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Introduction

The motion of two immiscible fluids like oil and water can be modeled as a moving boundary
problem for the two-phase Navier-Stokes equations. In a sharp-interface model, the interface
between both fluid phases is considered as a geometric hypersurface. Physicists expect that
interfacial properties such as surface tension play a prominent role when the interfacial area
is large compared to the fluid volume. In this regard, Boussinesq [Bou13] proposed to con-
sider certain surface viscosities that are related to intrinsic frictional forces within the interface.
Several decades later, Scriven [Scr60] generalized Boussinesq’s approach and obtained a model
for arbitrary coordinate systems. This model is nowadays called the two-phase Navier-Stokes
equations with Boussinesq-Scriven surface fluid and is denoted by (N) in this thesis. From a
mathematician’s point of view, it is fundamental to investigate whether this problem is well-
posed; that is, whether it admits a uniquely determined solution that depends continuously on
the initial state. Such a theory also has practical advantages. In particular, it can clarify admis-
sible ranges of relevant parameters and indicate general limitations of the model that might
be difficult to explore with experiments or numerical simulations alone. In this spirit, Bothe
and Prüss [BP10] formally analyzed a related linear model problem and proved that its well-
posedness depends on a condition for the interfacial velocity. The purpose of the present thesis
is to extend their work and to investigate whether the original nonlinear problem is well-posed.

Let us formulate the model (N). We assume that the adjacent fluid phases occupy time-
dependent disjoint open subsets Ω+(t) and Ω−(t) in Rn (n ≥ 2), which are separated by the
sharp interface Γ(t) = ∂Ω+(t)∩∂Ω−(t). Both bulk phases Ω±(t) and the interface Γ(t) fill a rigid
container Ω = Ω+(t)∪Γ(t)∪Ω−(t), which is a stationary domain. We employ the mass densities
ρ±, the velocity fields u±, and the stress tensor T± = S± − π±I with viscous stress tensor S±
and pressure π±. With the characteristic function χ± of Ω±, we put ρ = ρ+χ+ + ρ−χ− and
analogously for the other quantities. The principles of conservation of mass and momentum in
Ω± yield the continuity equation and the Navier-Stokes equation

∂tρ+ div(ρu) = 0, ∂t(ρu) + div(ρu⊗ u− T ) = ρf.

We restrict our considerations to incompressible Newtonian flows for which ρ± are positive
constants and the viscous stress tensor S± = 2µ±D± depends linearly on the rate-of-strain
tensor D± = (∇u± + [∇u±]>)/2 with constant positive shear viscosities µ±. By putting also
f± = 0, we neglect external forces like gravity.

Additional conditions must be imposed on the fluid-solid boundary ∂Ω and the interface Γ.
For simplicity, the latter should not touch the boundary ∂Ω and hence one of the bulk phases,
say Ω−, should have its boundary ∂Ω− = Γ in Ω. Furthermore, we let the flow satisfy the no-
slip conditions u+ = 0 on ∂Ω and [[u]] = 0 on Γ, where [[u]] := u+|Γ − u−|Γ denotes the jump
of u across Γ. We exclude phase transitions and assume that the interface is material in the
sense that the normal velocity VΓ of Γ is given by VΓ = u±|Γ · νΓ, where νΓ denotes the unit
normal directed into Ω+. Thus, Γ is advected with the flow of the bulk phases. Conservation
of momentum also yields the interfacial momentum balance

−[[T ]]νΓ = divΓ TΓ,
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6 INTRODUCTION

where TΓ is the surface stress tensor and divΓ TΓ denotes its surface divergence. When surface
viscosities are negligible, we can put TΓ = σPΓ with the surface tension coefficient σ and the
tangential projection PΓ = I − νΓ ⊗ νΓ. With the (n − 1)-fold mean curvature HΓ = −divΓ νΓ,
this yields the well-known Laplace-Young law−[[T ]]νΓ = σHΓνΓ if σ is constant, and otherwise
−[[T ]]νΓ = σHΓνΓ +∇Γσ with Marangoni force∇Γσ, where∇Γ denotes the surface gradient. In
order to incorporate surface viscosities, we assume that TΓ is given by the Boussinesq-Scriven
constitutive law [cf. SSO07]

TΓ = σPΓ + (λs − µs) divΓ uPΓ + 2µsDΓ,

where λs and µs are the surface viscosities and DΓ is the interfacial rate-of-strain tensor

DΓ = 2−1PΓ(∇Γu+ [∇Γu]>)PΓ.

We can decompose TΓ into

TΓ = {σ + (λs + (3− n)µs/(n− 1)) divΓ u}PΓ + 2µs[DΓ − (trDΓ/(n− 1))PΓ],

where the first summand is an isotropic tensor field and the second one has vanishing trace.
Thus, we call µs the surface shear viscosity and

κs = λs + (3− n)µs/(n− 1)

the surface dilational viscosity. The latter equals λs in the case n = 3.
Bothe and Prüss [BP10] already noticed that the tangential part of the interfacial force

divΓ TΓ is of second order in v but only of first order in w. Accordingly, when we reformulate
problem (N), we should handle the tangential and normal components separately; a compli-
cation that is not present in the situation without surface viscosities that was investigated by
Köhne, Prüss, and Wilke [KPW13], where simply divΓ TΓ = σHΓνΓ with (n − 1)-fold mean
curvature HΓ. In our situation, we decompose the velocity field u near Γ into u = v+wνΓ with
tangential component v := PΓu and normal component w := νΓ · u and decompose the vector
field divΓ TΓ accordingly. Then it can be shown that divΓ TΓ has the following structure.

divΓ TΓ = µs∆̃Γv + λs∇Γ divΓ v + µsHΓ[∇Γv]νΓ − µsL2
Γv

− 2µsLΓ∇Γw + (µs − λs)∇Γw HΓ − (µs + λs)w∇ΓHΓ

+ [(λs − µs)HΓ divΓ v + 2µstr(LΓDΓ(v))]νΓ

+ [σHΓ − (λs − µs)H2
Γw − 2µstr(L

2
Γ)w]νΓ.

Here we employ a Laplace-Beltrami operator ∆̃Γ that acts on tangential vector fields, the scalar
Laplace-Beltrami operator ∆Γ = divΓ∇Γ, and the Weingarten tensor LΓ.

We summarize these considerations in the aforementioned free boundary problem

∂t(ρu) + div(ρu⊗ u− T ) = 0 in Ω \ Γ(t),

div u = 0 in Ω \ Γ(t),

[[u]] = 0 on Γ(t),

−[[T ]]νΓ − divΓ TΓ = 0 on Γ(t),

VΓ − u · νΓ = 0 on Γ(t),

u|∂Ω = 0 on ∂Ω,

Γ(0) = Γ0,

u|t=0 = u0 in Ω \ Γ0.

(N)

This model is considered as an initial value problem for a given initial velocity u0 : Ω → Rn
and a given initial interface Γ0 ⊂ Ω and we ask for short-time existence and uniqueness of the
unknown solution (u, π,Γ) and its continuous dependence with respect to (u0,Γ0). More infor-
mation related to this model is given in the monographs of Aris [Ari89]; Edwards, Brenner, and
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Wasan [EBW91]; and Slattery, Sagis, and Oh [SSO07]. A more recent survey on related models
is given by Sagis [Sag11]. These authors mainly deal with theoretical properties in special situa-
tions and with experimental results. Furthermore, Barrett, Garcke, and Nürnberg [BGN14] an-
alyzed a semi-discretized version of (N), where surface tension and surface viscosities depend
on the concentration of a surfactant, whose distribution is governed by a convection-diffusion
equation on the interface. For the simplified situation of a spherical droplet Ω− in a Stokes-
Poiseuille flow, Reusken and Zhang [RZ13] carried out numerical experiments and studied the
migration velocity of that droplet.

On the other hand, the theoretical understanding of problem (N) in general bounded con-
figurations is still limited. Bothe and Prüss [BP10] have shown that the energy functional

1

2

∫
Ω
ρ|u(t, x)|2 dx+ σ|Γ(t)|

is always a strict Ljapunov functional for sufficiently smooth solutions and that its critical
points for constant phase volumes |Ω±| are precisely the stationary states of (N). However,
the well-posedness of problem (N) has not been proved by rigorous mathematical analysis.
Even worse, they found an additional condition that determines the well-posedness of a linear
model problem in the whole space Ω = Rn with flat reference interface Σ = Rn−1 × {0}. In
terms of some reference velocity u∗ related to u0, this condition is given by

dBP
0 := σ + (λs − µs) divΣ(PΣu∗) + 2µs min

ζ∈Rn, |ζ|=1
ζ · [∇Σ(PΣu∗)]ζ > 0.

In case dBP
0 < 0, the interface symbol is not invertible. Hence it is not clear whether problem

(N) is well-posed for arbitrary velocities u0, not even for short times.
This thesis attempts to fill this gap. We will reformulate problem (N) as an equivalent

transformed problem (T) where the unkown interface Γ(t) is replaced by a stationary interface
Σ and a height fucntion h(t, ·) : Σ→ R. As our main result, we prove that problem (T) is locally
well-posed for initial velocities subject to the following well-posedness condition:

inf
Σ

(
σ + (λs − µs) divΣ u0 + 2µs min

ζ∈Rn, |ζ|=1
ζ · [∇Σu0]ζ

)
> 0.(WPC)

Thus, compared to the linear model problem of Bothe and Prüss, not only the tangential velo-
city PΣu0|Σ, but the full velocity is important for the well-posedness of the nonlinear problem.
We further show that the corresponding condition is not only sufficient, but also necessary for
the invertibility of the interface symbol of a corresponding linear model problem.

We mainly follow the strategy of Köhne, Prüss, and Wilke [KPW13] and employ a time-
dependent diffeomorphism Θ(t, ·) of the underlying domain Ω, which maps a fixed hypersur-
face Σ ⊂ Ω onto Γ(t) = Θ({t} ×Σ). One such diffeomorphism is the well-known Hanzawa map
ΘHan
h [Han81, (2.1)], which was first used by Hanzawa for transforming the one-phase Stefan

problem. It is an extension to Ω of the parametrization

θh(t, x) = x+ h(t, x)νΣ(x) ∈ Γ(t) for t ∈ J, x ∈ Σ.

The Hanzawa map was also applied by Escher, Prüss, and Simonett [EPS02] for transforming
a two-phase Stefan problem and by Köhne, Prüss, and Wilke [KPW13] for transforming the
two-phase Navier-Stokes equations with surface tension. For the latter, the authors considered
the transformed functions

u(t, x) = u(t,Θh(t, x)), π(t, x) = π(t,Θh(t, x)),

and reformulated their original problem for (u, π,Γ) as a transformed problem for (u, π, h).
However, this velocity transformation does not seem appropriate for transforming our

problem (N) with additional surface viscosities, since, on the one hand, both v = PΓu and
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w = νΓ · u would depend on both v = PΣu and w = νΣ · u, but on the other hand, the in-
terface momentum balance requires different orders of differentiability for v and w. We there-
fore employ both a different diffeomorphism and a different velocity transformation for en-
suring that these velocity components are transformed separately. We consider a class of maps
Θ: J×Ω→ Ω that we call the normal-preserving admissible maps. For such a map, the normal
derivative ∂νΣΘ(t, x) is a multiple of the original normal vector field νΓ(t,Θ(t, x)), whereas the
Hanzawa map satisfies ∂νΣΘHan

h = νΣ. Moreover, the Jacobian ∂xΘ(t, x) maps the normal space
RνΣ(x) onto the normal space RνΓ(t,Θ(t, x)) and the tangent space TxΣ onto TΘ(t,x)Γ(t). We
will construct such a map Θh in terms of a height function h by using a similar method as Abels
and Terasawa [AT09], who transformed a Stokes problem with variable viscosity in a bent half-
space. Our map Θh has several advantages when we consider the velocity transformation

u(t,Θh(t, x)) = [∂xΘh(t, x)]u(t, x).

First, we have

v(t,Θh(t, x)) = [∂xΘh(t, x)]v(t, x), w(t,Θh(t, x)) = νΓ(t,Θh(t, x)) · νΣ(x)w(t, x),

and thus the velocity components are transformed separately. Second, the advected moving
interface condition VΓ = νΓ · u is transformed to the simple identity

∂th = w.

Thus, compared to Prüss and Simonett [PS11], we can avoid perturbations in this equation.
In this way, problem (N) can be reformulated as a transformed problem

ρ∂tu− µ∆u+∇π = Fu(u, π, h) in J × Ω \ Σ,

div u = Fd(u, h) in J × Ω \ Σ,

[[u]] = 0 on J × Σ,

Lu(u, π, h;u∗) = Gu(u, π, h;u∗, π∗, h∗) on J × Σ,

∂th− u · νΣ = 0 on J × Σ,

u|∂Ω = 0 on J × ∂Ω,

h|t=0 = h0 on J × Σ,

u|t=0 = u0 in Ω \ Σ.

(T)

Here the left-hand sides are linear with respect to (u, π, h), the functions u∗, π∗, and h∗ are
chosen according to the initial data, and Fu, Fd, and Gu are nonlinear perturbations that have
to be controlled in a suitable way. In the following, we omit the bars over u, u∗, π, and π∗. For
solving problem (T), we also employ its principal linearization

ρ∂tu− µ∆u+∇π = fu in J × Ω \ Σ,

div u = fd in J × Ω \ Σ,

[[u]] = 0 on J × Σ,

Lu(u, π, h;u∗) = gu on J × Σ,

∂th− u · νΣ = 0 on J × Σ,

u|∂Ω = 0 on J × ∂Ω,

h|t=0 = 0 on Σ,

u|t=0 = 0 in Ω \ Σ.

(PL)
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In order to define the operator Lu, we decompose u∗ = v∗ + w∗νΣ and gu = gv + gwνΣ as well
as Lu(u, π, h;u∗) = Lv(u, h;u∗) + Lw(u, π, h;u∗)νΣ. Then we have

Lv(u, h;u∗) = −µs∆̃Σv − λs∇Σ divΣ v − [[µ∇Σw]]− [[µ∂νv]] + (λs + µs)w∗∇Σ∆Σh,

Lw(u, π, h;u∗) = − tr ([(λs − µs)HΣ + 2µsLΣ]∇Σv)− 2[[µ∂νw]] + [[π]]

− tr
(
[σ + (λs − µs)(divΣ v∗ − 2HΣw∗) + 2µsDΣ(v∗)− 4µsw∗LΣ]∇2

Σh
)
.

A crucial task is to verify that problem (PL) has optimal regularity, which means that the
solution-to-data map (u, π, h) 7→ (fu, fd, gu) is a topological linear isomorphism between suit-
able function spaces. Hence the regularity conditions on the data must be both necessary and
sufficient for the existence and regularity of the solution. In this case, the well-posedness of the
nonlinear problem (T) can be proved simply by Banach’s fixed-point theorem. We are interested
in spaces for which the velocity u(t, x) and pressure π(t, x) satisfy the regularity conditions

u ∈ H1
p (J ;Lp(Ω)n) ∩ Lp(J ;H2

p (Ω \ Σ)n), π ∈ Lp(J ; Ḣ1
p (Ω \ Σ)),

where the Lebesgue exponent p ∈ (1,∞) will be chosen sufficiently large for controlling the
nonlinear perturbations in problem (T). In order to construct such spaces, we solve a linear
model problem for (PL) in the whole space Ω = Rn+1 with a flat interface Σ = Rn × {0} under
the restriction (fu, fd, u0, h0) = 0. The generic element of Rn+1 is denoted by (x, y) with x ∈ Rn
and y ∈ R. Let ϑw ∈ R, ϑL ∈ Rn×n, and ϑDv ∈ Rn×n denote the values of w∗, LΣ, and DΣ(v∗) at
some fixed position and define the parameters

c1 := (λs + µs)ϑw, c2 := (λs − µs) trϑL,

C3 := µsϑL, C4 := 2µs(ϑDv − 2ϑwϑL),

c5,6 ∈ {0, 1}, cσ := σ + (λs − µs) tr(ϑDv − 2ϑwϑL).

Then the aforementioned model problem is given by

ρ(τ + ∂t)u− µ∆u+∇π = 0 in R+ × Ṙn+1,

div u = 0 in R+ × Ṙn+1,

[[u]] = 0 on R+ × Rn,
−µs∆xv − λs∇x divx v − c5[[µ∇xw]]− c6[[µ∂yv]] + c1∇x∆xh = gv on R+ × Rn,
− tr((c2 + 2C3)∇xv)− 2[[µ∂yw]] + [[π]]− tr((cσ + C4)∇2

xh) = gw on R+ × Rn,
(τ + ∂t)h− w = gh on R+ × Rn,

h|t=0 = 0 on Rn,
u|t=0 = 0 in Rn+1.

(MP)

Here, τ > 0 will be a sufficiently large number and we allow for gh 6= 0. The term c5[[µ∇xw]] is
of lower order in our functional analytic setting and therefore negligible, in contrast to the situ-
ation without surface viscosities. Moreover, we will choose c6 = 1 for proving well-posedness,
but also allow for c6 ∈ {0, 1} in the symbolic calculations.

A basic version of problem (MP) without surface viscosities was solved in an Lp-setting by
Prüss and Simonett [PS10] for the parameters (c1, c2, C3, C4) = 0, c5,6 = 1, and cσ = σ. They
also included gravity acting in the negative xn+1-direction and studied the modified equation
∂th − w + b · ∇h = gh in [PS11]. Here the additional term b · ∇h with b ∈ Rn arises when the
free-interface problem is transformed by means of the Hanzawa diffeomorphism Θh and the
velocity transformation u(t,Θh(t, x)) = u(t, x) and when the transformed problem is linearized
at a non-trivial reference velocity. In this thesis we can neglect the term b · ∇h.

A linear problem including surface viscosities λs, µs > 0 was derived and analyzed by
Bothe and Prüss [BP10]. Roughly speaking, their model corresponds to (MP) with c1 = 0,
c2 = 0, C3 = 0, cσ = σ + (λs − µs)ϑdv, C4 = 2µsϑDv, c5,6 = 1. In particular, all terms arising for
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non-trivial ϑw are not present and their gv-equation is only of second order in h. As mentioned
above, we require the well-posedness condition

d0(ϑDu) := σ + (λs − µs) trϑDu + 2µs min
ξ∈Rn\{0}

ξ · [ϑDu]ξ|ξ|−2 > 0.

This condition is also necessary for the invertibility of the associated interface symbol.
Denk and Kaip [DK13, Section 4.7] solved a variant of (MP) for vanishing c1, c2, C3, C4

which combines the models of [BP10] and [PS11] for surface viscosities and gravity. They de-
rived function spaces for the interface quantities for which the corresponding interface operator
is an isomorphism and their results cover both cases λs, µs = 0 and λs, µs > 0. Fortunately,
we can adapt their method to the present situation, but we shall employ somewhat different
function spaces, due to the additional leading order term c1∇x∆xh. We will compute the inter-
face symbol and prove that it is invertible for all cases c5,6 ∈ {0, 1}. Moreover, we will see that
the order structure of the system and hence also the spaces for optimal regularity depend on
c6 but not on c5. Suitable function spaces for solving problem (MP) are only constructed in the
case c6 = 1 since these spaces allow for better time regularity than the case c6 = 0. Unfortu-
nately, the gv-equation is not invariant under the parabolic scaling v(t, x) = vζ(ζt,

√
ζx) and in

this situation the author does not know how to perform perturbation theory on J = (0,∞) for
arbitrary initial states. Therefore we deal with short time intervals J = (0, T ) and use a small
end time T instead of a large number τ as a perturbation parameter.

To transfer optimal regularity of the model problem to the principal linearization (PL), we
adapt the localization procedures of Köhne, Prüss, and Wilke [KPW13]; Abels and Terasawa
[AT09]; Denk, Hieber, and Prüss [DHP03]; Amann, Hieber, and Simonett [AHS94]; and La-
dyzhenskaya, Solonnikov, and Ural’tseva [LSU68]. With also provide a theory on an elliptic
transmission problem 

div(µ∇ψ) = div u in Ω \ Σ,

∂νψ = ν · u on ∂Ω,

[[µ∂νψ]] = [[µν · u]] on Σ,

[[ψ]] = 0 on Σ,

(TP)

and its weak version∫
Ω
µ∇ψ · ∇ϕdx =

∫
Ω
u · ∇ϕdx for ϕ ∈ C∞c (Rn), [[ψ]] = 0 on Σ.

This theory suffices to determine the bulk pressure π and to handle the inhomogeneity fd in
the divergence equation. For these problems we prove the optimal a priori estimates

‖∇ψ‖Hk
p (Ω\Σ) ≤ C‖u‖Hk

p (Ω\Σ) for k ∈ {0, 1, 2},

by means of a localization procedure based on the methods of Simader and Sohr [SS92] and
Köhne, Prüss, and Wilke [KPW13].

In this way we can conclude that (PL) induces a topological isomorphism and that the linear
solution operator corresponding to (PL) is uniformly bounded with respect to the length of the
time interval T → 0+ and certain reference velocities u∗ which satisfy (WPC). By means of
Banach’s fixed point theorem we show that problem (T) is well-posed for small T , for small h0

and for possibly large u0 that satisfies (WPC).
This thesis is organized as follows. In Chapter 1, we derive problem (N) in a mathematically

rigorous way and study some properties of this model. Chapter 2 provides an optimal regular-
ity theory for the transmission problem (TP), which is employed later on. Optimal regularity
for the principal linearization (PL) is proved in Chapter 3. Finally, we establish well-posedness
for the transformed problem (T) in Chapter 4. For keeping this thesis self-contained, we pro-
vide relevant results on differential geometry and functional analysis in Appendices A and B.



CHAPTER 1

Modeling of moving interface flows

In this chapter we derive the model (N) in a rigorous way from basic principles and consti-
tutive assumptions. To this end, we also study the concepts of moving domains and moving
hypersurfaces and recall important divergence theorems and transport theorems.

Basic notation. Throughout this thesis, the symbols N = {1, 2, 3, . . .}, Z, R, and C denote
the sets of the positive integers, the integers, the real numbers, and the complex numbers, and
we let K denote either R or C. We also put N0 := N ∪ {0}, R+ := [0,∞), R− := (−∞, 0], and
C+ := {z ∈ C : Re z ≥ 0}. The imaginary unit is denoted by i. For a real number x we let
bxc := [x] := max{k ∈ Z : k ≤ x}, dxe := min{k ∈ Z : k ≥ x}, and {x} := x− bxc.

The n-dimensional Euclidean space Rn (n ∈ N) is equipped with the scalar product v ·
w = (v|w) = v1w1 + v2w2 + · · · + vnwn and the norm |v| =

√
v · v for v = (v1, v2, . . . , vn)

and w = (w1, w2, . . . , wn). The vector space Cn is equipped with the scalar product (v|w) =
v1w̄1 + v2w̄2 + · · ·+ vnw̄n, where the bar denotes complex conjugation. We let 〈v, w〉 = v · w =
v1w1 + v2w2 + · · · + vnwn denote the bilinear product of two vectors v, w ∈ Cn. The canonical
basis of Kn as a K-vector space consists of the unit vectors ej = ej = (δij)i, where δij , δ

j
i , and

δij denote the Kronecker delta.
Matrices are denoted by A = [aij ]ij ∈ Kn×m for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. The

transposed matrix of A is given by A> = [aji]ij . The symmetric part of a quadratic matrix
A ∈ Kn×n is symA := 2−1(A + A>) and the Kronecker product of two vectors v ∈ Kn and
w ∈ Km is defined by v⊗w := [viwj ]ij . The symbol |A| denotes the induced matrix norm of the
Euclidean vector norm; that is, |A| = max{|Av| : v ∈ Kn with |v| = 1}. The trace of A ∈ Kn×n

is trA = a11 + · · ·+ ann. Using Einstein’s summation convention, we write trA = ej ·Aej . For
two matrices A, B ∈ Rn×n we put A : B := tr(A>B) = aijbij .

For two sets U and V , we write U ⊂ V , if U is a subset of V . We also write U ∪̇V for the
union U ∪ V of disjoint sets U and V . The power set of U , which consists of all subsets of U , is
denoted by 2U . We write U ⊂⊂ V if U and V are subsets of some metric space such that U is
bounded and its closure U is contained in V .

The notation f : X ⊃ U → V ⊂ Y or f : U ⊂ X → V ⊂ Y indicates that f is a mapping
from the subset U of the set X into the subset V of the set Y . The set gr f = {(x, f(x)) : x ∈ U}
is the graph of f . For a set-valued map F : U → 2Y we put grF := ∪x∈U ({x}×F (x)) ⊂ U × Y .
If U and V are subspaces of topological spacesX and Y , then the vector spaceC(U ;V ) contains
all maps f : U → V that are continuous with respect to the topologies induced by X and Y . We
will abbreviate C(U ;K) =: C(U).

The partial derivatives of a C1-map f defined in U ⊂ Rn are denoted by ∂if = ∂f/∂xi and
the (Fréchet) derivative ∂f of f at x∗ ∈ U is the linear map v 7→ [∂f(x∗)]v = (d/dh)f(x∗ +
hv)|h=0. The nabla operator ∇ = (∂1, ∂2, . . . , ∂n)> is defined by ∇f = (∂1f, . . . , ∂nf)> for a
scalar field f and ∇v = ej ⊗ ∂jv = [∂ivj ]ij for a vector field v. The divergence is defined by
div v = ∂ivi for a vector field v and divS = (∂jSij)i for a symmetric matrix field S. Thus,
div(Sv) = divS · v + S : ∇v.

Let Σ be a C1-hypersurface in Rn with local parametrization U ⊂ Rn−1 → Σ, u 7→ x = φ(u).
We employ the tangent vectors τj(x) = ∂jφ(u), which span the tangent space TxΣ, and the
cotangent vectors τk(x), which are uniquely determined by the relations τj(x) · τk(x) = δkj . The

11
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partial derivatives of a C1-map f : Σ→ X are denoted by ∂if(x) := ∂i(f ◦ φ)(u). We define the
surface gradient ∇Σf = τ j∂jf for a scalar field f and ∇Σu = τ j ⊗ ∂ju for a (not necessarily
tangential) vector field u. Moreover, we define the surface divergence divΣ u = ∂ju · τ j and
divΣ S = (∂jS)τ j for a symmetric matrix field S. Thus, divΣ(Su) = divΣ S · u + S : ∇Σu.
Moreover, νΣ : Σ→ Rn is a unit normal field of Σ and, if Σ is of class C2, LΣ = −∇ΣνΣ denotes
the Weingarten tensor and HΣ = −divΣ νΣ = trLΣ denotes the ((n− 1)-fold) mean curvature.

For a metric space (X, dX), the symbols BX
R (x) or BXR (x) denote the open ball {y ∈ X :

dX(x, y) < R} of radius R and center x ∈ X . If (X, ‖·‖X) is a normed vector space, we abbrevi-
ate BX

R := BX
R (0) := {x ∈ X : ‖x‖X < R}. We will write BR(x) instead of BX

R (x) if X is known
from the context. For a subset M of X we define BR(M) = {y ∈ X : dist(x,M) < R}, where
dist(x,M) := inf{dist(x, y) : y ∈ M}. Two normed vector spaces X and Y are equal if they
coincide as sets and have equivalent norms. We write Y ↪→ X , if Y is continuously embedded
into X and we write Y ↪→d X , if the embedding is also dense. The complexification of a real
vector space X = XR is denoted by XC = {x1 + ix2 : x1, x2 ∈ X}.

The vector space of all linear operators A : X → Y between vector spaces X and Y is
denoted by L(X;Y ) and we abbreviate L(X) := L(X;X). We let N(A) = {x ∈ X : Ax = 0}
and R(A) = {Ax : x ∈ X} denote the null space an range of a linear operator A : X → Y .
The complexification of an R-linear operator A : X → Y is given by AC : XC → YC, (x1 + ix2) 7→
Ax1+iAx2. The space of bounded linear operatorsA : X → Y between normed vector spacesX
and Y is denoted by B(X;Y ), and it is equipped with the operator norm ‖A‖B(X;Y ) = ‖A‖X→Y .
The space of bounded k-linear maps A : Xk → Y for k ∈ N is denoted by Bk(Xk;Y ), and its
norm is denoted by

‖A‖Bk(Xk;Y ) = sup{‖A(x1, . . . , xk)‖Y : x1, . . . , xk ∈ X with ‖x1‖ = · · · = ‖xk‖ = 1}.

The space of bounded linear isomorphisms from X to Y is denoted by Bisom(X;Y ) and that
of linear isomorphisms by Lisom(X;Y ). We let IX : x 7→ x denote the identity on X and
〈x∗, x〉X∗×X = 〈x∗, x〉 = x∗(x) denote the duality pairing for x∗ ∈ X∗ and x ∈ X .

We employ the theory of moving hypersurfaces and Riemannian manifolds as given by
do Carmo [Car92], Kimura [Kim08], and Prüss and Simonett [PS13]. More background infor-
mation on differential geometry and the theory of function spaces is given in Appendices A
and B.1.

1.1. Moving hypersurfaces and integral theorems

In order to define moving domains and hypersurfaces, we consider the initial-value problem

ẋ(t) = u(t, x(t)) for t ∈ J, x(t0) = x0,(1.1)

where J is an open interval and u : G → Rn (n ∈ N) is a given vector field on an open subset
G of J × Rn. It is custom to understand the map t 7→ x(t) as the trajectory of a moving particle
that starts at position x0 at time t0 and moves with velocity u(t, x(t)). We say that x0 is the
convected coordinate of the moving particle [cf. Old50; Scr60].

A local solution of (1.1) is a C1-map x : J(t0, x0) → Rn on some interval J(t0, x0) ⊂ R that
contains t0, such that (t, x(t)) belongs to G for all t ∈ J(t0, x0) and such that (1.1) is satisfied on
J(t0, x0). If (t, x) 7→ u(t, x) is continuous on G and locally Lipschitz with respect to x, then the
Picard-Lindelöf theorem implies that for every (t0, x0) ∈ G, there exists a unique local solution
on some interval (t0 − δ, t0 + δ). Moreover, the solution has a unique extension to a maximal
interval of existence, which is again denoted by J(t0, x0). This interval is open and for any
finite t∗ ∈ ∂J(t0, x0), the function (t, x(t)) tends to ∂G or it blows up as t→ t∗, in the sense that
dist((t, x(t)), ∂G)→ 0 or |x(t)| → ∞.
1.1. Proposition. Let J ⊂ R be an open interval, let G ⊂ J × Rn be open, let u ∈ C(G)n be locally
Lipschitz with respect to x, and let t 7→ x(t0,x0)(t) denote the unique solution to (1.1) for (t0, x0) ∈ G.
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Then the map

Φ: (t, t0, x0) 7→ x(t0,x0)(t), {(t, t0, x0) ∈ J ×G : t ∈ J(t0, x0)} → Rn

has the following properties.
(i) (t,Φ(t, s, x)) belongs to G for all t ∈ J(s, x) and (s, x) ∈ G.

(ii) Φ(t, t, x) = x for all (t, x) ∈ G.
(iii) Φ(t, s,Φ(s, r, x)) = Φ(t, r, x) for all (r, x) ∈ G and t, s ∈ J(r, x).
(iv) Φ(·, s, x) is continuously differentiable in J(s, x) for all (s, x) ∈ G.
(v) Φ(t, ·, ·) is locally Lipschitz in {(s, x) ∈ G : t ∈ J(s, x)} for all t ∈ J .

Proof. Since Φ(·, t, x) is a solution, it satisfies (i) and (ii). Next, the functions Φ(·, s,Φ(s, r, x))
and Φ(·, r, x) are solutions to (1.1) and coincide at t = s, since Φ(s, r, x) = Φ(s, s,Φ(s, r, x)).
By uniqueness, we have Φ(·, s,Φ(s, r, x)) = Φ(·, r, x) on J(r, x). The C1-regularity of Φ(·, s, x)
follows from ∂tΦ(t, s, x) = u(t,Φ(t, s, x)), and the local Lipschitz condition is a consequence of
Gronwall’s Lemma [see PW10, Satz 4.1.2]. �

1.2. Remark. We can guarantee that every solution exists for all t ∈ J , when we also assume
that G = J ×Rn and that u is linearly bounded with respect to x; that is, there are a, b ∈ C(J ;R+)
such that |u(t, x)| ≤ a(t) + b(t)|x| for all t ∈ J , x ∈ Rn [see PW10, Korollar 2.5.1].

The map Φ induces a local flow in G in the following sense.
1.3. Definition. Let G be a topological space and U be an open subset of R × G that contains
{0} ×G. A continuous map Φ̃ : U ⊂ R×G→ G is called a local flow in G, if

(i) Φ̃(0, z) = z for all z ∈ G.
(ii) Φ̃(t+ s, z) = Φ̃(t, Φ̃(s, z)) for all (s, z) ∈ U and t ∈ R with (t, Φ̃(s, z)) ∈ U .

If U = R×G, in addition, then we call Φ̃ a (global) flow in G.
1.4. Corollary. In the situation of Proposition 1.1, the mapping

Φ̃ : (s, (t0, x0)) 7→ (t0 + s,Φ(t0 + s, t0, x0)),

{(s, t0, x0) ∈ R× gr Ω : t0 + s ∈ J(t0, x0)} → gr Ω
(1.2)

is a local flow in gr Ω. We also call Φ the flow in gr Ω induced by the velocity field u.
1.5. Definition. Let J ⊂ R be an open interval, n ∈ N, and Ω: J 3 t 7→ Ω(t) be a set-valued map
such that each Ω(t) is a domain in Rn. We call Ω a moving domain, if there is a flow Φ: J×gr Ω→
gr Ω induced by some velocity field u : gr Ω→ Rn such that

Ω(t) = Φ(t, t0,Ω(t0)) := {Φ(t, t0, x) : x ∈ Ω(t0)} for all t, t0 ∈ J.

This definition allows to describe fluid volumes, since Ω(t) can be obtained by following the
trajectories Φ(·, t0, x0) of the particles with initial position x0 ∈ Ω(t0). We note that there may
be different velocity fields that describe the same moving domain; for instance Ω(t) := (−t, t)
moves according to the velocity field u(t, x) = x/t, but also according to u(t, x) = x3/t3 for
|x| ≤ t. However, the normal component u(t, x) · ν∂Ω(t)(x) at ∂Ω(t) does not depend on the
choice of such a velocity field; a property that holds true for general moving hypersurfaces,
which are defined as follows [cf. Kim08, Definition 5.1].
1.6. Definition. Let J ⊂ R be an open interval, n ≥ 2, and k, l ∈ N0.

(i) A set-valued map Γ: J 3 t 7→ Γ(t) is called a moving hypersurface (of class C1), if each Γ(t)
is an oriented C1-hypersurface in Rn and its graph gr Γ is a C1-hypersurface in R1+n.

(ii) A moving hypersurface Γ is of class Ck [C(k,l)], if all its local height functions h : J ′ ×
U ⊂ J × ν⊥0 → gr Γ in the sense of Definition A.1 on page 129 are of class Ck(J ′ × U)

[C(k,l)(J ′ × U)].
(iii) A moving hypersurface Γ is compact, if each Γ(t) is compact.
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(iv) A moving hypersurface Γ is induced by a moving domain Ω: J ∈ t 7→ Ω(t) with flow
Φ: J × gr Ω→ gr Ω, if gr Γ ⊂ gr Ω and Γ(t) = Φ(t, t0,Γ(t0)) for all t, t0 ∈ J .

Proposition A.5 implies that for every movingCk+1-hypersurface Γ, the (n+1)-dimensional
normal νgr Γ of gr Γ belongs to the class Ck(gr Γ)1+n and the n-dimensional normal νΓ(t) of Γ(t)

belongs to Ck(Γ(t))n. Later on, we will show that every compact moving C2-hypersurface is
induced by some flow.
1.7. Proposition ([cf. Kim08, Definition 5.4]). Suppose that Γ is a moving C1-hypersurface in Rn.
Then there exists a unique function VΓ : gr Γ→ R, called the normal velocity of Γ, which satisfies the
identity

VΓ(t, x) = γ′(t) · νΓ(t)(x) for all t ∈ J, x ∈ Γ(t),(1.3)

for every C1-path (t− δ, t+ δ) 3 s 7→ γ(s) ∈ Γ(s) with γ(t) = x.
Moreover, the unit normal νgr Γ = (νgr Γ,t, νgr Γ,x) ∈ R1+n of gr Γ is given by

νgr Γ = (1 + V 2
Γ )−1/2(−VΓ, νΓ) with VΓ = −νgr Γ,t(1− ν2

gr Γ,t)
−1/2.(1.4)

In particular, if Γ is induced by a flow with velocity u, then

VΓ(t, x) = u(t, x) · νΓ(t)(x) for all t ∈ J, x ∈ Γ(t).

Proof. Since gr Γ has dimension n and each Γ(t) has dimension n − 1, we conclude that every
tangent space T(t,x) gr Γ must have the form T(t,x) gr Γ = {νgr Γ(t, x)}⊥ = R× νgr Γ,x(t, x)⊥ with
νgr Γ,x(t, x) 6= 0, and hence |νgr Γ,t(t, x)| < 1. Moreover, for every (t, x) ∈ gr Γ and τ ∈ TxΓ(t), the
vector (0, τ) belongs to T(t,x) gr Γ, and hence νgr Γ,x(t, x) must be parallel to νΓ(t)(x). Therefore
the identity |νgr Γ|2 = ν2

gr Γ,t + |νgr Γ,x|2 = 1 yields νgr Γ,x = |νgr Γ,x|νΓ(t) = (1− ν2
gr Γ,t)

1/2 νΓ(t).
Uniqueness of VΓ. Let VΓ satisfy (1.3) and consider a C1-path s 7→ (s, γ(s)) in gr Γ with

γ(t) = x. Then its derivative (1, γ′(t)) belongs to T(t,x) gr Γ and we have

0 = (1, γ′(t)) · νgr Γ(t, x) = νgr Γ,t(t, x) + (1− νgr Γ,t(t, x)2)1/2 γ′(t) · νΓ(t)(x).(1.5)

Since |νgr Γ,t| is smaller than 1, we obtain VΓ = γ′(t) ·νΓ(t)(x) = −νgr Γ,t(1−ν2
gr Γ,t)

−1/2. Therefore
VΓ(t, x) is uniquely determined.

Existence of VΓ. The function VΓ = −νgr Γ,t(1 − ν2
gr Γ,t)

−1/2 is well-defined and thus (1.5)
implies (1.3). Finally, the identity (1.4) follows from those of νgr Γ,x and VΓ in terms of νgr Γ,t. �

1.8. Proposition. Every compact moving C2-hypersurface is induced by some flow.

Proof. Let Γ: J 3 t 7→ Γ(t) be a moving C2-hypersurface in Rn with normal velocity VΓ. From
νgr Γ ∈ C1(gr Γ) and (1.4) we infer that u := VΓνΓ is of class C1(gr Γ)n. By compactness of
Γ(t) and Proposition A.12, the vector field u(t, ·) is L(t)-Lipschitz on Γ(t); that is, we have
|u(t, x) − u(t, y)| ≤ L(t)|x − y| for all x, y ∈ Γ(t), t ∈ J . Then the McShane-Whitney extension
[cf. Hei05, p. 5]

ũj(t, x) := inf
y∈Γ(t)

(uj(t, y) + L(t)|x− y|) for j ∈ {1, . . . , n}, x ∈ Rn, t ∈ J

of u = (uj)j is
√
nL(t)-Lipschitz on Rn and linearly bounded. According to Proposition 1.1

and Remark 1.2, there is a flow Φ: J × J ×Rn → J ×Rn with velocity ũ, which induces Γ. �

We will frequently employ the following version of the divergence theorem.
1.9. Theorem (Divergence theorem). Let Ω ⊂ Rn (n ∈ N) be a bounded open set with C1-boundary
∂Ω or a bent half-space {(x′, xn) ∈ Rn : xn > ω(x′)} with ω ∈ C1

c (Rn−1). Then∫
Ω

div u dx =

∫
∂Ω
u · ν∂Ω d(∂Ω) for all u ∈ H1

1 (Ω;Rn).(1.6)
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Here
∫
∂Ω . . . d(∂Ω) denotes integration with respect to the (n − 1)-dimensional Hausdorff

measure on ∂Ω, andHk
p = W k

p denotes the Sobolev space of order k ∈ N0 and power p ∈ [1,∞).

Proof of Theorem 1.9. The assertion for the case ∂Ω ∈ C2 and u ∈ C1
c (Rn;Rn) is well-known. In

the general case, it follows from an approximation argument. �

Next, we state the surface divergence theorem for tangential vector fields of class. The So-
bolev space Hk

p (Γ;TΓ) of tangential vector fields is defined by means of trivializing coordinate
systems for the tangent bundle TΓ (see page 163).
1.10. Theorem (Surface divergence theorem [cf. BPS05, Theorem A]). Let Γ ⊂ Rn be a compact
C2-hypersurface with boundary ∂Γ of class C2, whose normal within TΓ is denoted by n∂Γ. Then∫

Γ
divΓ v dΓ =

∫
∂Γ
v · n∂Γ d(∂Γ) for all v ∈ H1

1 (Γ;TΓ).

Proof. By [BPS05, Theorem A], the surface divergence theorem applies to tangential vector
fields v of class C1, and hence also to v ∈ H1

1 (Γ;TΓ) by approximation. �

The next theorem allows to differentiate integrals
∫

Ω(t) ψ(t, x) dx with respect to time. As-

sume that the velocity of a moving domain Ω belongs to the Banach space BUC(0,1)(gr Ω)n of
all bounded, uniformly continuous vector fields u : gr Ω→ Rn whose first-order spatial deriva-
tives are bounded and uniformly continuous on gr Ω. Then the induced flow Φ: J×gr Ω→ gr Ω
is continuously differentiable [cf. PW10, Satz 4.3.1], its Jacobian ∂xΦ with respect to the spatial
variables is invertible, and we have det ∂xΦ > 0 on J × gr Ω. Hence Φ(t, t0, ·) : Ω(t0) → Ω(t)
is a C1-diffeomorphism; that is, a bijective C1-map whose Jacobian is invertible everywhere in
Ω(t0). For a C1-function ψ on gr Ω, the material derivativeDψ/Dtwith respect to the flow Φ with
velocity u is defined by

Dψ(t, x)

Dt
:=

d

ds
ψ(t+ s,Φ(t+ s, t, x))

∣∣∣∣
s=0

= ∂tψ(t, x) + [∂xψ(t, x)]u(t, x).(1.7)

1.11. Theorem (Reynolds transport theorem). Let Ω: J 3 t 7→ Ω(t) be a moving domain in Rn
with velocity u ∈ BUC(0,1)(gr Ω)n. Then, given a function ψ ∈ H1

1 (gr Ω), we have

d

dt

∫
Ω
ψ dx =

∫
Ω

(
Dψ

Dt
+ ψ div u

)
dx a. e. in J.(1.8)

Proof. Let Φ denote the flow induced by u. For fixed t and x, the matrices Y (s) := ∂xΦ(t+s, t, x)
and A(s) := ∂xu(t+ s,Φ(t+ s, t, x)) satisfy Y ′(s) = A(s)Y (s) by the chain rule. A well-known
identity [see e. g. PW10, Lemma 3.1.2] yields detY ′(s) = trA(s) detY (s). Thus,

(d/ds) det ∂xΦ(t+ s, t, x) = div u(t+ s,Φ(t+ s, t, x)) det ∂xΦ(t+ s, t, x).

Having in mind that ∂xΦ(t, t, x) = 1 and that Φ(t + s, t, ·) : Ω(t) → Ω(t + s) is bijective, we
conclude that Φ(t+s, t, ·) is a diffeomorphism. Therefore the change of variables formula gives∫

Ω(t+s)
ψ(t+ s, y) dy =

∫
Ω(t)

ψ(t+ s,Φ(t+ s, t, x)) det ∂xΦ(t+ s, t, x) dx.(1.9)

By differentiating (1.9) with respect to s at s = 0, we obtain (1.8). �

In Theorem 1.11, the Sobolev space H1
1 (gr Ω) has the usual meaning, since gr Ω is an open

subset of R1+n; a fact that does not hold true for gr Γ and can not be used for defining anisotro-
pic spaces. Therefore, we employ the diffeomorphism

Φ̃t0 : J × Ω(t0)→ gr Ω, Φ̃t0(t, x) = (t,Φ(t, t0, x))



16 1. MODELING OF MOVING INTERFACE FLOWS

and the pull-back (Φ̃∗t0ψ)(t, x) := (ψ ◦ Φ̃t0)(t, x) = ψ(t,Φ(t, t0, x)), and we assume that J is
bounded. Having in mind that ∂xΦ is bounded and det ∂xΦ is strictly positive on gr Ω, we con-
clude that Φ̃∗t0 : H1

1 (gr Ω)→ H1
1 (J × Ω(t0)) is a topological linear isomorphism. This motivates

the definitions

Hk
p (gr Ω) := Φ̃∗t0H

k
p (J × Ω(t0)), H(k,l)

p (gr Ω) := Φ̃∗t0H
(k,l)
p (J × Ω(t0)),

Hk
p (gr Γ) := Φ̃∗t0H

k
p (J × Γ(t0)), H(k,l)

p (gr Γ) := Φ̃∗t0H
(k,l)
p (J × Γ(t0)),

where H(k,l)
p (J × X) = Hk

p (J ;Lp(X)) ∩ Lp(J ;H l
p(X)) for k, l ∈ N0, p ∈ [1,∞). Their vector-

valued versions are defined as on page 163.
The following theorem allows to differentiate integrals over moving hypersurfaces.

1.12. Theorem (Surface transport theorem [cf. BPS05, Theorem B]). Let Γ: J 3 t 7→ Γ(t) be a
compact moving C2-hypersurface with velocity u ∈ BUC(0,1)(gr Γ)n and let ψ ∈ H1

1 (gr Γ). Then

d

dt

∫
Γ
ψ dΓ =

∫
Γ

(
Dψ

Dt
+ ψ divΓ u

)
dΓ a. e. in J.

Proof. The special case u ∈ BUC1(gr Γ)n and ψ ∈ C1(gr Γ) is treated in [BPS05, Theorem B]
and therefore our assertion follows from a straightforward approximation argument. �

1.2. Derivation of the model

In this section we derive problem (N) from integral balance equations and constitutive assump-
tions. More information on the mathematical modeling of fluid dynamics can be found for in-
stance in [Ari89; And+07; BP10; BPS05; Den94; DS95; Old50; Scr60; SS82; SSO07; Tan93; Tan95].

We consider a bounded domain Ω ⊂ Rn that contains a compact moving C2-hypersurface
Γ(t) on a bounded open interval J ⊂ R. Then we can decompose Ω = Ω+(t) ∪̇Γ(t) ∪̇Ω−(t)
with moving domains Ω±(t) (see Corollary A.19 on page 138). In particular, each Γ(t) is a
compact subset of Ω and therefore the interface does not touch the boundary. We may assume
that ∂Ω−(t) = Γ(t), and hence ∂Ω ⊂ ∂Ω+. Let u± ∈ BUC(gr Ω±)n be corresponding velocity
fields and define

u(t, ·) : Ω \ Γ(t)→ Rn, u(t, x) := u±(t, x) for x ∈ Ω±(t), t ∈ J.

For the sake of brevity, we omit the argument t if no confusion seems likely; that is, we write
Ω\Γ and Γ instead of Ω\Γ(t) and Γ(t) when we consider some fixed t, and we understand that

u|Γ(t, x) = u(t, ·)|Γ(t)(x) = u|gr Γ(t, x) for x ∈ Γ(t), t ∈ J.

Let ν± denote the outward normal on ∂Ω± and let νΓ = ν− = −ν+ denote the normal at Γ.
With the Sobolev space Hk

p = W k
p of order k ∈ N0 and exponent p ∈ [1,∞), we write

u ∈ Hk
p (Ω \ Γ;Rn) if and only if u+ ∈ Hk

p (Ω+;Rn) and u− ∈ Hk
p (Ω−;Rn).

Other function spaces on Ω \ Γ are defined analogously. The jump of u ∈ H1
p (Ω \ Γ;Rn) on Γ,

[[u]] := u+|Γ − u−|Γ,

is well-defined in the sense of traces. Then the following divergence theorem applies.
1.13. Theorem (Divergence theorem with interface). Let Ω ⊂ Rn be an open set with C1-boundary
such that the divergence theorem (1.6) is valid and let Γ ⊂ Ω be a C1-hypersurface. Then∫

Ω\Γ
div u dx =

∫
∂Ω
ν∂Ω · u d(∂Ω)−

∫
Ω∩Γ

νΓ · [[u]] dΓ for all u ∈ H1
1 (Ω \ Γ;Rn).

Proof. This follows by separating the integral over Ω \Γ into integrals over Ω+ and Ω−, and by
applying the divergence theorem to the separate integrals. �
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1.2.1. Balance equations. Our next goal is to derive differential balance equations for a
scalar quantity ψ : J ×Ω→ R that satisfies certain integral balance equations. In order to apply
the previous integral theorems, we assume that ψ is of class H1

1 (J × Ω) and that

u± ∈ BUC(0,1)(gr Ω±)n;

that is, the vector fields u+ and u− and their first-order spatial derivatives are bounded and
uniformly continuous. We further assume that u is continuous across Γ and that Γ is advected
with the flow induced by u; that is,

[[u]] = 0 on Γ, VΓ = u|Γ · νΓ.

We also assume that ν∂Ω · u|∂Ω = 0, so that Ω is a trivial moving domain with velocity u.
We consider the density ψ(t, x) of an extensive scalar quantity like the mass density ρ or

the kinetic energy density ρ|u|2. Let V be a control volume in Ω; that is, a moving domain
V : J 3 t 7→ V (t) ⊂ Ω with the same velocity u. Suppose that ψ ∈ H1

1 (J×Ω) satisfies an integral
balance equation

d

dt

∫
V
ψ dx =

∫
V
g dx+

∫
V ∩Γ

gΓ→Ω dΓ−
∫
∂V
j · ν∂V d(∂V ) a. e. in J(1.10)

for every control volume V with appropriate quantities g, gΓ→Ω, and j. Here
(i)
∫
V g dx are the sources of ψ in V with volume density g,

(ii)
∫

Γ∩V gΓ→Ω dσΓ are the sources of ψ on Γ ∩ V with surface density gΓ→Ω, and
(iii)

∫
∂V j · ν∂V d(∂V ) is the molecular flow of ψ through ∂V with flux j.

It is sufficient to impose the regularity assumptions

ψ ∈ H1
1 (J × Ω), j ∈ H(0,1)

1 (J × Ω;Rn), g ∈ L1(J × Ω), gΓ→Ω ∈ L1(gr Γ).(1.11)

We wish to derive a differential balance from (1.10). First, Theorem 1.13 yields
d

dt

∫
V
ψ dx =

∫
V

(g − div j) dx+

∫
V ∩Γ

(gΓ→Ω − [[j]] · νΓ) dΓ.

With the transport theorem (1.8) we obtain the identity∫
V

(
∂ψ

∂t
+ div(ψu+ j)− g

)
dx+

∫
V ∩Γ

([[j]] · νΓ − gΓ→Ω) dΓ = 0.(1.12)

For fixed t, equation (1.12) is valid for every bounded smooth subset V (t) of Ω \ Γ(t). From the
Lebesgue’s integration theory we infer that the first integrand must vanish almost everywhere
in Ω \ Γ(t). Therefore the following differential balance equation is valid a. e. in J × Ω.

∂tψ + div(ψu+ j) = g in Ω \ Γ.

Hence the surface integral in (1.12) vanishes for every time t and every control volume V in Ω.
It is not difficult to show that every domain in Γ(t) with C2-boundary can be represented as
V (t) ∩ Γ with some control volume V . Therefore the following jump condition is satisfied.

[[j]] · νΓ = gΓ→Ω on Γ.

Next, assume that there are a scalar surface density ψΓ(t, x) for x ∈ Γ(t) and quantities gΓ

and jΓ such that the following surface integral balance equation is valid for every control volume.
d

dt

∫
V ∩Γ

ψΓ dΓ =

∫
V ∩Γ

(gΓ − gΓ→Ω) dΓ−
∫
C=∂V ∩Γ

jΓ · nC dC.(1.13)

Here gΓ is the interface source density, the integral
∫
C=∂V ∩Γ jΓ · nC dC is the molecular flow

through the (n − 2)-dimensional surface C = Γ ∩ ∂V with outward normal nC(t, x) ∈ TxΓ(t)
and the interface flux jΓ is tangential vector field on Γ. Sufficient regularity conditions are

ψΓ ∈ H1
1 (gr Γ), jΓ ∈ H(0,1)

1 (gr Γ;TΓ), gΓ ∈ L1(gr Γ),(1.14)
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We combine (1.10) and (1.13) to

d

dt

(∫
V
ψ dx+

∫
V ∩Γ

ψΓ dΓ

)
=

∫
V
g dx+

∫
V ∩Γ

gΓ dΓ

−
∫
∂V
j · ν∂V d(∂V )−

∫
∂V ∩Γ

jΓ · nC dC.
(1.15)

Again, we wish to derive the differential balance equation that corresponds to (1.13). First,
the surface divergence theorem yields

d

dt

∫
V ∩Γ

ψΓ dΓ =

∫
V ∩Γ

(−divΓ jΓ + gΓ − gΓ→Ω) dΓ,

and the surface transport theorem (Theorem 1.12) implies∫
V ∩Γ

(
DψΓ

Dt
+ ψΓ divΓ u+ divΓ jΓ − gΓ + gΓ→Ω

)
dΓ = 0.

Since V is arbitary, we obtain the surface differential balance equation

DψΓ/Dt+ ψΓ divΓ u+ divΓ jΓ = gΓ − gΓ→Ω on Γ.

Consequently, we have shown that if the quantities ψ, ψΓ, j, jΓ, g, and gΓ satisfy the integral
balance equations (1.10) and (1.13) and the regularity conditions (1.11) and (1.14), then these
quantities also satisfy the differential balance equations

∂tψ + div(ψu+ j) = g in Ω \ Γ,(1.16a)

[[j]] · νΓ = gΓ→Ω on Γ,(1.16b)

DψΓ/Dt+ ψΓ divΓ u+ divΓ jΓ = gΓ − gΓ→Ω on Γ.(1.16c)

1.2.2. Balance of mass. In order to derive the balance equations for the mass from the
differential balances (1.16), we let ψ = ρ and ψΓ = ρΓ and obtain the continuity equation

∂tρ+ div(ρu+ j) = g in Ω \ Γ.

In this thesis we study the incompressible case ρ = constant and j(ρ) = 0. We also neglect
interface mass and therefore let ρΓ = 0 and jΓ(ρ) = 0. Assuming that Ω represents a closed
system, we further neglect sources of mass; that is, g(ρ) = 0 and gΓ(ρ) = 0. Hence

div u = 0 in Ω \ Γ.

1.2.3. Balance of momentum. The momentum density ψ = ρu is not scalar and thus we
can not apply (1.16) directly. Instead, we consider the scalar densities ψ(e) := ψ · e = ρe · u for
suitable vector fields e. This well-known approach was modified by Scriven [Scr60] for deriving
the Boussinesq-Scriven law. For every constant vector e we have div(ψ(e)u) = ∂i((ρejuj)ui) =
ej∂i(ρuiuj) = e·div(ρu⊗u). We neglect external forces such as gravity and therefore let g(e) = 0.
It will suffice to assume that

u± ∈ BUC(0,1)(gr Ω±)n ∩H(1,0)
1 (J × Ω±)n ∩H(0,2)

1 (gr Ω±)n.(1.17)

Then ψ(e) belongs to H1
1 (J × Ω) and (1.16a) implies

e · ∂t(ρu) + e · div(ρu⊗ u) = div j(e) in Ω \ Γ,

for every constant vector e. We shall prescribe a flux of the form j(e) = jπ(e) + jS(e) = e · T
that consists of a pressure part jπ(e) and a viscous part jS(e). The quantity T is the stress tensor.

Consider a control volume V in Ω with V (t) ⊂ Ω \ Γ(t). Then either V (t) ⊂ Ω+(t) or
V (t) ⊂ Ω−(t). One force acting on V is the pressure force fπ = −

∫
∂V πν∂V d(∂V ) with pressure

π± ∈ H(0,1)
1 (gr Ω±).(1.18)
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Here πν∂V d(∂V ) can be understood as the pressure force which acts on a surface element per-
pendicular to ν∂V . For every constant vector e, the divergence theorem yields

e · fπ = −
∫
∂V
πe · ν∂V d(∂V ) = −

∫
V

div(πe) dx.

In view of the second identity, we let jπ(e) := −πe. The tensor Jπ := −πI yields the desired
linear relations jπ(e) = e · Jπ and div jπ(e) = e · div Jπ with respect to e.

Due to friction on ∂V , there is another force acting on V , the stress fS = −
∫
∂V Sν∂V d(∂V )

with the viscous stress tensor S. We assume that both Ω± consist of Newtonian fluids, which
means that the viscous stress tensor depends linearly on the rate-of-strain tensor

D := D(u) := sym[∇u] = 2−1(∇u+ [∇u]>).

Therefore we define the viscous stress tensor

S := S(u) := 2µD(u) = µ(∇u+ [∇u]>),

where the number µ± is the shear viscosity of the fluid Ω±. If e is constant, then

e · fS =

∫
∂V
e · Sν∂V d(∂V ) =

∫
V

div(Se) dx.

Thus we let jS(e) := Se and JS := S and hence div jS(e) = div(e · JS) = e · divS. We call

T := T (u, π) := JS + Jπ = 2µD(u)− πI(1.19)

the (total) stress tensor. Since the vector e is arbitrary, we obtain the differential momentum balance

∂t(ρu) + div(ρu⊗ u− T ) = 0 in Ω \ Γ.(1.20)

1.2.4. Interface momentum balance. We recall that the momentum densityψ = ρu induces
scalar densities ψ(e) = e · ψ, whose bulk fluxes are j(e) = e · T for a given vector field e. The
latter is allowed to have a possibly non-tangential restriction e|Γ = eατα + eννΓ on Γ. Here we
differ from Scriven [Scr60, p. 101] and Aris [Ari89, p. 238], who only considered vector fields
with vanishing covariant derivatives, which do not cover constant vectors unless Γ is flat. Since
the interface has vanishing mass density, we have ψΓ := ρΓu|Γ = 0 and then equations (1.16b)
and (1.16c) yield

−e · [[T ]]νΓ = divΓ(jΓ(e)) on Γ(1.21)

for every vector field e. Here the interface flux jΓ(e) = jΓ,σ(e) + jΓ,S(e) will consist of a surface
tension part jΓ,σ(e) and a viscous part jΓ,S(e). We first let jΓ,σ(e) := e · (σPΓ), where σ is the
constant surface tension coefficient. If e = e0 ∈ Rn is constant, then divΓ(jΓ,σ(e)) = e·divΓ(σPΓ).

We define the viscous flux jΓ,S(e) := e · SΓ with viscous surface stress tensor SΓ. Following
Scriven [Scr60], we regard Γ as an (n− 1)-dimensional fluid with rate-of-strain tensor

DΓ := DΓ(u) := 2−1Dgαβ/Dt τ
α ⊗ τβ.

Similar to Sekomb and Skalak [SS82], we can derive the usual expression of DΓ in Euclidean
coordinates. For every parametrization y 7→ ϕ(y) of Γ(t), the map y 7→ Φ(t + s, t, ϕ(y)) is a
parametrization of Γ(t+ s). Thus the tangent vectors of Γ(t+ s) are related to those of Γ(t) by

τi(t+ s,Φ(t+ s, t, x)) = ∂xiΦ(t+ s, t, x) = ∂xΦ(t+ s, t, x)τi(t, x).

Having in mind that∇Γu := τ jΓ ⊗ ∂ju, we obtain

(D/Dt)τi(t, x) = (d/ds)[∂xΦ(t+ s, t, x)]|s=0τi(t, x) = [∇Γu(t, x)]>τi(t, x).

Then the relations gij = τi · τj and PΓ = τi ⊗ τ i = I − νΓ ⊗ νΓ yield

DΓ = sym(PΓ[∇Γu]PΓ) = 2−1PΓ(∇Γu+ [∇Γu]>)PΓ.
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Scriven [Scr60] proposed to consider Newtonian surface fluids for which SΓ depends linearly
on DΓ. Hence we define the viscous surface stress tensor

SΓ := SΓ(u) := (λs − µs)(divΓ u)PΓ + 2µsDΓ,

where λs and µs are constant real numbers. The (total) surface stress tensor is defined by

TΓ := TΓ(u) := σPΓ + SΓ(u) = σPΓ + (λs − µs)(divΓ u)PΓ + 2µsDΓ.(1.22)

Then the flux jΓ(e) = e · TΓ satisfies divΓ(jΓ(e)) = e · divΓ TΓ + TΓ : ∇Γe. In Section 1.3 we will
see that jΓ(e) belongs to the class H(0,1)

1 (gr Γ;TΓ), provided that

v = PΓu|Γ ∈ H(0,2)
1 (gr Γ;TΓ), w = νΓ · u|Γ ∈ H(0,1)

1 (gr Γ), Γ(t) ∈ C3.(1.23)

By choosing the constant vectors e = ei in (1.21), we obtain the interface momentum balance

−[[T ]]νΓ = divΓ TΓ on Γ.(1.24)

By imposing the no-slip condition u|∂Ω = 0, the derivation of the model (N) is complete.

1.3. Properties of the model

Similar to [BP10], we will decompose the interface momentum balance (1.24) into tangential
and normal parts and derive an energy identity in arbitrary control volumes; but, in contrast
to [BP10], we employ covariant derivatives.

Let each Γ(t) be of classC3. According to Einstein’s summation convention, we always sum
over repeated greek indices α, β, . . . ∈ {1, . . . , n− 1}, whereas latin indices i, j, . . . ∈ {1, . . . , n−
1} denote free indices. We will use the Weingarten tensor L = lαβτ

α⊗τβ = lαβτα⊗τβ , the mean
curvature H = gαβlαβ and the Cristoffel symbols Λij,k = ∂iτj · τk and Λkij = ∂iτj · τk = gklΛij,l.
Then we define covariant derivatives as follows: For a tangential vector field v ∈ C1(Γ;TΓ) and
a co-vector field ω ∈ C1(Γ;T ∗Γ), we let

v;k = ∇̃kv = PΓ∂kv = vα;k τα = (∂kv
α + Λαkβv

β)τα,

ω;k = ∇̃kω = PΓ∂kω = ωα;k τ
α = (∂kωα − Λβkαωβ)τα;

for a possibly non-tangential vector field u = v + wνΓ ∈ C1(Γ;Rn), we let

u;k = ∇̃ku = PΓ∂ku = vα;k τα + w∂kν = (∂kv
α + Λαkβv

β − wlkβgβα)τα;

and for second-order tensor fields T ∈ C1(Γ;TΓ⊗ TΓ) and D ∈ C1(Γ;T ∗Γ⊗ T ∗Γ), we let

T;k = ∇̃kT = Tαβ ;k τα ⊗ τβ = (∂kT
αβ + ΛαkγT

γβ + ΛβkγT
αγ)τα ⊗ τβ,

D;k = ∇̃kD = Dαβ;k τ
α ⊗ τβ = (∂kDαβ − ΛγkαDγβ − ΛγkβDαγ)τα ⊗ τβ.

The usage of covariant derivatives (i) ensures that the derivative of a section of some bun-
dle is again a section of that bundle, (ii) provides the simple relations

gij;k = 0, gij ;k = 0,(1.25)

and (iii) provides the general product rule

(T i1...j1... S
k1...

l1...);m = T i1...j1...;m S
k1...

l1... + T i1...j1... S
k1...

l1...;m.(1.26)

Some relations to surface differential operators are given by

divΓ(vατα + wνΓ) = vα;α − wH,(1.27a)

DΓ(vατα + wνΓ) = 2−1τα ⊗ τβ(vα;β + vβ;α)− wL,(1.27b)

divΓ(Tαβτα ⊗ τβ) = Tαβ ;ατβ + TαβlαβνΓ (if Tαβ = T βα),(1.27c)
lij;k = lik;j = ljk;i.(1.27d)
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Second-order covariant derivatives are denoted by ∇̃k∇̃l = (·);lk. The covariant derivatives of
tangential vector fields do not necessarily commute, but satisfy the relations

vi;jk − vi;kj = Riαjkv
α, vi;jk − vi;kj = −vαRαijk,(1.28a)

Rijkl = giαRαjkl, Rijkl = likljl − lilljk.(1.28b)

The Laplace-Beltrami operators for ψ ∈ C2(Γ) and u = vατα + wνΓ ∈ C2(Γ)n are given by

∆Γψ = divΓ∇Γψ = gαβ(∂α∂βψ − Λγαβ∂γψ),

∆̃Γu = gαβ∇̃α∇̃βu = (gαβvγ ;αβ − ∂αwlαγ − wH;δg
δγ)τγ .

We refer to Appendix A.4 for more information on these identities.

1.3.1. Decomposition of the interface balance. We decompose (1.24) into its tangential
and normal parts. From (1.22), (1.27a), and (1.27b), we infer that TΓ = TαβΓ τα ⊗ τβ has the
components

TαβΓ = σgαβ + (λs − µs)(vγ ;γ −Hw)gαβ + µsg
αγgβδ(vγ;δ + vδ;γ − 2wlγδ).(1.29)

With equations (1.25), (1.26), and (1.27c), we decompose divΓ TΓ = TαβΓ ;ατβ + TαβΓ lαβνΓ as[
µsg

αγgβδ(vδ;γα + vγ;δα − 2wlγδ;α − 2w;αlγδ) + (λs − µs)(vγ ;γα −H;αw −Hw;α)gαβ
]
τβ

+
[
σH + (λs − µs)(vγ ;γ −Hw)H + µslαβg

αγgβδ(vγ;δ + vδ;γ − 2wlγδ)
]
νΓ.

Let us rewrite this equation in vector notation. We have gαγgβδvδ;γατβ = ∆̃Γv, and with (1.28a)
and (1.28b), we obtain gαγgβδvγ;δα = ∇Γ divΓ v. Identity (1.27d) yields gαγgβδlγδ;ατβ = ∇ΓH .
We proceed in a similar way with the remaining terms and obtain

divΓ TΓ = µs∆̃Γv + λs∇Γ divΓ v

− (λs + µs)w∇ΓH + [(µs − λs)H − 2µsL]∇Γw

+ [(λs − µs) divΓ v H + 2µs L : DΓ(v)]νΓ

+ [σH − (λs − µs)wH2 − 2µsw tr(L2)]νΓ.

(1.30)

We conclude that the interface momentum balance (1.24) has the tangential part

−PΓ[[T ]]νΓ = −[[µ]][∇Γv]νΓ − [[µ]]∇Γw − [[µ∂νv]]

= µs∆̃Γv + λs∇Γ divΓ v − (λs + µs)w∇ΓH + [(µs − λs)H − 2µsL]∇Γw,
(1.31a)

and the normal part

−νΓ · [[T ]]νΓ = −2[[µ∂νw]] + [[π]]

= σH + (λs − µs) divΓ uH + 2µsDΓ : L.
(1.31b)

1.3.2. Energy identity. We consider the kinetic energy
∫
V 2−1ρ|u|2 dx of a control volume

V in Ω. By applying the transport theorem, the divergence theorem, the identity div u = 0, and
the differential momentum balance (1.20), we obtain the kinetic energy balance

d

dt

∫
V

ρ

2
|u|2 dx = −

∫
V

2µD : Ddx+

∫
∂V
Tu · ν∂V d(∂V )−

∫
V ∩Γ

[[Tu]] · νΓ dΓ.(1.32)

In view of the integral balance (1.10), we see that the scalar quantity ψ = 2−1ρ|u|2 has the
bulk source density g = −2µD : D, the bulk flux j = −Tu, and the interface source density
gΓ→Ω = −[[Tu]] · νΓ. The interface momentum balance (1.24) and identity (A.19) imply

−[[Tu]] · νΓ = u · divΓ TΓ = divΓ(TΓu)− TΓ : DΓ

= divΓ(TΓu)− σ divΓ u− (λs − µs)(divΓ u)2 − 2µsDΓ : DΓ.
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Thus, the surface transport theorem and the surface divergence theorem yield the energy identity

d

dt

(∫
V

ρ

2
|u|2 dx+

∫
V ∩Γ

σ dΓ

)
= −

∫
V

2µD : Ddx−
∫
V ∩Γ

(
(λs − µs)(divΓ u)2 + 2µsDΓ : DΓ

)
dΓ

+

∫
∂V
Tu · ν∂V d(∂V ) +

∫
C=∂V ∩Γ

TΓu · nC dC.

(1.33)

In the special case V = Ω and imposing the no-slip boundary condition u|∂Ω = 0, we recover
the energy identity from [BP10, Theorem 3.1],

d

dt

(∫
Ω

ρ

2
|u|2 dx+

∫
Γ
σ dΓ

)
= −

∫
Ω

2µD : Ddx−
∫

Γ

(
(λs − µs)(divΓ u)2 + 2µsDΓ : DΓ

)
dΓ.

(1.34)

By comparing (1.33) with the general integral balance (1.15), we see that the energy has the bulk
density ψ = 2−1ρ|u|2, the bulk flux j = −Tu, the interface density ψΓ = σ and the interface flux
jΓ = −TΓu = −TΓv. Moreover, if λs ≥ µs ≥ 0, then the bulk source density g = −2µD : D and
the interface source density gΓ = −(λs − µs)(divΓ u)2 − 2µs tr(D2

Γ) are non-positive and thus
responsible for dissipation.



CHAPTER 2

Linear elliptic transmission problems

In this chapter we investigate the elliptic transmission problem (TP) in both a strong and a
weak sense. We restate problem (TP) as the strong transmission problem

−div(µ∇u) = f in Ω \ Σ,

µ∂νu = g on ∂Ω,

[[µ∂νu]] = h1 on Σ,

[[u]] = h2 on Σ,

(2.1)

considered in a domain Ω that contains aC1-hypersurface Σ. Here u : Ω\Σ→ K is an unknown
scalar field, (f, g, h1, h2) are given data, µ : Ω\Σ→ (0,∞) is a variable coefficient, and the jump
[[·]] was defined on page 16. We also study the weak transmission problem

∫
Ω
µ∇u · ∇φdx = 〈F |φ〉 for all φ ∈ D(Rn),

[[u]] = h2 on Σ,

(2.2)

for given data (F, h2). We will see that (2.2) can be obtained from (2.1) by multiplying the
first equation with φ and integrating by parts. In the case Σ = ∅ and µ± = 1, problem (2.2)
is called the weak Neumann problem. Both problems (2.1) and (2.2) can be used to eliminate
the pressure and divergence in the more complex linear problem (PL); we adopt this strategy
from Köhne, Prüss, and Wilke [KPW13; Wil13]. Both problems were solved in [KPW13] for
constant coefficients µ± = 1/ρ± in a bounded domain Ω and the authors established optimal
H2
p -regularity for (2.1), optimal Ḣ1

p -regularity for (2.2), and optimal W 2+s
p -regularity for (2.1)

under the restriction (g, h1, h2) = 0. Similar transmission problems are investigated in the
forthcoming monograph [PS15].

Our goal is to prove that both (2.1) and (2.2) have optimal regularity in the sense that the
solution-to-data maps u 7→ (f, g, h1, h2) and u 7→ (F, h2) are topological linear isomorphisms
between suitable Banach spaces. We impose the following basic assumption on Ω and Σ.
2.1. Assumption. Ω ⊂ Rn (n ≥ 2) is a domain with C1-boundary ∂Ω and Σ ⊂ Ω is a closed
C1-hypersurface such that one of the following conditions is satisfied.

(i) Ω is the whole space Rn and Σ is empty.
(ii) Ω is a bent half-space Rnω = {(x′, xn) ∈ Rn : xn > ω(x′)}with ω ∈ C1

c (Rn−1) and Σ is empty.
(iii) Ω is the whole space Rn, Σ is a bent hyperplane Σω = {(x′, ω(x′)) : x′ ∈ Rn−1} with ω ∈

C1
c (Rn−1), and Ω \ Σ consists of the bent half-spaces Ω± = {(x′, xn) ∈ Rn : xn ≷ ω(x′)}.

(iv) Ω is a bounded domain with C1-boundary, Σ is compact and possibly empty, and Ω \ Σ
consists of disjoint open sets Ω± with ∂Ω ⊂ ∂Ω+ and Σ = ∂Ω−.

We let ν∂Ω, ν∂Ω± , and νΣ denote the exterior unit normal fields on ∂Ω, ∂Ω±, and Σ, and we
choose the orientation of Σ such that νΣ = −ν∂Ω+ = ν∂Ω− on Σ.

In order to define suitable solution spaces, we recall that u belongs to H1
p (Ω \Σ) if and only

if its restrictions u± = u|Ω± belong to H1
p (Ω±). Other function spaces on Ω \ Σ are defined

analogously. For an open subset G ⊂ Rn we consider the vector space

Ḣkp(G) := {u ∈ Hk
1,loc(G) : ∇ku ∈ Lp(G)}, for k ∈ N0, p ∈ [1,∞).

23
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This space is semi-normed with respect to ‖∇k·‖p. We call a function u : Ω \ Σ → K a strong
solution to (2.1), if u belongs to the space (Ḣ2

p ∩ Ḣ1
p)(Ω \ Σ) := Ḣ2

p(Ω \ Σ) ∩ Ḣ1
p(Ω \ Σ) and if

(2.1) is satisfied in the sense of distributions. In particular, the first equation is understood in
D′(Ω \ Σ); that is,

−
∫

Ω
div(µ∇u)φdx =

∫
Ω
fφ dx for all φ ∈ D(Ω \ Σ),

whereD(Ω\Σ) denotes the space of smooth functions in Ω that vanish near ∂Ω∪Σ. Obviously,
every constant function is a strong solution of (2.1) for vanishing data; hence, we shall choose
a semi-norm on (Ḣ2

p ∩ Ḣ1
p)(Ω \ Σ) whose null-space consists of all constant functions. Such a

semi-norm is given by

‖u‖E0 := ‖∇2u‖Lp(Ω) + ‖∇u‖Lp(Ω) + ‖[[u]]‖Lp(Σ′),

where Σ′ ⊂ Σ is a bounded open subset with C1-boundary that has positive measure, provided
that Σ 6= ∅. We will prove that strong solutions are uniquely determined within the space

E0 :=
(

(Ḣ2
p ∩ Ḣ1

p)(Ω \ Σ), ‖·‖E0

)/
K.

We will also study strong solutions within spaces of lower or higher regularity

Ek :=

k+2⋂
j=1

Ḣjp(Ω \ Σ), ‖·‖Ek

/K, ‖u‖Ek :=
k+2∑
j=1

‖∇ju‖p + ‖[[u]]‖Lp(Σ′), k ∈ N0 ∪ {−1}.

Next, we derive suitable conditions on the data (f, g, h1, h2) that are necessary for the ex-
istence of a strong solution u ∈ E0 of (2.1). We assume in addition that ∂Ω and Σ are of class
C2− and that µ belongs to W 1

∞(Ω \ Σ); that is, µ± are weakly differentiable in Ω± and both µ±
and ∇µ± belong to L∞(Ω±); thus, µ± are Lipschitz functions. Given a strong solution u ∈ E0

of problem (2.1), the corresponding data (f, g, h1, h2) satisfy the regularity conditions

(f, g, h1, h2) ∈ Lp(Ω)×W 1−1/p
p (∂Ω)×W 1−1/p

p (Σ)×
(
Ẇ2−1/p
p (Σ) ∩ Ẇ1−1/p

p (Σ) ∩ Lp(Σ′)
)
.

Here the semi-normed Sobolev-Slobodeckiı̆ spaces (Ẇk+s
p (Σ), [[∇k·]]W s

p (Σ)) are defined by

Ẇk+s
p (Σ) := {u ∈ Hk

p,loc(Σ) : [[∇ku]]W s
p (Σ) <∞} for k ∈ N0, s ∈ (0, 1), p ∈ [1,∞),

and the semi-norm [[·]]W s
p (Σ) is defined intrinsically by

[[v]]W s
p (Σ) :=

(∫
Σ

∫
Σ

|v(x)− v(y)|p

distΣ(x, y)n+sp
dΣ(x) dΣ(y)

)1/p

.

Bothe and Prüss [BP07] noticed that another joint regularity condition for (f, g, h1) is nec-
essary. Indeed, let φ ∈ D(Rn) be a test function. Then an integration by parts yields∫

Ω
µ∇u · ∇φdx = −

∫
Ω

div(µ∇u)φdx+

∫
∂Ω
µ∂νuφ d(∂Ω)−

∫
Σ

[[µ∂νu]]φdΣ.

The right-hand side can be expressed in terms of the data as a functional〈
F(f,g,h1)

∣∣φ〉 :=

∫
Ω
fφ dx+

∫
∂Ω
gφ d(∂Ω)−

∫
Σ
h1φdΣ =

∫
Ω
µ∇u · ∇φdx.(2.3)

Thus the triple (f, g, h1) induces a continuous linear functional φ 7→
〈
F(f,g,h1)

∣∣φ〉 on the normed
vector space (D(Rn), ‖∇·‖Lp′ (Ω)), where 1/p+ 1/p′ = 1. We can also define such a functional by

〈Fµ∇u|φ〉 :=

∫
Ω
µ∇u · ∇φdx for φ ∈ D(Rn).
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The completion of (D(Rn), ‖∇·‖Lp′ (Ω)) is the homogeneous Sobolev space

Ḣ1
p′(Ω) := Ḣ1

p′(Ω)/K, ‖φ‖Ḣ1
p′ (Ω) := ‖∇φ‖Lp′ (Ω),

considered modulo constant functions [Gal11; Sob63]. Its topological dual space is denoted by

Ĥ−1
p (Ω) := Ḣ1

p′(Ω)∗, ‖F‖Ĥ−1
p (Ω) = sup

06=φ∈Ḣ1
p′ (Ω)

|〈F |φ〉|
‖∇φ‖Lp′ (Ω)

.

The data (f, g, h1, h2) must therefore satisfy the joint regularity condition

F(f,g,h1) ∈ Ĥ−1
p (Ω).(2.4)

If Ω is bounded, then this regularity condition reduces to the compatibility condtion∫
Ω
f dx+

∫
∂Ω
g d(∂Ω)−

∫
Σ
h1 dΣ = 0.(2.5)

Indeed, by choosing φ = 1, we see that (2.4) implies (2.5). For proving the converse implication,
we consider a test function φ ∈ D(Rn), we let 〈φ〉Ω := |Ω|−1

∫
Ω φdx denote the mean value of

φ, and we recall the Poincaré-Wirtinger inequality

‖φ− 〈φ〉Ω‖p′ ≤ C(Ω, p′)‖∇φ‖p′ for φ ∈ H1
p′(Ω).(2.6)

Then, for a given tuple (f, g, h1) ∈ Lp(Ω) × Lp(∂Ω) × Lp(Σ) satisfying (2.5), inequality (2.6)
yields

|
〈
F(f,g,h1)

∣∣φ〉| = |〈F(f,g,h1)

∣∣φ− 〈φ〉Ω〉| ≤ C‖∇φ‖p′ ;
that is, F(f,g,h1) belongs to Ĥ−1

p (Ω). In this sense, (2.4) and (2.5) are equivalent, if Ω is bounded.
For a strong solution of class Ek (k ∈ N0), the corresponding data belong to the spaces

Fkcc :=
{

(f, g, h1, h2) ∈ Fk : F(f,g,h1) ∈ Ĥ−1
p (Ω)

}
,

Fk := Hk
p (Ω \ Σ)×W k+1−1/p

p (∂Ω)×W k+1−1/p
p (Σ)×

(⋂k+1

j=0
Ẇj+1−1/p
p (Σ) ∩ Lp(Σ′)

)
.

Now we are ready to state the main result for the strong transmission problem (2.1).
2.2. Theorem (Optimal Hk+2

p -regularity for (2.1)). Let Ω and Σ satisfy Assumption 2.1, let k ∈ N0,
suppose that ∂Ω and Σ are of class Ck+2−, and let p ∈ (1,∞).

If Ω is bounded, then for given µ ∈W k+1
∞ (Ω \ Σ) with µ0 ≤ µ ≤ µ−1

0 , the solution-to-data map

u 7→ (−div(µ∇u), µ∂νu, [[µ∂νu]], [[u]]) , Ek → Fkcc(2.7)

is a topological linear isomorphism.
If Ω is unbounded, then for given µ0 ∈ (0, 1] there exists η > 0 such that if

(i) ω ∈ Ck+2−
c (Rn−1) with ‖∇ω‖∞ ≤ η in case Ω = Rnω or Σ = Σω,

(ii) µ ∈W k+1
∞ (Ω \ Σ) with µ0 ≤ µ ≤ µ−1

0 and ‖µ± − µ∗±‖∞ ≤ η for some µ∗± ∈ [µ0, µ
−1
0 ],

then the map (2.7) is a topological linear isomorphism.
In order to prove Theorem 2.2, we first establish a corresponding result for the regularized

operator λ − div(µ∇·) with some sufficiently large λ > 0 (see Theorem 2.18) by means of a
localization procedure as in [LSU68; AHS94; DHP03; KPW13]. For the case λ = 0 we employ
a spectral theoretic argument as in [KPW13; Wil13] and the localization procedure of Simader
and Sohr [SS92]. Our main result on the weak transmission problem (2.2) is the following.
2.3. Theorem (Optimal H1

p -regularity for (2.2)). Let Ω and Σ satisfy Assumption 2.1 and let p ∈
(1,∞).
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If Ω is bounded, then for given µ± ∈ C(Ω±) with inf µ± > 0, the solution-to-data map

u 7→ (Fµ∇u, [[u]]) , E−1 → F−1
cc = Ĥ−1

p (Ω)×
(
Ẇ1−1/p
p (Σ) ∩ Lp(Σ′)

)
,(2.8)

is a topological linear isomorphism.
If Ω is unbounded, then for given µ0 ∈ (0, 1] there exists η > 0 such that if

(i) ω ∈ C1
c (Rn−1) with ‖∇ω‖∞ ≤ η in case Ω = Rnω or Σ = Σω,

(ii) µ± ∈ L∞(Ω±) with µ0 ≤ µ± ≤ µ−1
0 and ‖µ± − µ∗±‖∞ ≤ η for some µ∗± ∈ [µ0, µ

−1
0 ],

then the map (2.8) is a topological linear isomorphism.

2.1. The strong transmission problem for λ− div(µ∇·)

We consider the linear operator

Aλ : u 7→ (λu− div(µ∇u), µ∂νu, [[µ∂νu]], [[u]]) for λ ∈ C \ R−,

which is induced by the strong transmission problem
λu− div(µ∇u) = f in Ω \ Σ,

µ∂νu = g on ∂Ω,

[[µ∂νu]] = h1 on Σ,

[[u]] = h2 on Σ.

(2.9)

Our goal is to prove that Aλ is a topological linear isomorphism from the solution space

Ek = Ek(Ω \ Σ) := Hk+2
p (Ω \ Σ) for k ∈ N0,

onto the space of data

Fk = Fk(Ω \ Σ) := Hk
p (Ω \ Σ)×W k+1−1/p

p (∂Ω)×W k+1−1/p
p (Σ)×W k+2−1/p

p (Σ),

provided that |λ| is sufficiently large and ∂Ω, Σ, and µ are sufficiently regular. We identify

Fk(Ω \ Σ) ∼=


Hk
p (Rn) if Ω = Rn, Σ = ∅,

Hk
p (Ω)×W k+1−1/p

p (∂Ω) if Ω 6= Rn, Σ = ∅,

Hk
p (Rn \ Σ)×W k+1−1/p

p (Σ)×W k+2−1/p
p (Σ) if Ω = Rn, Σ 6= ∅.

Our strategy to solve problem (2.9) is based on solving basic model problems, perturbed
model problems, and on localization. In a basic model problem, we assume that µ is constant,
Ω is the whole space Rn or a half-space Rn+, and Σ is a hyperplane Rn−1 × {0} or empty. In a
perturbed model problem, we also allow for bent half-spaces Ω = Rnω = {(x′, xn) ∈ Rn : xn >
ω(x′)}, bent hyperplanes Σ = Σω = {(x′, ω(x′)) : x′ ∈ Rn−1}, and variable coefficients with
small oscillations. In a small region of Ω, problem (2.9) looks like a perturbed model problem,
after an appropriate rotation and translation. Hence, if these perturbed model problems have
appropriate “local” solution operators, then we can construct a “global” solution operator for
problem (2.9) in terms of the local solution operators. Such a localization technique is provided
in Section 2.1.1.

During the localization procedure, we have to control leading-order and lower-order per-
turbations, and this can be achieved by using a smallness parameter η and λ-dependent norms
for Ekλ and Fkλ, as defined in Section 2.1.2. These norms have useful scaling properties and al-
low to reduce the operator Aλ to A1 for the basic model problems. Hence, if A1 is invertible,
then Aλ is uniformly invertible with respect to λ. The basic model problems for Σ = ∅ are
well-known and we therefore turn our attention to the flat-interface model problem in Section
2.1.3. It is solved by means of the Fourier transform and with the joint H∞ functional calcu-
lus. In Section 2.1.4, we investigate the perturbed model problem for Σ = Σω with variable
coefficient and derive the corresponding results for the remaining model problems. Here the
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parameter η bounds the oscillations of the coefficient µ and the gradient of ω and allows to
control leading-order perturbations, whereas the parameter λ is used to control lower-order
perturbations. Finally, we prove optimal regularity for problem (2.9) in a bounded domain in
Section 2.1.5.

2.1.1. Localization technique. We provide a localization technique that allows to invert a
“global” operatorAλ : E → F having invertible “local” versionsAλ,j : Ej → Fj . This technique
is similar to the corresponding procedures in [LSU68; AHS94; DHP03].
2.4. Definition. Let E and Ej (j ∈ J ⊂ N) be Banach spaces, let q ∈ [1,∞), and define

E :=
∏

j
Ej , lq(E) :=

{
(xj)j∈J ∈ E : ‖x‖lq(E) <∞

}
, ‖x‖lq(E) :=

(∑
j∈J
‖xj‖qEj

)1/q
.

Let further ΦE,j ∈ B(E;Ej) and ΨE,j ∈ B(Ej ;E) be bounded linear operators such that∑
j∈J

ΨE,jΦE,jx = x for all x ∈ E,

where the series converges in E; and suppose that the maps

rE : lq(E)→ E, (xj)j∈J 7→
∑

j∈J
ΨE,jxj ,

rcE : E → lq(E), x 7→ (ΦE,jx)j∈J ,

are linear and bounded (hence, rE is a retraction with co-retraction rcE). Then we say that the
triple (E, (ΦE,j)j∈J , (ΨE,j)j∈J) is an lq-approximation system for E.

The spaces E and Ej are related to linear operators Aλ and Aλ,j as follows.
2.5. Assumption. (i) E and F are Banach spaces over the same scalar field K ∈ {R,C}, which

have lq-approximation systems (E, (ΦE,j)j∈J , (ΨE,j)j∈J) and (F, (ΦF,j)j∈J , (ΨF,j)j∈J) for
some q ∈ [1,∞).

(ii) For some unbounded set Λ ⊂ K, the families {‖·‖X,λ : λ ∈ Λ} consist of equivalent norms
on X ∈ {E,F,Ej , Fj : j ∈ J} and we have

sup
λ∈Λ
‖rE‖B(lq(E);E)),λ <∞, sup

λ∈Λ
‖rcF ‖B(F ;lq(F)),λ <∞.

(iii) Aλ : E → F (λ ∈ Λ) are bounded linear operators such that the maps Aλ : (E, ‖·‖E,λ) →
(F, ‖·‖F,λ) are uniformly bounded with respect to λ ∈ Λ.

(iv) There exist invertible operators Aλ,j ∈ Bisom(Ej ;Fj) (j ∈ J , λ ∈ Λ) such that

sup
λ∈Λ
‖(fj)j 7→ (A−1

λ,jfj)j‖B(lq(F);lq(E)),λ <∞.

(v) The operators Bλ,j := ΦF,jAλ −Aλ,jΦE,j ∈ B(E;Fj) satisfy

lim
|λ|→∞

‖u 7→ (Bλ,ju)j‖B(E;lq(F)),λ = 0.

(vi) The operators Cλ,j := AλΨE,j −ΨF,jAλ,j ∈ B(Ej ;F ) satisfy

lim
|λ|→∞

∥∥∥(uj) 7→
∑

j
Cλ,juj

∥∥∥
B(lq(E);F ),λ

= 0.

For later applications, it is important to establish uniform bounds for data-to-solution maps.
A parameter-dependent operator Aλ ∈ Bisom(E;F ) is called uniformly invertible with respect to
λ, if there is a number C such that ‖A−1

λ ‖F→E ≤ C for all λ.
2.6. Proposition (cf. [AHS94, Proposition 3.2]). If Assumption 2.5 is satisfied, then there is λ0 > 0
such that Aλ : (E, ‖·‖E,λ)→ (F, ‖·‖F,λ) is uniformly invertible with respect to λ ∈ Λ with |λ| ≥ λ0.
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Proof. We consider the approximate inverse

Rλ : F → E, Rλf :=
∑

j
ΨE,jA

−1
λ,jΦF,jf for f ∈ F.

