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Notation

Symbol Description

x a scalar (lowercase, normal font)
x a vector in 3-dimensional space (lowercase, bold font)
x|l the lth component of vector x, i.e. xl
∂x derivative with respect to x (=̂ ∂

∂x
)

[., .] commutator
{., .} anti-commutator

ϕ(r) a spinor, i.e. a vector in 2-dimensional space:
(
ϕ↑(r)
ϕ↓(r)

)
O a matrix in spinor space

Ô a matrix in spinor space, an operator in position space

General remarks

• All equations, quantities and plots in this work are presented in Hartree
atomic units, i.e. ~ = |e| = me = 1.
−→ One exception is the intensity of electromagnetic fields, which will al-

ways be presented in W/cm2 (this is a commonly used unit in experi-
ments, the relation to a.u. is: I[W/cm2] =̂ 3.51 · 1016E2[a.u.]).

• “ a.u.” stands for the particular unit, e.g. time or length, in atomic units.
−→ time: 1 fs =̂ 41.34 a.u., length: 1nm =̂ 18.9 a.u.

• All electro-dynamical equations and quantities are represented in the CGS-
formulation, while atomic units are used.

• All quantum mechanical operators are in first quantization.

• The components of 3-dimensional vectors have the indices {1, 2, 3}, the index
notation {x, y, z} is not used. The 3 Cartesian unit vectors are e1, e2, e3.

• We will primarily use two state notations:
−→ The Dirac notation, where the (many-particle) states are represented in

the usual bra-ket notation, e.g. |Ψ〉. In this notation, we will represent
all operators in terms of the position operator r̂, the momentum oper-
ator p̂, and the Pauli spin operators σ̂1, σ̂2, and σ̂3. If many-particle
problems are discussed, each operator gets a particle index (usually i),
i.e. r̂i or σ̂3,i , meaning that the operator acts only on the individual
single-particle space. In this notation, single-particle states will have a
particle index as well, e.g. |ϕ〉i.

−→ The two-component spinor notation, where the single-particle states are
represented by two-component wave functions in the position space, e.g.
ϕ(r). In this representation, the position operator is given by r (i.e. by
an ordinary vector; note that no “ˆ” is used), the momentum operator
is given by p̂ = −i∇, and the spin operators are given by the 2 × 2
Pauli matrices σ1, σ2, and σ3.





Acronyms

ALDA adiabatic LDA
ALSDA adiabatic LSDA
APW augmented plane wave
CDFT current DFT
DA dipole approximation
DFT density-functional theory
DOS density of states
FWHM full width at half maximum
HK Hohenberg-Kohn
IR interstitial region
KS Kohn-Sham
LDA local density approximation
LO local orbital
LSDA local spin-density approximation
MT muffin-tin
RDFT relativistic DFT
RG Runge-Gross
SCDFT spin-current DFT
SDFT spin DFT
SOC spin-orbit coupling
TDDFT time-dependent DFT
TDDOS time-dependent DOS
TDSDFT time-dependent spin-DFT
xc exchange-correlation





1. Introduction

Spintronics is an important emerging field of research and a very promising tech-
nology for the future development of nano devices. The idea behind spintronics is
that, in addition to the electron charge, it makes use of the intrinsic electron spin.
This, in principle, allows it to scale down the size of logic elements and permits
the development of tiny non-volatile storage devices, leading to higher storage
densities and more efficient logic devices. For example, tiny spin-magnetic do-
mains (possibly on the atomic scale) could act as binary data bits within such a
technology. In order to achieve fast writing times, the ultrafast manipulation of
such domains would be of particular importance.

Currently, the fastest way to modify spin-magnetic domains is optical manipu-
lation by ultrashort laser pulses. During the last two decades, various experiments
have shown that an ultrashort laser pulse can induce a very fast partial demag-
netization in ferromagnetic materials. While first experiments concluded that
a demagnetization in transition metals can happen within approximately one pi-
cosecond [1, 2], later experiments showed that the initial drop in the magnetization
occurs at even shorter time scales of less then 100 femtoseconds [3, 4, 5]. However,
despite numerous experimental in-depth investigations and several theoretical at-
tempts to describe the observed behavior, the demagnetization process is not yet
understood in detail and still highly controversial.

A common way to describe the demagnetization process is to employ a phe-
nomenological three-temperature model, where a temperature is assigned to the
electron system, to the spin system, and to the lattice system [6]. Within this
model, the heating by a short laser pulse leads, in 3d-transition metals, to a fast
increase in the electronic temperature during the first 100 . . . 200 femtoseconds.
During the same time, a considerable amount of energy is transferred from the
electronic system to the spin system, leading to an increase in the spin tempera-
ture, and consequently to a strong drop in the spin-magnetic moment. For times
later than ≈ 200 femtoseconds, the energy transfer between the lattice system and
the electron and spin system becomes more and more important, and spin-lattice
relaxation processes take place, leading to a slow increase in the moment until the
thermal equilibrium is reached after 1 . . . 2 picoseconds. However, we point out
that, even if the three-temperature model describes the observed demagnetization
quite well, the underlying microscopic processes are still unclear and a subject of
ongoing debate.

In this work, we will focus on the processes that occur during the initial time, i.e.
the excitation of the electronic system and the accompanied fast drop in the spin-
magnetic moment. As stated before, the increase in the lattice temperature during
the initial time is marginal. Hence, even if phonon mediated spin-flip processes
might be more important than initially assumed [7], it is reasonable to neglect the
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nuclear motion when studying the microscopic processes that occur during the first
≈ 100 femtoseconds. If the nuclei are assumed to be fixed, there are principally
only two relevant processes that can considerably change the local moment of
an excited system (we use the expression “local moment” because only a certain
region of a larger system is usually probed in experiments). First, a fraction of the
local moment can be transferred from the heated region into adjacent regions as
a result of the time evolution of the locally excited system. This diffusive process
was recently modeled via a dynamical scattering approach, known as superdiffuse
spin transport, which is based on a difference in the scattering probability between
the spin-majority and spin-minority. It was shown that this mechanism can lead
to a fast loss in the local moment if an inhomogeneous energy deposition of the
laser pulse is assumed, and if a different adjacent material than the probed one is
present [8]. A second mechanism that can lead to a significant loss in the moment
is a spin-orbit coupling mediated spin-flip process that occurs for excited Coulomb
interacting many-electron systems [9, 10]. Note that the latter mechanism takes
place even if periodic systems are assumed, in contrast to the first mechanism.

In this work, we will for the first time perform a fully ab-initio investigation
into the second mechanism for 3d-transition metals. We will assume transla-
tional invariant and periodic systems, and we will employ time-dependent density-
functional theory [11] to investigate the real-time evolution of excited systems.
Note that effects beyond the linear response regime are covered within this frame-
work.

This work is organized in the following way: In chapter 2, we will introduce
density-functional theory and its time-dependent extension, which forms the basis
for all calculations presented in this work. Furthermore, we will discuss some par-
ticularities concerning spin-orbit coupling and the interaction with laser pulses. In
chapter 3, we will discuss some theoretical aspects that are specifically related to
the dynamics of excited extended spin-magnetic systems, and we present the al-
gorithm that was applied in the calculations. We also introduce a time-dependent
density of states as a useful tool for the investigation of excited systems. In chap-
ter 4, the spin-magnetic response of excited bulk iron and bulk nickel, and the
response of an excited nickel slab will be studied. Additionally, we will investigate
the behavior of the spin-magnetic moment analytically, as well as numerically in
detail. Finally, a comparison to experiments will be given.



2. Many-electron systems in intense
laser fields

The theoretical description of short-time phenomena of interacting electrons subjected to

intense laser fields is a challenging task, since it involves the treatment of several non-

trivial problems. In this chapter, these problems will be discussed, and the framework in

which they are treated will be introduced. First, the many-body problem will be discussed,

and the method to tackle this problem, density-functional theory, will be introduced.

Second, the time-dependent generalization of density-functional theory, which allows

the study of short-time phenomena of interacting systems, will be introduced. Finally,

the theoretical treatment of high-intensity, short laser pulses that interact with electronic

systems will be discussed.

2.1. The many-body problem

The fundamental equation that describes the properties of non-relativistic quan-
tum mechanical systems is the many-body Schrödinger equation. This equation
treats, in the general case, the coupled motion of electrons and nuclei. In con-
densed matter physics, one is typically interested in optical or magnetic properties.
If the short-time behavior of these properties is of interest, the relevant problem
to solve is typically given by the electronic many-body Schrödinger equation, be-
cause the mass of the nuclei is much larger than the mass of the electrons, meaning
that the nuclear motion can be neglected:

i∂t|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 , with Ĥ(t) = T̂ + Ŵ + V̂ext(t) . (2.1)

|Ψ(t)〉 is the electronic many-body state and Ĥ is the Hamiltonian, which is
constructed from the kinetic, the electron-electron interaction, and the external
potential term:

T̂ =
N∑
i=1

p̂2
i

2
, Ŵ =

1

2

N∑
i 6=j

1

|r̂i − r̂j|
, V̂ext(t) =

N∑
i=1

vext(r̂i, t) . (2.2)

N is the number of electrons and vext(r, t) is the external single-particle potential,
which describes the interaction of the electrons with the nuclear potential, and
possibly with an additional time-dependent external potential such as an electric
field.

If the external field is time-independent, and if the system is initially in an
eigenstate, the solution of equation (2.1) can be reduced to an eigenvalue problem:

|Ψ(t)〉 = e−iEt|Ψ〉 , with Ĥ|Ψ〉 = E|Ψ〉 . (2.3)
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The equation on the right hand side is referred as the time-independent Schrödinger
equation. For the solution of this equation, one typically would have to calculate
the wave function:

Ψ(r1, . . . , rN) = [〈r1|1 . . . 〈rN |N ]|Ψ〉 . (2.4)

This wave function is a function of 3N variables, which makes it very hard or even
impossible to solve equation (2.3), even for a moderate number of electrons.

2.2. Density-functional theory

The difficulty in solving equation (2.3) arises from the electron-electron interaction
term Ŵ . Within the framework of density-functional theory (DFT) it is possible
to recast the ground state problem of interacting electrons into a ground state
problem of non-interacting electrons, which is much easier to solve.

In the previous discussion we did not consider the electronic spin degrees of
freedom explicitly, which is justified for a variety of systems. In the following
two sections we will continue to do so. However, whenever one is interested in
magnetic properties, the treatment of spin is essential. Thus, in section 2.2.3 the
framework of DFT will be generalized to spin-polarized systems.

2.2.1. The Hohenberg-Kohn theorem

The Schrödinger equation (2.3) defines the many-electron ground state for any
external potential vext(r). The corresponding ground state density n0(r) follows
simply from

n0(r) = 〈Ψ0|n̂(r)|Ψ0〉 , with n̂(r) =
N∑
i=1

δ(r− r̂i) . (2.5)

Thus, the external potential determines the interacting ground state density:

vext(r)
(2.3)−−→ |Ψ0〉

(2.5)−−→ n0(r) . (2.6)

The beginning of DFT dates back to 1964 with a publication by Hohenberg and
Kohn [12] in which they proved that the map (2.6) is invertible for non-degenerate
ground states:

vext(r)
HK←−→ n0(r) . (2.7)

This unique one-to-one mapping is known today as the Hohenberg-Kohn (HK)
theorem. Later it was shown that the inverse of (2.6) can also be established for
degenerate ground states [13].

One consequence of this mapping is that each external potential can be un-
derstood as a functional of the corresponding ground state density: vext[n0](r).
Together with the Schrödinger equation (2.3) it follows that the ground state is
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given as a density functional as well: |Ψ0[n0]〉. As a result, each observable quan-
tity of the interacting system can, in principle, be calculated from the ground
state density:

〈Ô〉 = 〈Ψ0|Ô|Ψ0〉 = 〈Ψ0[n0]|Ô|Ψ0[n0]〉 = O[n0] . (2.8)

From (2.8) it follows immediately that also the ground state energy is a functional
of n0(r):

E0[n0] = 〈Ψ0|T̂ + Ŵ + V̂ext|Ψ0〉 = T [n0] +W [n0] +

∫
dr vext(r)n0(r) , (2.9)

where we have defined the interacting kinetic energy functional and the electron-
electron interaction functional. In their original work, Hohenberg and Kohn
showed, with the help of the Rayleigh-Ritz principle, another important fact:

E0[n0] < E0[n] , ∀ n(r) 6= n0(r) . (2.10)

This variational property means that the ground state density n0(r) is the density
that minimizes the energy functional E0[n] for a fixed vext(r) 1. In an actual
calculation, the ground state density is typically obtained by using a set of single-
particle Schrödinger equations, the so-called Kohn-Sham equations.

2.2.2. The Kohn-Sham equations

In 1965, Kohn and Sham proposed a scheme that allows to calculate an interacting
ground state density by using a fictitious system of non-interacting electrons [14]:[

− ∇
2

2
+ vs(r)

]
ϕi(r) = εiϕi(r) , with ns(r) =

N∑
i=1

|ϕi(r)|2 . (2.11)

The system (2.11), which contains an effective single-particle potential vs(r) that
will be specified later, is called Kohn-Sham (KS) system. The main hypothesis of
Kohn and Sham is that one can find a potential vs(r) such that the density of the
KS system and the interacting system is equal: ns(r) = n0(r).

Since the HK theorem (2.7) holds for any particle interaction, the results dis-
cussed in the previous section can also be applied to the non-interacting KS sys-
tem. Thus, the corresponding energy functional is given by

Es[n] = Ts[n] +

∫
dr vs(r)n(r) , (2.12)

where we have defined the non-interacting kinetic energy functional 2

Ts[n] = −1

2

N∑
i=1

∫
drϕ∗i (r)∇2ϕi(r) . (2.13)

1The actual search for an energy minimum would have to be performed over v-representable
densities, i.e. densities that can be obtained via (2.6) for some vext(r).

2Note that Ts[n] is calculated from the set of KS orbitals that give the density n(r), according
to (2.11).
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The ground state density of this system can, according to (2.10), be obtained by
solving an Euler-Lagrange equation:

δ

δn(r)
Es[n] =

δTs[n]

δn(r)
+ vs(r) = 0 . (2.14)

Since the HK theorem, in its original form, is valid for a fixed (integer) particle
number, we must make sure that the density variation conserves the number of
electrons N .

Now we go back to the interacting system and we define the Hartree energy
functional

EH[n] =
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′| , (2.15)

and the exchange-correlation (xc) energy functional

Exc[n] =
(
T [n]− Ts[n]

)
+
(
W [n]− EH[n]

)
. (2.16)

With these definitions we can write the interacting energy functional (2.9) as

E0[n] = Ts[n] + EH[n] + Exc[n] +

∫
dr vext(r)n(r) . (2.17)

The ground state density of the interacting system can again be obtained by
variation via an Euler-Lagrange equation, which gives

δTs[n]

δn(r)
+
δEH[n]

δn(r)
+
δExc[n]

δn(r)
+ vext(r) = 0 . (2.18)

When we compare now equation (2.18) with the Euler-Lagrange equation of the
KS system (2.14), and when we assume that both equations give the same density,
we can identify the effective single-particle potential to be

vs(r) = vs[n](r) = vext(r) + vH[n](r) + vxc[n](r) . (2.19)

Here we have defined the Hartree and the xc potential by

vH[n](r) =
δEH[n]

δn(r)
=

∫
dr′

n(r′)

|r− r′| , vxc[n](r) =
δExc[n]

δn(r)
. (2.20)

We conclude that the solution of the KS system (2.11) with the effective single-
particle potential (2.19) will give the same ground state density as the interacting
system.

In practice, the KS equations have to be solved iteratively since the density
calculated from this system enters the effective potential vs[n](r). We reemphasize
that the KS system is not a physical system, it is rather a fictitious system that
allows to indirectly solve the Euler-Lagrange equation (2.18), which leads to the
exact interacting ground state density. Once the KS system is solved, the exact
interacting ground state energy can be obtained via (2.17).

In all derivations above we have assumed that we have the exact Exc[n] and
hence vxc[n](r). Unfortunately, the exact form of these functionals is not known,
and in practice they have to be approximated (see section 2.2.5).
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2.2.3. Extensions of DFT

In section 2.2.1 the formal basis of DFT was discussed, and in section 2.2.2 the
KS system, which allows to calculate the ground state density in practice, was in-
troduced. If one is interested in spin-dependent phenomena, especially in the spin
magnetization m(r), on can in principle calculate the latter as a functional of the
density, m(r) = m[n](r), as guaranteed by the HK theorem (2.8). Since function-
als like m[n](r) are largely unknown, the treatment of spins via a corresponding
extension of the KS scheme is essential. Over the years, many extensions to the
previously shown DFT framework appeared. We will, however, in the following
discuss only those extensions that are related to magnetism.

In 1972, von Barth and Hedin [15] proved an unique relationship between the
ground state and the density and magnetization, assumed that an external po-
tential and magnetic field is present:

vext(r),Bext(r) : |Ψ0〉 ←→ n(r),m(r) . (2.21)

This unique mapping allows it to establish a HK-like variational principle (see
(2.10)), and, in the same way as shown in the section before, a KS system that
gives the exact ground state density and magnetization can be derived. Note that
such a spin density-functional theory (SDFT) treats only the coupling of the spins
to the external B-field. In practice it turned out that the application of SDFT is
very useful when dealing with spin-polarized ground states (even in cases where
the external B-field is zero).

SDFT is only justified if the coupling of the magnetic field to the spins is much
stronger than the coupling to the orbital currents. If the opposite is the case,
a current density-functional theory (CDFT) has to be applied. The theoretical
foundation of such a CDFT was provided in 1987 by Vignale and Rasolt [16].
Note that the current density couples to the vector potential in CDFT.

If one wants to treat both, the coupling of the magnetic field to the spins and to
the orbital currents, a current- and spin-density-functional theory or even a spin-
current density-functional theory (SCDFT) would be needed [17, 18, 19]. In the
following we will derive the KS equations for a system where both couplings are
present. We will investigate this KS scheme in more detail because the previously
discussed CDFT and SDFT can be seen as a special case of SCDFT. Further-
more, the form of the coupling of the different densities and current densities to
the external fields will become more clear.

Definitions

Before we start to derive the KS equation for SCDFT, we will define some im-
portant quantities which will be used in the following and throughout the whole
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work. First, we define the magnetization operator 3

m̂(r) =
N∑
i=1

σ̂i δ(r− r̂i) with σ̂i =

 σ̂1,i

σ̂2,i

σ̂3,i

 , (2.22)

which has a similar form as the density operator (2.5), with the difference that
the vector of Pauli-spin operators appears. The index i runs over all electrons.
One usually works in the two-dimensional spinor space, in which the Pauli-spin
operators are represented by the Pauli-matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.23)

and in which the single-particle states are represented by two-component wave
functions:

ϕ(r) =

(
ϕ↑(r)

ϕ↓(r)

)
. (2.24)

Next, we define the paramagnetic (subscript “p”) and diamagnetic (subscript “d”)
current density operator:

ĵp(r) =
N∑
i=1

1

2
{δ(r− r̂i), p̂i} , ĵd(r) =

1

c
Aext(r) n̂(r) . (2.25)

In the same way as the density, the current density can be extended by the spin
degree of freedom, which defines the paramagnetic 4 and diamagnetic spin-current
density operator:

ĵup(r) =
N∑
i=1

1

2
σ̂u,i{δ(r− r̂i), p̂i} , ĵud(r) =

1

c
Aext(r) m̂u(r) , u = {1, 2, 3} . (2.26)

Instead of this notation, one commonly finds the spin-current tensor notation
in the literature. The spin-current tensor operators are 3 × 3 matrices that are
constructed by the vectors from (2.26) via

↔̂

Jp, uv(r) = ĵup(r)
∣∣∣
v
,

↔̂

Jd, uv(r) = ĵud(r)
∣∣∣
v
, (2.27)

(note that j|v stands for the vth component of vector j). Most of the time we
will use the spin-current density notation, since it allows a more intuitive inter-
pretation: each spin-current density vector describes the flow of the probability
of finding the system in the spin-up and spin-down channels of the corresponding
spin-projection. However, from time to time we will use the spin-current tensor
notation because this allows, in some cases, a more compact notation.

3Note that a common definition uses the prefactor geµB/2 which is ≈ −1/2 in a.u. (with the
gyromagnetic ratio ge ≈ −2, and with the Bohr magneton µB = 1/2).

4A common definition uses the prefactor geµB/2.
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Up to now we have defined only operators. The actual observables follow, as
usual, from the expectation values, i.e. the magnetization follows from m(r) =
〈m̂(r)〉, the paramagnetic current density follows from jp(r) = 〈̂jp(r)〉, and so on.
We emphasize that the physical current densities, i.e. the gauge invariant current
densities, follow from the sum of the paramagnetic and diamagnetic terms, e.g.:
j(r) = jp(r) + jd(r).

Spin-polarized systems are generally distinguished by two types: systems in
which the direction of the magnetization is always parallel in space, and systems
for which the direction of the magnetization changes in space. The former are
called collinear systems and the latter are called non-collinear systems:

m(r) ‖m(r′)⇐⇒ collinear , m(r) ∦ m(r′)⇐⇒ non-collinear . (2.28)

A general discussion and a detailed derivation of the densities and current densities
is given in appendix A.1.

A KS scheme for SCDFT

In the following we will derive a KS scheme for SCDFT. We will present this
framework in detail, because we will discover later in this work that the application
of a time-dependent extension of such a framework would most probably be needed
for a proper description of spin-dynamics in solids. Additionally, the SCDFT that
will be derived in the following will include spin-orbit coupling (SOC). A proper
treatment of SOC is of particular importance for the study of spin-dynamics, as
will be found out later in this work as well. Moreover, the derivation that is
provided in the following illustrates how the different external fields couple to the
different local DFT variables.

For the derivation of the SCDFT scheme, we will follow the route that is pro-
vided in [20]. The starting point is the many-electron Hamiltonian

Ĥ =
N∑
i=1

[
1

2

(
p̂i +

1

c
Aext(r̂i)

)2

+ vext(r̂i) +
1

2c
σ̂i ·Bext(r̂i)

+
1

4c2
σ̂i ·

(
∇vext(r̂i)× p̂i

)]
+

1

2

N∑
i 6=j

1

|r̂i − r̂j|
, (2.29)

which includes a current coupling to an external vector-potential. This coupling
is accomplished by replacing the canonical momentum in the kinetic term with
the gauge invariant momentum:

p̂ −→ p̂ +
1

c
A(r̂) . (2.30)

This replacement is usually called minimal coupling. In addition, a coupling of
the spins to an external B-field is present, which is called Zeeman coupling5.
Note that both fields have to be related via Bext = ∇ ×Aext. Furthermore, the

5Both, the minimal coupling and the Zeeman term are components of the Pauli-Hamiltonian,
which follows from the non-relativistic limit of the Dirac equation [21].
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Hamiltonian contains a one-particle SOC term6 which couples the spin-currents to
∇vext. (Note that the replacement (2.30) is neglected in the SOC term, because
the SOC energy contribution coming from Aext is assumed to be very small.)
Whether this form of SOC is actually a justified choice will be discussed in the
next section. For now we can think of this term as an approximation in the
inclusion of relativistic effects.

With the density and current operator definitions (2.22) to (2.27) the Hamilto-
nian (2.29) can be rewritten as

Ĥ = T̂ + Ŵ +

∫
dr vext(r)n̂(r) +

∫
dr

1

c
Aext(r) · ĵp(r) +

∫
dr

1

2c2
A2

ext(r)n̂(r)

+

∫
dr

1

2c
Bext(r) · m̂(r) +

∫
dr

3∑
u,v=1

↔

V SO, uv (r)
↔̂

Jp, uv(r) , (2.31)

where we have defined the SOC matrix

↔

V SO (r) =
1

4c2

 0 −∂r3vext(r) ∂r2vext(r)
∂r3vext(r) 0 −∂r1vext(r)
−∂r2vext(r) ∂r1vext(r) 0

 . (2.32)

For a Hamiltonian of this type, a HK-like variational principle can also be estab-
lished [20]. As a consequence, the KS approach to solve the ground state problem
can be applied as well. The derivation of the KS equations would follow the same
route as shown previously. The only difference to sections (2.2.1) and (2.2.2),
where the central problem was described by only one variable (the density n(r)),
is that we have to deal now with 16 variables: the density n(r), the 3 components

of m(r), the 3 components of jp(r) and the 9 components of
↔

Jp (r).
With the definitions (2.13), (2.15) and (2.16), the interacting ground state en-

ergy functional is given by

E0[n,m, jp,
↔

Jp] = Ts[n,m, jp,
↔

Jp] + EH[n] + Exc[n,m, jp,
↔

Jp]

+

∫
dr
(
vext(r) +

1

2c2
A2

ext(r)
)
n(r) +

∫
dr

1

c
Aext(r) · jp(r)

+

∫
dr

1

2c
Bext(r) ·m(r) +

∫
dr

3∑
u,v=1

↔

V SO, uv (r)
↔

Jp, uv (r) ,

(2.33)

which is a functional of all 16 variables. Instead of directly minimizing this func-
tional, we can again solve a KS system:

(1

2

[
p̂ +

1

c
As(r)

]2

+ vs(r) +
1

2c
σ ·Bs(r) +

3∑
u,v=1

↔

V s, uv (r)σu p̂v

)
ϕ
i
(r) = εiϕi(r) ,

(2.34)

6This form of SOC arises from the Dirac equation after a Foldy-Wouthuysen transformation
and the non-relativistic limit [21].
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which is defined in such a way that it gives the exact 16 ground state variables of
the interacting system. The associated effective single-particle fields follow from
the functional derivatives of (2.33) with respect to all 16 variables:

vs(r) = vext(r) + vH(r) + vxc(r) +
1

2c2

(
A2

ext(r)− A2
s (r)

)
,

As(r) = Aext(r) + Axc(r) ,

Bs(r) = Bext(r) + Bxc(r) ,
↔

V s (r) =
↔

V SO (r)+
↔

V xc (r) . (2.35)

The xc fields have been defined by:

Axc(r) = c
δExc

δjp(r)
, Bxc(r) = 2c

δExc

δm(r)
,

↔

V xc, uv (r) =
δExc

δ
↔

Jp, uv (r)
. (2.36)

The vH(r) and vxc(r) follow from (2.20). Note that all xc fields, and consequently
all effective single-particle fields, are functionals of all 16 variables, since Exc =

Exc[n,m, jp,
↔

Jp].
In conclusion, equations (2.34) to (2.36) define the KS system for SCDFT that

gives the exact interacting ground state variables n(r), m(r), jp(r), and
↔

Jp (r).
Note that the KS system, or more precisely the definitions (2.36), use the para-
magnetic currents as variables. Therefore, the effective single-particle fields are
not gauge invariant. However, once a gauge is chosen this no longer constitutes a
problem [19].

2.2.4. A modified SDFT scheme with spin-orbit coupling

The main concern of this work is the investigation of spin-dynamics. We will see
later in this work that a proper treatment of SOC is of particular importance
for this subject. One way how SOC could be included into a SDFT scheme was
shown in the previous section, where we have derived a SCDFT framework. In
this section, we will focus on the case where the coupling of the magnetic field
to the orbital currents can be neglected (note that the same assumption is made
in standard SDFT), but where SOC has non-negligible contributions. From the
discussion in the previous section one might think that one would need 13 variables
to describe the corresponding SDFT framework, namely the density n(r), the

magnetization m(r), and the spin-current tensor
↔

Jp (r). Contrary to this, we will
propose in this section a modified SDFT scheme that incorporates SOC, and that
is based on only 4 variables. The consideration of this modified SDFT scheme has
several motivations, as we will discuss in the following paragraphs.

First, we point out that the previously discussed SCDFT scheme has no Hartree
contribution in the SOC term of the KS equations (see (2.35) and (2.36)). In prac-
tice, however, one commonly finds that a Hartree potential is present in the SOC
term of the KS equations, and one might wonder if this is actually justified. (The
appearance of the Hartree term results from the fact that the applied KS equa-
tions follow from the non-relativistic limit of relativistic DFT. At this point, we
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wish to mention that the non-relativistic limit approach is, for a proper descrip-
tion of the spin, not straightforward. We will come back to this issue at the end
of this section.) For the SDFT scheme that will be derived in this section, we
will see that the Hartree term in SOC arises naturally, and we will see that this
term should, in fact, be present (since it represents a many-electron SOC interac-
tion that gives, in the time-dependent case, a non-negligible contribution to the
spin-dynamics, as we will see later in this work).

As a second point, we want to emphasize that the SDFT scheme that will be
derived is based on a non-relativistic many-electron Hamiltonian (as usual for
most of the DFT schemes). This has the advantage that exact properties of
the xc fields can easily be derived and discussed (this subject will become more
clear in section 3.1.5, where we will discuss the properties of the xc B-field for
a time-dependent SDFT that includes SOC). Moreover, the KS equations that
will be derived will have a similar form to the equations that have been applied
in the calculations of this work. Hence, the equations applied in the calculations
could be seen, in a sense, as an approximation to the SDFT framework that is
discussed here. However, we point out that no functionals exist for the proposed
SDFT scheme, and that the functionals that have been applied in the calculations
follow, in principle, from standard SDFT (thus, care should be taken concerning
the interpretation as an approximation).

Finally, we wish to mention that we will refer to the proposed SDFT framework
(and its time-dependent extension, respectively) in several places later in this
work. We will do this mainly due to the fact that the proposed framework can
serve as formally exact SDFT that includes SOC. This allows it to draw some
general conclusions that should apply to any SDFT scheme that includes SOC
contributions.

The starting point of our considerations is the following many-electron Hamil-
tonian:

Ĥ = T̂ + ˆ̃W +
N∑
i=1

[
vext(r̂i) +

1

4c2
σ̂i ·

(
∇vext(r̂i)× p̂i

)
+

1

2c
σ̂i ·Bext(r̂i)

]
. (2.37)

We see that we have a Zeeman term and SOC, but we neglect the coupling of the
magnetic field to the orbital currents. Additionally, we have an electron-electron

interaction ˆ̃W , whose exact form will be specified later. For now, we only demand

that ˆ̃W does not depend on any external field. All following steps are related
to the derivation of a proper KS scheme that gives the same magnetization as a
system with the Hamiltonian (2.37).

In order to proceed with the next steps, we will ask the following preliminary
questions: The Hamiltonian (2.37) contains the same external potential in the
ordinary density coupling term, and in the SOC term. Is it possible to write these
two terms as only one term that contains a coupling to one density? And if yes,
is it possible to derive a reasonable DFT framework with this density as variable?
In the following we will show that both questions can be answered with yes.

First of all, we note that the SOC operator can be rewritten to a form where
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we have a local coupling to the external potential:

N∑
i=1

1

4c2
σ̂i ·

(
∇vext(r̂i)× p̂i

)
= − 1

4c2

∫
dr vext(r)

3∑
i=1

(
∇r × ĵip(r)

)
· ei , (2.38)

where we have used the definition (2.26). A detailed derivation of relation (2.38)
is given in appendix A.6.2. As a consequence of (2.38) it makes sense to define
the following operator:

γ̂(r) = n̂(r)− 1

4c2

3∑
i=1

(
∇r × ĵip(r)

)
· ei , (2.39)

which is constructed from the ordinary density operator, and from a contraction
of the curl of the spin-current density operators. With the new defined operator
γ̂(r), and with relation (2.38), we can now write the Hamiltonian (2.37) as

Ĥ = T̂ + ˆ̃W +

∫
dr vext(r)γ̂(r) +

∫
dr

1

2c
Bext(r) · m̂(r) . (2.40)

The important result of (2.40) is that we have represented our many-electron
Hamiltonian in a form where only the operator γ̂(r) couples locally to the external
potential. Moreover, the Hamiltonian (2.40) has, in principle, the same form as
the many-electron Hamiltonian that is used in the derivation of the standard
SDFT framework (see e.g. [22]). Hence, γ(r) = 〈γ̂(r)〉, which can be seen as an
effective density7, plays here the same role as n(r) in standard SDFT. In fact, it is
straightforward to establish a HK-like variational principle for a system with the
Hamiltonian (2.40) and with γ(r) and m(r) as basic variables. One simply has to
follow the steps from the SDFT derivation and one has to replace n(r) by γ(r).

So far we have not said anything specific about the interaction term ˆ̃W . In fact,
it should be possible to establish a HK-like variational principle for any interaction
term, as long as it represents a pure electron-electron interaction. As a next step,
we will show the interaction term that will be considered in the following, and
furthermore, we will argue why we choose this term:

ˆ̃W =
1

2

N∑
i 6=j

1

|r̂i − r̂j|
+

1

4c2

N∑
i 6=j

σ̂i ·
(
∇r̂i

1

|r̂i − r̂j|
× p̂i

)
. (2.41)

The first term on the right hand side is the usual Coulomb term which is, from
the energy point of view, the most important electron-electron interaction term.
The second term is an electron-electron SOC term. This term follows, in addition
to other terms, from quantum electrodynamics by taking the non-relativistic limit
up to the order 1/c2 [23].

At this point we wish to reemphasize that we are interested in the spin proper-
ties. Hence, the electron-electron SOC term, which is a direct spin-coupling term
that could give non-negligible spin contributions, might have to be taken into

7Note that the integral over the curl part vanishes, which gives:
∫
dr γ(r) = N .



14 Many-electron systems in intense laser fields

account, even if its energy contribution is much smaller than the energy contri-
bution from the Coulomb term. Moreover, we point out that the SOC term from
(2.41) is in principle similar to the one particle SOC term from (2.37), with the
difference that the electron spin i sees the electric field produced by all other elec-
trons

∑
j∇ri1/|ri − rj|, rather than the external electric field ∇vext(ri). Thus, if

the one-particle SOC term becomes important, also the many-electron SOC term
should be taken into account. In the next paragraphs, we will discuss one more
point that is related to the many-electron SOC term and that concerns the Hartree
term. The effective many-electron Hamiltonian that is derived in [23] contains two
more spin-coupling terms of the order 1/c2, namely a spin-orbital-current-coupling
term, and a spin-spin-coupling term, which will be neglected here.

As usual for most of the DFT schemes, the interaction will be absorbed into the
xc functional. Typically, the xc functional is not know and it has to be approx-
imated. Hence, the xc functional is usually formulated such that its numerical
value is as small as possible. In standard DFT, this is achieved by subtracting the
Hartree energy from the interaction energy (see (2.16)). At this point, we wish
to mention that the Hartree energy can be understood as the classical analog of
the electron-electron Coulomb interaction energy. In the following we will follow
the same route: First, we will calculate a Hartree-like energy, and it will turn out
that this energy can also be understood as the classical analog of the interaction
energy. Next, we will use this energy to define a reasonable xc energy.

Calculating the Hartree energy in the usual way, but now with our new variable
γ(r), gives

EH[γ] =
1

2

∫
dr

∫
dr′

γ(r) γ(r′)

|r− r′|

= EH[n]− 1

4c2

∫
dr

∫
dr′

3∑
i=1

(
∇r × jip(r)

)
· ei

n(r′)

|r− r′|

+
1

32c4

∫
dr

∫
dr′

3∑
i,j=1

(
∇r × jip(r)

)
· ei
(
∇r′ × jjp(r′)

)
· ej

|r− r′| . (2.42)

The first term on the right hand side is the usual Hartree term. As already stated,
this term can be understood as the classical analog of the Coulomb interaction
term, i.e. as the analog of the first term from (2.41). In a similar manner, the
second term from (2.42) can be identified as the classical analog of the many-
electron SOC term from (2.41). This becomes more obvious when we rewrite
these two terms. Rewriting the second term of (2.42) gives

1

4c2

∫
dr

∫
dr′

3∑
i=1

(
∇r

n(r′)

|r− r′| × jip(r)
)
· ei , (2.43)

while rewriting the second term from (2.41) leads to

1

4c2

N∑
j 6=k

∫
dr

∫
dr′

3∑
i=1

(
∇r

δ(r′ − r̂k)

|r− r′| × σ̂i,j
1

2
{δ(r− r̂j), p̂j}

)
· ei . (2.44)
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The last term in (2.42) has no corresponding interaction term (this term probably
corresponds to a higher order interaction term). However, since this term is of
the order 1/c4, its contribution should be negligible.

With the Hartree energy (2.42) we can now define the xc energy:

Ẽxc[γ,m] = (T [γ,m]− Ts[γ,m]) + (W̃ [γ,m]− EH[γ]) , (2.45)

and write down the energy functional as

E0[γ,m] = Ts[γ,m]+EH[γ]+Ẽxc[γ,m]+

∫
dr vext(r)γ(r)+

∫
dr

1

2c
Bext(r) ·m(r) ,

(2.46)
where Ts[γ,m] is, as usual, the non-interacting kinetic energy functional. In the
same way as discussed in the previous sections, the γ(r) and m(r) that minimize
(2.46) can also be obtained by solving a non-interacting KS system:( p̂2

2
+ vs(r) +

1

4c2
σ ·
[
∇vs(r)× p̂

]
+

1

2c
σ ·Bs(r)

)
ϕ
i
(r) = εiϕi(r) , (2.47)

with i = 1, . . . , N . Here we have used the spinor representation (2.23) and (2.24),
and we have decomposed the γ-coupling term into the density coupling and the
SOC term. The effective potentials follow from the functional derivatives of (2.46):

vs[γ,m](r) = vext(r) + vH[γ](r) + vxc[γ,m](r) ,

Bs[γ,m](r) = Bext(r) + Bxc[γ,m](r) , (2.48)

with the Hartree potential

vH[γ](r) =

∫
dr′

γ(r′)

|r− r′| = vH[n](r)− 1

4c2

∫
dr′

3∑
i=1

(
∇r′ × jip(r′)

)
· ei

|r− r′| , (2.49)

and the xc fields

vxc[γ,m](r) =
δẼxc[γ,m]

δγ(r)
, Bxc[γ,m](r) = 2c

δẼxc[γ,m]

δm(r)
. (2.50)

To summarize, the equations (2.47) to (2.50) define a KS scheme for SDFT that
includes SOC, and that leads to the same ground state magnetization m(r) as
an interacting system with the Hamiltonian (2.37). Note that the system would,
however, not give the interacting ground state density n(r), it would rather give
the interacting effective density γ(r), defined by (2.39).

The KS equations (2.47) contain the same effective potential in the density
coupling term and the SOC term (this results from the fact that we have derived
the KS scheme with γ(r) as basic variable). We emphasize in particular that
the SOC term in the KS equations contains the Hartree potential (2.49) (note
that this Hartree potential has in principle two contributions: the usual density
Hartree term, and a spin-current Hartree term which should be much smaller due
to the factor 1/c2). This Hartree SOC term, or more precisely its density Hartree
part, corresponds to a many-electron SOC contribution. This can for example be
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seen by calculating the corresponding KS expectation value, which leads to the
expression (2.43).

The KS equations applied in the calculations of this work are very similar to
the equations (2.47). However, the functionals that have been applied are based
on standard SDFT, and they are different to the functionals (2.50). Furthermore,
the usual density Hartree potential was used, and some additional relativistic
corrections, such as the mass-velocity and the Darwin term, were applied in the
calculations (the framework that has been applied followed the route provided
in [24]). We will explain the applied KS equations in more detail in section 3.1.3
and 3.2. The approximate functionals that have been applied will be introduced
in the following section.

As a last point, we wish to mention that there also exists a relativistic gener-
alization of DFT (RDFT) [25, 26]. A set of KS equations similar to (2.47) can,
within this framework, also be derived by taking the non-relativistic limit of a set
of relativistic KS Dirac equations [27]. However, we want to emphasize one im-
portant point: the standard RDFT framework is constructed in such a way that
it uses the four-current (i.e. the density and current density) as basic variable,
and not the magnetization. Thus, the corresponding non-relativistic limit would
not necessarily lead directly to the exact magnetization (directly meaning simply
from the KS expectation value), and the corresponding KS equations would prob-
ably not be applicable for our concerns in a straightforward way. There exists,
in fact, a spin extension of RDFT [28], which could be the starting point for a
non-relativistic limit approach. We will, however, not discuss any further details
here, since it is beyond the scope of this work.

