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Abstract
Themodel of aDoubleGyre flow by Shadden et al. is a standard benchmark data set for the computation of hyperbolic Lagrangian
Coherent Structures (LCS) in flow data. While structurally extremely simple, it generates hyperbolic LCS of arbitrary complexity.
Unfortunately, the Double Gyre does not come with a well-defined ground truth: the location of hyperbolic LCS boundaries can
only be approximated by numerical methods that usually involve the gradient of the flow map. We present a new benchmark data
set that is a small but carefully designed modification of theDouble Gyre, which comes with ground truth closed-form hyperbolic
trajectories. This allows for computing hyperbolic LCS boundaries by a simple particle integration without the consideration of
the flow map gradient. We use these hyperbolic LCS as a ground truth solution for testing an existing numerical approach for
extracting hyperbolic trajectories. In addition, we are able to construct hyperbolic LCS curves that are significantly longer than
in existing numerical methods.
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1. Introduction

The analysis of hyperbolic Lagrangian Coherent Structures (LCS)
is a standard problem in several fields like dynamical systems,
physics and flow visualization. It has been subject of an in-
tensive research over the last decade. Most modern hyperbolic
LCS concepts consider the gradient of the flow map of a veloc-
ity field. This gradient field is known to be challenging: even
if the velocity field is numerically well-behaved – i.e., velocity
and its gradient are smooth and bounded – the gradient of the
flow map can increase exponentially with increasing integration
time, which makes an extremely careful sampling of the flow map
necessary.

Once new techniques for hyperbolic LCS extraction and analysis
are developed, they need to be evaluated for some test data to verify
correctness and accuracy and desired properties empirically before
they can be applied to real world flow data. Such test data should
have the following properties:

• They should have a simple form, ideally as a closed formula.
• They should generate LCS of complexity and difficulty compara-
ble to what is expected in the real data.

• The ground truth – i.e., the correct locations of the LCS – should
be either known or be trivially computable with high accuracy,
i.e.without consideration of the flow map gradient.

A double gyre is a flow pattern that frequently occurs in geo-
physical flows [HS19a, AU01, SMW99]. In 2005, Shadden et al.
[SLM05] introduce a simple model of a double gyre that became
a success story among LCS test data sets. It is just a simple closed
formula of a 2D time-dependent velocity field that produces LCS of
arbitrary complexity. With increasing integration time, length and
density of hyperbolic LCS increase exponentially, which makes the
Double Gyre a perfect tool for testing hyperbolic LCS extrac tion
methods. In the remaining paper, Double Gyre refers to the par-
ticular data set in [SLM05] rather than to the general flow pattern.

After its introduction by Shadden et al. [SLM05], the Double
Gyre became omnipresent in the LCS and flow visualization lit-
erature. (The original paper has been cited more than 1000 times,
a significant subset of them, we estimate several hundreds, use the
Double Gyre data set.) In recent years there is hardly any paper
on hyperbolic LCS extraction that does not test its methods on the
Double Gyre. There are even papers [BK17] that use the Double
Gyrewithout mentioning its original source [SLM05]. The success
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of the Double Gyre as benchmark data comes from the combina-
tion of an extremely simple closed-form description and an arbitrary
complex output in terms of hyperbolic LCS.

Despite its success, the Double Gyre comes with a significant
shortcoming: Given a certain integration time, the exact positions
of the LCS are unknown. In fact, they can only be computed nu-
merically by analysing the flow map gradient, making them prone
to numerical errors.

The key to computing 2D hyperbolic LCS are hyperbolic tra-
jectories and their local stable and unstable manifolds [Hal00]. In
fact, ’finite-time Lyapunov exponents and finite strain maps approx-
imate the set of all global stable and unstablemanifolds that could be
more accurately reproduced numerically if one knew the exact loca-
tion of some organizing orbits with strong or, uniform, hyperbolic-
ity’ [Hal00]. Knowing the hyperbolic trajectories in a velocity field
reduces the hyperbolic LCS extraction to a simple and stable parti-
cle integration without consideration of the flow map gradient. This
way, hyperbolic LCS and hyperbolic trajectories can be treated syn-
onymously: once we have the perfect hyperbolic LCS, hyperbolic
trajectories are part of them. Conversely, if we have hyperbolic tra-
jectories, the whole hyperbolic LCS can be obtained almost for free,
i.e. by numerical integration that relies only on the location and not
in the derivative of the flow map.

For the Double Gyre, neither the location of hyperbolic LCS
nor of the hyperbolic trajectories are known in a closed form. An
analysis of the Double Gyre shows that the numerically extracted
hyperbolic trajectory looks very similar to a sine curve. However,
there is no closed-form description of the hyperbolic trajectories of
the Double Gyre, and hence numerical methods are necessary to
approximate them. Our goal is to make a small modification of the
Double Gyre that makes its hyperbolic trajectory a perfect sine
curve that can be described as a closed-from solution. It turns out
that such representation can be found and that this can be done with
a reparametrization of the time domain.

In this paper, we introduce a new benchmark data set that is a
small modification of the Double Gyre with the following proper-
ties:

• It should be close to the Double Gyre and in particular should
have LCS of similar complexity.

• Contrary to the Double Gyre, the hyperbolic trajectories are
known in a closed form. This allows for computing hyperbolic
LCS by a stable and well-behaved particle integration, i.e.without
any consideration of the flow map gradient.

We utilize our Modified Double Gyre in an evaluation of exist-
ing techniques for the extraction of hyperbolic trajectories, and for
an evaluation of the quality of existing ridge line extractors in 2D
Finite-Time Lyapunov Exponent (FTLE) scalar fields.

Notation. We denote the Double Gyre as v(x, t ) = v(x, y, t ) and
the corresponding flow map as φτt (x), i.e.,

∂

∂τ
φτt (x) = v(φτt (x), t +

τ ). We also consider the spatial gradient ∇φ = dφ
dx of the flow map.

The newModified Double Gyre is named v̄(x, t ) and comes with its
flowmap φ̄τt (x) and its flowmap gradient∇φ̄. I denotes the unit ma-
trix.

