl (1988a). Based on the representation of Kettmann (2009), the parameters may
depend on

αf ∈ (−∞, 1
6(3−

√
3)]∪ (1

2 ,
1
6(3 +

√
3)] , αm =

12α2
f − 6αf − 1

12αf − 6
, β =

1

6
+

1

2
(αf −αm) ,

(4.25)
where the intervals for αf are based on the zero stability condition (4.18).
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Figure 4.4: Parametric plots of parameters for Newmark, CH(%∞), HHT, and WBZ, illustrations
adapted from (Chung and Hulbert, 1993, Géradin and Rixen, 2015)

In Figure 4.5 we illustrate that third order Newmark methods are not stable at infinity
by inspecting the stability region using the test equation (4.14) and time step size h = 1.
The shaded area is the domain of all pairs (ξ, ω) such that the according linear iteration
possesses only stable solutions.

(d) Explicit α-methods:
The original proposal for the Newmark integrators (as classical Newmark scheme, HHT
method or WBZ/Bossak–Newmark) was only formally given in the fully implicit form as
it is presented here. Due to restricted computer capabilities in the early days of compu-
tational structural dynamics, an explicit implementation of the algorithms was favored.
Later on, this approach was occasionally still considered because for certain applications
like wave-propagation or impact problems the highly nonlinear character of the equations
requires very small step sizes anyway or because of memory restrictions for the linear al-
gebra overhead in large-scale simulations (see for example the CDTire model of Gallrein
et al. (2014)). For the proposed family of Newmark integrators, alternative parameter
settings have been developed by Hulbert and Chung (1996) where the aim was to obtain
a maximum stability interval.

Another reason to study explicit methods is that for splitting techniques it is opportune
to use the same base algorithm for the different integrators used. Hughes and Liu (1978)
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Figure 4.5: Stability regions for third order consistent Newmark methods according to (4.25)

optimized the parameters of the HHT method for a general implicit-explicit splitting al-
gorithm. For the Newmark algorithms in the present form, these results were generalized
by Daniel (2003).

(e) Generalized-α for first order systems:
The basic idea of (4.2) to use a collocation condition at a shifted time instance by imposing
equality of the weighted sums of ‘correct’ derivatives and ‘derivative-like’ variables was
used by Jansen et al. (2000) to construct a family of methods for first order systems that
also allows for controllable numerical damping. In the context of general mechatronic
systems, cf. (2.16), where first and second order methods are coupled, the algorithm has
been applied by Brüls and Arnold (2008). For the system

ẋ(t) = χ(x(t)) resp. ẋ(t) = χ(x(t), q(t), q̇(t)) ,

we introduce ‘derivative-like’ variables axn ∈ Rnx , n = 0, 1, . . ., and the θ-method update

xn+1 = xn + h(1− γx)axn + hγxaxn+1 ,

where axn and the actual derivative variables ẋn := χ|x=xn are related through

(1− αxm)axn+1 + αxma
x
n = (1− αxf )ẋn+1 + αxf ẋn .

The ‘optimal’ parameter setting in the sense of Section 4.2.2 below is

αxm :=
1

2

3%∞ − 1

%∞ + 1
, αxf := αf =

%∞
%∞ + 1

,

and the second order condition γx = 1
2 − αxm + αxf remains unchanged. Note that for

%∞ = 1, the algorithm again coincides with the trapezoidal rule and that for maximum
dissipation %∞ = 0, the method is BDF(2), cf. (2.28).

♦
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4.2.2 Optimal parameter choice

Remark 4.18 (Damped oscillators)
For phase error analysis and certain applications using linear stability investigations, sometimes
the problem class of damped oscillators with harmonic excitation

q̈(t) = −2ξωq̇(t)− ω2q(t) + sin(Ωt) , ξ, t,Ω ≥ 0, ω > 0 , (4.26)

is used to study the behavior of numerical integrators (Arnold et al., 2011). Especially linear
resonance effects in vehicle system dynamics are captured by this approach. The parameter ξ
is apparently used to control the amount of physical damping in the system; ξ = 0 corresponds
to the undamped case from (4.12) while 0 < ξ < 1 is called the underdamped and ξ > 1 the
overdamped case. The critical damping at ξ = 1 plays a special role since here the eigensystem
of the dynamics degenerate (Hughes, 1987). Even though this test equation is more complex and
therefore captures more effects and possible issues for real-world problems, it should be pointed
out that for general linear systems (4.7), a transformation to a one-degree-of-freedom system is
only possible if a common set of eigenvectors can be found. Note that some researchers from
structural and molecular dynamics construct and optimize their methods only for undamped
systems or use certain heuristics to approximate the load vector such that the order may drop in
the presence of dissipative terms ξ > 0 or complex external excitations, see for example (Bazzi
and Anderheggen, 1982).

The starting point to determine suitable parameters for the Newmark integrators is the scalar
damped oscillator equation (4.26) without external force:

q̈(t) + 2ξωq̇(t) + ω2q(t) = 0 , q(0) = q0 , q̇(0) = q̇0 (4.27)

with the analytic solution

q(t) = e−ξωt (C1 cos(ω̄t) + C2 sin(ω̄t)) , C1 = q0 , C2 = (q0ξω + q̇0)/ω̄ , ω̄ = ω
√

1− ξ2

(4.28)

in case 0 ≤ ξ < 1 and

q(t) = e−ξωt
(
C1 expω̂t +C2 exp−ω̂t

)
, C1|2 =

q0(ω̂ ± ξω)± q̇0

2ω̂
, ω̂ = ω

√
ξ2 − 1

for strong damping ξ > 1.
Either way, for positive values of ξ, the analytic solution of (4.27) decays exponentially

fast in time. Note, however, that the damping properties of the numerical solution always
resemble the case of infinite stiffness for the undamped case (4.15), i. e., for hξ →∞ the onestep
amplification is as large as the numerical damping for hω → ∞, where from a geometric point
of view annihilation should occur. If no infinite frequency but the damping forces, i. e., the
energy dissipating parts are considered to have the most important impact on the system, the
parameter ξ > 1 in (4.26) becomes dominant. So, in this case the analysis may instead be
carried out using the test equation q̈δ(t) + δ−1q̇δ(t) = 0. We postpone the (easier) analysis of
this case to Example 5.27 below.

The discrete analogue of (4.28) in the case 0 ≤ ξ < 1 can be obtained if the onestep
mapping from (qn, hvn, h

2an)> to (qn+1, hvn+1, h
2an+1)> of (4.2) for (4.27) is transformed to a

difference equation for the position variables qn. We assume that its characteristic equation has
two complex conjugate principal roots µ1|2 = eΩ̃(−ξ̃±i) which uniquely define Ω̃ > 0 and ξ̃ ∈ R.
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Denoting the one spurious root by µ3, there exist constants C̃i ∈ C, i = 1, 2, 3, such that qn may
be expressed as

qn = e−ξ̃ω̃tn ·(C̃1 cos(ω̃tn) + C̃2 sin(ω̃tn)) + C̃3µ
n
3 , ω̃ := Ω̃/h . (4.29)

A comparison with (4.28) shows that—if the influence of C̃3µ
n
3 is negligible—the accuracy may

be expressed in terms of

P :=
ω̄

ω̃
− 1 (numerical dispersion)

and ∆ξ := ξ̃ − ξ (algorithmic damping error, numerical dissipation).

The value P is also called relative period error because for the periods T̄ := 2π/ω̄ and T̃ := 2π/ω̃
it holds P = (T̃ − T̄ )/T̄ . Sometimes, the relative period error is used to implement heuristics
for local error control in adaptive step size implementations (Cardona and Géradin, 1994). The
idea of using dispersion and dissipation for accuracy judgment goes back to the work of Bathe
and Wilson (1973), where the authors studied period elongation and numerical damping for
certain parameter settings in the investigation of Newmark-type and related methods. From
the comparison of (4.28) and (4.29), it is evident why optimally zero stable methods are often
favored: The term C̃3µ

n
3 in this case is, in fact, no longer present. Note that the notions of

dissipation and dispersion only make sense for ξ < 1.

Remark 4.19 (Design paradigms (Hughes, 1987))
According to the given reference, an ODE time integration method for structural mechanics
should serve the following properties:

(a) It should be (at least) second order accurate.

(b) It should show unconditional linear stability.

(c) Each time integration step should neccesitate the solution of no more than one set of
implicit equations of dimension nq.

(d) It should be self-starting, i. e., except of the initialization of all involved quantities from
the initial data, no further computations should be necessary to start the time integration.

(e) The algorithmic damping of high frequency modes should be controllable by the user using
one parameter.

Of course, there are many adaptations to this collection and, depending on the application,
researchers value some of these properties higher than others. Requirement (a) has already been
discussed in Section 2.2.1: Due to modest smoothness of input values, event handling, and the
typical accuracy requirement, second order methods are mostly preferred. In view of the second
Dahlquist barrier, requisite (b) even accentuates this fact. For integrators (4.2), the analysis is
stated in Lemma 4.15. In a nutshell, the goals of requirements (c) and (d) are on the one hand
to keep the computational effort low, on the other hand to exclude algorithms that demand
immense changes in very involved existing codes. We will see in Section 6.1 that the linear
structure of (4.2) ascertains requirement (c). Self-starting is important since an extension to
variable step size schemes should be possible in a straightforward manner. Variable time step
size implementations for multistep methods are very complex such that onestep algorithms are
commonly favored or, as Brüls (2005) puts it: ‘Analysts from structural dynamics are sometimes
reluctant with respect to this approach [BDF methods], fearing the computational burden of a
multi-stage algorithm.’ We have already pointed out that (4.2) is a multistep methods because
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the acceleration-like variables an enter the equations. Nevertheless, from a computational point
of view, the methods are easily implemented as if they were onestep methods; depending on
the initialization of a0 they fulfill (d) but variable step size implementations are yet non-trivial.
There are several proposals in the literature: Negrut et al. (2005) propose to adapt an in
each time step based on the step size change for HHT, an approach that was later extended
to Newmark integration methods of more general form by Jay and Negrut (2008). Brüls and
Arnold (2008) suggest to alter the parameter γ in each step while Rang (2013) chooses γ and
αm variable.

If (4.3), (4.18), (4.22), and (4.24) are fulfilled, the Newmark integrators meet (a)–(d) such
that for an explanation of the parameters from CH(%∞), HHT, and WBZ we will in the following
concentrate on requirement (e).

According to Hilber et al. (1977), requirement (e) in particular means that it should be
possible to attain parameter values such that the algorithm is non-damping and then may be
smoothly varied towards more and more damping of high frequencies. At best, it should even
be possible to obtain an L-stable method if needed as this is better for dissipation-dominated
problems. For the case of low values of z = hω, dispersion and damping error become more
important. Here, the amplification factor should remain close to one. Smoothness is also impor-
tant with respect to the frequency range: As z varies, there should be no “cusps in the numerical
damping” (Hoff and Pahl, 1988a, Chung and Hulbert, 1993). As a result, for all finite values of
z

(i) there should be two principal roots as bifurcation points are typically nonsmooth and

(ii) the spurious root should remain smaller in absolute value than the principal roots.

After inserting the second order condition (4.3), the characteristic polynomial of T(∞),
see (4.16) and (4.23), can be written as

χT(∞)(µ) = −µ3 +

(
3 +

1

αf − 1
+

∆α − 1

β

)
µ2 +

(
αm + αf (2∆α + 3β) + β

β(αf − 1)

)
µ+

αf (β + ∆α)

β(αf − 1)
,

(4.30)
with two principal roots µ∞1|2 whose imaginary parts vanish iff the optimal dissipation relation
β = 1

4(1
2 + γ)2 is fulfilled, cf. Example 4.17 (b). In that case we have

lim
z→∞

µ1|2 =: µ∞1 = µ∞2 =
αf − αm − 1

αf − αm + 1
, lim

z→∞
µ3 =: µ∞3 =

αf
αf − 1

as spurious root.

For the HHT and WBZ method, either the parameter αm or the parameter αf is not present,
such that the algorithm is already fully characterized by the requirement |µ∞1 | = %∞. There
are actually two possibilities to choose the parameters and fulfill this relation. µ∞1 = −%∞ is
the one with better low-frequency behavior which is evident since only then for %∞ = 1 the
trapezoidal rule is obtained. As a result, the HHT parameters may be seen as optimal for all
methods (4.2) with αm = 0 which implies a vanishing spurious root for z → 0. Still, it is not
possible to additionally control the spurious root for large frequencies such that the range of
numerical damping for HHT is limited to %∞ ∈ [1

2 , 1]. For WBZ, this drawback is resolved, yet
the low-frequency behavior is slightly worse.

With the introduction of an additional parameter, Chung and Hulbert (1993) had the possi-
bility to compromise between these two objectives. They also chose αm such that the principal
roots coincide for z → ∞ at −%∞ and found that dissipation for moderate z is minimized for
αf = αm+1

3 , which corresponds to µ∞3 = −%∞. This leads to the choices of (4.3) and (4.4). In
Figure 4.6 the numerical dissipation, dispersion, and damping for the three classical settings is
compared. For all three categories, the CH(%∞) setting performs best.
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Figure 4.6: Damping, dispersion and damping error of CH(%∞) (blue), HHT (green), WBZ
(orange) for parameter %∞ = 0.55 (solid) and %∞ = 0.9 (dashed) being applied to q̈ + ω2q = 0

Remark 4.20 (Benefits of controllable damping)
There is an ongoing debate whether or not numerical damping is a favorable property of an al-
gorithm. The discussion is heavily influenced by the strong development in structure preserving
integrators in the last decade. In fact, numerical damping corresponds to an artificial energy
decay in the linear system (4.7) and Newmark (1959) himself argued that for ‘his’ algorithm
(4.2a), (4.2b) parameters should be chosen in a way that ‘unnatural’ damping effects are mini-
mized. One might also argue that it is always possible to simply add physical, so-called ‘viscous’
damping to the model such that the behavior of the analytic solution becomes more stable. This
approach, nevertheless, has two disadvantages: First, it is unclear how to choose a correct phys-
ical damping model and the involved parameters, and, secondly, instabilities and/or resonances
in the original model may remain undetected. Concerning the statement that smooth solutions
appear physically more correct and are needed for further computations, one can add filtering
techniques as a postprocessing task. Finally, one should also take the influence of numerical
damping on other aspects of the overall simulation into account, as ‘numerical damping and
step size control are in some sense contradictory goals’ (Simeon, 1998).

Remark 4.21 (Overshoot-phenomenon)
The seemingly optimal parameters of the CH(%∞) method suffer from a phenomenon that is
typically observed for problems with large eigenfrequencies and simulations with relatively large
time steps. Overshoot describes the tendency of a method to strongly overestimate the response
of the mechanical system in the first integration steps, mostly indicated by spurious oscillations.
As a result, the order of the method may drop in a transient phase while afterwards it is
numerically preserved. Sometimes, the impact of the initial artifacts is so severe that even a loss
of second order accuracy is taken (Sanborn et al., 2014). For a long time, overshoot has been
mostly excluded from theoretical investigations and researchers used only numerical benchmarks
to observe whether overshoot is an issue (Hoff and Pahl, 1988b). For these experiments, energy-
measures of the numerical solution are monitored. The first ones to systematically analyze
overshoot were Hilber and Hughes (1978) who argued that the energy growth in the transient
phase is due to large elements in powers of the amplification matrix T(z) for z →∞. Even when
the spectral radius is small, powers of T(∞) and its transformation matrix to canonical form
may become very large. Hoff and Pahl (1988a) also explained overshoot by the high condition
number of the transformation matrix. Overshoot for the present version of Newmark integrators
has been extensively studied by Erlicher et al. (2002).

The first to explain overshoot by the degenerate Jordan-structure of T(∞) were Cardona
and Géradin (1989) in their analysis of HHT for constrained mechanical systems. The Jordan
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canonical forms
T(∞) = CJ∗C−1 (4.31)

of the CH(%∞), HHT, and WBZ algorithm are given by

JCH =



−%∞ 1 0

0 −%∞ 1
0 0 −%∞


 ,

JHHT =



−%∞ 1 0

0 −%∞ 0
0 0 (%∞ − 1)/(2%∞)


 ,

(
%∞ >

1

2

)
,

JWBZ =



−%∞ 1 0

0 −%∞ 0
0 0 0


 .

(4.32)

such that for the matrix powers (T(∞))n the non-diagonal entries cause an amplification as the
values (JnCH)1,3 = 1

2n(n− 1)(−%∞)n−2, (JnHHT/WBZ)1,2 = n(−%∞)n−1 may grow large unless the
damping parameter is chosen very small, cf. Figure 4.7 below. This problem is fairly generic:
Whenever the second order- and the optimal dissipation relation are fulfilled, the principal roots
have a degenerate eigenspace structure for z → ∞ such that overshoot may be observed. This
also holds true for the first order classical Newmark method, where the canonical form of the
amplification matrix consists of one Jordan block JNewm ∈ R2×2. Note, however, that the long
term behavior of the integrators is not influenced by the overshoot phenomenon.

A new parameter set with optimized overshoot behavior It is possible to adapt the
parameter choice of Chung and Hulbert (1993) such that three Jordan blocks are present while
keeping the absolute values of the eigenvalues in the limit case and the low frequency behavior
is only slightly influenced: To this means, we drop the requirement that all eigenvalues of the
linear recursion in (4.16) coincide for the limit of infinite stiffness z →∞ but instead just place
them on the complex unit circle of radius %∞. Guided by Dahlquist’s result, it seems reasonable
that for %∞ = 1 still the trapezoidal rule is attained. So, we add another parameter φ0 ∈ [0, π]
and the requirement

arg( lim
z→∞

µ1(T(z)))
!

= π − (π − φ0)(1− %∞) , %∞ ∈ (0, 1] .

Keeping αf = %∞/(%∞ + 1), such that the spurious root tends towards −%∞ for z → ∞, we
attain a nonlinear system for the parameters with the solution

αm =
%∞

%∞ + 1
+

%2
∞ − 1

1 + %2∞ − 2%∞ cos(φ0 − φ0%∞ + π%∞)
,

αf =
%∞

%∞ + 1
,

β =
1

1 + %2∞ − 2%∞ cos(φ0 − φ0%∞ + π%∞)
,

γ =
1

2
− αm + αf .





Gen(%∞, φ0)

For φ0 = π, the methods are identical to the CH(%∞) setting. The numerical dissipation and
dispersion behavior of these methods is slightly inferior compared to CH(%∞) but the overshoot
in the sense of the above growth of Jordan block powers is diminished. The growth of powers of

66



%∞ = 0.9

0 50 100 150 200
0

5

10

15

20

n

‖J
n
‖ 2

0 50 100 150 200
0

50

100

n

‖T
n
‖ 2

%∞ = 0.6

0 5 10 15 20
0

1

2

n

‖J
n
‖ 2

0 5 10 15 20
0

5

10

n
‖T

n
‖ 2

CH(%∞) HHT(αHHT) Gen(%∞, π/4) Gen(%∞, 0)

Figure 4.7: Norm of powers of the Jordan matrices for CH(%∞), HHT and Gen(%∞, φ0)

the Jordan canonical forms for CH(%∞), HHT(αHHT) and Gen(%∞, φ0) is shown in Figure 4.7.
The off-diagonal entries clearly reveal a growth in the first steps of the iteration. Note that for
Gen(%∞, φ0) the plot is independent of the parameter φ0.

It should be pointed out that only the growth in matrix powers of J is not sufficient to
completely characterize overshoot. The numerical experiments in Chapter 6 will indeed show
that overshoot is not as much prevented for the ‘improved’ parameter set of Gen(%∞, φ0) as the
left plots would have indicated. The right plots in Figure 4.7 illustrate the growth of powers of
the amplification matrices T(∞) themselves rather than just their canonical forms and show that
still there is an amplification even for single eigenvalues. This comes without surprise since for
φ0 → π the algorithm is identical to the CH(%∞) parameter set with its large degenerate Jordan
structure such that the condition number of the transformation matrix to Jordan canonical form
is very large (see the example of Golub and Van Loan, 1996, Sect. 7.1.5).

In the literature, position-, velocity-, acceleration-, and energy-overshoot are sometimes dis-
tinguished and it is well-known that nonlinear effects and the particular problem formulation
influence spurious oscillations. Briefly, the errors from the initialization phase of the method are
probably even more important than the the Jordan-structure. Note that the consistent initial-
ization of mechanical systems is a non-trivial task and that the singular perturbation terms for
the problem classes of Chapter 3 also make a ‘stable initialization’ challenging.

In Figure 4.8 the stability regions in the sense of Gladwell and Thomas (1980) for the
four settings are compared. HHT(αHHT = −1

7) and WBZ(αWBZ = −1
7) both have numerical

damping %∞ = 3
4 for z →∞.

Remark 4.22 (Algorithms with optimized damping behavior)

(a) Blended Lobatto methods
Schaub and Simeon (2003) propose to use a class of super partitioned additive Runge–
Kutta methods called SPARK (Jay, 1999) to transfer the idea of adjustable algorithmic
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Figure 4.8: Stability regions of Newmark integrators

damping to a class of Runge–Kutta methods. The basic idea of this blended approach
lies in using convex combinations of Runge–Kutta type methods with different stability
properties: Given k > 1 Runge–Kutta methods, e. g. of Lobatto-III-type (Hairer and
Wanner, 2002), with parameters (a

(k)
ij , cj , bi), k = 1, . . . , nRK, i, j = 1, . . . , s, with the

same weight vector (bi)i=1,...,s and knot vector (cj)j=1,...,s it can be shown that under very
weak conditions the convex combined method, i. e., the one with parameters

(abl
ij , cj , bi) with abl

ij :=

nRK∑

k=1

νka
(k)
ij ,

( nRK∑

k=1

νk = 1 , νk ≥ 0, k = 1, . . . , nRK

)
(4.33)

inherits (stage-) order along with other advantageous properties from the underlying meth-
ods. The proof is based on the concept of simplifying assumptions introduced by Butcher
(Hairer and Wanner, 2002, Chap. IV). Lobatto-IIIC methods are predetermined for the
use in the SPP case since they are stiffly accurate methods (Prothero and Robinson, 1974)
which usually outperform other Runge–Kutta methods for very stiff equations or high-
index DAE systems.

Damping controlled blended Lobatto It is important to notice that within the frame-
work of blended Lobatto methods it is not only possible to adjust the numerical damping
of the algorithms at high frequencies, but also to control the frequency range of low damp-
ing. In Figure 4.9 (a) we depicted the numerical amplification for six examples with s = 2
stages and the linear test equation (4.12). For Runge–Kutta methods this is just the ab-
solute value of the stability function. For a blending of two-stage Lobatto-IIIC and IIID
methods with predefined numerical damping factor %∞ for z →∞, denoted by C-D(%∞),
one can use νC = 1−%∞

1+%∞
in (4.33) but may obtain non-monotone dissipation behavior along

the imaginary axis. More details on this approach can be found in (Schaub, 2004, Simeon,
2013).

