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Abstract: Soil spectroscopy is a promising alternative to evaluate and monitor soil and water quality,
particularly in mountainous agricultural lands characterized by intense degradation and limited
soil tests reports; a few studies have evaluated the feasibility of VIS-NIR spectroscopy to predict
Mehlich 3 (M3) extractable nutrients. This study aimed to (i) examine the potential of VIS-NIR
spectroscopy in combination with partial least squares regression to predict M3-extractable elements
(Ca, K, Mg, P, Fe, Cd, Cu, Mn, Pb, and Zn) and basic soil properties (clay, silt, sand, CaCO3, pH, and
soil organic carbon-SOC), (ii) find optimal pre-processing techniques, and (iii) determine primary
prediction mechanisms for spectrally featureless soil properties. Topsoil samples were collected
from a representative area (114 samples from 525 ha) located in the mountainous region of NW
Azerbaijan. A series of pre-processing steps and transformations were applied to the spectral data,
and the models were calibrated and evaluated based on the coefficient of determination (R2), root
mean square error (RMSE), and the residual prediction deviation (RPD). The leave-one-out cross-
validated predictions showed that the first derivative spectra produce higher prediction accuracies
(R2 = 0.51–0.91; RPD = 1.20–2.29) for most soil properties. The evaluation of the model performance
with optimal pre-processing techniques revealed that both calibration and validation models produce
considerable differences in RPD values associated with sample size and the random partition of the
calibration or validation subsets. The prediction models were excellent or very good (RPD > 2.0)
for CaCO3, SOC, sand, silt, Ca, and Pb, good or fair (1.4 < RPD < 2.0) for clay, K, Cd, pH, Fe,
Mn, and Cu, and poor (1.0 < RPD < 1.4) for Mg, P, and Zn. Principal component and correlation,
stepwise regression analysis, and variable importance in projection procedures allowed to elucidate
the underlying prediction mechanisms. Unlike the previous studies, the spectral estimations of pH,
Ca, Mg, P, Fe, Pb, and Cd concentrations were linked to their correlation with CaCO3 rather than soil
organic matter, whereas Mg and P concentrations were also connected to Fe-oxides. Soil particle sizes
contributed to predicting K concentration but confounded the prediction of P and Zn concentration.
The weaker correlations of Mn, Cu or Zn with CaCO3, particle sizes, SOC, Fe, and spectral data
yielded to their lower prediction accuracy. The major prediction mechanisms for M3-extractable
elements relied on their relations with CaCO3, pH, clay content and mineralogy, and exchangeable
cations in the context of their association with land use. The results can be used in mountain lands to
evaluate and control the effect of management on soil quality indices and land degradation neutrality.
Further studies are needed to develop most advantageous sampling schemes and modeling.
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1. Introduction

Land-use intensification associated with land-use change and conventional agriculture
significantly affects soil properties, quality, and ecosystem services, and hence comprises
important aspects for future sustainable land management [1]. Therefore, monitoring soil
properties in response to agricultural practices, land use, mining, and climate change is criti-
cal, especially in mountainous regions, where the soils are prone to severe land degradation
processes, such as on-site and off-site impact, erosion, leaching clay particles and nutrients,
and deterioration of water quality by chemicals [2]. Recent developments of site-specific
crop management and precision agriculture have significantly heightened the need for
more time- and cost-efficient techniques and methods of soil analyses [3]. Spectroscopic
techniques are considered fast, cost-effective, and non-hazardous, and multiple soil charac-
teristics can be estimated from the same spectra [4]. The number of studies examining the
potential of applications of reflectance spectroscopy in agriculture is steadily increasing all
over the world [4]. Many of these investigations have evaluated individual wavelength
ranges separately, while others have combined several ranges of wavelength to estimate soil
properties and quality indices [1,5–7]. Among these techniques, laboratory-based visible
and near infrared spectroscopy (VIS-NIR or NIR) has been reported as an alternative to
traditional soil analytical methods, which are often time consuming and costly, providing
limited information on the soil spatial variability [4,8–10].

Partial least squares regression (PLSR) is one of the most commonly used methods
to establish relations between soil properties and spectral data, as reported by review
studies [11,12]. The robustness of the prediction models depends not only on data pre-
processing and proper calibration methods, but also on soil properties, relationships be-
tween them, and the number of samples used for the calibration and validation [13–15].
Many studies have focused on the potential of VIS-NIR spectroscopy to predict a wide
range of soil physical, chemical, and biological properties in different climatic regions
of the world [4,16,17]. Along with basic soil properties, different forms of nutrients and
heavy metals in soils have been predicted with VIS-NIR spectra in varying scales [6,7,18,19].
Compared to basic soil properties (pH, texture, soil organic carbon (SOC), exchangeable
cations, electrical conductivity (EC), available N and P, microbial biomass, and respiration),
fewer studies have focused on the prediction of Mehlich 3 (M3) extractable chemicals, e.g.,
microelements and metals using VIS-NIR reflectance spectra.

The M3-extraction procedure [20] is a simple, rapid, and universal soil chemical
analysis method used worldwide [21,22]. With its extraction power on the border between
weak (e.g., CaCl2) and strong (e.g., aqua regia) ranges, the M3 method enables the extraction
of a wide spectrum of elements, such as macro (e.g., Ca, Mg, K, and P), micro (e.g., Cu, Fe,
Mn, Ni, and Zn), and toxic elements (e.g., As, Cd, Cr, and Pb) [20]. Moreover, M3 extraction,
which is related to the available or total macro- and micronutrients, heavy metal contents,
and soil exchangeable cations, could have great potential to be used for massive analysis of
soils and water samples from mountain agricultural areas with a heterogenic landscape,
site-specific farming, and specific soil systems and properties for application of advanced
approaches across various scales (e.g., GIS, remote sensing, precision agriculture) to control
soil quality and land degradation neutrality [23].

As a reference method, M3-extractable elements have been calibrated with VIS-NIR
reflectance spectra in a few studies [18,24–26], whereas other works have focused on pre-
dicting M3-extractable elements using NIR spectroscopy [24,27,28]. Abdi et al. [24] applied
modified PLSR and 40 spectral pretreatments, both separately and combined, to improve
VIS and NIR calibration models for predicting M3-extractable elements as well as other
basic soil properties. They concluded that the prediction accuracy for P, Fe, and Ca with
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NIR was better than that based on VIS-NIR spectra, whereas other soil parameters were pre-
dicted more accurately with the whole VIS-NIR spectrum [24]. Hively et al. [25] attempted
to predict different soil properties including M3-extractable elements in flat and well-
drained local cultivated fields using airborne imaging spectrometer data (400–2450 nm)
combined with PLSR. Despite the fact that the spectral data were acquired via an air-borne
manner, 15 of 19 soil properties were predicted with an R2 > 0.50 [25]. Vašát et al. [26]
focused on enhancing continuum-removed spectra of VIS-NIR reflectance data by using all
spectral features and their parameters and then relating these parameters to M3-extractable
nutrients by employing a multiple linear regression technique. The authors compared their
results with PLSR outcomes that were achieved without using pre-processing techniques
and found notable differences between them. Therefore, the capability of PLSR combined
with un-processed spectra was not thoroughly apparent [26]. Luce et al. [18] assessed
the potential of VIS-NIR spectroscopy to predict total, M3- and DTPA-extractable, and
water-soluble heavy metal concentrations in different agricultural soils treated with paper
mill biosolids and byproduct lime. The study concluded that VIS-NIR spectroscopy has
the capacity to predict total M3 and DTPA nutrients and, to a lesser extent, water-soluble
soil heavy metals, especially when site-specific samples were used. The validation results
were good to excellent (R2 > 0.70, RPD > 1.70) for M3-extracted Cu, Cd, and Ni and weaker
(R2 < 0.70, RPD < 1.70) for Zn [18].

Besides the VIS-NIR prediction capabilities, several studies have focused on the pre-
diction mechanisms of a series of underlying soil properties including plant-available
macro and micronutrients [18,19,29]. In this regards, principal component analysis (PCA)
is an effective approach to elucidate complex interrelationships among soil properties
and, hereafter, the relations between soil properties and spectra [19,30]. Cheng et al. [19]
successfully employed PCA biplots, as well as correlation and partial correlation analysis,
to clarify mechanisms behind the estimation of heavy metal concentrations from VIS-NIR
spectra. Thus, particular emphasis needs to be given to spectrally featureless soil properties,
especially M3-extractable elements, since much less is known about their prediction mech-
anisms. Some basic soil properties are contributors, and others are confounders for the
prediction of spectrally featureless soil characteristics. In this context, we propose VIS-NIR
spectroscopy to be a supplementary tool for estimating M3-extractable elements and the
assessment of soil properties in the mountainous agricultural lands, including the Lesser
Caucasus Mountains, where high soil and land-use variability and degradation is typical.

