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Abstract 

Increasing complexity as well as continuous changes in the environment of production 
systems create challenges with regard to the development of systems and their 
architecture definition. To be able to pursue sustainable business models in the future, 
the architecture development process should be accompanied methodically and 
content wise. Especially in connection with the recurring definition of similar systems, 
reference architectures can make beneficial contributions. 

In literature, the use of reference architecture content is not sufficiently addressed in 
the available architecture frameworks that describe the procedure for developing a 
complex system. However, if an architecture framework is continuously applied 
considering a reference architecture, system architectures could be derived from a 
reference architecture more efficiently and effectively in the long run. 

Therefore, the goal of this thesis was to develop a concept for an architecture 
framework that enables the definition of system architecture descriptions based on a 
predefined reference architecture description. 

In the thesis, as an introduction, the state of the art for production systems 
engineering, architecture development, and the concept of architecture framework 
were considered. To verify the identified research gap, relevant architecture 
frameworks were evaluated with respect to the use of reference architectures. Based 
on these considerations, in a first step, the "Core Architecture Framework Concept" 
was developed, which supports the individual development of architecture 
descriptions during the basic and detailed engineering of production systems. The 
framework consists of a basic structure and methods for defining content for the step-
by-step creation of the architecture description. Based on the "Core Architecture 
Framework Concept", in a second step, a more advanced method was specified and 
developed, which takes into account the transition between reference and system 
architecture descriptions.  

These two concepts comprehensively form the "Architecture Framework Concept" for 
the definition of a system architecture description based on a reference architecture 
description. Concluding, the content used by the concept proposal was implemented 
prototypically in the modeling tool MagicDraw and the developed concept was 
successfully tested and evaluated by using a production system application example. 

As a result, it can be summarized that with consistent application of the developed 
"Architecture Framework Concept" a transition from reference architectures to system 
architectures is possible, whereby an increase in efficiency and effectiveness during 
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development of architecture description can be reached. Based on the developed 
“Architecture Framework Concept”, the operational use should be advanced in further 
research. 
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Kurzfassung 

Zunehmende Komplexität sowie kontinuierliche und schnelllebige Veränderungen im 
Umfeld von Produktionssystemen schaffen Herausforderungen hinsichtlich der 
Entwicklung von Systemen und deren Architekturdefinition. Um in Zukunft 
insbesondere nachhaltige Geschäftsmodelle verfolgen zu können, sollte der 
Architekturentwicklungsprozess noch methodischer und inhaltlicher begleitet werden. 
Gerade im Zusammenhang mit der wiederkehrenden Definition ähnlicher Systeme 
können Referenzarchitekturen sehr gute Beiträge leisten. 

In der Literatur wird die Verwendung von Referenzarchitekturinhalten in den 
verfügbaren Architekturframeworks, die das Vorgehen bei der Entwicklung komplexer 
Systeme beschreiben, nicht ausreichend adressiert, obwohl bei durchgängiger 
Anwendung eines Architekturframeworks Systemarchitekturen effizienter und 
effektiver aus einer Referenzarchitektur abzuleiten sind. 

Ziel dieser Arbeit war es daher, ein Konzept für ein Architekturframework zu 
entwickeln, das die Definition von Systemarchitekturbeschreibungen auf Basis einer 
vordefinierten Referenzarchitekturbeschreibung ermöglicht. 

In der Arbeit wurde einleitend der Stand der Technik für das Engineering von 
Produktionssystemen, die Architekturentwicklung und das Konzept des 
Architekturframeworks betrachtet. Um die erkannte Forschungslücke zu verifizieren, 
wurden zunächst relevante Architekturframeworks im Hinblick auf die Nutzung von 
Referenzarchitekturen evaluiert. Darauf aufbauend wurde in einem ersten Schritt das 
„Core Architecture Framework Concept" entwickelt, das die individuelle Entwicklung 
von Architekturbeschreibungen bei der Grobplanung von Produktionssystemen 
unterstützt. Dieses Framework besteht aus einer Grundstruktur und Methoden, mit 
denen Inhalte für die schrittweise Erstellung der Architekturbeschreibung definiert 
werden. Basierend auf dem „Core Architecture Framework Concept" wurde in einem 
zweiten Schritt eine weiterführende Methode spezifiziert und entwickelt, die den 
Übergang zwischen Referenz- und Systemarchitekturbeschreibung berücksichtigt. 
Diese beiden Konzepte bilden insgesamt das „Architecture Framework Concept" für 
die Definition einer Systemarchitekturbeschreibung auf Basis einer 
Referenzarchitekturbeschreibung. Die Inhalte des definierten Konzeptvorschlags 
wurden prototypisch im Modellierungswerkzeug MagicDraw umgesetzt und 
abschließend anhand eines einfachen Anwendungsbeispiels eines 
Produktionssystems erfolgreich getestet und evaluiert. 
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Als Ergebnis kann zusammengefasst werden, dass bei konsequenter Anwendung des 
entwickelten „Architecture Framework Concepts" ein Übergang von Referenz- 
architekturen zu Systemarchitekturen möglich wird, wodurch ein Mehrwert 
hinsichtlich Effizienz und Effektivität bei der Architekturerstellung erreicht werden 
kann. Damit wurde ein Beitrag für die zukünftige Entwicklung von Architecture 
Frameworks zur weiteren Steigerung der Effizienz beim Bau technischer Anlagen 
geschaffen.  
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Introduction – Motivation and Problem Context 
 

1 
 

1 Introduction – Motivation and Problem Context 

From its very beginnings the engineering of systems posed complex challenges, which 
have been met at the time by successful responses to these objections in the form of 
different practices and principles [1]. The challenges evolved over time due to 
increasing complexity [2] of the system of interest and its to be considered 
environment (e.g., because of an increasing number of system functions, components, 
and their interfaces as well as emerging non-linear interactions between these 
components [3]). The evolution of the systems engineering discipline is based on 
these practices and principles and will contribute to the ongoing development of 
systems engineering and in particular sub-disciplines like model-based systems 
engineering (MBSE) [1]. Main contributing factors to the current changes experienced 
in systems engineering can be divided in market-based changes and technological 
developments. Market-based changes include rising globalization [4], an increased 
number of competitors [5] and competitive market pressure [6], changed customer 
needs for high quality but individual systems [4, 7–9], and a continuous demographic 
change [4]. On the other hand, technological developments and trends such as 
Industry 4.0 (I4.0), cyber-physical systems (CPS), Internet of Things (IoT) [1], and, 
among others, related specific requests for adjustment of lot sizes (up to lot size 1) as 
well as the mass customization of products [10] trigger these changes. Ultimately, 
these changes will lead to an increasing complexity of the considered systems and 
place additional requirements on the design and operation of these systems [2, 3, 11–
13]. In addition to the increasing complexity, constant changes in the environment of 
a system, shorter life cycles, innovations with respect to processes and materials, 
advancing globalization and possibly distributed engineering efforts will lead to 
uncertainty, demands on both the development process and management of a system 
with respect to cost, quality and time, and on integration as well as control of the 
different life cycles, disciplines, stakeholders, projects, specific artifacts, and tools [1, 
5, 14–19]. Furthermore, challenges arise with respect to the topics of knowledge 
management and the reuse of existing solutions, which result from the dynamics and 
short life time of the system and its environment [17, 20], as well as from the 
complexity of work tasks and in part the requirements for the qualifications of the 
affected stakeholders and their workplaces [4]. The direction systems engineering is 
gravitating towards in the future is shaped by the global environment and its social 
and human needs, the related global trends, and the available technologies systems 
are realized upon [3]. Based on these effects the work environment in which systems 
engineering is practiced will change [3]. Environmental change and sustainability, 
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interdependent economies, and increasing globalization will more than ever foster the 
fact that the creation of systems has to be considered with respect to the global 
environment and its needs [3]. Over time standards and handbooks have emerged to 
channel knowledge and provide a basis for systems engineering within the different 
domains [3]. Depending on the application domain the discipline of systems 
engineering is applied differently [3] and is mostly dealing with domain depended 
challenges. When focusing on the manufacturing domain level and considering the 
engineering of production systems, main challenges are: 

 Alignment and evolvement of systems engineering with increasing system 
complexity [3]. 

 Establishment of a theoretical systems engineering foundation and structured 
procedure across different system types, industries, and organizations [3, 21]. 

 Enabling integration across involved disciplines and specialists, between 
development phases and engineering projects [3, 21]. 

In conclusion can be said that these changes affect a wide range of areas involved 
with systems engineering and pose challenges to systems, stakeholders, processes or 
organizations. 

 

Challenges not taken into account sufficiently will, among others, result in uncertainty 
or negative effects on the system and its performance, which might lead to necessary 
changes as well as additional expenses [15]. If those challenges are not addressed, 
for the most parts, the result will be a loss in reputation [18], and the goals set in 
development projects, such as time, costs and quality, will increasingly not be achieved 
to the planned extent [22]. Therefore, future engineering is forced to implement 
systems withstanding those challenges, which will require, among others, focusing on 
the implementation of systems meeting stakeholder needs (such as adaptability), 
integration of relevant stakeholders in business and value creation processes, efficient 
utilization of resources, and (ergonomic) design of systems and processes [10, 23, 24]. 
To comprehensively manage current and future challenges, approaches such as 
systems engineering and related disciplines like model-based systems engineering are 
needed [22], which focus on interdisciplinary and system comprehensive methods for 
the development of systems [16]. If this necessary shift is not processed seriously, the 
differences between established discipline-focused development methods and the 
required development methods will worsen due to the increasing complexity and make 
it much more difficult to engineer a system in the future [16]. 
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According to [3] by solving existing challenges, future system engineering will 

 have a broader scope of application domains in order to fulfill the growing 
demand of sustainable and globally competitive system solutions. 

 more comprehensively involve market as well as environmental and social 
demands in consideration for system life cycle decisions and long-term risks. 

 have a main role in integrating all relevant disciplines across different 
organizations, projects, and regions. 

 provide a more comprehensive theoretical foundation as well as model-based 
methods and tools, which will allow the relevant stakeholders involved in the 
systems engineering process to better understand increasing complexity and 
to make more comprehensive decisions in uncertain system environments. 

 be carried out by a wide range of professionals over different domains 
supported by an extensive knowledge infrastructure, methods, and toolsets. 

To transform the current status quo of systems engineering, the main challenges need 
to be assessed, possible solution approaches have to be defined, and implemented 
successfully [3]. This path must be followed jointly by different groups such as 
industry, government, and research in order to create a broader knowledge base and 
general understanding and recognition among the relevant stakeholders [3]. This is 
the necessary basis for successfully establishing competitive system engineering 
frameworks, model-based procedures, and tools [3]. These capabilities and 
knowledge will enable the ability to tackle newly occurring research challenges in a 
successful manner in the future [3]. 

 

The development and implementation of production systems requires the creation and 
use of system structures and documentation of relationships of elements of this 
structure. The latter demands engineering processes that are distributed across 
different disciplines as well as stakeholders and whose application becomes more 
difficult and complicated with increasing system complexity. While developing a 
system, different phases are run through, ranging from system design and creation of 
the architecture to domain-specific design and system integration [25]. The 
architecture and its description are an integral part of the engineering process and of 
importance, since these determine fundamental decisions in the early phases of the 
life cycle of a system, which are influencing the remainder of the system’s life cycle. 
Thus, the total life cycle costs of the system to be developed are affected in a great 
measure [18, 26]. An architecture may serve several purposes, such as re-using 
system elements, context definition, design guidance, and complexity handling [27]. In 
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general, different architecture types can be distinguished, for example, system 
architectures (SyA) and reference architectures (RA). Reference architectures can be 
used as a template for the definition of specific systems and can, among other things, 
reduce development risks and efforts, and increase effectiveness, quality, and reuse 
[28, 29]. The use of a reference architecture is creating positive impact and potential 
(competitive) advantages, among others, "[...] in environments with a high multiplicity 
factor, creating social, organizational, business, application and technical complexity" 
[29]. Most of the time, the application of a reference architecture is appropriate if many 
specific architectures for systems of a group/domain are to be continuously created 
and thus savings can be made cumulatively over several projects [28]. For the 
definition of both the reference architecture and the system architecture an 
architecture framework can be used. An architecture framework offers a basic 
structure in combination with associated methods and tools and describes a procedure 
how an architecture can be implemented and sustained in a certain domain [30, 31]. 
By using a reference architecture to define system architectures, the speed to market 
can be improved, the market price can be kept competitive, subcontracting and 
procurement can be made more efficient due to the standardized structure, expenses 
for integration and test can be reduced, and training, field support and maintenance 
can be improved [28]. To be able to achieve these advantages within architecture 
development existing changes and challenges in systems engineering must be 
addressed [3]. "For an efficient implementation of systems engineering not only the 
procedure itself is relevant but also key enablers like capable and effective tools, 
people, and processes" [2]. However, when looking at the relevant literature, it is 
noticeable that the terms coined are widely used and considered useful but are not 
sharply separated from each other. The existing approaches are mostly limited to 
general descriptions and well-known frameworks often focus on more abstract 
enterprise level architectures. On a specific level, it shows that there are hardly any 
concrete approaches considering the use of reference architectures for the derivation 
of system architecture descriptions in the area of discrete manufacturing. Based on 
that situation the following problem statement arises for this thesis. 

 

Problem Statement 
For the architectural considerations during the engineering of production systems, the 
architecture frameworks currently available do not satisfactorily describe the 
derivation of system architecture descriptions utilizing a suitable reference 
architecture description. 
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1.1 Research Objective and Scope 

In relation to the challenges and achievable benefits described in the previous section, 
a research hypothesis is formulated that describes the goal and focus of the thesis.  

 

Research Hypothesis 

By consistently applying a suitable architecture framework for production systems, 
system architectures can be derived from a reference architecture efficiently and 
effectively. 

 

In order to achieve this goal and to better position the architecture process in relation 
to the formulated challenges, the thesis deals specifically with the specification of 
such an architecture framework and how it can be used for the creation of discrete 
production system architectures based on a reference architecture. The stakeholders 
as a source of knowledge and creativity within an architecture process cannot and 
should not be replaced by a framework but support their work. In addition, it should be 
noted that a more holistic view of the entire organization concerned is likely to deliver 
better economic and strategic results in the long term. However, in the context of this 
thesis a more detailed scope is deliberately placed on the architectural considerations 
during systems engineering and the transition from reference to system architecture 
to therefore be able to develop a solution concept for this specific aspect and present 
it for discussion. If proven, the concept can be integrated into a more comprehensive 
architecture framework with a broader scope at a later point of time. Based on these 
criteria, the following research objective emerges for the thesis. 

 

Research Objective 

The main research goal is to develop an architecture framework that can be used to 
derive system architecture descriptions for production systems from predefined 
reference architecture descriptions. 

  



Introduction – Motivation and Problem Context 
 

6 
  

1.2 Thesis Outline 

Based on the defined problem as well as the research hypothesis and objective, the 
following outline results for this thesis. 

Chapter 1 examines the initial situation and frames the problem statement. Also, initial 
input for the following chapters was presented. 

In chapter 2 and 3 the current state of the art is considered, serving as a starting point 
for all further specifications and definitions made within this thesis. Chapter 2 implies 
the definition of relevant terms and serves as introduction into the world of systems 
engineering as well as into the subdiscipline of the architecture development (chapter 
3). Chapter 2 commences in defining the system concept, the system environment, 
and the system life cycle as the central starting point for the topic of systems 
engineering, which is subsequently described. A possible process for the development 
of such a system, the consideration of possible effects of systems engineering on the 
life cycle and the total costs of a system as well as the subdiscipline of model-based 
systems engineering conclude chapter 2.  

In chapter 3, this is followed by a general discussion of the architecture topic, the 
content and purpose of architectures, and a possible creation process. The two 
architecture types, system architecture and reference architecture, and their 
relationships to each other are described in more detail afterwards. Finally, the 
concept of architecture frameworks is discussed as well as the existence of available 
frameworks, which might be applicable for the utilization of reference architecture 
content to define system architectures, examined. 

Based on the state of the art, chapter 4 processes the research objective into more 
detailed research questions. 

Chapter 5 followingly deals with the specification of the architecture framework 
structure, the definition methodology of architecture content, as well as predefined 
architecture content types on the one hand. On the other hand, the methodology for 
the consideration of reference architecture content for the specification of specific 
system architecture descriptions is examined. 

The prototypical implementation of the framework in the form of a domain-specific 
language in a modeling tool as a model-based systems engineering approach is 
described in chapter 6. For evaluation and based on the findings of chapters 5 and 6, 
a prototypical application of the architecture framework for the derivation of a system 
architecture based on a reference architecture is presented in chapter 7 whilst 
discussing the results and relating them to the specified architecture framework.  
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Finally, chapter 8 concludes all findings with respect to the defined research questions 
and potential objectives for future research are named. An overview of the above 
defined structure and the described chapters are shown in Figure 1. 

 

 
Figure 1: Thesis outline 
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1.3 Link to Research Project Collaborative Embedded Systems 

The author of this thesis contributed as a part of Siemens AG - Corporate Technology 
to the research project CrESt- Collaborative Embedded Systems, which was funded by 
the German Federal Ministry of Education and Research, and that some of the 
knowledge gained during the work on the project was incorporated into this thesis. 
The research project CrESt, which had a duration of over 3 years, involved 23 partners 
from academia and industry with the goal of defining new development methodologies 
and techniques for collaborative embedded systems [32]. As a starting point of the 
project CrESt, the methods and tools created in the two predecessor projects 
"Software Platform Embedded Systems" (SPES 2020 [33]) and "Software Platform 
Embedded Systems_XT" (SPES_XT [34]) were utilized [32]. Those methods and tools 
have been developed to handle development process complexity to support the 
continuous model-based development of embedded systems [32]. 

The focus of the author's contribution was mainly on the contents of the first 
engineering challenge EC1 - flexible architectures and the utilized application scenario 
with respect to the adaptable and flexible factory. The structure of the project and its 
main research topics are shown in Figure 2. Results of the research project have been 
published in the book "Model-Based Engineering of Collaborative Embedded Systems 
- Extensions of the SPES Methodology" [35]. For the evaluation of the specified 
architecture framework one of the project demonstrators as an example for a specific 
system (An architecture viewpoint describes a “work product establishing the 
conventions for the construction, interpretation and use of architecture views to frame 
specific system concerns.” [30], see section 1.4) as well as a in the book specified 
reference architecture is used (see section 7.2). 

 
Figure 2: Structure of research project CrESt (adapted from [32]) 
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1.4 Production System Application Example 

As a continuous application example throughout this thesis a demonstrator applied 
within the previously described research project CrESt will be used to practically 
explain different theoretical approaches and methods. Subsequently, the model is 
used for the concluding evaluation of the specified architecture framework concept. A 
CAD-model (computer-aided design) as well as the real-life implementation of the 
production system application example are shown in Figure 3 and in Figure 4. 

 

 
Figure 3: CAD-model of production system application example [36] 

 
Figure 4: Production system application example (adapted from [36]) 
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The goal of using a simplified model of a production system in the context of this thesis 
is to represent complex and/or abstract concepts and relationships of a system, with 
the purpose to convey them in a comprehensible and understandable way. The utilized 
example embodies a simplified model of a production system for the discrete 
manufacturing of cylinder heads. A cylinder head sits on an engine block and is an 
integral part of the overall engine structure, for example, in passenger cars. In general, 
a product is, as the “result of a process” [37], created by a “set of interrelated or 
interacting activities that transforms inputs into outputs”[37]. In case of the production 
system application example, the process of manufacturing and the cylinder head, both 
are described in more detail in the following. The product “cylinder head” and its 
production process are shown in Figure 5. 

 

 
Figure 5: Simplified representation of cylinder head manufacturing process 

The manufacturing of the cylinder head is divided into five work steps, which are 
mimicked by the production system application example. In a first step, starting with 
the basic shaping of a cylinder head, the contour of the cylinder head is milled from 
raw material (e.g., aluminum). In a second step, the corresponding inlet and outlet 
ducts and the valve holes are milled/drilled into the cylinder head blank. After shaping 
is complete, functional surfaces on the cylinder head are machined (e.g., by grinding) 
and the entire cylinder head is finished (e.g., by polishing). After machining, the 
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cylinder head is inspected for specified surface quality, dimensional accuracy, and 
tolerances. In the event of an unsatisfactory result, a decision must be made whether 
the product can be revised or must be declared as scrap material. This is assessed 
after each work step. After successfully checking the quality, in the test assembly step, 
the valve guides will be fitted to the milled valve holes and the valves and valves 
springs will be installed and held in place by the valve spring retainers. The result of 
this manufacturing process is represented by the finished and test wise assembled 
cylinder head. Further steps such as engine construction are not considered in this 
example. In addition, it shall be assumed that the cylinder head will not be cast but 
milled and that it only holds valves, valve guides, valve springs, and valve spring 
retainers. It is agreed on that the production steps are sufficient for the manufacturing 
of a cylinder head. In order to produce a cylinder head, an adequate production system 
for its manufacturing as well as related stakeholders1 and resources2 are needed. With 
respect to the manufacturing of cylinder heads such stakeholders are, for example, the 
operator of the system, or engineers involved with health & safety or the maintenance 
of the system. The production system itself is shown in Figure 4 and represents 
different components utilized for the manufacturing process of the cylinder heads. The 
production system application example can be divided into the control related hard 
and software (1), transportation systems (2), manufacturing systems (3), and 
infrastructure (4). The cylinder heads are represented by cubes (5). The production 
system itself is controlled by the operator via a corresponding interface and associated 
hard and software. The necessary signals are forwarded to a PLC (programmable logic 
controller) that is connected to the model and processes the available input and output 
signals. The five processing stations for the production of cylinder heads are 
connected by different transport systems (e.g., gantry crane, conveyor belt, and robot). 
The system connects to and utilizes the available physical infrastructure. After the 
manufacturing process has been triggered by the operator the resources, later 
semifinished, and finished products, represented by coded blocks, are transported to 
and between the different processing stations. in the example Those stations emulate 
the process required for the production of cylinder heads, which is shown in Figure 5. 

 
1 The term stakeholder describes an individual person or group of persons who have one or 
more concerns about the system of interest and an interest in the system meeting the needs 
and goals of that person or group [38, 39]. 
2 Resources describe an "asset that is utilized or consumed during the execution of a process" 
[8]. The resources include, for example, “funding, personnel, facilities, capital equipment, tools, 
and utilities such as power, water, fuel and communication infrastructures” [37]. 
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In addition, information on the utilized production system application example can be 
found in [36] and [40]. 

 

The presented example will be used throughout the thesis and explanations related to 
the model described above are symbolized by double-framed boxes. Such examples 
can be found, among others, in Figure 10 and Figure 24. 

 

Example 
Descriptive explanation of thesis content with respect to the introduced production system 
application example. 
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2 Engineering of Production Systems 

Within this chapter the discipline and objectives of engineering, the system topic itself, 
as well as related terms and relations will be introduced and specified to create a 
foundation for the introduction of the developed architecture framework. As this thesis 
is focused on the definition of an architecture framework mainly considering the 
specification of system architectures based on reference architectures, in section 2.1 
the term system and directly related terms will be defined. Section 2.2 will provide an 
overview of the typical life cycle of a system and will lead into the topic of systems 
engineering (see section 2.3). The state of the art with respect to the topics 
architecture framework, system as well as reference architecture will be introduced in 
chapter 3. Figure 6 gives an overview on the content of the following section. 

 

 
Figure 6: Overview of content of section 2.1 and section 2.2  

 

2.1 Term System and Related Concepts 

As the term system represents a reoccurring term in this thesis and is often understood 
differently within research and society, in the following, definitions from different 
authors are examined and a concluding definition of the term system will be given. In 
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addition, the structure of a system and its surroundings will be discussed. The goal of 
describing a system, its internal structure and related surroundings aids the purpose 
to create a clear definition of the system concept and its use in the context of this 
work. 

 

2.1.1 Definition of Term System 

As the characterizations of the term system are manifold, the full definitions 
considered in the following are given in the annex in Table 8. Those definitions are 
mainly based on sources with relations to the topic of systems engineering, which is 
the core field of consideration within this research. Based on the most important 
aspects of the applied definitions and their representation within the available 
definitions it is determined if an enhanced definition is needed or if an existing 
definition can be used within this thesis. 

When analyzing the introduced definitions, first and foremost it can be stated that the 
contents of the individual definitions do not contradict or mutually exclude each other. 
In fact, the analysis shows that two key statements can be found in almost all 
definitions. Dependent on the definition those two statements are detailed by more 
specific descriptions. 

(1) A system consists of an integrated, interoperable and interacting set of 
elements [26, 37, 38, 41–47]. A single element is part of the set of elements, 
which constitutes a system [37]. Those elements represent, for example, 
equipment, facilities, personnel, and services [26, 37, 42–44]. The term 
“integrated” describes a considered system being assembled out of different 
elements (e.g., subsystems or assemblies [26]), which form a certain structure 
[38, 46]. These elements within the system must fit together (interoperable) in 
order to achieve the stated purpose of the system [46]. By interaction between 
the elements a system adds value, which cannot be achieved by a single 
element [43, 44]. 

(2) A system achieves a specified objective /need [26, 37, 38, 42, 43, 45, 46]. The 
system provides products and services in order to achieve an objective / need 
specified by users and stakeholders [30, 38]. 

The above specified statements can be considered as the bare minimum for a 
definition of a system. In addition to those two main statements the different 
definitions highlight specific other sub-facts. One fact, which is mentioned repeatedly 
is the systems environment. 
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(3) A system operates in a dedicated environment [30, 37, 46]. This suggests that 
every system is defined with a concrete application in mind and in order to 
achieve its objectives in that specified environment. 

 

As a summary it can be stated the definitions given in Table 8 provide several common 
main points with respect to the term “system”. Some of the definitions nearly include 
all contents, but do not capture all aspects in detail. Therefore, based on the common 
aspects a definition of the term “system”, which will be used within this thesis, will be 
given below. 

 

System 

A system consists of a fitting set of interacting elements which form a certain structure 
and are composed to achieve a stated purpose and goal within a defined specific 
environment. 

 

In order to put the terms within the definition into more perspective, system of interest, 
system structure, and system environment will be described below. Their 
dependencies among each other are summarized in Figure 7 to Figure 9. 

 

System of Interest (SoI) 

A system of interest describes a system which is in the focus of consideration within 
e.g., a design/engineering process. During the engineering phase the term system of 
interest (SoI) refers to the considered system, which has to be developed. In literature 
the term is defined as follows. 

 

System of Interest 

The system of interest describes one specific system and its life cycle as well as 
architecture considered during the process of preparing a description of the 
architecture of the system [30, 37]. 

 

In terms of system architecture and reference architecture considerations it is 
assumed that there is only one system of interest being regarded. For the reference 
architecture it is further assumed that the system of interest represents the 
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requirements and characteristics of all systems in the considered group of systems 
(see sections 3.2 und 3.3). 

The definition of a system of interest allows a better distinction between components 
of the system and their system structure from the surrounding system environment. 
The distinction between the terms and a definition is given in the following paragraphs. 

 

2.1.2 System Structure 

As specified within the definition of the term system, the elements of a system form a 
certain structure to achieve a stated purpose. That hierarchical classification of system 
elements is done and worded differently with its individual downsides and benefits 
within the different definitions; for example, elements, subsystems, or assemblies [26]. 
In order to obtain a consistent wording within this thesis, the concept defined in 
ISO/IEC/IEEE 15288 [37] will be shortly described below and used within the following 
chapters. 

 

The relations between a related set of interacting elements and the considered system 
can be displayed in their hierarchy [37]. Within the structure, the elements are 
classified into different levels [41]. Each system has zero or more subordinate system 
elements, but every system element has at least one superordinate system (see Figure 
7) [41]. The subordinated system elements represent architectural elements of a 
larger system [38]. 

 

 
Figure 7: General structure of a system (adapted from [37]) 

For a holistic representation of a more complex system of interest, on a subordinate 
hierarchy level, a system element can also represent a system with its own 
subordinated system elements [37]. This hierarchical concept can be utilized on the 
different hierarchical level in order to fully represent the considered system of interest 
as shown in Figure 8.  
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Figure 8: Representation of system of interest structure (adapted from [37]) 

The hierarchy within a system that is created by structuring is divided into several 
levels, as shown in Figure 8. The representation of the system is thus detailed through 
the different levels, starting at the top with the lowest level of detail to the bottom with 
the highest level of detail. These levels are referred to as levels of granularity. 
Granularity describes the condition, e.g. of a system, to be composed of many 
interrelated elements [48]. The distinction of different levels of granularity contributes 
to an easier decomposition of a system into its structurally related elements. This 
allows, for example, the decomposition of complex systems into smaller, less complex 
structures, which in case of systems engineering is a key concept [49]. In summary, 
the term granularity can be defined and used as follows. 

 

Granularity 

“The level of detail considered in a model or decision-making process. The greater the 
granularity, the deeper the level of detail. Granularity is usually used to characterize 
the scale or level of detail in a set of data” [50]. 

 

2.1.3 System Environment 

Depending on the literature, different terms are used synonymously to describe 
elements outside the system boundaries. Since most of the literature shares the same 
ideas but uses different terminology, a clear allocation of definitions to terms 
describing the outsides of the system boundaries is necessary. Therefore, the terms 
environment, (system) context, and surroundings are introduced and described. 

The term environment is often used synonymously with the term system context, e.g. 
in [30]. However, this assignment is not quite sufficient as, from the authors point of 
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view, the two terms describe different contents. Therefore, within this thesis the 
environment of a system includes all elements outside the system boundary. This 
implies, that elements which are not relevant for the definition of the system are 
included as well. This concludes in the environment representing the entirety of 
context (relevant content) and surroundings (irrelevant remaining content). 
Environment is regarded as follows. 

 

Environment 
The environment of a system considers all elements outside the defined boundary of 
the system of interest. Therefore, the environment includes relevant and irrelevant 
elements with respect to the definition of the system of interest. Elements of the 
environment might be connected by relationships among each other and to the system 
of interest. 

 

The context of a considered system represents elements which do not belong to the 
system itself, but do have a relationship and interactions with the system [26]. These 
context elements can represent, for example, systems, stakeholders, and 
environmental effects. The context and the system of interest are separated by a 
system boundary [26] and connected by their touchpoints or in the following named 
as interfaces. The system boundary defines which elements are considered as the 
system of interest [26]. For the later consideration of reference and system 
architectures, it should be noted, that the defined context boundary and thus the 
indirect determination of the content of the system contributes to the determination 
of the abstraction level of the system of interest (see section 0). The term (system) 
context is defined as follows. 

 

(System) Context 

The (system) context is “[…] determining the setting and circumstances of all 
influences upon a system” [30]. 

 

As mentioned above within the environment of the system, a differentiation between 
the relevant context and irrelevant surroundings has to be made. This is important in 
order to fully describe the context of the system of interest. The context and 
surroundings are separated by the context boundary. The term surroundings is defined 
below. 
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Surroundings 

The surroundings describe the elements within a system environment, which are not 
relevant for the definition of the system and do not have any relationship to the system 
of interest. 

 

The clear definition of boundaries and interactions is very important for the later 
engineering of a system. In order to clearly distinguish what needs to be considered to 
obtain a suitable system design which can fulfill the planned purposes/goals and 
provide benefits for its stakeholders, the mutual dependencies have to be known. The 
terms, concepts, and their relationships as introduced above are depicted in Figure 9. 
The graphic shows the system of interest with its defined structure, as well as the 
shifting interface boundaries (dashed line) between system of interest, context, and 
surroundings. The boundaries change according to their dependency on the 
application example considered. 

 

 
Figure 9: Dependencies between system and context - adapted from [26, 37, 46] 
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Production System Application Example 
With regard to the concepts "system", "system structure", and "system environment", it can be 
stated that the cylinder head manufacturing system represents the system of interest in this 
thesis. As described, the system consists of different elements, which themselves embody a 
system on a more detailed granularity layer. In concrete terms, this implies that the cylinder 
head manufacturing system consists of elements such as "control related hard and software", 
"transportation system", "manufacturing system", and "infrastructure". On a more detailed 
granularity layer the element "manufacturing system" represents an independent system, 
which in turn again consist of elements like milling system, grinding system, quality assurance 
system, and assembly system. 

The system of interest then delimits itself to its relevant context and defines relevant points of 
contact between itself and elements of the context. The context includes elements like storage 
or the order processing. This means, for example, that the actual handling of order processes 
is not part of the system of interest but that it influences the system of interest in the form of 
the required manufacturing process and the product needed to fulfill specified orders. Those 
influences shall be taken into account in the form of, for example, requirements. Surroundings 
include the elements existing in the environment of the system of interest, but the latter have 
no influence on the cylinder head production and can thus be neglected. These elements 
include, for example, other production lines in the plant or the workers’ social area. 

 

 
Figure 10: Production system application example – system structure and environment 
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2.2 Life Cycle of a Production System 

After introducing the term system, the general structure, and relationships within the 
system and between the contained elements, the goal of this section is to introduce 
the different stages and relationships a system is going through in its lifetime. In 
addition, considering the focus of this thesis, the relevant processes during the 
technical focus of the engineering of a system are presented. The purpose of the 
section is to develop a better understanding of the system and its life cycle phases as 
well as the early development phases of a system, as these outline the relevant 
content for the architecture framework presented later. 

 

2.2.1 System Life Cycle Definition 

In Fairlay, Forsberg et al. [51] and within ISO/IEC/IEEE 24748-1:2018 [52] is argued, 
that despite the different variants of system origins, all systems go through a basic 
essential set of characteristic life cycle phases during their existence. Generally 
speaking, each system exists for a defined period of time. This period of time can be 
longer or shorter depending on the system of interest. The period begins with the first 
appearance of the system and ends with its dissolution. The time span is called system 
life cycle. In the following, general definitions of the terms life cycle and life cycle 
model are given. 

 

Life Cycle 

A life cycle defines an “evolution of a system, product, service, project or other human-
made entity from conception through retirement” [37]. 

 

Life Cycle Model 

A life cycle model is a “framework of processes and activities concerned with the life 
cycle that may be organized into stages, which also acts as a common reference for 
communication and understanding” [37]. 

 

In literature different concepts are used to describe the life cycle of a system. This is 
mainly due to the nature of the system, its use and purpose for which the life cycle 
concept was derived [52]. A detailed overview and further documentation of different 
life cycle concepts, e.g. the NASA Project Life Cycle [43] and US Department of 
Defense Acquisition Process [42, 53], is shown in [26] and was derived from [54]. With 
respect to the topic of this thesis and according to ISO/IEC/IEEE standards 42010 [30], 
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12207 [55], and 15288 [37] there are also a life cycle and processes for architectural 
design with respect to software and systems engineering. The well-known INCOSE 
Systems Engineering Handbook [26] also utilizes the life cycle of ISO/IEC/IEEE 15288-
2015. Both ISO/IEC/IEEE 12207-2017 and ISO/IEC/IEEE 15288-2015 refer to the life 
cycle and associated life cycle model of ISO/IEC/IEEE 24748-1:2018 [52]. Therefore, 
and with respect to the considered topics in this thesis the life cycle concept of the 
ISO/IEC /IEEE 24748-1:2018 standard, which is recognized and widely used in science 
and industry, will be used as the basis for all further considerations regarding the 
system life cycle. 

In accordance to ISO/IEC/IEEE 24748-1:2018, systems pass through various stages 
during their lifetime in which they are conceptualized, developed, produced, utilized, 
supported, and finally retired [52]. This transition is depicted in Figure 11, which 
represents the life cycle model and the six life cycle stages of a system of interest. The 
interfaces between the dependent and overlapping individual stages represent the 
points at which it is decided whether or not the system is in a state to transfer to a 
subsequent stage [52]. The use of a life cycle model, the associated testing, and step-
by-step progression through the stages reduce the risk of incomplete progress and the 
emergence of inconsistencies while simultaneously mapping the actual progress, 
which can help relevant stakeholders to maintain an overview in large frameworks and 
to make important economic decisions [52]. It should also be noted that the uniform 
presentation of the individual stages in Figure 11 does not indicate the actual effort 
and time required to complete a stage [52]. The system transfers through the 
individual stages triggered by different actions in its individual stages, which are 
committed by stakeholders within the respective phases [52]. 

 

 
Figure 11: System life cycle model adapted from ISO/IEC/IEEE 24748-1:2018 [52] 
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Concept 
The concept stage begins with the identification of an initial need or requirement. To 
satisfy the discovered need/requirement, various options are developed and analyzed. 
Ideally, initial requirements and feasibility studies for the system of interest are carried 
out in the concept phase. On the basis of these results, it is decided whether a 
development of the system is pursued further. The purpose of the concept stage is to 
examine different business models and concepts, find stakeholder needs, propose 
possible solutions, and define initial requirements. [52] 

 
Development 
In the development phase the requirements for the system of interest and all related 
elements are detailed and specified. During this detailing process, constraints on the 
design of the system from stakeholder of other stages are also collected and included. 
Finally, feedback is gathered from relevant stakeholders, e.g., those who produce or 
operate the system. The result is a final system of interest with all relevant 
documentation. The purpose of the development stage is to define the system of 
interest, to refine and finalize the requirements for the system, to create a solution 
description, to build the system prototypically, and to verify and validate it. [52] 

 

Production 
In the production stage, the final concept for the system to be produced is approved 
and then individually manufactured, assembled, incorporated into the existing 
environment, and tested. The production stage can extend over the rest of the system 
life cycle due to e.g., improvement measures or redesign. During the production stage 
the purpose is to manufacture, inspect, and test the designed system. [52] 

 

Utilization 
The utilization stage begins after the system is commissioned and describes the period 
of time during which the system is used in its intended environment to provide 
products and services to meet existing needs. In this stage, the focus is primarily on 
continuous and cost-efficient operation. The stage ends with the transition of the 
system into decommissioning. During the utilization stage, products and services can 
evolve, which can then impact the system and its environment. The purpose of the 
utilization stage is to operate the system to produce the desired product, to offer a 
service to fulfill the customers' needs, or to foster effectiveness of operations. [52] 



Engineering of Production Systems 
 

24 
  

Support  
On the one hand, the support stage deals with maintenance, logistics, and other 
support processes for the system of interest. On the other hand, it also deals with all 
processes and services that, for example, monitor the support systems themselves. 
This results in tasks related to e.g., maintenance or improvements. Depending on the 
further development of the system of interest the support systems may also have to 
change during its life cycle. The purpose of the support stage is to promote logistic 
process flows, maintenance and support measures to ensure the continuous operation 
of the system of interest and to provide sustainable system capabilities and services. 
[52] 

 

Retirement 
The retirement stage deals with the retirement of the system of interest and also 
includes all related systems and services that supported the system of interest during 
its operation. In addition, disposal is also carried out during the stage. The purpose of 
the retirement stage is to support the archiving and/or the dismantling of the system 
of interest and all support systems as well as support services. [52] 

 

2.2.2 System Life Cycle Processes 

The life cycle concept of standard ISO/IEC/IEEE 24748 as described above is 
enhanced in standard ISO/IEC/IEEE 15288 by relevant processes that arise in the 
course of a system's life. These processes are clustered into four different groups. 
Those four groups are (1) the agreement processes, (2) organizational project enabling 
processes, (3) technical management processes, and (4) technical processes [37]. An 
overview of the groups and contained processes is shown in Figure 12. All the shown 
processes are of equal importance for a holistic consideration of a system of interest 
along its life cycle. All the processes are documented in more detail in [37]. However, 
given the focus of this thesis, only the technical processes of basic engineering and 
partly of the detailed engineering will be described in more detail, as these are mainly 
relevant for the creation of architectures, as described in chapter 3. 
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Figure 12: Typical processes within system life cycle - adapted from [37] 

In the business and mission analysis process the main business or mission problem 
and the associated problem space are defined, the solution space is characterized, 
and, if possible, initial general solution ideas are derived. Building on this process, the 
stakeholder needs and requirements definition process defines all stakeholders and 
associated requirements, taking into account the context of the system of interest. 
Based on these requirements needed by the users within the defined environment, the 
system is later designed to ensure that all capabilities are available. In the next process 
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step, namely the system requirements definition process, the user requirements are 
transformed into measurable system specific requirements. The purpose of the 
architecture definition process is to define and determine possible architectural 
solutions that meet the defined requirements of the system of interest best and 
ultimately the needs of the users. In this process step, iterations are often performed 
between the previous processes and the subsequent design definition process. The 
results of the architecture definition process are used throughout the whole life cycle 
of the system. The design definition process represents the transition between basic 
and detailed engineering and is thus the last process considered here. Within the 
process the focus is on detailing system elements of the architecture to enable the 
later implementation of the system. [37] 

The processes described above can be mapped very well to the two life cycle stages 
concept and development and thus delimit the main focus of this work. The described 
technical processes and associated stages are mainly used in the engineering of a 
system. For this reason, the following section takes a closer look at the engineering of 
a system during these life cycle stages and examines how engineering affects the life 
cycle of a system. 
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2.3 Systems Engineering  

This section takes a closer look at the topic of systems engineering and introduces the 
connection point between the development of a system and the creation of an 
architecture. As a starting point, in section 2.3.1, the terms engineering and systems 
engineering (SE) will be defined. Based on these definitions, typical challenges in the 
context of (systems) engineering are described (section 2.3.2). Within sections 2.3.3 
and 2.3.4, the process of systems engineering and the impact of systems engineering 
in the life cycle of a system as well as its effects on it are characterized. Finally, the 
sub-discipline model-based systems engineering and its importance as well as 
advantages for the definition of complex systems are discussed in section 2.3.5. An 
overview of the described contents is shown in Figure 13. The goal of this segment is 
to elaborate on the tasks of systems engineering and its effects, with the purpose of 
emphasizing the importance of the role of engineering within the life cycle of a system 
and with respect to the architecture of such a system. In addition to the following, 
condensed introduction to the topic of (systems) engineering, reference may be made 
to relevant technical literature and standards, such as INCOSE Systems Engineering 
Handbook [26], or ISO/IEC/IEEE 24748 [52], 3695 [56], or 42010 [30]. These sources 
can be used for a more in-depth introduction to the topic. 

 

 
Figure 13: Overview of systems engineering state of the art 
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2.3.1 Systems Engineering Definition 

In the following, the term systems engineering is introduced. As a starting point, and 
because of the interrelation to the concept of engineering, the latter will be closer 
examined. Based on that definition the term systems engineering is specified. 

Following different literary approaches several definitions for the term engineering can 
be found. A detailed and comprehensive description of the term engineering is coined 
by the Engineers Council for Professional Development [57], specifying the term as 
"scientific principles to design or develop structures, machines, apparatus, or 
manufacturing processes, or works utilizing them singly or in combination; or to 
construct or operate the same with full cognizance of their design; or to forecast their 
behavior under specific operating conditions; all as respects an intended function, 
economics of operation and safety to life and property"[57]. The Institute of Electrical 
and Electronics Engineers (IEEE) defines engineering as “[the] application of a 
systematic, disciplined, quantifiable approach to structures, machines, products, 
systems, or processes” [41]. The IEEE definition is a simplified formulation of the 
Engineers Council for Professional Development definition. Although not all aspects 
are considered, the definition is easier to understand and sufficient for the purpose of 
the general explanation of the term in the context of this work. Therefore, the definition 
of the IEEE is considered relevant in the following. 

 

Engineering 

“The application of a systematic, disciplined, quantifiable approach to structures, 
machines, products, systems, or processes” [41]. 