2. The Modified Double Gyre Data Set in a Nutshell

Given the Double Gyre v(x, t ) [SLM05, Sha05] as in (7)–(11), we
propose a Modified Double Gyre

v(x, t ) = v(x, t + p)

with

p = p(t ) = arcsin(q)

ω
− t

q = q(t ) = −π c sin(r) + arcsin
( cω cos(r)

Aπ

)
π ε (c2 sin(r)2 − 1)

r = r(t ) = ω t + d.

This data set has the sine curve

g(t ) =
(
c sin(r) + 1

0

)

as ground truth hyperbolic trajectory. For the particular parameter
choice (15) of the Double Gyre, we set

c = −0.2040811331, d = 9.964223388 .

3. Related Work

LCS are coherent trajectory patterns in flows that preserve certain
properties over a (finite or infinite) integration time [Hal15]. Differ-
ent types of LCS are known [HFB*17]: elliptic (vortex type), hy-
perbolic (attracting or repelling), and parabolic (jet core type) struc-
tures. Since the Double Gyre resembles hyperbolic LCS, we focus
on hyperbolic LCS here.

Flow benchmark datasets. Several benchmark data sets are be-
ing used in the literature. Some examples for analytical two-
dimensional data sets are the Double Gyreby Shadden [SLM05],
multiple variations of the forced Duffing equation [HS11, RSPB11,
FH13] and a Bickley jet [RSPB11, OHH15]. In his papers Haller
has also used some simpler, unnamed flows (e.g. [Hal02a, Hal11]).
Analytical examples for three-dimensional flows include the ABC-
Flow [Mof88], a Rayleigh-Benard-Convection [LSM06] or a tor-
nado flow [Cra03]. Moreover there are several simulated data sets
like cylinder flow simulations [GGT17, KC93], backward facing
step simulations [GSM*14, BAC93] or delta wing simulations
[PNNS88, PNNS86]. However, we are not aware of a benchmark
data set that is as widespread as the Double Gyre.

Hyperbolic trajectories. Hyperbolic trajectories are the key to un-
derstanding hyperbolic LCS. Haller [Hal00] defines hyperbolic tra-
jectories as trajectories (path lines) with a maximal hyperbolicity
time dT , i.e. the trajectory spends a maximal time within an area
where the determinant of the Jacobian of v is negative. In fact,
[Hal00] gives conditions for a trajectory x(t ) to be a HT:

det∇v(x(t ), t ) < 0for allt ∈ [t0, t0 + T ] (1)

√
2β

(
1

λ1min
+ 1

λ2min

)
< α (2)

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



S. Wolligandt et al. / A Modified Double Gyre with Ground Truth Hyperbolic Trajectories for Flow Visualization 211

with

J(t ) = ∇v(x(t ), t ) = M(t )

(−λ1(t ) 0
0 λ2(t )

)
(M(t ))T , (3)

i.e., the eigenvalues of J are −λ1 < 0 < λ2 and the columns of M
contain the corresponding normalized eigenvectors of J, and

λkmin = min
[t0,t0+T ]

λk(t ) , k = 1, 2 (4)

α = min
[t0,t0+T ]

‖ detM‖ (5)

β = max
[t0,t0+T ]

∥∥∥∥dMd t
∥∥∥∥. (6)

Based on this, a number of approaches for the numerical extraction
of hyperbolic trajectories have been proposed. [Hal00] considers the
local maxima of the hyperbolicity time in both forward and back-
ward direction. [ÜSE13] finds hyperbolic trajectories by intersect-
ing the ridges of forward and backward FTLE. In addition to these
integration-based methods, local methods to get hyperbolic trajec-
tories have been proposed. Haller [HP98] shows that under certain
conditions the location of critical saddle points of v can represent
hyperbolic trajectories. Machado et al. [MBES16] relate hyperbolic
trajectories to bifurcation lines [PC87, MSE13] and present a two-
step approach for the extraction: first, the location of vanishing ac-
celeration a or jerk b of the vector field v are found as initial values
of an optimization which moves in a second step these initial lines
towards a path line of v. This way a localized approach (i.e. with-
out computing the flow map of v) to get hyperbolic trajectories is
obtained.

Once the hyperbolic trajectories are found, there are several well-
established approaches to compute the corresponding stable and un-
stable manifolds [YKY91, MSWI03]. [MBES16, ÜSE13, SW10]
compute generalized streak lines starting in the neighbourhood of
the hyperbolic trajectories.

Finite-Time Lyapunov Exponents (FTLE):. FTLE is one of the
most common approaches to define and extract hyperbolic LCS.
Even though its pros and cons are well-studied and a number of
alternative LCS concepts is available, FTLE is still among the most
prominent approaches to extract hyperbolic LCS, in particular in
Flow Visualization. The FTLE is a well known scalar measure, that
describes the temporal “‘stretch”’ of particles released in a flow.
Haller introduced the extraction of ridge structures in FTLE fields,
which correspond to LCS in flow fields [HY00, Hal01, Hal02b].
Shadden et al. [SLM05] show that for increasing integration time
ridges of FTLEfields converge approximately tomaterial structures.
A general introduction into LCS and their use for describing flow
dynamics is given in [Hal15], which explains how LCS boundaries
can be extracted via FTLE ridges. However it also states that there
are several issues of FTLE in the context of LCS-extraction.

FTLE and its ridges have been used in various applications:
Lekien et al. [LCM*05] and Coulliette et al. [CLP*07] use FTLE
ridges to describe the pollution process of coastal environments in
bay areas. Andrade-Canto et al. [ACSZ13] use backward FTLE to
predict the behaviour of Eddies in the Gulf of Mexico. Wilde et al.

[WRT18] track FTLE ridges by increasing the resolution in re-
gions where ridges evolve over integration time; they also extract
the ridge geometries. A lot of research is dedicated to improving
performance and accuracy of FTLE ridge computation [GGTH07,
SP07, GLT*09, SP09, GOPT11, HSW11, PPF*11, SRP11].