For a blend of A, C, and D methods and s = 2, one can also set the value z0 of hω where
the amplification factor is exactly 1

2(1+%∞) (denoted by A-C-D(%∞, z0)) using the weights

νA =
η1z

2
0 + 4%∞η2 −

√
(%∞ + 1)2η2(2%∞ + z2

0 + 6)(η1 − 2(%∞ − 1)2)

η1z2
0 − (%∞ − 1)2η2

,

νD = −2%∞νA − %∞
%∞ + 1

,

where
η1 := (3%∞ + 1)z2

0 , η2 := (%∞ + 3)z2
0 . (4.34)
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Note that having an enlarged low-damping region comes at the cost of the method being
more and more like Lobatto-IIIA, i. e., with singular Runge–Kutta matrix, cf. Remark 3.20.
For s = 2, Lobatto-IIIA is simply the trapezoidal rule. Using a blending that contains
Lobatto-IIID results in a drop of the stage order of the methods.

(b) An SDIRK method with controllable damping
The blended Runge–Kutta methods nevertheless bear the drawback that for most families
of practical interest, as the Radau and Lobatto methods, the Runge–Kutta matrices do
not show a structure allowing for drastical savings of computational effort in terms of the
linear algebra overhead. So, in each time integration step rather large nonlinear systems
need to be solved. To remedy this, one might consider using a singly diagonally implicit
Runge–Kutta type method (SDIRK) and forsake the concept of blended methods. Since
for s = 1, the only second order Runge–Kutta method is the non-damping midpoint rule,
we will consider a two stage method with Butcher tableau

c1 γRK

c2 a21 γRK

b1 b2

.

Guided by the design paradigms for Newmark methods in Remark 4.19, yet not strictly
sticking to it, the method should be (exactly) second order accurate and A-stable and the
absolute value of the stability function at infinity should equal a user-defined value %∞.
Being a onestep method, self-starting is no issue but in view of Remark 3.20, we have to
mention that more than stage order one cannot be obtained for these methods. Before
explaining the construction of the method in detail, we emphasize that it will mainly
be used to have a fair comparison with a onestep method when studying the numerical
properties of Newmark integrators in Chapter 6 below. Following the ‘address accuracy
before stability’-rule (Hulbert and Chung, 1996), at first we have the two conditions for
second order

γRK =
1

2
− a21b2 , b1 = 1− b2 .

The limit of the stability function then is

lim
z→∞

R(z) =
4a21b2(a21b2 + 1)− 1

(1− 2a21b2)2

!
= ±%∞

and necessarily real. So, to have controllable damping, we have to solve this system,
resulting in four solution branches, e. g. for a21 such that only b2 is left as a free parameter.
As we are only interested in second order methods (third order, even for linear systems, is
not attainable anyway), it seems reasonable to choose b2 such that the error constant for the
nonlinear third order error term, i. e., the one corresponding to elementary differential with
tree (Hairer et al., 1993), is minimized leading once again to four solution branches only
depending on %∞, three of which would lead to unbounded parameters or unbounded linear
error constants (corresponding to ). The method’s parameters for the fourth solution are
explicitly given by

γRK =
1

(2 +
√

2
√

1 + %∞)
, a21 =

1− 2
√

2
√

1 + %∞ + %∞(3 + 2%∞ −
√

2
√

1 + %∞)

3(%2∞ − 1)
,

b2 =
3

2(2 + 1
1+%∞

+
√

2√
1+%∞

)
, b1 = 1− b2 .
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It is easily verified that for all values of %∞ ∈ [0, 1], this method has bounded parameters,
even all in (0, 1), that the Runge–Kutta matrix is invertible (its determinant is γ2

RK), and
that the corresponding methods are A-stable. The latter assertion can be seen from the
fact that all poles of the Runge–Kutta matrix are in the right complex halfplane and the
method is I-stable (Hairer and Wanner, 2002). As γRK ∈ R>0, no eigenvalues of the
Runge–Kutta matrix lie on the imaginary axis as well. The numerical damping behavior
for %∞ ∈ {0.3, 0.8} of the proposed SDIRK methods is shown in Figure 4.9 (b). Similar,
but always L-stable, methods are proposed and analyzed by Owren and Simonsen (1995).

(c) The BDF-α method
Celaya and Anza (2013) motivate to extend the design ideas of the HHT scheme to gen-
eralize the backward differentiation formulae (BDF) to a time integration method with
controllable damping. Like for the design of Newmark integrators (4.2) the key idea is a
weighted-sum approach between trapezoidal rule and an L-stable scheme (here: BDF(2)).
The methods fall into the broader context of A-BDF methods as they are proposed by
Fredebeul (1998). Depending on a parameter αBDF as for HHT, the method is defined as

(3
2 +αBDF)xn+2−2(1 +αBDF)xn+1 + (1

2 +αBDF)xn = h
(
(1 + αBDF)χn+2 − αBDFχn+1

)
,

where αBDF :=−%∞/(1 + %∞) ∈ [−0.5, 0] depends on the user-defined damping ratio %∞
and we considered the first order system (2.4). Note that the generalized-α method for
first order ODEs as proposed by Jansen et al. (2000) also defines a smooth transition from
midpoint-rule to BDF(2).

(d) Super implicit BDF
Vater et al. (2011) also introduced alterations on BDF schemes in the context of wave
phenomena. The approach may again be seen as a blending of different time integration
schemes or an extension of BDF-α. Since a direct application of these integration schemes,
in connection with so-called super implicit BDF/extreme BDF/replica algorithms, does not
yield zero stable algorithms, we will not discuss them any further here but simply state
that in the context of partial differential equations the notions of numerical damping,
dissipation, and optimized dispersion are still today a field of vivid research. (The lack of
zero stability is compensated by switching to the trapezoidal rule in dependence of local
CFL numbers.)

(e) Further methods with improved dissipation behavior
Although typically not explicitly regarded as methods with user-adaptive damping, linearly
implicit methods should be noted among the methods with optimized damping properties.
These methods inherit the good stability properties of the underlying Runge–Kutta for-
mulae while their computational effort per time step is usually not only smaller but also
almost constant such that they naturally appear to be the method of choice for real-time
simulations. The work of Strehmel and Weiner (1989), Hairer et al. (1989b) and Scholz
(1989) laid the theoretical foundations for the analysis of these methods in the SPP setting.
Recent results and a comprehensive overview for the application in case of stiff mechanical
systems can be found in (Simeon, 2013, Becker et al., 2014, Becker, 2012).

To give a fair sample, we choose the methods of Shampine (1982) with %∞ = 1
3 , the code

ROS3P of Lang and Verwer (2001) (%∞ = |1 −
√

3| ≈ 0.732) and Rodasp of Steinebach
and Rentrop (2001). For the latter two, the ‘p’ indicates an optimization with respect to
the Prothero–Robinson test example.
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Still within the framework of Runge–Kutta methods we also mention the method of Bazzi
and Anderheggen (1982) which was one of the first methods in structural dynamics high-
lighting the importance of numerical damping from one to zero and may be written as a
Runge–Kutta–Nyström method.

To compromise between numerical damping and energy consistency, Orden and Romero
(2012) proposed so-called ‘energy-entropy-momentum integration methods’. These algo-
rithms damp out high frequency oscillations while still preserving symmetries in the model.
At last, there exists also a series of on-the-fly filtering-techniques and waveform methods
acting directly in the Fourier space of the variables but they are mostly constructed accord-
ing to specific problems and there is yet no unified theory as for the Newmark integrators
in the linear regime.
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Figure 4.9: Numerical damping of some methods from Remark 4.22

4.2.3 Initializing the acceleration-like variables

As overshoot comprises short-term error amplification and the initial excitation, and we have
emphasized the importance of requirement (d) from Remark 4.19 that methods from structural
dynamics should be self starting, the choice of the acceleration-like variable a0 plays an important
role.

The original setting was based on the intuitive fact that an simply is an acceleration by its
physical units:

a0 := q̈(t0) = v̇0 . (4.35)
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Whenever we do not explicitly specify it differently in the remaining part of this thesis we will
also use (4.35) to define a0. A more detailed analysis, cf. (5.4) below, shows, however, that for
second order approximations v̇n, it holds

an = q̈(tn + ∆αh) +O(h2) , (4.36)

which yields a second order approximation to the exact accelerations q̈(tn) only for ∆α = 0, i. e.,
the ‘classical’ Newmark algorithm1. Fortunately, the algorithms damp out these first-order error
terms and do not lower the second order of position and velocity variables. Note, however, that
this poor initialization causes a genuine problem if the integration has to be re-initialized, for
certain variable time-step implementations, or if the algorithms are combined with projection
techniques. Also, in case of constrained mechanical systems, the Lagrange multipliers are defined
on the level of accelerations and inherit the order reduction from a and v̇.

To remedy the poor transient convergence behavior, there have been different proposals in
the literature (Negrut et al., 2005, Lunk and Simeon, 2006, Jay and Negrut, 2008) where,
based on (4.36), the selection of a0 is improved. If, by the same or a different method, an
approximation ā1 ≈ q̈(t1) has been acquired, one can use

a0 := (1−∆α)q̈(t0) + ∆αā1 .

A similar approach has been used by Kettmann (2009) where the first integration step was
carried out using the trapezoidal rule. Jay and Negrut (2007) argue that the algorithm in the
first step then corresponds to a non-damping algorithm which should be excluded. Even more,
to some extend, this violates requirement (d) from Remark 4.19. Arnold et al. (2015a) therefore
advise to get the approximation just from the initial values and a Taylor series approximation

a0 := q̈(t0) + δacorr , δacorr ≈ h∆α
...
q (t0) ,

see Section 6.1 below. In the context of index-3 systems and stiff mechanical systems, all these
ideas do not suffice to drastically improve the methods which is due to an order reduction that
we will explain in the next chapter.

1Note that ∆α may be negative.
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Chapter 5

Error analysis

5.1 Basics of error analysis

There are several ways to approach the analysis of the numerical properties of (4.2) for the
application to DAEs and SPPs. The investigations of Erlicher et al. (2002) in the nonlinear
ODE case and Yen et al. (1998), Lunk and Simeon (2006), and Arnold and Brüls (2007) for
the index-1, index-2, and index-3 case, respectively, were based on the convergence theory for
multistep methods (Hairer and Wanner, 2002, Sect. VII.3). To gain a deeper understanding of
the transient phase, it has proven useful to rely on a onestep representation of the algorithm
(Arnold et al., 2015a). So, the propagation of error terms throughout the time integration will
be studied using a coupled recursion of vector-valued sequences, consisting of error terms on
levels of position and velocity and acceleration-like and multiplier variables (Deuflhard et al.,
1987). Since its onestep implementation is one of the main features of (4.2), this can be achieved
in a relatively straightforward way.

The onestep recursion in all considered problem classes will in the end lead to a similar
structure of the error propagation:

Lemma 5.1 (Recursion of vector valued sequences (Arnold et al., 2016, Theorem 4.16))
For vector valued sequences (Eyn)n≥0 ⊆ Rny , (Ezn)n≥0 ⊆ Rnz satisfying

‖Eyn+1‖ ≤ ‖Eyn‖+ Lh(‖Eyn,n+1‖+ ‖Ezn,n+1‖) + hM , (5.1a)

‖Ezn+1 −TEzn‖ ≤ L(‖Eyn,n+1‖+ h‖Ezn,n+1‖) +M (5.1b)

with non-negative constants L, M and a matrix T ∈ Rnz×nz with spectral radius %(T) < 1,
there exist constants C > 0, L̃ > 0 and h0 ≥ 0, independent of n and h, such that whenever
h ∈ (0, h0], the estimates

‖Eyn‖ ≤ C eL̃nh
(
‖Ey0‖+ h‖Ez0‖+M

)
, (5.2a)

‖Ezn −TnEz0‖ ≤ C eL̃nh
(
‖Ey0‖+ h‖Ez0‖+M

)
(5.2b)

hold.

The notation •n,n+1 shall serve as an abbreviation for error terms on both time levels

‖•n,n+1‖ = ‖•n‖+ ‖•n+1‖ ,

and will occasionally be used to simplify notations. In the convergence analysis below the
vectors Eyn, E

z
n will comprise of condensed error terms on the different levels of the problem
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while the constant M will collect additional error terms that stem from higher order estimates,
local truncation errors and modeling errors of the singularly perturbed problems compared to
the equations of the constrained mechanical systems.

Corollary 5.2 (Arnold et al. (2015a, Lemma 7))
Given the assumptions of Lemma 5.1, the triangle inequality may be used to get the estimate

‖Ezn‖ ≤ ‖TnEz0‖+ C eL̃nh
(
‖Ey0‖+ h‖Ez0‖+M

)
.

The proof is based on an error recursion in terms of ‖Eyn‖ and ‖Ezn−TnEz0‖ and follows in
a similar way as ‘the classical’ error recursion for coupled error propagation in DAE convergence
analysis (Deuflhard et al., 1987). Note that for the mapping to define a contraction in the
variables Ezn, it is necessary to define a norm such that in the corresponding matrix norm ‖T‖
is bounded by one, which relies on %(T) < 1.

Definition of global errors In the (index-2 and index-3) DAE case, the global errors after
the n-th time step, n = 0, 1, . . ., are self-evidently defined as the difference of numerical and
analytic solution.

DAE-case

eqn : = q(tn)− qn , evn : = q̇(tn)− vn , ev̇n : = q̈(tn)− v̇n , (5.3a)
ean : = q̈(tn + ∆αh)− an with, see (4.3), ∆α = αm − αf . (5.3b)

We implicitly assume that q̈(tn + ∆αh) exists or that the solution can be extended to this time
instance such that the local truncation errors and global errors to be specified below are always
well-defined. The definition of the error in λ(t) is postponed to the corresponding sections.

Numerical solutions of SPPs are denoted by having the perturbation parameter

• ()δ in the strongly damped case and

• ()ε for the stiff mechanical systems

as a superscript. Apart from this we keep the notation for all error terms: As outlined in
Chapter 3, higher derivatives of the SPP solutions qδ(t) and qε(t), respectively, cannot be
bounded as it is typically done in the error analysis for nonstiff ODEs. In order to obtain upper
bounds, we will exclude these strongly attractive or highly oscillating functions and instead of
global errors eqn = qδ|ε(t) − qε|δn etc. work with the smooth solutions of the according DAE
systems, denoted by q(t) and λ(t) such that (5.3a) and (5.3b) may be utilized furthermore:

SPP-case

eqn : = q(tn)− qδ|εn , evn : = q̇(tn)− vδ|εn , ev̇n : = q̈(tn)− v̇δ|εn , (5.3c)

ean : = q̈(tn + ∆αh)− aδ|εn . (5.3d)

In view of the Rubin–Ungar Theorem in Corollaries 3.9 and 3.18, this suffices when we assume
the following:

Assumption 5.3 (Beyond classical convergence theory).
There exists a constant C0 > 0 that may depend on the parameters of the Newmark method
(4.2) and the solution q(t) of the slow system (2.12), such that time step size h > 0 and penalty
parameters δ and ε fulfill the inequalities

δ < C0h , ε < C0h .

74



With regard to the results in the Runge–Kutta case, cf. Remarks 3.11 and 3.20, this appears
as a reasonable assumption. Defining errors with respect to the DAE solutions also bears the
advantage that the similarities of the DAE and SPP case are highlighted. It is, nevertheless, a
rather unfounded supposal to assume that the initial values of the SPPs fulfill the constraints
of the DAE systems. Using the projections from Section 2.1.3, we can still construct a unique
correspondence of the initial values of the SPPs and solutions of the DAEs: For initial values
sufficiently close to the constraint manifolds, we use π and P=:P0 to map them onto consistent
initial values (q(t0), q̇(t0))> that define the slow motion of the system. For all following time
steps, the projection matrix Pn := P(q(tn)), n ≥ 1, is defined by (2.22) using the argument
q = q(tn), such that we can define new error terms

ePxn : = Pne
x
n , for x ∈ {q,v, v̇,a} . (5.3e)

Note that Pn is defined by q(tn), which depends just on the initial values: For n ≥ 1, it holds
in general πqn 6= q(tn) in the sense of the definition from (2.21) and (2.22) as Pnvn is no longer
the mass-orthogonal projection of vn onto Tπqn M

s. The overall errors exn = Pne
x
n + (I−Pn)exn

comprise also terms in the mass-orthogonal complement, which we will identify by

eGxn := G(q(tn))exn , for x ∈ {q,v, v̇,a} . (5.3f)

Up to multiplication with an invertible matrix, this is in fact the orthogonal component to the
manifold because I−Pn = [(M−1G>S−1) ·G](q(tn)).

Local truncation errors Also for the definition of local truncation errors, we will only use
smooth solutions, i. e., those of the index-3 DAE system with projected initial values. This allows
for a Taylor expansion with bounded higher order derivatives and an equivalent treatment in
the DAE and the SPP case. On position level, we obtain

lqn : = q(tn+1)−
(
q(tn) + hq̇(tn) + h2(1

2 − β)q̈(tn + ∆αh) + h2βq̈(tn+1 + ∆αh)
)

(5.4a)

= q(tn) + hq̇(tn) +
h2

2
q̈(tn) +

h3

6

...
q 0(tn) +O(h4)

− q(tn)− h2(1
2 − β)

(
q̈(tn) + ∆αh

...
q (tn) +O(h2)

)

− h2β
(
q̈(tn) + (h+ ∆αh)

...
q (tn) +O(h2)

)

=
h3

6
(1− 6β − 3(αm − αf ))

...
q (tn) +O(h4) . (5.4b)

To simplify the later representation, we follow Arnold and Brüls (2007) and define the operator

∆h(·)n :=
(·)n+1 − (·)n

h

of forward finite differences and note as a first result (independent of whether the ODE or the
DAE case is analyzed) that (5.4b) implies

∆h l
q
n =

lqn+1 − lqn
h

= O(h3) .

The local truncation error for the velocity coordinates vn is defined and analyzed in a similar
fashion. For it to be of order three, the second order consistency condition (4.3) needs to be
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fulfilled. It holds

lvn : = q̇(tn+1)− (q̇(tn) + h(1− γ)q̈(tn + ∆αh) + hγq̈(tn+1 + ∆αh))

= q̇(tn) + hq̈(tn) +
h2

2

...
q (tn) +O(h3)− q̇(tn)− h(1− γ)q̈(tn)

− h2(1− γ)∆α
...
q (tn) +O(h3)− hγq̈(tn)− hγ(h+ h∆α)

...
q (tn) +O(h3)

= h2
(

1
2 − (1− γ)∆α − γ − γ∆α

) ...
q (tn) +O(h3)

= O(h3) if γ =
1

2
−∆α .

Also for the local truncation errors on acceleration level, we take into account that the acceler-
ation-like variables are approximations to q̈ at shifted time instances.

lan : = (1− αm)q̈(tn+1 + ∆αh) + αmq̈(tn + ∆αh)− (1− αf )q̈(tn+1)− αf q̈(tn)

= (1− αm)q̈(tn) + (1− αm)(1 + ∆α)h
...
q (tn) + αmq̈(tn) + αm∆αh

...
q (tn)

− (1− αf )q̈(tn)− (1− αf )h
...
q (tn)− αf q̈(tn) +O(h2)

= O(h2) .

Note that from the given definition of the local truncation errors lan it follows

(1− αm)ean+1 + αme
a
n = (1− αf )ev̇n+1 + αfe

v̇
n + lan , (5.5)

relating the global errors on acceleration level. Note also that the estimate lan = O(h2) is
independent of the choice of parameters αf , αm. If we were to construct methods of order three
as in Example 4.17 (c), just equating the error constants of the third powers of h would not
suffice. Instead, one would have to eliminate the acceleration-like variables first (Erlicher et al.
(2002), Kettmann (2009)) or explicitly compute the second order error constants Ca in

ean = q̈(tn) + ∆αh
...
q (tn) + Cah

2....q (tn)− an +O(h3) .

Before we turn our attention to the DAE and SPP analysis, we start by several elementary
consequences of the definition of global and local errors which do not depend on the specific
problem structure.

As a first step, we observe that the difference of the projection matrices Pn from Section 2
can be estimated as follows using Taylor series expansion

Pn+1 −Pn =
[
M−1G>S−1G

]
(q(tn))−

[
M−1G>S−1G

]
(q(tn+1))

= −h · ∂(M−1G>S−1G)

∂q
(·, q̇(tn)) +O(h2)

and in particular Pn+1 −Pn = O(h).

Lemma 5.4
It holds

∆h e
q
n = evn + h(1/2− β)ean + hβean+1 +

lqn
h
,

∆h e
v
n = (1− γ)ean + γean+1 +

lvn
h
.

Proof. The claims follow directly from the definition of the involved error terms.
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Corollary 5.5
The global errors on position level and projected global errors on velocity level obey the following
onestep recursions

∆h e
q
n = O(1)

(
‖evn‖+ h‖ean‖+ h‖ean+1‖

)
+O(h2) , (5.6a)

G(q(tn)) ∆h e
q
n = eGvn + h(1

2 − β)eGan + hβeGan+1 + 1
hG(q(tn))lqn +O(h2)‖ean+1‖ (5.6b)

∆h e
Pv
n = (1− γ)ePan + γePan+1 +O(1)(‖evn‖+ 1

h‖lvn‖) +O(h)‖ean‖ , (5.6c)

∆h e
Gv
n = (1− γ)eGan + γeGan+1 +O(1)(‖evn‖+ 1

h‖lvn‖) +O(h)‖ean‖ . (5.6d)

Proof. Again, the assertions are a simple deduction (from the estimates of Lemma 5.4) taking
into account that the solution q(t) is sufficiently smooth such that Pn+1 −Pn = O(h) and the
same estimate holds for G = G(q(t)) instead of P. In particular, the last equation follows from

eGvn+1 − eGvn = G(q(tn+1)) · (evn+1 − evn) + (G(q(tn+1))−G(q(tn))) evn

= G(q(tn+1)) · (h(1− γ)ean + hγean+1 + lvn) +O(h)‖evn‖
= h(1− γ)eGan + hγeGan+1 +O(h2)‖ean‖+O(1)‖lvn‖+O(h)‖evn‖ .

As has already been outlined in the beginning of this chapter, the error analysis for the
Newmark integration family will be carried out using a vector-valued coupled onestep error
recursion connecting the global errors (e∗n)n≥0 and their projected counterparts with respect to
the constraint manifold (Deuflhard et al., 1987). The analysis of the algorithm in the singularly
perturbed settings is guided by the corresponding DAE analysis, so we will give the proof for
the index-2 and index-3 case first and later put emphasize on the crucial points where SPP and
DAE case differ significantly.