 

The superordinate discipline of engineering can be divided into different subdisciplines 
based on their specific focus [21]. That means, for example, software engineering 
focuses on software systems and manufacturing engineering on factories [21]. Some 
Engineering disciplines inherit special roles, for example quality and safety 
engineering, as their focus can be relevant in different systems (e.g., software systems 
and factories) [21]. Since the focus of this work is on engineering and, in particular, on 
the creation of architectural descriptions of complex production systems, this chapter 
focuses on systems engineering and the sub-discipline of model-based systems 
engineering. The following chapter will be considering the discipline of architecting. 
Therefore, no other subdisciplines of engineering are further examined or the 
dependencies among themselves considered. 
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Following [2, 21, 22, 37, 58, 59] systems engineering (SE) can be defined as 
interdisciplinary and integrative approach for successfully enabling realization, use, 
and retirement of complex systems in their entirety within their life cycle. The task is 
to make the development process as effective and efficient as possible in order to 
achieve a high quality of results at reasonable costs [22]. In addition to the procedure 
itself, within systems engineering a special focus is placed on enablers such as 
methods, structured tools, processes, and people [2, 21]. Due to this holistic system 
consideration, system engineering also focuses strongly on the consideration and 
integration of the different disciplines, projects, and domains involved in the enabling 
of complex systems with the goal to improve communication and cooperation among 
the various parties, to ensure a successful realization, use, and retirement of a complex 
system [37, 58, 59]. The definition of Systems Engineering by the International Council 
on Systems Engineering (INCOSE) summarizes all relevant main aspects described 
above and is applied in the remainder of this thesis. 

 

Systems Engineering (SE) 

“Systems Engineering is a transdisciplinary and integrative approach to enable the 
successful realization, use, and retirement of engineered systems, using systems 
principles and concepts, and scientific, technological, and management methods” [58]. 

 

Systems engineering can only be carried out in an efficient and effective manner if the 
organization and all relevant stakeholders consider SE as useful and beneficial. In 
order to use SE properly within an organization, among others things, communication 
on SE benefits needs to be improved, SE has to be integrated into projects, needs all 
relevant authority and management commitment, as well as alignment of SE-related 
functions across supply chain and the organization [18]. 

For completeness it should be mentioned that the application and research in the field 
of systems engineering has led to the establishment of different and partly overlapping 
norms and standards over time [60]. These consider a variety of different aspects and 
are not further detailed in the context of this work. An overview of the most important 
norms and standards is presented in [60] and [16]. 

In addition should also be mentioned that in comparison to traditional systems 
engineering processes/procedures presented in the following sections, the topic of 
agile systems engineering is increasingly being considered in industry and research. 
Since that topic is a separate area of research with its individual advantages and 
challenges, it is mentioned in the context of the state of the art of engineering for the 
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sake of completeness, but not considered in more detail. Sources regarding agile 
engineering are manifold and include, for example, [15, 61–63]. 

 

2.3.2 Systems Engineering Challenges 

Currently the domain of systems engineering is undergoing another significant phase 
of change, posing a wide variety of challenges for people and machines. Known 
challenges, which have already been overcome are described in [1]. Main contributors 
to the current shift taking place in systems engineering are market-based changes 
such as rising globalization [4], an increased number of competitors [5], changed 
customer needs for high quality but individual systems [4, 7, 8], and a continuous 
demographic change [4]. In addition to market changes major factors triggering 
change are technological developments/trends such as Industry 4.0 (I4.0), cyber-
physical systems (CPS), and Internet of Things (IoT) [1], as well as global challenges 
in highly regarded areas such as healthcare [15]. These abstract changes are reflected 
in concrete problems such as adjustment of lot sizes (up to lot size 1) and the mass 
customization of products [10], which ultimately lead to an increasing complexity of 
the considered systems as well as products and place additional requirements on the 
design and operation of these systems [2, 3, 11–13]. Such system requirements 
consider, among others, flexibility as well as dynamic and intelligent system behavior 
[4]. Therefore, in the future, engineering is forced to focus on the implementation of 
intelligent/smart systems with an emphasis on adaptability, integration of relevant 
stakeholders in business and value creation processes, efficient utilization of 
resources, and (ergonomic) design of systems and processes [10, 23, 24]. All of these 
changes have a direct or indirect impact on the discipline of engineering and represent 
the intersection between the current state of the art of engineering and the current 
and future fields of research. In order to continuously improve and develop 
engineering, these changes and resulting challenges must be addressed and solved in 
the future. Some of the most common challenges addressed in literature and in daily 
business are listed in non-particular order below. 

 Complexity: One of the main challenges is to align and evolve systems 
engineering with the increasing complexity of systems and products as well as 
related production and work processes [1, 3–5, 22]. This increase in complexity 
is caused by different factors such as regulations, technology developments, 
compounder requirements, increased functionality, the stronger linking of 
system elements, and their increased interactions [4, 13, 16, 22]. Due to the 
increased complexity of the system and the associated development processes, 
the goals set in development projects, such as time, costs and quality, are 
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increasingly not achieved to the planned extent [22]. In addition, it should be 
mentioned, that complexity can be of different types, which will have different 
influences. In source [64] a comprehensive overview of different types of 
complexity is provided. 

 Uncertainty: The increasing complexity as well as occurring constant changes 
in the environment of a system in conjunction with innovations with respect to 
processes and materials lead to uncertainty [14, 15]. Those circumstances 
make it difficult for the involved stakeholders to predict and design required 
functionalities and capabilities of a system of interest [14, 18]. The successful 
management and control of uncertainty is important for the stakeholders to 
develop predictable and dependable systems [65]. Uncertainty that is not taken 
into account or occurring spontaneously can have a negative effect on the 
system and its performance possibly leading to necessary changes as well as 
additional expenses [15]. 

 Life Cycle Management: Further challenges arise from the situation that, on 
the one hand, due to more requests for specialized products/systems the life 
cycles are becoming shorter and more dynamic and, on the other hand, different 
systems with different life cycles are used in combination in engineering [1, 
16]. This places demands on both the development process of a system with 
respect to cost, quality, and time as well as on the management and control of 
the different life cycles [1, 16]. In addition, the large number of variants that 
arise must be managed and administered [16]. 

 Project Management: In the context of changing system development, the 
project management itself also presents certain challenges. Important points, 
which intensify due to the described changes, are a good and simple entrance 
for all stakeholders into the project [17], which is a basic prerequisite for 
recognizing and integrating all disciplines and enabling the necessary 
interaction between relevant stakeholders [17]. Another important point, 
despite factors such as complexity and uncertainty, is to correctly estimate the 
effort in terms of costs and time in order to be able to successfully carry out 
and implement the system development project [18]. 

 Integration: The described increase in complexity, uncertainty, advancing 
globalization, and the possibly distributed engineering efforts might lead to 
insufficient cross integration [18] from which challenges arise, such as in the 
area of the involved stakeholders and disciplines [5], the specific artifacts, and 
the tools used [19]. Many of the previously separate and highly specialized 
disciplines and stakeholders within this environment use specific approaches 
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and procedures [16]. In order to overcome the current status and to achieve 
successful integration, a fundamental understanding, management of 
interfaces, as well as a cross-project, cross-discipline and cross-company 
specific approach must be created and supported by appropriate norms and 
standards, for example, with respect to communication and collaboration [3–5, 
16, 20, 21]. Depending on the task, tools and processes used, it does not always 
make sense to work simultaneously [17]. Therefore, in addition to the factors 
already mentioned, it is important to achieve a good compromise between 
interaction and isolation of the individual stakeholders, disciplines, companies 
or subprojects in order to achieve a defined goal as efficiently and effectively 
as possible [17]. Other challenges that can be located in a similar environment 
concern the consistency of roles and tools [17] and interoperability, for example 
between systems [15]. 

 Knowledge Management and Reuse: The issues of knowledge management 
and the reuse of existing solutions, which result from the dynamics and short 
lifetime, also pose certain challenges in engineering [17, 20]. The challenge in 
engineering is not only to create viable solutions, but also to describe them in 
a meaningful way, to store them and, if necessary, to pass them on and present 
them in a form that requires less additional effort [17]. 

 Workforce: Another area of consideration, which is not solely limited to 
engineering but is relevant and influenced by all the changes described above, 
is concerned with the workforce. Due to the trends described, such as 
increasing complexity or the current global Covid-19 pandemic and its 
consequences, the complexity of the work tasks is also changing, as are, in part, 
the requirements for the qualifications of the affected stakeholders and their 
workplaces [4]. Temporal and location specific flexibility, as well as the 
individual analysis of skills and the targeted use of the affected stakeholders is 
becoming increasingly important [4]. In addition, there are also challenges 
resulting from demographic change and the increasing average age of the 
stakeholders [4]. 

 

Most of these challenges, if not addressed, lead to reputational loss and take away 
from planned profit margins [18]. Systems engineering is not only beneficial on a 
technical level and within a company, but also on a business level [18]. In addition to 
the general challenges for systems engineering that are relevant in many areas and 
described above, other individual challenges arise depending on the focus of 
engineering. For example, for the engineering of future production systems, among 
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others, challenges would arise from topics such as Industry 4.0 or cyber-physical 
systems. These specific challenges are not considered in detail in this thesis, since 
they are expressed individually in relation to the specific application scenario. 
However, further details on the challenges and fields of action in I4.0 and CPS/CPPS 
can be found, among others, in [4, 9, 12, 66–69]. In addition to the challenges currently 
being researched and implemented, possible future engineering challenges are already 
described and discussed, i.a., on the basis of occurring trends. The renowned 
International Council on Systems Engineering – INCOSE presents, for example, its 
vision of systems engineering for 2025 and describes how engineering will change in 
the future and which challenges have to be faced [3]. Generally speaking, [3] states 
that systems of the future 

 “need to respond to an ever growing and diverse spectrum of societal needs in 
order to create value”. 

 “need to become smarter, self-organized, sustainable, resource- efficient, 
robust and safe in order to meet stakeholder demands”. 

 “need to be engineered by an evolving, diverse workforce which, with 
increasingly capable tools, can innovate and respond to competitive pressures”. 

 “need to harness the ever growing body of technology innovations while 
protecting against unintended consequences”. 

 “need to be aligned with global trends in industry, economy and society, which 
will, in turn, influence system needs and expectations”. 

To improve managing current and future challenges, approaches such as systems 
engineering and related disciplines like model-based systems engineering are needed 
[22], which focus on interdisciplinary and system comprehensive methods for the 
development of systems [16]. If this necessary shift is not processed seriously, the 
differences between established discipline-focused development methods and the 
required development methods will worsen due to the increasing complexity and make 
it much more difficult to engineer a system in the future [16]. 

 

2.3.3 Systems Engineering Process 

This section takes a closer look on the process of engineering a system. Over time, 
from experience and change, different processes have emerged on how a system of 
interest can be developed within systems engineering. An engineering process 
basically describes the application of the engineering discipline and can be defined as 
follows. 
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Engineering Process 

An engineering process is defined “[…] as a sequence of activities of creative 
application of scientific principles to design or develop structures, machines, 
apparatus, or manufacturing processes; all as respects an intended function, economic 
and safe operation” [70] following [71]. 

 

The results of systems engineering and the associated processes are called 
engineering artifacts [61, 72, 73]. These are referred to simplistically as artifacts in 
this thesis. The definitions differ slightly depending on the engineering domain but can 
be expressed and applied generally. ISO/IEC 19501 defines an artifact as a 
representation of "[...] a physical piece of information that is used or produced by a 
software development process” [74]. VDI 3695 defines the term artifact, despite the 
specific focus on industrial plants, more generally and as follows. 

 

Artifact 

An artifact refers to all "tangible and intangible project deliverables" [56]. Tangible 
artifacts refer to, for example, "engines, pumps, [or] functional modules" [56]. 
Intangible artifacts refer to, for example, "plans, architectures, [or] specifications" 
[56]. 

 

It should also be noted that artifacts are not only created during an engineering project 
or during the engineering-related life cycle phases of a system. Artifacts are also 
created during all other actions related to the system of interest and the remaining life 
cycle phases of the system. These artifacts can have relationships among themselves 
through their creation process and inclusion of information from other projects/life 
cycle phases. Typical created artifacts of the engineering process, like requirements 
or architecture, are described in more detail by, among others, [5] and [75]. Depending 
on the variety of engineering processes, artifacts differing in name and content may 
be created. Simplified, the space of possible relevant input which is considered during 
the development of a system of interest and related artifacts can be considered as 
design space [76]. In general, it can be stated that, amidst others, due to the increase 
in complexity, systems engineering and associated engineering processes run through 
a dynamic and iterative sequence of process steps in a relevant design space to define 
a system of interest and create related artifacts [76]. [77] describes that iteration is a 
core aspect of product/system development [78, 79], both at the macro and micro 
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levels [80]. According to [76], a design space can be defined by the three dimensions 
(1) "from the abstract to the concrete, [(2)] from the general to the detail, as well as 
[(3)] through views or aspects [...]" [[76] and [81] in [76]]. This possible classification 
of the design space is presented in Figure 14.  

 

 
Figure 14: Dimensions of design space adapted from [76] 

Due to the dimensions of the design space, the typical engineering process results in 
a combination/interaction of analysis, synthesis, and consideration of different views 
[76, 77]. The views help to emphasis specific aspects of the considered system [77] 
(see section 3.1.1.2 for definition of view). The possibility of considering different levels 
of detail during the engineering process enables the use of both top-down and bottom-
up approaches (for a definition, see section 5.4.3.1) [76]. Despite the multitude of 
factors and the resulting possibilities, [76] defines that "[...] there is a basic approach 
for all types of development tasks: from the abstract to the concrete, from the general 
to the detailed and from the functional to the structural". In addition, it should be stated 
that all engineering processes are based on different prerequisites regarding 
methodologies (e.g., goal definition, identification of boundary conditions) as well as 
procedures (e.g., abstraction and decomposition), which have been summarized 
extensively by [77] and are therefore not considered in detail within this thesis. The 
actual, case-specific, engineering process results from the concrete conditions, 
application scenario, and depending on the system of interest [76] and is following a 
certain engineering strategy, like a waterfall or spiral approach [82]. Due to that nature 
a wide variety of both standardized and in research and industry recognized 
engineering processes as well as individually developed procedures emerged. 
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According to [18, 70, 83], the former includes, among others, ANSI/EIA 632 – Processes 
for Engineering a System [84], ISO/IEC/IEEE 15288:2015- Systems and software 
engineering - System life cycle processes [37], VDI 2206 - Design methodology for 
mechatronic systems [25], VDI 3695 - Engineering of industrial plants - Evaluation and 
optimization [56], which can be assigned to different businesses, such as product, 
component, and solution business. Due to the large number of processes, there are 
potentially several relevant engineering processes that could be applied in a given 
application scenario based on their consideration of similar contents. However, based 
on the specific characteristics of the processes or their status as an established 
process in a particular domain, the most suitable process for the considered 
application scenario should be selected. As stated above, literature provides several 
sources in which engineering process of certain domains or types are documented and 
put in relation with each other. Based on the comprehensive representation of various 
engineering process by [70], in this thesis, the procedure described in VDI 2206 was 
selected as a representative example of an engineering process, which is explained in 
more detail in the following section. 

 

2.3.3.1 VDI 2206 as an Example of Engineering Processes 

In order to detail the individual steps of an engineering process and relate the thesis 
topic of creating an architecture description to the concepts of systems engineering 
as well as the project and system life cycle phases, the standard VDI 2206 is described 
as a representative example. The VDI 2206 describes the development of mechatronic 
systems, such as production systems [25, 70]. According to [25], three key elements 
represent the development process of mechatronic systems; (1) a problem-solving 
cycle at the micro level, (2) the V-model at the macro level and (3) process modules 
for recurring development steps. A problem-solving cycle (1), as presented for example 
by [85] in [25], regulates and organizes the procedure in the engineering process [25]. 
The cycle is designed in such a way that it can be applied continuously and enables 
flexible processing of subtasks and solving of occurring problems in the engineering 
process [25]. The V-model (2), also called Systems Engineering VEE, describes the 
main development steps, their interrelationships, and their sequence in the 
engineering process [86, 87] in [25]. The process steps defined in the V-model are 
partially processed by the problem solution cycle, as already described [25]. For the 
processing of recurring tasks, predefined process modules (3) are used [25]. For the 
representation of the relationships between life cycle and project phases as well as 
the relevant steps of engineering in relation to the creation of an architecture, mainly 
the macro cycle and thus the so-called V-model is relevant and will be described in 
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more detail. For a visual representation of the V-model concept see Figure 15. For 
more details on the problem-solving cycle as well as predefined process modules see 
[25]. 

 

 
Figure 15: V-model as exemplary systems engineering process representation - adapted from [25, 59, 75, 
88–91] 

The procedure for the design of a system represented by the V-model can be divided 
into different steps. Upfront, it should be mentioned that during the development of 
the system utilizing the V-model different life cycle and development project phases 
are passed through in parallel, which are also described and related to each other in 
the following. Before starting with the top-down decomposition [89, 91, 92], at the 
beginning of each development, a specified need and problem, interfaces and involved 
stakeholders, as well as a clear concept for system development have to be defined 
[25, 28, 59, 91]. This clarification happens in the initialization phase of the project 
which takes place outside the V-model and ends with a key decision point within the 
V-model, the approvement of the project [75]. After the initialization phase has been 
completed, in parallel, the definition and planning phases of the project are processed 
[75]. At the same time, the needs and concepts of the relevant stakeholders are 
defined in the V-model in the form of requirements [25]. As the definition of the system 
begins and first design considerations are made, the life cycle of the system of interest 
is initialized within the concept phase [90] and the architecture of the system 
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commences as well [61]. The definition phase of the development project ends as 
soon as the assignment for realization of the system is granted [75, 88]. After complete 
consideration of the system and specification of all relevant requirements, which shall 
be used for development but also to validate the results produced in the engineering 
process of the system [25], the system transitions from the concept to the 
development phase of the life cycle. Based on this initial starting point, the actual 
solution design of the system is developed [25]. For this purpose, by means of 
decomposition and detailing, functional elements are assigned to relevant logical and 
physical properties which the system must fulfill [25]. During the V-model system 
design and the development phase of the system life cycle, the architecture of the 
system is fully defined at different levels of detail [28, 75, 90, 91]. Following top-down 
decomposition first, the overall system architecture and then, step by step, the 
associated details in the form of architectural descriptions of the subsystems and 
relevant components are defined [89]. After the architecture is created the domain-
specific design for the system is created [25, 90]. In this phase the detailing and the 
implementation of the system begins (e.g., software and hardware specification, 
architecture) [28, 59, 75]. The domain-specific design is usually created separately 
and in relation to the domain involved (mechanical engineering, electrical engineering, 
information technology) [25]. During the definition process new and existing solutions 
should be considered and all implemented decisions should be documented for better 
traceability [59]. In the context of system integration of the V-model, the defined 
artifacts are brought together in a bottom-up approach to realize and implement the 
overall system solution [25, 89, 91, 92]. This is mainly achieved in the production phase 
of the system life cycle, as well as in the planning and control phase of the engineering 
project [75, 90]. In the control phase, the client reviews the progress of the project and 
the contractor provides the necessary development [75]. During the integration phase 
of the V-model, the artifacts are verified and validated by comparing the requirements 
and the actually available and developed solution to ensure that the results produced 
match the defined stakeholder needs and desired characteristics [25, 28, 59, 89, 90]. 
The result of a cycle in the V-model is called product [25]. In relation to this thesis it 
should be annotated that the term product in the V-model describes the actual 
developed system. When using product in the thesis and especially in relation to a 
production system, a product represents the result of the production process which is 
carried out by the system of interest. Depending on the development task at hand and 
its complexity, the macro cycle must usually be run through several times in order to 
be able to realize the system of interest [25]. This is not shown in the simplified 
illustration of Figure 15 but explained in more detail in [25]. It should also be noted 
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that with increasing complexity and by considering integration on different layers of 
granularity in a timely manner, a strict separation of top-down and bottom-up design 
becomes increasingly difficult [25]. This might lead to an iterative approach and a 
continuous alternation between bottom-up and top-down procedure may be necessary 
[[25, 93] and [94] in [25]]. Iterations are performed until the system is fully realized. 
During system integration, the system evolves from the development phase of the life 
cycle to the production phase of the cycle [90]. The control phase of the project ends 
and the transition to the final phase, the completion phase, begins with the declaration 
of acceptance of the system [75]. After the production and acceptance of the system, 
the system enters the utilization phase of the life cycle and the development project 
ends [75, 90]. A detailed representation of the project phases can be found in standard 
DIN 69901 [88]. The life cycle concept of a system has already been presented in 
section 2.2. As shown in Figure 15, the individual steps of the V-model are supported 
by modeling and model analysis, for example, to validate properties of the system with 
the aid of suitable models and tools. Model-based systems engineering is described 
in section 2.3.5. The modeled architecture content can also be utilized in the later 
system life cycle phases, for example, for supporting trainings, modifications and 
updates, as well as failure analysis [28]. An overview of the artifacts typically created 
when using the V-model can be found in [75]. According to VDI 2206, for the practical 
application of the model, it should also be taken into account that, for example, due to 
the control of the development risk, some subsystems must be developed before the 
overall system is developed as envisaged in the model [25]. It should also be noted 
that due to the constantly changing environment and the increasing system 
complexity, the associated processes, such as VDI 2206, must also be continuously 
checked for their applicability and expanded as well as adapted if necessary [95]. The 
shown engineering process and its decencies to life cycle and project phases can be 
transferred like this or in a similar way to the other engineering processes mentioned 
above (taking their individual features into account). A more detailed consideration of 
the application of different engineering processes is not shown, as that is less relevant 
for the focus of the thesis. 

Nevertheless, it should be mentioned, if of interest, that, among others, [70, 92, 96, 97] 
provide a comprehensive overview/comparison of different engineering processes and 
point out their commonalities and relations. 

 

2.3.4 Influence of Systems Engineering on Life Cycle Cost Development 

In the following section, the cost development during the different life cycle phases of 
a system is considered and how the individual phases affect the development of the 
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total costs. In particular the impact of systems engineering from an economic point of 
view and especially of the early phases, when the architecture specification is carried 
out, will be examined. In general, it can be stated that a system causes costs. The 
individual phases in the life cycle of a system contribute for different percentages of 
the life cycle costs of the system. The life cycle costs, from 0 percent at the beginning 
to 100 percent at the end of the cycle, are shown cumulatively in Figure 16. All the 
given numbers within the figure might change from system to system, but are accepted 
and mostly, with minor variations, represented similarly in literature. The actual 
increase between the individual life cycle stages is represented by the difference 
between the two compared stages. 

 

 
Figure 16: Committed and actual generated cost in system life cycle - adapted from [26] 

The life cycle phases in the figure are not shown to scale. Rather, the phases in which 
there are large discrepancies between actual and committed costs are shown in more 
detail. These are mostly the early phases of the system life cycle, like concept and 
design, in which the creation of architectures, the main topic of this thesis, has a major 
impact. Later phases (e.g., production and utilization) are summarized in thematically 
matching columns, as they do not have such a great relevance on the overall cost 
development with respect to determination of committed cost. In contrary to the 
previously introduced life cycle phases, the additional phase of design, previously not 
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represented, is shown on purpose. This allows to map the influence on the 
development of costs in even greater detail. The design phase can be, with respect to 
the introduced life cycle concept of section 2.2, thematically added to the development 
phase. With respect to the introduced macro-process of systems engineering (see 
section 2.3.3), the concept phase considers the stakeholder needs and system 
requirements, the design phase the basic engineering and the creation of the 
architecture of the system, the development phase the domain-specific detailing of 
the architecture description, and, as shown within the V-model, the production phase 
the bottom-up integration. 

It can be clearly seen, with respect to Figure 16, that there is a strong discrepancy 
between the actual cost and the costs already committed at the same point in time. 
Committed costs describe costs that are determined by decisions during one or more 
life cycle phases but will become cost effective at a later point in time, at which the 
decisions made are realized and the required efforts are converted into actual life cycle 
costs. The discrepancies are particularly significant in the development phases/the 
early phases of the system life cycle [26, 98]. Since fundamental decisions for the later 
life cycle phases are made during the early phases, for example, specification of 
architecture, only low actual costs are incurred, but a very sharp increase in committed 
costs happens. After the concept phase in which approximately 8% of the actual costs 
are incurred, one is committed to almost 70% of the absolute system life cycle costs. 
During the design and early development phase, the committed costs increase further 
to around 80 percent, while at the same time actual cost of approximately 15 percent 
are created. After that, the actual costs increase steadily and the committed costs 
increase only slightly. Because a lot of the effort within the early development phases 
is of a conceptual nature and the actual physical implementation and use of the 
predefined concepts takes place in the later life cycle phases, costs can be influenced 
very well in the early phases and very poorly in the late ones [99]. This decrease in 
influence and the increasing rigidity of systems as they move through the life cycle 
phases means that the costs of implementing changes or resolving errors increases in 
the opposite direction from concept phase to retirement phase [[26], [100] based on 
[101]]. The cost multiplier in relation to the total cost is still relatively low in the early 
life cycle phases, but then rises very sharply in the direction of system utilization. 
Errors that are only detected at a very late stage thus lead to a sharp increase in total 
system costs. This factorization of costs is shown in Table 1. Overall, engineering and 
the considered topic of architecting account for system cost factors from concept to 
production phase (multipliers of 1 to 78), when considering the V-model and its phases 
as a basis. 
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Table 1: Cost factors/problem solving adapted from [18] 

Life Cycle Phase Systems Cost Factors 

Concept 1x 

Design 3-8x 

Development 7-16x 

Production 21-78x 

Utilization 29-1615x 

 

As a result, the impact on cost of engineering and architecting is relatively high in the 
early phases of the system life cycle but at the same time the cost for elimination 
errors or conduction changes relatively low compared to the other life cycle phases. 

These two factors, the high committed costs in the early phases and the multiplication 
of the costs for error maintenance/changes in the later life cycle phases, show the 
importance of efficient and effective engineering and architecting in the early life cycle 
phases. Solving problems early in the life cycle of a system only slightly increases costs 
[18]. Troubleshooting later in the life cycle increases costs many times over [18]. Due 
to this dynamic the aim is to make required changes at early life cycle stages rather 
than at later ones to reduce the total life cycle costs and the cost multiplication impact. 
The shift of adaptions to the early stages will require additional development efforts, 
for example in the form of architecture frameworks or blueprints like reference 
architectures, and consequently will result in initially higher costs. The impact on costs 
that can be exerted by the application of more effective and efficient system 
engineering and architecting, compared to current widespread practice, is shown in 
Figure 17. 

 
Figure 17: Cost of design changes with respect to system life cycle phases- adapted from [18, 26, 102] 
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2.3.5 Model-based Systems Engineering 

As already described in the introduction, different circumstances lead to challenges in 
the context of system development projects, carried out by different disciplines and 
across organizations [1, 15, 92]. This has led to an ongoing trend of supporting 
development projects with model-based approaches [1, 92], “[...] for improving the 
efficiency and effectiveness of systems engineering through the pervasive use of 
integrated descriptive representations of the system to capture knowledge about the 
system for the benefit of all stakeholders” [103]. The evaluation of that trend has been 
the topic of several surveys, like [104], which are considering the current and the future 
status of MBSE. By "[using] models, the system or product to be developed can be 
better understood, analyzed, detailed, documented, communicated, and transmitted 
for further processing" [92]. In order to do so, it is required that data can be exchanged 
effortlessly during the system design process [15]. It also shows that good 
collaboration is essential for the successful realization of a system [15]. In the 
traditional approach of systems engineering, mainly textual and design-related 
documentation is created during the development of a system, which is why the 
approach is also referred to as a "document-based" approach [105]. Such a document-
centric engineering approach requires human-readable documents and relies heavily 
on the knowledge, creativity, and ability of the stakeholders involved to mentally 
integrate the loosely connected document content [15]. In contrast, model-based 
systems engineering (MBSE) represents a "model-centric" approach and focuses 
mainly on the creation of a coherent system model for the system development, which 
consists of all system relevant information, such as requirements, design, and 
verification information [105, 106]. The design of architectural content is structured 
around these models and their content is step by step refined along the life cycle of a 
system of interest [103]. MBSE in comparison to the traditional SE does not challenge 
or replace the established systems engineering principles, but rather enhances their 
impact, for example, through a strong focus on consistency due to the shift from 
document to model centric principles [15, 107]. The generated model reflects the main 
outcome of the MBSE and, in contrast to traditional systems engineering, the creation 
of documentation takes a secondary role, since this information can ideally be 
generated from the model [105, 107]. The advantage of the approach in comparison to 
a document-based one is that the model content slowly replaces the individual 
documents, that evolve individually over time and creating inconsistencies which 
should be avoided at all costs [103]. MBSE represents a long-term model-focused 
development that is being embraced by other relevant engineering disciplines, for 
example, mechanical engineering [108]. It provides a good foundation for managing 
the process of developing systems as it becomes accepted and is applied in the 
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industry on larger scale [22]. The goal of using an integrated cross-discipline system 
model throughout MBSE is to reduce complexity-related misunderstandings, highlight 
the effects of changes more clearly, and enable tracking of changes across discipline-
specific models [21, 109]. This does not mean that those goals are not relevant within 
traditional SE, but rather that MBSE makes an important contribution to meeting these 
challenges [21]. For example, traditional systems engineering follows the task of 
integrating different disciplines, but MBSE particularly focuses on strengthening the 
cooperation and communication between the disciplines [21, 22] and follows a more 
comprehensive methodological approach in terms of capturing, integrating and 
maintaining engineering activity results [105]. The earlier MBSE is used in the SE life 
cycle, the greater the positive effect and the benefits that can be achieved [15]. In 
summary, Model-based systems engineering (MBSE) can be defined as follows: 

 

Model-based Systems Engineering 

“Model-based systems engineering (MBSE) is the formalized application of modeling 
to support system requirements, design, analysis, verification and validation, beginning 
in the conceptual design phase and continuing throughout development and later life 
cycle phases” [39, 107]. 

 

The main idea behind MBSE is that a model is defined at the beginning of the system 
development life cycle, which then grows through all phases and evolves from early 
decision making to the complete system architecture [15]. Therefore, MBSE focuses 
specifically on the formalized modeling of a system of interest to support all activities 
along the life cycle of the system [110] in [105]. A model can be characterized as 
follows. 

 

Model 

“A model captures a view of a [...] system. Hence, it is an abstraction of the physical 
system with a certain purpose; for example, to describe behavioral aspects of the 
physical system to a certain category of stakeholders. A model contains all the model 
elements needed to represent a physical system completely according to the purpose 
of this particular model. The model elements in a model are organized into a 
package/subsystem hierarchy, where the top-most package/subsystem represents 
the boundary of the physical system” [74]. 
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A model represents a simplified version of a coherent and consistent set of elements, 
components, or a complex system [[25, 38],[49] in [39]]. In the model the current, past 
or future reality is represented in an abstracted form and with an actual or ideal status 
of the system [111]. A model is defined as “[an] abstraction of a system of interest 
constructed from one or more representations. The [overall system] model is the total 
recorded knowledge of a project [...]” [39]. A representation defines “[a] partial 
description of the system of interest [...]”[39]. Within this thesis a representation will 
be referred to as a view. A view may represent a text, table or diagram described in, 
for example, a graphical, mathematical, or natural language [39]. Different views 
represent a specific viewpoint [39]. A comprehensive definition of viewpoint and view 
can be found in section 3.1.1.2. The system model can be considered one of the central 
artifacts of MBSE [110] in [105]. The term artifact has already been defined in section 
2.3.3. As part of the model-based approach, the contents of the model are then either 
supplemented, adapted or used by all those in a relevant relationship to the system 
[106]. The term model element is defined as follows. 

 

(Model) Element 

“An element is an atomic constituent of a model” [74] and “[a] model element is an 
element that is an abstraction drawn from the system being modeled“ [74]. 

 

Besides the elementary step from document-driven to model-focused system 
development, MBSE also requires an adequate process that extends and complements 
the traditional systems engineering processes and integrates the use of the model 
[39]. In this context some processes have already been created and standardized 
among others, INCOSE - Object-Oriented Systems Engineering Methodology (OOSEM) 
or Weilkiens - Systems Modelling Process (SYSMOD)) [39]. 

 

2.3.5.1 Benefits and Implementation Challenges of MBSE 

Systems Engineering, as described in section 2.3.1, generates independent documents 
due to the document-centric approach, the contents of which may overlap and are thus 
loosely connected with each other [39]. Due to these characteristics of the SE results, 
it is difficult to perform complete evaluations of the content against, for example, 
defined quality criteria [39]. The use of a model in MBSE as central connection point, 
aims to enable easier assessment and verification of complex relationships between 
content and address such challenges through the use of consistently related elements 
within the model [39]. In simple terms, model-based systems engineering enables 
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better data handling, such as the collection, evaluation, and maintenance of system 
data [107]. Therefore, the application of MBSE within the process of engineering 
systems results in different advantages, which are listed below: 

 Enhanced and clear communication between relevant stakeholders and across 
disciplines within the life cycle of a system of interest [[28, 39, 107, 112] & 
[110] in [105]]. 

 Mastery of system complexity and improved management of development risk 
due to an integrated system model and the ability to view specific aspects of 
the system from different perspectives, for example in the context of changes 
[[92, 107] & [110] in [105]]. This impacts, for example, the improvement of 
estimation of costs and the reduction of errors related to testing and integration 
[39]. 

 Optimized quality due to the opportunity to check, for example, correctness and 
completeness on the basis of the system model [[28, 107, 112] & [110] in 
[105]]. This enables quality enhancements, for example, through improved 
specification, allocation and tracking of requirements, assessment and 
selection of architectural options, or the creation of consistent and sustainable 
documentation [26, 39, 112]. 

 Assurance of a standardized knowledge transfer, the reuse of information and 
as a consequence the possible reduction of efforts for the adaptation of model 
contents [92, 107]. 

 Increased productivity is enabled, for example, through joint content definition 
and reuse, optimized team collaboration, and automated document creation 
[39]. 

 Activities related to the system can be automated better, since the data used 
is machine-readable and can be processed more easily in relevant tools [106]. 

 The realization of continuous tool chains is enabled by the possibility to 
generate new input data and by the improved data transfer, which does not 
require manual re-entry into tools along the tool chain [106]. Generated data 
can take different forms, such as code or documents [106]. 

 Due to the integration into models and continuous tool chains data is up-to-
date in most cases and can be used across different disciplines at the same 
time [106]. In certain constellations, inconsistencies may occur, which can be 
prevented by taking appropriate precautions within the tools. 

 Beneficial starting point for the transfer and teaching of SE fundamentals 
through representation of relevant approaches within models [107]. 

Further purposes and advantages of MBSE are, among others, mentioned by [26, 92]. 
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In addition to solving technical challenges, the consideration of non-technical 
challenges is crucial for the successful implementation of a MBSE approach [103]. 
Before the benefits of MBSE can be achieved, a culture change must take place, which 
is one of the main starting points required for a successful transition from the 
document-centric to the model-based approach [113, 114]. Similar to the application 
of systems engineering, MBSE requires some enablers concerned with topics like 
appropriate processes, required tools, utilization of standard techniques and 
representations, risk tolerance, easy transition of knowledge, and training to relevant 
people, in order to achieve a successful implementation within the organization [39, 
103, 113]. In most cases the corporate structures of an organization do not meet the 
prerequisites for MBSE to be implemented without adjustments to these structures 
[[110] in [112]]. To this end, all affected stakeholders and in particular the 
management must be prepared to accept and support the goals of MBSE deployment, 
the corresponding additional costs, changes to their task profile, and infrastructural 
changes [15, 103, 115]. Previously failed implementation attempts can represent 
additional barriers to entry [15]. Concrete challenges that must be mastered are, for 
example, the change from the previous document-based way of working and thinking 
to a model-based way of thinking and the associated necessary differentiation 
between the presentation of information and the actual results [15]. Another challenge 
is the learning and application of modeling tools and languages within MBSE, which 
can be a barrier to entry for stakeholders [15]. If this change has already taken place, 
there are still some challenges, such as digitalization, integration of models, as well as 
maintenance of tools and modeling languages, that need to be addressed during the 
use of MBSE [15, 115, 116]. As this work is not concerned with optimization and 
preparation of organizations for the effective implementation of concepts like SE and 
MBSE it is assumed, that, like SE, MBSE is accepted all over the organization by all 
relevant stakeholders and considered a value-adding concept. 

 

2.3.5.2 Utilization of MBSE along the SE Life Cycle 

The long-term vision for the MBSE approach and its system model is to use them as 
a basis for all relevant activities along the system life cycle. At the beginning of the 
development of a system a system model can be used primarily to describe the basic 
initial situation, such as capabilities, goals, and context. Specifically with the help of 
modeling, the system context, and its relevant components; interfaces, requirements, 
and highly simplified architectures are developed in the form of models. In the next 
phases and after the development of the system architecture has been completed, the 
overall system model is gradually further detailed and integrated into the realization 
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process of the system. Particular attention is paid to the possibility of testing (partial) 
models, as well as distributed processing and integration, since these capabilities are 
indispensable in the context of cross-disciplinary processing. With the ability to test 
on the model, potential impacts can be evaluated better and consequently efficiency 
is increased. After the system has passed the planning and realization phases of the 
life cycle, models can be used during operation and maintenance to provide the 
affected stakeholders with specific information about the system and its properties or 
interfaces. Information from the models can also be used for troubleshooting or 
warranty cases as well as for the further development of future products. After the 
operating phase of the system, it enters the decommissioning phase, in which the 
models can serve as a basis of information about, e.g., potentially hazardous materials. 
In order to operate a sustainable knowledge management and to keep documentation, 
the models have to be archived accordingly at the end of the system life cycle. [15] 

The methodologies and applications of the model will continue to evolve as the 
acceptance and use of MBSE increases [15]. Further information on the use and 
developments of MBSE along the system life cycle can be obtained from the various 
interest groups that are involved with the evolution of the topic. One of these interest 
groups is for example the INCOSE Model-based Conceptual Design Working Group 
[117]. 

 

2.4 Summary – Engineering of Production Systems 

To summarize, the key points of engineering of production systems are that a system 
of interest has a structure of system elements/subsystems that represent the 
granularity of the overall system. Each system is to be classified in an associated 
environment with the related system context introducing the interfaces to other 
interacting elements. During its life, the described system passes through different 
phases from concept through utilization to retirement. In these phases, different 
requirements are placed on the system itself as well as on the associated processes 
and stakeholders. In the context of this work the focus is on the early life cycle phases 
during the engineering of a system (concept, development phase) and in particular on 
the architectural description of production systems. These systems are used to create 
and provide products of a specific form, fit, and function. This specification affects the 
selection of possible engineering processes for the creation of such a system. In simple 
terms, engineering deals with approaches and methods of how such a system can be 
developed, designed, implemented, and, if necessary, adapted to meet the current 
challenges in this area as efficiently and effectively as possible. During the engineering 
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process, different results/artifacts, for example, a system architecture description, are 
created under consideration of the specific design space. In general, it can be 
summarized that during an engineering process several steps are passed through. First 
the initial situation is considered and relevant requirements are defined, then the basic 
engineering with the design of the architecture is carried out where the domain-
specific detailed design as well as the system implementation with subsequent 
commissioning are considered. During the process, the partial results created should 
be compared continuously with the defined requirements to support the creation of 
the system and to avoid inconsistencies and risks during implementation and 
utilization. This approach is increasingly being extended with model-based 
approaches, which, among other things, can have complexity-managing, risk-
minimizing, and optimizing effects. Appropriate modeling tools, languages, and 
methods are used for this purpose. Regarding total cost design, systems engineering 
has a decisive influence like no other discipline. This is especially the case in the early 
phases of the requirements analysis and the architectural description of the system, 
which is the reason why there is a constant attempt to minimize the total cost along 
the life cycle of a system by means of additional improvement measures, like 
application of architecture frameworks and reference architectures, during these 
phases. Based on the described fundamentals, the following chapter considers the 
state of the art, the subdiscipline, and the creation of architecture descriptions. 
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3 Architectures 

While the previous chapter defined the general terminology of the central concept of 
a system, its life cycle, and the topic of systems engineering, this chapter focuses on 
architectures and their creation as a sub-discipline of systems engineering [27]. A 
distinction is made between the two forms of architectures, namely of system 
architectures and reference architectures, which are introduced and illustrated in the 
following. The chapter concludes with considering the architecture framework 
concept, which forms the basis for an effective and efficient definition of such 
architectures. An overview of the chapter content is shown in Figure 18. 

 

 
Figure 18: Overview of the contents of chapter 3 

 

3.1 Architecture & Architecting 

In several domains the term architecture is defined differently and various 
interpretations of the term are widely used [27, 61]. Depending on the utilization of the 
term in the field of interest, architecture can represent “[...] a structure, a process, or 
a profession” [73]. Within this thesis the term architecture focuses on structural 
aspects [73], on the principles driving the structure [61], and on the interfaces among 
the structural objects [118]. Such principles might regard organization and related 
characteristics of a system [61]. A very general definition can be found in [119] in 
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which an architecture embodies and describes “the complex or carefully designed 
structure of something” [119]. Following the argumentation by [61], the given 
definition is applicable but is missing the related principles. Therefore, within this 
thesis the following definition will be used. 

 

Architecture 

Architecture is defined as “(system) fundamental concepts or properties of a system 
in its environment embodied in its elements, relationships, and in the principles of its 
design and evolution” [30]. 

 

The beginning of an architecture's existence occurs with the initial description of the 
design and the stakeholders [61]. Such an architecture can be of different types, 
which, among others, are defined by their topic of interest (e.g., operational, security), 
their purpose (e.g., definition of problem domain, integration), or their focus on a 
specific group of systems (e.g., system of systems) [27]. An architecture may serve a 
main purpose and several underlying other purposes [27]. Such purposes can be, for 
example, the re-use of system elements, context definition, design guidance, and 
complexity handling [27]. The success and quality of an architecture strongly depends 
on how well the defined goals and purposes are fulfilled [27, 92]. In principle, the 
quality of a “good” architecture can be determined if it, for example, “enables 
competitive products, ensures compliance with present and future laws and 
regulations, [and that] it can be operated and serviced efficiently and is sustainable" 
[92]. Furthermore, aspects such as changeability, scalability, and modular design are 
becoming increasingly important to fulfill the adaptability of architectures required for 
the future and thus the successful deployment [92, 120, 121]. These separate topics 
are not discussed in detail in this thesis and further information can be obtained from 
the sources mentioned. 

 

3.1.1 Architecting 

In comparison to the term architecture, which describes structural aspects, the term 
architecting represents the associated process [73], being concerned with defining 
and documenting an architecture [27]. In detail architecting can be defined as follows. 
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Architecting 

“Process of conceiving, defining, expressing, documenting, communicating, certifying 
proper implementation of, maintaining and improving an architecture throughout a 
system’s life cycle” [30]. 

 

Architecting is a holistic approach that covers all phases of the system life cycle and 
is to be seen in connection with projects as well as organizations and can significantly 
influence processes in these environments [30]. In this context architecting represents 
the search for the optimal solution while balancing different interests and needs [28]. 
The result of the architectural effort is a description of the architecture of the system 
of interest in its environment and with respect to its specific life cycle [30]. The process 
of architecting can be described as mostly systematic, but also includes actions like 
context and trade off understanding, analysis of alternatives, and taking decisions [27]. 
For the sake of completeness, a distinction should be made between the terms 
architecting and design, which are often used interchangeably and occur in the same 
environment. [122] in [15] distinguishes that “[architecting] defines what to design, 
while design defines what to build”. If one focuses on architecting and corresponding 
procedures, one will notice that there are different processes in the literature that 
describe such a procedure [27]. However, the actual procedure used in reality is 
strongly influenced and shaped by the architecture context and purpose [27]. Figure 
19 shows one rather abstract but well applicable procedure. In summary, an 
architecture description for a system of interest is created from architecture options 
that are defined, analyzed, and selected in an iterative process. 

 

 
Figure 19: Architecting process adapted from [27] 

Finally, it should be mentioned that, like systems engineering, the sub-discipline of 
architecting must be accepted and implemented in the organization to achieve an 
efficient and effective use. For this thesis, it is assumed that all architecture related 
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topics are accepted and supported by the organization and its stakeholders. Details 
on this topic, such as the structural design of the organization with respect to 
architecting or the benefits to be achieved, can be found in [61]. 

