In silico characterisation of AtPARP1 and virtual screening for AtPARP inhibitors to increase resistance to abiotic stress

Dissertation

zur Erlangung des
Doktorgrades der Naturwissenschaften (Dr. rer. nat.)
der

Naturwissenschaftlichen Fakultät II - Chemie, Physik und Mathematik
der Martin-Luther-Universität
Halle-Wittenberg
vorgelegt von
Herr Diplom-Bioinformatiker

Peter Paul Heym

Die vorliegende Arbeit wurde im Zeitraum zwischen Februar 2009 und Dezember 2013 am Leibniz-Institut für Pflanzenbiochemie in Halle (Saale), in der Abteilung Natur- und Wirkstoffchemie unter der Betreuung von Prof. Dr. Ludger A. Wessjohann angefertigt.

1. Gutachter: Professor Dr. Ludger A. Wessjohann
2. Gutachter: Privatdozent Dr. Thomas E. Exner

Datum der Verteidigung: 12.12.2016

Edited by

This work was edited by:
Prof. Dr. L. A. Wessjohann (supervisor)
PD Dr. W. Brandt (group leader)
"In God we trust; all others must bring data."
William Edwards Deming (14.10.1900-20.12.1993)

Danksagung

Mein besonderer Dank gilt Professor Dr. L. A. Wessjohann für das in mich gesetzte Vertrauen, sowie die Diskussionsbereitschaft und das Einnehmen neuer Standpunkte bei scheinbar schwer-lösbaren Problemen. Für die Übernahme des Zweitgutachtens möchte ich mich bei Privatdozent Dr. Thomas E. Exner in aller Form bedanken.

Für die Übernahme des Mentoriats, als auch für fruchtbare Diskussionen zwischen den einzelnen Projektgruppen möchte ich mich bei Professor Dr. E. Peiter bedanken.

Bei PD Dr. Wolfgang Brandt möchte ich mich für seine ständige Diskussionsbereitschaft und seine Hilfe, nicht nur in wissenschaftlichen Fragen, bedanken. Ich danke ihm, wie auch Professor Wessjohann dafür, dass beide es mir ermöglicht haben, während meiner Promotion Beruf und Familie unter einen Hut zu bringen. Nicht zuletzt danke ich PD Dr. Brandt auch für seine Geduld, die es mir erlaubte, dieser Forschungsarbeit ihren eigenen Charakter zu verleihen.

Für die stetige Zusammenarbeit im Verbundprojekt möchte ich mich auch bei Dr. Torsten Geißler, Dagmar Rissel, Wiebke Zschiesche, Dr. Heike Hahn, Professor Dr. K. Humbeck sowie Professor Dr. H.-J. Niclas bedanken.

Ganz besonders möchte ich mich bei Dr. Silke Pienkny bedanken, der die Proteinisolierung und Proteinreinigung gelang. Erst durch Ihre molekularbiologischen Arbeiten war es möglich, computerbasierte Ergebnisse zusammen mit in vitro Ergebnissen zu untersuchen. In diesem Zusammenhang danke ich auch Dr. Torsten Geißler, der sowohl den EnzymAssay weiterführte, als auch den Lemna-Assay etablierte. Auch erst durch seine Arbeit lassen sich in dieser Arbeit vorgestellte Ergebnisse auf molekularbiologische Daten stützen.

Bei Dr. Robert Klein und Dr. Diana Schulze, deren abschließende Arbeiten ich zu Beginn meiner Promotion miterleben durfte, möchte ich danken für erste Einblicke, sowohl in die Promotion selbst, als auch den Stellenwert der Zeit des Zusammenschreibens. Bei meinen Kollegen Thomas Herberg und Eva Schulze möchte ich mich bedanken für die schöne Zeit im gemeinsamen Büro, in der es immer viel zu lachen gab, auch wenn es einem manchmal schwer fiel.

Weiterhin möchte ich mich bei meinen Kollegen Dr. Frank Broda, Dr. Susanne Aust, Juliane Fischer, Felix Rausch, Daniela Eisenschmidt, Anne Finck, Jennifer Szczesny, Richard Bartelt, Jördis-Ann Schüler, Michael Dressel und Susann Gruner bedanken für die schöne Zeit im Aquarium, für den tollen Zusammenhalt innerhalb der Gruppe, und den regen Wissensaustausch, durch den es immer mehr Lösungen als Probleme gab.

Bei Robert Berger möchte ich mich sowohl für seine Bereitschaft, neues zu entdecken, als auch die Wiederaufnahme des Lemna-Assays, bedanken, was jeweils dazu geführt hat, dass ich teilweise mehr Zeit im Labor, als am Computer verbrachte.

Weiterhin möchte ich mich bei allen Kollegen der Abteilung Natur- und Wirkstoffchemie des IPB Halle bedanken, in der jeder einzelne Mitarbeiter einen kleinen Teil dazu beigetragen hat, schöne und persönliche Erinnerungen an die Zeit im IPB mitzunehmen.

Auf Seiten des IPB möchte ich mich bei Frau Ines Stein für die unkomplizierte und freundliche Art und Weise bedanken, mit der sie organisatorische Angelegenheiten zu meistern vermag. Bei Jana Bähr und Heidrun Schweizer möchte ich mich für die problemlose Kommunikation mit dem AIP bedanken.

Ganz besonders möchte ich mich bei den Stickstoffwerken Piesteritz und dem Land Sachsen-Anhalt für die Finanzierung, als auch für den Erwerb der Testsubstanzen bedanken. Ohne diese wäre ein erheblicher Teil der Arbeit nicht möglich gewesen. Ganz speziell möchte ich mich in diesem Zusammenhang bei Prof. H.-J. Niclas bedanken, welcher mir zusammen mit PD Dr. Brandt und Prof. Wessjohann mehrfach die Chance ermöglichte, an hochklassigen Konferenzen teilzunehmen, die mich sowohl wissenschaftlich, in meiner beruflichen Laufbahn als auch im privaten Leben maßgeblich geprägt haben.

Bei meinen Eltern und „Schwiegereltern" und meiner Familie möchte ich mich für die Unterstützung in allen Belangen bedanken.

Für die nahezu endlose Geduld, Ausdauer und Motivation, mich bei der Fertigstellung der Arbeit zu unterstützen, möchte ich mich bei meiner Partnerin, Andrea Brock, bedanken.

Bei meinen beiden Kindern möchte ich mich für ihre Art, mir zu zeigen, welche Sachen im Leben Priorität haben, bedanken. Bei beiden, als auch bei meiner Partnerin, möchte ich mich für das im Auge behalten des großen Zieles bedanken.

Abstract

In this work, a virtual screening (VS) workflow was developed for identification of compounds that lead to an increased drought stress resistance (DSR). The only verified targets that link DSR so far belong to the family of Poly (ADP-ribose) polymerase (PARP) enzymes. The inhibition of plant PARP is supposed to delay the breakdown of energy homeostasis during abiotic stress conditions. Therefore, a VS strategy to effectively screen commercial databases for plant PARP inhibitors was established. Inhibitory effects of VSproposed compounds were tested on purified Arabidopsis thaliana L. PARP1 protein (AtPARP1) in vitro and on Lolium perenne plants as monocotyledons to verify the hypothesis.

The developed VS strategy was based on human PARP1 (HsPARP1) which is a key target in (e.g. ovarian and breast) cancer therapy. For HsPARP1, several crystal structures and a wide knowledge of inhibitors are available. Based on HsPARP1, homology models of AtPARP1 and AtPARP2 were derived. Subsequently, the knowledge about known human PARP1 inhibitors and decoys was applied to statistical methods including receiveroperating characteristics and statistical power analysis. Extensive docking studies with statistical methods were conducted to define a docking score threshold to effectively discriminate potential inhibitors from decoy structures. The threshold was subsequently adjusted for AtPARP1, again using statistical hypotheses and methods of inference. These methods allowed for prediction of the performance of the VS route on a commercial database which was screened for AtPARP inhibitors. The number of resulting structures was reduced by applying the docking score threshold. Eventually, 121 compounds were selected and tested in vitro on $A t$ PARP1. Among those, 47 compounds were found to be inhibiting $A t$ PARP1, corresponding to a hit rate of about 39%. Out of these 47 compounds, 33 were predicted to be inhibiting according to the docking score threshold.

Furthermore, for 52 of the tested compounds, the IC_{50} values were determined. Among those, 6 compounds showed an IC_{50} below $1 \mu \mathrm{M}, 26$ compounds exhibited an IC_{50} of less than $10 \mu \mathrm{M}$. Among 22 compounds which were tested in planta on Lolium perenne plants, 9 showed a positive effect on dry mass production under drought stress.

Apart from the VS for $A t$ PARP1 inhibitors the catalytic domains of $A t$ PARP1 and AtPARP2 were characterised in silico. The characterisation comprised analysis of protein
quality as a result of the homology modelling process. Protein stability was investigated by comparing molecular dynamics (MD) simulation data with experimentally determined data from other PARP orthologues. Multiple-step homology modelling together with MD simulation were used to investigate the natural substrate binding of $A t$ PARP1. Based on the in silico characterisation of AtPARP the VS could be performed. Finally, experimentally determined IC_{50} values for VS-proposed $A t$ PARP1 inhibitors and molecular discriptors were used to derive binary quantitative structure-activity relationships (binary QSAR).

The research shows that PARP1 is involved in the regulation of abiotic stress response in Arabidopsis thaliana. I developed a virtual screening route for AtPARP1 based on the knowledge about human PARP by applying statistical methods. Although docking protocols are thought to be unable to predict the activity of compounds from the docking score, I showed that at least an effective discrimination of inhibitors from non-binders can be possible, if statistical assumptions are taken into account.

Zusammenfassung

In dieser Arbeit wurde eine virtuele Screening (VS) Prozedur entwickelt, die der Identifizierung von Verbindungen dient, welche die Toleranz gegenüber Trockenstress bei Pflanzen erhöhen sollte. Die bislang einzig verifizierten Pflanzenproteine, die in Verbindung mit einer erhöhten Trockenstresstoleranz stehen, gehören allesamt der Familie der Poly-(ADP-ribose)-polymerasen (PARP) an. Dabei wird vermutet, dass eine Inhibierung von PARP Proteinen während abiotischer Stressbedingungen zu einem verzögerten Zusammenbruch der Energiehomöostase der Pflanze führt. Ziel dieser Arbeit war es daher, eine VS trategie zu entwickelm, welche es erlaubt, kommerzielle Datenbanken effektiv nach potentiellen pflanzlichen PARP Inhibitoren zu durchsuchen. Effekte, die durch potentielle PARP Inhibierung hervorgerufen werden könnten, wurden an gereinigtem Arabidopsis thaliana L. PARP1 protein (AtPARP1) in vitro sowie an Lolium perenne Pflanzen als Vertreter der Monokotyledonen getestet, um die Hypothesen zu testen.

Die hier entwickelte VS Strategie nutzt das Wissen über humane PARP1 (HsPARP1) Inhibitoren, da dieses Protein ein potentielles target in der Krebsbekämpfung (u.a. von Ovarialkarzinomen und Brustkrebs) darstellt. Für HsPARP1 existieren bereits mehrere Röntgenkristallstrukturen, sowie breites Wissen über HsPARP1 Inhibitoren und zu diesen strukturell verwandte Verbindungen, die jedoch nicht an HsPARP1 binden (sogenannte decoys). Basierend auf den Röntgenkristallstrukturen von HsPARP1 wurden Homologiemodelle von $A t$ PARP1 und $\operatorname{AtPARP} 2$ erstellt. Darüber hinaus wurden im Rahmen von umfangreichen Docking-Analysen von HsPARP1 Bindern und Nicht-Bindern statistische Verfahren wie receiver operating characteristics und Power Analysen angewendet. Diese erlaubten eine effektive Unterscheidung tatsächlicher Inhibitoren von decoys unter Einbeziehung von docking score Grenzen. Während diese Grenzen vom humanen PARP1 resultierten, wurde diese unter Einhaltung entsprechender statistischer und biologischer Annahmen auf $A t$ PARP1 und $A t$ PARP2 angepasst und übertragen. Diese Grenze sollte eine effektive Suche in kommerziellen Datenbanken nach potentiellen AtPARP Inhibitoren ermöglichen.

Zusammen mit einem ebenfalls auf HsPARP1 basierenden Pharmakophor wurde anschließend eine Datenbank mit mehr als 40.000 Strukturen durchsucht und an Hand der Suchkriterien 121 Verbindungen ausgewählt und am AtPARP1 Enzym in vitro getestet
wurden. Von diesen waren insgesamt 47 AtPARP1-aktiv, was einer Erfolgsrate von rund 39\% entspricht. Von diesen 47 Aktiven wurden 33 anhand der festgelegten docking score grenze als aktiv vorhergesagt. Weiterhin konnten von 52 der 121 Verbindungen die IC_{50} Werte ermittelt werden. Von den untersuchten Verbindungen wiesen 6 einen Wert im nanomolaren Bereich, weitere 20 Werte unter $10 \mu \mathrm{M}$ auf. Von insgesamt 22 getesteten Verbindungen an Lolium perenne Pflanzen zeigten 9 im Vergleich zu Kontrollpflanzen einen positiven Effekt unter Trockenstressbedingungen.

Neben dem virtuellen Screening wurden die dafür verwendeten Homologiemodelle der katalytischen Domänen vom AtPARP1 und AtPARP2 auf deren in silico-Qualität hin untersucht. Die Qualität der Modelle wurde dabei verglichen mit der Qualität von Röntgenkristallstrukturen von PARP-Orthologen der Proteindatenbank (PDB), wobei der Einfluss von Inhibitoren auf die Proteinstabilität, sowie der Bindemodus der natürlichen Substrate von PARPs untersucht worden. Diese Untersuchungen wurden mit Hilfe von Moleküldynamik (MD)-Simulationen durchgeführt und ebenfalls statistisch ausgwertet. Dabei zeigte sich, dass die Ergebnisse, die durch Röntgenkristallstrukturen von PARPOrthologen festgestellt worden sind, in analoger Weise bei Homologiemodellen von AtPARP1 ebenfalls beobachtet werden können. Damit wurden weitere Indizien gefunden, die nahelegen, dass die Qualität der Homologiemodelle und der verwendeten Screening Methoden ausreichend sind, um effektiv nach neuen Inhibitoren suchen zu können.

Abschließend wurde mit Hilfe von binären quantitativen Struktur-Wirkungs-Beziehungen (binary QSAR) unterucht, welche Eigenschaften (beschrieben durch molekulare Deskriptoren) der als aktiv und nicht aktive getesteten Inhibitoren für deren Aktivität bzw. Nicht-Aktivität verantwortlich sind. Das resultierende binäre QSAR Modell zeigte eine hohe Sensitivität und Spezifität und kann damit zum weiteren Verständnis der Bindung von Strukturen an AtPARP1 in silico beitragen.

Die Ergebnisse de vorgelegten Arbeit zeigen, dass Arabidopsis thaliana PARP1 in die Regulation der abiotischen Stressantwort involviert ist. Sie legt dar, dass molekulare Modellierungs-Studien die experimentellen Ergebnisse der in vitro und in vivo Studien zu pflanzlichen PARP Inhibitoren unterstützen und erklären können. Weiterhin wird gezeigt, dass die Proteinmodelle von $A t$ PARP ähnliche Qualität aufweisen wie orthologe Rönrgenkristallstrukuren und damit ähnliche Erkenntnisgewinne durch molekulare Modellierungs-Studien möglich sind wie bei Röntgenstrukturen. Sie ist die erste Arbeit, in der mit Hilfe des virtuellen Screenings neue Inhibitoren für $A t$ PARP gefunden wurden.

Table of contents

Edited by 3
Danksagung 5
Abstract 7
Zusammenfassung 9
Table of Abbreviations 17
List of colors 19
List of Tables 20
Table of Figures 21
1 Introduction 23
1.1 The family of Poly (ADP-ribose) polymerases (PARP) 23
1.1.1 Human PARP 23
1.1.2 Plant PARP 24
1.1.3 The catalytic reaction of PARP 25
1.2 HsPARP1 as a therapeutic target 28
1.2.1 $H s$ PARP1 and DNA repair 28
1.2.2 HsPARP1 and synthetic lethality 29
1.2.3 HsPARP1 and ischemia 30
1.3 PARP inhibitors 31
1.3.1 Development of $H s$ PARP inhibitors 31
1.3.2 HsPARP inhibitors in clinical trials 32
1.4 The role of poly (ADP-ribosyl)ation in plants 35
1.4.1 Plant PARP 35
1.4.2 Plant PARG 36
1.4.3 Plant NUDX 36
1.5 Virtual screening in Lead Discovery 38
1.5.1 Virtual screening for human PARP inhibitors 39
1.5.2 Virtual screening in agrochemistry 41
1.6 Aim of this work 43
2 Materials \& Methods 45
2.1 Data sets 45
2.1.1 Natural substrate and natural substrate analogues 45
2.1.2 Commercial database 46
2.1.3 Known human PARP inhibitors 46
2.1.4 Known human PARP decoys 47
2.2 Sequence analyses 47
2.2.1 Pairwise sequence alignment 47
2.2.2 Multiple sequence alignment 47
2.3 Programs for Homology Modelling and Docking 48
2.3.1 Molecular Operating Environment (MOE) 48
2.3.2 POSIT 48
2.3.3 YASARA 49
2.3.3.1 Homology modelling in YASARA 50
2.3.3.2 MD simulations in YASARA 50
2.3.4 ConfGen 51
2.3.5 LigPrep. 51
2.3.6 Glide 52
2.3.7 GOLD 52
2.3.8 PLANTS 53
2.4 Application-dependent Homology Modelling 54
2.4.1 Investigation of protein stability 54
2.4.2 Investigation of positions of natural substrates. 55
2.4.3 Investigation of bioactive conformation of $A t$ PARP inhibitors 57
2.5 Pharmacophore creation 59
2.6 Docking procedure 60
2.6.1 General aspects 60
2.6.2 Data sets 61
2.6.3 Docking programs 61
2.6.4 PARP pharmacophore-directed docking. 63
2.6.5 Definition of a correct docking pose 64
2.7 Methods of probability and inference 65
2.7.1 Null hypothesis significance testing and statistical power 65
2.7.2 One-sampe t-test 67
2.7.3 Unpaired two-sample t-test 67
2.7.4 Cumulative distribution function (cdf) 67
2.7.5 Pearson's Chi-squared test 68
2.7.6 Binary quantitative structure-activity relationship. 69
2.7.6.1 Binary quantitative structure-activity relationship terminology 69
2.7.6.2 Binary QSAR evaluation 70
2.7.7 Receiver Operator Characteristics 72
2.7.8 Analysis of MD simulations 73
3 Results 74
3.1 Sequence analysis 74
3.2 Homology Modelling 76
3.2.1 Evaluation of homology models 78
3.2.2 Model refinement 80
3.2.2.1 RAMPAGE 81
3.2.2.2 ProSA-web and Errat 81
3.2.2.3 Verify3D 82
3.3 Investigation of protein stability 83
3.3.1 Overall shape of B-factor and C_{α} distributions 83
3.3.2 Local structural shifts upon inhibitor binding. 86
3.4 Investigation of positions of natural substrates 87
3.4.1 Homology model of natural substrate-bound AtPARP1 87
3.4.2 Positioning of the nicotinamide moiety of NAD^{+} 90
3.4.3 Binding of the adenine moiety of the donor structure NAD^{+} 92
3.4.4 The role of the catalytic glutamate 93
3.4.5 Positioning of the adenine moiety of the acceptor structure. 97
3.5 Docking 101
3.5.1 Docking program selection 101
3.5.2 Receiver Operator Characteristics (ROC) curve 102
3.5.3 Inference for data set docking score distributions 104
3.5.4 Normal approximation of docking score distributions 104
3.5.5 HsPARP1 inhibitor docking score threshold derivation 106
3.5.6 Derivation of docking score threshold for $A t$ PARP. 113
3.5.6.1 Assumptions 113
3.5.6.2 Differences of the docking procedure between HsPARP1 and AtPARP1 113
3.6 Processing data from a commercal data base 118
3.7 Pharmacophore filtering 119
3.7.1 Pharmacophore selectivity 119
3.7.2 Pharmacophore filtering of a commercial database 120
3.7.3 Pharmacophore filtering of structures with specific core structures 120
3.8 Selection of compounds 121
3.8.1 Compound selection based on docking score and pharmacophore selection 121
3.8.2 Compound selection based on chemical characteristics 121
3.8.3 Analysis of docking results / retrospective power analysis 125
3.9 Finding most probable pose of active compounds. 129
3.10 Structure-activity relationship. 136
3.10.1 General aspects 136
3.10.2 Binary structure-activity relationship 138
3.10.3 Influence of inhibitors on plant dry mass production 144
4 Summary and outlook 146
5 Appendix 148
5.1 Pairwise sequence alignments 148
5.1.1 Needle settings 148
5.1.2 $A t$ PARP1 - AtPARP2 148
5.1.3 AtPARP1 - AtPARP3 149
5.1.4 AtPARP1 - HsPARP1 149
5.1.5 AtPARP1 - HsPARP2 150
5.1.6 AtPARP1 - HsPARP3 150
5.1.7 AtPARP1 - GgPARP1 151
5.1.8 AtPARP2 - AtPARP3 151
5.1.9 AtPARP2 - HsPARP1 152
5.1.10 AtPARP2 - HsPARP2 152
5.1.11 AtPARP2 - HsPARP3 153
5.1.12 AtPARP2 - GgPARP1 153
5.1.13 AtPARP3 - HsPARP1 154
5.1.14 AtPARP3 - HsPARP2 154
5.1.15 AtPARP3 - HsPARP3 155
5.1.16 AtPARP3-GgPARP1 155
5.1.17 HsPARP1 - HsPARP2 156
5.1.18 HsPARP1 - HsPARP3 156
5.1.19 HsPARP1 - GgPARP1 157
5.1.20 HsPARP2 - HsPARP3 157
5.1.21 HsPARP2 - GgPARP1 158
5.2 Multiple Sequence Alignment 159
5.2.1 Clustal Omega settings 159
5.2.2 Multiple Sequence Alignment I 159
5.2.3 Multiple Sequence Alignment II. 160
5.3 Pharmacophore annotations 161
5.4 Homology modelling 162
5.4.1 YASARA homology modelling report: AtPARP1 162
5.4.1.1 Report section 1: Homology modelling target. 162
5.4.1.2 Report section 4: Secondary structure prediction 162
5.4.1.3 Report section 5: Initial homology models 163
5.4.1.4 Report section 6 and 7: Model ranking and hybrid model 164
5.4.2 YASARA homology modelling report: AtPARP2 165
5.4.2.1 Report section 1: Homology modelling target 165
5.4.2.2 Report section 4: Secondary structure prediction 165
5.4.2.3 Report section 5: Initial homology models 166
5.4.2.4 Report section 6s and 7: Model ranking and hybrid model 167
5.4.3 YASARA homology modelling report: AtPARP1 (protein stability) 168
5.4.3.1 Report section 1: Homology modelling target 168
5.4.3.2 Report section 4: Secondary structure prediction 168
5.4.3.3 Report section 5: The target sequence profile (excerpt) 169
5.4.3.4 Report section 6: The initial homology models 171
5.4.3.5 Report sections 7 and 8: Model ranking and the hybrid model 178
5.4.4 YASARA homology modelling report: AtPARP1 (natural substrates) 179
5.4.4.1 Report section 1: Homology modelling target 179
5.4.4.2 Report section 4 : Secondary structure prediction 179
5.4.4.3 Report section 5: The target sequence profile (excerpt) 180
5.4.4.4 Report section 6: The initial homology models 182
5.4.4.5 Report sections 7 and 8: Model ranking and the hybrid model 187
5.4.5 Homology model structure evaluation. 188
5.5 Model refinement 190
5.5.1 ProSA-web and Errat 190
5.5.2 RAMPAGE 191
5.5.3 Verify 3D 192
5.6 Docking 193
5.6.1 Comparison of docking protocols 193
5.6.2 Docking score distributions 194
5.6.3 Inference of docking score distributions 194
5.6.4 Observed and approximated docking scores, differences 195
5.6.5 Number of structures found in pose 1 195
5.6.6 Number of structures docked correctly in docking runs 196
5.6.7 Pearson's Chi-squared test results 196
5.6.8 PLANTS script for docking 197
5.6.9 R script for ROC curves 198
5.6.10 Docking results - confidently docked inhibitors 199
5.7 Screening results 200
5.7.1 Pharmacophore screening results 200
5.8 ProBiS - conserved amino acids. 200
5.9 Inhibitors 201
5.10 Inhibitors; in silico and in vitro results 219
5.10.1 Docking results, in silico and in vitro results. 219
5.10.2 POSIT results 223
5.10.3 Structures used for binary QSAR - training set - actives 224
5.10.4 Structures used for binary QSAR - training set - inactives 224
5.10.5 Binary QSAR - model selection. 226
5.10.6 Binary QSAR - training set- results 227
5.10.7 Binary QSAR - external validation - results 228
5.10.8 Binary QSAR PC analysis 228
5.11 MD simulation and analysis 229
5.11.1 YASARA script - converting YASARA snapshots to .PDB files 229
5.11.2 R script for preparing MD analysis 229
5.11.3 RMSD analysis of NAD-CNA-ligated AtPARP1 230
5.12 Lolium perenne screening results 232
References 233
Curriculum vitae 245
Publications 246
Eidesstattliche Erklärung 248
Statement under oath 248

Table of Abbreviations

3 MB
4AN
aa
ABA
AMD
ACO
ADPR
ADPRT
AHAS
ALS
APP
(m)ART

At
BRCA1
BRCA1
BRCT
CD
CDF
CI
CNA
DBD
DNA
DSB
EC
EF
FRQ
$G g$
HR
Hs
IC_{50}

3-aminobenzamide
4-amino-1,8-naphthalimide
amino acid
abscisic acid
automodification domain
ant colony optimisation
ADP-ribose
ADP-ribosyl transferase
acetohydroxy acid synthase
acetolactate synthase
Arabidopsis thaliana homologue of PARP
(mono) ADP-ribosyltransferase
Arabidopsis thaliana L.
breast cancer 1 , early onset gene
breast cancer 1, early onset gene product
BRCA1 C-terminus
catalytic domain
cumulative distribution function
confidence interval
carba nicotinamide adenine dinucleotide
DNA-binding domain
deoxyribonucleic acid
double- strand break
enzyme classification
enrichment factor
5-Fluoro-1-[4-(4-phenyl-3,6-dihydropyridin-1(2H)-yl)
butyl]quinazoline-2, $4(1 \mathrm{H}, 3 \mathrm{H})$-dione
Gallus gallus (Chicken)
homologuos recombination
Homo sapiens
inhibitor concentration at which enzyme activity is reduced by 50%

K $_{i}$	inhibition constant
LOO	leave one out
MD	molecular dynamics
MLR	multiple linear regression
Mm	Mus musculus (Mouse)
MMR	mismatch repair
NA	nicotinamide
NAD ${ }^{+}$	nicotinamide adenine dinucleotide
NER	nucleotide excision repair
NF-кB	nuclear factor kappa-light-chain-enhancer of activated B cells
NHST	null hypothesis significance testing
NHEJ	nonhomologuos end Joining
PARP	Poly(ADP-ribose)Polymerase
PARG	Poly(ADP-ribose)Glycohydrolase
PC	principal component
PEF	pharmacophore enrichment factor
PCD	programmed cell death
PLANTS	Protein Ligand ANT System
PDB	Protein Data Bank
PPO	protoporphyrinogen oxidase
PSII	photosystem II
RI	reperfusion Injury
RMSE	root mean squared error
ROC	receiver operator characteristics
ROS	reactive oxygen species
SAP	SAF-A/B, Acinus, and PIAS
SRS	simple random sample
SSB	single-strand break
SSBR	ingle-strand break repair
TMZ	VS

List of colors

representation of $\boldsymbol{A t P A R P 1}$

representation of $\boldsymbol{H s P A R P 1 / 2 / 3}$ especially HsPARP1 ligands

representation of other ADPRT especially Diphtheria toxin

representation of $\boldsymbol{A t P A R P 2}$

representation of $H s P A R P 1$ especially HsPARP1 decoys

representation of GgPARP1

List of Tables

Table 1.1: HsPARP1 inhibitors in clinical trials 34
Table 1.2: Classification of Herbicides according to HRAC 42
Table 2.1: Homology modelling steps in YASARA 50
Table 2.2: Steps to be performed to define an AtPARP docking procedure 60
Table 2.3: Steps necessary to perform null hypothesis significance testing (NHST) 65
Table 2.4: Relationship between Type I and Type II errors, and statistical power 66
Table 3.1: General information about catalytic domains (CD) in selected PARP 74
Table 3.2: Sequence similarities and sequence identities for selected PARP 74
Table 3.3: Evaluation of homology models 79
Table 3.4: Summary of AtPARP1 and AtPARP2 model refinement results 82
Table 3.5: Summary statistics for MD simulations 83
Table 3.6: ProBiS results 88
Table 3.7: Results of MD simulations - comparison with experimental data I 90
Table 3.8: Results of MD simulations - comparison of experimental data II 92
Table 3.9: Results of MD simulations - comparison of experimental data III 95
Table 3.10: Results of MD simulations - comparison of experimental data IV 98
Table 3.11: Characteristics of the docking threshold 107
Table 3.12: Compound selection based in different focal points 109
Table 3.13: Statistical vs. practical significance. 110
Table 3.14: Characteristics of docking procedure 114
Table 3.15: AtPARP1 and AtPARP2 docking score differences 115
Table 3.16: Derivation of new docking thresholds for AtPARP1 and AtPARP2 117
Table 3.17: PARP Pharmacophore selectivity 119
Table 3.18: Compound selection: selected structures and their availability 121
Table 3.19: Structures selected for virtual screening: quinazolinones 122
Table 3.20: Structures selected for virtual screening: phthalazinones 123
Table 3.21: Structures selected for in vitro screening: other chemical classes 124
Table 3.22: Retrospective power analysis 125
Table 3.23: PARP crystal structures used with POSIT 129
Table 3.24: Results of POSIT application I 131
Table 3.25. Results of POSIT application II 132
Table 3.26: Selected descriptors for binary QSAR 139
Table 3.27: Results of binary QSAR 140

Table of Figures

Figure 1.1: Catalytic reaction of PARP 26
Figure 1.2: The proposed mechanism of the branching and elongation reaction of PARP 27
Figure 1.3: Synthetic lethality and PARP inhibition 30
Figure 1.4: Examples of developed PARP inhibitors 32
Figure 1.5: Examples of human PARP1 inhibitors having entered clinical trials 33
Figure 1.6: Interplay between PARP, PARG and NUDX proteins in abiotic stress 37
Figure 1.7: Workflow and aim of this work 44
Figure 2.1: Natural substrate of HsPARP1 and substrate analogue carba-NAD 45
Figure 2.2: Examples of HsPARP1 inhibitors 46
Figure 2.3: Examples of HsPARP1 decoys 47
Figure 2.4: POSIT probability map, modified from POSIT manual 49
Figure 2.5: Workflow of investigation of protein stability in AtPARP1 55
Figure 2.6: Workflow using ProBiS 56
Figure 2.7: Schematic representation of ProBiS algorithm I 56
Figure 2.8: Schematic representation of ProBiS algorithm II 57
Figure 2.9: Finding most probable bioactive conformations of AtPARP inhibitors 58
Figure 2.10: The PARP pharmacophore 59
Figure 2.11: Docking workflow for establishing an AtPARP docking procedure 61
Figure 2.12: Hydrogen bond weights adjusted for pharmacophore-directed docking 63
Figure 2.13: Definition of a correct docking pose 64
Figure 2.14: NHST and statistical power 66
Figure 2.15: Example of an ROC 72
Figure 3.1: Multiple sequence alignment between selected PARP 75
Figure 3.2: Protein models of HsPARP1 and AtPARP1/2. 77
Figure 3.3: Results of ProSA-web 80
Figure 3.4: Analysis of MD simulations with unligated and 4AN-ligated AtPARP1 I 84
Figure 3.5: Analysis of MD simulations with unligated and 4AN-ligated AtPARP1 II 85
Figure 3.6: Analysis of MD simulations with unligated and 4AN-ligated AtPARP1 III 86
Figure 3.7: ProBiS results I - Diphtheria Toxin and GgPARP1 active sites superposition 89
Figure 3.8: Positioning of the nicotinamide moiety of NAD^{+}in AtPARP1 91
Figure 3.9: Positioning of the adenine moiety of NAD^{+}in AtPARP1 93
Figure 3.10: Positioning of the nicotinamide moiety of NAD^{+}in AtPARP1 94
Figure 3.11: The role of the catalytic glutamate in the catalytic reaction 96
Figure 3.12: Positioning adenine moiety of CNA in GgPARP1 and AtPARP1 97
Figure 3.13: AtPARP1 MD simulation analysis, adenine moiety of CNA positioning I 98
Figure 3.14: AtPARP1 MD simulation analysis, adenine moiety of CNA positioning II 99
Figure 3.15: Comparison of docking programs 101
Figure 3.16: ROC curves of PLANTS docking protocols I and II 102
Figure 3.17: Docking score distributions - normal approximation I 104
Figure 3.18: Docking score distributions - normal approximation II 105
Figure 3.19: Normal approximation III 106
Figure 3.20: Number of structures being docked into HsPARP1 and AtPARP 114
Figure 3.21: HsPARP1 and HsPARP2 docking scores of 142 HsPARP1 inhibitors 116
Figure 3.22: Schematic representation of subsites S1-S4 and their occupancies 122
Figure 3.23: Retrospective power analysis 126
Figure 3.24: Finding probable bioactive conformations of new AtPARP1 inhibitors 130
Figure 3.25: POSIT results: quality of prediction for AtPARP1 inhibitors. 132
Figure 3.26: POSIT results: quality of prediction for AtPARP1 inhibitors. 134
Figure 3.27: Binary QSAR workflow 138
Figure 3.28: Binary QSAR results I 141
Figure 3.29: Binary QSAR results II - External validation 142
Figure 5.1: RAMPAGE results of PDB entry 1UK1 188
Figure 5.2: RAMPAGE results of YASARA model of 1UK1 188
Figure 5.3: RAMPAGE results of homology model of AtPARP1 189
Figure 5.4: RAMPAGE results of homology model of AtPARP2 189
Figure 5.5: RAMPAGE - evaluation of AtPARP1 initial model with MD-refinement 191
Figure 5.6: RAMPAGE - evaluation of AtPARP2 initial model with MD-refinement 191
Figure 5.7: Verify 3D - AtPARP1 and AtPARP2 initial models and MD-refinement 192
Figure 5.8: Docking score distributions - normal approximation III 194
Figure 5.9: HsPARP1 and AtPARP2 docking scores of 142 HsPARP1 inhibitors 199
Figure 5.10: Substructure search for phalazinone and quinazolinone. 200
Figure 5.11: Results of MD simulations of NAD-CNA-ligated AtPARP1 230
Figure 5.12: Results of MD simulations of NAD-CNA-ligated AtPARP1 230
Figure 5.13: Results of MD simulations of NAD-CNA-ligated AtPARP1 231
Figure 5.14: Results of MD simulations of NAD-CNA-ligated AtPARP1 231
Figure 5.15: Lolium perenne relative dry mass production for 22 AtPARP1 inhibitors. 232

1 Introduction

1.1 The family of Poly (ADP-ribose) polymerases (PARP)

1.1.1 Human PARP

Poly (ADP-ribose)-polymerases (PARP, EC 2.4.2.30), which are also called Diphtheria Toxin-like ADP-ribosyltransferases (ADRT), are nuclear and cytosolic enzymes that are mainly responsible for the synthesis of negatively charged poly(ADP-ribose) polymers. ADPribose moieties are formed by the cleavage of PARP's natural substrate β-nicotinamide adenine dinucleotide $\left(\mathrm{NAD}^{+}\right)$, in which nicotinamide (NA) is released as a reaction byproduct (Figure 1.1). ADP-ribose monomers are covalently attached to target acceptor proteins and formation of further ADP-ribose units leads to the accumulation of poly(ADPribose) (PAR) polymers. The process of poly(ADP-ribosyl)ation is a post-translational modification and is involved in several biological processes that include DNA repair, cellular signaling, transcription, cell-cycle regulation, and mitosis. Hence, PARP plays an important role in inflammation, cancer, differentiation, stress response and development.

In 1956, it was discovered that DNA-alkylating agents caused depletion in the NAD^{+}content in human ascites-tumour cells. ${ }^{1}$ In the 1960 s this observation was attributed to an enzyme which today is known as PARP. ${ }^{2}$ PARP-like genes have been identified in all eukaryotes (except for S. cerevisae and S. pombe), archaebacteria, eubacteria and double-stranded DNA viruses. PARP enzymes constitute a superfamily, all containing a PARP catalytic site, that is denoted as the PARP signature. ${ }^{3-5}$ In the human genome, 17 members of PARP (HsPARP) have been identified so far. ${ }^{6-9}$ PARP1-5 show catalytic activity and all contain a conserved glutamate residue responsible for catalytic activity. PARP 6-8, 10-12 and 14-16 are confirmed or putative mono(ADP-ribosyl) transferases (mARTs). PARP9 and PARP13 lack the catalytic glutamate and NAD^{+}binding residues and are likely inactive. ${ }^{10}$ All PARP members consist of several independently folded domains.

By the whole of human PARP members, Poly (ADP-ribose) polymerase 1 (HsPARP1) is investigated most rigorously. It is a protein of approximately $113 \mathrm{kDa}^{11}$ and it accounts for the about 90% of PAR production. ${ }^{12}$ The domains of $H s P A R P 1$ include an N-terminal DNAbinding domain (DBD), an automodification domain (AMD) and a C-terminal catalytic
domain (CD). ${ }^{7,9}$ The DBD contains three zinc fingers (Zn1/FI, Zn2/FII, Zn3/FIII) that mediate binding to DNA and interdomain contacts that are important for DNA-dependent enzyme activation. ${ }^{13,14}$ A nuclear localisation signal (NLS) and a caspase-3 cleavage site are localized at the DBD. ${ }^{7,9}$ The AMD acts as an acceptor of PAR during the automodification of PARP. ${ }^{15}$ A breast cancer 1, early onset gene product (BRCA 1) C-terminus (BRCT) fold is contained in the AMD, responsible for the mediation of protein-protein interactions with DNA repair enzymes. The most conserved domain across the PARP family is the CD. It contains the PARP signature and the active site where NAD^{+}is bound. The CD contains the catalytic triad His-Tyr-Glu, (HYE). The histidine and tyrosine residues are responsible for the recognition and binding of $\mathrm{NAD}^{+, 16}$ while the glutamate residue is necessary for PAR-polymerisation. ${ }^{17}$ Also present in the CD is a WGR motif, consisting of the residues (Trp, Gly, Arg), whose function is unclear. ${ }^{18}$

1.1.2 Plant PARP

Orthologues of mammalian PARP exist in plants. At least three types of PARP superfamily members are known in plants. The first evidence for poly(ADP-ribosylating) enzymes in plants was the finding of PARylated histones in Nicotiana tabacum ${ }^{19}$ and wheat nuclei. ${ }^{20}$ Through genetic experiments ${ }^{21}$ and sequence similarities ${ }^{22,23}$, plant PARP superfamily members were identified and data revealed that all land plants contain orthologues of HsPARP1. The best-investigated plant orthologue of HsPARP1, Arabidopsis thaliana PARP2 (AtPARP2, At2g31320), shares the same domain structure as HsPARP1 and - as it is specific for all those members - shares the same catalytic triad histidine-tyrosine-glutamate (HYE).

Based on sequence similarity within the catalytic domains, some PARP have been identified as more closely related to $H s$ PARP3. ${ }^{3} H s$ PARP3 domain-related plant proteins are split into two groups. AtPARP1/APP (At4g02390) belongs to the first of those groups. It is also the first plant PARP that was cloned. ${ }^{23}$ Members of this subgroup share a plant-specific domain structure which contains two N-terminal SAF-A/B, Acinus, and PIAS (SAP) domains that are involved in binding of nucleic acids 24 and protein localisation to the kinetichore during mitosis. ${ }^{25}$ The PARP signature of this subgroup contains the conserved HYE motif. For Zea mays PARP1 (ZmPARP 1$)^{26}$ and AtPARP1 ${ }^{22}$ PARylation activity was demonstrated.

The second subgroup, to which $\operatorname{AtPARP} 3$ (At5g22470) belongs, is more closely related to HsPARP2. In contrast to the first subgroup, the SAP domains are missing and the catalytic triad is disrupted. The histidine is replaced by a cysteine. And, while in seedless plants the
motif consists of CYE, in all angiosperms, this tyrosine residue is exchanged into CVE ${ }^{3}$ which indicates that NAD^{+}binding and consequently its enzymatic activity are unlikely. $\operatorname{AtPARP} 3$ might have a function in the developmental stage of life cycle as $A t$ PARP3 is mainly expressed in developing seeds. ${ }^{27}$

Proteins that are orthologous to the $H s$ PARP8 clade (HsPARP6, 8 and 16) have been found in some green algae, moss and many fungi. ${ }^{3}$ Neither in humans nor in plants, have members of this clade been functionally characterised.

The catalytic domain of PARP has also been found in six further Arabidopsis genes. These genes encode proteins that are named Radical-induced Cell Death 1 (AtRCD1, Atlg32230) and the proteins Similar to RCD One 1-5 (AtSRO1-5). Despite lacking poly(ADP-riboslytion activity in RCD1 and all SRO^{28}, it is speculated that these proteins have mono(ADP-ribosyl) transferase activities. ${ }^{10}$ Evidence is supporting the hypothesis that members of the SRO family are involved in the gene regulation at transcriptional or chromatin level. RCD1 and SRO1 have been shown to bind to transcription factors in yeast two-hybrid assays. ${ }^{29,30}$ These observations suggest similar roles of plant PARP family members to that known from human PARP.

Due to sequence analysis and the comparison of the domain composition between human and Arabidopsis PARP, the Arabidopsis PARP1 and PARP2 nomenclature has changed. The Arabidopsis PARP protein that is most similar to HsPARP1 in terms of sequence similarity and sequence length was described as $A t$ PARP1 (At2g31320). With respect to domain structure conservation in comparison to HsPARP1, the former $A t \mathrm{PARP} 2(\mathrm{At} 4 \mathrm{~g} 02390)$ is most similar to $H s$ PARP1 and is therefore described as $A t$ PARP1. For the same reason, the former $\operatorname{AtPARP} 1$ is now described as $A t \mathrm{PARP} 2$. This will be the nomenclature used in this work.

1.1.3 The catalytic reaction of PARP

The catalytic reaction of PARP is examplified on HsPARP1 in Figure 1.1. The active site of PARP can be divided into a donor and an acceptor site. Positioned in the donor site, the substrate NAD^{+}donates an ADP-ribose unit to a nascent ADP-ribose chain, the acceptor molecule. Hereby, the pyridinium acts as leaving group, generating an electrophilic C_{1} at the donor ribose. The first step of the polymer elongation reaction involves the concurrent binding of a molecule NAD^{+}in the donor site and the prepositioning of an existing ADPribose chain in the acceptor site (Figure 1.1, A). The catalytic glutamate (Glu ${ }_{988}, H_{s}$ PARP1
numbering) plays a crucial role in the reaction. Firstly, one of the Glu 9_{98} carboxyl oxygen atoms forms a hydrogen bond to the $2^{\prime}-\mathrm{OH}$ of the acceptor ribose. This polarises the acceptor oxygen and increases its nucleophilicity. Secondly, the nicotinamide ribose of NAD^{+}is bound in 3^{\prime}-endo conformation in PARP, a conformation that is already close to an expected oxocarbenium transition state geometry. During the reaction, Glu998 forms another hydrogen bond to the 2^{\prime}-hydroxyl of the donor ADP-ribose which leads to a stabilisation of the oxacarbenium. The ADP-ribosyl transfer reaction takes place by a nucleophilic attack of the acceptor ribose $2^{\prime}-\mathrm{OH}$ on the $\mathrm{C}_{1}{ }_{\mathrm{N}}$ carbon of the donor ribose in which an $\boldsymbol{\alpha}(\mathbf{1} \rightarrow \mathbf{2})$ glycosidic bond is formed, and nicotinamide is released.

Catalytic reaction of HsPARP1

Figure 1.1: Catalytic reaction of PARP
A: ADPR chain approaches a bound molecule $N A D^{+}$B: nucleophilic attack of the acceptor ribose on the donor ribose, mediated through the catalytic glutamate 988, C: $\alpha(1 \rightarrow 2)$ glycosidic bond formation

The final process of the reaction is not clearly resolved. According to Ruf and co-workers, the catalytic reaction follows an $\mathrm{S}_{\mathrm{N}} 2$ mechanism ${ }^{31}$ while an $\mathrm{S}_{\mathrm{N}} 1$ mechanism was proposed by

Scheuring and Schramm based on an observed change in the hybridisation of the anomeric carbon. ${ }^{32}$ The hydrolysis of NAD^{+}, resulting in the generation of the first ADP-ribose molecule, was investigated on a theoretical level using combined quantum mechanical/ molecular mechanical (QM/MM) methods. ${ }^{33}$ Based on their results, the authors concluded that the catalytic reaction is a concerted $\mathrm{S}_{\mathrm{N}} 2$ reaction. Independent of the different conclusions concerning the character of the S_{N}-reaction, most studies agree that its transition state has an oxacarbenium character from which one can conclude that PARP's nucleophilic substitution reaction proceeds on the borderline of $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$ mechanisms.

The reaction mechanism applies for the synthesis of a branched polymer, too. Here, the orientation of the acceptor molecule is reversed by a 180° rotation. Due to the internal symmetry of an ADP-ribose unit, the phosphate moiety positions in the same way as in the elongation reaction. In contrast to the elongation reaction, the glycosidic linkage is formed between the $2^{\prime}-\mathrm{OH}$ of the nicotinamide ribose and the anomeric $\mathrm{C}_{1}{ }^{\prime}{ }_{\mathrm{N}}$ of the donor ribose. The normal ratio of branching to elongation is 1:50. Evidence by Rolli and colleagues suggest that the asymmetry of PARP's acceptor site determines this ratio. The mutation Y986H in HsPARP1 rendered the protein's acceptor site more symmetric which leads to an increased branching:elongation ratio towards $1: 1 .{ }^{16}$ A schematic representation of the branching and elongation reaction, as proposed by Ruf and colleagues ${ }^{31}$, is shown in Figure 1.2.

The branching and elongation reaction of HsPARP1

Figure 1.2: The proposed mechanism of the branching and elongation reaction of PARP
Mechanisms as proposed by Ruf et al. (modified) ${ }^{31}$ A: The elongation reaction B: The branching reaction

1.2 HsPARP1 as a therapeutic target

Poly(ADP-ribose) metabolism is stimulated by DNA damage and HsPARP1 is involved in a DNA damage signalling network and DNA repair. HsPARP1 and its counterpart Poly(ADPribose) glycohydrolase (HsPARG) are the enzymes that contribute to the majority of poly(ADP-ribose) metabolism in human. PARP contributes to genomic integrity ${ }^{34}$ since it is involved in different DNA repair mechanisms, as well as in telomer protection and DNA damage signalling that can lead to cell cycle survival, cell cycle arrest, cell transformation or cell death. HsPARP1 modulates chromatin structure where it interacts with histones $\mathrm{H} 1-\mathrm{H} 4^{35}$, guides chromatin decondensation and transcriptional activation through poly(ADPribosyl)ation. ${ }^{36}$ PARP has several interaction partners that are involved in DNA repair. Among those are DNA-Ligase III^{37}, DNA-Polymerase β^{38}, X-ray repair cross-complementing 1 (XRCC1) ${ }^{39}$ and PARP2. ${ }^{40}$ It also interacts with transcription factors among whose are nuclear factor kappa-light-chain-enhancer of activated B cells (NF-кB) ${ }^{41}$ and p53. ${ }^{42}$ PARP participates in replication via interactions with DNA-Ligase I and DNA-Polymerase $\alpha{ }^{43}$

1.2.1 HsPARP1 and DNA repair

Damages on the DNA arise from endogeneous and exogeneous factors as reactive oxygen species (ROS), alkylating and cross-linking agents, non-enzymatic hydrolysis of the phosphodiester backbone of nucleic acids and electromagnetic radiation. Resulting DNA damage can be divided into three groups that, depending on the severity of DNA damage, are repaired by different DNA repair mechanisms. ${ }^{44}$ Minor damage like oxidation or methylation of DNA bases or DNA single strand breaks are removed by the Base Excision Repair (BER) or Single Strand Break Repair (SSBR) systems. ${ }^{45,46}$ Moderate DNA damage like dimerised pyrimidins is eliminated by the Nucleotid Excision Repair (NER) system. ${ }^{47}$ Major damage like DNA double-strand breaks (DSB) are corrected by Nonhomologous End Joining (NHEJ) or Homologuos Recombination (HR) systems ${ }^{44,48}$ while DNA replication errors are adjusted by the system of Mismatch Repair (MMR) ${ }^{49}$

Severals studies showed an involvement of PARP in the SSBR and BER systems. Once PARP detects a single-strand break, it binds on the location of the damage and autoPARylates itself. The PARylation induces the recruitment of XRCC1. The single-strand break is subsequently repaired and ligated by the proteins poynucleotide kinase/phosphate, DNApolymerase β and DNA-ligase III. ${ }^{45,50}$

In the BER system, specific DNA glycolases identify and cleave the modified base resulting in apurinic or apyrinic sites (AP sites) in the DNA. The site is subsequently cleaved by APendonuclease 1 preparing the site to be repaired by DNA-polymerase β and ligated DNAligase III. The presence of PARP was proposed to not being essential since PARP is not directly involved. ${ }^{51}$ But findings with 3-aminobenzamide (3 AB) showed improved efficiency in BER when PARylation was activated. An involvement of PARP in BER was also proposed through experiments in several mouse-models. ${ }^{52}$ The theory of PARPs's role in BER was further supported by interaction studies in which the interaction of PARP1 with XRCCl^{53}, DNA-polymerase β^{54} and DNA-ligase $I I I^{37}$ was shown. This indicates an indirect participation of PARP1 in the BER. In 2004, a different model has been developed that discusses at which stage PARP participates in BER and establishes protein-protein interactions. ${ }^{55}$ The last step of both the BER and SSBR are equivalent since once the damaged site of DNA is repaired, PAR polymers become degraded by PARG und PAR-bound proteins disengage. After the automodification status of PARP1 and PARP2 is reversed, the proteins are enabled for being involved in another cycle of DNA damage repair.

1.2.2 HsPARP1 and synthetic lethality

Two genes X and Y are synthetically lethal if mutations in one of the genes alone are viable but mutations in both genes occurring simultaneously are lethal. The concept of synthetic lethality was proposed in the 1990s as an alternative to select new anticancer drug targets. ${ }^{56}$ If X and Y are synthetic lethal, than inhibitors of Y should selectively inhibit or kill cancer cells having mutant X . An extraordinary advantage of this concept is that even a complete inhibition of Y would have no effect on normal cells and even partial inhibition of Y would kill cancer cells having mutations in X. Human PARP1 was linked to synthetic lethality in 2005, when two independent groups showed that breast cancer associated genes 1 and 2 ($B R C A 1$ and BRCA2) -deficient cell lines are sensitive toward HsPARP1 inhibitors. ${ }^{57,58}$ $B R C A 1$ and BRCA2 have been characterized as tumour suppressor genes. ${ }^{59,60}$ They are involved in HR, a process involved in the repair of DNA double strand breaks. ${ }^{61}$ The prevalence of DNA single strand breaks caused by HsPARP1 inhibitors will lead to DSB via replication fork collapse. ${ }^{62}$

Chromosomal aberrations and genome instability are consequences of increased DSBs in HRdeficient cell types that eventually lead to cell death. The concept of synthetic lethality in connection with PARP inhibitors would therefore effectively kill tumor cells that have
deficiencies in BRCA1/2 while not affecting normal cells. This is of interest because carriers of heterozygous BRCA1 or BRCA2 mutations are prone to develop breast cancer and are also predisposed to ovarian, prostate and pancreatic cancer. In principle, any cell line that lacks the ability for HR could be tested for PARP inhibitors sensitivity. Tumour types with inactivated HR pathways are described as "BRCAness".

The concept of synthetic lethality and its relation to PARP inhibition

Figure 1.3: Synthetic lethality and PARP inhibition
Abbreviations: SSB: single strand break, DSB: double strand break, BRCA: breast cancer associated gene, HR: homologous recombination

1.2.3 HsPARP1 and ischemia

The state in which a tissue suffers from restricted blood supply is known as ischemia. As a consequence, there is a deficit in molecular oxygen supply (hypoxia) in the damaged tissue that can lead to impaired cellular functions and ultimately to cell death. Although the reperfusion of ischeamic tissue with oxygenated blood should reinstate normal physiological functions, the reperfusion also contributes to the overall injury that is caused by Ischemiareperfusion (IR). This phenomenon is called "reperfusion injury" (RI).

Excessive activation of PARP can lead to a rapid consumption of cellular NAD^{+}pools. NAD^{+} depletion leads to a decrease in ATP pools as well, as NAD^{+}acts as an electron carrier in mitochondrial respiratory chain. Nicotinamide, the released by-product during NAD^{+}cleavage by PARP, can be recycled back to NAD^{+}. This process again requires ATP. The
rapid fall of ATP pools upon continuous PARP activation via two different mechanisms can finally lead to cell death. ${ }^{63}$

During ischemia-reperfusion, oxygen-derived radicals like superoxide anions $\left(\mathrm{O}_{2}{ }^{\circ}\right)$ and hydroxyl radicals $\left(\mathrm{OH}^{*}\right)$ can cause DNA strand breaks. Also, the nitrogen-derived radical nitric oxide (NO^{*}) reacts with superoxide anions and produces peroxinitrite (ONOO^{-}) during IR. Peroxinitrite itself causes DNA strand breaks, too, that lead to PARP activation and cell death. In 1997 it could be shown that PARP1 knock-out mice displayed more than 60% reduction of damaged tissue in an animal model of stroke. This gave evidence that PARP inhibitors could reduce the amount of damaged brain tissue in stroke patients and therefore displaying therapeutic benefits.

1.3 PARP inhibitors

1.3.1 Development of HsPARP inhibitors

Since PARP is involved in DNA repair, it has been seen that inhibition of DNA repair via PARP inhibition leads to sensitization of tumor cells when used in combination with chemoand radiotherapy or in specific genetic backgrounds. Alkylating agents like temozolomide (TMZ), camphothecins and radiation are widely used in therapies and produce SSB which cannot efficiently be repaired with inhibited or disrupted PARP. The first enzyme-selective PARP1 inhibitor was $3 \mathrm{AB}^{64}$ which in the same year was shown to enhance cytotoxicity caused by preventing the rejoining of DNA strand breaks by the alkylating agent dimethyl sulfate and increased its toxicity in L1210 mouse leukemia lymphoblast cells. ${ }^{65}$. Despite 3AB being a simple analogue of NA (1, Figure 1.4) and a weak and unselective PARP inhibitor $\left(\mathrm{IC}_{50}\right.$ of $\left.30 \mu \mathrm{M}^{66}\right)$, the results of that study led to the development of more potent inhibitors having isoquinolinone ${ }^{67}$, quinazolinone or phenantridinone core structures. Those core structures were used as lead compounds with potencies that were sufficient to use them in pre-clinical trials. ${ }^{68}$

Rational drug design was further supported by crystallographic studies of the catalytic domains of PARP that were deposited in the Protein Data Bank (PDB). ${ }^{69}$ Those PARPdomain structures were derived from HsPARP1 (e.g. PDB entry 1UK0 0^{70}), HsPARP2 (e.g. PDB entry $3 \mathrm{KCZ}^{71}$) and Gallus gallus PARP1 (GgPARP1, e.g. PDB entry $2 \mathrm{PAX}^{72}$), confirming residues responsible for inhibitor binding and suggesting a common binding mode
of PARP's substrate NAD^{+}. This led to the development of more potent compounds having low toxicity and that were active in combination studies with anticancer chemotherapies in xenograft models. For example, antitumor activity of TMZ, irinotecan and cisplatin against tumour xenograft in mouse was increased by CEP-6800 ${ }^{73}$ (2, Figure 1.4), antitumor efficacy of TMZ against melanoma, glioblastoma multiforme, and lymphoma growing in the mouse brain was enhanced by GPI 15427^{74} (3, Figure 1.4) and an improved therapeutic index was found with AG14361 (4, Figure 1.4) in combination with TMZ, irinocetan and radiation in a human colon tumor xenograft model. ${ }^{75}$ The increased antitumor activity of TMZ in combination with a PARP inhibitor is caused by hindering the BER which removes methylpurine species that are generated by TMZ. ${ }^{76}$

Examples of developed HsPARP1 inhibitors

1

3

Figure 1.4: Examples of developed PARP inhibitors
Structures: 1 3AB, 2: CEP-6800, 3: GPI 15427, 4: AG14361

1.3.2 HsPARP inhibitors in clinical trials

Due to PARP's roles in DNA repair, in pathological conditions that involve restricted blood flow and the findings of connections between PARP inhibitors and BRCA1/2-deficient cell lines, 129 PARP-associated clinical trials have been enrolled, are in progress or have already been finished with published results (www.clinicaltrials.gov, accessed on 29.12.2014) ${ }^{77}$. In the majority of these clinical trials, PARP inhibitors are used in a cancer setting that either combine the PARP inhibitor with standard chemotherapeutic protocols or test a PARP inhibitor as monotherapy to treat tumours that are defective in their DNA repair machinery. Since 2003, 11 different compounds underwent clinical trials (Table 1.1). While aspects like metabolic stability or bioavailability are limitations for inhibitors to enter the market, further
challenges such as resistance to PARP inhibitors and polypharmacology of PARP inhibitors have recently been identified in drug development.

The first clinical trial of a PARP inhibitor was carried out in 2003 with the tricyclic indole inhibitor Rucaparib (AG-014699, PF-01367338) in combination with TMZ in patients with advanced solid tumors (5, Figure 1.5). ${ }^{78}$ Rucaparib was selected from different series of benzimidazole carboxamides as a candidate having promising inhibitory effects ($\mathrm{K}_{\mathrm{i}} 1.4 \mathrm{nM}$) and improved solubility. ${ }^{79}$ It was successfully used in clinical trials phase II to treat patients with advanced metastatic melanoma ${ }^{80}$ and is now being used in phase II as a stand-alone therapy for advanced breast or ovarian cancer in patients having BRCA1/2 deficiencies.

Examples of HsPARP1 inhibitors having entered clinical trials

Figure 1.5: Examples of human PARP1 inhibitors having entered clinical trials
Structures 5: Rucaparib (AG-014699), 6: Olaparib (AZD-2281), 7: Iniparib (BSI-201), 8: Talazoparib (BMN-673), 9: Veliparib (ABT-888), 10: CEP-8983

The PARP inhibitor CEP-8983 (10, Figure 1.5) showed high potency ($\mathrm{K}_{\mathrm{i}} 20 \mathrm{nM}$), but was of limited solubility. ${ }^{81}$ The problem was solved by developing CEP-9722 (structure not shown) which has improved solubility and acts as a pro-drug of CEP-8983. Promising results in preclinical trials indicated CEP-9722 as a chemosensitising agent. ${ }^{81}$ CEP-9722 is now used in three phase I clinical trials, either used as single-agent therapy used in patients having advanced solid cancer or as a combination therapy together with TMZ or gemcitabine or cisplatin in patients with metastatic solid tumours or mantle cell lymphoma.

Olaparib (AZD-2281) belongs to the PARP inhibitor class of phthalazinones. ${ }^{82-84}$ Structural improvements led to optimized inhibition potency, metabolic stability, increased solubility and oral bioavailability. Oliparib (6, Figure 1.5) has entered clinical trials I, II and III, in which it is used as a single-agent or in combination with chemotherapeutic drugs after its potency was shown in pre-clinical trials. ${ }^{58}$ But concerns arised as restorations of BRCAfunctions by secondary mutations as well as induction of P-glycoprotein transporters led to chemoresistance. ${ }^{85}$ Patients showing resistance to Olaparib also showed secondary BRCAmutations. Those mutations restored DNA repair in tumour cells. ${ }^{86}$ The Olaparib-related compound AZD-2461) showed growth inhibition of drug-resistant clones in long-term application. It has now entered clinical trial phase I in which its safety in patients with refractory solid tumours is assessed.

Table 1.1: HsPARP1 inhibitors in clinical trials

Drug			Clinical trial phases					
Drug name	synonym	Ph I	Ph I/II	Ph II	Ph III	unk.	Σ	
ABT-888	Veliparib	23	4	10	2	0	39	
AZD-2281	Olaparib	19	2	13	2	1	37	
BSI-201	Iniparib	5	1	10	2	1	19	
BMN-673	Talazoparib	$6 *$	2	3	1	0	12	
AG-014699	Rucaparib	1	1	4	1	0	7	
MK-4827	Niraparib	3	0	1	2	0	6	
CEP-9722		2	1	0	0	0	3	
INO-1001		1	0	2	0	0	3	
AZD-2461		1	0	0	0	0	1	
E7016		1	0	0	0	0	1	
E7449		0	1	0	0	0	1	
	Σ	62	12	43	10	2	129	

$\mathrm{Ph}=$ Phase, unk. $=$ unknown; * one existing trial in Phase 0 included data from http://www.clinicaltrials.gov, accessed: 29.12.2014

A promising PARP inhibitor that was dismissed later on is Iniparib (BSI-201, 7 in Figure 1.5). It was claimed to non-competitively inhibit PARP, but was later shown to modify a broad range of cysteine-containing proteins. ${ }^{87,88}$ It was the first PARP inhibitor entering clinical phase III to be tested in patients having breast cancer and squamous lung cancer. Due to discouraging results, Sanofi announced to end the research in early 2013. ${ }^{89}$

The PARP inhibitor being used in clinical trials so far is Veliparib, a benzimidazolecarboxamide derivative. First results in preclinical tumor models allowed for testing in clinical trials phase ${ }^{90}$ and later on in phases II. ${ }^{91}$ Currently, there are two phase III trials recruitng in which the effects of Veliparib are examined together with Paclitaxel and Carboplatin treatment in more than 1000 patients (NCT02163694 and NCT02106546).

1.4 The role of poly (ADP-ribosyl)ation in plants

1.4.1 Plant PARP

The functions of PARP in human are investigated since the 1960s. ${ }^{2}$ It is now well established that human PARP are involved in DNA repair, replication and transcription (1.1.1). The functions of PARP may be inferred to be conserved between human and plant PARP due to the high degree of conservation of domain structures and at amino acid level. PARP are DNA break sensors and DNA repair signalling molecules. They are first responders to sites of DNA breaks. Findings for Arabidopsis thaliana, where $A t$ PARP1 and $A t$ PARP2 mRNAs accumulate quickly both after γ-radiation and the accumulation of reactive oxygen species (ROS), support evidence of similar functions of plant PARP. ${ }^{92}$ Overexpression of AtPARP2 led to decreased levels of ROS-induced DNA nicks. ${ }^{93}$ AtPARP1 and AtPARP2 expressions rise in genetic backgrounds that are characterised by increased DNA damage or replication stress. ${ }^{22,94,95}$ In stem cells and rapidly dividing tissues, $A t P A R P 1$ and $A t P A R P 2$ are escalated as well which indicates PARP's involvement in genome integrity. The expression is induced by radiation ${ }^{92,96}$ or genotoxic stress. ${ }^{97}$ AtPARP2 expression is also increased by oxidative stress and salinity ${ }^{92,97,98}$, similar changes in $A t P A R P 3$ expression were observed upon treatment with N, N^{\prime}-dimethyl-4,4'-bipyridinium dichloride (Paraquat), induced salinity, high light or drought stress. ${ }^{98}$ Abiotic stresses that lead to oxidative stress, induce PARP activity that is responsible for diminishing of cellular NAD^{+}and consequently ATP pools. Inhibition of PARP may minimise the depletion of NAD^{+}and ATP pools, resulting in enhanced tolerance against these stresses. Similar effects were observed by downregulation of AtPARPI and $A t P A R P 2$ by RNAi, where NAD^{+}consumption and stress-induced PARylation were reduced and ATP pools retain at higher levels. This led to decelerated ROS accumulation and increased stress tolerance. ${ }^{99}$

Like mammalian PARP, plant PARP are implicated in programmed cell death (PCD). In soybean cells, PARP are activated and cellular levels of NAD^{+}decline upon induction of oxidative stress. PARP inhibition or down regulation might delay PCD. ${ }^{93}$ Further evidence of the connection between PARP and PCD is an improved resistance of soybean cells to mild oxidative stress after $A t P A R P 1$ overexpression in soybean. ${ }^{93}$

Furthermore, there are studies that link PARP activity with the plant hormone abscisic acid (ABA). Increased levels of cyclic ADP-ribose (cADPR), which is synthesised from NAD^{+}, are observed in PARP-deficient plants. ${ }^{100}$ Together with ABA and Ca^{2+}, cADPR acts as a
second messenger. Changes in ABA levels due to abiotic stress are observed before changes in gene expression. ${ }^{101}$ In Arabidopsis, more than 100 ABA-responsive genes can be induced by increased levels of cADPR. ${ }^{102} \operatorname{AtPARP}$-deficient plants, since being unable to cleave NAD^{+}, could provide more NAD^{+}for cADPR production that finally leads to enhanced stress tolerance by improved production of ABA-regulated stress response genes.

1.4.2 Plant PARG

The transfer of ADP-ribose moieties from NAD^{+}to target proteins is reversible. Proteins that hydrolyse PAR polymers and generate free ADP-ribose are called poly(ADP-ribose) glycohydrolases (PARG). By catalysing this reaction, cellular pools of unbound ADP-ribose are increased. Unbound ADP-ribose is a known cell death signal. ${ }^{103}$ Since ADP-ribose can also be cleaved from target proteins, it enables them for further ADP-ribosylation. The function of PARG in counteracting or contributing to the impacts of PARP activity is contextdependent. In animal systems, PARG plays a crucial role in cell death embryonic development ${ }^{104}$ and DNA repair. ${ }^{105}$ Most animal genomes contain one single PARG gene which, when knocked out in mice ${ }^{106}$ or Drosophila ${ }^{104}$, results in lethality due to the accumulation of toxic PAR polymers.

Arabidopsis encodes two adjacent PARG genes (At2g31865 and At2g31870) and one pseudo gene (At2g31860). Some plants species (among which are Oryza sativa, poplar and Zea mays) are predicted to encode for two or more $P A R G$ genes, whereas other plant species (like Ricinus communis and Sorghum bicolor) are predicted to encode for one gene. PARG1 enzymatic activity was shown in Arabidopsis. Higher concentrations of ADP-ribose polymers in PARG1-deficient plants compared to wild-type plants have been observed in Arabidopsis thaliana. ${ }^{107}$ Although plant PARG is not as well investigated as PARP, evidence suggests that PARG are involved in regulation of circadian clock in Arabidopsis. PARG1-mutated plants show an increased leaf movement and cause early flowering under short and long days. It has also been seen that PARG1-mutated plants lengthen the period of all known circadian clockcontrolled genes. ${ }^{88}$

1.4.3 Plant NUDX

ADP-ribose-specific Nucleoside Diphosphate linked to X hydrolases (NUDX) are proteins that degrade free ADP-ribose into adenosine monophosphate (AMP) and ribose-5-phosphate (R5P). Free ADP-ribose can non-enzymatically mono(ADP-ribosyl)ate proteins and is highly
reactive. High levels of free ADP-ribose are toxic. NUDX activities contribute to NAD^{+} maintenance by supplying a source for ATP during the cleavage of ADP-ribose. NUDX are key proteins in re-establishing the cells energy levels. ${ }^{98,108,109}$

Roles of PARP, PARG and NUDX proteins in abiotic stress response

Figure 1.6: Interplay between PARP, PARG and NUDX proteins in abiotic stress Scheme modified from Briggs ${ }^{110}$

In Arabidopsis, there are 27 genes that encode proteins ($A t$ NUDX1- $A t$ NUDX27) having a NUDX box domain which is identified by the motif $\mathrm{GX}_{5} \mathrm{EX}_{7}$ REUXEEXGU. ${ }^{98,109}$ AtNUDX1$A t$ NUDX11 target the cytosol, and among those, $A t$ NUDX 7 seems the most prevalent NADH and ADP-ribose pyrophospatase in Arabidopsis cells. ${ }^{11,112}$ AtNUDX12-AtNUDX18 target mitochondria and $A t$ NUDX19- $A t$ NUDX24 target chloroplasts. It has been shown that $A t$ NUDX2, $A t$ NUDX6, $A t$ NUDX7 and $A t$ NUDX10 hydrolyse ADP-ribose and NADH to AMP in vitro, while substrates such as 8 -oxo-dGTP, dNTPs, NADH, CoA and FAD can be hydrolysed, too.

AtNUDX7 gene expression is upregulated by virulent and avirulent pathogens while a reduction of hypersensitive reponse to an avirulent pathogen was observed in Arabidopsis knock-out nudx7. ${ }^{113,114} \operatorname{AtNUDX7}$ has also been linked to abiotic stress because environmental stresses cause microscopic necrotic lesions, ROS are accumulated and Atnudx7 mutants are stunted. ${ }^{112,115}$

The interplay between PARP, PARG and NUDX in Arabidopsis thaliana is schematically displayed in Figure 1.6.

1.5 Virtual screening in Lead Discovery

Lead discovery and testing of lead compounds in the pharmaceutical and agrochemical industry are different in both industries. A question in lead discovery lies in identifying a target on which a lead acts. Furthermore, the mode of action of the lead needs to be clarified before a lead or drug can enter the market. A pharmaceutical lead is usually defined as a compound having an modulating (e.g. inhibitory) activity against an enzyme or receptor in vitro. Having the target isolated, purified (or even crystallized) the activity of a lead in a first step is measured in vitro. After optimising structural properties of the lead and predicting potential side effects, as well as pharmacokinetic and pharmacodynamic properties, it will have to be successfully tested in animal models before it can enter clinical trials.

In contrast to that, an agrochemical lead is commonly defined as a compound having desired activity in vivo. Testing agrochemicals in vivo early in the discovery process (e.g. under glass house conditions or specific high-throughput-screening (HTS) set-ups) has potential benefits. Desired but also adverse effects of the drug become obvious very early. But as the lead (in general) is intended to act on a specific target, candidates that exert in vivo activity could potentially function on other targets, too. The use of HTS techniques for in vivo experiments can be used as a first filter in the discovery process, before the actual mode of action of leads is further investigated. Transferring glass house conditions to field conditions and characterisation of biochemical mode of action is a further obstacle that narrows the number of compounds.