Most of the approaches mentioned above restrict themselves to
ridge curves in 2D flows. There are also few approaches that extract
ridge surfaces in 3D flows for moderate integration times. Sadlo and
Peikert [SP07] present FTLE ridge surfaces where care is taken on
an adaptive grid generation. Schindler et al. [SPFT12] show both,
standard height ridge extraction and C-ridge tracking to get 3D sur-
faces. [SFB*12] show C-ridge surfaces for an analysis of revolving
doors. Üffinger et al. [ÜSE13] present streak surfaces as approxi-
mations to LCS. Depending on the accuracy of the seed structures
(obtained by extremely high sampling), streak surfaces and FTLE
ridges show strong agreement. [BT13] propose an adaptive smooth
reconstruction of the flow map field from the sample points based
on Sibson’s interpolation, which gives a more stable ridge extrac-
tion than on the original sampling. The results could be used as a
qualitative ground truth, a quantitative solution is missing.

Periodic vector fields. Periodic vector fields are a special case for
which the treatment of hyperbolic trajectories is significantly more
simple: they correspond to the identities in the Poincare map with
negative determinant of the Jacobian [HP98, RK94,Wig92]. In flow
visualization, this has been exploited in [STW*06].Wemention this
because the Double Gyre (as well as the newmodified Double Gyre)
are periodic; we will use this periodicity for our contribution.

Double Gyre data set. The Double Gyre data set was introduced
by Shadden et al. [SLM05]. It mimics a Double Gyre pattern,
which typically occurs in various geophysical flows. The core idea
was to provide an analytic form of a time-varying vector field
showing such behaviour that stays within a rectangular domain.
The paper provides the stream-function, the corresponding velocity
field and studies material transport over extracted LCS. In the
following we list some typical examples that use the Double
Gyre as a benchmark to show both its importance and versatility.
Germer et al. [GOPT11] study guaranteed material separation
along LCS. Schindler et al. [SPFT12] evaluate new ridge concepts
for LCS. [BT13] and [WRT18] evaluate adaptive refinement strate-
gies for the flow map as well as extraction of ridge geometries.
Machado et al. [MBES16] extract LCS via space time bifurcation
lines. Günther et al. [GKT16] present a method that computes
high quality FTLE ridges and ridge surfaces based on Monte-Carlo
path tracing. Hummel et al. [HBJG16] analyse an error estimation
for Lagrangian representations of flows. Hofmann et al. [HS19b]
extract recirculation surfaces [WRT19] with the dependent vectors
operator in 2D. [FS16] uses the Double Gyre to study mixing
enhancement, while [FP09] considers almost-invariant manifolds
with the help pf the Double Gyre.

The Double Gyre is given with a set of parameters that can
be altered to influence the behaviour of the flow. Although most
works use the original parameters given by Shadden et al. , other
versions exist: For instance, Sadlo et al. [SW10] extend the domain,
to receive a flow field consisting of four rotating gyres. Wilde et al.
[WRT19] provide a 3D version of the Double Gyre.
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LCS ground truth. In order to evaluate the accuracy of techniques
for extracting hyperbolic LCS the results have to be compared to a
ground truth. Preferably the ground truth is given in a closed-form,
to allow for an evaluation for any desired parameter at the high-
est possible accuracy. Unfortunately for realistic flow data sets no
such closed forms exist. Kuhn et al. [KRWT12] provide artificial
non-trivial vector fields with closed-form solutions for the corre-
sponding FTLE fields. These could be used to (numerically) deter-
mine LCS.While they provide fields with ground truth FTLE ridges,
these ridges are less complex as, e.g., the Double Gyre for longer
integration times. [RG19] introduces a modification of the Double
Gyre based on a domain deformation. Similar to [KRWT12], this
approach cannot produce LCS of a similar complexity as the Dou-
ble Gyre.

4. The Double Gyre Flow

The Double Gyre by Shadden et al. [SLM05] is defined by a 2D
time-dependent stream function

ψ (x, t ) = A sin(π f (x, t )) sin(πy) (7)

with

f (x, t ) = a(t ) x2 + b(t ) x (8)

a(t ) = ε sin(ω t ) (9)

b(t ) = 1 − 2 ε sin(ω t ). (10)

Then the Double Gyre is the co-gradient of ψ :

v(x, t ) =
(
0 −1
1 0

)
∇ψ , (11)

which is usually considered within the spatial domain [0, 2] ×
[0, 1]. Note that both v and∇v are bounded. In fact, for x ∈ [0, 2] ×
[0, 1] we have ‖v‖ < 1 and ‖∇v‖ < 4 for the usual parameter set-
tings (15). This means that we can expect a numerical integration
of v to be stable, even for longer integration times. Since particles
never leave the domain [0, 2] × [0, 1], we can also expect the com-
putation of the flow map φ to be stable. Contrarily, the gradient of
the flow map ∇φ experiences an exponential increase in magnitude
with respect to the integration time. This fact makes the exact nu-
merical computation of ∇φ challenging.

The Double Gyre comes with the time periodicity

v(x, t ) = v
(
x, t + i

2π

ω

)
(12)

and the mirror time symmetries

v
(
x,

π

2ω
+ i

π

ω
− t

)
= v

(
x,

π

2ω
+ i

π

ω
+ t

)
(13)

for any integer i ∈ Z where (13) can be rewritten as

v(x, t ) = v
(
x,
π (2 i+ 1)

ω
− t

)
. (14)

Usually, the Double Gyre is considered with the parameters

ε = 1

4
, ω = 2π

10
, A = 1

10
(15)

resulting in the periodic data set with the time period t = 10.

5. The Modified Double Gyre

Our goal is a small modification of the Double Gyre that makes
a sine curve a hyperbolic trajectory. We consider the particular sine
curve

g(t ) =
(
g(t )
0

)
=

(
c sin(r) + 1

0

)
(16)

with

r = r(t ) = ω t + d.

Note that g(t ) has the same periodicity as v, i.e., g(t ) = g(t + i 2π
ω
)

for any integer i ∈ Z. Also, g(t ) comes with two parameters c and
d, which will be discussed later on.

Our approach to modifying the Double Gyre is to apply a
“slight” reparametrization in time, i.e., we define theModified Dou-
ble Gyre as

v(x, t ) = v(x, t + p) , (17)

where p = p(t ) describes the reparametrization in time. The func-
tion p should have the following properties:

• p should be rather small: the smaller p, the more similar are v and
v.