 

3.1.1.1 Architecture Description Utilization 

A considered system is reflected in the architecture description, which contains 
additional detailed information based on the individual needs of the involved 
stakeholders and the requirements of a project or organization [30]. In this thesis an 
architecture description is defined as follows. 

 

Architecture Description 

An architecture description can be defined as “work product used to express an 
architecture” [30] of a system. 

 

The architectural description, in contrast to the pure system description, not only maps 
the form of the system but also reasons why a system of interest has a specific form 
[61]. Thus, the architectural description also presents which stakeholder concerns, 
needs, and potential threats were or were not addressed, and the corresponding 
reasons resolved in the taken decisions [61]. In the architecture description 
architecturally relevant elements of the system of interest are identified, specified, and 
documented [26]. Since not all elements are defined in detail in connection with the 
creation of the architecture description, some elements that are relevant, for example, 
for the design of the architecture must be added during this phase [26]. In general, the 
purpose of an architecture description “[...] is to explain the architecture of a system 
to its stakeholders” [61]. Depending on the specific application example, architecture 
descriptions always have one main purpose and usually many additional secondary 
ones [27]. Architecture descriptions are utilized by different stakeholders, for example, 
for  

 establishing context, a starting point for system design as well as development 
activities, and evaluation of alternative implementations [27, 30]. 

 documenting key technical and business aspects of a system, among others, 
specific features, taken architecture decisions and their impact [27, 30]. 

 communication among stakeholders involved in relevant activities along the 
systems life cycle [27, 30, 61]. 

 managing and dealing with complexity as well as uncertainty [27]. 
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 fostering reuse of previously defined and available system solution for the 
development of new systems [27]. 

 managing and planning of transformation of systems (e.g., migration of legacy 
systems, extension, or enhancement of systems) [27, 30]. 

 assessment of systems during their lifetime [30]. 

Additional usages to the above listed can be found at [30]. 

 

3.1.1.2 Content of Architecture Description 

Among other, the content of architecture descriptions is defined in the standard 
ISO/IEC/IEEE 42010, in which is stated that the content represents certain 
characteristics needed to enable the above-described utilization [30]. As a bare 
minimum an architecture description shall represent the system of interest and the 
related context, the involved stakeholders, and the addressed concerns, as well as the 
relevant system elements [61]. In the best case the architecture description should 
identify the stakeholders and their needs with respect to the architecture of the 
system, represent the relevant viewpoints, associated views, included models (that 
represent the needs of the stakeholders), and should provide relationships as well as 
justifications regarding, for example, inconsistencies between models, made 
decisions, notations, and methods [30, 61]. The completeness of the architecture 
description largely depends on the stakeholders involved and their input. Ideally, all 
stakeholders should be involved in the creation of the description, but this is usually 
not possible in a commercially driven environment, therefore the description is 
typically sufficient but not 100% complete [61]. The two key concepts viewpoint and 
view are defined below. The term model has already been defined in section 2.3.5. 

 

Viewpoint 

An architecture viewpoint describes a “work product establishing the conventions for 
the construction, interpretation and use of architecture views to frame specific system 
concerns” [30]. 

 

This implies, that a viewpoint represents the purpose of one or more views [39] and 
that the “viewpoint will specify the model kinds to be used in developing an 
architectural view that depicts how the architecture addresses that concern (or set of 
concerns)” [26]. Conventions established within the viewpoint can be, for example, 
standards, procedures, guidelines, and templates [38]. The idea is to address only 
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specific associated concerns of different views within a viewpoint [39]. Consequently, 
the viewpoint only includes information that is relevant to the field of interest [39]. The 
different viewpoints are used to differentiate or separate content thematically, for 
example, problem and solution space or structural and behavioral content [39]. In 
addition, the “viewpoint also specifies the ways in which the model(s) should be 
generated and how the models are used to compose the view” [26]. A viewpoint 
controls the creation of the related view, provides information about its contents and 
the form of presentation [61]. A view is defined as follows. 

 

View 

An architecture view is a “[…] work product expressing the architecture of a system 
from the perspective of specific system concerns” [30] and “[…] from a specific 
viewpoint and with a specific degree of granularity […]” [34] based on [30]. 

 

A view always represents a system of interest of the related viewpoint [61]. The view 
represents what you see and the viewpoint determines where you are looking from 
[123]. [38] adds that a view embodies ”[...] any architectural representation describing 
a single architectural structure that consists of one or more related models of that 
structure” [38]. The overall architecture from a specific perspective of a stakeholder 
of the system is represented by specific parts of one or more architecture models 
having been selected by the architect of the system in order to communicate and be 
understood by all relevant stakeholders as to enable them to approve that their needs 
and requirements are realized by the system [38, 123]. Further information regarding 
content of architecture descriptions is provided by [30]. 

 

To summarize this section and following suggestions of [73], the term architecture 
represents a structure, which is described in a process called architecting, creating as 
a result architecture descriptions. For the consideration of system concerns viewpoints 
and related views are used [30]. Depending on the definition of systems engineering, 
architecting can be seen in different ways [27]. Within this thesis the opinion given by 
[27] is followed and (system) architecting is considered as a process and subset within 
systems engineering. This logical hierarchy of concepts is detailed in section 2.3.3 in 
the context of the introduced engineering process. The significance of the architecture 
as an important core component implies that this relationship is partly relegated to the 
background. In the context of this work, the architecture represents a part of the overall 
development of a system of interest and therefore of systems engineering. The 
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constellation of terms introduced above can be applied to a wide variety of 
architectures in existence. The different architecture categories and variations, such 
as enterprise, system, and reference architectures, arise from the specific scope of a 
problem area/subject considered by the concerned stakeholders [28]. A 
representative set of architecture categories is given among others by [28]. Within this 
thesis only the concepts of system architecture and reference architecture are further 
considered. The differentiation between the two terms is described in the upcoming 
sections. 

 

3.2 System Architecture 

As described by [28], architectures can have different characteristics. A system 
architecture describes the strong dependency and relation of the architecture to a 
specific system [61], with its, in section 2.1 presented, specific characteristics. The 
generally valid terms presented in the previous section also apply to the concept of 
system architecture. The term architecture will be expanded for the use within the 
system architecture section. Typically, the system architecture addresses the context 
dependent structure and related/ensembled components, the internal collaboration 
among each other as well as the external behaviors and relations to satisfy specified 
requirements [27, 28, 38, 61]. Furthermore, system architecture rules, principles, and 
guidelines exist to address development, design, organization as well as evolution of 
the system in the long run [28, 43, 61]. Beneath those “[...] strategic decisions, 
inventions, engineering trade-offs, assumptions, and their associated rationales [...]” 
[38] are considered. Additionally [61] states that "[each] system has exactly one 
system architecture and each system architecture belongs to one system". This 
statement is valid on all different levels, for example, a considered logical system has 
one logical system architecture and vice versa [61]. In sum, these descriptions lead to 
the following summarized definition for the term system architecture. 

 

System Architecture 

“System Architecture is the organization of the system components, their relations to 
each other, and to the environment, and the principles guiding its design and evolution” 
[45]. 

 

The system architecture is allocated to the system life cycle and design phases 
explained in Figure 15. The system architecture and its development have a success-
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critical significance in the context of system development and in relation to the total 
life cycle cost development (see sections 2.3.3 and 2.3.4). Furthermore, it should be 
noted that the architecture of a system of interest is always present, but can only be 
made usable through appropriate formalization, for example in the context of an 
architecture creation process. By formalizing the architecture, possible advantages 
can then be achieved, for example, in the application of the architecture descriptions 
created (see section 3.1.1.1). 

 

3.2.1 Creation of System Architectures 

In principle, a distinction can be made between a structured/methodical and an 
unstructured approach when creating an architecture. Unstructured means that no 
methodical approach established in literature, standards or practice is used. An 
individual approach can also follow a structure or methodology. However, since these 
are very individual, usually not documented well, and therefore more difficult to 
describe or reproduce, such procedures are not considered in the following. In addition, 
it should be mentioned that a distinction should be made with regard to the definition 
of system architectures between the creation of the actual architecture and all other 
system design activities. System architecting is rather abstract, concerned with the 
overall concept, the system mission, as well as the structure of the system and the 
system elements [26]. System design is concerned, among other things, with the 
physical design in detail, the construction, and the implementation of the system [26]. 
Within this thesis and the section only the creation of the architecture is considered, 
since the focus is on the specification of an architecture framework for the creation of 
a system architecture description on the basis of a reference architecture description. 
The implementation of the architecture description and the related design of the 
system are not examined. Further information about architecture design can be found 
in literature, for example, in [26]. In order to present the state of the art and a possible 
procedure for defining a system architecture, the main inputs, outputs, and relevant 
roles that influence the process are presented. In addition, a possible system 
architecture process is presented in Figure 20 and described below.  
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Figure 20: Inputs, Outputs, and Involved Roles of Architecture Process adapted from [26, 27, 61] 

The range and selection of an appropriate process depends, among other things, on 
the application and should be chosen accordingly by the system architect. The creation 
of an architecture description contains the architecting itself, the evaluation of created 
content, as well as the approval of the output. The creation itself, can be simplified 
summarized as definition of requirements and allocation into functions and technical 
solutions. In addition to the requirements, the knowledge of the domain, the context 
of the system, possible use cases, qualities, as well as roadmaps, patterns, and best 
practices are used as inputs for architecting. The knowledge of the domain is 
elementary for the understanding of the system development as well as a mostly 
complete definition of the relevant requirements. The context of the system with its 
interfaces limits the application domain and thus the definition space, for example, for 
requirements and the architecture (for definition of the context, see section 2.1). 
Afterwards, on this basis, the corresponding use cases and requirements are defined. 
Those specify, among others, functionalities or services to be provided by the system. 
The goal is to design the architecture to be realized in a way that it fulfills the 
established requirements, which are concerned with different aspects of the system 
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along its life cycle. Ideally, reoccurring concerns applicable to several systems are 
considered in form of patterns and best practices, which are constantly kept up to date 
and maintained across a wide range of projects in order to solve challenges in specific 
business areas. All the different inputs are provided by stakeholders selected by the 
system architect (for additional information on stakeholders see [61]). The core 
activity of the system architect is to steer and drive the architecture process. The main 
output of this activity is the architecture description, as well as some important 
additional deliverables, such as documentation of experiences and decisions made. 
These outputs are then consumed by relevant stakeholders and used for further tasks, 
for example, the implementation of the system of interest (as shown in the V-model in 
Figure 15). [61] 

The architecture process itself uses the inputs to iteratively define varying possible 
solutions, evaluate them, and select appropriate technical system elements that form 
the overall system [26]. In addition to the general process already shown in Figure 19, 
specific system architecture processes are defined depending on the field of 
application. In the following, the system architecture definition process from the 
Systems Engineering Handbook [26], which also originates from the International 
Council on Systems Engineering (INCOSE), is presented as an example. This process 
makes greater use of the contents of an architecture description defined in 
ISO/IEC/IEEE 42010 and presented in 3.1.1.2. [26] defines the following steps for the 
system architecture process: 

(1) Prepare for architecture definition,  

(2) develop architecture viewpoints,  

(3) develop models and views of candidate architectures,  

(4) relate the architecture to design,  

(5) assess architecture candidates, and  

(6) manage the selected architecture. 

 

While preparing an architecture definition, different aspects are important. Basically, 
to gain an understanding of the models and views to be defined, all relevant 
information such as markets, stakeholders, and businesses, must be evaluated. In 
doing so needs and concerns of relevant stakeholders must be identified, and the 
different requirements must be derived and analyzed. From these requirements 
qualities and constraints must be separated. Qualities and constraints deal, among 
other things, with different conditions in the life cycle and have an influence on how 
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these are considered whilst creating solutions. Therefore, they also have a strong 
influence on the design of the system. After these preliminaries are completed, an 
approach has to be defined how the architecture should be characterized and which 
enablers are needed during the process. After the process step “preparation for 
architecture definition”, the architecture viewpoints are developed to define the 
corresponding models and views. For this purpose, the relevant viewpoints, supporting 
models, and necessary frameworks have to be identified and established. To develop 
the models and views of candidate architectures, the necessary tools and modeling 
techniques are selected first. Then, the context, interfaces, and possible interactions 
between the system itself and context elements are defined. Based on this, 
requirements and relevant architecture elements, for example, functions and physical 
elements, are defined and mapped. This is then represented in models that depict the 
needs and requirements of the stakeholders best. Such models can be, for example, 
logical and physical models. These models can represent structural as well as 
behavioral relationships. The views, which ensure that all requirements have been 
sufficiently taken into account, consist of the created models which should be 
analyzed, verified, and validated before the next process steps. For this purpose, 
appropriate modeling or simulation tools can be used. Subsequently, the architectural 
options are related to the design. For this purpose, the solutions defined so far are 
brought into a context with system elements and the interfaces are described. Based 
on the creation of the architecture options and the defined relationships, a preferred 
architecture is then created. The selection is made, for example, on the basis of a 
system analysis or under consideration of a risk assessment. The final step in the 
process is to manage the selected architecture and to maintain and update it 
accordingly. [26] 

The described process represents one possibility among many for creating an 
architecture description. A similar procedure is, for example, described in [61]. It 
should also be mentioned that such an architecture process utilizes on several related 
procedures, such as the requirements engineering process [61]. In general, it can be 
stated, when considering the general process of the previous section, that for the 
creation of a (system) architecture description, inputs and preliminary work are 
created, architectural options are defined, analyzed, selected, and combined into an 
architectural solution, taking requirements and stakeholder concerns into account 
along the whole process. 

As an example of a production system architecture, reference is made to the system 
architecture derived in chapter 7 of this thesis, being based on the introduced 
application example (see section 1.4). Since the application example is considered in 
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more detail in the context of the evaluation, the reader can get a good impression of a 
possible system architecture of a production system. Thus, there is no need to 
introduce the reader to an additional example of a system detached from this thesis. 
If there is a need for a representation of a system architecture beyond the example 
presented in this thesis, another illustrative example defined in a model-based 
environment is presented in [28], which, however, originates from the field of aviation. 

 

Influence of Agile Approaches on Systems Architecting 
For the sake of completeness, it should be mentioned at this point that, due to the 
agile efforts in systems engineering, agile influences can also be determined in the 
subarea of the creation of system architectures, leading to challenges for the system 
architect [61]. Few complete agile systems engineering approaches are known, so far, 
due to the difficulty of implementing necessary changes [61]. The partial 
implementation of agile approaches in an organization can lead to a mix of 
stakeholders who follow different agile and traditional engineering approaches, which 
holds the challenge for the system architect to coordinate and bring together the 
different starting points of the approaches followed in order to create a specific system 
architecture [61]. Since these challenges are of a rather organizational nature and do 
not directly affect the actual process of creation, but rather the inputs, the topic will 
not be considered further in this thesis. 

 

3.3 Reference Architecture 

In general, the later utilization of the reference architecture defines how a reference 
architecture has to be designed and thus also how the reference architecture can be 
used in the architecture creation process [28]. Due to the existence of overlapping and 
conflicting definitions, the term reference architecture is not clearly defined in 
literature [28]. Conflicts often arise when the focus of a potential reference 
architecture is falsely on the procedure of creating an architecture, instead of on the 
representation of a concrete architecture of a group of systems of a domain [28]. In 
the context of this thesis, the procedure of creating architecture content clearly falls 
into the domain of architecture frameworks, which are considered in the subsequent 
section 3.4. Due to the linguistic labeling and the actual contents, which sometimes 
blur, a separation is usually not to be made clearly and can be steered argumentatively 
in both directions. Within this thesis the term reference architecture is defined as 
follows. 
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Reference Architecture (RA) 

A reference architecture is defined as “[...] a reusable architectural vision for use on 
systems within a product line or application domain” [38]. 

 

In contrast to the system architecture, the concept of a reference architecture always 
refers to a group of systems. This means that the reference architecture, as described 
in the definition, can be reused in the form of a template for the definition of 
architectures for all systems of a class or domain that are in the scope of the reference 
architecture [124]. The reference architecture represents the characteristics of the 
considered systems in the form of functional, logical, and physical aspects [28]. In 
addition, it is further described that most reference architectures mainly put their 
focus, besides the required requirements consideration, on the functional and logical 
consideration as well as on frequently used physical details [28]. A specific technical 
architecture description is often omitted, as this might lead to the reference 
architecture losing its validity for the considered group of systems. The goal is to 
provide support for the definition of system architecture in the form of a functional and 
logical design, which can then be customized, taking into account the specific 
stakeholder requirements of a system of interest [28, 125]. Due to its intended use, 
the reference architecture is less concrete than a specific system architecture of the 
same group of systems or domain [28]. To better understand the connection between 
a reference and a system architecture, the level of abstraction and the concept of 
system groups, which are the main reason why this ratio is reflected in this way, are 
explained in section 0. The content coverage of a reference architecture therefore 
depends strongly on the scope of the group of systems of interest and the degree of 
abstraction. Similar to the system architecture, a reference architecture also has 
different levels of granularity, i.e., levels of detail (for the definition of granularity, see 
section 2.1).  

In principle, such an architecture can be created as shown in the system architecture 
section but taking into account the input from several systems. An alternative option 
is the application of an “[...] architectural framework to a class of systems to provide 
guidance and to identify, analyze and resolve common, important architecture 
concerns [...]” [124] whose outcome is a reference architecture. The creation of such 
a reference architecture as a basis for the development of specific system solutions is 
described in section 3.3.2. 
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3.3.1 Utilization of Reference Architectures  

Unlike a system architecture, which every system possesses, a reference architecture 
acts in a different role that is not necessarily of relevance for the definition of a specific 
system architecture. A reference architecture can be of value, for example, "[...] in 
environments with a high multiplicity factor, creating social, organizational, business, 
application and technical complexity" [29]. If the use of reference architectures is 
considered to be advantageous in certain application scenarios, like any other new 
methodology, process, or procedure that is to be used effectively, the reference 
architecture must be introduced as a concept into the organization and anchored in 
the systems engineering strategy and the associated processes [28]. After a 
successful holistic implementation, the benefits such as reuse and guidance can be 
leveraged during the architecture development process and will ultimately lead to an 
increase in speed to market, competitive pricing, and reduction of testing efforts [28]. 
As mentioned in the systems engineering chapter, organizational topics such as the 
successful implementation of a reference architecture in the systems engineering 
process are not considered in this thesis. Rather, it is assumed that a reference 
architecture has already been implemented successfully and might have following 
advantages: 

 Reduction of development effort and risk in the early development phase of a 
system architecture, through predefined architecture content such as, for 
example, requirements and their structure. The effort required to create and 
maintain the reference architecture can, among other things, be cashed in over 
several projects by avoiding undesirable developments and by reducing the 
additional effort required for a definition from scratch. [28] 

 Increase in effectiveness during creation by, e.g., using synergy, best practices, 
and architecture templates. The reference architecture helps to identify 
possible synergies and assesses in advance whether an increase in efficiency 
can be achieved. The use of previous experience documented in the form of 
best practices can also support the definition process effectiveness [29]. 

 Creating a consistent architecture design, as well as better interoperability and 
cooperation between systems, by using a reference architecture for the 
definition of several systems of a domain. Since the use of a reference 
architecture for the design of the systems is based on a common foundation 
and the systems thus have, among other things, similar design philosophies, 
interfaces, and functions, these characteristics can be achieved to a greater 
extent. [28] 
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 Reuse of single components across the system is driven by concepts like 
modularity and other open architecture principles. The reuse approach can be 
strengthened even further by the application of the reference architecture and 
its, for example, structuring, uniform definition of interfaces and functions, as 
well as common data models. Due to the reference architecture approach, 
some elements of a system are already known by the developers, opening up 
potential opportunities in the direction of strategic vendor relationships and 
possibly influencing development and pricing. [28] 

 Improves communication through common classification (taxonomy) and 
enables reduction of efforts based on a unified architecture vision and the 
possibility of modularization. This allows efforts to be structured better and 
integrated with each other at a later point in time [29]. 

 Increasing architecture and ultimately systems engineering quality by using 
common fundamentals, such as predefined quality attributes as well as the use 
of proven integration and testing methods, which are provided among others by 
the reference architecture [28]. 

 Comply with overall design standards, which can be, for example, represented 
by reference architectures or architecture frameworks and are being demanded 
by more and more companies and organizations. Already defined contents, as 
in refence architectures focusing on such standards, reduce the effort and risk 
of demonstrating that the content complies with the standards. [28] 

 

The creation of a reference architecture may initially involve higher efforts and initial 
investments and therefore will not be carried out everywhere. The method offers great 
advantages for applications where architecture definitions of systems of a specific 
group or domain are carried out on an ongoing basis and the reference architecture 
can pay for itself cumulatively through savings achieved over several projects or 
system definitions [28]. 

 

3.3.2 Creation of Reference Architectures 

For the definition of a reference architecture certain inputs are required and, as an 
absolute minimum, a definition process that generates the corresponding results. 
Additionally, it should be ensured that the created reference architecture contents can 
be reused for example in form of a repository or integrating reference architecture 
model [28]. Depending on the abstraction level, the reference architecture is defined 
with content that may vary between very general and more specific. For example, a 
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reference architecture of a certain category or domain represents more abstract 
content than a reference architecture of a certain specific product line [28]. The degree 
of abstraction of the reference architecture depends strongly on the planned 
application and the considered group of systems.  

The reference architecture is based on inputs of operationally effective systems, 
system designs as well as related feedback/lessons learned and is primarily used for 
design reuse in the reference architecture-specific domain [28]. In addition, as 
possible input for the definition of a reference architecture, a reference model, and 
information on customer policies, standards, as well as possible new and upcoming 
products and technologies might be of relevance [28]. The reference model as input 
represents a basic model, which, among other things, deals with rules and policies 
applicable for the definition process at hand and can be used to derive models for 
specific purposes, for example, for the creation of a reference architecture [28, 111]. 
It is important to distinguish whether the reference model can be used as possible 
input for the reference architecture process or if the reference architecture model 
represents an output of the process (for definition of the term model see section 2.3.5). 
Among others, customer policies and standards are considered as possible input, 
because it is important to describe the operational scope of the systems based on the 
reference architecture sufficiently, in order to ensure their operational functionality 
[28]. Similar factors apply to the inclusion of existing and possible new products as 
well as technologies in order to derive systems that represent the current state of the 
art and, ideally, can take future developments into account and integrate them [28]. 

The actual reference architecture process is similar to the processes described in 
section 3.1.1 in Figure 19 as well as in section 3.2.1 in Figure 20 and also considers 
requirements, reference architecture modeling, and validation of the results. The main 
differences are primarily related to the input, like the consideration of a group of 
systems to a single system, and the further use of the reference architecture process 
output for the derivation of system architectures. For this reason, another exemplary 
process is not presented again at this point, but rather the relationship between 
reference and system architecture as well as prerequisite for the use of reference 
architecture content in the transition to a system architecture is examined in more 
detail. In order to exploit the full potential of a reference architecture for its intended 
purpose of serving as a blueprint for the definition of a system architecture, the 
stakeholders concerned must be able to easily identify and use the contents created 
[28]. As already mentioned in the introduction, this can be done by using a repository 
or integrating model in which the model content as well as other artifacts and 
additional important information are documented [28]. One possibility to realize this is 
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the use of modeling tools, as described in section 6.1, which can be considered 
beneficial with respect to complex systems. In such tools, models with associated 
additional files and documentation can be created, searched, and validated [28]. 
Making this information available within the affected organization is an integral part 
of the development of a reference architecture description, as well as the creation of 
this information [28]. With regard to the relationship between the reference and the 
system architecture, it is also important that the information flow is not unidirectional 
and that there is a constant mutual exchange of information between reference and 
system architecture so that users are able to make changes and extensions [28]. 
However, this should only be possible in a uniformly regulated procedure, as 
unstructured changes can quickly lead to inconsistencies in the reference architecture 
and make it unusable [28]. How governance for quality assurance and maintenance of 
architectures can be structured and implemented is described in [28] and will not be 
considered further in this thesis due to its organizational character. Nevertheless, this 
is an eminently important aspect for the successful use of reference architectures. The 
advantages arise when a new system is to be developed within an organization, and 
the stakeholders concerned can rely on the predefined contents, which they transfer 
into a specific system description with the aid of a methodical procedure like 
incorporated within an architecture framework [28]. The reference architecture does 
not make such a definition method redundant but supports it by reducing the initial 
effort that would otherwise be required in the early phases of the architecture process 
[28]. With regard to the possible content scope of a reference architecture, it should 
be noted that it is usually easier to eliminate superfluous content than to redefine and 
integrate missing content [28]. For this reason, the goal when creating a reference 
architecture should always be to define as comprehensively as possible all alternatives 
that could be relevant for the system group or domain of interest [28]. After the 
relevant contents of the reference architecture have been selected for the definition 
of the system architecture, they will most likely have to be adapted, for example, with 
regard to interfaces and user roles, so that they meet the specific requirements [28]. 
All in all, with a good reference architecture, the creation should generate less effort 
than with a scratch definition of a new system architecture [28]. Plus, the 
effectiveness and efficiency of using a reference architecture depends heavily on the 
methodology and tools used holistically throughout the organization [28]. 

 

3.3.3 Reference Architectures for Production Systems in Literature 

Due to the different understandings and definitions of reference architectures and 
associated models the state of the art in terms of reference architectures is difficult 
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to outline. In order to give an impression of what a reference architecture in the area 
of production systems might look like and to present the concept in more concrete 
terms, in the following widespread but more abstract approaches as well as a probably 
moderately known but more concrete reference architecture are presented. Finally, a 
conclusion with respect to the thesis is drawn about the considered reference 
architectures. 

Similar to the results with respect to architecture frameworks (see section 3.4.5), the 
literature research conducted in [126] shows that established and widespread 
reference architectures or reference architecture models are mainly abstract and 
general in form and content. It is assumed that this might be caused by the higher 
applicability due to the more general focus or because the definition of specific 
reference architectures becomes more difficult with the shift from abstract to 
concrete. A reason behind this might be that more concrete contents require more 
architectural decisions, which will result in the scenario that the application area 
becomes more and more limited. This is one of the reasons why reference 
architectures often have their focus in the functional/logical area [28].  

In summary it can be stated, that the investigated reference architectures Industrial 
Internet of Things Reference Architecture (IIRA) [124, 125], Internet of Things 
Reference Architecture (IoT-RA) [127], and Reference Architecture Model Industry 4.0 
(RAMI 4.0) [128–130] represent valid approaches on an abstract level, which are 
applicable in different domains, as for example in the domain of production systems 
[126]. However, it also became clear during the research that the reference 
architectures cannot be used directly as a template for the derivation of specific 
production systems without relatively large additional effort [126] in order to bridge 
the big gap in abstraction, which negatively impacts the utilization of a reference 
architecture and the creation of a related system architecture [89]. Therefore, as a 
more specific example the reference architecture created within the research project 
CrESt is introduced in the following. 

 

Reference Architecture Example from Research Project CrESt 

In the following the reference architecture form the research project CrESt will be 
presented, which is later used for the conducted prototypical application of the 
architecture framework concept. Within the research project a model-based reference 
architecture with associated content was defined for the domain of adaptable and 
flexible factories, which thematically includes the domain of production systems [35]. 
The development methodology presented therein, as well as the application example 
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of the reference architecture for the adaptable and flexible factory, is based on the 
core topic of the research project CrESt; collaborative embedded systems (CESs) [35]. 
These systems interact with other systems in a collaborative system group (CSG) to 
achieve a common goal [35]. The systems are flexibly coupled and can be adapted 
accordingly when changes are necessary [35], as it is required in an adaptable and 
flexible factory for production changeovers. The general development methodology is 
based on the SPES_XT modeling framework also presented in this thesis in section 
3.4.5, which in short considers requirements, functions, logical components, and 
technical solutions [35]. Further information on the modeling framework can be looked 
up in the mentioned section of the thesis or, among others, in [33] and [34]. According 
to [35] in a first step, a reference architecture CESs and CSGs was defined based on 
the modeling framework. Afterwards, based on the subsequent results and in 
combination with the methodology, a specific reference architecture for the domain of 
the adaptable and flexible factory was created [35]. The focus of the reference 
architecture is on selected core requirements and, above all, on the creation of a 
functional and logical reference architecture [35]. In order to remain as independent 
as possible of specific technical solutions, no technical reference architecture was 
defined [35]. According to [35], the specific requirements were mainly taken from the 
application scenarios of the Platform Industry 4.0 [66, 67], as well as the use cases 
that are described in [35]. The goals for the systems of the adaptable and flexible 
factory that result from those considerations are first and foremost regarding the 
production process as well as the production of the products [35]. In addition, related 
goals arise, such as reconfigurability of the production system, analysis of product 
orders, planning of production and capacities, optimization, maintenance, 
collaboration, and evolution of the product portfolio [35]. An exemplary excerpt of the 
logical reference architecture for the adaptable and flexible factory described in [35] 
and derived from the formulated goals and the general reference architecture is shown 
in Figure 21. This exemplary excerpt displays the CSGs that are relevant from a logical 
perspective at the highest granularity level of the reference architecture with respect 
to the adaptable and flexible factory. On subordinated higher granularity layers the 
shown contents are detailed and address the concepts relating to roles, functions and 
goals described in general form in [35].  
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Figure 21: Example of high-level logical reference architecture for the adaptable and flexible factory [35] 

In general, CSGs reflect different goals and functions they are intended to fulfill [35]. 
The ProductionCSG is representative of a system group that is concerned with 
producing a product based on an order [35]. For this purpose, different functions, such 
as the analysis and maintenance of the production order, the monitoring of the 
production, or the collection and provision of data for operational use, are taken into 
account [35]. It should also be noted that when considering logical elements, no 
statement is made about which specific system will fulfill which specific task or 
function in the later technical solution. If, for example, in the context of the 
ProductionCSG, different functions are mentioned, which are unifying represented by 
a single symbol, this does not mean that in the technical solution all these functions 
are fulfilled by only one system but rather by the represented group of systems. The 
ProductionOptimizationCSG deals with the improvement of the production and thus, 
among other things, with the support of the operator in the form of bottleneck 
detection, failure support or capacity optimization of production [35]. The 
MaintenanceCSG considers all functions and tasks that support the optimal operation 
of the production system/factory [35]. These functions relate, for example, to the 
planning, execution, and prediction of necessary maintenance tasks [35]. The 
MarketplaceCSG deals with collaboration topics, especially between factories and at 
a subordinate granularity level between systems and serves as a hub for offering and 
utilizing required capabilities [35]. The ProductPortfolioCSG is concerned with the 
continuous improvement of the factory as well as the production and therefore 
includes all functions considered with, among others, the analysis of product orders or 
the specification and proposal of improvement measures [35]. 

On a detailed level, the CSG is formed by different CESs, such as the ProductionCES 
shown in Figure 22. As shown and depending on the application scenario a 
ProductionCES might have a certain role within a CSG, a ProductionCapability, and will 
utilize several mangers, for example, for managing the production itself or optimization.  
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Figure 22: Exemplary detailing of ProductionCES of reference architecture [131] 

These contents described above were detailed further with respect to the different 
CSGs and CESs of the reference architecture of the adaptable and flexible factory but 
are not further elaborated in the form of image or text by the author of this thesis since 
the reference architecture and related contents were developed by Siemens AG in the 
context of the research project CrESt and beyond and have not yet been published 
completely. Nevertheless, the model-based reference architecture described above 
can be used for the later conducted application of the specified architecture 
framework. 
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3.4 Architecture Framework 

Considering the concept of architecture framework there are different 
conceptualizations, which lead to the fact that the term architecture framework is 
regularly misinterpreted as a template or basic architecture [61]. However, as 
described in the previous section, such basic architectures with template character 
are referred to as reference architectures, posing rather complementary components 
of the architecture frameworks and are ideally defined by using a selected architecture 
framework [28, 61]. This already outlines the actual characteristics of the architecture 
framework, which, in simple terms, is to provide an approach to develop, structure, 
organize, and document architectural description in order to better support the 
architect by creating system or reference architectures [27, 28, 61, 132]. Within the 
design phase the architecture framework represents one main concept for system 
architecting and the creation of system and reference architecture descriptions. In the 
following, the term architecture framework as a key concept within this thesis, the 
utilization of architecture frameworks, advantages and disadvantages, as well as the 
key components of an architecture framework are defined. Concluding, a 
representation of widely used and recognized architecture frameworks is analyzed 
with respect to specific requirements framing the assumed research gap concerned 
within the thesis. 

 

3.4.1 Architecture Framework Term Definition 

Nowadays it can be stated that the support of architects during the creation of a 
system architecture description primarily takes place in the form of architecture 
frameworks [15, 27]. The application of these architecture frameworks mainly serves 
to structure and organize the architecture descriptions of the considered system as 
well as to standardize development efforts and related systems [15, 27, 133]. In 
standard ISO/IEC/IEEE 42010 the term architecture framework is defined as follows. 

 

Architecture Framework 

An architecture framework represents ”[...] conventions, principles and practices for 
the description of architectures established within a specific domain of application 
and/or community of stakeholders” [30]. 

 

This use of pre-defined structural procedures, products, and design principles, which 
are described in the context of the architecture framework for the development of 
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system architectures, are detailed in the following [15]. ISO/IEC/IEEE 42010 also 
states that the architecture framework not only specifies procedures for the creation, 
interpretation, and analysis of architecture descriptions, but also for the use of these 
descriptions [30]. Furthermore, it is described that architecture frameworks, in 
addition to the creation of architecture descriptions, are also used for "[...] developing 
architecture modeling tools and architecting methods; and establishing processes to 
facilitate communication, commitments and interoperation across multiple projects 
and/or organizations" [30]. It is further pointed out that the components of an 
architecture framework should include information for identification of the framework, 
consideration of stakeholders and their concerns, viewpoints that take these concerns 
into account, and associated rules [26–28, 30, 134]. 

As in the process of creating an architecture description the identification of the 
stakeholders, who have fundamental concerns for the architecture, is also relevant as 
a starting point within the architecture framework [30]. An overview of relevant 
stakeholders, such as developers or operators of the system, is presented in [30]. 
Possible key concerns that should be investigated in this context include the purpose 
of the system, the use of the system, and risks in the life cycle of the system [30]. 
Other concerns are also described in [30]. The terms viewpoint and view (described in 
section 3.1.1.2) can be defined as part of an architecture description, a framework or 
individually [30]. A viewpoint should be used to put the identified stakeholder concerns 
into an architectural context [30]. In addition, the viewpoint shall represent which 
model kinds are used to map these concerns [30]. For each of these model kinds, "[...] 
languages, notations, conventions, modeling techniques, analytical methods and/or 
other operations to be used on models of this kind [...]" [30] as well as associated links 
to sources shall be presented [30]. This can be done, among other things, in the form 
of a meta-model, which reflects the content that can be described by using the defined 
viewpoints within an architecture [27, 30]. In addition, the viewpoints should provide 
information on how the individual views of a corresponding viewpoint, being part of 
the architecture description, can be created, interpreted or analyzed, for example, by 
applying appropriate methodologies or templates [26, 30]. Based on those views, 
among others, analysis on the created architecture can be performed [132]. 
Furthermore all correspondences shall be considered, which define the relationship 
between elements within an architecture and thereby expresses architectural 
relationships in an architecture description [30]. Taking these rules into account, it can 
be expressed whether an architectural relationship has been fulfilled to the defined 
extent or for what reason it is violated [30]. 
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From the author's point of view, it is important to mention at this point that the concept 
of the architecture framework can support the stakeholder(s) in their work and suggest 
appropriate methodologies, content, and structures. The stakeholders and their 
capabilities as well as expertise continue to determine the success or failure of the 
application of a framework and the related outcome. In addition to factors such as 
acceptance and suitable organizational structures, human capabilities such as 
intelligence and creativity, decision-making behavior, recognition of dependencies, 
assessment of importance and urgency, consistency and flexibility, and dealing with 
errors play a key role with respect to good problem-solving abilities in the development 
process [135]. These human capabilities can be supported to a certain extent 
methodologically and in terms of content by the architecture framework but cannot be 
replaced. Human capabilities should therefore always have a special focus in relation 
to the use and definition of, among other things, architecture frameworks. 

 

3.4.2 Utilization of Architecture Frameworks 

After the general definition of the term architecture framework has been introduced, 
this section will deal specifically with the use of an architecture framework. As 
described within ISO 42010, the architectural framework represents "conventions, 
principles and practices for the description of architectures established within a 
specific domain of application and/or community of stakeholders" [30]. Depending on 
whether the application of the framework aims at a single system or a group of systems 
in the domain of interest, the results differ. In case of an application to a considered 
group of systems, the subsequent result describes a reference architecture [124], 
which considers and describes the entirety of all systems of the group. When applying 
the architectural framework to a single system, the result is a system architecture valid 
for the single system of interest. This fundamental distinction and the corresponding 
result are shown in Figure 23. Additionally, S.W. Lin et al. describe that a reference 
architecture can be used as a template for the definition of individual systems 
belonging to the group of systems for which the reference architecture has been 
defined [124] (also see Figure 23). This transition between reference architecture and 
system architecture and the necessary support by an architecture framework 
describes the research focus of this thesis and is elaborated in detail in the following.  
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Figure 23: Application of Architecture Framework and Results 

In principle, the statement can be made that for the definition of architectural content 
either (1) a structured methodical approach, (2) a free procedure not guided by written 
down methodologies or (3) a mixture of both can be applied. The structured methodical 
approach describes the application of an architecture framework, which represents 
the application of clearly defined contents for the guidance of architectural definition. 
The second and third approach represent a possible working method of a stakeholder, 
who only partially falls back on clearly defined and documented methodical procedures 
and combines or executes individual definition steps by implicit expert knowledge. This 
does not mean that the stakeholder carries out the definition without a clear procedure 
or methodological principle, but rather that exclusive knowledge or methods are used 
not available, understandable, or reproducible by third parties. Such procedures and 
methods might have been devolved and evolved over time. This makes it difficult or 
impossible for third parties to comprehend, who are, for example, supposed to 
implement the system on the basis of the created results. A definition of a system of 
interest or a group of systems of interest is possible in this way, but because of the 
lack of traceability and relationship between elements and the lack of knowledge on 
utilized methods and concepts those procedures are more error-prone and much more 
complex for third parties to understand. Therefore, the application of architecture 
frameworks is a way to create sustainable and long-term applicable architectural 
descriptions. 
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Production System Application Example 
To clarify the relationship between reference architecture, system architecture, and 
architecture framework, it is assumed that a group of systems is considered that belongs to a 
similar domain or considers related content. This could be, for example, a group of systems 
that considers the production of a component of an engine. In this example, the production 
system application example "cylinder head manufacturing" represents one of these specific 
systems. Others are the "engine block manufacturing system" or "intake manifold 
manufacturing system". For each of these individual systems, a system architecture description 
can be defined by individually applying an architecture framework to them. The same applies 
for the definition of a corresponding reference architecture. However, in this case the totality 
of all systems is considered, and the architecture framework is applied to the group of systems. 
The result could be, for example, with a more specific consideration in mind, a reference 
architecture for engine manufacturing systems or, for a broader consideration and greater 
applicability, a reference architecture like the CrESt reference architecture for the adaptable 
and flexible factory, which was presented in section 3.3.3 and is used in this thesis for 
evaluation purposes. Based on such a reference architecture, predefined elements can then be 
transformed into architectural descriptions for specific systems of interest, which is part of the 
group under consideration. 

 

 
Figure 24: Production system application example – application of architecture framework 

 

3.4.3 Advantages and Disadvantages of Architecture Frameworks 

As with the use of a system or reference architecture, there are also certain 
advantages to be achieved as well as disadvantages that arise when using an 
architecture framework. In the following, advantages and disadvantages of using an 
architecture framework are listed, which shall always be considered in a differentiated 



Architectures 
 

76 
  

manner and dependent on the focus and type of the architecture framework. For 
example, both a management and a technically oriented framework will support the 
business purpose of a company/organization, but to a different extent based on the 
focus and goal of the architecture framework. Some benefits that can be achieved by 
using different architecture frameworks are, for example, business purpose support, 
complexity management, decision support, standardization [132] or stakeholder-
independent knowledge assurance. The business purpose is supported by all 
architecture frameworks, especially by enterprise architecture frameworks, and helps 
the applying organizations to achieve their specific goals [132, 133]. Among other 
things, enterprise architecture frameworks provide best practices with the purpose of 
creating usable and economical solutions [132, 133]. In the context of complexity 
management, a framework provides different aspects and approaches to deal with 
complexity, including clear responsibilities and structures, having goal-oriented 
project management, specific tools, and modeling approaches [132]. The different 
tools and methodologies provided by architecture frameworks also support 
organizations or stakeholders, among other things, in their decision-making [132] and 
communication [30]. As a result, corresponding developments and dependencies, for 
example, with regard to business processes, can be better analyzed, evaluated, and 
related to each other in order to be able to take decisions [132]. All these methods, 
structures, and procedures contribute directly or indirectly to the fact that architecture 
frameworks have an unifying character when applied continuously and contribute to 
standardization within an organization but also across organizations [132]. This can 
be relevant, for example, with regard to interoperability [30, 132]. Depending on the 
framework and application scenario, the use of architectural frameworks can support 
and positively influence integration and interoperability, holistic consideration of 
businesses and systems, optimization, data management, security, and stakeholder 
education [132]. 

In contrast to the positive aspects, the utilization of architecture frameworks can also 
pose challenges, such as the initial investment, required experience, and support for 
implementation of architecture framework throughout the whole organization [132]. 
Additionally to initial investments and development costs, expenses also include costs 
for licenses, tools, and knowledge acquired from experts [132]. Due to the complexity 
and lack of experience, the expert knowledge should be taken into consideration in 
any case in order to guarantee target-oriented development and use [132]. Besides 
the cost and knowledge aspects, an essential challenge is to achieve acceptance for 
the development and implementation at all levels of the organization and by the 
management [132]. 
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For the decision on whether the application of an architecture framework is 
advantageous or not, the individual situation with respect to development as well as 
use of an architecture framework must be analyzed and the pros and cons weighed 
against each other. 

 

3.4.4 Creation of Architecture Frameworks 

The review of systems engineering and architecture literature reveals that no 
established process has been defined for the creation of an architecture framework. 
In one of the relevant standards in this field, the ISO/IEC/IEEE 42010-2011 [30], the 
architecture framework plays a central role, but besides relevant components no clear 
procedure for the definition of contents is described. In a very similar way and away 
from standards, [73] uses terms such as goal of the framework, architectural levels, 
and organization of architecture description to outline the definition of the architecture 
framework, but without describing a concrete process. It is noticeable that very similar 
contents are outlined with other terms. Since no clear procedure can be derived from 
the literature, the following section will focus more on the most important components 
of the architecture framework. Concludingly, it is described, which components should 
be contained in the results of the application of the architecture framework in order to 
highlight how the contents of the architecture framework are projected into the 
created architecture description. 

ISO/IEC/IEEE 42010-2011 aims to propose architectural conventions and established 
practices, which shall lead to the creation of a common basis for the definition and use 
of architectural frameworks, in order to, among other things, improve and strengthen 
the understanding and interoperability between architectural communities [30]. Based 
on the standard ISO/IEC/IEEE 42010-2011 it shall be exemplarily described, which 
components an architecture framework should consist of. These components include 
information describing the architecture framework, identification of concerns and the 
stakeholders who express those concerns, architectural viewpoints framing those 
concerns, and relevant correspondence rules [30] and are shown in Figure 25. In 
addition, it is specified that the viewpoints express which model kinds are used to map 
the concerns expressed by the stakeholders [30]. The individual components of a 
framework have already been defined in section 3.4.1 and are therefore not introduced 
in detail again. The terms and related contents of an architecture framework like 
viewpoints, model kinds, correspondence rules, stakeholders, and concerns have 
already been defined in connection with the term architecture description. The 
relationships can be found in section 3.1.1.2. Considering the stakeholders and 
associated concerns it becomes clear, that they are mainly considered at the beginning 
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of the specification of an architecture framework, but ultimately serve to specify the 
relevant content that is to be represented in the views of the individual viewpoints. 
Likewise, the correspondence rules describe relations within the architecture 
description [30], which are represented again in form of views within the specified 
viewpoints. Therefore, it can be stated that the viewpoint concept and the views 
specified therein play a central role for the definition of the architecture frameworks.  

