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Abstract. In vivo molecular motion of biopolymers is known to be strongly influenced
by excluded-volume effects caused by the high concentration of organic matter inside
cells, usually referred to as crowding conditions. Current literature regarding this topic
is diverse, at points even contradictory to one another, and does not permit conclusions
on the effect of concentrated proteins on protein diffusivity. In order to advance our un-
derstanding of the consequences of macromolecular crowding for protein translational
and rotational diffusion, and to establish possible analogies to the behavior of dense col-
loidal suspensions, pulsed-field gradient (PFG) NMR, NMR relaxometry, X-ray scattering
and viscosity measurements were combined for three concentrated proteins in aqueous
solution – αB-crystallin, bovine serum albumin (BSA) and lysozyme. Translational dif-
fusion was also investigated for a protein mixture composed of BSA and a fourth protein,
the Src-homology 3 (SH3) domain. The challenges posed by a non-exponential behav-
ior of the protein Brownian tumbling auto-correlation function arising from significant
protein-protein interactions under crowding conditions were accessed via NMR relaxome-
try including measurements at low magnetic fields. The combined set of R1, and R1ρ and
R2 relaxation measurements overcame obstacles encountered in previous NMR studies on
(crowded) protein rotational diffusion. Limitations of PFG NMR at high protein concentra-
tions are also addressed. A combination of all approaches enabled a clear, comprehensive
physical picture of Brownian motion in highly concentrated protein solutions.

The experimental data on the single-protein solutions demonstrate, on one hand, that
long-time translational diffusion quantitatively follows the expected increase of macro-
viscosity upon increasing protein concentration, given that no transient protein-protein
binding occurs. The behavior of rotational diffusion, on the other hand, turns out to be
generally protein-specific, and spans the full range of limiting cases from fully coupled to
completely decoupled from the macro-viscosity. Here, the experimental data indicate that
anisotropic inter-protein interactions – in particular those of electrostatic nature – give the
main factor modulating the (de)coupling between rotational and long-time translational
diffusion. Literature data on short-time translational diffusion, in turn, show a similar
concentration dependence as rotational diffusion. Contrary to the single-protein solu-
tions, for a mixture of BSA and the SH3 domain, presence of crowding-induced, transient
inter-protein binding causes translational diffusion to be more retarded than expected
from the macro-viscosity, accompanied by a significantly increased apparent activation
energy as compared to the macroscopic viscosity. Altogether, protein-protein electrostatic
interactions and presence or absence of transient inter-protein binding have been identified
as crucial factors for the behavior of protein translational and rotational diffusion under
crowding conditions, providing an explanation for the diverging results in current literature.

Key topics: proteins | crowding | translational and rotational diffusion | transient binding
Samples: αB-crystallin | bovine serum albumin | hen egg white lysozyme | SH3 domain
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1
Introduction

Motivation for understanding the consequences of macro-
molecular crowding – in vivo conditions revisited

In a living cell, proteins are surrounded by and interact with a multitude of different

macromolecules on intermolecular distances comparable to their size. Typically, the

plethora of macromolecules, such as proteins, nucleic acids and polysaccharides, amount to

a total mass of several hundreds of grams per liter [Zimmerman and Trach, 1991], providing

a concentration which is a factor of tens to hundreds higher than what is usually studied

in biophysical and biochemical sciences. Given such an amassment of macromolecules,

these occupy 20-40% of the cytoplasmic volume [Ellis, 2001b; Medalia et al., 2002; Ellis

and Minton, 2003], and a large volume fraction is excluded for any additional macro-solute

(cf. Fig. 1.1). Thus, the high amount of organic matter per volume found in the interior

of cells is often referred to as “macromolecular crowding”. Crowding by macro-solutes,

however, is not restricted to the cell’s interior: also the extracellular tissue, consisting of

a matrix of polysaccharides, collagen and other macromolecules, is subject to crowding

effects, and even blood plasma contains about 80 g/l protein [Ellis, 2001a].

An outstanding example for crowding conditions is the eye lens. Here, an extraordi-

nary highly concentrated, polydisperse protein solution serves to achieve a high refractive

index and lens transparency. In vitro studies of eye lens cell extracts show increasing

transmission and reduced light scattering with increasing protein concentration, given

that the protein concentration exceeds ∼100 g/l [Delaye and Tardieu, 1983; Tardieu, 1998].

Below this value, light scattering increases with protein concentration. The high concentra-

tion of proteins is part of biological function, and is further optimized by a concentration

gradient from the center to the edge of the eye lens. In the center of the human eye lens, a

protein concentration of about 450 g/l can be found [Fagerholm et al., 1981]; the protein

concentration inside the glassy fish lens can be even as high as ∼1050 g/l [Bloemendal et al.,

2004]. The interior of the fibre cells of the eye lens is thus almost completely composed

of proteins termed crystallins, which are in some parts as old as the individual: there is

neither protein turnover inside the fibre cells, nor do proteins diffuse from one fibre cell to

another [Ecroyd and Carver, 2009]. Thus, posterior modifications of a protein’s primary

structure such as oxidation, deamidation or cleavage cannot be reversed, and misfolded
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1. Introduction

Figure 1.1.: Excluded volume in concen-
trated protein solutions, plotted for
the example of the eye-lens pro-
tein αB-crystallin. For each of the
equal spheres (solid lines) repre-
senting the protein, the closest pos-
sible distance to the center of an-
other sphere is twice the sphere ra-
dius (dashed lines). The space at
which the center of another protein
may be located (blue area, textured)
is strongly restricted.
αB-crystallin was plotted using Py-
mol and the protein data bank
structure 2ygd [Braun et al., 2011].

or aggregated proteins cannot be replaced. Any of such detrimental circumstances can

be followed by serious aging effects. Once there is a formation of structures large enough

to cause light scattering, lens clouding will occur even if the fraction of these scattering

centers may be small. Cataracts, in fact, are the most frequent cause of blindness [Pascolini

and Mariotti, 2012], but are not understood on a molecular level: the nature of cataract

formation is still a matter of debate. Protein aggregation, amyloid formation, protein

crystallization and liquid-liquid phase separation are discussed as sources of cataract for-

mation. The importance of well-balanced protein-protein interactions for keeping the eye

lens transparent is further stressed by the fact that lens transparency is highly related to a

short-range liquid order of the crystallins [Delaye and Tardieu, 1983]. Such short-range

molecular organization is, again, strongly related to crowding, stressing once more the

scientific need of understanding the physics of macromolecular crowding.

The combined action of excluded-volume effects and the particularly pronounced

protein-protein interactions render protein behavior under crowding conditions essentially

different from dilute solutions [Luby-Phelps, 2000] with substantial consequences for cellu-

lar function and organization [Zimmerman and Minton, 1993; Zhou et al., 2008]. These

effects include altered energetic stabilization of protein folding: non-specific (e.g. electro-

static) protein-protein interactions that tend to destabilize the protein’s folded structure

are, to different extents, counterbalanced by structure-stabilizing excluded volume effects

[Zhou, 2004; Miklos et al., 2011; Schlesinger et al., 2011; Mittal et al., 2015], with the latter

favoring compact states (Le Chatelier’s principle; see also Hong and Gierasch [2010], and

Soranno et al. [2015]). Both kinds of interactions become more pronounced the higher

the concentration of the proteins. In this context, altered protein refolding rates [van den

Berg et al., 1999; Cheung et al., 2005; Minton, 2005] and the stabilization [Cheung et al.,

2005; Miklos et al., 2011; Senske et al., 2014] or destabilization [Danielsson et al., 2015;

Mittal et al., 2015] of the compact folded state of a protein have been reported, including

an increased tendency of protein association and aggregation [van den Berg et al., 1999;

Minton, 2000, 2005; Ellis and Minton, 2006]. Several proteins that are intrinsically disor-
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Motivation for of understanding macromolecular crowding

dered under dilute conditions attain a fold structure upon crowding, whereas others do not

[Dedmon et al., 2002]. Not only changes in the folding energetics were reported [Hong and

Gierasch, 2010], but also reaction rates and reaction equilibria have been discussed to differ

significantly – potentially even by orders of magnitude [Minton, 2001] – under crowding

conditions from those determined in dilute solution [Minton, 1997, 2006; Ralston, 1990;

Ellis, 2001a]. These effects are accompanied by limited protein expression and, ultimately,

limited cell growth [Klumpp et al., 2013]. Likewise, macromolecular crowding has been

found to decrease intracellular signaling, active protein transport, metabolism and cell

fluidity, as is reviewed by Mourão et al. [2014].

As a recent development originating from the compaction of (bio)polymers by the

excluded volume effect, molecular sensors [Gnutt et al., 2015; Boersma et al., 2015] have

been designed for mapping excluded volume effects inside the living cell, reflecting some

degree of spatial heterogeneity [Gnutt et al., 2015]. Theory and simulations on macro-

molecular crowding rely to a large extent on statistical mechanics, and are qualitatively,

but not always sufficiently quantitatively, in accordance with experiments, as reviewed by

Elcock [2010]. In fact, just within the last years, increased computational power allowed

the field to advance from rigid-body modeling of crowded proteins [Długosz and Trylska,

2011] to performing extensive, rather realistic atomic detail simulations [McGuffee and

Elcock, 2006, 2010; Mereghetti et al., 2010; Mereghetti and Wade, 2012; Balbo et al., 2013].

The biochemical consequences of the excluded volume effect have primarily been

explored since the 1990s, subsequently followed by considerations of specific as well as

non-specific protein-protein interactions. (See, for instance, Minton [2006]; McGuffee

and Elcock [2006, 2010]; Feig and Sugita [2012]; Sapir and Harries [2015]; Gnutt and

Ebbinghaus [2016], or the review by Hall and Minton [2003] discussing general limitations

of hard-sphere modeling.) Earlier [Shastry and Eftink, 1996] as well as recent [Senske et al.,

2016] findings on proteins confined in reverse micelles contradict the behavior predicted

by exclusively considering hard-core excluded volume effects. Instead, the importance of

crowding or confinement driven enthalpic effects needs to be taken into account rather

than focusing on entropic contributions only [Senske et al., 2014, 2016].

The most obvious effect of crowding is its impact on Brownian motion: the large

extent of excluded volume combined with rather pronounced protein-protein interactions

restricts molecular displacements. Ando and Skolnick [2010] showed that in vivo molecular

motion is dominated by macromolecular crowding effects, with the detailed impact of

macromolecular crowding being only marginally understood on a molecular level. This

lack of knowledge particularly regards information beyond the pure slowdown of protein

diffusivity with increasing protein concentration [Ellis, 2001a; Luby-Phelps, 2000]. Specif-

ically being relevant for biological systems, binding events may retard diffusion beyond

pure steric effects [Verkman, 2002], and the multitude of protein-protein interactions may

account for rather sophisticated molecular dynamics. The slow-down of protein diffusion,

13



1. Introduction

in turn, impacts biochemical reactivity: diffusion-limited reactions may become slower

with increasing concentration of the crowding agent. In contrast, chemical reactions de-

pending on the orientation of the reactants may become more efficient under crowding

[Kim and Yethiraj, 2009]. For these orientation-dependent reactions, rotational diffusion

combined with attractive and/or repulsive intermolecular forces serve to achieve proper

inter-molecular alignments [Shoup et al., 1981]. The extent to which macromolecular

crowding reduces rotational relative to translational motion readjusts the time span during

which transient contacts allow for orientational justification [Kuttner et al., 2005; Kim and

Yethiraj, 2009]. If rotational diffusion is enhanced over translational displacements, more

orientations will be achieved during transient contacts, which may positively affect protein

reactivity. This effect is of particular interest for specific binding among proteins. In fact,

due to a protein’s anisotropic reactivity [Barzykin and Shushin, 2001], the fraction to which

encounters result into specific binding can be rather small; for instance, only about 2% of

the encounters of an actin monomer with the end of an filament finally result in binding

[Drenckhahn and Pollard, 1986]. Such a situation underlines the importance of molecular

mobility for cellular function and organization.

Ultimately, understanding molecular biology in vivo requires elucidating the conse-

quences of macromolecular crowding on protein Brownian diffusion. Systematic studies

on protein Brownian motion under macromolecular crowding have remained sparse, and

are at points even contradictory to one another. For instance, with increasing protein

concentration, protein rotational diffusion was reported to be either less [Zorilla et al.,

2007] or to be even more [Wang et al., 2010] retarded than translational diffusion; the

former case being supported by atomic detail Brownian dynamics simulations [Mereghetti

and Wade, 2012].

Just as for rotational diffusion, findings on crowded protein translational diffusion

are likewise contradictory. Under crowding conditions, protein translational diffusion has

been reported as being either slower [Zorilla et al., 2007] or even faster [Li et al., 2009;

Wang et al., 2010] than expected from the macroscopic viscosity. An earlier study, in

turn, convincingly demonstrates an agreement of the concentration dependence of protein

translational diffusion with the macroscopic viscosity [Licinio and Delaye, 1988].

Such discrepancies in experimental results indicate sample specificity with regard

to both the studied protein and the crowding agent. Moreover, the protein rotational

auto-correlation function has been shown to deviate from mono-exponential behavior for

non-dilute samples, challenging experimental studies [Krushelnitsky, 2006]. So-called

electrostatic steering effects resulting from the non-uniform charge distribution within

each protein are considered to impact re-orientational dynamics in that they render protein

rotational diffusion transiently anisotropic [Krushelnitsky, 2006]. That is, on the time scale

of rotational motion, some molecular orientations can be considered to be preferred over

others, with the preferred alignment resulting from the mean electric field originating
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Motivation for of understanding macromolecular crowding

from surrounding proteins. This effect becomes more pronounced the closer the proteins

get to each other and is hence of particular relevance for concentrated protein solutions.

However, experimental limitations did not allow measurements on the amplitude and

time-scale of this effect independently from each other [Krushelnitsky, 2006]. Overall,

beyond the general slow-down of protein Brownian diffusion, the detailed behavior of

protein Brownian motion under crowding conditions remains unresolved so far.

Specifying the impact of macromolecular crowding on protein translational and
rotational diffusion is the central objective of this thesis as illustrated in Fig. 1.2.

In the study at hand, crowding was achieved solely by globular, native-state pro-

teins, and not by unstructured (bio-)polymers. These two classes of macromolecules

provide a qualitatively different nature of crowding: unlike globular proteins, unstructured

(bio-)polymers do not form independent hydrodynamic entities if a critical concentration,

the so-called overlap concentration c∗, is exceeded. Instead, for c > c∗ random coils inter-

penetrate each other and form an entangled, mesh-like medium that has to be described

by polymer physics [Rubinstein and Colby, 2003; Strobl, 2007] rather than by concepts in

colloid science. At concentrations mimicking crowding conditions, these effects become

relevant. In fact, about 25% of mammalian proteins are predicted to be intrinsically disor-

dered proteins [Dyson and Wright, 2005; Dunker et al., 2008] that are well described by

polymer physics scaling laws [Hofmann et al., 2012; Soranno et al., 2015]. The majority of

biological macromolecules, however, has a well-defined folded structure. In vivo macro-

molecular crowding can thus be considered to consist of both crowding by folded and

Figure 1.2.: Illustration of protein Brownian
motion under macromolecular crowd-
ing by like proteins. Picture created by
repetitive plots of lysozyme (protein
data bank ID 1LYZ [Diamond, 1974])
using Pymol.

Although the figure reflects some
degree of crowding, the depicted
protein concentration (∼ 10 vol%) is
still below the highest concentrations
studied within this thesis. For lysozyme,
concentrations up to ∼ 20 vol%
(∼ 250 g/l) were studied, i.e, concentra-
tions close to those in the usual cellular
environment. The eye lens gives an
example of an extraordinarily high
protein concentration – here, the overall
protein volume fraction is even much
higher.
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1. Introduction

unfolded structures in combination with the excluded volume effect of the cytoskeleton.

Unlike protein induced crowding, however, synthetic crowding agents do not properly

account for electrostatic interactions, and were recently identified as “poor mimics of the

cellular interior” [Smith et al., 2016].

Thus, highly concentrated solutions of globular proteins served as model systems for

macromolecular crowding conditions, aiming to answer the following questions:

(i) how do translational and rotational diffusion behave upon increases in protein con-

centration, in particular, how do they behave with regard to the macroscopic solution

viscosity?

(ii) do translational and rotational diffusion couple to each other under crowding condi-

tions, or are they decoupled?

(iii) how does the deviation from singly exponential behavior of the rotational auto-

correlation function change upon increasing protein concentration?

For this purpose, pulsed-field gradient (PFG) Nuclear Magnetic Resonance (NMR)

spectroscopy was combined with NMR relaxometry for studying protein Brownian dy-

namics on the molecular level. They are advantageous in that they do not require the use

of specific tracer molecules, nor do they require structurally modified proteins for signal

detection (as required in many techniques, for instance, in fluorescence spectroscopy).

In particular, field-cycling NMR was directly applied to protein protons for an unbiased

detection of the overall rotational auto-correlation function, including its long-time (i.e.,

low-frequency) behavior; the latter being required for studying the transient anisotropy

of rotational diffusion (the deviation from a singly exponential correlation function). Due

to an intrinsically low sensitivity of this technique, field-cycling NMR was to date only

rarely directly applied to protein protons [Bertini et al., 2005; Luchinat and Parigi, 2007].

In regards of the non-exponential nature of the rotational auto-correlation function of

non-dilute proteins, methodological progress has been achieved, and will be presented in

the results section. Beside these techniques, viscosity was measured with a viscometer

requiring only microliter samples. Moreover, small-angle X-ray scattering (SAXS) exper-

iments performed and evaluated by Maria Ott
‡ complemented the physical picture by

probing the structure factor of the protein solutions, allowing estimations for the strength

of intermolecular interactions. Polarized fluorescence correlation spectroscopy (FCS), also

performed by Maria Ott
‡, reinforce the NMR results presented in this thesis.

At any time mentioned in the thesis the term “crowding” refers to crowding by macro-

molecules. “Crowding” as achieved by adding small or medium size co-solutes, such as

glycerol or peptides, will not be addressed. The high volume fraction of macromolecules

is referred to as “crowded” or “confining” rather than “concentrated” to account for the

‡Martin Luther University Halle-Wittenberg, Experimental Polymer Physics
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Motivation for of understanding macromolecular crowding

mixture of different macro-solutes present under natural conditions [Ellis, 2001b; Minton,

2001]. A single protein, in contrast, hardly occurs in vivo at such high concentrations. As

an example, in a typical eukaryotic cell the concentration of free actin (i.e, actin that is

not incorporated in microfilaments) is about 4 g/l [Bray and Thomas, 1975], although the

overall protein concentration even reaches 300-400 g/l [Zimmerman and Trach, 1991].

Hemoglobin within red blood cells represents a famous exception, as it occurs at a con-

centration of even about 350 g/l [Zimmerman and Minton, 1993]. The eye lens contains

different types of crystallin proteins each at high concentrations. Of these proteins the

behavior of concentrated αB-crystallin will be investigated in this thesis.

Accounting for the multitude of different proteins dispersed in the cytoplasm, and

in the context of an increased interest in the excluded volume effect, the term “crowding”

developed as a key word for mimicking the high volume fraction of macromolecules in
vivo.

In vivo experiments are rewarding for quantifying biological process under native

conditions, but are difficult to interpret due to the multitude of influencing factors. Thus,

a “bottom-up” approach appears to be most efficient for understanding the mechanisms

related to (bio-)macromolecular crowding [Elcock, 2010]. In particular, for assessing the

above questions, and thus for achieving insights beyond the simple slow-down of Brownian

motion, one has to rely on in vitro studies to allow for a well defined experimental parameter

space. Thus, the studies presented here were performed in vitro, but aim at understanding

the physics relevant for in vivo conditions. Thereby, concentrated solutions of a single

protein (“homo-crowding”) were investigated first, followed by a study on protein mixtures

(“hetero-crowding”) as the next step. In these studies, αB-crystallin (αBc), hen egg white

lysozyme (LYZ, HEWL), bovine serum albumin (BSA), and the Src-homology 3 (SH3)

domain were used as test proteins, with fold structures plotted in Fig. 1.3.

The thesis is organized as follows: In the next chapter, Brownian dynamics of concen-

trated particles will be shortly discussed from the point of view of colloidal science where

the generalized Stokes-Einstein and Stokes-Einstein-Debye equation for translational and

rotational diffusion, respectively, will be introduced. Aspects of particular relevance for

protein diffusion will be discussed there as well, addressing the current knowledge on the

impact of the so-called “electrostatic steering effect” on protein rotational diffusion. After

that, the experimental methods used for addressing the above questions will be presented in

chapter 3, followed in chapter 4 by the results obtained. These are presented in a cumulative

form of four research articles published in peer-reviewed journals. Finally, the last chapter

summarizes the results obtained, and gives an outlook for potential subsequent studies.
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1. Introduction

dimer 

monomer (a)                         (b)                 (c) 

(d) 
Figure 1.3.: Folding structure of αB-crystallin (a), bovine serum albumin

(BSA) including its dimer as seen in X-ray crystal structures (b),
lysozyme (c), and the amphiphysin II SH3 domain next to, again, BSA
(d), each plotted at distinct perspectives, with helices colored in red,
β-sheets in yellow, and loops in green. SH3 has been studied in mixture
with BSA; these two proteins are plotted on the same scale. In contrast,
for the other proteins, the size is not to scale: the large αB-crystallin
assembly (here: 24-mer, 466 kDa) exceeds the sizes of the intermediate
case BSA (monomer molecular weight: 66.4 kDa), lysozyme (14.4 kDa)
and the rather small SH3 domain (10 kDa) by far. Plots created using
Pymol; the protein data bank IDs for the four proteins are 2YGD [Braun
et al., 2011], 4F5S [Bujacz, 2012], 1LYZ [Diamond, 1974], and 1bb9
[Owen et al., 1998], respectively.
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2
Scientific background

Brownian motion in
dense colloidal suspensions

2.1. The generalized Stokes-Einstein and Stokes-Einstein-Debye equations:
diffusion of concentrated colloids

Today’s understanding of Brownian motion relies on the pioneering work by Einstein

[1905], Smoluchowski [1906] and Langevin [1908], who independently from each other

showed that the mean-square displacement of a particle dispersed in a viscous medium

scales with time t as 〈
|r(t)− r(0)|2

〉
= 6Dt t . (2.1)

Here, Dt is the particle’s (isotropic) translational (self-)diffusion coefficient, and

r(t) = (x,y,z)T is its time-dependent position. For one- or two-dimensional diffusion, the

prefactor of 6 in eq. (2.1) has to be simply replaced by 2 and 4, respectively. The Einstein-

Smoluchowski relationship, in turn, relates the diffusion coefficient to the translational

mobility µt of the particle,

Dt = µt kBT , (2.2)

where kBT is the thermal energy, composed of the Boltzmann constant and the absolute tem-

perature. Analogously, for rotation about a single axis, the mean-square angular deviation

of the particle’s orientation angle θ(t) is〈
|θ(t)−θ(0)|2

〉
= 2Dr t , (2.3)

Dr = µr kBT , (2.4)

where Dr and µr are the rotational diffusion coefficient and rotational mobility, respectively.

Exactly these translational and rotational mobilities, µt and µr, make the difference between

dilute and concentrated solutions, and give rise to open questions when studying crowding

effects – especially with regard to the open point of coupling or decoupling between

rotational and translational diffusion in crowded protein solutions (i.e., sensitivity to the
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same or distinct viscous effects, respectively, and thus also a shared or distinct concentration

dependence of Dt and Dr).

The mobility is determined by the viscous drag to which the tracer particle is exposed.

The viscous drag of translational and rotational diffusion originates from a dissipative

force F and dissipative torque M, respectively, which for laminar flow in a homogeneous

medium both scale linearly with the translational velocity V and its angular counterpart Ω,

respectively:

F = −ftV , M = −frΩ . (2.5)

Here, the friction coefficients are usually determined by

ft = 6πηRH and fr = 8πηR3
H , (2.6)

where η denotes the viscosity of the surrounding medium, and RH is the radius of a smooth

sphere. In this way, size and shape of the particle are expressed in terms of a sphere of

equivalent hydrodynamic dimension. Given that the Reynolds number is low, as is the case

for Brownian motion, the mobility scales inversely with that friction, µt,r = 1/ft,r.

The above equations take as a basis that the particle diffuses in a continuous medium.

Provided that the tracer particle is much larger than the surrounding host particles, the

description of the host fluid as a homogeneous medium is indeed a well-suited approx-

imation. In the infinitely dilute limit, the medium viscosity equals the solvent viscosity

ηsol such that the Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relationship for

translational and rotational diffusion, respectively, read

Dt,0 =
kBT

6πηsolRH
and Dr,0 =

kBT

8πηsolR
3
H

. (2.7)

Interestingly, the Stokes-Eintein(-Debye) equation provides sufficient results even

on a molecular level, in particular when introducing modified prefactors that account for

apparent slip of the host particles on the surface of the tracer sphere [Hu and Zwanzig,

1974; Dote et al., 1981; Ould-Kaddour and Levesque, 2000],

f ′t = 6νtπηsolRH = νt ft and f ′r = 8νrπηsolR
3
H = νr fr . (2.8)

For perfect slip, νt = 2/3 and νr = 0 [Hu and Zwanzig, 1974]. Here, solvent molecules are

not tagged along with the moving sphere, meaning that there would be no viscous friction

for rotational diffusion. For translational diffusion, in contrast, viscous friction arises

even under slip boundary conditions, as surrounding molecules must be displaced during

movement of the tracer sphere. Experiments on molecular systems are in accordance

with νt ≈ 2/3, and provide partial slip for rotational diffusion (0 < νr < 1) [Edward, 1970;

Koenderink et al., 2002]. In addition, simulations indicated slip boundary conditions for

translational diffusion in molecular systems [Ould-Kaddour and Levesque, 2000], though
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2.1. The generalized Stokes-Einstein and Stokes-Einstein-Debye equations

contradictions with regard to the impact of the particle’s mass were noticed [Walser et al.,

1999]. Stick boundary conditions (νt,r = 1, implied in eqs. (2.6) and (2.7)), in turn, assume

that the first layer of surrounding molecules adheres to the diffusing sphere. This causes

energy dissipation, and thus retards the motion of the tracer sphere. In reality, both rotation

and translation of the particle will be accompanied by velocity gradients of surrounding

solvent molecules, for which the above boundary conditions account in a simplified manner.

The flow of solvent around each diffusing colloidal particle mediates hydrodynamic

interactions (HIs). HI is of relevance even when the (effective) hard-sphere radius of the

particle1 exceeds the hydrodynamic radius by several times [Cichocki and Felderhof, 1991].

For a non-dilute colloidal suspension, this situation accounts for an indirect, dissipative

force between the colloids, i.e., colloid-colloid hydrodynamic friction. If the colloid is also

charged, electrosteric friction will arise next to the bare solvent friction and the colloid-

colloid HI [McPhie and Nägele, 2007]. Surrounding ions of the solvent (“micro-ions”)

and the charged colloids themselves (“macro-ions”) cannot react instantaneously to the

(Brownian) displacement of the charged colloid. This somewhat delayed feedback of

surrounding ions to the motion of the charged colloid is accompanied by an electro-steric

relaxation force [McPhie and Nägele, 2007] and, hence, electro-viscous friction. Since

the macro-ions usually carry more charges than the (co- and counter-)ions of the solvent

and since the realignment of macro-ions is slower than that of the micro-ions, the electro-

viscous friction is in general dominated by the macro-ions and their dynamics [McPhie and

Nägele, 2007].

With respect to the success of the SE and SED relationship in molecular systems, one

may wonder about the validity of the SE and SED relationship for concentrated colloidal

suspensions: both for molecular systems and concentrated colloidal suspensions, the tracer

particle moves in an environment occupied by particles of similar or same size as the tracer

particle, with a multitude of direct and indirect multi-body interactions. With ongoing

time the inhomogeneity of the environment is progressively averaged out both by the

translational displacement of the tracer particle itself and by the structural reconfiguration

of the surrounding: the continual re-organization of the particle alignment, mediated

by Brownian motion and averaged over time, reintroduces a continuous environment.

Then, the Stokes-Einstein(-Debye) relationship may be expected to hold with regard to the

macroscopic dispersion viscosity even for concentrated colloidal systems. This effect also

provides the basis for the applicability of the Stokes-Einstein relationship to molecular

liquids. In contrast, in the short-time limit, neither translational or rotational diffusion are

subject to multiple encounters with neighboring particles, nor does sufficient averaging

apply with respect to the inhomogeneous surrounding. A sensitivity to large-scale (i.e.

predominately macroscopic) properties of the solution can be strongly questioned here.

Instead, for particles much larger than the solvent molecules, short-time diffusion takes

place within a local environment enclosed by surrounding particles. Here, solvent-related

1The radius at which the direct particle-particle interaction potential is effectively decayed.
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properties and local hydrodynamics [Tokuyama and Oppenheim, 1994; Roosen-Runge

et al., 2011] dominate the friction relevant for Brownian motion, where particle encounters

only marginally contribute to the viscous friction. As a conceptional expression for the

viscous drag within such a local environment and to distinguish it from the viscosity on a

macroscopic scale, the denotation of a “micro-viscosity” evolved.

Consequently, which limiting case applies depends on the experimental time window

∆τtw compared to the time span required for significant reconfiguration of the concentrated

suspension. For particles of the same size, the critical time scale separating between

both scenarios can be denoted as the period required for diffusion over a typical inter-

particle distance ξ, i.e., τcrit ∼ ξ2/6Dt,0 [Koenderink and Philipse, 2000]. At times much

smaller than τcrit (i.e., 〈r2〉 � ξ2), translational displacements only take place within

the local environment enclosed by surrounding particles, with no significance of caging

effects [Doliwa and Heuer, 1998; Weeks and Weitz, 2002b]. Thus, the short-time diffusion

coefficient can indeed be close to that in dilute solution [Feig and Sugita, 2012]. Note,

however, that diffusivity over short times still implies that the considered time scale is larger

than that of the momentum relaxation of the colloidal particle; otherwise, displacements

are not diffusive but ballistic. In the ballistic regime, 〈r2〉 = v2t2 holds, where v denotes

the particles’ mean velocity. In contrast, at times much longer than τcrit (i.e., 〈r2〉 � ξ2),

the particle is subject to a multitude of encounters with other entities. Given that the

concentration of colloidal particles is high enough to cause caging effects, in the long-time

limit of translational diffusion the tracer particle escapes the macromolecular/colloidal cage

multiple times. Both of the latter scenarios promote a hindrance of free diffusion and render

long-time diffusion slower than short-time diffusion. However, as long as ∆τtw� τcrit or

∆τtw� τcrit the diffusion coefficient stays constant within the corresponding time regime.

In these regimes, translational displacements in fact behave truly diffusively (〈r2〉 ∝ t)
[Doliwa and Heuer, 1998; Weeks and Weitz, 2002a,b].

In-between these regimes, where 〈r2〉 ∼ ξ2, the diffusion coefficient is time-dependent,

D(t) ∝ tα−1, accompanied with displacements 〈r2〉 ∝ tα. Such behavior is referred to as

anomalous diffusion (α < 1: sub-diffusion, α > 1: super-diffusion). In agreement with a

diffusion coefficient that decreases with time, colloidal particles usually show sub-diffusive

behavior at time scales at which particle caging comes into play [Doliwa and Heuer, 1998;

Weeks and Weitz, 2002a]. Super-diffusion, in turn, is reminiscent of Levy flights, and

is usually not observed for protein diffusion in usual suspensions.2 The presence of

anomalous diffusion has been shown for living cells [Saxton, 1994; Banks and Fradin, 2005;

Dix and Verkman, 2008]; in particular, this effect is of importance for very large particles

such as macromolecular complexes, but is less significant for protein diffusion [Parry et al.,

2014]. The issue of anomalous protein diffusion will not be addressed within this thesis;

2Levy flights are, for instance, reminiscent of the spread of diseases. Given the world-wide human traveling
activities, an infectious disease can cross over from one infected, local area to another, presently uninfected
one, allowing for local clusters with large spatial “jumps” in-between.
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2.1. The generalized Stokes-Einstein and Stokes-Einstein-Debye equations

here, diffusion will solely be assessed within the short-time3 and long-time regime, in

which 〈r2〉 ∝ t holds (“normal” diffusion).

From the rheological point of view, short-time translational and rotational diffusion

coefficients (denoted DS
t and DS

r , respectively) are discussed to be linked to the viscosity

measured in the limit of high shear rates, denoted as η∞(φ),

DS
t =

kBT
6πη∞(φ)RH

, DS
r =

kBT

8πη∞(φ)R3
H

. (2.9)

In the limit of a long experimental time window, instead, the same equations are considered

to apply with regard to the zero-shear viscosity η0(φ),

DL
t =

kBT
6πη0(φ)RH

, DL
r =

kBT

8πη0(φ)R3
H

, (2.10)

now defining the long-time diffusion coefficientsDL
t andDL

r [Koenderink and Philipse, 2000;

Nägele, 2003]. In the above equations, φ denotes the volume fraction of dispersed colloidal

particles, i.e., their concentration. These relationships are referred to as the generalized
Stokes-Einstein (GSE) and the generalized Stokes-Einstein-Debye (GSED) equations. The

high-frequency limit of the viscosity η∞(φ) gives the bulk dissipation of a fast shear oscil-

lation of low amplitude, and is mainly governed by local hydrodynamic interactions and

the solvent; direct inter-particle interactions affect η∞(φ) only indirectly via its influence

on the equilibrium micro-structure of the solution [Koenderink et al., 2002]. In contrast,

η0(φ) is determined by slow (i.e. low frequency) steady-shear experiments, for which both

hydrodynamic interactions and direct interactions between the colloidal particles are of rel-

evance [Koenderink et al., 2002]. For translational diffusion, the transition from short-time

to long-time diffusion is schematically visualized in Fig. 2.1, along with the displacements

over which η∞ and η0 become relevant (〈r2〉 � ξ2 and 〈r2〉 � ξ2, respectively; cf. eqs. (2.9)

and (2.10)).

In regard to (long-time) translational diffusion, the validity of the GSE equation was

shown for concentrated hard-sphere systems [Segre et al., 1995; Banchio et al., 1999a,b]

and even for soft colloids [Gupta et al., 2015]; however, for charged colloids deviations were

reported [Banchio et al., 1999b; Koenderink and Philipse, 2000; Nägele, 2003]. For short-

time rotational diffusion of colloids Koenderink et al. [2002] showed experimentally that the

scaling relation DS
r ∝ η∞(φ) is sufficiently accurate, though not exact, when apparent slip

of the host particles is introduced (νr = 0.22 in eq. (2.8)). Other studies, in contrast, report

mismatching results as long as the tracer/host size ratio is not large [Koenderink et al.,

2001; Zhang and Nägele, 2002; Koenderink et al., 2003]. For rod-like particles (short-time)

rotational diffusion was found to couple to η0(φ) [Koenderink et al., 2003; Kleshchanok

et al., 2012]. Note that a large axis ratio of an ellipsoidal or rod-like particle induces a

rotation-translation coupling [Han et al., 2006].

3Short-time translational diffusion is accessible by e.g. neutron scattering techniques, and is provided by
literature data; see Roosen-Runge et al. [2011].
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Figure 2.1.: Schematic representation of an arbitrarily chosen translational trajectory (solid and
dashed polygonal line) of a tracer particle (red) dispersed in a solution of like spheres,
together with a distinction between DS

t and DL
t , and the appropriate viscosity η∞ and η0,

respectively. The tracer particle is caged by surrounding host particles (red dashed circle),
but can move almost freely within a very local environment (orange). The “transition
zone” (white) between short-time and long-time diffusion is underrepresented here and
may involve much more particles with which encounters take place. Long-time diffusion
is obtained for displacements much larger than the average cage size, accompanied by a
multitude of inter-particle collisions. Then, friction can be expected to scale with η0 (gray
area).

Aspects on protein diffusion

For concentrated protein solutions the applicability of the above equations is not yet justi-

fied. Protein-specific interactions and protein complex formation give rise to a potentially

sophisticated behavior of crowded protein Brownian motion, whereas colloid-science con-

cepts usually rely on isotropic, inert particles. Within the framework of colloidal-science

concepts, the slow-down of protein translational diffusion has been modeled by considering

an inhomogeneous environment combined with steric hindrance meaning that regions of

sufficiently large vacancies must be present for translational displacements to take place.

This simple ansatz results in an exponential decrease of protein translational diffusivity

with the excluded-volume fraction φex,

DL
t ∝ exp[−γvφex/(1−φex)] , φex = ρVex , (2.11)

where γv is a constant relating to the effort of vacancy formation [O’Leary, 1987], and

ρ and Vex are the protein solution density and the protein exclusion volume (in liters

per gram of protein), respectively. O’Leary observed good agreement of eq. (2.11) with

experimental data on hemoglobin up to very high concentrations, hence providing a

successful description of protein translational diffusion using hard-sphere modeling. More

advanced models from Scaled Particle Theory [Muramatsu and Minton, 1988; Han and

Herzfeld, 1993] are in agreement with a (roughly) exponential decrease of the translational

diffusion coefficient with increasing particle concentration. As is relevant for the often

non-spherical shape of a protein, it was also found that spherical host particles retard
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2.1. The generalized Stokes-Einstein and Stokes-Einstein-Debye equations

diffusion less than elongated ones of the same volume fraction [Han and Herzfeld, 1993].

Nevertheless, inter-particle interactions beyond pure steric effects may be quite significant

for protein diffusion. Given the spread in literature results with regard to applicability

[Licinio and Delaye, 1988; Wang et al., 2010] or invalidity [Li et al., 2009; Wang et al., 2010;

Zorilla et al., 2007] of the GSE/GSED relationship for different proteins and crowding

agents, it seems that strength and nature of inter-particle interactions are indeed critical

factors beyond excluded volume. Notably, in vivo translational diffusivity of the green

fluorescent protein is significantly more retarded than expected from sterical hindrance

alone, with a 14-fold decrease of the long-time diffusion coefficient as compared to dilute

solution. From that finding, the importance of reversible binding among proteins and

other entities has been proposed [Konopka et al., 2006]. As will be shown in the results

section, transient binding among the proteins indeed represents the key factor whether

GSE behavior applies or not.

Experiments on protein rotational diffusion, in turn, are often discussed in terms of

the previously mentioned micro-viscosity [Luby-Phelps, 2000]. Indeed, for a suspension

of only weakly interacting proteins, the probe molecule may rotate rather freely within

the cage formed by the surrounding colloids [Długosz and Antosiewicz, 2014]. Then,

rotational diffusion would be rather insensitive to concentration effects, and is enhanced

relative to long-time translational diffusion that is retarded by steric hindrance [Kim et al.,

2011]. However, potentially substantial protein-protein interactions may be considered

to enhance the rotational viscous drag beyond that of the above scenario. In fact, it has

recently been shown that even rather local displacements (τtw < 10 ns) can be affected by

interactions with the protein’s environment [Gupta et al., 2016]. In this study, crowding

has been mimicked by synthetic polymer chains. For proteins crowded by proteins, this

effect may be even more pronounced, in particular due to charge-charge interactions. Here,

the viscous drag may become large enough to even match that of the (macroscopic) zero-

shear viscosity η0. Then, provided that translational diffusion just as well follows the

concentration dependence of the macro-viscosity, rotational and long-time translational

diffusion would be coupled, and a shared or at least similar concentration dependence of

these two quantities would be observed.

The results presented herein suggest that protein rotational diffusion spans the full

range between the limiting cases of full coupling and full decoupling from the macro-

viscosity, where “full decoupling” relates to hard-sphere behavior. In-between these

limiting cases, intermediate behavior has also been found. Comparing among the proteins

studied, these data are in line with the SAXS data provided by Maria Ott reporting on the

strength of particle-particle interactions. Taken together, the presented results indicate

that anisotropic protein-protein interactions give the key factor for coupling or decoupling

of rotational and translational diffusion.

25



2. Scientific background

The protein concentrations studied in this work are not as high as to be close to the

colloidal glass transition [Pusey and van Megen, 1987; Pusey, 2008; Hunter and Weeks,

2012]. In the vicinity of the colloidal glass transition, with caging effects being very

pronounced, collective motions become essential, and dynamical heterogeneity arises

[Doliwa and Heuer, 1998; Kegel and van Blaaderen, 2000] due to locally different structural

relaxation times of the dense, almost glassy suspension [Weeks and Weitz, 2002b; Hunter

and Weeks, 2012]. Similar conditions hold for undercooled fluids, with the emergence

of non-Gaussian displacements [Edmond et al., 2012; Schober and Peng, 2016]. Under

such conditions, the behavior of rotational relative to translational diffusion changes, i.e.,

translational diffusion appears to be enhanced in comparison to rotational diffusion and

shear viscosity [Chang and Sillescu, 1997; Edmond et al., 2012]. This phenomenon is

known as the “translation-rotation paradox” [Stillinger and Hodgdon, 1994], and directly

relates to ensemble effects combined with these dynamical inhomogeneities [Chang and

Sillescu, 1997; Sillescu, 1999]. To be noted, the colloidal glass transition of a dense protein

suspension should not be mixed up with the “protein glass transition” [Ringe and Petsko,

2003]. The protein glass transition denotes the arrested internal motion of a protein

(decreased amplitude and increased time scale of atomic fluctuations) at temperatures

of around or below 200 K. It is discussed as being contingent on restricted (“frozen”)

mobility of solvent molecules bound to the protein [Vitkup et al., 2000; Paciaroni et al.,

2002; Tournier et al., 2003], but is not at all linked to the arrested Brownian motion of a

protein at high protein concentrations.

2.2. The rotational auto-correlation function in non-dilute protein solutions:
deviation from singly exponential behavior

Experiments that address rotational diffusion are often sensitive to the (normalized) auto-

correlation function of the time-dependent orientation angle θ of the particle,

C
(l)
r (t) =

〈
Pl
(
cos(θ(τ))

)
· Pl

(
cos(θ(τ + t))

)〉
τ〈[

Pl
(
cos(θ(τ))

)]2〉
τ

, (2.12)

where 〈·〉τ is an average over time τ , and Pl(x) is, for most cases, either the first or the second

Legendre polynomial,

P1(x) = x , P2(x) =
1
2

(
3x2 − 1

)
. (2.13)

The rotational auto-correlation function (RACF) describes the loss of orientational memory

with ongoing time, and can, for instance, be accessed via dielectric spectroscopy (DS; l = 1),

polarized flourescence correlation spectroscopy (FCS, l = 2), or NMR relaxometry (l = 2).
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For isotropic rotational motion in which all orientations are equally populated with

time, the RACF decays from C
(l)
r (0) = 1 to zero,

lim
t→∞

C
(l)
r (t) ∝

〈
Pl
(
cos(θ(τ))

)〉2

τ
= 0 ,

and equals an exponential decay for isolated particles [Jones, 1988],

C
(l)
r (t) = exp

(
−|t| / τ (l)

r

)
. (2.14)

Here, an infinitely dilute solution and the absence of an orientating external field has

been assumed. For non-dilute suspensions, the orientational correlation function can be

expected “to show complicated non-exponential behavior” [Jones, 1988] at long times,

while at short times an exponential relation may still be valid [Jones, 1988].

In the following, only t ≥ 0 will be considered, and the absolute value of t can be

skipped. Eq. (2.14) relates the loss of orientational correlation to the rotational correlation

time τ (l)
r , that in turn relates to the rotational diffusion coefficient via

τ
(l)
r =

1
l (l+ 1)Dr

. (2.15)

As follows from eqs. (2.3) and (2.15), the rotational correlation time τ (1)
r (DS) refers to the

time required for the molecule to rotate, on average, one radian (≈ 57◦). Analogously, the

root mean-squared angular displacement after a time span of τ (2)
r (FCS, NMR) is 3−1/2 rad

(≈ 33◦).

If the rotational motion is restricted to a certain range of angles or subject to a

preferential orientation (such that not all orientation angles are equally distributed), the

rotational auto-correlation function will not decay to zero, but to a finite value,

lim
t→∞

C
(l)
r (t) =: S2

l ≤ 1 . (2.16)

Such treatment is required when studying the internal (backbone or side-chain) dynamics

of a protein. It should be noted that the value of the (generalized) order parameter S2
l

depends on the choice of l = 1,2.

In this thesis, rotational diffusion will be accessed by NMR relaxometry. Henceforth,

the index l = 2 will be skipped for ease of notation.

Different particles contributing to the overall rotational auto-correlation function

Cr(t) are accounted for by the sum of the individual correlation functions Cr,k(t) , i.e.

Cr(t) =
1

N

(
Cr,1 +Cr,2 + ...+Cr,N

)
. (2.17)
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In contrast, for M superimposed, but statistically and physically independent motions

of a single particle, the overall correlation function Cr(t) consists of a product of the

individual correlation functions C̃i, i = {1,2, ... , M}, usually each with its own correlation

time τi:

Cr(t) = C̃1 · C̃2 · ... · C̃M . (2.18)

Such treatment is commonly applied for incorporating both internal motions of a protein

and the overall Brownian tumbling. However, if these motions are not independent

from each other, or are not well separated by different time scales (τ1 � τ2 � ...� τM),

cross-correlations will occur. Correct analysis of motions not decoupled from each other

requires advanced models for precise data analysis [Meirovitch et al., 2010], with potentially

physically misleading parameters when not accounting for this aspect [Tugarinov et al.,

2001; Meirovitch et al., 2006].

Studying non-dilute protein solutions, the RACF has been shown to deviate from

singly exponential behavior (that is, eq. (2.14)) beyond the impact of a non-spherical

shape of the protein or protein association effects [Krushelnitsky, 2006]. This deviation

has been pointed out to be most significant for the long-time decay of the RACF. Such

non-ideal behavior suggests an impact of non-negligible protein-protein interactions on

protein rotational diffusion and/or the presence of geometrical constraints for protein

re-orientational dynamics under crowding conditions.