5.2 The DAE case

In Chapter 2 we saw that there are several ways to tackle the equations of motion for constrained
mechanical systems numerically. Yen et al. (1998) base an integrator with the basic structure
of (4.2a), (4.2b), (4.2c) on the index-1 formulation (2.14) and a Gear–Gupta–Leimkuhler-like
stabilization technique to include velocity constraints as well. The algorithm is proven to be
second order accurate for the position variables and first order on velocity level. The proposals of
Lunk and Simeon (2006) and Jay and Negrut (2007, 2008, for HHT and CH(%∞), respectively)
introduced a new algorithmic parameter such that Lagrange multipliers from previous steps enter
the integration procedure. For certain parameter values, the method thus becomes equivalent
to a Lobatto-IIA/IIB pair. Both algorithms use a stabilized version of the index-2 formulation.
The latter proposal also deals with nonholonomic constraints and is stated as an overdetermined
system. It is shown that both (stabilized) algorithms have second order of convergence in q and
v and first order in λ. Using an adjusted initialization for a0, the order for Lagrange multipliers
is also two (Jay and Negrut, 2008).

In Remark 4.3 we presented some of the various ways of extending the ODE algorithms to
the case of constrained systems and outlined the advantages of enforcing the constraints at each
time step directly, compare (4.2d). For HHT, this concept goes back to the investigations of
Cardona and Géradin (1989) and has been extended to the CH(%∞) case by Brüls (2005) and
the stabilized index-2 form by Arnold (2009).
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The equilibrium equations of the Newmark algorithm (4.2d) take the form

M(qn)v̇n = f(qn,vn)−G>(qn)λn , (5.7a)

0 =

{
G(qn)vn for the index-2 case and
g(qn) for the index-3 case.

(5.7b)

In the DAE setting, the definition of global errors in λ is straightforward

eλn := λ(tn)− λn . (5.8)

As for the projected error terms and the ones orthogonal to the constraint manifold in (5.3e)
and (5.3f), we also introduce the additional error terms

eXλn := X · eλn (5.9)

for matrix-valued factors X ∈ Rk×nλ , k ∈ N.
As is common in the error analysis of DAE systems, we start the investigations with the

imposition of weak estimates on the global errors of all involved coordinates. These estimates
will be used to obtain recursion formulae of error terms which finally lead to stronger error
bounds. The latter ones provide a later justification of the original assumption which can be
shown by induction, see (Hairer and Wanner, 2002, part (c) of the proof of Theorem VII.3.5).

Assumption 5.6 (Technical assumption, the DAE case).
For the error analysis in the DAE case we will suppose that there exist constants C, h0 > 0,
such that whenever 0 < h ≤ h0 holds, we have the estimates

‖eqm‖ ≤ Ch , ‖evm‖+ ‖eam‖+ ‖eλm‖ ≤ C (5.10)

for all m ≥ 0, t0 +mh ≤ tend.

Lemma 5.7 (Errors on acceleration level (Arnold et al., 2015a, Lemma 3))
For the errors ev̇n, eλn on acceleration level the following estimates hold

ev̇n = O(1)(‖eqn‖+ ‖evn‖)− eM
−1G>λ

n ,

where the argument of M−1G> in the definition of eM−1G>λ
n is to be taken at q(tn).

Proof. We multiply the equilibrium condition of the dynamic equations (2.12) by M−1(q(tn))
and the corresponding numerical equilibrium condition (5.7a) by M−1(qn), respectively. Sub-
traction results in

ev̇n + eM
−1G>λ

n = q̈(tn)− v̇n + [M−1G>](q(tn))(λ(tn)− λn)

= [M−1f ](q(tn), q̇(tn))− [M−1f ](qn,vn)

+ ([M−1G>](qn)− [M−1G>](q(tn)))λn ,

which already gives the claim, provided that the technical assumption on eλn from (5.10) holds.

Using the result of Lemma 5.7, we obtain the following estimates for their corresponding
projections onto the tangential and M-orthogonal direction of Ms = {q : g(q) = 0}:

ePv̇n = O(1) (‖eqn‖+ ‖evn‖) , (5.11a)

eGv̇n = O(1) (‖eqn‖+ ‖evn‖)− eSλn . (5.11b)

78



These results simply stem from the definition of Pn and S(q(tn)), cf. (2.24) and (2.20). Uti-
lizing the acceleration updates of the algorithm, this leads to error recursions for the errors in
acceleration-like and algebraic variables. More precisely, we get:

Lemma 5.8 (Error coupling in a and λ (Arnold et al., 2015a, Lemma 5))
The projections of global errors meet the recursions

(1− αm)ePan+1 + αme
Pa
n = O(1)

(
‖eqn,n+1‖+ ‖evn,n+1‖

)
+O(h)

(
‖eλn‖+ ‖ean‖

)
+O(h2) ,

(1− αm)eGan+1 + αme
Ga
n + (1− αf )eSλn+1 + αfe

Sλ
n

= O(1)
(
‖eqn,n+1‖+ ‖evn,n+1‖

)
+O(h)

(
‖eλn‖+ ‖ean‖

)
+O(h2) .

Proof. We prove only the first estimate as the second follows in exactly the same way considering
the different values in (5.11). The assertion is a direct consequence of Lemma 5.7 and (5.5).

(1− αm)ePan+1 + αme
Pa
n = Pn+1((1− αm)ean+1 + αme

a
n) + (Pn −Pn+1)αme

a
n

= Pn+1((1− αf )ev̇n+1 + αfe
v̇
n + lan) +O(h)‖ean‖

= (1− αf )ePv̇n+1 + αfe
Pv̇
n + αf (Pn+1 −Pn)ev̇n + Pn+1l

a
n +O(h)‖ean‖

= O(1)
(
‖eqn,n+1‖+ ‖evn,n+1‖

)
+O(h)

(
‖eqn‖+ ‖evn‖+ ‖eλn‖+ ‖ean‖

)
+ Pn+1l

a
n ,

such that the claim follows from (5.11) and Pn+1l
a
n = O(h2). Note that the latter one is

independent of the parameter choice of the method and that Assumption 5.6 was necessary to
derive this result.

After studying the equilibrium conditions of the force balance in (2.12), we now point our
attention to the constraint residuals. Independent of the integrator (index-2 or index-3), we
have the following result.

Lemma 5.9 (Constraint residuals and position errors in normal direction (Arnold et al., 2015a,
Lemma 4))
The error components in normal direction eGqn and the residuals in the position constraint relate
like

g(qn) = −eGqn +O(h)‖eqn‖ .

Their difference for two consecutive time steps fulfills

−∆h g(qn) = G(q(tn)) ∆h e
q
n + R(q(tn))(eqn, q̇(tn)) +O(h)(‖eqn‖+ ‖∆h e

q
n‖) .

Proof. We have

g(qn) = g(q(tn)− 1 · eqn)−
=0︷ ︸︸ ︷

g(q(tn)− 0 · eqn) =

∫ 1

0

d

dϑ
g(q(tn)− ϑeqn) dϑ

=

∫ 1

0
−G(q(tn)− ϑeqn)eqn dϑ =

∫ 1

0
−eGqn +O(h)‖eqn‖ dϑ ,
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and so the first assertion. For the finite difference term, we proceed as

−∆h g(qn) = −g(qn+1)− g(q(tn+1))− (g(qn)− g(q(tn)))

h

= −1

h

∫ 1

0

d

dϑ
g(q(tn+1)− ϑeqn+1) dϑ+

1

h

∫ 1

0

d

dϑ
g(q(tn)− ϑeqn) dϑ

=

∫ 1

0
G(q(tn+1)− ϑeqn+1) ∆h e

q
n dϑ

+
1

h

∫ 1

0

(
G(q(tn+1)− ϑeqn+1)−G(q(tn)− ϑeqn)

)
eqn dϑ .

For the second summand, we use the Fundamental Theorem of Calculus again: Define

eϑ,qn := q(tn+1)− q(tn)− ϑ(eqn+1 − eqn) = hq̇(tn)− ϑh∆h e
q
n +O(h2) ,

such that for the second term, we get

1

h

∫ 1

0

(
G(q(tn)− ϑeqn + 1 · eϑ,qn )−G(q(tn)− ϑeqn + 0 · eϑ,qn )

)
eqn dϑ

=
1

h

∫ 1

0

∫ 1

0
R(q(tn)− ϑeqn + ϑ̄eϑ,qn )(eqn, e

ϑ,q
n ) dϑ̄ dϑ

=

∫ 1

0

∫ 1

0
R(q(tn))(eqn, q̇(tn)) dϑ̄ dϑ+O(1)

(
h‖∆h e

q
n‖+ ‖eqn‖ ·max

ϑ
‖eϑ,qn ‖

)

= R(q(tn))(eqn, q̇(tn)) +O(h)(‖eqn‖+ ‖∆h e
q
n‖) ,

where the technical assumption (5.10) on the position errors has been used. The same technique
may be used to estimate the first summand.

Lemma 5.10 (A bound for ∆h e
Gv
n )

The finite difference of normal global velocity error components are bounded like

∆h e
Gv
n =

1

h

(
G(qn)vn −G(qn+1)vn+1

)
+O(1)

(
‖evn‖+ ‖evn+1‖+ ‖∆h e

q
n‖
)
.

Proof. As in the proof of Lemma 5.9, we use an integral representation to estimate eGvn :

eGvn = −G(q(tn))vn = −G(qn)vn + (G(q(tn)− 1 · eqn)−G(q(tn)− 0 · eqn))vn

= −G(qn)vn −
∫ 1

0
R(q(tn)− ϑeqn)(vn, e

q
n) dϑ ,

and so the assertion. The ‖ev· ‖-terms enters if the first argument in the bilinear form R is
exchanged for the analytic solution q̇(t).

5.2.1 The index-2 case

For an easier reference we state once more the algorithm in the index-2 setting.

qn+1 = qn + hvn + h2(1
2 − β)an + h2βan+1 ,

vn+1 = vn + h(1− γ)an + hγan+1 ,

(1− αm)an+1 + αman = (1− αf )v̇n+1 + αf v̇n ,

M(qn+1)v̇n+1 = f(qn+1,vn+1)−G>(qn+1)λn+1

G(qn+1)vn+1 = 0
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with q0 = q(t0), v0 = q̇(t0), v̇0 = q̈(t0) and a0 ∈ Rnq which has to be defined in an initialization
phase. Whenever not explicitly stated otherwise we use the choice from (4.35).

Example 5.11 (Error behavior in the index-2 case)
Before we proceed with a detailed analysis of the Newmark integrator in the index-2 case, we
consider once again the planar pendulum example from the first chapter.

(a) We used the CH(%∞)-algorithm with time step size h = 2 · 10−2 and obtained in a short
transient phase (first ten time steps) the results depicted in Figure 5.1 for the global errors
eλn in the Lagrange multipliers. The main feature of the Chung–Hulbert parameter choice
(4.4) lies in controllable numerical damping of the algorithm, so we used %∞ = 0 and—as a
comparison—the values %∞ = 0.1716, 0.2679, 0.6666 which should provide less numerical
damping.
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Figure 5.1: Transient error behavior in Lagrange multiplier for the CH(%∞) method in index-2
formulation, right plot: error scaled with respect to maximal deviation

As the overshoot phenomenon has already been discussed, there is no wonder about the
large amplitude in the first few steps. Rather surprising is that it seems that for the larger
values of the damping parameter %∞ ∈ {0.1716, 0.2679}, the numerical damping observed
in the experiment is in fact stronger(!) Moreover, for %∞ = 0 there are no spurious
oscillations but instead just a damped term, while for the other settings the sign of the
error changes in each of the first integration steps. Both results will become clear once we
state the error propagation for the acceleration components in the index-2 case, including
a reasoning for the specific choices of %∞ in this example.

(b) In Figure 5.2 the numerically obtained order of convergence for the pendulum example
can be observed. We applied CH(0.75) to the system with two different initial configura-
tions. In the first setting, we have the same situation as in the introductory example from
Chapter 1 and find an order reduction. More precisely, the maximum error in acceleration
variables is (only) linearly dependent on the time step size h. If we exclude the transient
phase and only consider the error for {n : tn ≥ 0.4}, the order reduction seems to disap-
pear and the expected ‘classical’ second order is observed. The same holds if we change
the initial configuration of the system and start with zero initial velocity q̇(0) = (0, 0)>:
Second order is preserved for the global errors after the transient phase as well as for the
first integration steps.

♦
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q̇(0) = (−0, 0)>, max. error for tn ≥ 0.4

Figure 5.2: Global error of CH(0.75)-method for different initial conditions and with transient
phase in-/excluded

Before the two numerical phenomena of Example 5.11 will be explained in the detailed error
analysis below, we have a quick look at the errors terms for the acceleration-like variables a0

after initialization.

Lemma 5.12 (Initial error terms (I))
If the initialization of acceleration-like variables is done as originally proposed by Chung and
Hulbert (1993), i. e., a0 := v̇0 = q̈(t0), the initial error terms on acceleration level satisfy

ePa0 = O(h) , eGa0 = O(h) .

Proof. Taylor expansion gives the result directly.

The initial global error terms on position and velocity level vanish for the obvious choice
q0 := q(t0), v0 := q̇(t0) as does the error for Lagrange multipliers if the very same ones are
initialized by solving (2.15) for the initial values.

We are now prepared to collect all the above estimates for the convergence result in the case
of (5.7) with velocity constraints G(q)q̇ = 0.

Theorem 5.13 (Convergence in the index-2 case)

(a) Let the order condition (4.3) be fulfilled and suppose that the corrector equations are
solved such that max

n
‖G(qn)vn‖ = O(h3). If the starting values satisfy

‖eq0‖+ ‖ev0‖ = O(h2) , ‖ea0 ‖+ ‖eλ0 ‖ = O(h)

then for the errors of the Newmark integrator for index-2 systems it holds

‖eqn‖+ ‖evn‖ ≤ C eL̃(tn−t0) h2 ,
∥∥∥∥∥∥



ePan
eSλn
eGan


−Tn



ePa0

eSλ0

eGa0



∥∥∥∥∥∥
≤ C eL̃(tn−t0) h2

where T will be defined in the proof below.

(b) Assume furthermore that
αm < αf <

1
2 (5.13)
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holds. If the starting values additionally satisfy

‖ev̇0‖+ ‖eGa0 ‖+ ‖M(q0)v̇0 − f(q0,v0) + G>(q0)λ0‖ = O(h1+κ) (5.14)

for a given constant κ ∈ [0, 1], then the errors on level of Lagrange multipliers are bounded
like

‖eλn‖ ≤ C
(
%nh1+κ + eL̃(tn−t0) h2

)
,

where 0 < % < 1 is a constant depending on the parameters of the algorithm.

The constants C, L̃ ≥ 0 are independent of n.

Proof. In preparation of applying Lemma 5.1, we introduce the condensed error vectors Eyn :=
(eqn, evn)> and Ezn := (ePan , eSλn , eGan )> to separate force-related error terms from the ones on
position and velocity level. We collect the estimates from Lemma 5.4 to get

Eyn+1 =

(
eqn+1

evn+1

)
=

(
eqn
evn

)
+O(h)‖ean,n+1‖+O(1)(‖lqn‖+ ‖lvn‖) = Eyn +O(h)‖Ezn,n+1‖+O(h3) ,

where the order condition (4.3) ensures that ‖lvn‖ = O(h2). In terms of the condensed errors,
Lemma 5.8 furthermore provides the two equations

(1− αm)ePan+1 + αme
Pa
n = O(1)‖Eyn,n+1‖+O(h)‖Ezn,n+1‖+O(h2) ,

(1− αm)eGan+1 + αme
Ga
n = −(1− αf )eSλn+1 − αfeSλn +O(1)‖Eyn,n+1‖+O(h)‖Ezn,n+1‖+O(h2) .

Note, that ‖eSλn ‖ = O(1)‖eλn‖ and ‖eλn‖ = O(1)‖eSλn ‖ since S(q) is bounded and non-singular.
Eventually, we combine Corollary 5.5 and Lemma 5.10 to get

(1− γ)eGan + γeGan+1 +O(1)(‖lvn‖/h+ ‖evn‖+ h‖ean‖)
= ∆h e

Gv
n

=
1

h
(−G(qn+1)vn+1 + G(qn)vn) +O(1)(‖evn,n+1‖+ ‖∆h e

q
n‖)

=
1

h
(−G(qn+1)vn+1 + G(qn)vn) +O(1)(‖evn,n+1‖+ h‖ean,n+1‖+

1

h
‖lqn‖)

= O(1)‖Eyn,n+1‖+O(h)‖Ezn,n+1‖+O(h2) . (5.15)

Putting all this together, we arrive at the coupled recursion of Lemma 5.1 and Corollary 5.2
with

T :=




(1− αm)Inq 0 0
0 0 −γInλ
0 (1− αf )Inλ (1− αm)Inλ



−1

−αmInq 0 0

0 0 (1− γ)Inλ
0 −αfInλ −αmInλ




and M = O(h2) and therefore obtain the estimates from part (a) of Theorem 5.13. To obtain
(b) we use (5.13) which implies that the error recursion is contractive, i. e., the spectral radius
%(T) < 1, see Remark 5.16 below. The explicit structure of T allows to separate the error
terms ePan,n+1 and (eSλn,n+1, e

Ga
n,n+1)> such that ePa0 = O(h) may be kept while still getting higher

order in eλn as long as (5.14) holds. The constant % may be chosen as any real number with
%(T2:3,2:3) < % < 1.

Note that the contractivity condition αm < 1
2 implies that the algorithm is zero stable for

ODEs, cf. Lemma 4.10.
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Corollary 5.14 (Second order convergence for the index-2 integrator)
Given consistent initial values (q0,v0) = (q(t0), q̇(t0)) and starting with acceleration-like vari-
ables satisfying

ePa0 = O(h) , eGa0 = O(h2) , eλ0 = O(h2) ,

the second order (in the classical ODE setting) Newmark integrators sustain their second order of
convergence for the index-2 case, i. e., the global errors on position, velocity and level of Lagrange
multipliers are second order provided that (5.13) remains valid. For the original initialization
choice a0 := v̇0 = q̈(t0) the error for the Lagrange multipliers may drop to one. After a transient
phase, however, the influence of the first order error terms become negligible.

Proof. The result is a direct consequence of Theorem 5.13. Note that it would not suffice to just
use Corollary 5.2 since then the separation of ‖ePan ‖ and ‖eSλn ‖ up to higher order terms would
not be possible. The results of Lemma 5.12 give the second assertion.

Remark 5.15
We tacitly assumed that the sufficiently exact solution of the corrector equations includes that
the update equations for position, velocity and acceleration-like variables in (4.2) are also realized
sufficiently accurate. The implementation proposed in Section 6.1 below will be constructed in
such a way that the latter three are fulfilled up to machine precision anyway. Even if the solution
of the update equations is carried out in a different way, it is a reasonable assumption that the
linear update formulae are at least as well resolved as the nonlinear equations for the equilibrium
conditions and the constraints.

In the original work Arnold et al. (2015a) take the ‘tolerance’ of the Newton–Raphson algo-
rithm into account: They show that the error estimate of Theorem 5.13 (as well as Theorem 5.21
below) remains valid if the deviation from the constraint manifold defined by G(q)q̇ = 0 (g = 0
respectively) persists within θ :=O(h2+κ̄) (θ :=O(h3+κ̄)), κ̄ ∈ [0, 1], and the error estimates are
then relaxed to an additional error term of size h−1θ (h−2 · θ).

Remark 5.16 (Eigenvalues of the propagation matrix)
For nq = 1, the error amplification matrix in the above proof is given by

T =




αm
αm − 1

0 0

0
αf

αf − 1

1 + αm − γ
γ(αf − 1)

0 0
γ − 1

γ




if γ 6= 0 and αm, αf 6= 1 such that the three eigenvalues are already given by the diagonal
elements. The second order condition and (5.13) assure that γ = 1

2 − αm + αf >
1
2 and so

|γ−1
γ | < 1. By αm, αf < 1

2 , we also get | α∗α∗−1 | < 1, ∗ ∈ {m, f}, such that %(T) < 1 is
proven. Note that for contractivity and so convergence, the condition γ > 1

2 is already sufficient
whereas (4.3) ensures second order convergence. With respect to the overshoot phenomenon (see
Remark 4.21), it is also significant how the Jordan canonical form of the amplification matrix
is structured. It can easily be verified that a degenerate Jordan decomposition (i. e., one with
Jordan blocks of size m > 1) is present if and only if αf = 1 − γ. For the common settings of
HHT, WBZ and CH(%∞) with %∞ ∈ [0, 1) this is never the case.

For Newmark integrators in the classical sense, it holds αm = αf such that (5.13) formally
cannot be valid. Due to the equivalence of an and v̇n in these cases, the error analysis does
not need to take into account (4.2c) and matrix T in the above analysis contains a redundant
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relation. However, second order convergence can only be gained for γ = 1
2 . Note that this always

gives non-damping algorithms for (4.12).
To understand why the expectably weaker numerical damping in Example 5.11 (a) for the

settings %∞ ∈ {0.1716, 0.2679} lead to numerically observed stronger damping, and why the
presumably instantaneous annihilation for the choice %∞ = 0 could not be observed in the
numerical test, we plug in the ‘optimal parameters’ of the Chung–Hulbert method according to
(4.4). The eigenvalues of the above matrix T read

µ1 =
αm

αm − 1
=

2%∞ − 1

%∞ − 2
, µ2 =

αf
αf − 1

= −%∞ , µ3 =
γ − 1

γ
=

3%∞ − 1

%∞ − 3

and so, the spectral radius of T is explicitly given by

%(T) =




%∞ if %∞ ≥ 2−

√
3

2%∞ − 1

%∞ − 2
if 0 ≤ %∞ < 2−

√
3,

which indicates a maximal numerical damping for %∞ = 2 −
√

3 ≈ 0.2679. However, the
displayed error in Figure 5.1 is basically eSλn whose (particularly transient) behavior is governed
by powers of the lower two-by-two block, denoted by T2:3,2:3. As can straightforwardly be shown,
see Figure 5.3, the spectral radius of T2:3,2:3 is minimized for %∞ = 3 − 2

√
2 ≈ 0.1716 which

substantiates this specific choice.

0.5 1
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1

3
−
2
√
2

2
−
√
3

%∞

µ(T) %(T)

%(T2:3,2:3)

µ1
µ2µ3

Figure 5.3: Eigenvalues of T for the CH(%∞) parameter set

Having a closer look at Figure 5.3, it also becomes evident that for %∞ = 0 no oscillations
occur in the transient phase: Since all eigenvalues are nonnegative there is no switching of signs
in each recursion. At last, note also that T is independent of the choice of β for this index-2
setting.

Remark 5.17 (Configuration-dependent order reduction and choice of a0)
It still remains to be shown why the order reduction in Example 5.11(b) only occurred for the
initial configuration with q̇(0) = (−1, 1)>. The decoupling of the lowest order error terms in Ezn
results in the conditions of Corollary 5.14 for the initial error terms on the level of acceleration-
like variables. As a result, there is no order reduction if ea0 = O(h) but eGa0 = O(h2) (Arnold
et al., 2016, Example 4.19). In general, this may be seen by Taylor expansion resulting in

eGa0 = G(q(t0)) (q̈(t0 + ∆αh)− a0) = G(q(t0))
(
q̈(t0) + ∆αh

...
q (t0) +O(h2)− q̈(t0)

)

= h∆αG(q(t0))
...
q (t0) +O(h2) ⇒ eGa0 = O(h2) if G(q(t0))

...
q (t0) = 0 .

