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1 General Introduction

1.1 Motivation and Goal

Waste heat has always been a severe bottleneck. It reduces the efficiency of machines and
much worse, extra energy is needed to cool down the systems. Looking globally, to have
the global warming under control while maintaining sustainable energy services, it is worth
to think about waste heat. From a completely different perspective, at nanoscales, heat also
becomes more and more troublesome nowadays as the devices become smaller and smaller
so that it even sometimes diminishes the functionality of devices. In this regard finding
ways to reuse heat as a mechanical or electrical energy is overwhelmingly important. Our
motivation in this thesis is to take one small step in this direction. Naturally, first we need
to know how the heat affects the systems. Therefore, our main goal in this thesis is a
fundamental investigation of thermal effects, though it might not be directly related to the
technical realization of thermal energy harvesting at this stage. By kinetic in the title of the
thesis, we mean these thermal effects.
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Figure 1.1: Number of APS publications per five years containing a specific word, normal-
ized by the total number of publications per five years since 1900. The inset
shows the logarithm of the total number of APS publications per five years
(strictly speaking, the total number of APS publications per five years which
contain the letter a).
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1.2 Materials of Interest

1.2 Materials of Interest
Our materials of interest are ferromagnets (FMs) and ferroelectrics (FEs). These materials
have revolutionized our life and can be found in almost every electronic device that we
touch every day, from our refrigerator to our mobile phone. The number of papers pub-
lished on the American Physical Society1 (APS) which contain such terms shows that still
such materials are of great interest to the physics community (Fig. 1.1).

Both FMs and FEs have long range ordering which is characterized by magnetization
in FMs and polarization in FEs. External magnetic and electric fields directly affect the
magnetization and the polarization, respectively. The emergence of a new type of materials
known as multiferroics (MFs) has provided the opportunity to magnetically control the
polarization and electrically control the magnetization. Such materials can be found in
nature rarely, but they can be fabricated by modern material design techniques, e.g. as the
composition of FMs and FEs. Therefore MFs are also our interest.

In chapters 2-3 we deal with FMs and in chapter 4 with FEs. Chapter 5 is about MFs.

1.3 Scales and Methods
Depending on the scale of interest, different formalisms have been proposed to treat the
systems. Due to miniaturization of devices nowadays, we are interested in the scales be-
tween nm and µm. We will operate in a regime where one can neglect quantum effects.
Thermal fluctuations are introduced as noise to the equations of motion for magnetization
and polarization. This means that we deal with stochastic differential equations (SDEs).
The way we treat them is given in details in the chapters. Due to the complexity of equa-
tions, especially in extended systems, we use numerical methods to solve them.

1.4 Phenomena of Interest
When it comes to FMs and FEs, thermal effects are very diverse. Among them, in chapter
3 we specifically address spin Seebeck effect (SSE) in which a temperature gradient over
a FM is used to generate a spin current. This phenomenon not only can be considered as a
way to recover waste heat, but also can be considered as a spin current source which itself
can be used in low-energy consuming devices.

In chapter 4 we address the pyroelectric effect in which the temperature-dependency of
hysteresis loops in FEs is used to harvest thermal energy.

Finally, in chapter 5 we combine our experiences with FMs and FEs to study MFs. We
address some of the possible functionalities of these materials in terms of thermal effects.
In line with our motivation and goals, we propose a thermomagnetoelectric engine to use
a magnetic field to steer the operation of pyroelectric engines.

Beside the mentioned phenomena which are directly related to the thermal energy har-
vesting, we simulate some other interesting temperature-related phenomena such as ther-
mally activated switching times in FMs and FEs, spin-current driven domain-wall motion,
phase instability in reduced-size FE domains, and a MF thermal diode.

1http://www.aps.org

3



2 Thermal Fluctuations in Magnetic
Systems

Ferromagnets (FMs) are materials that possess a spontaneous magnetization (magnetic
moment per volume) below a certain temperate known as Curie temperature Tc (Fig. 2.1).
Within such a simple definition, we can recognize the importance of the interplay between
magnetization and temperature. Here we want to go more into details of this interplay, but
in the regimes far below the Curie temperature. We will see that even in such regimes the
thermal fluctuations lead to interesting phenomena especially at nanoscales.

M
ag
n
et
iz
at
io
n

Temperature Tc0

Figure 2.1: A typical ferromagnet-paramagnet phase transition diagram at zero external
magnetic field. Below the Curie temperature (Tc) the system is in FM phase
with a spontaneous magnetization while above that it is in paramagnet phase.

We start from the fundamental object in ferromagnetism i.e. a magnetic moment and
see how the temperature can affect its dynamics. Generally speaking, a magnetic field is
the generic way a magnetic moment can be influenced from the outside world. Even when
it comes to the interplay of a magnetic moment and temperature we will see that the tem-
perature should be translated in terms of a magnetic field to affect the magnetic moment.
Therefore, we start with the dynamics of a single magnetic moment in the presence of an
external magnetic field. To go to more complicated systems we need to just consider the
effective magnetic field acting on the magnetic moments.

4



2.1 A Theoretical Perspective to Thermal Fluctuations in Magnetic Systems

2.1 A Theoretical Perspective to Thermal
Fluctuations in Magnetic Systems

According to the classical mechanics, the dynamics of an angular momentum (⃗ι) of a mag-
netic moment (µ⃗) is determined by the torque acting on it [1] :

d⃗ι

dt
= µ⃗× H⃗, (2.1)

where H⃗ in principle is the effective magnetic field, but here for the sake of simplicity we
assume it is a fixed external magnetic field. Since the angular momentum and magnetic
moment are connected via gyromagnetic ratio µ⃗ = γι⃗, the equation of motion for the
magnetic moment reads :

dµ⃗

dt
= γµ⃗× H⃗. (2.2)

Figure 2.2: The representation of a magnetic moment in spherical coordinates.

Within all this thesis, γ is a positive quantity, though in principle angular momentum and
magnetic moment can have opposite sign as well. To solve this equation, due to symmetry
of the system, it would be better to write it in spherical coordinates (see Fig. 2.2) :

µ̇ = 0,

θ̇ = 0,

φ̇ = −γH0,

(2.3)

where it is assumed H⃗ = H0ẑ. It means that the magnetic moment just rotates around
the magnetic field with the so-called Larmor precession frequency γH0. Since the angle
between the magnetic moment and the field remains fixed, the energy of the magnetic
moment εm = −µ⃗ · H⃗ is preserved in this case. This gives us a hint on how we can couple
our system to a heat bath and other dissipative sources. The εm = −µ⃗ · H⃗ says in order to

5



2 Thermal Fluctuations in Magnetic Systems

have dissipation we need an extra torque to change the angle between magnetic moment
and the magnetic field. Such torque can have the following form (Fig. 2.3) :

τ⃗ damping = −α
µ
µ⃗×

(
µ⃗× H⃗

)
, (2.4)

where α determines the strength of coupling of dissipative sources to the magnetic moment
and is known as the damping parameter. For the moment, we assume this torque summa-
rizes the effect of all dissipative forces that act on the magnetic moment. In the case that
the dissipation stems from thermal fluctuations, α determines the strength of coupling of
the system to the heat bath where in the case of FM insulators it is a phonon subsystem. In
the case of interacting magnetic moments, however, the energy of each magnetic moment
can be transferred to others to generate spin waves (but even in this case the energy of the
magnetic system is eventually transferred to the lattice).

Figure 2.3: Magnetic moment dynamics in the presence of an external magnetic field and
dissipative sources. The blue arrow is the corresponding torque to the Lar-
mor precession and the red arrow is the corresponding torque to the dissipative
forces.

With the provided extra torque (Eq. (2.4)), now we can write the equation of motion for
the magnetic moment as :

dµ⃗

dt
= γµ⃗×

(
H⃗ − α

µ
µ⃗× H⃗

)
, (2.5)

which in spherical coordinates reads :

µ̇ = 0,

θ̇ = −γαH0 sin(θ),

φ̇ sin(θ) = −γH0 sin(θ).

(2.6)

6



2.1 A Theoretical Perspective to Thermal Fluctuations in Magnetic Systems

As can be seen, the employed dissipative torque (Eq. (2.4)) still keeps the length of the
magnetic moment fixed. So this kind of damping is called transverse damping (in contrast
to longitudinal damping [2, 3]). In case that θ = 0 or π there is no dynamic, so we consider
the case that θ ̸= 0, π. The third equation gives the Larmor frequency as before γH0.
According to the second equation :

−γαH0t =

θ∫
θ0

dθ′

sin(θ′)
= − ln

(
1

sin(θ)
+

cos(θ)

sin(θ)

)
+ ln

(
1

sin(θ0)
+

cos(θ0)

sin(θ0)

)
, (2.7)

which after some straightforward calculation yields cos(θ) and so the dynamics of the z
component of magnetic moment :

µz(t) = µ cos(θ) = µ

−1 +
1+

µz(0)
µ

1−µz(0)
µ

exp (2γαH0t)

+1 +
1+

µz(0)
µ

1−µz(0)
µ

exp (2γαH0t)

. (2.8)

The time evolution of the magnetic energy is

εm = −µ⃗ · H⃗ = −µH0

−1 +
1+

µz(0)
µ

1−µz(0)
µ

exp (2γαH0t)

+1 +
1+

µz(0)
µ

1−µz(0)
µ

exp (2γαH0t)

, (2.9)

meaning that the magnetic moment loses energy while relaxing to the direction of magnetic
field. The speed of damping depends on α, meaning that as the coupling between the
magnetic moment and the dissipative sources becomes stronger the dissipation of energy
is faster.

So far we just introduced a damping term (Eq. (2.4)) to show how the energy of our
magnetic system could be dissipated and we did not explicitly refer to the temperature.
When the system is in contact with thermal baths, this damping torque is the average effect
of thermal fluctuations. Therefore, in order to go one step further to establish a relation be-
tween temperature and magnetic moment dynamics, we should include the random impact
of environment into the equation of motion. Formulation of such a problem (having a ran-
dom magnetic field) brings us to a new type of differential equations known as stochastic
differential equations (SDEs) (in Sec. 4.4 a deterministic approach is also provided briefly).
Before approaching such equations we remind that in principle in classical physics we are
dealing with a deterministic world and by stochastic we just mean that we are not inter-
ested in going into details of all the environmental factors that affect our system. We intend
to eliminate the microscopic degrees of freedom of the environment by substitution of a
stochastic field (noise). To cover this simplification to some extent, we calculate the aver-
aged value of desired quantities over different realization of the noises (ensemble averages,
which we will denote by ⟨· · · ⟩).

2.1.1 Stochastic Differential Equations and Fokker-Planck
Equation

We can divide the random impact of the environment in two parts; a dissipative term and
a random term. This dissipative term and the random field, however, are expected to be

7



2 Thermal Fluctuations in Magnetic Systems

related since both come from the same origin which is the random impact of the envi-
ronment (this is, in fact, the manifestation of the so-called fluctuation-dissipation theorem
which finally helps us to establish the relation between temperature, random magnetic field
ξ⃗ and damping parameter [4]). We assume the random impact of the environment is not
too strong to change the magnitude of the magnetic moment and so Eq. (2.5) is modified
as :

dµ⃗

dt
= − γ

1 + α2
µ⃗×

[(
H⃗ + ξ⃗(t)

)
+
α

µ
µ⃗×

(
H⃗ + ξ⃗(t)

)]
, (2.10)

in which here µ is assumed to be the atomic magnetic moment stemming from unpaired
electrons (therefore, angular momentum and magnetic moment have opposite sign [5]).
This equation which is the basis of the atomistic spin model simulations is known as the
atomistic Landau-Lifshitz-Gilbert (LLG) equation [6–8] (see Sec. 5.1) and belongs to the
family of Langevin equations [9]. Depending on the circumstances, different distributions
can be considered for this random magnetic field. However, in most cases a Gaussian-white
is appropriate with the following properties :

⟨ξi(t)⟩ = 0, ⟨ξi(t′)ξj(t)⟩ = bδijδ(t− t′), (2.11)

where i, j stand for three different components of the random field as a vector and b shows
how strong is the random field. Due to the central limit theorem [10], in most situations
the Gaussian distribution is the best choice to mimic the real world where the random
field is the cumulative effect of numerous uncorrelated environmental factors. It is called
white because the Fourier transform of the autocorrelation is constant (due to Dirac delta
function), meaning all frequencies have the same amplitude. It is a completely random
process with no memory at all, assuming that the environment varies much faster than the
system [11]. In this sense, a better distribution is needed when it comes to for instance
study of ultra-fast laser pulses on magnetization dynamics (see Sec. 3.5).

Coming back to the calculation of ensemble average of µz(t), obviously, we can write

⟨µz(t)⟩ = ⟨µ cos(θ)⟩ =
2π∫
0

π∫
0

µ cos(θ)Ω(θ, φ, t) sin(θ)dθdφ, (2.12)

where Ω(θ, φ, t) is the probability of finding the magnetic moment at time t in (θ, φ) di-
rection. The governing equation for the time evolution of this probability is known as
Fokker-Planck equation (FPE) which, generally speaking, is the basis for the statistical de-
scription of the ensemble of systems where each one is described by a Langevin equation.
Here we follow the Kramers-Moyal recipe given in Ref. [9] to find the corresponding FPE.
In a general coordinate system {ψ}, the Kramers-Moyal expansion reads :

∂

∂t
Ω +

1∏
m=1

lm

∑
i=1

∂

∂ψi


∏
j=n

ln

li
D

(1)
i ({ψ}, t)Ω


− 1∏

i=m

lm

∑
i,j=1

∂

∂ψi


∏
j=n

ln

lilj

∂

∂ψj

D
(2)
ij ({ψ}, t)Ω

 = 0,

(2.13)
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2.1 A Theoretical Perspective to Thermal Fluctuations in Magnetic Systems

where l2i ({ψ}) are the diagonal elements of the metric [12] and

D
(1)
i ({ψ}, t) = hi({ψ}, t) +

b

2
gkj({ψ}, t)

∂

∂ψk

gij({ψ}, t),

D
(2)
ij ({ψ}, t) = b

2
gik({ψ}, t)gjk({ψ}, t),

(2.14)

are the drift and diffusion coefficients respectively. hi and gij are provided by the Langevin
equation of the form ψ̇i = hi({ψ}, t) + gij({ψ}, t)ξi(t). Because of the symmetry of the
system we use the spherical coordinate with [lµ lθ lφ] = [1 µ µ sin(θ)] in which
Eq. (2.10) reads :

µ̇ = 0,

µθ̇ = −µγαH0

1 + α2
sin(θ) +

µγα

1 + α2
ηθ +

µγ

1 + α2
ηφ,

µφ̇ sin(θ) = +
µγH0

1 + α2
sin(θ)− µγ

1 + α2
ηθ +

µγα

1 + α2
ηφ,

(2.15)

and sohrhθ
hϕ

 =
µγH0

1 + α2
sin(θ)

 0
−α
1

 ,
grr grθ grφ
gθr gθθ gθφ
gϕr gϕθ gϕφ

 =
µγ

1 + α2

0 0 0
0 α 1
0 −1 α

 ,
which give us the drift and diffusion coefficients :D

(1)
r

D
(1)
θ

D
(1)
ϕ

 =
µγH0

1 + α2
sin(θ)

 0
−α
1

 ,
D

(2)
rr D

(2)
rθ D

(2)
rφ

D
(2)
θr D

(2)
θθ D

(2)
θφ

D
(2)
ϕr D

(2)
ϕθ D

(2)
ϕφ

 =
b
2
(µγ)2

1 + α2

0 0 0
0 1 0
0 0 1

 .
Substituting the above coefficients in the Kramers-Moyal expansion (Eq. (2.13)) the FPE

is derived as

∂

∂t
Ω(θ, φ, t) =

γ

1 + α2

1

sin(θ)

∂

∂θ

[
sin(θ)

(
αH0 sin(θ)Ω(θ, φ, t) + γ

b

2

∂

∂θ
Ω(θ, φ, t)

)]
− γ

1 + α2

1

sin(θ)

∂

∂φ

[
H0 sin(θ)Ω(θ, φ, t)− γ

b

2

1

sin(θ)

∂

∂φ
Ω(θ, φ, t)

]
.