The deviation of the protein RACF from mono-exponential behavior has been at-

tributed to so-called electrostatic steering effects among neighboring proteins [Krushelnit-

sky, 2006]. Proteins usually have a non-uniform charge distribution that gives rise to an

anisotropic electrostatic field around each protein. In a mean-field approach, the dipole

Figure 2.2.: Illustration of protein elec-
trostatic steering for LYZ. Positive
and negative charges are plotted
here for emphasizing their effect
only, but do not rely on the real
charge distribution within the pro-
tein. Each protein is subject to the
electrostatic field arising from sur-
rounding proteins (mean-field ap-
proximation), as is here indicated
for the slightly yellowish colored
protein by emphasizing the dipolar
interaction with two close-by LYZ
molecules. The figure relies on the
same protein constellation as pre-
sented in Fig. 1.2.
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moment of any protein tends to orient along this mean electric field resulting from all

the surrounding proteins (cf. Fig. 2.2), which in turn also affects the alignment of the

surrounding particles (“feedback effect”). The interaction potential of protein mutual elec-

trostatic steering is comparable to the thermal energy [Ermolina et al., 1993; McClurg and

Zukoski, 1998] which is sufficient for introducing local anisotropy (in terms of a preferred

orientation of the molecules with respect to each other), but is not sufficient for causing

a strict orientational order (as for liquid crystallinity). As has been shown in theoretical

physics, mutual alignment effects are a general feature of the solution equilibrium structure

of colloids (or proteins) with electrostatic charge patchiness [McClurg and Zukoski, 1998;

Grant, 2001; Kurut et al., 2012; Yigit et al., 2015]. As a consequence of electrostatic steering,

during the rotational diffusion process of the probe protein the distribution of the orienta-

tion angle may stay to some extent non-uniform with time, that is, a slightly preferential

orientation remains on average. As a result, the RACF will not decay in a singly exponential

manner. Instead, a transient residual ordering may phenomenologically be described via

an (apparent) rotational order parameter S2
rot [Krushelnitsky, 2006]. As discussed below,

the denotation of an order parameter is not free of objections here regarding is physical

significance; nonetheless, it serves for a straightforward (and minimal) parametrization of

the non-exponential nature of the RACF.

With ongoing time the micro-environment is subject to random fluctuations, and

the direction of the local electric field changes. Accumulated random fluctuations of the

preferred orientation angle finally reintroduce an isotropic average, and Cr(t)→ 0 (t→∞)

holds again. Rearrangement of the micro-environment is considered to be primarily

mediated by translational diffusion, and requires times much longer than those of Brownian

rotation [Ermakova et al., 2002].

The separation of time scales suggests that the overall protein tumbling RACF may

be decomposed into two components, accounting for the “usual” Brownian rotation (τrot)

and a “lifetime” of the transient rotational anisotropy (τS), see Fig. 2.3. Both processes

are superimposed but are intrinsically not statistically independent from each other: the

isotropization of each protein’s local environment, causing the RACF to finally decay to zero,

relies again on Brownian motion. Since, however, τS� τrot, the long-time re-organization

of the environment becomes to a large extent uncorrelated from Brownian rotation on the

time scale of τrot. Despite the potential limitations, following the concept in eq. (2.18), the

normalized RACF of non-dilute proteins may tentatively be approximated by the product of

the correlation function for Brownian rotation, C̃rot, and that of the isotropization process

which is also referred to as the “slow component” of rotational diffusion, C̃S, [Krushelnitsky,

2006]

Cr = C̃rot C̃S =
[(

1− S2
rot

)
exp(−t/τrot) + S2

rot

]
exp(−t/τS) (t ≥ 0)

≈
(
1− S2

rot

)
exp(−t/τrot) + S2

rot exp(−t/τS) (τrot� τS) . (2.19)
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Figure 2.3.: Schematic RACF for non-dilute protein solutions. Besides the “usual” Brownian
tumbling of correlation time τrot (colored green), a “slow tail” of the protein rotational
auto-correlation function has been observed experimentally (colored blue) that likely arises
from so-called electrostatic steering effects [Krushelnitsky, 2006]. This “slow tail” is phe-
nomenologically described by the order parameter S2

rot and the correlation time τS assuming
an exponential behavior of the slow component of rotational diffusion (black lines). An
exponential-like decay of the latter is a simplistic assumption without further physical
justification; the actual shape of the RACF at longer times may differ from such behavior,
e.g., via a power law (red dashed line).

This treatment is closely related to the so-called model-free approach invented by

Lipari and Szabo [1982a,b] (to be discussed in the next chapter).

Simulating the rotational dynamics of particles having a dipole moment, the concept

of the so-called electro-static steering has been confirmed, and a good agreement of the

bi-exponential approach (eq. (2.19)) with the simulated RACF has been obtained [Ermakova

et al., 2002]. In this simulation, it was also shown that the strength of the dipole moment

only weakly affects τrot, whereas τS increases with increasing dipole moment. Moreover,

τS was also found to be longer for fixed positions of the particles (but keeping rotational

freedom) than in the case of particles subject to random translational displacements. Such

finding is in line with the “lifetime” τS of local ordering effects being mostly dominated by

translational motions.

In the limit of very dilute protein solutions, rotational diffusion can be considered

to be not affected by surrounding particles, i.e., S2
rot→ 0, and only τrot governs the RACF.

Then, the inverse value of τrot directly relates to the initial slope of the RACF,

− d
dt
Cr(t)

∣∣∣∣∣
t=0

=
1
τrot

. (2.20)
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2.2. Rotational diffusion in non-dilute protein solutions

In the presence of a slow component of rotational diffusion, the initial slope is

1− S2
rot

τrot
+
S2

rot

τS
=:

1
τr

= 6Dr (l = 2) . (2.21)

Eq. (2.21) defines a mean correlation time τr on the basis of a harmonic average, i.e. it

defines a mean diffusion rate Dr. As usual for time domain data, a mean value is defined via

the corresponding frequencies τ−1
1 , ... , τ−1

N rather than averaging over τ1 ... , τN themselves.

In this way, eq. (2.21) provides the instantaneous re-orientation diffusion coefficient that

is determined by both processes, the usual Brownian tumbling and the slow component

of rotational diffusion. Moreover, this effective rotational correlation time τr (diffusion

coefficient Dr) is defined in the same way as for other techniques relying on the initial slope

of the RACF (as, for instance, polarized FCS).

After all, one should still keep in mind that the above modeling is of a phenomeno-

logical nature. Eq. (2.19) rather serves as a parametrization of the non-exponential nature

of the RACF than as an advanced model providing a comprehensive physical description.

For proteins of different charge distributions, the intrinsic shape of the RACF may differ,

and the parameters describing the slow component of rotational diffusion (S2
rot, τS) may

not be suitable for comparison among different proteins. In fact, the decomposition into

two components, slow and fast, with physically meaningful values of S2
rot and τS, may not

always be justified: given that the RACF has no well-developed plateau in-between the fast

and the slow component, the actual value of the order parameter is dependent on the fitting

model used to mimic the shape of the RACF at longer times. The order parameter may

be even physically ill-defined in case that the deviation from singly exponential behavior

relates to a power law (see again Fig. 2.3, red line). Having this limitation in mind, the

value of S2
rot should be interpreted in terms of an apparent amplitude aS reflecting the

deviation from a singly exponential behavior rather than discussing a physically well-based

order parameter. In the same way, the time scale reflecting the long-lasting decay of the

RACF, τS, is an intrinsically model-based parameter. Nevertheless, such parametrization

mimics the general shape of the RACF, and thus provides a minimal model for addressing

its non-exponential nature in non-dilute protein solutions. Studying the concentration

dependence of the “slow tail” of rotational diffusion reflects – within the limitations of the

model applied – the trend with which the non-exponential nature of the RACF changes

upon crowding. Also note that the initial slope of the RACF as defined in eq. (2.21) is a

physically well-defined quantity (the instantaneous rotational diffusion coefficient), and is

safely determined during data fitting. As will be shown in the results section, neglecting

the slow tail of rotational diffusion can provide strongly misleading results for non-dilute

protein solutions.
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3
Experimental methods

Nuclear Magnetic Resonance spectroscopy
and viscosimetry

The study of crowded protein diffusivity presented in this thesis relies on Nuclear Magnetic

Resonance (NMR) spectroscopy experiments, with pulsed-field gradient (PFG) NMR for the

measure of translational diffusion and NMR relaxometry for studying Brownian tumbling.

In the following, an introduction to these techniques will be provided. Key aspects of the

viscosity measurements will be presented as well. Experiments and techniques that do

not relate to my own work (recombinant protein expression, small-angle X-ray scattering

(SAXS) and polarized fluorescence correlation spectroscopy (FCS)) are not discussed here.

3.1. Basics of NMR

Several atomic nuclei carry an intrinsic property whose mathematical behavior can be de-

scribed in terms of an angular momentum called spin. As a quantum-mechanical property,

the spin vector S is quantized with a total angular momentum of ||S|| = [I (I + 1)]1/2
~ and

a z-component given by Sz = ms~, where ms ∈ {−I , −I + 1, ... , I − 1, I }. The nuclear-spin

quantum number I takes a non-negative integer (even nucleon number, bosons) or a non-

negative half-integer (odd number of nucleons, fermions) value. This situation relates to

(2I + 1) sub-levels that are split by an energy gap of ∆E = −γ~B0 (Zeeman effect), where

γ is the (positive or negative) magnetogyric ratio of the nucleus, B0 is the strength of an

external magnetic field, and ~ is the reduced Planck constant. For B0 = 0 the sub-levels are

degenerate. If B0 , 0, transitions between the sub-states will occur if the energy provided or

dissipated by the spin system matches ~ω0 = −γ~B0, where ω0 is the resonance frequency

(referred to as Larmor frequency) with which an electromagnetic wave may be irradiated.

Typically, the strength of the magnetic field in NMR spectroscopy is as high as several

Tesla,1 providing a resonance frequency in the radio frequency (rf) range. Most NMR

1For comparison, the earth’s magnetic field strength is between approximately 25 and 65 µT, with the tendency
of a high field strength at the poles and a lower field strength at the equator.
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3. Experimental methods

spectroscopic experiments on biological systems are carried out on 1H, 13C or 15N nuclei,

each with a spin of I = 1/2.

The nuclear spin gives rise to a magnetic moment

µ = γS . (3.1)

The sum of all magnetic moments is a macroscopic magnetic dipole moment or a macro-

scopic magnetization M = 1
V

∑
iµi , where V is a reference volume. In classical electrody-

namics a magnetic moment exposed to a magnetic field B0 is subject to a torque D,

D = M×B0 , (3.2)

which leads to a precession of the magnetic moment about the direction of the magnetic

field, B0 = B0 êz. From quantum mechanics it can be easily concluded that the precession

frequency equals the Larmor frequency,

ω0 = −γB0 . (3.3)

Application of eq. (3.2) requires a spin ensemble (limiting case of classical physics);

for a single spin, no conclusion on its spin state besides Sz =ms~ can be drawn. For further

comments on a quantum-mechanical basis, see the appendix, section S.1.

A spread of resonance frequencies (shielding effects) originates from the small local

fields Bloc arising from the electrons surrounding the nucleus which are sensitive to the

local chemical environment. For the multitude of spins in chemically equivalent posi-

tions (sub-ensembles), this situation is accompanied by individual precession frequencies

ω0,i = |γB0 +γBloc,i|. The variation of the resonance frequency is referred to as chemical

shift δ and is quite small, with values in the range of ppm (parts per million) only.

A resonant rf pulse (carrier frequency of ω0) induces not only transitions among the

spin sub-states, but also creates spin coherence. Macroscopically, on-resonant rf irradiation

serves to rotate the sample magnetization by an angle of φ =ω1tp about the x- or y−axis,

where ω1 = |γ |B1 is the nutation frequency dependent on the strength of the irradiating rf

field, denoted as B1, and tp is the pulse duration. Note that transverse magnetization does

not correspond to magnetization in terms of a spin population difference in the lab frame,

but results exclusively from a spin coherence. The precession of the spin coherence evolves

as an oscillating transverse magnetic field by which a voltage is induced in the NMR coil

which serves for signal detection. With time, the coherence is lost, such that the detected

signal decays. The detected signal is referred to as Free Induction Decay (FID), the Fourier

transform of which gives the individual frequencies the FID is composed of. This results in

an NMR spectrum, see Fig.3.1.
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Figure 3.1.: 1H NMR spectrum of 180 g/l αB-crystallin (αBc), as well as 130 g/l BSA, 130 g/l
LYZ, and 130 g/l SH3, each dissolved in D2O (T = 22◦C, ω0 = 400 MHz). Regions of amide
and aliphatic protons are marked. The peak of high intensity (cf. also small graphs) belongs
to residual solvent protons (HDO, H2O) and was calibrated to 4.8 ppm.

3.2. The NMR HSQC experiment

For proteins, the multitude of different proton sites gives many superimposed peaks in an
1H NMR spectrum, see again Fig. 3.1. For signal decomposition, protein NMR often relies

on multi-dimensional spectra in which the proton chemical shift is plotted against another

spin-codable property.

In the results section, the hetero-nuclear single quantum coherence (HSQC) ex-

periment [Bodenhausen and Ruben, 1980] will be used. The basic scheme of an HSQC

experiment (see Fig. 3.2a) is as follows: Via INEPT (insensitive nuclei enhanced by polariza-

tion transfer; Morris and Freeman [1979]), spin polarization is transferred from the proton

spins to the hetero-nucleus, and then evolves during the time delay t1. During this period,

the signal evolution resembles an FID, and can thus be used to encode chemical-shift

information of the hetero-nucleus. Directly after this evolution period, another INEPT

is used to transfer the spin polarization back to the proton spins and the resulting pro-

ton signal is detected. The signal finally obtained is an FID (evolution time t2) of which

the initial (i.e, total) intensity depends on the previous choice of t1. By repeating the

experiment for different values of t1 and performing a Fourier transform in both t1 and

t2, a two-dimensional spectrum is obtained in which the proton chemical shift is linked

(correlated) to that of the close-by hetero-nucleus. In this way, the chemical shift of the

hetero-nucleus is detected indirectly. The accordant pulse sequence is shown in Fig. 3.2b.
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3. Experimental methods

HSQC experiments result in kind of a spectral fingerprint of the protein and can

be used to identify protein reaction sites. For this purpose, one usually compares an

HSQC spectrum in presence and absence of the protein’s ligand. Fig. 3.3 shows an HSQC

spectrum of uniformly 15N-enriched SH3 with and without adding unlabeled BSA. For

this particular sample, no significant chemical shift differences were obtained indicating

no specific protein-protein binding. Fig. 3.3 directly relates to the results discussed in

paper #4.

t1 
pre-scan 

delay 
detection 

(b) 
1H 

15N or 13C 

FID 

(a) 
t2 INEPT 

τ τ 

decoupling 

τ τ 
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(π/2)x (π)x 

(π/2)x (π)x 

(π)x 

(π)x 

(π/2)x 

t1/2 t1/2 

Figure 3.2.: NMR pulse sequence of the HSQC experiment, including its basic scheme (a) and
the detailed pulse sequence (b). For complete polarization transfer within the INEPT blocks,
τ = 1/(4 J) must hold, where J is the scalar coupling strength (in units of Hz).
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Figure 3.3.: 1H-15N HSQC spectrum
(ω0/2π = 800 MHz) of 3 g/l uniformly
15N-enriched SH3 in absence (red)
and presence (blue) of 19.8 g/l
unlabeled BSA, according to a mo-
lar ratio of about 1:1 for the two
proteins. For both samples, the pH
was adjusted to 7.4 using 225 mM
sodium phosphate buffer. Comparing
the HSQC spectra with each other,
no significant changes are obtained.
Peaks in orange or bright blue belong
to negative intensities resulting from
a mirror image of peaks caused by the
Fourier transform.
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3.3. NMR relaxometry

3.3. NMR relaxometry

If the spin ensemble is perturbed, spin relaxation will occur. Studying spin relaxation

enables the determination of the time scale and amplitude of re-orientational molecular

motions that take place in the (sub-)ns to µs regime. Three types of spin relaxation are of

importance: (i) longitudinal relaxation, which re-establishes the spin state population in

thermal equilibrium (Curie magnetization), (ii) transverse relaxation, which is the loss of

spin coherence (loss of “transverse magnetization”), and (iii) spin relaxation in the rotating

frame, denoting relaxation of spin-locked coherence during (on- or slightly off-resonant)

rf-field irradiation, for which relaxation occurs along the irradiated rf field B1.

The transition of a spin ensemble from the initially distorted to the equilibrium state

(intensities I0 = I(0) and I∞ = limt→∞ I(t), respectively) usually follows an exponential

behavior,

I(t) = I0 +
(
I∞ − I0

)(
1− exp(−Rx t)

)
, (3.4)

in which Rx = 1/Tx is the longitudinal (R1), transverse (R2), or rotating-frame (R1ρ) relax-

ation rate (Tx: time).

The physics of spin relaxation is as follows. The energy levels of a (hetero-nulear)

spin-1/2 pair are split by energy gaps ω(1)
0 , ω(2)

0 and ω
(1)
0 ±ω

(2)
0 (each in units of ~), see

Fig. 3.4. For like spins, ω(1)
0 and ω(2)

0 are equal, such that the energy gaps for single and

double quantum transitions are ω0 and 2ω0, respectively. For zero-quantum transitions,

no energy gap occurs in the homo-nuclear case. If the energy levels are modulated with

a frequency that matches these resonance frequencies, spin transitions will be initiated,

with the transition probability per unit of time being calculated by Fermi’s golden rule

of quantum mechanics. With these spin transitions, the spin ensemble will re-establish

its thermal equilibrium. Note that unlike longitudinal relaxation, transverse relaxation

can take place even without changes in the spin population along the z-direction: zero-

quantum transitions in the homo-nuclear case do not alter the spin population of the

considered spin species (e.g. 1H), yet the energy-conserving, simultaneous mutual exchange

of spin polarization (“flip-flop”) is accompanied by a loss of phase coherence. Stochastic

fluctuations in the z-component of Bloc also cause an intrinsic, accumulative loss of spin

coherence, where the effects of chemical exchange are discussed in the experimental section

on transverse relaxation.

For (protein) protons, fluctuating local magnetic fields and the modulation of the

energy levels mainly originate from dipolar couplings,2 the angular dependence of which

is described by spherical harmonics of second order, Y2m, where m = {−2, −1, 0, 1, 2 }. Spin

flip-flops are likewise mediated by dipolar couplings. Thermal motions initiate stochastic

fluctuations in the dipolar coupling strength that are described via the auto-correlation

2To be mentioned for completeness, for spins with I > 1/2 electric quadrupole couplings are relevant.
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Figure 3.4.: Energy levels for a two-spin system (each spin with I = 1/2), where |α〉 = |12 ,
1
2 〉 and

|β〉 = |12 ,−
1
2 〉 denote the spin-up and spin-down state, respectively. Energies are given in

units of ~ and should not be mixed up with transition frequencies.

function of these spherical harmonics, C2m(t) ∝
〈
Y2m(τ)·Y2m(τ+t)

〉
τ
� Am exp

(
−t/τ (2)

r,m
)
. The

Fourier transform of the auto-correlation functions gives the frequencies the modulation of

dipolar couplings relates to, and is referred to as the spectral density of motion J(ω). To

be noted, for isotropic samples the correlation functions C2m(t) are identically and can be

expressed in terms of the 2nd Legendre polynomial, Y20(θ) = P2(cosθ) [Lipari and Szabo,

1982a].

Studying proton relaxation in proteins with a natural abundance of 13C and 15N,

homo-nuclear couplings are far more dominant over hetero-nuclear couplings. Chemical

shift anisotropy gives another source for spin relaxation; although, for proton spins, this

effect is usually negligible as compared to relaxation mediated by dipole-dipole couplings.

Homo-nuclear dipolar couplings thus dominate protein 1H relaxation rates, where

R1 =
2
3
KHH

(
J(ω0) + 4 J(2ω0)

)
, (3.5)

R2 =
1
3
KHH

(
3J(0) + 5J(ω0) + 2J(2ω0)

)
, (3.6)

Ron
1ρ =

1
3
KHH

(
3J(2ω1) + 5J(ω0) + 2J(2ω0)

)
. (3.7)

Here, KHH relates to the effective spin-spin coupling strength. As mentioned above, for

isotropic media Jm=0(0), Jm=1(ω0) and Jm=2(2ω0) are identical except of the frequency

probed, as shown in the above equations. Note that locally anisotropic motions will still

provide this identity if averaging over different local settings reintroduces an isotropic

angular distribution [Kurbanov et al., 2011], as, for instance, in the case of powder averaging

in polycrystalline materials. For macroscopically anisotropic media, however, Jm=0(ω),

Jm=1(ω) and Jm=2(ω) can be structurally different since C2m(t) may yield different results

for different values of m = {0, ±1, ±2 }. A Markov process can still be expected to provide

an exponential decay of C2m(t), yet the correlation time (and order parameters) may be

dependent on the value of m.
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3.3. NMR relaxometry

For completeness, it should be mentioned that the equations for spin relaxation due

to hetero-nuclear dipolar couplings are basically of the same nature, but with sensitivity to

those frequencies (and amplitudes) that relate to the hetero-nuclear case (cf. again Fig. 3.4).

Note that eq. (3.7) holds for on-resonant R1ρ relaxation experiments, i.e., an on-

resonant spin-lock pulse. For off-resonance, see Jones [1966] or, for a more compact

expression, Krushelnitsky and Reichert [2004]. The equation for Ron
1ρ resembles that for R2,

except that the spectral density is not probed in its zero-frequency limit but at twice the

nutation frequency of the irradiated rf field. With ω1 = |γ |B1 being in the range of some

tens of kHz (for reasoning see the section on R1ρ experiments), R1ρ relaxation serves for

probing the low-frequency region of the spectral density. R2 basically probes J(ω = 0), and

R1 usually covers the MHz regime.

For an exponential auto-correlation function (Debye process), the spectral density is

J(ω) ∼ τ

1 + (ωτ)2 , (3.8)

with τ being the correlation time characteristic of the motion, and J(0) = τ . Eq. (3.8) gives

the simplest form of the spectral density; dynamics that are not well represented by a single

mode but involve an (intrinsic) distribution of correlation times usually require a modified

form of the spectral density [Beckmann, 1988]. Non-Debye dynamics are reminiscent of

supercooled liquids [Blochowicz et al., 2003] and synthetic polymers [Kruk et al., 2012].

In a mono-disperse solution of a globular protein at a concentration far below the

colloidal glass transition, all particles feature the same properties, with the same rota-

tional correlation time for all molecules. Such a scenario is well represented by a simple

Lorentzian, i.e., eq. (3.8). If there are distinct proteins, or given the case of protein associa-

tion, each sub-species is represented again by a Lorentzian, and rotational dynamics of the

overall dispersion are well described by a weighted sum of these Lorentzians.

Non-negligible protein-protein interactions gives rise to an intrinsically

non-exponential shape of the RACF, and are of particular relevance under crowding

conditions. Relying on the bi-exponential approach in eq. (2.19), the spectral density of

protein rotational motion under crowding conditions reads (S2
rot � as)

Jr(ω) =
(
1− S2

rot

) τrot

1 + (ωτrot)2 + S2
rot

τS

1 + (ωτS)2 . (3.9)

Fig. 3.5 displays the spectral density in eq. (3.9) for the case of S2
rot = 0 and S2

rot , 0,

and compares J(2ω) to the R1 characteristics (eq. (3.5)). As reflected in this graph, the

frequency-dependence of R1 is a well-suited tool to directly access the spectral density and

the RACF. On a logarithmic scale, the inflection point of the Lorentzian spectral density

(eq. (3.8)) occurs at the condition of ωτ ∼ 1. This inflection point serves as a safe estimate

of the correlation time τrot,S, provided of course that ω is varied within a suitable frequency

range.
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Figure 3.5.: Spectral density of protein rotational diffusion. The here shown data set directly
results from the Fourier transform of the RACF shown in Fig. 2.3. Longitudinal relaxation
rates R1 have a similar frequency dependence as Jr(2ω), as is seen from also plotting(
1 Jr(ω) + 4 Jr(2ω)

)
/ 5 (red dashed line). On a logarithmic scale in ω, the difference between

Jr(ω) and Jr(2ω) causes only a horizontal shift along the frequency axis. The inset reflects
the case of S2

rot � aS = 0 (green dotted line) on a linear scale in Jr(2ω), from which the
amplitudes of the “fast” and “slow” component of rotational diffusion can be compared to
each other.

The temperature dependence of spin relaxation rates gives another way of assessing

(rotational) correlation times. The rotational correlation time changes with temperature,

e.g., via an Arrhenius behavior,

τ(T ) ∝ exp
(
EA

kBT

)
, (3.10)

where EA is an activation energy. For a fixed frequency ω = ω∗ but a variable value of

τ , J(ω∗, τ) has a maximum if ω∗ τ∗ ∼ 1. This effect is illustrated in Fig. 3.6 by comparing

the frequency dependence of J(ω,τ) for different values of τ . For a fixed frequency ω∗,

R1 relaxation rates will behave in a similar way, with a maximum of R1 occurring again

at ω∗ τ∗ ∼ 1. (More precisely, the maximum occurs at ω∗τ∗ = 0.615 due to the combined

action of J(ω) and J(2ω).) The temperature dependence of longitudinal relaxation rates

may serve to identify the temperature T = T ∗ at which this condition is fulfilled. As ω∗ is

precisely known from the experimental setup, this situation provides a safe estimate of τ

at T = T ∗. For illustration, Fig. 3.7 displays R1, R1ρ and R2 relaxation rates for a variable

correlation time τ that has been multiplied by the fixed frequency ω = ω∗. Note the similar

characteristics of R1ρ relaxation rates as compared to R1. If an Arrhenius behavior of τ is

valid (eq. (3.10)), ln(τ) will be directly proportional to 1/T . Then, the x-axes in Fig. 3.7 can

be replaced by plotting 1/T on a linear scale without changing the characteristics of the

relaxation curves. Fig. 3.7 thus directly reflects the temperature dependence of relaxation

rates that are sensitive to an Arrhenius process. Apart from the condition of ω∗τ∗ ∼ 1, the

slope of the relaxation rates directly relates to the activation energy EA. Also note that noisy

experimental data recorded within a rather narrow temperature range may not permit the

distinction between Arrhenius and non-Arrhenius behavior of rotational correlation times.
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Figure 3.6.: Frequency dependence of
the spectral density (left) for dif-
ferent values of τ , with τ = f τref,
f = 4k , k = {−3,−2,−1, ...,+2,+3}.
Note that all curves are plotted
relative to τref. Given a fixed
frequency ω = ω∗ (vertical blue
line), J(ω∗) has a maximum if τ
fulfills the condition ω∗τ∗ ∼ 1.
This condition is fulfilled here for
τref = τ∗. The right-handed graph
shows the value of J(ω∗, τ) for each
of the curves as a function of
τ/τref = f .

Most applications of NMR relaxometry aim for site-specific information on the inter-
nal dynamics of the protein. Initiated by the “model-free approach” by Lipari and Szabo

[1982a,b], a large number of NMR relaxometry studies have been published in which

protein internal dynamics are modeled on the basis of

Cint,r(t) = Cint(t) exp(−t/τrot) , Cint(t) = S2
int + (1− S2

int)exp(−t/τint) (3.11)

⇐⇒

Jint,r(ω) =
(
1− S2

int

) τ

1 +ω2τ2 + S2
int

τrot

1 +ω2τ2
rot

, (3.12)

1/τ := 1/τrot + 1/τint .

Here, Cint(t) denotes the correlation function of internal motions for each resolved position

inside the protein, parametrized by a single correlation time τint and the generalized order

parameter S2
int that accounts for the spatial restrictions of protein internal dynamics. The

model-free approach is “model free” in that knowledge on the detailed physics of motion

is not required; nevertheless, the value of the order parameter can be linked to physical

constraints: for wobbling within a cone of semiangle θc, for instance, S2
int is determined by

[Lipari and Szabo, 1980]

S2
int =

(1
2

cosθc (1 + cosθc)
)2

. (3.13)

For rigid residues (mostly those of α-helices or β-sheets), S2
int commonly has a value of

around 0.8; for rather flexible residues (such as in mobile loops), S2
int drops down to values

of 0.6 or below. An exemplary data set can already be found in the early work by Clore et al.

[1990a], followed by more sophisticated modeling of protein internal dynamics [Clore et al.,

1990b]. The model-free approach established as a key methodology for studying protein

internal dynamics [Fenwick and Dyson, 2016] with at present more than 100 citations per

year of the pioneering work by Lipari and Szabo [1982a] and a total of about 3000 citations

by 2016. Objections on the physical value of this approach have been raised by Freed et

41



3. Experimental methods

1 0 - 4 1 0 - 2 1 0 0 1 0 2 1 0 41 0 - 4

1 0 - 2

1 0 0

1 0 2

1 0 4

1 0 6

τS

τr o t  

( b )

ω*  f i x e d
  τ = τ( T )  

R 1 ρ

R 2

R 1

R 2

R 1

R 1 ρ

 

 
R x  / 

 s 

ω*  τ

ω* τ*  =  0 . 6 1 5

( a )

1 0 - 4 1 0 - 2 1 0 0 1 0 2 1 0 4 1 0 - 4

1 0 - 2

1 0 0

1 0 2

1 0 4

1 0 6

 R x  / 
 s 

 

ω*  τ 

a c c e s s a b l e
t e m p .  r a n g e

Figure 3.7.: Dependence of the spin relaxation rates R1, R1ρ and R2 on the value of τ relative
to the fixed frequency ω∗ for a spectral density composed of a single Lorentzian (a), and
for the spectral density of the bi-modal approach in eq. (3.9) (b). Dependend on the value
of KHH (cf. eqs. (3.5)-(3.7)) the curves may be vertically shifted. For R1ρ, the spin-lock
frequency ω1 (cf. eq. (3.7) is in the kHz regime (black solid line). R1ρ curves approaching
R1 are plotted for illustration only (dashed/dotted lines) and rely on high values of ω1 that
cannot be achieved by real instrumentation. The above figures also reflect the temperature
dependence of spin relaxation curves, see text. As an exemplary illustration a temperature
range has been marked in (b) that may be accessible without harm for the protein. For
this marked temperature range, longitudinal relaxation rates R1 would be predominantly
sensitive to τrot (right-handed maximum), whereas R1ρ resolves slow dynamics (left-handed
shoulder of the R1(ρ) curves).

al.: given the rather complex nature of protein internal dynamics, the generalized order

parameter may not always be physically representative [Tugarinov et al., 2001; Meirovitch

et al., 2006].

In all these models for investigating protein internal dynamics, knowledge on the

protein’s global tumbling time is a prerequisite for estimating internal motions. For the

condition of τint . 100 ps and τrot & 1 ns, with R2 being not increased by chemical exchange

effects (see below), τint and S2
int have only a minor contribution to the value of R1/R2 [Clore

et al., 1990a]. Thus, τrot is usually estimated from fitting an appropriate model to the

R1/R2 ratio of the most rigid residues. Additional benefit comes from the fact that R1/R2 is

essentially independent from the a priori unknown value of KHH: the coupling constant

KHH can be easily calculated in absence of any internal dynamics, yet its actual value can

in fact be reduced by internal motions faster than those resolved by the experimental time

window (consider, for instance, fast chemical bond vibrations).
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Figure 3.8.: Intrinsic distribution of longitudinal relaxation rates in LYZ (bar diagram) as ap-
proximated by a log-normal distribution (red line) when fitting the magnetization build-up
(or decay) curves as shown in Fig. 3.9. Experimental data reproduced from Luchinat and
Parigi [2007], where LYZ was dissolved in D2O at a concentration of 2.8 mM (∼ 40 g/l)) at
pH 3.5.

The study of protein internal dynamics requires a high high magnetic field strength

in order to achieve spectral resolution . However, estimating the global rotational correla-

tion time τrot from high-field NMR data is merely a compromise for avoiding additional

measurements at low magnetic fields. At low magnetic fields, we have ω0 τrot,S ∼ 1 which

gives a significantly increased sensitivity to the value of τrot,S. This increased sensitivity of

R1 to global protein dynamics is achieved at the cost of a low signal intensity and a lack

of spectral resolution. Due to a lack of spectral resolution, the sample’s integral (proton)

signal must be evaluated. Different protein proton sites have different dipolar couplings

and are subject to different internal dynamics, which is accompanied by a spread of re-

laxation times. Consequently, the integral protein proton relaxation curve is intrinsically

multi-exponential,

I(t) = I0 +
(
I∞ − I0

)(
1−

N∑
i=1

pi exp(−R(i)
x t)

)
,

N∑
i=1

pi = 1 . (3.14)

Here, R(i)
x denotes the R1, R1ρ or R2 relaxation rate of the ith protein proton site. For fitting

the NMR relaxometry curves, the distribution pi of protein proton relaxation rates may

be roughly approximated by a log-normal distribution, as demonstrated in Fig. 3.8 on

the example of R1 relaxation rates in lysozyme [Luchinat and Parigi, 2007]. Note that the

intrinsically multi-exponential nature of the spin relaxation curve should not be mixed up

with the deviation of the protein RACF from singly exponential behavior.

As follows from eq. (3.14), the initial slope of the normalized relaxation curve reports

on the arithmetic average of relaxation rates, R(av)
x :

d
dt I(t)

I∞ − I0

∣∣∣∣∣∣
t=0

=
N∑
i=1

piR
(i)
x =: R(av)

x . (3.15)
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This arithmetic average relates to the mean spectral density of motion and will be used for

data analysis. For more details on this topic, see the Supporting Information, section S.2.

For evaluating a shared data set composed of R1, R2 and R1ρ measurements, it is

required that the same protons contribute to each experiment. Otherwise, R1, R2 and R1ρ

rates are not directly comparable to each other. Fortunately, this aspect is automatically

fulfilled by relying on the integral intensity of all the protein protons.

In the following, a basic description of the technical aspects of measuring spin relax-

ation will be provided. Special emphasis on multi-component relaxometry data analysis

will be part of the results section, in particular article #2, and will not be discussed in this

chapter.

(i) Measuring longitudinal relaxation:
Variable field strength via field-cycling NMR

In thermal equilibrium, the spin population follows a Boltzmann distribution. Hence,

for spin-1/2 nuclei, the equilibrium population number of spin-down (Nβ , upper energy

level) relative to spin-up (Nα, lower energy level) reads

Nβ
Nα

∣∣∣∣∣∣
eq.

= exp(−~ω0/kBT ) . (3.16)

Apart from extraordinarily low temperatures, both states are almost equally populated

since ~ω0 � kBT ; the excess of spins in the lower energetic state is only in the range of

parts per million (ppm). Only the difference in the population states is accessible by NMR

experiments, which is the reason of the intrinsically low sensitivity of NMR spectroscopy.

To measure longitudinal relaxation, the equilibrium population of spin states needs

to be perturbed. There are two ways of doing so: (i) use of pulses (commonly, the satu-

ration/inversion recovery experiment) or (ii) switching the magnetic field (field-cycling

NMR).

In most applications, longitudinal relaxation rates are accessed by saturating the

spin population, i.e, the same number of spin-up and spin-down states, with no sample

magnetization occurring. Here, the intensity of the detected NMR signal is evaluated

as a function of the evolution period trlx, cf. Fig. 3.9. Saturation of the spin population

can be achieved by a (train of N ≥ 1) (π/2)-pulse(s). Consequently, the accordant basic

pulse sequence simply reads
[
τ − (π/2)

]
N
− trlx − (π/2)−

{
detection

}
, and is referred to as

the saturation recovery experiment.3

3For the inversion recovery experiment, the initial (π/2)-pulse is replaced by a (π)-pulse, or, for compensating
pulse imperfections, by a so-called composite pulse, (π/2)x − (π)y − (π/2)x.
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Figure 3.9.: Exemplary data set (open sym-
bols) for longitudinal relaxation, mea-
sured at 20 MHz Larmor frequency
via a saturation-recovery experiment
on BSA (213 g/l, T = 10◦C), using
320 scans per data point. The black line
shows the fitted overall magnetization
recovery, composed of the protein (red
dashed line) and the water (blue dashed
line) signal (see chapter 4, paper #2 for
details). For presentation only, the fit-
ted water signal was shifted upwards
towards higher intensities. The equilib-
rium intensity of protein and residual
water protons is indicated by vertical ar-
rows and the horizontal dashed-dotted
lines, respectively.

At low magnetic fields for accessing longer time scales (ω0 is small) the NMR signal

is too weak for acquisition using a reasonable number of scans (i.e., relying on a limited

measurement period). For this purpose, but also for having an adjustable value of the

Larmor frequency ω0, field-cycling (FC) NMR has been developed in which the equilibrium

(Curie) magnetization changes during the measurement by application of quick adjustments

of the magnetic field; see Fig. 3.10a. Here, an increased sample magnetization is created

by incorporating a magnetic field stronger than that one at which relaxation is later on

studied. The basic concept is as follows: after the sample was given enough time to be

in equilibrium, the polarization field (e.g. ω(pol)
0 /2π = 20 MHz) is ramped down within

milliseconds towards the relaxation field (adjustable field strength, ω(rlx)
0 < ω

(pol)
0 , e.g.

ω
(rlx)
0 = 10 MHz). Re-establishment of the new equilibrium magnetization is then studied

by variation of the time span during which the relaxation field (and hence longitudinal

relaxation of the sample) is active; see Fig. 3.10b. After the relaxation delay, and for signal

acquisition only, the magnetic field is ramped up again towards the detection field (here,

ω
(det)
0 /2π was fixed to 16 and 19 MHz dependent on the setup and experimental conditions).

Then, a (π/2)-pulse is applied to now record the FID. The (initial) intensity of the recorded

FID reflects the sample magnetization remaining after the adjustable relaxation period.

In usual applications, the magnetization ramps are short compared to the spin relaxation

time T1. If the spin relaxation time is comparable to or even faster than the field switching

time, the data analysis of a multi-exponential decay will occur to be problematic: protein

proton sites of fast longitudinal relaxation may not contribute to the relaxation decay, and

a biased signal will be obtained.
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(a)    (b) 

trlx,1 <           trlx,2 <         trlx,3 

Brlx Bdet 
Bpol 

Figure 3.10.: The principle of FC NMR. By adjusting the relaxation field Brlx, relaxation at
different Larmor frequencies can be accessed (a). The initial intensity of the signal is
determined by Bpol; detection is performed at Bpol after a (π/2)-pulse. By variation of the
duration of the relaxation field trlx, the spin relaxation curve is obtained (b). In comparison
to the time scale of spin relaxation, the duration of the magnetic-field ramps is exaggerated
here, at least with respect to usual applications.

Field-cycling NMR can also be applied in the way that the relaxation field is higher

than the polarization field. Then, a magnetization build-up curve is detected (very similar,

but not totally equal to a saturation-recovery experiment; cf. Fig. 3.9). The larger the

difference between the polarization and the relaxation field, the better spin relaxation can

be resolved.

FC instrumentation does not rely not on superconductive magnets, but on electro-

magnets combined with strong, quickly switchable electric currents, with the equipment

designed in such a way that only very short electrical ring-down delays are required. For

an overview on FC NMR instrumentation and applications using switchable coil magnets,

see the reviews by Kimmich [1980], Kimmich and Anoardo [2004] and Fujara et al. [2014].

Limited strength and homogeneity of the detection field of these magnets do not provide

sufficient spectral resolution; thus, one has to rely on the integral proton signal. Within the

last years, however, shuttling devices have been developed that combine high-field NMR

magnets with relaxation measurements at low magnetic fields [Redfield, 2003, 2012]. Here,

the sample is moved away from and back again to the center of the high magnetic field.

A drawback of these sample shuttling techniques is that increased field switching times

must be conceded (currently, approx. 300ms), which is contrary to the fast spin relaxation

times of proteins under crowding conditions (R1 ∼ 1 − 10 ms (protons), depending on

temperature and protein concentration; see paper #2 of the results section). Moreover,

quickly moving and stopping the sample can distort the behavior of the “slow component”

of rotational diffusion, which is considered to be related to the re-alignment of the local

environment of each protein [Krushelnitsky, 2006]. Fortunately, for Brownian dynamics,

discriminating among different protein protons is not required.

Here the presented FC NMR experiments were performed in cooperation with the

research group of Ernst Rössler† in Bayreuth, Germany. After having clarified all rele-

vant measurement parameters and after having completed a first measurement series, the

experiments were continued by Marius Hofmann
†, who is greatly acknowledged for his

†University of Bayreuth, Experimental Physics II
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effort. Performing the FC NMR experiments for a large number of relaxation fields and

temperatures, the overall measuring period took several months. The accumulated data

were analyzed several times for identifying the most suitable way of data analysis.

(ii) Measuring transverse relaxation:
Combined action of FID, Hahn echo, and the CPMG experiment

Transverse relaxation, that is the loss of spin coherence created after an NMR pulse, origi-

nates from two sources: inhomogeneity of the outer magnetic field B0, providing a spread

of Larmor frequencies, and intrinsic transverse relaxation emerging from spin-spin interac-

tions. For estimating rotational diffusion rates, only intrinsic relaxation is of relevance. In

contrast, the magnetic field inhomogeneity depends on instrumentation and is generally

kept as low as possible.4 The impact of residual field inhomogeneity can be easily circum-

vented by the use of (π)-pulses applied to the “transverse magnetization” in the middle of

the evolution period trlx (the so-called Hahn-Echo, 1
2 trlx−(π)−1

2 trlx); then, only intrinsic spin-

spin relaxation remains. The intrinsic transverse relaxation of the protein occurs on a time

scale much faster than the intrinsic transverse relaxation of the solvent (water) molecules.

To overcome the different time scales involved, but in particular for precisely resolving the

initial slope of the protein relaxation decay, a set of different experiments were combined:

(a) the usual FID the initial part of which is unaffected by field inhomogeneity effects,

providing the very beginning of the R2 decay; (b) a Hahn echo for accessing the protein-

dominated loss of spin coherence; and (c) the Carr-Purcell-Meiboom-Gill (CPMG) pulse

sequence for an effective measure of the water component. Unlike the Hahn echo the

CPMG experiment consists of a train of (π)-pulses combined with stroboscopic detection of

the NMR signal (i.e., short detection of the integral signal intensity in-between the pulses).

In this way, many points can be detected within a single CPMG experiment. The Hahn echo,

in contrast, only provides information on a single data point. Varying the time span 1
2 trlx

before and after the (π)-pulse, however, the Hahn Echo accesses a time scale shorter than

that of the CPMG experiment in which only a multiple of the shortest possible relaxation

delay can be resolved. A combined set of these experiments is shown in Fig. 3.11a. On

the basis of these experiments, and after subtraction of the water signal, the intrinsically

multi-exponential protein relaxation decay can be resolved, see Fig. 3.11b.

All measurements of transverse relaxation were performed at 20 MHz Larmor fre-

quency. Although signal detection at higher magnetic fields requires much shorter mea-

surement times due to an intrinsically better signal-to-noise ratio (remember, in particular,

the Boltzmann population of spin states, eq. (3.16)), low-field NMR R2 measurements still

remain beneficial: chemical exchange effects [Luz and Meiboom, 1963] that cause faster

transverse relaxation are not of importance here. If the local chemical environment of

4Except for Magnetic Resonance Imaging (MRI) and measurements of translational diffusion, which both
require static or pulsed magnetic-field gradients.
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Figure 3.11.: Exemplary data set for transverse relaxation (BSA 213 g/l, T=20◦C,
ω0 = 20MHz), composed of four experiments (a). Note the faster loss of coherence of the
simple FID (gray points) as compared to the same decay when residual field inhomogeneity
effects are compensated (colored points). The CPMG experiment using a short inter-pulse
spacing (green) is only used to bridge the gap in-between the Hahn echo (red) and the sec-
ond CPMG using a longer inter-pulse delay (blue). The solvent signal is mono-exponential
(cf. inset for a semi-logarithmic plot) and can be easily subtracted, such that the R2 decay of
solely the protein protons can be addressed (b). Here, the (initial part of the) protein decay
can be reproduced by either a bi-exponential fit or by the use of a log-normal distribution
of relaxation times (the latter is even sufficient to reproduce the full protein decay). For
achieving a proper signal-to-noise ratio, 128 repetitive scans were used for FID detection
and the CPMG experiments, and 64 scans for the Hahn echo.

a spin changes, e.g. via internal dynamics of the protein, the chemical shift of the spin

will change as well. Such change of the Larmor frequency can only be compensated if the

inter-pulse delay between the (π)-pulses is shorter than the characteristic time scale of

this effect; otherwise, re-focussing by the (π)-pulse remains incomplete, and the so-called

chemical exchange effect causes a shortening of the R2 decay that is not related to the

Brownian dynamics of the protein. For instance, chemical exchange of water protons with

amide protons of ∼ 100 g/l BSA causes the water transverse relaxation rate to increase

by a factor of about two at 100MHz Larmor frequency [Hills et al., 1989]. To overcome

this effect, inter-pulse spacings shorter than 100µs are required. However, using such

short inter-pulse delays, a large number of (π)-pulses is needed to reach the long times5

required for detection of the long-lasting water decay, in turn causing sample heating via

energy dissipation. Moreover, decreasing the inter-pulse delay down to values comparable

to the (π)-pulse duration (∼ 10µs) one approaches an R1ρ experiment rather than reliably

measuring R2. At low field strength, however, chemical shift differences are small, and

chemical exchange effects are negligible (for demonstration, see again Hills et al. [1989]).

5Up to the range of seconds for high-field NMR, e.g., for ∼ 100 g/l BSA in H2O at 23◦C and a Larmor
frequency of 100 MHz, R2,H2O ≈ 2s−1 [Hills et al., 1989].
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Figure 3.12.: Effective field strength in the rotating frame, B1e (a), and the pulse scheme for the
R1ρ measurements (b). For off-resonant R1ρ measurements, a slightly modified version of
the above pulse sequence is used: here the off-resonant spin-lock pulse is flanked by two
pulses of the same off-resonance, the first one of which aligns the magnetization vector
along the direction of B1e, whereas the second turns the magnetization vector back to the
direction of B0. This is followed by an on-resonant (π/2)-pulse and signal detection; see
also the Supporting information for paper #1. Off-resonant spin-lock pulses are usually
described via the off-resonance angle θ = θoff between B1e and the static magnetic field B0
(z-direction). For on-resonant rf irradiation, θoff = 90◦.

(iii) Measuring relaxation in the rotating frame:
Bridging the gap in-between R2 and R1

R1ρ measurements reflect the spin relaxation during a spin-lock pulse of strength B1,

with usually B1� B0. During spin-lock the rf field is irradiated with the same phase as the

spin coherence. In this way, any coherence that has the same phase as the spin-lock pulse

will be constantly refocused and is held along the axis of the rf pulse. Spin relaxation now

occurs along B1 instead of B0. In order to handle this situation, one usually relies on the

so-called “rotating frame” approach: by considering a coordinate frame that rotates with

the same frequency ω as the spin precesses, the effective, rotating-frame B0 field vanishes,

B0e = |(ω −ω0)/γ | = 0. Then, only the irradiated rf field B1e = B1 remains active and gives

the field along which spin relaxation occurs. For that reason, R1ρ relaxation is also referred

to as “relaxation in the rotating frame”. Off-resonance effects can be treated in a similar way.

Here, ω , ω0 goes with the residual precession of the spin ensemble which conforms to a

residual B0 field. Assuming B1 points along the x-direction, the effective overall magnetic

field reads B1e = | (ω −ω0)/γ | êz + B1 êx = B0e êz + B1 êx, where êx and êz give the unity

vectors in x- and z-direction, respectively. The angle between B1e and B0 is referred to as

the off-resonance angle θoff and serves to describe the experimental conditions; see also

Fig. 3.12a.