In conclusion, we derived a SDFT KS framework that incorporates SOC effects.
In contrary to the usual approach, where the non-relativistic limit of the RDFT
framework is taken, we started from a non-relativistic many-electron Hamilto-
nian containing single- and many-electron SOC contributions. The resulting KS
equations are very similar to the equations that follow from the non-relativistic
limit of RDFT, however, the functionals are different. At the moment, it is not
clear whether this difference has any significant consequences at all. Hence, this
issue should be further investigated in future work. Furthermore, we showed that
the Hartree SOC term (which is commonly present in KS schemes that contain
SOC) corresponds to a many-electron SOC interaction. In order to discuss exact
properties of KS schemes that include SOC contributions, we will refer later to
this proposed framework.

2.2.5. Approximate functionals

One important ingredient in all of the different KS schemes discussed before is
the xc energy functional. As already mentioned, the form of these functionals
is in general not known and they have to be approximated. The oldest and
most popular approximation for standard DFT is the local density approximation
(LDA):

ELDA
xc [n] =

∫
dr ehom

xc (n(r)) , (2.51)
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where ehom
xc (n) is the xc energy density of the homogeneous electron gas with den-

sity n. The ehom
xc (n) can be separated into an exchange part, which is analytically

known, and into a correlation part, which has been calculated by Monte-Carlo
methods [29] and parameterized in convenient ways [30].

Over the years, a vast number of approximations for the xc energy functionals
and potentials appeared [31]. In the following we will, however, only discuss the
spin-polarized generalization of the LDA, the so-called local spin-density approxi-
mation (LSDA), because the xc functionals applied in this work are based on this
approximation.

The LSDA is, within the SDFT framework, commonly used for the calculation
of spin-polarized systems. In SDFT, one typically works with the spin-density
matrix, which is defined by the density and magnetization via

ρ(r) =
1

2

(
n(r) +m3(r) m1(r)− im2(r)
m1(r) + im2(r) n(r)−m3(r)

)
. (2.52)

Note that working with ρ(r) is equivalent to working with the set (n(r),m(r)),

because both are uniquely related.
At first we consider a collinear system and we assume that Bext(r) is parallel to

e3 (this choice is always possible for collinear systems). As a consequence, only
n(r) and m3(r) are needed as basic variables, meaning that the corresponding
SDFT has only vxc(r) and Bxc,3(r) as xc fields. Since the Bxc,3(r) couples only to
σ3, the corresponding two-component spinor KS equations decouple in two regular

equations for the spin-up and spin-down components, respectively. As a result,
the vxc(r) and Bxc,3(r) act together as one local potential for each spin-component:

vxc,↑(r) = vxc(r) +
1

2c
Bxc,3(r) , vxc,↓(r) = vxc(r)− 1

2c
Bxc,3(r) . (2.53)

Moreover, the spin-density matrix has, for collinear systems, only diagonal ele-
ments, which are usually represented in the following notation:

n↑(r) =
1

2

(
n(r) +m3(r)

)
, n↓(r) =

1

2

(
n(r)−m3(r)

)
. (2.54)

The LSDA xc energy functional for collinear systems is given by

ELSDA
xc [n↑, n↓] =

∫
dr ehom

xc (n↑(r), n↓(r)) , (2.55)

where ehom
xc (n↑, n↓) is the xc energy density of the spin-polarized homogeneous

electron gas with the spin-densities n↑ and n↓. As for LDA, the exchange part
of ehom

xc (n↑, n↓) is known analytically, while the correlation part has been calcu-
lated by Monte-Carlo techniques [32] and parameterized in several ways [33]. The
corresponding xc potentials follow from the functional derivative:

vLSDA
xc,α [n↑, n↓](r) =

δELSDA
xc

δnα(r)
=
∂ehom

xc (n̄↑, n̄↓)

∂n̄α

∣∣∣∣
n̄α=nα(r)

, α = {↑, ↓} . (2.56)

The previously discussed LSDA can only be applied in collinear systems. The
usual way to generalize the LSDA to non-collinear systems is to treat each point
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in space as a collinear system [34]. This means in practice that for each point
in space the spinor system is rotated by a unitary transformation such that the
spin-density matrix is diagonal:

ρ(r) −→ ρ̃(r) = U(r)ρ(r)U †(r) =

(
ñ↑(r) 0

0 ñ↓(r)

)
. (2.57)

As a next step, the xc potential (2.56) is applied, which gives a local xc matrix
that is diagonal:

ṽxc[ñ
↑, ñ↓](r) =

(
vLSDA

xc,↑ [ñ↑, ñ↓](r) 0
0 vLSDA

xc,↓ [ñ↑, ñ↓](r)

)
. (2.58)

Finally, the unitary matrix from (2.57) is used to rotate the xc matrix back, which
gives a non-diagonal xc matrix:

ṽxc[ñ
↑, ñ↓](r) −→ vxc[n,m](r) = U †(r)ṽxc(r)U(r) . (2.59)

In the usual formulation of non-collinear SDFT, a vxc(r) and a Bxc(r) is used
instead of a xc matrix. By evaluating the matrix U(r), one finds that vxc(r) can

be separated and brought into the usual form, which finally gives

vLSDA
xc [n,m](r) =

1

2

(
vLSDA

xc,↑ [ñ↑, ñ↓](r) + vLSDA
xc,↓ [ñ↑, ñ↓](r)

)
,

BLSDA
xc [n,m](r) = c

(
vLSDA

xc,↑ [ñ↑, ñ↓](r)− vLSDA
xc,↓ [ñ↑, ñ↓](r)

) m(r)

|m(r)| . (2.60)

All calculations that are presented in this work used the previously discussed
LSDA for the xc functionals:

vxc(r) = vLSDA
xc [n,m](r) , Bxc(r) = BLSDA

xc [n,m](r) . (2.61)

2.3. Time-dependent DFT

2.3.1. Fundamental theorems and the time-dependent KS
scheme

The Runge-Gross theorem

At the heart of DFT lies the HK theorem, which establishes an one-to-one map-
ping between the external potential and the ground state density of an interact-
ing many-electron system. In 1984, Runge and Gross extended this theorem to
time-dependent situations [11], i.e. they proved an one-to-one correspondence be-
tween time-dependent external potentials, vext(r, t), and the corresponding time-
dependent interacting many-electron densities n(r, t) = 〈Ψ(t)|n̂(r)|Ψ(t)〉. This
mapping is known today as the Runge-Gross (RG) theorem, and it forms the
fundamental basis for time-dependent DFT (TDDFT).

In their proof, Runge and Gross showed that two densities, n(r, t) and n′(r, t),
which evolve from a many-electron state |Ψ0〉 under the potentials vext(r, t) and
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v′ext(r, t), are always different, assuming that the potentials differ by more than a
purely time-dependent function:

vext(r, t) 6= v′ext(r, t) + c(t)
RG−−→ n(r, t) 6= n′(r, t) . (2.62)

Hence, the time-dependent density uniquely determines the external potential up
to a purely function of time. From the time-dependent Schrödinger equation (2.1)
follows in turn that also the time-dependent many-electron state is uniquely deter-
mined by the density (and the initial state) up to a time-dependent phase factor,
which can be neglected since it has no physical meaning: |Ψ(t)〉 = |Ψ[n,Ψ0](t)〉.
As a consequence, all observable many-electron quantities can, in principle, also
be calculated from the corresponding time-dependent density:

〈Ô〉(t) = 〈Ψ(t)|Ô|Ψ(t)〉 = 〈Ψ[n,Ψ0](t)|Ô|Ψ[n,Ψ0](t)〉 = O[n,Ψ0](t) . (2.63)

When the system is in the ground state for t = 0, the functional dependence on
|Ψ0〉 vanishes by means of the HK theorem: |Ψ0〉 = |Ψ0[n0]〉, meaning that all ob-
servables can, in principle, be calculated from the time-dependent density alone.

The van Leeuwen theorem

The time-dependent density of the interacting many-electron system is the central
variable in TDDFT, and the RG theorem establishes the one-to-one mapping be-
tween vext(r, t) and n(r, t). The RG theorem does, however, not tell us how to ac-
tually obtain the density. As a practical scheme, one could apply a time-dependent
version of the KS scheme, i.e. one could use a fictitious non-interacting system
to obtain n(r, t). However, if such a system (or more precisely a non-interacting
potential) actually exists is not clear a priori. This so-called v-representability
problem was solved in 1999 by van Leeuwen [35].

In his proof, van Leeuwen showed that each time-dependent density n(r, t),
produced from a system with interaction Ŵ that evolves according to (2.1) from
an initial state |Ψ0〉 under a potential v(r, t), can always be obtained by a system
with a different interaction Ŵ ′ that evolves under v′(r, t) from the initial state
|Ψ′0〉. It was shown that the potential v′(r, t) is uniquely determined (up to a
purely time-dependent function) by the initial states, the interactions, n(r, t),
and v(r, t), while the two initial states are restricted to have the same density and
its time derivative:(

|Ψ0〉, Ŵ , v(r, t)
)

(2.1)−−→ n(r, t)
v.L.−−→

(
|Ψ′0〉, Ŵ ′

)
: v′(r, t) ,(

|Ψ0〉, |Ψ′0〉
)
−→

(
n(r, 0), ∂tn(r, 0)

)
. (2.64)

We will refer to this unique relation as the van Leeuwen theorem.
We will now consider two special cases: First, we assume that Ŵ = Ŵ ′ and that
|Ψ0〉 = |Ψ′0〉. The van Leeuwen theorem then states that there exists an unique
v′(r, t) that yields n(r, t), which is exactly the statement of the RG theorem. Thus,
the RG theorem emerges as a special case from the van Leeuwen theorem.
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Second, we consider that Ŵ ′ = 0, i.e. we choose the primed system to be non-
interacting, and we assume that a corresponding non-interacting state |Φ0〉 exists
that has the same density and its time derivative as |Ψ0〉. The van Leeuwen theo-
rem then tells us that there exists an unique single-particle potential vs(r, t) (up to
a purely time-dependent constant which has no physical meaning) that gives the
same density as the interacting system. This solves the v-representability problem
and builds the basis for the application of the time-dependent KS scheme.

The time-dependent KS scheme

As discussed previously, the van Leeuwen theorem guarantees that the time-
dependent density of an interacting system can be obtained by a non-interacting
system, which is called time-dependent KS system. The system evolves in an
effective single-particle potential vs(r, t). From the van Leeuwen theorem it fol-
lows that this potential depends (for a given external potential) on the initial
interacting state |Ψ0〉, the initial non-interacting state |Φ0〉, and the density:

vs(r, t) = vs[Ψ0,Φ0, n](r, t) . (2.65)

If the system starts to evolve from the ground state, which is the case for all
calculations in this work, the HK theorem applies at t = 0. As a consequence,
|Ψ0〉 and |Φ0〉 are determined by n(r, 0), and the time-dependent effective potential
is in turn given as a functional of the density alone: vs[n](r, t).

The time-dependent KS system is given by

∂tϕi(r, t) =
[
− ∇

2

2
+ vs(r)

]
ϕi(r, t) , with n(r, t) =

N∑
i=1

|ϕi(r, t)|2 , (2.66)

and i = {1, . . . , N}. N is the number of electrons, and the ϕi(r, t) are called
time-dependent KS orbitals. The single-particle potential is defined in the same
way as for the ground state case:

vs[n](r, t) = vext(r, t) +

∫
dr′

n(r′, t)

|r− r′| + vxc[n](r, t) . (2.67)

The term in the middle on the right hand side is the usual Hartree potential,
which is calculated at each time from the instantaneous density. The term on
the right hand side is the time-dependent xc potential, which is a functional that
depends in general on the whole history of n(r, t).

The equations (2.66) and (2.67), together with the van Leeuwen theorem, can be
seen as the definition of vxc[n](r, t). A variational principle similar to that used in
the ground state to obtain the xc potential can not be used in the time-dependent
case, since the energy is in general not conserved. There exists, however, an
analogous principle, namely the stationary principle of the quantum mechanical
action, that can be used to define vxc[n](r, t) [36]. Similarly to the ground state,
the time-dependent xc potential is not known and it has to be approximated. In
section 2.3.3 we will briefly discuss the approximations that are typically used.
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We conclude that the KS system (2.66) will lead to the exact interacting density,
assumed that the exact vxc[n](r, t) is applied. Nevertheless, all time-dependent
observables of the interacting systems that are not trivially related to the density,
are in general not easily accessible via the KS system. Rather, they would have
to be calculated by density functionals, as argued in (2.63).

2.3.2. Extensions of TDDFT

Analogous to ground state DFT, several extensions for TDDFT have appeared
over the years. For example, TDDFT has been extended to spin-polarized sys-
tems [37]. In this time-dependent spin-DFT (TDSDFT) the system couples to
vext(r, t) and Bext(r, t), and the corresponding KS system will give the interacting
n(r, t) and m(r, t). TDDFT has also been extended to time-dependent current-
DFT (TDCDFT) [38], where the system couples to a vector potential Aext(r, t),
and where the current density j(r, t) is the basic variable. We will discuss the
TDCDFT later in more detail, because the calculations presented in this work
also applied a coupling to a time-dependent external A-field (in fact, we applied a
certain approximation from the TDCDFT framework as will be discussed later).

TDDFT has also been extended to the full relativistic case of coupled electron
and electromagnetic field dynamics. It was shown that, under reasonable condi-
tions, the full quantum electrodynamics problem can be described by a coupled
system of KS Dirac equations and a Maxwell equation [39, 40]. The basic vari-
ables of this theory are the four-current and the four-potential, meaning that this
theory would give the exact time-dependent density and current density, since
jµ(r, t) = (n(r, t), j(r, t)).

Furthermore, we wish to mention that it is not an uncommon practice to use
a certain extension of TDDFT in numerical simulations, although the rigorous
existence proof, for example of the van Leeuwen theorem type, does not exist.
This has for example been done for time-dependent spin-current DFT [41], for
which, nevertheless, approximate functionals already exist [42]. The calculations
presented in this work also follow this route, since they correspond, in a sense, to a
time-dependent generalization of SDFT that includes SOC contributions (i.e. we
could, for example, think of a generalization of the SDFT framework from section
2.2.4). We will discuss the applied framework and the approximate xc potentials
in more detail in section 3.1.2.

TDCDFT

Below, we will discuss the formal framework of TDCDFT. We will investigate the
corresponding equations in some detail to allow us to understand what terms were
neglected and approximated in the calculations of this work. We will discuss this
subject in detail in section 3.1.3.

We consider a many-electron system with interaction Ŵ in a time-dependent
external electromagnetic field, described by the Hamiltonian

Ĥ(t) =
N∑
i=1

1

2

[
p̂i +

1

c
A(r̂i, t)

]2

+ Ŵ . (2.68)
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Note that there is no local potential v(r, t) present in (2.68). This form of Ĥ(t) can
always be obtained with a gauge transformation (see appendix A.3) by choosing
the gauge field Λ(r, t) such that ∂tΛ(r, t) = −v(r, t).

In 2004, Vignale showed a van Leeuwen theorem type proof for systems which
are described by the Hamiltonian of type (2.68), which laid the basis for a KS
approach to TDCDFT [43]. In his proof, he showed that each time-dependent
current j(r, t), produced from a system with interaction Ŵ that evolves from an
initial state |Ψ0〉 under a vector potential A(r, t), can always be obtained by a
system with a different interaction Ŵ ′ that evolves under A′(r, t) from the initial
state |Ψ′0〉. It was shown that the vector potential A′(r, t) is uniquely determined
by the initial states, the interactions, j(r, t), and A(r, t), while the two initial
states are restricted to have the same density and current density:(

|Ψ0〉, Ŵ ,A(r, t)
)
−→ j(r, t) −→

(
|Ψ′0〉, Ŵ ′

)
: A′(r, t) ,(

|Ψ0〉, |Ψ′0〉
)
−→

(
n(r, 0), j(r, 0)

)
. (2.69)

From this proof we can in principle obtain similar conclusions as discussed for the
van Leeuwen theorem. Of particular importance is the conclusion for Ŵ ′ = 0,
which states that the exact interacting current density can be obtained by a non-
interacting system, i.e. a KS system of the form:

∂tϕi(r, t) =
1

2

[
p̂ +

1

c
As(r, t)

]2

ϕi(r, t) . (2.70)

From the continuity equation it is clear that we also have the exact time-dependent
density if we have the exact j(r, t) and n(r, 0):

∂tn(r, t) = −∇ · j(r, t) −→ n(r, t) = n(r, 0)−
∫ t

0

dt′∇ · j(r, t′) . (2.71)

We will now assume that the system starts to evolve from the ground state.
Hence, the system is, according to CDFT, for t = 0 completely described by
n(r, 0) = n0(r) and j(r, 0). Thus, the vector potential of the KS equation is a
functional of the ground state density and the time-dependent current density:
As(r, t) = As[n0, j](r, t).

We will now bring the KS equations (2.70) to a somewhat different form, that is
sometimes found in literature. First, we decompose the effective vector potential
into the external potential and the residual term (which corresponds to the inter-
actions), which will be further decomposed into its transversal and longitudinal
component (see appendix A.4):

As(r, t) = Aext(r, t) + A(r, t) = Aext(r, t) + AT(r, t) + AL(r, t) . (2.72)

Next, we gauge away the longitudinal component of A (which can always be done,
see appendix A.3). This leads to a local potential, which is then decomposed into
the usual Hartree term and a residual local potential, which will be defined as the
xc potential:

gauge: ∇Λ(r, t) = −1

c
AL(r, t) −→ ∂tΛ(r, t) = vH(r, t) + vxc(r, t) . (2.73)
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With these gauge relations, and by labeling AT as Axc,T, we get the following KS
equation:

∂tϕi(r, t) =
(1

2

[
p̂ +

1

c
Aext(r, t) +

1

c
Axc,T[n0, j](r, t)

]2

+vH[n](r, t) + vxc[n0, j](r, t)
)
ϕi(r, t) . (2.74)

Here we have explicitly shown the functional dependencies. Note that this equa-
tion is equivalent to equation (2.70), i.e. with an equation of the form (2.74), an
exact interacting current density can always be obtained. Finally, we wish to
mention that, in the same way as shown before, parts of the Aext(r, t) could also
be gauged away. This could, for example, be done for the part of Aext(r, t) that
contains a static nuclear potential, which would give an additional vext(r).

2.3.3. Approximate functionals

The time-dependent KS system (2.66) is defined such that it gives the exact
time-dependent interacting density. Similar to ground state DFT, the crucial
ingredient is the xc potential, defined in (2.67), which is not known and which has
to be approximated. If the system starts to evolve from the ground state, the xc
potential is given solely as a functional of the time-dependent density: vxc[n](r, t).
The functional dependence on the density is in general such that vxc depends on
the whole history, i.e. it depends on n(r, t′) for all t′ ≤ t.

The approximation usually applied in TDDFT is the so-called adiabatic approx-
imation. In this approximation, the dependence on the history is ignored, and the
exact ground state xc potential v0

xc[n](r) is applied with the instantaneous density:

vA
xc[n](r, t) = v0

xc[n0](r)
∣∣∣
n0(r)=n(r,t)

. (2.75)

If the system would evolve infinitesimally slow in time, it would, according to the
adiabatic theorem, always remain in the ground state. In this case, the adiabatic
approximation would, according to ground state DFT, become exact. However,
the exact ground state xc potential is also not known and it has, on top of the adi-
abatic approximation, also to be approximated. The most famous approximation
uses the LDA (2.51), and it is called adiabatic LDA (ALDA):

vALDA
xc [n](r, t) =

dehom
xc (n̄)

dn̄

∣∣∣
n̄=n(r,t)

. (2.76)

The ALDA seems to be a very crude approximation, because it reduces the general
functional to a functional that is local in space and time. However, it has been
shown that the ALDA performs very well in the calculation of excitation energies
for finite systems. Unfortunately, this is not generally the case in solids, where
the ALDA has known problems to describe the correct excitation energies [44].

The adiabatic approximation can, in the same manner as shown before, also
be applied to the extensions of TDDFT. The xc functionals used in this work are
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based on the adiabatic LSDA (ALSDA) for collinear systems, as defined in (2.60):

vALSDA
xc [n,m](r, t) = vLSDA

xc [n̄, m̄](r)
∣∣∣
n̄(r)=n(r,t)
m̄(r)=m(r,t)

,

BALSDA
xc [n,m](r, t) = BLSDA

xc [n̄, m̄](r)
∣∣∣
n̄(r)=n(r,t)
m̄(r)=m(r,t)

. (2.77)

2.4. Interaction with laser pulses

In the previous section we introduced TDDFT as a framework to study the dy-
namics of many-electron system subjected to time-dependent potentials. For a full
description of the interaction of electrons with laser pulses, i.e. with photon fields,
the framework of quantum electrodynamics would have to be invoked. However,
if the number of photons is large enough, or more specific, if the photon density
ρph fulfills ρph � 1/λ3, with the wavelength λ, the photon field can be described
by classical fields [45]. In this work, we will deal with optical laser pulses with
peak intensities of I0 ≥ 1012W/cm2, for which ρph � 1/λ3 holds. Therefore, it is
justified to describe the photon field by a classical field together with the corre-
sponding TDDFT to study the interaction of the laser pulses with many-electron
systems.

2.4.1. Ultrashort laser pulses

Fig. 2.1.: E- and B-field of a free propagat-
ing plane wave pulse corresponding
to (2.78).

One of the most important tools for the
microscopic investigation and manipu-
lation of matter is certainly the laser.
Over the years, laser technology has
experienced tremendous progress. To-
day, it is possible to create laser pulses
of very high intensities, which are very
short in time (T < 1 fs), and whose
electric field can almost be shaped ar-
bitrarily [46].

Laser radiation can be described
classically by the source-free Maxwell
equations. Instead of solving the Maxwell equations in the E- and B-field rep-
resentation, one typically uses the equivalent description via the vector potential
A(r, t), and the scalar potential φ(r, t). A solution of the source-free Maxwell
equations in vacuum is given by plane waves for the vector potential, together
with φ(r, t) = 0 [47]. Thus, a short laser pulse can be represented as a superpo-
sition of vector field plane waves:

A(r, t) = ε

∫
dk Ã(k) eik(n·r−ct) with ε ⊥ n , φ(r, t) = 0 . (2.78)

ε is the polarization vector, which has to be perpendicular to the vector of the
propagation direction n, c is the speed of light, and k is the absolute value of the
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wave vector that is related to the wavelength via k = 2π/λ. For the solution (2.78)
the constant dispersion relation ω = ck was used, meaning that a propagation in
vacuum was assumed. In practice, however, laser pulses usually propagate trough
air, in which the dispersion relation is not constant, and where the pulses would
in fact disperse. Since the dimensions of the quantum mechanical systems under
study are assumed to be small compared to the optical wave lengths of the laser
pulse, the radiation field in the region of our system can assumed to be dispersion
free and thus properly described by the solution (2.78).

The pulse (2.78) is a so-called linear polarized pulse, meaning that the corre-
sponding electric field oscillates in only one direction. The E- and B-field follow
from the usual relations:

E(r, t) = −∇φ(r, t)− 1

c
∂tA(r, t) , and B(r, t) =∇×A(r, t) , (2.79)

which gives for (2.78) an E-field that is parallel to the A-field, and a B-field that
has the same shape and phase as the E-field, but which is perpendicular to A and
n (see figure 2.1). Since the E- and B-field are perpendicular to the propagation
direction n, such pulses are called transverse wave pulses.

The solution (2.78) is a plane wave solution, i.e. we have wave fronts that
have an infinite dimension perpendicular to the propagation direction n. A more
physical description of a short pulse would be given by a Gaussian beam, which is
also a solution of the free Maxwell equations. The Gaussian beam has an intensity
profile perpendicular to the propagation direction that behaves like a Gaussian
function [48]. This intensity profile allows to defines a radius of a laser beam8.
However, since the dimension of the systems under study is typically much smaller
than the radius of a laser beam, the description of the radiation field by (2.78) is
justified.

A laser pulse is typically characterized by its E-field. An important quantity is
the intensity of the electric field, which is given by I = E2c/8π, and which gives,
for commonly used units, the following relation: I[W/cm2] = 3.51 · 1016E2[a.u.].
Finally, we wish to mention an important constraint for the electric field of a free
pulse [48]:

∫
dtE(r, t) = 0. This constraint means that the DC component of the

electric field (which is Ẽ(r, ω → 0) = limω→0

∫
dt eiωtE(r, t)) must vanish in order

to describe an electric field with finite energy.

2.4.2. The dipole approximation

The dipole approximation (DA) is a commonly used approximation whenever
one studies small systems in radiation fields. In literature one often finds the
following statement as the definition of the DA: the dimension of the system is
small compared to the wave length of the radiation, therefore the A-field can
assumed to be purely time-dependent: A(t). As a consequence, occasionally one
argues that the corresponding B-field is, with respect to relation (2.79), zero, and
therefore no Zeeman term should be present. In the following we will show that the

8The radius of a Gaussian laser beam is defined as the transverse distance in which the peak
intensity I0 falls to I0/e

2.
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DA (which is, de facto, generally defined via a mathematical expression) in fact
keeps the Zeeman term. We will see that the argument of the small dimension
of the system is not the starting point of this approximation, it is rather one
condition that has to be fulfilled in order to justify the application of the the DA.

In the following we will assume a radiation field of the form (2.78) with ε = e1

and n = e3. We will further define the purely time-dependent A-, E- and B-field
by the field that would be seen by an observer sitting at r = 0:

A(t) = e1a(t) , with a(t) =

∫
dk Ã(k) e−ikct , and

E(t) = e1b(t) , B(t) = e2b(t) , with b(t) =

∫
dk ikÃ(k) e−ikct . (2.80)

Moreover, we will choose the coordinate system such that 〈r̂〉(t = 0) = 0. The fol-
lowing discussion investigates the Zeeman term and the minimal coupling kinetic
term for a single-particle system. The generalization to a many-particle systems
is straightforward.

The general definition of the DA states that the plane wave expression eikn·r is,
for any external electromagnetic field, set to 1. Thus, by referring to the Taylor
series of the plane wave eikn·r = eike3·r = eikr3 :

eikr3 = 1 + ikr3 −
1

2
(kr3)2 + . . .︸ ︷︷ ︸
(�)

, (2.81)

all terms of (�) are set to zero in the DA. Furthermore, we wish to recall that
an approximation in quantum mechanics typically assumes that certain matrix
elements or expectations values are set to zero. Hence, the proper application of
the DA is described by the following procedure: take all terms in the Hamiltonian
that contain a coupling to the external A-field (and possibly φ -field), use the
plain wave expression of the field (in our case expression (2.78)), and set all matrix
elements that contain the terms (�) of (2.81) to zero. The matrix elements that
are set to zero then determine what has to be fulfilled to justify this approximation
in the first place.

First, we will investigate the Zeeman term, and we will use the expression
〈. . .〉, which stands in the following for both, the calculation of matrix elements or
expectation values. Calculating the elements of the Zeeman term for our vector
field gives

1

2c
〈σ̂ · (∇r̂ ×A(r̂, t))〉 =

1

2c

∫
dk ik Ã(k) e−ikct 〈σ̂2(1 + ikr̂3 + . . . )〉 , (2.82)

where we have written the exponential expression as a series. Applying the DA,
i.e. setting (�) from (2.81) to zero, gives

1

2c
〈σ̂ · (∇r̂ ×A(r̂, t))〉 DA−−→ 1

2c
b(t) 〈σ̂2〉 =

1

2c
〈σ̂ ·B(t)〉 , (2.83)

where we have used the expressions from (2.80). We see that the DA leads to a
Zeeman term that couples to a purely time-dependent B-field. We will now discuss
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under what conditions this approximation can be applied. Setting the first term
of (�) to zero is justified if |〈ikσ̂2r̂3〉| � |〈σ̂2〉| which is true if |〈σ̂2r̂3〉| � λ|〈σ̂2〉|,
where we have used the relation k = 2π/λ. This condition is usually fulfilled if the
dimension of the system is much smaller than the wavelengths λ from which the
pulse is composed. This is typically true for small quantum mechanical systems
and wavelengths in the optical range. The investigation of the higher terms leads
to similar conclusions, i.e. these terms can usually be neglected if the dimension
of the system is small compared to λ.

Next, we will investigate the kinetic term with minimal coupling, which can be
decomposed into 3 terms:

1

2

[
p̂ +

1

c
A(r̂, t)

]2

=
p̂2

2
+

1

c
A(r̂, t) · p̂ +

1

2c2
A(r̂, t) ·A(r̂, t) . (2.84)

We have used ∇ ·A(r, t) = 0, which follows for all free propagating pulses of the
form (2.78). Calculating the elements of the second term on the right hand side
gives

1

c
〈A(r̂, t) · p̂〉 =

1

c

∫
dk Ã(k) e−ikct 〈(1 + ikr̂3 + . . . )p̂1〉 , (2.85)

which leads after the application of the DA to

1

c
〈A(r̂, t) · p̂〉 DA−−→ 1

c
a(t) 〈p̂1〉 =

1

c
〈A(t) · p̂〉 , (2.86)

where we have used the relations from (2.80). Obviously, the DA is only justified
if |〈ikr̂3p̂1〉| � |〈p̂1〉|. When we assume that |〈r̂3p̂1〉| ≈ |〈r̂3〉||〈p̂1〉|, we end up
with the condition |〈r̂3〉| � λ, which is certainly fulfilled if the system is small
compared to the wavelengths, as already demanded before. However, this con-
dition reveals another requirement on the system concerning its dynamics (note
that the previous conditions have to be fulfilled at each point in time). To see
this, we consider the time evolution for t = t′ . . . t′+T , where T is the time of one
wave length cycle: T = λ/c. Furthermore, we assume that 〈r̂3〉(t′) ≈ 0, and that
the dynamics of the system is approximately constant, i.e. ∂t〈r̂3〉(t) ≈ p3 with
〈p̂3〉(t) ≈ p3. Integrating the previous condition leads, with these assumptions,

to
∫ t′+T
t′

dt |〈r̂3〉(t)| ≈ |p3|T 2/2 � λT , giving the condition |p3| � c. This condi-
tion states that the DA is only justified if the electrons move non-relativistically.
Similar arguments also hold for the higher terms of the series from (2.85).

In the same way as shown before, the DA can be applied to the term on the
right hand side of (2.84), which gives

1

2c2
〈A(r̂, t) ·A(r̂, t)〉 DA−−→ 1

2c2
〈A2(t)〉 . (2.87)

Again, the condition of a small system has to be fulfilled to justify this approxi-
mation. With the relations (2.80), (2.86), and (2.87) we can summerize the DA
of the kinetic term with minimal coupling as

1

2

[
p̂ +

1

c
A(r̂, t)

]2 DA−−→ 1

2

[
p̂ +

1

c
A(t)

]2

. (2.88)
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Velocity gauge and length gauge

The previous discussion shows that the DA, applied on the minimal coupling
kinetic term (2.88), changes the character of the A-field. To be more specific:
the A(r, t), corresponding to (2.78), is a purely transversal vector field, while the
A(t)-field, obtained via the DA, acts like a longitudinal vector field (see appendix
A.4). This longitudinal vector field can be gauged away by choosing the gauge
field Λ(r, t) = −r ·A(t)/c (see appendix A.3), which leads to

1

2

[
p̂ +

1

c
A(t)

]2 gauge trans.−−−−−−−→ p̂2

2
+ r · E(t) , (2.89)

where we have used E(t) = −∂tA(t)/c, corresponding to (2.79). The gauge on
the left hand side is called velocity gauge, while the gauge on the right hand side
is called length gauge.

Gauge invariance and relation to the B-field

We have shown before that the DA can be applied to both, the Zeeman term (2.83),
and the minimal coupling kinetic term (2.88). Thus, a corresponding Hamiltonian
in the DA would then contain these two terms. It is clear that the B- and A-field
present in this approximate Hamiltonian do not satisfy the relation B = ∇ ×A
anymore, and one might wonder if this violation is crucial. Furthermore, it is, at
first sight, not clear if it is justified to perform a transformation of the kind (2.89)
with the kinetic term, and at the same time leave the Zeeman term in the DA
unchanged. These concerns, however, dissappear when we recall what the DA is:
it is an approximation that leads, under certain conditions (as stated before), to
similar results as those that would have been obtained by solving the problem
with the full field. Moreover, it has to be clear that the Hamiltonian is, before
applying the DA, in fact gauge invariant, meaning that the previously mentioned
issues constitute no problem. (Note that the gauge transformation with the field
Λ(r, t) = −r ·A(t)/c, which leaves B unchanged, could also be performed on the
Hamiltonian with the full field, which would after the DA in fact lead to the DA
Hamiltonian in the length gauge.)



3. Real-time spin-dynamics -
simulation framework

The purpose of this work is the investigation of the short time behavior of excited

spin-magnetic systems, which requires a proper treatment of the electron spin. Since

the electron spin has its natural origin in relativistic quantum mechanics, we will in

the first section of this chapter investigate all spin-coupling terms that arise from a

non-relativistic limit. Moreover, we will incorporate all important spin-coupling terms

into a proper KS-TDDFT scheme, thus including many-electron effects, and allowing

a real-time treatment. At the end of the first section, the dynamical equations of the

magnetization and the moment that arise from the TDDFT scheme will be discussed.

Furthermore, the properties of the corresponding xc B-field will be discussed as well. In

the second section, the algorithm that is used to solve the KS equations in real-time will

be introduced, and some details concerning the implementation will be discussed. In the

last section of this chapter, a time-dependent density of states will be introduced, which

allows it to investigate and characterize the excited spin-system.

3.1. Theoretical aspects of the simulation

The main concern of this work is the description of real-time spin-dynamics of
many-electron systems irradiated by short laser pulses. The representation of the
laser field is straightforward, since it can be described classically, as discussed
previously. However, the proper description of spin-dynamics is rather involved
due to the following two reasons: First, the exact description of the electron spin
would, in principle, require a full relativistic treatment, which is in general hard
to accomplish. Therefore, an appropriate non-relativistic treatment has to be
adopted. Second, a proper electron-electron interaction has to be incorporated,
since this is essential for the description of certain spin-magnetic effects, such as
ferromagnetism.

To overcome these issues, we will in the following section investigate the dif-
ferent single-particle terms that arise from the non-relativistic limit of the Dirac
equation, and that couple to external fields. Then in the next section, we will take
the single-particle terms that turned out to be important, and we will incorporate
them into an appropriate TDDFT scheme to include many-electron effects.

3.1.1. Spin-coupling terms

A relativistic particle that moves in an electromagnetic field is described by the
Dirac equation. We will in the following investigate all terms that arise from a
non-relativistic limit of this equation, and we will further study how these terms
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change by applying the DA. Moreover, we will, in view of a correct description of
spin-dynamics, discuss the relative importance of each of these terms.

The usual way to obtain the non-relativistic limit of the Dirac equation is to first
apply a Foldy-Wouthuysen transformation, which block diagonalizes the Dirac-
Hamiltonian for arbitrary electromagnetic fields. Following this, one takes the
non-relativistic limit and one ends up with a two-component spinor equation for
the electrons [21]:

i∂tϕ(r, t) = ĥ(t)ϕ(r, t) , with (3.1)

ĥ(t) =
(1

2

[
p̂ +

1

c
A(r, t)

]2

− 1

8c2
p̂4 +

1

8c2
∇ · E(r, t) + v(r, t) + c2

)
+ σ ·

( i

8c2
∇× E(r, t)︸ ︷︷ ︸

SOC I

+
1

4c2
E(r, t)×

[
p̂ +

1

c
A(r, t)

]
︸ ︷︷ ︸

SOC II

+
1

2c
B(r, t)︸ ︷︷ ︸

Zeeman

)
.

First of all, we see that the Hamiltonian (3.1) contains two parts. The first part
is diagonal in the spinor space, while the second part, which consists of two SOC
terms and a Zeeman term, couples to the vector of Pauli-matrices. Hence, we
have a Hamiltonian of the form ĥ = â+ σ̂ · b̂. By considering the corresponding
dynamical equation of 〈σ̂〉 (according to Ehrenfest’s theorem):

∂t〈σ̂〉 = −i〈[σ̂, ĥ]〉 = −i〈[σ̂, â+ σ̂ · b̂]〉 = −i〈[σ̂, σ̂ · b̂]〉 = 2〈b̂× σ̂〉 , (3.2)

it follows that the spin-dynamical contributions from the second part are essential
for our concerns, since only these contributions lead directly to a change of 〈σ̂〉.
Therefore, the relativistic corrections present in the first part of the Hamiltonian
(3.1) will be omitted in the following discussion, and we will rather focus on the
contributions from the second part (we wish to mention that a radial version
of the second and the third term of the first part of (3.1), which are known as
mass-velocity and Darwin term, were used in the calculations). The Hamiltonian
(3.1) is, except for the p̂4 term, gauge invariant (see appendix A.3). This follows
immediately from the usual formulation with the gauge invariant E- and B-field:

E(r, t) =∇v(r, t)− 1

c
∂tA(r, t) and B(r, t) =∇×A(r, t) . (3.3)

We will in the following assume that the system is irradiated by a linear polarized
laser pulse, i.e. we assume that A(r, t) is of the form (2.78). Furthermore, we will
assume that a v(r, t) is present, which stems for example from the nuclei.

The application of the DA on the SOC II term and on the Zeeman term is
straightforward, and leads in fact to similar results as discussed in section 2.4.2.
The application on the SOC I term, on the other hand, is a bit more involved and
needs a closer inspection. First of all, we see from (3.3) that the SOC I term seems
to have two contributions. However, the contribution from the scalar potential
always vanishes, since ∇×∇v(r, t) = 0. Nevertheless, the ∂tA-field term would,
by applying the DA rigorously, as shown in section 2.4.2, not vanish. Next, we
note that the SOC I term is associated to the E(r, t)× p̂-term from SOC II. To be
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more precise: only these two terms together are hermitian. Hence, we will in the
following consider both terms. Calculating the expectation value of the ∂tA-field
part for both SOC terms with the full field (i.e. before the DA) gives

− 1

8c3

(
〈iσ̂ · (∇× ∂tA(r̂, t))〉+ 2〈σ̂ · (∂tA(r̂, t)× p̂)〉

)
= − 1

8c3

(
Re 〈iσ̂ · (∇× ∂tA(r̂, t))〉︸ ︷︷ ︸

=0

+2Re 〈σ̂ · (∂tA(r̂, t)× p̂)〉
)

= − 1

4c3
Re 〈σ̂ · (∂tA(r̂, t)× p̂)〉 . (3.4)

Applying the DA on the result of (3.4) gives

− 1

4c3
Re 〈σ̂ · (∂tA(r̂, t)× p̂)〉 DA−−→ 1

4c2
〈σ̂ · (E(t)× p̂)〉 , (3.5)

where we have used the notation from (2.80). As a result, we see that the rigor-
ous application of the DA, i.e. the application on hermitian terms only, leads to
the disappearance of the ∂tA-field term from SOC I, i.e. the whole SOC I term
vanishes.