 

 
Figure 25: Content of architecture framework (adapted from [30]) 

As the selection of a suitable approach for the creation of an architecture framework 
strongly depends on the application scenario and on suitable in literature available 
(sub-)procedure, for example, for the definition and management of stakeholders 
[136] or the creation of viewpoints and views [123], this situation is only highlighted 
here, and no further selection of procedures or details are given.  

Based on the components shown in Figure 25 (defined in section 3.4.1), a statement 
can be made whether the architecture description adheres to the specified 
architecture framework or not [30]. This is the case if every relevant stakeholder and 
every related concern of the architecture framework have been identified and taken 
into account in the architecture description, every viewpoint as well as view and the 
application of the correspondence rules of the architecture framework are included in 
the architecture description, and if the architecture description itself conforms to the 
form described in the standard ISO/IEC/IEEE 42010-2011 and in section 3.1.1.2 [30]. 
It should also be mentioned, that an architecture description can be assigned to more 
than one architecture framework [30]. However, it must be ensured that the contents 
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of the frameworks are compatible and, among other things, coordinated with regard to 
contents like stakeholders, concerns and viewpoints [30]. 

 

3.4.5 Architecture Frameworks in Literature  

Since many different architecture frameworks are described in literature, the relevant 
state of the art is elaborated below, taking into account the topic of this thesis. From 
the author's point of view, the large number of different architecture frameworks can 
be attributed to the changing situation over the last years and corresponding adapted 
developments as well as the development based on specific application scenarios and 
goals. To be able to perform a targeted assessment of the state of the art by taking 
into account the specific situation examined in this thesis, corresponding requirements 
for the assessment are formulated in section 3.4.5.1. These are then used in section 
3.4.5.3 to evaluate the architecture frameworks selected and presented in section 
3.4.5.2. 

The purpose of this literature review is to be able to make a statement about the extent 
to which the existing architecture framework solutions can or cannot be used for the 
intended use of reference architecture descriptions in the definition process of specific 
system architecture solutions. Based on the evaluation, the need for research in 
relation to this thesis can be derived and specified in detail. 

 

3.4.5.1 Requirements for Evaluation of Architecture Frameworks 

There are a variety of architectural frameworks with different focuses and goals 
considered in literature. To be able to make a suitable statement about the state of 
the art of architecture frameworks with regard to this thesis, specific requirements for 
an evaluation are formulated. These requirements should aid the assessment of the 
applicability of the architecture frameworks considered and to identify possible gaps 
or research needs. For this purpose, the specific situation, the resulting need, and the 
associated thesis specific requirements are defined in Table 2. These requirements 
are defined based on the problem statement and research objective outlined in the 
introduction and in the state of the art. The later evaluation conducted in section 
3.4.5.3 will aim to show to what extent the specific challenges considered in this thesis 
have already been taken into account in existing architecture framework approaches. 
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Table 2: Requirements for evaluation of architecture frameworks (adapted from [137]) 

No. Situation Need Thesis specific requirements 

1 

Systems and associated life 
cycle processes experience, 
among others, a steady 
increase in complexity, which 
places special demands on the 
design process of such a 
system as well as on the 
stakeholders. 

Identification of means and 
methods for the development 
of complex systems and the 
support of associated 
stakeholders. 

Architecture framework shall 
consider the development of 
architecture descriptions of 
complex systems and ideally of 
production systems. 

2 

Architecture frameworks are 
defined for different scenarios 
and therefore have a main 
focus of application. The 
results of applying the 
architecture framework reflect 
this specific focus. 

Selection and application of the 
most appropriate architecture 
framework for the considered 
application scenario. 

Architecture framework shall 
consider the creation of 
technical architecture 
descriptions (focus production 
domain). 

3 

Due to the increasing 
complexity of systems and 
processes as well as the 
increasing globalization and 
decentralization in companies, 
there is a growing need for, 
among other things, 
complexity-reducing and 
integrating processes and 
measures that support the 
relevant stakeholders across 
disciplines and organizations in 
the specification of 
economically competitive 
solutions in the area of systems 
engineering and, in particular, 
architecture development. 

Reuse of architecture-relevant 
content during the definition of 
architectural descriptions. 

The architecture framework 
shall allow the use of 
predefined architectural 
content for creation of 
technical architecture 
descriptions. 

4 

Use of predefined reference 
architecture description for 
defining a description of an 
architecture of a system of the 
system group/domain 
considered in the reference 
architecture. 

The architecture framework 
shall consider the transition of 
reference architecture 
description content for the 
specification of system 
architecture descriptions. 

5 

Support of stakeholders 
involved in deriving an 
architectural description from a 
reference architecture, for 
example, through specific 
methods or processes. 

The architecture framework 
shall explicitly implement 
specific methodologies, 
structures, or content related 
elements to support 
stakeholders in the 
development of specific system 
architecture descriptions 
based on available reference 
architecture description 
contents. 
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3.4.5.2 Architecture Framework Examples 

As described in the previous sections, there are a variety of architecture frameworks. 
Among the most frequently mentioned architecture frameworks, for example, in 
comparative literature, like [132, 138, 139], in standards, like ISO/IEC/IEEE 42010-
2011 [30], in publications of large engineering associations, like INCOSE [26, 27], or of 
governmental organizations, like NASA [43], are for instance the following frameworks 
(mentioned in alphabetical order): 

A) Department of Defense Architecture Framework (DODAF) [140] 
B) Federal Enterprise Architectural Framework (FEAF) [141] 
C) Generalized Enterprise Reference Architecture and Methodologies (GERAM) 

[142] 
D) Ministry of Defense Architecture Framework (MODAF)3 [143] 
E) Reference Model of Open Distributed Processing (RM-ODP) [144] 
F) The Open Group Architecture Framework (TOGAF) [133] 
G) The Zachman Framework [145] 

Other architecture frameworks also cited rather frequently are mentioned, among 
others, by [132, 134, 138]. 

As already indicated, the focus of the architecture frameworks varies due to, among 
other things, the type of architecture under consideration. The type of an architecture 
is specified based on the application scenario, the goal or the purpose pursued [27]. 
For example, the type of architectures considered may be based on the topic, 
including, operational or security, on the purpose, including, integration or domain 
definition, or on a specific system, including, system of systems or enterprise systems 
[27]. This results in a variety of architecture types, which, for example, depending on 
the content or degree of abstraction, are to be seen in a certain dependency or 
hierarchy to each other. The common hierarchization into business architecture, 
information architectures, solution architecture, and technical architectures can be 
found in comparable form in different sources, among others, in [61] and [138]. 
Alterative possibilities of the hierarchization are represented, for example, in [132]. 
Depending on the type of architecture under consideration, the architecture 
frameworks can be classified analogously and hierarchized, for example, from 
enterprise architecture framework to technical architecture framework. This means 

 
3 After creation of the state of the art MODAF has been withdrawn on 15th of January 2021 and 
was replaced with the NATO Architecture Framework (NAF) V4. The consideration of MODAF 
as an example for architecture frameworks within this thesis will not be replaced, as this would 
not impact the general conclusion in any positive or negative fashion. 
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that dependent on the selected architecture framework a spectrum of a more general 
holistic or specific detailed scope of architecture consideration is reflected. An 
enterprise architecture mostly considers the whole spectrum from business to 
technical domain, whereas. frameworks with a topic focus might only consider specific 
architectural contents. 

When looking at the frequently mentioned and widespread architecture frameworks 
as well as at the literature mentioned above, it is noticeable that mostly enterprise 
architecture frameworks following a more holistic scope can be found. The reason for 
this cannot be clearly deduced from the literature. In the eyes of the author, various 
factors could have contributed to this situation. One factor, comparable to 
implementation of reference architectures, might be that a holistic approach is more 
effective and, based on experience, more promising for the utilization of an 
architecture framework. Another factor that more generally applicable abstract 
approaches have become better established and spread than specific frameworks 
could be the influence of different peer groups utilizing architecture frameworks. 
Naturally a more holistic general approach might appeal to a bigger audience than one 
considering a specific application scenario or challenge. A third factor contributing to 
the situation might be the starting point and drivers of the adoption and 
implementation of an architecture framework, such as the creation by or with 
governments and large international organizations well established within research 
and standardization. All in all, these factors could have contributed to some 
architecture frameworks gaining acceptance and being mentioned more often in 
relevant literature than others. 

Nevertheless, literature also contains a wide variety of other architecture frameworks 
that supposedly consider more specific aspects and represent, for example, technical 
architecture frameworks. These are not as widespread, well documented, and 
evaluated by the relevant community as the frameworks mentioned above, but should 
be evaluated by representative examples when considering the state of the art and the 
specific focus of this thesis. These architectural frameworks, taking into account the 
thesis content, include, for example, the following frameworks (mentioned in 
alphabetical order). 

H) Model-Based System Architecture Process (MBSAP) [28] 
I) Method Framework for Engineering System Architectures (MFESA) [38] 
J) SPES_XT modeling framework [34] 
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3.4.5.3 Architecture Framework Evaluation 

Reflecting the complete state of the art for the evaluation is difficult or impossible due 
to the large number of different architecture frameworks. Therefore, for the evaluation 
an attempt was made to consider a representative mix of architecture frameworks. 
The selection and grouping of the individual architecture frameworks are based on the 
opinion of the author and the classification as architecture framework in widely used 
literature (see section 3.4.5.2), however, does not aim to represent a complete listing 
of all globally available frameworks.   

In preparation for the evaluation, the previously presented architecture frameworks 
will be summarized in tabular form in this section (Table 3) and in the annex (Table 9 
to Table 16). The contents of the individual architecture frameworks are not presented 
in full extent. The focus is on specific aspects that are relevant with respect to the 
formulated requirements and the evaluation. The content presented includes the 
name, objective, and type of the architecture framework, as well as the application 
area, the focus on technical architecture content, utilization of reference architecture 
content in general, and transition support for deriving system architecture content 
from reference architecture content. In addition, a reference to the utilized sources is 
provided. The complete contents can be found in the sources indicated. As 
representative examples the enterprise architecture framework "Department of 
Defense Architecture Framework (DoDAF)" and, as a contrast, the system architecture 
framework "SPES_XT modeling framework" are shown in the following table. Those 
examples and related architecture framework kinds represent the range of the 
considered architecture framework mix from very abstract and broadly applicable to 
rather concrete and specifically applicable. 

  



Architectures 
 

84 
  

Table 3: Exemplary comparison of two selected architecture framework approaches  

Name 
Department of Defense 
Architecture Framework 

(DoDAF) 

SPES_XT Modeling 
Framework 

Objective 

Alignment of all architectural 
descriptions created by various 

commands, services, and 
agencies to achieve 

compatibility 

Provide framework for model-
based systems engineering 

(MBSE) of embedded systems 
to professionals and 

practitioners concerned with 
the development of such 

systems in various domains 

Type 
Enterprise architecture 

framework 
System architecture framework 

Application area 
Focus on military / aerospace 
domain and system of systems 

(SoS) 

Focus on automation, 
automotive, and avionics – 

example: adaptable and flexible 
factory 

Focus on technical 
architecture 

Low Medium 

Utilization of RA or 
related content 

None 
Yes (not explicitly) – only 

mentioned as output 

Transition support 
between RA und SyA 

None 
Yes (not explicitly) – abstract 

concept mentioned 

Source [28, 61, 132, 138, 140] [33–35] 

 

All architectural frameworks and the relevant literature considered are evaluated 
against the specified requirements. The specific content of the individual architecture 
frameworks is examined and evaluated in relation to the content of the other 
considered frameworks. The fulfillment of the requirements is divided into four levels. 
Two levels describe the extremes, i.e., either that a requirement is not fulfilled or that 
no statement can be made about the degree of fulfillment on the basis of the available 
literature/information, and that a requirement is completely fulfilled. In between, a 
distinction is made between barley and partially fulfilled requirements. The results of 
the evaluation are shown in Figure 26. 
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Figure 26: Comparative evaluation of 10 architecture framework approaches (concept adapted from [137]) 

It should be mentioned, although not explicitly queried in the form of a requirement, 
that the frameworks considered largely represent the specific components of an 
architecture framework described in section 3.4.4. With respect to the specified 
requirements, a relatively mixed degree of fulfillment can be determined for 
requirements 1-3, which are better fulfillment by the more specific system architecture 
frameworks in comparison to the more abstract enterprise architecture frameworks. 
This result was to be expected since the requirements describe a relatively specific 
issue on a similar abstraction level considered within the system architecture 
frameworks. For requirements 4 and 5, insufficient fulfillment was found for almost all 



Architectures 
 

86 
  

frameworks. The SPES_XT and MFESA frameworks form a small exception, which at 
least insufficiently consider the topic of reference architecture as specified within the 
requirements. In the overall consideration of all requirements, the integration of 
reference architecture concepts for the derivation of system architectures is hardly 
taken into account in connection with the architecture framework concept. Regarding 
the causes for this development different assumptions can be made, which are to be 
discussed briefly in the following. The first possibility why only brief attention to this 
topic within architecture frameworks is to be found, is lacking interest of relevant 
stakeholders and or no need for such a concept. In the eyes of the author, this 
conclusion could be drawn from a pure consideration of the architecture frameworks. 

However, if a holistic view of the literature and the high relevance of topics such as 
reference architectures is considered, it can be assumed that there is a fundamental 
interest in this topic and that other reasons speak for the low consideration. From the 
author's point of view, it is more likely that a mixture of the low availability of suitable 
reference architectures (see section 3.3.3) in combination with the poor transition 
process description, presupposes the need for a high initial investment, which many 
companies have previously shied away from and therefore not sorely considered the 
use of architecture frameworks and reference architectures. Over the last few years, 
organizations started to consider such topics due to the rapidly changing competitive 
environment, their need for securing competitiveness over time, and the advantages 
which those concepts provide. This development can also be clearly seen in literature 
and in related trending topics such as reuse. In addition, a look at current research 
projects, such as CrESt, allows a similar conclusion to be drawn. Based on these 
considerations, the apparent lack of interest at first glance changes into a research 
gap that needs to be filled. In concrete terms, this means that the use of a reference 
architecture, the associated necessary procedure for creating a system architecture, 
and the implementation within existing or from scratch defined architecture framework 
should be investigated. 

 

3.5 Conclusion on Transition between Reference and System 
Architecture Content Utilizing Architecture Frameworks 

In summary, it can be stated for these chapters that the creation of the architecture 
as part of the basic engineering and partly detailed engineering has a lasting influence 
on the total life cycle costs and on the future orientation as well as the performance 
of a system to be developed. In order to keep the development and later use of such a 
system architecture as effective and efficient as possible, supporting concepts such 
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as reference architectures and architecture frameworks can be used. In this context, 
a reference architecture provides an architectural description for a group of systems 
or for a domain under consideration, which can then be (re)used for the definition of a 
system architecture description. A look at the literature reveals many abstract 
approaches with regard to the domain of production systems, as well as a few concrete 
approaches, such as the reference architecture presented from the CrESt research 
project. The template character of the reference architecture is often not differentiated 
clearly in literature and should be strictly separated from the architecture framework 
concept. In contrast to the reference architecture, the architecture framework does 
not describe concrete results, but rather the procedure for creating specific 
architecture descriptions. The architecture frameworks shall provide guidance and 
support for the affected stakeholders in an extent, that they can ideally focus to a large 
extant on topics that cannot be provided by the framework. Such topics would be the 
actual creative process of specifying a system. The accomplished evaluation of 
architecture frameworks resulted in the discovery of probable research potential 
regarding the integration of reference architectures and the actual methodical 
transition to the system architecture description. In the following chapters, this 
research gap will be examined and a proposal for a possible design of an architecture 
framework, which methodically considers this issue, will be introduced. 

 

Excursus on the Topic of Reuse 

In connection with the considered topic architecture framework many overlaps with 
completely independent research topics occur, which are either delimited from each 
other or excluded. A completely independent research topic, but often mentioned in 
the context of the architecture development and in particular in relation to reference 
architectures and the transition to system architecture, is the re-use of 
objects/architectural contents. This complex topic area should not and cannot be 
considered in detail in this work but shall also not be excluded in the following without 
a few relevant remarks. The topic of reuse occupies research and industry alike in the 
most diverse fields of application. Basically, besides specific considerations, some 
fundamentals for the reuse of artifacts can be read from the literatures, such as [5] 
and [137]. In the eyes of the author, the most relevant points with respect to this thesis 
are that reuse can only happen when the content available overlaps with the content 
needed to describe a system [137], reusable artifacts are created along the life cycle, 
and that they can be reused in different life cycle phases [5], and that the reusability 
is influenced by the degree of abstraction [5]. In addition to these points, there are 
countless other aspects that are considered in research contributions such as by [137]. 
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4 Research Needs 

In the previous chapters was shown that there are currently changes to be addressed 
in the context of systems engineering and in the subarea of the creation of 
architectural descriptions. Those occurring changes are expressed in different 
challenges for these disciplines. It could also be shown that there are specific research 
needs regarding the issue investigated in this thesis. The main is the use of reference 
architecture descriptions for the definition of specific system architecture descriptions 
through the application of a corresponding architecture framework. The considered 
research needs with respect to the topic of this thesis are described in more detail and 
narrowed down in the following in the form of research questions. Above all, the focus 
of the thesis lies on the specific challenge of "how" the transition from reference to 
system architecture can be implemented as part of architecting carried out by the 
relevant stakeholders of an organization. The goal is to provide a specific procedure 
within an architecture framework to support the concerned stakeholders, for the 
ultimate purpose of solving the challenges and capitalizing on the benefits. 

 

 
Figure 27: Overview of the contents of chapter 4 

It should be mentioned at this point that the author is conscious that, as indicated in 
the previous chapters, the consideration of a holistic view of the organization, all life 
cycle phases, and related processes is more goal-prominent for the creation and 
application of an architecture framework. However, since many established 
architecture frameworks already exist and an integration of a specific framework into 
a widely use framework is possible under certain circumstances, the author decided 
to regard and work on a single relevant research issue, in order to provide a solution 



Research Needs 
 

89 
 

for this research gap. The solution shall be used in the relevant community as 
discussion basis for the further consideration of the topic. The purpose is to initiate 
and advance the development in this area. If successful, the prototypical integration 
into a standardized architecture framework can be examined as a downstream task 
after the thesis. 

In the following, the research questions of this thesis are presented and described. In 
addition to the main research question RQ1, other related and complementary 
subordinate research questions are defined (RQ2 and RQ3). The goal is to divide the 
problem space described by the research questions into smaller thematic blocks and 
to provide solutions for them. Chapter 4 thus formulates the research object of the 
thesis and as shown in Figure 27, represents the transition between the state of the 
art examined in the previous chapters and the architecture framework solution 
approach developed in the following chapter. 

 

 
Figure 28: Model of transition from reference to system architecture (adapted from [146, 147] and [148] 
in [149]) 

Based on the state of the art and the research gap identified, a highly simplified model 
can be derived and used as a basis for formulating the specific research questions. 
The model is shown in Figure 28. The model describes the basic concept of defining 
system architectures based on reference architectures. Based on the model three 
areas of interest in relation to the research gap can be identified: 

(1) In general, the method for defining architectures does not differ between 
reference architectures and system architecture, if they are considered and 
defined completely separated from each other. When setting up system or 
reference architectures only their scope as well as specific contents differ and 
therefore their applicability (compare with Figure 23 - single system vs. group 
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of systems). The applied methodology within the framework remains the same 
for both system and reference architectures (also as described in section 3.4.2). 

(2) The validity of the made statement in (1) needs to be adapted, when system 
and reference architectures are considered in the same context. The 
methodology stays mostly the same but needs to be enhanced for considering 
mutual dependencies between reference architecture and system architecture. 
This is mainly the case during definition of system architectures based on 
reusable reference architecture elements as well as during adaption and 
improvement of architectures (see (3)). 

(3) During the definition of a system architecture description or after the transition 
from design to runtime necessary changes to the system and therefore the 
architectural description can occur and need to be considered. 

Based on these basic and highly simplified considerations and taking into account the 
research gap, the research questions are formulated. 

The main research question RQ1 defines the general research challenge, which shall 
be tackled within this thesis. As shown in chapter 3 and especially in section 3.4.5.3, 
which covers the current state of the art regarding the architecting of systems, the 
transition between reference and system architectures is only partially covered in 
certain aspects within architecture frameworks. The relationships between system 
architecture and reference architecture as well as the role of the architecture 
framework are defined within literature. The idea of utilizing a reference architecture 
as a template for the definition of a system architecture is also defined on an abstract 
level. But the available knowledge does not provide a concrete procedure how such a 
transition could be carried out within an architecture framework. Therefore, this 
shortcoming is the main objective of this work. The purpose of RQ1 is to make a first 
push in the area of methodological guided transition between reference architecture 
and system architecture, thereby defining a first prototypically applicable concept, and 
enabling a basis for further research in this area. 

 

Main Research Question - RQ1: How to specify a system architecture description 
based on a predefined reference architecture utilizing an architecture framework? 

 

To comprehensively answer the main research question (RQ1) correlated sub-
research questions are needed and defined in the following (RQ2 and RQ3)). The 
purpose of the research questions is to divide the problem space into smaller 
manageable parts, to structure them, to solve the challenges, and then to build on each 
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other to develop a solution for the main research question RQ1. The following research 
questions do cover the transition between reference and system architecture directly 
or necessary supplementary topics.  

As shown in section 3.4.2, the creation of architectural content is based on the use of 
an architectural framework. This applies to both, a reference architecture and a system 
architecture. As documented later in the assumptions for the creation of the 
architectural framework (see section 5.2), it is assumed that the same architectural 
framework is utilized as the basis for both reference and system architecture and 
therefore both have the same structure and element types for modeling specific 
content. For this reason, research question RQ2 examines the issue of which 
structural, methodological, and content-related components must be included in such 
an architecture framework. 

 

Research Question RQ2: Which structural, methodological, and content-related 
aspects are required within a suitable and production domain focused architecture 
framework for the definition of architectural descriptions?  

 

As described in literature, a reference architecture can be used as a blueprint for 
deriving one or more system architectures if these can be assigned to the group of 
systems considered in the reference architecture (see section 3.3). After examining 
which basic components the architecture framework must have in order to create the 
corresponding architecture content (RQ2), RQ3 examines how a transition between 
reference architecture and system architecture can be methodically designed and 
integrated into the architecture framework. The method must take into account inputs 
from both the reference architecture and the system architecture. Consequently, the 
following research question arises: 

 

Research Question RQ3: How could a possible methodological consideration of the 
transition between reference and system architecture look like within the architecture 
framework? And how can the methodological components be linked to the elements 
of research question 2 so that a holistic framework approach will result in the end? 

 

In the following chapters, the results regarding the research questions are elaborated 
and answered in summary in the concluding chapter.  
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5 Architecture Framework Concept 

In this chapter, potential solutions for the research questions RQ1-RQ3 posed 
previously are addressed. The goal is to define a suitable architecture framework 
concept that can be applied reproducibly for the creation of system architecture 
descriptions based on reference architecture content. The purpose for the creation of 
such a concept is to investigate the research gap outlined in the previous chapters in 
detail, to address the related challenges in the field of engineering as well as 
architecting, and ideally to solve them or reduce their influence on the design process 
of a system. In order to do so, several topics as shown in Figure 29 and described in 
the following are considered. Based on the insides of this chapter the architecture 
framework concept is prototypically implemented within a modeling tool in the next 
chapter. 

 

 
Figure 29: Overview of the contents of chapter 5 

First, basic requirements for the development of the architecture framework concept 
and related assumptions are defined in sections 5.1 and 5.2. Both restrict the problem 
as well as the solution space and provide information about contents which are not 
explicitly considered but are assumed as given. Additionally, as a basis for the creation 
of the architecture framework the concepts of abstraction and granularity are defined 
in section 0. This is followed by section 5.4 concerned with topics regarding the basic 
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structural components and the methodological approach for the creation of 
architecture descriptions within the core architecture framework concept, which 
mostly tackle concerns of RQ2. Furthermore, in section 5.5, the core architecture 
framework concept is supplemented with the architecture framework transition 
method, which considered the utilization and integration of reference architecture 
contents into the process of the system architecture description creation. The 
transition method is mainly reflecting concerns of RQ3. 

In summary, the main contents of the architecture framework concept derived from 
the research questions and the intended application of the framework are shown in 
Figure 30. The figure shows that the architecture framework concept units the core 
architecture framework concept and the architecture framework transition method. 
The core architecture framework concept can be applied for the individual creation of 
architecture descriptions for single systems or a group of systems and considers the 
general structure, relevant element types, as well as supplementing methodology for 
the creation of architecture descriptions. The architecture framework transition 
method explicitly considered the transfer between an already defined reference 
architecture description to a shall be defined system architecture description. 
Together, within the architecture framework concept, they can be applied for the 
definition of a system architecture description utilizing a reference architecture 
description. 

 

 
Figure 30: Abstract representation of the planned architecture framework concept 
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5.1 Architecture Framework Concept Core Requirements 

Taking into account the relevant ISO guidelines and standards, such as VDI 3695, the 
contents and results of the CrESt research project, the presented state of the art, as 
well as the discussion with experts of the scientific field under consideration, the 
following core requirements for the architecture framework result from the author’s 
point of view. The specification of the requirements is based on the current state of 
the art and the purpose and field of application of the architecture framework. The 
requirements are documented in order to ensure that all subjects of the research 
questions are considered within the concept. Furthermore, the defined requirements 
are used to evaluate the prototypical application of the architecture framework 
concept and its results to provide a meaningful conclusion. It should also be noted that 
the requirements are not to be understood like traditional requirements, such as 
defined by [90] or [150], and are to be seen more like indications for the development 
of the core contents of the architecture framework concept in this thesis. In addition 
should be said that, only the core considerations are taken into account and that the 
set of specified requirements is not complete. Further potential requirements, for 
example, regarding the content of frameworks as documented in the state of the art, 
are not explicitly mentioned. The requirements are clustered by the realms 
application/utilization, procedure, structure, and content in Table 4. 

 
Table 4: Requirements for architecture framework concept development 

Requirements: The architecture framework shall... 

Ap
pl

ic
at

io
n

/U
til

iza
tio

n  be applicable within the domain of discrete manufacturing systems. 
 consider architects concerned with the development of system 

architectures based on reference architectures as the main stakeholder(s) 
for its’ utilization. 

Pr
oc

ed
ur

e 

 provide a procedure for the general definition of architecture content 
(system and reference). 

 provide a procedure for the transition between viewpoints and views. 
 provide a procedure for the definition of system architectures based on 

reference architectures. 
 provide a procedure for consideration of changes and potential adaptions 

to architecture content. 
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Requirements: The architecture framework shall... 

St
ru

ct
ur

e 
 consider the concept of problem and solution space. 
 cluster behavioral and structural aspects considered within the framework 

separately. 
 be utilizing the viewpoint/view concept for the definition of relevant 

architecture content (highlighted in the state of the art). 
 structure content of different viewpoints/views by their degree of detail 

using a granularity layer concept. 

Co
nt

en
t 

 provide predefined model kinds and element types utilized within typical 
architecture related viewpoints applied in the basic and detailed 
engineering of a system, which are concerned with the domain of one or 
several systems, requirement(s) to the system(s), function(s) provided by 
the system(s), logical component(s) realizing the function(s), and the 
technical solution(s) realizing the specified requirement(s). 

 provide predefined model kinds and element types utilized within related 
views of the specified viewpoints, which are concerned with topics like the 
domain description and the related context of a system, specification of 
needs, stakeholders and potential use cases, consideration of potential 
products and their production processes, as well as the specification of 
resulting requirements, functions, logical components, and technical 
solutions. 

 provide a concept for consistent tracing of relationships between 
architectural elements across the whole architecture model. 

 

With regard to the defined requirements, it should be noted that the classification of 
the content is not free of overlaps and that the remaining specified requirements 
should always be taken into account when considering a single requirement. 

 

5.2 Architecture Framework Concept Assumptions 

Before and during the creation of the architecture framework concept the assumptions 
listed below have been made by the author based on the contents and results of the 
CrESt research project, relevant ISO guidelines and standards, such as VDI 3695, the 
discussion with experts of the scientific field under consideration and the presented 
state of the art. These were made to limit the solution space to essential aspects and 
to show the influences under which it can be assumed that the created concept works. 
It shall be noted that the assumptions do not automatically eliminate the possibility 
that the concept can be used successfully outside of the defined solution space. In 
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order to be able to make a clear statement about the applicability and potential 
adaption to the framework for it to be used in other domains, further investigations 
and, if necessary, a prototypical application are needed. Such verifications are not part 
of this work, but potential points for further research. The assumptions made are listed 
in Table 5. The latter are clustered with respect to the topic architecture framework, 
system architecture, reference architecture, as well as to organizational and 
stakeholder related aspects. Even though different clusters are defined, they are all to 
be seen in relation to the architecture framework concept. 
 
Table 5: Made assumptions with respect to architecture framework concept 

Assumptions 

Ar
ch

ite
ct

ur
e 

Fr
am

ew
or

k 

 Definition of an architecture framework for the creation of system 
architecture descriptions based on reference architecture descriptions is 
necessary because the current state of the art does not cover the transition 
from reference to system architectures in a sufficiently manner (see chapter 
3.4.5). However, some general inputs regarding structure and content can be 
utilized from existing architecture frameworks. As a basis within this thesis 
the SPES_XT modeling framework is used. The main reasons for this are that 
the focus is already on the domain of the adaptable and flexible factory and 
the corresponding basic structures already exist. Furthermore, a reference 
architecture that can be used for the evaluation has already been defined 
using the framework (see section 3.3.3). 

 The designed architecture framework concept mainly focuses on the design 
time of a production system, especially on the basic engineering, partially on 
the detailed engineering (architecture related topics only), and the 
engineering related topics along its life cycle. 

 The governance for quality assurance and maintenance of the architecture 
framework concept is in place and is therefore not considered further (see 
for example [28]). 

 The abstraction level is set before applying the architecture framework 
concept for the creation of architecture description. Focus is only on 
structure and granularity layer concept. 

 For the transition and better comparability of contents, the existing refence 
architecture structure and used element types are the same as introduced 
by the architecture framework concept for the specific to be defined system 
architecture. 
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Assumptions 
Ar

ch
ite

ct
ur

e 
Fr

am
ew

or
k  Requirements are considered to be view overarching and it is assumed that 

they are constantly monitored and considered by the stakeholder creating an 
architecture description. Therefore, they are not considered as direct input 
for every view within the method. The directly neighboring views of the 
requirement viewpoint views shall consider the contents as direct input. 

Sy
st

em
 

Ar
ch

ite
ct

ur
e  Only new, nonexistent systems are considered as systems to be designed. 

The migration of existing systems to an upgraded version of a system is not 
considered, as this topic has already been covered in literature researching 
“migration” (see, among others, [151]). 

Re
fe

re
nc

e 
Ar

ch
ite

ct
ur

e 

 The reference architecture utilized for later prototypical application is usable 
for the domain of production system as well as for discrete manufacturing 
and shares common content with the to be defined system. 

 The reference architecture, which should be used as a basis to derive a 
specific system architecture description, is created with the same 
architecture framework as applied for the derivation of the system 
architecture. A different architecture framework would create different 
contents within reference and system architecture, which might not be 
compatible or at least could require an additional matching and sorting 
procedure. Within this thesis this additional step is not carried out to simplify 
the introduced procedure. 

 Systems engineering and its concepts, such as architecture frameworks, are 
accepted, considered useful, and beneficial by the whole organization and 
are supported by all relevant stakeholders and the management as well. 
Therefore, necessary organization transformation and systems engineering 
implementation strategies are not considered within this thesis. 

  



Architecture Framework Concept 
 

98 
  

Assumptions 
Or

ga
ni

za
tio

na
l a

nd
 S

ta
ke

ho
ld

er
 R

el
at

ed
 A

sp
ec

ts
 

 The utilization of a reference architecture and the associated architecture 
framework concept for the design of system architectures is economically 
and from a company point of view reasonable. When considering the main 
benefits of architecture frameworks this assumption is reasonable if not only 
one system architecture shall be created, but several with a focus on the 
same domain. Otherwise, the application of an architecture 
framework/reference architecture for the definition of system architectures 
would not be target-oriented as well as more cost and time consuming as a 
creation of a system architecture from scratch. 

 The designed architecture framework concept is used by a well-educated 
and SE experienced audience. Despite all efforts to make the method as 
simple and understandable as possible, a certain amount of implicit 
knowledge and creativity is required for a successful application. Users with 
little experience usually do not have this knowledge, e.g., to decide how a 
system can logically be composed in a way that it can be easily transferred 
into a technical solution. Therefore, with respect to the thesis the concept 
mainly targets experienced engineers and system architects. In the long term, 
the goal shall be to make the concept accessible for all users to be able to 
achieve good results even with a basic level of knowledge. 

 The cooperation between different stakeholders and between or across 
different disciplines, which is necessary for the design of a complex system, 
works smoothly. An architecture framework can also contribute to the 
optimization of communication, documentation of knowledge, and the 
traceability of decisions made. However, the thesis does not focus on the 
optimization of structural challenges and therefore, despite its importance, 
those are not considered. 

 The applying stakeholder basically agrees with the content, structure and 
arrangement of the architecture framework concept, and the utilized 
reference architecture. If this is not the case and large parts of the reference 
architecture content or of the architecture framework concept would be, 
without necessity, adapted and additional effort would be spent, the use of 
reference architecture and architecture framework concept loses its impact. 
In such a case the system architecture could also be defined directly from 
scratch without spending additional effort on adjustments. 
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5.3 Abstraction and Granularity in Context of Architecture Framework 
Concept 

Before the (core) architecture framework concept is introduced, the abstraction level 
and granularity layer (see definition, section 2.1.2) should be introduced and 
differentiated from each other. This consideration is essential for the overall 
understanding of the utilization of reference architecture content within the 
architecture framework concept for the definition of system architectures. As defined, 
during the procedure of creating a reference architecture a specific domain or group 
of systems is always considered. To utilize the reference architecture within the 
architecture framework concept, the specified content of the reference architecture 
must be usable to describe the system of interest considered within the system 
architecture to be created. In this context, the abstraction level plays an important role 
for the validity assessment, whether a reference architecture considers a group of 
systems to which the system of interest can be allocated and therefore content can 
be reused. These considerations are particularly important for the utilization of a 
reference architecture in an architecture framework concept. For this reason, the term 
abstraction is examined in more detail below and distinguished from the term 
granularity, which is often erroneously used synonymously. The described 
relationships are simplified shown in Figure 31. 

 
Figure 31: Abstraction and granularity in context of architecture framework concept (adapted from [147]) 
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According to the Cambridge Dictionary the word “abstract" can be defined in the 
conventional sense as "[...] referring to something which exists as an idea and which 
is not physically real" [152]. The abstraction levels, which range from abstract to 
concrete, should enable a classification of considered systems. Based on the 
definition, a system at a high level of abstraction (less concrete) can be regarded as a 
concept that is close to reality. A system at a low abstraction level is a concrete system 
that can be technically implemented. It is important to note that the range of 
abstraction depends strongly on the application scenario as well as on the involved 
stakeholder(s) and related goal(s). Through the abstraction levels, systems can be set 
in a relationship to each other. From now on, abstraction levels are considered in this 
thesis as follows. 

 

Level of Abstraction 

The abstraction level relates systems of a particular domain/environment to each 
other and provides information about their level of detail in relation to other systems 
within the domain/environment. That is, to place them in a span between abstract and 
concrete system classification. Following the ISO 9000 standard [153], systems at a 
low level of abstraction inherit all the characteristics of higher-level concepts and 
contain information that distinguishes them from systems at the same level. 

 

Each specific representation of a system at a certain abstraction level has a 
corresponding architecture. When considering a range of abstraction levels, the same 
system, previously considered as a system architecture, can then also represent a 
reference architecture if that system represents a group of systems at lower 
abstraction levels. For example, if the representation of a discrete manufacturing 
system shown in Figure 31 is considered as an isolated single system at a specific 
abstraction level, it can be referred to as a system architecture. If the same system is 
considered as a representation of a group of systems, assigned to lower abstraction 
levels, a reference architecture is represented. Furthermore, regardless of the level of 
abstraction, any system can always be detailed using the granularity as defined in 
section 2.1.2. It should be noted that the terms abstraction and granularity are partly 
used synonymously in the literature. In the context of this thesis, the two terms are 
considered separated from each other. Therefore, each individual system can be 
assigned to a certain abstraction level and has a certain granularity. This separation 
takes its orientation from design space concepts like the one described in section 
2.3.3. It can be stated that the abstraction level describes a system from an external 
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perspective and the granularity describes the interior of a system as well as the level 
of detail that naturally results from its internal structure. When looking at Figure 31, it 
can be stated as an example for abstraction that a production system is more abstract 
than a concretization in the form of a discrete manufacturing system and that the 
application example of cylinder head manufacturing used within this thesis is more 
concrete than the discrete manufacturing system (as shown in Figure 5 and section 
1.4). The granularity, on the other hand, describes the content-related detailing of a 
system of interest. For example, the cylinder head manufacturing can be further 
specified into a manufacturing system, a transport system and a control system on a 
more detailed granularity layer but at the same abstraction level. The total scope of 
the abstraction and the associated abstraction levels depends, as described, on the 
domain or system group of interest and the resulting reference architecture. 
Depending on the focus, these levels are comprehensively defined in literature. With 
regard to production systems, different sources in literature, such as [5] and [137], 
define different hierarchy levels that reflect potential abstraction levels with respect 
to the domain. For example, the levels described by [5] include, at the highest level, 
the production network, followed by the factory, the production line, the production 
line segment, the work unit, the work station, the function group, components and 
finally the construction elements. Depending on the level of abstraction and the 
context boundary, conclusions can be drawn about the main task of the system. Those 
tasks turn out differently at different levels. 

 

Production System Application Example 
For the exemplary consideration of abstraction and granularity a simplified thought model is 
created. Within the model, it is assumed that a cylinder head manufacturing system, as a 
reference architecture, consists of 2 + 4 additional architectures. Namely, of systems which 
consider the manufacturing of a cylinder head with 4 cylinders and a cylinder head with 8 
cylinders and each cylinder head (4/8 cylinders) will be produced with three or five valves per 
cylinder. Using this very simplified example, the relationship between abstraction and 
granularity is shown in Figure 32. Based on the thought model and the considerations made 
within the figure the following statements emerge: 

a) The degree of abstraction describes the level of concretization for the definition of a 
reference or system architecture under consideration. 

b) Starting from the abstraction level of the reference system, increasing granularity leads to 
subsystems with a lower abstraction, which means, when starting from a very high abstraction 
(cylinder head manufacturing system), due to the increasing granularity, a lower level of 
abstraction can be achieved (e.g., cylinder head manufacturing - 4 cylinder/8 cylinder). 



Architecture Framework Concept 
 

102 
  

c) If one system is described on continuously detailed granularity layers, the derived 
subsystems become more and more concrete, i.e., granularity layers  ∞ provides degree of 
abstraction  0, i.e., 100 % concrete description, and the number of systems will also  ∞. 

 

Those statements can be interpreted with respect to abstraction and granularity and lead to 
the conclusion, that an identical system (e.g., (2b) Cylinder head manufacturing 8 Cylinders) 
can be considered either as reference architecture (RA) with lower abstraction level compared 
to another RA (e.g., (1) RA of “cylinder head manufacturing”) or as sub-system on a higher 
granularity layer of a RA (e.g., (2b) is on granularity layer 2 of the (1) RA “cylinder head 
manufacturing”). 

Depending on the point of view, it can also be deduced from the simple example that a 
reference architecture can consist of reference and system architectures with a lower degree 
of abstraction. The challenge is that for real system architectures, these relationships must be 
considered in a n-dimensional space. 

 
Figure 32: Thought model for explanation of relationship between abstraction and granularity 
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Drawn Conclusions regarding the Architecture Framework Concept 
The architecture framework concept is used to create specific system architecture 
descriptions for systems from the group of systems considered within the reference 
architecture, as shown in Figure 31. The specified reference architecture content, 
which is detailed and correlated using the granularity layers, is then used to derive the 
system architecture description. Based on the concept shown in Figure 31 as well as 
in Figure 32 and taking into account the intention of using an architecture framework 
in combination with a reference architecture three main consideration can be derived: 

(1) The transition of system content is only to be brought into a context as long as 
the systems are part of the same domain, stand in a relationship with each 
other, and share common content. The consideration is partly drawn from [137] 
and the shown connections between requirement fulfillment and reuse. This 
means that a reference architecture within the architecture framework concept 
can only be applied to systems that have the same or a lower degree of 
abstraction. 

(2) A big difference between the abstraction levels of the systems of interest and 
the available reference architecture description results in abstract reusable 
content, from system abstraction point of view, which can be most likely reused 
in main parts but will also result in additional efforts for required detailing and 
supplementation of available content. Depending on the application scenario, 
this tends to have a negative impact on the usability of the reference 
architecture [89]. 

(3) With increasing concreteness, taking into account the absolute abstraction 
layer observation space, the amount of detail in the granularity layers increase. 

 

Based on these considerations, a general relationship can be derived between 
abstraction level differences, reusability, and the need for adaptation and 
supplementation of contents from scratch when using a reference architecture for the 
definition of specific system architectures. These relationships will not be explored 
further in this thesis, as simplified assumptions were made for the architecture 
framework concept. Nevertheless, the connection between the relationships should be 
investigated in the future, as it may be of great relevance, for example, in the context 
of assessing the quality of applicability of a reference architecture.  
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5.4 Core Structure of Architecture Framework Concept 

In this section the general methodology, structure, and content of the core architecture 
framework concept for the definition of architecture descriptions is introduced. 
Dependent on the scope, the architecture framework can be utilized for the definition 
of reference architectures and systems architectures from scratch. The architecture 
framework concept forms the basis for the transition between available reference 
architectures and to be defined system architectures. The transition method for the 
definition of system architectures based on a reference architecture will be introduced 
in section 5.5. 

 

5.4.1 Scope of Architecture Framework Concept 

As already addressed in section 2.2 in the context of the life cycle description of a 
system, this thesis and the architecture framework concept focus on the basic 
engineering and partially with respect to architectural considerations on the detailed 
engineering. The structure and concept of the core architecture framework concept is 
based, among other things, on the state of the art as well as the specified requirements 
and the assumptions made. In terms of structuring the contents of the core 
architecture framework concept, the framework takes its orientation from the VDI 2206 
and utilizes macro and micro cycles. The macro cycle describes the overall considered 
procedure and is based on the classic steps of basic/detailed engineering from the 
consideration of domain and requirements to the creation of a first technical solution 
architecture, as for example indicated in [154] based on [155]. In terms of the core 
architecture framework concept those steps are captured within the resulting 
structure, the predefined model kinds, and element types of the concept (described in 
section 5.4.2). The micro cycles describe a set of methods recurringly applied during 
the processing of the macro cycle. With respect to the core architecture framework 
concept the associated micro cycles and rules presented in section 5.4.3 describe how 
and when content is defined and adapted. In combination, the micro and macro cycle 
shown in Figure 33 represent the main components of the core architecture framework 
concept described in Figure 30. The core structure of the architecture framework 
concept is later extended by the architecture framework transition method as 
described in section 5.5. 

