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Abstract
Breast perfusion data are dynamic medical image data that depict perfusion characteristics of the investigated tissue. These data
consist of a series of static datasets that are acquired at different time points and aggregated into time intensity curves (TICs) for
each voxel. The characteristics of these TICs provide important information about a lesion’s composition, but their analysis is
time-consuming due to their large number. Subsequently, these TICs are used to classify a lesion as benign or malignant. This
lesion scoring is commonly done manually by physicians and may therefore be subject to bias. We propose an approach that
addresses both of these problems by combining an automated lesion classification with a visual confirmatory analysis, especially
for uncertain cases. Firstly, we cluster the TICs of a lesion using ordering points to identify the clustering structure (OPTICS) and
then visualize these clusters. Together with their relative size, they are added to a library. We then model fuzzy inference rules by
using the lesion’s TIC clusters as antecedents and its score as consequent. Using a fuzzy scoring system, we can suggest a score
for a new lesion. Secondly, to allow physicians to confirm the suggestion in uncertain cases, we display the TIC clusters together
with their spatial distribution and allow them to compare two lesions side by side. With our knowledge-assisted comparative
visual analysis, physicians can explore and classify breast lesions. The true positive prediction accuracy of our scoring system
achieved 71.4 % in one-fold cross-validation using 14 lesions.

CCS Concepts
• Human-centered computing → Graph drawings; Visual analytics; Information visualization; • Computing methodologies
→ Vagueness and fuzzy logic; • Information systems → Clustering; Digital libraries and archives;

1. Introduction

Breast cancer is the most common female’s invasive cancer, account-
ing for almost a quarter of cancer cases among women globally, and
it is also the leading cause of cancer death among women in over 100
countries [BFS∗18]. Early detection of breast cancer by screening
programs is supported by most expert societies [SAea17]. Com-
monly used diagnostic imaging modalities are mammography and
breast ultrasound [WAJ∗18, Nat18]. Conventional imaging is ham-
pered by limited sensitivity and specificity. While cancers are regu-
larly missed in women with higher mammographic breast density,
positive imaging findings require image-guided biopsy to establish
a final diagnosis. Biopsies, however, are invasive, and in case of
stereotactic guidance costly procedures, can further cause physical
pain and psychological stress to the patient [HKvH08]. The major-
ity of these biopsies yield benign results and are thus potentially
avoidable. Therefore, an additional non-invasive imaging-based di-
agnostic test method, such as dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI), would be welcome.

For diagnosis, radiologists need to analyze the features of le-
sions for understanding the severity of the pathological processes

and the grade of the disease. According to the breast imaging re-
porting and data system (BI-RADS) [BSB∗09] or Göttinger Score
(GS) [FKG99], the disease grade can be expressed as a score, which
is conducive to the understanding of physicians. With the com-
mon static imaging modalities, such as mammography and breast
ultrasound, radiologists can only use the morphological character-
istics of the lesion for analysis. DCE-MRI, as a dynamic modal-
ity, supplies the morphological characteristics together with the
functional features of breast lesions, which not only illustrate the
spatial information, such as tissue structure and vascularity, but
also physiological information on perfusion and permeability char-
acteristics [MMSJP99]. Due to characteristic differences in the
net capillary diameter, vessel permeability and extracellular ex-
travascular distribution space, DCE-MRI is able to distinguish be-
nign from malignant lesions. Based on the characteristics of DCE-
MRI, the analysis of these data is mainly focused on morpholog-
ical [DGV∗16, MCW∗16, DVK∗18], texture [ASL∗11, MDvP17]
and temporal features [BLA∗07, BFB∗09, MBB∗17].

Using the temporal features to analyze breast lesions is impor-
tant [RPP∗20], since the perfusion of contrast agent (CA) varies
depending on the tissue types contained in a lesion, the temporal dy-
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Figure 1: A typical TIC with its parameters. PE means peak
enhancement, TTP is time to peak, MTT is mean transit time,
which represents the half position of the integral area. (Adapted
from [POM∗09])

namics of the acquired signal, which reflects the absorption, and the
release of the CA can provide a good basis for lesion classification.
This temporal information can directly be expressed as the intensity
change of a lesion’s voxel over time, referred to as time intensity
curve (TIC), which is acquired by a series of magnetic resonance
imaging (MRI) scans before and after injection of CA (see Figure 1).
Meanwhile, the signal intensity change percentage of a TIC can be
quantified by the relative enhancement (RE) as

RE = 100 · (Ipost − Ipre)/Ipre, (1)

with Ipre being the precontrast (before CA arrival) and Ipost being
the postcontrast (after CA arrival) signal intensity [KMK∗99]. Fig-
ure 2 shows the nine typical categories of RE curves [GPTP10].
Analyzing TICs and RE of a lesion allows physicians to efficiently
classify it, or parts of it, as benign or malignant. Though rapid initial
enhancement and distinct washout in the late phase are typical of
malignant lesions, both benign and malignant lesions show variable
enhancement characteristics [FGKD01, BFB∗09]. To account for
noise in DCE-MRI data, physicians usually select a small region of
interest (ROI) instead of a single voxel and then inspect the average
TIC to analyze and classify the lesion [Kuh07].

However, this approach has some limitations. It is very time-
consuming and error-prone, since a vast amount of data has to be
analyzed [ODH∗07]. Moreover, displaying only the average TIC
diminishes the dynamic characteristics of the TICs when the lesion
is strongly heterogeneous, but drawing all TICs into a single plot
results in overplotting. By only investigating the characteristics of
TICs, the spatial information of the lesion is ignored. Recently, ma-
chine learning approaches aim to support physicians in performing
this task. However, these methods are still not sufficiently accurate
to cope with the large variability of the data and to compete with the
diagnosis of experienced physicians [MPF∗17, ZLD∗19].