In summary, we can write down all spin-coupling terms from (3.1) that are
obtained by applying the DA:

σ ·
( 1

4c2
∇v(r, t)×

[
p̂ +

1

c
A(t)

]
︸ ︷︷ ︸

(i)

+
1

4c2
E(t)×

[
p̂ +

1

c
A(t)

]
︸ ︷︷ ︸

(ii)

+
1

2c
B(t)︸ ︷︷ ︸

(iii)

)
, (3.6)

where we have used the notation from (2.80). We will now investigate the in-
dividual terms of (3.6). The Zeeman term (iii) couples directly to the B-field
component of the laser pulse, which can, for high-intensity laser pulses, become
quite large. Therefore, this term should not be neglected in the following dis-
cussions. Next, we will discuss the importance of term (ii) by investigating the
corresponding contribution to the dynamics of 〈σ̂3〉. We assume we have an ex-
ternal pulse of the form (2.80) (i.e. a propagation along e3 and polarization along
e1), which leads according to (3.2) to

∂t〈σ̂3〉E =
1

2c2
〈(E(t)× ˆ̃p)×σ̂〉

∣∣
3

=
1

2c2
b(t)〈(e1× ˆ̃p)×σ̂〉

∣∣
3

=
1

2c2
b(t)〈σ̂1

ˆ̃p3〉 . (3.7)

For a clear view, we used a shorthand notation for the gauge invariant momentum:
ˆ̃p = (p̂ + A(t)/c). The same analysis can be done with the Zeeman term (iii),
which gives

∂t〈σ̂3〉B =
1

c
〈B(t)× σ̂〉

∣∣
3

=
1

c
b(t)〈e2 × σ̂〉

∣∣
3

= −1

c
b(t)〈σ̂1〉 . (3.8)

When we now assume that we have a non-relativistically system, we get by com-
paring (3.7) with (3.8):

|∂t〈σ̂3〉B|
|∂t〈σ̂3〉E|

= 2c
〈σ̂1〉
〈σ̂1

ˆ̃p3〉
� 1 −→ |∂t〈σ̂3〉B| � |∂t〈σ̂3〉E| . (3.9)
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We can conclude that the laser-induced contribution to the dynamics of 〈σ̂〉 from
the Zeeman term is much larger than the contribution from the SOC term (ii).
Therefore, the term (ii) from (3.6) should be negligible. Finally, we point out that
the term (i) should, of course, not be neglected, since it contains the∇v(r, t)-term,
which can become very large close to a nucleus.

We can now write down all single-particle spin-terms that couple to external
fields and that should be present in a spin-dynamical simulation:

1

4c2
σ ·
(
∇vn(r)×

[
p̂ +

1

c
Aext(t)

])
+

1

2c
σ ·Bext(t) . (3.10)

vn(r) is the static nuclear potential, and Aext(t) and Bext(t) are the fields from
the laser pulse (which are purely time-dependent in the DA, and which have been
labeled as external fields). We emphasize that a Hamiltonian that would contain
the spin-terms (3.10) would have to be formulated in terms of the momentum
(p̂ + Aext(t)/c) (this is particularly important for the kinetic term). This condi-
tion is necessary to assure consistency with our initial Hamiltonian (3.1) and the
approximations that have been assumed.

Finally, we wish to mention one more important point: in (3.10), a time-
independent nuclear potential vn(r) is assumed. Since we are interested in the
spin-dynamics on a time scale of a few femtoseconds, the assumption of static
nuclei should be justified. However, if investigations on longer time scales are
pursued, the time-dependence of the nuclear potential has to be taken into ac-
count. When we define the relative change of the nuclear potential as δvn(r, t) =
vn(r, t) − vn(r), with vn(r) as the potential at t = 0, we would get for non-static
nuclei the following additional spin-coupling term:

1

4c2
σ ·
(
∇δvn(r, t)×

[
p̂ +

1

c
Aext(t)

])
. (3.11)

This term couples the spin-currents to the dynamics of the nuclei (i.e. to the
dynamics of the lattice) and very likely contributes to spin-lattice relaxation and
similar processes. Note that such a spin-lattice relaxation is, to some extent,
described within the Elliott-Yafet mechanism (see e.g. [49]).

3.1.2. A time-dependent SDFT scheme with spin-orbit
coupling

In this section we will incorporate all single-particle spin-coupling terms, that
arose from the discussion in the previous section, into a TDDFT scheme. We
will see that the derived TDDFT scheme can be understood as a time-dependent
extension of the SDFT scheme that includes SOC from section 2.2.4. In section
3.1.5, we will utilize this scheme to discuss some general properties concerning the
xc B-field that arise when SOC is present.

The starting point is a Hamiltonian of a finite many-electron system subjected
to an external electromagnetic field. The external field is treated in the DA, and
all the spin-terms from (3.6) will be considered:

Ĥ(t) = T̂ + ˆ̃W +
N∑
i=1

ĥi(t) , with (3.12)
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ĥi(t) = vn(r̂i) +
1

4c2
σ̂i ·

([
∇vn(r̂i) + Eext(t)

]
×
[
p̂i +

1

c
Aext(t)

])
+

1

2c
σ̂i ·Bext(t) .

vn(r) is the static nuclear potential, and ˆ̃W is the electron-electron interaction (it
is convenient to assume that the interaction is of the form (2.41), i.e. it contains a
many-electron SOC contribution, due to the reasons that have been discussed in
section 2.2.4). Note that the kinetic operator (and if necessary also the interaction
term) has to be formulated with the gauge invariant momentum. Applying a gauge
transformation with the gauge field Λ(r, t) = −r ·Aext(t)/c gives

Ĥ(t) = T̂ + ˆ̃W +
N∑
i=1

(
vext(r̂i, t) +

1

4c2
σ̂i ·

[
∇vext(r̂i, t)× p̂i

]
+

1

2c
σ̂i ·Bext(t)

)
,

with vext(r, t) = vn(r) + r · Eext(t) , (3.13)

where we have used Eext(t) = −∂tAext(t)/c . We see now that the Hamiltonian
(3.13) has exactly the same form as the Hamiltonian (2.37), which was the starting
point in the derivation of the ground state SDFT with SOC from section 2.2.4.
We will now assume that a corresponding time-dependent extension exists. Thus,
the exact time-dependent magnetization of the system (3.13) could, by referring
to (2.47), also be obtained by solving the following time-dependent KS system:

i∂tϕ
′
i
(r, t) =

( p̂2

2
+v′s(r, t)+

1

4c2
σ ·
[
∇v′s(r, t)× p̂

]
+

1

2c
σ ·Bs(r, t)

)
ϕ′
i
(r, t) , (3.14)

with v′s(r, t) = vn(r) + r · Eext(t) + vH(r, t) + vxc(r, t) .

With the gauge field Λ(r, t) = r ·Aext(t)/c , the system (3.14) can be gauged back,
which gives

i∂tϕi(r, t) =

(
1

2

[
p̂ +

1

c
Aext(t)

]2

+ vs(r, t) +
1

2c
σ ·Bs(r, t) (3.15)

+
1

4c2
σ ·
([
∇vs(r, t) + Eext(t)

]
×
[
p̂ +

1

c
Aext(t)

]))
ϕ
i
(r, t) ,

with vs(r, t) = vn(r) + vH(r, t) + vxc(r, t) , Bs(r, t) = Bext(t) + Bxc(r, t) .

We can summerize that the KS system (3.15) gives the same time-dependent
magnetization as the finite interacting many-electron system (3.12), assuming
that a corresponding time-dependent extension of the ground state SDFT with
SOC exists.

3.1.3. Time-dependent SDFT in extended systems

The systems that will be studied in this work are bulk materials and few atom
layers. Such systems are usually described by Hamiltonians that are lattice pe-
riodic in two or three dimensions, according to the particular crystal structure.
Additionally, we consider time-dependent external electromagnetic fields which
are always purely time-dependent in our simulations (as result of the DA). Thus,
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the many-electron Hamiltonians of the systems under study would always be in-
variant under a lattice translation for all times, meaning that all local quantities,
such as the density, are also lattice periodic. Therefore, a KS system that is used
to reproduce an exact time-dependent interacting local quantity (in our case the
density and magnetization) has to be based on a lattice periodic Hamiltonian as
well.

The usual way to calculate properties of lattice periodic systems is to apply the
k-point method, which uses the Bloch state representation. All calculations in
this work are based on this method, and the time-dependent Bloch states will be
represented as two-component spinors (see (2.24)): 〈α, r|ϕk

i (t)〉 = ϕk,α
i (r, t), with

k as the particular k-point and α = {↑, ↓}. A short overview of time-dependent
Bloch states and the k-point method is given in appendix A.5, while more detailed
information can be found in [50].

In the following, the Hamiltonian that was applied in all calculations will be
shown and discussed. At this point we already wish to mention that the applied
Hamiltonian contained also some relativistic corrections that are not shown in the
following, because these terms are not relevant for the later discussions, and the
contributions of these terms to the spin-dynamics is most probably negligible. We
will come back to this subject at the end of the next subsection. Following this,
we will discuss some particularities, and the associated problems, that occur when
extended periodic systems are considered.

Real-time spin-dynamics - the applied KS scheme

The KS scheme that was solved in this work was similar to (3.15), with the
difference that the (Eext×[p̂+Aext/c])-term from the SOC was neglected, i.e. only
the external spin-coupling terms that are shown in (3.10) have been considered
(note that only these terms are relevant, as discussed in section 3.1.1). Moreover,
the k-point method was applied, meaning that KS Bloch states were used, and
the xc functionals have been approximated by the ALSDA (2.77). In summary,
the KS system that was solved in the calculations of this work has the form

i∂tϕ
k

i
(r, t) =

(
1

2

[
p̂ +

1

c
Aext(t)

]2

+ vs(r, t) +
1

2c
σ ·Bs(r, t)

+
1

4c2
σ ·
(
∇vs(r, t)×

[
p̂ +

1

c
Aext(t)

]))
ϕk

i
(r, t) ,

with vs(r, t) = vn(r) + vH[n](r, t) + vALSDA
xc [n,m](r, t) ,

Bs(r, t) = Bext(t) + BALSDA
xc [n,m](r, t) ,

and n(r, t) =
1

Nk

∑
i,k

fk
i |ϕk

i
(r, t)|2 ,

m(r, t) =
1

Nk

∑
i,k

fk
i ϕ

k

i

†
(r, t)σ ϕk

i
(r, t) , (3.16)
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where fk
i is the occupation number and Nk is the number of k-points. The system

(3.16) was solved in the following way: First, the ground state of the system was
calculated, which has to be done by a self-consistency cycle, since n(r) and m(r)
enter the functionals. Note that the ground state run also determines the state
and k-point dependent occupation numbers fk

i , by occupying all lowest states.
Next, all occupied states were propagated forward in real-time. We point out
that the KS Hamiltonian keeps for all times its translational symmetry, meaning
that all KS states remain orthogonal Bloch states. The propagation scheme and
further details about the calculation will be discussed in section 3.2.

As stated before, the KS Hamiltonian that was applied in the calculations
involved also some relativistic corrections, such as the Darwin term and the mass-
velocity term (recall that these two terms have been briefly discussed in section
3.1.1). Since these relativistic corrections do not have any significant relevance
for our concerns, we neglected these terms in the previously shown Hamiltonian,
and we will ignore these terms in all following discussions as well (i.e. we will
always refer to the system (3.16)). Details about the applied framework and the
relativistic corrections can be found in [24].

Next, we wish to mention that the contribution of σ·[∇vs(r)×Aext]/4c
3 (i.e. the

diamagnetic part of SOC) to the spin-dynamics has been investigated. It turned
out that this term is negligible, at least for such situations that are discussed in this
work (in fact, this term was neglected in all calculations presented in this work).
However, in view of a gauge invariant formulation, we will take this term into
account in the following discussions. Moreover, we point out that an approximated
radial SOC term has been applied in the calculations, which, however, did not
lead to any differences compared to the calculations with the full SOC term from
(3.16). We will come back to this subject in section 4.3.2. To keep the following
theoretical discussions as general as possible, we will, for the moment, keep the
full SOC term.

The calculation of KS expectation values involves the sum over all occupied
states and k-points. In all following sections, we will use a shorthand notation for
these calculations:

1

Nk

∑
i,k

fk
i

∫
Ω

drϕk

i

†
(r, t)Ô ϕk

i
(r, t) −→

∑
i

〈Ôi〉(t) . (3.17)

Note that the state and k-point index pair will be represented as only one index:
(i,k) → i. Furthermore, we point out that the expectation values are always
calculated per unit cell volume Ω.

Extended systems - particularities

All calculations in this work considered extended, periodic systems. We will in the
following discuss some issues that, in principle, arise solely from the assumption of
such extended systems. The discussed issues might be problematic under certain
circumstances and they should be kept in mind.

First of all, we point out that the framework (3.16) (which was applied in the
calculations) might be derived for a finite system, as demonstrated in section
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3.1.2. The first step in the derivation was that the external A(t)-field was gauged
away, which led to a local potential of the form r · E(t). It is clear that such
a local potential is not lattice periodic and it becomes infinitely large for |r| →
∞. Thus, it is questionable if this first step would actually be justified in our
derivation, considering extended systems. To clarify the problems that arise from
the actual TDDFT treatment, we will for the moment ignore the Zeeman and
the SOC term. In fact, for such systems (i.e. extended systems that only have
a r · E(t)-term as external coupling) the RG proof does not apply [51]. As a
matter of fact, TDCDFT would be the correct framework to describe extended
systems that have minimal coupling to external A(t)-fields. Thus, we could argue
that our framework considers the longitudinal part of the Axc-field, which has
been gauged away and approximated by the lattice periodic vxc, and neglects the
transversal component of the Axc-field (the longitudinal and transversal Axc-field
within TDCDFT has been discussed in section 2.3.2). However, this is not the
whole story and the problem is more involved in our case since we have, beside the
minimal coupling kinetic term, also a Zeeman term and a SOC term. Therefore,
a time-dependent extension of SCDFT, similar to that discussed in section 2.2.3,
would most probably be needed for a correct treatment. Nevertheless, in our
simulations the framework (3.16) was used, and already in this scheme the xc fields
have to be approximated. In the end, we have to admit that it is very hard or even
impossible to make clear statements about the magnitude of the individual errors
that have been introduced at the different stages of the approximations. Therefore,
in future work the consequences of the different approximations applied should be
investigated in more detail.

Next, we recall that the simulation framework used is based on the DA. In
section 2.4.2, it was shown that the DA is only justified if the central wavelength
of the external laser pulse is much larger than the size of the considered system.
This condition is, however, for extended systems generally not satisfied. Therefore,
we have to be a bit more precise under what exact situations the DA is justified,
and, if the DA is not justified, it has to be discussed what this means in the
individual case. First, we will consider a few atom layer. Such a scenario is
usually described via a system that is periodic in the layer plane, i.e. it is periodic
in two dimensions. When we now assume that the polarization of the laser pulse
lies in the plane, i.e. that the pulse propagation is perpendicular to the plane,
it follows that the DA is, in fact, justified. The simulations of few atom layers
presented in this work assume such a configuration, meaning that the DA does
not constitute a problem in this case.

However, when we consider bulk materials, i.e. systems that are periodic in
three dimensions, the DA is not justified, and one might ask what situation would
actually be simulated by using the DA in such systems. An answer could be that
we simulate regions inside bulk materials that are large enough to be treated as
extended systems, but still small enough such that the DA makes sense. The
external A(t)-field could then be understood as an effective field that is present
in this specific region, and that results from the propagation of a laser pulse
trough the material. This is in fact the situation that we should have in mind
when we discuss the simulations of periodic bulk materials in this work. With the
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previously discussed points in mind, one could argue that it should, in principle,
be possible to describe the propagation of a laser pulse trough a large but finite
material, by simulating a coupled array of individual regions. In fact, a simulation
based on such an approach was recently demonstrated for spin-less systems [52].

The last point of discussion concerns the external A-field. As already noted
in the previous paragraph, the field of propagating laser pulses typically changes
once they propagate inside a material. The reason is that the external field from a
free propagating pulse, Aext, induces currents inside the material, which, on their
part, produce according to Maxwell’s equations an induced field, Aind. Therefore,
the field used in the simulation of the quantum mechanical system should be the
effective field A = Aext + Aind, rather than the field Aext alone. The induced
currents in small systems (e.g. atoms or molecules) are typically very small, and
in such systems it is justified to neglect Aind. In extended systems, on the other
hand, the induced currents can become large, and therefore the induced field
might become important, as demonstrated in [53]. The calculations presented in
this work, however, neglected any induced fields, because the focus of this work
lies on the investigation of the behavior of excited spin-systems, rather than on
the detailed description of pulse propagations or similar effects. Therefore, the
applied external field should be seen as an effective driving field that excites the
system. Finally, we wish to mention that the investigation of the influence of the
induced field is, in fact, a subject of ongoing work.

3.1.4. The dynamical equation of the density, the
magnetization, and the moment

For the calculations in this work, the KS scheme (3.16) was solved in real-time by
a forward propagation. One advantage of this approach is that processes beyond
the linear response regime are included. Another advantage is that one has easy
access to all time-dependent KS expectation values, since they can be calculated
directly during the forward propagation. Of particular interest for our concerns
is the time-dependent magnetization and moment. In order to reveal some in-
sights about the spin-dynamics of excited systems, we will in the following discuss
the dynamical equation of these two observables. Moreover, we will discuss the
dynamical equation of the density, because this quantity enters, along with the
magnetization, the xc functionals.

Time-dependent density

The dynamical equation of any observable follows from Ehrenfest’s theorem, i.e.
it follows from the commutator with the time-dependent Hamiltonian of the sys-
tem (see e.g. (3.2)). Calculating the dynamical equation of the density from the
Hamiltonian (3.16) gives

∂tn(r, t) = −∇ · j(r, t)−∇ · 1

4c2

[
m(r, t)×∇vs(r, t)

]
. (3.18)

A detailed derivation is given in appendix A.6.3. The first term on the right hand
side is the usual current density term, which is known from the ordinary conti-
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nuity equation. The second term, however, is only present if we have SOC. We
see that this term couples the dynamics of the magnetization to the dynamics of
the density. The integral of the right hand side of (3.18) over the whole system
vanishes, which follows from Gauss’s theorem together with the assumption of
finite or periodic systems. This, in fact, has to be fulfilled since equation (3.18)
is a continuity equation, and the vanishing of the integral simply means that the
number of electrons is conserved.

Time-dependent magnetization

Next, the dynamical equation of the magnetization is calculated from the Hamil-
tonian of (3.16), which gives

∂tm(r, t) = − ∇·
↔

J (r, t) +
1

c

[
Bs(r, t)×m(r, t)

]
+

1

4c2

[
∇n(r, t)×∇vs(r, t)

]
+

1

2c2

[ ↔

J
T(r, t)− Tr{

↔

J (r, t)}
]
·∇vs(r, t) . (3.19)

A detailed derivation is shown in appendix A.6.3. The equation contains beside
the density and the magnetization the gauge invariant spin-current tensor, which
is given by the sum of the paramagnetic and the diamagnetic part, as defined in
(2.26) and (2.27).

The first term on the right hand side of (3.19) is the kinetic contribution. The
representation of this term has to be understood as follows: Each row vector of the
3× 3 spin-current tensor is contracted by taking the divergence, which gives a 3-
component vector. This kinetic term has the following meaning: Each component
of the magnetization has its own current density, which can transport the local
spin and, in consequence, it can locally change the corresponding component of
the magnetization. Since this term is a transport term, it can not change the
integral of the magnetization, i.e. the moment, which will be discussed in the next
subsection.

The second term is a local Larmor precession term, which has the same form
as the torque term in the dynamical equation of a magnetic dipole that moves in
a magnetic field. Thus, the magnetization can be imagined as the quantum me-
chanical analog of a local magnetic dipole. The torque vector stemming from the
Larmor term is always perpendicular to the local B-field and the magnetization.
Hence, the magnetization would perform a precession movement around the local
B-field if this field would be constant in time, and if the Larmor term would be
the only torque term that contributes to the dynamics. In our calculations, the
B-field has two contributions: Bext and Bxc. The Bxc applied in our calculations
is approximated by the ALSDA, meaning that

BALSDA
xc [n,m](r, t)×m(r, t) = 0 , (3.20)

where we have used (2.60). Thus, the direct B-field contribution to the dynamics
of the magnetization comes solely from the external B-field in our calculations.

The third and the fourth term of (3.19) are SOC contributions. We see that
the third term couples the dynamics of the density to the dynamics of the mag-
netization. Next, we explain how the representation of the fourth term has to
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be understood: The trace of the spin-current tensor is subtracted from the diag-
onal elements of the transpose of the spin-current tensor. The resulting tensor
is then multiplied with ∇vs, giving the corresponding torque vector. Note that
the fourth term couples the spin-current densities to ∇vs, while ∇vs acts as an
effective electric field. In the following subsection, we will discuss this subject in
more detail.

Time-dependent moment

The moment (or more precisely: spin-magnetic moment) is the observable that de-
scribes the macroscopic spin-magnetic character of quantum mechanical systems.
It is defined as the expectation value of the vector of Pauli operators1 (remember
that the sum over i involves also the sum over k-points, see (3.17)):

M(t) =
∑
i

〈σ̂i〉(t) . (3.21)

The investigation of the dynamics of the moment for systems where SOC is present
will be the main subject of this work. Hence, a central equation in this work is
the dynamical equation of the moment which is given by

∂tM(t) =
∑
i

1

c
〈Bs(r̂i, t)× σ̂i〉︸ ︷︷ ︸

=∂tMB(t)

(t) +
∑
i

1

2c2
〈
(
∇vs(r̂i, t)× [p̂i +

1

c
A(t)]

)
× σ̂i〉︸ ︷︷ ︸

=∂tMSOC(t)

(t) ,

(3.22)
by considering the Hamiltonian from (3.16). We see that the dynamics has two
contributions: one contribution comes from the B-field interaction and the other
comes from SOC. The derivation of equation (3.22), as well as the derivation of
the following relations, can be found in appendix A.6.3.

The moment follows from the integral of the magnetization. Hence, also the
time derivative should follow from the corresponding integral:

∂tM(t) = ∂t

∫
dr
∑
i

〈δ(r− r̂i)σ̂i〉(t) =

∫
dr ∂tm(r, t) . (3.23)

From equation (3.23) it follows that the local integral representation of (3.22)
should lead to an expression that should contain the terms from (3.19). Calculat-
ing the local integral representation of (3.22) gives

∂tM(t) =
1

c

∫
dr
[
Bs(r, t)×m(r, t)

]
︸ ︷︷ ︸

=∂tMB(t)

+
1

2c2

∫
dr
[ ↔

J
T(r, t)− Tr{

↔

J (r, t)}
]
·∇vs(r, t)︸ ︷︷ ︸

=∂tMSOC(t)

. (3.24)

1A common definition uses the prefactor geµB/2 which is ≈ −1/2 in a.u., i.e. the moment
(3.21) can be interpreted as defined in units of −µB since µB = 1/2 in a.u..
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We see that the first and the third term of (3.19) give no contribution to the dy-
namics of the moment. The first term of (3.19), which is the kinetic contribution,
can easily be shown to vanish by Gauss’s theorem. As already mentioned, the
kinetic contribution is a spin transport contribution, that can locally change the
magnetization by spin-currents that flow into or out of a region. The correspond-
ing integral over the whole system can, however, not change as we have seen,
meaning that the kinetic term conserves the moment. The integral of the third
term of (3.19), which is part of the SOC contribution, can be shown to vanish via
integration by parts.

The ∂tMB-term from (3.24) is simply the integral over the local Larmor pre-
cession term, which has been discussed in the previous subsection. As already
mentioned, this term has in principle two contributions: one from Bext and one
from Bxc. Remember, however, that the Bxc contribution vanishes in our case
(since the ALSDA is applied; see (3.20)). Hence, only the Bext will contribute to
the dynamics of the moment in our calculations. In TDSDFT the vanishing of
the Bxc contribution is, in fact, an important condition that has to be fulfilled.
However, this condition, which is called zero-torque theorem for TDSDFT, does
not necessarily have to be fulfilled for a TDSDFT that involves SOC, as will be
discussed in the following section.

We now come to the ∂tMSOC-term from (3.24), which will turn out to be a very
important term regarding the dynamics of the moment. With the gauge invariant
spin-current densities (2.26), this term can be represented in a different way:

∂tMSOC(t) =
1

2c2

∫
dr

 e1

e2

e3

×
 [∇vs(r, t)× j1(r, t)]

[∇vs(r, t)× j2(r, t)]
[∇vs(r, t)× j3(r, t)]

 , (3.25)

where {el} are the unit vectors. Here, we have defined a cross product of vectors
that are constructed from vectors, which is calculated in the usual sense, while
the regular multiplication corresponds here to the dot product. As an example,
we show the dynamical equation of the e3-component:

∂tMSOC,3(t) =
1

2c2

∫
dr e1 · [∇vs(r, t)× j2(r, t)]− e2 · [∇vs(r, t)× j1(r, t)] . (3.26)

We see that only the spin-current densities j1 and j2 contribute to the dynamics
of M3.

To get an idea how the equation (3.26) could be interpreted, we will help our-
selves with some classical considerations. First, we assume that the spin-current
densities can be described with the fluid dynamical picture:

ji(r, t) = ui(r, t)mi(r, t) , i = {1, 2, 3} . (3.27)

Here, we have defined the velocity field ui via the ith component of the magne-
tization. Equation (3.27) means the following: the spin-current density of spin-
component i at point r can be understood as a local magnetic dipole at point r
that moves according to the velocity vector ui(r), while the local magnetic dipole
corresponds to the ith component of the magnetization. Next, we recall that
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∇vs(r) corresponds to an electric field, and that a particle that moves with the
velocity u in an electric field E sees a magnetic field B = E × u/c. With these
considerations we can, according to (3.26), define the following effective B-field
components that are seen by our moving local magnetic dipoles:

e1 · [∇vs(r, t)× u2(r, t)]/c = B̃1(r, t) , e2 · [∇vs(r, t)× u1(r, t)]/c = B̃2(r, t) .
(3.28)

With these effective fields we get, together with (3.27), for (3.26):

∂tMSOC,3(t) =
1

2c

∫
dr B̃1(r, t)m2(r, t)− B̃2(r, t)m1(r, t)

=̂
1

2c

∫
dr B̃(r, t)×m(r, t)

∣∣∣
3
. (3.29)

We see that the previous assumptions led to a term that has a similar form as
the ∂tMB(t)-term from (3.24), which describes the dynamics of a local dipole in a
magnetic field. Therefore, we can conclude that the work mechanism of ∂tMSOC(t)
can be imagined as follows: Each component of the local magnetization acts as
a local magnetic dipole that moves according to the local spin-current density
into the electric field produced from the local potential. The movement in this
electric field produces a magnetic field that leads to a torque on the local dipole,
and hence to a change of the magnetization. We point out that the expression
in (3.29) has a factor 1/2 that is not present in the ∂tMB(t)-term. This factor is
the well known Thomas precession factor that incorporates relativistic corrections
into the previously drawn picture.

As a final remark we wish to emphasize that a spin-current density can exist
even if its corresponding magnetization component is zero (in contrast to the
probability density and its current), which is, in fact, the case in our calculations
(see appendix A.2). Hence, one should be careful with the interpretation of the
demagnetization process via the previously given explanation, because a change in
the moment can also occur if the associated magnetization component (according
to (3.27)) is zero.

3.1.5. The zero-torque theorem

The concept behind any KS-TDDFT scheme is that one or more variables of an
interacting system (e.g. the density or magnetization) are produced by the non-
interacting KS system. Of particular importance are the xc fields which incorpo-
rate many-body contributions to the KS system. By comparing the dynamical
equations of the variables of the many-body system to the corresponding equa-
tions of the KS system, exact conditions for the xc fields can be derived. We will
in the following demonstrate this concept for standard TDSDFT without SOC,
and we will discuss what changes occur if SOC is present.

We assume to have the following many-electron Hamiltonian:

Ĥ(t) =
N∑
i=1

[
p̂2
i

2
+ vext(r̂i, t) +

1

2c
σ̂i ·Bext(r̂i, t)

]
+

1

2

N∑
i 6=j

1

|r̂i − r̂j|
. (3.30)
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The corresponding KS Hamiltonian within the TDSDFT framework is given by

ĥ(t) =
p̂2

2
+ vs(r̂, t) +

1

2c
σ̂ ·Bs(r̂, t) , with Bs(r̂, t) = Bext(r̂, t) + Bxc(r̂, t) .

(3.31)
Calculating the dynamical equation of the magnetization for (3.30) gives

∂tm(r, t) = −∇·
↔

J (r, t) +
1

c

[
Bext(r, t)×m(r, t)

]
, (3.32)

while calculating the corresponding equation for (3.31) gives

∂tm(r, t) = −∇·
↔

JKS (r, t) +
1

c

[(
Bext(r, t) + Bxc(r, t)

)
×m(r, t)

]
, (3.33)

where we have explicitely labeled the KS spin-current tensor. By construction, the
time-dependent magnetization is equal in both systems. The spin-current tensor
(or more precisely: the divergence of it), on the other hand, is usually different.
Thus, the Bxc can be understood as a field that compensates this difference, in
order to achieve the correct magnetization in the KS system. This can be seen
immediately by subtracting (3.32) from (3.33), which gives

∇ ·
[ ↔

JKS (r, t)−
↔

J (r, t)
]

=
1

c

[
Bxc(r, t)×m(r, t)

]
. (3.34)

Integrating this expression leads to∫
dr Bxc(r, t)×m(r, t) = 0 , (3.35)

where we have used Gauss’s theorem. The expression (3.35) is known as zero-
torque theorem2 for TDSDFT [37]. This theorem has a clear physical meaning: it
states that the Bxc cannot exert a net spin-torque on the whole system, which is
clear, because the Bxc incorporates only bare Coulomb interaction effects between
the electrons, that should not lead to a net spin-torque. Thus, the zero-torque the-
orem should always be satisfied when performing a TDSDFT calculation, because
otherwise non-physical spin-torques on the whole systems would occur.

The calculations in this work employed a time-dependent spin-DFT that in-
cludes SOC contributions. As previously discussed, the zero-torque theorem
should be satisfied for standard TDSDFT. However, one might wonder if this
theorem should also be satisfied if SOC contributions are considered. To investi-
gate this issue, we will follow the same route as before, with the difference that
we will refer to the time-dependent SDFT scheme from section 3.1.2 (this scheme
will in the following serve as a formally exact SDFT scheme that includes SOC
contributions, which allows us to draw some general conclusions that should apply
for any spin-DFT framework that considers SOC contributions).

2There exists also a zero-torque theorem for CDFT, which is connected to the torque on the
orbital angular momentum.
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The dynamical equation of the magnetization of the many-electron Hamiltonian
(3.12) is given by

∂tm(r, t) = −∇·
↔

J (r, t) +
1

c

[
Bext(t)×m(r, t)

]
+

1

4c2

[
∇n(r, t)×∇vn(r)

]
+

1

2c2

[ ↔

J
T(r, t)− Tr{

↔

J (r, t)}
]
·∇vn(r) +

1

i
〈[m̂(r), ˆ̃W ]〉(t) , (3.36)

where we have neglected the (Eext × p̂)-term from the SOC. (We will neglect
this term, because it was shown in section 3.1.1 that its contribution to the spin-
dynamics is negligible. However, it is clear that this term would actually also be
present in what follows.) Note that the many-electron SOC term W̃ (see (2.41))
appears in the dynamical equation, because this term allows a transfer between
orbital angular momentum and spin-angular momentum.

The corresponding dynamical equation for the KS system has already been dis-
cussed in section 3.1.4. Subtracting the dynamical equation of the magnetization
of the KS system (3.19) from the corresponding equation of the interacting system
(3.36), and integrating it, gives∫

dr
1

c
Bxc(r, t)×m(r, t) (3.37)

=

∫
dr

1

2c2

[( ↔

J
T(r, t)− Tr{

↔

J (r, t)}
)
−
( ↔

J
T
KS(r, t)− Tr{

↔

JKS (r, t)}
)]
·∇vn(r)

+

∫
dr

1

i
〈[m̂(r), ˆ̃W ]〉(t)− 1

2c2

[ ↔

J
T
KS(r, t)− Tr{

↔

JKS (r, t)}
]
·∇vH,xc(r, t) .

We have again specifically labeled the KS spin-current tensor, and we have summed
the Hartree and the xc potential. From (3.37) it follows immediately that the usual
zero-torque theorem does not apply for our spin-DFT scheme with SOC. The in-
tegral condition that led in the standard TDSDFT to the zero-torque theorem is
given here by a rather complicated expression, that does not necessarily reduce
to (3.35). In fact, the expression (3.37) has a clear meaning, as will be discussed
now.

First of all, we point out that (3.37) describes all possible spin-torque differ-
ences that might exist between the KS system and the interacting system: The
second line of (3.37) corresponds to a spin-torque difference that arises from the
fact that the spin-currents in the interacting system and in the KS system are
not necessarily equal. This difference between the spin-currents can then, via
the nuclear potential, lead to a spin-torque difference (remember that the corre-
sponding potential mediated spin-torque process has been discussed at the end of
the previous section). The right part of the third line of (3.37) corresponds to a
spin-torque in the KS system that is caused by the spin-currents and the Hartree
and xc potential, while the left part corresponds to a spin-torque in the inter-
acting system that is caused by the many-electron SOC interaction. These two
spin-torques (which both correspond to an electron-electron interaction mediated
transfer between spin and orbital angular momentum) are in general not equal,
meaning that the third line corresponds to a spin-torque difference as well. The
spin-torque differences coming from the second and third line would, in an exact
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framework, have to be compensated by the xc B-field via the integral expression
from the first line (in order to prevent non-physical spin-torques on the KS sys-
tem). Note that the expression (3.37) corresponds, in a way, also to a zero-torque
theorem. This theorem is, however, in contrast to standard TDSDFT much more
involved, and it reveals an exact relation between the xc potential and the xc
B-field.

We wish to mention that the previously discussed aspects should, at least in
some sense, also apply for other spin-DFT schemes that include SOC (and that
describe similar physical situation as the scheme from section 3.1.2). Furthermore,
we point out that the second line of (3.37) would vanish if a time-dependent
SCDFT would be applied (since the spin-currents in the KS and the interacting
system would be equal). However, the third line of (3.37) would not necessarily
vanish, meaning that the zero-torque condition (3.35) would most probably also
not apply for a SCDFT scheme that includes SOC.

We conclude that the zero-torque theorem (3.35) is not a necessary condition
when a time-dependent spin-DFT with SOC is applied. In fact, the zero-torque
condition that has to be fulfilled when SOC is present is much more complicated,
as we showed. All calculations that are presented in this work used the ALSDA,
i.e. the applied Bxc always satisfied the condition (3.35) (this follows immediately
from relation (3.20)). Hence, any unphysical spin-torque contributions that might
exist due to the right term of (3.37) are not canceled by the applied Bxc. Thus, in
future work it has to be investigated if this leads, at least for such situations that
are considered in this work, to any significant influences in the spin-dynamics.

3.2. Real-time propagation algorithm and
implementation

In the sections 3.1.2 and 3.1.3, the theoretical framework that was applied to
describe the real-time spin-dynamics has been introduced. In the following, we
will describe in detail how the corresponding KS equations were solved. The
algorithm that was used to solve the KS equations has been implemented in the
ELK code [54], and all calculation presented in this work have been performed
with this code.

The calculations in this work are based on a real-time propagation of the KS
system (3.16). In all calculations, the system started to evolve from the ground
state. Thus, the first step in each calculation was a ground state run. As already
discussed in section 3.1.3, the ground state run has to be performed by a self-
consistency cycle, since the density and the magnetization enter the functionals.
We will now be a bit more precise about how the ground state is calculated in the
ELK code. An important feature of the ELK code is that it is an all-electron code,
i.e. all electrons will be incorporated in the calculation and no pseudo-potentials,
or similar, are used. This means, in practice, that two types of KS states are
used: core states and valence states. The core states have much lower energy
eigenvalues as the valence states, and they are localized in a tiny region around
the nucleus, while the valence states are generally much more delocalized.
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In each step of the self-consistency cycle, the core states are treated relativis-
tically by solving a radial KS-Dirac equation (see [24]), which gives a core state
density contribution. The valence states are calculated with the framework (3.16)
(together with some additional relativistic corrections, as discussed in section
3.1.3), which gives a valence state density contribution and the magnetization.
The core and valence state densities are then summed together to obtain the total
density, which is then used, together with the magnetization, to calculate the xc
fields for the next cycle. These steps are repeated until convergence is reached.

We want to emphasize one point concerning the real-time propagation: The
propagation scheme that will be introduced in the following was only applied
to the valence states, while the core states were frozen during the propagation.
Thus, the core density contribution, that enters the Hartree and the xc potential
during the propagation of the valence KS system (3.16), was always constant and
equal to the converged ground state contribution. If the external field is weak
enough, this approach should be justified, since the influence of the this field on
the strongly bound core states should be negligible. If, however, the external field
is very strong, the time evolution of the core states would most probably have to
be taken into consideration. In fact, at the moment it is not entirely clear if the
time evolution of the core states would give any non-negligible contributions for
the external fields that have been used in the calculations of this work. Hence,
this issue should be investigated in future work.

In this section, the real-time propagation algorithm that was applied to propa-
gate the valence states will be presented. Following this, the basis that was used
to represent the time-dependent KS states, will be discussed.

Real-time propagation scheme

Next, the real-time propagation algorithm that was used to propagate the system
(3.16) will be presented. For a clear view, we will represent the KS spinors in
the general state representation: ϕk

i
(r, t) → |ϕi(t)〉. Moreover, we will omit the

k-point label, as the propagation scheme is identical for all k-points. In prac-
tice, the propagation of the k-points is performed independently, and the only
step where all k-point dependent states are needed is when the density and the
magnetization is calculated (as can be seen in the scheme (3.16)). Furthermore,
Nocc will stand for the number of occupied KS states, and Nmax will stand for the
number of basis states that are used to expand the KS states.

The solution of the time-dependent KS equations can be represented by means
of the time evolution operator:

i∂t|ϕi(t)〉 = ĥs(t)|ϕi(t)〉 −→ |ϕi(T )〉 = Û(T, 0)|ϕi(0)〉 , (3.38)

where ĥs(t) is the KS Hamiltonian from (3.16), and Û(T, 0) is the time evolution
operator that propagates all KS states from time t = 0 to the final time t = T .
The time evolution operator satisfies the following property:

Û(T, 0) = Û(T, T −∆t) . . . Û(2∆t,∆t) Û(∆t, 0) , (3.39)

which states that the propagation of one large time step T can be split into several
small propagation steps of time ∆t. The presented propagation scheme is based on
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this property, because all KS states will be propagated stepwise forward in time,
i.e. for the time t, the time evolution operator Û(t + ∆t, t) has to be calculated.
The corresponding time evolution operator is given by

Û(t+ ∆t, t) =
∞∑
n=0

(−i)n
n!

∫ t+∆t

t

dt1 . . .

∫ t+∆t

t

dtn T̃[ĥs(t1) . . . ĥs(tn)] , (3.40)

where T̃ is the time ordering operator, which orders all time-dependent elements
such that the elements with later times are always to the left of elements with
earlier times. If the time step size ∆t is small enough, such that the change of
ĥs(t) between t and t+ ∆t becomes negligible, the time evolution operator can be
approximated by an exponential expression:

∆t→ 0 : T̃[ĥs(t1) . . . ĥs(tn)] ≈ ĥns (t) −→ Û(t+ ∆t, t) ≈ e−iĥs(t)∆t . (3.41)

This exponential expression can be used to stepwise propagate all KS states for-
ward in time:

|ϕi(t+ ∆t)〉 = e−iĥs(t)∆t|ϕi(t)〉 , i = {1, . . . , Nocc} . (3.42)

This time evolution step involves an exponential expression of an operator, which
is in general not easy to calculate. To permit an accurate calculation of (3.42), the
KS Hamiltonian can be diagonalized at each time step, and the time-dependent
KS states can be expanded in the corresponding instantaneous eigenstates:

ĥs(t) |ut〉 = εt,u |ut〉 −→ |ϕi(t)〉 =
Nmax∑
u=1

cui(t) |ut〉 , (3.43)

which replaces the exponential of the operator by an ordinary scalar exponential.
We point out that the instantaneous eigenstates |ut〉 and the corresponding eigen-
values εt,u do not have any direct physical meaning, and they should be seen as
an auxiliary tool.