In order to point out the scope of this thesis and the developed framework the 
architecture framework concept is exemplarily allocated to a well-known system 
engineering process for developing a system. Figure 33 shows the scope of the thesis 
with respect to the V-model of the VDI 2206. In comparison to the full V-model, in 
which many stakeholders fulfill different roles and tasks in relation to the development 
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of a system, the focus of the architecture framework concept is mainly on system 
architects or engineers who are involved in the creation of a system architecture as 
part of basic and detailed engineering. 

 

 
Figure 33: Scope of architecture framework concept 

 

5.4.2 Macro Cycle - Structure and Content of the Core Architecture Framework 
Concept 

The contents of the defined macro cycle considered within the core architecture 
framework concept are, as mentioned above, closely related to the basic engineering 
and the architectural considerations of the detailed engineering. These contents of the 
macro cycle are mostly derived from identified SPES_XT modeling framework, as well 
as from relevant literature and standards, and will be utilized for the specification of 
the core architecture framework concept in the form of structure, predefined element 
types, and methodologies. The macro cycle representing the procedure for creating an 
architecture description is represented in Figure 34. Within the figure, the macro cycle 
is depicted as an iterative procedure which, starting from an input in the form of a 
problem, creates a domain and requirements description, followed by deriving a 
functional, logical, and technical architecture. The derivations of the individual 
architectures always stand under the premise to fulfill the defined requirements. The 
requirements are considered by the functions provided by the system. Those functions 
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are realized by different logical components as well as finally technical solutions. As 
shown in Figure 33, the technical architecture description represents the result of the 
macro cycle, which forms the basis for further detailed design and implementation. 

 

 
Figure 34: Representation of macro cycle (adapted from [154] based on [155]) 

Based on the macro cycle and associated insides, in the following, the core 
architecture framework concept will be specified. First, the core architecture 
framework concept is structurally divided into a problem space and a solution space. 
Secondly, the core architecture framework concept is supplemented by interconnected 
viewpoints, which are assigned to the problem and solution space based on their 
content and represent the considerations made within Figure 34. Thirdly, the defined 
viewpoints are supplemented by related levels of detail. This allows the content within 
the viewpoints as well as in the problem and solution space to be viewed at different 
layers of granularity. Fourthly, the different views within a viewpoint and on a certain 
layer of granularity are introduced and assigned. Finally, the predefined element types 
and model kinds are described. 
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5.4.2.1 Problem and Solution Space 

Within this section, the concept of problem and solution space will be defined to be 
able to cluster the viewpoints of the core architecture framework concept with respect 
to those spaces. This division makes it noticeably clear to the user, if the overall 
problem/goal of the system or a solution to resolve the previously defined problem is 
considered and defined within a viewpoint. This distinction is crucial for a 
comprehensive and successful engineering of a system. Appropriate solutions can only 
be defined when the problem has been fully identified and defined in its entirety. The 
clear boundaries allow to monitor if the defined solutions address the main problem 
and all defined sub-problems. Only then a system can be implemented and operated 
successfully with minimal adjustments. 

In general, a design space always describes a complex all-encompassing space of all 
possible system design solutions with respect to the problem/goal [156–158]. 
However, only the more precise solution space and the dependent problem space are 
considered in the following. To visualize the two concepts, in Figure 35, the Twin-
Peaks model as a representation of the importance of the relation between creation 
of requirements and architecture design, initially introduced by [159] (see [160]) and 
refined by [160] and [161], is shown. This model was supplemented within [161] by a 
problem and a solution space, which clearly shows the borders but also the connection 
between the two spaces. The solution space represents a part of the design space 
(best fit) but does not comprise it completely [158]. The problem space defines, among 
others, relevant requirements as well as stakeholder needs and goals regarding the 
system of interest [162, 163]. It considers not only the future system but also the 
related stakeholders and surrounding environment of the system. The solution space 
represents all designs and results with respect to the defined content of the problem 
space. The progressive specification as an iterative process between problem and 
design space extends over the different levels of granularity. Depending on the 
consideration, the created architecture description, in the problem space, is rather 
realization independent and in the solution space rather realization dependent. 
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Figure 35: Characterization of problem and solution space - adapted from [159–161] 

 

5.4.2.2 Core Architecture Framework Concept Viewpoints 

As already described before, the viewpoints that are considered in the context of the 
core architecture framework concept result from the preceding considerations and 
introduced contents. At this point, reference should be made to the input of the 
SPES_XT modeling framework [33, 34] used as a reviewed and in the community 
accepted basis for creating the structure of the architecture framework concept. The 
SPES_XT modeling framework has already been considered during the assessment of 
architecture frameworks in section 3.4.5 and was classified as a usable starting point 
in the assumptions (see section 5.2). Based on the assessment and selection, the core 
architecture framework concept adopts the basic structuring into requirement, 
functional, logical and technical viewpoint, which is common for basic and detailed 
(systems) engineering as shown in Figure 34, as well as the basic principle of 
granularity from the SPES_XT modeling framework. All other structural, 
methodological, and content-related concepts within or outside of the viewpoints were 
created separately in the context of this thesis or in the context of the author's work 
on the CrESt project. 

The core architecture framework concept introduces a total of five different 
viewpoints. In addition to the four viewpoints mentioned above, the problem space 
consideration is enhanced by including the specific domain as shown in the macro 
cycle. The domain and requirement viewpoint are assigned to the problem space. The 
remaining three viewpoints, functional, logical, and technical viewpoint, are part of the 
solution space. The fixed order results from the content sensitive relationships 
between the viewpoints. This means that necessary functions, logical components, 
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and derived technical solutions can only be defined meaningful and complete once the 
domain of the system and the requirements for the solution have been specified. The 
transition between and within a viewpoint is described in 5.4.3. The allocation of 
viewpoints within the architecture framework concept to the problem and solution 
space is depicted in Figure 36. The description of the viewpoints and their connections 
are described below. 

 

 
Figure 36: Definition of viewpoints of core architecture framework concept and allocation to 
problem/solution space 

 

Domain Viewpoint 

The first viewpoint of the architecture framework concept and part of the problem 
space is the domain viewpoint. The goal of this viewpoint is to provide a first overview 
of the system or group of systems of interest and to define its context, its environment, 
and its stakeholders within the considered domain. A domain can be defined as 
follows. 

 

Domain 

A domain can be defined as a “[...] sphere of knowledge, influence or activity […]” 
[164]. With respect to [164] the subject area to which a stakeholder applies systems 
engineering procedures and methods is the domain of the system of interest. 

 

The domain viewpoint documents all known and relevant interfaces between the 
above listed elements of the domain. The purpose of the domain viewpoint is to 
describe the system and all related elements as precise and complete as possible so 
that comprehensive requirements can be derived. In the viewpoint all unilateral or 
mutual relationships between elements should be shown, so that a conclusion can be 
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drawn which elements influence each other and which do not. This is important to 
ensure that any system-relevant effects are considered properly, and none are 
forgotten during further architecting steps.  

 

Requirement Viewpoint 
The second viewpoint of the core architecture framework concept and part of the 
problem space is the requirement viewpoint. which is based on the domain viewpoint. 
The ultimate goal is to define what the system does, how it performs these tasks, and 
what constraints may need to be considered in the form of requirements. A 
requirement can be defined as follows. 

 

Requirement 

A requirement can be defined as “[...] a statement concerning a property or the 
performance of a product, a process or the people involved in the process” [165]. In 
addition, a requirement describes a condition or capability to be provided by a system 
and needed by a stakeholder to solve a problem [41]. 

 

In order to be able to make these definitions, the goals and needs of the relevant 
stakeholders, possible use cases, and the product to be manufactured are examined 
and defined [15]. These preliminary considerations serve to describe the requirements 
of the system of interest. The system is specified to provide a specific 
performance/service with the purpose of meeting the defined needs and objectives of 
the customer, operator, or other stakeholders [30]. The requirement viewpoint 
represents the interface to the solution space and the transition to the functional 
viewpoint. 

 

Functional Viewpoint 

The functional viewpoint represents the first viewpoint within the solution space. This 
is where the transition from the problems and requirements defined in the previous 
viewpoints (domain/requirement) to the solution-oriented functions takes place. The 
term function is specified below. 
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Function 
A function is an action or task provided and executed by a system with the aim of 
fulfilling the goal and the defined purpose for which the system has been created [82, 
166]. 

 

The goal of the functional viewpoint is to define how a system of interest and its 
provided functions can fulfill the requirements and the needs of the stakeholders 
specified within the problem space. These solutions are defined in the form of 
implementation-neutral functional descriptions. The functional architecture can then 
be tested as the first output of the solution space against the specified needs of the 
problem space and adapted if necessary. Depending on the literature, logical and/or 
technical solutions are derived for the specified functions from which the system of 
interest is composed. It seems that the intermediate step of the logical architecture is 
becoming more and more relevant due to the technology neutrality in connection with 
reference architectures [28] and the reuse of elements. 

 

Logical Viewpoint 

The logical viewpoint is the subsequent viewpoint in the solution space and describes 
the realization of specified functions within logical components. The term logical 
component is defined as follows. 

 

Logical Component 

A logical component represents the realization of one or more required system 
functions on a solution-oriented, technically implementation-free level. 

 

The functions are then converted into technically implementation-neutral solution 
elements that represent the system of interest and shall fulfill all specified 
requirements. These implementation-neutral logical components can then be reused 
in whole or in parts within a reference architecture, or they can be converted into 
specific technical solutions for the creation of a concrete system architecture. The 
design of the logical components helps to check different technical solution 
implementations against each other and to select the best one without having to make 
large additional expenditures. This will aid the purpose of the logical viewpoint to 
provide a more comprehensive consideration of potential realization options and 
ultimately a better technical architecture. 
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Technical Viewpoint 
The technical viewpoint represents the concluding viewpoint of the architecture 
framework and the solution space. The content of the viewpoint is the technical 
solution and its relationship to each other. The term technical solution is specified 
below. 

 

Technical Solution 

The technical solution describes the individual elements and the relationships 
between those elements, which form the architecture of a system, realize the specified 
requirements, and provide the necessary functions needed to achieve the system 
goal(s). 

 

All elements defined in the previous viewpoints converge in the technical viewpoint 
and form the technical solution of the system of interest. Architectural decisions are 
based on the technical definition of the logical implementation-neutral components. 
The content can then be used in subsequent steps for detailed design and finally 
implementation of the system in its field of operation. 

 

5.4.2.3 Granularity Layers of Core Architecture Framework Concept 

After consideration of viewpoints and allocation to problem and solution space the 
possibility to detail content within the different areas of the architecture framework 
shall be considered. The concept of granularity layers is introduced and shown with 
respect to the defined viewpoints in Figure 37. The term granularity itself has already 
been defined in section 2.1.2 and was put in relation to abstraction in section 0. 
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Figure 37: Granularity layers of core architecture framework concept 

Since granularity of a system can be regarded as fluid without a clear separation and 
is strongly dependent on the mindset and professional background of the creator of 
an architecture description, it is attempted to force the user to break down complex 
issues into different layers of detail within the architecture framework concept. The 
reason is to break down complex considerations in to smaller and manageable parts 
to enhance the problem solving and specification of solutions. This shall be achieved 
by the introduction of detail levels, so-called “Granularity Layers”. This should lead to 
a consideration of a clearly defined set of elements, simplify the design process, and 
make process less error prone. Nevertheless, it should be mentioned that a strict rule 
for classification of specific elements to specific granularity layers is not suitable due 
to the individuality of systems considered within the architecture framework concept. 
Therefore, the actual assignment of content still depends on the executing stakeholder 
and their creativity, which shall be triggered by the provided granularity layers. A 
possible general granulation of production systems that can be used with a suitable 
system is shown in [5]. The given structure of the granularity layers can thus be used 
as an instrument to break up content and finally to simplify the application of the 
architecture framework concept methodologies considered in the micro cycles. 

As already shown in Figure 35, granularity is distributed vertically, so the content is 
spread vertically from very rough to very detailed as well, which equals a low level of 
granularity on the top layer of the core architecture framework concept and a high level 
of granularity on the bottom layer. Those granularity considerations also apply to the 
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individual viewpoints as graphically shown in Figure 37. In order to achieve an efficient 
and solution-oriented architecture definition, the contents of the different viewpoints 
should be selected in such a way that they correspond and can be related to each 
other in their layer of granularity (see section 5.4.3.3). The number of necessary 
granularity layers (1...n) depends on the individual system(s) and must be defined by 
the stakeholder applying the core architecture framework concept. Therefore, a fixed 
number of layers is not feasible and not further specified. 

 

5.4.2.4 Views and Content of Views of Core Architecture Framework Concept 

Based on the structure and granularity layers of the architecture framework concept 
for the introduced viewpoints, so-called "architecture framework views" are defined 
(view definition see section 3.1.1.2). The view is expressing the architecture from a 
specific viewpoint and layer of granularity ([34] based on [30]). Depending on the 
viewpoint, the focus on different architectural contents of the system of the individual 
views is limited to the content represented within the related viewpoint. The individual 
views considered relevant within the core architecture framework concept are derived 
based on literature, the experiences made within the research project CrESt, and the 
contents of the previous chapters. A general procedure for developing views is 
described by [123]. The allocation of views to the structure of the core architecture 
framework concept is exemplarily depicted in Figure 38. 

 

 
Figure 38: Views within core architecture framework concept 
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The utilization of additional views may be relevant depending on the type of system of 
interest but are not considered in the following. In the context of this thesis the 
consideration of views is limited to the ones shown in Figure 40 and documented 
below. If the use of additional views outside of this thesis shall be considered, it has 
to be checked to what extent the core architecture framework concept has to be 
adapted regarding structure (e.g., additional viewpoints), method, and content types. 
In the following, the specified views are introduced and briefly described. 

 

Views of Domain Viewpoint 

Within the domain viewpoint the domain and the context of a system of interest are 
considered at different layers of granularity. The “Domain View” and the “Context 
View” are used for this purpose. The views within the domain viewpoint shall be 
utilized to define the environment of the system, the exact delimitation of the system 
to this environment, and all relevant elements within (e.g., other systems, 
stakeholders, and normative requirements like laws). The purpose is to create a first 
rough specification of the system as a common discussion and communication basis 
to make sure that all involved disciplines and stakeholders start from a similar point, 
ideally the same basis. Especially at the beginning of such a definition process it is 
very important that a common starting point is available to avoid unnecessary iteration 
processes and to minimize misunderstandings due to different states of knowledge. 
Therefore, each view considered certain partial aspects, which are part of the overall 
content. Since the views are located within the same viewpoint, they are directly 
related to each other in terms of their content. Based on the results of the domain and 
the context view the content within the views is iteratively detailed.  

The domain view is described in detail, as an example, in Table 6. In the table the most 
important core facts of the considered view are described. Besides name, viewpoint 
and problem/solution space affiliation, relationship to other views, the goal and 
purpose of the view are described. Furthermore, the content and the procedure for 
defining the content is shown. A detailed description of all views in tabular form can 
be found in the annex (see Table 17 to Table 24).  
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Table 6: Description of domain view 

Name of View Domain View 

Related Viewpoint Domain Viewpoint 

Problem / Solution Space Problem Space 

Goal4 of View Define all elements within the considered domain with a direct 
relationship or influence on the system of interest 

Purpose5 of View The specification of the considered domain and the contained system 
promotes understanding of the system among relevant stakeholders 
during the definition process and simplifies following specification steps 
such as context or requirements definition. Since the stakeholders have 
a similar common understanding of the environment in which the system 
is operated, the possibility of misunderstandings due to different 
knowledge bases is also reduced. 

Element Types and Model 
Kind of View 

Element Types: 

 Domain Element 
 Stakeholder 
 Relationships for description of connection between stakeholder(s) 

and domain element(s) 

Model kind: 

 Model of Domain (within tool: Domain Model Diagram) 

Procedure(s) within View First of all, the line between relevant and irrelevant context within the 
system environment must be drawn. Not all elements in the environment 
are relevant for the specific system (for definition see section 2.1.3). This 
distinction is made by the stakeholders and is based mainly on experience 
and known facts about the system of interest. This boundary may change 
slightly during the design process as new information becomes available. 
After the relevant domain has been delimited from the rest of the 
environment, all relevant stakeholders on the one hand and relevant 
domain elements (e.g., other subsystems) on the other hand have to be 
defined. In addition, appropriate relationships between the elements of 
the domain and the system and among each other are specified. The 
process of defining elements, stakeholders, and relationships is mostly 
iterative but depends strongly on the stakeholder conducting the 
definition. After all elements, stakeholders and relationships are defined, 
the result is a model of the domain in which the system of interest and 
the relevant domain is described. This model then serves as the basis for 
further definition steps such as the context definition. An example of a 
domain view is shown in Figure 80. 

 
4 “the act of stating clearly what you want to achieve or what you want someone else to achieve” 
[167]. 
5 “an intention or aim; a reason for doing something or for allowing something to happen” [168]. 
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Name of View Domain View 

Relationship to other 
Views within Viewpoint 

Domain view (on different granularity layer) and context view,  

Relationship to other 
Views of other Viewpoints 

Stakeholder need view, use case view, product view, and requirement 
view 

 

The meta-model of the view, which is representing the element types used for 
modelling the content of the view, is shown in Figure 39. In addition to the element 
types “stakeholder” and “domain element” (as described in the table above), pre-
specified relationships are defined to connect the element types. The element types 
can be instantiated for the creation of concrete domain content within the application 
of the core architecture framework concept. For example, the instances operator and 
production planner of type stakeholder could be defined, which have a dependency 
relationship to the instance production system of type domain element. The meta-
models of the other views as well as an allocation of the views to each other is shown 
in the annex. 

 

 
Figure 39: Meta model of domain view [169] 

 

Views of Requirement Viewpoint 

Within the requirement viewpoints, four different views are considered per granularity 
layer, namely the “Stakeholder Need View”, the “Use Case View”, the “Product View”, 
and the “Requirement View”. The goal of using these views is to describe and define 
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the problem space and finally the requirements towards the system of interest. The 
purpose is to detail all requirements, constraints, and qualities resulting from the 
objectives and tasks of the stakeholders, use cases, and the product. The contents of 
those views represent parts of the discipline of requirements engineering (as specified 
by [165]), whose actions sustainably affects the solution design of the system. Only 
with a clear and complete definition of the requirements, a value-added system can 
be created that functions smoothly in operation. Since the development of complex 
systems involves several different stakeholders and disciplines, the starting point must 
be clearly defined for all of them, so that the different stakeholders/disciplines can 
carry out their intended task, which shall ultimately resolve in a good match of relevant 
results. In order to provide such a clear starting point, the views specified above could 
be assembled in different orders depending on the argumentation and knowledge 
background of the executing stakeholder. However, within the core architecture 
framework concept, first the stakeholders, their tasks, and corresponding interest are 
considered (exemplarily show in Figure 54). Absolutely relevant stakeholders, who 
should be considered are, for example, defined by [30]. The stakeholder view is 
followed by the use cases and the product view, which can logically exist in parallel. In 
the use case view all possible application scenarios that may occur during the life cycle 
of the system are considered. The product view represents the product(s) and the 
associated production processes used to manufacture the product within the system 
of interest. Relations between product and production system are shown on a general 
level by [5]. By considering different stakeholders, use cases, and product(s) as well 
as production processes it shall be ensured that the requirements are determined as 
completely as possible in the requirement view and that it is, for example, avoided that 
potentially needed system capabilities are not available during operation. In the 
requirement view the functional requirements, qualities and constraints are defined. 
This set of requirements is then used to create the relevant architectures and, at each 
moment of development, to check the current state of the system against the defined 
requirements in order to evaluate the current state of development (as described, for 
example, in the V-model – see Figure 15). The detailed description and meta models 
of the views of the requirement viewpoint, as shown for the domain view, can be found 
in the annex and in Table 18 to Table 21. 

 

View of Functional Viewpoint 
Within the functional viewpoint and the functional views, across the granularity layers, 
the different functional solutions are considered. The transition between views of the 
requirements viewpoint and views of the functional viewpoint describes the imaginary 
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boundary between problem and solution space. The goal of using the functional views 
is to define functional solutions (functions) for all previously defined requirements, 
considering qualities and constraints. The entirety of the defined functions is 
represented within the functional (reference) architecture (depending on application 
of core architecture framework concept to group of systems or single system). By 
defining the necessary functional scope of the system of interest, the following 
architecting steps should be simplified. Based on the functional architecture, it is 
considered which logical and finally technical solution elements are needed for the 
system to provide the necessary functions and thus fulfill the requirements. The 
detailed description of the functional view and meta model can be found in the annex 
and in Table 22. 

 

View of Logical Viewpoint 

Within the logical views logical elements are considered at different granularity layers 
of the logical viewpoint. A logical element represents a solution that is close to 
implementation but technically independent. The logical element fulfills one or more 
functions and requirements. The goal of using logical views is to define all necessary 
logical components in different levels of detail. The purpose of the application is to 
reduce the big abstract step between functional solution and technical solution and to 
create an additional iteration level. This facilitates the traceability of the solution 
creation. Because a logical element can have several possible technical solutions, 
different solution possibilities can be defined, evaluated and the most suitable one can 
be selected before implementing a final technical architecture. This is done in an 
iterative process between logical and technical viewpoint/views. However, this 
possibility only becomes available through the consideration of the logical elements 
within these views. With appropriate documentation of the interrelationships of logical 
components and possible technical solutions, the application of, e.g., a reference 
architecture, which is to serve as a template for the creation of a system architecture, 
is facilitated in the long run, since several possible solutions are available. The detailed 
description of the logical view and meta model can be found in the annex and in Table 
23. 

 

View of Technical Viewpoint 

The final definition of the technical solution is made in the technical views. The goal 
is to define all necessary technical elements and their interrelationships that are 
necessary to provide a certain performance/service, so that the defined requirements, 
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qualities, and constraints are met. The purpose of the views is to present the solution 
as detailed and comprehensible as possible so that they can be used as a basis for all 
further steps of the following detailed planning and implementation of the system. The 
results provide the basis for the further design of the system of interest by the 
individual disciplines. The detailed description of the technical view and meta model 
can be found in the annex and in Table 24. 

 

In the following, within Figure 40 the views described above as well as the distribution 
over the viewpoints and along the granularity layers are shown. The figure illustrates 
the classification of the views in the core architecture framework concept. The dashed 
boxes represent the possibility of creating additional views, which correspond either 
to the views already described or to new additional views, for example in the case of 
an extension of the architecture framework. It should be noted that there can be only 
one view of the same type on a granularity layer. 
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Figure 40: Structure of Core Architecture Framework Concept 
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Production System Application Example 
The structure and considered contents of the architecture framework concept are described in 
more detail by using the example of the cylinder head manufacturing system. Using common 
hierarchization concepts for manufacturing companies, for example as presented in [5], which 
propose hierarchies from the production network (highest level) to construction elements 
(lowest level), the cylinder head manufacturing system example can be classified to at a level 
of abstraction that corresponds to a work unit. Assuming that the cylinder head manufacturing 
system is detailed on two granularity layers only, granularity layer one is considering the work 
unit, namely the cylinder head manufacturing system and its main components like 
manufacturing and transportation system, and granularity layer two is considering the work 
stations, which would represent the single stations within the cylinder head manufacturing 
system such as the milling and the assembly system (Figure 10). The corresponding view 
contents are detailed accordingly. For example, the functional view of the cylinder head 
manufacturing system on GL1 considers functions that are clustered into groups of functions 
like "Handle & process information", "Plan manufacturing", and "Operate production system". 
As an example for detailing of functions, within the function group "Operate production system" 
functions on GL1 like “transport material within the production system (1)” or “produce product 
portfolio (2)” are considered. Those functions are detailed on GL2 into functions like 
“distribute/transport material within the (sub-)system (1.1)”, “handle square/ cylindrical 
products (1.2)”, “mill cylinder head contour (2.1)”, “grind cylinder head (2.2)”, and “assemble 
cylinder head (2.3)”. 

 

 
Figure 41: Production system application example – structure and content of core architecture framework 
concept 
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5.4.2.5 Simplified Representation of Architecture Framework Concept 

After the structure and content of the core architecture framework concept for the 
definition of a system or reference architecture have been specified, the next section 
will consider the necessary methodologies (micro cycles). For further considerations 
of the introduced concept in this thesis a simplified illustration of the core architecture 
framework concept will be presented, as the illustrations of the detailed structure of 
the core architecture framework concept can quickly become too complex in the 
context of, for example, the methodological considerations. The illustration in Figure 
42 is reduced to the two-essential structure-giving concepts viewpoints and 
granularity layers (three granularity layers are exemplarily shown for the simplified 
representation). Based on those two concepts, the resulting views on the specific 
granularity layers are represented by boxes. Those simplifications and the resulting 
representation are shown below in Figure 42. For all following considerations the 
simplified representation of the core architecture framework concept is used. 

 

 
Figure 42: Simplification of architecture framework representation 

 

5.4.3 Micro Cycle - Methods of Core Architecture Framework Concept 

In addition to the overall procedure represented by the macro cycle and within the core 
architecture framework concept, in the following, the micro cycle concerned with 
transition as well as creation and change of content within the core architecture 
framework concept is presented. The micro cycle is represented by different methods, 
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which connect the structural and content related components of the core architecture 
framework concept and methodically support the creation and change of content. 
Before the methodological approach is explained in more detail, a digression on the 
top-down and bottom-up approach is necessary to determine which basic general 
concept is pursued within the core architectural framework concept. Thereafter the 
main methods are introduced, described, and accordingly aligned to the selected 
approach. On the one hand a methodology for the transfer between views/viewpoints 
is described. On the other hand, a methodical concept for the definition of contents 
within the viewpoints/views is characterized and how changes can be taken into 
account is defined. The whole methodology focuses on the connection of the structural 
elements and on the processes within these elements. An overview of the methodical 
consideration within this section is given in Figure 43. 

 

 
Figure 43: Methodologies considered within core architecture framework concept 

 

5.4.3.1 Evaluation of Top-Down and Bottom-Up Approach 

For the realization of complex systems, two main design approaches, the top-down 
approach and the bottom-up approach, have emerged and established themselves 
over time [170]. The approaches and possible hybrid forms are not only used in 
systems engineering but also in other areas of a company and have also proven to 
increase performance there [171]. Both the top-down and bottom-up concepts 
describe general procedures for problem solving utilizing fundamentally different 
starting points. The usability of the two approaches for the definition of architectural 
content is strongly dependent on the planned application, the situational 
environment/domain, and the goal which is pursued. Since both approaches can be 
significant in the context of the further procedure for the development of the (core) 
architecture framework concept, both approaches are introduced and compared to 
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each other by considering advantages as well as disadvantages of the approaches 
within this section. 

The top-down approach describes, with respect to a considered system of interest, a 
problem-solving procedure and design approach later utilized within development or 
manufacturing of a system [172, 173]. In the top-down approach, all relevant elements 
are first identified at the top-level of a considered system and thus on the lowest level 
of granularity [172–174]. The identified elements are subdivided and their structure is 
completed by adding the subordinated related elements [174]. Within this procedure 
the considered system element/problem is described step by step in more detail [173]. 
Through the step-by-step division and detailing on the subordinate level of a 
considered problem/system element, one moves during the processing from top to 
bottom, i.e. from the lowest to the highest granularity layer [172–174]. The top-down 
approach ends when the highest relevant layer of granularity has been reached and 
the system of interest has been broken down into its constituent parts [172–174]. The 
layer of granularity at which the top-down approach is completed strongly depends on 
the problem/system of interest and the experience-based assessment of the 
stakeholder(s) involved. The procedure must be applied until the results are sufficient 
for the next processing step, for example, the detailed engineering of a system. In 
short, the top-down approach for the development of a system of interest can be 
defined as follows. 

 

Top-Down Approach 

The top-down approach can be defined as “designing a system [...] by identifying its 
major components, dividing them into their lower level components, and then 
repeating the process until a designated level of detail is achieved” [174]. 

 

Compared to the top-down approach, the bottom-up approach pursues a different, 
opposing starting point. The procedure first refers to the highest layer of granularity 
and then considers all remaining layers up to the lowest layer of granularity step by 
step until a desired goal is achieved [175]. For the design of a production system, this 
means that the structures and components of the highest granularity layer are 
considered first [89]. These different elements are then assembled throughout the 
process from "bottom" to "top” into more complex solutions until the design of the 
system of interest is complete and thus finalized [89, 175, 176]. An additional 
comprehensive description of the procedure can be found in [72]. In summary, the 
creation of a system in the bottom-up approach can be defined as follows. 
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Bottom-Up Approach 

The bottom-up approach is used to design systems “[...] by starting with the most 
basic or primitive components and proceeding to higher-level components or modules 
by using the lower-level tested and approved components as building blocks, until the 
system design is completed” [177]. 

 

Both approaches have advantages and disadvantages, which are shortly summarized 
in the following. 

In the context of a model/simulation-based application of bottom-up approach, there 
are advantages in the error correction itself, since errors usually occur at the currently 
considered level due to the already completed and verified components at the 
subordinate level. However, this has a disadvantage with regard to the overall design, 
since this can only be determined and verified at the top layer and, in the worst case, 
during a possible implementation. This leads to unplanned efforts and thus costs that 
are significantly higher than planned. In addition, the technology dependency defined 
from the bottom granularity layer can have a negative impact on the design when new 
or changed technologies appear. This could lead to the need of revising large parts of 
the overall design. [89] 

Compared to the bottom-up approach, possible design weaknesses with regard to the 
overall system become apparent earlier within the top-down approach, since the 
necessary behavior or the functions to be provided by the system can be defined and 
checked in an earlier state of the design. The functional description also defines the 
scope of a system more clearly and completely than requirements in natural language. 
Since the process proceeds from the lowest to the highest layer of granularity, i.e., 
from top to bottom, the design of the system is more technology-neutral and less 
technology-dependent. This means that different technologies can be used for the 
realization of a system depending on the goal and use case. A downside of the top-
down approach is that defined content on the top layer is used as input for the 
definition of content on the bottom layer and this can lead to possible planned but 
technically unfeasible solutions. This would then lead to parts of the design having to 
be redesigned. [89] 

The assessment of which approach is best suited for a specific application depends 
strongly on the goal and purpose of the system development as well as the actual 
starting situation. Factors such as number of similar or identical systems already 
designed, new development or planned system expansion can be relevant in such 
considerations and must be weighed against the advantages and disadvantages of the 
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approaches [89]. A combination of the two approaches is also not unlikely in the 
context of the overall development of a project [89]. This can be seen, for example, in 
Figure 15 representing the introduced V-model for development of systems. Therein 
the basic engineering and parts of the detailed engineering are conducted in a top-
down manner and the implementation of the system in a bottom-up fashion. 

For the (core) architecture framework concept presented in this thesis and in 
reference to the V-model, a top-down approach is selected as general procedure to 
which the methods are aligned. The reason for that is mainly the longest possible 
technology neutrality, which is advantageous to the development of system 
architectures that take reference architecture content into account. This preserves 
design freedom on a technical level for a longer period of time and simplifies the 
derivation and adaptation of content, since the early technological definition is delayed 
for a longer period of time compared to the bottom-up approach. In addition, the rapid 
discovery of potential design flaws facilitates the ongoing development of new system 
architectures based on reference architectures. Furthermore, the existing initial 
situation, in which not many detailed technical solutions are available, restricts the 
choice of approach. The disadvantages of the top-down approach are primarily 
content-related issues that are not as important in the context of framework 
development as, for example, a methodological influence. 

 

5.4.3.2 Generally Possible Procedures for the Development of a System 

As a preliminary work for the methodologies that determine which contents can be 
considered "where" and "how" in the core architecture framework concept, three 
general procedures are defined in the following and shown in Figure 44. Those 
procedures can be applied in the selected top-down approach as well as in the bottom-
up approach (neglected in this thesis). The first procedure considered a granularity 
layer focused definition. In that procedure, the views of the different viewpoints are 
run through at the same layer of granularity before the definition is continued at a more 
detailed layer in the same way. The second procedure describes a viewpoint focused 
definition. Within that procedure all views of a single viewpoint are run through one 
after the other before the transition to the next viewpoint takes place. For the first two 
options, it is assumed that the procedure will be carried out as prescribed and all 
contents will be defined one by one until a complete architecture description of a 
system is created as a result. Deviations or omitting steps from the procedure is not 
accepted. As such a strict procedure is not always possible in a company or an 
engineering project due to, for example, the processing of the project by different 
disciplines, a third option closer to reality is considered. The third procedure is a mixed 
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definition approach. The third option describes a mixture of the first two procedures 
for the definition of an architecture. All three procedures are valid for both a top-down 
and a bottom-up approach and are shown in Figure 44. 

 

 
Figure 44: Procedures for defining content within architecture framework 

For procedure three, the mixed definition, the strict definition sequence of the first two 
options is not followed, and an interruption of one procedure and the continuation of 
another is allowed. This is exemplarily shown in Figure 45. For example, a granularity 
layer focused approach could be followed first (first 3 viewpoints - orange arrow) and 
then a viewpoint focused approach (first viewpoint - green arrow). Despite this less 
strict approach, option 3 does not allow to skip or completely omit elements that are 
logically consecutive and necessary to define (red dotted arrow). This would lead to 
difficulties regarding the methodological support and it would be much more difficult 
for other disciplines or stakeholders to review and comprehend made decisions as well 
as the completeness of results. For the made example the following picture emerges 
in Figure 45. After the partial horizontal as well as vertical definition, the elements 
marked with green X’s can be defined next, if either a granularity layer or viewpoint 
focused approach is further pursued. Content of views covered by the green and 
orange arrow are considered to be fully defined. The suggested individual sequence of 
procedure one and two is not changed by the mix of procedures and must be followed 
up. The fields marked with a red minus can only be filled with content when they are 
logically next in line when applying of the two procedure variants. 
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Figure 45: Example of mixed definition 

Based on those general considerations and assumptions, more detailed preconditions 
and rules for transition between views and defining content are described in the 
following sections. 

 

5.4.3.3 View Validity Determination Method 

Based on the mixed definition procedure the following section defines rules and a 
method for the determination of the validity of the use of a selected view during the 
creation of architecture content. The question of the validity for using another view 
always arises when a shift is made from an already defined view to another to be 
defined view. A shift between viewpoints always occurs when a switch happens 
between views that are located in different viewpoints. Since the content of a 
viewpoint is represented in the form of views, in the following it will only be referred 
to as the shift between views. The shift between viewpoints is implied and not 
mentioned explicitly each time. The goal of this section is to clearly define in which 
cases, and under which preconditions a shift between views within a top-down 
approach for the definition of architecture content is allowed. The purpose is to make 
the shift between views and affected viewpoints comprehensible, traceable, and the 
overall result less error prone. In addition, a regulated shift forms the basis for the 
definition of content within the views. It thus forms an important precondition and 
determines when content can or cannot be defined. 

As a basis for the definition of the procedure and the necessary rules, in a first step, 
the dependencies between the individual views are considered. As described in section 
5.4.2.4, there is a relationship between the contents of the various views. This 
relationship between the contents of the individual views and the applied top-down 
approach implies that for a complete description of an architecture, certain contents 
should be present before other contents. For example, the definition of the logical 
elements should not take place ahead of the definition of the relevant stakeholders or 
system requirements (at the same granularity layer). 

When considering the definition of the functional view on granularity layer 2, shown in 
Figure 46 as an example, it can be seen that when following a granularity layer focused 
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procedure, a definition of all views within the defined viewpoints on granularity layer 1 
as well as the upstream views on GL2 has to be carried out before the definition of the 
functional view on GL2. Following a viewpoint focused procedure, all views within the 
first two viewpoints across all granularity layers and the superordinate views within 
the functional viewpoint can be defined before the exemplary selected functional view. 
Both procedures assumed that all views within the viewpoints and at the different 
granularity layers are run through and defined one after the other (as shown in Figure 
44). In reality, this is not always possible because of the workflows in a company and 
the processing of an architecture definition across several disciplines. Therefore, it is 
assumed as shown in section 5.4.3.1 that a mixed form of the two procedures is 
applicable under the restriction that no arbitrary mix may arise and that the skipping 
of logically sequential definition steps is forbidden. For the reasons mentioned above, 
a mixed definition procedure is assumed as standard within the core architecture 
framework concept.  

Based on the three procedures previously described, the different potentially defined 
and mandatory contents for the definition of view content can be derived. As shown in 
Figure 46, when procedure one and two are considered separately, the defined views 
(orange and green squares) are specified before the currently processed view is 
defined (blue square). When combining the two procedures shown in Figure 46, for 
procedure ”mixed definition”, the situation arises, within a top-down approach, that 
certain views are required for the definition of the currently process square (black 
dots) and other views can be potentially already defined, but are not necessarily 
required (framed squares in orange and green). 



Architecture Framework Concept 
 

131 
 

 
Figure 46: Specification of available contents during application of core architecture framework concept 

Following Figure 46 and with the help of the simplified representation of the core 
architecture framework concept, the different conditions of content dependency when 
considering different views during the definition of an architectural description are 
shown in Figure 47. This representation might be misleading, when assuming that only 
one architecture description shall be created. Of course, only one core architecture 
framework concept is applied for the definition of content, but the figure shows the 
different states of the definition of views at different points in time. For this reason, 
the simplified representation of the core architecture framework concept is shown 
several times next to each other representing all the different contents of the views 
needed to compose the overall architecture description of the system of interest. The 
general flow direction for the top-down definition extends from the views within the 
domain viewpoint at the lowest granularity layer (GL1) to the views of the technical 
viewpoint at the highest granularity layer (see Figure 47). 
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Figure 47: All possible states of the core architectural framework concept during the definition of an 
architectural description. 
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In the figure, a distinction is made between filled, framed, and unchecked squares. 
The squares that are not highlighted with color describe undefined views (gray 
squares). The framed squares express that when following a top-down approach it is 
possible that the content of a view has already been defined. The squares additionally 
filled with a black dot are required for the at this time considered definition of the view 
of interest (filled square). If the content of a superordinate view or an upstream view 
has been defined, strongly depends on the applied procedure (see Figure 44). The 
color-coding orange, blue, and green represents the three granularity layers chosen as 
examples (GL1 in orange, GL2 in blue, and GL3 in green). The starting point in the 
architecture framework concept taking the followed top-down approach into account 
is marked in yellow.  

 

 

Figure 48: Dependencies and mandatory inputs for the definition of view content 

When looking at the example in Figure 48, the representation of seven different views 
(framed squares) can be defined within different viewpoints before defining the 
exemplary view pf interest (blue square). Some squares represent as shown in Figure 
40 more than one view. For the definition of the exemplary considered views of the 
requirement viewpoint on GL2, only the views with a black dot are considered as 
required. On the one hand, the superordinate views of the same viewpoint, whose 
contents are detailed and serve as input for the view of interest currently considered, 
are mandatory, in this example the view(s) of the requirement viewpoint on GL1 and 
GL2 (depending on the specific view considered on GL2). On the other hand, the 
view(s) of the upstream viewpoint on the same granularity layer are compulsory as 
well. Those views are the views of the domain viewpoint on GL2. At this moment, all 
other views (framed squares) within upstream viewpoints or superordinate granularity 
layers have a rather indirect influence that is not directly quantifiable. These inputs 
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only serve as additional orientation for the architect and potentially enable a more 
holistic view on the system of interest.  

In the following, based on these determinations, preconditions for a definition of 
content can be derived, rules for the shift between views specified, and exceptions for 
special cases made. 

 

Rules for the shift between views within core architecture framework concept 
Based on the previous considerations, it is determined that the shift between views 
with content already defined to views without defined content within the architecture 
framework concept takes place exclusively 

1) horizontally to views at the same granularity layer in directly neighboring 
viewpoint or  

2) vertically to views at a directly neighboring and subordinate level within the 
same viewpoint. 

The general shift or the change between views, in order to define architecture 
contents, can only take place under certain preconditions. In principle, the rules for a 
shift already correspond to the general top-down definition flow previously described 
but must still comply with the rules that content may not be skipped or completely 
omitted. Therefore, certain preconditions regarding the required input for the planned 
definition of contents are specified. Those must be fulfilled, so that the shift can be 
accomplished and ultimately the entire system can be defined. 

 

Preconditions for the definition of content of views 

From the consideration above it can generally be deduced that the definition of content 
elements within a view is only possible if,  

1) the relevant elements of the view(s) on the same granularity layer of the 
upstream viewpoint are completely specified and available, and 

2) the relevant elements in the higher-level view(s) of the same viewpoint at the 
same and directly neighboring overarching granularity layers are fully defined 
and available. 

 

Both conditions must be met to define architecture content within a view. The 
preconditions apply to all views within the architecture framework concept. In Figure 
49 a potential example and the application of potential shifts as well as required 
preconditions are shown. In order to fulfill the defined rules for the shift between 
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views, there must always be vertical input for a horizontal shift (granularity layer 
focused definition) and always be horizontal input for vertical shift (viewpoint focused 
definition). Indirect input can also play a role in addition to direct input, although the 
content is not considered directly but indirectly via the views that provide the direct 
input.  

 

 

Figure 49: Application of preconditions and transition rules 

Exceptions arise due to the structure of the architecture framework concept. No 
vertical input is available for horizontal movement on the lowest granularity layer, as 
no higher-level content is available due to the predefined framework structure 
(granularity layer focused definition). Another special case is represented by the views 
of the first viewpoint on the lowest granularity layer (GL1), since these have neither 
vertical nor horizontal input in the architecture framework concept. For the exceptions 
described, the preconditions continue to apply with the restriction that some inputs 
are not mandatory because they cannot be provided due to the structural design of the 
core architecture framework concept. The procedure for determining the validity of the 
selected view of interest for the creation of architectural content, which can be derived 
from the basic considerations described above, is shown in Figure 50. The procedure 
includes that when starting from any defined view a view not yet defined shall be pre-
selected by the stakeholder based on the introduced rules for a shift. In a second step, 
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the preselected view shall be checked, whether the defined precondition for the 
definition of content within the preselected view is possible or not. If this is not the 
case and an invalid view has been selected, the procedure can be started again and 
another view can be preselected. If a valid view has been selected, the definition of 
the content continues. The corresponding procedure for creating content in connection 
with the application of the architecture framework concept is described in the 
following sections. 

 

 
Figure 50: View validity determination method 

 

5.4.3.4 Definition of Elements within Views 

After the structure, the content (element types) as well as the shift between the views 
and viewpoints of the core architecture framework concept have been defined in the 
previous sections, this chapter concludes with the description of the methodical 
procedure for the creation as well as adaption of relevant content. Since the creation 
of content when applying the architecture framework concept is a recurring process, 
a general procedure is presented Figure 51 that can be applied in a repeatable manner 
for the different views. The individual design arises from the intended and content 
described in sections 5.4.2.2/5.4.2.4, addressing the individual viewpoints and 
ultimately the views contained therein. The presented definition procedure can be 
structurally limited to three main tasks as well as to a procedure that describes how 
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and in which order the tasks are passed through to create an architecture description. 
Figure 51 shows these tasks, which shall be considered for the definition of content 
within a view. Since the application of the definition procedure is intended to be valid 
for all views within the architecture framework, the three main tasks are kept general 
deliberately but describe the core content of each view. In each view, the first task is 
to consider all relevant inputs. Those inputs (green arrows in Figure 51) emerge from 
upstream and superordinate views (described in section 5.4.3.3). Following the general 
flow direction (blue arrow) and based on that input, a process takes place in which 
relevant architectural content is created with reference to the view of interest. Finally, 
the results are evaluated accordingly, and a decision is made whether the result is 
sufficient for the use within other views or not. 