For the pendulum example with q(0) = 1
2(
√

2,
√

2)> it can be shown that

G(q(0))
...
q (0) = (q̇x(0)− q̇y(0))

(
−ggrav + 3

4

√
2
(
(q̇x(0))2 − (q̇y(0))2

))
.
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For zero velocity initial values we therefore get eGa0 = O(h2) and no order reduction in v̇ whereas
for q̇(0) = (−1, 1)> we have G(q(0))

...
q (0) = 2ggrav 6= 0 and so a O(h)-error in the transient

phase.
If one uses the more sophisticated initialization for the acceleration-like variables a0 as

presented in Section 4.2.3, it is also straightforward to show that the conditions of Corollary 5.14
are fulfilled and the order reduction can be avoided for arbitrary initial values (q(t0), q̇(t0))>,
see also the discussion in the index-3 case below.

Remark 5.18 (Stabilized index-2 formulation)
As it is state-of-the-art (and quasi-standard) in technical simulation of multibody systems to use
stabilization techniques for index-2 formulations, we will shortly discuss how the above analysis
may also cover this setting. We briefly give an overview on this approach and its analysis as it
is carried out in detail by Arnold et al. (2016).

The additional (velocity constraint enforcement) variable µn ∈ Rnλ enters the algorithm by
exchanging (4.2a) for

qn+1 = qn + hvn + h2(1
2 − β)an + h2βan+1 − h ·G>(qn)µn

(Arnold, 2009) and, of course, consideration of both constraint equations in (5.7b). Note that
the numerical solution for µn enters only linearly and that G>(qn) is already known from the
previous time step. The nonlinear systems in the algorithm nevertheless grow to dimension
nq + 2nλ, taking into account the additional position constraints (Arnold and Hante, 2016).
The local truncation errors (5.4a) for the position coordinates are then redefined and given by

lq,GGL
n := q(tn+1)−

(
q(tn) + hq̇(tn) + h2(1

2 − β)q̈(tn + ∆αh)

+ h2βq̈(tn+1 + ∆αh)− hG(q(tn))µ(tn)
)
.

Furthermore, the global error eµn := µn is formally introduced. Using Lemma 5.4, it can be
estimated as

eµn = −([GG>](q(tn)))−1G(q(tn)) ∆h e
q
n

+O(1)
(
‖eqn,n+1‖+ ‖evn‖+ h‖ean,n+1‖+ h‖eµn‖

)
+O(h2) ,

where we exploited the technical assumption on the global errors for qn again. Lemma 5.10 can
now be used to show

‖eµn‖ = O(1)
(
‖eqn,n+1‖+ ‖evn,n+1‖+ h‖ean,n+1‖+ h‖eµn‖

)
+O(h2) .

As a result, the errors in µn contribute only to the higher order terms if it is assumed that the
corrector equations are solved such that ‖g(qn)‖ = O(h3). Finally, the results of Theorem 5.13
remain valid and the additional error bound ‖eµn‖ = O(h2) holds.

5.2.2 The index-3 case

As even in the index-2 case we have observed order reduction in the Lagrange multipliers λn
for the Newmark integration family if the acceleration-like variables are not chosen carefully, it
cannot be expected that for an implementation employing only position constraints, i. e., the
equations of motion in its index-3 form, this issue is no longer present. One step of the algorithm
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in the index-3 setting is given by

qn+1 = qn + hvn + h2(1
2 − β)an + h2βan+1 ,

vn+1 = vn + h(1− γ)an + hγan+1 ,

(1− αm)an+1 + αman = (1− αf )v̇n+1 + αf v̇n ,

M(qn+1)v̇n+1 = f(qn+1,vn+1)−G>(qn+1)λn+1

g(qn+1) = 0

with q0 = q(t0). We will see in (5.17) and Remark 5.23 below, that it may be advantageous to
use a different initialization for the velocity variables v0 than the obvious choice q̇(t0) but if not
explicitly stated otherwise we will still use the original setting, especially v̇0 = a0 = q̈(t0).

The analysis of the method in the index-3 case, which is mainly adapted from (Arnold et al.,
2015a), will essentially use the same results as the one in the previous section but the condensed
error vectors Ezn will take one more component into account such that its propagation behavior
in the end is much closer to the one from the harmonic oscillator example from Chapter 4 and
it also allows for an easy way to construct remedies for the inferior convergence behavior to be
described in the following instructive example.

Example 5.19 (Arnold et al. (2015a, Example 2))
We consider the scalar (and pathological) test example

q̈(t) = −λ(t) , (5.16a)

q(t)− t3 = 0 , (q(0) = q̇(0) = 0, t ∈ [0, T ]) . (5.16b)

The main difficulties that arise for Newmark integrators in an index-3 setting are revealed for this
simple polynomial test problem already. In the above form, the constraint g = g(t, q) = q − t3
is rheonomic and nλ = nq, i. e., the problem does not exactly resemble the proposed structure
of the mechanical systems under consideration but simplifies the reasoning. The problem obeys
the analytic solution

q(t) = t3 , q̇(t) = 3t2 , q̈(t) = −λ(t) = 6t .

Consistent initialization of the acceleration variables is given by v̇0 := 0, but for this example we
will treat v̇0 as a free variable. The first integration step of the Newmark integrator comprises
the system

q1 = h2(1
2 − β)a0 + h2βa1 ,

v1 = h(1− γ)a0 + hγa1 ,

(1− αm)a1 + αma0 = (1− αf )v̇1 + αf v̇0 ,

q1 = h3

v̇1 = −λ1

which for β 6= 0, αf 6= 1 has the explicit solution

q1 = h3 ,

v1 =
(2β − γ)a0

2β
h+

γ

β
h2 ,

v̇1 = −λ1 =
(2β − 1 + αm)a0 − 2βαf v̇0

2(1− αf )β
+

1− αm
(1− αf )β

h .
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A comparison with the exact solutions at t = h shows the error behavior

eq1 = 0 ,

ev1 = O(h2) if a0 = O(h),

eλ1 =
(1− αm − 2β)a0 + 2αfβv̇0

2(1− αf )β
+

(
6− 1− αm

(1− αf )β

)
h .

Whatever choices (that do not explicitly depend on the time step size) for the variables a0 and
even v̇0, are made, it is not possible to avoid that the order of the approximations on Lagrange
multiplier (and also acceleration) level is just one. Due to the good numerical damping properties
of the algorithms, this parasitic error components are damped out for strictly stable methods
after a transient phase as will be shown below. ♦

The order reduction we have seen in the previous example occurs whenever the Newmark
integrator needs to be initialized. For models with contact conditions or discontinuous right
hand sides as well as for systems with control inputs this may happen many times during the
time integration process. When a variable time step scheme is used, the order reduction may
even be observed whenever a change in the step size occurs (see Arnold et al., 2015b). To remedy
this unsatisfactory property, Arnold et al. (2015a) propose to add corrector terms

v0 := q̇(t0) + δvcorr and a0 := q̈(t0) + δacorr

with δvcorr := (1− 6β + 3∆α)
h2

6

[
M−1G>S−1G

]
(q0)

v̇sh − v̇−sh
2sh

,

and δacorr := ∆αh
v̇sh − v̇−sh

2sh
,

(5.17)

to the starting values of the the velocity and acceleration-like coordinates to preserve second
order. The terms v̇±sh denote approximations to q̈ at t = t0 ± sh with a (small) constant
s ∈ (0, 1), such that v̇sh−v̇−sh2sh approximates the third derivative of q. From Corollary 5.14 and
the above error analysis, the definition of δacorr is evident: Perturbing a0 by adding a term of
magnitude O(h) has no effect on the initial error estimates from Lemma 5.12 but with that
choice the order of eGa0 is automatically two instead of one, cf. Remark 5.17. The particular
choice of δvcorr will become clearer in the error analysis below.

Lemma 5.20 (Initial error terms (II))
For the index-3 Newmark integrator with starting values

v0 = q̇(t0) , a0 = v̇0 = q̈(t0)

the assertions on the initial error terms on level of acceleration-like variables from Lemma 5.12
remain valid.

Moreover, it holds
‖eGv0 + 1

h l
Gq
0 ‖ = O(h2) . (5.18)

Proof. The assertion is a simple corollary of (5.4b) and the fact that for the above initialization
v0 := q̇(t0) the initial error term eGv0 vanishes. Note, however, that estimate (5.18) can be
improved with (5.4b) if ‖eGv0 + h2

6 (1− 6β + 3(αm − αf ))G(q0)
...
q (t0)‖ is sufficiently small.

We pointed out in the outline of this section that for the convergence analysis in the index-3
case the error vector Ezn will be extended by another component. To this end, we introduce the
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(curvature) error term

rGn :=
1

h

(
eGvn + R(q(tn))(eqn, q̇(tn)) + 1

h l
Gq
n

)
, n = 0, 1, . . . ,

and the notation
η(3)
n := ‖eqn‖+ ‖evn‖+ h‖ean‖+ h‖eλn‖ , n = 0, 1, . . .

to collect higher order terms in the following estimates, because for this and the SPP setting
in the sections to follow below, the higher order terms have a more complicated structure. The
superscript •(3) just indicates the index-3 case.

Theorem 5.21 (Convergence in the index-3 DAE case, Arnold et al. (2015a, Theorem 1))
Let a stable second order Newmark integrator (4.2) in the sense of Definition 4.16 be given.
Suppose that the corrector equations are solved such that maxm‖g(qm)‖ = O(h4).

(a) If the starting values satisfy

‖eq0‖+ ‖ev0‖ = O(h2) , ‖ea0 ‖+ ‖eλ0 ‖ = O(h)

then for the errors of the Newmark integrator in the index-3 setting the relation

‖eqn‖+ ‖evn‖ ≤ C eL̃(tn−t0) h2 ,
∥∥∥∥∥∥∥∥




ePan
rGn
eSλn
eGan


−Tn




ePa0

rG0
eSλ0

eGa0




∥∥∥∥∥∥∥∥
≤ C eL̃(tn−t0) h2

holds where T := blkdiag(−αm/(1 − αm)Inq ,T(∞) ⊗ Inλ) with T(∞) := limz→∞T(z)
denoting the error amplification matrix for the linear test equation (4.12) in the limit case
hω →∞, cf. (4.16).

(b) If the starting values additionally satisfy

‖eGv0 + R(q(t0))(eq0 , q̇(t0)) + 1
h l

Gq
0 ‖+ h‖eλ0 ‖+ h‖eGa0 ‖ = O(h2+κ) , κ ∈ [0, 1] ,

then the global errors on Lagrange multiplier level of the Newmark integrator in its index-3
form are bounded like

‖eλn‖ ≤ C0

(
%nh1+κ + eL̃(tn−t0) h2

)
,

where 0 < % < 1 is a constant depending on the parameters of the algorithm.

The positive constants C0, L̃ are independent of n.

Proof. By definition of rGn and (5.6b) in Corollary 5.5, one can directly show that

rGn + (1
2 − β)eGan + βeGan+1 = 1

h(G(q(tn)) ∆h e
q
n + R(q(tn))(eqn, q̇(tn))) +O(h)‖ean‖ .

Lemma 5.9 then leads to

rGn + (1
2 − β)eGan + βeGan+1 = O(1)η

(3)
n,n+1 +O(h2)− 1

h ∆h g(qn) . (5.19)
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This relation will replace equation (5.15) from the error recursion formula of the index-2 setting.
For the index-3 case another relation is obtained considering the difference of two instances rG• :

rGn+1 − rGn = ∆h e
Gv
n +O(1)(‖∆h e

q
n‖+ ‖eqn+1‖) + 1

h2
(lGqn+1 − lGqn )

= (1− γ)eGan + γeGan+1 + 1
hG(q(tn)) ∆h l

q
n +O(1)η

(3)
n,n+1 +O(h2) +O(1) 1

h l
q
n+1︸ ︷︷ ︸

=O(h2)

= (1− γ)eGan + γeGan +O(1)η
(3)
n,n+1 +O(h2) , (5.20)

where, at first, we used

R(q(tn+1))(eqn+1, q̇(tn+1))− R(q(tn))(eqn, q̇(tn))

= R(q(tn))(eqn+1, q̇(tn+1)) +O(h)‖eqn+1‖ − R(q(tn))(eqn+1, q̇(tn))

+ R(q(tn))(eqn+1, q̇(tn))− R(q(tn))(eqn, q̇(tn))

= O(h)
(
‖eqn+1‖+ ‖∆h e

q
n‖
)

and then (5.6d) and (5.4). The finite differences of eqn were estimated with the aid of (5.6a). The
findings from Lemma 5.8 remain valid in the index-3 case as well and—in terms of η(3)

n —may
be expressed as

(1− αm)ePan+1 + αme
Pa
n = O(1)η

(3)
n,n+1 +O(h2) ,

(1− αm)eGan+1 + αme
Ga
n = −(1− αf )eSλn+1 − αfeSλn +O(1)η

(3)
n,n+1 +O(h2) , (5.21)

where S = S(q) denotes again the regular Delassus matrix from (2.20).
The new condensed error terms are Eyn := (eqn, evn)>, Ezn := (ePan , rGn , e

Sλ
n , eGan )>, where for

future reference the last three components are denoted by Ern := (rGn , e
Sλ
n , eGan )>. The first set

of inequalities in Lemma 5.1 remains unchanged

Eyn+1 = Eyn +O(h)(‖Eyn‖+ ‖Ezn,n+1‖) +O(h2)

and all the above estimates can again be expressed within the framework of Lemma 5.1 with

T := blkdiag

(−αmInq
1− αm

, ((T̃
(3)
1 )−1 · T̃(3)

2 )︸ ︷︷ ︸
T(∞)

⊗Inλ)

)
, M = O(h2) ,

where the matrices T̃
(3)
1|2 are known from the infinite stiffness case of the linear stability analysis

in Chapter 4, i. e.,

T̃
(3)
1 :=




0 0 −β
1 0 −γ
0 1− αf 1− αm


 , T̃

(3)
2 :=




1 0 1
2 − β

1 0 1− γ
0 −αf −αm


 , (5.22)

see (4.17) which gives an amplification matrix T as given in the theorem. More precisely,
(5.19), (5.20) and (5.21) can be combined using the assumption on the constraint residuals
g(qn) = O(h4) ⇒ 1

h ∆h g(qn) = O(h2) to get

(T̃
(3)
1 ⊗ Inλ)Ern+1 − (T̃

(3)
2 ⊗ Inλ)Ern = O(1)η

(3)
n,n+1 +O(h2) , (5.23)

such that the result follows as for Theorem 5.13. Note that the contribution of R(q(t0))(eq0 , q̇(t0))
to the initial error term rG0 only regards higher order terms since it is linear in eq0 . Note also
that the conditions for well-definition of T, i. e., αf , αm 6= 1, β 6= 0 are automatically fulfilled
since we required the method to be stable.
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Corollary 5.22 (Order reduction depending on initial data)
From Theorem 5.21 it is evident that for the initialization q0 = q(t0) a first order transient
error term for the Lagrange multipliers is always present if only (5.18) holds. The Newmark
integrator therefore preserves its second order of convergence, even for the Lagrange multipliers,
if

‖eGv0 + 1
h l

Gq
0 ‖+ h‖eGa0 ‖ = O(h3) .

Remark 5.23 (Proof of convergence and adapted initial values)
If we were only to prove first order convergence of the Lagrange multipliers, the analysis could
have been substantially simplified. Especially, there would not have been the need for introducing
rGn , the coupled error propagation would resemble the one we are about to give in Section 5.3.2
below.

Employing the complete error analysis we are now able to justify the correction terms δvcorr

and δacorr in (5.17) from the introduction of this section. Corollary 5.22 indicates that order
reduction of the index-3 integrator can always be avoided if we use the correction term δacorr

to get eGa0 = O(h2) as in Section 4.2.3 and so that Theorem 5.21 guarantees second order of
convergence if G(q(t0))(ev0 + 1

h l
q
0) = O(h3), which is satisfied if the correction term δvcorr fulfills

G(q0)(q̇(t0)− v0) = G(q0)δvcorr = 1
hG(q0)lq0

•
=

1− 6β + 3∆α

6
G(q0)

...
q (t0) , (5.24)

where “ •=” indicates identity up to higher order terms. Since this system is underdetermined, one
may add the equation M(q0)δvcorr + G>(q0)δdummy

corr = 0 with the additional variable δdummy
corr ∈

Rnλ . With (5.24) the correction terms may thus be uniquely defined by solving the linear system

(
M(q0) G>(q0)
G(q0) 0

)(
δvcorr

δdummy
corr

)
=

(
0

1− 6β + 3∆α

6
G(q0)

...
q (t0)

)
,

where
...
q (t0) can be approximated by means of finite differences. This definition of the velocity

correction is convenient because it is very cheap to compute as the involved saddle-point matrix
needs to be decomposed for the determination of initial values (and possibly within the time
integration itself) anyway.

Note that the correction term for the velocity components is in O(h2) such that the conver-
gence result for (qn,vn)> remains valid and that M(q0) = M(q(t0 + ∆αh)) + O(h), G(q0) =
G(q(t0 + ∆αh)) +O(h) and so, it is justified to take these arguments.

It is also important that, see Remark 5.17, G(q(t0))
...
q (t0) = 0 is sufficient for preventing

order reduction in both, the index-2 and the index-3 case.

Remark 5.24 (Exact fulfillment of velocity constraints (Arnold et al., 2016, Lemma 3.4 b) ))
With regard to the important application field of structural dynamics where the numerical
challenge often lies in the large dimension of the system rather than the complicated nonlinear
arrangement of force vector and constraints (Simeon, 2013), the case of linear constraints plays
an important role and shall be mentioned here in a little more detail.

For constant constraint Jacobian G(q) ≡ G and consistent initial values

g(q0) = Gq0 + g0 = Gv0 = Ga0 = 0 , g0 ∈ Rnλ ,

the index-3 integrator fulfills the hidden constraints on velocity level exactly. The proof is an
elementary induction over the time steps. As a result, the convergence result of the index-2 case
can be carried over such that neither order reduction nor large overshoot is present. Note that
this observation has important implications for the model setup: As the convergence behavior of
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the algorithm is substantially improved in case of linear constraints, the choice of coordinates may
influence the performance of the simulation. For configuration spaces with Lie-group structure
a comprehensive discussion is presented by Müller and Terze (2014). Also, in case of more
general multibody systems it is sometimes appropriate to consider (easier) linearized equations
such that also the computation of constraint- and reaction forces and the setup of variables for
optimal control is simplified (Eich-Soellner and Führer, 1998).

In case of linear constraint equations (corresponding to a quadratic penalty potential for
the SPPs) the analysis can be simplified to a (more or less plain) extension of the harmonic
oscillator example from Section 4.2. Note, nonetheless, that the analysis itself is governed by
the linearized equations of motion leading to the coupled onestep error propagation in (5.23)
resembling the analysis of the linear ODE case. Incidentally, for Runge–Kutta methods it is
well-known that for certain Hessenberg systems (see Example 2.9) with linear constraints, the
hidden constraints are automatically preserved as well (see e. g. Nipp, 2002) and even give the
same numerical results when applied to the systems in its different formulations.

5.3 Singularly perturbed systems

To study the numerical properties of (4.2) in the SPP case, we will carry over as much as possible
from the DAE analysis of the previous section. In particular, this means that all estimates that
do not include any Lagrange multiplier terms remain unchanged since the error terms are defined
with respect to the slow solution q(t) of the DAE systems anyway, cf. (5.3c) and (5.3d).

Initial values that are consistent with the according differential-algebraic systems are an
unrealistic assumption but with respect to the singular nature of the perturbation force terms in
(3.6) and (3.15), it seems reasonable to at least presume some upper bound on the initial energy
of the system. For the initial deviations from the constraint manifolds of the slow system, this
implies the following conditions.

Assumption 5.25 (Initial deviations).
The initial values of the SPPs fulfill the following estimates

(a) g(qδ(t0)) = O(h2), G(qδ(t0))q̇δ(t0) = O(δ) in the strongly damped case and

(b) g(qε(t0)) = O(ε2), G(qε(t0))q̇ε(t0) = O(ε2) for stiff mechanical systems.

Here, h > 0 denotes the time step size of (4.2) which is assumed to be bounded from above by
a sufficiently small constant h0 > 0.

Note that these assumptions are stronger than the ones imposed for the convergence results
in case of Runge–Kutta methods in Remarks 3.11 and 3.20. In both cases the initial error terms
were allowed to have a deviation that depends on the time step size h > δ (h > ε respectively)
which in view of Assumption 5.3 is in fact a much weaker assumption. The numerical results
from Chapters 1 and 6 demonstrate that in this case convergence can no longer be guaranteed.
The h2 bound on position level for the strongly damped case is motivated by the classical second
order of the method which we want to preserve in the SPP case if possible. Note, however, that
this deviation may cause a larger drift from the constraint manifold Ms. Because h is bounded,
the unique definition of the corresponding slow motion is always possible.

As done in Assumption 5.6, we will impose a technical assumption on the error terms in
the SPP case also. The singular nature of the problems forbids to give (global) convergence
results on acceleration level for general initial values as they are declared in Assumption 5.25.
So, we will only include the position and velocity variables, which also makes sense if we only
consider the SPPs as substitute problems to DAEs: In that case, the singular forces in the
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differential equations have no physical meaning anyway. As for Assumption 5.6 in the DAE
case, Assumption 5.26 below can be justified by induction afterwards because the final error
estimates will provide stronger bounds.

Assumption 5.26 (Technical assumption, the SPP case).
For the analysis in the SPP case we will suppose that there exist constants C, h0 > 0, (inde-
pendent of the penalty parameters δ and ε), such that whenever 0 < h ≤ h0 holds, we have the
estimates

‖eqm‖ < Ch , ‖evm‖ < Ch for strongly damped systems,
‖eqm‖ < Ch , ‖evm‖ < C for stiff mechanical systems

for all m ≥ 0, t0 +mh ≤ tend.

5.3.1 Strongly damped systems

When applied to strongly damped mechanical systems (3.6), (3.7) respectively, algorithm (4.2)
reads

qδn+1 = qδn + hvδn + h2(1
2 − β)aδn + h2βaδn+1 ,

vδn+1 = vδn + h(1− γ)aδn + hγaδn+1 ,

(1− αm)aδn+1 + αma
δ
n = (1− αf )v̇δn+1 + αf v̇

δ
n ,

a)
{

M(qδn+1)v̇δn+1 = f(qδn+1,v
δ
n+1)− 1

δ [G>G](qδn+1)vδn+1 ,

or b)

{
M(qδn+1)v̇δn+1

δλδn+1

=

=

f(qδn+1,v
δ
n+1)−G>(qδn+1)λδn+1 ,

G(qδn+1)vδn+1 .