In this paper, we propose a knowledge-assisted visual analysis
approach that allows physicians to analyze breast lesions based on
the classification results of a fuzzy inference system (FIS) and then
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Figure 2: Nine typical REs. At the late postcontrast phase, the
curves can be divided into three categories: type I, IV, VII (persistent)
show continuous increase, type II, V, VIII (plateau) reach a plateau,
and type III, VI, IX (washout) exhibit a decreasing pattern after an
initial increase. At the early postcontrast phase, the curves can also
be divided into three categories: type I, II, III (rapid) have a rapid
increase, type VI, V, VI (normal) increase moderately and type VII,
VIII, IX (slow) increase slowly. (Adapted from [GPTP10])

to visually confirm or correct the results. Our contributions can be
summarized as:

• a visualization of TIC clusters (temporal analysis),
• a spherical histogram of TIC clusters around the lesion centroid

(spatial analysis),
• a visualization of two lesions’ spatio-temporal information side

by side (comparative analysis),
• a fuzzy inference system for lesion scoring (classification), and
• a confirmatory visual analysis approach.

To demonstrate if the classification results of our FIS can provide
physicians with a useful reference, we evaluated the classification
accuracy by using one-fold cross-validation. In addition, we showed
our visual analysis approach to our collaborating clinical radiologists
for evaluation and feedback.

2. Related Work

Analyzing TICs to comprehend the temporal features of DCE-MRI
data is widely adopted by physicians to distinguish between benign
and malignant lesions [POM∗09]. In order to assess breast lesions
by using TICs, physicians have to detect or segment the lesions
first. Traditional approaches include manual selection [ARE∗14]
or semi-automated [PMW∗14] selection of ROIs, which contain
either a part or the whole lesion. Graph cut algorithms are com-
monly used for segmenting lesions in medical imaging [CNZ∗12].
An improved version of graph cuts is GrabCut [TGVB13], which
introduces a global optimization term to calculate the link strength
between vertices to improve computation efficiency and simplify
implementation.

Lesions, especially malignant ones, usually contain a large num-
ber of voxels [HHHV01]. Displaying the TICs of each voxel of
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such a lesion results in overplotting. To assess the major character-
istics of many TICs, functional boxplots [SG11] abstract a series
of curves into a representative curve and their band depth. Clus-
tering may restrict the analysis of TICs to few cluster representa-
tives. Iorio et al. [IFDS16] proposed a parsimonious time series
clustering method with a penalized spline (P-spline) and k-means
algorithm, which shows a good performance on multidimensional
data measurements, while the cluster number needs to be set manu-
ally. Unlike methods that require specifying the number of clusters,
such as k-means, density-based clustering methods determine the
number of clusters automatically. Density-based spatial clustering
of applications with noise (DBSCAN) is one of the most common
density-based clustering algorithms [BK07]. Ordering points to iden-
tify the clustering structure (OPTICS) is more robust against noise
compared to DBSCAN, but is more time-consuming [KKSZ11]. Pat-
wary et al. [PPA∗13] proposed a parallel implementation of OPTICS,
which significantly improved the computing time.

Since spatial information is not considered when analyzing TICs,
Glaßer et al. [GPTP10] proposed a visual analytics approach that
merged the voxels with similar TIC perfusion parameters into the
same color and glyph. This approach offers an improved TIC anal-
ysis since the spatial and temporal features are simultaneously ex-
pressed in a slice view. In a follow-up work, Glaßer et al. [GNPS13]
applied density-connected subspace clustering (SUB-CLU), DB-
SCAN and OPTICS to cluster TICs of the most suspicious regions
and displayed TICs characteristics in a slice view. This approach
improves the merging accuracy of the voxels, which have similar
TIC perfusion parameters. However, it cannot represent details of
the dynamic characteristics of voxels in a slice view.

Machine learning approaches have recently been employed to
support physicians in lesion classification. Rasti et al. [RTP17]
designed a mixture ensemble of convolutional neural network mod-
els to discriminate between benign and malignant breast tumors.
Zhou et al. [ZLD∗19] employed 3D deep learning to classify breast
lesions. Although this approach is highly accurate, it is still not
comparable to experienced physicians. Besides, this approach can
not provide a clear physiological interpretation of its classification
model, which makes it difficult to share and reproduce the experi-
ence of physicians in this model.

Instead of a binary lesion classification, fuzzy logic can be used
to model various degrees of malignancy. Furthermore, in a FIS,
knowledge is represented in the form of linguistic rules. This al-
lows physicians to share their expertise. Miranda et al. [MF15]
created a breast cancer diagnosis system that is based on fuzzy
logic and provides a suggestion using the BI-RADS classification.
Ahadi et al. [ADL∗17] introduced a fuzzy inference system to pre-
dict a benign or malignant state of a lesion, based on its physical
characteristics. While these fuzzy systems employ physicians’ expe-
rience and provide good classification results, they lack a feedback
mechanism to take advantage of the initiative of physicians.

3. Methodology

Diagnostic visualizations play an important role in the analysis and
classification of breast lesions. Manual analysis is a time-consuming
process and medical visualization approaches support physicians in

– Draw TIC cluster plot
– Draw TIC cluster

histogram plot
– Compare two lesions

side by side

Visualization

– Compare TIC clusters
– Add new TIC clusters
– Generate rules
– Assign antecedents
– Derive score

Fuzzy Inference System

– Load DCE-MRI data
– Segment lesions
– Cluster TICs

Feature Extraction

– Get info from FIS
– View predicted score
– Confirm/correct score

Visual Confirmation

Figure 3: Workflow of our visual analytics approach for breast
lesion assessment. This approach includes four parts: feature extrac-
tion, visualization, fuzzy inference system and visual confirmation.

aggregating low-level information. Visualization and analysis tech-
niques require additional information about the imaging data, such
as the position of the lesions, their temporal intensity behavior, and
the spatial distribution of TICs. Moreover, providing an estimated
malignancy score based on the knowledge of experienced physicians
supports guided as well as confirmatory analysis.