(2.16)

To find the relation between b and the damping parameter (α) we impose the stationary
condition ( ∂

∂t
Ω(θ, φ, t → ∞) = 0) on the derived Fokker-Planck equation. In such a case

we expect the Boltzmann distribution is built in (Ω(θ, φ) = exp (µH0 cos(θ)/kBT )) which
leads to

b =
2αkBT

γµ
. (2.17)

As expected b depends on the strength of coupling of the magnetic system to the heat
bath i.e. damping parameter α. Here T is the temperature of the environment whose
microscopic degrees of freedom have been replaced by the noise. In this thesis by the
environment we mainly mean phonon subsystem (although in metallic FMs the electrons

9



2 Thermal Fluctuations in Magnetic Systems

also should be included) and so T introduced into the autocorrelation function is in fact
phonon temperature. Putting back b in the derived FPE we reach exactly the one derived
by Brown [13].

Now we come back to Eq. (2.12)

d

dt
⟨µz⟩ = µ

d

dt

2π∫
0

π∫
0

cos(θ)Ω(θ, φ, t) sin(θ)dθdφ

= µ

2π∫
0

π∫
0

cos(θ) sin(θ)
∂

∂t
Ω(θ, φ, t)dθdφ.

(2.18)

Replacing ∂
∂t
Ω(θ, φ, t) from Eq. (2.16) and integrating by part twice and considering

2π∫
0

π∫
0

sin(θ)Ω(θ, φ, t)dθdφ = 1 we find the equation of motion for the averaged z-component

of the magnetic moment :

d

dt
⟨µz⟩ =

αγ

µ(1 + α2)

[
−2kBT ⟨µz⟩+H0

(
µ2 − ⟨µ2

z⟩
)]
, (2.19)

which represents the competition between thermal and magnetic energies to determine the
state of the system. This equation cannot be solved independently because of ⟨µ2

z⟩. Again
using Eq. (2.16) we have

d

dt
⟨µ2

z⟩ = µ2

2π∫
0

π∫
0

cos2(θ) sin(θ)
∂

∂t
Ω(θ, φ, t)dθdφ

=
2αγ

1 + α2

[
H0µ⟨µz⟩ −

H0

µ
⟨µ3

z⟩+ µkBT − 3kBT

µ
⟨µ2

z⟩
]
,

(2.20)

that depends on ⟨µ3
z⟩ which calls for numerical analysis of SDEs. However, at least we can

consider a simple case ⟨µ2
z⟩ ≈ ⟨µz⟩2. In such a case Eq. (2.19) can be solved as

⟨µz⟩ ≈ µ

−1 + A(t)

+1 + A(t)

√
1 +

(
kBT

µH0

)2

− kBT

µH0

 , (2.21)

where

A(t) =
+kBT

µH0
+

√
1 +

(
kBT
µH0

)2
+ µz(0)

µ

−kBT
µH0

+

√
1 +

(
kBT
µH0

)2
− µz(0)

µ

exp

2αγH0

1 + α2

√
1 +

(
kBT

µH0

)2

t

 . (2.22)

At T = 0 Eq. (2.21) reduces to the Eq. (2.8), considering that in Eq. (2.10) we have a
factor of (1 + α2)−1.
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2.2 Landau-Lifshitz-Gilbert Equation

2.2 Landau-Lifshitz-Gilbert Equation
Up to now we were talking about one magnetic moment. In larger systems, a huge number
of magnetic moments are coupled together. Thus, dealing with the corresponding SDEs
would be a real challenge. At low enough temperatures the magnetic moments are strongly
tight together, however, we still can keep the provided formalism in the previous section.
Just we need to replace the magnetic moment in Eq. (2.10) by a3M⃗ where a3 and M⃗ are the
volume which includes coupled magnetic moments and magnetization (magnetic moment
per volume) respectively. In such a case, the equation of motion for the magnetization
reads

dM⃗

dt
= − γ

1 + α2
M⃗ ×

[(
H⃗ + ξ⃗(t)

)
+

α

MS

M⃗ ×
(
H⃗ + ξ⃗(t)

)]
, (2.23)

which is nothing but the phenomenological LLG equation with phenomenological damping
parameter α known as Gilbert damping (which in principle is different from α in atomistic
LLG equation). Additionally, in the case that ξ⃗ is Gaussian white noise, again we have :

⟨ξi(t)⟩ = 0, ⟨ξi(t′)ξj(t)⟩ =
2αkBT

γa3MS

δijδ(t− t′), (2.24)

where MS is the absolute value of the magnetization. As mentioned, this formalism is
valid as long as the damping is transversal, meaning that the temperature must be much
lower than the Curie temperature so that the temperature will not be able to change the
absolute value of magnetization. Moreover, when the magnetic moments are strongly cou-
pled together, the relative magnetic moment direction of the neighboring atoms can be
assumed to be fixed and allows us to treat the magnetization as a continuum vector field
M⃗(r⃗, t). This treatment is known as micromagnetism simulations which can properly de-
scribe many magnetic phenomena at length scales between nm and µm. For smaller scales
quantum theory, atomistic model, etc. are used while for larger scales domain theory and
macroscopic models are appropriate. The transition from atomistic spin model to micro-
magnetism is, therefore, a transition from a discrete representation of magnetic structures
as spins or magnetic moments to a continuum representation of magnetic structures by
considering a smooth magnetization vector field [14]. To represent this continuity more
explicitly we write LLG equation in the following form :

∂M⃗(r⃗, t)

∂t
= − γ

1 + α2
M⃗(r⃗, t)×

[
H⃗eff (r⃗, t) +

α

MS

M⃗(r⃗, t)× H⃗eff (r⃗, t)

]
, (2.25)

where H⃗eff = − ∂F

∂M⃗
+ ξ⃗(r⃗, t) includes all the fields which affect the magnetization such as

thermal noise (ξ⃗) with the autocorrelation ⟨ξi(r⃗′, t′)ξj(r⃗, t)⟩ = 2αkBT
γMS

δijδ(r⃗ − r⃗′)δ(t − t′),
external magnetic field, exchange, anisotropy, etc. which are hidden in − ∂F

∂M⃗
. F is the

micromagnetic free energy density of the system. It is worth to mention that the LLG
equation can be straightforwardly derived from Gilbert equation [14, 15] :

∂M⃗(r⃗, t)

∂t
= −γM⃗(r⃗, t)× H⃗eff (r⃗, t) +

α

MS

M⃗(r⃗, t)× ∂M⃗(r⃗, t)

∂t
, (2.26)

under the assumption that the absolute value of magnetization is fixed (M⃗ · ∂M⃗
∂t

= 0).
At high temperatures where the magnitude of magnetization changes, the sole transverse
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2 Thermal Fluctuations in Magnetic Systems

damping term cannot describe the dynamics of the magnetic system properly and a lon-
gitudinal damping parameter is also needed. In such a case the Landau-Lifshitz-Bloch
equation is used which is beyond the scope of this thesis [2, 3, 16, 17].

To get the magnetization dynamics using the LLG equation we can follow the previous
section procedure to calculate FPE. But as we found there, it is not feasible even for a
simple system. Since we are going in the direction of larger systems which includes the
coupled magnetic domains the situation becomes even worse. Therefore, in this thesis we
solve the LLG equations numerically using Langevin dynamics [18–20].

2.3 A Numerical Perspective to Thermal
Fluctuations in Magnetic Systems

As seen in Sec. 2.1.1, dealing analytically with stochastic differential equations, even for
very simple models, is a challenge. So for complicated systems we resort to numerical
analysis. To do so, we start from Eq. (2.25) and evaluate the time propagation of magnetiza-
tion by a direct integration over a discrete time path {t0, t1, t2, · · · } where tm− tm−1 = ∆t
is the numerical time step. In the case of multi-domain systems, we need to discretize the
system in space as well {M⃗1(tm), M⃗2(tm), M⃗3(tm), · · · } so that

M⃗n(tm) =M⃗n(tm−1)−
γ

1 + α2
M⃗n(tm)×

[
H⃗eff

n (tm) +
α

MS

M⃗n(tm)× H⃗eff
n (tm)

]
∆t,

(2.27)

with

H⃗eff
n (tm) = − ∂F

∂M⃗n(tm)
+

(√
2αkBT

γa3MS

1

∆t

)
ζ⃗n(tm), (2.28)

where ζx,y,zn (tm) are independent radome numbers with standard normal distribution (mean
zero and unit variance) (see Fig. 2.6c) and a3 is the volume of each domain. This gives
us just the numerical solution of LLG equations for one realization of the noises. In the
event we are interested in thermal averages (ensemble averages) of the quantities, we need
to solve the LLG equations for different realization of the noises with the same initial
conditions and then take the average over all trajectories (though in the equilibrium state,
for the ergodic systems the time average will give the same value as the ensemble average
[21]).

In the following, we numerically solve the LLG equations for two different simple sys-
tems in which the theoretical values for our quantities are available; to assess the quality of
our simulations. As the first example, we calculate the thermal average of magnetization
for the equilibrium state. As the second example, we calculate the mean-first-passage time
in magnetization switching.

12



2.3 A Numerical Perspective to Thermal Fluctuations in Magnetic Systems

2.3.1 First Example : Thermal Average of Magnetization at
Equilibrium

We address a single domain with free energy density of

F = −H0M
z, (2.29)

where H0 = 0.005 [T] is the external magnetic field. Our goal is to calculate the thermal
average of the equilibrium magnetization at different temperatures. Theoretically, we know
that the interaction of the magnetic system with the heat bath leads to the population of
excited states whose probability, depending on their equilibrium configuration, is given by
the Boltzmann distribution exp (a3MSH0 cos(θ)/kBT ) so that the thermal average of the
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Figure 2.4: a) Trajectory of averaged reduced magnetization for a single FM domain for
different temperatures are shown. To obtain them, Eq. (2.25) was solved nu-
merically for 1000 realization of the noises and then averaged. b) The value
of ⟨M z/MS⟩ when the system is relaxed versus the temperature are shown and
compared with the theoretical values.
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magnetization reads :

⟨M z⟩ =MS⟨cos(θ)⟩ =MS

π∫
0

cos(θ) exp (a3MSH0 cos(θ)/kBT ) dθ

π∫
0

exp (a3MSH0 cos(θ)/kBT ) dθ

=MSL

(
a3MSH0

kBT

)
,

(2.30)

where L(x) = coth(x) − 1
x

is the Langevin function [21]. For MS = 1.71 × 106 [A/m],
a = 10 [nm] and α = 0.01 the trajectory of the averaged magnetization calculated nu-
merically is shown in Fig. 2.4a. The equilibrium magnetization is reached when its value
becomes time-independent (roughly). Calculating the equilibrium magnetization for dif-
ferent temperatures we have Fig. 2.4b which confirms that our simulations give the correct
equilibrium state of the system.

2.3.2 Second Example : Thermally Activated Magnetization
Switching

Another interesting quantity is the mean-first-passage time (MFPT). It is the time that it
takes for the system to pass a potential barrier due to thermal fluctuations and goes from
one well to another well (see Fig. 2.5a). Here we consider a single FM domain with the
following free energy density

F =
k

M2
S

(
M2

S − (M z)2
)
, (2.31)

where k = 48 [kJm−3] is the uniaxial anisotropy constant which results in two energy
minima atM z = ±MS . ForMS = 1.7×106 [A/m], a = 5 [nm] and α = 0.01 the trajectory
of the reduced magnetization at T = 80 [K] is shown in Fig. 2.5a (numerical solution of
LLG equation just for one realization of the noises). TheoreticallyMFPT = Ω

∂Ω/∂t
, where

Ω is the probability and is given by FPE (Eq. (2.16)). Following this instruction one can
get the theoretical formula for MFPT [22] :

MFPT =
1

2

a3MS(1 + α2)

2γαkBT

√
π exp (ka3/kBT )

(ka3/kBT )3/2
. (2.32)

The theoretical values for MFPT and numerically evaluated ones are compared in Fig. 2.5b
which confirm that our simulations give the correct dynamics. As can be understood the
competition between anisotropy energy ka3 and thermal energy kBT determines the MFPT.
For very small-volume domains the MFPT is expected to be very short and therefore their
measured magnetization (time average) is expected to be zero. Due to such a property,
such a small FM domains are called superparamagnet.

2.3.3 Some Details about Numerical Procedure
Stochastic Integration : To obtain the time propagation of a desired quantities in
the presence of thermal fluctuations, using Langevin dynamics [18], we need to take
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Figure 2.5: Trajectory of the z component of reduced magnetization of a single ferromag-
netic domain at T = 80 [K] for a simulation time of 10 [µs] is shown . The
MFPT is evaluated by averaging over the times that the system spends in poten-
tial wells. b) MFPT versus temperature is evaluated and compared with theory
(Eq. (2.32)). At low temperatures MFPT is large and so to get more accurate
results the simulation time should be increased so that the averages are taken
over more numbers of switchings. Here the simulation time is 10000 [µs].

the integral of SDEs. Generally speaking, to integrate a stochastic function, Υ(t) =
t∫
0

ξ(t′)G(t′)dt′, we can follow two routes which yield two different dynamical properties

: Ito and Stratonovich [9]. To see this we rewrite Υ(t) in the sense of Riemann-Stieltjes
integral :

Υ(t) =

t∫
0

G(t′)dw(t′), (2.33)

wherew(t) =
t∫
0

ξ(t′)dt′ =
t∫
0

dw(t′) is a Wiener process. Then we parameterize the integral

by 0 ≤ λ ≤ 1 as following :

Υλ
n(t) =

n∑
j=1

G [(1− λ)tj−1 + λtj] (w(tj)− w(tj−1)) , (2.34)

where tj = j t
n

. λ determines the position where G[t] is evaluated within the time step
interval [tj−1, tj]. In the limit of n → ∞ a deterministic integral becomes independent of
λ, however for the case of stochastic integrals the choice of λ is not arbitrary and different
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Figure 2.6: (a) 10000 random numbers generated by C++ library (srand) with a uniform
distribution. (b) Transforming the generated numbers with uniform distribution
to standard normal distribution. (c) The corresponding probability distribution
of random numbers before the transformation (uniform distribution) and after
transformation (standard normal distribution) are shown. As can be seen the
probability of standard normal distribution in the (−0.1, 0.1) interval is more or

less equal to
0.1∫

−0.1

e−
x2

2√
2π
dx ≃ 0.08. As the number of random numbers increases

the better (more accurate) standard normal distribution is achieved.

λs yield different dynamical properties for the system. The value of λ has to be justified
based on the physical processes. Ito scheme refers to λ = 0 and Stratonovich scheme
refers to λ = 1/2. The Stratonovich calculus is usually preferred in physical applications
[9]. In this thesis, we also use Stratonovich scheme to integrate LLG equations. Using the
Heun method for numerical integration we can achieve that [18, 23].

Gaussian (Normal) White Noise : As mentioned earlier for Eq. (2.28), to introduce
Gaussian white noise distribution we need to generate random numbers with a standard
normal distribution. The noise is already adjusted to be white by putting ∆t in the de-
nominator of the strength of the noise in Eq. (2.28). To have Gaussian property as well,
assuming we have already generated random numbers with uniform distribution, we can
use Box-Muller transformation to generate a standard normal distribution out of the uni-
form one [24] :

Method : Let R,R′ be independent random numbers with uniform distribution on the
interval (0, 1). Performing the following transformation :

ζ = (−2 lnR)2 cos (2πR′) ,

ζ ′ = (−2 lnR)2 sin (2πR′) ,
(2.35)

then ζ, ζ ′ will be independent random numbers with a standard normal distribution (Fig. 2.6).
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3 Spin Seebeck Effect

Among many thermal effects in FMs, in this chapter we address the spin Seebeck effect
(SSE). SSE refers to the generation of a spin current due to a temperature gradient and
in analogy with the conventional Seebeck effect is called spin Seebeck effect. SSE has
been observed in many different types of materials, however, its mechanism has not yet
been understood completely. Initially, it was observed in metallic magnets [25] and later it
was observed in magnetic insulators [26], paramagnets [27] and even antiferromagnetics
[28] and non-magnetic materials [29]. Here we focus on the SSE in magnetic insulators.
Following the treatment of FMs in finite temperature given in the previous chapter, we
implement a temperature gradient over such materials and try to simulate the SSE. Af-
ter succeeding in the generation of spin current, we study the different aspects of such
phenomena and try to understand the fundamental mechanism(s) particularly in magnetic
insulators.