(5.25)

Note that the second formulation b) can only be used in a practical implementation when the
involved functions M, f and G can explicitly evaluated which often is not the case. Yet, for the
error analysis it will prove useful to rely on this formulation although the Lagrange multiplier
variables λδn are not calculated in that case.

Before the comprehensive error study from the previous section is adapted to SPPs, we
consider again two simple examples to provide a first insight to similarities and differences.

Example 5.27 (Linear analysis: The attractive equivalent of the harmonic oscillator)
A straightforward index reduction for the constrained equivalent of the harmonic oscillator,
cf. (4.12), leads to the singularly perturbed problem

q̈δ(t) +
1

δ
q̇δ(t) = 0 , (5.26)

which can analytically be solved for the solution

qδ(t) = qδ(t0) + δq̇δ(t0)
(

1− e−t/δ
)
.

A numerical integration method can no longer be required to damp out the solutions entirely for
this would not take into account that all analytic solutions comprise a (possibly non-vanishing)
constant component. Nevertheless, solutions of (5.26) still remain bounded on arbitrary time
intervals and this should be reflected for approximate solutions as well. The onestep recursion
corresponding to (4.16) for the harmonic oscillator now reads




1 0 −β
0 δ/h −γ
0 1− αf 1− αm






qδn+1

h2δ−1vδn+1

h2aδn+1


 =




1 δ/h 1
2 − β

0 δ/h 1− γ
0 −αf −αm






qδn
h2δ−1vδn
h2aδn


 .
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The existence of constant solution components is reflected by the invariant subspace of this linear
mapping (qδn, h

2δ−1vδn, h
2aδn) 7→ (qδn+1, h

2δ−1vδn+1, h
2aδn+1) to the eigenvector (1, 0, 0)> with an

eigenvalue that is exactly µ1 = 1. So, the damping properties of the Newmark integrators are
completely characterized by the amplification behavior of the lower two-by-two block:

Tδ :=

(
δ/h −γ

1− αf 1− αm

)−1(
δ/h 1− γ
−αf −αm

)
,

which for δ = 0 coincides with (the lower block of) the error propagation of the index-2 case.
We notice that even for δ > 0 this amplification mapping does not depend on the parameter β,
an observation from the convergence result in the index-2 case by Jay (2011).

The eigenvalues of the above amplification matrix Tδ can analytically be computed as

µ2|3 =
αf − 2αfγ − 2αm

δ
h + δ

h + γ − 1

−2((αf − 1)γ + (αm − 1) δh)

±

√
α2
f − 2αf ( δh − γ + 1) + 4αm

δ
h + ( δh + γ)2 − 2 δh − 2γ + 1

−2((αf − 1)γ + (αm − 1) δh)
,

and in the limit case δ → 0 resemble the leading error propagation of the index-2 convergence
analysis, see Remark 5.16. More importantly, it can be shown that they are—even for all
positive values of δ/h—bounded from above by one in absolute value. In the error analysis
below we will use an extended version of Tδ to cope with the general nonlinear case; also then
there is a sufficiently large neighborhood of zero (for values of δ/h) such that the eigenvalues
may be bounded, see Example 5.34 below.

In Figure 5.4 the absolute values of the eigenvalues are depicted for the parameter choices
from CH(%∞), HHT and WBZ. Note that for HHT only values %∞ ∈ [0.5, 1] are relevant. For
%∞ → 0, δ/h = 0 one eigenvalue would tend towards −∞ if we included that region. The green

0
0.5

1 0

0.5

1

0

0.5

1

%∞
δ/h

|µ
|

CH(%∞)

0
0.5

1 0

0.5

1

0

0.5

1

%∞
δ/h

HHT

0
0.5

1 0

0.5

1

0

0.5

1

%∞
δ/h

WBZ

Figure 5.4: Eigenvalues µ2|3 of the linear update mapping from Example 5.27 for CH(%∞), HHT,
and WBZ, green line: behavior for δ/h = 0

lines indicate the amplification behavior for δ = 0 and so resemble the plot from Figure 5.3 for
the CH(%∞) method.

Note that, as for the harmonic oscillator in (4.17), rescaling is also possible, i. e., considering
the map of (q, hv, h2a)> from one time step to the next one. That way, the representation is
closer to classical analysis of Chung and Hulbert (1993) in the case of stiff systems. ♦
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Before we proceed with the next, more complex, example we introduce the equivalent error
term to (5.8). Motivated by the corresponding singularly perturbed index-1 problem (3.7)
and its discrete counterpart in (5.25) we define the global error of the Lagrange multiplier
approximations for strongly damped mechanical systems by

eλ,δn := λ(tn)− λδn , λδn =
1

δ
G(qδn)vδn . (5.27)

Equation (5.9) can be extended to the errors eλ,δn in a straightforward manner.

Example 5.28 (Damped Prothero–Robinson equation)
Adding nonlinearity to the solution of the above test problem while keeping the small space
dimension one, can be achieved at the cost of having to cope with rheonomic weak constraints.
A very similar test problem for first order ODEs has been proposed by Prothero and Robinson
(1974) in the analysis of B-convergence for Runge–Kutta methods. An adaptation to second
order equations for strongly damped mechanical systems reads (Simeon, 2013)

q̈δ(t) = −1

δ
(q̇δ(t)− ϕ̇(t)) + ϕ̈(t) , t ≥ 0 , (5.28)

with the analytic solution qδ(t) = ϕ(t)+C1−δC2 e−t/δ, where C1 :=qδ(0)−ϕ(0)+δ(q̇δ(0)−ϕ̇(0)),
C2 := q̇δ(0)− ϕ̇(0), and ϕ : R→ R is an arbitrarily given smooth function. With respect to the
general modeling process of Section 3.2, equation (5.28) can generically be obtained from the
Rayleigh function D :=1

2‖q̇δ(t)−ϕ̇(t)‖22, i. e., the rheonomic constraint function g(q, t):=q−ϕ(t).
For ϕ ≡ 0, this is exactly the damped oscillator from Example 5.27. In any case, the slow solution
is given by q(t) = ϕ(t) and all errors coincide with the orthogonal error components eG•n , i. e.,
the projections and projectors define the DAE solution.

Motivated by Assumption 5.25, for studying one step of (4.2) for (5.28) we assume that the
initial values of the SPP are qδ(0) = qδ0 = ϕ(0) + Cqh

2, q̇δ(0) = vδ0 = ϕ̇(0) + Cvδ with two
constants Cq, Cv ∈ R. The solution of one step can analytically be computed but is rather
cumbersome. Instead, we start by taking a look at the initial error terms to obtain the first
distinct difference to the DAE case: For position and velocity level the errors are defined by the
chosen initial values. On acceleration-like level and for the original initialization (4.35) we get

ea0 = ϕ̈(∆αh)− aδ0 = ϕ̈(∆αh)− (−1

δ
(vδ0 − ϕ̇(0)) + ϕ̈(0)) = Cv +O(h) ,

and similarly on the level of Lagrange multipliers

eλ,δ0 = 0︸︷︷︸
≡λ(t)

−(−1

δ
(vδ0 − ϕ̇(0))) = Cv .

We conclude that these error terms can no longer be estimated by any step size dependent value
and will therefore scale the error terms eGan and eλ,δn in the analysis below.

The advantage of using the Prothero–Robinson problem as test equation was underlined by
Simeon (1998) and Schaub and Simeon (2002) in the context of Runge–Kutta and Rosenbrock
methods for stiff mechanical systems: Its very simple structure suffices to describe the methods
in the context of stiff force terms while it is also possible to show the sources of possible order
reduction. One main result is that local (truncation) errors dominate the overall error behavior
since global errors are damped out by the algorithms, see also Example 5.35 below. As a result,
the explicit error recursion from one time integration step typically suffices for the analysis.
The multistep character of Newmark integrators and the fact that acceleration-like variables
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are, as just seen, no proper error measure necessitate a reformulation as the one already an-
nounced in Remark 4.6. Instead of (eqn, hevn, h

2ean)> we phrase the error propagation in terms of
(eqn+1, e

q
n, hevn)>. The result is an update




0 0 ∗
0 1 0
∗ 0 ∗




︸ ︷︷ ︸
=:T̃1



eqn+2

eqn+1

hevn+1




︸ ︷︷ ︸
=:Ẽn+1

=



∗ ∗ ∗
1 0 0
∗ ∗ ∗




︸ ︷︷ ︸
=:T̃2



eqn+1

eqn
hevn




︸ ︷︷ ︸
=:Ẽn

+



ηqn
0
ηvn


 ,

where the matrix entries marked by an asterisk depend on the four parameters and z := h/δ,
cf. Section 4.2.1 and (Erlicher et al. (2002), Kettmann (2009)) for the explicit values. We can ob-
tain the local truncation errors from the corresponding form Ẽn+1 = T̃−1

1 T̃2En+T̃−1
1 (ηqn, 0, ηvn)>

and find after a series of manipulations, that the third component of the second summand is
given by

2((%∞ − 1)%∞ + 1)

3((%∞ − 1)z + 2%∞(%∞ + 1))

...
ϕ(tn) · h3 +O(δh3) +O(h4) in case of CH(%∞,)

(3%∞ − 1)((%∞ − 1)%∞ + 1)

3(%∞((%∞ − 1)2z − %∞(%∞ + 3)− 1) + 1)

...
ϕ(tn) · h3 +O(δh3) +O(h4) for HHT and

2((%∞ − 1)%∞ + 1)

3((%∞ − 1)2z − 4%∞)

...
ϕ(tn) · h3 +O(δh3) +O(h4) for WBZ

and so does not (necessarily) reduce the order of convergence. For the position components a
structurally similar but way more complicated term can be derived.

This is no proof yet but nevertheless a strong indicator that for appropriate initial values no
order reduction should occur for strongly damped mechanical systems. ♦

As a first result in the general case we obtain the counterpart of Lemma 5.10 for strongly
damped systems.

Lemma 5.29
It holds

−δ · λδn = eGvn + R(q(tn))(q̇(tn), eqn) +O(h)(‖eqn‖+ ‖evn‖) , (5.29a)

eGvn = δeλ,δn +O(δ) +O(h2) +O(1)‖eqn‖ . (5.29b)

Proof. From the above definition of eλ,δn we obtain

−δ · λδn = δ(eλ,δn − λ(tn))

= −G(qδn)vδn = eGvn +O(h)‖evn‖+

∫ 1

0
R(qδn + ϑeqn)(q̇(tn), eqn) dϑ

= eGvn + R(q(tn))(q̇(tn), eqn) +O(h)(‖eqn‖+ ‖evn‖) ,

which is the first assertion. The second one follows from (5.29a), Assumption 5.26 and λ(t) =
O(1).

An important consequence of Lemma 5.29 is that the error terms eGvn can completely be
expressed in terms of the other error components in all following estimates, in particular it holds

‖evn‖ ≤ O(1)(‖ePvn ‖+ ‖eGvn ‖) = O(1)‖ePvn ‖+O(δ)‖eλ,δn ‖+O(1)‖eqn‖+O(δ) +O(h2) .
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Hence, the collection of higher order terms in the strongly damped SPP case, as in η(3)
n for

index-3 DAEs,

η(SPP),δ
n := ‖eqn‖+ ‖ePvn ‖+ h‖ePan ‖+ h2‖eGan ‖+ h2‖eλ,δn ‖

does not comprise the orthogonal velocity error components eGvn .
The difference of estimates (5.29a) for two consecutive time steps implies furthermore

eGvn+1−eGvn = δ(eλ,δn+1−eλ,δn )−δ(λ(tn+1)−λ(tn))+O(1)‖eqn+1−eqn‖+O(h)(‖eqn,n+1‖+‖evn,n+1‖) ,

which by using (5.29b) and Lemma 5.4 leads to

eGvn+1 − eGvn = δ
h(heλ,δn+1 − heλ,δn ) +O(δ)‖heλ,δn ‖+O(1)η

(SPP),δ
n,n+1 +O(δh) +O(h3) . (5.30)

The corresponding extension of Lemmas 5.7 and 5.8 in the strongly damped case is given by the
following lemma.

Lemma 5.30 (Errors on acceleration level: Strongly damped systems)
The error terms ev̇|an on acceleration level and eλ,δn in the Lagrange multipliers relate like

ev̇n + [M−1G>](q(tn))eλ,δn = O(1)(‖eqn‖+ ‖evn‖+ h‖eλ,δn ‖) , (5.31)

(1− αm)ePan+1 + αme
Pa
n +O(1)‖heλ,δn ‖ = O(1)(η

(SPP),δ
n,n+1 + ‖heGan ‖) +O(h2) +O(δ) , (5.32)

(1− αm)heGan+1 + αmhe
Ga
n = −(1− αf )heSλ,δn+1 − αfheSλ,δn +O(1)η

(SPP),δ
n,n+1 +O(h3) .

Proof. Relation (5.31) follows from the equilibrium conditions as in the DAE case taking the
artificial Lagrange multipliers into account. We have

ev̇n = q̈(tn)− v̇δn
=
(

[M−1f ](q(tn), q̇(tn))− [M−1f ](qδn,v
δ
n)
)
− [M−1G>](qδn)eλ,δn

−
(

[M−1G>](q(tn))− [M−1G>](qδn)
)
λ(tn)

= −eM−1G>λ,δ
n +O(1)(‖eqn‖+ ‖evn‖+ h‖eλ,δn ‖) ,

and so (5.31). Note that, since the equilibrium condition (4.2d) of the Newmark method is
used for the initialization of the algorithm, i. e., it also holds for n = −1, relation (5.31) is also
valid for n = 0. To attain the other two assertions we employ (5.5) and (2.24) such that in the
weighted sum of the ePan terms the influence of the λ errors reduces to higher order terms in
(5.32) as in the proof of Lemma 5.8. Note that the index of eλ,δ• and eGa• in (5.32) is solely taken
at the n-th time instance and that we did not need any assumptions concerning the boundedness
of ‖eλ,δn ‖.

In Example 5.28 we have already seen that the initial errors on acceleration-like and Lagrange
multiplier level cannot be bounded as in the DAE case which is why in (5.30) and (5.32) we
scaled eλ,δn,n+1 and eGan,n+1 by the time step size h. In general the following result holds.

Lemma 5.31 (Initial error terms (III))
The errors in the acceleration and (artificial) Lagrange multiplier solution components in the
starting values fulfill

eq0 = O(h2) , ev0 = O(δ) , heSλ,δ0 = O(h) , ePa0 + heGa0 = O(δ) +O(h) .
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Proof. The first two identities are roughly a repetition of Assumption 5.25. The third equation
follows from definition (5.27)

eλ,δ0 = λ(t0)− 1
δG(qδ0)vδ0 = O(1) .

This will be used to show the last statement: We employ (5.31) to attain

ea0 = q̈(t0 + ∆αh)− aδ0 = ev̇0 +O(h) = −eM−1G>λ,δ
0 +O(h) = O(1) .

For the tangential error terms ePa0 equation (2.24) gives the stronger estimate that the term is
bounded by a first power of h.

We are now prepared for the final convergence result:

Theorem 5.32 (Error behavior for strongly damped systems)
Let the parameters of (4.2) satisfy

αm < αf <
1

2
, (5.33)

and presume Assumptions 5.3 and 5.25. Then any (classical) second order Newmark integrator
(4.2) fulfills the following error estimates

‖eqn‖+ ‖evn‖ ≤ C(h2 + δ) , ‖ePan ‖+ h‖eGan ‖+ h‖eλ,δn ‖ ≤ C(h%n + h2 + δ) ,

where % ∈ [0, 1) is a constant that depends on the parameters αm, αf , γ and the ratio δ/h and
n satisfies t0 + nh ≤ tend. More precisely, on position and velocity level we have the estimate

‖eqn‖+ ‖evn‖ ≤ C(‖eq0‖+ ‖ePv0 ‖+ δ + h2 + h‖ePa0 ‖+ h2‖eGa0 ‖+ h2‖eλ,δ0 ‖) .
Corollary 5.33 (Convergence for strongly damped systems)
For parameters satisfying (5.33) and initial values fulfilling g(qδ0) = O(h2), G(qδ0)vδ0 = O(δ)
there exist initial values (q(t0), q̇(t0))> with g(q(t0)) = G(q(t0))q̇(t0) = 0 and with differences
q(t0)− qδ0, q̇(t0)− vδ0 in the M(q(t0))-orthogonal complement of the tangential space of Ms in
q(t0) such that for δ < C0h and C0 > 0 sufficiently small, the numerical approximations of the
Newmark integrator (4.2) satisfy

‖q(tn)− qδn‖+ ‖q̇(tn)− vδn‖ ≤ C(δ + h2) ,

whenever tn = t0 + nh ≤ tend. The constant C > 0 is independent of h, δ and n and q(t),
t ∈ [t0, tend], denotes the solution of the DAE system (2.13) with initial values q(t0), q̇(t0).

Proof of Theorem 5.32. For the application of Lemma 5.1 we collect the results from Corol-
lary 5.5, in particular (5.6a) and (5.6c) to obtain with (5.29b)
(
eqn+1

ePvn+1

)
=

(
eqn
ePvn

)
+O(h)

(
‖eqn,n+1‖+ ‖ePvn ‖+ δ

h‖heλ,δn ‖+ ‖ePan,n+1‖+ ‖heGan,n+1‖
)

+O(h3) +O(hδ) , (5.34)

which will provide the first set of inequalities (5.1a). For the vector-valued estimate (5.1b) we
collect our findings from Lemma 5.30 and combine the estimates from (5.6d) and (5.30) to obtain

:=T1,δ(δ/hS
−1
n )︷ ︸︸ ︷


(1− αm)I 0 0

0 δ
hS−1

n −γI
0 (1− αf )I (1− αm)I





ePan+1

heSλ,δn+1

heGan+1


 =

:=T2,δ(δ/hS
−1
n︷ ︸︸ ︷


−αmI O(1) O(1)

0 δ
hS−1

n (1− γ)I
0 −αfI −αmI





ePan
heSλ,δn

heGan




+O(1)η
(SPP),δ
n,n+1 +O(h2) +O(δ) . (5.35)
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The matrix Sn :=S(q(tn)) has already been defined in (2.20) and is symmetric and positive defi-
nite for all n ≥ 0 which is why the error terms eλ,δn and eSλ,δn can be treated almost equivalently.
Note that we use the same index on both sides of the equation which is justified because of

δ

h
S−1
n+1he

Sλ,δ
n+1 = δ(S−1

n+1 − S−1
n )eSλ,δn+1 + δS−1

n e
Sλ,δ
n+1 =

δ

h
S−1
n heSλ,δn+1 +O(1)η

(SPP),δ
n+1 .

The occurrence of time step dependent entries in the error amplification formulae is the next
fundamental difference to the DAE case where only constant matrices govern the leading error
terms. We also notice that the lower two-by-two block of the leading terms in (5.35) resembles
the mapping Tδ in the linear case from Example 5.27. Its eigenvalues have already been discussed
and shown to be smaller than one in absolute value (for nq = 1). The first line in (5.35) is also
basically known from the DAE case for both, index-2 and index-3, but differs in the additional
(1, 2) and (1, 3) block entries which emerge from the rescaling of the error terms. A decoupling
of the lower two-by-two block can be achieved if we define for each n the orthogonal matrix Un

that diagonalizes S−1
n like

UnS
−1
n U>n =: Λ−1

n = diag((µi(S
−1
n ))i=1,...,nλ) , (5.36)

where µi(S−1
n ), i = 1, . . . , nλ, denote the positive eigenvalues of S−1

n . (Due to compactness of
[t0, tend] and Assumption 5.26 there is a compact neighborhood of the solution q(t) such that
these eigenvalues can be bounded from above and below.) So, if from now on instead of eSλ,δn

and eGan we consider eU
>Sλ,δ

n and eU>Gan the equations can (almost) be treated as if they were
defined in R3 rather than R3nλ . The only exceptions are the block entries on the right hand side
but the structure of both block matrices implies that

T( δhS−1
n ) := T−1

1,δ(
δ
hS−1

n ) ·T2,δ(
δ
hS−1

n ) =



−αm
1−αm I O(1) O(1)

0
0

T̃( δhS−1
n )


 ,

where T̃( δhS−1
n ) is the according result for only the lower two-by-two block which can be decou-

pled using the above procedure.
In Lemma 5.1 we used a constant matrix T for simplicity reasons only; an extension to

variable matrices is easily done. The crucial requirement, however, is that the involved vector
norms (and the corresponding matrix norm) remains the same which is not encompassed by the
above result where the existence of a suitable norm is only guaranteed for fixed matrices. So,
our next goal is to construct a norm ‖•‖∗ which corresponds to a vector norm and fulfills

∀n : ‖T( δhS−1
n )‖∗ < 1 . (5.37)

The eigenvalues of T̃( δhS−1
n ) can be bounded by one if δ

h is sufficiently small, cf. Example 5.27
and also Example 5.34 below. It is a well-known result, cf. (Hairer et al., 1993, Lemma III.4.4),
that for each matrix T̃ with spectral radius %(T̃) and each positive number κ > 0 there exists
a matrix norm ‖•‖◦ which corresponds to a vector norm such that

%(T̃) ≤ ‖T̃‖◦ + κ .

The proof uses the transformation to Jordan canonical form which for the matrices T̃( δhS−1
n ) is

a transformation to diagonal form

T̃ =: C̃ diag(λi(T̃)) C̃−1 .
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We define the vector norm ‖•‖◦ := ‖C̃−1•‖∞ which corresponds to the matrix norm ‖•‖◦ :=
‖C̃−1 • C̃‖∞ such that, e. g. for δ

h = 0, we get the existence of such a norm with ‖T̃(0)‖◦ < 1.
We now use that T( δhS−1

n ) depends smoothly on δ
h . Remembering Assumption 5.3 that the

penalty parameter δ is smaller than C0h for a (possibly very small) fixed number C0 > 0 we can
now use the matrix norm for δ

h = 0 and its continuity to obtain ‖T̃( δhS−1
n )‖◦ < 1 for all n ≥ 0.

To extend this norm to Rnq+2nλ we use that (5.33) implies that | −αm1−αm | < 1. If we define
the matrix C := blkdiag(κInq , C̃) with a sufficiently small constant 0 < κ < 1, then the matrix
norm ‖•‖∗ := ‖C−1 •C‖∞ on Rnq+2nλ fulfills (5.37) whenever the conditions on the parameters
are valid because

CT( δhS−1
n )C−1 =



−αm
1−αm Inq O(κ) O(κ)

0
0

T̃( δhS−1
n )


 .

In conclusion, as a result of Lemma 5.1 and (5.35) we obtain with Eyn := (eqn, ePvn )> and Ezn :=

(ePan , heU
>Sλ,δ

n , heU
>Ga

n )> the error bounds

‖eqn‖+ ‖ePvn ‖ ≤ C(h2 + δ) , ‖ePan ‖+ h‖eGan ‖+ h‖eλ,δn ‖ ≤ C(h%n + h2 + δ)

with a suitable constant % ∈ [0, 1). Finally, we can use (5.29b) one last time to use the conver-
gence result for q and λ such that the upper bound

eGvn = δ eλ,δn︸︷︷︸
=O(1)

+O(δ) +O(h2) +O(1) ‖eqn‖︸ ︷︷ ︸
=O(h2)+O(δ)

= O(δ) +O(h2) ,

follows and so Theorem 5.32.

