
Quantum dynamics and quantum information
processing based on helical multiferroics

D i s s e r t a t i o n

zur Erlangung des Doktorgrades der Naturwissenschaften

(Dr. rer. nat.)

der

Naturwissenschaftlichen Fakultät II

Chemie, Physik und Mathematik

der Martin-Luther-Universität

Halle-Wittenberg

vorgelegt von

Maryam Azimi

geboren am 21.09.1985 in Marand-Iran



1. Gutachter: Prof. Dr. Jamal Berakdar
2. Gutachter: Prof. Dr. Steffen Trimper
3. Gutachter: Prof. Dr. Vitalii Dugaev

Abgabe der Dissertation: 02. August 2016
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1. Introduction

Materials characterized by both ferroelectric and ferromagnetic features are known
as multiferroics (MF) [1]. Since 1960s, these materials have been shown to have a
magnetoelectric response, but only few multiferroics were found and in general the
coupling between magnetic and ferroelectric order parameters was weak. With the
capabilities of modern material design techniques it has been possible to synthesize
nanostructured MF materials and multilayer systems that show a considerable magne-
toelectric coupling, enabling so a steering of magnetism with electric fields or electric
polarization with magnetic fields [2, 3]. The electric field control of magnetization
has received particular attention as it renders possible new spintronic device concepts
with low power consumption [4–6]. A relatively less researched aspect is the use of
MF nanostructures for quantum information processing. As shown in this thesis MF
are excellently suited for this purpose, as they show a multitude of phenomena of
a quantum nature, such as polarization controlled spin helical structures and mag-
netoelectrically controlled quantum phases [7]. Encouraging in this respect is the
experimental advance in multiferroic quantum spin chains and nanostructures.

In this thesis, we focus on one dimensional spin chain as a typical example of frus-
trated spin systems and investigate the properties and applications of such a system.
The most studied examples, LiCuVO4 and LiCu2O2 demonstrated a fascinating effect
of the strong quantum fluctuations due to the spin-1/2 nature, as evidenced by recent
neutron scattering experiments [8].

The general idea to use spins as permanently coupled quantum systems for quan-
tum information processing was put forward by S. Bose in 2003. The main goal
was to use a finite spin chain as a data bus. Later on, many significant studies of
propagation of quantum states through spin chains were conducted. It was shown
that, perfect state transfer can be achieved in some specially designed systems [9–12].
However, all of these proposals have concentrated on the ideal spin chains with only
nearest neighbor couplings. A great deal of attention has also been given to the study
of entanglement in such systems. Entanglement is inherent to quantum systems and
is at the heart of quantum information and quantum computation research.

On the other hand, with the fast growing field of nanotechnology, which promises
to develop portable materials and devices as well as a chance to exploit the novel
properties of nanoscale physical systems, questions related to the thermodynamical
properties are gaining increased attention. Several theoretical schemes are proposed
for Brownian motors [13, 14], refrigerators [15] and quantum heat engines. Addition-
ally the application of the laws of thermodynamics for finite systems, is the subject
of intensive debates [16, 17]. Quantum thermodynamics investigate the physical phe-
nomena at the crossover of quantum mechanics and thermodynamics. One of the
most interesting topics is that to what extent standard classical thermodynamic cy-
cles such as Carnot or Otto cycles can be reformulated for quantum systems. A
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key issue, thereby is the difference between thermodynamic and quantum adiabatic
processes. For example, a thermodynamical adiabatic process does not necessarily
mean that the occupation probabilities are kept invariant during adiabatic transi-
tions. Naturally, thermodynamical adiabatic processes are described in terms of the
entropy conservation and the isolation of the system from the heat exchange with the
thermal bath. While in the case of quantum adiabatic process an essential require-
ment is that the population distributions remain unchanged. Therefore, quantum
adiabaticity is a stricter requirement than the thermodynamic adiabaticity. The adi-
abatic quantum process is also adiabatic in the thermodynamic sense, however the
opposite statement is not true in general. Thus, quantum adiabaticity entails a rela-
tively low output power from a slowly operating quantum engine, unless the energy
spectrum of the working substance has nodal crossing points, however, this is not a
generic feature of realistic physical systems. In order to avoid Landau Zener transi-
tions during an adiabatic segment of the cycle, the control parameters should vary
slowly [18]. The subtlety of quantum engines is related to the internal connection be-
tween essentially quantum phenomena such as entanglement and the thermodynamic
characteristics of the cycle [19]. Therefore, the choice of the working substance for
the operating quantum engine is an important issue. This is where we think that
MF quantum structures can serve as a useful working substance with external knobs,
such as electric and magnetic fields to control the thermodynamic cycle.

A desirable feature of a quantum heat engine is not a high efficiency and a slow
cycle, but rather a good efficiency at maximal power. To achieve it, a quantum
thermodynamic cycle should be carried out within a finite time. In this respect the
concept of shortcuts to quantum adiabaticity is useful. This technique quenches the
effect of inter-level transitions that are of a pure quantum origin.

The present thesis consists of five main parts. The first part entitled Basics, in-
troduces multiferroics as needed for the application in the thesis. The concepts of
quantum information processing, entanglement measures and fidelity are summarized
for the use in the following chapters. In addition, we discuss quantum heat engines
with a focus on quantum Otto heat engine. In the second part the Hamiltonian of
the one dimensional frustrated spin chain is described and the system is analyzed
both analytically and numerically. The third part is devoted to imposing ultrashort
terahertz (THz) pulses on the system and obtaining the time evolution of the system.
The dynamics of different quantities that are relevant to quantum information pro-
cessing are analyzed. Studying a quantum Otto heat engine on the basis of a helical
multiferroic chain is done in chapter five. It is shown that the steering of the cycle by
an external electric field which is coupled to the electric polarization can be achieved.
In chapter six the special technique of shortcuts to quantum adiabaticity is presented,
to obtain a finite output power of the quantum Otto heat engine. The final chapter
contains a summary of the current work and an outlook.



2. Basics

2.1. Multiferroics

Multiferroic materials commonly are known as materials with combined ferroelectric
and ferromagnetic properties. They are interesting due to the magnetoelectric (ME)
effect that allows control of the induced magnetization (M) by applying an electric
field (E) or controlling electric polarization (P) by applying a magnetic field (H). See
Fig. 2.1.

Figure 2.1. – Multiferroic materials combine magnetic and ferroelectric properties.
Reproduced from [20].

The magnetoelectric effect was observed by Röntgen in 1888 [21]. He noticed that
a moving dielectric body in an electric field, was changed to magnetized body. The
reverse effect i.e. the polarization of a moving dielectric body in a magnetic field, was
detected by Wilson in 1905 [22]. However, these two observations were not intrinsic
effects of the materials. In 1894 Curie predicted the possibility of an intrinsic mag-
netoelectric effect of crystals based on symmetry considerations [23]. Many decades
later, Landau and Lifshitz realized that the time reversal symmetry has to be con-
sidered when studying the magnetoelectric behavior [24]. Dzyaloshinskii predicted
the occurrence of magnetoelectric coupling in Cr2O3 [25] which was confirmed ex-
perimentally by Astrov [26] by measuring the electric field induced magnetization in
Cr2O3 [26]. After ten years of theoretical and experimental works on magnetoelectric
effect the summary of the efforts were published in a book by O’Dell in 1970 [27].
However, due to the difficulties of using the magnetoelectric coupling in useful appli-
cations, researches in this field declined for about two decades. The impressive revival
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of interest was started again when artificially grown composite multiferroics became
available showing a sizable magnetoelectric coupling and further theoretical works
pointing to systematically combine materials to achieve new functionalities [28]. Also
the discovery of new mechanisms of ferroelectricity in a novel class of multiferroics
TbMnO3 [29], TbMn2O5 [30], YMn2O3 [31] and Ni2V3O8 [32] gave a new impetus to
the field. The general discussion of several features of the multiferroics can be found
in [33–37].

2.1.1. Type-I multiferroics

The type-I multiferroics are materials with different origins of ferroelectricity and
magnetism and these two effects appear quite independent of each other, however
there is a small coupling between them. In the following, the most common multifer-
roics of type-I are reviewed.

Compounds with provskite structure ABO3: The transition metal provskite
are some of the most promising multiferroic materials in which the ferroelectricity
is usually generated by transition metal compounds with empty d-shells (d0). The
important ferroelectrics such as BaTiO3 and (Pb,Zr)TiO3 belong to this group. In
BaTiO3 as an example, the empty d-shells of the transition metal Ti

4+
, stabilizes the

strong covalent bonding with the surrounding oxygen 2p orbitals and the ferroelec-
tricity is produced by shifting of the Ti

4+
cation from the center of O6 octahedral

towards oxygen anions [37, 38].

Compounds with lone pairs mechanism: In materials like BiFeO3 and BiMnO3,
the existence of 6s lone pair of Bi

3+
induces the ferroelectricity [39, 40]. In other

words, those ions with two valence electrons cause a shifting of the Bi
3+

from the
centrosymmetric position with respect to the surrounding oxygen ions and induce
ferroelectricity, i.e. the ferroelectricity is due to the A-site cation. This is unlike the
case of perovskite ferroelectrics like BaTiO3, (Pb,Zr)TiO3 where the ferroelectricity
is caused due to the B-site cation shift [41].

Compounds with geometric ferroelectricity: Hexagonal manganites with the
general formula RMnO3 where R is a small rare earth element, such as Y, Ho, Lu and
Yb, violating the d0-ness, belong to this group. In these structures the ferroelectric-
ity is induced by tilting the trigonal biprymids MnO5 resulting in large R-O dipole
moments and forming a close packed structure. Such a rotation of MnO5 breaks the
inversion symmetry and yields ferroelectricity [31, 42, 43].

An extended discussion of type-I multiferroics can be found in [20, 44].

2.1.2. Type-II multiferroics

The type-II multiferroics are materials in which the ferroelectricity is induced by
magnetic ordering. In this class of multiferroics the coupling between the magnetism
and ferroelectricity is especially strong and making them a suitable candidate for
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various applications. Based on the mechanism of multiferroic behavior, this type of
multiferroics can be classified into two groups. The first group are those in which the
ferroelectricity is induced by a particular type of magnetic spiral and the second one
are those in which the ferroelectricity is present in the collinear magnetic structures.
In the following we review these two groups.

Spiral multiferroics: Most of the well known type-II multiferroics belong to this
group. In 2003, Kimura et al., discovered the presence of spontaneous polarization
induced by spin-spiral structure on the Mn sublattice in TbMnO3 [29]. This mate-
rial shows different magnetic structures. It is an incommensurate antiferromagnetic
phase with sinusoidal spin density wave propagation between 27 and 42 K. Below
27 K, magnetic structure changes from sinusoidal to commensurate helicoidal and the
non-zero polarization appears [45]. The orientation of the polarization in the crystal
lattice can be controlled by applying an external magnetic field [46]. A similar situa-
tion is specified in recently found multiferroics with different structures like Ni2V3O8

[32], CuFeO2 [47], MnWO4 [48], CuO [49]. The common feature to this type of mul-
tiferroics is the presence of magnetic frustration, which results from the competition
between ferromagnetic nearest neighbor and antiferromagnetic next nearest neighbor
interactions inducing the spiral magnetic structure [50].

Multiferroics with collinear magnetic structures: Along with the progressive
growth of spiral multiferroics, another type of multiferroics with collinear magnetic
structures have also received a great attention. In this class of multiferroics, ferroelec-
tricity appears in collinear magnetic structures. In these materials, the polarization
emerges as a result of exchange interactions. The most important examples of this
class are TbMn2O5 [30], Ca3CoMnO6 [51].

2.1.3. Magnetoelectric coupling

According to Landau theory the magnetic and electric order parameters in a system
with magnetoelectric coupling can be described with the free energy

F (E,H) =F0 − P s
i Ei −M s

iHi −
1

2
ε0εijEiEj −

1

2
µ0µijHiHj

− αijEiHj −
1

2
βijkEiHjHk −

1

2
γijkHiEjEk − . . . ,

(2.1)

where F0 is the ground state free energy and E, H are the electric and magnetic
fields respectively. P s

i and M s
i are the spontaneous polarization and magnetization

in the system. Here ε and µ are the dielectric permitivity and magnetic premeability
respectively. In the sixth term αij describes the linear magnetoelectric coupling while
the last two terms with βijk and γijk(the third-order tensors) stand for the higher order
magnetoelectric coupling. The polarization Pi(E,H) and magnetization Mi(E,H)
can be obtained after differentiating of Eq. (2.1) with respect to the electric and
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magnetic fields respectively

Pi(E,H) =− ∂F

∂Ei
= P s

i + ε0εijEj + αijHj +
1

2
βijkHjHk + γijkHiEj + . . . ,

Mi(E,H) =− ∂F

∂Hi

= M s
i + µ0µijHj + αijEj + βijkHjEi +

1

2
γijkEjEk + . . . .

(2.2)

2.1.4. Magnetoelectric coupling in spin-spiral multiferroics

The mechanism of magnetically induced ferroelectricity in frustrated structures has
been studied by Katsura et al. using a microscopic approach [52], and Mostovy
using a phenomenological approach [53]. The microscopic mechanism considers the
spin-orbit coupling in the superexchange interaction between nearest neighbor spins.
The induced polarization is proportional to the vector product of the spin current
~J( ~J ∝ ~Si × ~Sj) and the unit vector ~eij connecting the two neighboring spins ~Si and
~Sj

~P ∝ ~eij ×
[
~Si × ~Sj

]
(2.3)

Figure 2.2. – The spin-spiral with spins rotating in the x− z plane. The polarization
~P is produced in z direction.

This effect is sometimes called the inverse Dzyaloshinskii-Moriya (DM) interaction,
which was proposed by Sergienko et al. [54]. In this approach the oxygen ion is
displaced between two localized magnetic moments via the electronic interaction.
In the phenomenological approach, the form of the coupling between the electric po-
larization and magnetization is obtained using general symmetry considerations [25].
While the polarization is unaffected by time reversal t −→ −t, the magnetization is
reversed. Therefore the lowest order magnetoelectric coupling term must be quadratic
in M . On the other hand, in order to preserve the spatial inversion r −→ −r, upon
which the magnetization remains unaffected and the polarization changes the sign,



2.1. MULTIFERROICS 7

the coupling of the polarization to the magnetization can be linear in P and have one
gradient of M . Then the third order magnetoelectric coupling term in Landau free
energy is allowed [53, 55].

ΦME(r) = P · {γ · ∇(M2) + γ′[M(∇ ·M)− (M · ∇)M] + . . . } , (2.4)

where r, P and M are spatial coordinate, polarization and magnetization. γ and γ′

are the coupling coefficients. The first term in Eq. (2.4) is valid when P is assumed
to be independent of the spatial coordinate r. Assuming that in the absence of
magnetism, the system shows no instability towards ferroelectricity, we are allowed
to keep only the quadratic term in the electric part of the potential Φe(P ) = P 2

2χe
,

where χe is the dielectric susceptibility in the absence of magnetization. In the case of
cubic crystals, the magnetically induced electric polarization is derived by minimizing
the free energy with respect to P

P = γ′χe[(M · ∇)M−M(∇ ·M)] . (2.5)

The spin-spiral structure can be described by

M = S1e1 cos(Q · x) + S2e2 sin(Q · x), (2.6)

where e1 and e2 are the unit vectors and Q is the propagation vector of the spiral.
The polarization is orthogonal to spin rotation axis(e3 = e1× e2) and wave vector Q

P = γ′χeS1S2(e3 ×Q) . (2.7)

This equation is analogous to Eq. (2.3) where P is proportional to the cross product
of the spins. We can deduce that the Katsura et al. approach is a microscopic inter-
pretation of Mostovoy phenomenological model. Therefore, the spin-orbit interaction
is regarded as the origin of the coupling between the ferroelectric and magnetic orders
in these kind of multiferroics.