 

 
Figure 51: Main tasks for the definition of view content 

If the results are insufficient the process can be applied repeatedly until the results 
are satisfactory from the point of view of the applying stakeholder (orange dotted 
arrows). As soon as results are evaluated and deemed sufficient, they can be used in 
another view (green dotted line). After a successful shift, which complies with the 
established rules, the same tasks arise for the new view of interest. The three main 
tasks are therefore generally referred to in the following as input evaluation, 
development, and result evaluation. In addition, it should be mentioned, that an 
iterative rework of created contents might be triggered from downstream and 
subordinate views coursed by relevant changes (red arrows). Even though the input 
might be different, the overall procedure of the architecture framework concept is 
designed in a way that it can also be applied without adaptions of the methods. The 
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change of content within the view of interest might also generate an output relevant 
for upstream and superordinate views in terms of overall consistency of content. 

The procedure for considering change is described in 5.4.3.5 in more detail. In the 
following, the main tasks described are linked together by an iterative process, which 
guides the applying stakeholder through the tasks. In general, this process is shown in 
Figure 52 and in connection with the main tasks in Figure 53.  

Since development is not linear but often dynamic due to the constantly changing 
environment and the resulting influences on a system of interest, the process for the 
architecture framework concept should be continuously and repeatedly applied [77]. 
Therefore, a general process inspired by quality improvement procedures like the Plan-
Do-Check-Act Cycle [178, 179], verification and validation process like [90], and 
problem-solving concepts like those introduced in Pahl/Beitz [77] and VDI 2206 [25] 
based on [180] is defined. The iterative procedure consists of the three steps “scope 
& adapt”, “develop”, and “check”. 

 

 
Figure 52: Iterative procedure for creating architecture content 

Scope & adapt combines the definition of the scope for the definition of new content 
on the one hand as well as the adapted scope for improvement of already defined, but 
insufficient content on the other hand. In the scope & adapt step the actual state is 
evaluated first, second the actual state is specified and compared with the targeted 
state, and third, based on that evaluation, the scope for the development of content is 
defined. The target state shall also consider, which contents might be required in 
following development steps. The development step comprises the creation of content 
by the relevant stakeholders. After a set of content results is created, the third step is 
processed. Within the step check, the developed content is evaluated. The new current 
state is again evaluated against the target state specified within the first step. Based 
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on the evaluation it is decided by the processing stakeholder whether or not the 
created results are sufficient with respect to the specified target state. If so, the 
definition of new content for other parts of the system can be conducted. If the results 
are deemed insufficient, the cycle is rerun. In that case, the scope for the next run is 
adapted for the development. After results have been adapted, the output is checked 
again. The procedure is executed until the results meet the specified target state. 

The application of this generally described process in combination with the three 
specified steps for the creation of content within a view, has been merged as a 
methodology for the creation of architectural content of a view utilized during the 
application of the architecture framework concept. The methodology is described in 
the following and is shown in Figure 53. 

 

 
Figure 53: Architecture content creation method of core architecture framework concept 

In the first step, the available input is collected and evaluated by the 
architect(s)/systems engineer(s). The input for the development emerges from the 
required views (as defined in section 5.4.3.3 and shown by green arrows within Figure 
53). The decision whether the existing inputs are sufficient for the development 
process to be carried out can be difficult to judge objectively and will mainly be decided 
based on the experience of the processing architect/systems engineer(s). The 
decision that the available input is not sufficient can be made during the first step of 
evaluation or after the development process triggered by the processed check of 
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results. Such a decision might also result in the necessity that content within required 
upstream or higher-level views must be reworked (see red dotted arrows in Figure 53). 
This rework would then also go through the process steps scope & adapt, develop, and 
check. The effects how changes are considered within the architecture framework are 
described in section 5.4.3.5. If the inputs are sufficient or have been assessed as 
sufficient by comparing the actual state with the specified target state and the scope 
for development has been set, the creation of the architectural content of the view of 
interest can be started. As described before, the development process depends 
strongly on the individual considered view. Based on the predefined structures and 
content types introduced in 5.4.2.4., the concerned architect/systems engineer 
specifies the contents of the view of interest. As described in the view and content 
type section, the architect(s)/systems engineer(s) will utilize the provided element 
types, create instances of those types, and define relationships between the elements 
and if required between elements of other views. 

 

Example – Content of Stakeholder Need View 

If for example the domain and context view on GL1 have been defined and a horizontal 
shift from the domain to the requirement viewpoint is considered, within the 
requirement viewpoint the next to be defined view would be the stakeholder need view 
(compare Figure 40). Based on the input and consideration of the domain and context 
of the system of interest, the architect(s)/systems engineer(s) will look up in literature 
like [30] or define all relevant stakeholders in the stakeholder need view on GL1 based 
on experience. The architect(s)/systems engineer(s) shall utilize the contents 
predefined for the stakeholder need view within the architecture framework concept 
(as described in the annex Table 18 and Figure 95). The scope of content shall be 
defined beforehand. As a result, the architect(s)/systems engineer(s) might end up 
with results like shown simplified in Figure 54, representing a stakeholder, who has 
one or several interest, and performs one or several tasks. In the end all relevant 
stakeholders and their needs, represented in the form of their interests and tasks, shall 
be defined. In the same manner all other view content shall be developed when 
applying the architecture framework concept. 
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Figure 54: Simplified representation of stakeholder need view content 

 

Afterwards, and in order to complete the development of the content of the view of 
interest, the results produced are checked. This involves checking whether the inputs 
from other views have been fully considered and whether all the necessary content is 
present in relation to the specified target state and scope of development. The results 
are then used as input for the definition of subsequent and subordinate views (see 
green dotted arrows in Figure 53). If an incompleteness of the results occurs during 
this check, the results are compared again with the target state for the development 
process and the initial input (orange dotted arrows). If the results are insufficient due 
to incomplete input, the upstream and superordinate views must be updated. If the 
input is sufficient and complete, the design process can be re-run and the results can 
be checked again. This loop can be repeated until the result is satisfactory to the 
current understanding of the reviewing stakeholder. Just like the stakeholder need 
view considered as an example and shown in Figure 53, subsequent views can also 
provide inputs or triggers for updating the content of the view of interest, if the content 
provided is insufficient (red arrows). These triggers can arise, for example, in the 
context of reuse or in case of changes in the life cycle of the system of interest. An 
associated process concerned with this situation is defined in the next section. 

Concluding, it shall be mentioned, that as shown in color in Figure 53, the procedure 
and the individual steps cannot be clearly separated from each other, but merge 
smoothly into one another depending on point of view of the applying stakeholder. 
Nevertheless, when applying the architecture framework concept, care should be 
taken to ensure that all steps are followed in the sequence shown in order to obtain a 
complete and consistent architecture description in the end. 



Architecture Framework Concept 
 

142 
  

5.4.3.5 Consideration of Changes within Core Architecture Framework Concept 

As briefly mentioned in the previous sections, situations may arise in which 
architectural content has to be adapted. On the one hand, this can be the case during 
the engineering of the system. On the other hand, the need for change may also arise 
due to other events in the subsequent life cycle phases of a system. This may be the 
case, for example, when errors occur during the operation of the system, when 
necessary spare parts are no longer available for older systems, when far-reaching 
adaptations of the system are necessary for a changed operational purpose, or when 
relevant innovations occur. Changes to a single system may also be relevant to a 
reference architecture, depending on the nature of the change and its relevance to 
other systems, and may also need to be considered there (for more information, see 
section 5.5.2.4). In order to carry out a consideration as comprehensive as possible of 
the necessary changes during application of the architectural framework concept, a 
supplementary method is introduced and explained in the following. The method is 
shown in Figure 55. The structure of the core architecture framework concept that has 
been already introduced, the introduced creation of content, and the pre-defined 
content element types remain unaffected and are partly utilized by this method. Via a 
repeatable process the method deals with identifying and adapting all affected views 
and contents within an architecture description. 

 

Figure 55: Change method of core architecture framework concept 
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The method consists of four repetitive steps. In the first step, the changes are 
evaluated and what effects they have on the views as well as on the contents of the 
architecture description. The precise examination of the effects of a necessary change 
is an important step in order to subsequently be able to adapt the affected views. 
However, the identification can only be supported to a limited extent by the core 
architecture framework concept and the creativity and experience of the processing 
stakeholder is needed. The stakeholder could, for example, be supported in the way 
that the core architecture framework concept is integrated into a model-based 
engineering landscape and thus, after relevant elements that have to be changed in 
the architecture description are identified, related elements/models are automatically 
highlighted and made available to the stakeholder. In this way, at least the possible 
influence of changes can be retraced reliably. However, tracing not only depends on 
the MBSE-idea itself but to a large extent on factors such as the quality of the models 
created and the linking of the individual contents. 

In the second step, the relevant view(s) are identified whose contents must be 
changed. The individual views must then be processed in reverse order to the top-
down approach. The sequence is reversed to comprehensively considered all views 
already defined (as shown in Figure 56). Therefore, the view with the highest 
granularity layer and the most advanced position in the viewpoint ranking is examined 
first. If changes are required, a valid view is selected for the third step. For both the 
first and the second step, a certain understanding of the stakeholder with respect to 
the system is required, because otherwise it is very difficult to classify the change(s) 
and their impact on the system description. In the third step, for the determination of 
the validity of a view the method introduced in section 5.4.3.3 is used. After the 
selection of the view to be changed has been made, in the fourth step, the content is 
changed/defined utilizing the architecture content creation method described in 
section 5.4.3.4 and Figure 53. After the fourth step is completed, the method starts 
again from the beginning, checking whether the changes made have any further impact 
on the architectural content of upstream and/or superordinate views. If the changes 
have further impact, the affected views are identified, selected, the updates are 
specified, and changes are made. This procedure is repeated until no more changes 
are required in upstream and/or superordinate views. Then, starting with the top 
granularity layer view in the earliest affected viewpoint, a top-down definition is 
performed again, to ensure consistency of results. If the architecture content is already 
defined, the content does not have to be completely redefined, but must be checked 
whether the changes still have undetected effects on the already specified contents. 
For this the described top-down approach as well as the method for the definition of 
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contents of the architecture framework concept are used. If the architecture has not 
yet been fully defined, the definition process can be proceeded once all intended 
content has been checked. 

The change method as described above is shown in simplified form in Figure 56. The 
figure shows three states of an architecture description defined based on the 
architecture framework concept. The blue arrow describes the general direction of flow 
for a top-down definition. When a possible change occurs, the first possible view 
affected by the change is identified. Then, using the previously defined change method 
in the opposite direction to the flow direction, it is step by step traced back which 
views are affected by the change. This is shown by the red dotted arrows in  
picture ①. After a to be changed view has been identified and the content has been 
adapted, as described above, it shall always be checked whether an upstream or 
superordinate view is affected by the changes committed to the current view of 
interest. This is shown in picture ② by the orange dotted arrows. If no further views 
are affected, the described top-down definition process is started from the view at the 
top granularity level and of the viewpoint that occurs earliest in the structure of the 
core architecture framework concept, exemplarily shown in picture ③ by the green 
square and the green arrows. This starting point ensures that the changes made do 
not lead to inconsistencies or unknown errors in the architecture description. 

 

 

Figure 56: Simplified representation of consideration of changes to architecture content 

The topic of changes and configuration management should be considered as an 
important part of (systems) architecting [61]. This means that, in addition to the 
consideration in the architecture framework concept, an accompanying configuration 
management should also be established, which is assumed as given in the context of 
this thesis and is not considered further. 
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5.4.4 Application of Core Architecture Framework Concept 

To facilitate the applicability of the core architecture framework concept and the 
defined methodologies, a supporting guide for the definition of an architecture 
description and its modification is shown in Figure 57. The guide maps different states 
that are passed through during definition and adaptation. Based on this guide, the 
stakeholder(s) applying the architecture framework concept can work step by step 
through the definition process until the final architecture description is created. The 
guide first considers whether an architecture description should be created or an 
existing description should be adapted. If neither is the case, the application of the 
architecture framework concept should be stopped and the individual goals pursued 
should be re-evaluated. 

If the goal is to create or modify an architecture description, the architecture 
framework concept can be applied as described in the previous sections. In the case 
of creating an architecture description from scratch, the stakeholder(s) should first 
consider the selection of a valid view as a starting point in the architecture framework 
concept. In order to do so the view validity determination method can be applied. The 
method is described in section 5.4.3.3 and in Figure 50. After a view has been selected 
to be defined and the preconditions for the definition of content of views have been 
met, the actual definition can be started/continued. For this purpose, the architecture 
content creation method is applied to the selected view of interest (section 5.4.3.4). 
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Figure 57: Application of core architecture framework concept  

After the specific architecture description has been defined in the view of interest, it 
should be checked by the stakeholder whether all contents in the current view of 
interest and in all other views defined so far are consistent. The architecture 
framework concept does not explicitly consider this step, as this assessment is mainly 
based on the experience and skills of the executing stakeholder(s). If all contents are 
consistent and no errors occur, it must be assessed whether all contents of the 
architecture description have already been created. If yes, then the application of the 
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architecture framework concept can be stopped. If not all views and contents have 
been defined yet, the view validity determination method is applied again until another 
view of interest has been selected, which then also runs through the process described 
above. This loop is repeated until all views and the architecture description are 
defined. 

However, if inconsistencies occur after using the architecture content creation method 
or if an adaptation of the architecture description is pursued from the beginning, the 
change method can be applied. This method is shown in section 5.4.3.5 and overlaps 
as described with the architecture content creation method and thus also with the 
view validity determination method. For the necessary adaptation, appropriate 
changes are then formulated and carried out with the help of the creation method. As 
shown in Figure 56, this loop is running until all view contents are consistent and error-
free. After that, the completion of the architecture description can be continued as 
described above. 

 

5.4.5 Conclusion on Architecture Framework Concept for Creation of Architecture 
Descriptions 

In previous sections, a core architecture framework concept for creating architecture 
descriptions of production systems has been presented and described. The presented 
framework concept can be used for the creation of system and reference architectures 
alike. As described the architecture framework application differentiates between 
single system and a group of systems. As a result, the different inputs determine 
whether a system or reference architecture is specified. The applied procedure itself 
does not differ. In order to support the stakeholder applying the architecture 
framework concept with the task of defining architectural descriptions, the shown 
contents and a guide for application have been specified, which are shown in Figure 
58. These most important sections and related results of the core architecture 
framework concept are shown as well. 
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Figure 58: Overview of core architecture framework concept for the definition of architectural descriptions 

Based on the requirements defined for the architecture framework and the analyzed 
existing frameworks, a basic structure for the framework was defined. This structure 
consists of five viewpoints as well as a granularity layer concept, which enables the 
specific consideration of individual views. The structure provides the basic 
relationships between the individual elements of the framework. Based on the 
structure, the content types to be considered within the individual views were defined. 
Due to the given structure, the architecture framework spans a two-dimensional 
problem and solution space between viewpoints and granularity layers. The structure 
and its viewpoints represent the general basic engineering procedure for creating an 
architecture description (macro cycle). After the structure and content types of the 
architecture framework concept were specified, the framework was supplemented by 
several methodological blocks (micro cycle) that consider the shift between views, the 
procedure for the definition of content within views, and the consideration of changes. 
The methods connect the structural and content types of the core architecture 
framework concept. The methods are all designed to be compatible with each other. 
In addition, the methods that need to be applied more than once are designed to work 
in a loop so that the process can be run through multiple times without having to apply 
additional steps, to keep the complexity level low. The defined conditions and rules for 
the view validity determination method reflect the selected top-down approach and 
contribute to the fact that all necessary views and relevant inputs are considered 
during the definition. The creation method and the change method build on each other. 
As the name already describes, these are used during the definition of content within 
a view and the consideration of necessary changes. All elements and methods are 
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considered in the specified guide for the application of the core architecture framework 
concept. 

In conclusion, the core architecture framework concept provides a clear structure, 
regulates the relationship between the individual elements, and methodically enables 
the creation and adaption of relevant content. With this result, the specific 
requirements on the core architecture framework concept with regard to the research 
questions RQ1 and RQ2 were elaborated. It also forms the basis for the requested 
consideration of reference architecture descriptions for the definition of system 
architecture descriptions. This extension of the core architecture framework concept 
is described in the following sections. 
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5.5 Transition from Reference to System Architecture Description 

After the components of the core architecture framework concept have been 
presented in the previous sections, this section presents a method for the transition 
between reference and system architecture descriptions as an add-on to the core 
architecture framework concept. This method is referred to as architecture framework 
transition method or in short transition method.  

 

5.5.1 Derivation of Architectural Content – Actual State and Challenges 

Based on the assumptions made in the previous sections, reference and system 
architecture descriptions of comparable structure can be created by individual 
application of the core architecture framework concept. Based on the fact that, the 
abstraction level was specified for both reference and system architecture before the 
definition, a two-dimensional design space defined by granularity layers and 
viewpoints results. The made basic statements are shown in Figure 59. 

 

 
Figure 59: Initial situation of transition between reference and system architecture  

Furthermore, it is considered that the use of reference architecture descriptions in 
connection with the application of the core architecture framework concept results in 
the additional dimension transition in the design space. This results in a shift from a 
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two-dimensional into a three-dimensional design space. This new design space is not 
covered by the current scope of the core architecture framework concept. The 
resulting main challenge is to take this additional dimension into account while at the 
same time ensuring the applicability of the defined core architecture framework 
concept. 

 

5.5.1.1 Dependencies of required and available content 

In addition to the challenge of transition, the dependencies between required and 
available content shall be considered. The different potential scenarios resulting from 
dependencies between required and available content have already been shortly 
teased in the section 0 and are considered in detail in the following. 

 

 
Figure 60: Dependencies of required and available content (adapted from [181–183] in [137]) 

Within this thesis, the available content expresses the architectural content of an 
architecture description provided by a reference architecture (shown as grey circle in 
Figure 60). The required content represents the expected and planned content of an 
architecture description for a considered system of interest (blue circle). As described 
in the assumptions in section 5.2, it is expected that when an architecture framework 
is used to consider reference architecture descriptions for deriving system architecture 
descriptions, an applicable reference architecture is selected and used. Thus, the 
required content for the system architecture is always a subset of the available content 
and the system of interest must be part of the group of systems considered within the 
reference architecture. It is important to note at this point that just because a system 
of interest is part of the system group considered in the reference architecture, the 
required content for the system of interest must not automatically be completely 
covered by the available content of the reference architecture. The content coverage 
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depends mainly on the concept pursued in the reference architecture and whether the 
reference architecture is more of an over-fulfilling "110 percent approach" or a "core 
approach" limited to the most relevant content. The resulting optimization problem of 
more content and supposedly better reusability compared to core content and 
therefore supposedly lower effort for the creation of the reference architecture is not 
pursued further in the context of this thesis but shall be considered in future research. 

Based on Figure 60 and in opinion of the author, different scenarios can be considered 
in the context of transition and content utilization. These scenarios, or rather the 
resulting requirements, should be taken into account for the implementation of the 
transition method in the architecture framework concept. 

Scenario 1: The available reference architecture description content 
corresponds completely with the required content of the system of interest or 
over fulfills it. Following the generally given assumption by [181–183] in [137] 
on reuse, the scenario described above would either require minimal changes 
or imply unchanged reuse of content. As the reference architecture always 
refers to a group of systems and in order to guarantee the validity of the 
architecture description for a larger group of systems, in most cases the 
available content has to be considered in a more abstract way than the 
necessary required content for an architecture of a specific system. Therefore, 
from the author’s point of view, unchanged reuse might be possible, but an 
adaption of available content to the specific system of interest would be more 
likely. As previously described the focus of most reference architectures is on 
functional and logical considerations (including all required upstream 
contents), which means that, at least in these areas, the need to add content 
should be relatively small. 

Scenario 2: The required content for the system of interest corresponds to a 
certain extent with the available reference architecture description content. 
The consequence, following [181–183] in [137], would be that some individual 
contents might be transferred, some might be adapted to the specific system 
of interest requirements, and some must be created from scratch. To achieve 
the completeness of the required content, the individual content components 
must be combined into a consistent architecture description. 

Scenario 3: The required content of the system of interest does not correspond 
with the available reference architecture description content at all. This could 
be the reason if the system of interest is not part of the group of systems 
considered by the reference architecture. The consequence would be, that a 
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different reference architecture must be used for the design of a specific 
system architecture description or, if not available, that the system architecture 
must be defined from scratch completely. In the latter case, the core 
architecture framework concept can be utilized. Since a definition is possible 
through the application of the core architecture framework concept and the 
assumption has already been made that a matching reference architecture is 
always applied, the scenario that there is no match between required content 
and available content is not considered further in detail in the following. 

In summary, since scenario three was excluded for the reasons described above, the 
consequence for the extension of the core architecture framework concept is to 
consider a mixture of scenario one and scenario two. This means, as already indicated 
in section 0, that available and required contents must be compared in order to assess 
which scenario is involved. This determines the starting point for all further tasks 
during the transition. Depending on how the contents overlap, the pure transfer of 
contents, the adaptation and supplementation of existing contents, and the definition 
of new contents that are missing in the reference architecture description must then 
be considered in the transition extension for the core architecture framework concept. 

 

5.5.2 Architecture Framework Transition Method for Core Architecture Framework 
Concept 

In the following, the architecture framework transition method for the consideration of 
reference architecture description content during the application of the architecture 
framework concept for the definition of a specific system architecture description will 
be in short referred to as transition method. Made assumptions and design decisions 
for the method are introduced in section 5.5.2.1., followed by the documentation of the 
actual transition method in section 5.5.2.2.. After the completion of the transition 
method its application in combination with the core architecture framework is 
exemplarily shown in section 5.5.2.3. In addition to the method and in comparison to 
the core architecture framework concept the topic of change is examined in section 
5.5.2.4. A guide for the application of the architecture framework concept is given in 
section 5.5.3. 

 

5.5.2.1 Made Assumptions for the Architecture Framework Transition Method 

Most of the assumptions have already been defined in section 5.2 and connected to 
the creation of the core architecture framework concept in the previous sections. 
Additional assumptions with respect to the transition method are summarized in Table 
7 and have been made, as in section 5.2, based on the discussion with experts of the 
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considered scientific field, the relevant ISO guidelines and standards, such as VDI 
3695, the contents and results of the research project CrESt and the presented state 
of the art. These assumptions are intended to restrict the solution and to create 
consistent and reproducible conditions for the application of the defined method.  

 
Table 7: Additional assumptions for the architecture framework transition method 

Additional Assumptions 

Ar
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 A suitable reference architecture with a relevant intersection with the required 
content for the definition of a system architecture description exists and is used. 
Predefined reference architecture description content is used for as many 
viewpoints and views as possible. 

 In case that the technical reference architecture is not available, the technical 
architecture description of the system of interest is defined from scratch. 

 The components of the system and reference architecture description are 
structurally and content type wise comparable, as they both focus on similar 
domains. 

 The problem space of the system of interest is described individually before the 
transition, to ensure that the problem space considerations are not influenced by 
predefined contents. For this purpose, the core architecture framework concept 
shall be used. After the individual definition of the problem space of the system 
of interest a comparison with the reference architecture description problem 
space should be carried out in order to assess the completeness of definition of 
the system of interest problem space. 

 The transition method is defined in a way that the structure and methodologies 
of the core architecture framework concept are utilized. 

 For the transition available and required contents have to be compared, available 
reference architecture contents potentially have to be adapted for application, 
and missing required content must be defined from scratch. For the description 
of a single view of a system of interest, the different available contents, additions, 
and from scratch definitions have to be summarized. In order to take these 
transition steps into account and in order to use the core architecture framework 
components, the individual steps are considered in a separate manner and linked 
to each other at relevant points. 

 

The main assumptions for the transition made within the table above are depicted in 
Figure 61, which shows the predefined problem space of the system of interest, the 
input for the transition, the same structure of reference and system architecture (due 
to the applied architecture framework), the transition between the refence and system 
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architecture, as well as the potential abstinence of a technical reference architecture 
description. 

 

 
Figure 61: Main assumptions with respect to the architecture framework transition method 

 

5.5.2.2 Architecture Framework Transition Method 

Based on the sum of assumptions, design decisions, and predefined core architecture 
framework content, the transition method shown in Figure 62 was developed for the 
consideration of reference architecture description content as a basis for the definition 
of a system architecture description.  

The architecture framework transition method consists of a three-layer structure (“SyA 
Creation Layer”, “Decision Layer”, and “RA Customization Layer”) and considers 
therein three main process steps (“(1) Evaluation of RA & SyA Inputs”, “(2) RA 
Customization”, and “(3) SyA Design”). The different layers of the method are intended 
to clearly structure the main steps of the procedure and simplify its application. As 
described within the design decisions and the previous sections, a system architecture 
description is created based on available reference architecture description content, 
which might be adapted to fit the system architecture. The evaluation of required and 
available architecture description content, statements about the necessity for reuse 
and the adaption of available content, and/or the definition of required nonexistent 
content are made in the “Decision Layer (B)”. All considerations related to RA are 
allocated to the “Reference Architecture Customization Layer (C)”. In addition, 
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nonexistent content might be supplemented and all contents for the definition of a 
view of interest have to be combined into one solution. All such considerations are 
made within the “System Architecture Creation Layer (A)”. 

 

 
Figure 62: Architecture framework transition method - adapted from [147, 148] 

The three main steps of the method are distributed over these three layers, which 
result mainly from the general consideration of the relationships between available 
content and required content (as elaborated in section 5.5.1.1). Step (1) "Evaluation of 
RA & SyA Inputs" represents the starting point of the transition and compares 
potentially relevant inputs of the reference architecture description with the inputs for 
the definition of the view of interest. As a result of this analysis, 
"Customization/Creation Consequences" can be derived. Thus, the evaluation result 
provides information about which parts of the reference architecture description can 
be reused and, if necessary, have to be adapted (customization consequence) and 
which contents for the definition of the view of interest have to be defined from scratch 
(creation consequence). Based on this evaluation, the existing reference architecture 
description contents are first copied and, as needed, adapted to the specific view of 
interest. In addition, the relationships to other relevant elements within the system of 
interest are established. This is done in step (2) "RA Customization". The result is a 
reference architecture view description adapted to the view of interest ("Adapted RA 
View Description"). Depending on the customization/creation consequence, this 
partial result must be supplemented for the view of interest. If all required contents 
are available, the result from step 2 also represents the overall result for the view of 
interest. In this case step three could be omitted. If this is not the case and specific 
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additions are required, the "View of Interest Description" is defined in step (3) "SyA 
Design". This is done based on the adapted reference architecture view description 
and taking into account both the defined customization/creation consequence and the 
input of the relevant system views (“SyA view description”). In this step, the missing 
content is added while the additional content is related to the existing content. The 
newly created description of the view of interest then represents the new input for the 
definition of the next view of interest. The next application of the transition method is 
exemplarily shown in the form of step (1*) in Figure 62. 

The allocation of the above-described procedure is exemplified for a transition 
between a functional reference architecture view description and a functional system 
architecture view description in Figure 63. The transition method takes place on the 
second granularity layer, which links the view of interest (blue box) with the inputs 
from views within reference and system architecture (orange box). As described, in a 
first step, the inputs of the reference architecture and the system architecture are 
compared and evaluated, to determine the content of the reference architecture which 
can be reused or has to be adapted and content which is potentially missing, which 
has to be defined from scratch. Based on the connection between the elements of the 
views within the requirement viewpoints and the elements within the functional view 
of the reference architecture, in the second step, based on the customization 
consequence, the functional view of the reference architecture (light blue box) can be 
customized to be applicable within the system architecture description (blue box). In 
the third step and with respect to the inputs of the system of interest, the determined 
missing content is added to the result of step two. The sum of all contents forms the 
result of the third step, which is in this example the functional view of the system of 
interest (dark blue box). 
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Figure 63: Exemplified allocation of architecture framework transition method to view 
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Due to the iterative design, the transition method can then be gradually applied to the 
definition of all views of the system of interest. In the problem space, however, the 
methodology is only applied after the separate and complete definition of the views of 
the domain and requirement viewpoint by using the core architecture framework 
concept. In this context, this partially represents a supplementary approach. If the 
technical viewpoint of the reference architecture is not available, the content is defined 
in the same way as the content of the problem space. The application is shown in 
simplified form in Figure 64. 

 

 
Figure 64: Example of the application of transition method for the vertical and horizontal definition of 
views within system architecture description 

In Figure 64 it is assumed that the transition shown in Figure 63 is covered by the 
represented transition method. The overlap between granularity layer and viewpoints 
is deliberately shown, to emphasize the point, that the transition method applies to all 
the different views within the architecture framework concept. Of course, as previously 
defined, for the actually performed definition only one view is considered at a time.  

 

5.5.2.3 Example of Utilization of Core Architecture Framework Concept 
Components within Architecture Framework Transition Method 

The overall context of all defined components of the architecture framework concept 
is presented in section 5.5.3 in the application guide. Nevertheless, in order to clarify 
the application of the transition method better, the creation of content in combination 
with methods from the core architecture framework concept, in particular the 
architecture content creation method, is shown in Figure 65. At the beginning of the 
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transition, comparable to the core architecture framework concept and as shown in 
Figure 57, a view of interest must be selected. The same procedure as described in 
section 5.4.3.3 applies for the selection of a suitable view. The application of the view 
validity determination method without adaptions is possible since the input of the 
reference architecture can be assumed as given and therefore is not considered as 
relevant precondition for the selection. The view of interest is selected, taking into 
account the possible shift directions between views, and the preconditions used to 
check whether the inputs required for the definition of the view of interest have already 
been defined in the system of interest. Analogous to the core architecture framework 
concept, this procedure must be performed until a valid view of interest is found. If a 
view of interest has been defined, the first step of the transition is to define the 
customization/creation consequence (1), the second step is to define the adapted 
reference architecture view description (2), and the last step is to add missing content 
and integrate all contents into one view of interest description solution (3). As all three 
steps consider inputs, their processing, and provide a corresponding output, the idea 
that the creation method defined in the core architecture framework concept could be 
used for this definition arose due to its similar structure. The difference in application 
compared to the core architecture framework concept, as shown in Figure 57, is that 
the architecture content creation method is always applied iteratively, but not just 
once per view, but for each of the three transition method steps. For the first step of 
the transition method, the “evaluation of reference and system architecture inputs”, 
the input is evaluated and a corresponding scope for the development is defined. 
However, in connection with the first step of the transition method, the development 
does not describe the formulation of an architecture description based on predefined 
element types, but the definition of the customization/creation consequence. It is thus 
specified in the “scoping” step of the creation method and under consideration of the 
existing reference and system architecture descriptions, which has to be considered 
in the context of the customization/creation consequence (target state). The definition 
of the customization/creation consequence takes place during the “development” step 
of the creation method. The evaluation of the result by comparing the achieved actual 
state with the specified target state is then performed in the step “check”. If the 
specified content does not correspond to the desired target state, the architecture 
content creation method is repeated iteratively until the desired state is achieved. 

Regarding the creation of the customization/creation consequence, it shall be 
mentioned that no separate process has been defined that takes into account the 
comparison and the necessary unambiguous specification of architecture elements. 
Those considerations represent an independent research area, which would exceed 
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the thematic scope of this thesis. It is therefore assumed that the comparison will be 
performed by the applying stakeholder, who will then produce an appropriately 
complete list/table or similar, identifying existing content that may need to be adapted, 
as well as new content to be created. However, the comparison is aided by the fact 
that in the previous sections it was decided as a facilitating assumption that reference 
architecture and system architecture use the same structure and element types as 
introduced by the architecture framework concept. This can at least ensure that only 
the same element types are compared. The extent to which the resulting instances 
match is then judged by the respective stakeholder. 
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Figure 65: Example for allocation of core architecture framework concept to transition method 



Architecture Framework Concept 
 

163 
 

For the second and third step of the transition method, the architecture content 
creation method is applied in the same way as described in section 5.4.3.4. In 
comparison with step one of the transition, both steps two and three are concerned 
with the adaptation and creation of architecture descriptions, utilizing the predefined 
view element types, and therefore better fit the architecture content creation method. 
For the second transition step, the reference architecture customization, the input for 
the creation method is not only composed of the existing view contents of the 
reference architecture, but also of the customization/creation consequence defined in 
the first step. This must be included as additional input so that the stakeholder 
performing the development step can carry out the customization of the reference 
architecture with the correct scope. For the reference architecture customization, a 
copy and modify approach is followed, in which the corresponding reference 
architecture content of a considered view is copied and adapted accordingly. 
Adaptation can be, for example, created by deleting unnecessary content. It should be 
noted at this point that although the basic content and relationships are defined based 
on the specified element types of a view, the assessment of the individual instances 
and whether they are relevant in the context of the customization/creation 
consequence depends on the decision of the executing stakeholder. The subsequent 
customization and instantiation are also subject to the stakeholder, who is thus mainly 
responsible for the final shape of the view of interest. Concluding the result of the 
creation process, the adapted reference architecture view description, is checked and, 
if necessary improved. 

Step three of the transition, the system architecture design, is carried out in the same 
fashion as step two. The main difference is that not only the customization/creation 
consequence is used as input, but that also the required input from relevant system 
views and the adapted reference architecture view description created in the second 
transition step are considered. Based on the results of the second step and the other 
inputs, the existing content is linked with the still missing content of the view of 
interest in the development step of the creation method. Created content is then 
checked again as described above and, if necessary, corrected by iteration. After the 
comprehensive definition of the description of the view of interest, the next view can 
be selected as described at the beginning of this section and the transition method in 
combination with the architecture content creation method can be applied in the same 
way. 

In general, it should be noted at this point that for comparison between reference and 
system architecture, it might be necessary to perform a corresponding back-tracing 
over several views, to identify potentially reusable content. 
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5.5.2.4 Consideration of Changes within Architecture Framework Concept 

When considering the resulting changes, and assuming that the framework uses 
reference architecture content and defines system architecture content alike, a 
distinction must be made whether changes to the reference architecture and the 
system architecture occur before, after, or during the transition and the creation of a 
system architecture description. For a better distinction three possible scenarios are 
shown in Figure 66. 

 

 
Figure 66: Potential change scenarios 

The first scenario describes a case where changes become necessary only with 
respect to the reference architecture description, in scenario two with respect to the 
system architecture description, and in scenario three with respect to both. Since the 
focus is on the creation of the system architecture descriptions and only on the use of 
the reference architecture description, a few limiting assumptions are made. In 
principle, it is assumed that before the system architecture description is defined, no 
system architecture description exists that would need to be adapted. 

 

Before: Therefore, scenarios two and three are omitted at the time before the 
definition. Furthermore, the assumption has already been made that a suitable 
reference architecture description is always available and applied. Therefore, scenario 
one prior to the definition of the system architecture description is actually out of 
scope. Nevertheless, the reference architecture description can be adapted by 
application of core architecture framework concept and change method (1*). 
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During: Due to the assumptions made, scenario one is also out of scope during the 
definition of the system architecture description. Should the need for change still arise 
after the system architecture description has been successfully defined, the reference 
architecture description can again be adapted by the application of core architecture 
framework concept and change method (1*). If only changes to the system 
architecture description itself are necessary during the definition (scenario two), the 
change method described in the core architecture framework concept in combination 
with the introduced transition method can be utilized (2). If scenario three occurs 
during definition, which is a borderline case in terms of assumptions, the architect 
must first assess, based on the specific situation, whether the changes should be 
made first to the system architecture description or to the reference architecture 
description (3). If the reference architecture description shall be changed first, the 
procedure described for (1*) shall be utilized and then for system architecture 
description (2) can be utilized again. If the system architecture description shall be 
changed, first utilize (2), then an individual assessment is needed on which changes 
can be abstracted to be considered within the reference architecture description. After 
assessment the reference architecture description can be adapted utilizing (1*). 

 

After: For the time after the definition of the system architecture description, the same 
procedure considered before and during creation of system architecture description 
applies for scenario one. If the adaptation of a system architecture description is 
required after its definition, the core architecture framework concept and change 
method can be applied (1). For scenario three, the same procedure applies after 
definition as during definition (3). 

 

5.5.3 Application of Architecture Framework Concept 

As already introduced for the core architecture framework concept, a corresponding 
guide is also formulated for the application of the extension, the transition. This guide 
is shown in Figure 67 and pursues the same goals and uses partly the same contents 
as the guide in Figure 57 of the core architecture framework concept. Basically, in a 
first step, a distinction is made whether an architecture description is to be created 
using a reference architecture description or not. If this is not the case, a further 
distinction is made whether an architecture description should generally be created or 
an adaption of already defined contents shall be made. Depending upon the decision 
in the case of the general consideration of architectural description, reference is made 
to the core architecture framework concept and to the change method in terms of 
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adaptions. If neither of these topics are considered, the definition efforts should be 
discontinued, and the goals set should be re-evaluated and adjusted if necessary. 
However, if an architecture description is to be created using a reference architecture 
description, the definition can be started by using the guide shown in Figure 67. 

 

Figure 67: Application of architecture framework concept for definition of architecture description based 
on reference architecture 
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As within the core architecture framework concept, first the view validity determination 
method presented therein is used to check whether a valid view has been selected as 
the basis for the definition (view selection procedure). If a valid view has already been 
selected, the definition of an architectural description based on a reference 
architecture description can be pursued (transition procedure). If no valid view has 
been selected yet, the method can be applied again until a suitable view has been 
identified. 

Once the view of interest has been selected, the transition can be started by applying 
the architecture content creation method to the individual steps of the transition 
methodology as shown in detail in Figure 65. First it is checked whether a 
customization/creation consequence has already been defined. If so, the definition can 
be directly continued with the second step of the transition. If this is not the case, the 
customization/creation consequence is defined using the described methodology and 
inputs. After the creation, step two of the transition is considered if an adapted 
reference architecture view description is not already available. If an adapted 
reference architecture view description has already been defined, the step can be 
omitted, and the definition process can be continued in step three of the transition. If 
the adapted reference architecture view has not yet been described, the methodology 
of the core architecture framework concept and the associated inputs are used again 
for the definition of the required content (“RA Customization”). Finally, in the third 
transition step, the view of interest description is defined using the same procedure 
described in the previous two transition steps. The upcoming tasks like checking 
completeness of views, taking changes into account, and completing the architecture 
description follow the same procedure as described in the guide for the core 
architecture framework concept (see section 5.4.4). 

 

5.5.4 Conclusion on Overall Architecture Framework Concept 

In summary, it should be noted that in this chapter a proposal for an architecture 
framework concept was made, which can be applied for the definition of system 
architecture descriptions based on the use of a reference architecture description. For 
this purpose, a core architecture framework concept was defined (see section 5.4), 
which describes structurally and methodically the creation of architecture descriptions 
in general. Building on this basis, the transition between reference and system 
architectures was then considered in this section. The aim was to ensure that the 
same basic methodological and structural approach could be used for different 
scenarios during the application of the framework. In addition, and to facilitate the 
application as well as to express the domain of interest, appropriate content element 
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types and structuring were predefined, on which the applying stakeholder can base 
the formulation of the specific architecture description. In order to test the validity of 
the architecture framework concept, the framework is prototypically implemented in a 
modeling tool in chapter 6 and evaluated in chapter 7 by applying it to an example. 
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6 Tool Implementation of Architecture Framework 
Concept 

In this chapter, the prototypical implementation of the architecture framework concept 
is presented in the form of a domain-specific language within the modeling tool 
MagicDraw. The main relationships between the tool, modeling language, and 
methodology/framework are defined in section 6.1. and are shown in Figure 69. In 
section 6.2 the basic procedure and inputs during the development and 
implementation of the architecture framework concept in the form of a DSL (domain-
specific language) within MagicDraw are described. Therefore, within section 6.3, the 
tool MagicDraw used for the implementation is introduced and briefly described. 
Section 6.4 specifies which components of the framework have been implemented 
prototypically and which components have not (yet) been considered. Concluding, 
section 6.5 presents some examples of the implemented DSL. The goal of this chapter 
is to illustrate the domain-specific language and the tool MagicDraw used for the 
implementation of parts of the architecture framework concept. The purpose is to 
create an understanding of the way of implementation and to pilot the use of the 
architecture framework concept in a realistic working environment. The 
implementation of a tool is the basis for the evaluation of the architecture framework 
concept and the proof of concept carried out in the next chapter. The content as well 
as the connection to previous and subsequent chapters is shown in Figure 68. 

 

 
Figure 68: Overview of the contents of chapter 6 
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6.1 MBSE Tools and Languages 

In order to meet the engineering challenges described in section 2.3 better, 
engineering tools are increasingly being used to provide support during development 
of systems [7]. Due to that development in SE/MBSE and especially in the areas of 
modeling language and tools as well as available and established architecture 
frameworks, the support of stakeholders regarding the definition of e.g., requirements 
or system structures has never been greater [15]. Therefore, the topic of modeling 
tools and modeling languages used for the creation of the required models are 
described below. The relations between relevant terms are shown in a simplified 
manner in Figure 69. 

 

 
Figure 69: Tool and Modelling Language Environment (based on [30, 109, 184] 

In the context of system development, the relevant stakeholders have different 
interests in relation to the system of interest and with respect to this thesis mainly 
towards architectures. The architecture describes the structure and interrelationships 
of the system (see definition in chapter 3). Considering model-based development, the 
system and specific aspects of the system are represented by one main model and/or 
several sub-models. The model also represents an architectural description of the 
system, which expresses the architecture. The required models are created by the 
stakeholders. In most cases, a modeling tool and the modeling language implemented 
in it are used for this purpose. A tool can be generally defined as follows. 

 

Tool 

A “[tool] (aids) assist the representation and/or documentation of knowledge” [154]. 
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The model to be created is described using the modeling language which is managed 
within the modeling tool. The task of modeling languages is to provide means to 
represent the human perception of reality in a model and to provide a common starting 
point for all stakeholders involved [185]. A modeling language can be defined as 
follows  

 

Modeling Language 

A modeling language is defined as “[...] a textual or graphical language used to 
implement one or more related types of models” [38]. “Modeling languages are 
generally intended to be both human interpretable and computer interpretable and are 
specified in terms of both syntax and semantics. The abstract syntax specifies the 
model constructs and the rules for constructing the model from its constructs. [...] The 
semantics of a language define the meaning of the constructs" [26]. 

 

As not every tool can implement every possible language and depending on the 
application scenario as well as the modeling tool used, different modeling languages 
are available for describing the models. On the one hand, an architecture framework 
represents a modeling process, which considers what is to be done [184], on the other 
hand, theses frameworks serve as a methodological approach that describes how 
tasks should be handled [184]. The architecture framework is implemented in and 
leveraged by the modeling tool. The framework uses thereby, like the tool, the 
implemented modeling language and supports the development of the model as well 
as the architecture description contained in it. The use of such a tool and the 
framework it contains enables supporting the stakeholders in the context of their 
engineering tasks, which is one of the main MBSE goals. 

By choosing a modeling language, it is determined which description means are 
available and which contents can be illustrated in a model [185]. Accordingly, the 
usability of the model is limited by the choice of the language. Depending on the 
application, one language is usually more suitable than another [185]. In general, 
modeling languages can be distinguished by different criteria, for example, textual or 
graphical languages, or by their scope of application. All the different modeling 
languages have specific advantages and disadvantages due to their characteristics 
and dependent on the application scenario they shall be applied on. Among the 
modeling languages and with respect to MBSE, a very rough distinction can be made 
between General Purpose Languages (GPLs) and Domain-Specific Languages (DSLs). 
Both are shortly described below. 
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General Purpose Language (GPL) 

A general purpose language is a cross-domain modeling language with language 
constructs not restricted to one particular domain [186]. The language represents 
reality as well as relevant interrelationships and is utilized for implementing them in 
models. 

 

Two commonly used GPLs related to systems engineering are the UML- Unified 
Modeling Language and the SysML - Systems Modeling Language [15], which is 
probably the most used modeling language in MBSE [15, 112]. In addition to SysML, 
several much simpler languages for modeling have been created, but have not gained 
extensive acceptance among the systems modeling community due to their limited 
utility as well as lack of precision and adaptability compared to established languages 
[15, 112]. Detailed information about SysML can be found among others in the 
following sources [110] and [187] as well as for UML in [74] and [188]. 