The propagation algorithm used in the calculations follows solely from the re-
lations (3.42) and (3.43). The applied propagation scheme can be summarized by
the following three steps, which allow it to successively propagate all KS states
forward in time:

(1) |ϕi(t+ ∆t)〉 =
Nmax∑
u=1

cui(t) e−iεt,u∆t |ut〉

(2) 〈n̂(r)〉(t+ ∆t), 〈m̂(r)〉(t+ ∆t)
ALSDA−−−−→ ĥs[n,m](t+ ∆t)

(3.43)−−−→ {|ut+∆t〉}

(3) cui(t+ ∆t) = 〈ut+∆t|ϕi(t+ ∆t)〉 , (3.44)

where the three steps correspond to a propagation from t to t+∆t. Step (1) is the
actual forward propagation of all states. This step follows directly from (3.42) with
the expansion (3.43). In step (2), the density and the magnetization are calculated
according to (3.16), which are then used to construct the KS Hamiltonian at
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time t + ∆t by applying the ALSDA. The KS Hamiltonian is then diagonalized
which gives the eigenstates and eigenvalues at time t + ∆t. Finally, in step (3)
the expansion coefficients of the KS states in the instantaneous eigenstates are
calculated, which completes all steps that are needed to perform one propagation
cycle. Since the propagation starts always from the ground state in our case, the
initial eigenstates are given by the ground state KS states, leading to the following
initial condition:

|ϕu(t = 0)〉 = |ut=0〉 −→ cui(t = 0) = δui . (3.45)

The accuracy of the propagation algorithm (3.44) depends primarily on two
variables. First, it depends on the time step size ∆t that determines how well
the time evolution operator is approximated. A smaller time step size means in
general a better approximation, but also a longer computation time, since more
time steps are necessary to propagate to the final time T . In practice, the pa-
rameters of an algorithm have to be adapted until convergence is reached. In our
calculation, the converged time step sizes lie, depending on the individual system,
between ∆t = 0.025 . . . 0.1 a.u. (= 0.6 . . . 2.4 · 10−3 fs). The second variable that
determines the accuracy is Nmax, i.e. the number of instantaneous eigenstates that
are used to expand the time-dependent KS states. From the algorithm (3.44) it
is clear that a larger Nmax means a more expensive computation. For calculations
with primitive unit cells, a number of ≈ 120 empty states (= Nmax −Nocc) led to
a sufficient convergence, while for super cells or atomic layers more empty states
were needed (typically 300 . . . 600 for 4-atom cells). We finally recall that also the
number of k-points has to be converged, since the density and the magnetization,
and thus the KS Hamiltonian, depends on this number. We will say a few words
about the k-point convergence at the end of section 4.2.

The basis

Fig. 3.1.: Schematic of the APW+LO
basis.

In the previous subsection the applied
propagation algorithm has been explained.
One major concept of this algorithm is that
the time-dependent KS states are expanded
in the instantaneous eigenstates |ut〉, ac-
cording to relation (3.43). All calculations
in this work have been performed with the
ELK code, which uses a APW+LO (aug-
mented plane wave and local orbital) basis.
Hence, the APW+LO basis is the underlay-
ing basis that was used to represent the in-
stantaneous eigenstates. These eigenstates,
and thus also the corresponding expansion
coefficients in reference to the APW+LO
basis, are in general k-point dependent. Since the k-points are calculated in-
dependently, and to be consistent with the previous subsection, we will in the
following omit the k-point label. Keep in mind that the k-point dependence can
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be treated by applying a k-point dependent Hamiltonian, where each k-point de-
pendent state is described by a lattice periodic function (see appendix A.5, relation
(A.57)). Hence, all states have to be understood as lattice periodic functions in
the following discussion.

Each instantaneous eigenstate is represented in the following way:

|ut〉 =

NG
max∑
G

aGu(t)|ψAPW
G 〉+

lmax∑
l=0

l∑
m=−l

N l
max∑
n=1

blmn,u(t)|ψLO
lmn〉 . (3.46)

The APW sum on the left hand side runs over the reciprocal lattice vectors G,
where NG

max is the number of reciprocal lattice vectors, which is determined from
an appropriate cutoff length. The LO sum on the right hand side runs over the
azimuthal number l up to the cutoff lmax, over the magnetic number m, and over
n up to N l

max, which determines how many LOs are used for a certain azimuthal
number l. lmax and N l

max have to be chosen large enough such that convergence
is reached.

The main concept of the APW+LO basis is that the unit cell is divided in two
regions: in a so-called muffin-tin (MT) region, and in an interstitial region (IR).
The MTs correspond to spheres around each nucleus, while each nucleus sits at
the center of the sphere. The IR is the region outside the spheres. A schematic
of these regions is given in figure 3.1. Each LO is a wave function that is zero
outside a MT, and that is represented by spherical harmonics inside a MT:

〈α, r, θ, φ|ψLO
lmn〉 = fαlmn(r)Ylm(θ, φ) , α = {↑, ↓} . (3.47)

The Ylm(θ, φ) are the spherical harmonics and we have used the spherical coordi-
nate representation (r, θ, φ). The radial functions fαlmn(r) are typically constructed
in convenient ways. We will, however, at this point only state that the radial func-
tions are constructed such that they are zero at the MT surface. The term on the
right hand side of (3.46) runs in general also over the several MTs in the unit cell,
i.e. each MT has its own set of LOs. For simplicity, we omitted this additional
sum.

Each G-vector dependent APW is represented by a corresponding plane wave
in the IR: 〈α, r|ψAPW

G 〉 ∼ eiG·r. Inside the MTs, each APW is represented by
a sum of radial functions. These radial functions are similar to the LOs, with
the difference that the sum of these functions is constructed such that the wave
function value matches the corresponding plain wave value at the MT surface3. A
schematic of a APW is given in figure 3.1. Finally, we wish to mention that the
APW+LO basis is a non-orthogonal basis. General details about the construction
and the properties of APWs and LOs can be found in [55], while ELK specific
details are provided in the ELK manual [54].

3ELK supports also LAPWs (Linearized APWs), which are similar to APWs, with the differ-
ence that also derivatives of the wave functions are matched at each MT surface.
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3.3. Time-dependent density of states

In this section, we will discuss how a time-dependent density of states (TDDOS)
can be defined. Moreover, we will derive an approximated expression for this TD-
DOS, which can be calculated very efficiently during the real-time propagation.
The central quantity that will be used for the definition of the TDDOS is the spec-
tral function, which provides information about the nature of electronic states, and
which is, for time-dependent problems, defined from the non-equilibrium Green
functions. The non-equilibrium Green functions are the central objects in the
perturbative calculation of time-dependent quantities, such as one-particle ex-
pectation values or response functions. An overview of non-equilibrium Green
functions and the related perturbation theory can be found in [44].

The TDDOS that will be derived in the following will be calculated from the
KS Green functions and not from the true Green functions. These two types of
quantities are in general different, however, they produce in principle the same
time-dependent magnetization. Thus, a corresponding spin-resolved KS-TDDOS
could, for example, be used to reveal some insights about spin-dynamical pro-
cesses. The Green functions and all related quantities are in general functions of
two time and two space variables. In the following, these objects will be treated
as time-dependent operators in the single-particle space, i.e. for spin-less systems:

G(r1t1, r2t2) = 〈r1|Ĝ(t1, t2)|r2〉 . (3.48)

Furthermore, we will, for simplicity, again omit the k-point label. Each sum over
the occupied KS states has to be understood as a sum over all k-points and the
corresponding occupied states, as shown in (3.16).

The spectral function Â(t1, t2) is defined from the greater Green function
Ĝ>(t1, t2) and from the lesser Green function Ĝ<(t1, t2), and it is, for the KS
system, directly given by the time-dependent KS states [44]:

Â(t1, t2) = i
[
Ĝ>(t1, t2)− Ĝ<(t1, t2)

]
=
∑
i

|ϕi(t1)〉〈ϕi(t2)| . (3.49)

Â(t1, t2) contains information from all available states, while Ĝ<(t1, t2) gives the
contribution from all occupied states, and Ĝ>(t1, t2) gives the contribution from
all unoccupied states. Thus, a spectral function that contains only the information
from the occupied states can be defined by taking only Ĝ<(t1, t2) into account:

Âocc(t1, t2) = −iĜ<(t1, t2) =
∑
i

fi |ϕi(t1)〉〈ϕi(t2)| , (3.50)

where fi is the occupation number at t = 0, i.e. in our case the ground state oc-
cupation number. We see that the full spectral function from (3.49) is in principle
given by the same expression as the occupied spectral function, with the difference
that fi is always 1 for the full spectral function. Hence, we will in the following
always use fi, since all derived quantities can then easily be calculated for the full
contribution of all states, or for the contribution of the occupied states only:

full: fi = 1 ∀i , occupied: fi =
{ 1 , if state i is occupied

0 , else
. (3.51)



50 Real-time spin-dynamics - simulation framework

As a first step, we transform the spectral function to a time-frequency form by
applying a Wigner transformation:

Â(ω, t) =

∫
dτ eiωτ Â(t+

τ

2
, t− τ

2
) . (3.52)

Transformations of this type are commonly used to describe or analyze the time-
dependent spectral properties of quickly changing and finite signals (e.g. ultra-
short laser pulse analysis [48]). With this time and frequency dependent spectral
function, a corresponding TDDOS can, according to the equilibrium definition,
be defined [56]:

ρ(ω, t) =
1

2π
Tr{Â(ω, t)} =

1

2π

∑
i

fi

∫
dτ eiωτ Tr

{
|ϕi(t+

τ

2
)〉〈ϕi(t−

τ

2
)|
}
. (3.53)

The integral expression on the right hand side of (3.53) is a so-called Wigner distri-
bution function, which typically serves as a joint probability density for conjugate
variables (in our case ω and t).

The TDDOS as defined in (3.53) is, for a KS system (where the Hamiltonian
depends on the corresponding time-dependent variables, e.g. the density), very
hard to calculate. In the following we design a numerically less heavy approxima-
tion to the TDDOS. In order to do this, we will approximate the time evolution
operator by

Û(t± τ

2
, t) ≈ e−iĥs(t)(± τ2 ) , (3.54)

which gives for (3.53)

ρ(ω, t) =
1

2π

∑
i

fi

∫
dτ eiωτ Tr

{
e−iĥs(t)

τ
2 |ϕi(t)〉〈ϕi(t)|e−iĥs(t)

τ
2

}
. (3.55)

This approximation has to be understood as a quasi static approximation, i.e. it is
assumed that the time evolution of the instantaneous state was for all past times,
and is for all future times, governed by the instantaneous Hamiltonian. Hence,
this approximation should be justified if the Hamiltonian changes slowly. This is
usually the case if there is no time-dependent external field, or if the change of
the external field is slow enough. Nevertheless, we have to keep in mind that the
KS Hamiltonian is, in principle, always time-dependent if the system is not in the
groundstate. However, it turned out in our calculations that the change of the KS
Hamiltonian, that is caused solely by the oscillating density and magnetization
of an excited state, is very small, largely because the fraction of excited electrons
only produces a small contribution to the total density.

In order to calculate the expression (3.55), we expand the time-dependent KS
states in the instantaneous eigenstates and we use the instantaneous eigenvalues,
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which gives according to (3.43):

ρ(ω, t) =
1

2π

∑
i

fi

∫
dτ eiωτ

∑
u,v

cui(t) c
∗
vi(t) Tr

{
e−iεt,u

τ
2 |ut〉〈vt|e−iεt,v

τ
2

}
.

=
∑
u,v

Tr
{
|ut〉〈vt|

} 1

2π

∫
dτ ei(ω− 1

2
[εt,u+εt,v ])τ

∑
i

fi cui(t) c
∗
vi(t)

=
∑
u,v

Tr
{
|ut〉〈vt|

}
δ(ω − 1

2
[εt,u + εt,v])

∑
i

fi cui(t) c
∗
vi(t) . (3.56)

The instantaneous eigenstates are orthonormal, which gives Tr
{
|ut〉〈vt|

}
= δuv,

and we finally get

ρ(ω, t) =
∑
u

δ(ω − εt,u)
∑
i

fi |cui(t)|2︸ ︷︷ ︸
=̂f̃u(t)

. (3.57)

The TDDOS (3.57) looks similar to the ground state density of states, with the
difference that we have now time-dependent occupation numbers f̃u(t), and we
have contributions from the time-dependent eigenvalues εt,u. Note that the time-
dependent eigenvalues correspond, in principle, to a time-dependent band struc-
ture εt,u(k), which is occupied according to f̃u(k, t). With (3.51) we can now calcu-
late from (3.57) the full TDDOS, ρfull(ω, t), and the occupied TDDOS, ρocc(ω, t).

The trace over the one-particle space can be calculated by

Tr
{
. . .
}

=
∑
α=↑,↓

∫
dr 〈α, r| . . . |α, r〉 , (3.58)

which allows it to split the TDDOS in a spin-up and a spin-down part. Hence,
we can, according to (3.56), define a spin-resolved TDDOS:

ρα(ω, t) =
∑
u,v

(∫
dr 〈α, r|ut〉〈vt|α, r〉

)
δ(ω − 1

2
[εt,u + εt,v])

∑
i

fi cui(t) c
∗
vi(t) ,

(3.59)
with α = {↑, ↓}. According to (3.51), the full and the occupied spin-resolved
TDDOS can be calculated. The occupied spin-resolved TDDOS gives informa-
tion about the time-dependent occupation of the spin-up and spin-down states,
while the full spin-resolved TDDOS reveals information about the corresponding
available states. The e3-component of the moment can be calculated via

M3(t) =

∫
dω ρ↑occ(ω, t)− ρ↓occ(ω, t) , (3.60)

which follows directly from (3.59).
In the same manner as before, a region-resolved TDDOS can also be defined by

splitting the integral from (3.58) into a sum of integrals over different volumes.
Since the APW+LO basis is used in the calculations, it is a natural choice to split
the integral volume into the MT and IR:∫

dr · · · =
∫

MT

dr · · ·+
∫

IR

dr . . . , (3.61)
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which defines, according to (3.59), the spin-resolved MT-TDDOS, ρα,MT(ω, t), and
the IR-TDDOS, ρα,IR(ω, t). With these definitions, the number of electrons in the
spin-up and spin-down channels in the different regions can be calculated:

Nα,MT(t) =

∫
dω ρα,MT

occ (ω, t) , Nα,IR(t) =

∫
dω ρα,IRocc (ω, t) . (3.62)

It is then straightforward to calculate the e3-component of the moment in the
different regions. For the MT, for example, follows:

MMT
3 (t) = N↑,MT(t)−N↓,MT(t) . (3.63)

We will now come back to the total TDDOS (3.57). The full total TDDOS
contains information about all available states at a certain time t. Hence, a
corresponding time-dependent Fermi energy, εF(t), can be defined by

N =

∫ εF(t)

−∞
dω ρfull(ω, t) , (3.64)

where N is the number of electrons. With this definition, it is now possible to
calculate the number of excited electrons, Nexc, and the number of non-excited
electrons, Nne, at time t:

Nexc(t) =

∫ ∞
εF(t)

dω ρocc(ω, t) , Nne(t) =

∫ εF(t)

−∞
dω ρocc(ω, t) = N −Nexc(t) . (3.65)

In the same way as before, the spin-resolved, and also the region- and spin-resolved
number of excited, and non-excited electrons can be calculated (see (3.62)). For
example, the number of excited and non-excited electrons in the spin-up and
spin-down channel in the MT is given by

Nα,MT
exc (t) =

∫ ∞
εF(t)

dω ρα,MT
occ (ω, t) , Nα,MT

ne (t) =

∫ εF(t)

−∞
dω ρα,MT

occ (ω, t) , (3.66)

with α = {↑, ↓}. With these definitions, the contribution of the the excited and
non-excited electrons to M3 can be calculated (see (3.63)). For example, the
contribution to the moment from the excited electrons in the MT is given by

MMT
exc,3(t) = N↑,MT

exc (t)−N↓,MT
exc (t) . (3.67)

The calculation of the contribution from the non-excited electrons is analog, and
the moment in the MT would simply follow from

MMT
3 (t) = MMT

exc,3(t) +MMT
ne,3(t) . (3.68)

The equivalent quantities for the IR can be calculated in a similar way. We will,
however, not give any further examples at this point, since the calculations are
straightforward.

Finally, we wish to discuss one last point concerning the reliability of the previ-
ously defined TDDOS. The TDDOS and all related quantities have been derived
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from the non-equilibrium Green functions of non-interacting systems. By looking
at the result (3.57) one could argue that an appropriate TDDOS might also be
defined by referring to the set of eigenstates at t = 0:

ρ′(ω, t) =
∑
u

δ(ω − ε0,u)
∑
i

fi |dui(t)|2 , with dui(t) = 〈ϕu(0)|ϕi(t)〉 . (3.69)

This definition, however, turns out to be deficient regarding some of its proper-
ties. For example, a very slowly changing external potential would, at some time
t for certain i, lead to: 0 < |dii(t)| < 1. Hence, the definition (3.69) would lead
to Nexc(t) > 0, which contradicts the expectation that, for slowly changing po-
tentials, the number of excited electrons should remain zero (considering e.g. the
adiabatic theorem, which also holds for KS systems). The definition (3.57), on
the other hand, would always give Nexc(t) = 0 as long as the external potential
changes slowly enough. Therefore, the TDDOS defined by (3.69) cannot serve as
a proper TDDOS.





4. Ultrafast change of the moment
in extended systems

To study the behavior of excited spin-magnetic extended systems, we will in the following

apply the previously derived simulation framework to different situations. In the first

two sections, we will investigate the response of bulk nickel to different external pulses

and find that excitation leads always to a loss in the moment. Moreover, we will find that

this loss in the moment must be caused by spin-orbit coupling. The spin-orbit coupling

mediated process that leads to the demagnetization will be investigated in detail in the

third section. In the last two sections, we will study the response of the moment of

bulk iron and of a five-atom thick nickel slab. Finally, we will discuss the experimental

results in this field and compare to our calculations.

4.1. A first investigation in bulk nickel

In the previous chapter, the framework used to study ultrafast spin-dynamics
was introduced. In this section, we will apply this framework to investigate the
spin-magnetic response of bulk Ni subjected to an ultrashort intense pulse.

As stated before, in each simulation the KS equations (3.16) have been solved
by a forward propagation. To be more precise: the time evolution of each system
was simulated for a certain time, while in the first part of each run the system
was excited by an external pulse, and in the second part, no external field was
present and the response of the system was studied. The simulations of bulk Ni
that will be discussed in all following sections used the lattice structure of Ni at
room temperature, i.e. a fcc structure with a lattice constant of a = 6.66 a.u.
(= 0.352nm) was used. The system was represented by one primitive unit cell
with the basis vectors a1 = a/2 (1, 1, 0), a2 = a/2 (1, 0, 1), a3 = a/2 (0, 1, 1), and
83 k-points were used in each calculation.

The external field that has been applied corresponds to a pulse that propagates
along the e3-direction, and that is polarized along the e1-direction, meaning that,
according to the DA, a purely time-dependent A-field parallel to e1, and a purely
time-dependent B-field parallel to e2 was used. The corresponding fields are
shown in figure 4.1. The peak intensity of the A-field was 1015W/cm2 and the
pulse duration was approximately 290 a.u. (≈ 7 fs), while the total propagation
time was 800 a.u. (≈ 19.3 fs).

The left panel of figure 4.2 shows the time development of the moment. For
t = 0, the system is in its ferromagnetic ground state with a magnetization along
the e3-direction, and with a moment of M3(0) = −0.69 a.u.. We see that the
magnitude of M3 starts to drop off slightly during the pulse interaction, and the
drop-off becomes stronger at the end of the pulse. This drop-off continues until
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Fig. 4.1.: Left: Applied A-field along e1. The intensity FWHM is approx. 100 a.u. (≈ 2.5 fs),
and the corresponding center wavelength is λ ≈ 8.6 · 103 a.u. (≈ 455nm). Right:
Applied B-field along e2.
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Fig. 4.2.: Left: Time development of the moment in bulk Ni, excited by the pulse from figure
4.1. Right: Time development of M1 with, and without the external B-field.

a plateau is reached at t ≈ 700 a.u. with M3 ≈ −0.35 a.u.. For t > 700 a.u.
M3 starts to oscillates around −0.35 a.u. for all later times (this oscillation can
be seen in the right panel of figure 4.5 where the development of the moment
is shown on a longer time scale). Furthermore, we see that M1 and M2 do not
significantly change and they remain approximately zero. In conclusion, this first
analysis shows that an ultrashort pulse, with a total duration of ≈ 7 fs and a
peak intensity of 1015W/cm2, leads to a demagnetization of about 50 % in bulk
Ni. This demagnetization takes place on a time scale of ≈ 15 fs, and it is most
probably caused by a spin-flip-like process because the magnitude of M3 decreases,
while M1 and M2 do not significantly change.

To get some insight into the process that leads to the demagnetization, we
will in the following employ the dynamical equation of the moment. We see
from equation (3.24) that the torque on the moment has two contributions: one
comes from the B-field, and one comes from SOC. First, we will investigate the
contribution from the B-field torque term ∂tMB. Remember that this term has,
in general, also two contributions: one comes from the xc B-field, and one comes
from the B-field component of the external pulse. Since the ALSDA is used, the
contribution from the xc B-field is zero (see (3.20)). Hence, the B-field torque
term is given by

∂tMB =
1

c

∫
dr
[
Bext(t)×m(r, t)

]
=

1

c
Bext(t)×M(t) . (4.1)

We see that this torque term reduces to a simple Larmor precession term that
contains the moment, which follows from the fact that the external B-field is
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purely time-dependent. Note that we have for t = 0: M1(0) = M2(0) = 0. Hence,
any initial change of the moment that would come directly from the contribution
(4.1) could only change the components M1 and M2, but not M3. Moreover, this
change would only happen if the external B-field would have a non-zero e1- or
e2-component.

For the discussed run, the external B-field was parallel to e2. Thus, any direct
change that comes from (4.1) should only change M1. This change can, in fact,
be seen in the left panel of figure 4.2, which manifests itself by a small oscillation
that is nearly proportional to the A-field (this proportionality results from the
fact that the integral of Bext is proportional to Aext). However, the change that is
caused by ∂tMB appears to be very small and it also does not seem to have any
persistent effect.

The plot in the right panel of figure 4.2 shows a closeup of M1 and compares
it to the M1 that has been obtained by a run that was similar to the discussed
run, with the difference that no external B-field was used. It is clear to see that
the change of M1 that is caused by the external B-field is only present as long
as the external B-field changes. Once the B-field remains zero, the M1 obtained
with the B-field becomes identical to the M1 obtained without the B-field. This
behavior can be explained by the fact that M3 does not change very much as long
as the external field is present (which is in fact the case as can be seen in figure
4.2): With (4.1) we get, for the change of M1, the following B-field contribution:

∆MB,1(T ) =

∫ T

0

dt ∂tMB,1(t) =

∫ T

0

dtBext,2(t)M3(t) ≈M3(0)

∫ T

0

dtBext,2(t)︸ ︷︷ ︸
=0

= 0 ,

(4.2)
where T is the duration of the external pulse. Here we have used that the E-
field, and thus also the B-field, of a pulse must integrate to zero, which has been
discussed at the end of section 2.4.1.

We can conclude that the direct change of the moment that is caused by the
external B-field is negligible, resulting from the nature of the external field. How-
ever, even for external fields that do not integrate to zero, this direct effect would
most probably always be very small (as seen in figure 4.2). Moreover, the external
B-field does also not lead to any significant indirect effects. Indirect meaning that
the external B-field could change the magnetization, which would then change the
xc B-field, and which could then contribute to the change of the moment via SOC.
The direct and also the indirect effect of the external B-field on the dynamics of
the moment has been tested in several runs, and it was found that the contribu-
tion from the external B-field was always negligible. We emphasize, however, that
only one linear polarized external pulse was applied in all runs . If more than one
pulse is applied, or if a circularly polarized pulse is used, the B-field contribution
might become more important.

We conclude that the contribution of the external B-field to the dynamics of the
moment is negligible (at least for the situations considered in this work). Hence, all
runs that will be presented in the following neglect the external B-field. Similarly,
all following theoretical discussions will neglect the external B-field as well. Since
the external B-field has no significant effect, we can conclude that the dynamics
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of the moment follows solely from the term ∂tMSOC (see (3.22)), meaning that the
ultrafast demagnetization observed in our simulation has to be caused by SOC.
The underlaying process that leads to the change of the moment via SOC was
already roughly outlined in the last part of section 3.1.4: spin-currents that flow
around the nuclear potential feel an effective B-field, which leads to a torque on
the moving spins, and hence to a change of the moment. The whole process that
leads to the demagnetization via SOC will be investigated in section 4.3 in more
detail.

4.2. Response of the moment for different fields in
bulk nickel

In this section we will investigate how the moment of bulk Ni changes when
different parameters for the external field are applied. In all runs, the Ni system
was at t = 0 in its ferromagnetic ground state with a magnetization along the
e3-direction, i.e. M1(0) = M2(0) = 0 and M3(0) = −0.69 a.u..

First, we will investigate how the response of the moment changes if pulses with
different center frequencies are applied. The pulses applied are shown in the left
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Fig. 4.3.: Left: Applied A-fields along e1. The intensity FWHM of each pulse is ≈ 100 a.u.
(≈ 2.5 fs), and the center frequencies (and corresponding wavelengths) are ω =
0.05 a.u. (λ ≈ 910nm), ω = 0.1 a.u. (λ ≈ 455nm), and ω = 0.2 a.u. (λ ≈ 228nm).
Right: e3-component of the moment for the different pulses.

panel of figure 4.3. All pulses had the same peak intensity of I0 = 1015W/cm2

and a total duration of about 290 a.u. (≈ 7 fs), while the total propagation time
was 1200 a.u. (≈ 29 fs). The response of M3 is shown in the right panel of
figure 4.3. It is clear to see that all pulses lead to a demagnetization, and the
demagnetization process happens on a time scale of about 700 a.u. (≈ 15 fs).
Moreover, we see that the demagnetization starts approximately at the peak of
the pulse, while most of the demagnetization happens after the end of the pulse.
We also see that the magnitude of the demagnetization is different. The strongest
demagnetization (about 50 %) happens for the pulse with ω = 0.1 a.u., while the
demagnetization for the pulse with the lower frequency of ω = 0.05 a.u. leads to
a somewhat weaker demagnetization (about 43 %). The pulse with the highest
frequency of ω = 0.2 a.u. leads to an even weaker demagnetization (about 22 %).
The change of M1 and M2 was, for all runs, very small compared to the change
of M3.
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Next, we will investigate the dependence of the moment on the peak intensity of
the external pulse. The shape and duration of the applied pulses were equal to the
shape and duration of the pulse with the center frequency ω = 0.1 a.u. from the
previous paragraph (see figure 4.3), but this time three different peak intensities
have been used: I0 = 1014W/cm2, I0 = 5 · 1014W/cm2, and I0 = 1015W/cm2.
The polarization direction was along e1. For reference, the pulse shape is again
shown in the left panel of figure 4.4. The time development of M3 is provided in
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Fig. 4.4.: Left: Shape of the A-field applied for different peak intensities and polarizations.
Right: e3-component of the moment for the different peak intensities.
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Fig. 4.5.: Left: e3-component of the moment for different polarization directions of the ex-
ternal field. Right: Evolution of the moment on a longer time scale for the pulse
from the figure 4.4, with I0 = 1015W/cm2 and the polarization along e1.

the right panel of figure 4.4. It is clear to see that a demagnetization occurs for all
intensities, and that the demagnetization is stronger for higher intensities. While
the loss in the moment is about 50 % for I0 = 1015W/cm2, it goes down to 13 %
for I0 = 1014W/cm2 (note that the loss is not linear in I0). Again, the change of
M1 and M2 was, for all runs, very small compared to the change of M3.

Next, we will investigate the dependence of the moment on the polarization di-
rection of the external field. For this purpose, three different pulses similar to that
shown in the left panel of figure 4.4 and with a peak intensity of 1015W/cm2, but
with different polarizations, have been applied. One polarization was again along
(1, 0, 0), while the two other polarization directions were (1, 1, 0) and (0, 0, 1). The
corresponding change of M3 is shown in the left panel of figure 4.5. We see that
the difference in the change of the moment between the various polarizations is
small.

The right panel of figure 4.5 shows again the response of the moment for the
pulse from the left panel of figure 4.4 (with I0 = 1015W/cm2 and polarization
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along e1), but this time on a longer time scale of 2500 a.u. (≈ 60 fs). We see that
M3 is reduced to about 50 % in the first 700 a.u.. After this initial loss, the value
of M3 is almost kept, aside from some small oscillations. Beside M3, also M1 and
M2 are shown. As already stated, the change of M1 and M2 during the initial
demagnetization is small compared to the change of M3. Nevertheless, we see
that the change of M1 and M2 increases on longer time scales, but it still remains
much less than the initial change of M3.

Previously, the response of the moment on very short pulses has been inves-
tigated. Now, we will investigate how the moment behaves if longer pulses are
used. The shape of the applied pulses is shown in the left panel of figure 4.6.
(Note that this pulse has many wave cycles and not only a few, like the pulses
shown before. Experimentally, such many cycle pulses are typically much easier
to construct than few cycle pulses [48].) The center frequency was for all pulses
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Fig. 4.6.: Left: Shape of the A-field applied for different peak intensities. The intensity
FWHM is ≈ 700 a.u. (≈ 17 fs), and the center frequency (and corresponding wave-
length) is ω = 0.073 a.u. (λ ≈ 620nm). Right: e3-component of the moment for
different peak intensities.

ω = 0.073 a.u., while three different peak intensities have been tested. The total
propagation time was 2800 a.u. (≈ 68 fs). The time evolution of M3 is shown
in the right panel of figure 4.6. As expected, the demagnetization increases for
higher peak intensities. For a peak intensity of I0 = 1014W/cm2 we have a loss
in the moment of about 75 %, for I0 = 1013W/cm2 we have a loss of about 19 %,
and for I0 = 1012W/cm2 we have a loss of about 4 %. By comparing these results
to the results obtained with the short pulses (see figure 4.4), it follows that the
demagnetization depends also on the fluence of the pulse, i.e. a larger fluence leads
to a stronger demagnetization (the fluence is proportional to

∫
dtE2(t); E(t) is

the electric field). As before, the change of M1 and M2 was, for all runs, very
small compared to the change of M3.

From the previously shown results, we come to the following conclusions: First,
the loss in the moment of ferromagnetic bulk Ni increases for higher pulse inten-
sities, and for larger pulse fluences. Moreover, the loss in the moment depends
strongly on the center frequency of the pulse, while there seem to exist optimal
frequencies which lead to stronger demagnetizations. The polarization direction
of the external pulse, on the other hand, has no strong influence on the demag-
netization behavior. Furthermore, we see the following general behavior: there is
always a demagnetization, i.e. the magnitude of the moment is never increased,
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w.r.t. t = 0, and the loss in the moment always lags behind the external pulse
(this is particularly noticeable for the short pulses).

From the previous section we know that the change of the moment has to be
caused by the SOC term from (3.24), but why we get the previously discussed
behavior is still unclear. Therefore, the SOC torque term and the correspond-
ing demagnetization process will be investigated in more detail in the following
section.

As a last point in this section, we wish to say a few words about the convergence.
In section 3.2 it was pointed out that the number of states for the expansion Nmax,
the time step size ∆t, and the number of k-points Nk have to be converged to
give accurate results. For all runs that are presented in this work, Nmax and ∆t
were sufficiently converged. Nk, on the other hand, was not completely converged.
However, it was found that the choice of Nk is more crucial for the ground state
calculation (and the corresponding value of the moment, see left panel of figure 4.7
for t = 0) than for the calculation of the time-dependent change of the moment.
This fact is shown in the right panel of figure 4.7, where we see that the relative
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Fig. 4.7.: Left: e3-component of the moment for a different number of k-points. The applied
pulse was similar to that from the left panel of figure 4.4, the center frequency was
ω = 0.1 a.u., and the peak intensity was I0 = 1015W/cm2. Right: Relative change
of M3 for a different number of k-points.

change of the moment is very similar for the three different choices of Nk. Since
the main concern of this work is the investigation of the demagnetization and the
understanding of the underlaying process, emphasis was not put on an entirely
converged k-point grid. Hence, all simulations of bulk systems that are presented
in this work used a k-point grid with Nk = 83.

4.3. The demagnetization process

In section 4.1 we have shown that an ultrashort external pulse induces a fast de-
magnetization in bulk Ni. Additionally, we have found that this demagnetization
has to be caused by SOC. In the previous section we have shown that a demag-
netization always happens, as long as the pulse is intense enough, independent
of the pulse parameters. Moreover, we have seen that the loss in the moment
increases for higher pulse fluences and intensities, while the polarization direction
has almost no influence on the demagnetization behavior.
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In this section, we will investigate the demagnetization process in more detail.
We will see that several steps are involved, and that different processes have to be
taken into account. In the following subsections, the different steps and processes
will be discussed individually, and we will find that the previously discussed be-
havior of the moment can be understood. All following investigations refer to the
short pulse run with the peak intensity I0 = 1015W/cm2, the center frequency
ω = 0.1 a.u., and the polarization along e1, shown in figure 4.4.

4.3.1. Initial change of the local moment and charge

As stated in section 4.1, the bulk Ni system was represented by a primitive unit
cell with the lattice constant a = 6.66 a.u.. The corresponding volume of the unit
cell was 73.8 a.u.. Moreover, we recall that the unit cell is divided in two different
regions: in the MT and the IR (remember that the MT corresponds to a sphere
around the atom; see section 3.2). In the bulk Ni calculations the radius of the
MT was 2.0 a.u., corresponding to a MT volume of 33.5 a.u.. Hence, the volume
of the IR (which is the region outside the MT) was 40.3 a.u..

In this section we will investigate the initial response of the local charge and
moment in the MT and in the IR. In the left panel of figure 4.8, the intensity
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of the external pulse is shown for the first 200 a.u. (≈ 3.8 fs). The right panel
of figure 4.8 shows the moment in the MT, the moment in the IR, and the total
moment. First of all, we notice a fast loss in the moment of the MT, and at the
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same time, we see an increase in the moment of the IR. Furthermore, we see that
the total moment remains almost constant during this initial time, meaning that
the amount of moment that is lost in the MT is roughly equal to the amount
of moment that is gained in the IR. Moreover, we notice that this process takes
place on a very fast time scale, and it starts immediately when the intensity of
the external field changes significantly. The e1- and e2-component of the moment
in the two regions was approximately zero during the investigated time scale.

As stated before, the change of the total moment during the initial time is
almost negligible. Thus, one could argue that the change of the moment in the
MT and IR is accomplished by spin-currents that transport parts of the moment
from one region to the other. To investigate this statement, and to exclude any
SOC contributions, an identical run has been performed, but this time SOC was
switched off. The left panel of figure 4.9 shows the change of the charge in the MT
for the run with, and for the run without SOC. It is clear to see that the change of
the charge is identical in both runs. Moreover, we see that the amount of charge
in the MT decreases, meaning that the charge in the IR increases, since the total
charge in the unit cell is constant. This is also what one would expect, because
an excitation leads typically to a delocalization of the charge. We conclude that
SOC has no influence on the change of the local charge during the initial excitation
process.

The right panel of figure 4.9 shows the change of the moment in the MT for
both runs. We see that the moment is almost identical for t = 0 . . . 130 a.u.,
and it starts do become slightly different for later times (note that this difference
has to be caused by SOC). The important result is that the initial change of the
local moment is nearly identical in both runs, meaning that this initial change
is not related to SOC. Furthermore, we recall that the total moment has to be
conserved if no SOC is present. Hence, the initial change of the moment in the
MT has to be accomplished by spin-currents that flow trough the MT surface, and
that transport parts of the moment to the IR. This can be seen by integrating the
dynamical equation of m3 over the MT volume for a system without SOC (the
corresponding equation is similar to equation (3.19), with the difference that the
last two terms are not present, since these terms are SOC contributions):

MMT
3 (t)−MMT

3 (0) =

∫ t

0

dt′
∫

MT

dr ∂t′m3(r, t′) = −
∫ t

0

dt′
∫

MT

dr∇ · j3(r, t′)

= −
∫ t

0

dt′
∮

MT

ds · j3(r, t′) . (4.3)

We have used (3.20) and (2.27), and we have applied Gauss’s theorem.
Another way to investigate the initial change of the local moment is to employ

the TDDOS, introduced in section 3.3. The two upper panels of figure 4.10 show
the spin-resolved TDDOS in the MT and IR at t = 0 (note that this TDDOS
corresponds to the ground state DOS). We see that all available states up to the
Fermi energy (which is shifted to ω = 0) are occupied. Remember that M3 follows
from the corresponding occupation of the spin-up and spin-down states. We wish
to mention that the total moment comes, for the ground state, almost entirely
from the MT (which can be seen in figure 4.12).
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Fig. 4.10.: Spin- and region-resolved density of states in the MT and IR at the initial time
t = 0, and at t = 130 a.u.. The Fermi energy is shifted to ω = 0.

When the system is excited, the available states above the Fermi energy become
occupied. Fermi’s golden rule tells us that the probability of occupying a certain
state is proportional to its DOS value. Hence, the region- and spin-resolved full
DOS can give information about how each spin channel in each region will be
occupied by an excitation, and, correspondingly, how each local moment changes.
However, we have to keep in mind that the situation is a bit more involved in our
case, because the full TDDOS itself changes with time. Thus, it is not entirely
possible to predict how the spin channels will be occupied solely from the ground
state DOS. The two lower panels of figure 4.10 show the spin-resolved TDDOS in
the MT and IR at t = 130 a.u.. It is clear to see that the states above the Fermi
energy became occupied (note that this occupation is approximately proportional
to the full DOS values), while at the same time some states below the Fermi energy
became unoccupied, which led to the change of the local moment. Moreover, we
see that the full TDDOS has clearly changed between t = 0 and t = 130 a.u..
Finally, we wish to mention that the TDDOS was almost identical for the run
with SOC and without SOC for t = 0 . . . 130 a.u. (the TDDOS from figure 4.10
corresponds to the run with SOC).

Instead of directly investigating the TDDOS, we can also investigate how the
corresponding number of excited and non-excited electrons in the different spin
channels and regions changes (see (3.66)). In the left panel of figure 4.11 we see
that the number of excited electrons in the MT behaves almost equal for both spin
channels during the initial excitation. Furthermore, we see that the number of
non-excited spin-down electrons decreases more than the number of non-excited
spin-up electrons, meaning that we have a loss in the moment of the MT that is
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Fig. 4.11.: Number of excited and non-excited valence electrons in each spin channel in the
MT (left), and in the IR (right). The spin-up channel is plotted with red lines,
and the spin-down channel is plotted with green lines (see also (3.66)).
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caused by the non-excited electrons. This can also be seen in the left panel of
figure 4.12, where the corresponding contributions of M3 are shown. The right
panel of figure 4.11 shows how the different spin channels in the IR behave. The
number of non-excited spin-up electrons decreases more than the number of non-
excited spin-down electrons. Moreover, the number of excited spin-down electrons
increases stronger than the number of excited spin-up electrons. Both processes
lead to an increase in the magnitude of the moment, meaning that the change
of the moment in the IR is caused by both, excited and non-excited electrons.
The change of the corresponding M3 contributions is shown in the right panel of
figure 4.12. Finally, we wish to mention that the total number of electrons in each
spin channel is approximately constant, because the total moment M3 = N↑−N↓
is almost constant for t = 0 . . . 130 a.u., and since the total number of electrons
N = N↑ +N↓ is constant.

We conclude that a short and intense A-field pulse leads to a very fast delocal-
ization of the charge in ferromagnetic bulk Ni (as a direct result of the excitation
process). This initial change of the charge is accompanied with a very fast change
of the local moment, i.e. the magnitude of the moment in the MT decreases, and
the magnitude of the moment in the IR increases. The total moment, on the
other hand, is approximately constant, meaning that the change of the local mo-
ment is caused by spin-currents which transfer parts of the moment. The change
of the local moment can also be explained by the time-dependent change of the
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occupation of the spin-resolved local TDDOS. Since the TDDOS depends on the
band structure of the system, the initial change of the local moment has to be a
characteristic property of the system. Note that this change of the local moment
is not caused by SOC.

4.3.2. Approximation of the spin-orbit coupling term

In this section we will show how the SOC term can be approximated, and we
will explain why this approximation is reasonable. The approximation of SOC
will be very useful for the investigation and understanding of the demagnetization
process, as will be seen in the following sections. Furthermore, we will investigate
in which region the demagnetization process takes place, which will also be useful
for subsequent sections.