The workflow of our approach is outlined in Figure 3 and consists
of the following four steps: feature extraction, fuzzy inference sys-
tem, visualization and visual confirmation. We first load a DCE-MRI
dataset. Then, the lesions are automatically located and segmented.
The TICs of the selected lesion are clustered using a parallel imple-
mentation of OPTICS clustering [PPA∗13]. The feature extraction
process is illustrated in Figure 4. In order to describe the spatial
distribution of this lesion, we create spherical bins around it and
compute a histogram of the TIC clusters. Meanwhile, a FIS is cre-
ated on the basis of the TIC clusters and expert knowledge. It is used
to classify lesions and predict a score. Finally, the TICs clusters and
the histogram are shown to support physicians analyzing the lesion
and evaluating the classification score. We also arrange both visual-
izations in such a way that two lesions can be compared side by side,
to directly compare the current lesion with others. After the analysis,
physicians can confirm the FIS score or correct it. Subsequently, we
describe each step of our workflow in detail.

3.1. Feature Extraction

To extract the TICs (temporal feature) from a lesion, we establish a
three-step approach (see Figure 4). All datasets were acquired over
an average of 400 seconds within 11 time points and were motion-
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Figure 4: Extraction of lesion features. After a DCE-MRI dataset is
loaded, the images at the first time point are used to separate breast
regions. With the selected dataset and the regions, suspicious objects
are segmented at each slice, and then these objects are merged into
3D objects. When an object (mostly a lesion) is selected, all TICs in
this object are extracted and computed to get their clusters.

compensated afterwards. They are of resolution 384× 384× 144
voxels. We then separate the breast regions and segment suspicious
objects (including lesions and their surrounding blood vessels). The
TICs of a user-selected lesion are clustered with a density-based
method, which detects the number of clusters automatically.

Lesion segmentation. To facilitate physicians locating lesions
and reducing the search space for subsequent image processing op-
erations, we use the dataset of the first time point to find the breast
boundary. The left and right breast are then identified by this bound-
ary with the vertical centerline of the axial slice images. Lesions
are then determined and segmented using the GrabCut [TGVB13]
method. We automatically define the fore- and background seeds for
GrabCut using the RE of a lesion (recall Figure 2). Since benign and
malignant tumors have a rapid increase in RE at the early postcon-
trast phase [FGKD01], we mark such pixels inside the breast regions
as foreground and pixels with slow increase in RE as background.

Compared with the conventional graph cut method [CNZ∗12],
GrabCut uses a new energy term to measure the L1 distance (Man-
hattan distance) between the foreground and background appear-
ance. The segmentation efficiency is optimized via this new energy
term [TGVB13]. Let S⊂Ω be a segment, where S is the segmented
object and Ω is the set of all image pixels. Let θ

S and θ
S be the un-

normalized intensity histograms for the foreground and background
appearance, respectively. The energy function with the new term to
consider the L1 distance is written as follows [TGVB13]:

EL1(θ
S,θS) =−‖θS−θ

S‖L1 . (2)

Let nk be the number of pixels in the image that belongs to bin k and
let nS

k and nS
k be the number of foreground and background pixels in

bin k, then Equation 2 can be rewritten as:

EL1(θ
S,θS) =

K

∑
k=1

min(nS
k ,n

S
k)−

|Ω|
2

. (3)

Then, K auxiliary nodes A1,A2, . . . ,AK are added to the graph and
all pixels of bin k are connected to auxiliary node Ak. Hence, any
cut separating the fore- and background pixels must either cut nS

k or

nS
k number of links that connect the pixels in bin k to the auxiliary

node Ak [TGVB13].

Because GrabCut is a 2D segmentation algorithm, we obtain
many ROIs in each axial slice of the input dataset. By comparing
the area coverage of each ROI between adjacent slices, we merge
overlapping ROIs into a 3D object and then get the volume of interest
(VOI). Each VOI (object, which is a lesion or its surrounding blood
vessels) is separated from each other by the connectivity.

TIC clustering. By observing all VOIs (objects) in the imag-
ing data, the user can select one that is most suspected to be a
lesion. After the lesion is selected, the temporal information of its
voxels in DCE-MRI breast data is extracted. We fit cubic splines
to the discrete time points to obtain a continuous time representa-
tion [BJGG∗03]. This allows us to model even time points between
the observed data.

To cluster the TICs, we use their spline coefficients and a parallel
implementation of OPTICS [PPA∗13]. This method requires two
parameters: ε, which describes the maximum distance (radius) to
consider, and MinPts, the number of points required to form a cluster.
The parameter MinPts is set to 4 in our experiments, because the
smallest possible region that can be segmented by our method is
4 pixels. The other parameter ε has to be manually specified, because
it controls the sensitivity to noise.

The parallel implementation of OPTICS [PPA∗13] is described
as follows. Let D be a high-dimensional data point set that contains
M points. The neighborhood of a point p ∈ D within a given radius
ε is defined as:

Nε(p) = {q ∈ D : d(q, p)≤ ε , q 6= p}, (4)

with d(q, p) being the Euclidean distance between points p and q.
If |Nε(p)| ≥ MinPts, the point p ∈ D is considered a core point.
A point q ∈ D is directly density-reachable with p ∈ D, if q ∈
Nε(p). The point q ∈ D is density-reachable if there is a chain of
points p1, p2, . . . , pn with p1 = p, pn = q, and every pi+1 is directly
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Figure 5: Overview of our visual analysis approach. (a) shows a 3D visualization of a malignant tumor (red), whereas (b) displays an axial
slice view of this tumor. The left column of (c) shows TIC clusters and their spatial distribution of a selected lesion (which is displayed
in (a) and (b)). The TIC clusters and their spatial distribution in the right column of (c) are belonging to a lesion to be compared with the
selected one. The middle column of (c) (between the left and right cluster plot areas) shows the statistical distribution of the selected clusters.
(d) illustrates the spherical histogram bins. The center of the region is the centroid of the tumor and the size of each spherical bin is five
millimeters. An input cluster (orange), which is selected in the left column of (c), and its most similar cluster (blue) in the lesion and TIC
cluster library (LC library) are illustrated in (e). The relative sizes of the selected lesion are RS(C_1) = 0.939 and RS(D) = 0.061.