Generally, more attention has been paid to arable soils, especially in lowland areas,
whereas soils in mountainous regions have received less consideration in view of spec-
troscopy approaches [12]. More than 50% of Azerbaijan territory is mountainous, which
necessitates the agricultural importance of the mountainous lands, including the Lesser
Caucasus Mountains. In recent decades, this fragile mountain ecosystem experienced
serious land degradation, soil quality reduction (e.g., soil macro- and micro-nutrients, SOC,
clay particles, pH, and Ca), and damaged water resources by sediment and nutrients or
chemicals through flooding, excessive runoff, and water erosion. These environmental
problems are associated with both natural and anthropogenic factors such as changing
climate conditions, heterogeneous topography, and improper land management without
conservation measures, including intensive cultivation and land-use change from grassland
to cropland, uncontrolled livestock grazing, and deficiency of ground cover. Improper
cultivation is considered one of the main causes of land degradation in the Caucasus Moun-
tains, and small-scale farming (0.2 to 3 ha) due to land tenure ownership is challenged
with limited methodologies and knowledge of soil surveying and controlling soil quality
via sustainable soil management and conservation, i.e., increasing SOC, minimizing soil
disturbance, using crop rotation, and cover crop. The recently initiated implementation
of sustainable land management practices for maintaining soil fertility and reducing land
degradation neutrality within the Global Soil Partnership (i) targets landscape restoration
and reverse land degradation via monitoring and evaluation, and (ii) requires updated
land use and soil quality information, which is solely based on very limited, outdated
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data collected in the 1980s [31]. Therefore, monitoring the dynamics of land productivity,
soil quality, and fertility associated with agricultural management practices and land-use
change in the instable system of the Lesser Caucasus Mountains requires the applica-
tion of both soil survey and spectroscopic prediction and hence future upscaling land
degradation neutrality.

Only a very limited number of reports are available from Azerbaijan [32–34] and other
mountainous regions of the world on the status of soil fertility, including the spectroscopic
prediction of M3 nutrients for soil quality monitoring purposes; in this sense, this study is
a pioneering study. Therefore, the objectives of this study are (i) to evaluate the feasibility
of VIS-NIR spectroscopy and PLSR modelling to predict M3-extractable elements (Ca,
Mg, Cd, Cu, Fe, K, P, Pb, Mn, and Zn) in a representative test area of the Caucasus
Mountains, (ii) to analyze the input of different pre-processing techniques, and (iii) to study
the prediction mechanism of underlying soil characteristics. Thus, the spectrally active
basic soil properties, namely CaCO3, particle sizes, SOC, and pH, that affect nutrients
solubility and mobility were involved in the VIS-NIR estimations. Unlike the past reports,
this study focused on the VIS-NIR spectroscopic determination of M3 elements and basic
soil properties in a comparatively large mountainous agricultural area (525 ha) where
small-scale farming and different land-use types are typical.

2. Materials and Methods
2.1. Study Area and Soil Sampling

The study was performed in the foothill belt in the Lesser Caucasus Mountains in
Azerbaijan (Figure 1). The study area (525 hectares) is located between 40.8401◦ N and
40.8701◦ N latitudes, 45.6201◦ E and 45.6401◦ E longitudes, and its elevation ranges from 745
to 1100 m. The typical climate is temperate (Mediterranean climate) with mild–dry winters.
The annual precipitation and average air temperature are 570 mm and 10.2 ◦C, respectively.
According to the World Reference Base for Soil Classification [35], the accommodating soil
group is Kastanozem, and the soil moisture regime is xeric. The study area is complex in
geological setting with a high diversity of rock types.
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Figure 1. Geographical location of the study area (Digital Elevation Model data (USGS SRTM 1-ArcSecond
Global DEM) was downloaded from www.earthexplorer.usgs.gov, accessed on 11 July 2018).

The morphology is typically characterized by gentle slopes (~15◦) with tonalites and
quartz-diorites of the upper Jurassic lower Cretaceous. The typical parent material is
sedimentary rocks and carbonate-rich deluvial sediments, especially in the footslopes,
where slopes are gentle. Soil erosion is a typical phenomenon in the study area associated
with natural conditions, slope inclination, and land-use intensity. Therefore, severely

www.earthexplorer.usgs.gov


Land 2022, 11, 363 5 of 24

eroded soils and outcrops of bedrocks occur in the south-, south-east-faced, and steep
slopes [31,33]. Agricultural land-use types for the study area are pastures, hayfields, cereals,
and potato planting. Although local shrubby lands are typical, those areas are often under
agricultural use as permanent pastures. The soil properties are highly variable and related
to variations in topography, geological settings, and land-use history [36].

A soil survey (114 samples: ~1 sample per 5 hectare) was conducted with consideration
of the terrain heterogeneity of the investigated foothill area to collect samples from areas
representing the different land-use types [21]. The sampling locations were randomly
(irregularly) designated and cover variations in land use, topography, geological substrate,
and the erosive state of the soil system. A Garmin GPS Map 62s was used to determine
geographical coordinates of the sampling locations. The soil samples (each of ~2 kg) were
collected from the topsoil horizon (0–15 cm) and air-dried, milled, and sieved through
a 2 mm sieve in the laboratory. The samples were divided into two parts for spectral
measurements and chemical analyses.

2.2. Chemical Analyses and Descriptive Statistics

The particle sizes (sand, silt, and clay) were determined by the hydrometer method [37],
calcium carbonate (CaCO3) content using a pressure-calcimeter [38], and soil organic carbon
(SOC) content using the Walkley–Black method [39]; soil pH was measured in deionized
water with a soil solution ratio of 1:1. Since the laboratory determination of clay mineralogy
is time-consuming and expensive, the cation exchange capacity (CEC) to clay ratio (clay
activity in soil taxonomy) of the soils was used to characterize the clay mineralogy and the
CEC/Clay ratio was also well-predicted (R2 = 0.86) from mid-infrared diffuse reflectance
spectra [40]. The elements Ca, Cd, Cu, Fe, K, Mg, Mn, P, Pb, and Zn were digested using the
Mehlich 3 procedure [20] and then measured by Atomic Absorption Spectroscopy (Thermo
Scientific ICE 3000 Series, Pittsburgh, PA, USA). The elements K, Mg, and Ca were extracted
by Mehlich III and Ammonium Acetate and measured with Inductively Coupled Plasma
emission spectroscopy for validation purposes and CEC calculation as a sum of cations.

The detection limits were calculated as three times the standard deviation of 20 replicate
measurements of the blank. The used standard solution concentrations were (i) 0, 5, 10,
25, 50, and 100 mg dm−3 for K, Ca, Mg, and P, (ii) 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and
10.0 mg dm−3 for Zn, Cu, Mn, Pb, and Cd, and (iii) 0.0, 0.5, 1.0, 2.5, 5.0, 10.0, 25.0,
50.0, and 100.0 mg dm−3 for Fe. The used standard solutions (K, Mg, and Ca: AVS—
Titrinorm 1000 mg dm−3 ± 0.2% VWR Chemicals; PO4

3: 10 g dm−3 Fixanal, Fluka an-
alytical; Zn, Cu, and Mn: 1000 mg dm−3 ± 4 mg dm−3 Fixanal, Fluka analytical; Fe:
999 mg/dm3 ± 4 mg dm−3 Fixanal, Fluka analytical; Cd and Pb: 1 g dm−3 ± 5 mg dm−3

Fixanal, Regional Office of Measures and Control, department of analytical chemistry)
and the solution concentration range were related to the routine method used by the soil
testing laboratories.

The results of the chemical analyses were statistically analyzed to characterize the
data nature and spatial distribution and variability of the soil parameters. The descriptive
statistics included the calculation of the mean, maximum, minimum, median, standard
deviation (SD), and the coefficient of variation (CV). The CV values were considered [41]
small (<20%), moderate (20–50%), or large (>50%). Since no reference data showed a
normal distribution, Spearman’s Rho correlation coefficients (r) were used to characterize
the relationships between the studied soil properties. The relationships were considered
very weak, weak, moderate, strong, and very strong when the r values varied between
0.00 ± 0.19, 0.20 ± 0.39, 0.40 ± 0.59, 0.60 ± 0.79, and 0.80 ± 1.00, respectively [42]. The
statistical analysis was computed in an R software environment [43]. The analysis of
variance (ANOVA) was conducted to assess the effects of land use on soil properties, where
mean comparisons were performed using the Tukey–Kramer HSD test at p < 0.05. A
stepwise regression analysis was used to examine the effects of basic soil properties on
M3 elements.
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2.3. VIS-NIR Reflectance Measurements and Pre-Processing of Spectroscopic Data

For the spectral reflectance measurement, samples were placed inside circular trans-
parent Petri dishes (10 cm in diameter and 1.5 cm in depth), and the sample surface was flat-
tened to create a smooth surface. An ASD FieldSpecPro FR (Analytical Spectral Devices Inc.,
Boulder, CO, USA) spectroradiometer was used to measure soil reflectance in a dark room.
Its spectral resolution was 3 nm in the 350–1000 nm range and 10 nm in the 1000–2500 nm
range. The sampling interval was 1.4 nm in the 350–1000 nm range and 2 nm in the
1000–2500 nm range. The sample was illuminated using an ASD Pro Lamp equipped with
a 50 W halogen lamp under a zenith angle of 45◦ located at 31 cm from the soil sample.
The bare fiberoptic of the spectroradiometer was placed in nadir position, 11 cm above the
sample surface, allowing the circular measurement area of approximately 4 cm in diameter.
The measured raw spectral data were divided by the reflectance values of a white reference
panel (Spectralon®, 99% reflectivity) measured under the same illumination conditions
to obtain relative reflectance spectra of the samples. Each sample was measured from
four positions, by rotating the Petri dish 90◦ each time. This approach served to mini-
mize possible spectral variations due to the surface geometry of the samples. Each single
measurement was based on internally averaged 50 spectra. Afterwards, the 12 spectra
(3 spectra per 90◦ rotation) of each sample were exported from binary to ASCII format
using ViewSpecPro (Analytical Spectral Devices Inc., Boulder, CO, USA). The acquired
12 spectra were separately involved in splice-correction and then averaged. Finally, the
obtained spectrum for each sample was involved in spectral pre-processing techniques.