Let us write

RλAλ − IE =
∑

j
ΨE,jA

−1
λ,j(ΦF,jAλ −Aλ,jΦE,j) =

∑
j
ΨE,jA

−1
λ,jBλ,j ,

AλRλ − IF =
∑

j
(AλΨE,j −ΨF,jAλ,j)A

−1
λ,jΦF,j =

∑
j
Cλ,jA

−1
λ,jΦF,j .

With Assumption 2.5 we can choose an upper bound M > 0 for the numbers

sup
λ∈Λ
‖rE‖B(lq(E);E),λ, sup

λ∈Λ

∥∥∥(fj)j 7→ (A−1
λ,jfj)j

∥∥∥
B(lq(F);lq(E)),λ

, sup
λ∈Λ
‖rcF ‖B(F ;lq(F)),λ.

Then Rλ is bounded by M3 and we obtain the following estimates for f ∈ F and u ∈ E:

‖RλAλu− u‖E,λ =
∥∥∥∑

j
ΨE,jA

−1
λ,jBλ,ju

∥∥∥
E,λ
≤M2 ‖u 7→ (Bλ,ju)j‖B(E;lq(F)),λ ‖u‖E,λ,

‖AλRλf − f‖F,λ =
∥∥∥∑

j
Cλ,jA

−1
λ,jΦF,jf

∥∥∥
F,λ
≤
(∥∥∥(uj) 7→

∑
j
Cλ,juj

∥∥∥
B(lq(E);F ),λ

)
M2‖f‖F,λ.

Therefore we can find some λ0 ≥ 0 such that

‖AλRλ − IF ‖B(F ),λ ≤ 2−1, ‖RλAλ − IE‖B(E),λ ≤ 2−1 for λ ∈ Λ, |λ| ≥ λ0.

Hence the operatorsAλRλ = IF−(IF−AλRλ) ∈ B(F ) andRλAλ = IE−(IE−RλAλ) ∈ B(E) are
invertible. Consequently,Rλ(AλRλ)−1 ∈ B(F ;E) is a right-inverse and (AλRλ)−1Rλ ∈ B(F ;E)
is a left-inverse for Aλ. Thus, Aλ is invertible for all λ ∈ Λ with |λ| ≥ λ0 and its inverse
A−1
λ = Rλ(AλRλ)−1 = (AλRλ)−1Rλ is bounded by 2M3. �

Next, we provide a localization set-up that can be used to construct approximation systems.
2.7. Remark. Let Ω be a bounded domain in Rn (n ≥ 2) with C1-boundary ∂Ω and let Σ ⊂ Ω be
a compact C1-hypersurface. We say that a family (Uj)j∈J of open subsets of Rn is a finite open
covering for Ω in Rn, if J is finite and Ω is contained in

⋃
j∈J Uj . Since Ω, ∂Ω, and Σ are compact,

there exists r0 > 0 such that for every r ∈ (0, r0] we can choose
(i) a finite open covering of balls Uj = Br(pj) with pj ∈ Ω such that the index set can be

decomposed as J = J1 ∪ J2 ∪ J3 with

pj ∈ Ω \ Σ and U j ⊂ Ω \ Σ if j ∈ J1,

pj ∈ ∂Ω and Uj ∩ Σ = ∅ if j ∈ J2,

pj ∈ Σ and Uj ⊂ Ω if j ∈ J3,

(ii) a family (Θj)j∈J of rigid transformations

Θj : x 7→ pj +Qjx, Br(0)→ Uj = Br(pj),

with an orthogonal matrix Qj = ∂xΘj ∈ Rn×n such that

Qj = I if j ∈ J1,

−Qjen = ν∂Ω(pj) if j ∈ J2,

Qjen = νΣ(pj) if j ∈ J3.

2.8. Definition (Localization set-up). Let Ω be a bounded domain in Rn (n ≥ 2) with C1-
boundary ∂Ω and let Σ ⊂ Ω be a compact C1-hypersurface. For ω : Rn−1 → R we put

Rnω := {(x′, xn) ∈ Rn : xn > ω(x′)}, Σω := {(x′, xn) ∈ Rn : xn = ω(x′)}.
Let r > 0 and η > 0 be given and suppose that

(i) (Uj)j∈J is a finite open covering for Ω in Rn with Uj = Br(pj) as in Remark 2.7.(i),
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(ii) (Θj)j∈J is a family of rigid transformations as in Remark 2.7.(ii),
(iii) (ωj)j∈J is a family of functions of class C1

c (Rn−1) which satisfy

ωj(0) = |∇ωj(0)| = 0, ‖∇ωj‖L∞(Rn−1) ≤ η for all j ∈ J,
and suppose that

ωj = 0 if j ∈ J1,

Θj(Br(0) ∩ Rnωj ) = Uj ∩ Ω if j ∈ J2,

Θj(Br(0) ∩ Rn \ Σωj ) = Uj ∩ Ω \ Σ if j ∈ J3.

Then we call (Uj ,Θj , ωj)j∈J an (η, r)-localization set-up for (Ω,Σ).
2.9. Lemma. Let Ω ⊂ Rn (n ≥ 2) be a bounded domain withC1-boundary ∂Ω and Σ ⊂ Ω be a compact
C1-hypersurface.

(i) If η > 0 is given, then there exists r0 > 0 such that for every r ∈ (0, r0] we can find an (η, r)-
localization set-up (Uj ,Θj , ωj)j∈J for (Ω,Σ).

(ii) If, additionally, ∂Ω and Σ are of class Ck− for some k ≥ 2, then the ωj belong to Ck−c (Rn−1) and
there exists C = C(n, p, ∂Ω,Σ) > 0 such that

‖ωj‖H2
p(Rn−1) ≤ Cr(n−1)/p‖∇2ωj‖L∞(Rn−1) for all j ∈ J2 ∪ J3.

Proof. As in Remark 2.7, we let Uj = Br(pj) form a finite open covering for Ω and consider the
rigid transformations Θj : x 7→ pj + Qjx. The case j ∈ J1 is trivial and since the cases j ∈ J2

and j ∈ J3 are analogous, we concentrate on j ∈ J3.
We first construct the functions ωj and prove that ‖∇ωj‖∞ is small. For every p ∈ Σ we

can find a number r1(p) > 0 and a unique height function ωp on Br1(p) ⊂ Rn−1, such that
for Σωp := {(x′, ωs(x′)) : x′ ∈ Br1(p)} we have Θ(Σωp) ⊂ Σ for some rigid transformation
Θ: x 7→ p + Qx with Qen = νΣ(p). The function ∇ωp is related to νΣ by (see also (A.3) on
page 130)

∇ωp = −QP
′Q>(νΣ ◦Θ)

Qen · νΣ ◦Θ
on Bp, with P ′ = In − en ⊗ en.

Moreover, it satisfies ωp(0) = |∇ωp(0)| = 0. Since νΣ is uniformly continuous on Σ, we obtain
‖∇ωp|Bt‖∞ → 0 as t → 0, uniformly with respect to p ∈ Σ. By compactness of Σ, we may
choose the number r1 uniform in p ∈ Σ.

Let χ ∈ B(Rn−1) with 0 ≤ χ ≤ 1, χ(x′) = 1 for |x′| ≤ 1 and χ(x′) = 0 for |x′| ≥ 2. For
r ∈ (0, r1/2] we define a function ω̃p,r : Rn−1 → R with support in B2r by

ω̃p,r(x
′) :=

{
χ(x′/r)ωp(x

′) for |x′| < 2r,

0 for |x′| ≥ 2r.

Then ω̃p,r(x
′) = ωp(x

′) for all x′ ∈ Br. From ωp(0) = 0 and the fundamental theorem of
calculus, we obtain the inequality ‖ωp|Br‖∞ ≤ r‖∇′ωp|Br‖∞. The uniform continuity of νΣ

further implies that ‖∇′ωp|Br‖∞ → 0 as r → 0, uniformly in p ∈ Σ. Therefore

‖∇ω̃p,r‖∞ ≤ r−1‖∇χ‖∞‖ωp|B2r‖∞ + ‖∇ωp|B2r‖∞
≤ (‖∇χ‖∞ + 1)‖∇ωp|B2r‖∞ → 0 as r → 0,

uniformly in p ∈ Σ. Thus for given η > 0 we can choose a number r0 ∈ (0, r1/2] such that
‖∇ω̃p,r‖∞ ≤ η for all p ∈ Σ, r ∈ (0, r0]. We finally put ωj := ω̃pj ,r for j ∈ J with a suitable finite
index set J(r). Hence assertion (i) is valid.

Having in mind that every ω ∈ W 2
∞(Rn−1) with ω(0) = |∇ω(0)| = 0 satisfies the estimates

|∇kω(x)| ≤ |x|2−k‖∇kω‖∞ for k ∈ {0, 1, 2}, and using the substitution x = ry, we obtain

‖∇kω̃r‖p = ‖∇k(χ(·/r)ω)‖p ≤ Cr(n−1)/p‖χ‖Hk
p
‖∇kω‖∞ for k ∈ {0, 1, 2}.
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This proves assertion (ii). �

2.1.2. λ-dependent norms. Let Ω and Σ satisfy Assumption 2.1. For p ∈ (1,∞), k ∈ N0,
and λ ∈ C \ {0}, we define the Banach spaces

Ekλ = (Ek, ‖·‖Ekλ), Ek = Hk+2
p (Ω \ Σ),

Fkλ = (Fk, ‖·‖Fkλ), Fk = Hk
p (Ω \ Σ)×W k+1−1/p

p (∂Ω)×W k+1−1/p
p (Σ) ∩W k+2−1/p

p (Σ),

which are equipped with the equivalent λ-dependent norms

‖u‖Ekλ := ‖u‖Hk+2
p (Ω\Σ),λ :=

∑k+2

j=0
‖λ(k+2−j)/2∇ju‖Lp(Ω),

‖(f, g, h1, h2)‖Fkλ := ‖f‖Hk
p (Ω\Σ),λ + ‖g‖

W
k+1−1/p
p (∂Ω),λ

+ ‖h1‖Wk+1−1/p
p (Σ),λ

+ ‖h2‖Wk+2−1/p
p (Σ),λ

,

where

‖f‖Hk
p (Ω\Σ),λ :=

∑k

j=0
‖λ(k−j)/2∇jf‖Lp(Ω),

‖g‖
W
k+1−1/p
p (∂Ω),λ

:= [[∇k∂Ωg]]
W

1−1/p
p (∂Ω)

+
∑k

j=0
|λ|1/2−1/2p‖λ(k−j)/2∇j∂Ωg‖Lp(∂Ω),

‖h1‖Wk+1−1/p
p (Σ),λ

:= [[∇kΣh1]]
W

1−1/p
p (Σ)

+
∑k

j=0
|λ|1/2−1/2p‖λ(k−j)/2∇jΣh1‖Lp(Σ),

‖h2‖Wk+2−1/p
p (Σ),λ

:= [[∇k+1
Σ h2]]

W
1−1/p
p (Σ)

+
∑k+1

j=0
|λ|1/2−1/2p‖λ(k+1−j)/2∇jΣh2‖Lp(Σ).

Let us first derive these norms and have a look at its advantages. We consider the scaling

uλ(x) := λαu(λ−βx) for x ∈ Ω \ Σ with some α, β ∈ R.

We only consider the cases Ω ∈ {Rn,Rn+} and Σ ∈ {Rn−1 × {0}, ∅} since these are invariant
under the transformation x 7→ λ−βx. Then

λu(x)−∆u(x) = λ−α
(
λuλ(λβx)− λ2β∆uλ(λβx)

)
.

Since the local operators Aλ,j should be uniformly invertible in λ, we want to achieve that the
equations for uλ do not depend on λ and therefore must choose β = 1/2. Next, the norm of the
transformation u 7→ uλ should satisfy ‖u‖Ekλ = ‖uλ‖Ek1 and hence we require that

‖u‖Ekλ =
∑k+2

j=0
‖∇juλ‖Lp(Ω) =

∑k+2

j=0
‖λα−βj+βn/p∇ju‖Lp(Ω) =

∑k+2

j=0
‖λα−j/2+n/2p∇ju‖Lp(Ω).

Finally, we choose α = (k + 2 − n/p)/2 so that the highest order term in this norm does not
depend on λ. This yields precisely the aforementioned Ekλ-norm. We keep in mind that

uλ := λ(k+2)/2−n/2pu(λ−1/2·).

Similarly, we define the rescaled data

fλ := λk/2−n/2pf(λ−1/2·),

gλ := λ(k+1)/2−n/2pg(λ−1/2·),

h1λ := λ(k+1)/2−n/2ph1(λ−1/2·),

h2λ := λ(k+2)/2−n/2ph2(λ−1/2·).

When we replace the functions (u, f, g, h1, h2) by (uλ, fλ, gλ, h1λ, h2λ) in (2.9), we see that the
system Aλu = (f, g, h1, h2) is equivalent to A1uλ = (fλ, gλ, h1λ, h2λ) in case Ω ∈ {Rn,Rn+} and
Σ ∈ {Rn−1 × {0}, ∅}. Moreover,

‖u‖Ekλ = ‖uλ‖Ek1 , ‖(f, g, h1, h2)‖Fkλ = ‖(fλ, gλ, h1λ, h2λ)‖Fk1 .
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2.1.3. Basic model problems. We first consider the systemAλu = (f, h1, h2) in the situation
of a whole space Ω := Rn (n ≥ 2) with flat interface Σ := Rn−1 × {0} ∼= Rn−1 and constant
coefficients µ± ∈ (0,∞); that is,

λu− µ∆u = f in Ṙn,
[[µ∂nu]] = h1 on Rn−1,

[[u]] = h2 on Rn−1.

(2.10)

Here we have put Ω̇ := Ω \ Σ = Ṙn and Ω± := Rn−1 ×±(0,∞). The elements of Ω are denoted
by x = (x′, xn) or (x′, y) with x′ ∈ Rn−1 and xn = y ∈ R, and we let ∆ = ∂2

1 + · · · + ∂2
n,

∆′ = ∂2
1 + · · ·+ ∂2

n−1,∇ = (∂1, . . . , ∂n), and∇′ = (∂1, . . . , ∂n−1). The parameter λ belongs to the
open sector Σφ := {λ ∈ C \ {0} : |arg λ| < φ} for φ ∈ (0, π).

We shall prove that problem (2.10) has optimal Hk+2
p -regularity in the following sense.

2.10. Lemma. Let µ0 ∈ (0, 1], k ∈ N0, φ ∈ (0, π), and p ∈ (1,∞). Then the operator

Aλ : Ekλ(Ṙn)→ Fkλ(Ṙn), u 7→ (λu− div(µ∇u), [[µ∂nu]], [[u]])

is uniformly invertible with respect to µ± ∈ [µ0, µ
−1
0 ] and λ ∈ Σφ.

Proof. (i) In order to prove uniqueness, it is sufficient to consider a solution u ∈ H2
p (Ṙn)

to (2.10) for trivial data Aλu = (f, h1, h2) = 0. When we consider u as a function y 7→ u(·, y)

that belongs to the space H2
p (Ṙ;Lp(Rn−1)) ∩ Lp(R;H2

p (Rn−1)), we see that both functions y 7→
u±(·, y), ±[0,∞) → S ′(Rn−1) are continuous. The functions ω±(ξ) := (λµ−1

± + |ξ|2)1/2 satisfy
Reω±(ξ) > 0 for all λ ∈ C \ (−∞, 0] and ξ ∈ Rn−1. Then the partially Fourier transformed
equations with respect to x ∈ Rn−1 with covariable ξ ∈ Rn−1 are given by

ω2ũ− ∂2
y ũ = 0 in D′(Ṙ;S ′(Rn−1)),

µ+∂yũ+(·, 0)− µ−∂yũ−(·, 0) = 0 in S ′(Rn−1),

ũ+(·, 0)− ũ−(·, 0) = 0 in S ′(Rn−1).

(2.11)

The first equation in (2.11) must be understood in the following sense:∫ ∞
−∞

ũ(·, y)
(
ω2ϕ(y)− ∂2

yϕ(y)
)
dy = 0 in S ′(Rn−1) for ϕ ∈ D(Ṙ).(2.12)

We claim that (2.12) implies ũ(·,±y) = (ξ 7→ e−ω±(ξ)y)c± for all y ≥ 0 and some c± ∈ S ′(Rn−1).
Indeed, in order to check this for ũ+(·, y), we write an arbitrary ϕ ∈ D(R+) as

ϕ(y) = (ω2
+ − ∂2

y)ψϕ(y) + h+(y) 〈eω+·|ϕ〉+ h−(y)
〈
e−ω+·

∣∣ϕ〉 .(2.13)

Here 〈·|·〉 denotes bilinear integration over R+, the functions h± ∈ D(R+) with 〈e±ω+·|h±〉 = 1
and 〈e±ω+·|h∓〉 = 0 are fixed (independent of ϕ), and we can calculate the solution ψϕ ∈ D(R+)
of (2.13) by using Green’s functions (see Lemma 3.3 on page 56). Then it can be readily checked
that

〈ũ+|ϕ〉 = 〈ũ+|h+〉 〈eω+·|ϕ〉+ 〈ũ+|h−〉
〈
e−ω+·

∣∣ϕ〉 for ϕ ∈ D(R+),

with the constant distributions c+,± := 〈ũ+|h±〉. Since y 7→ u(·, y) belongs toH2
p (R+;Lp(Rn−1)),

we must have c+,+ = 0 and hence ũ+(·, y) = (ξ 7→ e−ω+(ξ)y)c+ for y ≥ 0 with c+ := c+,−.
Analogously, we have ũ(·,−y) = (ξ 7→ e−ω−(ξ)y)c− for y ≥ 0 with some c− ∈ S ′(Rn−1). The
remaining equations yield c+ = c− and −µ+c+ω+ − µ−c−ω− = 0, and thus c± = 0. Therefore
(2.10) has at most one solution in H2

p (Ṙn).
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(ii) Existence for k = 0 and f = 0. We construct a solution u of (2.10) for given (0, h1, h2) ∈
F0
λ. The partially Fourier transformed function y 7→ ũ(·, y), Ṙ → S ′(Rn−1) must satisfy the

system 
ω2ũ− ∂2

y ũ = 0 in D′(Ṙ;S ′(Rn−1)),

µ+∂yũ+(·, 0)− µ−∂yũ−(·, 0) = h̃1 in S ′(Rn−1),

ũ+(·, 0)− ũ−(·, 0) = h̃2 in S ′(Rn−1).

(2.14)

Problem (2.14) has the following D′(Ṙ;S ′(Rn−1))-solution.[
ũ+(·, y)

ũ−(·,−y)

]
=

1

µ+ + µ−

[
− e−ω+y

ω+
µ−e

−ω+y

− e−ω−y

ω−
−µ+e

−ω−y

][
h̃1

h̃2

]
.

In order to invert the partial Fourier transform u 7→ ũ, we employ the joint functional calculus
for ∇′ from Theorem B.69 on page 166. Here we consider ∇′ = (∂1 . . . , ∂n−1) as an operator
tuple T = (T1, . . . , Tn−1) in X = Lp(Rn−1) in the sense of Remark B.65. For the symbols
ω±,λ(z) = (λ/µ±−z ·z)1/2, we define ω±(∇′) = (λ/µ±−∆′)1/2 =: L±,λ : H1

p (Rn−1)→ Lp(Rn−1).
With Theorem B.25 on page 155 we define the extensions (x, y) 7→ (e−L±,λyh2)(x) ∈ H2

p (Rn+)

and (x, y) 7→ (e−L±,λyh1)(x) ∈ H1
p (Rn+). Then a solution to (2.10) is given by[

u+(·, y)

u−(·,−y)

]
=

1

µ+ + µ−

[
−L−1

+,λe
−yL+,λ µ−e

−yL+,λ

−L−1
−,λe

−yL−,λ −µ+e
−yL−,λ

][
h1

h2

]
.(2.15)

(iii) A uniform bound with respect to λ. We employ the dilations σt ∈ Bisom(Lp(Rn)) and
σ′t ∈ Bisom(Lp(Rn−1)) with t ∈ (0,∞) defined by σtu := u(t·) for u ∈ Lp(Rn) and σ′th := h(t·)
for h ∈ Lp(Rn−1). Then ∆′σ′

λ1/2 = λσ′
λ1/2∆′ and, with L± := L±,1, we obtain

L2
±,λ = λ/µ± −∆′ = λσ′

λ1/2(1/µ± −∆′)σ′
λ−1/2 =

(
λ1/2σ′

λ1/2L±σ
′
λ−1/2

)2
.

Hence L±,λ = λ1/2σ′
λ1/2L±σ

′
λ−1/2 on D(L±) = H1

p (Rn−1). For h ∈ Lp(Rn−1), we have

σλ−1/2

(
(x, y) 7→ e−yL±,λh

)
= exp

(
−λ−1/2yσ′

λ−1/2L±,λσ
′
λ1/2

)
σ′
λ−1/2h = exp (−yL±)σ′

λ−1/2h.

Then the rescaled functions u±,λ := λ1−n/2pσλ−1/2u± and hj,λ := λj/2−n/2pσ′
λ−1/2hj satisfy[

u+,λ(·, y)

u−,λ(·,−y)

]
=

1

µ+ + µ−

[
−L−1

+ e−yL+ µ−e
−yL+

−L−1
− e−yL− −µ+e

−yL−

][
h1,λ

h2,λ

]
for y > 0.

For given µ0 ∈ (0, 1) and ϑ ∈ (0, π), there exists M > 0 such that L2
± are operators of

positive type P1(H2
p (Rn−1), Lp(Rn−1),M, ϑ) for all µ± ∈ [µ0, µ

−1
0 ] (see page 154) and therefore

Theorem B.25 yields the assertion for f = 0.
(iv) If f ∈ Lp(Rn) is arbitrary, then a solution to (2.10) is given by u + v + w, where u

is defined by (2.15), v± := (λ − µ±∆)−1f± ∈ H2
p (Rn±) with v±|y=0 = 0 are the half-space

solutions from [DHP03, Theorem 7.3], and w is the solution to λw − µ∆w = 0, [[ρw]] = −[[ρv]],
[[∂yw]] = −[[∂yv]], which is defined analogously as u in (2.15). Therefore the assertion for k = 0
is proved.

(v) Existence for k ≥ 0. Let (f, h1, h2) ∈ Fkλ be given. We shall construct a solution to (2.10)
of the form u = v + w, where v, w are defined as follows. Let E± ∈ B(Hk

p (Rn±);Hk
p (Rn))

and E±,α ∈ B(H
k−|α|
p (Rn±);H

k−|α|
p (Rn)) denote the extension operators from Theorem B.6 on
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page 147 with the property ∂αxE±g = E±,α∂
α
x g for g ∈ Hk

p (Rn+) and α ∈ Nn0 with |α| ≤ k. Then
the functions v± := (λ− µ±∆)−1E±(f |Rn±) belong to Hk+2

p (Rn) and satisfy

‖v±‖H2
p(Rn),λ ≤ C(n, p, µ0)‖f‖Lp(Rn) for f ∈ Hk

p (Ṙn), λ ∈ Σφ, µ± ∈ [µ0, µ
−1
0 ].

Differentiating the equation (λ− µ±∆)v± = E±(f |Rn±) shows that (λ− µ±∆)∂αx v = E±,α∂
α
x f ∈

Lp(Rn) for |α| ≤ k. Hence the function v := χRn+v+ + χRn−v− belongs to Hk+2
p (Ṙn), solves the

equation (λ− µ∆)v = f in Ṙn, and satisfies

‖v‖Ekλ(Ṙn) ≤ C(n, p, µ0)‖f‖Hk
p (Ṙn),λ for f ∈ Hk

p (Ṙn), λ ∈ Σφ, µ± ∈ [µ0, µ
−1
0 ].

The functionw ∈ H2
p (Ṙn) is defined as the solution to (λ−µ∆)w = 0, [[µ∂nw]] = h1−[[µ∂nv]],

[[w]] = h2 − [[v]]. From uniqueness and (2.15) we derive the representation[
w+(·, y)

w−(·,−y)

]
=

1

µ+ + µ−

[
−L−1

+,λe
−yL+,λ µ−e

−yL+,λ

−L−1
−,λe

−yL−,λ −µ+e
−yL−,λ

][
h1 − [[µ∂nv]]

h2 − [[v]]

]
.

In order to verify that w belongs to Hk+2
p (Ṙn), we let α ∈ Nn−1

0 with |α| ≤ k. By Theorem B.69,

the operators ∇′|α|L−|α|±,λ are isomorphisms in W s
p (Rn−1) for every s ≥ 0. Hence, by using the

commutativity L±,λe−yL±,λ = e−yL±,λL±,λ and by applying Theorem B.25, we see that

‖∂αx′w±‖H2
p(Rn±) . ‖L

|α|
±,λw±‖H2

p(Rn±) . ‖∇′|α|g1‖W 1−1/p
p (Rn−1)

+ ‖∇′|α|g2‖W 2−1/p
p (Rn−1)

.

The normal derivatives can be estimated similarly by means of ∂jye−yL±,λ = e−yL±,λ(−L±,λ)j .
This shows that w belongs to Hk+2

p (Ṙn) and satisfies (λ− µ∆)w = 0. Hence u = v + w belongs
to Ekλ(Ṙn) and solves Aλu = (f, h1, h2). Uniform bounds for ‖A−1

λ ‖ with respect to |arg λ| < φ
can be shown again by a scaling argument. �

Lemma 2.10 includes optimal Hk+2
p -regularity of the whole space model problem without

interface, since we can choose µ+ = µ− and restrict the operator Aλ to the case h1 = h2 = 0.
2.11. Corollary. Let µ0 ∈ (0, 1], k ∈ N0, φ ∈ (0, π), and p ∈ (1,∞). Then the operator

Aλ : Ekλ(Rn)→ Fkλ(Rn), u 7→ λu− div(µ∇u)

is uniformly invertible with respect to µ ∈ [µ0, µ
−1
0 ] and λ ∈ Σφ.

Finally, we consider the remaining model problem for Ω = Rn+ and Σ = ∅.
2.12. Lemma. Let µ0 ∈ (0, 1], k ∈ N0, φ ∈ (0, π), and p ∈ (1,∞). Then the operator

Aλ : Ekλ(Rn+)→ Fkλ(Rn+), u 7→ (λu− div(µ∇u),−µ∂nu)

is uniformly invertible with respect to µ ∈ [µ0, µ
−1
0 ] and λ ∈ Σφ.

Proof. We obtain the assertion by following the lines of the proof of Lemma 2.10, except for the
elimination of the boundary condition. Here a solution u to Aλu = (0, g) is given by

u(·, y) =
1

µ
L−1
λ e−yLλg, Lλ =

√
λ− µ∆′. �

2.1.4. Perturbed model problems. We next consider the model problem Aλu = (f, h2, h2)
for Ω = Rn, for a bent hyperplane Σω := θω(Rn−1) with θω(x′) := (x′, ω(x′)) for ω ∈ C2−

c (Rn−1)
and for constants parameters µ± > 0. This model problem reads as follows.

λu− µ∆u = f in Rn \ Σω,

[[µ∂νu]] = h1 on Σω,

[[u]] = h2 on Σω.

(2.16)
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2.13. Remark. Problem (2.16) can be reduced to a flat interface problem with the following
transformation. We only assume that ω is of class C1(Rn−1) and we consider the map

Θω : Rn → Rn, (x′, xn) 7→ (x′, xn + ω(x′)).

(i) It is easy to check that Θ−1
ω is given by (x′, xn) 7→ (x′, xn − ω(x′)) and that

∂Θω =

[
I 0

∂ω 1

]
, [∂Θω]−1 =

[
I 0

−∂ω 1

]
, det ∂Θω = 1.

Hence both Θω : Rn → Rn and Θω|Σ0 : Σ0 → Σω are C1-diffeomorphisms.
(ii) The hypersurface Σω has

(a) the tangent vectors τj ◦Θω = ej + ∂jω en for j < n,
(b) the unit normal vector ν ◦Θω = β(en −∇ω) with β := (1 + |∇ω|2)−1/2,
(c) the cotangent vectors τ j ◦Θω = ej + β2∂jω(en −∇ω).

For p ∈ (1,∞), k ∈ N0, ω ∈ Ck+2−
c (Rn−1), and λ ∈ C \ {0}, we employ the function spaces

Ekλ = Ekλ(Rn \ Σω) = Hk+2
p (Rn \ Σω),

Fkλ = Fkλ(Rn \ Σω) = Hk
p (Rn \ Σω)×W k+1−1/p

p (Σω)×W k+2−1/p
p (Σω),

equipped with the λ-dependent norms from Section 2.1.2.
2.14. Lemma. Let µ0 ∈ (0, 1], k ∈ N0, φ ∈ (0, π), and p ∈ (1,∞). Then there exists η > 0 such that
for every M > 0 we can find some λ0 ≥ 1 such that the operator

Aλ : Ekλ(Rn \ Σω)→ Fkλ(Rn \ Σω), u 7→ (λu− div(µ∇u), [[µ∂νu]], [[u]]) ,

is uniformly invertible with respect to

ω ∈ Ck+2−
c (Rn−1), ‖∇ω‖Wk+1

∞
≤M, ‖∇ω‖∞ ≤ η, µ± ∈ [µ0, µ

−1
0 ], λ ∈ Σφ, |λ| ≥ λ0.

Proof. (i) We study a transformation of the functions u ∈ Ekλ and (f, h1, h2) ∈ Fkλ to a
flat interface situation. The map Θ = Θω from Remark 2.13 is a Ck+2−-diffeomorphism from
Rn± := Rn−1 ×±(0,∞) onto Ω± := {(x′, xn) ∈ Rn : xn ≷ ω(x′)} and from Σ0 onto Σω. Both ∂Θ

and ∂Θ−1 belong to W k+1
∞ (Rn). We consider the pull-backs

u = u ◦Θ, f = f ◦Θ, hj = hj ◦Θ.

By means of the chain rule (B.19) and the substitution formula (A.12), it follows that

u ∈ Ekλ := Hk+2
p (Ṙn),

(f, h1, h2) ∈ Fkλ := Hk
p (Ṙn)×W k+1−1/p

p (Rn−1)×W k+2−1/p
p (Rn−1),

and that u 7→ u, Ekλ → Ekλ and (f, h1, h2) 7→ (f, h1, h2), Fkλ → Fkλ are topological linear isomor-
phisms. To be more precise, let 1 ≤ j ≤ k + 2. Then

‖λ(k+2−j)/2∇ju‖p ≤
j∑
i=1

∑
β,σ

|λ|−(j−i)/2

i!β!
‖λ(k+2−i)/2∇iu ◦Θ‖p‖∂β1Θ‖∞ · · · ‖∂βiΘ‖∞,

where the sum is taken over multi-indices β ∈ Ni such that |β| = j and all j! permutations σ of
{1, . . . , j}. From det ∂Θ = 1 we infer that ‖∇iu ◦Θ‖p = ‖∇iu‖p. This shows that

C(n, k,M)−1‖u‖Ekλ ≤ ‖u‖Ekλ ≤ C(n, k,M)‖u‖Ekλ ,(2.17)

whereC(n, k,M) is uniform with respect to those ω and λ that satisfy ‖∇ω‖Wk+1
∞
≤M and |λ| ≥

1. The relevant estimates for f in Hk
p (Ṙn) follow analogously and those of hj in Hk−1+j

p (Rn−1)
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follow from (A.12). Finally, since |∂Θ| ≤ (1 + |∇ω|2)1/2 and |∂Θ−1| ≤ (1 + |∇ω|2)1/2, we infer
again from (A.12) that the Slobodeckiı̆ semi-norm for s ∈ (0, 1) satisfies

[[g ◦Θ]]W s
p (Rn−1) ≤ (1 + ‖∇ω‖2∞)s/2+(n−1)/2p [[g]]W s

p (Σω) ,

[[g ◦Θ−1]]W s
p (Σω) ≤ (1 + ‖∇ω‖2∞)s/2+(n+1)/2p [[g]]W s

p (Rn−1) .

We conclude that

C(n, k, p,M)−1‖(f, h1, h2)‖Fkλ ≤ ‖(f, h1, h2)‖Fkλ ≤ C(n, k, p,M)‖(f, h1, h2)‖Fkλ .(2.18)

(ii) We derive the transformed problem. From (∇u) ◦Θ = [∂Θ]−>∇u we infer that

∂νu ◦Θ = (νΣω · ∇u) ◦Θ = −β∇′ω · ∇′u+ β−1∂nu, β = (1 + |∇′ω|2)−1.

With Θ−1
m := (Θ−1)m and ∂jΘ−1

m = δjm − δmn∂jω and ∆Θ−1
m = −δmn∆ω, we obtain

(∆u) ◦Θ = ∆u+
∑

jlm
∂l∂mu

(
∂jΘ

−1
l ∂jΘ

−1
m − δjlδjm

)
+
∑

l
∂lu∆Θ−1

l ,

= ∆u− 2∇∂nu · ∇ω + ∂2
nu |∇ω|2 + ∂nu∆ω.

Therefore problem (2.16) is transformed to

λu− µ∆u = f + F2u+ F1u in Ṙn,

[[µ∂nu]] = h1 +Hu on Rn−1,

[[u]] = h2 on Rn−1,

where the perturbations Fl = Fl(µ, ω) and H = H(µ, ω) are given by

F1u = −µ∆′ω ∂nu,

F2u = µ|∇′ω|2∂2
nu− 2µ∂n∇′u · ∇′ω,

Hu = β∇′ω · [[µ∇′u]] + (1− β−1)[[µ∂nu]].

(iii) Let us derive suitable estimates for Fl and H . Our goal is to show that

‖Fl(µ, ω)‖B(E
k
λ;Hk

p (Ṙn)),λ
+ ‖H(µ, ω)‖B(Ekλ;W

k+1−1/p
p (Rn−1)),λ

→ 0 as η → 0 and λ0 →∞.

To be precise, we shall show that for given ε > 0, there exist η = η(n, µ0, k, φ, p, ε) ∈ (0, 1] and
λ0 = λ0(n, µ0, k, φ, p,M, ε) ≥M−1 such that the estimate

‖Fl(µ, ω)u‖Hk
p (Ṙn),λ + ‖H(µ, ω)u‖

W
k+1−1/p
p (Rn−1),λ

≤ ε‖u‖Ekλ

is valid for all u ∈ Ekλ, all l ∈ {1, 2}, all ω ∈ Ck+2−
c (Rn−1) with ‖∇ω‖Wk+1

∞
≤M and ‖∇ω‖∞ ≤ η,

all µ± ∈ [µ0, µ
−1
0 ] and all λ ∈ Σφ with |λ| ≥ λ0.

For an estimation of Fl we let 0 ≤ j ≤ k. The product rule and Hölder’s inequality yield

‖λ(k−j)/2∇j(F1(µ, ω)u)‖p ≤ C(n, µ0, k)

j∑
i=0

|λ|−1/2−(j−i)/2‖∇j−i+2ω‖∞‖λ(k+2−i)/2∇iu‖p

≤ C(n, µ0, k,M)|λ|−1/2‖u‖Ekλ .

In the norm of F2u we control the leading order terms with a factor η as follows. For α ∈ Nn0
with |α| = k and for 0 ≤ j ≤ k we have

‖λ(k−|α|)/2F2(µ, ω)(∂αxu)‖p ≤ η C(n, µ0, k)‖u‖Ekλ ,

‖λ(k−j)/2∇j(F2(µ, ω)u)‖p ≤ η C(n, µ0, k)‖u‖Ekλ + |λ|−1/2C(n, µ0, k,M)‖u‖Ekλ .
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We emphasize that the coefficient C(n, µ0, k) near η does not depend on the bound M for the
derivatives of ω. For the estimations ofH , we use the property ‖1−β(ω)‖∞ → 0 as ‖∇ω‖∞ → 0
and the pointwise multiplication estimate (B.7). Furthermore, a scaling argument yields

‖v|xn=0‖Wm−1/p
p (Rn−1),λ

≤ C(n, p,m)‖v‖Hm
p (Rn+),λ for v ∈ Hm

p (Rn+), m ∈ N, λ ∈ C \ {0}.

Then the leading order terms in the norm of Hu are estimated by means of

[[H∂αu]]
W

1−1/p
p

≤ η C(n, µ0, p) [[∂αu]]
W

1−1/p
p

+ C(n, µ0, p,M)‖∂αu‖p, for |α| = k,

where we have used |∇ω| ≤ η ≤ 1 and β ≤ 1. We therefore obtain the estimate

‖H(η, ω)u‖
W
k+1−1/p
p (Rn−1),λ

≤ η C(n, µ0, k, p)‖u‖Ekλ + |λ|−1/2+1/2pC(n, µ0, k, p,M)‖u‖Ekλ .

(iv) We finally consider the operators

Aλ : u 7→ ((λ− µ∆)u, [[µ∂nu]], [[u]]) ,

P (µ, ω) : u 7→ (F2u+ F1u,H2u+H1u, 0) .

In Lemma 2.10 we have proved that Aλ : Ekλ → Fkλ is invertible and that

‖(Aλ)−1(f, h1, h2)‖Ekλ ≤ C(n, µ0, p, φ, k)‖(f, h1, h2)‖Fkλ .

With step (iii) we can choose numbers η(n, µ0, k, φ, p) ∈ (0, 1] and λ0(n, µ0, k, φ, p,M) ≥ 1

such that ‖(Aλ)−1P (µ, ω)u‖ ≤ 2−1‖u‖Ekλ . Then a Neumann series argument and the pull-back
estimates (2.17) and (2.18) imply that the desired solution u ∈ Ekλ to (2.16) is given by

u = A−1
λ (f, h1, h2) =

(
(I − (A

−1
λ )P (µ, ω))−1(Aλ)−1(f ◦Θ−1, h1 ◦Θ−1, h2 ◦Θ−1)

)
◦Θ.

This representation also shows the uniform bounds for A−1
λ . �

Next, we consider the perturbed model problem
λu− div(µ∇u) = f in Rn \ Σω,

[[µ∂νu]] = h1 on Σω,

[[u]] = h2 on Σω,

(2.19)

with variable coefficients

µ± : Ω± → (0,∞), Ω± := {(x′, xn) ∈ Rn : xn ≷ ω(x′)}.

2.15. Lemma. Let µ0 ∈ (0, 1], k ∈ N0, φ ∈ (0, π), and p ∈ (1,∞). Then there exists η > 0 such that
for every M > 0 we can find some λ0 ≥ 1 such that the operator

Aλ : Ekλ(Rn \ Σω)→ Fkλ(Rn \ Σω), u 7→ (λu− div(µ∇u), [[µ∂νu]], [[u]])

is uniformly invertible with respect to
(i) ω ∈ Ck+2−

c (Rn−1) with ‖∇ω‖Wk+1
∞
≤M and ‖∇ω‖∞ ≤ η,

(ii) µ± ∈W k+1
∞ (Ω±) with µ0 ≤ µ± ≤ µ−1

0 , ‖µ±‖Wk+1
∞
≤M , sup{|µ±(x)− µ±(y)| : x, y ∈ Ω±} ≤

2η,
(iii) λ ∈ Σφ with |λ| ≥ λ0.

Proof. We may choose constants µ∗± ∈ [µ0, µ
−1
0 ] such that sup{|µ±(x) − µ∗±| : x ∈ Ω±} ≤ η, for

instance µ∗± := (supµ± + inf µ±)/2. Then problem (2.19) can be written as

λu− µ∗∆u = f + div((µ− µ∗)∇u) in Rn \ Σω,

[[µ∗∂νu]] = h1 + [[(µ∗ − µ)∂νu]] on Σω,

[[u]] = h2 on Σω.
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Let A∗λ : u 7→ ((λ − µ∗∆)u, [[µ∗∂νu]], [[u]]) and P : u 7→ (div((µ − µ∗)∇u), [[(µ∗ − µ)∂νu]], 0). With
‖µ± − µ∗±‖∞ ≤ η and similar estimates as for the perturbations in Lemma 2.14, we obtain

‖div((µ− µ∗)∇u)‖Hk
p (Rn\Σω),λ ≤

(
η C(n, µ0, k) + |λ|−1/2C(n, µ0, k,M)

)
‖u‖Ekλ ,

‖[[(µ∗ − µ)∂νu]]‖
W
k+1−1/p
p (Σω),λ

≤
(
η C(n, µ0, k, p) + |λ|−1/2+1/2pC(n, µ0, k, p,M)

)
‖u‖Ekλ .

The operators A∗λ are uniformly invertible by Lemma 2.14 and a Neumann series argument
implies that for some η > 0 and λ0 ≥ 1, the operator Aλ = A∗λ − P is uniformly invertible. �

Lemma 2.15 includes the case Ω \ Σ = Rn, since µ is allowed to be continuous across Σ0.
2.16. Corollary. Let µ0 ∈ (0, 1], k ∈ N0, φ ∈ (0, π), and p ∈ (1,∞). Then there exists η > 0 such
that for every M > 0 we can find some λ0 ≥ 1 such that the operator

Aλ : Ekλ(Rn)→ Fkλ(Rn), u 7→ λu− div(µ∇u),

is uniformly invertible with respect to
(i) µ ∈W k+1

∞ (Rn) with µ0 ≤ µ ≤ µ−1
0 , ‖µ‖Wk+1

∞
≤M and sup{|µ(x)− µ(y)| : x, y ∈ Rn} ≤ 2η,

(ii) λ ∈ Σφ with |λ| ≥ λ0.
The bent half-space problem can be solved analogously as the bent interface problem, by

using the half-space result Lemma 2.12 instead of the flat interface result Lemma 2.10.
2.17. Corollary. Let µ0 ∈ (0, 1], k ∈ N0, φ ∈ (0, π), and p ∈ (1,∞). Then there exists η > 0 such
that for every M > 0 we can find some λ0 ≥ 1 such that the operator

Aλ : Ekλ(Rnω)→ Fkλ(Rnω), u 7→ (λu− div(µ∇u), µ∂νu) ,

is uniformly invertible with respect to
(i) ω ∈ Ck+2−

c (Rn−1) with ‖∇ω‖Wk+1
∞
≤M and ‖∇ω‖∞ ≤ η,

(ii) µ ∈W k+1
∞ (Rnω) with µ0 ≤ µ ≤ µ−1

0 , ‖µ‖Wk+1
∞
≤M and sup{|µ(x)− µ(y)| : x, y ∈ Ω±} ≤ 2η,

(iii) λ ∈ Σφ with |λ| ≥ λ0.

2.1.5. Bounded domains. We solve the strong transmission problem (2.9) in a bounded
domain Ω ⊂ Rn (n ≥ 2) with boundary ∂Ω ∈ Ck+2− (k ∈ N0) and compact interface Σ ⊂ Ω of
class Ck+2− for variable coefficients µ± : Ω± → (0,∞).
2.18. Theorem. Let µ0 ∈ (0, 1], φ ∈ (0, π), and p ∈ (1,∞). Then there exists η > 0 such that for all
M > 0 we can find some λ0 ≥ 1 such that the operator

Aλ : Ekλ(Ω \ Σ)→ Fkλ(Ω \ Σ), u 7→ (λu− div(µ∇u), µ∂νu, [[µ∂νu]], [[u]]) ,

is uniformly invertible with respect to
(i) µ ∈W k+1

∞ (Ω \ Σ) with µ0 ≤ µ± ≤ µ−1
0 and ‖µ±‖Wk+1

∞
≤M ,

(ii) λ ∈ Σφ with |λ| ≥ λ0.

Proof. We apply our localization technique from Section 2.1.1.
(i) We define the global spaces

E := Eλ := Ekλ(Ω \ Σ), F := Fλ := Fkλ(Ω \ Σ),

equipped with the λ-dependent norms from Section 2.1.2.
For definining local spaces we employ Lemma 2.9, which implies that for every η > 0

there exist a number r0 = r0(η) > 0 and an (η, r0(η))-localization set-up. In particular, we can
find a finite set I = I(η, r0(η)), an open covering for Ω of balls Uj = Br0(pj) (j ∈ I), rigid
transformations

Θj : x 7→ pj +Qjx, Br0(0)→ Uj ,
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and height functions ωj ∈ Ck+2−
c (Rn−1) with ‖∇ωj‖∞ ≤ η and ‖∇ω‖Wk+1

∞
≤ M(r). Further-

more, the index set can be decomposed into I = I1 ∪ I2 ∪ I3, where j ∈ I1 corresponds to the
whole space case Ω∩Uj = Θj(Rn∩Br0), j ∈ I2 corresponds to the bent half-space case Ω∩Uj =
Θj(Rnωj ∩ Br0), and j ∈ I3 corresponds to the bent hyperplane case Σ ∩ Uj = Θj(Σωj ∩ Br0).
Then we define

Ωj := Rn, Σj := ∅ for j ∈ I1,

Ωj := Rnωj , Σj := ∅ for j ∈ I2,

Ωj := Rn, Σj := Σωj for j ∈ I3.

Now we define the local spaces

Ej := Ej,λ := Ekλ(Ωj \ Σj), Fj := Fj,λ := Fkλ(Ωj \ Σj) for j ∈ I1 ∪ I2 ∪ I3.

We keep in mind that these definitions depend on the localization set-up and this will be fixed
in step (iv) during the definition of the local operators.

(ii) We next define approximation systems for E and F . Choose a smooth partition of unity
(ϕj)j∈I for Ω in Rn subordinate to (Uj)j∈I and choose smooth cut-off functions (ψj)j∈I with
suppψj ⊂ Br0 and ψj ◦Θ−1

j = 1 on suppϕj . Then we have
∑

j ψj ◦Θ−1
j ϕj = 1 in Ω. Define

ΦE,ju := (ϕju) ◦Θj , ΦF,j(f, g, h1, h2) := (ϕjf, ϕjg, ϕjh1, ϕjh2) ◦Θj ,

ΨE,juj := (ψjuj) ◦Θ−1
j , ΨF,j(fj , gj , h1j , h2j) := (ψjfj , ψjgj , ψjh1j , ψjh2j) ◦Θ−1

j .

The triples (E, (ΦE,j), (ΨE,j)) and (F, (ΦF,j), (ΨF,j)) are indeed lq-approximation systems forE
and F , as can be checked by means of pointwise multiplication W 1−1/p

p ×W 1
∞ →W

1−1/p
p (B.7),

the chain rule, the substitution formula (A.12), and the regularity condition ωj ∈ Ck+2−
c (Rn−1).

Moreover, we may choose any q ∈ [1,∞), since the set I is finite. Furthermore, the retractions
rE and rF and the co-retractions rcE and rcF are defined by

rcEu := (ΦE,ju)j∈J , rcF (f, g, h1, h2) := (ΦF,j(f, g, h1, h2))j∈J ,

rE(uj)j∈J :=
∑

j∈J
ΨE,juj , rF (fj , gj , h1j , h2j)j∈J :=

∑
j∈J

ΨF,j(fj , gj , h1j , h2j).

These operators satisfy the estimate

‖rX‖B(lq(X);X),λ + ‖rcX‖B(X;lq(X)),λ ≤ C(n, p, k, I(η, r),M(r), q) for X ∈ {E,F}.

The numbers η and r will be fixed below for proving optimal regularity of the relevant model
problems. Then the remaining perturbations will be controlled only by the largeness of λ0.

(iii) In order to define the local operatorsAλ,j , we first have to define local coefficients. As for
the construction of ωj in Lemma 2.9, we fix a smooth cut-off function χ ∈ B(Rn) with 0 ≤ χ ≤ 1,
χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. For j ∈ I3, we consider the transformed
coefficients µj := µ◦Θj that are defined onBr0 ∩Ωj \Σj . Given a radius r ∈ (0, r0/2], we define

µ̃j,r,±(x) := µj,±(0) +

{
χ(x/r)(µj,±(x)− µj,±(0)) for x ∈ Ωj,±, |x| < 2r,

0 for x ∈ Ωj,±, |x| ≥ 2r.

Then µ̃j,r,±(x) = µj,±(x) for all x ∈ Br ∩ Ωj,± and ‖µ̃j,r,± − µj,±(0)‖∞ → 0 as r → 0 by uniform
continuity of µj,±. Hence, for given η > 0 we can fix a number r = r(η) ∈ (0, r0/2] to ensure
that the local coefficients µj := µ̃j,r satisfy |µj,±(x) − µj,±(y)| ≤ 2η for all x, y ∈ Ωj,±, and all
j ∈ I3. In the case j ∈ I1 ∪ I2, we define µj analogously.
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(iv) Now we define local operators Aλ,j and fix the chart radius r such that these operators
are invertible and satisfy Assumption 2.5.(iv). Given a function uj ∈ Ej , we let

Aλ,juj :=


λuj − div(µj∇uj) if j ∈ J1,

(λuj − div(µj∇uj), µj∂νuj) if j ∈ J2,

(λuj − div(µj∇uj), [[µj∂νuj ]], [[uj ]]) if j ∈ J3.

By Corollaries 2.16 and 2.17 and Lemma 2.15, we can find a number η(n, µ0, k, φ, p) > 0 such
that for all M ≥ 1, there exists λ0(n, µ0, k, φ, p,M) ≥ 1 such that the operators Aλ,j (j ∈ I) are
uniformly invertible with respect to ωj ∈ Ck+2−

c (Rn−1) with ‖∇ωj‖Wk+1
∞
≤ M , ‖∇ωj‖∞ ≤ η;

and µj ∈ W k+1
∞ (Ωj \ Σj) with µ0 ≤ µj ≤ µ−1

0 , ‖µj,±‖Wk+1
∞
≤ M , and sup{|µj,±(x) − µj,±(y)| :

x, y ∈ Ωj,±} ≤ 2η; and λ ∈ Σφ with |λ| ≥ λ0. In order to fulfill these conditions, we now fix a
number r ∈ (0, r0/2] and an (η, r)-localization set-up (Uj ,Θj , ωj)j∈I(η,r) such that ‖∇ωj‖∞ ≤ η
and |µ±(x)−µ±(pj)| ≤ η for all x ∈ Uj∩Ω± and all j ∈ I(η, r). By compactness of ∂Ω and Σ and
since I is finite, there exists M = M(Ω,Σ, r) > 0 such that ‖∇ωj‖Wk+1

∞
≤M and ‖µj‖Wk+1

∞
≤M

for all j ∈ I(η, r). Now the aforementioned results yield suitable numbers λ0 and C such that

‖A−1
λ,j‖B(Fj ;Ej),λ ≤ C for j ∈ I, λ ∈ Σφ, |λ| ≥ λ0.

(v) Finally, we consider the perturbations Bλ,j and Cλ,j . Since the mappings Θj are affine
and since µj(x) = µ(Θj(x)) for x ∈ Br ∩ Ωj , we obtain

Bλ,ju = ΦF,jAλu−Aλ,jΦE,ju = (ϕjAλu) ◦Θj −Aλ,j((ϕu) ◦Θj)

= (µ∇ϕj · ∇u+ div(µ∇ϕj u),−µu∂νϕj , −[[µu]]∂νϕj , 0) ◦Θj .

This commutator is of lower order and therefore

‖Bλ,ju‖Fj ,λ ≤ |λ|
−1/2+1/2pC(n, µ0, k, φ, p,M)‖u‖E,λ for u ∈ E, λ ∈ C \ {0}, |λ| ≥ 1, j ∈ I.

Since I is finite and q ∈ [1,∞), it follows that

sup
06=u∈E

‖(Bλ,ju)j∈I‖lq(F),λ

‖u‖E,λ
≤ |λ|−1/2+1/2pC(n, µ0, k, φ, p,M, |I|, q).

For the perturbations Cλ,j = AλΨE,j −ΨF,jAλ,j we obtain

sup
06=(uj)j∈I∈lq(E)

‖
∑

j Cλ,juj‖F,λ
‖(uj)j∈I‖Lq(E),λ

≤ |λ|−1/2+1/2pC(n, µ0, k, φ, p,M, |I|, q).

Therefore Assumption 2.5 is satisfied and Proposition 2.6 yields the assertion. �

2.2. Transmission problems for div(µ∇·)

We prove optimal Ḣk+2
p -regularity for the strong transmission problem (2.1) and optimal Ḣ1

p -
regularity for the weak transmission problem (2.2). In Section 2.2.1 we define the solution space
Ek and the data space Fk that are equipped with equivalent λ-dependent norms. For the basic
model problems in Ṙn, Rn+, and Rn, we prove optimal Ek-regularity in Section 2.2.2, uniformly
with respect to λ and ω. Perturbed model problems are solved in Section 2.2.3 for sufficiently
large λ. For a bounded domain Ω ⊂ Rn with compact hypersurface Σ ⊂ Ω, we solve the weak
transmission problem in Section 2.2.4 and the strong transmission problem in Section 2.2.5.



40 2. LINEAR ELLIPTIC TRANSMISSION PROBLEMS

2.2.1. λ-dependent norms for div(µ∇·). For p ∈ (1,∞), k ∈ N0, and an open set G ⊂ Rn,
we consider the semi-normed vector space Ḣkp(G) from page 23. The semi-norm ‖φ‖Ḣkp(G) =

‖∇kφ‖Lp(G) vanishes if and only if φ belongs to the vector space Pk−1 of all polynomials of
degree not larger than k − 1 [cf. Gru09, Theorem 4.19]. Therefore its quotient space

Ḣk
p (G) := Ḣkp(G)/Pk−1, ‖φ‖Ḣk

p (G) := ‖∇kφ‖Lp(G),

the homogeneous Sobolev space, is a Banach space [cf. Gal11, Exercise III.1.2]. Alternatively, the
vector space Ḣkp(G) becomes a Banach space when it is endowed with the norm

‖φ‖Ḣkp(G)∩Lp(G′) := ‖∇kφ‖Lp(G) + ‖φ‖Lp(G′),

with some non-empty bounded smooth subdomain G′ ⊂ G. The corresponding norms for
different subdomains G′ are equivalent [cf. Gal11, Section III.1].

Let Ω and Σ satisfy Assumption 2.1. We consider the semi-normed vector space

Ḣkp(Ω̇) = Ḣkp(Ω \ Σ) :=
{
u ∈ Hk

p,loc(Ω \ Σ) : u± ∈ Hk
p,loc(Ω±),∇ku± ∈ Lp(Ω±)

}
,

whose semi-norm ‖u‖Ḣkp(Ω\Σ) := ‖∇ku‖Lp(Ω) vanishes if and only if u± ∈ Pk−1. Then, given
k ∈ N0 ∪ {−1}, λ ∈ (0,∞), and p ∈ (1,∞), we define the solution space

Ekλ :=
(
Ek, ‖·‖Ekλ

)
, Ek :=

(⋂k+2

j=1
Ḣjp(Ω \ Σ)

)/
K,(2.20)

which is a Banach space with respect to the equivalent λ-dependent norm

‖u‖Ekλ :=
∑k+2

j=1
‖λ(k+2−j)/2∇ju‖Lp(Ω) + ‖λ(k+2)/2−1/2p[[u]]‖Lp(Σ′λ) + ‖λ(k+2)/2(u− 〈u〉Ω′λ)‖Lp(Ω′λ).

Here Ω′λ bounded subdomain of Ω \Σ with C1-boundary and, in the case Σ 6= ∅, we let Σ′λ 6= ∅
be a bounded subdomain of Σ with C1-boundary. If Σ = ∅, then we let Σ′λ = ∅. If the semi-
norm ‖u‖Ekλ vanishes, then both u± are constant in Ω± and these constants coincide because of
[[u]] = 0 on Σ′λ. Hence the null space of the semi-norm ‖·‖Ekλ consists of all constant functions
and we will see that this is precisely the space of solutions with trivial data. The parameter λ
will again be useful for controlling lower-order perturbations in perturbed model problems.

In order to define the space of data, we recall from page 24 that the functionals F(f,g,h1) and
Fµ∇u are considered as elements of the dual space

Ĥ−1
p (Ω) := Ḣ1

p′(Ω)∗, ‖F‖Ĥ−1
p (Ω) := sup

06=φ∈Ḣ1
p′ (Ω)

|〈F |φ〉|
‖∇φ‖Lp′ (Ω)

,
1

p
+

1

p′
= 1.

Then the space of data for k = −1 is defined by

F−1
cc,λ :=

(
F−1

cc , ‖·‖F−1
cc,λ

)
, F−1

cc := Ĥ−1
p (Ω)× Ẇ1−1/p

p (Σ),

which is a Banach space with respect to the equivalent λ-dependent norm

‖(F, h2)‖F−1
cc,λ

:= ‖F‖Ĥ−1
p (Ω) + [[h2]]

W
1−1/p
p (Σ)

+ ‖λ1/2−1/2ph2‖Lp(Σ′λ).

For k ≥ 0, it is defined by

Fkcc,λ :=
(
Fkcc, ‖·‖Fkcc,λ

)
, Fkcc :=

{
(f, g, h1, h2) ∈ Fk : F(f,g,h1) ∈ Ĥ−1

p (Ω)
}
,

where

Fk := Hk
p (Ω \ Σ)×W k+1−1/p

p (∂Ω)×W k+1−1/p
p (Σ)×

⋂k+2

j=1
Ẇj−1/p
p (Σ),
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which is a Banach space with respect to the equivalent λ-dependent norm

‖(f, g, h1, h2)‖Fkcc,λ
:= ‖(f, g, h1, h2)‖Fkλ + ‖λ(k+1)/2F(f,g,h1)‖Ĥ−1

p (Ω),

‖(f, g, h1, h2)‖Fkλ := ‖f‖Hk
p (Ω\Σ),λ + ‖g‖

W
k+1−1/p
p (∂Ω),λ

+ ‖h1‖Wk+1−1/p
p (Σ),λ

+ ‖h2‖⋂k+2
j=1 W

j−1/p
p (Σ)∩Lp(Σ′λ),λ

,

where

‖f‖Hk
p (Ω\Σ),λ :=

∑k

j=0
‖λ(k−j)/2∇jf‖Lp(Ω),

‖g‖
W
k+1−1/p
p (∂Ω),λ

:= [[∇kΣg]]
W

1−1/p
p (∂Ω)

+
∑k

j=0
|λ|1/2−1/2p‖λ(k−j)/2∇j∂Ωg‖Lp(∂Ω),

‖h1‖Wk+1−1/p
p (Σ),λ

:= [[∇kΣh1]]
W

1−1/p
p (Σ)

+
∑k

j=0
|λ|1/2−1/2p‖λ(k−j)/2∇jΣh1‖Lp(Σ),

‖h2‖⋂k+2
j=1 W

j−1/p
p (Σ)∩Lp(Σ′λ),λ

:= [[∇k+1
Σ h2]]

W
1−1/p
p (Σ)

+
∑k+1

j=1
|λ|1/2−1/2p‖λ(k+1−j)/2∇jΣh2‖Lp(Σ)

+ ‖λ(k+2)/2−1/2ph2‖Lp(Σ′λ).

In the basic situations Ω \ Σ ∈ {Rn,Rn+, Ṙn}, Ω′λ = λ−1/2Ω′1, and Σ′λ = λ−1/2Σ′1, we obtain

‖u‖Ekλ = ‖uλ‖Ek1 , ‖(f, g, h1, h2)‖Fkλ = ‖(fλ, gλ, h1λ, h2λ)‖Fk1 ,

where the rescaled functions uλ, fλ, gλ, h1λ, and h2λ were defined in Section 2.1.2.

2.2.2. Basic model problems. In order to solve problem (2.1), we have to determine the
null space and range of the operator L := div(µ∇·), considered as an unbounded operator in
Lp(Ω). It is clear that all constant functions belong to N(L) and the converse inclusion follows
for p ≥ 2n/(n+2) from an integration by parts. For the remaining case p ∈ (1, 2n/(n+2)), which
is more involved, Simader and Sohr [SS92] obtained the following weak a priori estimate.
2.19. Theorem ([cf. SS92]). Let n ≥ 2, p ∈ (1,∞), and let Ω ⊂ Rn be either

(i) the whole space Rn,
(ii) the half space Rn+ = Rn−1 × (0,∞),

(iii) a bent half space Rnω = {(x′, xn) ∈ Rn : xn > ω(x′)} whose defining function ω ∈ C1
c (Rn−1)

satisfies ‖∇′ω‖∞ ≤ η for some η = η(n, p) > 0,
(iv) a bounded domain in Rn with C1-boundary,
(v) or an exterior domain in Rn with C1-boundary; that is, Rn \ Ω is a bounded domain.

Then there exists a constant C = C(n, p, η,Ω) > 0 such that

‖∇u‖Lp(Ω) ≤ C sup

{∣∣∫
Ω∇u · ∇φdx

∣∣
‖∇φ‖Lp′ (Ω)

: φ ∈ Ḣ1
p′(Ω) \ {0}

}
for u ∈ Ḣ1

p(Ω).(2.21)

We start with the analog of Lemma 2.10 for the case Ω = Rn, Σ = Rn−1 × {0} and λ = 0;
that is, we consider the strong and the weak transmission problem

−µ∆u = f in Ṙn,
[[µ∂nu]] = h1 on Rn−1,

[[u]] = h2 on Rn−1.

 ,


∫
Rn
µ∇u · ∇φdx = 〈F |φ〉 for all φ ∈ Ḣ1

p′(R
n),

[[u]] = h2 on Rn−1,

 ,(2.22)

with constant coefficients µ± > 0. Here the functionals Fµ∇u and F(f,h1) on Ḣ1
p′(R

n) are given

〈Fµ∇u|φ〉 :=

∫
Rn
µ∇u · ∇φdx,

〈
F(f,h1)

∣∣φ〉 :=

∫
Rn
fφ dx−

∫
Rn−1

h1φdx
′, for φ ∈ Ḣ1

p′(R
n).
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Our goal is to prove that the induced operator

A : Ekλ → Fkλ, Au =

{
(−div(µ∇u), [[µ∂nu]], [[u]]) if k ≥ 0,

(Fµ∇u, [[u]]) if k = −1,
(2.23)

is an isomorphism. In order to deal with k = −1, we modify the strategy of [SS92, Lemma
3.3]; thus, we first derive a variant of the Calderòn-Zygmund estimate ‖∇2φ‖p . ‖∆φ‖p for
φ ∈ D(Rn).
2.20. Lemma. Let n ≥ 2, Σ := Rn−1 × {0}, µ± > 0, and p ∈ (1,∞), and define the vector spaces

Y := Yµ :=
{

(x′, xn) 7→ a′ · x′ + bµ(xn)−1xn + c : a′ ∈ Kn−1, b, c ∈ K
}
,

X := Xp,µ :=
{
u ∈ Ḣ2

p(Ṙn) : [[µ∂nu]] = [[u]] = 0 on Σ
}
, ‖u‖X = ‖∇2u‖Lp(Rn).

Then X/Y is a Banach space and the map

−µ∆: X/Y → Lp(Rn)

is a topological linear isomorphism. In particular, there exists C(n, p, µ±) > 0 such that

C−1‖∇2u‖Lp(Rn) ≤ ‖µ∆u‖Lp(Rn) ≤ C‖∇2u‖Lp(Rn) for all u ∈ X.(2.24)

Furthermore, the map

A : u 7→ (−µ∆u, [[µ∂nu]], [[u]]) , Ḣ2
p(Ṙn)/Y → Lp(Rn)× Ẇ 1−1/p

p (Rn−1)× Ẇ 2−1/p
p (Rn−1)

is uniformly invertible with respect to µ± ∈ [µ0, µ
−1
0 ], for every µ0 ∈ (0, 1].

Proof. (i) For the injectivity of −µ∆ modulo Y we adapt an argument of Wilke [Wil13,
p. 104–105]. Suppose that u ∈ X satisfies −µ∆u = 0 in the sense of D′(Ṙn). Then we even have
∆u = 0 inD′(Ṙn), but not necessarily inD′(Rn). We put v+ := u+−Ru− on Rn+ and v− := −Rv+

on Rn− where (Rφ)(x′, xn) := φ(x′,−xn) denotes even reflection. From [[u]] = 0 we infer that
v = 0 on Σ and hence also [[∇v]] = en[[∂nv]] on Σ. But since ∂nv+ = −∂n(Rv−) = ∂nv−, we have
[[∂nv]] = 0, which yields v ∈ Ḣ2

p(Rn) and integrating by parts yields −∆v = 0 in D′(Rn). Here
the negative Laplacian represents the Riesz potential J̇2 = −∆: Ḣ2

p (Rn) → Lp(Rn), which is a
topological isomorphism (Theorem B.15). Hence v must be a linear map.

In an analogous way we can check that w+ := µ+u+ + µ−Ru− on Rn+ and w− := Rw+ on
Rn− yield a function w ∈ Ḣ2

p(Rn) with [[w]] = 0, ∂nw = 0 on Rn−1, and−∆w = 0. Hence also w is
a linear map. By using that u± are linear combinations of v± and w±, we easily see that u ∈ Y .

(ii) For the surjectivity of −µ∆, we construct u = v + w ∈ X where v ∈ Ḣ2
p(Rn) is a repre-

sentative of (−∆)−1(µ−1f) ∈ Ḣ2
p (Rn) and w ∈ Ḣ2

p(Ṙn) satisfies

−∆w = 0 in D′(Ṙn), [[w]] = 0 on Σ, [[µ∂nw]] = −[[µ∂nv]] on Σ.

By applying the partial Fourier transform and solving the resulting system, we obtain

w̃(ξ′, xn) = ((µ+ + µ−)|ξ′|)−1e−|ξ
′xn|[[µ∂nṽ]](ξ′) for ξ′ ∈ Rn−1, xn ∈ Ṙ.

Therefore w has the following representation, which can be seen by using Jawerth’s trace theo-
rem Ḣ2

p (Rn)|xn=0 = Ẇ
2−1/p
p (Rn−1) from Theorem B.31, the Riesz potential J̇ ′−1 = (−∆′)−1/2,

and the Poisson semigroup P (xn) = e−xn(−∆′)1/2
:

w(·, xn) = (µ+ + µ−)−1e−|xn|(−∆′)1/2
((−∆′)−1/2[[µ∂nv]]).

Hence, w belongs to Ḣ2
p(Ṙn) and satisfies the asserted a priori estimate. Therefore the operator

−µ∆: X → Y is surjective and has a bounded right-inverse.
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(iii) Finally, we consider the map A : u 7→ (−µ∆u, [[µ∂nu]], [[u]]), which is injective by step
(i). For proving surjectivity, we let (f, h1, h2) ∈ Lp(Rn) × Ẇ

1−1/p
p (Rn−1) × Ẇ

2−1/p
p (Rn−1) be

given. We construct u = v + w with v = (−∆)−1(µ−1f) ∈ Ḣ2
p(Rn) and −µ∆w = 0, [[µ∂nw]] =

h1 − [[µ∂nv]], [[w]] = h2. The function w can be constructed as in step (ii) and is given by

w(·,±xn) = (µ+ + µ−)−1e−|xn|(−∆′)1/2
(−(−∆′)−1/2(h1 − [[µ∂nv]])± µ∓h2).

Therefore A is uniformly invertible with respect to µ± ∈ [µ0, µ
−1
0 ]. �

2.21. Remark. The space Xp,µ = {u ∈ Ḣ2
p(Ṙn) : [[µ∂nu]] = [[u]] = 0 on Σ} can be identified with

the standard space Ḣ2
p(Rn) by means of the bijection

Tµ := Ḣ2
p(Rn)→ Xp,µ, (Tµu)(x′, xn) = u(x′, µ(xn)−1xn).

The semi-norms ‖∇kTµ·‖Lp(Rn) and ‖∇k·‖Lp(Rn) are equivalent on Ḣkp(Rn) for k ∈ N0.
In order to deal with the case k = −1, we provide some density results.

2.22. Lemma. Let n ≥ 2, Σ := Rn−1 × {0}, µ± > 0, and p ∈ (1,∞).
(i) For u ∈ Ḣ1

p(Rn) and ε > 0 there exists uε ∈ Xp,µ ∩ Ḣ1
p(Rn) such that ‖∇(uε − u)‖Lp(Rn) ≤ ε.

(ii) For u ∈ Xp,µ and ε > 0 there exists uε ∈ Xp,µ ∩ Ḣ1
p(Rn) such that ‖∇2(uε − u)‖Lp(Rn) ≤ ε.

Proof. (i) We shall construct uε by an anisotropic mollification. Let ϕr denote the Friedrichs
mollifier with support Br(0) ⊂ Rn; that is, ϕr(x) = r−nϕ(x/r) with some ϕ ∈ D(Rn) such that
ϕ ≥ 0,

∫
Rn ϕdx = 1, and suppϕ = B1(0). Then we consider the function

ur := Tµ(ϕr ∗ (T−1
µ u)) for r > 0.

Then ϕr ∗ (T−1
µ u) belongs to C∞(Rn) and hence [[uε]] = [[µ∂nuε]] = 0. Moreover,

∇(T−1
µ ur) = ϕr ∗ ∇(T−1

µ u)→ ∇(T−1
µ u) in Lp(Rn) as r → 0,

and hence also ∇ur → ∇u in Lp(Rn). Finally, from T−1
µ u ∈ Ḣ1

p(Rn) and ϕr ∈ D(Rn) we infer
that ϕr ∗ (T−1

µ u) belongs to Ḣ2
p(Rn). Hence, for some sufficiently small r = r(ε) > 0, there exists

some uε := ur(ε) ∈ Xp,µ ∩ Ḣ1
p(Rn) with the desired properties.

(ii) By Remark 2.21, the function T−1
µ u belongs to the usual homogeneous space Ḣ2

p(Rn)

and thanks to Remark B.12, there is a linear function v0 : Rn → K such that ϕr∗(χR ·(T−1
µ u−v0))

converges to T−1
µ u − v0 in Ḣ2

p(Rn) as r → 0 and R → ∞. Here χR ∈ D(Rn) denotes the radial
Sobolev cut-off function with supportBR(0). Since ϕr ∗ (χR · (T−1

µ u−v0)) belongs toD(Rn), the
function uε = Tµ(ϕr ∗ (χR · (T−1

µ u − v0))) belongs to Xp,µ ∩ Ḣ1
p(Rn) and satisfies the assertion

for some small r = r(ε) > 0 and some large R = R(ε) > 0. �

We are ready to prove optimal E−1-regularity in the case Σ ∼= Rn−1 and [[u]] = 0.

2.23. Lemma. Let n ≥ 2, Σ := Rn−1×{0}, Ṙn := Rn \Σ, µ0 ∈ (0, 1], and p ∈ (1,∞). Then the map

u 7→ Fµ∇u, Ḣ1
p (Rn)→ Ĥ−1

p (Rn)

is uniformly invertible with respect to µ± ∈ [µ0, µ
−1
0 ].

Proof. (i) Similar as in [SS92, Lemma 3.3], we prove that u 7→ Fµ∇u is injective and bounded
from below. For u ∈ (Ḣ2

p ∩ Ḣ1
p)(Ṙn) := Ḣ2

p(Ṙn) ∩ Ḣ1
p(Ṙn) and φ ∈ (Ḣ2

p′ ∩ Ḣ1
p′)(Ṙ

n) we obtain∫
Rn
∂ju∆φdx =

∫
Rn
µ∇u · ∇(∂j(µ

−1φ)) dx+

∫
Σ

[[δjn∇u · ∇φ− ∂ju ∂nφ]] dx′.
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(i.a) Let j = n and assume that [[u]] = 0 and [[φ]] = 0. Then [[∇′u]] = ∇′[[u]] = 0 and [[∇′φ]] = 0.
Thus, the integrand in the interface integral vanishes; that is,

[[δjn∇u · ∇φ− ∂ju ∂nφ]] = [[∇′u · ∇′φ]] = 0.

Let Zn := {φ ∈ (Ḣ2
p′ ∩ Ḣ1

p′)(Ṙ
n) : [[µ−1∂nφ]] = [[φ]] = 0} = Xp′,µ−1 ∩ Ḣ1

p′(R
n). Then Lemma

2.22.(ii) implies that Zn is dense in Xp′,µ−1 . By Lemma 2.20, the map µ∆: Xp′,µ−1 → Lp′(Rn) =

µLp′(Rn) is bounded and surjective and the estimate ‖∇2φ‖Lp′ (Rn) ≤ C(n, p, µ)‖∆φ‖Lp′ (Rn)

applies to all φ ∈ Xp′,µ−1 . Therefore the space ∆Zn is dense in Lp′(Rn). Furthermore, µ−1∂nZn
is a subspace of Ḣ1

p′(R
n). Hence for every u ∈ Ḣ2

p(Ṙn) ∩ Ḣ1
p(Rn), we obtain

‖∂nu‖Lp(Rn) = sup
φ∈Zn,∆φ 6=0

|
∫
Rn ∂nu∆φdx|
‖∆φ‖Lp′ (Rn)

= sup
φ∈Zn,∆φ 6=0

|
∫
Rn µ∇u · ∇(µ−1∂nφ) dx|

‖∆φ‖Lp′ (Rn)

≤ C(n, p, µ) sup
φ∈Zn,∆φ 6=0

|
∫
Rn µ∇u · ∇(µ−1∂nφ) dx|
‖∇2φ‖Lp′ (Rn)

≤ C ′(n, p, µ)‖Fµ∇u‖Ĥ−1
p (Rn).

By Lemma 2.22.(i), the inequality also applies to all u ∈ Ḣ1
p(Rn).

(i.b) Let j < n, [[u]] = 0, and [[µ−1φ]] = [[∂nφ]] = 0. Then the interface integral vanishes, since

−[[δjn∇u · ∇φ− ∂ju ∂nφ]] = [[∂ju ∂nφ]] = 0.

We now let Zj := {φ ∈ Ḣ2
p′(Ṙ

n) ∩ Ḣ1
p′(Ṙ

n) : [[∂nφ]] = [[µ−1φ]] = 0}. Then it is easy to check that
µ−1Zj = Xp′,µ ∩ Ḣ1

p′(R
n) and µ−1∂jZj ⊂ Ḣ1

p′(R
n) and that ∆Zj is dense in Lp′(Rn). Therefore

the desired inequality follows in the same way as before.
(ii) It remains to show that u 7→ Fµ∇u is surjective. Let F ∈ Ĥ−1

p (Rn) = Ḣ1
p′(R

n)∗. Since
we may identify Ḣ1

p′(R
n) with the closed subspace ∇Ḣ1

p′(R
n) of Lp′(Rn)n, there exists some

f ∈ Lp(Rn)n with ‖f‖Lp(Rn)n = ‖F‖Ĥ−1
p (Rn) such that 〈F |φ〉 =

∫
Rn f · ∇φdx for all φ ∈ Ḣ1

p′(R
n)

[cf. AF03, Theorem 3.9]. Let (fk) ⊂ H1
p (Ṙn)n be a sequence such that fk → f in Lp(Rn)n as

k →∞ and define

〈Fk|φ〉 :=

∫
Rn
fk · ∇φdx = −

∫
Rn

div fk φdx−
∫

Σ
[[en · fk]]φdx′.

Hence Fk → F in Ĥ−1
p (Rn). With Lemma 2.20, we let uk ∈ Ḣ2

p(Ṙn) ∩ Ḣ1
p(Rn) solve the system

−µ∆uk = −div fk, [[µ∂nuk]] = [[en · fk]], [[uk]] = 0.

Then we have Fµ∇uk = Fk and ‖∇uk−∇uk′‖Lp(Rn) ≤ C‖Fk−Fk′‖Ĥ−1
p (Rn). Therefore∇uk → ∇u

in Lp(Rn) for some u ∈ Ḣ1
p(Rn) and this limit satisfies Fµ∇u = F . �

We now prove optimal Ek-regularity for the transmission problems (2.22) in the flat inter-
face case Ω = Rn and Σ = Rn−1 × {0}. In the definition of the norms, we let Ω′λ = λ−1/2Ω′

and Σ′λ = λ−1/2Σ′, where Ω′ 6= ∅ and Σ′ 6= ∅ are bounded open subsets of Rn and Σ with
C1-boundaries.
2.24. Lemma. Let n ≥ 2, µ0 ∈ (0, 1], k ∈ N0 ∪ {−1}, and p ∈ (1,∞). Then the map A : Ekλ(Ṙn) →
Fkcc,λ(Ṙn) in (2.23) is uniformly invertible with respect to µ± ∈ [µ0, µ

−1
0 ] and λ ∈ (0,∞).

Proof. (i) Uniqueness. Let k = −1 and let u ∈ Ḣ1
p(Ṙn) satisfy Fµ∇u = 0 and [[u]] = 0. Then u

belongs to Ḣ1
p(Rn) and Lemma 2.23 implies that u is constant. For k ≥ 0 we consider a function

u ∈ Ekλ ⊂ (Ḣ2
p ∩ Ḣ1

p)(Ṙn) such that µ∇u = 0 and [[µ∂nu]] = [[u]] = 0. By Lemma 2.20, u is
constant.
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(ii) Existence for k = −1. Given F ∈ Ĥ−1
p (Rn) and h2 ∈ Ẇ1−1/p

p (Rn−1), we construct u =

v + w ∈ Ḣ1
p(Ṙn)/K as follows. Let E+ ∈ B(Ẇ

1−1/p
p (Rn−1); Ḣ1

p (Rn+)) be the extension operator
from Theorem B.31. Then the equivalence class E+(h2 +K) ∈ Ḣ1

p (Rn+) has a representative v+ ∈
Ḣ1
p(Rn+) with v+|xn=0 = h2. By choosing v− := 0, the function v belongs to Ḣ1

p(Ṙn) and satisfies
[[v]] = h2. Next, we determine w ∈ Ḣ1

p(Rn) as a solution to
∫
Rn µ∇w · ∇φdx = 〈F − Fµ∇v|φ〉 for

φ ∈ Ḣ1
p′(R

n) by means of Lemma 2.23. Then u = v + w belongs to E−1
λ and solves Fµ∇u = F

and [[u]] = h2.
(iii) Existence for k ≥ 0. We construct a solution u = u1 + u2 + u3 with

u1
± := µ−1

±
(
(−∆)−1(E±f±)

)∣∣
Rn±

,

u2
±(·,±xn) := −(µ+ + µ−)−1e−xn(−∆′)1/2

(−∆′)−1/2(h1 − [[µ∂nu
1]]),

u3
±(·,±xn) := ±µ∓(µ+ + µ−)−1e−xn(−∆′)1/2

(h2 − [[u1]]),

where xn > 0 and E± : Hk
p (Rn±) → Hk

p (Rn) is an extension operator. Indeed, the function u1

belongs to
⋂k+2
j=2 Ḣ2

p(Ṙn) by Theorem B.15 and satisfies −µ∆u1 = f . Hence h1 − [[µ∂nu
1]] be-

longs to
⋂k+1
j=1 Ẇ

j−1/p
p (Rn−1) and h2− [[u1]] belongs to

⋂k+2
j=2 Ẇ

j−1/p
p (Rn−1). Then Theorems B.15

and B.28 imply u ∈
⋂k+2
j=2 Ḣ

j
p(Ṙn) and we have [[µ∂nu]] = h1 and [[u]] = h2. Finally, Lemma 2.23

yields the estimate ‖∇u‖p . ‖F(f,h1)‖Ĥ−1
p (Rn) and therefore u belongs to Ekλ.

(iv) Uniform estimates with respect to λ. We employ the rescaled functions uλ, fλ, h1λ, and
h2λ from page 30. Then the identity Au = (f, h1, h2) is equivalent to Auλ = (fλ, h1λ, h2λ) and
we have

‖u‖Ekλ = ‖uλ‖Ek1 , ‖(f, h1, h2)‖Fkλ = ‖(fλ, h1λ, h2λ)‖Fk1 .

Therefore A−1 is uniformly bounded with respect to λ ∈ (0,∞) and µ± ∈ [µ0, µ
−1
0 ]. �

It remains to study the half-space problems{
−µ∆u = f in Rn+,
−µ∂nu = g on Rn−1.

}
,

{∫
Rn
µ∇u · ∇φdx = 〈F |φ〉 for all φ ∈ Ḣ1

p′(R
n).

}
,

with a constant coefficient µ > 0. The right one is (except for µ 6= 1) the weak Neumann
problem, which is covered by Theorem 2.19. However, we still have to verify the mapping
properties with respect to the higher regularity conditions.
2.25. Lemma. Let n ≥ 2, Ω = Rn+, µ0 ∈ (0, 1], k ∈ N0 ∪ {−1}, and p ∈ (1,∞). Then the operator

A : Ekλ(Rn+)→ Fkcc,λ(Rn+), u 7→ Au =

{
(−div(µ∇u),−µ∂nu) if k ≥ 0,

Fµ∇u if k = −1,

is uniformly invertible with respect to µ ∈ [µ0, µ
−1
0 ] and λ ∈ (0,∞).

Proof. (i) Uniqueness follows from Theorem 2.19.
(ii) Existence for k ≥ 0. We construct a solution u = u1 + u2 by

u1 := µ−1
(
(−∆)−1(E+f)

)∣∣
Rn+
,

u2(·, xn) := −µ−1e−xn(−∆′)1/2
(−∆′)−1/2

(
g + µ∂nu

1(·, 0)
)
.

(2.25)

Then u1 belongs to
⋂k+2
j=2 Ḣ2

p(Ṙn+) by Theorem B.15 and satisfies −µ∆u1 = f . Hence g +

µ∂nu
1(·, 0) belongs to

⋂k+1
j=1 Ẇ

j−1/p
p (Rn−1) and Theorems B.15 and B.28 imply u ∈

⋂k+2
j=2 Ḣ

j
p(Rn+)

and we have −µ∆u = f and −µ∂nu(·, 0) = g. Finally, the weak a priori estimate implies
‖∇u‖p . ‖F(f,g)‖Ĥ−1

p (Rn+) and therefore u belongs to Ekλ.
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(iii) Existence for k = −1. Let F ∈ Ĥ−1
p (Rn+) = Ḣ1

p′(R
n
+)∗. Since we may identify Ḣ1

p′(R
n
+)

isometrically with the closed subspace ∇Ḣ1
p′(R

n
+) of Lp′(Rn+)n, there exists f ∈ Lp(Rn+)n with

‖f‖p = ‖F‖Ĥ−1
p (Rn+) such that 〈F |φ〉 =

∫
Rn+
f ·∇φdx for all φ ∈ Ḣ1

p′(R
n
+) [cf. AF03, Theorem 3.9].

Let (fk) ⊂ H1
p (Ṙn+)n be a sequence such that fk → f in Lp(Rn+)n as k →∞ and let

〈Fk|φ〉 :=

∫
Rn+
fk · ∇φdx = −

∫
Rn+

div fk φdx+

∫
Rn−1

en · fk φdx′.

Then Fk → F in Ĥ−1
p (Rn+).

Next, we construct solutions uk = u1
k + u2

k ∈ Ḣ2
p(Rn+) ∩ Ḣ1

p(Rn+) of the systems

µ∆uk = div fk in Rn+, µ∂nuk = en · fk on Rn−1,

by using (2.25) with f replaced by −div fk. Then the identity Fµ∇uk = Fk is valid and we have
uk ∈ Ḣ1

p(Rn+) and ‖∇uk − ∇uk′‖p ≤ C‖Fk − Fk′‖Ĥ−1
p (Rn+). Therefore ∇uk → ∇u in Lp(Rn+) for

some u ∈ Ḣ1
p(Rn+) and this limit satisfies Fµ∇u = F .

(iv) The uniform estimates again follow from a scaling argument as on page 45. �

2.2.3. Perturbed model problems. We next solve the transmission problems
−div(µ∇u) = f in Ω \ Σ,

µ∂νu = g on ∂Ω,

[[µ∂νu]] = h1 on Σ,

[[u]] = h2 on Σ.

 ,


∫

Ω
µ∇u · ∇φdx = 〈F |φ〉 for all φ ∈ Ḣ1

p′(Ω),

[[u]] = h2 on Σ.

 .(2.26)

for the bent interface case Ω = Rn and Σ = Σω = {(x′, ω(x′)) : x′ ∈ Rn−1} with variable
coefficients µ± : Ω± → (0,∞), where Ω± = {(x′, xn) ∈ Rn : xn ≷ ω(x′)}. In the definitions
of the norms of Ekλ and Fkcc,λ from page 40, we let Ω′λ := Θω(λ−1/2Ω′) and Σ′λ := Θω(λ−1/2Σ′),
where Ω′ 6= ∅ and Σ′ 6= ∅ are bounded open subsets of Rn and Rn−1 × {0}with C1-boundaries.
The C1-diffeomorphism Θω : (x′, xn) 7→ (x′, xn + ω(x′)) was studied on page 34.
2.26. Lemma. Let n ≥ 2, µ0 ∈ (0, 1], k ∈ N0 ∪ {−1}, and p ∈ (1,∞). Then there exists η > 0 such
that for every M > 0 we can find some λ0 ≥ 1 such that the operator

A : Ekλ(Rn \ Σω)→ Fkcc,λ(Rn \ Σω), u 7→ Au =

{
(−div(µ∇u), [[µ∂νu]], [[u]]) if k ≥ 0,

(Fµ∇u, [[u]]) if k = −1,

is uniformly invertible with respect to
(i) ω ∈ C1

c (Rn−1) ∩ Ck+2−
c (Rn−1) with ‖∇ω‖Wk+1

∞
≤M and ‖∇ω‖∞ ≤ η,

(ii) µ± ∈ C(Ω±) ∩W k+1
∞ (Ω±) with µ0 ≤ µ ≤ µ−1

0 , ‖µ‖Wk+1
∞
≤ M , and sup{|µ±(x) − µ±(y)| :

x, y ∈ Ω±} ≤ 2η,
(iii) λ ∈ [λ0,∞).

Proof. (i) We first consider the case of constant coefficients µ± ∈ [µ0, µ
−1
0 ].

(i.a) Transformation to the flat interface. As for Lemma 2.14, we consider the pull-backs

u = u ◦Θ, h2 = h2 ◦Θ (for k ≥ −1),

where the C1-diffeomorphism Θ = Θω : (x′, xn) 7→ (x′, xn + ω(x′)) satisfies ∂Θ, ∂Θ−1 ∈
W k+1
∞ (Rn) (cf. p. 34). We further define

f = f ◦Θ, h1 = (1 + |∇ω|2)1/2h1 ◦Θ (for k ≥ 0).
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For φ ∈ Ḣ1
p′(R

n), (f, h1, h2) ∈ F0
cc,λ, φ = φ ◦ Θ, and u ∈ E−1

λ , we obtain the transformed
functionals〈

F(f,h1)

∣∣φ〉 =

∫
Rn
fφ dx−

∫
Σω

h1φdσ

=

∫
Rn
f φ|det ∂Θ| dx−

∫
Rn−1

√
1 + |∇ω|2(h1 ◦Θ)φdx′ =

〈
F(f,h1)

∣∣∣φ〉 ,
〈Fµ∇u|φ〉 =

∫
Rn
µ∇u · ∇φdx =

∫
Rn
µ[∂Θ]−>∇u · [∂Θ]−>∇φ|det ∂Θ| dx

=
〈
Fµ∇u

∣∣φ〉+

∫
Rn
µ∇u ·

(
[∂Θ]−1[∂Θ]−> − I

)
∇φdx.

Let Ekλ and Fkcc,λ denote the corresponding spaces on Ṙn. Then the maps u 7→ u, Ekλ → Ekλ
(k ≥ −1) and (f, h1, h2) 7→ (f, h1, h2), Fkcc,λ → Fkcc,λ (k ≥ 0) are linear bijections and we obtain
the estimates

C(n, k,M)−1‖u‖Ekλ ≤ ‖u‖Ekλ ≤ C(n, k,M)‖u‖Ekλ ,

C(n, k, p,M)−1‖(f, h1, h2)‖Fkcc,λ
≤ ‖(f, h1, h2)‖Fkcc,λ

≤ C(n, k, p,M)‖(f, h1, h2)‖Fkcc,λ
.

Here the numbers C(n, k,M) and C(n, k, p,M) are uniform with respect to λ ∈ [1,∞) and with
respect to those ω ∈ Ck+2−

c (Rn−1) which satisfy ‖∇ω‖Wk+1
∞
≤M . Since 2−1‖∇φ‖p′ ≤ ‖∇φ‖p′ ≤

2‖∇φ‖p′ for φ ∈ Ḣ1
p′(R

n), the map F 7→ F , defined by
〈
F
∣∣φ〉 := 〈F |φ〉 for φ ∈ Ḣ1

p′(R
n), is an

isomorphism of Ĥ−1
p (Rn), and we have

2−1‖F‖Ĥ−1
p (Rn) ≤ ‖F‖Ĥ−1

p (Rn) ≤ 2‖F‖Ĥ−1
p (Rn) for F ∈ Ĥ−1

p (Rn).

(i.b) The transformed problems are given by (cf. p. 35)
λu− µ∆u = f + P2u+ P1u in Ṙn,

[[µ∂nu]] = h1 +Hu on Rn−1,

[[u]] = h2 on Rn−1.

 ,

{
Fµ∇u = F + P3u in Ĥ−1

p (Rn),

[[u]] = h2 on Rn−1.

}
.

Here the perturbations Pl = Pl(µ, ω) and H = H(µ, ω) are given by

P1u = −µ∆′ω ∂nu,

P2u = µ|∇′ω|2∂2
nu− 2µ∂n∇′u · ∇′ω,〈

P3u
∣∣φ〉 =

∫
Rn
µ∇u ·

(
[∂Θ]−1[∂Θ]−> − I

)
∇φdx,

Hu = ∇′ω · [[µ∇′u]]− |∇ω|2[[µ∂nu]].