2.1.5. One-dimensional spin-spiral multiferroics

Here we are dealing with One-dimensional spin-spiral spin chain with competing
nearest neighbor (NN) ferromagnetic interaction and next nearest neighbor (NNN)
antiferromagnetic interaction resulting in frustrated spiral spin system.
One of the most reported One-dimensional spiral magnetic ferroelectrics is LiCu2O2

[56–60]. As shown in Fig. 2.3 left panel, LiCu2O2 has an orthorhombic crystal struc-
ture. The Cu

2+
ions carrying spin S = 1

2
locate in the center of CuO4 squares and

form spin chains along the b-axis, See Fig. 2.3 right panel. The chains of Cu
2+

are
well separated by planar chains of Li

+
ions and interpolation layers of Cu

+
ions.

Due to the frustration, the spin-spiral structure is produced below T ∼ 23 K. The
spontaneous electric polarization has been realized along the c-axis [60].
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Figure 2.3. – Left: Crystal structure of LiCu2O2. Right: Schematic view of the spin
configuration of LiCu2O2. [61]

2.2. Quantum information processing

Quantum information theory is dealing with the transmission, storage and processing
of information using quantum mechanical systems [62]. So the mathematical descrip-
tion of quantum systems is completely different from classical systems. Dissimilar
to the classical case, most of the information is stored in the form of correlations in
the systems. In the following some main concepts in quantum information theory are
reviewed.

2.2.1. Quantum state transfer

One of the most important tasks in quantum information processing is transferring a
quantum state from one point to another. Among the several quantum state transfer
protocols, the schemes based on the spin chains with controllable coupling strengths
are particularly attractive for short distance communication [63–69]. The reason
behind this is that in spin systems, quantum phase transitions and their relations to
entanglement can be well studied [70–72]. A basic operation consists of encoding the
state at one end of the spin chain and propagating it for a specific amount of time to
the other end of the chain. For a linear chain of N spins with the Hamiltonian H, the
state |i〉 = |00...0 1︸︷︷︸

i

0...0〉 is defined as a state in which the spin at site i is flipped

to the state |1〉. The remaining N − 1 spins are in the state |0〉. In this notation the
state |0〉 and |1〉 denote the spin-up and the spin-down respectively. Consider that a
quantum state |ψ〉a = α|0〉a + β|1〉a with |α|2 + |β|2 = 1 is created on the site a. So
that the state of the total system at the initial time is |ψ(t = 0)〉 = α|0〉+ β|a〉, with
|0〉 = |00...0〉 and |a〉 stands for the spin at the site a is flipped. Now the Hamiltonian
of the system is switched on and the system is allowed to evolve under the unitary
operator U(t) = e−iHt for a given time t = t0. The final state of the system is obtained
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by

|ψ(t = t0)〉 = α|0〉+ β

N∑
i=1

fia(t0)|i〉, (2.8)

where fia(t0) = 〈i|e−iHt|a〉 is the transition amplitude between two sites. The average
fidelity of quantum communication is defined by [63]

F (t0) =
|fia(t0)| cos γ

3
+
|fia(t0)|2

6
+

1

2
, γ = arg{fia(t0)}. (2.9)

This quantity can be interpreted as a signature of the perfect state transfer (PST)
between two points, i.e. when |F (t0)| = 1, the perfect state transfer is obtained which
means that the output is identical to the input and the chance of distinguishing them
by any quantum measurement tends to zero. If |F (t0)| < 1, the state transfer is
imperfect.

2.2.2. Fidelity susceptibility

Fidelity susceptibility (FS) defines the sensitivity of the system with respect to
changes of the driving parameters of the Hamiltonian like the external driving fields
[73–76]. Consider the general Hamiltonian of a quantum system with a driving pa-
rameter λ as

Ĥ(λ) = Ĥ0 + λĤI . (2.10)

Changing λ, leads to a phase transition in the system because of the competition
between Ĥ0 and ĤI . The eigenstates of the system |ψn(λ)〉 satisfy

Ĥ(λ)|ψn(λ)〉 = En(λ)|ψn(λ)〉. (2.11)

Changing the driving parameter λ as λ −→ λ + δλ where δλ is so small, we can use
the perturbation theory. Therefore the first order perturbation for the ground state
|ψ0(λ+ δλ)〉 gives

|ψ0(λ+ δλ)〉 = |ψ0(λ)〉+ δλ
∑
n6=0

Hn0(λ)|〈ψn(λ)〉
E0(λ)− En(λ)

,

Hn0(λ) = 〈ψn(λ)|HI |ψ0(λ)〉. (2.12)

The fidelity can be defined as the overlap between the ground state wavefunctions at
two different values of the driving parameter λ

F (λ, δλ) = |〈ψ0(λ)|ψ0(λ+ δλ)〉|. (2.13)
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Since generally in many body systems the fidelity F (λ, δλ) vanishes exponentially with
the system size, it’s more suitable to study the change of its logarithm with respect
to the driving parameter λ. From this point the concept of fidelity susceptibility is
introduced as

χF (λ) = −∂
2 lnF

∂δλ2

∣∣∣∣
δλ=0

. (2.14)

The fidelity susceptibility exhibits a maximum or even diverges at the critical point
which indicates a quantum phase transition. It can be finally written as

χF (λ) =
∑
n6=0

|〈ψn(λ)|HI |ψ0(λ)〉|2

[En(λ)− E0(λ)]2
. (2.15)

2.2.3. Fidelity of mixed states at finite temperature

The mixed state fidelity at finite temperature, which characterizes a second order
thermal phase transition is defined in the following way [77, 78]

Fλ(β, λ0, λ1) = Tr

√√
ρ̂0ρ̂1

√
ρ̂0, (2.16)

where ρ̂0(β, λ0), ρ̂1(β, λ1) are the density matrices of the system corresponding to
slightly change of the control parameters λ1 = λ0 + δλ and β = 1

kBT
. This expression

can be simplified to the following form

Fλ(β, λ, λ+ δλ) = exp

[
− β(δλ)2

8
χ(λ)

]
, (2.17)

where χ(λ) = −∂2F
∂λ2

is the susceptibility to the corresponding external driving param-
eter λ at constant temperature and F = −kBT lnZ(kBT ) is the free energy of the
system and Z(kBT ) is the partition function.

2.2.4. Entanglement measures

Entanglement is an important resource in quantum information processing and has
been widely applied in many aspects of it like quantum computation [79], quantum
cryptography [80] and telportation [81, 82].

A quantum mechanical system consisting of two parts A and B and having the density
matrix ρ is entangled if ρ cannot be written as a direct product of the density operators
ρ
(i)
A , ρ

(i)
B of the sub-systems A and B, i.e. one cannot write

ρ =
∑
i

piρ
(i)
A ⊗ ρ

(i)
B , (2.18)
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where pi ≥ 0 and
∑

i pi = 1.

In the following, some important entanglement measures are defined.

One- and two-tangles: One of the mostly used measures to quantify entanglement
in many-body systems is one-tangle which evaluates the nonlocal correlations in the
system. It is defined as follows

τA = 4detρA (2.19)

Here ρA = Trs 6=A(ρ) is the one site reduced density matrix after tracing out the states
of all sites s 6= A.

Another measure of entanglement which contains the local information in the system
is the concurrence. The concurrence is known as entanglement between two sites
of the system and is obtained from the two-qubit reduced density matrix after all
the spins except those at two certain positions have been traced out. The general
definition of the concurrence is

Cnm = max(0,

√
R

(1)
nm −

√
R

(2)
nm −

√
R

(3)
nm −

√
R

(4)
nm), (2.20)

where R
(α)
nm, α = 1, 2, 3, 4 are the eigenvalues of the matrix

Rnm = ρRnm(σy1 ⊗ σ
y
2)(ρRnm)∗(σy1 ⊗ σ

y
2), (2.21)

in decreasing order R
(1)
nm ≥ R

(2)
nm ≥ R

(3)
nm ≥ R

(4)
nm and ρRnm is the reduced density matrix

of the system of two spins obtained from the density matrix of the system ρ. The
asterisk in density matrix indicates the complex conjugation and σy is a Pauli matrix.
Now we can define the more informative and universal quantity called the two-tangle
τ2, which contains information on the total pair correlations in the spin chain as

τ2 =
L∑
m

C2
nm (2.22)

Where L denotes the number of spins.

Von Neumann entropy: The other measure of the entanglement, which also quan-
tifies multiparticle entanglement, is von Neumann entropy. It is defined as

S = −Tr[ρ log2 ρ] (2.23)

This quantity serves as the connection between quantum statistical mechanics and
thermodynamics when ρ is the Gibbs state described by ρ = e−βH/Z. If λi are the
eigenvalues of the density matrix ρ, then von Neumann entropy reads
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S = −
∑
i

λi log2 λi. (2.24)

Some interesting properties of von Neumann entropy are

• It is always positive. The von Neumann entropy is zero if and only if the state
is pure.

• In a d dimensional Hilbert space the maximum of the von Neumann entropy is
log2 d.

• For a pure composite system AB, S(A) = S(B).

• It is invariant under unitary transformation S(ρ) = S(UρU †).

• Additivity, i.e. S(ρA ⊗ ρB) = S(ρA) + S(ρB).

• Suppose pi are probabilities, then S(
∑
i

piρi) = H(pi)+
∑
i

piS(ρi), where H(pi)

is the Shannon entropy of the distribution pi.

For more information about different local and nonlocal entanglement measures one
can refer to the references [83–90].
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2.3. Quantum heat engines

The classical heat engine played a crucial role in the development of the classical
thermodynamics. Similarly the quantum heat engine serves also as a tool for explor-
ing the essential thermodynamic properties of quantum systems. Generally quantum
heat engines produce work using quantum material as a working substance [91–100].
The quantum nature of the working substance may cause the quantum heat engine
to show properties untypical for classical engines. For example a close connection
between the efficiency of the cycle and quantum correlations in the system is quan-
tified in terms of entanglement. Like classical thermodynamics, the basic quantum
thermodynamic processes are isothermal, adiabatic, isochoric, and isobaric processes.
The corresponding thermodynamic variables which are kept constant during these
classical processes are temperature, entropy, volume, and pressure respectively. They
can be used to construct all the main heat cycles like Carnot, Otto, Stirling, Bray-
ton, Diesel cycles. In the following subsections, The first law of thermodynamics in
quantum-mechanical systems and a brief definition of the quantum thermodynamic
processes are reviewed.

2.3.1. First law of thermodynamics and definition of work and
heat in quantum systems

The Hamiltonian of a quantum system with finite number of energy levels En can be
written as

H =
∑
n

En|Ψn〉〈Ψn|, (2.25)

where |Ψn〉 is the nth eigenstate of the system. Therefore the internal energy U of
the system is derived from the expectation value of the Hamiltonian

U = 〈H〉 =
∑
n

EnPn, (2.26)

where Pn are the occupation probabilities. From Eq. (2.26) the first law of thermody-
namics can be expressed as a function of eigenenergies En and occupation probabilities
Pn as

dU = dQ+ dW =
∑
n

EndPn +
∑
n

PndEn (2.27)

So dQ =
∑

nEndPn and dW =
∑

n PndEn interpret the heat exchange and work
performed by the quantum system respectively.

2.3.2. Quantum thermodynamic processes

Here we give a short description of the main three quantum processes, i.e. isothermal,
isochoric and adiabatic:
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Quantum isothermal process: In quantum isothermal process, the working sub-
stance is placed in contact with a heat bath at a constant temperature. The system
can absorb heat from the bath and perform positive work to the outside. In order
to maintain the temperature of the system, the occupation probability of the energy
level need to change as the energy level varies. Consider the energy eigenvalues change
from Ei to E ′i where i runs from 1 to N and N is the dimension of the Hilbert space
of the working substance. Therefore the corresponding populations change from Pi
to P ′i such that

P ′n
P ′m

= eβ(E
′
m−E′n) (2.28)

where β = 1
kBT

, kB and T are the Boltzmann constant and the temperature re-
spectively. It means that at every instant the system remains in thermodynamic
equilibrium with the heat bath (quasi-static process).

Quantum isochoric process: Both in quantum and classical isochoric process, no
work is done by the system and the energy as a form of heat is exchanged between
the working substance and the heat bath. At the end of the process, the system equi-
librates with the bath. During the process, the occupation probabilities Pi and thus
the entropy S change as the system exchanges heat with the heat bath until reaching
thermal equilibrium. The occupation probabilities at the end of the isochoric process
satisfy Boltzmann distribution.

Quantum adiabatic process: The quantum adiabatic process proceeds slowly
enough such that the quantum adiabatic theorem is satisfied [101–103]. Therefore
the population of the eigenstates of the Hamiltonian remains unchanged, i.e. dPn = 0
and there is no heat exchange dQ = 0, meaning that there is no energy exchanged
between the system and the bath but according to Eq. (2.27) the work can be still
done.

The differences between the classical and quantum thermodynamic processes are sum-
marized in Table 2.1.

2.3.3. Quantum Otto heat engine

In this thesis, we just focus on the quantum Otto heat engine. Consider a multilevel
quantum system with energies En in equilibrium with a hot bath at temperature TH .
The arrow (2) in Fig. 2.4 shows an adiabatic process in which the energy levels are
changed adiabatically and hence the population in each energy level is unchanged.
In the next step (3), the system is attached to a cold bath with temperature TL.
The occupation probabilities are changed and the system reaches equilibrium. For
the second adiabatic process (step (4)), the energy levels change again adiabatically
while the population are fixed. To complete the cycle, the system is again attached
to the hot bath (arrow(1)). Therefore work is done on or by the system during the
adiabatic processes and the heat exchange takes place during the thermalization steps.
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Figure 2.4. – A pictorial representation of the quantum Otto heat engine cycle with
multilevel quantum system as the working substance.

Table 2.1. – Classical and quantum thermodynamic processes. Here U, V, T, P are
indicated to the internal energy, volume, temperature and pressure of the working
substance respectively. En, Pn are energy levels and occupation probabilities.





3. Theoretical study of multiferroic
system

3.1. The model Hamiltonian

We consider one-dimensional frustrated multiferroic spin-1/2 chain along the x axis
with ferromagnetic nearest neighbor interactions J1 < 0 and antiferromagnetic next
nearest neighbor interactions J2 > 0. The chain is subjected in external magnetic
field B in z direction and external electric field ℘ in y direction.

Ĥ =J1

N∑
i=1

~Si · ~Si+1 + J2

N∑
i=1

~Si · ~Si+2 − ℘P− γe~B
N∑
i=1

Szi . (3.1)

Si, γe and ~ are spin operator, gyromagnetic ratio and Planck’s constant respec-
tively. The coupling of the electric field to the induced polarization can be written as
−℘P = ℘gME

∑
i(
~Si × ~Si+1)

z, where gME is the magnetoelectric coupling strength.

The quantity κ = 〈κi〉 = 〈(~Si × ~Si+1)
z〉 is known as the z component of the vector

chirality (VC), which we simply call chirality. In the following, the Zeeman energy
and the interaction energy with the electric field are considered in units of the ex-
change constant, i.e. we assume that −J1 = J2 = J, B → γe~B/J, ℘ → ℘gME/J ,
and go over to dimensionless units.