Pre-processing methods are used to remove signal noise, accentuate features, and to
improve mineral identification and the accuracy of the prediction [44]. For this reason,
different methods, such as Savitzky–Golay smoothing [45], first and second derivatives [46],
continuum removal [46], multiplicative scatter correction (MSC) [47], standard normal
variate [48], and de-trending and absorbance (Abs) transformations [48] were applied to
the averaged reflectance spectra. The selected pre-processing techniques were based on our
previous study [33] that tested the feasibility of smoothing and derivatives with different
moving window sizes (mainly 7, 9 and 11), as well as derivatives with different gaps
and segment sizes. The pre-processing techniques were performed using the “prospectr”
package [49] in the R software environment [43].

2.4. PLSR Model Calibration and Validation

Relations between the spectral data and the tested soil properties were studied using
PLSR modelling [50,51]. The PLSR technique is a standard bilinear calibration method
that uses data compression by reducing the large number of measured collinear spectral
variables to fewer non-correlated latent variables or factors. The compressed latent variables
result from the method similar to principal components analysis of measured spectral data.
These factors represent the relevant structural information of the data and are utilized to
predict the dependent variables. The PLSR algorithm is not described in this study, whereas
further information can be found in numerous studies [50].

For the calibration of regressions models, a two-staged approach was used. First,
optimal pre-processing methods for each soil property were determined. For this reason,
PLSR models were calibrated for all pre-processing methods using all samples. Leave-one-
out cross-validation [10] was applied based on the highest coefficient of determination
(R2) and lowest root mean square error (RMSE) of the cross-validated predictions. The
number of factors (NF) to be used in the models was selected based on the lowest RMSE [52]
and the Akaike Information Criterion (AIC) [53]. In the second stage, PLSR models were
calibrated using 88 samples (75%) and the optimal pre-processing methods found in the
first stage and were validated with the remaining independent 26 sample (25%) subset.
The procedure served to test the performance of the models with a set of independent
validation samples. The validation and calibration subsets were randomly selected in the R
software environment [43].
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The evaluation of the predictive performance of the models was based on R2, RMSE,
and the residual prediction deviation (RPD) [54]. A six level interpretations of RPD [10],
values were adopted: RPD < 1.0 indicates very poor models/predictions, and their use is
not recommended; 1.0 < RPD < 1.4: poor models/predictions, where only high and low
values are distinguishable; 1.4 < RPD < 1.8: fair models/predictions, which may be used for
assessment and correlation; 1.8 < RPD < 2.0: good models/predictions, where quantitative
predictions are possible; 2.0 < RPD < 2.5: very good, quantitative models/predictions; and
RPD > 2.5: excellent models/predictions.

2.5. Determination of Important Wavelengths and Prediction Mechanisms

Statistical analysis is a commonly applied approach to evaluate the prediction mecha-
nism of spectrally featureless soil properties from VIS-NIR spectra. This approach involves
internal correlation between spectrally active and passive soil properties to analyze the
underlying mechanisms [29,30]. Another widely used approach is the analysis of important
wavelengths through the PLSR model. In this study, both methods were employed. To de-
termine the important wavelengths used in the model calibrations, the Variable Importance
in the Projection (VIP) approach was used [51,55,56]. For an observed variable y, VIP was
calculated by:

VIPk(a)= K ∑
a

W2ak
(

SSYa
SSYt

)
where VIP is the importance of the Kth predictor variable based on a model with a factors,
Wak is the corresponding loading weight of the Kth variable in the ath PLSR factor, SSYa is
the explained sum of squares of Y by a PLSR model with a factors, SSYt is the total sum of
squares of Y, and K is the total number of predictor variables. The wavelength is considered
important [51] if the VIP > 1, which is used as a threshold level [55,57].

The correlations between soil properties and reflectance values of the reflectance
spectra were computed for each wavelength and plotted across the whole wavelength
range. Furthermore, PCA and partial correlation analysis were used to evaluate (i) the
relations between soil properties and the spectral data, and (ii) the contribution of basic
soil properties to the prediction of M3-extractable elements according to Cheng et al. [19].
The first two principal components of the PCA (PC1 and PC2) were selected as the factors
representing the spectral data. Afterwards, the PC1 and PC2 were combined with the soil
properties, and PCA was used to plot soil properties and spectral data against principal
factors (F1 and F2) in the two-dimensional space. Then, Spearman’s Rho correlation
coefficients were computed between soil properties and spectral data (PC1) by controlling
each basic soil property separately [19]. The statistical analyses, as well PLSR modeling
and VIP scores, were conducted using the “pls” [58] and “plsVarSel” [59] packages in R
software environment [43].

3. Results
3.1. Reference Data

The descriptive statistics of the soil properties are presented in Table 1. The soil reaction
(pH in H2O) varies from moderately acid to slightly alkaline. The soils are predominantly
silty clay and silty clay loam, and partially clay loam in texture [21]. The sand content is
largely variable (~60%) as opposed to the silt fraction, the predominating particle size in
respect to its mean. The clay and SOC content vary considerably (~35%) with a mean value
of 21% and 3.41%, respectively. The CaCO3 content is largely variable (~84%), with a mean
value of 2.91%. Such variability of SOC, clay, and CaCO3 is attributed to the distribution
of parent material depending on the topography, elevation (e.g., change in temperature,
precipitation, pH by elevation), and dissolution and leaching processes [2,60]. Among the
M3 elements, Ca, K, and P were largely variable (~50%), and others varied moderately
(20–40%). The mean concentration of M3 nutrients (mg kg−1) followed the sequence of
Ca > Mg > K > Mn > Fe > P > Zn > Pb > Cu > Cd (Table 1).
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Table 1. Descriptive statistics of the tested soil properties.

Soil Property Min Max Mean Median SD CV (%)

Ca (mg kg−1) 133.07 1674.77 726.14 658.89 388.95 53.7
Cd (mg kg−1) 0.191 0.465 0.32 0.334 0.064 20.0
Cu (mg kg−1) 0.67 3.08 1.141 1.015 0.405 35.5
Fe (mg kg−1) 19.8 116.16 58.85 55.72 23.45 39.8
K (mg kg−1) 74.2 806.27 262.66 225.29 127.73 47.1

Mg (mg kg−1) 190.82 615.66 446.6 438.46 92.92 20.8
Mn (mg kg−1) 24.69 145.22 109.97 115.87 23.72 21.6
P (mg kg−1) 2.41 20.34 5.74 4.8 2.98 51.9

Pb (mg kg−1) 1.32 4.59 3.17 3.4 0.86 27.1
Zn (mg kg−1) 1.98 7.74 4.59 4.62 0.9 20.0

Sand (%) 9 78 29 25 17 59.6
Silt (%) 21 77 50 54 11 22.0

Clay (%) 2 38 21 23 8 34.8
SOC (%) 1.34 6.85 3.41 3.08 1.15 34.8

CaCO3 (%) 0.00 8.81 2.91 2.16 2.41 83.6
pH 5.75 7.82 7.25 7.47 0.46 6.3

Min—minimum, Max—maximum, SD—standard deviation, CV—coefficient of variation.

The Spearman’s Rho correlation coefficients among the soil properties were computed
and sorted according to the first principal components in the correlation matrix for better
visualization purpose (Figure 2). Significant relations between the basic soil properties, and
basic soil properties and M3-extractable elements were noted.

Land 2022, 11, x FOR PEER REVIEW 9 of 25 
 

 
Figure 2. Spearman’s Rho correlation coefficients between tested soil constituents (blank cells stand 
for insignificant correlations at the level of p ≥ 0.05). 

The clay content was negatively correlated (r = 0.80*) with the sand and positively 
correlated (r = 0.65 *) with the silt content. A weak positive correlation was found between 
the clay content and CaCO3 or pH, whereas the correlation between the silt content and 
CaCO3 or pH was strong. However, both clay and silt content were negatively related 
with SOC. Unlike those, the sand content was positively correlated with SOC and nega-
tively correlated with CaCO3. These relations are attributed to the characteristic distribu-
tion of quartz-rich bedrock and carbonate-rich parent material (e.g., clay mineralogy) at 
higher and low elevations, respectively. Both the SOC and sand contents increased with 
elevation, whereas the CaCO3 content decreased. It appears that the SOC content is con-
trolled by soil texture and clay mineralogy and associated soil characteristics (e.g., pH, 
CaCO3 and Fe) with regard to the land use and elevation, and soil types. Accordingly, the 
CaCO3 content was found positively correlated (r = 0.84 *) with Ca (the main source of Ca) 
and pH (r = 0.74 *), and negatively correlated with SOC and Fe (r > 0.60 *). 