Mathematical modelling and in silico screening techniques can help guiding the lead discovery. During the last decades, techniques that predict in vitro activities of lead candidates on the target structure or modelling tools to improve lead properties or help in
understanding the mode of action of a drug in silico have been developed and successfully applied. Some of them have been shown to link pharmaceutical and agrochemical industry. A famous example is Nitisinon which inhibits an enzyme involved in tyrosine catabolism. It is now used as a drug to treat the symptoms of the rare diseases hereditary tyrosinemia type 1^{116} and alkaptonuria. ${ }^{117}$

1.5.1 Virtual screening for human PARP inhibitors

Most of the leads as a starting point for the development of potent PARP inhibitors were identified by HTS or rational drug design. Companies invest heavily in the development of PARP inhibition assays and HTS systems. So have precursors of Olaparib at KuDOS Pharmaceuticals been identified and measured with a flash plate assay system which was developed by this company for this very purpose. ${ }^{118}$ While HTS for PARP inhibitors account for the majority of currently developed PARP inhibitors, molecular modelling and virtual screening (VS) techniques became relevant since the 1990s. In 1991, the NAD^{+}binding sites of ADP-ribosylating toxins, including Pseudomonas aeruginosa exotoxin A (ETA) and Diphtheria Toxin (DT), were computationally modelled and compared. ${ }^{119}$ Structural similarities were further investigated in 1994 and the role of a conserved glutamate was already discussed, two years before the crystal structures of DT or GgPARP1 were published and released. ${ }^{120}$ Both the crystal structures of DT ${ }^{121}$ and GgPARP1 ${ }^{122}$ were solved two years later and the proposed importance of a catalytic glutamate and also histidine residues could be verified by structure determination. The binding mode of NAD^{+}in GgPARP1 was modelled in 1998 and mechanisms for the branched and elongation reaction of PARylation were proposed. ${ }^{31,72}$ Although for ADP-ribosylating toxins, there are now crystal structures available for ETA (PDB entry 3B8H) ${ }^{123}$, DT (PDB entry 1TOX) ${ }^{121}$ and Cholera Toxin (PDB entry $2 \mathrm{~A} 5 \mathrm{~F})^{124}$, the binding mode of NAD^{+}in PARP could only be modelled so far. A common structural binding motif for NAD^{+}in poly(ADP-ribose) polymerases and ADP-ribosylating toxins was proposed by Lee in 2010. The authors suggested a "scorpion motif" which is determined by a conserved $\mathrm{YX}_{10} \mathrm{Y}$ sequence. This motiv comprises a conserved loop having only small C_{α} RMSD values upon superpositioning and that is responsible for recognising NAD^{+}. The authors used this structure motif and docking by fitting and model NAD^{+}into PARP enzymes with more structural confidence. ${ }^{125}$

In 1998, more crystal structures of PARP catalytic domains were solved with different classes of GgPARP1 inhibitors such as 4-amino-benzo[de]isoquinoline-1,3-dione (4AN in PDB entry

2PAX), 3-methoxybenzamide (3MB in PDB entry 3PAX), and 8-hydroxy-2-methyl-3-hydro-quinazolin-4-one (NU1 in PDB entry 4PAX). ${ }^{72}$ Also, two crystal structures, PDB entries 1 A 26^{31} and 2PAW ${ }^{72}$, of the catalytic domain of GgPARP1 were crystallised; both having no inhibitor bound in the donor site in which NAD^{+}is cleaved into NA and ADP-ribose. In these two structures, water molecules are present in the donor site instead of NA-mimicking inhibitors, giving insights into conserved water molecules in PARP and their role in the catalytic reaction. Investigations of the role of conserved water molecules in the PARP active site were used to analyse the contribution of water molecules for protein-ligand interactions. ${ }^{126}$

The first quantitative structure-activity relationship (QSAR) has been carried out in 2001 with sets of 46 known HsPARP1 inhibitors. ${ }^{127}$ Docking studies were conducted prior to generating surface maps of the active sites from which descriptors that are related to entropy and enthalpy contributions were derived. These descriptors were used to perform QSAR analysis based on multiple linear regression (MLR) that yielded remarkable results. Prediction with an external test set of four compounds revealed excellent results ($r^{2}=0.795, q^{2}=0.720$) that enabled combined docking and QSAR methologies to be used for rational design for new PARP inhibitors. Further QSAR modelling was used to derive precise models of 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamid activities. ${ }^{128}$ Here, genetic algorithm-multiple linear regression (GA-MLR) was used to derive models with high predictive power $\left(R^{2}=0.935, Q^{2}{ }_{L O O}=0.894\right)$ for 34 structures. Benzimidazole caboxamide derivatives were also investigated with combined docking, QSAR, CoMFA ${ }^{129}$ and CoMSIA ${ }^{130}$ studies, in which highly predictive models (for CoMFA $r^{2}=0.899, q^{2}=0.712$ and for CoMSIA $r^{2}=0.889, q^{2}=0.744$) could be derived based on a much larger data set with 145 structures. ${ }^{131}$ Application of MLR and a feed forward neural network (FFNN) were used to study the behaviour of 30 phthalazinone derivatives. Using MLR ($r^{2}=0.766, r^{2}{ }_{c v}=0.694$) and FFNN $\left(R M S_{\text {test }}=0.32\right)$ with 14 descriptors allowed predictions of new phthalazinone analogues. ${ }^{132}$

Molecular modelling was also used to support the design and synthesis of novel $4 H$-thieno[2,3-c] isoquinolin-5-one derivatives. ${ }^{133}$ Structures of synthesised compounds were docked into the active site and frontier orbitals and electrostatic potentials were calculated for two structures whose activity could not be explained by visual inspection. First in silico investigations of selective PARP inhibitors were conducted by Ishida and colleagues in $2006 .{ }^{134}$ To explain selectivity of synthesised inhibitors, they used the crystal structure of
$H s P A R P 1{ }^{70}$ and a homology model of HsPARP2, based on the crystal structures of murine PARP2 (PDB entry $1 \mathrm{GSO}^{135}$) for structural investigations. The selectivity of human PARP1/2 inhibitors was further investigated in silico by Novikov and co-workers in 2009. ${ }^{136}$ They used $H s$ PARP $1 / 2$ as a case study to evaluate a developed docking program Lead Finder. ${ }^{137}$ Lead Finder was used for virtual screening, binding energy calculations and for predicting selectivity between HsPARP1 and HsPARP2 inhibitors. Their test set consisted of 142 (selective) $H s$ PARP1/2 inhibitors and it could be shown that binding affinity could be predicted in an acceptable manner based on docking procedures. Another application in which PARP inhibitors were used in the context of virtual screening was published in 2010. There, in the group of Exner, a flexible ligand alignment technique for rapid superpositioning of ligands similar to pharmacophore searches was developed. Since PARP inhibitors share common chemical features as binding motif, test sets of known human PARP1 inhibitors were used to verify the potency of this approach. ${ }^{138}$

1.5.2 Virtual screening in agrochemistry

One aim of agrochemistry is the development of new insecticides, fungicides and herbicides. The latter ones are compounds that affect the growing behaviour of weed by effectively and selectively inhibiting specific enzymes. Since potential plant PARP inhibitors will probably be applied as potential growth-affecting agrochemicals, in this section it will be focussed on the application of molecular modelling techniques on herbicides.

Around 300 compounds that act as herbicides have entered the market, all of them acting on less than 30 sites of action. ${ }^{139}$ According to the Herbicide Resistance Action Committee (HRAC), compounds are classified into distinct sites of action and into chemical families within each site of action. ${ }^{140}$ The classes mainly represent sites of photosynthesis and amino acid synthesis. Others act on disruption of cell division, seedling growth or synthetic auxins. A modified listing from HRAC representing the herbicide targets is shown in Table 1.2.

About half of all marketed herbicides act on three targets, namely acetolactate synthase (ALS), also known as acetohydroxy acid synthase (AHAS) ${ }^{141,142}$, photosystem II (PSII), and protoporphyrinogen oxidase (PPO, EC 1.3.3.4). Also, only about 3% of all herbicides account for half of market share. The fact that the most prominent herbicides act on a few targets indicates that there is a need for identification of new targets. Out of the ~ 28.000 genes identified in Arabidopsis, about 20\% of them are annotated as enzymes. Among the enzymes
that are identified as targets for herbicides, virtual screening techniques have been developed to screen for inhibitors or potentiate the activity of existing ones.

Table 1.2: Classification of Herbicides according to HRAC

class	Site of action	Chemical family (examples)		
A	ACCase inhibition	cyclohexanedione, phenylpyrazoline		
B	ALS or AHAS inhibition	triazolopyrimidine, imidazolinone		
triazine, triazinone, urea, uracile, nitrile				
C1-C3	photosynthesis Inhibition at photosystem II	bipyridilium thia- and oxadiazole, triazolinone,		
D	Photosystem-I-electron diversion			
E	PPO inhibition	pyridazinone, triketone, triazole, urea		
F1-F3	Bleaching: carotenoid biosynthesis at PDS, 4-HPPD and "unknown target" inhibition	glycine phosphinic acid		
G	EPSP synthase inhibition	carbamate	,	glutamine synthetase inhibition
:---				
H				

Abbreviations: 4-HPPD: 4-hydroxy-phenyl-pyruvate-dioxygenase, ACCase: Acetyl CoA carboxylase, ALS: acetolactate synthase, AHAS: acetohydroxy-acid synthase, , DHP: dihydropteroate, PDS: phytoene desaturase step, PPO: protoporphyrinogen oxidase, VLCFAs: very long chain fatty acids

Inhibitors of the plant enzyme acetolactate synthase (EC 2.2.1.6, ALS), also known as acetohydroxy acid synthase (AHAS, EC 4.1.3.18), hinder catalysis of branched-chain amino acids valine, leucine and isoleucine. ${ }^{141}$ Disrupted branched-chain amino acid synthesis causes inhibition of DNA synthesis and ultimately cell death. Several classes of AHAS inhibitors, such as sulfonylureas and imidazolinones are known. Sulfonylurea-based herbicides are Amidosulfuron and Met-sulfuronmethyl. A prominent imidazolinone derivative herbicide is Imazapir, which was licenced in the USA in 1985. The first crystal structure of the catalytic subunit of yeast AHAS was released in 2002. ${ }^{143}$ Since then, the mode of AHAS inhibition for herbicides was identified and more than ten crystal structures of different AHAS could be solved. ${ }^{144}$ Some of these crystal structures include protein-bound herbicides. Based on cocrystallised herbicides, virtual screening and docking protocols have been used to identify novel AHAS sulfurea and imidazolinone-derived inhibitors. ${ }^{145}$ 3D-QSAR was used to identify
new asymmetric aryl disulfides which showed Arabidopsis AHAS inhibition and herbicidal activity in vivo. ${ }^{146}$ Molecular docking and 3D-QSAR were extended to DFT calculations for determination of HOMO and LUMO contribution of protein-ligand interactions of 32 isatin derivatives which proved to be active in both enzymatic assay and in Brassica napus root growth tests. ${ }^{147}$

The herbicide Atrazine acts as an inhibitor of Photosystem (PSII). It is a triazine-derived herbicide. Atrazine is one of the most widely used herbicides, that can increase yield by 3$4 \%{ }^{148}$ Its mode of action is the active site blockade of the plastoquinone-binding protein of PSII. This blockade causes the breakdown of electron transport processes that causes oxidative damage and plant death. Atrazine is toxic, having endocrine disruptive and possible carcinogenic effects. ${ }^{148}$ It was also found that Atrazine reduces fish reproduction. ${ }^{149}$ In 2004, Atrazine was banned from the European market due to groundwater pollution. In 2000, a computational modelling workflow was applied using homology modelling, docking and CoMFA for butenanilide and quinone derivatives. ${ }^{150}$ Another CoMFA study was published in which CoMFA models based on structural diverse classes of PSII inhibitors yielded useful knowledge for the development of novel PSII inhibitors which might be less toxic than Atrazine. ${ }^{151}$

1.6 Aim of this work

The main goal of this work is divided into two connected parts and is displayed in Figure 1.7. First, the development of a virtual screening workflow is desired which allows to search structural databases for potential AtPARP inhibitors. The lack of structural data for the catalytic domain of AtPARP proteins requires sequence analysis and homology modelling prior to derive a protein model of the target enzyme. Protein model evaluation will have to be performed to guarantee the model's applicability to perform the virtual screening process. This process is a multi-step procedure that consists generally of structure- and/or ligand-based pharmacophore filtering, followed by docking experiments that help to greatly reduce the numbers of structures in databases that will pass these filters. Validation of each filtering step will ensure that errors arising from both underlying mathematical and biological assumptions will influence the VS process in an appropriate and acceptable manner. After further application of structural database reducing $A t$ PARP-specific filters, potential candidates will be selected for more intensive investigation.

Meanwhile, at least one of the catalytic domains of AtPARP should have been isolated and purified so far by cooperation partners and an enzyme inhibition assay should have been developed and validated. This will allow for testing selected candidate compounds for their inhibitory effects on the target and therefore affirm the aim of finding new AtPARP inhibitors.

Once the structures, whose selection was based on the developed in silico workflow, have been verified as $A t$ PARP inhibitors, it should be investigated what is responsible for their inhibitory activity in a quantitative manner. This process is called quantitative structureactivity relationship (QSAR). QSAR can be used to gain insights into what chemical features might discriminate high-affine compounds from inactive or less active ones. The models also should be predictive so that activity of further VS outcomes could be estimated without the need of in vitro determination of inhibitory constants - depending on the quality of the QSAR model.

The second goal of this work is to integrate $A t$ PARP inhibiton into the network of drought stress (DS) sensation and drought stress resistance. Parallel field trials that are designed to measure $A t$ PARP-verified inhibitors in planta, should be taken into consideration whether in vitro and in planta results can be compared and which practical significance AtPARP inhibitors might have in the field. These results on the one hand might give further implications on the interplay of plant PARP and drought stress and on the other hand might be a starting point for the development of a new class of agrochemicals that increase crop yield under drought stress conditions.

Combined in silico, in vitro and in planta workflows

Figure 1.7: Workflow and aim of this work

2 Materials \& Methods

2.1 Data sets

2.1.1 Natural substrate and natural substrate analogues

In PARP's catalytic reaction, the donor molecule nicotinamide adenine dinucleotide (NAD^{+}, 11 in Figure 2.1) and a polymer of poly-ADP-ribose units - the acceptor molecule - are involved. The donor substrate NAD^{+}was crystallised in Diphtheria Toxin (PDB entry 1TOX) ${ }^{121}$. The NAD^{+}-analogue carba-NAD (CNA, 12 in Figure 2.1) was crystallised in the acceptor site of GgPARP1 (PDB entry 1A26). ${ }^{31}$ In that experiment, the difference Fourier electron density map only allowed for the structural determination of the adenosine diphosphate moiety of carba-NAD (13 in Figure 2.1) because the nicotinamide moiety of carba-NAD was too mobile for structure determination. There is no crystal structure containing both the donor and acceptor structures. The co-crystallised ligands from 1TOX and 1A26 were used to investigate the positions of the substrates in the active site of AtPARP1.

Structure of natural substrate and substrate analogue of HsPARP1

Figure 2.1: Natural substrate of HsPARP1 and substrate analogue carba-NAD
Structures: 11 NAD ${ }^{+;}$12: carba-NAD; 13: moiety of carba-NAD for which electron densities were high enough for structure determination; 13 top: schematic representation of carba-NAD; 13 bottom: stick representation of carba-NAD in its conformation observed in GgPARP1 (PDB entry 1A26) ${ }^{31}$

While carba-NAD represents the complete NAD^{+}-mimicking structure, in the contect of this
document, the name of carba-NAD (CNA) will be used to identify those parts of the NAD^{+}analogue that were crystallised in GgPARP1 and whose electron densities were high enough for structure determination (PDB entry 1A26, 13 in Figure 2.1).

2.1.2 Commercial database

The commercial database from Key Organics ${ }^{152}$ was used for virtual screening for $A t$ PARP inhibitors. The database available contained 43.179 structures. The database also contains a fraction of so called Agromediates ${ }^{\mathrm{TM}}$, structures that contain favourable "heterocycles and adornments for agrochemical synthesis". ${ }^{153}$

2.1.3 Known human PARP inhibitors

A data set containing HsPARP inhibitors was chosen from Novikov. ${ }^{136}$ The data set is a collection of 142, partially selective, HsPARP1 / HsPARP2 inhibitors from six publications. ${ }^{127,134,154-157}$ The data set represents a range of IC_{50} values from 3 nM to $12 \mu \mathrm{M}$ and a molecular weight from 145 to 674 Da . The number of rotatable bonds varies from 0 to 14 , and number of hydrogen donors varies from 1 to 5 , the numbers of hydrogen bond acceptors ranges from 2 to 12 . The Novikov PARP inhibitor data set was assumed to represent a random sample from the (unknown) population of $H s$ PARP1 inhibitors. This data set was also selected because it was already used in molecular modelling studies. ${ }^{136,137}$ Examples of known HsPARP1 inhibitors from the Novikov data set are shown in Figure 2.2

Examples of HsPARP1 inhibitors

cosmes)

Figure 2.2: Examples of HsPARP1 inhibitors
Structure names as given in Novikov et. al: ${ }^{136}: 14: 5-16,15: 2-10,16: 5-41,17: 6-17,18: 3-04 f, 19: 6-21$. Structure 16 represents the PARP inhibitor 4-amino-1,8-naphthalimide, also known as $4 A N I$ or $4 A N$. $4 A N$ was co-crystallised in the catalytic domain of GgPARP1 (PDB code 4PAX) by Ruf and colleagues in 1998.

2.1.4 Known human PARP decoys

Decoy structures for HsPARP1 were taken from the Directory of Useful Decoys (DUD). ${ }^{158}$ They represent 1351 structures that are similar in scaffolds to human PARP inhibitors but do not bind to human PARP1. As for the human PARP1 inhibitors data set (2.1.3) it is assumed that they represent a random sample from the (unknown) population of human PARP1 decoys. Examples from the data set of $H s$ PARP1 decoys are shown in Figure 2.3

Examples of HsPARP1 decoys

Figure 2.3: Examples of $H s P A R P 1$ decoys
Structure names as given in the DUD. ${ }^{158}: 20$: ZINC00424179, 21: ZINC02990370, 22: ZINC00818218, 23 : ZINC00007652

2.2 Sequence analyses

2.2.1 Pairwise sequence alignment

Pairwise sequence alignments were performed using the program EMBOSS needle, which is available at the EMBL-European Bioinformatics Institute's (EMBL-EBI) webpage. ${ }^{159}$ The program uses the alignment algorithm developed by Needleman and Wunsch ${ }^{160}$ with the following EMBOSS needle's parameters: Matrix: BLOSUM62, gap penalty: 10.0, extend penalty: 0.5 , gap penalty: false, end gap open: 10.0, end gap extend: 0.5

2.2.2 Multiple sequence alignment

Multiple sequence alignments were performed using the program Clustal Omega, available at the EMBL-EBI's webpage. ${ }^{161-163}$ The following parameters were used: KTUP: 1, Window: 5, Score: percent, Top Diagonals: 5, Pairgap: 3, Protein Weight Matrix: BLOSUM, Gap open: 10, Gap extend: 0.1, Protein Weight Matrix: BLOSUM, Gap open: 10, End gap: false, Gap extend: 0.2, Gap distance: 5, Iteration type: none, Number Iterations: 1 , Clustering method: Neighbour-Joining algorithm. ${ }^{164}$

2.3 Programs for Homology Modelling and Docking

2.3.1 Molecular Operating Environment (MOE)

In MOE, pharmacophores were created and databases searched for structures fulfilling the requirements of the pharmacophore. Molecular structures together with their chemical properties are stored in MOE in molecular database (*.mdb) files in which data manipulation, data processing and data analysis can be performed. The versions $2008.10^{165}, 2009.10^{166}$, $2010.10^{167}, 2011.10^{168}$ and 2012.10^{169} of MOE were used.

The MOE docking Suite (MOE dock) was used for evaluation of docking performance on HsPARP1 inhibitors (2.1.3) and decoys (2.1.4), as well as docking of NAD ${ }^{+}$(Figure 2.1) into HsPARP1. In the context of docking, the placement methods Alpha PMI, Alpha Triangle, Pharmacophore, Proxy Triangle and Triangle Matcher were used. Affinity dG scoring function was used to rate poses.

For conformational analysis of the HsPARP1 decoy (2.1.4) and inhibitor (2.1.3) data sets, conformations of those structures were generated with the LowModeMD search ${ }^{170}$ application with standard parameters, of which the most important are the rejection limit $=100$, RMS gradient $=0.005$, RMSD limit $=0.25$, Energy Window $=7 \mathrm{kcal} / \mathrm{mol}$.

2.3.2 POSIT

Open Eye's software application POSIT (version 1.0.0) was used for identification of bioactive poses of compounds that are known to bind to AtPARP. POSIT compares ligand poses (e.g. generated by a docking program) to X-ray crystal coordinates and calculates a probability that a generated pose is correct. POSIT uses measures of similarity to define a probability. These measures are shape comparisons such as the 3D TanimotoCombo ${ }^{171}$ and 2D path -based fingerprints, as well as the Mills Dean approximation of electrostatics. ${ }^{172}$ The value of the Tanimoto Combo is the sum of Tanimoto shape and Tanimotocolor, where the Tanimoto $_{\text {shape }}$ of two structures A and B is:

$$
\begin{align*}
& \text { Tanimoto }_{\text {shape }}(A, B) \\
&= \frac{\int A(\vec{r}) * B(\vec{r})}{\int A(\vec{r}) * A(\vec{r})+\int B(\vec{r}) * B(\vec{r})-\int A(\vec{r}) * B(\vec{r})} \tag{2.1}
\end{align*}
$$

Tanimoto $_{\text {shape }}$ can take values from 0 for non-overlapping voxels of two structures to 1 for two structures sharing the same voxels. Thereby, a voxel represents the volume of a cube of structures. Each voxel is assigned a colour representing chemical features like hydrogen bond
donors. For Tanimotocolor,

Figure 2.4: POSIT probability map, modified from POSIT manual colour-coded voxels are used for calculation. It also takes values from 0 to 1 , where 1 equals the same chemical features of structures A and B. Therefore, the maximum value, that Tanimoto Combo can take on, is 2 .

Among a set of X-ray complexes, POSIT chooses the one whose bound ligand matches a predicted pose (of a new) ligand best by applying the similarity measures. For the chosen complex, to better match the binding mode of the bound ligand, a flexible fit is performed using an adiabatic optimisation method. ${ }^{173}$ As a next step, ligand protein optimisation is performed to remove steric clashes and improve interactions between the ligand and the protein. Finally, a probability is provided, which, given the ligand does bind to the protein, is the likelihood of the POSIT pose being the one, that one would observe in a crystal structure. This probability is a function of the Tanimoto Combo and the MACCS166 key fingerprint and is displayed in Figure 2.4.

2.3.3 YASARA

YASARA ${ }^{174}$ was used for Homology Modelling of AtPARP, energy minimisation of protein models and Molecular Dynamic simulations. ${ }^{175}$ For energy minimisation of proteins, the YASARA2 force field was used. ${ }^{174}$ The AMBER03 force field ${ }^{176}$ was used for Molecular Dynamic simulations which are further described in 2.3.3.2. Also, evaluation of MD simulations was performed in YASARA.

2.3.3.1 Homology modelling in YASARA

The first step in homology modelling is to select a protein template. This is chosen from the PDB in general. ${ }^{69}$ The three-dimensional structure of the target, based on its primary sequence, can then be modelled using YASARA's macro md_build.mcr. The standard parameters are: PSI-BLAST iterations $=6$, PSI-BLAST E-value $=0.5$, oligomerization state $=$ 4 , used templates $=5$, Alignments per template $=5$, terminal extension $=10$, loop samples $=$ 50, modelling speed = slow. Whenever homology modelling with YASARA was used in this work, a specific template was selected ahead and according to this, the parameter "used templates" was altered from 5 to 1 . The homology modelling workflow in YASARA consists of the following stages (Table 2.1) if a single template is chosen:

Table 2.1: Homology modelling steps in YASARA

Stage no.	Sequence length
1	Setting modelling parameters
2	Perform a BLAST search to retrieve (multiple) sequence alignment
3	Predict the secondary structure using the Discrimination of Secondary structure Class (DSC) prediction algorithm ${ }^{177}$ and loop refinement
4	Creation of tertiary structure of the query sequence with subsequent loop modelling
5	Side chain optimisation followed by a combined steepest descent and simulated annealing minimisation with fixed backbone atoms
6	Full unrestrained simulated annealing for refinement
7	Model evaluation using a Z-score defined as
	$\boldsymbol{Z}=\mathbf{0} .145 \times$ dihedrals $+\mathbf{0} .390 \times$ packing1D $+\mathbf{0} .465 \times$ packing3D
8a	If more than one solution was built for sequence alignment, steps 1-7 are performed for all remaining alignment solutions, A final hybrid model, based on all previous homology models is created and evaluated.
8b	Finally, among all models, the one with the highest positive \boldsymbol{Z}-score is chosen as the final homology model of the query sequence

2.3.3.2 MD simulations in YASARA

Molecular Dynamics (MD) simulations were performed using the tool md_run.mcr in YASARA (version 12.11.25) with the AMBER03 force field. ${ }^{176}$ Intermolecular and intramolecular forces were calculated every 1 fs resulting in a simulation time step of 1 fs . After a simulation time of 5.000 simulation time steps (5.000 fs), a snapshot of the current simulation system was saved. In total, 4.000 simulation snapshots were saved, resulting in a total simulation time of 20 ns .

To set up the simulation, YASARA's Neutralization Experiment was used to predict pK_{a} values using Ewald summation. ${ }^{178}$ The simulation cell was defined being $10 \AA$ greater than the protein in each direction. It was simulated at $\mathrm{pH}=7.0$, with a physiological NaCl concentration of 0.9% and a density of water of $0.997 \mathrm{~g} / \mathrm{l}$. Temperature was controlled by rescaling atom velocities using a Berendsen thermostat ${ }^{179}$ based on the time-averaged temperature. ${ }^{175}$ It was simulated using periodic boundary conditions and long-range Coulomb interactions were calculated using Particle Mesh Ewald (PME) algorithm. ${ }^{180}$

All MD simulations were conducted as independent triplicates as are required in the Journal of Molecular Modelling. Since in YASARA, initial kinetic energies and atom velocities are assigned randomly but fixed for a given temperature, independent triplicates were generated by running each simulation at slightly different temperatures of $298 \pm 0.0001 \mathrm{~K}$. Therefore, by selecting different, initial atom velocities were set in an independent manner while merely affecting the average kinetic energy of the system.

2.3.4 ConfGen

ConfGen ${ }^{181,182}$, a tool of Schrödinger Software, was used to generate bioactive conformers of structures. It was used with the intermediate search strategy and the following settings: The maximum number of search steps is 1000 , the number of conformers generated per rotatable bond is 75 , an RMSD value of $1.0 \AA$ is used to detect redundant conformers. All conformers having an energy more than $25 \mathrm{kcal} / \mathrm{mol}(104.67 \mathrm{~kJ} / \mathrm{mol})$ higher than the lowest energy conformer are eliminated. The minimum dihedral angle difference for polar hydrogens is 60°. The maximum relative energy for flexible rings is $2.39 \mathrm{kcal} / \mathrm{mol}(10 \mathrm{~kJ} / \mathrm{mol})$ and the energy threshold for periodic torsions is $5.74 \mathrm{kcal} / \mathrm{mol}(24 \mathrm{~kJ} / \mathrm{mol})$. The total number of ring conformations per ligand is 16 , the number of ring conformations for a single ring is 8 . All remaining conformers were energy minimised using the OPLS 2005 force field. ${ }^{183}$ In this study, ConfGen version 2.2 from Schrödinger Suite 2010, was used.

2.3.5 LigPrep

LigPrep ${ }^{184}$ by Schrödinger Software was used to generate low energy 3D output structures being variations of ionisation state and tautomers of the input structures. Ionisation states were generated at target pH of 7.0 ± 2.0. Possible protonation states were generated using the program Epik ${ }^{185-187}$. Chirality was changed only if it was not specified before. All other stereo
centres were retained. At most 32 stereoisomers per input structure were generated. LigPrep version 2.4, as implemented in Schrödinger Suite 2010, was used in this study.

2.3.6 Glide

Glide ${ }^{188,189}$ (Grid-based Ligand Docking with Energetics) is the docking program by Schrödinger Software. ${ }^{190}$ The docking process is divided into four stages. During the first, a site-point search is performed. If the first stage is passed, stage two begins with evaluation of steric clashes (Diameter test), followed by a subset test in which hydrogen bonding and ligand-metal interactions are taken into account and scored. If this score passes a threshold, all interactions are considered and scored, too (greedy score). Scoring in theses stages is done using ChemScore scoring function. ${ }^{191}$ The third docking stage contains an energy minimisation using pre-computed OPLS-AA grids for the receptor. The final step consists of scoring the remaining poses with Schrödinger GlideScore (GScore), a modified version of the ChemScore ${ }^{191}$ scoring function:

$$
\begin{equation*}
\text { GScore }=0.065 \times \text { vdW }+0.130 \times \text { Coul+Lipo }+ \text { HBond }+ \text { Metal }+ \text { BuryP+RotB+Site } \tag{2.3}
\end{equation*}
$$

Glide Extra Precision Mode (Glide XP) ${ }^{192}$ uses a more exhaustive sampling strategy than the standard Glide (standard precision, SP) docking protocol, but also a modified scoring function compared to Glide SP. It is designed to recognise false positive ligands by recognising poses of ligands which are unfavourable and then removing them.

The receptor for Glide docking was prepared using the Receptor Grid generation tool. In this study, version 5.6 of Glide as part of Schrödinger Suite 2010, was used.

2.3.7 GOLD

The docking program GOLD (Genetic Optimization for Ligand Docking, version 5.0.1) was developed in 1995. ${ }^{193,194}$ It uses a genetic algorithm (GA) ${ }^{195}$ that enables to rapidly explore the conformational flexibility of a ligand and sampling binding modes into a binding site that is treated partially flexible. Genetic algorithms are in principle able to find an optimum solution to optimisation problems which makes it an interesting application in performing conformational analysis of small and flexible molecules. ${ }^{194,196,197}$ The scoring functions ASP ${ }^{198}$, ChemScore ${ }^{191,199}$, GOLDScore ${ }^{193,200}$ and ChemPLP ${ }^{201}$ were used.

2.3.8 PLANTS

The docking program PLANTS (Protein Ligand ANT System, version 1.1) uses ant colony optimisation (ACO) which, together with particle swarm optimisation (PSO) methods, constitutes main swarm-intelligence approaches. These approaches belong to the class of stochastic optimisation methods that can be used to find a global minimum structure with respect to a given objective function \boldsymbol{f}.

$$
\begin{equation*}
\min _{\bar{x} \in \mathbb{R}^{n}} f(\bar{x}): \mathbb{R}^{n} \rightarrow \mathbb{R} \tag{2.4}
\end{equation*}
$$

In the context of docking the objective function \boldsymbol{f} is called scoring function. Here, $\overline{\boldsymbol{x}}=$ $\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right]^{t} \in \mathbb{R}^{\boldsymbol{n}}$ represents the protein's (n_{p}) and ligand's (n_{l}) degrees of freedom with total degrees of freedom $\boldsymbol{n}=\mathbf{6}+\boldsymbol{n}_{\boldsymbol{l}}+\boldsymbol{n}_{\boldsymbol{p}}$. PLANTS uses two empirical scoring functions PLANTS $_{\text {PLP }}$, PLANTS $_{\text {ChemPLP, }}$, that are derived to reproduce experimentally determined protein-ligand complexes. PLANTS PLP uses a distance-based piecewise linear potential and is adapted from the work of Gelhaar ${ }^{202}$ and Verkhivker ${ }^{203}$. The second scoring function, the one, which was used for the docking studies used in this context, is PLANTS ChemPLP. It is of the form:

$$
\begin{equation*}
f_{\text {PLANTS }}^{\text {CHEMPLP }} \text { }=f_{\text {PLP }}+f_{\text {chem-hb }}+f_{\text {Ltors }}+f_{\text {Lclash }}+0.3 * f_{\text {Protscore }}-20 \tag{2.5}
\end{equation*}
$$

Steric interactions between the protein and the ligand are calculated by $\boldsymbol{f}_{\boldsymbol{P L P}}$. The second term, $\boldsymbol{f}_{\boldsymbol{c h e m} \boldsymbol{h} \boldsymbol{h} \boldsymbol{b}}$, describes hydrogen bonding and metal-acceptor interactions between the protein and the ligand. Weak CH-O interactions are considered by differentiating charged and neutral hydrogen bonds as has been done by Verdonk. ${ }^{204}$ It is adapted from the ChemScore scoring function, as it is implemented in GOLD. ${ }^{205}$ Intramolecular ligand scoring terms consist of a clash term $\boldsymbol{f}_{\text {Lclash }}$ and a torsional potential $\boldsymbol{f}_{\text {Ltors }}$, adapted from Clark and coworkers. ${ }^{206}$ The same potential as $\boldsymbol{f}_{\boldsymbol{P L P}}$ describes the Intramolecular protein-interactions ($\left.\boldsymbol{f}_{\text {Protscore }}\right)$, together with an intra-side chain clash term.

PLANTS allows the weights for hydrogen bond contributions $\boldsymbol{w}_{\boldsymbol{h} \boldsymbol{b}}$ to be changed. In standard scoring parameters, the hydrogen bond weights, $\boldsymbol{w}_{\boldsymbol{h} \boldsymbol{b}}$, are set to $\boldsymbol{w}_{\boldsymbol{h} \boldsymbol{b}}=\mathbf{1}$. In order to direct the docking procedure and reward specific protein-ligand interactions, these parameters have been changed, e.g. increased to $\boldsymbol{w}_{\boldsymbol{h} \boldsymbol{b}}=\mathbf{1 0}$, which results in poses with better docking scores in which hydrogen bond that have increased weights, exist (2.6.4).

2.4 Application-dependent Homology Modelling

The large amount and variety of PARP and ADPRT-like crystal structures in the PDB enables for the usage of specific homology modelling techniques as well as using specific templates for homology modelling of AtPARP. Depending on the objective (investigation of homology model stability, the positions of PARP's natural substrates and the bioactive conformation of new $A t$ PARP inhibitors), it was taken advantage of the range of potential templates and homology modelling techniques as will be described in the following sections.

2.4.1 Investigation of protein stability

The information of from two X-ray structures of the catalytic domain of GgPARP1 was used for investigation of protein stability. PDB entry 2 PAX contains $G g P A R P 1659-1008$ and the PARP inhibitor 4-amino-benzo[de]isoquinoline-1,3-dione (PDB identifier 4AN, 16, Figure 2.2) in the active site. ${ }^{72}$ Using 4AN as reference ligand for AtPARP1 in silico experiments was advantegous because this compound was recently shown to be a new $\operatorname{AtPARP} 1$ inhibitor. ${ }^{207,208}$ PDB entry 2PAW contains GgPARP1 $1_{659-1006}$ without an inhibitor bound in the active site. ${ }^{72}$ After building homology models of 4AN-ligated and unligated $A t$ PARP1 models, structural changes during an MD simulation of the models were investigated by analysing the root mean squared fluctuations (RMSF) (2.7.8) for all C_{α} atoms. MD simulations were carried out in YASARA under specifications described in 2.3.3.2. The RMSF were compared to C_{α} B-factor distributions of the X-ray structures in the presence and absence of the inhibitor. The workflow is shown in Figure 2.5. By investigating the B-factor distributions for ligated and unligated GgPARP1, two hypotheses were tested:

The first hypothesis was: The MD simulation-based RMSF distributions for the ligated and unligated $A t$ PARP1 models should be of same shape as the experimentally derived B-factor distributions for ligated and unligated GgPARP1 crystal structures.

The second hypothesis was based on the observation, that upon binding of 4AN in GgPARP1 a stabilising effect occurs in the region of the loop in proximity to Tyr_{907} (corresponding to Tyr_{907} in HsPARP1 and Tyr_{531} in AtPARP1). ${ }^{72}$ Therefore, the second hypothesis was: If Tyr_{531} in AtPARP1 has the same stabilising effect upon inhibitor binding as it was observed in GgPARP1, the same effect should be detected as decreased RMSF values for 4AN-ligated AtPARP1 during MD simulations (2.3.3.2) in the region around Tyr_{531} in comparison to unligated $A t$ PARP1 RMSF values in the same region.

Investigation of protein stability of $\operatorname{AtPARP1}$

Figure 2.5: Workflow of investigation of protein stability in AtPARP1

2.4.2 Investigation of positions of natural substrates

The structures of NAD^{+}and CNA (Figure 2.1) were used for investigation of $\operatorname{AtPARP1}$'s natural substrate positions. Their positions in the active site of $A t$ PARP1 were investigated by an approach that uses superpositioning of functional conserved active sites and that is making use of conserved residues in ADP-ribosylating toxins and PARP enzymes. A schematic representation of the workflow is shown in Figure 2.6.

For the superpositioning of natural substrate in $A t$ PARP1, the ProBiS web server ${ }^{209}$ was used, which identifies structurally similar binding sites. The web server uses the ProBiS algorithm ${ }^{210}$ which compares a query protein structure with the non-redundant PDB (nr-PDB) database which (since $30^{\text {th }}$ Nov. 2013) contains 37.643 entries. In the algorithm, a query protein is compared to each entry, e.g. each protein, in the ProBiS database ${ }^{211}$. For each protein-protein comparison, the ProBiS algorithm represents a protein as a three-dimensional graph of vertices and edges, where a single vertex represents a physicochemical property of a functional group of a surface-accessable amino acid. Physicochemical properties are divided into hydrogen bond acceptor (AC), hydrogen bond donor (DO), mixed acceptor/donor (ACDO), aromatic (PI) and aliphatic (AL) (shown in Figure 2.7), according to the physicochemical properties proposed by Schmitt and co-workers. ${ }^{212}$

Investigation of positions of AtPARP1's natural substrates ProBiS approach

Figure 2.6: Workflow using ProBiS

From these 3D graphs, subgraphs are generated which are defined as all vertices in a radius smaller $15 \AA$ radius from a central vertex. Similar subgraphs between the query and database

ProBiS algorithm from subgraphs product graphs

Edges: two vertices in the product graph are connected by an edge if their corresponding vertices in the subgraphs differ by less than $2 \AA$.

Figure 2.7: Schematic representation of ProBiS algorithm I Product graph generation of subgraph of query and database proteins in ProBiS algorithm
protein are found by calculating a similarity value between the subgraphs. ${ }^{213}$ If two subgraphs are defined as similar, a product graph is constructed, as depicted in Figure 2.7.

In a next step, a maximum clique algorithm ${ }^{214}$ is applied to find a maximum clique in all product graphs, which corresponds to common substructure consisting of the maximum number of vertices. Each maximum clique can be regarded as a local structural alignment of two proteins. The
statistical significance of each structural alignment is assessed by a surface vector angle (which has to be smaller than 90°), an RMSD value (which has to be smaller than $2 \AA$) and an E-value (using the Karlin-Altschul equation ${ }^{215-217}$, which has to be below the threshold of $1.0^{*} 10^{-4}$).

Statistically significant maximum cliques with more than 5 vertices are clustered. Statistically significant local structural alignments in the ProBiS Database are calculated using a Z-score, which is derived from a standardised alignment score, the RMSD of two pairs of superimposed vertices and the calculated E-value. A schematic ewpresentation of the ProBiS algorithm is shown in Figure 2.8.

ProBiS algorithm -

From protein structures to subgraphs and superposed conserved active sites

Figure 2.8: Schematic representation of ProBiS algorithm II
Scheme modified from Konc, J.\& Janežic ${ }^{210}$ A: Comparison of a query protein with all proteins contained in a database B: Representation of the query and database protein as graphs (and subgraphs) consisting of vertices and edges C:Generation of product graphs and maximum cliques within product graphs D: Production of structural local alignments as results of each maximum clique. E: Repetition of preceding steps for all proteins in the database

As a result, the ProBiS algorithm results a list of proteins structurally similar to the query protein. For each entry of the list, the superposed query and database protein structures, as well as all corresponding significance measures, can be downloaded as .pdb files for further usage.

2.4.3 Investigation of bioactive conformation of AtPARP inhibitors

Investigations of bioactive conformations of new putative AtPARP inhibitors were performed with OpenEye's POSIT (2.3.2). POSIT finds a ligand's probable bioactive binding pose by comparing conformations of a confirmed bioactive ligand to known binding poses of other
ligands for the same target. Based on these comparisons, it assigns a new binding pose for the new ligand structure that is most similar to the binding pose of the known ones. This process is solely executable for identical targets. Therefore, to predict bioactive conformations for new $A t$ PARP inhibitors (for which no crystal structures are known so far), crystal structures of PARP orthologues (eg. HsPARP, GgPARP1) with inhibitors bound served as indirect templates of known binding poses. For each of the inhibitor-complexed PARP orthologues, the structure of $A t$ PARP1 was homology-modeled as a first step.

Among all X-ray structures representing catalytic domains of PARP enzymes, 18 X-ray structures from $H s$ PARP1, HsPARP2, HsPARP3, GgPARP1 were used to generate homology models of $A t$ PARP1 using YASARA (2.3.3.1). Following homology modelling, each AtPARP1 model contained the corresponding template inhibitor which, for the purpose of this approach, was assumed to be inhibiting $A t$ PARP1, too. The models were prepared with OpenEye's combine_receptor tool. For each of the confirmed AtPARP inhibitors (3.8) it was calculated, which of the 18 AtPARP1 models contains an inhibitor conformation that is most similar to conformations of a new inhibitor. The Tanimoto Combo $^{\text {Core (2.3.2) was taken as }}$ a measure and a probability was generated. The workflow of this bioactive conformation research is shown in Figure 2.9.

Workflow of investigation of bioactive conformations of potential new AtPARP inhibitors

Figure 2.9: Finding most probable bioactive conformations of AtPARP inhibitors

2.5 Pharmacophore creation

To decide whether a conformation of a structure fits into the active site of $\operatorname{AtPARP} 2$, a pharmacophore was built using MOE's pharmacophore query editor tool with the unified annotation scheme. ${ }^{168}$ The Pharmacophore was derived from the HsPARP1 nicotinamidemimicking pharmacophore in which two hydrogen bonds between the conserved Gly 863 and the inhibitor, and hydrophobic contacts between Tyr_{907} and an electron-rich aromatic ringsystem need to be present for inhibitor recognition and binding. The pharmacophore was created based on the $A t$ PARP2 homology model (3.2). It consists of the required hydrogen bond donor and acceptor spheres, as well as the hydrophobic interaction area of the inhibitor defined by the hydrophobic interaction centre and two interaction vectors orthogonal to the plane of the NA-mimicking aromatic ring of the modelled ligand FRQ (Figure 2.10, structure 24, from PDB entry $1 \mathrm{UK} 1{ }^{157}$). An excluding volume shell was defined for all atoms having a distance greater than $4.5 \AA$ around the modelled inhibitor FRQ to define the shape of the active site. All pharmacophore-defining entities were defined as being essential (5.3). The schematic representations of the PARP pharmacophore, as well as the created $\operatorname{AtPARP} 2$ pharmacophore in MOE, are shown in Figure 2.10.

The PARP inhibitor pharmacophore

Figure 2.10: The PARP pharmacophore
A: Representation of the PARP pharmacophore (HsPARP1 numbering) B: view into the active site of AtPARP2 with pharmacophore spheres and FRQ being present; 24:HsPARP1 inhibitor FRQ, co-cristallised in HsPARP1 (PDB entry 1UK1) ${ }^{157}$; excluded volumes not shown for clarity reasons

2.6 Docking procedure

2.6.1 General aspects

Establishing a docking procedure and assessing the quality of a docking procedure for AtPARP is not straightforward because there is not much knowledge available. First, only NA and 3AB have been verified as $A t$ PARP inhibitors so far^{218}, and 4AN was only recently shown to inhibit $A t$ PARP1, too. ${ }^{207,208}$ Furthermore, there are no decoy structures for any plant PARP known to this point. In addition to that, there is no X-ray structure of any AtPARP's catalytic domain including a co-crystallised inhibitor in its active site deposited in the PDB. These facts would be preconditions to apply a docking procedure or define a docking threshold to discriminate true inhibitors from decoys in a direct way. In contrast to $A t$ PARP, these requirements are fulfilled for $H s$ PARP1. To make use of this knowledge and establish a docking threshold for $A t$ PARP inhibitors, the following steps as listed in Table 2.2 were performed:

Table 2.2: Steps to be performed to define an AtPARP docking procedure

Step	Task
	Definition of a docking threshold for human PARP1

1.1 definition of data sets for $H s$ PARP1 ligands and HsPARP1 decoys
1.2 choosing the most suitable docking program for this purpose
1.3 establishing a docking procedure for selected data sets and verification
definition of criteria for discrimination of decoy and ligand structures and derivation of a docking threshold from these criteria
investigation of docking performance under these conditions

Performing HsPARP1 docking procedure on AtPARP1 and AtPARP2

defining molecular, biological and statistical assumptions under which the HsPARP1 docking procedure can be transferred onto the $\operatorname{AtPARP1} / 2$ docking procedure
application of docking procedure, that was established for HsPARP1, by using analogue conditions as for the HsPARP1 procedure and incorporate underlying assumptions
Definition of a new docking threshold for $A t$ PARP1/2
3.1 investigation of differences of docking procedure of $H s \mathrm{PARP} 1$ and $A t \mathrm{PARP} 1 / 2$
3.2 derivation of new docking threshold for $A t$ PARP1/2

Characteristics derived from the HsPARP1 docking procedure can be analysed after compounds from that database are bought and tested on $A t$ PARP1 in validated in vitro assays. The docking workflow starting from human PARP and resulting in selection of potential AtPARP inhibitors is shown in Figure 2.11

Workflow for establishing an HsPARP1-derived $\boldsymbol{A t P A R P}$ docking procedure

Figure 2.11: Docking workflow for establishing an AtPARP docking procedure
Step 1 identifies a docking threshold for HsPARP1, Step 2 applies all steps performed in steps 1 onto AtPARP1 and Step 3 transfers this into a development of a new threshold for AtPARP

2.6.2 Data sets

Two data sets for establishing a docking threshold were used. First, the Novikov data set described in 2.1.3 that contains a sample of HsPARP1 inhibitors ($n=142$) and secondly, the decoy data set described in 2.1.4 which contains known human PARP structures which are known not to bind to HsPARP1 ($n=1351$).

2.6.3 Docking programs

The docking suite implemented in MOE, MOE dock, was used with five different placement routines: Alpha PMI, Alpha Triangle, Pharmacophore, Triangle Matcher and Proxy Triangle. For each placement routine, three refinement strategies for docking poses were used. First, no refinement at all was performed for direct placement. Second, tethered refinement of all nonhydrogen side chain atoms with tethering factor 10 was performed allowing partial refinement of the active site during the ligand's placement. As a third strategy during ligand placement, the active site's amino acid side chain atoms were set free without any tethering. This allowed for more complex conformational changes during placement of a ligand in the active side.

These settings result in 15 different docking routine combinations. In each routine, the reference ligand FRQ (24) was defined as the centre of the active site. Affinity dG was used as scoring function.

The scoring function extra precision glide (Glide XP) was used in the docking program Glide. ${ }^{188,189,192}$ The four scoring functions ASP, ChemPLP ${ }^{201}$, ChemScore ${ }^{191,199}$ and GOLDScore ${ }^{193,200}$ were used in GOLD ${ }^{200}$. Scoring functions PLP, PLP95 and ChemPLP were used in PLANTS. ${ }^{201,219}$

The binding site in which a ligand is placed during docking is defined differently in all docking programs. To define the binding site as similar as possible for all docking programs, the following settings have been used: FRQ was used as reference inhibitor in MOE (2.3.1), GOLD (2.3.7) and Glide (2.3.6). In PLANTS (2.3.8), the centre of the atomic coordinates of FRQ and a surrounding shell of $12 \AA$ around this centre defined the active site. In GOLD and PLANTS, amino acid side chains, that participate in the known PARP pharmacophore, being $\mathrm{Tyr}_{907} / \mathrm{Tyr}_{531} / \mathrm{Tyr}_{878}$ (HsPARP1/ AtPARP1/ AtPARP2 numbering) respectively and $\mathrm{Ser}_{904} /$ $\operatorname{Ser}_{528} /$ Ser $_{875}$ respectively, were defined as flexible. Also, upon inspection of the active sites, Glu $_{763} /$ Glu $_{388} /$ Lys $_{735}$, respectively, were defined as flexible. The flexibility of side chains in GOLD was defined by not using rotamer libraries but by allowing full rotation about rotatable side chain bonds.

2.6.4 PARP pharmacophore-directed docking

To improve the identification of correct poses, the docking protocols have been adjusted. In Glide (2.3.6), GOLD (2.3.7), and PLANTS (2.3.8), the weights, w_{i}, for rating hydrogen bonds between the protein and the inhibitor were changed from the default value of 1 .

In $H s$ PARP1, there is a hydrogen bond between the backbone nitrogen of Gly_{863} and the

Pharmacophore-directed docking
Adjusting hydrogen bond weights (w_{i})

Figure 2.12: Hydrogen bond weights adjusted for pharmacophore-directed docking
View into active site of HsPARP1 showing inhibitor FRQ being hydrogen bonded to Gly y_{863} and Ser $_{904}$. inhibitor, $h b l$, and another hydrogen bond between the carbonyl oxygen atom of Gly 863 and the inhibitor, hb2. Both hydrogen both weights, $w_{h b 1}$ and $w_{h b 2}$, were increased. Furthermore, the weight of the hydrogen bond between the side chain atom O_{γ} of Ser_{904} and the inhibitor, $h b 3$, was increased 10 -fold (such that $w_{h b 1}=w_{h b 2}=w_{h b 3}=10$). In MOE, the hydrogen bond interactions $h b 1$ and $h b 2$ between the Gly 863 and the inhibitor were modelled by incorporation of the pharmacophore features described in 2.5 . A view into the active site of HsPRAP1, including its inhibitor FRQ (24) and the corresponding hydrogen bonds, is displayed in Figure 2.12.These increased hydrogen bond weights were used to implement a pharmacophoredirected docking procedure. In an advanced setting (PLANTS protocol II, see 3.5.2), only the weights $w_{h b 1}$ and $w_{h b 3}$ were increased to 10 , while $w_{h b 2}$ was set to its default value of 1 .

2.6.5 Definition of a correct docking pose

Based on the conformations of co-crystallised inhibitors from HsPARP, MmPARP (Mus musculus, mouse) and GgPARP complexes, a pose was defined as correct if the following features were satisfied:

- Existence of the two essential hydrogen bonds between the docked structure and the conserved glycine residue (e.g. Gly ${ }_{863}, H_{s}$ PARP1 numbering)
- Inhibitor core structure being able to exhibit π - π-interactions to the conserved tyrosine residue (e.g. $\mathrm{Tyr}_{907}, H_{s} \mathrm{PARP} 1$ numbering)
- Tail of inhibitor structure does not point towards the protein surface but into the pocket of active site, similar to most $H s$ PARP, MmPARP and GgPARP inhibitors

Definition of a correct docking pose for known and potential new PARP inhibitors

Conformations of co-crystallised $H s$ PARP1 and $H s$ PARP3 inhibitors

Figure 2.13: Definition of a correct docking pose
A-C: crystallized conformations of PARP inhibitors: A: FRQ in HsPARP1, B: KU8 in HsPARP3, C: GJW in HsPARP1. D: correct docking pose fulfilling all requirements E : incorrect docking pose since tail pointing towards protein surface, F: incorrect docking pose since tail points into active site but shows no hydrogen bonds to Gly $_{863}$

2.7 Methods of probability and inference

2.7.1 Null hypothesis significance testing and statistical power

To compare observed data with a hypothesis whose truth has to be assessed, null hypothesis significance tests (NHST) are performed. The (null) hypothesis $\boldsymbol{H}_{\mathbf{0}}: \boldsymbol{\mu}=\boldsymbol{\mu}_{\mathbf{0}}$, is a statement about a parameter in a population. The results of a test are expressed in terms of a probability. The test measures how well the data and the hypothesis agree. In a NHST, the strength of evidence against the null hypothesis is assessed. To perform NHST, the following steps have to be performed:

Table 2.3: Steps necessary to perform null hypothesis significance testing (NHST)

step description

Choosing a null hypothesis, $\boldsymbol{H}_{\mathbf{0}}: \boldsymbol{\mu}=\boldsymbol{\mu}_{\mathbf{0}}$, where μ is the mean of the population and μ_{0} is the mean of the sample data.
Choosing a significance level, α, that is commonly chosen to be $0.05,0.01$ or 0.005 . If not stated otherwise, α was set to 0.05 when needed.
Application of a statistical test to the sample data and calculation of a P-value. The P value is the probability, that, if $\boldsymbol{H}_{\mathbf{0}}$ were true, the observed data or more extreme data would be observed.
If the P-value is smaller than α, the null hypothesis is rejected and the result is
4 statistical significant at significance level α. Otherwise, $\boldsymbol{H}_{\mathbf{0}}$ is not rejected and the result not statistically significant at significance level α

If $\boldsymbol{H}_{\mathbf{0}}$ is rejected, when, in fact, it is true, a Type I error is committed. The probability of rejecting $\boldsymbol{H}_{\mathbf{0}}$ when it is true, is called the Type I error α. A graphical representation of a Type I error is described in Figure 2.14, A.

An alternative hypothesis $\boldsymbol{H}_{\mathbf{1}}: \boldsymbol{\mu} \neq \boldsymbol{\mu}_{\mathbf{0}}$, can be specified. If $\boldsymbol{H}_{\mathbf{1}}$ is an exact hypothesis, $\boldsymbol{H}_{\mathbf{1}}: \boldsymbol{\mu}=$ $\left(\boldsymbol{\mu}_{\mathbf{0}}+\boldsymbol{\delta}\right)=\boldsymbol{\mu}_{\mathbf{1}}$, it allows calculation of statistical power. Statistical power is the probability of rejecting $\boldsymbol{H}_{\mathbf{0}}$ when, in fact, $\boldsymbol{H}_{\mathbf{1}}$ is true.

If there is a true effect with exact size $\left(\boldsymbol{\mu}_{\boldsymbol{0}}+\boldsymbol{\delta}\right)=\boldsymbol{\mu}_{\boldsymbol{1}}$ (which is specified by $\boldsymbol{H}_{\mathbf{1}}$), statistical power equals the probability, the experiment will find it to be statistically significant. Rejection of $\boldsymbol{H}_{\mathbf{1}}: \boldsymbol{\mu} \neq \boldsymbol{\mu}_{\mathbf{0}}$ when in fact $\boldsymbol{H}_{\mathbf{1}}$ is true, is called a Type II error. The corresponding probability is called Type II error rate β. Therefore, statistical power is defined as $1-\beta$. This is displayed in, Figure 2.14 B.

Null hypothesis significance testing (NHST)

Figure 2.14: NHST and statistical power
A: type I error, α; B:type II error, β, and statistical power, 1- β

Since the outcome of a statistical test (rejection or no rejection of $\boldsymbol{H}_{\mathbf{0}}$ or $\boldsymbol{H}_{\mathbf{1}}$, if stated) and therefore the probabilities of committing type I or type II errors, is dependent on the sample mean $\overline{\boldsymbol{x}}$, sample standard deviation s and the sample size n, one can use power analysis to define thresholds, at which a statistical test has desired type I error rates or statistical power. Also, power analysis can be used to define a minimum sample size, at which a statistical test has sufficient power to identify an underlying effect.

Table 2.4: Relationship between Type I and Type II errors, and statistical power

		Truth about population	
		No treatment effect	treatment effect
conclusion reached in a study	No effect	Correct conclusion	Type II error
	effect	Type I error	Correct conclusion

		Truth about population	
		No treatment effect	treatment effect
conclusion reached in a study	No effect	$P=1-\alpha$	$P=\beta$
	effect	$P=-\alpha$	$P=1-\beta$ (stat. power)

2.7.2 One-sampe t-test

If a simple random sample (SRS) of size n - having mean $\overline{\boldsymbol{x}}$ and standard deviation s - is drawn from a population having unknown mean μ, the hypothesis $\boldsymbol{H}_{\mathbf{0}}: \boldsymbol{\mu}=\boldsymbol{\mu}_{\mathbf{0}}$ based on an SRS of size n is tested and the one-sample t statistic is computed as follows:

$$
\begin{equation*}
\boldsymbol{t}=\frac{\overline{\boldsymbol{x}}-\boldsymbol{\mu}_{\mathbf{0}}}{\boldsymbol{s} / \sqrt{n}} \tag{2.6}
\end{equation*}
$$

The standard deviation of the sample mean $\overline{\boldsymbol{x}}$ is defined as the standard error $\boldsymbol{S} \boldsymbol{E}_{\overline{\boldsymbol{x}}}=\boldsymbol{s} / \sqrt{\boldsymbol{n}}$. Let T be a random variable (RV) having a $\boldsymbol{t}(\boldsymbol{n}-\mathbf{1})$ distribution, the P-value for a one-sided test of $\boldsymbol{H}_{\mathbf{0}}$ against $\boldsymbol{H}_{\boldsymbol{a}}: \boldsymbol{\mu}>\boldsymbol{\mu}_{\mathbf{0}}$ is $\boldsymbol{P}(\boldsymbol{T} \geq \boldsymbol{t})$ or a one-sided test of $\boldsymbol{H}_{\mathbf{0}}$ against $\boldsymbol{H}_{\boldsymbol{a}}: \boldsymbol{\mu}<\boldsymbol{\mu}_{\mathbf{0}}$ is $\boldsymbol{P}(\boldsymbol{T} \leq \boldsymbol{t})$. The P-values for a two-sided test of $\boldsymbol{H}_{\mathbf{0}}$ against $\boldsymbol{H}_{\boldsymbol{a}}: \boldsymbol{\mu} \neq \boldsymbol{\mu}_{\mathbf{0}}$ is $\mathbf{2} \times \boldsymbol{P}(\boldsymbol{T} \geq \boldsymbol{t})$.

2.7.3 Unpaired two-sample t-test

If an SRS of size $\boldsymbol{n}_{\boldsymbol{1}}$ - having mean $\overline{\boldsymbol{x}}_{\mathbf{1}}$ and standard deviation $\boldsymbol{s}_{\boldsymbol{1}}$ - is drawn from a population having unknown mean $\boldsymbol{\mu}_{\mathbf{1}}$, and an independent SRS of size $\boldsymbol{n}_{\mathbf{2}}$ - having mean $\overline{\boldsymbol{x}}_{\mathbf{2}}$ and standard deviation $\boldsymbol{s}_{\mathbf{2}}$ - is drawn from a population having unknown mean $\boldsymbol{\mu}_{\mathbf{2}}$, the hypothesis $\boldsymbol{H}_{\mathbf{0}}: \boldsymbol{\mu}_{\mathbf{1}}=$ $\boldsymbol{\mu}_{2}$ based on these two SRS is tested and the two-sample t statistic is computed as follows:

$$
\begin{equation*}
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{1}}}} \tag{2.7}
\end{equation*}
$$

The degrees of freedom k, which are used for calculation of P values or critical values \boldsymbol{t}^{*} for the $\boldsymbol{t}(\boldsymbol{k})$ distribution, were approximated by R software. ${ }^{220}$

2.7.4 Cumulative distribution function (cdf)

Let \boldsymbol{X} be a random variable. The function \boldsymbol{F} or $\boldsymbol{F}_{\boldsymbol{X}}$ defined by

$$
\begin{equation*}
F_{X}(x)=P\{X \leq x\} \quad-\infty<x<\infty \tag{2.8}
\end{equation*}
$$

is called the cumulative distribution function (cdf) or distribution function of $\boldsymbol{X} . \boldsymbol{F}_{\boldsymbol{X}}(\boldsymbol{x})$ expresses the probability that the random variable is less than or equal to \boldsymbol{x}. It is a nondecreasing function and is right continuous.

If \boldsymbol{X} is a discrete random variable, then $\boldsymbol{F}_{\boldsymbol{X}}(\boldsymbol{x})$ can be expressed in terms of its probability mass function $\boldsymbol{p}(\boldsymbol{a})$ by

$$
\begin{equation*}
F(a)=\sum_{\text {all } x \leq a} p(x) \tag{2.9}
\end{equation*}
$$

Since \boldsymbol{X} can take on at most a countable number of values, $\boldsymbol{F}(\boldsymbol{a})$ is the sum of the probabilities $\boldsymbol{p}(\boldsymbol{a})$ of all values \boldsymbol{a} that are smaller than or equal to \boldsymbol{x}.

If \boldsymbol{X} is a continuous random variable, then $\boldsymbol{F}_{\boldsymbol{X}}(\boldsymbol{x})$ can be expressed of its probability density function $\boldsymbol{f}_{\boldsymbol{X}}(\boldsymbol{x})$ by

$$
\begin{equation*}
F(a)=P\{X \in(-\infty, a]\}=\int_{-\infty}^{a} f(x) d x \tag{2.10}
\end{equation*}
$$

2.7.5 Pearson's Chi-squared test

Pearson's $\boldsymbol{\chi}^{2}$ test tests the null hypothesis $\boldsymbol{H}_{\mathbf{0}}$ that the number of observed events in a simple random sample (SRS) equals the number of events one would observe if the sample was drawn from a specific distribution. The value of the test statistic is equal to:

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{n} \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}} \tag{2.11}
\end{equation*}
$$

Here, χ^{2} represents Pearson's cumulative test statistic. This statistic approaches a χ^{2} distribution with \boldsymbol{n} degrees of freedom as the sample size increases. $\boldsymbol{o}_{\boldsymbol{i}}$ and $\boldsymbol{e}_{\boldsymbol{i}}$ equal the number of an observed and expected or theoretical frequency and \boldsymbol{n} represents the number of cells in a frequency table. As a result, the value of the test statistic is compared to a χ^{2} distribution with n degrees of freedom. From the value of the test-statistic, a P -value is calculated. If the calculated P -value is smaller than a critical P -value, (e.g. 0.05) $\boldsymbol{H}_{\mathbf{0}}$ is rejected and one concludes that there is no association between the sample and the theoretical distribution. If the calculated P -value is larger than the critical P -value, than $\boldsymbol{H}_{\mathbf{0}}$ cannot be rejected and the test-statistic offers no evidence against $\boldsymbol{H}_{\mathbf{0}}$.

2.7.6 Binary quantitative structure-activity relationship

2.7.6.1 Binary quantitative structure-activity relationship terminology

Binary quantitative structure-activity relationship (QSAR) correlates the structure of compounds with a binary expression of activity by using molecular descriptors. With the information of activity and molecular descriptors for active and inactive compound structures in a training set, probability distributions for active and inactive compounds are calculated. From those probability distributions, activities of compound structures in a test set can predicted in a semiquantitative manner. This approach was developed by Labute and colleagues in 1999^{221} and successfully applied, e.g. on estrogen receptor ligands ${ }^{222}$ and tiagabine analogues. ${ }^{223}$ A binary QSAR workflow is implemented in the software package MOE.

Suppose one is given \boldsymbol{m} molecules where each molecule \boldsymbol{i} is described as a vector $\boldsymbol{x}_{\boldsymbol{i}}$ being of length \boldsymbol{n} with $\boldsymbol{x}_{\boldsymbol{i}}=\left(\boldsymbol{x}_{\boldsymbol{i 1}}, \ldots, \boldsymbol{x}_{\boldsymbol{i j}}, \ldots, \boldsymbol{x}_{\boldsymbol{i n}}\right)$ and $\boldsymbol{x}_{\boldsymbol{i j}} \in \mathbb{R}$. The $\boldsymbol{x}_{\boldsymbol{i j}}$ are called the descriptors of molecule \boldsymbol{i}. Let $\boldsymbol{y}_{\boldsymbol{i}}$ be an outcome of an experiment for molecule \boldsymbol{i}, e.g. a biological activity, expessed as an $\boldsymbol{I} \boldsymbol{C}_{\mathbf{5 0}}$ or $\boldsymbol{K}_{\boldsymbol{i}}$ value. The outcome $\boldsymbol{y}_{\boldsymbol{i}}$ is binary, e.g. $\boldsymbol{y}_{\boldsymbol{i}} \in\{\mathbf{0}, \mathbf{1}\}$. \boldsymbol{Y} denotes a RV with $\boldsymbol{Y} \in\{\mathbf{0}, \mathbf{1}\}$ and \boldsymbol{X} denotes a RV over vectors of length \boldsymbol{n}.

In binary QSAR , the conditional distribution $\operatorname{Pr}(\boldsymbol{Y} \mid \boldsymbol{X})$ is used to determine the probability, $\boldsymbol{p}(\boldsymbol{x})$, that a new molecule $\boldsymbol{x}_{\text {new }}$ is active with $\operatorname{Pr}\left(\boldsymbol{Y}=\mathbf{1} \mid \boldsymbol{X}=\boldsymbol{x}_{\text {new }}\right)$. Let \boldsymbol{a} be the prior probability $\operatorname{Pr}(\boldsymbol{Y})=\mathbf{1}$ and $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\operatorname{Pr}\left(\boldsymbol{X}=\boldsymbol{x}_{\text {new }} \mid \boldsymbol{Y}=\mathbf{1}\right)$, then by using Bayes' Theorem, $\boldsymbol{p}(\boldsymbol{x})$ can be written as:

$$
\begin{equation*}
p(x)=\operatorname{Pr}(Y=1 \mid X=x)=\frac{f(x, 1) a}{f(x, 1) a+f(x, 0)(1-a)} \tag{2.12}
\end{equation*}
$$

Furthermore, all descriptors $\boldsymbol{X}_{\boldsymbol{i}}$ are assumed to be mutually independent and having mean 0 and variance 1. After rearranging, the distributions $\boldsymbol{f}_{\boldsymbol{j}}(\boldsymbol{x}, \boldsymbol{y})=\operatorname{Pr}\left(\boldsymbol{X}_{\boldsymbol{j}}=\boldsymbol{x} \mid \boldsymbol{Y}=\boldsymbol{y}\right)$ and the prior probability \boldsymbol{a} have to be estimated. The probability is estimated by the biased Bayes estimate under a uniform prior $\boldsymbol{a}=(\boldsymbol{S}+\mathbf{1}) /(\boldsymbol{m}+\mathbf{2})$. Here, \boldsymbol{S} equals the number of actives and \boldsymbol{m} represents the total number of structures in the data set, where the total number of structures \boldsymbol{m} consists of the sum of the number of active structures $\boldsymbol{m}_{\boldsymbol{1}}$ and the number of inactive structures $\boldsymbol{m}_{\mathbf{0}}$. This procedure results in formula 2.13.

$$
\begin{equation*}
p(x) \approx\left(1+\frac{m_{0}+1}{m_{1}+1} \prod_{j=1}^{n} \frac{f_{j}\left(x_{j}, 0\right)}{f_{j}\left(x_{j}, 1\right)}\right)^{-1} \tag{2.13}
\end{equation*}
$$

Furthermore, let $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{\boldsymbol{i}}, \ldots, \boldsymbol{z}_{\boldsymbol{m}}$ be \boldsymbol{m} samples of a continuous random variable $\boldsymbol{Z} . \boldsymbol{f}$ can be estimated by accumulating a histogram of observed sample values on a set of \boldsymbol{B} bins, that are defined by $\boldsymbol{B}+\mathbf{1}$ numbers, $\boldsymbol{b}_{\boldsymbol{j}}<\boldsymbol{b}_{\boldsymbol{j} \boldsymbol{+ 1}}$. Counting the number of observations $\boldsymbol{B}_{\boldsymbol{j}}$ among \boldsymbol{m} samples into bin $\boldsymbol{j}>\mathbf{0}$ is done by using a δ-function whose density can be replaced by a normal RV with mean $\boldsymbol{Z}_{\boldsymbol{i}}$ and variance \boldsymbol{S}^{2}, giving:

$$
\begin{equation*}
B_{j}=\sum_{i=1}^{m} \delta\left(z_{i} \in\left(b_{j-1}, b_{j}\right]\right)=\sum_{i=1}^{m} \int_{b_{j-1}}^{b_{j}} \frac{1}{s \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-z_{i}}{s^{2}}\right)^{2}} d x \tag{2.14}
\end{equation*}
$$

By final translation of the normal cumulative distribution function into the error function erf, each of the descriptor distributions $\boldsymbol{f}_{\boldsymbol{j}}(\boldsymbol{x}, \boldsymbol{y})=\operatorname{Pr}\left(\boldsymbol{X}_{\boldsymbol{j}}=\boldsymbol{x} \mid \boldsymbol{Y}=\boldsymbol{y}\right)$ for $\boldsymbol{y} \in\{\mathbf{0}, \mathbf{1}\}$ and for \boldsymbol{n} descriptors can be modelled. In binary QSAR, two distributions for each descriptor are estimated, one being for the active molecules the other for the inactive molecules.

2.7.6.2 Binary QSAR evaluation

The evaluation of binary QSAR model consists of statements of about the accuracy of the model. The total accuracy denotes the number of observations that were correctly predicted by the model. Two more accuracies denote the number of active and inactive observations that were predicted correctly. The significance of these accuracies is assessed by comparing the observed accuracies with the number of accuracies one would observe if there was no association between the model and the sample.

The null hypothesis $\boldsymbol{H}_{\mathbf{0}}$ is: There is no association between the model results (of the total accuracy) and the sample. Let $\boldsymbol{o}_{\text {correct }}$ denote the number of agreements and $\boldsymbol{o}_{\text {incorrect }}$ denote the number of disagreements between the model and the sample. Let $\boldsymbol{e}_{\text {correct }}$ and $\boldsymbol{e}_{\text {incorrect }}$ denote the number of agreements and disagreements one would observe if there was no association between the model results and the sample. With increasing sample size, the χ^{2} statistic

$$
\begin{equation*}
\chi^{2}=\frac{\left(\boldsymbol{o}_{\text {correct }}-\boldsymbol{e}_{\text {correct }}\right)^{2}}{\boldsymbol{e}_{\text {correct }}}+\frac{\left(\boldsymbol{o}_{\text {incorrect }}-\boldsymbol{e}_{\text {incorrect }}\right)^{2}}{\boldsymbol{e}_{\text {incorrect }}} \tag{2.15}
\end{equation*}
$$

follows a χ^{2}-distribution with one degree of freedom. If the associated P -value is smaller than 0.05 , then there is strong evidence against $\boldsymbol{H}_{\mathbf{0}}$.

To test whether the observed accuracies on actives and inactives are due to chance, another the $\boldsymbol{\chi}^{2}$-statistic is calculated. Here, the null hypothesis $\boldsymbol{H}_{\mathbf{0}}$ is stated: There is no association between the model results (of the active and inactive accuracy) and the sample: Let $\boldsymbol{o}_{\mathbf{1}}$ denote the number of agreements in the actives, $\boldsymbol{o}_{\mathbf{2}}$ the number of disagreements in the actives, $\boldsymbol{o}_{\mathbf{3}}$ the number of agreements in the inactives and $\boldsymbol{o}_{\boldsymbol{4}}$ the number of disagreements in the inactives. Let $\boldsymbol{e}_{\boldsymbol{1}}$ denote the number of agreements in the actives, $\boldsymbol{e}_{\boldsymbol{2}}$ the number of disagreements in the actives, \boldsymbol{e}_{3} the number of agreements in the inactives and \boldsymbol{e}_{4} the number of disagreements in the inactives one would observe if there was no association between the model data and the sample. With increasing sample size, the χ^{2}-statistic

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{4} \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}} \tag{2.16}
\end{equation*}
$$

follows a χ^{2}-distribution with three degrees of freedom. If the associated P -value is smaller than 0.05 , then there is strong evidence against $\boldsymbol{H}_{\mathbf{0}}$. Binary QSAR therefore is evaluated as a special case of the general form described in 2.7.5.

For each principal component, a correlation coefficient is reported, stating how well the active and inactive distributions are correlated. A value of the correlation coefficient of 0 means perfect correlation whereas a value of 1 means that both distributions are perfectly uncorrelated. In addition to that, an RMSE is reported, which is referring to the expected root mean squared error between the active and inactive distributions. Finally, the importance of each descriptor is given, representing the degree to which the descriptor is useful in distinguishing actives from inactives.

2.7.7 Receiver Operator Characteristics

Receiver operator characteristics (ROC) can be used to assess the ability of a procedure to discriminate two classes. An ROC plot is generated by plotting the fraction of true positives $t p$ against the fraction of false positives $f p$ for any given threshold. This results in a curve starting from the point $(0,0)$ and ending up in point $(1,1)$. Any point on the plot corresponds to a certain threshold and according true positive und false positive rate. For a procedure which is highly discriminative, either a strongly increasing curve passing the point $(0,1)$ in ROC space very closely or a very slowly increasing curve passing the point $(1,0)$ in ROC space very closely, is desired. A curve having a similar shape as the direct line from $(0,0)$ to $(1,1)$ does not discriminate the two classes. ${ }^{224}$ An example of an imaginary data set representing a chemical characteristic of 5 active and inactive compounds is shown in Figure 2.15

Figure 2.15: Example of an ROC
Left: example data set consisting of 10 imaginary values, sorted in descending order. Right: ROC curve (solid line from $(0,0)$ to $(1,1))$ resulting from example data set; dashed line represents $A U C=0.5$, indicating no discriminating characteristics

The area under the curve (AUC) represents the probability, that, in the long run, if a member of the active and inactive class are randomly chosen, the procedure will correctly rank the active member above the inactive one. If a member from one class is chosen at random and a member of the other class is chosen at random for many times, the AUC represents the probability that the member of the active class will be selected. Hence, ROC are equivalent in results to Wilcoxon signed-rank test. ${ }^{225}$ Furthermore, since ROC are based on fractions rather than absolute numbers, ROC can be compared to each other. That is an advantage over enrichment factors (EF) that depend not only on the numbers of members of the classes, but also on the ratio between both numbers.

