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Abstract 

This thesis addresses the challenge of constructing a model explaining and predicting 

the changes in agricultural production under climate change. The thesis reviews existing 

economic models for climate change impact assessment: the Ricardian approach by 

Mendelsohn, Nordhaus and Shaw, an econometric panel data approach of Deschênes 

and Greenstone as well as a branch of models relying on mathematical programming. 

The thesis identifies a potential bias of the existing economic models on the enterprise 

level, thus establishing the need for a novel enterprise-level crop yield model under 

climate change. 

A model for the approximation of enterprise-level crop yields under climate change is 

proposed, which integrates both economic and agronomic notions of crop production. It 

is based on the idea that the enterprise-level crop yields are representable as a function 

of biophysically determined crop yields and the optimal production aspirations. The 

model is potentially useful to policy makers since it could provide an estimate of the 

yield volume that can be expected to be produced under climate change. It can also be 

useful to farmers as a normative model recommending input commitment under a 

changing climate. 

The proposed model is based on the state-contingent approach to production and 

decision-making under uncertainty introduced by Robert Chambers and John Quiggin 

(2000). The so-called states giving the approach its name refer to mutually exclusive 

scenarios for the development of the uncertain future. The theory is chosen due to its 

advantages, including the original unification of two economic subfields – the subfield 

of production economics and the subfield of decision-making under risk and 

uncertainty. More specifically, the state-contingent approach offers an explanation of 

production decisions under uncertainty with a production economic foundation. It can 

also deliver well-defined cost functions corresponding to stochastic production 

technologies. 

A conceptual challenge is posed by the limitations of the state-contingent approach not 

being explicit on how agents construct expectations regarding the future levels of 

relevant variables under uncertainty. This thesis overcomes the challenge by combining 





it with the hypothesis of adaptive price expectations. A general computational strategy 

for the proposed model is provided.  

The strategy introduces a novel geometrical interpretation of the coefficient of risk-

aversion, which is intrinsic to the farmer, as well as an approach to infer this coefficient 

of risk-aversion from farm-level accounting data. The identification strategy for the 

coefficient of risk-aversion relies on using the duality between the possible technology 

representations, a skillful data partitioning and the employment of a so-called grid-

search, a machine-learning technique, which is underemployed as an instrument in the 

fields of agricultural economics and decision-making. The specific geometrical 

interpretation facilitates the identification. This result can also be transferred to the 

deterministic case: a similar interpretation of a coefficient expressing intertemporal 

preferences can be introduced and the proposed strategy for identification applied to 

elicit the coefficient. 

A new indicator to detect the nature states, i.e. to infer the environmental conditions 

prevalent in a specific year, is proposed as a methodological contribution based on the 

previous work by the author. This detection is needed in order to estimate a primal 

technological representation like a production or a distance function. The indicator 

evaluates phenological observations rather than weather data, the latter being used by 

Nauges, O’Donnell and Quiggin (2011). Two types of statistical clustering algorithms 

to process the indicator are considered and their advantages and disadvantages 

investigated. 

On the empirical side, the thesis offers an estimation of a state-contingent production 

function for the crop-producing sector in the Federal State of Saxony-Anhalt, Germany. 

Based on simulated data the estimation rejects the hypothesis of an output cubical 

technology, which would have indicated a technologically presupposed inability of the 

farmers to adapt to environmental changes by adjusting their input commitment.  
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Glossary 

Adaptation: “The process of adjustment to actual or expected climate and its effects. In 

human systems, adaptation seeks to moderate or avoid harm or exploit beneficial 

opportunities.” (IPCC, 2014, p. 1251) 

Agricultural cycle: Annual agricultural cycle with respect to the growing and 

harvesting of crops. 

Climate: “Climate in a narrow sense is usually defined as the average weather, or more 

rigorously, as the statistical description in terms of the mean and variability of 

relevant quantities over a period of time ranging from months to thousands or 

millions of years. The classical period for averaging these variables is 30 years, as 

defined by the World Meteorological Organization. The relevant quantities are most 

often surface variables such as temperature, precipitation and wind. Climate in a 

wider sense is the state, including a statistical description, of the climate system.” 

(IPCC, 2014, p. 1255) 

Climate change: “Climate change refers to a change in the state of the climate that can 

be identified (e.g., by using statistical tests) by changes in the mean and/or the 

variability of its properties and that persists for an extended period, typically decades 

or longer. Climate change may be due to natural internal processes or external 

forcings such as modulations of the solar cycles, volcanic eruptions and persistent 

anthropogenic changes in the composition of the atmosphere or in land use.” (IPCC, 

2014, p. 1255) 

Climate model: “A numerical representation of the climate system based on the 

physical, chemical and biological properties of its components, their interactions and 

feedback processes and accounting for some of its known properties … Climate 

models are applied as a research tool to study and simulate the climate and for 

operational purposes, including monthly, seasonal and interannual climate 

predictions.” (IPCC, 2014, p. 1256) 

Crop simulators (Crop simulation models): “Computer programs that mimic the 

growth and development of crops. Data on weather, soil, and crop management are 

processed to predict crop yield, maturity date, efficiency of fertilizers and other 
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elements of crop production. The calculations in the crop models are based on the 

existing knowledge of the physics, physiology and ecology of crop responses to the 

environment.” (United States Department of Agriculture, 2016) 

Cultivar: “A variety of plant that originated and persisted under cultivation.” 

(Dictionary.com, 2016) 

ex ante: Based on anticipated changes or activity in an economy. (Dictionary.com, 

2016b) 

ex post: Based on analysis of past performance. (Dictionary.com, 2016c) 

Normative model: A prescriptive model, which investigates what ought to be. (IPCC, 

2014, p. 1267) 

Positive model: A descriptive model, which investigates what is. (IPCC, 2014, p. 

1268). 

Production function  

agronomic: Functional relationship between crop yields (response variable) and 

factors of the biophysical environment e.g. water availability and nitrogen content 

in the soil (explanatory variables). 

economic: Functional relationship between an output e.g. crop yields (response 

variable) and factors of production or inputs e.g. labor, capital, land, intermediate 

inputs (explanatory variables). 

States of nature (nature states): Mutually exclusive possible states of the world in the 

state-contingent framework e.g. hail or the absence of hail. 
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1 Introduction 

The recent Conference of the Parties (COP) in the United Nations Framework 

Convention on Climate Change and the presidential elections in the United States of 

America once again establish the relevance of the topic of climate change as well as the 

significance of the economic implications of the phenomenon itself and of the measures 

taken to limit its extent (Scherer, 2016), (Wong, 2016), (United Nations, 2016). 

Climate change is broadly defined in the reports of the Intergovernmental Panel on 

Climate Change (IPCC) as a lasting change in the statistical properties of a climate 

system (Core Writing Team 2014, pp. 120-121). The phenomenon is expected to have a 

significant impact on agricultural productivity (Gillis, 2013). Improving the 

understanding of the effects of a shift in climate parameters on agricultural productivity 

is a challenge explicitly identified by the latest report of the IPCC (Smith et al., 2014, p. 

869). Constructing models explaining and predicting the changes in agricultural 

production, which could be expected with a shift in the parameters of a climate system, 

is important for policy recommendation purposes. 

Creating such models, however, is a challenge. Their development requires taking into 

account multiple factors from: (i) the natural environment, (ii) the agronomic 

environment, (iii) the decision-making of the individual farmer and his technological 

considerations, (iv) the general economic environment responsible for price formation. 

The interconnections between these multiple factors should also be taken into account. 

Multiple theories and models within (i) to (iv) exist to explain phenomena from 

different perspectives. However, integrating the theories and models from different 

fields as well as a transfer of the insights is difficult: the theories and models might use 

concepts different in their nature. Even in the case of a matching concept the event 

might be observed at a different level of granularity. The integration of a variety of 

theories and concepts in a coherent whole is thus far from trivial and poses a challenge. 

The thesis addresses the identified challenge. The work is inspired by a recent 

theoretical development, the so-called state-contingent approach to production analysis 

and decision-making under uncertainty developed by Chambers and Quiggin (Chambers 

and Quiggin, 2000). The so-called states, which give the approach its name, refer to 

mutually exclusive scenarios for the development of the uncertain future. Clearly 

innovative in the approach is the unification of two economic subfields – the subfield of 
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production economics and the subfield of decision-making under risk and uncertainty. 

More specifically, the state-contingent approach offers an explanation of production 

decisions under uncertainty with a solid production economic foundation. 

This work is motivated by the research, which started in the project ScienceCampus 

Halle - plant-based bioeconomy, in a subtask aiming at the investigation of the climate 

change effects on the agricultural production of Saxony-Anhalt. The state-contingent 

approach serves as a theoretical foundation for the research work due to its advantages. 

Statistical and econometric evaluation of data on agricultural production in the German 

Federal State of Saxony-Anhalt is performed in order to demonstrate the potential 

relevance of the state-contingent approach. 

The ultimate goal of this thesis is to develop a model for enterprise-level crop yields 

under climate change, to provide a method for the calculation of the model and to 

demonstrate its computation using available data for the case of Saxony-Anhalt. Partly 

the work has to be theoretical due to the fact that the state-contingent approach is not 

formulated as a consistent conceptual model that explains all notions needed to 

understand enterprise-level yields under climate change. Partly the work has to be 

methodical, due to the necessity to design a procedure for the computation of the model, 

including the provision of a method for tuning the model to a specific empirical case. 

The work also needs to have an empirical component. 

More specifically, the following objectives are set for the thesis: 

i. To integrate economic and agronomic notions of crop production in a coherent 

whole. 

ii. To develop a model based on the unified perspective and suggest a strategy to 

empirically substantiate the dynamics assumed for the model. 

iii. To overcome a conceptual challenge posed by the state-contingent approach not 

being explicit on how economic agents form expectations on the level of 

relevant variables, more specifically output prices, under uncertainty. 

iv. To check if the production technology of the crop-producing sector is output-

cubical. An output-cubical technology would mean that the farmers cannot adapt 

in the state-contingent sense. 

Three distinct research questions are set in the thesis. The first research question is the 

basic research question on whether or not the insights of the state-contingent approach 
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can be adapted to the field of climate change impact assessment. The second research 

question is whether the conceptual challenge posed by the state-contingent approach not 

being explicit on how economic agents form expectations can be overcome. The third 

and purely applied research question is whether the crop production technology farmers 

in Saxony-Anhalt operate under is an output-cubical technology. 

The research questions are framed as the following hypotheses: 

i. It is possible to construct a computable model integrating both economic and 

agronomic notions of crop production under climate change. 

ii. It is possible to overcome the conceptual challenge posed by the state-contingent 

approach not being explicit on how economic agents form expectations. 

iii. The crop production technology of the farmers in Saxony-Anhalt is output 

cubical. 

Figure 1 provides an overview of the scope and main concepts of the thesis, which 

approaches the prediction of enterprise-level crop yields under changing environmental 

conditions from both theoretical and empirical perspectives.  

The thesis structure is as follows. Chapter 2 provides a literature overview of economic 

models for climate change impact assessment. Section 2.1 presents two popular 

econometric approaches to climate change impact assessment. Section 2.2 deals with 

mathematical programming models for climate change impact assessment. The existing 

models are subsequently discussed in section 2.3, knowledge gaps are identified and the 

necessity for the proposed model is established. 

Chapter 3 discusses the theoretical foundations of this work: (i) the state-contingent 

approach to production and decision-making under uncertainty and (ii) the hypothesis of 

adaptive expectation formation. Essential elements and concepts of the state-contingent 

approach to production analysis and decision-making under uncertainty are depicted on 

the left hand-side of Figure 1 and presented in section 3.1: the notion of a state-

contingent production function; a generalization of the notion of a stochastic production 

function, which, unlike the standard stochastic production function, has a corresponding 

cost function, the so-called effort-cost function. This effort-cost function serves in the 

theory as a basis for deriving a so-called revenue-cost function, a function serving 

effectively as a boundary describing feasible production alternatives expressed in 

monetary terms, which an agent could have a preference over. The hypothesis of 
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adaptive expectation formation, which explains how economic agents form expectations 

on the level of relevant variables under uncertainty, is described in section 3.2. Section 

3.3 analyzes the limitations to the state-contingent approach: the theory of state-

contingent production relies on the assumption that output prices are known to the agent 

in order to make the transition from an effort-cost to a revenue-cost function. This 

assumption clearly limits the effective use of the concept of a revenue-cost function in 

empirical implementations. 

Chapter 4 provides a literature overview of empirical studies employing the state-

contingent approach in order to see how the theory has been operationalized before. 

Section 4.1 presents two studies in production analysis based on it. Section 4.2 presents 

a farm-level mathematical programming model based on the approach, which 

investigates farm-level adaptation to climate change. Section 4.3 discusses the 

advantages and limitations of these studies. 

Chapter 5 introduces a model, which combines the two theoretical pillars presented in 

chapter 3. The model is constructed around the hypothesis that average crop yields per 

hectare in a specific  agricultural period can be predicted as a function of two quantities: 

(i) biophysically determined crop yields, which would depend to a large extent on 

geographical location, soil type and weather, and (ii) a quantity referred to in the thesis 

as “output aspirations” ‒ the output levels a rational producer should be striving to 

reach, which would depend largely on factors such as input and output prices as well as 

the past production experiences. 

Chapter 6 focuses on an empirical challenge in implementing the model as illustrated in 

the right hand-side of Figure 1. The chapter presents a methodology for defining the 

states of nature and for detecting when a specific state of nature has occurred. A state-

contingent production function is estimated for the grain producing sector in Saxony-

Anhalt based on simulated data and the estimation results are discussed. 

Chapter 7 puts the estimation results described in chapter 6 into the perspective of the 

model. It also discusses the data requirements necessary for the implementation of the 

model and outlines a sequence of steps to empirically substantiate the assumed model 

dynamics and eventually test the performance of the model in the statistical sense. It 

presents a novel methodology for identifying the appropriate weights for price 

expectation formation and degree of risk aversion from farm level accounting data. 
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Chapter 8 discusses the gained insights and the results, interprets the model in the 

context of the climate change impact assessment literature and concludes with remarks 

on future work. 
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Figure 1 Scope of the thesis. 

Note: Chapters 2 and 4 review literature. 

Source: own illustration.
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2 Literature overview 

This chapter provides an overview of existing economic models for climate change 

impact assessment. The relevance of the models has been decided upon based on the 

prominence of the contributions in the field as outlined by the Handbook on Climate 

Change and Agriculture edited by Dinar and Mendelsohn (Dinar and Mendelsohn, 

2011). 

A brief critical evaluation of the presented models and modeling approaches is given 

after their presentation, while section 2.2 recapitulates the observations. Section 2.2 also 

identifies a potential bias in the climate change impact assessment models on the farm 

level and thereby outlines the necessity for the enterprise-level crop yield model 

proposed in this work. 

2.1 Economic models for climate change impact assessment 

This section reviews three branches of economic models. Two of the approaches, the 

Ricardian one described in subsection 2.1.1 and the sector level econometric evaluation 

described in subsection 2.1.2, rely on comparative statics. They provide a climate 

change impact estimate with respect to an aggregated quantity after farmers have 

adapted to the altered environmental conditions. None of the approaches is targeting an 

explanation of how farmers gradually adapt to environmental changes. The third branch 

of models, usually referred to as relying on mathematical programming techniques and 

presented in section 2.1.3, is vastly popular as a normative tool for decision-making 

support in agricultural production. The necessity to investigate the gradual farm level 

adaptation to climate change has led to the recognition of the branch as a positive tool 

for climate change impact assessment. As a positive tool for prediction the 

mathematical programming models depict the gradual adaptation of a specific farmer to 

changes in environmental conditions. 

2.1.1 Mendelsohn, Nordhaus and Shaw: Ricardian farm land value analysis 

The Ricardian approach to climate change impact assessment was introduced by 

Mendelsohn, Nordhaus and Shaw (Mendelsohn, Nordhaus and Shaw, 1994) in their 

analysis of land value sensitivity to climate and soil type in the case of the United 

States. It is also sometimes referred to as the hedonic approach (Deschênes and 
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Greenstone, 2007, p. 355). The study was initially conceptually contrasted by the 

authors to studies relying on the “traditional production function approach” 

(Mendelsohn, Nordhaus and Shaw, 1994; Passel, Massetti and Mendelsohn, 2014). 

This fact is being explicitly mentioned here in order to sound a note of caution: climate 

change impact literature is rife with references to the “production function approach.” 

What is commonly meant by “production function” has agronomic origins and connects 

crop yields to environmental variables, for example average temperature and 

precipitation, as can be inferred from the comprehensive literature overview of Iglesias 

et al. on modeling crop productivity changes (Iglesias et al., 2011). The agronomic 

production function, commonly used to support policy making, is applied for example 

in the contribution of Iglesias, Quiroga and Diz (Iglesias, Quiroga and Diz, 2011) and 

should not be confused with the economic notion of a production function, which 

connects outputs and factor inputs. 

The Ricardian approach to impact assessment relies on estimating the dependence of 

farmland value on climate, soil and socioeconomic variables such as population density 

or geographical proximity to output markets, while implicitly assuming that farmers 

have maximized profits by choosing the levels of output and input commitment under 

the environmental constraints they cannot control (Mendelsohn and Dinar, 2009, p. 54). 

Adaptation to environmental conditions in terms of agricultural producers optimizing a 

crop or cultivar strategy and choosing the optimal input quantities is thus assumed to 

have already taken place (Mendelsohn and Dinar, 2009, p. 54). 

 

The significance of farm land value as a dependent variable is derived from the idea that 

under competitive markets the value of farm land should reflect the present value of the 

expected future earnings from a parcel of land (Mendelsohn and Dinar, 2009, p. 54). 

Farm-level data should thus allow a researcher to measure the current sensitivity of 

farmland value with respect to changes in climate data, which is considered exogenous 

in the model (Mendelsohn and Dinar, 2009, p. 54). The measured current sensitivity is 

then used to provide a crude estimate of the likely economic implications of a change in 

the level of an independent variable of the climate type, for example a marginal increase 

in mean surface temperature. 
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Formally, denoting the present value of farm land by V, and adapting from Mendelsohn 

and Dinar (Mendelsohn and Dinar, 2009, p. 54), the equation for discrete time reads: 

 

   
   

      

 

     

  
                    

      

 

     

                                  

where 

   : net revenue per hectare, 

  : price of crop i, 

  : output quantity of crop i per hectare, 

X: input vector, 

F: climate variable vector, 

Z: soil variable vector, 

Rj: price of input j, 

Xj: quantity of input j (e.g. labor, capital) per hectare, 

t: a single time period, 

T: current time period, 

 : discount rate. 

It should be noted that the Ricardian approach to impact assessment relies on the 

hypothesis of informationally efficient markets, i.e. on the idea that farm level values 

fully reflect the opinion of market participants on the impacts of climate on the net 

revenues. This would not be the case if price rigidities are present. The approach 

thereby implicitly relies on the market participants being correct in their assessment of 

climate impacts. This would not necessarily be the case in the presence of valuation 

dynamics, which results in pricing bubbles. 

Both of these issues are dealt with in the empirical regression analysis using control 

variables. The following empirical specification of the standard Ricardian model in 

vector form includes the so-called “quadratic formulation of climate” (Mendelsohn and 
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Dinar, 2009), which contains temperature and precipitation in linear and quadratic 

terms: 

                                                                              

where 

V: farm land values,  

F: temperature and precipitation variables, 

 : soil and economic control variables,
 

P: output market price variables,  

 : error term. 

Naturally, in empirical terms the applicability of the Ricardian approach is restricted by 

a potential lack of large, reliable datasets. A suitable dataset should cover a region 

geographically and climatically varying enough to deliver sound climate change impact 

estimates. Unsurprisingly, the first applications of the approach focused on the United 

States (Mendelsohn, Dinar and Shaw, 1996; Mendelsohn and Dinar, 2003). 

Further notable implementations for the US exist (Schlenker, Hanemann and Fisher, 

2005, 2006, 2007). While mean surface temperature was one of the climate variables 

used in the original study by Schlenker, Hanemann and Fisher in 2005, the more recent 

contributions in 2006 and 2007 have demonstrated the superiority of using growing 

season degree days instead of temperature. 

The Ricardian analysis extrapolates on what future farmers are likely to do under 

specific climate conditions by assessing what current farmers do under geographically 

varying conditions (Mendelsohn, Dinar and Shaw, 1996). The approach assumes that 

the adaptation of farmers has already taken place. 