Geometrically, two types of SSE have been observed, transversal and longitudinal. In
the transversal one, the temperature gradient and the spin current are perpendicular while
in the longitudinal SSE they are parallel. In this chapter, we address both.

Needless to say, to have a current we need some carriers. The carriers for the spin current
can be diverse. In the early stage of SSE observation in metallic magnets the spin current
was thought to be carried just by the spin-polarized electrons. After observation of SSE in
magnetic insulators, magnons (as the quantum of spin waves (SW)) were acknowledged as
another potential spin current carrier. In such a case, the generated spin current is called
SW spin current. The latter which is our focus in this thesis is much more interesting
since opposed to a spin-polarized electron current, there is no energy loss due to electrical
resistance.

3.1 Spin-Wave Spin Current inside a Ferromagnetic
Sample

When it comes to the relation between the current and carriers, the first equation that comes
to our mind is the equation of continuity. Here we follow the same analogy to find the SW
spin current formula. At first glance the Gilbert equation (Eq. (2.26)) could be the best
choice because the carriers of SW spin current (i.e. spin waves) can be derived from that
[26, 30]. So we start from Gilbert equation :

∂S⃗(r⃗, t)

∂t
+ γS⃗(r⃗, t)× H⃗eff (r⃗, t) +

αγ

MS

S⃗(r⃗, t)× ∂S⃗(r⃗, t)

∂t
= 0. (3.1)

in which the spin density S⃗(r⃗, t) = −M⃗(r⃗,t)
γ

is used instead of magnetic moment density
(magnetization). As we are interested in SW spin current and since spin waves are collec-
tive excitations governed by the exchange interaction, we separate the contribution of the
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3 Spin Seebeck Effect

exchange field to the total effective field and rewrite the Gilbert equation in the following
form

∂S⃗(r⃗, t)

∂t
+γS⃗(r⃗, t)×

(
H⃗eff − H⃗exch

)
+
αγ

MS

S⃗(r⃗, t)× ∂S⃗(r⃗, t)

∂t
+∇· J⃗ s⃗(r⃗, t) = 0, (3.2)

where H⃗exch is the exchange field and the SW spin current density tensor J⃗ s⃗(r⃗, t) is defined
as [26, 31, 32] :

∇ · J⃗ s⃗(r⃗, t) = γS⃗(r⃗, t)× H⃗exch(r⃗, t), (3.3)

which is equivalent to

∇ · J⃗ s⃗(r⃗, t) = −M⃗(r⃗, t)× H⃗exch(r⃗, t). (3.4)

The divergence of SW spin current density tensor is defined as

∇ · J⃗ s⃗(r⃗, t) =
[

∂
∂x
, ∂
∂y
, ∂
∂z

]
·

Jsx

x (r⃗, t) Jsy

x (r⃗, t) Jsz

x (r⃗, t)
Jsx

y (r⃗, t) Jsy

y (r⃗, t) Jsz

y (r⃗, t)
Jsx

z (r⃗, t) Jsy

z (r⃗, t) Jsz

z (r⃗, t)


= î∇⃗ · J⃗sx(r⃗, t) + ĵ∇⃗ · J⃗sy(r⃗, t) + k̂∇⃗ · J⃗sz(r⃗, t),

where e.g. Jsx

y (r⃗, t) means the contribution of the x component of the magnetization vector
in SW spin current density tensor flowing in the y direction at the point (r⃗, t) and so on.
In micromagnetism, the contribution of the exchange interaction to free energy density

is F exch =
∫
A
(
∇M⃗/MS

)2
d3r where A is the stiffness constant and

(
∇M⃗/MS

)2
=

(∇Mx/MS)
2 + (∇My/MS)

2 + (∇Mz/MS)
2 [33, 34]. So the corresponding exchange

field would be H⃗exch(r⃗, t) = −∂F exch(r⃗,t)

∂M⃗(r⃗,t)
= 2A

M2
S
∇2M⃗(r⃗, t). By substituting the exchange

field in Eq. (3.4) we obtain

∇ · J⃗ s⃗(r⃗, t) = − 2A

M2
S

M⃗(r⃗, t)×∇2M⃗(r⃗, t). (3.5)

By reverse calculations, it is not difficult to show [26, 32] :

Jsj

i (r⃗, t) = − 2A

M2
S

[
M⃗(r⃗, t)×∇iM⃗(r⃗, t)

]
j
= − 2A

M2
S

εjνβM
ν∇iM

β, (3.6)

where εjνβ is the Levi-Civita antisymmetric tensor. Finally, for numerical purposes, we
discretize the gradient :

Jsj

x (nx, ny, nz, t) = − 2A

aM2
S

εjνβM
ν(nx, ny, nz, t)

[
Mβ(nx + 1, ny, nz, t)−Mβ(nx, ny, nz, t)

]
,

Jsj

y (nx, ny, nz, t) = − 2A

aM2
S

εjνβM
ν(nx, ny, nz, t)

[
Mβ(nx, ny + 1, nz, t)−Mβ(nx, ny, nz, t)

]
,

Jsj

z (nx, ny, nz, t) = − 2A

aM2
S

εjνβM
ν(nx, ny, nz, t)

[
Mβ(nx, ny, nz + 1, t)−Mβ(nx, ny, nz, t)

]
,

(3.7)

where e.g. Jsz

x (nx, ny, nz, t) is the contribution of z component of the magnetization vector
in SW spin current density tensor flowing in the x direction at the point (nx, ny, nz, t) and
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3.1 Spin-Wave Spin Current inside a Ferromagnetic Sample
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Figure 3.1: Schematic of the meaning of different components of the SW spin current
tensor (Eqs. (3.8)).

so on. To get the SW spin current tensor which flows through each FM-cell faces the SW
spin current density tensor is multiplied by a2 :

Is
j

x (nx, ny, nz, t) = −2Aa

M2
S

εjνβM
ν(nx, ny, nz, t)

[
Mβ(nx + 1, ny, nz, t)−Mβ(nx, ny, nz, t)

]
,

Is
j

y (nx, ny, nz, t) = −2Aa

M2
S

εjνβM
ν(nx, ny, nz, t)

[
Mβ(nx, ny + 1, nz, t)−Mβ(nx, ny, nz, t)

]
,

Is
j

z (nx, ny, nz, t) = −2Aa

M2
S

εjνβM
ν(nx, ny, nz, t)

[
Mβ(nx, ny, nz + 1, t)−Mβ(nx, ny, nz, t)

]
,

(3.8)

where j = x, y, z stand for different components of magnetization. The first line includes
3 components of the tensor corresponding to the spin currents which all flow in the x
direction and for 3 different components of magnetization vector. In the same way the
second and third lines correspond to the components of spin current which all flow in the
y and z direction respectively (see Fig. 3.1).
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3 Spin Seebeck Effect

Eqs. 3.8 can be further simplified as

Is
j

x (nx, ny, nz, t) = −2Aa

M2
S

εjνβM
ν(nx, ny, nz, t)M

β(nx + 1, ny, nz, t),

Is
j

y (nx, ny, nz, t) = −2Aa

M2
S

εjνβM
ν(nx, ny, nz, t)M

β(nx, ny + 1, nz, t),

Is
j

z (nx, ny, nz, t) = −2Aa

M2
S

εjνβM
ν(nx, ny, nz, t)M

β(nx, ny, nz + 1, t).

(3.9)

Finally, we draw attention to the dimension of the spin current as being Joule as expected
since it has the dimension of the spin divided by the dimension of time.

3.1.1 Longitudinal Spin Current in a Chain
In this chapter, we simulate the SW spin current in a chain of coupled FM domains along
the x axis (Fig. 3.2). In such a case, just three components of the spin current tensor remain.
At site n they are written as

Is
x

n = −2Aa

M2
S

[My
nM

z
n+1 −M z

nM
y
n+1],

Is
y

n = −2Aa

M2
S

[M z
nM

x
n+1 −Mx

nM
z
n+1],

Is
z

n = −2Aa

M2
S

[Mx
nM

y
n+1 −My

nM
x
n+1].

(3.10)

By some straightforward calculations, it can be seen that this definition and the definition
given in Ref. [30] are the same :

Isαn = −2Aa

M2
S

n∑
m=1

Mβ
m(M

γ
m−1 +Mγ

m+1)εαβγ

= −2Aa

M2
S

n∑
m=1

[M⃗m × (M⃗m−1 + M⃗m+1)]
α

= −2Aa

M2
S

[M⃗n × M⃗n+1]
α = −2Aa

M2
S

Mβ
nM

γ
n+1εαβγ,

(3.11)

where we assumed Isα0 = 0 and M⃗0 = 0 as boundary conditions (see Ref. [30]). The
benefit of writing the SW spin current in this form is that it exposes the SW spin current as

Isαn =
a3

γ

n∑
m=1

Q⃗m, (3.12)

where Q⃗m = − 2Aγ
a2M2

S
M⃗m × (M⃗m−1 + M⃗m+1) = −γM⃗m × H⃗exch is the exchange torque

(the contribution of exchange interaction in micromagnetic free energy density in discrete
form is − 2A

a2M2
S

∑
n M⃗n · M⃗n+1). It states that the exchange torque can generate or absorb

SW spin current at each site as shown in Fig. 3.2 schematically.
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3.1 Spin-Wave Spin Current inside a Ferromagnetic Sample

Figure 3.2: Schematic of SSE and the role of exchange torque (Q⃗n) in the generation or
absorption of SW spin current (In).

An Alternative Way : Due to quantum nature of magnetic moments and spins we
can use the Heisenberg equation of motion as well to derive the spin current formula.
In reduced units the Heisenberg equation of motion reads as ∂σα

n

∂t
= i[Λ, σα

n ], where the
Hamiltonian is assumed to have just the exchange term :

Λ =
∑
n

J(σx
nσ

x
n+1 + σy

nσ
y
n+1 + σz

nσ
z
n+1), (3.13)

where σα
n are Pauli matrices. After straightforward calculations, using spin commutator

relation [σα
n , σ

β
m] = iδnmεαβγσ

γ
n and comparing Heisenberg equation of motion with the

continuity equation ∂σα
n

∂t
+ {Iαn − Iαn−1} = 0 we reach the spin current formula as Iαn =

Jσβ
nσ

γ
n+1εαβγ which in real units (J → −2Aa) is the same as the Eq. (3.11).

Model In this section we simulate the SW spin current for a FM chain with the following
free energy density :

F =
k

M2
S

∑
n

(
M2

S − (M z
n)

2
)
− 2A

a2M2
S

∑
n

M⃗n · M⃗n+1, (3.14)

where k is the uniaxial anisotropy constant. The effective magnetic field acting on the n-th
magnetic moment then reads

H⃗eff
n = − ∂F

∂M⃗n

+ ξ⃗n(t) =
2k

M2
S

M z
n ẑ +

2A

a2M2
S

(
M⃗n+1 + M⃗n−1

)
+ ξ⃗n(t), (3.15)

where the site-dependent noise reflects the existence of a nonuniform temperature profile.
Here we implement a Gaussian white noise with the following properties :

⟨ξik(t)⟩ = 0,

⟨ξir(t)ξjl(t+∆t)⟩ = 2kBTiα

γMSa3
δijδrlδ(∆t),

(3.16)

where i and j count the site numbers in the FM chain and r, l correspond to the Cartesian
components of the random field and Ti is the site-dependent local temperature. We remind
that Ti are the temperature of the environment (with all its microscopic degrees of freedom
being replaced by the random magnetic field) not the temperature of FM system (magnon
subsystem). In the case of FM insulators, this environment is phonon subsystem and Ti
represent the local phonon temperatures. In what follows, we employ the parameters for the
numerical calculations : MS = 1.71 [MAm−1],A = 21 [pJm−1], k = 48 [kJm−3], and α =
0.01 which are appropriate for Iron. Although Iron is a metallic FM and the contribution
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3 Spin Seebeck Effect

of itinerant electrons in the spin current must be investigated as well, in our model we just
study the contribution of magnetization dynamics in the spin current. Later we will see that
for the contribution of magnetization dynamics to the spin current, the results are generic
and valid for FM insulators (Sec. 3.3). We use Iron parameters to facilitate the numerical
integrations in term of the execution time of our code. Cell size is chosen smaller than FM
domain wall (∼ π

√
(A/K) ≈ 65 [nm] [33]) to assure the magnetization within each cell is

more or less uniform and moreover it will not change sharply from one cell to another cell.
Here we put a = 20 [nm]. Finally, all the results shown here are averaged over different
realization of the noises at the time that the system is relaxed unless other conditions clearly
be mentioned. By relax here we mean that the quantities will not change anymore as the
time goes on (stationary state).

Due to the exchange interaction, we need 6 constants to solve 3 components of LLG
equation which in fact are the boundary conditions. Here we chose open boundary condi-
tions, meaning that the first FM cell is assumed to interact just with the second one and the
N-th FM cell is assumed to interact just with (N-1)-th one.

SW Spin Current Profile In Fig. 3.3a statistically averaged components of SW spin
current versus the site number is shown. As can be seen, the spin current is carried by the
z component of magnetization and the contribution of two other components is roughly
zero; we remind that the uniaxial anisotropy is along the z axis (Eq. (3.14)). Following the
sign of exchange torque in Fig. 3.3b we understand its role in the generation (positive sign)
or absorption (negative sign) of SW spin current (Eq. (3.12)). In Fig. 3.4 the dependency
of the spin current profile on the temperature gradient is shown. As can be inferred it is
the temperature gradient that drives the SW spin current. The zero value of the last side
is the immediate consequence of open boundary conditions and our definition for the spin
current (Eq. (3.11)).
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Figure 3.3: a) Statistically averaged SW spin current at the stationary state versus site
number for a chain with N = 50 and a temperature gradient of Tn = T1 −
∆T
N
(n−1), where T1 = 10 [K] and ∆T = 10 [K]. b) The spin current profile is

compared with the exchange torque profile (see also Fig. 3.2). The quantities
are averaged over 1000 realizations of the noises.
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3.1 Spin-Wave Spin Current inside a Ferromagnetic Sample

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
ææ
æææ
ææææææææ

æ
æ
æ
æ
æ
æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ò

ò

ò

ò

ò

ò
ò
ò

ò
ò
ò
ò
ò
ò
ò
ò
ò
òò
òòòò

òòòòòòòòòò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò

ò

ò

ò

ò

ò

ò

ò

à

à
à
à
à
à
à
à
à
à
à
à
à
àà
àà
àà
ààà
ààààààààààà

àà
à
à
à
à
à
à
à
à
à
à
à
à
à
à

à

õ
õ
õ
õ
õ
õ
õ
õ
õ
õõ
õõ
õõ
õõõ
õõõ
õõõõõõõõõõõõõõõõõõõ

õ
õ
õ
õõ
õ
õ
õ
õ
õ

çç
çç
çç
çççç

ççççç
çç
çççççççççççççççççççççççççç

ççç
ççççáááááááááááááááááááá

áááááááááááááááááááááá
áááááááá

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Site number, n

SW
sp

in
cu

rr
en

t´
10

11
@Ñ

s-
1 D

æ ÆT=10 @KD

ò ÆT=8 @KD

à ÆT=6 @KD

õ ÆT=4 @KD

ç ÆT=2 @KD

á ÆT=0 @KD

Figure 3.4: a) Statistically averaged SW spin current at stationary state versus site number
for a chain with N = 50 and a temperature gradient of Tn = T1 − ∆T

N
(n − 1)

for different value of ∆T are shown. T1 = 10 [K] and the SW spin currents are
averaged over 1000 realizations of the noises.