3.2. Four spins: exact analytical solution

In the case of four spins, Hamiltonian Eq. (3.1) has the form

Ĥ =J1(~S1 · ~S2 + ~S2 · ~S3 + ~S3 · ~S4 + ~S4 · ~S1)

+ J2(~S1 · ~S3 + ~S2 · ~S4 + ~S3 · ~S1 + ~S4 · ~S2)

− ℘gME(Sy1S
x
2 + Sy2S

x
3 + Sy3S

x
4 + Sy4S

x
1 − Sx1S

y
2 − Sx2S

y
3 − Sx3S

y
4 − Sx4S

y
1 )

− γe~B(Sz1 + Sz2 + Sz3 − Sz4).

(3.2)

Because of the relation [
N∑
i=1

Szi , Ĥ] = 0, one can write the Hamiltonian Eq. (3.2) in

up (| ↑〉) and down (| ↓〉) basis
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|ϕ1〉 = | ↑↑↑↑〉, |ϕ2〉 = | ↓↑↑↑〉, |ϕ3〉 = | ↑↓↑↑〉, |ϕ4〉 = | ↑↑↓↑〉,
|ϕ5〉 = | ↑↑↑↓〉, |ϕ6〉 = | ↓↓↑↑〉, |ϕ7〉 = | ↓↑↓↑〉, |ϕ8〉 = | ↓↑↑↓〉,
|ϕ9〉 = | ↑↓↓↑〉, |ϕ10〉 = | ↑↓↑↓〉, |ϕ11〉 = | ↑↑↓↓〉, |ϕ12〉 = | ↓↓↓↑〉,
|ϕ13〉 = | ↓↓↑↓〉, |ϕ14〉 = | ↓↑↓↓〉, |ϕ15〉 = | ↑↓↓↓〉, |ϕ16〉 = | ↓↓↓↓〉.

(3.3)

In this basis the Hamiltonian Eq. (3.2) has a block diagonal form

H =


Eg 0 0 . . . 0

0 D1
. . . . . .

...

0
. . . D2

. . . 0
...

. . . . . . D3 0
0 . . . 0 0 Ea

 . (3.4)

Here Eg = J1 + J2 − 2B, Ea = J1 + J2 + 2B and the block matrices D1, D2, D3

correspond to the one-, two- and three-excitations cases

D1 =

(
−B J1/2− i℘/2 J2 J1/2 + i℘/2

J1/2 + i℘/2 −B J1/2− i℘/2 J2
J2 J1/2 + i℘/2 −B J1/2− i℘/2

J1/2− i℘/2 J2 J1/2 + i℘/2 −B

)
,

D2 =


−J2 J1/2− i℘/2 J2 J2 J1/2 + i℘/2 0

J1/2 + i℘/2 −J1 + J2 J1/2− i℘/2 J1/2− i℘/2 0 J1/2 + i℘/2
J2 J1/2 + i℘/2 −J2 0 J1/2− i℘/2 J2
J2 J1/2 + i℘/2 0 −J2 J1/2− i℘/2 J2

J1/2− i℘/2 0 J1/2 + i℘/2 J1/2 + i℘/2 −J1 + J2 J1/2− i℘/2
0 J1/2− i℘/2 J2 J2 J1/2 + i℘/2 −J2

 ,

D3 =

(
B J1/2− i℘/2 J2 J1/2 + i℘/2

J1/2 + i℘/2 B J1/2− i℘/2 J2
J2 J1/2 + i℘/2 B J1/2− i℘/2

J1/2− i℘/2 J2 J1/2 + i℘/2 B

)
. (3.5)

Notice that B → γe~B, ℘ → ℘gME are used above. Eigenstates and eigenvalues of
the Hamiltonian Eq. (3.2) in the case of one-excitation, read

|ψ2〉 =
i

2
| ↓↑↑↑〉+

−1

2
| ↑↓↑↑〉+

−i
2
| ↑↑↓↑〉+

1

2
| ↑↑↑↓〉,

|ψ3〉 =
−i
2
| ↓↑↑↑〉+

−1

2
| ↑↓↑↑〉+

i

2
| ↑↑↓↑〉+

1

2
| ↑↑↑↓〉,

|ψ4〉 =
1

2
| ↓↑↑↑〉+

−1

2
| ↑↓↑↑〉+

1

2
| ↑↑↓↑〉+

−1

2
| ↑↑↑↓〉,

|ψ5〉 =
1

2
| ↓↑↑↑〉+

1

2
| ↑↓↑↑〉+

1

2
| ↑↑↓↑〉+

1

2
| ↑↑↑↓〉,

E2 = −J2 −B − ℘,E3 = −J2 −B + ℘,

E4 = −J1 + J2 −B,E5 = J1 + J2 −B.

(3.6)

In the case of two-excitations, we have
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|ψ6〉 = α
(
| ↓↓↑↑〉 − iµ| ↓↑↓↑〉 − | ↓↑↑↓〉 − | ↑↓↓↑〉+ iµ| ↑↓↑↓〉+ | ↑↑↓↓〉

)
,

|ψ7〉 = γ
(
| ↓↓↑↑〉 − iλ| ↓↑↓↑〉 − | ↓↑↑↓〉 − | ↑↓↓↑〉+ iλ| ↑↓↑↓〉+ | ↑↑↓↓〉

)
,

|ψ8〉 =
1√
6

(
| ↓↓↑↑〉+ | ↓↑↓↑〉+ | ↓↑↑↓〉+ | ↑↓↓↑〉+ | ↑↓↑↓〉+ | ↑↑↓↓〉

)
,

|ψ9〉 =
1√
12

(
| ↓↓↑↑〉 − 2| ↓↑↓↑〉+ | ↓↑↑↓〉+ | ↑↓↓↑〉 − 2| ↑↓↑↓〉+ | ↑↑↓↓〉

)
,

|ψ10〉 =
−1√

2
| ↓↓↑↑〉+

1√
2
| ↑↑↓↓〉,

|ψ11〉 =
−1√

2
| ↓↑↑↓〉+

1√
2
| ↑↓↓↑〉,

E6 = −J1
2
− J2 +

1

2

√
J2
1 + 16J2

2 − 8J1J2 + 8℘2,

E7 = −J1
2
− J2 −

1

2

√
J2
1 + 16J2

2 − 8J1J2 + 8℘2,

E8 = J1 + J2, E9 = −2J1 + J2, E10 = −J2, E11 = −J2.

(3.7)

Where we introduced the following notations

α =
1√

4 + 2µ2
, µ =

−2J2 + J1
2
− 1

2

√
J1

2 + 16J2
2 − 8J1J2 + 8℘2

℘
,

γ =
1√

4 + 2λ2
, λ =

−2J2 + J1
2

+ 1
2

√
J1

2 + 16J2
2 − 8J1J2 + 8℘2

℘
.

(3.8)

And in the case of three-excitations, we have

|ψ12〉 =
i

2
| ↓↓↓↑〉+

−1

2
| ↓↓↑↓〉+

−i
2
| ↓↑↓↓〉+

1

2
| ↑↓↓↓〉,

|ψ13〉 =
−i
2
| ↓↓↓↑〉+

−1

2
| ↓↓↑↓〉+

i

2
| ↓↑↓↓〉+

1

2
| ↑↓↓↓〉,

|ψ14〉 =
1

2
| ↓↓↓↑〉+

1

2
| ↓↓↑↓〉+

1

2
| ↓↑↓↓〉+

1

2
| ↑↓↓↓〉,

|ψ15〉 =
1

2
| ↓↓↓↑〉+

−1

2
| ↓↓↑↓〉+

1

2
| ↓↑↓↓〉+

−1

2
| ↑↓↓↓〉,

E12 = −J2 +B + ℘,E13 = −J2 +B − ℘,
E14 = J1 + J2 +B,E15 = −J1 + J2 +B.

(3.9)
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3.2.1. Observing different phases in the system

In a strong magnetic field B � |J1|, J2, ℘ the ground state of the system is the fully
polarized state |F 〉 = | ↑↑↑↑〉 with the corresponding energy EF = J1 +J2− 2B. The
chirality and pair entanglement between any two arbitrary spins are equal to zero.
By decreasing the magnetic field as

B0 < B < ℘+ J1 + 2J2, B0 =

√
(J1 − 4J2)2 + 8℘2 + J1 − 2℘

2
, (3.10)

the ground state becomes the state

|ψ2〉 =
i

2
| ↓↑↑↑〉+

−1

2
| ↑↓↑↑〉+

−i
2
| ↑↑↓↑〉+

1

2
| ↑↑↑↓〉, (3.11)

with the corresponding energy E2 = −J2−B−℘. The chirality jumps to 〈ψ2|κ|ψ2〉 =
1

4
, and a finite entanglement is generated. The ratio between two- and one-tangle

which quantifies amount of the entanglement stored in the pair correlations τ2 com-
pare to the total multi spin entanglement τ1 is τ = τ2

τ1
= 1. In calculating this ratio we

used the definitions in Eq. (2.19) and Eq. (2.22) in the previous chapter. This result
means that half of the entanglement generated by increasing external electric field
or decreasing the magnetic field is stored in the collective multi spin entanglement
and only half is stored in the pair correlations. Further decreasing the magnetic field
below B0, the ground state becomes

|ψ7〉 = γ
(
| ↓↓↑↑〉 − iλ| ↓↑↓↑〉 − | ↓↑↑↓〉 − | ↑↓↓↑〉+ iλ| ↑↓↑↓〉+ | ↑↑↓↓〉

)
. (3.12)

In this case, for total chirality we have κ = 〈ψ7|κi|ψ7〉 = 2λγ2. Its electric field
dependence is plotted in Fig. 3.1.
The ratio between one-tangle τ1 and two-tangle τ2, for 0 < ℘ ≤ 8J2−2J1

7
reads

τ =
τ2
τ1

= (
2− λ2

2 + λ2
)2 < 1. (3.13)

Therefore, in this case the entanglement generated by the electric field is basically
stored in many spin correlations rather than in two spin correlations.

3.2.2. Fidelity susceptibilities

In order to examine the sensitivity of the multiferroic spin chain with respect to the
tiny change of the driving fields we evaluate the fidelity susceptibility [73–76]. The
stability of the multiferroic spin chain with respect to a tiny change of the magnetic
field δB is quantified by the following equation
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Figure 3.1. – Electric field dependence of chirality κ for the following values of the
parameters: −J1 = J2 = 1, B = 0.25.

FB
F =

√
1− χBF ,

χBF =
∑
n6=g

|〈ψn(℘,B)|HB
I |ψg(℘,B)〉|2

[En(℘,B)− Eg(℘,B)]2
. (3.14)

Here |ψn(℘,B)〉, En are eigenfunctions and eigenvalues of the Hamiltonian (3.2),
|ψg(℘,B)〉, Eg correspond to the ground state and ground energy of the system and

HB
I = −δB

N∑
i=1

Szi describes small perturbations of the system corresponding to a

slight change of the magnetic field δB. Sensitivity to a slight change of the electric
field is also quantified by

F ℘
F =

√
1− χ℘F ,

χ℘F =
∑
n6=g

|〈ψn(℘,B)|H℘
I |ψg(℘,B)〉|2

[En(℘,B)− Eg(℘,B)]2
. (3.15)

Where H℘
I = −δ℘

N∑
i=1

[êx × (~Si × ~Si+1)] is the perturbation corresponding to a slight

change of the electric field δ~℘. In the case of a four spins system we observe that
the system is not sensitive to the δ ~B. Magnetic fidelity susceptibility is zero χBF = 0
for all ground states corresponding to different values of the driving fields B, ℘ and
therefore FB

F = 1. However, the electric field fidelity susceptibility χ℘F is finite if the
ground state of the system is the state |ψ7〉
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χ℘F =
(−J2 + J1

4
)2

(−J2 + J1
4

)2 + ℘2

2

(
4αγ

℘
)2. (3.16)

Its electric field dependence is depicted in Fig. 3.2.

−5 −3 −1 0 1 3 5

0.02

0.04

0.06

0.08

℘

χ

Figure 3.2. – Electric field fidelity susceptibility for the following values of the pa-
rameters: −J1 = J2 = 1, B = 0.25. Even a weak electric field leads to a substantial
reduction of the fidelity susceptibility.

This result shows that in the case of an even number of excitations corresponding
to the state |ψ7〉 the system becomes sensitive to a small perturbation of the electric
field amplitude.

3.2.3. Evaluating quantum state transfer fidelity

Let us evaluate the quantum state transfer fidelity in the case of one-excitation in
the system utilizing the proposal developed by S. Bose [63] which was explained in
details in section 2.2.1. The time dependence of the quantum state transfer fidelity
between the initial state |1〉 = | ↓↑↑↑〉 and final states |2〉 = | ↑↓↑↑〉 and |3〉 = | ↑↑↓↑〉
are presented in Fig. 3.3.
The corresponding transition amplitudes read

f1,2(℘,B, t) = 1
4
(exp[−iE5t]− exp[−iE4t])− i

4
(exp[−iE2t]− exp[−iE3t]),

f2,1(℘,B, t) = −1
4
(exp[−iE4t]− exp[−iE5t])− i

4
(exp[−iE2t]− exp[−iE3t]),

f1,3(℘,B, t) = f3,1(℘,B, t) =

− 1

4
(exp[−iE2t] + exp[−iE3t]− exp[−iE4t]− exp[−iE5t]).

(3.17)
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Figure 3.3. – Time and electric field dependence of the quantum state transfer fidelity
for values of J1 = −J2 = 1, B = 0.25. Left panel: Fidelity for |1〉 −→ |2〉 and
|2〉 −→ |1〉. Right panel: Fidelity for |1〉 −→ |3〉 = |3〉 −→ |1〉.

From Fig. 3.3 one can see that the electric field increases the quantum state transfer
fidelity, particularly from |1〉 to |3〉. The oscillating behavior of fidelity is related
to the interference effect between different quantum states En(℘). The transition
|1〉 ←→ |3〉 shows no directional dependence for the fidelity because of the boundary
condition SN+1 = S1.
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3.3. Large systems: numerical approach

In this section we present some numerical results using exact diagonalization tech-
nique for different multiferroic chain N=8,10,... spins.

We show the mean magnetization versus magnetic field for various electric fields. In
all cases for a given magnetic field, we search for the lowest energy for all the excited
states. Wherever the mean magnetization jumps with two steps, a transition to ne-
matic phase happens. However if the mean magnetization jumps with unit steps, a
chiral feature can be predicted. See Fig. 3.4.
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Figure 3.4. – Mean values of magnetization for different size of the system. The plot
for N = 120 is adapted from [7].

Comparing quantum phase transitions caused by the modulation of the amplitude of
electric and magnetic fields respectively, we see that in the case of electric field, even a
tiny change of the amplitude leads to a phase transition. This result is consistent with
the results obtained in the previous section, where we showed the sensitivity of fidelity
susceptibility concerning to the slight modulation of the electric field amplitude.
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3.4. Summary

It was shown that ground state phases of one dimensional frustrated ferromagnetic
spin-1/2 chain are extremely sensitive to the driving electric field. Tiny values of the
electric field are sufficient to change nematic phases of helical multiferroics in favor
of the chiral phase. This steering of the spin order with electric field is due to the
magnetoelectric coupling in such systems. We analyzed the fidelity susceptibility and
quantum state transfer fidelity and showed that the system is more sensitive to the
small changes of the electric field. It enables us to transmit quantum state through
the multiferroic spin chain with higher fidelity by proper tuning of the external electric
driving field. These findings can be potentially important for the practical application
of multiferoics in quantum information processing.