In terms of equation (1) the Ricardian approach is not suitable for examining the gradual 

adaptation of farmers to environmental changes because it does not identify how 

farmers would arrive from one set of output choices    and input commitments    to 

another set of output choices    and input commitments    as the specific climate 

conditions   and soil conditions   evolve. In the words of Massetti and Mendelsohn: 
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“… the Ricardian method does not explicitly measure adaptation. It does not identify 

how farmers adapt; it merely measures the resulting consequences of adaptation” 

(Massetti and Mendelsohn, 2011). 

2.1.2 Deschênes and Greenstone: econometric approaches for sector level analysis 

Another branch of sector level, empirically-statistically based approaches for climate 

change impact assessment is exemplified by the panel data evaluation introduced by 

Deschênes and Greenstone, whose initial analysis indicates a slight increase of US 

aggregate agricultural profits due to climate change (Deschênes and Greenstone, 2007, 

p. 356). A reinvestigation by the authors in 2011 arrives at the conclusion that climate 

change will have a negative, yet modest effect on US aggregate agricultural profits by 

the year 2100 (Deschênes and Greenstone, 2011, p. 113). The reevaluation of the 

original study (Deschênes and Greenstone 2012), following a comment by Fischer et al. 

in 2012 (Fischer et al., 2012) also indicates negative impacts of climate change on US 

cumulative agricultural profits. 

The approach of Deschênes and Greenstone for climate change impact analysis consists 

in regressing county level agricultural profits on socio-economic indicators and 

presumably random fluctuations in growing season weather over the geographically 

heterogeneous territory of the US. Like the Ricardian approach, the approach by 

Deschênes and Greenstone extrapolates on the agricultural outcomes likely to happen in 

the future under specific climate conditions by assessing what is currently happening 

under geographically varying conditions, the random fluctuations in growing season 

weather in this case. Deschênes and Greenstone postulate that although the variable to 

be explained in the analysis proposed by them is not land value, the change in land 

value can be easily approximated by calculation based on the estimated change in 

agricultural profits (Deschênes and Greenstone, 2011, p. 115). The predictions delivered 

by the Ricardian approach and the approach of Deschênes and Greenstone are thus 

comparable. 

The approach is suitable for an evaluation of the climate change impact after adaptation 

has occurred, to the extent that farmers are capable of using the whole range of 

adaptation options as a response to yearly weather fluctuations. The potential bias of the 

assessment due to an inability to unfold their adaptation options in the case of short-
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term weather fluctuations is acknowledged by Deschênes and Greenstone (Deschênes 

and Greenstone, 2007, p. 355). 

The standard empirical specification (Deschênes and Greenstone, 2007, p. 367) reads: 

             
              

 
                                                  

where 

   : county level agricultural profits in county c in year t, 

  : county level fixed effect, 

  : shock associated with year t and common for all counties (example: price shocks), 

   
 : row vector of socio-demographic characteristics of county c in year t, 

i: index, associated with one of eight climate variables (e.g. growing season degree 

days), 

    : value of a climate variable i for county c and year t, 

   : stochastic shock, idiosyncratic for county c in year t. 

The parameters    capture the current sensitivity of agricultural profits to growing 

season weather fluctuations and the interaction between climate variables, which is 

modeled by the quadratic model      . The latter includes the climate variables as well 

as squared values of the climate variables. Nonlinearities in the form of an interaction 

between the variables is, as with the Ricardian approach outlined in section 2.1.1, not 

included in the formulation. 

As the authors remark, the effects of different combinations of climate variable 

fluctuations are relatively straightforward to calculate since the cumulative effect on 

agricultural profits is a linear combination of the parameters    (Deschênes and 

Greenstone, 2007, p. 366). The impact of climate change on profits is subsequently 

assessed by a linear extrapolation using the obtained estimates of current sensitivity and 

the predictions of future climate developments generated with a climate model for 

specific scenarios. It should be noted that   , the shocks common for all counties, seem 

to be omitted from the predictions. 
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The plausibility of the results of the linear extrapolation is safe-guarded by the fact that 

the authors work with a county-level panel covering the whole geographically and 

climatically heterogeneous US territory. The decrease in profits in one area (in the 

original example by the authors: the state of California) seems to be offset by an 

increase in profits in another one (in the original example by the authors: the state of 

South Dakota) so that aggregate profits seem unaffected in the original evaluation of 

2007 (Deschênes and Greenstone, 2007, p. 367). 

The evaluation following the comment by Fischer et al. uses corrected datasets as well 

as a more sophisticated version of the climate model (Deschênes and Greenstone, 2012, 

p. 3762). The model has been extended to include storage and inventory adjustments in 

response to yield shocks. The predicted impact of climate change on cumulative 

agricultural profits becomes negative. The magnitude of the impact is decreased by the 

storage and inventory adjustment options (Deschênes and Greenstone, 2012, p.3771). 

The novelty of the approach of Deschênes and Greenstone as well as its heavy relience 

on low-aggregation level weather projections resulting from highly sophisticated 

climate models, might have restricted the number of studies utilizing the approach for 

the time being. As with the Ricardian approach described in section 2.1.1 however, the 

usability of the econometric technique of Deschênes and Greenstone with respect to the 

study of adaptation is restricted. This is related to the observation that, similarly to the 

Ricardian approach, the technique of Deschênes and Greenstone does not target to 

explain the gradual adaptation of the production choices of farmers. 

2.1.3 Farm level optimization models 

There are alternative models allowing for the study of adaptation options: the farm-level 

mathematical programming models, which rely on a variety of optimization techniques. 

As pointed out by Peck and Adams, the low level of spatial aggregation allows the 

explicit inclusion of multiple features of the production and decision-making 

environment farmers operate in, uncertainty included (Peck and Adams, 2011, p. 89). A 

programming model incorporating uncertainty in the decision-making environment 

could, for instance, rely on maximizing the total gross margin of the producer in a 

stochastic production environment. The impact of different management options, such 
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as the decision to invest in an irrigation system or alter the crop rotation schedule, can 

be investigated in this matter (Peck and Adams, 2011, p. 89). 

 

Discrete stochastic programming is a programming technique used in climate change 

impact assessment. The optimality criterion can be varied according to the management 

objectives under investigation, for instance maximizing the discounted net profits. An 

example for the application of non-linear programming in the context would be the 

model of Finger and Schmid presented in 2.1.3.1. Another example for the application 

of discrete stochastic programming in this context is the model of Dono and 

Mazzapicchio presented in 2.1.3.2. 

2.1.3.1 Finger and Schmid: the expected value approach 

Finger and Schmid integrate crop simulations in a farm level programming framework 

in order to investigate the impact of climate change on Swiss crop production. More 

specifically, the authors consider the farm-income stabilizing potential of adaptation 

options such as the variation in sowing dates, the production intensity and irrigation 

farming (Finger and Schmid, 2008, p. 26). 

 

The representative farmer is assumed to maximize the certainty equivalent    

associated with managerial options   and   under deterministic input and output prices: 

 

                                                                             

subject to 

                                                                                      

where 

 : output price associated with a crop, 

       : expected yield of a crop given input vector  , 

 : column vector of input prices, 

 : column vector of inputs, 

       : dummy variable                            , 

 : cost of the adoption of an irrigation system, 
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 : coefficient of risk aversion, 

     : variation of yields of a crop given input vector  , 

 : column vector of production coefficients. 

The irrigation option is presumably adopted if the certainty equivalent associated with 

adopting the system minus the cost K of adoption exceeds the certainty equivalent 

associated with the case of no irrigation (Finger and Schmid, 2008, p. 29): 

 

                                                                           

 

Not one, but two technological conditions such as the condition illustrated in (5) 

constrain the maximization problem in (4) in terms of the model implementation 

(Finger and Schmid, 2008, p. 30). Those are econometrically estimated agronomic 

production functions, which reflect the managerial option to adopt an irrigation system 

or not. Irrigation water thus may or may not be considered a relevant input in 

production. The empirical specification, which corresponds to the case of both nitrogen 

and irrigation water being considered as relevant, reads: 

 

        
       

                                                   

where 

 : crop yields, 

                 : production coefficients, 

 : amount of the input nitrogen, 

 : amount of the input irrigation water, 

 : error term. 

In terms of implementation the maximization problem in (4) still requires calibration 

with respect to the expected yields         and the yield variation      . To obtain 

those the authors employ the crop simulation model Cropsyst. The expected yields 

        are assumed equal to the results from the production functions estimation.  

 

The yield variation measure      , not to be understood as a variance in the strict 

sense, is assumed equal to the absolute difference between yields generated by Cropsyst 
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with varying weather conditions and the expected yields (Finger and Schmid, 2008, p. 

29): 

                                                                                    

 

This work illustrates the potential of estimating a function and using the parameter 

estimates to form an empirically implied technological condition in a farm level 

optimization model. The contribution, however, empirically relies on a crop simulator 

and an agronomic production function, which considers nitrogen and irrigation water as 

the only relevant inputs in production. The crop yields are thus reduced to products of 

the biophysical environment, which might be appropriate on a field level. It should be 

investigated if adding up the predicted harvest of individual fields approximately 

matches the reported yield on enterprise level, where other factors, such as labor costs 

might be at play. 

2.1.3.2 Dono and Mazzapicchio: assessment of farmers’ vulnerability to changing 

precipitation patterns 

Dono and Mazzapicchio use discrete stochastic programming techniques to identify 

farm types most vulnerable to changes in precipitation and water availability patterns 

due to their reliance on irrigation. The changes in precipitation patterns specifically 

dealt with in the study are the decreasing annual cumulative precipitation and the 

increasing monthly rainfall volatility (Dono and Mazzapicchio, 2010, p. 366). The 

changes in rainfall regime would presumably influence the availability of irrigation 

water collected in a dam, making the water level tendentially lower and less certain. The 

uncertainty regarding irrigation water availability is resolved after winter rainfall and 

thus in the midst of the agricultural cycle of the farmers, whose vulnerability is to be 

assessed, see Figure 2. 

 

The first stage decisions of the farmer regard the autumn decisions on the amount of 

land devoted to the production of winter crops, which unlike spring crops do not depend 

on irrigation and therefore do not depend on the amount of irrigation water that would 

be eventually available after winter rainfall. The second stage decisions of the farmer 

regard the spring-summer decision round after the winter rainfall has occurred (Dono 

and Mazzapicchio 2010, p. 364). 
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Figure 2 Timeline of the model Dono and Mazzapicchio. 

Source: own illustration. 

On the one hand the second stage decisions regard the decision on whether or not to 

cultivate the land eventually unused due to first stage decisions, which have led to ex 

post suboptimal results. On the other hand the second hand decisions regard the specific 

spring crop to grow. 

 

The farmer is assumed to make an ex ante choice on both first and second state 

decisions by maximizing his total gross margin (adapted from Dono and Mazzapicchio, 

2010, p. 365): 

                           

 

   

                                                      

subject to: 

                                                                                        

                                                                                                    

where 

 : total gross margin,
 

 : state of irrigation water availability,            , 

    vector of first stage activities (for instance growing wheat),
 

      matrix of second stage activities,
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    perception of the farmer with respect to the occurrence probability of  ,
 

       : unitary gross margins,
 

     : matrices of technical coefficients, which translate activities into production 

outcomes,
 

  : vector of resource availability for each  ,
 

1, 2: decision stages. 

 

The maximization constraints given in (10) and (11) regard the expected land and labor 

availability, agronomical practices safe-guarding a lack of decline in crop yields, 

agricultural policies concerning set-asides and production quotas as well as production 

constraints regarding livestock and plant production. Constraints on irrigation water 

availability are defined for the presumably three possible states of water accumulation 

as well (Dono and Mazzapicchio, 2010, p. 365). 

 

The maximization of the total gross margin in (9) is made by the farmer ex ante, which 

makes it necessary for the authors to make an assumption on how farmers construct 

their expectations regarding the occurrence probability of different water accumulation 

states. The expectations are presumably based on past irrigation water availability. The 

authors then investigate the effect these expectations have on the production decisions 

in the two stages, and thereby on farm income (Dono and Mazzapicchio, 2010, p. 361). 

 

The influence of the expectations on farm income is especially pronounced if the 

expectations regarding water availability and the ex post water level in the dam diverge: 

the expectations influence the amount of land devoted to the production of spring crops, 

which heavily rely on irrigation. Through influencing the amount of land devoted to the 

production of the spring crops the expectations indirectly determine the amount of land 

devoted to the production of winter crops, which do not rely on irrigation (Dono and 

Mazzapicchio, 2010, p. 364). The uncertainty regarding water availability thus 

influences both first and second stage decisions. 

 

The baseline scenario is assumed to consist of the average outcomes of the model based 

on expectations about water accumulation state occurrence as implied by the most 

current water accumulation series, with the outcomes weighted by the probabilities of 
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state occurrence (Dono and Mazzapicchio, 2010, p. 366). A comparison of the baseline 

scenario with soil usage data available for the region confirms a more than 91.9% 

match, which leads the authors to conclude that the model reliably reflects the 

production choices made by farmers during the period (Dono and Mazzapicchio, 2010, 

p. 366). 

 

This model clearly demonstrates the importance farmers’ expectations regarding future 

resource availability could have in production decisions. It also highlights the potential 

economic losses associated with farmers’ expectations on future water availability and 

the actual future water availability diverging. In order to further evaluate the model it is 

vital to consider how the technical coefficients, which translate first stage activities into 

production outcomes, are obtained. In case crop yields as the product of the first stage 

activity “growing wheat” are obtained by a crop simulator, the potential bias associated 

with reducing crop yields to mere products of the biophysical environment applies. 

2.2 Remarks on the literature overview 

The Ricardian approach and the panel data analysis proposed by Deschênes and 

Greenstone provide crude estimates of climate change impact after the farmers have 

presumably adapted. Both rely on making an inference about future agricultural 

outcomes by econometrically investigating current agricultural outcomes across a 

geographically and climatically diverse area.The reliability of both approaches rests on 

the geographical and climatic span of the specific study being sufficiently wide to 

guarantee the inclusion of extreme climate conditions in the dataset. Neither targets to 

explain the gradual adaptation of farmers to environmental changes, which could take 

the form of farmers arriving from one set of output choices and input commitments to 

another set of output choices and input commitments in order to accommodate the 

environmental changes.  

The estimates of the Ricardian approach and the panel data analysis proposed by 

Deschênes and Greenstone can nevertheless provide a reference point with respect to 

the estimated changes in a quantity of interest, for instance cumulative agricultural 

profits in a county at a specific point of time in the future. The cumulative agricultural 

profits in a county are calculable for any point in the future by weighting and adding up 

the profits of multiple geographically and climatically diversified farm-level 
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programming models in the county, which, as mentioned, have a limited spatial span, 

but a temporal dimension and can incorporate environmental uncertainty in the 

decision-making environment of the individual farmer. Changes in the cumulative 

agricultural profits in a county can thus be calculated using the ensemble of suitably 

diversified farm-level programming models as differences in the volume predicted by 

the ensemble across time. 

Thus, (i) the estimated changes in cumulative agricultural profits in a county as given by 

the Ricardian approach, (ii) the estimated changes in cumulative agricultural profits as 

given by the panel data analysis of Deschênes and Greenstone and (iii) the estimated 

changes in cumulative agricultural profits in a county as provided by summing up the 

estimates of farm-level programming models, can be compared if the underlying 

assumptions about future price developments are kept identical. Comparability in the 

climate change impact estimates of different economic models across the scales of 

economic analysis can thus be established. 

The farm-level programming models, as exemplified by the contributions of Finger and 

Schmid (2008) and Dono and Mazzapicchio (2010), accommodate price and 

environmental uncertainty in the decision-making environment of the individual farmer 

rather well. The models specifically target representing the gradual adaptation of 

farmers to environmental changes, which could take the form of farmers arriving from 

one set of output choices and input commitments to another set of output choices and 

input commitments in order to accommodate the environmental changes. 

The farm-level programming models, however, utilize an agronomic notion of 

production. They consider crop yields as mere products of the biophysical environment, 

which can be inferred by the calibration of the models using crop simulators on the level 

of an individual field. The predicted crop yields on the enterprise level are thus obtained 

by adding up the predicted yields from individual fields. The models might thus be 

neglecting factors, which might be relevant to the formation of crop yields on the 

enterprise level, for instance labor. 

 

The latter observation raises the question if there could be a normative or positive 

advantage in integrating different perspectives on the formation of crop yields. 

Combining the agronomic perspective of crop yields as mere products of the 
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biophysical environment, on the one hand, and the agricultural production economic 

perspective of crop yields as outputs resulting from a farmer committing inputs to the 

production process, on the other hand, can prove useful. 

In order to contribute towards addressing this issue, this thesis proposes a novel 

enterprise-level model of crop yields, which integrates the agronomic and production 

economic perspectives on crop formation. The model is described in chapter 5. The 

predictive performance and the climate change impact estimates of the proposed model 

are directly comparable to the predictive performance and impact estimates provided by 

a farm-level programming model. It should be kept in mind that the impact estimates of 

multiple geographically and climatically diversified models like the model proposed in 

chapter 5 can be summed up. The comparability to (i) the estimated changes in 

cumulative agricultural profits in a county as given by the Ricardian approach and (ii) 

the estimated changes in cumulative agricultural profits as given by the panel data 

analysis of Deschênes and Greenstone can thus be established.  
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3 Theoretical background 

The theoretical background consists of two theoretical concepts: the state-contingent 

approach to production and decision-making under uncertainty, proposed by Robert 

Chambers and John Quiggin (Chambers and Quiggin, 2000) as well as the hypothesis of 

adaptive expectations. The state-contingent approach is the origin of the notions of a 

state-contingent production function, an effort-cost function and a revenue-cost 

function; the hypothesis of adaptive expectations introduces the concept of price 

expectation formation. Those concepts are illustrated in the left hand side of Figure 1. 

3.1 The state-contingent approach to production analysis and decision-making 

This section introduces the state-contingent approach to production and decision-

making under uncertainty (Chambers and Quiggin, 2000). The description follows the 

brief overview given in a previous author’s work (Angelova, 2014). 

The approach involves describing the future after an uncertain event as production 

outcome vectors   , each one assigned to one of a finite number of mutually exclusive 

so-called states of nature   (  belongs to the space of states of nature  ,          ) 

(Chambers and Quiggin, 2000, p. 41). 

A state-contingent production technology maps the vector of inputs     
  onto the 

output matrix     
      where   (  = 1,...,  ) identifies the output and   (  = 1,…, 

 ) is a state of nature. An element of  ,    , reflects the amount of output   that could 

be produced in  . A force referred to as Nature is assumed to make a draw from  , 

leading to a realization of a state of nature  . Only a single column of   then occurs 

corresponding to the state of nature  :      
  . 

A state-contingent production technology can be expressed in terms of sets by the 

formulation       . This should be interpreted as the input vector   belonging to the 

set of input vectors sufficient to produce the output matrix  . Alternatively, the 

technology can be expressed as       , which should be interpreted as the output 

matrix   belonging to the set of output matrices, which can be produced given the input 

vector  .  
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The technology is functionally representable as a distance function: 

                
 

 
                                                                     

where 

    : set of output matrices, which can be produced with the input vector  . 

Each specific state of nature   is presumably subjectively perceived by an optimizing 

agent as occurring with probability   . The agent is assumed to be able to adjust the 

production efforts in order to ex ante maximize his utility given the technological and 

cost conditions he faces. A specific pattern of ex ante input commitment would produce 

a specific set of possible future outcomes. The adaptation consists in redistributing the 

ex ante input commitment in order to “substitute” potential future outcomes against 

each other. 

An inability to adapt to uncertainty is accounted for as the extreme case of a so-called 

output cubical technology, a technology which would not allow for a substitution of 

state-contingent outputs by rearranging inputs ex ante (Chambers and Quiggin, 2000, p. 

66). Thus, if faced with an output-cubical technology, the agent would be incapable of 

adapting. It can be argued that a stochastic production function formulation would 

sufficiently account for uncertainty in an empirical investigation if the agent is faced 

with an output cubical technology. A state-contingent formulation would nevertheless 

be formally correct in this case. 

The state-contingent approach to production and decision-making under uncertainty, 

however, provides an additional modeling advantage compared to more traditional 

approaches to production analysis under uncertainty such as stochastic frontier analysis, 

namely being able to provide well-defined cost functions (Chambers and Quiggin, 2000, 

p. 9). This advantage is achieved by extending the formulation of production technology 

to a correspondence between inputs and potential outputs rather than understanding it as 

a correspondence between inputs and stochastically up- or downscaled outputs. The 

properties of the resulting cost functions are largely identical with those of cost 

functions in the deterministic case (Chambers and Quiggin, 2000, p. 125). 
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A so-called effort-cost function, which corresponds to a state-contingent production 

technology, however, has a slightly different interpretation than the cost function in the 

deterministic case. It is understood not as costs related to a certain output level, but 

rather as costs incurred in order to arrange ex ante for a specific set of possible future 

production outcomes (Chambers and Quiggin, 2000, p. 125). 