To consolidate our claim that the generation and absorption of SW spin current are due
to exchange torque, the magnon accumulation profile is shown in Fig. 3.5b. Considering
this figure along with the exchange torque profile (Fig. 3.3b) we can say that in the hot part
of the chain (left) the exchange torque generates magnons (as SW spin current carriers)
and so SW spin current increases and as we approach the cold part (right) the exchange
torque starts to absorb magnons and so the SW spin current decreases.

To calculate magnon accumulation, following the procedure given in Ref. [35] we define
two quantities : equilibrium magnetization ⟨mz⟩Te and nonequilibrium steady-state mag-
netization ⟨mz

n⟩, where mz
n = M z

n/MS is the reduced magnetization. First, we remind
that generally speaking when there is a time-independent current in a system, the system
is called to be in nonequilibrium steady-state; nonequilibrium because there are carriers
that move along the system and carry current and steady-state because this current is time-
independent. Steady state could happen when we let the system evolve enough in time and
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Figure 3.5: a) Corresponding equilibrium magnetization ⟨mz⟩Tn
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n⟩ profiles to Fig. 3.3 are shown. b) The cor-

responding magnon accumulation versus site number is shown.
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3 Spin Seebeck Effect

relaxes, like what we do here. Magnetization in such conditions is called nonequilibrium
steady-state magnetization. On the other hand, the equilibrium magnetization is the mag-
netization of the system when there is no temperature gradient and so no current along the
chain. It means that we keep the temperature along the chain uniform and then let the sys-
tem be relaxed and then calculate the averaged magnetization. Of course, depending on the
value of this uniform temperature (T ) the equilibrium magnetization could have different
values ⟨mz⟩Te =

∑N
n′=1⟨mz

n′⟩Te /N . Magnon accumulation is the difference between these
two types of magnetization ⟨mz

n⟩ − ⟨mz⟩Tn
e . To calculate corresponding ⟨mz⟩Tn

e to each
⟨mz

n⟩, we take a chain with a uniform temperature equal to the corresponding temperature
at site n when there is a temperature gradient along the chain (Tn). The results are shown
in Fig. 3.5.

To inspect finite-size effects, we simulated the spin current for different lengths of the
chain. As can be seen in Fig. 3.6 for enough long chains as we are far from the boundaries,
the exchange torque is zero and so no magnon is supposed to be generated or absorbed
within this range and magnons just move from hot to the cold side with a constant SW spin
current. Moreover, it says that the formed uniform spin current far from the boundaries for
long enough chains depends on the ∆T/N , not the absolute value of temperatures.
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Figure 3.6: SW spin current versus site number for chains with different lengths with a
temperature gradient of Tn = T1 − ∆T

N
(n− 1) are shown, where T1 = 0.1×N

[K] and ∆T = 0.1 × N [K]. As can be seen, when the size of the chains is
large enough (N > 300) so that size effects are dismissible, same spin current
is formed in the middle of the chains independent of the length of the chains
(∼ 2.5 × 1011 [~s−1]). The inset shows the corresponding exchange torques.
All quantities are averaged over 1000 realizations of the noises.
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3.2 Spin Current at the Interface

3.2 Spin Current at the Interface

Experimentally the spin current is detected as the electric voltage. The FM is attached to
a normal metal (NM) so that the pumped spin current is converted to an electric current
due to inverse spin-Hall effect (ISHE) [36–39] (since the spin-orbit coupling is the mech-
anism behind ISHE, a heavy NM such as Pt is appropriate for this propose). However, the
sole attachment of the NM potentially can affect the generated SW spin current in the FM.
Here we address this issue by considering two cases : (a) when the SW spin current ap-
proaches the interface (boundary of FM chain) longitudinally (Sec. 3.2.1), and (b) when the
transverse spin current pumped out of FM chain transversely (perpendicular to the chain)
(Sec. 3.2.2). See Fig. 3.7 for clarification.

Figure 3.7: Schematic of detection of a) longitudinal SSE and b) transversal SSE.

3.2.1 Longitudinal Spin Current near the Interface

A NM attached to the boundary of a FM chain (Fig. 3.7a) affects the SW spin current in
two ways : I. Enhancement of Gilbert damping at the interface and II. Adding an extra
torque known as the spin–transfer torque which acts on the magnetization at the interface.

I. Enhanced Gilbert Damping : NM attached to the spin current source (here FM)
can play the role of a sink for spin current. This can be seen as an extra dissipation of
magnetization at the interface which is translated as the enhancement of Gilbert damping
(∆α) and mathematically is shown as [40] :

∂M⃗

∂t
= −γM⃗ × H⃗eff +

α +∆α

MS

M⃗ × ∂M⃗

∂t
, ∆α =

γ~
4πMs

geffδ(x− L), (3.17)

where L is the position of interface, and geff is the real part of the effective spin-mixing
conductance. The underlying mechanism for this phenomena is a nonlocal interaction
between the angular momentum in FM and the spin of the itinerant electrons in NM which
in turn causes angular momentum to be pumped into the itinerant electrons and finally
magnetization losses and damping enhancement [41, 42].
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3 Spin Seebeck Effect
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Figure 3.8: Statistically averaged SW spin current at stationary state versus site number
for a chain with N = 50 and a linear temperature gradient whit T1 = 10 [K]
and TN = 0 [K]. a) Enhanced Gilbert damping effect b) Enhanced Gilbert
damping and spin–transfer torque effects. The quantities are averaged over
1000 realization of the noises.

II. Spin–Transfer Torque : The enhanced damping is one side of the coin when it
comes to the interface effects. In reality, spin-flip relaxation time in NM is not fast enough
and it takes time for the spins to leave the interface and reach equilibrium within the NM.
In such a case, we have a spin accumulation at the interface in NM and a flowback of spin
current from NM to FM is inevitable [31, 40]. Such an incident spin current (I⃗ incident) can
be formulated as a torque acting on the magnetization [41, 43, 44] :

τ⃗ s = − γ

M2
SV

M⃗ ×
(
M⃗ × I⃗ incident

)
, (3.18)

known as Slonczewski’s torque and it describes the dynamics of a monodomain ferromag-
net of volume V subjected to the spin current I⃗ incident and modifies the right-hand side of
the LLG equation as a source term. In general, a correction torque to Slonczewski’s torque
is also allowed [41, 45]

τ⃗ s
′
= − γ

MSV
βM⃗ × I⃗ incident, (3.19)

where β gives the relative strength with respect to the Slonczewski’s torque (Eq. (3.18)). In
order to simulate the enhanced Gilbert damping and spin–transfer torque we assume that
they act just on the last site. So the dynamics of our FM chain is described by the following
LLG equations :

∂M⃗n

∂t
= − γ

1 + α2
M⃗n × H⃗eff

n − γα

(1 + α2)MS

M⃗n × (M⃗n × H⃗eff
n ) ;n = 1, ..., (N − 1),

(3.20)

and

∂M⃗N

∂t
= − γ

1 + α2
N

M⃗N × H⃗eff
N − γαN

(1 + α2
N)MS

M⃗N × (M⃗N × H⃗eff
N )

− γ

M2
Sa

3
M⃗N ×

(
M⃗N × I⃗ incident

)
− γ

MSa3
βM⃗N × I⃗ incident,

(3.21)
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3.2 Spin Current at the Interface

where αN = α+ γ~
4πaMs

geff . The results are shown in Fig. 3.8. As can be seen in Fig. 3.8a
the enhanced damping facilitates draining the spin current in NM and causes the enhance-
ment of the spin current at the interface. On the other hand, the inclusion of the effect of
the flowback of spin currents (Fig. 3.8b) causes the spin current to decrease at the interface.

3.2.2 Transversal Spin Current

Besides the generated longitudinal SW spin current along the temperature gradient, a
transversal spin current perpendicular to the temperature gradient can also be detected
thanks to a NM attached on the top of the chain as shown in Fig. 3.7b. Similar to the
previous case, this transversal current stems from the interplay between the angular mo-
mentums in FM and the spin of itinerant electrons in NM. In other words, the fluctuation
of magnetization in FM determines the pumped spin current from the FM to the NM and
the spin fluctuation of the itinerant electrons in NM determines the backflow of the spin
current from NM to the FM. We follow the procedure given in Ref. [32] to calculate these
currents. The first is given by a3

MSγ
⟨M⃗n×∂tM⃗n⟩ when there is a temperature gradient along

the chain and the second is given by a3

MSγ
⟨M⃗ × ∂tM⃗⟩Tn = a3

MSγ

∑N
n′=1⟨M⃗n′ ×∂tM⃗n′⟩Tn/N

at a uniform temperature equal to the corresponding temperature at site n when there is a
temperature gradient along the chain (similar to the procedure followed to calculate equi-
librium magnetization and magnon accumulation). The total spin current pumped to the
NM is a3

MSγ

(
⟨M⃗n × ∂tM⃗n⟩ − ⟨M⃗ × ∂tM⃗⟩Tn

)
. The results are shown in Fig. 3.9.
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Figure 3.9: a) The contributors to the transversal spin current. b) Statistically averaged
net transversal spin current injected to the NM (see Fig. 3.7b) at the stationary
state versus site number for a chain with N = 50 and a temperature gradient of
Tn = T1 − ∆T

N
(n − 1), where T1 = 10 [K] and ∆T = 10 [K]. The quantities

are averaged over 1000 realization of the noises.

Unlike longitudinal SW spin current which is attributed to the magnon accumulation,
transversal spin current is attributed to the difference between phonon and magnon tem-
peratures. Phonon temperature is in fact approximated as the temperatures of spin current
carriers in NM (i.e. electrons) and is equal to the temperature we put into LLG equa-
tion via the noise T = T p ≈ T e (due to a fast electron-phonon relaxation). The magnon
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3 Spin Seebeck Effect

temperature reflects the density of magnons generated due to thermal activation of magne-
tization. To calculate that, we follow the procedure given in Ref. [35]. It is based on the
fact that when there is a uniform temperature along the chain, at equilibrium the magnon
temperature is equal to the phonon temperature and equilibrium magnetization is equal to
the steady-state magnetization ⟨mz⟩Te = ⟨mz⟩ (see Sec. 3.1.1). We calculate the equilib-
rium magnetization for different values of uniform phonon temperatures (which is equal
to the magnon temperature) and by fitting we find the relation between magnetization and
magnon temperature ⟨mz⟩ = f (Tm). Later, when there is a temperature gradient along the
chain, we calculate nonequilibrium steady-state magnetization at each site ⟨mz

n⟩ and using
the derived relation (f ), we obtain the magnon temperature at each site Tm

n = f−1 (⟨mz
n⟩).

The results are shown in Fig. 3.10. Comparing Fig. 3.9b and 3.10b we can claim that the
difference between magnon and phonon temperatures is the mechanism behind the formed
transversal spin current.

à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à

ò

ò
òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò

ò

à Tn
p

ò Tn
m

0 10 20 30 40 50
0

2

4

6

8

10

Site number, n

@K
D

HaL

à

ààà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
àà
à
àà
àà
àà
àà
àà
àà
à

à

à

à Tn
m
-Tn

p

0 10 20 30 40 50

-2

0

2

4

Site number, n

@K
D

HbL

Figure 3.10: Corresponding phonon and magnon temperatures to Fig. 3.9 and their dif-
ferences. When the magnon temperature is bigger than the phonon tempera-
ture (which is approximated as the electron temperature in NM due to a fast
phonon-electron relaxation) as expected the net transversal spin current in-
jected into the NM is positive and vice versa (Fig. 3.9b).

3.3 Yttrium Iron Garnet

We have simulated the spin current which is carried by spin waves (or their quantum,
magnons). This type of spin current could be a dominant source of spin current when
there is no itinerant electron in the systems. One material that has this property and exper-
imentally has been used widely in SSE experiments is Yttrium iron garnet (YIG) with a
chemical composition of Y3Fe5O12. It has a complex unit cell with a cubic crystal struc-
ture. Three of Fe3+ ions are on tetrahedral sites and two others on octahedral sites. Y3+

has no magnetic moment, but the moments of Fe3+ ions on the tetrahedral sites are antipar-
allel to those on the octahedral sites so that there is a net magnet moment. Because of this
incomplete spin compensation, YIG is classified as a ferrimagnet with a spontaneous mag-
netization of 4πMS = 1.4×105[A.m−1] [46]. Numerically, however, it has been simulated

28



3.4 Spectral Characteristics of Spin-Wave Spin Current

as a FM successfully [26, 31, 46, 47] with the free energy

F = −H0

N∑
n=1

M z
n − 2A

a2M2
S

N∑
n=1

M⃗n · M⃗n+1. (3.22)

H0 is an external magnetic field. The results for a chain under a temperature gradient
are shown in Fig. 3.14. As can be seen, as before the SW spin current has a concave shape.

3.4 Spectral Characteristics of Spin-Wave Spin
Current

So far we talked about the SW spin current generally as the spin current that is carried
by magnons. However the magnons, themselves, can be classified based on their wave
vectors. In this section we want to find which of these magnons have the main contribution
to the generated SW spin current. The key to distinguishing the contribution of different
magnons in the SW spin current is that they have different relaxation times τ qpm = (αωq)

−1,
depending on their wave vector q, which can be inferred from the solution of LLG equation
[26] :

Mx(r⃗, t) + iMy(r⃗, t) ∝ exp (iq⃗ · r⃗ + iωqt) exp (−αωqt) . (3.23)

In the insulators the phonon-magnon scattering could be the main mechanism for this
relaxation. The frequency spectrum of magnons is given by the dispersion relation which
for the energy density given in Eq. (3.22) reads [33] :

ωq = γ

(
H0 +

4A

a2MS

(1− cos(qa))

)
, (3.24)

which results in a phonon-magnon relaxation time as

τ qpm =

[
αγ

(
H0 +

4A

a2MS

(1− cos(qa))

)]−1

, q = 2nπ/d, n = 0,±1, · · · (3.25)

where d = Na is the length of the chain. Using YIG parameters (A = 4.6× 10−12 [Jm−1]
and γ = 1.76 × 1011 [T−1s−1] [46]) the phonon-magnon relaxation times and the corre-
sponding frequencies are shown in Tab. 3.1. For the sake of accelerating the convergence
of numerical routines, we put Gilbert damping rather large α = 0.1. Of course, this scaling
of Gilbert damping (αreal ∼ 10−4) will scale the relaxation times (Eq. (3.25)), however af-
ter back rescaling we obtain the phonon-magnon relaxation times that exactly match with
the experimentally measured ones (e.g. for uniform magnons τ q=0

mp ≈ 1 [µs] [47]).
Before proceeding further, let us look at the spectrum of all active spin waves. In

Fig. 3.11 the simulated dispersion relation is shown. Comparing the results with the the-
oretical formula for the dispersion relation (Eq. 3.24) we will find the active spectrum of
spin waves in our system. The next task is to find which part of this spectrum plays the
main role in the SSE.
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3 Spin Seebeck Effect

Table 3.1: Phonon-magnon relaxation times (τ qpm) and the corresponding frequencies
(Ωq

mp = 2π/τ qpm) according to Eq. (3.25) for N = 50, a = 10 [nm], H0 = 0.057

[T] and α = 0.1.

n 0 1 2 3 4 5
|qn| = 2πn/Na [108m−1] 0.00 0.13 0.25 0.38 0.50 0.63

τ qnmp [ns] 1.000 0.304 0.099 0.047 0.027 0.018
Ωqn

mp/2π [GHz] 1.0 3.3 10.1 21.4 36.9 56.5
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Figure 3.11: Spin-wave dispersion : The colormap in the background shows the absolute
value of the discrete Fourier transformation of mx + imy based on our sim-
ulations for a chain of 50 FM cells under a linear temperature gradient [48].
T1 = 0, TN = 10 [K], a = 10 [nm], H0 = 0.057 [T] and the other parameters
belong to YIG. The dashed black curve represents the theoretical dispersion
relation formula (Eq. (3.24)). The black frame shows the subthermal regime
of the spectrum.