4. Coherent control of the system by
electric field pulses

Control of the spin dynamics in multiferroic material (TbMnO3) via intense THz
light pulses was realized recently in the experimental work by Kubacka et al. [104].
They showed that the manipulation of the magnetic structure with the electric field
of THz pulse is possible on a sub-picoseconds time scale. In this chapter we study
both analytically and numerically the influence of short electric field pulses switching
the system into an incommensurate chiral phase. It is instructive to study the entan-
glement and chirality behavior when the ground state of the system undergoes time
evaluation after applying the pulse. For this purpose we consider that the electric
field in Eq. (3.1) consists of two static ℘0 and dynamic ℘1(t) parts respectively, i.e.
℘ = ℘0 + ℘1(t). So the Hamiltonian Eq. (3.1) becomes

Ĥ = Ĥ0 + Ĥ1,

Ĥ0 = J1

N∑
i=1

~Si · ~Si+1 + J2

N∑
i=1

~Si · ~Si+2 − γe~B
N∑
i=1

Szi + ℘0gME

N∑
i=1

(~Si × ~Si+1)
z,

Ĥ1 = ℘1(t)gME

N∑
i=1

(~Si × ~Si+1)
z.

(4.1)

Where Ĥ0 is unperturbed Hamiltonian with the static electric field ℘0 and Ĥ1 is
the perturbation Hamiltonian with time dependent electric field ℘1(t). To proceed
further, we assume that the pulse is applied at t = 0 and has the following shape

℘1(t) =

{
℘0
1

ε
if− ε

2
< t < ε

2

0 otherwise
. (4.2)

For very small ε, the pulse is expressible as a δ-kick with the strength ℘0
1. The time

evolution of the system is given by the Schrödinger equation

i
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉, (4.3)

with the initial condition |ψ(t = − ε
2
)〉 = |ψ0〉. Where |ψ0〉 is the ground state of the

system before applying the pulse. For t > ε
2

we have a pulse free propagation with

Hamiltonian Ĥ0. One can rescale the time as T = (t + ε
2
)/ε. Hence right before the
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pulse (t = − ε
2
), T = 0 and right after the pulse (t = ε

2
), T = 1. Therefore, the

Schrödinger equation in the new variables describes the evolution as

i
∂

∂T
|ψ(T )〉 = Ô|ψ(T )〉, Ô = ℘0

1gME︸ ︷︷ ︸
d1

N∑
i=1

(~Si × ~Si+1)
z. (4.4)

The solution to Eq. (4.4) is written in a closed form

|ψ(T )〉 = e−iT Ô|ψ(T = 0)〉. (4.5)

This means that right after the pulse |ψ(t = ε
2
)〉 = e−iÔ|ψ(T = 0) and at any arbitrary

time t = t′ after the pulse we have

|ψ(t = t′)〉 =
∑
n

e−iEnt
′|φn〉 〈φn|e−iÔ|ψ(0)〉︸ ︷︷ ︸

Gn

. (4.6)

Where |φn〉 and En are n-th eigenstate and eigenvalue of the Hamiltonian Ĥ0 in
Eq. (4.1).

4.1. Four spins case

Here we analyze the prototype model of four spins. In this case we know exactly all
eigenstates |φn〉 and eigenvalues En in Eq. (4.6). As we discussed in chapter 3, one
can engineer the external electric and magnetic fields and get the one spin flipped
ground state |φ2〉 = i

2
| ↓↑↑↑〉 + −1

2
| ↑↓↑↑〉 + −i

2
| ↑↑↓↑〉 + 1

2
| ↑↑↑↓〉. Therefore with

choosing the initial state of the system |ψ(0)〉 = |φ2〉, we need to find the state of the
system at any time t = t′ after pulse using Eq. (4.6)

|ψ(t = t′)〉 =
∑
n

e−iEnt
′|φn〉〈φn|e−iÔ|φ2〉. (4.7)

Among the 16 coefficients of Gn , only G2 is non-zero

G2 = 〈φ2|e−iÔ|φ2〉 = 1 + 2iy1 − 2y2 − 2iy3 + 2y4. (4.8)

Where

y1 = 1
4
(− sin[d1]− sinh[d1]), y2 = 1

4
(− cos[d1]− cosh[d1]), (4.9)

y3 = 1
4
(sin[d1]− sinh[d1]), y4 = 1

4
(−2 + cos[d1]− cosh[d1]). (4.10)

After the simplification of Eq. (4.8) we get G2 = −i sin[d1] + cos[d1]. Using the
state Eq. (4.7) the chirality can be calculated as 〈ψ(t′)|κi|ψ(t′)〉 = 1/4. This time
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in-dependency behavior can be understood by observing the structure of the vector
chirality operator κi = (S−i S

+
i+1 − S+

i S
−
i+1)/2i, where raising and lowering operators

S+
i and S−i are defined by S+

i | ↑〉 = 0, S+
i | ↓〉 = | ↑〉, S−i | ↓〉 = 0 and S−i | ↑〉 = | ↓〉. For

one-excitation initial state |φ2〉, the expectation values of correlation terms S−i S
+
i+1

and S+
i S
−
i+1 are respectively i/4 and −i/4 which finally adds up to 1/4.

The two spins flipped initial state |φ7〉 = γ
(
| ↓↓↑↑〉 − iλ| ↓↑↓↑〉 − | ↓↑↑↓〉 − | ↑↓↓↑

〉+iλ| ↑↓↑↓〉+ | ↑↑↓↓〉
)

can be derived by manipulating with the electric and magnetic
fields. In this case the state of the system at any time t = t′ after the pulse using
Eq. (4.6) reads

|ψ(t = t′)〉 = e−iE6t
′ |φ6〉 〈φ6|e−iÔ|φ7〉︸ ︷︷ ︸

G6

+e−iE7t
′ |φ7〉 〈φ7|e−iÔ|φ7〉︸ ︷︷ ︸

G7

. (4.11)

We calculate the matrix elements G6 and G7 below

G6 = 〈φ6|e−iÔ|φ7〉 = 4αγ[1− 4X1 − 2iλX2 + 4X3 + 2iλX4] +

2iαµγ[−iλ+ 4iλX1 − 4X2 − 4iλX3 + 4X4],

G7 = 〈φ7|e−iÔ|φ7〉 = 4γ2[1− 4X1 − 2iλX2 + 4X3 + 2iλX4] +

2iγ2λ[−iλ+ 4iλX1 − 4X2 − 4iλX3 + 4X4]. (4.12)

Where

X1 =
1

8

(
− cos[

√
2d1] + cosh[

√
2d1]

)
,

X2 =
1

8

(
−
√

2 sin[
√

2d1] + sinh[
√

2d1]
)
,

X3 =
1

8

(
cos[
√

2d1] + cosh[
√

2d1]
)
,

X4 =
1

8

(√
2 sin[

√
2d1] + sinh[

√
2d1]

)
. (4.13)

Substituting Eq. (4.13) in Eq. (4.12) we obtain

G6 =
4iαγ(λ+ µ)√

2
sin[
√

2d1],

G7 = cos[
√

2d1] +
8iγ2λ√

2
sin[
√

2d1]. (4.14)

The expectation value of chirality at any time t = t′ after the pulse is given by

〈κi〉 = 2α2µ|G6|2 + 2γ2λ|G7|2 +

αγ(µ+ λ)

(
2<(G∗7G6) cos[(E7 − E6)t′] + 2=(G∗7G6) sin[(E7 − E6)t′]

)
. (4.15)
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Here < and = are ‘Real’ and ‘Imaginary’ part of G∗7G6, respectively. The time depen-
dence of chirality Eq. (4.15) is plotted in Fig. 4.1. We see that the chirality oscillates
with time.
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Figure 4.1. – Chirality Eq. (4.15) for the following values of the parameters: −J1 =
J2 = 1, B = 0.25, d0 = ℘0gME = 0.05, d1 = d0/0.1.

The extremum of the chirality Eq. (4.15) are located at the time given by

t′ext =
1

(E7 − E6)

[
arctan[

=(G∗7G6)

<(G∗7G6

] + kπ

]
. (4.16)

Where k is an integer. The chirality time period of oscillations is π/(E7 − E6).

4.1.1. Quantifying the entanglement measures

In this subsection we study the entanglement and analyze the time evolution of it
after applying the short electric field pulse. For the ground states |φ2〉 or |φ7〉, which
were used earlier to calculate chirality, the one-tangle τ1 = 4detρ1 is unity and is
independent of time. This can be explained by looking at the structure of single
qubit reduced density matrix. The off-diagonal elements 〈S+

k 〉 and 〈S−k 〉 will be zero
for |φ2〉 and |φ7〉 states and therefore the determinant of the reduced density matrix
ρ1 i.e. 1

4
− 〈Sz1〉2 is constant.

In the case of one-excitation ground state |φ2〉 the two-tangle τ2 = C2
12 + C2

13 +
C2

14 is invariable, however for two-excitations ground state |φ7〉 it varies with time.
Calculation of the concurrences C12, C13, C14, can be done by obtaining the reduced
density matrices ρ12, ρ13, ρ14 after tracing out of the rest spins from the total density
matrix ρ̂ = |ψ(t)〉〈ψ(t)|, which is constructed using Eq. (4.11). These three reduced
density matrices ρ12, ρ13, ρ14 are presented below
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ρ12 =
(
|G6|2α2 +G7G

∗
6αγe

−i(E7−E6)t′ +G6G
∗
7αγe

−i(E6−E7)t′ + |G7|2γ2
)
| ↑↑〉〈↑↑ |

+
(
|G6|2α2(1 + µ2)−G7G

∗
6αγe

−i(E7−E6)t′ −G6G
∗
7αγe

−i(E6−E7)t′ +

|G7|2γ2(1 + λ2)
)
| ↑↓〉〈↑↓ |+

(
2i|G6|2α2µ+ iG7G

∗
6αγ(λ+ µ)e−i(E7−E6)t

′
+

iG6G
∗
7αγ(λ+ µ)e−i(E6−E7)t

′
+ 2i|G7|2γ2λ

)
| ↓↑〉〈↑↓ |+

(
− 2i|G6|2α2µ−

iG7G
∗
6αγ(λ+ µ)e−i(E7−E6)t

′ − iG6G
∗
7αγ(λ+ µ)e−i(E6−E7)t

′ −
2i|G7|2γ2λ

)
| ↑↓〉〈↓↑ |+

(
|G6|2α2(1 + µ2)−G7G

∗
6αγe

−i(E7−E6)t′ −
G6G

∗
7αγe

−i(E6−E7)t′ + |G7|2γ2(1 + λ2)
)
| ↓↑〉〈↓↑ |+

(
|G6|2α2 +

G7G
∗
6αγe

−i(E7−E6)t′ +G6G
∗
7αγe

−i(E6−E7)t′ + |G7|2γ2
)
| ↓↓〉〈↓↓ |, (4.17)

ρ13 =
(
|G6|2α2µ2 +G7G

∗
6αγλµe

−i(E7−E6)t′ +G6G
∗
7αγλµe

−i(E6−E7)t′ +

|G7|2γ2
)
| ↑↑〉〈↑↑ |+

(
2|G6|2α2 + 2G7G

∗
6αγe

−i(E7−E6)t′ +

2G6G
∗
7αγe

−i(E6−E7)t′ + 2|G7|2γ2
)
| ↑↓〉〈↑↓ |+

(
− 2|G6|2α2 −

2G7G
∗
6αγe

−i(E7−E6)t′ − 2G6G
∗
7αγe

−i(E6−E7)t′ − 2|G7|2γ2λ
)
| ↓↑〉〈↑↓ |+(

− 2|G6|2α2 − 2G7G
∗
6αγe

−i(E7−E6)t′ − 2G6G
∗
7αγe

−i(E6−E7)t′ +

2|G7|2γ2λ
)
| ↑↓〉〈↓↑ |+

(
2|G6|2α2 + 2G7G

∗
6αγe

−i(E7−E6)t′ +

2G6G
∗
7αγe

−i(E6−E7)t′ + 2|G7|2γ2
)
| ↓↑〉〈↓↑ |+

(
|G6|2α2µ2 +

G7G
∗
6αγλµe

−i(E7−E6)t′ +G6G
∗
7αγλµe

−i(E6−E7)t′ +

|G7|2γ2λ2
)
| ↓↓〉〈↓↓ |, (4.18)

ρ14 =
(
|G6|2α2 +G7G

∗
6αγe

−i(E7−E6)t′ +G6G
∗
7αγe

−i(E6−E7)t′ + |G7|2γ2
)
| ↑↑〉〈↑↑ |

+
(
|G6|2α2(1 + µ2)−G7G

∗
6αγe

−i(E7−E6)t′ −G6G
∗
7αγe

−i(E6−E7)t′ +

|G7|2γ2(1 + λ2)
)
| ↑↓〉〈↑↓ |+

(
− 2i|G6|2α2µ− iG7G

∗
6αγ(λ+ µ)e−i(E7−E6)t

′

−iG6G
∗
7αγ(λ+ µ)e−i(E6−E7)t

′ − 2i|G7|2γ2λ
)
| ↓↑〉〈↑↓ |+

(
2i|G6|2α2µ+

iG7G
∗
6αγ(λ+ µ)e−i(E7−E6)t

′
+ iG6G

∗
7αγ(λ+ µ)e−i(E6−E7)t

′
+

2i|G7|2γ2λ
)
| ↑↓〉〈↓↑ |+

(
|G6|2α2(1 + µ2)−G7G

∗
6αγe

−i(E7−E6)t′ −
G6G

∗
7αγe

−i(E6−E7)t′ + |G7|2γ2(1 + λ2)
)
| ↓↑〉〈↓↑ |+

(
|G6|2α2 +

G7G
∗
6αγe

−i(E7−E6)t′ +G6G
∗
7αγe

−i(E6−E7)t′ + |G7|2γ2
)
| ↓↓〉〈↓↓ |. (4.19)
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The time dependence of the two-tangle is shown in Fig. 4.2. It shows oscillations as
a function of time with the same time period π/(E7 − E6) as that of the chirality,
meaning that at the time when chirality rises to its peak, two-qubit entanglement
also reaches the maximum and it is always less than one.
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Figure 4.2. – Two-tangle in case of two-excitations ground state |φ7〉 for the following
values of the parameters: −J1 = J2 = 1, B = 0.25, d0 = ℘0gME = 0.05, d1 = d0/0.1.

0 2 4 6 8 10

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

t′(J−1)

S
N

/2

Figure 4.3. – Von Neumann entropy in case of two-excitations ground state |φ7〉 for
the following values of the parameters: −J1 = J2 = 1, B = 0.25, d0 = ℘0gME =
0.05, d1 = d0/0.1.

Fig. 4.3 shows the time dependence of von Neumann entropy SL/2 =
−Tr1,...,L/2[ρ1,...,L/2 log2(ρ1,...,L/2)], where the reduced density matrix of first L/2 spins
is given by ρ1,...,L/2 = TrL/2+1,...L(|ψ(t)〉〈ψ(t)|). As for the two-tangle the von Neu-
mann entropy is maximum at t′ = 0. Afterwards the entropy oscillates with time and
the period of oscillation is the same as as for the chirality and the two-tangle.
We also plot the von Neumann entropy for different values of the electric field pulse
d1. See Fig. 4.4.
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Figure 4.4. – Von Neumann entropy in case of two-excitations ground state |φ7〉 for
different values of d1.