In the case of linear input pricing the costs associated with arranging for a set of 

possible future production outcomes are: 

                                                                                       

where 

 : input vector, 

 : vector of input prices. 

The effort-cost function is defined as the optimal value function in the following 

minimization problem: 

          
 

                  
                                                     

where 

 : output matrix. 

As can be seen by the formal definition, it resembles a cost function and involves the 

choice of the optimal input vector under a technological condition. This input vector 

follows from the cost-minimization postulate and is thus independent of the risk 

preferences exhibited by the agent himself (Chambers and Quiggin, 2000, p. 127). 

Apart from providing a cost function corresponding to a state-contingent production 

technology, the state-contingent approach contributes towards linking the subfields of 

production analysis and decision-making under uncertainty. It does so by developing 

the concept of a revenue-cost function, denoted by         , which involves 

production decisions over input vectors as well as potential output matrices to achieve at 

least a certain state-contingent monetary goal (Chambers and Quiggin, 2000, p. 143). 



25 
 

If      is defined as an operation, which extracts the diagonal of a matrix and 

transforms it into a column vector, then the revenue-cost function is given by: 

            
 

                                                                         

where 

 :      matrix of state and output specific prices, 

 : S dimensional column vector of state-contingent revenues. 

The objective function in the minimization problem is the effort-cost function, which 

incorporates the costs associated with ex ante arranging for certain output matrix   and 

thus already takes into account the technological limitations posed by the state-

contingent production technology. 

As already stated, the agent is assumed to choose a monetary minimum, which he 

wishes to achieve when choosing the output matrix  , while being aware of the matrix 

of state and output specific prices. This monetary minimum is expressed through the 

target revenue vector  . The revenue-cost function         , which results from 

minimizing the effort-cost function with respect to the output matrix   under the target 

revenue condition, thus describes a set of production alternatives expressed in monetary 

terms. This set of production alternatives is determined by the production technology, 

the input regime and prices, the output prices in the different states of nature and the 

target revenues in each state. 

The specific point in the set of production alternatives, which ends up being chosen, 

depends on the risk preferences of the agent. Two polar cases with respect to risk 

aversion in the case of two states of nature, assuming an efficient agent, are depicted in 

Figure 3. The common element between the two extremes, however, is the production 

decision being described by the point where the iso-cost curve and the indifference 

curve touch, but do not cross. 

The first extreme is marked by a white dot, which depicts the production decision of the 

risk neutral producer. The indifference curve of the agent coincides with the so-called 

fair-odds line, which in the two dimensional case would be expressing the ratio between 

the subjective probabilities    of the occurrence of the two states of nature (Chambers 



26 
 

and Quiggin, 2000, p. 166). The other extreme, marked by a black dot, represents the 

production decision of the extremely risk averse producer, whose preferences can be 

described by a maxi-min shape. Preference curves with this shape will always touch but 

not cross, the iso-cost curve, which engulfs the set of production alternatives at the point 

where the bisector crosses the iso-cost curve (Chambers and Quiggin, 2000, p. 177). 

It is important to note that the extremely risk-averse producer might perceive the same 

fair-odds line the risk-neutral producer does. It is not necessarily the deviating 

perception of state occurrence probabilities, which drives him to choose points along the 

bisector where the state-contingent revenues are equal, but rather his extreme 

preferences with respect to the risk posed by state-contingent revenue fluctuations. 

Fully operationalizing the state-contingent approach, given the assumption that 

production choices are made ex ante, requires the involvement of two hypotheses. The 

first hypothesis is on how the producer constructs output price expectations. The second 

one is on how the producer constructs his perception of the likelihood of the nature-

states occurring. 

 

Figure 3 The production decision with two states of nature.  

Note: The production decision of the extremely risk-averse producer is depicted by the black dot, the 

production decision of the risk neutral producer is given by the white dot. 

Source: Chambers and Quiggin (2000), page 179. 
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3.2 The hypothesis of adaptive expectation formation 

The hypothesis of adaptive expectation formation constitutes one of the prominent 

approaches to modeling expectation formation of economic agents, next to the naïve, or 

static, expectation hypothesis and the hypothesis of rational expectations (Evans and 

Honkapohja, 2001, p. 10). The article by Parkin (Parkin, 2008) in the New Palgrave 

Dictionary of Economics traces the origin of the hypothesis back to the early works of 

Fischer (Fischer, 1911). Evans and Honkapohja trace the origins of the hypothesis back 

to work of Fischer from the 1930s (Fischer, 1930), and the first mathematical 

formalizations of the hypothesis as appearing in the 1950s  (Cagan, 1956), (Friedman, 

1957), (Nerlove, 1958). 

 

The idea is simple: economic agents form their predictions about the future levels of a 

certain economic variable by observing past realizations of the variable. The hypothesis 

of adaptive expectation formation is still relevant to macroeconomic price expectation 

modeling, as a recent contribution by Chow demonstrates (Chow, 2011).  

 

In terms of price expectations the hypothesis reads (Evans and Honkapohja, 2001, p. 

10):  

 

                                                                                

where 

     : expected price in period t, 

       : expected price in period t-1, 

      : price in period t-1, 

 : expectation adjustment coefficient,        . 

The expectation adjustment parameter   reflects the significance the agent attaches to 

deviations between the price observed in the last period and his preceding expectations 

concerning the price in the last period. The parameter is assumed innate to the agent. 
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3.3 Remarks on the theoretical concepts 

One of the advantages of the state-contingent approach consists in unifying the fields of 

production analysis under uncertainty and decision-making under uncertainty. This 

advantage motivates the adoption of the approach as a theoretical basis in the present 

work. There is, however, another advantage of the approach, which is essential from the 

perspective of production economics. It consists in delivering well-defined dual 

functions corresponding to stochastic production technologies. The significance of this 

fact requires clarification with respect to the evolution of the field of production 

economics. 

Duality, broadly speaking, is a concept originating in mathematical optimization theory, 

which has been adopted in the field of production economics among others. The 

concept conveys the principle that optimization problems can be seen from two 

perspectives, a primal perspective and a dual perspective. The values of the solutions, 

which are delivered by the primal and the dual formulation of an optimization problem, 

are mathematically connected. 

One of the first applications of the duality principle to the field of theoretical production 

economics was made by Shephard (Shephard, 1953), where he demonstrated the duality 

between input-distance functions and cost functions in a deterministic framework. As 

Färe and Primont note, such a relationship connects two models: the first (primal) 

model, exemplified by an input-distance function, represents the technological 

connection between inputs and outputs and is free of behavioral assumptions about the 

firm operating under these technological restrictions; the second (dual) model, the cost 

function, represents the costs of producing a specific vector of outputs under the 

technological restrictions, an input pricing regime and with the use of cost-minimizing 

quantities of inputs. The assumption of cost-minimizing behavior by the firm is thus 

implied in the second model (Färe and Primont, 1994, p. 2). The form of the cost 

function, however, vitally depends on the technological restrictions the firm operates 

under. 

The contribution of Shephard is appreciated in applied production analysis since it 

allows empirical production analysts some flexibility regarding the specific model to 

estimate in the case of data limitations (Färe and Primont, 1994, p. 4). Applying duality 



29 
 

theory to theoretical production analysis under uncertainty has been an open field of 

research in order to allow for similar flexibility in the presence of stochastic factors 

(Chambers and Quiggin, 1998). A solid theoretical framework, which applies duality 

theory to production analysis in the presence of risk and uncertainty, has been delivered 

with the state-contingent approach, hence the significance of the contribution. 

This thesis, however, adopts the state-contingent approach as a tool for both production 

analysis under uncertainty and decision-making under uncertainty. Additional 

assumptions on two matters are thus required due to production choices being made ex 

ante. Firstly, a hypothesis on output price expectation formation is needed. The 

hypothesis on adaptive price expectation formation is chosen here for its conceptual and 

computational simplicity. Given the state-contingent nature of the output prices    , 

which form the output price matrix in the target revenue conditions described in (15), a 

slightly augmented version of the hypothesis in (16) is employed in order to 

accommodate state dependency: 

   
        

                   
                                                       

where 

   
    : expected price for output m in period t under s, 

   
     : expected price for output m under s in period   , the last period state s occurred 

in, 

       : price for output m under state s in period   , the last period state s occurred in, 

 : expectation adjustment coefficient,        . 

The augmented definition does not take into account the time-lag between period t and 

the last period, in which state s was observed. It is worth noting that this is equivalent to 

assuming that the agent attaches the same significance to the monetary experiences he 

remembers regardless of when they happened. In other words, the agent either 

remembers the event or he does not. It is also worth noting that modifications of this 

rather strict assumption in the form of fading memories can be achieved by reducing the 

influence experiences in the distant past have on the agent’s current decision-making. 

Such a tuning can be technically achieved by appropriate weighting. 
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Secondly, a hypothesis on the formation of nature-state occurrence probability 

perception is needed. Logical consistency requires a hypothesis on the way the agent 

constructs expectations regarding how often every specific nature state s occurs, which 

does not contradict (17). It is therefore assumed that the agent constructs his probability 

perception based solely on what he has observed in his past and attaches no significance 

to when in his past the states have occurred. Again, reducing the gravity which 

experiences in the distant past would have on the current decision-making, can be 

achieved by weighting. For the sake of simplicity, the current work assumes the agent 

perceives a nature-state as occurring with a probability equal to the relative frequency of 

the state occurring in his past. 
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4 Empirical studies based on the state-contingent approach 

This chapter reviews empirical investigations based on the state-contingent approach to 

production and decision-making under uncertainty outlined in section 3.1. The 

relevance of the contributions in the literature overview has been decided upon based on 

the prominence of the studies in the field of empirical state-contingent production 

analysis, which is relatively easy to determine due to the novelty of the state-contingent 

modeling framework and the relative lack of implementations based on it. As Nauges, 

O’Donnell and Quiggin put it, the “…empirical implementation of the state-contingent 

approach is still in its infancy” (Nauges, O’Donnell and Quiggin, 2011, p. 3). A 

literature overview of the approaches is nevertheless essential in order to identify the 

type of models, which the state-contingent approach can support as a theoretical basis.  

This literature overview is divided into two parts in order to reflect a difference in how 

the reviewed models utilize the state-contingent approach. On the one hand, there are 

models where the state-contingent approach is used as a tool for production analysis 

under uncertainty and optimization by the farmer is either disregarded or implied. Here 

these models are referred to as econometric studies, which are exemplified by the 

studies described in subsections 4.1.1 and 4.1.2. For a comparison with alternative 

approaches such as stochastic frontier analysis the literature review of Shankar can be 

consulted (Shankar, 2012). An overview of alternative methods for production analysis 

under uncertainty is not included here since the only alternative method, which can 

model environmental uncertainty (the stochastic frontier analysis) can be seen as a 

special case of the more general state-contingent approach. 

There are, on the other hand, models where optimization by the farmer is explicit. Here 

these models are referred to as mathematical programming models, which are 

exemplified by the study presented in 4.2. In contrast to the contributions in subsections 

4.1.1 and 4.1.2, the study in section 4.2 utilizes the state-contingent approach as a tool 

of decision-making under uncertainty. 
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4.1 Econometric studies 

This section describes two production economic studies either implying or disregarding 

optimization by the farmer. One of them is the contribution by Chavas, providing a 

methodology for simulating non-realized potential outputs (Chavas, 2008). Such a 

simulation is necessary for the estimation of the parameters of a state-contingent dual, 

in this case a cost function, which would correspond to a state-contingent production 

technology. The cost function is estimated for US agriculture. The second study by 

Nauges, O’Donnell and Quiggin proposes a constant elasticity of substitution 

formulation of the state-contingent production technology (Nauges, O’Donnell and 

Quiggin, 2011). The contribution illustrates the necessity to detect the occurrence of the 

states of nature in order to estimate a primal representation of a state-contingent 

production technology. Their work examines the production in the Finnish agricultural 

sector. 

4.1.1 Chavas: estimating an ex ante cost function 

The study of cost-minimizing input decisions under uncertainty by Chavas constitutes 

one of the earliest empirical implementations of the state-contingent approach (Chavas, 

2008). The article delivers a methodological contribution with respect to recovering the 

non-realized potential outputs, which is necessary for the estimation of the parameters 

of a dual representation of a state-contingent production technology, in this case the ex 

ante cost function. 

In other words, the contribution addresses the fact that under a state-contingent 

technology, where inputs are linked to potential outputs occurring in mutually exclusive 

states of nature, only a single potential output vector is realized ex post, which leads to 

the corresponding cost and input demand functions being empirically intractable 

(Chavas, 2008, p. 438). 

The basic idea of the methodology for the ex ante recovery of the parameters of a state-

contingent production technology is to simulate the potential outputs that would have 

occurred in non-realized states of nature around realized observations of a firm’s output 

             for   periods,        . It is assumed that the unobservable variable 

    captures the relative changes in output   between the states of nature (Chavas, 

2008, p. 439). The ex ante output      is expressed as a function of    . 
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A presumably observable auxiliary variable, which is a function of the unobservable 

relative changes in the      output    , is introduced. This functional relationship is 

presumably invertible. The unobservable relative changes     can thus be expressed in 

terms of the observable auxiliary variable. This would allow the recovery of the 

realizations of output   in the non-realized states of nature, since the ex ante output 

     can presumably be expressed as a function of    . 

The proposed scheme is used by Chavas to estimate input demand functions derived 

from a generalized Leontief cost function. A single output and two states of nature, 

‘good weather’ and ‘bad weather’, are considered in the analysis of aggregated data 

from US agriculture for the period 1949 to 1999. A crop yield index is employed as an 

instrument for the observable auxiliary variable. 

Based on the estimates the elasticity of transformation is calculated around the sample 

means and found to be near zero, which the author concludes indicates an output cubical 

technology, i.e. a technology, which does not allow for a substitution of the state-

contingent outputs between the states of nature. 

Chavas acknowledges the possible limitations to the analysis in stating that it holds 

independently of the nature of the state-contingent production technology only to the 

extent to which a specific parameter of the model can be said to reflect the nature of the 

technology and the economic risks associated with it (Chavas, 2008, p. 440). The 

contribution exemplifies the distributional assumptions needed in order to 

econometrically approach the dual, rather than the primal state-contingent problem. An 

econometric investigation of the latter is given by the study described in subsection 

4.1.2. 

4.1.2 Nauges, O’Donnell and Quiggin: estimating a state-contingent production 

function 

The contribution of Nauges, O’Donnell and Quiggin is one of the first empirical studies 

dealing with the primal state-contingent problem (Nauges, O’Donnell and Quiggin, 

2011). The authors propose a constant elasticity of substitution (CES) type functional 

form for the state-contingent production technology and subsequently investigate the 

production of the Finnish crop production sector. The hypothesis of an output-cubical 

state-contingent production technology is tested. The proposed functional form reads: 
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where according to the description given by the authors 

  : state-contingent output in state of nature            , 

  : state-contingent technical parameter,
 

  : state-allocable input,
 

 : sum of    over all states  , non-state allocable,
 

  : non-state allocable input,          , 

 : substitution parameter, 

 : coefficient reflecting the returns to scale.
 

In the original CES functional form, the coefficients associated with the inputs, namely 

 ,   and    for every  , should add up to unity (Arrow et al., 1961).   is a function of 

the elasticity of substitution and is referred to as substitution parameter by Arrow et al. 

(Arrow et al., 1961, p. 230). The magnitude of  >0 reflects the returns to scale, with 

 <1,  =1,  >1 reflecting the cases of increasing, constant and decreasing returns to 

scale respectively. In the formulation (18) by Nauges, O’Donnell and Quiggin the case 

  =0 would constitute an output cubical production technology. The functional form is 

claimed to accommodate a variety of interesting functional forms as limiting cases. A 

slight correction is needed in order for this claim to be substantiated - the coefficients 

associated with the inputs in (18) should be factored by 1, instead of  :1 

               
        

 

 

   

 

 
  

                                                   

For φ equal to 1 the functional form becomes: 

               
        

 

 

   

 

 
  

                                                     

                                                           
1
 Gratitude is expressed to Jörg Gersonde and Michael Grings for uncovering inconsistencies in the 

formulation (18) by Nauges, O’Donnell and Quiggin. 
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(20) can be log-linearized to obtain: 

               
              

        
 

 

   

                                   

Applying the rule of l’Hôpital yields: 

   
   

                                                                       

 

   

 

For     the functional form in (19) thus converges to a Cobb-Douglas form. 

In the empirical analysis of the Finnish crop production sector Nauges, O’Donnell and 

Quiggin account for technical inefficiency, i.e. the eventuality that individual firms 

produce less than what is technologically feasible and the corresponding observations 

lie underneath the efficient frontier. The empirical part of the contribution accounts for 

the inputs labor, capital and intermediate inputs as non-state allocable inputs and the 

input land devoted to the production of a certain crop as the only state-allocable input. 

This fact seems more intuitive after the authors introduce the definition of nature-states 

underlying their empirical analysis. The issue of the nature-state definition will be 

addressed in this subsection after the presentation of the empirical specification. 

The corrected empirical specification of Nauges, O’Donnell and Quiggin after log-

linearization and after accounting for possible technical inefficiency and stochastic 

errors should read: 

               

 

   

  
 

 
                

 

 

   

       
 

 

   

                      

where 

   observed output aggregate, which is synonymous with    once the state   is realized,
 

  : land devoted to producing a certain crop, 

 : land devoted to crop production regardless of the crop,
 

  : labor, capital and intermediate inputs,          ,
 

  : dummy variable, taking the value of 1, should state   be realized, and 0 otherwise,
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   i.i.d. noise,         
  , 

   i.i.d. half-normally distributed variable, capturing technical inefficiency, 

         
  . 

Defining the states of nature and finding an indicator to detect their occurrence is central 

to the empirical part of the contribution of Nauges, O’Donnell and Quiggin. It plays a 

role when justifying the choice of land devoted to producing a certain crop as a state-

allocable output and serves as a basis for constructing the dummy variables     The 

states of nature are assumed synonymous with weather conditions beneficial to growing 

a specific crop. The crops being considered are wheat, oats and barley. Following the 

advice of Finnish grain experts the occurrence of states of nature in the sample is 

detected on the grounds of two meteorological indicators: the starting date of the 

growing season and the cumulative rainfall in June. The opinions of the experts on 

weather conditions favoring the production of a specific crop, thus constituting the 

states of nature in the empirical part of the contribution of Nauges, O’Donnell and 

Quiggin, are summarized in Table 1. 

Table 1 Expert opinion on the weather conditions constituting the states of nature, which are defined as 

weather conditions favorable for a specific crop. 

 Rainfall: low Rainfall: average Rainfall: high 

Starting date: early Barley-favorable Oats-favorable Barley-favorable 

Starting date: average Wheat-favorable Wheat-favorable Wheat-favorable 

Starting date: late Barley-favorable Wheat-favorable Wheat-favorable 

Source: own illustration based on Nauges, O’Donnell and Quiggin, 2011, p. 8. 

It is evident that the specification in (23) poses a non-linear estimation problem. The 

authors leave the estimation of the parameter   for further research and focus on several 

special cases that are thereafter compared to each other in terms of goodness of the 

statistical fit. 

The bookkeeping records in the southern regions of Finland between the years 1998 and 

2003 are matched with weather data concerning the precipitation and the starting date of 

the growing season, which is collected at geographically appropriate weather stations. 

The hypothesis of an output-cubical state-contingent technology (i.e.   = 0,   ) is 

rejected. 
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The analysis of Nauges, O’Donnell and Quiggin is tuned towards the question of 

whether or not the production technology in the Finnish grain producing sector is 

output-cubical, i.e. whether the technology of grain producers allows for adaptation 

through input reallocation. The contribution outlines the necessity to introduce a source 

of information to identify the occurrence of the states of nature in the econometric 

analysis of a primal state-contingent representation. The necessity arises because of the 

need to construct dummies for state occurrence in order to detect differences in the 

productivity of the state-allocable input in case the nature-state the input is allocated to 

occurs. The authors use weather data to detect the occurrence of the states of nature and 

construct the dummies. 

4.2 Mathematical programming, Crean et al.: representing climatic uncertainty in 

agricultural models 

This section considers in more detail a study, which explicitly accounts for the 

optimization of the farmer. It implements the state-contingent approach in the context of 

climate change impact assessment as a farm level adaptation model (Crean et al., 2013). 

 

Another contribution, which is not presented explicitly to avoid redundancy, is an 

exploratory application of the state-contingent approach in the context of mathematical 

programming by Berg (Berg, 2012). This exploratory study compares the optimization 

results, based on the state-contingent approach, to the results obtained by the application 

of a more traditional decision-making heuristics such as expected utility maximization. 