In section 4.1 we found that the demagnetization is caused by SOC. The corre-
sponding term in the KS equations is (see the scheme (3.16))

1

4c2
σ ·
(
∇vs(r, t)×

[
p̂ +

1

c
Aext(t)

])
, (4.4)

where the effective potential is given by

vs(r, t) = vn(r) + vH(r, t) + vxc(r, t) . (4.5)

First, it is assumed that the change of the potential along the radial direction
is much larger than the change along any other direction (we assume that the
nucleus is at the origin of the spherical coordinate system). Thus, the gradient
can be approximated by

∇vs(r, t) −→ ∇vs(r, t) = ∂rvs(r, t) er , (4.6)

where r is the radial coordinate, er is the radial unit vector, and the nucleus sits
at r = 0. Next, it is assumed that the time-dependent change of (4.6) is negligible,
meaning that (4.6) can be approximated by its ground state value:

∂rvs(r, t) er −→ ∂rvs(r, 0) er . (4.7)

Note that this approximation concerns only the Hartree and the xc potential,
because the nuclear potential is time-independent. Before we continue we wish
to emphasize that the approximations concern only the SOC term, and no other
term in the Hamiltonian.

With the definition of the gauge invariant orbital angular momentum operator

L̂ = r er ×
(
p̂ +

1

c
Aext(t)

)
, (4.8)

and with the definition of the SOC radial function

ξ(r) =
1

2c2r
∂rvs(r, 0) , (4.9)
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the SOC term (4.4) reduces with the assumed approximations to

1

4c2
σ ·
(
∇vs(r, t)×

[
p̂ +

1

c
Aext(t)

])
(4.6),(4.7)−−−−−→ 1

2
ξ(r)σ · L̂ . (4.10)

To be physically correct, the gauge invariant orbital angular momentum (4.8)
should be used in approximation (4.10). As stated before, however, the diamag-
netic part of the SOC term, ξ(r̂)σ̂ · (r̂ ×A)/2c, also turned out to be negligible
(at the end of appendix A.6.4 we give a theoretical explanation for this behavior).
Hence, for simplicity, we will neglect this term in all following investigations and
consider only the bare orbital angular momentum operator in the SOC term.

Since the approximation (4.10) seems, at first glance, to be rather crude, the
consequence of this approximation has been investigated for such situations that
are discussed in this work. To be more precise: calculations that have been per-
formed with the approximate SOC term have been compared to calculations that
have been performed with the full SOC term. These showed that the difference
in the observables between the various runs (and in particular the difference in
the time-dependent moment) was very small and always negligible. Hence, all
calculations that are presented in this work applied the approximate SOC.

In the following, we will explain why the approximation (4.10) is sufficient to
describe the dynamics of the moment. Moreover, we will consider the approximate
SOC term in all following theoretical investigations, because this will simplify the
analytical discussions. Note, however, that the treatment of the full SOC might
become important for situations that are different to those discussed in this work
(i.e. for different systems or different external pulses).

In section 3.1.4 the dynamical equation of the moment has been derived. Fol-
lowing this procedure and considering the approximate SOC term (4.10) gives

∂tM(t) =
∑
i

〈1
i
[σ̂i,

1

2
ξ(r̂i)σ̂i · L̂i]〉(t) =

∑
i

〈ξ(r̂i)L̂i × σ̂i〉(t) , (4.11)

where we have used that the change of the total moment comes solely from SOC.
In section 4.1, we found that the loss in the moment has to be caused by a spin-flip-
like process, because only M3 changes, while M1 and M2 remain approximately
zero (i.e. this spin-flip process has to be SOC mediated). We will now use the
equation (4.11), and modify it slightly, to find the region in which the spin-flip
process takes place:

M(t;R) = M(0) +

∫ t

0

dt′
∑
i

〈Θ(R− r̂i)ξ(r̂i)L̂i × σ̂i〉(t′) . (4.12)

Here, we calculate with the help of the Heaviside step function Θ the partial torque
on the moment that occurs in a sphere with radius R around the nucleus. This
partial torque is then integrated over time, and summed together with the initial
total moment, to calculate the time-dependent moment, M(t;R), that would be
obtained solely from the partial torque (i.e. solely from the torque that occurs in
the sphere with radius R).

The left panel of figure 4.13 shows M3(t;R) for different radii R, and com-
pares it to the total moment (remember that all plots refer to the run with
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Fig. 4.13.: Left: e3-component of the partial moment M(t;R), defined by (4.12), for different
radii R. For comparison, also the total moment is shown. Right: Contribution
to the change of M3 from the nuclear, from the Hartree, and from the xc poten-
tial (see definition (4.13); ξ′ is calculated from vn, from vH, or from vxc). For
comparison, also the change of the total moment is shown.

I0 = 1015W/cm2 from figure 4.4). From the graph we learn the following: First,
we see that nearly the entire spin-flip process occurs in a sphere around the nu-
cleus with a radius of about R = 0.7 a.u.. Furthermore, we notice that the major
contribution of the loss in the moment comes from the region between the radii
R = 0.1 a.u. and R = 0.4 a.u.. In this region, basically only the radial potential
from the nucleus in the center of the sphere plays a role, while the potential from
all other nuclei of the lattice should be negligible. Hence, also the electronic charge
should be nearly radial in this region, meaning that the Hartree potential should
be nearly radial as well. When we additionally assume that the xc potential gives
only a minor contribution to the dynamics of the moment, it becomes clear why
the radial approximation (4.6) is reasonable.

Next, we will investigate how strong each potential from (4.5) contributes to the
loss in the moment. In order to do this, we will use equation (4.11) and integrate
it in time, which allows us to calculate the change of the moment:

∆M′(t) =

∫ t

0

dt′
∑
i

〈ξ′(r̂i)L̂i × σ̂i〉(t′) . (4.13)

The primed expression ξ′ means that ξ′ is calculated as in (4.9), with the difference
that vs is replaced by either the nuclear, the Hartree, or the xc potential (we point
out that there was no difference in using the time-dependent potentials or the
potentials from t = 0). This allows us to calculate the contribution to the change
of the moment from each potential (note that the sum of the nuclear, Hartree,
and xc contribution gives the change of the total moment). The corresponding
contributions are shown in the right panel of figure 4.13.

First, we notice that the nuclear potential gives the strongest contribution to
the change of the moment. Furthermore, we see that the Hartree potential has
a smaller, but still a quite strong contribution (the magnitude is approximately
30 % of the magnitude of the nuclear contribution). We also see that the Hartree
contribution is negative, while the nuclear contribution is positive (note that the
change of the total moment is positive). This results from the fact that the Hartree
potential has its origin in the electronic density which has the opposite charge as
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the nucleus. Hence, we could argue that the Hartree potential leads to a slow
down, and to a decrease in the demagnetization (recall that the Hartree SOC term
corresponds to a many-electron SOC contribution, as discussed in section 2.2.4).
As a last point, we note that the contribution of the xc potential is very small and,
in principle, negligible. We can conclude that the change of the moment comes
from the time-independent nuclear potential and from the Hartree potential, while
the contribution from the xc potential is negligible. Since the Hartree contribution
comes mainly from the region close to the nucleus where the electrons are strongly
bound, and where the change of the Hartree potential should be small, it becomes
clear why the approximation (4.7) is reasonable.

In summary, we found that the full SOC term can be adequately approximated
by the radial and time-independent form (4.10). From this it follows that the dy-
namical equation of the moment can be represented in the simplified form (4.11),
which contains the orbital angular momentum operator (note that this defini-
tion refers to the orbital angular momentum around the nucleus). Moreover, we
found that only the nuclear and the Hartree potential contribute to the demag-
netization, while the contribution of the xc potential is negligible. Additionally,
we found that the spin-flip-like demagnetization process takes place in a sphere
around the nucleus with a radius of about R = 0.7 a.u..

4.3.3. A closer look at the demagnetization process

In this section we will investigate in more detail how the moment changes during
the demagnetization. Specifically, we will investigate how the local moment be-
haves in different regions. Additionally, we will have a closer look at the spin-flip
process, and we will find that the change of the moment can be described via the
dynamics of certain angular momentum quantities.

For the following investigations, we will divide the unit cell into three regions,
as illustrated schematically in the left panel of figure 4.14. Region I corresponds to
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Fig. 4.14.: Left: Schematic of the Ni unit cell, which is divided into three different regions.
Right: e3-component of the local moment of each region corresponding to the
schematic from the left panel.

a sphere around the nucleus with the radius RI = 0.7 a.u.. Region II corresponds
to the region between the spheres with the radii RI = 0.7 a.u. and RII = 1.4 a.u..
Finally, region III corresponds to the region outside the sphere with the radius
RII = 1.4 a.u.. In the following, we will investigate how the moment in each of
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these regions behaves (it will then also become clear why we chose these regions).
To do so we will, with the help of the Heaviside step function Θ, define the
following functions:

ΩI(r) = Θ(RI − r) , ΩII(r) = Θ(RII − r)− ΩI(r) , ΩIII(r) = 1−Θ(RII − r) ,

with RI = 0.7 a.u. , and RII = 1.4 a.u. . (4.14)

These functions are zero outside, and one inside the respective region. We will
use these functions to calculate local expectation values in the different regions.

Recall that we found in the previous section that the spin-flip process takes
place in region I (we used the equation (4.12) to determine the local spin-torque
contributions). However, this finding does not necessarily mean that the corre-
sponding local moment changes only in this region. In order to investigate this
issue, the local moments

M′(t) =
∑
i

〈Ω′(r̂i) σ̂i〉(t) (4.15)

have been calculated, where Ω′ corresponds to the functions from (4.14), respec-
tively. The corresponding M3 quantities are shown in the right panel of figure 4.14.
First, we notice that the moment changes very quickly during the first 150 a.u.
in all three regions. This quick change of the local moment, which is a result
of the excitation process, has been explained in section 4.3.1 (the magnitude of
the moment decreases in the regions around the nucleus, i.e. in region I and II,
while the magnitude of the moment increases in region III, which coincides with
what we found in section 4.3.1). Recall that the total moment is, however, nearly
constant during this initial period.

Next, we notice that, for t > 200 a.u., the moment changes in region I and II,
while it remains nearly constant in region III (i.e. the change of the total moment
follows from the change of the local moments of region I and II; compare e.g.
to the total moment from figure 4.13). As stated before, the spin-flip process
takes place in region I, meaning that the change of the moment in region II has
to be caused by spin-currents. In fact, the only mechanism that can explain the
behavior of the local moments from figure 4.14 is the following: The spin-flip
process in region I leads to a loss in the local moment of region I. During this
spin-flip process, positive-valued spin-currents flow from region I into region II
and lead to an increase in the local moment of region II (which means a loss
in the magnitude, because the local moment is negative). I.e., we have a spin-
current mediated transport of the local moment from region I to region II that
happens simultaneously to the spin-flip process. (We wish to mention that it
is also valid to argue that negative-valued spin-currents flow from region II into
region I, because there is no difference by the quantum mechanical point of view.)
Note that the major part of the total moment comes from region III after the
demagnetization. The local charge in the different regions changes only during
the excitation process. Once the external field is zero, the charge in the various
regions remains constant (apart from tiny oscillations).

We will now come back to the spin-flip process. We know from the previous
section that the change of the moment is adequately described by equation (4.11).
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Moreover, we know that the spin-flip process takes place in region I. Hence, the
change of M3 (and the spin-flip process, respectively) is described by

∂tM3(t) =
∑
i

〈ΩI(r̂i) ξ(r̂i)
(
σ̂2,iL̂1,i − σ̂1,iL̂2,i

)
〉(t) . (4.16)

Before we continue, we wish to mention that the mechanism of the change of the
moment according to equation (4.16) can be imagined in a similar way as discussed
at the end of section 3.1.4. For example, the contribution of the σ2L1-component
to the change of the moment can, in a simplified manner, be interpreted as follows:
The σ2-component corresponds to a magnetic dipole that moves according to the
angular momentum L1 in the radial electric field. The movement in the electric
field leads to an effective magnetic field, which leads then to a torque on the
dipole (or spin, respectively), and hence to a change of the spin. However, as also
stated before, we have to be careful with this interpretation due to the following
reason: One might think that 〈σ̂2L̂1〉 is, in region I, approximately given by the
mean field expression 〈σ̂2〉〈L̂1〉. On the contrary one finds that this is not true,
and that the mean field expression is approximately zero, because 〈σ̂2〉 ≈ 0 during
the entire time evolution. A similar behavior is found for 〈σ̂1L̂2〉. Hence, the full
combined σpLq-operator has to be considered in the investigations. (Note that

〈σ̂pL̂q〉 corresponds to an integrated spin-current density; see also appendix A.2.)
The spin-flip process is described by equation (4.16). In order to investigate the

spin-flip process in more detail, it would be advantageous if the problem could be
described by an even simpler expression. Such an expression could, for example,
be obtained by simply replacing the radial function ξ(r) by an effective scaling
factor β (which might be a justified simplifiction, due to the radial character of
the problem):

∂tM3(t) =
∑
i

β〈ΩI(r̂i)
(
σ̂2,iL̂1,i − σ̂1,iL̂2,i

)
〉(t) . (4.17)

This simplification has been tested, and it was, in fact, found that equation (4.17)
describes the spin-flip process quite well (with β = 10.5 · 10−3). This can be
seen in the left panel of figure 4.15, where the σ2L1 and σ1L2 contributions of
∂tM3 from equation (4.16) are compared to their simplified, scaled terms from
(4.17). It is clear to see that the simplified, scaled terms show nearly the same
time evolution as their corresponding full terms. However, it is also clear to see
that the full terms show slightly stronger oscillations than the simplified terms,
and one might ask whether the simplified terms would actually lead to the correct
time evolution of the moment. The right panel of figure 4.15 compares the total
moment to the corresponding value that has been obtained from the integration
of equation (4.17). We see that the moment that has be calculated from the
simplified ∂tM3-expression describes the time evolution of the moment very well.

We can conclude that the time evolution of ∂tM3, and hence the spin-flip pro-
cess, is in principle completely described by the time evolution of the following
two quantities:∑

i

〈ΩI(r̂i) σ̂2,iL̂1,i〉 , and
∑
i

〈ΩI(r̂i) σ̂1,iL̂2,i〉 . (4.18)
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Fig. 4.15.: Left: The σ2L1 and σ1L2 contribution of ∂tM3 for the full calculation (according
to (4.16)), and for the simplified calculation (according to (4.17)). The two terms
from the simplified calculation are scaled with the factor: β = 10.5 · 10−3. Right:
e3-component of the total moment, and the corresponding value that has been
obtained from the integration of (4.17) with β = 10.5 · 10−3.

In the following, we will refer to the quantities from (4.18) as “spin-orbit angular
momenta”. (The quantities from (4.18) should, to be more precise, be named “lo-
cal spin-orbit angular momenta”, since the σL-expectation values are calculated
only in region I. However, for simplicity we will in the following omit the word
“local”.)

In summary, we have found that the change of the total moment in bulk Ni
takes place in two regions: in region I and in region II (see figure 4.14). The
actual spin-flip process takes place in region I, which causes a loss in the local
moment of region I. Moreover, it was found that, during the spin-flip process,
spin-currents flow from region I into region II, causing a loss in the local moment
of region II as well. Furthermore, it was found that the region outside of region II
(i.e. region III) does not directly contribute to the loss in the moment. Finally, we
found that the spin-flip process is completely described by the time evolution of
the spin-orbit angular momenta in region I, i.e. by the two quantities from (4.18).

4.3.4. Spin-orbit angular momentum torques and the ground
state

In section 4.2 we found that the amplitude of the total moment in ferromagnetic
bulk Ni always decreases when the system is excited by an intense external pulse.
We did not, however, find a reason why a loss in the moment is always observed. In
the previous section, we found that the dynamics of the total moment is completely
determined by the dynamics of the spin-orbit angular momenta. To be more
precise, it was found that the dynamics of M3 is related to the two quantities
from (4.18) via

∂tM3(t) ∼
∑
i

〈ΩI(r̂i) σ̂2,iL̂1,i〉(t)−
∑
i

〈ΩI(r̂i) σ̂1,iL̂2,i〉(t) . (4.19)

Hence, one could try to explain the behavior of the moment by means of the spin-
orbit angular momenta. In the next section, we will follow this idea, and we will
investigate the time evolution of the spin-orbit angular momenta in detail. It is
reasonable to investigate the spin-orbit angular momenta from (4.19) individually,
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because each of these two quantities gives a more or less similar contribution to
the dynamics of the moment (this can be seen from the left panel of figure 4.15).

In this section, we will investigate the spin-orbit angular momenta and the re-
lated torque quantities for the ground state, because it is important first to under-
stand the corresponding behavior of the ground state before the time-dependence
can be discussed (this will become more clear in the next section). First of all,
we point out that each of the two spin-orbit angular momenta from (4.19) is
zero for the ground state, which can be seen in figure 4.15 (this results from the
symmetry). Therefore, we have

∑
i

〈ΩI(r̂i) σ̂2,iL̂1,i〉(t) =

∫ t

0

dt′
∑
i

∂t′〈ΩI(r̂i) σ̂2,iL̂1,i〉(t′) , (4.20)

and an equivalent equation for the other spin-orbit angular momentum, meaning
that the change of the moment follows solely from the time derivative of the
spin-orbit angular momenta (via the integration of (4.17)). In the following, we
will refer to the time derivative of the spin-orbit angular momenta as spin-orbit
angular momentum torques.

Each spin-orbit angular momentum torque has several torque contributions.
The different torque contributions follow from the application of Ehrenfest’s theo-
rem. In the following, we will use Γpq to refer to the spin-orbit angular momentum
torque of spin-component p and orbital angular momentum component q. Calcu-
lating the torque contributions of the σpLq-spin-orbit angular momentum gives

Γpq(t)=
∑
i

∂t〈ΩI(r̂i) σ̂p,iL̂q,i〉(t) (4.21)

=−
∑
i

∮
ΩI

ds · Re
[
〈δ(r− r̂i)(p̂i +

1

c
Aext(t))σ̂p,iL̂q,i〉(t)

]
︸ ︷︷ ︸

=Γs
pq(t)

+
∑
i

1

c
Aext(t)× Re

[
〈ΩI(r̂i)σ̂p,i p̂i〉(t)

]∣∣
q︸ ︷︷ ︸

=ΓA
pq(t)

+
∑
i

〈ΩI(r̂i)σ̂p,i∇vs(r̂i)× r̂i〉(t)
∣∣
q

+
∑
i

1

2c
〈ΩI(r̂i)∇Bxc,p(r̂i)× r̂i〉(t)

∣∣
q

+
∑
i

Re
[
〈ΩI(r̂i)

1

c
Bxc(r̂i)× σ̂i L̂q,i〉(t)

]∣∣
p︸ ︷︷ ︸

=ΓB
pq(t)

+
∑
i

3∑
m=1

εqpm
1

2
〈ΩI(r̂i)ξ(r̂i)L̂m,i〉(t) +

∑
i

Re
[
〈ΩI(r̂i) ξ(r̂i)L̂i × σ̂i L̂q,i〉(t)

]∣∣
p︸ ︷︷ ︸

=ΓSOC
pq (t)

,

with p, q = {1, 2, 3}. We have assumed that we have a KS Hamiltonian of the form
(3.16), with the difference that the SOC term is replaced by the radial SOC term
(4.10), and we have neglected the external B-field. The derivation of (4.21) is
shown in detail in appendix A.6.4. Note that the r-operator refers to a coordinate
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system with the origin at the nucleus (according to the definition of the angular
momentum operator).

Equation (4.21) shows all spin-orbit angular momentum torque contributions,
while some terms are specifically labeled. In the calculations, it was found that
the unlabeled terms were approximately zero in the ground state. Furthermore, it
was found that these terms did also not give any significant contributions in the
time-dependent situation (this behavior results most probably from the spherical
nature of the problem in region I). Hence, we will in the following discussions only
consider the labeled terms, and we will neglect all other terms.

The first term, Γs
pq, corresponds to a spin-orbit angular momentum current

contribution, i.e. the spin-orbit angular momentum in region I is changed via
currents that flow trough the surface of ΩI and that transport parts of the spin-
orbit angular momentum. The second torque contribution, ΓA

pq, results from the
direct coupling of the external A-field to the spin-orbit angular momentum. Note
that this contribution comes, in a sense, from the torque on the orbital angular
momentum (since [L̂,A · p̂]/i = A × p̂). The last two terms, ΓB

pq and ΓSOC
pq ,

correspond to the interaction of the moving spin with the xc B-field, and with the
potential vs via SOC, respectively. Note that these two torque contributions result
in principle from the torque on the spin component (this can be seen from the
B̂xc × σ̂ and ξ̂L̂× σ̂ expressions, which correspond to spin-torque contributions;
see (3.22) and (4.11)).

For our concerns, only the spin-orbit angular momentum torques Γ21 and Γ12

and their contributions are of interest, because the change of M3 follows solely
from these two quantities. The B-field torque contributions, ΓB

21 and ΓB
12, consist

of two parts, respectively (as a result of the cross product). In the calculations,
however, it was found that one part was always negligible, i.e.:

ΓB
21(t) ≈

∑
i

Re
[
〈ΩI(r̂i)

1

c
Bxc,3(r̂i)σ̂1,i L̂1,i〉(t)

]
,

ΓB
12(t) ≈ −

∑
i

Re
[
〈ΩI(r̂i)

1

c
Bxc,3(r̂i)σ̂2,i L̂2,i〉(t)

]
, (4.22)

which results from the fact that the e1- and e2-component of Bxc was, in average,
always approximately zero in region I. Additionally, it was found that one part of
the SOC torque contributions (which consist also of two parts, due to the cross
product) was always negligible as well:

ΓSOC
21 (t) ≈ −

∑
i

〈ΩI(r̂i) ξ(r̂i)L̂
2
1,iσ̂3,i〉(t) ,

ΓSOC
12 (t) ≈

∑
i

〈ΩI(r̂i) ξ(r̂i)L̂
2
2,iσ̂3,i〉(t) , (4.23)

which most probably results from the fact that the e1- and e2-component of the
local moment of region I was, in average, always approximately zero. In the
following, we will discuss how the various torque terms behave for the ground
state of bulk Ni. But before we can do that, we first need to have a closer look at
the spin-current densities.
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First, we note that the KS ground state energy contribution, coming from the
radial SOC term, can be represented via the spin-current densities (see appendix
A.6.5): ∑

i

〈1
2
ξ(r̂i) σ̂i · L̂i〉 =

3∑
k=1

1

2

∫
dr ξ(r)

(
r× jk(r)

)
· ek , (4.24)

where the origin of r is at the nucleus. The radial function ξ(r) is, in region I,
always positive. This becomes immediately clear when we assume, for simplicity,
that the potential vs can approximately be described by an effective Coulomb-like
potential in region I: vs(r) ≈ −Zeff/r. From the definition of the radial function
(4.9) follows then immediately: ξ(r) ≈ Zeff/(2c

2r3) > 0. Hence, the SOC energy
contribution (4.24) becomes negative (meaning that the system can minimize its
total energy) when we have in region I:(

r× jk(r)
)
· ek < 0 , with k = {1, 2, 3} . (4.25)

In fact, one finds that (4.25) is true for the ground state of bulk Ni, which man-
ifests itself by non-vanishing spin-currents that flow around the nucleus. This
can be seen in figure 4.16 where we show, as an example, j1 and

(
r × j1

)
· e1.

Note that j1 flows clockwise around e1 in order to fulfill the relation (4.25). The

Fig. 4.16.: Shown is region I and three planes which are perpendicular to the unit vectors.
The small blue sphere represents the nucleus. Left: Spin-current density j1 for
the ground state of bulk Ni flowing clockwise around e1 (the size of the arrows
is proportional to |j1 |). Right: Two slices trough the field

(
r× j1

)
· e1 (the color

scale is in a.u.).

other spin-current densities behave in an analogous manner, i.e. j2 flows clock-
wise around e2, and j3 flows clockwise around e3. We wish to mention that the
kinetic energy contribution increases with increasing spin-current densities, which
prevents infinitely large spin-current densities in the ground state. (Remark: The
magnetization components m1 and m2 are zero in the ground state in region I,
however, the corresponding spin-currents j1 and j2 are not zero. This seems to
be a specific feature of the energetically lowest state of a ferromagnet polarized
along e3 if SOC is present; see also appendix A.2.)

The Bxc spin-orbit angular momentum torque contributions (4.22) can also be
written in terms of the spin-current densities (see appendix A.6.5):∑

i

Re
[
〈ΩI(r̂i)

1

c
Bxc,3(r̂i)σ̂k,i L̂k,i〉(t)

]
=

1

c

∫
ΩI

drBxc,3(r)
(
r× jk(r)

)
· ek . (4.26)
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In our case, the local moment in region I points in the −e3-direction in the ground
state, i.e. M3 < 0. Hence, the Bxc in region I points in the e3-direction, i.e.
Bxc,3 > 0 (which follows from the Hamiltonian element σ̂ · B̂xc/2c and from the
LSDA (2.60)). Therefore, it follows immediately from (4.26), together with (4.25),
that the torque contribution ΓB

21 has to be negative, and that ΓB
12 has to be positive:

ΩI : M3 < 0 , Bxc,3(r) > 0 −→ ΓB
21 < 0 , ΓB

12 > 0 . (4.27)

Note that the same investigation can also be done if the system is spin-polarized
along the e3-direction, i.e. M3 > 0, which gives: ΓB

21 > 0 and ΓB
12 < 0.

In the ground state, the total torque on each spin-orbit angular momentum has
to be zero. Hence, the sum of the torque contributions has to be zero as well,
meaning that system is in a spin-orbit angular momentum torque equilibrium:

Γpq(0) = Γs
pq(0) + ΓB

pq(0) + ΓSOC
pq (0) = 0 . (4.28)

Note that the ΓA
pq term is zero, because we have Aext(0) = 0. Additionally, one

finds from the ground state calculation that the torque contributions of Γ21 and
Γ12 are related in the following way:

Γs
21(0) = −Γs

12(0) , ΓB
21(0) = −ΓB

12(0) , ΓSOC
21 (0) = −ΓSOC

12 (0) , (4.29)

which most probably results from the symmetry (the values of the ground state
torque contributions can be seen in the left panel of figure 4.17 at t = 0; note that
the relations (4.29) approximately hold, at least initially, in the time-dependent
situation as well). With the previous relations we can also make a statement
about the sign of the SOC torque terms:

ΓSOC
21

(4.29)
=

1

2
(ΓSOC

21 − ΓSOC
12 )

(4.23)≈ −1

2

∑
i

〈ΩI(r̂i) ξ(r̂i)
(
L̂2

1,i + L̂2
2,i

)
σ̂3,i〉

=
1

2

∑
i

〈ΩI(r̂i) ξ(r̂i)
(
L̂2

3,i − L̂2
i

)
σ̂3,i〉

≈ ∼ 〈
∑
i

ΩI(r̂i)
(
L̂2

3,i − L̂2
i

)
〉︸ ︷︷ ︸

< 0

〈
∑
i

ΩI(r̂i)σ̂3,i〉︸ ︷︷ ︸
< 0

. (4.30)

In the calculations it was found that the expression from the second line is approx-
imately proportional to the mean field expression from the last line (this holds for
the whole time evolution). The relation from last line reveals immediately that
ΓSOC

21 > 0 and that ΓSOC
12 < 0. If the system would be spin-polarized along the

e3-direction, we would have ΓSOC
21 < 0 and ΓSOC

12 > 0, because the right term in
the last line of (4.30), which is the local moment, would be > 0. The left term of
(4.30) has to be always ≤ 0. This follows immediately from the representation of

the KS states via spherical harmonics: L̂2
3 − L̂2 → m2 − l(l+ 1) ≤ 0, since l ≥ 0

and |m| ≤ l.
The spin-orbit angular momenta and the corresponding torque contributions

discussed previously have been defined for the region I. Similar quantities can, in
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an analogous manner, also be defined for region II. Calculating the corresponding
torque contributions for region II leads to similar expressions as in (4.21), how-
ever, there are some differences: First, one finds that the surface term Γs

pq has,
for region II, two contributions. One contribution corresponds to the spin-orbit
angular momentum current that flows from region III into region II, and the other
corresponds to the current flowing from region I into region II. Note that the latter
torque contribution has to be equal to the negative Γs

pq contribution of region I.
Next, one finds that the ΓSOC

pq contribution of region II is very small and negligible,
because the SOC effects are only present in region I (as discussed in section 4.3.2).
In fact, one finds that ΓB

pq is, beside the surface contributions, the only important
term in region II. Hence, we have different torque contributions in the various
regions, meaning that the surface terms can be understood as contributions that
transfer parts of the spin-orbit angular momentum between the regions, in order
to obtain a spin-orbit angular momentum torque equilibrium (note that such an
equilibrium has to be satisfied in each region in the ground state).

In conclusion, we have discussed the possibility of analyzing the change of the
total moment by means of the spin-orbit angular momentum torques (i.e. the
time derivative of the spin-orbit angular momenta in region I). Each spin-orbit
angular momentum torque consists of several torque contributions, while only
four contributions are important (see (4.21)): the surface term Γs

pq, the direct A-
coupling term ΓA

pq, and the ΓB
pq and ΓSOC

pq terms, which result from the torque on
the spin by the Bxc-field and by SOC, respectively. The behavior of the different
torque quantities has been specifically discussed for the ground state. It was found
that the sum of the torque contributions has to vanish, meaning that system is
in a spin-orbit angular momentum torque equilibrium (see (4.28)). Moreover, it
was shown that the SOC leads to non-vanishing spin-currents in the ground state.
These spin-currents lead, depending on the orientation of the local moment, to a
specific sign of the Bxc-torque contributions.

4.3.5. The Spin-flip process

In section 4.3.2 and 4.3.3 we found that the demagnetization in bulk Ni is caused
by a spin-flip process that takes place in region I (see figure 4.14). Moreover,
it was found that the spin-flip process is caused by induced spin-orbit angular
momenta that lead, via the local potential (and the corresponding electric field,
respectively), to a torque on the spin. However, so far it was not possible to
understand why the spin-orbit angular momenta are induced, and furthermore
why the magnitude of the moment always decreases. In this section we will tackle
these problems by means of the spin-orbit angular momentum torques introduced
in the previous section.

The change of the total moment is governed by the dynamics of certain spin-
orbit angular momenta (see (4.19)), while the time evolution of each spin-orbit
angular momentum follows from the integral of its torque (see (4.20)), i.e.:

∂tM3(t) ∼
∫ t

0

dt′ Γ21(t′)−
∫ t

0

dt′ Γ12(t′) . (4.31)
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Each torque is substantially determined by four torque contributions (as discussed
in the previous section; see (4.21)):

Γpq(t) = Γs
pq(t) + ΓA

pq(t) + ΓB
pq(t) + ΓSOC

pq (t) . (4.32)

When the system is in its ground state, the torque contributions cancel each other,
meaning that the system is in a spin-orbit angular momentum torque equilibrium.
If the system is excited, the torque contributions change (usually differently from
each other, as we will see), meaning that the equilibrium is disturbed. This
results in non-vanishing net spin-orbit angular momentum torques, leading to
induced spin-orbit angular momenta. These induced spin-orbit angular momenta
lead then to a torque on the spin, and thus to a change of the moment. This is,
in principle, how the spin-flip process can be described. In the following, we will
investigate how the different torque contributions change, allowing us to explain
why we always observe a loss in the moment of bulk Ni.

Before we investigate the torque contributions, we wish to say a few words
about the Bxc-field, because we will find that the time behavior of this field is
essential for the demagnetization process. The Bxc-field represents an effective
field that incorporates xc contributions, and that couples in the KS system to
the magnetization, in order to achieve the same spin-polarization as the reference
interacting system. For the ground state, the Bxc-field is defined via the xc energy
functional (see e.g. (2.36)), while the definition for time-dependent situations is
more involved (see the discussion at the end of section 2.3.1). In our calcula-
tions, the Bxc was approximated by the ALSDA. Since the ALSDA is based on a
ground state functional and on the homogenous electron gas, one might wonder
if the application of this approximation leads to any spurious effects (regarding
particularly the spin properties) that would not be present in the true interacting
system.

First of all, we emphasize that the spin-flip process occurs in region I (i.e. the
behavior of Bxc in this region is of particular interest). The magnetization (i.e. the
spin-density) in this region is, compared to the other regions, quite large. Next,
we point out that the major contribution of the xc interaction comes, for high
densities, from the exchange. Since the exchange interaction is, for high densities,
quite well described by the LSDA, the previously mentioned points might suggest
that most of the important spin related exchange effects that occur during the
dynamics in the true interacting system are covered by our approximation. (Note
that a true Coulomb interacting many-electron system does not have a Bxc-field
that couples directly to the spin. Hence, one might wonder if there are actually
any time-dependent spin related exchange effects in a many-electron system that
behave similar to a Bxc-field. In appendix A.7 we discuss this subject by means of a
Coulomb interacting two-electron systems, and we show that an interacting system
in fact contains exchange contributions that act similar to a time-dependent Bxc-
field.)

The change of the moment follows from the two spin-orbit angular momentum
torques Γ21 and Γ12. As stated in the previous section, the two torques give a more
or less similar contribution to the dynamics of the moment. Moreover, the various
contributions of the two torques behave similar as well (except for ΓA

pq). Hence,
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we will in the following only discuss the contributions of Γ21 in detail. Recall that
all investigations in this main section (i.e. all investigations of section 4.3) refer
to the run with I0 = 1015W/cm2 from figure 4.4, meaning that ΓA

21(t) = 0 since
the polarization of the A-field was along e1 (see (4.21)).

The left panel of figure 4.17 shows the surface-, the Bxc-, and the SOC-torque
contributions of Γ21 for the initial time t = 0 . . . 200 a.u.. (The Γs

21 shown has
been smoothed via a convolution with a rectangular function, since the original
Γs

21 shows very fast oscillations that are not relevant for us. The integral of the
smoothed and the original quantity is equal.) It is clear to see that the three
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Fig. 4.17.: Left: Surface-, Bxc-, and SOC-torque contributions of Γ21. Right: Time evolution
of the spin-orbit angular momentum torque Γ21.
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Fig. 4.18.: Left: Relative value of each torque contribution with respect to t = 0. Right:
Relative value (w.r.t. t = 0) of the σ2L1-spin-orbit angular momentum, of the
average Bxc, and of Γ21. Additionally, the combined relative value of the σ2L1-
spin-orbit angular momentum and the average Bxc (i.e. their product) is shown.

torque contributions cancel each other at t = 0. Moreover, we see that ΓSOC
21 is

positive, while Γs
21 and ΓB

21 are negative. Remember that ΓB
21 has to be < 0 and

that ΓSOC
21 has to be > 0 in the ground state if M3 < 0, as shown in the previous

section.
At around t = 75 a.u., the intensity of the external pulse increases significantly

and the system is excited (see figure 4.8 and 4.9). As a consequence, also the
torque contributions start to change at that time, which is clear to see in the
left panel of figure 4.17. However, it is not obvious how the sum of the different
contributions, i.e. the total spin-orbit angular momentum torque Γ21, behaves.
The time evolution of Γ21 is shown in the right panel of figure 4.17. We see that
Γ21 starts also to change significantly at around t = 75 a.u., and it shows some
oscillations at later times. However, it is also clear to see that Γ21 is, during the
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initial time t = 0 . . . 200 a.u., more in the positive region than in the negative
region. Therefore, its integral value is positive (i.e. the σ2L1-spin-orbit angular
momentum is positive; see figure 4.15), which leads to a positive ∂tM3 contribution
(according to 4.31), and hence to a decreases in the magnitude of the moment,
since M3(0) < 0.

We have seen before that all relevant torque contributions change during the
initial excitation process, and we have seen that the resulting torque Γ21 is on
average positive, which leads to the loss in the moment. However, so far it is
not clear why Γ21 is in average positive. In order to understand this behavior, the
relative change of the torque contributions with respect to t = 0 (i.e. Γ′21(t)/Γ′21(0),
where Γ′21 corresponds to the different contributions) can be investigated. Before
we discuss the relative change of the torque contributions, recall that the initial
excitation process leads to a loss in the the electronic charge in region I. Hence,
the magnitude of each torque contribution in this region would likely also decrease
(which is in fact what we see). If the relative change of all torque contributions
would be equal, the system would stay in a torque equilibrium, and Γ21 would
remain zero. That this is not the case can be seen in the left panel of figure 4.18,
where the relative change of all torque contributions is shown.

We see from figure 4.18 that the relative values of ΓB
21 and ΓSOC

21 decrease during
the initial excitation (up to t ≈ 120 a.u.). Note that this initial change follows the
loss in the local charge, as stated before (compare to figure 4.9). We also see that
the initial loss in the relative value of ΓB

21 is much stronger than the loss in the
relative value of the other contributions. As a consequence, the value of Γ21 (i.e.
the sum of all contributions) has to become larger than zero, because ΓB

21 < 0.
Therefore, we can reason that the initial loss in the moment (which results from
the initial change of Γ21 to positive values) results from the strong initial loss in
the Bxc-spin-orbit angular momentum torque contribution. In the following, we
will investigate why the loss in the relative value of ΓB

21 is so strong, but before
we do that, we will say a few words about the behavior of Γs

21.

We see from the left panel of figure 4.18 that the initial change of the relative
value of Γs

21 (at around t = 75 a.u.) follows the change of the relative value of ΓSOC
21 .

We also see that the relative value of Γs
21 increases right after this initial loss, and

it shows some oscillations for later times. This behavior might be explained in the
following way: The system has, in each region, a spin-orbit angular momentum
torque equilibrium in the ground state. During the excitation, the equilibrium
in each region vanishes. We discussed previously how the torque contributions
ΓB

21 and ΓSOC
21 , and hence how the total torque, changes in region I. However,

the change of the torque in region II is in general different to the change in
region I. This results from the fact that only the ΓB

21 torque contribution is, beside
the surface terms, present in region II (the SOC contribution is negligible in
this region). The Γs

21 might be imagined as contribution that tries to minimize
the torque in region I and II (in order to restore the torque equilibrium) via
the transport of spin-orbit angular momentum between these two regions. Since
the excitation process leads to fast changing differences in the spin-orbit angular
momentum torque between the regions, the surface contribution starts to oscillate.
(Remember that there exists also a flow of spin-currents between region I and
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region II (see section 4.3.3), which indirectly leads to a change of the Bxc-torque
contribution in each region. This additional coupling channel probably contributes
to the oscillational behavior observed.) Note that the oscillations of Γ21 come
mainly from the oscillations of Γs

21.

As stated before, the initial loss in the relative value of ΓB
21 is stronger than

the loss in the relative value of the two other torque contributions. This behav-
ior can be explained by the fact that the time evolution of ΓB

21 is, in principle,
determined by two quantities: by the σ1L1-spin-orbit angular momentum, and
by the e3-component of the Bxc-field (this can be see from relation (4.22)). The
right panel of figure 4.18 shows the relative change of the σ1L1-spin-orbit angu-
lar momentum, and the relative change of the average Bxc-field in region I (i.e.
B̃xc =

∫
ΩI
drBxc,3(r)/ΩI). The change of the σ1L1-spin-orbit angular momentum

is a direct result of the initial excitation (i.e. parts of the spin-orbit angular mo-
mentum are lost due to the loss of electronic charge in region I). However, we also
see that we have a loss in the relative value of the average Bxc-field, which is an
indirect effect of the initial excitation: The excitation leads to a change of the
local moment and charge in region I (this change has been explained in detail in
section 4.3.1). This change of the moment and charge leads then, via the func-
tional, to a loss in the Bxc of region I. (Note that the change of the Bxc-field occurs
instantaneously, as a result of the ALSDA. In the true many-electron system, this
process corresponds, in some sense, to a fast change in the local exchange interac-
tion, which is instantaneous as well.) Hence, we could argue that the strong loss
in the relative value of ΓB

21 comes from the combined loss in the σ1L1-spin-orbit
angular momentum and in the Bxc-field. That this is, in fact, true can be seen in
the right panel of figure 4.18, where we see that the combined loss in the relative
value of the σ1L1-spin-orbit angular momentum and in the relative value of B̃xc

(i.e. their product) behaves very similar to the change of the relative value of ΓB
21.