For u ∈ Ekλ and λ ∈ [λ0,∞) we obtain the following estimates (cf. p. 35).

‖λ(k−j)/2∇j(P1u)‖p ≤ λ−1/2C(n, µ0, k,M)‖u‖Ekλ for 0 ≤ j ≤ k,

‖λ(k−j)/2∇j(P2u)‖p ≤
(
η C(n, µ0, k) + λ−1/2C(n, µ0, k,M)

)
‖u‖Ekλ for 0 ≤ j ≤ k,

‖λ(k+1)/2P3u‖Ĥ−1
p (Rn) ≤ η C(n, µ0)‖u‖Ekλ ,

‖Hu‖
W
k+1−1/p
p (Rn−1),λ

≤ (η + λ−1/2+1/2p)C(n, µ0, k, p,M, λ0)‖u‖Ekλ for k ≥ 0.

Therefore a Neumann series argument as on page 36 yields the invertibility of A and the uni-
form bounds in the case of constant coefficients µ± ∈ [µ0, µ

−1
0 ].



48 2. LINEAR ELLIPTIC TRANSMISSION PROBLEMS

(ii) For variable coefficients µ±, we proceed as in the proof of Lemma 2.15. We study the
perturbed problems (cf. p. 36)

λu− µ∗∆u = f + P4u in Rn \ Σω,

[[µ∗∂νu]] = h1 +H2u on Σω,

[[u]] = h2 on Σω.

 ,

{
Fµ∗∇u = F + P5u in Ĥ−1

p (Rn),

[[u]] = h2 on Σω.

}
,

where the perturbations Pl = Pl(µ, ω) and H2 = H2(µ, ω) are given by

P4u = div((µ− µ∗)∇u),

〈P5u|φ〉 =

∫
Rn

(µ− µ∗)∇u · ∇φdx,

H2u = [[(µ∗ − µ)∂νu]].

These perturbations can be estimated as follows.

‖P4u‖Hk
p (Rn\Σω),λ ≤

(
η C(n, µ0, k) + λ−1/2C(n, µ0, k,M)

)
‖u‖Ekλ if k ≥ 0,

‖λ(k+1)/2P5u‖Ĥ−1
p (Rn) ≤ η ‖u‖Ekλ ,

‖H2u‖Wk+1−1/p
p (Σω),λ

≤
(
η C(n, µ0, k, p) + λ−1/2+1/2pC(n, µ0, k, p,M)

)
‖u‖Ekλ if k ≥ 0.

Again, a Neumann series argument yields the uniform invertibility of A : Ekλ → Fkcc,λ. �

The solvability of the perturbed model problem (2.26) in case Ω = Rn and Ω′λ = λ−1/2Ω′ for
Ω′ ⊂ Rn and Σ = Σ′ = ∅ follows again by considering continuous coefficient functions.
2.27. Corollary. Let n ≥ 2, µ0 ∈ (0, 1], k ∈ N0 ∪ {−1}, and p ∈ (1,∞). Then there exists η > 0 such
that for every M > 0 we can find some λ0 ≥ 1 such that the operator

A : Ekλ(Rn)→ Fkcc,λ(Rn), u 7→ Au =

{
− div(µ∇u) if k ≥ 0,

Fµ∇u if k = −1,

is uniformly invertible with respect to µ ∈ C(Rn) ∩W k+1
∞ (Rn) with µ0 ≤ µ ≤ µ−1

0 , ‖µ‖Wk+1
∞
≤ M ,

and sup{|µ(x)− µ(y)| : x, y ∈ Rn} ≤ 2η, and λ ∈ [λ0,∞).
The bent half-space problems (2.26) for Ω = Rnω and Ω′λ = Θω(λ−1/2Ω′) with Ω′ ⊂ Rn+ and

Σ = Σ′ = ∅ can be solved analogously as the bent interface problem, by following the lines of
the proof of Lemma 2.26 and by using the half-space result Lemma 2.25.
2.28. Corollary. Let n ≥ 2, µ0 ∈ (0, 1], k ∈ N0 ∪ {−1}, and p ∈ (1,∞). Then there exists η > 0 such
that for every M > 0 we can find some λ0 ≥ 1 such that the operator

A : Ekλ(Rnω)→ Fkcc,λ(Rnω), u 7→ Au =

{
(−div(µ∇u), µ∂νu) if k ≥ 0,

Fµ∇u if k = −1,

is uniformly invertible with respect to
(i) ω ∈ C1

c (Rn−1) ∩ Ck+2−
c (Rn−1) with ‖∇ω‖Wk+1

∞
≤M and ‖∇ω‖∞ ≤ η,

(ii) µ ∈ C(Rnω) ∩W k+1
∞ (Rnω) with µ0 ≤ µ ≤ µ−1

0 , ‖µ‖Wk+1
∞
≤ M , and sup{|µ(x) − µ(y)| : x, y ∈

Rnω} ≤ 2η,
(iii) λ ∈ [λ0,∞).

2.2.4. The weak transmission problem in bounded domains. We next consider the prob-
lems (2.26) in bounded domain Ω ⊂ Rn with C1-boundary ∂Ω and C1-interface Σ ⊂ Ω and
variable coefficients µ± ∈ C(Ω±). We first study uniqueness of weak solutions.
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2.29. Lemma. Let Ω and Σ be bounded, let µ± ∈ C(Ω±) with inf µ± > 0 and p ∈ (1,∞). Then every
solution u ∈ H1

p (Ω) of the problem∫
Ω
µ∇u · ∇φdx = 0 for all φ ∈ D(Rn)

is a constant function.

Proof. The proof of this lemma is easy for p ∈ [2,∞), since we can choose φ = u, the complex
conjugate of u. For p ∈ (1, 2) we employ the localization procedure of [SS92, Lemma 3.9].

(i) First, we assume that ∇u belongs to L2(Ω). If p ≥ 2, then u belongs to H1
2 (Ω) by the

Poincaré-Wirtinger inequality. By choosing φ = u ∈ H1
2 (Ω) we obtain

∫
Ω µ∇u · ∇u dx = 0 and

hence ∇u = 0 in Ω, which yields the assertion. In the case p ∈ (1, 2), we let

1/qj := 1/p− j/n, j ∈ {0, 1, . . . , k},(2.27)

where k ∈ N0 is chosen such that 1/qk ≤ 1/2 < 1/qk−1. From the Sobolev embedding theorem
we obtain the embedding H1

qj (Ω) ↪→ Lqj+1(Ω). For j ≤ k we have ∇u ∈ L2(Ω) ↪→ Lqj (Ω) and
therefore induction yields u ∈ H1

qk
(Ω) ↪→ Lqk+1

(Ω) ↪→ L2(Ω). Hence u belongs to H1
2 (Ω) and

we again obtain ∇u = 0 in Ω. It remains to prove that ∇u ∈ L2(Ω) for all u ∈ H1
p (Ω) with

Fµ∇u = 0.
(ii) Localization set-up. Lemma 2.9 implies that for every given η > 0 there exists r0(η) > 0

such that for all r ∈ (0, r0(η)] we can find an (η, r)-localization set-up (Uj ,Θj , ωj)j∈I(η,r) for
Ω \Σ. Let I = I1 ∪ I2 ∪ I3, Θj : x 7→ pj +Qjx, Ωj , and Σj have the same meaning as in the proof
of Theorem 2.18 on page 37. We may also assume that the sets (Θj(Br2−k−1))j∈I cover Ω with k
from step (i).

There exists µ0 ∈ (0, 1] such that µ0 ≤ µ± ≤ µ−1
0 in Ω \ Σ. We now choose the number

η(n, µ0, p) > 0 such that Lemma 2.26 and Corollaries 2.27 and 2.28 are applicable. Then there
exists rµ(η) > 0 such that |µ±(x)−µ±(y)| ≤ 2η for all x, y ∈ Ω± with |x−y| ≤ 2rµ(η). We define
local coefficient functions µj as on page 38 and obtain ‖µj,± − µ∗j,±‖∞ ≤ η for some constants
µ∗j,± and all j ∈ I(η, r), provided that r ∈ (0, r0(η)/2] ∩ (0, rµ(η)/2]. Now the aforementioned
results are applicable and yield suitable numbers λ0 ≥ 1 and C ≥ 1 such that

‖∇(A−1
j Fj)‖Lp(Ωj) ≤ C‖Fj‖Ĥ−1

p (Ωj)
for Fj ∈ Ĥ−1

p (Ωj), j ∈ I, λ ∈ [λ0,∞),

(iii) We now show that∇u belongs to L2(Ω) by refining the argument in step (i). Let j ∈ I3

be fixed. We define the numbers ql (l ∈ {0, 1, . . . , k}) by (2.27) and let rl := r2−l (l ∈ {0, 1, . . . , k+
1}). We further choose ψl ∈ D(Brl) such that 0 ≤ ψl ≤ 1 and ψl = 1 on Brl+1

⊂ Rn. For every
v ∈ Ḣ1

p′(R
n), we let vl := v|Brl − 〈v〉Brl . Since (ψlvl) ◦ Θ−1

l belongs to Ḣ1
p′(Ω) and since ∂xΘj is

orthogonal, we obtain∫
Rn
µj∇(u ◦Θj) · ∇(ψlvl) dx =

∫
Ω
µ∇u · ∇((ψlvl) ◦Θ−1

j ) dx = 0.

With u := u ◦Θj , this yields∫
Rn
µj∇(ψlu) · ∇vl dx =

∫
Brl

µju∇ψl · ∇vl dx−
∫
Brl

µj∇u · (vl∇ψl) dx.(2.28)

From (2.28) we shall deduce that ψlu ∈ H1
ql

(Rn) for l ∈ {0, 1, . . . , k} by induction. For l = 0

the assertion is valid since q0 = p. Next, suppose that ψl−1u belongs to H1
ql−1

(Rn) for some
l ∈ {1, . . . , k}. With ψl−1 = 1 on Brl = Brl−1/2, this implies u ∈ H1

ql−1
(Brl) ↪→ Lql(Brl) by

the Sobolev embedding theorem. With the dual exponents q′l, defined by 1/q′l := 1 − 1/ql =
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1/p′ + l/n (l ∈ {0, 1, . . . , k}), we obtain v ∈ Ḣ1
p′(R

n) ⊂ Ḣ1
q′l,loc(R

n) ⊂ Lq′l−1,loc(Rn) from the
Poincaré-Wirtinger inequality and the Sobolev embedding theorem. Hence∣∣∣∣∣

∫
Brl

µju∇ψl · ∇vl dx

∣∣∣∣∣ ≤ ‖µju‖Lql (Brl )‖∇ψl‖∞‖∇vl‖Lq′l (Brl ) ≤ C1(µ, u, ψl)‖∇vl‖Lp′ (Rn),∣∣∣∣∣
∫
Brl

µj∇u · (vl∇ψl) dx

∣∣∣∣∣ ≤ ‖µj∇u‖Lql−1
(Brl )
‖v‖Lq′

l−1
(Brl )
‖∇ψl‖∞ ≤ C2(µ, u, ψl)‖∇vl‖Lp′ (Rn).

Since the map v 7→ vl + K, Ḣ1
p′(R

n) → Ḣ1
p′(Brl) is surjective, the identity (2.28) and Lemma

2.26 imply ∇(ψlu) ∈ Lql(Rn) and hence ψlu ∈ H1
ql

(Rn). Induction therefore yields ψku ∈
H1
qk

(Brk) ↪→ H1
2 (Brk) and hence u|B

r2−k−1
∈ H1

2 (Brj2−k−1). In the case j ∈ I1 ∪ I2 we proceed
analogously, by using Corollaries 2.27 and 2.28 instead of Lemma 2.26. Since the open sets
Θj(Brj2−k−1) cover Ω, we obtain u ∈ H1

2 (Ω \ Σ). Then step (i) yields the assertion. �

We are ready to prove that the weak transmission problem (2.2) has optimal Ḣ1
p -regularity.

Proof of Theorem 2.3. The cases Ω\Σ ∈ {Rn,Rnω,Rn \Σω}were solved in Lemma 2.26 and Corol-
laries 2.27 and 2.28. For the remaining case we follow the proof of [SS92, Theorem 1.3].

(i) We prove the weak a priori estimate

‖µ∇u‖Lp(Ω) ≤ C‖Fµ∇u‖Ĥ−1
p (Ω) for u ∈ Ḣ1

p(Ω).(2.29)

Assume that it is not true. Then we find a sequence (uk) ⊂ Ḣ1
p(Ω) such that

1 = ‖µ∇uk‖Lp(Ω) ≥ k‖Fµ∇uk‖Ĥ−1
p (Ω) for all k ∈ N.

We may assume that
∫

Ω uk dx = 0, so that the sequence ‖uk‖Lp(Ω) is bounded by the Poincaré-
Wirtinger inequality. Since H1

p (Ω) is compactly embedded into Lp(Ω), we may also assume
that the sequence (uk) converges in Lp(Ω) to some limit u ∈ Lp(Ω). Furthermore, the space
Z := {v ∈ Ḣ1

p(Ω) :
∫

Ω v dx = 0} with norm ‖µ∇·‖Lp(Ω) is isomorphic to the closed subspace
µ∇Z of Lp(Ω)n and therefore Z is reflexive. Hence we may even assume that u belongs to Z
and that (uk) converges weakly to u; that is, on the one hand Fµ∇uk → Fµ∇u in Ĥ−1

p (Ω), but
also

lim
k→∞

∫
Ω
µ∇uk · f dx =

∫
Ω
µ∇u · f dx for all f ∈ Lp′(Ω)n.(2.30)

Thus, Fµ∇u = 0 and hence Lemma 2.29 implies that∇u = 0.
Next, as in step (ii) in the proof of Lemma 2.29, we consider an open covering (Uj) for Ω

with j ∈ I = I1 ∪ I2 ∪ I3, and rigid transformations Θj : Br(0) ⊂ Rn → Uj ⊂ Rn. We assume
that the smaller sets Θj(Brj/2) form an open covering for Ω and choose functions ψj ∈ D(Br)
with 0 ≤ ψj ≤ 1 and ψj = 1 on Brj/2. The weak a priori estimates for the model problems in
Lemma 2.26 and Corollaries 2.27 and 2.28 imply that there is a number C(n, µ, p, η) > 0 such
that

‖∇(ψj uk ◦Θj)‖Lp(Ωj) ≤ C‖Fµj∇(ψj uk◦Θj)‖Ĥ−1
p (Ωj)

for j ∈ I, k ∈ N,

where the height functions ωj ∈ C1
c (Rn−1), j ∈ I2 ∪ I3, satisfy ‖∇′ωj‖∞ ≤ η and the local

coefficients µj satisfy ‖µj − µ∗j‖∞ ≤ η for some locally constant functions µ∗j .
Let j be fixed and put B := Br, uk := uk ◦ Θj . We choose a sequence (vk) ⊂ Ḣ1

p′(B) with∫
B vk dx = 0 and ‖∇vk‖Lp′ (B) = 1 which converges strongly to some v in Lp′(B) and satisfies∣∣∣∣∫

B
µj∇(ψjuk) · ∇vk dx

∣∣∣∣ ≥ dk − 1

k
, with dk := ‖Fµj∇(ψjuk)‖Ĥ−1

p (Ωj)
.
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In order to show that dk → 0, we compute∫
B
µj∇(ψjuk) · ∇vk dx

=

∫
B
µj∇uk · ∇(ψjvk) dx+

∫
B
µjuk∇ψj · ∇vk dx−

∫
B
µj∇uk · (vk∇ψj) dx.

Here the first summand on the right-hand side vanishes for k → ∞, which can be seen by
transforming the integral from B to Θj(B) with the orthogonality of ∂xΘj and by using that
Fµ∇uk → 0 in Ĥ−1

p (Ω). The second integral vanishes, since uk → 0 in Lp(Ω) and since ‖µj‖∞,
‖∇ψj‖∞, ‖∇vk‖p′ , ‖∇′ωj‖∞ are bounded. Finally, since ‖vk‖p′ is bounded, we may use (2.30)
and ∇u = 0 to conclude that also the third integral vanishes.

We have shown that limk→∞ Fµj∇(ψj uk◦Θj) = 0 in Ĥ−1
p (Ωj) for each j. The weak a priori

estimates for the model problems therefore imply that limk→∞∇(ψj uk ◦Θj) = 0 in Lp(Br)n for
every j. With ψj = 1 on Brj/2 and since the sets Θj(Brj/2) cover Ω, we conclude that ∇uk → 0

in Lp(Ω). This is a contradiction to ‖µ∇uk‖Lp(Ω) = 1. Therefore estimate (2.29) is valid.
(ii) Existence for given F ∈ Ĥ−1

p (Ω) and h2 = 0. We employ the strategy from [SS92, Lemma
3.1]. Since the space ∇Ḣ1

p(Ω) is closed in Lp(Ω)n, it follows from step (i) that X := {Fµ∇u : u ∈
Ḣ1
p(Ω)} is a closed subspace of Ĥ−1

p (Ω). We assume that X 6= Ĥ−1
p (Ω) and seek a contradiction.

The Hahn-Banach theorem yields a non-trivial functional J ∈ (Ĥ−1
p (Ω))∗ \ {0} such that J |X =

0. Since closed subspaces and quotient spaces of reflexive spaces are again reflexive, we may
identify (Ĥ−1

p (Ω))∗ = (Ḣ1
p′(Ω))∗∗ ∼= Ḣ1

p′(Ω). Hence there exists a unique φ ∈ Ḣ1
p′(Ω) with

‖∇φ‖Lp′ (Ω)n = ‖J‖Ĥ−1
p (Ω)∗ 6= 0 such that 〈J |F 〉 = 〈F |φ〉 for every F ∈ Ĥ−1

p (Ω). Using assertion

(i) for p′ instead of p and considering only the functionals Fµ∇u for u ∈ Ḣ1
p(Ω), we see that

‖∇φ‖Lp′ (Ω) . sup
06=u∈Ḣ1

p(Ω)

|
∫

Ω µ∇φ · ∇u dx|
‖∇u‖Lp(Ω)

= sup
06=u∈Ḣ1

p(Ω)

|〈J |X |Fµ∇u〉|
‖∇u‖Lp(Ω)

= 0.

This is a contradiction to∇φ 6= 0. Therefore the map u 7→ Fµ∇u, Ḣ1
p(Ω)→ Ĥ−1

p (Ω) is surjective.

(iii) Existence for given F ∈ Ĥ−1
p (Ω) and h2 ∈ W

1−1/p
p (Σ). We construct u = v + w as fol-

lows. Let E+ ∈ B(W
1−1/p
p (Σ);H1

p (Ω+)) denote a co-retraction for the trace operator H1
p (Ω+)→

W
1−1/p
p (Σ). Then we define v+ := E+h2 and v− := 0, so that v ∈ H1

p (Ω \ Σ) with [[v]] = h2. Fi-
nally, we determine w ∈ H1

p (Ω) as a solution to
∫

Ω µ∇w · ∇φdx = 〈F − Fµ∇v|φ〉 for φ ∈ H1
p′(Ω).

Then u = v + w solves (2.2) and hence u 7→ (Fµ∇u, [[u]]) is surjective. We conclude that the map
u 7→ (Fµ∇u, [[u]]), E−1 → F−1 induced by the weak transmission problem (2.2) is invertible. �

2.2.5. The strong transmission problem in bounded domains. In order to solve the strong
transmission problem (2.1) in the case λ = 0, we employ the following fact.
2.30. Proposition (cf. [EN00, Corollary IV.1.19] and [Lun95, Remark A.2.4]). Let A : D(A) ⊂
X → X be a densely defined linear operator in a Banach space X with compact resolvent. Then σ(A)
consists only of poles of λ 7→ (λ − A)−1 with finite algebraic multiplicity. If λ ∈ σ(A) satisfies
N(λ0 −A) = N((λ0 −A)2), then X = N(λ−A)⊕R(λ−A) as a topological direct sum.

Proof of Theorem 2.2. The result for the cases Ω\Σ ∈ {Rn\Σω,Rnω,Rn}was proved in Lemma 2.26
and Corollaries 2.27 and 2.28 and it remains to consider a bounded domain.

(i) Homogenous boundary conditions. We define Lp,0(Ω) := {f ∈ Lp(Ω) :
∫

Ω f dx = 0} and,
for k ≥ 0, we consider the operator

L = −div(µ∇·), D(L) =
{
u ∈ Hk+2

p (Ω \ Σ) : µ∂νu = 0 on ∂Ω, [[µ∂νu]] = [[u]] = 0 on Σ
}
.
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Theorem 2.18 implies that λ − L : D(L) → Hk
p (Ω \ Σ) is invertible for |λ| ≥ λ0 and hence the

resolvent set of L is not empty. The resolvent is also compact. From Lemma 2.29 we infer that
N(L) = K and an integration by parts shows that R(L) ⊂ Hk

p (Ω \ Σ) ∩ Lp,0(Ω). We also have
the topological direct sum Lp(Ω) = Lp,0(Ω) ⊕ K where the projection onto Lp,0(Ω) is given by
u 7→ u− 〈u〉Ω where 〈u〉Ω := |Ω|−1

∫
Ω u dx denotes the mean value of u in Ω. Hence also

Hk
p (Ω \ Σ) =

(
Hk
p (Ω \ Σ) ∩ Lp,0(Ω)

)
⊕K.

In order to apply Proposition 2.30, we let u ∈ N(L2). Then Lu ∈ R(L) ∩ N(L) ⊂ Lp,0(Ω) ∩ K
which yields Lu = 0 and hence u ∈ N(L). Therefore we also haveHk

p (Ω\Σ) = R(L)⊕K which
yieldsR(L) = Hk

p (Ω\Σ)∩Lp,0(Ω). Thus, the operator L : D(L)∩Lp,0(Ω)→ Hk
p (Ω\Σ)∩Lp,0(Ω)

is therefore bijective and bounded and therefore invertible by the closed graph theorem. As
a consequence, the strong transmission problem admits at most one solution within Hk+2

p (Ω \
Σ) ∩ Lp,0(Ω).

(ii) Existence. For given data (f, g, h1, h2), we construct a solution u = u1 + u2 to (2.1), by
solving the subproblems

λu1 − div(µ∇u1) = 〈f〉Ω in Ω,

µ∂νu1 = g on ∂Ω,

[[µ∂νu1]] = h1 on Σ,

[[u1]] = h2 on Σ.

 ,


−div(µ∇u2) = λu1 + f − 〈f〉Ω in Ω,

µ∂νu2 = 0 on ∂Ω,

[[µ∂νu2]] = 0 on Σ,

[[u2]] = 0 on Σ.

 .

The first problem is solvable for some sufficiently large λ ∈ [1,∞) by Theorem 2.18. Then the
compatibility condition on (f, g, h1) implies 〈λu1〉Ω = 0 and therefore λu1 + f − 〈f〉Ω belongs
to Hk

p (Ω \ Σ) ∩ Lp,0(Ω). Hence the problem for u2 is solvable by step (i). The proof of Theorem
2.2 is complete. �



CHAPTER 3

The linearized problem

We investigate the linear problem (PL), which we restate as

ρ∂tu− µ∆u+∇π = fu in J × Ω \ Σ,

div u = fd in J × Ω \ Σ,

[[u]] = 0 on J × Σ,

Lv(u, h;u∗) = gv on J × Σ,

Lw(u, π, h;u∗) = gw on J × Σ,

∂th− u · νΣ = gh on J × Σ,

u|∂Ω = 0 on J × ∂Ω,

h|t=0 = 0 on Σ,

u|t=0 = 0 in Ω \ Σ.

(3.1)

Here we consider a bounded domain Ω ⊂ Rn (n ≥ 2) with smooth boundary ∂Ω and compact
smooth interface Σ ⊂ Ω such that Ω \ Σ consists of disjoint open sets Ω+ and Ω− with ∂Ω+ ∩
∂Ω− = Σ. We choose the unit normal vector field νΣ = ν∂Ω− = −ν∂Ω+ that points into Ω+.
Given two functions ψ± on Ω±, we put ψ := ψ+χ+ + ψ−χ− with the characteristic functions
χ± of Ω±, and we define the jump [[ψ]] := ψ+|Σ − ψ−|Σ. In this way we define the density
ρ = ρ+χ++ρ−χ− and viscosity µ = µ+χ++µ−χ−with positive constants ρ± and µ±. Moreover,
J = (0, T ) is a bounded interval with T ∈ (0,∞) and u∗ : J × Σ → Rn is a possibly non-
tangential vector field. In a tubular neighborhood Br(Σ) ⊂ Ω of Σ, there exists a nonlinear
projection Π : Br(Σ)→ Σ and we decompose the velocity field u into

u = v + w νΣ ◦Π, v := [PΣ ◦Π]u, w := (νΣ ◦Π|u).

Analogously, we let u∗ = v∗ + w∗νΣ on Σ. Then the operators Lv and Lw are defined by

Lv(u, h;u∗) := −µs∆̃Σv − λs∇Σ divΣ v − [[µ∂νv]]− [[µ]]∇Σw + (λs + µs)w∗∇Σ∆Σh,

Lw(u, π, h;u∗) := − tr ([(λs − µs)HΣ + 2µsLΣ]∇Σv)− 2[[µ∂νw]] + [[π]]

− tr
(
[σ + (λs − µs)(divΣ v∗ − 2HΣw∗) + 2µs(DΣ(v∗)− 2w∗LΣ)]∇2

Σh
)
.

Here the surface shear viscosity µs is a positive constant and λs (the surface dilational visocosity
if n = 3) is a real number. Moreover, we employ the surface gradient ∇Σw = τ j∂jw, the
surface divergence divΣ u = τ j ·∂ju, the scalar Laplace-Beltrami operator ∆Σh = divΣ∇Σh, the
tangential Laplace-Beltrami operator ∆̃Σv = gjk∇̃j∇̃kv, the Weingarten tensor LΣ = −∇ΣνΣ,
and the (n−1)-fold mean curvatureHΣ = trLΣ. More information on the differential geometric
quantities is given in Appendix A.

In this chapter we prove that problem (3.1) has optimal regularity in the sense that, for suit-
able Banach spaces 0E and 0F, the solution-to-data map of problem (3.1), given by (u, π, h) 7→
(fu, fd, gv, gw, gh), 0E→ 0F, is a topological linear isomorphism. To this end, it is crucial to un-
derstand the situation of a flat interface Σ = Rn × {0} ∼= Rn in the whole space Ω = Rn+1. For
the corresponding model problem (MP) we prove optimal regularity in Section 3.1 (see The-
orems 3.1 and 3.14). Next, in Section 3.2, we prove optimal regularity for a perturbed model
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problem with a bent hyperplane and variable coefficients (see Theorem 3.16). Finally, Section
3.3 contains the main result on optimal regularity for problem (3.1) in a bounded configuration
(see Theorem 3.21).

3.1. The interface conditions

In this section we prove optimal regularity for the model problem (MP) that corresponds to
problem (3.1) in the situation of a flat interface Σ = Rn×{0} ∼= Rn in the whole space Ω = Rn+1

(n ∈ N) with (fu, fd) = 0. We restate this problem as

ρ(τ + ∂t)u− µ∆u+∇π = 0 in J × Ṙn+1,

div u = 0 in J × Ṙn+1,

[[u]] = 0 on J × Rn,
−µs∆xv − λs∇x divx v − c5[[µ∇xw]]− c6[[µ∂yv]] + c1∇x∆xh = gv on J × Rn,
− tr((c2 + 2C3)∇xv)− 2[[µ∂yw]] + [[π]]− tr((cσ + C4)∇2

xh) = gw on J × Rn,
(τ + ∂t)h− w = gh on J × Rn,

h|t=0 = 0 on Rn,
u|t=0 = 0 in Rn+1.

(3.2)

In this section we let ρ±, µ±, σ, and µs be positive constants, λs be a real number, τ ∈ [0,∞)

be a constant, J = (0, T ) or J = (0,∞), and Ṙn+1 = Rn × (R\{0}). The elements of Rn+1 are
denoted by (x, y) with x ∈ Rn and y ∈ R. The parameters c1, c2, C3, C4, c5, c6, and cσ are
defined by 

c1 := (λs + µs)ϑw, c2 := (λs − µs) trϑL,

C3 := µsϑL, C4 := 2µs(ϑDv − 2ϑwϑL),

c5, c6 ∈ {0, 1}, cσ := σ + (λs − µs) tr(ϑDv − 2ϑwϑL),

(3.3)

and depend on

ϑ = (ϑw, ϑL, ϑDv) for ϑw ∈ R, ϑL ∈ Rn×n, ϑDv ∈ Rn×n.

In Section 3.3 we will relate these parameters to the normal reference velocity w∗, the Wein-
garten map LΣ, and the tangential rate-of-strain tensor DΣ(v∗) in problem (3.1). We further
abbreviate

ϑH := tr(ϑL), ϑdv := tr(ϑDv), ϑDu := ϑDv − ϑwϑL, ϑdu := tr(ϑDu) = ϑdv − ϑwϑH ,

and we define

d0(ϑDu) := σ + (λs − µs) trϑDu + 2µs min
ξ∈Rn\{0}

|ξ|−2ξ>[ϑDu]ξ for ϑDu ∈ Rn×n.

Then we define the following parameter set for problem (3.2) and a given number M > 0:

PM :=
{
ϑ = (ϑw, ϑL, ϑDv) ∈ R× Rn×n × Rn×n : |ϑ| ≤M, d0(ϑDu) ≥ 1/M

}
.(3.4)

Our main result on problem (3.2) reads as follows, where the solution space is denoted by

0E = 0E(J, τ) := {(u, π, h) ∈ 0Eu,v,w(J)× 0Eπ,[[π]](J)× 0Eh(J) :

ρ(τ + ∂t)u− µ∆u+∇π = 0, div u = 0}.
(3.5)

Here the relevant function spaces are defined in Figure 3.1 on the next page.
3.1. Theorem. Let λs + µs > 0, c5 ∈ {0, 1}, c6 = 1, J = (0,∞), p ∈ (1,∞), and M > 0.

Then there exists τ ∈ (0,∞) such that the solution-to-data map (u, π, h) 7→ (gv, gw, gh), 0E →
0Gv × 0Gw × 0Gh of problem (3.2) is uniformly invertible with respect to ϑ ∈ PM .
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0Eu := {u ∈ 0H
1
p (J ;Lp(Rn+1)n+1) ∩ Lp(J ;H2

p (Ṙn+1)n+1) : [[u]] = 0},

0Ev := 0W
1−1/2p
p (J ;Lp(Rn)n) ∩ 0W

1/2−1/2p
p (J ;H2

p (Rn)n) ∩ Lp(J ;W 3−1/p
p (Rn)n),

0Ew := 0W
1−1/2p
p (J ;H1

p (Rn)) ∩ Lp(J ;W 3−1/p
p (Rn)),

0Eu,v,w := {u = (v, w) ∈ 0Eu : v|y=0 ∈ 0Ev, w|y=0 ∈ 0Ew},

Eπ := Lp(J ; Ḣ1
p (Ṙn+1)),

0Eπ,[[π]] := {π ∈ Eπ : [[π]] ∈ 0Gw},

0Eh := 0W
2−1/2p
p (J ;H1

p (Rn)) ∩ 0H
1
p (J ;W 3−1/p

p (Rn)) ∩ Lp(J ;W 4−1/p
p (Rn)),

0Gv := 0W
1/2−1/2p
p (J ;Lp(Rn)n) ∩ Lp(J ;W 1−1/p

p (Rn)n),

0Gw := 0W
1/2−1/2p
p (J ;H1

p (Rn)) ∩ Lp(J ;W 2−1/p
p (Rn)),

0Gh := 0W
1−1/2p
p (J ;H1

p (Rn)) ∩ Lp(J ;W 3−1/p
p (Rn)).

FIGURE 3.1. Function spaces 0E··· and 0G··· for problem (MP).

This theorem is a central result of this thesis, as it provides the basic functional analytic
framework for proving that the linear problem (3.1) has optimal regularity, and these function
spaces are also appropriate for proving that problem (T) is locally well-posed. We can easily
conclude the following result on bounded time intervals.
3.2. Corollary. Let λs + µs > 0, c5 ∈ {0, 1}, c6 = 1, τ = 0, p ∈ (1,∞), T0 ∈ (0,∞), and M > 0.

Then the solution-to-data map (u, π, h) 7→ (gv, gw, gh), 0E(J, 0) → 0Gv(J) × 0Gw(J) × 0Gh(J)
of problem (3.2) is uniformly invertible with respect to ϑ ∈ PM and J = (0, T ) with T ∈ (0, T0].

Proof. As in [PSS07, p. 720] and [DK13, Remark 1.70], we consider the multiplication operator

(Mτu)(t) := eτtu(t) for u ∈ L1,loc(R+;X), τ ∈ R,

with exponential weight t 7→ eτt. Then it is easy to verify the operator identities

M−1
τ =M−τ , ∂tMτ =Mτ (τ + ∂t).

Hence we have ∂t =Mτ (τ + ∂t)M−τ .
Theorem 3.1 yields a number τ ≥ 0 such that the solution-to-data map

S∞,τ : (u, π, h) 7→ (gv, gw, gh), 0E(R+, τ)→ 0Gv(R+)× 0Gw(R+)× 0Gh(R+)

of problem (3.2) is uniformly invertible with respect to ϑ ∈ PM . By Lemma B.9 on page 148,
there exist linear extension operators EJ,j : 0Gj(J)→ 0Gj(R+) (j ∈ {v, w, h}) that are uniformly
bounded with respect to T ∈ (0,∞). The data-to-solution map for (3.2) on J is therefore given
by

(gv, gw, gh) 7→ (u, π, h) =
(
MτS

−1
∞,τM−τ (EJ,vgv, EJ,wgw, EJ,hgh)

)∣∣
[0,T ]

,

and its asserted mapping properties can be easily checked. �

The proof of Theorem 3.1 is prepared in the following subsections and given on page 68.
In Section 3.1.1, we apply the Fourier-Laplace transformation to problem (3.2) and express the
transformed solution (û, [[π̂]], ĥ) by means of Green’s functions and the values of (û, ∂yû±, π̂, ĥ)
at y = 0. The latter satisfy a linear system (3.12) for given unknowns (ĝv, ĝw, ĝh) whose deter-
minant (3.13), which we call the interface symbol of problem (3.2), does not vanish. Moreover,
the system (3.12) fits into the theory of Denk and Kaip [DK13] on N -parabolic mixed order
systems, as will be shown in Section 3.1.2. By applying their theory in Section 3.1.3, we ob-
tain suitable function spaces on J × Σ such that the map (u|Σ, ∂yu±|Σ, [[π]], h) 7→ (gv, gw, gh) is
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uniformly invertible with respect to the parameter ϑ ∈ PM . In Section 3.1.4, we employ an ap-
propriate extension technique as in [DHP03; DHP07; DK13] for proving that (u, π) satisfy the
desired interior regularity conditions. Finally, inhomogeneous bulk data (fu, fd) are resolved
in Section 3.1.5 by using optimal regularity of elliptic transmission problems from Chapter 2
and of the Stokes problem in a half space from [DHP01].

3.1.1. The interface symbol. We first adapt the computations of Denk and Kaip [DK13,
Section 4.7] and derive the linear system (3.12) for the transformed interface values of (u, π, h).
Assume that (u, π, h) is a solution of problem (3.2), which can be transformed with the Fourier
transformation x  ξ, ∇x  iξ and the Laplace transformation t  λ. The transformed
functions are denoted by û(λ, ξ, y), π̂(λ, ξ, y), and ĥ(λ, ξ). For j ∈ {1, 2}, we define

ûj(λ, ξ, y) := û(λ, ξ, (−1)jy), π̂j(λ, ξ, y) := π̂(λ, ξ, (−1)jy) for y > 0.

The transformed tangential and normal velocities v̂j and ŵj are defined analogously and we
let ρ2 := ρ+, ρ1 := ρ−, and so on. We consider the parabolic case λ ∈ Σφ = {λ ∈ C : |arg λ| < φ}
with φ ∈ (π/2, π). Since τ + Σφ is a subset of Σφ for τ ≥ 0, we may replace τ + λ ∈ τ + Σφ by
λ ∈ Σφ in the following computations.

The Fourier-Laplace transformed equation of [[u]] = 0 is [[û]] = 0, and hence û2 = û1, v̂2 =
v̂1 =: v̂, and ŵ2 = ŵ1 =: ŵ at y = 0. For j ∈ {1, 2}, λ ∈ Σφ, ξ ∈ Rn, and k ∈ {3, 4}, we define

ωj(λ, ξ) := (ρjµ
−1
j λ+ |ξ|2)1/2, ck(ξ) := |ξ|−2ξ>Ckξ.

Then (3.2) is transformed to the following system.

µjω
2
j ûj − µj∂2

y ûj + (iξ, (−1)j∂y)
>π̂j = 0,(3.6a)

iξ · v̂j + (−1)j∂yŵj = 0,(3.6b)

[[û]] = 0,(3.6c) (
µs|ξ|2 + λsξ ⊗ ξ

)
v̂ − c6 (µ2∂yv̂2 + µ1∂yv̂1)− c5[[µ]]iξŵ − c1iξ|ξ|2ĥ = ĝv,(3.6d)

− (c2iξ + 2C3iξ) · v̂ − 2 (µ2∂yŵ2 + µ1∂yŵ1) + [[π̂]] + (cσ + c4(ξ))|ξ|2ĥ = ĝw,(3.6e)

λĥ− ŵ = ĝh.(3.6f)

Equation (3.6a) can be eliminated with the following result on Green’s functions

k±(y, s) := k±(y, s; τ) := (e−τ |y−s| ± e−τ(y+s))/2τ for y, s ≥ 0, τ ∈ C \ {0}.

3.3. Lemma. For µ ∈ C and f ∈ C([0,∞)) with (s 7→ e−τsf(s)) ∈ L1(0,∞), the functions

v±(y) := µe−τy −
∫ ∞

0
k±(y, s)f(s) ds for y ≥ 0,

solve the initial value problems

∂2
yv+ − τ2v+ = f, v+(0) = µ− 1

τ

∫ ∞
0

e−τsf(s) ds, ∂yv+(0) = −τµ,

∂2
yv− − τ2v− = f, v−(0) = µ, ∂yv−(0) = −τµ−

∫ ∞
0

e−τsf(s) ds.

Proof. These assertions can be verified easily. �

Consequently, equation (3.6a) can be eliminated when we represent the transformed func-
tions (v̂, ŵ, π̂) in terms of unknown transformed functions p̂j(λ, ξ), Φ̂j

v(λ, ξ), and Φ̂j
w(λ, ξ) as
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follows:

π̂j(λ, ξ, y) := p̂j(λ, ξ)e
−|ξ|y,(3.7a)

v̂j(λ, ξ, y) := Φ̂j
v(λ, ξ)e

−ωj(λ,ξ)y −
∫ ∞

0
k−(y, s;ωj(λ, ξ))

iξπ̂j(λ, ξ, s)

µj
ds,(3.7b)

ŵj(λ, ξ, y) := Φ̂j
w(λ, ξ)e−ωj(λ,ξ)y −

∫ ∞
0

k+(y, s;ωj(λ, ξ))
(−1)j∂sπ̂j(λ, ξ, s)

µj
ds.(3.7c)

These functions satisfy the following interface conditions.

π̂j |y=0 = p̂j , [[π̂]] = p̂2 − p̂1,(3.8a)

v̂j |y=0 = Φ̂1
v = Φ̂2

v =: Φ̂v, ∂yv̂j |y=0 = −ωjΦ̂v −
iξp̂j

µj(ωj + |ξ|)
,(3.8b)

ŵj |y=0 = Φ̂j
w +

(−1)j |ξ|p̂j
µjωj(ωj + |ξ|)

, ∂yŵj |y=0 = −ωjΦ̂j
w.(3.8c)

We employ the abbreviations αj := µjωj(ωj + |ξ|) and Ω+ := α1 +α2. Then, with p̂1 = p̂2− [[π̂]],
ŵ2|y=0 = ŵ1|y=0, and (3.8c), we represent p̂1 and p̂2 as

p̂j =
α1α2

|ξ|Ω+

(
Φ̂1
w − Φ̂2

w

)
+

(−1)jαj
Ω+

[[π̂]].(3.9)

Hence the transformed functions ŵj and ∂yv̂j are given by

ŵ1 = ŵ2 =
α2

Ω+
Φ̂2
w +

α1

Ω+
Φ̂1
w +

|ξ|
Ω+

[[π̂]],(3.10a)

∂yv̂1 =
α2ω1iξ

Ω+|ξ|
Φ̂2
w −

α2ω1iξ

Ω+|ξ|
Φ̂1
w − ω1Φ̂v +

ω1iξ[[π̂]]

Ω+
,(3.10b)

∂yv̂2 =
α1ω2iξ

Ω+|ξ|
Φ̂2
w −

α1ω2iξ

Ω+|ξ|
Φ̂1
w − ω2Φ̂v −

ω2iξ[[π̂]]

Ω+
.(3.10c)

It remains to formulate a linear system for the unknowns Φ̂v, Φ̂2
w, Φ̂1

w, ĥ, and [[π̂]]. We abbreviate

Ω′ := c6µ1ω1 + c6µ2ω2 + µs|ξ|2,
L1
w := c6µ1ω1α2 + c6µ2ω2α1 − c5[[µ]]|ξ|α1,

L2
w := −c6µ1ω1α2 − c6µ2ω2α1 − c5[[µ]]|ξ|α2,

Lq := c6µ2ω2 − c6µ1ω1 − c5[[µ]]|ξ|.

Then equations (3.6d) to (3.6f), (3.9) and (3.10) yield

(
Ω′ idn +λsξ ⊗ ξ

)
Φ̂v +

iξL2
w

|ξ|Ω+
Φ̂2
w +

iξL1
w

|ξ|Ω+
Φ̂1
w +

iξLq
Ω+

[[π̂]]− c1iξ|ξ|2ĥ = ĝv,(3.11a)

− (c2iξ + 2C3iξ) · Φ̂v + 2µ2ω2Φ̂2
w + 2µ1ω1Φ̂1

w + [[π̂]] + (cσ + c4)|ξ|2ĥ = ĝw,(3.11b)

λĥ− α2

Ω+
Φ̂2
w −

α1

Ω+
Φ̂1
w −

|ξ|
Ω+

[[π̂]] = ĝh.(3.11c)
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Consequently, system (3.6) becomes
Ω′In − λsiξ ⊗ iξ L2

wiξ
Ω+|ξ|

L1
wiξ

Ω+|ξ| −c1iξ|ξ|2 Lq
iξ

Ω+

iξ> −ω2 0 0 0

iξ> 0 ω1 0 0

0 − α2
Ω+

− α1
Ω+

λ − |ξ|Ω+

−c2iξ
> − 2iξ>C3 2µ2ω2 2µ1ω1 (cσ + c4)|ξ|2 1


︸ ︷︷ ︸

L̂(λ,ξ)


Φ̂v

Φ̂2
w

Φ̂1
w

ĥ

[[π̂]]

 =


ĝv

0

0

ĝh

ĝw

 .(3.12)

In order to compute the interface symbol detL(λ, ξ), we
(i) subtract row n+ 1 from row n+ 2,

(ii) add c2 · (row n+ 1) to row n+ 4,
(iii) add λsiξ ⊗ (row n+ 1) to rows 1, . . . , n,
(iv) add −Ω′−1iξ> · (rows 1, . . . , n) to row n+ 1, and
(v) add 2Ω′−1iξ>C3 · (rows 1, . . . , n) to row n+ 4.

In this way we calculcate

det L̂(λ, ξ)

= det



Ω′In ∗ ∗ ∗ ∗
0 −ω2 + |ξ|2

Ω′

(
L2
w

Ω+|ξ| − λsω2

)
|ξ|2
Ω′

L1
w

Ω+|ξ| −c1
|ξ|4
Ω′

Lq
Ω′Ω+

|ξ|2

0 ω2 ω1 0 0

0 − α2
Ω+

− α1
Ω+

λ − |ξ|Ω+

0
(2µ2−c2)ω2

− 2|ξ|2c3
Ω′

(
L2
w

Ω+|ξ|
−λsω2

) 2µ1ω1

− 2|ξ|2c3
Ω′

L1
w

Ω+|ξ|

(cσ+c4)|ξ|2

− 2c1c3|ξ|
4

Ω′
1− 2c3Lq |ξ|2

Ω′Ω+



=
Ω′n−2

Ω2
+

det


−ω2Ω′Ω+ + L2

w|ξ| − λsω2Ω+|ξ|2 L1
w|ξ| −c1|ξ|4 Lq|ξ|2

ω2 ω1 0 0

−α2 −α1 λ −|ξ|

(2µ2−c2)ω2Ω′Ω+

−2c3L2
w|ξ|+2λsc3ω2Ω+|ξ|2

2µ1ω1Ω′Ω+

−2c3L1
w|ξ|

(cσ+c4)|ξ|2Ω′

−2c1c3|ξ|4
Ω′Ω+−2c3Lq |ξ|2

 .

Here an asterisk ∗ denotes a non-specified entry. The remaining (4 × 4)-determinant can be
calculated with the software Maxima [Max] and we refer to page 173 in Appendix B.5 for the
source code. Therefore the interface symbol can be written as

det L̂(λ, ξ) = −ω1(λ, ξ)ω2(λ, ξ)Ω+(λ, ξ)−1Ω′(λ, ξ)n−1P (λ, ξ),(3.13)

where the symbol P (λ, ξ) is defined as follows. Define the mean value 〈〈ψ〉〉 := (ψ1 + ψ2)/2, the
jump [[ψ]] := ψ2 − ψ1, and let

d(ξ) := cσ + 2ϑwc3(ξ) + c4(ξ) + ϑwc2

= σ + (λs − µs)(ϑdv − 2ϑHϑw)

− 2ϑw|ξ|−2iξ>[µsϑL]iξ − |ξ|−2iξ>[2µs(ϑDv − 2ϑwϑL)]iξ + (λs − µs)ϑwϑH
= σ + (λs − µs)(ϑdv − ϑHϑw) + |ξ|−2ξ>[ϑwϑL + 2ϑw2µs(ϑDv − ϑwϑL)]ξ

= σ + (λs − µs)ϑdu + 2µs|ξ|−2ξ>[ϑDu]ξ.
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Then, with βs := λs + µs, the symbol P (λ, ξ) in (3.13) is given by

P (λ, ξ) = βsd(ξ)|ξ|5 + 2〈〈µ〉〉(c6cσ + c4c6)|ξ|4

+ c1 ([[µω]]− [[µ]]|ξ|) |ξ|4

+
(
2c6cσ〈〈µω〉〉+ (2ϑ3 + c2)c5[[µ]]λ− [[µ]]2c5λ+ 2c4c6〈〈µω〉〉

)
|ξ|3

+
(
4c6〈〈µω〉〉2 + 2c6µ1µ2〈〈ω2〉〉+ 4c6〈〈µ2ω〉〉|ξ|+ (c5[[µ]]− c2c6 − 2c3c6)[[µω]]|ξ|

)
λ|ξ|

+ 2βs
(
〈〈µω2〉〉+ 〈〈µω〉〉|ξ|

)
λ|ξ|2

+ 4c6〈〈µω2〉〉〈〈µω〉〉λ.

Here the underlined terms are the principal parts as we will see in the next section.

3.1.2. Invertibility of the interface symbol. Our goal is to show that L̂ is an N -parabolic
mixed-order system in the sense of Definition B.77 on page 168. Moreover, since our localiza-
tion procedure will require uniform invertibility with respect to the reference velocity u∗ = v∗+
w∗νΣ and LΣ, we will also study the dependence on the related parameters ϑ = (ϑw, ϑL, ϑDv) ∈
PM . First, we show that the interface symbol det L̂ of problem (3.2) is an N -parabolic symbol.
To this end, we replace

iξ  z ∈ BΣ
n
δ , |ξ| |z|− =

√
−z · z,

and we define the complex (n+ 4)× (n+ 4)-matrix

L̂(λ, z;ϑ) :=


Ω′In − λsz ⊗ z L2

wz
Ω+|z|−

L1
wz

Ω+|z|− −c1(ϑ)z|z|2− Lq
z

Ω+

z> −ω2 0 0 0

z> 0 ω1 0 0

0 − α2
Ω+

− α1
Ω+

λ − |z|−Ω+

−c2(ϑ)z> − 2z>C3(ϑ) 2µ2ω2 2µ1ω1 cσ(ϑ)|z|2− − z>C4(ϑ)z 1

 .(3.14)

We replace the functions d(ξ) and P (λ, ξ) as

d(z;ϑ) := σ + (λs − µs) trϑDu + 2µs|z|−2
− iz>[ϑDu]iz with cj(z;ϑ) := −|z|−2

− z>Cj(ϑ)z,

P (λ, z;ϑ) := βsd(z;ϑ)|z|5− + 2〈〈µ〉〉(c6cσ(ϑ) + c4(z;ϑ)c6)|z|4−
+ c1(ϑ) ([[µω]]− [[µ]]|z|−) |z|4−

+
(
2c6cσ(ϑ)〈〈µω〉〉+ (2c3(z;ϑ) + c2(ϑ))c5[[µ]]λ− [[µ]]2c5λ+ 2c4(z;ϑ)c6〈〈µω〉〉

)
|z|3−

+
(
4c6〈〈µω〉〉2 + 2c6µ1µ2〈〈ω2〉〉+ 4c6〈〈µ2ω〉〉|z|−

)
λ|z|−

+ (c5[[µ]]− c2(ϑ)c6 − 2c3(z;ϑ)c6)[[µω]]λ|z|2−
+ 2βs

(
〈〈µω2〉〉+ 〈〈µω〉〉|z|−

)
λ|z|2−

+ 4c6〈〈µω2〉〉〈〈µω〉〉λ.

It is straightforward to check that P belongs to the symbol class in Definition B.72 on page 166.
Next, we employ the γ-orders and γ-principal parts of the symbols ωj , Ω′, Ω+, and P , which

are defined in Definition B.73 and given in Figure 3.2 on the following page. Due to Theorem
B.75, it is sufficient to show that the principal parts of ωj , Ω+, Ω′, and P do not vanish, and
therefore the function d(z;ϑ) should not vanish. Let us derive a condition on the parameter
tuple ϑ ∈ PM which ensures that

there is δ > 0 such that Re d(z;ϑ) > 0 for all z ∈ BΣn
δ .(3.15)
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dγ(ωj) =

{
1 : γ ∈ (0, 2],

γ/2 : γ ∈ [2,∞].
dγ(Ω+) =

{
2 : γ ∈ (0, 2],

γ : γ ∈ [2,∞].

dγ(Ω′) =


2 : γ ∈ (0,∞], c6 = 0,

2 : γ ∈ (0, 4], c6 = 1,

γ/2 : γ ∈ [4,∞], c6 = 1.

dγ(P ) =



5 : γ ∈ (0, 1],

4 + γ : γ ∈ [0, 2],

2 + 2γ : γ ∈ [2,∞], c6 = 0,

2 + 2γ : γ ∈ [2, 4], c6 = 1,

5γ/2 : γ ∈ [4,∞], c6 = 1.

πγωj(λ, z) =


|z|− : γ ∈ (0, 2),

(ρjµ
−1
j λ+ |z|2−)1/2 : γ = 2,

(ρjµ
−1
j )1/2λ1/2 : γ ∈ (2,∞].

πγΩ+(λ, z) =


4〈〈µ〉〉|z|2− : γ ∈ (0, 2),

Ω+(λ, z) : γ = 2,

2〈〈ρ〉〉λ : γ ∈ (2,∞].

πγΩ′(λ, z) =



µs|z|2− : γ ∈ (0,∞], c6 = 0,

µs|z|2− : γ ∈ (0, 4), c6 = 1,

2〈〈√ρµ〉〉λ1/2 + µs|z|2− : γ = 4, c6 = 1,

2〈〈√ρµ〉〉λ1/2 : γ ∈ (4,∞], c6 = 1.

πγP (λ, z;ϑ) =



βsd(z;ϑ)|z|5− : γ ∈ (0, 1),

βsd(z;ϑ)|z|5− + 4βs〈〈µ〉〉λ|z|4− : γ = 1,

4βs〈〈µ〉〉λ|z|4− : γ ∈ (1, 2),

2βs
(
〈〈µω2〉〉+ 〈〈µω〉〉|z|−

)
λ|z|2− : γ = 2,

2βs〈〈ρ〉〉λ2|z|2− : γ ∈ (2, 4),

2βs〈〈ρ〉〉λ2|z|2− + 4c6〈〈ρ〉〉〈〈
√
ρµ〉〉λ5/2 : γ = 4,

2βs〈〈ρ〉〉λ2|z|2− : γ ∈ (4,∞], c6 = 0,

4〈〈ρ〉〉〈〈√ρµ〉〉λ5/2 : γ ∈ (4,∞], c6 = 1.

FIGURE 3.2. The γ-orders and γ-principal parts of the symbols ωj , Ω+, Ω′, and P .

It is shown in Lemma B.55 that an estimate C−1|z| ≤ ||z|−| ≤ C|z| applies for z ∈ BΣ
n
δ \ {0}

and δ ∈ (0, π/4). Moreover, Lemma B.55 yields the following estimates for j ∈ {3, 4}.

|cj(z;ϑ)| ≤ n1/2|Cj(ϑ)|, |Im cj(z;ϑ)| ≤ sin(4δ)|cj(z;ϑ)| for z ∈ BΣ
n
δ \ {0}, δ ∈ (0, π/8].

Hence a sufficient condition for (3.15) is

d0(ϑDu) = σ + (λs − µs) trϑDu + 2µs min
ξ∈Rn\{0}

|ξ|−2ξ>[ϑDu]ξ > 0.(3.16)

Indeed, suppose that d0(ϑDu) ≥ 1/M and |ϑDu| ≤M for some M > 0. Then

Re d(z;ϑ) ≥ d0(ϑDu) + 2µs

(
min

z∈BΣ
n
δ \{0}

Re
iz>[ϑDu]iz

|z|2−
− min
ξ∈Rn\{0}

ξ>[ϑDu]ξ

|ξ|2

)
→ d0(ϑDu)
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as δ → 0. Hence there exists δ = δ(R) ∈ (0, π/8) such that Re d(z;ϑ) ≥ 1/(2M) for all z ∈ BΣn
δ .

In view of the inclusion iRn ⊂ BΣ
n
δ , we see that condition (3.16) is also necessary for (3.15).

3.4. Lemma. Let ρj , µj , σ, and µs be positive constants and let λs be a real number.
(i) If βs = λs + µs > 0, then for given M > 0 and φ ∈ (π/2, π) there exists δ ∈ (0, π/8] such that

P : Σφ ×BΣ
n
δ × PM → C is N -parabolic.

(ii) Conversely, if P (·, ·;ϑ) : Σφ ×BΣ
n
δ → C is N -parabolic for some φ ∈ (π/2, π), δ ∈ (0, π/8], and

ϑ ∈ R× Rn×n × Rn×n, then λs + µs > 0 and ϑ satisfies (3.16).

Proof. (i) In view of Theorem B.75, it is sufficient to show that the principal parts of the
symbol P do not vanish, in the sense that

πγP (λ, z;ϑ) 6= 0 for all γ ∈ (0,∞], λ ∈ Σφ \ {0}, z ∈ BΣ
n
δ \ {0}, ϑ ∈ PM .

First, we choose δ(M) ∈ (0, π/8] such that Re d(z;ϑ) ≥ 1/(2M) for z ∈ BΣ
n
δ with δ ∈ (0, δ(M)].

Then Lemma B.55 implies that πγP (λ, z;ϑ) does not vanish for all γ ∈ (0, 1). Next, let γ ∈
[1, 2). Since arg(d(z;ϑ)|z|−) ≤ 5δ, there exists δ1(M) ∈ (0, δ(M)] such that |d(z;ϑ)|z|−| ≥
n−1/4|z|/(2M) for all δ ∈ (0, δ1(M)] and z ∈ BΣ

n
δ . Hence for some δ = δ(M,φ) ≤ δ1(M)

with 5δ + φ < π the number βsd(z;ϑ)|z|− + 4βs 〈〈µ〉〉λ belongs to Σφ \ {0}, which implies that
πγP (λ, z;ϑ) does not vanish for γ ∈ [1, 2). In the case γ = 2, we write

π2P (λ, z;ϑ) = 2βs〈〈µω〉〉

(
〈〈µω2〉〉/λ1/2

〈〈µω〉〉/λ1/2
+ |z|−

)
λ|z|2−.(3.17)

Recall that ωj(λ, z)2 = ρjµ
−1
j λ+ |z|2− belongs to Σφ\{0}. Hence we obtain |arg(

〈〈
µω2

〉〉
/λ1/2)| ≤

φ/2 + 2δ and |arg(〈〈µω〉〉 /λ1/2)| ≤ φ/2 + δ and therefore |arg(
〈〈
µω2

〉〉
/ 〈〈µω〉〉)| ≤ φ + 3δ. By

choosing δ < (π − φ)/4, it follows that
〈〈
µω2

〉〉
/ 〈〈µω〉〉+ |z|− 6= 0 and then π2P (λ, z;ϑ) 6= 0. The

remaining cases γ ∈ (2,∞] can be treated similary. Therefore P has non-vanishing principal
parts and hence, by Theorem B.75, it is N -parabolic.

(ii) To prove the converse assertion, let P (·, ·;ϑ) be N -parabolic. Then πγP (·, ·;ϑ) does not
vanish for all γ ∈ (0, 1) and we conclude that βs 6= 0 and d(iξ;ϑ) 6= 0 for all ξ ∈ Rn \ {0}. Next,

π4P (λ, iξ;ϑ) = (2βs〈〈ρ〉〉|ξ|2 + 4〈〈ρ〉〉〈〈ρµ〉〉λ1/2)λ2 6= 0 for all λ > 0, ξ ∈ Rn \ {0}.

This yields βs > 0 by using 〈〈ρ〉〉 > 0 and 〈〈ρµ〉〉 > 0. Finally,

π1P (λ, iξ;ϑ) = ((λs + µs)d(iξ;ϑ)|ξ|+ 2βs〈〈µ〉〉λ) |ξ|4 6= 0 for all λ > 0, ξ ∈ Rn \ {0},

and this implies d(iξ;ϑ) > 0 for all ξ ∈ Rn \ {0}, since βs > 0 and 〈〈µ〉〉 > 0. This in turn yields
d0(ϑDu) = min{d(iξ;ϑ) : ξ ∈ Rn, |ξ| = 1} > 0. �

3.5. Corollary. Let ρj , µj , σ, and µs be positive constants and let λs be a real number.
(i) If λs + µs > 0, then for given M > 0 and φ ∈ (π/2, π) there exists δ ∈ (0, π/8] such that

det L̂ : Σφ ×BΣ
n
δ × PM → C is N -parabolic.

(ii) Conversely, if det L̂(·, ·;ϑ) : Σφ × BΣ
n
δ → C is N -parabolic for some φ ∈ (π/2, π), δ ∈ (0, π/8],

and ϑ ∈ R× Rn×n × Rn×n, then λs + µs > 0 and ϑ satisfies (3.16).

Proof. (i) It is easy to check that ω1ω2Ω−1
+ satisfies the homogeneity property

(ω1ω2Ω−1
+ )(η2λ, ηz) = (ω1ω2Ω−1

+ )(λ, z) for all η > 0,

and therefore belongs to the symbol class SN (Σφ×BΣ
n
δ ) with φ ∈ (π/2, π) and δ ∈ (0, π/8). We

further have Ω′ = c6µ1ω1 + c6µ2ω2 + µs|z|2− ∈ SN (Σφ ×BΣ
n
δ ) and P ∈ SN (Σφ ×BΣ

n
δ × PM ) if

φ ∈ (π/2, π) and if δ = δ(M,φ) is chosen as in Lemma 3.4. These symbols have strictly positive
order functions and therefore [DK13, Lemma 3.33] yields

det L̂ = −ω1ω2Ω−1
+ · Ω′n−1 · P ∈ SN (Σφ ×BΣ

n
δ × PM ).
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(ii) Let det L̂(·, ·;ϑ) be N -parabolic for some ϑ ∈ PM and recall that ωj , Ω−1
+ , and Ω′ are N -

parabolic. Hence their principal parts do not vanish and the above representation of det L̂ and
the identities in Figure 3.2 show that πγP (λ, iξ;ϑ) 6= 0 for all λ > 0 and ξ ∈ Rn \ {0}. Therefore
Lemma 3.4 implies that λs + µs > 0 and ϑ satisfies (3.16). �

3.1.3. Function spaces. Next, we construct spaces H and F such that the interface operator

L̂(τ +Dt,Dx;ϑ) : H→ F, (Φv,Φ
2
w,Φ

1
w, h, [[π]]) 7→ (gv, 0, 0, gh, gw)

is uniformly invertible with respect to ϑ ∈ PM , for every M > 0. Here the operator L̂(τ +
Dt,Dx;ϑ) is defined by the joint functional calculus of (Dt,Dx) from Theorem B.70 on page 166.
We note that every component of L̂(λ, z;ϑ) belongs to the symbol class S(Σφ×BΣ

n
δ ×PM ) from

page 166 for φ ∈ (π/2, π) and some δ ∈ (0, π/8]. From now on we restict our considerations to
the case

c5 ∈ {0, 1}, c6 = 1.

In order to apply Theorem B.79, we first estimate the γ-orders of the components of L̂.

dγ(L̂) ≤


max{2, γ/2} max{1, γ/2} max{1, γ/2} 3 1−max{1, γ/2}

1 max{1, γ/2} −∞ −∞ −∞
1 −∞ max{1, γ/2} −∞ −∞
−∞ 0 0 γ 1−max{2, γ}

1 max{1, γ/2} max{1, γ/2} 2 0

 .

Here the relation≤ is considered component-wise and an entry−∞ corresponds to a vanishing
component of L̂.

We define the row-wise order functions sj and the column-wise order functions ti by

s1(γ) = · · · = sn(γ) := 1, t1(γ) = · · · = tn(γ) := max{2, γ/2} − 1,

sn+1(γ) = sn+2(γ) := 0, tn+1(γ) = tn+2(γ) := max{1, γ/2},
sn+3(γ) := −1, tn+3(γ) := max{1, γ}+ 1,

sn+4(γ) := 0, tn+4(γ) := 0.

Then it follows that∑
j
sj(γ) +

∑
i
ti(γ) = nmax{2, γ/2}+ 2 max{1, γ/2}+ max{1, γ}

= max{2n+ 3, 2n+ 2 + γ, 2n+ 2γ, (n+ 4)γ/2} = dγ(det L̂).

Moreover, for all i, j ∈ {1, . . . , n+ 4}, the function sj + ti is an upper order function for L̂ji.
3.6. Corollary. Let ρj , µj , σ, and µs be positive constants and let λs be a real number such that λs +
µs > 0. Then for given numbers M > 0 and φ ∈ (π/2, π), there exists δ ∈ (0, π/8] such that the
symbol L̂ : Σφ ×BΣ

n
δ × PM → C(n+4)×(n+4) is an N -parabolic mixed-order system.

3.7. Remark. The preceding choice of the order functions differs from [DK13, p. 223]. In parti-
cular, we take care of the additional entries L̂i,n+3 (i ≤ n) with γ-order lesser or equal to 3 and
we avoid the difference max{2, γ/2} − max{1, γ/2}, which is neither convex nor concave and
hence not an order function.
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l = 0, γ ∈ (0, 1] l = 1, γ ∈ (1, 2] l = 2, γ ∈ (2, 4] l = 3, γ ∈ (4,∞)

ti b0(ti) +m0(ti)γ b1(ti) +m1(ti)γ b2(ti) +m2(ti)γ b3(ti) +m3(ti)γ

t1 = · · · = tn 1 + 0γ 1 + 0γ 1 + 0γ −1 + 1
2γ

tn+1 = tn+2 1 + 0γ 1 + 0γ 0 + 1
2γ 0 + 1

2γ

tn+3 2 + 0γ 1 + 1γ 1 + 1γ 1 + 1γ

tn+4 0 + 0γ 0 + 0γ 0 + 0γ 0 + 0γ

sj b0(sj) +m0(sj)γ b1(sj) +m1(sj)γ b2(sj) +m2(sj)γ b3(sj) +m3(sj)γ

s1 = · · · = sn 1 + 0γ 1 + 0γ 1 + 0γ 1 + 0γ

sn+1 = sn+2 0 + 0γ 0 + 0γ 0 + 0γ 0 + 0γ

sn+3 −1 + 0γ −1 + 0γ −1 + 0γ −1 + 0γ

sn+4 0 + 0γ 0 + 0γ 0 + 0γ 0 + 0γ

FIGURE 3.3. Upper order functions for the symbol L̂.

H1 = · · · = Hn := Lp(W
3− 1

p
p ) ∩ Lp(W

3− 1
p

p ) ∩ 0W
1
2
− 1

2p
p (H2

p ) ∩ 0W
1− 1

2p
p (Lp) (for Φv),

Hn+1 = Hn+2 := Lp(W
3− 1

p
p ) ∩ Lp(W

3− 1
p

p ) ∩ 0W
1− 1

2p
p (H1

p ) ∩ 0W
1− 1

2p
p (H1

p ) (for Φj
w),

Hn+3 := Lp(W
4− 1

p
p ) ∩ 0H

1
p (W

3− 1
p

p ) ∩ 0W
3
2
− 1

2p
p (H2

p ) ∩ 0W
3
2
− 1

2p
p (H2

p ) (for h),

Hn+4 := Lp(W
2− 1

p
p ) ∩ Lp(W

2− 1
p

p ) ∩ 0W
1
2
− 1

2p
p (H1

p ) ∩ 0W
1
2
− 1

2p
p (H1

p ) (for [[π]]),

F1 = · · · = Fn := Lp(W
1− 1

p
p ) ∩ Lp(W

1− 1
p

p ) ∩ 0W
1
2
− 1

2p
p (Lp) ∩ 0W

1
2
− 1

2p
p (Lp) (for gv),

Fn+1 = Fn+2 := Lp(W
2− 1

p
p ) ∩ Lp(W

2− 1
p

p ) ∩ 0W
1
2
− 1

2p
p (H1

p ) ∩ 0W
1
2
− 1

2p
p (H1

p ),

Fn+3 := Lp(W
3− 1

p
p ) ∩ Lp(W

3− 1
p

p ) ∩ 0W
1
2
− 1

2p
p (H2

p ) ∩ 0W
1
2
− 1

2p
p (H2

p ) (for gh),

Fn+4 := Lp(W
2− 1

p
p ) ∩ Lp(W

2− 1
p

p ) ∩ 0W
1
2
− 1

2p
p (H1

p ) ∩ 0W
1
2
− 1

2p
p (H1

p ) (for gw).

Here we abbreviate Hα
p (W β

p ) := Hα
p (R+;W β

p (Rn)) and Wα
p (Hβ

p ) := Wα
p (R+;Hβ

p (Rn)).

FIGURE 3.4. Function spaces for the operator L̂(τ +Dt,Dx;ϑ).

We choose the following parameters and scales for the construction of the spaces Hi and Fj .
(γ0, γ1] = (0, 1], (γ1, γ2] = (1, 2], (γ2, γ3] = (2, 4], (γ3, γ4] = (4,∞],

s′0 = 0, s′1 = 0, s′2 = 1/2− 1/2p, s′3 = 1/2− 1/2p,

r′0 = 2− 1/p, r′1 = 2− 1/p, r′2 = 1, r′3 = 1,

F0(K0) = Hp(Bp,p), F1(K1) = Hp(Bp,p), F2(K2) = Bp,p(Hp), F3(K3) = Bp,p(Hp).

By using the definitions of ti and sj , we obtain the representations in Figure 3.3 on this page.
Then we define the spaces Hi and Fj by

Hi :=

3⋂
l=0

0F
s′l+ml(ti)
l

(
Kr
′
l+bl(ti)

l

)
, Fj :=

3⋂
l=0

0F
s′l−ml(sj)
l

(
Kr
′
l−bl(sj)
l

)
.

In our situation this yields the spaces in Figure 3.4 on the current page. These spaces are ad-
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missible in the sense of Definition B.78 and therefore Theorem B.79 yields the following result.
3.8. Lemma. Let ρj , µj , σ, and µs be positive constants and let λs be a real number such that λs+µs >
0. Then, given p ∈ (1,∞), M > 0, and φ ∈ (π/2, π), there exist δ ∈ (0, π/8) and τ ∈ [0,∞) such that

L̂(τ +Dt,Dx;ϑ) :
∏n+4

i=1
Hi →

∏n+4

j=1
Fj

is uniformly invertible with respect to ϑ ∈ PM .

By restricting the inverse of L̂(τ + Dt,Dx;ϑ) to tuples of the form (gv, 0, 0, gh, gw), and by
using that ∂th = gh + w belongs to the subspace 0Gh of Fn+3 for gh ∈ 0Gh and w ∈ 0Ew, we
obtain the following result for the spaces from Figure 3.1.
3.9. Corollary. In the situation of Lemma 3.8, the map

(gv, gw, gh) 7→ (Φv,Φ
2
w,Φ

1
w, h, [[π]])> = [L̂(τ +Dt,Dx;ϑ)]−1(gv, 0, 0, gh, gw)>,

0Gv × 0Gw × 0Gh → 0Ev × 0Ew × 0Ew × 0Eh × 0Gw

is uniformly bounded with respect to ϑ ∈ PM .

3.1.4. Interior regularity. Our next goal is to verify the interior regularity conditions

u ∈ H1,2
p (R+ × Ṙn+1) := H1

p (R+;Lp(Rn+1)) ∩ Lp(R+;H2
p (Ṙn+1)), π ∈ Lp(R+; Ḣ1

p (Ṙn+1))

for the functions u and π from (3.7) and Corollary 3.9. We can easily obtain the pressure regu-
larity from the properties of the Poisson semigroup, but for the velocity we need to study more
involved extension operators. The Fourier-Laplace transformed functions π̂j , v̂j , and ŵj of π
and u|Σ = (v, w) were given in (3.7), where we employed Green’s functions k± from Lemma
3.3, the Poisson extension symbol e−|ξ|y and the parabolic extension symbol e−ωj(λ,ξ)y with

ωj(λ, ξ) = (ρjµ
−1
j (τ + λ) + |ξ|2)1/2 for λ ∈ Σφ, ξ ∈ Rn.

Here τ > 0 is chosen as in Lemma 3.8. For computing the integrals in v̂ and ŵ, we let y > 0,
ω ∈ C, and η := |z|− ∈ C with Reω, Re η, and Re(ω − η) > 0. Then∫ ∞

0
k±(y, s;ω)e−ηs ds =

∫ ∞
0

e−ω|y−s| ± e−ω(y+s)

2ω
e−ηs ds

=

∫ y

0

e−ωy

2ω

(
eωs ± e−ωs

)
e−ηs ds+

∫ ∞
y

eωy ± e−ωy

2ω
e−ωs−ηs ds

=
e−ωy

2ω

(
e(ω−η)y − 1

ω − η
∓ e−(ω+η)y − 1

ω + η

)
+
eωy ± e−ωy

2ω

e−(ω+η)y

ω + η

=
e−ηy − e−ωy

2ω(ω − η)
+
e−ηy ± e−ωy

2ω(ω + η)
.

From the identites gh = (τ + ∂t)h− w and (3.8c) we infer that

p̂j(λ, ξ) =
(−1)jµjωj(ωj + |ξ|)

|ξ|

(
(τ + λ)ĥ− ĝh − Φ̂j

w

)
.

Plugging in these identities into (3.7) yields the representations in Figure 3.5 on the facing page.
In order to prove the interior regularity of the velocity, we employ general extension opera-

torsE[s] induced by an extension symbol s(λ, ξ, y) like the parabolic extension symbol e−ω(λ,ξ)y

or the Stokes extension symbol ω e
−ωy−e−|ξ|y
ω−|ξ| and apply these to the extension symbols Vw,j , Vh,j ,

Ww,j , andWh,j . To this purpose, we first prove the boundedness of certain integral operators by
comparing their kernels with the Hilbert transform. Similar results were established by Denk,
Hieber and Prüss [DHP03, Section 6.4], [DHP07, Section 4], and by Denk and Kaip [DK13,
Section 3.5].
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Let ωj(λ, ξ) = (ρjµ
−1
j (τ + λ) + |ξ|2)1/2 and define the extension symbols

Vw,j(λ, ξ, y) :=
(−1)j+1iξωj

|ξ|
e−ωjy − e−|ξ|y

ωj − |ξ|
, Vh,j(λ, ξ, y) :=

(−1)jiξωj
|ξ|

e−ωjy − e−|ξ|y

ωj − |ξ|
,

Ww,j(λ, ξ, y) := ωj
e−ωjy − e−|ξ|y

ωj − |ξ|
, Wh,j(λ, ξ, y) := −|ξ|e

−ωjy − ωje−|ξ|y

ωj − |ξ|
.

The Fourier-Laplace transforms ûj(λ, ξ, y) := û(λ, ξ, (−1)jy) and π̂j(λ, ξ, y) :=
π̂(λ, ξ, (−1)jy) of uj = (vj , wj) and πj are given by

v̂j(λ, ξ, y) = e−ωjyΦ̂v(λ, ξ) + Vw,j(λ, ξ, y)Φ̂j
w(λ, ξ) + Vh,j(λ, ξ, y)((τ + λ)ĥ(λ, ξ)− ĝh(λ, ξ)),

ŵj(λ, ξ, y) = Ww,j(λ, ξ, y)Φ̂j
w(λ, ξ) +Wh,j(λ, ξ, y)((τ + λ)ĥ(λ, ξ)− ĝh(λ, ξ)),

π̂j(λ, ξ, y) = e−|ξ|y(−1)jµjωj(ωj + |ξ|)|ξ|−1((τ + λ)ĥ(λ, ξ)− ĝh(λ, ξ)− Φ̂j
w(λ, ξ)).

FIGURE 3.5. The interior Fourier-Laplace transformed velocity and pressure.

3.10. Lemma. Let E be a Banach space of class HT with property (α) and let φ ∈ (π/2, π) and
δ ∈ (0, π/2) such that φ+ 2δ < π. Suppose that the mapping

k : (λ, z, y, ȳ) 7→ k(λ, z, y, ȳ), Σφ ×BΣn
δ × R+ × R+ → B(E)

is holomorphic with respect to (λ, z) for every (y, ȳ) and that

M(k) := sup
{
|(y + ȳ)k(λ, z, y, ȳ)|B(E) : λ ∈ Σφ, z ∈ BΣn

δ , y, ȳ ∈ R+

}
<∞.

With the joint functional calculus for (Dt,Dx) from Theorem B.70 we define

k(Dt,Dx, y, ȳ) ∈ B (Lp(R+ × Rn;E)) for y, ȳ ∈ R+, p ∈ (1,∞).

Define an integral operator G[k] by

(G[k]u)(y) =

∫ ∞
0

k(Dt,Dx, y, ȳ)u(·, ·, ȳ) dȳ, for y ∈ (0,∞), u ∈ C∞c (R+ × Rn × R+;E).

Then G[k] can be extended uniquely to a bounded operator in Lp(R+;Lp(Rn+1
+ ;E)) such that

‖G[k]‖B(Lp(R+;Lp(Rn+1
+ ;E))) ≤ CM(k)‖HT ‖B(Lp(R+)).

HereHT is the one-sided Hilbert transform on Lp(R+) and the number C satisfies

‖f(Dt,Dx)‖B(Lp(R+×Rn;E)) ≤ C‖f‖∞ for all f ∈ H∞(Σφ ×BΣn
δ ).

Proof. The one-sided scalar Hilbert transform

(HT u)(y) =

∫ ∞
0

u(ȳ)

y + ȳ
dȳ for y ∈ R+, u ∈ Lp(R+)

is bounded in Lp(R+) with norm tan(π/2p) if p ∈ (1, 2] and cot(π/2p) if p ∈ [2,∞) [see ME88].
By applying Theorem B.70 to the family of bounded holomorphic functions {(y+ ȳ)k(·, ·, y, ȳ) :
y, ȳ ∈ R+} ⊂ H∞(Σφ ×BΣn

δ ), we obtain

‖(G[k]u)(t)‖Lp(Rn+1
+ ;E) ≤ CM(k)

∥∥∥∥y 7→ ∫ ∞
0

1

y + ȳ
|u(t, ·, ȳ)|E dȳ

∥∥∥∥
Lp(Rn+1

+ )

≤ CM(k)‖HT ‖Lp(R+)‖u(t, ·, ·)‖Lp(Rn+1
+ ;E).

Next, we may rearrange the t- and y- variables using Fubini’s theorem:

‖t 7→ u(t, ·, ·)‖Lp(R+;Lp(Rn+1
+ ;E)) = ‖y 7→ u(·, ·, y)‖Lp(R+;Lp(Rn+1

+ ;E)).

Hence the assertion follows. �
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Next we define the aforementioned extension operators with the Volevich trick (3.18). We
employ the anisotropic Sobolev-Slobodeckiı̆ spaces

0W
t,s
p (J × Ω;E) := 0W

t
p(J ;Lp(Ω;E)) ∩ Lp(J ;W s

p (Ω;E)).

3.11. Lemma (Extension operators from y = 0 to y ∈ R+). Let E be a Banach space of class HT
with property (α) and let φ ∈ (π/2, π) and δ ∈ (0, π/8] such that φ + 2δ < π. Suppose that the
mapping

s : (λ, z, y) 7→ s(λ, z, y), Σφ ×BΣn
δ × R+ → B(E)

is holomorphic and bounded with respect to (λ, z) for every y. Then we define S(y) := s(Dt,Dx, y) ∈
B(Lp(R+ × Rn;E)) by Theorem B.70 and we consider the operator

(E[s]f)(y) = S(y)(f |y=0) = −
∫ ∞

0
(∂ȳS(y + ȳ)f(ȳ) + S(y + ȳ)∂ȳf(ȳ)) dȳ, y > 0.(3.18)

acting on appropriate functions f : R+ × Rn+1
+ → E, which are specified below. Since E[s]f only

depends on f |y=0, we may also consider E[s] as an extension operator which maps functions f : R+ ×
Rn → E to functions E[s]f : R+ × Rn+1

+ → E.
(i) Let ω(λ, z) := (τ + λ− z · z)1/2 with some τ ≥ 0 and suppose that s satisfies

sup
{
|yω(λ, z)1−j∂jys(λ, z, y)| : y > 0, λ ∈ Σφ, z ∈ BΣn

δ , j ∈ {0, 1, 2, 3}
}
<∞.(3.19)

Then the operatorE[s] is bounded in 0H
1,2
p (R+×Rn+1

+ ;E). Hence, considered as an extension operator,
E[s] is bounded as

E[s] : 0W
1−1/2p,2−1/p
p (R+ × Rn;E)→ 0H

1,2
p (R+ × Rn+1

+ ;E).

(ii) Suppose that s satisfies the weaker condition

sup
{
|yzs(λ, z, y)|, |yω(λ, z)1−j∂jys(λ, z, y)| : y > 0, λ ∈ Σφ, z ∈ BΣn

δ , j ∈ {1, 2, 3}
}
<∞.

Let P (y) = e−
√
−∆xy denote the Poisson semigroup. Then E[s] is a bounded operator as a map{

f ∈ 0H
1,2
p (R+ × Rn+1

+ ;E) : f(·, ·, y) = P (y)f(·, ·, 0) for y > 0
}
→ 0H

1,2
p (R+ × Rn+1

+ ;E).

Hence, considered as an extension operator, E[s] is bounded as [cf. PS10, Proposition 3.3]

E[s] : 0H
1
p (R+; Ẇ−1/p

p (Rn;E)) ∩W 1−1/2p,2−1/p
p (R+ × Rn;E)→ 0H

1,2
p (R+ × Rn+1

+ ;E).

Proof. In order to apply Lemma 3.10 we consider the kernels

(λ, z, y, ȳ) 7→ s(λ, z, y + ȳ), (λ, z, y, ȳ) 7→ ∂ȳs(λ, z, y + ȳ),

which are again denoted by s end ∂ȳs, respectively. Then

E[s] = −G[∂ȳs]−G[s]∂ȳ.

(i) By means of Theorem B.70 and Remarks B.65 we define the operator L := ω(Dt,Dx). By
the Kalton-Weis-Theorem B.47 and by using Theorem B.34 and Corollary B.37, the operators

L2 : 0H
1,2
p (R+ × Rn;E)→ Lp(R+ × Rn;E),

L = (L2)1/2 : 0H
1/2,1
p (R+ × Rn;E)→ Lp(R+ × Rn;E)

are invertible withR-boundedH∞-calculi of angle not larger than π/2 and π/4, respectively.
For given numbers φ ∈ (π/2, π) and δ ∈ (0, π/8] with φ+ 2δ < π, the functions zjω(λ, z)−1,

zjzkω(λ, z)−2, and λω(λ, z)−2 are bounded with respect to λ ∈ Σφ and z ∈ BΣ
n
δ by Example

B.56. Therefore Theorem B.70 implies that the operators ∂xjL
−1, ∂xj∂xkL

−2, and ∂tL
−2 are

bounded in Lp(R+ × Rn+1
+ ;E). In order to prove that E[s] maps 0H

1,2
p (R+ × Rn+1

+ ;E) into
itself, we use the multiplicative property (ωs)(Dt,Dx, y) = Ls(Dt,Dx, y) of the joint functional
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calculus and deduce the following identity for f ∈ 0H
1,2
p (R+ × Rn+1

+ ;E) and l, m ∈ {0, 1, 2}
with 0 ≤ l +m ≤ 2:

Ll∂my E[s]f = Ll∂my
(
−G[∂ys]f −G[ωs]L−1∂yf

)
= −G[ω−m∂1+m

y s]Ll+mf −G[ω1−m∂my s]L
l+m−1∂yf.

Since s satisfies (3.19), it follows from Lemma 3.10 that the operatorsG[ω1−j∂jys] (j ∈ {0, 1, 2, 3})
are bounded in Lp(R+ × Rn+1

+ ;E). Moreover, the functions Ll+mf and Ll+m−1∂yf belong to
Lp(R+ × Rn+1

+ ;E) and depend continuously on f ∈ 0H
1,2
p (R+ × Rn+1

+ ;E). Therefore assertion
(i) is valid.

(ii) We represent the relevant derivatives of E[s]f as

∇jxE[s]f = −G[∂ys]∇jxf −G[|z|−s]∇jx
√
−∆x

−1
∂yf for j ∈ {0, 1, 2},

∂tE[s]f = −G[∂ys]∂tf −G[|z|−s]∂t
√
−∆x

−1
∂yf,

∇jx∂yE[s]f = −G[ω−1∂2
ys]∇xLf −G[∂ys]∇jx∂yf for j ∈ {0, 1},

∂2
yE[s]f = −G[ω−2∂3

ys]L
2f −G[ω−1∂2

ys]L∂yf.

The operators G[|z|−s] and G[ω1−j∂jys] (j ∈ {1, 2, 3}) are bounded in Lp(R+ × Rn+1
+ ;E) by

Lemma 3.10. For functions f ∈ 0H
1,2
p (R+ × Rn+1

+ ;E) of the form f(y) = P (y)f(0), we have
∂yf = −

√
−∆xf and hence

√
−∆x

−1
∂yf = −f . For a given function

g ∈ 0H
1
p (R+; Ẇ−1/p

p (Rn;E)) ∩W 1−1/2p,2−1/p
p (R+ × Rn;E)

↪→ 0H
1
p (R+; Ẇ−1/p

p (Rn;E)) ∩ Lp(R+; (Ẇ−1/p
p ∩ Ẇ 2−1/p

p )(Rn;E)),

the Poisson extension f(·, ·, y) = P (y)g belongs to 0H
1,2
p (R+×Rn+1

+ ;E) by Theorem B.28. There-
fore E[s] satisfies assertion (ii). �

In order to deal with the symbols Vw,j and Ww,j , we study the Stokes extension symbol

s(λ, z, y) := ω(λ, z)
e−ω(λ,z)y − e−η(z)y

ω(λ, z)− η(z)
, ω(λ, z) := (τ + λ+ |z|2−)1/2, η(z) := |z|−,(3.20)

for λ ∈ Σφ, z ∈ BΣn
δ , and y ∈ (0,∞).

3.12. Lemma. Let n ∈ N, φ ∈ (π/2, π), δ ∈ (0, π/8] with φ + 2δ < π, and τ > 0 and define s by
(3.20). Then for every j ∈ N, there exists C > 0 such that

sup
{
|yzs(λ, z, y)|, |yω(λ, z)1−j∂jys(λ, z, y)| : λ ∈ Σφ, z ∈ BΣn

δ , y ∈ (0,∞)
}
≤ C.

Proof. It is useful [cf. SS08, p. 186] to represent the difference quotient as

e−ωy − e−ηy

ω − η
=

∫ 1

0

d

ds

e−g(s)y

ω − η
ds = −y

∫ 1

0
e−g(s)y ds, where g(s) := (1− s)η + sω.

Lemma B.55 and Example B.56 imply |η| ∼ Re η and |ω| ∼ Reω and hence Re g(s) & |z|. For
α ∈ (0,∞) and x ∈ (0,∞), the inequality e−x ≤ (α/ex)α is valid. Therefore

|yzs(λ, z, y)| ≤ y2|zω|
∫ 1

0
e−Re g(s)y ds ≤ y2|zω|

∫ 1

0

4 ds

e2y2(Re g(s))2
=

4|zω|
e2 Re ηReω

. 1.

Let us show that |yω1−j∂jys| . 1 for j ∈ N. Since φ + 2δ < π, the inequality (B.14) yields
|η| . |ω|. In the case |η| ≤ 2−1|ω|, we have |ω − η| ≥ 2−1|ω| and hence

|yω1−j∂jys| ≤ y
∣∣∣∣ω2−j ω

je−ωy − ηje−ηy

ω − η

∣∣∣∣ ≤ y|ω|2−j |ω|je−Reωy + |η|je−Re ηy

|ω − η|
. 1.
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Next, the Leibniz rule yields

y∂jys = −y∂jy
(
yω

∫ 1

0
e−g(s)y ds

)
= (−1)j+1y2ω

∫ 1

0
g(s)je−g(s)y ds+ j(−1)jyω

∫ 1

0
g(s)j−1e−g(s)y ds.

Hence, in the remaining case 2−1|ω| ≤ |η| . |ω|, we have Re g(s) ∼ |ω| and thus

|yω1−j∂jys| ≤ y2|ω|2−j
∫ 1

0
|ω|je−Re g(s)y ds+ jy|ω|2−j

∫ 1

0
|ω|j−1e−Re g(s)y ds

≤ |ω|2
∫ 1

0

4

e2(Re g(s))2
ds+ j|ω|

∫ 1

0

1

e(Re g(s))2
ds . 1. �

We are ready to prove Theorem 3.1.

Proof of Theorem 3.1. The boundedness of the solution-to-data map (u, π, h) 7→ (gv, gw, gh) fol-
lows from the mixed derivative embeddings on page 159 and the spatial trace theorem on
page 156. Moreover, the functions u, π, and h are Fourier-Laplace transformable in the sense of
distributions and their transforms have the representations in (3.7). Hence the uniqueness in
Lemma 3.8 and Corollary 3.9 imply that problem (3.2) has at most one solution.

In order to construct a solution, we let (gv, gw, gh) ∈ 0Gv × 0Gw × 0Gh be given and define
the functions u, π, and h as in Figure 3.5, Lemma 3.8, and Corollary 3.9. Then (u, π, h) solves
problem (3.2), which follows from the injectivity of the Fourier-Laplace transformation. It re-
mains to prove that the data-to-solution map (gv, gw, gh) 7→ (u, π, h) is uniformly bounded with
respect to ϑ ∈ PM .

(i) Corollary 3.9 implies that (gv, gw, gh) 7→ h is uniformly bounded with respect to ϑ ∈ PM .
(ii) The pressure π has the symbol π̂j(λ, ξ, y) = e−|ξ|yp̂j(λ, ξ) where e−|ξ|y is the symbol of

the Poisson semigroup P (y). Therefore Theorem B.28.(iv) and ∂yP (y) =
√
−∆xP (y) yield

‖∇(x,y)P (y)pj‖Lp(R+×Rn+1
+ ) . ‖pj‖Lp(R+;Ẇ

1−1/p
p (Rn))

.

In view of the divergence conditions (3.6b) and the identity (3.9) for p̂j , we obtain

p̂j = − α1α2

Ω+(ω1 + ω2)

iξ

|ξ|
· Φ̂v +

(−1)jαj
Ω+

[[π̂]].

Hence, by Corollary 3.9, the interface pressures pj = πj |y=0 satisfy

pj ∈ 0W
1/2−1/2p
p (R+;Lp(Rn)) ∩ Lp(R+;W 2−2/p

p (Rn)) ↪→ Lp(R+; Ẇ 1−1/p
p (Rn)),

and therefore πj belongs to Eπ = Lp(R+; Ḣ1
p (Rn+1

+ )) and satisfies [[π]] ∈ 0Gw; thus, π ∈ 0Eπ,[[π]].
Moreover, the map (gv, gw, gh) 7→ π is uniformly bounded with respect to ϑ ∈ PM .