2.7.8 Analysis of MD simulations

MD simulations were analysed using the root mean square deviation (RMSD) ${ }^{226,227}$ and the room mean square fluctuation (RMSF). Let \boldsymbol{a} and \boldsymbol{b} being atoms in a \mathbb{R}^{3}, the position of a and be can be described in terms of its x, y and z coordinates, e.g. $a=\left(a_{x}, a_{y}, a_{z}\right)$. With this, the RSMD and RMSF are calculated as follows:

$$
\begin{align*}
\operatorname{RMSD}(a, b) & =\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\left(a_{i x}-b_{i x}\right)^{2}+\left(a_{i y}-b_{i y}\right)^{2}+\left(a_{i z}-b_{i z}\right)^{2}\right)} \tag{2.17}\\
& =\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left\|a_{i}-b_{i}\right\|^{2}} \\
\operatorname{RMSF}(a) & =\sqrt{\frac{1}{T} \sum_{t_{j}=1}^{T}\left(x_{a}\left(t_{j}\right)-\overline{x_{a}}\right)^{2}} \tag{2.18}\\
\text { B-factor }(a) & =\frac{80}{3}(\pi * \operatorname{RMSF}(a))^{2} \tag{2.19}
\end{align*}
$$

RMSD and RMSF are measures of deviations of a set of atoms (e.g. C_{α} atoms of proteins) from their reference position, which in this case is the mean average position of the C_{α} atoms. While the RMSD equals the mean average over n atoms for specific time values in relation to a reference time value, the RMSF measures the time-dependent mean average of specific atoms x_{i}.

Results of MD simulations can be compared to results of X-ray structures because of the relationship between the RMSF of an atom in the MD simulation and the B-factor of the corresponding atom of a protein crystal during X-ray crystallography.

All MD simulations were analysed using either predefined or modified YASARA macros or by R software ${ }^{220}$ and the package bio3D (version 2.1) ${ }^{228}$

3 Results

3.1 Sequence analysis

Sequence analyses have been performed for the catalytic domains of HsPARP1-3, AtPARP1-3 and GgPARP1. Table 3.1 summarises general sequence information of the catalytic domains of investigated PARP. Catalytic domain information was extracted from Pfam 27.0 database. ${ }^{229}$

Table 3.1: General information about catalytic domains (CD) in selected PARP

	Sequence length	CD start	CD end	CD length
AtPARP1	637	286	633	348
AtPARP2	983	633	979	347
AtPARP3	814	449	801	353
$H s$ PARP1	1014	662	1007	346
$H s$ PARP2	583	231	577	347
$H s$ PARP3	533	182	533	352
$G g P A R P 1$	1011	659	1004	346

In part, the results were compared to conserved residues in Diphtheria Toxin. The catalytic domain-comprising amino acids were taken from Pfam database 27.0. ${ }^{229}$ The results are displayed in Figure 3.1. Pairwise sequence analyses (2.2.1) of the catalytic domains of human and Arabidopsis thaliana PARPs 1-3, as well as chicken PARP1 (GgPARP1) revealed high sequence identities as well as high sequence similarities between HsPARP und AtPARP. Upper triangle values in Table 3.2 represent sequence similarities, whereas entries in the lower triangle show sequence identities between two proteins. The complete pairwise sequence alignments are displayed in 5.1.

Table 3.2: Sequence similarities and sequence identities for selected PARP

	AtPARP1	AtPARP2	AtPARP3	HsPARP1	HsPARP2	HsPARP3	GgPARP1
AtPARP1	-	60.2	47.5	65.1	67.4	51.4	65.6
AtPARP2	40.4	-	54.1	68.7	64.2	49.5	69.0
AtPARP3	28.3	33.1	-	49.9	49.3	40.6	50.6
HsPARP1	45.7	49.6	28.6	-	68.6	55.0	95.7
HsPARP2	49.4	43.8	28.6	45.4	-	50.8	67.4
HsPARP3	35.7	33.8	23.3	35.6	34.0	-	52.9
GgPARP1	45.7	48.5	29.2	87.0	46.3	35.3	-

upper triangle values represent sequence similarities; sequence identity values shown in lower triangle

The most homologue $A t$ PARP to $H s$ PARP1 are $A t$ PARP1 and $A t$ PARP2, sharing more than 45% sequence identity and more than 65% sequence similarity (bold numbers in Table 3.2). PARP members AtPARP3 and HsPARP3 show less sequence identity and similarity to HsPARP1-2, AtPARP1-2 and GgPARP1, respectively.

Multiple sequence analyses (2.2.2) of the catalytic domains of HsPARP1-3, AtPARP1-3 and GgPARP1 show a conservation of residues that are described as essential for NAD^{+}binding in HsPARP1. Especially the catalytic triad HYE (His ${ }_{862}-\mathrm{Tyr}_{907}-\mathrm{Glu}_{988}, H_{s} \mathrm{PARP} 1$ numbering $)$ is conserved in $H s$ PARP1-3 and $A t$ PARP1 and AtPARP2. This is displayed in Figure 3.1. In AtPARP3 the catalytic histidine is replaced by a cysteine $\left(\mathrm{Cys}_{653}\right){ }^{3}$ Interestingly, besides the high conservation of NAD^{+}-recognizing residues, there are three residues that are replaced within AtPARP1-3 and HsPARP1-3. In HsPARP1 one of those is Glu 7_{763} which is replaced by a positively charged Lys_{735} in $A t$ PARP2. Also, HsPARP1 Asp ${ }_{766}$ is replaced by glutamate residues in $A t$ PARP1 (Glu_{555}) and $\operatorname{AtPARP2}$ (Glu_{738}). A third exchange within this region might be of importance where the human PARP1 Asp ${ }_{770}$ is replaced by a glutamate in AtPARP1 (Glu 559). Both $H s$ PARP1 Asp $_{766}$ and Asp $_{770}$ are implicated in pyrophosphate recognition of $\mathrm{NAD}^{+}{ }^{72}$

Multiple sequence alignment of $\operatorname{AtPARP1-3,HsPARP1-3~and~GgPARP1~}$ in relation to residues conserved in Diphtheria Toxin

DiphTox		$19 \text { SYHGTK }$	$\begin{array}{ll} 30 & 34 \\ \text { SI } & \text { GIQKP } \end{array}$	$52 \text { GFYSTDNKYDAAGYSV }$	$\begin{aligned} & 145 \\ & \text { SSVEYI } \end{aligned}$
AtPARP3	551 ASAFETVRDIN	$\begin{aligned} & 651 \\ & \text { LWCGSR } \end{aligned}$	662	685	779
			RHIYKGFLPA	AIVCSDAAAEAARYGF	EYNEYA
	283	382	393	412	511
HsPARP3	KDMLLVLADIE	LWHGTN	AILTSGLRIM	GIYFASENSKSAGYVI	SQSEYL
AtPARP2	734	831	842	865	957
	VKMLEALQDIE	LWHGSR	GILNQGLRIA	GIYFADLVSKSAQYCY	MYNEYI
HsPARP1	762	860	871	894	985
	VEMLDNLLDIE	LWHGSR	GILSQGLRIA	GIYFADMVSKSANYCH	LYNEYI
	762	860	871	894	985
GgPARP1	VQMLDNLLDIE	LWHGSR	GILSQGLRIA	GIYFADMVSKSANYCH	LYNEYI
	386	484	495	518	611
AtPARP1	IEMVEALGEIE	LWHGSR	GILSQGLRIA	GVYFADMFSKSANYCY	LYNEYI
	331	426	437	460	555
HsPARP2	IQLLEALGDIE	LWHGSR	GILSHGLRIA	GIYFADMSSKSANYCF	NYNEYI
	. . : ${ }^{*}$:	** * .	*	. : : : : ** *	. **

Figure 3.1: Multiple sequence alignment between selected PARP
Amino acids presented in single-letter-code; red: hydrophobic; green: hydrophilic; magenta: positively charged; blue: negatively charged; *: conserved amino acid; : : partially conserved amino acid

3.2 Homology Modelling

Homology modelling was performed in YASARA (2.3.3.1). The crystal structure of the catalytic domain of H_{s} PARP1 (PDB entry 1 UK 1 , including residues $\mathrm{Lys}_{662}-\mathrm{Thr}_{1011}$), together with the inhibitor 24, FRQ (Figure 2.10) was used as a single template for modelling the catalytic domains of $\operatorname{AtPARP1}$ (residues $\mathrm{Gln}_{286}-\mathrm{His}_{637}$) containing 352 amino acids and AtPARP2 (residues $\operatorname{Ser}_{633}-\operatorname{Arg}_{983}$) containing 351 amino acids. Figure 3.2 shows the similarities in the three-dimensional shape between the template structure and the target structures. The catalytic triad HYE which is present in both $A t$ PARP1 and $A t$ PARP2 forms the same interactions between the protein and the ligand as it does in HsPARP1. The HsPARP1 Asp 766 2-replaced residues Glu $_{555}$ in $A t$ PARP1 and Glu ${ }_{738}$ in $A t$ PARP2 are able to exhibit the same interactions with the template inhibitor FRQ (shown in Figure 3.2, E).

A key aspect in obtaining a protein homology model of high quality is the selection of the template or a set of templates. In this work, a single template was used for model generation. In YASARA, a template or multiple templates can be chosen manually or automatically. This is advantageous, if - as it is the case for PARP - multiple crystal (or NMR) structures which would represent suitable templates are available. These templates may differ slightly in threedimensional space (e.g. in loop regions or through different orientations of amino acids in the active site). Changes in three-dimensional structure also can occur through the presence of small ligands (e.g. inhibitors, co-substrates or co-factors) or molecules that were added to make the crystallisation of the template protein possible. Structural diversities between multiple templates can also occur because of the presence or absence of water molecules in the active site that stabilise the position of the ligand. Selecting any suitable PARP templates from the PDB would probably have resulted in similar models, since there is a high degree of three-dimensional structure similarity in the CD of PARP. More than 30 crystal structures of PARP catalytic domains were deposited at the PDB at the end of 2010. These structures represent CD of HsPARP1-3, HsPARP10, HsPARP14, HsPARP15, HsTankyrase1-2, MmPARP2, and GgPARP1-2. Sequence identity between those sequences and the catalytic domains of $A t$ PARP are $>30 \%$ making all of these structures suitable for homology modeling the CD of $A t$ PARP. From that it was assumed that, independent from the selected template, structurally highly similar homology models of AtPARP would be produced.

The selection of a suitable homology modeling template was inhibitor-driven because of the usage for virtual screening for new $A t$ PARP inhibitors. For the purpose of virtual screening,
the best template would be the one that contributes most information about inhibitor binding. Furthermore, most knowledge about PARP inhibitors exists for human PARP1.

HsPARP1, AtPARP1 and AtPARP2 protein models
 Overviews of tertiary structures and active sites

Comparison of $H s$ PARP1 and $A t$ PARP1
Comparison of $H s$ PARP1 and $A t$ PARP2

$\operatorname{AtPARP} 1 \mathrm{C}_{\alpha}$ atom trace (cartoon representation) and active site residues AtPARP2 C_{α} atom trace (cartoon representation) and active site residues
HsPARP1 C ${ }_{\alpha}$ atom trace (cartoon representation) and active site residues
Figure 3.2: Protein models of HsPARP1 and AtPARP1/2
A and C: Comparison of three-dimensional structure and view into active site conserved residues of HsPARP1 and AtPARP1. B and D: Comparison of three-dimensional structure and view into active site conserved residues of HsPARP1 and AtPARP2. E: Schematic representation of interactions between modelled ligand FRQ in AtPARP1/2 and co-crystallised ligand FRQ in HsPARP1 (PDB code 1UK1)

Performing homology modeling with YASARA incorporates the template ligand into the homology model. Therefore, the best choice of template selection was to choose a highquality $H s$ PARP1 crystal structure containing a large substrate-mimicking structure in its active site.

A major benefit from using a single template in YASARA (e.g. in comparison to using MOE as modelling program) is the transfer of the template ligand into the target structure. During the modelling process in YASARA, amino acid side chain optimisation and unrestrained simulated annealing in an automatically created periodic boundary water box are performed (2.3.3.1) which allow optimal adaptation of the amino acid side chains in active sites with respect to the transferred inhibitor structure. Using this workflow, it could be focussed on the inhibitor during the homology modelling of $A t$ PARP. Therefore - for the purpose of virtual screening - the crystal structure of HsPARP1 with a co-crystallised quinazolinedione derivative FRQ (24) from PDB entry 1UK1 was used as template because it involves not only a potent $\left(\mathrm{IC}_{50}\right.$ of 60 nM) but also the largest (about $390 \mathrm{~g} / \mathrm{mol}$) PARP inhibitor crystallised until 2009. The ligand occupies the donor active site of HsPARP1 ranging from the NA subsite to the hydrophobic pocket that would be occupied by the adenine moiety of NAD^{+}. FRQ covers the complete donor site of the active site and bears most information about PARP inhibitors. For these reasons PDB entry 1UK1 was considered an optimal single template for homology modelling.

3.2.1 Evaluation of homology models

Four protein models were subjected to protein evaluation tools. The first model was the crystallographic template structure 1UK1 that was used as a reference for quality assessment. The second model was the energy-minimised model from PDB entry 1UK1. This model was used for docking studies on HsPARP1. Energy minimisation for that model was performed in YASARA using YASARA2 force field. The quality of those two models was compared to the quality of the homology models of $A t$ PARP1 and $A t$ PARP2.

The protein evaluation tools check the stereochemical correctness of the models with the Ramachandran plot (RAMPAGE). ${ }^{230}$ Errat verifies the overall quality of the models or protein structures based on statistics of non-bonded atom-atom-interactions. ${ }^{231}$ The quality is expressed as an overall quality factor (with a factor of 100 indicating overwhelming quality). ProSA-web checks for errors in three-dimensional structures and calculates a Z-score as an indicator of native folded proteins. The Z-score is dependent on sequence length and can be
compared to other proteins of similar length. ${ }^{232-234}$ Verify3D investigates the compatibility of three-dimensional structure with its primary sequence. ${ }^{235,236}$ The comparison of the query structure with reference structures allows the calculation of an amino acid-specific score. For assessment of the quality of the homology models in YASARA, a Z-score was provided (2.3.3.1). The results of protein evaluations are displayed in Table 3.3.

Table 3.3: Evaluation of homology models

tool	$H s$ PARP1 $($ PDB 1UK1)	$H s$ PARP1 $(\text { optimised })^{2}$	AtPARP1 $($ YASARA)	AtPARP2 $($ YASARA)
YASARA $^{\mathrm{a}}$			-0.791	-1.181
ProSA-web $^{\mathrm{b}}$	-9.88	-9.60	-8.94	-8.75
RAMPAGE $^{\mathrm{c}}$	$339(97.1 \%)$	$334(96.0 \%)$	$330(94.3 \%)$	$338(96.8 \%)$
RAMPAGE $^{\mathrm{d}}$	$8(2.3 \%)$	$14(4.0 \%)$	$20(5.7 \%)$	$9(2.6 \%)$
RAMPAGE $^{\mathrm{e}}$	0	0	0	2
Errat $^{\mathrm{f}}$	$98.834 *$	$97.076 *$	$94.960 *$	$98.251 *$
Verify3D $^{\mathrm{g}}$	$0.08-0.77$	$0.19-0.75$	$0.03-0.75$	$-0.15-0.85$

${ }^{1}$ crystal structure from PDB; ${ }^{2}$ optimised in YASARA using steepest descent energy-minimisation
${ }^{3}$ homology model created in YASARA as described in 2.3.3.1, based on PDB entry 1 UK1 ${ }^{\text {a }}$ Z-score;
${ }^{\mathrm{b}}$ Z-score; ${ }^{\mathrm{c}}$ amino acids in favourable allowed region; ${ }^{\mathrm{d}}$ amino acids in allowed region; ${ }^{\mathrm{e}}$ amino acids in not-allowed region; ${ }^{\text {f }}$ overall quality; ${ }^{\mathrm{g}}$ values between; * passed

All four evaluation tools measure slightly lower quality values for the energy-minimised HsPARP1 model than for the PDB-deposited structure. The differences in quality values between both models are small and the values themselves indicate good quality. This classifies the HsPARP1 model which was used for later docking analysis as a model of good quality and suitable for further investigations.

Both homology models of $A t$ PARP show bigger differences to their PDB template structure than the energy-minimised $H s$ PARP1. The values themselves are acceptable since they are in the range of allowed deviations. The ProSA Z-scores are within the range of Z-scores of protein crystal structures that are of similar length. Also, the ProSA-plots of the PDB structure and the $A t$ PARP models are of similar shape, especially those with window size 40 (as shown in Figure 3.3). The plots cross the horizontal axes only once and for a small sequence interval. They are below the threshold (being 0) otherwise, which indicates models of good quality. The decreased quality measures can be assigned to gaps in the aligned target and template sequences. Since homology models are built upon the aligned sequences (2.3.3.1), suboptimal scores are mostly found in regions of protein loops or regions of underlying sequence alignment gaps. The YASARA-optimised structures of the HsPARP1 and AtPARP homology models show similar values in the profile in comparison to the X-ray structure. According to

RAMPAGE, the $A t$ PARP2 model has two outliers present (Table 3.3 and 5.5.2) which both lie in loop regions of the model, and are not in the proximity of the active site.

Protein structure evaluation with ProSA-web

Figure 3.3: Results of ProSA-web
A: the X-ray structure (PDB code 1UK1) of HsPARP1 B: YASARA-Optimised model of HsPARP1 (PDB entry 1UK1) C: homology model of AtPARP1, D homology model of AtPARP2

All evaluation tools reveal that the energy-minimised model of HsPARP1 and the homology models of $A t$ PARP1 and $A t$ PARP2 qualities that are similar to that of the HsPARP1 X-ray structure. Both ERRAT and Verify3D rate the quality of the $A t$ PARP models as acceptable (Table 3.3 and 5.4.5).

3.2.2 Model refinement

The result of homology modelling with YASARA is a three-dimensional model of the onedimensional target sequence. The generated AtPARP models were partially refined during the modelling via loop optimisation and the simulated annealing of all non-backbone atoms and
finally all atoms including all water molecules in the simulation box (2.3.3.1). In YASARA included is a tool performing a so-called "MD refinement" to improve the quality of the model. In this MD refinement, a 500 ps MD simulation is performed. After every 25 ps , the simulation snapshot is energy-minimised which results in 20 conformations of the protein model with different qualities. To improve the quality of the homology models of $A t$ PARP1 and $A t$ PARP2, an MD refinement for each model was conducted. To check if the 20 MDrefined models have improved quality in comparison to the initial model, the protein evaluation tools as described in 3.2.1 were used. Depending on the kind of output of each evaluation tool, the hypothesis was tested, if there was a significant difference (testing with methods described in 2.7.2 and 2.7.3) between the initial homology model and the sample of 20 MD-refined models.

3.2.2.1 RAMPAGE

For $A t$ PARP1, RAMPAGE found that 18 of 20 MD-refined models had less than 20 amino acids being in the allowed region or outliers as were observed in the initial $\operatorname{AtPARP} 1$ homology model. A similar effect was observed for $A t$ PARP2, where 19 of 20 MD-refined models had improved quality according to RAMPAGE. The number of amino acids for both AtPARP1 and AtPARP2 was significantly reduced during MD-refinement. In contrast to this observation, the number of amino acids during the complete set of MD-refined structures increased significantly. The total number of amino acids during MD-refinement, that were not in the favourable region, increased from 20 to 35 (5.5.2). A similar picture occurred for $\operatorname{AtPARP} 2$, where the number of amino acids in the non-favourable region increased from 9 in the initial model to 29 different amino acids over the period of the 20 snapshots of MD refinement (5.5.2). In each snapshot, a different set of amino acids were detected as being in the non-favourable region which made it difficult to select one of the 20 snapshots as "the best" refined one based and the RAMPAGE results.

3.2.2.2 ProSA-web and Errat

For the tools ProSA and Errat, the hypothesis was tested if there was a significant difference between the values of the initial model in comparison to the values of the 20 MD -refined models. The difference was declared significant if the initial score was not included in the 95% confidence interval of the 20 MD-refined model score which is equivalent to the result of a two-sided unpaired Student's t-test at significance level $\alpha=0.05$. (2.7.3) For AtPARP1, the Z-score of ProSA-web offers overwhelming evidence that the MD refinement does not improve the model quality whereas the overall quality score of Errat shows strong evidence
that the quality of the model has improved during MD-refinement (5.5.1). For $A t$ PARP2, there is overwhelming evidence that the Z -score decreased during the MD refinement which corresponds to an improvement of $A t$ PARP2's model quality during MD refinement. The overall quality scores of Errat during MD-refinement show no evidence of quality improvement (5.5.1).

3.2.2.3 Verify3D

For Verify3D and each amino acid of $A t$ PARP1/2's primary sequence, the minimum and maximum of the average 3D-1D score for all 20 MD-refinement snapshots were used to define a corridor to which the corresponding average 3D-1D score of the initial homology model was compared. For $A t$ PARP1, in the initial model, more than 21% of the catalytic domain show equal or better scores than the best scores of the MD-refinement snapshots whereas only around 5% show equal or worse scores than the worst scores of the MDrefinement snapshots (indicated by green or red bars in figures of section 5.5.3, respectively). The remaining 73% of the initial model scores lie within the range of values for the MDrefinement snapshots (5.5.3). Similar results are obtained for AtPARP2 where more than 11% of the catalytic domain show equal or better scores than the best scores of the MD-refinement snapshots whereas around 13% show equal or worse scores than the worst scores of the MDrefinement snapshots. The remaining 75% of the initial model scores lie within the range of values for the MD-refinement snapshots (5.5.3). These results strongly indicate that there is no difference between the 3D-1D score profiles of the initial model and the MD-refinement snapshots. A summary of the results of four different evaluation tools to compare the quality of the initial homology models with 20 MD-refined models is shown in Table 3.4.

Table 3.4: Summary of AtPARP1 and AtPARP2 model refinement results

	ProSA-web ${ }^{\text {a }}$	RAMPPAGE ${ }^{\text {b }}$	Errat ${ }^{\text {c }}$	Verify3D ${ }^{\text {g }}$
AtPARP1	Quality not improved	No difference	Quality improved	No difference
AtPARP2	Quality improved	No difference	No difference	No difference

${ }^{\mathrm{a}} \mathrm{Z}$-score; ${ }^{\mathrm{b}}$ amino acids in allowed region and classified as outliers; ${ }^{\mathrm{c}}$ overall quality score; ${ }^{\mathrm{c}} 3 \mathrm{D}-1 \mathrm{D}$ score profile

These results provide strong evidence that the usage of MD refinement with YASARA does not significantly improve the quality of the homology models of $A t$ PARP1 and $A t$ PARP2. Besides that, the initial models were of quality sufficient for virtual screening. The differences between the evaluation tool outputs of the initial model and the crystal structure template 1UK1 are small enough such that the initial model can be rated as being of equal quality as the crystal structure.

3.3 Investigation of protein stability

To investigate the protein stability of $\operatorname{AtPARP} 1$ models, a homology model of the catalytic domain of $A t$ PARP1 was built in YASARA based on the template structure 2PAX having the inhibitor 4AN (Figure 2.2, 16) co-crystallised in the active site. For a first model to investigate, the inhibitor 4AN was removed. This model was named unligated AtPARP1. For a second model, 4AN was kept in the active site. This model was named 4AN-ligated AtPARP1. Both models were subjected to MD simulations in YASARA as described in 2.3.3.2. After MD simulations, the RMSDs of C_{α} atoms for both models were calculated (2.7.8 and 5.11.2) to find time points where simulations were at equilibrium.

Table 3.5: Summary statistics for MD simulations

| T (K) | RMSD for unligated AtPARP1 | | | RMSD for 4AN-ligated $A t P A R P 1$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $1^{\text {st }} \mathrm{Qu}$. | mean | median | $3^{\text {rd }} \mathrm{Qu}$. | $1^{\text {st }} \mathrm{Qu}$. | mean | median | $3^{\text {rd }} \mathrm{Qu}$. |
| 297.9999 | 2.173 | 2.285 | 2.266 | 2.388 | 2.110 | 2.277 | 2.280 | 2.474 |
| 298.0000 | 2.270 | 2.463 | 2.421 | 2.603 | 2.117 | 2.386 | 2.414 | 2.727 |
| 298.0001 | 2.021 | 2.126 | 2.107 | 2.225 | 2.101 | 2.316 | 2.287 | 2.477 |

T (K): temperature in Kelvin; 1st Qu.: first quartile; value at which 25% of all values are below; 3rd Qu.: third quartile; value at which 75% of all values are below

Descriptive statistics for three independent unligated $A t$ PARP1 and 4AN-ligated $A t$ PARP1 MD simulations reveal that all median and mean RMSD values are below $2.5 \AA$ (Table 3.5). These values, together with loess function ${ }^{237}$ applied onto RMSD values of each simulation, were used to investigate equilibration of MD simulations. Equilibrations were reached after 5 ns (after 1000 simulation snpshots) for all three unligated $A t$ PARP1 simulation; equilibrations were reached after 10 ns (at 297.9999 K) and 12.5 ns (at 298.0000 and 298.0001 K) for 4ANligated $A t$ PARP1. (Figure 3.4, represented as grey background). RMSF calculations (2.7.8) were performed for all snapshots after equilibration time.

3.3.1 Overall shape of B -factor and C_{α} distributions

To investigate the fluctuations of C_{α} atoms over those periods and the influence of binding of the inhibitor 4AN in the active site of $A t$ PARP1 on these fluctuations, RMSF values were calculated for the unligated and 4AN-ligated AtPARP1, as described in 2.7.8. The hypothesis of similar shapes of B-factor (for GgPARP1) and RMSF value (for AtPARP1) distributions was tested. GgPARP1 B-factors were extracted from the PDB files 2PAX (4AN-ligated GgPARP1) and 2PAW (unligated GgPARP1). ${ }^{72}$ The distributions of the calculated RMSF
values and experimentally determined B-factors are displayed in Figure 3.5. As expected, higher B-factors occur in regions of loops or less-structured regions of the protein. Major peaks in the B-factor distributions are visible in the region of residues 780, 810 and 830 (GgPARP1 numbering).

Analysis of MD simulations of catalytic domain of $\operatorname{AtPARP1}$,
Root mean square deviations (RMSD) of 4AN-ligated and unligated AtPARP1

Figure 3.4: Analysis of MD simulations with unligated and 4AN-ligated AtPARP1 I
MD simulations as triplicates at three temperatures top 3 graphs::4AN-ligated AtPARP1 simulations at 297.9999 K,:298.0000 K and:298.0001 K. bottom 3 graphs::unligated AtPARP1 simulations at 297.9999 K,:298.0000 K and:298.0001 K. Lowess function (blue line) was applied on RMSD values (black line) to estimate equilibrated MD; equilibrated MD simulation periods are indicated as grey backgrounds.

Furthermore, peaks occur around residues 890, 910, 940 and 980. Corresponding peaks are also visible for the RMSF values of $\operatorname{AtPARP} 1$. There are no regions in GgPARP1 leading to a specific pattern, that is not occurring in the $A t$ PARP1 model. The overall shape of the distributions is the same and provides little evidence against the hypothesis, therefore the hypothesis is not rejected; the shapes can be regarded as similar. In this specific setting, comparison of MD simulations are sensitive enough to examine C_{α} and B -factor distribution analysis.

B-factor and RMSF distribution of catalytic domains of PARP1,

RMSF distributions upon binding of 4AN to AtPARP1

Figure 3.5: Analysis of MD simulations with unligated and 4AN-ligated AtPARP1 II
Comparison RMSF and B-factor distributions in GgPARP1 and AtPARP1 top: B-factor distributions in GgPARP1 upon binding of $4 A N$ (modified from Ruf ${ }^{72}$). bottom: RMSF distributions in AtPARP1 upon binding of 4AN.upper part (white background) represents mean RMSF data; lower part (grey background) shows standard deviation of RMSD data

3.3.2 Local structural shifts upon inhibitor binding

The second hypothesis - regarding the stabilising effect upon inhibitor binding - was tested by comparing the RMSF values of the two sets of MD simulation triplicates around atPARP1 residues Ser_{528} and Asn_{535} (comparison of dotted and solid lines in Figure 3.6). It was investigated whether a decrease in RMSF values is observed, similar to the observation of a decrease in B-factors from 46-57 to 31-36 \AA^{2} - corresponding to a $25-43 \%$ decrease - upon inhibitor binding in GgPARP1.

RMSF distribution of catalytic domains of PARP1

RMSF distributions upon binding of 4AN to AtPARP1

Residue number (AtPARP1 numbering)
Figure 3.6: Analysis of MD simulations with unligated and 4AN-ligated AtPARP1 III
Comparison of RMSF distributions and AtPARP1;solid dark blue line and dashed dark blue lines represent mean RMSD values in $4 A N$-ligated and unligated AtPARP1, respectively; solid light blue line and dashed light blue lines represent mean RMSD values in $4 A N$-ligated and unligated AtPARP1, respectively

This stabilising effect upon inhibitor binding was not observed for $A t$ PARP1. In fact, in conducted MD simulations, the RMSF values are higher in the corresponding region for the 4AN-ligated protein. With regard to the RMSF of Tyr_{531}, the mean RMSF value increases from 0.768 to 0.827 , corresponding to an increase of 7.6% upon binding of 4 AN in relation to unligated A tPARP1 (Figure 3.6, dotted and solid dark blue lines). There is serious evidence against this hypothesis which therefore has to be rejected. Based upon the MD simulations, conducted under conditions described in 2.3.3.2, the stabilising effect upon inhibitor binding of the loop around $A t$ PARP1 Tyr_{531} cannot be proven. From the experiments one cannot assess whether this stabilising effect does not exist at all in AtPARP1 or whether an existing local effect is just not captured using this experimental setting.

3.4 Investigation of positions of natural substrates

The investigation of the binding mode of natural substrates is essential since it is the basis for subsequent virtual screening. If the predicted (or already elucidated) binding mode of a protein's natural substrate cannot be shown for the target under investigation, there is strong evidence that the modelled active site is in need of improvement. Only if there is enough evidence that the binding mode of the protein's natural substrate can be captured and can be well explained by the model, than the model is of sufficient quality. Regarding AtPARP1, it is of importance that the binding mode of NAD^{+}is modelled correctly because in subsequent virtual screening for competitive inhibitors one can assume that one is searching for structures with similar three-dimensional shape as naturally bound NAD^{+}.

There is no crystallographic model available containing PARP's substrate NAD^{+}in the donor site of the catalytic domain of PARP. A single X-ray structure was solved having an NADanalogue bound in the acceptor site of GgPARP1. ADP-ribosylating bacterial toxins use NAD^{+}as substrate as it is supposed that PARP bind NAD^{+}in a similar manner. To investigate whether NAD^{+}is bound in $\operatorname{AtPARP} 1$ in a similar way as it is proposed for GgPARP1 and bacterial toxins, and also whether its conformation is in a favourable position to form a glycosilic bond between the donor and acceptor riboses, direct approaches of homology modelling were not applicable. As a consequence, an indirect approach based on templates of GgPARP1 and ADP-ribosylating toxins has been used to model the natural substrate binding in $A t$ PARP1. (2.4.2)

3.4.1 Homology model of natural substrate-bound AtPARP1

The ProBiS algorithm found 39 structures having an active site being structurally similar to the active site of NAD^{+}-bound Diphtheria Toxin (PDB entry 1TOX). The six best structures according to active site similarity to Diphtheria Toxins (measured in ProBiS as Z-scores) are the crystal structures of Diphtheria Toxin itself (hits 1 and 2, PDB entries 1DDT and 1DTP, Z-scores of 4.77 and 4.43), Exotoxin A (hits 3 to 5, PDB entries 1XK9, 1XKP and 3Q9O, Zscores from 3.04 to 2.67) and Choline Toxin (hit 6, PDB entry 3ESS, Z-score of 2.47). These hits prove the ability to find conserved active sites because all these bacterial toxins belong to the enzyme class of ADP-ribosyl transferases.

The highest ranking non-bacterial toxin with ADP-ribosyl transferase activity ($7^{\text {th }}$ best hit with a Z-score of 2.44) was the crystal structure of GgPARP1 (PDB entry 1A26) having the
NAD^{+}-analogue carba-NAD crystallised in the acceptor site. Six criteria, as part of the ProBiS Algorithm, indicate that the active sites of 1A26 and 1TOX are similar because there is overwhelming evidence against the hypothesis that the calculated local alignment was calculated by chance. All ProBiS criteria with thresholds and observed values for 1TOX and 1A26 are given in Table 3.6.

Table 3.6: ProBiS results

ProBiS result	criteria	observed	ProBiS result	criteria	observed
Z-score	>2.00	2.44^{*}	Vertices	>10	$39^{* * *}$
Local alignment score	$1-10$	$7.36^{* *}$	RMSD	$<2.0 \AA$	$0.7 \AA \AA^{* * *}$
E-value	$<1.0^{*} 10^{-4}$	$3.6^{*} 10^{-12} * * *$	Surface vector angle	$<90^{\circ}$	$0.53^{\circ} * * *$

* pairwise alignment in top 1% of all alignments in database ${ }^{* *}$ structurally conserved active sites *** overwhelming evidence against the hypothesis that the calculated local alignment match may have occurred by chance

After superpositioning the crystal structures of 1TOX and 1A26 by ProBiS, all non-ligand atoms of 1TOX were deleted, resulting in a model of the crystal structure of the CD of GgPARP1 having NAD ${ }^{+}$bound in the donor site and CNA bound in the acceptor site. Both superimposed crystal structures and the positions of NAD^{+}and CNA in the superposed active sites are shown in Figure 3.7.

In both active sites, 17 amino acids were calculated to be conserved (listed in 5.8). The results of conserved amino acids between GgPARP1 and Diphtheria Toxin are in agreement with the superposed structures that were inspected visually. Figure 3.7 D-F shows the superposed active sites of both structures together with the location of 9 residues calculated to be conserved.

This structure was used as a single template to homology model the CD of AtPARP1 using YASARA (2.3.3). The homology model of $A t$ PARP1 included both NAD and CNA in the active site. As a next step the model was subjected to 3 independent 20 ns MD simulations in YASARA as described in 2.3.3.2 The simulation equilibrated after 1000 snapshots, that equal $5.0 \mathrm{~ns}(5.11 .3)$. The 3000 snapshots of the equilibrated MD simulation were used to analyse the interactions between a) AtPARP1 and the substrates and b) the interactions between both substrates themselves. Since the template structures 1TOX and 1A26 contain PARP's substrates (or substrate analogues), the hypotheses were tested if interactions that are observed in crystal structures are found in the MD simulation with $A t$ PARP1, too or in a similar manner.

Superposition of active sites of Diphtheria Toxin and GgPARP1 by ProBiS Superposition of conserved active site and catalytic residues

GgPARP1, C_{α} atom trace in cartoon representation, ligand atoms in stick representation
Diphtheria Toxin, C_{α} atom trace in cartoon representation, ligand atoms in stick representation
Figure 3.7: ProBiS results I - Diphtheria Toxin and GgPARP1 active sites superposition
A: X-ray structure of Diphtheria Toxin (1TOX), B: X-ray structure of GgPARP1 (1A26), C: superpositioning of both structures using ProBiS algorithm D: View into active site of superposed X-ray structures showing natural substrates of AtPARP1 in close position to each other E: view into active site of GgPARP1 and conserved residues F: view into active site of Diphtheria Toxin and conserved residues

3.4.2 Positioning of the nicotinamide moiety of NAD^{+}

During the MD simulations, the nicotinamide moiety of NAD^{+}is held in position tightly by two essential hydrogen bonds. These are formed between the $\mathrm{N}_{7} \mathrm{~N}$ of NAD^{+}and the backbone oxygen of Gly_{487}, as well as the O_{7} of the nicotinamide, $\mathrm{N}_{7} \mathrm{O}$, and the backbone nitrogen of Gly ${ }_{487}$, and stabilise the nicotinamide as observed in the majority of the MD simulation times (Table 3.7, interactions NA_{1} and NA_{2}). The hydrogen bonding interaction between the O_{γ} of Ser_{528} and $\mathrm{O}_{7} \mathrm{~N}$ of NAD^{+}could not be observed in a single simulation (Table 3.7, interactions NA_{6}). Despite this interaction being reported to be essential for $H s$ PARP1 ${ }^{66}$, crystal structures do exist that contain a nicotinamide-analogue inhibitor in the active site of HsPARP1 and lack this interaction, (e.g. 1UK1 ${ }^{157}$). Also, in the crystal structure of DT^{121}, the serine is exchanged by an alanine (Ala_{62}, DT numbering) which does not exhibit this hydrogen bond to the nicotinamide moiety of NAD^{+}. This suggests that the hydrogen bond mediated by Serine is of minor importance compared to the hydrogen bonds in that Gly y_{87} is involved.

Table 3.7: Results of MD simulations - comparison with experimental data I

	interacting atoms in		MD simulation analysis distance (\AA) or h-bond frequency			experimental results					
			GgPARP1	DT	$H s$ PARP1						
	NAD	AtPARP1				297.9999 K	298.0000 K	298.0001 K	Ref: 72	Ref: 121	Ref: 238
$\mathrm{NA}_{1 _ \text {d }}$	NAD $\mathrm{N}_{7} \mathrm{~N}$	$\mathrm{Gly}_{478} \mathrm{O}$	2.94 ± 0.16	3.06 ± 0.20	4.36 ± 0.91	2.9	3.0-3.1	2.9			
$\mathrm{NA}_{1}{ }_{\text {_h }}$	$\mathrm{NAD} \mathrm{N}_{7} \mathrm{~N}$	$\mathrm{Gly}_{478} \mathrm{O}$	19.2 \%	82.6 \%	97.9 \%	yes	yes	yes			
NA_{2} d	$\mathrm{NAD}_{7} \mathrm{O}$	$\mathrm{Gly}_{478} \mathrm{~N}$	3.02 ± 0.19	2.94 ± 0.13	3.25 ± 0.34	2.7	2.8-2.9	2.7			
$\mathrm{NA}_{2} \mathrm{~h}$ h	NAD $\mathrm{N}_{7} \mathrm{O}$	$\mathrm{Gly}_{478} \mathrm{~N}$	73.4 \%	99.2 \%	96.5 \%	yes	yes	yes			
NA_{3}	$\mathrm{NAD} \mathrm{C}_{3} \mathrm{~N}$	$\mathrm{Tyr}_{531} \mathrm{C}_{\gamma}$	3.88 ± 0.23	4.27 ± 0.25	4.12 ± 0.28	3.9	3.7-3.8	4.4			
NA_{4}	NAD C6 ${ }_{6}$ N	$\mathrm{Tyr}_{531} \mathrm{C}_{\zeta}$	3.50 ± 0.22	3.81 ± 0.24	3.62 ± 0.27	3.8	3.7-3.8	4.4			
NA_{5}	$\mathrm{NAD} \mathrm{C}_{3} \mathrm{~N}$	$\mathrm{Tyr}_{520} \mathrm{C}_{\beta}$	4.96 ± 0.53	3.65 ± 0.18	3.82 ± 0.25	3.9	3.9-4.0	4.1			
$\mathrm{NA}_{6 _ \text {d }}$	NAD $\mathrm{N}_{7} \mathrm{O}$	$\mathrm{Ser}_{528} \mathrm{O}_{\gamma}$	6.23 ± 0.52	4.48 ± 0.53	6.58 ± 1.10	2.7	Ser \rightarrow Ala	3.2			
$\mathrm{NA}_{6} \mathrm{C}$ h	$\mathrm{NAD} \mathrm{N}_{7} \mathrm{O}$	$\mathrm{Ser}_{528} \mathrm{O}_{\gamma}$	0.0 \%	0.0 \%	0.0 \%	yes	no	yes/ no^{157}			
NA_{7}	$\mathrm{Tyr}_{520} \mathrm{O}_{\eta}$	Phe ${ }_{515} \mathrm{~N}$	98.0 \%	92.8 \%	99.4 \%	yes	no	yes			
NA_{8}	$\mathrm{Tyr}_{520} \mathrm{O}_{\eta}$	$\mathrm{Gly}_{516} \mathrm{O}$	95.3 \%	53.4 \%	93.8 \%	yes	yes	yes			

Abbreviations: yes: presence of hydrogen bond; no: no hydrogen bond present; $\mathrm{Ser} \rightarrow$ Ala: serine present instead of alanine

The NA moiety of NAD^{+}is furthermore stabilized by the presence of two tyrosine side chains (Tyr_{520} and Tyr_{531}). The distances between NA atoms $\mathrm{C}_{3} \mathrm{~N}$ and $\mathrm{C}_{6} \mathrm{~N}$ and atoms of the tyrosine side chains either indicate hydrophobic contacts (via $\pi-\pi$ interactions) between the side chains and the ring system of NA or steric hinderance between both ring systems (Table 3.7, interactions $\mathrm{NA}_{3}-\mathrm{NA}_{5}$). The corresponding observed distances and interactions are in a
similar range to those that have been observed in Dipththeria Toxin, HsPARP1 or NAD ${ }^{+}$ modelling studies (Table 3.7).

Analysis of MD simulation

Nicotinamide positioning and $\pi-\pi$ stacking

$\operatorname{AtPARP1}, \mathrm{C}_{\alpha}$ atom trace as well as ligand and protein atoms (in carton and stick representation)
Figure 3.8: Positioning of the nicotinamide moiety of NAD^{+}in AtPARP1
A: view into active site of AtPARP1; non-polar hydrogens omitted; dotted lines and $N A_{1}-N A_{6}$ represent interactions or contacts described in Table 3.7. B: schematic representation of NA positioning in AtPARP1, $\mathrm{R}_{1}=$ adenosine diphosphate of NAD ${ }^{+}$

The side chain of Tyr_{520} itself is fixed via two hydrogen bonds between the O_{η} to the backbone nitrogen of Phe_{515} and the backbone oxygen of Gly ${ }_{516}$ (interactions NA_{7} and NA_{8} in Table 3.7, respectively; interactions omitted in Figure 3.8). This fixation ist also present in other ADPRT. ${ }^{72,121,238}$ Tyrosine 520 is therefore contributing to the stacking of the NA moiety of NAD^{+}. This stacking of the NA is essential, as mutations of both tyrosines into asparagines in GgPARP1 result in a reduced enzyme activity of 15% and 1.1%, respectively. ${ }^{31}$ Asparagine, in contrast to tyrosine, is unable to exhibit hydrophobic interactions.

From the interactions that were observed in the MD simulation of $\operatorname{AtPARP} 1$ one can conclude that the NA moiety of NAD^{+}is positioned and stabilised in an equivalent manner as it is observed in crystal structures of different ADPRT.

3.4.3 Binding of the adenine moiety of the donor structure NAD^{+}

The adenosine moiety of NAD^{+}is predicted to be held in position via two hydrogen bonds (backbone oxygen of Gly y_{34} in DT or Gly 876 in $H s$ PARP1 and the backbone nitrogen of Gln ${ }_{36}$ in DT or Arg_{878} in $H s$ PARP1, respectively). Analogue interactions were observed for $\mathrm{Arg}_{502} \mathrm{~N}$ (Table 3.8, interaction AD_{1}) and for Gly ${ }_{500} \mathrm{O}$ (Table 3.8, interaction AD_{2}) in the production MD simulation in AtPARP. This indicates high flexibility of the adenine moiety since the hydrogen bond frequencies were relatively low and not stable throughout the MD simulations

The NAD^{+}adenine ring is also fixed through non-polar interactions. The side chains of the hydrophobic residues Ile_{496} and Leu_{501} are observed in favorable distances to establish hydrophobic contacts (Table 3.8, interactions AD_{3} and AD_{4}). Analogue observations were also observed in modelling studies of NAD^{+}and the crytal structure of DT. In addition to those interactions, there is evidence that the side chain of Arg_{502} contributes to the fixation of the moiety. By investigating the distance from the guanidinium carbon atom $\mathrm{C}_{5} \mathrm{~A}^{\text {of }} \mathrm{NAD}^{+}$to the C_{ζ} of Arg_{502} (Table 3.8, interaction AD_{5}), it was observed that the guanidinium group could potentially hinder the adenine ring of NAD^{+}from larger movements.

Table 3.8: Results of MD simulations - comparison of experimental data II

	interacting atoms in		MD simulation analysis distance (\AA) or h-bond frequency			experimental results	
	NAD^{+}	$A t$ PARP1	297.9999 K	298.0000 K	298.0001 K	$G g$ PARP $1{ }^{72}$	Diph. Tox. ${ }^{121}$
$\mathrm{AD}_{1 \mathrm{~d}}$	$\mathrm{N}_{1} \mathrm{~A}$	$\operatorname{Arg}_{502} \mathrm{~N}$	3.28 ± 0.27	3.24 ± 0.22	5.12 ± 1.42	2.7	2.9-3.2
$\mathrm{AD}_{1 \mathrm{~h}}$	$\mathrm{N}_{1} \mathrm{~A}$	$\operatorname{Arg}_{502} \mathrm{~N}$	20.0 \%	18.6 \%	39.0 \%	H-bond	H-bond
$\mathrm{AD}_{2 \mathrm{~d}}$	$\mathrm{N}_{6} \mathrm{~A}$	$\mathrm{Gly}_{500} \mathrm{O}$	4.23 ± 0.45	4.01 ± 0.39	5.04 ± 1.43	3.0	2.7-2.9
$\mathrm{AD}_{2 \mathrm{~h}}$	$\mathrm{N}_{6} \mathrm{~A}$	$\mathrm{Gly}_{500} \mathrm{O}$	55.9 \%	44.3 \%	10.2 \%	H-bond	H-bond
AD_{3}	$\mathrm{C}_{5} \mathrm{~A}$	$\mathrm{Ile}_{496} \mathrm{C}_{\text {61 }}$	4.85 ± 0.40	4.15 ± 0.28	4.26 ± 0.48	hydrophobic	3.8-4.0
AD_{4}	$\mathrm{C}_{2} \mathrm{~A}$	$\mathrm{Leu}_{501} \mathrm{C}_{\text {o } 2}$	3.85 ± 0.27	3.74 ± 0.29	4.96 ± 0.86	hydrophobic	3.9-4.1
AD_{5}	$\mathrm{C}_{5} \mathrm{~A}$	$\mathrm{Arg}_{502} \mathrm{C}_{\zeta}$	4.68 ± 0.36	4.13 ± 0.45	5.27 ± 0.77	---	---
AD_{6}	$\mathrm{O}_{2} \mathrm{~B}$	$\mathrm{His}_{486} \mathrm{~N}_{\varepsilon 2}$	0.1 \%	13.2 \%	55.1 \%	yes	2.8
AD_{7}	$\mathrm{Ser}_{488} \mathrm{O}_{\gamma}$	$\mathrm{His}_{486} \mathrm{~N}_{\varepsilon 2}$	21.1 \%	80.6 \%	4.6 \%	no	---
AD_{8}	$\mathrm{O}_{2} \mathrm{~B}$	$\mathrm{Ser}_{488} \mathrm{O}_{\gamma}$	0.0 \%	50.6 \%	2.9 \%	2.8	2.7-2.9

Abbreviations: H-Bond: presence of hydrogen bond; hydrophobic: hydrophobic contact, no distance given; ---: no equivalent interaction

In HsPARP1 the adenine ribose of NAD^{+}is predicted to interact with the γ oxygen of a serine residue and an analogue interaction is observed between the $\mathrm{O}_{\gamma 1}$ of Thr_{23} in the crystal structure of Diphtheria Toxin with $\mathrm{O}_{2} \mathrm{~B}$ of NAD^{+}. In $A t$ PARP1, the hydrogen bond between the O_{γ} of Ser_{488} and 2' oxygen of the adenosine ribose of NAD^{+}is observed in only one of
three simulations (Table 3.8, interaction AD_{8}). But there might be additional interactions between the 2 ' oxygen of the adenosine ribose and the protein that might stabilise the position of the ribose: First, the side chain of serine 488 binds to the $\mathrm{N}_{\mathrm{\varepsilon} 2}$ of His_{486} (Table 3.8, interaction AD_{7}), while $\operatorname{His}_{486} \mathrm{~N}_{\varepsilon 2}$ hydrogen bonds to $\mathrm{O}_{2} \mathrm{~B}$ of NAD^{+}(Table 3.8, interaction AD_{6}). This indicates the presence of a triangular hydrogen bonding network that stabilises the adenosine ribose of NAD^{+}. An view into the active site of AtPARP1 with regard to the adenine moiety is shown in Figure 3.9, A, schematic representation of the interactions $\mathrm{AD}_{1}-\mathrm{AD}_{8}$ are shown in Figure 3.9, B

Analysis of MD simulations of the catalytic domain of AtPARP1
Binding of adenine moiety of NAD^{+}

$\operatorname{AtPARP1}, \mathrm{C}_{\alpha}$ atom trace as well as ligand and protein atoms (in carton and stick representation)
Figure 3.9: Positioning of the adenine moiety of $N A D^{+}$in AtPARP1
view into active site of AtPARP1; non-polar hydrogens omitted; dotted lines and $A D_{1}-A D_{8}$ represent interactions or contacts described in Table 3.8

3.4.4 The role of the catalytic glutamate

The conserved catalytic glutamate Glu_{614} (AtPARP1 numbering) is reported to be essential for ADP-ribosylation (e.g. Glu g_{988} in HsPARP1) in animal PARP. ${ }^{17}$ The $\mathrm{E}_{988} \mathrm{~K}$ mutation in $H s$ PARP1 leads to a 98.5% loss of enzyme activity ${ }^{16}$ because, the oxygen atoms $\mathrm{O}_{\varepsilon 1}$ and $\mathrm{O}_{\varepsilon 2}$ of the side chain adjust the ribose units of the donor and acceptor structures before the catalytic reaction can take place (1.1.3). While the catalytic reaction itself cannot be captured with methods of molecular mechanics, the hypothesis was that the positioning and stabilisation of the ribose units through Glu_{614} should be detectable in MD simulations of AtPARP1, including the substrates NAD^{+}and CNA.

In the Md simulations, the $\mathrm{O}_{\varepsilon 1}$ of Glu_{614} forms a stable hydrogen bond to the $\mathrm{O}_{2 \mathrm{D}}$ of NAD^{+}, another hydrogen bond exists between the $\mathrm{O}_{\varepsilon 2}$ of Glu_{614} and the $\mathrm{O}_{3 \mathrm{~B}}$ of CNA (Table 3.9 and Figure 3.10, interactions Glu_{1} and Glu_{2}). The adjustment of the two riboses can be evaluated by measuring the distance between the attacking oxygen of the 2^{\prime} hydroxyl of CNA and the carbon atom that forms the oxacarbenium during the catalytic reaction. The mean distances between these two atoms during the equilibrated simulation times were $3.48,3.71$ and $3.56 \AA$ in the MD simulations with only moderate deviations (Table 3.9 and Figure 3.10, interaction Glu_{3}).

Analysis of MD simulations of the catalytic domain of $\operatorname{AtPARP1}$

The role of the catalytic glutamate 614

$\operatorname{AtPARP1}, \mathrm{C}_{\alpha}$ atom trace as well as ligand and protein atoms (in carton and stick representation)
Figure 3.10: Positioning of the nicotinamide moiety of NAD^{+}in AtPARP1
view into active site of AtPARP1; non-polar hydrogens omitted; dotted lines and $N A_{1}-N A_{2}$, as well as Glu Glu $_{3}$ represent interactions or contacts described in Table 3.7.and Table 3.9

In the modelled structure of NAD^{+}in GgPARP1, the $\varepsilon 2$ oxygen of Glu9s8 (GgPARP1 numbering) showed a distance to the $2^{\prime} \mathrm{OH}$ of nicotinamide ribose of $2.8 \AA$, which is in accordance to the observed distances in the simulations found between the $\varepsilon 1$ of Glu_{614} (AtPARP1 numbering) and the $2^{\prime} \mathrm{OH}$ of nicotinamide. ${ }^{72}$ The distances between the $\varepsilon 2$ oxygen of Glu_{614} (AtPARP1 numbering) and the 2^{\prime} 'OH ribose of CNA confirm the results obtained from the modelling of NAD^{+}in GgPARP1 where a distance of $2.7 \AA$ was reported. ${ }^{31}$

Finally, an intramolecular hydrogen bond between the nicotinamide amide nitrogen $\mathrm{N}_{7} \mathrm{~N}$ and the $\mathrm{O}_{1} \mathrm{~N}$ (or $\mathrm{O}_{2} \mathrm{~N}$) of the diphosphate moiety restrains the conformation of NAD^{+}. This conformational restriction promotes the position of the nicotinamide ribose with respect to the
acceptor ribose and therefore positively influences the hydrogen bonding pattern of Glu_{614}. This intramolecular hydrogen bond is present in the majority of the simulation time (interactions Glu $_{4}$, Glu $_{5}$, Glu $_{4 \& 5}$ in Table 3.9 and Figure 3.10). This observation is in accordance to the crystal structure of Diphtheria Toxin where the distance between $\mathrm{N}_{7} \mathrm{~N}$ and $\mathrm{O}_{2} \mathrm{~N}$ of NAD is between 2.9 and $3.2 \AA$, indicating hydrogen bonding interactions.

Table 3.9: Results of MD simulations - comparison of experimental data III

	interac	ng atoms		simulation an	
				Å) or h-bond	
			297.9999 K	298.0000 K	298.0001 K
$\mathrm{Glu}_{1 _ \text {d }}$	$\mathrm{NAD} \mathrm{O} \mathrm{O}_{2} \mathrm{D}$	$\mathrm{Glu}_{614} \mathrm{O}_{\varepsilon 1}$	2.59 ± 0.09	2.59 ± 0.10	2.60 ± 0.09
$\mathrm{Glu}_{1 _ \text {h }}$	$\mathrm{NAD} \mathrm{O}_{2} \mathrm{D}$	$\mathrm{Glu}_{614} \mathrm{O}_{\mathrm{\varepsilon l}}$	99.9 \%	99.9 \%	100%
$\mathrm{Glu}_{2 _} \mathrm{d}$	CNA $\mathrm{O}_{3} \mathrm{~B}$	$\mathrm{Glu}_{614} \mathrm{O}_{\mathrm{\varepsilon} 2}$	2.60 ± 0.10	2.60 ± 0.10	2.59 ± 0.09
$\mathrm{Glu}_{2 \mathrm{~h}}$	CNA $\mathrm{O}_{3} \mathrm{~B}$	$\mathrm{Glu}_{614} \mathrm{O}_{\mathrm{\varepsilon} 2}$	99.9 \%	99.8 \%	99.9 \%
Glu_{3}	NAD C ${ }_{1}$ D	CNA $\mathrm{O}_{2} \mathrm{~B}$	3.48 ± 0.21	3.71 ± 0.33	3.56 ± 0.22
Glu_{4}	NAD $\mathrm{N}_{7} \mathrm{~N}$	$\mathrm{NAD} \mathrm{O} \mathrm{O}_{1} \mathrm{~N}$	99.7 \%	71.9 \%	58.5 \%
Glu_{5}	NAD $\mathrm{N}_{7} \mathrm{~N}$	NAD $\mathrm{O}_{2} \mathrm{~N}$	0.0 \%	0.0 \%	28.3 \%
$\mathrm{Glu}_{4 \text { and } 5}$	NAD $\mathrm{N}_{7} \mathrm{~N}$	$\mathrm{NAD} \mathrm{O} \mathrm{O}_{1 / 2} \mathrm{~N}$	99.7\%	71.9 \%	86.8 \%
$\underline{\mathrm{Glu}_{6}}$	CNA $\mathrm{O}_{2} \mathrm{~B}$	$\mathrm{Tyr}_{531} \mathrm{O}_{\eta}$	8.96 \%	17.9 \%	33.1 \%

In the crystal structure of GgPARP1 (PDB code 1A26), there are formed two hydrogen bonds between the acceptor ribose and the catalytic glutamate 988. Simultaneously, another hydrogen bond between the $2^{\prime} \mathrm{OH}$ of the acceptor ribose and a water molecule (Wat_{37} in 1A26, Figure 3.11) is present. ${ }^{31}$ In the same publication, the donor substrate NAD^{+}was modelled into the active site of the crystal structure. Superposition of the crystal structure and the NAD^{+}-containing model revealed that the Wat_{37} oxygen atom superimposes with the donor ribose carbon $\mathrm{C}_{1 \mathrm{~N}}$, indicating that Wat ${ }_{37}$ in 1 A 26 mimicks the electrophilic C_{1} of the donor ribose (1.1.3). ${ }^{31}$ Both observations led the authors to suggest that Glu ${ }_{988}$ directly increases the nucleophilicity of the 2`oxygen of the acceptor ribose, while ajusting its position in favour of a nucleophilic attack. This is shown in the right panel of Figure 3.11.

An analogue view into the active site of $A t$ PARP1 (left panel of Figure 3.11) reveals a similar picture. The acceptor and donor substrates CNA and NAD^{+}are hydrogen-bonded to Glu_{614}, and therefore adjusted for initiating the catalytic reaction. Superposing the AtPARP1 model and 1A26 results in a distance of only $0.9 \AA$ between the $\mathrm{C}_{1 \mathrm{~N}}$ carbon of the donor ribose and Wat_{37} in 1A26, confirming the statement of Wat_{37} as a C_{1}-mimicking atom in 1A26. It also confirms the quality of the homology model of $\operatorname{AtPARP} 1$ since the $2{ }^{`} \mathrm{OH}$ is in favourate
position and distance for a nucleophilic attack (as shown in Table 3.9 and Figure 3.11). But since Glu_{614} does not form a hydrogen bond to the 2 ' OH of CNA , the nucleophilicity of the attacking oxygen is not increased by the Glu_{614}. Instead, as indicated by interaction Glu ${ }_{6}$ in Table 3.9, a hydrogen bond between the $2^{`} \mathrm{OH}$ and the hydroxyl group of Tyr_{531} in At PARP1 is observed, suggesting that the polarisation of the attacking oxygen might also be possible through a nearby tyrosine O_{n}. In GgPARP1, it is confirmed that the mutation $\mathrm{Y}_{907} \mathrm{~N}$ decreases activity to 1.1% in relaton to the wild-type. An involvement of this tyrosine in activating the catalytic reaction would augment the importance of this tyrosine (e.g. Tyr ${ }_{531}$ in AtPARP1 and Tyr_{907} in $H s$ PARP1) such that its side chain does not only stabilise the nicotinamide moiety of the donor, but is also involved in the catalytic reaction itself.

Analysis of MD simulations of the catalytic domain of AtPARP1

The role of the catalytic glutamate 614, II

$\operatorname{AtPARP} 1, \mathrm{C}_{\alpha}$ atom trace as well as ligand and protein atoms in carton and stick representation
GgPARP1, C_{α} atom trace as well as water and protein atoms in carton and stick representation
Figure 3.11: The role of the catalytic glutamate in the catalytic reaction view into active site of AtPARP1; non-polar hydrogens omitted; dotted lines and Glu $-G l u_{3}$ represent interactions or contacts described in Table 3.7.and Table 3.9, interaction X only present in PDB entry 1A26, position of Water 37 in PDB entry 1 A26 equivalent to position of $C_{I N}$ of the donor ribose in AtPARP1

It might also be that the adjustment of the acceptor ribose through Glug98 in PDB entry 1A26 is only observed when no donor but only an acceptor substrate is present (as in PDB entry 1A26, Figure 3.12) and the hydrogen bond and activation pattern changes upon the presence of both the donor and acceptor substrate. Crystal structures having both substrates or a transition state-analogue present in the active site would gain more insights of the catalytic reaction.

3.4.5 Positioning of the adenine moiety of the acceptor structure

In the crystal structure of GgPARP1, the side chain of a conserved methionine residue (Met $_{890}$, GgPARP1 numbering) was found to be positioned in parallel to the adenine ring of CNA, indicating that there are hydrophobic contacts between the protein and the acceptor ADP-ribose chain that stabilise the positioning of the latter one. To investigate whether analogue interactions occur in AtPARP1, interactions between the modelled CNA and proximate amino acids in AtPARP1 were analysed.

To investigate the relationship between Met $_{514}$ (representing the analogue of Met980 in GgPARP1) and CNA in $A t$ PARP1, the distance M_{1} between the S_{δ} atom of Met ${ }_{514}$ and the $\mathrm{C}_{8} \mathrm{~A}$ atom of the adenine moiety of CNA was monitored during MD simulations (interaction M_{1} in Figure 3.12). Since the adenine ribose of CNA was kept in position via a stable hydrogen bond between Glu9g8 and the $2^{\prime} \mathrm{OH}$ of the adenine ribose in GgPARP1 (3.4.4), displacements of the adenine moiety were analysed by measuring the angle of torsion (interaction TA in Figure 3.12 and Table 3.10) between the atoms $\mathrm{C}_{2} \mathrm{~B}, \mathrm{C}_{1} \mathrm{~B}, \mathrm{~N}_{9} \mathrm{~A}$ and $\mathrm{C}_{4} \mathrm{~A}$ of CNA (shown as atoms 1, 2, 3 and 4 in Figure 3.12).

Analysis of MD simulations of the catalytic domain of AtPARP1

Binding of adenine moiety of CNA

Figure 3.12: Positioning adenine moiety of CNA in GgPARP1 and AtPARP1
Views into active sites of GgPARP1 (A) and AtPARP1 (B); non-polar hydrogens omitted; dotted lines M_{1} represents the distance between S_{σ} of methionine residue (Met $_{890}$ and Met $_{514}, G g P A R P 1$ and AtPARP1 numbering, respectively) and $C_{8} A$ of $C N A$. The angle of torsion, TA, is represented by atoms 1, 2, 3 and 4

In only one of three MD simulations (run at 298.0001 K), analogue observations were found in comparison to GgPARP1, while large deviations from GgPARP1 results were found in the other two MD simulations (interactions M_{1} and TA in Table 3.10 and Figure 3.13). Analysing additional data, such as the hydrogen bond pattern of the $\mathrm{N}_{6} \mathrm{~A}$ atom of CNA with the protein
(interactions $\mathrm{CNA}_{1}-\mathrm{CNA}_{3}$ in Table 3.10) indicates that time-dependent conformational changes of CNA might have influenced those 5 parameters shown in Table 3.10.

Table 3.10: Results of MD simulations - comparison of experimental data IV

interacting atoms in			MD simulation analysis distance (\AA), h-bond frequency or angle (${ }^{\circ}$)			Experimental results
	CNA	AtPARP1	297.9999 K	298.0000 K	298.0001 K	GgPARP
M_{1}	$\mathrm{C}_{8} \mathrm{~A}$	$\mathrm{Met}_{514} \mathrm{~S}_{\text {¢ }}$	4.35 ± 0.84	4.90 ± 0.92	3.65 ± 0.27	3.57 A
TA	$\mathrm{C}_{2} \mathrm{~B}, \mathrm{C}_{1} \mathrm{~B}$,	$\mathrm{C}_{4} \mathrm{~A}$ (in CNA)	156.7 ± 99.8	221.4 ± 51.2	62.7 ± 9.9	$82.1{ }^{\circ}$
CNA_{1}	$\mathrm{N}_{6} \mathrm{~A}$	$\mathrm{Gly}_{512} \mathrm{O}$	6.4 \%	75.1 \%	0.5 \%	---
CNA_{2}	$\mathrm{N}_{6} \mathrm{~A}$	$\mathrm{Thr}_{511} \mathrm{O}_{\text {¢1 }}$	18.2 \%	24.9 \%	46.9 \%	---
CNA_{3}	neither	nor CNA_{2}	75.4 \%	0.0 \%	52.6 \%	observed

Analysis of MD simulations of the catalytic domain of AtPARP1
Binding of adenine moiety of CNA

Figure 3.13: AtPARP1 MD simulation analysis, adenine moiety of CNA positioning I
Time-dependent distances M_{1} in relation to angle of torsion TA. Low values of M_{1} (around 3.6 A) are associated with TA values below 80°, which is in accordance with observed data in GgPARP1.

To determine the relationship between the fluctuations of the Met $_{514}$ side chain and CNA,
interactions M_{1} and TA were analysed in a time-dependent manner (Figure 3.13). The analysis shows strong evidence that low distances of M_{1} (around $3.8 \AA$) are associated with torsion angles TA similar to those found in GgPARP1 (interaction TA in Table 3.10 and Figure 3.13, dark blue points at simulation run at 298.0001 K).

For identifying associations between the hydrogen bonding pattern and M_{1}, as well as TA (representing all 5 interactions listed in Table 3.10) in a time-dependent manner, those parameters were analysed (Figure 3.14, Figure 5.12, Figure 5.13, and Figure 5.14).

Figure 3.14: AtPARP1 MD simulation analysis, adenine moiety of CNA positioning II Hydrogen bonding pattern of CNA as a function of the angle of torsion (TA) and distance M_{1}.

From Figure 3.14, Figure 5.12, Figure 5.13, and Figure 5.14, one can confirm the association between TA and M_{1}, but also the corresponding hydrogen pattern. There is strong evidence that certain values of M_{1} and TA are clustered and each cluster represents a certain hydrogen
bonding preference (Figure 3.14). There is also the picture emerging that the adenine moiety of CNA is very flexible since the variations in the angle of torsion (TA) can result in a flip of the adenine moiety (as indicated by comparison of the crystal structure data with a snapshot of MS simulation in AtPARP1 in Figure 5.12). Despite the flexibility of CNA, the acceptor structure is still held in position via strong hydrogen bonds, e.g. to Glu_{614} (3.4.4).

Additional hydrogen bonds with Gly_{512} and Thr_{511} support the fixation of CNA. But there is evidence that these hydrogen bonds have little influence on CNA binding. First evidence is that favourable values of M_{1} and TA alone can result in a positioning (Figure 3.13 and Figure 5.14) being close to the positioning observed in GgPARP1 (Figure 3.12, A). Secondly, only CNA that is not hydrogen-bonded to backbone atoms of Thr_{511} or Gly ${ }_{512}$ coincides with data in GgPARP1 where CNA is not hydrogen-bonded to corresponding amino acids. This supports the assumption that not the hydrogen bonding of the adenine moiety of CNA, but the hydrogen bonding of the ribose moiety of CNA, as well as hydrophobic interactions are responsible for CNA stabilisation.

Analysing the MD simulations in the context of the acceptor structure CNA, one can conclude that the MD simulations are able to capture the interactions observed in the crystal structure of $G g$ PARP1.

The active site of $A t$ PARP1, as well as the donor and acceptor substrate positioning, which can explain recognition and binding of the substrates, could be modelled in sufficient quality. Therefore the quality of the homology model is of adequate quality to be used as a model for virtual screening and docking analysis.

3.5 Docking

3.5.1 Docking program selection

To select the suitable docking program for virtual screening, it was investigated, which docking program could place the set of 142 known human PARP1 inhibitors (2.1.3) in a correct pose (2.6.5) into the active site of the HsPARP1 model. It was also assessed if NAD^{+} (2.1.1) could be docked correctly. Descriptions of docking parameters are explained in 2.6.3 and 2.6.4. Results of docking trials are summarised in Figure 3.15 and 5.6.1.

Figure 3.15: Comparison of docking programs
grey: MOE scoring functions including either no,tethered or free refinement of each pose. blue: Glide XP; violet: GOLD scoring functions ASP, ChemPLP, ChemScore and GoldScore. orange: PLANTS scoring functions PLP, PLP95 and ChemPLP; * indicates successful docking of NAD ${ }^{+}$in a correct pose (2.6.5).

Among the different docking programs giving 26 different docking protocols, 7 of them were able to dock NAD^{+}into HsPARP1's active site. Also, PLANTS's ChemPLP and MOE's pharmacophore docking parameterisations resulted in more than 80% of the Novikov inhibitor data set docked correctly into HsPARP1's active site. Among those, PLANTS's ChemPLP scoring function outperforms all other parameterisations because it docked 139 HsPARP1 inhibitors, as well as NAD^{+}, correctly into HsPARPs's active site. Since the PLANTS protocol I with three increased hydrogen bond weights outperformes all other docking programs, a second protocol, PLANTS protocol II, where only two hydrogen bonds were increased, was included into the analysis. Even in the PLANTS protocol II, ChemPLP's
performance was better than all other docking programs. Based on these results, the docking program PLANTS together with scoring function ChemPLP was chosen for further investigations of differentiation of known HsPARP1 inhibitor from decoy structures and for the virtual screening process.

3.5.2 Receiver Operator Characteristics (ROC) curve

To investigate if the PLANTS protocols I and II, both with ChemPLP scoring function, are able to discriminate true ligands from decoy structures, the docking performance of both protocols was assessed with Receiver Operation Characteristics (ROC) curves. For both protocols, the data sets of HsPARP1 inhibitors (2.1.3) and HsPARP1 decoys (2.1.4) were docked into the active site of $H s$ PARP1 in 10 independent docking runs. The ROC curves were plotted and AUC calculated for PLANTS docking score TOTAL SCORE. The mean AUC for protocol I was 0.861 ± 0.005, whereas the mean AUC for the protocol II, the mean AUC was 0.879 ± 0.010 (mean $\pm 95 \%$ CI). Two sided unpaired t-tests at 5% significance level α showed a significant difference between both mean AUCs ($P<0.001$).

Figure 3.16: ROC curves of PLANTS docking protocols I and II
Both protocols were sufficiently able to discriminate, and there was a significant difference in the detectable performance, suggesting that protocol II was more powerful in discrimination. Increasing only two instead of three hydrogen bond weights and therefore lowering power of the guidance of the docking poses did affect the discrimination quality positively. Visual
inspection of one hydrogen bond contribution score had the same effect as stearing the hydrogen bond formation through increased weights. The results are displayed in Figure 3.16.

The directory of useful decoys (DUD) contains inhibitors and decoy structures for each target in a ratio of about 1:40. The DUD ligand set for HsPARP1 contains 35 PARP inhibitors. Among those, one can find structures sharing phthalazinone structures, as well as the HsPARP1 inhibitors 4ANI and 3AB. The majority of structures is based on the same scaffold. Therefore, DUD's PARP ligand set covers the chemical space of human PARP inhibitors not sufficiently. The data set published by Novikov contains a variety of structural classes. They are collected from 6 different publications which cover more chemical classes and more derivatives per class. The Novikov data set covers the chemical space of HsPARP inhibitors much better than the DUD ligand set. Furthermore, the data set by Novikov is approximately four times as large as the DUD ligand set. Together with the wide range of structural diversity it represents a much better random sample of human PARP inhibitors. The standard inhibitor and decoy ratio of about $1: 40$ is increased to about 1:9.5. Since no EF studies, but only ROC plots for discrimination studies are used, this increase of ratio has no negative influence on the performance of the studies.

Although the Novikov data set can be assumed to be a SRS, this assumption cannot be proven, since it is impossible to known all potential PARP inhibitors. If the whole chemical space of human PARP inhibitors would be discovered, there would not be any need for further development or improvement of PARP inhibitors. Also, the assumption that DUD decoys, although being more than 1300 structures, would cover the chemical space of potential PARP decoys, is not valid for the same reason. Furthermore, among all decoy structures there might be some so called false false positives. Decoy structures are meant to be not active although having similar properties and shape. But they have not been in vitro verified as PARP decoys. In ROC analysis some of them will be false positives because they are classified as active although they should not bind to PARP. But since the decoys are not tested to be real decoys, some of the false positives will be active against PARP which are then called false false positive outcomes.

Up to now, there is no ideal data set (for any target) that perfectly fits all assumptions. But the DUD decoy set is the only published decoy set for PARP. The Novikov PARP ligand data set was the most diverse set. Both sets therefore represent appropriate data sets for investigation of docking performance.

3.5.3 Inference for data set docking score distributions

For each of the 10 docking runs i, the corresponding means \bar{x}_{i} and standard deviations s_{i} of the docking score distributions of decoy and ligand samples were calculated. The pooled mean $\bar{x}_{\text {pooled }}$ and pooled standard deviation $\bar{s}_{\text {pooled }}$ of the 10 independent docking run means \bar{x}_{i} and standard deviations s_{i} of HsPARP1 inhibitors and HsPARP1 decoys were used as estimates for the populations of PARP ligand and PARP decoy docking scores. These estimates $\left(\bar{x}_{\text {pooled }} \pm \bar{s}_{\text {pooled }}\right)$ are (-153.00 ± 16.76) for the Novikov data set and (-123.32 ± 19.54) for $H s$ PARP1 decoy data set.

3.5.4 Normal approximation of docking score distributions

The assumption of normality was checked by overlaying the histograms of the ligand and decoy samples with a corresponding normal distribution $N\left(\bar{x}_{i}, s_{i}\right)$ which was estimated from the sample mean \bar{x}_{i} und the sample standard deviation s_{i} of each docking run i. Exemplary, the overlay of the histogram and the estimated normal distribution $N\left(\bar{x}_{i}, s_{i}\right)$ for the $3^{\text {rd }}$ docking run of ligands and decoys are shown in Figure 3.17

Figure 3.17: Docking score distributions - normal approximation I
Normal approximation of the docking scores (displayed as histograms) was done using the pooled means and pooled standard deviations described in 3.5.3

For both the ligand and decoy data, the normal approximations do not perfectly match the actual docking score distribution. To assess the difference between the observed docking
scores and their normal approximations, the cumulative distribution functions (cdf) of each docking run $i, C D F_{i}$, and corresponding normal distribution $N\left(\bar{x}_{i}, s_{i}\right)$ were compared. This was done for both the ligand and decoy samples. In the cases of inhibitors and decoys, the CDF display a similar, but not identical, shape. The difference between the sample $C D F_{i}$ and the $C D F_{i}$ of the estimated normal distribution $N\left(\bar{x}_{i}, s_{i}\right)$ equals the error of both CDF and is called $e_{C D F_{i}}$. Together with the CDFs, the $e_{C D F_{i}}$ was investigated and plotted. The observed and approximated cdf for the $3^{\text {rd }}$ docking run for ligand and decoy data set are shown in Figure 3.18, A and C. The corresponding errors between observed and approximated data $\left(e_{C D F}\right)$ are shown in Figure 3.18, B and C, respectively.