• p should have the same periodicity as v: p(t ) = p(t + i 2π
ω
). This

ensures that v and v have the same time periodicity.
• p should ensure that g(t ) is a hyperbolic trajectory of v.

Since by definition a hyperbolic trajectory is a path line of v, we
need to solve

d g(t )
d t

= v(g(t ), t ) = v(g(t ), t + p) (18)

for the unknown function p = p(t ). Fortunately, (18) has a closed-
form solution:

p = p(t ) = arcsin(q)

ω
− t (19)

with

q = q(t ) = −π c sin(r) + arcsin
( cω cos(r)

Aπ

)
π ε (c2 sin(r)2 − 1)

. (20)

The proof that (19) and (20) are the solutions of (18) is in the ap-
pendix.

It remains to be shown that g(t ) is indeed a hyperbolic trajectory
of v. For this we consider the Jacobian matrix of v along g(t ):

J(t ) = ∇v(g(t ), t ) (21)

for which it can be shown that it has the form

J(t ) =
(
h 0
0 −h

)
(22)
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Figure 1: The function q(t ) for different choices of c and d Blue:
c = 0.25, d = 0; red: c = 0.15, d = 0; blue: c = 0.15, d = 2; light
blue: c = −0.2040811331, d = 9.964223388. The light blue is the
optimal function q(t ) obtained by solving (26). Note that c gives a
(non-linear) scaling and d a domain translation. Also note that q(t )
is not a sine curve.

with

h = h(t ) = 2π
√

−c2 ω2 cos(r)2 + A2 π 2

(
sin(r) c ε q+ 1

2

)
. (23)

The proof that the Jacobian matrix (21) along g has indeed the form
(22), (23) is in the appendix as well. If we assume

h(t ) > 0 (24)

for all t ∈ R, (22) gives (1) for arbitrary T . In other words, the hy-
perbolicity time of g(t ) is infinity for both forward and backward
integration, the trajectory never leaves a hyperbolic area. Further-
more, (22),(24) give for (4)–(6) by

λ1min = λ1min > 0 , M = I , α = 1 , β = 0. (25)

This proves (2). With this the proof that g(t ) is a hyperbolic trajec-
tory of v for arbitrary long integration times under the assumption
(24) is done.

In order to finalize the proof (i.e. to show (24)), we switch to
the particular parameter setting (15) in which the Double Gyre is
usually considered. The function p(t ) needs some further consider-
ation to become applicable. On the one hand, p(t ) contains arcsine
functions for which we have to make sure that the arguments are
within the interval [−1, 1], and that – since arcsine is not injective:
all (−1)i arcsin(x) + iπ have the same value for i ∈ Z – we pick
the ”correct” function value. Moreover, we have to find the best pa-
rameters c and d of the desired hyperbolic trajectory. To do so, we
analyse the function q(t ).Figure 1 shows q(t ) for different parame-
ters c and d. Note that even if q(t ) looks similar to a sine curve, it is
not! (If it was a perfect sine curve, (19) would give that p(t ) = const,
meaning that g(t ) would be already a hyperbolic trajectory of v.)

Wewant to chose c and d such that q(t ) comes as close as possible
to a sine curve with periodicity 10. This means that q(t ) should have
a local maximum of 1 at the location t = 5

2 . For this we need to solve
the following system of equations

q

(
5

2

)
= 1 ,

d q

d t

(
5

2

)
= 0 (26)

for the unknowns c, d. Unfortunately, we are not aware of a closed-
form solution of (26). However, we can solve (26) numerically (see

Figure 2: left: visual comparison of the function q fulfilling (27)
(red) and the function sin πt

5 (blue): the functions are similar but
not identical; right: q(t ) under perturbations of c, d: dark blue: c
= −.20, d= 9.964223389; light blue: c= −.2040811332, d= 9.9;
red: c = −.2040811332, d = 10.0; green: q fulfilling (27). All per-
turbations are similar to the sine function.

Figure 3: The function h(t ) for the parameter choices (27), (15) is
positive for any t.

the accompanying Maple sheet) resulting in the following approxi-
mate solutions:

c = −0.2040811331 and d = 9.964223388 . (27)

This gives the optimal function q(t ) that is shown as the light blue
curve in Figure 1. Note that it is close to but not exactly the function
sin πt

5 . If it was, (19) would yield p(t ) = 0. Figure 2 (left) shows
a visual comparison of the optimal function q fulfilling (27) and
the function sin πt

5 . The numerical solution of (27) may introduce a
numerical error. This error does not infer the property of v̄ having
the closed-form hyperbolic trajectory, but it may affect the distance
of v and v̄. However, a parameter study shows that the solutions are
stable under perturbations of c, d. Figure 2(right) shows the function
q for perturbed values of c, d from (27), revealing that q is still rather
similar to a sine curve.

The remaining problem is the non-injectivity of the arcsine func-
tion. In fact (14) and (12) give that if we have a particular solution
of p(t ), the following functions are solutions as well:

p(t ) + i 10 and 5 + i 10 − 2t − p(t ) (28)

for any integer i ∈ Z. Since we want p(t ) as small as possible, we
select the solution with the smallest absolute value.

Once (27) is set, we can consider the correctness of (24).
Figure 3 shows a plot of h(t ) for the parameters (27), (15). It shows
that p(t ) ∈ [0.8, 1.2] for all t, i.e. (24) is safely fulfilled. With this
we have finally shown that g(t ) is a hyperbolic trajectory of v.
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Figure 4: left: the function p(t ) + t is almost linear for t ∈ [0, 10];
right: the function p(t ) is rather small in comparison to the period-
icity time.

Figure 5: LIC of v and v (upper line), height fields of ‖v‖ and ‖v‖
(middle line) for t = 0; height field of ‖v − v‖ (lower line): v and v
are rather similar.

Analysis of p and v̄After showing that g is a hyperbolic trajectory
of v̄, we still need to show that v and v̄ are similar, and in particu-
lar that v and v̄ produce LCS of a similar complexity. For this, we

analyse the function p describing the time reparametrization of v̄.
Figure 4 (left) shows a plot of the time parameters t + p of v̄ over
time period. It can hardly be distinguished from a linear function.
Figure 4 (right) shows the function p for t ∈ [0, 10], indicating that
‖p(t )‖ < 0.006 2π

ω
where 2π

ω
is the time periodicity of v and v̄ re-

spectively. We consider p rather small in comparison to the time
periodicity.In fact, | d pd t | is much smaller than 1, which ensures that
the time reparametrization in (17) is always regular [Far97]. Also
note that p(t ) is not a sine function, even though it looks similar.
This also shows that the Double Gyre does not have a sine curve
as hyperbolic trajectory. If it had, p(t ) would be constant.