The study clearly establishes the applicability of the state-contingent approach as a tool 

for decision-making under uncertainty. 

 

The state contingent approach is also applied as a modelling framework in 

environmental issues, more specifically for the analysis of potential cooperation gains 

through coordination of water use along the stream of the rivers in the Murray-Darling 

basin in Southeastern Australia (Adamson, Mallawaarachchi, and Quiggin, 2007). The 

difficulties posed by conflicting demands for the already scarce water, environmental 

and consumptive, as well as the tension between the potential consumptive uses of 

water, are exacerbated by the geographically specific tendency towards dry land salinity 

and acidic soils. Using the water for irrigation purposes upstream injects salt loads into 

it, which in turn reduces the water’s usability down the stream (Adamson, 
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Mallawaarachchi, and Quiggin, 2007, p. 263). The gains of coordination or centralized 

resource management are demonstrated by means of comparing the solutions to a 

cascade of farm-level programming models, which depicts the river system as a directed 

network. The potential gains of cooperation are demonstrated by comparing different 

solutions of the optimization problem: a sequential solution, where optimization is 

seperately undertaken in every region starting with the region furthest up the river 

stream, and a global network solution, where the optimization problem is framed in a 

dynamic optimization fashion. The contribution demonstrates the applicability of the 

state-contingent approach as a tool for decision-making in a dynamic programming 

setting as well as its applicability to real world problems, such as natural resource 

management. 

 

Downwards the focus lies on the application of the state contingent approach to climate 

change impact assessment. The contribution of Crean et al. explicitly acknowledges the 

sequential nature of risk in agricultural settings, which gives farmers the possibility to 

adapt to changes (Crean et al., 2013). It investigates the advantages of the state-

contingent approach as a tool for decision-making in representing decisions under 

environmental uncertainty on a farm level compared to the representation delivered by 

the standard expected value approach. This is achieved by applying the state-contingent 

approach in a discrete stochastic programming setting by developing a two stage model 

of a representative mixed wheat-sheep farm. The optimal farm plans recommended by 

the model are subsequently compared to the recommended optimal farm plans an 

expected value model delivers (Crean et al., 2013, p. 360). 

 

The discrete stochastic programming model represents a typical mixed production farm 

in the eastern part of New South Wales, Australia, with the farm’s area presumably 

divided in fixed proportions between area for annual winter cropping, annual pasture 

and fallow land. The model is structured as a sequence of linear programming models, 

where the conditions in the second stage are dependent on the decisions in the first one 

and the state of nature in the first stage. The presumably risk-neutral farmer is assumed 

to maximize his expected net farm income     . To obtain the expected net farm 

income      each state-dependent net farm income    is calculated ex post. The 

expected net farm income      is then calculated as the weighted sum of the net farm 

incomes   : 
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where 

  : probability of state   occurring,  

   : cost of growing crop or pasture   in stage 1,  

    : quantity of resource   required by crop or pasture   in stage 1,  

     : quantity of output   produced by crop or pasture   in state  ,  

    : net revenue or cost from activity   in state  , 

     : quantity of resource   required by activity   in state  , 

     : quantity of output   required by activity   in state  ,  

  : availability of the resource  , 

  : farm income in state  ,  

   : area of crop or pasture activity   grown in stage 1,  

    : level of activity   chosen in state   in stage 2, e.g. selling crops or grazing crops. 

The two stages of the model are evident from the objective function. The first term 

represents the variable cost associated with a certain activity    , for example producing 

wheat. The second term reflects the expected state-contingent net revenue from the 

possible activities in the second stage, for example selling the wheat sawn in the first 

stage or grazing the wheat, which would not generate revenue but would eliminate 

second period costs associated with animal feed. The number of possible activities in 
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the two stages of the model is different to reflect the fact that the possible activities are 

different. For instance, the option to sell crops is only relevant in the second stage of the 

model since the crops require time to grow. 

 

The decisions between the two stages of the model are interrelated through the matrix of 

constraints with the decisions in the second stage dependent on the decisions from the 

first stage and the state of nature. Hence, the farmer would not have the option to sell 

wheat in the second stage, if he did not plant any wheat in the first stage. 

 

Due to the mixed production nature of the farm two simulation models are employed to 

simulate the role of weather conditions, production and managerial decisions in forming 

outputs. A crop simulation model is run with nine sets of initial conditions, 

combinations of different planting dates (early, mid, late), which are considered a 

managerial decision, and starting soil moisture levels (low, average and high). Three 

states of nature have been defined based on the amount of growing season rainfall: dry, 

average and wet. 

The advantages of state-contingent modeling are theoretically demonstrated with the 

help of a concept stemming from the field of stochastic programming, namely the 

concept of the value of a stochastic solution. Crean et al. also report that the discrete 

stochastic programming model based on the state-contingent approach provides a better 

fit to the actual farm data than the expected value model (Crean et al., 2013, p. 377). 

The model clearly demonstrates the normative gains of the state-contingent approach to 

modeling decision-making under uncertainty in a farm level stochastic programming 

setting. While the study utilizes the state-contingent approach as a tool to decision-

making rather than both decision-making and production analysis, the superior 

predictive power of the model, based on the state-contingent approach, with respect to 

real world farm data is noteworthy. 

4.3 Remarks on the studies based on the state-contingent approach 

The farm-level adaptation study of Crean et al. (2013) utilizes the state-contingent 

approach as a tool of decision-making under uncertainty. The contribution establishes 

the gains of modeling the specific farm-level optimization problem in a state-contingent 

way by calculating an index, which originates from the field of stochastic programming, 
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namely the value of a stochastic solution. The state-contingent model introduced by 

Crean et al. also mirrors the farm-level data better than the alternative stochastic 

programming models applied by the authors. 

Similarly to the study of Finger and Schmid (2008) and the study of Dono and 

Mazzapicchio (2010) described in subsection 2.1.3, the contribution Crean et al. relies 

on the understanding of crop yields as mere products of the biophysical environment. 

Again, the crop yields are calculated on a field level with the use of a crop model and 

obtained on the enterprise level by adding up the predicted yields from individual fields. 

The model of Crean et al. thereby suffers from the same potential bias, which results 

from neglecting factors that might be relevant to the formation of crop yields on the 

enterprise level, for instance labor. 

The production economic studies of Chavas (2008) and Nauges, O’Donnell and 

Quiggin (2011), on the other hand, utilize the state-contingent approach as a tool for 

production analysis under uncertainty. These contributions illustrate the difficulties 

accociated with estimating the parameters of a state-contingent production technology. 

Both studies understand crop yields as outputs resulting from a farmer committing 

inputs to the production process under a specific production technology, thereby 

incorporating factors such as labor. 

The immediate usability of the results of Chavas (2008) and Nauges, O’Donnell and 

Quiggin (2011) in the field of climate change impact assessment is restricted by one 

basic premise posed by the framework. It is the premise that the production technology, 

fully characterized by input and output quantities and the functional relationship 

between them, is objectively given and essentially invariant over time, with the possible 

exclusion of shifts induced by Hicks-neutral technical change (Hicks, 1932). It is 

evident, however, that from the production economic perspective in general the 

influence climate has on crop yields can only be accommodated in the functional 

relationship between inputs, e.g. land, and outputs, e.g. crop yields. Allowing for 

climate change would thus contradict the basic premise of a time-invariant production 

technology. 

Accommodating the randomness introduced by climate change as a mere stochastic 

factor to the production technology, essentially falling back on stochastic frontier 
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analysis, might seem intuitive in the case of such a contradiction. In the terms of section 

3.3, however, this would lead to non-existent dual functions, e.g. non-existent cost 

functions. The latter implies an inability to give a recommendation on how farmers 

could minimize input commitment, for instance land input, in the case of climate 

change. This makes the approach less suitable for the field of climate change impact 

assessment. 

The enterprise-level crop model proposed in chapter 5 overcomes the outlined 

challenges to the application of the state-contingent approach as a modeling tool for 

climate change impact assessment. This is achieved by integrating the agronomic 

perspective of crop yields as products of the biophysical environment, which underlies 

the study of Crean et al. (2013), and the production economic perspective of crop yields 

as outputs resulting from a farmer committing inputs to the production process under a 

specific production technology, which underlies the studies of Chavas (2008) and 

Nauges, O’Donnell and Quiggin (2011). The model fully operationalizes the state-

contingent approach, i.e. uses it as a tool for both production analysis and decision-

making under uncertainty, and delivers a theoretical contribution by unifying it with the 

theoretical concepts described in sections 3.2 and 3.3. 

.   
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5 MELCY: Model for enterprise-level crop yields under climate 

change 

A novel model for enterprise-level crop yields under climate change is described in this 

chapter. The model integrates the agronomic perspective of crop yields as products of 

the biophysical environment and the production economic perspective of crop yields as 

outputs resulting from committing inputs under a specific production technology. As it 

has been mentioned in section 4.3, the model delivers a theoretical contribution by 

unifying multiple theoretical concepts. 

The model is constructed around the hypothesis that the enterprise level crop yields 

   
   

    of crop m for a producer k in a certain period t under state of nature   can be 

meaningfully explained as a function of two quantities:2 

 “Biophysical” hectare crop yields for crop m in period t under state of nature  . The 

biophysical crop yields are assumed to be reflective of the locally bounded climate 

effects, the combination of geographical location, soil type, long-term climate 

patterns and weather conditions, including weather extremes in t. Their formation is 

presumably free of anthropogenic influences. 

 The amount of crop the optimizing producer k should be striving to achieve on an 

enterprise level in period t under state of nature   under a state-contingent 

production technology. The quantity is referred to hereafter as production 

aspirations. The production aspirations reflect k’s knowledge of environmental, 

technological and market conditions up to agricultural cycle t and the input prices in 

t. The knowledge of k is hereafter referred to as the information set     
   

. Some parts 

of the information set     
   

 are specific to producer k. 

Formalizing the hypothesis and disregarding i.i.d. noise would yield: 

   
   

         
             

    
       

   
                                               

where 

   
   

   : crop yields of crop m of k in period t under state of nature  , 

                                                           
2
 A period is hereafter assumed synonymous with agricultural cycle. The latter is different to a calendar 

year. 
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   : biophysical crop yields of crop m in period t under state of nature  , 

   
    

       
   

 : production aspirations of k with regard to crop m in period t under state 

of nature   given the information set     
   

, 

    
   

   ’s information set containing environmental, technological and market 

conditions up to and including period t-1. 

Producer k presumably perceives his crop production in the state-contingent sense: as 

outputs, which result from committing input factors under a state-contingent production 

technology. The production decision is assumed to be reached in a state-contingent 

fashion based on the information available on environmental, technological and market 

conditions at time    as illustrated in Figure 4. The information available at time   is 

contained in the information set     
   

. 

The information set     
   

 over the past   periods contains: 

  
   

                       : past observations of every output  , 

                         : past observations of every input  , 

      : relative frequency of nature-state occurrence,  

                  knowledge of the state of nature, which has occurred in 

period  , 

                              : past state-dependent output prices, 

             : input prices for every input   in  . 

The output and input quantities of every producer   are assumed to be common 

knowledge for all   producers in a region. The input and output prices are only known 

to the producer   himself. The expectations regarding the occurrence probability of the 

nature-states are presumably constructed by producer   based on the relative frequency 

of state occurrence   , which   has determined based on his past experience. The output 

price expectations of   are based on  ’s past observations of the state-dependent output 

price levels and are formed in the adaptive fashion described in section 3.3. 
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Figure 4 Assumed timeline in the model for agricultural cycle t. 

Source: own illustration.  
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Based on the information set     
   

 producer   mentally constructs a set of possible 

production alternatives in a state-contingent fashion. This set would resemble the set of 

possible production alternatives illustrated in Figure 3. The exact location of the 

boundary of the set would depend on the information available to   with respect to past 

input and output amounts, the input and output price information and the monetary 

goals in the form of state-contingent revenues producer   has in mind. 

The production decision would depend not only on the technologically feasible choices 

in terms of the set of production alternatives, but also on the environmental information 

available in the form of relative frequencies of the occurrence of the nature-states 

       and on the individual risk preferences of producer  . These risk preferences 

can be captured by a risk-aversion coefficient. 

The production aspirations    
    

       
   

  are thus determined. The input amounts 

             , committed to production are assumed equivalent to the cost 

minimizing amounts necessary to achieve the determined production aspirations 

   
    

       
   

  before uncertainty is resolved, as illustrated in Figure 4. 

Uncertainty is resolved for agricultural cycle   after Nature chooses a state of nature 

          . The biophysical crop yields    
      

 thus occur. The yields are 

presumably free of anthropogenic intervention and only reflect geographical and 

climatic influences as well as the state Nature has picked. Uncertainty concerning the 

prices of the M outputs in cycle t,               , is resolved as well. The 

enterprise-level crop yields    
   

           , are realized and the information set 

of k is upgraded to   
   

. 
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6 Estimation of the parameters of a state-contingent production 

technology for the crop producing sector in Saxony-Anhalt 

This chapter addresses an empirical challenge to the implementation of MELCY, the 

integrative enterprise-level crop yield model under climate change proposed in chapter 

5. The model assumed that producer   mentally constructs a set of possible production 

alternatives based on the information set     
   

, which is available to him at the decision-

making time. As expressed by (14) and (15) in section 3.1, the boundary of the possible 

production alternatives set depends on the production technological constraints among 

other things. 

Approximating the boundaries of  ’s set of alternatives, as these boundaries would 

appear given the information set     
   

, thus requires a quantification of the limitations 

posed by the state-contingent production technology. This quantification is 

implemented here by an econometric estimation of the parameters of a state-contingent 

production technology. This work, similarly to the contribution of Nauges, O’Donnell 

and Quiggin (2011) described in subsection 4.1.2, estimates a primal technological 

representation in the form of a state-contingent production function. The choice is made 

after evaluating the restrictiveness of the distributional assumptions, which the 

contribution of Chavas (2008), described in 4.1.1, had to make in order to estimate a 

dual representation of a state-contingent production technology. 

6.1 Motivation of the estimation from a production analysis perspective 

Shankar comments in his literature overview on conventional production analysis 

failing to account for the possibly non-output-cubical nature of a production technology 

(Shankar, 2012, p. 23). The analysis in this chapter contributes towards closing the 

potential research gap created by the underuse of the state-contingent approach in 

empirical implementations. 

Here a primal state-contingent technological representation, a state-contingent 

production function, is estimated for the grain producing sector in the German Federal 

State of Saxony-Anhalt. The functional form chosen closely resembles the functional 

form in Nauges, O’Donnell and Quiggin. This study also adopts the nature-state 

definition used in the contribution of Nauges, O’Donnell and Quiggin, the detection of 
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which, as it has been mentioned in subsection 4.1.2 and section 4.3, is necessary in 

order to obtain coefficient estimates for a primal state-contingent technological 

representation. 

In this empirical inquiry the hypothesis of an output cubical production technology, i.e. 

a technology, which does not allow the producers to substitute potential future outcomes 

against one another through input allocation, is tested for the case of crop production in 

Saxony-Anhalt. The analysis rejects the hypothesis based on simulated data and delivers 

estimates of the production coefficients based on the simulated data, which suggests that 

the conventional stochastic frontier analysis would be insufficient as a tool of analysis. 

The results of the analysis and the conclusions drawn from them, however, are valid to 

the extent to which the simulated data match the unobserved real data. 

The empirical analysis in this chapter primarily delivers a methodological contribution 

by suggesting an alternative way to detect the occurrence of the nature-states, i.e. to 

infer the prevalent environmental conditions. Nauges, O’Donnell and Quiggin use 

expert opinion on the weather conditions, which would benefit the production of a 

specific crop, and match weather data to accounting records before estimating the 

production function. Based on previous work by the author this thesis suggests detecting 

the occurrence of the nature-states based on a new indicator, an index evaluating the 

yearly experimental crop yields observed at geographically and climatically relevant 

experimental stations (Angelova, Glauben, and Grings, 2014), (Angelova, 2015). The 

values of the index are statistically grouped and the results of the statistical evaluation 

matched to the accounting data before estimating the production function. 

The alternative solution proposed in this chapter provides certain benefits, which make 

it relevant to empirical production analysis. On the positive side, the fact that the index 

is statistically evaluated contributes towards the objectivity of the evaluation results, 

since they are based on optimizing a mathematical measure of similarity or distance 

between the data points, which lacks the human subjectivity an expert opinion can 

exhibit. On the negative side, the statistical grouping might lead to mathematically 

optimal, yet agronomically meaningless results due to the mechanistic nature of the 

approach. Expert opinion and statistical grouping as ways to detect the occurrence of the 

states of nature should be therefore seen as complementary to each other. 
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A clear advantage of the statistical approach to detecting the nature-state occurrence 

proposed in this chapter is constituted by the index being constructed directly based on 

obtained crop yields. This is beneficial because crop yields result from a complex local 

interplay of weather conditions, soil type and systematic, region-specific nutrient 

applications (Schlenker and Roberts, 2008) rather than from weather only. 

The analysis is described as follows: section 6.2 presents the quantitative methods for 

data clustering employed. Sections 6.3 and 6.4 are devoted to data description and data 

simulation respectively. Section 6.5 introduces the proposed index for nature-state 

detection, evaluates the data and assignes the yearly accounting records to one of the 

states. Section 6.6 deals with the functional form and the empirical specification of the 

production function. Section 6.7 presents and discusses the results. 

6.2 Methods for data clustering 

This section presents the quantitative methods employed in the empirical analysis, more 

specifically the cluster analysis methods used, the hierarchical clustering algorithm 

described in subsection 6.2.1 and the partitioning algorithm described in subsection 

6.2.2. 

Cluster analysis in general aims at grouping observations together into groups (clusters), 

which within themselves should be as homogeneous (dense) as possible, while 

simultaneously being as heterogeneous between themselves as possible (Härdle and 

Simar, 2003, p. 271). As Härdle and Simar also remark, the fundamental structure of 

any cluster analysis involves two steps: choosing a similarity or dissimilarity measure 

between the observations in order to decide how alike or unlike two observations are 

and choosing an algorithm to construct the clusters (Härdle and Simar, 2003, p. 271). 

The main difference between hierarchical and partitioning algorithms, as Härdle and 

Simar further remark, consists in whether a specific observation can be reassigned to a 

different cluster during the application of the algorithm (Härdle and Simar, 2003, p. 

277). While this is possible with partitioning algorithms, such as the one described in 

subsection 6.2.2, it is not possible with the hierarchical ones, such as the one described 

in subsection 6.2.1. 
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Both clustering approaches are presented here because their distinct underlying 

philosophy might provide an applied production researcher with flexibility with respect 

to determining the number of the nature-states and detecting their occurrences. 

Hierarchical clustering algorithms give hints with respect to potential meaningful 

groupings within the dataset and advice on the group membership of specific 

observations, without requiring the number of groups to be fixed a priori. Partitioning 

algorithms advise on the group membership of specific observations, where the number 

of groups is set a priori. If a researcher has a strong theoretical justification with respect 

to the number of nature-states, then the application of a robust partitioning algorithm 

would suffice. In this case, however, alternative interpretations of the dataset with 

respect to the number of nature-states would be lost. Should a researcher wish to 

empirically evaluate the dataset and contemplate on the number of states the data 

supports, then the application of a hierarchical algorithm is recommendable. However, 

evaluating dendrograms the binary tree structures, which visually display the results of a 

hierarchical clustering, introduces subjectivity to the analysis. 

6.2.1 Agglomerative hierarchical clustering 

Agglomerative hierarchical clustering is a method, which allows the investigation of the 

structure of a dataset consisting of   observations. The analysis aims at successively 

merging all observations into a single cluster starting from the finest possible partition, 

where each observation constitutes an own cluster. 

The dissimilarity (or distance) matrix between all   observations is therefore 

computed.3 As Härdle and Simar describe it, the algorithm subsequently proceeds in a 

two-step iterative fashion (Härdle and Simar, 2003, p. 277): 

 The clusters, which are most similar as indicated by the distance matrix, are 

found and merged, 

 The reduced distance matrix between clusters is recomputed based on the 

selected linkage criterion, which constitutes the way the distance between 

clusters is defined. 

                                                           
3
Using a similarity matrix is also possible in principle. Since dissimilarity measures can be calculated 

from and converted to similarity measures without any loss of information, analyzing the dissimilarity 

matrix suffices. 
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The steps are repeated until all observations are merged into a single cluster. The 

analysis is concluded with the appropriate number of clusters being determined. 