density-reachable from pi, where 1≤ i < n and pi ∈ D. The user-
specified initial distance ε is called generating distance (GD). The
smallest distance δ that satisfies Nδ(p)≥MinPts is referred to as
core distance (CD). IfNε(p)< MinPts, the CD does not exist. The
reachability distance (RD) between two points is defined as:

RD(p,q) =
{

0, if Nε(p)< MinPts,
max(CD(p),d(p,q)), otherwise.

(5)

Unreachable voxels (RD(p,q) = 0) are the noise and are excluded
from the clustering. The clustering is started from an unprocessed
point p that satisfies Nε(p) ≥ MinPts. We then store the pair of
points (q, p) with q ∈ Nε(p) that have the smallest RD(p,q). For
any δ with RD(p,q)≤ δ, the points p and q are in the same cluster
as long asNδ(p)≥MinPts. If RD(p,q)> δ, p and q are in different
clusters. Repeatedly, a point k that is closest to the previously picked
core points is selected and stored until traversing all points in space.

A minimum spanning tree (MST) [Pri57] T = {V,E} is em-
ployed, where V and E denote the set of vertices and edges of
graph T , respectively. The weight in T is minimal and it represents
the RD between two points in D. A MST on its local dataset is
computed on a single CPU core, without any communication to
other MSTs. Once all local MSTs are computed, they are merged
into a global MST [PPA∗13]. The final result is obtained by re-
moving any edge (q, p), where RD(p,q) > δ, from the MST and
returning the points in the remaining connected components as the
clusters. The MSTs and connected components can be computed in
parallel, increasing the clustering performance.

To obtain a robust result, we set ε in such a way that 65-70% of a
lesion’s TICs are clustered based on our research. At last, we use a
pointwise boxplot method [SG11], which is similar to a functional
boxplot but requires less computing time to calculate the median
intensity values, 50% regions and an envelope which completely
encloses the values represented by a cluster.

3.2. Visualization

In order to demonstrate how our system visualizes the temporal and
spatial characteristics of a lesion, we selected a malignant tumor as
example. Figures 5a and 5b show this tumor highlighted in red in a
3D and 2D view, respectively. Figure 5c shows the clustered TICs
of the selected tumor, and the spatial distribution of these clusters. A
spherical bin, which is used to calculate the spatial distribution of the
TIC clusters, is shown in Figure 5d. A selected cluster (see Figure 5c,
left column) and its most similar cluster in the lesion and TIC cluster
library (LC library) (see Section 3.3) are shown in Figure 5e. The
selected cluster is colored in orange, while its most similar cluster
is colored in blue.

When a lesion is selected, all its TICs are clustered, and the rep-
resentative curves of each cluster are plotted. If a representative
curve is selected, its 50% region and envelope region will be
shown (see Figure 5c). In this way, it is possible to prevent dif-
ferent clusters from visually overlapping each other. All clusters are
colored based on a scheme determined with color brewer [BHH03]
to prevent the adjacent colors being similar and difficult to distin-
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guish. The legend in Figure 5c describes the following attributes of
a cluster. The first entry shows the corresponding color of the repre-
sentative curve. Secondly, the name of the cluster is given, where
C stands for a normal cluster and D for a cluster that represents
a necrotic region (dead tissue). The third entry is the number of
voxels of the cluster and the last entry describes the relative size
in comparison to the size of all TIC clusters. The TICs that were
classified as noise are not included in the plot. Whenever a cluster
is selected, its statistical distribution is shown in the middle plot
area (see Figure 5c).

To display the correlation between the TIC clusters (temporal
features) and their spatial distribution (spatial features) of a lesion,
we create a sphere with several bins to cover the entire lesion. The
size of these spherical bins (see Figure 5d), which are constantly
five millimeters wide, is plotted on the horizontal axis, and the
number of the clustered voxels in each bin is plotted on the vertical
axis (see Figure 5c, bottom). As shown in Figure 5c, we arrange
the spherical histogram window below the TIC cluster window in
order to provide users with comprehensive means to observe and
analyze the TIC clusters. When comparing two lesions, the right
side is vertically flipped, i.e., the x-axis goes from right to left. By
arranging the windows side by side, differences and similarities
between different tumors can be explored.

3.3. Fuzzy Inference System

We create an LC library (see Figure 6, left column) that stores the
content (TICs, relative sizes, score) of each lesion. This library
provides reference data for predicting a score and for supporting
physicians to confirm the accuracy of the classification results in
a knowledge-assisted analysis way (see Section 3.4). This library
consists of two parts: a set of TIC clusters and a set of lesions.
The contents of each cluster and lesion are saved in these two sets.
The cluster content includes a unique cluster name, color and its
intensity value at a given time point. The lesion content includes the
lesion name, score (given by domain experts) and a set of its TIC
clusters, which is a subset of the library’s set of TIC clusters. This
subset stores the cluster index (lesion’s cluster name) and each TIC
cluster’s relative size.

Meanwhile, similar TIC clusters in the library’s set of clusters will
be merged to clearly reflect the associations between various clusters.
If two lesions link with a large number of the same unique clusters,
these lesions are considered as similar. To merge similar clusters,
we employed the overlap coefficient between two clusters [MK16].
It is defined as:

VS =
|F(Ci)∩F(C j)|

min(|F(Ci)|, |F(C j)|)
, (6)

where i 6= j and F(·) indicates the 50% central region of a cluster. If
VS ≥ 0.8, the cluster with the narrower central region will be merged
with the other one.