We further compare v and v. Note that for t = 5
2 , v and v are

almost identical because figure 4(right) shows that p is almost zero.
The largest difference between v and v can be expected when ‖p‖
becomes maximal, e.g., for t = 0. Figure 5 shows the LIC images
of v and v as well as ‖v‖ and ‖v‖ as height fields for t = 0. Figure 5
(lower line) also shows ‖v − v‖ being in the range between 0 and
0.01, in comparison to ‖v‖, ‖v‖ being in the range between 0 and
0.3.

The similarity of v and v does not necessarily mean that they pro-
duce similar LCS because minimal differences in v and v could be
accumulated during the LCS integration. To test this, in figure 6 we
compute the FTLE fields for v and v for different integration times.
It shows that v and v give similar FTLE fields. Furthermore, in fig-
ure 7 we give a direct comparison of an FTLE ridge in v and v for
a specific integration time. The position of the ridge differs only in
a small amount. This is an indicator that v gives LCS of a similar
complexity as the Double Gyre v.

We conclude this section with the recommendation: for further
analyses of LCS, it is recommended to replace the Double Gyre
v by the Modified Double Gyre v because with this we lose almost
nothing (v and v are similar and produce similar LCS) but win a
lot: the availability of ground truth hyperbolic trajectories and hence
ground truth LCS.

6. Results

The availability of ground truth hyperbolic trajectories allows
us to compute ground truth LCS by computing their stable and

Figure 6: Comparison of FTLE fields of the Double Gyrev (top) and the Modified Double Gyrev (bottom) for t = 0.0 and τ = 10.0 (left),
τ = 15.0 (middle) and τ = 25.0 (right). FTLE of v and v look rather similar, indicating that v is obtained from v by only aminimalmodification.
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Figure 7: Combined visualization of the FTLE fields (top) with close up of selected areas (bottom) of the DoubleGyre Shadden et al. (red) v
and theModified DoubleGyrev (blue) for t = 0.0 and τ = 20.0. Positions of characteristic FTLE ridges of v and v show only small differences,
indicating that both vector fields are rather similar.

Figure 8: Ground truth hyperbolic trajectory line as seed curve
(green) of a generalized streak surface; time slices (red) of the gen-
eralized streak surface correspond to the LCS curve.

unstable manifolds. For this we use an approach similar to
[MBES16, ÜSE13, SW10]: we integrate a generalized streak sur-
face starting in the neighbourhood of g(t ). This way the LCS bound-
ary l(t, τ ) is obtained by

l(t, τ ) = φ
−τ
t+τ (g(t + τ ) + μ e(g(t + τ ), t + τ )) , (29)

where e(x, t ) describes the eigenvector corresponding to the nega-
tive eigenvalue of ∇v(x, t ), and μ is a small offset. In order to ex-
tract the LCS, we do not actually integrate a meshed streak surface
as seen in Figure 8. Instead, we integrate single path lines starting
at g(ti), ti ∈ [t · · · t + τ ] in backward direction just long enough that
the end point of a single path line reaches time t. If the distance d of
two adjacent end points xi and xi+1 starting at g(ti) and g(ti+1), re-
spectively, exceeds a distance threshold dmin another path linewill be
integrated starting at g( 12 (ti + ti+1)). To obtain a smooth LCS curve

this process is repeated until the distance from xi to its new suc-
cessor falls below dmin. Figure 8 illustrates the construction of the
LCS boundaries.

Our ground truth LCS line (29) comes with two parameters τ
and μ that need to be analysed. Figure 9 shows l(0, 60) for different
choices of μ. Figure 10 shows l(0, τ ) for μ = 1e−10 for different
choices of τ . Figure 11 shows the arc length of l(0, τ ) for different
choices of μ, τ . It shows that arc length of l shows an exponential
growing on both μ and τ . While for μ this behaviour can be easily
explained (a particle needs an exponential time to move away from
a location close to the hyperbolic trajectory), the exponential depen-
dency on τ seems to be a property of the particular data set and not
of general LCS. Note that the exponential dependency on τ appears
for largerμ, i.e. when l has a certain length due to multiple foldings.

With the ground truth hyperbolic trajectory we obtain long LCS
boundaries under low computation times: In our tests the longest
computation time was 58 s with μ = 0.1 and τ = 60, which gives
an arc length of about 11,000.

6.1. Evaluation of a FTLE ridge extractor

We apply our ground truth hyperbolic trajectories to evaluate an ex-
isting numerical approach to FTLE ridge line extraction especially
focusing on rather long integration times. It is known that FTLE
ridge lines represent LCS. However, their numerical extraction is
challenging: firstly, FTLE fields tend to have extreme gradients,
making a careful adaptive subdivision necessary to get a reliable
ridge line geometry. Secondly, FTLE can produce false positives,
i.e. ridge lines due to high sheer instead of flow separation. We
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Figure 9: Impact of varying μ for fixed τ = 60. Left: μ = 1e−2, arc length = 6 943.47. Centre: μ = 1e−4, arc length = 3 407.08. Right:
μ = 1e−8, arc length = 837.985.

Figure 10: Impact of varying τ for fixed μ = 1e−10. Left: τ = 30, arc length = 1502.36. Centre: τ = 40, arc length = 837.985. Right:
τ = 60, arc length = 418.808.

Figure 11: Arc lengths of LCS curves with varying μ and τ in log-
log plot.

consider the particular approach [WRT18]. We compare the quality
of the extracted ridges with the ground truth LCS of v. Figure 13a
shows the FTLE field of v for t = 0 and τ = 25 in a colour cod-
ing similar to Figure 6. Figure 13b shows the extracted FTLE ridge
geometry by the approach in [WRT18]. This needs to be compared
with our new ground truth LCS that is shown in figure 13c. The com-
parison of Figures 13b and 13c show that [WRT18] finds all FTLE
ridges but fails to deliver them as connected line structures. More-
over, [WRT18] find a number of false positives, i.e. FTLE ridges
that are not LCS.