The M3-extractable elements, such as Ca, Cd, Fe, Mg, and Pb, showed higher and 
significant correlations with the basic soil properties, whereas others (Cu, K, P, Mn, and 
Zn) mainly showed no or weaker, yet significant correlations (Figure 2). Cd and Pb 
showed a strong positive, whereas Fe and Mg showed a negative reliance on pH and 
CaCO3. As is obvious from the correlation coefficient between them (r = 0.84 *), Cd and Pb 
occur very closely in the soil matrix. Their relations to CaCO3, clay, and pH probably con-
firm that the underlying calcareous parent material plays an important role as their main 
source, and that the availability of these elements depends on pH. Furthermore, the inter-
correlations (e.g., between Ca and Cd, Ca and Pb, Cd and Pb, and Fe and Mg) show that 
those elements are similarly bound in the soil matrix. 

The results suggested that the M3 elements are related to the variation in soil type or 
texture and basic soil properties (mostly CaCO3 and pH), along with coexisting metals 
that can reliably assist as predictive factors [61]. Moreover, the role of CaCO3 (e.g., Ca and 
electrolyte sources, and pH modifier) on soil biogeochemistry is still overlooked in moun-
tain soils and needs greater attention for the monitoring of land degradation and quality 
[2,60]. Thus, for the current study, the tested soil properties can be formally categorized 
into two groups. The first group comprises CaCO3, clay, silt, pH, and their reliant elements 

Figure 2. Spearman’s Rho correlation coefficients between tested soil constituents (blank cells stand
for insignificant correlations at the level of p ≥ 0.05).

The clay content was negatively correlated (r = 0.80 *) with the sand and positively
correlated (r = 0.65 *) with the silt content. A weak positive correlation was found between
the clay content and CaCO3 or pH, whereas the correlation between the silt content and
CaCO3 or pH was strong. However, both clay and silt content were negatively related with
SOC. Unlike those, the sand content was positively correlated with SOC and negatively
correlated with CaCO3. These relations are attributed to the characteristic distribution of
quartz-rich bedrock and carbonate-rich parent material (e.g., clay mineralogy) at higher
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and low elevations, respectively. Both the SOC and sand contents increased with elevation,
whereas the CaCO3 content decreased. It appears that the SOC content is controlled by
soil texture and clay mineralogy and associated soil characteristics (e.g., pH, CaCO3 and
Fe) with regard to the land use and elevation, and soil types. Accordingly, the CaCO3
content was found positively correlated (r = 0.84 *) with Ca (the main source of Ca) and pH
(r = 0.74 *), and negatively correlated with SOC and Fe (r > 0.60 *).

The M3-extractable elements, such as Ca, Cd, Fe, Mg, and Pb, showed higher and
significant correlations with the basic soil properties, whereas others (Cu, K, P, Mn, and Zn)
mainly showed no or weaker, yet significant correlations (Figure 2). Cd and Pb showed a
strong positive, whereas Fe and Mg showed a negative reliance on pH and CaCO3. As is
obvious from the correlation coefficient between them (r = 0.84 *), Cd and Pb occur very
closely in the soil matrix. Their relations to CaCO3, clay, and pH probably confirm that the
underlying calcareous parent material plays an important role as their main source, and
that the availability of these elements depends on pH. Furthermore, the inter-correlations
(e.g., between Ca and Cd, Ca and Pb, Cd and Pb, and Fe and Mg) show that those elements
are similarly bound in the soil matrix.

The results suggested that the M3 elements are related to the variation in soil type
or texture and basic soil properties (mostly CaCO3 and pH), along with coexisting metals
that can reliably assist as predictive factors [61]. Moreover, the role of CaCO3 (e.g., Ca
and electrolyte sources, and pH modifier) on soil biogeochemistry is still overlooked
in mountain soils and needs greater attention for the monitoring of land degradation
and quality [2,60]. Thus, for the current study, the tested soil properties can be formally
categorized into two groups. The first group comprises CaCO3, clay, silt, pH, and their
reliant elements (Ca, Cd, Pb, K, P, and Mn), and the second group comprises sand, SOC, Fe,
and Mg, whereas Zn and Cu have complex relations due to their weak relations with others.

3.2. Land-Use Effects on Soil Properties

In the last three to four decades, the fragile mountain ecosystems in the Caucasus
region experienced serious land degradation without conservation. This has never been
evaluated at the level of basic soil properties as well as regarding the plant available macro-
and micro-nutrients. We assumed significant effects of different land uses on soil properties
causing their regional heterogeneity. Typical land uses include arable land (potato and
cereals), pastures (grazing from March to December), hayfields (preserved from March to
July, then used as pasture), and locally spread shrubbery areas, which are less exposed to
grazing. The land-use effects on soil properties are related to soil type (clay mineralogy) and
management intensity, because basic properties and M3-extractable elements are sensitive
to soil management and natural disturbances (Table 2), resulting in a strong variation of
soil properties between and within land use (Supplementary Figure S1).

Soil pH, CaCO3, silt, clay, K, Ca, P, and CEC showed similar trends by land use (arable >
hay > pasture ≥ shrub land). Similar trends were noted for Pb and Cd. For sand, CEC/clay,
Mg, and Fe, the trends were opposite. The SOC content is related to the land disturbance,
e.g., carbon sequestration potential for different land uses (arable < pasture < hay < shrub
land); the trends for Zn and Cu were similar to SOC (Table 2, Supplementary Figure S1).
The elevation (pasture > shrub > hay > arable land) is associated with the change in parent
material (e.g., CEC/clay), increasing precipitation and decreasing temperature, pH and
salinity, and CaCO3 and exchangeable Ca (Ca and electrolyte resources), while promoting
the leaching of Ca, clay, and slit fractions and increased clay and silt content in the lower
part of the study area. Though soil organic matter and clay can act as buffers to resist pH
variations, the leaching of free cations, oxides (e.g., Fe), and CaCO3, as well as the removal
of cations (e.g., Ca, Mg and K) by plant uptake or harvesting, and the continuous formation
of carbonic acid and application of acidic fertilizers can decrease soil pH, particularly in
the higher elevated areas. This affects the soil buffering capacity and CEC, as well as the
solubility and transport of M3 elements such as Fe, Mn, Cu, Zn, and P [2].
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Table 2. Soil properties as affected by land use or elevation. Within each row, means labelled with
the same letter are not significantly different at p < 0.05.

Soil Land Use

Properties Arable Hayfield Pasture Shrub

Elevation (m) 872.2 c 910.9 b 971.5 a 953.4 a

SOC (%) 2.2 c 3.5 b 3.4 b 4.3 a

pH 7.6 a 7.4 a 7.1 b 7.0 b

Sand (%) 16.4 b 18.6 b 38.4 a 39.3 a

Silt (%) 57.8 a 57.1 a 43.5 b 44.6 b

Clay (%) 26.4 a 25.3 a 17.8 b 15.2 b

CaCO3 (%) 5.0 a 3.7 b 1.8 c 1.2 c

K (mg kg−1) 317.8 a 281.3 ab 259.1 ab 214.9 b

Mg (mg kg−1) 421.4 a 439.9 a 462.0 a 461.0 a

Ca (mg kg−1) 1058.0 a 879.8 b 544.3 c 426.4 c

CEC (meq/100 g) 9.6 a 8.8 a 7.2 b 6.5 b

CEC/Clay 0.4 b 0.4 b 0.5 ab 0.5 a

Zn (mg kg−1) 4.4 b 4.9 ab 4.4 b 5.0 a

Cu (mg kg−1) 1.0 a 1.2 a 1.1 a 1.2 a

Pb (mg kg−1) 3.8 a 3.6 a 2.7 b 2.7 b

Cd (mg kg−1) 0.4 a 0.4 a 0.3 b 0.3 b

Mn (mg kg−1) 114.2 ab 117.3 a 105.1 b 103.9 b

Fe (mg kg−1) 39.8 b 58.3 a 67.4 a 69.3 a

P (mg kg−1) 7.6 a 5.5 b 5.0 b 4.7 b

CEC—cation exchange capacity, CEC/clay—clay mineralogy index.

The variation in the land-use trend was also associated with the CEC/clay ratio
of the samples (0.35–0.55 (63 samples) > 0.20–0.35 (40 samples) > 0.55–75 (12 samples)),
revealing that mixed clay mineralogy (CEC/clay = 0.35–0.55) was the dominant parameter
following illite + kaolinite mineralogy (CEC/clay = 0.20–0.35); samples with >0.55 (e.g.,
mixed clay mineralogy) were related to undisturbed areas with higher SOC or steep slope
areas under shrub with the lowest clay content (<6%) as a result of clay loss or leaching.
This affected the uncertainty of the relations between basic soil properties and their effect
on the variations of M3 elements. The contribution of basic soil properties to M3-extractable
elements by stepwise analysis showed various orders of parameters: for most of the M3
elements (Mg, Ca, Mn, Fe, Pb, and Cd), a larger variation (73–95%) could be explained by
the association of the SOC, CaCO3, pH, CEC, silt, clay, and CEC/clay, whereas for the M3
elements K, Zn, and P, this variation was ≤30%. The effect of land use was significant in
all soil properties with the exception of Cu and Mg, revealing that whereas the intensity
of land-use change, agricultural management, and soil conservation was not controlled
by the community, specific trends in the soil properties by land use could be observed
(Supplementary Table S1).