Docking run 3, normal approximation and corresponding errors

Figure 3.18: Docking score distributions - normal approximation II comparisons of CDF for HsPARP1 inhibitors (A) and HsPARP1 decoys (C), and corresponding errors of CDF from normal approximation for HsPARP1 inhibitors (B) and HsPARP1 decoys (D),

For the ligand data set, the errors, except for one peak around docking scores of -160 , are below 6%. In the case of the decoy data, the errors are below 6% for the complete range of docking scores, only having three peaks. This indicates that, although the normal approximations do not perfectly match the observed data, the corresonding errors are small enough, so that the approximations can be used instaed of the observed data. The equivalent examination of errors for all 10 docking runs i is shown in Figure 5.8

3.5.5 HsPARP1 inhibitor docking score threshold derivation

The normal approximations of docking score distributions for HsPARP1 decoys $N_{\text {decoys }}(-123.32,19.54)$ and $H s P A R P 1$ inhibitors $N_{\text {inhib }}(-153.00,16.76)$ were used to derive a docking score threshold upon which new structures should be classified as active or inactive. (5.6.2) Since both distributions overlap, false positive and false negative outcomes are inevitable. The probabilities of committing type I and type II errors were assessed using power analysis. Power analysis was performed by setting the rate of committing a type II error to 5% which equals a statistical power 95% (2.7.1). The fixed type II error rate at the 5% level corresponds to the 5% percentile of the HsPARP1 decoys distribution. The corresponding TOTAL SCORE in PLANTS is $\mathbf{- 1 5 5 . 4 6}$. This score was set as a new docking score threshold for discrimination between human PARP1 inhibitors and human PARP1 decoys. The corresponding type I error probability for this docking score is 55.84%

Figure 3.19: Normal approximation III
Based on defined docking score distributions (A), the docking score threshold (black dashed line in B) was set such that type II error rates are fixed at 5%. This threshold leads to a type I error rate of 55.84%. Both error rates are displayed as light red and light green areas in B .

Figure 3.19 A displays the approximated docking scor distributions for the ligand (red line) and decoy (green line) data sets. The left side of Figure 3.19, B, displays the docking score of -155.46 as a black dashed line. This line corresponds to the type II error rate being displayed as a light green area, and the type I error rate as indicated as a light red area in Figure 3.19, B.

Based on power analysis and the established assumptions that the data sets, on which the power analysis was performed, contain representative samples of HsPARP1 ligands and
decoys and that their TOTAL SCORE distributions follow the normal distributions as described in 3.5.4, then the following can be stated:

If a commercial database contains potential HsPARP1 inhibitors and structures that do not inhibit HsPARP1 and if these two classes of structures follow the distributions as were inferred in 3.5.4 and if this database is screened with the developed PLANTS docking protocol II and ChemPLP scoring function, then potential HsPARP1 inhibitors and decoys could be selected solely based on the docking score with the following characteristics: Among the selected structures that would be classified as inactive based on the docking score (e.g. have as TOTAL SCORE >-155.46), 95% of these would be correctly classified as inactive if they were tested in vitro. Among the selected structures that would be classified as active based on the docking score (e.g. have as TOTAL SCORE <-155.46), 44.16\% (= 100\% 55.84%) of them would be correctly classified as active if they were tested in vitro, too.

Table 3.11: Characteristics of the docking threshold

characteristic	Novikov ligands	DUD decoys
mean number of correctly docked structures	129	760
mean number of structures missing the threshold	64	14
mean type I error, based on power analysis	55.84%	
mean type I error, observed	49.60%	
difference	6.24%	
mean type II error, based on power analysis		5.00%
mean type II error, observed		1.88%
difference		3.12%

further details of the 10 docking runs are listed in 5.6.4, 5.6.5 and 5.6.6

Statistical power analysis can be used to define conditions which need to be fulfilled so that an existing effect can be correctly detected by the method investigated. Assessing the power of a method or study is essential since not assessing the power of a process can lead to underpowered or overpowered methods - conditions that are not desired The more underpowered or overpowered a study or method gets the more inefficient it is. Underpowered studies are unable to detect an existing effect and unable to reject the null hypothesis. Results that lack significance because they are underpowered can lead to misinterpretation of results and therefore to wrong understanding of the problem that is investigated. Instead of interpreting non-significant results as no evidence of an effect, it is sometimes interpreted as evidence of no effect. In clinical trials, insufficient power in
treatment studies can also be problematic or even unethical if participants are exposed to inferior treatment. ${ }^{239}$

Overpowered studies on the contrary are prone to finding effects that are essentially without any meaning. Such situations can occur when the number of observations is far bigger than 1.000 or hypotheses are tested on large databases. The power of any statistical test affects statistical significance. In an extreme example it was shown that two identical groups have been found different with statistically significance ($p<0.05$). Having one million observations, the actual SPSS-generated difference was -0.046 , which was not a meaningful, but still significant result. ${ }^{240}$ Therefore, finding an adequate level of power is a key point in study design. Initial experiments that give hints about the danger and costs in comparison to potential benefits (in any sense) are indispensable. A statistical power of 50% means $50-50$ chances to reject the null hypothesis that was found to be false or being unable to detect a true effect in 50 percent of the time. Since statistical power is related to type I error, desired effect size and the number of observations, one has to adjust among all of these factors. Fixing statistical power and alpha levels result in an adjusted number of observations and effect size. False positive outcomes, the number of observations and different effect sizes can be translated into costs, and so are the benefits of high power. Therefore, it is always to ask: "Does the nature of the effect warrant the expense required to uncover it"? ${ }^{241}$

The appropriate setting of statistical power (1- β) is always problem-specific. There is no rule of thumb for choosing β. In 1988, Cohen ${ }^{242}$ rationalised to set the power at 80% which can be translated into studies that have a probability of 20% to give a false positive result and a probability of 80% to correctly detect an existing effect. Cohen argued that α (typically set to 0.05) should be treated four times as serious as β (being set to 0.20) and balance the risks of committing type II and type II errors in that ways. From that time on, researches not only had to rely on Fisher's 5% type I error criterion, but also on type II errors, Cohen's recommendation became well-known as the five-twenty convention or the one-to-four rating of α and β errors.

The goal of power analysis of the data sets for human PARP1 ligands and human PARP decoys was to choose a docking score that identifies new structures (from commercial or inhouse databases) as potentially active or inactive, according to docking scores of contained structures. Therefore the assumption has to be made that structures in databases can also be classified in PARP inhibitors and PARP non-binders and that the docking score distribution
follows the ones that were calculated for the test sets of HsPARP1 inhibitors and HsPARP1 decoys. It is plausible that in commercial databases, the number of potential PARP1 inhibitors will be far smaller than the number of structures that do not inhibit the protein. The proportion of ligands and decoys in the test set was 142:1351 $\approx 1: 9$. In the DUD, this proportion was set to approximately 1:40 for each target. ${ }^{158}$

Considering type I errors or false negative docking outcomes, the generally used error rate $\alpha=.05$ would be inappropriate for practical reasons of in vitro testing of selected compounds. This will be explained on the $1^{\text {st }}$ docking run in the HsPARP1 ligand and decoys test set, where 128 of 142 inhibitors and 771 of 1351 decoys were docked correctly. The setting of $\alpha=.05$ equals keeping 95% of ligands for testing while dismissing 5% of the ligands. This setting would qualify 121 of 128 correctly docked ligands to be selected. The docking score threshold at which this amount of ligands would be classified as active would be -120.60 . The number of decoy structures that pass this threshold is 432 . This number corresponds to the number of false positives (and inactives) with according false positive rate (or β error) of 56.1% and a power or 43.9%. (Table 3.12, setting 1) Increased α-levels increase the docking threshold (e.g. making TOTAL SCORE more negative) which leads to less inhibitor and decoy structures to pass this criterion. Due to the increasing of the α-level and reduced number of selected decoys, the false positive rate decreases and statistical power rises (Table 3.12, setting 2). While the database-size approach neglects the docking score, in the example of the $1^{\text {st }} H s$ PARP1 docking with 899 structures, all nine selected would be inhibitors (Table 3.12, setting 2). Approaches having high statistical power have a significantly stricter docking threshold. Because of that, less structures from the pool of actives are selected which leads to an increased false negative rate (or α error). The stricter docking threshold is also the reason for a decreased number of inactives that will be selected and increases the number of inactives that will correctly be identified as such (Table 3.12, settings 4 and 5). This is the reason for increased statistical power.

Table 3.12: Compound selection based in different focal points

setting	focus	docking score threshold	number (and percentage) of selected ..					
			inhibitors$n=128$		$\begin{gathered} \text { decoys } \\ n=771 \end{gathered}$		structures total	power (1- β)
1	$\alpha=.05$	-120.6	121	(95.0)	432	(56.1)	553	43.9 \%
2	$\alpha=.10$	-127.6	115	(90.0)	322	(41.8)	427	58.2 \%
3	$1 \% \mathrm{db}$ size		9	(7.0)	0	(0.0)	9	100 \%
4	$\beta=.90$	-148.4	73	(57.7)	77	(10.0)	150	90%
5	$\beta=.95$	-155.4	55	(41.2)	38	(5.0)	93	95%

Sticking to low α-levels would result in high proportions of inhibitors contained in the test set, but the number of decoy structures that pass the threshold according to these α-levels sum to a large amount of compounds that would have been bought based on the α-decision. The theoretical or statistical significance does not account for costs and benefits. These characteristics are assessed in evaluation of practical significance:

In contrast to statistical significance, practical significance measures the impact of real-world application of this docking threshold. In particular, practical significance could be defined as the benefits of an agrochemical company of having identified a new lead compound that increases abiotic stress tolerance in crop plants at a defined level. Practical significance could also measure the costs necessary to identify a hit from virtual screening. It incorporates the questions: What are the costs of identifying a compound that increases stress tolerance to a certain level?" or "If the amount of financial support is limited to X, how many compounds can be tested if a single test costs $\mathrm{Y} €$ ". These questions require an analysis of how well the employed virtual screening is able to identify a hit or potential lead. At this point, statistical power analysis that focusses on specificity (or β errors) helps to answer this question since it estimates the number of compounds needed to screen to identify a hit. From an economical point of view it supports the decision how many compounds need to be tested (or how many money is spent on buying and testing) if there is a certain ratio of false positive and false negative outcomes contained in the sample to be screened. In Table 3.13, five different screening scenarios (settings) are compared. Since each screening scenario focusses on a different type of error, the number of structures that is tested is different in each setting.

If the costs of in vitro testing are assumed to be fixed at a level of $30 €$ per compound (neglecting personnel costs and overhead), than the following economic consequences arise that are given in Table 3.13:

Table 3.13: Statistical vs. practical significance

setting	focus	Practical significance / costs of measuring (in $€$)			
		total costs	identification of decoys	identification of hits	ratio of hit identification
1	$\alpha=.05$	16590	12960	3630	21.88 \%
2	$\alpha=.10$	13110	9660	3450	26.31 \%
3	$1 \% \mathrm{db}$ size	270	0	270	100.0 \%
4	$\beta=.90$	4500	2310	2190	48.67 \%
5	$\beta=.95$	2790	1140	1650	59.14 \%

Costs of measuring potential PARP inhibitors in relation to hit rates for different virtual screening settings at an assumed cost of $30 €$ per compound in the assay

In settings 1 and 2 which are focusing on α errors or on reducing false negative outcomes the number of selected compounds is high in comparison to β-driven settings 4 and 5 and so are the total costs of compound measuring. Among the high numbers of selected compounds the actual benefits (in identification of hits) are low in comparison to approaches 4 and 5. The greatest difference between the two approaches is occurring between settings 1 and 5. In (β focused) setting 5 , not only the total costs are less than 20% of those in setting 1 , but the chance of identifying a hit in setting 5 is 270% of the chance in setting 1 .

Setting 3 seems to be advantageous over all other settings at first sight. The costs are very low and the success rate is 100%. But the major drawback of setting 3 is that it selects only nine structures. All of those are positive but it is very likely that those structures share an already known core. The odds that these nine structures add knowledge to the problem under investigation are very low. Many VS strategies are based on already known structures or chemical classes and it is likely that those chemical classes are found in the first ranks of a ranked database. Furthermore, setting 3 completely ignores the docking score. Ignoring the docking score speeds up the whole virtual screening process since no docking score analysis has to be performed. But it is very likely that a follow-up VS has to be performed to run a more sophisticated VS run that also is able to identify more compound classes or searches the chemical space more rigorously.

These results reflect the advantages of power analysis. The number of compounds that might have no inhibitory effect on $A t$ PARP1 is reduced in large amounts while the percentage of active compounds is increased. As it is stated by Triballeau and coworkers, the β-focused strategy "may be advisable in small companies" and "is faster, cheaper, motivating, and apparently, the most efficient way to accelerate drug discovery". ${ }^{243}$

Besides the advantages of deriving a threshold on specificity and β errors, there is one point that favours the focus on type I (or α) error and sensitivity: Selecting a less strict threshold using the classical one-to-four rating proposed by Cohen ${ }^{242}$ dismisses less active structures. With the increase in the amount of selected active structures, the probability of selecting structures from diverse chemical classes raises. ${ }^{243}$ This can have tremendous effects on the study outcome since the broader the chemical space that is represented by the selected actives, the more knowledge can be gained about the target on which the compounds act or their mode of action.

While Cohen ${ }^{242}$ suggested the $\alpha=.05$ and $\beta=.20$ convention for researchers that have no guidance how to choose α and β levels ${ }^{242}$, this one-to-four rule has to be reconsidered in every occasion in which the risks and benefits of the test results can be estimated. ${ }^{243}$ As in the PARP virtual screening example, where β is decreased to 0.05 , medical test are designed in a way that the occurrence of type I errors is assumed to be less bad than type II errors, because wrongly detect something on an actually healthy patient (type I error) and verify later on (in follow-up experimnts) that the first test was wrong is less harmful than telling an actually diseased patient that everything is well (type II error). In those cases, β is often chosen to be less than 0.005 . Furthermore, purely focusing on α levels (together with a null hypothesis that assumes no effect) does not gain any knowledge about the investigated problem. Often, assessing α by testing against H_{0} is meaningless, since it is already assumed that there is actually an effect. Taking the effect into consideration, one should always focus on β and statistical power. ${ }^{244}$

In 1933 Neyman and Pearson stated that there is no general rule for balancing type I and type II errors and that the leveling of power is problem-dependent has to be defined by the investigator. ${ }^{245}$ The power of the docking procedure was set to 95% which is a large deviation from Cohen's one-to-four rule (in which power is set to 80%). This high value of power was chosen because of its practical consequences. This is in agreement with the argument of Hubbard who states that this decision has "nothing to do with statistical theory but is based on context-dependent pragmatic considerations where informed personal judgment plays a vital role". ${ }^{246}$

If a database of 100.000 structures is screened and structures are selected based on the docking score a power of 95% results in correctly identifying 95% of all non-binders while retaining 5% for in vitro testing. The number of non-binders can be assumed to be much higher than the number of active structures (an optimistic example would be to have 95.000 inactives and 5.000 actives contained in the database). As a consequence, even a high power of 95% would allow $95.000 *(1-0.95)=4750$ inactive structures to pass the filter. According to the one-to-four rule of 80% power, this number would be $95.000 *(1-0.80)=19.000$. Even under a high power of 95%, in vitro-measuring the activity of 4.750 inactive structures causes high costs but has little benefits and is highly time-consuming. Reducing the power of 80% would increase the costs by 400% without any beneficial increase (as indicated in Table 3.13). For this reason, a power of 95% might be even too low for large databases.

3.5.6 Derivation of docking score threshold for AtPARP

3.5.6.1 Assumptions

The following assumptions had to be set prior to transfer the docking protocol for HsPARP1 to $A t$ PARP. All concern the equality of the systems and their behaviour.

Assumption 1: The active sites of $H s$ PARP1 and $A t$ PARP are identical.

Explanation: Through superposition of active site residues of $H s$ PARP1 and AtPARP it is clear that they are not identical since the RMSD values of active site residues are >0. But the RMSD in the active site region are low and amino acids in the active site, which are exchanged in both systems, have been set flexible during the docking and therefore the effect of differences is minimised.

Assumption 2: Both HsPARP1 and $A t$ PARP are inhibited by the same inhibitors through the same mode of action and both $H s$ PARP1 and $A t$ PARP1 are not inhibited by the same decoy structures.

Explanation: This assumption cannot be proven because there is no estimate that states how well the chemical space for HsPARP1 inhibitors is investigated. For $A t$ PARP, only three inhibitors are known (1.4.1). ${ }^{208,218}$ From a docking program's point of view, based only on atomic coordinates of the active site and assumption 1, this assumption can be assumed to hold true.

Assumption 3: The performance of $H s$ PARP1's docking procedure on $A t$ PARP is equal to the performance of $H s$ PARP1's docking procedure on HsPARP1.

Explanation: This assumption can be tested by docking the data set of known HsPARP1 ligands into the active site of AtPARP. Assumption 3 can be used as hypothesis that can be tested, if assumptions 1 and 2 are assumed to hold. Docking scores for Novikov ligands were compared by unpaired two-sided Student's t-tests at a significance level of 0.005 . The Null hypothesis in this test would be that there is no difference between AtPARP and HsPARP1.

3.5.6.2 Differences of the docking procedure between HsPARP1 and AtPARP1

Ten docking runs for $H s$ PARP1 were performed under equivalent conditions for $A t$ PARP1 and $A t$ PARP2 for the 142 structures containing Novikov data set (2.1.3). Ten conformations were produced per structure. For each docking run in $H s$ PARP1, $A t$ PARP1 and $A t$ PARP2 the number of structures that could be docked correctly according to 2.6 .5 and the occurrence of
the correct pose were examined. The results are shown in Table 3.14 and Figure 5.9. Since in PLANTS, all poses are ranked by TOTAL SCORE in ascending order, it was also investigated, whether the correct pose could be found in pose number 1, which corresponds to the most negative TOTAL SCORE.

Table 3.14: Characteristics of docking procedure

characteristic	$H s$ PARP1	$H s$ PARP2	AtPARP2
Mean of correctly docked ligands	129	123	111
Mean number of correctly docked ligands in pose 1	102	80	92
Mean percentage of correctly docked ligands in pose 1	79.5%	65.5%	83.3%
Docking runs with $80 \%>$ of correctly docked ligands	9	7	3
Docking runs with $95 \%>$ of correctly docked ligands	5	4	0
Structures that could not be docked in any docking run	2	2	13
Structures docked correctly in all 10 docking runs	100	85	98

The mean number of structures that were docked correctly for HsPARP1 is higher than the mean number of correctly docked structures for $A t$ PARP1 and $A t$ PARP2. In contrast to that, the number of structures that could be docked correctly in the first pose (and with most negative docking score) is highest for $\operatorname{AtPARP} 1$.

The feature of docking procedure that was used for determination of a new docking score was the number of structures that could be docked correctly in each of thte 10 docking runs. Table 3.14 shows that 100 of 142 structures were docked correctly in all 10 docking runs into HsPARP1, while 85 and 98 structures were docked into AtPARP1 and AtPARP2 in all docking runs, respectively. These structures could be docked with confidence into the corresponding active sites and therefore were used for further analysis (Figure 3.20). The docking scores for all inhibitors, depending on whether they were docked with confidence into $H s$ PARP1 and $A t$ PARP2, are shown in Figure 5.9.

Figure 3.20: Number of structures being docked into HsPARP1 and AtPARP

The intersection of the sets of structures that were docked in 10 docking runs correctly contain most information for further analysis. The intersecting sets of structures that could be docked confidently into $H s$ PARP1 and either $A t$ PARP1 or $A t$ PARP2 contained 77 and 89 structures, respectively and is displayed in Figure 3.20.

Based on the 77 structures that were correctly docked into both active sites of HsPARP1 and AtPARP1 in all 10 docking runs, a new docking threshold was developed. The same procedure was performed for the 89 overlapping structures for HsPARP1 and AtPARP2. The differences of the mean docking scores were analysed with two-sided unpaired Student's ttests at significance level $\alpha=0.005$ (2.7.3) which were performed for each of the 77 and 89 structures, respectively. The results of thes tests are shown color-coded in Figure 3.21, together with the step of final derivation of new AtPARP docking thresholds.

For the final derivation of a new docking threshold, only the ligands that fulfilled the prerequisites AND whose mean docking scores were significantly different were taken into account. For those remaining ligands, the median of docking score distributions of the differences were defined as the new docking threshold for $\operatorname{AtPARP} 1 / 2$. This is illustrated in Figure 3.21, where the left panel (A, C) represents the derivation of the new dockings threshold for $A t$ PARP2, whereas the right panel (B, D) represents the derivation of the new docking threshold for $A t$ PARP1, respectively. The upper barplots (A, B) represent the mean docking score differences of the remaining ligands. The distribution of those differences are represented in the lower histrograms (C, D). The medians of these histograms are represented by red lines, which implicate the median difference of docking scores.

The number of structures that were docked confidently into $A t$ PARP1 and $A t$ PARP2, it was investigated which had significantly different docking scores (by means of unpaired twosided Student t -tests at significance level of $\alpha=0.005$. The results are diplayed in Table 3.15.

Table 3.15: AtPARP1 and AtPARP2 docking score differences

	$A t$ PARP1			$A t$ PARP2		
	$P<0.005$	$P>0.005$	cond. on Δ	$P<0.005$	$P>0.005$	cond. on Δ
$\Delta>0$	1	2	3	20	12	32
$\Delta<0$	56	18	74	37	20	57
conditional on P	57	20	77	57	32	89

Number of structures docked into AtPARP1 and AtPARP2 with significantly different docking scores in comparison to HsPARP1. Results of corresponding Chi-Squared test are shown in 5.6.5

Analysis of docking results

Difference of docking scores of HsPARP1 inhibitors confidently docked into AtPARP1 and AtPARP2

Figure 3.21: HsPARP1 and HsPARP2 docking scores of 142 HsPARP1 inhibitors
A and B: docking analysis of inhibitors docked into HsPARP1. C: docking analysis of inhibitors docked into HsPARP1 and AtPARP2.

By all of the 77 structures that were docked into the active site of $\operatorname{AtPARP1}$, only 3 had a positive mean difference of docking scores in comparison to HsPARP1 mean docking scores. Amidst the 74 structures with negative mean differences, 56 of them were significant at
significance level of 0.005 . Pearsons Chi-Sqared test was used to test for an association of docking scores and statistical significance. The test results are displayed in 5.6.5.

In both cases, there is no evidence against H_{0}, therefore the null hypothesis cannot be rejected, indicating that there is an association between the significant score differences and whether these differences are positive or negative. Although the test gives no hint about the type of association, based on the data it can be assumed that if a significant difference between the $H s$ PARP1 and $A t$ PARP1 (or AtPARP2) docking score exists, then it is likely that this difference is negative, e.g. the TOTAL SCORE for HsPARP1 is more negative than the TOTAL SCORE for $A t$ PARP1 or $A t$ PARP2.

To develop a new docking score threshold for $\operatorname{AtPARP1}$ and $\operatorname{AtPARP} 2$ based on the mean differences of docking scores and the Pearson's Chi-Squared Test, the medians of the 57 significant score differences between $A t$ PARP1 and $H s$ PARP2 and $A t$ PARP2 and $H s$ PARP1 were calculated (red lines in Figure 3.21). The median of the significant docking scores for AtPARP1 was -10.55 and -4.97 for $A t$ PARP2. These scores represent the differences of docking scores for known human PARP1 inhibitors that are docked into $A t$ PARP1/2 active sites. Since the medians of differences are derived from structures that could be docked with confidence into the corresponding active sites and account for significant difference in docking scores, they were used to obtain an adjusted docking threshold for $A t$ PARP1 and AtPARP2, based on the threshold for HsPARP1. The new thresholds are calculated as:

Table 3.16: Derivation of new docking thresholds for AtPARP1 and AtPARP2

	Threshold $H s P A R P 1(3.5 .5)$	Difference to $H s P A R P 1$	Threshold new		
AtPARP1	-155.45	-	-10.55	$=$	-144.91
$A t$ PARP2	-155.45	-	-4.97	$=$	-150.49

The adjusted docking thresholds for $A t$ PARP1/2 are -144.91 and -150.49 , respectively. These docking thresholds can be used to either select compounds from a vendor's database that pass the docking threshold or classify selected compounds as potentially active or inactive based on their docking score.

3.6 Processing data from a commercal data base

The database of Bionet KeyOrganics (2.1.2) was used as commercial database from which potential AtPARP inhibitors ought to be selected after the virtual screening process.

The database contained 43.179 structures, which were processed with MOE (2.3.1) to be used as input structures for LigPrep. ${ }^{184}$ The resulting numbers of protomers and tautomers of the Bionet database after using LigPrep (2.3.5) was 57.117 . Of those entries, the threedimensional structures were generated using ConfGen 2.3.4. ${ }^{247}$ In total, the number of conformers from 43.179 structures was 1.035 .499. These conformations were read into MOE's .mdb database format (2.3.1) and compressed so that it could be used for pharmacophore searches (2.5).

Since the Novikov sample data set contained a high amount of structures that share either a phthalazinone or quinazolinone core, both mimicking the nicotinamid-substructure of NAD^{+}, two substructure searches at shop.keyorganics.co.uk for those cores were performed as is displayed in Figure 5.10

These substructure searches resulted in 59 structures sharing a quinazolinone core and 41 structures having a phthalazinone core. This data set of 100 structures was used in addition to the complete database to investigate the docking and pharmacophore performance. Since one of the assumptions was that quinazolinone or phthalazinone core-containing compounds inhibit $H s$ PARP1 and $A t$ PARP, theses structures were used as a reference. It was estimated an overlap between these 100 structures and the large set of the database. The outcomes of the substructure searches were processed with LigPrep (2.3.5) to calculate tautomeric structures. These were also used for pharmacophore filtering and docked into the active site of $A t$ PARP1.

3.7 Pharmacophore filtering

3.7.1 Pharmacophore selectivity

The pharmacophore was created for the protein models of $H s$ PARP1 and $A t$ PARP2 (2.5). The selectivity of the pharmacophore was assessed by calculating the percentage of structures that pass the pharmacophore filter. The known HsPARP1 inhibitors from the Novikov data set (2.1.3) and the PARP decoy data set from DUD (2.1.4) were used. The hypothesis was checked whether the pharmacophore could filter out high percentages of decoy structures while retaining the majority of known HsPARP1-inhibiting structures. The results are shown in Table 3.17. Both HsPARP1 and $\operatorname{AtPARP} 2$ pharmacophores filter out about 94% (keeping about 6%) of all decoy structures. Also more than 85% of HsPARP1 inhibitors pass the pharmacophore filter. The percentages of both known inhibitors and decoys that pass the filter are higher for the $A t$ PARP model than for $H s$ PARP1. The quotient of both fractions can be expressed as the pharmacophore enrichment factor (PEF). A PEF can be understood as the enrichtment (here, through a pharmacophore filter) of the fraction of active (non-decoy) structures in a dataset in comparison to the original fraction of actives. The PEF numbers are similar for both models and again slightly higher for the plant model. For a database containing the same number of potential binders and non-binders, the pharmacophore would enrich the fraction of ligands that pass the filter by a factor of about 15 in comparison to the fraction of decoy structures.

Table 3.17: PARP Pharmacophore selectivity

	HsPARP1 pharmacophore structures passed (absolute and \%)		AtPARP2 pharmacophore structures passed (absolute and \%)	
HsPARP1 ligands	121 of 142	85.21	131 of 142	92.25
HsPARP1 decoys	80 of 1351	5.92	82 of 1351	6.07
Total	201 of 1493	13.46	213 of 1493	14.27
PEF		$14.39 *$		$15.20 * *$

* $\mathrm{PEF}_{\text {pharmacophore } H s \mathrm{PARP} 1}=\left(\frac{121}{142}\right) / /\left(\frac{80}{1351}\right)=14.39$
$* * \mathrm{PEF}_{\text {pharmacophore } H s \mathrm{PARP} 1}=\left(\frac{131}{142}\right) /\left(\frac{82}{1351}\right)=15.20$

3.7.2 Pharmacophore filtering of a commercial database

After having established that the filtering charcteristics of the PARP pharmacophore are similar for $A t$ PARP2 as for $H s$ PARP1 (Table 3.17), the pharmacophore was used to screen a commercial database for potential new AtPARP inhibitors. The pharmacophore search reduced the structures in the KeyOrganics database from 43.179 to 2.879 tautomeric structures and 2.713 unique structures. This corresponds to a reduction of the data set of about 93.6 \%. This value is even higher than the 85.2% of the HsPARP1 data set for the pharmacophore filter of the $\operatorname{AtPARP} 2$ model (Table 3.17)

3.7.3 Pharmacophore filtering of structures with specific core structures

The 59 and 41 structures having a quinazolinone and phthalazinone core (3.6) were also subjected to $A t$ PARP2 pharmacophore filtering. By the whole of those 100 structures, 82 passed the pharmacophore (2.5). Structures that did not pass the pharmacophore are substituted in 6- or 7-position and are already known to lower the potency of HsPARP inhibition due to steric clashes in the active site. These results gave further indication of the successful applicability of the pharmacophore.

3.8 Selection of compounds

3.8.1 Compound selection based on docking score and pharmacophore selection

The 2.879 tautomeric (2.713 unique) structures that passed the $\operatorname{AtPARP} 2$ pharmacophore filter, were docked with the PLANTS docking protocol II and ChemPLP scoring function into the active site of $A t$ PARP2. Due to time restrictions, only 5 instead of 10 solutions per ligand were produced. The 14.395 solutions were checked for the presence of the hydrogen bond whose weight was reduced to the standard value of 1 . A hydrogen bond was said to be present if the hydrogen bond was present $>30 \%$ according to PLANTS scoring function (5.6.8). In association with all docking solutions, those were kept that passed the hydrogen bond filter. Based on the 300 structures with the best (e.g. most negative) docking scores, 136 structures were selected after visual inspection, of which 121 compounds were available at KeyOrganics. Out of those 136 structures were 34 and 31 which contain quinazolinone or phthalazinone cores, while 71 structures contain core structures different from phthalazinones and quinazolinones.

Table 3.18: Compound selection: selected structures and their availability

	QUIN	PHTH	neither QUIN nor PHTH	total
selected	34	31	71	136
available	28	26	67	121

3.8.2 Compound selection based on chemical characteristics

The visual inspection was focussed on general characteristics of structures that were derived from the conformation of FRQ (24, Figure 2.10) bound in the homology model of AtPARP1 (Figure 3.2). There, the ligand covers the nicotinamide binding site, and a hydrophobic end group is connected to a linker. The ligand does not reach the protein surface or the volume at which the catalytic reaction is assumed to take place. Based on these four characteristics, the ligand binding site was divided into four subsites $\left(S_{1}-S_{4}\right)$ that correspond to the volumes where the NA binding site $\left(\mathrm{S}_{1}\right)$, a linker $\left(\mathrm{S}_{2}\right)$ and a hydrophobic region $\left(\mathrm{S}_{3}\right)$ could be occupied by a new inhibitor. A fourth region $\left(\mathrm{S}_{4}\right)$ represents the protein surface where parts of the acceptor structure would bind. A schematic representation of the active site and two examples of selected structures (25 and 26) are shown in Figure 3.22.

General characteristics of structures selected by VS

Figure 3.22: Schematic representation of subsites $S 1-S 4$ and their occupancies subsite representation of $\mathrm{A}: 24, F R Q \mathrm{~B}: 25$, Bionet name 10E-62 C:26, Bionet name $12 F-408 S$ (see 5.9)

Examples of the structures having a quinazolinone structure are shown in Table 3.19. All those structures belong to quinazolin- $4(3 \mathrm{H})$-one structures that are substituted in 2-position.

Table 3.19: Structures selected for virtual screening: quinazolinones
(

Most of these structures carry a hydrophobic substituent that is connected to the quinazolinone core via a methylthio (Table 3.19, structures 27, 32, 37 and 42), ethylene (Table 3.19, structures 28, 33, 38 and 43), isopropyl (Table 3.19, structures 29, 34, 39 and 44), aminoethyl (Table 3.19, structures 30, 35, 40 and 45) or methylene linker (Table 3.19, structures $31,36,41$ and 46).

The quinazolinone structures were selected such that they form homologouos serieses. So differ quinazolinone compounds 28,33 and 38 only in the position of the chlorine which is in ortho- meta or para position of the benzyl side chain. Structures 30 and 33 share the same substituent (phenyl ring with a para-substituted chlorine) but differ in the linker. It was also checked for bioisosteric structures, e.g. structures with similar substituents that would influence the physical or chemical properties of the compounds not too much.

Examples of the structures having a phthalazinone structure are shown in Table 3.20. All those structures belong to phthalazin- $1(2 H)$-one structures that are substituted in 4-position.

Table 3.20: Structures selected for virtual screening: phthalazinones

 47	 48 49		${ }_{51}$
 52	 53 54		 56
 57	 58 25		 60
 61 64	 62 65 66	 63 67	 68

These structures carry a hydrophobic substituent that is connected to the phthalazinone core by an aminoethylene, ethylene or methylene linker. Again, structures were selected that share
the same linker but are different in their, mostly hydrophobic, substituent. So are structures $48,53,57,62$ and 65 different only in their group present in 4-position of the phenyl ring. Furthermore, 53 and 58 have a trifluoromethyl group attached on the phenyl ring, but in metaand para-position, respectively.

It was also checked for bioisosteric structures, e.g. structures with similar substituents that would influence the physical or chemical properties of the compounds not too much. Unfortunately, no phathalazinone or quinazolinone structures were found that share the same side chain. This would have been desirable since it would allow to draw conclusions about the influence of the core (phathalazinone or quinazoline) structure on inhibitor binding.

Table 3.21: Structures selected for in vitro screening: other chemical classes

The structures that were selected that lack the phthalazinone or quinazolinone core were devided into classes. Most notably, 11 structures were selected that share an tetrahydroquinazolinone core that is substituted in 2-position by an acetamide moiety. This makes them structurally similar to the class of quinazolin-4(3H)-ones. An example of those structures (71) is displayed in Table 3.21. Other classes differ from the substructure scheme as described in A and B. They consist of a substituted 5-membered ring that acts as an analogue of the nicotinamide-mimicking moiety. These structures are substituted in two ring positions; the substituents occupy the linker and hydrophobic regions of the active site (S_{2} and S_{3}), and in some cases target the acceptor site $\left(\mathrm{S}_{4}\right)$. Examples of these classes are shown in Figure 3.22: one of those carrying an 1-(3-methoxythiophen-2-yl)urea moiety (72). Structures of these classes are shown in Table 3.21. Another class were structures that share an oxopyridazine core (as 73) that is substituted in 1- and 3-position.

As for the phthalazinone and quinazolinone classes, the structures were selected upon forming homologue series or being bioisosteric to each other.

3.8.3 Analysis of docking results / retrospective power analysis

All 121 available compounds were selected on the basis of AtPARP2 dockings. Parallel to the in silico selection process, Dr. Silky Pienkny was successful in cloning and purificying the catalytic domain of AtPARP1 (unpublished, data not shown). Furthermore, Dr. Torsten Geissler adapted the $H s$ PARP1 inhibition assay from Trevigen to be used for IC_{50} calculations of inhibitors of $\operatorname{AtPARP} 1 .{ }^{207,208}$ Therefore, the structures of the 121 commercially available compounds were docked once again into the active site of $A t$ PARP1, resulting in different docking scores than in AtPARP2. In contrast to docking scores of the selected structures, that all would have passed the $A t$ PARP2 docking threshold, some $A t$ PARP1-docked structures did not pass the $\operatorname{AtPARP} 1$-specific docking score threshold anymore. Among the $\operatorname{AtPARP} 1-$ docking scores of 121 structures, 63 had a docking score <-144.91 and therefore passing the threshold for being classified in silico as active, while 58 structures would be classified as inactive according to their docking score >-144.91.

The 121 compounds were tested in vitro for their inhibitory activity. As a first in vitro test, a compound was classified as active when it reduces $\operatorname{AtPARP} 1$ activity to a level of 60% or less at substrate and inhibitor concentrations of both $100 \mu \mathrm{M}$. In classifying compounds as active or inactive, the test allowed a comparison of in silico predictions with in vitro results which were evaluated by retrospective power analysis.

Table 3.22: Retrospective power analysis

	no. of compounds	in vitro positive	in vitro negative
in silico active $($ score $<-144.91)$	63	33	44
in silico inactive $($ score $>-144.91)$	58	14	30
total	121	47	74

Among the 121 compounds, 47 proved to be active in in vitro tests. By all of those, 33 of them were also predicted to be active, based on the docking score, which corresponds to true positive outcomes. Out of 74 compounds that did not reduce $\operatorname{AtPARP1}$ activity to more than $40 \%, 30$ were also predicted as inactive based on the docking scores. This fraction represents true negative outcomes. Therefore, the (in)activity of 63 out of 121 compounds was correctly predicted by the docking score,corresponding to a correct decision of outcomes in more than 50%. The number of 44 in vitro negative compounds that were incorrectly predicted to be active based in the docking score, correspond to false positive (type II error) outcomes. False negative outcomes are 14 compounds that were shown to inhibit $\operatorname{AtPARP1}$ more than 40% while having been predicted to be inactive (type I error outcomes).

Retrospective power analysis reveals that the overall docking power is 40.5% (or $30 / 74$). Class-specific power of the docking score-based discrimination ranges from 0% (for the phthalazinones) to 67.2% for classes not having quinazolinone or phthalazinone cores. In all classes statistical power is therefore smaller than the predicted 95%. The overall true positive rate ranges from 50% (for quinazolinones) up to 95% (for phthalazinones). The overall true positive rate of 70.2% is greater than the predicted 44.16% that was based on HsPARP1 dockings.

Retrospective power analysis

Figure 3.23: Retrospective power analysis
Comparison of observed class-specific error probabilities with predicted error probabilities

A priori power analyses (before in vitro data was available) have been run to determine a docking threshold that classifies docked structures as potentially active or inactive against $H s P A R P 1$ and subsequently $A t$ PARP1. The distributions of docking scores for the test set data sets overlap in the region of the calculated docking score threshold (Figure 3.19). These overlaps in the HsPARP1 docking score distributions for the HsPARP1 ligands and decoys data set result in classifying known inhibitor structures as false negative or classifying known decoy structures as false positives with error probabilities of $\alpha=47 \%$ and $\beta=5 \%$. Having transferred this HsPARP1 docking score threshold onto AtPARP1 virtual screening, several
qualifiers have been imposed that may have influenced the observed $\operatorname{AtPARP} 1$ screening power, therefore it is very likely that predicted $\operatorname{AtPARP} 1$ error probabilities are dissimilar from calculated $H s$ PARP1 error probabilities.

Post hoc, or retrospective, power analyses are discussed controversial. After having observed (mostly insufficient, as in this study) power, researchers do question what might have caused this difference, how much power would have been necessary to detect an effect, or what would have been the minimum sample size for effect detection. This is one of the reasons why some journals even recommend retrospective power analysis. ${ }^{248}$ In retrospective analyses, one assumes the observed power estimate and true population effect size be the same, but the "observed effect size used to compute the post hoc power estimate might be very different from the true (population) effect size, culminating in a misleading evaluation of power". ${ }^{249}$ These differences tend to increase where samples are small and biased.

The paper of Triballeau also points out the character of choosing a too high power or too high docking threshold. The high level of the docking threshold resulting from 95% statistical power "may lend too much credit to the adopted approximations". ${ }^{243}$ From the beginning of the VS strategy to its application on a commercial database, many assumptions and approximations have been set to justify the strategy which was based on HsPARP1 and was transferred to $A t$ PARP1 and $A t$ PARP2: those approximations might have led to an observed power of 40.5% for the sample of 121 selected compounds from VS which was much lower than the expected power of 95%. This means that based on 121 selected compounds, only 40.5% of compounds that were shown not to inhibit AtPARP1 were identified as such, based on the docking score. This discrepancy cannot be explained by retrospective power analysis but there are strong indications for reasons that might have had an influence on decreased power.

The main result of the VS procedure was the identification of compounds that are inhibiting AtPARP1. In the first in vitro screening it was tested if a compound (applied at a $100 \mu \mathrm{M}$ concentration) reduces the enzyme activity to less than 40%. From that experiment one could follow if the IC_{40} of an inhibitor would be higher or less than $100 \mu \mathrm{M}$. From that one could estimated that a corresponding IC_{50} would be reached at even higher concentrations. Required enzyme inhibition of 40% was chosen to incorporate inherent errors (biological variability) in the coupled enzyme assay leading to an increased rate of compounds that pass this screening. The concentration of $100 \mu \mathrm{M}$ is usually used as the concentration at which a compound is believed to have specific inhibitory effects on the target and hence was set as a threshold. ${ }^{243}$

Depending on the target's activity, the size of the database to be screened and the desired endpoint of the VS process, stricter thresholds - e.g Ki of $5 \mu \mathrm{M}$ - have been used ${ }^{250}$ but since the $A t$ PARP1 in vitro screening of more than 100 compounds was very elaborate and timeconsuming, a less stricter threshold was chosen: In fact, the choice of a threshold does not only vary from target to target but even for the same target different thresholds can be chosen, depending on the purpose. An example for a wide spectrum for thresholds for one single target is the hERG $\mathrm{K}+$ channel where thesholds to discriminate between active and inactive compounds range from $30 \mu \mathrm{M}^{251}$ to $300 \mathrm{nM}^{252}$, covering an activity of three order of magnitudes.

In this pre-screen, a dichotomous descision concerning the ability of each compound to inhibit AtPARP could be made and based on this result, a compound was tested more intensively in a second screen in which a compound's IC_{50} value would be determined.

In this study, 47 compounds were identified as active in this test, corresponding to a hit rate of 38.8%. There are only few studies in which VS hit rates in drug discovery are reported. But for those the hit rates are in the range of $20 \%{ }^{250,253-255}$ and this rate is regarded as "respectable" ${ }^{256}$, especially when the hits were identified for a target whose three-dimensional structures was determined by homology modeling. If the docking threshold is taken into account, 33 compounds of 47 were correctly predicted as active (true positive rate) which would correspond to a docking threshold-specific hit rate of 70.2%.

In the conducted study where 47 out of 121 selected compounds were positively tested for AtPARP1 inhibitory effects, the costs for testing these compounds were $3630 €$, a fraction of $38.8 \%(1410 €)$ resulted in the identification of new $A t$ PARP1 inhibitors. In comparison to the different screening routes from Table 3.13, this hit rate would correspond to a β-focussed screening strategy, because not only the number of compounds was moderate (and therefore the total costs of measuring) but also the fraction of the costs that resulted in positive hits was $>38 \%$.

3.9 Finding most probable pose of active compounds

In a first in vitro test, each of the 121 available compounds was tested for inhibitory effects on AtPARP1. Based on these results, 52 compounds were selected for further in vitro testing and their IC_{50} values were determined as part of the PhD thesis of Dr. Torsten Geißler. ${ }^{207}$

To derive (quantitative or binary) structure-activity relationship for the inhibitors based on three-dimensional properties, it is important to know the bioactive conformation of inhibitors. The POSIT workflow was used to find most probable poses of the active compounds inhibiting $A t$ PARP1. Among the PARP X-ray structures available at PDB that contain cocrystallised inhibitors (April 2012), 18 human and chicken PARP1-3 were selected as templates. To make use of the POSIT workflow, three assumptions were imposed:

- selected PARP X-ray structures contain inhibitors in bioactive conformations
- selected human and chicken PARP1-3 inhibitors also inhibit $\operatorname{AtPARP} 1$ through the same mode of action
- similar conformations (with low RMSD values) for co-crystallised human and chicken PARP1-3 inhibitors would occur for the corresponding inhibitors in AtPARP1.

Table 3.23: PARP crystal structures used with POSIT

POSIT requires all complexes to search against to have 100% sequence identity and similar

3D-template structures, therefore AtPARP 1 homology models of the 18 PARP template X-ray structures were generated first using the procedure described in 2.3.3.1.

Running POSIT with 18 AtPARP1 homology models derived from human and chicken PARP1-3 X-ray structures, 52 verified $A t$ PARP1 inhibitors and the settings as described in 2.3.2, probable bioactive pose(s) for each inhibitor were calculated based on bioactive conformations of human and chicken PARP1-3 inhibitors. In total, 7 out of 18 HsPARP1 and $H s$ PARP3 template structures were used to calculate probabilities for bioactive conformations of new $\operatorname{AtPARP} 1$ inhibitors. These inhibitors are described in Table 3.23. In total, 166 probable bioactive conformations of the known 52 AtPARP1 inhibitors were calculated because for some inhibitors, more than one bioactive conformation was probable. For those, the conformations with the highest probability were kept for further analysis. To search for a probable bioactive $A t$ PARP1 inhibitor conformation, all 18 template animal PARP1-3 inhibitor conformations (taken from the PDB) were compared with Tanimoto Combo as a measure. The calculated probability had to be greater than 0.05 for a optimisation that leads to a "current best" solution. This procedure is examplified on the inhibitor 8D-003 $(5.9,73)$.

Workflow for finding probable bioactive poses for the discovered AtPARP1 inhibitor 8D-003

From the best docking conformation to probable bioactive conformation

Figure 3.24: Finding probable bioactive conformations of new AtPARP1 inhibitors
Example with AtPARP1 inhibitor 8D-003 (5.9, 73) A-C: bioactive conformations of template inhibitors with Tanimoto $_{\text {Combo }}(T C)$ scores and P values. D: template inhibitor with highest TC homology modelled into AtPARP1, E: the best docking pose of $8 D-003$ is changed into new pose sharing highest overlap with template inhibitor (F)

POSIT uses generated conformations of the known AtPARP1 inhibitor to compare against the set of PARP protein-ligand complexes and the Tanimoto Combo (TC) score and a probability (P) for each complex (Table 3.24 and Figure 3.24). Out of the 18 template inhibitor conformations, three were rejected because of too low Tanimoto Combo scores and probabilities less than 0.05 . All other 15 template inhibitors were optimised. The PDB entry 3C49 (representing HsPARP3 with the 4-fluorobenzyl phthalazinone derivative KU8) gave an optimised Tanimoto Combo score of 1.310 .

Table 3.24: Results of POSIT application I

AtPARP1 template	PDB code	Ref:	inhibitor identifier	probability P	Tanimoto combo	Current best
GgPARP1	1EFY	257	BZC	0.12	0.898	0.912
HsPARP1	1UK0	70	FRM	0.25	0.893	0.893
HsPARP1	1UK1	157	FRQ	0.50	1.142	1.201
GgPARP1	2PAX	72	4AN	0.12	0.739	0.739
HsPARP1	2RCW		AAI	0.42	1.003	1.058
HsPARP3	2RD6		78P	0.12	0.866	0.910
HsPARP3	3C4H	258	DRL	0.42	0.921	0.921
HsPARP3	3C49	258	KU8	0.78	1.158	1.310
HsPARP3	3CE0	258	P34	0.42	1.023	1.129
HsPARP3	3FHB	258	GAB	0.03	0.567	rejected $(P<0.05)$
HsPARP1	3GJW	259	GJW	0.25	0.898	1.122
HsPARP1	3GN7		3GN	0.12	0.875	0.901
HsPARP2	3KCZ	71	3AB	0.03	0.579	rejected $(P<0.05)$
HsPARP2	3KJD	71	78P	0.12	0.868	0.884
HsPARP1	3L3L	260	L3L	0.42	0.904	0.929
HsPARP1	3L3M	238	A92	0.50	1.117	1.154
GgPARP1	3PAX	72	3MB	0.03	0.623	rejected $(P<0.05)$
GgPARP1	4PAX	72	NU1	0.09	0.853	0.853

The bioactive conformation of this $H s$ PARP3 inhibitor matches the conformation of the AtPARP1 inhibitor 8D-003 best. This is also expressed in Figure 3.24.

Using the POSIT workflow, the 52 compounds have a median Tanimoto Combo score of 1.29. From 52 structures, $25(=13+12)$ structures have a probability $\mathrm{P}>0.5$ that the found pose has an RMSD of less than $2 \AA$ to a pose that would be observed in a crystal. For 13 structures this probability is >0.75 meaning that the found pose for those inhibitors is likely to be the correct pose with an RMSD less than $2 \AA$. The median Tanimoto Combo $^{\text {score }}$ of the subgroup having a quinazolinone structure is higher than the median scores of the subgroup consisting of
phthalazinone substructures or substructures having neither phthalazinone or quinazolinone substructures (Figure 3.25, right panel). Among the 13 structures for which a probability >0.75 was predicted, 12 of them belong to the class of structures sharing a quinazolinone substructure (Figure 3.25).

POSIT results, most probable poses of known AtPARP1 inhibitors

Figure 3.25: POSIT results: quality of prediction for AtPARP1 inhibitors.

Table 3.25. Results of POSIT application II

| chararcteristic | QUIN | PHTH | other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of structures (n) | 22 | 21 | 9 | 52 |
| MACCS 166 median | | | | |
| Tanimoto Combo median | 0.62 | 0.58 | 0.54 | 0.58 |
| Probability P median | 1.34 | 1.24 | 1.25 | 1.29 |
| number of structures with $P>0.75$ | 0.78 | 0.50 | 0.43 | 0.50 |
| number of structures with $0.50<P \leq 0.75$ | 12 | | | |
| number of structures with $P \leq 0.50$ | 6 | 1 | 0 | 13 |

From the right panel of Figure 3.25 one can see that the 52 structures concentrate in the upper right part of the POSIT probability map. According to the definition of the POSIT probability
map (2.3.2) the positions of the structures in that map are a result of sufficiently good Tanimoto $_{\text {Combo }}$ scores of these three-dimensional structures to known crystal structure $H s / G g / M m$ PARP inhibitors and an acceptable MACCS166 score that represents twodimensional feature similarity between the $\operatorname{AtPARP} 1$ inhibitor structures and known $H s / G g / M m$ PARP inhibitors. These results give rise to assume that, given the POSIT workflow and the set of PARP crystal structures, the pose of $A t$ PARP1 inhibitors might be predicted more accurately for quinazolines than for phthalazinones or other structurally similar classes.

The developed VS route focused solely on the identification of potential AtPARP inhibitors that target the NA part of the active site. This VS route was selected since there is a huge knowledge available about the binding mode of inhibitors that target the NA site. There is only little knowledge about the structural requirements of potential inhibitors that target the AD site of PARP. The reason for that is that there is no crystal structure available that includes NAD^{+}, the substrate of PARP, in the active site. While the conformation of NAD^{+}in its bound state has been proposed ${ }^{72}$, the "true" binding of NAD^{+}remains to be elucidated. Protein-bound NAD^{+}conformation in PARP has been inferred from Diphtheria Toxin-like ADP-ribosyltransferases like DT in which NAD^{+}could be crystallised in its bound state. ${ }^{121}$ The predicted conformation of NAD^{+}in PARP has not been proven up to 2013, and so are the key interactions responsible for the recognition of the AD site of NAD^{+}remain to be unclear. Because of the (experimental) lack of knowledge about the inhibition of PARP by AD-site inhibitors, the vast majority of PARP inhibitors interact with the NA site.

In 2012, a crystal structure of the human Tankyrase 1 (PDB entry 3UH2) ${ }^{261}$ was released that contains the HsPARP1 inhibitor PJ34. ${ }^{261}$ In this complex, PJ34 is bound in the NA site in a similar conformation as it was observed in the protein-ligand-complexes of HsPARP3 (PDB entry 3C3O) ${ }^{258}$ and HsPARP15 (PDB entry 3GEY, unpublished) and human Tankyrase 1 (PDB entry 3UH2) ${ }^{261}$. In PDB entry 3UH2, PJ34 is also found in the AD site. The binding mode of PJ34 in the AD site is similar to the binding mode of other Tankyrase inhibitors (e.g. XAV939 in 3KR8). ${ }^{262}$ More human Tankyrase 1 inhibitors (e.g. IWR2, PDB entry 4DVI) ${ }^{263}$ have also been published that bind the AD site. Despite structural differences in the AD binding site of Tankyrases to (human and Arabidopsis) PARP1, the release of crystal structures that contain Tankyrase inhibitors that target the AD site, might be a starting point for VS for new classes of PARP inhibitors.

A strategy to screen for PARP inhibitors that target the AD site or mimic the conformation of PARP-bound NAD^{+}might be a solely ligand-based VS approach. For this approach, one
assumes potent AD site-targeting PARP inhibitors to be similar in three-dimensional shape and electrostatic environment to the AD substructure of PARP's substrate NAD^{+}. By this reasoning, this approach could be extended to screen databases for NAD^{+}-mimicking structures, based on the same assumptions. The three-dimensional shape of NAD^{+}is known from the crystal structure of DT-bound $\mathrm{NAD}^{+, 121}$ and its electrostatic environment can be calculated (e.g. using the program EON by OpenEye software). This approach has been successfully applied to identify structures that are similar to the Ca^{2+}-releasing second messenger NAADP. ${ }^{264}$

Results of VS for structures that are

 similar in shape and electrostatics to NAADP

Figure 3.26: POSIT results: quality of prediction for AtPARP1 inhibitors.
A: electrostatic profile of NAADP and Ned-19, B: three-dimensional superposition (shape comparison), of NAADP and Ned-19 C: two-dimensional representation of NAADP and Ned-19

In the study of Naylor and colleagues three-dimensional shapes of NAADP and a database containing 2.7 million structures were calculated with OMEGA. In a second step, the threedimensional shapes of all database structures were compared to those of NAADP with ROCS and the 500 best hits were saved. Finally the electrostatic overlaps of these hits with NAADP were compared to identify new chemical probes that mimic NAADP. The VS hits were also validated in biological tests. The complete VS route (ranging from two-dimensional representation of 2.7 million structures to calculate three-dimensional conformations,
corresponding electrostatics and comparisons to NAADP) took about 4 months, while the biological testing and validation of less than 50 VS hits took another month. Results of the study are shown in Figure 3.26.

AtPARP1 inhibitors could also be identified by a modified strategy that combines the applied POSIT workflow (2.3.2) and the natural most probable NAD^{+}conformation in $\operatorname{AtPARP1}$ as it was described in 2.4.2. This strategy would base on the assumption that the identified conformation of bound NAD^{+}in AtPARP1 (3.4) would be correct by the definition of POSIT. This assumption could be restated as: The designed model of $\operatorname{AtPARP} 1$ containing NAD^{+}is the same as one would observe in an $\operatorname{AtPARP} 1-\mathrm{NAD}^{+}$protein-ligand crystal structure. If this assumption holds, a complete database could be screened for inhibitors that are of similar shape and electrostatics as AtPARP1-bound NAD^{+}. The screening could be focussed on structures that mimic NAD^{+}through similar electrostatics and shape (e.g. having a high Tanimoto Combo score being close to 2 or a POSIT probability >0.9).

3.10 Structure-activity relationship

3.10.1 General aspects

The conducted docking score analyses for $H s$ PARP1, $A t$ PARP1 and $A t$ PARP2 (3.5.6) lead to the identification of new $\operatorname{AtPARP1}$ inhibitors and the IC_{50} values for 52 compounds were determined. One aim of the work was to determine which parameters are responsible for the inhibition for $\operatorname{AtPARP} 1$, several approaches have been carried out. In the research of virtual screening for plant PARP inhibitors, two effects were investigated. One was in vitro inhibition of $A t$ PARP1 by competitive inhibitors, the second was the increased dry mass production of Lolium perenne L. under induced drought stress conditions which are assumed to be a key factor for increased yield production.

The parameter TOTAL SCORE in the docking program PLANTS proved to be able to discriminate potential $A t$ PARP inhibitors from structures that were similar in structure and shape. There was no correlation found between TOTAL SCORE and the inhibitor's activity (expressed as the IC_{50} or the transformed $-\log \left(\mathrm{IC}_{50}\right)=\log \left(1 / \mathrm{IC}_{50}\right)$) values by linear regression ($\mathrm{R}^{2}<0.001$, data not shown). Also, multiple linear regression (MLR) on all PLANTS's docking output parameters and the IC_{50} values was performed. For MLR analysis, the PLANTS docking scores were taken from two approaches: The first was by using the original docking scores of the 52 structures whose IC_{50} later was determined. In the second approach, the approximated most probable bioactive conformation of the 52 structures, being present in complex with $A t$ PARP1 as a result of the POSIT workflow (2.3.2, 2.4.3 and 3.9), were used as input for rescoring (only using PLANTS's simplex optimisation routine to adapt for better rescoring with ChemPLP). Both approaches resulted in no correlation ($\mathrm{R}<0.001$, data not shown).

Also all 288 two-dimensional molecular descriptors were calculated and used as variables for partial least squares (PLS) and principal component regression (PCR) in MOE (version $2012.10)^{169}$. In both approaches, the numbers of used principal components (PC) were used in a range from 5 to 10 . Furthermore, Orthogonal Projections to Latent Structures (O-PLS) was performed with SIMPCA-P (version 10) with a maximum of 7 PC . In all multivariate data analysis approaches, there were no sufficient correlations found between molecular descriptors and $A t$ PARP1 activity of inhibitors. Since the majority of inhibitors belong to the classes of quinazolinones ($n=21$) and phthalazinones ($n=22$), class-specific MLR, PLS, PCR and O-PLS analyses were performed which also resulted in no correlation (data not shown).

These results were unexpected since QSAR studies with PARP HsPARP1 inhibitors have successfully been applied over the last decade with overwhelming results. ${ }^{128,131,132}$ The study of Rewatkar and colleagues includes phthalazione derivatives and uses MLR technique (and others) to derive QSAR for the class of phthalazinones as PARP inhibitors. ${ }^{132}$

A reason for the failure of QSAR might be the narrow range of outcome values. For 26 compounds, an IC_{50} between 10 and $80 \mu \mathrm{M}$ was determined. For another 20 compounds, IC_{50} values from 1 to $10 \mu \mathrm{M}$ have been observed. Five compounds show an IC_{50} between 0.5 and 1 $\mu \mathrm{M}$ and a single compound has an IC_{50} of $0.08 \mu \mathrm{M}$. Apart from the most active compound, 51 compounds cover a range of activity of 2.1 log units. Results that base on such a narrow range can be hard to interpret and are known as a restricted range problem. Together with the small numbers of chemical classes that are represented by these compounds it might be a reason for the results that were obtained for QSAR.

One solution to this problem would have been to extend the determination of IC_{50} values. On the basis of the first screening results (AtPARP1 inhibition of more than 40% at $100 \mu \mathrm{M}$ inhibitor concentration) and a few exceptions from that criterion, 52 compounds were selected to IC_{50} value determination. If a compound inhibits $\operatorname{AtPARP} 1$ at 40% at a $100 \mu \mathrm{M}$ concentration, the IC_{50} value for this compound would be deduced to be in the range between 100 and $500 \mu \mathrm{M}$, which might be of no practical relevance anymore.

Also, most compounds identified in the first round of in vitro screening would be active in the milli- or micromolar range, whereas the probability of finding a more active - active in the nanomolar range - compound would be very small. For compounds that inhibit $\operatorname{AtPARP} 1$ at $100 \mu \mathrm{M}$ less than 40%, the corresponding IC_{50} values would expected to be in the upper micromolar or millimolar range. The determination of IC_{50} values from those compounds would have increased the range of observed IC_{50} values from about $2 \log$ units to 4 or $5 \log$ units which would have eliminated the restricted range problem. It also would have been likely that within the additional set of compounds, different chemical classes of $\operatorname{AtPARP1}$ inhibitors would have been observed. Both would be two major factors in obtaining better QSAR models. Determining additional IC_{50} values would have been time-consuming and cost-intensive. But this problem could also have been solved by not performing a first screen before verifying individual IC_{50} values but measuring this value without any pre-screens.

3.10.2 Binary structure-activity relationship

Binary quantitative structure-activity relationship (binary QSAR) was used to find physicochemical properties of compounds whose inhibitory effect on AtPARP1 was assessed by in vitro experiments. In the initial experiment, a compound used at a concentration of 100 $\mu \mathrm{M}$ was defined as inhibiting $\operatorname{AtPARP} 1$ at a level of 100% if it inhibited enzyme activity in the same amount as the negative control compound 4AN. 4AN was verified before as a moderate $A t$ PARP1 inhibitor as a part of the PhD thesis of Dr. Torsten Geißler. ${ }^{207}$ An $\operatorname{AtPARP} 1$ inhibition level of 0% was defined as no inhibition of $A t$ PARP1. As described in 3.8.3, all 121 commercially available KeyOrganics compounds were tested for $\operatorname{AtPARP} 1$ inhibition, and an IC_{50} determination of a candidate was measured in follow-up experiments if the initial inhibitory effect was greater than 40%.

To define training sets of active and inactive structures, compounds that had inhibitory effects in the initial screening that were greater than 60% were treated as active, and compounds that showed inhibitory effects in the initial screening that were less than 20% were treated as inactive. This definition resulted in a selection of 33 active and 58 inactive compounds $\left(n_{\text {active }}=33, n_{\text {inactive }}=58\right)$, respectively. These two data sets were split into training and test sets in a 1:4 ratio. Using this ratio, the training set consisted of 24 active and 44 inactive structures. The test set consisted of 9 active and 14 inactive compounds. (Figure 3.27)

Workflow for binary QSAR of AtPARP1 inhibitors

Figure 3.27: Binary QSAR workflow
The number of active and inactive compounds in the test set and validation set in that study are in accordance with the numbers that have been used by others. There are studies where more than 400 structures have been used in the training set ${ }^{222}$ and there are binary QSAR
studies conducted with less than 100 structures. ${ }^{256}$ In the study of Zhou, the number of actives and inactives in the training set was nearly identical $\left(n_{\text {active }}=36, n_{\text {inactive }}=51\right)$ to the number of structures used in this study. ${ }^{265}$ The number of compounds for external validation of this study $\left(n_{\text {active }}=9, n_{\text {inactive }}=14\right)$ is also in accordance with the numbers that have been used before. High numbers of active and inactive structures are desired because larger sample sizes will improve the model quality. As it was used in the study of Zhou and colleagues, the validation set size can also be small $\left(n_{\text {active }}=3, n_{\text {inactive }}=3\right)^{265}$ which then poses the question of how well the external test set model accuracy would be for a larger set of validation structures.

Since the bioactive conformations of the training and test set compounds in $A t$ PARP1 are unknown, two-dimensional descriptors, all available in MOE (version 2012.10) ${ }^{169}$, were used for establishing a binary QSAR. By all of the 2D descriptors, the subsets of 16 physical descriptors and 30 partial charge descriptors were selected for model generation. AM1 partial charges were calculated prior to model generation. The following values for model generation were used: binary threshold $=0.5$, smoothing parameter $=0.10$, condition limit $=10^{6}$. The number of components was changed from maximum to 5 . Among the 46 descriptors, the following 8 were selected for QSAR:

Table 3.26: Selected descriptors for binary QSAR

Descriptor code	Description	rel. importance
Q_VSA_POL	Total polar van der Waals (vdW) surface area	0.1467
Q_VSA_HYD	Total hydrophobic vdW surface area	0.1665
Q_VSA_POS	Total positive vdW surface area	0.2344
Q_VSA_NEG	Total negative vdW surface area	0.2452
Q_VSA_PPOS	Fractional positive vdW surface area	0.1785
Q_VSA_PNEG	Fractional negative vdW surface area	0.1720
Vdw_area	Van der Waals surface area $\left(\AA^{2}\right)^{*}$	0.1546
Vdw_vol	Van der Waals volume $\left(\AA^{3}\right)^{*}$	0.1667

* (calculated using a connection table approximation)

All descriptors calculate specific van der Waals (vdW) surface areas or the vdW volume of a structure. Although they belong to two different classes of 2D descriptors according to MOE classification, they can all be classified into two-dimensional vdW descriptors. Although MOE offers nearly 200 two-dimensional descriptors, there are mainly two ways of selecting relevant descriptors. On the one hand, important descriptors can be selected by performing variable selection methods like PCA. ${ }^{266}$ On the other hand one can specifically select a subset of descriptor classes that might be important for descriminating actives from inactives. ${ }^{267}$

The number of 5 principal components (PC) was chosen because the model has a low RMSE (root mean squared error, 5.10 .5 and 5.10.8). Two PC showed even lower RMSE but gave worse accuracy in the training set (5.10.5). The smoothing parameter of 0.10 led to slightly worse accuracy than the smoothing factor of 0.05 . Increasing the smoothing factor from 0.05 to 0.10 reduces the chance of overfitting while dcreasing accuracy only at a low level (5.10.5).

Table 3.27: Results of binary QSAR

	Accuracy in \%			LOO cross-validated accuracy in \%		
	Total (A)	actives (A_{1})	inactives $\left(\mathrm{A}_{0}\right)$	$\begin{aligned} & \text { total } \\ & \text { (XA) } \end{aligned}$	actives $\left(\mathrm{XA}_{1}\right)$	inactives $\left(\mathrm{XA}_{0}\right)$
accuracy	92.64	79.16	100.00	82.35	54.16	97.72
chance *	56.48	27.94	72.05	58.65	20.58	79.41
P -value	$1.80 \cdot 10^{-9}$	$1.80 \cdot 10^{-10}$		$7.21 \cdot 10^{-5}$	$1.16 \cdot 10^{-5}$	

* theoretical accuracy if there was no association between the model and the sample

By using 5 PC , the model has a total accuracy of 92.64%, meaning that 63 of 68 training set structures (A) are correctly classified as active or inactive. From the 24 training set actives $\left(\mathrm{A}_{1}\right), 19$ are correctly classified, which corresponds to a sensitivity of 79.16%. The model predicts all inactives in the training set $\left(\mathrm{A}_{0}\right)$ correctly which equals 100% specificity. After leave-one-out (LOO) cross-validation, the accuracy on the actives $\left(\mathrm{XA}_{0}\right)$ has dropped to 54.16%, meaning that 13 of 24 actives are predicted correctly. The LOO cross-validated accuracy on the inactives $\left(\mathrm{XA}_{1}\right)$ is 97.72%, meaning that 43 of 44 inactives are still predicted correctly. (Table 3.27 and Figure 3.28)

Depending on the target, the binary threshold, the selected descriptors and the number of compounds, the total accuracies (based on actives and inactives, A) of binary QSAR models are very high (accuracies $>85 \%$). The accuracies for active $\left(\mathrm{A}_{1}\right)$ and inactive $\left(\mathrm{A}_{0}\right)$ compounds are in the same range, although there is mostly one class that is much better in accuracy than the other one. ${ }^{268}$ For the LOO cross-validated training set the accuracies (XA, XA_{1}, and XA_{0}) are a bit lower than for the non-cross-validated training set. Another measure of model quality is the theoretical accuracy which gives the accuracy if there was no association between the model and the sample. This value should always be far less the the observed accuracies and in the presented binary QSAR model the differences between the chance and observed accuracies range from $\sim 18 \%$ (for XA_{0}) to more than 50% (for XA_{1}). Together with the probability (which is far less than 0.05) that the results of this binary QSAR model are due to chance, these facts provide overwhelming evidence that the model accuracy is not achieved by chance.

In the external validation, the model predicts 3 of 9 (33.33\%) actives correctly while all 14 inactives are predicted correctly (Figure 3.29). While one usually wants to identify active compounds from QSAR models, higher accuracy on inactives than on actives is not uncommon. ${ }^{222,256,265,266,268}$ This is advantegeous because in subsequent in vitro screenings (where mostly the active compounds are further examined) compounds that would have no activity (and therefore would be of no interest in lead finding) are excluded through the high binary QSAR accuracy on inactives. Furthermore, the ability of correctly identifying inactive compounds can be directly translated into statistical power (2.7.1), which is desirable for several reasons (3.8.3).

Binary QSAR activity prediction of 68 training set compounds

Set of 24 active structures

Set of 44 inactive structures

Figure 3.28: Binary QSAR results I
In contrast to QSAR based on continuous outcome values, binary QSAR used binary (e.g. active vs. inactive) outcome values. While obtaining good results from continuous QSAR could probably have been impaired by the restricted range of IC_{50} values and the low amount of chemical class diversity, the restricted range problem is eliminated by assigning a binary
activity value (e.g. 0 or 1) to each of the complete set of compounds. While IC_{50} values were obtained for 52 compounds, a test result in the first screen was available for all 121 selected compounds. Since the activity of a compound in this test was determined in relation to positive and negative controls, each activity value was expected to be in the range of 0% to 100% and the cut-off value was set to 40%. To incorporate measurement and biological variability of the first in vitro screen, the binary threshold for selection of the active and inactive training set was defined below 20% below and above $60 \% \operatorname{AtPARP1}$ inhibition at $100 \mu \mathrm{M}$ inhibitor concentration. This resulted in the selection of 33 active and 58 inactive compounds. The selection criterion of 20% from the in vitro cut-off value of 40% was chosen to avoid QSAR boundary effects. These effects occur for compounds that merely pass or fail to pass the threshold value of 40% inhibition. Because of biological variation, structures having values near the threshold of 40% cannot clearly be assigned to the class of actives or inactives. It has been shown that boundary effect influence the model quality ${ }^{269}$ and omitting structures with values near the threshold improves the model accuracy ${ }^{222}$ and because of that, structures having activity values between 20% and 60% ($n=30$) were excluded from model generation. For the external test set to contain enough compounds, both sets were sorted by activity and each third compound was assigned to the test set.

Binary QSAR external validation
 Using a test set of $\mathbf{2 3}$ structures

Figure 3.29: Binary QSAR results II - External validation
Binary QSAR was used to find molecular descriptors that can be used to classify AtPARP1 inhibitors from structures that would not inhibit AtPARP1. The developed QSAR was specific since it had high accuracy on inactives, both the leave-one-out (LOO) cross-validated and external test set accuracies on inactives were $>97 \%$. Since eight two-dimensional descriptors were needed for model generation, this specificity could be used to develop an alternative virtual screening strategy:

To screen a large database (e.g. with more than 1 million unique entries), each being present in 2D coordinates and AM1 partial charges being calculated in advance, the following strategy could be applied: As a first step, the database entries would be filtered with the AtPARP pharmacophore (2.5). Structures passing the filter will contain already known PARP inhibitor classes like quinazolinone which are likely to be $A t$ PARP inhibitors. But also structural classes will pass the filter that will not contain PARP inhibitors as has been demonstrated in the first screening test with 121 compounds tested on $\operatorname{AtPARP} 1$ (3.8.3 and 5.10.4). In the conducted VS, 6.28% of the database entries passed the filter. For a millionentry containing database (representing similar fractions of actives and inactives) this percentage would allow more than 60.000 structures to pass this filter. This number is too high to be used for subsequent docking of those structures. But if the selected descriptors hold to discriminate all $A t$ PARP inhibitors from $A t$ PARP non-inhibitors for new structures (e.g. the binary QSAR model is as specific for new structures whose $A t$ PARP activity is unknown) this binary QSAR could be used as a second filter to eliminate structures that are likely not to inhibit $A t$ PARP.

This strategy was tested on the database in MOE (version 2012.10). ${ }^{169}$ That database consists of 653.214 unique structures from commercial vendors. A fraction of 2.84% (18.578 structures) passed the pharmacophore filter. Those structures were then classified by the binary QSAR model. From 18.578 structures, 12.939 structures were classified as potentially inactive (using the threshold of 0.5). Because of the low sensitivity (accuracy on actives) of the binary QSAR model, the remaining 5639 structures cannot be assumed to be $A t$ PARP1 inhibitors. But the number of remaining structures would now be small enough to be used for molecular docking as it was described in 3.8.3. Another advantage of this strategy is that it would be less time-consuming. Assuming that three-dimensional conformations of structures have already been generated, the pharmacophore search itself on the MOE database was finished within 2 hours. Calculation of AM1 charges as the time-limiting step took a calculation time of a few hours. The prediction of activity using the binary QSAR model was performed in less than a minute. Therefore, a database with one million structures could be screened within one day and the number of structures that pass all filters would be small enough for subsequent docking analysis.