From Fig. 4.4 we see that in the absence of the pulse at t′ = 0, the von Neumann
entropy at maximum value remains constant throughout the observation. By applying
the pulse, the entropy decreases and oscillates with time. The amplitude of oscillations
grows in proportion to the pulse strength, however its maximum is always less than
SN/2 = 2.
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4.2. Numerical simulations

In this section we show some numerical results obtained from exact diagonalization
for different length of the chain N > 4. As pointed out in the previous section for
the four spins case if the system is kept initially in one-excitation ground state, the
chirality remains constant with time. The same is true for longer size chains also and
the sum of expectation values of two correlation terms 〈S−i S+

i+1〉 and 〈S+
i S
−
i+1〉 add up

to constant at any time. However, in the case of higher n-excitations ground states
which are prepared with a proper choice of parameters d0 and B, the chirality shows
oscillations with time. We consider the two-excitations ground state for all spin chain
length. The plots of Chirality, two-tangle and von Neuman entropy in case of N = 8
with two-excitations ground state is presented in Fig. 4.5.
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Figure 4.5. – Time dependence of chirality(up panel), two-tangle(down left panel) and
von Neumann entropy(down right panel) for N=8, with the two-excitations initial
state. The parameters are: −J1 = J2 = 1, B = 0.25, d0 = ℘0gME = 0.05, d1 =
d0/0.1.

Also in this case we analyze the evolution of the von Neuman entropy by varying the
pulse strength d1 in Fig. 4.6.
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Figure 4.6. – Von Neumann entropy in case of N = 8, with the two-excitations ground
state for different values of d1.

From Fig. 4.6 we see that the von Neumann entropy in the absence of pulse is constant
with time. However, the value is much less than the maximal entropy SN/2 = N/2.
With increasing the pulse strength, the von Neumann entropy starts oscillating and
the peak of entropy is higher than no pulse case i.e. d1 = 0. For very large systems
for example N = 20 with N/2 number of excitations, i.e. Sz = 0 sector, we see
saturation of the entropy to a high value at a later time. See Fig. 4.7.
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Figure 4.7. – Von Neumann entropy in case of N = 20, with N/2-excitations ground
state for different values of d1.

In Fig. 4.8 the time evolution of the two-tangle and von Neumann entropy for various
sizes of the spin chain with two-excitations ground state are shown.
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Figure 4.8. – Time dependence of the two-tangle (left panel) and the von Neumann
entropy (right panel) for N = 18, 20, 22, 30, 40. In all cases the system is in a two-
excitations ground state. The strength of the pulse is d1 = 0.5. The spin-exchange
couplings and initial electric-field strength are −J1 = J2 = 1, d0 = ℘0gME = 0.05
respectively. Adapted from [105].

From the figures we notice that the two-tangle decreases significantly by increasing
the size. For system size N ≥ 18 the two-tangle starts to disappear during the pulse-
free time evolution. The frequency of oscillations decreases significantly. For larger
sizes when the two-tangles vanishes, we expect the entanglement to exist in pure
multipartite form. This may be the reason for a large von Neumann entropy in large
system sizes.
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4.3. Dynamical phase transition

Recently Heyl et al [106] discussed the connection between canonical partition func-
tion Z = TreβH and return probability of the system to the initial state while going
through a non trivial time evolution. This return probability is known as Loschmidt
echo and its amplitude is given by

G(t) = 〈ψ0|e−iĤt|ψ0〉 (4.20)

The non-analyticity in time manifests a dynamical phase transition. The zeros of
the partition function Z are searched in the complex inverse temperature β plane,
while the zeros of the Loschmidt echo G(t) lie on the real time axis. The quantity of
interest is the rate function of the return probability given by

l(t) = − lim
N→∞

1

N
ln |G(t)|2. (4.21)

The nonanalytical points of l(t) can be obtained by finding the zeros of G(t). In
the thermodynamic limit as the free energy density signifies the nonanalyticity ac-
companying to the phase transition the rate function l(t) reflects the nonanalyticity
associated with dynamical phase transition. Heyl et al. used this protocol to study
quenches in a transverse field Ising spin model, which exhibits a quantum phase tran-
sition between ferromagnetic and paramagnetic ground states. In recent works the
protocol set by Heyl et. al has been used to progress the study of dynamical phase
transition in different models [107–114].

In this section we consider a sudden electric field quench and investigate the dy-
namical quantum phase transitions for the quenched dynamics. For this purpose,
we combined the Weierstrass factorization technique for entire functions and Lanczos
exact diagonalization method. The analytical results, including the rate function of
Loschmidt echo for a system of N = 4, spins are obtained. The system is initially
prepared in the ground state of Ĥ = Ĥ0 + Ĥ1, and then at t = 0 it is suddenly
quenched to Ĥ → Ĥ0 (Ĥ1 is absent for t > 0). The expression for the Loschmidt
echo Eq. (4.20) can be written now as

G(t) = 〈ψ0|e−iĤ0t|ψ0〉 =
∑
n,m

Q0nHnmQm0, (4.22)

where Qn0 = 〈φn|ψ0〉, Hnm = 〈φn| exp(−iĤ0t)|φm〉, |ψ0〉 and |φn〉 are the ground
state of Hamiltonian Ĥ = Ĥ0 + Ĥ1 and the n-th eigenstate of the Hamiltonian Ĥ0

respectively. Based on the Weierstrass theorem for entire functions, an entire function
f(z) with the zeros zj, j = 1, 2, 3, · · · can be written as

f(z) = eg(z)
∏
j

(
1− z

zj

)
, (4.23)
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where g(z) is another entire function of z. The zeros of the Weierstrass factorization
are related to a dynamical phase transition. The non-analytic part of the function
ln |f(z)| in Eq. (4.23) is determined by zeros zj. Assuming z = it and f(z) as
G(t)(given by Eq. (4.20)), the rate function l(t), Eq. (4.21) reads

l(t) = − 2

N

[
|g(t)|+

∑
j

ln

∣∣∣∣1− t

tj

∣∣∣∣
]
. (4.24)

For the system of four spins with two-excitations ground state |φ7〉, the return prob-
ability is determined by

G(t) = ae−iE6t + be−iE7t,

a = [αγ′(4 + µλ′)]2, b = [γγ′(4 + λλ′)]2. (4.25)

Here λ,γ and λ′ and γ′ are obtained via substituting ℘ by d0 and d1+d0 respectively in
Eq. (3.8) in chapter 3. Therefore we can obtain the zeros of G(t) by solving G(t) = 0
as follows

tk =
1

E6 − E7

(
i ln

(
a

b

)
− π(2k + 1)

)
, k = 0,±1,±2, · · · (4.26)

Real and imaginary parts of θk = itk can be separately written as

<(θk) = − 2√
(J1 − 4J2)2 + 8d20

ln

(
α(2 + µλ′)

β(2 + λλ′)

)
,

=(θk) =
π(2n+ 1)√

(J1 − 4J2)2 + 8d20
. (4.27)

In Fig. 4.9 we plot the zeros for different values of quench strength.
As it is clear a very large electric field d1 = 100 is needed for real part to approach
zero.

Another interesting quantity which is related to the entanglement spectrum is
Schmidt gap [107–114]. The entropy of entanglement shows a logarithmic behav-
ior with the system size dependence at the quantum critical point S ∼ c log l and
close to critical point S ∼ c log ξ where l is the size of the block, c is the central
charge of the conformal field theory describing the quantum phase transition, and ξ
is the correlation length [115]. Away from the critical point the system can be char-
acterized by the entanglement spectrum [116, 117, 119, 120] i.e. the eigenvalues of
the reduced density matrix of one of the two partitions while tracing out the degrees
of freedom of the other partition. This entanglement spectrum is an accepted tool
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Figure 4.9. – Zeros of θk = itk in case of 4-spins system with two-excitations ground
state for k = −4,−3, ..., 3 and J1 = −J2 = −1.0, B = 0.25, d0 = 0.05. Green squares,
blue circles, black diamonds, and red points correspond to d1 = 2.5, d1 = 3.5, d1 =
5.49, and d1 = 100 respectively.

to characterize the many body system. The gap between the two largest eigenval-
ues called Schmidt gap is considered to capture the phase transition. The zeros of
the Schmidt gap can deliver information about the quantum critical point [117]. We
study the time evolution of Schmidt gap ∆ = λa − λb (λaand λb are the two largest
eigenvalues of the reduced density matrix) for the quench protocol followed in this
section.
Fig. 4.10 shows the quench protocol applied to 4-spin system with two-excitations
ground state indicating an onset of a dynamical transition. However, small system
of four spins do not possess a well-developed phase transition behavior, but kind of
precursors.

Signature of quantum phase transition can be observed in the case of a pulse induced
dynamics as well. See Fig. 4.11. In this case we used the following expression for
Loschmidt echo

G(t) = |G6|2e−iE6t + |G7|2e−iE7t (4.28)

The explicit form of G6, G7 were derived in Eq. (4.12).

As we see the non-analytic behavior of the rate function is correlated with the mini-
mum of Schmidt gap and the Fisher zeros cross the real axis in this case.
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Figure 4.10. – Rate function and Schmidt gap in 4-spins system with two-excitations
ground state. The parameters are −J1 = J2 = 1, d0 = ℘0gME = 0.05. For left panel
d1 = 5.49 and for right panel d1 = 100 correspond to black diamond points and red
points in Fig. 4.9 respectively.
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Figure 4.11. – Left panel: Zeros of θk = itk in the case of applied pulses to 4-spins
system with two-excitations ground state for k = −4,−3, ..., 3 and J1 = −J2 =
−1.0, B = 0.25, d0 = 0.001. Green squares, red circles, black diamonds correspond
to d1 = 0.3, d1 = 0.5554, and d1 = 0.8 respectively. Right panel: Rate function and
Schmidt gap for d1 = 0.5554 (red circles).



4.3. DYNAMICAL PHASE TRANSITION 41

In the following we show the exact numerical calculations for N = 18 and N = 22. In
both cases the initial state taken to be the ground state in two-excitations sector. In
order to detect the transition, the parameters d1 and d0 have to be chosen carefully.
For the parameters d1 and d0, for which there is a dynamical phase transition, non-
analyticity at the points t′′ in the rate function, we see a nice pattern in the Schmidt
gap too. We can see that at the onset of the dynamical phase transition, the Schmidt
gap vanishes and remains zero in the time interval in which the system undergoes a
dynamical phase transition. We can estimate the critical point by just looking at the
pattern of the Schmidt gap. For example, in Fig. 4.12, left panel the Schmidt gap
is zero for 4.75 < t′ < 11.75 and the critical point is just at the middle t = 8.25 of
the interval or in right panel the Schmidt gap is zero for 5.56 < t′ < 13.42 and the
critical point t′′ = 9.41 is close to the middle t′ = 9.49 of the interval. At times when
the rate function touches the minimum, the Schmidt gap reaches its maximum.
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Figure 4.12. – Left panel: The rate function and the Schmidt gap for a periodic
chain of size N = 18. The parameters are J2 = −J1 = 1, d1 = 2.34, d0 = 0.098.
Right panel: The rate function and the Schmidt gap for a periodic chain of size
N = 22 for the parameters J2 = −J1 = 1, d1 = 0.44, d0 = 0.057. The peaks of the
rate function at time t′′ ≈ 9.41, 28.36, 47.20, ... correspond to the dynamical phase
transitions. The inset shows a zoom into the cusp region at one of the non-analytic
point. Adapted from [105].
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4.4. Summary

The influence of a short electric field pulse has been studied showing that an electric
field pulse may switch the system into an incommensurate chiral phase. Time evo-
lution of chirality shows a signature of the spin configuration in the new phase. We
calculated the chirality, one-tangle, two-tangle and von Neumann entropy using one-
and two-excitations ground states. We found that all the measured quantities are con-
stant in one-excitation ground state and oscillating with time in n (> 1)-excitations
ground state. We could also see that the chirality and two-tangle go together while
two-tangle and von Neumann entropy are complementary to each other with the same
period of oscillations. We extended our study of N > 4 spins by using exact diagonal-
ization method. We found that two-tangle is vanishing as the size increases. Chirality
oscillates with time but its peak value is not vanishing as compared to the case of
two-tangle which vanishes for size N > 18 spins. We could see a large von Neumann
entropy even for the size N > 18 spins. This confirms that the chirality goes along
with mulipartite entanglement in these systems. In the end, we have used a protocol
to calculate the Loschmidt echo and rate function which signifies a dynamical phase
transition between commensurate to incommensurate spiral phases.



5. Constructing quantum Otto heat
engine

In this chapter we study a quantum Otto heat engine operating on the basis of a
helical spin-1/2 multiferroic chain introduced in chapter 2 as a working substance.
See Fig. 5.1.

Figure 5.1. – Scheme of the quantum Otto cycle based on a spin-spiral multiferroic
chain. Reproduced from [118].

The cycle consists of two isochoric strokes, A → B, C → D and two quantum
(or thermodynamic) adiabatic strokes, B → C, D → A. During the stroke A →
B the system is attached to a hot bath with a temperature TH absorbing energy
and reaches to the thermodynamic equilibrium associated with the level populations
PB
n

(
En(℘), TH

)
. During the stroke C → D the interaction with a cold bath with a

temperature TL is done and the system releases energy and reaches to thermodynamic
equilibrium state associated with the level populations PD

n

(
En(℘1), TL

)
. During the

two thermodynamic adiabatic strokes the amplitude of the electric field is changed so
that ∆En = En(℘) − En(℘1), resulting in a change of energy levels and the system
performs work.
In the next section we first analyze analytically the system of four spins and then in
the other section we numerically generalize the treatment for larger systems.
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5.1. Four spins

To study the thermal chirality, entanglement, and the cycle efficiency in the system
of four spins first of all, we need to construct the density matrix ρ̂ defined by the
equilibrium Gibbs distribution

ρ̂ = Z−1
16∑
n=1

exp[−βEn]|ψn〉〈ψn|, Z =
16∑
n=1

exp[−βEn], (5.1)

where |ψn〉 and En are the eigenfunctions and eigenvalues of Eq. (3.2) given explicitly
in Eq. (3.6)-Eq. (3.9). The mean value of the z component of the vector chirality
(VC) is obtained from

〈κi〉 = 〈(~Si × ~Si+1)
z〉 = Tr(ρ̂(~Si × ~Si+1)

z) =
1

Z
(e−βE2 − e−βE3 + 8α2µe−βE6 + 8γ2λe−βE7 − e−βE12 + e−βE13). (5.2)

The dependence of the thermal chirality on T and B are plotted in Fig. 5.2 and
Fig. 5.3.
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Figure 5.2. – Chirality as a function of the temperature for different values of the
electric field. The parameters are: −J1 = J2 = 1, B = 0.25.

Fig. 5.2 shows that with increasing temperature the thermal chirality undergoes a
strong change and it is almost zero at high enough temperatures.
From Fig. 5.3 one can see that with increasing the magnetic field B, the thermal
chirality decreases. For calculating the pair concurrence between two arbitrary spins
of the working substance based on Eq. (2.21) we derive three matrices R12, R13, R14

as follows

R12 =
1

Z2


a1d1 0 0 0

0 b21 + |c1|2 2b1c1 0

0 2b1c
∗
1 b21 + |c1|2 0

0 0 0 a1d1

 ,
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Figure 5.3. – Chirality as a function of B for the parameters −J1 = J2 = 1, ℘ =
0.5, T = 10.