3.3. Effects of Spectral Pre-Processing Methods on the PLSR Calibration

The results of cross-validated predictions showed that the used pre-processing tech-
niques considerably improved the prediction accuracies compared to the raw spectra. The
AIC and RMSE values of the optimal pre-processing methods were consistent in all cases.
The optimal pre-processing technique found for each soil property was selected, and their
performances based on cross-validation are summarized in Table 3. The first derivative was
the optimal pre-processing method for all the tested soil properties (except clay and SOC).
For clay and SOC content, multiplicative scatter correction (MSC) and absorbance were
found as the optimal pre-processing methods, respectively. Overall, the second derivatives
and CR produced the poorest predictions.
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Table 3. Statistics of cross-validation, calibration, and validation prediction for each soil constituent
based on the optimal pre-processing methods.

Soil
Property

Optimal
Pre-Processing

Method
NF

Cross-Validation
(n = 114)

Calibration
(n = 88)

Validation
(n = 26)

RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD

CaCO3 D1-Gap-S10 11 0.81 0.96 2.97 0.83 0.96 3.02 0.99 0.89 2.16
pH D1-Gap-S10 4 0.36 0.69 1.44 0.35 0.66 1.47 0.37 0.65 1.49

Clay MSC 11 3.78 0.84 1.85 4.02 0.85 1.75 3.77 0.83 2.20
Silt D1-Gap-S10 4 5.32 0.82 2.07 5.00 0.85 2.19 5.75 0.81 2.02

Sand D1-Gap-S10 4 8.18 0.81 2.08 8.21 0.82 2.02 8.35 0.81 2.19
SOC Absorbance 16 0.45 0.93 2.53 0.54 0.94 2.19 0.43 0.90 2.16
Ca D1-Gap-S10 10 180.60 0.91 2.15 179.80 0.94 2.21 165.10 0.86 2.39
Cd D1-Gap-S10 6 0.035 0.80 1.81 0.036 0.82 1.79 0.037 0.74 1.88
Cu D1-Gap-S10 10 0.275 0.80 1.47 0.327 0.80 1.31 0.180 0.76 1.74
Fe D1-Gap-S10 9 14.66 0.82 1.60 14.79 0.83 1.49 16.31 0.76 1.72
K D1-Gap-S10 10 72.21 0.85 1.85 78.93 0.85 1.55 65.32 0.83 2.62

Mg D1-Gap-S10 8 67.14 0.73 1.39 74.30 0.75 1.27 66.00 0.62 1.36
Mn D1-Gap-S10 10 13.72 0.85 1.73 14.77 0.86 1.57 14.25 0.71 1.81
P D1-Gap-S10 8 2.19 0.73 1.36 2.26 0.72 1.25 2.41 0.51 1.43

Pb D1-Gap-S10 10 0.375 0.91 2.29 0.380 0.93 2.17 0.396 0.84 2.48
Zn D1-Gap-S10 6 0.750 0.56 1.20 0.890 0.54 0.99 0.670 0.57 1.43

D1-Gap-S10—1st derivative with gap segment size of 10 bands; MSC—multiplicative scatter correction; NF—the
number of factors.

Based on the cross-validation results, the predictions for CaCO3 and SOC showed
excellent models (RPD > 2.5), whereas the prediction of the sand, silt, clay, and pH were
characterized with very good (2.0 < RPD < 2.5), good (1.8 < RPD < 2.0), and fair model
(1.4 < RPD < 1.8) performance, respectively (Table 3). Among the M3-extractable elements,
the Ca and Pb contents were predicted with the highest accuracy, whereas the predictions
for Cd and K produced good model results. However, fair predictions were obtained for
Cu, Fe, and Mn. As expected from the correlations with the basic soil properties, Mg, P, and
Zn were poorly predicted (1.0 < RPD < 1.4). The number of factors (NF) varied depending
on the soil property, ranging from 4 (for sand, silt, and pH) to 16 (for SOC).

3.4. PLSR Model Calibration and Validation

PLSR models based on all samples allowed us to determine the optimal pre-processing
methods for each soil property. These models were again calibrated and validated with
subsets of 75% and 25% of all samples, respectively. In view of RMSE, both calibration
and validation models were appropriately similar to those of the cross-validation results.
Nevertheless, the RPD values revealed unstable models for some of the predicted soil
properties (Table 3). For the calibration subset, excellent predictions were solely obtained
for CaCO3; the model validation showed very good predictions (R2 = 0.89, RPD = 2.16).
For SOC, both calibration and validation subsets revealed very good models (R2 > 0.90,
RPD > 2.0). The performances of the calibration and validation subsets for sand and pH
were similar to those of the cross-validation setup. The validation subset produced very
good results for sand and fair results for pH. Although the validation subset revealed a
very good model for clay (RPD = 2.20), the calibration model was fair (RPD = 1.75).

With regard to the models for M3 elements, the calibration and validation models of
Ca, Cd, Fe, Mg, and Pb performed similarly. The validation showed very good predictions
for Ca and Pb and good predictions for Cd (Table 3). Although Fe and Mg are significantly
correlated with basic soil properties (e.g., CaCO3, pH, SOC), the PLSR models of the vali-
dation subset produced fair predictions for them. The validation for the M3-extractable
elements Cu, K, Mn, P, and Zn showed better performances than the corresponding calibra-
tion subset. The calibration models for Cu, P, and Zn were poor, whereas the validation
subset produced fair prediction models for the corresponding elements. Likewise, the
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calibration models were fair for K and Mn, whereas the validation subset revealed excellent
and good models, respectively.

3.5. Prediction Mechanisms and Important Wavelengths
3.5.1. Correlations between Soil Properties and Spectral Reflectance Data

The Pearson correlation coefficients between soil constituents and reflectance values
of the smoothed spectra for each wavelength were computed and plotted to visualize the
relations between them (Figure 3). Generally, the correlation coefficients varied nearly from
−0.80 to 0.90, likely depending on the soil properties across the wavelength range. However,
the interpretation of correlations is complicated due to the complexity of overlapping
spectral features of soil parameters. According to the correlation pattern, the soil properties
could be categorized into two groups: the first group (CaCO3, clay, pH, Ca, Cd, K, Mn, P,
and Pb) had positive (Figure 3a), and the second group (sand, SOC, Fe, Cu, Mg, and Zn)
had negative correlation coefficients (Figure 3b). The soil properties in each group could
be further divided into subgroups, e.g., based on the similarity of the correlation patterns:
clay, pH, Mn, Pb, and Cd; CaCO3 and Ca; K and P; SOC and Fe; and sand, Mg, and Zn.
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wavelength region ((a)—positively and (b)—negatively correlated soil properties).

The relations between CaCO3 and the reflectance spectra formed the highest positive
correlation coefficients. Its maximum value (r = 0.89 *) was found in VIS region at 790 nm.
As expected from the correlation between CaCO3 and Ca (r = 0.86 *), extractable Ca also
showed a high correlation to the VIS region. Cd and Pb showed a very similar correlation
pattern to that of pH or clay with lower correlations in the VIS (r = 0.50–0.65), and higher
correlations (r = 0.60–0.75 *) in the NIR range. Mn, K, and P also showed a similar shape,
but with much lower correlation coefficients (r < 0.40 *). Among the negatively correlated
soil constituents, sand, Fe, and SOC revealed higher correlation coefficients (r = 0.50–0.78 *)
across the whole wavelength region (Figure 3b). The sand content apparently showed
higher correlations in the NIR and SWIR range. In this range, the correlation coefficients
were >0.70, and its maximum value (r = 0.77 *) was found at 2308 nm. However, the
well-correlated Fe and SOC (r = 0.60 *) showed strong relations in the VIS range, with a
similar/parallel trend in the NIR and SWIR range (Figure 3b). Higher correlative relations
between SOC and reflectance spectra were observed in the VIS region (especially from 540
to 690 nm), with the highest correlation (r = 0.69 *) observed at the 605 nm waveband. The
relation between the reflectance spectra and Cu, Zn, and Mg was generally weak across
VIS-NIR region.

The M3-extractable elements that were (i) positively correlated with the reflectance
spectra showed similar spectral correlation patterns to primary soil properties such as
CaCO3, pH, and clay, and those that (ii) were negatively correlated with the reflectance
spectra showed less similarity with SOC and sand. Despite the soil properties were
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positively or negatively correlated, absorption features were distinctly reflected in the
correlation spectra. Likewise, for CaCO3, Ca, K, and P, the absorption feature at 1900 nm
appeared as a correlation peak, whereas an inverse trend was visible for pH, clay, and Mn
(Figure 3). Generally, soil reflectance increased with an increase in CaCO3 and clay content
and decreased with increase in sand and SOC contents. As CaCO3 and SOC significantly
affect the soil color, these soil constituents showed the highest impacts in the VIS part of
the spectrum. Fe showed even stronger correlations than SOC in the VIS region.