Note that, as in the index-2 case, no conditions on the parameter β are involved in the
convergence result for strongly damped systems. For just contractivity of the above mapping
one would also have to imply that γ ≥ 1

2 but with (5.33) and the second order condition (4.3)
this is automatically fulfilled. Although the proof does not explicitly involve zero stability of
the underlying ODE method as it relies on the onestep representation condition (4.18) is still
ensured. Note also that due to the O(1)-elements in the propagation matrix T the additional
separation of error terms as in the DAE case is not possible any longer.

Example 5.34 (Norm for the CH(%∞) algorithm)
To gain a better understanding of the above requirement that the constant C0 in Assumption 5.3
needs to be sufficiently small (depending on the parameters and the solution of the slow system)
to guarantee contractivity in one unified norm, we consider again the parameter choice of Chung
and Hulbert (1993). For simplicity only we take nq = 1 and the above matrix T̃ takes the form

T̃( δhs
−1) :=




2
δ
hs
−1(%∞−2)(%∞+1)−(%∞−3)%∞

%∞+2
δ
hs
−1(%∞−2)(%∞+1)−3

%2∞−1

%∞+2
δ
hs
−1(%∞−2)(%∞+1)−3

2
δ
hs
−1(%∞+1)2

%∞+2
δ
hs
−1(%∞−2)(%∞+1)−3

%∞+6
δ
hs
−1(%∞+1)+5

%∞+2
δ
hs
−1(%∞−2)(%∞+1)−3

+ 2


 . (5.38)

If we take the limit case δ = 0 then T̃ reduces to the amplification matrix from the proof in the
index-2 case given in Remark 5.16. For the construction of a suitable vector norm we diagonalize
this matrix using

C̃ :=

(
1 1
0 1

)
such that C̃−1 · T̃(0) · C̃ = diag(µ1, µ2)
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with the eigenvalues −1 ≤ µi ≤ 1, i = 1, 2, of T̃(0). As the infinity norm of diag(µ1, µ2) is
bounded by one, we use the matrix norm

‖•‖◦ := ‖C̃−1 · • · C̃‖∞ .

In Figure 5.5 we present a numerical evaluation of the ‖•‖◦ norm for varying values of %∞ ∈ [0, 1]

0 0.2 0.4 0.6 0.8 1
10−10

10−8

10−6

10−4

10−2

100

%∞

δ h
s−

1

0

0.2

0.4

0.6

0.8

1

3−%∞
6%∞+6

− 2(%∞−1)
5%2∞+4%∞−1

Figure 5.5: Norm of lower two-by-two block-matrix in (5.38), only values smaller one displayed

and δ
hs
−1. For this choice one can show that the above norm is strictly bounded by one whenever

δ

h
s−1 <





3− %∞
6%∞ + 6

for %∞ ∈ [0, 0.6] ,

− 2(%∞ − 1)

5%2∞ + 4%∞ − 1
for %∞ ∈ [0.6, 1] .

Note also that this bound is rather pessimistic as we display just one particular choice of a norm
and that the overall error propagation additionally involves the first nq rows in (5.35). ♦

5.3.2 Stiff mechanical systems

In the above section we have outlined the three major differences from the viewpoint of numerical
analysis between the convergence analysis in the case of constrained systems on the one and
SPPs on the other hand: First, the large initial errors on level of accelerations and/or Lagrange
multipliers necessitate that the according error terms are appropriately scaled, second, that the
introduction of penalty force terms implies that constraint violations are no longer negligible
and so additional coupling terms are present which, third, result in a time step dependent
overall error amplification. All three points appear as well for stiff mechanical systems. A first
convergence result for Newmark integration methods in the present form and stiff mechanical
systems was published in (Köbis and Arnold, 2014). In this section we follow and extend the
representation in (Köbis and Arnold, 2016). One step of the algorithm in case of the numerical
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solution of stiff mechanical systems (3.15) or their index-1 formulation (3.16) reads

qεn+1 = qεn + hvεn + h2(1
2 − β)aεn + h2βaεn+1 ,

vεn+1 = vεn + h(1− γ)aεn + hγaεn+1 ,

(1− αm)aεn+1 + αma
ε
n = (1− αf )v̇εn+1 + αf v̇

ε
n ,

a)
{

M(qεn+1)v̇εn+1 = f(qεn+1,v
ε
n+1)− 1

ε2
G>(qεn+1)g(qεn+1) ,

or b)

{
M(qεn+1)v̇εn+1

ε2λεn+1

=

=

f(qεn+1,v
ε
n+1)−G>(qεn+1)λεn+1 ,

g(qεn+1) .

(5.39)

In a first step we will again define a new set of (for most practical applications artificial) error
terms, i. e.,

eλ,εn := λ(tn)− λεn , λεn =
1

ε2
g(qεn) .

Again, we will start with a one-dimensional example before the general theory is established.

Example 5.35 (Second order Prothero–Robinson problem: The stiff case)
We consider the scalar test equation

q̈ε(t) = − 1

ε2
(qε(t)− ϕ(t)) + ϕ̈(t) , t ≥ 0 , (5.40)

The (smooth) function ϕ : R → R can be chosen freely and is at the same time the smooth
component of the analytic solution which is given by

qε(t) = ϕ(t) + ε∆v sin((t− t0)ε−1) + ∆q cos((t− t0)ε−1)

with ∆q = qε(0)− ϕ(0), ∆v = q̇ε(0)− ϕ̇(0). The problem has first been considered by van der
Houwen and Sommeijer (1987) in the context of Runge–Kutta–Nystöm methods as an extension
of the ‘classical’ Prothero–Robinson test problem (Prothero and Robinson, 1974). It has also
been used for the analysis of Runge–Kutta and Rosenbrock-type methods, see (Scholz, 1989,
Simeon, 1998, Becker et al., 2014). As its strongly damped counterpart in Example 5.28 the
problem is rheonomic and so actually not in the scope of the current investigations but can be
obtained by almost exactly the same procedure: Define an additional penalty potential term
U := 1

2ε2
(ϕ(t)− qε(t))2 as in (3.14) and apply Lagrange’s formalism. To study the error behavior

we consider with Assumption 5.25 that the initial deviations on position and velocity level are
in O(ε2), in particular qε(0) = ϕ(0)+Cqε

2, Cq ∈ R. With this choice and (4.35) the initial error
terms again cannot be bounded by the time step size since

ea0 = ϕ̈(∆αh)− aε0 = ϕ̈(∆αh)− (− 1
ε2
Cqε

2 + ϕ̈(0)) = Cq +O(h) , eλ,ε0 = λ(0)︸︷︷︸
=0

−Cqε2

ε2
= −Cq .

Additionally, we can observe that also the order reduction known from the index-3 case carries
over: Motivated by Example 5.19 we take a polynomial function ϕ(t) = t2 and perform one step
with the above initial values in exact arithmetics. As a result we obtain

eq1 = ε2Cq ·
(2(αm − 1) ε

2

h2
− (αm − 2αfβ + 2β − 1))

2((αf − 1)β + (αm − 1) ε
2

h2
)

,

ev1 = hCq ·
((1− αf )(2β − γ) + 2(1− αm) ε

2

h2
)

2((αf − 1)β + (αm − 1) ε
2

h2
)

,
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i. e., a drop of the order to one in the velocity components (at least in eGv1 ).
This observation raises the question whether the order reduction is a generic problem or

again only a transient phenomenon. A similar procedure as in Example 5.28 for again arbitrary
smooth function ϕ can be used to obtain the update formulae



eq2
eq1
hev1




︸ ︷︷ ︸
=:Ên+1

=



∗ ∗ ∗
1 0 0
∗ ∗ ∗




︸ ︷︷ ︸
=:T̂



eq1
eq0
hev0




︸ ︷︷ ︸
=:Ẽn

+



η̂q0
0
η̂v0




︸ ︷︷ ︸
=:η̂0

,

with a matrix T̂ that has the same eigenvalues as the amplification matrix of the harmonic
oscillator example from (4.16). The global errors from previous time steps are therefore rapidly
damped out and their main origin stems from the local error terms η̂q|v0 as it is one main result
of the analysis in the case of Runge–Kutta methods by Simeon (1998). Their explicit structure
is rather complicated. For CH(0.75) it holds

η̂0 =




(192 + 735 ε
2

h2
) ·
(
−182

3 h3ε2...ϕ(tn)
)

0
−13

63h
3...ϕ(tn)


+O(h4) ,

such that—once a transient phase has been surpassed (and only based on this example)—no
further drop in order should be expected and the numerically observable order of the global error
after sufficiently many steps should be two apart from the ‘modeling error’ of the singularly
perturbed formulation which remains in the magnitude of the penalty parameter ε. ♦

Within the analysis of stiff mechanical systems the orthogonal velocity error terms eGvn
cannot be eliminated as for strongly damped systems. So, the condensed higher order error
terms take the form

η(SPP),ε
n := ‖eqn‖+ ‖ePvn ‖+ h

(
‖eGvn ‖+ ‖ePan ‖

)
+ h2

(
‖eGan ‖+ ‖eλ,εn ‖

)
.

The coupling of position constraints to the dynamic equations in the stiff case implies that
the equivalent to (5.30) for stiff mechanical systems does not involve the velocity components.
Instead, one gets the following interrelation of errors on multiplier level and ∆h e

q
n.

Lemma 5.36
It holds

G(q(tn)) ∆h e
q
n =

ε2

h2

(
heλ,εn+1 − heλ,εn

)
+O(1)‖eqn,n+1‖+O(ε2) .

Proof. Following the proof of Lemma 4 in (Arnold et al., 2015a) in a first step we observe

G(q(tn))eqn =

∫ 1

0
(G(q(tn))−G(q(tn)− ϑeqn)) eqn dϑ+

∫ 1

0
G(q(tn)− ϑeqn)eqn dϑ

= O(h)‖eqn‖+ g(q(tn))︸ ︷︷ ︸
=0

−g(qεn) = O(h)‖eqn‖+ ε2eλ,εn − ε2λ(tn) .

Subtracting this estimate for two successive time instances and scaling by 1
h gives

G(q(tn))
eqn+1 − eqn

h
= −ε2 λ(tn+1)− λ(tn)

h︸ ︷︷ ︸
=λ̇(tn)+O(h)=O(1)

+
ε2

h2

(
heλ,εn+1 − heλ,εn

)
+O(1)‖eqn,n+1‖ ,

which completes the proof.
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For the acceleration level variables we obtain a very similar result as in Lemma 5.30. With
the new condensed error terms these estimates read like given in the following lemma.

Lemma 5.37
The error components on acceleration level in tangential and orthogonal direction to the con-
straint manifold fulfill

ev̇n = −[M−1G>](q(tn))eλ,εn +O(1) (‖eqn‖+ ‖evn‖) ,
ePv̇n = O(1)η(SPP),ε

n ,

eGv̇n = −eSλ,εn +O(1)η(SPP),ε
n .

Proof. As in the proof of (5.31) the results follow from subtracting the equilibrium conditions of
the algorithm for the constrained and the singularly perturbed system taking into account the
definition of the errors on Lagrange multiplier level and the smoothness of the involved values
M−1, f and G.

Corollary 5.38 (Errors on acceleration level: Stiff mechanical systems)
The stiff equivalent of Lemma 5.30 reads

(1− αm)ePan+1 + αme
Pa
n = O(1)

(
η

(SPP),ε
n,n+1 + heSλ,εn + heGan

)
+O(h2) , (5.41a)

(1− αm)heGan+1 + αmhe
Ga
n = −(1− αf )heSλ,εn+1 − αfheSλ,εn +O(h)η

(SPP),ε
n,n+1 +O(h3) . (5.41b)

Proof. Combine (5.5) and Lemma 5.37.

Lemma 5.39 (Initial error terms (IV))
For Newmark integration methods (4.2) applied to stiff mechanical systems the following esti-
mates for the initial error terms hold

eq0 + ePv0 = O(ε2) , eGv0 = O(ε2) , heSλ,ε0 = O(h) , ePa0 + heGa0 = O(ε2) +O(h) .

Proof. The result follows from the same reasoning as the examination of initial error terms in
Example 5.35: For the initial errors on Lagrange multiplier level only a O(1)-bound may be
obtained presuming only Assumption 5.25. For the errors on acceleration level this fact and
Lemma 5.37 give the result as in the proof of Lemma 5.31.

Theorem 5.40 (Error behavior for stiff mechanical systems)
Let Assumptions 5.3 and 5.25 and the second order condition (4.3) be fulfilled. A stable New-
mark integration scheme in the sense of Definition 4.16 for the equations of motion of the stiff
mechanical systems (3.15) fulfills the error estimates

‖eqn‖+ ‖ePvn ‖ ≤ C(h2 + ε2) , ‖eGvn ‖+ ‖ePan ‖+ h‖eGan ‖+ h‖eλ,εn ‖ ≤ C(h%n + h2 + ε2) ,

where % ∈ [0, 1) is a constant that depends on the parameters and the ratio ε
h . More precisely,

on position and velocity level we have the estimates

‖eqn‖+ ‖ePvn ‖ ≤ C(‖

=η
(SPP),ε
0︷ ︸︸ ︷

eq0‖+ ‖ePv0 ‖+ h‖eGv0 ‖+ h‖ePa0 ‖+ h2‖eGa0 ‖+ h2‖eλ,ε0 ‖+h2 + ε2) ,

‖eGvn ‖ ≤ C
(
%n(‖eGv0 ‖+ ‖ePa0 ‖+ h‖eGa0 ‖+ h‖eλ,ε0 ‖) + η

(SPP),ε
0 + h2 + ε2

)
.
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Corollary 5.41 (see Theorem 1 in (Köbis and Arnold, 2014, Köbis and Arnold, 2016))
For numerical damping parameter %∞ ∈ [0, 1) and initial values satisfying g(qε0) = O(ε2),
G(qε0)q̇ε0 = O(ε2) there exist initial values (q(t0), q̇(t0))> ∈ Ms×T q(t0) M

s with differences
q(t0)−qε0, q̇(t0)− q̇ε0 situated in the M(q(t0))-orthogonal complement of the tangential space of
Ms in q(t0) such that for ε < C0h and C0 > 0 sufficiently small, the numerical approximations
of (4.2) satisfy

‖q(tn)− qεn‖+ ‖Pn(q̇(tn)− vεn)‖ ≤ C
(
ε2 + h2

)
,

‖q(tn)− qεn‖+ ‖q̇(tn)− vεn‖ ≤ C
(
ε2 + h2 + %nh

)
,

whenever tn = t0 + nh ∈ [t0, tend]. The constant C > 0 is independent of h, ε and n and q(t),
t ∈ [t0, tend], denotes the solution of the DAE system (2.12). The constant % ∈ [%∞, 1) also
depends on the ratio ε

h . For the Chung–Hulbert(%∞) algorithm and ε � h it can be chosen
arbitrarily close to %∞.

Proof of Theorem 5.40. We use exactly the same techniques as in the previous proofs in the
DAE and strongly damped SPP case: Collecting the estimates from Corollaries 5.5 and 5.38
and Lemma 5.36 and introducing the condensed error terms

Ẽ
y
n :=

(
eqn ePvn

)>
, Ẽ

z
n :=

(
ePan heSλ,εn eGvn heGan

)>
.

allow for an application of Lemma 5.1. In contrast to the proof in the strongly damped case
it is not possible to eliminate the mass-orthogonal error components on velocity level eGvn and
they are included in the “algebraic” error terms Ezn. The convergence result as well as the
the numerical tests in Chapters 1 and 6 nevertheless reveal a reduction to only first order of
convergence in this term and motivate this change. The overall error amplification is very similar
to the one from the strongly damped case. Merely the lower two-by-two block in (5.35) is to be
replaced by

=T̃1,ε(ε2/h2S
−1
n )︷ ︸︸ ︷



ε2

h2
S−1
n 0 −βI

0 I −γI

(1− αf )I 0 (1− αm)I







heSλ,εn+1

eGvn+1

heGan+1


 =

=T̃2,ε(ε2/h2S
−1
n )︷ ︸︸ ︷



ε2

h2
S−1
n I (0.5− β)I

0 I (1− γ)I

−αfI 0 −αmI







heSλ,εn

eGvn

heGan




+O(h2) +O(ε2) +O(1)η
(SPP),ε
n,n+1 ,

where the inverse of the Delassus matrix Sn := S(q(tn)) is again included in the leading linear
propagation. It introduces a perturbation to the index-3 propagation matrix, see (5.22). As in
the proof of Theorem 5.32 the matrix S−1

n can be decomposed like in (5.36) such that in the
new error terms

Eyn := Ẽ
y
n , Ezn :=

(
ePan heU

>Sλ,ε
n eU

>Gv
n heU

>Ga
n

)>

we arrive at nλ decoupled three-dimensional recursions of the above form for the last 3nλ
components in Ezn. As we have already intensively studied the eigenvalues of these matrices in
Chapter 4 (and even defined stable Newmark methods in that way) we get contractivity by the
same reasoning as in the strongly damped case and the assertion follows from Corollary 5.2 and
T := blkdiag

(
−αm
1−αm I, [T̃−1

1,εT̃2,ε](
ε2

h2
S−1
n )
)
. Contractivity for the first nλ components in Ezn is

ensured by the ODE zero stability condition αm < 1
2 again.
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Note that the only requirements concerning the stability of the methods (in all four cases:
index-2/3 and damped and stiff SPP) was the linear stability for the integration of the harmonic
oscillator (4.12) or its strongly damped counterpart (5.26). We did not impose any nonlinear
stability notion. Erlicher et al. (2002) found that nonlinear stability (in terms of G-stability or
energy-stability) for Newmark-type integration methods cannot be shown in general anyway.

In Chapter 4 we saw that in the limit of infinite stiffness the Jordan decomposition of the
amplification matrices may degenerate such that a diagonalization of the matrix is no longer
possible. However, it is still possible to explicitly construct a suitable matrix norm in this case
as we will show in the following example.

Example 5.42 (Construction of a suitable norm for the Chung–Hulbert(%∞) algorithm)
In case of the parameter set (4.4) of ‘the’ generalized-α algorithm the error amplification matrix

T̃(
ε2

h2
S−1
n ; %∞) := T̃−1

1,ε(
ε2

h2
S−1
n )T̃2,ε(

ε2

h2
S−1
n ) ,

only depends on the user-defined numerical damping parameter 0 ≤ %∞ < 1. Its Jordan canon-
ical form for nq = 1 is given by as for the matrix T(∞) in the linear case, see Section 4.2.2.

T̃(0; %∞) = C̃



−%∞ 1 0

0 −%∞ 1
0 0 −%∞




︸ ︷︷ ︸
=J

C̃−1 introducing C̃ :=




1− %2
∞ %∞ − 2 0

0 1−%∞
2(1+%∞)

−1
(1+%∞)2

0 1 0


 .

To bound the norm from above we introduce the regular scaling matrix D3 := diag(1, κ, κ2) for
a (small) parameter 0 < |κ| < 1. The subscript ‘3’ shall relate to the three-by-three structure of
the degenerate canonical form. A similarity transformation

D−1
3 JD3 = (CD3)−1 · T̃(0, %∞)(CD3) =



−%∞ κ 0

0 −%∞ κ
0 0 −%∞


 , (5.42)

reveals an infinity norm ‖•‖∞ arbitrarily close to %∞, i. e.,

‖•‖◦ = ‖(C̃D3)−1 · • · (C̃D3)‖∞ .

As a result, an appropriate vector norm is given by ‖•‖◦ := ‖(C̃D3)−1•‖∞.
If in (5.42) the scaling coefficient κ := 1−%∞

2 is introduced, one can explicitly calculate the
bound for (ε2/h2)s−1 marking where the estimate ‖T̃(ε2/h2s−1; %∞)‖◦ < 1 remains valid. It is
given by

ε2

h2
s−1 <





1− 2%∞ + %2
∞

2(1 + %∞)2(3 + 13%∞ + 4%2∞)
if %∞ ≤

√
241−13

18

1− %∞
10(1 + %∞)3

otherwise

and sketched (with a numerical calculation of the norm ‖•‖◦) in Figure 5.6. Note the different
color scaling which ranges only from 0.5 to 1.0 as compared to Figure 5.5.

For other parameter choices as HHT(α), WBZ(α) or the algorithm with ‘improved transient
behavior’ Gen(%∞, φ0) from Remark 4.21 the Jordan canonical form in the limit case ε→ 0 has
different forms as presented in (4.32). In these cases, a scaling using the matrices D1 := I or
D2 := diag(1, κ, 1) can be utilized to receive boundedness. ♦
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Figure 5.6: ‖•‖◦-norm of lower three-by-three block of the amplification matrix in the stiff cases

5.4 Summary

Remark 5.43 (Limitations of the convergence results)
To obtain the above result, we explicitly needed both: Assumptions 5.3 and 5.25 and if any of
them is violated, the results do not remain valid any longer.

In particular, if we ignore Assumption 5.3 and reduce the time step size h more and more,
at a certain point, we reach the area of classical convergence theory (Erlicher et al., 2002). In
this case, the ε2 bound for the errors on velocity level is too optimistic and needs to be adapted
to linear convergence in ε. The reason is the ‘modeling error’ of the singularly perturbed models
when compared to the solution of the constrained mechanical system (2.12): Equation (3.22)
that on velocity level the difference fulfills

G(q(tn))(qε(tn)− q(tn)) = O(ε) ⇒ eGvn = G(q(tn))(qεn − qε(tn) + qε(tn)− q(tn)︸ ︷︷ ︸
=O(ε)

) .

Practically, Theorem 5.40 therefore only applies for the error terms from Eyn because qε and
Pq̇ε remain ε2-close to the DAE solution, see Corollary 3.18. In short, the main result from
Theorem 5.40 is the order reduction on velocity level and numerical experiments can only verify
the estimate

‖eGvn ‖ ≤ C
(
h2 + h%n + ε

)
.

If we were, on the other hand, to disregard Assumption 5.25 the influence of initial error
terms would become too severe and convergence to (q(t), q̇(t))>, defined by mass-orthogonal
projection of initial values, can no longer be shown. Numerical tests, nevertheless, indicate that
this is no stability problem of the time integration itself but rather that some sort of phase shift
is introduced, see the discussion in Chapter 6.

Note that the scaling of the global error terms eGan and eSλ,ε|δn by the time step size h has
only been used to cope with the large initial errors. Once the algorithm exits the initial phase,
the error analysis could be adapted such that first order error terms are damped out and become
negligible after a transient phase.
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At last, note also that for the contractivity result one key ingredient was norm equivalence
in Rn. An extension to PDE models (especially those of structural dynamics, see Example 3.19)
of mathematically very similar structure as investigated by Altmann (2015) requires different
techniques.