R13 =
1

Z2


a2b2 0 0 0

0 c22 + |d2|2 2c2d2 0

0 2c2d
∗
2 c22 + |d2|2 0

0 0 0 a2b2

 ,

R14 =
1

Z2


a1d1 0 0 0

0 b21 + |c1|2 2b1c
∗
1 0

0 2b1c1 b21 + |c1|2 0
0 0 0 a1d1

 , (5.3)

where the parameters a1,2, b1,2, c1,2, d1,2 are defined as

a1 = e−βE1 + 1
2
(e−βE2 + e−βE3 + e−βE4 + e−βE5) + α2e−βE6 + γ2e−βE7

+1
6
e−βE8 + 1

12
e−βE9 + 1

2
e−βE10 ,

b1 = 1
4
(e−βE2 + e−βE3 + e−βE4 + e−βE5) + α2(1 + µ2)e−βE6 + γ2(1 + λ2)e−βE7

+1
3
e−βE8 + 5

12
e−βE9 + 1

2
e−βE11 + 1

4
(e−βE12 + e−βE13 + e−βE14 + e−βE15),

c1 = i
4
(e−βE2 − e−βE3)− 1

4
(e−βE4 − e−βE5) + 2iα2µe−βE6 + 2iγ2λe−βE7

+1
3
(e−βE8 − e−βE9)− i

4
(e−βE12 − e−βE13) + 1

4
(e−βE14 − e−βE15),

d1 = α2e−βE6 + γ2e−βE7 + 1
6
e−βE8 + 1

12
e−βE9 + 1

2
e−βE10

+1
2
(e−βE12 + e−βE13 + e−βE14 + e−βE15) + e−βE16 ,
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a2 = e−βE1 + 1
2
(e−βE2 + e−βE3 + e−βE4 + e−βE5) + α2µ2e−βE6

+γ2λ2e−βE7 + 1
6
e−βE8 + 1

3
e−βE9 ,

b2 = α2µ2e−βE6 + γ2λ2e−βE7 + 1
6
e−βE8 + 1

3
e−βE9

+1
2
(e−βE12 + e−βE13 + e−βE14 + e−βE15) + e−βE16 ,

c2 = 1
4
(e−βE2 + e−βE3 + e−βE4 + e−βE5) + 2α2e−βE6 + 2γ2e−βE7 + 1

3
e−βE8

+1
6
e−βE9 + 1

2
e−βE10 + 1

2
e−βE11 + 1

4
(e−βE12 + e−βE13 + e−βE14 + e−βE15),

d2 = −1
4

(e−βE2 + e−βE3) + 1
4
(e−βE4 + e−βE5)− 2α2e−βE6 − 2γ2e−βE7

+1
3
(e−βE8 + e−βE9)− 1

4
(e−βE12 + e−βE13)− 1

4
(e−βE14 − e−βE15). (5.4)

Therefore for the different pair concurrences we deduce

C12 = C14 =
2

Z
max{|c1| −

√
a1d1, 0},

C13 =
2

Z
max{|d2| −

√
a2b2, 0}. (5.5)

Taking into account Eq.(5.5) for the two-tangle defined by Eq. (2.22) we obtain

|c1| >
√
a1d1, |d2| >

√
a2b2 : τ2 =

8(|c1| −
√
a1d1)

2
+ 4(|d2| −

√
a2b2)

2

Z2
,

|c1| >
√
a1d1, |d2| <

√
a2b2 : τ2 =

8(|c1| −
√
a1d1)

2

Z2
, (5.6)

|c1| <
√
a1d1, |d2| >

√
a2b2 : τ2 =

4(|d2| −
√
a2b2)

2

Z2
,

|c1| <
√
a1d1, |d2| <

√
a2b2 : τ2 = 0.

As demonstrated from Eq.(5.6) the two-tangle depends on several inequalities between
the parameters a1,2, b1,2, c1, d1,2 which are functions of the temperature T , driving elec-
tric field ℘ and magnetic field B. So depending on these parameters the system can
be entangled or disentangled. For the given values of the electric and magnetic fields
there is a threshold temperature Tc(℘,B) which defines the entangled and disentan-
gled regimes. The dependence on the amplitude of the electric field ℘ is shown in
Fig. 5.4.
As we see from Fig. 5.4, τ2 is finite for large enough amplitude of the electric field ℘.
Essentially it is zero until the electric field amplitude becomes quite significant.
In Fig. 5.5 the threshold temperatures for different values of the electric field ℘ are
defined in a way that below these temperatures τ2 is finite and above them τ2 = 0.
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Figure 5.4. – Two-tangle as a function of the electric field ℘ for different temperatures
T = 2(red cross line), T = 5(blue solid line), T = 10(black triangle line). The
parameters are: −J1 = J2 = 1, B = 0.25.
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Figure 5.5. – Two-tangle as a function of the temperature for different values of the
electric field ℘ = 0.5(blue solid line), ℘ = 3(black triangle line), ℘ = 5(red cross
line). The parameters are: −J1 = J2 = 1, B = 0.25. The threshold temperatures
are Tc = 1.9, Tc = 2.3, Tc = 2.9, respectively.

For one-tangle τ1 = 4detρ1 = 4det(Tr2,3,4(ρ̂)) which quantifies the nonlocal many-
body correlations in the system we obtain

τ1 =
4

Z2
{e−βE1 +

3

4
(e−βE2 + e−βE3 + e−βE4 + e−βE5) + α2(2 + µ2)e−βE6

+γ2(2 + λ2)e−βE7 +
1

2
(e−βE8 + e−βE9 + e−βE10 + e−βE11)

+
1

4
(e−βE12 + e−βE13 + e−βE14 + e−βE15)}×
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{1

4
(e−βE2 + e−βE3 + e−βE4 + e−βE5) + α2(2 + µ2)e−βE6

+γ2(2 + λ2)e−βE7 +
1

2
(e−βE8 + e−βE9 + e−βE10 + e−βE11)

+
3

4
(e−βE12 + e−βE13 + e−βE14 + e−βE15) + e−βE16}. (5.7)

In the high temperature limit, the one-tangle is unit τ1 = 1. See Fig. 5.6. In fact the
one-tangle is very robust and is practically not affected by the temperature.
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Figure 5.6. – One-tangle as a function of the temperature for different values of the
electric field ℘ = 0.5(blue solid line), ℘ = 3(black triangle line), ℘ = 5(red cross
line). The parameters are: −J1 = J2 = 1, B = 0.25.

In contrast to the pair correlations, the collective entanglement τ1 is different from
zero for an arbitrary electric field. See Fig. 5.7. Another remarkable difference is that
even very weak electric field is able to generate nonlocal entanglement τ1.
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Figure 5.7. – One-tangle as a function of the electric field ℘ for different temperatures
T = 2(red cross line), T = 5(blue solid line), T = 10(black triangle line). The
parameters are: −J1 = J2 = 1, B = 0.25.
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The ratio between two- and one-tangle is plotted in Fig. 5.8. It is clear that the
amount of thermal entanglement stored in the nonlocal correlations τ1 is always larger
than the thermal entanglement of the pair correlations in the system i.e. τ1 > τ2.
Also by increasing the electric field this ratio is increasing as well.
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Figure 5.8. – Ratio between two- and one-tangle as a function of the external electric
field for the following values of the parameters −J1 = J2 = 1, B = 0.25, T = 1.9.

Due to the coupling of the magnetic field to the magnetization which is a conserved
quantity in the model, the magnetic field dependence of both types of entanglement,
τ1 and τ2 is clear. With increasing B the entanglements decrease. See Fig. 5.9.
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Figure 5.9. – One- and two-tangle as a function of the magnetic filed B. The param-
eters are: −J1 = J2 = 1, T = 2, ℘ = 5.5.

5.1.1. Magnetic and electric susceptibilities

According to Eq. (2.17), the expressions for the fidelity related to the electric and
magnetic fields can be written as
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F℘(β, ℘, ℘+ δ℘) = exp

[
− β(δ℘)2

8
χ(℘)

]
,

FB(β,B,B + δB) = exp

[
− β(δB)2

8
χ(B)

]
. (5.8)

Here χ(℘) = −∂2F
∂℘2 , χ(B) = −∂2F

∂B2 are the susceptibilities to an external electric and
magnetic fields at constant temperature and F = −β lnZ is the free energy of the
system.

After some calculations we obtain

χ(B) = −∂
2F

∂B2
=

16∑
n,m=1

[β(
dEn
dB

)2 − β(
dEn
dB

)(
dEm
dB

)− d2En
dB2

] exp[−β(En + Em)]

(
16∑
n=1

exp[−βEn])2

=
β

Z2

[
e−βE1(e−βE2 + e−βE3 + e−βE4 + e−βE5 + 4e−βE6 + 4e−βE7 + 4e−βE8

+4e−βE9 + 4e−βE10 + 4e−βE11 + 9e−βE12 + 9e−βE13 + 9e−βE14 + 9e−βE15)

+e−βE16(9e−βE2 + 9e−βE3 + 9e−βE4 + 9e−βE5 + 4e−βE6 + 4e−βE7 +

+4e−βE8 + 4e−βE9 + 4e−βE10 + 4e−βE11 + e−βE12 + e−βE13 + e−βE14 + e−βE15)

+(e−βE2 + e−βE3 + e−βE4 + e−βE5 + e−βE12 + e−βE13 + e−βE14 + e−βE15)×
(e−βE6 + e−βE7 + e−βE8 + e−βE9 + e−βE10 + e−βE11) + 4(e−βE2 + e−βE3

+e−βE4 + e−βE5)× (e−βE12 + e−βE13 + e−βE14 + e−βE15)
]
, (5.9)

χ(℘) = −∂
2F

∂℘2
=

16∑
n,m=1

[β(
dEn
d℘

)2 − β(
dEn
d℘

)(
dEm
d℘

)− d2En
d℘2

] exp[−β(En + Em)]

(
16∑
n=1

exp[−βEn])2

=
β

Z2

[
(e−βE2 + e−βE13)× (e−βE1 + 2e−βE3 + e−βE4 + e−βE5

+(1 +
4℘√

(5J)2 + 8℘2
)e−βE6 + (1− 4℘√

(5J)2 + 8℘2
)e−βE7 + e−βE8 + e−βE9+
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+e−βE10 + e−βE11 + 2e−βE12 + e−βE14 + e−βE15 + e−βE16)

+(e−βE3 + e−βE12)× (e−βE1 + 2e−βE2 + e−βE4 + e−βE5

+(1− 4℘√
(5J)2 + 8℘2

)e−βE6 + (1 +
4℘√

(5J)2 + 8℘2
)e−βE7 + e−βE8 + e−βE9

+e−βE10 + e−βE11 + 2e−βE13 + e−βE14 + e−βE15 + e−βE16)

+(
16℘2

(5J)2 + 8℘2
− 4(5J)2

β((5J)2 + 8℘2)
3
2

)e−βE6(e−βE1 + e−βE4 + e−βE5 + e−βE8 +

+e−βE9 + e−βE10 + e−βE11 + e−βE14 + e−βE15 + e−βE16) + (
16℘2

(5J)2 + 8℘2

+
4℘√

(5J)2 + 8℘2
− 4(5J)2

β((5J)2 + 8℘2)
3
2

)e−βE6(e−βE2 + e−βE13)

+(
16℘2

(5J)2 + 8℘2
− 4℘√

(5J)2 + 8℘2
− 4(5J)2

β((5J)2 + 8℘2)
3
2

)e−βE6(e−βE3 + e−βE12)

− 4(5J)2

β((5J)2 + 8℘2)
3
2

e−2βE6 + (
32℘2

(5J)2 + 8℘2
− 4(5J)2

β((5J)2 + 8℘2)
3
2

)e−βE6e−βE7

+(
16℘2

(5J)2 + 8℘2
+

4(5J)2

β((5J)2 + 8℘2)
3
2

)e−βE7(e−βE1 + e−βE4 + e−βE5 + e−βE8

+e−βE9 + e−βE10 + e−βE11 + e−βE14 + e−βE15 + e−βE16)

+(
16℘2

(5J)2 + 8℘2
− 4℘√

(5J)2 + 8℘2
+

4(5J)2

β((5J)2 + 8℘2)
3
2

)e−βE7(e−βE2 + e−βE13)

+(
16℘2

(5J)2 + 8℘2
+

4℘√
(5J)2 + 8℘2

+
4(5J)2

β((5J)2 + 8℘2)
3
2

)e−βE7(e−βE3 + e−βE12)

+(
32℘2

(5J)2 + 8℘2
+

4(5J)2

β((5J)2 + 8℘2)
3
2

)e−βE7e−βE6 +

4(5J)2

β((5J)2 + 8℘2)
3
2

)e−2βE7
]
. (5.10)

In above expressions −J1 = J2 = J was considered.

The dependence of the magnetic χ(B) and electric χ(℘) susceptibilities on the tem-
perature is shown in Fig. 5.10 and Fig. 5.11.

According to the definition Eq. (5.8) the maximum of the susceptibilities corresponds
to the minimum of the fidelity related to the electric and magnetic fields. Comparing
Fig. 5.10 and Fig. 5.11 with Fig. 5.5 we see a direct correlation between the threshold
temperature of the pair entanglement τ2 and the minimum of the fidelities related to
the electric and magnetic fields. Namely, we see that the maximum of the magnetic
and electric susceptibilities are observed to be in correlation with the corresponding
threshold temperatures of the pair correlations. For larger threshold temperatures of
the pair correlations, maxima of the magnetic and electric susceptibilities are shifted
towards higher temperature. Interestingly in the case of the electric susceptibility,
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Figure 5.10. – Magnetic susceptibility as a function of the temperature for different
values of the electric field ℘ = 0.5(blue solid line), ℘ = 3(black triangle line), ℘ =
5(red cross line). The parameters are: −J1 = J2 = 1, B = 0.25.
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Figure 5.11. – Electric susceptibility as a function of the temperature for different
values of the electric field ℘ = 0.5(blue solid line), ℘ = 3(black triangle line), ℘ =
5(red cross line). The parameters are: −J1 = J2 = 1, B = 0.25.

correlation between threshold temperature of the pair entanglement τ2 and the min-
imum of the fidelity is not only qualitative but quantitative as well. As we see the
maximum of the electric susceptibility for large enough electric field is observed al-
most on the threshold temperatures Tc = 2.1, Tc = 3.1 of the pair entanglement
τ2.

5.1.2. Efficiency of the Otto cycle

Here we study the dependence of the cycle efficiency on the modulation of the elec-
tric field amplitude. For this purpose we consider two different scenarios for adi-
abatic processes. One is quantum adiabatic in which level populations are fixed
PA
n = PD

n , PB
n = PC

n , and the heat absorbed by working substance and re-
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leased read Qin =
16∑
n=1

En(℘)
(
PB
n − PA

n

)
and Qout =

16∑
n=1

En(℘1)
(
PB
n − PA

n

)
, where

PB
n = Z−1(TH , ℘) exp

[
− En(℘)

TH

]
and PA

n = Z−1(TL, ℘1) exp
[
− En(℘1)

TL

]
.

Then the expression for the cycle efficiency reads

η =
Qin −Qout

Qin

. (5.11)

In Fig. 5.12 the dependence of the efficiency on the modulation of the electric field ℘
is presented.
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Figure 5.12. – The efficiency of the quantum adiabatic Otto cycle as a function of the
modulation of the electric field amplitude for the following values of the parameters
−J1 = J2 = 1, B = 0.25, ℘1 = 0.5, TH = 10, TL = 2.