In addition to the MBSE benefits and implementation challenges described in section 
2.3.5.1, the use of GPLs such as SysML and the associated tools can further hamper 
successful implementation. Obstacles arise by combining a user who is usually not a 
modeling expert with trying to apply a modeling language that is insufficiently 
methodologically supported and implemented in a tool designed for modeling experts. 
This leads to challenges for users and might results in a loss of productivity. In the 
worst case, users avoid the modeling language as well as the related tool and return 
to the known familiar and previously established document-centric approach. Due to 
those circumstances, some tool vendors have provided ways to adapt modeling 
languages to the needs of the users and the domains considered. [115]  

The languages resulting from customization of GPLs, mostly to a specific domain, are 
called Domain-specific Languages (DSLs), providing the user with suitable notations 
and abstractions to describe relevant concepts in a more efficient and understandable 
way [169, 189, 190]. The developed DSL considers the needs of a specific domain, for 
example, a problem domain (e.g., production, power generation) or a specific system 
aspect (e.g., workflows) [191]. The term DSL can be defined as follows. 

 

Domain-specific Language (DSL) 

A domain-specific language limits and focuses on a particular application domain, 
provides appropriate or established notations, and the right level of abstraction to view 
system solutions in a natural but not overly detailed way [189, 192]. 
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Whether the use of a DSL is actually advantageous compared to a GPL, depends on 
the use case and must be decided by weighing the pros and cons with respect to the 
individual application. To give a short overview, the main advantages and 
disadvantages are briefly listed below. 

 

Advantages: 

 Information such as solutions or problems can be expressed clearly and 
unambiguously by an individually adapted modeling language in terms of 
expression, semantics, and the degree of abstraction appropriate to the specific 
domain [193]. The specific focus of the DSL therefore also facilitates domain-
specific evaluation and improvement [190, 194]. 

 The use of domain-specific languages does not require any programming or 
language skills and is thus easier to learn and use by non-experts (flatter 
learning curve) [193]. 

 Due to the properties and structure of the DSL the user can understand the 
domain as well as the language better and evaluate or modify DSLs easier by 
themselves [190, 195]. 

 DSLs and the tools in which they are implemented often enable more 
efficient/effective automation of, for example, analysis or testing tasks [190, 
193]. 

 By creating models within the DSL, the relevant domain knowledge is 
documented and makes the DSL an important component of the knowledge 
management system and enables the associated preservation/reuse of 
knowledge [190, 193, 196]. 

 

Disadvantages: 

 Compared to the immediately applicable GPL, a DSL design and 
implementation generates comparatively high development costs before it can 
be used (for example, due to the high complexity of the language design) [190, 
193]. In addition, cost for its maintenance will be created along the life cycle of 
the DSL [190]. Furthermore, additional efforts for adaption of a DSL might be 
created, for example, during a migration. 

 Compared to a GPL, it is important for the application of a DSL to define the 
scope precisely, so all information required for the later description of a system 
can be expressed and modeled within the DSL [190]. An imprecise scope can 
lead to necessary adaptations of the DSL and additional effort.  
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 Despite the fact that the language is easier to learn and understand for users, 
the individual character of a DSL requires additional training and will generate 
education costs [190, 193]. 

 The utilization of DSLs can be hindered by a lack of tool support [193]. In this 
context, it should also be pointed out that in terms of data exchange a specific 
DSL also requires, in most cases, a specific matching tool chain. Changes will 
therefore lead to additional efforts. 

 

To simply summarize, considering the specific advantages and disadvantages, a DSL 
can play out its advantages in a mainly static environment. In an increasingly dynamic 
environment however, these advantages are potentially eaten up by the increasing 
changes that occur in relation to the DSL. 

If the use of a DSL is favored, such a language must be designed and defined by the 
relevant stakeholders. This can be realized, for example, by adapting existing and 
standardized language profiles such as UML/SysML to the specific applications of the 
domain of interest (if permitted in the tool) [74, 115, 191]. The actual development of 
a DSL is a completely independent field of research and will not be considered further 
in the context of this thesis. A wide variety of sources and articles, such as [197], 
already address this topic. An enumeration of known DSLs and their fields of 
application is presented in [190]. 

As mentioned above, the MBSE tools support the implementation of the MBSE 
approach by implementing the necessary modeling languages and managing the 
created models, serving primarily as a source of the entire project knowledge [39]. The 
tools help to reduce the effort and the number of necessary tools in the development 
process and increase the efficiency of systems engineering [15]. This is realized, for 
example, by the automatic adaptation of elements affected by changes, as well as the 
simplified exchange of models between disciplines and organizations, or the possibility 
of performing automatic error checks [15]. Due to close interdependency, the selection 
of the right tool or modeling language influences each other. Therefore, the usage of 
the different languages depends strongly on the tools available, their support of the 
individual language, and first and foremost their applicability to the task at hand. In 
practice, a wide variety of tools is used in connection with MBSE and the creation of 
architectural content. Common tools are, for example, the paid tools Enterprise 
Architect [198] or MagicDraw [199] or the open-source tools Capella [200] and 
Papyrus [201]. Since the selection and best applicability of the tools strongly depends 
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on the specific use case, the different tools will not be discussed further in the 
following. The selection must be made individually by the applying stakeholders. 

Along the life cycle, artefacts, such as requirements or CAD models, are created using 
a variety of often non-interoperable tools [135]. The available tool landscape of a 
company is often influenced by different organizations and disciplines. In order to 
select suitable tools, for example for the development of a system, classification 
concepts, as presented in [7], can be used. Furthermore, it should be mentioned that 
for a continuous application of the MBSE concept and to ensure that the model is 
complete, correct, and consistent, the different tools have to be connected [39]. 
Following [25], "[the] challenge is to combine the relevant IT tools into a development 
environment and to support the interaction of the tools in terms of models, systems, 
processes and procedures." This is the core task in creating an integrated tool chain. 
Any further challenges and implementation approaches are not considered in this 
thesis, as they are not directly relevant to the creation of the architecture framework 
concept. The linking of tools and the automation of tasks are, for example, described 
in [202]. 

 

6.2 Development Procedure of DSL 

The domain-specific language “Industrial Plant Modeling Language – IPML” [203] was 
developed and implemented during the CrESt research project as described in section 
1.3. This language should be used to evaluate several contents within a model-based 
environment. In addition to content from the architecture framework concept, content 
developed by other project participants at Siemens AG was implemented in the DSL 
as well. This additional content will not be discussed further in the following sections 
and therefore not all parts of the DSL will be presented. The architecture framework 
concept content actually implemented in the DSL is described in the next section. In 
this section, the procedure for implementing content within the DSL, like architecture 
framework content, will be described and the role of the author and other involved 
stakeholders will be highlighted. Before taking a closer look at the implementation 
procedure in the following, it should be noted that despite the large number of existing 
DSLs [190], a new DSL was created in order to fully exploit the strengths of the 
individual design of processes and content in a DSL. The main tasks, involved 
stakeholders, and results of the development of the domain-specific language are 
shown in Figure 70. 



Tool Implementation of Architecture Framework Concept 
 

176 
  

 
Figure 70: Development of domain-specific language (DSL) 

In general, it should be distinguished between two major core areas; the development 
of the DSL and the evaluation of the DSL. The development of the DSL, which is 
implemented in a modeling tool, is performed by one or more stakeholders who have 
the skills to implement a domain-specific language. In the specific case considered 
here, the actual programming and implementation in the tool was performed by a team 
of developers from Siemens AG specializing in DSL development, who also 
participated in the CrESt research project with a focus on modeling and DSLs. This 
approach enabled the implementation of the DSL in a relatively short time window, 
with full control over the content, and at the same time avoiding time delays and the 
need for training and knowledge building with regard to DSL programming. By 
implementing the DSL by experts, the risk of a possible undesirable development could 
be reduced to a minimum. Building up the necessary know-how can make sense in the 
long term if several DSLs are planned to be implemented, which was not the case in 
this. The DSL was carried out in the MagicDraw modeling tool which will be described 
in section 6.3. The UML and SysML profiles available in the tool have been customized 
to realize individual element types and models as well as links between the elements. 
The development of the DSL itself is based on the defined requirements concerned 
with desired contents and functionalities of the DSL. These requirements are defined 
by the author himself as well as other stakeholders and thematically include both the 
architecture framework concept as well as other topics (as described above). After the 
implementation, the results, i.e., the DSL, are evaluated and tested by the author and 
partly by the other stakeholders. For this purpose, parts or all of the components of 
the production system example (demonstrator) presented in section 1.4 are modeled 



Tool Implementation of Architecture Framework Concept 
 

177 
 

with respect to the implemented content. For example, when implementing the 
possibility of modeling different functionalities, the functionalities of the demonstrator 
itself are identified and specified in the models provided for this purpose, and the 
associated interfaces and affected elements, if already implemented, are tested. This 
prototypical application results in certain specific outcomes that are evaluated by both 
the author and the other stakeholders with respect to the specified DSL requirements. 
Based on this evaluation, necessary existing requirements are adapted, further 
supplemented, or new requirements are defined. Since the implementation of a wide 
variety of content with different goals specified by different stakeholders was planned 
in the DSL, a step-by-step approach was chosen in order to be able to implement 
individual features one after the other without them negatively affecting each other. 
This means that the specification-definition-evaluation cycle is run through for the 
implementation of the individual features, if necessary, several times for each feature, 
until the content is implemented in the DSL in a complete and usable manner. 

 

6.3 MagicDraw Tool Introduction 

As already indicated in section 6.1, there are several commercial and freely available 
modeling tools on the market that can be used in a model-based engineering 
environment. These tools can be used with respect to DSLs and follow different 
approaches for modeling contents, such as text-based, graphics-based or mixed-
notation concepts [169]. Text-based approaches are used, for example, in tools such 
as MontiCore [204] or Xtext [205], graphic-based approaches, for example, in 
Enterprise Architect [198] or MagicDraw [199], and mixed approaches, for example, in 
mbeddr [206] [169]. The creation of the DSL also varies between tools and ranges 
from scratch definition to customization of general-purpose languages, such as UML 
[169]. An individual choice of the most suitable DSL tool should be made depending, 
on among others, the intended goal, the initial situation and the scope of the DSL. In 
addition, constraints of relevant stakeholders or organizations can have a major 
influence on the selection, which often leads to a situation in which a compromise 
must be found between the supposedly optimal solution and the actual environment 
in which the tool shall be applied. Within the CrESt research project and in relation to 
the existing environment at Siemens AG, the MagicDraw tool was selected for the 
realization of the IPML, taking economic considerations, availability of tools, and 
accessible knowledge in the organization into account. Therefore, within this thesis, 
MagicDraw was also used as the tool of choice regarding the application and 
evaluation of the specified architecture framework concept. 
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General information with respect to MagicDraw, its features, and contents can be 
looked up on the web page of the developer [199] or in the tool manual in detail [207]. 
In the following, the interface of the tool, which is visible for the stakeholder and used 
in the modeling, is briefly described in order to give a first impression of the tool and 
on a possible mode of operation in the tool. After starting the program, the welcome 
screen appears in which, among others, projects can be managed [207]. In the manage 
projects area a new architecture project can be created, or an existing project can be 
opened. Regardless of whether, for example, a UML-, SysML-, or DSL-based project 
is opened, the main window shown in Figure 71 is displayed to the concerned 
stakeholders. This window can be divided into six main areas, which fulfill different 
tasks during the modeling of a system. These areas are the main menu, main toolbars, 
model browser, diagram toolbars, diagram pallet, and the diagram pane [207]. 

In the main menu, various predefined and modifiable sub-menus display possible 
commands in the form of different items [207]. Sub-menus, like the file menu or the 
diagram menu, display, for example, commands such as "open project" or "save 
project" or commands such as "create diagram" or "customize" [207]. The selection of 
a command leads to connected actions within the program. For example, using the 
"delete" command will delete a selected content/item [207]. Frequently performed 
tasks and the commands needed for them are displayed as shortcuts in the so-called 
toolbars and assist at increase the editing speed [207]. As already mentioned above it 
can be distinguished between the main toolbars and the diagram toolbars. In the main 
toolbars frequently used commands are arranged in relation to, among others, file, 
project, diagram, and validation [207]. The diagram toolbars contain frequently used 
commands related to the creation and handling of diagrams. These toolbars include, 
for example, commands related to navigation, layout, and edit [207]. Detailed 
information about available commands of the toolbars and about customization of 
menus can be found in the MagicDraw manual. 
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Figure 71: Contents and structure of main MagicDraw window [207] 

Another core element, which the stakeholder(s) repeatedly refer to during modeling, 
is the model browser, which displays and visually depicts all model elements that have 
already been defined and will be defined [207]. The model browser structures the 
available data in hierarchical form and is used to manage this data [207]. In addition, 
the model browser can also be used as an alternative to the menus and toolbars [207]. 
Among the possible operations that can be performed via the model browser are the 
creation, editing and deletion of models, the management of diagrams, and the sorting 
of model elements [207]. Also, the model browser can be divided into further sub-
components as shown in Figure 71. Those sub-components thematically illuminate 
related topics such as model extension, search results, and documentation [207]. More 
detailed information on the model browser can also be found in the MagicDraw 
manual. 

As described by using the menu, the toolbars, or the model browser, diagrams and 
elements can be created, for example by command or drag and drop. As soon as a 
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corresponding content-sensitive diagram has been opened or selected, possible 
options available in the form of specific elements or actions are displayed in the 
diagram pallet [207]. The created diagram appears in the diagram pane [207]. Using 
the model browser or the diagram pallet, corresponding diagram elements can then be 
created and related in the diagram pane. The diagram pane displays all with 
relationship to the selected model created and deployed contents. 

In summary, it can be stated that regardless of the project (for example, GPL or DSL 
based), the same interfaces components are used for modeling a project. In simple 
terms, as described above, the corresponding diagrams and elements are defined via 
the interface, set in relation to each other, and managed in the tool. 

In relation to this thesis and to the implementation of the DSL some individualities 
should be mentioned, which are briefly discussed below. If a DSL has been 
implemented in the tool and is used in a selected project, the interface window and 
the components described above do not change structurally and role-wise, but they 
might represent specific contents. Naturally, for example, also in a UML-based project 
specific contents are indicated. At this point however specific means that beside the 
classical elements of the UML, on which the DSL is based, also customized elements 
and diagrams are specified. For example, when opening a new DSL-based project the 
model browser might already display a specific hierarchy tailored to the modeling of a 
particular system, which might already be filled with predefined diagrams as well as 
elements and only allows certain content to be created by the stakeholders for the 
subsequent definition. These specific customizations might be reflected across the 
entire interface. Those customizations might range from specific diagram names and 
types up to pre-selected objects in the diagram pallet. These possible freedoms of a 
DSL are ideally and depending on the intended goal designed in such a way that the 
stakeholder(s) does not have the feeling that they are missing mandatory objects for 
modeling their system and can concentrate primarily on the creation of the content. 
Such considerations have ideally been made beforehand and are already implemented 
in the DSL. 

 

6.4 Scope of DSL with respect to Architecture Framework Concept 

Before the implemented DSL is presented in the following section, this section briefly 
discusses which components of the specified architecture framework concept were 
incorporated into the DSL. The restriction of the implementation had different reasons, 
which were mainly in the budgetary, temporal, and tool-specific technical range. 
Therefore, a prioritization was performed, and the components considered most 
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relevant were implemented. In the following, the considerations and aspects that led 
to the present version of the DSL with respect to the content of the architecture 
framework concept are briefly described. 

In simple terms, the architecture framework concept consists of three related areas 
that could be considered for implementation in the DSL. These are the structure of the 
framework, determining the general approach through the defined dependencies and 
viewpoints/views, the predefined content element types that fit into this structure, and 
the methodical approach for the definition, change, and transition of content. The 
methods make use of the structure and predefined element types as well as external 
inputs.  

Ideally, all these elements should be integrated into the DSL in a complete manner, 
but as mentioned above, this was not possible within the scope of this thesis and the 
research project. For this reason, the implementation of the content was prioritized on 
the basis of the causal relationships between the areas of the framework. As indicated, 
the framework is based on a fundamental structure (domain to technical viewpoint - 
see chapter 5.4.2), into which relevant views and associated contents are then defined. 
Therefore, in a first main implementation step, this basic structure, the associated 
viewpoints and views, as well as pre-defined elements and model types were defined. 
Additionally, first basic relationships between the element/model types were 
implemented. In a second main implementation step, this structure was broadened by 
relevant content element types and the interrelationships between elements were 
further specified to enable continuous tracing of, for example, requirements to 
functions, logical elements, and technical solutions. In a third implementation step, the 
static considerations, for example, requirement tables, were extended by dynamic 
modeling, for instance, in the form of activity diagrams, so that both the static and the 
dynamic behavior can be modeled, both of which are relevant for the creation of a 
comprehensive architecture description. After a state of implementation was reached 
in which a system architecture description can be created with the specified elements 
of the DSL, in a next implementation step, a concept for the creation of several such 
identical structures was defined. This was realized to represent the granularity layers 
within a system and as defined within the architecture framework concept. In addition, 
specific relationships were created to trace between contents of the different 
granularity layers. This enables, for example, to show how requirements at the top 
layer are detailed at a higher granularity layer. Thus, the architecture framework 
concept specified in section 5.4 is largely mapped in the DSL with regard to the 
structural and content components. Different versions of the overall DSL were 
documented at the time of the CrESt research project in [169, 208]. 
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With respect to the methodological components of the architecture framework 
concept, only method related contents were added to the DSL. First and in parallel to 
the implementation described above, a documentation was created within the tool, in 
which the individual element types, model types, relationships, and basic procedures 
were described. In the description, the role of the element/model types, their meaning, 
and their use in the framework were highlighted in order to be able to support the 
relevant stakeholders in applying the specified architecture framework method and to 
be able to store relevant knowledge accessibly in the tool. Second, the ability to share 
and create versions of a model, as well as the ability to compare model content, was 
utilized to support the methodological approach of the framework by leveraging 
existing reference architect descriptions in a copy and modify approach for creating 
system architecture content. All other methodological contents of the architecture 
framework concept have not been implemented due to the setting in which the 
development took place, the associated time and budget constraints, as well as to 
technical limitations of the tool. 

The components of the architecture framework concept above introduced mainly 
summarized the content implemented within the DSL. Although not all components of 
the framework could be implemented, the required content for application was 
implemented based on the causal relationship of the elements. By defining structure 
and content, the DSL can in principle be used without implementing any methodology, 
given an existing domain and modeling knowledge of the stakeholder utilizing the DSL. 
Achieving this scope was the main goal of the DSL development with respect to time 
and budget constraints. This implementation order was chosen because the specified 
architecture framework concept method can be used in combination with the DSL to 
define architecture descriptions even without explicit implementation of the available 
structure and content requirements. Otherwise, i.e., in case of a methodology without 
structure and contents, a much higher domain knowledge would be necessary and the 
specification of reference and system architecture contents would be more difficult. 

For the sake of completeness, it should be mentioned at this point that for the 
implementation of the content described above, specific adaptations were made to the 
UML2 profiles on which the DSL is based [169]. These adaptations are not directly 
visible and include, among other things, the creation and assignment of specific 
elements, icons, associated properties, and elements for structuring (for example, 
packages) [209]. Finally, it should be noted that each of the results were implemented 
step by step in the DSL by using the process described in section 6.2. 
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6.5 Example of Implementation of Architecture Framework Concept 

As described in the previous sections, a domain-specific language (DSL) for modeling 
industrial plants (IPML) was implemented in the MagicDraw modeling tool and the 
exact implementation scope was given. In the context of the creation of the IPML, 
contents which can be mapped onto the architecture framework concept were created. 
In this section, the implementation is exemplified by a set of images from the tool. 

 

 
Figure 72: MagicDraw main window with specific contents utilized within architecture framework concept  

Figure 72 shows the MagicDraw main window as in Figure 71, but with the specified 
contents utilized within the architecture framework concept. Within the figure the 
structure, with viewpoints and granularity layers, as well as the specified views are 
displayed. 
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Figure 73: Exemplary representation of content element types - adapted from [169] 

Figure 73 shows an example of how the specified contents of the individual views are 
stored in the model browser. For the domain view, for example, these are the different 
domain elements and domain stakeholders (here generally named like the appropriate 
element types). These can be created, for example, by using the model browser or in 
the corresponding domain model diagram, as instances of specific stakeholders. The 
specific stakeholders would then also be mapped in the model browser or in the 
diagram in which they were defined. Figure 74 shows a diagram of a domain view and 
exemplarily defines how relationships between stakeholders and elements can be 
modeled. The predefined element types are dragged and dropped from the diagram 
pallet into the diagram pane and instantiated. At this point, the individually tailored 
structure of the DSL becomes clear in comparison to a GPL, since only the elements 
and relationships required for the creation of the model are available. This content 
changes automatically depending on the view and model. 
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Figure 74: Example for modeling a domain view 

If new content has been defined, the content as described above is allocated 
automatically to the considered view and shown in the model browser. Figure 75 shows 
the model browser before and after the definition of additional content. In the example 
interests within the stakeholder need view have been specified. 

 
Figure 75: Representation of content within model browser - adapted from [169] 
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After the structure and the content element types used during the application of the 
architectural framework concepts have been presented in the previous figures, it shall 
be shown in the following how the individual defined contents are set in relation to 
each other in the tool. This enables, for example, traceability and the possibility of 
automatic identification of relevant inputs for further definition steps. To provide an 
example by regarding Figure 76, the individual views of the requirement viewpoint, and 
the content they contain can be set in relation to each other. In this example this is 
constituted via matrices in which use cases and different requirements that can result 
from these use cases are compared. In the matrix, the stakeholder utilizing the tool for 
the definition of an architecture description can then specify which requirement 
realizes which use case. 

 

 
Figure 76: Exemplary definition of relations between contents of different views – adapted from [169] 

The implementation of the structure and element types presented in chapter 6 will be 
used in the following to test the application of the architecture framework concept for 
the definition of a system architecture description based on a reference architecture 
description. The corresponding methodologies have not been implemented for the 
reasons mentioned above but can still be applied and the results generated in the tool. 
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7 Prototypical Application of Architecture Framework 
Concept 

In order to evaluate the contents presented in the thesis, in addition to publications 
(see Bibliography) as well as presentations and discussions at selected conferences, 
the developed contents were discussed with relevant experts from industry and 
research. These include, among others, the supervising professor of this thesis, Prof. 
Dr.-Ing. habil. Arndt Lüder, from the Otto-von-Guericke University Magdeburg, as well 
as experts from Siemens AG - Corporate Technology department and the CrESt 
research project. For further validation of the developed architecture framework 
concept (chapter 5) which was integrated into a model-based engineering tool in the 
form of a DSL (chapter 6), a prototypical application is carried out within this chapter. 
The goal is to evaluate the concept of the elaborated architecture framework for the 
definition of a system architecture description based on a reference architecture 
description. 

Section 7.1 describes the procedure for the prototypical application and the relevant 
contents, methodologies, and structural components. In sections 1.4 and 7.2 the 
application example as well as the reference architecture used for the evaluation are 
described. Subsequently, section 7.3 shows some examples of results created during 
the utilization of the architecture framework concept. Section 7.4 summarizes the 
results of this application and gives an assessment of the results. For an overview of 
content and relation to other chapters as mentioned above see Figure 77. 

 

 
Figure 77: Overview of content of chapter 7 
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7.1 Application/Evaluation Objectives and Procedure 

For the evaluation of the developed architecture framework concept, the framework is 
prototypically applied, and a system architecture description is derived from an 
existing reference architecture description. For this purpose, the structural and 
content-related components of the architecture framework concept presented in 
chapter 5 are utilized in the form of a model-based systems engineering approach as 
described in chapter 6. The methodological aspects of the architecture framework 
concept will be applied manually as specified and the results will be represented within 
the tool. For the evaluation of the architecture framework concept the reference 
architecture described in sections 3.3.3 and 7.2 will be used. To derive a specific 
system architecture description, the requirements towards that system must be clearly 
described. Therefore, another input to be considered within this evaluation is a 
representative set of requirements of the application example presented in section 1.4. 
This application example is acting as a specific system representation within this 
evaluation. Based on those two inputs the specified architecture framework concept 
is prototypically applied. The created system architecture description based on the 
reference architecture description is evaluated with respect to the intended use of the 
architecture framework concept as well as to the specified research questions. The 
described evaluation procedure is shown in a simplified fashion in Figure 78. 

 

 
Figure 78: Overview of prototypical application of architecture framework concept for evaluation 
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Furthermore, it should be noted and differentiated at this point that the main goal of 
the evaluation is not to assess the direct result of the architecture framework concept, 
i.e., the derived system architecture description, but rather to analyze whether the 
specified architecture framework concept fulfills its goal of intervening in a supportive 
manner in the definition process when deriving specific contents from a reference 
architecture. Thus, the focus is more on the procedure than on detailed contents of 
the architecture. The derived architecture results are still considered in the evaluation 
as it also allows conclusions to be drawn about the framework itself, but it shall be 
mentioned, that results can be better evaluated by using processes actually designed 
for this purpose, such as the Architecture Tradeoff Analysis Method (ATAM) [210]. 
The nine-step method [61, 210], which originates from software engineering, can also 
be used in an adapted form for systems engineering [38] and focuses mainly on "[...] 
the goals of the system and the business around the system, the quality requirements 
that meets the goals, and finally the architecture that satisfies the quality 
requirements" [61]. Since this kind of evaluation does not take the predominant role 
in the thesis, the process is not further regarded and can be looked up, for example, in 
[61] and [210] for more details. 

 

7.2 Utilized Reference Architecture 

For the prototypical evaluation of the architecture framework concept, the reference 
architecture defined in [35] and presented in section 3.3.3 of the state of the art 
chapter is used. There are several reasons for using exactly this reference architecture 
in the context of the prototypical evaluation of the architecture framework concept, 
which will be briefly explained in the following. 

The first assumption made during the creation of the architecture framework concept 
is that the inherent focus of the reference architecture and of the system of interest 
must share a critical amount of content and rely on similar structure and content types. 
The focus of the introduced reference architecture is not exactly on the scope of 
discrete manufacturing, but on a topic directly related, the adaptable and flexible 
factory. If due to the higher degree of abstraction of the reference architecture, the 
scope of the reference architecture includes the content scope of the system to be 
derived, the contents of the reference architecture can be used as a template for this 
project. In addition, due to the common relationship of both the architecture framework 
concept and the reference architecture to the CrESt research project, the reference 
architecture is also based on the SPES_XT modeling framework. Therefore, the 
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framework as well as the reference architecture to be used in it have the same basic 
structure. 

Second, the contents of the reference architecture should be available to the author 
performing the evaluation. Since the contents of the reference architecture were 
developed as part of the CrESt research project [32], they are available in their entirety 
and can be used. In addition, the content was specified and implemented based on the 
SPES-XT framework developed in previous projects [33, 34] and utilized in CrESt [32, 
35] and the DSL presented. Thus, the contents are available in a model-based form in 
the modeling tool. Furthermore, the reference architecture descriptions are based on 
the same structure and use the same content element and relationship types that will 
be used for modeling of the system architecture, allowing direct comparability and 
application of the framework methodologies developed. This equality was made as 
assumptions for the use of the architecture framework in section 5.2.  

The points mentioned above, are the main reasons for the utilization of the described 
reference architecture within the prototypical evaluation of the architecture 
framework. This means that all requirements that were previously defined are met. 

 

7.3 Prototypical Application of Architecture Framework Concept 

This section presents an exemplary excerpt from the prototypical application of the 
architecture framework concept for the definition of a specific system architecture 
description of the production system application example. The system architecture 
description is based on the reference architecture description developed in the CrESt 
research project. First, the views as well as associated contents of the domain and the 
requirement viewpoint on the granularity layer one of the system of interest are 
presented. As mentioned with respect to the architecture framework concept, it is 
assumed that the problem space of the system of interest is defined separately before 
the transition. This description of the problem space, domain, and requirement 
viewpoint is used to analyze whether the reference architecture is suitable for the 
definition of the system of interest by comparison between required and available 
content. Additionally, this forms the basis for the transition of the contents from the 
predefined reference architecture description for the definition of the solution space 
of the system of interest. The transition of the logical view is described in detail below. 
In order to complete the representation of the production system application example 
on GL1, the results of the definition for the functional and technical view are shown as 
well. The contents considered for the prototypical application are highlighted in Figure 
79. The consideration of the problem space as well as the definition of the contents of 
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the associated viewpoints and views on granularity layer one of the system of interest 
are shown as a green-gray striped box. Those considerations are made in section 7.3.1. 
The transition between reference and system architecture, to define the solution space 
of the system of interest, considers the logical view on GL1 as an example. The light 
blue box describes the contents of the reference architecture that can be reused as 
input. The dark blue box describes the result of the transition in the architectural 
description of the system of interest. The orange boxes of the functional viewpoint 
represent the inputs for the definition directly considered. The light green box 
represents the results of the shown transition for the technical view on GL1. The 
examples for the transition are documented in section 7.3.2. 

 
Figure 79: Overview of application content exemplarily shown in this section 

Based on the prototypical evaluation of the production system application example 
and the obtained results, the evaluation of the architecture framework concept is 
conducted from which the final conclusion is drawn. 

 

7.3.1 Overview of Domain and Requirements Definition of Production System 
Application Example 

As defined in connection with the development of the architecture framework concept 
in chapter 5, the problem space of the system of interest is defined before the 
transition within the associated views on the different granularity layers using the 
architecture framework concept. This definition is described in more detail for the 
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domain view of the system of interest by proposing, the production system application 
example. For the remaining views of the problem space the created results are 
introduced (context view of domain viewpoint as well as stakeholder need view, use 
case view, product view, and requirement view of requirement viewpoint). All examples 
shown describe the system of interest on granularity layer one. 

Utilizing the architecture framework concept and in particular the architecture content 
creation method (see Figure 53), the scope of the desired domain description on 
granularity layer one is defined. In a second step, based on the scoping of the first 
step, the predefined element-types within the tool were used to model all instances of 
elements relevant within the domain, for example, the production system itself and the 
surrounding environment. Additionally, the defined elements were related among each 
other utilizing the relations available. After the domain of the production system 
application example has been defined, in a third step, the result was investigated. The 
specified domain view is shown in Figure 80. 

 

 

Figure 80: Domain view - model of the considered domain on GL1  
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Based on the contents of the domain view, the system is delimited from the relevant 
context and the relevant interfaces are defined. In the context view shown in Figure 
81, the cylinder head manufacturing example represents the system of interest, with 
interfaces to other elements relevant in a company, such as the warehouse or order 
processing, but also to the surrounding infrastructure and relevant standards as well 
as applicable laws. With the general consideration of the domain in the domain view 
and the more detailed delimitation of the system from its environment in the context 
view, the domain viewpoint is described completely on granularity layer one and the 
contents of the following requirement viewpoint can be defined. 

 

 
Figure 81: Context view - model of the system of interest context on GL1 

Based on the results of the domain viewpoint, the contents of the stakeholder need 
view can be defined, taking the architecture framework concept into account. An 
excerpt of the results is shown as an example in Figure 82. As already described in 
section 5.4.3.4, each stakeholder has tasks and interests through which the respective 
needs are expressed. For example, the stakeholder "operator" can be assigned the 
task "execute manufacturing operations" and the interest "machine and tools 
availability". In this way, all relevant stakeholders and the corresponding tasks and 
interests, which the stakeholders can also share, should be defined. The consideration 
of the various stakeholders with influence on the system of interest is an integral part 
of a comprehensive specification of requirements to the system. 
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Figure 82: Stakeholder need view - Model of stakeholder, their interest, and tasks on GL1 

The defined stakeholders are then connected to the system via possible use cases, 
also taking into account the relevant context/domain. The use cases describe different 
scenarios in relation to the system of interest and consider which stakeholders could 
be involved. These relationships also result from the role, interests, and tasks of the 
respective stakeholders. For example, in addition to the production system in the use 
case "manufacturing of products", stakeholders such as the operator, maintenance 
personnel, or the health & safety engineer may be involved. An example of the results 
defined in the use case view is shown in Figure 83. 

 

 

Figure 83: Use case view - model of use cases on GL1 
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In addition to the stakeholders and the use cases, the product to be manufactured and 
the associated manufacturing processes must always be considered when describing 
a production system as system of interest. The manufacturing process for the cylinder 
head already described in Figure 5 has to be defined within the product view of the 
requirement viewpoint. The results are shown in Figure 84. Within the figure the 
relevant components of the product and the individual process steps are modeled, for 
example, the milling of the contour of the cylinder head or the test assembly. Specific 
product requirements can then be derived from this in a next step. 

 

 

Figure 84: Product view - representation of product and production process on GL1 

Based on the contents of the views of the requirement viewpoint, the resulting 
requirements, qualities, and constraints are defined in the requirement view in relation 
to the system of interest. In Figure 85 these are exemplarily represented for the 
modeled example alongside the relationships with the previous considered elements, 
such as use cases or stakeholder tasks. Thus, at granularity layer one, requirements 
such as "the system shall be able to manufacture a product with different 
specifications within a defined product spectrum" or "the system shall be able to 
handle materials" or constraints such as "the system shall comply with laws and 
regulations" arise. 
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Figure 85: Requirement view - model of derived requirements, qualities, and constraints on GL1 

With the definition of all contents in the domain view, context view, stakeholder need 
view, use case view, product view, and requirement view, all views within the domain 
and requirement viewpoint are described on granularity layer one and thus the relevant 
problem space for the system of interest is defined on GL1. After the separate and 
complete definition of the problem space, the transition method can be used to check 
the contents of the problem space for completeness, by comparing them to the 
reference architecture description. Based on these results, relevant contents for the 
solution space can be derived from the reference architecture description using the 
architecture framework concept and it can be verified, if the RA is suitable for a 
transition. In the next section the procedure and the results of the solution space are 
exemplarily described. 

 

7.3.2 Prototypical Transition from Reference to System Architecture Description 

As an input for the definition of the logical view of the system of interest on granularity 
layer one, the relevant functions need to be defined on the same granularity layer of 
the system of interest. Resulting from the consideration of the contents of the previous 
views within the architecture content creation method, the relevant functions on GL1 
are defined, for example, “produce product portfolio” or “schedule material for 
production”. The functions and the relationship to the requirement fulfilled by the 
functions are shown in Figure 86. 
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Figure 86: Functional view - specified functions and allocated content of requirement view on GL1 

Utilizing the architecture framework concept, Figure 87 shows, with reference to 
Figure 65 of chapter 5.5.2.3, how the contents of the logical view of the production 
system application example can be derived from the CrESt reference architecture. In 
the first step, the customization/creation consequence is evaluated. This is illustrated 
in Figure 87 as a comparison between reference architecture and system architecture 
functions. For example, the function "produce product portfolio" is defined as a 
required function of the system architecture, which can be assigned to the reference 
architecture function "execute the production - produce product". The mapping then 
determines which logical reference architecture elements associated with the 
reference architecture functions can be reused and which contents need to be created 
from scratch. The executing stakeholder is responsible for the assessment of 
borderline cases (shown by dashed line), such as whether the system function 
"transport material to and from the production system" is covered by the reference 
architecture function "execute the production - produce product". In the second step, 
the reference architecture is adapted based on the insides derived in step one. For 
this purpose, all elements of the logical reference architecture that are linked to 
reference architecture functions, which were assigned to system functions, are 
obtained. For example, the reference function "execute the production - produce 
product" is related to the logical reference architecture element "production CSG", 
which is therefore considered for reuse within the system of interest. The remaining 
elements of the logical reference architecture that have not been considered are 
neglected. 
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Figure 87: Logical view - exemplary transition and definition of system of interest on GL1 
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To complete the second step of the transition, the obtained logical reference 
architecture elements are adapted to the specific system and the considered system 
functions, if necessary. For example, based on the consideration of the system 
function "produce product portfolio" the logical reference architecture element 
"production CSG" is transformed into the logical system element "cylinder head 
manufacturing production system". After all elements have been adapted, the second 
definition step is completed. The transition is concluded by the third step, in which the 
existing transferred logical elements are supplemented by the logical elements that do 
not yet exist and the latter are set in relation to each other. 

Based on the procedure described, the logical architecture of the system of interest 
on granularity layer one is derived within the logical view. The contents of the logical 
view are shown in Figure 88, for example, logical elements like the “manufacturing 
planning system” or the “cylinder head manufacturing production system”. 

 

 
Figure 88: Logical view - logical elements of system of interest on GL1 

Using the same procedure and based on the created logical view contents, the 
technical view on granularity layer one could be derived in a similar fashion. In this 
specific application scenario, the utilized reference architecture did not provide a 
technical reference architecture, which is why the technical view of the system of 
interest was created from scratch in its entirety using the architecture framework 
concept. The contents of the technical view of the system of interest on GL1 are shown 
in Figure 89. 



Prototypical Application of Architecture Framework Concept 
 

200 
  

 
Figure 89: Technical view - technical solution of system of interest (cylinder head manufacturing) on GL1 

Taking into account the defined characteristics of the architecture framework concept, 
the entire system of interest, namely the cylinder head manufacturing system, can be 
described step by step.  

As an example for other views on a different granularity layer, the technical view of the 
system of interest on granularity layer two is shown in Figure 90. It can be seen in 
direct comparison of Figure 90 and Figure 89, that the technical solution is detailed 
from granularity layer one to granularity layer two. For example, the technical solution 
“Fischertechnik Cylinder Head Manufacturing : Production System” on GL1 is detailed 
into the technical solutions like “Mill Contour : Production System” and “Grind/Finish 
Cylinder Head : Production System” on GL2. 

 

 
Figure 90: Technical view - technical solution of system of interest on GL2 
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Concluding, Figure 91 summarizes the exemplary content of granularity layer one of 
each viewpoint considered for the evaluation of the architecture framework concept 
based on the utilized cylinder head manufacturing system and shows the transition 
method applied.  

 

 
Figure 91: Cylinder head manufacturing system views of GL1 resulting from application of architecture 
framework concept  

 

7.4 Results of Prototypical Application 

The above-described application of the developed architecture framework concept in 
the form of a DSL for the specification of a system architecture description based on 
the use of a reference architecture description has produced different results. In the 
following, these are divided into the four groups labeled "reference architecture", 
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"system architecture", “domain-specific language, modeling tool, and involved 
stakeholders", and “architecture framework concept”. This subdivision serves to 
separate the individual results from each other better and to be able to better 
represent possible influences of the first three groups on the main result "architecture 
framework concept". The four groups and possible influences on each other are shown 
in Figure 92. 

 

 
Figure 92: Structuring of evaluation of architecture framework concept application results 

In the following, the findings regarding the reference architecture used, the system 
architecture created, and the modeling tool applied, which are not a part of the 
developed architecture framework concept, are considered first. If these results allow 
to draw potential conclusions about the architecture framework concept or future 
research potentials, these outcomes are also described. To sum up, the evaluation 
results directly related to the introduced architecture framework concept are 
presented. 

 

7.4.1 Evaluation Results regarding Reference Architecture 

Since an existing reference architecture was used, which corresponded to the 
assumptions made and the domain of interest, certain parameters such as level of 
abstraction, layers of granularity, and available content were given. In general, it can 
be stated that the utilized reference architecture provided a well-defined but, in the 
context of the specific production system application example, an abstract set of 
content. This results in a large difference between the abstraction levels, leading to 
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the fact that nearly all elements could be reused, but had to be adapted and 
supplemented. Therefore, it can be assumed, that a smaller difference between 
abstraction levels of reference architecture and system of interest might lead to less 
content reused absolutely, but it is more likely that the contents do not have to be 
adapted in such a way required by a large difference between abstraction levels. This 
assumption was made during the application of the reference architecture and might 
also require a concretization of the refence architecture for example by applying the 
transition method of the architecture framework concept (applicability needs to be 
evaluated in further research). Also, it became apparent that in addition to the above-
mentioned assumptions with respect to the abstraction difference, an offering of 
several potential solution approaches (variants) within the refence architecture would 
have been beneficial (for example, predefined logical components for specific systems 
would restrict the total to be considered sphere of input and therefore reduce efforts). 
Furthermore, the application showed, that especially when considering architecture 
descriptions with larger abstraction difference, that the architect and their 
interpretation of the content has a strong influence on the final result. This 
circumstance can also be further positively or negatively influenced by the explicitness 
and preciseness of the individual reference architecture contents. 

 

7.4.2 Evaluation Results regarding System Architecture 

The main conclusion is that a system architecture description was successfully 
created that reflects the given structure, element types, and relationships that were 
predefined in the developed architectural framework concept. Regarding the result 
itself, comments should be made at this point in terms of quality and form. It should 
be noted that the quality of the contents of the architecture description was not 
assessed directly, as this depends heavily on the stakeholder, their expertise, and the 
available content of the reference architecture used. Rather, it was analyzed whether 
the representation and processes envisioned in the architecture framework concept 
were reflected in the system architecture description. The obtained results of the 
implementation correspond to the planned extent. However, this evaluation is only 
valid when complying with the made assumptions and within the scope of the 
architecture framework concept. Further application scenarios outside that scope 
should be considered in the future. In order to achieve results as complete as possible 
and to ensure that they are covered by the architecture description, further 
considerations, for example in the form of additional viewpoints, would have to be 
predefined and included in the architecture framework concept as well as 
implemented in the tool/DSL. 
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7.4.3 Evaluation Results regarding Tool, DSL, and Stakeholders 

With regard to the specified DSL, it can be stated that the implemented contents of 
the architecture framework concept can be used intuitively and in the intended manner 
and that the structure and predefined element types are comprehensively represented 
in the solution. Due to the fact that only predefined content can be created in the 
customized interface of the DSL, it is easier for the user to start a new project without 
the necessity to specify a general structure and an implementation concept for the 
content to be defined. Compared to a GPL, the use of the tool requires less knowledge 
for the creation of content. However, it should also be noted that despite the support 
provided by the tool and the individually tailored design of the DSL, a certain level of 
architecture expertise and experience on the stakeholder’s side is still needed. 
Furthermore, based on the prototypical state of the implementation of the architecture 
framework concept in the tool it became clear, that a holistic implementation of the 
concept would require less experience about the tool itself and the concept. For 
inexperienced users this fact might strongly influence the judgment on not only the 
quality of the results but first and foremost on the applicability of the architecture 
framework concept. In general, it is assumed that with regard to the model-based 
implementation of the framework approach in the tool, results can be better managed, 
shared, and used in different areas by different stakeholders. This is supported by the 
possibility to create individual documentation for the predefined architecture 
framework concept contents, which acts as a guide and contains further information 
as well as possible procedures in relation to a specific element type. In addition, from 
an user’s point of view, some features of the tool that facilitate the use of the 
architecture framework were helpful in deriving the system architecture description. 
These features include, for example, the tracing between elements and the automatic 
representation of element relations, as well as the possibility to create and 
automatically compare different versions of architecture documentation.  

 

7.4.4 Evaluation Results regarding the Architecture Framework Concept 

The main result for the application of the developed architecture framework concept 
is that a user who is familiar with the framework concept and the creation of 
architectures can successfully derive a system architecture description. Thus, in the 
context of the prototypical application, the main goal of the thesis has been achieved, 
namely, to create an approach for an architecture framework considering reference 
architectures for system architecture descriptions. In addition, it has been confirmed 
that the defined structure and the predefined element types are sufficient for the 
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emulation of the architecture related considerations within basic and detailed 
engineering. 

One main takeaway was that, even though the basic contents and relationships are 
defined by the given element types and structure, the assessment of the individual 
instances and whether they are relevant in the context of the transition from reference 
to system architecture heavily depends on the individual assessment of the 
stakeholder applying the architecture framework. Even though the predefined element 
types already limit the amount of content relevant for a transition at a certain point in 
time, the room for interpretation to judge the individual instantiated content is still 
exceptionally large. This drawback is not crucial for the intended evaluation of the 
principal applicability of the concept but should be investigated as a future 
improvement measure. Among other things, clear rules for the formulation of content 
or fixed designation patterns could increase the comparability of the elements. In this 
context, the assumption that creativity of the stakeholders is still required in order to 
separate content meaningfully, for example in terms of granularity layers but also in 
individual views, and to relate it to one another was confirmed. 