The choice of linkage criterion critically influences the clustering results. Two 

commonly used choices for the linkage criterion to determine the distance between two 

clusters which contain more than a single observation are the nearest neighbor criterion 

(the so-called single linkage criterion) and the farthest neighbor criterion (the so-called 

complete linkage criterion). The single linkage criterion relies on defining the distance 

between two clusters as the distance between the nearest two observations, which 

belong to the different clusters (Bartholomew et al., 2002, p. 19). The complete linkage 

criterion equates the distance between clusters to the distance between the farthest two 

observations in each cluster, which belong to the different clusters (Bartholomew et al., 

2002, p. 20). 

Both linkage criteria can be in their own way sensitive to outliers in the dataset since 

they both define the distance between clusters as the distance between two single 

observations, which belong to different clusters (Witten, Frank, and Hall, p. 275). As 

Witten, Frank, and Hall further remark, the two linkage criteria tend to produce clusters 

with different properties. They exemplify this remark by defining the diameter of a 

cluster as the largest distance between observations belonging to the cluster, in which 

case: 

 The single linkage criterion tends to produce clusters with very large diameters. 

 The complete linkage criterion tends to produce compact clusters with a small 

diameter, at the possible expense of an observation belonging to a certain cluster 

being more close to observations in a different cluster than it is to any other 

observation in its own cluster. 

The choice of a linkage criterion critically influences the agglomeration results, i.e. 

potential meaningful groupings within the dataset and the group membership of specific 

observations. A similar agglomeration result across a variety of the linkage criteria 

should ultimately offer reassurance that some truth regarding the underlying structure in 

the dataset is indeed reflected, as Bartholomew et al. observe (Bartholomew et al., 2002, 

p. 21). 
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Figure 5 The different definitions of distance between clusters.  

Note: Distance between clusters according to the linkage criterion:    would be the distance according to 

the single linkage criterion;    would be the distance according to the complete linkage criterion. 

Source: own illustration. 

The agglomeration results can be inspected with the help of a so-called dendrogram, 

which visually resembles a tree-like structure. The so-called “height” of the tree-like 

structure, as it is referred to in the illustrations generated by the R routine hclust (R Core 

Team and contributors 2016a) reflects the distance values, at which a merging of 

clusters is undertaken (Bartholomew et al., 2002, p. 23). The branches of the tree-like 

structure are cut at a level, where there appears to be sufficient ‘space’ to cut them. 

6.2.2 Partitioning Around Medoids (PAM) 

Partitioning around medoids is another clustering method, which allows the attribution 

of observations             , to a preselected number of clusters. It is described in 

the documentation regarding the R routine pam as a robust version of k-means 

(Maechler et al., 2015). PAM relies on clustering observations around so-called 

“medoids” - objects, which are considered representative of the groups with respect to 

revealing the underlying structure of the dataset. Unlike the clustering results from k-

means, the clustering results from PAM are independent of the initial point (Kaufman 

and Rousseeuw, 2005, p. 104). PAM clustering is however more computationally 

intensive than k-means clustering. 
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Kaufman and Rousseeuw describe the algorithm in the following way: if      denotes 

the set of observations             , and             , are the   medoids, 

then PAM searches to determine: 

                           

 

   

 

   

                 

 

   

 

   

                          

where 

                   . 

The PAM algorithm is implemented in two phases. The first phase, referred to as 

BUILD, consists in constructing the initial medoids. The second phase, referred to as 

SWAP, consists in improving the medoids, and, hence, the resulting cluster attribution. 

The BUILD phase consists of successively selecting the   medoids      which are 

considered representative to the   groups. A dissimilarity matrix between all   

observations is computed. The first medoid selected is the observation which minimizes 

the sum of dissimilarities to all other observations. The subsequent medoids are chosen 

in the following way (Kaufman and Rousseeuw, 2005, p. 102): 

 An observation     , which has not been chosen to be a medoid, is considered. 

 Another observation     , which has not been chosen as a medoid, is considered. 

The dissimilarity    to the most similar previously selected medoid as well as 

the dissimilarity        to observation      are calculated. 

 The difference between    and       ,          , is calculated. The following 

index, the partial gain towards choosing      as a medoid brought about by the 

consideration of     , is calculated: 

                                                                              

The significance of a partial gain     index becomes intuitively clear when 

keeping in mind that    and        are measures of dissimilarity. Thus a positive 

difference           means that      is more similar to      than to the closest 

medoid. Thus a positive difference would mean that the consideration of      

provides an argument for observation      being chosen as a medoid. If      is 

closer to the closest medoid than to     , then the consideration of      does not 

speak for observation      being chosen as a medoid. 
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 The total gain obtained by choosing observation      as a medoid is calculated 

by adding up the partial gains over all possible non-selected     : 

                                                                                   

 

 

 A new medoid is chosen among all observations      as the      which 

maximizes the total gain of being chosen, when all other non-selected 

observations      
are considered: 

   
 

    

 

                                                                         

The BUILD phase ends when   medoids      have been chosen among the 

observations. 

The SWAP phase attempts to improve the medoid selection and, thus, to improve the 

resulting assignment to clusters, which is achieved by considering the potential gain of a 

swap between medoids selected in the BUILD phase and non-selected observations. 

The potential gain of a swap is evaluated from the point of view of the non-selected 

observations in the dataset by executing the following steps (Kaufman and Rousseeuw, 

2005, p. 103): 

 An observation       which has not been chosen as a medoid, is considered. Also 

considered are a medoid      and a non-selected observation     . The 

contribution of observation      towards a swap      between      and      is 

calculated. Four situations can feasibly arise: 

o Observation      is further away from both      and      than to another 

medoid. The contribution      is then set to zero. 

o Observation      is closer to      than to any other medoid and closer to 

     than to the second closest medoid. The contribution towards a swap 

is set to 

                                                                                     

o Observation      is closer to      than to any other medoid and at least as 

far away from      as from the second closest medoid. The contribution 

towards a swap is set to 
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where    is the dissimilarity of observation      to the second closest 

medoid and    is the dissimilarity of observation      to medoid     . 

o Observation      is further away from      than from at least one other 

medoid, yet closer to      than to any other selected or non-selected 

observation. The contribution towards a swap is set to 

                                                                                     

The potential gain of a swap between      and      is subsequently calculated by 

adding up the contributions over all non-selected objects      in the dataset: 

         

 

                                                                                

A decision to swap or not is based on selecting the pair (    ,     ), which minimized 

the potential gain of a swap    . A negative minimum means a swap is carried out and 

the SWAP stage is repeated. In any other case the algorithm stops (Kaufman and 

Rousseeuw, 2005, p. 104). Kaufman and Rousseeuw report that PAM obtains 

reasonable clustering results in case studies (Kaufman and Rousseeuw, 2005, p. 92). 

The data used in these case studies is structurally similar to the data used for the 

empirical analysis presented in this chapter. 

6.3 Data 

The estimation of a state-contingent production function provides a way to 

meaningfully integrate “biophysical” and “economic” crop yield data. The biophysical 

crop yield data result from scientific experiments at agronomic stations, which are 

meant to primarily reflect the effects of the interplay of factors in the natural 

environment. This data could make for a suitable proxy for the biophysical crop yields 

of crop m in period t under state of nature  ,    
      

   , in (28) in chapter 5. The 

application of fertilizers and fungicides during the experiments is kept to the amount 

typical of a well-managed enterprise in the region. Human intervention during the 

generation of the biophysical yield data is typically much lower than the amount of 

intervention during the generation of the economic yield data. This is understandable 

since the economic crop yield data stem from the accounting records of optimizing 

enterprises selling the crop harvest, which makes managerial decisions such as the use 

of machinery, labor and intermediate inputs vital. This economic crop yield data could 

make for a suitable proxy for the crop yields of crop m of k in period t under state of 
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nature  ,    
   

   , in (28) in chapter 5. The observations of both data types used in this 

thesis span between the years 1996 to 2007. The timeframe is chosen since both 

biophysical and economic data are available in this period. 

6.3.1 Biophysical data 

This subsection describes circumstances surrounding the formation of the biophysical 

crop yields at three experimental stations in Saxony-Anhalt, the location of which is 

marked on Map 1 in Appendix I. The term “biophysical crop yields” refers to a specific 

type of phenological observations, the mean yield levels of the crop experiments from 

multiple fields at the experimental stations in Saxony-Anhalt. The factors contributing 

to the formation of the yields are mainly climate and weather conditions, geographical 

location, soil type and other specifics of the fields. Managerial decisions also play a role 

to an extent, such as amount of seeds used, sewing dates and eventual use of fertilizers 

as well as plant protection products. 

The crops to analyze, winter wheat and winter barley, have been chosen due to data 

availability reasons. The mean wheat and mean barley yields at the three stations for the 

years between 1996 to 2007 are plotted in Appendix II. The data was retrieved from the 

experimental reports of the Landwirtschaftliche Untersuchungs- und Forschungsanstalt 

(LUF), which outline the course of the experiments. An example of such an 

experimental report would be (LUF, 2001). An emphasis should be made on the 

anthropogenic influences, which contribute to the formation of the crop yields. 

Crop yields result from open-field agronomic experiments, where human intervention is 

controlled and recorded. The goal of the experiments is primarily to discern average 

plant development under specific soil and weather conditions typical for the region 

given the planting practices. The experimental protocols describe the locations and the 

weather conditions in a specific year as well as the development of the plants under 

these conditions. Specifically, the protocols record when the phenological stages of 

plant development were reached, the occurrence of illnesses, the plant biomass as well 

as the crop yields. 

The protocols also record the various management factors, which play a role in 

determining the resulting crop yields, for instance the sowing dates, the distance 
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between the sowing rows as well as the specific plant sort and the amount of seeds used. 

A formal recommendation regarding the latter, which is issued in the guidelines of the 

Bundessortenamt, postulates that the amount of seeds used at the experimental stations 

should be approximately equivalent to the amount typically used in the region and for 

the soil type (Bundessortenamt, 2000, pp. 21-60). 

The major anthropogenic factor, which determines crop yields and is regulated by the 

Bundessortenamt, is the use of fertilizers and plant protection products. The 

recommended amounts should be approximately the amounts used in a “well-managed” 

enterprise in the region (Bundessortenamt, 2000, p. 40). The definition of a “well-

managed” enterprise is somewhat open. Fertilizers and plant protection products appear 

to have been used in moderate amounts according to the experimental protocols.4 The 

biophysical yield values used in this work are obtained in an experimental setting with 

no fungicide applied in order to be as close as possible to the theoretical setting of the 

model proposed in chapter 5. 

The issue of the acceptable level of anthropogenic influences for the biophysical yields 

used to detect the states of nature and the significance of different levels of 

anthropogenic influence for the estimation results will be raised again in subsection 6.8, 

which discusses the results. 

6.3.2 Economic data 

The analysis uses aggregations of accounting records from three agricultural regions in 

the Federal State of Saxony-Anhalt, Germany. The farm level accounting data was 

collected by the statistical division of the Landesanstalt für Landwirtschaft, Forsten und 

Gartenbau (LLFG), a local agency, which annually informs the general public on 

relevant statistics in several sectors in the Federal State. The publicly accessible reports 

show aggregates, i.e. mean values for so-called “agricultural regions” (“Agrarregion”). 

These agricultural regions are small areas thought of as more or less homogeneous 

entities by agro-economic criteria such as general landscape, soil types and the 

predominant way arable land is used in the region (Heyer, 2010, p. 14). The aggregation 

of accounting records in principle is necessary in order to satisfy the requirements of the 

German data privacy legislation. 

                                                           
4
 Gratitude is expressed to Thomas Chudy for helping with the evaluation of the experimental protocols. 
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A full time series of publicly accessible accounting averages are available only for three 

agricultural regions in Saxony-Anhalt, the location of which is marked on Map 1 in 

Appendix I. The reason for the incomplete time series in the other regions is the 

borderline number of enterprises active in the regions: only in some years is the number 

of active enterprises sufficient to obtain aggregated values, which would satisfy the data 

privacy legislation requirements and inform the general public. Therefore the three 

agricultural regions considered are Altmark, Schwarzerde and Heiden. 

The aggregated data is on sole proprietorships (“Einzelunternehmen”) specialized in 

market crop production. The observations span between the years 1996 to 2007 and are 

retrieved from print versions of the public records (MRLU, 1997), (MELF, 1998), 

(MELF, 1999), (MRLU, 2000), (MRLU, 2001), (MLU, 2002), (MRLU, 2003), (MLU, 

2004), (MLU, 2005), (MLU, 2006), (MLU, 2007), (MLU, 2008). The number of active 

enterprises in the agricultural regions Altmark, Schwarzerde and Heiden as well as the 

mean number of enterprises in each region and for each year are indicated in Table 2. 

Table 2 Number of specialized sole proprietorships. 

 Years  

 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 Mean 

Altmark 24 35 35 29 28 30 29 24 29 34 34 34 30.42 

Schwarzerde 79 92 80 87 98 101 103 95 150 157 154 122 109.83 

Heiden 15 18 17 14 19 18 13 12 11 13 13 11 14.33 

Mean 39.3 48.3 44 43.3 48.3 49.7 48.3 43.7 63.3 68 66.3 55.7 51.53 

Note: Number of sole proprietorships specialized in crop production in each one of the three agricultural 

regions of Saxony-Anhalt. 

Source: (MRLU, 1997), (MELF, 1998), (MELF, 1999), (MRLU, 2000), (MRLU, 2001), (MLU, 2002), 

(MRLU, 2003), (MLU, 2004), (MLU, 2005), (MLU, 2006), (MLU, 2007), (MLU, 2008). 

The output and input variables for the regression analysis are described in Table 3. The 

public records provide 36 observations per variable in Table 3, 12 yearly observations 

for each of the three agricultural regions. Some are monetary quantities, which have to 

be converted to real values using an appropriate price index in order to estimate the 

parameters of the production technology: 

 Output aggregate has been deflated with the index of prices received by farmers 

(Index der Erzeugerpreise landwirtschaftlicher Produkte nach Erzeugnissen), 
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 Depreciations have been deflated with the corresponding subindex of prices paid 

by farmers (Index der Einkaufspreise landwirtschaftlicher Betriebsmittel), 

 Intermediate inputs have been deflated with the corresponding subindex of 

prices paid by farmers (Index der Einkaufspreise landwirtschaftlicher 

Betriebsmittel). 

The common base of the price indices is set to the year 2005 (BVEL, 2001), (BVEL, 

2004), (BELV, 2009), (BELV, 2012). 

Table 3 Regression variables and their short description. 

Variable Description 

   Volume of aggregate agricultural output in  : deflated aggregate output per enterprise 

   Land devoted to wheat production in ha per enterprise 

   Land devoted to barley production in ha per enterprise 

  All arable land in ha per enterprise 

   Labor in standardized labor units per enterprise 

   
Capital: deflated depreciations and maintenances for machinery and buildings per 

enterprise 

   
Volume of intermediate inputs: deflated sum of intermediate inputs for seeds, 

fertilizers, pesticides, electricity, etc. per enterprise 

  Year of the observation in a four-digit format divided by the number of observations 

Source: own illustration. 

6.4 Simulation  

The publicly available accounting aggregates (“LLFG mean”) provide 36 observations 

for the seven variables in Table 4, Table 5, Table 6, 12 observations for each region. 

The number of observations is too small to estimate the coefficients mentioned later in 

(42) and (43) according to the rule of thumb given by Green, which recommends a 

number of observations of at least 104 plus the number of regressors (Green, 1991). 

Making data abundant through simulation, and hence making a distributional 

assumption on how observations on individual enterprises are distributed around the 

publically available averages, might provide a solution in case of an insufficient 

database. This would make the results of the subsequent analysis reliable insofar as the 

data generating process is justifiable. A multivariate normal distribution has been 

chosen for the task at hand due to its extensive use in the field of statistics and the 

appealing mathematical properties (Härdle and Simar, 2003, p. 147). 
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The means of the seven-dimensional multivariate normal distributions, one for each 

year in each agricultural region, are assumed equivalent to the publicly available yearly 

accounting aggregates of the output and input variables described in Table 3. These are 

indicated by    in Figure 6. An estimate for the variances    in the estimated matrix    is 

obtained through the temporal variation across each dimension as Figure 6 indicates. 

The off-diagonal elements in the estimated matrix    are assumed equal to zero for 

computational simplicity with the possibility of estimating the covariances from the 

sample discussed in section 6.7. It is important to note that while simulating data could 

make observations abundant, it introduces assumptions about the underlying statistical 

population, in this case on how observations for specific enterprises are distributed 

around the publicly available yearly accounting aggregates. Results based on the data 

are thus valid insofar as these assumptions are justified. 

Thus 36 multivariate normal distributions are obtained, one multivariate normal 

distribution for each region and each year. A number of data points simulated for each 

region per year approximately corresponds to the average number of enterprises active 

in the respective region, as suggested by Table 2: 

 30 data points per year in Altmark, 

 110 data points per year in Schwarzerde, 

 14 data points per year in Heiden. 

The task is achieved with the R routine mvrnorm in the package MASS (Venables and 

Ripley, 2002). A symmetric truncation has been undertaken around the means after the 

simulation, which results in the values spanning between 0.6*mean and 1.6*mean, with 

1848 observations in total. The truncation is necessary, given the nature of the data, to 

avoid both negative values, which should be impossible, and unrealistically high values. 

The truncation ensures the absence of outliers and allows for the use of non-robust 

regression techniques such as ordinary least squares. 

The observed yearly mean of each variable and the corresponding empirical mean of the 

simulated observations for the variable are contrasted for Altmark, Schwarzerde and 

Heiden in Table 4, Table 5 and Table 6 respectively. 
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Figure 6 Distributional assumptions behind the data simulation process. 

Source: own illustration. 
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Table 4 Comparison between observed means and simulated means for Altmark. 

Year 

t 
Type                    

1996 

LLFG 

mean 147281,4751 187,82 47 26 2 49648 58361,5491 
Sim. 

Mean 147456,0535 190,2779 45,2249 25,5918 2,008 49508,0139 58731,4749 

1997 

LLFG 

mean 98469,8867 177 44 24 2,1 46069 71992,3382 
Sim. 

Mean 99751,1646 177,9404 43,828 23,431 2,1371 46352,2455 70833,4411 

1998 

LLFG 

mean 107139,5271 169,7 42 28 1,8 44045 74021,5314 
Sim. 

Mean 106151,4937 167,8516 42,2413 28,927 1,795 44450,2704 73369,2612 

1999 

LLFG 

mean 108378,9849 182 42 27 1,9 47608 83353,2342 
Sim. 

Mean 109464,0282 182,2743 40,7658 25,5338 1,9264 48151,7711 84875,8844 

2000 

LLFG 

mean 115660,6128 172,3 38 22 1,6 45744 76251,8484 
Sim. 

Mean 115030,3903 173,4294 38,4562 22,6894 1,5543 45093,0078 76511,9606 

2001 

LLFG 

mean 91572,1572 179,5 46 22 1,7 48127 72602,1151 
Sim. 

Mean 92763,764 179,8867 48,253 21,9783 1,6921 49616,6635 73346,5627 

2002 

LLFG 

mean 111123,0884 185,2 52 22 1,8 46588 76943,9996 
Sim. 

Mean 109634,2658 184,502 49,7368 21,5045 1,825 46951,8891 79956,1428 

2003 

LLFG 

mean 83362,8327 186 50 22 2 43865 73867,348 
Sim. 

Mean 79337,0961 181,8321 50,9408 23,5988 2,0293 43711,8816 71109,1772 

2004 

LLFG 

mean 105199,3069 238,3667 66 25 2,1 53562 95099,3747 
Sim. 

Mean 101359,5112 239,284 64,9067 24,8363 2,1067 54237,4223 95579,5076 

2005 

LLFG 

mean 116734,0825 225,5 62 29 2,02 40151 82780,0276 
Sim. 

Mean 116631,459 229,0527 64,8842 28,8626 1,9969 39958,5739 82550,6741 

2006 

LLFG 

mean 109371,4004 205 66 27 1,93 40848 76690,11 
Sim. 

Mean 104910,0768 207,0066 63,3711 27,2352 1,9106 41267,4999 76572,9348 

2007 

LLFG 

mean 108465,1571 219,3333 65 45 2,15 45969 79732,2716 
Sim. 

Mean 106037,8904 223,5602 62,5033 45,7614 2,1809 45544,7769 83037,4159 

Note: Yearly comparison of the observed means (“LLFG mean”) and the empirical mean of the simulated 

observations (“Sim. mean”) for each variable. 

Source: own illustration. 
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Table 5 Comparison between observed means and simulated means for Schwarzerde. 

Year 

t 
Type                    

1996 

LLFG 

mean 293555,4446 269,05 126 42 2,64 72153,7858 96191,7665 
Sim. 

Mean 291973,531 269,3046 125,9505 41,8502 2,6456 71076,752 97347,2892 

1997 

LLFG 

mean 245009,5114 274 127 42 2,7 81816,5916 128515,8046 
Sim. 