R1ρ measurements are well suited for resolving the spectral density in the kHz

regime, and bridge the gap between R1 (usually MHz regime) and R2 (providing J(0)). In

fact, relaxation at magnetic fields that are as low as several kHz can also be accessed by

modern field-cycling instrumentation. In recent developments sufficiently stable fields
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for relaxation regimes of several Hz have been achieved [Kresse et al., 2011, 2014]. Such

measurements are achieved by large magnetic field jumps between the polarization, the

relaxation and the detection field. Given a multi-exponential relaxation decay, a biased

estimate of the mean R1 might be obtained. In particular, biased results were obtained

for BSA at lower magnetic fields; this data were not used for further data analysis. R1ρ

measurements were of additional value to verify the field-cycling R1 data measured at

low magnetic fields. Note that in R1ρ measurements, the change in the applied magnetic

fields is almost instantaneous (µs delays only), with no need of magnetic field ramps (cf.

Fig. 3.12b).

For the applications here, ω1/2π is in the range of 20−40 kHz: the value of ω1 should

be larger than the spectral width of the NMR signal (δ . 25ppm, i.e., . 10kHz at 400MHz
1H resonance frequency) to avoid additional off-resonance effects, but should also be low

enough to allow for long-lasting B1 irradiation without risk of damage to the NMR pulse

generator. To access higher frequencies, off-resonant B1 irradiation should be used.

3.4. Pulsed-field gradient NMR

Pulsed-field gradient (PFG) NMR enables a precise and straightforward determination of

translational self-diffusion coefficients. It evolved from the pioneering work of Stejskal and

Tanner [1965] and is based upon the efficiency of nuclear spin echoes (SE) in presence of

(temporarily) inhomogeneous magnetic fields [Hahn, 1950; Carr and Purcell, 1954]. In this

technique, a position-dependent magnetic field encodes spin positions, the same basis of

MRI.

The pulse scheme (cf. Fig. 3.13a,b) of the PFG NMR SE pulse sequence is as follows:

having first excited a single-quantum coherence by applying a (π/2)-pulse, the coherence

starts to dephase because of intrinsic transverse relaxation, chemical shift effects, and,

importantly, due to the pulsed gradient of strength g = ∇B0 and duration δ. The pulsed field

gradient causes a position-dependent evolution of the phase angle of the spin coherence

according to

∆φPFG(ri) = ωt
∣∣∣δ
0

= γ g · ri δ . (3.17)

In eq. (3.17) a rectangular gradient pulse (no ramp times; constant amplitude |g| = g during

time span δ) is assumed. For non-rectangular gradient pulses, however, this relationship

still holds, given that gradient strength and duration are described by∫ δ

0
g̃(t) dt != gδ ⇔ g =

〈
g̃(t)

〉
δ

. (3.18)
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After having switched off the gradient pulse, one waits for an overall time delay ∆

during which translational diffusion occurs. Note that the diffusion delay is defined as

the time span from the first gradient pulse to the second, the latter used for decoding the

diffusion signal. After half of the diffusion delay, a (π)-pulse is applied. The (π)-pulse

causes an inversion (altered sign) of the phase angle. Given that the gradient strength

and duration acting on the spin ensemble the second time are the same as they were

during the first gradient pulse, a (fully refocused) spin echo will occur. A spin echo means

that chemical shift differences and gradient pulses are canceled out; that is, in absence

of translational displacements, all spin sub-ensembles i = {1, ..., N } have the same phase

angle,6

∆φi

(
ri(t),ri(t +∆)

)
=ωt

∣∣∣
t→t+∆ =

(
γ g · ri(t) δ+ω0,i

∆
2

)
−
(
ω0,i

∆
2 +γ g · ri(t +∆) δ

)
= −γ g ·∆r δ , ∆r = ri(t +∆)− ri(t) (3.19)

= 0 if ∆r = 0 .

If the position of each spin stays unchanged, the spin echo will have its maximum

intensity. If translational diffusion occurs then ri(t) , ri(t +∆) and the accumulated phase

angle will be different from spin to spin (in terms of sub-ensembles). As a consequence, the

larger the (diffusion-mediated) displacement of the spins the more reduced the measurable

spin coherence. As such, the attenuation of the NMR signal with ongoing diffusion provides

a direct measurement of the ensemble-averaged mean-square displacement of the probe

molecules, in turn relating to the self-diffusion coefficient.

Quantification of translational self-diffusion via the SE pulse sequence works suffi-

ciently well for small molecules, as these are subject to slow transverse relaxation (R2 ≈ R1)

only. In contrast, for large molecules such as proteins, the intrinsic relaxation rate R2 can

be quite short, such that the signal finally obtained can be appreciably reduced, if not

weakened beyond detection. A minor modification, referred to as the Stimulated Echo (STE)

pulse scheme [Tanner, 1970], serves to avoid this issue: instead of relying on a coherent

state of the spin ensemble during the diffusion delay ∆, the information is “stored” along

the z-axis, i.e., for spin-1/2, the information is stored in terms of spin-down and spin-up

states during the diffusion delay, leading to a position-dependent ±z-magnetization. In

practice, this improvement is achieved by splitting the (π)-pulse into two (π/2)-pulses; see

Fig. 3.13c. Stored along the z-axis, the spin-encoded information is subject to longitudinal

relaxation (R1) instead of being sensitive to R2. For proteins (and similar macro-molecules)

1/T1 = R1� R2 = 1/T2, such that the relaxation-mediated signal attenuation is significantly

reduced by the STE scheme. A disadvantage of the STE scheme is a 50% reduction in

signal due to the fact that the second pulse (cf. Fig. 3.13c) only reconverts half of the spin

6Neglecting intrinsic dephasing via spin-spin interactions, i.e., intrinsic T2 relaxation.
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Figure 3.13.: NMR pulse sequences for measuring translational diffusion. The here shown
schemes apply to 1H, but can likewise be applied to other spin-carrying nuclei. The basic
scheme (a) is the same for the SE pulse sequence (b) as for the monopolar (c) and the
bipolar (d) STE experiment. Note that τ1 > 2τ3 > 2τ2, where τi denotes the time span
during which the spin system is subject to transverse relaxation.
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3.4. Pulsed-field gradient NMR

coherence back to a ±z-magnetization; the other half is dephased by a spoiler gradient to

not interfere with the measuring result.

To avoid the influence of longitudinal spin relaxation on the shape of the diffusion

decay one usually keeps all time constants fixed, but varies the strength of the pulsed

gradient. Stronger gradients increase the sensitivity to translational displacements. With

increasing gradient strength g = |g | the decay of the signal intensity IPFG provides the

(long-time) self-diffusion coefficient D(L)
t via [Stejskal and Tanner, 1965]

IPFG(g) = IPFG(0) exp
(
−γ2g2D

(L)
t δ2(∆− δ/3)

)
. (3.20)

In the experiments performed here, translational diffusion is accessed on a time

scale of ∆ ∼ 20 − 70ms. With protein translational diffusion coefficients in the order of

10−10 m2/s down to 10−12 m2/s, the root mean-square displacement 〈r2〉1/2 is still in the

range of micrometers, i.e. significantly larger than the protein’s size or the dimension of

the macromolecular cage. Consequently, protein translational diffusion as detected by PFG

NMR clearly belongs to the long-time regime. Note that in all experiments performed

here, the gradient pulse points along the z-axis, hence g · r = gzz, with an effective gradient

duration (cf. also eq. (3.18)) of δ = 1 ms.

The pulsed gradient induces eddy currents in the metal structure of the gradient

equipment, giving rise to field transients. These uncontrolled magnetic fields distort the

NMR signal obtained. The magnitude of eddy currents can be decreased by a suitable shape

of the gradient pulses, avoiding a strong rise or quick lowering of the gradient burst (e.g.

via sinusoidal or trapezoidal gradient shapes). Additionally, a pre-emphasis of the gradient

pulse [Majors et al., 1990] is employed to counterbalance the eddy currents occurring

during and after the gradient burst as much as possible. Nevertheless, such treatment

cannot provide a perfect compensation, especially in presence of rather long-lasting ring-

down effects after switching off the gradient pulse.7 For this reason, each gradient pulse

is followed by a delay of 1 ms during which residual eddy currents decay. See also the

longitudinal eddy-current delay (LED) scheme by Gibbs and Johnson Jr. [1991].

The accuracy of diffusion coefficients determined by PFG NMR can be further im-

proved by avoiding the impact of background gradients; these arise, in particular, at regions

of distinct magnetic susceptibilities, e.g. at the water–air interface. Their impact on the

measurement result can be greatly reduced by using bipolar gradient pulses [Cotts et al.,

1989]. Here, the single gradient pulse is split into two separate gradient pulses of opposed

direction (sign), combined with a (π)-pulse in-between; see Fig. 3.13d. In this way, the

spin ensemble is sensitive to both gradient pulses added together, whereas background

gradients have the same direction (sign) and are averaged out. For all measurements of

7Remember that (high-field) NMR relies on a homogeneity of the static magnetic field B0 in the range of ppm
and below.
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Figure 3.14.: Exemplary PFG
NMR diffusion decays for
BSA at different concentra-
tions (symbols). Note the
mono-exponential nature of
the decays. The slope reflects
the translational diffusion
coefficient that is obtained
by the use of eq. (3.20) (solid
lines).

translational diffusion in single-protein solutions, the bipolar pulse scheme was used. A

drawback of bipolar gradient pulses is that they are longer than the monopolar gradient

pulse, which is mainly caused by the ring-down delays incorporated after each gradient

pulse. The larger time span during which the spin ensemble is subject to transverse relax-

ation goes along with a reduced signal intensity and hence a decreased signal-to-noise ratio.

For measurements on protein mixtures, including an isotope-filter to only select one out

of the two proteins dissolved, the reduced signal strength restricted the measurements8,¶

to the use of monopolar gradients only. The difference in absolute diffusion coefficients

determined by the mono- or bipolar STE, however, is for our setup and samples less than

3% [Kirschke, 2013]. Furthermore, to avoid convection effects, the maximum sample

height inside the NMR tube was limited to about 8 mm. The impact of convection on

the measuring result can also be compensated to first order using the Double Stimulated

Echo sequence [Jerschow and Müller, 1997], which basically is a duplicated version of the

STE scheme. Again, such a sequence is problematic when applied to highly concentrated

proteins of which T2 is naturally short.

For data treatment, the integrated signal of the aliphatic region (cf. Fig. 3.1) was

evaluated, providing the PFG NMR diffusion decay; see Fig. 3.14. Amide protein protons,

in contrast, are subject to chemical exchange effects, which could distort the diffusion

decay. This aspect has been addressed via additional measurements presented in the

appendix, section S.3. From this study, it follows that a concentration of about 250 g/l gives

a reasonable limit for BSA and LYZ till which bias effects are safely absent. The same holds

for αB-crystallin at a concentration of around 180 g/l. These numbers give the highest

concentrations used in the studies of crowded protein Brownian motion presented in this

thesis. Finally, for more details on PFG NMR including technical aspects, see also the

reviews by Price [1997, 1998], Johnson Jr. [1999], and Antalek [2002].

8Measurements on protein mixtures to great extent performed by Maik Rothe within his Master’s thesis
[Rothe, 2015].

¶Supervision by Matthias Roos and Kay Saalwächter.
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3.5. Isotope filtering for the measure of protein mixtures

In protein mixtures, given the multitude of resonances of each protein combined with

structural similarities of the proteins, the spectra of different proteins strongly overlap.

As such, when solely relying on a simple, one-dimensional spectrum, distinction of the

NMR signal of one protein species from that of another is (nearly) impossible. For data

interpretation beyond the overall slow-down of the protein diffusivity with increasing

protein concentration, however, distinction between different proteins is required.

Often, distinct diffusion coefficients permit signal decomposition, providing the basis

for diffusion ordered nuclear magnetic resonance spectroscopy (DOSY) spectra. Those

experiments still rely on the STE pulse scheme, yet analyzed in a way that provides the

spectrum of each component (abscissa) with respect to the accordant diffusion coefficient

(ordinate). DOSY spectra are particularly helpful for low-molecular weight liquids. In the

study of protein diffusivity in protein mixtures, by contrast, a distinction of the diffusion

coefficients directly based upon the detected signal would be highly desirable, in particular

as the diffusion coefficients of the two proteins may be close to each other. For this purpose,

NMR isotope filtering was incorporated, i.e., only the signal of an isotope-labeled (13C

or 15N) protein is detected (or deselected) out of the mixture with unlabeled compounds.

Basically, any NMR experiment relying on a signal from a hetero-nucleus (13C, 15N) may

serve for this purpose, as well as the STE pulse scheme may also be directly applied to

such nuclei. However, to achieve suitable encoding/decoding sensitivity, the latter type of

experiments would require much stronger (or longer) gradient pulses to compensate for

the lower magnetogyric ratio. Thus, measuring protein protons is highly recommended,

combined with the also intrinsically stronger NMR signal of protein protons as for other

nuclei.

In practice, the pulse scheme proposed by Tillett et al. [1999] is applied, which

relies on indirect spin-spin couplings mediated by chemical bonds (so-called J-coupling or

indirect dipole-dipole coupling). This pulse scheme exploits the idea that the (spin-1/2)

hetero-nucleus can influence exclusively those proton spins that are in close chemical

environment9 to this spin. If one protein species is 13C or 15N enriched but the other(s)

is (are) not, this effect allows the detection of signals from only the isotopically enriched

protein. Vice versa, appropriate phase cycling can also selectively detect those NMR signals

that originate from protons that are not bound to the spin-carrying hetero-nucleus.

The accordant pulse scheme is shown in Fig. 3.15a and was implemented and tested

on our PFG NMR diffusion setup by Sebastian Kirschke within his Bachelor’s thesis¶

[Kirschke, 2013]. To avoid the impact of chemical exchange between protein amide protons

and water protons, the pulse scheme was applied on 13C rather than on 15N. In this way,

9In practice, J-couplings are restricted to not more than three chemical bonds between the two spins. Usually,
one relies on single-bound J-couplings, i.e.,13C-1H or 15N−1H.

55



3. Experimental methods

detection 
(FID) pre-scan 

delay (B1e)y 1/2J 1/2J 

(a) 

(π/2) Φ1 
(π)  Φ2 

(π/2) Φ3 
(π/2) Φ4 

1H  

13C or 15N 

(b) 

12 8 4 0

SH3 + BSA

  all protons
 13C bound protons

x

δ  /  ppm

6

HDO
H2O

Φ1 = x, y, -x, -y;  Φ2 = x;  Φ3 = x; Φ4 = x, -x, x, -x;  Φdet = -y, x, y, -x 
 

Φdet 

Figure 3.15.: NMR isotope filtering: basic pulse sequence (a) and exemplary application (b) to a
protein mixture composed of a 13C/15N enriched SH3 domain and unlabeled BSA (mass
ratio 1:2, with a total protein concentration of 65 g/l, T = 18◦C). Here, the isotope filter was
applied to 13C, thus reflecting the aliphatic region of SH3. Note the absence of water and
amide protons in the filtered spectrum (blue) as compared to the spectrum recorded straight
after a (π/2)-pulse, in which all sample protons contribute to the spectrum (black). Data
recorded by Maik Rothe within his Master’s thesis.

the isotope-filtered spectrum is strongly dominated by aliphatic protons, whereas amide

(and water) protons are largely suppressed, cf. Fig. 3.15b.

In PFG NMR diffusion experiments, the isotope filter can be combined with the

encoding/decoding period of the STE pulse sequence [Tillett et al., 1999; Nesmelova et al.,

2004]. For a more detailed introduction to the isotope filter, see the Bachelor’s thesis by

Kirschke [2013].

3.6. Viscosimetry

Viscosity was primarily measured using the capillary viscometer mVROC∗

(Viscometer/Rheometer-On-a-Chip; RheoSense, San Ramon, CA) that requires sample

volumes that are as small as 20 µl. Its working principle relies on knowledge of the shear

stress σ and shear rate γ̇ of the liquid passing a rectangular slit channel. Using Newton’s

law of viscosity,

σ = η γ̇(app) , (3.21)

one can estimate the viscosity η. The (apparent) shear rate is determined here by the

volumetric flow rate Φ and the given geometry of the slit, γ̇app = 6Φ/(wh2),‖ where w and

h are the width and depth of the slit channel. The flow of liquid through a (cylindrical)

∗Instrumentation was purchased in the context of this project to enable measurements using only small
sample volumes. Funding is acknowledged to the transregional collaborative research center SFB-TRR 102.
Restricted sample volumes were of particular relevance for the recombinantly expressed αB-crystallin,
provided by Susanne Link (Martin Luther University Halle-Wittenberg, Biophysics) in our laboratory.

‖Information provided by RheoSense
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pipe (or capillary) is accompanied by a drop of pressure p over a distance of L along the

capillary,

Φ =
πa4

8η
|∆p|
L

. (3.22)

Eq. (3.22) is known as the Hagen-Poiseuille equation, with a denoting the capillary’s

inner radius. Although the sample channel is a rectangular one, the physical basis stays

the same. From the pressure gradient along the slit inside the mVROC, the shear stress

σ is determined by making use of ∂p(L)
∂L ∝ σ , with the proportionality factor being again

determined by the slit geometry.‖

Newtonian fluids such as water show no dependence of the viscosity on the shear

rate. Such fluids usually consist of (small) isotropic molecules, with no alignment effects

of the particles under shear flow. Anisotropic molecules may (but need not to) show

non-Newtonian behavior; a reason for which the shear-rate dependence of the viscosity

of the highly concentrated protein solutions was examined in a preparatory study. As

seen from Fig. 3.16a a Newtonian behavior is observed over the full range of shear rates

accessible by the mVROC even for protein concentrations as high as ∼ 340 g/l. For shear

rates higher than those accessed here, shear-thinning cannot be excluded: flow-induced

alignment effects of the usually anisotropic particles can promote a reduced viscosity of the

structurally perturbed solution. In the here presented studies, the standard shear rate was

chosen to be 1000 s−1 or 2000 s−1: the pressure p(Φ) should be low enough to be harmless

for the pressure sensors, but high enough for optimal sensitivity. Using the most sensitive

sensor (type “A” in Fig. 3.16a) and a shear rate of ∼ 103 s−1 viscosity measurements can be

performed at concentrations of more than 300 g/l, which covers the full range of protein

concentrations studied within this project.

An absence of a shear-rate dependence may be different for cone-plate or plate-plate

rheometers as well as for rheometers using concentric cylinders, the measuring result of

the latter setup is shown in Fig. 3.16b. In these measurements, the viscosity is calculated

from the torque needed to rotate the inner cylinder (or the upper cone/plate) relative to the

outer cylinder (or the lower plate). At low frequencies, these measurements are sensitive

to liquid/air interface effects [Johnston and Ewoldt, 2013]. This effect is demonstrated by

the impact of air bubbles on the apparent viscosity of water (see inset in Fig. 3.16b). For

the protein solutions, note the unusual concentration dependence of the apparent shear

thinning effect if this were related to the behavior of the protein solution: the amplitude of

the shear rate dependence is stronger at around 100 g/l than at the higher concentration of

around 190 g/l.

Several research articles [Inoue and Matsumoto, 1996; Ikeda and Nishinari, 2000,

2001a,b; Brownsey et al., 2003] report on shear-thinning effects of protein solutions for shear

rates in-between 10−2 and 102 s−1 – a time scale that matches that one in Fig. 3.16b. In these

articles, the experimentally observed shear rate dependence was argued to originate from
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Figure 3.16.: Shear-rate dependence of the viscosity of BSA solutions as obtained by the mVROC
(a) and by the use of a rotational rheometer using concentric cylinders∗∗ (b). The inset in
Fig. (b) gives rheology measurements of water in the presence (black/gray data points) or
absence (blue data points) of air bubbles artificially created using a pipette. The lines in
each figure give the taken value of the viscosity.

long-range (electrostatic) repulsive forces that induce lattice-like structures of the colloidal

arrangement in solution. The molecular packing was considered to be distorted by further

adding BSA [Brownsey et al., 2003] to explain the unusual concentration dependence

depicted in Fig. 3.16b. Different to these articles, emphasis on the gas-liquid interface effect

has been given by Sharma et al. [2011], stressing the importance of interfacial viscoelasticity

that is linked to surface-active components of the solution. After all, Johnston and Ewoldt

[2013] showed that measurements using rotational rheometers are generally subject to

a rate-independent torque that is needed to compensate surface tension and liquid-air

contact line effects. With increasing angular velocity, rotational rheometers become less

sensitive to the contribution of this constant torque on the measurement result. This

situation generally leads to an apparent shear thinning behavior of the specimen.

Using steady-shear experiments with concentric cylinders∗∗, but evaluating only shear

rates that are high enough to be not sensitive to interface effects, the values obtained agree

well with those from the mVROC, see Fig. 3.17. Nevertheless, viscosity determination by a

conventional rheometer was impracticable for the αB-crystallin solutions due to the large

amount of sample needed (several ml). Also note that in measurements using a rheometer,

a film of silicon oil had to be added to the surface of the sample to prevent sample drying

effects (see also Brownsey et al. [2003]). For the mVROC, due to no contact of the liquid

with air, such sample treatment is not required.

∗∗Instrumentation of the group of Experimental Polymer Physics, Martin Luther University Halle-Wittenberg
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    .      Figure 3.17.: Concentration dependence of the
viscosity of BSA solutions as measured by
the mVROC, conventional rheology and a
simple capillary. To easily compare with the
NMR samples, D2O was used as the solvent.

Before the availability of the mVROC in our laboratory and before the rheometer

measurements were performed, the first test measurements were performed using a simple

capillary, with the viscosity determined by the use of the Hagen-Poiseuille equation. For

details, see the Supporting Information, section S.4. Combined with data on translational

diffusion, the preliminary viscosity data already indicated the value of a more precise study

of the viscosity concentration dependence (the precision of this approach is reflected in

Fig. 3.17, star symbols), and initiated the viscosity studies using professional equipment.

3.7. Concentration determination

Determining the protein concentration usually relies on photoabsorption using the equation

by Lambert and Beer,

ln
(
I0
I1

)
= εcd . (3.23)

Here, I0 and I1 denote the intensity of the incoming and transmitted light beam, respectively,

d is the path length through the specimen, and ε is the (molar) attenuation coefficient of

the attenuating particles of concentration c. This technique is limited to low concentrations.

Thus, a high dilution of the concentrated protein solution is required, with dilution factors

as high as 1000. Highly concentrated protein solutions are quite viscous, causing pipetting

to be less precise. Reliably and reproducibly determined protein concentrations require

repetitive measurements and a well-controlled dilution series. Only the concentrations of

the αB-crystallin solutions was determined in this way.10

Unlike the αB-crystallin samples, no buffer or salt was added to the BSA/LYZ/SH3

solutions. Avoiding high dilution factors, the BSA/LYZ/SH3 protein concentration can

thus be estimated by directly determining the mass of protein dissolved per volume. For

this purpose, the concentrated protein solution of known volume was lyophilized and

weighed. Note that a fraction of the (highly concentrated and thus viscous) protein solution

10Performed by Susanne Link.
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usually remains inside the pipette’s tip, which was accounted for during concentration

determination. Every mass was checked at least three times, with a reproducibility of

usually 0.1 to 0.3 mg. The reproducibility of the value obtained for c turned out be better

than 3 g/l for concentrations up to about 200 g/l, and ± 5 g/l for concentrations in-between

200 g/l and 300 g/l.
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4
Results and discussion

The impact of macromolecular crowding
on protein diffusivity

4.1. NMR-detected Brownian dynamics of αB-crystallin
over a wide range of concentrations

Crowding conditions are prototypical for the eye lens. A major constituent of the mam-

malian eye lens is α-crystallin – a large protein complex that is composed of two subunits,

αA- and αB-crystallin, with a molar ratio of about 3:1. The occurrence of αA-crystallin is

rather specific for the eye lens; αB-crystallin is widely spread across the body [Bhat and

Nagineni, 1989; Dubin et al., 1989] and is involved in serious neurological diseases such as

Alzheimer’s disease [Lowe et al., 1992], Parkinson’s disease [Iwaki et al., 1992], Creutzfeldt-

Jakob disease [Iwaki et al., 1992; Renkawek et al., 1992], and Alexander’s disease [Iwaki

et al., 1989]. α-crystallin behaves chaperone-like in that it non-reversibly binds to (par-

tially) denatured proteins. In this way, α-crystallin inhibits the development of larger

protein aggregates that, particularly in the eye lens, would cause or increase light scattering.

α-crystallin has thus been implicated to be of central importance for preventing cataracts;

see also Derham and Harding [1999], Horwitz [2000, 2003] or Bloemendal et al. [2004].

Also note that crystallization of α-crystallin is difficult to achieve as it would be accom-

panied by cataract formation, and is thus avoided by nature. In fact, efforts to crystallize

this protein have not been successfully yet. The name “crystallin” originates from the first

isolation of these proteins from the so-called “crystalline lens” by Berzelius in 1830 [Au-

gusteyn, 1998]; the naming has persisted to the present day despite it being a bit misleading.

In the following, the investigation of Brownian dynamics in concentrated, recombi-

nantly expressed αB-crystallin solutions will be presented. Similar to natural α-crystallin

[Peschek et al., 2009], αB-crystallin [Braun et al., 2011] forms large spherical assemblies

with rotational correlation times of about 1 µs. In particular, NMR R1ρ relaxation measure-

ments will be used to determine these long rotational correlation times.

Author contributions: K.S., J.B. and A.K. designed research; S.L. prepared samples; A.K. and

M.R. performed measurements; M.R. analyzed the data; M.R., J.B., A.K. and K.S. interpreted

the findings; A.K., M.R. and K.S. wrote the paper with refinements by all coauthors.
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The following article [M. Roos et al. NMR-detected Brownian dynamics of αB-crystallin
over a wide range of concentrations. Biophys. J. 108: 98-106, 2015] is reprinted with the
permission by Elsevier that the thesis including the article can be posted publicly by the
awarding institution. The link back to the ScienceDirect publication is
http://www.sciencedirect.com/science/article/pii/S0006349514030707 .
No changes were made.
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Article

NMR-Detected Brownian Dynamics of aB-Crystallin over a Wide Range of
Concentrations

Matthias Roos,1 Susanne Link,1 Jochen Balbach,1 Alexey Krushelnitsky,1,* and Kay Saalwächter1,*
1Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany

ABSTRACT Knowledge about the global translational and rotational motion of proteins under crowded conditions is highly rele-
vant for understanding the function of proteins in vivo. This holds in particular for human aB-crystallin, which is strongly crowded
in vivo and inter alia responsible for preventing cataracts. Quantitative information on translational and rotational diffusion is not
readily available, and we here demonstrate an approach that combines pulsed-field-gradient NMR for translational diffusion and
proton T1r/T2 relaxation-timemeasurements for rotational diffusion, thus overcoming obstacles encountered in previous studies.
The relaxation times measured at variable temperature provide a quantitative measure of the correlation function of protein tum-
bling, which cannot be approximated by a single exponential, because two components are needed for a minimal and adequate
description of the data. We find that at high protein concentrations, rotational diffusion is decoupled from translational diffusion,
the latter following the macroscopic viscosity change almost quantitatively, resembling the behavior of spherical colloids. Anal-
ysis of data reported in the literature shows that well-packed globular proteins follow a scaling relation between the hydrody-
namic radius and the molar mass, Rh ~ M1/d, with a fractal dimension of d ~ 2.5 rather than 3. Despite its oligomeric nature,
Rh of aB-crystallin as derived from both NMR methods is found to be fully consistent with this relation.

INTRODUCTION

In a living cell, proteins exist and function in a rather
concentrated solution of a wide range of different solutes.
In comparison with dilute conditions, such crowding can
significantly alter the protein behavior (1,2). The most
important parameters in describing protein overall Brow-
nian motion are the translational and rotational diffusion co-
efficients. Obviously, crowding increases the viscosity of the
solution and slows down protein diffusion. However, this
differs from a simple increase of the solution viscosity by
adding, for instance, glycerol (3). Intermolecular protein in-
teractions and their influence on Brownian diffusion are
rather complicated in nature, which cannot be effectively
described by increased viscosity alone. The complex
changes of the protein dynamics at high protein concentra-
tions, and the key factors determining these changes, are
largely unclear at present. Experimental data on this topic
are still rather sparse. Some results even contradict each
other; for example, fluorescence data demonstrate that
upon increasing protein concentration, translational diffu-
sion is slowed down to a larger extent than rotational diffu-
sion (4), whereas NMR experiments yield the opposite
conclusion (3).

The interior of the vertebrate eye lens is a typical example
of a crowded protein solution. Here, a highly concentrated
mixture of short-range ordered (5) a-, b-, and g-crystallins

provides a high refractive index and lens transparency
without protein metabolism (6,7). The main constituent of
this protein mixture is a-crystallin, which comprises
~35% (w/w) of the lens crystallins (8). a-crystallin consists
of two homologous proteins, aA- and aB-crystallin, which
have a monomer molecular mass of ~20 kDa each. They
form oligomeric associations with a molecular mass distri-
bution from 500 to >1000 kDa and an average mass of
~800 kDa (9). Besides maintaining the high refractive index,
a-crystallin acts as a molecular chaperone, preventing pro-
tein aggregation that causes cataracts to form (10,11).

Although aB-crystallin has been studied quite intensively
over the last decades (for reviews, see Narberhaus (12), Hor-
witz (13), Augusteyn (14), and Andley (15)), its dynamics,
especially at high concentrations, has not been investigated
in much detail. Delaye et al. concluded that a-crystallin acts
as a good model system for colloids with an effective hard-
sphere radius that is not dependent on concentration (16,17),
with translational self-diffusion coefficients (SDCs) that
closely follow the macroscopic viscosity (18). Conversely,
another report indicated that a-crystallin does not form a
compact sphere at all (17) but has a dynamic quaternary
structure (19).

Here, we present a detailed comparative study of the rota-
tional and translational diffusion of aB-crystallin as a
function of concentration. The translational and rotational
dynamics of aB-crystallin were studied by pulsed-field-
gradient (PFG) NMR and proton NMR relaxation-time mea-
surements, respectively. PFG NMR provides an objective
and robust measure of the SDC, even at high concentrations
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where dynamic light-scattering (DLS) experiments are chal-
lenged by the appearance of a slow mode and the necessary
conversion of a cooperative diffusion coefficient into an
SDC (20). Due to its large aggregate size, the resonances
of the rigid core of aB-crystallin are broadened beyond
detection (9) and thus cannot be studied by conventional
high-resolution NMR techniques. We rely instead on
low-resolution 1H NMR relaxation-time measurements at
various concentrations and temperatures, which in fact
allows us to address potential ambiguities related to the
common use of the NMR T1/T2 relaxation-time ratio as a
measure of rotational diffusion. For the relaxation measure-
ments, we rely on an integration of the whole proton spec-
trum, thus analyzing the integral signal from all protein
protons. We present a consistent and quantitative treatment
of relaxation data in terms of a bicomponent rotational auto-
correlation function. Our analysis reveals a progressive
decoupling of translational and rotational motion upon an
increase in concentration.

MATERIALS AND METHODS

Sample preparation

Protein expression and purification of human aB-crystallin

The human aB cDNA (construct kindly provided by Prof. Wilbert Boelens,

Nijmegen Centre for Molecular Life Sciences, Gelderland, The

Netherlands) was cloned into a modified, His-tag-free pET16b vector and

expressed in Escherichia coli BL21(DE3). Protein expression and purifica-

tion were performed as described in Mainz et al. (21), with minor modifi-

cations including autoinduction media (ZYM 5052) instead of minimal

media (M9), microfluidizer instead of French press, an additional DNA

digestion step after cell lysis, and different column materials: in place of

Q-Sepharose and Superose 6, TMAE and Superdex 200, respectively,

were used. The lyophilized sample was dissolved in 50 mM Na-phosphate

buffer, 50 mM NaCl, and 0.002% NaN3 D2O buffer, pD 7.6, with prior

minimization of labile protons to lower the water signal and so as not to

have an impact on the solvent viscosity via isotope effects. For more details,

see the Supporting Material. Hen egg white lysozyme was delivered from

Sigma-Aldrich (St. Louis, MO). Similar to aB-crystallin, lysozyme was

dissolved in D2O, lyophilized, and dissolved in D2O again for maximal

removal of residual water protons.

Viscosity

Steady-shear viscosities were measured at high shear rates (1000 s�1/

2000 s�1) using the microfluid viscometer-rheometer on chip (m-VROC,

Rheosense, San Ramon, CA), which determines the sample viscosity by

analyzing the pressure gradient inside of a capillary (d ¼ 50 mm). The sam-

ples for the viscosity measurements were also prepared using D2O buffer

instead of H2O.

NMR experiments

Translational diffusion and T1r measurements were conducted on a Bruker

Avance II spectrometer (Billerica, MA) with a 1H resonance frequency for

protons of 400MHz equipped with a Diff60 probehead. T1rs were measured

at spin-lock frequencies of 20, 40, and 60 kHz; the latter was measured us-

ing a resonance offset of the spin-lock field with angle q between the B0 and

B1e fields fixed to 42�. T2 measurements were performed on a Bruker Min-

ispec mq20 at 20 MHz 1H resonance frequency. The low-resonance fre-

quency for T2 experiments was chosen to avoid T2 shortening due to the

chemical exchange of protein protons, which may significantly affect T2
values at high resonance frequencies (22). For the relaxation measurements,

in all cases, we employ single short-pulse excitation and a sufficiently large

spectral width of 50 kHz, thus assuring that all types of protons (rigid and

mobile) in the protein contribute equally to the integral signal. In all cases,

the accuracy of the temperature calibration and stabilization was51�C. For
more details, see the Supporting Material.

Translational SDCs were obtained from the PFG NMR diffusion decays

using the well-known formula (23)

AðgÞ ¼ Að0Þ � exp
�� g2g2Dd2ðD� d=3Þ�; (1)

where A(g) is the signal intensity, g is the field gradient strength, g is the

proton gyromagnetic ratio, D is the diffusion time, d is the duration of

the field gradient pulse, and D is the SDC.

Rotational correlation times were obtained by analyzing NMR relaxation

times. These are determined by the spectral density function, which is the

Fourier transformation of the rotational autocorrelation function (RACF).

The RACF of protein motion in solution is complicated in nature. For its

unambiguous determination from experimental data, multiple measure-

ments of relaxation times at different resonance frequencies are required,

since each relaxation time reflects molecular dynamics only within the

frequency domain around the circular (i.e., multiplied by 2p) resonance fre-

quency. Because of the high molecular mass of the aB-crystallin oligomer,

its Brownian tumbling is very slow, and thus, the often employed T1 relax-

ation times are not useful for studying such a slow motion since they pro-

vide information on (sub)nanosecond-timescale motions, which is much

faster than the aB-crystallin tumbling. For this reason, we used T1r proton

relaxation times, which enable one to shift the sampling frequency of mo-

tions down to the 10–100 kHz range. Specifically, we measured the temper-

ature dependences of T1r values at spin-lock frequencies (the analog of the

resonance frequency for T1) of 20, 40, and 60 kHz, the latter values being

measured using the resonance offset of spin-lock irradiation (see the Sup-

porting Material). We stress that measuring relaxation times at different

temperatures is important for a reliable data analysis, since the slope of

the temperature dependence is more informative than the absolute value

of the relaxation time measured at one temperature in correctly determining

the rotational correlation time. In addition to T1r values, we also measured

the proton T2, which provides the low-frequency limit of the spectral den-

sity function. The relaxation is governed by the homonuclear (1H-1H)

dipole-dipole mechanism; all other mechanisms are negligible in this

case. The equations for the homonuclear dipolar T1, T2, and T1r relaxation

times are well known (24). However, since we measured off-resonance T1r,

for the data analysis, we should use a general expression defining relaxation

times T1 and T1r at arbitrary off-resonance angle. Such an expression was

derived a long time ago by Jones (25). In a more compact form, applying

the approximation u0 >> u1e, this expression reads (26)

1

T1r

¼ 1

T1

þ sin2q

"
1

T D
1r

� 3

4T1

#
; (2)

where

1

T1

¼ 2

3
KHHðJðu0Þ þ 4Jð2u0ÞÞ; (3)

1

TD
1r

¼ KHH

�
cos2q � Jðu1eÞ þ sin2 q � Jð2u1eÞ

þ 3

2
Jðu0Þ

�
: (4)
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Here, q is the off-resonance angle (the angle between the static field B0 and

effective spin-lock field B1e), J(u) is the spectral density function, KHH is

the squared effective proton-proton dipolar coupling (second moment),

and u0/2p and u1e/2p are the resonance and spin-lock frequencies, respec-

tively. At q ¼ 0� and 90�, Eq. 2 converts to the standard expressions for T1
and T1r, respectively. Relaxation time T2 corresponds to the case q ¼ 90�

and u1e ¼ 0. Note that these equations are valid not only in the fast-motion

limit, but for slow motions as well (27). For the case of the relaxation of

protein protons, the effective KHH can be expressed as

KHH ¼ 9

20
� 1

N
� Z2g4

X
isj

r�6
ij ; (5)

where N is the number of protons in a protein, Z is the Planck constant, g is

the proton gyromagnetic ratio, and rij is the distance between the ith and jth

protons in the protein. Although summation in Eq. 5 formally extends over

all protons in the protein, because of the r�6 dependence, the dominant

contribution to the coupling for each proton is attributable to the two to

three nearest neighbors, and proton-proton interactions with more distant

neighbors are practically negligible.

Since an integral proton signal was detected in the relaxation experi-

ments, the spectral density function J(u) in Eqs. 2–4 is the average spectral

density of all protons in the protein:

JðuÞ ¼ 1

N

X
JiðuÞ: (6)

The same is true for the RACF:

CðtÞ ¼ 1

N

X
CiðtÞ: (7)

Each individual RACF can be written as a product of the correlation func-

tions of the overall Brownian tumbling and internal local motion (28),

CiðtÞ ¼ CtðtÞ � CliðtÞ

¼ CtðtÞ �
�
S2li þ

�
1� S2li

�
exp

�
� t

tli

��
; (8)

where Ct(t) is the overall tumbling RACF and S2li and tli are the order param-

eter and correlation time of the internal motion for the ith proton. SinceCt(t)

is the same for all protons, Eq. 7 can be rewritten as

CðtÞ ¼ CtðtÞ �
�
S2l þ

1

N

X�
1� S2li

�
exp

�
� t

tli

��
; (9)

where S2l ¼ 1=N
P

S2li. Then, the spectral density function is

JðuÞ ¼ S2l JtðuÞ þ
1

N

X�
1� S2li

�
tli

1þ ðutliÞ2
; (10)

where Jt(u) is the Fourier transform of Ct(t). In our analysis, we assume that

all values of tli are much smaller than the correlation time of the overall pro-

tein tumbling. Then, the second term in Eq. 10 can be neglected. This

formalism is very similar to that applied in the analysis of field-cycling

T1 relaxation data of protein protons in D2O solutions (29).

The key point of our analysis is an assumption of a biexponential overall

tumbling RACF Ct(t). Even in relatively dilute protein solutions, long-range

electrostatic intermolecular protein interactions give rise to a local anisot-

ropy that renders the so-called normal Brownian tumbling somewhat aniso-

tropic (30,31). Thus, the RACF decays not to zero, but to a certain value that

we denote as the rotational order parameter, S2rot. Its physical meaning is

similar to that of the order parameter of the internal motions (28): both

are measures of the anisotropy of rotational motion of the overall tumbling

and internal mobility, respectively. In infinitely dilute solutions, S2rot ¼ 0,

and it increases with increasing concentration, as interprotein interactions

become stronger and Brownian tumbling thus becomes more anisotropic.

Since proteins diffuse relative to each other, the local anisotropy has a finite

lifetime; hence, Ct(t) finally decays to zero, but on a longer timescale than

for normal Brownian tumbling. Therefore, Ct(t) can be presented as a sum

of two components,

CtðtÞ ¼ �
1� S2rot

�
expð�t=trotÞ þ S2rot expð�t=tSÞ; (11)

where trot is the correlation time of Brownian rotation and tS is the corre-

lation time of the slow component of Ct(t), i.e., the lifetime of local anisot-

ropy. The apparent slow contribution to protein Brownian tumbling has

been observed experimentally and computationally in a number of indepen-

dent works (for a review, see Krushelnitsky (31)).

The corresponding spectral density function reads

JtðuÞ ¼
�
1� S2rot

�
trot

1þ ðutrotÞ2
þ S2rottS

1þ ðutSÞ2
: (12)

For typical protein concentrations of high-resolution NMR samples (a few

mM), S2rot is very low, less than a few percent (31). Hence, T1 relaxation

times are not sensitive to the slow component. However, T2s are quite sen-

sitive to it because of the spectral density function at zero frequency:

Jtð0Þ ¼ �
1� S2rot

�
trot þ S2rottS: (13)

Despite the fact that S2rot << 1, the two terms in Eq. 13 are comparable,

since tS >> trot. For this reason, using the T1/T2 ratio for determination

of the tumbling correlation time, trot, can provide imprecise results. The

higher the concentration, the less correct is the value of trot obtained

from the T1/T2 ratio. Thus, the assumption of a biexponential form of

Ct(t) is a prerequisite for the correct analysis of the relaxation data at

different concentrations.

In fitting the temperature dependences of the relaxation times, we assume

an Arrhenius dependence of the correlation times,

tS;rot ¼ tS;rotð293KÞexp
�
ES;rot

R

�
1

T
� 1

293K

��
; (14)

where ES,rot is the activation energy of the tS/trot correlation times and R is

the universal gas constant. Thus, the fitting parameters in the analysis were

two correlation times, two activation energies, the order parameter S2rot
(separate sets for each concentration), and the product of the rigid-lattice

second moment, KHH (which for rigid globular proteins has an approximate

value of ~1.3 � 1010 s�2 (32)), and the order parameter S2l :

Kav
HH ¼ S2l KHH; (15)

where Kav
HH is the motionally averaged second moment of the protein pro-

tons; we assume it to be the same for all concentrations. The overall number

of the fitting parameters for all four concentrations was 21: five parameters

for each concentration (see above) and one parameter ðKav
HHÞ shared be-

tween all concentrations. For the fitting, we used Eqs. 2–4, replacing

J(u) and KHH by Jt(u) and K
av
HH, respectively. A similar approach was taken

previously by Bertini et al. (29), stressing the use of S2l as a qualitative in-

dicator of internal rigidity. For simplicity, we assume S2rot to be temperature-

independent and we neglect the distribution of sizes. Strictly speaking, this

is not absolutely true, yet it has only a minor effect on the analysis, as

demonstrated in Fig. S8. Kav
HH is also assumed to be temperature-indepen-

dent. Within the temperature range of our experiments, the temperature

dependence of Kav
HH is rather weak (32,33). Simply assuming a reasonable

temperature dependence, however, has practically no influence on the re-

sults (see Table S2).
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The fitting procedure was based upon a minimization of the root mean-

square deviation,

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼ 1

�
Tsim � Texp

Texp

�2

vuut ; (16)

where Tsim and Texp are the simulated (according to the current set of the

fitting parameters) and experimental relaxation times (T1r or T2), respec-

tively, and N is the number of all relaxation times measured at all temper-

atures and concentrations. For the minimization procedure, we used the

Metropolis algorithm.

RESULTS

Translational diffusion and viscosity

Typical examples of the PFG NMR intensity decays (signal
intensity versus strength of the pulsed field gradient) are
shown in Fig. 1. In the representation log(I) versus g2, a de-
viation of the intensity decay from a straight line reflects an
SDC dispersion, i.e., a distribution of molecular mass. Fig. 1
likewise demonstrates that this distribution is somewhat
wider for a higher concentration; the normalized (relative)
RMSDs of the diffusion coefficients from their average, as
estimated from a bicomponent decomposition of the decays,
are 0.2, 0.2, 0.25, and 0.35 for the concentrations 35, 80,
113, and 185 mg/mL, respectively, in qualitative agreement
with DLS data (20). In this analysis we did not quantify the

distribution, instead defining the mean SDC, which corre-
sponds to the initial slope of the decay. Practically, we fitted
the decay with a sum of two components as a minimal but
sufficient model and then calculated the mean SDC as

hDi ¼ ðP1 � D1 þ P2 � D2Þ=ðP1 þ P2Þ; (17)

where P1,2 and D1,2 are the intensities and SDCs, respec-
tively, of the two components. The specific values of D1

and D2 depend on the weighting factor; these values taken
separately have no physical meaning, yet the average diffu-
sion coefficient is well-defined and reliable. Note that the
subunit exchange between a-crystallin oligomers occurs
on a timescale of minutes (34); thus, the observed SDC is
not the exchange-averaged value of SDCs of oligomers
and mono(di)mers. In fact, the amount of a-crystallin
mono(di)meric subunits in solution is very low; otherwise,
we would see a corresponding fast component in the PFG
intensity decays.

Fig. 2 a presents the temperature dependences of mean
SDCs at four different concentrations of aB-crystallin in
an Arrhenius representation. It is useful to analyze these
data in comparison with lysozyme (M ¼ 14.3 kDa). At
acidic pH, lysozyme forms no dimers or oligomers and re-
tains its rigid native structure over a wide range of concen-
trations and temperatures (35). This comparison shows that
the slope of the SDC temperature dependences (i.e., the acti-
vation energy of translational diffusion) for aB-crystallin at
all concentrations is quite similar to that of lysozyme. This
indicates that at all concentrations, the mean molecular mass
of the aB-crystallin assemblies is independent of tempera-
ture. Fig. 2 b presents the macroscopic viscosity, along
with data for pure D2O. In the Arrhenius plot, given the

FIGURE 1 Typical examples of diffusion-dependent PFG NMR decays

of aB-crystallin at two different concentrations and two different tempera-

tures. The experimental error corresponds to the size of the symbols in the

initial part of the decays. Solid red lines are bicomponent fits of the decays

and dashed lines denote the initial slope of the decays corresponding to the

mean SDC.

a b

FIGURE 2 Translational self-diffusion coefficients and viscosity of aB-

crystallin. In both graphs, the size of the symbols corresponds to the exper-

imental uncertainty. (a) Temperature dependences of the mean SDCs at four

different concentrations of aB-crystallin (open symbols). For comparison,

SDCs of a lysozyme solution (concentration 180 mg/mL, pD 3.5) are shown

(solid symbols). (b) Temperature dependence of the viscosity at seven con-

centrations of aB-crystallin (symbols), displaying a Vogel-Fulcher relation-

ship (solid lines). The solid line for the D2O viscosity represents literature

data as recalculated (48) from the viscosity of water (49).
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improved data quality of the viscosity measurements
compared to those of translational diffusion, a slight curva-
ture of the viscosity can be seen, indicating that the glassy
dynamics related to the solvent can be described by a Vo-
gel-Fulcher relationship (36). A slightly stronger deviation
from the Arrhenius behavior is observed for the highest con-
centrations, pointing to the increasing relevance of studying
the glassy dynamics of confined/bound water.