When a new lesion (without a score) is put into the LC library, its
score can be predicted via a FIS (see Figure 6). In the following, we
explain the construction of our fuzzy model by linguistic translation,
knowledge generation and prediction.

Linguistic translation. In order to use human semantic expres-
sions to build expert knowledge in a FIS, the cluster’s relative size

Predicted Score & Certainty:
SP = 8.0, SC = 50%

Fuzzy Inference System (FIS)

Lesions In Library:

L1 = {<C1,RS1 >,
<C2,RS2 >,SL1 = 4.0 }
,...... ,
L14 = {< C37,RS1 >,<
C38,RS2 >,< C10,RS3 >
,SL14 = 4.0}

New Lesion:

Lnew = {< C_1,RS1 >,<
D,RS2 >}

Clusters In Library:

GC = {C1,C2, ...,C38}

......Input & Output Variables:

Rules:

L1: if RS(C1) is Large and
RS(C2) is Small then Score
is Intermediate,

L2: if RS(C3) is Small and
RS(C4) is Large and RS(C5)
is Small then Score is
Intermediate, ...,
L14: if RS(C37) is Small and RS(C38) is Large and
RS(C10) is Small then Score is Intermediate

Map of Clusters:

C_1 is most similar with C33

D is merged with C21

Input Values:
RS(C33) = 0.939, RS(C21) =
0.061, others = 0

New Input Lesion New Input Lesion

Figure 6: Illustration of our fuzzy inference system (FIS) workflow.
Ln are the unique lesion names, GC is a set of clusters, Cn are the
unique cluster names, RS is the relative size and Ln is the identifier
of the rules. The left column describes the structure of the LC library
and the right column shows the score prediction process of a new
lesion. The predicted score of the new lesion is SP and the certainty
score is SC.
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and the lesion’s score in the library should be translated into a natu-
ral language representation. The conversion of numbers to linguistic
variables is defined as follows:

KRS =


Small, if 0.0≤ RS(Cn)< 0.4,
Medium, if 0.4≤ RS(Cn)≤ 0.6,
Large, if 0.6 < RS(Cn)≤ 1.0.

(7)

KS =


Benign, if 0≤ S(Ln)≤ 2,
ProbablyBenign, if 2 < S(Ln)≤ 3,
Intermediate, if 3 < S(Ln)< 5,
ProbablyMalignant, if 5≤ S(Ln)< 6,
Malignant, if 6≤ S(Ln)≤ 8,

(8)

where KRS is the knowledge of relative size, KS is the knowledge of
lesion score, RS(Cn) is the relative size of cluster Cn and S(Ln) is
the score of lesion Ln. The score of a lesion is from 0 to 8, based
on GS [FB14], where 0 means benign and 8 malignant.

Knowledge generation. The generation of explicit knowledge is
based on the lesions’ contents in the library and the way humans
think [FWR∗17]. Knowledge is modeled in the form of linguistic
rules and terms and not in the form of exact numbers when fuzzy
logic is involved. These rules usually have the structure of IF-THEN
clauses with their antecedents and consequents using linguistic vari-
ables and terms. The linguistic input and output fuzzy variables and
their linguistic terms are shown in Figure 6. The linguistic terms
Small, Large, Medium of the linguistic input variables are based
on the sigmoid and Gaussian kernel functions, respectively. The
linguistic terms Benign and Malignant of the linguistic output vari-
ables are based on the sigmoid functions, while ProbablyBenign,
Intermediate and ProbablyMalignant use Gaussian kernel functions.
The fuzzy rules Kε represent the domain knowledge in a human
readable form, which can be saved in an external file. This allows
physicians to share and adapt their knowledge with other medical
centers, which possibly increases the reproducibility of the scoring
procedure. For this reason we chose a FIS, a design choice based on
several discussions with one of our collaborating physicians. Some
of the rules are displayed in Figure 6, where RS(Cn) is the relative
size of the cluster Cn in the lesion Ln, and Score is the GS of this
lesions, provided by domain experts.

Prediction. The TIC clusters C_n of the input lesion will be
merged with the clusters Cn in the LC library. If such an input cluster
cannot be merged, it is substituted with the most similar cluster from
the LC library. After merging and substitution, the map of clusters
and lesions will be established (see Figure 6), i. e., C_1←C33 and
D← C21 with {C_1,D} ∈ Lnew and {C33,C21} ∈ LC library. We
use the Mamdani method as inference model and the relative size of
the input lesion’s clusters as input values [MF15]. The schematic
representation of a FIS is shown in Figure 7. For each lesion in the
LC library we generate an IF-THEN rule. The antecedents of these
rules consist of the LC library’s clusters with their relative size and
the consequents are the lesions’ score. The input variables of the
rules are the LC library’s clusters. For each input variable, we use
the relative size of the input lesion’s clusters if the cluster in the LC
library is merged or substituted with the one of the input lesion’s
clusters. If the cluster is not included in the input lesion, its relative
size is zero. All implications (IF-THEN rules) are subsequently
evaluated, their results aggregated using the maximum operator and
then defuzzified with the centroid method [ADL∗17]. The certainty

Input
Values

Fuzzi-
fication

Inference
Defuzzi-
fication

Score

Fuzzy
Rules

Figure 7: Illustration of our fuzzy inference system for breast lesion
classification.

score SC is defined as SC = 100 ·Nm/Nt , where Nm is the number
of the merged clusters and Nt is the total number of TIC clusters
of the input lesion. When SC = 100%, all clusters were merged
with the clusters in the LC library. This represents a certain result,
because the predicted score is derived from existing knowledge. If
no cluster could be merged, i.e., all were substituted, SC = 0%. It is
especially important to show such results to the physicians, as they
are reminded to validate the result by comparing the input lesion
with several known lesions. This can be done by visually comparing
lesions side by side.