3.10.3 Influence of inhibitors on plant dry mass production

Among the 52 inhibitors for which IC_{50} values were determined, 22 inhibitors (in 26 experiments which included 4 duplicates) were used to study the effects of dry mass production of Lolium perenne plants upon drought stress. The inhibitors contained 9 phthalazinone and 7 quinazolinone derivatives, as well as 6 compounds that neither belong to the classes of phthalazinones or quinazolinones. The experiments were conducted by Dr. Heike Hahn at the SKWP Laboratories in Cunnersdorf. In the experiments, the hypothesis was tested whether stressed plants onto which $\operatorname{AtPARP} 1$ inhibitors were applied show an increased dry mass production in comparison to stressed, but untreated control plants. Drought stress conditions were applied to control plants by reducing the medium's water potential to -0.25 MPa . Drought-stressed plants served as controls ($n=4$) and their dry masses were related to stressed plants. Inhibitors were added to stressed control plants in four different concentrations being $1,10,25$ and $50 \mu \mathrm{M} .(n=4 * 2=8)$

A general effect caused by the experiment was that the plant's absolute total and shoot dry masses decreased upon being drought-stressed, while the opposite effect was observed for the root dry mass production where the dry mass increased upon drought stress. Additionally, since the dry mass of the shoot accounts for about 90% of the total dry mass, there was a high correlation observed between the dry mass productions of the total dry mass and the shoot dry shoot mass (R^{2} of $0.85,0.85,0.65$ and 0.87 for concentrations of $1,10,25$ and $50 \mu \mathrm{M}$, respectively. Because of these facts, the shoot dry mass productions was of main interest and analysis. The results are shown in Figure 5.15.

From 22 compounds tested in four different concentrations, 17 showed an increased dry mass production in at least one of the four concentrations. Five compounds showed a positive dry mass growth in three or all four concentrations. Only for one compound (64) a concentrationdependent change in dry mass was observed. Among the 9 phthalazinone derivatives, there were 3 with positive effects in more than two concentrations (48, 49 and 99). From the 7 quinazolinones, one showed positive effects in all four concentrations (46).

For $1 \mu \mathrm{M}$ concentration, 4 compounds (49, 129, 46 and 106) showed increased dry mass production, for $10 \mu \mathrm{M}$ concentration, 15 compounds showed increased dry mass production, among those were 6 phthalazinone derivatives and 4 quinazolinone derivatives. For $25 \mu \mathrm{M}$ concentration, 7 compounds ($99,77,49,54,48,129$ and 46) showed increased dry mass production. For the highest concentration of $50 \mu \mathrm{M}, 7$ compounds (99, 81, 49, 117, 48, 129
and 46) showed increased dry mass production; among those were 6 phthalazinone derivatives and 4 quinazolinone derivatives.

There was no general dose dependency detectable, besides for 64 , which showed decreased dry masses for higher concentrations. This effect could not be generalized, e.g. the correlation coefficients between 1 and $10 \mu \mathrm{M}$, between 10 and $25 \mu \mathrm{M}$ and between 25 and $50 \mu \mathrm{M}$ were $0.11,0.43$, and 0.30 , respectively. That means that one cannot derive the dry mass production from one concentration to the next higher concentration. There was no correlation between the IC_{50} values of the inhibitors and the shoot dry mass growths found (with $\mathrm{R}^{2}=0.04,0.08$, 0.18 and 0.17 for the four concentrations of $1,10,25$ and $50 \mu \mathrm{M}$, data not shown). This indicates that PARP is not the only player in the network of drought stress response.

Currently there is only one whole-plant assay published that measures effects of compounds on drought stress and could be used for high or medium throughput screening. This Lemna minor plants assay was developed by our group in which which the growth rate of a treated plant is compared to the untreated plant's growth rate upon drought stress application via PEG. ${ }^{207}$ All 52 compounds for which IC_{50} values for AtPARP1 inhibition have been determined were subjected to this assay and the observed plant growth of those compounds was compared to their IC_{50} for $\operatorname{AtPARP} 1$. Using a simple linear regression model, there was no correlation found between Lemna minor growth and the IC_{50} values $\left(\mathrm{R}^{2}<0.001\right.$, data not shown). This result could be explained by the assumption that $A t$ PARP1 inhibitors are no inhibitors of Lemna minor PARP (which would be equivalent to the term Lemna minor decoys) or these compounds inhibit AtPARP1 and Lemna minor PARP through different modes of action. It might also be that PARP is not a relevant arget, at all or that secondary effects as compound metabolism interfere with effects that have been observed in AtPARP in vitro / in planta studies. If one assumes that those compounds inhibit both enzymes through the same mode of action, there is no evidence that all compounds reach their target at the concentration at with they were applied to the medium in the Lemna minor assay. Lemna growth might also very likely be influenced by acting of AtPARP1 inhibitors on other targets, especially on those with similar active sites to PARP or on those that use NAD^{+}as substrate or co-substrate.

4 Summary and outlook

In this work, an in silico characterisation of the Arabidopsis thaliana Poly-(ADP-ribose)Polymerase (AtPARP1) and the first virtual screening study for a plant PARP enzyme was conducted, which resulted in the identification of 52 AtPARP1 inhibitors.

Using a broad range of molecular modelling tools, the catalytic domain of AtPARP1 was characterised in silico. This characterisation encompassed the investigation of protein stability from which it was concluded that the three-dimensional shape of this conserved PARP domain is of high similarity to the HsPARP catalytic domain. Furthermore, there is overwhelming evidence provided by MD simulation of the AtPARP1 catalytic domain in complex with the natural substrates (or substrate analogues) NAD $^{+}$and CNA (an ADP-ribose analogue) that $\operatorname{AtPARP} 1$ binds its substrates in an analogous manner as it is described for HsPARP and as it is observed for ADPR-transferases like Diphtheria Toxin. Based on the results of that work, the role of a conserved glutamate essential for the catalytic reaction in PARP is the same in $\operatorname{AtPARP} 1$ as was shown for other ADPRT.

As for the in silico characterisation of the catalytic domain of AtPARP1, the virtual screening for AtPARP1 inhibitors involved the use of statistical tools like receiver operator characteristics (ROC) curves and power analysis to guide the VS process and improve its quality.

Based on the identification of AtPARP1 inhibitors but also from proposed compounds which proved not to be $A t$ PARP1-active, general characteristics (descriptors) of the structures were used to derive binary quantitative structure-activity relationship (QSAR) that could help to understand the structural requirements that are responsible for $\operatorname{AtPARP} 1$ inhibition.

This work contributes to an understanding of the role of AtPARP1. Since PARP are implicated as a first responder to drought stress (by depleting the NAD^{+}pools of the plant that leads to disturbances in energy homeostasis upon drought stress), inhibitors of these enzymes might increase the drought stress tolerance of plants. To further test this hypothesis, application of identified inhibitors on crop plants like Zea mais would be desirable. During this study, some of the inhibitors showed increased dry mass production in Lolium perenne giving first hints that these inhibitors do increase the drought stress tolerance in plants; although in this study the effects could not solely be related to PARP enzymes. Further investigations also could involve the ability to selectively inhibit plant PARP enzymes. In

Arabidopsis, it is still not completely investigated if selective PARP inhibitors increase the drought stress tolerance more than unselective ones.

In the same context the selectivity of plant PARP inhibitors with respect to human PARP is also of importance because human PARP inhibitors are promising compounds to treat severe conditions like breast and ovarian cancer or ischemia-reperfusion injury. Since a lot of molecular modelling tools have already been used to study human PARP, computer-aided drug design in the context of the development of selective plant PARP inhibitors would be a useful tool to elucidate the role of PARP and drought stress. Furthermore, from the identified inhibitors, lead compounds could be derived with higher potency or $\operatorname{ADME}(\mathrm{T})$ characteristics, using molecular modelling tools in close collaboration with medicinal chemistry.

5 Appendix

5.1 Pairwise sequence alignments

5.1.1 Needle settings

Printed below is the file content in which the settings are contained when Needle was run:

```
########################################
# Program: needle
# Rundate: Thu 27 Jun 2013 09:48:38
# Commandline: needle
# -auto
# -stdout
# -asequence emboss needle-I20130627-094836-0786-75328586-oy.asequence
# -bsequence emboss_needle-I20130627-094836-0786-75328586-oy.bsequence
# -datafile EBLOSUM62
# -gapopen 10.0
# -gapextend 0.5
# -endopen 10.0
# -endextend 0.5
# -aformat3 pair
# -sprotein1
# -sprotein2
# Align_format: pair
# Report file: stdout
########################################
```


5.1.2 AtPARP1 - AtPARP2

```
# 1: cd_AtPARP1_286-633 2: cd_AtPARP2_633-979; Length: 359;
# Identíty: 145/359 (40.4%); S
Cd_AtPARP1_ 1 QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYE 50
cd_AtPARP2_ 1 SSNLAPSLIELMKMLFDVETYRSAMMEFEINMSEMPLGKLSKHNIQKGFE 50
cd_AtPARP1_ 51 VLKRISEVIDRYD------RTRLEELSGEFYTVIPHDFGFKKMSQFVIDT }9
```



```
cd_AtPARP1_ 95 PQKLKQKIEMVEALGEIELATKLLSVD----PGLQDDPLYYHYQQLNCGL 140
cd_AtPARP2_ 95 EDDFKSKVKMLEALQDIEIASRIVGFDVDSTESLDD-----KYKKLHCDI }13
cd_AtPARP1_ 141 TPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLFRASRAVEADRFQQF 190
cd_AtPARP2_ 140 SPLPHDSEDYRLIEKYLNTTHAPTHTEWSLELEEVFALEREGEFDKYAPH}18
cd_AtPARP1_ }191\mathrm{ SSS-KNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADM 239
cd_AtPARP2_ 190 REKLGNKMLLWHGSRLTNFVGILNQGLRIAPPEAPATGYMFGKGIYFADL }23
cd_AtPARP1_ 240 FSKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTK 289
cd_AtPARP2_ 240 VSKSAQYCYTCKKNPVGLMLLSEVALGEIHELTKAKY-MDKPPRGKHSTK 288
cd_AtPARP1_ 290 GVGKTAPNPSEAQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIK 339
```



```
cd_AtPARP1_ 340 MRYVIQVKF 348
cd_AtPARP2_ 339 LQFLLKVRF 347
```


5.1.3 AtPARP1 - AtPARP3

```
# 1: cd_AtPARP1_286-633 2: cd_AtPARP3_449-801; Length: 364
# Ident\overline{ity: 103/364 (28.3%); Similarity: 173/364 (47.5%); Gaps: 27/364 ( 7.4%); Score: 382.5}
cd_AtPARP1_
    1 ~ Q S K L D T R V A K F I S L I C N V S M M A Q H M M E I G Y N A N K L P L G K I S K S T I S K G Y E ~
    ..|||:.||.||.::| . . . . . . :||:| .:...||:|.: :. . .
    1 HCKLDSFVANFIKVLCGQEIYNYALMELGLDPPDLPMGMLTDIH------- 44
```
```

cd_AtPARP3_
cd_AtPARP1_
5 1 ~ V L K R I S E V I D R Y - D R T R L E E L S G E F Y T V I P H D F G F K K M S Q F V I D T P Q K L K ~99

```

```

cd_AtPARP3_
45-93
cd_AtPARP1_
100
QKIEMV-------EALGEIELATKLLSVDPG-LQDDPLYYHYQQLNCGLT
| . . :| . | |: |: . .. | ..|||| . .|::| .| .: :
DVNELADHAASAFETVRDINTASRLIGDMRGDTLDDPLSDRYKKLGCKIS
143
cd_AtPARP3
cd_AtPARP1_ 142 PVGNDSEEFSMVANYMENTHAKTHSG---YTVEIAQLFRASRAVEADRFQ 188
.|..:||::.||..|:|.|:...... |.|.:..:| |||:|...
cd_AtPARP3_ 144 VVDKESEDYKMVVKYLETTYEPVKVSDVEYGVSVQNVF----AVESDAIP }18
cd_AtPARP1_ }189\mathrm{ QFSSSK---NRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVY }23
cd_AtPARP3_ 190 SLDDIKKLPNKVLLWCGSRSSNLLRHIYKGFLPAVCSLPVPGYMFGRAIV 2
cd_AtPARP1_ 236 FADMFSKSANYCYANTGANDGVLLLCEVALG-DMNELLYSDYNADNLPPG}28

```

```

cd_AtPARP1_ 285 KLSTKGVGKTAPNPSEAQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYN
| . .||:|:.....|| . ....|. . .||.|:.| . . . . . . | .||||.||:
cd_AtPARP3_ 290 KIGVKGLGRKKTEESEHFMWRDDIKVPCGRLVPSEHKDSPLEYNEYAVYD
339
cd_AtPARP1_ 335 VEQIKMRYVIQVKF 348
.:| . .:|::::||:
cd_AtPARP3_ 340 PKQTSIRFLVEVKY 353

```

\subsection*{5.1.4 AtPARP1 - HsPARP1}
\# 1: cd_AtPARP1_286-633 2: cd_HsPARP1_662-1007; Length: 352
\# Identíty: 161/352 (45.7\%); \(\bar{S}\) imilari \(\bar{t} y: 229 / 352\) (\(65.1 \%\)); Gaps: 10/352 (2.8\%); Score: 788.0
cd_AtPARP1_ cd_HsPARP1_ cd_AtPARP1_ cd_HsPARP1_ cd_AtPARP1_ cd_HsPARP1_
cd_HsPARP1_
cd_AtPARP1_
 197 MLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMFSKSANY
 197 RLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADMVSKSANY
cd_HsPARP1_
cd_AtPARP1_
cd_HsPARP1_
cd_AtPARP1_
 297 NPSEAQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQV

cd_HsPARP1_
 296 DPSANISL-DGVDVPLGTGISSGVNDTSLLYNEYIVYDIAQVNLKYLLKL344

1 QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYE50

1 KSKLPKPVQDLIKMIFDVESMKKAMVEYEIDLQKMPLGKLSKRQIQAAYS:|..:.:.:.: ...:::.:||..|||:||||||.||.. :::....:
98
51 ILSEVQQAVSQGSSDSQILDLSNRFYTLIPHDFGMKKPP--LLNNADSVQ
146
100 QKIEMVEALGEIELATKLLSVDPGLQD---DPLYYHYQQLNCGLTPVGND
99 AKVEMLDNLLDIEVAYSLLR--GGSDDSSKDPIDVNYEKLKTDIKVVDRD 146

cd_AtPARP1_
cd_AtPARP1_ 147 SEEFSMVANYMENTHAKTHSGYTVEIAQLFRASRAVEADRFQQFSSSKNR 196
|||..::..|::||||.||:.|.:|:..:|:..|..|..|: :.|....||| 196246

\subsection*{5.1.5 AtPARP1 - HsPARP2}
```


# 1: cd_AtPARP1_286-633; 2: cd_HsPARP2_231-577; Length: 356

# Ident\overline{ty: 176/356 (49.4%); Similarity: 240/356 (67.4%); Gaps: 17/356 ( 4.8%); Score: 861.5}

cd_AtPARP1_
1 QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYE
:|:||.||.:.|.|||||..|.:.|||:.||..|.||||:: . :.| . .||:
1 ~ E S Q L D L R V Q E L I K L I C N V Q A M E E M M M E M K Y N T K K A P L G K L T V A Q I K A G Y Q ~
cd_HsPARP2_
cd_AtPARP1_
5 1 ~ V L K R I S E V I D R Y D R T R - L E E L S G E F Y T V I P H D F G F K K M S Q F V I D T P Q K L K ~
.||:| . . | . ....| |.|...||||.||||||.: :..:|.|.::|.
5 1 SLKKIEDCIRAGQHGRALMEACNEFYTRIPHDFGLR--TPPLIRTQKELSS 9 8
cd_HsPARP2_
cd_AtPARP1_ }100\mathrm{ QKIEMVEALGEIELATKLLSVDPGLQDDPLYYHYQQLNCGLTPVGNDSEE
:||:: :||||:||:| .||: . .:....:.|| . .||:.|:| .| .|:. ::| . |
cd_HsPARP2_ }99\mathrm{ EKIQLLEALGDIEIAIKLVKTELQSPEHPLDQHYRNLHCALRPLDHESYE
cd_AtPARP1_ }150\mathrm{ FSMVANYMENTHAKTHSGYTVEIAQLFRASRAVEADRFQQFSSSKNRMLL
cd_HsPARP2_ 149 FKVISQYLQSTHAPTHSDYTMTLLDLFEVEKDGEKEAFRE--DLHNRMLL }19
cd_AtPARP1_ 200 WHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMFSKSANYCYA
|||||::||.||||.||||||||||:||||||||:|||||.|||||||:|
cd_HsPARP2_ 197 WHGSRMSNWVGILSHGLRIAPPEAPITGYMFGKGIYFADMSSKSANYCFA
cd_AtPARP1_ 250 NTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPS
cd_HsPARP2_ 247 SRLKNTGLLLLSEVALGQCNELLEANPKAEGLLQGKHSTKGLGKMAPSSA
cd_AtPARP1_ 300 EAQTLEDGVVVPLGKPVERSCSKGM-------LLYNEYIVYNVEQIKMRY
cd_HsPARP2_ 297 HFVTL-NGSTVPLGP----ASDTGILNPDGYTLNYNEYIVYNPNQVRMRY
cd_AtPARP1_ 343 VIQVKF 348
:::|:|
cd_HsPARP2_ 342 LLKVQF 347

```

\subsection*{5.1.6 AtPARP1 - HsPARP3}

```

5.1.7 AtPARP1 - GgPARP1

# 1: cd_AtPARP1_286-633; 2: cd_GgPARP1_659-1004; Length: 352

# Ident\overline{ity: 161/352 (45.7%); Similarity: 231/352 (65.6%); Gaps: 10/352 ( 2.8%); Score: 793.0}

cd_AtPARP1_
1 QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYE
:||| ...:...|.:|.:|..|.:.|:| ...:..|:||||:|| . .| ...|.
1 KSKLAKPIQDLIKMIFDVESMKKAMVEFEIDLQKMPLGKLSKRQIQSAYS
cd_GgPARP1_
cd_AtPARP1_
5 1 ~ V L K R I S E V I - D R Y D R T R L E E L S G E F Y T V I P H D F G F K K M S Q F V I D T P Q K L K ~99
:|..:.:.: |....:::.:||..|||:||||||.||.. ::...:.::
5 1 ~ I L N E V Q Q A V S D G G S E S Q I L D L S N R F Y T L I P H D F G M K K P P - - L L S N L E Y I Q ~ 9 8 ~
cd_GgPARP1_
cd_AtPARP1_ 100 QKIEMVEALGEIELATKLLSVDPGLQD---DPLYYHYQQLNCGLTPVGND|: \|: : .|.:||:|..||. .|.:| ||:..:|::|...:..|..|
Cd_GgPARP1_ 99 AKVQMLDNLLDIEVAYSLLR--GGNEDGDKDPIDINYEKLRTDIKVVDKD 146146
cd_AtPARP1_ 147 SEEFSMVANYMENTHAKTHSGYTVEIAQLFRASRAVEADRFQQFSSSKNR 196
|||..::..|::||||.||:.|.:::.::||..|..|:.|::.|....||
cd_GgPARP1_ 147 SEEAKIIKQYVKNTHAATHNAYDLKVVEIFRIEREGESQRYKPFKQLHNR 196
cd_AtPARP1_ }197\mathrm{ MLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMFSKSANY
.|||||||.||:|||||||||||||||||||||||:|||||.||||||
cd_GgPARP1_ 197 QLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADMVSKSANY
cd_AtPARP1_ 247 CYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAP
|:.:....|::||.|||||:|.||..:.: ...||.||.|.||:|||||
cd_GgPARP1_
cd_AtPARP1_
297 NPSEAQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQV
:|:...|| |||.||||..:....:...|||||||||:|.|:.::|::::
Cd_GgPARP1_ 296 DPTATTTL-DGVEVPLGNGISTGINDTCLLYNEYIVYDVAQVNLKYLLKL
344
cd_AtPARP1_ 347 KF 348
cd_GgPARP1_

```

\subsection*{5.1.8 AtPARP2 - AtPARP3}
```


# 1: cd_AtPARP2_633-979; 2: cd_AtPARP3_449-801; Length: 362

# Ident\overline{ity: 120/362 (33.1%); Similarity: 196/362 (54.1%); Gaps: 24/362 ( 6.6%); Score: 513.0}

cd_AtPARP2_
1 SSNLAPSLIELMKMLFDVETYRSAMMEFEINMSEMPLGKLSKHNIQKGFE
...|...:...:|:|...|.|..|:||..::...::|:|.|:. .::::...|
1 ~ H C K L D S F V A N F I K V L C G Q E I Y N Y A L M E L G L D P P D L P M G M L T D I H L K R C E E ~
.|.|....:. .......|::..|.|:|:|:::.|..|..:.|.::....
cd_AtPARP3_ 51 VLLEFVEKVKTTKETGQKAEAMWADFSSRWFSLMHSTRPMRLHDVNELAD 100
cd_AtPARP2_ 101 -KVKMLEALQDIEIASRIVGFDVDST--ESLDDKYKKLHCDISPLPHDSE
147
1 5 0
1 9 2
|:::||।.|!:| :..|:.:.:.|||:|.:
cd_AtPARP3_ 151 DYKMVVKYLETTYEPVKVSDVEYGVSVQNVFAVESDAIPSLDDI----KK 196
cd_AtPARP2_ 193 LGNKMLLWHGSRLTNFVGILNQGLRIAPPEAPATGYMFGKGIYFADLVSK
:|:|.:|....|.|.::|:..:||| |:|: ...||.. | | | |
cd_AtPARP3
cd_AtPARP2
286 STKGLGKKVPQDSEFAKWRGDVTVPCGKPVSSKVKASELMYNEYIVYDTA
..||||:|..::||...||.|:.||||:.|.|:.|.|.|.||||.|||..
341
cd_AtPARP3
cd_AtPARP2_ 336 QVKLQFLLKVRF 347
|..::||::|::
cd_AtPARP3_ 342 QTSIRFLVEVKY 353

```5010050
.||:|||.|||.:|.:..:.:|...|....|..|||||:.|..:|...:
197 LPNKVLLWCGSRSSNLLRHIYKGFLPAVCSLPVPGYMFGRAIVCSDAAAE

\subsection*{5.1.9 AtPARP2 - HsPARP1}
```


# 1: cd_AtPARP2_633-979; 2: cd_HsPARP1_662-1007; Length: 355

# Ident\overline{i}ty: 176/355 (49.6%); Similarity: 244/355 (68.7%); Gaps: 17/355 (4.8%); Score: 882.5

cd_AtPARP2_
1 SSNLAPSLIELMKMLFDVETYRSAMMEFEINMSEMPLGKLSKHNIQKGFE
.|.| ...:.:|:||:||||:.:.||:|:||::.:|||||||| . .|| . .:.
1 KSKLPKPVQDLIKMIFDVESMKKAMVEYEIDLQKMPLGKLSKRQIQAAYS
5 1 ~ A L T E I Q R L L T E S D P Q P T M K E S L L V D A S N R F F T M I P S I H - - - - - - P H I I R D ~
.|:|:|:.:::.. .:|.::|.||||:|:|| | |.::.:

```

```

    95 EDDFKSKVKMLEALQDIEIASRIV--GFDVDSTESLDDKYKKLHCDISPL }14
    .|..::||:||:.|.|||:|..:: |.|..|.:.:|..|:||..||..:
    4 ADSVQAKVEMLDNLLDIEVAYSLLRGGSDDSSKDPIDVNYEKLKTDIKVV
    143 PHDSEDYRLIEKYLNTTHAPTHTEWSLELEEVFALEREGEFDKYAPHREK
        192
    ..|||:..:|.||:..|||.||..:.||:.::|.:|||||..:|.|.::
    144 DRDSEEAEIIRKYVKNTHATTHNAYDLEVIDIFKIEREGECQRYKPFKQ- }19
    cd_HsPARP1_
cd_AtPARP2_
193 LGNKMLLWHGSRLTNFVGILNQGLRIAPPEAPATGYMFGKGIYFADLVSK
|.|:.||||||.|||.|||:||||||||||.||||||||||||:|||
cd_HsPARP1_ }193\mathrm{ LHNRRLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADMVSK
cd_AtPARP2_ 243 SAQYCYTCKKNPVGLMLLSEVALGEIHELTKAKYMDKPPRGKHSTKGLGK
||.||:|.:.:|:||:||.|||||.::||..|.::.|.|:||||.|||||
cd_HsPARP1_
cd_AtPARP2_ 293 KVPQDSEFAKWRGDVTVPCGKPVSSKVKASELMYNEYIVYDTAQVKLQFL
243 SANYCHTSQGDPIGLILLLGEVALGNMYELKHASHISKLPKGKHSVKGLGK
342
293 ..|..|.....| |.||.|..:||.|..:.|:||||||||.|||.|::|
341
cd_AtPARP2_ 343 LKVRF 347
cd_HsPARP1_ \ | |::|

```

\subsection*{5.1.10 AtPARP2 - HsPARP2}

\subsection*{5.1.11 AtPARP2 - HsPARP3}
```


# 1: cd_AtPARP2_633-979; 2: cd_HsPARP3_182-533; Length: 370

# Ident\overline{ity: 125/370 (33.8%); Similarityे: 183/370 (49.5%); Gaps: 41/370 (11.1%); Score: 458.5}

cd_AtPARP2_
cd_HsPARP3_
..:|.|:..:|:..:|..|.:::.|...::::.:||||||||..|.:|||
.:|.|:..:|:..:|..|.:...
cd_AtPARP2
cd_HsPARP3_
cd_AtPARP2
cd_HsPARP3_
cd_AtPARP2_ 139 ISPLPHDSEDYRLIEKYLNTT----HAPTHTEWSLELEEVFALEREGEFD
:..|...:.|::|:.||..| ..|| |:.::.:.:|||.|
cd_HSPARP3_ 145 LQLLDSGAPEYKVIQTYLEQTGSNHRCPT---------_LQHIWKVNQEGEED 18
cd_AtPARP2_ 185 KYAPHREKLGNKMLLWHGSRLTNFVGILNQGLRIAPPEAPATGYMFGKGI 234
cc_HsPARP3_ 188 RFQAH-SKLGNRKLLWHGTNMAVVAAILTSGLRI----MMPHSGGRVGKGI
cd_AtPARP2_ 235 YFADLVSKSAQYC--YTCKKNPVGLMLLSEVALGEIHEL-TKAKYMDKPP 281

```

```

Cd_AtPARP2_ 282 RGKHSTKGLGKKVP---QDSEFAKWRGDVTVPCGKPV-SSKVKASELMYN }32
.|..|....|...| ||:|.......|.||.|:|| ..:..:|....:
cd_AtPARP2_ 328 EYIVYDTAQVKLQFLLKVRF 347
cd_HsPARP3_
1 SSNIAPSLMMMMITDVETYRSANMEPEIMSELGKLSKHNQKG

```

\subsection*{5.1.12 AtPARP2 - GgPARP1}

```

5.1.13 AtPARP3 - HsPARP1

# 1: cd_AtPARP3_449-801; 2: cd_HsPARP1_662-1007; Length: 357

# Identity: 102/357 (28.6%); Similarity: 178/357 (49.9%); Gaps: 15/357 ( 4.2%); Score: 363.0

cd_AtPARP3 1 HCKLDSFVANFIKVLCGQEIYNYALMELGLDPPDLPMGMLTDIHLKRCEE 50
Cd_HsPARP1_ 1 KSKLPKPVQDLIKMIFDVESMKKAMVEYEIDLQKMPLGKLSKRQIQAAYS 50
cd_AtPARP3_ 51 VLLEFVEKVKTTKETGQKAEAMWADFSSRWFSLMHSTRPMRLHDVNELAD 100
cd_HsPARP1
:|.|..:.| :...:::...|.|:|:::|:.....|:.......|
5 1 ~ I L S E V Q Q A V - - - - - S Q G S S D S Q I L D L S N R F Y T L I P H D F G M K K P P L L N N A D ~ 9 5 ~
cd_AtPARP3_ 101 HAASAFE---TVRDINTASRLIGDMRGDTLDDPLSDRYKKLGCKISVVDK 147
cd_HsPARP1_ 96 SVQAKVEMLDNLLDIEVAYSLLRGGSDDSSKDPIDVNYEKLKTDIKVVDR }14
cd_AtPARP3_ }148\mathrm{ ESEDYKMVVKYLETTYEPVKVSDVEYGVSVQNVFAVESDA-IPSLDDIKK 196
:||:.:::.||::.|: ..:...|.:.|.::|.:|.:. .......|:
cd_HsPARP1_ 146 DSEEAEIIRKYVKNTH---ATTHNAYDLEVIDIFKIEREGECQRYKPFKQ
cd_AtPARP3_ }197\mathrm{ LPNKVLLWCGSRSSNLLRHIYKGFLPAVCSLPVPGYMFGRAIVCSDAAAE
|.|:.|||.|||::|....:.:|...|....||.|||||:.|..:| ..::
Cd_HsPARP1_ 193 LHNRRLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADMVSK
cd_AtPARP3_ 247 AARYGFTAVDRPEGFLVLAVASLGEEVTEFTSPPEDTKTLEDKKIGVKGL
:|.|..|:...|.|.::|...:|| .:.|.......:| |...|..||||
cd_HsPARP1_ 243 SANYCHTSQGDPIGLILLGEVALG-NMYELKHASHISK-LPKGKHSVKGL
cd_AtPARP3_ 297 GRKKTEESEHFMWRDDIKVPCGRLVPSEHKDSPLEYNEYAVYDPKQTSIR
|:...:.|.:.. .|.:.||.|..:.|...|:.|.||||.|||..|.:::
cd_HsPARP1_ 291 GKTTPDPSANIS-LDGVDVPLGTGISSGVNDTSLLYNEYIVYDIAQVNLK
3 3 9
cd_AtPARP3_ 347 FLVEVKY 353
:|:::|:
cd_HsPARP1_ }340\mathrm{ YLLKLKF }34

```

\subsection*{5.1.14 AtPARP3 - HsPARP2}
```


# 1: cd_AtPARP3_449-801; 2: cd_HsPARP2_231-577; Length: 367

# Ident\overline{ity: 105/367 (28.6%); Similarity: 181/367 (49.3%); Gaps: 34/367 ( 9.3%); Score: 355.0}

cd_AtPARP3_
1 ~ H C K L D S F V A N F I K V L C G Q E I Y N Y A L M E L G L D P P D L P M G M L T D I H L K R C E E ~
..:||..|...||::|..:......|||...:....|:|.|| . . .:| . . .:
ESQLDLRVQELIKLICNVQAMEEMMMEMKYNTKKAPLGKLTVAQIKAGYQ
51 VLLEFVEKVKTTKETGQKAEAMWADFSSRWFSLMHS----TRPMRLHDVN 96
.| :|::.....||...|:....:..:..:.|. |.|: :.....
5 1 ~ S L - - - - K K I E D C I R A G Q H G R A L M E A C N E F Y T R I P H D F G L R T P P L - I R T Q K ~
95
9 7 ELADHAASAFETVRDINTASRLIGDMRGDTLDDPLSDRYKKLGCKISVVD 1 4 6
||:: .....|.:.||..|.:|: .....:.:.||...|:.|.|.:...
96 ELSE-KIQLLEALGDIEIAIKLV-KTELQSPEHPLDQHYRNLHCALRPLD
1 4 3
1 9 4
.||.::|::.:||::|:.| :..:|.:::.:::|.||.|..... :|
144 HESYEFKVISQYLQSTHAP---THSDYTMTLLDLFEVEKDGEKEAFRED-

### 5.1.15 AtPARP3 - HsPARP3

```
1: cd_AtPARP3_449-801; 2: cd_HsPARP3_182-533; Length: 377
Ident\overline{ity: 88/3}77\mathrm{ (23.3%); Similarity: 153/377 (40.6%); Gaps: 49/377 (13.0%); Score: 215.0}
cd_AtPARP3_
 1 ~ H C K L D S F V A N F I K V L C G Q E I Y N Y A L M E L G L D P P D L P M G M L T D I H L K R C E E ~
 .|.|||..:...|:: . . : . .: .|| . . :|:|.|: . . : .| ..|
 1 ~ P C S L D P A T Q K L I T N I F S K E M F K N T M A L M D L D V K K M P L G K L S K Q Q I A R G F E ~
cd_HsPARP3_
cd_AtPARP3
cd_HsPARP3_
cd_AtPARP3
cd_HsPARP3_
cd_AtPARP3
cd_HsPARP3_
cd_AtPARP3_
 1 8 6 \text { DAIPSLDDIKKLPNKVLLWCGSRSSNLLRHIYKGFLPAVCSLPVPGYMFG}
 |...: ..||.|:.|||.|:..:.:...:..| :..:|..|...|
cd_HsPARP3_
cd_AtPARP3
 236 RAIVCSDAAAEAARY--GFTAVDRPEGFLVLAVASLGEE------VTEFT
 :.|..:...:::|.| |........|::.|...:||.|
 230 KGIYFASENSKSAGYVIGMKCGAHHVGYMFLGEVALGREHHINTDNPSLK }27
cd_HsPARP3
cd_AtPARP3_
 2 7 8 \text { SPPEDTKTLEDKKIGVKGLGRKKTEESEHFMWRDDIKVPCGRLVP-SEHK}
 326
 |||... |..|.........|:::|..:....:.||.|:.|| .|..
cd_HsPARP3_
cd_AtPARP3_ 327 DSPLEYNEYAVYDPKQTSIRFLVEVKY 353
 .|....:||.:|...|..:|:|:||..
cd_HsPARP3
```



```
 326 SSTFSQSEYLIYQESQCRLRYLLEVHL
```95
.|....|.:|...:.||..| :.||.::::: ||..|
92
92
51 ALEALEEALKGPTDGGQSLE----ELSSHFYTVIPHNFGHSQPP----PI
51 ALEALEEALKGPTDGGQSLE----ELSSHFYTVIPHNFGHSQPP----PI139
142
| ||.............||..|..|.. :...:.:..||...|:.|.185186352

\subsection*{5.1.16 AtPARP3 - GgPARP1}


\subsection*{5.1.17 HsPARP1 - HsPARP2}
```


1: cd_HsPARP1_662-1007; 2: cd_HsPARP2_231-577; Length: 350

Identíty: 159/350 (45.4%); Similarity: 240/350 (68.6%); Gaps: 7/350 (2.0%); Score: 810.5

Cd_HSPARP1_ 1 KSKLPKPVVQDLIKMIFDVESMKKAMVEYEIDLQKMPLGKLSKRQIQAAYS }5
cd_HsPARP2_ 1 ESQLDLRVQELIKLICNVQAMEEMMMEMKYNTKKAPLGKLTVAQIKAGYQ 5
Cd_HsPARP1_ 51 ILSEVQQAVSQGSSDSQILDLSNRFYTLIPHDFGMKKPPLLNNADSVQAK 100
cd HsPARP2 51.|.:::..:..|....:::..|.|||.||||||::.|||......:..|
cd_HsPARP1_ 101 VEMLDNLLDIEVAYSLLRGGSDDSSKDPIDVNYEKLKTDIKVVDRDSEEA 150
:::|:.|.|||:|..|::|.:.|:|.:|..|...::.:|.:|.|.
cd_HsPARP1_ }151\mathrm{ EIIRKYVKNTHATTHNAYDLEVIDIFKIEREGECQRYKPFKQLHNRRLLWW }2

```

```

Cd_HSPARP1_ 201 HGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADMVSKSANYCHTS 250
||||.:|:.||||.|||||||||:|||||||||||||.||||||..|
cd_HsPARP1_ 251 QGDPIGLILLGEVALGNMYELKHASHISK-LPKGKHSVKGLGKTTPDPSA

```

```

cd_HsPARP1_ 300 NISLDGVDVPLGTGISSGV---NDTSLLYNEYIVYDIAQVNLKYLLKKLKF 346
cd_HsPARP2_ 298 FVTLNGSTVPLGPASDTGILNPDGYTLNYNEYIVYNPNQVRMRYLLKKVQF

```

\subsection*{5.1.18 HsPARP1 - HsPARP3}
```


1: cd_HsPARP1_662-1007; 2: cd_HsPARP3_182-533; Length: 362

Ident\overline{ity: 129/362 (35.6%); Sim}\larity\overline{: 199/362 (55.0%); Gaps: 26/362 (7.2%); Score: 521.5}

cd_HsPARP1_
cd_HsPARP3_
cd_HsPARP1_
5 1 ~ I L S E V Q Q A V S Q G S S D S Q I L - D L S N R F Y T L I P H D F G M K K P P L L N N A D S V Q A ~ 9 9 ~
.|..:::|:...:...|.| :||:.|||:|||:||..:||.:|:.:.:||
cd_HsPARP3_ 51 ALEALEEALKGPTDGGQSLEELSSHFYTVIPHNFGHSQPPPINSPELLQA
cd_HsPARP1_ 100 KVEMLDNLLDIEVAYSLLRGGSDDSSKD----PIDVNYEKLKTDIKVVDR
|.:||..|.|||:|.:|......:.:.: |:|.:|:.||..::::|.
cd_HsPARP3
cd_HsPARP1_
cd_HsPARP3_
cd_HsPARP1_
cd_HsPARP3
cd_HsPARP1_
cd_HsPARP3
cd_HsPARP1_
cd_HsPARP3
cd_HsPARP1_
cd_HsPARP3_
1 ~ K S K L P K P V Q D L I K M I F D V E S M K K A M V E Y E I D L Q K M P L G K L S K R Q I Q A A Y S ~50

```
...|....|.||..||..|..|..|...: : |: : ||।||||||:||....
```

 PCSLDPATQKLITNIFSKEMFKNTMALMDLDVKKMPLGKLSKQQIARGFE 50,
    ```
51 ALEALEEALKGPTDGGQSLEELSSHFYTVIPHNFGHSQPPPINSPELLQA ..... 100
```145
```

1 KKDMLLVLADIELAQALQAVSEQEKTVEEVPHPLDRDYQLLKCQLQLLDS ..... 150

```195197245
```

5.1.19 HsPARP1 - GgPARP1

# 1: cd_HsPARP1_662-1007; 2: cd_GgPARP1_659-1004; Length: 346

# Identíty: 301/346 (87.0%); Similarity\ 331/346 (95.7%); Gaps: 0/346 ( 0.0%); Score: 1597.0

Cd_HsPARP1_ 1 KSKLPKPVQDLIKMIFDVESMKKAMVEYEIDLQKMPLGKLSKRQIQAAYS 50
||||.||:|||||||||||||||||||:||||||||||||||||||:||
1 ~ K S K L A K P I Q D L I K M I F D V E S M K K A M V E F E I D L Q K M P L G K L S K R Q I Q S A Y S ~ 5 0 ~
cd_HsPARP1_ 51 ILSEVQQAVSQGSSDSQILDLSNRFYTLIPHDFGMKKPPLLNNADSVQAK
||:||||||.|.|:||||||||||||||||||||||||:|.:.:|||
5 1 ~ I L N E V Q Q A V S D G G S E S Q I L D L S N R F Y T L I P H D F G M K K P P L L S N L E Y I Q A K ~ 1 0 0 ~
1 0 1 ~ V E M L D N L L D I E V A Y S L L R G G S D D S S K D P I D V N Y E K L K T D I K V V D R D S E E A ~ 1 5 0 ~
|:|||||||||||||||||::|..|||||:|||||:|||||||:|||||
1 0 1 ~ V Q M L D N L L D I E V A Y S L L R G G N E D G D K D P I D I N Y E K L R T D I K V V D K D S E E A ~ 1 5 0 ~
151 EIIRKYVKNTHATTHNAYDLEVIDIFKIEREGECQRYKPFKQLHNRRLLW }20
:||::||||||.||||||:|::||:||||||.||||||||||||:|||
151 KIIKQYVKNTHAATHNAYDLKVVEIFRIEREGESQRYKPFKQLHNRQLLW }20
2 0 1 ~ H G S R T T N F A G I L S Q G L R I A P P E A P V T G Y M F G K G I Y F A D M V S K S A N Y C H T S ~ 2 5 0 ~
|||||||||||||||||||||||||||||||||||||||||||||
2 0 1 ~ H G S R T T N F A G I L S Q G L R I A P P E A P V T G Y M F G K G I Y F A D M V S K S A N Y C H T S ~
2 5 0
3 0 0
300
cd_GgPARP1_ 251 QADPIGLILLGEVALGNMYELKNASHITKLPKGKHSVKGLGKTAPDPTAT
346
346

```

\subsection*{5.1.20 HsPARP2 - HsPARP3}

\subsection*{5.1.21 HsPARP2 - GgPARP1}
```


# 1: cd_HsPARP2_231-577; 2: cd_GgPARP1_659-1004; Length: 350

# Ident\overline{ity: 162/350 (46.3%); Similarity: 236/350 (67.4%); Gaps: 7/350 ( 2.0%); Score: 817.5}

cd_HsPARP2_ 1 ESQLDLRVQELIKLICNVQAMEEMMMEMKYNTKKAPLGKLTVAQIKAGYQ 50
cd_GgPARP1_ 1 KSKLAKPIQDLIKMIFDVESMKKAMVEFEIDLQKMPLGKLSKRQIQSAYS 50
cd_HsPARP2_ 51 SLKKIEDCIRAGQHGRALMEACNEFYTRIPHDFGLRTPPLIRTQKELSEK 100
cd_GgPARP1_ 51 ILNEVQQAVSDGGSESQILDLSNRFYTLIPHDFGMKKPPLLSNLEYIQAK 100
cd_HsPARP2_ 101 IQLLEALGDIEIAIKLVK-TELQSPEHPLDQHYRNLHCALRPLDHESYEF 149
cd_GgPARP1_ }101\mathrm{ VQMLDNLLDIEVAYSLLRGGNEDGDKDPIDINYEKLRTDIKVVDKDSEEA 150
cd_HsPARP2_ 150 KVISQYLQSTHAPTHSDYTMTLLDLFEVEKDGEKEAFR--EDLHNRMLLW 197
cd_GgPARP1_ 151 KIIKQYVKNTHAATHNAYDLKVVEIFRIEREGESQRYKPFKQLHNRQLLWW 200
cd_HsPARP2_ 198 HGSRMSNWVGILSHGLRIAPPEAPITGYMFGKGIYFADMSSKSANYCFAS 247
cd_GgPARP1_ 201 HGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADMVSKSANYCHTS 250
cd_HsPARP2_ 248 RLKNTGLLLLSEVALGQCNELLEANPKAEGLLQGKHSTKGLGKMAPSSAH }29

```

```

cd_HsPARP2_ 298 FVTLNGSTVPLGPASDTGILNPDGYTLNYNEYIVYNPNQVRMRYLLKVQF 347
cd_GgPARP1_ 300 TTTLDGVEVPLGNGISTGI---NDTCLLYNEYIVYDVAQVNLKYLLKLKF }34

```

\subsection*{5.2 Multiple Sequence Alignment}

\subsection*{5.2.1 Clustal Omega settings}

\author{
Input Parameters \\ Program: clustalo; version: 1.2.0; \\ Output guide tree: false; Output distance matrix: false; Dealign input sequences: false mBed-like clustering guide tree: true; mBed-like clustering iteration: true \\ Number of iterations: 0; Maximum guide tree iterations: -1; Maximum HMM iterations: -1; Output alignment format: clustal; Output order: aligned; Sequence Type protein;
}

\subsection*{5.2.2 Multiple Sequence Alignment I}
```

cd_AtPARP2_633-979
cd_HsPARP1_662-1007
cd GgPARP1 659-1004
cd_AtPARP1_286-633
cd_HsPARP2_231-577
cd AtPARP2 633-979
cd_HsPARP1_662-1007
cd-GgPARP1-659-1004
cd_AtPARP1_286-633
cd_HsPARP2_231-577

```
cd_AtPARP2_633-979
cd HsPARP1 662-1007
cd_GgPARP1_659-1004
cd AtPARP1-286-633
cd_HsPARP2_231-577
cd AtPARP2 633-979
cd_HsPARP1_662-1007
cd GgPARP1 659-1004
cd AtPARP1 \({ }^{-}\)286-633
cd_HsPARP2_231-577
cd_AtPARP2_633-979
cd HsPARP1-662-1007
cd_GgPARP1_659-1004
cd AtPARP1 286-633
cd_HsPARP2_231-577
cd_AtPARP2_633-979
cd HsPARP1_662-1007
cd GgPARP1_659-1004
cd AtPARP1-286-633
cd HsPARP2 231-577

SSNLAPSLIELMKMLFDVETYRSAMMEFEINMSEMPLGKLSKHNIQKGFEALTEIQRLLT KSKLPKPVQDLIKMIFDVESMKKAMVEYEIDLQKMPLGKLSKRQIQAAYSILSEVQQAVS KSKLAKPIQDLIKMIFDVESMKKAMVEFEIDLQKMPLGKLSKRQIQSAYSILNEVQQAVS QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVLKRISEVID ESQLDLRVQELIKLICNVQAMEEMMMEMKYNTKKAPLGKLTVAQIKAGYQSLKKIEDCIR
.*:* : .::.:: :*. . *:* : .: ****:: *. .:. *..:. :

ESDPQPTMKESLLVDASNRFFTMIPSI----HPH--IIRDEDDFKSKVKMLEALQDIEIA QGS-----SDSQILDLSNRFYTLIPHDFGMKKPP--LLNNADSVQAKVEMLDNLLDIEVA DGG-----SESQILDLSNRFYTLIPHDFGMKKPP--LLSNLEYIQAKVQMLDNLLDIEVA RYD-----R-TRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELA AGQ-----HGRALMEACNEFYTRIPHDFGLRTPP--LIRTQKELSEKIQLLEALGDIEIA SRIV--GFDVDSTESLDDKYKKLHCDISPLPHDSEDYRLIEKYLNTTHAPTHTEWSLELE YSLLRGGSDDSSKDPIDVNYEKLKTDIKVVDRDSEEAEIIRKYVKNTHATTHNAYDLEVI YSLLRGGNEDGDKDPIDINYEKLRTDIKVVDKDSEEAKIIKQYVKNTHAATHNAYDLKVV TKLLSVDP-GLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIA IKLVKTEL-QSPEHPLDQHYRNLHCALRPLDHESYEFKVISQYLQSTHAPTHSDYTMTLL
```

:: . : .*.:*. : : .:* : : : : : : .*** **. : : :

```

EVFALEREGEFDKYAPHREKLGNKMLLWHGSRLTNFVGILNQGLRIAPPEAPATGYMFGK DIFKIEREGECQRYKPFK-QLHNRRLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGK EIFRIEREGESQRYKPFK-QLHNRQLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGK QLFRASRAVEADRFQQFS-SSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGK DLFEVEKDGEKEAFRE---DLHNRMLLWHGSRMSNWVGILSHGLRIAPPEAPITGYMFGK : :* .: * : : . *: ******* :*:.***.:********* ******

GIYFADLVSKSAQYCYTCKKNPVGLMLLSEVALGEIHELTKAKY-MDKPPRGKHSTKGLG GIYFADMVSKSANYCHTSQGDPIGLILLGEVALGNMYELKHASH-ISKLPKGKHSVKGLG GIYFADMVSKSANYCHTSQADPIGLILLGEVALGNMYELKNASH-ITKLPKGKHSVKGLG GVYFADMFSKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVG GIYFADMSSKSANYCFASRLKNTGLLLLSEVALGQCNELLEANPKAEGLLQGKHSTKGLG *:****: ****:**.: *: : ** *****: ** :. ***.**:*

KKVPQDSEFAKWRGDVTVPCGKPVSSKV---KASELMYNEYIVYDTAQVKLQFLLKVRF KTTPDPSANISL-DGVDVPLGTGISSGV---NDTSLLYNEYIVYDIAQVNLKYLLKLKF KTAPDPTATTTL-DGVEVPLGNGISTGI---NDTCLLYNEYIVYDVAQVNLKYLLKLKF KTAPNPSEAQTLEDGVVVPLGKPVERSC---SKGMLLYNEYIVYNVEQIKMRYVIQVKF KMAPSSAHFVTLN-GSTVPLGPASDTGILNPDGYTLNYNEYIVYNPNQVRMRYLLKVQF * ** * . . * *******: *: .: : : : : : : : *
\#
Percent Identity Matrix
\#
\begin{tabular}{llrrrrr}
1: cd_AtPARP2_633-979 & 100.00 & 51.18 & 50.00 & 42.18 & 45.10 \\
2: cd_HsPARP1_662-1007 & 51.18 & 100.00 & 86.99 & 46.22 & 46.49 \\
3: cd_GgPARP1_659-1004 & 50.00 & 86.99 & 100.00 & 45.93 & 47.37 \\
4: cd_AtPARP1_286-633 & 42.18 & 46.22 & 45.93 & 100.00 & 50.73 \\
5: cd_HsPARP2_231-577 & 45.10 & 46.49 & 47.37 & 50.73 & 100.00
\end{tabular}

\subsection*{5.2.3 Multiple Sequence Alignment II}
```

cd_AtPARP3_449-801
cd_HsPARP3-182-533
cd AtPARP2 633-979
cd_HsPARP1_-662-1007
cd_GgPARP1_-659-1004
cd AtPARP1 286-633
cd_HsPARP2_231-577

```
cd_AtPARP3_449-801
cd HsPARP3 182-533
cd_AtPARP2_633-979
cd HsPARP1 - 662-1007
cd GgPARP1-659-1004
cd_AtPARP1_286-633
cd HsPARP2-231-577
cd AtPARP3 449-801
cd_HsPARP3-182-533
cd_AtPARP2-633-979
cd HsPARP1-662-1007
cd_GgPARP1_659-1004
cd AtPARP1 286-633
cd_HsPARP2_231-577
cd_AtPARP3_449-801
cd_HsPARP3_182-533
cd AtPARP2 633-979
cd_HsPARP1_662-1007
cd GgPARP1 659-1004
cd_AtPARP1_286-633
cd_HsPARP2_231-577
cd AtPARP3 449-801
cd_HsPARP3_182-533 cd_AtPARP2_633-979 cd HsPARP1 662-1007 cd_GgPARP1_659-1004 cd_AtPARP1_286-633 cd_HsPARP2_231-577
cd_AtPARP3_449-801
cd_HsPARP3_182-533
cd AtPARP2 633-979
cd_HsPARP1_662-1007 cd_GgPARP1_659-1004 cd AtPARP1 286-633
cd_HsPARP2_231-577
cd_AtPARP3_449-801
cd HsPARP3 182-533
cd_AtPARP2_633-979
cd_HsPARP1-662-1007
cd GgPARP1-659-1004
cd_AtPARP1_286-633
cd HsPARP2-231-577

HCKLDSFVANFIKVLCGQEIYNYALMELGLDPPDLPMGMLTDIHLKRCEEVLLEFVEKVK PCSLDPATQKLITNIFSKEMFKNTMALMDLDVKKMPLGKLSKQQIARGFEALEALEEALK SSNLAPSLIELMKMLFDVETYRSAMMEFEINMSEMPLGKLSKHNIQKGFEALTEIQRLLT KSKLPKPVQDLIKMIFDVESMKKAMVEYEIDLQKMPLGKLSKRQIQAAYSILSEVQQAVS KSKLAKPIQDLIKMIFDVESMKKAMVEFEIDLQKMPLGKLSKRQIQSAYSILNEVQQAVS QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVLKRISEVID ESQLDLRVQELIKLICNVQAMEEMMMEMKYNTKKAPLGKLTVAQIKAGYQSLKKIEDCIR

TTKETGQKAEAMWADFSSRWFSLMHSTRPMR-----LHDVNELADHAASAFETVRDINTA G----PTDGGQSLEELSSHFYTVIPHNFGHSQPP--PINSPELLQAKKDMLLVLADIELA ESDPQPTMKESLLVDASNRFFTMIPSI----HPH--IIRDEDDFKSKVKMLEALQDIEIA QGS-----SDSQILDLSNRFYTLIPHDFGMKKPP--LLNNADSVQAKVEMLDNLLDIEVA DGG-----SESQILDLSNRFYTLIPHDFGMKKPP--LLSNLEYIQAKVQMLDNLLDIEVA RYD-----R-TRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELA AGQ-----HGRALMEACNEFYTRIPHDFGLRTPP--LIRTQKELSEKIQLLEALGDIEIA : . .: :: :

SRLIGDMRG----DTLDDPLSDRYKKLGCKISVVDKESEDYKMVVKYLETTYEPVKVSDV QALQAVSEQEKTVEEVPHPLDRDYQLLKCQLQLLDSGAPEYKVIQTYLEQTGSNH-----SRIV--GFD----VDSTESLDDKYKKLHCDISPLPHDSEDYRLIEKYLNTTHAPT---HT YSLLRGGSD----DSSKDPIDVNYEKLKTDIKVVDRDSEEAEIIRKYVKNTHATT---HN YSLLRGGNE----DGDKDPIDINYEKLRTDIKVVDKDSEEAKIIKQYVKNTHAAT---HN TKLLSVDP-----GLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKT---HS IKLVKTEL-----QSPEHPLDQHYRNLHCALRPLDHESYEFKVISQYLQSTHAPT---HS

EYGVSVQNVFAVESDAIPS-LDDIK-KLPNKVLLWCGSRSSNLLRHIYKGFLPAVCSLPV -RCPTLQHIWKVNQEGEEDRFQAHS-KLGNRKLLWHGTNMAVVAAILTSGLRIMPH---EWSLELEEVFALEREGEFDKYAPHREKLGNKMLLWHGSRLTNFVGILNQGLRIAPPEAPA AYDLEVIDIFKIEREGECQRYKPFK-QLHNRRLLWHGSRTTNFAGILSQGLRIAPPEAPV AYDLKVVEIFRIEREGESQRYKPFK-QLHNRQLLWHGSRTTNFAGILSQGLRIAPPEAPV GYTVEIAQLFRASRAVEADRFQQFS-SSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPV DYTMTLLDLFEVEKDGEKEAFRE---DLHNRMLLWHGSRMSNWVGILSHGLRIAPPEAPI : .:

PGYMFGRAIVCSDAAAEAARYGF--TAVDRPEGFLVLAVASLGEEVTEFTSPPEDTKTLE SGGRVGKGIYFASENSKSAGYVIGMKCGAHHVGYMFLGEVALGREHHINTDNP-SLKSPP TGYMFGKGIYFADLVSKSAQYCY--TCKKNPVGLMLLSEVALGEIHELTKAKY--MDKPP TGYMFGKGIYFADMVSKSANYCH--TSQGDPIGLILLGEVALGNMYELKHASH--ISKLP TGYMFGKGIYFADMVSKSANYCH--TSQADPIGLILLGEVALGNMYELKNASH--ITKLP TGYMFGKGVYFADMFSKSANYCY--ANTGANDGVLLLCEVALGDMNELLYSDY-NADNLP TGYMFGKGIYFADMSSKSANYCF--ASRLKNTGLLLLSEVALGQCNELLEANP-KAEGLL

DKKIGVKGLGRKKTEESEHFMWR---DDIKVPCGRLVPSEH---KDSPLEYNEYAVYDPK PGFDSVIARGHTEPDPTQDTELELDGQQVVVPQGQPVPCP--EFSSSTFSQSEYLIYQES RGKHSTKGLGKKVPQDSEFAKWR---GDVTVPCGKPVSSKV---KASELMYNEYIVYDTA KGKHSVKGLGKTTPDPSANISL----DGVDVPLGTGISSGV---NDTSLLYNEYIVYDIA KGKHSVKGLGKTAPDPTATTTL----DGVEVPLGNGISTGI---NDTCLLYNEYIVYDVA PGKLSTKGVGKTAPNPSEAQTLE---DGVVVPLGKPVERSC---SKGMLLYNEYIVYNVE QGKHSTKGLGKMAPSSAHFVTLN----GSTVPLGPASDTGILNPDGYTLNYNEYIVYNPN

QTSIRFLVEVKY
QCRLRYLLEVHL QVKLQFLLKVRE QVNLKYLLKLKF QVNLKYLLKLKF QIKMRYVIQVKF QVRMRYLLKVQF
* :::::::
\#
Percent Identity Matrix
\#
\begin{tabular}{llrrrrrrr}
1: cd_AtPARP3_449-801 & 100.00 & 21.96 & 32.46 & 28.65 & 28.65 & 26.61 & 26.18 \\
2: cd_HsPARP3_182-533 & 21.96 & 100.00 & 35.03 & 36.31 & 36.90 & 36.01 & 36.61 \\
3: cd_AtPARP2_633-979 & 32.46 & 35.03 & 100.00 & 51.18 & 50.00 & 42.18 & 45.10 \\
4: cd_HsPARP1_662-1007 & 28.65 & 36.31 & 51.18 & 100.00 & 86.99 & 46.22 & 46.49 \\
5: cd_GgPARP1_659-1004 & 28.65 & 36.90 & 50.00 & 86.99 & 100.00 & 45.93 & 47.37 \\
6: cd_AtPARP1_286-633 & 26.61 & 36.01 & 42.18 & 46.22 & 45.93 & 100.00 & 50.73 \\
7: cd_HsPARP2_231-577 & 26.18 & 36.61 & 45.10 & 46.49 & 47.37 & 50.73 & 100.00
\end{tabular}

\subsection*{5.3 Pharmacophore annotations}
\begin{tabular}{ccc|ccc}
\hline ID & Annotation & Radius & ID & Annotation & Radius \\
\hline F1 & Don2 & 1.0 & F5 & Aro & 1.0 \\
F2 & Acc2 & 1.0 & F6 & PiN & 1.4 \\
F3 & Don & 1.0 & F7 & PiN & 1.4 \\
F4 & Acc & 1.0 & +V1 & Excl & 1.465 \\
\hline
\end{tabular}

\subsection*{5.4 Homology modelling}

Sections of the homology modelling report that are not listed here (which are section 2: homology modelling parameters and section 3: homology modelling templates, are described in 2.3.3.1 or 3.2.

\subsection*{5.4.1 YASARA homology modelling report: AtPARP1}

\subsection*{5.4.1.1 Report section 1: Homology modelling target}
>1UK1_ATPARP2_MODEL2_YASARA
 RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELATKLLSV DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLFRASR AVEADRFQQFSSSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF SKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH

The target sequence contains 352 residues in 1 molecule.

\subsection*{5.4.1.2 Report section 4: Secondary structure prediction}

The resulting prediction is listed below, the lines 'PreHel', 'PreStr' and 'PreCoi' indicate the estimated probability for the three secondary structure classes helix, strand and coil.

\footnotetext{
Sequence: QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVLKRISEVID
SecStr : CCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCHHHHHHHHHHHHHHHHHHHC PreHel : 111247999999999648999999999979897755654359999999999999996764 PreStr : 010100000000111221000000010110100010000100000000000000000000 PreCoi : 989763111111000241111111101021113345456651111111111111114346

Sequence: RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELATKLLSV SecStr : CCCCCCHHHHHHHHHEECCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHCCC PreHel : 211142555555666331112111111211135679999999999999999999998422 PreStr : 000001111110012552000000000100132100000000000000000111101011 PreCoi : 899967444445432227998999999799843331111111111111111000011677

Sequence: DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLFRASR SecStr : CCCCCCCCHHHHHHHCCCCCCCHHHHHHHHHHHHHHHHHCCCCCCCCCHHHHHHHHHHHH PreHel : 111111145679996221111455556799989999975211111112644799999999 PreStr : 000000000000000011212111000000010000010100000002222101100000 PreCoi : 999999965431114878787544554311111111125799999996244210001111

Sequence: AVEADRFQQFSSSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF SecStr : HHHHHHCCCCCCCCHHHHHHHCCCHHHHHHHHHHHHHCCCCCCCCCCECCCCCEEEHHHH PreHel : 699997343434315697775344567776788766521111111313442222134666 PreStr : 000000101010100002211100011111111000111100001325111126653110
PreCoi : 411113666666695411124666532223211344478899998472557762323334
Sequence: SKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE
SecStr : HHHHHHECCCCCCCCHHHHHHHHHHCCHHHHHCCCCCCCCCCCCCCCEEECCCCCCCCCC
PreHel : 555654111131123795797998632568963342122113122112212110011113
PreStr : 000012511110001114301001010001011102011001011126453442111003
PreCoi : 555444488869986201012111468541136666977996977872445558988994
}

Sequence: AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH SecStr : ECCCCCCCECCCCCCCCCCCCCCCCCCCCEEHHHHHHHHHHHHHEECCCCCC PreHel : 2221111110111111111122113122433478999764555431111111 PreStr : 4332111252111111111111013122155311000122111355132100
```