Remark 5.44 (Scaling of the error components)
It is as well possible to consider a different scaling of the error components to be ‘consistent’
with the classical analysis of Chung and Hulbert (1993) of the harmonic oscillator (4.12). In
that case one would have to use continuity at complex infinity as it has been done, for example,
by Schneider (1995) and the amplification matrix would resemble the one in (4.15), see also
Remark 4.6.

Remark 5.45 (Mathematical pendulum revisited)
With the comprehensive error analysis of this chapter at hand, we are now prepared to explain
all observations from the introductory Chapter 1.

The fact that the errors in the transient phase of the time integration may grow is due to the
overshoot phenomenon already discussed in Remark 4.21 and Section 5.2. It carries over from
the index-3 case to stiff mechanical systems as their governing linear error amplification is alike.
An adaptation of the parameters (HHT, WBZ, Gen) may lower (yet not completely avoid) the
outcome of overshoot. We will demonstrate this in Chapter 6 below.

The analysis revealed that convergence for position and velocity components is ensured as
long as Assumptions 5.3 and 5.25 are fulfilled; the pendulum example already shows that the
bounds on the initial deviations from the constraint manifolds Ms, Md respectively, are sharp,
a deviation of ε2 or δ is possible, larger initial errors result in divergence. The qualitative
behavior of the global errors in Figure 1.3 are in perfect agreement with the error estimates
from Corollaries 5.14 and 5.22. Even the ε−2 and δ−1 behavior in the diverging case can be
explained by Lemmas 5.31 and 5.39 as the initial errors on level of acceleration-like variables
and Lagrange multipliers have this form.

Second order of convergence from the classical setting of nonstiff ODEs carries over to the
DAE and SPP setting only in the index-2 and strongly damped case. For the index-3 formulation
we showed ways to overcome reduction in order of convergence for the tangential velocity error
terms eGvn in Remark 5.23; for singularly perturbed systems such a modification of initial values
might also be possible but does not seem to be practical having in mind that for most applications
one is faced with SPPs where the underlying constraint equations are unknown anyway.
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Chapter 6

Implementation and numerical tests

The following chapter is devoted to practical aspects of Newmark integrators (4.2) in the context
of singularly perturbed or differential-algebraic systems. We start with a brief discussion of
the algorithm from an application perspective in Section 6.1 putting emphasis on a reliable
realization of the corrector iteration that is not too strongly affected by the SPP nature of
the problems and on certain details as scaling and the choice of the damping parameter in the
Newton–Raphson method. In Section 6.2 we give an overview on the used benchmark problems
before the theoretical findings from the previous chapters are verified in Sections 6.3, 6.4 and
6.5. As we have already seen that order reduction may occur and rather strong assumptions
need to be fulfilled for the SPP problems to apply the above convergence results, we will give
an outlook on possible improvements for the initialization of the algorithm in Section 6.6.

6.1 Implementation aspects

Before the numerical properties and convergence results established in Chapters 4 and 5 are
discussed by numerical tests for benchmark problems from the literature, we point out a series
of details concerning the practical viewpoint of implementation: It is well-known that the most
severe challenge of numerical integrators for singularly perturbed problems using moderate time
step sizes is the robust and stable solution of the corrector equations.

In Section 6.1.1 we present a solution procedure for (4.2) that, in accordance with the re-
quirements from Remark 4.19, allows for a onestep representation and only involves the solution
of linear systems of dimension nq for ODE systems or nq + nλ for DAE systems, respectively.
The latter one is also favorable for the solution of SPP systems of stiff or strongly damped
type if considered in their index-1 forms (3.7) or (3.16) because the convergence of the correc-
tor iterations is guaranteed for time step sizes h that are independent of the penalty parameter.
Unfortunately, in concrete simulation environments it is often not possible to simply reformulate
the equations of motion to a numerically more favorable form. Sometimes fundamental terms as
the constraint Jacobian matrix G = ∂g

∂q or even the mass matrix M are not possible to obtain
from a (black-box) multibody or FE-tool.

6.1.1 Onestep solution procedure

The second order nature of the equations of motion of mechanical systems always allows for
drastic savings within the numerical solution because the relation v = q̇ = d

dtq of generalized
position and velocity coordinates is linear, a fact which can explicitly be used. For algorithms
that are designed for second order ODE/DAE systems as the Newmark family (4.2) this is nat-
urally reflected by the linear structure of (4.2a) and (4.2b). As a result, the corrector equations,
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i. e., the numerical solution procedure to obtain approximations in the current time step, can be
implemented in a way that the linear systems that occur in the iterative solution of the nonlinear
systems are only of dimension nq( + nλ). The following algorithm which is adapted from the
ones given by Géradin and Cardona (2001) and Arnold and Brüls (2007) meets this requirement.

Algorithm: (qn+1,vn+1, v̇n+1,λn+1,an+1) = NewmarkStep(qn,vn, v̇n,λn,an)

1 Given the ODE/DAE system (4.1);
/* Use initial guesses for acceleration variables and lambda */

2 λn+1 := λ
(0)
n+1;

3 v̇n+1 := v̇
(0)
n+1;

/* Initial guesses: acceleration-like, position and velocity variables */
4 an+1 := 1

1−αm ((1− αf )v̇n+1 + αf v̇n − αman);
5 qn+1 := qn + hvn + h2(0.5− β)an + h2βan+1;
6 vn+1 := vn + h(1− γ)an + hγan+1;

/* Corrector iteration */
7 for i = 1 : imax do
8 Calculate the residuals in Mv̇ − F = 0, (rq) and Φ = 0, (rλ);
9 if ‖(rq, rλ)>‖∗ < TolNewton then

10 break;

11 d :=−S−1
t

(
rq
rλ

)
;

12 find σ > 0 using a line search strategy;

13

(
∆q
∆λ

)
:= σd;

14 qn+1 := qn+1 + ∆q;
15 vn+1 := vn+1 + γ′∆q;
16 v̇n+1 := v̇n+1 + β′∆q;
17 an+1 := an+1 + β̄∆q;
18 λn+1 := λn+1 + ∆λ;

For ODE systems, including SPPs, the algorithm is formally obtained for nλ = 0, there is
no additional adaptation necessary. The very large stiffness in the SPP cases, however, reduces
the range of convergence for the Newton–Raphson method such that the corrector iteration may
only succeed for very small time step sizes.

The integer value imax > 0 is the maximum number of Newton–Raphson iterations and
typically set to about twenty. For real-world applications it usually suffices to perform less than
five iterations, for higher precision requirements this number may increase (Eich-Soellner and
Führer, 1998, Arnold et al., 2011). The tolerance of the corrector iteration TolNewton > 0 is
usually adapted to the user-defined bounds for the global error of the time integration method.
The specific norm ‖·‖∗ typically includes a proper scaling of the involved residual terms and
may depend on the formulation, see Remark 6.2 below. Deuflhard (2004) favors the so-called
‘affine invariant version’ of the stopping criterion that only involves the norm of the increments
(∆q,∆λ)> instead of the residuals, see related current results of Arnold and Hante (2016) for
the Chung–Hulbert parameter set. In a practical implementation one usually combines absolute
and relative errors when checking the stopping criterion. For most of the benchmark tests
below the iterations have been carried out ‘until convergence’, i. e., until a very low tolerance
(TolNewton ≈ 10−30; in these cases we did the calculations with 100 digit precision) has been
reached.
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The involved system matrices St for the DAE and SPP cases as well as the ‘line search
strategy’ in line 12 are discussed below. The derived parameter values β′, γ′ and β̄ are defined
as

β̄ :=
1

h2β
, β′ :=

(1− αm)β̄

1− αf
=

1− αm
h2β(1− αf )

, γ′ := γhβ̄ =
γ

hβ
.

The reduction of the dimension can be seen as a quasi-standard for commercial codes in me-
chanical system simulation. Naturally, it is also possible to use larger system matrices St that
include the iteration of the variables q, v, a and λ ‘although [this is] probably never employed
in practice’ (Bottasso et al., 2008).

Remark 6.1 (Interpretation of the condensed Newton–Raphson iteration)

(a) The procedure of the above algorithm is in the engineer’s literature known as ‘static con-
densation’. To motivate the procedure Géradin and Cardona (2001) interpret the derived
parameters

∂v̇n+1

∂qn+1

= β′I ,
∂vn+1

∂qn+1

= γ′I ,
∂an+1

∂qn+1

= β̄I

as coefficients of internal differentiations such that the overall algorithm is a simplification
of Newton’s method for the entire (4nq + nλ)-system to obtain qn+1, vn+1, an+1, v̇n+1

and λn+1 in the sense that just the chain rule is used for the linearization of the equations.

(b) Any general coupled system of linear and nonlinear equations of the form

0 = Ξ(y, z) :=

(
A1z − (A2y + b)

Ξ̃(y, z)

)
, (Ξ ∈ Rny+nz , Ξ̃ ∈ Rny , det(A1) 6= 0) , (6.1)

may equivalently be stated as condensed system

0 = Ξcond.(y) := Ξ̃(y,A−1
1 (A2y + b)) ∈ Rny

by eliminating the linear constraints in Ξ. In the present situation we may choose the
variables z := (vn+1, v̇n+1,an+1)> and y := (qn+1 − qn,λn+1)>. The nonlinear system
0 = Ξ comprises the linear equations (4.2a), (4.2b) and (4.2c) forming the upper block
and Ξ̃ realized by the nonlinear dynamic equations and constraints (4.2d). The relation
z = A−1

1 (A2y + b) reads in detail

vn+1 = (1− hγ′)vn + (1− hγ′/2)han + γ′∆q ,

v̇n+1 = −hβ′vn + (1/(1− αf )− (h2β′)/2)an − αf/(1− αf )v̇n + β′∆q ,

an+1 = −hβ̄vn + (1− h2β̄/2)an + β̄∆q ,

with ∆q = qn+1 − qn. It can easily be seen that the Newton–Raphson iteration for
Ξ leads to the same approximations as the one for Ξcond. if the system matrices St are
defined as stated below and in the latter one the iterates for z are defined by z(k+1) :=
A−1

1 (A2y
(k+1) + b) , k = 0, 1, . . ., which is the purpose of lines 14 to 18 in the above

algorithm.

(c) One might also interpret the separation of linear and nonlinear equations as a block Gauss
elimination as Lubich (1991) uses it for a linearly implicit Euler method (with extrapola-
tion) in the multibody code MEXX, see also (Lubich et al., 1992).
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In the literature (cf. Arnold and Brüls, 2007) the update of acceleration-like variables an+1

is sometimes excluded from the (inner) for-loop which slightly improves the efficiency of the
algorithm. Note that, apart (maybe) from the initialization of λ(0)

n+1, the input variable λn does
not affect the algorithm. This reflects the Hessenberg-structure of the system: It is said that the
equations/numerical procedure possess ‘no memory’ in λ. In the convergence analysis this is a
crucial, yet somewhat hidden, part: The lower block in the global error recursion is contractive
and not of the form I + O(h) + O(ε2) as it would be for nonstiff ODEs (Erlicher et al., 2002).
So, lower order in the local error does not affect the overall error bound (at least not too much),
cf. Examples 5.28 and 5.35. In the benchmarks below λ(0)

n+1 := 0 has been used in accordance to
the original pseudocode of Arnold and Brüls (2007).

Initial values for the corrector iteration Simply inserting the linear equations to lower
the dimension of the system as proposed in the algorithm ‘NewmarkStep’ is not enough. Static
condensation also requires that the initial values already fulfill the linear equations. In the
above pseudocode this requirement has influence on the initializations of position, velocity, and
acceleration-like variables in lines 4, 5 and 6. These are constructed such that (4.2a), (4.2b) and
(4.2c) are fulfilled before the variables enter the iteration.

On position and velocity level the above procedure may be interpreted as truncated forward
Euler steps which are corrected using the estimate an+1. This is evidently not the only way to
choose these values. Jansen et al. (2000) present numerical experiments using different initializa-
tions, among them zero-acceleration/velocity, constant extrapolation, linear extrapolation, and
even a backward Euler predictor-step. Exhaustive numerical experiments lead to the suggestion
that linear extrapolation should be used (in the context of the simulation of filtered Navier–
Stokes equations). For the benchmarks below we used the initial guesses of the above algorithm
nonetheless because in the engineer’s literature (Géradin and Cardona, 2001) the above ‘forward
Euler’ predictors are typically preferred together with a zero-acceleration condition

v̇
(0)
n+1 := 0 ,

which is motivated by static analysis of structures and performs often more robust for numerical
experiments with immense overshoot. We have found that, especially after the transient phase
and for high precision demands, the initialization

v̇
(0)
n+1 :=

αman − αf v̇n
αm − αf

, (if αm − αf 6= 0)

often decreases the required number of Newton–Raphson iterations. The idea behind this con-
struction is that then v̇(0)

n+1 = an+1 holds after line 4 which seems reasonable as both values
approximate roughly the same quantity.

System matrices The Jacobian in the Newton–Raphson iteration needs to take into account
static condensation as well. For the index-3 integrator it is given by:

St :=

(
β′M + γ′Ct + Kt G>

G 0

)
,

for the index-2 integrator it should be defined as

St :=

(
β′M + γ′Ct + Kt G>

γ′G + Zt 0

)
.
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For the index-1 formulations (3.7) and (3.16) of the SPP problems, i. e., (5.25) and (5.39) b), the
zero matrices need to be replaced by −δI or −ε2I since here the constraint equations explicitly
depend on the (artificial) Lagrange multipliers λε|δ(t). The involved matrices •t are defined by
Kt:=∂(Mv̇−F )/∂q, which is denoted as (tangent) stiffness matrix, Ct:=∂(−F )/∂q̇ representing
the (tangent) damping matrix, and Zt :=R(q)(v, ·), the (tangent) constraint curvature matrix. In
case of the stabilized index-2 formulation, see Remark 5.18, one more set of nonlinear equations
and the additional variables µn are appended to the system, see (Arnold et al., 2016). In this
case it is possible to split the computation into the solution of two linear systems of dimension
nq + nλ which may save costs even further.

In the benchmarks below the system matrices have been calculated analytically. For most
real-world problems such a procedure is not possible without large computational effort and/or
the aid of automatic differentiation routines. Due to the black-box character of many substruc-
tures and the use of surrogate models without sufficient smoothness the Jacobians have to be
approximated numerically. The high cost of such approximations is then counterbalanced by the
usage of a simplified Newton–Raphson method, i. e., through keeping the Jacobian constant over
multiple time steps. The reevaluation of the system matrices is typically based on heuristics that
involve the behavior of the solution and the asymptotic behavior of the iteration which is only
linear for the simplified Newton–Raphson method (Eich-Soellner and Führer, 1998). For BDF
methods in multibody dynamics and without condensation of the nonlinear systems, Arnold
et al. (2011) report that one Jacobian evaluation per ten time steps is common.

In the same virtue of using only approximate Jacobians it is, of course, possible to leave
certain submatrices out: Brüls (2005) favors to use Kt ≈ −∂F /∂q instead of the above definition
because for many multiphysics applications this matrix can be obtained rather cheap and often
even analytically. Also the scaling behavior of the derived parameters is important. For small
time step sizes it holds β′ � γ′ � 1 such that omitting the evaluation of Ct and Kt is often
justified as well. This especially bears an advantage if the mass and constraint Jacobian matrix
are known since then (in the index-3 and stiff case) no difference approximation is necessary at
all. Also, in many cases M is sparse or easy to invert which saves even more computational
effort. For SPPs in the ODE formulation, however, the very large stiffness parameters enter the
tangent stiffness and/or damping matrix and a truncation weakens the convergence behavior of
the iteration.

Remark 6.2 (Newton–Raphson variables)
In the classical setting of structural dynamics with its primarily linear or quasi-linear equations,
the update formulae are usually expressed and implemented in terms of ∆a := an+1 − an
rather than ∆q (see for instance Hoff and Pahl, 1988a, Chung and Hulbert, 1993, Erlicher
et al., 2002). A reformulation with different variables is easily made: The variables in (6.1)
enter Ξ in a (almost) symmetric way, such that the roles of components that enter y or z
can be exchanged as long as the regularity of the corresponding matrix A1 is given. Negrut
et al. (2005) argue that using ∆a appears as the more natural choice since ∆a and ∆λ act on
‘qualitatively the same kinematic level’. On the other hand, Hoff and Pahl (1988b) point out that
an implementation with ∆q is more convenient and natural since position variables are in fact in
most cases the variables of actual interest. Negrut et al. (2005) argue that due to the structure
of St the submatrices that usually have to be approximated by finite differences are multiplied
by a factor in O(h−2) such that numerical errors are amplified; this is no longer the case for
acceleration updates. In exact arithmetics (including a sufficiently accurate approximation of
Jacobian matrices) the both formulations are, of course, equivalent.
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Remark 6.3 (Scaling of corrector equations: ‘Balancing’)
Static condensation cannot restrain the drawback that the linear systems are badly scaled (Pet-
zold and Lötstedt, 1986) since the derived parameters β′and γ′ enter the system matrix St.
Bottasso et al. (2008) propose a scaling strategy for balancing: Use the equivalence of two linear
systems

Std = r ⇔ S̄td̄ = r̄ , (6.2)

where S̄t := LStR, So, instead of one inversion of St, the right-hand side needs to be scaled like
r̄ := Lr, and, after the solution of the right system in (6.2), d := Rd̄ can be obtained. Matrices
L and R are chosen such that the condition number S̄t is much less than that of St and that the
multiplication with L and R is computationally cheap and the inversion of S̄t not drastically
more expensive than for the original system (Petzold and Lötstedt, 1986). In practice one uses
block diagonal matrices consisting of multiples of I such that matrix multiplication coincides
with scalar multiplication.

For the index-2 systems the proposed ‘optimal scaling’ (in the sense of Bottasso et al. (2008))
is given by

R := blkdiag(γI, 1
βh2

I) , L := blkdiag(βh2I, hI) ,

and for the index-3 system one obtains (see Arnold and Brüls, 2007)

R := blkdiag(I, 1
βh2

I) , L := blkdiag(βh2I, I) .

The same scaling techniques can be applied for SPPs in their index-1 formulation.
Cardona and Géradin (1994) suggest to incorporate structural properties, i. e., to use an av-

erage mass/inertia term when scaling the equations. In all cases, from a practical point of view,
it is a drawback that the scaling depends on the time step size which might cause more imple-
mentational inconvenience (Cardona and Géradin, 1994). In variable step size implementations
for DAEs or stiff systems scaling of the residuals and using these scaled versions in the stopping
criterion is common as it is a well-known result (Petzold, 1982) that the unstable perturbation
behavior of high-index DAEs transfers to the numerical solution as well and hereby spoils step
size control algorithms (Hairer et al., 1989a). Schaub and Simeon (2002) show that for stiff
mechanical systems a similar scaling technique is necessary to gain efficiency. Yet, disabling the
step size control or using fixed step size implementations for very stiff or high-index systems
still seems to be the method of choice for most real-time simulations (Arnold et al., 2007) and
is very popular for large scale simulations (Simeon, 1998) as well.

In summary, there is not ‘one optimal way’ of defining the variables in the Newton–Raphson
iteration or scaling the equations or truncating the system matrices for all cases but one should
instead adapt these issues to the problem at hand. The corrector iteration by means of Newton–
Raphson iteration with static condensation is also at the heart of proving unique (local) existence
of the numerical solutions of (4.2) in each time step which we will fix in the following Lemma 6.4.
Its proof is skipped and can be found in (Arnold et al., 2016, Lemma 3.3) for the DAE case.
For SPPs the adaptation is straightforward since the index-1 formulation with λδ|ε is simply
a perturbation of the DAE systems and the regularity of St is given as before. As the proof
relies on a convergence result (Kelley, 1995) for the Newton–Raphson iteration in the above
form its convergence is proven as well. For the original ODE formulation the existence and
uniqueness does not imply that a ‘standard Newton–Raphson iteration’ converges (unless the
time step size h is chosen unrealistically small or the penalizing potential/Rayleigh function is
quadratic). Simeon (2013) uses a nonlinear extension of the Prothero–Robinson equation (5.40)
to derive step size restrictions. A remedy for the bad convergence behavior without employing
the index-1 form is given by Lubich (1993) for Runge–Kutta methods and was later on extended
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by Yen and Petzold (1998), Yen et al. (1998) to multistep integration methods, (CS-method,
CM-method). From a theoretical point of view these methods are based on projection techniques
and the tangent space parameterization introduced in Section 2.1.2.

Lemma 6.4 (Unique solvability)
There are constants h0, γ0 > 0 independent of δ or ε, respectively, such that for given initial
values (q

1|2|δ|ε
0 ,v

1|2|δ|ε
0 )> fulfilling

‖g(q
2|3
0 )‖ ≤ γ0h , ‖G(q

2|3
0 )v

2|3
0 ‖ ≤ γ0 in the DAE case, (6.3)

‖g(qδ0)‖ ≤ γ0h , ‖G(qδ0)vδ0‖ ≤ γ0δ for strongly damped systems,

‖g(qε0)‖ ≤ γ0ε
2 , ‖G(qε0)vε0‖ ≤ γ0ε for stiff mechanical systems

the algorithmic equations (4.2) (locally) possess a unique solution whenever h ∈ (0, h0] and
γ, β, 1− αm, 1− αf 6= 0. The solutions fulfill qualitatively the same estimates as given in (6.3)
such that induction leads to existence of numerical solutions on a finite time interval.

In the work of Stumpp (2004) and Lubich (1993) on numerical integration methods singular
SPPs, the existence proofs involve the nonlinear coordinate transforms from Lemmas 3.7 and
3.14 which modify the singular terms to a linear form for which the existence proof is simpler.
In the next remark we present techniques to improve the overall efficiency and robustness of the
corrector iteration.

Remark 6.5 (Line search algorithms)
The goal of most line search algorithms for Newton-type iterations is to serve as a stabilization
in the sense that robustness of the algorithm is improved while the good convergence in close
proximity to the root is preserved. The main idea behind them is that damped Newton–Raphson
iterations, i. e., those where the increment is multiplied by a constant factor 0 < σ < 1, usually
have a better global convergence behavior whereas the classical (possibly simplified) method is
much faster in proximity of a solution. So, in each corrector step for a series of candidates σ
of possible step sizes it is tested whether they fulfill a certain descent condition and if so, this
length is used. The two most commonly used descent conditions are due to Wolfe (1969) and to
Goldstein (1962) and Armijo (1966). The step size candidates are chosen by different heuristics;
most common are the choice σ = 1, 1

2 ,
1
4 , . . . or polynomial interpolation of the objective at

the previous candidates. Numerical experiments suggest that approximately five candidates
typically suffices in the context of ODE/DAE time integration methods. Especially after the
transient phase the benefits from a line search method are mostly negligible as the algorithms
only find step lengths σ = 1 anyway. For an overview on line search algorithms (in the context
of optimization problems) we refer to (Kelley, 1995, Deuflhard, 2004).