At the smallest concentration (35 mg/mL), the protein
SDC concentration dependence is weak (37), and thus,
intermolecular protein interactions have almost no influence
on the SDC. This allows us to estimate the size of aB-crys-
tallin using the Stokes-Einstein relationship and the experi-
mental viscosity data. This gives a temperature-independent
value (see Fig. S7) of RH ¼ (95 5 3) Å, which exactly
matches the value obtained from the DLS experiments by
Licinio et al. (20). Note that those authors were studying
a-crystallin from calf lenses, which are oligomers
composed of a mixture of aA- and aB-crystallins.

Rotational diffusion

Fig. 3 depicts the relaxation times and fitting curves for
different concentrations of aB-crystallin. Fitting a single-
component correlation function for the protein Brownian
rotation (i.e., assuming S2rot ¼ 0) results in a pronounced
mismatch, confirming the invalidity of the one-component
model. The fitting results are summarized in Table 1.

The absolute value of the rotational correlation time
for the lowest concentration investigated in this study,
35 mg/mL, is 0.9 ms. Applying the Stokes-Einstein-Debye
law with the experimentally determined viscosity of this
sample, these values correspond to an aB-crystallin radius

of ~82 Å. This value is somewhat less than 95 Å, as obtained
from the translational diffusion data (see above). This may
indicate that the Stokes-Einstein-Debye law does not hold
for the rotational diffusion, and that the macroscopic viscos-
ity should not be used to determine rotational correlation
time (see below). If, instead of the solution viscosity, the vis-
cosity of a pure solvent (D2O) is used in the Stokes-Ein-
stein-Debye equation, then the calculated aB-crystallin
radius reaches 89 Å. Given the overall experimental accu-
racy, the discrepancy between 89 Å and 95 Å can be consid-
ered as negligible. Note that the activation energy of the
Brownian tumbling Erot corresponds quite well to that of
the viscous flow of pure water, which is ~19 kJ/mol (38).
The decrease of Erot to 10 kJ/mol at a concentration of
185 mg/mL is obviously an apparent effect associated
with the increased distribution of molecular masses and
the probably more complex form of the Ct(t).

DISCUSSION

The impact of crowding: rotational diffusion is
less hindered than translational diffusion

Since the rotational diffusion is described by the two-
component overall tumbling RACF Ct(t), we define, as in
the case of translational diffusion, a mean rotational diffu-
sion rate hRroti equal to the initial slope of the rotational cor-
relation function:

hRroti ¼ 1� S2rot
trot

þ S2rot
tS

: (18)

Since S2rot and tS are poorly defined at low concentrations
there is a certain ambiguity in defining the rotational diffu-
sion rate at low concentrations. However, since the second
term in Eq. 18 is much smaller than the first, this ambiguity
is obviously negligible.

Fig. 4 presents the central result of this work, the
comparative retardation of translational and rotational
diffusion relative to macroscopic viscosity with increasing
concentration. It is seen that the trend of the translational
diffusion nicely corresponds to that of viscosity, which
confirms previous findings by Licinio and Delaye (18).
Thus, the Stokes-Einstein law appears to be valid even at
high concentrations. This in turn shows that the mean
size of aB-crystallin under our conditions does not depend
on concentration.

On the other hand, these results clearly demonstrate a sig-
nificant difference between translational and rotational
diffusion of aB-crystallin at high concentrations, far beyond
all the assumptions and uncertainties of the data analysis.
We also stress that fitting the relaxation data with a fixed ra-
tio of the correlation times, trot, at different concentrations
after the known increase in viscosity (and thus the slow-
down of translational diffusion) results in a strong mismatch
with the experimental data (see Fig. S10).

FIGURE 3 Proton T1r and T2 for aB-crystallin solutions at different con-

centrations. The experimental error corresponds to the size of the symbols.

Information is provided for relaxation times T2 (open squares), T1r at the

spin-lock frequency, 20 kHz (solid triangles), T1r at 40 kHz (open circles),

and off-resonance T1r at 60 kHz (solid circles) (the latter parameter was not

measured for 185 mg/mL). Solid lines show the best fits for double-expo-

nential correlation functions, and dashed lines correspond to the best fit

assuming S2rot ¼ 0, i.e., a single-exponential correlation function.
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Interestingly, a similar conclusion regarding the limited
applicability of the Stokes-Einstein-Debye law for high
aB-crystallin concentrations can be deduced from recently
published data on Brownian tumbling of this protein ob-
tained by field-cycling relaxometry of the water protons
(39). At a single concentration of 100 mg/mL, T ¼ 25�C
in 80% H2O and 20% glycerol solvent, the correlation
time, trot, of aB-crystallin was found to be 1.4 ms. Using
our viscosity data for this protein concentration and temper-
ature, and taking into account the correction factor for vis-
cosity between D2O and 80% H2O and 20% glycerol
solvents, we estimated the apparent radius of aB-crystallin
to be 68 Å. This value is obviously too small, in accordance
with our finding that rotational diffusion is less hindered
than expected by the increase of viscosity.

Similar concentration dependences of rotational and
translational protein diffusion have been reported previously
(4), but this is the first time, to our knowledge, that such a
large quantitative difference has been observed in a protein
system. The effect of less hindered rotations compared to

the translational self-diffusion goes far beyond a pure vis-
cosity effect resulting from the difference in local microvis-
cosity around the protein and the bulk viscosity. Increasing
the bulk viscosity with ethylene glycol by a factor of 6 (cor-
responding to a retardation factor of 6 in Fig. 4) results in
retardation of translation diffusion and rotational diffusion
by factors of 5.5 and 4, respectively, for a small globular
protein (40). The less hindered rotation at high protein con-
centrations can be easily understood in terms of the cage ef-
fect, which is well known for the case of spherical colloids
(41,42). For translational diffusion, each probe molecule
needs to escape a cage formed by the surrounding particles
(a-relaxation) and thus has to interact with its neighboring
proteins, which represent obstacles to translational motion.
For rotational diffusion, proteins may rotate rather freely
within a cage (b-relaxation); hence, intermolecular protein
interactions can be expected to have an appreciably smaller
effect on it. Note that the effect of decoupling between
translational and rotational diffusion has been observed
not only in experimental studies, but also in numerical sim-
ulations of protein diffusion at high concentrations (43).
However, we refrain from extrapolating the findings of
this work to other proteins and experimental conditions.
The acquired data are obviously not sufficient to make gen-
eralizations, and more experimental work is required to
further advance our knowledge in this area.

Fractal structure: aB-crystallin behaves like a
normal globular protein

Further information on aB-crystallin properties can be ob-
tained by comparing the absolute values of the diffusion
constants with those of other proteins. Although such
data have been published, at least for translational diffusion
(see, e.g., the work of Delaye and colleagues (16,18,20)),
the comparison has apparently not yet been made. The
SDC is inversely proportional to the linear size of the
Brownian particle, whereas the rotational correlation time
is proportional to its volume. To minimize the influence
of intermolecular protein interactions, we compared the
diffusion parameters only for the dilute aB-crystallin solu-
tion. If the average protein density is the same for proteins
of different molecular mass, M, one might expect that SDC
~ M�0.33 and trot ~ M, but this is not the case. Computer
analysis of a large number of 3D protein structures

FIGURE 4 Retardation of the translational (open circles) and rotational

diffusion (open triangles) as a function of aB-crystallin concentration as

compared to the normalized macroscopic viscosity (solid circles). The

retardation factor was defined as the ratio of the translational (rotational)

diffusion rate to the value at 35 mg/mL, taken as a reference for the higher

concentrations. The viscosity was normalized in the same way. The size of

the symbols reflects the experimental error, and the solid line simply guides

the eye.

TABLE 1 Dynamic parameters obtained from the data fitting

c/mg/mL trot/ms at 20
�C S2rot tS/ms at 20

�C S2rot tS/ms at 20
�C Erot/kJ/mol Es/kJ/mol

35 0.90 5 0.02 <0.03 >30 0.64 5 0.02 16 5 1 66 5 2

85 0.96 5 0.02 <0.03 >30 0.83 5 0.02 18 5 1 51 5 2

113 1.03 5 0.03 <0.03 >80 1.36 5 0.03 17 5 1 40 5 2

185 1.04 5 0.03 0.22 5 0.02 17 5 1 3.70 5 0.06 10 5 1 30 5 1

Kav
HH (Eq. 15) was found to be (4.25 0.2) � 109 s�2 by a shared fit of all data sets. Since S2rot is very small, the parameters S2rot and tS cannot be determined

separately at low concentrations; only the product S2rot tS could be reliably obtained from the fitting. For details, see Krushelnitsky (31).
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(44,45) demonstrates that V ~ Rd, where V is the van der
Waals (or solvent-accessible) volume of the protein
directly proportional to the molecular mass, which is con-
nected to the linear size, R (more specifically, the radius of
gyration) of the protein molecule by a scaling exponent, d,
of ~2.5. Such a relation between size and volume reflects a
fractal nature of the protein packing, which has generated
increased interest over the last few years (see the review
by Banerji and Ghos (46)). The fractal dimension d < 3 in-
dicates that the protein density decreases with increasing M
(47). If V ~ M, then the SDC is ~M�1/d and trot ~ M3/d.

Fig. 5 a shows a collection of data from the literature on
SDCs as a function ofM for many proteins and includes the
aB-crystallin results from this work. Two important points
must be mentioned. First, the slope of the SDC versus M
dependence matches reasonably well the value of d obtained
by Liang and Dill (44). To our knowledge, this is the first
experimental confirmation of this fractal dependence based
on diffusion data, reporting on the hydrodynamic radius Rh.
Second, the aB-crystallin SDC is located close to this line,
which indicates that it has no specific features, as compared

to other globular proteins, and is just as compact as might be
expected based on the fractal scaling law, Rh ~ M1/d, and its
high molecular mass.

A similar dependence can likewise be plotted for rota-
tional diffusion. Many studies have been published on pro-
tein dynamics in solution over the last 20 to 30 years.
However, in most of these, the rotational correlation time
was determined from the NMR T1/T2 relaxation-time ratio
assuming only a single-component RACF or, at best, a
more complex form of it accounting for the anisotropic
shape of the protein. We again stress that this is quantita-
tively not correct (see above). The amplitude of the slow
component of the RACF depends on many parameters (con-
centration, ionic strength, pH, and electrostatic properties of
a protein) and hence is different for different experiments.
This induces a spread of trot values that makes it difficult
to reliably define the power-law exponent of M (see
Fig. S11). Therefore, for comparison, we took the data of
only four proteins, binase, lysozyme, trp-repressor, and
bovine serum albumin, as described in Krushelnitsky (31).
In that study, trot was determined according to the same
protocol as in this work, so the correlation times can be
compared directly.

Fig. 5 b presents trot as a function of M for five proteins,
including aB-crystallin. Despite the poor statistics, it can be
clearly seen that rotational diffusion also confirms the find-
ings of Liang and Dill (44). The largest deviation from the
solid line in Fig. 5 b is observed for trp-repressor. This
can be explained by the fact that trp-repressor is a symmet-
ric dimer with two long (12 residues each) unstructured
chains exposed to the solvent. Thus, the trp-repressor is
not a completely rigid protein, and an apparently increased
trot is easily understood. Note that the rotational diffusion of
aB-crystallin again reveals no evident specificity in compar-
ison with other globular proteins.

CONCLUSIONS

In this study, we have provided an accurate determination of
the translational and rotational diffusion of aB-crystallin
over a wide range of concentrations. Our data allowed us
to draw three important conclusions. First, our main finding
was that upon increasing the protein concentration, the
translational diffusion of aB-crystallin nicely followed the
trend measured for the inverse solution viscosity, whereas
the rotational diffusion was found to be affected by the con-
centration increase to a much smaller extent. This could be
explained on the basis of the cage effect typical for spherical
colloids. The temperature dependence of all observables
was found to be largely governed by the flow activation en-
ergy of pure water, with deviations visible only at the largest
concentrations. Second, despite its large size and oligomeric
structure, aB-crystallin in dilute solution behaves like a
normal rigid globular protein, showing no specificity in
Brownian dynamics compared to other, even much smaller,

a

b

FIGURE 5 (a) SDCs for different proteins as a function of M at 20�C.
Literature data are either taken directly from Tyn and Gusek (50) and Ilyina

et al. (51) (open circles and triangles) or recalculated from the hydrody-

namic radii reported in Wilkins et al. (52) and Armstrong et al. (53)

(open squares and diamonds). Proteins too anisotropic in shape or that

are intrinsically disordered were not taken into account. The aB-crystallin

SDC as obtained in this study is indicated by the solid star. The aB-crystal-

lin SDC was measured at a concentration of 10 mg/mL and multiplied by

1.25 to account for the viscosity difference between H2O (literature data

of H2O solutions) and D2O (this work). The solid line is a best fit to the

data, with a slope (power-law exponent) of 0.395 0.03. (b) Rotational cor-

relation time trot at 20
�C for five different proteins as a function of molec-

ular weight. The solid line presents the dependence trot ~ M1.2. For

comparison, the dashed line shows the dependence trot ~ M.
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proteins. Third, both the translational and rotational diffu-
sion data (reporting on the hydrodynamic radius, Rh)
confirm the fractal scaling law, V ~ M ~ Rd, with d ~ 2.5
instead of d ~3 for a variety of protein structures of different
size, R. This finding is in agreement with previous statistical
analyses of protein packing density.

The methodological approach presented here, in partic-
ular addressing the autocorrelation function of the overall
protein tumbling by a bimodal analysis of NMR relaxation
times measured at different frequencies and temperatures,
provides an efficient and reliable tool for studying the effect
of crowding on Brownian dynamics. Application of this
approach to the aB-crystallin study enabled a qualitative
step forward in the description of protein mobility at high
concentrations. We expect that the use of this approach for
other proteins and protein mixtures will help in constructing
a detailed and consistent general picture of protein dy-
namics under crowding conditions.

SUPPORTING MATERIAL

Supporting Materials and Methods, eleven figures, and three tables

are available at http://www.biophysj.org/biophysj/supplemental/S0006-

3495(14)03070-7.
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4.2. The “long tail” of the protein tumbling correlation function:
observation by 1H NMR relaxometry in a wide frequency
and concentration range

In the previous article it was shown that rotational diffusion of αB-crystallin is strongly

decoupled from long-time translational diffusion in crowded conditions and that spin

relaxation rates cannot be properly fit using a single exponential RACF. The results stress

the importance of accounting for the non-exponential behavior of the RACF. To be noted, an

intermediate range order structure has been depicted for LYZ solutions, with the lifetime of

such inter-molecular ordering being longer than, but still comparable to, the time required

by a LYZ monomer to diffuse over a distance of its own size [Liu et al., 2011]. This finding

strongly corroborates the concept of rotational diffusion being affected by intermolecular

alignment effects, and is in line with the concept of electro-kinetic steering.

Sensitivity to the “slow component” of rotational diffusion was till now only provided

via R2 relaxation rates. Transverse relaxation rates relate to the zero-frequency limit of the

spectral density, J(0) =
∫∞

0 Cr(t) dt, but cannot address the actual frequency dependence of

the “slow tail” of rotational diffusion. Thus, the behavior of the RACF at times in-between

the time scale of usual Brownian tumbling and the zero-frequency limit has remained

unresolved thus far.

The following study aims to elucidate the non-exponential behavior of the RACF.

For this purpose, FC NMR on LYZ and BSA solutions were combined with R1ρ and R2

measurements on the same samples. LYZ and BSA are both much smaller than the large

αB-crystallin complexes and consequentially have smaller τrot values. Then, R1 measure-

ments at low Larmor frequencies as well as R1ρ,2 data are sensitive to the RACF at time

scales beyond the usual Brownian tumbling and the long-time decay of the RACF can be

evaluated. The data presented in this paper will be used in paper #3 to compare rotational

with translational diffusion rates.
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Abstract Inter-protein interactions in solution affect the

auto-correlation function of Brownian tumbling not only in

terms of a simple increase of the correlation time, they also

lead to the appearance of a weak slow component (‘‘long

tail’’) of the correlation function due to a slowly changing

local anisotropy of the microenvironment. The conven-

tional protocol of correlation time estimation from the

relaxation rate ratio R1/R2 assumes a single-component

tumbling correlation function, and thus can provide

incorrect results as soon as the ‘‘long tail’’ is of relevance.

This effect, however, has been underestimated in many

instances. In this work we present a detailed systematic

study of the tumbling correlation function of two proteins,

lysozyme and bovine serum albumin, at different concen-

trations and temperatures using proton field-cycling relax-

ometry combined with R1q and R2 measurements. Unlike

high-field NMR relaxation methods, these techniques

enable a detailed study of dynamics on a time scale longer

than the normal protein tumbling correlation time and,

thus, a reliable estimate of the parameters of the ‘‘long

tail’’. In this work we analyze the concentration depen-

dence of the intensity and correlation time of the slow

component and perform simulations of high-field
15N NMR relaxation data demonstrating the importance of

taking the ‘‘long tail’’ in the analysis into account.

Keywords Inter-protein interactions � Brownian

tumbling � Field-cycling � Relaxation � Correlation function

Introduction

Overall Brownian tumbling of proteins in solution is an

important issue in many biophysical and biochemical

studies, and may provide information on the size and shape

of the protein under investigation, as well as on inter-

molecular interactions. Starting from the pioneering works

by Kay et al. (1989) and Clore et al. (1990), a long series of

papers has been published that deal with high-resolution

NMR relaxation studies of internal dynamics of proteins in

solution. Almost all these studies utilized the well known

model-free approach (Lipari and Szabo 1982a, b) for

relaxation times analysis. According to the simplest form

of this approach, the normalized second-order reorienta-

tional correlation function reads

CðtÞ ¼ expð�t=srotÞ S2
int þ 1 � S2

int

� �
expð�t=sintÞ

� �
; ð1Þ

where srot is the correlation time of the overall protein

Brownian rotation (tumbling), and S2
int and sint are the order

parameter and the correlation time of the internal motion,

respectively. More sophisticated protocols take into

account different components of the internal mobility, the

non-spherical shape of the protein molecule leading to

anisotropic overall motion and the contribution of chemical

exchange to the relaxation rate R2, as surveyed in a number

of reviews (Daragan and Mayo 1997; Korzhnev et al. 2001;

Palmer 2001; Boehr et al. 2006; Kleckner and Foster 2011;
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Ishima 2012; Saito 2014). The main target of those studies

was providing site-specific information on internal

motions. However, as seen from Eq. (1), correct estimation

of the internal dynamics parameters (S2
int and sint) is

impossible without an exact determination of the mole-

cule’s overall rotational correlation time srot. To a first

approximation srot can be obtained from the ratio of the

spin–lattice and spin–spin relaxation rates, R1/R2, measured

for the most rigid residues of a protein undergoing (almost)

no slow internal mobility (Kay et al. 1989; Clore et al.

1990). Then, srot is usually refined during the global fit of

all the data. This approach assumes a free rotation of the

molecule to be described in terms of a single exponential,

or at most a few exponentials describing the non-spherical

shape of a protein molecule. In our opinion, this treatment

can lead to imprecise results, in particular at high protein

concentrations.

In a series of preceding papers (Krushelnitsky and

Fedotov 1993; Ermolina et al. 1993; Ermakova et al. 2002;

Krushelnitsky 2006; Roos et al. 2015) it has been shown

that inter-protein long-range electrostatic interactions not

just increase srot, but cause the appearance of a weak

slowly decaying component of the tumbling correlation

function (‘‘long tail’’). At protein concentrations of a few

mM (as typical for protein NMR samples) the inter-protein

distances are comparable with protein’s size, and the

energy of mutual electrostatic steering is comparable with

the thermal energy kT (Ermolina et al. 1993). The micro-

surrounding around each protein induces a local anisotropy

of the ‘‘normal’’ Brownian tumbling. The lifetime of this

local anisotropic configuration of proteins is controlled by

micro-environmental fluctuations primarily mediated by

the translational motion of proteins in respect to each other,

rendering this lifetime considerably longer than srot. Thus,

the correlation function (1) can be better approximated by

(Krushelnitsky 2006)

CðtÞ ¼ expð�t=sSÞ S2
rot þ 1 � S2

rot

� �
expð�t=srotÞ

� �

� S2
int þ 1 � S2

int

� �
expð�t=sintÞ

� �
; ð2Þ

where S2
rot is the order parameter of the local Brownian

rotation anisotropy and sS is the slow correlation time

characterizing the lifetime of this anisotropy. Note that on a

long time scale, protein rotation remains fully isotropic,

and S2
rot characterizes the Brownian rotation anisotropy

solely on a time scale of srot. As long as the protein con-

centration is not very high, S2
rot is usually very small, i.e.

values around 1 % or even less. At first glance, this prac-

tically negligible component should have no significant

effect on the relaxation rates. However, one has to keep in

mind that the relaxation rates are proportional to fre-

quency-dependent values of the spectral density J(x),

which is the Fourier transform of C(t). The effect of the

‘‘long tail’’ on relaxation rates is demonstrated in Fig. 1,

where it is depicted that high-field relaxation measure-

ments are not affected by the slow component. In contrast,

R2 is proportional to the spectral density function at zero

frequency J(0), or equivalently, to the time integral over

the correlation function
R1

0

C tð Þ dt:

Jð0Þ� 1 � S2
rot

� �
srot þ S2

rotsS: ð3Þ

Since srot � sS, the two terms in Eq. (3) may be com-

parable to each other in spite of S2
rot � 1. Thus, R2 is

appreciably affected by the ‘‘long tail’’ of the tumbling

correlation function, such that the standard protocol of

high-field NMR relaxation rates analysis may produce

imprecise results when applied to protein solutions that are

not highly diluted, see Fig. 1.

The ‘‘long tail’’ can hardly be recognized in the analysis

of a conventional set of high-field relaxation parameters (R1,

R2 and NOE measured at several resonance frequencies,

usually from 500 to 900 MHz for protons), meaning that

these data can always be well fitted assuming the standard

approach, as we demonstrate below. In fact, the slow
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Fig. 1 Representation of the spectral density function as directly

sampled by relaxation parameters for the example of 15N(–1H)

relaxation. Three dispersions are relevant, corresponding to three

modes of motion, see Eq. (2); the inflection points of the dispersions

corresponding to the condition xs = 1 are marked by arrows. The

hatched area marks the frequency range sampled by R1’s and NOE’s

measured at the 1H resonance frequencies from 500 to 800 MHz. R2

provides the value of the low-frequency limit of the spectral density.

The frequencies in-between are not accessible by high-field relaxation

measurements. The ‘‘long tail’’ dispersion is located right in this gap.

The dashed line indicates the ‘‘apparent’’ spectral density as obtained

from the relaxation data neglecting the impact of the ‘‘long tail’’. The

‘‘real’’ and the ‘‘apparent’’ spectral densities were simulated accord-

ing to the dynamic parameters presented for the ‘‘mobile’’ residue,

Fig. 7 at S2
rotsS = 4 ns (see details in the final part of the paper)
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component can hardly be seen in the analysis since these

measurements do not sample the low frequency range of

J(x), as clearly shown in Fig. 1. When, however, much

lower frequencies in high resolution 15N relaxation experi-

ments are sampled using a field-shuttling system, the exis-

tence of the additional contribution to R2 rates becomes

evident for practically all residues in ubiquitin, where it

likewise was admitted that this effect can hardly be

explained by chemical exchange (Charlier et al. 2013). It is

very likely that this contribution to R2’s also results from the

‘‘long tail’’. It is worth noting that the relaxation measure-

ments at resonance frequencies of several MHz (as was also

done in our previous papers mentioned above) can detect the

slow component, but cannot provide the parameters S2
rot and

sS, separately: from Eq. (3) it follows that only the product

S2
rot sS can be safely obtained from the analysis of these data.

Although the existence of the ‘‘long tail’’ is by now well

documented, detailed data characterizing its behavior at

different conditions are very sparse and incomplete due to

the methodological challenges described above. To obtain

exact quantitative information on the ‘‘long tail’’, one has

to measure the relaxation times at low resonance frequen-

cies (*1 MHz and below), which is only possible using

field-cycling (FC) NMR relaxometry (Koenig and Brown

1990; Kimmich and Anoardo 2004; Kruk et al. 2012).

However, almost all FC experiments in protein solutions by

now dealt with the solvent (H2O or D2O) instead of the

protein signal, as FC NMR features a low sensitivity. The

analysis of the water spin–lattice relaxation rate dispersions

R1 xð Þ can indeed resolve the ‘‘long tail’’ of the protein

tumbling correlation function (Krushelnitsky and Fedotov

1993; Krushelnitsky 2006), yet these estimates can be

affected by the finite lifetime of water molecules within the

protein structure (Denisov and Halle 1996). If the water

lifetime overlaps with sS, the parameters of the slow

component cannot be determined accurately.

Measuring the protein signal in the FC experiments is

more challenging, and we are aware of very few applica-

tions of this kind so far which benefitted from the increased

sensitivity of modern instruments (Bertini et al. 2005;

Luchinat and Parigi 2007). The key point of these impor-

tant studies was to demonstrate that the integral proton

signal can be used to extract an average order parameter

that serves as a faithful global measure of internal protein

flexibility. The data shown do exhibit indications of the

‘‘long tail’’ (Bertini et al. 2005), but the related gradual

increase of R1 at low frequencies was discussed in terms of

protein aggregation. As discussed earlier (Krushelnitsky

2006), protein aggregation is an unlikely explanation for

the appearance of the slow component in the tumbling

correlation function. The results shown below will provide

additional evidence that protein aggregation can hardly

explain the slow component, at least not in the general

case.

In this work we conduct a systematic study of the ‘‘long

tail’’ of the tumbling correlation function using 1H FC

NMR relaxometry of protein protons in D2O solutions

combined with standard R2 and R1q measurements that

complement the FC NMR data at low frequencies. The

main questions targeted in this study are: how do the

parameters of the ‘‘long tail’’ behave upon varying the

protein concentration?; how critical is the neglect of the

‘‘long tail’’ in the high-field relaxation data analysis?; how

small should the protein concentration be for safely

neglecting the ‘‘long tail’’? We try to answer these ques-

tions by means of relaxation times analysis, simulations,

and considering independent literature data.

Materials and methods

NMR experiments

The frequency dependence (dispersion) of the spin–lattice

relaxation rate R1 xð Þ was measured with a commercially

available STELAR FC 2000 relaxometer located at the

University of Bayreuth. It allows for proton frequencies of

2p � 10 kHz�x ¼ cHB0 � 2p � 20 MHz, with cH denoting

the gyromagnetic ratio and B0 the magnetic field, respec-

tively. The latter is generated by an electromagnet and thus

variable. The typical time necessary for switching and

stabilizing the coil current is around 2 ms. Basics of

electronic FC NMR are discussed extensively in the liter-

ature (Kimmich and Anoardo 2004). The temperature can

be varied within �120 �C� T � 180 �C while for the pre-

sent contribution only a small interval of 4 �C� T � 48 �C

could be covered avoiding protein freezing and denatura-

tion of the sample. In order to decompose the magnetiza-

tion decay into protein and residual water (HDO, H2O)

contributions the polarization time was always 3 s, enough

to provide sufficient water signal. The analysis of the

multi-component magnetization decays will be discussed

below. Although the relaxometer enables measurements at

the frequencies down to 10 kHz, in our FC experiments the

lowest frequency was only 100 kHz. At lower frequencies

the relaxation rates could only be determined with some

uncertainty, especially at high protein concentrations, see

below. Details on this issue are presented in the ‘‘Ap-

pendix’’. This limitation, however, was not significant

since the resulting frequency gap is complemented by the

R1q measurements.

R2 and R1 at 20 MHz were measured using a BRUKER

MINISPEC mq20. The low resonance frequency for R2

experiments allows avoiding the contribution of chemical
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exchange of protein protons to R2 (Luz and Meiboom

1963; Hills et al. 1989). R1q measurements were preformed

on a BRUKER AVANCE II spectrometer with a magnetic field

corresponding to 400 MHz proton Larmor frequency.

Since we used spin-lock fields of 20 and 40 kHz, the

contribution of chemical exchange to the R1q relaxation

rates is likewise negligible. R2, R1 at 20 MHz and R1q were

measured in Halle on the same samples as in Bayreuth.

Prior to all measurements the protein-D2O solutions of

different concentrations were filled into thoroughly cleaned

NMR glass tubes. We abstained from degassing the sam-

ples to avoid D2O evaporation and altered concentrations.

For all experiments, we applied single short-pulse excita-

tion with a sufficiently large spectral width of at least

50 kHz to ensure that all protein protons contribute equally

to the integral signal. The accuracy of the temperature

calibration and stabilization was in all cases better than

±1 �C.

Sample preparation

Lysozyme (LYZ), MW = 14,300, from chicken egg white

and fatty acid free bovine serum albumin (BSA),

MW = 66,500, were delivered from Sigma-Aldrich (pro-

duct numbers 62970 and A7030, respectively) as lyophi-

lized powders. Both proteins were dissolved in D2O for

few hours and lyophilized again to maximally remove

labile protons that would increase the residual water signal.

Afterwards, the protein was dissolved in D2O again without

adding salt or buffer. The pH obtained was pH 3.8 for LYZ

and pH 7.0 for BSA and is well distinguished from the

isoelectric point (pH 11.35 and pH 4.7, respectively). No

significant changes in the pH (more than 0.1–0.2) were

observed upon varying the protein concentration.

Size-exclusion chromatography at a flow rate of 0.4 ml/min

and blue native polyacrylamide electrophoresis (BN-

PAGE) reveal the monodispersity of the LYZ sample and

the polydispersity of the BSA sample (Fig. 2). The BSA

polydispersity corresponds well to previous observations

(Squire et al. 1968; Atmeh et al. 2007). To avoid

unspecific interaction of the proteins with the column

material, the elution buffer is adjusted to 50 mM NaCl in

the case of BSA and 50 mM Na-phosphate buffer, 50 mM

NaCl at pH 7.5 in the case of LYZ. The BN-PAGE of

BSA was performed based on the method of Schägger

et al. (1994) using a native unstained protein marker

obtained from life technologies.

In our experiments we observed that at temperatures

above 28–30 �C BSA solutions reveal a slow (on the time

scale of several hours) increase of the oligomers portion.

For this reason, for all BSA samples we limited the tem-

perature range of the experiments to 4 �C� T � 26 �C:

Results and discussion

Analysis of the relaxation decays

Figures 3 and 4 present examples of the FC-NMR relax-

ation decays of the same sample at different magnetic field

strengths. The relaxation decays consist of two compo-

nents: the fast and slow decaying components belong to

protein and residual water protons, respectively (Krushel-

nitsky and Fedotov 1993). Figure 3 shows raw data and

Fig. 4 demonstrates the procedure of the water component

subtraction and the form of the pure protein component at

two different resonance frequencies [similar plots for the

transversal magnetization decays are shown in ref. (Roos

et al. 2015)]. Because of the fast exchange between

hydrated and bulk water molecules (Denisov and Halle

1996), the water component is always single-exponential,
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Fig. 2 Size-exclusion chromatogram of LYZ and BSA (top) and blue

native (BN) PAGE of BSA performed on the elution volume of

different peaks of the size-exclusion chromatography (bottom)
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whereas the protein component is not (Krushelnitsky 2006;

Luchinat and Parigi 2007; Roos et al. 2015).

The raw decays were fitted using a sum of the water and

the protein components, the latter featuring a log-normal

distribution of the relaxation rates:

IðtÞ¼ I0�Ieq

� �
fRLXðtÞþIeq

fRLXðtÞ¼ 1�pWð Þ
Z1

0

pðR1Þexp �R1 tð ÞdR1þpW exp �RW tð Þ

pðR1Þ¼
1

ffiffiffiffiffiffiffiffiffiffi
2pr2

p
R1

exp
� ln½R1�� ln½Rmedian�ð Þ2

2r2

" #

;

ð4Þ

where I0 and Ieq correspond to the initial and equilibrium

intensity, respectively, pW and RW are the relative amplitude

and relaxation rate of residual water protons, respectively.

Rmedian and r correspond to the most populated relaxation

rate (pðRmedianÞ has a maximal value) and the distribution

width parameter (0\r\?; 0 corresponds to the delta-

function, infinity means infinitely wide distribution) of the

protein component, respectively. The integral in Eq. (4) was

calculated numerically during the fitting. The mean (arith-

metic average) of the protein relaxation rates

R1h i ¼
Z1

0

pðR1ÞR1 dR1 ¼ Rmedian � exp
r2

2

� �
ð5Þ

equals the initial slope of the relaxation decay and is pro-

portional to the mean spectral density function JðxÞh i (that

is the spectral density function averaged over all protein
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Fig. 3 FC-NMR relaxation decays of 130 mg/ml LYZ at selected

relaxation field strengths (from top to bottom): 6.33, 3.77, 2.25, 1.34,

0.795, 0.1 MHz. Solid lines are the log-normal fits combined with a

single-exponential decay of the residual water protons (Eq. 4)
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Fig. 4 Relaxation decays in a 130 mg/ml lysozme sample at

(a) 30 MHz and (b) 0.1 MHz and separate fitting result (solid lines)

of the water and the protein signal. Left (a, b) Intensities versus

relaxation delay as directly obtained in the field-cycling experiment.

Middle (a, b): After subtracting the value of the equilibrium

magnetization, the mono-exponential decay of the water protons

can be clearly seen. Right (a, b): Protein signal as observed after

subtracting the water signal. Dotted lines indicate the initial slope of

the decays, i.e. the mean relaxation rate. (c) Distribution width

parameter of LYZ R1s for three concentrations as a function of the

proton resonance frequency as obtained by a log-normal fit, see Eq. 4.

Vertical dotted lines indicate the frequencies obeying the condition

x0s = 1 for the protein concentrations 65 and 130 mg/ml. Red solid

lines are polynomial fits to guide an eye
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protons), as explained in the Supporting Information of ref.

(Krushelnitsky et al. 2014). For the subsequent analysis, we

use the mean relaxation rate values defined by Eq. (5) for

all types of experiments, that is R1, R1q and R2. The dis-

persion profiles of the water component were not analyzed

because of the inferior signal-to-noise ratio. The water

component intensity in all samples was several times less

than that of the protein; in addition, the long-time plateau

limit of the relaxation decays was not always measured

because of the long delays. Increasing the quality of these

data would require significant increase of the measuring

time, which was practically not affordable.

Defining the mean relaxation rates using the log-normal

distribution and previously used (Roos et al. 2015) bi-ex-

ponential decomposition of the protein component provides

in most cases essentially the same results, see Electronic

Supporting Material (ESM), Fig. S2. However, the log-

normal distribution enables a quantitative characterization of

the non-exponentiality of the protein proton relaxation

component. Figure 4c shows the distribution width param-

eter r as a function of the resonance frequency. For 65 and

130 mg/ml, this dependence corresponds well to the theo-

retical prediction (Kalk and Berendsen 1976): ifxs 	 1 (s is

the correlation time of the protein Brownian tumbling), the

rate of the spin exchange between protons in a protein is

much faster than the relaxation rate of individual protons,

rendering the integral relaxation decay singly exponential.

Yet, even at relatively high frequencies (x[ 10 MHz) the

inequality xs 	 1 does not hold strictly, and thus the decay

is still somewhat non-exponential. On the opposite, at

xs � 1 spin exchange is slow in comparison to spin relax-

ation. Thus, the intrinsic distribution width of longitudinal

relaxation times is observed. At 255 mg/ml at low temper-

atures, in turn, the anisotropy of Brownian tumbling (‘‘long

tail’’) is quite pronounced, and the effective correlation time

of Brownian tumbling becomes much longer. Spin exchange

becomes much more efficient, so that the distribution width

r is reduced to lower values even at lower frequencies. A

similar behavior of the shape of the relaxation decay as a

function of frequency in FC experiments was reported earlier

by Luchinat and Parigi (2007).

We stress that neglecting the distribution of longitudinal

relaxation times and fitting such decay with a single

exponent may provide quantitatively incorrect results. It is

worth mentioning that, irrespective of whether spin

exchange is fast or slow, the arithmetic average relaxation

rate (as defined by the initial slope) is not affected by spin

exchange (Kalk and Berendsen 1976). To avoid possible

misunderstandings, we stress that the non-exponential form

of relaxation decays bears absolutely no relation to a

potentially non-exponential correlation function of motion.

Figure 5 presents exemplary R1 dispersions for LYZ and

BSA along with the fitting curves (see below for the fitting

procedure) for different concentrations (the full set of the

dispersion data are presented in ESM, Figs. S3–S5). The

low-frequency FC relaxation data for BSA solutions are

unfortunately not suitable for the analysis, which has two

reasons. The first one is the fact that the switching time in

FC-experiments (switching from polarization field down to

the relaxation field and then back to the detection field) is

comparable to the relaxation time. In the ‘‘Appendix’’ we

show that this induces no error for a single-exponential

decay, but may lead to erroneous results in the case of

multi-exponential relaxation decays. The presence of oli-

gomers in the BSA solution (see ‘‘Materials and methods’’

section) causes an additional source of distribution of the

R1 relaxation rates, which leads to a much larger deviation

from a mono-exponential behavior of the BSA relaxation

decays at low frequencies in comparison with LYZ.

The second reason is the shortest possible relaxation

delay in the FC-experiments which was 0.7 ms (‘‘dead

time’’). Because of the large srot, the relaxation time of

BSA protons at low frequencies is quite short and it is

comparable to this ‘‘dead time’’. The remaining long-time

decay appears to be close to singly exponential, but the

mean rate (initial slope) is severely underestimated, as

demonstrated by Fig. S1. As a criterion whether the

respective measurement is reliable or not, the initial slope

as provided from the log-normal fit (Eq. 5) was compared

to the initial slope as obtained by the bi-exponential

decomposition, see ESM, Fig. S2. If and only if these two

were the same, the data were considered as being reliable

for the analysis. For LYZ, in turn, the spread of relaxation

times within one decay curve is not only less pronounced,

but also the FC relaxation times are longer, rendering the

issue of ill-defined initial slopes less problematic. In fact,

for LYZ at all frequencies measured, the initial slope

defined from bi-exponential decomposition matches within

the experimental error the initial slope of the log-normal

fits (Fig. S2).

Another way of presenting the data, namely, tempera-

ture dependencies of relaxation rates at several fixed fre-

quencies, is shown in Fig. S5. If R1 is plotted against

inverse temperature 1/T, the slope of the data already

provides information whether xsrot\ 1 (positive slope) or

xsrot[ 1 (negative slope). For this reason, the temperature

dependencies of the relaxation times measured at various

frequencies enable much more precise fitting and more

confident identification of different motional processes in

comparison with frequency dependencies only.

Analysis of the relaxation times

The R2, R1q and R1 relaxation times of protein protons are

dominated by the homonuclear dipole–dipole relaxation

mechanism,
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R1 ¼ 2

3
KHH Jðx0Þ þ 4Jð2x0Þð Þ ð6Þ

R1q ¼
1

3
KHH 3Jð2x1Þ þ 5Jðx0Þ þ 2Jð2x0Þð Þ ð7Þ

R2 ¼ 1

3
KHH 3Jð0Þ þ 5Jðx0Þ þ 2Jð2x0Þð Þ; ð8Þ

where KHH is the mean dipole–dipole coupling of protons

in the protein, J(x) is the spectral density function, and

x0/2p and x1/2p are the proton resonance and spin-lock

frequencies, respectively. Assuming that sint � srot � sS,

the spectral density function can be derived from Eq. (2) as

JðxÞ ¼ 1 � S2
int

� � sint

1 þ xsintð Þ2
þ S2

int 1 � S2
rot

� � srot

1 þ xsrotð Þ2

þ S2
intS

2
rot

sS

1 þ xsSð Þ2
:

ð9Þ

Since we analyzed relaxation times measured at differ-

ent temperatures, we assumed an Arrhenius temperature

dependence for the motional correlation times:

sS;rot;int ¼ sS;rot;intð293KÞ exp
ES;rot;int

R

1

T
� 1

293K

� �	 

:

ð10Þ

Note that in reality the temperature dependencies of the

correlation times may deviate from the Arrhenius law,

however, within the relatively narrow temperature range of

our experiments this approximation works quite well.

Overall, the set of fitting parameters included the correla-

tion times sint, srot and sS at 20 �C, the activation energies

Eint, Erot and ES, the order parameters S2
int and S2

rot; and the

mean proton coupling constant KHH. Although the exis-

tence of the ‘‘long tail’’ was established in our previous

papers, we demonstrate here again that neglecting it in the

fitting model leads to systematic inconsistency between the

experimental and fitting values of the relaxation rates, see

ESM, Fig. S6.

The number of the fitting parameters is quite large, yet

the number of experimental data was much larger (overall

for all temperatures and concentrations, LYZ: 361 data

points, BSA: 262 data points) and, thus, the fitting was

quite stable and provides reasonable fitting uncertainties.

The values of the fitting parameters were obtained from the

simultaneous (global) Monte-Carlo fit of the set of all

relaxation times measured at all temperatures and con-

centrations. The fitting aimed to minimize the root mean

square deviation

10-1 100 101 10-1 100 101 10-1 100 101 10-1 100 101 10
-2

10
-1

10
0

10
1

0 0 0 0

15 °C
35 °C

12 °C
35 °C

12 °C
38 °C

12 °C
38 °C

257 g/L213 g/L130 g/L

R2 R1ρ  R1

(a) LYZ 

65 g/L

R 1, 
R 2, 

R
1ρ
 / 

m
s-1

ω/2π  / MHz

ω/2π  / MHz
10-1 100 101 10-1 100 101 10-1 100 101 10-1 100 101 10

-2

10
-1

10
0

10
1

0
10

-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

0 0 0

R1ρR2

255 g/L208 g/L130 g/L

R1

(b) BSA

65 g/L

R
1, 

R
2, 

R
1ρ /

 m
s-1 22°C 22°C 22°C 22°C 

Fig. 5 Dispersion profiles of (a) LYZ and (b) BSA at different

concentrations. For direct visual comparison of R1q (triangles) and R1

(circles), R1q data were multiplied by 10/3 (see ESM, Eqs. S1–S5).

R2’s (squares) were measured at 20 MHz and are shown in a separate

column of each plot. Solid lines provide the best fit result. Uncertain

data points (BSA at x0/2p\ 3 MHz, see text) were not taken into

account for fitting (crossed symbols). For BSA, a detailed frequency

dependence was recorded only at 22 �C; at other temperatures the

data for only few frequencies were measured. The here shown fit to

the BSA data assumes monomers only. A fit result involving

oligomers is presented in the ESM, Fig. S4. For both proteins, the

data shown here were fitted together with all the available data shown

in ESM, Figs. S3 and S5
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RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

1 � Rexp

Rsim

� �2

vuut ; ð11Þ

where Rexp and Rsim are the simulated (according to the

current set of the fitting parameters) and experimental

relaxation times, respectively, and N is the number of all

relaxation times. While fitting, the parameters of the

internal motions (S2
int, Eint and sint) as well as KHH were

assumed to be the same for all concentrations (that is why

we fitted the data at all concentrations at a time); all other

parameters were assumed to be concentration-dependent.

Tables S1 and S2 of ESM contain all the fitting parameters

for the two proteins at all concentrations investigated.

A special remark on internal motions is in order. The

internal motion parameters are not of central interest in this

study, yet they need to be included in the analysis since

relaxation times at high frequencies (around 10 MHz and

higher) have an appreciable contribution from the first term

in Eq. (9), and neglecting it may lead to an incorrect esti-

mation of other parameters. We describe internal motions

by a single correlation time sint, however, we actually

assume two components of the internal motions since the

mean proton coupling constant KHH (Eqs. 6–8) is kept as a

freely adjustable fitting parameter. Hence, fast internal

motions contribute to the KHH motional averaging, so that

the parameters S2
int and sint only reflect the slow mode of

internal dynamics. Indeed, the rigid lattice value of KHH for

globular proteins is around 1.3 9 1010 s-2. Fast methyl

proton rotation reduces KHH down to *0.85 9 1010 s-2

(Krushelnitsky et al. 1996), whereas the KHH fitting value

(see Tables S1 and S2) is around 0.6 9 1010 s-2. For a

more accurate evaluation of the internal motion parameters

S2
int and sint (and thus more precise estimation of the overall

tumbling parameters), we included previously published

data on 1H R1 temperature dependencies in BSA and LYZ

solutions measured at 11, 27 and 90 MHz (Krushelnitsky

2006) (R2 data from this work were not included). The

relaxation decays in ref. (Krushelnitsky 2006) were ana-

lyzed according to the same protocol as in this study, thus

the relaxation times can be compared directly. These R1

data were added to the set of relaxation times at the lowest

concentration (65 mg/ml).

The fact that the apparent internal correlation times were

in all cases a factor of at least 5–25 shorter than the global

tumbling times (see Tables S1 and S2) demonstrates that

slower internal motions of some residues, reaching the

timescale of global rotation and thus potentially distorting

the tumbling correlation function at its srot-related onset,

are probably sparse. If they were abundant, we would

expect the separation to be less clear.

For LYZ, the fitting provides a rotational correlation

time srot(T = 20 �C) = (10.5 ± 0.2) ns at the lowest

concentration measured in this study. We also estimated

srot using the Stokes–Einstein–Debye law and the values of

the viscosity of the protein solution (1.538 ± 0.010 mPa s,

measured by the micro-viscometer mVROC, Rheosense,

San Ramon, CA) and lysozyme’s hydrodynamic radius of

1.9 nm (Parmar and Muschol 2009). The result appeared to

be (10.9 ± 0.1) ns, which is in a good accordance with our

analysis.

The analysis of the BSA data is less unambiguous since

BSA solutions contain a significant portion of oligomers,

see ‘‘Materials and methods’’ section. We applied a more

complicated form of the rotational correlation function that

contains an additional component attributed to oligomers,

see ESM, Eq. S8. However, this more sophisticated anal-

ysis does not change significantly the behavior of the ‘‘long

tail’’ parameters. Note, however, that srot for BSA mono-

mers obtained from this fitting (40 ns) matches well the

independent literature value (Ferrer et al. 2001) confirming

the adequacy of this analysis in spite of the increased

number of fitting parameters.

Concentration dependence of the ‘‘long tail’’

parameters

In our previous studies (Krushelnitsky and Fedotov 1993;

Krushelnitsky 2006; Roos et al. 2015) we could not esti-

mate the parameters of the slow component, S2
rot and sS,

separately for the reasons described in the Introduction.

Combining FC NMR and routine R2 and R1q measure-

ments, we now can overcome this issue, and the concen-

tration dependence of S2
rot and sS can be resolved. Figure 6

presents the concentration dependence of these two

parameters for both proteins. At lowest concentration,

however, we still cannot determine reliably the parameters

S2
rot and sS separately, since sS appears to be too long and

the dispersion step corresponding to the ‘‘long tail’’ (Fig. 1)

falls into a ‘‘dead zone’’ between R2 and the R1q’s. Con-

sequently, for this concentration, Fig. 6 shows merely high

and low limits for S2
rot and sS, respectively, indicated by

arrows. At higher concentrations, sS is shorter (see below),

and both ‘‘long tail’’ parameters could be obtained from the

fitting independently.