3.4.1 Time-Resolved Study

To find which part of magnon spectrum (Fig. 3.11) has the main contribution to the SW
spin current we do a time-resolve study as performed in experiment [50]. Experimentally,
first we need to implement different time-dependent temperature gradients with different
modulation frequencies (ωmod) on the chain. We do this by solving the heat equation
for the corresponding chain to our FM system with a periodic boundary condition (T0)
with a modulation frequency of ωmod as shown in Fig. 3.12 [49]. After solving the heat
equation and getting the temperature profile as a function of time and space we put it
into LLG equation (in the noise term) to get magnetization dynamics. In this process,
the feedback of magnon subsystem to phonon subsystem has been dismissed. However,
implementing colored noise it can be seen that the results are generic [49]. For clarification
of the mentioned recipe see Fig. 3.12 and Ref. [49].

The next step is to use a low-pass filter to filter the SW spin current. The low-pass filter
puts a cutoff frequency (ωc) on the SW spin current so that the contribution of spin waves
with frequencies higher than ωc is cut. We should note that this cutoff frequency is an ex-
trinsic cutoff that experimentally can be tuned by external parameters such as capacitance
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Figure 3.12: The time-resolved study of SSE for two different modulation frequencies.
T0 shows the boundary condition used to solve the heat equation. The fig-
ures in the second row show the colormap of phonon temperatures obtained
from solving of the heat equation; the red color shows the maximum temper-
ature (10 [K]) and the white color shows the minimum temperature (0 [K]).
In the figures in the left and right columns the system is heated up period-
ically with the modulation frequencies of ωmod = 2π × 10−1.0 [GHz] and
ωmod = 2π × 100.0 [GHz], respectively. Putting the obtained temperature
profiles into LLG equation the magnetization dynamics and SW spin current
are evaluated (statistically averaged over 1000 realization of the noises). Here
the spin current in the middle of the chain is shown. Different colors show
the spin current after passing low-pass filter with different extrinsic cutoff fre-
quencies (ωc). For the blue curve no cutoff frequency is implemented on the
spin current (ωc = ∞) but for the red, green, orange and black curves the
cutoff frequencies are ωc = 2π × 100.0 [GHz], ωc = 2π × 10−0.6 [GHz],
ωc = 2π × 10−1.0 [GHz] and ωc = 2π × 10−1.4 [GHz], respectively. We
choose a = 10 [nm], H0 = 0.057 [T], T00 = 10 [K] and α = 0.1. Other
parameters belong to YIG. [49]

or resistance of low-pass filter circuit and numerically is just an input parameter. The effect
of low-pass filter is characterized by a cascade in the amplitude of SW spin current at the
modulation frequency equal to the cutoff frequency of the filter. However, the important
observation is that as we increase this extrinsic cutoff frequency, at one stage the cascade
will not follow that anymore and it happens earlier (see Fig. 3.13). It is the sign of an
intrinsic cutoff frequency. Comparing these cascades which happen earlier than extrinsic
ones (and happens step by step) with the phonon-magnon frequencies (Ωq

mp = 2π/τ qpm) in
Tab. 3.1, we find that they exactly match with the subthermal regime of magnon spectrum,
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3 Spin Seebeck Effect

meaning these mgnons play the main role in SW spin current in the SSE (see Fig. 3.11).
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Figure 3.13: Normalized spin current ( Iωmod

I2π×107[Hz]
) at the middle of a chain of 50 FM cells

versus the modulation frequency for different extrinsic cutoff frequencies (ωc)
with the parameters a = 10 [nm], H0 = 0.057 [T], T00 = 10 [K], α = 0.1.
Other parameters belong to YIG. The spin current is statistically averaged
over 1000 noise realizations. For ωc < 2π × 109 [Hz] the cascades follow the
extrinsic cutoff frequencies which are characteristic of low-pass filter. How-
ever, for ωc > 2π×109 [Hz] the cascades occur earlier than the corresponding
extrinsic cutoff which is a sign of intrinsic cutoff in the system. The arrows
show the phonon-magnon frequencies (Ωqn

pm/2π in Tab. 3.1) for different wave
vectors evaluated theoretically which coincide with the appearance of intrin-
sic cutoff frequencies (cascades) in the curves. Since the Gilbert damping
chosen much larger than the real value, all the frequencies must be rescaled
back to achieve the real ones correspond to the real value of Gilbert damping.
For example, for α = 0.1 the first cascade which corresponds to the uniform
precession mode appears at [GHz]. It means that the corresponding real (ex-
perimental) cutoff frequency for the uniform precession mode must appear at
[MHz] and so on for higher modes. [49]
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3.5 White Noise vs Colored Noise

3.5 White Noise vs Colored Noise

The basis of the stochastic LLG equation with a white noise is the separation of time
scales, assuming that the heat bath (phonon subsystem) acts much faster than the magnon
subsystem. In this case, the bath degrees of freedom can be averaged out and replaced
by a stochastic field with a white noise correlation function. However, in case that our
magnon subsystem changes as fast as the phonon subsystem (environment), like ultrafast
magnetization dynamics, the correlation between the sequence of the noise fields is not
dismissible and the back-reaction of magnon subsystem on the phonon subsystem must
be included. In other words, the system is not memoryless (Markovian) anymore and a
finite correlation time between phonon and magnon subsystems exists. In such a case,
using white noise is not appropriate and colored noise should be used [11] and technically
the Fokker-Planck equation will not be the same as we derived earlier in Sec. 2.1.1 and the
dynamics of magnetization is given by a set of new equations. The generalized formulation
of this approach for a multispin system has been given in Ref. [51] :

d

dt
M⃗i = − γ

1 + α2
M⃗i ×

[
H⃗eff

i + η⃗i

]
,

d

dt
η⃗i = − 1

τc

[
η⃗i −

α

γτcMS

M⃗i

]
+ R⃗i,

⟨Rnr(t)Rml(t+∆t)⟩ = 2αKBTn(t)

γτ 2cMSa3
δnmδrlδ(∆t),

⟨Rnr(t)⟩ = 0,

(3.26)

where ⟨· · · ⟩ represents the average over different realization of the noises, n and m are
numbering magnetization vectors and r and l represent the Cartesian components of it. τc
is the correlation time, α is the Gilbert damping and the coupling of magnon subsystem to
heat bath is described by α/γτc so that in the limit τc −→ 0 the white noise approximation
is recovered. In Fig. 3.14 the results for the spin current in a FM chain under a temperature
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Figure 3.14: Statistically averaged spin currents as a function of the site number for a
chain including 50 FM cells with white noise and colored noise for different
values of correlation time are shown. The temperature gradient is linear with
∆T = 10 [K]. All the parameters are the same as in the previous section.
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3 Spin Seebeck Effect

gradient are shown. As expected for small correlation times colored noise approach and
white noise approximation give more or less the same results. The mentioned approach
which goes beyond the white noise approximation and takes into account the back reaction
of the magnon subsystem to the surroundings phonon subsystem is known as Landau-
Lifshitz-Miyasaki-Seki (LLMS) approach [51, 52].

3.6 Domain-Wall Motion

Finally, we address another important aspect of SSE which is spin-current driven Domain-
wall (DW) motion. We enforce a Bloch DW in the system by anti-parallel boundary con-
ditions, meaning that we fix M⃗0 = −MS ẑ and M⃗N+1 = +MS ẑ. When there is no tem-
perature gradient, it is expected that the DW appears in the middle of the chain due to
the symmetry of our system. In Fig. 3.15 a periodic temperature gradient as the previous
section is implemented on the system. As can be seen, as long as there is a temperature
gradient the DW tends to approach the hot part and as the gradient is removed the DW
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Figure 3.15: a) Shows the colormap of phonon temperature obtained from solving the heat
equation [49]; the red color shows the maximum temperature (Tmax = 50
[K]) and the white color shows the minimum temperature (0 [K]). b) shows
the colormap of reduced magnetization. Blue region shows the sites with
negative mz sign and red region shows the sites with positive mz sign. c)
shows the sites in which the sign ofmz changes. When there is no temperature
gradient the DW stays in the middle of the chain. For t = [0 − 10000] [ps]
no temperature gradient is implemented to be sure that the system has been
stabilized. For t > 10000 [ps] a temperature pulse with a frequency of ω =
2π × 10−4 [THz] is implemented on the first site of the chain. Here N = 50
and the amplitude of the temperature pulse is Tmax = 50 [K].
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3.6 Domain-Wall Motion

approaches the middle of the chain as expected. In principle the DW can move either in
the same direction or in the opposite direction of SW spin current [53]. When magnons
pass through the DW, the induction of a reaction torque pushes the DW in the opposite di-
rection of magnon current (SW spin current) [17, 54]. The DW cannot reach the end of the
chain completely because of the antiparallel boundary conditions. However as can be seen
in Fig. 3.16a higher absolute values for temperature helps further approaching the edge.
Moreover, higher absolute values for temperature gradient results in a faster DW motion.
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Figure 3.16: a) DW motion for different value of Tmax for a chain with N = 50. b) DW
motion for Tmax = 50 [k] and different frequencies of temperature pulses for
chain with N = 50. As can be seen for a small frequency of ω = 2π × 10−5

[THz] DW comes back to the middle of the chain in the second half of the
pulse (t > 50000 [ps]) as expected. Looking at the interval [10000 − 15000]
[ps] we find that increasing the frequency will not increase the speed of DW
motion and it saturates at a smaller value.

We did the same simulations for different frequencies to see if we can increase the speed
of DW motion or not. As can be seen in Fig. 3.16b increasing the frequency is not favor-
able.

In these simulations, again for the sake of accelerating the convergence of numerical
routines we used the Iron parameters with saturation magnetization MS = 1.71 × 106

[A.m−1], stiffness constant A = 2.1 × 10−11 [Jm−1], anisotropy constant k = 4.8 ×
104 [Jm−3], Gilbert damping α = 0.01, gyromagnetic ratio γ = 1.76 × 1011 [T−1s−1],
mass density ρ = 7874.0 [kgm−3], heat capacity κ = 447.668 [Wm−1K−1] and heat
conductivity C = 80.4 [Jkg−1K−1]. Uniaxial anisotropy is along z and a = 1 [nm].
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4 Temperature in Ferroelectrics

In line with our goal to study the thermal effects in ferroics, now we turn our attention
to ferroelectrics (FEs). FEs are the electrostatic analog to the FMs with some common
features like coercivity, though there are differences as well. They are characterized by
a spontaneous polarization (net dipole moment per unit volume) due to the breaking of
centrosymmetry of their crystallographic unit cell. This order parameter can be reversed
through the application of an external electric field which is greater than a coercive field.
FEs have been under investigation since their discoveries in early twenty century and they
have been used in cooling technology, field effect transistors, data storage applications etc.
[55–58]. But as the devices are miniaturized to the nanoscales nowadays the modeling of
these materials needs to be revised. In this chapter, we will show that one of the major play-
ers to determine the behavior of FEs in reduced sizes are thermal fluctuations. Although
temperature-dependent potential coefficients is a common way to address the influence of
temperature on FE properties [59–63], however, we will show that the secondary consid-
eration of temperature as a stochastic electric field is also vital to get a full picture of finite
size effects. Based on this understanding we simulate some FE-based thermal phenomena
at nanoscales.

4.1 Temperature in Ferroelectrics as Noise

We start from the typical over-damped polarization equation of motion, for a single FE
domain in the tetragonal phase, which is supplemented by noise :

γv
∂P

∂t
= −∂F

∂P
+ η(t), (4.1)

which in fact is the time-dependent Ginzburg-Landau (TDGL) equation [64, 65] (for under-
damped equation of motion see Eqs. (4.11) and (4.12)). P , F , γv and η are the polarization,
free energy density, internal resistivity (the inverse of kinetic coefficient) and the stochastic
electric field corresponding to the thermal fluctuations respectively. The noise is assumed
to be Gaussian white with an autocorrelation ⟨η(t)η(t′)⟩ = bδ(t − t′). To calculate b
first we need the corresponding Fokker-Planck equation. Following the Kramers-Moyal
recipe given in Ref. [9] (see also Sec. 2.1.1), the drift and diffusion coefficients are derived
as D(1) = − ∂F

γv∂P
and D(2) = b

2γ2
v

respectively. By substitution of drift and diffusion
coefficients into the Kramers-Moyal expansion, we reach the corresponding Fokker-Planck
equation :

∂

∂t
Ω(P, t) =

∂

γv∂P

[
Ω
∂F

∂P
+

b

2γv

∂Ω

∂P

]
, (4.2)

where Ω(P, t)dP denotes the differential probability of finding polarization between P and
P + dP . Now if we impose the requirement that in statistical equilibrium (∂Ω/∂t = 0) the
Boltzmann distribution Ω = Ω0 exp(−a3F/kBT ) is reached, we get b = 2kBTγv

a3
[64–66].
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4.1 Temperature in Ferroelectrics as Noise

a3 is the FE domain volume and the important message is that, as the volume decreases
the effect of thermal fluctuations is expected to increase. To check this formalism, we will
calculate the thermally activated switching time numerically, as an example, and compare
the results with existing formula for switching time based on other formalisms.

4.1.1 Thermally Activated Switching Time
Since at this stage our goal is to have an insight into the formalism provided earlier and
compare it with other formalisms, we evaluate switching time for a very simple model so
that using other formalisms is feasible. We consider a single FE domain in tetragonal phase
with a free energy density of (Landau-Devonshire model) :

F =
α

2
P 2 +

β

4
P 4 − PE, (4.3)

with E as an external electric field. α and β are Landau coefficients. In the absence of
external electric field, the system has two symmetric minima which correspond to two dif-
ferent stable orientations of polarization, up(↑) and down(↓). Thermally activated switch-
ing time (τ ) is the averaged time in which the polarization stays in one orientation without
switching to another one. When there is an external electric field, the symmetry is broken
and different switching times are expected (τ↑↓ and τ↓↑). Using the Heun method for solv-
ing Eq. (4.2), polarization dynamics, including the switchings are obtained and shown in
Fig. 4.1. Due to the stochastic nature of switchings at finite temperatures, we should take
an average over switching times to reach a convergence.

In Fig. 4.2 switching times versus electric field and inverse temperature for sufficient
simulation time interval (∆ ≫ τ ) are shown. As expected increasing temperature de-
creases the switching times and the external electric field is/isn’t in favor of τ↑↓/τ↓↑.

0 1000 2000 3000 4000 5000

-1

0

1

Time @psD

P
�P
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¯

¯

Figure 4.1: Reduced polarization p(t) = P (t)/PS versus time is shown, where PS =√
−α/β ≈ 0.74 Cm−2 is the spontaneous polarization. By averaging over

red time intervals we evaluate τ↑↓ and by averaging over green time intervals
we evaluate τ↓↑. Since the polarization will not relax exactly at the potential
minima even after switching (due to thermal fluctuations), we define switching
time as the time which reduced polarization passes from p > 0.5 to p < −0.5
and vice versa. In order to get more accurate results we should increase the
simulation time interval ∆ so that the averages are taken over more numbers of
switchings. Here we put Landau coefficients as α = −11.57 × 107 [VmC−1]
and β = 2.1 × 108 [Vm5C−3] [67] and ∆ = 5000 [ps], a3 = 10−27 [m3],
γv = 25× 10−6 [VmsC−1], T = 200 [K] and E = 1 [MVm−1].

37



4 Temperature in Ferroelectrics

T @KD
200, Τ¯

200, Τ¯

300, Τ¯

300, Τ¯

400, Τ¯

400, Τ¯

500, Τ¯

500, Τ¯

0 5 10 15 20 25
0

2

4

6

8

10

12

E @MVm-1D

L
n
HΤ
@p

sD
L

HaL E @MVm-1D

6, Τ¯

4, Τ¯

2, Τ¯

0, Τ¯

0, Τ¯

2, Τ¯

4, Τ¯

6, Τ¯

0.0020 0.0025 0.0030 0.0035 0.0040 0.0045 0.0050

1

2

3

4

5

6

7

1�T @K-1D

L
n
HΤ
@p

sD
L

HbL

Figure 4.2: a) Switching times as a function of electric field for different temperatures. b)
Switching times as a function of inverse temperature for different electric fields.
ForE = 0, τ↑↓ (the solid brown curve) is over τ↓↑ (the dashed brown curve). τ↑↓
is the averaged time which polarization can stay up without switching and τ↓↑
is the averaged time which polarization can stay down without switching (see
Fig. 4.1). As switching time increases, to get a more accurate evaluation, the
simulation time interval should be increased. Here the simulation time interval
is fixed for all the cases (∆ = 1 µs) and so a noisy behavior is seen as the
switching time increases (either τ↑↓ or τ↓↑). Here we assume for the Landau
coefficients α = −11.57 × 107 [VmC−1], β = 2.1 × 108 [Vm5C−3] [67],
a3 = 10−27 [m3], and γv = 25× 10−6 [VmsC−1].