6.2. Evaluation of a local approach to extract hyperbolic
trajectories

With the help of the ground truth hyperbolic trajectory we evaluate
the local approach [MBES16] to extract hyperbolic trajectories by
relating them to 2D space-time bifurcation lines. It starts with the
initial line of vanishing acceleration a = ∇v v + vt = 0 or vanish-
ing jerk b = ∇a v + at = 0 respectively as starting values following
by an optimization to move the initial lines towards a path line.

Figure 14 (upper) shows the ground truth hyperbolic trajectory
of v in space-time together with lines a = 0, b = 0, v = 0 and
x = (1, 0)T . All of them differ from the ground truth hyperbolic tra-
jectory. While the line a = 0 as suggested in [MBES16] is closest
to the ground truth of all candidates, it is not clear if this a general
property or it only holds for the particular data set.

In a second experiment, we started the optimization described
in [MBES16] from the initial lines a = 0, b = 0, v = 0 and x =
(1, 0)T . For all the initial curves except b = 0, the optimization con-
verges towards the ground truth hyperbolic trajectory, as shown in
Figure 14 (lower). Also this experiment does not reveal any special
property of the line a = 0.

To further analyse the technique in [MBES16], we analyse if it
guarantees to always find a hyperbolic trajectory. For this, we con-
sider a simple new test data set w that is different to v but is con-
structed in the same spirit:

w(x, t ) = 81 − (x2 + y2)2

160

(−x+ cos(t ) − 2 sin(t )
y− sin(t ) + 2 cos(t )

)
(30)

that has a hyperbolic trajectory at gw(t ) = (cos t, sin t )T . (To show
that gw is indeed a hyperbolic trajectory w, we need to check that
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Figure 12: Left: ground truth hyperbolic trajectory gw(t ) =
(cos t, sin t )T ofw(x, t ) counterexample in green passing through in-
tersections of forward and backward FTLE ridges at times t0 = −5,
t1 = 0 and t2 = 5. Grey cylinder has radius r = 3. Centre column:
a = 0 (orange) and b = 0 (purple) of counterexample with ground
truth hyperbolic trajectory Right column: application of [MBES16]
to a = 0 and b = 0 after 1000 iterations. Both a = 0 and b = 0 do
not converge to the ground truth hyperbolic trajectory.

gw is a path line of w fulfilling (1), (2), which can be shown by
straightforward computations.)

Figure 12 (left) shows the ground truth hyperbolic trajectory gw(t )
in space-time which passes through the intersections of forward and
backward FTLE ridges at times t0 = −5, t1 = 0 and t2 = 5. The cen-
tre column of figure 12 shows the lines a = 0 (orange) and b = 0
(purple). This is possible by omitting the solutions located at the
circle with radius r = 3 (grey cylinder in space-time) where a and
b are also equal to 0. The right column of figure 12 shows that the
application of [MBES16] to a = 0 and b = 0 does not converge to
gw.

With this, Figure 12 is a counterexample that [MBES16] always
finds hyperbolic trajectories.

7. Discussion

This is perhaps not a usual CGF paper because it neither describes
a new technical contribution nor a classical application, system or
evaluation. As such, it does not fit into any standard category of
Visualization or Computer Graphics. However, we believe that the
introduction of a new benchmark data set with provable properties

Figure 13: Comparison between LCS extracted by FTLE ridges
and the ground truth. (a) FTLE field for theModified Double Gyre
data set with overlay of the ground truth LCS (red) (note: domain
was extended to [−0.1, 1.0] × [0.0, 2.0] to better visualize the LCS
origin). (b) FTLE ridges extracted by the approach in [WRT18] (c)
ground truth LCS.

– closed-form ground truth hyperbolic trajectories – is useful for
testing new techniques for extracting LCS and this way brings Flow
Visualization forward.

The new data set focuses on forward LCS. A very similar ap-
proach can be applied to treat backwards LCS: a slight time-
reparametrization v̄′ of v to have the curve

g′(t ) =
(
c′ sin(r′(t )) + 1

1

)

as bifurcation line. With this we can even construct a test data set
with ground truth hyperbolic trajectories for both forward and back-
ward LCS:

¯̄v = (1 − y) v̄ + y v̄′
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Figure 14: Lines of v. green: ground truth hyperbolic trajectory, red: v = 0, orange: a = 0, purple: b = 0, black x = (1, 0)T . All curves lie
in the plane y = 0. Bottom: v = 0, a = 0 and x = (1, 0)T (left) converge to the ground truth hyperbolic trajectory. b = 0 does not converge
(right).

However, note that ¯̄v is no longer a time-reparametrization of v
anymore.

While v̄ has a ground truth hyperbolic trajectory, the computation
of the LCS boundaries still requires a numerical integration. While
this can be considered to be stable – it involves only the flow map
and not its gradient – it would be nice to have a non-trivial data set
similar to v where the whole LCS line is given as a ground truth
closed-form curve. At present, we are not aware of any such solu-
tion.
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Appendix A

Proof that (19) and (20) are the solutions of (18):

We rewrite the Double Gyre by Shadden et al. (7)–(11) by

a =a(t ) = ε sin(ω t ) (A1)

f = f (x, t ) = x+ ax(x− 2) (A2)

fx = df

dx
= 1 + 2a(x− 1) (A3)

ψ (x, t ) =A sin(π f ) sin(πy) (A4)

v(x, t ) =
(−ψy

ψx

)
=

(−Aπ sin(π f ) cos(πy)
Aπ fx cos(π f ) sin(πy)

)
(A5)

which is identical to (7)–(11). Based on this, the Modified Double
Gyre(17) writes as

ā =ε sin(ω (t + p)) (A6)

f̄ =x+ āx(x− 2) (A7)

f̄x =1 + 2ā(x− 1) (A8)

v(x, t ) =
(−Aπ sin(π f̄ ) cos(πy)
Aπ f̄x cos(π f̄ ) sin(πy)

)
. (A9)