Mean 249471,2481 273,6615 126,7419 42,1856 2,7138 79612,5311 128345,9868 

1998 

LLFG 

mean 253979,6432 269,2 123 45 2,7 81721,8933 131907,1701 
Sim. 

Mean 248949,2967 269,0722 123,2383 45,1321 2,7052 81811,1653 131805,6254 

1999 

LLFG 

mean 237856,2242 272 123 46 2,8 77319,2483 134656,2557 
Sim. 

Mean 237969,3845 272,9632 123,0584 45,692 2,7984 77108,9416 135527,0136 

2000 

LLFG 

mean 249916,5033 263 119 38 2,6 78413,8929 127104,4798 
Sim. 

Mean 253122,5037 262,3878 119,2612 37,5385 2,6174 78071,1858 127985,8324 

2001 

LLFG 

mean 226965,9976 261,8 128 41 2,7 73498,1996 130785,6217 
Sim. 

Mean 224643,4297 261,1624 128,2089 40,8828 2,7156 73216,6468 130466,8913 

2002 

LLFG 

mean 165893,7859 262,5 123 35 2,5 61342,2719 107411,9718 
Sim. 

Mean 163979,8036 261,0252 123,3361 35,3447 2,4896 61370,568 108546,5443 

2003 

LLFG 

mean 186322,5774 272,8 121 35 2,5 64781,213 124010,4241 
Sim. 

Mean 182994,104 272,1662 121,1912 33,9123 2,5042 64383,7332 123872,5923 

2004 

LLFG 

mean 215508,7812 267,1667 124 34 2,3667 66070,337 128235,3633 
Sim. 

Mean 216932,3179 266,6204 124,6722 34,9161 2,3661 65334,071 128409,992 

2005 

LLFG 

mean 223513,4796 264,9 128 30 2,27 62728,1832 126645,2296 
Sim. 

Mean 229005,9814 265,7649 127,6555 29,7609 2,2444 61719,077 125503,4322 

2006 

LLFG 

mean 208111,3632 278,3333 132 31 2,19 63330,6483 124556,6227 
Sim. 

Mean 208791,5713 277,9978 132,7407 31,9617 2,2392 63565,3542 124530,3886 

2007 

LLFG 

mean 229725,4112 283 133 39 2,4267 65711,8608 128215,4667 
Sim. 

Mean 230213,9509 283,2101 133,1248 38,3498 2,421 65071,8299 128024,7105 

Note: Yearly comparison of the observed means (“LLFG mean”) and the empirical mean of the simulated 

observations (“Sim. mean”) for each variable. 

Source: own illustration. 
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Table 6 Comparison between observed means and simulated means for Heiden. 

Year 

t 
Type                    

1996 

LLFG 

mean 74982,1925 156,39 13,96 16,31 1,83 33889,9186 46194,0872 
Sim. 

Mean 83904,185 154,9019 14,6752 16,4039 1,8617 31770,4711 45018,1572 

1997 

LLFG 

mean 55178,7283 175 15,14 17,68 1,9 34116,4395 59775,2092 
Sim. 

Mean 55138,0522 182,7685 15,7268 19,0653 1,8763 33834,2393 57825,086 

1998 

LLFG 

mean 66000 195 10,99 21,1 2,11 37126,8965 64998,0348 
Sim. 

Mean 69268,9476 189,6819 11,1936 20,9138 2,1556 36202,9846 61993,3385 

1999 

LLFG 

mean 72880,8838 213,4 19,43 23,47 2,3 43104,5168 72292,1016 
Sim. 

Mean 85513,9251 218,2874 21,1593 24,66 2,2961 44409,0829 71610,9318 

2000 

LLFG 

mean 69905,9105 199 15,95 19,79 2 41011,897 68421,0112 
Sim. 

Mean 72684,4562 196,452 17,3414 20,6471 1,9339 40845,3764 73148,9589 

2001 

LLFG 

mean 89196,3545 200,7 31,68 22,55 1,9 48905,1468 83976,0513 
Sim. 

Mean 85497,542 204,5247 32,0418 23,0067 1,837 47298,6653 86838,5919 

2002 

LLFG 

mean 76535,8385 188,9 10,52 16,04 1,7 38793,738 69708,3928 
Sim. 

Mean 75858,3986 183,9105 10,7278 16,7893 1,6939 39123,4499 73148,9166 

2003 

LLFG 

mean 75268,2031 203,1 21,21 29,29 1,8 40860,8888 73556,3828 
Sim. 

Mean 83389,7088 213,7773 26,3516 31,0264 1,7475 40141,6958 72154,0645 

2004 

LLFG 

mean 82666,1579 222,6 29,02 21,66 1,9 39471,9672 75419,3907 
Sim. 

Mean 79917,2781 231,4189 26,4691 21,9664 1,9318 38965,3889 80013,4442 

2005 

LLFG 

mean 91666,2679 240,7 23,56 24,99 2,22 41845,0561 79863,7365 
Sim. 

Mean 84406,7342 240,5508 25,6385 25,9149 2,2235 39067,9706 77390,0289 

2006 

LLFG 

mean 114574,1844 252 43,88 22,99 2,01 47313,986 91096,0382 
Sim. 

Mean 114558,7359 257,8205 43,0375 21,7404 2,0306 45037,9304 94296,2838 

2007 

LLFG 

mean 132042,1211 271 37,31 34,92 2,08 51040,8433 102493,5806 
Sim. 

Mean 135194,2712 273,2147 39,8666 36,4608 2,1148 52225,6941 100783,8995 

Note: Yearly comparison of the observed means (“LLFG mean”) and the empirical mean of the simulated 

observations (“Sim. mean”) for each variable. 

Source: own illustration. 
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6.5 States of nature: definition and detection 

The definition of nature-states used in the empirical analysis matches the definition of 

Nauges, O’Donnell and Quiggin, the contribution described in subsection 4.1.2. By that 

definition a nature-state is a combination of environmental conditions, which favor the 

production of a certain crop. This thesis proposes an alternative way to detect the 

occurrence of the nature-states and to infer the environmental conditions, the benefits of 

which have already been addressed in section 6.1. 

The method for detection proposed by Nauges, O’Donnell and Quiggin consists of 

asking expert opinion on the weather conditions, which constitute a state of nature, and 

build a multidimensional index based on weather data. The dimensions of the index are 

summarized in Table 1 in subsection 4.1.2. 

The method of detection proposed here relies on constructing a ratio of crop 

experimental results and statistically grouping them, as it has been suggested by 

Angelova (Angelova, 2015). In other words, transition is made from using weather data 

as an indicator for the prevalent environmental conditions to using phenological data as 

an indicator for the prevalent environmental conditions. An index, which sets the 

phenological observations in relations to one another, is constructed and statistical 

methods to evaluate the index proposed.  

Following Angelova (Angelova, 2015), the three agricultural regions of Saxony-Anhalt 

are matched with three experimental stations, where field experiments on a variety of 

crops are performed. The location of both agricultural regions and experimental stations 

is indicated on Map I in Appendix I.  

The three stations are: 

 Beetzendorf (Altmark),  

 Magdeburg (Schwarzerde),  

 Gadegast (Heiden).  

The four barley observations for Gadegast corresponding to the years 1997, 2001, 2003, 

and 2005 are missing. These observations have been replaced with the average barley 

yield observed at Gadegast, which was computed from the available observations. The 

means of the winter wheat and winter barley experiments (see Appendix II) have been 
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set in relation to one another for every experimental station, constructing the following 

indicator for each year  , that will be hereafter referred to as biophysical yield ratio or 

simply yield ratio: 

             

            
                                                                    

As in Angelova (Angelova, 2015) the phenological data used in this work are the mean 

values of crop experiments at experimental stations and the index is single-dimensional. 

Environmental conditions more suitable for the cultivation of one crop over another 

crop would presumably be reflected in a relatively high mean yield for the first crop 

compared to the mean yield for the second crop, thus determine the magnitude of the 

index. Environmental conditions more suitable for the cultivation of barley than for the 

cultivation of wheat would thus be reflected by higher values of the index in (37). 

Environmental conditions more suitable for the cultivation of wheat than for the 

cultivation of barley would be reflected by lower values of the index in (37). 

Angelova, Glauben and Grings proposed a similar index, which uses phenological 

observations to infer the prevalent environmental conditions (Angelova, Glauben and 

Grings, 2014). The proposed index is multidimensional and evaluates the mean values 

of crop experiments at experimental stations, the minimum values of crop experiments 

at experimental stations and the maximum values of crop experiments at experimental 

stations. The multidimensional index proposed requires more sophisticated statistical 

methods to evaluate - the possibility of the dimensions of the index “contradicting” each 

other with respect to the result of the evaluation is present. This multidimensional index 

also requires much more detailed data, which has been unavailable in the present 

analysis. The single-dimensional index in Angelova (2015) is thus employed here. 

The index in (37) is calculated for the three experimental stations over the twelve years. 

The dendrograms resulting from a hierarchical clustering of the biophysical yield ratios 

by single and complete linkage for each experimental station are displayed in Appendix 

IV. The dendrograms for the experimental station Beetzendorf indicate two clusters 

regardless of the linkage criterion. The branches of the dendrograms are cut where there 

appears to be sufficient space to do so. In the case of the single linkage dendrogram for 

the station Beetzendorf a suitable place to cut would be at a height between 0.07 and 

0.27, for instance at a height of 0.15. A suitable place to cut the complete linkage 
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dendrogram would be at a height of 0.35. The biophysical crop ratio for the year 2003 

seems to belong to one cluster and the remaining observations to another cluster. 

The dendrograms for the experimental station Gadegast also indicate two clusters 

regardless of the linkage criterion. Cutting the branches of the dendrograms at a height 

of 0.085 and 0.35 for single and complete linkage respectively indicates that the 

biophysical crop ratios for the years 2000, 2002 and 2007 belong to one cluster and the 

remaining observations to another cluster. 

The dendrograms for the experimental station Magdeburg are less unambiguous. 

Cutting the branches of the single linkage dendrogram at a height of 0.055 results in 

three clusters and in identifying the biophysical crop ratio for the year 1996 as an 

outlier. There is ambiguity regarding the point at which the branches of the complete 

linkage dendrogram are to be cut. The height 0.25 would result in two clusters, while 

cutting the branches at a height of 0.1 would result in four clusters. 

A partitioning algorithm is used to validate the attribution of the biophysical yield ratios 

to two clusters as recommended by the hierarchical clustering. The robust PAM is used 

to group the biophysical yield ratios at all stations into two groups. The attribution of 

the yearly yields ratios to one of the two states of nature is visualized in Figure 7 using 

the symbols shown in Table 7. The symbols represent the affiliation of a specific year to 

one of the states of nature, the barley-favorable state or the wheat favorable state. 

Table 7 Symbols representing the states of nature. 

 States of nature 

State Barley-favorable Wheat-favorable 

Symbols   

Manifestation High barley yield, low wheat yield Low barley yield, high wheat yield 

Note: The star represents the barley-favorable state, the circle represents the wheat-favorable state. 

Source: own illustration. 
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Figure 7 Clustering results.  

Note: The yearly biophysical mean yield ratios (left hand side) are attributed to one of the two states of 

nature (right hand side) using the symbols introduced in Table 7. 

Source: own illustration. 

As can be inferred from Figure 7 PAM validates the attribution of the biophysical yield 

ratios recommended by the agglomerative hierarchical clustering. In the case of the 

experimental station Magdeburg PAM validates the results of the agglomerative 

hierarchical clustering using the complete linkage criterion. Disregarding the ambiguity 

surrounding the observations from the experimental station Magdeburg, two states of 

nature are decided upon: 
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 Barley-favorable state of nature, which is presumably consistent with rather high 

barley yields and rather low wheat yields compared to the average values in the 

agricultural region over the observed years, 

 Wheat-favorable state of nature, which is presumably consistent with rather low 

barley yields and rather high wheat yields compared to the average values in the 

agricultural region over the observed years. 

The attributions are summarized in Table 8. These attributions of a specific year in a 

specific region to a state of nature are adopted in the further production analysis in order 

to construct dummies for the nature-state occurrence. The yearly dummies signify the 

environmental conditions prevalent in the year and account for the environmental factor 

in the econometric analysis of accounting records. 

Table 8 Attribution of the yearly observations of the biophysical yield ratio at the three experimental 

stations in Saxony-Anhalt to one of the two states of nature. 

 Beetzendorf Magdeburg Gadegast 

1996 Wheat-favorable Wheat-favorable Wheat-favorable 

1997 Wheat-favorable Barley-favorable Wheat-favorable 

1998 Wheat-favorable Wheat-favorable Wheat-favorable 

1999 Wheat-favorable Wheat-favorable Wheat-favorable 

2000 Wheat-favorable Wheat-favorable Barley-favorable 

2001 Wheat-favorable Barley-favorable Wheat-favorable 

2002 Wheat-favorable Barley-favorable Barley-favorable 

2003 Barley-favorable Wheat-favorable Wheat-favorable 

2004 Wheat-favorable Wheat-favorable Wheat-favorable 

2005 Wheat-favorable Wheat-favorable Wheat-favorable 

2006 Wheat-favorable Barley-favorable Wheat-favorable 

2007 Wheat-favorable Barley-favorable Barley-favorable 

Source: own illustration. 
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6.6 Functional form and empirical specification of the state-contingent production 

function 

The coefficients of a state-contingent production function based on functional forms 

(18) and (23) in subsection 4.1.2 are to be estimated. The output aggregate for a specific 

state of nature   and period   as a function of the inputs is given in (38). 

                      
 

 

   

       
 

 

   

 

 
  

                                      

where 

   : aggregate output in state   in period  , 

 : rate of Hicks-neutral technical change, 

 : temporal indicator, 

 : coefficient associated with the non-state-allocable input  , 

  : coefficient associated with the state-allocable input   , 

  : coefficient associated with the non-state-allocable input   , 

  : a state allocable input, 

 : non-state allocable input,  

  : non-state-allocable input, 

 : substitution parameter, 

 : coefficient reflecting the returns to scale.
 

The formulation in (38), unlike the formulation in (18), accommodates Hicks-neutral 

technical change. Features of the model of Nauges, O’Donnell and Quiggin are kept, for 

instance modeling land devoted to the production of a certain crop as the state-allocable 

input    and allowing the non-state allocable input   to play a role in the formation of 

the state-contingent aggregate output     even if there is no land dedicated to any of the 

analyzed crops. Yet, the most notable feature inherited from the model of Nauges, 

O’Donnell and Quiggin is the incorporation of the parameter  . This parameter, which 

constitutes a departure from the typical CES form of a production technology, provides 
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additional modeling flexibility compared to the pure CES form by allowing for 

increasing or decreasing returns to scale. 

This parameter   scales the production elasticities in (38) for    , which are given by  

   
       

      
 

    

           
  

          
  

   

                             

    
       

       
 

              
  

           
  

          
  

   

                              

    
       

       
 

     
 

           
  

          
  

   

                              

The empirical specification in (42) corresponding to the functional form in (38) 

resembles the empirical specification (23) in subsection 4.1.2:
 

                 
 

 
              

 

   

    
           

 

 

   

       
 

 

   

          

where 

  : observed deflated output aggregate per enterprise in period  , which is synonymous 

to     in (38) once the state   is realized,
 

 : year the observation was made in divided by the number of observations, 

 : entire land per enterprise, 

  : arable land devoted to wheat production, 

  : arable land devoted to barley production, 

  : labor force in standardized labor units per enterprise, 

  : deflated depreciations for machinery and buildings per enterprise, 

  : deflated sum of intermediate inputs per enterprise, 

       : rate of Hicks-neutral technical change, 

    : coefficient associated with land devoted to wheat production in the wheat-

favorable state of nature, 
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    : coefficient associated with land devoted to wheat production in the barley-

favorable state of nature, 

    : coefficient associated with land devoted to barley production in the wheat-

favorable state of nature, 

    : coefficient associated with land devoted to barley production in the barley-

favorable state of nature, 

  : a state dummy, 1 if the wheat-favorable state occurs and 0 otherwise, 

  : a state dummy, 1 if the barley-favorable state occurs and 0 otherwise, 

 : i.i.d. noise,           . 

The simulated nature of the data means that no adjustment needs to be made in (42) for 

the eventual technical inefficiency of a specific enterprise, which constitutes a 

difference to (23) in the description of the study by Nauges, O’Donnell and Quiggin. 

(42) is estimated by non-linear least squares (Madsen, Bruun, and Tingleff, 2004, p. 5) 

using the Levenberg-Marquardt algorithm (Gavin, 2011, p. 2). The R package employed 

is nlsLM (R Core Team and contributors 2016b).
 

After initiating non-linear least squares with the Levenberg-Marquardt algorithm with a 

couple of combinations of starting values as suggested in Ritz and Streibig (Ritz and 

Streibig, 2008, p. 23), convergence has been achieved at a point approximately 

consistent with the theoretical case of a Cobb-Douglas functional form, where   is 

around 0.75 and   is around 0.023. Since the algorithm first chooses the values for   

and  , the estimates of the coefficients associated with the inputs are exceptionally high. 

Non-linear least squares seems to fail to obtain sensible estimates at the initial 

initialization points due to possible numerical issues (Fox and Weisberg, 2011, p. 11), 

which merits further investigation. A numerical investigation with respect to possible 

initialization points could nevertheless result in non-linear least squares providing 

realistic coefficient estimates. 

An empirical specification corresponding to a Cobb-Douglas function (43), which is 

similar to one of the models estimated by Nauges, O’Donnell and Quiggin (FLEX0), is 

estimated by ordinary least squares. The notation in (43) is equivalent to the notation in 
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(42). Again, the empirical specification in (43) resembles the empirical specification 

(23). 

                            

 

   

               

 

   

                    

 

   

         

The estimates of the coefficients  ,     ,     ,     ,     ,    ,   ,    in the empirical 

specification (43) are expected to be positive and in the range between zero and one. For 

estimation purposes it should be noted that         is approximately equal to   for 

small values of  . 

6.7 Results and discussion from a production analysis perspective 

The attribution of the years to states of nature influences the regression result through 

the dummies. A discussion on the indicator used to detect the state-occurrence, hence 

infer the environmental conditions, and the way it is evaluated is necessary. The type of 

clustering algorithm, hierarchical or partitioning, has to be set in accordance with the 

goal of the researcher, as mentioned in the preamble of section 6.2. 

As in (Angelova, 2015) the phenological data used in this work are the mean values of 

crop experiments and the index is single-dimensional. The single-dimensional indicator 

seems intuitive, since it sets the mean biophysical crop yields in a relation to one 

another. As mentioned in section 6.5, environmental conditions more suitable for the 

cultivation of barley than for the cultivation of wheat would presumably be reflected in 

a relatively high mean yield for barley compared to the mean yield for wheat. 

Environmental conditions more suitable for the cultivation of wheat than for the 

cultivation of barley would be reflected by lower values of the index. 

Some remarks on the level of anthropogenic influences, which have contributed to the 

biophysical crop yields used to detect the states of nature in Angelova (2015), are 

warranted. This study considers biophysical crop yields obtained with the low-level 

intensity of fertilizer applied without the application of fungicides in order to maintain 

theoretical consistency with MELCY, the model proposed in chapter 5. Clustering the 

theoretically consistent biophysical crop yields might provide a suboptimal empirical fit 

in (42) and (43) as measured by AIC or BIC compared to clustering biophysical crop 

yields, which emerged after high-level intensity of fertilizer and fungicide use. 
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Comparing the information criteria associated with the regressions with eventually 

deviating dummy variable matrix for state occurrence can thus prove to be a way for 

choosing a suitable model. 

Section 6.1 already outlines the benefits of using the proposed approach to attribute 

yearly observations to states of nature. The resulting attribution should nevertheless be 

compared to the attribution obtained as Nauges, O’Donnell and Quiggin propose. An 

immediate comparison cannot be made here due to the difference in studied regions and 

granularity of the data used: Nauges, O’Donnell and Quiggin use individual farm level 

data from Finland, while this analysis is run on simulated data based on aggregate 

averages from agricultural regions in Germany. Both approaches should be compared 

using the same economic data. If data on observed biophysical crop yields from 

experimental stations are missing, some simulations can be delived by an appropriately 

calibrated crop model.  

The estimation results for the Cobb-Douglas functional form are displayed in Table 9. 

In the Cobb-Douglas case the estimated coefficients associated with the inputs are 

directly interpretable as output elasticities, i.e. the ceteris paribus responsiveness of the 

output with respect to a change in an input variable. It is extremely important to note 

that the estimation results, and the conclusions based on them, are valid to the extent to 

which the simulated data successfully reconstruct key characteristics of the underlying 

statistical population. The estimated coefficients in the Cobb-Douglas case, which 

represent estimates of the log-linearized functions’ first derivatives with respect to the 

inputs, are in the expected range of zero to one. 