(iii) Corollary 3.9 yields pj ∈ 0Gw, Φv ∈ 0Ev, and Φj
w ∈ 0Ew. Therefore the identities (3.8b)

and (3.8c) yield v|y=0 = Φv ∈ 0Ev and w|y=0 ∈ 0Ew. Since Φv belongs to the Dirichlet trace
space 0W

1−1/2p,2−1/p
p (R+ × Rn) of 0H

1,2
p (R+ × Rn+1

+ ), we conclude from Theorem B.25 that
the parabolic extension [y 7→ e−Ljy]Φv with Lj := ωj(Dt,Dx)−1 belongs to 0H

1,2
p (R+ × Rn+1

+ ).
Next, from (3.6b) we infer that Φ̂j

w = (−1)jiξω−1
j Φ̂j

v, and with 0W
1−1/2p,2−1/p
p (R+ × Rn) ↪→

0H
1/2
p (R+;W

1−1/p
p (Rn)) (see Proposition B.44) we obtain

Φj
w = (−1)j J̇1L

−1
j Φj

v ∈ J̇1L
−1
j 0H

1/2
p (R+;W 1−1/p

p (Rn)) ↪→ 0H
1
p (R+; Ẇ−1/p

p (Rn)).

Hence the Poisson extension (t, x, y) 7→ (P (y)Φj
w)(t, x) belongs to 0H

1
p (R+;Lp(Rn+1

+ )). By
Lemma 3.12 and Example B.56, the Stokes extension symbols Ww,j and Vw,j satisfy the as-
sumption of Lemma 3.11.(ii). Since Vh,j = −Vw,j and since (τ + ∂t)h − gh belongs to the space
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0H
1
p (R+; Ẇ

−1/p
p (Rn)) ∩ 0W

1−1/2p,2−1/p
p (R+ × Rn), we conclude that v belongs to 0H

1,2
p (R+ ×

Ṙn+1) and that (gv, gw, gh) 7→ v is uniformly bounded with respect to ϑ ∈ PM . Finally, the sym-
bolWh,j also satisfies the assumption of Lemma 3.11.(ii) and therefore w belongs to 0H

1,2
p (R+×

Ṙn+1)n. We conclude that u = (v, w) belongs to 0Eu,v,w and that (gv, gw, gh) 7→ u is uniformly
bounded with respect to ϑ ∈ PM . The proof of Theorem 3.1 is complete. �

3.1.5. Inhomogeneous bulk equations. The next step towards optimal regularity of prob-
lem (3.1) is to allow for additional data (fu, fd); that is, we consider the problem

ρ∂tu− µ∆u+∇π = fu in J × Ṙn+1,

div u = fd in J × Ṙn+1,

[[u]] = 0 on J × Rn,
−µs∆xv − λs∇x divx v − [[µ∂yv]]− c5[[µ∇xw]] + c1∇x∆xh = gv on J × Rn,
− tr((c2 + 2C3)∇xv)− 2[[µ∂yw]] + [[π]]− tr((cσ + C4)∇2

xh) = gw on J × Rn,
(τ + ∂t)h− w = gh on J × Rn,

h|t=0 = 0 on Rn,
u|t=0 = 0 in Rn+1.

(3.21)

Here we still consider a flat interface Σ = Rn × {0} ∼= Rn in the whole space Ω = Rn+1, but
restrict our investigation to a bounded time interval J = (0, T ) with T ∈ (0,∞) and τ = 0. The
physical parameters ρ1, ρ2, µ1, µ2, σ, λs, and µs, and the abbreviations c1, c2, C3, C4, and cσ are
the same as on page 54. For the additional data (fu, fd) we consider the conditions

fu ∈ Fu := Lp(J ;Lp(Rn+1)n+1),

fd ∈ 0Fd := 0H
1
p (J ; Ḣ−1

p (Rn+1)) ∩ Lp(J ;H1
p (Ṙn+1)).

In the previously considered case div u = fd = 0, the term ∂yw was of class 0Gw, since

∂yw = div u− divx v = −divx v ∈ 0Gw for u ∈ 0Eu,v,w with div u = 0.

In order to maintain this property for fd 6= 0, we consider the additional conditions

∂yw±|Σ ∈ 0Gw, fd±|Σ ∈ 0Gw.

Then the space of suitable divergence data can be characterized as follows.
3.13. Lemma. The divergence operator

div : 0Eu,v,w,∂yw := {u ∈ 0Eu,v,w : ∂yw±|y=0 ∈ 0Gw}
→ 0Fd,Σ := {fd ∈ 0Fd : fd±|y=0 ∈ 0Gw}

(3.22)

is a retraction.

Proof. We have to show that div : 0Eu,v,w,∂yw → 0Fd,Σ is bounded and surjective and has a
bounded right-inverse. The divergence theorem with interface implies that the map (3.22) is
bounded. In order to construct a bulk velocity field u ∈ Eu,v,w,∂νw for given divergence data
fd ∈ 0Fd,Σ, we employ the data-to-solution operators S± : fd± 7→ (u±, π±) for the one-phase
Stokes problems

(∂t −∆)u± +∇π± = 0 in J × Ω±, div u± = fd± in J × Ω±, u±|y=0 = 0 on J × Rn

for Ω± = ±Rn+1
+ from [BP07, Theorem 6.1]. The function u from (u±, π±) = S±(fd±) belongs to

0Eu, the traces v|y=0 and w|y=0 vanish, and hence belong to 0Ev and 0Ew, respectively. More-
over, ∂yw±|y=0 = fd±|y=0 belong to 0Gw. Therefore fd 7→ u is a bounded right-inverse for
(3.22). �
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0Eu := {u ∈ 0H
1
p (J ;Lp(Rn+1)n+1) ∩ Lp(J ;H2

p (Ṙn+1)n+1) : [[u]] = 0},

0Ev := 0W
1−1/2p
p (J ;Lp(Rn)n) ∩ 0W

1/2−1/2p
p (J ;H2

p (Rn)n) ∩ Lp(J ;W 3−1/p
p (Rn)n),

0Ew := 0W
1−1/2p
p (J ;H1

p (Rn)) ∩ Lp(J ;W 3−1/p
p (Rn)),

0Eu,v,w,∂yw := {u = (v, w) ∈ 0Eu : v|y=0 ∈ 0Ev, w|y=0 ∈ 0Ew, ∂yw±|y=0 ∈ 0Gw},

Eπ := Lp(J ; Ḣ1
p (Ṙn+1)),

0Eπ,[[π]] := {π ∈ Eπ : [[π]] ∈ 0Gw},

0Eh := 0W
2−1/2p
p (J ;H1

p (Rn)) ∩ 0H
1
p (J ;W 3−1/p

p (Rn)) ∩ Lp(J ;W 4−1/p
p (Rn)),

Fu := Lp(J ;Lp(Rn+1)n+1),

0Fd := 0H
1
p (J ; Ḣ−1

p (Rn+1)) ∩ Lp(J ;H1
p (Ṙn+1)),

0Fd,Σ := {fd ∈ 0Fd : fd±|y=0 ∈ 0Gw},

0Gv := 0W
1/2−1/2p
p (J ;Lp(Rn)n) ∩ Lp(J ;W 1−1/p

p (Rn)n),

0Gw := 0W
1/2−1/2p
p (J ;H1

p (Rn)) ∩ Lp(J ;W 2−1/p
p (Rn)),

0Gh := 0W
1−1/2p
p (J,H1

p (Rn)) ∩ Lp(J,W 3−1/p
p (Rn)).

FIGURE 3.6. Function spaces 0E···, 0F···, and 0G··· on (J,Rn+1,Rn).

We are ready to prove optimal regularity for problem (3.21). The relevant function spaces
are summarized in Figure 3.6 on this page.
3.14. Theorem. Let λs + µs > 0, c5 ∈ {0, 1}, c6 = 1, p ∈ (1,∞), T0 ∈ (0,∞), and M > 0. Then the
solution-to-data map

(u, π, h) 7→ (fu, fd, gv, gw, gh),

0Eu,v,w,∂yw × 0Eπ,[[π]] × 0Eh → Fu × 0Fd,Σ × 0Gv × 0Gw × 0Gh

of problem (3.21) is uniformly invertible with respect to T ∈ (0, T0] and ϑ ∈ PM .

Proof. Boundedness of the solution-to-data map follows from the mixed derivative embed-
dings on page 159, the divergence theorem with interface, and the spatial trace theorem on
page 156. Injectivity follows from Corollary 3.2. For proving surjectivity, we construct a solu-
tion

(u, π, h) = (u1, 0, 0) + (u2, π2, 0) + (u3, π3, h3).

First, with the co-retraction divc : 0Fd,Σ → 0Eu,v,w,∂yw from Lemma 3.13, we choose u1 = divc fd.
Second, let fu,2 := fu−(ρ∂t−µ∆)u1 and let P = I−∇∆−1 div denote the Helmholtz projection
in Lp(Rn+1)n+1. Then Pfu,2 belongs to Fu and we seek a solution u2 ∈ 0Eu of the Stokes
problem

ρ∂tu2 − µ∆u2 = Pfu,2, div u2 = 0, u2|Σ = 0.(3.23)

Since (3.23) consists of two separated one-phase Stokes problems in J × Rn+1
± , we obtain the

desired solution map Pfu,2 7→ u2 from [DHP01, Theorem 7.6]. We trivially have 0 = v2|Σ ∈ 0Ev,
0 = w2|Σ ∈ 0Ew, and 0 = ∂yw2|Σ = div u2|Σ − divx v2|Σ ∈ 0Gw. Therefore u2 belongs to
0Eu,v,w,∂yw. With Lemma 2.23, we define π2 as the solution to the weak Neumann transmission
problem

〈∇π2(t, ·),∇ϕ〉Rn+1 = 〈(I − P )fu,2(t, ·),∇ϕ〉Rn+1 for all ϕ ∈ Ḣ1
p′(R

n+1), [[π2]] = 0.
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Hence π2 belongs to 0Eπ,[[π]] and satisfies ∇π2 = (I − P )fu,2 in Fu. The uniform boundedness
of (fu, fd) 7→ (u1 + u2, π2, 0) with respect to T ∈ (0, T0] follows by extension of the data from
J = (0, T ) to (0,∞) with Lemma B.9 and by restriction to (0, T0).

Finally, Corollary 3.2 yields a unique solution (u3, π3, h3) ∈ 0E of

ρ∂tu3 − µ∆u3 +∇π3 = 0 in J × Ṙn+1,

div u3 = 0 in J × Ṙn+1,

Lu(u3, π3, h3;ϑ) = (gv, gw)− Lu(u1 + u2, π2, 0;ϑ) on J × Rn,
∂th3 − w3 = gh + w1 + w2 on J × Rn,

and the map (fu, fd, gv, gw, gh) 7→ (u3, π3, h3) is uniformly bounded with respect to T ∈ (0, T0]
and ϑ ∈ PM . Hence the proof of Theorem 3.14 is complete. �

3.2. Bent hyperplanes and variable coefficients

We generalize Theorem 3.14 to a situation where the interface is a bent hyperplane

Σ = Σω := {(x′, ω(x′)) : x′ ∈ Rn−1} with ω ∈ BC4(Rn−1)(3.24)

in Ω = Rn (n ≥ 2) and the coefficients on the interface may depend on (t, x′). In a tubular
neighborhood Br(Σ) with projection ΠΣ : Br(Σ) → Σ, we decompose u = v + w νΣ ◦ Π with
v := [PΣ ◦ΠΣ]u and w := (νΣ ◦ΠΣ|u). We consider the perturbed model problem

ρ∂tu− µ∆u+∇π = fu in J × (Rn \ Σω),

div u = fd in J × (Rn \ Σω),

[[u]] = 0 on J × Σω,

Lv(u, h;ϑ, ω) = gv on J × Σω,

Lw(u, π, h;ϑ, ω) = gw on J × Σω,

∂th− w = gh on J × Σω,

h|t=0 = 0 on Σω,

u|t=0 = 0 in Rn.

(3.25)

Here J = (0, T ) is bounded, the parameter triple ϑ = (ϑL, ϑw, ϑDv) consists of fixed functions

ϑL : Σω → Rn×n, (ϑw, ϑDv) : J × Σω → K×Kn×n,

and, similar to (3.3) on page 54, we define further parameters
ϑ1 := (λs + µs)ϑw, ϑ2 := (λs − µs) trϑL,

ϑ3 := µsϑL, ϑ4 := 2µs[ϑDv − 2ϑwϑL],

c5 ∈ {0, 1}, ϑσ := σ + (λs − µs) tr[ϑDv − 2ϑwϑL].

(3.26)

Then the operators Lv and Lw are given by

Lv(u, h;ω, ϑ) = −µs∆̃Σωv − λs∇Σω divΣω v − [[µ∂νΣω
v]]− c5[[µ∇Σωw]] + ϑ1∇Σω∆Σωh,

Lw(u, π, h;ω, ϑ) = − tr ([ϑ2 + 2ϑ3]∇Σωv)− 2[[µ∂νΣω
w]] + [[π]]− tr

(
[ϑσ + ϑ4]∇2

Σωh
)
.

More details on these operators will be given in Figure 3.8 on page 73 and Section 4.3.
We will prove optimal regularity for problem (3.25) for the following class of parameters

and by using the function spaces from Figure 3.7 on the next page.
3.15. Definition. Given M , T , η, R ∈ (0,∞), the set PM,T,η,R consists of all (ϑ∗, ω, ϑ) such that

(i) the constant tuple ϑ∗ = (ϑ∗L, ϑ
∗
w, ϑ

∗
Dv) belongs to the parameter set PM from page 54,

(ii) the map ω ∈ BC4(Rn−1) satisfies ‖ω‖BC1∩H2
p
≤ η, ‖ω‖BC4 ≤ R, and ω(0) = |∇ω(0)| = 0,
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0Eu := {u ∈ 0H
1
p (J ;Lp(Ω)n) ∩ Lp(J ;H2

p (Ω \ Σ)n) : u|∂Ω = 0},

0Ev := 0W
1−1/2p
p (J ;Lp(Σ;TΣ))

∩ 0W
1/2−1/2p
p (J ;H2

p (Σ;TΣ)) ∩ Lp(J ;W 3−1/p
p (Σ;TΣ)),

0Ew := 0W
1−1/2p
p (J ;H1

p (Σ)) ∩ Lp(J ;W 3−1/p
p (Σ)),

0Eu,v,w,∂νw := {u ∈ 0Eu : [[u]] = 0, v|Σ ∈ 0Ev, w|Σ ∈ 0Ew, ∂νw± ∈ 0Gw} ,

Eπ := Lp(J ; Ḣ1
p (Ω \ Σ)),

0Eπ,[[π]] := {π ∈ Eπ : [[π]] ∈ 0Gw},

0Eh := 0W
2−1/2p
p (J ;H1

p (Σ)) ∩ 0H
1
p (J ;W 3−1/p

p (Σ)) ∩ Lp(J ;W 4−1/p
p (Σ)),

Fu := Lp(J × Ω)n,

0Fd := 0H
1
p (J ; Ĥ−1

p (Ω)) ∩ Lp(J ;H1
p (Ω \ Σ)),

0Fd,Σ := {fd ∈ 0Fd : fd±|Σ ∈ 0Gw},

0Gv := 0W
1/2−1/2p
p (J ;Lp(Σ;TΣ)) ∩ Lp(J ;W 1−1/p

p (Σ;TΣ)),

0Gw := 0W
1/2−1/2p
p (J ;H1

p (Σ)) ∩ Lp(J ;W 2−1/p
p (Σ)),

0Gh := 0W
1−1/2p
p (J ;H1

p (Σ)) ∩ Lp(J ;W 3−1/p
p (Σ)).

The spaces Lp, Hk
p , and W s

p (p ∈ (1,∞), k ∈ N0, s ∈ [0,∞)) are endowed with the intrinsic
norm (B.5). The corresponding spaces E···, F···, and G··· are defined by replacing 0W

s
p by

W s
p and 0H

k
p by Hk

p . The scalar-valued versions of 0Ev and 0Gv are denoted by the same
symbol.

FIGURE 3.7. Function spaces 0E···, 0F···, and 0G··· on (J,Ω,Σ).

(iii) the triple ϑ = (ϑL, ϑw, ϑDv) consists of functions ϑL : Σω → Rn×n and (ϑw, ϑDv) : (0, T )×
Σω → R× Rn×n that satisfy the inequalities

‖ϑL − ϑ∗L‖BC(Σω)∩H1
p(Σω) ≤ η, ‖ϑL − ϑ∗L‖BC2(Σω) ≤ R,

‖ϑw − ϑ∗w‖C([0,T ];BC(Σω)∩H1
p(Σω)) ≤ η, ‖ϑw − ϑ∗w‖Gw(T ) ≤ R,

‖ϑDv − ϑ∗Dv‖C([0,T ];BC(Σω)∩H1
p(Σω)) ≤ η, ‖ϑDv − ϑ∗Dv‖Gw(T ) ≤ R.

3.16. Theorem. Let ρ±, µ±, σ, µs, λs + µs > 0 and let p ∈ (n+ 2,∞), M > 0, and T1 > 0 be fixed.
Then there exists η > 0 such that for given R > 0 we can find a number T0 ∈ (0, T1] such that the
solution-to-data map

(u, π, h) 7→ (fu, fd, gv, gw, gh),

0E := 0Eu,v,w,∂νw × 0Eπ,[[π]] × 0Eh → 0F := Fu × 0Fd,Σ × 0Gv × 0Gw × 0Gh

of problem (3.25) is uniformly invertible with respect to T ∈ (0, T0] and (ϑ∗, ω, ϑ) ∈ PM,T1,η,R.
We point out that the number η depends on the bound M for ϑ∗ but not on the bound R

for ω and ϑ. This will be important for the localization procedure for a bounded domain. The
proof of Theorem 3.16 will be reduced to an application of Theorem 3.14 for the flat interface
problem (3.21). To this end, we consider the usual defining diffeomorphism

Θω(x′, xn) = (x′, xn + ω(x′)) for x′ ∈ Rn−1, xn ∈ R.(3.27)
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Let ∂ = (∂′, ∂n), ∂′ = (∂1, . . . , ∂n−1), ∇ = ∂>, ∇′ = ∂′> and Σω = {(x′, ω(x′)) : x′ ∈ Rn−1}.
The defining diffeomorphism Θω(x′, xn) = (x′, xn + ω(x′)) for Σω satisfies

∂Θω = I + en ⊗∇ω =

[
I ′ 0

∂′ω 1

]
, [∂Θω]−1 = I − en ⊗∇ω =

[
I ′ 0

−∂′ω 1

]
.

The tangent vectors τj , cotangent vectors τ j , unit normal vector ν, metric components gjk,
gjk and Christoffel symbols Λjk,l, Λlkj of Σω are given by

ν ◦Θω = β(en −∇ω), β = (1 + |∇ω|2)−1/2,

τj ◦Θω = ej + ∂jω en, τ j ◦Θω = ej + β2∂jω(en −∇ω),

gjk ◦Θω = δjk + ∂jω∂kω, gjk ◦Θω = δjk − β2∂jω∂kω,

Λjk,l ◦Θω = ∂j∂kω∂lω, Λljk ◦Θω = β2∂j∂kω∂lω.

The projections P ′ = I − en ⊗ en and PΣω = I − νΣω ⊗ νΣω satisfy

P ′ =

[
I ′ 0

0 0

]
, PΣω ◦Θω =

[
I ′ − β2∇′ω ⊗∇′ω β2∇′ω

β2∂′ω 1− β2

]
.

For a scalar field ϕ, a tangential vector field v and a not necessarily tangential vector field
u, the gradient∇Σωϕ,∇Σωu, divergence divΣω u, scalar Laplace-Beltrami operator ∆Σωϕ =

divΣω ∇Σωϕ and tangential Laplace-Beltrami operator ∆̃Σωv = gjk∇̃j∇̃kv are given by

∇Σωϕ = τ j∂jϕ, ∇Σωu = τ j ⊗ ∂ju,

∆Σωϕ = gjk(∂j∂kϕ− Λljk∂lϕ), divΣω u = τ j · ∂ju,

∆̃Σωv = gjkPΣω∂j(PΣω∂kv).

FIGURE 3.8. Differential geometric identities for bent hyperplanes.

Since x′ 7→ Θω(x′, 0) is a global parametrization for Σω, we can compute the relevant differen-
tial geometric quantities of Σω by a straightforward application of Appendix A. The relevant
identities are collected in Figure 3.8 on this page.

In Lemma 3.17 we will prove that the induced transformations for solutions and data in-
duce isomorphisms between the function spaces in Rn \ Σω and the corresponding spaces in
Ṙn = Rn \ Σ0, which are uniformly bounded and uniformly invertible with respect to ω. We
also derive transformation identities for the velocity components v and w which are collected
in Figure 3.9 on the next page. These will be employed for deriving the transformed version
(3.48) of problem (3.25). This transformed problem corresponds to the basic model problem
(3.21) with additional perturbations. We will control those pertubations by means of appropri-
ate interval-dependent estimates and estimates for pointwise multiplication and continuous
embeddings (see Lemmas 3.18 and 3.19). For proving Theorem 3.16, we require smallness of
η in order to control the leading-order perturbations and smallness of T for controlling the
lower-order perturbations.
3.17. Lemma. Let ω ∈ BC4(Rn−1) and J = (0, T ) with T ∈ (0,∞]. Consider the transformations

(u, π, h) ◦Θω = ([∂Θω]u, π, h),

(fu, fd, gu, gh) ◦Θω = ([∂Θω]fu, fd, [∂Θω]gu, gh),

and the decompositions u = v + w νΣω , u = v + w en, gu = gv + gw νΣω , and gu = gv + gw en.
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Define Θω as in Figure 3.8 and let

u ◦Θω = [∂Θω]u, u = v + w νΣω , u = v + w en.

Then the following identities are valid.

v = P ′(v ◦Θω) +Qv(ω)w ◦Θω, Qv(ω) = −β∇ω,(3.29a)

w = w ◦Θω +Qw(ω)w ◦Θw, Qw(ω) = β−1 − 1,(3.29b)

∂nw = β2(∂νw) ◦Θω + β3∂jω(∂jw) ◦Θω,(3.29c)

v ◦Θω = [I + en ⊗∇ω]v + {(1− β2)en − β2∇ω}w,(3.29d)

w ◦Θω = w + (β − 1)w,(3.29e)

(∂νw) ◦Θω = ∂nw − β∇′ω · ∇′(βw).(3.29f)

Their derivations are given in the proof of Lemma 3.17.

FIGURE 3.9. Identities for the transformed velocity field.

Then, given R > 0, the operators

u 7→ u, Eu(Rn \ Σ0)→ Eu(Rn \ Σω),(3.28a)

(v, w) 7→ (v, w), Ev(Σ0)× Ew(Σ0)→ Ev(Σω)× Ew(Σω),(3.28b)

u 7→ u, Eu,v,w,∂nw(Rn \ Σ0)→ Eu,v,w,∂νw(Rn \ Σω),(3.28c)

π 7→ π, Eπ(Rn \ Σ0)→ Eπ(Rn \ Σω),(3.28d)

π 7→ π, Eπ,[[π]](Rn \ Σ0)→ Eπ,[[π]](Rn \ Σω),(3.28e)

h 7→ h, Eh(Σ0)→ Eh(Σω),(3.28f)

fu 7→ fu, Fu(Rn \ Σ0)→ Fu(Rn \ Σω),(3.28g)

fd 7→ fd, Fd(Rn \ Σ0)→ Fd(Rn \ Σω),(3.28h)

fd 7→ fd, Fd,Σ(Rn \ Σ0)→ Fd,Σ(Rn \ Σω),(3.28i)

(gv, gw) 7→ (gv, gw), Gv(Σ0)×Gw(Σ0)→ Gv(Σω)×Gw(Σω),(3.28j)

gh 7→ gh, Gh(Σ0)→ Gh(Σω)(3.28k)

are uniformly bounded and uniformly invertible with respect to ‖∇ω‖BC3 ≤ R and T ∈ (0,∞].

Proof. (i) In order to estimate the norms of transformed functions, we employ the chain
rule from Remark B.85 on page 171 for representing their derivatives. Define Θ = Θω as in
(3.27).

(i.a) For x ∈ Rn and α ∈ Rn we put x = Θ(x) and α = [∂Θ(x)]α. Then the derivatives of Θ
and Θ−1 read as follows.

[∂Θ(x)]α = α+ en(∇ω(x′)|α), [∂jΘ(x)](α1, . . . , αj) = en[∂jω(x′)](α1, . . . , αj) for j ≥ 2,

[∂Θ−1(x)]α = α− en(∇ω(x′)|α), [∂jΘ−1(x)](α1, . . . , αj) = −en[∂jω(x′)](α1, . . . , αj) for j ≥ 2.

(i.b) For a sufficiently smooth function ϕ : Rn → R we put ϕ := ϕ ◦Θ and obtain

[∂ϕ(x)]α = [∂ϕ(x)]α,

[∂2ϕ(x)](α1, α2) = [∂2ϕ(x)](α1, α2)− [∂ϕ(x)][∂Θ(x)]−1[∂2Θ(x)](α1, α2).
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Omitting the arguments x and x and the square brackets around derivatives, we have

∂3ϕ(α1, α2, α3)

= ∂3ϕ(α1, α2, α3)

− ∂2ϕ{(∂Θ−1∂2Θ(α1, α2), α3) + (∂Θ−1∂2Θ(α1, α3), α2) + (∂Θ−1∂2Θ(α2, α3), α1)}
+ ∂ϕ∂Θ−1∂2Θ{(∂Θ−1∂2Θ(α1, α2), α3) + (∂Θ−1∂2Θ(α1, α3), α2) + (∂Θ−1∂2Θ(α2, α3), α1)}
− ∂ϕ∂Θ−1∂3Θ(α1, α2, α3).

(i.c) For u : Rn → Rn we let u(x) := [∂Θ(x)]u(x) and write u = ∂Θu, to be short. Then

∂uα1 = ∂Θ ∂uα+ ∂2Θ(u, α),

∂2u(α1, α2) = ∂Θ ∂2u(α1, α2) + ∂2Θ{(∂uα1, α2) + (α1, ∂uα2)}
− ∂Θ ∂u ∂Θ−1∂2Θ(α1, α2)− ∂2Θ(u, ∂Θ−1∂2Θ(α1, α2)) + ∂3Θ(u, α1, α2).

(ii) Lemma B.10 on page 148 yields the pointwise multiplication estimate

[[uv]]Wσ
p (Σω) ≤ ‖u‖L∞(Σω) [[v]]Wσ

p (Σω) + C(n, s, p, ‖∇ω‖BC1)‖u‖W 1
∞(Σω)‖v‖Lp(Σ)(3.30)

for u ∈W 1
∞(Σω), v ∈W σ

p (Σω), σ ∈ (0, 1), p ∈ [1,∞).
(iii) Now we are prepared for proving that the operators (3.28) are uniformly invertible.

We will frequently employ the differential geometric identities in Figure 3.8.
(iii.a) The invertibility of u 7→ u in (3.28a), π 7→ π in (3.28d) and fu 7→ fu in (3.28g) easily

follows from (i). These operators are uniformly invertible with respect to ‖∇ω‖BC2 ≤M .
(iii.b) We recall thatW s

p (Σω) is equipped with the intrinsic Sobolev-Slobodeckiı̆ norm (B.5).
Hence, from ∇k+1

Σω
h = (∇Σω⊗)k∇Σωh (k ≤ 2) and (3.30) we infer that the operator h 7→ h in

(3.28f) is invertible, uniformly with respect to ‖∇ω‖BC3 ≤ M . In a similar way we see that
gh 7→ gh in (3.28k) is uniformly invertible with respect to ‖∇ω‖BC2 ≤M .

(iii.c) The transformed normal velocity satisfies

w = en · u = en · [∂Θ]−1(v + νΣωw) ◦Θω

= (1 + |∇ω|2)1/2w ◦Θω

= w ◦Θω +Qw(ω)w ◦Θω with Qw(ω) := (1 + |∇ω|2)1/2 − 1 = β−1 − 1.

Hence the identities (3.29b) and (3.29e) are valid and the operator w 7→ w, Ew(Σω)→ Ew(Σ0) is
uniformly invertible with respect to ‖∇ω‖BC3 ≤M .

(iii.d) The projection P ′ = I − en ⊗ en satisfies

P ′[∂Θω]−1[PΣω ◦Θω] = P ′ + β∇ω ⊗ (νΣω ◦Θω).

Therefore v is related to (v, w) by

v = P ′u = P ′[∂Θω]−1(PΣωv + w νΣω) ◦Θω

= P ′(v ◦Θω) +Qv(ω)w ◦Θω with Qv(ω) := −∇ω(1 + |∇ω|2)−1/2 = −β∇ω.

This yields (3.29a). With Ew ↪→ Ev, it follows that (v, w) 7→ v, Ev(Σω) × 0Ew(Σω) → 0Ev(Σ0) is
uniformly bounded with respect to ‖∇ω‖BC3 ≤M . The inverse representation is given by

v ◦Θω = [PΣω ◦Θω][I + en ⊗∇ω](v + w en)

= [I + en ⊗∇ω]v + {(1− β2)en + β2∇ω}w.

Therefore identity (3.29d) is true and the operator (v, w) 7→ (v, w) in (3.28b) is uniformly inver-
tible with respect to ‖∇ω‖BC3 ≤M .
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(iii.e) With w ◦Θω = βw we obtain

(∂νw) ◦Θω = β(en −∇ω) · ∇((βw) ◦Θ−1
ω ) ◦Θω

= β[I − en ⊗∇ω](en −∇ω) · ∇(βw)

= β(en −∇ω + en|∇ω|2) · ∇(βw)

= ∂nw − β∇′ω · ∇′(βw),

∂nw = βen · ∇(w ◦Θω)

= β[I + en ⊗∇ω]en · (ν∂νw + τ j∂jw) ◦Θω

= β2(∂νw) ◦Θω + β3∂jω(∂jw) ◦Θω.

Thus, equations (3.29c) and (3.29f) are valid and the operator u 7→ u in (3.28c) is uniformly
invertible with respect to ‖∇ω‖BC3 ≤M .

(iii.f) The relation between gu ◦Θω and gu is analogous to that of u|Σ ◦Θω and u|Σ0 . Hence
equations (3.29a), (3.29b), (3.29d) and (3.29e) yield

gv = P ′(gv ◦Θω) +Qv(ω)gw ◦Θω,

gv ◦Θω = [I + en ⊗∇ω]gv + β2(∇ω − en|∇ω|2)gw, gw ◦Θω = βgw.
(3.31)

Therefore (3.28j) and (3.28e) are uniformly invertible with respect to ‖∇ω‖BC2 ≤M .
(iii.g) For given fd ∈ Fd(Rn \ Σ0) and ϕ ∈ Ḣ1

p′(R
n), we obtain∫

Rn
fd ϕdx =

∫
Rn
fd ϕ ◦Θω dx, with det ∂Θω = 1.

The map ϕ 7→ ϕ ◦Θω, Ḣ1
p′(R

n)→ Ḣ1
p′(R

n) is uniformly invertible and therefore

fd 7→ fd, H1
p (J ; Ĥ−1

p (Rn))→ H1
p (J ; Ĥ−1

p (Rn))

is uniformly invertible with respect to ‖∇ω‖∞ ≤ M . The estimates for the remaining norms
follow similarly as above and therefore (3.28h) and (3.28i) are uniformly invertible with respect
to ‖∇ω‖BC2 ≤M . The proof of Lemma 3.17 is complete. �

In order to take advantage of short time intervals we will frequently employ the following
interval-dependent estimates, where we study the time-dependence of certain embedding con-
stants.
3.18. Lemma. Let X be a Banach space, J = (0, T ) with T ∈ (0,∞), and p ∈ [1,∞). Then

‖u‖Lp(J) ≤ T
1/p−1/q‖u‖Lq(J), for u ∈ Lq(J ;X), q ∈ [p,∞],(3.32a)

‖v‖Lp(J) ≤ T 1
1−1/p‖∂tv‖Lp(J), for v ∈ 0W

1
p (J ;X), p > 1,(3.32b)

‖v‖Lp(J) ≤ Tα 1
21/p

1+α−1/p
α−1/p [[v]]Wα

p (J) , for v ∈ 0W
α
p (J ;X), α ∈ (1/p, 1),(3.32c)

[[u]]Wα
p (J) ≤ T

β−α [[u]]
Wβ
p (J)

, for u ∈W β
p (J ;X), α ∈ (0, 1), β ∈ (α, 1),(3.32d)

[[u]]Wα
p (J) ≤ T

1−α 21/p

α(p−αp)1/p ‖∂tu‖Lp(J) , for u ∈W 1
p (J ;X), α ∈ (0, 1).(3.32e)

Proof. (3.32a) follows from Hölder’s inequality. To prove (3.32b), we apply Hardy’s inequality
(B.4) to ∂tv. (3.32c) follows from Lemma B.5. (3.32d) can be verified directly:

[[u]]Wα
p (0,T ) =

(∫ T

0

∫ T

0
|t− s|(β−α)p |u(t)− u(s)|pX

|t− s|1+βp
ds dt

)1/p

≤ T β−α [[u]]
Wβ
p (0,T )

.

Estimate (3.32e) follows from Hardy’s inequality as in [PS11, Proposition 5.1]. �

Next we provide appropriate estimates for controlling perturbations in 0Gv, 0Gw, and 0Gh.
Basically, such estimates were used in [PSS07] and [PS10].



3.2. BENT HYPERPLANES AND VARIABLE COEFFICIENTS 77

3.19. Lemma. Let Ω be a domain in Rn (n ≥ 2) containing a smooth (possibly empty) hypersurface Σ
such that Assumption 2.1 on page 23 is satisfied and let p ∈ (1,∞). Then the following assertions are
valid.

(i) If p > 2, then for all δ ∈ (0, 1/2) and T0 ∈ (0,∞) there exists C(δ, T0) > 0 such that

‖(T−1u, T−δ∇u)‖Fu(T ) ≤ C(δ, T0)‖u‖
0Eu(T )(3.33)

for all u ∈ 0Eu(T ) and T ∈ (0, T0].
(ii) If p > 2, then for all T0 ∈ (0,∞) there exists C(T0) > 0 such that

‖(T−1/2v, T−1/4∇′v)‖
0Gv(T ) + ‖T−1/4v‖

0Gw(T ) ≤ C(T0)‖v‖
0Ev(T )(3.34)

for all v ∈ 0Ev(T ) and T ∈ (0, T0].
(iii) If p > 2, then for all δ ∈ (0, 1/2) and T0 ∈ (0,∞) there exists C(δ, T0) > 0 such that

‖(T−1/2w, T−δ∇′w)‖
0Gv(T ) + ‖T−δw‖

0Gw(T ) ≤ C(δ, T0)‖w‖
0Ew(T )(3.35)

for all w ∈ 0Ew(T ) and T ∈ (0, T0].
(iv) If p > 3, then for all δ ∈ (0, 3/2) and T0 ∈ (0,∞) there exists C(δ, T0) > 0 such that

‖(T−3/2h, T−δ∇′h, T−1∇′2h)‖
0Gv(T ) + ‖(T−3/2h, T−1∇′h)‖

0Gw(T ) ≤ C(δ, T0)‖h‖
0Eh(T )(3.36)

for all h ∈ 0Eh(T ) and T ∈ (0, T0].
(v) There exists C > 0 such that for all T ∈ (0,∞), ϕ ∈ BC1(Σ), and gv ∈ Gv(T ) we have

‖ϕgv‖Gv(T ) ≤ C‖ϕ‖∞‖gv‖Gv(T ) + C‖ϕ‖1/p∞ ‖∇′ϕ‖1−1/p
∞ ‖gv‖Lp(0,T ;Lp(Σ)).(3.37)

and if p > 3, then for all δ ∈ (0, 1/2− 1/2p) and T0 ∈ (0,∞) there exists C(δ, T0) > 0 such that

‖gv‖Lp(0,T ;Lp(Σ)) ≤ T δC(δ, T0)‖gv‖0Gv(T ) for all gv ∈ 0Gv(T ), T ∈ (0, T0].(3.38)

There exists C > 0 such that for all T ∈ (0,∞) we have

‖ϑgv‖Gv(T ) ≤ C‖ϑ‖∞‖gv‖Gv(T ) + C‖ϑ‖Gv(T )‖gv‖∞ for all ϑ, gv ∈ Gv(T ) ∩ L∞(J × Σ),(3.39)

and if p > n+ 2, then we have the continuous embedding

Gv(T ) ↪→ C([0, T ];BC(Σ)),

and for all δ ∈ (0, 1/2− (n+ 2)/2p) and T0 ∈ (0,∞) there exists C(δ, T0) > 0 such that

‖gv‖C([0,T ];BC(Σ)) ≤ T δC(δ, T0)‖gv‖0Gv(T ) for all gv ∈ 0Gv(T ), T ∈ (0,∞).(3.40)

(vi) There exists C > 0 such that for all T ∈ (0,∞), ϕ ∈ BC2(Rn−1), and gw ∈ Gw(T ) we have

‖ϕgw‖Gw(T ) ≤ C‖ϕ‖L∞∩H1
p
‖gw‖Gw(T ) + C‖ϕ‖BC2‖gw‖Lp(0,T ;H1

p(Σ)),(3.41)

and if p > 3, then for all δ ∈ (0, 1/2− 1/2p) and T0 ∈ (0,∞) there exists C(δ, T0) > 0 such that

‖gw‖Lp(0,T ;H1
p(Σ)) ≤ T δC(δ, T0)‖gw‖0Gw(T ) for gw ∈ 0Gw(T ), T ∈ (0, T0].(3.42)

If p ∈ (n+ 2,∞), then we have the continuous embedding

Gw(T ) ↪→ G̃w(T ) := C([0, T ];H1
p (Σ)) ∩ Lp(0, T ;BC1(Σ)),

there exists C > 0 such that for all T ∈ (0,∞), ϑ ∈ Gw(T ), and gw ∈ Gw(T ) we have

‖ϑgw‖Gw(T ) ≤ C‖ϑ‖C([0,T ];H1
p(Σ))‖gw‖Gw(T ) + C‖ϑ‖Gw(T )‖gw‖G̃w(T ),(3.43)

and for all δ ∈ (0, 1/2− 3/2p) and T0 ∈ (0,∞) there exists C(δ, T0) > 0 such that

‖gw‖
0G̃w(T ) ≤ T

δC(δ, T0)‖gw‖0Gw(T ) for all gw ∈ 0Gw(T ), T ∈ (0,∞).(3.44)
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(vii) There is C > 0 such that for all T ∈ (0,∞), ϕ ∈ BC3(Rn−1), and gh ∈ Gh(T ) we have

‖ϕgh‖Gh(T ) ≤ C‖ϕ‖L∞∩H1
p
‖gh‖Gh(T ) + C‖ϕ‖BC3‖gh‖Lp(0,T ;H2

p(Σ)),(3.45)

and if p > 3, then for all T0 ∈ (0,∞) there exists C(T0) > 0 such that

‖gh‖Lp(0,T ;H2
p(Σ)) ≤ T 1/2−1/2pC(T0)‖gh‖0Gh(T ) for all gh ∈ 0Gh(T ), T ∈ (0, T0].(3.46)

Proof. We will frequently employ the embeddings (B.1), (B.2), (B.3) page 145, and the mixed
derivative embeddings from Proposition B.44 on page 159. From Lemma B.9 on page 148 we
infer that the embedding constants for the relevant subspaces with vanishing initial values
are uniformly bounded with respect to T ∈ (0, T0], by extension to (0,∞) and restriction to
(0, T0). Moreover, Lemma 3.18 on page 76 yields a factor T δC(δ, T0) for the norm bound of an
embedding into a space with lower temporal regularity.

For τ , σ ∈ (0, 1), p ∈ [1,∞), and q ∈ [1,∞], we abbreviate

[[·]]τ,p;q := [[·]]W τ
p (0,T ;Lq(Σ)) , [[·]]q;σ,p := [[·]]Lq(0,T ;Wσ

p (Σ)) , ‖·‖p;q := ‖·‖Lp(0,T ;Lq(Σ)).

We may assume that the norms of Gv, Gw, and Gh are given by

‖v‖Gv = [[v]]1/2−1/2p,p;p + ‖v‖p;p + [[v]]p;1−1/p,p ,

‖w‖Gw = [[(w,∇w)]]1/2−1/2p,p;p + ‖(w,∇w)‖p;p + [[∇w]]p;1−1/p,p ,

‖h‖Gh = [[(h,∇h)]]1−1/2p,p;p + ‖(h,∇h,∇2h)‖p;p + [[∇2h]]p;1−1/p,p,

since these norms are equivalent to the usual ones and the corresponding constants only de-
pend on p and n but not on T . Lemma B.10 yields the estimate

[[uv]]Wσ
p
≤ ‖u‖∞ [[v]]Wσ

p
+ C(n, p, σ) ‖u‖1−σ∞ ‖∇u‖σ∞ ‖v‖p(3.47)

for u ∈W 1
∞(Ω) and v ∈W σ

p (Ω).
The inequality (3.32c) and the mixed derivative embeddings yield

‖∇u‖Lp(0,T ;Lp(Rn)) ≤ T δC(δ, T0)‖u‖
0W δ

p (0,T ;H1
p(Rn)) ≤ T δC(δ, T0)‖u‖0Eu ,

for δ ∈ (0, 1/2), provided 1/2 > 1/p which is true for p > 2. Together with (3.32b), this proves
assertion (i). With (3.32c) and (3.32d) we obtain

‖v‖
0Gv(T ) = [[v]]1/2−1/2p,p;p + ‖v‖p;p + [[v]]p;1−1/p,p

≤ C{T 1/2 + T 1−1/2p} [[v]]1−1/2p,p;p + CT δ‖v‖
0W δ

p (0,T ;W
1−1/p
p (Σ))

for v ∈ 0Ev(T ) and δ ∈ (1/p, 1). Moreover, for ρ ∈ (0, 1/2] with 1/p < δ < 1/2 − 1/2p + ρ ≤
1− 1/2p and 2− 4ρ > 1− 1/p the mixed derivative embeddings yield

‖v‖
W δ
p (0,T ;W

1−1/p
p (Σ))

≤ C(T0)‖v‖
H

1/2−1/2p+ρ
p (0,T ;W 2−4ρ

p (Σ))
≤ C(T0)‖v‖

0Ev(T ).

The number ρ must belong to (0, 1/2] ∩ (δ − 1/2 + 1/2p, 1/4 + 1/4p) and this interval is non-
empty if δ < 3/4 − 1/4p, which is true for δ ≤ 1/2. The embedding estimates (3.34), (3.35),
(3.36), (3.38), (3.40), (3.42), (3.44), and (3.46) follow similarly and hence assertions (ii), (iii), and
(iv) are valid.

The bilinear estimates (3.37), (3.41), and (3.45) can be verified by means of the spatial point-
wise multiplication inequality (3.47), since the factor ϕ does not depend on time. Hence (vii) is
valid.

Finally, the bilinear estimates (3.39) and (3.43) follow from (3.47), Sobolev’s embedding, and
the pointwise multiplication estimate in Lemma B.81. Therefore (v) and (vi) are also true. �
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Proof of Theorem 3.16. For a given parameter tuple (ϑ∗, ω, ϑ) ∈ PM,T1,η,R, we define ϑ∗1, ϑ∗2, ϑ∗3,
ϑ∗4, and ϑ∗σ according to (3.26). Let z = (u, π, h), z = (u, π, h), f = (fu, fd, gv, gw, gh), and
f = (fu, fd, gv, gw, gh) be related as in Lemma 3.17. We introduce the transformed operators

Lv(u, h;ϑ∗) := −µs∆′v − λs∇′ div′ v − [[µ∂nv]]− c5[[µ∇′w]] + ϑ∗1∇′∆′h,
Lw(u, π, h;ϑ∗) := − tr([ϑ∗2 + 2ϑ∗3]∇′v)− 2[[µ∂nw]] + [[π]]− tr([ϑ∗σ + ϑ∗4]∇′2h),

Fu(u, π;ω) := µ([∂Θω]−1(∆u) ◦Θω −∆u) + (I − [∂Θω]−1[∂Θω]−>)∇π,
Gv(u, π, h;ϑ∗, ω, ϑ) := Lv(u, h;ϑ∗)− P ′Lv(u, h;ω, ϑ) ◦Θω −Qv(ω)Lw(u, π, h;ω, ϑ) ◦Θω,

Gw(u, π, h;ϑ∗, ω, ϑ) := Lw(u, π, h;ϑ∗)− Lw(u, π, h;ω, ϑ) ◦Θω −Qw(ω)Lw(u, π, h;ω, ϑ) ◦Θω,

Gh(w;ω) := ((1 + |∇ω|2)−1/2 − 1)w.

Here actually Gv and Gw do not depend on π and we will therefore write Gj(u, h;ϑ∗, ω, ϑ) for
j ∈ {v, w}. More details on these operators will be given below and we will show that problem
(3.25) is equivalent to the following problem for Σ0 = Rn−1 × {0}.

ρ∂tu− µ∆u+∇π = fu + Fu(u, π;ω) in J × Ṙn,

div u = fd in J × Ṙn,
[[u]] = 0 on J × Σ0,

Lv(u, h;ϑ∗) = gv +Gv(u, h;ϑ∗, ω, ϑ) on J × Σ0,

Lw(u, π, h;ϑ∗) = gw +Gw(u, h;ϑ∗, ω, ϑ) on J × Σ0,

∂th− w = gh +Gh(w;ω) on J × Σ0,

h|t=0 = 0 on Σ0,

u|t=0 = 0 in Rn.

(3.48)

Let us abbreviate

S(ϑ∗)z :=


ρ∂tu− µ∆u+∇π

div u

Lv(u, h;ϑ∗)

Lw(u, π, h;ϑ∗)

∂th− w

 , F (ϑ∗, ω, ϑ)z :=


Fu(u, π;ω)

0

Gv(u, h;ϑ∗, ω, ϑ)

Gw(u, h;ϑ∗, ω, ϑ)

Gh(w;ω)

 .

Analogously as in Figure 3.7 on page 72 we let

0E := 0Eu,v,w,∂νw × 0Eπ,[[π]] × 0Eh, 0F := Fu × 0Fd,Σ × 0Gv × 0Gw × 0Gh

denote the corresponding spaces defined with Σ0 instead of Σω. Our goal is to prove that

z 7→ f = [S(ϑ∗)− F (ϑ∗, ω, ϑ)]z, 0E(T )→ 0F(T )(3.49)

is uniformly invertible with respect to T ∈ (0, T1] and (ϑ∗, ω, ϑ) ∈ PM,T1,η,R.
Theorem 3.14 shows that S(ϑ∗) : 0E(T ) → 0F(T ) is uniformly invertible with respect to

T ∈ (0, T1] and ϑ∗ ∈ PM , for every T1 ∈ (0,∞) and M ∈ (0,∞), where PM is defined in
equation (3.4) on page 54. In order to apply a Neumann series argument, it remains to ensure
that

‖[S(ϑ∗)]−1F (ϑ∗, ω, ϑ)‖B(0E(T )) < 1.

(i) We first compute the perturbations in more detail and we abbreviate

X(x) := Θω(x), X(x) := Θ−1
ω (x), for x, x ∈ Rn.
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By using the summation convention, we have

∂lXk = δlk + δkn∂lω, ∂jXm = δjm − δmn∂jω.

Then the following identity is valid, where the values of u and X are taken at (t, x) ∈ J × (Rn \
Σω) and those of u and X at (t, x) ∈ J × (Rn \ Σ0) with x = X(x).

∆uk = ∆uk + (∂lXk ∂jXm ∂jXp − δklδjmδjp) ∂m∂pul
+
(
∂l∂pXk ∂jXm ∂jXp − ∂pXm ∂j∂rXp ∂jXr ∂lXk

)
∂mul

+
(
∂l∂m∂pXk ∂jXm ∂jXp − ∂pXm ∂j∂rXp ∂jXr ∂l∂mXk

)
ul.

(3.50)

Moreover, a straightforward computation shows that the divergence satisfies

div u = ∂k
(
[∂Θω]−1

kl ul ◦Θω

)
= div u ◦Θω,

and therefore no perturbations of the divergence equation appear.
The representations of Gv and Gw and the corresponding equations in (3.48) follow from

(3.31).
(ii) In order to control the perturbation Fu(u, π;ω) in Fu(T ) = Lp(0, T ;Lp(Rn)) we note that

‖I − ∂Θω‖∞ → 0 as ‖∇ω‖∞ → 0. Hence there exists η > 0 such that

‖(I − [∂Θω]−1[∂Θω]−>)∇π‖Lp(0,T ;Lp(Rn)) ≤ ε‖∇π‖Lp(0,T ;Lp(Rn)) for T ∈ (0,∞), ‖∇ω‖∞ ≤ η.

Next, we rewrite the transformation formula (3.50) as

(∆u) ◦Θω −∆u = ajk(ω)∂j∂ku+ bj(ω)∂ju+ c(ω)u,

where the coefficients ajk(ω), bj(ω), and c(ω) are functions on Rn which satisfy the following
estimate. For given ε > 0 and R > 0 there exist η > 0, Rb ≥ 0, and Rc ≥ 0 such that

‖ajk(ω)‖∞ ≤ ε, ‖bj(ω)‖∞ ≤ Rb, ‖c(ω)‖∞ ≤ Rc,

for all ω ∈ BC3(Rn−1) with ‖∇ω‖∞ ≤ η and ‖∇ω‖BC2 ≤ R. By controlling the lower-order
terms u and ∇u with estimate (3.33), we conclude that for given ε > 0 there exists η > 0 such
that

‖(∆u) ◦Θω −∆u‖Lp(0,T ;Lp(Rn)) ≤ ε‖u‖0Eu(T ) + C(R)‖u‖Lp(0,T ;H1
p(Rn))

≤ ε‖u‖
0Eu(T ) + C(R)T δC(δ, T1)‖u‖

0Eu(T ),

provided that u ∈ 0Eu(T ), T ∈ (0, T1], δ ∈ (1/p, 1/2), T1 ∈ (0,∞), ‖∇ω‖∞ ≤ η, and ‖∇ω‖BC2 ≤
R. We conclude that for M , T1, ε, and R > 0 there are η(M,T1, ε) > 0 and T0(M,T1, ε, R) ∈
(0, T1] such that

‖z 7→ Fu(u, π;ω)‖
0E(T )→Fu(T )) ≤ ε for all (ϑ∗, ω, ϑ) ∈ PM,T1,η,R.

(iii) We next control the perturbation Gv in 0Gv(T ). First, the estimates (3.37) and (3.38)
and Lemma 3.17 yield an estimate

‖Qv(ω)Lw(z;ω, ϑ) ◦Θω‖
0Gv(T ) ≤ Cη‖z‖0E(T ) + C(R)‖Lw(z;ω, ϑ) ◦Θω‖Lp(0,T ;Lp(Σ))

≤ Cη‖z‖
0E(T ) + C(R)T δC(δ, T1)‖z‖

0E(T ),

uniformly with respect to z ∈ 0E(T ), T ∈ (0, T1], ‖∇ω‖∞ ≤ η, and ‖∇ω‖BC3 ≤ R.
It remains to estimate the difference Lv(u, h;ϑ∗) − P ′Lv(u, h;ω, ϑ) ◦ Θω in 0Gv(T ). In view

of

‖P ′ − PΣω ◦Θω‖∞ → 0 as ‖∇ω‖∞ → 0,
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and estimate (3.38), we may omit the projection P ′ in the above difference and therefore it
remains to estimate the following differences in 0Gv(T ).

∆′v − (∆̃Σωv) ◦Θω,(3.51a)

∇′ div′ v − (∇Σω divΣω v) ◦Θω,(3.51b)

[[µ∂nv]]− [[µ∂νΣω
v]] ◦Θω,(3.51c)

[[µ∇′w]]− [[µ∇Σωw]] ◦Θω,(3.51d)

ϑ∗w∇′∆′h− (ϑw∇Σω∆Σωh) ◦Θω.(3.51e)

The differences (3.51a), (3.51b), and (3.51d) can be controlled by applying the identities in Fig-
ures 3.8 and 3.9, Lemma 3.17, and the estimates (3.34), (3.35), (3.37) and (3.38) and we obtain

‖(∆′v − (∆̃Σωv) ◦Θω,∇′ div′ v − (∇Σω divΣω v) ◦Θω, [[µ∇′w]]− [[µ∇Σωw]] ◦Θω)‖
0Gv(T )

≤ {Cη + C(R)T 1/4C(T1)}‖(v, w)‖
0Ev(T )×0Ew(T ),

uniformly with respect to v ∈ 0Ev(T ), w ∈ 0Ew(T ), T ∈ (0, T1], T1 ∈ (0,∞), ‖∇ω‖∞ ≤ η, and
‖∇ω‖BC3 ≤ R. For (3.51e) we employ the estimates (3.36), (3.39) and (3.40) and obtain

‖ϑ∗w∇′∆′h− (ϑw∇Σω∆Σωh) ◦Θω‖
0Gv(T ) ≤ {Cη + C(R)T δC(δ, T1)}‖h‖

0Eh(T ).

In order to deal with ∂νv, we note that v = [PΣω ◦ ΠΣω ]u near Σω with the nonlinear projection
ΠΣω onto Σω from on page 138. Hence we obtain

‖[[µ∂nv]]− [[µ∂νΣω
v]] ◦Θω‖

0Gv(T ) ≤ Cη‖u‖0Eu(T ) + C(R)‖(u,∇′u)‖
0Gv(T )

≤ {Cη + C(R)T−1/4C(T1)}‖u‖
0Eu,v,w,∂νw(T ).

We conclude that for ε > 0 there is η > 0 such that for R, T1 ∈ (0,∞) there is T0 ∈ (0, T1] such
that

‖z 7→ Gv(u, h;ϑ∗, ω, ϑ)‖
0E(T )→0Gv(T ) ≤ ε for all (ϑ∗, ω, ϑ) ∈ PM,T1,η,R, T ∈ (0, T0].

(iv) We next control Gw in 0Gw(T ). The estimates (3.41) and (3.42) and Lemma 3.17 yield

‖Qw(ω)Lw(z;ω, ϑ) ◦Θω‖
0Gw(T ) ≤ Cη‖z‖0E(T ) + C(R)‖Lw(z;ω, ϑ) ◦Θω‖Lp(0,T ;H1

p(Σ))

≤ Cη‖z‖
0E(T ) + C(R)T δC(δ, T1)‖z‖

0E(T ),

uniformly with respect to z ∈ 0E(T ), T ∈ (0, T1], ‖∇ω‖∞ ≤ η, and ‖∇ω‖BC3 ≤ R. It remains to
estimate the difference Lw(u, π, h;ϑ∗)− Lw(u, π, h;ω, ϑ) ◦Θω which consists of

ϑ∗L∇′v − (ϑL∇Σωv) ◦Θω,(3.52a)

[[µ∂nw]]− [[µ∂νΣω
w]] ◦Θω,(3.52b)

tr(∇′2h)− tr(∇2
Σωh) ◦Θω,(3.52c)

tr(trϑ∗Dv∇′2h)− tr(trϑDv∇2
Σωh) ◦Θω,(3.52d)

tr(ϑ∗w trϑ∗L∇′2h)− tr(ϑw trϑL∇2
Σωh) ◦Θω,(3.52e)

tr(ϑ∗Dv∇′2h)− tr(ϑDv∇2
Σωh) ◦Θω,(3.52f)

tr(ϑ∗wϑ
∗
L∇′2h)− tr(ϑwϑL∇2

Σωh) ◦Θω.(3.52g)

Again we control lower order terms by using (3.34), (3.35), and (3.36). The differences (3.52a)
to (3.52c) can be controlled by means of the estimates (3.41) and (3.42). For the terms (3.52d)
to (3.52g) we employ the estimates (3.43) and (3.44). We conclude that for ε > 0 there is η > 0
such that for R, T1 ∈ (0,∞) there is T0 ∈ (0, T1] such that

‖z 7→ Gw(u, h;ϑ∗, ω, ϑ)‖
0Eu(T )→0Gw(T ) ≤ ε for all (ϑ∗, ω, ϑ) ∈ PM,T1,η,R, T ∈ (0, T0].
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(v) The relevant estimates of Gh in 0Gh(T ) follow from estimates (3.45) and (3.46) and we
conclude that for T1 > 0 and ε > 0 there is η > 0 such that for R > 0 there is T0 ∈ (0, T1] such
that

‖z 7→ Gh(w;ω)‖
0E(T )→0Gh(T ) ≤ ε for all (ϑ∗, ω, ϑ) ∈ PM,T1,η,R, T ∈ (0, T0].

(vi) The preceding steps show that for given M , T1, ε, R > 0 there are η = η(M,T1, ε) > 0
and T0 = T0(M,T1, ε, R) ∈ (0, T1] such that

‖F (ϑ∗, ω, ϑ)‖
0E(T )→0F(T ) ≤ ε for all (ϑ∗, ω, ϑ) ∈ PM,T1,η,R.(3.53)

For fixed M and T1 we apply Theorem 3.14 and obtain a finite number

C := sup
{
‖[S(ϑ∗)]−1‖

0F(T )→0E(T ) : ϑ∗ ∈ PM , T ∈ (0, T1]
}
.

Next we fix ε ∈ (0, C−1) and for given R > 0 we choose η(M,T1, ε) > 0 and T0(M,T1, ε, R) >
0 such that (3.53) is valid. Then the operator (3.49) is uniformly invertible with respect to
(ϑ∗, ω, ϑ) ∈ PM,T1,η,R and T ∈ (0, T0] and the proof of Theorem 3.16 is complete. �

3.3. Bounded domains

We consider problem (3.1) = (PL) in a bounded domain Ω ⊂ Rn (n ≥ 2) with smooth boundary
∂Ω and with a compact smooth hypersurface Σ ⊂ Ω such that Ω \ Σ consists of disjoint open
sets Ω+ and Ω− with ∂Ω+ ∩ ∂Ω− = Σ. We will establish optimal regularity for this problem on
some short time interval (0, T ) for the following class of reference velocities u∗. The involved
function spaces are collected in Figure 3.7 on page 72.
3.20. Definition. Let p ∈ (max{3, (n + 2)/2},∞), M > 0, and T > 0. The parameter set PM,T

consists of all vector fields u∗ = v∗ + w∗νΣ ∈ Ev(T ) + Ew(T ) · νΣ such that

‖w∗‖Gw(T ) ≤M, ‖DΣ(v∗)‖Gw(T ) ≤M,

and

inf
(0,T )×Σ

d0(DΣ(u∗)) = inf
(0,T )×Σ

(
σ + (λs − µs) divΣ u∗ + 2µs min

ζ∈Rn, |ζ|=1
ζ>DΣ(u∗)ζ

)
≥M−1.

(3.54)

Note that condition (3.54) makes sense due to the embeddings Ev ↪→ C([0, T ];C1(Σ;TΣ))
and Ew ↪→ C([0, T ];C1(Σ)), which are valid for p > max{3, (n+ 2)/2}.
3.21. Theorem. Let ρ±, µ±, σ, µs, λs + µs > 0, and let p ∈ (max{5, n + 2},∞) and M , T1 > 0.
Then there exists T0 ∈ (0, T1] such that the solution-to-data map

(u, π, h) 7→ (fu, fd, gv, gw, gh),

0E = 0Eu,v,w,∂νw × 0Eπ,[[π]] × 0Eh → 0F = 0Fu × 0Fd,Σ × 0Gv × 0Gw × 0Gh

of problem (3.1) is uniformly invertible with respect to T ∈ (0, T0] and u∗ ∈ PM,T1 .
For the proof we apply a modified version of the elliptic localization technique from Section

2.1.1, which will be presented in Section 3.3.1. As in [KPW13; Wil13], we localize problem (3.1)
in both time and space and we construct both a left- and a right-inverse for the solution-to-data
map. A different approach was used in [Gei+12] for a stationary Stokes problem, where the
authors localize in space, establish R-bounds for the data-to-solution map, and apply Weis’
characterization of maximal Lp-regularity [Wei01].

As in Section 3.2, we employ T -dependent estimates for controlling lower-order perturba-
tions; however, in order to control the commutator [∇, ϕj ]π = ∇ϕj π, the usual elliptic localiza-
tion does not suffice. In addition, we employ certain projections on subspaces with vanishing
momentum and divergence data. These projections are constructed similarly as in [Gei+12;
KPW13; Wil13], by resolving non-trivial momentum and divergence data by means of weak
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Neumann transmission problems and one-phase Stokes problems. Then, similar to [Köh13;
KPW13; Wil13], we prove in Section 3.3.2 that the pressure has additional temporal regular-
ity, if it belongs to the range of the aforementioned projection. Section 3.3.3 contains the local
spaces, approximation systems, and local operators and in Section 3.3.4 we prove the relevant
commutator estimates.

3.3.1. Localization technique. For T ∈ (0, T1] with some fixed number T1 ∈ (0,∞) we will
consider Banach spaces E = E(T ) and F = F (T ) of functions on (0, T ) and linear operators
AT : E(T ) → F (T ). For the sake of brevity, we wish to omit the T -dependence occasionally.
To justify this we always assume that the spaces and operators are compatible in the sense that
for 0 < T ≤ T ′ ≤ T1 their realizations over (0, T ) coincide with the restrictions to (0, T ) of their
realizations over (0, T ′).

We fix a number q ∈ [1,∞) and an index set I ⊂ N0 and consider lq-approximation systems
(E, (ΦE,j)j∈I , (ΨE,j)j∈I) and (F, (ΦF,j)j∈I , (ΨF,j)j∈I) for E and F in the sense of Definition 2.4
on page 27. Our goal is to show that a given linear operatorA ∈ B(E;F ) is uniformly invertible
with respect to T ∈ (0, T0] for some T0 ∈ (0, T1]. Let us therefore assume that

(i) there are invertible linear operators Aj ∈ Bisom(Ej ;Fj), the local operators, such that

sup
T∈(0,T1]

‖(fj)j∈I 7→ (A−1
j fj)j∈I‖lq(F(T ))→lq(E(T )) <∞.

Indeed, these operators Aj will correspond to certain model problems and the uniform invert-
ibility of Aj will follow from the boundedness of the relevant coefficients related to Σ and u∗.
We further assume that

(ii) we can find a projection PF ∈ B(F ) and an operator R0 ∈ B(F ;E) such that

(IF − PF )AR0(IF − PF ) = IF − PF .

We wish to choose the projection

PF : (fu, fd, gv, gw, gh) 7→ (0, 0, gv, gw, gh)

and therefore the operatorR0 : (fu, fd, 0, 0, 0) 7→ (u, π, 0) should produce functions (u, π, 0) ∈ E
with (ρ∂t − µ∆)u+∇π = fu and div u = fd. Moreover, the operator

PE := IE −R0(IF − PF )A

is a projection in B(E) and we obtain

PFAPE = PFA(IE −R0(IF − PF )A)

= A− (IF − PF )A+ (IF − PF )AR0(IF − PF )A−AR0(IF − PF )A

= A−AR0(IF − PF )A = APE .

In particular, for given z = (u, π, h) ∈ PEE and Az = (fu, fd, gv, gw, gh) we have (fu, fd) = 0.
We also consider the local projections

PF,j : (fuj , fdj , gvj , gwj , ghj) 7→ (0, 0, gvj , gwj , ghj), PE,j := A−1
j PF,jAj ,

and we assume that
(iii) the projections PF,j satisfy

ΦF,jPF = PF,jΦF,j .

This property will be trivial in our situation, since it means that for given (0, 0, gv, gw, gh) ∈ F ,
the tuple ΦF,j(0, 0, gv, gw, gh) has the form (0, 0, gvj , gwj , ghj).

Now we define an approximate inverse for A by

R : F → E, R :=
∑

j
ΨE,jA

−1
j ΦF,jPF (IF −AR0(IF − PF )) +R0(IF − PF ).
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Note that
∑

j ΨE,jA
−1
j ΦF,j is the usual approximate inverse in the elliptic and parabolic theory

and that the operator R0(IF − PF ) takes care of the momentum and divergence data (fu, fd).
The latter is constructed in Lemma 3.27 on page 91. From our assumptions (i) to (iii) we infer
that

AR− IF =
∑

j
(AΨE,j −ΨF,jAj)A

−1
j ΦF,jPF (IF −AR0(IF − PF )),(3.55a)

RA− IE =
∑

j
ΨE,jA

−1
j (ΦF,jA−AjΦE,j)PE .(3.55b)

In order to apply a Neumann series argument we wish to guarantee that

‖AR− IF ‖F→F ≤ 2−1, ‖RA− IE‖E→E ≤ 2−1 for T ∈ (0, T0].

If this is true then the operators AR = IF − (IF −AR) ∈ B(F (T )) and RA = IE − (IE −RA) ∈
B(E(T )) are invertible for all T ∈ (0, T0] and A has the inverse R(AR)−1 = (RA)−1R. If further
M > 0 is a bound for R, then 2M is a bound for A−1.

Hence, in view of (3.55), it remains to guarantee the commutator estimates

‖AΨE,j −ΨF,jAj‖PE,jEj→F ≤ ε,(3.56a)

‖ΦF,jA−AjΦE,j‖PEE→Fj ≤ ε,(3.56b)

for every given ε by choosing Aj , Φj , and Ψj suitably and T0 sufficiently small, whereas the
other operators should remain uniformly bounded.

3.3.2. Time regularity of the pressure. We consider the equations
ρ∂tu− µ∆u+∇π = fu in J × Ω \ Σ,

div u = 0 in J × Ω \ Σ,

u|∂Ω · ν = 0 on J × ∂Ω,

[[u]] · ν = 0 on J × Σ,

(3.57)

where Ω ⊂ Rn (n ≥ 2) is a domain with (possibly empty) C2−-boundary and Σ ⊂ Ω is a
(possibly empty) closed C2−-hypersurface. Let further p ∈ (1,∞) and assume that Ω and Σ
satisfy Assumption 2.1 where the bound η = η(n, p, ρ−1) > 0 for ‖∇ω‖∞ is chosen such that
Theorem 2.2 is applicable. In this case we obtain a bounded solution operator

g0 7→ ψ, (Lp ∩ Ĥ−1
p )(Ω)→ (Ḣ2

p ∩ Ḣ1
p)(Ω \ Σ)/(ρ−1K)

for the elliptic transmission problem

−∆ψ = g0 in Ω, ∂νψ = 0 on ∂Ω, [[∂νψ]] = 0 on Σ, [[ρψ]] = 0 on Σ.

With methods from [Köh13, Proposition 7.14], [KPW13, Corollary 1], and [Wil13, Lemma
2.1.1], we will prove the following temporal regularity result for the pressure π, where we let
〈φ〉K := |K|−1

∫
K φdx denote the mean value of φ ∈ L1(K) for a bounded domain K.

3.22. Lemma. Let ρ1, ρ2, µ1, µ2 ∈ (0,∞), J = (0, T ) with T ∈ (0,∞], p ∈ (1,∞), and α ∈
(0, 1/2− 1/2p]. Let K be a bounded C1-subdomain of Ω and suppose that (u, π, fu) satisfies (3.57) and

u ∈ Eu = H1
p (J ;Lp(Ω)n) ∩ Lp(J ;H2

p (Ω \ Σ)n),

π ∈ Eπ = Lp(J ; Ḣ1
p (Ω \ Σ)),

[[π]] ∈Wα
p (J ;Lp(Σ)),

fu = fu,α + ρfu,σ ∈Wα
p (J ;Lp(Ω)n) + ρLp(J ;Lp,σ(Ω)).

(3.58)

Then the following estimate is valid with some C = C(n, p,K, T ) > 0.

‖π − 〈π〉K‖Wα
p (J ;Lp(K)) ≤ C

(
‖u‖Eu + ‖fu,α‖Wα

p (J ;Lp(Ω)) + ‖[[π]]‖Wα
p (J ;Lp(Σ))

)
.(3.59)
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Moreover, the number C is uniform with respect to T ∈ (0,∞] under the restrictions

u ∈ 0Eu, [[π]] ∈ 0W
α
p (J ;Lp(Σ)), fu,α ∈ 0W

α
p (J ;Lp(Ω)n), α 6= 1/p.

Proof. For g ∈ Lp′(K) we define a function g0 ∈ Lp′(Ω) by g0(x) := g(x)− 〈g〉K for x ∈ K and
g0(x) = 0 for x ∈ Ω \K. The Poincaré-Wirtinger inequality for H1

p (K) implies

‖g0‖Ĥ−1
p′ (Ω) = sup

φ∈D(Rn)\{0}

|
∫

Ω g0φdx|
‖∇φ‖Lp(Ω)

= sup
φ∈D(Rn)\{0}

|
∫
K g0(φ− 〈φ〉K) dx|
‖∇φ‖Lp(Ω)

≤ C(K)‖g‖Lp′ (K).

By Theorem 2.2, we can find some ρψ ∈ Ḣ2
p′(Ω \ Σ) ∩ Ḣ1

p′(Ω) such that

−∆ψ = g0 in Ω, ∂νψ = 0 on ∂Ω, [[∂νψ]] = 0 on Σ, [[ρψ]] = 0 on Σ,

which satisfies the estimate ‖∇ψ‖H1
p′ (Ω\Σ) ≤ C‖g‖Lp′ (K).

For π0 := π − 〈π〉K and g, g0, and ψ as above, an integration by parts yields

−
∫
K
π0g dx = −

∫
Ω
π0g0 dx =

∫
Ω
π0∆ψ dx = −

∫
Ω
∇π · ∇ψ dx−

∫
Σ

[[π]]∂νψ dσ.

By using the equations in (3.57) and integrating by parts, we obtain

−
∫
K
π0g dx =

∫
Ω
µ∇u : ∇2ψ dx−

∫
∂Ω
µ∂νu · ∇ψ dσ +

∫
Σ

[[µ∂νu · ∇ψ]] dσ

−
∫

Ω
fu,α · ∇ψ dx−

∫
Σ

[[π]]∂νψ dσ =: 〈Fu,fu,α,[[π]], g〉.

The duality Lp(K)∗ ∼= Lp′(K) yields the estimate

‖π0(t)‖Lp(K) = ‖Fu,fu,α,[[π]](t)‖Lp′ (K)∗ . ‖u(t)‖H1
p(Ω) + ‖∂νu(t)‖Lp(∂Ω) + ‖µ±∂νu±(t)‖Lp(Σ)

+ ‖fu,α(t)‖Lp(Ω) + ‖[[π(t)]]‖Lp(Σ).

In order to apply the Wα
p (0, T )-seminorm, we observe that

‖π0(t)− π0(s)‖Lp(K) = ‖Fu(t)−u(s),fu,α(t)−fu,α(s),[[π(t)]]−[[π(s)]]‖Lp′ (K)∗ .

Hence, for some number C = C(n, p,K), which does not depend on T ∈ (0,∞], we have

‖π0‖Wα
p (J ;Lp(K)) ≤ C

(
‖u‖Wα

p (J ;H1
p(Ω)) + ‖∂νu‖Wα

p (J ;Lp(∂Ω) + ‖∂νu±‖Wα
p (J ;Lp(Σ))

)
+ C

(
‖fu,α‖Wα

p (J ;Lp(Ω)) + ‖[[π]]‖Wα
p (J ;Lp(Σ))

)
.

Since α ≤ 1/2− 1/2p, the trace theorem (Theorem B.32) and the mixed derivative embeddings
(Proposition B.44) yield a constant C = C(n, p,K, T ) such that

‖π0‖Wα
p (J ;Lp(K)) ≤ C

(
‖u‖Eu(T ) + ‖fu,α‖Wα

p (J ;Lp(Ω)) + ‖[[π]]‖Wα
p (J ;Lp(Σ))

)
.

Therefore the asserted estimate (3.59) is valid. Uniform estimates with respect to T follow by
extension and restriction (Lemma B.9). �

3.3.3. Local operators. With the spaces from page 72, we define the space of solutions

E(T ) := 0E(J,Ω,Σ) := 0Eu,v,w,∂νw(J,Ω,Σ)× 0Eπ,[[π]](J,Ω,Σ)× 0Eh(J,Σ),

and the space of data

F (T ) := 0F(J,Ω,Σ) := Fu(J,Ω)× 0Fd,Σ(J,Ω,Σ)× 0Gv(J,Σ)× 0Gw(J,Σ)× 0Gh(J,Σ).

In order to define the local spaces Ej and Fj we employ Lemma 2.9 on page 29, which
implies that for every η > 0 there is r0(η) > 0 such that for every r ∈ (0, r0(η)] we can find
an (η, r)-localization set-up for (Ω,Σ) in the sense of Definition 2.8. Hence for some finite set



86 3. THE LINEARIZED PROBLEM

I = I(η, r) there exist an open covering for Ω of balls Uj = Br(pj) (j ∈ I) and there are rigid
transformations

Θj : x 7→ pj +Qjx, Br(0)→ Uj ,

and height functions ωj ∈ C∞c (Rn−1) with ‖ωj‖BC1∩H2
p
≤ η. Furthermore, the index set can be

decomposed into I = I1 ∪ I2 ∪ I3, where j ∈ I1 corresponds to the whole space case Ω ∩ Uj =
Θj(Rn ∩ Br), j ∈ I2 corresponds to the bent half-space case Ω ∩ Uj = Θj(Rnωj ∩ Br), and j ∈ I3

corresponds to the bent hyperplane case Σ ∩ Uj = Θj(Σωj ∩Br). We define

Ωj := Rn, Σj := ∅ for j ∈ I1,

Ωj := Rnωj , Σj := ∅ for j ∈ I2,

Ωj := Rn, Σj := Σωj for j ∈ I3.

Then we define the local spaces

Ej(T ) = 0E(J,Ωj ,Σj), Fj(T ) = 0F(J,Ωj ,Σj) for j ∈ I1 ∪ I2 ∪ I3,

where in the case j ∈ I1 ∪ I2 we identify

0E(J,Ωj , ∅) ∼= {u ∈ 0Eu(J,Ωj , ∅) : u|∂Ωj = 0} × Eπ, 0F(J,Ωj , ∅) ∼= Fu(J,Ωj)× 0Fd(J,Ωj).

We choose a partition of unity (ϕj)j∈I for Ω in Rn subordinate to (Uj)j∈I and choose another
family of cut-off functions (ψj)j∈I with suppψj ⊂ Uj and ψj = 1 on suppϕj . Then we have∑

j ψjϕj = 1 in Ω and we define approximation systems for E and F by

ΦE,j(u, π, h) := (Q>j (ϕju), (ϕjπ), (ϕjh)) ◦Θj ,

ΨE,j(uj , πj , hj) := (Qj(ψjuj), (ψjπj), (ψjhj)) ◦Θ−1
j ,

ΦF,j(fu, fd, gv, gw, gh) := (Q>j (ϕjfu), (ϕjfd), Q
>
j (ϕjgv), (ϕjgw), (ϕjgh)) ◦Θj ,

ΨF,j(fuj , fdj , gvj , gwj , ghj) := (Qj(ψjfuj), (ψjfdj), Qj(ψjgvj), (ψjgwj), (ψjghj)) ◦Θ−1
j .

The relevant mapping properties of these maps follow as in Lemma 3.17.
Problem (3.1) induces a bounded linear operator A : E → F by

A(u, π, h) :=


ρ∂tu− µ∆u+∇π

div u

Lv(u, h;u∗)

Lw(u, π, h;u∗)

∂th− u · νΣ

 for (u, π, h) ∈ E.(3.60)

For j ∈ I1 ∪ I2 we define the local operators Aj : Ej → Fj by

Aj(u, π) :=

[
ρ∂tu− µ∆u+∇π

div u

]
for (u, π) ∈ Ej , j ∈ I1 ∪ I2.(3.61)

The results of Bothe and Prüss ([BP07, Theorem 5.1, Theorem 6.1]) imply that Aj : Ej → Fj is
invertible for j ∈ I1 ∪ I2 and ωj = 0. For j ∈ I2 and ωj 6= 0 we employ the following result.
3.23. Lemma. Let n ≥ 2, ρ, µ > 0, and p ∈ (n+ 2,∞).

Then there exists η > 0 such that for given R > 0 we can find a number T0(R) > 0 such that the
solution-to-data map (u, π) 7→ (fu, fd), 0Eu × Eπ → Fu × 0Fd of problem{

ρ∂tu− µ∆u+∇π = fu in J × Rnω,
div u = fd in J × Rnω,

(3.62)
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is uniformly invertible with respect to T ∈ (0, T0] and

ω ∈ BC3(Rn−1), ‖ω‖BC1 ≤ η, ‖ω‖BC3 ≤ R.(3.63)

Proof. We employ the transformation Θωj : Rn+ → Rnωj , (x′, xn) 7→ (x′, xn + ωj(x
′)) from equa-

tion (3.27) on page 72. As in Lemma 3.17, we define the transformed functions

u = [∂Θωj ]
−1u ◦Θωj , π = π ◦Θωj , fu := [∂Θωj ]

−1fu ◦Θωj fd := fd ◦Θωj .

Then (3.62) is equivalent to{
(ρ∂t − µ∆)u+∇π = fu + Fu(u, π;ωj) in J × Rn+,

div u = fd in J × Rn+,
(3.64)

where the perturbation Fu is defined by

Fu(u, π;ωj) := µ([∂Θωj ]
−1(∆u) ◦Θωj −∆u) + (I − [∂Θωj ]

−1[∂Θωj ]
−>)∇π,

and the difference (∆u)◦Θωj−∆u can be expressed by (3.50). As for Theorem 3.16 it follows that
the map (u, π) → (fu, fd) induced by (3.64) is uniformly invertible with respect to T ∈ (0, T0]
(3.63) for some η > 0 and T0(η) > 0. The proof of Lemma 3.17 shows that the transformation
(u, π, fu, fd)→ (u, π, fu, fd) is uniformly invertible and this yields the assertion. �

For the case j ∈ I3 we first define the local coefficients ofAj . These depend on the functions

LΣ = τkΣ ⊗ ∂kνΣ, w∗ = νΣ · u∗, DΣ(v∗) = sym([τkΣ ⊗ ∂kv∗]PΣ),

with v∗ = PΣu∗. Their transforms under the rigid map Θj : x 7→ Qjx+ pj are given by

LΣj = Q>j [LΣ ◦Θωj ]Qj , w∗ = w∗ ◦Θωj , DΣj (v∗) = Q>j [(DΣ(v∗)) ◦Θωj ]Qj ,

where v∗ = Q>j (v∗ ◦Θωj ).
As for the construction of ωj in Lemma 2.9, we fix a cut-off function χ ∈ B(Rn) with 0 ≤

χ ≤ 1, χ(x) = 1 for |x| ≤ 1, and χ(x) = 0 for |x| ≥ 2. For a given function ψ on J × (Σj ∩ Br0)

and r ∈ (0, r0/2] we define another function ψ̃r on J × Σj by

ψ̃r(t, x) := (Srψ)(t, x) := ψ(0, 0) +

{
χ(x/r)(ψ(t, x)− ψ(0, 0)) for |x| < 2r ≤ r0,

0 for |x| ≥ 2r.

Then ψ̃r(t, x) = ψ(t, x) for all (t, x) ∈ J × (Σj ∩Br).

3.24. Proposition (Properties of Sr : ψ 7→ ψ̃r). Let Σ = Σω be a bent C2-hyperplane in Rn.
(i) For all r0 > 0 there exists C > 0 such that

‖ψ̃r − ψ(0)‖BC(Σ)∩H1
p(Σ) ≤ Crmax{1,(n−1)/p}‖ψ‖BC1(Σ∩B2r)(3.65)

for all r ∈ (0, r0/2] and ψ ∈ BC1(Σ ∩Br0).
(ii) For all r0 > 0 there exists C > 0 such that

‖ψ̃r − ψ(0)‖BC1(Σ)∩H2
p(Σ) ≤ Crmax{1,(n−1)/p}‖ψ‖BC2(Σ∩B2r).(3.66)

for all r ∈ (0, r0/2], ψ ∈ BC2(Σ ∩Br0) with∇ψ(0) = 0.
(iii) For all T1 > 0, r0 > 0, and γ ∈ (0, 1) there exists C > 0 such that

‖ψ̃r − ψ(0, 0)‖C([0,T ];BC(Σ)∩H1
p(Σ)) ≤ Crmax{1,(n−1)/p}(1 + T γ/r)‖ψ‖Cγ([0,T ];BC1(Σ∩B2r))(3.67)

for all r ∈ (0, r0/2] and ψ ∈ Cγ([0, T1];BC1(Σ ∩Br0)).
Given η > 0, the number C in (i) to (iii) is uniform with respect to ‖∇ω‖∞ ≤ η.
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Proof. With the substitution x = ry we obtain the identities ‖χ(·/r)‖p = r(n−1)/p‖χ‖p and
‖(∇χ)(·/r)‖p = r(n−1)/p‖∇χ‖p. We will also use the inequalities

|ψ(x)− ψ(0)| ≤ (1 + η2)1/2|x|‖∇Σψ‖∞,

|ψ(x)− ψ(0)| ≤ (1 + η2)1/2|x|2‖∇2
Σψ‖∞ if∇Σψ(0) = 0,

which follow from Proposition A.12 on page 133. Then (i) and (ii) are readily checked.
Next, for t ∈ [0, T ] we have

‖∇ψ̃r(t, ·)‖p ≤ Cr(n−1)/p‖χ‖H1
p
‖∇ψ(t, ·)‖BC(Σ∩B2r) + ‖r−1∇χ(·/r)‖p|ψ(t, 0)− ψ(0, 0)|

≤ Cr(n−1)/p‖χ‖H1
p
(1 + T γ/r)‖ψ‖Cγ([0,T ];BC(Σ∩B2r)).

The estimate of ‖ψ̃r(t, ·)‖p is similar and hence (iii) is valid. �

For given u∗ ∈ PM,T1 and r > 0 we define
ϑj := (ϑL,j , ϑw,j , ϑDv,j), ϑ∗j := (ϑ∗L,j , ϑ

∗
w,j , ϑ

∗
Dv,j),

ϑL,j := Sr(Q
>
j [LΣ ◦Θωj ]Qj), ϑ∗L,j := Q>j [LΣ(pj)]Qj ,

ϑw,j := Sr(w∗ ◦Θωj ), ϑ∗w,j := w∗(0, pj),

ϑDv,j := Sr(Q
>
j [(DΣv∗) ◦Θωj ]Qj), ϑ∗Dv,j := Q>j [(DΣv∗)(0, pj)]Qj .

(3.68)

Then the local operators Aj : Ej → Fj for j ∈ I3 are defined by

Aj(u, π, h) :=


ρ∂tu− µ∆u+∇π

div u

Lv(u, h;ωj , ϑj)

Lw(u, π, h;ωj , ϑj)

∂th− u · νΣj

 for (u, π, h) ∈ Ej , j ∈ I3,(3.69)

where Lv and Lw are defined on page 71.
3.25. Corollary. Let p ∈ (n + 2,∞) and M , T1 > 0. Then there are positive functions r(·) and T0(·)
such that for some η0 > 0 and every η ∈ (0, η0], the pair (Ω,Σ) has an (η, r(η))-localization set-up and
the local operators Aj : Ej → Fj (j ∈ I1 ∪ I2 ∪ I3) defined by equations (3.61) and (3.69) are uniformly
invertible with respect to T ∈ (0, T0(η)], j ∈ I , and u∗ ∈ PM,T1 .

Proof. For given M > 0 there exists M1 = M1(M,Σ) ≥M such that

sup
x∈Σ
|(LΣ(x), w∗(0, x), DΣv∗(0, x))| ≤M1, inf

Σ
d0(DΣ(u∗|t=0)) ≥M−1

1

for all u∗ ∈ PM,T1 and T1 ∈ (0,∞). For given η > 0, Lemma 2.9 yields a positive number
r0(η) such that for every r ∈ (0, r0(η)] the pair (Ω,Σ) has an (η, r)-localization set-up such that
‖ωj‖BC1∩H2

p
≤ η for all j ∈ I2 ∪ I3 and there exists R(r) > 0 such that ‖ωj‖BC4 ≤ R(r) for

j ∈ I2 ∪ I3. Sobolev’s embedding and the mixed derivative embeddings yield an estimate

‖(w∗, DΣv∗)‖Cγ([0,T ];BC1(Σ)) ≤ CM for all u∗ ∈ PM,T1

for some γ > 0 and C ≥ 1. By Proposition 3.24 we can find a positive number r1(η) ≤ r0(η)
and a positive function r 7→ R(r) such that the parameters (ϑ∗j , ϑj) from (3.68) satisfy

‖ϑL,j − ϑ∗L,j‖BC(Σω)∩H1
p(Σω) ≤ η, ‖ϑL,j − ϑ∗L,j‖BC2(Σω) ≤ R(r),

‖ϑw,j − ϑ∗w,j‖C([0,T ];BC(Σω)∩H1
p(Σω)) ≤ η, ‖ϑw,j − ϑ∗w,j‖Gw(T ) ≤ R(r),

‖ϑDv,j − ϑ∗Dv,j‖C([0,T ];BC(Σω)∩H1
p(Σω)) ≤ η, ‖ϑDv,j − ϑ∗Dv,j‖Gw(T ) ≤ R(r)

for all r ∈ (0, r1(η)], j ∈ I3, and u∗ ∈ PM,T1 . Hence (ϑ∗j , ωj , ϑj) belongs to the set PCM1,T1,η,R(r)

from page 71 for all j ∈ I3. By Theorem 3.16 and Lemma 3.23, there exist a positive number η0
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and a functionR 7→ T0(R) such that if η ≤ η0 and r ∈ (0, r1(η)], then the operatorsAj : Ej(T )→
Fj(T ) are uniformly invertible with respect to T ∈ (0, T0(R(r))], j ∈ I , and u∗ ∈ PM,T1 . �

3.3.4. Commutator estimates. For proving Theorem 3.21 it remains to verify the commu-
tator estimates (3.56) and to construct the operator R0.
3.26. Lemma. Let p ∈ (max{5, n+ 2},∞) and let M , T1, (Uj ,Θj , ωj), Aj , and T0 be as in Corollary
3.25. Then for all ε > 0 there exists T ′0 ∈ (0, T0] such that

‖AΨE,j −ΨF,jAj‖PE,jEj(T )→F (T ) ≤ ε,(3.70a)

‖ΦF,jA−AjΦE,j‖PEE(T )→Fj(T ) ≤ ε,(3.70b)

for all T ∈ (0, T ′0], j ∈ I , and u∗ ∈ PM,T1 .

Proof. It is sufficient to prove estimate (3.70a), since (3.70b) can be proved analogously.
For given zj = (uj , πj , hj) ∈ PE,jEj , the pair (uj , πj) satisfies the assumptions of Lemma

3.22 in Ωj \ Σj and we conclude that πj0 := πj − 〈πj〉Kj belongs to 0W
1/2−1/2p
p (J ;Lp(Kj)) for

every bounded smooth domain Kj ⊂ Ωj which contains the support of∇ψj and we have

‖πj − 〈πj〉Kj‖0W
1/2−1/2p
p (J ;Lp(Kj))

≤ C(Kj)
(
‖uj‖0Eu(J,Ωj ,Σj) + ‖[[πj ]]‖0Gw(J,Σj)

)
(3.71)

for all zj ∈ PE,jEj(T ) and T ∈ (0, T0]. We next deal with the cases j ∈ I1, I2, and I3 separately.
(1) Perturbed whole-space problem. Let j ∈ I1 be fixed and let z = (u, π0) ∈ PE,jEj . Then

(AΨE,j −ΨF,jAj)z =

[
π0Qj∇ψj − µQj [∆, ψj ]u

∇ψj · u

]
◦Θ−1

j =:

[
QjFuj(u, π0)

Fdj(u)

]
◦Θ−1

j .(3.72)

Here we let [S, T ] = ST − TS denote the commutator of linear operators S and T .
We show that the perturbations Fuj and Fdj satisfy the estimate

‖Fuj(u, π0)‖Fu(T ) + ‖Fdj(u)‖
0Fd(T ) ≤ CT 1/2−1/2p‖u‖

0Eu(T ),(3.73)

where Fu = Fu(J,Rn, ∅) and 0Fd := 0Fd(J,Rn, ∅) = 0Fd,Σ(J,Rn, ∅). From estimate (3.71), the
mixed derivative embeddings and the interval dependent estimates in Lemma 3.18 we obtain
the following estimates. For all δ ∈ (1/p, 1/2) and T0 > 0 we have

‖[∆, ψj ]u‖Fu(T ) ≤ C(T0)‖u‖Lp(0,T ;H1
p) ≤ C(δ, T0)T δ‖u‖

0W δ
p (0,T ;H1

p) ≤ C(δ, T0)T δ‖u‖
0Eu(T ),

‖π0∇ψj‖Fu(T ) ≤ C(T0)T 1/2−1/2p‖π0‖
0W

1/2−1/2p
p (0,T ;Lp)

≤ C(T0)T 1/2−1/2p‖u‖
0Eu(T ).

The estimates in the divergence space 0Fd(T ) = H1
p (0, T ; Ḣ−1

p (Rn)) ∩ Lp(0, T ;H1
p (Rn)) are ob-

tained in two steps. First, for δ ∈ (1/p, 1/2) and T0 > 0 we have

‖∇ψj · u‖Lp(0,T ;H1
p) ≤ C(T0)‖u‖Lp(0,T ;H1

p) ≤ T δC(δ, T0)‖u‖
0Eu(T ).