The behavior of S2
rot appears reasonable: with increasing

concentration, the average distance between proteins

shortens, resulting in stronger inter-protein interactions.

This increases the anisotropy of local Brownian rotation

and, hence, the order parameter S2
rot becomes larger.

In contrast, sS decreases with increasing concentration,

which seems unexpected. In our view, this tendency can be

explained as follows. The lifetime of the local anisotropy

relies on the time span needed to change the local envi-

ronment of the particle (i.e. the protein). With decreasing
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inter-protein distances (i.e. increasing concentration),

fluctuations in the particle alignment have an increased

impact on the actual configuration of the particle’s local

environment. The lifetime of a certain particle configura-

tion is in particular limited by translational diffusion on the

length scale of neighboring particles. Therefore, sS

becomes shorter with increasing protein concentration, at

least until a certain concentration close to jamming con-

ditions is reached. Such a trend can also be seen in col-

lective diffusion coefficients measured by dynamic light

scattering (Heinen et al. 2012); yet the detailed concen-

tration dependence looks different due to the different

natures and time scales of the two processes.

At the same time, we have to admit that this simple

explanation cannot explain the sS concentration depen-

dence quantitatively, especially the significant decrease of

sS between the first and the second concentration points for

LYZ. In part, such behavior may be caused by experi-

mental uncertainty since only few relaxation rates report on

sS and S2
rot at low concentrations, where S2

rot is very small.

More importantly, any simplified consideration of the slow

tail of rotational diffusion does not take into account multi-

body interactions, as well as real sizes and shapes of the

proteins and their charge distributions. All these aspects

render the physics very complex, and simplified models

can be expected to account for the qualitative behavior

only. We believe that the quantitative description of the

‘‘long tail’’ parameters is only possible using Brownian

dynamics simulations that take into account the real shape

and the sophisticated electrostatic structure of the protein

of consideration (McGuffee and Elcock 2006).

The observed concentration dependence of sS supports

the previous conclusion on the protein aggregation as an

unlikely source of the ‘‘long tail’’ (Krushelnitsky 2006). A

small portion of large aggregates would also lead to

appearance of the slow component; this, however, would

be physically unrealistic: large aggregates without an

appreciable amount of small oligomers do not conform to

Ostwald’s dilution law. The concentration dependence of

sS for both proteins indicates that the size of potential

oligomers must decrease with increasing concentration,

which is neither physical nor conceivable (see for com-

parison the behavior of the correlation time of the oligomer

component in the BSA data analysis, Table S2, part B).

Moreover, if large stable aggregates were present in protein

solution, one would observe two components in the mag-

netization decays with distinctly different relaxation times

corresponding to monomers and aggregates, which is not

the case. Thus, one may conclude that the protein aggre-

gation does not contribute, at least significantly, to the

‘‘long tail’’.

Influence of neglecting the ‘‘long tail’’ while fitting

high-field NMR relaxation data

For high-field NMR relaxation studies of protein dynamics

the important question is: what is the effect of neglecting

the ‘‘long tail’’ in the routine model-free analysis of the

relaxation data? To check this aspect, we simulated and

then fitted the 15N R1, R2 and NOE data at three proton

resonance frequencies—500, 600 and 800 MHz. Overall,

we analyzed a set of nine experimental (simulated)

parameters. The relaxation parameters R1, R2 and NOE

were simulated assuming the correlation function to be in

the form of Eq. (2), see ESM, Fig. S7. In all cases we

assumed srot = 10 ns, and simulated the data for two cases:

a ‘‘rigid’’ residue (S2
int = 0.95, sint = 50 ps) and a ‘‘mo-

bile’’ one (S2
int = 0.7, sint = 1 ns). These values of the

internal motion parameters are typical for residues in the

secondary structure elements and (partially) unstructured

domains, respectively. For both cases, we simulated the

relaxation data assuming four different amplitudes of the

slow component: S2
rot = 0, 0.005, 0.01, and 0.02, where sS

was fixed to 200 ns in all cases (As mentioned above, only

the product S2
rot � sS matters for the analysis). It should be

mentioned that the S2
rot values derived from the 1H non-

selective relaxometry cannot be directly transferred into the

analysis of 15N relaxation data since different N–H vectors

may experience different rotational anisotropies depending

on their orientation within the protein structure. Still, the
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Fig. 6 Order parameter S2
rot and correlation time of the slow

component sS(T = 20 �C) of rotational diffusion as a function of

protein concentration of LYZ (circles) and BSA (squares and

diamonds). For BSA, two sets of data are shown corresponding to

the analyses using the simple and the more complicated form of the

correlation function that includes oligomers (see ESM, Table S2). At

the lowest concentration (65 g/L), the upper and lower boundaries of

S2
rot and sS; respectively, are shown (indicated by arrows). The

minimum (65 g/L) and maximum (260 g/L) concentrations corre-

spond to 4.5 and 18.2 mM for LYZ and 1 and 3.9 mM for BSA,

respectively
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order of magnitude of S2
rot for 1H and 15N relaxation should

be the same.

Figure 7 shows the values of the parameters srot, sint and

S2
int obtained from fitting (with fixed S2

rot = 0) the simulated

relaxation data generated with various S2
rot values (see

above). See Fig. 1 for an illustration of the input (real) and

the fitted (apparent) spectral densities for the ‘‘mobile’’

case with S2
rot = 0.02. It can be clearly seen that neglecting

the ‘‘long tail’’ can lead to appreciably mismatching fitting

parameters. Although the root mean square deviation of the

fitting result increases with increasing S2
rot; it, however, still

remains quite small and reaches just a few percent, which

corresponds to the typical experimental error of high-field

NMR relaxation measurements. Again, this outcome

demonstrates that the ‘‘long tail’’ cannot be seen in this

type of analysis. If one aims at the precise NMR relaxation

analysis of the protein dynamics in solution, one has either

to combine high-field and low-field experiments, or to

measure the concentration dependencies of the relaxation

parameters in order to extrapolate them to zero concen-

tration, where the ‘‘long tail’’ vanishes. This approach,

however, would make the study obviously much more

laborious.

It would be of interest to know the concentration from

which on the inter-protein interactions can be assumed to

be negligible. NMR is definitely not the best method for

experimental detection of the ‘‘long tail’’ at very low

concentrations since it suffers from the inherently low

sensitivity in comparison with many other techniques.

More sensitive methods for direct observation of inter-

protein interactions are neutron and X-ray small-angle

scattering (SAS) experiments (Roosen-Runge et al. 2011).

Structure factors as obtained from SAS demonstrate that

proteins cannot generally be assumed to act as non-inter-

acting hard spheres. The inherent order of proteins in

solutions is strongly affected by the strength of the repul-

sive electrostatic interactions, and consequently depends on

the pH and ionic strength of the solvent (Velev et al. 1998)

that influence the net charge and electrostatic screening,

respectively.

Essentially, NMR and SAS methods observe the same

phenomenon—long-range inter-protein electrostatic inter-

actions. It is important, however, that the information

provided by these methods is not similar but complemen-

tary: SAS and NMR report on spatial and orientational

ordering of proteins, respectively, caused by electrostatic

interactions. Thus, studies of protein solutions combining

the capabilities of both methods will likely enable a deeper

understanding of the nature of inter-protein interactions. At

the moment we would like to attract reader’s attention to

the studies (Stradner et al. 2004; Shukla et al. 2008; Heinen

et al. 2012) in which SAS data were recorded in protein

solutions in a wide concentration range. These results show

that the spatial ordering (i.e. repulsive inter-protein elec-

trostatic interactions) becomes negligible only at protein

concentrations at about a few mg/ml. At such low con-

centrations, liquid-state NMR relaxation measurements are

hardly possible without a cryoprobe.

Conclusions

Mutual protein electrostatic steering is an essential effect in

protein solution even at relatively low concentrations,

which may appreciably affect the NMR relaxation rates,

primarily R2. Neglecting it in the analysis of NMR relax-

ation data may lead to imprecise results, in particular at

high concentrations. The parameters of the ‘‘long tail’’ of

the rotational correlation function reveal different con-

centration dependencies: the intensity of the slow compo-

nent (order parameter of the Brownian tumbling)

expectedly increases with increasing concentration.
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However, its correlation time, i.e. the lifetime of the local

anisotropy, decreases. This behavior can be understood

when taking into account the shorter inter-protein distances

at higher concentrations. Reduced inter-particle distances

lead to an increased sensitivity to environmental fluctua-

tions, which in turn decreases the life-time of the actual

particle configuration. Literature data on X-ray and neutron

small-angle scattering demonstrate the spatial ordering of

proteins in solution, which complements the NMR results

on the orientational ordering. As a more sensitive tech-

nique, small-angle scattering experiments demonstrate that

protein spatial ordering is present at concentrations even

below 1 mM, i.e. at the edge of the concentration range

suitable for the NMR relaxation experiments.
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Appendix: Influence of the limited ramp time
in FC-experiments on the shape of relaxation
decay

In field-cycling experiments, the magnetic field is ramped

down from the polarization field (here: xðpolÞ
0

.
2p ¼

20 MHz) towards the adjustable relaxation field, and is then

ramped up again to the detection field (here:

xðacqÞ
0

.
2p ¼ 16 MHz). The ramp time of the FC relax-

ometry measurements was around 2 ms, and is thus com-

parable to the protein’s mean relaxation rate at low

magnetic fields. The following section addresses the con-

sequences for the multi-exponential relaxation decays as

observed in this study.

In presence of a time dependent magnetic field, a single-

component relaxation decay can be written as

IðtNÞ
I0

¼ lim
Dt!0

YN

i¼1

exp �R1 xðtiÞð ÞDt½ �; tN ¼ NDt; ð12Þ

from which one can obtain a time-dependent mean relax-

ation rate �R1ðtÞ:

IðtÞ
I0

¼ exp ��R1ðtÞ t½ �; �R1ðtÞ ¼
1

t

Z t

0

R1 xðt0Þð Þdt0: ð13Þ

Hence, the intensity after ramping down the magnetic

field simply reads

IðrdÞ ¼ IðpolÞ � IðrlxÞ
� �

exp ��R
ðrdÞ
1 sðrdÞ

h i
þ IðrlxÞ; ð14Þ

where IðpolÞ and IðrlxÞ denote the equilibrium intensity at the

polarization and relaxation field, respectively, sðrdÞ is the

field-switching time, and �R
ðrdÞ
1 is the mean relaxation rate

during the magnetization ramp as defined by Eq. (13).

After the magnetization ramp, the intensity is now subject

to relaxation during the adjustable relaxation delay tðrlxÞ;
and takes place at the wanted relaxation field of frequency

xðrlxÞ
0 ;

IðtðrlxÞÞ ¼ IðrdÞ � IðrlxÞ
� �

exp �R1ðxðrlxÞ
0 Þ t

h i
þ IðrlxÞ: ð15Þ

Finally, ramping up the magnetic field for data acqui-

sition during the field-switching time sðruÞ causes the

intensity to relax towards its new equilibrium magnetiza-

tion IðacqÞ; so that the signal finally detected reads

IacqðtðrlxÞÞ ¼ IðacqÞ � IðtðrlxÞÞ
� �

1 � exp ��R
ðruÞ
1 sðruÞ

h i� �
þ IðtðrlxÞÞ

¼ a exp �R1ðxðrlxÞ
0 Þ tðrlxÞ

h i
þ b;

ð16Þ

where �R
ðruÞ
1 is the mean relaxation rate during increasing

the magnetic field, and a and b are constants defined as

a ¼ IðpolÞ � IðrlxÞ
� �

exp � �R
ðrdÞ
1 sðrdÞ þ �R

ðruÞ
1 sðruÞ

� �h i
ð17Þ

b ¼ IðacqÞ 1 � exp ��R
ðruÞ
1 s

h i� �
þ IðrlxÞ exp ��R

ðruÞ
1 s

h i
:

ð18Þ

The above equations demonstrate that if the protein’s

relaxation decay is single-exponential, the limited ramp

time of the magnetic field would only influence the initial

and final intensity of the decay observed, but not the

relaxation rate.

In case of a multi-exponential decay, in turn, the

amplitude a and the equilibrium value b may be different

for the individual components of the decay. A change in

the offset b from one proton site to another is of no rele-

vance for correctly estimating the mean relaxation rate

R1ðxðrlxÞ
0 Þ

D E
¼

P
i ai R1;iðxðrlxÞ

0 Þ; as the plateau value of

the relaxation decay is independently fitted, yet modified

amplitudes ai do affect a correct estimate of R1ðxðrlxÞ
0 Þ

D E
:

The faster the relaxation during the magnetization ramp,

the smaller is the contribution of this component to the

experimentally observed decay. This issue is only of rele-

vance at measurements at low relaxation fields, as only

those magnetization ramps involve fast relaxation occur-

ring at low magnetic fields. The potential decrease of the

amplitude of quickly relaxing components may hence
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cause an underestimation of the relaxation rate at low

frequencies.

The presence of BSA oligomers in solution causes an

additional spread of the relaxation rates, rendering the issue

of multi-component decays problematic at low relaxation

fields. Thus, measurements in BSA solutions at relaxation

fields below 3 MHz 1H Larmor frequency were not taken

into account, also due to the reasons discussed in ESM,

Fig. S2.

The mean relaxation rate of LYZ, however, could be

safely estimated even at relaxation fields as low as

0.1 MHz: fitting the relaxation decays provides stable re-

sults (Fig. S2) with a distribution width of relaxation times

reaching a plateau value at low frequencies (Fig. 4), thus

indicating that the shape of the FC-NMR relaxation decay

is the same at different magnetic fields. At low magnetic

fields, where relaxation is fast as compared to spin

exchange, the distribution width r reflects the intrinsic

spread of relaxation times of the protein protons, and hence

has to be independent of the actual magnetic field applied.

If, however, relaxation during the magnetization ramps

reduced the contribution of quickly relaxing proton sites to

the overall signal, the experimentally observed distribution

of relaxation times would become narrower at low mag-

netic fields. Such a trend cannot be seen in the distribution

width (Fig. 4), thus indicating that the magnetization ramps

have no significant effect on the mean relaxation rate in

LYZ solutions.
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motions in microcrystalline proteins as observed by MAS-

dependent N-15 rotating-frame NMR relaxation. J Magn Reson

248:8–12

Lipari G, Szabo A (1982a) Model-free approach to the interpretation

of nuclear magnetic resonance relaxation in macromolecules. 1.

Theory and range of validity. J Am Chem Soc 104:4546–4559

Lipari G, Szabo A (1982b) Model-free approach to the interpretation

of nuclear magnetic resonance relaxation in macromolecules. 2.

Analysis of experimental results. J Am Chem Soc

104:4559–4570

Luchinat C, Parigi G (2007) Collective relaxation of protein protons

at very low magnetic field: a new window on protein dynamics

and aggregation. J Am Chem Soc 129:1055–1064

Luz Z, Meiboom S (1963) Nuclear magnetic resonance study of

protolysis of trimethylammonium ion in aqueous solution: order

of reaction with respect to solvent. J Chem Phys 39:366–370

McGuffee SR, Elcock AH (2006) Atomically detailed simulations of

concentrated protein solutions: the effect of salt, pH, point

414 J Biomol NMR (2015) 63:403–415

123



mutations, and protein concentration in simulations of

1000-molecule systems. J Am Chem Soc 128:12098–12110

Palmer A (2001) NMR probes of molecular dynamics: overview and

comparison with other techniques. Ann Rev Biophys Biomol

Struct 30:129–155

Parmar AS, Muschol M (2009) Hydration and hydrodynamic

interactions of lysozyme: effects of chaotropic versus kos-

motropic ions. Biophys J 97:590–598

Roos M, Link S, Balbach J, Krushelnitsky A, Saalwächter K (2015)
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4.3. Coupling and decoupling of rotational and translational diffusion
of proteins under crowding conditions

After having focused on methodological consequences of crowding for NMR spin relaxation

analysis of proteins, with direct evidence that the RACF deviates from a single exponential,

the detailed impact of crowding on the Brownian diffusion rates will be addressed now. A

strong decoupling of rotational and long-time translational diffusion has been shown for

αB-crystallin, with indications that rotational diffusion is rather sensitive to the solvent vis-

cosity than to the solution viscosity. The behavior of αB-crystallin can by no means be gen-

eralized as being representative for all proteins, especially as αB-crystallin is a spherically

symmetric assembly while many other proteins are not. Pronounced protein-protein and

protein-solvent-protein interactions may give rise to a viscous drag of rotational diffusion

that follows a similar concentration dependence as the macroscopic solution viscosity.

Opposed to that, the concept that rotational diffusion reports on a solvent-related micro-

viscosity is widely spread in in vivo protein science [Luby-Phelps, 2000].

To address this issue, the rotational correlation times reported in the previous study

will be combined with viscosity data and both long and short-time translational diffusion

coefficients received from PFG NMR and neutron scattering literature data [Roosen-Runge

et al., 2011], respectively. Additional support comes from independent data by polarized

FCS that stress the accuracy of the previously determined rotational (and newly determined

translational) diffusion coefficients from NMR. The approved data on αB-crystallin and

BSA will be compared to the results on the LYZ solutions. SAXS measurements on all three

protein solutions reflect pronounced differences in the inter-protein interactions among

the samples, and are in line with the findings on the protein Brownian motion.

From a combined analysis of the data, a clear, comprehensive physical picture on the

Brownian motion of concentrated protein solutions emerges. Intermolecular charge-charge

interactions will be identified to significantly retard rotational diffusion, accompanied

by a large impact of electro-kinetic effects on the concentration dependence of rotational

diffusion. The findings presented in the following are strongly corroborated by the study

of Liu et al. [2011].1 In their work, a shared concentration dependence of short-time and

long-time translational diffusion of LYZ monomers is depicted, with the evidence for a

dynamic molecular ordering among neighboring molecules.
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ABSTRACT: Molecular motion of biopolymers in vivo is
known to be strongly influenced by the high concentration of
organic matter inside cells, usually referred to as crowding
conditions. To elucidate the effect of intermolecular
interactions on Brownian motion of proteins, we performed
1H pulsed-field gradient NMR and fluorescence correlation
spectroscopy (FCS) experiments combined with small-angle
X-ray scattering (SAXS) and viscosity measurements for three
proteins, αB-crystalline (αBc), bovine serum albumin, and hen
egg-white lysozyme (HEWL) in aqueous solution. Our results
demonstrate that long-time translational diffusion quantita-
tively follows the expected increase of macro-viscosity upon
increasing the protein concentration in all cases, while rotational diffusion as assessed by polarized FCS and previous multi-
frequency 1H NMR relaxometry experiments reveals protein-specific behavior spanning the full range between the limiting cases
of full decoupling from (αBc) and full coupling to (HEWL) the macro-viscosity. SAXS was used to study the interactions
between the proteins in solution, whereby it is shown that the three cases cover the range between a weakly interacting hard-
sphere system (αBc) and screened Coulomb repulsion combined with short-range attraction (HEWL). Our results, as well as
insights from the recent literature, suggest that the unusual rotational−translational coupling may be due to anisotropic
interactions originating from hydrodynamic shape effects combined with high charge and possibly a patchy charge distribution.

■ INTRODUCTION

Inside cells, macromolecules occupy 20−40% of the
cytoplasmic volume,1,2 providing an environment in which
the mean distance between neighboring particles is similar to
their size. Highly concentrated solutions of proteins and other
organic molecules mimicking the cell interior are usually
referred to as crowded environment.3−5 Crowding affects many
aspects of cellular function and organization,6,7 including
biochemical reactions, enhanced protein refolding rates, and
the stabilization or destabilization of the compact folded
states.8−11 In particular, crowding sensitively affects in vivo
molecular motion,12 where protein Brownian dynamics is
rather complex due to the usually non-spherical shape of the
globule and its complex non-symmetric electrostatic inter-
actions.
The Brownian dynamics of concentrated particle suspensions

can be quantitatively described by mean-field models that
depend only on the overall volume fraction ϕ of the dispersed
particles. This leads to the generalized Stokes−Einstein (GSE)
and generalized Stokes−Einstein−Debye (GSED) relationships
for the long-time translational diffusion coefficient DL and the
rotational correlation time τr, respectively:
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where RH and kBT denote the hydrodynamic radius and the
thermal energy, respectively. For the generalized forms, the
solvent viscosity η0 is merely replaced by the macroscopic
dispersion viscosity η(ϕ); for a critical discussion see ref 13.
Such a treatment implies that a macromolecular solute is
surrounded by an effective, continuous mediuma situation
that is, at first glance, violated under crowding conditions.
However, it is well established that the GSE relation for
translational diffusion, eq 1, holds for concentrated hard-sphere
(HS)14−16 and even soft colloid systems,17 but does not
necessarily hold for charge-stabilized colloids.13,15 Crowded
proteins represent, in general, a case in-between these limiting
situations.
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The validity of the GSED relationship, eq 2, has not yet
unambiguously been assessed for proteins. In the presence of
neighboring particles, rotational diffusion depends on the
particle shape18 and on intermolecular electrostatic inter-
actions19 that are, concerning proteins, usually of rather
complex nature due to a non-symmetric charge distribution
within the protein. Despite the high interest in crowding effects
for understanding in vivo behavior of proteins, the effect on
Brownian dynamics remains little studied and controversial.
Notably, recent combined studies of translational and rotational
diffusion of proteins contradict each other with regards to the
effect of crowding: it remains unclear whether rotational
diffusion becomes less retarded20 than translational diffusion of
the protein, or vice versa.21 Thus, assessing the potential
applicability of both the GSE and GSED relationships is of high
relevance to ultimately link microscopic observables with
biological function.
Recently we have undertaken a detailed nuclear magnetic

resonance (NMR) study of the Brownian dynamics of the eye-
lens protein αB-crystallin (αBc) over a wide range of
concentrations.22 We found a pronounced decoupling between
translational and rotational diffusion: while the slow-down of
translational diffusion upon increasing the protein concen-
tration perfectly matched the increase in macro-viscosity,
rotational diffusion was almost unaffected. This effect can be
explained in terms of a “caging” of the probed molecule by
surrounding ones,23−25 and is generally linked to the
phenomenon of the colloidal glass transition.26−28 Indeed, a
HS-like glass transition in eye-lens α-crystallin solutions was
shown recently.29 Notably, the stable αBc assembly has a rather
symmetric, quasi-spherical shape30 as it consists of several
symmetrically arranged monomers,30 such that it resembles an
almost perfect hard-sphere particle,31 while other proteins may
not. Thus, the behavior of αBc can hardly be taken as universal.
In the present work, we extend our studies by two other

proteins, bovine serum albumin (BSA) and hen egg white
lysozyme (HEWL). We show that the coupling or decoupling
of rotational and long-time translational diffusion under
crowding conditions is protein-specific and appears to be
related to the specific type of interactions between neighboring
proteins.
Protein molecular mobility is characterized here by both

NMR spectroscopic measurements of translational and rota-
tional22,32 diffusion and independent measurements of the same
quantities by polarized fluorescence correlation spectroscopy
(FCS). These data are complemented by measurements of the
macroscopic viscosity and the intermolecular interactions by
capillary rheology and small-angle X-ray scattering (SAXS),
respectively. Short-time translational diffusion coefficients from
neutron-scattering literature data33 are also taken into account.
The combined results provide a comprehensive picture on the
Brownian dynamics of proteins under “self-crowding” con-
ditions.

■ MATERIALS AND METHODS
Samples. Native α-crystallin is a spherical assembly of two

homologous proteins, αA-crystallin (αAc) and αBc, each of a
monomer molecular mass of ∼20 kDa. The α-crystallin complex has
a molecular mass distribution from 500 to 1000 kDa, with the average
mass around 800 kDa. Subunit exchange occurs on the time scale of
minutes34 and is much slower than the time scale of our experiments.
Here, we rely on our previous data reporting on pure human αBc in
buffer solution. In fact, pure αBc has very similar properties to the

mixture of αAc and αBc. For details, also concerning recombinant αBc
purification, see ref 22.

HEWL from chicken egg white and fatty acid-free BSA were
obtained from Sigma-Aldrich (product numbers 62970 and A7030,
respectively) as lyophilized powders and dissolved in D2O to keep the
water NMR signal low. Via lyophilizing and dissolving the protein
solution once again in D2O, residual water proteins were further
reduced. No buffer was added to ensure almost unscreened
electrostatic interactions. The pD obtained was pD 3.8 for HEWL
and pD 7.0 for BSA (isoelectric points of pH 11.35 and pH 4.7,
respectively). No significant pD changes (more than 0.1−0.2) were
observed upon varying the protein concentration. Under these
conditions, HEWL (14.4 kDa) is a strongly charged monomeric
protein32 soluble up to high concentrations. BSA consists of
monomers (66.4 kDa) and about 50% long-time stable oligomers of
different sizes.32,35

Experiments. Translational diffusion coefficients were determined
using a Bruker Avance II spectrometer with a 1H resonance frequency
of 400 MHz, using a Diff60 probehead. Pulsed field gradient (PFG)
NMR diffusion decays were obtained by use of the stimulated echo
technique applying bipolar gradient pulses, and were fitted by

γ δ δ= − Δ −A g A g D( ) (0) exp( ( /3))L2 2 2
(3)

in which A(g) is the (integral) signal intensity in dependence of the
gradient strength g, and γ is the 1H gyromagnetic ratio. δ and Δ denote
the fixed gradient pulse duration and diffusion time, respectively.
Exemplary PFG NMR diffusion decays for αBc, BSA, and HEWL are
shown in ref 22 and the Supporting Information (SI1); data for BSA
and HEWL were measured within this work. Translational protein
diffusion as characterized by PFG NMR relies on diffusion times of a
few tens of milliseconds, thus providing translational displacements in
the μm range. Hence, PFG NMR probes protein translational diffusion
in the long-time limit.

NMR data for rotational diffusion rely on longitudinal relaxation
rates (R1) measured on a field-cycling instrument and/or rotating-
frame (R1ρ) and transverse (R2) relaxation rate measurements of the
integral 1H signal. The derived rotational correlation times are taken
from our previous publications; see refs 22 and 32.

Rotational correlation times τr and translational diffusion times τD
were also determined by polarized FCS with alternating orthogonal,
linearly polarized excitation. We used a home-built setup similar to the
one described in ref 36; see SI2 for details on the setup, sample
preparation, and data processing. Polarized FCS probes rotations of
the transition dipole moment and relies on the use of linearly polarized
excitation of protein-bound dyes and separate detection of the two
orthogonal emission components on a single-molecule basis. The two
signals of the fluorescence components that are collinear to the
excitation pulses are then cross-correlated, yielding a time correlation
function; see Figure 1. Its initial rise (exponential in nature) encodes
τr, while its long-time decay encodes τD, the time needed by the
molecule to leave again the detection volume. For the latter, due to the
well-known issues with focal volume calibration, we refrained from
converting it into absolute values for DL.

Figure 1. Normalized cross-correlation functions Gn(τ) from polarized
FCS with alternating orthogonal, linearly polarized excitation for BSA
at two concentrations, including fits to obtain τr (solid red lines) and
τD (dashed blue lines).
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Steady-shear viscosities were measured at a shear rate of 1000 or
2000 s−1 using the microfluid viscometer m-VROC (Rheosense Inc.,
CA). Upon decreasing the shear rate to 100 s−1, the signal-to-noise
ratio decreased, yet no effect on the viscosity measured was found.
Despite the rather high shear rates, the measurements still provide the
macro-viscosity.
SAXS measurements were performed at 20 °C using an X-ray

generator of rotating anode type with Cu target from Rigaku, operated
at 2.4 kW, and a 2D gas detector. Generally, the SAXS signal I(q) can
be written as a product of the form factor F(q) and the structure factor
S(q); I(q) = F(q)S(q). The form factor contains information regarding
the 3D shape of the scattering particles and was determined at low
concentrations (0.5−2 vol%) and electrostatic screening conditions.
The structure factor does not depend on the shape of the particles but
contains the inter-particle interactions, and is determined at different
protein concentrations of BSA, HEWL, and αBc by S(q) =
I(q)/I0(q)·c0/c. For details, see SI3.

■ RESULTS

Figure 2 presents the temperature dependence of long-time
translational diffusion (a) and viscosity (b). For both cases and
all proteins, we observe activation energies (EA) close to 20
kJ/mol that increase only slightly with concentration, indicating
that both quantities are largely governed by the solvent
viscosity (water). This important result also indicates that
transient or crowding-induced binding among the proteins is of
little relevance, as such an effect would lead to a significantly
increased apparent EA for translational diffusion.37 At higher
concentration, however, HEWL exhibits non-Arrhenius
(Vogel−Fulcher-like) behavior, reflecting increased inter-
particle interactions.

The data for rotational diffusion from multi-frequency
relaxometry published in our previous publications22,32 show
the same trends in EA as discussed above for translational
diffusion and viscosity. A detailed comparison of all quantities is
deferred to the Discussion section. It should just be noted that
the molecular tumbling times τr, as reported in ref 22 and the
Supporting Information of ref 32, are subject to a potentially
large systematic error when neglecting the, at higher
concentrations, increasingly nonexponential tailed character of
the tumbling correlation function (TCF) in the NMR
relaxation data analysis. We have so far used an ad-hoc
phenomenological approach, representing the unknown com-
plex TCF as a superposition of two exponentials, C2exp(t), with
a minority component featuring a much slower decay time
constant τs and comparably low amplitude as. In order to assess
the influence of this “slow tail” on the reported rotational
correlation time, and to enable a comparison with the value
from FCS, we also consider an apparent correlation time
defined as the inverse of the initial slope of the fitted apparent
TCF:
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It is important to note that τr from FCS, due to the restriction
of the exponential fit to the initial time range of the FCS cross-
correlation function Gn(τ), provides the same quantity as given
by eq 4.
Figure 3 compares τr,ini with τr (the apparent primary

tumbling time) determined by both NMR and FCS. Despite its
large influence on the NMR data analysis, the apparent “slow
tail” is thus demonstrated to have a nearly negligible influence
on τr,ini in the studied concentration range. Additional
uncertainty arises from the non-spherical shape of the protein,38

but as shown in SI4, considering tensorial rotational diffusion
has little influence on the fitted absolute value of τr and its
concentration dependence. In view of the potentially large
uncertainties related to a complex and not necessarily multi-
exponential overall correlation function,39,40 the coincidence
between NMR and FCS data, as well as the agreement with the
values estimated on the basis of RH from translational diffusion

Figure 2. Temperature dependence of long-time translational diffusion
(a) and viscosity (b) for HEWL, BSA, and αBc. Black dashed lines
indicate the slope corresponding to EA = 20 kJ/mol. For HEWL
translational diffusion, only the high-temperature region was used to
estimate EA as plotted in the lower panel in (a). The αBc viscosity data
were already published in ref 22.

Figure 3. Comparison of tumbling times determined by NMR
relaxometry (τr,ini and τr; the symbol size reflects the experimental
uncertainty) and FCS for the three proteins. The solid lines indicate
approximate dilute-limit values calculated from eq 2 using RH
calculated from eq 1, using DL from PFG NMR at the lowest
concentrations. Within each diagram a visual presentation of the
protein (not to scale) is shown based upon Protein Data Bank
structures (PDB IDs 2YGD, 4F5S, and 1LYZ).
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in the most dilute cases, represents a relevant finding. Note that
a (possibly non-exponential) long-time tail of the TCF would
contribute to the FCS cross-correlation function at inter-
mediate times, but is not reliably detectable due to its low
amplitude and additional contributions from triplet dynamics
and the onset of translational diffusion (see Figure 1).
The deviation of τr from NMR and FCS for αBc can be

explained by the polydispersity of this protein, which is taken
into account in different ways in NMR and FCS experiments;
see SI5. This deviation is relevant mainly for dilute-limit data
and does not challenge any conclusions on crowding effects. As
to the latter, from the data in the given semi-logarithmic
representation, we mainly take that the relative increase of τr(,ini)
with concentration differs significantly among the samples, as
analyzed further below.
In order to characterize and compare directly the nature of

the inter-particle interactions, we have measured SAXS data for
the three proteins under study, see Figure 4 and SI3. This
information is of course subject to the limitation that an
isotropic average is obtained. The structure factors exhibit
qualitative differences. They suggest that αBc assemblies behave

like hard spheres, while BSA and HEWL are dominated by
Coulomb interactions. In the latter case, short-range attractive
interactions are to be considered as well. Details on the
corresponding analyses, and the concentration effects on the
structure factors, will be discussed in the next section.

■ DISCUSSION

Long-Time Translational Diffusion Scales with Macro-
scopic Viscosity. For a direct comparison of the concen-
tration dependence of viscosity and translational and rotational
diffusion in one and the same plot, we compare inverse reduced
diffusion coefficients (DL/D0

L)−1, reduced tumbling or transla-
tional diffusion times (τr/D/τr/D,0), and normalized viscosities
(η/η0) at 20 °C, all referred to as retardation factor r. In this
way, Figure 5 shows r with increasing extent of crowding (see
SI6 for absolute values) and presents the central result of this
work. Note in particular that the slope of the data is
independent of the chosen reference concentration, as the
retardation factors are plotted on a semi-logarithmic scale. As
seen from Figure 5, for all cases the reduced long-time
translational self-diffusion coefficients match the increase of
viscosity with concentration, i.e., DL (ϕ)/D0

L = η0/η(ϕ). This
demonstrates the applicability of the GSE relation, eq 1.
In Figure 5, the steric volume fraction was defined as ϕ = cϑ,

where ϑ is the specific volume of the protein (ϑ = 1.7 mL/g,41

0.735 mL/g,33 and 0.702 mL/g42 for αBc, BSA, and HEWL,
respectively). See SI7 for the actual data. The large specific
volume for αBc (i.e., low density) results from its high
molecular weight combined with the deviation of most
“globular” proteins from compact-globule scaling: V ∝ M1.2

rather than V ∝ M1.22,43

The applicability of the GSE equation as observed in the
present three cases is in full accordance with established
colloid-science concepts: during translational diffusion in the
long-time limit, the particle’s trajectory averages over many
different configurations of its local surrounding, which allows
for a description of the inhomogeneous environment acting in
terms of an effective medium of (zero-shear) viscosity η(ϕ).13

Figure 4. Protein interaction strength as assessed by SAXS structure
factors for a volume fraction of ϕ = 10%. The fits to hard-sphere (HS),
screened Coulomb (SC), and SC plus short-range attraction (SC+A)
models for αBc, BSA, and HEWL, respectively, are discussed in the
next section.

Figure 5. Retardation of long-time translation (circles) and rotation (triangles) as compared to viscosity (squares) in dependence of the protein
concentration c. The retardation factors are the respective measured quantities normalized against their low-concentration limits. For NMR, they are
normalized to an extrapolated value (see SI6), while for FCS we have experimental results at virtually zero (nM) concentration. If not indicated by
error bars, experimental uncertainties are of the order of or smaller than the symbol size. Short-time translational diffusion data observed for BSA by
neutron scattering (stars) are reproduced from ref 33. Data of αBc and all NMR rotational diffusion data are taken from our previous
publications.22,32 The solid lines correspond to predictions of long-time translational diffusion, eq 5, and are based upon an effective HS volume
fraction, ϕHS = k ϕ (k = 1, 2.1, and 1.5 for αBc, BSA, and HEWL, respectively). The dashed lines are HS predictions for rotational diffusion, eq 6,
using the same rescaling factor k as obtained for translational diffusion.
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In the literature, both accordance21,44 and mismatch20,21

between translational diffusion and viscosity were reported. It is
important to note that, in studies reporting on a mismatch,
tracer and crowding agent were different proteins, or even
synthetic polymer crowders (Ficoll, polyethylene glycol) were
used. In such studies, translational diffusion measurements
solely report on the tracer species, whereas viscosity measure-
ments are strongly dominated by the specific interactions
among the crowder molecules due to their much higher volume
fraction. For diffusion of the tracer proteins mixed with other
proteins, transient binding may be important.37

Quantitatively, the slow-down of long-time translational
diffusion has been addressed via HS models,45 resulting in
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Proteins are subject to intermolecular interactions beyond
the pure HS potential, in particular through electrostatic
interactions. However, the size of the protein can be re-adjusted
by use of an ef fective HS radius, corresponding to an effective
HS volume fraction ϕHS = k ϕ, k ≥ 1. Fits to eq 5 shown in
Figure 5 correspond to k = 1, k = 2.1, and k = 1.5 for αBc, BSA,
and HEWL, respectively. Note that k is the only adjustable
parameter; k = 1 proves that translational diffusion of αBc
follows HS behavior on the basis of the steric volume fraction,
indicating only rather weak inter-protein interactions.
(De)coupling of Rotational Diffusion from Long-Time

Translation and Macro-viscosity Is Protein Specific. For
the three proteins investigated, the NMR and FCS results for
the apparent rotational tumbling times τr,ini are now compared
to translational diffusion and the macro-viscosity; see again
Figure 5. Notably, the (de)coupling of rotational diffusion from
translational diffusion and viscosity is evidently protein specific.
Such behavior is in line with an increased importance of
protein-specific intermolecular interactions and shape effects
for rotational dynamics.18,46,47 Note that, in our experiments,
rotation is never observed to be more retarded than translation.
Both fluorescence spectroscopy data20 and computer

simulations47 have revealed a decoupling between translational
and rotational diffusion that is in full accordance with the αBc
results.22 In contrast, an NMR study of hetero-crowding21

reported a decoupling in the opposite sense, i.e., rotational
diffusion becoming more retarded than translational diffusion
and viscosity. Colloid theories24,25 suggest that rotation in
concentrated solutions is expected either to be less affected
than or to scale with translation, provided that the
concentration of dispersed colloids is well below the onset of
the colloidal glass transition. Likely, the unexpected finding of
ref 21 results from estimating rotational correlation times solely
from site-resolved NMR T1/T2 ratios48 at a single resonance
frequency, neglecting the non-exponential nature of the TCF.
As has been shown recently,32 such a treatment can lead to an
erroneous estimation of the tumbling correlation time,
especially at high concentrations. Systematic deviations are,
however, hardly detectable by the traditional approach.32

Coupling or decoupling of rotational from long-time
translational diffusion and the relationship of these two
quantities to the macroscopic viscosity can be generally
assigned to the presence or absence of correlated motions
among neighboring particles. For long-time diffusion, multiple
independent encounters with other particles, that may have to
rearrange cooperatively at high concentrations,13 lead to its

dependence on an average friction corresponding to the
macroscopic zero-shear viscosity η(ϕ). In contrast, on the time
scale of rotational diffusion (0.01−0.1 μs for HEWL, and ∼1 μs
for αBc) the protein’s local surrounding neither undergoes
substantial reconfiguration, nor do particle collisions appreci-
ably affect the rotational dynamics. In the absence of specific
interactions rotational diffusion is almost unhindered.38

Specifically, even a non-spherical object such as HEWL subject
to only excluded-volume effects was shown to be able to rotate
rather freely within its cage formed by the surrounding
particles.38 Still, local hydrodynamic effects33 mediated via
particle−solvent interactions retard rotational diffusion and
account for a measurable but rather weak concentration
dependence. In fact, we find that the slow-down of rotational
diffusion of αBc with increasing concentration is again
quantitatively reproduced by applying a corresponding HS
model,18,49

τ ϕ
τ
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without requiring rescaling of the effective HS volume fraction
(k = 1, as for translational diffusion); see Figure 5. Thus, the
viscosity experienced by rotation is closer to that of the solvent
than to the macroscopic viscosity, as often referred to as micro-
viscosity. More precisely, as a short-time quantity rotational
diffusion is considered to be sensitive to the viscosity
determined in the limit of high shear rates,18,50 usually denoted
as η∞(ϕ). Hence, a decoupling of rotational from long-time
translational diffusion is to be expected as long as η∞(ϕ) ≠
η(ϕ), as is well established for spherical colloids.13,18,24,25 For
αBc and, to a lesser extent, BSA, we observe such a behavior.

Rotational vs Short-Time Translational Diffusion. In
contrast to translational diffusion measured by PFG NMR,
translational diffusion as detected by neutron scattering is
measured on short length scales, corresponding to short
observation times of 0.3 ns ≤ τ ≤ 5 ns.33 The corresponding
translational root-mean-square displacements amount to about
10 Å or even less, i.e. translational dynamics is probed solely
within the cage formed by neighboring molecules. This
situation corresponds to the time scale of rotational diffusion.
Both rotational and short-time translational diffusion are
considered, as mentioned above, to be related to η∞(ϕ);
hence, one may expect a similar concentration dependence for
these two diffusion processes. To address this point, Figure 5
also presents the short-time translational diffusion data for BSA
measured by quasielastic neutron backscattering.33 Indeed, the
concentration dependence of short-time translational diffusion
coincides with our data on rotational diffusion within the
experimental uncertainty. This coincidence also reinforces that
NMR relaxometry and FCS provide reliable results regardless
of the polydispersity of the protein solution.

Role of Protein−Protein Interactions. HEWL, being a
strongly charged protein under our conditions (pD = 3.8, no
buffer), behaves qualitatively differently as compared to αBc
and BSA; its rotation is fully coupled to long-time translational
diffusion and macroscopic viscosity. Here, when using the same
effective HS volume fraction as for translational diffusion, the
hard-sphere model, eq 6, clearly fails in accounting for the
concentration dependence of rotational diffusion (Figure 5).
Instead, approaching the experimental data requires a rescaling
as large as k = 3.7 (compared to k = 1.5 for translational
diffusion). Moreover, HS modeling intrinsically predicts a
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decoupling of rotational from long-time translational diffusion
under crowding conditions, see above. Thus, with regard to the
same concentration dependence of long-time translational and
rotational diffusion, effective-sphere behavior cannot even
qualitatively describe the HEWL experimental data. Our
finding also stands in stark contrast to results of Brownian
dynamics simulations of crowded HEWL solutions when shape
effects and only excluded-volume interactions are considered.38

Consequently, specific interactions must be of major
importance and evidently lead to a correlation of the tumbling
of a single HEWL molecule with the dynamics of its
surroundings.
Our SAXS data (Figure 4) provide direct evidence of the

different nature of the interactions present in the three protein
solutions studied. A qualitative but easily assessed piece of
information is the concentration dependence of the low-q
maximum of the structure factor, qmax (Figure 6). For a simple
HS liquid such as αBc,29 the maximum of the structure factor
does not scale with the mean center-to-center distance of the
particles, leading to a constant qmax. In contrast, for long-range
Coulomb repulsion particles tend to maximize their inter-
particle distances. Then, qmax can be related to the inverse inter-
particle distance by qmax = 2π/Rcc and scales as ∼ϕ1/3, as is
observed for both HEWL and BSA.
Qualitative differences in the charge−charge interactions for

our three samples are further documented by the SAXS
structure factors (Figure 4). For αBc, again, the HS behavior is
supported by the perfect agreement of the experimentally
derived structure factor with HS model predictions. In contrast,
the structure factor of BSA agrees with the prediction of a
screened Coulomb (SC) potential. In case of HEWL, the latter
fit still exhibits systematic deviations at small q, indicating the
presence of additional short-range attractive forces. This is
demonstrated by comparison of the experimentally derived
structure factor with the structure factor prediction of a SC
potential and a SC potential with an additional short-range
attractive Yukawa potential. The obtained ranges of about 39
and 2 Å for the long-range repulsive and short-range attractive
interactions, respectively, are consistent with literature51,52 and
match the behavior of patchy charged colloids.53,54

The different nature of intermolecular interactions in αBc,
BSA, and HEWL solutions is also corroborated by the small but

significant differences in the temperature dependence of
viscosity and long-time translational diffusion shown in Figure
2. The remarkable non-Arrhenius behavior and the somewhat
increased (apparent) activation energy of HEWL at low
temperatures as compared to that of pure water reflects
significant inter-protein interactions and correlated motions,
which ultimately lead to a calorimetric glass transition at high
concentrations.
As a result of the short-range attraction, HEWL has long

been discussed to form transient clusters upon increasing the
concentration.55,56 The fact that attractive interactions are
known to retard rotational diffusion beyond the limit of HS
behavior57 suggests that the phenomena may have a common
origin. Note, however, that at all HEWL concentrations, our
data on long-time translational diffusion (ms time scale) agree
with the diffusion of monomers, which is not found in systems
characterized by transient clustering.37 Further work is certainly
necessary to explore this issue.
Since the high overall charge of the HEWL monomers leads

to repulsion, this in turn leading to decoupling rather than
coupling of rotation and macro-viscosity in the case of isotropic
spheres,57 we suggest that the behavior of HEWL may be
related to either a non-uniform charge distribution or charge-
enhanced hydrodynamic effects combined with shape aniso-
tropy, to be discussed below. Note that electrostatic multipole
interactions and alignment effects give rise to net attractive
interactions,53 providing a rationale for the short-range
attraction discussed above.
The quantitative understanding of anisotropic interactions

between “patchy” charged colloids as a suitable model for
proteins is of substantial current interest,58 yet recent reports
only focus on static structural and thermodynamic proper-
ties,53,54,59 in particular protein solution-phase behavior.60−63

We are so far not aware of any theoretical assessment of
tumbling motion in such cases. The only experimental
observation of rotational−translational coupling in a colloidal
system was recently made in a suspension of homogeneously
charged platelets.64 Also in this case, effective-sphere models
failed to explain the observation, and it was attributed to
electro-hydrodynamic coupling effects.
Additional support of our hypothesis is provided by the

increasingly non-exponential, tailed nature of the TCF as
detected by NMR relaxometry.19,32 A similar phenomenon has
been described even for spherical colloids at high concen-
trations,18,65 where it is most likely due to local concentration
fluctuations. As mentioned under Results, a “slow tail” was
modeled empirically by a second exponential component with a
slower isotropization time τs and (small) amplitude as. We
stress that our previous interpretation of as in terms of a
“model-free” order parameter Srot

2 should be considered critical,
in view of the unknown shape of the TCF.39 More detailed
analyses are certainly required to extract physically more
meaningful parameters. We just note that the parameter as
increases with concentration, as expected,32 and is significantly
larger for HEWL than for BSA. The relevance of charge for the
apparent “slow tail” was proven by NMR experiments on
HEWL solutions at different pH.19 Along this line, experi-
ments66 and simulations67 have demonstrated that HEWL
orients along the electric field exerted by another protein (α-
lactalbumin, 14 kDa).
In summary, we have discussed evidence that the observed

coupling between protein rotational and translational diffusion
(and also macroscopic viscosity) may be explained by shape-

Figure 6. Protein interactions as assessed by SAXS experiments. The
plotted inverse maximum positions of the structure factor (2π/qmax) in
dependence of the volume fraction ϕ are expected to decrease
according to a power law for strong repulsive systems (qmax

−1 ∝ ϕ−1/3,
solid lines; BSA at ϕ = 1% was excluded in the fit). The value of 2π/
qmax then relates to the average center to center distance between first
neighbors. However, in case of screened, hard-sphere-like particles the
concentration dependence of 2π/qmax is strongly reduced (the dashed
line gives the prediction for spheres with R = 58 Å).