PreCoi : 4557888748888888888877984866522321111224444324867899

```

\subsection*{5.4.1.3 Report section 5: Initial homology models}

This model is a monomer, and based on the following alignment:

SecStr: CCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCHHHHHHHHHHHHH Target: QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVLK
 Template:KSKLPKPVQDLIKMIFDVESMKKAMVEYEIDLQKMPLGKLSKRQIQAAYSILS SecStr: CCCCHHHHHHHHHHHCCCCHHHHHHHHCEEETTTCTTTTCHHHHHHHHHHHHH

SecStr: HHHHHHCCCCCCCHHHHHHHHHEECCCCCCCCCCCCCCCHHHHHHHHHHHHHH Target: RISEVIDRYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVE
Match: : : : : | LS: :FYT:IPHDFG:KK : : : K K EM:|
Template:EV.......SDSQILDLSNRFYTLIPHDFGMKKP...... NADSVQAKVEMLD SecStr: HH....... HHHHHHHHHHHHHHHHEECTTTTCC....... HHHHHHHHHHHHH

SecStr: HHHHHHHHHHHCCCCCCCCCCCHHHHHHHCCCCCCCHHHHHHHHHHHHHHHHH Target: ALGEIELATKLLSVDPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMEN Match: L |IE:A :LL DP| :Y|:L: | V :DSEE : : | : \(:\) : N Template:NLLDIEVAYSLLR......KDPIDVNYEKLKTDIKVVDRDSEEAEIIRKYVKN SecStr: HHHHHHHHHHHCC...... CHHHHHHHHHHEEEEEECCCCHHHHHHHHHHHHH

SecStr: CCCCCCCCCHHHHHHHHHHHHHHHHHHCCCCCCCCHHHHHHHCCCHHHHHHHH Target: THAKTHSGYTVEIAQLFRASRAVEADRFQQFSSSKNRMLLWHGSRLTNWAGIL
 Template:THATTHNAYDLEVIDIFKIEREGECQRYKPFKQLHNRRLLWHGSRTTNFAGIL SecStr: HCTTTTCCCEEEEEEEEEEEECCCGGGGGGGGCCCEEEEEEECCCCCHHHHHH

SecStr: HHHHHCCCCCCCCCCECCCCCEEEHHHHHHHHHHECCCCCCCCHHHHHHHHHH Target: SQGLRIAPPEAPVTGYMFGKGVYFADMFSKSANYCYANTGANDGVLLLCEVAL Match: SQGLRIAPPEAPVTGYMFGKG|YFADM SKSANYC|: G G:|LL EVAL Template: SQGLRIAPPEAPVTGYMFGKGIYFADMVSKSANYCHTSQGDPIGLILLGEVAL SecStr: HHCCCCCTTTTTTTTTTTTCCEEEECCHHHHHHCCCCTTTTEEEEEEEEEEEC

SecStr: CCHHHHHCCCCCCCCCCCCCCCEEECCCCCCCCCCECCCCCCCECCCCCCCCC Target: GDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSEAQTLEDGVVVPLGKPVER Match: G:M EL :LP GK S:KG:GKT:P:PS :L DGV VPLG |: Template: GNMYELK....... KLPKGKHSVKGLGKTTPDPSANISL. DGVDVPLGTGISS SecStr: CEEEEEC.......CCTTTTCEEEEECEEEEETTTCCCT.TTTECCCCEEEEC

SecStr: CCCCCCCCCCCEEHHHHHHHHHHHHHEECCCCCC Target: SCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH Match: : : LLYNEYIVY:| Q|:||Y:|: :KFN|K Template: GVNDTSLLYNEYIVYDIAQVNLKYLLKLKFNFKT SecStr: CCCCCCCCCCEEEECTTTEEEEEEEEEEEEECCC

The following 5 loops had to be modeled:
\begin{tabular}{c|c|c|c}
\hline Loop & N-terminal anchor & Loop sequence & C-terminal anchor \\
\hline 1 & VLKRI & SEVIDRY & DRTRL \\
2 & GFKKM & SQFVID & TPQKL \\
3 & PSEAQ & TLE & DGVVV \\
4 & TKLLS & VDPGLQ & DDPLY \\
5 & MNELL & YSDYNAD & NLPPG \\
\hline
\end{tabular}

After the side chains had been built, optimized and fine-tuned, all newly modeled parts were subjected to a combined steepest descent and simulated annealing minimization (i.e. the backbone atoms of aligned residues were kept fixed to avoid potential damage). The resulting half-refined model has been saved and obtained the following quality Z-scores: Then a full unrestrained simulated annealing minimization was run for the entire model. The result has been saved, the corresponding Z -scores are listed below:
\begin{tabular}{ccc|ccc}
\hline \multicolumn{4}{c|}{\begin{tabular}{c}
combined steepest descent and simulated \\
annealing minimisation
\end{tabular}} & \multicolumn{3}{c}{ full unrestrained simulated annealing minimisation } \\
\hline Check type & Quality Z-score & Comment & Check type & Quality Z-score & Comment \\
\hline Dihedrals & -1.621 & Satisfactory & Dihedrals & 0.454 & Optimal \\
Packing 1D & -2.007 & Poor & Packing 1D & -1.210 & Satisfactory \\
Packing 3D & -3.109 & Bad & Packing 3D & -1.686 & Satisfactory \\
Overall & -2.463 & Poor & Overall & -1.190 & Satisfactory \\
\hline
\end{tabular}

Since the overall quality \(Z\)-score improved to -1.190 during the minimization, this fully refined model has been accepted as the final one for this template and alignment.

\subsection*{5.4.1.4 Report section 6 and 7: Model ranking and hybrid model}

Since only a single model has been built, there is obviously no need for a final ranking. The model has an overall quality Z-score of -1.190. Again, with only a single model available, no hybrid model could be built. Instead, the model was simply saved as the final one.

NOTE: A Z-score describes how many standard deviations the model quality is away from the average high-resolution X-ray structure. Negative values indicate that the homology model looks worse than a high-resolution X-ray structure. The overall Z-scores for all models have been calculated as the weighted averages of the individual Z -scores using the formula described in 2.3.3.1

\subsection*{5.4.2 YASARA homology modelling report: AtPARP2}

\author{
5.4.2.1 Report section 1: Homology modelling target
}

\begin{abstract}
>1UK1_ATPARP1
SSNLAPSLIELMKMLFDVETYRSAMMEFEINMSEMPLGKLSKHNIQKGFEALTEIQRLLT ESDPQPTMKESLLVDASNRFFTMIPSIHPHIIRDEDDFKSKVKMLEALQDIEIASRIVGF DVDSTESLDDKYKKLHCDISPLPHDSEDYRLIEKYLNTTHAPTHTEWSLELEEVFALERE GEFDKYAPHREKLGNKMLLWHGSRLTNFVGILNQGLRIAPPEAPATGYMFGKGIYFADLV SKSAQYCYTCKKNPVGLMLLSEVALGEIHELTKAKYMDKPPRGKHSTKGLGKKVPQDSEF AKWRGDVTVPCGKPVSSKVKASELMYNEYIVYDTAQVKLQFLLKVRFKHKR
\end{abstract}

The target sequence contains 351 residues in 1 molecule.

\subsection*{5.4.2.2 Report section 4: Secondary structure prediction}

The resulting prediction is listed below, the lines 'PreHel', 'PreStr' and 'PreCoi' indicate the estimated probability for the three secondary structure classes helix, strand and coil.

Sequence: SSNLAPSLIELMKMLFDVETYRSAMMEFEINMSEMPLGKLSKHNIQKGFEALTEIQRLLT
 PreHel : 111222576999999668999999999999897756667779999999999999996642
PreStr : 010100000000011211000000010100100000000000000000000000000100
PreCoi : 989788534111100231111111101011113354443331111111111111114368

Sequence: ESDPQPTMKESLLVDASNRFFTMIPSIHPHIIRDEDDFKSKVKMLEALQDIEIASRIVGF
SecStr : CCCCCCCCCCCHHHHHHHHHHHECCCСССССНHHHHHHHHHHHHHHHHHHHHHHHHHCCC
PreHel : 111111122236655555676421111111257689997979999999999776886321
PreStr : 000000011111111110012341000000121110000000000000000110111110
PreCoi : 999999977763344445422348999999732311113131111111111224113679

Sequence: DVDSTESLDDKYKKLHCDISPLPHDSEDYRLIEKYLNTTHAPTHTEWSLELEEVFALERE SecStr : CCCCCCCHHHHHHHHCCCECHHHHHHHHHHHHHHHHHHCCCCCCCCCCHHHHHHHHHHHH PreHel : 111122256769997211135655566669999999752211111223455569999997 PreStr : 000000000000001212532111000000011000101100000123231101010000
PreCoi : 999988854341112687443344544441100111257799999764424440001113

Sequence: GEFDKYAPHREKLGNKMLLWHGSRLTNFVGILNQGLRIAPPEAPATGYMFGKGIYFADLV SecStr : HCCCCCCCCCCCCCHHHHHHHCCHHHHHHHHHHHHHHCCCCCCCCCCECCCCCEEEHHHH PreHel : 514442332322125997765445566777798766521111112213442223135866
PreStr : 000000110100000003221000011111101000121100001325111125653110
PreCoi : 596668668688985110124665533222211344468899997572557762322134

Sequence: SKSAQYCYTCKKNPVGLMLLSEVALGEIHELTKAKYMDKPPRGKHSTKGLGKKVPQDSEF
SecStr : HHHHHHEECCCCCCCCHHHHHHHHCCCHHHHHHHCCCCCCCCCCCCCECCCCCCCCCCCC
PreHel : 665654213211243494799998432565655543432121111112112201111121
Prestr : 000012453200001013301001010000010001011000012144443321110032
PreCoi : 445444444699866603010111668545445566667989987854555588889957

Sequence: AKWRGDVTVPCGKPVSSKVKASELMYNEYIVYDTAQVKLQFLLKVRFKHKR
SecStr : CCCCCCCCCCCCCCCCCCCCCCCCHHHHHEHHHHHHCCHHHHHEEEECCCC
PreHel : 211111011011111111111122665643478996344656443112111
PreStr : 323111144111111111110011112135311000113232365551000
PreCoi : 576888955988888888889977333332321114653222302447999

\subsection*{5.4.2.3 Report section 5: Initial homology models}

This model is a monomer, and based on the following alignment:
\begin{tabular}{|c|c|}
\hline SecStr: & ССССССННСС \\
\hline Target: & SSNLAPSLIELMKMLFDVETYRSAMMEFEINMSEMPLGKLSKHNIQKGFEALTEIQRLLT \\
\hline Match: & :S:L : | L : KM|FDVE: | : AM:E|EI:| : MPLGKLSK: : IQ :| L : E|Q: \\
\hline Templ & KSKLPKPVQDLIKMIFDVESMKKAMVEYEIDLQKMPLGKLSKRQIQAAYSILSEVQQ. \\
\hline SecStr: & ССССНННННННННННССССННННННННСЕЕЕTTTCTTTTCHHHHHHHHHHHHHHHCT \\
\hline SecStr: & СССССССССССНННННННННННЕССССССССННННННННННННННННННННННННННССС \\
\hline Target: & ESDPQPTMKESLLVDASNRFFTMIPSIHPHIIRDEDDFKSKVKMLEALQDIEIASRIVGF \\
\hline Match: & :|S | : D SNRF|T|IP P ||: D : : KV :ML| L DIE|A \\
\hline Template & SDSQILDLSNRFYTLIPH. . PPLLNNADSVQAKVEMLDNLLDIEVAYSLLRG \\
\hline SecStr: & E. . CCCCCHHHHHHHHHHHHHHHHHHHHHHHHCCC \\
\hline
\end{tabular}

SecStr: CCCCCCCHHHHHHHHCCCECHHHHHHHHHHHHHHHHHHCCCCCCCCCCHHHHHHHHHHHH Target: DVDSTESLDDKYKKLHCDISPLPHDSEDYRLIEKYLNTTHAPTHTEWSLELEEVFALERE Match: D | |D :Y:KL DI: : :DSE| : \|I:KY: : THA TH: |:LE: ||F |ERE Template:GSD..DPIDVNYEKLKTDIKVVDRDSEEAEIIRKYVKNTHATTHNAYDLEVIDIFKIERE SecStr: CCC..HHHHHHHHHHEEEEEECCCCHHHHHHHHHHHHHHCTTTTCCCEEEEEEEEEEEEC

SecStr: HCCCCCCCCCCCCCHHHHHHHCCHHHHHHHHHHHHHHCCCCCCCCCCECCCCCEEEHHHH Target: GEFDKYAPHREKLGNKMLLWHGSRLTNFVGILNQGLRIAPPEAPATGYMFGKGIYFADLV Match: GE :|Y P :L N| LLWHGSR TNF:GIL:QGLRIAPPEAP:TGYMFGKGIYFAD|V Template: GECQRYKPF. .QLHNRRLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADMV SecStr: CCGGGGGGG..CCCEEEEEEECCCCCHHHHHHHHCCCCCTTTTTTTTTTTTCCEEEECCH

SecStr: HHHHHHEECCCCCCCCHHHHHHHHCCCHHHHHHHCCCCCCCCCCCCCECCCCCCCCCCCC Target: SKSAQYCYTCKKNPVGLMLLSEVALGEIHELTKAKYMDKPPRGKHSTKGLGKKVPQDSEF Match: SKSA:YC|T : : P|GL:LL:EVALG: : |EL A:|: : K P|GKHS:KGLGK : P: S Template: SKSANYCHTSQGDPIGLILLGEVALGNMYELKHASHISKLPKGKHSVKGLGKTTPDPSAN SecStr: HHHHHCCCCTTTTEEEEEEEEEEECCEEEEECCCCCCCCCTTTTCEEEEECEEEEETTTC

SecStr: CCCCCCCCCCCCCCCCCCCCCCCCHHHHHEHHHHHHCCHHHHHEEEECCCC Target: AKWRGDVTVPCGKPVSSKVKASELMYNEYIVYDTAQVKLQFLLKVRFKHKR Match: : G V VP G |SS V: : :L|YNEYIVYD AQV:L:|LLK:|F: K Template:ISLDG.VDVPLGTGISSGVNDTSLLYNEYIVYDIAQVNLKYLLKLKFNFKT SecStr: CCTTT.TECCCCEEEECCCCCCCCCCCEEEECTTTEEEEEEEEEEEEECCC

The following 5 loops had to be modelled:
\begin{tabular}{c|c|c|c}
\hline Loop & N-terminal anchor & Loop sequence & C-terminal anchor \\
\hline 1 & TEIQR & LLTESDPQPTM & KESLL \\
2 & SEFAK & WRGDV & TVPCG \\
3 & TMIPS & IHP & HIIRD \\
4 & GFDVD & ST & ESLDD \\
5 & KYAPH & REK & LGNKM \\
\hline
\end{tabular}

After the side chains had been built, optimized and fine-tuned, all newly modelled parts were subjected to a combined steepest descent and simulated annealing minimization (i.e. the backbone atoms of aligned residues were kept fixed to avoid potential damage). The resulting half-refined model has been saved and obtained the following quality Z-scores:

Then a full unrestrained simulated annealing minimization was run for the entire model. The result has been saved, the corresponding Z-scores are listed below:
\begin{tabular}{ccc|ccc}
\hline \multicolumn{3}{c|}{\begin{tabular}{c}
combined steepest descent and simulated \\
annealing minimisation
\end{tabular}} & \multicolumn{3}{c}{ full unrestrained simulated annealing minimisation } \\
\hline Check type & Quality Z-score & Comment & Check type & Quality Z-score & Comment \\
\hline Dihedrals & -1.751 & Satisfactory & Dihedrals & 0.581 & Optimal \\
Packing 1D & -1.611 & Satisfactory & Packing 1D & -0.720 & Good \\
Packing 3D & -2.972 & Poor & Packing 3D & -1.279 & Satisfactory \\
Overall & -2.264 & Poor & Overall & -0.791 & Good \\
\hline
\end{tabular}

Since the overall quality Z-score improved to -0.791 during the minimization, this fully refined model has been accepted as the final one for this template and alignment.

\subsection*{5.4.2.4 Report section 6 s and 7: Model ranking and hybrid model}

Since only a single model has been built, there is obviously no need for a final ranking. The model with an overall quality Z -score of -0.791 has been saved. Again, with only a single model available, no hybrid model could be built. Instead, the model was simply saved as the final one.

NOTE: A Z-score describes how many standard deviations the model quality is away from the average high-resolution X-ray structure. Negative values indicate that the homology model looks worse than a high-resolution X-ray structure. The overall Z-scores for all models have been calculated as the weighted averages of the individual Z -scores using the formula described in 2.3.3.1

\subsection*{5.4.3 YASARA homology modelling report: AtPARP1 (protein stability)}

\author{
5.4.3.1 Report section 1: Homology modelling target
}
>NEW_ATPARP1_2PAX
QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVLKRISEVID RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELATKLLSV DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLFRASR AVEADRFQQFSSSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF SKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH

The target sequence contains 352 residues in 1 molecule.

\subsection*{5.4.3.2 Report section 4: Secondary structure prediction}

Sequence: QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVLKRISEVID
 PreHel: 001238999999998519999999998720000000111128999989999999999975 PreStr: 00
PreCoi : 988761000000001480000000000278888887666761000010000000000014
Sequence: RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELATKLLSV
SecStr : CCCHHHHHHHHHCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHC
PreHel: 431657999885433321000000000122210089999999999998868999877752
PreStr: 000000000000001422100000001011000000000000000000000000000000
PreCoi : 558341000113554246788777766545568900000000000001131000111346

Sequence: DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLFRASR SecStr : CCCCCCCCCHHHCCCCCEEEEECCCCCHHHHHHHHHHHHHCCCCCCCCCEEEECEEEECC PreHel: 000000044554432100000000000899999999986531000000121112212102
PreStr: 000000000000011236778841000000000000000000012211345643455642
PreCoi : 999999954444456663322269999100000000013467887787543244322367

Sequence: AVEADRFQQFSSSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF
SecStr : HHHHHHHHHHCCCCCEEEEEECCCCCCHHHHHHHCCCCCCCCCCCCCCCCCEEEEECCCC
PreHel : 688767887542000000000000010889987510000000000000000000000002
PreStr: 000000000000001589986410000000000000000000001123444567862100
PreCoi : 311132012458989410014689989100002489989999998776455432136886
Sequence: SKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE SecStr : CCCCCCCCCCCCCCEEEEEEEEECCCСССССССССССССССССССССССССССССССССС
PreHel : 344443321000000000000011000122211000000000000000000000000000
PreStr : 000011221000014799998864311233211000100000001124454111000000
PreCoi : 444555557899984200000024578544567788788899998875545888899888

Sequence: AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH
SecStr : CCCCCCCEEECCCCCCCCCCCCCCCCCCEEEEEECCCCEEEEEEEEEEEECC
PreHel: 00
PreStr : 0343101676300013332111111224589987102457788899887640
PreCoi : 8556798323689875556788888776410013996542211100112359

\subsection*{5.4.3.3 Report section 5: The target sequence profile (excerpt)}

A target sequence profile has been created from the following multiple sequence alignment, which is built from related Uniprot sequences. The colour codes are: negative, positive, hydrophilic and hydrophobic. The excerpt contains the first 17 of 86 lines.

Target : QSKIDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVIKRISEVID PARP2_AR: QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVIKRISEVID A7Q0E \(\overline{8} \mathrm{~V}\) : ETKIEPRIAKFISLICDVSMMKQQMMEIGYNADKLPLGKISKSTISKGYDVIKRIADVIS PARP2_MA: ETKIETRIAQFISLICNISMMKQRMVEIGYNAEKLPLGKIRKATILKGYHVIKRISDVIS PRP2A_OR: ETKIETRIASFISLICNISMMKQQMVEIGYNSDKLPLGKLSKSTIFKGYDVIKRISNVIS A2WPQ \(\overline{2} _0\) : ETKIETRIASFISLICNISMMKQQMVEIGYNADKLPLGKISKSTIFKGYDVIKRISNVIS PRP2B_ŌR: ETKIETRTASFISLICDISMMKQQMVEIGYNADKLPLGKLSKSTILKGYDVIKRISNVI. A9TUE \(\overline{0}\) P: PSKLNPRLKEFIELICNVNMMKQMMMEIGYDARKMPLGKLSKSTILKGYEVIKRIAAALD A9PAR1_P: VTRIDPRIANFISLICDVRMMKQRMMEIGYNAEKLPLGKISKSTILKGYDVIRRICENIG A2WPQ1_O: ETKIETRTASFISLICDISMMKQQMVEIGYNADKLPLGKLSKSTILKGYDVIKRISNVI. Q4T502_T: ASKLDVKIQSLIELICDLKAMEECVLEMKFDTRKAPLGKLTPEQIRAGYVALRKIEDCL. Q24GE4_T: TCKLPKEVISLISLIFDMKMINNQMKEIGYDVKKMPLGKLSKENINKAYGMLKQIYEEVE A5PLJ8_D: PCQLNSKVQSLIELICDLKAMEECVLEMKFDTKKAPLGKLTAEQIRAGYASLKRIEECL. A0CA47_P: KSKLHTKIKELVRLIFDMKMINNQMKEIGYDAKKMPLGKIAASTINKGFDVIKKISEELN Q566G1-X: QSKLHPLIQSLIQFICDLESMKDAMIEFQIDVKKMPLGKISKKQIQDALEVISTLAKRVE PARP2_HU: ESQLDLRVQEIIKLICNVQAMEEMMMEMKYNTKKAPLGKLTVAQIKAGYQSLKKIEDCIR PARP2_MO: ESQLDLRVQELIKLICNVQTMEEMMIEMKYDTKRAPLGKLTVAQIKAGYQSIKKIEDCIR

Target : RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKIKQKIEMVEALGEIELATKLLSV PARP2_AR: RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKIKQKIEMVEALGEIELATKLLSV A7Q0E \(\overline{8} \mathrm{~V}\) : QSNRKTLEQLSGEFYTVIPHDFGFKKMRDFVIDTPQKLKHKLEMVEALGEIEVATKLIKD PARP2_MA: KADRRHLEQLTGEFYTVIPHDFGFRKMREFIIDTPQKIKAKLEMVEALGEIEIATKLIED PRP2A_OR: RADRRQLEQLTGEFYTVIPHDFGFKKMREFIIDTPQKIKAKLEMVEALGEIEIATKLIED A2WPQ \(\overline{2} _0:\) RADRRQLEQLTGEFYTVIPHDFGFKKMREFIIDTPQKLKAKLEMVEALGEIEIATKLIED PRP2B_OR: ...RTQLEQLTGEFYSVIPHDFGFKKMSEFIIDTPQKLKAKLEMVEALSEIEIAIKLIED A9TUE \(\overline{0}\) P:SIQELTSEFYTVIPHDFGFKHMQNFIIDTPQKLKHKLEMVEALGEIEVATKLLSN A9PAR1_P: KSDTEKLEELSGEFYTIIPHDFGFNKMREFTIDNHYKLKCKLEMVEALGEIEIATSLIKD A2WPQ1_O: ...RTQLEQLTGEFYSVIPHDESFKKMSEFIIDTPQKLKAKLEMVEALSEIEIAIKLLED Q4T502_T:LLEACNQFYTRIPHDFGLK.....IIQTEQEIKDKIALIEALSDIQIAVKMVKA Q24GE4_T:IEELCNEFYSYIPHDFGFKKMASFILDDAKKVKEKLEMIESIQNIQIATKL... A5PLJ8_D: LLDACNQFYTRIPHDFGL.IIRSEEELKEKITLIETLSDIQIAVKMVQS A0CA47_P: .HNTTTLQTLTSEFYSQIPHDFG........VINTAQLVKQKLEMLESIQQIQVATKILEE Q566G1_X:EYTLIPHDFGMKK......IDNPKIIKSKVQMIEDIREIELAYNILKQ PARP2_HU:ACNEFYTRIPHDEGL........ IRTQKELSEKIQLIEALGDIEIAIKLVKT PARP2_MO: AGQHGR..EACNEFYTRIPHDFGL........IRTEKELSDKVKLIEALGDIEIALKLV..

Target : DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLFRASR PARP2_AR: DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLFRASR A7Q0E \(\overline{8} \mathrm{~V}\) : DIGTQEDPLHMHYQRLHCEMIPLEVNSEEFSMIAKYMENTHAETHSNYTVDIVQIFRVSR PARP2_M PRP2A_OR: DSTDQDDPLYARYKQLSCDETPIEVGSEEYSMIKTYIANTHGKTHTSYTVDVVQIFKVSR
 PRP2B_OR: DSSDQDHPLYARYKQFCCDETPLEVDSEEYSMIKTYLTNTHGKTHTGYTVDIVQIEKVSR A9TUE \(\overline{0}\) P: DNDEDDDPAYTHYKRLNCEMEPLDTTSDEYALVKQYMEKTHGQTHYGYKLELLNVEKLQR A9PAR1_P: DIYTQKDPLYSKYHCLRCELVPIDVVSKEFSMIEKYIRNTGDETH..YRIDIVQIFRASR A2WPQ1-O: DSSDQDDPLYARYKQECCDFTPLEVDSEEYSM...YLTNTHGKTYTGYTVDIVQIFKVSR Q4T502_T: NEDSDENPLDRQYRALQCRLQPLDAGCHEYEVIEKYLQSTHAPTHSDYTMSVLDIFGVDR Q24GE4_T: ..GQQINQIQSNYEKLKCKIEPV..DQKVRKIIEDYLKNTHASTHNQYGLTIDEIFEVER A5PLJ8_D: NVKSDEHPLDRQYHSLNCQLQPLDTDSNEYKVIEKYLKSTHAPTHTDYTMTLLDVEAVER A0CA47_P: QKDDDTNVIDENFKKLGINMQYIDPSEDKVKIVKEFVKNTHCDTHKNYDLDVLDVEELQK Q566G1-X: DLEQDVNPLDQHYRQLRTHLELIDTNSDEFARIQQYVKLTHGETHSSYKLEVVSVFDVER PARP2_HU: ELQSPEHPLDQHYRNLHCALRPIDHESYEFKVISQYLQSTHAPTHSDYTMTLLDLEEVEK PARP2_MO: EHPLDQHYRNLHCALRPIDHESNEFKVISQYLQSTHAPTHKDYTMTLLDVFEVEK

Target : AVEADRFQQFSSSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF PARP2 AR: AVEADRFQQFSSSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF A7Q0E \(\overline{8}\) V: EGEVERFRKFSSTKNRMLLWHGSRLTNWTGILSQGIRIAPPEAPATGYMFGKGVYFADMF
 PRP2A_OR: HGEMERFQKFATAGNRMLLWHGSRLTNWAGILSQGIRIAPPEAPVTGYMFGKGVYFADMF A2WPQ \(\overline{2}\) _O: HGEMERFQKFATAGNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF PRP2B_OR: LGEMERFQKFASAGNRMLLWHGSRLTNWAGILSQGLRIAPPEAPISGFMFGKGVYFADMF A9TUE \(\mathbf{0}_{1}\) P: EGENDRFQNFEKDPNRMLLWHGSRLSNWTGILSQGIRIAPPEAPVTGYMFGKGVYFADMV A9PAR1_P: EGENERFKKFSQTKNRMLIWHGSRLTNWTGILSEGLRIAPPEAP......GNGLYFGDMF A2WPQ1_O: LGEMERFQKFASAGNRMLLWHGSRLTNWAGILSQGLRIAPPEAPISGFMFGKGVYEADMF Q4T502_T: EGESDSF...SDLPNRTLLWHGSRLSNWVGILSQGLRVAPPEAPVTGYMFGKGIYEADMS Q24GE4_T: EGENDR.....DIKNKMLLWHGSRLTNFVGILSQGLRIAPPEAPVTGYMFGKGVYFADMC A5PLJ8_D: EGEKDNFN..SELQNRMLLWHGSRLSNWVGILSQGLRVAPAEAPVTGYMFGKGIYFADMS A0CA47_P: DQDDNRF......NRMLLWHGSRLTNFVGILSQGLRIAPPEAPVTGYMFGKGVYFADMV Q566G1_X: EDERARFEGYT....RQLLWHGSRRTNWVGILSQGLRIAPPEAPVTGYMFGKGIYFADMV PARP2 \(\bar{H} U: ~ D G E K E A F R N R M L L W H G S R M S N W V G I L S H G L R I A P P E A P I T G Y M F G K G I Y F A D M S ~\) PARP2_MO: EGEKEAFR......NRMLLWHGSRLSNWVGILSHGLRVAPPEAPITGYMFGKGIYFADMS

Target : SKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE PARP2 AR: SKSANYCYANTGANDGVLILCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE
 PARP2_M PRP2A_OR: SKSANYCYASEACRSGVLILCEVALGEMNELLNADYDANNLPKGKLSTKGVGQTEPNTAE A2WPQ2_O: SKSANYCYASEACRSGVLLLCEVALGEMNELLNADYDANNLPKGKLSTKGVGQTEPNTAE
 A9TUE \(\overline{0}\) _P: SKSANYCCTHANDPIGVLLISEVALGGMNELLRSDYHANKLPAGKLSTKGVGRTFPDPKE A9PAR1_P: SKSAPYCHANWINSDAVLVLCEVALGDM....YGSFN..KLPKGKLSVKVAGGTVPDSSQ A2WPQ1_O: SKSANYCCASEACKSGVLLICEVALGDMNELLYGDFGADNLPNG.....GVGQTEPNIAE Q4T502_T: SKSANYCFANQSNHVGLLLLCEVALGDSNELLDADYEANNLPNGKHSTKGLGRTGPDPKN Q24GE4_T: SKSANYCFTNKANNTGLMLICEVALGEMNDKYYADYYASNLPAGKHSTRGRGKTAPPESS A5PLJ8_D: SKSANYCFASQKNNQGLLLLSEVALGDSNELLDADYNADQLPSGKHSTKGLGQTAPDPKK A0CA47_P: SKSANYCAVTRENNTGLILICDVALGNTNEKFYSDYYANNLPPGKHSTWGKGKTMPPPAQ Q566G1_X: SKSANYCFTSRNQPEGLLLICEVILGDMHE...... NASPLPPGTHSRKGVGSTQPDPST
 PARP2_MO: SKSANYCFASRLKNTGLLLLSEVALGQCNELLEANPKAQGLLRGKHSTKGMGKMAPSPAH

Target : AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH PARP2 AR: AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH A7Q0E \(\overline{8}\) V: AQAFENGIVVPLGKPKLRSDPKGGLLYNEYIVYNVDQIRMRYVVQVTFNFKR PARP2_M \(\bar{M} A: S K V A D D G V V V P L G E P K Q E P S K R G G L L Y N E Y I V Y N V D Q I R M R Y V L H V N E N F K R ~\) PRP2A-OR: SKITDDGVVVPLGKPKAEPSKRGSLLYNEFIVYNVDQIRMRYVLHVSFNFKK A2WPQ \({ }_{2} O\) : PRP2B_OR: SKITDDGVVVPLGKPKAEPSKRGSLLYNEFIVYNVDQIRMR. A9TUE A9PAR1_P: AQVLEDGVLVPLGKPVELPYSQGMWPRNEYIILDVDQIRIRYVVHAKECYQT A2WPQ1_O: SKITDDGMVIPLGKP......KGSLMYNEYIVYNVDQIRMRYILNVTFNFQR Q4T502_T: ALTL..GVTVPMGPGVNTGVGK. .LLYNEFVIYNPAQIRMRYLIRIKFNYSS Q24GE4-T: YVTIYDDVQVPVGK..........LLYNEFIVYDIRQIK................ A0CA47 \({ }^{-}\)P: NIPF.....PIGKGAPSGVANTSLLYNEFIVYDVAQIRLKYLIKMKWNYK. Q566G1_X: YYTSPDGVVYPIGKP.........LLYNEYIVYDVAQVLQKYLVRVKFLYN.
 PARP2_MO: FITL..GSTVPLGPASDTG.......YNEFIVYSPNQVRMRYLIKIQFNFLQ

\subsection*{5.4.3.4 Report section 6: The initial homology models}

\subsection*{5.4.3.4.1 Homology Model 1 of 4, based on template 2PAX, alignment variant 1}
```

SecStr : CCCCCHHHHHHHHHHHCHHHHHHHHHHHCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHH
Target : QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVIKRISEVID
Match : :SKL | :I:|I :V: M : M:E: : :K|PLGK|SK I:::Y:|L::|:|:|:
Template: KSKIAKPIQDLIKMIFDVESMKKAMVEFEIDLQKMPIGKLSKRQIQSAYSILNEVQQAVS
SecStr : CCCCHHHHHHHHHHHHCHHHHHHHHHHHCCCCCCCTTTTCHHHHHHHHHHHHHHHHHHHH
SecStr : CCCHHHHHHHHHCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHHC
Target : RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELATKLISV
Match : ::: | | LS::FYT:IPHDFG:KK : | | : K||M:| L |IE:A :LL
Template: D.SESQILDLSNRFYTLIPHDFGMKKP......NLEYIQAKVQMIDNLLDIEVAYSLLR.

```

```

SecStr : CCCCCCCCCHHHCCCCCEEEEECCCCCHHHHHHHHHHHHHCCCCCCCCCEEEECEEEECC
Target : DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLERASR
Match : DP| :Y|:L: | V :DSEE ::| :Y::NTHA TH::Y ::|:||FR :R
Template: .....KDPIDINYEKIRTDIKVVDKDSEEAKIIKQYVKNTHAATHNAYDLKVVEIERIER
SecStr : .....CHHHHHHHHHCEEEEEECCCCHHHHHHHHHHHHHHCCTTTTCCEEEEEEEEEEEE
SecStr : HHHHHHHHHHCCCCCEEEEEECCCCCCHHHHHHHCCCCCCCCCCCCCCCCCEEEEECCCC
Target : AVEADRFQQFSSSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYEADMF
Match : E::R|: F:: NR:LLWHGSR TN:AGILSQGLRIAPPEAPVTGYMFGKG|YFADM
Template: EGESQRYKPFKQLHNRQLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADMV
SecStr : .....CHHHHHHHHHCEEEEEECCCCHHHHHHHHHHHHHHCCTTTTCCEEEEEEEEEEEE
SecStr : CCCCCCCCCCCCCCEEEEEEEEECCCCCCCCССССССССССССССССССССССССССССС
Target : SKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE
Match : SKSANYC|:: : G:|LL EVALG:M EL :LP GK S:KG:GKTAP:P:
Template: SKSANYCHTSQADPIGLILIGEVALGNMYELK. . . . . . .KLPKGKHSVKGLGKTAPDPTA
SecStr : TTGGGGGCCETTEEEEEEEEEEEECCCCEEEC.......CCTTTTCEEEEECEEEEETTT
SecStr : CCCCCCCEEECCCCCCCCCCCCCCCCCCEEEEEECCCCEEEEEEEEEEEECC [PsiPred]
Target : AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH
Match : : TL GV VPLG: |: : : LLYNEYIVY:V Q|:||Y:|::KFNYK
Template: TTTL..GVEVPLGNGISTGINDTCLLYNEYIVYDVAQVNLKYLLKLKFNYKT
SecStr : CEEE..TEEECCCEEEECCCCCCCCCCCEEEECTTTEEEEEEEEEEEEECCC [YASARA]

```

In the complete template multiple sequence alignment, 330 of 352 target residues (\(93.8 \%\)) are aligned to template residues. Among these aligned residues, the sequence identity is \(48.5 \%\) and the sequence similarity is \(68.2 \%\) ('similar' means that the BLOSUM62 score is \(>0\)).
The following 5 loops had to be modelled:
\begin{tabular}{c|c|c|c}
\hline Loop & N-terminal anchor & Loop sequence & C-terminal anchor \\
\hline 1 & EVIDR & YDRT & RLEEL \\
2 & EAQTL & ED & GVVVP \\
3 & GFKKM & SQFVID & TPQKL \\
4 & TKLLS & VDPGLQD & DPLYY \\
5 & MNELL & YSDYNAD & NLPPG \\
\hline
\end{tabular}

After the side chains had been built, optimized and fine-tuned, all newly modelled parts were subjected to a combined steepest descent and simulated annealing minimization (i.e. the backbone atoms of aligned residues were kept fixed to avoid potential damage).

The resulting half-refined model has been saved and obtained the following quality Z-scores:

Then a full unrestrained simulated annealing minimization was run for the entire model. The result has been saved, the corresponding Z-scores are listed below:
\begin{tabular}{ccc|ccc}
\hline \multicolumn{4}{c|}{\begin{tabular}{c}
combined steepest descent and simulated \\
annealing minimisation
\end{tabular}} & \multicolumn{3}{c}{ full unrestrained simulated annealing minimisation } \\
\hline Check type & Quality Z-score & Comment & Check type & Quality Z-score & Comment \\
\hline Dihedrals & 0.885 & Optimal & Dihedrals & 1.314 & Optimal \\
Packing 1D & -1.142 & Satisfactory & Packing 1D & -0.533 & Good \\
Packing 3D & -1.003 & Satisfactory & Packing 3D & -1.037 & Satisfactory \\
Overall & -0.783 & Good & Overall & -0.499 & Good \\
\hline
\end{tabular}

Since the overall quality Z -score improved to -0.499 during the minimization, this fully refined model has been accepted as the final one for this template and alignment.

\subsection*{5.4.3.4.2 Homology Model 2 of 4, based on template 2PAX, alignment variant 2}
```

SecStr : CCCCCHHHHHHHHHHHCHHHHHHHHHHHCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHH
Target : QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVIKRISEVID
Match : :SKL | :I:|I :V: M : M:E: : :K|PLGK|SK I:::Y:|L::|:|:|:
Template: KSKLAKPIQDLIKMIFDVESMKKAMVEFEIDLQKMPLGKLSKRQIQSAYSILNEVQQAVS
SecStr : CCCCHHHHHHHHHHHHCHHHHHHHHHHHCCCCCCCTTTTCHHHHHHHHHHHHHHHHHHHH

```

```

Target : RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELATKLLSV
Match : ::::| |LS::FYT:IPHDFG:KK : | | K||M:| L |IE:A :LL
Template: D.SESQILDLSNRFYTLIPHDFGMKKP. . . . . .NLEYIQAKVQMLDNLLDIEVAYSLLR.
SecStr : H. .НННННННННННННННСССТTTTCC. . . . . . НННННННННННННННННННННННННН.
SecStr : CCCCCCCCCHHHCCCCCEEEEECCCCCHHHHHHHHHHHHHCCCCCCCCCEEEECEEEECC
Target : DPGLQDDPLYYHYQQLNCGLTPVGNDSEEESMVANYMENTHAKTHSGYTVEIAQLERASR
Match : DP| :Y|:L: | V :DSEE ::| :Y::NTHA TH::Y ::|:||FR :R
Template: .....KDPIDINYEKIRTDIKVVDKDSEEAKIIKQYVKNTHAATHNAYDLKVVEIERIER
SecStr : .....CHHHHHHHHHCEEEEEECCCCHHHHHHHHHHHHHHCCTTTTCCEEEEEEEEEEEE
SecStr : HHHHHHHHHHCCCCCEEEEEECCCCCCHHHHHHHCCCCCCCCCCCCCCCCCEEEEECCCC
Target : AVEADRFQQFSSSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF
Match : E::R|: F:: NR:LLWHGSR TN:AGILSQGLRIAPPEAPVTGYMFGKG|YFADM
Template: EGESQRYKPFKQLHNRQLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADMV
SecStr : CHHHHHHHGGGGGCEEEEEEECCCCCHHHHHHHHCCCCCTTTTGGGGTTTTCCEEEECTT
SecStr : CCCCCCCCCCCCCCEEEEEEEEECCCСССССССССССССССССССССССССССССССССС
Target : SKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE
Match : SKSANYC|:: : G:|LL EVALG:M EL :LP GK S:KG:GKTAP:P:
Template: SKSANYCHTSQADPIGLILIGEVALGNMYELK.......KLPKGKHSVKGLGKTAPDPT.
SecStr : TTGGGGGCCETTEEEEEEEEEEEECCCCEEEC........CCTTTTCEEEEECEEEEETT.
SecStr : CCCCCCCEEECCCCCCCCCCCCCCCCCCEEEEEECCCCEEEEEEEEEEEECC [PsiPred]
Target : AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH
Match : T DGV VPLG: |: : : LLYNEYIVY:V Q|:||Y:|::KFNYK
Template: .TTTLDGVEVPLGNGISTGINDTCLLYNEYIVYDVAQVNLKYLLKLKFNYKT
SecStr : . CEEETTEEECCCEEEECCCCCCCCCCCEEEECTTTEEEEEEEEEEEEECCC [YASARA]

```

In the complete template multiple sequence alignment, 330 of 352 target residues (\(93.8 \%\)) are aligned to template residues. Among these aligned residues, the sequence identity is \(48.5 \%\) and the sequence similarity is \(68.2 \%\) ('similar' means that the BLOSUM62 score is \(>0\)). The following 5 loops had to be modelled:
\begin{tabular}{c|c|c|c}
\hline Loop & N-terminal anchor & Loop sequence & C-terminal anchor \\
\hline 1 & EVIDR & YDRT & RLEEL \\
2 & APNPS & EAQ & TLEDG \\
3 & GFKKM & SQFVID & TPQKL \\
4 & KLLS & VDPGLQD & DPLYY \\
5 & MNELL & YSDYNAD & NLPPG \\
\hline
\end{tabular}

After the side chains had been built, optimized and fine-tuned, all newly modelled parts were subjected to a combined steepest descent and simulated annealing minimization (i.e. the backbone atoms of aligned residues were kept fixed to avoid potential damage).

The resulting half-refined model has been saved and obtained the following quality Z-scores:

Then a full unrestrained simulated annealing minimization was run for the entire model. The result has been saved, the corresponding Z-scores are listed below:
\begin{tabular}{ccc|ccc}
\hline \multicolumn{4}{c|}{\begin{tabular}{c}
combined steepest descent and simulated \\
annealing minimisation
\end{tabular}} & \multicolumn{3}{c}{ full unrestrained simulated annealing minimisation } \\
\hline Check type & Quality Z-score & Comment & Check type & Quality Z-score & Comment \\
\hline Dihedrals & 0.851 & Optimal & Dihedrals & 1.034 & Optimal \\
Packing 1D & -1.251 & Satisfactory & Packing 1D & -0.691 & Good \\
Packing 3D & -1.034 & Satisfactory & Packing 3D & -1.159 & Satisfactory \\
Overall & -0.845 & Good & Overall & -0.658 & Good \\
\hline
\end{tabular}

Since the overall quality Z -score improved to -0.658 during the minimization, this fully refined model has been accepted as the final one for this template and alignment.

\subsection*{5.4.3.4.3 Homology Model 3 of 4, based on template 2PAX, alignment variant 3}
```

SecStr : CCCCCHHHHHHHHHHHCHHHHHHHHHHHCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHH
Target : QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVIKRISEVID
Match : :SKL | :I:|I :V: M : M:E: : :K|PLGK|SK I:::Y:|L::|:|:|:
Template: KSKLAKPIQDLIKMIFDVESMKKAMVEFEIDLQKMPLGKLSKRQIQSAYSILNEVQQAVS
SecStr : CCCCHHHHHHHHHHHHCHHHHHHHHHHHCCCCCCCTTTTCHHHHHHHHHHHHHHHHHHHH

```

```

Target : RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELATKLLSV
Match : :: : | | LS::FYT:IPHDFG:KK : | | : K||M:| L |IE:A :LL
Template: D.SESQILDLSNRFYTLIPHDFGMKKP......NLEYIQAKVQMLDNLIDIEVAYSLLR.

```

```

SecStr : CCCCCCCCCHHHCCCCCEEEEECCCCCHHHHHHHHHHHHHCCCCCCCCCEEEECEEEECC
Target : DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLERASR
Match : DP| :Y|:L: | V :DSEE ::| :Y::NTHA TH::Y ::|:||FR :R
Template: .....KDPIDINYEKIRTDIKVVDKDSEEAKIIKQYVKNTHAATHNAYDLKVVEIERIER
SecStr : .....CHHHHHHHHHCEEEEEECCCCHHHHHHHHHHHHHHCCTTTTCCEEEEEEEEEEEE
SecStr : HHHHHHHHHHCCCCCEEEEEECCCCCCHHHHHHHCCCCCCCCCCCCCCCCCEEEEECCCC
Target : AVEADRFQQFSSSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF
Match : E::R|: F:: NR:LLWHGSR TN:AGILSQGLRIAPPEAPVTGYMFGKG|YFADM
Template: EGESQRYKPFKQLHNRQLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADMV
SecStr : CHHHHHHHGGGGGCEEEEEEECCCCCHHHHHHHHCCCCCTTTTGGGGTTTTCCEEEECTT
SecStr : CCCCCCCCCCCCCCEEEEEEEEECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Target : SKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE
Match : SKSANYC|:: : G:|LL EVALG:M EL :LP GK S:KG:GKTAP:P:
Template: SKSANYCHTSQADPIGLILIGEVALGNMYELK. . . . . . . KLPKGKHSVKGLGKTAPDPTA
SecStr : TTGGGGGCCETTEEEEEEEEEEEECCCCEEEC........CCTTTTCEEEEECEEEEETTT
SecStr : CCCCCCCEEECCCCCCCCCCCCCCCCCCEEEEEECCCCEEEEEEEEEEEECC [PsiPred]
Target : AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH
Match : : T DGV VPLG: |: : : LLYNEYIVY:V Q|:||Y:|::KFNYK
Template: TTT.LDGVEVPLGNGISTGINDTCLLYNEYIVYDVAQVNLKYLLKLKFNYKT
SecStr : CEE.ETTEEECCCEEEECCCCCCCCCCCEEEECTTTEEEEEEEEEEEEECCC [YASARA]

```

In the complete template multiple sequence alignment, 331 of 352 target residues (\(94.0 \%\)) are aligned to template residues. Among these aligned residues, the sequence identity is \(48.3 \%\) and the sequence similarity is \(68.0 \%\) ('similar' means that the BLOSUM62 score is \(>0\)).

The following 5 loops had to be modeled:
\begin{tabular}{c|c|c|c}
\hline Loop & N-terminal anchor & Loop sequence & C-terminal anchor \\
\hline 1 & EVIDR & YDRT & RLEEL \\
2 & SEAQT & LE & DGVVV \\
3 & GFKKM & SQFVID & TPQKL \\
4 & KLLS & VDPGLQD & DPLYY \\
5 & MNELL & YSDYNAD & NLPPG \\
\hline
\end{tabular}

After the side chains had been built, optimized and fine-tuned, all newly modelled parts were subjected to a combined steepest descent and simulated annealing minimization (i.e. the backbone atoms of aligned residues were kept fixed to avoid potential damage).

The resulting half-refined model has been saved and obtained the following quality Z-scores:

Then a full unrestrained simulated annealing minimization was run for the entire model. The result has been saved, the corresponding Z-scores are listed below:
\begin{tabular}{ccc|ccc}
\hline \multicolumn{4}{c|}{\begin{tabular}{c}
combined steepest descent and simulated \\
annealing minimisation
\end{tabular}} & \multicolumn{3}{c}{ full unrestrained simulated annealing minimisation } \\
\hline Check type & Quality Z-score & Comment & Check type & Quality Z-score & Comment \\
\hline Dihedrals & 0.777 & Optimal & Dihedrals & 1.210 & Optimal \\
Packing 1D & -1.351 & Satisfactory & Packing 1D & -0.818 & Good \\
\hline Packing 3D & -1.055 & Satisfactory & Packing 3D & -1.061 & Satisfactory \\
Overall & -0.905 & Good & Overall & -0.637 & Good \\
\hline
\end{tabular}

Since the overall quality Z -score improved to -0.637 during the minimization, this fully refined model has been accepted as the final one for this template and alignment.

\subsection*{5.4.3.4.4 Homology Model 4 of 4, based on template 2PAX, alignment variant 4}
\begin{tabular}{|c|c|}
\hline SecStr & \\
\hline Target & QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVLKRISEVID \\
\hline Match & \\
\hline Template: & KSKLAKPIQDLIKMIFDVESMKKAMVEFEIDLQKMPLGKLSKRQIQSAYSILNEVQQAVS \\
\hline SecStr & ССССННННННННННННСНННННННННННСССССССТТТТСНННННННННННННННННННН \\
\hline SecStr & СССНННННННННССССССССССССССССССССССНННННННННННННННННННННННННС \\
\hline Target & RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELATKLISV \\
\hline Match & \\
\hline Template: & D. SESQILDLSNRFYTLIPHDFGMKKP NLEYIQAKVQMLDNLLDIEVAYSLIR. \\
\hline SecStr & \\
\hline SecStr & CCCCCCCCCHHHCCCCCEEEEECCCCCHHHHHHHHHHHHHCCCCCCCCCEEEECEEEECC \\
\hline Target & DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLERASR \\
\hline Match & \\
\hline Template: & KDPIDINYEKIRTDIKVVDKDSEEAKIIKQYVKNTHAATHNAYDLKVVEIFRIER \\
\hline SecStr & CHHHHHHHHHCEEEEEECCCCHHHHHHHHHHHHHHCCTTTTCCEEEEEEEEEEEE \\
\hline SecStr & \\
\hline Target & AVEADRFQQFSSSKNRMLIWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF \\
\hline Match & \\
\hline Template: & EGESQRYKPFKQLHNRQLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADMV \\
\hline SecStr & CHHHHHHHGGGGGCEEEEEEECCCCCHHHHHHHHCCCCCTTTTGGGGTTTTCCEEEECTT \\
\hline SecStr & CCCCCCCCCCCCCCEEEEEEEEECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC \\
\hline Target & SKSANYCYANTGANDGVLILCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE \\
\hline Match & SKSANYC|: : G:|LL EVALG:M EL :LP GK S:KG:GKTAP:P: \\
\hline Template: & SKSANYCHTSQADPIGLILIGEVALGNMYELK. KLPKGKHSVKGLGKTAPDPTA \\
\hline SecStr & TTGGGGGCCETTEEEEEEEEEEEECCCCEEEC.......CCTTTTCEEEEECEEEEETTT \\
\hline SecStr & CCCCCCCEEECCCCCCCCCCCCCCCCCCEEEEEECCCCEEEEEEEEEEEECC [PsiPred] \\
\hline Target & AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH \\
\hline Match & DGV VPLG: |: : L : \\
\hline Template: & TT.TLDGVEVPLGNGISTGINDTCLLYNEYIVYDVAQVNLKYLLKLKFNYKT \\
\hline SecStr & CE.EETTEEECCCEEEECCCCCCCCCCCEEEECTTTEEEEEEEEEEEEECCC [YASARA] \\
\hline
\end{tabular}

In the complete template multiple sequence alignment, 331 of 352 target residues (\(94.0 \%\)) are aligned to template residues. Among these aligned residues, the sequence identity is \(48.0 \%\) and the sequence similarity is \(67.7 \%\) ('similar' means that the BLOSUM62 score is \(>0\)).

The following 5 loops had to be modelled:
\begin{tabular}{c|c|c|c}
\hline Loop & N-terminal anchor & Loop sequence & C-terminal anchor \\
\hline 1 & EVIDR & YDRT & RLEEL \\
2 & PNPSE & AQT & LEDGV \\
3 & GFKKM & SQFVID & TPQKL \\
4 & TKLLS & VDPGLQD & DPLYY \\
5 & MNELL & YSDYNAD & NLPPG \\
\hline
\end{tabular}

After the side chains had been built, optimized and fine-tuned, all newly modelled parts were subjected to a combined steepest descent and simulated annealing minimization (i.e. the backbone atoms of aligned residues were kept fixed to avoid potential damage).

The resulting half-refined model has been saved and obtained the following quality Z-scores:

Then a full unrestrained simulated annealing minimization was run for the entire model. The result has been saved, the corresponding Z-scores are listed below:
\begin{tabular}{ccc|ccc}
\hline \multicolumn{4}{c|}{\begin{tabular}{c}
combined steepest descent and simulated \\
annealing minimisation
\end{tabular}} & \multicolumn{3}{c}{ full unrestrained simulated annealing minimisation } \\
\hline Check type & Quality Z-score & Comment & Check type & Quality Z-score & Comment \\
\hline Dihedrals & 0.866 & Optimal & Dihedrals & 1.193 & Optimal \\
Packing 1D & -1.237 & Satisfactory & Packing 1D & -0.690 & Good \\
Packing 3D & -1.005 & Satisfactory & Packing 3D & -1.153 & Satisfactory \\
Overall & -0.824 & Good & Overall & -0.632 & Good \\
\hline
\end{tabular}

Since the overall quality Z -score improved to -0.632 during the minimization, this fully refined model has been accepted as the final one for this template and alignment.

\subsection*{5.4.3.5 Report sections 7 and 8: Model ranking and the hybrid model}

The following table lists the 4 monomeric models, comprising residues 1-352, sorted by their overall quality Z-scores. Finally, YASARA tried to combine the best parts of the 4 models to obtain a hybrid model, hoping to increase the accuracy beyond each of the contributors. The model could not be improved by copying parts from other models; nevertheless it was subjected to a final round of simulated annealing minimization in explicit solvent and obtained the following quality Z -scores:
\begin{tabular}{ccc}
\hline & \multicolumn{2}{l}{ 7 Model ranking: } \\
\hline Rank & Z-score & Model ID \\
\hline 1 & -0.499 & \(1(5.4 .3 .4 .1)\) \\
2 & -0.632 & \(4(5.4 .3 .4 .4)\) \\
3 & -0.637 & \(3(5.4 .3 .4 .3)\) \\
4 & -0.658 & \(2(5.4 .3 .4 .2)\) \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline \multicolumn{3}{c}{8 the hybrid model } \\
\hline Check type & Z-score & Comment \\
\hline Dihedrals & 1.210 & Good \\
Packing 1D & -0.306 & Good \\
Packing 3D & -1.042 & Good \\
Overall & -0.428 & Good \\
\hline
\end{tabular}

Since this hybrid model scored better than all previous models, it was saved as the final model.

\title{
5.4.4 YASARA homology modelling report: AtPARP1 (natural substrates)
}

\subsection*{5.4.4.1 Report section 1: Homology modelling target}
>ATPARP1_1TOX_1A26
QSKLDTRVĀKFISİICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVLKRISEVID RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELATKLLSV DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLFRASR AVEADRFQQFSSSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF SKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH

The target sequence contains 352 residues in 1 molecule.

\subsection*{5.4.4.2 Report section 4: Secondary structure prediction}

Sequence: QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVLKRISEVID SecStr : CCCCCHHHHHHHHHHCCHHHHHHHHHHHCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHH PreHel : 001119999999997409999999998610010000000028989999999999999974 PreStr : 001000
PreCoi : 9888800000000014900000000002788878888888870010000000000000015

Sequence: RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELATKLLSV
 PreHel : 540899999998655531000000000011100099999999999998889999876531 PreStr: 000000000000000011100000000011100000000000000000000000000000
PreCoi : 459000000001344446888777777756678900000000000001010000023457

Sequence: DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLFRASR
SecStr : CCCCCCCCCHHHHCCCCEEEEECCCCCHHHHHHHHHHHHCCCCCCCCCCEEECCCEEEEC
PreHel: 000000024555432100000000000899999999986531000000011101213102
PreStr: 000000000000001125788720000000000000000000000011445533368763
PreCoi : 999999975444456774211279999100000000013568989987543355420145
Sequence: AVEADRFQQFSSSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF
SecStr : HHHHHHHHHHCCCCCCEEECCCCCCCCHHHHHHCCCCCCCCCCCCCCCEECEEEEECCCC
PreHel : 788887876532110000000000220788875200000000000000000000000112
PreStr: 000000000000000366531000000000000000000000001114554478763110
PreCoi : 100012123467889533458888669111123699989989998885445421136776

Sequence: SKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE
SecStr : CCCCCCCCCCCCCCCEEEEEEEEEECCCHHHCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
PreHel : 222111100000000000000001001234433210110000000000000000000000
PreStr : 111112331100003689988875421133310001110000000112122111100000
PreCoi : 666776567899996310000023477533355777778899988877776888889999
Sequence: AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH
SecStr : CEECCCCEEECCCCCCCCCCCCCCCCCCEEEEEECCCEEEEEEEEEEEEECC
PreHel: 00
PreStr : 0564200677410023321111111223599987105778889999877640
PreCoi : 9435799323589875567888888777300013995321110000122369

\subsection*{5.4.4.3 Report section 5: The target sequence profile (excerpt)}

Target

\section*{D7U2A8} Q5Z8Q9
\(\qquad\) D8R2J2 B9I9Q6:
\(\qquad\) UPI00018: Q4T502 B5X3M4 C5KI71: B3RJY6 C4Q0U1 E2RHY6: UPI00017: Q566G1 E2AAA6

Target D7U2A8 Q5Z8Q9
\(\qquad\) D8R2J2: B9I9Q6 F4P043: UPI00018: Q4T502: B5X3M4 C5KI71: B3RJY6 C4Q0U1 E2RHY6: UPI00017: Q566G1 E2AAA6

Target D7U2A8 Q5Z8Q9
A9TUE0 D8R2J2 B9I9Q6 F4P043: UPIO0018: Q4T502 B5X3M4 C5KI71 B3RJY6 C4Q0U1 E2RHY6 UPI00017: Q566G1 E2AAA6

QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVIKRISEVID : ETKLEPRIAKFISLICDVSMMKQQMMEIGYNADKLPLGKLSKSTISKGYDVIKRIADVIS ETKLETRIASEISLICNISMMKQQMVEIGYNSDKLPLGKLSKSTIFKGYDVLKRISNVIS . SKLNPRLKEFIELICNVNMMKQMMMEIGYDARKMPLGKLSKSTILKGYEVLKRLAAALD QSKLDSRVAQFVSLICDLKMMRQQMVEIGYDARKMPLGKLSKATILKGYQTLKSIQGVL. : TRLDPRIANEISLICDVRMMKQRMMELGYNAEKLPLGKLSKSTILKGYDVLRRICENIG : ESKLHPSVKELMELCENMDMMNLQMMEIGYDTKKMPLGKLSKANIHKGYEVLKKLSDVIQ : ESVLHKSLQDVMTLIFDITEWEESVKEMKFDIKKSPLGKLTKKQITAGYEALKAVETCID . SKLDVKIQSLIELICDLKAMEECVLEMKFDTRKAPLGKLTPEQIRAGYVALRKIEDCL. . SKLDVKVQSLLELICDIKAMEECVLEMKEDTRKAPLGKLTTEQIRAGYSALKKIEECVK .TKLDEQLYGLIKMICDRQLMVDHMRASGVDVNKMPLGKISEDMIKAGYEALQAIEEEL. . SQLPSAIIDLIKLIFDVQAMKAALIEFEIDLKKMPLGNLSKKQIEDAYQVLGNLQDL. . . . KLHPALQSLLKFICDVKSMEKTMAEFELDLRKMPLGKLSSNQIHEAYDVLNSLSQLI. ESQLDLRVQELIELICNVQAMEETMVEMKYDTKKAPLGKLTVAQIKAGYQSLKKIEDCIR . . KLPEPVQRLIRLLEDVESMKKVMYEFELDLQKMPLGKLSRNQLQQAYTTLNELNSMID : QSKLHPLLQSLLQFICDLESMKDAMIEFQIDVKKMPLGKLSKKQIQDALEVLSTLAKRVE : KSNLAEPIQNLMRLIFDVAEMKKVMLEFEIDMDKMPLGKLSKKQIEKAYAVLTELQEIL.
: RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKIKQKIEMVEALGEIELATKLLSV : QSNRKTLEQLSGEFYTVIPHDFGFKKMRDFVIDTPQKLKHKLEMVEALGEIEVATKLLKD RADRRQLEQLTGEFYTVIPHDFGFKKMREFIIDTPQKLKAKLEMVEALGEIEIATKLLEDELTSEFYTVIPHDFGFKHMQNFIIDTPQKLKHKLEMVEALGEIEVATKLLSNLLDLSSEFYTLIPHDFGFQNIRQQTINTIEKLKKKIEMVEALGEIAIAAQVLE. KSDTEKLEELSGEFYTIIPHDFGFNKMREFTIDNHYKLKCKLEMVEALGEIEIATSLIKD AS LSSEFYTIIPHEFGM. IQTLSMLKDKLSMVEALTDIQIATSII. . KVDKQELIEACSQFYTRIPHDFGMK.LIETTDQLKEKLELIEALNEIQVAISIVED LEACNQFYTRIPHDFGLKIIQTEQELKDKIALIEALSDIQIAVKMVKA RKGSSR.QEACNQFYTRIPHDFGL......IIRSEEELKEKIALIEALSDIQIAVKMVQS LLDLSGRFYTVVPHDFGFKKMYYFIIDSEEVIKQKMQLLEDLQDM.RTKIVDATNKFYTLIPHDFGL......ILDDPKLIQAKTSMLDDLLDIAVAYNLIKT . . DRTQILSESTRFYTLIPHDFGFK. LDNKKIITKKIRMLEDLLEIELAYKMLQTACNEFYTRIPHDFGLIRTEKELSDKVQLIEALGDIEIAIKLVKT NKFYSLIPHDFGI IDSKEILNSKLEMIGSLMEIQIAYSM. . . K............FYTLIPHDFGMKK.....LDNPKIIKSKVQMLEDLREIELAYNILKQ . . . HTTLIDASNRFYTLIPHNFGI ILESSEEIKNKCDMLDALLEMEIAYNLLRD

DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLERASR DIGTQEDPLHMHYQRLHCEMI PLEVNSEEFSMIAKYMENTHAETHSNYTVDIVQIERVSR DSTDQDDPLYARYKQLSCDFTPLEVGSEEYSMIKTYLANTHGKTHTSYTVDVVQIFKVSR DNDEDDDPAYTHYKRLNCEMEPLDTTSDEYALVKQYMEKTHGQTHYGYKLELLNVEKLQR DDPAFAHYKRLKCKLEPLDQSGEEFKMIQEYLKNTHGQTHRSYDLILQDVEKVQR DIYTQEDPLYSKYHCLRCELVPLDVVSKEFSMIEKYIRNTGDETH..YRIDVVQIERASR PMDVNYRSLMCNLVPVDRTSDTEKMVCDYTKLTHGKTHSSYALEVLDVEDVER ENDEND.PIDLNYKSLNCDLTPLDRSDDQFKIVKKYVSNTHGSTHTSYTLSVEDVETVNR NEDSDENPLDRQYRALQCRLQPLDAGCHEYEVIEKYLQSTHAPTHSDYTMSVLDIEGVDR : SAYGDEHPLDRQYNALQCQLQPLSSCSQEYQVIERYLQTTHAPTHSDFNMTVLDIFSVDR NPVDMQYQRLHCDLEALTPEDEEFKMIEKYMLNTHASTHNDFTAKPSAIFRACK AKDSGKDPVDTHYESLKTDLDLLDYGSDEFEMVQKYTKNTHASTHSSYTLEVKEVEKVNR KGDSKRNPLDEHYEQLHTKLEPLDSNCEDYKLILDYVRETHGATHTQYTLEVLNIEEVHR ALQSPEHPLDQHYRKLHCALHPLDHESHEEKVISQYLQSTHAPTHKDYTMTLLDVEEVEK PLDTHYMKLNCAIDVLHSDMNEFNIIQQYIMNTHAETHSSYSLNIKDVEKVVR : DLEQDVNPLDQHYRQLRTHLELLDTNSDEFARIQQYVKLTHGETHSSYKLEVVSVEDVER : TTDGKQNPLDSHYKQLKTDIEILNKSSEEFKMIDKYVQNTHAATHTQYKLEIEEVFVVKR

Target : AVEADRFQQFSSSKNRMLLWHGSRLTNWAGILSQGIRIAPPEAPVTGYMFGKGVYFADMF D7U2A8 : EGEVERFRKFSSTKNRMLLWHGSRLTNWTGILSQGIRIAPPEAPATGYMFGKGVYFADMF

Q5Z8Q9 A9TUE0 D8R2J2
\(\qquad\) F4P043 UPI00018: Q4T502 B5X3M4 C5KI71
\(\qquad\)
C4Q0U1

E2RHY6 :
UPI00017: Q566G1
\(\qquad\)
Target
D7U2A8
Q5Z8Q9
A9TUE0
\(\qquad\)
B9I9Q6
F4P043

\section*{UPI00018:}

Q4T502
B5X3M4
C5KI71
B3RJY6
C4Q0U1
E2RHY6
UPI00017:
Q566G1
E2AAA6
Target : AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH D7U2A8 Q5Z8Q9 A9TUE0 D8R2J2 B9I9Q6 F4P043 UPI00018: Q4T502 B5X3M4 C5KI71 B3RJY6 C4Q0U1 E2RHY6 UPI00017: Q566G1 E2AAA6 : : HGEMERFQKFATAGNRMLIWHGSRLTNWAGILSQGIRIAPPEAPVTGYMFGKGVYFADMF : EGENDRFQNFEKDPNRMLIWHGSRLSNWTGILSQGLRIAPPEAPVTGYMFGKGVYFADMV : DEEDAGFRSFSQTPNRMLLWHGSRLTNWTGILSQGIRIAPPEAPSTGYMFGKGVYFADMV : EGENERFKKFSQTKNRMLIWHGSRLTNWTGILSEGIRIAPPEAP...... GNGLYFGDMF : FGESDRYIESSSHK.RMLIWHGSRLTNFVGILSQGIRIAPPEAPSTGYMFGKGVYFADMV EVDSARF. NRTLIWHGSRLTNWCGILKQGIRIAPPEAPVTGYMFGKGVYFADMV : EGESDSF...SDLPNRTLLWHGSRLSNWVGILSQGIRVAPPEAPVTGYMFGKGIYFADMS : EGEKNGF...SKLHNRMLLWHGSRLSNWVGILSQGLRVAPPEAPVTGYMFGKGIYFADMS : ASEED........KDRMLIWHGSRLTNWCGILSSGLRIAPPEAPVTGYMFGKGLYFADSF : HGEEGRYEDYKDFHNRMLIWHGSRVTNFVGILSQGIRIAPPEAPVTGYMFGKGVYFAGLK : DGEDSRFAKC....NKQLLWHGSRQTNWMGILSQGIRIAPPDAPVTGYMFGKGIYFADIV : EGEKEAFR...... NRMLLwhGSRLSNWVGILSHGIRIAPPEAPVTGYMFGKGIYFADMS : SGEEKRFKPFKKLHNRKLLWHGSRITNFAAILSQGIRIAPKEAPVTGYMFGKGIYFADMV : EDERARFEGY.....RQLLWHGSRRTNWVGILSQGIRIAPPEAPVTGYMFGKGIYFADMV : QGEEQRFKPFKKLPNRKLLWHGSRTTNFAGILSQGIRIAPPEAPVTGYMFGKGIYFADMV
: SKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE : SKSANYSYPSCAMTTGVLVLCEVALGDMAELLTANCNADKLPEGKLSTKGIGATAPDPSE : SKSANYCYASEACRSGVLILCEVALGEMNELLNADYDANNLPKGKLSTKGVGQTEPNTAE SKSANYCCTHANDPIGVLILSEVALGGMNELLRSDYHANKLPAGKLSTKGVGRTFPDPKE : SKSANYCFTTSQNPRGVLILCEVALGQMNELYQADYNANRLPPGKLSTKGLGRSVPNSSQ : SKSAPYCHANWINSDAVLVLCEVALGDM....YGSFN..KLPKGKLSVKVAGGTVPDSSQ SKSANYCFTNSRSNTGILLICEVALGKTNDLVQSDYHAD....... STKGIGRNYPDPKQ SKSANYCWTSQRQPIGFLLICEVALGDCNELTSGDYHADKLPKGKHSTKGIGGTEPNPKQ SKSANYCFANQSNHVGLILICEVALGDSNELLDADYEANNLPNGKHSTKGLGRTGPDPKN : SKSANYCFANQRNKTGLLILSEVALGDSNELLAADYKAAKLLAGKHSTKGLGQTSPDPRN : SKSANYCFATQKNNRGLMLICEVALGRSREYTEAD......LGKGK..TKGVGRSGPDPEE ILSANYCNTNSGSPTGLLLLCEVALGNMHELKQSKY. . . .LPKDTHSTKGLGGTAPNPSQ SKSANYCFTTQSQPEGLILICEVILGDMNECLQA. . . . DLPPKYHSRKGIGSVTPDPST : SKSANYCFASRVKDIGLLILSEVALGQCNELLEANPEAERLLQGKHSTKGLGKTAPSPAS SKSANYCMASHGNNTGLILICEVALGNMDEYKASEY. . . KLPPGKHSCMGIGRTKPNPAE : SKSANYCFTSRNQPEGLLLICEVILGDMHE NASPLPPGTHSRKGVGSTQPDPST : SKSANYCCTHSQSPTGLLILCEVALGNMHERYKADY..EKLPKGKHSTLGRGQTEPDPKD

\section*{Only 17 of the 211 complete alignments are shown}

\subsection*{5.4.4.4 Report section 6: The initial homology models}

\subsection*{5.4.4.4.1 Homology Model 1 of 3, alignment variant 1}

SecStr : CCCCCHHHHHHHHHHCCHHHHHHHHHHHCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHH Target : QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVIKRISEVID Match : :SKL | : I: |I :V: M : M:E: : : K|PLGK|SK I:: Y:|L::|:|:|: Template: KSKLAKPIQDLIKMIFDVESMKKAMVEFEIDLQKMPLGKLSKRQIQSAYSILNEVQQAVS
SecStr : CCCCHHHHHHHHHHHHCHHHHHHHHHHHCCTTTTCTTTTCHHHHHHHHHHHHHHHHHHHH

SecStr : HCCHHHHHHHHHHHHHCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHHHHHHHCC Target : RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELATKLLSV Match : : : : | | LS: :FYT:IPHDFG:KK \(:|1: K||M:|L| I E: A: L L\) Template: D.SESQILDLSNRFYTLIPHDFGMKKP......NLEYIQAKVQMIDNTLDIEVAYSLLR.

SecStr : CCCCCCCCCHHHHCCCCEEEEECCCCCHHHHHHHHHHHHCCCCCCCCCCEEECCCEEEEC Target : DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLERASR
 Template:KDPIDINYEKLRTDIKVVDKDSEEAKIIKQYVKNTHAATHNAYDLKVVEIERIER SecStr :CHHHHHHHHHCEEEEEECCCCHHHHHHHHHHHHHCCTTTTCCCEEEEEEEEEEEE

SecStr : HHHHHHHHHHCCCCCCEEECCCCCCCCHHHHHHCCCCCCCCCCCCCCCEECEEEEECCCC Target : AVEADRFQQFSSSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF Match : E::R|: F: NR:LLWHGSR TN:AGILSQGLRIAPPEAPVTGYMFGKG|YFADM Template: EGESQRYKPFKQLHNRQLLWHGSRTTNFAGILSQGIRIAPPEAPVTGYMFGKGIYFADMV SecStr : CHHHHHHHGGGGGCEEEEEEECCCCCHHHHHHHHHCCCCTTTTGGGGTTTTCCEEEECHH

SecStr : CCCCCCCCCCCCCCCEEEEEEEEEECCCHHHCCCCCCCCCCCCССССССССССССССССС
Target : SKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE
Match : SKSANYC|: : G:|LL EVALG:M EL :LP GK S:KG:GKTAP:P:
Template: SKSANYCHTSQADPIGLILIGEVALGNMYELK.......KLPKGKHSVKGLGKTAPDPTA
SecStr : HHHHHCCCCETTEEEEEEEEEEEECCCCEEEC.......CCTTTTCEEEEECEEEEGGGG

SecStr : CEECCCCEEECCCCCCCCCCCCCCCCCCEEEEEECCCEEEEEEEEEEEEECC [PsiPred]
Target : AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH
Match : : TL GV VPLG: |: : : LLYNEYIVY:V Q|:||Y:|: : KFNYK
Template: TTTL. .GVEVPLGNGISTGINDTCLLYNEYIVYDVAQVNLKYLLKLKFNYKT
SecStr : GEEE..TEEECCCEEEECCCCCCCCCCCEEEECTTTEEEEEEEEEEEEECCC [YASARA]

In the complete template multiple sequence alignment, 330 of 352 target residues (\(93.8 \%\)) are aligned to template residues. Among these aligned residues, the sequence identity is \(48.5 \%\) and the sequence similarity is \(68.2 \%\) ('similar' means that the BLOSUM62 score is \(>0\)).

The following 5 loops had to be modelled:
\begin{tabular}{c|c|c|c}
\hline Loop & N-terminal anchor & Loop sequence & C-terminal anchor \\
\hline 1 & EVIDR & YD & RTRLE \\
2 & EAQTL & ED & GVVVP \\
3 & GFKKM & SQFVID & TPQKL \\
4 & TKLLS & VDPGLQ & DDPLY \\
5 & MNELL & YSDYNAD & NLPPG \\
\hline
\end{tabular}

After the side chains had been built, optimized and fine-tuned, all newly modelled parts were subjected to a combined steepest descent and simulated annealing minimization (i.e. the backbone atoms of aligned residues were kept fixed to avoid potential damage).

The resulting half-refined model has been saved and obtained the following quality Z-scores:

Then a full unrestrained simulated annealing minimization was run for the entire model. The result has been saved, the corresponding Z-scores are listed below:
\begin{tabular}{ccc|ccc}
\hline \multicolumn{3}{c|}{\begin{tabular}{c}
combined steepest descent and simulated \\
annealing minimisation
\end{tabular}} & \multicolumn{3}{c}{ full unrestrained simulated annealing minimisation } \\
\hline Check type & Quality Z-score & Comment & Check type & Quality Z-score & Comment \\
\hline Dihedrals & 0.872 & Optimal & Dihedrals & 1.161 & Optimal \\
Packing 1D & -1.167 & Satisfactory & Packing 1D & -0.614 & Good \\
Packing 3D & -0.854 & Good & Packing 3D & -1.027 & Satisfactory \\
Overall & -0.726 & Good & Overall & -0.549 & Good \\
\hline
\end{tabular}

Since the overall quality Z -score improved to -0.549 during the minimization, this fully refined model has been accepted as the final one for this template and alignment.

\subsection*{5.4.4.4.2 Homology Model 2 of 3, alignment variant 2}
```

SecStr : CCCCCHHHHHHHHHHCCHHHHHHHHHHHCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHHH
Target : QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVIKRISEVID
Match : :SKL | :I:|I :V: M : M:E: : :K|PLGK|SK I:::Y:|L::|:|:|:
Template: KSKLAKPIQDLIKMIFDVESMKKAMVEFEIDLQKMPLGKLSKRQIQSAYSILNEVQQAVS
SecStr : CCCCHHHHHHHHHHHHCHHHHHHHHHHHCCTTTTCTTTTCHHHHHHHHHHHHHHHHHHHH

```

```

Target : RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELATKLLSV
Match : ::::| |LS::FYT:IPHDFG:KK : | | K||M:| L |IE:A :LL
Template: D.SESQILDLSNRFYTLIPHDFGMKKP......NLEYIQAKVQMLDNLIDIEVAYSLIR.

```