Another Formalism to Evaluate Switching Time : We introduced temperature
as noise into the equation of motion and used Fokker-Planck formalism to find the relation
between temperature and the strength of the noise and simulated the thermally activated
switching times. Fortunately, there is a closed theoretical formula for switching time for
our simple model (which enables us to assess our formalism) [67] :

τ−1
↓↑ = v0

(
eW↑/kBT + eW↓/kBT

)
, (4.4)

where W↑,↓ are the energies at minima. At small electric fields (E ≪ 4
3

√
−α3

β
≈ 114

MVm−1) these energies can be approximated as W↑,↓ ≈ a3(−α2

4β
∓
√
−α

β
E). v0 is the

total number of trials per second to overcome the energy barrier between minima which
experimentally corresponds to the frequency of the optical phonons in the crystals. The
derivation of switching time formula can be found in Ref. [67] in details, however briefly
we mention that it is derived from Pauli master equations : dΩ↑

dt
= a↑↓Ω↓ − a↓↑Ω↑ and

dΩ↓
dt

= a↓↑Ω↑ − a↑↓Ω↓, where Ω↑ and Ω↓ are the probabilities for polarization oriented up
and down and a↓↑ = v0 exp(W↑/kBT ) are the transition probabilities at temperature T .
By fitting ln(τ) = − ln(2v0) +

W
kBT

over the data at E = 0 in Fig. 4.2b we get W ≈
−1.63 × 10−20 [J] which is in good agreement with the theoretical value of the minimum
energy W = −a3 α2

4β
≈ −1.59× 10−20 [J]. Moreover, we can evaluate the frequency of the

optical phonons as v0 ≈ 1.68 [THz].
Evaluating v0 for different electric fields, Fig. 4.3a shows that there is an increase in

frequency by increasing the electric field. Besides the experimental evidence [68], the de-
pendency of v0 on the electrical field is understandable since it presents the total number
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Figure 4.3: a) The frequency of optical phonons v0 versus electric field for a3 = 10−27

[m3] and γv = 25 × 10−6 [VmsC−1] is shown. v0 is evaluated by fitting the
switching time formula (Eq. (4.4)) on the simulated switching times. For better
accuracy, we used the Taylor expansion of W↑,↓ up to O[E]5 in Eq. (4.4). b)
The frequency of the optical phonons v0 versus inverse internal resistivity at
low temperatures for a3 = 10−27 [m3] and E = 0 is shown.

of trials per second to overcome the potential barrier which itself depends on the electric
field. Increasing electric field decreases the potential barrier and so increases v0. Further-
more, the optical phonon frequency is expected to be related to the internal resistivity (γv)
since there is no direct correspondence for internal resistivity in the Pauli master equation.
Conceptually, γv shows the resistivity of FEs to release charges by the destruction of polar-
ization (with a current density of J = ∂P

∂t
(Eq. (4.1)), which reasonably should be related to

the vibration of anions and cations in the FE atomic structures. In other word γv determines
the resistivity of FE to go from one state to another state. In this sense, the inverse relation
between optical phonon frequency and internal resistivity is understandable as shown in
Fig. 4.3b.

4.2 Ferroelectric Phase Diagrams : Barium Titanate

In the previous section, we used a simple model just to show how we can introduce temper-
ature as noise into the FEs. However to simulate FEs for a broad range of temperatures cor-
rectly, comparable with experimental measurements, the temperature must be introduced in
the potential coefficients as well. The potential we use is the eight-order Ginzburg-Landau-
Devonshire (GLD) for a prototypical perovskite FE, BaTiO3 (BTO), which its phase dia-
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4 Temperature in Ferroelectrics

gram has already studied extensively [61–63] :

F FE = FG +
∑

n

(α1(Tn) + Π(Q11 + 2Q12))× (P 2
x,n + P 2

y,n + P 2
z,n) + α11(P

4
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−ExPx,n − EyPy,n − EzPz,n,

FG =
∑

n

G11

2a2
[(Px,x)

2 + (Py,y)
2 + (Pz,z)

2]

+G12[Px,xPy,y + Py,yPz,z + Px,xPz,z]

+
G44

2a2
[(Px,y + Py,x)

2 + (Py,z + Pz,y)
2 + (Pz,x + Px,z)

2],

(4.5)

where P⃗n, E⃗, Π and Qij are the polarization at site n = (nx, ny, nz), electric field, hydro-
static pressure, and electrostrictive coefficients respectively. In FG, Px,y means Px,(nx,ny+1,nz)−
Px,(nx,ny ,nz) and so on for other terms [69]. In this section, we focus on a single domain to
get its phase diagram and later come back to the coupled FE domains. We use the param-
eters given in Tab. 4.1 and the same equation of motion as Eq. (4.1) with γv ∼ 2.5× 10−5

[VmsC−1] [66] to evolve the system to its stationary state. Since the BTO has some struc-
tural phase transitions, calculation of its phase diagram is a bit tricky. First, we need to cal-
culate the stationary value of the free energy of the system and the corresponding polariza-
tion at the stationary state for three different cases as shown in Fig. 4.5a, which correspond
to three different structural phases (see Fig. 4.4). Then at each temperature we choose the
polarization whose corresponding free energy has the minimum value. Within this recipe
the transition temperatures are also obtained automatically which according to Fig. 4.5b
are T ∼ 210 [K] for Rhombohedral to Orthorhombic, T ∼ 280 [K] for Orthorhombic
to Tetragonal and T ∼ 390 [K] for Tetragonal to Cubic. All presented quantities here,
such as the free energy and the polarization, are averaged over the different realization of
the noises. We can follow the same recipe to evaluate the phase diagrams for different
pressures and electric fields. The results are shown in Figs. 4.6 and 4.7.

x
y

z

CubicTetragonalOrthorhombicRhombohedral

Figure 4.4: Polarization vector at different phases of BTO.
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4.2 Ferroelectric Phase Diagrams : Barium Titanate

Table 4.1: BTO parameters [63] : T is temperature in Kelvin and σ1 = σ2 = σ3 = −Π are
stress along the x,y and z direction in unit of [GPa].

Coefficients Value Units
α1 8.0× 107 ×

[
coth

(
160
T

)
− coth

(
160
390

)]
[C−2mJ]

α11 −1.154× 108 × [1 + 0.037(σ1 + σ2 + σ3)] [C−4m5J]
α12 +6.530× 108 × [1 + 0.037(σ1 + σ2 + σ3)] [C−4m5J]
α111 −2.106× 109 × [1 + 0.023(σ1 + σ2 + σ3)] [C−6m9J]
α112 +4.091× 109 × [1 + 0.023(σ1 + σ2 + σ3)] [C−6m9J]
α123 −6.688× 109 × [1 + 0.023(σ1 + σ2 + σ3)] [C−6m9J]
α1111 +7.590× 1010 [C−8m13J]
α1112 −2.193× 1010 [C−8m13J]
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α1123 +2.416× 1010 [C−8m13J]
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Figure 4.5: The procedure to obtain the phase diagram including the structural phase tran-
sitions. a) shows the free energies for three different cases which correspond to
the three different structural phases. b) shows the corresponding polarization
P =

√
P 2
x + P 2

y + P 2
z to three different structural phases. At each tempera-

ture the polarization in which its corresponding free energy has the minimum
value, represents the correct polarization which is marked by the thick black
curve. Here a = 5 [nm].

Phase Instability in Reduced Sizes : The phase-transition temperatures as a func-
tion of the cell size are shown in Fig. 4.8. As expected, as the size of the FEs reduces the
thermal fluctuations suppress polarization. In fact such a finite-size effect has already been
observed in experiment [70–75], however, it has been mainly attributed to the depolariza-
tion field. Since the depolarization filed is dismissed in our simulations we can conclude
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Figure 4.6: The BTO polarization and its phase diagram for different electric fields. Here
a = 5 [nm] and Π = 0.

P=0

P=2 @GPaD

P=4 @GPaD

0 100 200 300 400
0.0

0.1

0.2

0.3

0.4

Temperature, T@KD

Po
la

ri
za

tio
n,

P@
C

m
-

2 D

æ

æ

æ

æ
æ

æ
ææææææææ

æ

æ

æ

æ
æ
æ

æ

æ
ææææææ

æ

æ

æ

æ
æ
æ
æ
æ

æ

æ

ææææ

0 1 2 3 4 5 6 7
0

100

200

300

400

P @GPaD

T
@K
D

CubicHparaelectricL

TetragonalOrthorhombicRhombohedral

Figure 4.7: The BTO polarization and its phase diagram for different pressures. Here
a = 5 [nm] and E = 0.

that the thermal fluctuations also could be a key factor for having polarization suppression
at reduced sizes. As can be seen, as the size of the system increases the finite-size effects
disappear gradually and we approach the well-known macroscopic values for the transition
temperatures [63].
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Figure 4.8: The BTO polarization and its phase diagram for different cell sizes. Here
E = 0 and Π = 0.

4.3 Pyroelectric Effect : Barium Titanate
In this section, we show how a FE material can be used as a heat engine. The core idea is
the temperature-dependency of hysteresis loops in FEs as shown in Fig. 4.9. This way of
harvesting thermal energy out of FEs is known as pyroelectric effect [76–83]. Here we use
the provided formalism in previous sections to simulate hysteresis loops. To exploit pyro-
electric effect, we implement the Olsen cycle (Fig. 4.10), though other thermal-electrical
cycles also exist [81, 83]. Our interested range of temperature is room temperature.

The temperature-dependency of hysteresis loops (or in other word polarization) is the
key here because it provides us with an opportunity to have clockwise cycles (see Figs. 4.9
and 4.10). The area enclosed by the clockwise P-E loop determines the amount of har-
vested thermal energy which is in the form of electrical energy :

ε = −VFE

∮
E⃗ · dP⃗ = VFE

∮
P⃗ · dE⃗, (4.6)

where VFE is the total volume of the FE material. Experimentally, the pyroelectric effect
is observed as a flow of electric charges to and from the surface of FE materials and there-
fore to increase the efficiency of the pyroelectric engines the lost electrical energy must
be decreased as much as possible. In principle, there are two main sources for this loss,
hysteresis and Joule heating. Joule heating stems from finite resistance of ferroelectric
material, however it could be eliminated by squeezing cycling time much smaller than the
characteristic time of the system [81] τ ∼ εrε0ϱ ≃ 1 [s] where ε0 ∼ 10−11 [AsV−1m−1],
εr ∼ 104 and ϱ ∼ 107 [VmA−1] are the vacuum permittivity, relative permittivity and re-
sistivity of BTO around room temperature respectively. In our simulations the cycling time
is chosen much smaller than τ so that the relative loss due to charging and recharging can
be neglected [84]. The inevitable energy loss for thermodynamic engines, which is mani-
fested in the second law of thermodynamics, determines the maximum possible efficiency
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Figure 4.9: The area inside the anticlockwise cycles are equal to the amount of electrical
energy converted to heat and the area inside the clockwise cycle is equal to the
amount of converted heat to electrical energy. As can be seen, we can exploit
the temperature-dependency of hysteresis loops to create a clockwise cycle.
The green area shows the amount of produced electricity per cubic meter per
cycle when the pyroelectric engine switches between cold and hot baths.

achieved by a heat engine. This maximum efficiency is known as Carnot efficiency :

ηc = 100×
(
1− Tcold

Thot

)
. (4.7)

On the other hand, we have a pyroelectric engine efficiency which indicates the percent-
age of heat converted to the electricity due to pyroelectric effect and is evaluated as

ηp = 100× ε

Q
, (4.8)

where Q is the thermal energy (heat) pumped into the FE material :

Q = cρVFE (Thot − Tcold) , (4.9)

with the specific heat c ∼ 450 [Jkg−1K−1] and the mass density ρ ∼ 6000 [kgm−3] at
room temperature for BTO [85]. We take the temperature span (Thot − Tcold) sufficiently
large, so that the pumped transition heat leads to a constant temperature [77, 81, 83]. To
get a feeling about the experimentally achieved pyroelectric engine efficiency, we refer to
one of the earliest studies on Pb0.99Nb0.02(Zr0.68,Sn0.25,Ti0.07)0.98O3 for a temperature span
of 20 [K] performed by Olsen [80, 81] which an efficiency of ηp ∼ 0.2 % obtained while
the Carnot efficiency was ηc ∼ 5 %. Theoretically the efficiency of pyroelectric engines
at room temperatures is known to be less than 1 % [77] because the energy required to
increase the temperature of the lattice is nearly always much larger than the energy required
to destroy the polarization, thus releasing electric charges. [84]
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4.3 Pyroelectric Effect : Barium Titanate

4.3.1 Model

At room temperature which is our interest, the BTO is in tetragonal phase. In such a case
and under an external electric field for a set of coupled FE domains in x-y plane, the GLD
potential reads :

F = FG +
∑

n

(α1(Tn) + Π(Q11 + 2Q12))× P 2
n + α11(Π)P

4
n + α111(Π)P

6
n + α1111P

8
n − EPn,

FG =
∑

n

G44

2a2
(P(nx+1,ny) − P(nx,ny))

2 +
G44

2a2
(P(nx,ny+1) − P(nx,ny))

2,

(4.10)

where G44 = 2 × 10−11 [C−2m3J] [69]. Temperature is introduced into the system via
the potential coefficients (see Tab. 4.1) plus a Gaussian white noise added to the non-

5
6
7
8
9

10
6.5 8.5 9.5 11.5 12.5 14.5 15.5 17.5

E
@M

V
m
-

1 D

Time @nsD

A B C D A B C D

290

295

300

305

310

T
@K
D

94

95

96

97

98

99

10
0
´

P�
P

S

280

290

300

310

320

Fo
rm

ed
T
@K
D

4 5 6 7 8 9 10 11
244

246

248

250

252

254

256

258

P
@1

0-
3 C

m
-

2 D

D

AB

C
HaL

4 5 6 7 8 9 10 11

280

290

300

310

320

E @MVm-1D

Fo
rm

ed
T
@K
D

D

A

B

C

HbL

Figure 4.10: At the left the performance of an Olsen cycle is shown which includes :
A isothermal discharging at high temperature, B isoelectric field cooling, C
isothermal charging at low temperature, D isoelectric field heating. As can be
understood from the formed temperature, during heating and cooling (B and
D) the system has enough time to equilibrate with the heat baths. In the left
the produced Olsen cycle is shown. The area inside the cycle is the produced
electrical energy per cubic meter per cycle e/VFE =

∮
PdE. The system is

kept at the standard atmosphere pressure Π ∼ 100 [KPa].
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4 Temperature in Ferroelectrics

equilibrium effective field :

Eeff
n = − ∂F

∂Pn
− γv

dPn

dt
+ ηn(t),

⟨ηn(t)ηn′(t′)⟩ = 2kBTγv
a3

δ(n − n′)δ(t− t′).

(4.11)
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Figure 4.11: The produced electrical energy per cubic meter per cycle (ε/VFE) and the
corresponding efficiency (ηp) versus hydrostatic pressure (Π) is shown. The
inset shows that increasing hydrostatic pressure is not necessarily in favor of
Olsen cycle. The system is at room temperature (Tcold = 290 [K], Thot = 310
[K]), Elow = 5 [MVm−1], Ehigh = 50 [MVm−1] and the cycling time is 12
[ns].