Observing v along the ground truth curve g(t ) = ( g(t )0 ) as defined
in (16), we realize that the second component of g is always zero,
giving the following description of v(g(t ), t ):

¯̄f =g+ āg(g− 2) (A10)

v(g(t ), t ) =
(−Aπ sin(π ¯̄f )

0

)
. (A11)

Since dg(t )
dt = ( cω cos(r)

0 ), (A11) gives that (18) is fulfilled for

−Aπ sin(π ¯̄f ) = Aπ sin(π ¯̄f − π ) = cω cos(r) (A12)

which is equivalent to

¯̄f = arcsin
( cω cos(r)

Aπ

)
π

+ 1. (A13)

Rewriting (A10) and keeping g= c sin(r) + 1 in mind gives

ā =
¯̄f − c sin(r) − 1

c2 sin(r)2 − 1
. (A14)
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Inserting (A13) into (A14) gives

ā = arcsin
( cω cos(r)

Aπ

) − π c sin(r)

π (c2 sin(r)2 − 1)
(A15)

Rewriting (A6) gives

p = arcsin
(
ā
ε

)
ω

− t. (A16)

(A15) and (A16) prove (19) and (20) for q = ā
ε
.

Proof that the Jacobian matrix (21) along g has the form (22),
(23).

Starting from (A9), we compute the Jacobian of the Modified
Double Gyre as

J(x, t ) = ∇v(x, t )

=
(−Aπ 2 f̄x cos(π f̄ ) cos(πy) A sin(π f̄ )π 2 sin(πy)

−Aπ sin(πy) d( f̄x cos(π f̄ ))dx Aπ 2 f̄x cos(π f̄ ) cos(πy)

)
.

(A17)

Observing J along the ground truth curve g(t ), we use again the fact
that the second component of g(t ) is zero, resulting in

J(t ) =
(
h̄ 0
0 −h̄

)
(A18)

with

¯̄fx =1 + 2ā(g− 1) (A19)

h̄ = − Aπ 2 ¯̄fx cos(π ¯̄f ). (A20)

With this it remains to show that h̄ = h as defined in (23). For this
we insert (16), (A10), (A19) into (A20), resulting in

h̄ = −2A cos
(
π (ā(sin(r)2c2 − 1) + c sin(r) + 1)

)
π 2

(
āc sin(r) + 1

2

)
.

Then (A15) and q = ā
ε
gives h = h̄ for A > 0.

References

[ACSZ13] Andrade-Canto F., Sheinbaum J., Zavala Sansón
L.: A Lagrangian approach to the Loop Current eddy separation.
Nonlinear Process Geophys 20, 1 (2013), 85–96.

[AU01] ADIGA B., UCE B.: Global bifurcation of shilnikov type
in a double-gyre ocean model. J. Phys. Oceanogr 31 (09 2001).

[BAC93] Baek B. J., Armaly B. F., Chen T. S.: Measure-
ments in Buoyancy-Assisting Separated Flow Behind a Verti-
cal Backward-Facing Step. Journal of Heat Transfer 115, 2 (05
1993), 403–408.

[BK17] Banisch R., Koltai P.: Understanding the geometry of
transport: diffusion maps for lagrangian trajectory data unravel
coherent sets. Chaos: An Interdisciplinary Journal of Nonlinear
Science 27, 3 (2017), 035804.

[BT13] Barakat S. S., Tricoche X.: Adaptive refinement of the
flowmap using sparse samples. IEEE Trans. Vis. Comput. Graph.
19, 12 (2013), 2753–2762.

[CLP*07] Coulliette C., Lekien F., Paduan J. D., Haller G.,
Marsden J. E.: Optimal pollution mitigation in monterey bay
based on coastal radar data and nonlinear dynamics. Environ-
mental Science & Technology 41, 18 (2007), 6562–6572. PMID:
17948809

[Cra03] Crawfis R.: Tornado data set generator, 2003. http://web.
cse.ohio-state.edu/∼crawfis.3/Data/Tornado/

[Far97] Farin G.: Curves and Surfaces for Computer Aided Geo-
metric Design, 4th ed. Academic Press, Boston, 1997.

[FH13] Farazmand M., Haller G.: Attracting and repelling la-
grangian coherent structures from a single computation. Chaos:
An Interdisciplinary Journal of Nonlinear Science 23, 2 (2013),
023101.

[FP09] Froyland G., Padberg K.: Almost-invariant sets and in-
variant manifolds– connecting probabilistic and geometric de-
scriptions of coherent structures in flows. Physica D. 238, 16
(2009), 1507–1523.

[FS16] Froyland G., Santitissadeekorn N.: Optimal mix-
ing enhancement, SIAM J. Appl. Math. 77, 4 (2017), 1444–
1470.

[GGT17] Günther T., Gross M., Theisel H.: Generic objective
vortices for flow visualization. ACM Transactions on Graphics
(Proc. SIGGRAPH) 36, 4 (2017), 141:1–141:11.

[GGTH07] Garth C., Gerhardt F., Tricoche X., Hans H.: Effi-
cient computation and visualization of coherent structures in fluid
flow applications. IEEE Transactions on Visualization and Com-
puter Graphics 13, 6 (2007), 1464–1471.

[GKT16] Günther T., Kuhn A., Theisel H.: MCFTLE:
Monte Carlo rendering of finite-time Lyapunov exponent fields.
Computer Graphics Forum (Proc. EuroVis) 35, 3 (2016),
381–390.

[GLT*09] Garth C., Li G.-S., Tricoche X., Hansen C. D., Ha-
gen H.: Visualization of Coherent Structures in Transient 2D
Flows. Springer, Berlin, Heidelberg, 2009, pp. 1–13.

[GOPT11] Germer T., Otto M., Peikert R., Theisel H.: La-
grangian coherent structures with guaranteedmaterial separation.
Computer Graphics Forum (Proc. EuroVis) 30, 3 (2011), 761–
770.

[GSM*14] Günther T., Schulze M., Martinez Esturo J.,
Rössl C., Theisel H.: Opacity optimization for surfaces.
Computer Graphics Forum (Proc. EuroVis) 33, 3 (2014),
11–20.