3.4. Visual Confirmation

After getting the classification result (score) of a lesion from our
FIS, physicians can confirm this result or correct it. If one input
TIC cluster is selected, its merged or substituted cluster in the LC
library is automatically found and highlighted. Meanwhile, these two
clusters will be plotted simultaneously in the same area for visual
verification (recall Figure 5e). If the input cluster is substituted then
it will be colored in orange, otherwise, the input cluster will be
red if it is merged. All clusters in the LC library can be selected
for visual comparison with the input TIC cluster, which supports
this verification step. The library also assists physicians in their
decision-making by allowing them to examine the fuzzy rule of a
lesion together with their relative sizes of the TIC clusters (IF-THEN
antecedent). By comparing the spatio-temporal information of the
selected lesion with a known lesion, the classification result (score,
IF-THEN consequent) can be further confirmed. If the physicians
think the result is wrong, they can replace the suggested score by the
result obtained from analyzing the lesion using the visual analysis
approach that we provide.

4. Implementation

We implemented the segmentation method, clustering, visualiza-
tion, fuzzy inference system and the knowledge-assisted analysis
approach in C++ using OpenMP, OpenGL, FuzzyLite, Qt and
QCustomPlot. We used Qt5 for the user interface and QCustomPlot
for drawing the TIC plots and histograms. The parallel OPTICS
clustering was implemented in C++ and parallelized with OpenMP.
Volume and slice rendering was implemented in OpenGL. We used
the C++ library FuzzyLite [RV18] for the FIS. All results in this
work have been created on an Intel Core i7 CPU at 2.8 GHz and
32 GB system memory.
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5. Results and Discussions

In this section, we demonstrate example lesions with their TIC
clusters and spatial distributions, also involved with their score
prediction via FIS (see Figures 8 to 10). These lesions encompass
three benign and three malignant tumors, highlighted in red in the
slice views. We separately specify the ε of OPTICS (see Table 1)
for each lesion such that the clustered voxels cover about 65-70%
of the total number of voxels in each lesion (recall Section 3).

Table 1 shows the test results of each lesion, where ID is the
lesion’s identifier, DataSet is the dataset that lesion belongs to, ε is
the parameter for OPTICS clustering, TS is the segmentation time,
TC is the clustering time, SR is the real score which is given by the
domain experts, SP is the prediction score via our FIS using one-fold
cross-validation, and SC is the certainty score (recall Section 3.3).

Figure 8 presents two breast tumors, a malignant (left) and a
benign (right) one. The top images show axial slices of the DCE-
MRI data, with the corresponding lesion identification at the top.
The malignant tumor (left) exhibits necrosis (dead tissue), as shown
by its cluster representative curve (black) and its spatial distribu-
tion. Necrosis is an important indicator of malignancy. Since we
use the alpha channel when filling colors, transition colors appear
when histograms with different colors are overlapping, e.g., the
black histogram in the left that relates to the black cluster curve
is shown as ink-blue. Analyzing clusters C_1 to D of the right le-
sion (see Figure 8, right column), we can observe a clear upward
trend throughout the entire course of time, while the trend of the
left lesion’s cluster C_1 remains flat after 200 seconds. The size of
each cluster or lesion can be directly compared by examining the
spherical histogram of both lesions. Both lesions are removed from
the LC library to predict their score. The suggested GS are 8.0 (left)
and 4.0 (right). The cluster D of the left lesion is merged with C21
in the LC library, and cluster C_1 is substituted (cannot be merged
through the similarity matching, recall Section 3.3) by C11 in the LC
library, so the certainty score of the left lesion is 50%. For the right

Table 1: For each lesion we show its identifier (ID), the dataset
(DataSet) it belongs to, the ε of the OPTICS clustering, the segmen-
tation time (TS), the clustering time (TC), the real score (SR), the
predicted score (SP) and the certainty score (SC).

ID DataSet ε TS[s] TC[s] SR SP SC

L1 D01 6.20 13.2 0.14 2 4.0 0%
L2 D02 0.93 66.5 2.17 4 4.0 100%
L3 D02 1.83 66.5 2.02 5 5.6 33%
L4 D02 0.92 66.5 2.84 5 5.6 50%
L5 D02 2.51 66.5 1.62 7 7.4 0%
L6 D03 0.92 97.3 2.43 4 4.0 50%
L7 D04 0.90 102.6 21.94 4 4.0 80%
L8 D04 0.93 102.6 39.51 7 5.0 100%
L9 D04 2.05 102.6 2.74 4 4.0 50%
L10 D04 4.09 102.6 5.32 4 6.4 33%
L11 D05 1.40 75.8 37.28 6 4.0 25%
L12 D06 0.72 131.4 510.34 8 4.0 33%
L13 D07 0.74 115.1 53.98 7 8.0 50%
L14 D07 0.50 115.1 78.73 4 4.0 33%

FIS

L13 L7

SP = 8.0, SC = 50% SP = 4.0, SC = 75%

Figure 8: Comparison of a malignant (left) and a benign (right)
tumor. An axial slice view of both tumors is shown at the top. The
central images show the TIC clusters and their spatial distribution
is displayed below. The scores suggested by our FIS are given at the
bottom together with their certainty.

lesion, its clusters C_1, C_2 and C_3 are merged with C7, C19 and
C22 in the LC library, respectively, and its cluster D is substituted by
C12 in the LC library, so its certainty score is 75%.