Second, the term ∇ψj · u acts as a functional on φ ∈ Ḣ1
p′(R

n) in virtue of φ 7→
∫

Ω∇ψj · u φ dx.
The condition div u = 0 yields

∫
Rn ∇ψj · u dx = 0. Hence

∫
Rn ∇ψj · u φ dx =

∫
Rn ∇ψj · u φ0 dx,

where φ0 = φ− 〈φ〉Kj and thus

∂t

∫
Rn
∇ψj · u φ dx =

∫
Rn
∇ψj ·

(
µ

ρ
∆u− 1

ρ
∇π
)
φ0 dx

= −
∫
Rn

µ

ρ
(∇u)> : ∇(∇ψjφ0) dx+

∫
Rn

1

ρ
π0 div(∇ψjφ0) dx.

(3.74)

Applying the Poincaré-Wirtinger inequality to φ0 ∈ H1
p′(Kj) and using (3.71), we obtain

‖∇ψj · u‖
0H1

p(0,T ;Ḣ−1
p ) ≤ C(T0)‖u‖Lp(0,T ;H1

p) + C(T0)‖π0‖Lp(0,T ;Lp) ≤ C(T0)T 1/2−1/2p‖u‖
0Eu(T ).

Therefore estimate (3.73) is valid.
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(2) Perturbed half-space problem. In the case j ∈ I2, Ωj = Rnωj , and Σj = ∅, the commutator is
also given by (3.72) and Fuj in Fu(J,Ωj ,Σj) and Fdj in Lp(0, T ;H1

p (Ωj)) can be estimated in the
same way as above. In view of div u = 0 and u|∂Ωj = 0 it remains to estimate the functional

Fdj : φ 7→ 〈∇ψj · u, φ〉 = −
∫

Ωj

ψju · ∇φdx

in H1
p (0, T ; Ĥ−1

p (Ωj)). As for (3.74) we obtain

∂t

∫
Ωj

∇ψj · uφ dx = −
∫

Ωj

µ

ρ
(∇u)> : ∇(∇ψjφ0) dx+

∫
Ωj

1

ρ
π0 div(∇ψjφ0) dx

+

∫
∂Ωj

(
µ

ρ
∇ψ · ∂νuφ−

µ

ρ
∇2ψ : ∇uφ− ∂νψ

ρ
πφ

)
d(∂Ωj).

For every δ ∈ (1/p, 1/2− 3/2p) the trace operator

π0 7→ π0|∂Ωj : W 1/2−1/2p
p (0, T ;Lp(Ωj)) ∩ Lp(0, T ;H1

p (Ωj)) ↪→W δ
p (0, T ;Lp(∂Ωj))

is bounded since p > 5. Therefore the Poincaré-Wirtinger inequality and Lemma 3.22 yield

‖∂t〈∇ψj · u, ·〉‖Lp(0,T ;Ĥ−1
p (Ωj))

≤ C‖(∇u, π0)‖Lp(0,T ;Lp(Ωj)) + C‖(∂νu, π)‖Lp(0,T ;Lp(∂Ωj))

≤ C(δ, T0)T δ‖(u, π)‖
0Eu(T,Ωj ,∅)×Eπ(J,Ωj ,∅).

(3) Perturbed interface problem. Let j ∈ I3 be fixed. For z = (u, π0, h) ∈ PE,jEj we have

(AΨE,j −ΨF,jAj)z =


QjFuj(u, π0)

Fdj(u)

QjGvj(u, h)

Gwj(u)

0

 ◦Θ−1
j ,(3.75)

where Fuj , Fdj , Gvj , and Gwj are the commutators

Fuj(u, π0) = π0∇ψj −∆ψj u− 2[∇u]>∇ψj ,
Fdj(u) = ∇ψj · u,

Gvj(u, h) = −[µs∆̃Σj , ψj ]v − λs[∇Σj divΣj , ψj ]v − [[µ]]∂νψj v

− [[µ]]∇Σjψj w − (λs + µs)ϑw,j [∇Σj∆Σj , ψj ]h,

Gwj(u, h) = − tr([(λs − µs) trϑL,j + 2µsϑL,j ]∇Σjψj)v − 2[[µ]]∂νψj w

− tr([σ + (λs − µs)(trϑDv,j − 2 trϑL,jϑw,j) + 2µs(ϑDv,j − 2ϑw,jϑL,j)][∇2
Σj , ψj ]h).

Clearly, Fuj in Lp(J×Ωj) and Fdj in Lp(0, T ;H1
p (Ωj \Σj)) can be estimated as in the case j ∈ I1.

Due to div u = 0 and [[νΣ · u]] = 0, the functional Fdj ∈ H1
p (0, T ; Ĥ−1

p (Ωj)) is given by

φ 7→ 〈∇ψj · u, φ〉 =

∫
Ωj

∇ψj · uφ dx = −
∫

Ωj

ψju · ∇φdx.

Let δ ∈ (1/p, 1/2− 3/2p). With

∂t

∫
Ωj

∇ψj · uφ dx = −
∫

Ωj

ρ−1µ(∇u)> : ∇(∇ψjφ0) dx+

∫
Ωj

ρ−1π0 div(∇ψjφ0) dx

−
∫

Σj

[[
ρ−1µ∇ψ · ∂νuφ− ρ−1µ∇2ψ : ∇uφ− ρ−1∂νψπφ

]]
dΣj
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and the pressure estimate (3.71), we obtain

‖∂t〈∇ψj · u, ·〉‖Lp(0,T ;Ĥ−1
p (Ωj))

≤ C‖(∇u, π0)‖Lp(0,T ;Lp(Ωj)) + C‖(∂νu, π±)‖Lp(0,T ;Lp(Σj))

≤ C(δ, T0)T δ‖(u, π)‖
0Eu,v,w,∂νw(J,Ωj ,Σj)×0Eπ,[[π]](J,Ωj ,Σj).

The remaining terms Gvj in 0Gv and Fdj±|Σ and Gwj in 0Gw are lower order differential
operators in (u, h) and therefore the assertions (ii) to (iv) in Lemma 3.19 yield the estimate

‖Gvj(u, h)‖
0Gv(T ) + ‖(Fdj±(u)|Σ, Gwj(u, h))‖

0Gw(T ) ≤ T 1/4C(δ, T0)‖z‖Ej(T ).

Hence, given ε > 0, there exists T ′0(ε) ∈ (0, T0] such that (3.70a) is valid. Estimate (3.70b)
follows analogously. �

3.27. Lemma (Construction of R0). Let Ω be a bounded domain in Rn (n ≥ 2) with smooth boundary
∂Ω, let Σ ⊂ Ω be a compact smooth hypersurface, and let T1, ρ±, and µ± > 0 be fixed. Then the operator

(u, π) 7→ ((ρ∂t − µ∆)u+∇π,div u), 0Eu,v,w,∂νw(T )× 0Eπ,[[π]](T )→ Fu(T )× 0Fd,Σ(T )(3.76)

is a retraction and it has a uniformly bounded co-retraction with respect to T ∈ (0, T1].

Proof. The spatial trace theorem, the divergence theorem and the identity div u = divΣ v −
HΣw − ∂νw near Σ imply that div : 0Eu,v,w,∂νw → 0Fd,Σ is bounded. Hence (3.76) is bounded.

From Theorem 2.3 we obtain the Helmholtz decomposition fu = ∇Fu + fuσ where fuσ :=

fu−∇Fu belongs to Lp(0, T ;Lp,σ(Ω)) and Fu ∈ Lp(0, T ; Ḣ1
p (Ω)) is defined as the solution to the

weak Neumann problem 〈∇Fu,∇φ〉Ω = 〈fu,∇φ〉Ω for all φ ∈ Ḣ1
p′(Ω).

Next, we define u1 := ∇U , where the functions U solves the transmission problem

∆U = fd in J × Ω \ Σ, ∂νU+|∂Ω = 0, [[ρU ]] = 0, [[∂νU ]] = 0.

By Theorem 2.2 and Theorem 2.3, the operator

fd 7→ u1 = ∇U, 0Fd,Σ → 0H
(1,2)
p (J × (Ω \ Σ)) = 0H

1
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω \ Σ))

is bounded. Since the traces u1|∂Ω and u1
±|Σ do not necessarily vanish, we construct another

function u2 ∈ 0H
(1,2)
p (J × (Ω \ Σ)) by solving the problem

(ρ∂t − µ∆)u2 = fuσ in J × Ω \ Σ,

div u2 = 0 in J × Ω \ Σ,

u2
+|∂Ω = −u1|∂Ω on J × ∂Ω,

u2
±|Σ = −PΣu

1
±|Σ on J × Σ.

This problem can be decoupled into one-phase Stokes problems in the components of Ω \ Σ
which can be solved by means of [BP07, Theorem 4.1] and the Helmholtz projection. Hence
there is a bounded solution operator (fuσ, u

1) 7→ u2, the function u := u1 +u2 satisfies u|∂Ω = 0,
PΣu|Σ = 0, and div u = fd, and therefore u belongs to 0Eu,v,w,∂νw.

The pressure π is defined as the solution to the weak transmission problem

〈∇π,∇φ〉 = 〈∇(Fu − (ρ∂t − µ∆)U),∇φ〉Ω for all φ ∈ Ḣ1
p′(Ω), [[π]] = −[[(ρ∂t − µ∆)U ]] = [[µ]]fd,

and hence belongs to 0Eπ,[[π]]. It is now straightforward to check that the operatorR0 : (fu, fd) 7→
(u1+u2, π), Fu×0Fd,Σ → 0Eu,v,w,∂νw×0Eπ,[[π]] is a uniformly bounded co-retraction for (3.76). �

Proof of Theorem 3.21. The assertions of the theorem follow from the strategy in Section 3.3.1, by
applying Lemmas 3.26 and 3.27. �





CHAPTER 4

The nonlinear problem

Let Ω ⊂ Rn (n ≥ 2) be a bounded smooth domain. In this chapter we transform problem
(N) with compact moving interface Γ(t) ⊂ Ω to problem (T) over a fixed interface Σ ⊂ Ω and
prove that problem (T) is well-posed on a sufficiently short interval J = (0, T ). The notion of
well-posedness is based on the function spaces in Figure 4.1 on the next page, and our basically
follows the strategy of Köhne, Prüß, and Wilke [KPW13]. However, we restrict our considera-
tions to the case where the initial interface Γ0 = θh0(Σ) is already parametrized over Σ.

In order to transform problem (N), we need a time-dependent diffeomorphism Θ(t, ·) of
the underlying domain Ω, which maps a fixed hypersurface Σ ⊂ Ω onto Γ(t) = Θ({t} × Σ).
Such maps are studied in Section 4.1, where we construct a normal-preserving admissible map
Θh : J ×Ω→ Ω induced by a height function h(t, ·) : Σ→ R and extending the parametrization

θh(t, x) = x+ h(t, x)νΣ(x) ∈ Γ(t) for t ∈ J, x ∈ Σ(4.1)

to J × Ω. The map Θh yields useful identities for the velocity transformation

u(t,Θh(t, x)) = [∂xΘh(t, x)]u(t, x).(4.2)

These identities are used to derive problem (T) in Section 4.2 and Section 4.3.
For proving well-posedness of (T), we will apply the following fixed point theorem.

4.1. Theorem (Banach’s fixed point theorem, [DM07]). Let (M,d) be a complete metric space, A be
a topological space, and F : M ×A→M be a map with the following properties:

(i) There exists q ∈ (0, 1) such that

d(F (x, a), F (y, a)) ≤ qd(x, y) for all x, y ∈M and all a ∈ A.

(ii) For every x ∈M , the mapping a 7→ F (x, a) is continuous on A.
Then for every a ∈ A there is a unique ϕ(a) ∈ M such that F (ϕ(a), a) = ϕ(a). Moreover, the map
ϕ : A→M is continuous.

This tool is applied in Section 4.4, where we prove our main result Theorem 4.33 with the
following technique. First, in order to eliminate the initial condition (u, h)|t=0 = (u0, h0) =: z0,
we will construct a triple z∗ = (u∗, π∗, h∗) with (u∗, h∗)|t=0 = z0 by means of semigroup theory
and Chapter 2. Then the desired solution is given by z = z•+ z∗, where z• = (u•, π•, h•) should
satisfy the identity L(z•;u∗) = N(z•; z∗), the operator L(·;u∗) is the solution-to-data map of
problem (PL), andN contains the nonlinear perturbations that arise during the transformation.
Hence, with Theorem 3.21, we can define the map F (z•; z0) := [L(·;u∗)]−1N(z•; z∗). Thus, in
view of the desired identity z• = F (z•; z0), it remains to show that F satisfies the assumptions
of Theorem 4.1. To this end, we will show that F (z•; z0) and ∂z•F (z•; z0) become as small as we
wish, when we choose z•, T , and h0 sufficiently small. Since L(·;u∗) is uniformly invertible, it
remains to control the perturbation N(z•; z0) and its derivative ∂z•N(z•; z0).

We control these perturbations in the context of their derivations. In Section 4.2, we deal
with the transformed momentum balance and the transformed divergence equation, where we
do not yet employ an explicit representation of Θ. In Section 4.3, we control the perturbations
for the transformed interface momentum balance when the moving interface is represented
as Γ(t) = Θh({t} × Σ). Here we also specialize the results from Section 4.2 to the case of a
normal-preserving admissible map.
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For n ≥ 2, p ∈ (3,∞), and J = (0, T ), we let

Eu = {u ∈ H1
p (J ;Lp(Ω)n) ∩ Lp(J ;H2

p (Ω \ Σ)n) : u|∂Ω = 0, [[u]] = 0 on Σ},

Ev = W 1−1/2p
p (J ;Lp(Σ;TΣ)) ∩W 1/2−1/2p

p (J ;H2
p (Σ;TΣ)) ∩ Lp(J ;W 3−1/p

p (Σ;TΣ)),

Ew = W 1−1/2p
p (J ;H1

p (Σ)) ∩ Lp(J ;W 3−1/p
p (Σ)),

Eu,v,w = {u ∈ Eu : v|Σ ∈ Ev, w|Σ ∈ Ew},
Eu,v,w,∂νw = {u ∈ Eu,v,w : ∂νw±|Σ ∈ Gw},

Eπ = Lp(J ; Ḣ1
p (Ω \ Σ)),

Eπ,[[π]] = {π ∈ Eπ : [[π]] ∈ Gw},

Eh = W 2−1/2p
p (J ;H1

p (Σ)) ∩ Ẽh,

Ẽh = H1
p (J ;W 3−1/p

p (Σ)) ∩ Lp(J ;W 4−1/p
p (Σ)),

EΘ = H3/2
p (J ;H2

p (Rn)) ∩H1
p (J ;H3

p (Rn)) ∩ Lp(J ;H4
p (Rn)),

E∂Θ = W 2−1/2p
p (J ;Lp(Σ)) ∩ Ẽ∂Θ,

Ẽ∂Θ = H1
p (J ;W 2−1/p

p (Σ)) ∩ Lp(J ;W 3−1/p
p (Σ)),

E = Eu,v,w,∂νw × Eπ,[[π]] × Eh,

Ẽ = Eu,v,w,∂νw × Eπ,[[π]] × Ẽh,
Fu = Lp(J ;Lp(Ω)n),

Fd = H1
p (J ; Ĥ−1

p (Ω)) ∩ Lp(J ;H1
p (Ω \ Σ)),

Fd,Σ = {fd ∈ Fd : fd±|Σ ∈ Gw},

Gv = W 1/2−1/2p
p (J ;Lp(Σ;TΣ)) ∩ Lp(J ;W 1−1/p

p (Σ;TΣ)),

Gw = W 1/2−1/2p
p (J ;H1

p (Σ)) ∩ Lp(J ;W 2−1/p
p (Σ)),

Gh = W 1−1/2p
p (J ;H1

p (Σ)) ∩ Lp(J ;W 3−1/p
p (Σ)),

F̃ = Fu × Fd,Σ ×Gv ×Gw ×Gh × Eu,v,w,∂νw|t=0 × Eh|t=0,

F = {(fu, fd, gv, gw, u0, h0) ∈ F̃ : fd|t=0 = div u0, Lv(u0, h0;u∗|t=0) = gv|t=0}.
Here we decompose u = v + wνΣ near Σ with v = PΣu and w = νΣ · u. We will also write
E(T ) or E(J,Ω,Σ) instead of E for indicating the dependence on T or (J,Ω,Σ) (analogously
for the other spaces).

FIGURE 4.1. Function spaces E···, F···, and G··· on (J,Ω,Σ).

4.1. Diffeomorphism and transformation

We study time-dependent diffeomorphisms Θ(t, ·) in a domain Ω that map a fixed hypersurface
Σ ⊂ Ω onto a moving hypersurface Γ(t). In Section 4.1.1 we define and study admissible maps,
admissible moving hypersurfaces, and normal-preserving admissible maps and derive useful
identities for the velocity transformation u(t,Θ(t, x)) = [∂xΘ(t, x)]u(t, x). In Section 4.1.2 we
revisit the Hanzawa map Θh and prove that it is admissible but not normal-preserving. In
Section 4.1.3 we construct a normal-preserving admissible map Θh : J×Ω→ Ω, which depends
analytically on its inducing height function h.

4.1.1. General admissible maps. First, we consider general admissible maps, admissible
moving hypersurfaces, and normal-preserving admissible maps.
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4.2. Definition. Let J ⊂ R be an interval and Ω ⊂ Rn be a domain.
(i) A map

Θ: (t, x) 7→ x = Θ(t, x), J × Ω→ Ω

of class C1(J × Ω)n is called an admissible map, if (a) the Jacobian ∂xΘ(t, x) is invertible for all
t ∈ J and all x ∈ Ω, (b) the map

Θ̃ : (t, x) 7→ (t,Θ(t, x)), J × Ω→ J × Ω

is a diffeomorphism, and (c) we have Θ(t, x) = x for all t ∈ J and all x ∈ ∂Ω.
(ii) A map Θ: Ω→ Ω is called admissible, if (t, x) 7→ Θ(x), R× Ω→ Ω is admissible.
(iii) A moving hypersurface Γ: J → 2Ω, t 7→ Γ(t) is called admissible, if there exist a C1-

hypersurface Σ ⊂ Ω and an admissible map Θ: J × Ω→ Ω such that

Γ(t) = Θ({t} × Σ) for all t ∈ J.

We easily obtain the following properties, which are useful for transforming problem (N).
4.3. Proposition. Let J ⊂ R be a compact interval, Ω ⊂ Rn be a bounded domain, and Θ : J×Ω→ Ω

be admissible. Then also (t, x) 7→ Θ(t, ·)−1(x), J × Ω→ Ω is admissible.
4.4. Proposition. Let t 7→ Γ(t) = Θ({t} × Σ) be an admissible moving hypersurface.

(i) The tangent vectors of Γ(t) are given by

τΓ
j (t, x) = [∂xΘ(t, x)]τΣ

j (x) for all x = Θ(t, x), x ∈ Σ,(4.3)

and a continuous unit normal field on Γ(t) is given by

νΓ(t, x) =
[∂xΘ(t, x)]−>νΣ(x)

|[∂xΘ(t, x)]−>νΣ(x)|
for all x = Θ(t, x), x ∈ Σ.(4.4)

(ii) The normal velocity of Γ(t) is given by

VΓ(t, x) = νΓ(t, x) · ∂tΘ(t, x) for all x = Θ(t, x), x ∈ Σ.

Proof. (i) Since Γ(t) is oriented and det ∂xΘ is either positive or negative in all of Ω, the
hypersurface Σ must be orientable. Let νΣ denote a unit normal field on Σ and let ϕ : Rn−1 ⊃
U → Σ be a parametrization for Σ. Since the restriction Θ(t, ·)|Σ : Σ→ Γ(t) is a diffeomorphism,
the map y 7→ Θ(t, ϕ(y)) : Rn−1 ⊃ U → Γ(t) is a parametrization for Γ(t) and the vectors

τΓ
j (t, x) := ∂j(Θ(t, ·) ◦ ϕ)(u) = ∂xΘ(t, x)τΣ

j (x) for x = Θ(t, x), x = ϕ(u) ∈ Σ

form a basis of the tangent space TxΓ(t). Hence (4.3) is valid. Since we have τΓ
j ·νΓ = 0 for all j,

the normal νΓ(t, x) must be parallel to [∂xΘ(t, x)]−>νΣ(x). From the identity |νΓ| = 1, it follows
that either νΓ(t, x) or −νΓ(t, x) satisfy (4.4).

(ii) The second assertion follows from Proposition 1.7, by using the trajectories γ = Θ(·, x).
�

Next, we introduce normal-preserving admissible maps and study their geometric proper-
ties as well as their kinematic properties associated to the velocity transformation (4.2).
4.5. Definition. Given an admissible map Θ: J × Ω → Ω and a C1-hypersurface Σ ⊂ Ω, we
put Γ(t) = Θ({t}×Σ) and we say that Θ is normal-preserving for Σ, if the vectors ∂νΣΘ(t, x) and
νΓ(t)(Θ(t, x)) are parallel for every t ∈ J and every x ∈ Σ; that is, there exists β : J×Σ→ R\{0}
such that ∂νΣΘ(t, x) = β(t, x)νΓ(t)(Θ(t, x)).
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4.6. Proposition. Let Θ: J × Ω → Ω be a normal-preserving admissible map for a C1-hypersurface
Σ ⊂ Ω and put Γ(·) = Θ({·} × Σ). Then the following identities are valid on J × Σ:

νΓ ◦ Θ̃ =
[∂xΘ]−>νΣ

|[∂xΘ]−>νΣ|
=

∂νΣΘ

|∂νΣΘ|
, |∂νΣΘ| = |[∂xΘ−>]νΣ|−1,(4.5a)

τΓ
j ◦ Θ̃ = [∂xΘ]τΣ

j ,(4.5b)

τ jΓ ◦ Θ̃ = [∂xΘ]−>τ jΣ,(4.5c)

PΓ ◦ Θ̃ = [∂xΘ]PΣ[∂xΘ]−1 = [∂xΘ]−>PΣ[∂xΘ]>.(4.5d)

Let two vector fields u : J × Ω → Rn and u : J × Ω → Rn be related by u ◦ Θ̃ = [∂xΘ]u, and
decompose u|Γ = v + w νΓ with v = PΓu|Γ and u|Σ = v + w νΣ with v = PΣu|Σ. Then we have

v ◦ Θ̃ = [∂xΘ]v,(4.6a)

w ◦ Θ̃ = |∂νΣΘ|w.(4.6b)

Proof. Since Θ is normal-preserving, the general identity (4.4) in Proposition 4.4 yields

νΓ ◦ Θ̃ =
∂νΣΘ

(νΓ ◦ Θ̃|∂νΣΘ)
= |[∂xΘ]−>νΣ|∂νΣΘ,

and therefore (4.5a) is valid. Identity (4.5b) is a repetition of (4.3). From the relations τΓ
j ·τkΓ = δkj

and τΓ
j · νΓ = τ jΓ · νΓ = 0 we obtain (4.5c), and then (4.5d) is readily checked.

The remaining identities can be verified as follows.

v ◦ Θ̃ = [PΓ ◦ Θ̃][∂xΘ]u = [∂xΘ]PΣu = [∂xΘ]v,

w ◦ Θ̃ = (u ◦ Θ̃|νΓ ◦ Θ̃) = (u|[∂xΘ]>(|∂νΣΘ|[∂xΘ]−>νΣ)) = |∂νΣΘ|w. �

4.1.2. The Hanzawa map. Next, we revisit the Hanzawa map Θh and prove that it is ad-
missible but not normal-preserving. In order to construct it, we recall that

x 7→ θh(x) = x+ h(x)νΣ(x), Σ→ Γh

is a parametrization for Γh = θh(Σ) over Σ. If Σ is of class C2, then for |h(x)| < |LΣ(x)|, the
matrix

Mh(x) := [Ix − h(x)LΣ(x)]−1

from page 138 is invertible, maps TxΣ onto itself, and satisfies MhνΣ = νΣ. Moreover,

νΓh ◦ θh = βh(νΣ −Mh∇Σh), with βh := (νΣ|νΓh ◦ θh) = (1 + |Mh∇Σh|2)−1/2.(4.7)

A hypersurface Σ ⊂ Rn is said to have a tubular neighborhood of radius r > 0, if the map

X : (p, t) 7→ p+ tνΣ(p), Σ× (−r, r)→ Br(Σ) := {x ∈ Rn : dist(x,Σ) < r}
is a homeomorphism; that is, X is bijective and continuous and has a continuous inverse (see
Definition A.16). The inverse of X is denoted by

X−1(x) = (Π(x), d(x)) = (p, t) for x = p+ tνΣ(p) ∈ Br(Σ).

Proposition A.17 implies that every compact C2-hypersurface has a tubular neighborhood.
4.7. Definition (cf. [Han81, p. 309]). Let Ω ⊂ Rn (n ≥ 2) be a domain and let Σ ⊂ Ω be a closed
C2-hypersurface with tubular neighborhood Br(Σ) ⊂ Ω of radius r > 0. Choose a function
χ ∈ C∞(R; [0, 1]) such that χ(s) = 1 if |s| ≤ r/3 and χ(s) = 0 if |s| ≥ 2r/3 and ‖χ′‖∞ < 6/r.

Then, for a given height function h : Σ→ R, we define the stationary Hanzawa map

Θh(x) :=

{
x+ χ(d(x)) h(Π(x)) νΣ(Π(x)) for x ∈ Br(Σ),

x for x ∈ Ω \Br(Σ).
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For J ⊂ R and a height function h : J × Σ→ R, we define the time-dependent Hanzawa map

Θh(t, x) := Θh(t,·)(x) for (t, x) ∈ J × Ω.

4.8. Theorem. Let Ω ⊂ Rn (n ≥ 2) be a domain, k ≥ 1, and let Σ ⊂ Ω be a compactCk+1-hypersurface
with tubular neighborhood Br(Σ) ⊂ Ω of radius r < ‖LΣ‖−1

∞ . Then, for a given height function

h ∈ Ck(Σ) with ‖h‖∞ < 1/‖χ′‖∞,

the stationary Hanzawa map Θh : Ω→ Ω is a Ck-diffeomorphism, and in Br(Σ) we have

∂xΘh = PΣ◦Π− χ◦d [hLΣ]◦Π [PΣ◦Π− dLΣ◦Π]−1 (purely tangential part)

+ (1 + χ′◦d h◦Π)[νΣ⊗νΣ]◦Π (purely normal part)

+ χ◦d [νΣ ⊗∇Σh]◦Π [PΣ◦Π− dLΣ◦Π]−1 (tangential-to-normal part)

(4.8)

and

[∂xΘh]−1 = [PΣ◦Π− (d+ χ◦d h◦Π)LΣ◦Π]−1[PΣ◦Π− dLΣ◦Π]

+ (1 + χ′◦d h◦Π)−1[νΣ⊗νΣ]◦Π
− χ◦d(1 + χ′◦d h◦Π)−1[νΣ⊗∇Σh]◦Π[PΣ◦Π− (d+ χ◦d h◦Π)LΣ◦Π]−1.

(4.9)

In particular, the following identities are valid on Σ:

∂xΘh|Σ = PΣ − hLΣ + νΣ⊗νΣ + νΣ ⊗∇Σh,(4.10a)

[∂xΘh|Σ]−1 = [PΣ − hLΣ]−1PΣ + νΣ⊗νΣ − νΣ⊗∇Σh[PΣ − hLΣ]−1.(4.10b)

Proof. Local invertibility. We check that the inverse [∂xΘh]−1 exists everywhere in Ω. Clearly,
it suffices to consider the case x ∈ Br(Σ). Proposition A.20 and a straightforward calculation
show that (4.8) is valid in Br(Σ). The purely tangential part of ∂xΘh can be written as

[PΣ◦Π− (d+ χ◦d h◦Π)LΣ◦Π] [I − d LΣ◦Π]−1.

The conditions ‖h‖∞ < r/3 and χ(s) = 0 for |s| ≥ 2r/3 yield |d + χ◦d h◦Π|∞ ≤ r < ‖LΣ‖−1
∞

in Br(Σ). Hence the purely tangential part is a linear isomorphism of TΠ(x)Σ. The purely
normal part is a linear isomorphism of RνΣ(x), since ‖h‖∞ < ‖χ′‖−1

∞ . Therefore ∂xΘh(x) is an
isomorphism of Rn. For every invertible A ∈ Cn×n and a, b ∈ Cn we have

[A+ b⊗ a]−1 = A−1 − A−1b⊗A−>a
1 +A−1b · a

.(4.11)

Then also (4.9) follows by straightforward calculations. Hence [∂xΘh(·)]−1 is bounded in Ω and,
by the implicit function theorem, Θh : Ω→ Ω is a local Ck-diffeomorphism.

Surjectivity. Since the map Θh : Ω→ Ω is a local homeomorphism, the set Θh(Ω) is an open
subset of Ω. We now show that it is closed as a subset of Ω. Let (yn)n ⊂ Θh(Ω) converge to
y ∈ Ω. Since Br(Σ) is compact and Θh(x) = x in Ω \ Br(Σ), the preimages xn = Θ−1

h (yn) have
a convergent subsequence xnk → x ∈ Ω. Therefore y = limk ynk = limk Θh(xnk) = Θh(x) also
belongs to Θh(Ω). Consequently, Θh(Ω) is open, closed, and nonempty in Ω, thus Θh(Ω) = Ω,
which implies that Θh : Ω→ Ω is surjective.

Injectivity. It suffices to show that the restriction of Θh to Br(Σ) is injective. If Θh(x) =
Θh(y), then the tubular neighborhood property of Σ implies

Π(x) + (d(x) + χ(d(x))h(Π(x))) νΣ(Π(x)) = Π(y) + (d(y) + χ(d(y))h(Π(y))) νΣ(Π(y))

and hence Π(x) = Π(y) and d(x) + χ(d(x))h(Π(x)) = d(y) + χ(d(y))h(Π(y)). Since s 7→ s +
χ(s)h(Π(x)) is injective by |hχ′| < 1, we obtain d(x) = d(y), and thus x = y.

We conclude that the stationary Hanzawa map Θh is a Ck-diffeomorphism of Ω. �
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4.9. Corollary. Let Σ ⊂ Ω be a compact C2-hypersurface with tubular neighborhood Br(Σ) ⊂ Ω of
radius r < ‖LΣ‖−1

∞ , and let Θh denote the time-dependent Hanzawa map induced by

h ∈ C1([0, T ]× Σ) with ‖h‖∞ < ‖χ′‖−1
∞ .(4.12)

Then the map Θh : [0, T ] × Ω → Ω and the moving hypersurface t 7→ Γh(t) = Θh({t} × Σ) are
admissible, but the map Θh is not normal-preserving unless∇Σh = 0.

Proof. Admissibility follows from Theorem 4.8 and identity (4.10) yields

∂νΣΘh = νΣ, νΓ ◦ Θ̃ =
νΣ − [Ix − hLΣ]−1∇Σh

(1 + |[Ix − hLΣ]−1∇Σh|2)1/2
.

Thus, ∂νΣΘ and νΓ ◦ Θ̃h are not parallel for∇Σh 6= 0. �

4.1.3. A normal-preserving admissible map. We will construct a normal-preserving ad-
missible map Θh : J × Ω → Ω, which, considered as an element of some Banach space EΘ,
depends analytically on its inducing height function h ∈ Eh. We first construct a diffeomor-
phism Θh : Rn → Rn which maps a compact smooth hypersurface Σ onto Γ := Θh(Σ) such that
∂νΣΘh(x) is parallel to νΓ(Θh(x)). For this construction, we employ a co-retraction S for the
trace operator

u 7→ (u|Σ, ∂νu|Σ, . . . , ∂kνu|Σ), W s
p (Rn)→

∏k

j=0
W s−j−1/p
p (Σ).

4.10. Lemma. Let Ω ⊂ Rn (n ≥ 2) be a domain, Σ ⊂ Ω be a compact smooth hypersurface, and let
p ∈ (1,∞), k ∈ N0, and s ∈ (k + 1/p,∞). Then there exists a bounded linear operator

S :
∏k

j=0
W s−j−1/p
p (Σ)→W s

p (Rn)

with the properties

S(f0, . . . , fk)|Rn\Ω = 0, ∂jνΣ
(S(f0, . . . , fk))|Σ = fj for j ∈ {0, 1, . . . , k},

for all

(f0, . . . , fk) ∈
∏k

j=0
W s−j−1/p
p (Σ).

The operator S only depends on Σ and k but not on s or p.

Proof. With Corollary A.19 we decompose Ω \ Σ = Ω+ ∪̇Ω− such that Σ = ∂Ω− and νΣ =
ν∂Ω− = −ν∂Ω+ . Let Ω′ ⊂ Ω be a bounded smooth domain which still contains Σ and let Ω′± :=
Ω′ ∩ Ω±. Triebel [Tri10, p. 3.3.3] has shown that there exist bounded linear operators

S± :
∏k

j=0
W s−j−1/p
p (∂Ω′±)→W s

p (Ω′)

with the property

∂jS±(g0, . . . , gk) = gj on ∂Ω′± for all j ∈ {0, . . . , k}, (g0, . . . , gk) ∈
∏k

j=0
W s−j−1/p
p (∂Ω′±).

For a tuple (f0, . . . , fk) ∈
∏k
j=0W

s−j−1/p
p (Σ) we define a linear operator S by

S(f0, . . . , fk) :=


0 in Rn \ Ω′,

S+(χΣ · ((−1)jfj)
k
j=0 + χ∂Ω′ · (0, . . . , 0)) in Ω′+,

S−(f0, . . . , fk) in Ω′−.

This operator has the asserted properties. �

We are ready to construct a normal-preserving map.
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4.11. Definition. Let Ω ⊂ Rn (n ≥ 2) be a domain and Σ ⊂ Ω be a compact smooth hypersur-
face.

(i) Let p ∈ (1,∞) and s ∈ (1 + n/p), and let h ∈W s−1/p
p (Σ) be a height function satisfying

‖h‖∞ < ‖LΣ‖−1
∞ .(4.13)

Then we define the stationary normal-preserving map

Θh(x) := x+ S(hνΣ, gh)(x) for x ∈ Rn,(4.14)

where S denotes the linear operator from Lemma 4.10 with k = 1, and

gh := [(νΓh ⊗ νΓh) ◦ θh − I]νΣ = βh νΓh ◦ θh − νΣ.(4.15)

(ii) Let J = (0, T ) with T ∈ (0,∞), and let h : J × Σ → R be a height function such that
h(t, ·) satisfies the assumptions of (i) for almost all t ∈ J . Then we define the time-dependent
normal-preserving map

Θh(t, x) := Θh(t,·)(x) = x+ S(h(t, ·)νΣ, gh(t,·))(x) for t ∈ J, x ∈ Rn.(4.16)

4.12. Proposition. Let Θh denote the stationary normal-preserving map.
(i) Θh maps Σ onto Γh := θh(Σ).
(ii) ∂νΣΘh = [∂xΘh]νΣ = [(νΓh ⊗ νΓh) ◦ θh]νΣ = βh νΓh ◦ θh on Σ.
(iii) Θh = Idx in Rn \ Ω.
(iv) For Mh := (I − hLΣ)−1 as on page 138, we have

∂xΘh|Σ = PΣ − hLΣ − β2
hMh∇Σh⊗ νΣ + νΣ ⊗∇Σh+ β2

hνΣ ⊗ νΣ,(4.17)

[∂xΘh|Σ]−1 = Mh − β2
hM

2
h∇Σh⊗Mh∇Σh+ β2

hM
2
h∇Σh⊗ νΣ − νΣ ⊗Mh∇Σh.(4.18)

Proof. All assertions are obvious, except for (4.18), which can be derived from (4.11). �

It remains to prove that the stationary normal-preserving map is a diffeomorphism of Rn
and that its time-dependent version is an admissible map. Compared to the Hanzawa map
whose Jacobian has an explicit inverse (4.9) in all of Ω, the normal-preserving map Θh as in
(4.14) and (4.16) lacks such a representation. We therefore want to show that

supt,x|Ix − [∂xΘh(t, x)]−1| < 1,

and this can be shown for height functions which are sufficiently small in an appropriate norm.
As in Chapter 3 we consider height functions in the class

Eh = W 2−1/2p
p (J ;H1

p (Σ)) ∩H1
p (J ;W 3−1/p

p (Σ)) ∩ Lp(J ;W 4−1/p
p (Σ)).

Then the Jacobian ∂xΘh|Σ belongs to the space

E∂Θ := W 2−1/2p
p (J ;Lp(Σ)) ∩H1

p (J ;W 2−1/p
p (Σ)) ∩ Lp(J ;W 3−1/p

p (Σ)).

The space E∂Θ is considered as the target space of the nonlinear map h 7→ ∂xΘh|Σ, and for
proving analyticity of the latter, we employ the following properties of E∂Θ.
4.13. Lemma. Let Σ ⊂ Rn (n ≥ 2) be a compact smooth hypersurface, J = (0, T ) be bounded,
p ∈ ((n+ 2)/2,∞), and m ∈ N. Then the following assertions are valid:

(i) The space E∂Θ is continuously embedded into C1(J × Σ).
(ii) E∂Θ is a multiplication algebra and there exists C(T ) ≥ 1 such that

‖fg‖E∂Θ
≤ C(T )

(
‖f‖E∂Θ

‖g‖C1(J×Σ) + ‖f‖C1(J×Σ)‖g‖E∂Θ

)
for all f, g ∈ E∂Θ.(4.19)

(iii) The operator A 7→ A−1, {A ∈ Em×m∂Θ : supJ×Σ|A−1(·)| <∞} → E∂Θ is analytic.
(iv) The operator f 7→ f1/2, {f ∈ E∂Θ : infJ×Σ dist(f(·),R−) > 0} → E∂Θ is analytic.
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Proof. (i) We abbreviate W t
p(W

s
p ) := W t

p(J ;W s
p (Σ)), Ck(C l) := Ck(J ;C l(Σ)), and similarly

for the other spaces. The mixed derivative embeddings and Sobolev’s embedding (B.1) imply

W 2−1/2p
p (Lp) ∩H1

p (W 2−1/p
p ) ↪→W 1+θ

p (H2−1/p−2θ)
p ) ↪→W 1+1/p+εt

p (W (n−1)/p+εs
p ) ↪→ C1(C),

for sufficiently small εt, εs > 0, provided that θ ∈ (0, 1 − 1/2p) satisfies 1 + θ > 1 + 1/p and
2 − 1/p − 2θ > (n − 1)/p. Such a number θ exists if 1/p < 1 − n/2p, and this is true for
p > (n+ 2)/2. Analogously, we obtain

H1
p (W 2−1/p

p ) ∩ Lp(W 3−1/p
p ) ↪→W θ

p (H3−1/p−θ
p ) ↪→ C(C1),

provided that θ ∈ (0, 1) satisfies θ > 1/p and 3−1/p−θ > 1+(n−1)/p. Such a number θ exists
if 1/p < 2− n/p, and this is true if p > (n+ 1)/2. Hence we have E∂Θ ↪→ C1(J × Σ).

(ii) The norm of E∂Θ consists of the semi-norms

[[∂t·]]1−1/2p,p;p, [[(∂t∂x, ∂
2
x, ∂x)·]]p;1−1/p,p, ‖(1, ∂t, ∂t∂x, ∂x, ∂2

x)·‖p,
where we recall the following abbreviations from page 78:

[[·]]t,p;p := [[·]]W t
p(Lp), [[·]]p;s,p := [[·]]Lp(W s

p ), ‖·‖p := ‖·‖Lp(Lp).

With Lemma B.81 and Lemma B.10 we control some of the leading-order terms of ‖fg‖E∂Θ
by

[[∂tf g]]1−1/2p,p;p . [[∂tf ]]1−1/2p,p;p‖g‖∞ + ‖∂tf‖∞ [[g]]1−1/2p,p;p ,

[[∂t∂xf g]]p;1−1/p,p . [[∂t∂xf ]]p;1−1/p,p‖g‖∞ + ‖∂t∂xf‖p‖(g, ∂xg)‖∞,
[[∂2
xf g]]p;1−1/p,p . [[∂2

xf ]]p;1−1/p,p‖g‖∞ + ‖∂2
xf‖p‖(g, ∂xg)‖∞.

These terms and the remaining ones can be estimated by the right-hand side of (4.19). Therefore
the pointwise multiplication estimate (4.19) is valid and E∂Θ is a multiplication algebra.

(iii) Let us check that A−1 belongs to Em×m∂Θ for every A ∈ Em×m∂Θ with A−1 ∈ L∞(J × Σ).
Abbreviating τ = 1− 1/2p and using Lemma B.81, we obtain

[[∂tA
−1]]τ,p;p = [[A−1[∂tA]A−1]]τ,p;p . [[∂tA]]τ,p;p‖A−1‖2∞ + [[A−1]]τ,p;p‖A−1‖∞‖∂tA‖∞.

Next, from the inequality

|A(t, x)−1 −A(t′, x)−1| ≤ ‖A−1‖2∞|A(t, x)−A(t′, x)|,

we infer that [[A−1]]τ,p;p . ‖A−1‖2∞[[A]]τ,p;p is finite and therefore [[∂tA
−1]]τ,p;p is finite. Analo-

gously,

[[A−1]]p;σ,p . ‖A−1‖2∞[[A]]p;σ,p <∞,

with σ = 1− 1/p. Hence, for j ∈ {1, . . . , n− 1}, we obtain

[[∂t∂jA
−1]]p;σ,p = [[A−1[∂jA]A−1[∂tA]A−1 +A−1[∂tA]A−1[∂jA]A−1 −A−1[∂t∂jA]A−1]]p;σ,p

. ‖A−1‖4∞‖A‖p;σ,p‖∂jA‖∞‖∂tA‖∞ + ‖A−1‖3∞[[∂jA]]p;σ,p‖∂tA‖∞ + ‖A−1‖3∞[[∂tA]]p;σ,p‖∂jA‖∞
+ ‖A−1‖2∞[[∂t∂jA]]p;σ,p + ‖(A−1,∇ΣA

−1)‖∞‖∂t∂jA‖p‖A−1‖∞ <∞.

The semi-norm [[∂j∂kA
−1]]p;σ,p can be estimated analogously. We further have

‖A−1‖p ≤ T 1/p|Σ|1/p‖A−1‖∞ <∞,

and the remaining terms in ‖A−1‖E∂Θ
are also finite. Therefore A−1 belongs to Em×m∂Θ , and

Proposition B.88 yields analyticity of the inversion operator A 7→ A−1.
(iv) Every bounded function f with inf dist(f(·),R−) > 0 satisfies both inf|f | > 0 and

sup|arg f | < π. Hence f1/2 and f−1 are bounded. The Cauchy-Schwarz inequality yields

‖f1/2‖p =

(∫ T

0

∫
Σ

1 · |f |p/2 dΣ dt

)1/p

≤ T 1/2p|Σ|1/2p‖f‖1/2p <∞.
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Since sup|arg f1/2| < π/2, there exists c > 0 such that

|f(t, x)1/2 + f(t′, x′)1/2| ≥ c(|f(t, x)|1/2 + |f(t′, x′)|1/2)

by Lemma B.54. Then the estimate

|f(t, x)1/2 − f(t′, x)1/2| = |f(t, x)− f(t′, x)|
|f(t, x)1/2 + f(t′, x)1/2|

.
|f(t, x)− f(t′, x)|

inf|f |1/2
,

yields

[[f1/2]]τ,p;p . (inf|f |)−1/2[[f ]]τ,p;p <∞

for τ = 1− 1/2p, and therefore

[[∂tf
1/2]]τ,p;p = [[2−1f−1f1/2∂tf ]]τ,p;p

. [[f−1]]τ,p;p‖f‖1/2∞ ‖∂tf‖∞ + ‖f−1‖∞
(
‖f1/2‖τ,p;p‖∂tf‖∞ + ‖f1/2‖∞[[∂tf ]]τ,p;p

)
is finite. For σ = 1− 1/p we similarly obtain

[[f1/2]]p;σ,p . (inf|f |)−1/2[[f ]]p;σ,p <∞.

Next,

[[∇Σ∂tf
1/2]]p;σ,p = 2−1[[2−1f−3/2∇Σf∂tf + f−1/2∇Σ∂tf ]]p;σ,p

. ‖f−1‖2E∂Θ
(‖f1/2‖∞ + ‖f1/2‖p;σ,p)‖f‖2E∂Θ

+ ‖(1,∇Σ)f−1/2‖∞([[∇Σ∂tf ]]p;σ,p + ‖∇Σ∂tf‖p) <∞.

The remaining terms in ‖f1/2‖E∂Θ
can be estimated similarly. Hence f1/2 belongs to E∂Θ for

every f ∈ E∂Θ with infJ×Σ dist(f(·),R−) > 0, and Proposition B.89 yields analyticity of f 7→
f1/2. �

The next step towards analyticity of h 7→ Θh is to show that h 7→ νΓh ◦ θh is analytic.
4.14. Lemma. Let Σ ⊂ Rn (n ≥ 2) be a compact smooth hypersurface.

(i) Let p ∈ (1,∞), s ∈ (1+n/p,∞), and τ ∈ (1+n/p, s]. Then there exists δh0 = δh0(Σ, p, τ) > 0
such that all height functions

h ∈W s−1/p
p (Σ) ∩ Uh0 , with Uh0 := {h ∈W τ−1/p

p (Σ) : ‖h‖
W
τ−1/p
p (Σ)

< δh0},

satisfy (4.13). In this case the map

h 7→ νΓh ◦ θh, W s−1/p
p (Σ) ∩ Uh0 →W s−1−1/p

p (Σ)n

is analytic.
(ii) Let p ∈ ((n + 2)/2,∞), τ ∈ (1 + n/p, 4 − 1/p], and let J = (0, T ) be bounded. Then there

exists δh = δh(Σ, p, τ) > 0 such that all height functions

h ∈ Eh ∩ Uh, with Uh := {h ∈ L∞(0, T ;W τ−1/p
p (Σ)) : ‖h‖

L∞(J ;W
τ−1/p
p (Σ))

< δh},(4.20)

satisfy (4.13). In this case the map

h 7→ νΓh ◦ Θ̃h, Eh ∩ Uh → En∂Θ

is analytic.

Proof. (i) The identity (4.15) shows that the values of hνΣ and gh depend analytically on
those of (h,∇Σh) ∈ R × Rn such that |h| < ‖LΣ‖−1

∞ and |∇Σh| < (1 − |h|‖LΣ‖−1
∞ )−1. From

Sobolev’s embedding W
s−1−1/p
p (Σ) ↪→ BC(Σ) we infer that there exists δh0 such that (4.13)
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is satisfied if ‖h‖
W
τ−1/p
p (Σ)

< δh0 . By Remark B.80, the space W s−1−1/p
p (Σ) is a multiplication

algebra, and since νΣ and LΣ are smooth, we infer from Lemma B.10 that

h 7→ (hνΣ, I − hLΣ), W s−1/p
p (Σ)→W s−1/p

p (Σ)n ×W s−1−1/p
p (Σ)n×n

is affine and continuous. The inversion operator

A 7→ A−1, {A ∈W s−1−1/p
p (Σ)n×n : ‖A−1‖∞ <∞} →W s−1−1/p

p (Σ)n×n

is analytic by Lemma B.90. Hence, by Corollary B.86, the map

h 7→ (I − hLΣ)−1, W s−1/p
p (Σ) ∩ Uh0 →W s−1−1/p

p (Σ)n×n

is analytic, and therefore also

h 7→ |(I − hLΣ)−1∇Σh|2, W s−1/p
p (Σ) ∩ Uh0 →W s−1−1/p

p (Σ)n×n

is analytic. Again by Lemma B.90 and Sobolev’s embedding, the square root operator and the
inversion operator are analytic operators from {u ∈ W s−1−1/p

p (Σ) : infΣ dist(u(·),R−) > 0} to
W

s−1−1/p
p (Σ). Thus, in view of (4.15), we conclude that

h 7→ νΓh ◦ θh, W s−1/p
p (Σ) ∩ Uh0 →W s−1−1/p

p (Σ)

is analytic.
(ii) The temporal trace theorem yields the embedding

Eh(T ) ↪→ C([0, T ];W 4−2/p
p (Σ)) ↪→ C([0, T ];W τ−1/p

p (Σ)).

By employing Lemma 4.13 instead of Lemma B.90, assertion (ii) follows analogously. �

Now we can prove that the normal-preserving map Θh is a diffeomorphism and that it
depends analytically on the height function h. We consider Θh as an element of Idx + EΘ

n,
where

EΘ := H3/2
p (J ;H2

p (Rn)) ∩H1
p (J ;H3

p (Rn)) ∩ Lp(J ;H4
p (Rn)).

4.15. Theorem. Let Ω ⊂ Rn (n ≥ 2) be a domain, Σ ⊂ Ω be a compact smooth hypersurface, and
p ∈ (1,∞).

(i) Let s ∈ (1 + n/p,∞) and τ ∈ (1 + n/p, s]. Then for some δh0 > 0 and all height functions

h ∈W s−1/p
p (Σ) ∩ Uh0 with Uh0 := {h ∈W τ−1/p

p (Σ) : ‖h‖
W
τ−1/p
p (Σ)

< δh0},

the inequality (4.13) is satisfied, the stationary normal-preserving map Θh : Rn → Rn from (4.14) is an
admissible map, and the map

h 7→ Θh − Idx, W s−1/p
p (Σ) ∩ Uh0 →W s

p (Rn)n

is analytic.
(ii) Let p ∈ ((n+ 2)/2,∞) and τ ∈ (1 + n/p, 4− 1/p]. Then there exists δh > 0 such that for all

T ∈ (0,∞) and all height functions

h ∈ Eh(T ) ∩ Uh with Uh := {h ∈ L∞(0, T ;W τ−1/p
p (Σ)) : ‖h‖

L∞(0,T ;W
τ−1/p
p (Σ))

< δh},(4.21)

the following assertions are true:
(ii.a) The inequality (4.13) is satisfied by h(t, ·) for all t ∈ [0, T ].
(ii.b) Θh : [0, T ]× Ω→ Ω is a normal-preserving admissible map for Σ.
(ii.c) The following maps are analytic:

h 7→ Θh − Idx, Eh(T ) ∩ Uh → EΘ(T ),(4.22)

h 7→ [∂xΘh]|Σ = Ix + ∂j(hνΣ)⊗ τ jΣ + gh ⊗ νΣ, Eh(T ) ∩ Uh → En×n∂Θ (T ).(4.23)
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Proof. (i) From Lemma 4.14.(i) we infer that the map

h 7→ gh, W τ−1/p
p (Σ) ∩ Uh0 →W τ−1−1/p

p (Σ)

is analytic for every τ ∈ (1 + n/p, s]. Moreover,

‖hνΣ‖W τ−1/p
p (Σ)

+ ‖gh‖W τ−1−1/p
p (Σ)

→ 0 as ‖h‖
W
τ−1/p
p (Σ)

→ 0.

Therefore the map Θh − Idx belongs to W s
p (Rn)n ∩C1(Rn)n, satisfies Θh|Σ = θh and ∂νΣΘh|Σ =

[(νΓh ⊗ νΓh) ◦ θh]νΣ, and depends analytically on h ∈ W s−1/p
p (Σ) ∩ Uh0 . From Lemma 4.10 we

infer that S(hνΣ, gh) has compact support in Ω, and hence Θh = Idx in Rn \ Ω. In order to
guarantee that Θh is a diffeomorphism, we observe that

‖∂xΘh − Ix‖L∞(Rn) . ‖S(hνΣ, gh)‖W τ
p (Rn) . ‖hνΣ‖W τ−1/p

p (Σ)
+ ‖gh‖W τ−1−1/p

p (Σ)
.

Hence, if ‖h‖
W
τ−1/p
p (Σ)

is sufficiently small, then ‖∂xΘh − I‖∞ < 1, and thus Θh is a global
diffeomorphism of Rn.

(ii) It is shown in Lemma 4.13 that E∂Θ is a multiplication algebra and the subset {u ∈
E∂Θ : infΣ dist(u(·),R+) > 0} is invariant under pointwise inversion and square root. Let
J = (0, T ). From Lemma 4.14.(ii) we infer that hνΣ ∈ Eh and gh ∈ E∂Θ defined by (4.15)
depend analytically on h ∈ Eh(T ) ∩ Uh. The mixed derivative embeddings yield

hνΣ ∈W 2−1/2p−ρ
p (J ;H1+2ρ

p (Σ))n, gh ∈W 2−1/2p−ρ
p (J ;H2ρ

p (Σ))n for all ρ ∈ [0, 1− 1/2p).

We choose ρ := 1/2−1/2p. By Lemma 4.10, the map (4.22) is well-defined and analytic. Analyt-
icity of (4.23) follows from analyticity of h 7→ (hνΣ, gh) and Lemma B.10. The diffeomorphism
property follows from assertion (i).

(iii) From Sobolev’s embedding (B.1) we deduce

W θ
p (J ;W 4−θ

p (Rn)) ↪→ C(J ;BC2(Rn)),

provided that θ > 1/p and 4− θ − n/p > 2. Since p > (n+ 2)/2, we have

H3/2
p (J ;H2

p (Rn)) ∩H1
p (J ;H3

p (Rn)) ↪→ C1(J ;BC1(Rn)).

Hence the map Θh is admissible. �

We complete this section with a collection of useful transformation identities for the normal-
preserving admissible map Θh and the velocity transformation u ◦ Θ̃h = [∂xΘh]u.
4.16. Lemma. The relations (4.24) and (4.25) on the next page are valid.

Proof. Most identities follow from Propositions 4.6 and 4.12 and equation (4.15). The remaining
identity (4.25c) can be verified as follows.

(∂νΓw) ◦ Θ̃h = (∇((βhw) ◦ Θ̃−1
h )|νΓ) ◦Θh = ∇(βhw) · [∂xΘh]−1β−1

h [∂xΘh]νΣ = ∂νΣw. �

4.2. The transformed bulk equations

In this section we transform the momentum balance and the divergence equation

ρ∂tu+ ρ(u · ∇)u− µ∆u+∇π = 0 for t ∈ J, x ∈ Ω \ Γ(t),(4.26)

div u = 0 for t ∈ J, x ∈ Ω \ Γ(t).(4.27)

Here J = (0, T ) is a bounded interval, Ω ⊂ Rn (n ≥ 2) is a domain, and Γ is an admissible
moving hypersurface in Ω, which is induced by an admissible map Θ: J × Ω → Ω and a
compact smooth hypersurface Σ ⊂ Ω. We do not yet employ an explicit representation of Θ.
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Let Θh : J × Ω → Ω denote the normal-preserving map for Σ ⊂ Ω as defined in Theorem
4.15, Γ(t) = Θh(t)(Σ), and Mh = (Ix − hLΣ)−1. Then the following identities are valid on
J × Σ:

βh = (νΓ ◦ Θ̃h|νΣ) = |[∂xΘh]νΣ| = |[∂xΘh]−>νΣ|−1,(4.24a)

νΓ ◦ Θ̃h = β−1
h [∂xΘh]νΣ = βh[∂xΘh]−>νΣ,(4.24b)

τΓh
j ◦ Θ̃h = [∂xΘh]τΣ

j ,(4.24c)

τ jΓh ◦ Θ̃h = [∂xΘh]−>τ jΣ,(4.24d)

PΓ ◦ Θ̃h = [∂xΘh]PΣ[∂xΘh]−1,(4.24e)

∂xΘh = PΣ − hLΣ − β2
hMh∇Σh⊗ νΣ + νΣ ⊗∇Σh+ β2

hνΣ ⊗ νΣ,(4.24f)

[∂xΘh]−1 = Mh − β2
hM

2
h∇Σh⊗Mh∇Σh+ β2

hM
2
h∇Σh⊗ νΣ − νΣ ⊗Mh∇Σh.(4.24g)

Let u = v + wνΓ and u = v + wνΣ be related by u ◦ Θ̃h = [∂xΘh]u. Then we also have

v ◦ Θ̃h = [∂xΘh]v,(4.25a)

w ◦ Θ̃h = βhw,(4.25b)

∂νΓw ◦ Θ̃h = ∂νΣw,(4.25c)

VΓh ◦ Θ̃h = βh∂th.(4.25d)

FIGURE 4.2. Transformation identities for the normal-preserving map Θh.

Our first task is to derive the transformed equations

ρ∂tu− µ∆u+∇π = Fu(u, π,Θ) in J × (Ω \ Σ),(4.28)

div u = Fd(u,Θ) in J × (Ω \ Σ),(4.29)

for the transformed velocity

u(t, x) = [∂xΘ(t, x)]−1u(t,Θ(t, x)),(4.30)

and the transformed pressure

π(t, x) := π(t,Θ(t, x)).(4.31)

The nonlinear perturbations Fu and Fd are derived in Lemmas 4.17 and 4.19.
Second, for proving well-posedness of the transformed problem (T) with Banach’s fixed

point theorem, we have to control the perturbations Fu and Fd. To be precise, we will show that
their values and their first order Fréchet derivatives can be deemed as small as we wish, by
choosing T sufficiently small and by requiring that Θ|t=0 is sufficiently close to the identity
(Lemmas 4.21 and 4.23). These perturbations are polynomial Nemytskiı̆ operators with respect
to the functions (u, π,Θ, [∂xΘ]−1) and some of their derivatives. In order to prove their analyt-
icity, we employ their polynomial structure and certain T -dependent embedding estimates.
4.17. Lemma. Assume that Θ is of class C1(J ;C1(Ω)) ∩ C(J ;C3(Ω)) and put

X(t, x) := Θ(t, x), X(t, x) := Θ(t, ·)−1(x).

For given π ∈ L1,loc(J ;H1
1,loc(Ω \ Γ)) and u ∈ H1

1,loc(J ;L1,loc(Ω;Rn)) ∩ L1,loc(J ;H2
1,loc(Ω \ Γ;Rn))

we define u and π as in (4.30) and (4.31). Then the identities in Figure 4.3 on the facing page are valid.
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For an admissible map Θ: J × Ω → Ω and for u(t, x) = [∂xΘ(t, x)]u(t, x) and π(t, x) =

π(t, x) with x = X(t, x) and x = X(t, x) as in Lemma 4.17, we have

∂tXm = −∂iXm ∂tXi,

∂juk = ∂juk + (∂lXk ∂jXm − δklδjm)∂mul + ∂l∂mXk ∂jXm ul,

∂tuk = ∂tuk + (∂lXk − δkl)∂tul − ∂tXi ∂lXk ∂iXm ∂mul

+ (∂t∂lXk − ∂tXi ∂l∂mXk ∂iXm)ul,

div u = div u+ ∂l∂mXj ∂jXm ul,

∆uk = ∆uk + (∂lXk ∂jXm ∂jXi − δklδjmδji) ∂m∂iul
+
(
∂l∂iXk ∂jXm ∂jXi − ∂iXm ∂j∂rXi ∂jXr ∂lXk

)
∂mul

+
(
∂l∂m∂iXk ∂jXm ∂jXi − ∂iXm ∂j∂rXi ∂jXr ∂l∂mXk

)
ul,

uj∂juk = ∂lXk ∂iXj ∂jXm ui∂mul + ∂l∂mXk ∂iXj ∂jXm ului,

∂jπ = ∂jπ + (∂jXm − δjm)∂mπ.

Here the values of u, π, and X are taken at (t, x), and those of u, π, and X at (t, x).

FIGURE 4.3. Transformed differential operators.

Proof. By the inverse function theorem we have

∂xX(t, x) = ∂x(Θ(t, ·))−1(x) = [∂xΘ(t, x)]−1,

∂tX(t, x) = −[∂xΘ(t, x)]−1∂tΘ(t, x) = −∂xX(t, x)∂tX(t, x), ∂tXm = −∂nXm∂tXn.

In order to transform ∂juk, we apply the chain rule for weak derivatives ([Hun13, Proposition
3.21]). Neglecting the dependence on t, we obtain

∂xjuk(x) = ∂xj
(
∂xlXk(X(x)) ul(X(x))

)
= ∂xjuk(x) + (∂xlXk(x) ∂xjXm(x)− δklδjm)∂xmul(x)

+ ∂xl∂xmXk(x) ∂xjXm(x) ul(x).

The remaining equations follow by straightforward computations. �

In every transformation formula in Figure 4.3, the first summand on the right-hand side
is the principal part and the remaining summands are treated as perturbations. In order to
abstract their polynomial structure, we employ the following convention.
4.18. Convention. For a map f : E1 × · · · × Ek → Y between Banach spaces E1, . . . , Ek, and Y
over K ∈ {R,C}, and the induced Nemytskiı̆ operator

F : u 7→ f ◦ u, F (u1, . . . , uk)(x) = f(u1(x), . . . , uk(x)),

acting on E1 × · · · × Ek-valued maps u = (u1, . . . , uk), we write

F (u) = L(u) if f is linear and bounded,

F (u1, . . . , uk) = M(uα1
1 , . . . , uαkk ) if f is a monomial of degree α ∈ Nk0,

F (u1, . . . , uk) = P (u1, . . . , uk) if f is a polynomial,

F (u1, . . . , uk) = Pα(u1, . . . , uk) if f is a polynomial of degree at most α ∈ Nk0,
F (u1, . . . , uk) = Pα,0(u1, . . . , uk) if f(u1, . . . , uk) = Pα(u1, . . . , uk) and f(0) = 0.

The symbols L, M , P , Pα, and Pα,0 may denote a different mapping at every occurrence.
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For x = X(t, x) = Θ(t, x), ∂xX(t, x) = [∂Θ(t, x)]−1, and Θ̃(t, x) = (t,Θ(t, x)) we have

Fu(u, π,Θ) := −((ρ∂tu) ◦ Θ̃− ρ∂tu)

− ((ρu · ∇)u) ◦ Θ̃

− ((∇π) ◦ Θ̃−∇π)

+ ((µ∆u) ◦ Θ̃− µ∆u),

where

(∂tuk) ◦ Θ̃− ∂tuk = (∂lXk − δlk)∂tul − ∂lXk∂tXn∂nXm ∂mul

+
(
∂t∂lXk − ∂l∂mXk∂tXn∂nXm

)
ul

= M (∂xΘ− I, ∂tu) +M
(
∂tX, ∂xX, ∂xX, ∂xu

)
+M

(
(∂t∂xX, ∂tX), P

(
∂2
xX, ∂xX

)
, u
)
,

(uj∂juk) ◦ Θ̃ = ∂lXk∂nXj∂jXm un∂mul + ∂l∂mXk∂nXj∂jXm ulun

= M
(
P
(
∂2
xX, ∂xX, ∂xX

)
, u, (u, ∂xu)

)
,

∆u ◦ Θ̃−∆u = (∂lXk ∂jXm∂jXn − δlkδjmδjn) ∂m∂nul

+
(
2∂l∂nXk∂jXm ∂jXn + ∂lXk ∆Xm

)
∂mul

+
(
∂l∂m∂nXk ∂jXm∂jXn − ∂j∂lXk∂l∂mXk∂kXm∂jX l

)
ul

= M
(
P(1,2),0

(
∂xX − I, ∂xX − I

)
, ∂2
xu
)

+M
(
P
(
∂2
xX, ∂xX, ∂xX

)
, (u, ∂xu)

)
+M

(
∂3
xX, (∂xX)2, u

)
,

(∂jπ) ◦ Θ̃− ∂jπ = −(∂jXm − δjm)∂mπ = M (∂xX − I, ∂xπ) .

Here the values of u, π, and X are taken at (t, x) ∈ J × (Ω \ Γ(t)), and those of u, π, and X at
(t, x) ∈ J × (Ω \ Σ) with x = X(t, x).

FIGURE 4.4. The perturbations in the transformed momentum equation.

4.2.1. The transformed momentum equation. In the next Lemma 4.19, we derive the trans-
formed momentum equation for admissible diffeomorphisms Θ(t, ·). The map Fu(u, π,Θ) is a
polynomial operator in (u, π,Θ, [∂xΘ]−1). For suitable Θ ∈ UΘ we obtain analyticity of Fu and
smallness of a certain Fréchet derivative of Fu in Lemma 4.21. Sufficient T -dependent embed-
dings are given in Lemma 4.20. Later on we will specialize this result to normal-preserving
diffeomorphisms Θh(t, ·) with h ∈ Uh (Corollary 4.27).
4.19. Lemma. The momentum equation (4.26) corresponds to the transformed momentum equation
(4.28), where the vector-field Fu(u, π,Θ): J× (Ω\Σ)→ Rn is given in Figure 4.4 on the current page.
Therefore Fu is a polynomial Nemytskiı̆ operator with respect to (u, π,Θ, [∂xΘ]−1) of the form

Fu(u, π,Θ) = M
(
P(1,2),0

(
∂xΘ− I, [∂xΘ]−1 − I

)
,
(
∂tu, ∂

2
xu
))

+M (∂xΘ− I, ∂xπ)

+M
(
P
(
∂2
xΘ, ∂xΘ, [∂xΘ]−1

)
, u, (u, ∂xu)

)
+M

(
P
(
∂2
xΘ, ∂xΘ, [∂xΘ]−1

)
, ∂xu

)
+M

((
∂t∂xΘ, ∂tΘ, ∂

3
xΘ
)
, P
(
∂2
xΘ, [∂xΘ]−1

)
, u
)
.

Proof. This follows from Lemma 4.17 by straightforward calculations. �
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In the remainder of this section we omit the bars on u and π; that is, u and π denote the
transformed velocity and pressure. We recall from Figure 4.1 that

Eu = {u ∈ H1
p (J ;Lp(Ω)n) ∩ Lp(J ;H2

p (Ω \ Σ)n) : u|∂Ω = 0, [[u]] = 0 on Σ},

EΘ = H3/2
p (J ;H2

p (Rn)) ∩H1
p (J ;H3

p (Rn)) ∩ Lp(J ;H4
p (Rn)).

We consider the map (u, π,Θ) 7→ Fu(u, π,Θ) with target space Fu, defined for u ∈ Eu, π ∈ Eπ,
and Θ ∈ EΘ, provided that [∂xΘ]−1 is bounded on J × Ω. Therefore we let

UΘ := {Θ ∈ EnΘ : Θ|J×Ω : J × Ω→ Ω is an admissible map}.(4.32)

From Proposition 4.3 we infer that for Θ ∈ EΘ ∩ UΘ, the map [∂xΘ]−1 is bounded on J × Ω. In
order to control the nonlinearities on small time intervals, we consider the closed subspaces

0Eu := {u• ∈ Eu : u•|t=0 = 0}, 0EΘ := {η• ∈ EΘ : η•|t=0 = 0, ∂tη•|t=0 = 0}.

4.20. Lemma. Let p ∈ (1,∞) \ {3/2, 3} and T ∈ (0,∞). Then the continuous embeddings

Eu(T ) ↪→ C([0, T ]× Ω)n if p > (n+ 2)/2,(4.33)

EΘ(T ) ↪→ H1
p (0, T ;H1

p (Ω)n) ∩ C([0, T ];C2(Ω)n) ∩ Lp(0, T ;H3
p (Ω)n) if p > (n+ 1)/2,(4.34)

EΘ ↪→ C1([0, T ];C1(Ω)n) ∩ C([0, T ];C3(Ω)n) if p > n+ 2,(4.35)

are valid, and for some δ0 > 0 and all δ ∈ (0, δ0], T0 > 0, and T ∈ (0, T0] we have

‖u•‖Lp(0,T ;H1
p(Ω\Σ)) ≤ T δC(δ, T0)‖u•‖0Eu(T ) if p > 2,(4.36)

‖u•‖0C([0,T ]×Ω) ≤ T
δC(δ, T0)‖u•‖0Eu(T ) if p > (n+ 2)/2,(4.37)

‖η•‖0H1
p(0,T ;H1

p(Ω))∩0C([0,T ];C2(Ω))∩Lp(0,T ;H3
p(Ω)) ≤ T

δC(δ, T0)‖η•‖0EΘ(T ) if p > (n+ 1)/2.(4.38)

Proof. We proceed as in the proof of Lemma 3.19.
Assertions (4.33) and (4.37) follow from Proposition B.44, (B.2), (3.32c), and (3.32d), since

Eu ↪→W ρ−τ
p (0, T ;W 2(1−ρ)

p (Ω\Σ))n

↪→W 1/p+εt
p (0, T ;Wn/p+εs

p (Ω\Σ))n ↪→ C([0, T ];BUC(Ω\Σ))n

for some τ , εt, εs > 0, and ρ ∈ (0, 1), if ρ > 1/p and 2(1 − ρ) > n/p, and this is possible if
p > (n + 2)/2. Since u ∈ Eu satisfies [[u]] = 0, we obtain u ∈ C([0, T ] × Ω)n. Estimate (4.36)
follows from Lemma 3.19.(i). Again by Proposition B.44 and Sobolev’s embedding (B.1) we
have

EΘ ↪→W θ
p (J ;W 4−θ

p (Rn)) ↪→ C(J ;BC2(Rn)),

provided that θ > 1/p and 4− θ−n/p > 2, and this is possible if p > (n+ 1)/2. Therefore (4.34)
is valid, and estimate (4.38) also follows from (B.2), (3.32c), and (3.32d). The embedding (4.35)
can be verified similarly. �

We are ready to control the perturbation Fu.
4.21. Lemma. Let p ∈ (n+ 2,∞) and T ∈ (0,∞). Then the map

Fu : {(u, π,Θ) ∈ Eu(T )× Eπ(T )× EΘ(T ) : Θ ∈ UΘ} → Fu(T )

is analytic and has the following properties:
(i) For given T0 ∈ (0,∞), R ∈ [1,∞), u ∈ Eu(T0), π ∈ Eπ(T0), and Θ ∈ EΘ(T0) ∩ UΘ, we have

‖Fu(u, π,Θ)‖Fu(T ) → 0 as T → 0, ‖∂xΘ− Ix‖C([0,T ]×Ω) → 0,

and this convergence is uniform with respect to

‖u‖Eu(T0) + ‖π‖Eπ(T0) + ‖Θ‖EΘ(T0) + ‖[∂xΘ]−1‖C([0,T0]×Ω) ≤ R.(4.39)
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(ii) For given T0 ∈ (0,∞), R ∈ [1,∞), u∗ ∈ Eu(T0), and Θ∗ ∈ EΘ(T0), the map

(u•, π, η•) 7→ Fu(u∗ + u•, π,Θ∗ + η•),

{(u•, π, η•) ∈ 0Eu(T )× Eπ(T )× 0EΘ(T ) : Θ∗ + η• ∈ UΘ} → Fu(T ),

satisfies

‖∂(u•,π,η•)Fu(u∗ + u•, π,Θ∗ + η•)‖B(0Eu(T )×Eπ(T )×0EΘ(T );Fu(T )) → 0

as T → 0, ‖∂xΘ− Ix‖C([0,T ]×Ω) → 0,

and this convergence is uniform with respect to

‖(u∗, u•)‖Eu(T0) + ‖π‖Eπ(T0) + ‖(Θ∗, η•)‖EΘ(T0) + ‖[∂x(Θ∗ + η•)]
−1‖C([0,T0]×Ω) ≤ R.(4.40)

Proof. Lemma 4.19 shows that Fu(u, π,Θ) depends polynomially on (u, π,Θ, [∂xΘ]−1). With
Theorem 4.15 and the embeddings (4.33) and (4.34), it is straightforward to check that Fu is
analytic. It is also bounded and uniformly continuous with respect to (4.39).

(i) Assume that T ≤ 1. First, Hardy’s inequality (B.4) yields the estimate

‖u‖Fu(T ) ≤
(∫ T

0
‖u0‖pLp(Ω) dt

)1/p

+

(∫ T

0

∥∥∥∥Tt
∫ t

0
∂su(s) ds

∥∥∥∥p
Lp(Ω)

dt

)1/p

≤ CT 1/p
(
‖u0‖Lp(Ω) + ‖∂tu‖Fu(T0)

)
≤ CT 1/pR.

(4.41)

Here the latter inequality follows from Eu(T0) ↪→ C([0, T0] × Ω) ↪→ C([0, T0];Lp(Ω)) (see also
(4.33)). Second, with inequality (3.32c) and the mixed derivative embeddings we obtain

‖∂xu‖Fu(T ) ≤ CT 1/p‖u0‖H1
p(Ω) + CTα [[u− u0]]

0Wα
p (0,T ;H1

p(Ω)) ≤ CT
1/pR(4.42)

for some α ∈ (1/p, 1/2). Hence, by using embedding (4.35) and choosing T > 0 sufficiently
small, we can control those terms in Fu(u, π,Θ) which contain a lower-order factor u or ∂xu.
The leading-order terms ∂tu, ∂2

xu, and ∂xπ only appear in products with a factor ∂xΘ − Ix
or [∂xΘ]−1 − Ix = [∂xΘ]−1[Ix − ∂xΘ], and can therefore be controlled with the smallness of
‖∂xΘ− Ix‖C([0,T ]×Ω).

(ii) For given u∗ ∈ Eu(T0), u• ∈ 0Eu(T0), Θ∗ ∈ EΘ(T0), and η• ∈ 0EΘ(T0), we let

u = u∗ + u• ∈ Eu(T0), Θ = Θ∗ + η• ∈ EΘ(T0).

With Convention 4.18 we can express the derivative of u• 7→ Fu(u∗ + u•, π,Θ) applied to ũ• ∈
0Eu(T ) as

[∂u•Fu(u, π,Θ)]ũ• = M
(
P(1,2),0

(
∂xΘ− I, [∂xΘ]−1 − I

)
,
(
∂tũ•, ∂

2
xũ•
))

+M
(
P
(
∂2
xΘ, ∂xΘ, [∂xΘ]−1

)
, ũ•, (u, ∂xu)

)
+M

(
P
(
∂2
xΘ, ∂xΘ, [∂xΘ]−1

)
, u, (ũ•, ∂xũ•)

)
+M

(
P
(
∂2
xΘ, ∂xΘ, [∂xΘ]−1

)
, ∂xũ•

)
+M

(
P
(
∂t∂xΘ, ∂tΘ, ∂

3
xΘ, ∂2

xΘ, [∂xΘ]−1
)
, ũ•
)
.

Together with (4.36) and (4.37), a straightforward estimation yields

‖∂u•Fu(u, π,Θ)‖B(0Eu(T );Fu(T )) → 0 as T → 0, ‖∂xΘ− Ix‖C([0,T ]×Ω) → 0,

uniformly with respect to (4.40).
Next, the derivative of Eπ(T ) 3 π 7→ Fu(u, π,Θ) applied to π̃ ∈ Eπ(T ) is given by

[∂πFu(u, π,Θ)]π̃ = M
(
[∂xΘ]−1 − I, ∂xπ̃

)
,

and therefore

‖∂πFu(u, π,Θ)‖B(Eπ(T );Fu(T )) → 0 as ‖∂xΘ− Ix‖C([0,T ]×Ω) → 0.
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Finally, we study the derivative of 0EΘ(T ) 3 η• 7→ Fu(u, π,Θ∗ + η•). With

[∂η•([∂xΘ]−1)]η̃• = −[∂xΘ]−1[∂xη̃•][∂xΘ]−1 = M
(
∂xη̃•, ([∂xΘ]−1)2

)
,(4.43)

we obtain

[∂η•P(1,2),0(∂xΘ− I, [∂xΘ]−1 − I)]η̃• = M
(
∂xη̃, P (∂xΘ, [∂xΘ]−1)

)
.

Hence

[∂η•Fu(u, π,Θ)]η̃• = M
(
∂xη̃•, P

(
∂xΘ, [∂xΘ]−1

)
,
(
∂tu, ∂

2
xu, ∂xπ

))
+M

(
(∂2
xη̃•, ∂xη̃•), P

(
∂xΘ, ∂xΘ, [∂xΘ]−1

)
, P1(u), (u, ∂xu)

)
+M

(
(∂t∂xη̃•, ∂tη̃•, ∂

3
xη̃•), P

(
∂2
xΘ, [∂xΘ]−1

)
, u
)

+M
(
(∂t∂xΘ, ∂tΘ, ∂

3
xΘ), (∂2

xη̃•, ∂xη̃•), P
(
∂2
xΘ, [∂xΘ]−1

)
, u
)
.

By a straightforward estimation and by using (4.33), (4.34), and (4.38) we conclude that

‖∂η•Fu(u, π,Θ)‖B(0EΘ(T );Fu(T )) → 0 as T → 0. �

4.2.2. The transformed divergence equation. We have transformed the equation

div u(t, x) = 0 for t ∈ J, x ∈ Ω \ Γ(t),

to the following equation for (u,Θ) with u ◦ Θ̃ = [∂xΘ]u:

div u = Fd(u,Θ) in J × (Ω \ Σ).

Here the perturbation Fd(u,Θ): J × Ω→ R is given by

Fd(u,Θ)(t, x) = −∂l∂mΘj(t, x)[∂xΘ(t, x)]−1
mj ul(t, x) = M

(
∂2
xΘ, [∂xΘ]−1, u

)
.(4.44a)

Again we replace u by u. Abels and Wilke [AW13] noticed that the identities div u = Fd(u,Θ)
and

∫
Ω div u dx = 0 imply that the integral

∫
Ω Fd(u,Θ)dx vanishes, but this might be false for

arbitrary u ∈ Eu. Therefore we replace Fd(u,Θ) by its part

F̃d(u,Θ) := Fd(u,Θ)− 1

|Ω|

∫
Ω
Fd(u,Θ) dx(4.44b)

with vanishing mean value |Ω|−1
∫

Ω F̃d(u,Θ) dx = 0. We will exploit the fact that Fd(u,Θ) is
trilinear in (u, ∂2

xΘ, [∂xΘ]−1), and with the embeddings in Lemma 4.22 we will show that F̃d is
analytic and can be controlled in a similar way as Fu (Lemma 4.23).
4.22. Lemma. The embedding

EΘ ↪→ H1
p (0, T ;C2(Ω))n ∩ C([0, T ];H3

p (Ω))n if p > n,(4.45)

is continuous, and for some δ0 > 0 and all δ ∈ (0, δ0], T0 > 0, and T ∈ (0, T0], we have

‖η•‖0H1
p(0,T ;C2(Ω))∩0C([0,T ];H3

p(Ω)) ≤ T
δC(δ, T0)‖η•‖0EΘ(T ) if p > n+ 2.(4.46)

Proof. Sobolev’s embedding (B.1) yields (4.45). Next, Hölder’s inequality yields

‖η•‖0C([0,T ];H3
p(Ω)) ≤ T 1−1/p‖∂tη•‖Lp(0,T ;H3

p(Ω)) ≤ T 1−1/p‖η•‖0EΘ(T ).

With the embeddings (B.3) and (B.1), the estimates (3.32b), (3.32c), and (3.32d), and the mixed
derivative embeddings (Proposition B.44) we obtain

‖η•‖0H1
p(0,T ;C2(Ω)) . T

1/p+ε‖η•‖
0W

1+1/p+ε
p (0,T ;C2(Ω))

. T 1/p+ε‖η•‖
0H

3/2−ρ
p (0,T ;H2+2ρ

p (Ω))
. T 1/p+ε‖η•‖0EΘ(T ),

with suitable numbers ε > 0 and ρ ∈ (0, 1/2) which exist if p > n+ 2. Thus (4.46) is valid. �
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4.23. Lemma. For p ∈ (n,∞) and T ∈ (0,∞), the map

F̃d : {(u,Θ) ∈ Eu(T )× EΘ(T ) : Θ ∈ UΘ} → Fd(T )

is analytic. Assume in addition that p > n+ 2. Then the following assertions are valid:
(i) For given T0 ∈ (0,∞), R ∈ [1,∞), u ∈ Eu(T0), and Θ ∈ EΘ(T0) ∩ UΘ, we have

‖F̃d(u,Θ)‖Fd(T ) → 0 as T → 0, ‖∂xΘ− Ix‖C([0,T ];C1(Ω)) → 0,

and this convergence is uniform with respect to

‖u‖Eu(T0) + ‖Θ‖EΘ(T0) + ‖[∂xΘ]−1‖C([0,T0]×Ω) ≤ R.

(ii) For given T0 ∈ (0,∞), R ∈ [1,∞), u∗ ∈ Eu(T0), u• ∈ 0Eu(T0), Θ = Θ∗+η• ∈ EΘ(T0)∩UΘ

with Θ∗ ∈ EΘ(T0), and η• ∈ 0EΘ(T0), we have

‖∂(u•,η•)F̃d(u∗ + u•,Θ∗ + η•)‖B(0Eu(T )×0EΘ(T );Fd(T )) → 0 as T → 0, ‖∂2
xΘ‖C([0,T ];C1(Ω)) → 0,

and this convergence is uniform with respect to

‖(u∗, u•)‖Eu(T0) + ‖(Θ∗, η•)‖EΘ(T0) + ‖[∂x(Θ∗ + η•)]
−1‖C([0,T0]×Ω) ≤ R.

Proof. The divergence theorem implies∫
Ω

div f ϕ dx = −
∫

Ω
f · ∇ϕdx, for ϕ ∈ Ḣ1

p′(Ω), f ∈ H1
p,0(Ω).

Therefore we can extend the divergence operator to a bounded operator on Lp(Ω) such that

‖div f‖Ḣ1
p′ (Ω)∗ ≤ ‖f‖Lp(Ω) for f ∈ Lp(Ω).(4.47)

For f ∈ Lp(Ω) and ϕ ∈ C∞c (Rn), we have∫
Ω

(f − 〈f〉Ω)ϕdx =

∫
Ω

(f − 〈f〉Ω)(ϕ− 〈ϕ〉Ω) dx.

Hence the Poincaré-Wirtinger inequality ‖ϕ− 〈ϕ〉Ω‖p′ ≤ CPW ‖∇ϕ‖p′ for ϕ ∈ Ḣ1
p′(Ω) implies

‖f − 〈f〉Ω‖Ḣ1
p′ (Ω)∗ ≤ CPW ‖f − 〈f〉Ω‖p ≤ CPW

(
1 + |Ω|−1/p

)
‖f‖p for f ∈ Lp(Ω).(4.48)

The inequality (4.48) implies

‖f − 〈f〉Ω‖H1
p(0,T ;Ḣ1

p′ (Ω)∗) ≤ CPW
(

1 + |Ω|−1/p
)
‖f‖H1

p(0,T ;Lp(Ω)).(4.49)

From the embedding H1
p (0, T ;X) ↪→ C([0, T ];X) we infer that pointwise multiplication

• : H1
p (0, T ;L∞(Ω))×H1

p (0, T ;Lp(Ω))→ H1
p (0, T ;Lp(Ω))

is continuous and that H1
p (0, T ;L∞(Ω)) is a multiplication algebra. Moreover,

• : L∞(0, T ;H1
p (Ω))× Lp(0, T ;H1

p (Ω))→ Lp(0, T ;H1
p (Ω))

is continuous and L∞(0, T ;H1
p (Ω)) is a multiplication algebra for p > n. Thus

Y := H1
p (0, T ;L∞(Ω)) ∩ L∞(0, T ;H1

p (Ω))

also is a multiplication algebra, and from (4.49) we infer that

‖gf − 〈gf〉Ω‖Fd . ‖gf‖H1
p(J×Ω) . ‖g‖Y ‖f‖H1

p(J×Ω).(4.50)

Estimate (4.50) and multiplication in Y imply that the trilinear map

(A,B, u) 7→ almjbmjul − 〈almjbmjul〉Ω , Y n×n×n × Y n×n ×H1
p ((0, T )× Ω)n → Fd(T )

is continuous. The map Θ 7→ A := ∂2
xΘ, EΘ → Y n×n×n is linear and bounded by (4.45), and the

map Θ 7→ B := [∂xΘ]−1, UΘ → Y n×n is analytic by Proposition B.88. Therefore F̃d is analytic.
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(i) With estimate (4.42) we obtain

‖almjbmjul‖Lp(J ;H1
p(Ω)) ≤ ‖A‖Y ‖B‖Y · T 1/pC(T0)‖u‖Eu(T0),(4.51a)

‖∂t(almjbmj)ul‖Lp(J×Ω) ≤ (‖At‖p‖B‖∞ + ‖A‖∞‖Bt‖p) · T 1/pC(T0)‖u‖Eu(T0),(4.51b)

‖almjbmj∂tul‖Lp(J×Ω) ≤ ‖A‖∞‖B‖∞‖u‖Eu(T ).(4.51c)

Hence the first estimate in (4.50) yields the assertion.
(ii) With (4.44a) and (4.43) we obtain the partial Fréchet derivatives

[∂u•Fd(u∗ + u•,Θ∗ + η•)]ũ• = Fd(ũ•,Θ) = M
(
∂2
xΘ, [∂xΘ]−1, ũ•

)
,

[∂η•Fd(u∗ + u•,Θ∗ + η•)]η̃• = M
(
∂2
xη̃•, [∂xΘ]−1, u

)
+M

(
∂2
xΘ,

(
[∂xΘ]−1

)2
, ∂xη̃•, u

)
.

From (4.46) with p > n+ 2 we infer that

‖∂jxη•‖Y ≤ T δC(δ, T0)‖η•‖0EΘ(T ) for j ∈ {1, 2}.
This estimate and (4.51) yield the assertion. �

4.3. The transformed interface equations

In this section we transform the interface momentum balance

−[[T (u, π)]]νΓ − divΓ TΓ(u) = 0 on Γ(t), t ∈ J,(4.52)

which was derived on page 19. We assume that the unknown moving interface is represented
as Γ(t) = Γh(t) = Θh({t} × Σ) in terms of the unknown height function h and the normal-
preserving map Θh from page 99 and Theorem 4.15.(ii). Our goal is to decompose (4.52) into a
principal linear part and a remaining nonlinear part, and to handle the latter as a perturbation
with respect to the function spaces on page 94. An explicit description of these perturbations
is given on the following page. As the main result of this section we prove that the nonlinear
perturbations can be deemed as small as we wish provided that the time interval J = (0, T ) and
the initial height function h0 = h|t=0 are sufficiently small (Lemma 4.26). In Corollaries 4.27
and 4.28 we prove the corresponding results for the transformed bulk equations by specializing
Lemmas 4.21 and 4.23.

Let us take a closer look at (4.52). From the identities (1.19) and (1.22) we recall that
T (u, π) = 2µD(u)− πI,

D(u) = 2−1(∇u+ [∇u]>),

TΓ(u) = σPΓ + (λs − µs)(divΓ u)PΓ + 2µsDΓ(u),

DΓ(u) = 2−1PΓ(∇Γu+ [∇Γu]>)PΓ.

(4.53)

Define a tangential vector field Nv(u,Γ) and a scalar field Nw(u, π,Γ) by

Nv(u,Γ) := −PΓ[[T (u, 0)]]νΓ − PΓ divΓ TΓ(u)

= −([[µ∂νv]] + [[µ]][∇Γv]νΓ + [[µ]]∇Γw)

− (µs∆̃Γv + λs∇Γ divΓ v + (µs + λs)w∇ΓHΓ + [(µs − λs)HΓ − 2µsLΓ]∇Γw),

Nw(u, π,Γ) := −νΓ · [[T (u, π)]]νΓ − νΓ · divΓ TΓ(u)

= −(2[[µ∂νw]]− [[π]])

− (σHΓ + (λs − µs) divΓ uHΓ + 2µsDΓ(u) : LΓ).

Here we have again used the decomposition u = v +wνΓ near Γ, and the underlined terms are
considered as the principal part with respect to the chosen function spaces. Thus, the interface
momentum balance (4.52) can be written as

Nv(u,Γ) +Nw(u, π,Γ)νΓ = 0 on Γ(t), t ∈ J.
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For given

z∗ = (u∗, π∗, h∗) ∈ Ẽ, z• = (u•, π•, h•) ∈ 0Ẽ, with h = h∗ + h• ∈ Uh,

we define Θh as in Theorem 4.15, Θ̃h(t, x) := (t,Θh(t, x)), Γh(t) := Θh(t,Σ), and

u := u∗ + u•, uh := ([∂xΘh]u) ◦ Θ̃−1
h ,

and decompose uh = vh + whνΓh near Γh, and u∗ = v∗ + w∗νΣ and u• = v• + w•νΣ near Σ.
Then the maps Gv and Gw from (4.57) have the representations

Gv(z•; z∗) = Gv(u•, h•;u∗, h∗)

= [[µ{[∂xΘh]−1(∂νΓh
vh) ◦ Θ̃h − ∂νv•}]](4.55a)

+ µs{[∂xΘh]−1(∆̃Γhvh) ◦ Θ̃h − ∆̃Σv•}(4.55b)

+ λs{[∂xΘh]−1(∇Γh divΓh vh) ◦ Θ̃h −∇Σ divΣ v•}(4.55c)

+ (λs + µs){[∂xΘh]−1(wh∇ΓhHΓh) ◦ Θ̃h − w∗∇Σ∆Σh•}(4.55d)

+ [∂xΘh]−1([(µs − λs)HΓh − 2µsLΓh ]∇Γh(wh)) ◦ Θ̃h(4.55e)

+ [[µ]][∂xΘh]−1([∇Γhvh]νΓh) ◦ Θ̃h(4.55f)

+ [[µ]]{[∂xΘh]−1(∇Γhwh) ◦ Θ̃h −∇Σw•},(4.55g)

Gw(z•; z∗) = Gw(u•, h•;u∗, π∗, h∗)

= 2[[µ∂νΣw∗]] + [[π∗]](4.56a)

+ σ{HΓh ◦ Θ̃h −∆Σh•}(4.56b)

+ (λs − µs){(divΓh uhHΓh) ◦ Θ̃h −HΣ divΣ v• − (divΣ v∗ − 2HΣw∗)∆Σh•}(4.56c)

+ 2µs{(DΓh(uh) : LΓh) ◦ Θ̃h −DΣ(v) : LΣ − [DΣ(v∗)− 2w∗LΣ] : ∇2
Σh•}.(4.56d)

FIGURE 4.5. The perturbations Gv and Gw.