[Hal00] Haller G.: Finding finite-time invariant manifolds in
two-dimensional velocity fields. Chaos (Woodbury, N.Y.) 10 (04
2000), 99–108.

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

http://web.cse.ohio-state.edu/~crawfis.3/Data/Tornado/
http://web.cse.ohio-state.edu/~crawfis.3/Data/Tornado/


220 S. Wolligandt et al. / A Modified Double Gyre with Ground Truth Hyperbolic Trajectories for Flow Visualization

[Hal01] Haller G.: Distinguished material surfaces and coher-
ent structures in three-dimensional fluid flows. Physica D. 149, 4
(2001), 248–277.

[Hal02a] Haller G.: Lagrangian coherent structures from approx-
imate velocity data. Phys. Fluids 14, 6 (2002), 1851–1861.

[Hal02b] Haller G.: Lagrangian coherent structures from approx-
imate velocity data. Phys. Fluids 14, 6 (2002), 1851–1861.

[Hal11] Haller G.: A variational theory of hyperbolic lagrangian
coherent structures. Physica D. 240, 7 (2011), 574–598.

[Hal15] Haller G.: Lagrangian coherent structures. Annu. Rev.
Fluid Mech. 47 (2015), 137–62.

[HBJG16] Hummel M., Bujack R., Joy K. I., Garth C.: Error
estimates for Lagrangian flow field representations. Proceedings
of the Eurographics/IEEE VGTC Conference on Visualization:
Short Papers (2016), 7–11.

[HFB*17] Hadjighasem A., Farazmand M., Blazevski D.,
Froyland G., Haller G.: A critical comparison of lagrangian
methods for coherent structure detection. Chaos: An Interdisci-
plinary Journal of Nonlinear Science 27, 5 (May 2017), 053104.

[HP98] Haller G., Poje A.: Finite time transport in aperiodic
flows. Physica D. 119, 3 (1998), 352–380.

[HS11] Haller G., Sapsis T.: Lagrangian coherent structures and
the smallest finite-time Lyapunov exponent. Chaos 21, 2 (June
2011), 023115.

[HS19a] Harrison D. E., Stalos S.: On the wind-driven ocean
circulation.

[HS19b] Hofmann L., Sadlo F.: The dependent vectors operator.
Comput Graph Forum. 38, 3 (2019).

[HSW11] Hlawatsch M., Sadlo F., Weiskopf D.: Hierarchical
line integration. IEEE Trans Vis Comput Graph 17, 8 (2011),
1148–1163.

[HY00] Haller G., Yuan G.: Lagrangian coherent structures
and mixing in two-dimensional turbulence. Physica D. 147, 3-
4 (2000), 352–370.

[KC93] Kumar R., Conover T.: Flow visualization studies of a
swirling flow in a cylinder. Exp. Therm. Fluid Sci. 7, 3 (1993),
254–262.

[KRWT12] Kuhn A., Rossl C., Weinkauf T., Theisel H.: A
benchmark for evaluating FTLE computations. IEEE Pacific
Visualization Symposium 2012, PacificVis 2012 - Proceedings
(2012), 121–128.

[LCM*05] Lekien F., Coulliette C., Mariano A. J., Ryan E.
H., Shay L. K., HallerG.,Marsden J.: Pollution release tied to
invariant manifolds: a case study for the coast of Florida. Physica
D. (2005).

[LSM06] Lekien F., Shadden S., Marsden J.: Lagrangian coher-
ent structures in n-dimensional systems. J Math Phys. 48 (2006),
065404.

[MBES16] Machado G. M., Boblest S., Ertl T., Sadlo F.:
Space-time bifurcation lines for extraction of 2D Lagrangian co-
herent structures. Comput Graph Forum. 35, 3 (2016), 91–100.

[Mof88] Lighthill J., Lighthill M., OF Minnesota Institute
for Mathemetics U., Applications I., of Mathematics I.,
Applications I.: An Informal Introduction to Theoretical Fluid
Mechanics. IMA monograph series. Clarendon Press, 1986.

[MSE13] Machado G. M., Sadlo F., Ertl T.: Local extraction of
bifurcation lines. In Proceedings of International Workshop on
Vision, Modeling and Visualization (VMV) (2013), pp. 17–24.

[MSWI03] Mancho A., Small D., Wiggins S., Ide K.: Compu-
tation of stable and unstable manifolds of hyperbolic trajectories
in two-dimensional, aperiodically time-dependent vector fields.
Physica D. 182 (3-4) (8 2003), 188–222.

[OHH15] Onu K., Huhn F., Haller G.: Lcs tool: A computa-
tional platform for lagrangian coherent structures. J. Comput. Sci.
7 (2015), 26–36.

[PC87] Perry A. E., Chong M. S.: A description of Eddying mo-
tions and flow patterns using critical-point concepts. Annu. Rev.
Fluid Mech. 19, 1 (1987), 125–155.

[PNNS86] PAYNE F., NG T., NELSON R., Schiff L.: Visualiza-
tion and flow surveys of the leading edge vortex structure on delta
wing planforms. In 24th Aerospace Sciences Meeting (1986),
p. 330.

[PNNS88] Payne F., Ng T., Nelson R., Schiff L.: Visualization
and wake surveys of vortical flow over a delta wing. AIAA Jour-
nal 26, 2 (1988), 137–143.

[PPF*11] Pobitzer A., Peikert R., Fuchs R., Theisel H.,
Hauser H.: Filtering of FTLE for Visualizing Spatial Separation
in Unsteady 3D Flow. Springer, 2012, pp. 237–253.

[RG19] Rojo I. B., Günther T.: Vector field topology of time-
dependent flows in a steady reference frame. IEEE Transactions
on Visualization and Computer Graphics (Proc. IEEE Scientific
Visualization) (2019).

[RK94] Rom-Kedar V.: Homoclinic tangles-classification and ap-
plications. Nonlinearity 7, 2 (1994), 441–473.

[RSPB11] Rypina I. I., Scott S. E., Pratt L. J., Brown M. G.:
Investigating the connection between complexity of isolated tra-
jectories and lagrangian coherent structures. Nonlinear Process
Geophys. 18, 6 (2011), 977–987.

[SFB*12] Schindler B., Fuchs R., Barp S., Waser J., Pobitzer
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