Two malignant lesions are compared in Figure 9. The left lesion
has 2 TIC clusters of which C1 increases slowly and then changes to
a plateau. The right lesion has 4 TIC clusters with a rapid increase
before 200 seconds and a slow increase thereafter. The left lesion
receives a correct predicted score (SR : SP = 7.0 : 7.4) from the FIS,
but the score for the right lesion is lower than the actual score given
by the domain experts (SR : SP = 6.0 : 4.0). The reason for this is
that the clusters C_1 to C_3 of the right lesion show a moderate to
rapid increase and an increasing trend, making it more similar to
the lower scored lesions in the LC library when used by the FIS
for prediction. The rather low certainty score of the left (0%) and
right (25%) lesion advises physicians to compare these lesions with
several known lesions to verify their predicted score.

Two benign lesions are compared in Figure 10. TIC cluster C_1
of the lesion shows a rapid and steady increase, whereas cluster C_1
of the right lesion exhibits similar characteristics, but cluster C_2 of
the right lesion increases slowly and then changes to a plateau. The
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FIS

L5 L11

SP = 7.4, SC = 0% SP = 4.0, SC = 25%

Figure 9: Comparison of two malignant tumors. The left one gets a
correct prediction score while the right one gets a wrong score.

left lesion receives a correct predicted score (SR : SP = 4.0 : 4.0)
from the FIS, but the score for the right lesion is higher than the
actual score given by the domain experts (SR : SP = 4.0 : 6.4). The
reason for this is that the clusters C_2 of the right lesion show a slow
increase and a decrease trend after 350 seconds, making it more
similar to the higher scored lesions in the LC library when used
by the FIS for prediction. The certainty score of the right lesion is
low (33%), physicians are advised to compare it with other known
lesions to make a confident decision on the predicted score.

6. Evaluation

As shown in Table 1, lesions L2, L3, L4, L5, L6, L7, L9, L13 and
L14 are accurately predicted. L1 has the lowest score and it is the
only one with such a low score in our LC library. If L1 is removed
from the library and a new lesion is scored by our FIS, the predicted
score cannot be lower than the minimum score of the current lesions
in the library, which is 4.0. Hence, we consider the predicted score
of L1 to be correct, but plan to add further lesions in the future
to solve this problem. The remaining incorrectly classified lesions
are L8, L10, L11 and L12. Hence, our approach has a prediction
accuracy of 71.4%, with 10 of 14 lesions being correctly classified.

The segmentation time TS (see Table 1) is the time required to
segment all suspicious objects (lesions and their surrounding blood

FIS

L9 L10

SP = 4.0, SC = 50% SP = 6.4, SC = 33%

Figure 10: Comparison of two benign tumors. The left one gets a
correct prediction score while the right one gets a wrong score.

vessels) in both breasts of a single dataset, and TC is the clustering
time used by the parallel OPTICS implementation. The segmen-
tation time is mainly affected by the breast size and number of
suspicious voxels, whereas the clustering time is only affected by
the number of TICs in the lesion. The average segmentation and
clustering time is 87.4 seconds and 54.36 seconds, respectively.

To obtain a qualitative feedback on the applicability of our visual
confirmation analysis, we consulted a radiologist with three years
of experience. In her opinion, the initial goal of such a tool is to
speed up the workflow, reduce the interobserver variability and
improve reproducibility. She also stated that the tool seems to be
quickly understood and learned by radiologists and it seems to be
better suited for uncertain cases. Both statements confirm our design
decisions, as our tool is tailored to radiologists and uncertain cases.
On the one hand, such cases are characterized by low certainty
scores, and on the other hand we provide visual means to confirm or
correct predicted scores. The radiologist also commented that the
lesion scoring is rather subjective and our tool seems to improve the
reproducibility of the scoring. This confirms the design choice of the
FIS, but the radiologist mentioned that this tool does not provide an
objective score. For this we would have to conduct a large, preferably
multicenter, study. In summary, we received indicative feedback that
shows the potential of our tool to deliver reproducible results. To
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obtain a profound assessment of applicability and accuracy, larger
and more comprehensive studies would have to be carried out.

Limitations. Although our approach automatically identifies the
left and right breasts, segments and cluster lesions, and predicts the
score based on FIS, it has some limitations. Firstly, the parameter ε

of the clustering method has to be set manually, which means the
users must have a certain understanding of the spatial distribution
of the data. Secondly, our segmentation algorithm potentially re-
moves small objects that are even difficult for experienced users to
segment, especially if the lesion has only subtle changes over time.
Thirdly, our analysis is currently limited to TICs and their spatial
distribution, which does not involve additional spatial information,
such as morphology and texture. Fourth, the number of datasets we
used to construct the FIS was limited.

7. Conclusions and Future Work

We proposed a knowledge-assisted visual analysis approach that
arranges the temporal and spatial characteristics of TICs side by
side in order to facilitate the classification of breast lesions. By
using our visual analysis approach and FIS classification result,
physicians can make effective use of expert knowledge to provide a
reproducible lesion score. The FIS demonstrated a good prediction
accuracy, even though the number of our datasets was limited. The
visual comparison of two lesions allows physicians to understand
and analyze TIC clusters, which is helpful for tumor assessment.
The 50% central region and the cluster envelope is only displayed for
a selected cluster to avoid the mutual interference between different
clusters in the same plotting area.