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.6b06615
J. Am. Chem. Soc. 2016, 138, 10365−10372

10370



and charge-related anisotropic protein−protein interactions,
possibly combined with specific hydrodynamic coupling effects.
With this, our results emphasize the importance of a prudent
choice of the crowding agent in order to mimic in vivo
conditions. Macromolecular crowding by flexible, possibly
branched random-coil polymers such as Ficoll or polyethylene
glycol results in a physically different situation compared to
crowding by unevenly charged globular proteins.11,68,69 At high
concentrations, the random coils of flexible-polymer crowders
interpenetrate, forming an entangled medium that is better
described by established polymer physics concepts rather than
colloid concepts based on excluded volume only.68

■ CONCLUSIONS

Upon increasing the concentration of globular proteins of
widely different size and interactions, PFG NMR and FCS
results on translational diffusion measured on a millisecond
time scale are consistent and exhibit a scaling with the macro-
viscosity. Such behavior confirms the wide applicability of the
generalized Stokes−Einstein relation for both mono- and
polydisperse protein solutions.
In contrast, rotational diffusion, as assessed complementarily

by NMR relaxometry and polarized FCS, is a short-time
quantity, which is sensitive to the viscosity of the micro-
environment. In case of weakly interacting, near-isotropic
particles it is close to the viscosity of pure solvent, with only
small corrections due to local hydrodynamics. However, a non-
spherical shape and/or specific anisotropic interactions lead to
a correlation between the rotations of neighboring proteins,
coupling the tumbling motion to the macroscopic zero-shear
viscosity.
We have found that the applicability of either scenario is

protein-specific and that the whole range between these
limiting cases known in colloid science is covered: our results
reflect both full coupling and strong decoupling between
rotational and translational diffusion (HEWL and αBc,
respectively), as well as an intermediate case (BSA). SAXS
measurements reflecting inter-particle interactions and previous
NMR data19,32 emphasize the relevance of charge effects,
combined with hydrodynamic coupling and transient aniso-
tropy arising from a complex surface charge distribution and/or
a non-spherical shape. This view is supported by patchy charge
models that emphasize the relevance of mutual alignment
effects.53,54,70

Theoretical assessments of the tumbling motion of
concentrated patchy charged colloids and especially proteins
are so far not available, but we hope that our work provides a
stimulus to develop a more complete physical understanding.
This is also important for future NMR studies, in particular of
crowded proteins, where the non-exponential character of the
tumbling correlation function (TCF) with its apparent “slow
tail”, which likely arises from anisotropic protein−protein
interactions, challenges established data analysis models.32

Precise knowledge of the TCF may enable the development
of physically well motivated and thus precise approaches.39,40,71

Such endeavors will likely benefit from the complementarity of
NMR and FCS results presented herein.
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Wittenberg) for providing access to the SAXS equipment and
for helpful discussions. The authors are indebted to the
Deutsche Forschungsgemeinschaft (DFG, SFB-TRR 102
project A08) for funding this work.

■ REFERENCES
(1) Zimmerman, S. B.; Trach, S. O. J. Mol. Biol. 1991, 222, 599.
(2) Medalia, O.; Weber, I.; Frangakis, A. S.; Nicastro, D.; Gerisch, G.;
Baumeister, W. Science 2002, 298, 1209.
(3) Ellis, R. J. Trends Biochem. Sci. 2001, 26, 597.
(4) Ellis, R. J. Curr. Opin. Struct. Biol. 2001, 11, 114.
(5) Ellis, R. J.; Minton, A. P. Nature 2003, 425, 27.
(6) Zhou, H. X.; Rivas, G. N.; Minton, A. P. Annu. Rev. Biophys. 2008,
37, 375.
(7) Klumpp, S.; Scott, M.; Pedersen, S.; Hwa, T. Proc. Natl. Acad. Sci.
U. S. A. 2013, 110, 16754.
(8) Cheung, M. S.; Klimov, D.; Thirumalai, D. Proc. Natl. Acad. Sci.
U. S. A. 2005, 102, 4753.
(9) Miklos, A. C.; Sarkar, M.; Wang, Y.; Pielak, G. J. J. Am. Chem. Soc.
2011, 133, 7116.
(10) Senske, M.; Törk, L.; Born, B.; Havenith, M.; Herrmann, C.;
Ebbinghaus, S. J. Am. Chem. Soc. 2014, 136, 9036.
(11) Danielsson, J.; Mu, X.; Lang, L.; Wang, H.; Binolfi, A.; Theillet,
F.-X.; Bekei, B.; Logan, D. T.; Selenko, P.; Wennerström, H.;
Oliveberg, M. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 12402.
(12) Ando, T.; Skolnick, J. Proc. Natl. Acad. Sci. U. S. A. 2010, 107,
18457.
(13) Koenderink, G. H.; Philipse, A. P. Langmuir 2000, 16, 5631.
(14) Segre, P. N.; Meeker, S. P.; Pusey, P. N.; Poon, W. C. K. Phys.
Rev. Lett. 1995, 75, 958.
(15) Banchio, A. J.; Nag̈ele, G.; Bergenholtz, J. J. Chem. Phys. 1999,
111, 8721.
(16) Banchio, A. J.; Bergenholtz, J.; Nag̈ele, G. Phys. Rev. Lett. 1999,
82, 1792.
(17) Gupta, S.; Stellbrink, J.; Zaccarelli, E.; Likos, C. N.; Camargo,
M.; Holmqvist, P.; Allgaier, J.; Willner, L.; Richter, D. Phys. Rev. Lett.
2015, 115, 128302.
(18) Koenderink, G. H.; Zhang, H.; Aarts, D. G. A. L.; Lettinga, M.
P.; Philipse, A. P.; Nag̈ele, G. Faraday Discuss. 2003, 123, 335.
(19) Krushelnitsky, A. Phys. Chem. Chem. Phys. 2006, 8, 2117.
(20) Zorrilla, S.; Hink, M. A.; Visser, A.; Lillo, M. P. Biophys. Chem.
2007, 125, 298.
(21) Wang, Y.; Li, C.; Pielak, G. J. J. Am. Chem. Soc. 2010, 132, 9392.
(22) Roos, M.; Link, S.; Balbach, J.; Krushelnitsky, A.; Saalwac̈hter, K.
Biophys. J. 2015, 108, 98.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.6b06615
J. Am. Chem. Soc. 2016, 138, 10365−10372

10371



(23) Doliwa, B.; Heuer, A. Phys. Rev. Lett. 1998, 80, 4915.
(24) Kim, M.; Anthony, S. M.; Bae, S. C.; Granick, S. J. Chem. Phys.
2011, 135, 054905.
(25) Edmond, K. V.; Elsesser, M. T.; Hunter, G. L.; Pine, D. J.;
Weeks, E. R. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 17891.
(26) Pusey, P. N.; van Megen, W. Nature 1986, 320, 340−342.
(27) Pusey, P. N.; van Megen, W. Phys. Rev. Lett. 1987, 59, 2083.
(28) Pusey, P. N. J. Phys.: Condens. Matter 2008, 20, 494202.
(29) Foffi, G.; Savin, G.; Bucciarelli, S.; Dorsaz, N.; Thurston, G. M.;
Stradner, A.; Schurtenberger, P. Proc. Natl. Acad. Sci. U. S. A. 2014,
111, 16748.
(30) Peschek, J.; Braun, N.; Franzmann, T. M.; Georgalis, Y.;
Haslbeck, M.; Weinkauf, S.; Buchner, J. Proc. Natl. Acad. Sci. U. S. A.
2009, 106, 13272.
(31) Licinio, P.; Delaye, M. J. Colloid Interface Sci. 1988, 123, 105.
(32) Roos, M.; Hofmann, M.; Link, S.; Ott, M.; Balbach, J.; Rössler,
E.; Saalwac̈hter, K.; Krushelnitsky, A. J. Biomol. NMR 2015, 63, 403.
(33) Roosen-Runge, F.; Hennig, M.; Zhang, F.; Jacobs, R. M. J.;
Sztucki, M.; Schober, H.; Seydel, T.; Schreiber, F. Proc. Natl. Acad. Sci.
U. S. A. 2011, 108, 11815.
(34) Bova, M. P.; Ding, L.-L.; Fung, B. K. K.; Horwitz, J. J. Biol.
Chem. 1997, 272, 29511.
(35) Squire, P. G.; Moser, P.; O’Konski, C. T. Biochemistry 1968, 7,
4261.
(36) Loman, A.; Gregor, I.; Stutz, C.; Mund, M.; Enderlein, J.
Photochem. Photobiol. Sci. 2010, 9, 627.
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4.4. Transient binding accounts for apparent violation of the generalized
Stokes–Einstein relation in crowded protein solutions

In the previous article anisotropic interactions arising from shape and/or charge effects

were identified as a critical factor for the behavior of protein rotational diffusion under

crowding conditions. Moreover, long-time translational diffusion has been shown to follow

the same concentration dependence as the inverse macroscopic (zero-shear) viscosity.

The latter relationship holds in spite of different nature of the proteins in terms of size,

polydispersity and sub-ensemble effects,2 and the presence or absence of pronounced

charge effects. Effective-sphere modeling sufficiently quantifies the retardation of long-

time translational diffusion with increasing protein concentration. This aspect is further

corroborated by a study on concentrated γ-globulin for which an effective-sphere behavior

of short-time translational diffusion has been found [Grimaldo et al., 2014]. From these

insights it can be concluded that crowded protein translational diffusion resembles the

behavior of concentrated hard-sphere suspensions except for the potential necessity of a

re-scaled apparent volume fraction of the dispersed particles.

The clarity of these results stands in stark contrast to the diversity in current literature

on the same topic. As a function of the protein solution studied (synthetic crowders giving

rise to entanglement effects are not considered here), not only congruency [Wang et al.,

2010] but also a mismatch [Zorilla et al., 2007; Wang et al., 2010] of long-time translational

diffusion with the solution viscosity has been reported. Thus, one may raise the question:

What makes the difference between the protein solutions studied here and those for which

an invalidity of the GSE relationship has been obtained? Since polydispersity and sub-

ensemble effects were shown not to account for a distinct concentration dependence of long-

time translational diffusion and the macroscopic viscosity, there must be another critical

factor besides time scale effects and anisotropic, charge-related interactions that determines

the behavior of crowded protein Brownian motion. Seemingly, features accounting for

the invalidity of the GSE relationship are absent in the single-protein solutions studied so

far. Unlike the concentrated solutions of αB-crystallin, BSA and LYZ, in studies reporting

on the invalidity of the long-time GSE equation protein mixtures were investigated. Thus

it appears worthwhile to now study translational diffusion of proteins in concentrated

mixtures, and to compare these results to measurements on the same proteins in single-

protein solutions. In addition, the diffusivity of solvent and small co-solute molecules will

be addressed.

Author contributions∗∗: M.Rs. designed research; M.Re. and T.G. prepared samples; M.Re.
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Transient binding accounts for apparent violation
of the generalized Stokes–Einstein relation
in crowded protein solutions

M. Rothe,† T. Gruber, S. Gröger, J. Balbach, K. Saalwächter* and M. Roos*

The effect of high concentration, also referred to as crowding conditions, on Brownian motion is of central

relevance for the understanding of the physical, chemical and biological properties of proteins in their native

environment. Specifically, the simple inverse relationship between the translational diffusion coefficient and

the macroscopic solution viscosity as predicted by the generalized Stokes–Einstein (GSE) relation has been

the subject of many studies, yet a consensus on its applicability has not been reached. Here, we use isotope-

filtered pulsed-field gradient NMR to separately assess the mm-scale diffusivity of two proteins, BSA and an

SH3 domain, in mixtures as well as single-protein solutions, and demonstrate that transient binding can

account for an apparent violation of the GSE relation. Whereas GSE behavior applies for the single-protein

solutions, it does not hold for the protein mixtures. Transient binding behavior in the concentrated mixtures is

evidenced by calorimetric experiments and by a significantly increased apparent activation energy of diffusion.

In contrast, the temperature dependence of the viscosity, as well as of the diffusivity in single-component

solutions, is always dominated by the flow activation energy of pure water. As a practically relevant second

result, we further show that, for high protein concentrations, the diffusion of small molecules such as dioxane

or water is not generally a suitable probe for the viscosity experienced by the diffusing proteins.

Introduction

The evaluation of experimental and simulation results on trans-
lational diffusion usually relies on the Stokes–Einstein (SE)
relationship. Its applicability is in principle limited to a rela-
tively large solute, effectively a colloidal particle, experiencing
Stokes friction within a continuous effective medium – a
condition that is safely fulfilled in dilute protein solutions.
In vivo, however, organic matter is as highly concentrated as
several 100 grams of biomolecules per liter,1–3 rendering
macromolecular crowding an important aspect of molecular
processes in the living cell.4–8 Given such a high concentration
of dispersed particles, each protein is surrounded by several
others of similar size, leading to phenomena well known from
colloid science, such as cage effects9,10 and restricted motion.11–13

Such crowding effects dominate in vivo protein diffusivity12 and
cause considerably reduced diffusion rates.5,14 Given the altered
protein diffusivity in biological systems, the motion of globular
proteins has been studied in the cyto-15–19 and nucleoplasm20 as
well as in the mitochondrial matrix.21 Along these lines, in

shrunken cells with reduced cellular volume, going along with
an even higher concentration of obstacles, protein diffusivity was
shown to be more reduced as for swollen cells.15 Such findings
further stress the relevance of high biomass concentration and
excluded-volume effects for protein diffusion inside the cellular
environment. Yet, despite the increased interest in the conse-
quences of macromolecular crowding, knowledge on the effect of
crowding on protein diffusion beyond the general slow-down of
diffusion rates remains still sparse. In addition to the effect
of obstacles on molecular mobility, binding of proteins to other
proteins or cell compartments17,20 may additionally retard diffusion.

In the absence of binding events, short-time (in-cage) trans-
lational displacements are governed by local hydrodynamic
effects that depend on the pure-solvent viscosity,22 whereas
long-time translational diffusion provides sufficient averaging
over different local surroundings, combined with a multitude
of statistically independent encounters of the caged tracer
particle with other host particles. Then, the friction experienced
by tracer particles can be expected to scale with the macro-
scopic (zero-shear) solution viscosity Z(c), such that the long-
time diffusion coefficient DL may be considered to behave as
predicted by the generalized Stokes–Einstein (GSE) relation23–26

DLðcÞ ¼ kBT

6pZðcÞRH
; (1)
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where kBT denotes the thermal energy, and RH is the hydro-
dynamic (Stokes) radius of the tracer particle. Provided that
only the viscosity depends on the concentration c of the
dispersed particles but not the particle’s (apparent) hydro-
dynamic size, long-time translational diffusion coefficients
may thus be expected to follow the same concentration depen-
dence as the inverse viscosity of the same solution.

The validity of eqn (1) has been demonstrated for concentrated
monodisperse colloids23,25 as well as for colloidal mixtures26,27 and
even soft colloid systems.28 However, for charge-stabilized colloids
deviations have been noticed.24,29 For proteins under macro-
molecular crowding the applicability of the GSE relationship is
either confirmed10,30,31 or shown to be invalid,31,32 depending on
the specific proteins and crowding agents used. In a recent study,13

we have demonstrated that concentrated single-component
protein solutions follow the GSE relationship independently
of the presence or absence of time-stable oligomers, i.e. size
polydispersity. Studies of protein behavior in which crowding is
realized by open random-coil structures such as Ficoll,33,34

dextran35,36 or other (semi)flexible polymers,37,38 however, have
to be distinguished from those studying crowding by globular
proteins: at intermediate to high concentrations relevant for
crowding effects, random-coil polymers interpenetrate each
other, leading to long-range entanglement and mesh-size
effects that are of different physical nature as compared to
crowding by globular particles.39,40 Thus, in the presence of
random-coil polymers, protein diffusion is often33,36,37,41,42 but
not always34 found to be faster than predicted by the solution
viscosity, because the latter is much more affected by entanglement
effects than the local diffusivity.

Here, we investigate a protein model mixture of bovine
serum albumin (BSA) and the Src-homology 3 (SH3) domain,
and show that concentration-dependent, transient binding can
account for an apparent violation of the GSE relationship in
crowded protein solutions. The SH3 domain and BSA were
initially chosen due to their different sizes, combined with
the potential affinity of SH3 to bind to proline and arginine rich
regions like PxxP and RxxR motives43,44 (where x can be any
amino acid). Both motives are found on the surface of BSA.
These features suggest that our model mixture can be taken to
represent a typically polydisperse mixture of distinct proteins
subject to protein-specific interactions. Additionally, we provide
evidence that the diffusivity of small molecules such as dioxane
or water does not represent a reliable means to estimate
the effective viscosity of highly concentrated protein solutions,
challenging theory-based interpretations of protein (or similar
macro-solute) diffusivity.

Materials and methods
Materials

The SH3 domain of human amphiphysin II/Bin145 and BSA were
studied both as single-protein solutions and in mixtures. The
SH3 domain has a molecular weight of about 10 kDa only, and
was 13C and 15N enriched. BSA (molecular weight of 66.4 kDa)

was used in unlabeled form. In mixtures, the mass ratio of SH3
to BSA was 1 : 2, resulting in a molar ratio of SH3 to BSA of about
3 : 1. To assess potential specific binding between the two
proteins, an 1H–15N HSQC spectrum of 3 mg ml�1 SH3 was
recorded in presence and absence of BSA, the latter at a
concentration of 6 mg ml�1 and 19.8 mg ml�1, corresponding
to a molar ratio of SH3 : BSA of about 3 : 1 and 1 : 1, respectively.
For this particular sample, 225 mM sodium phosphate buffer at
pH 7.4 was used to avoid differences in the pH value between the
samples. However, comparing the 1H–15N HSQC spectra of the
SH3 domain with and without adding BSA revealed no significant
changes in the chemical shifts, indicating that no detectable
amount of time-stable SH3–BSA complexes are formed under
dilute conditions.

SH3 (Src-Homology 3) Bin1 was adopted from amphiphysin II.
For recombinant expression of SH3, the gen of the AmpII/SH3
domain was cloned into a pET14b vector; the plasmid was then
transformed into BL21(DE3) cells. Overexpression was induced
with 1 mM IPTG at OD600 0.7 before growing for three hours at
37 1C. After harvesting, the cell pellet was resuspended in 50 mM
sodium phosphate, 300 mM NaCl, 20 mM imidazol and 1 mM
DTT at pH 8.0, containing protease inhibitor (Sigma Aldrich,
product number P2714). Cells were lysed using lysozyme for
30 min, further treated in a microfluidic fluidizer and clarified
by centrifugation. The supernatant was loaded on a nickel
Sepharose column, washed with resuspension buffer and eluted
with a gradient up to 350 mM imidazol. Fractions containing SH3
were pooled and treated with thrombin to cleave the His6-tag,
where a second nickel column was used to separate cleaved from
non-cleaved SH3. After that the flow through was purified using
size exclusion (S75) chromatography, in which SH3 containing
fractions were again pooled, dialyzed for removing salt, and
then lyophilized. Blue-native PAGE depicted the presence of
SH3 monomers only.

Fatty acid-free bovine serum albumin (BSA) was received
from Sigma-Aldrich (product number A7030) as lyophilized
powder, and was dissolved in D2O without further purification.
Unpurified, commercial BSA contains about 50% permanent
oligomers that likely arise from cystein-related disulfide bonds,
see ref. 46 and also ref. 47 for evidence regarding the sample used.

In our previous studies of the Brownian dynamics of concen-
trated BSA solutions,13,47 no buffer was added to avoid screening of
electrostatic interactions among the proteins. To compare with our
previous results, the diffusion measurements presented herein
were performed under the same conditions, i.e. the proteins
were dissolved in pure D2O. With increasing concentration of
the BSA–SH3 mixture, only a slight shift of the pD was observed
(6.0 at lowest concentration to 6.4 at highest concentration). After
the measurements of protein diffusion were completed, 1% of
dioxane was added to the samples containing the protein mixtures
for also measuring the diffusivity of small probe molecules in
presence of highly concentrated proteins.

Isotope-filtered pulsed-field gradient (PFG) NMR

Translational diffusion measurements using the pulsed-gradient
stimulated-echo (PGSTE) pulse sequence were performed on an
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Avance II spectrometer from Bruker (Karlsruhe, Germany) at
400 MHz 1H resonance frequency, equipped with a Diff60 probe-
head. The PFG NMR diffusion decays were in all cases singly
exponential within experimental precision, as confirmed by fits to

A(g) = A(0)�exp(�g2g2DLd2(D � d/3)), (2)

where A(g) is the signal intensity in dependence of the applied
gradient strength g; d = 1 ms is the duration of the pulsed
gradient, and g is the 1H gyromagnetic ratio.48 The diffusion
time D was set to 22 ms, providing mean-square displacements
(MSDs) in the range of 1 mm. Such MSDs are much larger
than the length scale of cage effects by surrounding particles,
thus providing diffusion coefficients in the long-time limit.
In mixtures of BSA and SH3, the STE for quantification of
self-diffusion was combined with an isotope filter, version (C)
in Fig. 1 of ref. 49, to selectively detect the signal of either SH3
or BSA. We used 13C-filtered 1H detection rather than 15N
isotope filtering to avoid the influence of chemical-exchange
effects of amide protons during the diffusion delay. Depending
on the chosen receiver phase in the pulse sequence, either only
protons coupled to 13C or all protons that are not coupled to 13C
nuclei are detected. As SH3 was uniformly 13C enriched, but
BSA was not, detection of 13C-bound protons provides a signal
dominated by the aliphatic protons of SH3. In contrast, if the
receiver phase is changed and only the aliphatic region of the
NMR signal is evaluated (as was also done when measuring SH3
diffusion), only 12C-bound protons will be detected, providing
an NMR signal in which the SH3 signal is absent, and solely
BSA diffusion is observed.

PFG-NMR diffusion experiments are potentially biased by T2

filtering effects. The STE pulse sequence consists of three parts:
encoding of the signal, the diffusion period, and signal decod-
ing. During the encoding and decoding periods of the experi-
ment, transverse (T2) relaxation reduces the NMR-signal

according to Að0Þ ¼
P

k

Âkð0Þ exp �t=T2;k

� �
, where T2,k and Âk

are the transverse relaxation time and the intrinsic intensity
(before T2 relaxation) of the individual protein proton sites,
respectively, and t = 2 � 3.6 ms is the overall time span of the
encoding and decoding periods of the NMR pulse sequence
during which T2 relaxation occurs. T2 relaxation times are
inversely proportional to the rotational correlation time of the
particle. Larger particles with consequently longer rotational
correlation times have – averaged over the different proton sites
of the protein – shorter transverse relaxation times T2 than
smaller particles. If T2 is comparable to or even shorter than t
(as is the case in concentrated protein solutions) and the
solution is polydisperse, the signal obtained can be biased by
monomers instead of representing the full ensemble average.
This is the case for the BSA fraction, see below and ref. 13.
Assuming a log-normal distribution of relaxation times, the
median relaxation time represents the most populated one. For
BSA and SH3 in mixture, the median relaxation time ranges
between only 0.5 ms at high concentration and low temperature,
and 5 ms at low concentration and high temperature. For
comparison, SH3 at a concentration of 15 mg ml�1 has a

temperature-dependent relaxation time ranging between 7
and 13 ms. For transverse relaxation data of concentrated
BSA, see ref. 47.

Viscosity measurements

Steady-shear viscosities were measured using the capillary
microfluid viscometer m-VROC (Rheosense, Sam Ramon, CA)
via detection of the fluid pressure gradient along the capillary,
applying a shear rate of 2000 s�1. When decreasing the shear
rate to 100 s�1, no change in viscosity was detected, yet the
signal-to-noise ratio decreased due to a lower pressure gradient
inside the capillary. To avoid a bias by isotope effects, samples
for viscosity measurements were also prepared with D2O.

Isothermal titration calorimetry

To measure the interaction between SH3 and BSA, isothermal
titration calorimetry (ITC) measurements were performed,
titrating BSA into an SH3 solution. Measurements were per-
formed on a VP-ITC calorimeter (Microcal LLC, Northampton,
MA) at 20 1C. To separate dilution effects, BSA was also titrated
into pure buffer as a reference.

Results and discussion
Single-protein solutions

In single-protein solutions, both proteins behave as predicted
from the GSE equation, eqn (1); see Fig. 1(a). Using eqn (1), the
hydrodynamic radii for SH3 and BSA are calculated to be 2.0 nm

Fig. 1 Test of the applicability of the GSE relation in concentrated solutions
of (a) only SH3 or only BSA, and (b) in mixtures of SH3 and BSA, including the
behavior of water and dioxane. At a fixed temperature, applicability of the
GSE relationship requires DLZ = const. (solid horizontal line). Note that
increased (DL

0Z0)/(DLZ) = RH,app/RH,0 suggest an increase in apparent hydro-
dynamic size. Data of pure BSA are taken from ref. 13. In part (b) error bars
were skipped for clarity; dashed lines are linear fits to indicate the trend. In
each case, the lowest concentration measured was used for normalization
(DL

0Z0).
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and 3.4 nm,13 respectively. These values are in accordance with
the predictions of 2.2 nm for SH3 using the HydroPro software50

(applied to protein data bank file 1BB9) and the known value of
3.44 nm for the BSA monomer.51 As indicated by the hydro-
dynamic size obtained, the PFG-NMR diffusion signal of BSA
provides the translational displacement of mostly the monomers
within the polydisperse (monomers and oligomers) surround-
ing.13 A very important observable is the temperature dependence
of translational diffusion and viscosity (Fig. 2): for both quantities
and for both proteins, the activation energy EA was found to be in
the range of 18–27 kJ mol�1. These values of around 20 kJ mol�1

agree well with the activation energy of the viscous flow of pure
water,52 indicating that local hydrodynamic interactions with
the solvent dominate viscosity and translational diffusion.
Somewhat enhanced activation energies at higher protein con-
centrations (e.g. BSA) suggest somewhat increased energetic
barriers for particles diffusing in a crowded environment: under
such conditions, surrounding particles have to get out of the
way of the tracer particle to allow for translational particle
rearrangements,53 and further, confined, surface-related water
fractions arise. For SH3 diffusion, the decrease of EA may result
from partial unfolding54,55 at high concentration and highest
temperatures. This effect is expected to increase the ensemble-
averaged hydrodynamic radius, and thus reduces diffusivity. The
validity of eqn (1) is in accordance with colloid science concepts23

and agrees with our study13 on single-protein solutions (lysozyme,
BSA, aB-crystallin).

SH3 and BSA in mixtures

In mixtures, the diffusion coefficients of SH3 and BSA are
different but have similar concentration dependencies (Fig. 3).
Now, however, neither BSA nor SH3 follows the prediction of the
GSE relation, see Fig. 1(b). Instead, with increasing protein

concentration an increasing value of (DLZ)�1
p RH,app is observed

at both 6 1C and 25 1C, meaning that translational diffusion is
more retarded than expected from the solution viscosity Z(c).
Thus, the apparent, concentration-dependent hydrodynamic
radius RH,app is about twice as large at high protein concentra-
tions as in dilute solution. As follows from the measurements on
single-protein solutions, neither the difference in size or shape
between the two proteins, nor the presence of permanent oligomers
(BSA) can account for this violation of the GSE relationship; see also
ref. 13.

Remember that in the long-time limit of diffusion, the tracer
particle is subject to a multitude of statistically independent
encounters with surrounding host particles, meaning that
translational diffusion is averaged over different micro-
environments. This renders long-time translational diffusion
of colloidal particles sensitive to the macroscopic viscosity.26

The deviating behavior of the protein mixture from the behavior
of both ordinary colloidal particles – that typically show GSE
behavior23,25–28 – and single-protein solutions suggests that
inter-protein interactions and/or concentration-dependent binding
are of critical importance for the mixture of BSA and SH3,
accounting for apparent hydrodynamic radii that seemingly
increase with increasing protein concentration.

Indeed, for the mixtures of SH3 and BSA, ITC reveals an
increasing protein binding tendency with increasing protein
concentration, see Fig. 4: adding BSA to SH3 results in an exo-
thermal process that becomes more pronounced with increasing
concentration of BSA until saturation is reached. This increasing
reactivity with increasing concentration indicates concentration-
induced binding. Dilution of BSA in absence of SH3 does not
reveal such an effect; besides the free energy of dilution, no
indication of an exothermal event is observed.

Considering that, at least in dilute solutions amenable to
high-resolution NMR, we were not able to detect direct indica-
tions for site-specific binding, we should also consider more
general, crowding-related reasons for protein self- and hetero-
association.56,57 Bound states generally require less space than
individual, monomeric proteins. Thus, entropic excluded-volume

Fig. 2 Temperature dependence of translational long-time diffusion
coefficients DL (left) and viscosity (right) of the single-protein solutions in
an Arrhenius plot. Numbers next to the data points give the activation
energy and fitting error in kJ mol�1 as obtained from fitting the experi-
mental data (solid lines). Protein concentrations are 10 mg ml�1 (squares),
60 mg ml�1 (circles), 110 mg ml�1 (triangles) and 160 mg ml�1 (rhombs) for
SH3, and, for BSA, 65 mg ml�1 (squares), 130 mg ml�1 (circles), 213 mg ml�1

(triangles) and 255 mg ml�1 (rhombs). Data on translational diffusion of BSA
as well as its viscosity at 213 mg ml�1 were taken from our study on single-
protein solutions.13

Fig. 3 Concentration dependence of long-time translational diffusion
coefficients DL of SH3 and BSA in mixtures. Dashed lines are exponential
fits to guide the eye. Within the experimental uncertainty, the ratio of the
diffusion coefficients (inset) stays constant but below the expected ratio of
1.7 (solid blue line in inset) as estimated from the hydrodynamic size of
2.0 nm and 3.4 nm for SH3 and BSA, respectively.
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effects can also account for increased inter-protein binding
affinity. The difference in size between SH3 and BSA combined
with the high protein concentration renders this depletion inter-
action particularly relevant. The depletion effect promotes a
clustering of the larger particles, such that the presence of SH3
may cause BSA molecules to form transient clusters. However, the
diffusivity of the smaller SH3 is more affected by the transient
binding, as seen from the ratio of the diffusion coefficients
DL(SH3) : DL(BSA), which is smaller than expected from the hydro-
dynamic radii (inset in Fig. 3). This is contrary to the expectation
based upon a depletion attraction that should only affect the
larger BSA.

Theory58 predicts that dimerization provides an energy gain
in the order of kBT in case that 10–30% of the totally available
volume is occupied by other particles. Indeed, an experimental
study59 showed that crowding stabilizes protein–protein binding
by about 1 kcal mol�1, i.e. by 1–2kBT. Given the non-specific
nature of crowding-induced complex formation combined with
its low binding energy, such complex formation can only be
considered to be transient rather than permanent.

Irrespective of the potential (non-)specificity of the BSA–SH3
interaction, it is clear that, if the lifetime of transient binding is
faster than or comparable to the experimental time scale of
diffusion (of the order of 20 ms), the trajectory of the tracer
particle will average over bound and unbound states.60 Thus, it
will provide an effective, but enlarged hydrodynamic size that
increases monotonically with the overall protein concentration.

Our observations are consistent with this picture in that mono-
exponential diffusion decays according to eqn (2) were observed
in all cases, i.e., only a single diffusion coefficient is detected.
We stress that T2-filtering effects cannot explain our observations:
as long as bound and unbound populations are exchanging on
the 20 ms timescale of the diffusion delay D, a potential T2 bias
would not affect the measured result. Note that T2 of an 1H
protein signal integrated over a broad chemical shift range is
generally non-exponential due to differences in spin–spin dipolar
couplings and differences in the local internal mobility of side
chains, such that a size polydispersity (that may be stable on the
shorter 1 ms timescale of the transverse encoding delay d) cannot
simply be judged on the basis of simple T2 decays.

The concept of crowding-induced transient binding is most
directly corroborated by the temperature dependence of trans-
lational diffusion, see Fig. 5: for both BSA and SH3, the
apparent activation energy EA of translational diffusion is
significantly increased by a factor of about 1.5 to 2 as compared
to the single-protein solutions. The apparent EA thus reflects
the thermodynamics of the binding equilibrium. As we lack
information on the specificity and stoichiometry of the binding
and the structures of the transient protein assemblies, it is not
possible to provide a more detailed analysis of the measured
values. However, the effect of the binding equilibrium, with
bound states being favored at lower temperature, is directly
supported by the fact that the deviations from the GSE prediction
are more pronounced at lower temperatures; see again Fig. 1(b).

For viscosity, in turn, the apparent activation energy matches
within the experimental precision the value found for only BSA
and only SH3. In contrast to translational diffusion, viscosity does

Fig. 4 ITC results for (a) addition of BSA to a 10 mg ml�1 SH3 solution, and
(b) dilution of BSA in PBS buffer. The dilution of BSA in absence of SH3 also
acts as a reference measurement reflecting the low contribution of the
free energy of dilution to the measurement result in (a).

Fig. 5 Temperature dependence of long-time translational diffusion
coefficients DL and viscosity Z of the mixture of BSA and SH3 at different
concentrations, plotted in Arrhenius coordinates. Solid lines are fits using
the Arrhenius law.
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not depend on hydrodynamic sizes of the individual diffusing
particles, but is determined by the overall volume fraction of all
dispersed particles. The extent to which (unspecific) binding
reduces the volume occupied by the proteins thus appears to
be reasonably small, and, as a result, the effect of oligomerization
on the apparent EA is much weaker for viscosity than for transla-
tional diffusion.

We finally stress that our general observation is in qualitative
agreement with previous work. In studies in which tracer protein
diffusion was studied in the presence of another protein species,
long-time translational diffusion was either found to be slower
than expected from viscosity,31,32 or the validity of the GSE equation
was retained.30 In contrast, for the case of crowding by globular
proteins, we are not aware of any studies reporting on protein
translational diffusion being faster than expected from the macro-
viscosity.

Diffusion of small probe molecules

Fig. 1(b) clearly demonstrates that the concentration depen-
dence of dioxane and water diffusion is qualitatively different
from that of the proteins. Thus, it is immediately clear that
small molecules are not reliable reporters on the viscosity
experienced by highly concentrated macromolecules. Instead,
the small solvent molecules diffuse faster than predicted from
the SE relation, at least with regards to the (macroscopic)
solution viscosity. Under crowding conditions, these small
probe molecules diffuse in an environment of much larger
surrounding particles, which renders the validity of the
effective-medium approach questionable with regards to esti-
mating the macroscopic dispersion viscosity. On the time-scale
of translational motion of the small probe molecules, proteins
appear as quasi-static objects that obstruct the diffusion of the
much smaller solvent molecules, which is otherwise governed
by the pure-solvent viscosity. Such a scenario is known to go
along with a linear decrease of the translational diffusion
coefficient with the volume fraction f of obstructing particles,61

DL = DL
0 (1 � bf), (3)

where b is a shape factor, and f = cy is connected to the protein
mass concentration c via the protein’s specific volume y. In our
case, the diffusion of solvent molecules is hindered by both
SH3 and BSA, such that DL = DL

0(1 � bSH3fSH3 � bBSAfBSA) =
DL

0(1� �b�yc). Here, �b = bSH3�fSH3/(fSH3 + fBSA) + bBSA�fBSA/(fSH3 +
fBSA) and �y = ySH3�cSH3/c + yBSA�cBSA/c are independent of the
overall protein concentration c = cSH3 + cBSA since the ratio of SH3
to BSA molecules is the same for all concentrations. Fig. 6
confirms the expected linear obstruction effect with protein
concentration for water and dioxane diffusion.

The linear decrease of the diffusivity of small molecule
stands in stark contrast to the (approximately) exponential
slow-down of protein diffusion with increasing protein con-
centration; cf. Fig. 3 and ref. 53, 64 and 65. Likewise, the
(macroscopic) solution viscosity commonly increases more
than linearly with protein concentration.66,67

For simple liquids, in which solute and solvent are of equal
or similar size, the validity of the SE relationship can often be

retained via introducing slip boundary conditions,68,69 i.e., the
viscous friction x in DL = kBT/x scales as x = 4pZRH rather than
the usual case of x = 6pZRH (stick boundary conditions).
However, the maximal factor of 2/3, even when taken to vary
between this value and 1 as a function of concentration, cannot
account for such a difference in the concentration dependence
of the diffusivity of solvent molecules and the macroscopic
viscosity (and protein diffusion).

For small molecules, the deviation from SE behavior is
reminiscent of neutral solutes in ionic liquids, where the
solute-to-solvent size ratio plays a key role.70–73 Despite noting
that charge–charge interactions are much more relevant for
ionic liquids as for the diffusivity of water in presence of
proteins, the deviations from SE behavior are similar in origin.
In ionic liquids, regions of locally increased charge concen-
tration exist next to regions of lower charge density, accounting
for dynamical heterogeneity.71,72 Depending on the size of the
tracer particle relative to the length scale of such heterogeneity,
the effect is either averaged out, recovering SE behavior,72 or
the neutral solute is small enough to predominately diffuse
within regions of high mobility, accounting for diffusion rates
higher than expected from the macroscopic viscosity. Although
dynamical heterogeneity is not of relevance for long-range
diffusion of water or dioxane in protein solutions, the struc-
turally inhomogeneous surroundings (large, almost immobile
proteins compared to the small solvent molecules) provide a
similar scenario as for ionic liquids: despite of the obstruction
effect mediated by the proteins, the environment probed by
small solvent particles is dominated by the solvent itself, and
contrasts with the (sterical) hindrance relevant for the proteins.
Whereas a small molecule escapes a ‘‘macromolecular cage’’
almost effortlessly, proteins are much more sensitive to macro-
molecular caging, introducing dynamic correlations on larger
scales, and thus experience a stronger retardation in diffusion
than does water or dioxane.

Fig. 6 Obstruction effect for water and dioxane as a function of the
overall protein concentration c. The diffusion coefficient of dioxane at
zero protein concentration was calculated via the Stokes–Einstein relation
using RH = 2.12 Å62 and ZD2O = 1.25 mPa s; for water the diffusion

coefficient of 2.02 � 10�9 m2 s�1 at 20 1C63 was corrected by a factor
of 1.25 to account for the different viscosity of D2O and H2O.
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This latter effect even holds with regards to the hydration
shell of the proteins: the life-time of water molecules within the
hydration shell is usually on the timescale of picoseconds,74

such that trapping of a water molecule within the hydration
shell does not significantly hinder water diffusion. Thus, small
probe molecules experience a local, solvent-related viscosity
with some obstruction by the presence of the proteins, rather
than being sensitive to the (macroscopic) dispersion viscosity.
As a result, the GSE relationship cannot be applied (see Fig. 1(b)).
Notably, this effect can already be seen at low concentrations,
although the deviation is reasonably weak. On the other extreme,
in case of a hydrated lyophilized protein powder, confinement
effects become relevant even for small molecules, and surface
effects must be taken into account.75

Protein diffusion within an entangled polymer matrix is
phenomenologically similar to diffusion of water or dioxane
under macromolecular crowding. Indeed, protein diffusion is
usually faster than predicted by the GSE relationship in the
presence of Ficoll or other unstructured polymers.33,36,37 For
globular proteins crowded by other globular proteins, size
effects are usually not that dramatic, such that protein diffusion
is well described by the macroscopic (zero-shear) viscosity,13 given
that no transient binding occurs.

Conclusions

In the absence of transient binding, long-time self-diffusion
scales with the solution viscosity. Such a behavior is expected
on the basis of established concepts in colloid science, and was
demonstrated here for single-protein solutions of the SH3
domain and BSA, the latter even having a distribution in size
and shape of the Brownian particles. In both cases, the activation
energies of translational diffusion and macro-viscosity coincide
within experimental uncertainty, being close to the activation
energy for viscous flow of pure water. In contrast, upon mixing
SH3 and BSA, translational diffusion of either species was found
to be single-component but more retarded than expected from the
solution viscosity: the hydrodynamic radius thus appeared to
increase with concentration, indicating the relevance of attractive
inter-protein interactions and concentration-dependent, transient
binding.

While specific binding sites could not be resolved in 1H–15N
HSQC NMR spectra of a necessarily rather dilute solution of
isotope-labeled SH3 in the presence of BSA, calorimetric mea-
surements did prove an exothermal reaction between SH3 and
BSA. The relevance of transient binding is most clearly corro-
borated by the observed temperature dependence of transla-
tional diffusion. In a mixture of both proteins, the apparent
activation energy increased significantly with protein concen-
tration, with values being notably larger than the again nearly
constant activation energy of the macroscopic viscosity of the
same mixture. This is in line with the fact that solution viscosity
mainly depends on the overall volume fraction of the solutes
rather than on individual particle sizes (Einstein model). The
relevance of transient binding is further supported by the fact

that the apparent increase in hydrodynamic radius with concen-
tration was found to be larger at low temperatures, at which the
binding equilibrium is shifted towards the bound state.

Moreover, we showed that translational diffusion of small
probe molecules (water, dioxane) does not allow for conclusions
on the viscosity relevant for long-time translational diffusion
of highly concentrated proteins: the local viscosity probed by
dioxane or water is in-between the pure solvent viscosity and
the macroscopic solution viscosity, and is mainly affected by
geometric obstruction effects.
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dynamics of colloidal suspensions, Phys. Rev. Lett., 1999,
82(8), 1792–1795.

26 G. H. Koenderink and A. P. Philipse, Rotational and transla-
tional self-diffusion in colloidal sphere suspensions and
the applicability of generalized Stokes-Einstein relations,
Langmuir, 2000, 16, 5631–5638.

27 W. Richtering and H. Müller, Comparison between Viscosity
and Diffusion in Monodisperse and Bimodal Colloidal
Suspensions, Langmuir, 1995, 11, 3699–3704.

28 S. Gupta, J. Stellbring, E. Zaccarelli, C. N. Likos, M. Camargo,
P. Holmqvist, J. Allgaier, L. Willner and D. Richter, Validity of

the Stokes-Einstein relation in soft colloids up to the glass
transition, Phys. Rev. Lett., 2015, 115, 128302.

29 A. Imhof, A. van Blaaderen, G. Maret, J. Mellema and
J. K. G. Dhont, A comparison between the long-time self-
diffusion and low shear viscosity of concentrated dispersions
of charged colloidal silica spheres, J. Chem. Phys., 1994, 100,
2170–2181.

30 P. Licinio and M. Delaye, Mutual and self-diffusion in
concentrated a-crystallin protein dispersion. A dynamic
light-scattering study, J. Phys., 1988, 49, 975–981.

31 Y. Wang, C. Li and G. J. Pielak, Effects of proteins on protein
diffusion, J. Am. Chem. Soc., 2010, 132(27), 9392–9397.

32 S. Zorilla, M. A. Hink, A. J. Visser and M. P. Lillo, Transla-
tional and rotational motions of proteins in a protein
crowded environment, Biophys. Chem., 2007, 125, 298–305.

33 N. A. Busch, T. Kim and V. A. Bloomfield, Tracer diffusion of
proteins in DNA Solutions. 2. Green fluorescent protein in
crowded DNA solutions, Macromolecules, 2000, 33, 5932–5937.

34 E. Dauty and A. S. Verkman, Molecular crowding reduces
to a similar extent the diffusion of small solutes and
macromolecules: measurement by fluorescence correlation
spectroscopy, J. Mol. Recognit., 2004, 17, 441–447.

35 D. Lavalette, M. A. Hink, M. Tourbez, C. Tétreau and
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5
Summary, conclusions and outlook

The key factors that determine the
Brownian motion of crowded proteins

Knowledge on the consequences of macromolecular crowding is of particular relevance for

elucidating protein behavior in the cellular milieu – a reason for which current research on

proteins increasingly pays attention to crowding effects [Ellis, 2001a,b; Ellis and Minton,

2003; Gnutt and Ebbinghaus, 2016]. Current literature results on crowded protein Brow-

nian motion are at points contradictory to each other [Zorilla et al., 2007; Li et al., 2009;

Wang et al., 2010] with the key factors accounting for such sample specificity not being

identified. Based upon NMR spin relaxation in non-dilute protein solutions, the protein

rotational auto-correlation function (RACF) has been concluded to deviate from singly

exponential behavior [Krushelnitsky, 2006], which may provide a rationale for some of

the observations. Nonetheless, data that directly resolve the non-exponential nature of

non-dilute protein rotational diffusion were missing till now.

To elucidate the effects of macromolecular crowding on protein Brownian motion,

NMR spectroscopic methods were combined with viscosity measurements. Long-time

translational self-diffusion was measured by pulsed-field gradient (PFG) NMR; insights

into protein rotational diffusion rely on NMR spin relaxation measurements. For the latter

case, field-cycling protein proton R1 data recorded in cooperation with the research group

of Ernst Rößler (University of Bayreuth) were combined with R1ρ and R2 measurements

on the same samples. By these techniques, NMR 1H spin relaxation was recorded at low

magnetic fields, which significantly increases the sensitivity to global rotational diffusion

rates. This approach [Roos et al., 2015a,b] overcame obstacles encountered in previous NMR

relaxometry studies. The accuracy of this procedure has been confirmed by independent

data from polarized fluorescence correlation spectroscopy (FCS) [Roos et al., 2016], the

latter experiments were performed and evaluated by Maria Ott. In contrast, the standard

protocol for evaluating NMR relaxation data – the R1/R2 approach – provides incorrect

results under crowding conditions [Roos et al., 2015a]. Even if the deviation of the RACF

from single-exponential behavior is weak, biased results will be obtained. The application

of the standard R1/R2 protocol should thus be restricted to highly dilute protein solutions
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5. Summary, conclusions and outlook

only. Then, inter-protein interactions are safely negligible and the RACF conforms to a

single exponential, Cr(t) � C̃rot ∝ exp(−|t| /τrot) .

The experiments were performed on the eye-lens protein αB-crystallin (αBc) that

is heavily crowded under native conditions, as well as on bovine serum albumin (BSA),

lysozyme (LYZ), and the Src-homology 3 (SH3) domain. Notably, αBc behaves as a hard-

sphere particle, i.e., there are effectively no inter-particle interactions besides steric restric-

tions [Roos et al., 2015b, 2016]. Its retardation of rotational and long-time translational

diffusion quantitatively matches the predictions by hard-sphere models [van Blaaderen

et al., 1992; Cichocki et al., 1999] even without re-scaling to an effective volume fraction.

Based upon the experimental data on translational and rotational diffusion of the

four test proteins, with complementary insights from small-angle X-ray scattering (SAXS)

experiments performed and analyzed by Maria Ott, a clear, comprehensive physical

picture of crowded protein Brownian dynamics emerged. The central results on crowded

protein Brownian motion are as follows:

(i) – The relation of translational and rotational diffusion to the macroscopic viscosity –

(a) In the absence of transient binding, long-time translational diffusion couples

to the macroscopic viscosity [Roos et al., 2016]. This relationship holds for monomeric

proteins (LYZ) as well as in presence of permanent oligomers (BSA) or in the case of a

size distribution of the protein (αBc) [Roos et al., 2015b]. Given the case of transient

binding (BSA+SH3), in contrast, the slow-down of long-time translational diffusion

with increasing protein concentration can be stronger than the accordant increase in

the macroscopic viscosity [Rothe et al., 2016].