3.5.2. Principal Component and Partial Correlation Analysis

The PCA biplot was employed to visualize the relationships among soil properties and
spectral data (Figure 4). The PCA of the spectral data showed that PC1 and PC2 explained
94.59% and 4.75% (in total 99.35%) of the variance of the original spectral data, respectively.
Therefore, PC1 and PC2 were used to investigate the spectral information and its relations
to the soil properties. The biplot represented a highly discriminating pattern of the basic
soil properties, M3 elements, and the first two principal components of the spectral data.
About 60% of the total variability was explained by F1 and F2 (Figure 4).
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The PC1 was positively correlated with a group of soil properties (CaCO3, silt, clay, pH,
Ca, Cd, Pb, and Mn) and negatively correlated with Fe, Mg, and SOC. The PC2 specifically
showed orthogonality with the majority of parameters, whereas positive correlation oc-
curred with Zn (containing less information) and negative correlation with sand, CEC/Clay,
Cu, P, and K. Most of the soil properties except Zn, Cu, K, and Mn were approximately pro-
portional to the variability included in the two components. The relations among particle
sizes and CEC/Clay showed the expected typical pattern due to apparent collinearity. The
sample distribution pattern far from the biplot origin confirmed considerable variability
and better performance (Figure 4).

For partial correlation analysis, we selected the variable PC1 to represent and investi-
gate the spectral information and its relationships to the soil properties, since significant
correlations (r = 0.37–0.88 *) were found between PC1 and all soil properties except Cu, Mn,
and Zn (Table 4). The correlation coefficients showed that the contribution of CaCO3 was
the highest compared to other parameters. The correlation coefficients between PC1 and
SOC, pH, Fe, Ca, Cd, Mg, P, Pb, and Zn decreased when CaCO3 was controlled. The particle
sizes had a varying effect on the M3 elements. For example, when the particle sizes were
controlled, the correlation between PC1 and K became insignificant, whereas the correlation
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between PC1 and P and Zn remained significant. At the same time, slight effects of particle
sizes on SOC, pH, Mn, Cu, and Cd were observed. Unlike other controlled parameters,
SOC had a small effect, yet PC1 was still significantly correlated with the soil properties
except for Cu, Mn, and Zn. The Fe content was found as the main controlling factor for
Mg and P, and the correlation between these elements and PC1 became insignificant when
Fe was controlled. Removing CaCO3, clay, and Fe simultaneously resulted in incisively
decreasing the correlation coefficients between PC1 and the M3 elements. Though the
correlations remained significant, they were weaker for Ca, Cd, and Pb and decreased from
0.88, 0.75, and 0.76 to 0.37, 0.32, and 0.28, respectively.

Table 4. Spearman’s Rho correlation coefficients between the first principal component (PC1) of
soil reflectance spectra and soil properties (1st row), and the partial correlation coefficients with
controlling basic soil properties.

Category
Controlled CaCO3 Clay Silt Sand SOC pH Fe Ca Cd Cu K Mg Mn P Pb Zn

Spearman’s Rho correlation coefficients
0.84 * 0.62 * 0.84 * −0.78 * −0.59 * 0.70 * −0.68 * 0.88 * 0.75 * −0.10 0.37 * −0.40 * 0.17 0.39 * 0.76 * −0.17

Partial correlation coefficients
CaCO3 0.63 * 0.74 * −0.73 * −0.18 0.20 0.06 0.56 * 0.42 * −0.09 0.26 * 0.20 0.23 −0.08 0.37 * 0.05

Clay 0.84 * 0.73 * −0.60 * −0.47 * 0.65 * −0.70 * 0.82 * 0.67 * 0.09 0.23 −0.51 * 0.05 0.53 * 0.69 * −0.26 *
Silt 0.74 * 0.18 −0.08 −0.47 * 0.45 * −0.59 * 0.72 * 0.43 * 0.07 0.17 −0.43 * −0.18 0.46 * 0.50 * −0.31 *

Sand 0.80 * 0.00 0.49 * −0.41 * 0.55 * −0.66 * 0.76 * 0.59 * 0.14 0.18 −0.51 * −0.06 0.47 * 0.61 * −0.24 *
SOC 0.75 * 0.52 * 0.80 * −0.70 * 0.54 * −0.51 * 0.84 * 0.77 * 0.10 0.33 * −0.34 * 0.23 0.31 * 0.76 * −0.14
pH 0.67 * 0.56 * 0.73 * −0.68 * −0.31 * −0.39 * 0.77 * 0.57 * −0.04 0.28 * 0.04 −0.22 0.21 0.56 * −0.27 *
Fe 0.68 * 0.64 * 0.79 * −0.76 * −0.30 * 0.43 * 0.76 * 0.58 * −0.06 0.28 * −0.01 0.14 0.08 0.53 * −0.16

CaCO3
+ Clay
+ Fe

0.59 * −0.49 * −0.03 0.15 0.37 * 0.32 * 0.11 0.14 0.03 0.11 0.12 0.28 * −0.07

* stands for significant correlations at the level of p < 0.05.

3.5.3. Important Wavelengths

To determine important wavelengths (variables) used in predictions, the VIP scores of
the PLSR models using the optimal pre-processing techniques for each soil constituent were
computed and plotted across the 350–2500 nm wavelength region (Figure 5). Generally, a
large similarity was observed for the VIP score pattern of all the tested soil constituents
except for clay and SOC. Unlike all others, the VIP graph was characterized by a simple
pattern for SOC, whereas multiple VIP peaks were observed for clay. The VIP pattern of
SOC showed a comparatively wider wavelength range (350–735 nm) in the VIS region, with
a spectral feature centered at 1892 nm that was also found important for SOC and other soil
properties. For the clay prediction, the VIP scores showed a different pattern, particularly
in the VIS region. The two wavelength ranges centered at 574 and 781 nm contain soil
color information and contributed to the clay prediction. Further VIP peaks centered at
1415, 1892, 1920, 2210, and 2302 nm also contributed to the clay content estimation. A VIP
peak negligibly exceeding the threshold centered at 1024 nm was noticed as an important
predictor for clay as well.

For predicting CaCO3, a wide spectral range from 350 to 583 nm, and some more
narrow ranges in the NIR and SWIR region (1383, 1414, 1880, 1913, 2178, 2311, 2415, 2341,
and 2460 nm) were found as important predictors (Figure 5). As expected from the relation
between CaCO3 and pH, their VIP patterns and important wavelengths were apparently
similar. The wavelength centered at 380 nm was found important for the prediction of
all tested soil constituents. Despite the fact that correlations between the spectra and the
sand content in the NIR region were higher than in the VIS region (Figure 3), the VIS range
apparently contributed to its prediction, with a wavelength range from 360 to 570 nm. At
the same time, the VIP peaks centered at 860, 1380, 1415, 1915, 2178, and 2246 nm were also
found as essential predictors.
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As expected from the similarity of the correlation spectra (Figure 3), the VIP patterns
of Ca, Cd, and Pb were similar to that of CaCO3, and pH indicated the same important
wavelengths (Figure 5). Unlike Ca and Pb, a VIP peak slightly exceeding the threshold
limit centered at ~850 nm was a significant predictor for the Cd content. Likewise, the
same VIP peak was also typical for the predictions of K, P, and Zn (Figure 3). Since Cu was
one of the poorly predicted elements, the interpretation of important wavelengths requires
caution, considering its weak relationship with the reflectance spectra. Multiple narrow
wavelength ranges (centered at 380, 434, 530, and 654 nm) contributed to its prediction
(Figure 5). Further peaks were observed at 1805, 1885, 2200, 2249, 2315, 2358, and 2460 nm.
For the Fe prediction, a wider range of wavelengths with peaks centered at 384, 435, and
530 nm, and at 1400, 1426, 2200, and 2280 nm was found important. The VIP graph of K
and P showed a similar pattern, e.g., with distinct peaks centered at 1400, 1800, 1900, and
2200 nm. In the case of Mg and Cu, the VIP scores indicated a similar pattern, i.e., four
VIP peaks (435, 520, 567, and 635 nm) in the VIS region and several peaks in the NIR and
SWIR region (1095, 1395, 1424, 2205, 2261, and 2326 nm). For the prediction of Mn, the VIP
scores identified three consecutive wavelength ranges (375–468, 485–586, and 613–735 nm)
comprising double peaks similar to cases of K, P, and Mg. Although the Zn content was
poorly predicted, the VIP scores revealed a series of important wavelengths (380, 430, 530,
860, 1095, 1395, 1425, 1892, and 2260 nm).

4. Discussion
4.1. Accuracy Analysis of the PLSR Models

Both calibration and validation models produced differences in RPD values compared
to the cross-validation setup (Table 3). The calibration and validation models performed dif-
ferently for CaCO3 and clay. An excellent and very good calibration model for CaCO3 and
clay, respectively, was substituted with a very good and fair validation model. With regard
to the model performances for the M3 elements, the calibration and validation models for
predicting Ca, Cd, Fe, Mg, and Pb performed similarly. However, the performances of the
validation model for the elements Cu, K, Mn, and Zn were better than the corresponding
calibration subset. The calibration models were fair for K and Mn, whereas the validation
subset revealed excellent and good models, respectively. Thus, all the soil constituents
under consideration were estimated based on VIS-NIR spectral data, and the R2 values
of the validation models ranged from 0.51 to 0.90. The soil properties could be ranked as
following according to the cross-validation model performances: CaCO3 > SOC > Pb > Ca
> sand > silt > clay > K > Cd > Mn > Fe > Cu > pH > Mg > P > Zn (Table 3).