```

SecStr : CCCCCCCCCHHHHCCCCEEEEECCCCCHHHHHHHHHHHHCCCCCCCCCCEEECCCEEEEC
Target : DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLERASR
Match : DP| :Y|:L: | V :DSEE ::| :Y::NTHA TH::Y ::|:||FR :R
Template: .....KDPIDINYEKIRTDIKVVDKDSEEAKIIKQYVKNTHAATHNAYDLKVVEIERIER
SecStr : .....CHHHHHHHHHCEEEEEECCCCHHHHHHHHHHHHHCCTTTTCCCEEEEEEEEEEEE
SecStr : HHHHHHHHHHCCCCCCEEECCCCCCCCHHHHHHCCCCCCCCCCCCCCCEECEEEEECCCC
Target : AVEADRFQQFSSSKNRMLLWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF
Match : E::R|: F:: NR:LLWHGSR TN:AGILSQGLRIAPPEAPVTGYMFGKG|YFADM
Template: EGESQRYKPFKQLHNRQLLWHGSRTTNFAGILSQGLRIAPPEAPVTGYMFGKGIYFADMV
SecStr : CHHHHHHHGGGGGCEEEEEEECCCCCHHHHHHHHHCCCCTTTTGGGGTTTTCCEEEECHH
SecStr : CCCCCCCCCCCCCCCEEEEEEEEEECCCHHHCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Target : SKSANYCYANTGANDGVLLLCEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE
Match : SKSANYC|:: : G:|LL EVALG:M EL :LP GK S:KG:GKTAP:P:
Template: SKSANYCHTSQADPIGLILIGEVALGNMYELK. . . . . . .KLPKGKHSVKGLGKTAPDPTA
SecStr : HHHHHCCCCETTEEEEEEEEEEEECCCCEEEC.......CCTTTTCEEEEECEEEEGGGG
SecStr : CEECCCCEEECCCCCCCCCCCCCCCCCCEEEEEECCCEEEEEEEEEEEEECC [PsiPred]
Target : AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH
Match : : T DGV VPLG: |: : : LLYNEYIVY:V Q|:||Y:|::KFNYK
Template: TTT.LDGVEVPLGNGISTGINDTCLLYNEYIVYDVAQVNLKYLLKLKFNYKT
SecStr : GEE.ETTEEECCCEEEECCCCCCCCCCCEEEECTTTEEEEEEEEEEEEECCC [YASARA]

```

In the complete template multiple sequence alignment, 331 of 352 target residues (\(94.0 \%\)) are aligned to template residues. Among these aligned residues, the sequence identity is \(48.3 \%\) and the sequence similarity is \(68.0 \%\) ('similar' means that the BLOSUM62 score is \(>0\)).

The following 5 loops had to be modelled:
\begin{tabular}{c|c|c|c}
\hline Loop & N-terminal anchor & Loop sequence & C-terminal anchor \\
\hline 1 & EVIDR & YD & RTRLE \\
2 & SEAQT & LE & DGVVV \\
3 & GFKKM & SQFVID & TPQKL \\
4 & TKLLS & VDPGLQ & DDPLY \\
5 & MNELL & YSDYNAD & NLPPG \\
\hline
\end{tabular}

After the side chains had been built, optimized and fine-tuned, all newly modelled parts were subjected to a combined steepest descent and simulated annealing minimization (i.e. the backbone atoms of aligned residues were kept fixed to avoid potential damage).

The resulting half-refined model has been saved and obtained the following quality Z-scores:

Then a full unrestrained simulated annealing minimization was run for the entire model. The result has been saved, the corresponding Z-scores are listed below:
\begin{tabular}{ccc|ccc}
\hline \multicolumn{4}{c|}{\begin{tabular}{c}
combined steepest descent and simulated \\
annealing minimisation
\end{tabular}} & \multicolumn{3}{c}{ full unrestrained simulated annealing minimisation } \\
\hline Check type & Quality Z-score & Comment & Check type & Quality Z-score & Comment \\
\hline Dihedrals & 0.658 & Optimal & Dihedrals & 0.996 & Optimal \\
Packing 1D & -1.063 & Satisfactory & Packing 1D & -0.528 & Good \\
\hline Packing 3D & -0.910 & Good & Packing 3D & -1.040 & Satisfactory \\
Overall & -0.742 & Good & Overall & -0.545 & Good \\
\hline
\end{tabular}

Since the overall quality Z -score improved to -0.545 during the minimization, this fully refined model has been accepted as the final one for this template and alignment.

\subsection*{5.4.4.4.3 Homology Model 3 of 3, alignment variant 3}
\begin{tabular}{|c|c|}
\hline SecStr & \\
\hline Target & QSKLDTRVAKFISLICNVSMMAQHMMEIGYNANKLPLGKISKSTISKGYEVLKRISEVID \\
\hline Match & :SKL | :I:|I :V: M : M:E: : :K|PLGK|SK I:: Y:|L::|:|:|: \\
\hline Template: & KSKLAKPIQDLIKMIFDVESMKKAMVEFEIDLQKMPLGKLSKRQIQSAYSILNEVQQAVS \\
\hline SecStr & ССССнннннннннннСнннннннннннССТТТТСТТТСНнннннннннннннннннн \\
\hline SecStr & нССНннннннннннннССССССССССССССССССНннннннннннннннннннннннСС \\
\hline Target & RYDRTRLEELSGEFYTVIPHDFGFKKMSQFVIDTPQKLKQKIEMVEALGEIELATKLLSV \\
\hline Match & ::: \| |LS::FYT:IPHDFG:KK : | |: K||M:| L |IE:A :LL \\
\hline Templa & D.SESQILDLSNRFYTLIPHDFGMKKP. NLEYIQAKVQMIDNLIDIEVAYSLIR. \\
\hline SecStr & \\
\hline SecStr & CCCCCCCCCHHHHCCCCEEEEECCCCCHHHннннннннHCCCCCCCCCCEEECCCEEEEC \\
\hline Target & DPGLQDDPLYYHYQQLNCGLTPVGNDSEEFSMVANYMENTHAKTHSGYTVEIAQLERASR \\
\hline Match & DP| :Y|:L: | V : DSEE : \| : Y: NTHA TH:: Y : \(: \mid\) :||FR :R \\
\hline Template: & DPIDINYEKLRTDIKVVDKDSEEAKIIKQYVKNTHAATHNAYDIKVVEIERIER \\
\hline SecStr & CHhнннннннCEEEEEECCCHHнннннннннннССTTTTCCCEEEEEEEEEEE \\
\hline SecStr & ннннннннннССССССЕЕЕСССССССС \({ }^{\text {c }}\) \\
\hline Target & AVEADRFQQFSSSKNRMLIWHGSRLTNWAGILSQGLRIAPPEAPVTGYMFGKGVYFADMF \\
\hline Match & E::R|: F:: NR:LLWHGSR TN:AGILSQGLRIAPPEAPVTGYMFGKG|YFADM \\
\hline Template: & EGESQRYKPFKQLHNRQILWHGSRTTNFAGILSQGIRIAPPEAPVTGYMFGKGIYFADMV \\
\hline SecStr & CHHHHHHHGGGGGCEEEEEEECCCCCHHHHHHHHHCCCCTTTTGGGGTTTTCCEEEECHH \\
\hline SecStr & CCCCCCCCCCCCCCCEEEEEEEEEECCCHHHCCCCCCCCCCCCCCCCCCCCCCCCCCCCC \\
\hline Target & SKSANYCYANTGANDGVILICEVALGDMNELLYSDYNADNLPPGKLSTKGVGKTAPNPSE \\
\hline Match & SKSANYC|: : G:|LL EVALG:M EL :LP GK S:KG:GKTAP:P: \\
\hline Template: & SKSANYCHTSQADPIGLILIGEVALGNMYELK. KLPKGKHSVKGLGKTAPDPTA \\
\hline SecStr & HHHHHCCCCETTEEEEEEEEEEEECCCCEEEC. CCTTTTCEEEEECEEEEGGGG \\
\hline SecStr & CEECCCCEEECCCCCCCCCCCCCCCCCCEEEEEECCCEEEEEEEEEEEEECC [PsiPred] \\
\hline Target & AQTLEDGVVVPLGKPVERSCSKGMLLYNEYIVYNVEQIKMRYVIQVKFNYKH \\
\hline Match & : DGV VPLG: |: : LLYNEYIVY:V Q|:||Y:|: KFNYK \\
\hline Template: & TT.TLDGVEVPLGNGISTGINDTCLLYNEYIVYDVAQVNLKYLLKLKFNYKT \\
\hline SecStr & GE.EETTEEECCCEEEECCCCCCCCCCCEEEECTTTEEEEEEEEEEEEECCC [YASARA] \\
\hline
\end{tabular}

In the complete template multiple sequence alignment, 331 of 352 target residues (\(94.0 \%\)) are aligned to template residues. Among these aligned residues, the sequence identity is \(48.0 \%\) and the sequence similarity is \(67.7 \%\) ('similar' means that the BLOSUM62 score is \(>0\)).

The following 5 loops had to be modelled:
\begin{tabular}{c|c|c|c}
\hline Loop & N-terminal anchor & Loop sequence & C-terminal anchor \\
\hline 1 & EVIDR & YD & RTRLE \\
2 & PSEAQ & TL & EDGVV \\
3 & GFKKM & SQFVID & TPQKL \\
4 & TKLLS & VDPGLQ & DDPLY \\
5 & MNELL & YSDYNAD & NLPPG \\
\hline
\end{tabular}

After the side chains had been built, optimized and fine-tuned, all newly modelled parts were subjected to a combined steepest descent and simulated annealing minimization (i.e. the backbone atoms of aligned residues were kept fixed to avoid potential damage).

The resulting half-refined model has been saved and obtained the following quality Z-scores:

Then a full unrestrained simulated annealing minimization was run for the entire model. The result has been saved, the corresponding Z-scores are listed below:
\begin{tabular}{ccc|ccc}
\hline \multicolumn{4}{c|}{\begin{tabular}{c}
combined steepest descent and simulated \\
annealing minimisation
\end{tabular}} & \multicolumn{3}{c}{ full unrestrained simulated annealing minimisation } \\
\hline Check type & Quality Z-score & Comment & Check type & Quality Z-score & Comment \\
\hline Dihedrals & 0.849 & Optimal & Dihedrals & 1.015 & Optimal \\
Packing 1D & -1.046 & Satisfactory & Packing 1D & -0.508 & Good \\
\hline Packing 3D & -0.847 & Good & Packing 3D & -1.044 & Satisfactory \\
Overall & -0.679 & Good & Overall & -0.537 & Good \\
\hline
\end{tabular}

Since the overall quality Z -score improved to -0.537 during the minimization, this fully refined model has been accepted as the final one for this template and alignment.

\subsection*{5.4.4.5 Report sections 7 and 8: Model ranking and the hybrid model}

The following table lists the 3 monomeric models, comprising residues 1-352, sorted by their overall quality Z-scores. Finally, YASARA tried to combine the best parts of the 3 models to obtain a hybrid model, hoping to increase the accuracy beyond each of the contributors.
\begin{tabular}{ccc}
\hline & \multicolumn{2}{l}{ 7 Model ranking: } \\
\hline Rank & Z-score & Model ID \\
\hline 1 & -0.537 & \(3(5.4 .4 .4 .3)\) \\
2 & -0.545 & \(2(5.4 .4 .4 .2)\) \\
3 & -0.549 & \(1(5.4 .4 .4 .1)\) \\
\hline
\end{tabular}

The model could not be improved (with a score of -1.260) by copying parts from other models. The hybrid model was discarded, and the best-ranked model (5.4.4.4.3) was saved as the final model.

\subsection*{5.4.5 Homology model structure evaluation}

Protein structure evaluation with RAMPAGE
PDB entry 1UK1

Figure 5.1: RAMPAGE results of PDB entry 1UK1
A: RAMPAGE Ramachandran plot B: RAMPAGE glycine and proline Ramachandran plot

Protein structure evaluation with RAMPAGE
YASARA model of 1UK1

Figure 5.2: RAMPAGE results of YASARA model of 1UK1
A: RAMPAGE Ramachandran plot B: RAMPAGE glycine and proline Ramachandran plot

\section*{Protein structure evaluation with RAMPAGE}

AtPARP1 homology model

Figure 5.3: RAMPAGE results of homology model of AtPARP1
A: RAMPAGE Ramachandran plot B : RAMPAGE glycine and proline Ramachandran plot

Protein structure evaluation with RAMPAGE
AtPARP2 homology model

Figure 5.4: RAMPAGE results of homology model of AtPARP2
A: RAMPAGE Ramachandran plot B: RAMPAGE glycine and proline Ramachandran plot

\subsection*{5.5 Model refinement}

\subsection*{5.5.1 ProSA-web and Errat}
\begin{tabular}{c|c|c|c|c|c|c}
\hline & \multicolumn{3}{|c|}{\(A t\) PARP2 } & \multicolumn{3}{c}{\(\operatorname{AtPARP1}\)} \\
& Init. model & \multicolumn{2}{|c|}{\begin{tabular}{c}
MD refnement
\end{tabular}} & Init. model & \multicolumn{2}{c|}{\begin{tabular}{c}
MD refinement
\end{tabular}} \\
& & \begin{tabular}{c}
Sample \\
mean
\end{tabular} & \begin{tabular}{c}
Confidence \\
interval *
\end{tabular} & & \begin{tabular}{c}
Sample \\
mean
\end{tabular} & \begin{tabular}{c}
Confidence \\
interval *
\end{tabular} \\
\hline ProSA-web \(^{\text {c }}\) & -8.94 & -8.672 & \(-8.764--8.579\) & -8.75 & -8.967 & \(-9.023-8.911\) \\
\hline Errat \(^{\text {d }}\) & 94.960 & 95.653 & \(94.984-96.322\) & 98.251 & 98.173 & \(97.761-98.586\) \\
\hline
\end{tabular}
* \(95 \%\) confidence interval; \({ }^{\text {c }} \mathrm{Z}\)-score; \({ }^{\text {d }}\) overall quality

\subsection*{5.5.2 RAMPAGE}

Protein structure evaluation of \(\operatorname{AtPARP} 1\) with RAMPAGE

amino acid in allowed region amino acid classified as outlier

Figure 5.5: RAMPAGE - evaluation of AtPARP1 initial model with MD-refinement
Protein structure evaluation of AtPARP2 with RAMPAGE
\begin{tabular}{|c|}
\hline \multirow{3}{*}{amino acid number} & \multirow[t]{3}{*}{\[
\left|\begin{array}{c}
\text { YASARA } \\
\text { homology } \\
\text { model }
\end{array}\right|
\]} & \multicolumn{29}{|c|}{YASARA MD refinement} \\
\hline & & & \multicolumn{2}{|l|}{napshot snapsho} & & \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{snaps} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{shot sne}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { napshot } \\
4
\end{gathered}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { ot snapshot s } \\
5 \\
\hline
\end{gathered}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { isnapshot s } \\
6
\end{gathered}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
snapshot s \\
7
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { snapshot } \\
\hline
\end{gathered}
\]}} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { ot snap } \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{ot sna} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{napshot snapsh}} & \multirow[t]{2}{*}{(12} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { not snapsho } \\
13 \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{snapsh} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { ot snapsh } \\
15 \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { t snapshot } \\
16
\end{gathered}
\]} & \multicolumn{3}{|l|}{snapshot snapshot snapshot} \\
\hline & & 0 & \multicolumn{3}{|l|}{\(\begin{array}{llll}17 & 18 & 19\end{array}\)} \\
\hline \multicolumn{31}{|l|}{Phe 648} \\
\hline \multicolumn{31}{|l|}{Phe 660} \\
\hline \multicolumn{31}{|l|}{Glu 661} \\
\hline \multicolumn{31}{|l|}{Gln 697} \\
\hline \multicolumn{31}{|l|}{Pro 698} \\
\hline \multicolumn{31}{|l|}{His 720} \\
\hline \multicolumn{31}{|l|}{Arg 725} \\
\hline \multicolumn{31}{|l|}{Gly 751} \\
\hline \multicolumn{31}{|l|}{Phe 752} \\
\hline \multicolumn{31}{|l|}{Asp 753} \\
\hline \multicolumn{31}{|l|}{Asp 755} \\
\hline \multicolumn{31}{|l|}{Glu 758} \\
\hline \multicolumn{31}{|l|}{Lys 765} \\
\hline \multicolumn{31}{|l|}{Thr 791} \\
\hline \multicolumn{31}{|l|}{His 796} \\
\hline \multicolumn{31}{|l|}{Trp 799} \\
\hline \multicolumn{31}{|l|}{Glu 810} \\
\hline \multicolumn{31}{|l|}{Glu 823} \\
\hline \multicolumn{31}{|l|}{Lys 824} \\
\hline \multicolumn{31}{|l|}{Lys 864} \\
\hline \multicolumn{31}{|l|}{Pro 886} \\
\hline \multicolumn{31}{|l|}{Tyr 908} \\
\hline \multicolumn{31}{|l|}{Pro 942} \\
\hline \multicolumn{31}{|l|}{Cys 943} \\
\hline \multicolumn{31}{|l|}{Lys 952} \\
\hline \multicolumn{31}{|l|}{Ala 953} \\
\hline \multicolumn{31}{|l|}{Gln 968} \\
\hline \multicolumn{31}{|l|}{\multirow[t]{2}{*}{Gln 972}} \\
\hline & \\
\hline total number of aa in allowed region & 9 & 9 & 8 & & 6 & & 8 & & 7 & & 10 & & 8 & & 5 & & 8 & & 5 & & 7 & 4 & 6 & 8 & 7 & 6 & 7 & 6 & 7 & 8 \\
\hline total number of outlier & 2 & 1 & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
amino acid in allowed region amino acid classified as outlier

Figure 5.6: RAMPAGE - evaluation of AtPARP2 initial model with MD-refinement

\subsection*{5.5.3 Verify 3D}

Protein structure evaluation with Verify3D
AtPARP1 - average 3D-1D profile

Figure 5.7: Verify \(3 D-A t P A R P 1\) and AtPARP2 initial models and MD-refinement

\subsection*{5.6 Docking}

\subsection*{5.6.1 Comparison of docking protocols}

\subsection*{5.6.2 Docking score distributions}

\section*{Errors of normal approximation for \(\mathbf{1 0}\) docking runs}

Figure 5.8: Docking score distributions - normal approximation III
Distributions of differences between calculated CDF and estimated CDF (expressed as \(e_{\text {CDF }}\)) for all 10 independent docking runs with HsPARP1 inhibitors (A) and HsPARP1 decoys (B).

\subsection*{5.6.3 Inference of docking score distributions}
\begin{tabular}{|c|cc|cc|}
\hline \multirow{2}{*}{ docking run } & \multicolumn{2}{|c|}{\begin{tabular}{c}
Novikov ligands's TOTAL SCORE \\
mean
\end{tabular}} & \multicolumn{2}{c|}{\begin{tabular}{c}
DUD decoys`sTOTAL SCORE
\end{tabular}} \\
\hline 1 & -152.1462 & 19.1766 & -123.5645 & sd \\
\hline 2 & -152.4886 & 17.3654 & -123.3217 & 19.39006 \\
\hline 3 & -154.1803 & 15.4512 & -123.2675 & 19.23195 \\
\hline 4 & -153.4050 & 15.7464 & -123.4575 & 19.68753 \\
\hline 5 & -152.8510 & 16.3484 & -123.1483 & 19.65138 \\
\hline 6 & -153.0055 & 17.1482 & -123.3608 & 19.58277 \\
\hline 7 & -152.3190 & 17.7229 & -123.5877 & 19.78588 \\
\hline 8 & -152.8011 & 17.1827 & -123.0829 & 19.98123 \\
\hline 9 & -152.8795 & 15.4071 & -123.5942 & 19.35270 \\
\hline 10 & -153.9621 & 15.6173 & -122.8300 & 19.46453 \\
\hline Mean & -153.0038 & 16.7166 & -123.3215 & 19.54381 \\
\hline\(\pm\) sd & \(\pm 0.6677\) & \(\pm 1.2242\) & \(\pm 0.24849\) & \(\pm 0.2361\) \\
\hline
\end{tabular}

\subsection*{5.6.4 Observed and approximated docking scores, differences}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
docking \\
run
\end{tabular}} & \multicolumn{4}{|c|}{Novikov ligands} & \multicolumn{4}{|c|}{DUD decoys} \\
\hline & docked correctly & threshold missed & type I error obs. & \(\Delta\) (obs, pred) & docked correctly & threshold passed & \begin{tabular}{l}
type II \\
error obs.
\end{tabular} & \(\Delta\) (obs, pred) \\
\hline 1 & 128 & 65 & 50.78\% & 5.06\% & 771 & 13 & 1.69 \% & 3.31 \% \\
\hline 2 & 131 & 67 & 51.15\% & 4.70\% & 755 & 15 & 1.99 \% & 3.01 \% \\
\hline 3 & 128 & 62 & 48.44\% & 7.40\% & 770 & 14 & 1.82 \% & 3.18 \% \\
\hline 4 & 125 & 59 & 47.20\% & 8.64\% & 764 & 12 & 1.57 \% & 3.42 \% \\
\hline 5 & 133 & 66 & 49.62\% & 6.22\% & 745 & 15 & 2.01 \% & 2.99 \% \\
\hline 6 & 128 & 63 & 49.22\% & 6.62\% & 762 & 14 & 1.84 \% & 3.16 \% \\
\hline 7 & 131 & 65 & 49.62\% & 6.22\% & 745 & 16 & 2.15 \% & 3.85 \% \\
\hline 8 & 127 & 62 & 48.82\% & 7.02\% & 765 & 16 & 2.09 \% & 2.91 \% \\
\hline 9 & 130 & 67 & 51.54\% & 4.30\% & 759 & 14 & 1.84 \% & 3.16 \% \\
\hline 10 & 127 & 63 & 49.61\% & 6.23\% & 767 & 14 & 1.83 \% & 3.17 \% \\
\hline
\end{tabular}

\subsection*{5.6.5 Number of structures found in pose 1}
\begin{tabular}{c|ccccccccc}
\hline & \multicolumn{3}{|c}{ HsPARP1 } & \multicolumn{3}{c}{ AtPARP1 } & \multicolumn{3}{c}{ AtPARP2 } \\
\hline \begin{tabular}{c}
docking \\
run
\end{tabular} & \begin{tabular}{c}
docked \\
correctly
\end{tabular} & \begin{tabular}{c}
found in \\
pose \(1(\%)\)
\end{tabular} & \begin{tabular}{c}
docked \\
correctly
\end{tabular} & \begin{tabular}{c}
found in \\
pose \(1(\%)\)
\end{tabular} & \begin{tabular}{c}
docked \\
correctly
\end{tabular} & \begin{tabular}{c}
found in \\
pose \(1(\%)\)
\end{tabular} \\
\hline 1 & 128 & 100 & \(78.1 \%\) & 126 & 76 & \(60.3 \%\) & 109 & 90 & \(82.6 \%\) \\
\hline 2 & 131 & 102 & \(77.9 \%\) & 117 & 82 & \(70.1 \%\) & 108 & 94 & \(87.0 \%\) \\
\hline 3 & 128 & 103 & \(80.5 \%\) & 128 & 83 & \(64.8 \%\) & 113 & 90 & \(79.6 \%\) \\
\hline 4 & 125 & 96 & \(76.8 \%\) & 116 & 83 & \(71.6 \%\) & 110 & 94 & \(85.5 \%\) \\
\hline 5 & 133 & 104 & \(78.2 \%\) & 122 & 79 & \(64.8 \%\) & 113 & 95 & \(84.1 \%\) \\
\hline 6 & 128 & 104 & \(81.3 \%\) & 127 & 81 & \(63.8 \%\) & 109 & 90 & \(82.6 \%\) \\
\hline 7 & 131 & 103 & \(78.6 \%\) & 128 & 72 & \(56.3 \%\) & 110 & 91 & \(82.7 \%\) \\
\hline 8 & 127 & 102 & \(80.3 \%\) & 121 & 85 & \(70.2 \%\) & 111 & 91 & \(82.0 \%\) \\
\hline 9 & 130 & 106 & \(81.5 \%\) & 122 & 83 & \(68.0 \%\) & 112 & 94 & \(83.9 \%\) \\
\hline 10 & 127 & 104 & \(81.9 \%\) & 121 & 79 & \(65.3 \%\) & 112 & 93 & \(83.0 \%\) \\
\hline mean & 129 & 102 & \(79.5 \%\) & 123 & 80 & \(65.5 \%\) & 111 & 92 & \(83.3 \%\) \\
\hline
\end{tabular}

\subsection*{5.6.6 Number of structures docked correctly in docking runs}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{structures docked correctly in \(x\) docking runs} & \multicolumn{2}{|c|}{HsPARP1} & \multicolumn{2}{|c|}{AtPARP1} & \multicolumn{2}{|c|}{AtPARP2} \\
\hline & docked correctly & \% & docked correctly & \% & docked correctly & \% \\
\hline 10 & 100 & 70.4\% & 85 & 59.9\% & 98 & 69.0\% \\
\hline 9 & 16 & 81.7\% & 14 & 69.8\% & 5 & 72.5\% \\
\hline 8 & 8 & 87.3\% & 10 & 76.8\% & 1 & 73.2\% \\
\hline 7 & 5 & 90.8\% & 11 & 84.5\% & 1 & 74.0\% \\
\hline 6 & 2 & 92.3\% & 9 & 90.8\% & 3 & 76.1\% \\
\hline 5 & 4 & 95.1\% & 3 & 93.0\% & 3 & 78.2\% \\
\hline 4 & 2 & 96.5\% & 4 & 95.8\% & 3 & 80.3\% \\
\hline 3 & 0 & 96.5\% & 3 & 97.9\% & 2 & 81.7\% \\
\hline 2 & 2 & 97.9\% & 0 & 97.9\% & 3 & 83.8\% \\
\hline 1 & 1 & 98.6\% & 1 & 98.6\% & 10 & 90.8\% \\
\hline any & 2 & 1.4\% & 2 & 1.4\% & 13 & 9.2\% \\
\hline
\end{tabular}

\subsection*{5.6.7 Pearson's Chi-squared test results}
\begin{tabular}{c|cc|}
\hline & \(A t\) PARP2 & \(A t\) PARP1 \\
\hline Chi-Square Statistic & 0.9372 & 0 \\
\hline Degrees of freedom & 1 & 1 \\
\hline\(P\)-value & 0.3333 & 1 \\
\hline Reject \(\mathrm{H}_{0}\) & no & no \\
\hline
\end{tabular}

The Chi-Squard Test with Yates continuity correction for small numbers was used; Pearson's ChiSquared Test with Yates continuity correction for small numbers \({ }^{270}\) were used for both AtPARP1 and \(\operatorname{AtPARP} 2\). The null hypothesis \(\mathrm{H}_{0}\) that there is no association between the P -values and the mean difference, \(\Delta\), of docking scores in \(A t\) PARP2 and \(H s\) PARP1 or AtPARP1 and HsPARP1 was tested. The significance level \(\alpha\) of the test was 0.05

\subsection*{5.6.8 PLANTS script for docking}
```


# search algorithm settings

aco_ants 20
aco_evap 0.15
aco_sigma 1.0

# 

flip_amide_bonds 0
flip_planar_n 1

# 

# cluster algorithm settings

cluster_structures 10
cluster_rmsd 2.0

# 

# 

\#protein file

# atPARP2 used, since worked with older nomenclature

protein_file 1UK1_atPARP2_yasara_superpose_receptor_2_molcharge.mol2

# 

# mol2 ligand files or multi-mol2 database

ligand_file screen_all_names2_molcharge.mol2

# 

# 

# binding site definition

bindingsite_center 7.62833-0.962431 31.4127
bindingsite_radius 12

# 

# scoring parameters

scoring_function chemplp
ligand_intra_score lj

# 

# adjusting hydrogen bond weights for specific atoms

chemplp_protein_hb_constraint 3235 10 \# hb1, Gly863 in HsPARP1
chemplp_protein_hb_constraint 3865 10 \# hb3, Ser904 in HsPARP1
chemplp_protein_hb_constraint 3866 10 \# hb3, Ser904 in HsPARP1

# set flexible side chains

flexible_protein_side_chain_string SER243\# Ser904 in HsPARP1
flexible_protein_side_chain_string GLU103\# Glu763 in HsPARP1
flexible_protein_side_chain_string TYR246\# Tyr907 in HsPARP1

# 

# output directory

output_dir at2_Bionet_selected_molcharge_score2hb_01

```

\subsection*{5.6.9 R script for ROC curves}
```

test_pos<-data.frame(c(5,7,8,10,12),rep (1, 5))
test_neg<-data.frame(c ( 3, 4, 6, 7. 5, 9) ,rep (0, 5))
colnāmes(test_pos)<-c("data","active")
colnames(test_neg)<-c("data","active")
test_all<-rbind(test_pos,test_neg)
positives<- dim(test_pos)[1]; positives;
negatives<- dim(test_neg) [1]; negatives;
test_all_sorted<-test_all[order(test_all\$data,decreasing=T),]
pos_sum<-c(0); neg_sum<-c(0); pos_scaled<-(0); neg_scaled<-c(0);
for(i in 1:(positives+negatives))
pos_sum<-c(pos_sum,length(which(test_all_sorted[1:i,2]==1))/positives)
neg_sum<-c(neg_sum, length(which(test_all_sorted[1:i,2]==0))/negatives)
pos_scaled<-c(\overline{pos_scaled,length(which}(te\overline{st_all_sorted[1:i,2]==1)))}
neg_scaled<-c(neg_scaled, length(which(test_all_sorted[1:i,2]==0)))
}
length(pos_sum)-1;
length(neg_sum)-1;
pos_sum;
neg_sum;
pos_scaled;
neg_scaled;
plot(c(0,1), type="n",xlim=c(0,1),ylim=c(0,1),
xlab="inactive fraction",ylab="active fraction",
main="",\#ROC curve",axes=F)
axis(1, at=seq(0,1,by=0.2),labels=rep("",length(seq(0,1,by=0.2))),las=0)
axis(2, at=seq(0,1,by=0.2),labels=rep("",length(seq(0,1,by=0.2))),las=2)
box("plot",col="grey")

# draw lines

abline(h=seq(0,1,.20), col="lightgrey",lty=3)
abline(v=seq(0,1,.20), col="lightgrey",lty=3)
lines(c (0,1),c(0,1),type="l",lty=2)
for(i in 1:length(pos_sum)) {
lines(c(neg_sum[i], neg_sum[i+1]),c(pos_sum[i],pos_sum[i+1])) }
single_area<-(1/(negatives*positives))
partial_areas<-c()
for(i in 1:negatives) {
partial_areas<-c(partial_areas,pos_scaled[max(which(neg_scaled<i))])
}
sum(partial_areas);
sum(partial_areas)*single_area;

```

\subsection*{5.6.10 Docking results - confidently docked inhibitors}

\section*{Analysis of docking results}

Docking of \(142 H s\) PARP1 inhibitors into \(H s\) PARP1 and \(A t\) PARP2

Figure 5.9: HsPARP1 and AtPARP2 docking scores of 142 HsPARP1 inhibitors
Docking scores represented as bar charts; A and B: docking analysis of inhibitors docked into HsPARP1. C: docking analysis of inhibitors docked into HsPARP1 and AtPARP2)

\subsection*{5.7 Screening results}

\subsection*{5.7.1 Pharmacophore screening results}
\begin{tabular}{l|ccc}
\hline & \begin{tabular}{c}
KeyOrganics \\
database
\end{tabular} & \begin{tabular}{c}
KeyOrganics \\
QUIN
\end{tabular} & \begin{tabular}{c}
KeyOrganics \\
PHTH
\end{tabular} \\
\hline Unique structures & 43.179 & 59 & 41 \\
\hline Unique structures passed & 2.713 & 44 & 38 \\
\hline Unique structures not passed & 40.466 & 15 & 3 \\
\hline Tautomers & 57.117 & 136 & 43 \\
\hline Tautomers passed & 2.879 & 55 & 40 \\
\hline
\end{tabular}

Substructure search for phthalazinone and quinazolinone cores

Figure 5.10: Substructure search for phalazinone and quinazolinone
The search was performed online at shop.keyorganics.co.uk

\subsection*{5.8 ProBiS - conserved amino acids}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1TOX & 1A26 & 1TOX & 1A26 & 1TOX & 1A26 & 1TOX & 1A26 \\
\hline \(\mathrm{Ile}_{150}\) & \(\mathrm{Ile}_{990}\) & \(\mathrm{Lys}_{24}\) & Arg \(_{865}\) & \(\mathrm{Gln}_{36}\) & \(\mathrm{Arg}_{878}\) & \(\mathrm{Ala}_{62}\) & Ser \(_{904}\) \\
\hline Tyr \({ }_{20}\) & \(\mathrm{Trp}_{861}\) & \(\mathrm{Il}_{31}\) & \(\mathrm{Ile}_{872}\) & \(\mathrm{Gly}_{52}\) & \(\mathrm{Gly}_{894}\) & \(\mathrm{Tyr}_{65}\) & Tyr \({ }_{907}\) \\
\hline \(\mathrm{His}_{21}\) & \(\mathrm{His}_{862}\) & \(\mathrm{Gly}_{34}\) & Gly \(_{876}\) & \(\mathrm{Tyr}_{54}\) & Tyr \({ }_{896}\) & \(\mathrm{Glu}_{148}\) & \(\mathrm{Glu}_{988}\) \\
\hline \(\mathrm{Gly}_{22}\) & \(\mathrm{Gly}_{863}\) & \(\mathrm{Il}_{35}\) & \(\mathrm{Leu}_{877}\) & \(\mathrm{Thr}_{56}\) & Ala 898 & Tyr \({ }_{149}\) & Tyr \({ }_{989}\) \\
\hline \(\mathrm{Thr}_{23}\) & \(\mathrm{Ser}_{864}\) & & & & & & \\
\hline
\end{tabular}

\subsection*{5.9 Inhibitors}
\begin{tabular}{|c|c|c|c|}
\hline no & structure & IUPAC name & Bionet name \\
\hline 25 & & 4-[(3-\{[3-chloro-5-(trifluoromethyl)-2-pyridinyl] oxy\} anilino)methyl]\(1(2 \mathrm{H})\)-phthalazinone & 10E-062 \\
\hline 26 & & ```
 N,2-bis[3-
(trifluoromethyl)phenyl]-1,3-
 thiazole-4-carboxamide
``` & 12F-408S \\
\hline 27 &  & 2-(methylsulfanyl)-4(3H)-quinazolinone & 7W-0349 \\
\hline 28 &  & \begin{tabular}{l}
2-(2-chlorobenzyl)- \\
\(4(3 \mathrm{H})\)-quinazolinone
\end{tabular} & 2F-311S \\
\hline 29 &  & \[
\begin{aligned}
& \text { 2-[(4-benzyl- } \\
& \text { piperidino)methyl]- } \\
& 4(3 \mathrm{H}) \text {-quinazolinone }
\end{aligned}
\] & MS-3199 \\
\hline 30 &  & \begin{tabular}{l}
2-(4-chloroanilino)- \\
\(4(3 \mathrm{H})\)-quinazolinone
\end{tabular} & 1P-365S \\
\hline 31 &  & \begin{tabular}{l}
2-(4-methyl-piperazino)- \\
\(4(3 \mathrm{H})\)-quinazolinone
\end{tabular} & 1P-333S \\
\hline 32 &  & 2-(allylsulfanyl)\(4(3 \mathrm{H})\)-quinazolinone & 10N-335S \\
\hline 33 &  & \begin{tabular}{l}
2-(4-chlorobenzyl)- \\
\(4(3 \mathrm{H})\)-quinazolinone
\end{tabular} & 1F-390S \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline no & structure & IUPAC name & Bionet name \\
\hline 34 &  & \[
\begin{aligned}
& \text { 2-[(4-benzyl- } \\
& \text { piperazino)methyl]- } \\
& \text { 4(3H)-quinazolinone }
\end{aligned}
\] & MS-3198 \\
\hline 35 &  & \begin{tabular}{l}
2-(4-methoxyanilino)- \\
\(4(3 \mathrm{H})\)-quinazolinone
\end{tabular} & 1P-363S \\
\hline 36 &  & 2-(1-pyrrolidinyl)\(4(3 \mathrm{H})\)-quinazolinone & 1P-330S \\
\hline 37 &  & \begin{tabular}{l}
2-(2-propynylsulfanyl)- \\
\(4(3 \mathrm{H})\)-quinazolinone
\end{tabular} & 10N-377S \\
\hline 38 &  & 2-(3-chlorobenzyl)\(4(3 \mathrm{H})\)-quinazolinone & 2F-310S \\
\hline 39 &  & \begin{tabular}{l}
2-(morpholino-methyl)- \\
\(4(3 \mathrm{H})\)-quinazolinone
\end{tabular} & MS-3180 \\
\hline 40 &  & \begin{tabular}{l}
2-(3-methoxyanilino)- \\
\(4(3 \mathrm{H})\)-quinazolinone
\end{tabular} & 2P-303S \\
\hline 41 &  & 2-(1-bromoethyl)\(4(3 \mathrm{H})\)-quinazolinone & MS-2995 \\
\hline 42 &  & \[
\begin{aligned}
& \text { 2-[(3,4,4-trifluoro-3- } \\
& \text { butenyl)sulfanyl]- } \\
& \text { 4(3H)-quinazolinone }
\end{aligned}
\] & 7N-764 \\
\hline 43 &  & \[
\begin{aligned}
& \text { 2-[3-(trifluoromethyl) } \\
& \text { benzyl]- } \\
& 4(3 \mathrm{H}) \text {-quinazolinone }
\end{aligned}
\] & 2F-301S \\
\hline
\end{tabular}
(2)
\begin{tabular}{|c|c|c|c|}
\hline no & structure & IUPAC name & Bionet name \\
\hline 52 &  & \[
\begin{aligned}
& \text { 4-[(1-adamantyl- } \\
& \text { amino)methyl]- } \\
& \text { 1(2H)-phthalazinone }
\end{aligned}
\] & 8D-009 \\
\hline 53 &  & \begin{tabular}{l}
4-\{[4-(trifluoromethyl)anilino] methyl \(\}\) - \\
\(1(2 \mathrm{H})\)-phthalazinone
\end{tabular} & 9D-009 \\
\hline 54 &  & \[
\begin{aligned}
& \text { 4-[(4-\{[3-chloro-5- } \\
& \text { (trifluoromethyl)-2- } \\
& \text { pyridinyl }] \text { oxy }\} \\
& \text { anilino)methyl }]- \\
& 1(2 \mathrm{H}) \text {-phthalazinone }
\end{aligned}
\] & 7E-019 \\
\hline 55 &  & 4-\{[3-chloro-5-(trifluoromethyl)-2pyridinyl]methyl \(\}\) -1(2H)-phthalazinone & \(11 \mathrm{~F}-056\) \\
\hline 56 &  & 4-phenyl\(1(2 \mathrm{H})\)-phthalazinone & MS-1294 \\
\hline 57 &  & \begin{tabular}{l}
4-[(4-chloroanilino) methyl]- \\
\(1(2 \mathrm{H})\)-phthalazinone
\end{tabular} & 12B-013 \\
\hline 58 &  & 4-\{[3-(trifluoromethyl)anilino] methyl\}\(1(2 \mathrm{H})\)-phthalazinone & 12B-089 \\
\hline
\end{tabular}
(2)
\begin{tabular}{|c|c|c|c|}
\hline no & structure & IUPAC name & Bionet name \\
\hline 66 &  & & 8D-022 \\
\hline 67 &  & \begin{tabular}{l}
4-\{[5-(4-chlorophenyl)-2furyl]methyl \(\}\) - \\
1(2H)-phthalazinone
\end{tabular} & 6F-011 \\
\hline 68 &  & \[
\begin{aligned}
& \text { 4-(2,3-dihydro-1H- } \\
& \text { inden-5-yl)- } \\
& \text { 1(2H)-phthalazinone }
\end{aligned}
\] & 6W-0242 \\
\hline 69 &  & \begin{tabular}{l}
4-methoxy-N-(4-oxo- \\
3,4,5,6,7,8-hexahydro-2- \\
quinazolinyl) \\
benzenecarboxamide
\end{tabular} & 3N-301S \\
\hline 70 &  & \begin{tabular}{l}
N-[3-(benzyloxy)-2-thienyl]- \\
N 'phenylurea
\end{tabular} & 7F-028 \\
\hline 71 &  & N -(2-methoxyphenyl)-4-oxo-1-[4-(trifluoromethoxy) phenyl]-1,4-dihydro-3pyridazinecarboxamide & 6P-518S \\
\hline 72 &  & \begin{tabular}{l}
4-(4-methoxybenzoyl)-N-(tetrahydro-2-furanylmethyl)- \\
1H-pyrrole-2-carboxamide
\end{tabular} & 8R-0216 \\
\hline
\end{tabular}
(2)
\begin{tabular}{|c|c|c|c|}
\hline no & structure & IUPAC name & Bionet name \\
\hline 80 &  & \begin{tabular}{l}
2-chloro-N-(4-oxo- \\
3,4,5,6,7,8-hexahydro-2- \\
quinazolinyl) \\
benzenecarboxamide
\end{tabular} & 3N-313S \\
\hline 81 &  & \begin{tabular}{l}
3-methyl-N-(4-oxo- \\
3,4,5,6,7,8-hexahydro-2- \\
quinazolinyl) \\
benzenecarboxamide
\end{tabular} & 2N-323S \\
\hline 82 &  & 3-chloro-N-(4-oxo-3,4,5,6,7,8-hexahydro-2quinazolinyl) benzenecarboxamide & 3N-315S \\
\hline 83 &  & \begin{tabular}{l}
2,6-difluoro-N-(4-oxo- \\
3,4,5,6,7,8-hexahydro-2- \\
quinazolinyl) \\
benzenecarboxamide
\end{tabular} & 3N-314S \\
\hline 84 &  & \begin{tabular}{l}
4-fluoro-N-(4-oxo- \\
3,4,5,6,7,8-hexahydro-2quinazolinyl) benzenecarboxamide
\end{tabular} & 2N-321S \\
\hline 85 &  & \begin{tabular}{l}
2-methyl-N-(4-oxo- \\
3,4,5,6,7,8-hexahydro-2- \\
quinazolinyl) \\
benzenecarboxamide
\end{tabular} & 3N-312S \\
\hline 86 &  & \begin{tabular}{l}
4-oxo-N,1-diphenyl-1,4-dihydro-3- \\
pyridazinecarboxamide
\end{tabular} & 6P-538S \\
\hline 87 &  & 1-(4-chlorophenyl)-4-oxo-N-phenyl-1,4-dihydro-3pyridazinecarboxamide & 6P-545S \\
\hline 88 &  & N -(2-methoxyphenyl)-4-oxo-1-phenyl-1,4-dihydro-3pyridazinecarboxamide & 6P-506S \\
\hline
\end{tabular}
(4-chlorophenyl)-N-(2-
\begin{tabular}{|c|c|c|c|}
\hline no & structure & IUPAC name & Bionet name \\
\hline 98 &  & 1-methyl-5-\{[(4-oxo-3,4-dihydro-1-phthalazinyl) methyl]amino \(\}\)-1H-pyrazole-4-carbonitrile & 5D-125 \\
\hline 99 &  & \begin{tabular}{l}
4-[(4-nitroanilino)methyl]- \\
\(1(2 \mathrm{H})\)-phthalazinone
\end{tabular} & 2C-021 \\
\hline 100 &  & \begin{tabular}{l}
4-benzyl- \\
\(1(2 \mathrm{H})\)-phthalazinone
\end{tabular} & 7D-022 \\
\hline 101 &  & 2-(allylamino)\(4(3 \mathrm{H})\)-quinazolinone & 1P-303S \\
\hline 102 &  & 2-(propylamino)\(4(3 \mathrm{H})\)-quinazolinone & 1P-345S \\
\hline 103 &  & \begin{tabular}{l}
2-(phenyl)-6-(chloro)- \\
\(4(3 \mathrm{H})\)-quinazolinone
\end{tabular} & 12J-553 \\
\hline 104 &  & \begin{tabular}{l}
2-(3,4-dimethylanilino)- \\
\(4(3 \mathrm{H})\)-quinazolinone
\end{tabular} & 1P-374S \\
\hline 105 &  & \begin{tabular}{l}
2-(3,5-dimethylanilino)- \\
\(4(3 \mathrm{H})\)-quinazolinone
\end{tabular} & \(2 \mathrm{P}-302 \mathrm{~S}\) \\
\hline 106 &  & 2-\{[(4-chlorophenyl)sulfonyl]methyl \(\}\) \(4(3 \mathrm{H})\)-quinazolinone & MS-3241 \\
\hline
\end{tabular}
(2)
\begin{tabular}{|c|c|c|c|}
\hline No & structure & IUPAC name & Bionet name \\
\hline 115 &  & 6-\{[2-(4-chlorophenyl)-2-oxoethyl]sulfanyl\}-1-phenyl-1,5-dihydro-4H-pyrazolo[3,4-d] pyrimidin-4-one & 9N-661S \\
\hline 116 &  & \begin{tabular}{l}
6-[(2-oxo-2- \\
phenylethyl)sulfanyl]-1-phenyl-1,5-dihydro-4H-pyrazolo[3,4-d] pyrimidin-4-one
\end{tabular} & 9N-665S \\
\hline 117 &  & \[
\begin{gathered}
\text { 3-(1H-1,2,3,4-tetraazol-5- } \\
\text { yl)pyrazolo[1,5-a] } \\
\text { quinazolin-5(4H)-one }
\end{gathered}
\] & 6W-0853 \\
\hline 118 &  & 6-(decyloxy)nicotinic acid & \(12 \mathrm{~N}-180\) \\
\hline 119 &  & 2-(3,4,4-trifluorobut-3enylthio)benzoic acid & 6N-761 \\
\hline 120 &  & \[
\begin{gathered}
\text { 2-[(3,4,4-trifluoro-3- } \\
\text { butenyl)sulfanyl] } \\
\text { nicotinic acid }
\end{gathered}
\] & 7N-744 \\
\hline 121 &  & 2-[(4-chlorobenzyl)sulfanyl] benzenecarboxylic acid & 8K-511S \\
\hline 122 &  & \[
\begin{aligned}
& \text { 3- }\{[3 \text {-(trifluoromethyl) } \\
& \text { benzyl]sulfanyl }\}- \\
& \text { 2-thiophenecarboxylic acid }
\end{aligned}
\] & 10G-320 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline No & structure & IUPAC name & Bionet name \\
\hline 123 &  & \[
\begin{gathered}
\text { 3-\{[2-(benzoylamino) } \\
\text { acetyl }] \text { amino }\} \\
\text {-2-thiophenecarboxylic acid }
\end{gathered}
\] & 7F-938 \\
\hline 124 &  & 4-(2,3-dichlorobenzoyl)-1-methyl-1H-pyrrole-2carboxylic acid & 9R-0349 \\
\hline 125 &  & \[
\begin{gathered}
3-\{4-[3- \\
\text { (trifluoromethyl)phenyl]-1H- } \\
\text { pyrazol-1-yl }\} \\
\text { benzenecarboxylic acid }
\end{gathered}
\] & 8J-583S \\
\hline 126 &  & 2-\{[(5-chloro-1-methyl-3-phenyl-1H-pyrazol-4yl)methyl]sulfanyl\} benzenecarboxylic acid & 3K-634S \\
\hline 127 &  & \[
\begin{aligned}
& \text { 2-(4-fluorophenyl) } \\
& \text { imidazo[1,2-a] } \\
& \text { pyridine-8-carboxylic acid }
\end{aligned}
\] & 6X-0839 \\
\hline 128 &  & 2-(\{2-[(4-chlorophenyl) sulfanyl]acetyl \(\}\) amino) benzenecarboxamide & MS-3232 \\
\hline 129 &  & \[
\begin{aligned}
& \text { 3-[(4-\{[3-chloro-5- } \\
& \text { (trifluoromethyl)-2- } \\
& \text { pyridinyl]methyl\}phenoxy) } \\
& \text { methyl]benzenecarboxamide }
\end{aligned}
\] & 7N-774 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline No & structure & IUPAC name & Bionet name \\
\hline 130 &  & \[
\begin{gathered}
\text { 4-phenyl- } \\
\text { 1,3(2H,4H)- } \\
\text { isoquinolinedione }
\end{gathered}
\] & 9G-036 \\
\hline 131 &  & \begin{tabular}{l}
2-(3- \\
(trifluoromethyl)phenyl)thiaz ole-4-carbohydrazide
\end{tabular} & 5G-439S \\
\hline 132 &  & 4-(2-ethylbutanoyl)-N-(2-furylmethyl)-1H-pyrrole-2-carboxamide & 8R-0345 \\
\hline 133 &  & N -(2,4-difluorophenyl)-2-(3,4-dimethoxyphenyl)-1,3-thiazole-4-carboxamide & 3G-337S \\
\hline 134 &  & \begin{tabular}{l}
2-(4-pyridinyl)-N- \\
[3-(trifluoromethyl)phenyl]- \\
1,3-thiazole-4-carboxamide
\end{tabular} & 1G-351S \\
\hline 135 &  & N -(2,4-difluorophenyl)-2-[3-(trifluoromethyl)phenyl]-1,3-thiazole-4-carboxamide & 12F-409S \\
\hline 136 &  & 3-methoxy-N-[1-(5-methyl-1H-1,3-benzimidazol-2-yl)-2-phenylethyl] benzenecarboxamide & 3J-311S \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline No & structure & IUPAC name & Bionet name \\
\hline 137 &  &  & 2J-378S \\
\hline 138 &  & ```
    N-[1-
(1H-1,3-benzimidazol-2-yl)-
    2-phenylethyl]-2-fluoro
        benzenecarboxamide
``` & 3J-341S \\
\hline 139 & & N-benzoyl-N'-(2-phenoxyphenyl) thiourea & 9N-068S \\
\hline 140 & & N-[3-(benzyloxy)-2-thienyl]-2-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]-1-hydrazine carboxamide & 11F-021 \\
\hline 141 & & ```
 2-[3-chloro-5-
 (trifluoromethyl)-
2-pyridinyl]-N-{3-[(2,4-
dichlorobenzyl)oxy]-2-
 thienyl}-1-hydrazine carboxamide
``` & 11F-023 \\
\hline 142 &  & \(\mathrm{N}^{\prime}\)-[3-chloro-5-(trifluoro-methyl)-2-pyridinyl]-4-\{2-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]propanoyl\}-1H-pyrrole-2-carbohydrazide & 8J-019 \\
\hline 143 &  & 3-\{1-[(2-fluoro[1,1'-biphenyl]-4-yl)oxy]ethyl \(\}-\mathrm{N}\) -(4-methylphenyl)-1H-pyrazole-1-carboxamide & 12P-109 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline No & structure & IUPAC name & Bionet name \\
\hline 144 &  & \[
\begin{gathered}
3-[(2,4- \\
\text { dichlorobenzyl)sulfanyl]-N- } \\
\text { (4-fluorophenyl)-2- } \\
\text { thiophenecarboxamide }
\end{gathered}
\] & 10G-507S \\
\hline 145 &  & \(\mathrm{N}^{\prime}\)-[3-chloro-5-
(trifluoromethyl)-2-
pyridinyl]-4-(2,4-
dichlorobenzoyl)-
1H-pyrrole-2-carbohydrazide & 3G-035 \\
\hline 146 &  & \begin{tabular}{l}
4-(2-methylbenzoyl)-N-[2-(2-pyridinyl)ethyl]- \\
1H-pyrrole-2-carboxamide
\end{tabular} & 9R-0237 \\
\hline 147 &  & \begin{tabular}{l}
2-[(4-chlorophenyl)sulfanyl]- \\
N '-isonicotinoyl \\
ethanehydrazonamide
\end{tabular} & 2F-035 \\
\hline 148 &  & \begin{tabular}{l}
N-allyl-4-\{2-[3-chloro-5- \\
(trifluoromethyl)-2- \\
pyridinyl]propanoyl\}- \\
1H-pyrrole-2-carboxamide
\end{tabular} & 8J-020 \\
\hline 149 &  & 4-(2,3-dichlorobenzoyl)-N-[3-(dimethylamino)propyl]-1H-pyrrole-2-carboxamide & 1R-0015 \\
\hline 150 &  & \[
\begin{aligned}
& \text { N-(2-methoxybenzyl)-4-(2- } \\
& \text { methylbenzoyl)- } \\
& \text { 1H-pyrrole-2-carboxamide }
\end{aligned}
\] & 9R-0277 \\
\hline 151 &  & \[
\begin{aligned}
& \text { N-(2-furylmethyl)-4-(3- } \\
& \text { methoxybenzoyl)- } \\
& \text { 1H-pyrrole-2-carboxamide }
\end{aligned}
\] & 7R-0329 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline No & structure & IUPAC name & Bionet name \\
\hline 152 &  & 1-(6-methyl-2-pyridinyl)-N'-[(E)-phenylmethylidene]-1H-imidazole-4-carbohydrazide & 8P-705 \\
\hline 153 &  & \[
\begin{gathered}
\text { N'-[(E)-(3,4- } \\
\text { dimethoxyphenyl)methyliden } \\
\text { e]-3-[(4-fluorobenzyl)oxy]-2- } \\
\text { thiophenecarbohydrazide }
\end{gathered}
\] & \(9 \mathrm{~N}-031\) \\
\hline 154 &  & \begin{tabular}{l}
3-(1H-1,2,4-triazol-1-ylmethyl)- \\
N -[4-(trifluoromethoxy) phenyl]-1H-1,2,4-triazole-5carboxamide
\end{tabular} & 3F-040 \\
\hline 155 &  & \[
\begin{gathered}
\mathrm{N}-\{5-[(2- \\
\text { methylbenzyl)sulfanyl]-1H- } \\
1,2,4 \text {-triazol-3-yl }\}-2- \\
\text { thiophenecarboxamide }
\end{gathered}
\] & MS-3260 \\
\hline 156 &  & N'-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]-4-(2,4-dichlorobenzoyl)-1H-pyrrole-2-carbohydrazide & 3D-035 \\
\hline 157 &  & 4-chloro-N'-[(4-oxo-3,4-dihydro-1phthalazinyl)methyl]benzene carbohydrazide & 2C-005 \\
\hline 158 &  & \[
\begin{gathered}
\text { 2-chloro-N-[1-(4-oxo-3,4- } \\
\text { dihydro-2- } \\
\text { quinazolinyl)ethyl]-N- } \\
\text { pentylacetamide }
\end{gathered}
\] & MS-3033 \\
\hline 159 &  & 2-(3-pyridinyl)-N-[3-(trifluoromethyl)phenyl]-1,3-thiazole-4-carboxamide & 2G-327S \\
\hline
\end{tabular}
No IUPAC name \(\quad\) Bionet name

\subsection*{5.10 Inhibitors; in silico and in vitro results}

\subsection*{5.10.1 Docking results, in silico and in vitro results}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline No & Docking score & Inhibition \(100 \mu \mathrm{M}(\%)\) & \(\mathrm{IC}_{50} \pm \mathrm{SE}(\mu \mathrm{M})\) & theoret. & in vitro & result \\
\hline 25 & -163.2770 & 62.8 & >100 & positive & positive & TP \\
\hline 26 & -102.2740 & 10.7 & >100 & negative & negative & TN \\
\hline 27 & -136.2320 & 75.0 & \(1.46 \pm 0.152\) & negative & positive & FN \\
\hline 28 & -151.5510 & 1.1 & \(79.4 \pm 1.05\) & positive & negative & FP \\
\hline 29 & -155.1420 & 34.3 & \(57.9 \pm 1.10\) & positive & negative & FP \\
\hline 30 & Not available & & & & & \\
\hline 31 & Not available & & & & & \\
\hline 32 & -143.0310 & 73.5 & \(3.62 \pm 1.84\) & negative & positive & FN \\
\hline 33 & -148.1600 & 20.2 & \(>100\) & positive & negative & FP \\
\hline 34 & -153.6020 & 81.4 & \(6.28 \pm 1.18\) & positive & positive & TP \\
\hline 35 & -98.8115 & 84.2 & \(1.79 \pm 0.312\) & negative & positive & FN \\
\hline 36 & -138.6550 & 71.1 & \(11.1 \pm 1.22\) & negative & positive & FN \\
\hline 37 & -142.6430 & 30.3 & \(15.5 \pm 1.28\) & negative & negative & FP \\
\hline 38 & Not available & & & & & \\
\hline 39 & -149.4910 & 61.6 & \(19.8 \pm 1.12\) & positive & positive & TP \\
\hline 40 & --132.2260 & 42.9 & \(18.3 \pm 1.17\) & negative & positive & FN \\
\hline 41 & -139.6590 & 80.2 & \(10.9 \pm 1.14\) & negative & positive & FN \\
\hline 42 & -145.3650 & 98.0 & \(19.66 \pm 1.22\) & positive & positive & TP \\
\hline 43 & -158.9430 & 0.8 & \(>100\) & positive & negative & FP \\
\hline 44 & -141.5430 & 48.0 & \(55.2 \pm 1.23\) & negative & positive & FN \\
\hline 45 & Not available & & & & & \\
\hline 46 & -153.1800 & 42.9 & \(31.09 \pm 0.09\) & positive & positive & TP \\
\hline 47 & -154.1540 & 62.8 & \(0.08 \pm 0.46\) & positive & positive & TP \\
\hline 48 & -156.0940 & 44.8 & \(3.62 \pm 1.80\) & positive & positive & TP \\
\hline 49 & -155.7730 & 106.3 & \(56.1 \pm 1.08\) & positive & positive & TP \\
\hline 50 & -158.5070 & 36.5 & \(>100\) & positive & negative & FP \\
\hline 51 & -127.3730 & 68.1 & \(0.707 \pm 0.21\) & negative & positive & FN \\
\hline 52 & -160.0420 & 199.9 & \(1.62 \pm 1.17\) & positive & positive & TP \\
\hline 53 & -156.7790 & 151.3 & \(1.13 \pm 0.28\) & positive & positive & TP \\
\hline 54 & -169.5060 & 149.8 & \(6.25 \pm 1.24\) & positive & positive & TP \\
\hline 55 & -164.1940 & 40.6 & \(8.31 \pm 1.19\) & positive & positive & TP \\
\hline 56 & -146.2120 & 73.5 & \(0.529 \pm 0.126\) & positive & positive & TP \\
\hline 57 & Not available & & & & & \\
\hline 58 & -163.6030 & 56.7 & \(1.97 \pm 0.21\) & positive & positive & TP \\
\hline 59 & -159.4200 & 13.4 & \(18.4 \pm 1.27\) & positive & negative & FP \\
\hline 60 & -147.0350 & 174.0 & \(6.38 \pm 1.09\) & positive & positive & TP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline No & Docking score & Inhibition \(100 \mu \mathrm{M}(\%)\) & \(\mathrm{IC}_{50} \pm \mathrm{SE}(\mu \mathrm{M})\) & theoret. & in vitro & result \\
\hline 61 & -155.2210 & 44.8 & \(1.01 \pm 0.113\) & positive & positive & TP \\
\hline 62 & -158.3430 & 135.2 & \(13.4 \pm 1.22\) & positive & positive & TP \\
\hline 63 & -157.6220 & 39.7 & >100 & positive & negative & FP \\
\hline 64 & -157.8790 & 134.6 & \(4.45 \pm 1.35\) & positive & positive & TP \\
\hline 65 & -148.7220 & 149.8 & \(1.79 \pm 0.312\) & positive & positive & TP \\
\hline 66 & Not available & & & & & \\
\hline 67 & -159.0210 & 35.2 & \(>100\) & positive & negative & FP \\
\hline 68 & -152.6610 & 24.2 & \(0.81 \pm 0.07\) & positive & negative & FP \\
\hline 69 & -139.7300 & <0 & >100 & negative & negative & TN \\
\hline 70 & Not available & & & & & \\
\hline 71 & -131.5060 & 29.8 & >100 & negative & negative & TN \\
\hline 72 & -140.0460 & <0 & >100 & negative & negative & TN \\
\hline 73 & -160.5560 & 138.6 & \(59.0 \pm 1.13\) & positive & positive & TP \\
\hline 74 & Not available & & & & & \\
\hline 75 & Not available & & & & & \\
\hline 76 & -149.0080 & 9.2 & \(20.1 \pm 1.13\) & positive & negative & FP \\
\hline 77 & -143.7000 & 82.7 & \(58.5 \pm 1.11\) & negative & positive & FN \\
\hline 78 & -140.2210 & \(<0\) & >100 & negative & negative & TN \\
\hline 79 & -139.9130 & \(<0\) & >100 & negative & negative & TN \\
\hline 80 & -116.4390 & \(<0\) & >100 & negative & negative & TN \\
\hline 81 & -144.4020 & 68.0 & \(11.05 \pm 1.28\) & negative & positive & FN \\
\hline 82 & -145.5410 & 44.3 & >100 & positive & positive & TP \\
\hline 83 & -135.4130 & 75.8 & \(20.7 \pm 1.08\) & negative & positive & FN \\
\hline 84 & -145.1870 & 66.9 & \(15.5 \pm 1.28\) & positive & positive & TP \\
\hline 85 & -140.3310 & 50.8 & \(14.3 \pm 1.69\) & negative & positive & FN \\
\hline 86 & -124.3890 & 3.1 & >100 & negative & negative & TN \\
\hline 87 & -127.3480 & 1.5 & >100 & negative & negative & TN \\
\hline 88 & -129.1940 & 36.8 & >100 & negative & negative & TN \\
\hline 89 & -84.8195 & 17.3 & >100 & negative & negative & TN \\
\hline 90 & -130.5720 & 3.9 & >100 & negative & negative & TN \\
\hline 91 & Not available & & & & & \\
\hline 92 & -128.5490 & \(<0\) & >100 & negative & negative & TN \\
\hline 93 & -143.3980 & 2.7 & >100 & negative & negative & TN \\
\hline 94 & -116.1240 & 0.6 & >100 & negative & negative & TN \\
\hline 95 & -142.8430 & 0.6 & >100 & negative & negative & TN \\
\hline 96 & -169.4140 & 24.8 & \(>100\) & positive & negative & FP \\
\hline 97 & -161.9990 & 34.3 & \(18.93 \pm 5.27\) & positive & negative & FP \\
\hline 98 & -154.5820 & 49.9 & \(>100\) & positive & positive & TP \\
\hline 99 & -153.0150 & 148.1 & \(11.2 \pm 1.41\) & positive & positive & TP \\
\hline 100 & -152.3980 & 58.8 & \(0.522 \pm 0.33\) & positive & positive & TP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline No & Docking score & Inhibition \(100 \mu \mathrm{M}\) (\%) & \(\mathrm{IC}_{50} \pm \mathrm{SE}(\mu \mathrm{M})\) & theoret. & in vitro & result \\
\hline 101 & -140.7690 & 75.3 & \(1.76 \pm 1.49\) & negative & positive & FN \\
\hline 102 & -140.7500 & 73.5 & \(58.1 \pm 1.13\) & negative & positive & FN \\
\hline 103 & -134.6420 & <0 & >100 & negative & negative & TN \\
\hline 104 & -133.5520 & 2.8 & \(76.1 \pm 1.04\) & negative & negative & TN \\
\hline 105 & -132.5300 & 22.2 & >100 & negative & negative & TN \\
\hline 106 & -146.9410 & 104.9 & \(2.77 \pm 1.46\) & positive & positive & TP \\
\hline 107 & -141.6250 & 14.3 & \(>100\) & negative & negative & TN \\
\hline 108 & -151.5050 & 76.8 & \(0.93 \pm 0.06\) & positive & positive & TP \\
\hline 109 & -161.3500 & 83.5 & \(3.74 \pm 1.17\) & positive & positive & TP \\
\hline 110 & -161.0260 & 55.4 & \(4.62 \pm 1.18\) & positive & positive & TP \\
\hline 111 & -159.5130 & 5.8 & >100 & positive & negative & FP \\
\hline 112 & -157.6700 & 86.9 & \(1.58 \pm 1.20\) & positive & positive & TP \\
\hline 113 & -148.2510 & 90.4 & \(13.6 \pm 1.55\) & positive & positive & TP \\
\hline 114 & -150.6640 & 0.2 & >100 & positive & negative & FP \\
\hline 115 & -158.5720 & 3.5 & >100 & positive & negative & FP \\
\hline 116 & -149.6210 & 56.6 & >100 & positive & positive & TP \\
\hline 117 & -146.3320 & 12.8 & \(9.68 \pm 1.13\) & positive & negative & FP \\
\hline 118 & -150.4170 & 3.5 & >100 & positive & negative & FP \\
\hline 119 & -146.4570 & 14.2 & >100 & positive & negative & FP \\
\hline 120 & -128.1530 & 7.8 & >100 & negative & negative & TN \\
\hline 121 & -152.4840 & \(<0\) & >100 & positive & negative & FP \\
\hline 122 & -157.8750 & 2.5 & >100 & positive & negative & FP \\
\hline 123 & -125.5620 & 0.4 & >100 & negative & negative & TN \\
\hline 124 & -123.2550 & \(<0\) & >100 & negative & negative & TN \\
\hline 125 & -132.6790 & 0.7 & >100 & negative & negative & TN \\
\hline 126 & -151.7160 & 2.6 & >100 & positive & negative & FP \\
\hline 127 & -156.9440 & 42.0 & >100 & positive & positive & TP \\
\hline 128 & -156.2550 & 13.9 & \(>100\) & posititve & negative & FP \\
\hline 129 & -171.9060 & 2.3 & \(58.5 \pm 7.34\) & positive & negative & FP \\
\hline 130 & -153.9730 & \(<0\) & >100 & positve & negative & FP \\
\hline 131 & -151.7840 & \(<0\) & >100 & positive & negative & FP \\
\hline 132 & -150.3260 & \(<0\) & >100 & positive & negative & FP \\
\hline 133 & -127.6170 & 1.2 & >100 & negative & negative & TN \\
\hline 134 & -128.2610 & <0 & >100 & negative & negative & TN \\
\hline 135 & -101.3870 & \(<0\) & >100 & negative & negative & TN \\
\hline 136 & -145.0710 & 0.8 & >100 & positive & negative & FP \\
\hline 137 & -109.3430 & 1.7 & >100 & negative & negative & TN \\
\hline 138 & -116.5060 & 2.7 & >100 & negative & negative & TN \\
\hline 139 & -125.3950 & 0.4 & >100 & negative & negative & TN \\
\hline 140 & -105.9610 & 12.0 & >100 & negative & negative & TN \\
\hline
\end{tabular}
\begin{tabular}{r|rcc|lcc}
\hline No & Docking score & Inhibition \(100 \mu \mathrm{M}(\%)\) & \(\mathrm{IC}_{50} \pm \mathrm{SE}(\mu \mathrm{M})\) & theoret. & in vitro & result \\
\hline 141 & -93.5362 & 7.0 & \(8.31 \pm 1.19\) & negative & negative & TN \\
142 & -114.5590 & \(<0\) & \(>100\) & negative & negative & TN \\
143 & -102.7840 & 35.9 & \(>100\) & negative & negative & TN \\
144 & -101.6340 & 8.8 & \(>100\) & negative & negative & TN \\
145 & Not available & & & & & \\
146 & -145.7420 & \(<0\) & \(>100\) & positive & negative & FP \\
\hline 147 & -145.5470 & \(<0\) & \(>100\) & positive & negative & FP \\
148 & -146.1270 & \(<0\) & \(>100\) & positive & negative & FP \\
\hline 149 & -144.4850 & 21.6 & \(>100\) & negative & negative & TN \\
150 & -134.7230 & \(<0\) & \(>100\) & negative & negative & TN \\
\hline 151 & -136.1820 & 21.9 & \(>100\) & negative & negative & TN \\
\hline 152 & -85.9073 & \(<0\) & \(>100\) & negative & negative & TN \\
\hline 153 & -123.8610 & 14.2 & \(>100\) & negative & negative & TN \\
\hline 154 & -133.3860 & \(<0\) & \(>100\) & negative & negative & TN \\
\hline 155 & -128.8580 & 3.4 & \(>100\) & negative & negative & TN \\
\hline 156 & -137.4650 & 10.0 & \(>100\) & negative & negative & TN \\
\hline 157 & Not available & & & & & \\
\hline 158 & Not available & & & & & \\
\hline 159 & Not available & & & & & \\
\hline 160 & Not available & & & & & \\
\hline 161 & Not available & & & & & \\
\hline
\end{tabular}

\subsection*{5.10.2 POSIT results}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Rec. & Result & Prob. & M166 & TC & LS & No & Rec. & Result & Prob. & M166 & TC & LS \\
\hline 100 & 3C49 & * & 0.50 & 0.59 & 1.29 & 0.00 & 65 & 3C49 & & 0.42 & 0.51 & 1.19 & 7.84 \\
\hline 51 & 3 C 4 H & ** & 0.72 & 0.59 & 42 & 1.66 & 54 & 1UK1 & * & 0.50 & 0.59 & . 14 & . 84 \\
\hline 27 & 3 C 4 H & ** & 0.93 & 0.62 & 1.77 & 1.16 & 73 & 3C49 & *** & 0.85 & 0.76 & 1.31 & 8.2 \\
\hline 32 & 3 C 4 H & *** & 0.83 & 0.62 & 1.66 & 4.52 & 52 & 3GJW & ** & 0.51 & 0.67 & 1.08 & 5.40 \\
\hline 37 & 3C4H & *** & 0.83 & . 64 & 1.65 & 1.10 & 97 & 3GJW & ** & 0.72 & 0.55 & 1.36 & . 26 \\
\hline 36 & 3 C 4 H & ** & 0.90 & 0.65 & 1.62 & 0.00 & 64 & 3GJW & * & 0.50 & 0.56 & 1.16 & 7.77 \\
\hline 56 & 3 C 4 H & & 0.42 & 0.50 & 1.26 & 0.00 & 53 & 3GJW & & 0.50 & 0.58 & 1.24 & 2.04 \\
\hline 46 & 3 C 4 H & ** & 0.72 & 0.62 & 1.35 & 0.06 & 59 & 3C49 & & 0.72 & 0.60 & 1.34 & 7.90 \\
\hline 47 & 3GJW & & 0.50 & 0.62 & 1.21 & 7.78 & 55 & 3GJW & & 0.42 & 0.48 & 1.18 & 1.75 \\
\hline 48 & 3GJW & & 0.50 & 0.58 & 1.22 & 1.84 & 76 & 3GJW & & 0.50 & 0.55 & 1.22 & 4.81 \\
\hline 84 & 3GJW & & 0.42 & 0.53 & 1.29 & 5.03 & 83 & 3GJW & & 0.42 & 0.52 & 1.25 & 3.48 \\
\hline 81 & 3GJW & & 0.50 & 0.56 & 1.29 & 4.57 & 129 & 3L3M & * & 0.29 & 0.54 & 1.06 & 5.55 \\
\hline 77 & 3GJW & * & 0.50 & 0.56 & 1.29 & 5.22 & 42 & 3C4H & * & 0.83 & 0.60 & 1.6 & 2.04 \\
\hline 85 & 3GJW & & 0.50 & 0.55 & 1.29 & 3.39 & 68 & 3L3L & & 0.42 & 0.50 & 1.16 & 0.01 \\
\hline 113 & 3 C 4 H & * & 0.43 & 0.45 & 1.14 & 4.38 & 117 & 3GJW & * & 0.25 & 0.45 & 1.08 & 0.00 \\
\hline 60 & 3 C 4 H & * & 0.42 & 0.53 & 1.27 & 0.42 & 28 & 3 C 4 H & ** & 0.72 & 0.62 & 1.47 & 8.97 \\
\hline 101 & 3 C 4 H & ** & 0.81 & 0.55 & 1.54 & 9.87 & 104 & 3 C 4 H & ** & 0.75 & 0.55 & 1.32 & 0.00 \\
\hline 102 & 3 C 4 H & ** & 0.83 & 0.57 & 1.55 & 5.33 & 44 & 3C4H & ** & 0.72 & 0.67 & 1.29 & 7.03 \\
\hline 35 & 3C4H & * & 0.42 & 0.52 & 1.23 & 0.01 & 109 & 3GJW & & 0.50 & 0.61 & 1.30 & 8.51 \\
\hline 40 & 3 C 4 H & * & 0.42 & 0.52 & 1.23 & 5.56 & 39 & 3 C 4 H & ** & 0.72 & 0.64 & 1.31 & 4.34 \\
\hline 41 & 3 C 4 H & ** & 0.90 & 0.65 & 1.62 & 7.81 & 34 & 1UK0 & *** & 0.78 & 0.76 & 1.25 & 7.45 \\
\hline 58 & 3C49 & ** & 0.72 & 0.66 & 1.26 & 3.32 & 29 & 1UK0 & ** & 0.78 & 0.76 & 1.30 & 8.41 \\
\hline 61 & 3GJW & , & 0.50 & 0.59 & 1.24 & 1.92 & 112 & 3GJW & *** & 0.79 & 0.69 & 1.33 & 2.97 \\
\hline 99 & 3GJW & * & 0.42 & 0.54 & 1.20 & 1.78 & 110 & 3GJW & ** & 0.72 & 0.64 & 1.30 & 8.05 \\
\hline 62 & 3C49 & * & 0.50 & 0.58 & 1.21 & 4.88 & 106 & 3GJW & & 0.43 & 0.39 & 1.20 & 5.89 \\
\hline 49 & 3C49 & ** & 0.72 & 0.64 & 1.32 & 7.58 & 108 & 3C4H & *** & 0.83 & 0.62 & 1.52 & 3.76 \\
\hline
\end{tabular}

Abbreviations: Rec.: Receptor file used (PDB entry used as template for homology modelling AtPARP1); Result: (quality) classes: *: poor; ** good; *** great; Prob.: Probability of pose being a bioactive pose; M166: MACCS 166 value; TC: Tanimoto combo value; LS: local strain

\subsection*{5.10.3 Structures used for binary QSAR - training set - actives}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline No & \[
\begin{gathered}
\text { Inhib. } 100 \\
\mu \mathrm{M}(\%)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Q_VSA } \\
& \text { _HYD }
\end{aligned}
\] & \[
\begin{gathered}
\text { Q_VSA } \\
\text { _NEG }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Q_VSA } \\
& \text { _PNEG }
\end{aligned}
\] & \[
\begin{gathered}
\text { Q_VSA } \\
\text { _POL }
\end{gathered}
\] & \[
\begin{gathered}
\text { Q_VSA } \\
\text { _POS }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Q_VSA } \\
& \text { _PPOS }
\end{aligned}
\] & Vdw _area & \[
\begin{aligned}
& \text { Vdw } \\
& \text { _vol }
\end{aligned}
\] \\
\hline 60 & 174 & 151.203 & 129.205 & 25.811 & 67.141 & 89.139 & 41.329 & 218.344 & 308.767 \\
\hline 53 & 151 & 192.339 & 164.669 & 44.298 & 83.531 & 111.200 & 39.233 & 275.869 & 379.484 \\
\hline 54 & 150 & 326.695 & 189.630 & 19.788 & 50.402 & 187.467 & 30.614 & 377.097 & 512.000 \\
\hline 99 & 148 & 156.613 & 167.366 & 82.720 & 116.935 & 106.182 & 34.216 & 273.548 & 369.530 \\
\hline 73 & 139 & 289.862 & 236.082 & 29.697 & 51.266 & 105.045 & 21.569 & 341.128 & 464.923 \\
\hline 62 & 135 & 213.679 & 151.643 & 42.488 & 72.675 & 134.711 & 30.188 & 286.354 & 392.440 \\
\hline 49 & 106 & 291.764 & 190.513 & 17.579 & 39.148 & 140.398 & 21.569 & 330.912 & 471.263 \\
\hline 10 & 105 & 194.893 & 158.778 & 66.265 & 94.346 & 130.462 & 28.081 & 289.240 & 385.199 \\
\hline 42 & 98 & 180.181 & 147.907 & 24.381 & 65.710 & 97.985 & 41.329 & 245.892 & 314.375 \\
\hline 112 & 87 & 226.882 & 163.029 & 13.841 & 35.409 & 99.262 & 21.569 & 262.291 & 361.794 \\
\hline 35 & 84 & 194.022 & 147.272 & 22.027 & 67.896 & 114.646 & 45.869 & 261.918 & 357.102 \\
\hline 109 & 83 & 244.454 & 174.876 & 32.588 & 54.157 & 123.735 & 21.569 & 298.611 & 419.728 \\
\hline 34 & 81 & 301.328 & 213.252 & 19.386 & 40.955 & 129.032 & 21.569 & 342.283 & 474.209 \\
\hline 41 & 80 & 152.549 & 89.362 & 32.451 & 54.020 & 117.207 & 21.569 & 206.569 & 268.596 \\
\hline 108 & 77 & 132.965 & 144.228 & 64.882 & 120.920 & 109.656 & 56.038 & 253.885 & 322.690 \\
\hline 101 & 75 & 131.810 & 118.500 & 31.778 & 77.647 & 90.957 & 45.869 & 209.457 & 274.423 \\
\hline 27 & 75 & 100.952 & 104.505 & 40.110 & 81.439 & 77.886 & 41.329 & 182.391 & 237.562 \\
\hline 56 & 74 & 171.429 & 141.062 & 17.442 & 39.011 & 69.378 & 21.569 & 210.440 & 304.912 \\
\hline 102 & 74 & 126.741 & 111.393 & 38.271 & 84.140 & 99.488 & 45.869 & 210.881 & 280.325 \\
\hline 36 & 71 & 152.900 & 114.402 & 19.386 & 56.637 & 95.134 & 37.250 & 209.536 & 292.474 \\
\hline 51 & 68 & 141.893 & 124.322 & 17.442 & 39.011 & 56.582 & 21.569 & 180.904 & 239.797 \\
\hline 84 & 67 & 164.847 & 133.241 & 35.299 & 94.117 & 125.724 & 58.819 & 258.964 & 362.565 \\
\hline 25 & 63 & 326.695 & 212.244 & 19.788 & 50.402 & 164.853 & 30.614 & 377.097 & 512.000 \\
\hline 47 & 63 & 185.388 & 138.990 & 29.834 & 60.022 & 106.420 & 30.188 & 245.410 & 345.628 \\
\hline
\end{tabular}

\subsection*{5.10.4 Structures used for binary QSAR - training set - inactives}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline No & \begin{tabular}{l}
Inhib. 100 \\
\(\mu \mathrm{M}\) (\%)
\end{tabular} & \begin{tabular}{l}
Q_VSA \\
HYD
\end{tabular} & \begin{tabular}{l}
Q_VSA \\
NEG
\end{tabular} & \begin{tabular}{l}
Q_VSA \\
PNEG
\end{tabular} & \[
\begin{gathered}
\hline \text { Q_VSA } \\
\text { _POL }
\end{gathered}
\] & \[
\begin{gathered}
\text { Q_VSA } \\
\text { _POS }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Q_VSA } \\
& \text { _PPOS }
\end{aligned}
\] & Vdw _area & \begin{tabular}{l}
Vdw \\
_vol
\end{tabular} \\
\hline 89 & 0.17 & 263.117 & 193.031 & 46.225 & 76.252 & 146.338 & 30.027 & 339.369 & 442.426 \\
\hline 107 & 0.14 & 127.588 & 106.340 & 13.704 & 44.318 & 65.566 & 30.614 & 171.906 & 224.606 \\
\hline 119 & 0.14 & 158.817 & 140.873 & 32.012 & 76,.805 & 94.750 & 44.793 & 235.622 & 286.625 \\
\hline 128 & 0.14 & 183.703 & 183.133 & 48.784 & 120.301 & 120.870 & 71.517 & 304.003 & 388.786 \\
\hline 59 & 0.13 & 258.704 & 185.958 & 17.442 & 39.011 & 111.756 & 21.569 & 297.715 & 427.976 \\
\hline 117 & 0.13 & 161.486 & 132.923 & 17.579 & 52.032 & 80.595 & 34.453 & 213.518 & 295.543 \\
\hline 26 & 0.11 & 229.321 & 225.109 & 36.610 & 100.296 & 104.508 & 63.686 & 329.617 & 438.775 \\
\hline 156 & 0.10 & 292.449 & 181.335 & 35.426 & 91.737 & 202.851 & 56.311 & 384.185 & 487.775 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline No & Inhib. 100
\[
\mu \mathrm{M}(\%)
\] & \[
\begin{gathered}
\text { QVVSA } \\
\text { _HYD }
\end{gathered}
\] & \[
\begin{gathered}
\text { Q_VSA } \\
\text { _NEG }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Q_VSA } \\
& \text { _PNEG }
\end{aligned}
\] & \[
\underset{\text { _POL }}{\text { Q_VSA }}
\] & \[
\begin{gathered}
\text { Q_VSA } \\
\text { _POS }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Q_VSA } \\
& \text { _PPOS }
\end{aligned}
\] & Vdw _area & Vdw _vol \\
\hline 76 & 0.09 & 190.170 & 148.834 & 37.802 & 96.621 & 137.958 & 58.819 & 286.791 & 394.513 \\
\hline 120 & 0.08 & 156.961 & 143.282 & 32.012 & 76.805 & 90.484 & 44.793 & 233.766 & 277.549 \\
\hline 141 & 0.07 & 303.310 & 226.688 & 42.694 & 114.798 & 191.420 & 72.104 & 418.108 & 519.640 \\
\hline 111 & 0.06 & 200.576 & 168.598 & 28.566 & 69.895 & 101.873 & 41.329 & 270.471 & 368.492 \\
\hline 115 & 0.04 & 250.747 & 202.195 & 45.839 & 99.892 & 148.444 & 54.053 & 350.640 & 474.132 \\
\hline 118 & 0.04 & 228.881 & 159.549 & 62.732 & 87.765 & 157.0 & 25.033 & 316.646 & 408.878 \\
\hline 155 & 0.03 & 195.706 & 171.637 & 42.797 & 112.506 & 136.575 & 69.709 & 308.212 & 405.748 \\
\hline 104 & 0.03 & 198.754 & 149.429 & 19.523 & 65.392 & 114.718 & 45.869 & 264.147 & 370.869 \\
\hline 93 & 0.03 & 160.430 & 147.123 & 49.660 & 83.15 & 96.459 & 33.491 & 243.582 & 303.731 \\
\hline 138 & 0.03 & 295.026 & 217.263 & 13.841 & 44.028 & 121.791 & 30.188 & 339.054 & 488.986 \\
\hline 122 & 0.03 & 135.541 & 156.030 & 54.612 & 128.211 & 107.723 & 73.599 & 263.752 & 38.068 \\
\hline 137 & 0.02 & 290.617 & 228.800 & 13.841 & 44.028 & 105.845 & 30.188 & 334.645 & 485.843 \\
\hline 87 & 0.02 & 237.581 & 187,206 & 39.526 & 69.553 & 119.927 & 30.027 & 307.133 & 407.335 \\
\hline 28 & 0.01 & 205.803 & 164.646 & 19.386 & 40.955 & 82.113 & 21.569 & 246.758 & 346.109 \\
\hline 43 & 0.01 & 215.319 & 168.478 & 13.704 & 44.318 & 91.158 & 30.614 & 259.636 & 364.009 \\
\hline 136 & 0.01 & 337.581 & 241.557 & 16.344 & 46.532 & 142.556 & 30.188 & 384.113 & 545.363 \\
\hline 95 & 0.01 & 152.112 & 157.556 & 47.156 & 89.693 & 84.250 & 42.537 & 241.805 & 302.497 \\
\hline 94 & 0.01 & 130.698 & 131.876 & 47.156 & 80.647 & 79.469 & 33.491 & 211.346 & 268.641 \\
\hline 123 & 0.00 & 134.018 & 156.088 & 67.158 & 155.088 & 133.018 & 87.930 & 289.106 & 365.620 \\
\hline 114 & 0.00 & 256.326 & 225.177 & 54.915 & 108.968 & 140.117 & 54.053 & 365.294 & 493.267 \\
\hline 148 & 0.00 & 227.945 & 195.758 & 72.737 & 120.428 & 152.615 & 47.692 & 348.373 & 441.658 \\
\hline 92 & -0.01 & 175.907 & 130.639 & 43.264 & 73.291 & 118.560 & 30.027 & 249.198 & 306.221 \\
\hline 132 & -0.01 & 197.186 & 174.191 & 66.975 & 105.621 & 128.615 & 38.646 & 302.807 & 398.957 \\
\hline 150 & -0.01 & 282.675 & 216.230 & 31.983 & 70.629 & 137.074 & 38.646 & 353.304 & 483.600 \\
\hline 134 & -0.01 & 206.052 & 199.631 & 36.610 & 91.250 & 97.671 & 54.640 & 297.302 & 395.844 \\
\hline 154 & -0.01 & 237.626 & 199.891 & 16.208 & 70.221 & 107.957 & 54.014 & 307.847 & 380.010 \\
\hline 124 & -0.02 & 200.239 & 144.062 & 37.110 & 70.601 & 126.778 & 33.491 & 270.840 & 334.869 \\
\hline 103 & -0.02 & 194.254 & 155.944 & 13.704 & 35.272 & 73.582 & 21.569 & 229.526 & 321.680 \\
\hline 152 & -0.02 & 251.330 & 209.231 & 36.397 & 66.496 & 108.595 & 30.099 & 317.826 & 415.006 \\
\hline 135 & -0.04 & 220.991 & 198.737 & 36.610 & 86.985 & 109.239 & 50.375 & 307.976 & 411.204 \\
\hline 131 & -0.07 & 150.499 & 152.283 & 40.349 & 90.724 & 88.940 & 50.375 & 241.223 & 303.805 \\
\hline 78 & -0.29 & 178.019 & 125.852 & 35.299 & 94.117 & 146.285 & 58.819 & 272.137 & 375.378 \\
\hline 142 & -0.31 & 309.279 & 229.207 & 56.382 & 121.739 & 201.810 & 65.356 & 431.017 & 545.457 \\
\hline 121 & -0.37 & 183.396 & 172.754 & 32.012 & 76.805 & 87.447 & 44.793 & 260.202 & 340.742 \\
\hline 80 & -0.65 & 178.019 & 155.434 & 35.299 & 94.117 & 116.703 & 58.819 & 272.137 & 375.378 \\
\hline 130 & -1.05 & 159.574 & 144.190 & 27,271 & 61.789 & 77.172 & 34.518 & 221.362 & 321.880 \\
\hline
\end{tabular}