Another takeaway of the evaluation was that, especially with respect to the use of 
reference architectures, a backwards tracing over several views was necessary in 
order to be able to assess whether content could be reused in the specific system of 
interest or not. A main reason for this situation is from the author’s point of view, that 
with a rising degree of completeness and detailing of the system of interest the gap 
between the specific system content and abstract general reference architecture 
contents widens, which makes a comparison increasingly difficult. This problem was 
already described in the context of the creation of the architecture framework, but 
should be further examined, for example, by deriving an architecture description for a 
more complex system or utilizing a different reference architecture. 

Furthermore, it should be noted that the expected improvement of the derivation of 
specific content was confirmed, with respect to the principal procedure, the structure 
and the contents to be defined. However, this statement is based on the simplified 
assumption that both the reference architecture and the architecture framework, 
reflected in the system architecture, have similar structures and contents. How the 
applicability of the framework changes with different structures and thus decreased 
comparability of contents should be explored in further research. 

As expected from the structure and division of the content into different viewpoints, 
views and granularity layers, it was found that traceability, for example from 
requirement on GL1 to technical solutions on GL3, can only be realized by manual 
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step-by-step tracing or by appropriate tracing matrices in the DSL. If required, the 
topic of tracing can also be further elaborated in the future. 

 

7.4.5 Conclusion on Application Results 

With reference to the evaluated architecture framework concept, it can be stated that 
the architecture framework concept was successfully applicable for the definition of a 
system architecture description based on a refence architecture description. The 
obtained results do represent the contents expected from the prototypical application 
and were created with respect to the made assumptions. Most future research 
potentials identified during the application/evaluation are concerned with enhanced 
applicability or consideration of a broader scope less limited by assumption. Also, 
some challenges with respect to the modeling tool and the refence architecture have 
been identified. Overall, the scope of this thesis to provide a concept and procedure 
for an architecture framework, which considers refence architecture descriptions for 
the definition of system architecture descriptions, was achieved. The architecture 
framework concept developed in this thesis thus represents a solid basis on which 
further concepts and research projects can be build. In addition, all results of the 
practical application of the proposed architectural framework concept are summarized 
in bullet points in Figure 93. 
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Figure 93: Summary of evaluation results 
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8 Summary and Outlook 

The goal and result of this work is the development of an architecture framework 
concept as a systematic guiding methodology for the creation of system architectures 
based on a reference architecture used for engineering of production systems. 

Sustainable business models of enterprises require flexible, supportive, cost-
optimizing, and risk-minimizing approaches being used during the engineering of 
production systems. Architecture frameworks utilize technical, business, 
organizational, and product innovation knowledge as well as associated methodologies 
that systematically guide, structure, and support the engineering process. This 
development can be facilitated by the use of reference architectures that serve as 
templates and contain concrete solutions for a specific application area. The reference 
architecture and architecture framework, if properly maintained and improved 
throughout their life cycle, can be considered as a continuously growing knowledge 
and experience base that can be repeatedly applied to similar development projects. 

Existing architecture frameworks are designed to define reference and system 
architectures separately. However, there are no established architecture frameworks 
that incorporate reference architectures for the definition of system architectures. 
Therefore, this thesis develops and proposes an architecture framework concept for 
creating system architecture descriptions based on reference architecture 
descriptions. 

As a first step, the necessary definitions and concepts from the areas of engineering 
of production systems, architecture development, and architecture frameworks were 
extracted based on literature research and the state of the art. In addition, common 
architecture frameworks were evaluated regarding different requirements, to verify 
and validate the assumed research gap. 

The created architecture framework concept supports the development of architecture 
descriptions during systems engineering with the help of a consistent basic structure, 
defined element types, and methodical procedures. The use of a granularity layer 
concept (detailing), the views contained therein (viewpoints), and associated views 
form the basic structure. Based on this specified structure, clear rules for the sequence 
of content definition, its iterative creation, relevant relationships between the 
elements, and change management are proposed. The concept of viewpoints 
comprises the domain viewpoint (domain definition), the requirement viewpoint 
(requirement specification), the functional viewpoint (function description), the logical 
viewpoint (logical realization proposals), and the technical viewpoint (technical 
realization), all of which are consistently applied at the different granularity layers. For 
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each of these viewpoints, associated views as well as element types contained therein 
are predefined. The developed architecture framework concept provides necessary 
prerequisites and specific methods for a creation and modification of relevant contents 
as well as for the transfer of a system architecture description from a reference 
architecture description. 

For easier application to complex systems, better traceability, and further use of 
elaborated results the architecture framework concept was implemented 
prototypically. This was realized by following a model-based engineering approach in 
the modeling tool MagicDraw in the form of a specific modeling language. 

Finally, the developed concept for the creation of a system architecture based on a 
reference architecture was successfully tested using a production system application 
example. 

 

8.1 Assessment of Results Obtained in Relation to Posed Research 
Questions 

In the following, the formulated research questions are answered with respect to the 
defined contents within this thesis and the obtained evaluation results. 

 

Main Research Question - RQ1: How to specify a system architecture description 
based on a predefined reference architecture utilizing an architecture framework? 

 

To resolve the main research question, the state of the art was considered in a first 
step, which confirmed the corresponding research gap, that no established 
architecture frameworks are considering the utilization of reference architectures for 
the definition of system architecture descriptions. This particularly applies to the 
architectural consideration within basic and detailed engineering of production 
systems. As stated, from the author’s point of view, this is mainly caused by the 
combination of low availability of suitable reference architectures, poor transition 
process descriptions, and the higher initial investment for creation, implementing, and 
maintenance of reference architecture and architecture framework compared to a 
definition from scratch. However, over the last years organizations started to consider 
the topic already taken into account by research, due to, among others, the rapidly 
changing competitive environment and their need for securing competitiveness over 
time. Based on the carried-out research, relevant components for an architecture 
framework, which are suitable for the definition of a system architecture description 
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based on a reference architecture description, were defined. The focus was mainly on 
topics such as the relevant structure and content for the architectural considerations 
during engineering of a system of interest, as well as the required methods and the 
description of the application of this architecture framework concept (core 
architecture framework concept and architecture framework transition method) in the 
form of a guide. Structurally, different viewpoints were defined, which are detailed over 
several granularity layers in the form of related views. The domain, requirement, 
functional, logical, and technical viewpoints were considered. For an easier application 
also by less trained professionals, context-specific element types and models were 
defined for the individual views. Based on this structure, corresponding methods were 
developed to guide the stakeholders with respect to the topics of when and how 
contents can be defined in the given structure, how changes are taken into account, 
and how existing contents can be utilized in the creation of specific system 
descriptions. The guide for the application of the architecture framework concept 
unifies all these components and proposes resulting actions on decision questions to 
the architect to obtain a solution of the planned scope following the top-down 
approach of the elaborated architecture framework concept. To further enhance 
applicability and ease of use for the applying stakeholder and to carry out a 
prototypical application, certain parts of the developed architecture framework 
concept were implemented in a model-based systems engineering environment. The 
architecture framework concept was prototypically implemented in the form of a 
domain-specific language in the modeling tool MagicDraw. Based on a reference 
architecture developed in the research project CrESt and a production system 
application example the architecture framework concept was prototypically applied for 
the creation of a specific system architecture description utilizing a reference 
architecture description. Subsequently, created results and observations made during 
the application the concept were evaluated. The evaluation showed that the proposed 
architecture framework concept can be successfully used to define a system 
architecture description using a reference architecture in the intended scope. 
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Research Question RQ2: Which structural, methodological, and content-related 
aspects are required within a suitable and production domain focused architecture 
framework for the definition of architectural descriptions?  

 

Based on the literature, the existing architectural frameworks, and the focus on the 
architectural topics of engineering, it was determined that within the core architecture 
framework concept a clear structure must be present in which relevant content can be 
defined in a logical top-down sequence. Furthermore, the classic hierarchical shape of 
a system suggests that this must be emulated due to a form of detailing. In addition, 
it was decided that appropriate methodologies for defining and modifying content must 
be defined. To realize the structure, five viewpoints were identified and defined. These 
viewpoints describe on the one hand, utilizing the domain and the requirement 
viewpoint, the problem space of a considered system and on the other hand, employing 
the functional, logical, and technical viewpoint, the solution space. These viewpoints 
can then be detailed using granularity layers, resulting in the typical hierarchical tree 
structure of the overall system. For each viewpoint and on each granularity layer, 
specific sub-contents were considered in the form of views, to which, if necessary, 
further views can be added in the future. The views include the domain and context 
view in the domain viewpoint, which describe the relevant environment and the 
interfaces between the system of interest and other elements of the environment that 
influence the system. The stakeholder need view, the use case view, the product view, 
and the requirement view describe aspects related to the requirements viewpoint. In 
the stakeholder need view, for example, all stakeholders relevant to the system, their 
tasks and interests are considered. This serves as a basis for the development of 
different possible use cases for the system in the use case view, and ultimately for the 
formulation of functional requirements, constraints, and qualities in the requirement 
view. In addition, when considering a production system, further use cases and 
requirements arise from the product to be manufactured and the associated 
manufacturing process. These aspects are described in the product view. Once the 
system of interest has been specified, the requirements are translated into appropriate 
solutions. This begins with the modeling of all the necessary functions that the system 
must provide in relation to the requirements and possible use cases. These are 
mapped in the functional view of the functional viewpoint. The required functionality 
is transformed into implementation-neutral logical elements in the logical view, which 
refers to the logical viewpoint. These logical elements are then transferred into 
technically dependent concrete solutions in the technical view of the technical 
viewpoint. Based on the necessary content of a production system and the current 
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state of the art, corresponding element types and associated relationships were 
defined for each view, which could be used for the specific view for the definition of 
relevant content when applying the architecture framework concept. Finally, two 
iteratively applicable methods and a guide for the application of the framework were 
defined. Those methods comprise a procedure for selecting the right view for the 
currently relevant definition step (view validity determination method) and a 
methodology describing the procedure for the definition of the content itself 
(architecture content creation method). These elements form the core architecture 
framework concept for the creation of an architecture description. 

 

Research Question RQ3: How could a possible methodological consideration of the 
transition between reference architecture description content for the definition of a 
system architecture description look like within the architecture framework? And how 
can the methodological components be linked to the elements of research question 
two so that a holistic framework approach will result in the end? 

 

Starting from the core architecture framework concept, a transition method was 
developed that relates the available content of the reference architecture to the 
required content of the system of interest. In a three-step methodical procedure, a 
statement is first made about the possible reuse and adaptation of reference 
architecture content in a selected view of interest, as well as about the necessity of 
definition from scratch. Based on this, a reference architecture description adapted to 
the specific system view is derived, which consists of the elements that were qualified 
in the first step as reusable for the system of interest. In the third and last step, the 
adapted reference architecture view description is complemented by the missing 
content for the system of interest view. The three steps are designed in such a way 
that the iterative architecture content creation method (three definition steps - “scope 
& adapt”, “develop”, and “check”) can be used. Once a view has been defined, the 
transition methodology can be applied step by step using the view validity 
determination method (“shift rules” and “preconditions”). The iterative transition 
method is applied until all views have been specified and a complete architecture 
description of the system of interest is available. 
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8.2 Future Research 

As shown in this thesis, an architecture framework concept for the creation of system 
architecture descriptions based on reference architecture descriptions was 
successfully developed and prototypically applied. The defined architecture framework 
concept should be understood as a basis for further research and application tasks 
and serve to further advance the topic of linking reference and system architecture 
during definition, accompanied and guided by the architecture framework. The goal 
must be to reduce the effort required to create complex production systems in the 
medium to long term. To succeed with that goal, the most important future research 
questions that were derived or arose during the development and evaluation of the 
architecture framework concept and were not investigated are briefly summarized in 
the following. 

 

With regard to the architecture framework concept and its methods, the applicability 
should be further evaluated by utilizing different reference architectures and 
specifying complex systems of various domains. Those applications should be 
examined, potential extension and improvement of the architecture framework 
concept defined and, if reasonable, implemented. In this context, it shall also be 
surveyed how a relaxation, change or omission of assumptions made with this thesis 
influences the architecture framework concept and its applicability. Furthermore, in 
addition to extending the form and application of the architecture framework concept, 
it should also be investigated how the developed concept can be integrated into more 
widespread holistic framework approaches, such as those pursued in enterprise 
architecture frameworks, in order to achieve an enhanced application of the 
architecture framework concept. 

 

Regarding the reference architecture, and in contrary to the made assumptions, it 
should be evaluated how reference architectures, which are utilizing other structures 
as those within the architecture framework concept, can be considered within the 
current architecture framework concept and which methods might be potentially 
needed for the use of such reference architectures. Furthermore, it seems like, that 
the relation between abstraction and granularity of the reference architecture and the 
specific system considered within the architecture framework concept as well as the 
degree of predefined content within the reference architecture ("110 percent 
approach" or a "core approach"), have an influence on the degree of reuse and the 
need for adjustments. Based on those considerations, a possible influence on quality 
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improvement due to adapting the abstraction, granularity, and content of a reference 
architecture before its application should be examined in more detail. In this context, 
it should also be investigated if a more specific reference architecture can be derived 
from an available reference architecture by applying the created architecture 
framework concept transition method. In addition, it should be investigated how 
occurring changes and possible solution variants stored within the reference 
architecture affect the architecture framework concept and how they can be managed. 

 

With respect to the tool, it became apparent, during the evaluation, that despite the 
flatter learning curve due to the tool support, additional documentation, and 
application guide, a relatively experienced architect is still required to create a system 
architecture description. Nevertheless, it was achieved, that the created environment 
allowed the stakeholder to focus on substantial aspects of system architecture 
definition. However, potential improvement points can still be found. In addition to 
implementing the architecture framework concept as completely as possible, for 
example, the development of a continuous tool chain or the automation of recurring 
predictable tasks can be considered. 

 

Overall, while some potential further research approaches were identified, it was also 
shown in the thesis that the developed architecture framework concept can be 
successfully used for the specified application scenario of defining a system 
architecture description on the basis of as reference architecture description. 
Nevertheless, to further enhance the created architecture framework concept above 
selected research suggestions should be considered, so that the architecture 
framework concept can be successfully applied for the derivation of system 
architecture descriptions from reference architecture descriptions in the future. 
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Annex A – Overview of System Definitions 

In the following, selected definitions of the term system are introduced in Table 8. The 
shown definitions are deemed appropriate by the author, but not considered complete. 
Further sources could have been added, if specific aspects should have been examined 
in more detail. This is not considered necessary, and the selected sources are regarded 
sufficient for the intended purpose of defining the term “system” with respect to this 
thesis. The concluding definition on the term system can be found in section 2.1.1. 

 
Table 8: Definitions of term system 

Reference Definition 

C. E. Dickerson and D. Mavris, 
Architecture and principles of 
systems engineering. 

A system is a combination of interacting elements organized 
to realize properties, behaviors, and capabilities that 
achieve one or more stated purpose(s)” [45]. 

D. G. Firesmith, The method 
framework for engineering 
system architectures. 

“System: a cohesive integrated set of system components 
(i.e., an aggregation structure) that collaborate to provide 
the behavior and characteristics needed to meet valid 
stakeholder needs and desires” [38]. 

IEEE - IEEE standard glossary 
of software engineering 
terminology - IEEE Std 
610.12-1990 

“[System]. A collection of components organized to 
accomplish a specific function or set of functions” [41]. 

ISO/IEC/IEEE 15288:2015- 
Systems and software 
engineering — System life 
cycle processes 

“[Combination] of interacting elements organized to achieve 
one or more stated purposes 

 

Note 1 to entry: A system is sometimes considered as a 
product or as the services it provides. 

Note 2 to entry: In practice, the interpretation of its meaning 
is frequently clarified by the use of an associative noun, e.g., 
aircraft system. Alternatively, the word “system” is 
substituted simply by a context-dependent synonym, e.g., 
aircraft, though this potentially obscures a system principles 
perspective. 

Note 3 to entry: A complete system includes all of the 
associated equipment, facilities, material, computer 
programs, firmware, technical documentation, services and 
personnel required for operations and support to the degree 
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necessary for self-sufficient use in its intended 
environment. 

 

system element 

member of a set of elements that constitute a system 

EXAMPLE Hardware, software, data, humans, processes 
(e.g., processes for providing service to users), procedures 
(e.g., operator instructions), facilities, materials, and 
naturally occurring entities or any combination. 

Note 1 to entry: A system element is a discrete part of a 
system that can be implemented to fulfill specified 
requirements” [37]. 

ISO; IEC; IEEE, 42010-2011 - 
ISO/IEC/IEEE Systems and 
software engineering: 
Architecture description. 

Definition based on 
ISO/IEC/IEEE 15288 

“The systems […] are man‐made, created and utilized to 
provide products or services in defined environments for the 
benefit of users and other stakeholders” [30]based on [37]. 

National Aeronautics and 
Space Administration, NASA 
Systems Engineering 
Handbook 

“A “system” is the combination of elements that function 
together to produce the capability required to meet a need. 
The elements include all hardware, software, equipment, 
facilities, personnel, processes, and procedures needed for 
this purpose; that is, all things required to produce system-
level results. The results include system-level qualities, 
properties, characteristics, functions, behavior, and 
performance. The value added by the system as a whole, 
beyond that contributed independently by the parts, is 
primarily created by the relationship among the parts; that 
is, how they are interconnected” [43]. 

E. Rechtin, Systems 
architecting of organizations: 

“A construct or collection of different elements that together 
produce results not obtainable by the elements alone. The 
elements, or parts, can include people, hardware, software, 
facilities, policies, and documents; that is, all things 
required to produce system-level results. The results 
include systems-level qualities, properties, characteristics, 
functions, behavior, and/or performance. The value added 
by the system as a whole, beyond that contributed 
independently by the parts, is primarily created by the 
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relationships among the parts; that is, how they are 
interconnected” [44]. 

U. States, Ed., Systems 
engineering fundamentals. 

“Simply stated, a system is an integrated composite of 
people, products, and processes that provide a capability to 
satisfy a stated need or objective” [42]. 

D. D. Walden, Ed., Systems 
engineering handbook: A 
guide for system life cycle 
processes and activities  

“An integrated set of elements, subsystems, or assemblies 
that accomplish a defined objective. These elements 
include products (hardware, software, firmware), 
processes, people, information, techniques, facilities, 
services, and other support elements” [26]. 

C. S. Wasson, System 
Analysis, Design, and 
Development: Concepts, 
Principles, and Practices. 

“System An integrated set of interoperable elements, each 
with explicitly specified and bounded capabilities, working 
synergistically to perform value-added processing to enable 
a User to satisfy mission-oriented operational needs in a 
prescribed operating environment with a specified outcome 
and probability of success” [46]. 

VDI/VDE 3681 - Classification 
and evaluation of description 
methods in automation and 
control technology 

“A given order of objects in the relevant context which  

relate to each other” [47]. 
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Annex B – Architecture Framework Evaluation 

As described in section 3.4.5, various selected architecture frameworks were 
evaluated with the aid of defined requirements in order to assess their support of the 
use of reference architectures for the definition of system architectures. The result of 
the evaluation is shown in Figure 26 and described in section 3.4.5.3. The individual 
architecture frameworks considered and the description related to the requirements 
are shown below in Table 9 to Table 16 in alphabetical order. 

 
Table 9: Federal Enterprise Architectural Framework 

Name Federal Enterprise Architectural Framework (FEAF) 

Objective 

Improve interoperability within and between administrative and 
governmental structures by standardization of design and 
application of enterprise architectures applied within those 
structures. 

Type Enterprise architecture framework 

Application area Federal agency enterprise architectures 

Focus on technical 
architecture 

Low 

Utilization of RA or 
related content 

None 

Transition support 
between RA und SyA 

None 

Source [61, 132, 138, 141] 
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Table 10: Generalized Enterprise Reference Architecture and Methodologies (GERAM) 

Name 
Generalized Enterprise Reference Architecture and 
Methodologies (GERAM) 

Objective 
Design and maintenance of enterprises along their life cycle by 
providing common methods and elements relevant in both 
enterprise engineering and enterprise integration procedures. 

Type Enterprise architecture framework 

Application area 
Approach is design to be applicable in most domains – domains 
explicitly mentioned are, for example, industrial engineering, 
communication and information technology 

Focus on technical 
architecture 

Low 

Utilization of RA or 
related content 

None 

Transition support 
between RA und SyA 

None 

Source [132, 142] 

 
Table 11: Model-Based System Architecture Process (MBSAP) 

Name Model-Based System Architecture Process (MBSAP) 

Objective 
Complexity management by providing MBSE based methods and 
tools 

Type System architecture framework 

Application area 
General approach – application areas explicitly mentioned are 
“mechanical, chemical, and even biological technologies and 
systems” [28]. 

Focus on technical 
architecture 

Medium 

Utilization of RA or 
related content 

Yes (not explicitly) – only mentioned as potential reuse option and 
how elements could relate to reference architectures 

Transition support 
between RA und SyA 

None 

Source [28] 
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Table 12: The Method Framework for Engineering System Architectures (MFESA) 

Name 
Method Framework for Engineering System Architectures 
(MFESA) 

Objective Support architects in effective and efficient engineering of SyA 

Type System architecture framework 

Application area 
Systems and software engineering – not explicitly production 
systems 

Focus on technical 
architecture 

Medium 

Utilization of RA or 
related content 

Yes (not explicitly) – only considered as input 

Transition support 
between RA und SyA 

None 

Source [38] 

 
Table 13: Ministry of Defense Architecture Framework (MODAF) 

Name Ministry of Defense Architecture Framework (MODAF)3 

Objective 

Support and enhance planning and management of defense and 
change activities by increasing understanding of complex topics due 
to capturing and representing relevant information in a 
comprehensive manner. 

Type Enterprise architecture framework 

Application area “Military operations and System of Systems” [61]. 

Focus on technical 
architecture 

Low 

Utilization of RA or 
related content 

None 

Transition support 
between RA und SyA 

None 

Source [61, 132, 143] 

 

  



Annex B – Architecture Framework Evaluation 
 

227 
 

Table 14: Reference Model of Open Distributed Processing (RM-ODP) 

Name Reference Model of Open Distributed Processing (RM-ODP) 

Objective 
Support distributed processing of interacting components by 
providing concepts, techniques, and rules for the specification of 
such systems and architectures 

Type Enterprise architecture framework 

Application area Information technology 

Focus on technical 
architecture 

Low 

Utilization of RA or 
related content 

None 

Transition support 
between RA und SyA 

None 

Source [132, 138, 144] 

 
Table 15: The Open Group Architecture Framework (TOGAF) 

Name The Open Group Architecture Framework (TOGAF) 

Objective 
Standardize and reduce risk in development and implementation 
process of enterprise architectures, due to provision and 
methodological application procedure of industry best practices  

Type Enterprise architecture framework 

Application area General – development of enterprise architecture 

Focus on technical 
architecture 

Medium 

Utilization of RA or 
related content 

Yes (not explicitly) – mentioned in relation to concept of 
architecture repository and continuum concepts 

Transition support 
between RA und SyA 

None 

Source [61, 132, 133, 138] 
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Table 16: Zachman Framework 

Name Zachman Framework 

Objective 
Provision of tool for the development and documentation of 
enterprise architectures taking involved roles and objects into 
account by considering them from different perspectives 

Type Enterprise architecture framework 

Application area Information technology 

Focus on technical 
architecture 

Low 

Utilization of RA or 
related content 

None 

Transition support 
between RA und SyA 

None 

Source [61, 132, 138, 145] 
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Annex C – Content of Architecture Framework Concept 
Views  

In connection with the use of views within the architecture framework concept, the 
domain view and the associated meta-model have already been presented as 
examples in section 5.4.2.4. The remaining view descriptions and meta-models are 
described below. Further information on the met models can also be found in [169]. 
Concluding, the relationships between the views and the associated elements are 
presented in Figure 102. 

 

Domain Viewpoint 

 
Table 17: Description of Context View 

Name of View Context View 

Related Viewpoint Domain viewpoint 

Problem / Solution Space Problem space 

Goal of View Definition of the relevant environment surrounding the 
system and of all elements and their relation as well as 
interface to the system contained therein. 

Purpose of View Specification of all influences of elements of the context and 
associated interfaces between system and context so that 
the system to be defined is clearly delimited and specified for 
the subsequent design steps. 

For all stakeholders involved in the design process, once the 
context and the system boundaries have been defined, it will 
be explicit what is and what is not part of the system. This 
will further facilitate communication within the project and 
across disciplines. The more detailed the system becomes, 
the more specific the problem space becomes and the 
narrower the solution space will be, which is the purpose of 
the overall design procedure. 

Element Types and Model 
Kind of View 

Element types: 

 Flow elements 
 External system 
 External actor 
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 Environmental Effect 
 Packages and relationships  

Model kind: 

 Context model diagram 
 Context interaction scenarios 

Procedure(s) within View Based on the inputs from the domain view, within the context 
view, the relevant elements of the context, which have a 
connection and an influence on the system of interest, need 
to be defined. Therefore, in a first step such context elements 
(e.g., systems, actors) are identified. Those elements are, in 
a second step, set into a relation with the system of interest. 
By defining these relations and thus the interfaces, the 
system of interest is clearly separated from its context. Based 
on the description of the context boarder and potential 
influence on the system, the system itself and related 
requirements can be defined in the requirement viewpoint. An 
example of a context view is shown in Figure 81. 

Relationship to other Views 
within Viewpoint 

Domain view and context view 

Relationship to other Views 
of other Viewpoints 

Stakeholder need view, use case view, product view, and 
requirement view (requirement viewpoint) 
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Figure 94: Meta model Context View [169] 

Requirement Viewpoint 

 
Table 18: Description of Stakeholder Need View 

Name of View Stakeholder Need View 

Related Viewpoint Requirement viewpoint 

Problem / Solution Space Problem space 

Goal of View Definition of all stakeholders related to the system, their 
tasks, and interest. 

Purpose of View Better understanding of the relevant stakeholders and their 
expectations towards the system of interest. 

In principle, a certain number of stakeholders have already 
been defined within the domain and context view. However, 
it is important to know and understand all internal and 
external stakeholders, their tasks and interest in order to 
define the resulting requirements for the system of interest 
completely and correctly. A system will only be successfully 
implemented if the requirements (or goals) of the 
stakeholders are met and an added value is created for them. 

Element Types and Model 
Kind of View 

Element types: 

 Stakeholder 
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 Interest 
 Task 
 Packages and relationships 

Model kind: 

 Stakeholder need model diagram 

Procedure(s) within View Within the stakeholder need view all relevant stakeholders of 
the considered system have to be defined. Therefore, first, 
those stakeholders need to be identified or if already 
identified within the domain viewpoint specified. In order to 
better be able to evaluate their impact on the system, the 
stakeholders are further detailed by their interest and the 
task they perform. Based on that information, the 
stakeholders’ expectations towards the system as well as 
their involvement in use cases can be specified in the 
following views. An example of a stakeholder need view is 
shown in Figure 82 

Relationship to other Views 
within Viewpoint 

Stakeholder need view, use case view, product view, and 
requirement view 

Relationship to other Views 
of other Viewpoints 

Domain view and context view (domain viewpoint); functional 
view (functional viewpoint) 

 

 
Figure 95: Meta model Stakeholder Need View [169] 
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Table 19: Description of Use Case View 

Name of View Use Case View 

Related Viewpoint Requirement viewpoint 

Problem / Solution Space Problem space 

Goal of View Definition of occurring use cases, the involved use case 
systems, as well as the affected use case actors in relation to 
the considered overall system. 

Purpose of View Further specification of the system of interest with respect to 
possible use cases / states in which the overall system can 
be in operation in order to clearly define which services/ 
performances the system must be able to provide and with 
which elements it possibly has to cope. 

Element Types and Model 
Kind of View 

Element types: 

 Use case system 
 Use case 
 Use case actor (stakeholder) 
 Packages and relationships 

Model kind: 

 Use case model diagram 

Procedure(s) within View For the definition of use cases potential application scenarios 
of the system have to be specified. Therefore, a specific use 
cases, the involved stakeholders, and systems are identified 
in a first step. In a second step the elements of single use 
case are set into a relation to each other, to be able to identify 
potential dependencies. In a third step, use cases are related 
to each other to highlight overlaps of the same elements and 
to derive all (mutual) dependencies on the system. An 
example of a use case view is shown in Figure 83. 

Relationship to other Views 
within Viewpoint 

Stakeholder need view, use case view, product view, and 
requirement view 

Relationship to other Views 
of other Viewpoints 

Domain view and context view (domain viewpoint); functional 
view (functional viewpoint) 
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Figure 96: Meta model Use Case View [169] 

 
Table 20: Description of Product View 

Name of View Product View 

Related Viewpoint Requirement Viewpoint 

Problem / Solution Space Problem Space 

Goal of View Description of the product, the manufacturing process, 
potential parts of the product, and required skills for 
manufacturing the product. 

Purpose of View Understanding and documenting the effects of a specific 
product and the related manufacturing process on the system 
of interest, so that the product can be manufactured as 
intended on the designed system after implementation. 

Element Types and Model 
Kind of View 

Element Types: 

 Part 
 Required skills 
 Production process 
 Attributes 
 Packages and relationships 
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Model Kind: 

 Product model diagram 

Procedure(s) within View To derive relevant requirements for the system, which shall 
be used for manufacturing the product, the product itself, 
potential parts of the product, and the manufacturing process 
need to be defined. For this purpose, the manufacturing 
process is modeled step by step, which the product to be 
manufactured must pass through. During the step-by-step 
modeling, the utilized parts, required skills, and the current 
state of the product are described. Once the process has 
been completely modeled, it can be derived how the product 
under consideration is composed and what requirements 
result from the product and its manufacturing to the system 
of interest. An example of a product view is shown in Figure 
84. 

Relationship to other Views 
within Viewpoint 

Stakeholder need view, use case view, product view, and 
requirement view 

Relationship to other Views 
of other Viewpoints 

Domain view and context view (domain viewpoint); functional 
view (functional viewpoint) 

 

 
Figure 97: Meta model Product View [169] 
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Table 21: Description of Requirement View 

Name of View Requirement View 

Related Viewpoint Requirement viewpoint 

Problem / Solution Space Problem space 

Goal of View Definition of all functional requirements, qualities, and 
constraints necessary for the design of the system, based on 
the results of the upstream views. 

Purpose of View Creation of comprehensive requirements basis as a starting 
point for the definition of the solution space of a system of 
interest, in order to be able to limit the solution space 
accordingly and to be able to advance the development of a 
solution. 

Element Types and Model 
Kind of View 

Element types: 

 Requirement 
 Quality 
 Constraints 
 Packages and relationships 

Model kind: 

 Requirement model diagram 

Procedure(s) within View Based on the preliminary considerations of the system of 
interest, which were made in the domain and requirements 
viewpoint, functional requirements, qualities, and constraints 
concerning the system have to be captured. For this purpose, 
the possible requirements, qualities, and constraints are 
identified step by step in relation to elements from the 
previous views, documented, and related to the 
corresponding elements from which they result. The 
requirements, qualities, and constraints are identified in an 
iterative and creative process, usually performed in 
collaboration with the actual stakeholders of the system of 
interest. The defined requirements, qualities, and constraints 
are then used to continuously control architectural results 
during the development of the system. An example of a 
requirement view is shown in Figure 85. 

Relationship to other Views 
within Viewpoint 

Stakeholder need view, use case view, product view, and 
requirement view 
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Relationship to other Views 
of other Viewpoints 

Domain view and context view (domain viewpoint); functional 
view (functional viewpoint) 

 

 
Figure 98: Meta model Requirement View [169] 
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Functional Viewpoint 

 
Table 22: Description of Functional View 

Name of View Functional View 

Related Viewpoint Functional viewpoint 

Problem / Solution Space Solution space 

Goal of View Definition and documentation of all functional solutions in 
relation to the defined system requirements. 

Purpose of View Transition from problem to solution space and creation of a 
first implementation-independent solution in the form of a 
functional architecture, in order to understand the functional 
scope of the system and as a basis for the development of 
different logical and technical solution approaches. 

Element Types and Model 
Kind of View 

Element types: 

 Function 
 Input and output 
 Packages and relationships 

Model kind: 

 Function model diagram 

Procedure(s) within View Using the defined requirements for the system of interest, the 
architect must first examine which requirements can be 
expressed in the form of functions and which requirements 
will come into effect at a later stage of the system 
development, for example, during the technical design. After 
these basic considerations have been carried out by the 
architect, he/she must define appropriate functions for the 
first group. These must then be related both to each other 
and to the requirements. Finally, it must be checked whether 
all the necessary functions have been defined. An example of 
a functional view is shown in Figure 86. 

Relationship to other Views 
within Viewpoint 

Functional view 

Relationship to other Views 
of other Viewpoints 

Requirement view (requirement viewpoint), logical view 
(logical viewpoint), and technical view (technical viewpoint) 
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Figure 99: Meta model Functional View [169] 
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Logical Viewpoint 

 
Table 23: Description of Logical View 

Name of View Logical View 

Related Viewpoint Logical viewpoint 

Problem / Solution Space Solution space 

Goal of View Definition of implementation independent logical solution 
elements. 

Purpose of View Transfer of the functional solution into a structure close to 
implementation (logical architecture), as an intermediate 
step to detail the final technical solution. 

Element Types and Model 
Kind of View 

Element types: 

 Logical system 
 Logical element 
 Provided skills 
 Packages and relationships 

Model kind: 

 Logical model diagram 

Procedure(s) within View Taking into account both the defined functions and the 
requirements, the architect must cast the system into a 
logical structure and define the associated logical elements 
that make up the system of interest. For this purpose, the 
architect must define how the system will be logically 
clustered or divided and define which functions will be 
performed by which logical elements. In addition, the 
requirements must be taken into account, which may already 
affect the intended structure and roles of the different logical 
elements. The defined logical elements must also be related 
to each other, taking into account both the inputs from the 
requirement viewpoint and from the functional viewpoint. An 
example of a logical view is shown in Figure 88. 

Relationship to other Views 
within Viewpoint 

Logical view 

Relationship to other Views 
of other Viewpoints 

Requirement view (requirement viewpoint), functional view 
(functional viewpoint), and technical view (technical 
viewpoint) 
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Figure 100: Meta model Logical View [169] 
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Technical Viewpoint 

 
Table 24: Description of Technical View 

Name of View Technical View 

Related Viewpoint Technical Viewpoint 

Problem / Solution Space Solution Space 

Goal of View Definition of the technical system solution and all relevant 
sub-elements. 

Purpose of View Creation of a technical solution that meets the defined 
requirements and satisfies the objectives of the stakeholders 
and can be used as a basis for the detailed design and 
implementation of the system of interest. 

Element Types and Model 
Kind of View 

Element Types: 

 Assembly and different related elements (e.g., 
electrical, software, and mechanical element)  

 Ports, connectors, and connections 
 Packages and relationships 

Model Kind: 

 Technical model diagram 

Procedure(s) within View Based on the implementation-neutral structure of the logical 
view and its elements, the architect must derive a technical 
design of the system of interest, taking into account the 
mandatory functionalities and requirements. For this 
purpose, the logical elements must be converted step by step 
into concrete technical solutions and interconnected among 
each other. In addition, in particular the contents of the 
requirements viewpoint must be taken into account, which 
have an impact on for example the shape or performance of 
the technical solution. After the technical solution has been 
defined, it must be put against the requirements and checked 
if they are fulfilled. An example of a technical view is shown 
in Figure 89 and Figure 90. 

Relationship to other Views 
within Viewpoint 

Technical view 

Relationship to other Views 
of other Viewpoints 

Requirement view (requirement viewpoint), functional view 
(functional viewpoint), and logical view (logical viewpoint) 
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Figure 101: Meta model Technical View [169] 
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Overview of relationships between view and related elements 
Figure 102 shows the main interrelationships of the most important elements of the 
different viewpoints considered during the creation of the architectural description. 

 

 
Figure 102: Overview of relationships between view and related elements 
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Glossary 

 

Architecting “Process of conceiving, defining, expressing, documenting, 
communicating, certifying proper implementation of, maintaining 
and improving an architecture throughout a system’s life cycle” [30]. 

Architecture Architecture is defined as “(system) fundamental concepts or 
properties of a system in its environment embodied in its elements, 
relationships, and in the principles of its design and evolution” [30]. 

Architecture 
Description 

An architecture description can be defined as “work product used 
to express an architecture” [30] of a system. 

Architecture 
Framework 

An architecture framework represents ”[...] conventions, principles 
and practices for the description of architectures established within 
a specific domain of application and/or community of stakeholders” 
[30]. 

Artifact An artifact refers to all "tangible and intangible project deliverables" 
[56]. Tangible artifacts refer to, for example, "engines, pumps, [or] 
functional modules" [56]. Intangible artifacts refer to, for example, 
"plans, architectures, [or] specifications" [56]. 

Bottom-Up 
Approach 

The bottom-up approach is used to design systems “[...] by starting 
with the most basic or primitive components and proceeding to 
higher-level components or modules by using the lower-level tested 
and approved components as building blocks, until the system 
design is completed” [177]. 

Domain A domain can be defined as a “[...] sphere of knowledge, influence 
or activity […]” [164]. With respect to [164] the subject area to 
which a stakeholder applies systems engineering procedures and 
methods is the domain of the system of interest. 

Domain-
specific 
Language 

A domain-specific language limits and focuses on a particular 
application domain, provides appropriate or established notations, 
and the right level of abstraction to view system solutions in a 
natural but not overly detailed way [189, 192]. 

Engineering “The application of a systematic, disciplined, quantifiable approach 
to structures, machines, products, systems, or processes” [41]. 
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Engineering 
Process 

An engineering process is defined “[…] as a sequence of activities 
of creative application of scientific principles to design or develop 
structures, machines, apparatus, or manufacturing processes; all as 
respects an intended function, economic and safe operation” [70] 
following [71]. 

Environment The environment of a system considers all elements outside the 
defined boundary of the system of interest. Therefore, the 
environment includes relevant and irrelevant elements with respect 
to the definition of the system of interest. Elements of the 
environment might be connected by relationships among each other 
and to the system of interest. 

Function A function is an action or task provided and executed by a system 
with the aim of fulfilling the goal and the defined purpose for which 
the system has been created [82, 166]. 

General 
Purpose 
Language 

A general purpose language is a cross-domain modeling language 
with language constructs not restricted to one particular domain 
[186]. The language represents reality as well as relevant 
interrelationships and is utilized for implementing them in models. 

Goal “The act of stating clearly what you want to achieve or what you 
want someone else to achieve” [167]. 

Granularity “The level of detail considered in a model or decision making 
process. The greater the granularity, the deeper the level of detail. 
Granularity is usually used to characterize the scale or level of detail 
in a set of data” [50]. 

Level of 
Abstraction 

The abstraction level relates systems of a particular 
domain/environment to each other and provides information about 
their level of detail in relation to other systems within the 
domain/environment. That is, to place them in a span between 
abstract and concrete system classification. Following the ISO 9000 
standard [153], systems at a low level of abstraction inherit all the 
characteristics of higher-level concepts and contain information 
that distinguishes them from systems at the same level. 

Life Cycle A life cycle defines an “evolution of a system, product, service, 
project or other human-made entity from conception through 
retirement” [37]. 
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Life Cycle 
Model 

A life cycle model is a “framework of processes and activities 
concerned with the life cycle that may be organized into stages, 
which also acts as a common reference for communication and 
understanding” [37]. 

Logical 
Component 

A logical component represents the realization of one or more 
required system functions on a solution-oriented, technically 
implementation-free level. 

Model “A model captures a view of a physical system. Hence, it is an 
abstraction of the physical system with a certain purpose; for 
example, to describe behavioral aspects of the physical system to a 
certain category of stakeholders. A model contains all the model 
elements needed to represent a physical system completely 
according to the purpose of this particular model. The model 
elements in a model are organized into a package/subsystem 
hierarchy, where the top-most package/subsystem represents the 
boundary of the physical system” [74]. 

Model-based 
Systems 
Engineering 

“Model-based systems engineering (MBSE) is the formalized 
application of modeling to support system requirements, design, 
analysis, verification and validation, beginning in the conceptual 
design phase and continuing throughout development and later life 
cycle phases” [39, 107]. 

(Model) 
Element 

“An element is an atomic constituent of a model” [74] and “[a] 
model element is an element that is an abstraction drawn from the 
system being modeled“ [74]. 

Modeling 
Language 

A modeling language is defined as “[...] a textual or graphical 
language used to implement one or more related types of models” 
[38]. “Modeling languages are generally intended to be both human 
interpretable and computer interpretable and are specified in terms 
of both syntax and semantics. The abstract syntax specifies the 
model constructs and the rules for constructing the model from its 
constructs. [...] The semantics of a language define the meaning of 
the constructs" [26]. 

Process A “set of interrelated or interacting activities that transforms inputs 
into outputs” [37]. 

Product A product is the “result of a process” [37]. 
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Purpose "An intention or aim; a reason for doing something or for allowing 
something to happen” [168]. 

Reference 
Architecture 

A reference architecture is defined as “[...] a reusable architectural 
vision for use on systems within a product line or application 
domain” [38]. 

Requirement A requirement can be defined as “[...} a statement concerning a 
property or the performance of a product, a process or the people 
involved in the process” [165]. In addition, a requirement describes 
a condition or capability to be provided by a system and needed by 
a stakeholder to solve a problem [41]. 

Resource Resources describe an "asset that is utilized or consumed during 
the execution of a process" [8]. The resources include, for example, 
“funding, personnel, facilities, capital equipment, tools, and utilities 
such as power, water, fuel and communication infrastructures” [37]. 

Stakeholder The term stakeholder describes an individual person or group of 
persons who have one or more concerns about the system of 
interest and an interest in the system meeting the needs and goals 
of that person or group [38, 39]. 

Surroundings The surroundings describe the elements within a system 
environment, which are not relevant for the definition of the system 
and do not have any relationship to the system of interest. 

System A system consists of a fitting set of interacting elements which form 
a certain structure and are composed to achieve a stated purpose 
and goal within a defined specific environment. 

System 
Architecture 

“System Architecture is the organization of the system components, 
their relations to each other, and to the environment, and the 
principles guiding its design and evolution” [45]. 

(System) 
Context 

The (system) context is “[…] determining the setting and 
circumstances of all influences upon a system” [30]. 

System of 
Interest 

The system of interest describes one specific system and its life 
cycle as well as architecture considered during the process of 
preparing an description of the architecture of the system [30, 37]. 
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Systems 
Engineering 
(SE) 

“Systems Engineering is a transdisciplinary and integrative 
approach to enable the successful realization, use, and retirement 
of engineered systems, using systems principles and concepts, and 
scientific, technological, and management methods” [58]. 

Technical 
Solution 

The technical solution describes the individual elements and the 
relationships between those elements, which form the architecture 
of a system, realize the specified requirements, and provide the 
necessary functions needed to achieve the system goal(s). 

Tool A “[tool] (aids) assist the representation and/or documentation of 
knowledge” [154]. 

Top-Down 
Approach 

The top-down approach can be defined as “designing a system [...] 
by identifying its major components, dividing them into their lower 
level components, and then repeating the process until a 
designated level of detail is achieved” [174]. 

View An architecture view is a “[…] work product expressing the 
architecture of a system from the perspective of specific system 
concerns” [30] and “[…] from a specific viewpoint and with a 
specific degree of granularity […]” [34] based on [30]. 

Viewpoint An architecture viewpoint describes a “work product establishing 
the conventions for the construction, interpretation and use of 
architecture views to frame specific system concerns” [30]. 
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