Such differences in the model performances were found in previous studies. Similar
to our results, it was reported that calibration, validation, and prediction processes can be
complicated and dependent on soil types and its physiochemical properties, the soil man-
agement history, chemical characteristics, and the analytical method, along with the sample
size and distribution, as well as the prediction approaches [4,7,13,14,27–29,54,61]. Based on
2250 soil samples that were collected in a 5-year period from four soil groups varying in clay
mineralogy (Alfisols, Inceptisols, Entisols, and Vertisols) and a series of robust regression
analyses, Golia and Diakoloukas [61] concluded that several factors (pH, electric conductiv-
ity, SOC, soil texture, exchangeable cations, and metal oxides along with coexisting metals)
affect the total concentrations of Fe and Cd in soils. For instance, total Cd was reliably
predicted with Cu and Zn in Entisols; clay, Pb, and CEC in Alfisols; and clay, Pb, and
CEC in Vertisols [61]. These results are in line with our findings (Supplementary Table S1,
Figure 4).

Models may perform better when variations in the whole sample set are well-reflected
in the calibration and validation data set. The observed dissimilarities in our study can
be explained by the descriptive statistics of the calibration and validation subsets used
to predict the M3 elements. Furthermore, the prediction accuracies of the soil properties
are associated with the statistical distribution and the high variability of the measured
parameters [18,29]. Additionally, it is reasonable that the samples on the boundaries of the
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entire set are included in the calibration subset [62]. In accordance with recent studies, K is
one of the complex elements to estimate with VIS-NIR spectra regardless of the extraction
procedure. For instance, a good model was obtained by Rodríguez-Pérez et al. [7], whereas
Bilgili et al. [13] found a poor model (R2 = 0.25–0.32) for the K content. Chang et al. [27]
obtained a more accurate model (R2 = 0.64) for K extracted in M3 compared to K extracted
in NH4OAc (R2 = 0.55). In our case, a higher performance of the validation subset for K
was probably not relied on for the robustness of the PLSR prediction, because the change
in RPD was based on the standard deviation of the corresponding subsets. The standard
deviation (not shown) of the calibration subset (122 mg/kg) was considerably narrower
than the SD of the validation subset (171 mg/kg).

Few studies have evaluated the potential of VIS-NIR spectra to predict M3-extractable
soil heavy metals. Predicting multiple soil properties and M3-extractable elements with
NIR spectra and principal component regression by using a large amount of soil sam-
ples (collected from a national inventory) allowed us to obtain successful models for Ca
(R2 > 0.80), fair models for Fe, K, Mg, and Mn (R2 = 0.50–0.80), and poor models (R2 < 0.50)
for Cu, P, and Zn [27]. Reliable calibrations for Ca, Cu, and Mg (R2 > 0.70, RPD > 1.75),
and less-reliable calibrations for Al, Fe, K, Mn, P, and Zn (R2 > 0.70, RPD < 1.75) were
found in another study [28]. The models were consistent for only Ca, Mg, and Mn when
independent samples were used for the validation. The study presumed that the pH of
the M3-extractant may affect the solubility of most of these nutrients, regardless of the soil
texture and, consequently, the potential of NIR spectra to predict them. Higher correlations
of the nutrients with clay content improved their predictability by NIR spectra [28].

The results of NIR spectral prediction of M3 elements and soil characteristics based
on 448 samples collected over a 7-year period from an experimental site revealed that the
predictions were excellent for Ca, Mn, pH, and Mg, whereas moderately successful results
were obtained for Al, total C, Fe, and Zn, and poor results for P and Cu [24]. Luce et al. [18]
assessed the potential of VIS-NIR spectroscopy to predict total, M3- and DTPA-extractable,
and water-soluble heavy metal concentrations in different agricultural soils repeatedly
treated with biosolid and liming by-product. They concluded that VIS-NIR spectroscopy
has the lesser capacity to predict water-soluble heavy metal concentrations, especially
when site-specific samples were used. In contrast, the validation results were excellent for
M3-extracted Cu and Cd, good for Ni, and poor for Zn [18]. These results were similar to
our study for Cd and Zn, though inverse for Cu, i.e., the study obtained poor models for
predicting Cu from site-specific test areas.

The prediction accuracy of the models was concordant with their correlation bands
(between soil constituent and reflectance spectrum). The prediction accuracy of the M3
elements was consistent with their relations to basic soil properties (Figures 2 and 4), con-
firming that the major spectral prediction mechanisms for the M3-extractable elements
rely on the correlation of those elements with CaCO3, pH, sand, clay, and SOC. Moreover,
the inter-correlations between secondary soil properties and spectrally active soil compo-
nents such as Fe oxides, organic matter, clay, CaCO3, and pH were also related to the vital
predictive mechanisms [24,26,28], which was consistent with the current study.

4.2. Effect of Pre-Processing Techniques on PLSR Predictions

One of the challenges in soil spectroscopy is to develop pre-processing techniques to
extract more information from the spectra [11]. Abdi et al. [24] employed 40 pre-processing
techniques (different gap sizes and smoothing points) to predict total C, N, P, pH, and M3-
extractable elements using 448 soil samples. Best estimates were obtained from smoothed
spectra for Cu, Zn, and total and available P, first derivative spectra for K, Ca, and Al, and
second derivative spectra for total C, N, pH, Fe, Mg, and Mn. Nduwamungu et al. [28]
applied 12 pre-processing techniques for predicting M3-extractable elements. In this study,
first and second derivative spectra produced less reliable predictions for Fe, K, Al, P, Mn,
and Zn.
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The feasibility of a series of pre-processing techniques (11 filtering techniques,
8 normalizations, and 7 linearization/scaling techniques; in total, 26) was tested to predict
basic soil properties [33]. Absorbance and MSC spectra combined with filtering techniques
were used in PLSR modelling as pre-processing techniques. The first derivative spectra with
a gap segment size of 10 bands allowed us to remove particle size effects, reduce the drift
of the baseline, and highlight certain parts of the spectral information. This pre-processing
approach outperformed other techniques for all soil properties. MSC removes undesired
scatter or texture effects and thereby improved the prediction of the clay content [63].
The MSC was also effective in diminishing the baseline drift caused by the differences in
grinding and optical setups [64]. Absorbance spectra provided the most reliable model for
predicting SOC content due to spectral features of organic matter occurring in the VIS and
NIR region [10,65]. Thus, the optimal pre-processing methods found in this study are in
agreement with findings in previous studies [13,15,24].

4.3. Analysis of Prediction Mechanisms
4.3.1. Correlation, PCA and Partial Correlation Analysis

Spectral characteristics of a large variety of soil properties and M3 elements were
described in numerous studies [13,26,66,67]. Correlation patterns of the M3-extractable
elements (i) Ca, Cd, K, Mn, P, and Pb were similar to those of CaCO3, silt, pH, and clay,
(ii) Mg and Zn were alike to sand, and (iii) Cu was resembled to SOC and Fe (Figure 3).
The higher correlative relations between SOC and the reflectance spectra in the VIS region
reached a maximum (r = 0.69 *) at 605 nm. A similar correlation pattern was described
in recent studies [12,68] as an absorption peak centered at 600 nm, contributing to the
strong estimation of SOC. SOC has a broad absorption in the VIS region and shows a
pattern in spectra as linear, concave, or an upward shift shape that also depends on soil
mineralogy [69]. Fe showed even stronger correlations than SOC that are most likely related
to features of Fe oxides linked with soil types [61]. Equally, the concentrations of spectrally
featureless heavy metals in soils were estimated via the correlations among Fe oxides [30],
organic matter [69], and clay minerals [70]. The weak relation between the reflectance
spectra and Cu, Zn, and Mg was in agreement with other studies [26].

The results of PCA and consequent partial correlation analysis showed significant
correlations between PC1 of the spectral data and the soil properties except Cu, Mn, and
Zn (Table 4). CaCO3 was the most influential factor followed by Fe, clay, and SOC for
predicting spectrally featureless soil properties. The small influence of SOC on M3-extracted
metals was not fully consistent with previous studies. Correlations with Pb, Zn, and Cd or
As, Cr, and Cu are governed by soil organic matter or Fe (oxides) along with coexisting
metals and soil texture that can reliably assist as predictive factors [18,19,29,61]. Therefore,
based on our analyses, M3-extractable elements are indirectly bound to iron oxides, clay
minerals, or organic matter and can be assessed using the spectral features of these soil
constituents, which is in line with other studies [4,24,26].