Next, we derive the transformed version of (4.52). For given transformed functions u ∈ Eu,
π ∈ Eπ, and h ∈ Eh ∩ Uh, and with Θ̃h(t, x) = (t,Θh(t, x)), we define

uh := ([∂xΘh]u) ◦ Θ̃−1
h , Nv(u, h) := [∂xΘh]−1Nv(uh,Γh) ◦ Θ̃h,

πh := π ◦ Θ̃−1
h , Nw(u, π, h) := Nw(uh, πh,Γh) ◦ Θ̃h.

Then the transformed interface momentum balance is given by

Nv(u, h) +Nw(u, π, h)νΣ = 0 on J × Σ.(4.54)

In order to resolve this interface condition, we decompose both N j (j ∈ {v, w}) into a principal
linear part Lj and a nonlinear perturbation Gj . By means of Lemma 4.16, it is straightforward
to compute more explicit representations ofGv andGw, and we will employ the identities (4.55)
and (4.56) in Figure 4.5 on the current page.

For controlling the perturbations Gv and Gw and for proving their analyticity, we first pro-
vide some estimates for the lower-order terms in Lemma 4.24. Then we study pointwise mul-
tiplication, inversion, and square root in the function spaces Gv and Gw in Lemma 4.25. It is
sufficient to consider the larger class of height functions

Ẽh := H1
p (J ;W 3−1/p

p (Σ)) ∩ Lp(J ;W 4−1/p
p (Σ)),
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which contains Eh. Then ∂xΘh|Σ belongs to the space

Ẽ∂Θ := H1
p (J ;W 2−1/p

p (Σ)) ∩ Lp(J ;W 3−1/p
p (Σ)),

which satisfies E∂Θ ↪→ Ẽ∂Θ ↪→ Gv ∩Gw.
We will consider triples z = z∗ + z• of the form

z∗ = (u∗, π∗, h∗) ∈ Ẽ(T0) := Eu,v,w,∂νw(T0) × Eπ,[[π]](T0) × Ẽh(T0),

z• = (u•, π•, h•) ∈ 0Ẽ(T ) := 0Eu,v,w,∂νw(T )× 0Eπ,[[π]](T )× 0Ẽh(T ).

The operators Lj are chosen as follows:

Lv(u•, h•;u∗) = −µs∆̃Σv• − λs∇Σ divΣ v• − [[µ∂νv•]]− [[µ]]∇Σw• − (λs + µs)w∗∇Σ∆Σh•,

Lw(u•, π•, h•;u∗) = − tr ([(λs − µs)HΣ + 2µsLΣ]∇Σv•)− 2[[µ∂νw•]] + [[π•]]

− tr
(
[σ + (λs − µs)(divΣ v∗ − 2w∗HΣ) + 2µs(DΣ(v∗)− 2w∗LΣ)]∇2

Σh•
)
.

These operators are linear with respect to z•. The nonlinear perturbations Gj are given by

Gv(u•, h•;u∗, h∗) := Lv(u•, h•;u∗)−Nv(u∗ + u•, h∗ + h•),(4.57a)

Gw(u•, h•;u∗, π∗, h∗) := Lw(u•, 0, h•;u∗)−Nw(u∗ + u•, π∗, h∗ + h•).(4.57b)

Note that the right-hand side of (4.57b) satisfies

Lw(u•, π•, h•;u∗)−Nw(u∗ + u•, π∗ + π•, h∗ + h•)

= Lw(u•, 0, h•;u∗)−Nw(u∗ + u•, π∗, h∗ + h•)

and hence does not depend on π•.
The lower-order terms of Gv and Gw will be controlled with the following estimates.

4.24. Lemma. Let p ∈ (n+ 2,∞).
(i) There exists δ0 > 0 such that for all δ ∈ (0, δ0], T0 > 0, and T ∈ (0, T0], we have

‖(h•,∇Σh•,∇2
Σh•)‖0Gv(T ) ≤ C(δ, T0)T δ‖h•‖

0Ẽh(T ),(4.58a)

‖(h•,∇Σh•)‖0Gw(T ) ≤ C(δ, T0)T δ‖h•‖
0Ẽh(T ),(4.58b)

‖(u•,∇Σu•)‖0Gv(T ) ≤ C(δ, T0)T δ‖u•‖0Ev(T ),(4.58c)

‖u•‖0Gw(T ) ≤ C(δ, T0)T δ‖u•‖0Ev(T ),(4.58d)

for all h• ∈ 0Ẽh(T ) and all not necessarily tangential vector fields u• ∈ 0Ev(T ).
(ii) Given ε > 0, there exists δ0 > 0 such that for all δ ∈ (0, δ0], T0 > 0, and T ∈ (0, T0], we have

‖h•‖0C([0,T ];C3(Σ)) ≤ C(δ, T0)T δ‖h•‖
0Ẽh(T ),(4.59a)

‖u•‖C([0,T ];C1(Σ)) ≤ C(δ, T0)T δ‖u•‖0Ev(T ),(4.59b)

for all h• ∈ 0Ẽh(T ) and u• ∈ 0Ev(T ), and

‖(h,∇Σh)‖Gv(T ) ≤ C(δ, T0)
(
T δ‖h‖Ẽh(T ) + ‖h0‖W 2−2/p

p (Σ)

)
,(4.60a)

‖h‖C([0,T ];C3(Σ)) ≤ C(δ, T0)
(
T δ‖h‖Ẽh(T ) + ‖h0‖W 3+(n−1)/p+ε

p (Σ)

)
,(4.60b)

‖(h,∇Σh)‖Gw(T ) ≤ C(δ, T0)
(
T δ‖h‖Ẽh(T ) + ‖h0‖W 3−2/p

p (Σ)

)
,(4.60c)

for all T ∈ (0, T0] and h ∈ Ẽh(T ) with h|t=0 = h0.

Proof. We proceed as in the proofs of Lemmas 3.19 and 4.20 and we also employ temporal
extension operators of initial values from Corollaries B.26, B.58 and B.59 on pages 155, 163
and 164.
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(i) For proving (4.58), we first observe that (with all spaces considered over (0, T )× Σ))

(h•,∇Σh•,∇2
Σh•) ∈ 0H

1
p (W 1−1/p

p ) ↪→ 0W
1/2−1/2p
p (Lp) ∩ Lp(W 1−1/p

p ) = 0Gv,

and estimate (4.58a) follows by using the inequalities (3.32b) and (3.32e). Similarly,

(h•,∇Σh•) ∈ 0H
1
p (W 2−1/p

p ) ↪→ 0W
3/4−1/2p
p (Lp) ∩ 0W

1/2−1/2p
p (H1

p ) ∩ Lp(W 2−1/p
p ) = 0Gw,

and hence (4.58b) is valid. Next,

(u•,∇Σu•) ∈ 0W
3/4−1/2p
p (Lp) ∩ 0W

1/2−1/p
p (H1

p ) ↪→ 0W
1/2−1/2p
p (Lp) ∩ Lp(W 1−1/p

p ) = 0Gv,

and therefore estimate (4.58c) follows from Lemma 3.18. Similarly, (4.58d) follows from

u• ∈ 0Ev ↪→ 0W
1−1/2p
p (Lp) ∩ 0W

3/4−1/2p
p (H1

p ) ∩ 0H
1/2−1/4p
p (W 2−1/p

p ) ↪→ 0Gw.

(ii) Estimates (4.59) follow similarly, by using Sobolev’s embedding (B.1).
In order to prove the estimates (4.60) for h ∈ Ẽh(T ) we employ the decomposition

h = ETh0 + (h− ETh0), (ETh0)(t) := e−t
√
µ−∆Σh0, h0 := h|t=0.

From Corollaries B.26 and B.58 we infer that the realizations

ET : W 2−2/p
p (Σ)→W 1−1/p

p (0, T ;H1
p (Σ)) ∩ Lp(0, T ;W 2−1/p

p (Σ)),

ET : W 4−2/p
p (Σ)→ Ẽh(T )

are bounded, uniformly with respect to T ∈ (0, T0]. With estimate (4.58a) we obtain

‖∇Σh‖Gv(T ) ≤ ‖∇Σ(h− ETh0)‖
0Gv(T ) + ‖∇ΣETh0‖Gv(T )

≤ C(δ, T0)
(
T δ‖h‖Ẽh(T ) + ‖h0‖W 2−2/p

p (Σ)

)
.

Therefore (4.60a) is valid. Next, the realization

ET : W 3+(n−1)/p+ε
p (Σ)→ H1

p (0, T ;W 2+n/p+ε
p (Σ)) ∩ Lp(0, T ;W 3+n/p+ε

p (Σ))

is also bounded and its target space is embedded into C([0, T ];C3(Σ)). This yields an estimate

‖h‖C([0,T ];C3(Σ)) ≤ ‖h− ETh0‖0C([0,T ];C3(Σ)) + ‖ETh0‖C([0,T ];C3(Σ))

≤ C(δ, T0)
(
T δ‖h‖Ẽh(T ) + ‖h0‖W 3+(n−1)/p+ε

p (Σ)

)
,

which proves (4.60b). With the boundedness of

ET : W 3−2/p
p (Σ)→ H1

p (0, T ;W 2−1/p
p (Σ)) ∩ Lp(0, T ;W 3−1/p

p (Σ)),

and with estimate (4.58b) we obtain

‖(h,∇Σh)‖Gw(T ) ≤ ‖(1,∇Σ)(h− ETh0)‖
0Gw(T ) + ‖(1,∇Σ)ETh0‖Gw(T )

≤ C(δ, T0)
(
T δ‖h‖Ẽh(T ) + ‖h0‖W 3−2/p

p (Σ)

)
,

and thus (4.60c) is valid. �

Next, we provide estimates for controlling products with leading-order terms. Let X(T )

denote the scalar version of one of the spaces Ẽ∂Θ(T ), Gv(T ), or Gw(T ) from Figure 4.1 on
page 94. Analogously as for E∂Θ(T ) in Lemma 4.13, we will show that X(T ) is multiplication
algebra, and that pointwise inversion and square root are analytic operators in suitable subsets
of X(T ). We also consider certain larger spaces Y (T ) = C([0, T ];Ck(Σ)) ⊃ X(T ) with the
property

‖f‖
0Y (T ) ≤ T δC(δ, T0)‖f‖

0X(T ) for f ∈ 0X(T ), T ∈ (0, T0],
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where 0X(T ) := {f ∈ X(T ) : f |t=0 = 0} and 0Y (T ) := {f ∈ Y (T ) : f |t=0 = 0}. Moreover,
the temporal trace space γ0X of X(T ) is embedded into a larger space Z for which we obtain a
T -dependent estimate

‖f‖X(T ) ≤ T δC(δ, T0)(‖f‖X(T ) + ‖f |t=0‖γ0X) + C(T0)‖f |t=0‖Z for f ∈ X(T ), T ∈ (0, T0].

Hence, together with a bilinear estimate

‖fg‖X(T ) ≤ C(T )(‖f‖X(T )‖g‖Y (T ) + ‖f‖Y (T )‖g‖X(T )),

we can control ‖fg‖X(T ) by choosing T , ‖f |t=0‖Z , and ‖g|t=0‖Z sufficiently small.
4.25. Lemma. Let Σ ⊂ Rn (n ≥ 2) be a compact smooth hypersurface and let

X(T ) = Ẽ∂Θ(T ), Y (T ) = C([0, T ];C2(Σ)), Z = W 2+(n−1)/p+ε
p (Σ),(4.61a)

or X(T ) = Gv(T ), Y (T ) = C([0, T ];C(Σ)), Z = W (n−1)/p+ε
p (Σ),(4.61b)

or X(T ) = Gw(T ), Y (T ) = C([0, T ];C1(Σ)), Z = W 1+(n−1)/p+ε
p (Σ),(4.61c)

where p ∈ (n+ 2,∞), T ∈ (0,∞), and ε ∈ (0, 1− (n+ 2)/p]. Then the following assertions are valid:
(i) We have X(T ) ↪→ Y (T ), and for some δ0 > 0 and all δ ∈ (0, δ0], T0 > 0, and T ∈ (0, T0] we

have

‖f‖Y (T ) ≤ T δC(δ, T0)‖f‖
0X(T ) for f ∈ 0X(T ) = {f ∈ X(T ) : f |t=0 = 0}.(4.62)

(ii) For ε ∈ (0, 1− (n+ 2)/p] there is δ0 > 0 such that for all δ ∈ (0, δ0], T0 > 0, and T ∈ (0, T0]
we have

‖f‖Y (T ) ≤ T δC(δ, T0)
(
‖f‖X(T ) + ‖f |t=0‖γ0X

)
+ C(T0)‖f |t=0‖Z for f ∈ X(T ).(4.63)

(iii) X(T ) is a multiplication algebra, and there exists C(T ) ≥ 1 such that

‖fg‖X(T ) ≤ C(T )
(
‖f‖X(T )‖g‖Y (T ) + ‖f‖Y (T )‖g‖X(T )

)
for f, g ∈ X(T ),(4.64)

and for given T0 ∈ (0,∞) there exists C(T0) such that for all T ∈ (0, T0] we have

‖fg‖
0X(T ) ≤ C(T0)

(
‖f‖

0X(T )‖g‖Y (T0) + ‖f‖
0Y (T )‖g‖X(T0)

)
for f ∈ 0X(T ), g ∈ X(T0).

(4.65)

(iv) The inversion operator A 7→ A−1, {A ∈ Xm×m : supJ×Σ|A−1| <∞} → X is analytic.
(v) The square root operator f 7→ f(·)1/2, {f ∈ X : infJ×Σ dist(f(·),R−) > 0} → X is analytic.

Proof. We only deal with (4.61a) since the remaining assertions can be proved analogously.
(i) We abbreviate W t

p(W
s
p ) := W t

p(J ;W s
p (Σ)), Ck(C l) := Ck(J ;C l(Σ)), and similarly for the

other spaces. The mixed derivative embeddings and Sobolev’s embedding (B.1) imply

H1
p (W 2−1/p

p ) ∩ Lp(W 3−1/p
p ) ↪→W θ

p (H3−1/p−θ
p ) ↪→ C(C2),

provided that θ ∈ (0, 1) satisfies θ > 1/p and 3−1/p−θ > 2+(n−1)/p. Such a number θ exists
if 1/p < 1− n/p, and this is true if p > n+ 1. Moreover, Lemma 3.18 yields the estimate (4.62).

(ii) By Corollaries B.26 and B.58 on pages 155 and 163, the extension operator

RA : x 7→ [t 7→ e−Atx], W s+2−2/p
p (Σ)→ H1

p (0, T ;W s
p (Σ)) ∩ Lp(0, T ;W s+2

p (Σ))

for A = 1−∆Σ and s ∈ [0,∞) is uniformly bounded with respect to T ∈ (0, T0]. By decompos-
ing f(t) = (f(t)− e−tAf(0)) + e−tAf(0) and applying (4.62), we obtain (4.63).

(iii) The norm of X(T ) consists of the semi-norms

[[(∇Σ, ∂t∇Σ,∇2
Σ)·]]p;1−1/p,p, ‖(1, ∂t, ∂t∇Σ,∇Σ,∇2

Σ)·‖p,
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where [[·]]p;σ,p := [[·]]Lp(Wσ
p ) and ‖·‖p := ‖·‖Lp(Lp). With Lemma B.10 we control the leading-order

terms of ‖fg‖X by

[[∂t∇Σf g]]p;1−1/p,p . [[∂t∇Σf ]]p;1−1/p,p‖g‖∞ + ‖∂t∇Σf‖p‖(g,∇Σg)‖∞,
[[∂tf ∇Σg]]p;1−1/p,p . [[∂tf ]]p;1−1/p,p‖∇Σg‖∞ + ‖∂tf‖p‖(∇Σg,∇2

Σg)‖∞,
[[∇2

Σf g]]p;1−1/p,p . [[∇2
Σf ]]p;1−1/p,p‖g‖∞ + ‖∇2

Σf‖p‖(g,∇Σg)‖∞.

These terms and the remaining ones can be estimated by the right-hand side of (4.64). Therefore
(4.64) is valid and the uniform estimate (4.65) follows by means of extension 0X(T ) → 0X(∞)
and restriction 0X(∞) → 0X(T0), where the temporal extension operator 0X(T ) → 0X(∞)
from Lemma B.9 on page 148 is uniformly bounded with respect to T ∈ (0, T0].

(iv) Let us check that A−1 belongs to Xm×m for every A ∈ Xm×m with A−1 ∈ C(J ×
Σ). From the inequality |A(t, x)−1 − A(t, x′)−1| ≤ ‖A−1‖2∞|A(t, x) − A(t, x′)| we infer that
[[A−1]]p;σ,p . ‖A−1‖2∞[[A]]p;σ,p < ∞ for σ = 1 − 1/p. For given j ∈ {1, . . . , n − 1}, Lemma B.10
yields

[[∂t∂jA
−1]]p;σ,p =

[[
A−1[∂jA]A−1[∂tA]A−1 +A−1[∂tA]A−1[∂jA]A−1 −A−1[∂t∂jA]A−1

]]
p;σ,p

. ‖A−1‖3∞‖∂jA‖∞[[∂tA]]p;σ,p +
(
‖A−1‖4∞‖(A,∇ΣA)‖2∞ + ‖A−1‖3∞[[(∇ΣA,∇2

ΣA)]]∞
)
‖∂tA‖p

+ ‖A−1‖2∞[[∂t∂jA]]p;σ,p + ‖(A−1,∇ΣA
−1)‖∞‖A−1‖∞‖∂t∂jA‖p <∞.

The semi-norm [[∂j∂kA
−1]]p;σ,p can be estimated analogously. We further have

‖A−1‖p ≤ T 1/p|Σ|1/p‖A−1‖∞ <∞,

and the remaining terms in ‖A−1‖X are also finite. Therefore A−1 belongs to Xm×m, and then
Proposition B.88 on page 172 yields analyticity of the inversion operator A 7→ A−1.

(v) Assertion (v) follows by a similar proof as on page 100. �

We are ready to control the perturbations Gv and Gw. The triple z• = (u•, π•, h•) ∈ 0Ẽ(T )

has vanishing initial values, and z∗ = (u∗, π∗, h∗) ∈ Ẽ(T0) should satisfy the compatibility
conditions

Gj(0; z∗)|t=0 = 0 for j ∈ {v, w}.(4.66)

Then we can control Gj(z•; z∗) in 0Gj(T ) by choosing T ∈ (0, T0] and h∗|t=0 sufficiently small.
Even without requiring (4.66) we can control the partial Fréchet derivative

∂z•Gj(z•; z∗) ∈ B(0Ẽ(T ); 0Gj(T )).

4.26. Lemma. Let p ∈ (n+ 2,∞), τ ∈ (1 + n/p, 4− 1/p], T0 ∈ (0,∞), T ∈ (0, T0], and

Uh = {h ∈ L∞(0, T ;W τ−1/p
p (Σ)) : ‖h‖

L∞(0,T ;W
τ−1/p
p (Σ))

< δh}

with δh(Ω,Σ, p, τ) > 0 as in Theorem 4.15. Then the maps

(z•, z∗) 7→ Lv(u•, h•;u∗), 0Ẽ(T )× Ẽ(T0)→ 0Gv(T ),

(z•, z∗) 7→ Lw(u•, π•, h•;u∗), 0Ẽ(T )× Ẽ(T0)→ 0Gw(T ),

(z•, z∗) 7→ Gv(u•, h•;u∗, h∗), {(z•; z∗) ∈ 0Ẽ(T )× Ẽ(T0) : h• + h∗ ∈ Uh} → Gv(T ),

(z•, z∗) 7→ Gw(u•, h•;u∗, π∗, h∗), {(z•; z∗) ∈ 0Ẽ(T )× Ẽ(T0) : h• + h∗ ∈ Uh} → Gw(T )

are analytic and depend polynomially on z•, z∗, ∂xΘh∗+h• , [∂xΘh∗+h• ]
−1, βh∗+h• , and β−1

h∗+h•
.

In addition, let τ ∈ (3 + n/p, 4− 1/p). Then Gv and Gw have the following properties:
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(i) For z• ∈ 0Ẽ(T0), z∗ ∈ Ẽ(T0) with h = h∗ + h• ∈ Uh(T0) and (4.66), we have

‖Gv(z•; z∗)‖Gv(T ) + ‖Gw(z•; z∗)‖Gw(T ) → 0 as T → 0, h0 = h∗|t=0 → 0 in W τ−1/p
p (Σ).

Given R ∈ [1,∞), this convergence is uniform with respect to

‖(z•, z∗)‖Ẽ(T0) + ‖(∂xΘh∗+h• , [∂xΘh∗+h• ]
−1)‖Ẽ∂Θ(T0) + ‖(βh∗+h• , β−1

h∗+h•
)‖Ẽ∂Θ(T0) ≤ R.(4.67)

(ii) For given T0 ∈ (0,∞), z• ∈ 0Ẽ(T0), and z∗ ∈ Ẽ(T0) with h = h∗ + h• ∈ Uh(T0), we have

‖∂z•Gv(z•; z∗)‖0Ẽ(T )→0Gv(T ) + ‖∂z•Gw(z•; z∗)‖
0Ẽ(T )→0Gw(T ) → 0,(4.68)

as T → 0, h0 → 0 in W τ−1/p
p (Σ). Given R ≥ 1, this convergence is uniform with respect to (4.67).

Proof. Analyticity. We first note that the scalar-valued versions of the spaces Gv and Gw are
multiplication algebras by Lemma 4.25. The maps Lv and Lw consist of linear and bilinear dif-
ferential operators, and hence their analyticity follows from the mixed derivative embeddings
and the spatial trace theorem. In order to prove the analyticity of Gv and Gw, it is sufficient to
prove that the map

(u, π, h) 7→
(
Nv(u, h), Nw(u, π, h)

)
: Eu,v,w,∂νw × Eπ,[[π]] × Ẽh ∩ Uh → Gv ×Gw

is analytic. Theorem 4.15, the identities (4.24) and Lemma 4.25 imply that the quantities

βh, β
−1
h , νΓh ◦ Θ̃h, [∂xΘh]|Σ, [∂xΘh]−1|Σ, τΓh

j ◦ Θ̃h, τ
j
Γh
◦ Θ̃h

considered in Ẽ∂Θ depend analytically on h ∈ Ẽh ∩Uh. Next, the Weingarten tensor LΓ and the
mean curvature HΓ are given by

LΓ = −∇ΓνΓ = −τ jΓ ⊗ ∂jνΓ = lΓjkτ
j
Γ ⊗ τ

k
Γ = ljkΓ τ

Γ
j ⊗ τΓ

k , HΓ = trLΓ = −divΓ νΓ.(4.69)

Therefore the maps h 7→ LΓh ◦Θ̃h, Ẽh∩Uh → (Gv∩Gw)n×n and h 7→ ∇ΓhHΓh ◦Θ̃h, Ẽh∩Uh 7→ Gn
v

are analytic, and their values depend polynomially on (∂xΘh, [∂xΘh]−1, βh, β
−1
h ). Lemma 4.16

yields

vh ◦ Θ̃h = [∂xΘh]v, wh ◦ Θ̃h = βhw, (∂νΓh
wh) ◦ Θ̃h = ∂νΣw,(4.70)

and we conclude that, given h ∈ Ẽh ∩Uh, the map u 7→ Nv(u, h), Eu,v,w → Gv is linear and con-
tinuous, and (u, π) 7→ Nw(u, π, h), Eu,v,w,∂νw ×Eπ,[[π]] → Gw is affine and continuous. Therefore
Nv and Nw are analytic and depend polynomially on (u, π, h, ∂xΘh, [∂xΘh]−1, βh, β

−1
h ).

(i) Smallness of Gj(z•; z∗). With Gj(0; z∗)|t=0 = 0 we rewrite

Gj(z•; z∗) = Gj(z•; z∗)−Rj(Gj(0; z∗)|t=0),(4.71)

where we employ the temporal extension operators

Rv : gv0 7→ [t 7→ e−t(1−∆̃Σ)gv0], Rw : gw0 7→ [t 7→ e−(1−∆Σ)gw0]

from Corollaries B.26, B.58 and B.59. Then we can rewrite the representations (4.55) and (4.56)
for Gj in such a way that every difference has a vanishing initial value. For instance, with
h0 = h∗|t=0, the first difference (4.55a) in Gv(z•; z∗) becomes[[

µ
{

[∂xΘh]−1(∂νΓh
vh) ◦ Θ̃h − ∂νΣv• −Rv

(
[∂xΘh0 ]−1(∂νΓh0

vh0) ◦Θh0

)}]]
.
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With (4.24) and (4.25) we rewrite and decompose the difference in the curled brackets as

[∂xΘh]−1∂x ([∂xΘh](v∗ + v•)) [∂xΘh]−1
(
β−1
h [∂xΘh]νΣ

)
− ∂νΣv• −Rv

(
[∂xΘh0 ]−1(∂νΓh0

vh0) ◦Θh0

)
= ∂νΣv•(β

−1
h − 1)

+ β−1
h ∂νΣv∗ −Rv

(
β−1
h0
∂νΣv0

)
+ β−1

h [∂xΘh]−1[∂x[∂xΘh](v∗ + v•)][∂xΘh]νΣ]−Rv
(
βh0 [∂xΘh0 ]−1[∂x[∂xΘh0 ]v0][∂xΘh0 ]νΣ

)
.

These differences belong to 0Gv(T ), and from the estimates (4.63) and (4.65) we infer that they
tend to zero in 0Gv(T ) as T → 0 and [∂xΘh0 ]−1 → Ix in W 2+(n+1)/p+ε

p (Σ) for some ε ∈ (0, 1 −
(n + 1)/p]. The latter follows from h0 → 0 in W

τ−1/p
p (Σ) since τ − 1/p ≥ 3 + (n + 1)/p + ε

for some ε > 0. The remaining differences in (4.71) can be estimated similarly, and therefore
assertion (i) is valid.

(ii) Smallness of ∂u•Gv. For proving estimate (4.68) we first investigate the directional deriv-
ative ∂u•Gv(u•, h•;u∗, h∗) applied to ũ• ∈ 0Eu,v,w,∂νw(T ). The map ũ• 7→ Gv(u• + ũ•, h•;u∗, h∗)
is affine, and therefore Gv satisfies

[∂u•Gv(u•, h•;u∗, h∗)]ũ• = Gv(ũ•, h•; 0, h∗),

and has the lower-order terms (4.55d) to (4.55g) with respect to u = u∗ + u•. Their directional
derivatives with respect to u• applied to ũ• only depend on the values of ũ• and ∇Σũ•|Σ, and
with estimate (4.58c) we can control these terms by choosing T small. Applying the identities
in Figure 4.2, the leading-order terms in the u•-derivatives of (4.55a) to (4.55c) are given by

[∂xṽ•]{β−1
h [∂xΘh]νΣ − νΣ}, {(gijΓh ◦ Θ̃h)− gijΣ}∂i∂j ṽ•, {[τ

i
Γh
⊗ τ jΓh ] ◦ Θ̃h − [τ iΣ ⊗ τ

j
Σ]}∂i∂j ṽ•.

By means of estimate (4.60a), we can further control (h,∇Σh) in the Gv(T )-norm and obtain

‖(βh − 1, β−1
h − 1)‖Gv(T ) + ‖([∂xΘh]− Ix, [∂xΘh]−1 − Ix)‖Gv(T ) → 0

as T → 0, h0 → 0 in W 2−2/p
p (Σ), and therefore

‖∂u•Gv(u•, h•;u∗, h∗)‖0Eu,v,w,∂νw(T )→0Gv(T ) → 0 as T → 0, h0 → 0 in W 2−2/p
p (Σ),

uniformly with respect to (4.67).
Smallness of ∂u•Gw. For the computation of ∂u•Gw(u•, h•;u∗, π∗, h∗)]ũ• we only have to

consider the differences (4.56c) and (4.56d) where ∇Σũ•|Σ and ∇2
Σh are of leading order. The

lower-order terms can be controlled with estimate (4.58d). Concerning the leading-order terms
we note that by using the identities (4.7), (4.53), and (4.69), it remains to control the products
[∇Σṽ•][∇2

Σh] and [∇Σṽ•]∇Σh in the 0Gw(T )-norm. From Lemma 4.25 we infer that

‖[∇Σv]([∇2
Σh],∇Σh)‖

0Gw(T ) . ‖∇Σv‖0C(J ;C1(Σ))‖h‖Ẽh(T0) + ‖v‖
0Ev(T )‖h‖C(J ;C3(Σ)),

and therefore, by using the estimates (4.59a) and (4.60b), we obtain

‖∂uGw(u•, h•;u∗, π∗, h∗)‖0Eu,v,w(T )→0Gv(T ) → 0 as T → 0, h0 → 0 in W τ−1/p
p (Σ),

for some τ > 3 + n/p, and this convergence is uniform with respect to (4.67).
Smallness of ∂h•Gv. We control [∂h•Gv(u•, h•;u∗, h∗)]h̃• in the 0Gv(T )-norm for h̃• ∈ 0Ẽh(T ).

Estimate (4.58a) allows to control all the terms in [∂h•Gv(u•, h•;u∗, h∗)]h̃• by T , except for[
∂h•([∂xΘh]−1(wh∇ΓhHΓh) ◦ Θ̃h)

]
h̃• − w∇Σ∆Σh̃•, h := h∗ + h•,

which contains the leading-order term

[∂xΘh]−1βhw[∂xΘh]−>∇Σ

(
[∂xΘh]−>τ jΣ

∣∣∣∂j(βh[I − hLΣ]−1∇Σh̃•)
)
− w∇Σ divΣ∇Σh̃•.
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In order to control this term in 0Gv(T ), it suffices to control ∂xΘh − Ix and thus (h,∇Σh) in
Gv(T ), and that was already done in (4.60a). We conclude that

‖∂h•Gv(u•, h•;u∗, h∗)‖0Ẽh(T )→0Gv(T ) → 0 as T → 0, h0 → 0 in W 1+(n−1)/p+ε
p (Σ),

for some ε > 0, uniformly with respect to (4.67).
Smallness of ∂h•Gw. It remains to control [∂h•Gw(u•, h•;u∗, π∗, h∗)]h̃• in 0Gw(T ). All its

summands which only contain (h̃•,∇Σh̃•) but not ∇2
Σh̃• can be controlled by T with estimate

(4.58b). With estimate (4.60c) we can also control all terms which contain (h,∇Σh) but not∇2
Σh.

Furthermore, with the estimates (4.60b) and (4.64), we can also control the bilinear leading-
order term

‖[∇2
Σh][∇2

Σh̃•]‖0Gw(T ) . ‖∇2
Σh‖Gw(T0)‖∇2

Σh̃•‖0C([0,T ];C1) + ‖∇2
Σh‖C([0,T0];C1)‖∇2

Σh̃•‖0Gw(T )

. ‖h‖Ẽh(T0) · T
δ‖h̃•‖

0Ẽh(T ) + ‖h0‖W 3+(n−1)/p+ε
p

‖h̃•‖
0Ẽh(T ).

Among the leading-order terms, we consider the directional derivative

[∂h•(HΓh ◦ Θ̃h)]h̃• = −[∂h•((τ
j
Γh
|∂jνΓh) ◦ Θ̃h)]h̃•, h := h∗ + h•.

Its leading-order part containing∇2
Σh̃• is given by

[∂xΘh]−>τ jΣ ·
(
βh[I − hLΣ]−1∂j∇Σh̃• + ∂j([∂h•βh]h̃•) [I − hLΣ]−1∇Σh

)
.

With estimate (4.60c) we can estimate the first summand by∥∥∥h̃• 7→ (
[∂xΘh]−>τ jΣ · ([I − hLΣ]−1∂j∇Σh̃•)−∆Σh̃•

)∥∥∥
0Ẽh(T )→0Gw(T )

→ 0,

as T → 0 and h0 → 0 in W 3−2/p
p (Σ). For the second summand we use

[∂h•βh]h̃• = −β2
h

(
∇Σh

∣∣∣(I − hLΣ)−2
(
∇Σh̃• − h̃•LΣ(I − hLΣ)−1∇Σh

))
,

and therefore the estimates (4.60b) and (4.60c) yield ∂j([∂h•βh]h̃•)→ 0 in 0Gw(T ) as T → 0 and
h0 → 0 in W 3+(n−1)/p+ε

p (Σ). Therefore

‖[∂h•(LΓh ◦ Θ̃h)]h̃• −∇2
Σh̃•‖0Gw(T ) → 0,(4.72)

as T → 0 and h0 → 0 in W
3+(n−1)/p+ε
p (Σ). This allows to control the directional derivative

of (4.56b). Concerning the remaining terms (4.56c) and (4.56d), we note that (see (A.17) on
page 140)

divΓ u = (τ jΓ|∂jv)− wHΓ, DΓ(u) = DΓ(v)− wLΓ = sym(τ jΓ ⊗ PΓ∂jv)− wLΓ.

Therefore it is sufficient to consider the differences

[∂h•((divΓh(uh)) ◦ Θ̃h)]h̃•HΓh ◦ Θ̃h + w∆Σh̃•HΣ,(4.73a)

divΓh(uh) ◦ Θ̃h [∂h•(HΓh ◦ Θ̃h)]h̃• − divΣ(u) ∆Σh̃•,(4.73b)

[∂h•((DΓh(uh) ◦ Θ̃h)]h̃• : [LΓh ◦ Θ̃h] + w∇2
Σh̃• : LΣ,(4.73c)

[DΓh(uh) ◦ Θ̃h] : [∂h•(LΓh ◦ Θ̃h)]h̃• −DΣ(u) : ∇2
Σh̃•.(4.73d)

With the estimates (4.60b), (4.60c), (4.64), and (4.72), we can control the directional derivatives
of (4.73) in 0Gw(T ) with T → 0 and h0 → 0 in W

3+(n−1)/p+ε
p (Σ). The proof of the lemma is

complete. �
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We also have to specialize the corresponding results for Fu and Fd to the case of a normal-
preserving admissible map. Theorem 4.15 implies that the map

h 7→ Θh − Idx = S(hνΣ, gh), Eh ∩ Uh → EΘ ∩ UΘ

is analytic for p ∈ ((n+ 2)/2,∞) and τ ∈ (1 + n/p, 4− 1/p], where the subsets Uh and UΘ were
defined on pages 102 and 107. For h = h∗ + h• with h∗ ∈ E(T0) and h• ∈ 0E(T0), the Fréchet
derivative of Θh − Idx is given by

[∂h•(Θh − Idx)]h̃• = S(h̃•νΣ, [∂h•(gh)]h̃•),

and becomes S(h̃•νΣ,−∇Σh̃•) at h = 0.
4.27. Corollary. Let p ∈ (n+ 2,∞) \ {3}, τ ∈ (1 + n/p, 4− 1/p), T ∈ (0,∞), and

Fu(u, π, h) := Fu(u, π,Θh) for u ∈ Eu, π ∈ Eπ, h ∈ Eh ∩ Uh.

Then Fu : {(u, π, h) ∈ Eu × Eπ × Eh : h ∈ Uh} → Fu is analytic and has the following properties:
(i) Given T0 ∈ (0,∞), R ∈ (δ−1

h ,∞), u ∈ Eu(T0), π ∈ Eπ(T0), and h ∈ Eh(T0) ∩ Uh, we have

‖Fu(u, π, h)‖Fu(T ) → 0 as T → 0, h0 := h|t=0 → 0 in W τ−1/p
p (Σ),

uniformly with respect to

‖u‖Eu(T0) + ‖π‖Eπ(T0) + ‖h‖Eh(T0) ≤ R, ‖h‖
L∞(0,T0;W

τ−1/p
p (Σ))

≤ δh −R−1.

(ii) Given T0 ∈ (0,∞), R ∈ (δ−1
h ,∞), u∗ ∈ Eu(T0), u• ∈ 0Eu(T0), π ∈ Eπ(T0), h∗ ∈ Eh(T0),

and h• ∈ 0Eh(T0) with h = h∗ + h• ∈ Uh, we have

‖∂(u•,π,h•)Fu(u∗ + u•, π, h∗ + h•)‖0Eu(T )×Eπ(T )×0Eh(T )→Fu(T ) → 0,

as T → 0 and h0 → 0 in W τ−1/p
p (Σ). This convergence is uniform with respect to

‖(u∗, u•)‖Eu(T0) + ‖π‖Eπ(T0) + ‖(h∗, h•)‖Eh(T0) ≤ R,
‖h∗ + h•‖L∞(0,T0;W

τ−1/p
p (Σ))

≤ δh −R−1.

Proof. In order to apply Theorem 4.15 and Lemma 4.21, it remains to show that ‖∂xΘh−Ix‖∞ =

‖S(hνΣ, gh)‖∞ → 0 as T → 0 and h0 → 0 in W τ−1/p
p (Σ). Given τ > 1 + n/p we have

‖∂xΘh − Ix‖L∞((0,T )×Ω) = ‖S(hνΣ, gh)‖L∞((0,T )×Ω)

. ‖hνΣ‖L∞(0,T ;W
τ−1/p
p (Σ))

+ ‖gh‖L∞(0,T ;W
τ−1−1/p
p (Σ))

→ 0,

as ‖h‖
L∞(0,T ;W

τ−1/p
p (Σ))

→ 0. As on page 114, we decompose h = (h − ETh0) + ETh0. The
embedding

C(W τ−1/p
p ) ⊃ H1/p+ε

p (W τ−1/p
p ) ⊃ H1

p (W τ−1+ε
p ) ∩ Lp(W τ+ε

p ) ⊃ Eh,

and Lemma 3.18 yield an estimate

‖h‖
C([0,T ],W

τ−1/p
p (Σ))

≤ C(δ, T0)(T δ‖h‖Eh(T0) + ‖h0‖W τ−1/p
p (Σ)

),(4.74)

for some δ0 > 0 and all δ ∈ (0, δ0] and T ∈ (0, T0], provided that τ < 4 − 1/p. This yields the
required convergence ‖h‖

L∞(0,T ;W
τ−1/p
p (Σ))

→ 0 as T → 0 and h0 → 0 in W τ−1/p
p (Σ). �

For an estimation of the divergence perturbation F̃d we also use the compatibility condition

div u0 = F̃d(u0, h0) in Ω.(4.75)
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4.28. Corollary. Let p ∈ (n+ 2,∞), τ ∈ (3 + n/p, 4− 1/p), T ∈ (0,∞), and

F̃d(u, h) := F̃d(u,Θh) for u ∈ Eu,v,w,∂νw, h ∈ Eh ∩ Uh.

Then the map F̃d : {(u, h) ∈ Eu,v,w,∂νw(T ) × Eh(T ) : h ∈ Uh} → Fd,Σ(T ) is analytic and has the
following properties:

(i) For given T0 ∈ (0,∞), R ∈ (δ−1
h ,∞), u ∈ Eu,v,w,∂νw(T0), h ∈ E(T0) ∩ Uh, and h0 = h|t=0,

we have

‖F̃d(u, h)− div u‖Fd,Σ(T ) → 0 as T → 0, ‖h0‖W τ−1/p
p (Σ)

→ 0,

and this convergence is uniform with respect to

‖u‖Eu,v,w,∂νw(T0) + ‖h‖Eh(T0) ≤ R, ‖h‖
L∞(0,T0;W

τ−1/p
p (Σ))

≤ δh −R−1.

(ii) For given T0 ∈ (0,∞), R ∈ (δ−1
h ,∞), u∗ ∈ Eu,v,w,∂νw(T0), u• ∈ 0Eu,v,w,∂νw(T0), h∗ ∈

E(T0), h• ∈ 0Eh(T0) with h = h∗ + h• ∈ Uh, and h0 = h∗|t=0, we have

‖∂(u•,h•)F̃d(u∗ + u•, h∗ + h•)‖0Eu,v,w,∂νw(T )×0Eh(T )→Fd,Σ(T ) → 0,

as T → 0 and ‖h0‖W τ−1/p
p (Σ)

→ 0, and this convergence is uniform with respect to

‖(u∗, u•)‖Eu,v,w,∂νw(T0) + ‖(h∗, h•)‖Eh(T0) ≤ R,(4.76)

‖h∗ + h•‖L∞(0,T0;W
τ−1/p
p (Σ))

≤ δh −R−1.(4.77)

Proof. We recall from pages 94 and 109 that F̃d(u, h) is trilinear in (∂2
xΘh, [∂xΘh]−1, u), and that

‖fd‖Fd,Σ = ‖fd‖Fd + ‖(fd+|Σ, fd−|Σ)‖Gw ,

where J = (0, T ). The assertions for the Fd-norm follow from Theorem 4.15 and Lemma 4.23,
as soon as we have ensured that the difference ∂xΘh − Ix = ∂xS(hνΣ, gh) tends to zero in the
C([0, T ];C1(Ω))-norm. Since τ > 2 + n/p, we have

‖∂xΘh − Ix‖L∞((0,T )×Ω) . ‖hνΣ‖L∞(0,T ;W
τ−1/p
p (Σ))

+ ‖gh‖L∞(0,T ;W
τ−1−1/p
p (Σ))

→ 0,

as ‖h‖
L∞(0,T ;W

τ−1/p
p (Σ))

→ 0. By using (4.74) and τ < 4 − 1/p, the assertions for the Fd-norm
follow.

The space Gw is a multiplication algebra by Lemma 4.25, and from the mixed derivative
embeddings and the T -dependent estimates in Lemma 3.18, we obtain the estimate

‖u•|Σ‖0Gw(T ) ≤ T δC(δ, T0)‖u•‖0Eu,v,w,∂νw(T ).(4.78)

With ∂2
νΣ
S(hνΣ, gh)|Σ = 0, it follows that the values of ∂2

xS(hνΣ, gh)|Σ depend linearly on
those of (h,∇Σh,∇2

Σh, gh,∇Σgh). Therefore h 7→ ∂2
xS(hνΣ, gh), Ẽh(T ) ∩ Uh → Gw(T ) is ana-

lytic. Moreover, with the estimates (4.60b), (4.65), and (4.78), we can control F̃d(u, h) − div u

in 0Gw(T ) and ∂(u•,h•)F̃d(u, h) in B(0Eu,v,w,∂νw(T ) × 0Ẽh(T ); 0Gw(T )) by choosing T and h0 in

W
3+(n−1)/p+ε
p (Σ) sufficiently small. Therefore both assertions of Corollary 4.28 are true. �



122 4. THE NONLINEAR PROBLEM

4.4. Local well-posedness of the transformed problem

Finally, we prove well-posedness for the transformed problem (T), which we restate as

ρ∂tu− µ∆u+∇π = Fu(u, π, h) in J × Ω \ Σ,(4.79a)

div u = Fd(u, h) in J × Ω \ Σ,(4.79b)

[[u]] = 0 on J × Σ,(4.79c)

Nv(u, h) +Nw(u, π, h)νΣ = 0 on J × Σ,(4.79d)
∂th− u · νΣ = 0 on J × Σ,(4.79e)

u|∂Ω = 0 on J × ∂Ω,(4.79f)

h|t=0 = h0 on Σ,(4.79g)

u|t=0 = u0 in Ω \ Σ.(4.79h)

Here J = (0, T ) is a bounded interval and Ω is a bounded smooth domain in Rn (n ≥ 2) that
contains a compact smooth hypersurface Σ. We employ the operators Fu from page 106, Fd
from page 109, and Nv and Nw from page 112. We decompose u = v + wνΣ ◦ ΠΣ near Σ. Both
u and π denote transformed quantities; that is, we omit the bars over u and π.

An E-solution of problem (4.79) = (T) on J = (0, T ) is a triple

(u, π, h) ∈ E(T ) := Eu,v,w,∂νw(T )× Eπ,[[π]](T )× (Eh(T ) ∩ Uh),

which satisfies (4.79) pointwise almost everywhere. The relevant function spaces are collected
in Figure 4.1. The nonlinearities are well-defined if the height function satisfies the smallness
condition h ∈ Uh from Theorem 4.15.(ii) on page 102.

We will consider E-solutions of the form

(u, π, h) = (u∗ + u•, π∗ + π•, h∗ + h•) with (u•, π•, h•) ∈ 0E, (u∗, π∗, h∗) ∈ E,

where (u•, π•, h•) has vanishing initial values and (u∗, π∗, h∗) satisfies the initial conditions. In
Definition 4.29 we define the state space Xp of initial data (u0, h0), which is a subset of some
Banach space Xp. It is shown in Lemma 4.31 that for every (u0, h0) ∈ Xp, there exists a tuple
(u∗, π∗, h∗) ∈ E(T ) which satisfies (u∗, h∗)|t=0 = (u0, h0) and depends linearly and continuously
on (u0, h0). Then it remains to solve a variant of problem (4.79) with vanishing initial values.
In Theorem 4.33 we finally prove that (4.79) is locally well-posed in Xp with respect to E in the
sense of Definition 4.32 on page 125, and that the trajectories t 7→ (u(t), h(t)) remain in Xp.

First, we deal with the non-homogeneous initial conditions in problem (4.79). For p > 3
and a given tuple (u, π, h) ∈ E(T ), the temporal trace theorem yields

u ∈ C(J ;W 2−2/p
p (Ω \ Σ)n), u|∂Ω = 0, [[u]] = 0,

u|Σ ∈ C(J ;W 3−3/p
p (Σ)n),

∂νw|Σ, [[π]] ∈ C(J ;W 2−3/p
p (Σ)),

h ∈ C(J ;W 4−2/p
p (Σ)).

This observation motivates the following definition of initial states.
4.29. Definition (State space Xp(τ,M) ⊂ Xp). (i) Given p ∈ (3,∞), we let Xp denote the
Banach space of all pairs (u0, h0), which satisfy the conditions

u0 ∈W 2−2/p
p (Ω \ Σ;Rn), u0|∂Ω = 0, [[u0]] = 0,

u0|Σ ∈W 3−3/p
p (Σ;Rn),

∂νw0|Σ ∈W 2−3/p
p (Σ;R),

h0 ∈W 4−2/p
p (Σ;R);
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and Xp is equipped with the norm

‖(u0, h0)‖Xp := ‖u0‖W 2−2/p
p (Ω\Σ)

+ ‖u0|Σ‖W 3−3/p
p (Σ)

+ ‖∂νw0|Σ‖W 2−3/p
p (Σ)

+ ‖h0‖W 4−2/p
p (Σ)

.

(ii) Given p ∈ (max{3, (n+2)/2},∞) and τ ∈ (1+n/p, 4−1/p], we choose the number δh =
δh(Ω,Σ, p, τ) > 0 such that both assertions of Theorem 4.15 are valid. For given M ∈ (δ−1

h ,∞],
the (nonlinear) state space Xp(τ,M) consists of all pairs (u0, h0) ∈ Xp with

‖(u0, h0)‖Xp < M,

which satisfy the compatibility conditions

div u0 = Fd(u0, h0) = −
∑

j,l,m
(u0)l∂l∂m(Θh0)j∂j(Θ

−1
h0

)m,(4.80a)

Gv(0, 0;u0, h0) = 0,(4.80b)

the smallness condition

‖h0‖W τ−1/p
p (Σ)

< δh −M−1,(4.81)

and the well-posedness condition

inf
x∈Σ

d0(DΣ(u0)(x)) = inf
Σ

(
σ + (λs − µs) trDΣ(u0) + 2µs min

ζ∈Rn, |ζ|=1
ζ>[DΣ(u0)]ζ

)
> M−1.

(4.82)

For given η ∈ (0,∞), we further let

Xp(τ,M, η) := {(u0, h0) ∈ Xp(τ,M) : ‖h0‖W τ−1/p
p (Σ)

< η}.

4.30. Remark. The compatibility conditions (4.80) arise since both spaces Fd and Gv have well-
defined initial traces. There is no compatibility condition for Lw and Gw since the initial value
[[π]]|t=0 is not prescribed. Condition (4.81) and p > (n+2)/3 allow to define the diffeomorphism
Θh0 : Ω → Ω with Θh0 |Σ : Σ → Γh0 by means of Theorem 4.15. With p > max{3, (n + 2)/2} we
obtain u0|Σ ∈ C1(Σ), and condition (4.82) will be used to employ the linear solution operator
from Theorem 3.21. Equipped with the induced metric of Xp, the space Xp(τ,M) is a metric
space. If M0 ≤M and η0 ≤ η, then Xp(τ,M0, η0) ⊂ Xp(τ,M, η).

Next, we construct functions (u, π, h) ∈ E(T0) satisfying the initial condition (u, h)|t=0 =
(u0, h0) for given (u0, h0) ∈ Xp ∈ {Xp(τ,M), Xp(τ,M, η)}, together with corresponding interior
data (fu, fd) ∈ Fu × Fd,Σ. We also show that the trajectories t 7→ (u(t, ·), h(t, ·)) remain in Xp.
4.31. Lemma. Let p ∈ (max{3, (n+ 2)/2},∞) and τ ∈ (1 + n/p, 4− 1/p].

(i) For every T0 ∈ (0,∞), there exists a bounded linear operator

(u0, h0) 7→ (u, π, h, fu, fd),

Xp(τ,∞)→ Eu,v,w,∂νw(T0)× Eπ,[[π]](T0)× Eh(T0)× Fu(T0)× Fd,Σ(T0)

whose values satisfy

(ρ∂t − µ∆)u+∇π = fu in J × Ω,(4.83a)
div u = fd in J × Ω,(4.83b)

∂th− νΣ · u|Σ = 0 on J × Σ,(4.83c)

u|t=0 = u0 in Ω,(4.83d)

h|t=0 = h0 on Σ.(4.83e)

(ii) Moreover, if τ < 4− 1/p and M0 < M , then there exists T ∈ (0, T0] such that

(u, h) ∈ C([0, T ];Xp(τ,M)) for all (u0, h0) ∈ Xp(τ,M0),(4.84)



124 4. THE NONLINEAR PROBLEM

and for M0 < M and η0 < η, there exists T ∈ (0, T0] such that

(u, h) ∈ C([0, T ];Xp(τ,M, η)) for all (u0, h0) ∈ Xp(τ,M0, η0).(4.85)

Proof. (i) Let (u0, h0) ∈ Xp(τ,∞) be given. With w0 := νΣ · u0|Σ, we define

h(t) := hA(t) + hB(t) :=
(
2e−tA − e−2tA

)
h0 +

(
e−tB − e−2tB

)
B−1w0, w(t) := ∂th(t),

where the operators A =
√

1−∆Σ and B = 1 − ∆Σ are realized in Lp(Σ). With h0 ∈ DA(4 −
2/p, p) and Corollaries B.26 and B.58 on pages 155 and 163, we see that hA belongs to Eh.
Similarly, with B−1w0 ∈ W

4−3/p
p (Σ) = DB(2 − 3/2p, p) and w0 ∈ W

3−3/p
p (Σ) = DB(3/2 −

3/2p, p), we obtain hB ∈ W 4−1/p
p (J × Σ) and ∂thB ∈ W 3/2−1/2p

p (J ;Lp(Σ)) ∩ Lp(J ;W
3−1/p
p (Σ)),

and thus hB belongs to Eh. We conclude that h is well-defined in Eh, the function w = ∂th

belongs to Ew, both functions depend linearly and continuously on w0 ∈ W 3−3/p
p (Σ) and h0 ∈

W
4−2/p
p (Σ), and (4.83c) is satisfied.

Next, with the operator ∆̃Σ = gαβ∇̃α∇̃β : H2
p (Σ;TΣ)→ Lp(Σ;TΣ), we define

v(t, ·) := e−t(1−∆̃Σ)(PΣu0|Σ).

The complexification of 1 − ∆̃Σ belongs to the class RS(Lp(Σ; (TΣ)C)) with R-angle zero by
Corollary B.59, and to H∞(W

1−1/p
p (Σ; (TΣ)C)) by Theorem B.27. Hence the semigroup et∆̃Σ is

analytic in W 1−1/p
p (Σ; (TΣ)C), and from Theorem B.25 we infer that v belongs to

W 3/2−1/2p
p (J ;Lp(Σ;TΣ)) ∩ Lp(J ;W 3−1/p

p (Σ;TΣ)) ↪→ Ev.

Let us construct the divergence data fd on J×(Ω\Σ). From p > (n+2)/2, Sobolev’s embed-
ding (B.1), and Lemma B.81, we deduce that W 2−2/p

p (Ω \ Σ) and W
2−2/p
p (Σ) are multiplication

algebras. The compatibility condition (4.80a) implies div u0 ∈ W
2−2/p
p (Ω \ Σ) and div u0|Σ ∈

W
2−2/p
p (Σ). By Corollary B.58 and Theorem B.25, the function fdΣ(t) := e−t(1−∆Σ)(div u0|Σ) be-

longs toH1
p (J ;Lp(Σ))∩Lp(J ;H2

p (Σ)) ↪→ Gw. Let f̃d solve the heat problem (∂t−∆)f̃d = 0 in J×
Ω±, f̃d|∂Ω = 0, f̃d|Σ = fdΣ, and f̃d|t=0 = div u0. Then we let fd|Ω± := f̃d|Ω± − 〈f̃d〉Ω± ∓ |Σ| 〈w〉Σ,
and this function fd belongs to H1

p (J ;Lp(Ω)) ∩ Lp(J ;H2
p (Ω \ Σ)). In view of

∫
Ω fd dx = 0 and

the Poincaré-Wirtinger inequality, it also belongs to H1
p (J ; Ĥ−1

p (Ω)), and hence fd ∈ Fd,Σ.
Next, we obtain the bulk velocity field u ∈ Eu,v,w,∂νw from the solution (u, q) of the one-

phase Stokes problems (ρ±∂t − µ±∆)u± + ∇q± = 0 in Ω±, div u = fd in Ω, u+|∂Ω = 0, and
u±|Σ = v + wνΣ with [BP07, Theorem 4.1]. For the construction of π, we first define g0 = [[q0]]

by eliminating [[q0]] from the equation Gw(0, 0;u0, q0, h0) = 0. Then t 7→ g(t) := e−t(1−∆Σ)g0

belongs to Gw. The function π ∈ Eπ,[[π]] is defined with Theorem 2.3 as the unique solution
of the weak transmission problem 〈∇π,∇ϕ〉Ω = −〈(ρ∂t − µ∆)u,∇ϕ〉Ω for all ϕ ∈ Ḣ1

p′(Ω) and
[[π]] = g. Finally, the function fu := (ρ∂t − µ∆)u +∇π belongs to Fu. Therefore assertion (i) is
valid.

(ii) We employ the following estimates, which follow from Sobolev’s embedding, Lemma
3.18, the mixed derivative embeddings, and Theorem B.25. For δ ∈ (0, 1− 1/p], we have

‖hA‖H1/p+δ
p (0,T0;W

s−1/p
p (Σ))

≤ C(T0)‖hA‖H1
p(0,T0;W s−1+δ

p (Σ))∩Lp(0,T0;W s+δ
p (Σ))

≤ C(T0)‖h0‖W s−1/p+δ
p (Σ)

≤ C(T0)M0,

provided that 1− δ ≤ s < 4− 1/p and δ ≤ 4− 1/p− s; and

‖hB‖H1/p+δ
p (0,T0;W

s−1/p
p (Σ))

≤ C(T0)‖hB‖H1
p(0,T0;W s−2+2δ

p (Σ))∩Lp(0,T0;W
s+1/p+2δ
p (Σ))

≤ C(T0)‖B−1w0‖W s−1/p+2δ
p (Σ)

≤ C(T0)M0,
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provided that 2− 2δ ≤ s < 5− 2/p and δ ≤ 5/2− 1/p− s/2. Thus, for s = τ , some δ0 > 0, and
all δ ∈ (0, δ0], T ∈ (0, T0], and (u0, h0) ∈ Xp(τ,M0), we have

‖h(·)− h0‖
0C([0,T ];W

τ−1/p
p (Σ))

≤ T δ/2C(δ, T0)‖h(·)− h0‖
0H

1/p+δ
p (0,T ;W

τ−1/p
p )

≤ T δ/2C(δ, T0)M0.

Next, recall that w = ∂thA + ∂thB . For δ ∈ (0, 1− 1/p], we have

‖∂thA‖H1/p+δ
p (0,T0;W

s−1/p
p (Σ))

≤ C(T0)‖AhA‖H1
p(0,T0;W s−1+δ

p (Σ))∩Lp(0,T0;W s+δ
p (Σ))

≤ C(T0)‖Ah0‖W s−1/p+δ
p (Σ)

≤ C(T0)M0,

provided that 1− δ ≤ s < 3− 1/p and δ ≤ 3− 1/p− s;

‖∂thB‖H1/p+δ
p (0,T0;W

s−1/p
p (Σ))

≤ C(T0)‖BhB‖H1
p(0,T0;W s−2+2δ

p (Σ))∩Lp(0,T0;W
s+1/p+2δ
p (Σ))

≤ C(T0)‖w0‖W s−1/p+2δ
p (Σ)

≤ C(T0)M0,

provided that 2− 2δ ≤ s < 3− 2/p and δ ≤ 3/2− 1/p− s/2; and

‖v‖
H

1/p+δ
p (0,T0;W

s−1/p
p (Σ))

≤ C(T0)‖v‖
H1
p(0,T0;W s−2+2δ

p (Σ))∩Lp(0,T0;W
s+1/p+2δ
p (Σ))

≤ C(T0)‖v0‖W s−1/p+2δ
p (Σ)

≤ C(T0)M0,

provided that 2−2δ ≤ s < 3−2/p and δ ≤ 3/2−1/p−s/2. Thus, for given s ∈ (1+n/p, 3−2/p)
there exists δ0 > 0 such that for all δ ∈ (0, δ0], T ∈ (0, T0], and (u0, h0) ∈ Xp(τ,M0), we have

‖u(·)− u0‖0C([0,T ];C1(Σ)) ≤ T δ/2C(δ, T0)‖v(·)− v0 + (w(·)− w0)νΣ‖
0W

1/p+δ
p (0,T ;W

s−2/p
p )(Σ)

≤ T δ/2C(δ, T0)M0.

We conclude that there exists T = T (M0,M) > 0 such that

sup
t≤T
‖h(t, ·)‖

W
τ−1/p
p (Σ)

< δh −M−1, inf
t≤T

inf
Σ
d0(u(t, ·)) > M−1,

for all (u0, h0) ∈ Xp(τ,M0). The assertion for Xp(τ,M, η) follows similarly. �

In order to formulate our main result, we first specify our notion of well-posedness.
4.32. Definition. Let Xp = Xp(τ,M, η) and E have the same meaning as on pages 94 and 122.
Problem (4.79) = (T) is called locally well-posed in Xp with respect to E, if

(i) for every z0∗ ∈ Xp there exist T > 0 and δ > 0 such for all z0 = (u0, h0) ∈ Xp ∩ B
Xp
δ (z0∗),

problem (4.79) has a unique E-solution (u, π, h) on (0, T ),
(ii) the map z0 7→ (u, π, h), Xp ∩B

Xp
δ (z0∗)→ E(T ) is continuous,

(iii) the trajectory t 7→ (u(t), h(t)) belongs to C([0, T ];Xp), and the map z0 7→ (u, h), Xp ∩
B

Xp
δ (z0∗)→ C([0, T ];Xp) is continuous.

Our main result for the transformed problem (4.79) = (T) is the following.
4.33. Theorem (Main result). Let p > n+ 2, τ ∈ (3 + n/p, 4− 1/p), and M <∞. Then there exists
η > 0 such that problem (4.79) is locally well-posed in Xp(τ,M, η) with respect to E.

Proof. For given z0 = (u0, h0) ∈ Xp(τ,∞) we seek a solution of the form

z = (u, π, h) = z∗ + z• ∈ E(T ) with z• = (u•, π•, h•) ∈ 0E(T ), z∗ = (u∗, π∗, h∗) ∈ E(T )

on some small time interval J = (0, T ) such that

z•|t=0 = (u•, h•)|t=0 = (0, 0), z∗|t=0 = (u∗, h∗)|t=0 = (u0, h0) = z0.

We abbreviate the transformed problem (4.79) as

L(z•; z∗) = N(z•; z∗), z•|t=0 = 0, z∗|t=0 = z0,(4.86)
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where L(z•; z∗) = L(u•, π•, h•;u∗) and N(z•; z∗) = N(u•, π•, h•;u∗, π∗, h∗) are given by

L(z•; z∗) =


(ρ∂t − µ∆)u• +∇π•

div u•

Lv(u•, h•;u∗)

Lw(u•, π•, h•;u∗)

∂th• − w•

 , N(z•; z∗) =


Fu(u∗ + u•, π∗ + π•, h∗ + h•)

Fd(u∗ + u•, h∗ + h•)− div u∗

Gv(u•, h•;u∗, h∗)

Gw(u•, h•;u∗, π∗, h∗)

0

 .

(i) Construction of z∗. LetM ∈ (δ−1
h ,∞], let (u0, h0) 7→ (u∗, π∗, h∗, fu, fd) denote the bounded

linear operator from Lemma 4.31, put ET (u0, h0) := (u∗, π∗, h∗), and let PR,T0 denote the set of
admissible parameters u∗ from page 82. Then for given M0 < M and η0 < η, there are T0 > 0
and R ≥ 1 such that the realizations

ET : Xp(τ,M0) → {(u∗, π∗, h∗) ∈ E(T ) : u∗ ∈ PR,T0 , (u∗, h∗) ∈ C([0, T ];Xp(τ,M))},
ET : Xp(τ,M0, η0)→ {(u∗, π∗, h∗) ∈ E(T ) : u∗ ∈ PR,T0 , (u∗, h∗) ∈ C([0, T ];Xp(τ,M, η))}

are linear and bounded for every T ∈ (0, T0].
(ii) Strategy to determine z•. It remains to determine the solution z• ∈ 0E(T ) of the equation

L(z•;ET (z0)) = N(z•;ET (z0)). In Theorem 3.21, we have shown that L(·; z∗) : 0E(T ) → 0F(T )
is uniformly invertible with respect to T ∈ (0, T0] and u∗ ∈ PR,T0 , for given T0 ∈ (0,∞) and
R ∈ [1,∞). Therefore we intend to apply Banach’s fixed point theorem to the map

F : (z•, z0) 7→ [L(·;ET (z0))]−1N(z•;ET (z0)),

{(z•, z0) ∈ 0E(T )×Xp(τ,M, η)} → 0E(T ),

with suitable η > 0 and T > 0, depending on M ∈ (δ−1
h ,∞). To this end we will show that

‖F (z•; z0)‖
0E(T ) + ‖∂z•F (z•; z0)‖B(0E(T )) → 0 as T → 0, ‖h0‖W τ−1/p

p (Σ)
→ 0,(4.87)

uniformly with respect to z0 ∈ Xp(τ,M) and z• ∈ Br(T ), where

Br(T ) := {z• = (u•, π•, h•) ∈ 0E(T ) : ‖z•‖0E(T ) ≤ r}.

(iii) Properties of F . Let T0 ∈ (0,∞), T ∈ (0, T0], and R ∈ [1,∞). The map u∗ 7→ L(·;u∗),
Eu,v,w(T0)→ B(0E(T ); 0F(T )) is affine and therefore uniformly continuous onBEu,v,w(T0)

R . Theo-
rem 3.21 implies that u∗ 7→ [L(·;u∗)]−1, PR,T0 → B(0F(T ); 0E(T )) is uniformly bounded. Since
ET is linear and bounded, the map z0 7→ [L(·;ET (z0))]−1, Xp(τ,M) → B(0F(T ); 0E(T )) is uni-
formly continuous. The function N(z•;ET (z0)) and its derivative with respect to z• depend
polynomially on the functions z•, z∗ = ET (z0), ∂xΘh, [∂xΘh]−1, βh, and β−1

h , where h = h∗+h•.
From estimate (4.74) we infer that there exists δ > 0 such that

‖h•‖
0C([0,T ];W

τ−1/p
p (Σ))

≤ T δC(δ, T0)‖h•‖0Eh(T ) for h• ∈ 0Eh(T ), T ∈ (0, T0].

Hence for given M ∈ (δ−1
h ,∞) there exist T0, r ∈ (0,∞) such that the maps

(z•; z0) 7→ F (z•; z0), {(z•, z0) ∈ Br(T )×Xp(τ,M)} → 0E(T ),

(z•; z0) 7→ ∂z•F (z•; z0), {(z•, z0) ∈ Br(T )×Xp(τ,M)} → B(0E(T ))

are well-defined and uniformly continuous for every T ∈ (0, T0].
Corollaries 4.27 and 4.28 and Lemma 4.26 yield

‖N(z•;ET (z0))‖
0F(T ) + ‖∂z•N(z•;ET (z0))‖

0E(T )→0F(T ) → 0 as T → 0, ‖h0‖W τ−1/p
p (Σ)

→ 0,

uniformly with respect to z0 ∈ Xp(τ,M) and z• ∈ Br(T ). Therefore (4.87) is valid.
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(iv) Strict contraction. Let us prove that F (·; z0) is a strict contraction within the closed set
Br(T ) for some r, T > 0. From estimate (4.87) we infer that for given q ∈ (0, 1) and M ∈
(δ−1
h ,∞) there exist positive numbers η, T0, and r such that

‖∂z•F (z•; z0)‖B(0E(T )) ≤ q for all z• ∈ Br(T ), T ∈ (0, T0], z0 ∈ Xp(τ,M, η).

Estimate (4.87) and the differentiability of F (·, z0) imply that there are positive numbers η, T0,
and r such that

‖F (z•; z0)‖
0E(T ) ≤ q ‖z•‖0E(T ) + ‖F (0; z0)‖

0E(T ) ≤ r

for all z• ∈ Br(T ), T ∈ (0, T0], and z0 ∈ Xp(τ,M, η). Therefore F (·; z0) maps Br(T ) into itself as
a q-contraction.

(v) Banach’s fixed point theorem implies that F (·; z0) has a unique fixed point z• within
Br(T ) ⊂ 0E(T ) and z• depends continuously on z0 ∈ Xp(τ,M, η). Moreover, z•+ET (z0) is an E-
solution of problem (4.79) on (0, T ) and (u, h) = (u∗+u•, h∗+h•) belongs toC([0, T ];Xp(τ,∞)).
Let us show that its trajectory remains in Xp(τ,M, η). For given z0∗ ∈ Xp(τ,M, η) there are
M0 < M and η0 < η such that z0∗ belongs to Xp(τ,M0, η0). Therefore Lemma 4.31 yields some
numbers T1 ∈ (0, T0] and r1 ≤ r such that, given z0 ∈ Xp(τ,M, η) ∩ BXp

δ (z0∗), T ∈ (0, T1], and
z• ∈ Br1(T ), the solution z = z• + ET (z0) satisfies (u, h) ∈ C([0, T ];Xp(τ,M, η)).

(vi) In order to prove uniqueness within the larger space E(T ) = ET (z0)+0E(T ) for T < T1,
we assume that there is a different E-solution z1 = z∗ + z1

• on (0, T ). Since F (·, z0) has at most
one fixed point within Br(T ), the triple z1

• ∈ 0E(T ) does not belong to Br(T ). But since the
norm of E(T ) consists of integrals over (0, T ), we have ‖z1

•‖E(T ′) → 0 as T ′ → 0, and hence
z• and z1

• coincide on some interval (0, T ′). We may assume that this interval is maximal in
the sense that for every ε > 0, the triples z• and z1

• do not coincide on (T ′, T ′ + ε). Since
z1|t=T ′ = z|t=T ′ belongs to Xp(τ,M, η), we can repeat the fixed point argument and obtain a
contradiction. Hence problem (4.79) has at most one E-solution. The proof of Theorem 4.33 is
complete. �





APPENDIX A

Differential geometry of hypersurfaces in Rn

We provide results on hypersurfaces in the n-dimensional Euclidean space Rn that are used in
the main part of this thesis. Kimura [Kim08] and Prüss and Simonett [PS13] developed such a
theory of hypersurfaces that is applicable for moving boundary problems.

A.1. Classes of hypersurfaces in Rn

We will define hypersurfaces in terms of parametrizations over hyperplanes, where the hyper-
surface is locally represented as a translated and rotated graph of a scalar height function. The
regularity of that surface is defined by the regularity of its height functions. We next introduce
tangent vectors, normal vectors, and differential operators and characterize the regularity of
a hypersurface by the regularity of its normal. According to Einstein’s summation convention,
we always sum over repeated greek indices α, β, . . . ∈ {1, . . . , n − 1}, whereas latin indices
i, j, . . . ∈ {1, . . . , n− 1} denote free indices.
A.1. Definition. We say that Σ ⊂ Rn is a Lipschitz hypersurface or hypersurface of class C1−, if
every point p ∈ Σ has a neighborhood U of p in Σ, such that there are a hyperplane

ν⊥0 := {x ∈ Rn : x · ν0 = 0} with ν0 ∈ Rn, |ν0| = 1,

a point p0 ∈ Rn, a number r > 0, and a Lipschitz function

h : ν⊥0 ∩Br(0) := {u ∈ ν⊥0 : |u| ≤ r} → R,

such that U is parametrized by

ϕ : ν⊥0 ∩Br(0) ⊂ ν⊥0 → Σ, u 7→ p0 + u+ h(u)ν0.

We call ϕ a parametrization of Σ over the hyperplane ν⊥0 with height function h.
(i) Σ is called Ck-hypersurface (k ≥ 1) or hypersurface of class Ck, if the height function in

every parametrization satisfies h ∈ Ck(Br(0)).
(ii) The notions of Ck−-hypersurfaces, analytic or Cω-hypersurfaces, and W s

p -hypersurfaces are
defined accordingly, where k ≥ 1, s ≥ 0, and p ∈ [1,∞].

(iii) Σ is called closed resp. compact if it is closed resp. compact as a subset of Rn.
A.2. Remark. Our definition of hypersurfaces exhibits the following topological properties.

(i) Clearly, every hypersurface is a C1−-submanifold of Rn of dimension n − 1. Therefore
it may have a boundary and even an infinite number of connected components, but no self-
intersections. A closed hypersurface has no boundary and a compact hypersurface has a finite
number of connected components.

(ii) If Σ is a connected compact hypersurface, then Jordan’s theorem asserts that Σ sepa-
rates Rn in a bounded and an exterior domain, both having the same boundary Σ [Bro11]. Any
connected closed hypersurface Σ separates Rn in precisely two domains [cf. Sam69].
A.3. Definition (Tangents, normal, differential operators). Let Σ be a C1-hypersurface in Rn
and ϕ : Br(0) ⊂ ν⊥0 → Σ, u 7→ p0 + u+ h(u)ν0 be a local parametrization.

129
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(i) Let f : Σ → X be a map with values in a Banach space X . For a given parametrization
ϕ and a basis {ei}i of the hyperplane ν⊥0 , we define the partial derivatives of f by

∂Σ
i f(p) = ∂if(p) := ∂ui(f ◦ ϕ)(u) for p = ϕ(u).

(ii) The tangent space TpΣ is the vector space {ϕ′(0)u : u ∈ ν⊥0 }, its elements are the tangent
vectors. In particular, ∂iϕ(u) =: τi(p) with p = ϕ(u) are tangent vectors and the set {τi(p)}i is
a basis for TpΣ. The dual basis {τ i(p)}i of the cotangent vectors τ i(p) = τ iΣ(p) is defined by the
relation τi(p) · τ j(p) = δji . We will also use the notation τΣ

j (p) to indicate the dependence on the
hypersurface Σ. In terms of the parametrization ϕ, we can choose the tangent vectors

τj(ϕ(u)) = τΣ
j (ϕ(u)) = ej + ∂jh(u)ν0.

(iii) For a closed connected C1-hypersurface Σ ⊂ Rn, there exists a continuous unit normal
field νΣ : Σ→ Rn, also called Gauss map [cf. Sam69]. Locally, the unit normal can be chosen as

νΣ(ϕ(u)) =
ν0 −∇uh(u)√
1 + |∇uh(u)|2

,(A.1)

where the (n− 1)-dimensional gradient∇uh := eα∂uαh is considered as an element of Rn.
(iv) The tangential projection PΣ(p) : Rn → TpΣ onto TpΣ is given by

PΣ = τα ⊗ τα = τα ⊗ τα = I − νΣ ⊗ νΣ,

where I ∈ Rn×n denotes the identity matrix.
(v) For a scalar function f : Σ → K, a possibly non-tangential vector field u : Σ → Rn, and

a matrix field S : Σ→ Kn×n, we define the surface gradient

∇Γf := τα∂αf, ∇Γu := τα ⊗ ∂αu,

and the surface divergence

divΓ u := (∂αu|τα), divΓ S := (∂αS)τα.

If Σ is of class C2−, then we define the scalar Laplace-Beltrami operator

∆Γf := divΓ∇Γf = gαβ(∂α∂βf − Λγαβ∂γf),

where gij = τi · τj are the compontents of the Riemannian metric tensor, the components gij are
defined via giαgαj = δij , and Λij,k = ∂iτj · τk and Λkij = gkαΛij,α are the Christoffel symbols.

A.4. Remark. We shall use further relations between height function h and normal νΣ of a C1-
hypersurface Σ in order to extend a given parametrization ϕ : Br(0) ⊂ ν⊥0 → Σ, u 7→ p0 +
u + h(u)ν0. With the projection P0 := I − ν0 ⊗ ν0 of Rn onto the hyperplane ν⊥0 , we obtain
|P0νΣ(ϕ(u))|2 = 1− (ν0|νΣ(ϕ(u)))2 and therefore (A.1) implies

|∇h(u)|2 =
|P0νΣ(p)|2

1− |P0νΣ(p)|2
=

1− (ν0|νΣ(p))2

(ν0|νΣ(p))2
for p = ϕ(u), u ∈ Br(0) ⊂ ν⊥0 .(A.2)

This shows that, if we want to extend the domain Br(0), we have to ensure that ∇h remains
bounded, which is equivalent to νΣ(ϕ(u)) · ν0 ≥ η for some η ∈ (0, 1] and all u, where the
optimal η and the Lipschitz constant ‖∇h‖∞ are related by

η = (1 + ‖∇h‖2∞)−1/2, ‖∇h‖∞ = (η−2 − 1)1/2.

For the height function h we obtain

∇h(u) = − P0νΣ(p)

ν0 · νΣ(p)
for p = ϕ(u).(A.3)
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For a fixed basis {ei}i of ν⊥0 , the parametrization ϕ induces the tangent vectors

τΣ
j (p) = ∂ujϕ(u) = ej + ∂jh(u)ν0 = ej −

ej · νΣ(p)

ν0 · νΣ(p)
ν0 for p = ϕ(u).

Further properties of ϕ in terms of the intrinsic distance are given in Proposition A.12.
In the spirit of Prüss and Simonett [PS13], we can also characterize the regularity of a hy-

persurface by the regularity of its normal.
A.5. Proposition. For a compactC1−-hypersurface Σ ⊂ Rn with normal νΣ ∈ L∞(Σ;Rn) and k ∈ N,
the following characterizations are valid.

(i) Σ is a Ck+1-hypersurface if and only if νΣ ∈ Ck(Σ;Rn).
(ii) Σ is a Ck+1−-hypersurface if and only if νΣ ∈ Ck−(Σ;Rn).

(iii) Σ is an analytic hypersurface if and only if νΣ ∈ Cω(Σ;Rn).

Proof. We employ local coordinates u ∈ U ⊂ Rn−1 and, for simplicity, we neglect the rotation
and translation; that is, we assume Q = I and p0 = 0. Then we can express the normal νΣ as

ν(u, h(u)) = β(u)(−∇h(u), 1), β(u) = (1 + |∇h(u)|2)−1/2 for u ∈ U ⊂ Rn−1.(A.4)

(i) If Σ ∈ Ck+1, then we have h ∈ Ck+1. With identity (A.1), this implies that u 7→ ν(u, h(u))
is Ck in local coordinates, which means that νΣ ∈ Ck(Σ;Rn). Conversely, let νΣ ∈ Ck(Σ;Rn).
Then β = ν · en is Ck and therefore also ∇h = −β−1P1,...,n−1ν belongs to Ck by (A.3). Together
with h ∈ C1− this gives h ∈ Ck+1.

(ii) This equivalence follows analogously.
(iii) It is sufficient to note that h ∈ C1− and∇h ∈ Cω imply h ∈ Cω, since

h(u)− h(u0) =

∫ 1

0
∇h(u0 + s(u− u0)) · (u− u0)ds =

∞∑
k=0

∇h(k)(u0)

(k + 1)!
(u− u0)k · (u− u0). �

A.6. Remark. For a C2−-hypersurface Σ in Rn, we define the Weingarten tensor

L := LΣ := −∇ΣνΣ = −τα ⊗ ∂ανΣ : Σ→ Rn×n.

For every p ∈ Σ, the matrix L(p) is symmetric and vanishes on RνΣ(p) so that L(p)TpΣ ⊂ TpΣ.
The Weingarten tensor induces the second fundamental form IIp(v, w) = LΣ(p)v ·w = lαβ(p)vαwβ

for v, w ∈ TpΣ. The eigenvalues κj(p) of L(p) are the principal curvatures of Σ at p and the
corresponding eigenvectors are the principal directions [Kim08, Theorem 2.10]. For every C2−-
path γ : [a, b]→ Σ with |γ′(t)| = 1 for all t ∈ [a, b], the curvature of γ at γ(t) is γ′′(t) and we have
|γ′′(t)| ≤ |L(γ(t))|. The (n− 1)-fold mean curvature is given by

HΣ := κ1 + · · ·+ κn−1 = trLΣ = −divΣ νΣ.

The Christoffel symbols satisfy the following relations [PS13, (12), (14)],

∂iτj = Λαijτα + lijν, ∂iτ
j = −Λjiατ

α + lji ν.

We recall a well-known fact from differential geometry.
A.7. Theorem (see e. g. [Ale62]). Let Σ be a compact connected C2-hypersurface in Rn (n ≥ 2) with
constant mean curvature. Then Σ is a sphere.

A.2. The intrinsic distance of a hypersurface

In this thesis, a C1−-hypersurface Σ is equipped with the Riemannian metric induced by the
scalar product of Rn; that is, for p ∈ Σ, a scalar product in TpΣ is defined by (τ |τ̃)p := τ · τ̃ and
therefore TpΣ has the induced norm |τ | = (

∑n
j=1(ej · τ)2)1/2. The intrinsic distance distΣ(p, q)

for p, q ∈ Σ is defined as the infimum of the lengths of all C1−-curves in Σ joining p to q. In
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Proposition A.12, we prove that the intrinsic distance and the induced norm of Rn are equiv-
alent for compact connected C1−-hypersurfaces. If Σ is of class C3−, then we can find a curve
γ from p to q with minimal length l(γ) = distΣ(p, q), which is a minimizing geodesic [see e. g.
Car92, Chapter 3].
A.8. Remark. Geodesics can be defined for every C3−-hypersurface Σ ⊂ Rn (n ≥ 2). Let
γ : [a, b] → Σ be a C1-curve and let v : [a, b] → TΣ be a tangential vector field along γ; that is,
v(t) belongs to the Tγ(t)Σ and therefore has a representation v(t) = vα(t)τα(γ(t)). The covariant
derivative of v along γ is defined by

Dv(t)

Dt
:= PΣ(γ(t))

dv(t)

dt
= ∂tv

α(t)τα(γ(t)) + vα(t)∂tγ
β(t)PΣ(γ(t))∂βτα(γ(t)).

We call a C2-curve γ : [a, b]→ Σ a geodesic, if it satisfies the geodesic equation

D

Dt

dγ

dt
= (PΣ ◦ γ)γ′′ = 0 in (a, b).

In local coordinates xi(t) = ei · ϕ−1(γ(t)), the geodesic equation becomes a system of ordinary
differential equations

d2xi

dt2
+ (Λiαβ ◦ x)

dxα

dt

dxβ

dt
= 0.(A.5)

Here the Christoffel symbols Λkij = gkα(∂iτj |τα) are locally Lipschitz continuous. From the
theory of ordinary differential equations, we infer that (A.5) has a unique local C3−-solution
t 7→ x(t) = x(t;x0, x1) that satisfies prescribed initial conditions x(t0) = x0 and x′(t0) = x1.
Moreover, x(t;x0, x1) depends continuously on (x0, x1). Consequently, for given p ∈ Σ and
v ∈ TpΣ, there exists a unique geodesic t 7→ γ(t; p, v) such that γ(0; p, v) = p and γ′(0; p, v) = v.

The geodesics are homogeneous in the sense that for a geodesic γ(·; p, v) on (−δ, δ) and
every α > 0, the map t 7→ γ(αt; p, v) is also a geodesic on (−δ/α, δ/α) and the identity
γ(αt; p, v) = γ(t; p, αv) applies to all t ∈ (−δ, δ) [Car92, Lemma 3.2.6]. Moreover, the map

(t, (p, v)) 7→ (γ(t; p, v), γ′(t; p, v))

is a local flow on TΣ, called the geodesic flow. We say that Σ is (geodesically) complete, if every
geodesic γ : [a, b] → Σ can be extended to a geodesic γ̃ : R → Σ. In this case, the geodesic flow
is global with respect to t ∈ R, p ∈ Σ, and v ∈ TpΣ.

A geodesic locally minimizes the distance between two points in the sense that for every
t ∈ [a, b] there is ε > 0 such that distΣ(γ(t1), γ(t2)) =

∫ t2
t1
|γ′(s)|ds for all t1, t2 ∈ [a, b]∩(t−ε, t+ε)

with t1 < t2 [Car92, Remark 3.3.8]. Conversely, if p, q ∈ Σ are given, then every piecewise
differentiable curve joining p to q with minimal length is a geodesic [Car92, Corollary 3.3.9].
A.9. Remark. For a C3−-hypersurface Σ, we define the exponential map

expp(v) := γ(1; p, v) = γ(|v|; p, v/|v|) for p ∈ Σ, v ∈ Br(0) ⊂ TpΣ,

for some r > 0 [see Car92, Chapters 3, 13]. In view of(
d expp
dv

(0)

)
v =

d

dt
expp(tv)

∣∣
t=0

=
d

dt
γ(t; p, v)|t=0 = γ′(0; p, v) = v,

we see that (d/dv) expp(0) = PΣ(p). Therefore, by the inverse function theorem, expp is a local
C1-diffeomorphism at 0 ∈ TpΣ into Σ. The number

i(Σ, p) = sup{r > 0 : expp : Br(0) ⊂ TpΣ→ expp(Br(0)) ⊂ Σ is a diffeomorphism}

is called the injectivity radius of Σ at p and i(Σ) := inf{i(Σ, p) : p ∈ Σ} is the injectivity radius
of Σ. Clearly, if Σ is compact, then i(Σ) > 0. If q ∈ expp(Bi(Σ)(0)), then there exists a unique
geodesic joining p and q that minimizes distΣ(p, q) [Car92, Corollary 13.2.8].
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The Hopf-Rinow theorem [HR31] characterizes geodesic completeness of generalC3−-class
Riemannian manifolds.
A.10. Theorem (Hopf-Rinow [cf. Car92, Theorem 7.2.8]). Let M be a Riemannian C3−-manifold.
Then the following assertions are equivalent.

(i) The exponential map expp is defined on all of TpM for every p ∈M .
(ii) Every closed and bounded subset of M is compact.

(iii) The metric space (M,distM (·, ·)) is complete.
(iv) M is geodesically complete.
(v) There exists a sequence of compact subsets Kj ⊂ M with Kj ⊂ Kj+1 and

⋃
jKj = M such that

if qj /∈ Kj , then distM (p, qj)→∞ for every p ∈M .
If, in addition, M is connected, then any of the statements above implies that
(vi) For any p, q ∈M , there exists a geodesic γ joining p and q with l(γ) = distM (p, q).

A.11. Corollary ([Car92, Corollaries 7.2.9, 7.2.10]). Every compact Riemannian C3−-manifold is
complete and every closed C3−-submanifold of a complete Riemannian C3−-manifold is complete in the
induced metric. In particular, every closed C3−-hypersurface in Rn (n ≥ 2) is complete.

The following relations between intrinsic distance and Euclidean distance will be used later
on for dealing with the intrinsic Slobodeckiı̆ semi-norm.
A.12. Proposition. Let Σ ⊂ Rn be a C1−-hypersurface.

(i) Let p ∈ Σ be fixed, let ϕ : TpΣ ⊃ U → Σ, u 7→ p + u + h(u)νΣ(p) be a parametrization over the
tangent space where U is convex, and let h ∈ C1−(U) so that ‖∇h‖∞ <∞. Then

|u− v| ≤ |ϕ(u)− ϕ(v)| ≤ distΣ(ϕ(u), ϕ(v)) ≤ (1 + ‖∇h‖2∞)1/2|u− v| for all u, v ∈ U.

(ii) Let Σ ∈ C1− be compact and connected. Then distΣ(·, ·) is bounded and for some C ≥ 1 we have

|p− q| ≤ distΣ(p, q) ≤ C|p− q| for all p, q ∈ Σ.

(iii) Let Σ ∈ C2− and ‖LΣ‖∞ <∞. If p, q ∈ Σ satisfy distΣ(p, q) <
√

2 ‖LΣ‖−1
∞ , then

|νΣ(p)− νΣ(q)| ≤ distΣ(p, q)‖LΣ‖∞, νΣ(p) · νΣ(q) > 0.

(iv) Let Σ ∈ C3− and ‖LΣ‖∞ <∞. If p, q ∈ Σ satisfy distΣ(p, q) < 2 ‖LΣ‖−1
∞ , then

|p− q| ≤ distΣ(p, q) ≤ |p− q|
1− 1

2 distΣ(p, q) ‖LΣ‖∞
.

Proof. (i) For almost all u ∈ U , we have ϕ′(u) = PΣ(p) + νΣ(p) ⊗ ∇h(u) and |ϕ′(u)|2 =
1 + |∇h(u)|2. The map [0, 1] 7→ ϕ(u+ (v − u)t) is a curve from ϕ(u) to ϕ(v) in Σ and therefore

distΣ(ϕ(u), ϕ(v)) ≤ ‖ϕ′‖∞|u− v| ≤ (1 + ‖∇h‖2∞)1/2|u− v|,

distΣ(ϕ(u), ϕ(v)) ≥ |ϕ(u)− ϕ(v)| = (|u− v|2 + |(h(u)− h(v))νΣ(p)|2)1/2 ≥ |u− v|.

(ii) For every p ∈ Σ, there exists r(p) > 0 such that Σ ∩ Br(p)(p) can be parametrized over
TpΣ via ϕp(u) = p+ u+ hp(u)νΣ(p), where h satisfies ‖∇hp‖∞ ≤ 1. From (i) we obtain that

|q − q̃| ≤ distΣ(q, q̃) ≤
√

2|q − q̃| for q, q̃ ∈ Σ ∩Br(p)(p).

In particular, we have distΣ(p, q) <
√

2r(p) for every q ∈ Σ ∩ Br(p)(p). By compactness, there
exist finitely many sets Σ ∩ Brj (p) with the above properties and rj = r(pj) such that Σ is the
union of these sets. Since Σ is connected, the numbers distΣ(pj , pk) have a finite maximum R.
Therefore distΣ(·, ·) is bounded by R+ 2

√
2 max rj .

Assume that the assertion is false. Then there exist pn, qn ∈ Σ with distΣ(pn, qn) > n|pn−qn|.
Since Σ is compact we may assume that pn → p ∈ Σ and qn → q ∈ Σ and since distΣ is bounded,
the pn and qn converge to the same limit p = q. But then almost all pn, qn are contained in some
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Σ ∩ Br0(p0) and hence n|pn − qn| < distΣ(pn, qn) ≤
√

2|pn − qn|, a contradiction. Therefore (ii)
is valid.

(iii) For a curve γ joining q to p in Σ, we have

|νΣ(p)− νΣ(q)| =

∣∣∣∣∣
∫ l(γ)

0

d

dt
νΣ(γ(t)) dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ l(γ)

0
LΣ(γ(t))γ′(t) dt

∣∣∣∣∣ ≤ l(γ) ‖LΣ‖∞ .

The inequality νΣ(p) · νΣ(q) > 0 is valid if and only if |νΣ(p)− νΣ(q)|2 = 2− 2νΣ(p) · νΣ(q) < 2

and this is true if distΣ(p, q) <
√

2‖LΣ‖−1
∞ .

(iv) Let γ be a geodesic from q to pwith minimal length l(γ) = distΣ(p, q) and |γ′| = 1. Since
PΣ(γ(t))γ′′(t) = 0 and νΣ(γ(t)) · γ′(t) = 0, we obtain γ′′(t) = νΣ(γ(t)) (LΣ(γ(t))γ′(t) · γ′(t)).
Hence

p− q =

∫ l(γ)

0
γ′(t) dt = l(γ) γ′(0) +

∫ l(γ)

0

∫ t

0
γ′′(s) ds dt,

|p− q| ≥ l(γ)−
∫ l(γ)

0

∫ t

0
|LΣ(γ(s))| ds dt ≥ l(γ)− l(γ)2

2
‖LΣ‖∞ .