\subsection*{5.10.5 Binary QSAR - model selection}

A: total accuracy; B: accuracy on actives; C: accuracy on inactives; bold: best value per PC; red bold: accuracies for selected model with smoothing factor \(=0.10\) and 5 PCs
\begin{tabular}{|c|ccccc|}
\hline \multicolumn{1}{|c|}{A} & \multicolumn{5}{|c}{ Smoothing factor } \\
\cline { 1 - 5 } PCs & 0.05 & 0.10 & 0.15 & 0.20 & 0.25 \\
\hline 1 & 73.52 & 70.59 & 69.12 & 69.12 & 69.12 \\
2 & 76.47 & 72.06 & 72.06 & 70.59 & 69.12 \\
\hline 3 & 82.35 & 79.41 & 77.94 & 79.41 & 79.41 \\
\hline 4 & 89.71 & 85.29 & 82.35 & 82.35 & 82.35 \\
\hline 5 & 94.12 & 92.65 & 88.23 & 83.82 & 86.76 \\
\hline 6 & 94.12 & 92.65 & 88.23 & 83.82 & 86.76 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccc|}
\hline B & \multicolumn{5}{|c|}{ Smoothing factor } \\
\hline PCs & 0.05 & 0.10 & 0.15 & 0.20 & 0.25 \\
\hline 1 & 29.17 & 25.00 & 20.83 & 20.83 & 20.83 \\
\hline 2 & 45.83 & 37.50 & 33.33 & 29.17 & 25.00 \\
\hline 3 & 62.50 & 54.17 & 50.00 & 54.17 & 54.17 \\
\hline 4 & 75.00 & 62.50 & 54.17 & 54.17 & 54.17 \\
\hline 5 & 83.33 & 79.17 & 70.83 & 62.50 & 66.67 \\
\hline 6 & 83.33 & 79.17 & 70.83 & 62.50 & 66.67 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccc|}
\hline C & \multicolumn{5}{|c|}{ Smoothing factor } \\
\cline { 1 - 5 } PCs & 0.05 & 0.10 & 0.15 & 0.20 & 0.25 \\
\hline 1 & 97.72 & 95.45 & 95.45 & 95.45 & 95.45 \\
\hline 2 & 93.18 & 90.91 & 93.18 & 93.18 & 93.18 \\
\hline 3 & 93.18 & 93.18 & 93.18 & 93.18 & 93.18 \\
\hline 4 & 97.73 & 97.73 & 97.73 & 97.73 & 97.73 \\
\hline 5 & 100.0 & 100.0 & 97.73 & 95.45 & 97.72 \\
\hline 6 & 100.0 & 100.0 & 97.73 & 95.45 & 97.72 \\
\hline
\end{tabular}

\subsection*{5.10.6 Binary QSAR - training set- results}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No} & \multicolumn{2}{|l|}{prediction} & \multicolumn{2}{|l|}{LOO crossvalidation} & \multirow[b]{2}{*}{No} & \multicolumn{2}{|l|}{prediction} & \multicolumn{2}{|l|}{LOO crossvalidation} \\
\hline & PRED & RES & PRED & RES & & PRED & RES & PRED & RES \\
\hline \multicolumn{10}{|c|}{active structures (inhibiting \(\mathrm{AtPARP1} \times 40 \%\) at \(100 \mu \mathrm{M}\) concentration)} \\
\hline \(60^{+}\) & 0.459 & 1 & 0.311 & 1 & 34 & 0.538 & 0 & 0.350 & 1 \\
\hline \(53+\) & 0.669 & 0 & 0.544 & 0 & \(41^{+}\) & 0.968 & 0 & 0.935 & 0 \\
\hline \(54+\) & 0.917 & 0 & 0.831 & 0 & \(108+\) & 0.511 & 0 & 0.261 & 1 \\
\hline \(99+\) & 0.969 & 0 & 0.782 & 0 & \(101+\) & 0.763 & 0 & 0.621 & 0 \\
\hline \(73+\) & 0.273 & 1 & 0.077 & 1 & \(27+\) & 0.756 & 0 & 0.544 & 0 \\
\hline \(62+\) & 0.621 & 0 & 0.393 & 1 & \(56^{+}\) & 0.346 & 1 & 0.219 & 1 \\
\hline \(49^{+}\) & 0.828 & 0 & 0.728 & 0 & \(102+\) & 0.865 & 0 & 0.763 & 0 \\
\hline \(106+\) & 0.691 & 0 & 0.433 & 1 & \(36^{+}\) & 0.877 & 0 & 0.794 & 0 \\
\hline \(42^{+}\) & 0.247 & 1 & 0.100 & 1 & 51 & 0.722 & 0 & 0.454 & 1 \\
\hline 112 & 0.821 & 0 & 0.727 & 0 & \(84+\) & 0.528 & 0 & 0.174 & 1 \\
\hline \(35+\) & 0.305 & 1 & 0.140 & 1 & \(25^{+}\) & 0.828 & 0 & 0.663 & 0 \\
\hline \(109+\) & 0.789 & 0 & 0.576 & 0 & \(47+\) & 0.864 & 0 & 0.798 & 0 \\
\hline
\end{tabular}
inactive structures (inhibiting \(\operatorname{AtPARP} 1<40 \%\) at \(100 \mu \mathrm{M}\) concentration)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 89 & 0.005 & 0 & 0.009 & 0 & 43 & 0.097 & 0 & 0.125 & 0 \\
\hline 107 & 0.455 & 0 & 0.735 & -1 & 136 & 0.003 & 0 & 0.006 & 0 \\
\hline 119 & 0.008 & 0 & 0.015 & 0 & 95 & 0.035 & 0 & 0.053 & 0 \\
\hline 128 & 0.025 & 0 & 0.038 & 0 & 94 & 0.247 & 0 & 0.380 & 0 \\
\hline 59 & 0.197 & 0 & 0.253 & 0 & 123 & 0.001 & 0 & 0.004 & 0 \\
\hline 117 & 0.309 & 0 & 0.430 & 0 & 114 & 0.008 & 0 & 0.014 & 0 \\
\hline 26 & 0.002 & 0 & 0.004 & 0 & 148 & 0.001 & 0 & 0.002 & 0 \\
\hline 156 & 0.006 & 0 & 0.020 & 0 & 92 & 0.016 & 0 & 0.026 & 0 \\
\hline 76 & 0.258 & 0 & 0.378 & 0 & 132 & 0.000 & 0 & 0.001 & 0 \\
\hline 120 & 0.009 & 0 & 0.015 & 0 & 150 & 0.120 & 0 & 0.156 & 0 \\
\hline 141 & 0.000 & 0 & 0.001 & 0 & 134 & 0.125 & 0 & 0.233 & 0 \\
\hline 111 & 0.080 & 0 & 0.101 & 0 & 154 & 0.001 & 0 & 0.004 & 0 \\
\hline 115 & 0.102 & 0 & 0.141 & 0 & 124 & 0.026 & 0 & 0.048 & 0 \\
\hline 118 & 0.003 & 0 & 0.011 & 0 & 103 & 0.100 & 0 & 0.153 & 0 \\
\hline 155 & 0.010 & 0 & 0.014 & 0 & 152 & 0.003 & 0 & 0.005 & 0 \\
\hline 104 & 0.317 & 0 & 0.426 & 0 & 135 & 0.012 & 0 & 0.017 & 0 \\
\hline 93 & 0.004 & 0 & 0.005 & 0 & 131 & 0.012 & 0 & 0.018 & 0 \\
\hline 138 & 0.024 & 0 & 0.035 & 0 & 78 & 0.004 & 0 & 0.009 & 0 \\
\hline 122 & 0.020 & 0 & 0.044 & 0 & 142 & 0.023 & 0 & 0.055 & 0 \\
\hline 137 & 0.047 & 0 & 0.082 & 0 & 121 & 0.032 & 0 & 0.047 & 0 \\
\hline 87 & 0.100 & 0 & 0.137 & 0 & 80 & 0.132 & 0 & 0.178 & 0 \\
\hline 28 & 0.160 & 0 & 0.219 & 0 & 130 & 0.067 & 0 & 0.124 & 0 \\
\hline
\end{tabular}
-: inactive compound; +: active compound

\subsection*{5.10.7 Binary QSAR - external validation - results}
\begin{tabular}{|c|ccc|ccc|}
\hline No & \(\mathrm{IC}_{50}(\mu \mathrm{M})\) & Inhib. \(100 \mu \mathrm{M}(\%)\) & active & PRED & Pred. activity & decision \\
\hline 52 & 1.62 & 199.9 & Yes & 0.014 & Inactive & Wrong \\
\hline 65 & 1.79 & 149.8 & Yes & 0.039 & Inactive & Wrong \\
\hline 64 & 4.45 & 134.6 & Yes & 0.332 & Inactive & Wrong \\
\hline 113 & 13.6 & 90.4 & Yes & 0.399 & Inactive & Wrong \\
\hline 77 & 58.5 & 82.7 & Yes & 0.639 & Active & Correct \\
\hline 83 & 20.7 & 75.8 & Yes & 0.214 & Inactive & Wrong \\
\hline 32 & 3.62 & 73.5 & Yes & 0.492 & Inactive & Wrong \\
\hline 81 & 11.05 & 68.0 & Yes & 0.639 & Active & Correct \\
\hline 39 & 19.8 & 61.6 & Yes & 0.797 & Active & Correct \\
\hline 153 & \(>100\) & 14.2 & No & 0.046 & Inactive & Correct \\
\hline 140 & \(>100\) & 12.0 & No & 0.003 & Inactive & Correct \\
\hline 144 & \(>100\) & 8.8 & No & 0.007 & Inactive & Correct \\
\hline 90 & \(>100\) & 3.9 & No & 0.039 & Inactive & Correct \\
\hline 86 & \(>100\) & 3.1 & No & 0.015 & Inactive & Correct \\
\hline 126 & \(>100\) & 2.6 & No & 0.049 & Inactive & Correct \\
\hline 133 & \(>100\) & 1.2 & No & 0.101 & Inactive & Correct \\
\hline 125 & \(>100\) & 0.7 & No & 0.120 & Inactive & Correct \\
\hline 139 & \(>100\) & 0.4 & No & 0.088 & Inactive & Correct \\
\hline 146 & \(>100\) & \(<0\) & No & 0.104 & Inactive & Correct \\
\hline 147 & \(>100\) & \(<0\) & No & 0.001 & Inactive & Correct \\
\hline 72 & \(>100\) & \(<0\) & No & 0.054 & Inactive & Correct \\
\hline 69 & \(>100\) & \(<0\) & No & 0.307 & Inactive & Correct \\
\hline 79 & \(>100\) & \(<0\) & No & 0.478 & Inactive & Correct \\
\hline
\end{tabular}

\subsection*{5.10.8 Binary QSAR PC analysis}
\begin{tabular}{|c|ccccc|}
\hline Descriptor code & 1 PC & 2 PCs & 3 PCs & 4 PCs & 5 PCs \\
\hline RMSE & 5.0536 & 5.0345 & 5.0721 & 5.0592 & 5.0480 \\
\hline \(1-\) corr & 0.1875 & 0.1023 & 0.3293 & 0.2054 & 0.1311 \\
\hline
\end{tabular}

\subsection*{5.11 MD simulation and analysis}

\subsection*{5.11.1 YASARA script - converting YASARA snapshots to .PDB files}

Printed below is the file content in which YASARA MD simulation snapshots are converted into PDB files for further analysis with bio3D or visual inspection:
```

OnError Exit
Name = 'AtPARP1 NAD_CNA'
MacroTarget = './(Name)' \# define MD simulation to be worked on
for i= 01250 to 01750 \# define range of MD to be converted
LoadSce (MacroTarget) \# load MD "template" file,
LoadSce (MacroTarget)_water \# in which the system is defined
ForceField AMBER03,SetPar=Yes \# define FF and parameters
Interactions Bond,Angle,Dihedral, Planarity, Coulomb,VdW
\# for each snapshot, load it:
LoadSIM (Name)(i).sim, assignSec = Yes
\# Delres hoh with distance >5 from res Nad
\# DelObj 3
\# DelObj 2
swapobj 3,2
DelObj 3 \# define protein as chain A
NameMol res hoh, C \# define water as chain B
NameMol res Nad, B \#
NameMol res Cna, B \# define ligands as chain C
Joinobj 2,1 \# combine to single complex, save as PDB
SavePDB 1,(Name)(i).pdb,Format=PDB,Transform=No
Clear \# clear system and exit when finished
exit

```

\subsection*{5.11.2 R script for preparing MD analysis}
```

cd D:\mds\1of3\pdbs\ \# change into directory of pdb files
copy /b *.pdb lof3_all.pdb \# concatenate snapshot files into one file

use catdcd to convert pdb file into dcd trajectory file

catdcd.exe -o D:mds\10f3\pdbs\1of3_all.dcd -pdb D:mds\1of3\pdbs\1of3_all.pdb

read trajectory file into R

dcdfile lof3 <-"D:/mds/lof3/pdbs/lof3 all.dcd"
dcd_1of\overline{3}<-read.dcd(dcdfile_1of3)[1:400}0,

read reference pdb file into R

pdbfile_1of3<-"D:/mds/1of3/pdbs/AtPARP1_NAD_CNA00000.pdb"
pdb_1of\overline{3}<-read.pdb(pdbfile_1of3)

get all C-alpha indices

ca_inds_1of3<-atom.select(pdb_1of3,elety="CA")

superpose all snapshots

fit_lof3<-fit.xyz(fixed=pdb_lof3$xyz, mobile=dcd_lof3, fixed.inds=ca_inds_1of3$xyz,
mobile.inds=ca_inds_lof3$xyz)
#calculate rmsd
rmsd_1of3<-rmsd(fit_1of3[1,ca_inds_1of3$xyz], fit_1of3[,ca_inds_1of3\$xyz])

```

\subsection*{5.11.3 RMSD analysis of NAD-CNA-ligated AtPARP1}

\section*{Analysis of MD simulations of catalytic domain of AtPARP1,}

Root mean square deviations (RMSD) of NAD-CNA-ligated AtPARP1


Figure 5.11: Results of MD simulations of NAD-CNA-ligated AtPARP1
Distributions of differences between calculated CDF and estimated CDF (expressed as \(e_{C D F}\) ) for all 10 independent docking runs with HsPARP1 inhibitors (A) and HsPARPI decoys (B).

\section*{Analysis of MD simulations of the catalytic domain of AtPARP1}


Figure 5.12: Results of MD simulations of NAD-CNA-ligated AtPARP1
Distributions of differences between calculated CDF and estimated CDF (expressed as \(e_{C D F}\) ) for all 10 independent docking runs with HsPARP1 inhibitors (A) and HsPARP1 decoys (B).

\section*{Analysis of MD simulations of the catalytic domain of AtPARP1}

Binding of adenine moiety of CNA


Figure 5.13: Results of MD simulations of NAD-CNA-ligated AtPARP1
Distributions of differences between calculated CDF and estimated CDF (expressed as \(e_{C D F}\) ) for all 10 independent docking runs with HsPARP1 inhibitors (A) and HsPARP1 decoys (B).

\section*{Analysis of MD simulations of the catalytic domain of AtPARP1}

Binding of adenine moiety of CNA

hydrogen bond between \(\mathrm{N}_{6} \mathrm{~A}\) of CNA and \(\mathrm{Thr}_{511} \mathrm{O}\)
- hydrogen bond between \(\mathrm{N}_{6} \mathrm{~A}\) of CNA and \(\mathrm{Gly}_{512} \mathrm{O}\)
- no hydrogen bond between CNA and Gly \({ }_{512}\) or \(\mathrm{Thr}_{511}\)

Figure 5.14: Results of MD simulations of NAD-CNA-ligated AtPARP1
Distributions of differences between calculated CDF and estimated CDF (expressed as \(e_{\text {CDF }}\) ) for all 10 independent docking runs with HsPARP1 inhibitors (A) and HsPARP1 decoys (B).

\subsection*{5.12 Lolium perenne screening results}

\section*{Dose-dependent relative dry mass production of Lolium perenne shoot,} in comparison to stressed and untreated control





Figure 5.15: Lolium perenne relative dry mass production for 22 AtPARP1 inhibitors
Four concentrations of \(1 \mu M\) (A), \(10 \mu M\) (B), \(25 \mu M\) (C) and \(50 \mu M\) (D)

\section*{References}
(1) Roitt, I. M. Biochem. J. 1956, 63 (2), 300-307.
(2) Chambon, P.; Weill, J. D.; Mandel, P. Biochem. Biophys. Res. Commun. 1963, 11, 39-43.
(3) Citarelli, M.; Teotia, S.; Lamb, R. S. BMC Evol. Biol. 2010, 10 (1), 308.
(4) Hassa, P. O.; Haenni, S. S.; Elser, M.; Hottiger, M. O. Microbiol. Mol. Biol. Rev. 2006, 70 (3), 789-829.
(5) Otto, H.; Reche, P. A.; Bazan, F.; Dittmar, K.; Haag, F.; Koch-Nolte, F. BMC Genomics 2005, 6 (1), 139.
(6) Amé, J.-C.; Spenlehauer, C.; de Murcia, G. BioEssays 2004, 26 (8), 882-893.
(7) Hakmé, A.; Wong, H.-K.; Dantzer, F.; Schreiber, V. EMBO Rep. 2008, 9 (11), 1094-1100.
(8) Hassa, P., O. Front. Biosci. 2008, 13 (13), 3046.
(9) Schreiber, V.; Dantzer, F.; Ame, J.-C.; de Murcia, G. Nat. Rev. Mol. Cell Biol. 2006, 7 (7), 517-528.
(10) Kleine, H.; Poreba, E.; Lesniewicz, K.; Hassa, P. O.; Hottiger, M. O.; Litchfield, D. W.; Shilton, B. H.; Lüscher, B. Mol. Cell 2008, 32 (1), 57-69.
(11) D’Amours, D.; Desnoyers, S.; D’Silva, I.; Poirier, G. G. Mol. Cell 1999, 39 (1), 249-268.
(12) Amé, J.-C.; Rolli, V.; Schreiber, V.; Niedergang, C.; Apiou, F.; Decker, P.; Muller, S.; Höger, T.; Murcia, J. M.; Murcia, G. de. J. Biol. Chem. 1999, 274 (25), 1786017868.
(13) Langelier, M.-F.; Servent, K. M.; Rogers, E. E.; Pascal, J. M. J. Biol. Chem. 2008, 283 (7), 4105-4114.
(14) Langelier, M.-F.; Ruhl, D. D.; Planck, J. L.; Kraus, W. L.; Pascal, J. M. J. Biol. Chem. 2010, 285 (24), 18877-18887.
(15) Desmarais, Y.; Ménard, L.; Lagueux, J.; Poirier, G. G. Biochim. Biophys. Acta BBA - Protein Struct. Mol. Enzymol. 1991, 1078 (2), 179-186.
(16) Rolli, V.; O’Farrell, M.; Ménissier-de Murcia, J.; de Murcia, G. Biochemistry (Mosc.) 1997, 36 (40), 12147-12154.
(17) Marsischky, G. T.; Wilson, B. A.; Collier, R. J. J. Biol. Chem. 1995, 270 (7), 32473254.
(18) Krishnakumar, R.; Kraus, W. L. Mol. Cell 2010, 39 (1), 8-24.
(19) Willmitzer, L. FEBS Lett. 1979, 108 (1), 13-16.
(20) Whitby, A. J.; Stone, P. R.; Whish, W. J. D. Biochem. Biophys. Res. Commun. 1979, 90 (4), 1295-1304.
(21) Ahlfors, R.; Lång, S.; Overmyer, K.; Jaspers, P.; Brosché, M.; Tauriainen, A.; Kollist, H.; Tuominen, H.; Belles-Boix, E.; Piippo, M.; Inzé, D.; Palva, E. T.; Kangasjärvi, J. Plant Cell Online 2004, 16 (7), 1925-1937.
(22) Babiychuk, E.; Cottrill, P. B.; Storozhenko, S.; Fuangthong, M.; Chen, Y.; O’Farrell, M. K.; Van Montagu, M.; Inzé, D.; Kushnir, S. Plant J. 1998, 15 (5), 635-645.
(23) Lepiniec, L.; Babiychuk, E.; Kushnir, S.; Van Montagu, M.; Inze', D. FEBS Lett. 1995, 364 (2), 103-108.
(24) Okubo, S.; Hara, F.; Tsuchida, Y.; Shimotakahara, S.; Suzuki, S.; Hatanaka, H.; Yokoyama, S.; Tanaka, H.; Yasuda, H.; Shindo, H. J. Biol. Chem. 2004, 279 (30), 31455-31461.
(25) Ryu, H.; Azuma, Y. J. Biol. Chem. 2010, 285 (42), 32576-32585.
(26) Mahajan, P. B.; Zuo, Z. Plant Physiol. 1998, 118 (3), 895-905.
(27) Becerra, C.; Puigdomenech, P.; Vicient, C. M. BMC Genomics 2006, 7 (1), 38.
(28) Jaspers, P.; Overmyer, K.; Wrzaczek, M.; Vainonen, J. P.; Blomster, T.; Salojärvi, J.; Reddy, R. A.; Kangasjärvi, J. BMC Genomics 2010, 11 (1), 170.
(29) Belles-Boix, E.; Babiychuk, E.; Van Montagu, M.; Inzé, D.; Kushnir, S. FEBS Lett. 2000, 482 (1-2), 19-24.
(30) Jaspers, P.; Blomster, T.; Brosché, M.; Salojärvi, J.; Ahlfors, R.; Vainonen, J. P.; Reddy, R. A.; Immink, R.; Angenent, G.; Turck, F.; Overmyer, K.; Kangasjärvi, J. Plant J. 2009, 60 (2), 268-279.
(31) Ruf, A.; Rolli, V.; de Murcia, G.; Schulz, G. E. J. Mol. Biol. 1998, 278 (1), 57-65.
(32) Scheuring, J.; Schramm, V. L. Biochemistry (Mosc.) 1997, 36 (15), 4526-4534.
(33) Bellocchi, D.; Costantino, G.; Pellicciari, R.; Re, N.; Marrone, A.; Coletti, C. ChemMedChem 2006, 1 (5), 533-539.
(34) Tong, W.-M.; Cortes, U.; Wang, Z.-Q. Biochim. Biophys. Acta BBA - Rev. Cancer 2001, 1552 (1), 27-37.
(35) Rouleau, M.; Aubin, R. A.; Poirier, G. G. J. Cell Sci. 2004, 117 (6), 815-825.
(36) Tulin, A.; Spradling, A. Science 2003, 299 (5606), 560-562.
(37) Leppard, J. B.; Dong, Z.; Mackey, Z. B.; Tomkinson, A. E. Mol. Cell. Biol. 2003, 23 (16), 5919-5927.
(38) Dantzer, F.; de la Rubia, G.; Ménissier-de Murcia, J.; Hostomsky, Z.; de Murcia, G.; Schreiber, V. Biochemistry (Mosc.) 2000, 39 (25), 7559-7569.
(39) Masson, M.; Niedergang, C.; Schreiber, V.; Muller, S.; Murcia, J. M.; Murcia, G. de. Mol. Cell. Biol. 1998, 18 (6), 3563-3571.
(40) Schreiber, V.; Amé, J.-C.; Dollé, P.; Schultz, I.; Rinaldi, B.; Fraulob, V.; Murcia, J. M.; Murcia, G. de. J. Biol. Chem. 2002, 277 (25), 23028-23036.
(41) Hassa, P. O.; Buerki, C.; Lombardi, C.; Imhof, R.; Hottiger, M. O. J. Biol. Chem. 2003, 278 (46), 45145-45153.
(42) Oei, S. L.; Griesenbeck, J.; Schweiger, M.; Ziegler, M. J. Biol. Chem. 1998, 273 (48), 31644-31647.
(43) Simbulan-Rosenthal, C. M.; Rosenthal, D. S.; Hilz, H.; Hickey, R.; Malkas, L.; Applegren, N.; Wu, Y.; Bers, G.; Smulson, M. E. Biochemistry (Mosc.) 1996, 35 (36), 11622-11633.
(44) Hoeijmakers, J. H. J. Nature 2001, 411 (6835), 366-374.
(45) Caldecott, K. W. BioEssays 2001, 23 (5), 447-455.
(46) Fan, J.; Wilson III, D. M. Free Radic. Biol. Med. 2005, 38 (9), 1121-1138.
(47) Park, C.-J.; Choi, B.-S. FEBS J. 2006, 273 (8), 1600-1608.
(48) Cahill, D. Front. Biosci. 2006, 11 (1), 1958.
(49) Christmann, M.; Tomicic, M. T.; Roos, W. P.; Kaina, B. Toxicology 2003, 193 (12), 3-34.
(50) Caldecott, K. W. DNA Repair 2003, 2 (9), 955-969.
(51) Vodenicharov, M. D.; Sallmann, F. R.; Satoh, M. S.; Poirier, G. G. Nucleic Acids Res. 2000, 28 (20), 3887-3896.
(52) Shall, S.; de Murcia, G. Mutat. Res. Repair 2000, 460 (1), 1-15.
(53) Caldecott, K. W.; Aoufouchi, S.; Johnson, P.; Shall, S. Nucleic Acids Res. 1996, 24 (22), 4387-4394.
(54) Prasad, R.; Lavrik, O. I.; Kim, S.-J.; Kedar, P.; Yang, X.-P.; Berg, B. J. V.; Wilson, S. H. J. Biol. Chem. 2001, 276 (35), 32411-32414.
(55) Parsons, J. L.; Dianov, G. L. Biochem. Soc. Trans. 2004, 32 (Pt 6), 962-963.
(56) Hartwell, L. H.; Szankasi, P.; Roberts, C. J.; Murray, A. W.; Friend, S. H. Science 1997, 278 (5340), 1064-1068.
(57) Bryant, H. E.; Schultz, N.; Thomas, H. D.; Parker, K. M.; Flower, D.; Lopez, E.; Kyle, S.; Meuth, M.; Curtin, N. J.; Helleday, T. Nature 2005, 434 (7035), 913-917.
(58) Farmer, H.; McCabe, N.; Lord, C. J.; Tutt, A. N. J.; Johnson, D. A.; Richardson, T. B.; Santarosa, M.; Dillon, K. J.; Hickson, I.; Knights, C.; Martin, N. M. B.; Jackson, S. P.; Smith, G. C. M.; Ashworth, A. Nature 2005, 434 (7035), 917-921.
(59) Wooster, R.; Weber, B. L. N. Engl. J. Med. 2003, 348 (23), 2339-2347.
(60) Gudmundsdottir, K.; Ashworth, A. Oncogene 2006, 25 (43), 5864-5874.
(61) Lord, C. J.; Ashworth, A. Curr. Opin. Pharmacol. 2008, 8 (4), 363-369.
(62) Saffhill, R.; Ockey, C. H. Chromosoma 1985, 92 (3), 218-224.
(63) Pieper, A. A.; Verma, A.; Zhang, J.; Snyder, S. H. Trends Pharmacol. Sci. 1999, 20 (4), 171-181.
(64) Purnell, M. R.; Whish, W. J. Biochem. J. 1980, 185 (3), 775-777.
(65) Durkacz, B. W.; Omidiji, O.; Gray, D. A.; Shall, S. Nature 1980, 283 (5747), 593596.
(66) Ferraris, D. V. J. Med. Chem. 2010, 53 (12), 4561-4584.
(67) Watson, C. Y.; Whish, W. J. D.; Threadgill, M. D. Bioorg. Med. Chem. 1998, 6 (6), 721-734.
(68) Banasik, M.; Komura, H.; Shimoyama, M.; Ueda, K. J. Biol. Chem. 1992, 267 (3), 1569-1575.
(69) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28 (1), 235-242.
(70) Kinoshita, T.; Nakanishi, I.; Warizaya, M.; Iwashita, A.; Kido, Y.; Hattori, K.; Fujii, T. FEBS Lett. 2004, 556 (1-3), 43-46.
(71) Karlberg, T.; Hammarström, M.; Schütz, P.; Svensson, L.; Schüler, H. Biochemistry (Mosc.) 2010, 49 (6), 1056-1058.
(72) Ruf, A.; de Murcia, G.; Schulz, G. E. Biochemistry (Mosc.) 1998, 37 (11), 38933900.
(73) Miknyoczki, S. J.; Jones-Bolin, S.; Pritchard, S.; Hunter, K.; Zhao, H.; Wan, W.; Ator, M.; Bihovsky, R.; Hudkins, R.; Chatterjee, S.; Klein-Szanto, A.; Dionne, C.; Ruggeri, B. Mol. Cancer Ther. 2003, 2 (4), 371-382.
(74) Tentori, L.; Leonetti, C.; Scarsella, M.; d’ Amati, G.; Vergati, M.; Portarena, I.; Xu, W.; Kalish, V.; Zupi, G.; Zhang, J.; Graziani, G. Clin. Cancer Res. 2003, 9 (14), 5370-5379.
(75) Calabrese, C. R.; Almassy, R.; Barton, S.; Batey, M. A.; Calvert, A. H.; CananKoch, S.; Durkacz, B. W.; Hostomsky, Z.; Kumpf, R. A.; Kyle, S.; Li, J.; Maegley, K.; Newell, D. R.; Notarianni, E.; Stratford, I. J.; Skalitzky, D.; Thomas, H. D.; Wang, L.-Z.; Webber, S. E.; Williams, K. J.; Curtin, N. J. J. Natl. Cancer Inst. 2004, 96 (1), 56-67.
(76) Tentori, L.; Graziani, G. Pharmacol. Res. 2005, 52 (1), 25-33.
(77) List of Clinical Trials in connection with the keyword PARP http://clinicaltrials.gov/ct2/results?term=PARP\&Search=Search (accessed Dec 29, 2014).
(78) Plummer, R.; Jones, C.; Middleton, M.; Wilson, R.; Evans, J.; Olsen, A.; Curtin, N.; Boddy, A.; McHugh, P.; Newell, D.; Harris, A.; Johnson, P.; Steinfeldt, H.; Dewji, R.; Wang, D.; Robson, L.; Calvert, H. Clin. Cancer Res. 2008, 14 (23), 7917-7923.
(79) Thomas, H. D.; Calabrese, C. R.; Batey, M. A.; Canan, S.; Hostomsky, Z.; Kyle, S.; Maegley, K. A.; Newell, D. R.; Skalitzky, D.; Wang, L.-Z.; Webber, S. E.; Curtin, N. J. Mol. Cancer Ther. 2007, 6 (3), 945-956.
(80) Plummer, R.; Lorigan, P.; Steven, N.; Scott, L.; Middleton, M. R.; Wilson, R. H.; Mulligan, E.; Curtin, N.; Wang, D.; Dewji, R.; Abbattista, A.; Gallo, J.; Calvert, H. Cancer Chemother. Pharmacol. 2013, 71 (5), 1191-1199.
(81) Miknyoczki, S.; Chang, H.; Grobelny, J.; Pritchard, S.; Worrell, C.; McGann, N.; Ator, M.; Husten, J.; Deibold, J.; Hudkins, R.; Zulli, A.; Parchment, R.; Ruggeri, B. Mol. Cancer Ther. 2007, 6 (8), 2290-2302.
(82) Loh Jr., V. M.; Cockcroft, X.; Dillon, K. J.; Dixon, L.; Drzewiecki, J.; Eversley, P. J.; Gomez, S.; Hoare, J.; Kerrigan, F.; Matthews, I. T. W.; Menear, K. A.; Martin, N. M. B.; Newton, R. F.; Paul, J.; Smith, G. C. M.; Vile, J.; Whittle, A. J. Bioorg. Med. Chem. Lett. 2005, 15 (9), 2235-2238.
(83) Cockcroft, X.; Dillon, K. J.; Dixon, L.; Drzewiecki, J.; Kerrigan, F.; Loh Jr., V. M.; Martin, N. M. B.; Menear, K. A.; Smith, G. C. M. Bioorg. Med. Chem. Lett. 2006, 16 (4), 1040-1044.
(84) Menear, K. A.; Adcock, C.; Alonso, F. C.; Blackburn, K.; Copsey, L.; Drzewiecki, J.; Fundo, A.; Le Gall, A.; Gomez, S.; Javaid, H.; Lence, C. F.; Martin, N. M. B.; Mydlowski, C.; Smith, G. C. M. Bioorg. Med. Chem. Lett. 2008, 18 (14), 39423945.
(85) Sakai, W.; Swisher, E. M.; Karlan, B. Y.; Agarwal, M. K.; Higgins, J.; Friedman, C.; Villegas, E.; Jacquemont, C.; Farrugia, D. J.; Couch, F. J.; Urban, N.; Taniguchi, T. Nature 2008, 451 (7182), 1116-1120.
(86) Barber, L. J.; Sandhu, S.; Chen, L.; Campbell, J.; Kozarewa, I.; Fenwick, K.; Assiotis, I.; Rodrigues, D. N.; Reis-Filho, J. S.; Moreno, V.; Mateo, J.; Molife, L. R.; De Bono, J.; Kaye, S.; Lord, C. J.; Ashworth, A. J. Pathol. 2013, 229 (3), 422429.
(87) Liu, X.; Shi, Y.; Maag, D. X.; Palma, J. P.; Patterson, M. J.; Ellis, P. A.; Surber, B. W.; Ready, D. B.; Soni, N. B.; Ladror, U. S.; Xu, A. J.; Iyer, R.; Harlan, J. E.; Solomon, L. R.; Donawho, C. K.; Penning, T. D.; Johnson, E. F.; Shoemaker, A. R. Clin. Cancer Res. 2012, 18 (2), 510-523.
(88) Patel, A. G.; Lorenzo, S. B. D.; Flatten, K. S.; Poirier, G. G.; Kaufmann, S. H. Clin. Cancer Res. 2012, 18 (6), 1655-1662.
(89) Torsoli, A.; Serafino, P. Sanofi Ends Iniparib Research, Plans \$285 Million Charge http://www.bloomberg.com/news/2013-06-03/sanofi-ends-iniparib-research-plans-285-million-charge.html (accessed Nov 18, 2013).
(90) Donawho, C. K.; Luo, Y.; Luo, Y.; Penning, T. D.; Bauch, J. L.; Bouska, J. J.; Bontcheva-Diaz, V. D.; Cox, B. F.; DeWeese, T. L.; Dillehay, L. E.; Ferguson, D. C.; Ghoreishi-Haack, N. S.; Grimm, D. R.; Guan, R.; Han, E. K.; Holley-Shanks, R. R.; Hristov, B.; Idler, K. B.; Jarvis, K.; Johnson, E. F.; Kleinberg, L. R.; Klinghofer, V.; Lasko, L. M.; Liu, X.; Marsh, K. C.; McGonigal, T. P.; Meulbroek, J. A.; Olson, A. M.; Palma, J. P.; Rodriguez, L. E.; Shi, Y.; Stavropoulos, J. A.; Tsurutani, A. C.; Zhu, G.-D.; Rosenberg, S. H.; Giranda, V. L.; Frost, D. J. Clin. Cancer Res. 2007, 13 (9), 2728-2737.
(91) Kummar, S.; Ji, J.; Morgan, R.; Lenz, H.-J.; Puhalla, S. L.; Belani, C. P.; Gandara, D. R.; Allen, D.; Kiesel, B.; Beumer, J. H.; Newman, E. M.; Rubinstein, L.; Chen, A.; Zhang, Y.; Wang, L.; Kinders, R. J.; Parchment, R. E.; Tomaszewski, J. E.; Doroshow, J. H. Clin. Cancer Res. 2012, 18 (6), 1726-1734.
(92) Doucet-Chabeaud, G.; Godon, C.; Brutesco, C.; Murcia, G. de; Kazmaier, M. Mol. Genet. Genomics 2001, 265 (6), 954-963.
(93) Amor, Y.; Babiychuk, E.; Inzé, D.; Levine, A. FEBS Lett. 1998, 440 (1-2), 1-7.
(94) Ramirez-Parra, E.; Gutierrez, C. Plant Physiol. 2007, 144 (1), 105-120.
(95) Zhu, Y.; Weng, M.; Yang, Y.; Zhang, C.; Li, Z.; Shen, W.-H.; Dong, A. Plant J. 2011, 66 (3), 443-455.
(96) Culligan, K. M.; Robertson, C. E.; Foreman, J.; Doerner, P.; Britt, A. B. Plant J. 2006, 48 (6), 947-961.
(97) Chen, I.-P.; Haehnel, U.; Altschmied, L.; Schubert, I.; Puchta, H. Plant J. 2003, 35 (6), 771-786.
(98) Ogawa, T.; Ishikawa, K.; Harada, K.; Fukusaki, E.; Yoshimura, K.; Shigeoka, S. Plant J. 2009, 57 (2), 289-301.
(99) De Block, M.; Verduyn, C.; Brouwer, D. D.; Cornelissen, M. Plant J. 2005, 41 (1), 95-106.
(100) Vanderauwera, S.; Block, M. D.; Steene, N. V. de; Cotte, B. van de; Metzlaff, M.; Breusegem, F. V. Proc. Natl. Acad. Sci. 2007, 104 (38), 15150-15155.
(101) Wu, Y.; Kuzma, J.; Maréchal, E.; Graeff, R.; Lee, H. C.; Foster, R.; Chua, N.-H. Science 1997, 278 (5346), 2126-2130.
(102) Sánchez, J.-P.; Duque, P.; Chua, N.-H. Plant J. 2004, 38 (3), 381-395.
(103) Andrabi, S. A.; Kim, N. S.; Yu, S.-W.; Wang, H.; Koh, D. W.; Sasaki, M.; Klaus, J. A.; Otsuka, T.; Zhang, Z.; Koehler, R. C.; Hurn, P. D.; Poirier, G. G.; Dawson, V. L.; Dawson, T. M. Proc. Natl. Acad. Sci. 2006, 103 (48), 18308-18313.
(104) Hanai, S.; Kanai, M.; Ohashi, S.; Okamoto, K.; Yamada, M.; Takahashi, H.; Miwa, M. Proc. Natl. Acad. Sci. 2004, 101 (1), 82-86.
(105) Fisher, A. E. O.; Hochegger, H.; Takeda, S.; Caldecott, K. W. Mol. Cell. Biol. 2007, 27 (15), 5597-5605.
(106) Koh, D. W.; Lawler, A. M.; Poitras, M. F.; Sasaki, M.; Wattler, S.; Nehls, M. C.; Stöger, T.; Poirier, G. G.; Dawson, V. L.; Dawson, T. M. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (51), 17699-17704.
(107) Panda, S.; Poirier, G. G.; Kay, S. A. Dev. Cell 2002, 3 (1), 51-61.
(108) Ishikawa, K.; Yoshimura, K.; Ogawa, T.; Shigeoka, S. Plant Signal. Behav. 2010, 5 (7), 839-841.
(109) Ogawa, T.; Ueda, Y.; Yoshimura, K.; Shigeoka, S. J. Biol. Chem. 2005, 280 (26), 25277-25283.
(110) Briggs, A. G.; Bent, A. F. Trends Plant Sci. 2011, 16 (7), 372-380.
(111) Ishikawa, K.; Ogawa, T.; Hirosue, E.; Nakayama, Y.; Harada, K.; Fukusaki, E.; Yoshimura, K.; Shigeoka, S. Plant Physiol. 2009, 151 (2), 741-754.
(112) Ge, X.; Li, G.-J.; Wang, S.-B.; Zhu, H.; Zhu, T.; Wang, X.; Xia, Y. Plant Physiol. 2007, 145 (1), 204-215.
(113) Adams-Phillips, L.; Briggs, A. G.; Bent, A. F. Plant Physiol. 2010, 152 (1), 267280.
(114) Bartsch, M.; Gobbato, E.; Bednarek, P.; Debey, S.; Schultze, J. L.; Bautor, J.; Parker, J. E. Plant Cell Online 2006, 18 (4), 1038-1051.
(115) Jambunathan, N.; Mahalingam, R. Planta 2006, 224 (1), 1-11.
(116) McKiernan, D. P. J. Drugs 2006, 66 (6), 743-750.
(117) Phornphutkul, C.; Introne, W. J.; Perry, M. B.; Bernardini, I.; Murphey, M. D.; Fitzpatrick, D. L.; Anderson, P. D.; Huizing, M.; Anikster, Y.; Gerber, L. H.; Gahl, W. A. N. Engl. J. Med. 2002, 347 (26), 2111-2121.
(118) Dillon, K. J.; Smith, G. C. M.; Martin, N. M. B. J. Biomol. Screen. 2003, 8 (3), 347352.
(119) Domenighini, M.; Montecucco, C.; Ripka, W. C.; Rappuoli, R. Mol. Microbiol. 1991, 5 (1), 23-31.
(120) Domenighini, M.; Magagnoli, C.; Pizza, M.; Rappuoli, R. Mol. Microbiol. 1994, 14 (1), 41-50.
(121) Bell, C. E.; Eisenberg, D. Biochemistry (Mosc.) 1996, 35 (4), 1137-1149.
(122) Ruf, A.; Murcia, J. M. de; Murcia, G. de; Schulz, G. E. Proc. Natl. Acad. Sci. 1996, 93 (15), 7481-7485.
(123) Jørgensen, R.; Wang, Y.; Visschedyk, D.; Merrill, A. R. EMBO Rep. 2008, 9 (8), 802-809.
(124) O’Neal, C. J.; Jobling, M. G.; Holmes, R. K.; Hol, W. G. J. Science 2005, 309 (5737), 1093-1096.
(125) Lee, Y.-M.; Babu, C. S.; Chen, Y. C.; Milcic, M.; Qu, Y.; Lim, C. J. Med. Chem. 2010, 53 (10), 4038-4049.
(126) García-Sosa, A. T.; Firth-Clark, S.; Mancera, R. L. J. Chem. Inf. Model. 2005, 45 (3), 624-633.
(127) Costantino, G.; Macchiarulo, A.; Camaioni, E.; Pellicciari, R. J. Med. Chem. 2001, 44 (23), 3786-3794.
(128) Riahi, S.; Pourbasheer, E.; Dinarvand, R.; Ganjali, M. R.; Norouzi, P. Chem. Biol. Drug Des. 2008, 72 (6), 575-584.
(129) Cramer, R. D.; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110 (18), 5959-5967.
(130) Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37 (24), 4130-4146.
(131) Zeng, H.; Zhang, H.; Jang, F.; Zhao, L.; Zhang, J. Chem. Biol. Drug Des. 2011, 78 (3), 333-352.
(132) Rewatkar, P. V.; Kokil, G. R.; Raut, M. K. Med. Chem. Res. 2011, 20 (7), 877-886.
(133) Pellicciari, R.; Camaioni, E.; Costantino, G.; Marinozzi, M.; Macchiarulo, A.; Moroni, F.; Natalini, B. Il Farm. 2003, 58 (9), 851-858.
(134) Ishida, J.; Yamamoto, H.; Kido, Y.; Kamijo, K.; Murano, K.; Miyake, H.; Ohkubo, M.; Kinoshita, T.; Warizaya, M.; Iwashita, A.; Mihara, K.; Matsuoka, N.; Hattori, K. Bioorg. Med. Chem. 2006, 14 (5), 1378-1390.
(135) Oliver, A. W.; Amé, J.-C.; Roe, S. M.; Good, V.; Murcia, G. de; Pearl, L. H. Nucleic Acids Res. 2004, 32 (2), 456-464.
(136) Novikov, F. N.; Stroylov, V. S.; Stroganov, O. V.; Kulkov, V.; Chilov, G. G. J. Mol. Model. 2009, 15 (11), 1337-1347.
(137) Stroganov, O. V.; Novikov, F. N.; Stroylov, V. S.; Kulkov, V.; Chilov, G. G. J. Chem. Inf. Model. 2008, 48 (12), 2371-2385.
(138) Korb, O.; Monecke, P.; Hessler, G.; Stützle, T.; Exner, T. E. J. Chem. Inf. Model. 2010, 50 (9), 1669-1681.
(139) Ott, K.-H.; Aranı\&\#x0301;bar, N.; Singh, B.; Stockton, G. W. Phytochemistry 2003, 62 (6), 971-985.
(140) Menne, H. Homepage of Herbicide Resistance Action Committee (HRAC) http://www.hracglobal.com/Education/ClassificationofHerbicideSiteofAction.aspx.
(141) Chipman, D.; Barak, Z.; Schloss, J. V. Biochim. Biophys. Acta BBA - Protein Struct. Mol. Enzymol. 1998, 1385 (2), 401-419.
(142) Chaleff, R. S.; Mauvais, C. J. Science 1984, 224 (4656), 1443-1445.
(143) Pang, S. S.; Duggleby, R. G.; Guddat, L. W. J. Mol. Biol. 2002, 317 (2), 249-262.
(144) Duggleby, R. G.; McCourt, J. A.; Guddat, L. W. Plant Physiol. Biochem. 2008, 46 (3), 309-324.
(145) Wang, J.-G.; Xiao, Y.-J.; Li, Y.-H.; Ma, Y.; Li, Z.-M. Bioorg. Med. Chem. 2007, 15 (1), 374-380.
(146) Shang, J.; Wang, W.-M.; Li, Y.-H.; Song, H.-B.; Li, Z.-M.; Wang, J.-G. J. Agric. Food Chem. 2012, 60 (34), 8286-8293.
(147) Wang, J.; Tan, H.; Li, Y.; Ma, Y.; Li, Z.; Guddat, L. W. J. Agric. Food Chem. 2011, 59 (18), 9892-9900.
(148) Ackerman, F. Int. J. Occup. Environ. Health 2007, 13 (4), 437-445.
(149) Tillitt, D. E.; Papoulias, D. M.; Whyte, J. J.; Richter, C. A. Aquat. Toxicol. 2010, 99 (2), 149-159.
(150) Jalaie, M.; Erickson, J. A. J. Comput. Aided Mol. Des. 2000, 14 (2), 181-197.
(151) Bordás, B.; Kőmíves, T.; Lopata, A. Pest Manag. Sci. 2003, 59 (4), 393-400.
(152) Key Organics http://www.keyorganics.net/.
(153) Key Organics Agromediates http://www.keyorganics.net/services/bionetproducts/agrimediates/.
(154) Bellocchi, D.; Macchiarulo, A.; Costantino, G.; Pellicciari, R. Bioorg. Med. Chem. 2005, 13 (4), 1151-1157.
(155) Dunn, D.; Husten, J.; Ator, M. A.; Chatterjee, S. Bioorg. Med. Chem. Lett. 2007, 17 (2), 542-545.
(156) Hattori, K.; Kido, Y.; Yamamoto, H.; Ishida, J.; Iwashita, A.; Mihara, K. Bioorg. Med. Chem. Lett. 2007, 17 (20), 5577-5581.
(157) Hattori, K.; Kido, Y.; Yamamoto, H.; Ishida, J.; Kamijo, K.; Murano, K.; Ohkubo, M.; Kinoshita, T.; Iwashita, A.; Mihara, K.; Yamazaki, S.; Matsuoka, N.; Teramura, Y.; Miyake, H. J. Med. Chem. 2004, 47 (17), 4151-4154.
(158) Huang, N.; Shoichet, B. K.; Irwin, J. J. J. Med. Chem. 2006, 49 (23), 6789-6801.
(159) EMBOSS Needle http://www.ebi.ac.uk/Tools/psa/emboss_needle/.
(160) Needleman, S. B.; Wunsch, C. D. J. Mol. Biol. 1970, 48 (3), 443-453.
(161) Clustal Omega http://www.ebi.ac.uk/Tools/msa/clustalo/.
(162) Goujon, M.; McWilliam, H.; Li, W.; Valentin, F.; Squizzato, S.; Paern, J.; Lopez, R. Nucleic Acids Res. 2010, 38 (suppl 2), W695-W699.
(163) Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T. J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J. D.; Higgins, D. G. Mol. Syst. Biol. 2011, 7 (1).
(164) Saitou, N.; Nei, M. Mol. Biol. Evol. 1987, 4 (4), 406-425.
(165) Molecular Operating Environment (MOE); Chemical Computing Group Inc.: 1010 Sherbooke St. West, Suite \#910, Montreal, QC, Canada, H3A 2R7, 2013, 2008.
(166) Molecular Operating Environment (MOE); Chemical Computing Group Inc.: 1010 Sherbooke St. West, Suite \#910, Montreal, QC, Canada, H3A 2R7, 2013, 2009.
(167) Molecular Operating Environment (MOE); Chemical Computing Group Inc.: 1010 Sherbooke St. West, Suite \#910, Montreal, QC, Canada, H3A 2R7, 2013, 2010.
(168) Molecular Operating Environment (MOE); Chemical Computing Group Inc.: 1010 Sherbooke St. West, Suite \#910, Montreal, QC, Canada, H3A 2R7, 2011, 2011.
(169) Molecular Operating Environment (MOE); Chemical Computing Group Inc.: 1010 Sherbooke St. West, Suite \#910, Montreal, QC, Canada, H3A 2R7, 2013, 2012.
(170) Labute, P. J. Chem. Inf. Model. 2010, 50 (5), 792-800.
(171) Hawkins, P. C. D.; Skillman, A. G.; Warren, G. L.; Ellingson, B. A.; Stahl, M. T. J. Chem. Inf. Model. 2010, 50 (4), 572-584.
(172) Mills, J. E. J.; Dean, P. M. J. Comput. Aided Mol. Des. 1996, 10 (6), 607-622.
(173) Wlodek, S.; Skillman, A. G.; Nicholls, A. Acta Crystallogr. D Biol. Crystallogr. 2006, 62 (7), 741-749.
(174) Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Proteins Struct. Funct. Bioinforma. 2009, 77 (S9), 114-122.
(175) Krieger, E.; Darden, T.; Nabuurs, S. B.; Finkelstein, A.; Vriend, G. Proteins Struct. Funct. Bioinforma. 2004, 57 (4), 678-683.
(176) Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. J. Comput. Chem. 2003, 24 (16), 1999-2012.
(177) King, R. D.; Sternberg, M. J. E. Protein Sci. 1996, 5 (11), 2298-2310.
(178) Krieger, E.; Nielsen, J. E.; Spronk, C. A. E. M.; Vriend, G. J. Mol. Graph. Model. 2006, 25 (4), 481-486.
(179) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81 (8), 3684-3690.
(180) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103 (19), 8577.
(181) Watts, K. S.; Dalal, P.; Murphy, R. B.; Sherman, W.; Friesner, R. A.; Shelley, J. C. J. Chem. Inf. Model. 2010, 50 (4), 534-546.
(182) Chen, I.-J.; Foloppe, N. J. Chem. Inf. Model. 2010, 50 (5), 822-839.
(183) Banks, J. L.; Beard, H. S.; Cao, Y.; Cho, A. E.; Damm, W.; Farid, R.; Felts, A. K.; Halgren, T. A.; Mainz, D. T.; Maple, J. R.; Murphy, R.; Philipp, D. M.; Repasky, M. P.; Zhang, L. Y.; Berne, B. J.; Friesner, R. A.; Gallicchio, E.; Levy, R. M. J. Comput. Chem. 2005, 26 (16), 1752-1780.
(184) Ligprep, version 2.4; Ligprep, version 2.4, Schrödinger, LLC, New York, NY, 2010.: New York, NY, 2010.
(185) Shelley, J. C.; Cholleti, A.; Frye, L. L.; Greenwood, J. R.; Timlin, M. R.; Uchimaya, M. J. Comput. Aided Mol. Des. 2007, 21 (12), 681-691.
(186) Greenwood, J. R.; Calkins, D.; Sullivan, A. P.; Shelley, J. C. J. Comput. Aided Mol. Des. 2010, 24 (6-7), 591-604.
(187) Leung, S. S. F.; Mijalkovic, J.; Borrelli, K.; Jacobson, M. P. J. Chem. Inf. Model. 2012, 52 (6), 1621-1636.
(188) Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. J. Med. Chem. 2004, 47 (7), 1739-1749.
(189) Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W. T.; Banks, J. L. J. Med. Chem. 2004, 47 (7), 1750-1759.
(190) Glide, version 5.6; Glide, version 5.6, Schrödinger, LLC, New York, NY, 2010.: New York, NY.
(191) Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P. J. Comput. Aided Mol. Des. 1997, 11 (5), 425-445.
(192) Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. J. Med. Chem. 2006, 49 (21), 6177-6196.
(193) Jones, G.; Willett, P.; Glen, R. C. J. Mol. Biol. 1995, 245 (1), 43-53.
(194) Jones, G.; Willett, P. Curr. Opin. Biotechnol. 1995, 6 (6), 652-656.
(195) Davis, L. Handbook of Genetic Algorithms; Van Nostrand Reinhold, 1991.
(196) Brodmeier, T.; Pretsch, E. J. Comput. Chem. 1994, 15 (6), 588-595.
(197) Clark, K. P.; Ajay. J. Comput. Chem. 1995, 16 (10), 1210-1226.
(198) Mooij, W. T. M.; Verdonk, M. L. Proteins Struct. Funct. Bioinforma. 2005, 61 (2), 272-287.
(199) Murray, C. W.; Auton, T. R.; Eldridge, M. D. J. Comput. Aided Mol. Des. 1998, 12 (5), 503-519.
(200) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking.
(201) Korb, O.; Stützle, T.; Exner, T. E. J. Chem. Inf. Model. 2009, 49 (1), 84-96.
(202) Gehlhaar, D. K.; Verkhivker, G. M.; Rejto, P. A.; Sherman, C. J.; Fogel, D. R.; Fogel, L. J.; Freer, S. T. Chem. Biol. 1995, 2 (5), 317-324.
(203) Verkhivker, G. M. J. Mol. Graph. Model. 2004, 22 (5), 335-348.
(204) Verdonk, M. L.; Berdini, V.; Hartshorn, M. J.; Mooij, W. T. M.; Murray, C. W.; Taylor, R. D.; Watson, P. J. Chem. Inf. Comput. Sci. 2004, 44 (3), 793-806.
(205) Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. Proteins Struct. Funct. Bioinforma. 2003, 52 (4), 609-623.
(206) Clark, M.; Cramer, R. D.; Van Opdenbosch, N. J. Comput. Chem. 1989, 10 (8), 982-1012.
(207) Geißler, G., Torsten. Entwicklung von Assays zur Untersuchung chemischinduzierter Trockenstresstoleranz, Martin-Luther-Universität Halle-Wittenberg: Halle (Saale), 2013.
(208) Geissler, T.; Wessjohann, L. A. J. Plant Growth Regul. 2011, 30 (4), 504-511.
(209) ProBiS server http://probis.cmm.ki.si/.
(210) Konc, J.; Janežič, D. Bioinformatics 2010, 26 (9), 1160-1168.
(211) Konc, J.; Česnik, T.; Konc, J. T.; Penca, M.; Janežič, D. J. Chem. Inf. Model. 2012, 52 (2), 604-612.
(212) Schmitt, S.; Kuhn, D.; Klebe, G. J. Mol. Biol. 2002, 323 (2), 387-406.
(213) Konc, J.; Janežič, D. J. Chem. Inf. Model. 2007, 47 (3), 940-944.
(214) Konc, J.; Janežič, D. Commun. Math. Comput. Chem. MATCH 58 (3), 569-590.
(215) Altschul, S. F.; Gish, W. Methods Enzymol. 266, 460-480.
(216) Altschul, S. F.; Madden, T. L.; Schäffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. J. Nucleic Acids Res. 1997, 25 (17), 3389-3402.
(217) Karlin, S.; Altschul, S. F. Proc. Natl. Acad. Sci. 1990, 87 (6), 2264-2268.
(218) Chen, Y.-M.; Shall, S.; O’farrell, M. Eur. J. Biochem. 1994, 224 (1), 135-142.
(219) Korb, O.; Stützle, T.; Exner, T. E. In Ant Colony Optimization and Swarm Intelligence; Dorigo, M., Gambardella, L. M., Birattari, M., Martinoli, A., Poli, R., Stützle, T., Eds.; Lecture Notes in Computer Science; Springer Berlin Heidelberg, 2006; pp 247-258.
(220) R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014.
(221) Labute, P. Pac. Symp. Biocomput. Pac. Symp. Biocomput. 1999, 444-455.
(222) Gao, H.; Williams, C.; Labute, P.; Bajorath, J. J. Chem. Inf. Comput. Sci. 1999, 39 (1), 164-168.
(223) Jurik, A.; Reicherstorfer, R.; Zdrazil, B.; Ecker, G. F. Mol. Inform. 2013, 32 (5-6), 415-419.
(224) Fawcett, T. Pattern Recognit. Lett. 2006, 27 (8), 861-874.
(225) Hanley, J. A.; McNeil, B. J. Radiology 1983, 143 (1), 29-36.
(226) Kabsch, W. Acta Crystallogr. Sect. A 1976, 32 (5), 922-923.
(227) Kabsch, W. Acta Crystallogr. Sect. A 1978, 34 (5), 827-828.
(228) Grant, B. J.; Rodrigues, A. P. C.; ElSawy, K. M.; McCammon, J. A.; Caves, L. S. D. Bioinforma. Oxf. Engl. 2006, 22 (21), 2695-2696.
(229) Punta, M.; Coggill, P. C.; Eberhardt, R. Y.; Mistry, J.; Tate, J.; Boursnell, C.; Pang, N.; Forslund, K.; Ceric, G.; Clements, J.; Heger, A.; Holm, L.; Sonnhammer, E. L. L.; Eddy, S. R.; Bateman, A.; Finn, R. D. Nucleic Acids Res. 2012, 40 (D1), D290D301.
(230) Lovell, S. C.; Davis, I. W.; Arendall, W. B.; de Bakker, P. I. W.; Word, J. M.; Prisant, M. G.; Richardson, J. S.; Richardson, D. C. Proteins Struct. Funct. Bioinforma. 2003, 50 (3), 437-450.
(231) Colovos, C.; Yeates, T. O. Protein Sci. 1993, 2 (9), 1511-1519.
(232) Wiederstein, M.; Sippl, M. J. Nucleic Acids Res. 2007, 35 (suppl 2), W407-W410.
(233) Sippl, M. J. Proteins Struct. Funct. Bioinforma. 1993, 17 (4), 355-362.
(234) Sippl, M. J. Curr. Opin. Struct. Biol. 1995, 5 (2), 229-235.
(235) Bowie, J. U.; Luthy, R.; Eisenberg, D. Science 1991, 253 (5016), 164-170.
(236) Lüthy, R.; Bowie, J. U.; Eisenberg, D. Nature 1992, 356 (6364), 83-85.
(237) Cleveland, W. S. J. Am. Stat. Assoc. 1979, 74 (368), 829-836.
(238) Penning, T. D.; Zhu, G.-D.; Gong, J.; Thomas, S.; Gandhi, V. B.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E. F.; Park, C. H.; Fry, E. H.; Donawho, C. K.; Frost, D. J.; Buchanan, F. G.; Bukofzer, G. T.; Rodriguez, L. E.; Bontcheva-Diaz, V.; Bouska, J. J.; Osterling, D. J.; Olson, A. M.; Marsh, K. C.; Luo, Y.; Giranda, V. L. J. Med. Chem. 2010, 53 (8), 3142-3153.
(239) Halpern SD; Karlawish JT; Berlin JA. JAMA 2002, 288 (3), 358-362.
(240) Field, A. PsyPAG Q. 2006, 58, 9-23.
(241) Ellis, P. D. The essential guide to effect sizes: statistical power, meta-analysis, and the interpretation of research results; Cambridge University Press: Cambridge; New York, 2010.
(242) Cohen, J. Statistical Power Analysis for the Behavioral Sciences, Second Edition; Routledge, 1988.
(243) Triballeau, N.; Acher, F.; Brabet, I.; Pin, J.-P.; Bertrand, H.-O. J. Med. Chem. 2005, 48 (7), 2534-2547.
(244) Schmidt, F. L. Psychol. Methods 1996, 1 (2), 115-129.
(245) Neyman, J.; Pearson, E. Philos. Trans. R. Soc. 1933, 231, 289-337.
(246) Hubbard, R.; Bayarri, M. J. Am. Stat. 2003, 57 (3), 171-178.
(247) ConfGen, version 2.2; ConfGen, version 2.2, Schrödinger, LLC, New York, NY, 2010., 2010.
(248) Hoenig, J. M.; Heisey, D. M. Am. Stat. 2001, 55 (1), 19-24.
(249) Onwuegbuzie, A. J.; Leech, N. L. Underst. Stat. 2004, 3 (4), 201-230.
(250) Becker, O. M.; Dhanoa, D. S.; Marantz, Y.; Chen, D.; Shacham, S.; Cheruku, S.; Heifetz, A.; Mohanty, P.; Fichman, M.; Sharadendu, A.; Nudelman, R.; Kauffman, M.; Noiman, S. J. Med. Chem. 2006, 49 (11), 3116-3135.
(251) Sun, H. ChemMedChem 2006, 1 (3), 315-322.
(252) Song, M.; Clark, M. J. Chem. Inf. Model. 2006, 46 (1), 392-400.
(253) Becker, O. M.; Marantz, Y.; Shacham, S.; Inbal, B.; Heifetz, A.; Kalid, O.; BarHaim, S.; Warshaviak, D.; Fichman, M.; Noiman, S. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (31), 11304-11309.
(254) Zhou, Y.; Peng, H.; Ji, Q.; Zhu, Z.; Yang, C. Bioorg. Med. Chem. Lett. 2006, 16 (22), 5878-5882.
(255) Floquet, N.; Richet, C.; Durand, P.; Bernard, M.; Badet, B.; Badet-Denisot, M.-A. Bioorg. Med. Chem. Lett. 2007, 17 (7), 1966-1970.
(256) Parrill, A. L.; Echols, U.; Nguyen, T.; Pham, T.-C. T.; Hoeglund, A.; Baker, D. L. Bioorg. Med. Chem. 2008, 16 (4), 1784-1795.
(257) White, A. W.; Almassy, R.; Calvert, A. H.; Curtin, N. J.; Griffin, R. J.; Hostomsky, Z.; Maegley, K.; Newell, D. R.; Srinivasan, S.; Golding, B. T. J. Med. Chem. 2000, 43 (22), 4084-4097.
(258) Lehtiö, L.; Jemth, A.-S.; Collins, R.; Loseva, O.; Johansson, A.; Markova, N.; Hammarström, M.; Flores, A.; Holmberg-Schiavone, L.; Weigelt, J.; Helleday, T.; Schüler, H.; Karlberg, T. J. Med. Chem. 2009, 52 (9), 3108-3111.
(259) Miyashiro, J.; Woods, K. W.; Park, C. H.; Liu, X.; Shi, Y.; Johnson, E. F.; Bouska, J. J.; Olson, A. M.; Luo, Y.; Fry, E. H.; Giranda, V. L.; Penning, T. D. Bioorg. Med. Chem. Lett. 2009, 19 (15), 4050-4054.
(260) Gandhi, V. B.; Luo, Y.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E. F.; Park, C.; Giranda, V. L.; Penning, T. D.; Zhu, G.-D. Bioorg. Med. Chem. Lett. 2010, 20 (3), 1023-1026.
(261) Kirby, C. A.; Cheung, A.; Fazal, A.; Shultz, M. D.; Stams, T. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. 2012, 68 (Pt 2), 115-118.
(262) Karlberg, T.; Markova, N.; Johansson, I.; Hammarström, M.; Schütz, P.; Weigelt, J.; Schüler, H. J. Med. Chem. 2010, 53 (14), 5352-5355.
(263) Gunaydin, H.; Gu, Y.; Huang, X. PloS One 2012, 7 (3), e33740.
(264) Naylor, E.; Arredouani, A.; Vasudevan, S. R.; Lewis, A. M.; Parkesh, R.; Mizote, A.; Rosen, D.; Thomas, J. M.; Izumi, M.; Ganesan, A.; Galione, A.; Churchill, G. C. Nat. Chem. Biol. 2009, 5 (4), 220-226.
(265) Zhou, Z.; Wang, Y.; Bryant, S. H. J. Mol. Graph. Model. 2010, 28 (8), 714-727.
(266) Fells, J. I.; Tsukahara, R.; Liu, J.; Tigyi, G.; Parrill, A. L. J. Mol. Graph. Model. 2010, 28 (8), 828-833.
(267) Ijjaali, I.; Petitet, F.; Dubus, E.; Barberan, O.; Michel, A. Bioorg. Med. Chem. 2007, 15 (12), 4256-4264.
(268) Thai, K.-M.; Ecker, G. F. Bioorg. Med. Chem. 2007, 16 (7), 4107-4119.
(269) Gao, H.; Bajorath, J. Mol. Divers. 1998, 4 (2), 115-130.
(270) Yates, F. Suppl. J. R. Stat. Soc. 1934, 1 (2), 217.

\section*{Curriculum vitae}

\author{
Persönliche Daten
}
\begin{tabular}{ll} 
Name: & Peter-Paul Heym \\
Geburtsdatum: & 22.08 .1983 \\
Geburtsort: & Hoyerswerda \\
Familienstand: & Ledig, 2 Kinder \\
Nationalität: & Deutsch \\
Vater: & Wolfgang Lutz Heym \\
Mutter: & Gabriele Heym
\end{tabular}

\section*{Schulbildung und Studium}

1994-2002
2002-2009

2009-2015

2010-2011

Beruf

02/2009-09/2014

01/2012-08/2012
07/2012-09/2012
seit 10/2014

Allgemeine Hochschulreife (Abitur), Note 1,9
Studium Bioinformatik
Martin-Luther-Universität Halle-Wittenberg
Abschluss: Diplom, Note 1,6
Promotion an der
Martin-Luther-Universität Halle-Wittenberg
Graduate Certificate in Statistics
University of Sheffield
mit Unterbrechung; wissenschaftlicher Mitarbeiter am Agrochemischen Institut Piesteritz e.V. (AIP)
Mitarbeiter bei Startblock24.de
wissenschaftlicher Mitarbeiter am Institut für Pflanzenbiochemie Halle (IPB Halle)

Einzelunternehmer
Sum Of Squares Peter-Paul Heym
Elternzeit: 11/2009, 06/2010, 05/2011, sowie 01/2013-06/2013

\section*{Publications}

\section*{Scientific publications}

Virtual screening for plant PARP inhibitors - what can be learned from human PARP inhibitors?
P.-P. Heym, W. Brandt, L. A. Wessjohann, and H.-J Niclas J Cheminform. 2012; 4(Suppl 1): O24.
published online: 2012 May 1. doi: 10.1186/1758-2946-4-S1-O24
In silico Characterization of \(A t\) PARP and Virtual Screening for \(A t\) PARP Inhibitors P.-P. Heym, T. Geissler, S. Pienkny, W. Brandt, L. A. Wessjohann, and H.-J Niclas in preparation

\section*{Conference talks}

Virtual screening for plant PARP inhibitors - what can be learned from human PARP inhibitors?
P.-P. Heym, W. Brandt, L. A. Wessjohann, and H.-J Niclas
\(7^{\text {th }}\) German Conference on Chemoinformatics.
06.11.-08.11.2011, Goslar, Germany

\section*{Poster presentations}

A distance-based method for evaluating protein-structures
P.-P. Heym, W. Brandt, L.A. Wessjohann
4. German Conference of Chemoinformatics"
09.11.-11.11.2008, Goslar, Germany

Protein modelling of Arabidopsis thaliana L. PARP-1 and pharmacophore design P.-P. Heym, W. Brandt, L.A. Wessjohann

Molecular Modelling workshop
07.09.-11.09.2009, Erlangen, Germany

PARP inhibitors as agrochemically active substances
T. Geissler, P.P. Heym, L. A. Wessjohann

PARP2010-18th International Conference on ADP-ribose metabolism
18.08.-21.08.2010 Zürich, Switzerland

Virtual screening for plant PARP inhibitors to increase tolerance against abiotic stress P.-P. Heym, W. Brandt, L.A. Wessjohann
\(9^{\text {th }}\) triennial WATOC congress
17.07.-22.07.2011, Santiago de Compostela, Spain

Virtual screening for plant PARP inhibitors to increase tolerance against abiotic stress P.-P. Heym, W. Brandt, L.A. Wessjohann

BIOTEC-FORUM - Bioinformatics and Computational Biology
06.12.-07.12.2012, Dresden, Germany

PARP-like proteins and their contribution to plant stress responses
Rissel, D. Heym, P.-P., Peter, K., Thor, K., Brand, W., Peiter, E.
Plant Nutrition 2014 International Conference
10.09.- 12.09.2014 Halle (Saale), Germany

Virtual screening for plant PARP inhibitors to increase tolerance against abiotic stress Heym P.-P., Geissler T., Berger R., Brandt W., Niclas H.-J., Wessjohann L. A. Plant Nutrition 2014 International Conference 10.09.- 12.09.2014 Halle (Saale), Germany

\section*{Eidesstattliche Erklärung}

Ich erkläre an Eides statt, dass ich die Arbeit selbstständig und ohne fremde Hilfe verfasst, keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Halle (Saale), 24.03.2015

\section*{Statement under oath}

I declare under oath that this thesis is my own work entirely and has been written without any help from other people. I used only the sources mentioned and included all the citations correctly both in word or content.

Halle (Saale), 24.03.2015```