The loss in the magnitude of the σ1L1-spin-orbit angular momentum in region I
corresponds to an increase in the SOC energy, because the SOC energy (see (4.24))
as well as the σ1L1-spin-orbit angular momentum are negative in the ground state
(note that the σ2L2- and σ3L3-spin-orbit angular momenta behave similar to the
the σ1L1-spin-orbit angular momentum during the excitation). Hence, we can
conclude that the strong initial loss in the relative value of ΓB

21 results from the
fact that the SOC energy increases, and the average Bxc in region I decreases
during the initial excitation. Since ΓB

21 < 0, the strong loss in its magnitude
leads to Γ21 > 0, which leads then, via the relation (4.31), to a loss in the total
moment, because M3(0) < 0. Note that the loss in the moment occurs in an
analogous manner if the system has an opposite spin-polarization, because the
ΓB

21 torque contribution has always the same sign as the local M3 in region I in
the ground state, as shown in the previous section.

Next, we point out that the initial excitation process and the corresponding
change of the local moment and charge, and hence the change of the Bxc, can
be described by the local (TD)DOS, as discussed in section 4.3.1. Since the
(TD)DOS is a characteristic property of each material, the dynamical behavior of
the moment after an excitation has to be a characteristic property as well, which
follows from the previous discussion. We have seen that the initial characteristic
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excitation in bulk Ni leads to a strong loss in the Bxc around the nucleus, and
hence to a loss in the moment. If, however, a material would respond to an
excitation in such a way that the change of the local moment and charge would
lead to an increase in the Bxc around the nucleus, the magnitude of the total
moment might not change, or even increase. Nevertheless, in all calculations that
have been performed for bulk Ni and Fe, such a behavior has never been observed,
because the initial excitation always led to a loss in the Bxc around the nucleus.
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Fig. 4.19.: All important spin-orbit angular momentum torque contributions of Γ21 (left),
and of Γ12 (right).

So far, we only discussed the initial behavior of Γ21. As stated, the torque
contributions of Γ12 behave, in principle, similar to the torque contributions of
Γ21, with the difference that all torque contributions have the opposite sign, as
can be seen in figure 4.19. Since Γ12 contributes with its negative value to ∂tM3

(see (4.31)), the torque terms of Γ12 and Γ21 give at the end similar contributions
to the change of the moment. In particular we point out that the process lead-
ing to the initial loss in the moment is for Γ12 similar to the process described
before: The initial increase in the SOC energy and the loss in the Bxc around
the nucleus leads to a strong decrease of ΓB

12, meaning that Γ12 < 0. Hence, the
∂tM3 contribution is positive, leading to a loss in the moment because M3(0) < 0.
We see from figure 4.19 that Γ12 has an A-field contribution that is not present
for Γ21 (this results from the polarization of the external A-field along e1). This
additional contribution, which is present between t ≈ 100 . . . 250 a.u., leads to
small differences between Γ21 and Γ12, which can be seen in the evolution of the
corresponding spin-orbit angular momenta (see left panel of figure 4.15). Note
that this direct A-field contribution seems, however, not to be very important.

In the previous discussion, we investigated the initial behavior of the spin-orbit
angular momentum torques in detail. Moreover, we explained why an initial loss
in the moment is always observed. In the same way as before, the time evolution
of the torque contributions could be investigated beyond the initial change (i.e.
for t > 200 a.u.), and the corresponding change of the moment could be discussed.
Since the investigation of the dynamics of the torque contributions is, for longer
time scales, quite involved, we will only mention some main characteristics, and
not discuss any further details.

The time evolution of the torque contributions of Γ21 and Γ12 for the whole
demagnetization process (i.e. t = 0 . . . 800 a.u.) is shown in figure 4.19. The
general behavior of the torque contributions can be described in the following way:
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In the ground state, the torque contributions cancel each other, meaning that the
system is in a spin-orbit angular momentum torque equilibrium. This equilibrium
is disturbed by the excitation, which leads to a change of each torque contribution,
and hence to non-vanishing net spin-orbit angular momentum torques. After
the excitation, the torque contributions evolve in time until they cancel each
other again, i.e. until a spin-orbit angular momentum torque equilibrium is, at
least approximately, reached again. The equilibrium is reached at t ≈ 700 a.u.,
and from that point on the torque contributions essentially oscillate around their
new equilibrium values. This behavior manifests itself by the dynamics of the
total moment, which changes up to t ≈ 700 a.u., and oscillates around its new
equilibrium value for all later times (see right panel of figure 4.5).

We wish to mention two important processes that occur after the excitation
and before the equilibrium is reached. First, we notice that the demagnetization
involves a feedback mechanism: The change of the local moment leads to a change
of the Bxc, and the change of the Bxc leads to a change of the Bxc- torque contri-
butions, which, on the other hand, leads to changing non-zero total torques, and
hence to a change of the moment again. This process, in fact, continues until the
loss in the local moment leads to more or less vanishing Bxc-torque contributions
(see figure 4.14 and 4.19). Additionally, the SOC-torque contribution depends
on the moment as well (see (4.30)). Next, we recall that each Bxc-torque contri-
bution depends also on a spin-orbit angular momentum (we have shown before
that ΓB

21 and ΓB
12 depend on the σ1L1- and σ2L2-spin-orbit angular momentum,

respectively). Hence, a change of certain spin-orbit angular momenta influences
the Bxc-torque contributions (while the Bxc-torque contributions influence cer-
tain spin-orbit angular momenta again). This effect can be seen in figure 4.19 at
t ≈ 230 a.u., where we see that ΓB

21 and ΓB
12 change their sign, which results from

the fact that the σ1L1- and σ2L2-spin-orbit angular momenta changed their sign
as well. This change leads to a strong increase in Γ21 and to a strong decrease in
Γ12, which leads then to an increase in ∂tM3, and hence to a stronger loss in the
total moment (see the kink at t ≈ 230 a.u. in the evolution of the total moment,
e.g. in figure 4.15).

In conclusion, we found that the initial excitation process disturbs the spin-
orbit angular momentum torque equilibrium existing in the ground state. This
leads to induced spin-orbit angular momenta, and hence to a change of the total
moment. Moreover, we found that the initial excitation leads to an increase in
the SOC energy and to a loss in the Bxc around the nucleus, resulting in a strong
decrease in the magnitude of the Bxc-torque contributions. This strong decrease,
on the other hand, changes the total spin-orbit angular momentum torques such
that the magnitude of the total moment decreases right after the excitation. This
loss in the moment continues until the system has reached a spin-orbit angular
momentum torque equilibrium again. Note that the initial change of the SOC
energy and the Bxc around the nucleus follows solely from the excitation (i.e. the
de-occupation) of the 3d-states in the MT.
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4.3.6. Summary

In the previous sections, we investigated all processes that are involved in the
demagnetization of bulk Ni in detail. In this section, we will briefly summarize
all important results, and we will list all major steps that are involved in the
demagnetization process. Furthermore, we will talk about some issues that are
related to the demagnetization and that have not been mentioned before, and we
will discuss the differences in the moment observed in section 4.2.

The main aspects concerning the dynamics of the moment in bulk Ni can be
summarized as follows:

• The change of the moment results from a spin-flip mechanism that takes
place in a region close to the nucleus (i.e. in region I; see left panel of figure
4.14).

• The spin-flip process is caused by induced spin-orbit angular momenta that
lead, via the strong electric field around the nucleus, to a torque on the
spin. (At the end of section 3.1.4 we have explained how this process can
be imagined: spins that move in an electric field feel a magnetic field, and
hence a torque.)

• The spin-orbit angular momenta involved in the change of the moment are
completely described by their torques, while both the momenta and their
torques are zero in the ground state (see section 4.3.3 for the definition of
the spin-orbit angular momenta).

• Each spin-orbit angular momentum torque has several torque contributions.
The contributions cancel each other in the ground state, meaning that the
system is in a spin-orbit angular momentum torque equilibrium (see section
4.3.4 for the definition of the spin-orbit angular momentum torques and the
torque contributions).

The previous points concern the behavior of the spin-orbit angular momentum
quantities in the ground state, and the change of the moment in general. We have
seen that an excitation of bulk Ni shows always a loss in the moment. The specific
steps that lead to this loss can be summarized as follows:

• The initial excitation leads to a fast delocalization of the local moment and
charge (i.e. parts of the charge and moment are transferred from the region
close to the nucleus to a more distant region), resulting in a strong loss in
the Bxc around the nucleus. This loss is characteristic for bulk Ni, because
the initial change of the moment and charge is directly related to the local
(TD)DOS (see section 4.3.1 for details).

• Additionally, the SOC energy (which is negative in the ground state) in-
creases during the excitation.

• The strong loss in the Bxc and the increase in the SOC energy disturbs
the spin-orbit angular momentum torque equilibrium in such a way, that
the resulting total torques and induced spin-orbit angular momenta lead
necessarily to an initial loss in the total moment (see section 4.3.5 for details).
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• The loss in the total moment continues until a spin-orbit angular momentum
torque equilibrium is reached again.

• During the spin-flip process, spin-currents flow from region I (where the
spin-flip process takes place) into region II, leading to a loss in the local
moment of this region. After the demagnetization, the major part of the
total moment comes from region III (see figure 4.14 for a schematic of the
various regions, and section 4.3.3 for details).

The previous points reveal that the change of the total moment is crucially deter-
mined by the initial excitation process and the accompanied change of the Bxc.
The initial excitation process, on the other hand, is strongly dependent on the
fluence and peak intensity of the external pulse, which determine the occupation
of the empty states and the de-occupation of the occupied states, respectively
(according to Fermi’s golden rule). The de-occupation of the local states around
the nucleus leads, in bulk Ni (according to the local TDDOS), to a loss in the local
moment (see figure 4.11 and 4.12). This loss, and therefore also the loss in the
Bxc, increases if the fluence or peak intensity of the external pulse increases, ex-
plaining why we see a stronger demagnetization for higher pulse fluences or peak
intensities. Moreover, the initial excitation process is, in bulk Ni, only weakly
dependent on the polarization direction of the external A-field, explaining why
the demagnetization behavior is weakly dependent on the polarization as well.

Before we discuss the next point, we recall how a system absorbs light of a
certain frequency ω: the absorption occurs typically in such a way that the empty
states that have an eigenvalue that is by ω larger than the occupied states become
occupied (this follows e.g. from first order perturbation theory for a harmonic
perturbation [57]). Hence, an efficient de-occupation of a state with the eigenvalue
ε occurs only if empty states at ε + ω are available in the DOS. Since the de-
occupation of the local states around the nucleus determines the demagnetization
significantly (as explained before), it becomes clear why the change of the moment
depends considerably on the center frequency of the external field. This fact
explains also why the demagnetization in bulk Ni by the pulse with the center
frequency ω = 0.2 a.u. is much smaller than the demagnetization from the other
pulses (see figure 4.3): We see from the local MT-DOS (upper left panel of figure
4.10) that almost no states are available at around ω = 0.2 a.u.. Hence, all states
around the Fermi energy (i.e. around ω = 0) will not be considerably de-occupied,
which results in a smaller initial loss in the local moment, and hence in a smaller
demagnetization.

Next, we come to an issue that has not been mentioned before. As shown in
section 3.2, the underlaying basis used to represent the KS states uses a spher-
ical harmonics expansion in the MT, i.e. a sum over the azimuthal number l is
employed. This expansion allows it to calculate the l-dependent contribution to
the moment in the MT, which reveals that the moment comes, for the ground
state of bulk Ni, almost entirely from the l = 2 states (i.e. from the so-called
d-states). In section 3.3, we derived the TDDOS, and we have explicitly shown
how a spin- and region-resolved TDDOS can be defined. In a similar way, also a
l-resolved TDDOS can be defined. Such a l-resolved TDDOS was, in fact, used to
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Fig. 4.20.: Left: Relative value of each torque contribution of Γ21 with respect to t = 0.
Right: The corresponding σ2L1-spin-orbit angular momentum.

investigate the time-dependent behavior of the d-states (we refer in the following
again to the run that has been referred to in the previous sections). It was found
that the excitation leads to a strong initial decrease in the moment coming from
the non-excited d-states (while the major part of the moment is transferred to
the IR). Additionally, it was found that the subsequent loss in the total moment
comes solely from the non-excited d-states, and the moment coming from the
non-excited d-states is almost entirely lost during the demagnetization.

The previously mentioned result that only the non-excited d-states contribute
to the the loss in the moment can be explained by the fact that only the residual
moment, left in the d-states, is close enough to the nucleus such that SOC can
effectively flip the spin. The moment coming from the excited states, on the other
hand, is usually further away, meaning that a SOC mediated spin-flip does not
occur. These points suggest that there should exist a certain peak intensity of
the external field above which the loss in the moment should become less again.
The reason being that the loss in the moment occurs only on the non-excited
d-states, telling us that if the excitation of the system is strong enough, such
that almost no electronic charge (and hence nearly no residual moment) is left
in the non-excited d-states, no considerable spin-flip can occur. However, this
statement holds only if the excitation and the spin-flip process is well separated,
which is only true for very short pulses. For longer pulses, the spin-flip process
and the interaction with the external field occur in parallel (as will be shown in the
following). Hence, spin-dependent excitations and de-excitations (i.e. stimulated
emission) take place simultaneously during the spin-flip, which can influence the
behavior of the demagnetization. The aspects previously discussed have so far
not been investigated in detail, hence, they will be the subject of future work.

Now we come back to the investigation of the demagnetization process from the
previous sections. The run that was analyzed applied a quite short external pulse.
In fact, the excitation process and the spin-flip process were, for this short pulse,
more or less separated. In the same manner as presented before, the response
of bulk Ni has been investigated for the longer pulse. It turned out that the
demagnetization process works in a similar way as described for the short pulse,
with the difference that the excitation and the spin-flip occur in parallel (we refer
in the following to the run with I0 = 1014W/cm2 from figure 4.6). This can be
seen in the left panel of figure 4.20, where the initial change of the relative value
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of the torque contributions of Γ21 is shown (note that we refer again to the local
quantities in region I). It is clear to see how each wave cycle of the increasing
external field (see left panel of figure 4.6) excites the system and, in consequence,
how each torque contribution changes. Moreover, we see that the loss in the
relative value of the Bxc-torque contribution is, like for the short pulse, stronger
than the change of the other quantities. Hence, a positive valued σ2L1-spin-orbit
angular momentum is necessarily induced (see right panel of figure 4.20), leading
to a loss in the total moment (see right panel of figure 4.6). As the case for
the short pulse, Γ12, its torque contributions, and the corresponding spin-orbit
angular momentum behaved similar to the Γ21 quantities.

We wish to mention that Fe shows a similar demagnetization behavior to that
discussed before. In the following section, we will show some results obtained for
bulk Fe. Next, we wish to say some words about the fact that M1 and M2 do
not change significantly. The change of M3 has been explained via the change
of the spin-orbit angular momentum torque contributions. In a similar manner,
the change of M1 and M2 could be explained. Following this procedure, one finds
that all involved torque contributions are more or less zero, which results from
the fact that the e1- and e2-components of the Bxc and the local moment are
nearly zero. Hence, a strong change of M1 and M2 can not occur. Finally, we
point out that the spin-flip process depends crucially on the fast change of the Bxc

around the nucleus. Thus, the observed demagnetization depends strongly on the
applied Bxc-functional. In our calculations, the ALSDA-functional was used. At
the moment, it is not clear if this functional is sufficient to describe all important
effects that occur during the change of the moment in the true interacting system.
Therefore, in future work the dependence of the demagnetization on the functional
has to be carefully investigated. (Note that a change of the total moment in a
true Coulomb interacting system is discussed in appendix A.7. It is shown that a
change of the moment can be interpreted as the result of a change in the exchange
interaction, while the whole spin-flip mechanism is similar to the one discussed
previously.)

4.4. Response of the moment in bulk iron

In this section, the response of the moment in bulk Fe, subjected to an external
pulse, will be investigated. The simulation discussed in the following used the lat-
tice structure of Fe at room temperature, i.e. a bcc structure with a lattice constant
of a = 5.416 a.u. (= 286.6 pm) was applied. The system was represented by one
primitive unit cell with the basis vectors a1 = a/2(1, 1,−1), a2 = a/2(1,−1, 1) and
a3 = a/2(−1, 1, 1). Furthermore, 83 k-points have been used. The external pulse
applied was identical to the pulse used in the investigation of bulk Ni from section
4.3, i.e. the pulse shown in figure 4.4 with the peak intensity I0 = 1015W/cm2 and
the polarization along e1 was used.

The left panel of figure 4.21 shows the response of M3. We see that the behavior
of the moment is similar to that from Ni, i.e. the system starts to demagnetize
at the peak of the pulse (at ≈ 150 a.u.), while the major part of the loss in the
moment occurs after the pulse. The demagnetization stops at around 900 a.u.
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(≈ 21.8 fs), and from that point on, the moment merely oscillates around its new
equilibrium position. Similarly to Ni, the change of M1 and M2 was very small
compared to the change M3.

The demagnetization process in bulk Fe has been analyzed in the same manner
as presented in section 4.3. It was found that the change of the moment in bulk Fe
occurs in a similar way as in bulk Ni: First, the system is excited by the external
pulse, resulting in a very quick change of the local moment and charge. The fast
initial change of the local moment can be seen in the right panel of figure 4.21,
where the evolution of the local moment in three regions is shown. Note that
the three regions correspond to the same regions as defined before (i.e. different
spheres around the nucleus; see left panel of figure 4.14). As for Ni, the initial
excitation leads to an increase in the SOC energy. Additionally, the fast change of
the local moment and charge leads to a fast loss in the Bxc in region I, leading then,
via the previously explained mechanism, to induced spin-orbit angular momenta
and hence to a loss in the moment. Similarly to Ni, the spin-flip process takes
place in region I, and, during this process, spin-currents flow from region I into
region II, leading to a loss in the local moment of this region (see right panel
of figure 4.21). The local moment in region III remains after the initial change
nearly constant.

The left panel of figure 4.22 shows the absolute change of the moment with
respect to t = 0 in bulk Fe (i.e. ∆M3(t) = M3(t) −M3(0)), and compares it to
the corresponding value obtained in bulk Ni with an identical pulse. We see that
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the initial change of the moment (up to t ≈ 250 a.u.) is similar in both materials.
This results from the fact that the SOC radial function ξ(r) (which determines the
strength of the SOC mediated spin-flip; see (4.9)), and also the initially induced
spin-orbit angular momenta are similar in both materials. Furthermore, we see
that ∆M3 shows a kink at t ≈ 230 a.u. for bulk Ni, leading to a larger ∆M3

in Ni than in Fe for all later times. In section 4.3.5, it has been explained that
the increase in ∆M3 in Ni at t ≈ 230 a.u. results from the change of the sign of
the σ1L1- and σ2L2-spin-orbit angular momentum. This change, however, does
not occur in Fe, explaining why ∆M3 does not show any significant subsequent
increase in Fe.

We have seen before that the change of the moment in Ni is stronger than in
Fe, however, the difference is not significantly large (the change of the moment in
Ni is ≈ 35% larger as in Fe). On the other hand, this difference becomes more
significant when we look at the relative change of the moment (i.e. M3(t)/M3(0)),
shown in the right panel of figure 4.22. We see that approximately 50% of the
moment is lost in Ni, while only 12% of the moment is lost in Fe. This much
smaller loss in the relative moment of Fe can, to some extent, be explained by the
fact that the moment in Fe is, in the ground state, much larger than in Ni. To be
more precise: the initial excitation leads to a transfer of the local moment such
that approximately 50% of the total moment are localized in region III after the
excitation (see right panel of figure 4.21), which is more than in Ni. Hence, the
relative change of the moment is smaller in Fe, because the moment in region III
remains constant during the demagnetization. On the other hand, the absolute
change of the moment in Fe is also less than in Ni, which contributes to the smaller
change of the relative moment.

In conclusion, it was found that the excitation of bulk Fe leads also to a fast
loss in the total moment. The mechanism leading to this demagnetization is very
similar to the mechanism in bulk Ni that has been investigated and described in
section 4.3. Moreover, it was found that the relative loss in the moment of bulk
Fe is much smaller than in bulk Ni, which results to some extent from the large
initial transfer of the moment from region I and II into region III, where the local
moment remains nearly constant during the spin-flip process.

4.5. Response of the moment in a five-atom nickel
slab

4.5.1. Simulation, results and discussion

In the previous sections, the behavior of the moment of excited bulk materials
(i.e. materials that are periodic in three dimensions) has been investigated. In
this section, we will investigate how the moment of a Ni slab, subjected to an
external pulse, behaves. The slab was modeled by the unit cell that is shown in
the left panel of figure 4.23. The unit cell corresponds to five primitive Ni unit
cells stacked on top of each other, and to an empty space (i.e. vacuum) below and
above the cells, while the empty space is as large as the stacked cells (the geometry
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of the primitive cells corresponds to the bulk Ni structure at room temperature;
see section 4.1). The corresponding slab has a periodic structure along the two
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Fig. 4.23.: Left: Unit cell of the slab calculation, and a slice trough the cell showing the
density (the density color scale is in a.u., and the slice is parallel to the e3-e1-
plane). The arrows in the unit cell indicate the direction and the strength of the
magnetization. Right: The applied A-field pulses.
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Moment in the different MTs for the long pulse.

short unit cell vectors (1× 8× 8 k-points have been applied). The surface of the
slab corresponds to a {1, 1, 1}-plane (by referring to the fcc-structure), and the
coordinate system is chosen such that the surface of the slab is parallel to the
e2-e3-plane (i.e. the surface is perpendicular to the e1-vector).

The direction of the total moment in the ground state points along the −e3-
direction, meaning that the moment is in plane. The polarization of the external
A-field pulse is along the e3-direction as well. Note that this setup corresponds to
a clear physical situation: a free standing Ni slab that is magnetized in plane, and
a pulse that travels perpendicular to the surface and that propagates trough the
slab. Similarly to bulk Ni, two different pulses have been applied: a short pulse
with a peak intensity of I0 = 1014W/cm2, and a long pulse with I0 = 1013W/cm2.
The pulses are shown in the right panel of figure 4.23 (the pulses are the same as
in figure 4.3 (for ω = 0.1 a.u.) and figure 4.6).

The left panel of figure 4.24 shows M3 per atom for the two pulses. First of
all, we notice that magnitude of the moment is, for the ground state, in the slab
slightly smaller than in the bulk system. This results from the fact that the slab
has, compared to the bulk system, lost the translational symmetry for those lattice
vectors that are not parallel to the e2-e3-plane. Hence, the moment of the unit
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cells closer to the surface is different to the moment of the unit cells located in
the center of the slab, resulting in a different moment per atom compared to the
bulk system (note that this difference in the moment between the unit cells could
also be interpreted as an effect of the surface; see also the right panel of figure
4.24 which shows the moment in the different MTs).

Next, we see from figure 4.24 that we have, at t = 2800 a.u. (≈ 68 fs), a loss in
the moment of about 35 % for the short pulse, and an even higher loss of about
47 % for the long pulse. Note that these losses in the moment are stronger than
the losses obtained in the bulk system with identical pulses (we got a loss of 13 %
for the short, and 19 % for the long pulse in bulk Ni). The stronger loss in the
moment results most probably from the previously mentioned fewer symmetries of
the slab. Furthermore, we point out that the demagnetization in the slab almost
certainly continues for t > 2800 a.u., which would lead to even higher losses in
the moment (as can be seen in figure 4.24). Note that such an behavior was not
observed in bulk Ni, where we saw that the moment reaches its new equilibrium
position at earlier times (see figure 4.4 and 4.6). Similarly as observed in the bulk
systems, the change of M1 and M2 was, compared to M3, very small.

The demagnetization mechanism in the slab has to be similar to the mechanism
explained in section 4.3, with the difference that the contribution coming from each
atom (or more precisely: from the region close to each nucleus) is most probably
slightly different, as will be discussed in the following. The right panel of figure
4.24 shows the moment in the MT of atom 1, 2 and 3 for the long pulse (note
that the moment of atom 1’ and 2’ behaves similar to the moment of atom 1 and
2, respectively, due to symmetry; the corresponding atoms are shown in figure
4.23). We see that the moment in the various MTs is different in the ground
state. Additionally, we see that the change of the moment behaves differently as
well. Hence, also the spin-orbit angular momenta and the corresponding torques
must behave differently. This difference in the torques might lead to an exchange
of spin-orbit angular momentum between the regions around each atom (where
the spin-flip process occurs), which could be the reason for the stronger loss in the
moment compared to the bulk system (note that such an exchange of spin-orbit
angular momentum via the surface term Γs

pq has, to some extent, already been
discussed in section 4.3.5).

In conclusion, we found that a short laser pulse, propagating trough a five-atom
slab of Ni that is magnetized in plane, leads to a demagnetization of the slab.
Moreover, it was found that this demagnetization is stronger than the demagne-
tization obtained in bulk systems with identical pulses. The stronger loss in the
moment observed for the slab results most probably from the fewer symmetries.

4.5.2. Relation to experiments

So far we have not referred to any experimental results, as emphasis was primarily
put on the understanding of the SOC mediated demagnetization mechanism in
extended periodic systems. Moreover, the comparison of the calculations from
the previous sections with experiments is not straightforward (and one should
be careful with any direct comparison), because the effective A-field felt by the
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electrons is, in a true system, generally different to the applied external laser
pulse (since the field changes during the propagation trough the material; see the
discussion at the end of section 3.1.3). This situation is, however, different in the
previously discussed study, since the change of a propagating A-field pulse during
the propagation trough a very thin slab would mostly likely be small and hence
probably negligible. Furthermore, the slab calculation considers, to a certain
extent, surface effects (and the associated fewer symmetries, respectively), which
are also present in true systems. These facts suggest that the comparison of the
slab calculation with experiments is more reasonable.

Unfortunately, to the best of our knowledge there exists so far no experiment
that investigated the behavior of an isolated ferromagnetic Ni slab subjected to an
intense laser pulse, and that could directly test the predicted ultrafast SOC me-
diated loss in the moment. Most of the experiments that investigated the change
of the moment in ferromagnetic materials, irradiated by intense laser pulses, used
samples where a thin layer of the ferromagnetic material (usually a few nm thick)
was on top of a larger carrier substrate (which was typically made from a metal,
e.g. Al). If such a sample is irradiated by an intense pulse, spin-polarized currents
occur leading, due to the difference in the scattering between the spin-up and
spin-down electrons in the various materials, to a loss in the moment of the ferro-
magnetic layer. This process could, in a more general manner, also be described
as follows: the excitation and subsequent time evolution of the whole system leads
to spin-currents that transport parts of the moment from the ferromagnetic layer
into the carrier substrate. This mechanism was first modeled by the so-called su-
perdiffuse spin transport approach [8]. In fact, recent comparisons to experiments
confirmed that the superdiffuse spin transport mechanism describes the observed
change in the moment of the ferromagnetic layer quite well [58]. (Note that the
total moment of the whole substrate is conserved within this mechanism, because
the moment is transferred from one region to another.)

Most of the experiments that investigated the ultrafast laser induced demag-
netization had one thing in common: laser pulses with an intensity FWHM of
about 30 . . . 70 fs, and with fluences up to 10mJ/cm2 were typically used. The
pulses used in our calculations, on the other hand, used shorter pulses with higher
fluences (which result from the much higher intensities of the pulses, compared to
experiment). The experiment described in [3], for example, applied laser pulses
with a FWHM of ≈ 50 fs and a fluence of 8mJ/cm2 on a 15nm Ni layer de-
posited on a Al substrate. With this setup, a loss in the moment of the Ni layer
of about 65 % within ≈ 300 fs was measured. In the Ni slab calculation, on the
other hand, the demagnetization is less (at least within the computed time range;
loss in the moment: 35 % for the short pulse, 47 % for the long pulse), and the
fluences are more than one order of magnitude larger (93.5mJ/cm2 for the short
pulse, 91.3mJ/cm2 for the long pulse). Even if longer pulses seem to lead to
a stronger demagnetization for constant fluences, the demagnetization observed
in experiments can certainly not be achieved by our calculations (the two pulses
used in the slab calculation have approximately the same fluence, but the longer
pulse, which has a FWHM of ≈ 17 fs, leads to a stronger demagnetization). Ad-
ditionally, we found in our calculations that the loss in the moment in bulk Ni,
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which should, at least approximately, describe a major part of the Ni film from
experiments, is even less. Hence, the SOC mediated spin-flip mechanism is al-
most certainly not the dominating process that leads to the loss in the moment
observed in [3]. However, from our results it can also not be excluded that the
SOC mediated spin-flip mechanism gives a certain contribution to the loss in the
moment observed. Thus, in future experiments the response of the moment for
higher pulse fluences, where the SOC mediated spin-flip mechanism might become
more relevant, should be investigated.

In conclusion, at the moment it is difficult to say if the SOC mediated spin-
flip mechanism described in this work gives any significant contributions to the
loss in the moment observed in various experiments. This results from the fact
that the substrates that have been used allowed a transport of the moment from
the ferromagnetic layer into the carrier material. Hence, isolated ferromagnetic
structures, which exclude the transport of moment into adjacent materials, should
be investigated in future experiments in order to test the predicted SOC mediated
loss in the moment. We point out that the SOC mediated demagnetization could
be of particular interest for ultrafast spin-manipulation, because this process seems
to be even faster than diffusive mechanisms.





5. Conclusions

In this work the spin-magnetic response properties of excited extended systems
have been studied within the framework of TDDFT. For this purpose, a real-time
propagation algorithm has been developed and implemented in the ELK code. The
study was focused on the investigation of laser induced ultrafast demagnetization
in nickel and iron, observed in various experiments.

Chapter 2 and 3 were devoted to theoretical aspects. After an introduction to
TDDFT and a general discussion concerning the interaction with laser pulses in
chapter 2, all possible mechanisms that could, in a periodic system, significantly
change the moment have been discussed in chapter 3. It is clear that SOC and the
B-field component of the external laser pulse are the only sources that directly
lead to a change of the moment. Moreover, the SOC mediated change of the
moment can be pictured as follows: induced spin-currents flow around the nuclear
potential and feel an effective B-field, which leads to a torque on the moving
spins, and hence to a change of the moment. The various approximations used in
the calculations (e.g. the xc functionals), and some particularities that arise when
calculating extended systems have been critically assessed.

Chapter 4 was devoted to the application of the TDDFT framework in order to
investigate the spin-magnetic behavior of excited nickel and iron systems. First,
the time evolution of bulk nickel subjected to a short intense pulse has been
studied. Furthermore, the contribution to the change of the moment coming from
the B-field component of the pulse and from SOC has been investigated. It was
found that a fraction of the moment is lost within a few femtoseconds after the
excitation, and that this loss is caused solely by SOC, i.e. the B-field component of
the pulse is, even for very intense pulses, negligible. Next, different external pulses
have been applied on bulk nickel and the corresponding response of the moment
has been studied. It was found that a loss in the moment always occurs (within
the range of the tested laser pulse parameters). Furthermore, it was found that
the loss in the moment becomes stronger for higher pulse intensities and fluences,
while the laser polarization has almost no relevance. It was also observed that the
frequency of the applied pulse influences the behavior of the moment significantly.

The SOC mediated process leading to the loss in the moment has been studied in
detail in section 4.3. It was found that the change of the moment is caused by what
we call “spin-orbit angular momenta” (e.g. 〈σ̂1L̂2〉) that are induced in the region
close to the screened nucleus during the excitation of the system. Moreover, it
was found that the evolution of these spin-orbit angular momenta, and hence also
the change of the moment, is significantly determined by the behavior of the xc
B-field. It was shown that the moment has to be necessarily lost if the magnitude
of the xc B-field decreases abruptly in the region close to the nucleus. This also
explains why an increase in the moment was never observed in the calculations:
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The excitation always led to a transfer of moment from the region close to the
nucleus to the region further away, no matter what pulse parameters were used.
Consequently, the xc B-field always decreased in magnitude close to the nucleus.
Additionally, it was shown that the initial excitation process, leading to the change
of the xc B-field, is described by the time-dependent occupation of the individual
density of states. This explains the different demagnetization behavior observed
for the different materials and also for the various pulse parameters, since the
pulse determines how the time-dependent occupation changes. We point out that,
due to the strong dependence on the xc B-field functional, the demagnetization
behavior has to be investigated for different functionals in future work (recall that
the LSDA was applied in all calculations).

The spin-magnetic response of excited bulk iron has been investigated in section
4.4. It was found that the relative loss in the moment is much less than the loss in
nickel. This smaller loss in iron results, to some extent, from the fact that a larger
part of the moment is transferred away from the nucleus during the excitation,
compared to nickel. Since only the moment left close to the nucleus takes part
in the SOC mediated spin-flip process, a larger part of the moment is necessarily
conserved in iron.

In section 4.5, the behavior of the moment in a five-atom nickel slab has been
studied. It was found that the loss in the moment is stronger than in the bulk
nickel system. Most likely this behavior results from the fewer symmetries of
the slab. Moreover, it was found that longer pulses lead to a stronger loss in
the moment if the pulse fluence is kept constant. Finally, the results from the
calculations have been compared to the results obtained in experiments. It was
concluded that the SOC mediated loss in the moment is most probably not the
dominating process leading to the moment loss observed in various experiments.
The reason being that the pulse fluences needed to achieve a certain loss in the
moment are too high in our calculations, compared to the fluences used in the
experiments. Hence, the dominating electronic process leading to the loss in the
moment observed in experiments results most probably from a transfer of moment
from the probed layer into the adjacent carrier material, as described within the
superdiffuse spin transport mechanism.

We point out, however, that the SOC mediated spin-flip process described in this
work should become more dominant when higher pulse intensities are used. In fact,
this mechanism may be of particular interest when very fast spin manipulations
are pursued, as the demagnetization observed in the calculations is even faster
than what has been observed in experiments so far. Hence, the predicted SOC
mediated ultrafast loss in the moment should be tested by specifically designed
experiments, i.e. by experiments that allow shorter pulses with higher intensities,
and that exclude a flow of the moment into adjacent materials.



A. Appendix

A.1. The general concept of densities and current
densities

In the following we will show that each observable quantity can be described by
its corresponding density. In time-dependent phenomena, these densities usually
change. This change is typically accompanied by associated current densities.
The current densities, their operator representation and the coupling to fields will
be discussed in this section as well.

The following derivations will, for simplicity, assume single-particle systems.
The generalization to many-particle systems is straightforward. Note that the
states are in general time-dependent. For a clear view the t-variable will be
omitted.

A.1.1. Observable densities

We assume to have an arbitrary hermitian operator Ô. Its expectation value can
be calculated by using the density operator n̂(r):

〈Ô〉 =
∑
α=↑,↓

∫
dr 〈Ψ|α, r〉〈α, r|Ô|Ψ〉

=
∑
α=↑,↓

∫
dr

∫
dr′ δ(r− r′)〈Ψ|α, r′〉〈α, r′|Ô|Ψ〉

=

∫
dr 〈Ψ|δ(r− r̂)Ô|Ψ〉 =

∫
dr 〈Ψ|n̂(r)Ô|Ψ〉

=

∫
dr Re

[
〈n̂(r)Ô〉

]
=

∫
dr

1

2

[
〈n̂(r)Ô〉+ 〈n̂(r)Ô〉∗

]
=

∫
dr 〈1

2
{n̂(r), Ô}〉 . (A.1)

We used that the expectation value has to be real, and we used the δ-representation
of the density operator:

n̂(r) = δ(r− r̂) =
∑
α=↑,↓

∫
dr′ δ(r− r′)|α, r′〉〈α, r′| . (A.2)

From (A.1) we see that the expectation value can be expressed over the integral
of a local expectation value, which will be defined as the observable density:

nÔ(r) = 〈1
2
{n̂(r), Ô}〉 . (A.3)
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From (A.3) it follow immediately two well known densities, the probability (or
charge) density (Ô = 1), to which we will refer simply as the density, and the
spin-density (Ô = σ̂i), to which we will refer as the magnetization:

n1(r) = 〈n̂(r)〉 = n(r) , nσ̂i(r) = 〈n̂(r)σ̂i〉 = mi(r) . (A.4)

σ̂i is the Pauli operator of spin-component i = {1, 2, 3}.

A.1.2. Observable current densities

As previously stated, in time-dependent situations, the densities usually change.
These changes can be calculated by making use of Ehrenfest’s theorem:

∂t〈
1

2
{n̂(r), Ô}〉 = 〈 1

2i
[{n̂(r), Ô}, Ĥ]〉 =

1

2i
〈[{n̂(r), Ô}, (T̂ + V̂ + . . . )]〉 . (A.5)

In the following we will see that the current densities arise naturally from the
dynamical equation of the corresponding densities, that is, they emerge from the
kinetic part of (A.5) (i.e. the commutator with T̂ ):

∂t〈
1

2
{n̂(r), Ô}〉T̂ = 〈 1

2i
[{n̂(r), Ô}, p̂

2

2
]〉

= Re
[
〈 1

2i
[n̂(r), p̂2]Ô〉

]
︸ ︷︷ ︸

current density term

+ Re
[
〈 1

2i
n̂(r)[Ô, p̂2]〉

]
︸ ︷︷ ︸

local source term

, (A.6)

where we used the relation [{Â, B̂}, Ĉ] = {[Â, Ĉ], B̂}+ {Â, [B̂, Ĉ]} together with
(A.64) and (A.67). We see that calculating the commutator with T̂ gives two
contributions: a current term and a source term. Note that the source term is
zero if [Ô, p̂2] = 0. Next, we will show that the left term can be written as the
divergence of a vector field, meaning that this term, in fact, corresponds to a
current density term for which the integral always vanishes (assuming finite or
periodic systems).

The following relation holds for any differentiable function g(r) [57]:

[g(r̂), p̂i] = i∂r̂ig(r̂) . (A.7)

Together with (A.2) (and with the assumption that the δ-distribution is described
by a differentiable trial function which gives in some limit the δ-distribution) we
get for the current density term from (A.6):

Re
[
〈 1

2i
[n̂(r), p̂2]Ô〉

]
=

3∑
i=1

1

2
Re
[
〈
(
∂r̂iδ(r− r̂)

)
p̂iÔ〉︸ ︷︷ ︸

=(a)

+ 〈p̂i
(
∂r̂iδ(r− r̂)

)
Ô〉︸ ︷︷ ︸

=:(b)

]
.

(A.8)
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Using the completeness relation gives for (a):

(a) =
∑
α=↑,↓

∫
dr′ 〈Ψ|

(
∂r̂iδ(r− r̂)

)
|α r′〉〈α r′|p̂iÔ|Ψ〉

=
∑
α=↑,↓

∫
dr′
(
∂r′iδ(r− r′)

)
〈Ψ|α r′〉〈α r′|p̂iÔ|Ψ〉

= −
∑
α=↑,↓

∫
dr′ δ(r− r′)∂r′i〈Ψ|α r′〉〈α r′|p̂iÔ|Ψ〉

= −∂ri
[
Ψ†(r)p̂iÔΨ(r)

]
. (A.9)

We used integration by parts and we assumed that the system is either finite
or periodic. In the last step we switched to the spinor representation. In an
analogous manner we get for term (b):

(b) = −∂ri
[(
p̂iΨ
)†

(r)ÔΨ(r)
]
. (A.10)

With the help of the completeness relation, the local source term from (A.6) can
be transformed to a spinor representation as well, leading, together with (A.8),
(A.9) and (A.10), to the following expression for the kinetic part of the dynamical
density equation:

∂t〈
1

2
{n̂(r), Ô}〉T̂ = −∇ · jÔ(r) +

1

2
Im
[
Ψ†(r)[Ô, p̂2]Ψ(r)

]
, (A.11)

where we have defined the general observable current density:

jÔ(r) =
1

2
Re
[
Ψ†(r)p̂ÔΨ(r) +

(
p̂Ψ
)†

(r)ÔΨ(r)
]
. (A.12)

In conclusion, we have shown that the observable current densities arise naturally
when calculating the local change of observables. In time-dependent situations,
these currents will flow into or out of a region, and increase or decrease the cor-
responding local expectation value.