Here we use an under-damped equation of motion to get the dynamics of polarization :

α0
d2Pn

dt2
= Eeff

n , (4.12)

which in fact is the extended Landau-Khalatnikov-Tani model with α0 as the plasma fre-
quency [65, 86–88] ω2

0 = (G11

a2
)α−1

0 ∼ 1024 [s−2]. Equivalently, we can add the kinetic
term 1

2
α0Ṗ

2
n to the free energy density and use the over-damped TDGL equation (Eq. 4.1).

It assists us to calculate the formed temperature in the system self-consistently via equipar-
tition theorem to be sure that the system is equilibrated with the heat baths [89] :

T Formed
n =

α0a
3

kB
⟨Ṗn

2⟩, (4.13)

where ⟨· · · ⟩ means the average over the different realization of noises. All other quantities
here are averaged over different realization of noises too.
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4.4 An Alternative : Deterministic Heat Baths

We consider a system including 10×10 coupled FE cells with a = 5 [nm]. The non-zero
component of polarization and external electric field are along the z axis and we switch the
system between the heat baths with temperatures around room temperature (Tcold = 290
[K] and Thigh = 310 [K]). In such a case Q/VFE = 54 [MJm−3] and ηc ∼ 6.45 %
during all the simulations. As can be seen in Fig. 4.10 the temperature-dependency of the
polarization can be used effectively to create a clockwise cycle. The produced electrical
energy for such engine is evaluated at different pressures and shown in Fig. 4.11. As can
be seen in the inset, the area enclosed by the Olsen cycles, and so the produced electrical
energy, can be manipulated by changing an external parameter such as hydrostatic pressure.

4.4 An Alternative : Deterministic Heat Baths

In the attempt of providing a description for thermal effects, besides the mentioned stochas-
tic heat baths, deterministic heat baths have also been proposed [90–93]. We close this
chapter by addressing this alternative way briefly. We model a FE chain connected to the
heat baths on both ends (n = 1, N ) as thermostats, with a simple potential as :

F = FG +
N∑

n=1

α1P
2
n + α11P

4
n , FG =

N∑
n=1

κ

2
(Pn+1 − Pn)

2, (4.14)
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Figure 4.12: The left figure shows the conductivity of a FE chain under Nose-Hoover ther-
mostats with α1 = −1.385× 107 [C−2mJ], α11 = 0.425× 108 [C−4m5J]. We
put k = 1.3 × 108 [C−2mJ], a = 1 [nm] and α0 = 1.3 × 10−16 [C−2mJs2]
as well. For the sake of simplicity, we assume that within the inspected tem-
perature range system is in tetragonal phase and the potential coefficients are
temperature independent. The right figures show the corresponding formed
temperatures and heat currents.
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and under the under-damped equation of motion (Eq. (4.12)) with :

Eeff
n = − ∂F

∂Pn

, n = 2, · · · , N − 1,

Eeff
n = − ∂F

∂Pn

− gnṖn, ġn =
κ

Tn

[
α0a

3

kB
Ṗ 2
n − Tn

]
, n = 1, N

(4.15)

where g1,N model the action of kind of thermostat known as the Nose-Hoover thermostat
[90–93]. It works as the following : whenever the formed temperatures inside the system at
the edges (α0a3

kB
Ṗn

2
) become larger than the temperature of the baths (T1,N ), g1,N increases

and acts as a dissipator and vice versa, which altogether stabilize the formed temperatures
on the edges around T1,N . We evaluated the heat currents ⟨jFE

n ⟩ = −a3⟨Ṗn
∂FG

∂Pn
⟩ and

formed temperatures T Formed
n = α0a3

kB
⟨Ṗn

2⟩ along the chain and calculated the conductivity∑
⟨jFE

n ⟩
(T1−TN )Na

[89, 90, 93]. Here by ⟨· · · ⟩ we mean the time average when the system is more
or less relaxed. The results are shown in Fig. 4.12. As expected, there is a peak in the
conductivity which is related to the energy band structure of the system.
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5 Multiferroics and Thermal Effects

So far we have studied the thermal effects in FMs and FEs separately. Now we want
to focus on a new type of materials that show the properties of both FMs and FEs, i.e.
Multiferroics (MFs). MFs are materials which simultaneously possess both spontaneous
magnetization and spontaneous polarization [94, 95]. The interplay between magnetization
and polarization in these materials allows a magnetic control of ferroelectric properties
and an electric control of magnetic properties. Therefore, such materials have offered
many possibilities for new devices. For example control of spin ordering in magnetic
insulators with an applied electric field can significantly reduce the power consumption
of memory devices. They can be used in integrated magnetic/electric devices, sensors,
microelectromechanical systems, high-density memories, spintronics, etc. [84, 88, 96, 97].

The interplay between magnetization and polarization in MFs is done by magnetoelec-
tric (ME) coupling which describes the influence of a magnetic field on the polarization,
and an electric field on the magnetization. ME coupling may arise directly between the
order parameters as in single-phase MFs [98, 99], or indirectly in composite MFs [96, 100–
102]. We will discuss the single-phase and composite MFs in more details in the following
sections, although finally we focus on composite ones due to their technological attractive-
ness.

5.1 Single-Phase Multiferroics : Bismuth Ferrite

In single-phase MFs the ferroelectricity and magnetism coexist with each other naturally.
Bismuth ferrite BiFeO3 (BFO) is a prototypical one. It is a commensurate FE and an
incommensurate G-type antiferromagnet (AFM) (see Fig. 5.1a) with a Neel temperature of
approximately 673 [K]. The spins are not collinear, but instead, take the form of a long-
wavelength (∼ 62 [nm]) spiral structure [103–105]. Being the only room-temperature MF
so far, BFO has attracted great interest and extensive investigation in recent decades [106].
Using our experiences with FMs in previous chapters, here we simulate the magnetic phase
of BFO and show how a stripe-pattern FE domain can be induced by the magnetic spiral
structure (in the absence of thermal noises).

Micromagnetic simulation of AFMs, however, is not a trivial task because micromag-
netic simulations are based on the continuity of magnetization and in AFMs the direction
of the spins usually changes from lattice point to lattice point, which would result in a
discretization length equal to the atomic lattice size. One way to tackle this problem is to
divide the system into two FM sublattices with opposite magnetization so that within each
sublattice the magnetic moments varies slowly in space and the micromagnetic simula-
tions can be implemented [6]. But there is another way too, which is atomistic spin model
simulations. We do the latter one. To do so, we choose a 2D system including 100×100
magnetic moments in a rectangular mesh (Fig. 5.1b) in which all the parameters involved
in the Hamiltonian are in the order of the corresponding atomic-size ones (Tab. 5.1).
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Figure 5.1: a) Schematic of a G-type AFM. b) Schematic of the simulated system for BFO.
A two-dimensional system including Nx × Nz atomic cells in a rectangular
mesh. The direction of anisotropy and DM interaction are shown.

Table 5.1: BFO parameters [103, 104]

Parameter Values
Magnetic moment µ 5.8 µB

Uniaxial anisotropy k 0.0068 [meV]
Nearest neighbors exchange interaction J 4.38 [meV]

Next-nearest neighbors exchange interaction J ′ 0.15 [meV]
DM interaction |D⃗| |D⃗| = 0.321‡ [meV]

Damping parameter α 1.0†

† We have chosen a rather big value for the damping parameter
to reduce the relaxation time of the system.

† We have chosen a rather big value for DM interaction
so that the spiral structure can be seen within our small model.

The Hamiltonian of BFO includes the following terms [103, 104] :

H =J
∑
n.n.

m̂(nx,nz) · m̂(n′
x,n

′
z) + J ′

∑
n.n.n.

m̂(nx,nz) · m̂(n′
x,n

′
z)

− D⃗ ·
∑
n.n.n.

m̂(nx,nz) × m̂(n′
x,n

′
z) − k

∑
nx,nz

(
my

(nx,nz)

)2
,

(5.1)

where m̂(nx,nz) is the unit vector in the direction of magnetic moment at the site (nx, nz)

and µ⃗(nx,nz) = µm̂(nx,nz). D⃗ is the chiral vector that characterizes the Dzyaloshinskii-
Moriya (DM) interaction that underlies the magnetic spiral structure. The dynamics of
magnetic moments are described by the atomistic LLG equations [6–8] :

∂

∂t
m̂n(t) = − γ

1 + α2
m̂n(t)×

[
H⃗eff

n (t) + αm̂n(t)× H⃗eff
n (t)

]
. (5.2)
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Figure 5.2: Top row : x,y and z components of the reduced magnetic moment vectors for
a system of 100 × 100 atomic cells for the given parameters in Tab. 5.1. The
purple color is, in fact, a visual effect that stems from mixing of red and blue
colors because of the AFM structure of the system. The magnetic chirality
and cycloid as a result of DM interaction (|D⃗| = 0.321 [meV]) can be seen
more clearly in the 3D picture of the configuration of the magnetic moments in
Fig. 5.3. Bottom row represents the structure of magnetically-induced electric
polarization according to the Eq. (5.4).

The results are shown in Fig. 5.2 (top row). To get a better picture of the formed spi-
ral structure, one row and one column of the system are shown in Fig. 5.3. We know that
magnetism implies a breaking of time-reversal symmetry. For conventional ferroelectricity
the spatial-inversion symmetry is broken. The non-centrosymmetric magnetic ordering in-
duces so a ferroelectric state [107–110]; the polarization is therefore expected to be coupled
to the magnetic ordering in such cases [111, 112]. The ME coupling between polarization
and magnetization is derived from this general symmetry argument [113, 114] and leads to
the following ME coupling term in the free energy

ΦME ∝ P⃗ · [µ⃗(∇⃗ · µ⃗)− (µ⃗ · ∇⃗)µ⃗+ · · · ], (5.3)

with its minimization with respect to P⃗ gives us the magnetically-induced electric polar-
ization [98, 113, 115] :

P⃗(nx,nz) ∝
[(
µ⃗(nx,nz) · ∂⃗

)
µ⃗(nx,nz) − µ⃗(nx,nz)

(
∂⃗ · µ⃗(nx,nz)

)]
. (5.4)
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Figure 5.3: A 3D picture of magnetic moments for a chosen column and row of our 2D
system in Fig. 5.2, top row. Different colors are given to the odd and even
cell numbers to see the AFM order more clearly. As expected the magnetic
moment vectors are perpendicular to the chiral vector (|D⃗| = 0.321[meV]) and
the periodicity is close to the theoretical one : 2π

(
J−4J ′

2|D⃗|

)
≈ 37 [103].

Applying Eq. (5.4) to the formed magnetic spiral structure, the structure of induced
polarization is obtained. As can be seen in the second row of Fig. 5.2, stripe-pattern FE
domains appear in the system. However we should emphasize here that what we observe is
the induced polarization and its contribution to the total polarization is more or less nothing
due to the weakness of ME coupling. BFO belongs to the class of proper MFs in which
the magnetism and ferroelectricity each arises from different sources [116, 117].

5.2 Composite Multiferroics

Single-phase MFs are rare and their ME coupling is either relatively weak or occurs at
temperatures too low for practical applications. So with recent advances in deposition
techniques, attentions have shifted beyond the single-phase MFs to manufacture compos-
ite MFs which possess much higher ME coupling even at room temperature [96]. In such
MFs a break of time-reversal and spatial-inversion symmetry occurs between the magneti-
zation and polarization across the interface of FM and FE materials [118–124]. Composite
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5.2 Composite Multiferroics

MFs are particularly appealing not only because they have the properties of their parent
compounds, but also because interactions between the magnetic and electric orders lead to
additional functionalities. Here we mention two of these functionalities : MF diode and
magnetically-controlled pyroelectric engine.

5.2.1 Multiferroic Diode

In electronics, the diodes are devices that allow a flow of current just in one direction.
Similar devices have been proposed and made in other systems too. E.g. in phononics
we can have diodes that allow a flow of phonons just in one direction [89] or in spintron-
ics/magnonics the flow of magnons [125]. Such an asymmetry in conduction is called
rectification. Here we show that a rectification can also occur in a composite MF (Fig. 5.4)
[88].

M51 M100P50P1 z

T1 T100

Figure 5.4: Schematic presentation of the MF diode including 50 FE cells and 50 FM cells.
The first FE cell (with polarization P1 at temperature T1) and the last FM cell
(with magnetizationM100 at temperature T100) play the role of thermostats. ME
coupling happens at the interface between P50 and M⃗51.

We use the following free energy density for our composite MF :

F = F FM + F FE + FME,

F FE =
50∑
n=1

α1P
2
n + α11P

4
n +

50∑
n=1

κ

2
(Pn+1 − Pn)

2,

F FM = − k

M2
S

100∑
n=51

(M z
n)

2 − 2A

a2M2
S

100∑
n=51

M⃗n · M⃗n+1,

FME = −λP50M
z
51

(5.5)

where fME corresponds to the ME coupling. The dynamics of order parameters are given
by the extended Landau-Khalatnikov-Tani and LLG equations as the previous chapters :

α0
d2Pn

dt2
= Eeff

n ,

∂M⃗n

∂t
= − γ

1 + α2
M⃗n × H⃗eff

n − γα

(1 + α2)MS

M⃗n × (M⃗n × H⃗eff
n ),

(5.6)
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where the effective fields include a noise term due to finite temperature. However, here we
just couple the edges of our MF (site n = 1 and n = 100) to the heat baths as thermostats
(Langevin thermostat) and investigate the flow of heat current inside the FE/FM composite.
The formula to calculate heat current in FE chain is the same as the one given in the pre-
vious chapter (Sec. 4.4). To calculate the heat current in FM chain, we use the Heisenberg
equation of motion (similar to Sec. 3.1.1 to derive the spin current) ∂hn,n+1

∂t
= i[Λ, hn,n+1],

where hn,n+1 is the local Hamiltonian (in reduced units) :

Λ =
∑
n

hn,n+1 =
∑
n

[
J(σx

nσ
x
n+1 + σy

nσ
y
n+1 + σz

nσ
z
n+1) +K(σz

n)
2
]
. (5.7)
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Figure 5.5: Heat current flowing inside the MF diode for different biased temperatures are
shown. The rectification effect as the main characteristics of diodes is obvious.
The FE parameters are the same as the Sec. 4.4 and the FM parameters belong
to the Iron which we put k ∼ 2 × 106 [Jm−3] to include shape anisotropy and
α = 1.0 for fast convergence of numerical integration. Moreover, inside the
system (n = 2, · · · , 99) we put internal resistivity (γv) and Gilbert damping
(α) to zero so that the FE and FM subsystems play the role of perfect carriers
and therefore we can conclude that rectification arises due to ME coupling at
the interface. Here λ ∼ 20 [sF−1].
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5.2 Composite Multiferroics

After straightforward calculations, using spin commutator relation and considering the
continuity equation we reach :

jFM
n =J2(σx

n−1σ
y
nσ

z
n+1 − σx

n−1σ
z
nσ

y
n+1 + σy

n−1σ
z
nσ

x
n+1 − σy

n−1σ
x
nσ

z
n+1 + σz

n−1σ
x
nσ

y
n+1

− σz
n−1σ

y
nσ

x
n+1)− 2KJ(σy

nσ
z
nσ

x
n+1 − σx

nσ
z
nσ

y
n+1).

(5.8)

Considering the fact that the precession of magnetization is the negative of spin (S⃗(r⃗, t) =
−M⃗(r⃗,t)

γ
), in real units the heat current in FM chain reads [88]

jFM
n =− 4A2γ

M4
Sa

(Mx
n−1M

y
nM

z
n+1 −Mx

n−1M
z
nM

y
n+1 +My

n−1M
z
nM

x
n+1 −My

n−1M
x
nM

z
n+1

+M z
n−1M

x
nM

y
n+1 −M z

n−1M
y
nM

x
n+1) +

4Akaγ

M4
S

(My
nM

z
nM

x
n+1 −Mx

nM
z
nM

y
n+1).

(5.9)

The results are shown in Fig. 5.5. The rectification effect is evident. Conceptually, the
rectifying effect is a nonlinear effect that stems from the temperature-dependency of the
power spectrums. If the biased temperatures are chosen so that the power spectrums of FE
and FM part overlap, a conduction is expected [89].