In another scenario quantum adiabatic strokes of the cycle are replaced by thermo-
dynamic adiabatic strokes. The first law of thermodynamics is written as

dU
(
En, T

)
=
∑
n

(
EndPn + PndEn + En

(∂Pn
∂En

)
T=const

dEn

)
, (5.12)

where dU is the change of the total energy of the system U
(
En, T ) = Tr

(
ρ̂Ĥ
)

=
16∑
n=1

EnPn
(
En, T

)
. The first term on the right hand side of Eq. 5.12 i.e. δQ = EndPn,

corresponds to the heat exchange and is related to the change of the level populations
Pn
(
En, T ) occurred due to the change of the temperature for En = const, while second

and third terms correspond to the produced work. If the adiabatic strokes of the cycle
are quantum adiabatic then

(
∂Pn
∂En

)
T=const

= 0 and Eq. 5.12 reduces to the form given
in Eq. 2.27.

The heat absorbed by the working substance Qin and the heat released in the quantum
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isochoric cooling process Qout in the case of the thermodynamic adiabatic cycle are
defined in the following form

Qin =
16∑
n=1

En(℘)
(
Z−1(TH , ℘) exp

[
− En(℘)

TH

]
− Z−1(TL, ℘) exp

[
− En(℘)

TL

])
,

Qout =
16∑
n=1

En(℘1)
(
Z−1(TH , ℘1) exp

[
− En(℘1)

TH

]
− Z−1(TL, ℘1) exp

[
− En(℘1)

TL

])
.

(5.13)

Fig. 5.13 shows the dependence of the quantum Otto cycle efficiency on the modula-
tion of the electric field amplitude ℘.
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Figure 5.13. – The efficiency of the quantum Otto cycle as a function of the mod-
ulation of the electric field amplitude, for the following values of the parameters
−J1 = J2 = 1, B = 0.25, TH = 10, TL = 2.

The saturation of the cycle efficiency with further increasing of the electric field
amplitude is also observed. From the figures Fig. 5.12 and Fig. 5.13 one can see in both
cases the maximal efficiency is reached for certain optimal values of the modulation
of the electric field amplitude. However, the maximal efficiency obtained for the
thermodynamic adiabatic cycle is higher compared to the efficiency corresponding
to the quantum adiabatic case. A reasonably high efficiency around 86 percent can
be reached already for ℘/℘1 ≈ 10. So depending on the values of electric field, the
efficiency can be larger or smaller than the Carnot cycle efficiency ηC = 1 − TL/TH .
The reason for exceeding the Carnot cycle efficiency is of entirely quantum origin,
which can be related to the entanglement of the working substance. To illustrate this
the efficiency of the cycle as a function of the pair correlations is plotted in Fig. 5.14
which proves that the increase of the entanglement in the system results in enhanced
cycle efficiency.
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Figure 5.14. – The efficiency of the quantum Otto cycle as a function of the pair en-
tanglement for the following values of the parameters −J1 = J2 = 1, B = 0.25, ℘1 =
2.5.

5.1.3. Semi-classical limit

In this subsection by using the canonical thermodynamic perturbation theory [121]
the semi-classical limit is investigated. Assuming ℘ as a small parameter we can
consider the electric field part of the total Hamiltonian as a perturbed term

Ĥ = Ĥ0 + V̂ ,

Ĥ0 = −
N∑
i=1

~Si.~Si+1 +
N∑
i=1

~Si.~Si+2 −B
N∑
i=1

Szi ,

V̂ = ℘
∑
i

(~Si × ~Si+1)
z, (5.14)

where −J1 = J2 = J , B → γe~B/J, ℘→ gME|−→℘ |/J) are concerned. The eigenvalues
E0
n and eigenfunctions |Φn〉 of the Hamiltonian Ĥ0 are

|Φ1〉 = | ↑↑↑↑〉, |Φ2〉 =
1√
2

(−| ↑↓↑↑〉+ | ↑↑↑↓〉), |Φ3〉 =
1√
2

(−| ↓↑↑↑〉+ | ↑↑↓↑〉),

|Φ4〉 =
1

2
(| ↓↑↑↑〉 − | ↑↓↑↑〉+ | ↑↑↓↑〉 − | ↑↑↑↓〉),

|Φ5〉 =
1

2
(| ↓↑↑↑〉+ | ↑↓↑↑〉+ | ↑↑↓↑〉+ | ↑↑↑↓〉),

|Φ6〉 =
1√
2

(−| ↓↑↓↑〉+ | ↑↓↑↓〉), |Φ7〉 =
1

2
(| ↓↓↑↑〉 − | ↓↑↑↓〉 − | ↑↓↓↑〉+ | ↑↑↓↓〉),

|Φ8〉 =
1√
6

(
| ↓↓↑↑〉+ | ↓↑↓↑〉+ | ↓↑↑↓〉+ | ↑↓↓↑〉+ | ↑↓↑↓〉+ | ↑↑↓↓〉

)
,

|Φ9〉 =
1√
12

(
| ↓↓↑↑〉 − 2| ↓↑↓↑〉+ | ↓↑↑↓〉+ | ↑↓↓↑〉 − 2| ↑↓↑↓〉+ | ↑↑↓↓〉

)
,
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|Φ10〉 =
1√
2

(| ↓↓↑↑〉 − | ↑↑↓↓〉), |Φ11〉 =
1√
2

(| ↓↑↑↓〉 − | ↑↓↓↑〉),

|Φ12〉 =
1√
2

(−| ↓↓↓↑〉+ | ↓↑↓↓〉), |Φ13〉 =
1√
2

(−| ↓↓↑↓〉+ | ↑↓↓↓〉),

|Φ14〉 =
1

2
(| ↓↓↓↑〉+ | ↓↓↑↓〉+ | ↓↑↓↓〉+ | ↑↓↓↓〉),

|Φ15〉 =
1

2
(−| ↓↓↓↑〉+ | ↓↓↑↓〉 − | ↓↑↓↓〉+ | ↑↓↓↓〉, |Φ16〉 = | ↓↓↓↓〉,

E0
1 = −2B, E0

2 = J −B, E0
3 = J −B,

E0
4 = −2J −B, E0

5 = −B, E0
6 = −2J,

E0
7 = 3J, E0

8 = 0, E0
9 = −3J, E0

10 = J,

E0
11 = J, E0

12 = J +B, E0
13 = J +B,

E0
14 = B, E0

15 = −2J +B, E0
16 = 2B.

(5.15)

Taking the derivative of the normalization condition
∑
n

exp
[F − En

T

]
= 1 where

F = −T ln
(∑

n

exp
[
− En

T

])
is the free energy of the system we obtain

∆F =
(∂F
∂T

)
℘
δT +

〈∂Ĥ
∂℘

〉
δ℘,

S = −
(∂F
∂T

)
℘
. (5.16)

The entropy of the system is defined by the partial derivative of the free energy with
respect to the temperature at constant values of the electric field. This means that
the dependence of the entropy on the electric field is parametric. If the temperature
is constant the entropy is also constant.

Utilizing canonical thermodynamic perturbation theory in the semi-classical high
temperature limit E0

n − E0
m < T results

F (T, ℘) = F0(T, 0) +
〈
V (℘)

〉
− 1

2T
{
∑
m6=n

〈
|Vnm(℘)|2

〉
+
〈
(V (℘)−

〈
V (℘)

〉
)2
〉
},

(5.17)

where
〈
Vnn(℘)

〉
=
∑
n

PnVnn(℘) is the mean value of the matrix element of the

perturbation V̂ evaluated in the basis of the unperturbed Hamiltonian Ĥ0 and〈
|Vnm(℘)|2

〉
=
∑
n

Pn|Vnm(℘)|2 ,
〈
(V (℘) −

〈
V (℘)

〉
)2
〉

=
∑
n

Pn
(
Vnn −

∑
k

PkVkk
)2

.

Level populations are described in terms of the Gibbs distribution function Pn. After
some straightforward calculations based on the Eq. 5.17 we obtain
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F (T, ℘) = −T ln(
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And for the entropy of the system we get
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. (5.19)

The entropy as a function of the temperature for different values of the parameters
is plotted in Fig. 5.15
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Figure 5.15. – Contour plot of entropy as a function of the modulation of the electric
field amplitude and the temperature.
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As is clear from Fig. 5.15 the maximum of the entropy is observed for small values
of the electric field and in the high temperature limit. It’s worthy to mention that
Eq. 5.19 is obtained via a thermodynamic perturbation theory and negative values
of the entropy correspond to the values of the parameters beyond the range where
perturbation theory is viable.
Taking into account Eq. 5.19 the semi-classical efficiency in terms of the electric field
can be expressed as

ηsc = 1−

∫ TH

TL

T
∂S(T, ℘)

∂T
dT∫ TH

TL

T
∂S(T, ℘1)

∂T
dT

. (5.20)

The semi-classical efficiency Eq. 5.20 as a function of the electric field ℘ and the
temperature difference between the hot and cold baths ∆T = TH − TL for TL = 30
are presented in Fig. 5.16.
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Figure 5.16. – The semi-classical efficiency ηsc as a function of the electric field ℘
and temperature difference between hot and cold baths ∆T = TH − TL for TL = 30,
℘1 = 0.5.

As we see semi-classical efficiency is more sensitive to the values of the electric field,
rather than the temperature difference ∆T .
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5.2. Quantum size effects

In this section we consider the role of the system size. First for the spin chain of
N = 8, the ratio between two- and one-tangle is investigated. See Fig. 5.17.
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Figure 5.17. – Ratio between two- and one-tangle as a function of the external
electric field for the system of 8 spins and the following values of the parameters
−J1 = J2 = 1, B = 0.25, T = 1.9.

Comparing Fig. 5.17 with Fig. 5.8 shows that with increasing the size of the working
substance, the ratio between two- and one-tangle τ2/τ1 becomes smaller indicating
that the many-body entanglement τ1 is increasing with the size of the system N faster
than the pair correlations τ2.

The magnetic and electric susceptibilities are also presented in Fig. 5.18 and Fig. 5.19.
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Figure 5.18. – Magnetic susceptibility as a function of the temperature for the system
of 8 spins and different values of the electric field ℘ = 0.5(blue solid line), ℘ = 3(black
triangle line), ℘ = 5(red cross line). The parameters are: −J1 = J2 = 1, B = 0.25.
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Figure 5.19. – Electric susceptibility as a function of the temperature for the system of
8 spins and different values of the electric field ℘ = 0.5(blue solid line), ℘ = 3(black
triangle line), ℘ = 5(red cross line). The parameters are: −J1 = J2 = 1, B = 0.25.

Comparing these two figures with Fig. 5.10 and Fig. 5.11 it is clear that the heights
of the peaks of the electric and magnetic susceptibilities increase with the system
size and shift towards lower temperature regime for N = 8 case with compared to
N = 4 case. A similar peak in the magnetic susceptibility at finite temperatures was
also observed in [122] for zero fields and N = 24 which interpreted as resulting of a
competition between antiferromagnetic and ferromagnetic correlations in the system.

Finally we investigate the scaling of the Otto cycle efficiency with the size of the
working substance for different values of the electric field. See Fig. 5.20.
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Figure 5.20. – The efficiency of the quantum Otto cycle as a function of the system
size N for three different values of the electric field. The other parameters are
−J1 = J2 = 1, B = 0.25, TH = 10, TL = 2.
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A different behavior is found for a smaller size of the working substance in comparison
to a large system size case. We find a sudden increase in the efficiency for N = 3.
For N > 4, no significant variation in the efficiency is observed when increasing the
system size N . Therefore we see the saturation of the efficiency.
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5.3. Summary

The quantum Otto heat engine operating with the working substance of one-
dimensional frustrated ferromagnetic spin-1/2 chain has been studied. The presence
of the finite spin chirality in the working substance allows to drive a cycle by the
external electric field. A direct connection between chirality, entanglement and the
efficiency of the engine is observed. We found the electric field dependent threshold
temperature above which the pair correlations in the system as quantified by thermal
entanglement decay. These threshold temperatures scale with the electric field and
become higher if the amplitude of the electric field is increased. Opposite to the pair
correlations the collective many body thermal entanglement which can be generated
by arbitrary small electric field, is extremely robust to the field and survives even in
the high temperature limit. We also identified a direct correlation between thresh-
old temperature of pair entanglement, with the spin chirality and the minimum of
the fidelities related to the electric and magnetic fields. The efficiency of the study-
ing quantum Otto cycle shows a saturation plateau with increasing the electric field
amplitude.



6. Superadiabatic quantum Otto heat
engine

In this chapter, we present the recent technique [123–125] named as shortcuts to
quantum adiabaticity, to obtain a finite output power of the quantum Otto heat
engine. In general this technique quenches the effect of inter-level transitions which
are of purely quantum origin. Such transitions naturally accompany the fast driving
process. Nevertheless shortcut to quantum adiabaticity eliminates the effect of those
inter-level transitions. After using shortcuts to quantum adiabaticity, a quantum heat
engine with non-zero output power is realized.

6.1. Introducing the technique

Here we will follow Berry’s transitionless driving [125] which is equivalent to the
counterdiabatic formulation of Demirplak and Rice [123, 124]. Consider an arbitrary
time dependent Hamiltonian Ĥ(t). In the adiabatic approximation a general state
|Ψn(t)〉 driven by Ĥ(t) is

|Ψn(t)〉 = exp

[
− i

~

∫ t

0

dt′En(t′)−
∫ t

0

dt′〈Φn(t′)|∂t′Φn(t′)〉
]
|Φn(t)〉. (6.1)

Here |Φn(t)〉 and En(t) are the instantaneous states and energies of the Hamiltonian
Ĥ(t). The idea of the reverse engineering approach is to look for an auxiliary (counter-
diabatic) Hamiltonian ĤCD(t) for which the above states are the exact evolving states
i.e.

i~∂t|Ψn(t)〉 = ĤCD(t)|Ψn(t)〉. (6.2)

We know that any time-dependent unitary operator Û(t) is the solution of the equa-
tion

i~∂tÛ(t) = ĤCD(t)Û(t). (6.3)

Therefore

ĤCD(t) = i~
(
∂tÛ(t)

)
Û †(t). (6.4)
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With the aid of the unitary time-evolution operator

Û(t) =
∑
n

exp

[
− i

~

∫ t

0

dt′E(t′)

−
∫ t

0

dt′〈Φn(t′)|∂t′Φn(t′)〉
]
|Φn(t)〉〈Φn(0)|, (6.5)

the auxiliary counter-diabatic (CD) Hamiltonian ĤCD(t) in Eq. (6.4) is obtained

ĤCD(t) = Ĥ(t) + Ĥ1(t), (6.6)

where

Ĥ1(t) = i~
∑
m 6=n

|Φm〉〈Φm|∂tĤ(t)|Φn〉〈Φn|
En − Em

. (6.7)

In this way, even for a fast driving, transitions between the eigenstates |Φn(t)〉 are
prevented. Adopting initial conditions ĤCD(0) = Ĥ(0), ĤCD(τ) = Ĥ(τ), yields fast
adiabatic dynamics in the time interval t ∈ [0, τ ].

6.2. Driving the cycle

In order to drive the cycle, we consider time dependent electric field in Eq. (3.1) and
choose a particular type of it as

℘(t) = ε

(
t3

3τ
− t2

2

)
+ ℘0. (6.8)

As it is described in Chapter 5 the cycle consists of two quantum isochoric and
two adiabatic strokes. The quantum isochoric strokes correspond to heat exchange
between the working substance and the cold and the hot heat baths. During these
strokes the level populations are altered. Changing the amplitude of the applied
external electric field modifies the energy spectrum of the system and the working
substance produces work. The working parameter ℘(t) during the adiabatic strokes
varies from ℘0 −→ ℘1 (stroke B → C) and ℘1 −→ ℘0 (stroke D → A). See Fig. 5.1.
It is evident that in this case the requirement for the shortcuts to adiabaticity i.e.