Similarly to the previous section, from (A.12) follow two well known current
densities, the probability (or charge) current density (Ô = 1):

j1(r) = j(r) = Re
[
Ψ†(r)p̂Ψ(r)

]
= Im

[
Ψ†(r)∇Ψ(r)

]
, (A.13)

to which we will refer simply as the current density, and the spin-current density
(Ô = σi):

jσ̂i(r)
∣∣∣
j

=
↔

J ij (r) = Re
[
Ψ†(r)σi p̂jΨ(r)

]
= Im

[
Ψ†(r)σi∇jΨ(r)

]
, (A.14)

with i, j = {1, 2, 3}.
↔

J ij (r) is the spin-current tensor. This object, which is a
3 × 3 matrix, is often used in literature when spin-dynamics is discussed. Note
that the spin-current tensor can also be represented via the outer product:

↔

J (r) = Re
[
Ψ†(r)σ ⊗ p̂Ψ(r)

]
= Re

[
Ψ†(r)σ · p̂TΨ(r)

]
. (A.15)



100 Appendix

In some situations, however, it is important to look at the current vector of each
spin-component individually. Therefore it is convenient to define the spin-current

density of spin-component i by the ith row of
↔

J :

ji(r)
∣∣∣
j

=
↔

J ij (r) . (A.16)

A.1.3. Gauge invariance - paramagnetic and diamagnetic
current densities

In the previous derivation we assumed that the kinetic term has the form T̂ = p̂2

2
.

When an external vector potential, A(r), is present, the momentum operator in
the kinetic term has to be replaced by

p̂ −→ p̂ +
1

c
A(r̂) , (A.17)

which is called minimal coupling. As a result, the contribution in the dynamics
coming from the kinetic term (see (A.6)) changes to

∂t〈
1

2
{n̂(r), Ô}〉T̂ = Re

[
〈 1

2i
[n̂(r),

(
p̂ +

1

c
A(r̂)

)2
]Ô〉
]

︸ ︷︷ ︸
current density term

+ Re
[
〈 1

2i
n̂(r)[Ô,

(
p̂ +

1

c
A(r̂)

)2
]〉
]

︸ ︷︷ ︸
local source term

. (A.18)

Following the same derivations as before leads, in the spinor representation, to

∂t〈
1

2
{n̂(r), Ô}〉T̂ = −∇ · jÔ(r) +

1

2
Im
[
Ψ†(r)[Ô,

(
p̂ +

1

c
A(r)

)2
]Ψ(r)

]
, (A.19)

where we have defined the general gauge invariant observable current density:

jÔ(r) =
1

2
Re
[
Ψ†(r)

(
p̂ +

1

c
A(r)

)
ÔΨ(r) +

((
p̂ +

1

c
A(r)

)
Ψ
)†

(r)ÔΨ(r)
]
. (A.20)

This current density can be separated into two parts: into the so-called param-
agnetic (subscript “p”), and into the diamagnetic (subscript “d”) current density.
The sum of these two current densities gives the gauge invariant, i.e. the physical
current density (which is invariant under a gauge transformation; see section A.3),
leading for the (probability) current density to

j(r) = Re
[
Ψ†(r)p̂Ψ(r)

]
︸ ︷︷ ︸

=jp(r)

+
1

c
A(r)n(r)︸ ︷︷ ︸

=jd(r)

. (A.21)

In a similar way we get for the spin-current density

ji(r) = Re
[
Ψ†(r)σi p̂Ψ(r)

]
︸ ︷︷ ︸

=jip(r)

+
1

c
A(r)mi(r)︸ ︷︷ ︸

=jid(r)

, (A.22)
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or alternatively for the spin-current tensor

jip(r)
∣∣∣
j

=
↔

Jp, ij (r) , jid(r)
∣∣∣
j

=
↔

Jd, ij (r) . (A.23)

Note that the vector potential couples directly to the densities in order to obtain
the corresponding gauge invariant current densities.

A.1.4. Operator representation of the current densities

Previously, we have shown that the current densities arise when calculating the
dynamics of local quantities. Hence, the current densities can be imagined as
some kind of local momentum densities of observables. In the following we will
show that this picture in fact leads to an operator representation of the current
densities. First, we define the local momentum density operator by combining the
local density operator and the momentum operator:

1

2
{n(r̂), p̂} . (A.24)

We applied the anti-commutator in order to “hermitianize” the operator (i.e. to
get an operator that represents an observable). Next, we define the general current
density operator by combining the observable Ô with (A.24):

ĵÔ(r) =
1

4

{
{n̂(r), p̂}, Ô

}
. (A.25)

Again, we applied the anti-commutator in order to obtain a hermitian operator.
It is now straightforward to show that the expectation value of (A.25) gives the
current density as defined in (A.12):

〈̂jÔ(r)〉 (A.67)
=

1

2
Re
(
〈{n̂(r), p̂}Ô〉

)
=

1

2
Re
(
〈Ψ|n̂(r)|p̂ÔΨ〉+ 〈p̂Ψ|n̂(r)|ÔΨ〉

) (A.12)
= jÔ(r) . (A.26)

The gauge invariant current density operators can be obtained in the same way
as discussed before, i.e. simply by replacing the momentum operator according to
(A.17).

From (A.25) it follows the gauge invariant current density operator

ĵ(r) =
1

2
{n̂(r), p̂}︸ ︷︷ ︸

=ĵp(r)

+
1

c
A(r)n̂(r)︸ ︷︷ ︸

=ĵd(r)

, (A.27)

and the gauge invariant spin-current density operator of spin-component i

ĵi(r) =
1

2
σ̂i{n̂(r), p̂}︸ ︷︷ ︸

=ĵip(r)

+
1

c
A(r)m̂i(r)︸ ︷︷ ︸

=ĵid(r)

. (A.28)

As before, each of these operators is given as the sum of a paramagnetic and dia-

magnetic term. The definition of the spin-current tensor operator
↔̂

J(r) is straight-
forward (see (A.23)).
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A.1.5. Coupling to local fields

Hamiltonian elements containing local fields that couple to the momentum op-
erator can be seen as elements containing a coupling to a current density. To
illustrate this concept, we will look at the kinetic operator with minimal coupling
(A.17):

1

2

[
p̂ +

1

c
A(r̂)

]2
=
p̂2

2
+

1

2c
p̂ ·A(r̂) +

1

2c
A(r̂) · p̂︸ ︷︷ ︸

=:(a)

+
1

2c2
A2(r̂) . (A.29)

With the density operator representation of the local field (see e.g. (A.1))

A(r̂) =

∫
dr A(r)n̂(r) (A.30)

follows for term (a):

(a) =
3∑
i=1

1

2c
{Ai(r̂), p̂i} =

∫
dr

3∑
i=1

1

c
Ai(r)

1

2
{n̂(r), p̂i} =

∫
dr

1

c
A(r) · ĵp(r) .

(A.31)
We see that the term (a) from (A.29) can be represented as a local field that
couples to the paramagnetic spin-current density operator. In the same way you
can show that elements having the form (f(r̂)σ̂ip̂), with arbitrary local fields f(r),
can be represented as local fields that couple to the paramagnetic spin-current
density operator ĵip(r). This is, for example, the case for the spin-orbit coupling
term.

A.2. Magnetization, current and spin-currents for
many-electron systems

In this section we will briefly discuss how the magnetization, the current density,
and the spin-current densities might behave when many electrons are considered.
As a simple example, we will assume a collinear (non-interacting) two electron
system, described, in a certain region, by the following two spinors:

ϕ
1
(r) =

(
A eiα(r)

0

)
, ϕ

2
(r) =

(
0

B e−iα(r)

)
, (A.32)

where A and B are real numbers, and where α(r) is a real function. (In a more
general case, A and B should be functions of r as well. However, we assume only
a small region, and we assume that the r-dependence of A and B is negligible).
Note that the following conclusions also carry over to the general (non-collinear)
two-component spinor case (which follows e.g. from a spin-rotation of (A.32)).

First, we consider only one electron, ϕ
1
, and we calculate the magnetization

m3, the corresponding spin-current density, and the current density (see (A.13)
and (A.16)):

m3(r) = A2 , j(r) = j3(r) = A2∇α(r) . (A.33)
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This simple calculation demonstrates that ϕ
1

can be interpreted as a part of
the electronic density that has a spin-up polarization, and that moves with the
velocity ∇α(r). The previous picture is very intuitive, and it also agrees with
the fact that the current density is equal to the spin-current density. When we,
however, consider more than one electron, the picture changes.

As before, we will calculate the magnetization, the current density, and the
spin-current density, but now for the two electron system (A.32) (we assume non-
interacting electrons, i.e. each total expectation values follow from the sum of the
individual expectation values):

m3(r) = A2−B2 , j(r) = (A2−B2)∇α(r) , j3(r) = (A2 +B2)∇α(r) . (A.34)

When A2 6= B2, we have a non-zero magnetization, and a non-zero current and
spin-current density, which are, however, different. Such a situation is found
for the ground state of Ni and Fe if SOC is present (i.e. when we have a spin-
polarization along e3, we have, around the nucleus, a j(r) and a j3(r) that behave
very similar; see also section 4.3.4).

If A2 = B2, then the magnetization and the current density are zero. The
spin-current density, however, is not zero which seems, at first sight, to be a very
counterintuitive result (when thinking of the electron density as a whole). To
overcome this apparent issue, we can imagine the following picture: We have two
parts of the electronic density. The first part has a spin-up polarization and it
moves with the velocity ∇α(r). The second part has a spin-down polarization
and it also moves with the velocity∇α(r), but in the opposite direction, meaning
that the two current densities cancel. Next, we realize that (when in motion) a
spin-down polarization acts like a negative spin-up polarization, leading to the
fact that the two spin-current densities add together.

The previous situation (i.e. zero magnetization component and current density,
but a non-zero corresponding spin-current density) is found for j1(r) and j2(r)
for the ground state of Ni and Fe if SOC is present and if the spin-polarization
is along e3. Furthermore, the previous situation holds for all three spin-current
densities (which behave identical) if the material is non-ferromagnetic and if SOC
is present, as found for Al. Note that the spin-currents are non-zero in order to
minimize the SOC energy, as discussed in section 4.3.4.

A.3. The gauge transformation

The concept of the gauge transformation appeared first in classical electrodynam-
ics, where the physical fields, i.e. the E-field and the B-field, are described by two
auxiliary fields, namely by the scalar potential φ(r, t) and by the vector potential
A(r, t) [47]:

E(r, t) = −∇φ(r, t)− 1

c
∂tA(r, t) , B(r, t) =∇×A(r, t) . (A.35)

With these relations it is straightforward to show that a transformation of the
kind

φ(r, t) −→ φ(r, t)− ∂tΛ(r, t) ,
1

c
A(r, t) −→ 1

c
A(r, t) +∇Λ(r, t) , (A.36)
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leaves the physical E- and B-field, for arbitrary Λ(r, t), unchanged. The trans-
formation (A.36) is called gauge transformation, and Λ(r, t) is called gauge field.
The gauge transformation does not change the E- and B field, i.e. it does not
change the physics, but at the same time it changes the actual numerical values
of the scalar and vector potential. This freedom allows one to choose certain
properties for the potentials, to which is referred as “choose a gauge”. A specific
gauge is usually formulated via an additional constraint on the potentials, e.g.
the Coulomb gauge: ∇ ·A = 0, or the Weyl gauge: φ = 0.

In quantum mechanics, a gauge transformation (or more specific: an U(1) local
gauge transformation) is formulated by the following 3 transformations:

v(r, t) −→ v′(r, t) = v(r, t) + ∂tΛ(r, t) , (A.37)
1

c
A(r, t) −→ 1

c
A′(r, t) =

1

c
A(r, t) +∇Λ(r, t) , (A.38)

ϕ(r, t) −→ ϕ′(r, t) = e−iΛ(r,t)ϕ(r, t) , (A.39)

where we have used that the local potential is related to the scalar potential by
v = −φ (in atomic units). The meaning of this transformations is the following:
If ϕ solves the Schrödinger equation

∂tϕ(r, t) = ĥ(t)ϕ(r, t) , (A.40)

then ϕ′, defined via (A.39), solves the Schrödinger equation

∂tϕ
′(r, t) = ĥ′(t)ϕ′(r, t) , (A.41)

where A and v in ĥ have been transformed via (A.37) and (A.38). This property
is called gauge invariance. If this relation is not fulfilled, the Hamiltonian is not
constructed in a gauge invariant way, meaning that an unphysical situation is
described. With[

p̂l +
1

c
Al(r, t)

]
eiΛ(r,t)ϕ(r, t) = eiΛ(r,t)

[
p̂l +

1

c
Al(r, t) + ∂rlΛ(r, t)

]
ϕ(r, t) (A.42)

and
i∂te

iΛ(r,t)ϕ(r, t) = eiΛ(r,t)
[
i∂t − (∂tΛ(r, t))

]
ϕ(r, t) (A.43)

it follows immediately that the coupling to an electromagnetic field via minimal
coupling:

p̂ −→ p̂ +
1

c
A(r, t) , (A.44)

leads, for example for free particles, to gauge invariance. To test if an arbitrary
time-dependent Hamiltonian leads to gauge invariance, the following property can
be checked:[

ĥ(t)− v(r, t)
]′

e−iΛ(r,t)ψ(r) −→ e−iΛ(r,t)
[
ĥ(t)− v(r, t)

]
ψ(r) , (A.45)

where ψ(r) is some arbitrary trial wave function, and v(r, t) is the local potential
present in ĥ(t). The meaning of (A.45) is the following: the expression on the
left hand side, which is primed (i.e. all transformations according to (A.37) and
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(A.38) have to be performed), should reduce to the expression on the right hand
side in order to show gauge invariance for the time-dependent system. Note that
gauge invariance can immediately be seen if [ĥ(t)−v(r, t)

]
is represented in terms

of E = (∇v − ∂tA/c), B = (∇ ×A) and (p̂ + A/c), i.e. only constructed from
gauge invariant terms.

We point out that the general concept behind the gauge invariance is the same
as discussed for classical electrodynamics: the change of the potentials by a gauge
field Λ(r, t) should not change the physics. Since the physical framework in quan-
tum mechanics is described by the dynamical equation and the observables, also
the observables have to be formulated in a gauge invariant manner. The gauge
invariance of observables containing the momentum operator is guaranteed when
they are defined in terms of (p̂ + A/c) instead of p̂, which follows from (A.42).

We wish to mention one more important point concerning the calculation of
commutators. Each operator can, in principle, be represented in terms of position
and momentum operators (and in terms of Pauli operators if spin is considered).
Hence, the calculation of each commutator can, in principle, be reduced to the
application of the fundamental commutator relations of the position and momen-
tum operators. The position-position commutator does not change under a gauge
transformation: [r̂i, r̂j] = 0. Also the canonical commutation relation does not
change:

[r̂i, p̂j +
1

c
Aj(r̂)] = [r̂i, p̂j] +

1

c
[r̂i, Aj(r̂)]︸ ︷︷ ︸

=0

= iδij . (A.46)

The gauge invariant momentum-momentum commutator relation, however, can
change:

[
(
p̂i +

1

c
Ai(r̂)

)
,
(
p̂j +

1

c
Aj(r̂)

)
] = [p̂i,

1

c
Aj(r̂)] + [

1

c
Ai(r̂), p̂j]

= − i

c

(
∂r̂iAj(r̂)− ∂r̂jAi(r̂)

)
= − i

c

3∑
k

εijk
(
∇r̂ ×A(r̂)

)
· ek . (A.47)

If the A-field is a purely longitudinal vector field (i.e. such that it can be gauged
away), which is the case in our calculations, the last line of (A.47) becomes
zero (see next subsection). Hence, if the A-field is longitudinal, the momentum-
momentum commutator behaves as usual: [p̂i, p̂j] = 0, meaning in practice that
each commutator, containing only operators that are formulated in a gauge in-
variant way, is calculated in the same way as if there would be no external A-field
present. The result will always be gauge invariant as well, as it should be.

So far, all considerations assumed one-particle systems. The generalization to
many-electron systems is straightforward and leads to similar statements: the
transformations (A.37) and (A.38) apply for many-electron systems as well, only
the form of (A.39) changes to

Ψ(r1, . . . , rN , t) −→ Ψ′(r1, . . . , rN , t) = e−i[Λ(r1,t)+···+Λ(rN ,t)]Ψ(r1, . . . , rN , t) .
(A.48)
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A.4. The Helmholtz decomposition

The Helmholtz decomposition (also known as the fundamental theorem of vector
calculus) states that an arbitrary differentiable vector field v(r) can be decom-
posed into a curl-free component and a divergence-free component [47]. Hence,
v(r) can be described by a vector field a(r) and by a scalar field b(r) in the
following way:

v(r) = ∇× a(r)︸ ︷︷ ︸
=:vT(r)

+ ∇ b(r)︸ ︷︷ ︸
=:vL(r)

. (A.49)

The first term on the right hand side is called transversal component, and the
second term is called longitudinal component of v(r). With ∇ · (∇ × a) = 0
and ∇×∇b = 0 it follows immediately that the divergence of any vector field is
determined solely from the longitudinal component, while the curl is determined
solely from the transversal component:

∇ · v(r) =∇ · vL(r) , ∇× v(r) =∇× vT(r) . (A.50)

If v(r) vanishes at infinity faster than 1/|r|, the vector and the scalar field from
(A.49) can be calculated from

a(r) =
1

4π

∫
dr′
∇r′ × v(r′)

|r− r′| , b(r) = − 1

4π

∫
dr′
∇r′ · v(r′)

|r− r′| . (A.51)

A.5. Time-dependent Bloch states and the k-point
method

The basis of the k-point method forms the assumption that the system under study
can be described by an infinite periodic crystal. Such a crystal is usually defined by
three lattice vectors: a1, a2, a3. These lattice vectors define the smallest periodic
volume in the crystal, called unit cell. Periodic means that the lattice potential,
or more general: the Hamiltonian of the system, does not change under any lattice
translation R = m1a1 + m2a2 + m3a3, with mi as integers. In the following we
will assume to have a non-interacting system (also in view of the KS scheme).
We define now the translation operator t̂R that acts on each local operator with a
lattice translation via: t̂Rf(r̂) = f(r̂ + R)t̂R (t̂R can, for example, be represented
by t̂R =

∫
dr |r〉〈r + R|; note that [t̂R, p̂l] = 0). From the periodicity of the

system it follows immediately that this operator commutes with the Hamiltonian,
meaning that a set of common eigenstates exist:

[t̂R, ĥ] = 0 −→ ĥ|ϕk
i 〉 = εi|ϕk

i 〉 , t̂R|ϕk
i 〉 = eik·R|ϕk

i 〉 . (A.52)

The |ϕk
i 〉 are called Bloch states, and the relation (A.52) is called Bloch theorem,

which states that the eigenvalues of the translation operator t̂R have the form
eik·R. The k-vectors from eik·R and from the corresponding eigenstates |ϕk

i 〉 can
take on all values within the so-called Brillouin zone.
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The Bloch theorem can also be extended to the time-dependent domain. Con-
sidering a time-dependent Hamiltonian that is periodic for all times gives together
with Ehrenfest’s theorem:

[t̂R, ĥ(t)] = 0 −→ ∂t〈t̂R〉 = −i〈[t̂R, ĥ(t)]〉 = 0 . (A.53)

When we now assume that the system evolves from the ground state at t = 0,
and that the Hamiltonian was periodic at that time, it follows with (A.53) that
the time-dependent states remain Bloch states:

〈ϕk
i (t)|t̂R|ϕk

i (t)〉 = 〈ϕk
i (0)|t̂R|ϕk

i (0)〉 = eik·R → t̂R|ϕk
i (t)〉 = eik·R|ϕk

i (t)〉 . (A.54)

A common way to represent the Bloch states is the representation as so-called
Bloch waves:

〈r|ϕk
i (t)〉 = eik·ruki (r, t) , with uki (r + R, t) = uki (r, t) . (A.55)

The usual way to calculate properties of infinite periodic systems is to consider
a macroscopic cell which is constructed from multiple unit cells. Additionally, it is
demanded that the states satisfy periodic boundary conditions in this macroscopic
cell, i.e.: ϕ(r + Mjaj) = ϕ(r), with j = {1, 2, 3} (note that the integers Mj are
used to define the size of the macroscopic cell). Moreover, it is assumed that the
states are Bloch states, leading to the condition: eik·Mjaj = 1. This condition,
together with the assumption that all k-vectors have to be in the Brillouin zone,
defines all valid k-vectors, which are called k-points. The number of unit cells
in the macroscopic cell is M = M1 ·M2 ·M3, which is equal to the number of
k-points.

The properties (i.e. the expectation values) of an infinite system can then be
calculated by taking the infinite limit of the macroscopic cell:

lim
M→∞

1

M

∑
k,i

fk
i 〈ϕk

i |Ô|ϕk
i 〉 =

Ω

(2π)3

∫
BZ

dk
∑
i

fi(k)〈ϕk
i |Ô|ϕk

i 〉 , (A.56)

where fk
i is the occupation number and Ω is the volume of the unit cell. As can be

seen from the right hand side, the sum over the k-points becomes an integral over
the Brillouin zone in the infinite limit. However, it shows that a limited number
of k-points is sufficient to calculate the properties of infinite systems, meaning, in
practice, that the system is successively calculated by increasing the number of
k-points until convergence is reached (with respect to the desired quantity). Note
that the observables are usually calculated per unit cell, (according to (A.56)),
and that all local observables have the same periodicity as the Hamiltonian (which
follows directly from the Bloch theorem (A.52)).

The important advantage of the k-point method is that only one unit cell is
necessary for the calculation. This follows, for example, from the Bloch wave
representation (A.55):

ĥ eik·ruk(r, t) = eik·rĥkuk(r, t) −→ i∂tu
k(r, t) = ĥkuk(r, t) , (A.57)

where ĥk corresponds to ĥ with the difference that the momentum operator p̂ is
replaced by (p̂ + k). As result the Schrödinger equation on the right hand side of
(A.57) needs to be calculated only in one unit cell for each k-point, since uk(r, t)
and ĥk are lattice periodic.
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A.6. Auxiliary calculations

In this section, we will show some derivations in detail. In the derivations we will,
from time to time, make use of the density operator. The density operator will be
represented by the δ-distribution, while the δ-distribution has to be understood
as a differentiable trial function that becomes the δ-distribution in some limit.

A.6.1. Rules

Below, some short derivations and rules are listed that will be used in this section.

[n̂(r), p̂j] = [δ(r− r̂), p̂j]
(A.7)
= i∂r̂jδ(r− r̂) = −i∂rjδ(r− r̂) = −i∂rj n̂(r) (A.58)

3∑
i

εijkεimn = δjmδkn − δjnδkm (A.59)

[σ̂i, σ̂j] = 2i
3∑
k

εijkσ̂k (A.60)

{σ̂i, σ̂j} = 2δij (A.61)

[p̂i, L̂j] = i
3∑
k

εijkp̂k (A.62)

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂ (A.63)

Â = Â† , B̂ = B̂† −→
(1

i
[Â, B̂]

)
=
(1

i
[Â, B̂]

)†
(A.64)

Re
(
〈Â〉
)

=
1

2
〈Â+ Â†〉 (A.65)

Â = Â† −→ Â =
1

2

(
Â+ Â†

)
(A.66)

Â = Â† , B̂ = B̂† −→ 1

2
〈{Â, B̂}〉 = Re

(
〈ÂB̂〉

)
= Re

(
〈B̂Â〉

)
(A.67)

A.6.2. Spin-orbit coupling

In the following, we will consider the SOC operator of a single-particle system,
and we will rewrite this operator to a form where we have a local coupling to the
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potential. For simplicity, we will neglect the factor 1/4c2.

σ̂ ·
(
∇v(r̂)× p̂

)
=

3∑
i,j,k

εijk σ̂i∂r̂jv(r̂)p̂k

A.30
=

3∑
i,j,k

εijk σ̂i

(∫
dr
(
∂rjv(r)

)
n̂(r)

)
p̂k

=
3∑
j

∫
dr ∂rjv(r)

3∑
i,k

εijk σ̂in̂(r)p̂k

(A.66)
=

3∑
j

∫
dr ∂rjv(r)

3∑
i,k

εijk
1

2

(
σ̂in̂(r)p̂k + p̂kn̂(r)σ̂i

)
=

3∑
j

∫
dr ∂rjv(r)

3∑
i,k

εijk σ̂i
1

2
{n̂(r), p̂k}

= −
∫
dr v(r)

3∑
i,j,k

εijk ∂rj σ̂i
1

2
{n̂(r), p̂k}

= −
∫
dr v(r)

3∑
i

(
∇r × σ̂i

1

2
{n̂(r), p̂}

)
· ei , (A.68)

where εijk is the Levi-Civita symbol and ei is the Cartesian unit vector of com-
ponent i. We used that the SOC operator is hermitian, we applied integration by
parts, and we assumed that the system is either finite or periodic. An analogous
derivation can be carried out for a many-electron system:

N∑
l

σ̂l ·
(
∇v(r̂l)× p̂l

)
(A.68)

= −
N∑
l

∫
dr v(r)

3∑
i

(
∇r × σ̂i,l

1

2
{δ(r− r̂l), p̂l}

)
· ei

= −
∫
dr v(r)

3∑
i

(
∇r ×

N∑
l

1

2
σ̂i,l{δ(r− r̂l), p̂l}

)
· ei

2.26
= −

∫
dr v(r)

3∑
i

(
∇r × ĵip(r)

)
· ei . (A.69)

Note that (A.69) could also be represented via the spin-current tensor operator:

N∑
l

σ̂l ·
(
∇v(r̂l)× p̂l

)
= −

∫
dr v(r) Tr{∇r ×

↔̂

Jp(r)} , (A.70)

where the curl acts on each row vector of the tensor.

A.6.3. Time-dependent density, magnetization, and moment

In the following, we will derive the dynamical equations of the density, the mag-
netization, and the moment. For simplicity, only single-electron systems will be
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considered. The generalization to many-electron systems is straightforward. We
will consider a Hamiltonian of the type (3.16), and we will, for a clearer view, omit
the t-variable and all labels, i.e. fields of equal types will not be distinguished (e.g.
(Bext + Bxc)→ B):

ĥ =
1

2

(
p̂ +

1

c
A
)2

+ v(r̂) +
1

2c
σ̂ ·B(r̂) +

1

4c2
σ̂ ·
(
∇v(r̂)×

[
p̂ +

1

c
A
])
. (A.71)

Time-dependent density

The dynamical equation of the density for the Hamiltonian (A.71) follows from
the application of Ehrenfest’s theorem:

∂t〈n̂(r)〉 =
1

i
〈[n̂(r), ĥ]〉 =

1

i
〈[n̂(r),

1

2

(
p̂ +

1

c
A
)2

]〉︸ ︷︷ ︸
=(a)

+
1

i
〈[n̂(r), v(r̂)]〉︸ ︷︷ ︸

=0

+
1

i
〈[n̂(r),

1

2c
σ̂ ·B(r̂)]〉︸ ︷︷ ︸

=0

+
1

i
〈[n̂(r),

1

4c2
σ̂ ·
(
∇v(r̂)× [p̂ +

1

c
A]
)
]〉︸ ︷︷ ︸

=(b)

. (A.72)

The calculation of the term (a) has been discussed in detail in section (A.1), giving

(a) = −∇ ·
(
jp(r) + jd(r)

)
= −∇ · j(r) , (A.73)

where j is the gauge invariant current density (A.21). For term (b) follows

(b) =
1

4c2i
〈[n̂(r),

3∑
i,j,k

εijkσ̂i(∂r̂jv(r̂))(p̂k +
1

c
Ak)]〉

=
1

4c2i

3∑
i,j,k

εijk〈σ̂i(∂r̂jv(r̂))[n̂(r), p̂k]〉

(A.58)
= − 1

4c2

3∑
k

∂rk

3∑
i,j

εkij〈(σ̂in̂(r))(∂r̂jv(r̂))〉

= − 1

4c2

3∑
k

∂rkm(r)×∇v(r)
∣∣∣
k

(A.74)

= −∇ · 1

4c2

[
m(r)×∇v(r)

]
, (A.75)

where we decomposed the triple product with the help of the Levi-Civita symbol.
In summary, we get

∂tn(r) = −∇ · j(r)−∇ · 1

4c2

[
m(r)×∇v(r)

]
. (A.76)
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Time-dependent magnetization

The dynamical equation of the magnetization for the Hamiltonian (A.71) follows
from

∂t〈σ̂in̂(r)〉 =
1

i
〈[σ̂in̂(r), ĥ]〉 =

1

i
〈[σ̂in̂(r),

1

2

(
p̂ +

1

c
A
)2

]〉︸ ︷︷ ︸
=(a)

+
1

i
〈[σ̂in̂(r), v(r̂)]〉︸ ︷︷ ︸

=0

+
1

i
〈[σ̂in̂(r),

1

2c
σ̂ ·B(r̂)]〉︸ ︷︷ ︸

=(b)

+
1

i
〈[σ̂in̂(r),

1

4c2
σ̂ ·
(
∇v(r̂)× [p̂ +

1

c
A]
)
]〉︸ ︷︷ ︸

=(c)

. (A.77)

The calculation of the term (a) has been discussed in detail in section (A.1),
leading to

(a) = −∇ ·
(
jip(r) + jid(r)

)
= −∇ · ji(r)

= −∇ ·
( ↔

Jp (r)+
↔

Jd (r)
)∣∣∣
i

= −∇·
↔

J (r)
∣∣∣
i
, (A.78)

where we used the gauge invariant spin-current density representation (A.22) in
the first line, and the gauge invariant spin-current tensor representation (A.23) in
the second line. The notation in the second line has to be understood as follows:
the spin-current tensor is a 3× 3 matrix, and the ∇-operation contracts each row
of this matrix by taking the divergence of each row vector, such that a vector
is left (and we are interested in the ith component of this vector). For term (b)
follows

(b) =
1

2ci
〈[σ̂in̂(r),

3∑
j

σ̂jBj(r̂)]〉 =
1

2ci

3∑
j

〈n̂(r)Bj(r̂)[σ̂i, σ̂j]〉

(A.60)
=

1

c

3∑
j,k

εijk〈Bj(r̂)(σ̂kn̂(r))〉 =
1

c
B(r)×m(r)

∣∣∣
i
, (A.79)

where we used the Levi-Civita symbol to represented the cross product.
Next, we will calculate the contribution of the SOC term (c). First, we separate

the gauge invariant momentum operator term, leading to the following two terms:

(c) =
1

4c2i
〈[σ̂in̂(r), σ̂ ·

(
∇v(r̂)× p̂

)
]〉︸ ︷︷ ︸

=(d)

+
1

4c3i
〈[σ̂in̂(r), σ̂ ·

(
∇v(r̂)×A

)
]〉︸ ︷︷ ︸

=(e)

. (A.80)

Each expectation value of a hermitian operator is a real number. Therefore, it
follows from the relation (A.64) together with the hermiticity of the paramagnetic
SOC operator that (d) has to be a real number. Thus, we get for term (d) with
the relation (A.63):

(d) =
1

4c2
Re
(1

i
〈[σ̂i, σ̂ ·

(
∇v(r̂)× p̂

)
]n̂(r)〉

)
︸ ︷︷ ︸

=(f)

+
1

4c2
Re
(1

i
〈σ̂i[n̂(r), σ̂ ·

(
∇v(r̂)× p̂

)
]〉
)

︸ ︷︷ ︸
=(g)

. (A.81)
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We will now calculate the term (f):

(f) =
1

4c2
Re
(1

i
〈[σ̂i,

3∑
j,k,l

εjkl σ̂j(∂r̂kv(r̂))p̂l]n̂(r)〉
)

=
1

4c2

3∑
j,k,l

εjklRe
(1

i
〈[σ̂i, σ̂j](∂r̂kv(r̂))p̂ln̂(r)〉

)
(A.60)

=
1

2c2

3∑
j,k,l,m

εjklεijmRe
(
〈σ̂m(∂r̂kv(r̂))p̂ln̂(r)〉

)
(A.65)

=
1

4c2

3∑
j,k,l,m

εjklεijm

(
〈σ̂m(∂r̂kv(r̂))p̂ln̂(r) +

[
σ̂m(∂r̂kv(r̂))p̂ln̂(r)

]†〉)
(A.7)
=

1

4c2

3∑
j,k,l,m

εjklεijm〈σ̂m(∂r̂kv(r̂))
[
p̂ln̂(r) + n̂(r)p̂l

]
〉

+
1

4c2i

3∑
j,m

εijm

3∑
k,l

εjkl〈σ̂m∂r̂l∂r̂kv(r̂)〉︸ ︷︷ ︸
=0

=
1

2c2

3∑
j,k,l,m

εjklεijm〈(∂r̂kv(r̂))
1

2
σ̂m{n̂(r), p̂l}︸ ︷︷ ︸
(A.28)

= ĵmp (r)

∣∣
l

〉

(A.23)
=

1

2c2

3∑
j,k,l,m

εjklεijm
↔

Jp,ml (r)∂rkv(r)

(A.59)
=

1

2c2

3∑
k,l,m

δkmδli
↔

Jp,ml (r)∂rkv(r)− 1

2c2

3∑
k,l,m

δkiδlm
↔

Jp,ml (r)∂rkv(r)

=
1

2c2

3∑
k

↔

Jp, ki (r)∂rkv(r)− 1

2c2

3∑
l

↔

Jp, ll (r)∂riv(r)

=
1

2c2

[ ↔

J
T
p (r)− Tr{

↔

Jp (r)}
]
·∇v(r)

∣∣∣
i
. (A.82)

The expression in the last line has to be understood as follows: The trace of
the paramagnetic spin-current tensor is subtracted from diagonal elements of the
transpose of the paramagnetic spin-current tensor, which gives a 3 × 3 matrix.
This matrix is then multiplied by the vector ∇v(r) which gives a vector, and we
are interested in the ith component of this vector.
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Next, we will calculate the term (g) from (A.81):

(g) =
1

4c2
Re
(1

i
〈σ̂i[n̂(r),

3∑
j,k,l

εjkl σ̂j(∂r̂kv(r̂))p̂l]〉
)

=
1

4c2

3∑
j,k,l

εjklRe
(1

i
〈σ̂iσ̂j(∂r̂kv(r̂))[n̂(r), p̂l]〉

)
(A.58)

=
1

4c2

3∑
j,k,l

εjlk∂rlRe
(
〈σ̂iσ̂jn̂(r)∂r̂kv(r̂)〉

)
(A.65)

=
1

4c2

3∑
j,k,l

εjlk∂rl〈n̂(r)∂r̂kv(r̂)
1

2
{σ̂i, σ̂j}〉

(A.61)
=

1

4c2

3∑
k,l

εilk∂rl〈n̂(r)∂r̂kv(r̂)〉

=
1

4c2

3∑
k,l

εilk(∂rln(r))(∂rkv(r)) +
1

4c2
n(r)

3∑
k,l

εilk∂rl∂rkv(r)︸ ︷︷ ︸
=0

=
1

4c2
∇n(r)×∇v(r)

∣∣∣
i
. (A.83)

Finally, we will calculate the term (e) from (A.80):

(e) =
1

4c3i
〈[σ̂in̂(r),

3∑
j,k,l

εjklσ̂j∂r̂kv(r̂)Al]〉

=
1

4c3i

3∑
j,k,l

εjkl〈[σ̂i, σ̂j]n̂(r)∂r̂kv(r̂)〉Al

(A.60)
=

1

2c3

3∑
j,k,l,m

εjklεijm〈σ̂mn̂(r)∂r̂kv(r̂)〉Al

(A.23)
=

1

2c2

3∑
j,k,l,m

εjklεijm
↔

Jd,ml (r)∂rkv(r)

=
1

2c2

[ ↔

J
T
d (r)− Tr{

↔

Jd (r)}
]
·∇v(r)

∣∣∣
i
. (A.84)

In the last step, we followed the same route as shown in derivation (A.82) in the
last three steps. We see that we get a similar result as in (A.82), but now with the
diamagnetic spin-current tensor. Thus, both results can be combined and written
with the gauge invariant spin-current tensor.
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By collecting the results from (A.78), (A.79), (A.82), (A.83), and (A.84), we can
write down the dynamical equation of the magnetization:

∂tm(r) = − ∇·
↔

J (r) +
1

c

[
B(r)×m(r)

]
+

1

4c2

[
∇n(r)×∇v(r)

]
+

1

2c2

[ ↔

J
T(r)− Tr{

↔

J (r)}
]
·∇v(r) , (A.85)

where we considered the vector of the magnetization, and not only one component
as in the derivation. Note that the notation of the kinetic term (the first term on
the right hand side) is mathematically not entirely correct. What we mean is that
each row vector of the spin-current tensor is contracted by taking the divergence,
i.e. the correct notation would be

∇·
↔

J (r) −→
(
∇T ·

↔

J (r)T
)T

=
3∑
j,k

∂rk
↔

J jk (r) ej . (A.86)

For a clear view, we will use the simplified notation from (A.85) in this work.