4.3.2. Analysis of Important Wavelengths

The VIP score patterns of the tested soil constituents conceded a large similarity
(Figure 5). Most soil properties (silt, pH, Ca, Cd, Pb, Mn) showed a similar VIP pattern to
that of CaCO3. Our results for predicting the clay content and CaCO3 were comparable
to various other studies [8,71–76]. As expected from the relation between CaCO3 and pH,
their VIP patterns and important wavelengths were similar. The wavelength centered at
380 nm was found important for all tested soil properties and is presumably related to
clay mineralogy [4,75]. In another study, the VIP peak centered at 380 nm was related
to free Fe (382 nm) content associated with influence of Fe oxides and hydroxides [5,75].
The VIP graph was characterized by simple pattern for SOC and comparatively wider
wavelength range in the VIS region (350–735 nm). The spectral feature centered at 1892
nm was found important not only for SOC, but also for all other soil properties (Figure 5).
A relatively narrow range in the VIS region (360–570 nm) apparently contributed to the
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sand content prediction. It could be linked to the spectral features of iron oxides and SOC,
whereas a weak VIP peak at 860 nm may match to the absorption feature of hematite [72].
These relations were confirmed by the significant correlation (r ≥ 0.40 *) between sand and
SOC or Fe (Figures 2 and 5). Further wavelengths (1380, 1415, 1915, 2178, and 2246 nm)
are presumably related to water (1380 and 1915 nm) and clay minerals (1415, 2160, and
2230 nm) [4,59]. The rest of the VIP peaks (1880, 2315, and 2336 nm) were probably related
to carbonates, also found as notable predictors, as indicated by a moderate correlation
(r = −0.52 *) between CaCO3 and sand [8,72]. A strong correlation between sand and clay
specifies the substantial contribution of clay mineralogy to sand prediction. The incomplete
incorporation of the clay minerals and spectral features of hematite may be one of the
reasons for the relatively low prediction accuracy of the sand content compared to the clay
content (Table 3).

As anticipated from the similarity of correlation spectra and VIP patterns (Figures 3
and 5), the important wavelengths for Ca, Cd, and Pb were the same as that of CaCO3
and pH (Figure 2). A VIP peak centered at ~850 nm was a significant predictor for the
Cd content. Likewise, the same VIP peak was also important for predicting K, P, and
Zn. The band assignment for this case was difficult since the wavelength corresponded
to the absorption feature of alkyl [71]. Several VIP peaks (380, 434, 530, and 654 nm)
corresponding to the absorption features of Fe oxides contributed to the prediction of
Cu (Figure 5). The peak at 654 nm was likely related to electronic transition processes of
goethite at 650 nm [71]. However, no correlation between Fe and Cu, and lower (r = 0.30 *),
yet significant correlation between Cu and SOC (Figure 2), showed that the contribution of
organic matter in the VIS region was obvious. The VIP peaks centered at 948 and 1905 nm
are probably related to water absorption bands, while the peaks at 880, 1097, 1148, and
1394 nm were related to aromatics (1100 nm), alkyl (880, 1138 nm), and hydroxyl (1400 nm)
groups, respectively [71]. The peaks observed at 2200, 2249, and 2460 nm corresponded to
the absorption features of clay minerals, as confirmed by the significant correlation with
clay content. The further three VIP peaks observed at 1805, 2315, and 2358 nm fell within
the methyl absorption feature ranges [71].

For the Fe prediction, a wider range in the VIS region (Figure 5) three VIP peaks (384,
435 and 530 nm) was important, which demonstrated the close relation to the absorption
features of free Fe, goethite, and hematite [5]. The VIP peaks at 1400, 1426, 2200 and
2280 nm were presumably related to hydroxyl (1400 nm), clay minerals (1415 nm and
2206 nm) and organic matter (2275 nm). The contribution of organic matter to the Fe
prediction is confirmed through the significant correlation (r = 0.60 *) between Fe and SOC
(Figure 2). Similar to the Cd prediction, other important wavelengths (2326 and 2360 nm)
might be associated with the absorption feature of methyl [71]. However, the wavelength
of 2326 nm should be treated with care, since an absorption feature of CaCO3 occurs at
2336 nm. In addition, a strong correlation (r = −0.84 *) between Fe and CaCO3 (Figure 2)
was considered in partial correlation analysis to understand the contribution of the basic
soil properties (e.g., controlling factor CaCO3, Fe, clay) for the prediction of M3-extractable
elements (Table 4) [19].

A large similarity between the correlation spectra and the VIP patterns (Figures 3 and 5)
for K and P seized the moderate correlation between them (r = 0.43 *). Four VIP peaks
observed at 435, 520, 567, and 635 nm corresponded to the absorption features of Fe
oxides [71], which confirmed the contribution of Fe to the prediction of P (Figure 2, Table 4).
In accordance with partial correlation analysis, K and P were not controlled by SOC,
despite the moderate correlation between Fe and SOC (Figure 2). It should be noted that the
variation in Fe content is explained by CaCO3, pH, and SOC (73%), whereas the variation
in P is related to CaCO3, clay, and pH (32%) (Supplementary Table S1). Increasing the
CaCO3 content increases the pH value, which, in turn, affects the solubility of nutrients
(Fe, K, P, etc.). Other peaks can be assigned to different soil constituents, such as aromatics
(1095 nm), kaolinite (1395 and 1424 nm), illite or smectitte (2205 nm), aliphatics (2261 nm),
and carbonates (2326 nm) [4,71]. Similar patterns and overlapping of multiple VIP peaks
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were found for Mg and Cu (Figure 5). As is obvious from the significant correlations
between Mg and the spectrally active CaCO3 or Fe (r = −0.60 *), and SOC (r = −0.22 *),
spectral features of the mineral composition could play an important role in predicting Mg.
Analogue to Mg, K, and P, three consecutive wavelength ranges (375–468, 485–586, and
613–735 nm) comprising double peaks were the important wavelengths for the prediction of
Mn. The significant correlation between Mn and soil texture reveals that the clay mineralogy
plays an important role in its prediction. Zn is weakly correlated with only CaCO3 and Ca,
and thus, the interpretation of the VIP sores was challenging. Clearly visible peaks at 380,
430, and 530 nm in the VIS region corresponded to absorption features of Fe oxides [5,71],
whereas others (860, 1095, 1395, 1425, 1892, and 2260 nm) were probably related to the
absorption bands of organic matter (853 and 1100 nm), water, and clay minerals [72].

The correlation spectra and VIP score patterns of the soil constituents revealed that the
improved prediction of M3 elements relies on spectrally active soil constituents. Moreover,
relations between basic soil properties and heavy metal concentrations could be inferred
from the similarity of their important wavelengths [29]. The overlapping of the important
wavelengths of soil properties also implied their close associations.

5. Conclusions

We examined the potential of VIS-NIR reflectance spectroscopy and PLSR modelling
to predict M3-extractable elements and basic soil properties, while focusing on the effect
of different pre-processing techniques and prediction mechanisms for M3-extractable
elements. The M3 nutrients are much less investigated, particularly in mountainous land
with high variability of soil properties due to the climatic factors, land-use history, and
degradation. The pre-processing techniques considerably improved prediction accuracies,
and the first derivative of the spectra was found optimal for all the tested soil properties
except SOC and the clay content, for which both absorbance and MSC spectra were the
most reliable techniques. The models’ predictions were excellent for CaCO3 and SOC, very
good for sand, silt, Ca, and Pb, good for clay, K, and Cd, fair for pH, Fe, Mn, and Cu, and
poor for Mg, P, and Zn.

The PCA biplot, partial correlation, stepwise regression analysis, and VIP procedures
allowed us to elucidate the underlying prediction mechanisms for M3-extractable nutrients.
Unlike the past studies, the spectral estimation of M3-extractable elements was mostly
related to their correlation with CaCO3 rather than other soil properties and soil organic
matter; the latter showed a negligible effect in this case. The spectral estimation of pH, Ca,
Mg, P, Fe, Pb, and Cd concentrations were based on their relations with CaCO3, whereas Mg
and P concentrations were associated with Fe oxides. Soil texture displayed a varying effect
on M3 elements: clay, silt, and sand were found to contribute to predicting K concentration,
whereas they appeared as confounding factors for predicting P and Zn concentration. The
nutrients Mn, Cu, and Zn, which had a weak correlation with CaCO3, particle sizes, SOC,
Fe, and spectral reflectance, were predicted with lower accuracy. The soil constituents that
correlated closely with reflectance were reliably predicted and vice versa. The underlying
prediction mechanisms for the soil properties that have no spectral response (pH, Ca, K, Mg,
P, Cd, Cu, Mn, Pb, and Zn) relied on their co-variation with spectrally active soil properties.
The results of this study can be used in mountain lands to evaluate and control effects of
land use, agricultural management, and conservation on land degradation neutrality and
soil quality indices. The results contribute to building a pioneering spectral database for
the soils of the Caucasus Mountains, as well as for global spectral soil libraries, and assist
with the monitoring of soil and water quality (e.g., land degradation and rehabilitation)
in relevant mountainous regions. Further focus needs to be given to (i) applying different
calibration strategies, (ii) improving the sampling approach and selecting process of the
calibration and validation samples, and (iii) extending the spectral methodology for soil
profile assessment.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/land11030363/s1, Figure S1: Boxplot of soil properties categorized
based on land use types (A-arable, H-hayfield, P-pasture); Table S1: Stepwise regression analysis of
the effect of basic soil properties on Mehlich 3 extractable elements.
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