ĤCD(0) = Ĥ(0), ĤCD(τ) = Ĥ(τ),

is fulfilled. Therefore, we can drive the cycle quite fast. Using Eq. (6.7) we obtain

Ĥ1(t) = i~A(t)
(
|Φ6(t)〉〈Φ7(t)| − |Φ7(t)〉〈Φ6(t)|

)
, (6.9)
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where A(t) = 4℘̇(t)(λ+µ)αγ
℘(t)(λ−µ) . In fact the time dependence in the model appears through

the external electric field ℘(t) and its time derivative ℘̇(t). The explicit form of the
eigenfunctions and eigenvalues of the Hamiltonian HCD are presented in the appendix.
In the following we mostly focus on the output power of the cycle and the irreversible
work.

6.3. The output power and irreversible work

For a finite time thermodynamic process, the output power of the quantum Otto
cycle can be written as [126–129]

< =
−
(
〈W2〉ad + 〈W4〉ad

)
τ1(TH) + τ2 + τ3(TL) + τ4

. (6.10)

τ1(TH), τ3(TL) are the relaxation times of the working substance in contact with
the hot and the cold thermal baths, τ2 and τ4 correspond to the duration of the
adiabatic strokes as well 〈W2〉ad and 〈W4〉ad correspond to the work produced during
the quantum adiabatic strokes. The expression for the total quantum mean work
reads [130, 131]

〈
W
〉

=
∑
n,m

(
En(t)− Em(0)

)
Pmn(t)P (0)

m (β), (6.11)

where
Pmn(t) = |〈Φn(t)|Û(t)|Φm(0)〉|2,

is the transition probability between the eigenstates of the Hamiltonian Ĥ(t), and

P
(0)
m (β) describes the level populations in the equilibrium at the temperature β. After

the counter-diabatic driving the cycle is reversible and at the end of the stroke the
transition probability simplifies to Pmn(τ) = δmn. Therefore, the expressions of the
adiabatic work for the cycle strokes are

〈W2〉ad =
∑
n

[
En(τ)− En(0)

]
P (1)
n (βH),

〈W4〉ad =
∑
n

[
En(0)− En(τ)

]
P (3)
n (βL). (6.12)

Here P
(1)
n (βH) = e−βHEn(0)∑

n e
−βHEn(0) , P

(3)
n (βL) = e−βLEn(τ)∑

n e
−βLEn(τ) are the level populations in

equilibrium at the temperatures βH = 1/TH , βL = 1/TL respectively. To quantify the

mean square fluctuations ∆Wad =
[
〈W 2〉ad − 〈W 〉2ad

] 1
2 for the work W = W2 + W4,

we utilize the following ansatz

〈W 2〉ad = 〈W 2
2 〉ad + 〈W 2

4 〉ad + 2〈W2〉ad〈W4〉ad,
〈W 〉2ad = 〈W2〉2ad + 〈W4〉2ad + 2〈W2〉ad〈W4〉ad. (6.13)
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The mean values of the work are defined as

〈W 2
2,(4)〉ad =

∑
n

[
En(τ)− En(0)

]2
P (1),(3)
n (βH , βL),

〈W2,(4)〉2ad =

(∑
n

[
En(0)− En(τ)

]
P (1),(3)
n (βH , βL)

)2

. (6.14)

In Fig. 6.1 the work mean square fluctuations and the output power are plotted. As
is clear from the figure the work mean square fluctuations increase with the stroke
duration τ . The modulation depth of the driving parameter ℘(t, τ) = ε

(
t3/3τ −

t2/2
)

+ d0, ℘̇(0, τ) = ℘̇(τ, τ) enhances the work mean square fluctuations for longer
duration of the adiabatic strokes τ .Enhancement of the cycle duration has an adverse
effect on the output power. These two factors compete resulting in the optimal time
length of the adiabatic strokes τop = 0.35[ps]. We also observe that a strong magnetic
field is counterproductive for the output power.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

τ

∆ 
W

0 1 2 3 4 5

0.05

0.1

0.15

0.2

τ

O
ut

pu
t p

ow
er

 

 

B=0
B=1
B=2

Figure 6.1. – Left panel: The work mean square fluctuations for B = 0.25. Right
panel: The output power for different magnetic fields. The other considered param-
eters are J1 = −1, J2 = 1, ℘0 = 5, ε = 1, TH = 15, TL = 2.

Irreversibility of classical thermodynamical processes are quantified in terms of Clau-
sius inequality

∆S = Sre + Sirr, (6.15)

where Sre = βQ, is the equilibrium entropy, Q is the transferred heat and β = 1/T is
the inverse temperature. For irreversible processes Sirr > 0. In quantum thermody-
namics the situation is more delicate. E.g., the concept of work for mesoscopic systems
has been revisited recently [132, 133]. The work performed on a finite quantum sys-
tem is not an observable but a randomly distributed quantity [131, 134]. Any sudden
abrupt change, fast driving or a quench, drags the system into a non-equilibrium
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state. Hence, recipes of the equilibrium thermodynamics need to be re-inspected. A
fast transformation leads to the “parasitic” irreversible work ∆Sirr = β

〈
Wirr

〉
which

amounts to the difference between the total work and the change of the free energy〈
Wirr

〉
=
〈
W
〉
−∆F . We use the quantum Kullback-Leibler divergence

S
(
%A ‖ %B

)
= Tr

(
%A ln %A − %A ln %B

)
,

and rewrite the expression for the irreversible work in the following form [131]

〈
Wirr

〉
=
〈
W
〉
−∆F =

1

β
S
(
ρt‖ρeqt

)
. (6.16)

Here

S
(
ρt‖ρeqt

)
= −

∑
n,k

P 0
nP

t
kn lnP t

k +
∑
n

P 0
n lnP 0

n ,

∆F = − 1

β
ln

( ∑
n exp

[
− βEn(t)

]∑
m exp

[
− βEm(0)

]). (6.17)

P 0
n = exp[−βEn]/

∑
n exp[−βEn], P t

k = exp[−βECD
k ]/

∑
k exp[−βECD

k ] correspond to

the level populations and P t
kn = |〈Ψn(t)|Û(t)|Φk(0)〉|2 corresponds to the transition

amplitudes.
In Fig. 6.2 we see a non-monotonic behavior of the irreversible work. For larger times
the system tends to equilibrium.
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Wirr
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for the values of parameters J1 = −1, J2 = 1, B = 0.25, ℘0 =

5, ε = 1, τ = 4, TH = 15, TL = 2.
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6.4. Summary

Shortcuts to adiabaticity are employed to achieve an efficient, finite time quantum
thermodynamic cycle. We determined the work mean square fluctuations, the irre-
versible work, and the output power of the cycle. We observed that the work mean
square fluctuations are increased with the duration of the adiabatic strokes while the
irreversible work and the output power of the cycle show a non-monotonic behav-
ior. In particular the irreversible work vanishes at the end of the quantum adiabatic
strokes and confirms that the cycle is reversible.



7. Conclusion and Outlook

The present thesis has focused on a theoretical investigation of spin-spiral multifer-
roics. Such multiferroic systems are under intensive study both experimentally and
theoretically. In particular, we analyzed the one-dimensional frustrated ferromagnetic
spin-1/2 chain in which the appearance of the chirality enables us to drive the system
by external electric field. Let us summarize the main results obtained in this work.

• In chapter three we saw that the electric field leads to the formation of the
chiral spin structure in the multiferroic spin chain and simultaneously generates
entanglement characterized by many spin correlations rather than local two
spin concurrence. In the case of nonzero expectation values of the chirality
we evaluated the fidelity susceptibility and proved that the system is sensitive
to tiny changes of the amplitude of the electric field while a slight change of
the magnetic field has no significant impact on the system. In addition, we
have shown that quantum state transfer fidelity also can be controlled via the
applied external electric field. By proper tuning of the external electric driving
field one can transmit quantum state through the multiferroic spin chain with
higher fidelity. These findings endorse the suitability of electric field controlled
quantum information processing in spin-spiral multiferroics.

• We studied the influence of short electric field pulses on a multiferroic spin chain
in chapter four. Chirality as a function of time was calculated analytically
for four spins case and numerically for higher spins. For the one-excitation
initial state chirality is independent of time, but for the higher n-excitations
initial state the chirality oscillates with the time. A qualitative measure of
one-tangle, two-tangle and von Neumann entropy have also been calculated
analytically for four spins case and numerically for the higher spins case. For a
given excitation number basis the two-tangle decays with increasing the number
of spins in the chain, however multi-party entanglement sharing is significant.
We also noticed a signature of dynamical phase transitions from commensurate
to incommensurate chiral phase in the system.

• In chapter five we considered a quantum Otto heat engine operating with the
working substance of multiferroic spin chain. It has been shown that due to the
existence of nonzero spin chirality in the working substance which is coupled
to the induced electric polarization, the efficiency of the cycle is sensitive to
the applied external electric field. We analyzed the dependence of the cycle
efficiency on the system size. Particularly the efficiency reaches extremely high
values (slightly below 80%) for small working substance consisting of N = 3
spins. Increasing size of the working substance yields a saturation plateau of
the efficiency of the quantum Otto cycle. We also observed a robustness of
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the many body collective entanglement versus the temperature. Many body
entanglement is quantified in terms of the one-tangle τ1 and is always larger
than the total pair concurrence quantified by the two-tangle τ2 indicating that
a major amount of the entanglement of multiferroic working substance is stored
in long range multi-spin correlations. In contrast to the one-tangle, the pair
correlation is sensitive to the increase of the temperature. In particular, we
identified the existence of the threshold temperature for the two-tangle τ2. The
stronger electric field amplitude, the threshold temperature is higher. The same
behavior is observed for the chirality as well. Outstandingly with the increase
of the temperature, the thermal chirality undergoes dramatic changes and for
the threshold temperature TC of the two-tangle τ2, thermal chirality, reaches its
minima. Thus can be concluded that the thermal chirality, is related to the pair
correlations in the system rather than to the nonlocal entanglement. The de-
pendence of the magnetic and electric susceptibilities on the temperature is also
studied. Maximum of the susceptibilities corresponds to the minimum of the
fidelity related to the electric and magnetic fields. We saw a direct correlation
between the threshold temperature of the pair entanglement τ2 and the mini-
mum of the fidelities related to the electric and magnetic fields. The maximum
of the electric and magnetic susceptibilities are observed to be in correlation
with the corresponding threshold temperatures of the pair correlations. For
larger threshold temperatures of the pair correlations maximum of the electric
and magnetic susceptibilities are shifted towards higher temperature. Interest-
ingly, in the case of the electric susceptibility, correlation between the threshold
temperature of pair entanglement τ2 and the minimum of the fidelity is not only
qualitative but quantitative as well. The maximum of the electric susceptibility
is observed almost on the threshold temperatures Tc = 2.1, Tc = 3.1 of the pair
entanglement τ2.

• We implemented shortcuts to adiabaticity in chapter 6 and realized transition-
less fast quantum adiabatic dynamics in order to construct a finite time quantum
heat engine with a reasonable output power. We studied an exact solvable model
and obtained analytical expressions for the counterdiabatic Hamiltonian. Using
the analytical results the mean square fluctuation for the work, the irreversible
work and output power of the cycle are evaluated. We observed that the work
mean square fluctuations is increasing with the duration of the adiabatic strokes.
While, the irreversible work shows non-monotonic behavior. At the end of
adiabatic stroke the irreversible work becomes zero, confirming that the cycle is
reversible. The output power of the cycle also shows a non-monotonic behavior.
This theoretical finding evidences the existence of an inherent maximal output
power.

A natural extension of this work would be to expand the quantum Otto heat engine
to Diesel- or Stirling-type quantum heat engines and investigate the efficiency of the
cycle as well as the output power.



A. Appendix

• Eigen functions of the Hamiltonian ĤCD(t)
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| ↓↓↑↑〉 − 2| ↓↑↓↑〉+ | ↓↑↑↓〉+ | ↑↓↓↑〉 − 2| ↑↓↑↓〉+ | ↑↑↓↓〉

)
,

|Ψ10〉 =
−1√

2
| ↓↓↑↑〉+

1√
2
| ↑↑↓↓〉,

|Ψ11〉 =
−1√

2
| ↓↑↑↓〉+

1√
2
| ↑↓↓↑〉,

|Ψ12〉 =
i

2
| ↓↓↓↑〉+

−1

2
| ↓↓↑↓〉+

−i
2
| ↓↑↓↓〉+

1

2
| ↑↓↓↓〉,

|Ψ13〉 =
−i
2
| ↓↓↓↑〉+

−1

2
| ↓↓↑↓〉+

i

2
| ↓↑↓↓〉+

1

2
| ↑↓↓↓〉,

|Ψ14〉 =
1

2
| ↓↓↓↑〉+

1

2
| ↓↓↑↓〉+

1

2
| ↓↑↓↓〉+

1

2
| ↑↓↓↓〉,

|Ψ15〉 =
1

2
| ↓↓↓↑〉+

−1

2
| ↓↓↑↓〉+

1

2
| ↓↑↓↓〉+

−1

2
| ↑↓↓↓〉,

|Ψ16〉 = | ↓↓↓↓〉.
(A.1)
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Here

C1 =

{
1 +

(−J1 − 2J2 +
√

4A2 + J2
1 + 16J2

2 − 8J1J2 + 8℘2

2A

)2}−1/2
,

C2 =

{
1 +

(−J1 − 2J2 −
√

4A2 + J2
1 + 16J2

2 − 8J1J2 + 8℘2

2A

)2}−1/2
,

A =
4℘̇(λ+ µ)αγ

℘(λ− µ)
.

(A.2)

• Eigenvalues of the Hamiltonian ĤCD(t)

Ξ1 = J1 + J2 − 2B,Ξ2 = −J2 −B − ℘,Ξ3 = −J2 −B + ℘,

Ξ4 = −J1 + J2 −B,Ξ5 = J1 + J2 −B,

Ξ6 =
−J1 − 2J2 +

√
4A2 + J2

1 + 16J2
2 − 8J1J2 + 8℘2

2
,

Ξ7 =
−J1 − 2J2 −

√
4A2 + J2

1 + 16J2
2 − 8J1J2 + 8℘2

2
,

Ξ8 = J1 + J2,Ξ9 = −2J1 + J2,Ξ10 = −J2,Ξ11 = −J2,
Ξ12 = −J2 +B + ℘,Ξ13 = −J2 +B − ℘,
Ξ14 = J1 + J2 +B,Ξ15 = −J1 + J2 +B,Ξ16 = J1 + J2 + 2B.

(A.3)

Since the electric field is time dependent i.e. ℘(t), All parameters α, γ, µ, λ, C1, C2, A
are also time dependent.
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[75] L. Wang, Y.H. Liu, J. Imrǐska, P. N. Ma, and M. Troyer. Fidelity Susceptibil-
ity Made Simple: A Unified Quantum Monte Carlo Approach. Phys. Rev. X,
5:031007, 2015.

[76] M. A. Nilesen and I. L. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cambridge, England, 2000.

[77] P. Zanardi, H. T. Quan, X. Wang, and C. P. Sun. Mixed-state fidelity and
quantum criticality at finite temperature. Phys. Rev. A, 75:032109, 2007.
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