Future avenues are an automatic estimation of the parallel OP-
TICS parameter ε and the investigation of the FIS predictive power
by using a larger cohort. We also plan to combine the TIC clusters
with texture as well as morphological features and a profound analy-
sis of a lesion’s boundary. As suggested by one of our collaborating
radiologists, we will extend the temporal and spatial TIC cluster
views with a third histopathological view of a lesion and we plan
to support other imaging modalities such as mammography, normal
magnetic resonance imaging and ultrasound.
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[DVK∗18] DALMIŞ M. U., VREEMANN S., KOOI T., MANN R. M.,
KARSSEMEIJER N., GUBERN-MÉRIDA A.: Fully automated detection
of breast cancer in screening MRI using convolutional neural networks. J
Med Imaging 5, 1 (Jan. 2018). doi:10.1117/1.JMI.5.1.014502.
1

[FB14] FISCHER U., BAUM F.: Diagnostik und Therapie des Mam-
makarzinoms. Georg Thieme Verlag, Jan. 2014. 7

[FGKD01] FURMAN-HARAN E., GROBGELD D., KELCZ F., DEGANI
H.: Critical role of spatial resolution in dynamic contrast-enhanced
breast MRI. J Magn Reson Imaging 13, 6 (June 2001), 862–867. doi:
10.1002/jmri.1123. 2, 4

[FKG99] FISCHER U., KOPKA L., GRABBE E.: Breast Carcinoma:
Effect of Preoperative Contrast-enhanced MR Imaging on the Ther-
apeutic Approach. Radiology 213, 3 (Dec. 1999), 881–888. doi:
10.1148/radiology.213.3.r99dc01881. 1

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

22

https://doi.org/10.1148/radiol.14121031
https://doi.org/10.1007/s10278-010-9298-1
https://doi.org/10.1016/j.acra.2009.03.017
https://doi.org/10.1016/j.acra.2009.03.017
https://doi.org/10.3322/caac.21492
https://doi.org/10.1559/152304003100010929
https://doi.org/10.1089/10665270360688057
https://doi.org/10.1016/j.datak.2006.01.013
https://doi.org/10.1016/j.compmedimag.2007.02.007
https://doi.org/10.1016/j.jacr.2009.07.023
https://doi.org/10.1016/j.jacr.2009.07.023
https://doi.org/10.1109/TMI.2012.2191302
https://doi.org/10.1118/1.4937787
https://doi.org/10.1117/1.JMI.5.1.014502
https://doi.org/10.1002/jmri.1123
https://doi.org/10.1002/jmri.1123
https://doi.org/10.1148/radiology.213.3.r99dc01881
https://doi.org/10.1148/radiology.213.3.r99dc01881


K. Nie et al. / Knowledge-Assisted Comparative Assessment of Breast Cancer using Dynamic Contrast-Enhanced Magnetic Resonance Imaging

[FWR∗17] FEDERICO P., WAGNER M., RIND A., AMOR-AMORÓS A.,
MIKSCH S., AIGNER W.: The role of explicit knowledge: A conceptual
model of knowledge-assisted visual analytics. In Proc. of IEEE VAST
(Oct. 2017), pp. 92–103. doi:10.1109/VAST.2017.8585498. 7

[GNPS13] GLASSER S., NIEMANN U., PREIM B., SPILIOPOULOU M.:
Can we distinguish between benign and malignant breast tumors in DCE-
MRI by studying a tumor’s most suspect region only? In Proc. of Interna-
tional Symposium on Computer-Based Medical Systems (2013), pp. 77–82.
doi:10.1109/CBMS.2013.6627768. 3

[GPTP10] GLASSER S., PREIM U., TÖNNIES K., PREIM B.: A visual
analytics approach to diagnosis of breast DCE-MRI data. Comput Graph
34, 5 (Oct. 2010), 602–611. doi:10.1016/j.cag.2010.05.016.
2, 3

[HHHV01] HIEKEN T. J., HARRISON J., HERREROS J., VELASCO J. M.:
Correlating sonography, mammography, and pathology in the assessment
of breast cancer size. The American Journal of Surgery 182, 4 (Oct. 2001),
351–354. doi:10.1016/S0002-9610(01)00726-7. 2

[HKvH08] HEMMER J. M., KELDER J. C., VAN HEESEWIJK H. P. M.:
Stereotactic large-core needle breast biopsy: analysis of pain and dis-
comfort related to the biopsy procedure. Eur Radiol 18, 2 (Feb. 2008),
351–354. doi:10.1007/s00330-007-0762-3. 1

[IFDS16] IORIO C., FRASSO G., D’AMBROSIO A., SICILIANO R.: Par-
simonious time series clustering using P-splines. Expert Syst Appl 52,
Supplement C (June 2016), 26–38. doi:10.1016/j.eswa.2016.
01.004. 3

[KKSZ11] KRIEGEL H.-P., KRÖGER P., SANDER J., ZIMEK A.: Density-
based clustering. Data Min Knowl Discov 1, 3 (2011), 231–240. doi:
10.1002/widm.30. 3

[KMK∗99] KUHL C. K., MIELCARECK P., KLASCHIK S., LEUTNER
C., WARDELMANN E., GIESEKE J., SCHILD H. H.: Dynamic breast
MR imaging: Are signal intensity time course data useful for differential
diagnosis of enhancing lesions? Radiology 211, 1 (Apr. 1999), 101–110.
doi:10.1148/radiology.211.1.r99ap38101. 2

[Kuh07] KUHL C.: The Current Status of Breast MR Imaging Part I.
Choice of Technique, Image Interpretation, Diagnostic Accuracy, and
Transfer to Clinical Practice. Radiology 244, 2 (2007), 356–378. doi:
10.1148/radiol.2442051620. 2

[MBB∗17] MUS R. D., BORELLI C., BULT P., WEILAND E., KARSSE-
MEIJER N., BARENTSZ J. O., GUBERN-MÉRIDA A., PLATEL B.,
MANN R. M.: Time to enhancement derived from ultrafast breast MRI as
a novel parameter to discriminate benign from malignant breast lesions.
Eur J Radiol 89 (Apr. 2017), 90–96. doi:10.1016/j.ejrad.2017.
01.020. 1

[MCW∗16] MARINO M. A., CLAUSER P., WOITEK R., WENGERT G. J.,
KAPETAS P., BERNATHOVA M., PINKER-DOMENIG K., HELBICH
T. H., PREIDLER K., BALTZER P. A. T.: A simple scoring system
for breast MRI interpretation: does it compensate for reader experi-
ence? Eur Radiol 26, 8 (Aug. 2016), 2529–2537. doi:10.1007/
s00330-015-4075-7. 1
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