All coefficients, including the coefficients associated with the state-allocable inputs are 

significant at a 5% level. The value of the adjusted R-squared statistic associated with 

the regression is 0.9997, which is to be expected due to the simulated nature of the data. 

The levels of standard error, while not negligible, appear reasonable. 
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Table 9 Estimated rate of Hicks-neutral technical change and estimated output elasticities. 

Coefficient Estimate Standard error 

       ) (rate of Hicks-neutral technical progress) 0.017 0.002631 

  (output elasticity with respect to total land) 0.237 0.049853 

   (output elasticity with respect to labor) 0.248 0.049184 

   (output elasticity with respect to capital) 0.456 0.034858 

   (output elasticity with respect to intermediate inputs) 0.085 0.036284 

     (output elasticity with respect to land devoted to wheat 

production in the barley-favorable state) 
0.256 0.023007 

    (output elasticity with respect to land devoted to wheat 

production in the wheat-favorable state) 
0.313 0.018425 

     (output elasticity with respect to land devoted to barley 

production in the barley-favorable state) 
0.134 0.035504 

    (output elasticity with respect to land devoted to barley 

production in the wheat-favorable state) 
0.080 0.025279 

Note: For instance, the coefficient      stands for the elasticity of the output with respect to land devoted 

to wheat production in the state of nature favorable for barley. The significance level is fixed at 5%. 

Source: own calculation. 

The estimated rate of Hicks-neutral technological change is around 1.7%. The elasticity 

of output with respect to total land might seem low compared to the results of the 

FLEX0 model estimated by Nauges, O’Donnell and Quiggin. The same can be said 

about the elasticity of output with respect to labor. The elasticity of output with respect 

to capital seems rather high compared to the results of Nauges, O’Donnell and Quiggin. 

The elasticity of output with respect to intermediate inputs might seem high compared 

to the results of Nauges, O’Donnell and Quiggin. The standard error coefficient in the 
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output elasticity with respect to intermediate inputs is, however, significant. Overall, the 

estimate differences could be explained by different proxies used to quantify the 

amounts of labor, capital and intermediate inputs used in production. 

The output elasticities with respect to land devoted to specific crops are higher in the 

state of nature favorable for the specific crops than in the states of nature favorable for 

the cultivation of the other crop. The estimation results indicate that the devotion of land 

to wheat production would marginally raise the aggregate output more than the devotion 

of land to barley production regardless of the state of nature. Therefore, in this analysis 

based on simulated data, the hypothesis of an output cubical production technology is 

rejected: a substitution of potential state-contingent outputs seems technologically 

feasible for the crop farmers in the Federal State of Saxony-Anhalt based on the 

statistically reconstructed data. 

A desirable modification of the analysis is the estimation of a distance function rather 

than a production function. While both are primal representations of a production 

technology, the distance function representation allows for the estimation of the 

parameters of a multi-output, multi-input technology. Each of the outputs, in this case 

crops, is accounted for separately rather than melt together in the form of an aggregate, 

as is the case in the estimation of a production function in (42) and (43). 

Another challenge worth considering is how to circumvent the so-called endogeneity 

problem, a commonly cited critique in the field of empirical production analysis with 

respect to estimating primal representations of a production technology such as 

production or distance functions rather than dual representations such as cost or profit 

functions (Coelli 2000). The issue concerns the fact that the input quantities in 

estimating the production and distance functions are treated as exogenous rather than as 

cost-minimizing or profit-maximizing quantities derived from the calculus of the 

producers. This, it is argued, can lead to biased estimates of the technological 

parameters.  

The bias can be avoided by estimating the production or distance function within a 

system of equations, which also includes input demand functions and (or) output supply 

functions, by the method of seemingly unrelated regressions e.g. (Antràs 2004). The 

extent to which the endogeneity bias would be problematic here should be investigated 
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with respect to the possibility of ordinary least squares providing unbiased estimators as 

is the case in the model of Zellner, Kmenta, and Drèze under normality assumptions 

(Zellner, Kmenta, and Drèze, 1966). 

6.8 Remarks 

This analysis demonstrates that an estimation of a primal representation of a state-

contingent production technology is possible. The significance attached to a potential 

bias due to endogeneity is understandably high in production analysis studies due to the 

nature of the research question, e.g. would a percentage change in the input factor 

capital or a percentage change in the input factor labor be more important in 

perceptually raising output. MELCY, however, interprets the estimated primal 

representation as an empirically implied technological condition in the optimization 

problem, the solution of which is the effort-cost function. The estimated primal 

representation is thus presumably the technological limitation the agent perceives, an 

interpretation consistent with the concept of the revenue-cost function (15) in the 

description 3.1 of the state-contingent approach. 

Thus, a bias is not of primary importance because the model proposed in chapter 5 

targets to replicate production decisions. The farmer could perceive his production 

technological limitations in a biased way and make suboptimal production decisions due 

to this perception bias. Avoiding a bias in the estimates is thus secondary, should the 

predictive performance of MELCY be deemed satisfactory. Evaluating the effects of the 

biased perception of production technological constraints on the production decisions 

and, ultimately, farm income, might be a fruitful topic of further research. 
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7 Empirical substantiation of the assumed dynamics of MELCY 

This chapter outlines an approach to substantiate the assumed dynamics of MELCY, the 

model proposed in chapter 5. Such a substantiation involves an appropriate partitioning 

of the data as well as the application of a combination of econometric and statistical 

methods in order to identify important, yet not directly observable, parameters of 

MELCY, which presumably influence one of the proposed predictors of enterprise-level 

crop yields. 

As mentioned in chapter 5, the model relies on the idea that enterprise-level crop yields 

   
   

    in an agricultural cycle   can be represented as a function   of: 

 biophysically determined yields,    
         , which would be determined by 

Nature choosing the weather conditions prevalent in  , and  

    
    

       
   

 , the target crop yield the producer should be striving for based on 

the environmental and market information available to him up to this point in 

time. 

The first argument of the function  , the biophysically determined crop yields 

   
         , can be seen as directly inferable. They can either be approximated by crop 

experimental results at relevant agricultural experimental stations or by simulated values 

resulting from an appropriately calibrated crop simulation model. A proxy for future 

yields can be obtained by an appropriately calibrated crop simulator, which uses the 

weather predictions of a suitable climate model. 

The second argument of the function  , the production aspirations    
    

       
   

 , are 

presumably formed based on the environmental and market information available to the 

producer and cannot be observed directly. As indicated in Figure 4, the producer is 

assumed to perceive and remember: 

 insights on his production and the production of his geographical neighbors, 

 information on biophysical yields which have occurred, 

 information on the states of nature which have occurred,  

 information on input and output price levels he himself was confronted with. 
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The producer is furthermore assumed efficient and utility maximizing in the state-

contingent sense. He is presumably sensitized to the possibility of variations in his 

production due to environmental changes that could alter the extent to which state-

allocable inputs influence output. This is assumed to prompt him to evaluate and re-

evaluate his input choices and production outcomes in the manner exemplified in 

chapter 6. He presumably adapts to perceived changes in the production technology as 

well as to changes in the biophysical and market environments by adjusting his 

production aspirations and input commitment. 

Calculating the production aspirations    
    

       
   

  is more challenging. Inferring 

essential parameters, which presumably contribute towards their formation, from 

enterprise level accounting data is vital in order to be able to reconstruct    
    

       
   

 . 

A reconstruction of the production aspirations    
    

       
   

  is necessary to 

approximate future levels of the production aspirations    
    

           
   

  and to make 

a prediction about the enterprise-level crop yields    
   

     . 

Two critical parameters for the production aspirations determination are the expectation 

adjustment parameter   in (17) and  , a risk-aversion parameter, whose definition is 

first proposed in this thesis in equation (45) and will be defined here based on Figure 3. 

Both parameters are intrinsic to the farmer and time-invariant but none of them is 

directly observable. How the farmer is assumed to evaluate his production-technological 

constraints is demonstrated in chapter 6. Chapter 7 is dedicated to inferring the 

expectation adjustment parameter   and the risk-aversion parameter  . Section 7.1 

outlines the data requirements. Section 7.2 outlines the identification procedure 

assuming two crops and two states of nature.5 Section 7.3 discusses the procedure and 

remarks on challenges and potentials. 

7.1 Data requirements 

The model seeks to meaningfully integrate the type of data described in Table 10. The 

weather data is needed in order for the crop model to simulate observations of 

biophysical crop yields (code 04). Observed weather data (code 01) can be used as a 

                                                           
5
The procedure is generalizable with respect to the number of crops and nature-states. 
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feed for a crop model in case agronomic experimental stations, and thus observed 

biophysical yields (code 03), are missing. Simulated weather data (code 02) under a 

changing climate can be used to obtain projections for the development of the 

biophysical yields, which are necessary if MELCY is to be used for predictive purposes. 

Simulated weather data can be generated under different climate change scenarios in 

order to compare the predictions of MELCY across scenarios. Simulated input and 

output prices (code 07) are also needed in order to generate MELCY predictions. For 

illustration purposes the prices could be modeled as geometric Brownian motions, the 

stochastic process used for instance in (Black and Scholes, 1973). 

The observed biophysical yields (code 03) are needed in order to  

 estimate the primal representation of the state-contingent production technology,  

 identify the states of nature and  

 determine the likelihood for their occurrence. 

The estimation of the primal production representation also requires farm-level 

accounting data (code 05). 
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Table 10 MELCY data requirements. 

Data Type Origin Use Code 

Weather 

data 
Observed 

Weather 

stations 

Input for crop models in case 

observed biophysical crop yields 

(code 03) are missing due to a lack 

of experimental stations 

01 

Weather 

data 
Simulated 

Climate 

model 

Input for crop models in order to 

simulate biophysical crop yields 

(code 04) under different climate 

change scenarios 

02 

Biophysical 

crop yields 
Observed 

Agronomic 

experimental 

stations 

Needed for (i) the estimation of a 

primal production technology 

representation for the identification 

of nature-states. Also needed for 

(ii) the determination of the relative 

frequency of state occurrence, 

which presumably determines the 

probability perception of the farmer 

03 

Biophysical 

crop yields 
Simulated Crop model 

Needed for MELCY predictions. 

The biophysical crop yields 

simulated using 01 can be 

employed instead of 03 if 03 is 

missing. 

04 

Farm-level 

accounting 

data 

Observed 

Farm-level 

accounting 

data collectors 

Needed for the estimation of a 

primal production technology 

representation and the 

determination of the expectation 

adjustment parameter   and the 

risk-aversion parameter   

05 

Input and 

output 

prices 

Observed 
Data 

collectors 

Needed for the determination of the 

expectation adjustment parameter   

and the risk-aversion parameter   

06 

Input and 

output 

prices 

Simulated Price model Needed for MELCY predictions 07 

Source: own illustration. 
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7.2 Steps in the identification procedure 

This section describes the steps in the general computation strategy developed to infer 

the expectation adjustment parameter   and the risk-aversion parameter  . Inferring the 

parameters would allow to approximate future levels of the production aspirations 

   
    

           
   

 , which are necessary in order to make a prediction on future levels 

of enterprise-level crop yields    
   

     . 

The observed data, whose type is described in Table 10 with codes 01, 03, 05 and 06, is 

therefore separated into two datasets, as illustrated in Table 11:  

 an initialization dataset, which contains the available observations from periods 

1 to  , 

 a tuning dataset, which contains the available observations from periods     to 

 .  

The agricultural periods refer to the term of an agricultural cycle introduced in chapter 5 

and illustrated in Figure 4. 

Table 11 Partitioning of the data into datasets. 

 Agricultural Periods 

Initialization 1 to   

Tuning     to   

Prediction             

Source: own illustration. 

Table 12 summarizes the phases and steps of the implementation as well as the data 

requirements at each step using the codes introduced in Table 10. For convenience 

Table 12 contains in its fourth column pointers to the subsections, where the 

corresponding step is presented. 
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Table 12 Steps in the procedure and their data requirements. 

Phase Step 
Data types 

Required 
Subsection 

Pre-processing 

Partitioning of the data into 

initialization and tuning 

datasets. 

01, 03, 05, 06 7.2.1 

Simulation of the biophysical 

crop yields under future climate 

conditions, which is needed for 

the prediction of enterprise-

level crop yields. 

02, 04 7.2.2 

Selection of the functional form 

of the production technology 

and derivation of the revenue-

cost function 

None 7.2.3 

Initialization 

Nature-state identification 03 or 04 7.2.4 

Estimation of the coefficients of 

a primal representation of the 

production technology 

03, 05 7.2.5 

Determination of the relative 

frequency of state occurrence 
03 7.2.6 

Tuning 

Calibration of the revenue cost 

function 

06 and estimates 

from 7.2.5 
7.2.7 

Determination of the 

expectation adjustment and risk 

aversion coefficients 

Results from 

7.2.5, 7.2.6 and 

7.2.7 

7.2.8 

Fitting of the enterprise-level 

crop yields 

Results from 

7.2.8 and 03 
7.2.9 

Prediction Prediction 02, 04, 07 7.2.10 

Source: own illustration.  
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7.2.1 Data partitioning 

Available observations of the data-types 01, 03, 05 and 06, as described in Table 10, are 

aligned along a timeline and separated into initialization and tuning datasets. The 

initialization dataset is to be used for the nature-state identification (subsection 7.2.4), 

the initial estimation of the coefficients of a primal representation of the state-contingent 

production technology (subsection 7.2.5) and the initial determination of the relative 

frequency of nature-state occurrence (subsection 7.2.6). The first period in the tuning 

dataset is to be used when determining the expectation adjustment parameter   and the 

risk-aversion parameter   (subsection 7.2.8). The tuning dataset is also used to fit the 

enterprise-level crop yields (subsection 7.2.9). 

7.2.2 Simulation of biophysical crop yields based on the predictions of a climate 

model 

Predictions on future biophysical crop yields are obtained under the predicted weather 

conditions, which are simulated using a climate model for a climate change scenario of 

interest. This effectively constitutes the assumption that there is no feedback of 

agricultural production to the climate system. This assumption is implicit in the farm-

level programming models presented in subsection 2.1.3 and section 4.2 and appropriate 

for enterprise level analysis due to the relatively small output volume. 

7.2.3 Selection of the functional form and derivation of the revenue cost function 

A functional form for the primal representation of the state-contingent production 

technology is chosen, thereby selecting the basis for the empirical specification to be 

estimated. The primal representation of the state-contingent production technology is 

substituted as the production technological condition in the minimization problem given 

in (14), the solution of which results in the effort-cost function. 

Depending on the functional form chosen, the minimization problem might be solvable 

by means of the Lagrangian multiplier method. If there does not exist a closed form 

solution, a numerical method has to be used instead. This thesis, for instance, uses a 

Cobb-Douglas formulation, which implies self-duality (Coelli, 2000), (Chambers, 1988, 

p. 91). 
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If a distance function is chosen as the primal functional representation and the 

corresponding empirical specification estimated, then every output can be taken into 

account separately as mentioned in section 6.7. The revenue-cost problem in (15) is 

considered. Reaching the revenue-cost function might be achievable by means of a 

modification of the simplex method once the revenues and prices are set, since the 

target revenue restrictions are linear. Reaching the revenue-cost function is important in 

order to reconstruct the set of production alternatives as it is presumably perceived by 

the producer. 

7.2.4 Identification of the states of nature 

The biophysical crop yields in the initialization dataset are set in relation to one another 

year-wise, e.g. the biophysical mean of barley for the period 1996 is divided by the 

biophysical mean of wheat for the period 1996. The ratios are constructed for every 

period               in the initialization dataset. In the case of two crops: 

     
              

              
                                                       

The goal is to isolate the states of nature defined as being favorable for the production 

of a specific crop. It is assumed that the farmers attribute their past production 

experiences to one of the states according to the year the production experiences 

occurred in. These ratios                are grouped using a clustering 

algorithm like the partitioning algorithm described in subsection 6.3.2. 

Once the grouping results are deemed satisfying, the assignment of periods to groups, 

which would correspond to states of nature, is undertaken. The objects representative of 

the clusters,            , are assumed to comprise the view of the farmer on what 

constitutes the states of nature. The farmer’s perception of the states of nature is 

assumed complete at this point. 

Any biophysical crop yield ratio observed (after the perception of the nature-states is 

set) is presumably attributed to one of states. This attribution can be completed via 

discriminant analysis since the groups are already known a priori (Härdle and Simar, 

2003, p. 289). 
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7.2.5 Estimation of the state-contingent production function 

The empirical specification corresponding to the functional form of the state-contingent 

production technology chosen in subsection 7.2.3 is fitted using the initialization 

dataset. It should be determined whether the estimated function has the theoretical 

properties of a production or a distance function. This is important because the 

estimated coefficients will be used to calibrate the revenue-cost function. The convexity 

of the set of production alternatives described by the calibrated revenue-cost function 

cannot be guaranteed if the theoretical properties are not fulfilled. In case the estimated 

function does not exhibit the expected theoretical properties the dataset should be 

thoroughly inspected for data anomalies. 

7.2.6 Determination of the relative frequency of nature state occurrence 

The relative frequency of detected nature-state occurrence        is determined 

within the initialization dataset. This relative frequency is assumed synonymous to the 

initially perceived probabilities of state occurrence, which would constitute the initial 

probability perception of every farmer and determine the initial slope of the indifference 

curves of a farmer in case of risk-neutrality (section 3.1). The perceived probabilities of 

state-occurrence are assumed to develop over time as new biophysical crop yield ratios 

are considered. 

7.2.7 Calibration of the revenue cost function 

In this step the revenue-cost function in the form analytically derived in subsection 7.2.3 

should be calibrated using: 

 the estimated coefficients of the primal state-contingent technology 

representation obtained in subsection 7.2.5 (in this thesis the coefficients are 

reported in Table 9, section 6.8), 

 the input prices, which can be set to the values               observed in 

 , 

 the target revenues, which can be set for instance at the level of fixed costs last 

observed in the specific state of nature  , 

 the initial state-specific output price expectations, which can be set equal to the 

state-specific output prices    
           , 
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 the state-specific output prices        , which can be set to the last values 

observed in each state of nature  . 

After a comparison of the so calibrated revenue-cost function with (14), (15) and (17) it 

can be seen that the only coefficient preventing the plotting of an iso-cost curve like the 

one in Figure 3 is the expectation adjustment coefficient  , which plays a role in the 

output price expectation formation. An approach to avoid making assumptions about the 

target revenues and the initial state-specific output price expectations is discussed in 

section 7.3. 

7.2.8 Determination of the expectation adjustment and risk aversion coefficients 

Expectations regarding the future levels of the state-contingent output prices are 

presumably constructed in the manner described in (17). The expectation adjustment 

coefficient can be presumed non-state specific for the sake of computational simplicity.6 

The appropriate value of the expectation adjustment parameter   and the risk aversion 

parameter   introduced below in (45) will be determined jointly. 

The risk aversion parameter   is graphically based on Figure 3. In order to facilitate 

reading Figure 3 is introduced again as Figure 8. The expectation adjustment parameter 

  plays a role in shaping the iso-cost curve in Figure 8. 

The indifference curve of a risk neutral producer in Figure 8 coincides with the ‘fair-

odds’ line, the slope of which gives the relation between the subjective probabilities of 

state occurrence. This slope is assumed determined by the relative frequency of nature-

state occurrence detected in the initialization dataset (subsection 7.2.6). 

As it has been mentioned in section 3.1, the decision of the extremely risk averse 

producer would still lie along the bisector, where state-contingent revenues are equal in 

an effort to avoid any fluctuations in them, even if he perceives the same probability of 

state occurrence as the risk neutral producer. A producer with some degree of risk 

aversion will choose a point on the iso-cost curve which is bounded between the 

production choices of the risk neutral and the extremely risk averse producers. 

                                                           
6
 Possible relaxations of this assumption and their computational implications are discussed in section 7.3. 
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Figure 8 The production decision with two states of nature.  

Note: The production decision of the extremely risk-averse producer is depicted by the black dot, the 

production decision of the risk neutral producer is given by the white dot. 

Source: Chambers and Quiggin (2000), page 179. 

It is assumed that the set of production alternatives described by the calibrated iso-cost 

curve (subsection 7.2.7) is a convex one, which is safe-guarded by the estimated 

function in subsection 7.2.5 exhibiting the desirable theoretical properties. Then, the 

production decision of a risk averse producer (grey dot on the iso-cost curve in Figure 

9) can be represented as a combination of the decisions of the risk-neutral one (white 

dot on the iso-cost curve in Figure 8 and Figure 9) and the extremely risk-averse 

producers (black dot on the iso-cost curve in Figure 8 and Figure 9). 