This yields the assertion. �

The next result provides parametrizations that are defined on balls with uniform radius.
A.13. Proposition. Let Σ ⊂ Rn (n ≥ 2) be a C2−-hypersurface such that LΣ is bounded and put
R∗ :=

√
2‖LΣ‖−1

∞ ∈ (0,∞], δ(R) := 1− R2‖LΣ‖2∞/2 ∈ (0, 1], and r(R) := Rδ(R) for R ∈ (0, R∗).
Then for every x ∈ Σ, there exists a parametrization

ϕx : Br(R)(0) ⊂ TxΣ→ BΣ
R(x), u 7→ x+ u+ hx(u)νΣ(x)

with height function hx ∈ C2−(Br(R)(0)) such that hx(0) = |∇hx(u)| = 0.

Proof. Given x ∈ Σ, there exists a parametrization ϕx : Vx → Σ on some small neighborhood
Vx of the origin such that ϕx(u) = x + u + hx(u)νΣ(x) for some hx ∈ C2−(Vx) with hx(0) =
|∇hx(0)| = 0. Our goal is to show that ϕx can be extended to map with the asserted properties.
Such an extension is uniquely determined by the representation (A.3) of ∇hx in terms of νΣ.
The identity (A.2) shows that

|∇hx(u)|2 = (νΣ(x)|νΣ(ϕx(u)))−2 − 1 for u ∈ Vx.

With Remark A.4 we obtain

(νΣ(x)|νΣ(ϕx(u))) ≥ δ, |∇hx(u)|2 ≤ 1− δ2

δ2
for all u ∈ Vx, x ∈ Σ.

Therefore we can extend hx and ϕx uniquely onto Br(R)(0). �

A.3. Neighborhoods of hypersurfaces

We show that every compact hypersurface of class C2− satisfies a uniform ball condition and
has a tubular neighborhood with uniform thickness. Within such a neighborhood, we study
further hypersurfaces that are induced by height functions. For the corresponding diffeomor-
phism between the original and the new hypersurface, we derive an integral transformation
formula that does not use local coordinates (see (A.12)). We also provide a level function for a
possibly disconnected compact hypersurface.
A.14. Definition. A hypersurface Σ ⊂ Rn satisfies the ball condition of radius r > 0 at the point
p ∈ Σ, if the open balls Br(p − rνΣ(p)) and Br(p + rνΣ(p)) do not intersect Σ. We say that Σ
satisfies the uniform ball condition of radius r > 0, if it satisfies the ball condition of the same
radius r at every p ∈ Σ.
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A.15. Remark. Let S be a closed subset of Rn of the form S = Rn \ (Ω+ ∪ Ω−) with disjoint
open subsets Ω+ and Ω− of Rn. As in [Kim08, Section 3.1], we define the signed distance

d(x) =


dist(x, S) for x ∈ Ω+,

0 for x ∈ S,
− dist(x, S) for x ∈ Ω−.

By [Kim08, Theorem 3.2], both maps dist(·, S) and d(·) are Lipschitz continuous.
A.16. Definition ([cf. PS13]). A hypersurface Σ ⊂ Rn has a tubular neighborhood of radius r > 0,
if the map

X : (p, t) 7→ p+ tνΣ(p), Σ× (−r, r)→ Br(Σ) := {x ∈ Rn : dist(x,Σ) < r}(A.6)

is a homeomorphism; that is, X is continuous and bijective and therefore has a continuous in-
verse. We say that the tubular neighborhood is of classCk (k ≥ 1), ifX is aCk-diffeomorphism;
that is, X is of class Ck and ∂X(p, t) : TpΣ× R→ Rn is invertible for all (p, t). We decompose

X−1(x) = (Π(x), d(x)) with Π(x) = p ∈ Σ, d(x) = t ∈ (−r, r), x = Π(x) + d(x)νΣ(Π(x)).

A.17. Proposition. The following assertions are valid.
(i) A closed hypersurface Σ ⊂ Rn has a tubular neighborhood of radius r if and only if it satisfies the

uniform ball condition of radius r. In this case, it also has a tubular neighborhood of radius

rΣ := sup{r > 0 : Σ has a tubular neighborhood of radius r}.

(ii) If Σ is a compact C2−-hypersurface in Rn, then it has a tubular neighborhood of radius rΣ > 0, the
homeomorphismX in (A.6) has a locally Lipschitz continuous inverse and the principal curvatures
of Σ and the Weingarten map LΣ are bounded by 1/rΣ almost everywhere.

(iii) If Σ is a compact Ck+1-hypersurface (k ≥ 1), then X is a Ck-diffeomorphism with derivative

∂(p,t)X(p, t)(v, s) = v + sνΣ(p)− tLΣ(p)v, (p, t) ∈ Σ× (−r, r), (v, s) ∈ TpΣ× R.(A.7)

Proof. (i) Ball condition ⇒ tubular neighborhood. Suppose that Σ satisfies the uniform ball
condition of radius r. It remains to show that the continuous map X : (p, t) 7→ p + tνΣ(p),
Σ× (−r, r)→ Br(Σ) := {x ∈ Rn : dist(x,Σ) < r} is bijective.

Surjectivity. Given x ∈ Br(Σ), we put δ := dist(x,Σ) < r. Then Bδ(x) ∩ Σ is empty and,
since Σ is closed, there exists p ∈ Σ with |x− p| = δ, so that p ∈ ∂Bδ(x). Since none of the balls
Bδ′(x) (δ′ < δ) intersects Σ, the vector p− x is normal to TpΣ and hence x belongs to the image
of X .

Injectivity. Suppose that for some x ∈ Br(Σ) there are two different points p, q ∈ Σ such that
X(p, s) = X(q, t) = x for some s, t ∈ (−r, r). Then we must have |s| = |p − x| = |q − x| = |t|.
Therefore the balls Bσ(p+ σνΣ(p)) with σ ∈ (s, r) if s > 0 and σ ∈ (−r, s) if s < 0 are tangent to
Σ at p and contain the point q ∈ Σ. But this means Σ∩Br(p+(sign s)rνΣ(p)) 6= ∅, a contradiction.
Hence q = p. The map X is therefore bijective and continuous and therefore Σ has a tubular
neighborhood of radius r.

Tubular neighborhood⇒ ball condition. Suppose that Σ has a tubular neighborhood of radius
r. We show that none of the balls Br(p ± rνΣ(p)) (p ∈ Σ) intersects Σ. Assuming the contrary,
there exist two different p, q ∈ Σ such that q ∈ Br(x0) with x0 := p+ rνΣ(p) (the case p− rνΣ(p)
can be handled analogously). Then for some δ < r, the ball Bδ(x0) touches Σ; that is, there
exists q0 ∈ Σ ∩ ∂Bδ(x0) with δ := |q0 − x0| = dist(x0,Σ) < r and thus Tq0Σ coincides with
Tq0∂Bδ(x0) and hence x0 = q0 +δνΣ(q0). But sinceX : Σ× (−r, r)→ Br(Σ) is bijective, we have
q0 = Π(x0) = p which implies p ∈ Bδ(p+ rνΣ(p)), a contradiction to p /∈ Br(p+ νΣ(p)). Hence
Σ satisfies the uniform ball condition of radius r.

The number rΣ. Suppose that Br(p + srνΣ(p)) ∩ Σ = ∅ for all p ∈ Σ, s ∈ {−1, 1}, and
r ∈ (0, rΣ). For fixed s ∈ {−1, 1} and p ∈ Σ, the ball BrΣ(p + srΣνΣ(p)) is the union of the
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balls Br(p+ srνΣ(p)) (r ∈ (0, rΣ)) and hence we obtain BrΣ(p+ srΣνΣ(p))∩Σ = ∅. Therefore Σ
satisfies the uniform ball condition of radius rΣ and has a tubular neighborhood of radius rΣ.

(ii) We show that every compact C2−-hypersurface Σ satisfies a uniform ball condition.
(ii.a) For given ε > 0, we first prove that there is a number δ > 0 such that every surface

piece Σ∩Bδ(p0) (p ∈ Ω) satisfies a ball condition at p0. It is sufficient to consider the case p0 = 0
and νΣ(p0) = en = (0, . . . , 0, 1), since the assertion for general p0 ∈ Σ and νΣ(p0) follows by
using an appropriate rotation and translation. We choose a local coordinate system Σ∩Bδ(0) =
{(u, h(u)) : u ∈ Uδ} for some open subset Uδ ⊂ Rn−1 and a C1,1-function h : Uδ → R. The lower
half sphere of ∂Br(ren) and the upper half sphere of ∂Br(−ren) are parametrized by (u, kr(u))
and (u,−kr(u)), respectively, where kr is defined by

kr(u) := r −
√
r2 − |u|2 for u ∈ Br(0) ⊂ Rn−1.

The ball condition requires that the following inequality is satisfied.

−kr(u) ≤ h(u) ≤ kr(u) for u ∈ Br(0) ∩ Uδ.(A.8)

In order to guarantee this condition, we seek a sufficient upper bound for the radius r. Fix
v ∈ Rn−1 with |v| = 1 and consider the rescaled functions h̃(s) := h(rsv) and k̃(s) := kr(rsv) =

r(1 − (1 − s2)1/2) for s ∈ (−1, 1). Then h̃(0) = h̃′(0) = k̃(0) = k̃′(0) = 0 and h̃′′(s) = r2v ·
(∇2h(srv))v and k̃′′(s) = r(1− s2)−3/2. For t ∈ (0, 1) this yields

k̃(t)− h̃(t) =

∫ t

0

∫ s

0
(k̃′′(s′)− h̃′′(s′))ds′ds

=

∫ t

0
(t− s)

(
r(1− s2)−3/2 − r2v · (∇2h(srv))v

)
ds

≥
∫ t

0
(t− s)

(
r − r2|∇2h(srv)|

)
ds.

The integrand is non-negative if we choose r ≤ sup{|∇2h(u)| : u ∈ Uδ}−1 and δ > 0 such that
the supremum is finite. In this case both k̃ − h̃ and k̃ + h̃ are non-negative and hence the local
ball condition (A.8) is satisfied. This means that Σ ∩Bδ satisfies the ball condition at p0 = 0.

(ii.b) Next we prove an estimate of sup{|∇2h(u)| : u ∈ Uδ} in terms of the global quantity
‖LΣ‖∞. We may again assume that p0 = 0 and νΣ(p0) = en. Letting where p = (u, h(u)),
we want to express the local map Uδ 3 u 7→ ∇2h(u) in terms of the global map Σ 3 p 7→
LΣ(p) = −∇ΣνΣ(p). Let ν(u) := νΣ(u, h(u)) and L(u) := LΣ(u, h(u)). From (A.4) we obtain
ν(u) = (ν(u)|en)(en − ∇h(u)) and therefore Pν(u) = −(ν(u)|en)∇h(u) with P := I − en ⊗ en.
The identities h(0) = 0 and∇h(0) = 0 yield ∇ΣνΣ(p0) = ∇ν(0) = ∇2h(0). Moreover,

−L(u) = ∇ΣνΣ(p) = τ jΣ(p)⊗ ∂ujνΣ(u, h(u)) = ∇ν(u) + (τ jΣ(p)− ej)⊗ ∂jν(u),

where τ jΣ(p) tends to ej as p→ p0. A straightforward computation gives

∇2h(u) = ∇
(
− Pν(u)

ν(u) · en

)
= −P∇ν(u)P

ν(u) · en
+
Pν(u)⊗ ((∇ν(u))en)

(ν(u)|en)2
.(A.9)

Since Σ is compact, the quantities νΣ and τ jΣ are uniformly continuous and thus ν(u) → ν(0)

and τ jΣ(p)→ ej as p tends to p0, uniformly with respect to p0 ∈ Σ. Hence for some δ(ε) > 0 and
all p0, we have

‖∇2h‖L∞(Uδ) ≤ ‖∇ΣνΣ‖L∞(Σ) + ε.

(ii.c) The previous steps imply that for all r < ‖∇ΣνΣ‖−1
∞ = ‖LΣ‖−1

∞ , there is a number
δ = δ(r) > 0 such that every part Σ ∩ Bδ(p0) (p0 ∈ Σ) satisfies the uniform ball condition of
radius r at the point p0. Since Σ is compact, there exists r ∈ (0, ‖LΣ‖−1) such that Σ satisfies the
uniform ball condition of radius r.
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Next, we prove the local Lipschitz continuity of X−1 = (Π, d) : x = p + sνΣ(p) 7→ (p, s).
The signed distance d is Lipschitz with constant 1 and by Proposition A.12, the map X−1

is continuous. For every x0 ∈ Br(Σ) there exists ε > 0 such that Bε(x0) ⊂ Br(Σ) and
distΣ(Π(x2),Π(x1)) < 2‖LΣ‖∞ for x1, x2 ∈ Bε(x0). For xj = pj + d(xj)νΣ(pj) ∈ Bε(x0)
(j ∈ {1, 2}), we obtain

|x2 − x1| ≥ |p2 − p1| − |d(x2)||νΣ(p2)− νΣ(p1)| − |d(x2)− d(x1)||νΣ(p2)|

≥ |p2 − p1| − |d(x2)|‖LΣ‖∞√
2

distΣ(p2, p1)− |x2 − x1|

≥ |p2 − p1| − |d(x2)|‖LΣ‖∞√
2

|p2 − p1|
2− ‖LΣ‖∞ distΣ(p2, p1)

− |x2 − x1|.

Therefore Proposition A.12 implies that X−1 is locally Lipschitz.
It remains to prove the estimate for the principal curvatures. Fix an arbitrary point p ∈ Σ

and a principal curvature direction v ∈ TpΣ so that LΣv = κv and |κ| ≤ ‖LΣ‖∞. By means
of a parametrization over TpΣ and by reduction to the case p = 0 and νΣ(p) = en, the ball
condition yields the inequality |h(tv)| ≤ kr(t) := r−

√
r2 − t2 for some δ ∈ (0, r] and all |t| ≤ δ.

Using kr(0) = k′r(0) = 0 and k′′r (0) = 1/r, we obtain |d2h(tv)/dt2|t=0| ≤ 1/r and therefore
|κ| = |κv · v| = |∇2h(0)(v, v)| ≤ 1/r. Taking sequences (pn)n, (vn)n, and (κn)n with vn ∈ TpnΣ,
LΣvn = κnvn, and |κn| → ‖LΣ‖∞, we obtain the desired inequality ‖LΣ‖∞ ≤ 1/r.

(iii) Let Σ be of class Ck+1 (k ≥ 1). For τ ∈ TpΣ and s ∈ R, we obtain X ′(p, t)(τ, s) =
τ + t(∇ΣνΣ)(p)τ + sνΣ(p). If X ′(p, t)(τ, s) = 0, then (PΣ(p) + t(∇ΣνΣ)(p))τ = 0 and sνΣ(p) = 0.
Using |PΣ(p) + t(∇ΣνΣ)(p)| ≥ 1 − |t||∇ΣνΣ| > 0 and |νΣ(p)| = 1, this implies (τ, s) = 0 and
therefore X ′(p, t) : TpΣ × R → Rn is bijective. By the inverse function theorem, the map X is a
Ck-diffeomorphism. �

A.18. Lemma (A level function [cf. PS13]). Let Σ ⊂ Rn be a closed (possibly unbounded and possibly
disconnected) hypersurface with tubular neighborhood of radius r > 0. Then Σ is a level set Σ =
ϕ−1({0}) with a function ϕ ∈ C1(Rn), which has the following properties:

(i) ∇ϕ|Σ is a continuous unit normal field on Σ,
(ii) ϕ(x) ∈ {−1, 1} for x ∈ Rn \Br(Σ).

Proof. We extend the construction of [PS13, Section 4.2], which is valid for compact connected
hypersurfaces. Let Σj and Ωk denote the at most countably many connected components of Σ
and Rn \Σ, respectively. For every j, the component Σj is a closed connected hypersurface and
hence there are precisely two domains Ωk such that Σj ⊂ ∂Ωk [cf. Sam69].

In the terminology of graph theory, the vertices V := {Ωk} and the edges E = {Σj} form a
connected graph (V, E) with two vertices Ωk, Ωl being adjacent if and only if Ωk ∩Ωl 6= ∅. Since
there exists precisely one edge Σj ⊂ ∂Ωk ∩ ∂Ωl that joins Ωk to Ωl, the graph is undirected and
simple. Suppose that (Ωk1 ,Ωk2 , . . . ,Ωkm) is a cycle with distinct vertices Ωkl (l ∈ {1, 2, . . . ,m})
and corresponding edges (Σj1 ,Σj2 , . . . ,Σjm). This means Σjl ⊂ ∂Ωkl ∩ ∂Ωkl+1

for l < m and
Σjm ⊂ ∂Ωkm∩∂Ωk1 . Then there exists a closed curve γ : [1/2,m+1/2]→ Rn such that γ(l) ∈ Σjl
for all l, γ(l − t) ∈ Ωkl for all l, t ∈ (0, 1) and γ(m+ t) ∈ Ωk1 for all t ∈ (0, 1/2). The component
Σj1 separates Rn in two components U1 and U2 such that Ωk1 ⊂ U1. But then γ(t) belongs to
U2 for all t ∈ (1,m + 1/2], which is a contradiction. Hence the graph contains no cycles and is
therefore bipartite. Consequently, there exists a function χ : Rn → {−1, 0, 1} such that

(i) χ(x) = 0 if and only if x ∈ Σ,
(ii) χ is constant in every connected component Ωk of Rn \ Σ,

(iii) if Ωk ∩ Ωl 6= ∅, then (χ(Ωk), χ(Ωl)) = (−1, 1) or (χ(Ωk), χ(Ωl)) = (1,−1).
On the connected components Σj of Σ, we can therefore choose the orientation in such a

way that the normal ν|Σj points into Ω+ := {x ∈ Rn : χ(x) = 1}. We also put Ω− := {x ∈
Rn : χ(x) = −1}. Then Ω+ ∪ Ω− = Rn \ Σ and the signed distance satisfies d(x) > 0 for
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x ∈ Ω+ ∩Br(Σ) and d(x) < 0 for x ∈ Ω− ∩Br(Σ). We fix some ψ ∈ D(R) such that ψ(t) = 1 for
|t| ≤ 1/3, ψ(t) = 0 for |t| ≥ 2/3. Then a possible choice for ϕ is

ϕ(x) =

{
d(x)ψ(d(x)/r) + (1− ψ(d(x)/r)) sign(d(x)) for x ∈ Br(Σ),

χΩ+(x)− χΩ−(x) for x /∈ Br(Σ),
(A.10)

In particular, we obtain∇ϕ(x) = ∇d(x) = νΣ(Π(x)) for x ∈ Br/3(Σ). �

A.19. Corollary. Every domain Ω ⊂ Rn (n ≥ 2) that contains a compact C2-hypersurface Σ can be
decomposed into

Ω = Ω+ ∪ Σ ∪ Ω− with Ω± = {x ∈ Ω : ϕΣ(x) ≷ 0},
where ϕΣ denotes a level function as in Lemma A.18.

The next results deals with important geometric quantities of C2−-hypersurfaces.
A.20. Proposition. Let Σ ⊂ Rn be a compactC2−-hypersurface with tubular neighborhoodBr(Σ) and
X : (p, s) 7→ x = p + sνΣ(p) be the corresponding diffeomorphism with inverse X−1 = (Π, d). Then
the following assertions are valid.

(i) The map

M : x 7→ [I − d(x)LΣ(Π(x))]−1, Br(Σ)→ Rn×n

is essentially bounded and, for almost all x ∈ Br(Σ) and p = Π(x) ∈ Σ, the linear map M(x)
satisfies M(x)νΣ(p) = νΣ(p) and maps TpΣ onto itself.

(ii) The map d is of class C2− and satisfies∇d(x) = M(x)νΣ(p) = νΣ(p).
(iii) The map Π is of class C1− and satisfies

Π′(x) = PΣ(Π(x))M(x) = M(x)− νΣ(p)⊗ νΣ(p) = Π′(x)>.

Proof. Let x ∈ Br(Σ) and p = Π(x). In view of |d(x)LΣ(p)| < r · r−1 = 1, the matrix I −
d(x)LΣ(p) has maximal rank. It is also symmetric and in view of LΣνΣ = 0, it satisfies [I −
d(x)LΣ(p)]νΣ(p) = νΣ(p) for all p ∈ Σ. Therefore its inverse M(x) = [I − d(x)LΣ(p)]−1 satisfies
M(x)νΣ(p) = νΣ(p) and maps TpΣ onto itself.

Let φ : U ⊂ Rn−1 → Σ, u 7→ p = φ(u) be a chart for Σ. For each λ ∈ (−r, r), the identities
Π(X(φ(u), λ)) = φ(u) and x = X(φ(u), λ) imply

τi(p) = ∂uiφ(u) = Π′(x)(τi(p) + λ∂iνΣ(p)) = Π′(x)(I − λLΣ(p))τi(p),

Π′(x)(I − λLΣ(p))νΣ(p) = Π′(x)νΣ(p) = lim
s→0

1

s
(Π(x+ sνΣ(p))−Π(x)) = 0.

Hence Π′[I − dLΣ ◦Π] = PΣ and this yields Π′ = PΣ[I − dLΣ ◦Π]−1 = PΣM = M − νΣ ⊗ νΣ =
MPΣ = Π′>. Using the relations d(x) = (x− p) · νΣ(p) and (∂iνΣ(p)|νΣ(p)) = 0, we obtain

∇d(x) = νΣ(p)− νΣ(p)Π′(x) + Π′(x)∇ΣνΣ(p)d(x)νΣ(p) = νΣ(p). �

As in [PS13], we consider hypersurfaces that are defined in tubular neighborhoods of a
given hypersurface.
A.21. Proposition. Let Σ ⊂ Rn be a closed hypersurface of class Ck+1 [resp. Ck+1−] (k ≥ 1) with
tubular neighborhood of radius r > 0 and let h ∈ Ck(Σ) [resp. h ∈ Ck−(Σ)] satisfy ‖h‖∞ < r. Then
the following assertions are valid.

(i) The image Σh = θh(Σ) of θh : p 7→ p + h(p)νΣ(p) is a closed hypersurface of class Ck [resp.
Ck−] and the map θh : Σ→ Σh is a Ck-diffeomorphism [resp. Ck−-diffeomorphism if k ≥ 2 and a
homeomorphism with locally Lipschitz continuous inverse if k = 1].

(ii) The normal νΣh of Σh is [in the case k = 1 almost everywhere] given by

νΣh(p+ h(p)νΣ(p)) =
νΣ(p)−Mh(p)∇Σh(p)√

1 + |Mh(p)∇Σh(p)|2
with Mh(p) := (I − h(p)LΣ(p))−1.(A.11)
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(iii) Suppose in addition that ‖∇Σh‖∞ <∞. Then the normal of Σh satisfies the inequality

νΣh(p+ h(p)νΣ(p)) · νΣ(p) ≥ (1 + ‖Mh∇Σh‖2∞)−1/2 > 0 for p ∈ Σ.

(iv) The following integral transformation formula is valid for f ∈ L1(Σh).∫
Σh

f dΣh =

∫
Σ
f◦θh det(PΣ − hLΣ)

√
1 + |Mh∇Σh|2 dΣ.(A.12)

Proof. (i) Let φ : Rn−1 ⊃ U ∈ u 7→ p ∈ Σ be a parametrization for Σ and let θh : Σ → Σh,
p 7→ p+ h(p)νΣ(p). Then the derivative θ′h : TpΣ→ Tθh(p)Σh is given by

θ′h = PΣ + νΣ ⊗∇Σh+ h∇ΣνΣ = PΣ + νΣ ⊗∇Σh− hLΣ.(A.13)

If θ′h(p)u = 0 for some u ∈ TpΣ, then u − h(p)LΣ(p)u = 0. The assumption ‖h‖∞ < r implies
|h(p)(LΣ)(p)| < 1 and this yields u = 0. Therefore θ′h is bijective for all p ∈ Σ and thereby
θh : Σ → Σh is a local diffeomorphism. The map θh is also surjective and coincides with a
restriction of the mapX : Br(Σ)→ Σ×(−r, r) from Proposition A.17 to {(p, t) ∈ Σ×(−r, r) : t =
h(p)}. SinceX is bijective, the map θh is a global diffeomorphism and θh◦φ is a parametrization
for Σh, which shows that Σh is of class Ck [Ck−].

(ii) A derivation of (A.11) can be found in [PS13, Section 3.2]. The inverse Mh(p) of I −
h(p)LΣ(p) is well-defined because of ‖h‖∞ < r.

(iii) This estimate is a direct consequence of (A.11).
(iv) By means of the parametrization p = ϕ(u) we obtain dΣ(p) =

√
g(u) du where g =

detG, G = ϕ′>ϕ′, as well as dΣh(θh(p)) =
√
gh(u) du, gh = detGh. Since θh ◦ϕ is a parametriza-

tion for Σh, we have Gh = [θ′h◦ϕ ϕ′]>θ′h◦ϕ ϕ′ = ϕ′>[θ′h◦ϕ]>[θ′h◦ϕ]ϕ′. Hence identity (A.13)
yields

[θ′h◦ϕ]>[θ′h◦ϕ] = (PΣ − hLΣ)2 +∇Σh⊗∇Σh = M−2
h (PΣ +M2

h∇Σh⊗∇Σh).

For computing detGh, we recall two facts from linear algebra. First, for any two isomor-
phisms A : X → Y and B : Y → X between n-dimensional vector spaces X and Y we have
detX(BA) = detY (AB), since the determinant detX in X is given by the identity detX(C) =
V (Cx1, . . . , Cxn)/V (x1, . . . , xn) for any C ∈ L(X), any volume form V in X and any basis (xj)
of X . Second, we have det(I + a⊗ b) = 1 + a · b for a, b ∈ Rn. These facts yield

gh = detRn−1(ϕ′>ϕ′) detRn−1(ϕ′−1[θ′h◦ϕ]>[θ′h◦ϕ]ϕ′)

= g detRn−1(ϕ′−1M−2
h ϕ′) detRn−1(ϕ′−1PΣϕ

′ + ϕ′−1M2
h∇Σh⊗ ϕ′>∇Σh)

= g detTpΣ(PΣ − hLΣ)2(1 + |Mh∇Σh|2).

Therefore the asserted equation (A.12) follows. �

A.4. Covariant differentiation

Let Γ be a C3-hypersurface of Rn, equipped with the induced Euclidean metric (v|w)g(p) = v ·w
for v, w ∈ TpΓ ⊂ Rn and p ∈ Γ. We let τ1, . . . , τn−1 be a basis of tangent vectors on TpΓ with
dual basis τ1, . . . , τn−1 so that τj · τk = δkj , we let ν denote the unit normal on Γ, and we let
P = I−ν⊗ν denote the projection onto the tangent space. Moreover, we let Ck(Γ;TΓ) (k ∈ N0)
denote the Banach space of all tangential vector fields v = vατα of class Ck on Γ.

A.4.1. First order covariant derivatives. We define the (partial) covariant derivative ∇̃jv with
respect to the coordinate xj by

v;j := ∇̃jv := P∂j(v
ατα) = (∂jv

α + Λαjβv
β)τα =: vα;jτα.
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Here Λkij is the Christoffel symbol of the second kind. Moreover, we let

∇̃v := ∇̃Γv := vα;β τα ⊗ τβ = (∂βv
α + Λαβγv

γ)τα ⊗ τβ for v ∈ C1(Γ;TΓ),

so that

∇̃uv := [∇̃v]u = (∂βv
αuβ + Λαβγv

γuβ)τα for u ∈ C(Γ;TΓ).

This definition of ∇̃uv coincides with the Levi-Civita connection on Γ and ensures that ∇̃uv is
again a tangential vector field.

For a possibly non-tangential vector field u = v + wν = vατα + wν ∈ C1(Γ;Rn) we define

u;k := ∇̃ku := P∂k(v
ατα + wν) = ∇̃k(vατα)− wlkατα,(A.14)

where ljk denote the components of the Weingarten tensor L = lαβτ
α ⊗ τβ = −∇Γν. Then

∂ku = ∇̃ku+ [ν ⊗ ν]∂ku =
(
vα;k − wgαβlkβ

)
τα + (vαlkα + ∂kw) ν.

By abbreviating vα := gαγv
γ , we rewrite the surface gradient∇Γu = τα ⊗ ∂αu as

∇Γu = τα ⊗ τβ (vβ;α − wlαβ) + τα ⊗ ν(vβlαβ + ∂αw)

= [∇̃v]> − wL+ (Lv +∇Γw)⊗ ν.
(A.15)

With the mean curvature H := trL = −divΓ ν, the surface divergence divΓ u satisfies

divΓ u := τα · ∂αu = vα;α − wH = divΓ v − wH.(A.16)

The symmetric part DΓ(u) of P [∇Γu]P is given by

DΓ(u) := sym(P [∇Γu]P ) = 2−1τα ⊗ τβ(vα;β + vβ;α)− wL = 2−1(∇̃v + [∇̃v]>)− wL.(A.17)

We note that trDΓ(u) = divΓ u.
Second order tensors have the form Sαβτα⊗ τβ , Sαβτα⊗ τβ , Sαβτα⊗ τβ , or Sαβτα⊗ τβ , and

their first order covariant derivatives are given by

Sij ;k = ∂kS
ij + ΛiαkS

αj + ΛjαkS
iα, Sij;k = ∂kS

i
j + ΛiαkS

α
j − ΛαjkS

i
α,

Sij;k = ∂kSij − ΛαikSαj − ΛαjkSiα, Si
j
;k = ∂kSi

j − ΛαikSα
j + ΛjαkSi

α.

Then the surface divergence of a second order symmetric tensor Sαβτα ⊗ τβ is given by

divΓ S = divΓ(Sαβτα ⊗ τβ) := [∂γ(Sαβτα ⊗ τβ)]τγ = Sαβ ;ατβ + SαβlαβνΓ.(A.18)

For symmetric S = Sαβτα ⊗ τβ and u = vατα + wν we have

divΓ(Su) = divΓ S · u+ S : ∇Γu.(A.19)

By using the identity ∂kτi · τj = Λαikgαj , we can easily deduce the useful identities

gij;k = 0, gij ;k = 0.(A.20)

Thus, the metric tensor P = gijτi ⊗ τj = gijτ
i ⊗ τ j satisfies

divΓ P = Hν.(A.21)

The components lij = −τi · ∂jν of the Weingarten tensor satisfy the relations

lij;k = lik;j = ljk;i.(A.22)
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More generally, let T be a tensor with the components T i1···iaj1···jb , where we agree on not raising
or lowering indices when the order between the contravariant and the covariant indices is not
indicated. Then the covariant derivative of T with respect to xk is given by

T i1···iaj1···jb;m = ∂mT
i1···ia
j1···jb +

a∑
p=1

Λ
ip
αmT

i1···ip−1αip+1···ia
j1···jb −

b∑
p=1

ΛαjimT
i1···ia
j1···jp−1αjp+1···jb .(A.23)

For two tensors S and T the following product rule is valid.(
Si1···iaj1···jb T

k1···kc
l1···ld

)
;m

= Si1···iaj1···jb;m T
k1···kc
l1···ld + Si1···iaj1···jb T

k1···kc
l1···ld;m.(A.24)

A.4.2. Relation to bulk differential operators. Let Ω ⊂ Rn be open and let Γ ⊂ Ω be a C3-
hypersurface which admits a C1-class tubular neighborhood map (x, s) 7→ X(x, s) = x+ sν(x)
from an open subset U ⊂ Γ × R with U ⊃ Γ × {0} onto V ⊂ Ω. Let (Π, d) = X−1 so that
Π(x+ sν(x)) = x and d(x+ sν(x)) = s. For a vector field u : V → Rn we let

u = v + wν ◦Π, v := [P ◦Π]u, w := (ν ◦Π|u).

Then we easily find the following identities on Γ.

∇u = ∇Γu+ ν ⊗ ∂νu,(A.25a)
∇Γu = ∇Γv − wL+∇Γw ⊗ ν,(A.25b)

div u = divΓ u− (ν|∂νu).(A.25c)

A.4.3. Second order covariant derivatives. For a tangential vector field v = vατα, we con-
sider the second order covariant derivatives

∇̃j∇̃k(vατα) = ∇̃j(vα;kτα) = vα;kjτα.

The operators ∇̃j and ∇̃k do not necessarily commute but satisfy the relations

vi;jk − vi;kj = Riαjkv
α, vi;jk − vi;kj = −vαRαijk,(A.26)

where Riljk = τ i ·R(τj , τk)τl are the components of the Riemann curvature tensor R, given by

Riljk = ∂jΛ
i
kl − ∂kΛijl + ΛijαΛαkl − ΛikαΛαjl, gimR

i
ljk =: Rmljk.

This tensor has the symmetries

Rijkl +Riklj +Riljk = 0, Rijkl = −Rijlk = −Rjikl = Rklij .

For a hypersurface Γ in Rn we have

Rijkl = likljl − lilljk.(A.27)

A.4.4. The tangential Laplace-Beltrami operator. We define

∆̃v := ∆̃Γv := gαβ∇̃α∇̃βv = gαβvγ ;αβ τ
γ for v ∈ C2(Γ;TΓ).

This definition is consistent with ∆̃v = −∇̃∗∇̃v, where ∇̃∗ is the formal L2(Γ)-adjoint of ∇̃,
which means that ∇̃∗W (W ∈ C1(Γ;TΓ⊗ T ∗Γ)) is defined by the relation

(∇̃∗W |v)L2(Γ;TΓ) = (W |∇̃v)L2(Γ;TΓ⊗T ∗Γ) for all v ∈ C1
c (Γ;TΓ).

To check this, we write W = Wα
β τα ⊗ τβ and ∇̃v = vα;β τα ⊗ τβ and obtain

(W |∇̃v)L2(Γ;TΓ⊗T ∗Γ) =

∫
Γ
Wτα · ∇̃αv dΓ

=

∫
Γ
gαβW γ

βτγ · vδ ;ατδ dΓ =

∫
Γ
gαβW γ

βgγδv
δ
;α dΓ.
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From divΓ v = vα;α, identities (A.20), and the surface divergence theorem, we infer that

(W |∇̃v)L2(Γ;TΓ⊗T ∗Γ) = −
∫

Γ
gαβW γ

β;αgγδv
δ dΓ = −(gαβW γ

β;ατγ |v)L2(Γ;TΓ),

and thus ∇̃∗W = −gαβwγβ;α τγ . This yields ∆̃v = −∇̃∗∇̃v.
Finally, for u ∈ C1(Γ;TΓ) and v ∈ C2(Γ;TΓ), we calculate

(∆̃v|u)L2(Γ;TΓ) =

∫
Γ
gαβvγ ;αβτγ · τδuδ dΓ

= −
∫

Γ
vγ ;αu

δ
;βg

αβgγδ dΓ = −
∫

Γ
∇̃v : ∇̃u dΓ,

(A.28)

where S : T = tr(S>T ) = (Sτα|Tτα). Therefore ∆̃ is symmetric and negative semi-definite.
For a non-tangential vector field u = v + wν, equation (A.14) yields

∆̃(v + wν) = ∆̃v − L∇Γw − w∇ΓH.(A.29)



APPENDIX B

Functional analytic methods

B.1. Function spaces

B.1.1. Classical function spaces. Let Ω be an open subset of Rn (n ∈ N), let X be a Banach
space over K ∈ {R,C}, and let k ∈ N0. The vector space Ck(Ω;X) consists of the k times con-
tinuously Fréchet-differentiable functions from Ω to X . We abbreviate Ck(Ω) := Ck(Ω;K) and
Ck(Ω)n := Ck(Ω;Kn), analogously for all subsequent spaces. The subspace Ck(Ω;X) consists
of those u ∈ Ck(Ω;X) that have a continuous extension onto the closure Ω of Ω, together will
all derivatives up to order k. The Banach space BCk(Ω;X) consists of all bounded functions
u ∈ Ck(Ω;X) with bounded derivatives up to order k, equipped with the norm

‖u‖BCk(Ω;X) := sup{‖∂βxu(x)‖X : β ∈ Nn0 , |β| ≤ k, x ∈ Ω}.

The space BUCk(Ω;X) consists of all bounded, uniformly continuous functions u ∈ Ck(Ω;X)
with bounded, uniformly continuous derivatives up to order k. For an interval J ⊂ R, we
let C0(J ;X) = {u ∈ C(J ;X) : ‖u(t)‖X → 0 as t → ∞}. For given Banach spaces X and Y
and an open subset U ⊂ X , the spaces Ck(U ;Y ), BCk(U ;Y ), and BUCk(U ;Y ) are defined
analogously. For k ∈ N, α ∈ (0, 1], and f : Rn → X , we define the seminorm

[[f ]]Ck,α := sup
x 6=y

‖f (k)(x)− f (k)(y)‖X
|x− y|α

.

The space Ck,α(Rn;X) :=
{
f ∈ Ck(Rn;X) : [[f ]]Ck,α <∞

}
is called Hölder space if α < 1 and

Lipschitz space if α = 1. We also write Ck+α := Ck,α if α ∈ (0, 1) and Ck− := {f ∈ Ck−1 :

f (k−1) is locally Lipschitz}. Rademacher’s theorem implies that a function u ∈ C(Rn) belongs
to C0,1(Rn) if and only if it is almost everywhere differentiable and its derivative is bounded.

The support suppu of a function u ∈ C(Ω;X) is the closure of the set {x ∈ Ω : ϕ(x) 6= 0}
in Rn. The space Ckc (Ω;X) consists of all u ∈ Ck(Ω;X) such that suppu is compact and a
subset of Ω. We let D(Ω;X) = C∞c (Ω;X) denote the Fréchet space of test functions. The
space of distributions D′(Ω;X) consists of all continuous linear maps D(Ω) → X . A function
u ∈ C∞(Rn;X) is called rapidly decreasing, if x 7→ |x||α|∂βxu(x) is bounded on Rn for every
pair of multi-indices α, β ∈ Nn0 . Here we let |α| = |α1| + · · · + |αn| and ∂βx = ∂β1

1 · · · ∂
βn
n . The

Schwartz space of rapidly decreasing functions is denoted by S(Rn;X) and the space of tempered
distributions S ′(Rn;X) consists of all continuous linear maps S(Rn)→ X .

Given a measure space (Ω,A, µ), we let L0(Ω;X) := L0(Ω,A, µ;X) denote the vector space
of all equivalence classes of strongly µ-measurable functions Ω → X . Given p ∈ [1,∞] and
m ∈ N0, we employ the usual Bochner-Lebesgue space Lp(Ω;X) = Lp(Ω,A, µ;X) and the Sobolev
space Wm

p (Ω;X). The Bessel potential space of order s ∈ R is defined by

Hs
p(Rn;X) :=

{
u ∈ S ′(Rn;X) : ‖f‖Hs

p(Rn;X) = ‖F−1(ξ 7→ (1 + |ξ|2)s/2(Ff)(ξ))‖Lp(Rn) <∞
}
.

The operator Jσ : f 7→ F−1(ξ 7→ (1 + |ξ|2)σ/2(Ff)(ξ)) is called Bessel potential of order σ and
its realization Jσ : Hs+σ

p (Rn;X) → Hs
p(Rn;X) is an isomorphism; that is, a bijective, bounded

linear map with bounded inverse.

143
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For s = m ∈ N0 and p ∈ (1,∞), the spaces Hm
p (Rn;X) and Wm

p (Rn;X) coincide with
equivalent norms if and only if X is of class HT [McC84; Zim89]. For p ∈ [1,∞), we have
(Hs

p(Rn))′ = H−sp′ (Rn) [BL76]. The Sobolev-Slobodeckiı̆ space W s
p (Ω;X) of order s ∈ (0,∞) \ N0

with s = [s] + {s}, [s] ∈ N0, {s} ∈ (0, 1), and p ∈ [1,∞) is defined by

W s
p (Ω;X) :=

u ∈ D′(Ω;X) : ‖u‖W s
p (Ω;X) := ‖u‖

W
[s]
p (Ω;X)

+
∑
|α|=[s]

[[∂αu]]
W
{s}
p (Ω;X)

<∞

 ,

as in [Ama97, p. 10] and [Tri10, Theorem 2.5.7], where the seminorm [[·]]W θ
p (Ω;X) is defined by

[[u]]W θ
p (Ω;X) :=

(∫
Ω

∫
Ω

|u(x)− u(y)|pX
|x− y|n+θp

dx dy

)1/p

for θ ∈ (0, 1).

We also refer to [Tri95, Theorem 4.2.4] and [Lud14] for some properties of this norm and
[KPW13, Section 3.2] for an equivalent norm. Following [Joh95; RS96; Tri10; SSS12], we intro-
duce Besov spaces and Triebel-Lizorkin spaces over Rn in terms of the Fourier transform F on
S ′(Rn) and a partition of unity. Let {ϕj}∞j=0 ⊂ S(Rn) satisfy the following properties.

(i) There exist A,B,C ∈ (0,∞) such that suppϕ0 ⊂ BA, suppϕj ⊂ BC2j+1 \ BB2j−1 for j ∈ N.
(ii) For every α ∈ Nn0 there is ca ∈ (0,∞) such that 2j|α||Dαϕj(x)| ≤ cα for all x ∈ Rn, j ∈ N0.

(iii)
∑∞

j=0 ϕj(x) = 1 for all x ∈ Rn.
The Besov space Bs

pq(Rn;X) and the Triebel-Lizorkin space F spq(Rn;X) of order s ∈ R, integral-
exponent p ∈ [1,∞], and sum-exponent q ∈ [1,∞] are defined by

Bs
pq(Rn;X) := {u ∈ S ′(Rn;X) : ‖u‖Bspq :=

∥∥{2sjF−1[ϕjFu]}j
∥∥
lq(Lp)

<∞},

F spq(Rn;X) := {u ∈ S ′(Rn;X) : ‖u‖F spq :=
∥∥{2sjF−1[ϕjFu]}j

∥∥
Lp(lq)

<∞}.

We recall that the identity

W s
p (Rn;X) = Bs

pp(Rn;X) for s ∈ (0,∞) \ N, p ∈ (1,∞),

is valid for every Banach space X [see Ama97, (5.8), (5.9)], whereas

Hm
p (Rn;X) = Wm

p (Rn;X) for m ∈ N0, p ∈ (1,∞),

is valid if and only if X is a Banach space of classHT [McC84; SSS12]. Moreover,

Hs
p(Rn;X) = F sp2(Rn;X) for s ∈ R, p ∈ (1,∞),

is valid if and only if X can be renormed as a Hilbert space [SSS12, Section 2.2].
We collect some properties of interpolation spaces from the monographs [BL76; Lun09;

Tri95]. Let X0 and X1 be Banach spaces with dense embeding X1 ↪→d X0 and let also X , Y ,
Y0, and Y1 be Banach spaces. The space Y is called interpolation space for the couple (X0, X1),
if X1 ↪→ Y ↪→ X0 and if every operator T ∈ B(X0) with T |X1 ∈ B(X1) satisfies T |Y ∈ B(Y ).
For q ∈ [1,∞) and θ ∈ (0, 1), we let Xθ,q = (X0, X1)θ,q denote the real interpolation space and
Xθ = [X0, X1]θ denote the complex interpolation space. The following inequalities are valid.

‖·‖(X0,X1)θ,q ≤ C(θ, q)‖·‖1−θ0 ‖·‖θ1 on X1, ‖·‖[X0,X1]θ ≤ ‖·‖
1−θ
0 ‖·‖θ1 on X1.

If X1 ↪→d Y ↪→d X0, then

(X0, X1)θ,q ↪→d (X0, Y )θ,q, [X0, X1]θ ↪→d [X0, Y ]θ.

If θ ∈ (0, 1), q ∈ (1,∞) and rj : Xj → Yj are isomorphisms with r1 = r0|X1 , then

(r0X0, r1X1)θ,q = r0(X0, X1)θ,q, [r0X0, r1X1]θ = r0[X0, X1]θ.
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For p ∈ [1,∞) and a σ-finite measure space (Ω,A, µ), we have

(Lp(Ω;X0), Lp(Ω;X1))θ,q = Lp(Ω; (X0, X1)θ,q),

[Lp(Ω;X0), Lp(Ω;X1)]θ = Lp(Ω; [X0, X1]θ).

For two sectorial operators A and B in X with commuting resolvents, we have

(X,D(A) ∩D(B))θ,q = DA(θ, q) ∩DB(θ, q) for θ ∈ (0, 1), q ∈ [1,∞].

Let us abbreviate F := F(Rn;X) for F ∈ {Lp,Wm
p ,W

s
p }. In terms of real interpolation,

[Ama97, (5.8), (5.9)] yields the representation

W s
p = Bs

pp =
(
Lp,W

m
p

)
s/m,p

for p ∈ [1,∞), s ∈ (0,∞) \ N, m ∈ N, s < m.

From [Ama97, (5.2)-(5.6), (5.8), (5.15)] we derive the embedding

W s
p ↪→W t

q if s, t ∈ [0,∞), s− n/p > t− n/q, 1 ≥ 1/p > 1/q > 0.

Moreover, from [Ama97, (5.2)-(5.6), (5.8), (5.16)] we obtain

W s
p ↪→ BUCt if s− n/p > t, p ∈ [1,∞).(B.1)

By [Ama97, (5.2), (5.15)], we further have

Bm+ε
pp ↪→Wm

p ↪→ Bm−δ
pp for ε > 0, δ ∈ (0,m), m ∈ N0, p ∈ [1,∞).(B.2)

By [SSS12, Proposition 2.13, Theorem 2.20] and [Ama97, (5.2)] we have

Bs+ε
pp ↪→ Hs

p ↪→ Bs−ε
pp for ε > 0, s ∈ R, p ∈ [1,∞).(B.3)

B.1.2. Regularity of domains, embeddings, and extensions.
B.1. Definition (Cone condition). Given x ∈ Rn, r > 0, θ > 0, v ∈ Rn \ {0}, the set

x+ Cr,θ,v = x+ {y ∈ Rn : y = 0 or |y| ∈ (0, r],∠(y, v) ≤ θ/2}
is called finite cone with vertex x, height r, direction v(x) and opening angle θ. The angle
α = ∠(y, v) ∈ [0, π] between y, v ∈ Rn \ {0} is defined by y · v = |y| |v| cosα.

A domain Ω ⊂ Rn, (n ∈ N), satisfies the cone condition if there exist r > 0, θ > 0 such that
each x ∈ Ω is the vertex of a finite cone x+ Cr,θ,v(x) ⊂ Ω, for some v(x) ∈ Rn \ {0}.
B.2. Definition (Local Lipschitz Condition). A bounded domain Ω ⊂ Rn satisfies the local Lip-
schitz condition, if each x ∈ ∂Ω has a neighborhood Ux ⊂ Rn such that Ux ∩ ∂Ω is the graph of
a Lipschitz continuous function; that is, there is V ⊂ Rn−1, f ∈ C0,1(V ;R) and an orthogonal
transformation Q such that Ux ∩ ∂Ω = x+Q graph f = {x+Q(v, f(v)) : v ∈ V }.
B.3. Theorem. Let Ω ⊂ Rn be a domain, X be a Banach space, p ∈ [1,∞), q ∈ [1,∞], s ∈ R, k ∈ N0.
If Ω satisfies the cone condition, then

Bs+k
pq (Ω;X) ↪→ BCk(Ω;X), if s− n/p > 0.

If Ω satisfies the strong local Lipschitz condition, then

Bs+k
pq (Ω;X) ↪→ BUCk(Ω;X), if s− n/p > 0.

Proof. The assertions for the scalar-valued case X = K are known [AF03, Theorem 7.34, Theo-
rem 7.37]. To obtain the vector-valued result we consider u ∈ W s+k

p (Ω;X) and x′ ∈ X ′. Then
x′◦u belongs toW s+k

p (Ω) with ‖x′◦u‖W s+k
p
≤ ‖x′‖X′‖u‖W s+k

p (X). The scalar-valued embedding

implies x′ ◦ u ∈ BCk(Ω) with ‖x′ ◦ u‖BCk ≤ C‖x′ ◦ u‖W s+k
p

, where C denotes the embedding

constant for W s+k
p (Ω) ↪→ BCk(Ω). Assume in addition that u ∈ S(Rn;X). Then

‖u‖BCk(X) = sup
‖x′‖≤1

‖x′(u)‖BCk ≤ sup
‖x′‖≤1

C‖x′(u)‖W s+k
p
≤ C‖u‖W s+k

p (X).
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Hence the identity is bounded from a dense subset ofW s+k
p (Ω;X) intoBCk(Ω;X). Approxima-

tion yields W s+k
p (Ω;X) ↪→ BCk(Ω;X). The second embedding can be shown analogously. �

B.4. Lemma (Hardy’s inequality [cf. Dur70, Appendix B]). Let p ∈ [1,∞), r ∈ (−1 + 1/p,∞),
T ∈ (0,∞] and letX be a Banach space. If [t 7→ t−rg(t)] ∈ Lp(0, T ;X), then [x 7→ x−r−1

∫ x
0 g(t) dt] ∈

Lp(0, T ;X) and the following inequality is valid.(∫ T

0

∥∥∥∥ 1

x1+r

∫ x

0
g(t) dt

∥∥∥∥p dx)1/p

≤ 1

1 + r − 1/p

(∫ T

0

1

trp
‖g(t)‖p dt

)1/p

.(B.4)

Proof. The result can be proved similarly as in [Dur70, Appendix B], where the case r = 0 is
considered. First let T <∞. We employ the substitution t = xs/T and the continuous version∥∥∥∥∫ T

0
f(t, ·) dt

∥∥∥∥
Lp(µ)

≤
∫ T

0
‖f(t, ·)‖Lp(µ) dt

of Minkowski’s inequality with respect to the measure dµ(x) = dx/xrp. Then(∫ T

0

(
1

x1+r

∫ x

0
‖g(t)‖X dt

)p
dx

)1/p

=

(∫ T

0

(
1

Txr

∫ T

0

∥∥∥g (xs
T

)∥∥∥
X
ds

)p
dx

)1/p

≤ 1

T

∫ T

0

(∫ T

0

1

xrp

∥∥∥g (xs
T

)∥∥∥p
X
dx

)1/p

ds,

provided that the right-hand side is finite. But this follows with the substitution xs/T = u,

1

T

∫ T

0

(∫ T

0

1

xrp

∥∥∥g (xs
T

)∥∥∥p
X
dx

)1/p

ds

≤ 1

T 1+r−1/p

∫ T

0
tr−1/p

(∫ t

0

1

urp
‖g(u)‖pX du

)1/p

dt

≤ 1

1 + r − 1/p

(∫ T

0

1

urp
‖g(u)‖pX du

)1/p

.

By Fubini’s theorem and the finiteness of the right-hand side, the left-hand side is also finite
and this proves Hardy’s inequality for the case T < ∞. The assertion for T = ∞ follows by
taking limits as T →∞. �

B.5. Lemma. Let X be a Banach space, p ∈ [1,∞), T ∈ (0,∞), α ∈ (1/p,∞). Then the following
inequality is valid for every u ∈ L0(0, T ;X) with [t 7→ t−αu(t)] ∈ Lp(0, T ;X).(∫ T

0

1

tαp
‖u(t)‖pX dt

)1/p

≤ 1

2p
1 + α− 1/p

α− 1/p

(∫ T

0

∫ T

0

‖u(t)− u(s)‖pX
|t− s|1+αp

ds dt

)1/p

.

Proof. This inequality can be checked by an inspection of the proof of [PSS07, (6.8)]. �

The spaces Lp(Ω;X),Wm
p (Ω;X),W s

p (Ω;X) were defined intrinsically; that is, by using only
the values of functions at points in Ω. Alternatively, we consider the corresponding spaces of
restrictions to Ω of functions on Rn, defined by

F(Ω;X) := F(Rn;X)|Ω := {u|Ω : u ∈ F(Rn;X)},
‖u‖F(Rn;X)|Ω := inf{‖v‖F(Rn;X) : v ∈ F(Rn;X), v|Ω = u},

where F ∈ {Lp,Wm
p ,W

s
p }. Then we obtain the embeddings

Lp(Rn;X)|Ω ↪→ Lp(Ω;X), Wm
p (Rn;X)|Ω ↪→Wm

p (Ω;X), W s
p (Rn;X)|Ω ↪→W s

p (Ω;X).
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If Ω ⊂ Rn is a bounded domain of cone-type (see [Tri95, Definition 4.2.3]), then

Fmp,2(Rn)|Ω = Hm
p (Rn)|Ω = Wm

p (Ω)

for m ∈ N, p ∈ (1,∞) [Tri95, Theorem 4.2.4]. The Besov space Bs
pq(Ω) is also given as the real

interpolation space

Bs
pq(Ω) =

(
Lp(Ω), Hm

p (Ω)
)
s/m,q

, s ∈ (0,∞), p ∈ [1,∞), q ∈ [1,∞],

where m is the smallest integer larger than s [AF03, p. 7.32]. If Ω = Rn, we can choose any
m ∈ N with m > s [Tri95, 2.4.2 Remark 2].

The trivial extension by zero is bounded from Lp(Ω;X) to Lp(Rn), thus the spaces Lp(Ω;X)
and Lp(Rn)|Ω coincide with equal norms. However, this operator does not map continuous
functions on Ω to continuous functions on Rn and is hence not necessarily bounded from
Wm
p (Ω;X) to Wm

p (Rn). In fact, function spaces on domains defined via restriction maybe
smaller then those defined intrinsically, by nonexistence of extension operators [AF03, Para-
graphs 3.20, 6.47.1, 7.32].

Extension theorems guarantee the existence of bounded extension operators, if the bound-
ary of Ω is sufficiently regular. Then it follows immediately, that the space of restrictions co-
incides with the intrinsically defined space and the corresponding norms are equivalent, see
Corollary B.8 for an example. This is very useful to transfer properties of function spaces on
Rn to those on domains.

We will employ the following extension operators from Ω = Rn+ to Rn (n ∈ N), which are
defined in [AF03, Theorem 5.19] by higher order reflections.
B.6. Theorem. Let k ∈ N0. We define extension operators Ek and Ekα (α ∈ Nn0 , |α| ≤ k) from Rn+ to
Rn by (the sum over 1 ≤ j ≤ 0 is considered as zero)

Eku(x′,−xn) :=
∑k

j=1
λj,ku(x′, jxn),

Ekαu(x′,−xn) :=
∑k

j=1
(−j)αnλj,ku(x′, jxn),

where u ∈ L1,loc(Rn+), x′ ∈ Rn−1, xn ∈ R+, and the numbers λj,k solve the linear system∑k

j=1
(−j)lλj,k = 1 for all l ∈ {0, 1, . . . , k − 1}.

Then

Ek ∈ B(H l
p(Rn+);H l

p(Rn)), Ekα ∈ B(H l−|α|
p (Rn+);H l−|α|

p (Rn)), ∂αxE = Eα∂
α
x ,

for all p ∈ [1,∞), l ∈ {0, 1, . . . , k}, α ∈ Nn0 with |α| ≤ l.
B.7. Theorem (Stein’s extension theorem [Ste70], [AF03, Theorem 5.24]). If Ω is a domain in Rn
that satisfies the strong local Lipschitz condition, then there exists a linear extension operator, which is
bounded from Wm

p (Ω) to Wm
p (Rn) for all m ∈ N0 and all p ∈ [1,∞).

B.8. Corollary. Let p ∈ [1,∞) and suppose that the domain Ω ⊂ Rn (n ∈ N) satisfies the strong local
Lipschitz condition. Then the following norms on Wm

p (Ω;X) are equivalent:

‖u‖1,Ω =

(∑
|α|≤m

‖∂αu‖pLp(Ω)

)1/p

, ‖u‖2,Ω = inf{‖v‖1,Rn : v ∈Wm
p (Rn;X), v|Ω = u}.

For a bounded interval (0, T ) and a fixed order of differentiability k ∈ N0 or s ∈ [0,∞),
it is possible to construct an extension operator with a uniform norm bound with respect to
T ∈ (0,∞) and power p ∈ [1,∞). We also refer to [PSS07, Proposition 6.1].

For s ∈ [0,∞) with s− 1/p /∈ N0 and a Banach space X , we define the space

0W
s
p (0, T ;X) := C∞c ((0, T ];X)

‖·‖Ws
p =

{
u ∈W s

p (0, T ;X) : ∂jt u|t=0 = 0 for j ≤ [s− 1/p]
}
.
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Here [s− 1/p] := min{k ∈ Z : k ≤ s− 1/p} denotes the integer part of s− 1/p ∈ R \N0 and the
above characterization of 0W

s
p (0, T ;X) follows from [Ama09, Theorem 4.6.2].

B.9. Lemma ( [MS12, Lemma 2.5]). Let J = (0, T ) be finite, p ∈ (1,∞), µ ∈ (1/p, 1] and X be a
Banach space of classHT . Given k ∈ N, there is an extension operator EJ from J to R+ with

EJ ∈ B
(
W s
p,µ(J ;X);W s

p,µ(R+;X)
)
∩ B

(
Hs
p,µ(J ;X);Hs

p,µ(R+;X)
)
, for all s ∈ [0, k].

Here we can replace W by 0W and H by 0H . There is further an extension operator

E0
J ∈ B

(
0W

s
p,µ(J ;X); 0W

s
p,µ(R+;X)

)
∩ B

(
0H

s
p,µ(J ;X); 0H

s
p,µ(R+;X)

)
, for all s ∈ [0, 2],

which is independent of the space X and whose operator norm has a uniform bound with respect to
T ∈ (0,∞). Moreover,

EJ , E0
J ∈ B(L∞(J ;X);L∞(R+;X)),

where the operator norms have a uniform bound with respect to T ∈ (0,∞).

B.1.3. Intrinsic spaces on hypersurfaces. Let Σ ⊂ Rn+1 (n ∈ N) be a compact smooth
hypersurface (without boundary) and let p ∈ [1,∞] and s ∈ [0,∞). There are two approaches
to define the vector-valued Sobolev-Slobodeckiı̆ spaces W s

p (Σ;X) for a Banach space X over
K ∈ {R,C}. For the intrinsic approach we define it as the closure of C∞(Σ;X) in the norm

‖u‖W s
p

:= ‖u‖
W
bsc
p

+ [[∂bscu]]
W
{s}
p
, [[v]]

W
{s}
p

:=

(∫
Σ×Σ

|v(x)− v(y)|p

distΣ(x, y)n+{s}p dΣ2(x, y)

)1/p

,(B.5)

where we require that p < ∞ if s /∈ N0 and in the case s ∈ N0, the seminorm [[∂bscu]]
W
{s}
p

is
omitted. The intrinsic distance distΣ is studied on page 133. Note that for a function u : Σ→ X ,
the derivative ∂jΣu(p) of order j belongs to Bj((TpΣ)j ;X) and can be identified with some
element of Bj((Rn+1)j ;X).

It is useful to relate the space W s
p (Σ;X) to the corresponding spaces on the whole space

Rn, for the purpose of using the known embedding and interpolation properties of the latter
spaces. To this end we consider the extrinsic definition of W s

p (Σ;X) as a retract of W s
p (Rn;X)N

with some N ∈ N. A bounded linear operator r : X → Y between normed vector spaces X and
Y is called retraction if there exists a bounded linear operator rc : Y → X such that rrc = IY In
this case we say that rc is a co-retraction for r and Y is a retract of X . As in [Tri10, Definition
3.2.2/2], we shall show that the map r defined by r(u) = ((χju) ◦ ϕ−1

j )j is a retraction, where
(ϕj , Uj)

N
j=1 is an atlas and (χj)

N
j=1 is a finite partition of unity for Σ, subordinate to (Uj)

N
j=1.

B.10. Lemma. Let n ∈ N, p ∈ [1,∞), s ∈ (0, 1) and let X , Y , Z be Banach spaces with continuous
multiplication X × Y → Z, (x, y) 7→ xy. Let ωn denote the (n − 1)-dimensional area of {x ∈ Rn :
|x| = 1}.

(i) For u ∈W 1
∞(Rn;X) and v ∈W s

p (Rn;Y ) we have

[[uv]]W s
p
≤ ‖u‖∞ [[v]]W s

p
+ 21−s

(
ωn

s(1− s)p

)1/p

‖u‖1−s∞ ‖∇u‖s∞ ‖v‖p .(B.6)

(ii) For n = 1, T ∈ (0,∞), u ∈W 1
∞(0, T ;X), and v ∈W s

p (0, T ;Y ), we also have (B.6).
(iii) Let Σ ⊂ Rn+1 be a C1−-hypersurface such that the numbers

C1(R) = sup
x∈Σ

(∫
BΣ
R(x)

distΣ(x, y)p dΣ(y)

distΣ(x, y)n+sp

)1/p

, C2(R) = 2 sup
x∈Σ

(∫
Σ\BΣ

R(x)

dΣ(y)

distΣ(x, y)n+sp

)1/p

are finite for some R > 0. Then for all u ∈W 1
∞(Σ;X) and v ∈W s

p (Σ;Y ) we have

[[uv]]W s
p (Σ) ≤ ‖u‖L∞(Σ) [[v]]W s

p (Σ) +
(
C1(R)p ‖∇Σu‖pL∞(Σ) + C2(R)p ‖u‖pL∞(Σ)

)1/p
‖v‖Lp(Σ).
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(iv) Let Σ ⊂ Rn+1 be aC3−-hypersurface. IfLΣ = −∇ΣνΣ is bounded, then forR∗ :=
√

2‖LΣ‖−1
∞ ,

R ∈ (0, R∗), and δ = δ(R) := 1−R2‖LΣ‖2∞/2 ∈ (0, 1], we have

C1(R) ≤ ω
1/p
n R1−s

δ1−s−1/p((1− s)p)1/p
<∞.

If Σ is compact, then

C2(R) ≤ 2|Σ|1/p

Rs+n/p
<∞.

If Σ is a perturbed hyperplane {(x, h(x)) : x ∈ Rn} with h ∈ C3−
c (Rn), then

C2(R) ≤ 2ω
1/p
n (1 + ‖∇h‖2∞)1/2p

(sp)1/pRs
<∞.

Proof. (i) First, Minkowski’s inequality yields

[[uv]]W s
p (Rn) =

(∫∫
R2n

|u(x+ y) (v(x+ y)− v(x)) + (u(x+ y)− u(x)) v(x)|p

|y|n+sp
d(x, y)

) 1
p

≤ ‖u‖L∞(Rn) [[v]]W s
p (Rn) +

(∫∫
R2n

|u(x+ y)− u(x)|p|v(x)|p

|y|n+sp
d(x, y)

) 1
p

.

Next, we may consider the case∇u 6= 0 and let R := 2 ‖u‖∞ /‖∇u‖∞. Then∫∫
R2n

|u(x+ y)− u(x)|p|v(x)|p

|y|n+sp
d(x, y)

≤
∫
Rn

(∫
|y|≤R

‖∇u‖pL∞(Rn)

|y|n−(1−s)p dx+

∫
|y|>R

2p ‖u‖pL∞(Rn)

|y|n+sp
dx

)
|v(x)|p dx

=
2(1−s)pωn
s(1− s)p

‖u‖(1−s)pL∞(Rn) ‖∇u‖
sp
L∞(Rn) ‖v‖

p
Lp(Rn) .

Combining these estimates, we obtain inequality (B.6).
(ii) For R = 2‖u‖∞/‖u′‖∞ we obtain∫∫

(0,T )2

|u(x)− u(y)|p|v(x)|p

|x− y|1+sp
d(x, y)

≤
∫ T

0

(∫ x+R

x−R

‖u′‖p∞
|x− y|sp

dy + 2p‖u‖p∞2

∫ ∞
R

y−1−sp dy

)
|v(x)|p dx.

Hence, with 2 = ω1, the assertion follows analogously as above.
(iii) From Minkowski’s inequality and Fubini’s theorem we infer that

[[uv]]W s
p
≤ ‖u‖∞ [[v]]W s

p
+

(∫∫
Σ2

|u(x+ y)− u(x)|p|v(x)|p

distΣ(x, y)n+sp
dΣ2(x, y)

)1/p

≤ ‖u‖∞ [[v]]W s
p

+ sup
x∈Σ

(∫
Σ

|u(x+ y)− u(x)|p

distΣ(x, y)n+sp
dΣ(y)

)1/p

‖v‖p.

Clearly,

|u(x+ y)− u(x)| ≤ min {‖∇Σu‖∞ distΣ(x, y), 2‖u‖∞} ,
and therefore ∫

Σ

|u(x+ y)− u(x)|p

distΣ(x, y)n+sp
dΣ(y) ≤ C1(R)p‖∇Σu‖p∞ + C2(R)p‖u‖p∞,

which yields the asserted estimate.
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(iv) With Proposition A.13 we can parametrize every geodesic ball BΣ
R(x) by

ϕx : Ux → BΣ
R(x), ϕx(u) = x+Qxu+ hx(u)νΣ(x),

where Ux ⊂ Rn is a neighborhood of the origin,Qx ∈ R(n+1)×(n+1) is an orthogonal matrix with
Qxen+1 = νΣ(x), and hx : Ux → R is a C3−-function with hx(0) = |∇hx(0)| = 0. We further
have BRδ(R) ⊂ Ux ⊂ BR and

(νΣ(x)|νΣ(ϕx(u))) ≥ δ, |∇hx(u)|2 ≤ 1− δ2

δ2
for all u ∈ Ux, x ∈ Σ.

Proposition A.12 yields |u| ≤ distΣ(x, ϕx(u)) ≤ (1 + |∇hx(u)|2)1/2|u| ≤ δ−1|u| and thus∫
BΣ
R(x)

distΣ(x, y)(1−s)p−n dΣ(y) =

∫
Ux

distΣ(x, ϕx(u))(1−s)p−n√1 + |∇hx(u)|2 du

≤ 1

δ

∫
∂B1

∫ R

0
χUx(tζ)|tζ|(1−s)p|tζ|−ntn−1 dt dζ

≤ ωnR
(1−s)p

δ(1−s)p+1(1− s)p
.

This yields the estimate for C1(R). The other estimates follows easily. �

The previous estimates allow pointwise multiplication with test functions; for instance,

‖uv‖W s
p (Rn) ≤ C(n, p, s)

(
‖u‖∞ [[v]]W s

p
+ ‖u‖W 1

∞
‖v‖p

)
for u ∈W 1

∞(Rn), v ∈W s
p (Rn).(B.7)

This in turn yields the equivalence of intrinsic and extrinsic spaces.
B.11. Lemma. Let Σ ⊂ Rn+1 (n ∈ N) be a smooth bounded hypersurface with smooth compact bound-
ary ∂Σ, let s ∈ [0,∞), p ∈ [1,∞), and let X be a Banach space. Then the space W s

p (Σ;X) endowed
with the intrinsic norm (B.5) is a retract of W s

p (Rn;X)N for some N ∈ N.

Proof. By Lemma B.10 we can find a smooth atlas (ϕj(Uj), ϕ
−1
j )Nj=1 for Σ and a smooth partition

of unity (χj)
N
j=1 subordinate to (Uj)

N
j=1 where BRδ(R) ⊂ Uj ⊂ BR ⊂ Rn and ϕj(u) = xj +

u + hj(u)νΣ(xj) with xj ∈ Σ and hj ∈ C∞(Uj). Then Lemma B.10, the chain rule (B.19), the
transformation formula (A.12), and Proposition A.12 imply that

r : W s
p (Σ;X)→W s

p (Rn;X)N , u 7→ ((χju) ◦ ϕj)Nj=1

is well-defined and bounded.
Let further (ψj)

N
j=1 be a collection of smooth functions ψj ∈ D(ϕj(Uj)) with ψj = 1 on

suppϕj(Uj). Then it is also straightforward to check that

rc : W s
p (Rn;X)N →W s

p (Σ;X), (vj)
N
j=1 7→

∑N

j=1
ψj(vj |Uj ◦ ϕ

−1
j )

is a co-retraction for r. �

B.1.4. Homogeneous function spaces. We define the homogeneous spaces Ḣs
p(Ω), Ḃs

pq(Ω),
and Ḟ spq(Ω) and collect some of their properties. Further information on homogeneous spaces
is given by Bergh and Löfström [BL76], Kozono and Sohr [KS91], Simader and Sohr [SS96],
Maz’ya [Maz11], and Triebel [Tri10].

There are two main approaches to define the homogeneous spaces on a domain Ω ⊂ Rn
or on a possibly disconnected open subset Ω ⊂ Rn. In the case Ω = Rn, these spaces can
be defined as subspaces of S ′0(Rn), see Definition B.13. These spaces consist of distributions
modulo polynomials. Then the spaces on domains can be defined extrinsically as spaces of
restrictions of functions over Rn. For instance we can define Ḣs

p(Ω) := Ḣs
p(Rn)|Ω := {u : Ω →

X : ∃v ∈ Ḣs
p(Rn) : v|Ω = u}, equipped with the norm ‖u‖Ḣs

p(Ω) := inf{‖v‖Ḣs
p(Rn) : v|Ω = u}. The
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extrinsic approach allows to transfer known results on embeddings, lifting properties (Theorem
B.15) and traces (Theorem B.31, Theorem B.28) to the spaces over domains.

The homogeneous spaces can also be defined intrinsically as equivalence classes of func-
tions on Ω modulo polynomials whose degree does not exceed some k ∈ N0. The norm only
depends on the chosen subset Ω ⊂ Rn and is independent of the representative. In the whole
space case Ω = Rn, the intrinsic and extrinsic norms are equivalent (Remark B.14). The same
is true for a subset Ω ⊂ Rn that admits a bounded extension operator from Ω to Rn for the
intrinsic norm.
B.12. Remark (Approximation of Ḣk

p -functions byC∞c -functions). As in [Gal11, Theorem II.7.1]
we consider Sobolev’s cut-off function (see Sobolev [Sob63])

χR(x) = χ

(
log log|x|
log logR

)
with R > e and χ ∈ C∞([0,∞); [0, 1]), χ = 1 on [0, 1

2 ], χ = 0 on [1,∞).

Thus χR(x) = 1 if |x| ≤ e
√

logR, χR(x) = 0 if |x| ≥ R and the support of ∇χR is contained in
{e
√

logR ≤ |x| ≤ R}. For every α ∈ Nn0 with |α| ≥ 1 and R0 > e we have the estimate

|∂αχR(x)| ≤
cα,R0

log logR

1

|x||α| log|x|
, for e

√
logR ≤ |x| ≤ R, R ≥ R0 > e.

Furthermore, let ρr(x) = r−nρ(x/r) denote Friedrichs’ mollifiers with some ρ ∈ C∞c (Rn) such
that supp ρ = B1(0), ρ ≥ 0, ρ(x) > 0 for |x| < 1, and

∫
Rn ρ(x) dx = 1.

Let n ≥ 2, p ∈ [1,∞), k ∈ N0 and let u ∈ Ḣkp(Rn). Then we can find a polynomial u0 in Rn of
degree ≤ k− 1 such that u− u0 can be approximated in the norm ‖∇k·‖Lp(Rn) by test functions

uk = ρrk ∗ (χk · (u− u0)), k ∈ N,

with some sequence (rk)k such that rk → 0 as k →∞.
B.13. Definition (Extrinsic definition of homogeneous spaces). Let S0(Rn) := {ϕ ∈ S(Rn) :
(∂αFϕ)(0) = 0 for all α ∈ Nn0} The dual space S ′0(Rn) can be identified with S ′(Rn)/P , where
P = ∪k≥0Pk and Pk is the linear space of all polynomials of degree not larger than k. Then the
homogeneous Besov space and the homogeneous Triebel-Lizorkin space are defined by

Ḃs
pq(Rn) :=

{
u ∈ S ′0(Rn) : ‖u‖Ḃs

pq(Rn)
:=
(∑

j∈Z

(
2js
∥∥F−1ϕjFu

∥∥
Lp(Rn)

)q)1/p
<∞

}
,

Ḟ spq(Rn) :=

{
u ∈ S ′0(Rn) : ‖u‖Ḟ s

pq(Rn)
:=

∥∥∥∥(∑j∈Z
|2jsF−1ϕjFu|q

)1/q
∥∥∥∥
Lp(Rn)

<∞

}
Furthermore, we define the homogeneous Bessel potential space Hs

p(Rn) := F sp2(Rn). We refer to
[Tri10, Chapter 5], [BL76, Chapter 6] and [RS96, Section 2.6] for further information.
B.14. Remarks (Properties of homogeneous spaces). (i) For p ∈ (1,∞), s ∈ R, the follow-
ing embeddings are continuous and dense (see [Tri10, Theorem 5.1.5].

S0(Rn) ↪→ Ḣs
p(Rn) ↪→ S ′0(Rn), S0(Rn) ↪→ Ḃs

pp(Rn) ↪→ S ′0(Rn).

(ii) We have ‖f‖Ḣs
p

= 0 if and only if f is a polynomial [see BL76, Section 6.3].
(iii) If s ∈ R, p, q ∈ [1,∞], and θ ∈ (0, 1), then [see BL76, Theorem 6.3.1],

(Ḣs0
p (Rn), Ḣs1

p (Rn))θ,q = Ḃs
pq(Rn), if s = (1− θ)s0 + θs1, θ ∈ (0, 1).

(iv) If s ∈ (0,∞) and p, q ∈ [1,∞], then [see BL76, Theorem 6.3.2]

Bs
pq(Rn) = Lp(Rn) ∩ Ḃs

pq(Rn), Hs
p(Rn) = Lp(Rn) ∩ Ḣs

p(Rn).

(v) If m ∈ N0 and p ∈ (1,∞), then u 7→
∑
|α|=m ‖∂αu‖Lp(Rn) the space Ḣm

p (Rn) can be
identified with the space Ẇm

p (Rn) (see [Tri10, Theorem 5.2.3/1]).
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(vi) If s ∈ (0, 1) and p, q ∈ [1,∞), then the space Ḃs
pp(Rn) can be identified with the space

Ẇ s
p (Rn) (see [Tri10, Theorem 5.2.3/2]).

B.15. Theorem ([Tri10, Theorem 5.2.3/1], [Ste70, Section V.1]). Let

J̇σu := (−∆)σ/2u = F−1(ξ 7→ |ξ|σFu(ξ)) for σ ∈ R, u ∈ S ′0(Rn)

denote the Riesz potential.
(i) If s ∈ R, σ ∈ R, q ∈ [1,∞], p ∈ [1,∞], then J̇σ : Ḃs

pq(Rn)→ Ḃs−σ
pq (Rn) is an isomorphism.

(ii) If in addition p ∈ [1,∞), then J̇σ : Ḟ spq(Rn)→ Ḟ s−σpq (Rn) is an isomorphism.

B.2. Sectorial operators and maximal regularity

B.16. Definition ([cf. DHP03, Definition 3.1]). A family of operators T ⊂ B(X) is called R-
bounded, if there are numbers C > 0 and p ∈ [1,∞) such that the inequality∥∥∥∥∑N

j=1
εjTjxj

∥∥∥∥
Lp(Ω;X)

≤ C
∥∥∥∥∑N

j=1
εjxj

∥∥∥∥
Lp(Ω;X)

is valid for all N ∈ N, Tj ∈ T , xj ∈ X and for all independent, symmetric {−1, 1}-valued
random variables εj on a probability space (Ω,M, µ). The smallest such number C is called the
R-bound of T , denoted byR(T ).
B.17. Definition ([cf. AHS94; DHP03]). LetX be a complex Banach space and let Σθ denote the
open sector

Σθ := {λ ∈ C \ {0} : | arg λ| < θ} = {reiϕ : r ∈ (0,∞), ϕ ∈ (−θ, θ)}, θ ∈ (0, π].

We write f ∈ H∞0 (Σθ) if f : Σθ → C is a bounded holomorphic function such that there exists
s > 0 such that |f |(λ) ≤ c|λ|s

1+|λ|2s in Σθ for some c ≥ 0.
(i) A linear operator A : D(A)→ X is called sectorial (of type (K,ϑ) with K ≥ 1, ϑ ∈ (0, π))

if both D(A) and R(A) are dense in X and

Σϑ ⊂ ρ(−A) and ‖λ(λ+A)−1‖B(X) ≤ K for all λ ∈ Σϑ.

We call φA := inf{π − ϑ : ∃K ≥ 1 : A is of type (K,ϑ)} the spectral angle of A.
(ii) A sectorial operator A : D(A)→ X is calledR-sectorial (of type (K,ϑ)) if

Σϑ ⊂ ρ(−A) and R
(
{λ(λ+A)−1 : λ ∈ Σϑ}

)
≤ K.

We call φRA := inf{π − ϑ : {λ(λ+A)−1 : λ ∈ Σϑ} isR-bounded} theR-angle of A.
(iii) A sectorial operator A is said to be of type (K,ϑ), if

Σϑ := Σϑ ⊂ ρ(−A) and (1 + |λ|)‖(λ+A)−1‖B(X) ≤ K for all λ ∈ Σϑ.

(iv) A sectorial operator A is said to have bounded imaginary powers (of type (C, θ)), if Ait ∈
B(X) for all t ∈ R and

‖Ait‖B(X) ≤ Ceθ|t| for t ∈ R.

(v) We say that aA has a boundedH∞-calculus (of type (M,ϑ)), ifA is sectorial of type (K,ϑ)
with some K ≥ 1 and

‖f(A)‖B(X) ≤M‖f‖∞, for f ∈ H∞(Σπ−ϑ),

where f(A) is defined by the extended functional calculus, see Remark B.33.
(vi) We say that A has anR-boundedH∞-calculus (of type (M,ϑ)), if

M := R ({f(A) ∈ B(X) : f ∈ H∞(Σπ−ϑ), ‖f‖∞ ≤ 1}) <∞.
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We introduce the abbreviations

S(X;K,ϑ) := {A : A is sectorial in X of type (K,ϑ)} ,
RS(X;K,ϑ) := {A : A isR-sectorial in X of type (K,ϑ)} ,
P(X;K,ϑ) := {A : A is of type (K;ϑ) in X} ,

BIP(X;C, θ) := {A : A has bounded imaginary powers of type (C, θ) in X} ,
H∞(X;M,ϑ) := {A : A has a boundedH∞-calculus in X of type (M,ϑ) in X} ,
RH∞(X;M,ϑ) := {A : A has anR-boundedH∞-calculus in X of type (M,ϑ) in X} .

Furthermore, we define S(X;ϑ) := ∪KS(X;K,ϑ) and S(X) := ∪ϑS(X;ϑ) and we will write
S(K,ϑ) := S(X;K,ϑ) and S(ϑ) := S(X;ϑ) if no confusion seems likely, analogously for the
other classes. Then we define the angles

φA := inf{φ ≥ 0 : A ∈ S(π − φ)},
φRA := inf{φ ≥ 0 : A ∈ RS(π − φ)},

θA := lim sup
|t|→∞

log‖Ait‖
|t|

= inf{θ ≥ 0 : A ∈ BIP(θ)},

φ∞A := inf{φ ≥ 0 : A ∈ H∞(π − φ)},
φR∞A := inf{φ ≥ 0 : A ∈ RH∞(π − φ)}.

B.2.1. Maximal Lp-regularity. We collect some material on analytic semigroups and maxi-
mal Lp-regularity from [Dor93], [Ama95], [Lun95], [Wei01], [Prü02], and [DHP03]. We assume
that A : D(A) → X is a closed linear operator in a complex Banach space X and that D(A) is
equipped with the graph norm ‖·‖X + ‖A·‖X .
B.18. Definition (Analytic semigroup). Let θ ∈ (0, π/2] and Σθ = {λ ∈ C \ {0} : |arg λ| < θ}. A
family T := {T (t) : t ∈ Σθ ∪ {0}} ⊂ B(X) is called (strongly continuous) analytic semigroup, if

(i) the map t 7→ T (t) : Σθ → B(X) is analytic,
(ii) T (0) = I and T (t)T (s) = T (t+ s) for all t, s ∈ Σθ ∪ {0} (semigroup property),

(iii) T (tn)x→ x in X as Σθ′ 3 tn → 0 for all x ∈ X , θ′ ∈ (0, θ) (strong continuity).
B.19. Definition. The generator A : D(A)→ X of an analytic semigroup T is defined by

Ax := lim
t→0+

T (t)x− x
t

, D(A) :=

{
x ∈ X : lim

t→0+

T (t)x− x
t

exists in X
}
.

From now on we let −A be the negative generator of the analytic semigroup e−tA := T (t).
For a given function f ∈ L1,loc([0,∞);X) we consider the abstract Cauchy problem

∂tu(t) +Au(t) = f(t), t ∈ (0,∞), u(0) = 0.(B.8)

It is known [Ama95, Remarks II.2.1.2] that the unique mild solution u ∈ C([0,∞);X) of (B.8) is
given by the variation of parameters formula

u(t) =

∫ t

0
e−(t−s)Af(s) ds, t ∈ [0,∞).

We study the solvability of problem (B.8) with respect to the function spaces

0E(T ) := 0H
1
p (0, T ;X) ∩ Lp(0, T ;D(A)), F(T ) = Lp(0, T ;X),

where T ∈ (0,∞] and p ∈ (1,∞).
B.20. Definition. We say that A has maximal Lp(0, T ;X)-regularity or maximal Lp-regularity on
(0, T ) in X if for every f ∈ F(T ), the mild solution of problem (B.8) belongs to 0E(T ). We let
MRp(J ;X) denote the class of all operators with maximal Lp(0, T ;X)-regularity.
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B.21. Remarks. The following facts are shown in [Dor93], [Ama95], and [Prü02]. (i) If A ∈
MRp(J ;X) is valid for some p ∈ (1,∞), then it is valid for all p ∈ (1,∞). We will therefore
simply writeMR instead ofMRp in the following. (ii) If A ∈ MR((0, T0);X) for some T0 ∈
(0,∞], thenA ∈MR((0, T );X) for all T ∈ (0,∞). (iii) IfA ∈MR((0, 1);X), then there is µ > 0
such that µ+A ∈MR(R+;X).

The translations µ+Awith large µ > 0 can be avoided if the spectrum σ(A) ofA is contained
in the positive right half-plane.
B.22. Theorem (Kato [see Dor93, Theorem 2.4]). If µ + A ∈ MR(R+;X) for some µ ∈ C and if
σ(A) ⊂ {λ ∈ C : Reλ > 0}, then A ∈MR(R+;X).

It is useful to define the larger class 0MR(R+;X) ⊃MR(R+;X) of all A ∈ MR((0, 1);X)
for which the mild solution u to (B.8) satisfies the weaker a priori estimate

‖∂tu‖Lp(R+;X) + ‖Au‖Lp(R+;X) ≤ C‖f‖Lp(R+;X) for all f ∈ Lp(R+;X).

We note that A ∈ MR(R+;X) if and only if A ∈ 0MR(R+;X) and 0 ∈ ρ(A) [see PS15]. The
following characterization of maximal Lp-regularity is very important and useful.
B.23. Theorem (Weis, [Wei01, Theorem 4.2], [cf. DHP03, Theorem 4.4]). Let X be a Banach space
of class HT and let A generate a bounded analytic semigroup in X . Then A belongs to 0MR(R+;X)
if and only if {λ(λ+A)−1 : λ ∈ Σθ} isR-bounded for some θ > π/2.

Next, we study exponentially decaying solutions of the abstract initial value problem

∂tu+Au = f on J, u(0) = x.

Let E, X(J) be Banach spaces such that X(J) ↪→ L1,loc(J ;E) where J = (0, T ) for T ∈ (0,∞]
and let ω ∈ R. We employ the exponentially weighted space

e−ωX(J) := {u ∈ L1,loc(J ;E) : [t 7→ eωtu(t)] ∈ X(J)},

equipped with the norm ‖u‖e−ωX(J) := ‖[t 7→ eωtu(t)]‖X(J).
B.24. Proposition ([cf. Ama95, Proposition III.1.5.3]). Suppose that ω + A : D(A)→ X has maxi-
mal Lp(R+;X)-regularity for some ω ∈ R. Then

(∂t +A, γ0) : eω·
[
H1
p (R+;X) ∩ Lp(R+;D(A))

]
→ eω·Lp(R+;X)×DA(1− 1/p, p)

is an isomorphism.

B.2.2. Fractional domains and abstract trace spaces. For two Banach spaces X0 and X1

with dense embedding X1 ↪→ X0 and for M ≥ 1 and ϑ ∈ (π/2, π), we define the class

P1(X1, X0;M,ϑ) :=
{
A ∈ P(X0;M,ϑ) ∩ Bisom(X1;X0) : ‖A‖B(X1;X0) ≤M,

(1 + |λ|)1−j‖(λ+A)−1‖B(X0;Xj) ≤M for j ∈ {0, 1}, λ ∈ Σϑ

}
.

If A belongs to P1(X1, X0;M,ϑ), then −A generates an exponentially stable analytic semi-
group t 7→ e−tA. Arguing as in [AHS94, Section 1], it can be shown that there are ω0 =
ω0(X1, X0,M, ϑ) > 0 andM ′ ≥ 1 such that for all ω ∈ (0, ω0) we haveA−ω ∈ P1(X1, X0;M ′, ϑ).

For α ∈ (0, 1) and p ∈ (1,∞) we define the seminorms

[x]DA(α,p) :=

(∫ ∞
0
|t1−αAe−tAx|pX0

dt

t

)1/p

, [[x]]DA(α,p) :=

(∫ ∞
0
|t−α(e−tA − I)x|pX0

dt

t

)1/p

.

It is shown in [Lun95, Proposition 2.2.4] that these seminorms are equivalent. The fractional
domains of A for α ∈ (0, 1) and p ∈ (1,∞) are defined by

DA(α, p) :=
{
x ∈ X0 : [x]DA(α,p) <∞

}
, |x|DA(α,p) := |x|X0 + [x]DA(α,p).

We also put DA(1, p) := D(A) with [x]DA(1,p) := |Ax|X0 and we let (RAx)(t) = e−tAx.
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B.25. Theorem (cf. [Lun95, Section 2.2.1], [Ama95, Proposition III.4.10.3]). Let X0, X1 be Banach
spaces with dense embedding X1 ↪→ X0 and let M ≥ 1, ϑ ∈ (π/2, π), p ∈ (1,∞), α ∈ (1/p, 1] be
fixed. Then the following norms are equivalent in x ∈ D(A) with uniform constants with respect to
A ∈ P1(X1, X0;M,ϑ) and T ∈ (0,∞].

|x|DA(α−1/p,p), |x|(X0,D(A))α−1/p,p
, ‖RAx‖Lp(0,T ;DA(α,p)), ‖RAx‖Wα

p (0,T ;X0).

In particular, the operator

RA : x 7→
(
t 7→ e−tAx

)
, DA(α− 1/p, p)→Wα

p (0, T ;X0) ∩ Lp(0, T ;DA(α, p))

is uniformly bounded with respect to A ∈ P1(X1, X0;M,ϑ) and T ∈ (0,∞].
For the spaces DA(k + α, p) := (D(Ak), D(Ak+1))α,p we obtain the following result.

B.26. Corollary. Let A : D(A) → X be the negative generator of a bounded analytic semigroup in X
such that A is invertible and let k ∈ N0, p ∈ (1,∞), α ∈ (1/p, 1]. Then the operator

RA : u 7→
(
t 7→ e−tAu

)
, DA(k + α− 1/p, p)→W k+α

p (R+;X) ∩ Lp(R+;DA(k + α, p))

is a bounded right-inverse for trace operator ·|t=0.

Proof. This follows from Theorem B.25 and the identity ∂te−tA = −Ae−tA = e−tAA. �

B.27. Theorem ([Dor99]). Let A be invertible and sectorial in X with spectral angle φA. Then A has
a boundedH∞ functional calculus in DA(α, p) (α ∈ (0, 1), p ∈ (1,∞)) with φ∞A ≤ φA.

B.2.3. Some concrete trace spaces.
B.28. Theorem (Poisson semigroup [Tri10, Remark 5.2.3/4], [Tri95, p. 2.5.3]). Let n ∈ N, let

p(x) =
cn

(1 + |x|2)(n+1)/2
, with cn > 0 such that

∫
Rn
p(x) dx = 1,

denote the Poisson kernel and put pt(x) = t−np(x/t). Then the following assertions are valid.
(i) The Poisson semigroup

(P (t)u)(x) := (pt ∗ u)(x) =

∫
Rn

cnt u(y) dy

(|x− y|2 + t2)(n+1)/2
, u ∈ Lp(Rn), t > 0,

is a bounded analytic C0-semigroup in Lp(Rn), p ∈ (1,∞).
(ii) The identity P (t)u = F−1(ξ 7→ e−|ξ|tFu(ξ)) is valid for every u ∈ S(Rn).
(iii) Let Λ denote the generator of P . Then Λ2m = (−1)m∆m, D(Λ2m) = H2m

p (Rn) for m ∈ N.
(iv) For s ∈ (0,∞), q ∈ [1,∞], m ∈ N, m > s, the following norms are equivalent.

‖u‖Bspq(Rn) ∼ ‖u‖Lp(Rn) +

(∫ ∞
0

t(m−s)q
∥∥∥∥∂mP (t)u

∂tm

∥∥∥∥q
Lp(Rn)

dt

t

)1/q

, u ∈ Bs
pq(Rn),

‖u‖Ḃspq(Rn) ∼

(∫ ∞
0

t(m−s)q
∥∥∥∥∂mP (t)u

∂tm

∥∥∥∥q
Lp(Rn)

dt

t

)1/q

, u ∈ Ḃs
pq(Rn).