Time-dependent moment

The dynamical equation of the moment for the Hamiltonian (A.71) follows from

∂t〈σ̂i〉 =
1

i
〈[σ̂i, ĥ]〉 =

1

i
〈[σ̂i,

1

2

(
p̂ +

1

c
A
)2

]〉︸ ︷︷ ︸
=0

+
1

i
〈[σ̂i, v(r̂)]〉︸ ︷︷ ︸

=0

+
1

i
〈[σ̂i,

1

2c
σ̂ ·B(r̂)]〉︸ ︷︷ ︸

=(a)

+
1

i
〈[σ̂i,

1

4c2
σ̂ ·
(
∇v(r̂)× [p̂ +

1

c
A]
)
]〉︸ ︷︷ ︸

=(b)

. (A.87)

We get for term (a)

(a) =
1

2ci
〈[σ̂i,

3∑
j

σ̂jBj(r̂)]〉 =
1

2ci

3∑
j

〈Bj(r̂)[σ̂i, σ̂j]〉

(A.60)
=

1

c

3∑
j,k

εijk〈Bj(r̂)(σ̂k)〉 =
1

c
〈B(r̂)× σ̂〉

∣∣∣
i
. (A.88)

For term (b) follows

(b) =
1

4c2i
〈[σ̂i,

3∑
j,k,l

εjklσ̂j(∂r̂kv(r̂))(p̂l +
1

c
Al)]〉

=
1

4c2i

3∑
j,k,l

εjkl〈[σ̂i, σ̂j](∂r̂kv(r̂))(p̂l +
1

c
Al)〉

(A.60)
=

1

2c2

3∑
j,k,l,m

εjklεijm〈σ̂m(∂r̂kv(r̂))(p̂l +
1

c
Al)〉

=
1

2c2
〈
(
∇v(r̂)× [p̂ +

1

c
A]
)
× σ̂〉

∣∣∣
i
. (A.89)
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Thus, the dynamical equation of the moment is given by

∂tM =
1

c
〈B(r̂)× σ̂〉︸ ︷︷ ︸

=∂tMB

+
1

2c2
〈
(
∇v(r̂)× [p̂ +

1

c
A]
)
× σ̂〉︸ ︷︷ ︸

=∂tMSOC

. (A.90)

The moment and its time derivative is also given by the integral of the magneti-
zation and its time derivative (which follows from (A.1)):

M = 〈σ̂〉 =

∫
dr 〈n̂(r)σ̂〉 =

∫
dr m(r) −→ ∂tM =

∫
dr ∂tm(r) . (A.91)

Hence, the two terms from (A.90) should also be representable as integrals over
the corresponding terms from (A.85). In order to investigate this statement we
will first, with the help of relation (A.1), rewrite the B-term from (A.90):

∂tMB =

∫
dr

1

c
〈n̂(r)(B(r̂)× σ̂)〉 =

∫
dr

1

c
〈B(r̂)× (n̂(r)σ̂)〉

=
1

c

∫
dr
[
B(r)×m(r)

]
(A.92)

which, in fact, gives the integral over the corresponding B-term from (A.85).
Next, we will rewrite the SOC term from (A.90), and we will start from the line
next to the last line of (A.89):

∂tMSOC

∣∣∣
i

=
1

2c2

3∑
j,k,l,m

εjklεijm〈σ̂m(∂r̂kv(r̂))(p̂l +
1

c
Al)〉

(A.1)
=

1

2c2

∫
dr

3∑
j,k,l,m

εjklεijm〈(∂r̂kv(r̂))
1

2
σ̂m{n̂(r), (p̂l +

1

c
Al)}︸ ︷︷ ︸

(2.27)
=

↔̂
Jml(r)

〉

=
1

2c2

∫
dr

3∑
j,k,l,m

εjklεijm
↔

Jml (r)∂rkv(r)

=
1

2c2

∫
dr
[ ↔

J
T(r)− Tr{

↔

J (r)}
]
·∇v(r)

∣∣∣
i
. (A.93)

In the last step, we followed the last three steps from (A.82). With (A.92) and
(A.93) we can now rewrite the expression (A.90):

∂tM(t) =
1

c

∫
dr
[
B(r)×m(r)

]
+

1

2c2

∫
dr
[ ↔

J
T(r)−Tr{

↔

J (r)}
]
·∇v(r) . (A.94)

As a result, we see that the first and the third term from (A.85) are not present,
meaning that these terms do not contribute to the dynamics of the moment. The
first term vanishes by means of Gauss’s theorem, and the third term can be shown
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to vanish via integration by parts:∫
dr∇n(r)×∇v(r)

∣∣
i

=
∑
j,k

εijk

∫
dr (∂rjn(r))∂rkv(r)

= −
∑
j,k

εijk

∫
drn(r)∂rj∂rkv(r)

= −
∫
drn(r)∇×∇v(r)

∣∣
i︸ ︷︷ ︸

=0

= 0 . (A.95)

As a last point, we wish to demonstrate that the SOC term (A.93) can be repre-
sented in a different form, i.e. by using the spin-current densities instead of the
spin-current tensor. With (A.23) we get from the line next to the last line of
(A.93)

∂tMSOC

∣∣∣
i

=
1

2c2

∫
dr

3∑
j,k,l,m

εjklεijm jm(r)
∣∣∣
l
∂rkv(r)

=
1

2c2

∫
dr

3∑
j,m

εijm∇v(r)× jm(r)
∣∣∣
j

=
1

2c2

∫
dr

3∑
j,m

εijm ej · [∇v(r)× jm(r)]

=
1

2c2

∫
dr

 e1

e2

e3

×
 [∇v(r)× j1(r)]

[∇v(r)× j2(r)]
[∇v(r)× j3(r)]

∣∣∣∣∣
i

, (A.96)

where {el} are the unit vectors. Here, we have defined a cross product of vectors
that are constructed from vectors, which is calculated in the usual sense, while
the regular multiplication corresponds here to the dot product.

A.6.4. Spin-orbit angular momentum torque terms

In this section we will derive the dynamical equation for the spin-orbit angular
momenta

〈Ω(r̂)σ̂pL̂q〉 , with p, q = {1, 2, 3} , (A.97)

where Ω(r) is a radial function that is one inside, and zero outside an arbitrary
sphere (see e.g. (4.14)). Note that the angular momentum is defined around
the origin of Ω(r), and that Ω(r̂)σ̂pL̂q is hermitian (since [Ω(r̂), L̂q] = 0). We will
neglect the diamagnetic part of the angular momentum operator (in (A.97) and in
the SOC term), because it was found that there is no difference in using the gauge
invariant angular momentum operator or the bare L̂q. We will explain this fact
at the end of this subsection. For simplicity, only single-electron systems will be
considered below. The generalization to many-electron systems is straightforward.
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We will consider a Hamiltonian of the type (3.16), with the difference that the
radial SOC term (4.10) will be used. As in the previous section we will, for a clearer
view, omit the t-variable and all labels, i.e. we will consider the Hamiltonian

ĥ =
1

2

(
p̂ +

1

c
A
)2

+ v(r̂) +
1

2c
σ̂ ·B(r̂) +

1

2
ξ(r̂)σ̂ · L̂ . (A.98)

The dynamical equation of the spin-orbit angular momenta (A.97) for the Hamil-
tonian (A.98) follows from Ehrenfest’s theorem:

∂t〈Ω(r̂)σ̂pL̂q〉 =
1

i
〈[Ω(r̂)σ̂pL̂q, ĥ]〉 (A.99)

=
1

i
〈[Ω(r̂)σ̂pL̂q,

1

2

(
p̂ +

1

c
A
)2

]〉︸ ︷︷ ︸
=(a)

+
1

i
〈[Ω(r̂)σ̂pL̂q, v(r̂)]〉︸ ︷︷ ︸

=(b)

+
1

i
〈[Ω(r̂)σ̂pL̂q,

1

2c
σ̂ ·B(r̂)]〉︸ ︷︷ ︸

=(c)

+
1

i
〈[Ω(r̂)σ̂pL̂q,

1

2
ξ(r̂)σ̂ · L̂]〉︸ ︷︷ ︸

=(d)

.

We start with the calculation of term (a), and we will split this term into its
kinetic and A-coupling part:

(a) =
1

2i
〈[Ω(r̂)σ̂pL̂q, p̂

2]〉︸ ︷︷ ︸
=(f)

+
1

ci
〈[Ω(r̂)σ̂pL̂q,A · p̂]〉︸ ︷︷ ︸

=(g)

. (A.100)

First, we calculate the term (f). Simplifying the commutator gives

(f)
(A.63)

=
1

2
〈1

i
[Ω(r̂), p̂2]σ̂pL̂q〉 = Re

( 1

2i
〈[Ω(r̂), p̂2]σ̂pL̂q〉

)
. (A.101)

As a next step, we will show that this term corresponds to a surface contribution:

(f)
(A.30)

=

∫
dr Ω(r) Re

( 1

2i
〈[n̂(r), p̂2]σ̂pL̂q〉

)
=

∫
dr Ω(r)

3∑
l

Re
( 1

2i
〈[n̂(r), p̂l]p̂lσ̂pL̂q + p̂l[n̂(r), p̂l]σ̂pL̂q〉

)
(A.58)

= −
∫
dr Ω(r)

3∑
l

∂rlRe
(1

2
〈n̂(r)p̂lσ̂pL̂q + p̂ln̂(r)σ̂pL̂q〉

)
= −

∫
dr Ω(r)∇ · 1

2
Re
(
〈{n̂(r), p̂}σ̂pL̂q〉

)︸ ︷︷ ︸
spin-orbit angular momentum current density

. (A.102)

We see that the term (f) can be represented via a spin-current density expression
(as it should be; see sections A.1.2 and A.1.4). This expression can be written as
a surface term by applying Gauss’s theorem. Note that the spin-current density
from (A.102) corresponds to a paramagnetic spin-orbit angular momentum current



118 Appendix

density. We will now show that the surface term (A.102) can be further simplified
(to be more precise: we will show that the anti-commutator expression from
(A.102) is not needed in the surface integral representation). Applying the relation

[Ω(r̂), p̂2] = ∇2
r̂Ω(r̂)− 2

i
∇r̂Ω(r̂) · p̂ (A.103)

on (A.101) gives

(f) = Re
( 1

2i
〈∇2

r̂Ω(r̂)σ̂pL̂q〉
)︸ ︷︷ ︸

=0

+Re
(
〈∇r̂Ω(r̂) · p̂ σ̂pL̂q〉

)
(A.30)

=

∫
dr
(
∇rΩ(r)

)
· Re

(
〈n̂(r)p̂ σ̂pL̂q〉

)
= −

∫
dr δ(R− r)er(r) · Re

(
〈n̂(r)p̂ σ̂pL̂q〉

)
= −

∮
Ω

ds · Re
(
〈n̂(r)p̂ σ̂pL̂q〉

)
, (A.104)

where er is the radial unit vector. The first term on the right hand side of the first
line vanishes because the expectation value is real (since the operators commute).
Moreover, we assumed that the radial function Ω(r) is given by Ω(r) = Θ(R− r)
(i.e. by a function that is one inside a sphere with radius R and zero outside, as
stated at the beginning of this section). We point out that (A.104) corresponds to
a spin-orbit angular momentum torque term that changes the spin-orbit angular
momentum inside Ω via (paramagnetic) spin-orbit angular momentum currents
that flow trough the surface.

Next, we will calculate the term (g) from (A.100):

(g)
(A.63)

=
3∑
l

1

ci
Al〈σ̂p[Ω(r̂), p̂l]L̂q〉+

3∑
l

1

ci
Al〈Ω(r̂)σ̂p[L̂q, p̂l]〉

(A.30)
=

3∑
l

1

ci
Al〈σ̂p[

(∫
dr Ω(r)n̂(r)

)
, p̂l]L̂q〉+

3∑
l

1

ci
Al〈Ω(r̂)σ̂p[L̂q, p̂l]〉

(A.62)
=

∫
dr Ω(r)

3∑
l

1

ci
Al〈σ̂p[n̂(r), p̂l]L̂q〉+

3∑
l,m

εqlm
1

c
Al〈Ω(r̂)σ̂pp̂m〉

(A.58)
= −

∫
dr Ω(r)

3∑
l

1

c
Al∂rlRe

(
〈n̂(r)σ̂pL̂q〉

)
+

3∑
l,m

εqlm
1

c
AlRe

(
〈Ω(r̂)σ̂pp̂m〉

)
= −

∮
Ω

ds · Re
(
〈n̂(r)

1

c
Aσ̂pL̂q〉

)
+

1

c
A× Re

(
〈Ω(r̂)σ̂p p̂〉

)∣∣
q
. (A.105)

We have used that the term (g) is real, and we applied Gauss’s theorem. With
(A.104) and (A.105) we can write the spin-orbit angular momentum torque term
(a) from (A.100) as

(a) = −
∮

Ω

ds · Re
(
〈n̂(r)(p̂ +

1

c
A)σ̂pL̂q〉

)
+

1

c
A× Re

(
〈Ω(r̂)σ̂p p̂〉

)∣∣
q
. (A.106)
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We see that the torque term (a) has two contributions. The first term corre-
sponds to a gauge invariant spin-orbit angular momentum current contribution
that changes the spin-orbit angular momentum via currents that flow into Ω.
The second term corresponds to a direct coupling of the external A-field to the
spin-current in region Ω.

We will now calculate the torque term (b) from (A.99):

(b) =
1

i
〈Ω(r̂)σ̂p[L̂q, v(r̂)]〉 =

3∑
l,m

εqlm
1

i
〈Ω(r̂)σ̂pr̂l[p̂m, v(r̂)]〉

(A.7)
= −

3∑
l,m

εqlm〈Ω(r̂)σ̂pr̂l∂r̂mv(r̂)〉 = 〈Ω(r̂)σ̂p∇v(r̂)× r̂〉
∣∣
q
. (A.107)

Note that this torque term corresponds to the usual angular momentum torque
caused by the electric field of the local potential.

Next, we calculate the term (c):

(c)
(A.63)

=
3∑
l

1

2ci
〈Ω(r̂)σ̂pσ̂l [L̂q, Bl(r̂)]︸ ︷︷ ︸

=i∇Bl(r̂)×r̂|q

〉+
3∑
l

1

2ci
〈Ω(r̂)[σ̂p, σ̂l]Bl(r̂)L̂q〉

(A.60)
=

3∑
l

1

2c
Re
(
〈Ω(r̂)σ̂pσ̂l∇Bl(r̂)× r̂〉

)∣∣
q

+
3∑
l,m

εplm
1

c
Re
(
〈Ω(r̂)Bl(r̂)σ̂mL̂q〉

)
(A.65)

=
3∑
l

1

2c
〈Ω(r̂)

1

2
{σ̂p, σ̂l}∇Bl(r̂)× r̂〉

∣∣
q

+
3∑
l,m

εplm
1

c
Re
(
〈Ω(r̂)Bl(r̂)σ̂mL̂q〉

)
(A.61)

=
1

2c
〈Ω(r̂)∇Bp(r̂)× r̂〉

∣∣
q

+ Re
(
〈Ω(r̂)

1

c
B(r̂)× σ̂ L̂q〉

)∣∣
p
, (A.108)

which gives two torque contributions. Note that the two contributions can, in a
sense, be understood as a result of the product rule: the first torque contribution
results from the change of the angular momentum contribution (i.e. from the
angular momentum torque), while the second term results from the change of the
spin contribution (i.e. from the spin-torque). This is particularly obvious for the
second term, which contains the usual B×σ/c -spin-torque term (see e.g. (A.90)).

We continue with the calculation of term (d) from (A.99):

(d)
(A.63)

=
3∑
l

1

2i
〈Ω(r̂)ξ(r̂)σ̂pσ̂l [L̂q, L̂l]︸ ︷︷ ︸

=i
∑
m εqlmL̂m

〉+
3∑
l

1

2i
〈Ω(r̂)ξ(r̂)[σ̂p, σ̂l]L̂lL̂q〉

(A.60)
=

3∑
l,m

εqlm
1

2
Re
(
〈Ω(r̂)ξ(r̂)σ̂pσ̂lL̂m〉

)
+

3∑
l,m

εqlmRe
(
〈Ω(r̂)ξ(r̂)L̂lσ̂mL̂q〉

)
(A.65)

=
3∑
l,m

εqlm
1

2
Re
(
〈Ω(r̂)ξ(r̂)

1

2
{σ̂p, σ̂l}L̂m〉

)
+

3∑
l,m

εqlmRe
(
〈Ω(r̂)ξ(r̂)L̂lσ̂mL̂q〉

)
(A.61)

=
3∑
m

εqpm
1

2
〈Ω(r̂)ξ(r̂)L̂m〉+ Re

(
〈Ω(r̂) ξ(r̂)L̂× σ̂ L̂q〉

)∣∣
p
. (A.109)
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The calculation is very similar to the calculation of term (c) and also leads to
two torque contributions. As before, the first torque contribution results from the
angular momentum torque contribution and the second contribution results from
the spin-torque contribution (compare the second term to the spin-torque term
from (4.11)).

We can now collect the terms (a) to (d), i.e. all spin-orbit angular momen-
tum torque contributions corresponding to (A.99), and write down the dynamical
equation of the spin-orbit angular momentum 〈Ω(r̂)σ̂pL̂q〉 that evolves according
to the Hamiltonian (A.98):

∂t〈Ω(r̂)σ̂pL̂q〉 (A.110)

= −
∮

Ω

ds · Re
(
〈n̂(r)(p̂ +

1

c
A)σ̂pL̂q〉

)
+

1

c
A× Re

(
〈Ω(r̂)σ̂p p̂〉

)∣∣
q

+ 〈Ω(r̂)σ̂p∇v(r̂)× r̂〉
∣∣
q

+
1

2c
〈Ω(r̂)∇Bp(r̂)× r̂〉

∣∣
q

+ Re
(
〈Ω(r̂)

1

c
B(r̂)× σ̂ L̂q〉

)∣∣
p

+
3∑
m

εqpm
1

2
〈Ω(r̂)ξ(r̂)L̂m〉+ Re

(
〈Ω(r̂) ξ(r̂)L̂× σ̂ L̂q〉

)∣∣
p
.

Gauge invariant spin-orbit angular momentum

To be physically more accurate, the gauge invariant angular momentum operators
should be used in the radial SOC term (4.10):

L̂q −→ L̂q + r̂× 1

c
A(t)

∣∣
q
. (A.111)

As a result, the gauge invariant spin-orbit angular momenta (i.e. (A.97) with the
replacement (A.111)) would be the quantities describing the demagnetization. In
fact, the same analysis as before can be done with the gauge invariant spin-orbit
angular momenta, leading to a similar equation as (A.110) (with the replacement
(A.111) for all L̂q operators). However, there would be two major differences:

First, the direct A-coupling term (the right term of the second line from
(A.110)) would vanish, since this term term corresponds to the kinetic source term
(see (A.18)), which is zero if the gauge invariant L̂q is used (since [L̂q, p̂

2] = 0). Sec-
ond, an additional torque term would, according to Ehrenfest’s theorem, emerge,
because the A-field in (A.111) has an explicit time-dependence:

〈Ω(r̂)σ̂p
(
∂tL̂q(t)

)
〉 (A.111)

= 〈Ω(r̂)σ̂p r̂× 1

c
∂tA(t)〉

∣∣
q

(2.80)
= E(t)×〈Ω(r̂)σ̂p r̂〉

∣∣
q
. (A.112)

We have used that the external electric field E follows directly from the time
derivative of the external A-field in the DA. As a conclusion, we find that the
direct A-coupling term (present in the non gauge invariant formulation) would
vanish, but a new direct A-coupling (or E-coupling) term would appear.
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We will now show that these two terms give very similar contributions to the
dynamics of the spin-orbit angular momenta. To show this, we integrate the
torque term (A.112) in time:

∫ T

0

dt 〈Ω(r̂)σ̂p r̂× 1

c
∂tA(t)〉

∣∣
q

=

∫ T

0

dt
1

c
A(t)× ∂t〈Ω(r̂)σ̂p r̂〉

∣∣
q
. (A.113)

We used integration by parts, and we assumed that T is any point in time where
the A-field is zero during its interaction, or any time after the pulse interaction.
Next, we use Ehrenfest’s theorem to calculate the time derivative of the quantity
under the integral from the right hand side:

∂t〈Ω(r̂)σ̂p r̂〉 =
1

i
〈[Ω(r̂)σ̂p r̂, ĥ]〉 = Re

(
〈Ω(r̂)σ̂p

(
p̂ +

1

c
A(t)

)
〉
)

+ . . . , (A.114)

where ĥ is the gauge invariant Hamiltonian. The term on the right hand side
is the kinetic source term (note that this term corresponds, in principle, to the
original Ehrenfest position momentum relation: ∂t〈r̂〉 = 〈p̂〉). “. . . ” stands for
the kinetic surface term, and for a SOC torque term, which should be small due
to the prefactor 1/c2 (there would also be a Bxc-term, but this term vanishes due
to (3.20)). When we assume that these two terms are negligible, which seems to
be the case, we get with (A.114) for (A.113):

∫ T

0

dt 〈Ω(r̂)σ̂p r̂× 1

c
∂tA(t)〉

∣∣
q
≈
∫ T

0

dt
1

c
A(t)× Re

(
〈Ω(r̂)σ̂p p̂〉

)∣∣
q
. (A.115)

We see that the term in the integral on the right hand side is the direct A-coupling
term from (A.110).

In summary, we find that direct A-coupling term that vanishes when going
from the non gauge invariant to the gauge invariant formulation is replaced by
a very similar term, explaining why we found no significant differences in the
magnetization dynamics between applying the gauge and non gauge invariant L̂q
in SOC. Hence, the direct A-coupling torque term from the non gauge invariant
formulation (which should actually not be there) corresponds, in fact, to a very
similar true A-coupling torque term that would appear in the gauge invariant
formulation.

A.6.5. Spin-current representation for the radial SOC and for
the spin-orbit angular momentum torque

In the following we will, for simplicity, only consider single-electron systems. The
generalization to many-electron systems is straightforward. Additionally, we will
omit the t-variable and all labels. First, we will show that the radial SOC term
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(4.10) can be rewritten into a spin-current density operator form:

1

2
ξ(r̂)σ̂ · L̂ =

3∑
k,l,m

εklm
1

2
ξ(r̂)σ̂kr̂l(p̂m +

1

c
Am)

(A.30)
=

3∑
k,l,m

εklm
1

2

( ∫
dr ξ(r) rl n̂(r)

)
σ̂k
(
p̂m +

1

c
Am
)

(A.66)
=

3∑
k,l,m

εklm
1

2

∫
dr ξ(r) rlσ̂k

1

2
{n̂(r),

(
p̂m +

1

c
Am
)
}

(A.28)
=

3∑
k,l,m

εklm
1

2

∫
dr ξ(r) rl ĵk(r)|m

=
3∑
k

1

2

∫
dr ξ(r)

(
r× ĵk(r)

)
· ek . (A.116)

In a similar manner, we can show that the Bxc spin-orbit angular momentum
torque contributions from (4.22) can also be represented in terms of the spin-
current density:

Re
[
〈Ω(r̂)

1

c
Bxc,3(r̂)σ̂k L̂k〉

]
(A.30)

=
3∑
l,m

εklm
1

c

∫
dr Ω(r)Bxc,3(r) rl Re

[
〈n̂(r)σ̂k (p̂m +

1

c
Am)〉

]
(A.66)

=
3∑
l,m

εklm
1

c

∫
dr Ω(r)Bxc,3(r) rl 〈σ̂k

1

2
{n̂(r),

(
p̂m +

1

c
Am
)
}〉

(A.28)
=

1

c

∫
Ω

drBxc,3(r)
(
r× jk(r)

)
· ek . (A.117)

A.7. Many-electron systems and change of the
moment

In section 4.3 we found that a loss in the moment of bulk Ni occurs due to spin-
orbit angular momenta that are induced around the nuclei during the excitation.
Furthermore, we found that the change of the spin-orbit angular momenta can be
described by their torques. It was shown that the loss in the moment results es-
sentially from the behavior of the spin-orbit angular momentum torque stemming
from the xc B-field (i.e. from the ΓB

pq terms; see (4.21)). In a true many-electron
system only a bare Coulomb interaction exists (i.e. there is no xc B-field that
couples directly to the spin). Hence, one might wonder if the demagnetization
process explained in section 4.3 applies, at least to some extent, also to Coulomb
interacting many-electron systems, or if the observed behavior might be an artifact
arising from the application of the DFT framework.
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To investigate this concern, the spin-orbit angular momentum torque related to
the Coulomb interaction, and the associated change in the moment will be inves-
tigated for an interacting system in this section. For simplicity, we will consider a
two-electron system (the two electrons could for example be seen as the electrons
in an outer shell of an atom or molecule). A common way to discuss the spin prop-
erties of a two-electron system is to employ the so-called exchange Hamiltonian
approach, where the Coulomb interaction is rewritten to an effective spin-spin in-
teraction (see e.g. [59]). In our discussion, we will loosely follow some ideas of this
approach. Furthermore, we will employ a mean field approximation at some places
(which allows us to draw some parallels between the many-electron problem and
the KS approach, as we will see). It is clear that such an approximation is only
reasonable if systems with many electrons are considered. However, we should
keep in mind that the purpose of the following investigation is the discussion of
general aspects that arise when interacting many-electron spin-systems with spin-
orbit coupling are considered. Hence, for reasons of simplicity but without loss
of generality, only a two-electron system is considered in the following investiga-
tions. Note that similar investigations could be carried out in an analog manner
for many-electrons systems by, for example, considering only the exchange part of
the Coulomb interaction, or by employing multi-band Hubbard-like models (e.g.
Heisenberg model Hamiltonians can be derived from Hubbard models [60]).

We consider a two-electron system described by the following Hamiltonian:

Ĥ =
2∑
i

( p̂2
i

2
+ vext(r̂i, t)︸ ︷︷ ︸

=ĥ0
i (t)

+
1

2
ξ(r̂i)σ̂i · L̂i︸ ︷︷ ︸

=ĥSOC
i

)
+

1

|r̂1 − r̂2|︸ ︷︷ ︸
=Ŵ

. (A.118)

We assume that vext contains a static potential (e.g. the nuclear potential) and
a time-dependent potential, which is zero at t = 0. Next, we assume that the
system is in the ground state at t = 0, and that the time-dependent state that
solves the Schrödinger equation is expanded in a two-electron basis:

|Ψ(t)〉 =
∑
u

cu(t)|u〉 , (A.119)

while each basis state is characterized by a tuple of elements, represented by u.
As next step, we will specify this basis (which will also explain what u means).

A possible two-electron basis can be constructed from the following singlet and
triplet states:

singlet: |a, b, s〉 = 1/
√

2
(
|a ↑, b ↓〉 − |a ↓, b ↑〉

)
,

triplet: |a, b, t↓〉 = |a ↓, b ↓〉 ,
|a, b, t↑〉 = |a ↑, b ↑〉 ,
|a, b, t0〉 = 1/

√
2
(
|a ↑, b ↓〉+ |a ↓, b ↑〉

)
, (A.120)

while the states on the right hand side are two-particle Slater determinants, i.e.:

|aγ, bη〉 = 1/
√

2
(
|a〉1|γ〉1|b〉2|η〉2 − |b〉1|η〉1|a〉2|γ〉2

)
, γ, η ∈ {↑, ↓} . (A.121)
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Here, γ and η represent the spinor states (i.e. the two eigenstates of σ̂3), while
a and b correspond to a complete set of spin-less one-particle states, e.g. to the
eigenstates of ĥ0(t = 0):

ĥ0|n〉 = εn|n〉 −→ a, b ∈ {n} . (A.122)

Next, we demand for (A.120) that a < b (note that the interchange a ↔ b, with
a 6= b, leads to equivalent states). The states (A.120) are orthogonal, however,
the condition a < b leads to a non-complete basis. In order to obtain a complete
basis, the set of intra-orbital singlet states {|a ↑, a ↓〉} would have to be included.
In the following discussion we will, for simplicity, omit these singlet states. It is
clear that this is in general a strong simplification, however, we point out that
the following investigation could also be performed with the complete basis (e.g.
simply by considering only the subset (A.120); we will say later a few words about
this subject). In summary, the basis {|u〉} from (A.119) is given by all basis states
from (A.120), meaning that

|u〉 = |a, b, c〉 , with a < b , a, b
(A.122)
∈ {n} , and c ∈ {s, t↓, t↑, t0︸ ︷︷ ︸

t

} . (A.123)

The last element, c, simply determines whether the basis state is a singlet state
or one of the triplet states (note that we will use the label “t” when we refer to
any of the three types of triplet states).

The first main step in our investigation consists in the rewriting of the interac-
tion term Ŵ . First, we use our basis to define the Coulomb operator

Ĉ =
∑
c

∑
a,b,a′,b′

Ca′b′

ab |a, b, c〉〈a′, b′, c| , (A.124)

and the exchange operator

Ĵ =
∑
c

∑
a,b,a′,b′

Ja
′b′

ab |a, b, c〉〈a′, b′, c| . (A.125)

Note that these operators are diagonal in the singlet-triplet subspace (hence, the
first sum runs only over the single element c). The matrix elements (leading to
the hermiticity of the operators) are defined by

Ca′b′

ab =

∫
dr

∫
dr′

ϕ∗a(r)ϕa′(r)ϕ∗b(r
′)ϕb′(r

′)

|r− r′| , (A.126)

and by

Ja
′b′

ab =

∫
dr

∫
dr′

ϕ∗a(r)ϕb′(r)ϕ∗b(r
′)ϕa′(r

′)

|r− r′| , (A.127)

where the orbitals are given by the single-particle wave functions according to
(A.122), i.e. ϕn(r) = 〈r|n〉. The diagonal elements of (A.126) and (A.127) in the
individual subspace (i.e. a = a′ and b = b′) are the usual Coulomb and exchange
integral expressions. With the definition of the Coulomb and exchange operator,
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it follows that the action of the interaction operator Ŵ on the singlet and triplet
states is, within our basis, given by

Ŵ |a, b, s〉 = (Ĉ + Ĵ)|a, b, s〉 , and Ŵ |a, b, t〉 = (Ĉ − Ĵ)|a, b, t〉 , (A.128)

which holds for all a and b. When we additionally use the following relation of
the spin-spin coupling operator σ̂1 · σ̂2:

σ̂1 · σ̂2|a, b, s〉 = −3|a, b, s〉 , and σ̂1 · σ̂2|a, b, t〉 = |a, b, t〉 , (A.129)

which holds for all a and b as well (see e.g. [59]), it follows immediately that the
interaction operator Ŵ can be rewritten to the following spin-spin coupling form:

Ŵ = Ĉ − 1

2
Ĵ − 1

2
σ̂1 · σ̂2Ĵ , (A.130)

where we used that [σ̂1 ·σ̂2, Ĵ ] = 0. The interaction term on the right hand side of
(A.130), which corresponds to an exchange dependent spin-spin interaction, will
be of particular interest for the following discussion. (As stated before, we have ex-
cluded the intra-orbital singlet states {|a ↑, a ↓〉}. In order to describe a complete
system, (A.130) would have to be extended by a term that describes all additional
interactions with the intra-orbital singlet states, i.e. this term would include the
interaction matrix elements 〈a′ ↑, a′ ↓ |Ŵ |a ↑, a ↓〉 = Caa

a′a′ and 〈a′, b′, s|Ŵ |a ↑, a ↓〉
=
√

2Caa
a′b′ . Note, however, that this additional interaction operator would only

act in the singlet-singlet subspace because 〈a′, b′, t|Ŵ |a ↑, a ↓〉 = 0. For simplicity,
we will omit this additional interaction term in the following discussion.)

The ground state energy of our system is given by

〈Ĥ〉 = · · ·+ 〈Ŵ 〉 = · · ·+ 〈Ĉ − 1

2
Ĵ〉 − 1

2
〈σ̂1 · σ̂2Ĵ〉 . (A.131)

Rewriting and approximating the energy contribution from the right hand side
gives

−1

2
〈σ̂1 · σ̂2Ĵ〉 = −1

4
〈

2∑
i

σ̂i ·
( 2∑
j 6=i

σ̂jĴ
)
〉 ≈ −1

4
〈

2∑
i

σ̂i〉︸ ︷︷ ︸
M

·〈
2∑
j

σ̂jĴ〉 . (A.132)

In the last step we have assumed that the corresponding energy contribution is
approximately given by a mean field expression (which should be reasonable if the
system shows a ferromagnetic character in the ground state, i.e. if the system has
parallel aligned spins). From (A.132) it follows immediately that the system can
minimize its energy if the moment M is parallel to the effective “spin-exchange
field” 〈∑j σ̂jĴ〉. This finding also allows us to draw a parallel to SDFT: the spin-

exchange field 〈∑j σ̂jĴ〉 acts, in principle, as a (time-dependent) exchange field
that couples to the spin, i.e. it is similar to the Bxc-field from SDFT (to be more
precise: it is similar to −2〈B̂xc〉/c). In the following discussion, we will assume
that our system shows a ferromagnetic behavior in the ground state. Similarly
to the situations discussed in this work, we will assume that the moment, and
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hence also the spin-exchange field, points in the −e3-direction in the ground state,
meaning that

M3 < 0
(A.132)−−−−→ 〈

2∑
j

σ̂3,jĴ〉 < 0 , (A.133)

and that

M1 = M2 = 0 , 〈
2∑
j

σ̂1,jĴ〉 = 〈
2∑
j

σ̂2,jĴ〉 = 0 . (A.134)

Next, we will say a few words about the ground state energy contribution coming
from SOC, which is given by

〈
2∑
i

ĥSOC
i 〉 =

1

2

2∑
i

〈ξ(r̂i)σ̂i · L̂i〉 =
1

2

2∑
i

3∑
k

〈ξ(r̂i)σ̂k,iL̂k,i〉 . (A.135)

This energy contribution becomes minimal (i.e. negative) if

〈ξ(r̂i)σ̂k,iL̂k,i〉 < 0 (A.136)

(we considered some general symmetries, such as symmetry by particle exchange).
The radial function ξ(r) is typically positive valued and has only a contribution
close to the nucleus. Hence, relation (A.136) demands that the system has, in the
ground state, non-vanishing spin-currents that flow around the nucleus (see the
discussion from section 4.3.4). The SOC is typically only “active” in a certain re-
gion around the nucleus (see e.g. section 4.3.2). In the following, we will represent
this region by Ω(r), which is a radial function that is 1 inside the active region,
and 0 outside. From the ground state property (A.136) it follows immediately for
this region that

〈Ω(r̂i)σ̂k,iL̂k,i〉 < 0 . (A.137)

(Previously, we assumed that we have only one atom or ion, explaining the specific
form of SOC. Note that the angular momentum is defined around the nucleus for
this form of SOC (see section 4.3.2). However, the generalization to more atoms
or ions is straightforward, and the previous conclusions would hold as well. The
only difference is that the SOC term would contain a sum of σ ·L -terms running
over all atoms, and each L would be defined around the corresponding atom.
Hence, the system would have non-vanishing spin-currents around each atom in
the ground state.)

So far we have discussed only ground state properties. Now, we will come to
the time-dependent behavior of our system. According to Ehrenfest’s theorem
and (A.118), the change of the moment is given by

∂tM(t) = 〈Ψ(t)|1
i
[

2∑
i

σ̂i, Ĥ]|Ψ(t)〉 = 〈
2∑
i

ξ(r̂i)L̂i × σ̂i〉(t) . (A.138)

ξ(r) is a function that is radial and gives a contribution only in the region close
to the nucleus. Hence, we assume, due to the same reasons as discussed in section
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4.3.3, that the change of M3 is determined by

∂tM3 ∼ 〈
2∑
i

Ω(r̂i)L̂i × σ̂i〉
∣∣
3
. (A.139)

Remember that we refer to the two quantities from the right hand side (due to
the cross product) as spin-orbit angular momenta, and that ∂tM3(0) = 0 since
the system is in the ground state at t = 0.

Next, we will investigate the change of ∂tM3 by applying Ehrenfest’s theorem
to the right hand side of (A.139):

∂t〈
2∑
i

Ω(r̂i)L̂i × σ̂i〉
∣∣
3

= 〈1
i
[

2∑
i

Ω(r̂i)L̂i × σ̂i,
2∑
j

(ĥ0
j + ĥSOC

j )]〉
∣∣
3

+ 〈1
i
[

2∑
i

Ω(r̂i)L̂i × σ̂i, Ŵ ]〉
∣∣
3
. (A.140)

The terms on the right hand side represent the different spin-orbit angular mo-
mentum torque contributions. Calculating the commutator expression of the first
line leads to several torque contributions (the torque contributions are similar to
the terms derived in A.6.4). Among these contributions are surface- and SOC-
torque terms. According to the discussion from section 4.3.4 it is reasonable to
assume that only these two types of contributions are important. Of particular
interest for the discussion of spin-dynamics in a Coulomb interacting system is
the commutator expression of the second line, which will be investigated now.

The expression from the second line of (A.140) contains the commutator with
Ŵ , which can be decomposed:

[Ô, Ŵ ]
(A.130)

= [Ô, Ĉ − 1

2
Ĵ − 1

2
σ̂1 · σ̂2Ĵ ]

= [Ô, Ĉ − 1

2
Ĵ ]︸ ︷︷ ︸

(a)

−1

2
σ̂1 · σ̂2[Ô, Ĵ ]︸ ︷︷ ︸

(b)

−1

2
[Ô, σ̂1 · σ̂2]Ĵ︸ ︷︷ ︸

(c)

. (A.141)

Applying the relation (A.141) to the second line of (A.140) leads to three types of
spin-orbit angular momentum torque contributions. By comparing these contri-
butions to the terms of the KS system, one finds again that each contribution has
a corresponding SDFT term. The torque contribution stemming from term (a) is
similar to the∇vH,xc×r -term (see e.g. first term in the third line of (A.110)), while
the contribution stemming from term (b) is similar to the ∇Bxc,3 × r -term (see
e.g. second term in the third line of (A.110)). Due to similar reasons as discussed
in section 4.3.4 (i.e. due to the nearly spherical symmetry close to the nucleus)
it is reasonable to assume that these two contributions are negligible. Hence, the
torque contribution coming from the Coulomb interaction between the electrons
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should approximately be given by the contribution coming from the term (c):

〈1
i
[

2∑
i

Ω(r̂i)L̂i × σ̂i, Ŵ ]〉
∣∣
3

≈ −1

2
〈1

i
[

2∑
i

Ω(r̂i)L̂i × σ̂i, σ̂1 · σ̂2]Ĵ〉
∣∣
3

... (A.60); Grassmann identity

=
2∑
i

2∑
j 6=i

〈Ω(r̂i)(L̂i · σ̂jσ̂3,i − L̂i · σ̂iσ̂3,j)Ĵ〉

=
2∑
k

〈
2∑
i

Ω(r̂i)L̂k,iσ̂3,i

2∑
j 6=i

σ̂k,jĴ〉 −
2∑
k

〈
2∑
i

Ω(r̂i)L̂k,iσ̂k,i

2∑
j 6=i

σ̂3,jĴ〉

≈
2∑
k

〈
2∑
i

Ω(r̂i)L̂k,iσ̂3,i〉 〈
2∑
j

σ̂k,jĴ〉︸ ︷︷ ︸
(A.134)

= 0

−
2∑
k

〈
2∑
i

Ω(r̂i)L̂k,iσ̂k,i〉〈
2∑
j

σ̂3,jĴ〉

= − 〈
2∑
i,k

Ω(r̂i)L̂k,iσ̂k,i〉︸ ︷︷ ︸
(A.137)
< 0

〈
2∑
j

σ̂3,jĴ〉︸ ︷︷ ︸
(A.133)
< 0

< 0 . (A.142)

In the line next to the last line we applied again a mean field approximation, and
we used that the spin-exchange field points along −e3 (note that we also assumed
that the spin-exchange field keeps, at least approximately, this orientation during
the time evolution, as is the case for the Bxc-field in the KS system).

The central result of (A.142) is that we have in the Coulomb interacting system a
non-vanishing spin-orbit angular momentum torque contribution, coming from the
Coulomb interaction, that is (at least approximately) determined by the effective
spin-exchange field and by the spin-orbit angular momenta around the nucleus
(and hence by the SOC energy; see (A.135)). This contribution is similar to the
Bxc-torque contribution of the KS system (see (4.22) and (4.31)). Furthermore,
we have shown in (A.142) that the corresponding torque contribution is negative
(at least at t = 0). Hence, we have a similar situations as for the KS system and
it is to expect that the total moment is lost if we get

|〈
2∑
j

σ̂3,jĴ〉|(t) < |〈
2∑
j

σ̂3,jĴ〉|(0) , and

|〈
2∑
i,k

Ω(r̂i)L̂k,iσ̂k,i〉|(t) < |〈
2∑
i,k

Ω(r̂i)L̂k,iσ̂k,i〉|(0) (A.143)

during the excitation of the system, since we demanded M3(0) < 0 (note that
the second line of (A.143) corresponds to an increase in the SOC energy). This
is in analogy to the mechanism explained for the KS system (see section 4.3.5).
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Note that the excitation of the systems investigated this work led to |〈B̂xc,3〉|(t) <
|〈B̂xc,3〉|(0).

We can conclude that the change of the moment in a Coulomb interacting
system can be explained in a similar way as discussed for the KS system (given that
the applied mean field approximations are justified). In the interacting system,
the effective spin-exchange field 〈∑j σ̂jĴ〉(t) (defined via the exchange operator

Ĵ , see (A.125) and (A.127)) plays a similar role as the Bxc(t)-field. If |〈∑j σ̂jĴ〉|
decreases abruptly, and if the SOC energy increases during the excitation, the
moment will most probably reduce. Whether the spin-exchange field would reduce
in a true interacting ferromagnetic system, or not, cannot easily be stated a priori.
Hence, the previously discussed points have to be investigated in more detail in
future work.

Finally, we wish to mention that the initially derived spin-spin interaction could
also be approximated via an exchange mean field expression (whether such an
approximation is justified, or not, would have to be investigated in the individual
case):

−1

2
σ̂1 · σ̂2Ĵ −→ −1

2
σ̂1 · σ̂2〈Ĵ〉 =̂ − 1

2
σ̂1 · σ̂2 J(t) . (A.144)

With this simplified interaction as the starting point, the change of the moment
could, in a similar way as shown before, also be discussed. The change of the
moment could then be interpreted as a result of the change in the exchange in-
teraction (due to the excitation). The effective interaction (A.144) could also
be used to investigate the spin-dynamics within a time-dependent Hubbard- or
Heisenberg-like model. Note that such a model should, beside the time-dependent
exchange “constant” J(t) (which depends on the excitation), also consider higher
laying states (which are unoccupied in the ground state) and SOC in order to see
the previously described change in the moment.
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