Short-time translational diffusion is usually less affected by macromolecular

caging and concentration effects as long-time translational diffusion. This situation is

accompanied by a local viscosity that is usually lower than the macroscopic viscosity.

Such a relation has been found in the case of BSA [Roos et al., 2016] by incorporating

neutron scattering literature data [Roosen-Runge et al., 2011]. For LYZ, however, a

shared concentration dependence of short-time and long-time translational diffusion

(and hence the viscosity) has been found [Liu et al., 2011], indicating the presence of

strong protein-protein interactions.

(b) Rotational diffusion indeed can but needs not to be sensitive to the macro-

scopic viscosity. The applicable scenario is protein specific and depends on the

strength of anisotropic protein-protein interactions, including charge effects [Roos

et al., 2016]. A discussion of this issue will be given below. Whereas rotational

diffusion of the hard-sphere like protein αB-crystallin is almost unaffected by con-

centration effects, rotational diffusion of LYZ is sensitive to the macroscopic solution

viscosity and its concentration dependence.

112



(ii) – Translational vs. rotational diffusion: Coupling or Decoupling? –

(a) Rotational dynamics can be fully coupled to (LYZ) or completely decoupled

from (αBc) long-time translational diffusion, with the critical factor being the sen-

sitivity to the macro-viscosity, and hence the extent of anisotropic inter-molecular

interactions including charge effects. Intermediate behavior (BSA) may also arise

[Roos et al., 2016].

(b) Rotational diffusion in the absence of transient binding is not expected to be

more retarded than long-time translational diffusion. Consistent with this expectation,

none of the proteins for which rotational diffusion was studied showed such behavior

[Roos et al., 2016].

(c) The data on BSA obtained in this study indicate that rotational diffusion

of globular proteins is sensitive to similar viscous effects as short-time translational

diffusion detected by neutron scattering experiments [Roosen-Runge et al., 2011]. A

shared concentration dependence for both short-time quantities has been observed

[Roos et al., 2016].

(iii) – The behavior of the protein RACF in non-dilute solutions –

The non-exponential nature of the protein RACF arising from inter-protein interac-

tions has been resolved. In a minimal but sufficient model the RACF has been approx-

imated by two superimposed exponentials. In this way, a monotonous increase of the

amplitude of the “slow component” with increasing protein concentration is observed

(BSA, LYZ) [Roos et al., 2015a]. This aspect stresses the impact of protein-protein

interactions on the general behavior of the RACF and reinforces the importance to

account for its non-exponential shape under crowding conditions.

The sensitivity of rotational diffusion to the macroscopic solution viscosity as depicted

for LYZ can be generally attributed to correlated motions of neighboring particles. In the

same way, the shared concentration dependence of short and long-time translational

diffusion of this protein [Liu et al., 2011] requires pronounced inter-particle interactions,

keeping in mind that particle encounters are less relevant for local as for long-range

displacements. Consistent with such requirements, LYZ in solution has been shown to form

an intermediate range order structure, the lifetime of which is longer than but comparable

to the time span required for displacements over a distance of the size of a LYZ monomer

[Liu et al., 2011]. Such inter-molecular alignment (“dynamic clusters”) is in agreement with

so-called electro-static steering effects [Krushelnitsky, 2006; Roos et al., 2015a] and requires

anisotropic protein-protein interactions. Local ordering effects can be induced by a charge
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patchiness of the colloidal particles accompanied by short-range attractive interactions

despite the same net charge of the particles [McClurg and Zukoski, 1998]. Attractive

interactions, in turn, retard even those displacements of a colloid that take place inside

the cage formed by surrounding particles [Riest and Nägele, 2015]. This situation holds

for rotational and short-time translational diffusion. This situation is also accompanied by

electro-viscous effects originating from the somewhat retarded electro-kinetic response of

surrounding ions to movements of the charged colloid [McPhie and Nägele, 2007]. For a

colloid particle with a non-uniform charge distribution, the latter effect will not only hinder

translational displacements, but also retards the rotation of the colloid. Hydrodynamic

coupling effects can be considered to be equally relevant for particles of an anisotropic

shape. Particularly relevant in case of a strong shape anisotropy, rotational diffusion

mediates a cross-over from anisotropic translational diffusion at short times to isotropic

translational diffusion at longer times, which is accompanied by a rotation-translation

coupling [Han et al., 2006].

After having studied crowded protein Brownian motion, also the translational dif-

fusivity of small solvent molecules has been addressed. These were identified as poor

reporters for the viscosity experienced during long-time diffusion of macro-molecularly

crowded proteins: steric hindrance is much more relevant for the large proteins than for

the small co-solute or solvent particles [Rothe et al., 2016].

From the above findings and concepts it can be concluded that the key factors deter-

mining crowded protein Brownian motion are

(a) the time scale of the motion and the sensitivity to macromolecular caging effects,

(b) the presence or absence of shape- and/or charge-related anisotropic protein-protein

interactions that may mediate correlated motions of neighboring particles, and

(c) potential transient protein-protein binding.

For globular proteins crowded by the same or other globular proteins, the applicability of

the generalized Stokes-Einstein (GSE) and the generalized Stokes-Einstein-Debye (GSED)

equations for translational and rotational diffusion, respectively, depends on these factors.

For crowding caused by unstructured, entangled (bio)polymers, mesh size and long-range

topological effects have to be considered as well.
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Outlook

The results and concepts presented here may encourage further investigations on the

impact of charge effects on rotational diffusion. Further progress along these lines may

address questions regarding the extent to which electro-viscous effects are based upon

direct colloid-colloid interactions, and to which extent ions of the solvent contribute to this

effect. Molecular dynamics simulations that combine hydrodynamics with (patchy) charge

effects would be well suited for this purpose, but may request sophisticated modeling strate-

gies: hydrodynamics combined with charge effects give a physically complex situation. To

be noted, both Coulomb and hydrodynamic interactions [Bartlett et al., 2001] are long

range with an 1/r dependence between colloidal particles. Certainly, the interplay between

electro-kinetic effects and (rotational) hydrodynamics should also be studied further.

The impact of charge effects on the coupling of rotational and long-time translational

diffusion may be further elucidated by exploring the effect of electrostatic screening.

Increasing the salt concentration can cause a screening of the colloid’s charges at length

scales shorter than or comparable to the average inter-molecular distance. Then, for

a protein that features a noticeable charge patchiness (such as LYZ), a transition from

coupling to decoupling of rotational and long-time translational diffusion may occur

with increasing salt concentration. Opposed to that, increasing the number density of

dissolved ions may also increase those electro-kinetic friction effects that are mediated

by these solvent ions. In this regard, such experiments may also provide insights into

solvent-induced electro-viscous effects.

Exploring the effect of electrostatic screening on protein rotational diffusion requires

a beforehand study on the stability of the protein solution. LYZ solutions, for instance, un-

dergo phase transitions (including gelation) and aggregation with increasing concentration

of monovalent ions (e.g. via adding NaCL; see Rosenbaum et al. [1996] and Sedgwick et al.

[2005]). This behavior is different for multivalent ions (e.g. Y3+). For negatively charged

proteins and a high concentration of multivalent ions, condensation of ions at the protein

surface leads to a charge inversion of the protein–ion complex. Under such circumstances,

a reentrant phase behavior occurs: the solutions are stable for low and high salt concen-

trations, but undergo aggregation, crystallization and liquid-liquid phase separation for

intermediate concentrations of multivalent ions [Zhang et al., 2008, 2014]. Increasing the

protein concentration is accompanied by a higher salt concentration at which reentrant

phase behavior occurs [Zhang et al., 2014] – crowding studies including multivalent ions

may thus require very high salt concentrations. Notably, charge-charge interactions of the

protein with multivalent ions can be further tuned by competing non-specific effects of

monovalent salts [Jordan et al., 2014]. These effects have to be carefully considered in the

study of Brownian dynamics of concentrated LYZ solutions under the condition of strong

electrostatic screening.

* * *
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S.1. Notes on spin precession

The evolution of spin states can be described by the time-dependent Schrödinger equation,

with the Hamiltonian given by the Zeeman interaction, Ĥ = ω0Îz. Here, Îx, Îy and Îz are

spin angular momentum operators. For the time-independent Hamiltonian, the solution

of the time-dependent Schrödinger equation is given by |ψ(t)〉 = exp
(
−iω0t Îz

)
|ψ(0)〉. The

state of the spin system |ψ(t)〉 is essentially the same as in |ψ(0)〉, reflecting a stationary

solution. The exponential phase factor equals a rotation around the z-axis by an angle of

φ =ω0t, but is not a measurable quantity for a single Zeeman state such as |I ,ms〉 = |12 ,±
1
2〉:

the expectation value of the spin angular momentum contains no x/y-components, as is

seen from 〈Îx〉 = 〈Îy〉 = 0. Instead, only a mixed state such as 1√
2

(
|12 ,+

1
2〉 + |12 ,−

1
2〉

)
has a

non-vanishing x/y-component of the expectation value of the angular momentum. For this

particular example, 〈Îz〉 = 〈Îy〉 = 0 and 〈Îx〉 = 1/2~. Accounting for the above phase factor,

the mixed state gives a detectable rotation of a transverse component (precession of the

spin ensemble), whereas for a single spin from the same spin ensemble, no information on

the x/y-components can be obtained. As such, precession should not be attributed to single

spins.

S.2. Why using the arithmetically averaged relaxation rate?

In the following, the use of the arithmetically averaged relaxation rate for relaxometry data

analysis will be motivated, with additional insight into how the mean relaxation rate is

linked to the protein average internal and Brownian dynamics.

For a single spin, spin relaxation as described by an exponential relationship (cf.

eq. (3.4)) is not valid; this treatment is only applicable to an ensemble of spins. However,

each position within a protein can be found as a chemically equivalent position within
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another protein of same kind. As each protein solution contains a multitude of identical

proteins, site-specific relaxometry data analysis relying on an exponential relationship

remains applicable. The spin relaxation rate of the ith protein proton site is sensitive to the

spectral density describing the motion at this particular environment, J (i)
int,r(ω), which, with

regard to eq. (3.12), can be written as

J
(i)
int,r(ω) =

(
1− S2(i)

int

)
J

(i)
int(ω) + S2(i)

int Jr(ω) . (S.1)

Here Jr(ω) is, as before, the spectral density of Brownian tumbling, and J (i)
int is the spectral

density of internal motions of the ith protein proton site, along with its individual order

parameter S2(i)
int . For a sum of different protein sites, the sum of the individual correlation

functions matters. The Fourier transform is a linear mathematical operator; thus, the

average spectral density simply reads

〈
Jint,r(ω)

〉
=

1
N

N∑
i=1

J
(i)
int,r(ω)

�
(
1−

〈
S2

int

〉)
Jint(ω) +

〈
S2

int

〉
Jr(ω) . (S.2)

For simplicity, the multitude of different internal correlation times has been replaced here

by a single mode,

τ
(i)
int � τint ∀i = {1, ... , N }

⇒ J
(i)
int(ω) � Jint(ω) ∀i = {1, ... , N } . (S.3)

Measuring spin relaxation at low frequencies and thus low resolution, the multitude of

different internal modes is experimentally indistinguishable. Given an integral protein

protein signal, the above simplification is thus inevitable. This treatment, in turn, allows

the mean spectral density to be rewritten using an average internal order parameter,

〈
S2

int

〉
:=

1
N

N∑
i=1

S
2(i)
int . (S.4)

The average spectral density obtained in this way will be used for the later data analysis.

As for spin relaxation, a similar treatment may be applied: using

K
(i)
HH = ki

〈
KHH

〉
,

〈
KHH

〉
=

1
N

N∑
i=1

KHH , (S.5)

and accounting for the contribution of each protein proton site to the overall spin relaxation

process by the sum of the individual relaxation rates, one has
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1
N

N∑
i=1

Ri(ω) ∼ 1
N

N∑
i=1

K
(i)
HH J

(i)
int,r(ω) (S.6)

(S.1)
=

1
N

N∑
i=1

K
(i)
HH

(
1− S2(i)

int

)
J

(i)
int(ω) +

1
N

N∑
i=1

K
(i)
HHS

2(i)
int Jr(ω)

(S.5)
=

〈
KHH

〉 1
N

N∑
i=1

ki

(
1− S2(i)

int

)
J

(i)
int(ω) +

〈
KHH

〉 1
N

N∑
i=1

ki S
2(i)
int Jr(ω) (S.7)

(S.2)
�

〈
KHH

〉 {(
1−

〈
S2

int

〉
k

)
Jint(ω) +

〈
S2

int

〉
k
Jr(ω)

}
(S.1)
=

〈
KHH

〉 〈
Jint,r(ω)

〉
k

. (S.8)

Here, the identity

1
N

N∑
i=1

ki =
1
N

N∑
i=1

K
(i)
HH〈
KHH

〉 ≡ 1

has been used. As seen from eq. (S.8), the sum of relaxation rates directly relates to the mean

spectral density of motion,
〈
Jint,r(ω)

〉
k
, except for a re-scaled internal order parameter,

〈
S2

int

〉
k

:=
1
N

N∑
i=1

ki S
2(i)
int ,

〈
S2

int

〉
(for most cases) . (S.9)

As the value of the internal order parameter will not be if interest in this study, the issue

of
〈
S2

int

〉
k
,

〈
S2

int

〉
is not of relevance. Nonetheless,

〈
S2

int

〉
k

and
〈
S2

int

〉
can be considered to

have similar values.

Also note that eq. (S.7) directly relates to the arithmetic average of relaxation rates, as

may be expected when relying on a sum of relaxation rates:

〈
KHH

〉 N∑
i=1

kiN
−1

(
1− S2(i)

int

)
︸              ︷︷              ︸

pi

J
(i)
int(ω) +

〈
KHH

〉 1
N

N∑
i=1

ki S
2(i)
int︸          ︷︷          ︸

p0

Jr(ω)

∼
〈
KHH

〉 N∑
i=1

pi
R

(i)
int(ω)〈
KHH

〉 +
〈
KHH

〉
p0

Rr(ω)〈
KHH

〉
=

N∑
i=0

piR
(i)(ω) , R(0) := Rr , R(i) = R(i)

int ∀i = {1, ... , N } . (S.10)
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Combining eqs. (S.8) and (S.10), it immediately follows that

− d
dt

N∑
i=0

pi exp
(
−tR(i)(ω)

) ∣∣∣∣∣∣∣
t=0

=
N∑
i=0

piR
(i)(ω) ∼

〈
KHH

〉 〈
Jint,r(ω)

〉
k

. (S.11)

The initial slope of the NMR relaxation curve is thus shown to be directly related to the

mean spectral density
〈
Jint,r(ω)

〉
k
.

For the above consideration, the simplified relationship R(ω) ∼ KHH J(ω) has been

used, where R(0) ∼ R2, R(ω1) ∼ R1ρ (with ω1 being in the kHz regime), and R(ω0) ∼ R1 for

ω0 = |γ |B0. Accounting for this simplified relationship, not an equality has been inferred

but rather a similar scaling behavior (“∼”). Using the actual equations for homo-nuclear

spin relaxation (eqs. (3.5)-(3.7)) the physics underlying the above treatment stays the same,

with the same conclusions.

Also note that paper #2 of the results section gives an additional strong argument

for using the initial slope of the relaxation curves.

S.3. Limitations of PFG NMR in crowded protein solutions

In general, self-diffusion coefficients obtained from PFG NMR measurements are highly

reliable. In the presence of slow protein Brownian tumbling, however, bias effects may

occur: proton exchange between the protein and the solvent combined with spin polariza-

tion exchange inside the protein may lead to an overestimation of the protein diffusion

coefficient, even if the aliphatic region of the protein spectrum is evaluated. Details of

this effect are discussed below, including experimental data on this issue. The presented

concept here serves as a methodical study for addressing the limiting protein concentration

up to which this effect is of no relevance. The accordant experiments were performed at a

Larmor frequency of 400 MHz.

At those gradient strengths which substantially resolve the protein diffusion decay,

no NMR signal of the water protons remains (cf. Fig. S1). This situation enables a safe,

straightforward data evaluation despite of the presence of two diffusing species. Though, for

protein protons subject to chemical exchange with the solvent on a time scale comparable

to or faster than the diffusion delay ∆ = ∆PFG, the protein diffusion decay will be influenced

by the lack of magnetization of the solvent. Proton exchange with solvent molecules is

of particular relevance for amino groups (–NH2, –NH+
3 ). For aliphatic protein protons, in

contrast, chemical exchange with the solvent is usually negligible. Integration over the

aliphatic region of the spectrum thus appears to be safe.

Spin polarization exchange among protein protons can cause the magnetization of

aliphatic protons to not be independent from the magnetization of the amide protons; a
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Figure S1.: Exemplary PFG NMR diffusion decay
including a few data points of weak gradi-
ent strength at which the water signal is seen,
resembling a bi-exponential decay with well
separated slopes (i.e., diffusion coefficients).

magnetization exchange among different magnetization reservoirs occurs. If the period

required for spin polarization exchange between amide and aliphatic proteins is also

comparable to the diffusion time scale, amide protons in exchange with water protons act

as magnetization sinks for the aliphatic protons. Then, the diffusion decay of the aliphatic

region may be distorted. Integrating over different spectral regions of the PFG NMR

diffusion signal for αB-crystallin the slope (and hence the diffusion coefficient obtained) in

fact differs despite reflecting the diffusivity of one and the same protein. Exemplary data

on this issue are shown in the Supporting Material for paper #1.

Generally, spin polarization exchange gets more pronounced with stronger spin-spin

interactions. Any dipole-dipole coupling between solvent and protein protons is too weak

to mediate an effective polarization transfer; J-couplings are also absent in this case. For

that reason, direct spin polarization exchange can only occur among protein protons, but

not between the solvent and the protein. Magnetization can only be transferred from

the protein to the solvent (or vice versa) via mutual exchange of protons. To estimate the

relevance of combined chemical and spin polarization exchange, the following experiment

was performed:

Long-lasting pulses are narrow-banded regarding the frequencies they contain.1 This

fact can be easily understood via the Fourier transform of a rectangular function of duration

2τ , which results into a sinc function, sin(ωτ)/(ωτ). The spectral width Ωsw primarily

excited by the rectangular pulse may be defined on basis of the first zero-crossing of the

sinc function, i.e. Ωsw = π/τ (cf. Fig. S2a). As a secondary effect, R1ρ relaxation will

become the more significant the longer the pulse, ultimately causing an (almost) complete

loss of signal. As such, long-lasting pulses yield a “spectral hole burning” (cf. Fig. S2b)

that is used here to affect predominately the magnetization of aliphatic protein protons. By

irradiation on the resonance frequency of water, one would also affect the protein due to

an intrinsic overlap of protein resonances with the resonance frequency of water. Thus,

spectral hole burning was applied to the aliphatic region of the protein, and the impact

on the water signal was monitored. By inserting a variable mixing time tm in-between the

1For this reason, one usually relies on rf pulses of a few µs only, sufficient to excite the full spectrum.
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Figure S2.: The principle of spectral hole burning. Each pulse of finite length contains a dis-
tribution of frequencies around the central carrier frequency of the pulse. The longer the
pulse, the narrower the distribution of involved frequencies (a). This effect can be used
to selectively affect only part of the spectrum (b). Vertical dashed lines gives the spectral
range at which the pulse is primarily active. Note that the use of a shaped pulse allows for
a shorter pulse duration, with almost no effect on the water signal. The very long-lasting
pulse, in contrast, causes some reduction of the water signal. For a discussion of this effect,
see the text.

selective manipulation of the protein magnetization and the signal detection, the time scale

of the overall spin polarization transport from protein aliphatic protons to solvent protons

can be monitored.

Having previously saturated part of the magnetization by a selective pulse, not

only does magnetization transfer occur, but also longitudinal spin relaxation. Thus, the

experiment has to be designed in such a way that it compensates for this effect. For this

purpose, the magnetization has been stored along both +z and −z during the mixing time

tm, with separate signal detection for the two cases. The detected signal belonging to the

case that the magnetization was stored along the (−z)-axis will be referred to as M−(tm); for

storage along the (+z)-axis, it is denoted as M+(tm). Although not indicated by indices here,

M±(tm) will always be evaluated with respect to a certain component i of the sample, e.g.

the solvent peak. The pulse sequence resulting from these specifications is displayed in

Fig. S3.

For data evaluation, consider thatM(ex)
i is the relative magnetization of the component

of interest (index i) dependent on the mixing time, with 0 ≤M(ex)
i (tm) ≤ 1 ∀tm ∈ R. Here,

the case of M(ex)
i =M(ex)

w will belong to the residual water protons (HDO, H2O). The overall

behavior of the magnetization can be approximated by

M−(tm)/M∞ � 1−
(
1 +M(ex)

i (tm)
)
· r(tm) (S.12)

M+(tm)/M∞ � 1−
(
1−M(ex)

i (tm)
)
· r(tm) , (S.13)

where M∞ is the equilibrium magnetization. The factor of

r(tm) � exp(−tmR1) (S.14)
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Figure S3.: Pulse sequence for studying spin polarization exchange between aliphatic protein
and residual water protons. Duration and power level of the pulses are not to scale. The
block of the four (π/2)-pulses acts as a flip-angle deviation compensated composite pulse
serving for (±z)-storage, with φ1 =x, φ2 =y, φ3 =y, φ4 =x for (−z)-storage, and φ1 =x, φ2 =-x,
φ3 =-x, φ4 =x for (+z)-storage.

accounts for longitudinal spin relaxation that is addressed here via a single relaxation time

R1. (For a distribution of relaxation times, see below.) Obviously, eqs. (S.12) - (S.14) fulfill

the conditions

r(0) = 1 , lim
t→∞

r(tm) = 0 , (S.15)

M−(0)/M∞ = −M(ex)
i (0) , lim

t→∞
M−(tm)/M∞ = 1 , (S.16)

M+(0)/M∞ = M
(ex)
i (0) , lim

t→∞
M+(tm)/M∞ = 1 . (S.17)

Defining

∆M(tm) :=
M−(tm)
M∞

−M+(tm)
M∞

= −2M(ex)
i (tm)r(tm) , (S.18)

ΣM(tm) :=
M−(tm)
M∞

+
M+(tm)
M∞

= 2− 2r(tm) , (S.19)

it follows that
∆M(tm)

ΣM(tm)− 2
=M(ex)

i (tm) . (S.20)

Eq. (S.20) reflects the relative magnetization of the wanted component (here: water) as a

function of the mixing time tm, with the effect of longitudinal relaxation being canceled

out. Note that eqs. (S.18) and (S.19) also demonstrate that simply adding up the NMR

signal observed after ±z-storage is not sufficient for canceling out the effect of longitudinal

relaxation.

The assumption of a single relaxation rate may indeed be valid for the protein, given

that spin polarization exchange occurs on a time scale much faster than spin relaxation.

At high magnetic fields, this is usually the case; see also paper #2 of the results section.

Nevertheless, the relaxation rate of water (R(w)
1 ) remains different from that of the different
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protein sites (R(p)
1 ). Usually, it holds that R(w)

1 < R
(p)
1 . Thus, for a more representative

treatment, eqs. (S.12) - (S.14) should be rather replaced by

M±(tm)/M∞ � 1−
∑
i

(
1∓M(ex)

i (tm)
)
pi ri(tm) (S.21)

ri(tm) � exp
(
−tmR1,i

)
,

∑
i

pi = 1 ,

using individual relaxation rates R1,i and a proton fraction of pi for each component

contributing to the signal. Following the same procedure as before, it follows that

∆M(tm)
ΣM(tm)− 2

�

∑
iM

(ex)
i (tm)pi ri(tm)∑

i pi ri(tm)
(S.22)

�
M

(ex)
w (tm)pw rw(tm) +M(ex)

p (tm)pp rp(tm)

pw rw(tm) + pp rp(tm)
,

where the indices w (for i = 1) and p (pp =
∑

i≥2pi) reflect, as before, the water and the pro-

tein signal, respectively. Evaluating the water peak of the NMR spectrum,

pw ∼ 0.9 > pp ∼ 0.1 holds, and, again,

∆M(tm)
ΣM(tm)− 2

∣∣∣∣∣∣H2O
peak

≈ M
(ex)
w (tm) . (S.23)

An exemplary data set including the above treatment is shown in Fig. S4. As seen from

this graph, M+/M∞ equals M(ex)
w for tm . 10 ms. Even though the selective pulse is much

longer than the time scale of R1ρ relaxation, a small fraction of transverse relaxation

remains. The precession of this minor component causes some signal distortions for mixing

times in-between 1 ms and ∼50 ms. Below this time scale, no significant evolution of the

transverse magnetization is observed; for longer times, the spin coherence vanishes due to

T2 relaxation.

The duration of this pulse (here: 500 ms, applied to aliphatic protons) may be

comparable to the time scale needed for magnetization transfer between the protein and

the solvent. Under such conditions, the intensity of the water peak may be reduced even

before the actual exchange time tm starts. In fact, in the shown example (Fig. S4) the

initial intensity of the water peak is only of about 88% of its equilibrium intensity M∞.

Nevertheless, as soon as the pulse is switched off, the continuation of this process can be

monitored. The original signal, M+/M∞, further drops down by about 7%, and then rises to

its equilibrium intensity; cf. again Fig. S4. Such behavior already indicates that the overall

magnetization transport from the aliphatic region of the protein to the solvent is somewhat

faster than T1 relaxation, but not by orders of magnitude. The T1-corrected signal, eq. (S.20),

reflects the underlying loss of water intensity due to transfer of magnetization to the protein.

Compensating longitudinal relaxation by data treatment, an equilibrium is reached after
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Figure S4.: NMR water intensity M+/M∞ profile (black) and the water magnetic exchange curve

M
(ex)
w (blue) of αB-crystallin at a concentration of 180 g/l at T = 22◦C, including the fitting

result (blue line; eq. (S.24)). The inset shows the magnetization exchange curve after offset
subtraction on a semi-logarithmic scale.

about 3 s. This reduced equilibrium magnetization reflects the overall magnetization

of the sample (averaged over protein and water molecules) remaining after the selective

pre-saturation pulse. Subtracting this reduced equilibrium value and plotting the decay on

a semi-logarithmic scale, an exponential-like behavior of Mr is resolved (inset in Fig. S4).

The magnetization exchange decay of the water signal may thus be modeled on the basis of

a single characteristic magnetization exchange time τex, using

M
(ex)
w (tm) =

(
M

(ex)
0 −M(ex)

∞
)

exp(tm/τex) + M(ex)
∞ , (S.24)

where M(ex)
0 := M

(ex)
w (tm = 0) ≡ M+(tm = 0)/M∞ and M

(ex)
∞ := limtm→∞M

(ex)(tm) are the

initial and equilibrium intensity after application of the pre-saturation pulse in absence of

longitudinal relaxation.

Fig. S5a displays the temperature dependence of the magnetization exchange rate of

BSA and αB-crystallin, each at their highest concentration addressed within the study of

Brownian motion. As seen in this graph, τex decreases monotonically with temperature,

which is contrary to the scenario that the magnetization transfer is dominated by proton

exchange: chemical exchange becomes faster with increasing temperature. Such tempera-

ture dependence thus reflects a dominating impact of the spin polarization exchange rate,

which becomes faster at low temperatures due to a slower tumbling of the protein. This

finding is line with the magnetic exchange rate being faster for the large αB-crystallin

assemblies (τr ∼ 1 µs) than compared to BSA (τr ∼ 0.1 µs at 250 g/l).

If the protein impacts the signal of water, water will also impact the protein magneti-

zation. If the time scale of magnetization exchange is on the same order of magnitude as

the PFG NMR diffusion period, τm ∼ ∆PFG ∼ 20...70 ms, then PFG NMR diffusion results
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Figure S5.: Magnetization exchange time for BSA and αB-crystallin (αBc) as a function of the
temperature (a) and the protein concentration (b), with the trend indicated by linear fits
(dashed lines). Error bars relate to the fitting uncertainty (eq. (S.24)).

may indeed be biased despite evaluating the signal of aliphatic protons. At 6◦C, there

is still a factor of about eight in-between τex and ∆PFG for both proteins. Increasing the

protein concentration can decrease this factor. As BSA is much more available at high

concentrations than αB-crystallin, the concentration dependence of τex was addressed

using BSA. Increasing its concentration to a value of about 300 g/l, τex approaches ∆PFG; cf.

Fig. S5b. Under such conditions, the PFG NMR diffusion decay can indeed be considered

to be biased by the impact of water, i.e., by its faster diffusion. A value of around 250 g/l

BSA thus appears to be a reasonable limit for reliable PFG NMR measurements. As is

pointed out within the results section, LYZ has a steeper concentration dependence of its

Brownian tumbling time than BSA, but is also smaller than BSA. At 250 g/l, τr of LYZ is

still smaller than τr of 250 g/l BSA [Roos et al., 2016]. PFG NMR at 250 g/l LYZ can thus be

considered to provide safe results as well. Note that for αB-crystallin, 180 g/l is the highest

concentration accessed in the study of Brownian motion.

To excite only a narrow frequency window, a long rectangular pulse was used. Apply-

ing a shaped pulse (sinc profile), the duration of the pre-saturation pulse was shortened to

only 5 ms (rather than 500 ms for the rectangular pulse). Consequently, the pulse duration

is now safely shorter than the characteristic time scale of magnetization exchange between

the protein and the solvent. This situation leads to an almost full intensity (≈ 97%) of

the water signal (see Figs. S2 (inset) and S6a) straight after action of the selective pre-

saturation pulse. More importantly, the shorter pulse duration basically helps resolve

faster magnetization exchange rates. Indeed, the magnetization exchange curves become to

some extent non-exponential when applying this rather “short” pulse, which potentially

results from a distribution of magnetization exchange times. Lacking knowledge on the

detailed shape of the magnetization exchange curve, and with some uncertainty of the
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Figure S6.: Exemplary experimental result of BSA 255 g/l at T = 22◦C (a) using a shaped pulse of
5 ms duration (triangles) as compared to the result using a long rectangular pulse of 500 ms
duration (squares), together with a mono-exponential fit of the magnetization exchange
curves (lines). The temperature dependence of the so obtained magnetization exchange
times is shown in (b).

equilibrium value M(ex)
∞ , these curves were still fit using a single exponential (cf. eq. (S.24)

and Fig. S6a). The agreement with the experimental data is still sufficiently good; the

distribution of magnetization exchange times is not expected to cover several orders of

magnitude. For BSA 255 g/l, the now obtained value of τex is about 50 ms shorter than that

one determined from measurements using the rectangular pulse of 500 ms duration; see

Fig. S6b. To estimate the order of magnitude of τex, and for its comparison with the PFG

NMR diffusion time scale, such differences are not significant. All drawn conclusions stay

thus valid for both, the rectangular 500 ms pulse and the shaped 5 ms pulse.

S.4. Viscosity determination via a simple capillary

An initial study of the viscosity concentration dependence relied on a simple capillary

using sample volumes of around 200 µl. The viscosity is estimated here by the equation by

Hagen and Poiseuille (eq. 3.22),

Φ =
dV
dt

=
πa4

8η
|∆p |
L

.

For a vertical capillary, with no force applied except of the gravitational one (FG), the drop

of pressure ∆p per distance L along the capillary is determined by

|∆p |
L

=
1
L
FG

A
=
g ρAL

AL
= g ρ , (S.25)
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Figure S7.: Viscosity determination us-
ing a capillary: Calibration via sub-
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Figure S8.: Viscosity of bovine serum al-
bumin (blue) and lysozyme (red) so-
lutions as determined by a capillary
at T = 22◦C. The solid line is a fit us-
ing the equation by Thomas [1965],
η = η(φ), including an apparent vol-
ume fraction φapp = ϑapp c. ϑapp is
the apparent specific volume of the
protein.

where A is the cross-sectional area of the capillary slit, and ρ and g denote the solution

density and the acceleration due to gravity, respectively. Thus, we have, averaged over a

certain length of the capillary,

πg ρ
〈
a4

〉
8η

�
∆V
∆t

= A
∆s
∆t

. (S.26)

Here, ∆s is the distance along the capillary the liquid covers per time step ∆t. In principle,

this equation could be directly used to estimate the viscosity of the protein solution of

interest. However, the exact mean diameter of the capillary is an uncertain parameter,

therefore a calibration has to be done using a liquid of known viscosity and density (termed

η1 and ρ1, respectively), providing

∆s2
∆s1

η2

η1
=
∆t2ρ2

∆t1ρ1
. (S.27)

In the experiments ∆s = ∆s1 = ∆s2 = 80 cm was kept constant, and ∆t1,2 is the quantity

to be measured. The way the calibration was performed in practice is reflected in Fig. S7;

Fig. S8 shows the data obtained for BSA and LYZ.

Each time the capillary is used, a part of the protein solution remains on the inner

wall of the capillary. Although the capillary was rinsed thoroughly with water immediately

after each measurement, often a decrease of the effective inner diameter was observed, as

S-12



indicated by the duration water needed to pass a certain distance along the capillary. Then,

urea served as a useful cleaning agent.

For protein solutions of a high viscosity, ∆t occurred to be as long as several minutes,

and drying effects were observed. This effect prevented a safe estimate of the viscosity for

very highly concentrated protein solutions, with consequently some systematic deviations

of the measured viscosity as compared to the measuring result using the mVROC or a

rheometer. These deviations become relevant for concentrations above 250 g/l; see Fig. 3.17.

Moreover, measurements could only be performed at T = 22◦C as the capillary was not

located within a heating or cooling reservoir.

S.5. Supplementary material to the research articles

Part of the research articles contain Supporting Information that are given below.
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Sample preparation.   
 
Protein expression and purification of human αB-crystallin.  
 
After cloning the human αB cDNA into a modified, His-tag free pET16b vector and expression in 

Escherichia coli BL21(DE3), protein expression and purification were performed in a manner 

similar to ref. (1). Briefly, αB-crystallin was expressed overnight at 22°C in the auto-induction 

media ZYM 5052, lysed by Microfluidizer in 20mM TrisHCL (pH 8.5) and 1mM EDTA buffer, 

the DNA digested by DNase1 and precipitated by protamine sulfate salt. After purification on a 

TMAE anion-exchange column with a stepwise NaCl gradient, αB fractions were pooled, 

concentrated and loaded on a S200 gel filtration column with a running buffer containing 20mM 

TrisHCL (pH 7.5), 50mM NaCl and 1mM EDTA. The purity of the protein was confirmed by 

SDS-page and mass spectrometry. 

 
NMR sample preparation.  
 
After extensive dialysis against 50mM ammonium hydrogen carbonate buffer (pH 8), the protein 

was lyophilized, then dissolved in the smaller amount of the same buffer in D2O and lyophilized 

again. Note that multiple lyophilization does not affect B-crystallin properties, as confirmed by 

NMR spectroscopic and diffusion experiments. The lyophilized αB-crystallin powder was 
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dissolved in 50mM Na-phosphate buffer, 50mM NaCl and 0.002% NaN3 D2O buffer at pH 7.6 

(pD=7.2) and used in the NMR and viscosity measurements. The αB-crystallin concentration was 

determined by spectral photometry at 280 nm with MW=20027.7 Da and =13980 M cm-1. 

 
 
NMR experiments. 
 
Translational diffusion 
 
Translational self-diffusion coefficients were measured using the stimulated echo technique with 

bipolar pulsed field gradients (2). Fig. S1 shows proton spectra of B-crystallin in D2O buffer 

after a 90º-pulse (top). The strong signal at ~5 ppm corresponds to residual solvent protons that 

cannot be fully removed during the sample preparation. The NMR spectrum seen in the PFG 

experiments is shown at the bottom, in which the water signal is filtered out on the basis of its 

fast diffusion. A large fraction of the protein signal is also filtered out due to the short T2 of the 

residues forming the rigid core, while the remaining signal belongs to the protons of mobile 

unstructured termini of B-crystallin polypeptide chains that have long T2. It is noted that 

without these unstructured termini the PFG measurement of translational diffusion would be 

impossible: B-crystallin is a large protein, so its overall rotational tumbling is slow. If all parts 

of the protein were rigid, then the complete protein signal would be T2-filtered (suppressed) 

during the field gradient pulse, which has a typical duration of 1 - 1.5 ms. 

 

Analyses of the diffusion decay are based upon the right-hand side peak belonging to methyl 

protons, as marked by an arrow in Fig. S1. Fig. S2 compares the PFG NMR diffusion decay of 

the integral signal to that of the methyl protons peak. It is clearly seen that the two decays differ, 

with the difference becoming more pronounced at higher concentrations. Such a difference can 

be explained by the effect of spin diffusion between protein protons combined with hydrogen 

exchange of labile protein protons with the residual solvent protons. Thus, the apparent diffusion 

decay for the integral protein signal is distorted by the magnetic/chemical exchange processes 

(3,4). This effect is negligible in small and medium-sized proteins because spin diffusion is rather 

slow due to the much faster overall rotational tumbling, which averages out inter-proton dipole-

dipole interactions. The methyl protons are less prone to such distortions since they undergo fast 

rotation around the C3 axis, and thus have weak magnetic coupling to other protein protons. 
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Figure S1. Proton NMR spectrum of B-crystallin at 400 MHz resonance frequency after a 90º 
pulse (top), and after T2/diffusion filtering during the pulse-gradient experiment (bottom). The 
blue arrow indicates the peak which was used for evaluating the diffusion decays. 
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Figure S2. Diffusion decays for B-crystallin solution at two concentrations (T = 20 ºC) plotted 
for the integral signal (open circles) and the methyl peak marked by an arrow in Fig. S1 (solid 
circles). 
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Fig. S3 compares the diffusion decays measured at two different diffusion times (). The SDC 

should not depend on , however, if the characteristic time of the magnetic/chemical exchange 

processes is comparable to , then the apparent diffusion decay will become faster as  increases. 

It is seen that the diffusion decay at  = 300 ms is indeed somewhat faster, yet the difference is 

negligibly small. In our PFG experiments  was always between 25 and 40 ms, thus the effect of 

the magnetic/chemical exchange can be safely neglected. 
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Figure S3. Diffusion decays measured at two different diffusion times (indicated in the plot) 
plotted for the methyl protons peak (c = 185 mg/ml, T = 28 ºC). 
 
 
Spin relaxation 
 
On-resonance T1's at 20 and 40 kHz spin-lock frequencies were measured with the standard 

pulse sequence, Fig. S4. Off-resonance T1's at 60 kHz were measured with the sequence shown 

in Fig. S5a. The latter sequence starts with two 90º-pulses, of which the first pulse is of  fixed 

phase, while the second one is phase-alternated to ensure spin temperature inversion. In doing so, 

the relaxation signal decays exactly to zero, thus there is no need to measure the long relaxation 

delay plateau. In addition, the off-resonance spin-lock pulse is flanked by two orienting off-

resonance º-pulses: the first orienting pulse aligns the magnetization vector along the B1e field 

and the second one brings the magnetization back to B0 direction. By this, the orienting pulse 

vector forms the angle /2 with the B0 (and B1e as well) vector, see Fig. S5b. 
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Figure S4. Pulse sequence for measuring T1 decays with on-resonance spin-lock field. 

 

 

  

(a)

   

    

(b)

 
 
Figure S5. (a) Pulse sequence for measuring off-resonance T1. Shaded pulses are applied with 
the resonance offset. (b) Vector scheme demonstrating magnetization perturbations during the 
off-resonance pulses. 
 
 
Before each T1 measurement the spin-lock frequencies and the angle  (for the off-resonance 

experiments) were carefully calibrated using a nutation experiment. For all the off-resonance 

measurements the angle  was equal to 42º. The spin-lock field duration in the T1 experiments 
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was varied from few s to 200 ms. For plotting the relaxation decays, the whole spectral window 

(see Fig. S1, top) was used for integration of the proton signal. To avoid sample heating by long 

spin-lock pulses, the recycling delay was 20 s. The chemical shift of the residual water protons 

peak did not depend on the duration of the spin-lock pulse which confirms that the sample 

heating effect was negligible. 

 

Spin-spin (T2) relaxation decays were measured by a combination of three different experiments: 

Free induction decay (FID; time range from 12 (dead time) to 40 s), Hahn echo (from 30 s to 

~3 ms) and a Carr-Purcell-Meiboom-Gill sequence (from 0.5 ms to ~0.4 s). This was done in 

order to cover a wide range of the relaxation times, as the protein T2 is very short, usually tens to 

hundreds of s, whereas the solvent T2 was of the order of hundreds of ms. Since T2 relaxation 

decays were measured at the resonance frequency 20 MHz and imperfect B0 field homogeneity, 

no spectral resolution could be achieved at these conditions and thus, the decays were recorded 

directly in the time domain. 

 

The analysis of the T1 and T2 relaxation decays was performed according to the procedure 

described in ref. (5). As mentioned above, protein solutions contain a certain amount of residual 

solvent protons which exhibit much longer T2/T1's, thus requiring to subtract the solvent signal 

for analyzing the unbiased protein signal (cf. Fig. S6). For plots and analyses, the relaxation 

decays of the total (integral) proton signal was detected without any spectroscopic separation in 

both the T1 and T2 experiments. The water signal subtraction procedures (Fig. S6) for the T2 and 

T1 decays were fully identical. 

 

After subtraction of the solvent signal we obtained the protein protons’ relaxation decay, which is 

of multi-exponential shape (Fig. S6). This decay reflects a wide distribution of the relaxation 

times which is a consequence of the dynamic heterogeneity of -crystallin. For such a decay we 

determined the mean relaxation rate/time, which equals the slope of the initial part of the decay. 

In practice, we fitted the decays with a sum of two exponential components, which provides a 

minimal fitting model. We then determined the mean relaxation rate as 
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where Pa,b and T2a,b are the intensities and relaxation times of the two components, respectively 

(taken separately, these parameters have no physical meaning).  
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Figure S6. T2-relaxation decays measured for B-crystallin solutions at c =80 mg/ml and two 
temperatures (indicated in the figure). T1-decays have very similar shapes. Top: raw relaxation 
decays consisting of the fast (protein) and slow (solvent) relaxing components. Red lines indicate 
the solvent component that was defined from the exponential fit of the slow tail of the relaxation 
decay. Bottom: the protein relaxation signal after the subtraction the solvent component from the 
overall decay. Red curves correspond to the biexponential fit of the initial part of the decay, 
which was used for the determination of the mean relaxation time (initial slope of the decay) as 
described in the text. Possible cross-relaxation (spin diffusion) between protein protons may 
change the form of the relaxation decay, but the mean relaxation rate (initial slope) does not 
depend on this. 
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Figure S7. Hydrodynamic radii of B-crystallin as determined via the Stokes-Einstein 
relationship with independent measurements of the viscosity and translational self-diffusion at a 
concentration of 35 mg/ml. The solid and dashed lines indicate the mean value of all points and 
their standard deviation, respectively. 
 
 

Fitting the temperature dependences of the relaxation times: (i) distribution of correlation 

times. Taking into account the intrinsic size distribution of α-crystallin, as also reflected in the 

PFG NMR diffusion decays, it is worthy to estimate the impact of a distribution of rot on the 

fitting result of the T2 and T1 data. To simulate a rot distribution, the fast component was repre-

sented by a spread of 3 modes on a logarithmic scale, namely 2/3rot, rot, and 3/2 rot, with 

relative amplitudes of ¼, ½ and ¼ for the faster, main and slower component, respectively. The 

total spectral density function addressing the fast component thus reads 

 

31 2 1 1
fast rot rot rot rot4 3 2 4 2( ; ) ( ; ) ( ; ) ( ; )J J J J           

 

and reflects a relative standard deviation of rot of approx. 35%. As a consequence, this broadens 

the minimum of the T1curves, yet such a spread of rot values was not found to have an appre-

ciable effect on the quality of the fitting result (cf. Fig. S8) and the fitting values obtained (cf. 

Table S1). In fact, the relative increase of the mean rot was found to be in good accordance with 

the previous results when modeling the experimental data using a single value of rot only. Thus, 

introducing a spread of rot is not reasonable since it does not change significantly the fitting 
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results, at the same time making fitting less certain by increasing the number of fitting 

parameters. 
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Figure S8. T2 and T1 relaxation times (see legend) with their best fit results (lines) by use of a 

distribution of the fast component rot (dashed lines) in comparison to the fitting result using a 

single value of rot (solid lines). 
 

Table S1. Summary of the fitting result by reflecting the fast component (rot ) by one mode only 

(model A) in comparison to the outcome assuming a logarithmic spread of rot with a standard 

deviation of about 35% (model B, see explanation in the text). <rot> for the model (B) was 

calculated as  
1 1

1 1

rot rot rot rot

1 2 1 1 3

4 3 2 4 2

 
         

   
    . rotR  was calculated according to Eq. 

11 of the main paper. 

 

Model  35 mg/ml 85mg/ml 113 mg/ml 185mg/ml 

rot / µs 0.90±0.02 0.96±0.02 1.03±0.02 1.04±0.02 
1

rotR
  / µs 0.91±0.05 0.98±0.05 1.05±0.05 1.31±0.05 

 
(A) 

rotR (c1)/ rotR (ci) 1.00 1.08±0.02 1.15±0.02 1.44±0.04 

<rot> / µs 0.85±0.02 0.89±0.02 0.97±0.02 0.96±0.02 
1

rotR


/ µs 0.86±0.05 0.91±0.05 0.99±0.05 1.17±0.05 

 
(B) 

rotR (c1)/ rotR (ci) 1.00 1.05±0.02 1.16±0.02 1.36±0.04 
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Fitting the temperature dependences of the relaxation times: (ii) av
HHK  temperature 

dependence. In the analysis we assume av
HHK  to be temperature independent although the 

amplitude of internal motions in proteins may depend on temperature (6,7). To check the 

influence of the possible av
HHK  temperature dependence on the fitting results, we performed the 

fitting assuming a simple linear dependence of av
HHK  on temperature. Direct measurements of 

av
HHK  in solid hydrated proteins at different temperatures (8,9) show that within temperature range 

of our experiments (from ~5 ºC to ~35 ºC) av
HHK  varies no more than 10-20%. Note that this 

temperature variation is caused not only by the change of motional amplitude, but mainly by the 

temperature dependence of the correlation times of internal motions which affects the motional 

averaging of the proton second moment. Therefore, we fitted the data assuming the 15% 

difference of av
HHK  between 5 and 35 ºC. The fitting curves in this case look the same as in Fig. 

S8 or Fig. 3 of the main paper. The comparison of the fitting results (Table S2) with those 

assuming temperature independent av
HHK  (Table 1 of the main paper) demonstrates that the av

HHK  

temperature dependence affects only the absolute value of av
HHK  and the activation energy Erot. 

All other parameters remain the same. 