Solving the nonlinear systems that arise in each time integration step using the index-1
formulation (as well as the CS/CM methods) is only possible if certain values of the DAE
problem, most importantly the constraint Jacobian G, can numerically be evaluated. As we
have already explained in Chapter 3 this might be difficult or even impossible. In order to
being able to tackle these problems also, one can employ path-following methods. Within this
framework each time integration step is seen as dependent on a scalar parameter (mostly the
step size h) and a step-by-step subroutine is used to follow the according solution branch. The
crux is that these methods only make sense if the solution of all the auxiliary problems along the
path are not computationally more expensive than using smaller time steps in the first place.
This goal can for example be accomplished if the tolerances for the auxiliary problems is cruder
than for the original problem. Also, one can use specialized step size control algorithms to
improve efficiency. For further details we refer to Deuflhard (2004) and Rheinboldt (1980).
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But, nevertheless, the very limited success of those methods for industrial implementations
or applications gives rise to the hypothesis that they are mostly of mathematical interest, see
also the review article by Ascher et al. (2007). It is one of the main results of the work of Lubich
(1993) that, if possible, one should always try to tackle the DAE problem, i. e., the underlying
slow motion, directly.

6.2 Benchmarks

The general framework that determines the equations of motion in the case of strongly damped
and stiff mechanical systems from Chapter 3 allows to give an alternative formulation of any given
mechanical system of the form (2.12). Therefore, we describe the benchmarks in the following
section only in their index-3 form as all alternative formulations can be derived from them. In
the numerical experiments below we chose the benchmarks in a way that the phenomena to be
shown are underlined well which is why we are going to switch between them from section to
section.

6.2.1 Mathematical pendulum

6.2.1.1 Double pendulum

Since the planar pendulum example already appeared several times throughout this thesis it does
not require any further explanation. The mechanical system shown in Figure 6.1 is a simple
extension where a second rod and unit mass have been attached to the first mass point such
that there are now two constraints

g(q(t)) =

(
(qx,1(t))2 + (qy,1(t))2 − l21

(qx,2(t)− qx,1(t))2 + (qy,2(t)− qy,1(t))2 − l22

)
, l1 = l2 = 1 , (6.4)

where we expressed the rigid connections by quadratic relations. In a way, the problem there-
fore is not ‘as strongly nonlinear’ as the simple pendulum example and the derived terms as the
constraint Jacobian take a much easier form. The double pendulum is a classical example for
chaotic systems as may be guessed from the right plot in Figure 6.1 where we depict the time
evolution over the time interval [t0, tend] = [0, 5]. To get rather strong excitations and keep con-
sistent with the simple pendulum we used the initial values q(t0 = 0) = 1

2(
√

2,
√

2, 2
√

2, 2
√

2)>,
q̇(t0) = (−1, 1,−1, 1)>.

−2 2

−2

2

qx,1|2

qy,1|2

1 2 3 4 5

−2

−1

1

2

t

q

Figure 6.1: Double pendulum: Initial/end configuration and time evolution
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6.2.2 Seven body mechanism

“Andrews’ squeezer mechanism” or the seven body mechanism depicted in Figure 6.2 is one of
the most well-documented and well-tried realistic benchmark problem in the multibody sys-
tem community. Schiehlen (1990) used it as the reference for planar constrained mechanical
systems in technical simulation and in the monograph of Hairer and Wanner (2002) where the
parameters have been adapted from it serves as ideal illustration of a mechanical system. As
the name suggests the benchmark describes the (plane and frictionless) motion of seven bodies
interconnected to each other by joints that realize three kinematic loops. Initially at rest, a
constant torque raises an ever faster motion of the system. In the numerical experiments below

·

·
q1

q2

q3

q4

q5 q6

q7

Figure 6.2: Schematic illustration of the seven body benchmark, cf. (Hairer and Wanner, 2002,
Schiehlen, 1990)

we will use two different formulations to describe the motion of the system. The first version is
documented in great detail in (Hairer and Wanner, 2002, Lionen et al., 1996) and has nq = 7
position variables that identify the angles of the bodies in Figure 6.2 and are constrained by
nλ = 6 nonlinear equations to close the three kinematic loops. These three closed loops, while
there are only seven bodies in the system, make Andrews’ squeezer mechanism a highly coupled
problem with complicated mass matrix, constraint Jacobian, and force vector. Hence, the second
model uses x and y coordinates of the centers of mass and angles of each body as its nq = 21
variables. Consequently, there are nλ = 20 constraint equations necessary to restrain the motion
to one single degree of freedom. With altogether 41 state and Lagrange multiplier variables the
benchmark may, judging from the dimension, be reckoned a quite realistic problem. The time
horizon of the seven body mechanism is usually taken as [t0, tend] = [0, 0.03]. In Chapter 5 we
saw that the convergence behavior of Newmark integrators may depend on the initial values. So,
for the ‘large’ seven body mechanism we used a very accurately acquired reference solution to
obtain initial values for t0 := 0.01, that were afterwards projected to fulfill position and velocity
constraints to machine precision and have non-vanishing initial velocities.

6.2.3 Slider crank mechanism

This benchmark was proposed by Simeon (1996) to study typical effects of multibody systems in
which flexible and rigid structures interact with each other and has become part of an accepted
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standard benchmark set (Lionen et al., 1996) for ODE and DAE integration methods. In the
model a flexible rod moves between a rigid block whose motion is constrained to a fixed line and
a rigid rod that rotates around a fixed point with constant angular velocity, see Figure 6.3.

The flexible motion of the rod is described by a Galerkin approach with two ansatz functions
for longitudinal and lateral displacement, each one possessing two degrees of freedom and a
nonlinear material law, cf. Example 3.19. With the angles of the rods and the position of the
block along the line we have nq = 7 position coordinates and three constraints: two for the
closed loop and one rheonomic constraint for the constant revolution of the rigid rod. The
highly oscillatory motion and nonlinear potential model make it an excellent example for the
application of methods from structural dynamics.

q1

q2

q3

flexible rod

q4

q5

q6

q7

Figure 6.3: Illustration of the slider crank benchmark, Galerkin ansatz functions of the flexible
rod, cf. (Simeon (1996), Kettmann (2009))

6.3 DAE systems

Prior to the convergence proofs in the index-2 and index-3 DAE case we have already presented
some numerical experiments confirming the convergence results of Corollaries 5.14 and 5.22. So,
in this section we will just briefly underline two issues for more realistic benchmark problems
before we turn our attention to the SPP case in Sections 6.4 and 6.5 below. For a numerical
verification of the convergence results in the DAE case we refer to the literature (e. g. Lunk and
Simeon (2006), Arnold and Brüls (2007), Jay and Negrut (2007), Arnold et al. (2016)).

6.3.1 Numerical dissipation

The generalized-α method has been originally introduced by Chung and Hulbert (1993) as an
‘algorithm for structural dynamics with improved numerical dissipation’. The first experiment
will address this matter in the DAE setting. According to Cardona and Géradin (1989), typical
values of %∞ for applications in multibody dynamics and the HHT or WBZ method are in the
range of 0.55− 1. Other researchers use maximum damping, i. e., %∞ = 0 to obtain a maximally
stable time integration first and then increase %∞, mostly for accuracy reasons.

In Figure 6.4 the effect of algorithmically controllable damping is illustrated for the slider
crank benchmark problem in its index-3 formulation. Clearly, as shown by Lunk and Simeon

118



(2006), the beneficial user-definable damping properties carry over from the ODE to the DAE
case.

0 0.02 0.04 0.06 0.08 0.1
−4 · 10−5

−2 · 10−5

0

2 · 10−5

t

q 7

Flexible mode q7, varying %∞

%∞ = 0.9
%∞ = 0.8
%∞ = 0.6

Figure 6.4: Oscillatory mode q7 of slider-crank mechanism for different choices of numerical
damping %∞ and time step size h = 6 · 10−4

6.3.2 Overshoot

In Remark 4.21 we showed that the asymptotic linear error behavior of Newmark-type integrators
depends on the Jordan structure of the amplification matrix for the linear oscillator in the limit
of infinite stiffness. The classical parameter set of the CH(%∞) algorithm, despite its clearly
beneficial behavior in terms of dissipation and dispersion, is prone to locally quadratic overshoot
while HHT and WBZ have only linear asymptotic growth of matrix powers. We also presented
an alternative way of choosing the algorithm’s parameters such that even this linear growth is
no longer present, denoted as Gen(%∞, φ0).

The upshot of this parameter set with improved behavior in the transient phase is illustrated
in Figure 6.5. For the ‘large’, i. e., nq = 21, version of the seven body mechanism in its index-
3 formulation we performed three time integrations with time step size h = 2 · 10−5 using
CH(%∞), HHT and Gen(%∞, 0). The numerical damping parameter was set to the relatively
large value %∞ = 0.95 corresponding to αHHT = − 1

39 . The experiment shows that overshoot
in the Lagrange multipliers can be observed for all three parameter sets, yet the reduction of
spurious oscillations for HHT and especially Gen(%∞, φ0) with φ0 = 0 is also recognizable. This
observation corresponds directly to the amplification behavior depicted in Figure 4.7.

6.4 Strongly damped systems

To verify the results from Section 5.3.1 we use the ‘classical’ form of the seven body mechanism.
Corollary 5.33 gives asymptotic estimates for the global errors on position and velocity level that
include the penalty parameter δ and the time step size h. Both dependencies are illustrated in
Figure 6.6. The maximum error for (q,v)> on the time horizon [0, 0.03] is shown vs. h and δ in
double logarithmic scale. The left plot affirms the second order convergence of the method. For
very small time step sizes the error saturates at a level that grows linearly with the perturbation
parameter δ. Conversely, in the right plot the first order convergence in δ is apparent and the
error saturates at a level in O(h2). For this experiment we chose consistent initial values qδ0, vδ0.
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Figure 6.5: Improved transient behavior for amplification matrices with different Jordan struc-
tures: Lagrange multipliers of the (large) seven body mechanism
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Figure 6.6: Verification of error bounds from Corollary 5.33
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To lay out the possible modifications we perform the same experiment a second time with
the following alterations:

• For the experiment in Figure 6.6 we used the parameter set CH(0.75). Now, the algorithmic
parameters are chosen as αm = 2

7 , αf = 3
7 , γ = 9

14 , β = 1
7 . The method is zero stable

and second order accurate but lacks all other stability concepts from Definition 4.7. For
sufficiently large stiffness the algorithm would even fail to integrate the harmonic oscillator
in a stable way.

• We also perturbed the initial values according to the limits given by Assumption 5.25
and added perturbation terms of size O(h2) and O(δ) on position and velocity level,
respectively.

Modified parameters
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Figure 6.7: Damped squeezer mechanism: step size convergence for perturbed initial values and
the parameter set αm = 2

7 , αf = 3
7 , γ = 9

14 , β = 1
7 , second row: amplification factor of the

algorithm for the harmonic oscillator and failed integration of the corresponding stiff mechanical
system

In the lower left plot of Figure 6.7 we illustrate the numerical damping properties of the
algorithm used, cf. the corresponding plots in Figures 4.1, 4.3, 4.6 and 4.9. It is ‘unconditionally
unstable’ (Vater et al., 2011) as for no step size h > 0 the error amplification in the linear regime
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is contractive. Nevertheless, the numerical results in the upper plots match the behavior in the
prior example since the ‘unusual’ parameter set meets the requirements of Theorem 5.32. To
underline this result we used the same algorithmic parameters for the stiff formulation with the
moderate value ε = 10−3 and time step size h = 3 · 10−4. The result is shown in the lower right
plot of Figure 6.7. The light colors indicate a reference solution of the stiff system for ε = 10−5

and the parameter set of Chung and Hulbert (1993). Clearly, the algorithm completely fails to
give a stable solution in the stiff case.

6.5 Stiff systems

The theoretical findings of Section 5.3.2 are underlined by means of the simple/double pendulum
example. Figure 6.8 verifies the second order of convergence for position variables by means of
time step size h and penalty parameter ε. The parameter set CH(0.8) is used in this case.
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Figure 6.8: Numerical convergence behavior for the double pendulum example as stiff mechanical
system

To verify the order reduction for the orthogonal velocity error components we come back to
the simple pendulum benchmark and display the maximum error over the time interval [0, 2]
in Figure 6.9. We also changed the initial conditions to q(t0) = (0,−1)>, v(t0) = (1, 0)>. In
the first row the convergence for fixed ε and h → 0 is displayed. Omitting the orthogonal
error component eGvn from the condensed error term eq,vn := (eqn, evn)> ‘increases’ the order of
convergence of the algorithm from one to two. For the results in Figure 6.9 we used a numerical
damping of %∞ = 0.9. Initial values on position level were disturbed by O(ε2). The different
plots indicate different penalty parameters ε ranging from 10−2 to 10−7. As expected, the error
saturates if the step sizes become very small.

In the first plot of the second row we display the accuracy of the numerical approximations as
a function of ε (the same experiment). Dashed plots indicate eq,vn while solid lines show the error
behavior of the projected terms eq,Pvn . Qualitatively we get the same results as for the previous
experiment, i. e., second order of convergence with respect to ε and saturation at a level in O(h2).
To show again that the requirements on the initial values in Assumption 5.25 are sharp we show
how convergence can no longer be seen if the deviation from g = 0 is growing quadratically with
the time step size, see the lower right plot. The gray lines in both plots indicate the according
results for the SDIRK method we constructed in Remark 4.22. As the results of Lubich (1993)
from Remark 3.20 indicate, even a deviation from the constraint manifold by O(h2) does not
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Figure 6.9: Verification of error bounds for the pendulum example

impair the convergence. Yet, having a look at (3.26) again, we see that the order of the Runge–
Kutta method drops to one since it is only of stage order ps = 1. One should also keep in mind
that the computational effort of this algorithm is roughly twice as large since one has to solve
two nonlinear systems in each time step to obtain the stage vectors.

Constraint fulfillment and drift At last, to illustrate that strongly damped systems are
not superior from all perspectives of numerical analysis to stiff mechanical systems (no order
reduction occurs) we come back to the double pendulum benchmark problem. Figure 6.10
shows the norm of the residual in the constraint equation (6.4) as it evolves throughout the
time integration. To have a larger effect in the transient phase the initial values were perturbed
by O(h2) in g(q

ε|δ
0 ) and O(h) in its time derivative G(q

ε|δ
0 )v

ε|δ
0 . For the stiff model we used

ε = 10−4, for the damped system a penalty parameter δ = 10−6 was chosen with a time step
size h = 0.005 in both cases. In particular, in the plots three phenomena become apparent: (a)
Again we see that smaller values of %∞ impose a stronger numerical damping, in the constraint
evolution and also for the strongly damped case, (b) in neither of the formulations do the
constraint residuals tend exactly towards zero. They seem to approach the smooth motion
introduced in Theorems 3.8 and 3.16 instead as it is the case for Runge–Kutta methods as
well, and (c) the drift-off phenomenon known from index-reduced DAE systems transfers to
the singularly perturbed counterparts as well. Note how the imposed weak constraint (Gq̇ for
strongly damped, g for stiff systems) remains within a neighborhood of zero whose size depends
on the penalty parameter. The high similarity of the first and the last plot is fairly coincidental
and due to the solution progression with its sharp peaks, cf. Figure 6.1.
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Figure 6.10: Time evolution of position and velocity constraints for the double pendulum in
strongly damped and stiff formulation for varying numerical damping

6.6 Sidetrip: Remedies in case of large initial deviations: The
HMM approach

Compared to the convergence results of Lubich (1993) and Stumpp (2006) for Runge–Kutta-
type methods the conditions on the initial values in Assumption 5.25 seem rather restrictive.
Apart from the transient phase the Newmark-type integrators outperform common Runge–Kutta
algorithms and keep their second order of convergence while also enabling the user to adapt the
numerical damping. This section shall collect a few ideas on how to resolve the problem that
rather strong conditions on the initial values are needed for convergence. Nevertheless, it shall
merely serve as a lookout on aspects of further investigations. In lack of Assumption 5.25 the
error analysis of the last chapter looses its validity. For simplicity we will restrict the experiments
in this section solely to stiff mechanical systems which is the more important and challenging
case anyway.

Lemma 5.39 shows that the most important problem lays in the bad approximation from
the first time step on. If the manifold of the slow motion is known it is, of course, possible to
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project the initial values (qε0,v
ε
0)>  (q̄0, v̄0)> := (π0(qε0),P0v

ε
0)> onto T Ms and the problems

for large initial deviations are shed. But what is there to do if a direct projection is not known?
In Chapter 2 we have introduced the concept of heterogeneous multiscale methods (HMM).

Following the general framework, the stiff mechanical system is the microsystem which has to be
integrated on a small time interval [t0, t0+η], (η > 0), (e. g. with the same method but very small
time steps) and the acquired data can then be used to approximate the macrosystem, i. e., the
slow or smooth motion of the mechanical system, cf. Figure 6.11. For the projection procedure

t0 t1

η

t

qε(t), q(t)

HMM integration scheme

Figure 6.11: The HMM approach for highly oscillatory integrands (Abdulle et al., 2012)

we follow the work of Ariel et al. (2012). Since the analytic solutions of (3.15) oscillate around
the slow motion a simple average

q̄ :=

∫ t0+η

t0

qε(t; qε0,v
ε
0) dt v̄ :=

∫ t0+η

t0

q̇ε(t; qε0,v
ε
0) dt ,

where the notation qε(t; ·, ·) indicates the dependency on the initial values, usually suffices
to obtain smoother solutions. A more detailed analysis (E and Engquist, 2003) shows that
the approximation can be improved if instead of a simple average, a kernel function Kη(·) is
multiplied with the above integrand and the integration interval is symmetric around t0. Using
this technique for the pendulum example from Chapter 1 gives similar results as the ones for
initial perturbations in O(ε2) we have already seen.

In Remarks 5.17 and 5.23 we showed that adapted initial values for the acceleration-like
variables a0 may prevent order reduction in the transient phase for the DAE case. Using
difference approximations for the third derivative like

a0 := q̈(t0) + h∆α
q̈(t0 + η/2)− q̈(t0 − η/2)

η
,

for some given constant η > 0 resolved the problem of order reduction in the Lagrange multipliers
in the index-2 case and was one ingredient to overcome the drop to order one for the velocity
variables in index-3 systems. So, the above procedure might as well be used to acquire this kind
of correction term, i. e., using the approximants

q̈(t0 ± η/2) ≈ ∓
∫ t0

t0±η
[Kη · rhs](t0 ± η

2 + t) dt , q̈(t0) ≈
∫ t0+η/2

t0−η/2
[Kη · rhs](t0 + t) dt , (6.5)

with rhs(t) := M−1(f − 1
ε2

G>g).
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Figure 6.12: Improved convergence for the pendulum example using HMM (left) or zero initial-
acceleration (right), solutions for classical initialization (plain) or prior projection of initial values
(proj. i.-v.)

In Figure 6.12 we depict the result for the above procedure using the common kernel function
Kη(t) := 1

η (1 + cos(2π(t − t0)/η)). The gray plots are the results from Chapter 1 for O(h2)
perturbation and projected initial values. Micro integrations were performed using a standard
integration method with very low tolerances and a trapezoidal rule to approximate the integrals
in (6.5). It is evident that the adaptation of the initial values on acceleration level may lower
the negative influence of the initial perturbations. Even the very rough approximation a0 := 0
which is drawn in the right plot of Figure 6.12 keeps the numerical results from diverging at
the cost of order reduction in q. These rather simple considerations show that there are many
possibilities to further improve the performance of the Newmark family algorithms in the SPP
setting.
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Chapter 7

Summary

Singularly perturbed problems represent some of the most important challenges in the numerical
simulation of technical systems. In this thesis we analyzed the widely used family of Newmark-
type methods including the classical Newmark-scheme, HHT and the CH(%∞)-generalized-α
method for the two important classes of strongly damped and stiff mechanical systems.

To this means, we underlined the interrelation between the limit cases of constrained me-
chanical systems in DAE form and the linear special cases known from classical stability analysis
of time integration methods in technical simulation. We saw in particular that order reduction
in the Lagrange multipliers in the index-2 case can be avoided by an appropriate initialization of
the acceleration-like variables a0 while in the index-3 case a real adaptation is necessary. These
drawbacks carry over to the SPP setting where in the strongly damped case the order reduction
result does not influence the convergence behavior on the relevant position and velocity level
but for stiff mechanical systems remains apparent and causes a transient reduction to first order
for the velocities. Finding remedies in the singularly perturbed case appears to be way more
challenging since initial errors in O(1) are involved. Even so, a comprehensive error analysis
that based on a onestep representation of the algorithm has been carried out and convergence
in time step size as well as penalty parameters and bounds for the initial deviations have been
given.

One of the main tools in the error analysis was the close relationship to the DAE case and,
accordingly, the local truncation as well as global errors were defined with respect to the slow
motion of the mechanical systems whose existence is guaranteed from the Rubin–Ungar Theorem.
Secondly, it proved beneficial to rely on the onestep representation of the algorithms to derive
recursion formulae such that in all four cases the synthesis of the error analysis could have been
carried out within exactly the same framework. The governing amplification behavior coincides
with the one from the scalar-valued linear regime which we analyzed and visualized in great
detail providing a rather comprehensive overview on the theoretical and practical developments
concerning this family of algorithms in the last decades.

The main differences of constrained and singularly perturbed problems can be classified by
the large initial errors and the additional coupling terms of artificial Lagrange multipliers and
acceleration-like variables in the strongly damped case and even the velocity components for stiff
mechanical systems. The latter ones lead to the necessity of dealing with amplification matrices
that depend on the ratios of penalty parameters and time step sizes. As a result the guaranteed
contractivity of the error recursion implies an upper bound on those relations.

The introduction of artificial Lagrange multipliers not only proves very useful for theoretical
purposes but is also the method of choice if one is to practically implement the algorithms since
the singular force terms forbid a reliable corrector iteration that is solely based on the ODE
formulation of the problems. In Chapter 6 we presented a solution procedure by means of a
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pseudocode and demonstrated the validity of the theoretical finding by a series of numerical
experiments of rather small dimension. They were, nevertheless, sufficient to show that the
bounds in the error estimates are sharp and if any of the required assumption falls the algorithms
may no longer converge at all.

The numerical experiments, nonetheless, indicate that the seemingly divergent behavior of
Newmark-type integrators is no unstable behavior in the sense that the numerical approximations
grow large beyond any bounds or that the solution of the nonlinear systems fails. It is rather
to expect that further research on the topic might reveal a similar analytic background as can
be shown for onestep methods and that the smooth motion of the mechanical system is more
appropriate to measure the performance of the methods as opposed to the slow one. From a
practical point of view there are also a few other topics that have not been discussed so far.
The debatably most important concern is the analysis and practical test of variable time step
integration methods in the setting of this thesis but also possible benefits from using mixed
formulations, cf. Remark 3.21, or the consideration of nonlinear configuration spaces or the
connection to questions of structure-preservation have found much interest in recent years.

After all, the application of Newmark-type integrators to real-world problems within the
SPP framework of this thesis will show to which extend the results we have presented prove
useful.
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