B.29. Theorem ([Zac03, Theorem 3.2.1]). Let X be a Banach space of class HT , p ∈ (1,∞), γ ∈
[0, 1/p) and s + γ > n + 1/p with n ∈ N0. Let further J = [0, T ] or R+, and A be an R-sectorial
operator in X withR-angle φRA < π/s. Then for all 0 ≤ k ≤ n,

Hs+γ
p (J ;X) ∩Hγ

p (J ;DAs) ↪→ BUCk(J ;DA(s+ γ − k − 1/p, p))

and
Bs+γ
pp (J ;X) ∩Hγ

p (J ;DA(s, p)) ↪→ BUCk(J ;DA(s+ γ − k − 1/p, p)).

B.30. Theorem ([SSS12, Theorem 4.19]). Let X be a Banach space and p ∈ (1,∞), m ∈ N, s ∈
(1/p,∞). For the restriction operator ϕ 7→ ϕ|Rn−1 , C(Rn;X)→ C(Rn−1;X), the following assertions
are valid.
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(i) The restriction operator can be extended uniquely to a continuous surjective mapping

tr : Wm
p (Rn;X)→ Bm−1/p

pp (Rn−1;X)

and tr has a continuous right-inverse ext : B
m−1/p
pp (Rn−1;X)→Wm

p (Rn;X).
(ii) The restriction operator can be extended uniquely to a continuous surjective mapping

tr : Hs
p(Rn;X)→ Bs−1/p

pp (Rn−1;X)

and tr has a continuous right-inverse ext : B
s−1/p
pp (Rn−1;X)→ Hs

p(Rn;X)).
B.31. Theorem ([Jaw77, Theorem 2.1], [Jaw78, Theorem 5.1]). Let p ∈ [1,∞), q ∈ [1,∞], s ∈
(1/p,∞), n ∈ N, n ≥ 2. For the restriction operator ϕ 7→ ϕ|Rn−1 , S0(Rn) → S(Rn−1), the following
assertions are valid.

(i) The restriction operator can be extended to a continuous surjective mapping

tr : Ḃs
pq(Rn)→ Ḃs−1/p

pq (Rn−1)

and there exists a linear operator ext : S ′0(Rn−1)→ S ′0(R) (independent of p, q, s) such that the realiza-
tion ext : Ḃ

s−1/p
pq (Rn−1)→ Ḃs

pq(Rn) is a continuous right-inverse of tr.
(ii) The restriction operator can be extended to a continuous surjective mapping

tr : Ḟ spq(Rn)→ Ḃs−1/p
pp (Rn−1)

and there exists a linear operator ext : S ′0(Rn−1)→ S ′0(R) (independent of p, q, s) such that the realiza-
tion ext : Ḃ

s−1/p
pp (Rn−1)→ Ḟ spq(Rn) is a continuous right-inverse of tr.

B.32. Theorem (Spatial trace theorem [cf. MS12, Theorem 4.5]). Let E be a Banach space of class
HT , J = (0, T ) be finite or infinite, p ∈ (1,∞), m ∈ N, s ∈ (0, 1], such that 2ms ∈ N. Assume that
Ω ⊂ Rn is a domain with compact smooth boundary, or Ω ∈ {Rn,Rn+}. Then the trace

u 7→ u|∂Ω : Hs
p(J ;Lp(Ω;E)) ∩ Lp(J ;H2ms

p (Ω;E))

→W s−1/2mp
p (J ;Lp(∂Ω;E)) ∩ Lp(J ;W 2ms−1/p

p (∂Ω;E))

is continuous and surjective and has a continuous right-inverse. The restriction of the trace to

0H
s
p(J ;Lp(Ω;E)) ∩ Lp(J ;H2ms

p (Ω;E)),

is uniformly bounded with respect to the length of J .

B.2.4. Functional calculus for sectorial operators.
B.33. Remark (Functional calculus). Let A ∈ S(X;ϑ).

(i) The (primary)H∞-functional calculus ΦA : H∞0 (Σπ−ϑ)→ B(X) is defined by

(ΦA(f)) (x) := f(A)x :=
1

2πi

∫
Γ
f(λ)(λ+A)−1 dλ, for x ∈ X,

where the curve Γ = e−iψ[0,∞) ∪ eiψ[0,∞) ⊂ ρ(−A) surrounds σ(−A) counterclockwise.
(ii) Extended functional calculus. . . .

B.34. Theorem (Spectral mapping theorem, [Haa06, Theorem 2.7.8]). LetA ∈ S(X), φ ∈ (φA, π)
and let f ∈ HP (Σφ) have polynomial limits at {0,∞}. Then

f(σ̃(A)) = σ̃(f(A)),

where σ̃(A) := σ(A) if A is bounded and σ̃(A) := σ(A) ∪ {∞} otherwise.
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B.2.5. Fractional powers. Set ρ(λ) = λ(1 +λ)−2. This function belongs toH∞0 (Σσ) for each
σ ∈ (0, π) with norm |ρ|L∞(Σσ) = (2(1 + cosσ))−1. For given σ ∈ (0, π) the function λ 7→ λα is
holomorphic and bijective from Σσ to Σ|α|σ for all α ∈ R with |α| < π/σ.

Let A ∈ S(X,φA) and let

ΦA = (f 7→ f(A)) : H∞0 (Σσ)→ B(X),

Φ̄A = (f 7→ f(A)) : Hp(Σσ)→ B(X)

denote the primary and the extendedH∞-calculi of A, respectively. Then the fractional powers
Aα, α ∈ C, are defined by

Aα = Φ̄A(λ 7→ λα) = ΦA(ρ)−kΦA(λ 7→ ρ(λ)kλα),

for k ∈ N, k > α. Their natural domains are given by

D(Aα) =
{
x ∈ X : ΦA(λ 7→ ρ(λ)kλα)x ∈ D(Ak) ∩R(Ak)

}
.

B.35. Theorem ([DHP03, Theorem 2.3]). Let A be sectorial in X with spectral angle φA and let
α ∈ (−π/φA, π, φ/A). Then Aα is also sectorial in X with φAα ≤ |α|φA.

A sufficient condition for Aα ∈ H∞(X) can be derived with the following composition rule.
B.36. Theorem ([cf. Haa06, Theorem 2.4.2]). Let A ∈ S(ω) (ω ∈ [0, π)) be injective and, for some
φ ∈ (ω, π) and ω′ ∈ [0, π), let g ∈ HP (Σφ) be a function such that g(A) ∈ S(ω′) and such that for
every φ′ ∈ (ω′, π) there exists φ ∈ (ω, π) such that g ∈ HP (Σφ) and g(Σφ) ⊂ Σφ′ . Then

(f ◦ g)(A) = f(g(A)) for all φ′ ∈ (ω′, π), f ∈ HP (Σφ′).

B.37. Corollary. The following implications are valid.

A ∈ H∞(X), − π
|φ∞A |

< α < π
|φ∞A |

⇒ Aα ∈ H∞(X), φ∞Aα ≤ |α|φ∞A ,

A ∈ RH∞(X), − π
|φR∞A | < α < π

|φR∞A | ⇒ Aα ∈ RH∞(X), φR∞Aα ≤ |α|φR∞A .

B.38. Corollary. For A ∈ H∞(X;M,ϑ), the following assertions are valid.
(i) A ∈ BIP(M,π − ϑ).

(ii) For s ∈ [0, π/(π − ϑ)), we have As ∈ H∞(M,ϑ+ (1− s)(π − ϑ)).
(iii) For ε > 0, we have ε+A ∈ P(M1, ϑ1) for every ϑ1 ∈ (0, ϑ), where M1 = 2Mc(1 + ε−2)1/2 and

c = 1/min{1, 1 + cos(π − (ϑ− ϑ1))}.

Proof. (i) The assertion follows from |zit| = |eit(ln|z|+i arg z)| = e−t arg z ≤ e|t| arg z .
(ii) The function gs : z 7→ zs maps Σπ−ϑ onto Σs(π−ϑ). Hence for f ∈ H∞(Σs(π−ϑ)) we

have f ◦ gs ∈ H∞(Σπ−ϑ) with the same L∞-norm. Moreover, the composition rule implies
f(As) = (f ◦ gs)(A) and this yields the assertion.

(iii) Using (λ+ ε+A)−1 = (λ+ ε+ ·)−1(A) and (B.14), we obtain

(1 + |λ|)‖(λ+ ε+A)−1‖ ≤ (1 + |λ|)M‖(λ+ ε+ ·)−1‖L∞(Σπ−ϑ)

≤
√

2M

min{1, 1 + cos(π − (ϑ− ϑ1))}1/2
1 + |λ|
|λ+ ε|

≤ 2M

min{1, 1 + cos(π − (ϑ− ϑ1))}

√
1 +

1

ε2
. �

B.39. Theorem (cf. [Ama95, (I.2.9.9)] and [Tri95, Theorem 1.15.3]). If A ∈ BIP(X), then

D(Aα) ∼= [X,D(A)]α, for α ∈ [0, 1],

where D(Aα) is equipped with the norm x 7→ ‖x‖X + ‖Aαx‖X . Moreover, given θ ≥ 0, ϑ ∈ (0, π),
M ≥ 1, α ∈ [0, 1], there exists C ≥ 1 such that for all A ∈ BIP(X;M, θ) ∩ P(X;M,ϑ), we have

C−1‖x‖D(Aα) ≤ ‖x‖[X,D(A)]α ≤ C‖x‖D(Aα) for x ∈ D(Aα).
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B.40. Corollary. Let M ≥ 1, ϑ ∈ (0, π), s ∈ (0, 1), ε > 0, let X0, X1 be Banach spaces with dense
embedding X1 ↪→ X0 and let 0 < φ < ϑs := sϑ+ (1− s)π. Then there exists N ≥ 1 such that if

A ∈ P1(X1, X0;M,ϑ) ∩H∞(X0;M,ϑ),

then

ε+As ∈ P1([X0, X1]s, X0;N,φ) ∩H∞(X0;N,φ).

Proof. First, the norms ‖x‖D(A) = ‖x‖X0 + ‖Ax‖X0 and ‖x‖X1 are equivalent, uniformly with
respect to A ∈ P1(X1, X0;M,ϑ), since both ‖A‖B(X1;X0) and ‖A−1‖B(X0;X1) are bounded by M .
Hence, by Theorem B.39 and Corollary B.38, the norms of [X0, X1]s, [X0, D(A)]s and D(As) are
equivalent, uniformly with respect to A ∈ P1(X1, X0;M,ϑ) ∩H∞(X0;M,ϑ), and this implies

‖As‖B([X0,X1]s;X0) ∼ ‖As‖B(D(As);X0) ≤ 1.

Therefore ‖ε+As‖B([X0,X1]s;X0) is uniformly bounded. Again by Corollary B.38 and basic resol-
vent identities likeAs(λ+As)−1 = I−λ(λ+As)−1 we obtain ε+As ∈ P1(D(As), X0;M1, φ) for
all A ∈ P1(X1, X0;M,ϑ) ∩ H∞(X0;M,ϑ). By the uniform equivalence of the norms of D(As)
and [X0, X1]s, there exists N ≥ 1 with ε+As ∈ P1([X0, X1]s, X0;N,φ), uniformly in A. �

B.2.6. Sums and products of sectorial operators. Let (A,D(A)) and (B,D(B)) be densely
defined closed linear operators in a Banach space X . We collect several results for the sum
A + B and the product AB under the condition that A and B are resolvent commuting. We
define the sum A+B, the product AB and the commutator [A,B] by

(A+B)x = Ax+Bx, D(A+B) := D(A) ∩D(B),

(AB)x = A(Bx), D(AB) := {x ∈ D(B) : Bx ∈ D(A)},
[A,B]x = ABx−BAx, D([A,B]) := D(AB) ∩D(BA).

B.41. Remark (Commuting operators). (i) A bounded operator T ∈ B(X) is said to com-
mute with a closed operator A : D(A) ⊂ X → X , if TA = AT on D(A). If ρ(A) 6= 0, then this is
equivalent to [T,R(λ,A)] = 0 for some (and hence all) λ ∈ ρ(A) [Ama95; Haa06].

(ii) Suppose that ρ(A) 6= ∅, ρ(B) 6= ∅. We say that A and B are resolvent commuting, if
[(λ− A)−1, (µ−B)−1] = 0 for some (and hence all) λ ∈ ρ(A), µ ∈ ρ(B). It can be shown that if
A and B are resolvent-commuting, then ABx = BAx for all x ∈ D(AB) ∩D(BA).

(iii) IfA,B ∈ S(X) are resolvent commuting, then also f(A), g(B) are resolvent commuting
for all f ∈ HA(Σψ), g ∈ HB(Σρ), ψ ∈ (φA, π), ρ ∈ (φB, π).

Next we state a version of the mixed derivative theorem of Sobolevskiı̆ [Sob75, Theorem
6]. A linear operator A : D(A) ⊂ X → X is called positive if it has the properties of a sectorial
operator (Definition B.17) except that R(A) does not need to be dense in X and the resolvent
estimate is valid in a set {λ = reiϕ : |ϕ| ∈ [θ, π], r ∈ [r0,∞)} with some r0 ≥ 0, which may be
smaller than the sector −Σθ. In this case k+A for k ≥ r0 is sectorial and invertible and D(A) is
a Banach space for the norm ‖(k +A)·‖X . We say that two linear operators A and B in X form
a coercive pair if for some numbers M ≥ 0 and k ∈ N0 we have the estimate

‖(k +A)x‖+ ‖(k +B)x‖ ≤M‖(k +A)x+ (k +B)x‖ for all x ∈ D(A) ∩D(B).

B.42. Theorem (Mixed derivatives [cf. Sob75, Theorem 6]). Let X be a Banach space and let A and
B form a coercive pair of positive operators with commuting resolvents such that their spectral angles
satisfy φA + φB < π. Then A + B is positive, and for sufficiently large k and arbitrary 0 ≤ α ≤ 1 we
have the continuous embeddings

D(A+B) ↪→ D((k +A)α(k +B)1−α) ∩D((k +B)1−α(k +A)α).
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B.43. Corollary ([MS12, Proposition 1.1]). LetX be a Banach space of classHT and suppose that the
operators A, B ∈ BIP(X) are resolvent commuting and satisfy θA + θB < π. If A or B is invertible,
then A+B is invertible, A+B ∈ BIP(X) with θA+B ≤ θA+ θB and AαB1−α(A+B)−1 is bounded
in X for every α ∈ [0, 1].
B.44. Proposition (Mixed derivative embeddings [cf. MS12, Proposition 3.2]). Let J = (0, T ) be
finite or infinite, p ∈ (1,∞), let X be a Banach space of class HT and let Ω ⊂ Rn be a domain with
compact smooth boundary, or Ω ∈ {Rn,Rn+}. Let further t, s ≥ 0, α ∈ (0, 2), β > 0, ρ ∈ [0, 1], and set
Ht
p(H

s
p) := Ht

p(J ;Hs
p(Ω;X)), and analogously for the other anisotropic spaces. Then

Ht+α
p (Hs

p) ∩Ht
p(H

s+β
p ) ↪→ Ht+ρα

p (Hs+(1−ρ)β
p ),

and moreover each of the spaces

Ht+α
p (W s

p ) ∩Ht
p(W

s+β
p ), W t+α

p (Hs
p) ∩W t

p(H
s+β
p ), W t+α

p (Hs
p) ∩Ht

p(W
s+β
p )

is continuously embedded into

W t+ρα
p (Hs+(1−ρ)β

p ) ∩Ht+ρα
p (W s+(1−ρ)β

p ),

provided that all the occurringWp-spaces have a non-integer order of differentiability. Finally, assuming
all orders of differentiability to be non-integer, we have

W t+α
p (W s

p ) ∩W t
p(W

s+β
p ) ↪→W t+ρα

p (W s+(1−ρ)β
p ).

These embeddings remain true if Ω is replaced by its boundary. They are also valid if all Hp-, Wp-spaces
with respect to time are replaced by 0Hp-, 0Wp-spaces, respectively. Restricting in the latter case to
t+ α ≤ 2, the embedding constants have a uniform bound with respect to to the length of J .
B.45. Remark. The following mixed derivative embeddings are valid.

Hs+α
p (R+; Ḣr

p(Rn)) ∩Hs
p(R+; Ḣr+β

p (Rn)) ↪→ Hs+θα
p (R+; Ḣr+(1−θ)β

p (Rn)),(B.9)

if s, β ∈ [0,∞), α ∈ [0, 2], r ∈ R, θ ∈ [0, 1] and

W s+α
p (R+; Ḣr

p(Rn)) ∩W s
p (R+; Ḣr+β

p (Rn)) ↪→ Hs+θα
p (R+; Ẇ r+(1−θ)β

p (Rn)),(B.10)

if s, β ∈ (0,∞), α ∈ (0, 2), r ∈ R, θ ∈ (0, 1) and s, s+ α, r + (1− θ)β /∈ Z and

Hs+α
p (R+; Ẇ r

p (Rn)) ∩Hs
p(R+; Ẇ r+β

p (Rn)) ↪→W s+θα
p (R+; Ḣr+(1−θ)β

p (Rn)),(B.11)

if s ∈ [0,∞), α ∈ (0, 2), β ∈ (0,∞), r ∈ R, θ ∈ (0, 1) and r, r + β, s+ θα /∈ Z.

Proof. The strategy is the same as for the non-homogeneous spaces ([MS12, Proposition 3.2]).
We abbreviate F(K) := F(R+;K(Rn)) for F ∈ {Ḣs

p , Ẇ
s
p }, K ∈ {Ḣr

p , Ẇ
r
p }. By applying the

mixed derivative theorem B.42 to the BIP-operators (1 − ∂t)
α : Hs+α

p (Ḣr
p) → Hs

p(Ḣr
p) and

(−∆)β/2 : Hs
p(Ḣr

p ∩ Ḣ
r+β
p )→ Hs

p(Ḣr
p) (see theorems B.68, B.15 and Section B.2.5), we obtain

‖(1− ∂t)θα(−∆)(1−θ)β/2w‖Hs
p(Ḣr

p) . ‖w‖Hs+α
p (Ḣr

p)∩Hs
p(Ḣr+β

p )
, for all θ ∈ [0, 1].

By using the invertibility of the operators

(1− ∂t)θα : Hs+θα
p (Ḣr

p)→ Hs
p(Ḣr

p),

(−∆)(1−θ)β/2 : Hs+θα
p (Ḣr+(1−θ)β

p )→ Hs+θα
p (Ḣr

p),

we further have

‖(1− ∂t)θα(−∆)(1−θ)β/2w‖Hs
p(Ḣr

p) ∼ ‖(−∆)(1−θ)β/2w‖Hs+θα
p (Ḣr

p) ∼ ‖w‖Hs+θα
p (Ḣ

r+(1−θ)β
p )

.

Hence (B.9) is shown.
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Next, for proving the embedding (B.10), we choose some sufficiently small ε > 0 and put
s± := s ± αε, θ± := θ ∓ ε. Then s + α ± αε = s± + α, s ± αε = s±, s + θα = s± + θ±α and
r + (1− θ)β ± εβ = r + (1− θ±)β. We now apply (B.9) with s±, θ± instead of s, θ and obtain

Hs+α±αε
p (Ḣr

p) ∩Hs±αε
p (Ḣr+β

p ) ↪→ Hs+θα
p (Ḣr+(1−θ)β∓εβ

p ).

Applying the real interpolation functor (·, ·)1/2,p and the identity (Ḣt0
p , Ḣ

t1
p )θ,p = Ẇ t

p for t =
(1 − θ)t0 + θt1 ∈ R \ Z, we obtain (B.10). The embedding (B.11) follows similarly by choosing
r± := r ∓ βε, θ± := θ ∓ ε so that s+ θα = s+ θ±α± αε and r + (1− θ)β = r± + (1− θ±)β. �

B.46. Theorem ([PS90, Theorem 5]). Let X be a Banach space of classHT , let A, B ∈ BIP(X) with
θA + θB < π be resolvent commuting, and let θ = max(θA, θB), θA 6= θB . Then A + B ∈ BIP(X)
with θA+B ≤ θ.
B.47. Theorem (Kalton-Weis [KW01, Theorem 6.3]). Suppose A ∈ H∞(X) and B ∈ RS(X) are
resolvent commuting and φ∞A + φRB < π. Then A+B with domain D(A) ∩D(B) is a closed operator
and there is a constant C such that

|Ax|+ |Bx| ≤ C|Ax+Bx|, for all x ∈ D(A) ∩D(B).

Thus, A + B is invertible if either A or B is invertible. Furthermore, if X has property (α), then
A+B ∈ RS(X) with φRA+B ≤ max(φ∞A , φ

R
B ).

B.48. Corollary ([PS07]). Suppose A ∈ H∞(X) and B ∈ RH∞(X) are commuting such that φ∞A +
φR∞B < π. Then A+B ∈ H∞(X).

Next, we consider the product AB of two sectorial operators A, B.
B.49. Theorem ([PS90, Corollary 3]). Suppose X is of class HT , let A, B ∈ BIP(X) with 0 ≤
θA + θB < π be resolvent commuting. Then AB is closable and AB ∈ BIP(X) with θAB ≤ θA + θB .
If in addition A is invertible, then AB is closed.
B.50. Corollary ([HDH05, Corollary 2.2]). Let X be a Banach space and assume that A ∈ H∞(X)
and B ∈ RS(X) are resolvent commuting such that 0 ∈ ρ(A) and φ∞A + φRB < π. Then AB ∈ S(X)
and φAB ≤ φ∞A + φRB . If in addition B ∈ RH∞(X) with φ∞A + φR∞B < π, then AB ∈ H∞(X) with
φ∞AB ≤ φ∞A + φR∞B .

B.2.7. Estimates for Fourier-Laplace symbols. In order to obtain the mapping properties
of linear pseudo-differential operators, we will establish estimates of their Fourier-Laplace-
symbols with respect to the temporal and spatial covariables λ, z for ∂t and

√
−∆, respectively.

B.51. Remark (Laplace transform). Let R+ = [0,∞) and C>0 = {z ∈ C : Re z > 0}. Let
f ∈ L1,loc(R+;X) be of exponential growth; that is, the integral

∫∞
0 e−ωt|f(t)|X dt is finite for

some ω ∈ R. Then we define the Laplace transform Lf : ω + C>0 → X of f by

f̂(λ) := (Lf)(λ) :=

∫ ∞
0

e−λtf(t) dt, (Reλ ≥ ω).

Then Lf ∈ BUC(ω + C>0;X) ∩ H(ω + C>0;X). For given θ0 ∈ (0, π], let Hbc(Σθ0) denote the
vector space of all functions on Σθ0 that are holomorphic in Σθ0 and bounded and continuous
on each closed sector Σθ, θ ∈ [0, θ0). Then Cauchy’s theorem leads to

{Lf : f ∈ Hbc(Σθ0)} =
{
g ∈ H(Σπ/2+θ0) : λ 7→ λg(λ) ∈ Hbc(Σπ/2+θ0)

}
.

See [Prü93, Theorem 0.1]. Uniqueness of the Laplace transform: The complex inversion for-
mula

f(t) = lim
N→∞

1

2π

∫ N

−N

(
1− |ρ|

N

)
e(σ+iρ)tLf(σ + iρ) dρ
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applies for almost all t ∈ R+ and each σ > ω. The real inversion formula

f(t) = lim
σ→∞

∞∑
n=0

(−1)n(σ2t)n+1

n!(n+ 1)!
Lf (n)(σ)

applies for almost all t > 0. The Laplace transform has the following relation to the Fourier
transform F . For each f ∈ L1(R;X) such that f(t) = 0, (t < 0), it is Ff(ρ) = Lf(iρ), (ρ ∈ R).
B.52. Definition (α . β, α ∼ β). Let D be a set, (X, | · |) be a normed vector space and consider
two functions α, β : D → X . We say that α is dominated by β (in D) and write

α . β (in D) if and only if ∃C > 0∀x ∈ D : |α(x)| ≤ C|β(x)|.
The functions α, β are said to be equivalent, and we write α ∼ β, if α . β and β . α.
B.53. Example. By the concavity of the logarithm and the monotonicity of the exponential func-
tion, we obtain the following estimate.

∀a, b ∈ (0,∞), θ ∈ [0, 1] : aθb1−θ ≤ θa+ (1− θ)b ≤ max{θ, 1− θ}(a+ b).

We will use it frequently. In particular, it implies that a+ b ≤ a+ aθb1−θ + b ≤ 2(a+ b); that is,

aθb1−θ . a+ b in (0,∞)2, a+ b ∼ a+ aθb1−θ + b in (0,∞)2(B.12)

for every θ ∈ [0, 1].
Let us generalize these estimates to complex numbers.

B.54. Lemma. For φ ∈ (0, π), let Σφ := {λ ∈ C \ {0} : | arg λ| < φ} denote the open sector centered
at zero with opening angle 2φ. Then

λ1 + λ2 ∼ |λ1|+ |λ2| in Σφ1 × Σφ2 if φ1 + φ2 < π,(B.13)

|λ1 + λ2| ≥ 2−1/2
√

1 + min{0, cos(|arg λ1|+ |arg λ2|)} (|λ1|+ |λ2|) in C× C,(B.14)

λ1 + λ2 ∼ λ1 + λ1−θ
1 λθ2 + λ2 in Σφ1 × Σφ2 if θ ∈ [0, 1], φj ∈ [0, π/2), φ1 + φ2 < π/2.(B.15)

Proof. (i) Clearly, the estimate λ1 + λ2 . |λ1|+ |λ2| applies in C2 by the triangle inequality.
Let φ1 ∈ [0, π), φ2 ∈ [0, π − φ1) and λ1 ∈ Σφ1 , λ2 ∈ Σφ2 . Then Re(λ1λ2) ≥ |λ1λ2| cos(φ1 + φ2)
where cos(φ1 + φ2) ∈ (−1, 1]. For a, b, c, s ∈ R, s ≤ 1 we obtain

a2 + 2abc+ b2 = s(a+ b)2 + (1− s)(a+ b)2 + 2ab(c− 1) ≥ s(a+ b)2 + 4ab(1− s) + 2ab(c− 1).

Choosing s = 1
2(1 + c) yields a2 + 2abc+ b2 ≥ 1

2(1 + c)(a+ b)2. Taking c = cos(φ1 + φ2) yields

|λ1 + λ2|2 = |λ1|2 + 2 Re(λ1λ̄2) + |λ2|2 ≥ 1
2(1 + cos(φ1 + φ2))(|λ1|+ |λ2|)2, for λj ∈ Σφj .

This inequality and the triangle inequality yield the asserted inequalities.
(ii) Let λj ∈ Σφj for φj ∈ [0, π), φ1 + φ2 < π and θ ∈ [0, 1]. Then (B.12) implies

λ1 + λ1−θ
1 λθ2 + λ2 . |λ1|+ |λ1|1−θ|λ2|θ + |λ2| . |λ1|+ |λ2| . λ1 + λ2 in Σφ1 × Σφ2 .

To prove the converse, we estimate as follows.

|λ1 + λ1−θ
1 λθ2 + λ2|2 = |λ1|2 + 2 Re

(
λ1λ̄2

)
+ |λ2|2 + |λ1−θ

1 λθ2|2 + 2 Re
(

(λ1 + λ2)λ̄1−θ
1 λ̄θ2

)
,

2 Re
(

(λ1 + λ2)λ̄1−θ
1 λ̄θ2

)
≥ 2 cos(θ(φ1 + φ2))|λ1|2−θ|λ2|θ + 2 cos((1− θ)(φ1 + φ2))|λ1|1−θ|λ2|1+θ.

Let us abbreviate cs := cos(s(φ1 + φ2)) for s ∈ R. Since both cθ and c1−θ are non-negative, we
have 2 Re((λ1 + λ2)λ̄1−θ

1 λ̄θ2) ≥ 0 and (B.15) is established. �

Let us derive some inequalities for the elements z = (zj)
n
j=1 ∈ BΣ

n
δ of the closed bisector

BΣ
n
δ :=

(
BΣδ

)n
, BΣδ :=

{
z = reiϕ ∈ C : r ∈ Ṙ, |argϕ− π/2| < δ

}
= iΣδ ∪ −iΣδ.
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B.55. Lemma. Let n ∈ N, δ ∈ [0, π) and define |z|− :=
√
−z · z =

√
−
∑

j z
2
j for z ∈ BΣ

n
δ \ {0}.

(i) If δ ∈ [0, π/4), then |z|− ∈ Σδ for every z ∈ BΣ
n
δ \ {0}.

(ii) If δ ∈ [0, π/4) satisfies 1 + (n− 1) cos(4δ) > 0, then

||z|−| ≥
(

1 + (n− 1) cos(4δ)

n

)1/4

|z| for all z ∈ BΣ
n
δ \ {0}.

(iii) If δ ∈ [0, π/8], then every z ∈ BΣ
n
δ \ {0} satisfies

n−1/4|z| ≤ ||z|−| ≤ |z|, Re|z|− ≥ n−1/4 cos(δ)|z|, Im|z|− ≤ sin(δ)|z|.(B.16)

Proof. (i) For every z = (zj) ∈ BΣ
n
δ \ {0}we have −z2

j ∈ Σ2δ and hence −z · z = −
∑

j z
2
j ∈

Σ2δ by (B.13) and therefore |z|− =
√
−
∑

j z
2
j belongs to Σδ.

(ii) Hölder’s inequality yields

|z|2 = |z|22 =
∑

j
|zj |2 ≤ n1/2

(∑
j
|zj |4

)1/2
= n1/2|z|24 for z ∈ Cn.

Then the assertion follows from the following estimate.

||z|−|4 = |−
∑

j
z2
j |2 =

∑
j,k
z2
j z

2
k =

∑
j
|z2
j |2 + 2

∑
j<k

Re
(
z2
j z

2
k

)
≥
∑

j
|z2
j |2 + 2 cos(4δ)

∑
j<k
|z2
j ||z2

k|

= (1− cos(4δ))
∑

j
|z2
j |2 + cos(4δ)

(∑
j
|z2
j |2 + 2

∑
j<k
|z2
j ||z2

k|
)

≥
(

1− cos(4δ)

n
+ cos(4δ)

)
|z|42.

(iii) This is a simple consequence of (i) and (ii). �

B.56. Example. We consider the parabolic symbol

ω(λ, z) =
√
ρ(τ + λ)− µz2, λ ∈ Σφ, z ∈ BΣn

δ ,

where ρ > 0, τ > 0 and µ > 0 are constants and φ ∈ (π/2, π) and δ ∈ (0, π/8] satisfy φ+ 2δ < π.
Clearly, |ω| . 1 + |λ|1/2 + |z|. Then from inequality (B.14) and Hölder’s inequality a + b + c ≤√

3
√
a2 + b2 + c2 for a, b, c ≥ 0 we obtain

|ω(λ, z)| ≥

√√
c1

2
ρτ +

√
c1

2

√
c2

2
(ρ|λ|+ µ|z2|)

≥

√
1

3

√
c1

2
ρτ +

√√
c1c2

6
ρ|λ|+

√√
c1c2

6
µ|z2| for λ ∈ Σφ, z ∈ BΣn

δ ,

where c2
1 = 1 + cosφ > 0 and c2

2 = 1 + cos(φ+ 2nδ) > 0. From (B.16) we conclude that

ω(λ, z) =
√
ρ(τ + λ)− µz2 ∼ 1 + λ1/2 +

√
−z2 for λ ∈ Σφ, z ∈ BΣn

δ .

B.2.8. Elliptic differential operators on manifolds. The subsequent theorem of Amann,
Hieber and Simonett [AHS94] guarantees that certain elliptic operators on compact manifolds
areR-sectorial and have a boundedH∞ functional calculus in Lp(M ;G). Here (M, g) is a com-
pact n-dimensional Riemannian Cm-manifold without boundary (m ∈ N) and G := (G, π,M)
is a Cm-class vector bundle over M whose fibers π−1({x}) (x ∈M ) are isomorphic to a Banach
space E ∼= CN of finite dimension N . A trivializing coordinate system (κ, χκ) for G consists
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of a chart κ : Uκ → E and a trivializing map π−1(Uκ) → Uκ × E, g 7→ (π(g), χκ(g)). The lo-
cal representation of a section u of G with respect to (κ, χκ) is given by uκ := χκ ◦ u ◦ κ−1,
κ(Uκ)→ E.

For given p ∈ (1,∞) and k ∈ {0, 1, . . . ,m}, we define the Sobolev spaces Hk
p (M ;G) of

all sections u of G such that ϕuκ belongs to Hk
p (Rn;E) for every ϕ ∈ Ckc (κ(Uκ)) and for ev-

ery trivializing coordinate system (κ, χκ). Moreover, Hk
p (M ;G) is a Banach space with re-

spect to the norm ‖u‖Hk
p (M ;G) :=

∑
κ‖(ϕκ ◦ κ−1)uκ‖Hk

p (Rn;E) where the sum is taken over a
finite partition of unity (ϕκ)κ for M , subordinate to (Uκ)κ. Hence for K = |{κ}|, the map
r : Hk

p (Rn;CN )K → Hk
p (M ;G), (uκ)κ 7→ u is a retraction and thus Hk

p (M ;G) inherits many em-
bedding and interpolation properties from the space Hk

p (Rn). The Lebesgue spaces Lp(M ;G)
and the Sobolev-Slobodeckiı̆ spaces W s

p (M ;G) for s ∈ [0,m] are defined analogously.
Let A : Hm

p (M ;G) → Lp(M ;G) be differential operator with representation Aκ(y,D) =∑
|α|≤m aκ,α(y)Dα for y ∈ κ(Uκ), where aκ,α ∈ C(κ(Uκ);L(E)) and Dj := −i∂j for 1 ≤ j ≤ n.

The operator A is called θ-elliptic (θ ∈ [0, π)), if its principal symbol Aπ satisfies

σ(Aπ(ξ∗x)) ⊂ {λ ∈ C \ {0} : |arg λ| ≤ θ}, for all x ∈M, ξ∗x ∈ T ∗xM \ {0}.

Note that Aπ(ξ∗x) ∈ L(π−1({x})) is a homogeneous polynomial in ξ∗x.
B.57. Theorem ([AHS94, Theorem 10.1, Theorem 10.3]). Let M be a compact n-dimensional Cm-
manifold (m ∈ N) without boundary, let G be a complex Cmin{m,2}-vector bundle over M and let p ∈
(1,∞). Let A : Hm

p (M ;G) → Lp(M ;G) be a linear differential operator with continuous coefficients
such that A is θ0-elliptic for some θ0 ∈ [0, π).

(i) For every θ ∈ (θ0, π) there exists µθ > 0 such that µθ + A : Hm
p (M ;G) → Lp(M ;G) is an

isomorphism andR-sectorial withR-angle θ.
(ii) If Aπ has Cε-coefficients for some ε ∈ (0, 1), then for every θ ∈ (0, θ0) there exists µθ > 0 such

that µθ +A has a boundedH∞ functional calculus in Lp(M ;G) withH∞-angle θ.
B.58. Corollary. Let Σ ⊂ Rn (n ≥ 2) be a compact C2-hypersurface, let ∆Σ = divΣ∇Σ = gij(∂i∂j −
Λkij∂k) denote the scalar Laplace-Beltrami operator and let p ∈ (1,∞), K = C.

(i) For every µ ∈ (0,∞), the operator µ −∆Σ : H2
p (Σ) → Lp(Σ) is invertible and R-sectorial with

R-angle zero.
(ii) If Σ ∈ C2+ε for some ε ∈ (0, 1), then for every θ ∈ (0, π) there exists µθ ∈ (0,∞) such that

µθ −∆Σ has a boundedH∞ functional calculus in Lp(Σ) withH∞-angle θ.
(iii) Let λ1 > 0 denote the smallest non-zero eigenvalue of −∆Σ. Then for every µ ∈ (−λ1,∞), the

operator µ−∆Σ : H2
p (Σ) ∩ Lp,0(Σ)→ Lp,0(Σ) is invertible andR-sectorial withR-angle zero.

(iv) Let s ∈ [0,∞) and assume that Σ be smooth and let s ∈ [0,∞). Then for every µ ∈ (0,∞), the
operator µ−∆Σ : W s+2

p (Σ)→W s
p (Σ) is invertible andR-sectorial withR-angle zero.

Proof. (i) The domain H2
p (Σ) of ∆Σ is compactly embedded into the ground space Lp(Σ)

and therefore the spectrum of ∆Σ consists solely of eigenvalues with finite multiplicity. The
surface divergence theorem implies that all eigenvalues are non-positive and that zero is an
eigenvalue with multiplicity one (the corresponding eigenfunctions are the constant functions).
Hence, by considering the operators −eiψ∆Σ (ψ ∈ (−π/2, π/2)) and using Theorem B.57.(i),
Theorem B.22 and Theorem B.23, we obtain the assertion.

(ii) Since gij ∈ C1+ε and Λkij ∈ Cε, the assertion follows from Theorem B.57.(ii).
(iii) We have the direct decomposition Lp(Σ) = Lp,0(Σ)⊕K, where we identify K with the

constant functions, which form the eigenspace for the eigenvalue zero. Hence the spectrum of
the realization of −∆Σ in Lp,0(Σ) is contained in [λ1,∞) and the assertion follows as in (i).

(iv) By means of a localization procedure as in Section 2.1 it can be shown that the operator
µ − ∆Σ : Hk+2

p (Σ) → Hk
p (Σ) is invertible for large µ. This assertion holds true for all µ > 0

by Theorem B.22. By means of retractions r : W s
p (Rn−1)K → W s

p (Σ) and real interpolation, it
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follows that µ − ∆Σ : W s+2
p (Σ) → W s

p (Σ) is invertible and R-sectorial with R-angle zero for
every s ∈ [0,∞). �

B.59. Corollary. Let Σ ⊂ Rn (n ≥ 2) be a compact C2-hypersurface, let p ∈ (1,∞), let ∇̃Σ denote
the covariant derivative on Σ and let ∆̃Σ : H2

p (Σ;TΣ) → Lp(Σ;TΣ), ∆̃Σv = gαβ∇̃α∇̃βv denote the
Laplace-Beltrami operator for tangential vector fields on Σ (see page 141).

(i) For every µ ∈ (0,∞), the operator µ− ∆̃Σ : H2
p (Σ;TΣ)→ Lp(Σ;TΣ) is invertible.

(ii) Let (TΣ)C denote the complexification of TΣ. Then for every µ ∈ (0,∞), the operator µ −
∆̃Σ : H2

p (Σ; (TΣ)C)→ Lp(Σ; (TΣ)C) is an isomorphism andR-sectorial withR-angle zero.
(iii) If Σ ∈ C2+ε for some ε ∈ (0, 1), then for every θ ∈ (0, π) there exists µθ ∈ (0,∞) such that

µθ − ∆̃Σ has a boundedH∞ functional calculus in Lp(Σ; (TΣ)C) withH∞-angle θ.

Proof. The proof is similar as for Corollary B.58. �

B.3. Joint functional calculus and mixed-order systems

B.3.1. The joint H∞-functional calculus for (∂t,∇). We collect some results of Denk and
Kaip [DK13] on the joint functional calculus operator tuples like∇ = (∂1, . . . , ∂n) and (∂t,∇).
B.60. Definition ([KW04, p. 4.9]). We say that a Banach space X has property (α), if there exists
C > 0 such that∫ 1

0

∫ 1

0

∥∥∥∑n

i,j=1
ri(u)rj(v)αijxij

∥∥∥
X
du dv ≤ C

∫ 1

0

∫ 1

0

∥∥∥∑n

i,j=1
ri(u)rj(v)xij

∥∥∥
X
du dv

for all n ∈ N, αij ∈ C with |αij | ≤ 1, xij ∈ X .
B.61. Remarks ([KW04, p. 4.10], [DK13, Remark 1.15]). Let X have property (α).

(i) If Y is a closed subspace of X , then Y has property (α).
(ii) If Y is isomorphic to X , then Y has property (α).

(iii) If (Ω, µ) is a σ-finite measure space and p ∈ [1,∞), then Lp(Ω, µ;X) has property (α).
(iv) Every Hilbert space has property (α).

B.62. Definition (Ground spaceW , [DK13, Definition 1.71], [Kai12, Definition 2.25]). Let n ∈ N,
p0, p1, q0, q1 ∈ (1,∞), s, ω ∈ [0,∞), r ∈ R and X be a Banach space of class HT with property
(α). Then we let

W := eω·0Fs(R+;Kr(Rn;X)), K ∈ {Bp1,q1 , Hp1}, F ∈

{
{Bp0,q0 , Hp0}, if s > 0,

{Hp0}, if s = 0.

Here the space eω·0Fs(R+;Y ) consists of all functions t 7→ eωtu(t) such that u ∈ 0Fs(R+;Y ),
equipped with the norm ‖t 7→ eωtu(t)‖

0Fs(R+;Y ).
B.63. Definition (Sectors, bisectors, curves, cf. [DK13, Definition 1.1]). For φ ∈ (0, π), let Σφ ⊂
C denote the open sector

Σφ = {z = reiϕ : r ∈ (0,∞), |ϕ| < φ} = {z ∈ C \ {0} : |arg z| < φ}.
For δ ∈ (0, π/2), let BΣδ ⊂ C denote the open bisector

BΣδ = {z = reiϕ : r ∈ R \ {0}, |ϕ− π/2| < δ} = iΣδ ∪ −iΣδ.

For ψ ∈ (0, π) we define the curve Γψ ⊂ C by means of the parametrization R 3 r 7→
|r|e−iψ sign r. Hence Γψ = ∂Σψ is oriented counter-clockwise around Σψ.
B.64. Definition ([cf. DK13, Definition 1.17]). Let n ∈ N, let Ω ⊂ Cn be open and let Y be a
Banach space. We define

(i) H(Ω;Y ), the vector space of all holomorphic Y -valued functions on Ω,
(ii) H∞(Ω;Y ), the vector space of all bounded holomorphic Y -valued functions on Ω,

(iii) H∞0 (Ω;Y ) = {f ∈ H∞(Ω;Y ) : ∃C, s > 0 ∀z ∈ Ω : |f(z)|Y ≤ C
∏n
j=1(min{|zj |, |zj |−1})s},
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(iv) HP (Ω;Y ) = {f ∈ H(Ω;Y ) : ∃C, s > 0∀z ∈ Ω : |f(z)|Y ≤ C
∏n
j=1(max{|zj |, |zj |−1})s}.

Thus the spacesH∞0 (Ω;Y ) andHP (Ω;Y ) consists of functions that have a polynomial decay
or a polynomial growth at zero and at infinity.
B.65. Remarks ([DK13, Definition 1.20]). Let Tj (j ∈ {1, . . . , n}) be closed linear operators in a
complex Banach spaceX such that each Tj is sectorial or bi-sectorial and such that all resolvents
the (λ− Tj)−1, (µ− Tl)−1 commute (λ ∈ ρ(Tj), µ ∈ ρ(Tl), j, l ∈ {1, . . . , n}).

For sectorial Tj we choose Ωj := Σθj with some θj ∈ (ϕTj , π) and Γj := Γϕj∂Σ . . .. For
bi-sectorial Tj we choose Ωj := BΣδj with some δj ∈ (ϕbi

Tj
, π/2) and Γj := ∂Σφj with some

φj ∈ (). We put Ω := Ω1 × · · · × Ωn and Γ := Γ1 × · · · × Γn and we let BT ⊂ B(X) denote the
commutator algebra of {(λ− Tj)−1 : λ ∈ ρ(Tj), j ∈ {1, . . . , n}} in B(X).

(i) JointH∞-functional calculus. For f ∈ H∞0 (Ω;BT ) we define

f(T ) :=
1

(2πi)n

∫
Γ
f(z)

n∏
j=1

(zj − Tj)−1 dz ∈ B(X).

(ii) JointHP -functional calculus. For k, n ∈ N, the functions

ψk,n(z) :=
k2z1

(1 + kz1)(k + z1)
· · · k2zn

(1 + kzn)(k + zn)

belong toH∞0 (Ω) and for every f ∈ HP (Ω;Y ) there exists m ∈ N0 such that ψmk,nf ∈ H∞0 (Ω;BT )

for all k ∈ N. Hence, for f ∈ HP (Ω;BT ) we may choose m ∈ N0 with ψm1,nf ∈ H∞0 (Ω;BT ) and
define

f(T ) : D(f(T ))→ X, x 7→ ψ(T )−m(ψmf)(T )x

with domain D(f(T )) := {x ∈ X : (ψmf)(T )x ∈ R(ψ(T )m)}.
B.66. Definition (JointH∞-functional calculus for (µ+ ∂t,∇x), [Kai12, Definition 1.10]). Put

Ω := Σφ ×BΣδ1 × · · ·BΣδn , where φ ∈ (π/2, π), δj ∈ (0, π/2).

Let µ ∈ [0,∞) and consider the operators ∂t, ∂x1 , . . . , ∂xn as closed operators in W . For the
tuple (µ+ ∂t,∇) we define the jointH∞(Ω)-functional calculus

f 7→ f(µ+ ∂t,∇) :=
1

(2πi)1+n

∫
Γφ′

∫
∏
j(Γδ′

j
∪(−Γδ′

j
))
f(τ, z)(τ − µ− ∂t)−1

∏
j
(zj − ∂xj )−1d(τ, z),

where f ∈ H∞0 (Ω) and φ′ ∈ (π/2, φ), δ′j ∈ (0, δj) (the integrals do not depend on φ′, δ′j). The
resolvents (τ − µ − ∂t)−1 and (zj − ∂xj )−1 are considered as bounded linear operators in the
same ground spaceW according to Definition B.62.
B.67. Theorem (Time derivative, [DK13, Theorems 1.83, 1.84]). Let r, s, ω ∈ [0,∞) and let F , K,
X be as in Definition B.62. Let

Dt : u 7→ ∂tu, eω·0Fs+1(R+;X)→ eω·0Fs(R+;X)

denote the realization in eω·0Fs(R+;X) of the time derivative. Then the following assertions are valid.
(i) Dt has anR-boundedH∞-calculus with φR∞Dt = π/2.

(ii) The operator Dt has
(a) the resolvent set ρ(Dt) = {z ∈ C : Re z < ω},
(b) the residual spectrum σr(Dt) = {z ∈ C : Re z > ω},
(c) the point spectrum σp(Dt) = ∅,
(d) the continuous spectrum σc(Dt) = iR + ω.
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B.68. Theorem ([MS12, Proposition 2.9]). Let p ∈ (1,∞), X ∈ HT , s ∈ [0,∞), α ∈ (0, 2),
ω ∈ (0,∞). Then the operators

(ω − ∂t)α in Hs
p(R+;X) with domain Hs+α

p (R+;X),

(ω − ∂t)α in W s
p (R+;X) with domain W s+α

p (R+;X), s, s+ α /∈ N0

are invertible and have boundedH∞ functional calculi with angle not larger than απ/2.
B.69. Theorem (Space derivatives, [DK13, Theorem 1.81]). Let

Dxj : u 7→ ∂xju, eω·0Fs(R+;Kr+1(Rn;X))→ eω·0Fs(R+;Kr(Rn;X))

denote the realizations of the partial derivatives in eω·0Fs(R+;Kr(Rn;X)). Let δj ∈ (0, π/2) and
Ωx =

∏n
j=1BΣδj . Then the tuple Dx = (Dx1 , . . . ,Dxn) has a bounded jointH∞(Ωx)-calculus.

B.70. Theorem ([Kai12, Definition 1.15, Theorem 2.47]). LetW = eω·0Fs(R+;Kr(Rn;X)) be as
in Definition B.62, let Ω = Σφ ×BΣδ1 × · · · ×BΣδn be as in Definition B.66 and let σ ≥ 0. Then the
tuple (σ +Dt,Dx) has a bounded jointH∞(Ω)-functional calculus inW .

B.3.2. Parabolic mixed-order systems. We define order functions and Newton polygons.
An example is given in Figure B.1 on the facing page. Then we consider a class of parameter-
dependent symbols S(Σφ × BΣ

n
δ × K), which are used in Section 3.1 for solving the Fouier-

Laplace transformed differential equations.
B.71. Remarks ([DK13]). (i) A continuous and piecewise linear function µ : [0,∞) → R is
called an order function if µ is convex or concave. In this case there exist M ∈ N and γl > 0,
ml(µ), bl(µ) ∈ R for l ∈ {0, . . . ,M}with 0 =: γ0 < γ1 < · · · < γM < γM+1 :=∞ such that

µ(γ) = bl(µ) +ml(µ)γ for γ ∈ (γl, γl+1),

and we have

ml−1(µ) ≤ ml(µ), bl−1(µ) ≥ bl(µ) for l ∈ {1, . . . ,M}

(that is, µ is convex) or

ml−1(µ) ≥ ml(µ), bl−1(µ) ≤ bl(µ) for l ∈ {1, . . . ,M}

(that is, µ is concave). If µ is convex, then we have

µ(γ) = max {bl(µ) +ml(µ)γ : l ∈ {0, . . . ,M}} for γ ∈ [0,∞).

(ii) A convex [concave] order function µ is increasing [decreasing] if ml(µ) ≥ 0 [ml(µ) ≤ 0]
for all l ∈ {0, . . . ,M}. A convex [concave] order function µ is increasing [decreasing] ifml(µ) ≥ 0
[ml(µ) ≤ 0] for all l ∈ {0, . . . ,M}.

(iii) An order function µ is called strictly positive if µ is convex and ml(µ) ≥ 0 and bl(µ) ≥ 0
for all l ∈ {0, . . . ,M}. An order function µ is called strictly negative if −µ is strictly positive.

(iv) For a given finite set ν = (rj , sj)
J+1
j=0 ⊂ [0,∞)2, J ∈ N0, the associated Newton polygon

N(ν) is defined as the convex hull in R2 of the set of vertices (0, 0), (0, sj), (rj , 0), (rj , sj),
j ∈ {0, . . . , J + 1}.

B.72. Definition (Symbol class S(Σφ × BΣ
n
δ × K), cf. [DK13]). Let K ⊂ Cm be compact, φ ∈

(π/2, π), δ ∈ (0, π/2). Then we let S(Σφ ×BΣ
n
δ ×K) be the set of all functions

P : Σφ ×BΣ
n
δ ×K → C, (λ, z, ϑ) 7→ P (λ, z;ϑ) =

∑
j∈J

χj(ϑ)ωj(λ, z)ϕj(λ)ψj(z),(B.17)

where J is a finite index set and for all j ∈ J ,
(i) χj : K → C is continuous and nontrivial,
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FIGURE B.1. γ-order and Newton polygon of the symbol ω(λ, z) = (λ+ |z|2−)1/2.

(ii) ωj is holomorphic in Σφ ×BΣn
δ , continuous in Σφ ×BΣ

n
δ and satisfies

ωj(η
2λ, ηz) = ηNjωj(λ, z) 6= 0 for η > 0, (λ, z) ∈ Σφ ×BΣ

n
δ \ {(0, 0)}

with some Nj ∈ [0,∞),
(iii) ϕj is holomorphic in Σφ, continuous in Σφ and satisfies

ϕj(ηλ) = ηMjϕj(λ) 6= 0 for η > 0, λ ∈ Σφ \ {0}

with some Mj ∈ [0,∞),
(iv) ψj is holomorphic in BΣn

δ , continuous in BΣ
n
δ and satisfies

ψj(ηz) = ηLjψj(z) 6= 0 for η > 0, z ∈ BΣ
n
δ \ {0}

with some Lj ∈ [0,∞),
(v) for every γ ∈ (0,∞], the γ-principal part πγP (see below) is not identical zero.

B.73. Definition (γ-order and γ-principal part, cf. [DK13, cf. Definition 2.10]). Let P ∈ S(Σφ ×
BΣ

n
δ ×K) with representation (B.17). We put P [ϑ] := P (·, ·;ϑ) and J [ϑ] := {j ∈ J : χj(ϑ) 6= 0}.

For ϑ ∈ K with J [ϑ] 6= ∅we define the γ-order

dγ(P [ϑ]) :=


max
j∈J [ϑ]

{γMj +Nj max{γ/2, 1}+ Lj} for γ ∈ (0,∞),

max
j∈J [ϑ]

{Mj +Nj/2} for γ =∞.

Let

Jγ [ϑ] :=

{
{j ∈ J : γMj +Nj max{γ/2, 1}+ Lj = dγ(P [ϑ])} for γ ∈ (0,∞),

{j ∈ J : Mj +Nj/2 = d∞(P [ϑ])} for γ =∞.

We define the γ-principal part

πγP (λ, z;ϑ) :=


lim
η→∞

P (ηγλ, ηz;ϑ)

ηdγ(P [ϑ])
=

∑
j∈Jγ [ϑ]

χj(ϑ)πγωj(λ, z)ϕj(λ)ϕj(z) for γ ∈ (0,∞),

lim
η→∞

P (ηλ, z;ϑ)

ηd∞(P [ϑ])
=

∑
j∈J∞[ϑ]

χj(ϑ)ωj(λ, 0)ϕj(λ)ψj(z) for γ =∞,

where

πγωj(λ, z) :=


ωj(0, z) for γ ∈ (0, 2),

ωj(λ, z) for γ = 2,

ωj(λ, 0) for γ ∈ (2,∞].

B.74. Definition (N -parabolic symbol, cf. [Kai12],[DK13]). The class SN (Σφ × BΣ
n
δ × K) of

N -parabolic symbols consists of all functions P ∈ S(Σφ ×BΣ
n
δ ×K) such that



168 B. FUNCTIONAL ANALYTIC METHODS

(i) πγP (·, ·, ϑ) is nontrivial for all γ ∈ (0,∞], ϑ ∈ K and all ϑ 7→ dγ(P (·, ·, ϑ)) are constant,
(ii) P satisfies a two-sided estimate

|P (λ, z, ϑ)| ∼
∑

(r,s)∈NV
|λ|s|z|r uniformly with respect to (λ, z, ϑ) ∈ Σφ ×BΣ

n
δ ×K,

where NV denotes the set of the vertices of the Newton polygon associated to dγ(P ).

B.75. Theorem (cf. [DK13, Theorem 2.56, Corollary 2.57]). The symbol P ∈ S(Σφ ×BΣ
n
δ ×K) is

N -parabolic if and only if

πγP (λ, z, ϑ) 6= 0 for all γ ∈ (0,∞], λ ∈ Σφ \ {0}, z ∈ BΣ
n
δ \ {0}, ϑ ∈ K.

The next result implies that every N -parabolic symbol induces a topological linear isomor-
phism with uniform bounds with respect to a compact parameter set K. We let Fs(Kr) be as
in Definition B.62 and apply the joint functional calculus for (µ+ ∂t, ∂x1 , . . . , ∂xn) from Remark
B.65.
B.76. Theorem (cf. [Kai12; DK13]). Let P ∈ SN (Σφ × BΣ

n
δ ×K), φ ∈ (π/2, π), δ > 0. Then there

exists µ0 ≥ 0 such that ϑ 7→ P (µ0 + ·, ·, ϑ)−1, K → H∞(Σφ ×BΣn
δ ) is bounded. Moreover, for every

such µ0, there exists C > 0 such that for all µ ∈ [µ0,∞) and ϑ ∈ K, the realization

P (µ+ ∂t, ∂x1 , . . . , ∂xn , ϑ) :
⋂

(r,s)∈NV (P )

(
0Fs

′+s(Kr′+r)
)
→ 0Fs

′
(Kr′)

is an isomorphism and both P (µ + ∂t, ∂x1 , . . . , ∂xn , ϑ), [P (µ + ∂t, ∂x1 , . . . , ∂xn , ϑ)]−1 are bounded by
C.
B.77. Definition (cf. [DK13]). Let φ ∈ (π/2, π), δ ∈ (0, π/2) and K be a compact topological
space. A function L : Σφ ×BΣ

n
δ ×K → Cm×m is called an N -parabolic mixed-order system if

(i) L(·, ·, ϑ) is holomorphic and polynomially bounded, uniformly in ϑ ∈ K,
(ii) detL is N -parabolic in the sense of Definition B.74,

(iii) there are order functions sj and ti such that sj + ti is an upper order function for Lj,i for
all j, i ∈ {1, . . . ,m},

(iv) dγ(detL) =
∑m

j=1(sj(γ) + ti(γ)) for all γ ∈ (0,∞].
B.78. Definition (cf. [DK13, Definition 2.78]). Let µ1 and µ2 be convex increasing order func-
tions such that µ1 − µ2 is an order function. Let p ∈ (1,∞). The scale

(Fl,Kl) ∈ {(Bpp, Hp), (Hp, Bpp)}, l ∈ {0, . . . ,M},
is called (µ1, µ2)-admissible, if that there exists k ∈ {0, . . . ,M − 1} such that

(F0,K0) = · · · = (Fk,Kk) = (Hp, Bpp),

(Fk+1,Kk+1) = · · · = (FM ,KM ) = (Bpp, Hp),

and

(bk(µ2),mk(µ2)) 6= (bk+1(µ2),mk+1(µ2)) if µ1 − µ2 is convex,

(bk(µ1),mk(µ1)) 6= (bk+1(µ1),mk+1(µ1)) if µ1 − µ2 is concave.

B.79. Theorem (cf. [DK13, Theorem 2.69, Corollary 2.80]). Let X be a Banach space of class HT
with property (α). Let L : Σφ×BΣ

n
δ ×K → Cm×m be anN -parabolic mixed order system such that for

each i, j ∈ {1, . . . ,m}, the order function sj + ti is convex and increasing or concave and decreasing.
Let ρ ≥ 0, s′l ≥ 0, r′l ∈ R, l ∈ {0, . . . ,M}, such that

µHi(γ) := max
l
{[s′l +ml(ti)]γ + r′l + bl(ti)}, γ ≥ 0,

µFj (γ) := max
l
{[s′l −ml(sj)]γ + r′l − bl(sj)}, γ ≥ 0, i, j ∈ {1, . . . ,m},

are convex increasing order functions. Furthermore, let p ∈ (1,∞) and let the scale

(Fl,Kl) ∈ {(Bpp, Hp), (Hp, Bpp)}, l ∈ {0, . . . ,M},
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be (µHi , µFj )-admissible for all i, j ∈ {1, . . . ,m} and let

s′l > max{max{−ml(ti),ml(sj)} : i, j ∈ {1, . . . ,m}} for all l ∈ {0, . . . , k},

with k from Definition B.78. With 0Fsl (Krl ) := 0Fsl (R+;Krl (Rn;X)) we define the spaces

Hi :=
⋂M

l=0
0F

s′l+ml(ti)
l

(
Kr
′
l+bl(ti)

l

)
, Fj :=

⋂M

l=0
0F

s′l−ml(sj)
l

(
Kr
′
l−bl(sj)
l

)
.

Then there exists τ0 > 0 such that for all τ ≥ τ0,

L(τ +Dt,Dx, ϑ) :
∏m

i=1
Hi →

∏m

j=1
Fj

is a topological linear isomorphism and its inverse

(L(τ +Dt,Dx, ϑ))−1 = L−1(τ +Dt,Dx, ϑ)

is uniformly bounded with respect to ϑ ∈ K.

B.4. Analytic Nemytskiı̆ operators

The nonlinear problem (T) contains nonlinear operators (u, π, h, t, x) 7→ F (u, π, h)(t, x) where
F (u, π, h)(t, x) only depends on the values of (u, π, h) and its derivatives at (t, x). These so-
called Nemytskiı̆ operators are studied in Section B.4. In order to prove the analyticity of a
Nemytskiı̆ operator, we define it in an open subset of a Banach space X such that

(i) X ↪→ BUC(M ;K) for some metric space M ,
(ii) X is a Banach algebra with respect to pointwise multiplication,

(iii) we have u−1 ∈ X for every u ∈ X with inf{|u(x)| : x ∈M} > 0.
B.80. Remark. Let Σ ⊂ Rn be a compact smooth hypersurface and let θ ∈ (0, 1), p ∈ (1,∞).
Then we have

[[uv]]θ,p ≤ ‖u‖∞ [[v]]θ,p + [[u]]θ,p ‖v‖∞ for u, v ∈W θ
p (Σ) ∩ L∞(Σ).

Therefore the spaces W k+θ
p (Σ) ∩ W k

∞(Σ) (k ∈ N0, θ ∈ [0, 1], p ∈ (1,∞)) are multiplication
algebras.

One more general result is given in
B.81. Lemma (cf. [Mey10, Lemma 1.3.19]). Let Ω ⊂ Rn be a domain with compact smooth boundary,
or Ω ∈ {Rn,Rn+}, or let Ω be the boundary of such a domain. Let further X be a Banach space of class
HT , let s ∈ (0,∞) and p ∈ (1,∞). Then there exists C > 0 such that

‖fg‖W s
p (Ω;X) ≤ C‖f‖L∞(Ω;B(X))‖g‖W s

p (Ω;X) + C‖f‖W s
p (Ω;B(X))‖g‖L∞(Ω;X)

for all f ∈W s
p (Ω;B(X)) ∩ L∞(Ω;B(X)) and g ∈W s

p (Ω;X) ∩ L∞(Ω;X).
Hence W s

p (Σ) is a multiplication algebra for s ∈ (0,∞), p ∈ (1,∞) with s− (n− 1)/p > 0.
B.82. Definition. Let M be a measure space, let X , Y be Banach spaces, U ⊂ X be open and
f : M × U → Y be a Carathéodory function; that is,

(i) u 7→ f(x, u) is continuous for almost all x ∈M ,
(ii) x 7→ f(x, u) is measurable for all u ∈ U .

Then the map

F : UM → YM , u 7→ [x 7→ F (u)(x) := f(x, u(x))]

is called the Nemytksiı̆ operator (of order zero) induced by f .
B.83. Definition. Let M be a set and K ∈ {R,C}. A Banach space X ⊂ KM is called a multipli-
cation algebra if pointwise multiplication

X ×X → X, (u, v) 7→ uv = [x 7→ u(x)v(x)]

is continuous. In this case there exists CX > 0 such that ‖uv‖X ≤ CX‖u‖X‖v‖X for all u, v ∈ X .
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We collect some information on analytic operators between open subsets of Banach spaces
from Appell and Zabrejko [AZ90], Deimling [Dei10], and Zeidler [Zei86].

Let X1, . . . , Xk, Y be Banach spaces over the same scalar field K ∈ {R,C}. We say that
a k-linear operator T : X1 × · · · × Xk → Y is bounded, if there exists a number C ≥ 0 such
that ‖T (x1, . . . , xk)‖Y ≤ C‖x1‖X1 · · · ‖xk‖X1 for all tuples (x1, . . . , xk). The infimum of such
numbers C is the norm of T , denoted by ‖T‖ or ‖T‖Bk(X1×···×Xk;Y ). We put

Bk(X1 × · · · ×Xk;Y ) := {T : X1 × · · · ×Xk → Y : T is k-linear and bounded}.

For k = 0, we put X1 × · · · ×Xk := {0} and B0({0};Y ) := Y . For a multi-index α ∈ Nk0 we let
K = |{j ∈ {1, . . . , k} : αj 6= 0}| and φ : {1, . . . ,K} → {1, . . . , k} be strictly increasing such that
αφ(j) 6= 0 for all j. Then we identify Xα1

1 × · · · ×X
αk
k with X

αϕ(1)

ϕ(1) × · · · ×X
αϕ(K)

ϕ(K) and define

Bα(Xα1
1 × · · · ×X

αk
k ;Y ) := B|α|(Xα1

1 × · · · ×X
αk
k ;Y ).

A map T : Xk = X×· · ·×X → Y is called symmetric if T (x1, . . . , xk) = T (xσ(1), . . . , xσ(k)) for
all tuples (x1, . . . , xk) and all permutations σ of {1, 2, . . . , k}. The map T : Xα1

1 × · · · ×X
αk
k (α ∈

Nk0) is called partially symmetric, if it is symmetric with respect to every tuple (xj,1, . . . , xj,αj ) ∈
X
αj
j when the other variables are fixed. We define

Bksym(Xk;Y ) := {T ∈ Bk(Xk;Y ) : T is symmetric},

Bαsym(Xα1
1 × · · · ×X

αk
k ;Y ) := {T ∈ B|α|(Xα1

1 × · · · ×X
αk
k ;Y ) : T is partially symmetric}.

A map M : X1×· · ·×Xk → Y is called monomial (operator) of degree α ∈ Nk0 induced by the
multilinear map T ∈ Bαsym(Xα1

1 × · · · ×X
αk
k ;Y ) if

M(x1, . . . , xk) = T (xα1
1 , . . . , xαkk ) for all (x1, . . . , xk) ∈ X1 × · · · ×Xk,

where xαjj denotes the tuple (xj , . . . , xj) ∈ X
αj
j .

A map P : X1 × · · · ×Xk → Y is called polynomial (operator) of degree lesser than or equal
to α ∈ Nk0 , if there exist finitely many monomials M (i) : X1 × · · · ×Xk → Y of degree α(i) ∈ Nk0
with α(i) ≤ α such that P =

∑
iM

(i).
B.84. Definition (Analytic operator). Let X , Y be Banach spaces over K ∈ {R,C} and U ⊂ X
be open. We say that F : U ⊂ X → Y is (K-) analytic at u ∈ U , if there exists r > 0 and
symmetric operators Fk ∈ Bksym(Xk;Y ), k ≥ 0, such that∑∞

k=0
‖Fk‖Bk(Xk;Y )‖h‖kX <∞ and F (u+ h) =

∑∞

k=0
Fkh

k for all h ∈ BX
r .(B.18)

A function is called analytic in U , if it is analytic at every point u0 ∈ U .

If F is analytic at u, then F is C∞ near u and we have Fk = F (k)(u)/k!. We next define

rF (u) := min
{

distX(u, ∂U), CF (u)−1
}
, CF (u) := lim supk→∞‖F (k)(u)/k!‖1/kBk(Xk;Y )

.

Then the Taylor series
∑∞

k=0 F
(k)(u)hk/k! converges in Y and equals F (u+h) for ‖h‖X < rF (u).

If K = C, then a function is analytic in U if and only if it is holomorphic in U . We then have

F (k)(u)hk =
k!

2πi

∫
|ζ|=ρ

F (u+ ζh)

ζk+1
dζ for 0 < ρ‖h‖X < rF (u), k ∈ N0,

and Cauchy’s estimates are valid:

‖F (k)(u)‖Bk(Xk;Y ) ≤
k!

δk
‖F‖L∞(Bδ(u);Y ) for 0 < δ < rF (u), k ∈ N0.
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B.85. Remark (Chain rule). Let U ⊂ Rn and V ⊂ Rk be open subsets. The following chain rule
is valid for sufficiently smooth maps f : V → R and u : U → V at x ∈ U (see [RS96, (5.2.1/6)]).

∂α(f ◦ u)(x) =
∑|α|

j=1

∑
cα,j,β(1),...,β(j)f (j)(u(x))∂β

(1)
u(x) · · · ∂β(j)

u(x).

Here the second sum is taken over all multi-indices β(1), . . . , β(j) ∈ Nn0 \ {0} such that β(1) +

· · ·+ β(j) = α and cα,j,β(1),...,β(j) are some constants that do not depend on f and u.
We next state Fraenkel’s chain rule [Fra78, Formula A]. Let X , Y , Z be Banach spaces,

U ⊂ X , V ⊂ Y be open sets and let f ∈ CN (V ;Z), u ∈ CN (U ;V ). Then f ◦ u ∈ CN (U ;Z) and
for n ∈ {1, . . . , N}, x ∈ U and (v1, . . . , vn) ∈ Xn, we have

(f ◦ u)(n)v1 · · · vn =
n∑
j=1

∑
β,σ

f (j) ◦ u
j!β!

(u(β1)vσ(1) · · · vσ(β1)) · · · (u(βj)vσ(n−βj+1) · · · vσ(n)),(B.19)

where the sum
∑

β,σ is taken over multi-indices β ∈ Nj such that |β| = n and all n! permuta-
tions σ of {1, . . . , n}. It can be shown that∑

β∈Nj ,|β|=1
1 = |{β ∈ Nj : |β| = n}| =

(
n− 1

j − 1

)
for 1 ≤ j ≤ n.(B.20)

B.86. Corollary. If F : U ⊂ X → V ⊂ Y andG : V ⊂ Y → Z are analytic, thenG◦F : U ⊂ X → Z
is analytic.

Proof. Let MF := supj∈N‖F (j)(x)/j!‖1/j , MG := supj∈N‖G(j)(F (x))/j!‖1/j for x ∈ U . The chain
rule (B.19) yields

‖(G ◦ F )(n)(x)‖
n!

≤Mn
F

n∑
j=1

M j
G|{β ∈ Nj : |β| = n}|

≤Mn
F

n∑
j=1

M j
G

(
n− 1

j − 1

)
= Mn

FMG(1 +MG)n−1.

Therefore
∑

n≥0(G ◦ F )(n)(x)hn/n! converges for ‖h‖ < [MF (1 +MG)]−1. The representation

G(F (x+ h)) =
∑
j≥0

G(j)(F (x))

j!
(F (x+ h)− F (x))j =

∑
j≥0

G(j)(F (x))

j!

∑
l≥1

F (l)(x)hl

l!

j

,

is valid for small h. As in the proof of [Fra78, Formula A] we rewrite the right-hand side as

G(F (x)) +
∑
n≥1

n∑
j=1

∑
β∈Nj ,|β|=n

∑
σ

G(j)(F (x))

j!β!
(F (β1)(x)hβ1) · · · (F (βj)(x)hβj ).

By the chain rule, G(F (x + h)) coincides with its Taylor series for small h. Therefore G ◦ F is
analytic at x. �

B.87. Proposition. Let M be a metric space, X ↪→ BUC(M ;K) be a multiplication algebra, U ⊂ Km

(m ∈ N) be open and f : U ⊂ Km → K be analytic. Define

U := {u ∈ Xm : u(M) ⊂ U, inf rf (u(M)) > 0, f ◦ u ∈ X, CF (u) <∞} ,

CF (u) = lim supj→∞
∥∥∂jf ◦ u/j!∥∥1/j

Bj((Xm)j ;X)
for u ∈ Xm with u(M) ⊂ U.

Then F : u 7→ f ◦ u, U ⊂ Xm → X is analytic.
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Proof. For all u ∈ Xm with u(M) ⊂ U and all h ∈ Xm with ‖h‖Xm < C(u)−1, the Taylor
series

∑
j≥0 F

(j)(u)hj/j! converges in X . Since f is analytic on u(M) ⊂ U , we obtain the
representation

F (u+ h)(x) = f(u(x) + h(x)) =
∑

j≥0
∂jf(u(x))h(x)j/j! for x ∈M,

provided |h(x)| < rf (u(x)). From X ↪→ BUC(M ;K) we infer that

|h(x)| ≤ ‖h‖BUC(M)m ≤ ‖I‖X→BUC(M)‖h‖Xm < inf rf (u(M)) ≤ rf (u(x)) for all x ∈M,

for h ∈ Xm with ‖h‖Xm < ‖I‖−1
X→BUC(M) inf rf (u(M)). Therefore F is analytic at u with

rF (u) ≥ min{‖I‖−1
X→BUC(M) inf rf (u(M)), CF (u)−1} > 0. �

B.88. Proposition. Let M be a metric space, X ↪→ BUC(M ;K) be a multiplication algebra and
m ∈ N. Then the map A 7→ [A(·)]−1, {A(·) ∈ Xm×m : [A(·)]−1 ∈ Xm×m} → Xm×m is analytic.

Proof. Let U := {A ∈ Km×m : A is invertible} and f : A 7→ A−1, U ⊂ Km×m → Km×m. Then

∂jf(A)(B1, . . . , Bk) = (−1)j
∑

σ

(∏j

i=1

(
A−1Bσ(i)

))
A−1 for j ∈ N0, B ∈ Km×m,(B.21)

where the sum is taken over all j! permutations σ of {1, . . . , j}. HenceCf (A) = |A−1| forA ∈ U .
For A ∈ U and B ∈ Km×m with |B| < |A−1|−1 we have A + B = A(I + A−1B) ∈ U and thus
distKm×m(A, ∂U) ≥ |A−1|−1. Therefore f is analytic with rf (A) = |A−1|−1.

The spaceXm×m with norm ‖·‖X := ‖·‖Xm×m is a Banach algebra with respect to pointwise
matrix multiplication and there exists CX > 0 such that ‖AB‖X ≤ CX‖A‖X‖B‖X . Hence

‖∂jf(A(·))‖X ≤ C2j
X ‖A

−1‖j+1
X j! for j ∈ N0, A ∈ Xm×m with A−1 ∈ Xm×m.

Proposition B.87 with CF (A) = C2
X‖A−1‖X <∞ yields the assertion. �

B.89. Proposition. Let M be a metric space and X ↪→ BUC(M ;K) be a multiplication algebra. Then
the map F : u 7→ u(·)1/2, {u ∈ X : infM dist(u(·),R−) > 0, u1/2, u−1 ∈ X} → X is analytic.

Proof. The map f : z 7→ z1/2, K \ R− → K is analytic with Cf (z) = |z| and rf (z) = dist(z,R−)
and∥∥∥∥∂kf ◦ uk!

∥∥∥∥1/k

X

=

∣∣∣∣ 1

2 · 1
·
(
− 1

2 · 2

)
· · ·
(
−2k − 3

2 · k

)∣∣∣∣1/k ‖u−k+1/2‖1/kX ≤ ckCX‖u1/2‖1/kX ‖u
−1‖X ,

with limk→∞ ck = 1. Hence CF (u) ≤ CX‖u−1‖X and Proposition B.87 yields analyticity. �

B.90. Lemma. Let Σ ⊂ Rn (n ≥ 2) be a compact smooth hypersurface and let s ∈ [0,∞), p ∈ (1,∞),
and m ∈ N. Then the pointwise matrix inversion operator

A(·) 7→ A(·)−1, {A ∈ (W s
p ∩ C)(Σ;Km×m) : ‖A(·)−1‖∞ <∞} → (W s

p ∩ C)(Σ;Km×m)

and the pointwise square root operator

u(·) 7→
√
u(·), {u ∈ (W s

p ∩ C)(Σ) : infΣ dist(u(·),R−) > 0} → (W s
p ∩ C)(Σ;Km×m)

are analytic.

Proof. The matrix inversion operator is well-defined, since we can controlA−1 in theW s
p -norm

by means of the identity (B.21), Lemma B.81 and the inequalities

‖A−1‖p ≤ |Σ|1/p‖A−1‖∞, [[A−1]]θ,p ≤ ‖A−1‖2∞[[A]]θ,p.

Then Proposition B.88 yields analyticity. The second assertion follows from the estimates

‖
√
u‖p ≤ |Σ|1/p‖u‖1/2∞ , [[

√
u]]θ,p ≤ (2 infΣ|u|1/2)−1 [[u]]θ,p . �
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B.5. Computation of the boundary symbol

For the derivation of the boundary symbol in Section 3.1.1 we have employed the identity (3.13)
on page 58. This identity can be checked with the software Maxima [Max] with the following
source code.
gam1: %omega[1]+z;
gam2: %omega[2]+z;
%alpha[1]: %mu[1]*%omega[1]*gam1;
%alpha[2]: %mu[2]*%omega[2]*gam2;
%Omega[p]: %mu[1]*%omega[1]*gam1+%mu[2]*%omega[2]*gam2;
%Omega[s]: %mu[s]*zˆ2
c[6]*%mu[1]*%omega[1]+c[6]*%mu[2]*%omega[2]+;
Lw1: c[5]*z*%alpha[1]*(%mu[1]-%mu[2])

+ c[6]*%mu[1]*%omega[1]*%alpha[2]
+ c[6]*%mu[2]*%omega[2]*%alpha[1];

Lw2: c[5]*z*%alpha[2]*(%mu[1]-%mu[2])
- c[6]*%mu[1]*%omega[1]*%alpha[2]
- c[6]*%mu[2]*%omega[2]*%alpha[1];

Lq: c[5]*z*(%mu[1]-%mu[2])
+ c[6]*%mu[2]*%omega[2] - c[6]*%mu[1]*%omega[1];

ratvars(z,%mu[1],%mu[2],%omega[1],%omega[2],%lambda);
B: matrix([-%omega[2]*%Omega[s]*%Omega[p]

+z*Lw2-zˆ2*%Omega[p]*%lambda[s]*%omega[2],
Lw1*z, -c[1]*zˆ4, Lq*zˆ2],

[%omega[2], %omega[1], 0, 0],
[-%alpha[2], -%alpha[1], %lambda, -z],
[(2*%mu[2]-c[2])*%omega[2]*%Omega[p]*%Omega[s]

-2*%theta[3]*z*Lw2
+2*%theta[3]*%lambda[s]*%omega[2]*zˆ2*%Omega[p],

2*%mu[1]*%omega[1]*%Omega[p]*%Omega[s]
-2*%theta[3]*Lw1*z,

(c[%sigma]+%theta[4])*%Omega[s]*zˆ2
+2*c[1]*%theta[3]*zˆ4,

%Omega[s]*%Omega[p]
-2*%theta[3]*zˆ2*Lq]);

detB: expand(determinant(B));
factor(detB);
P: expand(divide(detB,%omega[1]*%omega[2]

*(%mu[2]*%omega[2]*z+%mu[1]*%omega[1]*z
+%mu[2]*%omega[2]ˆ2+%mu[1]*%omega[1]ˆ2)

*(%mu[s]*zˆ2+c[6]*%mu[2]*%omega[2]
+c[6]*%mu[1]*%omega[1]))[1]);

Q: -scsimp(P,
(%theta[4]+c[%sigma])*(%mu[s]+%lambda[s])
+c[1]*c[2]+2*c[1]*%theta[3]=%beta[s]*d,
%mu[s]+%lambda[s]=%beta[s]);
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Birkhäuser, Basel, 1993.

[PS07] J. Prüss and G. Simonett. H∞-calculus for the sum of non-commuting operators. Trans.
Amer. Math. Soc. 359.8 (2007), 3549–3565.

[PS10] J. Prüss and G. Simonett. On the two-phase Navier-Stokes equations with surface tension.
Interfaces Free Bound. 12.3 (2010), 311–345.

[PS11] J. Prüss and G. Simonett. Analytic solutions for the two-phase Navier-Stokes equations
with surface tension and gravity. In: Parabolic Problems. Progr. Nonlinear Differential
Equations Appl. 80. Springer, Basel, 2011, 507–540.

http://maxima.sourceforge.net/


178 BIBLIOGRAPHY

[PS13] J. Prüss and G. Simonett. On the manifold of closed hypersurfaces in Rn. Discrete Contin.
Dyn. Syst. 33 (2013), 5407–5428.

[PS15] J. Prüss and G. Simonett. Moving Interfaces and Quasi-linear Parabolic Evolution Equations.
Monograph in preparation. unpublished, 2015.

[PS90] J. Prüss and H. Sohr. On operators with bounded imaginary powers in Banach spaces.
Math. Z. 203.3 (1990), 429–452.

[PSS07] J. Prüss, J. Saal, and G. Simonett. Existence of analytic solutions for the classical Stefan
problem. Math. Ann. 338.3 (2007), 703–755.
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List of symbols

Numbers
C the complex numbers. 11
C+ {z ∈ C : Re z ≥ 0}, the complex num-

bers with non-negative real part. 11
K either R or C. 11
N {1, 2, . . .}, the positive integers. 11
N0 {0, 1, 2, . . .}, the non-negative integers.

11
R the real numbers. 11
R+ [0,∞), the non-negative real numbers.

11
R− (−∞, 0], the non-positive real numbers.

11
Z {. . . ,−1, 0, 1, . . .}, the integers. 11

Surface differential operators
∆̃Γ g

αβ∇̃α∇̃β , Laplace-Beltrami operator for
tangential vector fields. 141, 164

DΓ(u) sym(PΓ[∇Γu]PΓ), surface rate-of-
strain tensor for u : Γ→ Rn. 19, 140

divΓ S [∂αS]τα, surface divergence of a sym-
metric tensor Sαβτα ⊗ τβ . 140

divΓ u τ
α·∂αu, surface divergence of a vector

field u = vατα + wν. 140
∇Γ τ

j
Γ ⊗ ∂j , surface gradient of Γ. 140

∇̃Γ covariant derivative of Γ. 139, 140
Symbols related to basic function spaces
Bs
pq Besov space of order s with exponents p
and q. 144

BUCk space of all bounded and uniformly
continuous functions with bounded and
uniformly continuous derivatives up to
order k. 143

C(U ;V ) space of all continuous functions
f : U ⊂ X → V ⊂ Y . 11

C0(J ;X) Banach space of all u ∈ C(J ;X)
such that ‖u(t)‖X → 0 as t→∞. 143

Ck− space of all u ∈ Ck−1 such that ∇k−1 is
locally Lipschitz. 143

Ck,α Hölder space of all u ∈ Ck such that
∇ku ∈ C0,α. 143
D(Ω;X) space of test functions in Ω. 143

D′(Ω;X) space of distributions in Ω. 143
F spq Triebel-Lizorkin space of order s with

exponents p, q. 144
H(Ω;Y ) space of all holomorphic Y -valued

functions on Ω. 164
H∞(Ω;Y ) space of all bounded holomor-

phic Y -valued functions on Ω. 164
H∞0 (Ω;Y ) subspace ofH∞(Ω;Y ) with poly-

nomial decay near 0 and∞. 164
HP (Ω;Y ) subspace ofH(Ω;Y ) with polyno-

mial growth near 0 and∞. 165
Ḣk
p homogeneous Sobolev space of order k
with exponent p. 40
Ḣkp semi-normed version of Ḣk

p . 23, 40
Ĥ−1
p dual space of Ḣ1

p′ . 25, 40
Hs
p Bessel-potential space of order swith ex-
ponent p. 143

Lp Lebesgue space with exponent p. 143
Pk space of all polynomials. 151
Pk space of all polynomials of degree lesser

or equal than k. 151
S space of rapidly decreasing functions. 143
S ′ space of tempered distributions. 143
S0 subspace of all ϕ ∈ S(Rn) with

(∂αFϕ)(0) = 0 for all α ∈ Nn0 . 151
S ′0 dual space of S0, equivalence classes of
S ′ modulo polynomials. 151

Σθ {reiϕ : r ∈ (0,∞), ϕ ∈ (−θ, θ)}, open sec-
tor. 152, 161, 164

W s
p Sobolev-Slobodeckiı̆ space of order s
with exponent p. 143, 144

Special function spaces
E∂Θ space of interface regularity for the Ja-

cobian of the normal-preserving map. 99
Ẽ∂Θ a larger space than E∂Θ. 113, 115
Eh space of time-dependent height func-

tions h. 99
Ẽh a larger space than Eh. 112
EΘ space of interior regularity for the

normal-preserving map. 102

180



Glossary 181

Eu,v,w,[[µ∂νw]] space of all u ∈ Eu with
PΣu|Σ ∈ Ev, w := νΣ · u|Σ ∈ Ew, ∂νw±|Σ ∈
Gw. 69

Fd,Σ space of all fd ∈ Fd with fd,±|Σ ∈ Gw.
69, 123

Gv space for the tangential interface stress
balance. 115

Gw space for the normal interface stress bal-
ance. 115
PM,T parameter set for perturbed version of

problem (MP). 82
PM,T,η,R parameter set for problem (PL). 71

Uh set of certain h : J ×Σ→ R for which Θh

is a diffeomorphism. 101, 102
Uh0 set of certain h0 : Σ → R for which Θh0

is a diffeomorphism. 101, 102
Linear operators
DA(α, p) fractional domain of A. 154
H(X) class of linear operators A : D(A) ⊂
X → X with boundedH∞-calculus. 153
P1(X1, X0;M,ϑ) class of invertible linear

operators A : X1 → X0 satisfying the esti-
mate (1+|λ|)‖(λ+A)−1‖ ≤ K for |arg λ| ≤
ϑ. 154



Index

γ-order, 167
γ-principal part, 167

admissible map, 95, 96
admissible moving hypersurface, 95
analytic operator, 170, 171
analytic semigroup, 153
anisotropic mollification, 43
approximation system, 27

balance
bulk differential balance, 18
bulk integral balance, 17
interface jump condition, 17, 18
of mass, 18
of momentum, 19
surface differential balance, 18
surface integral balance equation, 17

ball condition, 134
Banach’s fixed point theorem, 93
bent half-space, 14, 23
bent hyperplane, 23, 33, 34, 71, 73
bent interface, 46
Besov space, 144, 147, 151, 152
Bessel potential, 143
Bessel potential space, 143, 151
bisector, 161, 164

Carathéodory function, 169
Cauchy’s estimates, 170
chain rule, 171
Christoffel symbols, 130
coercive pair of operators, 158
commutator, 89
commutator estimates, 84
complexification, 12
composition rule, 157
cone condition, 145
control of perturbations, 104
control volume, 17
convected coordinate, 12
covariant derivative, 20, 132, 139–141

density of test functions in Ḣk
p , 151

derivative
material, 15

diffeomorphism, 15
differential balance, 17

distance in a hypersurface, 131
distribution, 143
divergence, 110

of a surface tensor, 140
theorem, 14, 16

divergence theorem, 15
divergence-preserving, 80

energy
identity, 22
kinetic, 21

exponential map, 132
exponential weight, 55, 154
extension operator

from [0, T ] to [0,∞), 148
from Rn+ to Rn, 147
from t = 0 to [0,∞), 66, 67, 155

extension symbol, 64–68

flow, 13
flux, 17
formula

integral transformation , 139
fractional domain, 154, 157
fractional power, 157, 158
Friedrichs mollifier, 43, 151
functional calculus, 153, 156, 165, 166
R-boundedH∞, 152
boundedH∞, 152, 157
for (∂t,∇x), 165
joint, 165

geodesic, 132
Green’s function, 56

Hölder space, 143
Hanzawa map, 7, 96, 98
Hardy’s inequality, 146
height function, 129
Helmholtz decomposition, 91
Helmholtz projection, 70
Hilbert transform, 65
homeomorphism, 96
homogeneous space, 150–152, 155, 156, 159

density of test functions, 151
interpolation, 151
Sobolev space, 40

Hopf-Rinow theorem, 133
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hypersurface, 129
moving hypersurface, 13

incompressible, 18
injectivity radius, 132
integral transformation formula, 139
interface balance, 18
interface operator, 62
interface symbol, 58, 59
interpolation space, 144
interval-dependent estimates, 76

jump, 16
jump condition, 17

Kalton-Weis theorem, 160

Laplace transform, 160
Laplace-Beltrami operator, 130, 163

for tangential vector fields, 141, 164
level function, 137
linearly bounded function, 13
Lipschitz condition, 145
Lipschitz space, 143
local flow, 13
localization set-up, 28, 29

maximal Lp-regularity, 153, 154
mean curvature, 131
mild solution, 153
mixed derivative embedding, 159
mixed derivative theorem, 158
monomial operator, 170
moving domain, 13
moving hypersurface, 13, 95
multiplication algebra, 99, 169

N -parabolic mixed-order system, 168
N -parabolic symbol, 167, 168
Nemytskiı̆ operator, 105, 169, 171
Newton polygon, 166, 167
Newtonian fluid, 19, 20
normal velocity, 14
normal-preserving map, 95, 96, 99, 102–104

operator
L = ω(Dt,Dx) =

√
ρ(τ + ∂t)− µ∆, 66

bounded k-linear, 170
resolvent commuting, 158

operator of type (K;ϑ), 152
operator with boundedH∞-calculus, 152
optimal regularity, 23
order function, 166

parabolic extension symbol, 64, 66
Poincaré-Wirtinger inequality, 25, 110
pointwise multiplication, 99, 148, 169
Poisson extension symbol, 64, 68, 155
Poisson semigroup P (·), 155
polynomial operator, 170
positive operator, 158
principal curvatures, 131

property (α), 164

R-bounded, 152
R-sectorial operator, 152
rate-of-strain, 19
resolvent commuting operators, 158
restriction of functions, 146
retraction, 148
Riemann tensor, 141
Riesz potential, 152

scaling, 30
sector, 152, 161, 164
sectorial operator, 152
signed distance, 135
Slobodeckiı̆ semi-norm, 24
Sobolev embedding, 145
Sobolev space, 143

homogeneous, 40
Sobolev’s cut-off function, 151
Sobolev-Slobodeckiı̆ space, 144, 146, 148
space

of initial states, 122
of restrictions, 146, 147
over a vector bundle, 163

spatial trace theorem, 156
spectral angle, 152
spectral mapping theorem, 156
state space, 122
Stokes extension symbol, 65–67
stress tensor, 19, 111

surface, 20
summation convention, 129
surface divergence, 140
surface stress tensor, 111
surface tension, 6
surface transport theorem, 16
surface viscosity, 6
symbol
ω(λ, z) =

√
ρ(τ + λ)− µz2, 162

class S(Σφ ×BΣ
n
δ ×K), 166

class SN (Σφ ×BΣ
n
δ ×K), 167

estimates in sectors of C, 160

tangent space, 130
tangential vector field, 132
temporal trace theorem, 155
theorem

divergence theorem, 14, 16
Reynolds transport theorem, 15

time derivative, 165, 166
trace

of Ḃspq and Ḟ spq , 156
spatial trace theorem, 156

transformed divergence, 105, 106, 109
transformed velocity, 73, 105, 106
transmission problem

strong, 23, 25, 37
weak, 23, 25

transport theorem, 15
surface, 16
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Triebel-Lizorkin space, 144, 147, 151, 152
tubular neighborhood, 135

uniformly invertible, 27

variation of parameters formula, 153
vector bundle, 162
viscosity, 19
Volevich trick, 66

weak Neumann problem, 23
Weingarten tensor, 131
well-posedness condition, 10
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