5.2.2 Magnetically-Controlled Pyroelectric Engine

Here we follow the same idea as the previous chapter to harvest thermal energy via BTO.
However, here we couple BTO electromagnetically to a Co layer so that we can control the
generated electrical energy magnetically. Our system of study is a 2D layer of BTO de-
posited by Co (Fig. 5.6) at room temperature. The contribution of ME coupling to the total
free energy density is assumed to be FME = −λM z

nPn which results in a ME-mediated
electric field asEME

n = −∂FME

∂Pn
= λM z

n along the z axis. The FE potential and its equation
of motion is the same as Sec. 4.3. We use the following free energy density for Co layer :

F FM =
∑

n

k

M2
S

(
M2

S − (M z
n )

2
)
− A

a2M2
S

M⃗n · M⃗n′ +
1

2
µ0(M

z
n )

2 −HM z
n , (5.10)

with k = 410 [kJm−3], A = 31 [pJm−1] and MS = 1.44 [MAm−1] [33]. H is the external
magnetic field along z, n′ represents the nearest neighbors and 1

2
µ0(M

z
n )

2 stands for the
shape anisotropy. The dynamics of the magnetization are described by LLG equation with
a Gilbert damping of α = 0.01 [126].

We perform an Olsen cycle as the previous chapter (Sec. 4.3) for a FE and a FM layer
with 10 × 10 cells and cell size of a = 5 [nm]. However, here an oscillatory magnetic
field is applied to the composite so that during the cold isothermal process (C) be in +z
direction and during the hot isothermal process (A) be in -z direction (Fig. 5.6). Due to
ME coupling, this oscillatory magnetic field stretches the Olsen cycle and enhances the
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Figure 5.6: Up-right figure is the schematics of the magneto-electrically coupled
Co/BaTiO3. Both the ferroelectric polarization P and the magnetization M
respond to an external magnetic field H. Left figures show the time struc-
ture of the applied electric field E, the bath temperature T , the polarization
P =

∑
n a

3Pn/VFE , and the magnetization M z =
∑

n a
3M z

n/VFM . The Olsen
cycle passes through four processes as the previous chapter. To demonstrate
the enhancement of the pyroelectric effect via the magnetic field, three mag-
netic field profiles are considered with |H|max = 0 (green color), |H|max = 1
[T] (orange color) and |H|max = 2 [T] (purple color). Down-right figures : a)
The corresponding Olsen cycle in E − P space. The small arrows show the
direction of the external magnetic field (H) which during A is directed along
-z, and for C it is directed along +z. b) The polarization versus ME-mediated
electric field (EME

n = λM z
n ) at site n = (5, 5) is shown. The area enclosed by

the loops determines the ME-mediated work per cubic meter done on the corre-
sponding FE cell. To evaluate the total work done on the whole FE subsystem,
the contribution of all other cells must be taken into account wME =

∑
n w

ME
n

(Eq. (5.11)). The calculations are performed at room temperature (Tcold = 290
[K], Thot = 310 [K]) for λ = 2.7 [sF−1] for a system of 10× 10 FM/FE cells.

56



5.2 Composite Multiferroics

àà

àà

àà

á

á

á

á

á

á

á
á
áá
á
áá
áá
áááá

ááááááááááááá
ááááááááááááááááááá

0 2 4 6 8 10

0.175

0.180

0.185

0.190

0.195

0.200

ÈHÈ @TD

¶
�V

FE
@M

Jm
-

3 �
cy

cl
eD

Λ=0.27 @sF-1D

èè

èè

èè

é

é

é

é

é
é
éé
ééé
éééé
éééééééééééééééééééééééééééééééééééé

0 2 4 6 8 10

0.32

0.33

0.34

0.35

0.36

0.37

ÈHÈ @TD

Η
p
%

10 15 20

-0.5

0.0

0.5

1.0

Time @nsD

M
z �

M
S

ÈHÈ=0

ÈHÈ=1 @TD

ÈHÈ=5 @TD
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corresponding efficiency (ηp) versus the amplitude of the oscillatory magnetic
field (|H|). The system is at room temperature (Tcold = 290 [K], Thot = 310
[K]) with Elow = 5 [MVm−1], Ehigh = 50 [MVm−1] and a cycling time of 12
[ns].

produced electrical energy, though it comes at the cost of doing some work on the FE
subsystem :

wME =
∑

n

wME
n = −

∑
n

a3
∮
λPndM

z
n . (5.11)

Having wME we can evaluate the pyroelectric efficiency :

ηp = 100× ε

Q+ wME
. (5.12)

The inspiration for applying this oscillatory magnetic field comes from the experiment
in Ref. [127] where a compressive stress is used to stretch the Olsen cycle to enhance the
pyroelectric effect. In fact, the strain-mediated ME coupling is a well-established mecha-
nism in two-phase MFs (the strain induced in one component, either by magnetostriction
in the FM or by the piezoelectric effect in the FE, is transferred to the other component and
altering the polarization or magnetization) [102, 128–132].

Following the given procedure to perform the adapted Olsen cycle, in Fig. 5.7 the ef-
fect of the amplitude of the oscillatory magnetic field on the produced electrical energy
and the corresponding efficiency is shown. Since magnetic field solely interacts with mag-
netization, it must be mediated by ME-mediated electric field EME

n = λM z
n to affect

the pyroelectric effect. It means that for the oscillatory magnetic fields with high ampli-
tudes in which the z-component of the magnetization is saturated (↑ |H| ⇒ M z

n →
MS ⇒ EME

n → λMS) (see the inset in Fig. 5.7) the effect of magnetic field to enhance
the produced electrical energy is also saturated. [84]
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Figure 5.8: The produced electrical energy per cubic meter per cycle (ε/VFE) and the
corresponding efficiency (ηp) versus ME coupling (λ) is shown. The system
is at room temperature (Tcold = 290 [K], Thot = 310 [K]) with Elow = 5
[MVm−1], Ehigh = 50 [MVm−1] and a cycling time of 12 [ns].

One of the advantages of two-phase MFs is the possibility to manipulate their ME coupling
[96, 98, 101, 128]. Although increasing the ME-coupling increases the effectiveness of
the magnetic field to enhance the pyroelectric effect, but it also stabilizes the polarization
so that releasing electric charges becomes more difficult. Therefore, it is expected that
there is an optimum value for ME coupling in which the produced electrical energy has its
maximum value as shown in Fig. 5.8.
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Figure 5.9: The produced electrical energy per cubic meter per cycle (ε/VFE) and the
corresponding efficiency (ηp) versus ME coupling for different values of |H| is
shown. The parameters are the same as the Fig. 5.8.
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Finally, performing the simulations for different amplitudes of the oscillatory magnetic
field (Fig. 5.9) we find that the ME coupling alone is not in favor of the pyroelectric effect
(|H| = 0) and an oscillatory magnetic field is needed to enhance the produced electrical
energy. It is because the ME coupling, alone, just makes the polarization more resistance
to releasing charges. More important, comparison of the produced electrical energy in the
presence and absence of ME coupling and in the presence and absence of the oscillatory
magnetic field indicate that MFs potentially are better candidates to harvest thermal energy,
than sole FEs. [84]
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6 Summary, Conclusions, and
Outlooks

6.1 Summary and Conclusions

Coming back to our motivation and goal in the General Introduction, in this thesis we in-
vestigated thermal effects in nanoscale ferromagnets , ferroelectrics, and their composition.

In chapter 2 we started from the building block of ferromagnets, i.e. magnetic moments,
and step by step showed how the thermal fluctuations can be introduced into the ferro-
magnetic systems. We introduced the temperature by adding a stochastic magnetic field to
the effective magnetic field (Eq. (2.10)). Using Kramers-Moyal expansion we derived the
Fokker-Planck equation (Eq. (2.16)) which was the same as the one that had been derived
earlier by other methods. The Fokker-Planck equation was used to uncover the quanti-
tative relation between the temperature and the strength of the stochastic magnetic field
(Eq. (2.17)). Having this relation, in the end of the chapter we investigated some thermal
effects for a single ferromagnetic domain numerically. We calculated the thermal average
of magnetization at equilibrium (Fig. 2.4) and the mean-first-passage time (Fig. 2.5). The
theoretical formula for these quantities and for our simple model had already existed and
confirmed the validity of our formalism and the reliability of our own developed code.

In chapter 3 we expanded our formalism to more complicated systems to study one of
the most cited magnetothermal phenomena in recent years, i.e. spin Seebeck effect. First,
we defined the spin current for a ferromagnetic insulator (Eq. (3.9)) and then calculated
the spin current for a chain under a temperate gradient (Fig. 3.3). Calculating the spin cur-
rent for different temperature gradients (Fig. 3.4) we reached the conclusion that it is the
temperature gradient that drives the spin current. Moreover, calculating the magnon accu-
mulation along the chain (Fig. 3.5), we uncovered the mechanism behind the longitudinal
spin current in a ferromagnetic insulator as the following. Due to the temperature gradient,
a nonuniform magnon accumulation is formed in the system so that in the hot part we have
more magnons that the cold part. Therefore, the magnons flow from the hot to the cold
part and form a spin current. Comparison of the magnon accumulation and the exchange
torque profile (Fig. 3.3) indicated that it is the exchange torque that creates magnons in
the hot part and absorbs them in the cold part. For sufficiently large systems, however, the
exchange torque was zero far from the boundaries and no magnon was created or absorbed
within this region and they just were moving from the hot to the cold part (Fig. 3.6).

Another important issue that we addressed was the frequency-characteristic of the gen-
erated spin current. We did time-resolved spin Seebeck effect in order to separate the
contribution of different magnons with different modes in the spin current (Fig. 3.12). Us-
ing a low-pass filter we observed the occurrence of some intrinsic cutoff frequencies which
corresponded to the magnons with low-wave vectors (Fig. 3.13). We concluded that the
subthermal magnons have the main contribution to the longitudinal spin Seebeck effect.

To detect spin Seebeck effect experimentally, the spin current should be converted to an
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electric current and it is done by a heavy normal metal, exploiting the inverse spin-Hall
effect. Therefore, to have a better understanding of spin Seebeck effect measurements, we
investigated the effect of the normal metal attached to the ferromagnet on the magnetiza-
tion dynamics and the spin current. We found that the enhanced damping at the interface
enhances the spin current and on the other hand the spin-transfer torque suppresses the spin
current (Fig. 3.8).

In principle, the spin current can also flow perpendicular to the temperature gradient.
This phenomenon is known as the transversal spin Seebeck effect. Calculating the magnon
and phonon temperatures along the chain, we found that it is the difference between these
temperatures that drives the transversal spin current (Figs. 3.9 and 3.10). When the magnon
temperature is higher than the phonon temperature (which is assumed to be equal to the
electron temperature in the adjacent normal metal) the angular momenta are passed from
the magnetization in the ferromagnet to the spin system in the normal metal and vice versa.

At the end of chapter 3 we showed how the spin Seebeck effect can be used to move
domain walls. We found that the speed of domain-wall motion increases as the temperature
gradient increases (Fig. 3.16). We implemented a periodic temperature gradient to inspect
the frequency-dependency of domain-wall motion. We found that increasing the frequency
is not in favor of speeding the domain-wall motion (Fig. 3.16).

In line with our goal to study the thermal effects in ferroics, in chapter 4 we turned
our attention to ferroelectrics. Again, using the same method as chapter 2, we derived
the Fokker-Planck equation and showed how the thermal fluctuations can be introduced
into the models for such materials (Eq. (4.2)). We calculated thermally activated switching
time for a single ferroelectric domain and compared it with the theory to assure our for-
malism and our code works properly. As a result of this comparison, we also evaluated the
frequency of optical phonons versus electric field and inverse internal resistivity (Fig. 4.3).

Since our specific ferroelectric materials of interest in this thesis have a Curie temper-
ature much lower than the ones for ferromagnets and so consideration of the phase tran-
sitions is relevant, besides the thermal noise we also addressed the conventional way of
introducing temperature in ferroelectrics via potential coefficients (Figs. 4.5, 4.6 and 4.7).
We found that introducing temperate as a thermal noise along with temperature-dependent
potential coefficients is the most appropriate way to describe the thermal behavior of fer-
roelectrics at nanoscales. We observed a phase instability at reduced sizes (Fig. 4.8) which
has been reported frequently in the literature. Later, we simulated one of the most well-
known effects used for thermal energy harvesting, that is the pyroelectric effect. We per-
formed an Olsen cycle to exploit the temperature-dependency of hysteresis loops to pro-
duce electrical energy out of the heat baths (Fig. 4.10).

Finally, we collected all our experiences with ferromagnets and ferroelectrics to ad-
dress multiferroics. Our main interest was two-phase multiferroics, though we also briefly
showed how the Dzyaloshinskii-Moriya interaction can induce polarization in the single-
phase multiferroics (Fig. 5.2). We simulated a multiferroic diode and showed the oc-
currence of rectification in a two-phase multiferroic (Fig. 5.5). Moreover, we exploited
magnetoelectric coupling to enhance the pyroelectric effect via an external magnetic field
(Fig. 5.6). Adapting the Olsen cycle by applying an oscillatory magnetic field to a two-
phase multiferroic we got much higher efficiency for the pyroelectric engine in comparison
with pyroelectric engines made of sole ferroelectrics (Fig. 5.9).
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6.2 Outlooks

6.2.1 Pyromagnetic Engine
As we showed already, in a pyroelectric engine the temperature-dependency of hysteresis
loops in ferroelectrics (polarization versus electric field) is used to harvest thermal energy
as an electric current (via destruction of polarization). In analogy with this engine, we
propose a pyromagnetic engine in which the temperature-dependency of hysteresis loops
in ferromagnets (magnetization versus magnetic field) is used to harvest thermal energy as
a magnon current (via destruction of magnetization) (Fig. 6.1). This new type of engine
can be integrated into the spintronic devices as a spin current source. The performance of
such engine is straightforward, as done for pyroelectric engine, however we need to extend
our code to include transversal relaxation to have a pronounced effect. This is down by
including Landau-Lifshitz-Bloch equation [2, 3, 16, 17].

Hz

Mz

Hot

Cold

Figure 6.1: Schematic of the proposed pyromagnetic engine. The pyromagnetic engine
exploits the temperature-dependency of ferromagnet hysteresis loops to create
a clockwise loop.

To detect the generated spin current, we couple the pyromagnetic engine to a ferromag-
netic chain with a uniform temperature and evaluate the spin current within this chain.
Since the spin current within such FM chain in the absence of pyromagnetic engine must
be zero (Fig. 3.4), the detection of spin current should be attributed to the coupled pyro-
magnetic engine.

6.2.2 Spin Seebeck Diode and Ratchet Spin Current via
Dzyaloshinskii-Moriya Interaction

The second proposal is based on the nonreciprocity of spin waves due to Dzyaloshinskii-
Moriya interaction (Fig. 6.2). We suspect that a rectification might appear when such
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6.2 Outlooks

systems are biased to the heat baths, leading us to a new type of spin Seebeck diode.
Moreover, this nonreciprocity might rise the chance of observing a spin current even when
the system is not thermally biased but is at a finite temperature, leading us to a ratchet spin
current [133].

D=0

D=1.5´10-4 @Jm-2D

D=3.3´10-4 @Jm-2D

D=6.3´10-4 @Jm-2D

-1.0 -0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

k @Π�aD

Ω
@Π

T
H

zD

Figure 6.2: Spin-wave dispersion for different values of Dzyaloshinskii-Moriya interac-
tion for a chain withN = 100 and a = 10 [nm] is shown. H0 = 0.1 [T] and the
other parameters belong to the Yttrium Iron Garnet (although in reality there is
no such an interaction in this material, however, here just for the sake of show-
ing the effect of Dzyaloshinskii-Moriya interaction, it is added). To achieve
this, the term 2

aM2
S
D⃗ ·

∑N
n=1 M⃗n × M⃗n+1 is added to the free energy density

given in Eq. (3.22). Nonreciprocity due to Dzyaloshinskii-Moriya interaction
is evident. Chiral vector (D⃗) is perpendicular to the chain and the simulations
exactly match with ωq = γ

(
H0 +

4A
a2MS

(1− cos(qa))− 4D
aMS

sin(qa)
)

[134–

136].
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