 
Table S2. Dynamic parameter obtained from the fitting assuming av

HHK  to be temperature 

dependent. av
HHK  at 20 ºC is (3.7±0.1)·109 s-2. 

c / mg/ml rot / s  

at 20 ºC 

2
rotS S  / s 

at 20 ºC 

Erot / kJ/mol Es / kJ/mol 

35 0.92±0.02 0.65±0.02 12±1 63±2 

85 0.97±0.02 0.84±0.02 13±1 49±2 

113 1.04±0.03 1.38±0.03 12±1 38±2 

185 1.07±0.03 3.73±0.07 2±1 27±1 
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Here, we would like to also demonstrate that the assumption of the possibly steeper temperature 

dependence of av
HHK

av

 cannot describe the data well without taking into account the slow 

component of the Ct(t), i.e. assuming =0. We performed the data fitting assuming =0 and 

the slope of the 

2
rotS 2

rotS

HHK  temperature dependence as an additional free fitting parameter. As a result, 

we obtained a bad fitting quality (see Fig. S9) and a rather unreasonable temperature variation of 

av
HHK  of about 40% between 5 and 35 ºC. Thus, the assumption of the av

HHK  temperature 

dependence has no significant influence on our results. 
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Figure S9. Fitting results assuming av

HHK  to be temperature-dependent, and =0. 2
rotS
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Fitting the temperature dependences of the relaxation times: (iii) fixed ratio between the 

correlation times. Fig. S10 shows fits for which we tried a ratio between the correlation times 

fixed to 

rot(35 mg/ml):rot(85 mg/ml):rot(113 mg/ml):rot(185 mg/ml) = 1.00 : 1.67 : 2.20 : 6.00,  
 
which corresponds to the relative increase in viscosity (or the translational diffusion slow-down). 

Obviously, this results in a strong mismatch between the fitting curves and the experimental data. 
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Figure S10. T2 and T1 relaxation times with their best fit results (red lines) by use of a fixed ratio 

of the rotational correlation time rot following the retardation of translational diffusion.  
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Rotational correlation time vs. molecular mass: statistics of literature data. 
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Figure S11. Rotational correlation time as a function of the protein M for 12 different proteins. 
All correlation times were recalculated for the temperature 20 ºC, the details being presented in 
Table S3. It is clearly seen that the slope can be defined only with a large uncertainty. 
 
 
Table S3. Collection of rotational correlation times for 12 different proteins. In all cases the 
correlation time was defined from the 15N T1/T2 ratio. Since the temperatures of the 
measurements were different, all the correlation times were recalculated to 20 ºC using the 
Arrhenius dependence and an activation energy of 20 kJ/mol. Fig. S8 was plotted using the 
numbers in bold (2nd and 5th columns). 
 

Protein 
MM, 
kDa 

T / ºC rot / ns rot (20ºC) Reference 

Interleukin 1 17.4 36 8.3 12.8 Clore GM, Driscoll PC, Wingfield PT, 
Gronenborn AM (1990), Biochemistry 29: 
7387–7401. 

calbindin D9k 8.5 27 4.2 5.1 Kordel J,  Skelton NJ, Akke M, Palmer AG, 
Chazin WJ (1992), Biochemistry 31: 
4856–4866. 

Bacillus-subtilis 
glucose perme-
ase-IIA domain 

17.4 35 6.5 9.7 Stone MJ et al. (1992), Biochemistry 31:  
4394–4406. 

Thioredoxin 11.7 35 6.55 9.8 Stone MJ, Chandrasekhar K, Holmgren A, 
Wright PE, Dyson HJ (1993), Biochemistry 32: 
426–435. 

Interleukin-8 16 27 9.1 11.0 Grasberger BL, Gronenborn AM, Clore GM 
(1993),  J Mol Biol 230: 364–372. 

Igg binding 
domain 

6 26 3.3 3.9 Barchi  JJ, Jr.,  Grasberger B, Gronenborn AM, 
Clore GM (1994), Prot Sci 3: 15–21. 

Ribonuclease HI 16.5 27 9.7 11.8 Mandel AM, Akke M, Palmer AG (1995), J. 
Mol Biol 246: 144–163. 

Savinase 28 30 9.7 12.7 Remerowski ML, Pepermans HAM, Hilbers 
CW, Van De Ven FJM (1996), Eur J Biochem 
235: 629–640. 
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SH3 domain 6.5 7 7.6 5.2 Chevelkov V, Zhuravleva AV, Xue Y, Reif B, 
Skrynnikov NR (2007), J Am Chem Soc 129: 
12594–12595. 

Flavodoxin 16.3 27 4.5 5.4 Hrovat A, Blümel M, Löhr F, Mayhew SG, 
Rüterjans H (1997), J Biomol NMR 10:  
53–62. 

Ectodomain of 
SIV gp41 

44 45 20 38.5 Caffrey M, Kaufman J, Stahl SJ, Wingfield PT, 
Gronenborn AM, Clore GM (1998), J Magn 
Reson 135: 368 –372. 

TEM-1 β-
lactamase 

29 30 12.4 16.2 Savard PY, Gagne SM (2006), Biochemistry 45: 
11414-11424. 
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Rescaling of R1 data for visual comparison with R1 data 

 

For visual comparison only, R1 was rescaled by a factor of 10/3 to be in accordance with the 

absolute values of the R1 data. This scaling factor directly follows from the approximation 

0 0( ) (2 )J J   , providing  

 

1 HH 0

10
(2 )

3
R K J        (S1) 

 HH
1 SL 03 (2 ) 7 (2 )

3

K
R J J         (S2) 

 HH
2 03 (0) 7 (2 )

3

K
R J J    .     (S3) 

 

Making use of  J(2SL) >> J(20) in the case of the R1 measurements, in which 

SL / 2 40kHz    and 0 / 2 400MHz   , it follows that 

 

1 HH 0

10
(2 )

3
R K J        (S4) 

1 HH SL

10 10
(2 )

3 3
R K J  .      (S5) 

 

Thus, the two quantities that map out J() can be compared visually in the same plot.  

 

In contrast, our R2 measurements were performed at a Larmor frequency of 20 MHz, which 

does not allow for safely neglecting the contribution of 0(2 )J  to R2. A correct rescaling of 



R2 thus requires knowledge on both 0( )J   and 0(2 )J  , which is impossible without  

further data analysis. Of course, data fitting was performed using the exact equations for R1, 

R1 and R2.  

 

Reliability of the FC-NMR R1 measurements at low fields 

 

The shortest relaxation delay in our field-cycling measurements was 0.7 ms ("dead time"). In 

the presence of a distribution of R1s, the initial slope of the field-cycling relaxation decay may 

thus not reflect the true initial slope at t=0, as illustrated by Fig. S1. 
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Figure S1. BSA (c=213 mg/ml, T=20 ºC) R1 and R1 relaxation decays after the water component subtraction. As 

seen from the R1 decay, the experimentally observed relaxation rate (solid and dashed line) may significantly 

change during the dead time of the FC NMR measurements. This issue is of relevance as soon as the relaxation 

time of the fast relaxing protein component becomes comparable to the dead time. 

 

The relaxation decays were only considered as being reliable if a bi-exponential fit to the data 

provided - within the fitting uncertainty - the same initial slope as the fitting result based upon 

a log-normal distribution, see Fig. S2. In the case of bi-exponential analysis, the relaxation 

decay was fitted according to the equation 

 

( ) exp( ) exp( )a a b bA t P R t P R t     ,    (S6) 

 

where Pa,b and Ra,b are the intensities and relaxation rates of the components a and b. Then, 

the mean relaxation rate was defined as  

 

a a b b

a b

P R P R
R

P P





   .      (S7) 

 



If the two evaluation methods gave different results, the distribution of R1s within the 

undetected part of the decay (initial 0.7 ms), and thus the estimate of <R1>, was considered 

uncertain. This situation occurs in the case of BSA at low relaxation fields, potentially due to 

the presence of oligomers, as these cause increased relaxation rates and an increased curvature 

of the relaxation decays. 

 

For the sake of clarity in notation, the brackets of <R1> will henceforth be skipped, as is also 

the case in the main paper. 
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Figure S2. Relaxation rates of (a) LYZ and (b) BSA as provided by bi-exponential (open symbols) and log-

normal-distribution fitting to the raw data. If not indicated by error bars, the fitting error was of the same order of 

magnitude as or smaller than the symbol size. Data points marked with a cross were not used for further data 

analysis. 

 

An additional argument supporting the accuracy of the FC-NMR measurements at low field in 

LYZ solution is provided by the comparison of R1 with R1measurements, as the latter 

provide a safe, dead-time free estimate of the relaxation rate at low frequencies in absence of 

any relevant delays during the pulse sequence. At 65 mg/ml and 130 mg/ml protein 

concentration, the FC-NMR measurements provide a plateau value of R1 that at all 

temperatures matches the corresponding value of 10/3 R1 see Fig. S3) The same holds for 

the samples of higher protein concentrations (213 mg/ml, 257 mg/ml) at temperatures above 

15°C. At lower temperatures of the highly concentrated samples, however, no plateau of R1 is 



observed, which we address to the increased relevance of the slow component of rotational 

diffusion. However, to be safe with respect to the influence of potentially biased data points in 

highly concentrated LYZ solutions, we excluded FC-NMR values of a mean relaxation rate 

above 0.5 ms
-1

 (at and below this value, R1 reaches a plateau, in agreement with R1) from 

data fitting, and observed very similar results compared to the fit of all data without 

exceptions, see Table S1. 

 

 

Experimental and fitting results 

 

(i) LYZ 
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Figure S3. Dispersion profiles of LYZ at several temperatures. The shown data points include the full FC-R1 data 

set, a part of it being shown in Fig. 5 of the main paper. 10/3R1 data points are shown as solid symbols. 

Additionally, we here include data points for R1 measured with a saturation recovery sequence on a Bruker 

minispec mq20 at the resonance frequency 20 MHz. In order not to overload the figure, error bars were skipped, 

the measuring uncertainty of the relaxation rates is comparable to the symbol size. A part of these data plotted as 

a function of temperature is shown in Fig. S5a. 

 

 

Table S1. Fit result of LYZ. The values in row A are the best-fit results including all data points measured. For 

row B potentially biased data points ( 1

1 0.5 msR  ) were excluded (see explanation above). 

  Brownian rotation “Long tail” of rot. diffusion Internal dynamics  

  c  

g/L 

rot  

ns 

rotE  

kJ/mol 

2

rotS  S  

ns 

SE  

kJ/mol 

int  

ns 

2

intS  
intE

 
kJ/ 

mol 

(av)

HHK  

10
9
 s² 

A 

65 10.5±0.2 25±1 ≤0.003 ≥3000 54±2 

2.3±0.1 0.72 ± 0.01 6±3 
6.1 

±0.1 

130 14.6±0.2 31±1 0.014±0.002 410±40 29±1 

213 23.9±0.3 27±1 0.09±0.01 330±10 73±1 

257 39.9±0.6 35±2 0.23±0.01 380±10 76±1 

B 

65 10.5±0.1 24±1 ≤0.003 ≥3000 53±2 

2.2±0.1 0.73 ± 0.01 9±1 
6.1 

±0.1 

130 13.9±0.2 29±1 0.016±0.001 390±30 33±1 

213 23.3±0.4 30±1 0.13±0.01 240±10 65±1 

257 38.1±0.7 36±1 0.23±0.01 410±10 73±1 



(ii) BSA 

Commercially available BSA contains a significant fraction of oligomers in solution. If these 

are neglected upon fitting the data, the procedure will give a mean rotational correlation time 

that incorporates an uncertain weighting of monomers vs. oligomers. However, since S>>rot 

a spread of the rotational correlation does not challenge the sensitivity of the fit to the slow 

component: R2 and R1 values are most sensitive to the latter, whereas relaxation at higher 

Larmor frequencies serves to fix rot. 

 

Taking into account the oligomer fraction increases the number of fitting parameters, but 

provides more reasonable results. To reduce the complexity of the fitting model (otherwise, 

the fitting is too uncertain and ambiguous), we assumed the oligomer fraction PM to stay the 

same over the entire temperature range ( 4 C 30 CT    ), and fixed the rotational activation 

energy of oligomers and monomers at all concentrations to 20 kJ/mol, that is, the activation 

energy of water flow that governs the protein rotational motion (in the case of LYZ and B-

crystallin (Roos et al. 2015) we obtained similar values of Erot). We divided the rotational 

correlation time into two components, rot  and rot2 , that correspond to the monomer and 

oligomer fractions, respectively. In practice, the second term of J(), see Eq. (7) of the main 

article, was replaced by  

 

 
   

2 2 M rot M rot2
int rot 2 2

rot rot2

(1 )
1

1 1

P P
S S

 

 

 
  

   
 .    (S8) 

 

Figs. S4 and S5 displays the corresponding fitting results. According to the data analysis, 

oligomers comprise more than half of the protein mass. This outcome is in accordance with 

our size-exclusion chromatography results obtained for dilute BSA solutions (cf. Materials 

and Methods), and further agrees well with the findings of ref. (Atmeh et al. 2007). Table S2 

presents the fitting results for the two options of the data analysis (single rot and rot / rot2  

components of the overall tumbling correlation function).  
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Figure S4. Dispersion profiles of the BSA relaxation data (the same as shown in Fig. 5b of the main paper). 

Fitting curves (solid red lines) correspond to the analysis that takes into account oligomers (Eq. S8). Crossed 

symbols are uncertain data points that were not included in data fitting (see explanation in the text). Other BSA 

data are shown as function of temperature in Fig. S5b. 

 

 

 

Table S2. Fitting results of BSA, excluding uncertain data points. Row A is from fits excluding oligomers, in 

which case 
rot  represents an average over monomers and oligomers. Row B is the best fit result including 

oligomers, where “M” and “O” denote monomers and oligomers, respectively. The oligomer fractions PM (see 

Eq. S8) are 0.45±0.05, 0.60±0.05, 0.60±0.05 and 0.70±0.08 for the concentrations 65, 130, 208 and 255 g/L, 

respectively.  

  Brownian rotation “Long tail” of rot. diffusion Internal dynamics  

  c  

g/L 

rot  

ns 

rotE  

kJ/mol 

2

rotS  S  

µs 

SE  

kJ/mol 

int  

ns 

2

intS  intE kJ/

mol 

(av)

HHK  

10
9
 s² 

A 

65 107±1 17±1 ≤0.002 ≥20 40±3 

2.0±0.1 
0.79± 

0.01 

0.2± 

0.1 
7.8±0.1 

130 158±1 18±1 0.006±0.001 23±4 39±2 

208 203±3 23±1 0.10±0.01 3±1 45±1 

255 263±4 19±1 0.12±0.01 6±1 45±2 

B 

65 
M:   36±2 

O: 260±20 
20 

(*)
 ≤0.002 ≥30 29±5 

1.4±0.1 
0.74± 

0.01 

5± 

4 
6.0±0.1 

130 
M:   35±2 

O: 330±20 
20 

(*)
 0.006±0.002 29±7 37±2 

208 
M:   45±2 

O:  730±30 
20 

(*)
 0.02±0.01 15±2 62±2 

255 
M:   42±2 

O: 760±23 
20 

(*)
 0.05±0.01 15±2 52±2 

(*)
 To stabilize these fits, the activation energy of 

rot  was fixed to 20 kJ/mol at all concentrations. 



(iii) Relaxation rates as a function of temperature  
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Figure S5.Temperature dependencies of R1, R1 and R2 relaxation times together with the best fit results (solid 

lines). R1 values at 90, 27 and 10.8 MHz were taken from ref. (Krushelnisky 2006). Two symbols marked with a 

cross (LYZ 257 g/L) were interpolated from measurements at different frequencies but at the same temperature, 

and are only shown for visual presentation, but were not included in the fitting. 



Fitting LYZ data assuming no "long tail" component 

 

The necessity of inclusion of the "long tail" in the fitting model was justified in our previous 

papers, see the Introduction. Here, by the example of LYZ data, we demonstrate once more 

that neglecting the "long tail" provides a systematic inconsistency between experimental 

points and fitting curves. Fig. S6 presents the LYZ relaxation data in frequency and 

temperature domains along with the fitting curves assuming 
2

rotS =0.  
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Figure S6. Experimental data and the fitting curves for LYZ solutions. Fitting was performed assuming 
2

rot
S =0. 

The regions of systematic inconsistency between the experimental and fitting relaxation rates values are 

indicated by red circles/ovals. 

 

As seen in that graph, at low concentration R2 values cannot be reasonably fitted. The 

correlation time S at this concentration is large, and thus it affects only R2; all other 



relaxation data can be described by the simplest model quite well. Upon increasing 

concentration, S becomes shorter (see the discussion of this phenomenon in the main paper), 

and thus the region of the fitting inconsistency shifts towards FC R1's in the frequency range 

0.5 - 1 MHz. The higher the concentration, the larger the order parameter 
2

rotS  and, hence, the 

larger the fitting discrepancy, which is seen in Fig. S6. Finally, we note that the root mean 

square deviation of the fitting (see Eq. 11 of the main paper) with and without the "long tail" 

is 0.12 and 0.2, respectively. 

 

Simulation of high-field 
15

N NMR relaxation data. 

 

The 
15

N relaxation parameters were simulated according to the standard formulae for the 

heteronuclear dipole-dipole and CSA relaxation mechanisms with a typical values for the 

NH pair in the protein backbone (see e.g. Daragan and Mayo 1997). Below we show the 

simulated R1, R2 and NOE's for three frequencies as a function of the product 2

rotS S for the 

"rigid" and "mobile" residues: 
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Figure S7. Simulated R1, R2 and NOE's as a function of the product  
2

rot SS   for "rigid" and "mobile" residues.  
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SI1: PFG NMR and sub‐ensemble effects   

Translational diffusion coefficients were measured via the pulsed‐gradient stimulated echo 

(PGSTE) technique, using bipolar gradient pulses [1]. This means that for spatial encoding as 

well as decoding, positive and negative gradient pulses of duration /2 are applied during 
the first and second half, respectively, of a Hahn echo of total duration . Thus, during both 
encoding/decoding periods, the NMR signal is reduced by transverse relaxation as described 

by   2(2 ) exp 2I T    .  This  may  lead  to  sub‐ensemble  selection  in  a  polydisperse 

system. Our data for BSA and HEWL, see Fig. S1, are well represented by exponential single‐

component decay  functions. Since commercial BSA  is known  to contain oligomers  [2],  this 

deserves some further comments. 

 

 

 

 

Figure S1: PFG NMR diffusion 

decays  for  (a)  BSA  and    (b) 

HEWL  at  20°C.  Note  the 

singly  exponential  nature  of 

the decays, reflecting a single 

diffusion coefficient. 
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Figure  S2: Hydrodynamic  radii  of  BSA 

as estimated  from  the macro‐viscosity 

and  the  long‐time  translational  diffu‐

sion  coefficients  based  upon  the  GSE 

relation,  eq.  (1)  of  the  main  paper. 

Note  that  the  strong  concentration 

dependencies of the measured data at 

high concentration impart larger errors 

for  slight  concentration  mismatches. 

The  horizontal  line  marks  the  value 

expected for BSA monomers (34.4 Å). 

Hydrodynamic  radii  for BSA  obtained  from  eq.  (1)  of  the main  paper  (see  Fig.  S2) 

match at all concentrations the size of the monomer, demonstrating that there seems to be 

no  significant  signal  contribution  from  the  oligomers.  Yet,  as  shown  previously  by  size‐

exclusion chromatography and blue native (BN) PAGE on our BSA sample [2], BSA contains a 

significant  portion  of  oligomers  (dimers  up  to  hexamers)  [3,4].  These  oligomers  even 

remained on an SDS‐PAGE  (Fig. S3),  i.e., under denaturing 

conditions. This  indicates a high  stability of  the oligomers 

once the oligomers are formed. Indeed, the dimerization of 

BSA  likely  happens  due  to  covalent  binding  among  free 

sulfhydryl groups of cysteine [5], providing long‐time stable 

oligomers.  

To explain  this apparent discrepancy, we note  that 

the  inverse  of  the  transverse  relaxation  time  scales with 

rotational  diffusion  roughly  as   s r s s21 1T a a     , 

where  r  is the tumbling time, and  sa  and  s  characterize 

the  slow  component  of  rotational  tumbling,  see  ref.  [2]. 

Consequently,  the  slower  the  rotational  dynamics  of  the 

particle,  the  faster  the  NMR  signal  decays  during  the 

encoding/decoding  periods.  This  effect  is  of  particular 

relevance  if  the  transverse  relaxation  time  T2  is  shorter 

than the duration of the gradient encoding periods. This  is 

obviously  the case  for  the oligomers  in our BSA solutions. 

Consequently,  our  translational  diffusion  data  for  BSA 

reflect  monomer  diffusion  within  a  polydisperse 

surrounding.  

 

Figure  S3:  SDS‐PAGE  of  BSA, 

reflecting  monomers,  dimers, 

and higher order oligomers. BSA 

solutions were  diluted  down  to 

about  1  mg/ml  directly  before 

application of the SDS‐PAGE. 
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For HEWL,  there  is no  further consequence, as  it  is purely monomeric  [2]. The αBc 

oligomers,  on  the  other  hand,  contain  at  their  C‐terminus  relatively  long  trains  of 

unstructured  residues with high mobility,  competing  the effect of  slow overall  rotation of 

the protein assembly. The  finally detected NMR diffusion  signal mainly  results  from  these 

unstructured residues  independently of the actual rotational correlation time of the overall 

assemblies. Thus, in this case, PFG NMR provides the full unbiased ensemble average of the 

αBc assemblies [6]. 

 

SI2: Polarized fluorescence correlation spectroscopy (FCS)  

Fluorescence microscope set up 

FCS  experiments were  conducted  using  a  home‐built  confocal microscope.  The  excitation 

light was provided by a fiber  laser (FemtoFiber pro TVIS, Toptica) with pulse  lengths below 

1 ps and a repetition rate of 80 MHz. Two cube polarizers (PBSH, CVI Melles Griot) were used 

to build a polarization‐dependent optical delay of 6 ns to realize a pulse train of orthogonal, 

linearly polarized excitation pulses with a  total  frequency of 160 MHz. The excitation  light 

was  fed  into  a  single‐mode  fiber  (LMA‐8,  NKT  Photonics)  for  spatial  filtering.  After 

collimation  the  light  was  reflected  by  a  dichroic  mirror  and  focused  by  a  microscope 

objective  (Zeiss  C‐Apochromat,  63x/1.25, WI)  into  the  sample  solution.  Fluorescent  light 

collected  by  the microscope  objective  was  split  by  a  polarizing  beam  splitter  cube  and 

focused onto two single‐photon avalanche diodes (SPCM‐AQRH‐14‐TR, Excelitas). The active 

area of  the  single‐photon  counting modules  served as  the  confocal pinhole. The  resulting 

effective  focus  volume  as detected by diffusion measurements of unbound Alexa647 dye 

molecules was about 1.2  fL at excitation powers of 100 µW and 638 nm. Pulses  from  the 

detectors were  fed  into  a  TCSPC  board  (TimeHarp260,  Picoquant)  operating  in  the  time‐

tagged time‐resolved mode with 25 ps time resolution.  

Samples and sample preparation 

FCS experiments of concentrated BSA solutions were conducted by adding small amounts of 

commercially available, fluorescently labeled BSA (A34785, Thermo Fischer Scientific) to the 

unlabeled,  concentrated  solutions.  The  labeled  BSA molecules  carried  4‐5  AlexaFluor647 

dyes per molecule with a fluorescence lifetime of 1.2 ns. The total protein volume fractions 

were  determined  by  SAXS  experiments  (see  SI3).  For  FCS measurements  of  αBc we  took 

advantage  of  the  serendipitous  fluorescence  of  some  αBc molecules  in  the  solutions  as 

prepared for NMR or SAXS measurements, with a fluorescence  lifetime of 0.86 ns (see Fig. 

S4).  All  FCS measurements were  performed  at  a wavelength  of  638  nm with  excitation 

powers of 100 µW and 175 µW for BSA and αBc, respectively.  
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Cross‐correlation analysis 

All  detected  fluorescence  photons  were  sorted  with  respect  to  the  polarization  of  the 

excitation pulses and according to their relative polarization (see Fig. S4). While orthogonally 

polarized photons were discarded, the time series of the collinear polarized photons of the 

two  excitation  polarizations were  cross‐correlated,  leading  to  an  anti‐correlated  build‐up 

term  in  the  correlation  function  on  the  time  scale  of  rotational motion  and  a  correlated 

decay on longer times due to translational motion (see Fig. 1 in the main text). 

At small lag times τ, the characteristic time scale of rotation can be determined by a 

mono‐exponential fit  

ሺτሻܩ ൌ ଴ݕ െ ሼെሺτ	exp	ܣ െ   ,଴ሻ/τ୰ሽݐ     (S1) 

where ݕ଴	and ܣ are some amplitude factors, ݐ଴ is a system‐dependent time offset, and ߬௥ is 
the characteristic  time of  rotation. Following  the  fitting procedure as described  in  ref.  [7], 

combined correlation functions, ܩଶൈଵሺെτሻ and ܩଵൈଶሺτሻ	,	as displayed  in Fig. S5, were used 
to improve the fitting accuracy. The superscripts relate to the photons detected after pulse 1 

and 2 and denote the order of cross‐correlation. In order to minimize the statistical noise of 

G(τ) at  small  τ we  collected up  to 109   photons  for each measurement. The noise at high 

protein concentrations and  for αBc  is due  to high uncorrelated background scattering and 

the low quantum yield of the αBc fluorescence. 

The characteristic decay  time of  the  translational diffusion was determined at  long 

times by the fitting function  

ሺ߬ሻܩ ൌ ଵ

ே
ቀ1 ൅ ቀ ఛ

ఛీ
ቁ
௔
ቁ
ିଵ
ቀ1 ൅ ܵଶ ቀ ఛ

ఛీ
ቁ
௔
ቁ
ିଵ/ଶ

  ,      (S2) 

where ܵ and ܽ are  system parameters describing  the  shape of  the  focal volume, ܰ  is  the 
average number of labeled molecules in the focal volume, and D the average dwell time in 

the  focus,  being  related  to  the  inverse  translational  diffusion  coefficient.   ሺ߬ሻܩ was 
normalized  with  respect  to  the  average  number  of  molecules  in  the  focus  volume, 

Gn(t) = G()N.  In  our  study  we  used  D  as  a  relative  measure  without  the  attempt  to 

determine absolute diffusion coefficients. Control experiments with unbound dye molecules 

in  different  glycerol‐water  solutions  could  exclude  an  impact  of  the  slightly  increased 

refractive  index  at  higher  protein  concentration  on  the  determination  of  D  for  the 
investigated  concentration  range.  The  refractive  index  at  20  %  protein  concentration  is 

about 1.38. 
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Figure  S4:  Time‐correlated  single‐photon  counting  histograms  allow  one  to  sort  each  detected 

fluorescence  photon with  respect  to  the  polarization  of  the  excitation  pulse  (red/blue)  and with 

respect to its relative polarization compared to the polarization of the excitation pulse (collinear vs. 

orthogonal). For cross‐correlation analysis, only the photons collinear to the excitation polarization 

were used. The data set exemplarily displays the fluorescence emission of αBc. 

 

 

Figure  S5: Determination of  the  rotational diffusion  time  by  FCS: Normalized  correlation  function 

 ୬ሺ߬ሻ (blueܩ line and symbols) of αBc (left) and BSA (right) at different volume fractions. The mono‐

exponential  fitting  functions  (black  lines)  display  a  concentration  dependence  which  is  more 

pronounced for BSA than for αBc. Data sets were shifted vertically for clarity. 
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SI3: X‐ray scattering experiments 

SAXS  experiments  of  protein  solutions  were  conducted  using  mark  tubes  made  from 

borosilicate  glass  (diameter  1 mm, wall  thickness  10  µm, Hilgenberg GmbH)  and  using  a 

collimated X‐ray beam of a beam size of 500‐600 µm. The X‐ray beam was generated by an 

X‐ray source of rotating anode type with Cu target from Rigaku operated at 2.4 kW, and was 

combined with a confocal optics from Osmic to provide monochromatic Cu Kα radiation. The 

X‐ray  beam  was  collimated  by  a  system  of  three  pinholes.  The  flight  path  was  fully 

evacuated,  and  the  scattered  radiation  was  detected  by  a  Bruker  Hi‐Star  multiwire 

proportional chamber. The data were collected as frames of 1024 × 1024 pixels at one (αB‐

crystalline) or two (HEWL, BSA) distances to the detector  . The resulting accessible q‐range 

was 0.012 Å–1 < q < 0.14 Å–1 or 0.012 Å–1 < q < 0.5 Å–1, respectively, which was calibrated 

using reflections of silver behenate.  

After  subtraction  of  the  scattering  background  the  scattering  intensities  were 

normalized  according  to  the  protein  concentration,  see  Fig.  S6a.  The  form  factors were 

determined at  low concentrations (0.5‐2 vol%) and for HEWL and BSA with added salt (0.3‐

0.5  M  NaCl)  for  electrostatic  screening.  The  experimentally  determined  form  factor 

intensities were analyzed using a program provided by NIST [8]: The form factor of BSA could 

be  fitted  to the scattering  intensity of an oblate ellipsoid  [9]  (a=1.69≤0.02, b=c=4.56≤0.02 
nm),  HEWL  to  a  prolate  ellipsoid  [10]  (a=b=1.39≤0.01 nm,  c=2.44≤0.02  nm)  and  αB‐
crystalline to a Schulz distribution of spheres  [11] with an average radius of 5.86≤0.04 nm 

and a polydispersity of 0.15≤0.01. The structure factors were determined by division of the 

measured, background‐corrected and concentration‐normalized scattering intensity Iscat/c by 

the  concentration‐normalized  form  factor  intensity,  and were  likewise  analyzed using  the 

program available  from NIST  [8] via applying the  implemented  fitting protocols  for a hard‐

sphere,  screened‐Coulomb  and  two‐Yukawa  interaction  potential.  The  position  of  the 

maximum of  the structure  factor did not depend upon whether  the measured  intensity or 

the  fitting curve  for  the  form  factor was used  for  the calculation. An additional correction 

factor was finally used to address small concentration and/or volume uncertainties in a way 

that  the  structure  factor  at  high  q‐values  was  about  1.  Fig.  S6b  shows  the  determined 

structure factors exemplary for HEWL at different concentrations. 
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Figure S6: (a) Scattering intensities 

of  HEWL  at  different  volume 

fractions  and  experimental 

conditions. (b) The ellipsoidal fit to 

the  form  factor  (a=b=1.49≤0.01 
nm, c=2.44≤0.01 nm, black line) at 

a volume  fraction of 1% and after 

addition  of  salt  (0.3M  NaCl)  was 

used  to  derive  the  concentration 

dependent  structure  factors 

(colored and grey). 

 

SI4: Polydispersity and anisotropy effects in NMR relaxometry  

Effect of polydispersity (BSA) 

In our NMR relaxometry study [2], we analyzed the NMR data of BSA in two ways: (i) Using 

two components of mass fractions  MP  and  OP ,  M O 1P P  , accounting for monomers and 

the dispersion of oligomers, respectively, and  (ii) a single component reflecting the overall 

slow‐down of rotational diffusion of the polydisperse sample.  

Applying the model accounting  for monomers and oligomers, we defined the mean 

tumbling time 
*
r  in analogy to eq. (4) of the main paper as 

OM
*
r r,M r,O

1 PP
 

     ,          (S3) 

where  r,M   is  the  (standard)  rotational  correlation  of  monomers,  and  r,O   reflects  an 

average correlation time of the oligomers. Together with the apparent slow component of 

the  rotational  diffusion  [2],  the  overall  apparent  inverse  mean  tumbling  time,  again  in 

analogy to eq. (4) of the main article, reads 
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s s
*

r,ini r s

11 a a
 

      .                                                             (S4) 

The quantity defined in this way corresponds to the initial slope of the rotational correlation 

function, and is safely determined during data fitting. Yet, when neglecting the contribution 

of oligomers ( M 1P  ) during data analysis, the effective weighting of oligomers relative to 

monomers is uncertain, and biased absolute values are obtained. Both ways of analyzing the 

NMR relaxometry data, however, provide the same concentration dependence, see Fig. S7. 

The  concentration  dependence  is  crucial  when  judging  on  coupling  or  decoupling  of 

rotational diffusion from translation and viscosity. 

Regarding HEWL, neither  analysis of  the NMR  relaxometry data, nor  size‐exclusion 

chromatography  indicated  the  presence  of  oligomers.  HEWL  data  analysis  on  rotational 

diffusion thus solely relies on monomers plus the apparent  long tail of rotational diffusion. 

The NMR relaxometry data of αB‐crystallin report on the average rotational correlation time 

of the αB‐crystallin assemblies [6].   

Since HEWL is the only truly monodisperse protein in our study, one might tentatively 

take  this as  the origin of  its specific concentration behavior  in comparison  to BSA and αB‐
crystallin. However,  it has been shown that both mono‐ and polydisperse spherical colloids 

reveal  a  clear  decoupling  between  rotational  and  translational  diffusion  with  increasing 

concentration [12], such that polydispersity cannot explain our main findings.  

 

 

Figure S7: Normalized mean apparent tumbling times 

of  BSA  [2]  as  obtained  by  (i)  accounting  for 

monomers  and  oligomers  (filled  triangles),  and  (ii) 

fitting  the  data  with  a  single  component  (open 

triangles).  For  comparison,  the  concentration 

dependencies of the FCS rotational correlation times 

(squares)  and  that  of  short‐time  translational 

diffusion coefficients (circles) reported in ref. [13] are 

shown as well. The dashed line is a guide to the eye. 

In  the main  article,  the  fitting  result  of  the model 

including  oligomers  is  used,  as  this  fitting model  is 

physically more correct   
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Effect of shape anisotropy  

In general the shape of a protein differs  from that of a symmetric, spherical object.  In our 

NMR relaxometry study [2] providing the data presented  in the main article we assumed a 

spherically  symmetric  diffusion  tensor,  i.e.,  describing  the main  tumbling motion  of  the 

protein  (the  fast dominating  component of  the overall  rotational  correlation  function,  i.e. 

"normal"  Brownian  tumbling)  by  a  single  correlation  time.  As  described  below,  this 

simplification can be justified.  

As the simplest approximation accounting for a non‐spherical shape, the protein may 

be  described  by  an  axially  symmetric  ellipsoid,  going  along with  two  intrinsic  relaxation 

times,  τa  and  τb  for  rotation  about  the principal  axes a  and b,  respectively.  For  a prolate 

ellipsoid of  axis  ratio p < 1,  the  ratio    of  the  corresponding  rotational  correlation  times 

reads [14] 

a b

b a b

1 1

2

f

f f

 
      

  ,            (S5) 

where 

  
 
 

2

a 2

4 1

3 2

p
f

p s





     and    

 
 

4

b 2 2

4 1

3 (2 ) 2

p
f

p s p




 
  ,    (S6) 

and 

2 1/ 2
2 1/ 2 1 (1 )

2 (1 ) ln
p

s p
p

   
   

 
  .        (S7) 

The spectral density as resolved by NMR relaxometry than reads [15] 

1 1 2 2 3 3( ) ( ; ) ( ; ) ( ; )J c J c J c J          ,      (S8) 

and is composed of three mixed correlation times with regards to  a  and  b , 

   1 a 2 a 3 a, 6 5 , 3 2 1 ,                 (S9) 

with the amplitudes  jc  given by 

   22 2 2 4
1 2 33cos 1 4 , 3cos sin , 3sin 4 .c c c         (S10) 

Here,     is  the  angle  of  the  inter‐nuclear  vector with  the  principal  axis  of  the  diffusion 

tensor. Performing high‐field NMR studies, in which spectral resolution allows discriminating 

among different spin pairs, the  impact of an ellipsoidal shape can  indeed be resolved [16]. 

However,  as  we  rely  on  a  low‐field  NMR  signal,  only  an  integral  proton  signal  can  be 

analyzed. Under such circumstances, the effect of a non‐spherical shape of the protein is not 

as  evident  as  for  high‐field  NMR  measurements.  Here,  due  the  multitude  of  different 

orientations of the inter‐nuclear vector, we assume an isotropic distribution of  . Then,  
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j j

0

1

2

1/ 5 for 1

sin d 2 / 5 for 2

2 / 5 for 3

j

c c j

j




    
 


        (S11) 

and     

3

j j
j=1

( ) ( ; )J c J     .             (S12) 

As done in the main article, we define the mean rotational correlation time 
1

1/ r


  by the 

initial slope of the rotational auto‐correlation function, resulting in 

 1 1 1 1
r 1 2 31/ 0.2 0.4 0.4 2 / 3 a

                .    (S13) 

As	 αBc  oligomers  are  near‐spherical  in  shape,  their  data  analysis  can  safely  be 

performed using the simpler model of an isotropic object. For BSA and HEWL the axis ratio is 

p = 0.3 and p = 0.6, respectively. For such scenario, 
1 , 2  and  3  are still of the same order of 

magnitude (cf. Table S1). Since NMR relaxometry  is sensitive to  r  on a  logarithmic scale, 

the effect of shape anisotropy is thus negligible.  

To  demonstrate  the  negligible  contribution  of  an  ellipsoidal  shape  on  our  NMR 

relaxometry data analysis, relaxation times of HEWL were  fitted both by accounting  for  its 

ellipsoidal  shape, and by using  the simpler model of a  spherical object. As expected, both 

models provide within the experimental uncertainty the same results; see Table S2. For BSA, 

we refrained  from such an analysis since no  information on  the shape  (and distribution of 

sizes) of the oligomers are available.  

Given the increased extent of excluded‐volume effects at high protein concentration, 

one may wonder about the  impact of an ellipsoidal shape of the protein. Under crowding, 

rotation about the short principal axis can be considered to be more retarded than rotation 

about  the  long  axis.  In  particular,  the  slow  component  of  rotational  diffusion might  be 

considered  to originate  from  this  kind of  rotational  anisotropy,  i.e.,  it may be possible  to 

model it via an apparently large shape anisotropy.   

 

Table S1:  Impact of  the ellipsoidal  shape on  the  rotational  correlation  times entering  the  spectral 

density in NMR relaxometry. 

sample     1 a/    2 a/    3 a/   
1

r a1/


   

BSA (monomer)  2.31  1 0.82 0.53  0.70
HEWL  1.26  1 0.96 0.85  0.92
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Table S2: Fitting results for HEWL assuming a spherical object (S) as compared to fitting the same 

data using an ellipsoidal representation (E) of the protein. Data for (S) was directly taken from ref. 

[2]; data for (E) was obtained by a new analysis of the NMR relaxation times reported in ref. [2]. 

    tumbling motion     “long tail” of tumbling                 internal dynamics   

   c  

g/L 

r  

  ns 

rE  

kJ/mol 
sa  

s  

  ns 

SE  

kJ/mol 

int  

  ns 

2
intS   intE

 
kJ/mol 

(av)
HHK

109 s² 

S 

65  10.5±0.2  25±1  ≤0.003  ≥3000 54±2

2.3 

±0.1 

0.72  

± 0.01 
6±3 

6.1 

±0.1 

130  14.6±0.2  31±1  0.014±0.002 410±40 29±1

213  23.9±0.3  27±1  0.09±0.01 330±10 73±1

257  39.9±0.6  35±2  0.23±0.01 380±10 76±1

E 

65  10.5±0.1  24±1  ≤0.003  ≥3000 52±2

2.3 

±0.1 

0.72  

± 0.01 
9±1 

6.1 

±0.1 

130  16.6±0.1  31±1  0.013±0.001 450±30 28±1

213  23.6±0.3  27±1  0.093±0.009 330±10 73±1

257  39.3±0.6  37±1  0.22±0.01 390±10 75±1

 

To  investigate  this effect, we allowed  for an adjustable axis  ratio during  the  fitting 

procedure, with no additional account of the “long tail”  (i.e.,  s 0a  ). Such  fitting provides 

very  large  apparent  axis  ratios;  see  Table  S3.  Also  note  that  the  slow  component  of 

rotational diffusion already affects NMR relaxometry data analysis at 65 mg/ml HEWL, see 

ref.  [2] and Table S2. Fitting  the NMR  relaxation  times at  this concentration using a  freely 

adjustable apparent axis ratio, one observes an apparent axis ratio as large as 1:12 despite of 

the less pronounced excluded volume effect at this rather low concentration. Moreover, to 

compensate  for  the corresponding slow  rotation about  the short axis,  the  fit provides a r 
underestimated  by  50%  compared  to  the  expected  minimal  value  of 

r 0( ) 9 nsc     as 

estimated  from  Rh  =  19  Å  [17]. Given  the  unphysical  fitting  results  at  this  low  reference 

concentration, we  refrained  from  considering  this model, and  rely on modeling  the  “slow 

tail” of  rotational diffusion as described  in  the main  text.  It  is also noted  that  the overall 

fitting quality in terms of the normalized 2 is noticeably inferior (17% as compared 13% for 

the long‐tail model).   

 

Table S3: Fitting results for HEWL when using an adjustable axis ratio (during data fitting, the value of 

  was adjusted), without additional parametrization of the slow component. 

  tumbling motion  apparent ellipsoidal shape                   internal dynamics   

 c  

g/L 

1
1/ r


      

     ns 

rE  

kJ/mol 
              axis ratio  p   int   

  ns 

2
intS    

kJ/mol 

(av)
HHK  

109 s² 

65  6.0±0.1  30±1  13.0±0.4 ~ 1:12

2.1 
±0.1 

0.74 
 ± 0.01 

2 
±1 

5.9 
±0.1 

130  9.7±0.2  34±1  11.7±0.4 ~ 1:11

213  20.1±0.4  50±1  22.2±0.6 ~ 1:16

257  40.6±0.8  62±1  28.6±0.6 ~ 1:19

intE
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SI5: Size polydispersity effect on rotational diffusion of αB‐crystallin 

Given  a  polydisperse  sample,  FCS  and NMR  provide  different  kinds  of  averages  over  the 

ensemble. This effect leads to intrinsically different absolute values for the mean rotational 

correlation time.  

In  FCS,  rotational dynamics  is  resolved  via  the  initial  slope of  the  cross‐correlation 

function  n ( )G t . Consequently,  FCS provides  an  average over  inverse  individual  rotational 

correlation times, see also Fig. 1 of the main article and eq. (S3),  

11 3
r HFCS: 1/ 1/ R

    ,      (S14) 

which,  at  the  same  time,  conforms  to  eq.  (4)  of  the main  article.  Thus,  FCS  provides  a 

harmonic average and probes the mean inverse hydrodynamic volume of the protein. 

Rotational  dynamics  as  probed  by  NMR  relaxation  times  is  determined  by  the 

spectral density of motion, roughly   2
1,2,1 r r r( ) / 1 ( )R J        . Thus, NMR relaxo‐

metry provides not the harmonic average of the individual rotational correlation times but a 

quantity  close  to  the arithmetic average over  the  individual  correlation  times  themselves, 

unless  the  distribution  of  correlation  times  (going  along  with  a  multi‐component  data 

analysis) is not considered explicitly in the fit (as done for BSA, see SI4). Thus, we have 
3

r HNMR: R    .          (S15) 

NMR relaxometry thus probes, approximately, the mean hydrodynamic volume.  

Since 
1-3 3

H HR R

 , where  n n

H H H H0
( ) dR p R R R


  and p(RH)  is the distribution of 

hydrodynamic  radii  RH,  FCS  naturally  provides  a  smaller  value  of  the  mean  rotational 

correlation time as compared to NMR relaxometry. Specifically, assuming a  log‐normal size 

distribution of αBc, with Rh between 60 and 110 Å (full with at half maximum of about 50 Å), 

the  (small)  discrepancy  between  the  FCS‐  and NMR‐determined  correlation  times  can  be 

explained. Note that for BSA, our NMR relaxometry data allowed us to distinguish between 

monomers and oligomers (see SI4), such that a harmonic average could be re‐introduced, cf. 

eq. (S3).    
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SI6:  Absolute  values  of  NMR‐based  translational  and  rotational  diffusion 

coefficients, and extrapolation to zero concentration 

 

Figure  S8:  Absolute  translational  diffusion  coefficients  (a)  and  mean  tumbling  times  (b)  (solid 

symbols) at 20°C as measured by pulsed‐field gradient NMR and NMR relaxometry [2], respectively, 

together with their calculated (open symbols) or extrapolated (crossed filled symbols) value at zero 

concentration.  Polynomial  fits  of  second  order  (solid  lines)  can  be  used  for  extrapolation. 

Translational diffusion coefficients at zero concentration were estimated by the SE relation using the 

solvent (D2O) viscosity,  0 1.25 mPas  , and hydrodynamic radii of 95 Å [6], 34.4 Å (Monomer) [18] 

and 19 Å [17] for αBc, BSA and HEWL, respectively. The rotational correlation time of HEWL at c=0 

was  not  extrapolated  but  calculated  to  be  9  ns  using  the  SED  relation.    Absolute  values  of  the 

viscosity at 20°C are shown in (c).    
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SI7: Volume fractions and inter‐particle distances  

 

            sample   (steric)  Rcc / Å  Rcc / 2RH 

αBc 

(35±3) mg/ml 0.060±0.005 256±22 (a) 1.35±0.12 

(85±3) mg/ml 0.145±0.005 218±8 (a) 1.15±0.05 

(113±5) mg/ml 0.192±0.009 210±10 (a) 1.10±0.06 

(185±5) mg/ml 0.315±0.009 199±6 (a) 1.05±0.04 

BSA 

(65±5) mg/ml 0.048±0.004 104±19 (b) 1.51±0.28 

(130±5) mg/ml 0.096±0.004 87±13 (b)  1.26±0.19 

(208±5) mg/ml 0.153±0.004 77±10 (b) 1.12±0.15 

(255±5) mg/ml 0.187±0.004 73±9 (b) 1.06±0.13 

HEWL 

(65±5) mg/ml 0.046±0.003  64±3 (b) 1.68±0.08 

(130±5) mg/ml 0.091±0.003 49±3 (b) 1.29±0.08 

(213±5) mg/ml 0.150±0.003 42±3 (b) 1.11±0.08 

(257±5) mg/ml 0.180±0.003 40±2 (b) 1.05±0.05 

 

Table S4:  Steric  volume  fractions  and  inter‐molecular  (center‐to‐center) distances Rcc,  the  latter 

being also normalized to the hydrodynamic size RH of the molecule.   is calculated from the known 

specific  volumes   (1.7 ml/g  [19],  0.735 ml/g  [13]  and  0.702 ml/g  [20]  for  aBc,  BSA  and HEWL, 

respectively), and the center‐to center distance was either calculated (a) from the volume fraction in 

case of hard‐sphere behavior [21], or directly estimated (b) from the maximum of the SAXS structure 

factor, Rcc =2π/qmax. The hydrodynamic radii are 95 Å [6], 34.4 Å (Monomer) [18] and 19 Å [17] for 

αBc, BSA and HEWL, respectively. 
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