If rays connect the origin and the points representing the production decisions in Figure 

9, then the risk-aversion coefficient is defined as          : 

                                                                      

where   is the polar angle consistent with the production decision of a producer with a 

coefficient of risk-aversion  ;   is the polar angle consistent with the production 

decision of a risk-neutral producer and   is the polar angle consistent with the 

production decision of an extremely risk-averse producer. 

fair-odds line (risk-neutral indifference curve) 

r1 

r2 

bisector (equal revenue vector) 

maxi-min indifference curve 

iso-cost curve 
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A specific value of   signifies a point on the iso-cost curve between the production 

decisions consistent with risk-neutrality (given by the white dot and consistent with   in 

Figure 9) and extreme risk-aversion (given by the black dot and consistent with   in 

Figure 9). This section of the iso-cost curve between the white and black dots can be 

grid-searched in order to identify  . The points, however, have to be compared to an 

observable, non-stochastic entity. 

 

Figure 9 Polar angles consistent with diverse degrees of risk-aversion of the producer.  

Note: Similarly to Figure 8 the production decision of the extremely risk-averse producer is depicted by 

the black dot and the production decision of the risk neutral producer is given by the white dot. 

Source: own illustration. 

The search of an observable, non-stochastic entity leads to the following observation: 

each point of the iso-cost curve corresponds to a mix of state-contingent revenues. This 

mix of state-contingent revenues is connected to a matrix of state-contingent outputs   

through (15);   is connected to a cost-minimizing input vector   through (14). Thus, the 

cost-minimizing input vector  , obtained on the basis of the information set   
   

 and 

some assumed values of the expectation adjustment parameter   and the risk-aversion 

parameter  , can be compared to the input vector   observed in    . In other words, 

what producer   should have committed in     given specific values of   and   is 

compared to what producer   actually committed in    . A choice of a distance 

measure should be made a priori. 

To put it in a different way, the numerical identification of the appropriate values of the 

risk-aversion and the expectation adjustment coefficients requires considering that the 

revenue-cost function is calibrated based on an estimation, which takes into account the 
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initialization dataset. The strategy for identification consists of grid-searching a list of 

possible values for the two parameters, determining the production aspirations 

consistent with each specific parameter value pair and determining the cost-minimizing 

input amounts to produce the production aspirations consistent with each specific 

parameter value pair. The cost-minimizing input amounts can be compared to the 

observed input amounts in the tuning dataset. A specific parameter value pair is selected 

based on how well the calibrated model reproduces the input commitments in the tuning 

dataset. 

For given specific values of   and  , the aspirations of the producer are a fully-defined 

point on the iso-cost curve in the space of state-contingent revenues illustrated by 

Figure 8.  

These aspirations would take the form: 

    
    

                                                                   

Having certain values for the state-contingent output prices     would lead to the 

aspirations in the form of state-contingent output aspirations: 

           
          

            
          

                                     

where 

        
 : aspirations of the producer for crop 1 in the first state of nature, 

        
 : aspirations of the producer for crop 2 in the first state of nature, 

        
 : aspirations of the producer for crop 1 in the second state of nature, 

        
 : aspirations of the producer for crop 2 in the second state of nature. 

Regardless of the form of the production aspirations they can be cost-effectively 

produced by a certain combination of inputs, which is determined by the input prices 

and the production technology, when the production technology might be expressed 

either in terms of a production or a distance function. This fact can be used for the 

numerical identification of the appropriate values of the risk-aversion and the 

expectation adjustment coefficients. 
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For example, the value pair (0.9,1) would correspond to an extremely risk-averse 

producer, who attaches a great significance to past deviations between expected and 

realized state-contingent output prices. The production aspirations in terms of state-

contingent outputs, based on the data in the initialization dataset are identified as: 

           
          

            
          

            
 
                                     

These aspirations can be produced in a cost-minimizing manner with the input 

quantities    
               , as the effort-cost function would convey, i.e. the 

quantities    
                are computable and can be compared to the observed 

input quantities        . 

Following this brute force strategy, scanning the intervals       for   and       for   

with a given increment the production aspirations can be calculated: 

          
          

            
          

         
 
                                         

The corresponding input quantities    
              are derived. A distance   

between the predicted cost-minimizing input quantities and the observed input 

quantities is calculated: 

             
                       

 

   

                                              

Although   and   are calculated for period    , as a maintained hypothesis these 

parameters are considered constants for all periods. A number        is juxtaposed to 

each pair      . The value pair for   and  , which minimizes the selected distance 

measure between predicted and observed input commitments, is chosen. The optimal 

value pair is referred to as (  ,   ), i.e.                          . 

7.2.9 Fitting of the enterprise-level crop yields 

Once the optimal estimated value pair (  ,   ) has been determined for each producer  , 

a proxy for the production aspirations of each producer   can be obtained for the 

remaining observations in the tuning dataset. To achieve this steps 7.2.5, 7.2.6 and 7.2.7 
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are repeated, adding observations of the data types 03, 05 and 06 period-wise. 

Observations of the biophysical yield ratio are attributed to the nature-states determined 

in 7.2.4 via discriminant analysis. 

 

Thus the production aspirations for each period   in the tuning dataset are calculable and 

take the form: 

          
          

            
          

            
   

                       

This way the second argument of the function   is also determined and all the functional 

values and the values of both arguments are known for the periods in the tuning dataset. 

The ideal relationship corresponding to MELCY in chapter 5 can then be modeled: 

   
                

                 
    

           
   

                             

where 

   
          : yields of crop   for a producer   in period       under state  , 

   
             : biophysical yields of crop   in period       under state  , 

   
    

           
   

 : production aspirations of the producer   with regard to crop   

in period       under state  . 

Plotting the obtained values for the biophysical crop yields and the production 

aspirations could help determine the functional form appropriate for modeling. The 

function can be interpolated with some well-known class of functions, e.g. splines. A 

multiplicative form of the Cobb-Douglas type would however provide a first suggestion 

– a period with a natural disaster (i.e. biophysical yields approaching zero) should lead 

to zero outputs, regardless of what the producer is striving to achieve; similarly, a 

beneficial period (i.e. high biophysical yields) should lead to zero outputs, if the 

producer is not trying to produce anything (i.e. aspirations equal to zero). Once the 

functional form is chosen the coefficients can be estimated econometrically. 
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7.2.10 Prediction 

The functional form estimated in subsection 7.2.9 serves as a basis to simulate 

enterprise-level crop yields in the future. This is possible since the production 

aspirations are constructed based on information already available from previous 

periods and the biophysical crop yields are independent of production choices, should 

crop rotation be disregarded. A relaxation of the letter condition and the implications are 

discussed in section 7.3. 

The production aspirations and the cost-minimizing input commitments absorb the 

biophysical as well as the market information available up to this point in time – the 

probability perceptions with respect to state occurrence, the way the production 

technology is perceived by the producer, the input prices, the output price expectations 

and the target revenues. The biophysical crop yields account for the changes in the 

natural environment. 

7.3 Remarks 

This chapter presented a sequence of steps to substantiate the model MELCY proposed 

in chapter 5. It elicits the unobservable production aspirations among others through a 

partitioning of the available data into an initialization dataset and a tuning dataset. The 

procedure thereby uses the fact that from the point of view of the researcher all the 

observed data is known, while the realizations in period     were unknown to the 

farmer making production choices in period  . 

The model selected in subsection 7.2.8 could be tested given that sufficient amount of 

data is available for some longer period of time. While a good predictive performance 

cannot ultimately confirm the validity of the model, it provides empirical evidence in its 

favor. It should be investigated how possible simulation errors, which MELCY would 

absorb through the use of data types 02, 04 and 07, could influence the simulated output 

of MELCY. To test the empirical performance of MELCY the observed data can be 

separated into not two, but three datasets: initialization dataset, tuning dataset and 

testing dataset. In terms of number of observations belonging to a dataset the number is 

somewhat arbitrary. Another discipline, machine learning, can offer guidelines: 50% of 

the data is used to train an algorithm, another 25% of the data are used for validation 
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and the remaining 25% for testing (Hastie, Tibshirani, and Friedman, 2011, p. 222). In 

the case of MELCY this would mean committing 50% of the data to initialization,  

another 25% to tuning and the last 25% to testing. As Hastie, Tibshirani, and Friedman 

remark the specific number of observations assigned to a dataset should depend on the 

task (Hastie, Tibshirani, and Friedman, 2011, p. 222). In the case of MELCY the tuning 

dataset should be sufficient in order to elicit enough observations on the production 

aspirations in order to merit the econometric analysis in subsection 7.2.9. The number 

of observations needed depends on the functional form chosen and the number of 

coefficients, which are to be thereby estimated.  

Subsection 7.2.7 poses assumptions on the target state-contingent revenues and the 

initial state-specific output price expectations. It is possible in principle to include those 

values in the grid search introduced in subsection 7.2.8. While grid-searching the 

optimal value of the expectation adjustment parameter   relies on searching along the 

same iso-cost curve, grid searching possible values for the target state-contingent 

revenues and the initial state-specific output price expectations would rely on searching 

different iso-cost curves. The optimal values for the state-contingent revenues can be 

compared to the accounting records of the data type 05 in order to see what magnitude 

the elicited values resemble. Such a modification would require insuring that the tuning 

dataset is large enough: every state-contingent parameter, including a state-specific 

expectation adjustment parameter  , requires at least one observation belonging to the 

state of nature to identify. Hopefully, suitable larger datasets will be accessible in the 

emerging era of big data and open public data. 

Further development of the model should include first and second round of input 

commitments within the same agricultural period, in the manner the model presented in 

subsection 2.1.3.2 describes. Figure 10, which is based on Figure 4, illustrates the 

suggestion, with the second round of input commitment indicated by the dark box. 

Thought should be devoted to the way the second round input commitments are 

identified. While the first round input commitments are optimal ex ante, the second 

round input commitments are optimal ex post, i.e. after the uncertainty about the state of 

nature is resolved. Further research and experimentation with real data are needed in 

order to tackle the issue effectively. 
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Figure 10 Suggestion for further model development. 

Source: own illustration. 
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8 Conclusion and outlook 

As it has been established in chapter 2, assessing the impacts of climate change on 

agricultural production requires models on different scales of economic activity. The 

approaches described in subsections 2.1.1 and 2.1.2 rely on spatial comparisons across 

geographically and climatically diverse areas and extrapolate the findings to probable 

future agricultural outcomes. Crude estimate of the impacts of climate change after 

adaptation has occurred are delivered by these approaches. 

However, assessing climate change impacts requires understanding the ways and extent 

to which farmers can adapt to changing environmental conditions, which none of these 

two approaches targets to explain explicitly. This assessment relies on farm-level 

mathematical programming models incorporating uncertainty like the models described 

in subsection 2.1.3 and section 4.2. Crop yields are obtained on the field level through 

crop simulators. 

While reducing crop yields to biophysical environment products is appropriate on the 

field level, summing up these yields to the enterprise level might lead to distortions, 

since it neglects essential production determinants, e.g. the wage associated with labor. 

Such potential biases have to be addressed in order to make the predictions of impact 

and adaptation models comparable across all scales of economic activity. 

The essential production determinants like wage are accounted for in the production 

analysis studies in the field of agricultural economics, like the studies based on the 

state-contingent approach described in section 4.1. The direct applicability of the results 

of the production analysis studies to the field of climate change impact assessment is, as 

it has been established in section 4.3, restricted by basic premises posed by the 

production economic framework. Production economic elements can, however, be 

helpful in addressing the identified potential biases across scales of economic activity. 

Hence, MELCY - an enterprise-level model for crop yields under climate change - is 

proposed in chapter 5. Similarly to Crean et al. (2013), the mathematical programming 

farm-level model described in section 4.2, which reports positive gains from state-

contingent modeling, MELCY is based on the state-contingent approach presented in 

section 3.1. Unlike a mathematical programming model, which explicitly shows the 
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decision-making of the farmer and subsequently simulates field crop yields, MELCY 

represents the enterprise level crop yields as a function of average crop yields per field 

and optimal production aspirations under production-economic constraints. It thus 

integrates the agronomic and economic perspectives of crop yields. 

With respect to the empirical implementation, a new indicator - the biophysical yield 

ratio - is proposed to detect the states of nature as well as two statistical approaches to 

evaluate it. As section 6.3 observes the proposed hierarchical clustering algorithm 

proposed is suitable for the nature-state detection if the researcher has not a priori 

decided on the number of nature states and wishes to explore potential meaningful 

groupings within the dataset containing the biophysical yield ratios. If, on the other 

hand, a researcher has a strong theoretical argument concerning the number of nature-

states, then the application of a robust partitioning algorithm is appropriate. Interpreting 

the results of hierarchical clustering introduces an element of subjectivity into the 

analysis, while the use of a robust partitioning algorithm would reveal an objectively 

optimal grouping, yet will not reveal alternative interpretations of the dataset. 

This chapter is divided into two parts. Section 8.1 reports the results in a manner 

consistent with the research questions and hypotheses set in chapter 1. Section 8.2 

provides an outlook and plans for future work. 

8.1 Results and discussion 

The ultimate goal of this thesis - developing a model for enterprise-level crop yields 

under climate change, providing a method for the calculation of the model and 

demonstrating the model implementation using available data for the case of Saxony-

Anhalt - is achieved. 

The first specific objective of this thesis - proposing a model for enterprise-level crop 

yields under climate change, which integrates the economic and agronomic notions of 

crop production in a coherent whole - is reached with the introduction of MELCY in 

chapter 5. A general strategy for the computation of MELCY, which demonstrates its 

empirical tractability, is provided in chapter 7. MELCY overcomes the posed 

conceptual challenge by combining the state-contingent approach with a hypothesis of 

how economic agents form expectations on the level of relevant variables under 

uncertainty, namely the hypothesis of adaptive price expectations. A partial 
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implementation for the case of crop production in Saxony-Anhalt, an estimation of the 

coefficients of the primal representation of the state-contingent production technology, 

is presented in chapter 6. 

Chapter 5 demonstrates that the insights of the state-contingent approach are applicable 

to the field of climate change impact assessment, as it has been demonstrated by the 

construction of MELCY. The latter also demonstrates that it is possible to overcome the 

conceptual challenge posed by the state-contingent approach not being explicit on how 

agents form expectations about the future levels of output prices. The analysis outlined 

in chapter 6 rejects the hypothesis of the crop producing farmers in Saxony-Anhalt 

operating under an output-cubical technology to the extent to which the simulated data 

match the unknown real data. 

With respect to the framing as research hypotheses the following has been achieved: 

 Chapter 5 demonstrates that the construction of a model, which integrates both 

economic and agronomic notions of crop production under climate change, is 

possible. The constructed model is computable, as demonstrated in chapter 7. 

 The conceptual challenge posed by the limitations of the state-contingent 

approach can be overcome, as chapter 5 demonstrates. 

 The hypothesis of an output-cubical production technology in the case of the 

crop production sector in the Federal State of Saxony-Anhalt is rejected. This 

result holds to the extent to which the simulated data successfully reconstructs 

key characteristics of the underlying statistical population. 

Overall, this thesis delivers three distinct contributions: 

 It establishes the need for a novel enterprise-level crop yield model under 

climate change. It delivers such a model, which fully operationalizes the state-

contingent approach as a tool of production analysis and decision-making under 

uncertainty by combining it with the hypothesis of adaptive price expectations. 

The thesis outlines a general computational strategy for the model. 

 This work introduces a new indicator to statistically detect the occurrence of 

nature-states, an alternative to the approach proposed by Nauges, O’Donnell and 

Quiggin (2011) based on an earlier work by the author. It also proposes two 

statistical approaches to process the introduced indicator and explores their 

advantages and disadvantages. 
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 A “geometrical interpretation” of the degree of risk-aversion, which is intrinsic 

to the farmer, is offered. An approach to infer the degree of risk-aversion from 

farm-level accounting data is proposed. The transformation into a polar 

coordinate system facilitates the identification of the parameter. 

The proposed model is computable and would 

 provide recommendations to crop producers with respect to optimal input 

quantities under the changing environmental conditions and  

 make a prediction with respect to enterprise-level crop yields under climate 

change. 

MELCY fills in the identified gap in existing models in climate change impact research: 

it accounts for crop yields as the products of the biophysical environment and input 

factors on an enterprise level, rather than selecting few economic production factors and 

reducing the crop yields to field-level products of the biophysical environment like the 

mathematical programming models as described in subsection 2.1.3 and section 4.2. 

The function predicting the crop yields (52) accounts for the changes in climate via the 

biophysical crop yield term for each crop separately, which accounts for the fact that 

crops react to changes in climate differently. Through the introduction of the notion of 

production aspirations the function (52) accounts for changes in the prices of the 

enterprise-level factors such as wage. Such changes are generally unaccounted for in 

mathematical programming models. 

Another specific aspect of the proposed model MELCY is that it accounts for an 

evolution in the perceived probabilities of state-occurrence based on the relative 

frequency of occurrence of climatic events as encountered by the producer. This 

evolution in the perceived probabilities of state-occurrence builds onto the non-

evolutionary expectation formation accounted for in the mathematical programming 

model of Dono and Mazzapicchio presented in subsection 2.1.3.2. A non-evolutionary 

formulation can nevertheless be accounted for by keeping the perceived probabilities at 

the values of the relative frequencies        initially determined in subsection 7.2.6. 

A comparison between the two formulations, an evolutionary and non-evolutionary one, 

could then be used to investigate the significance of expectation formation in shaping 

the production aspirations of farmers and, thereby, for the resulting enterprise income. 
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The proposed model MELCY relies on using a coefficient of risk-aversion estimated 

from farm-level accounting data and thus tuned to the specific case, unlike the 

mathematical programming models presented in subsection 2.1.3 and section 4.2. 

MELCY also relies on an estimate of an expectation-adjustment coefficient. The model, 

however, does not account for output price volatility. Another limitation of the model is 

the fact that it can only make a prediction about crop yields in the original portfolio of 

crops. The introduction of new crops in the original production portfolio might prove 

problematic due to difficulties in obtaining the initial estimates for the production 

coefficients in subsection 7.2.5. Obviously the full implementation of MELCY will 

require further research and extensive study of its application performance, in case the 

necessary data become available. 

8.2 Outlook and plans for future work 

With respect to future work, the methodical contribution introduced in section 6.6 

concerning the detection of nature-states should be systematically compared with the 

approach to detection proposed by Nauges, O’Donnell and Quiggin (2011). Using 

phenological observations rather than weather data to infer the prevalent environmental 

conditions, as in (Angelova, 2015), seems by itself promising. This claim is supported 

by the recent results of Dalhaus and Finger (Dalhaus and Finger, 2016), who apply a 

similar method to detect the occurrence of a phenomenon insured against in the context 

of weather index-based insurances. 

A distance function, rather than a production function, should be estimated, which 

would allow for the outputs to be accounted for separately, rather than melt together in 

the form of an aggregate. The potential bias, which results from the endogeneity 

problem, should be quantified for the stochastic case. The possibility of accounting for a 

second round of managerial decisions within the same agricultural period, as suggested 

in section 7.3, should be considered. 

Testing the predictive performance of the model with respect to past enterprise-level 

crop yields and input commitment is a central topic for future research. Comparing the 

performance of MELCY to the performance of a mathematical programming model is 

another vital topic for future research. Both would rely on the data described in Table 10 

be complete. Fulfilling the data requirements for a region in order to construct a 
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complete picture is far from trivial since it involves simultaneously having weather and 

agronomic data as well as farm-level accounting data for the same span of time. 

Last, but not least, another central topic for future research should be addressed: 

comparing the results of the different models for climate change impact assessment as 

suggested in section 2.2. The point estimates provided by the Ricardian approach and 

the panel data analysis proposed by Deschênes and Greenstone (2007) can be used to 

obtain a figure for the change in cumulative agricultural yields in a county at a specific 

point of time in the future under a scenario of interest. Changes in the cumulative 

agricultural yields in a county can, on the other hand, be calculated using multiple 

suitably diversified farm-level mathematical programming models or enterprice-level 

models like MELCY for the same climate change scenario. Ensuring comparability of 

the results as well as conducting an in depth comperative analysis of the monetary 

assumptions underlying the approaches are both fruitful topics for future work. Both are 

highly relevant in order to ensure the quality of the recommendations given to policy 

makers. 
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Appendix I: Map of Saxony-Anhalt 

 

 

Map 1 Map of Saxony-Anhalt 

Note: Location of the three agricultural regions and experimental stations in Saxony-Anhalt.  

Source: Ministerium für Raumordnung, Landwirtschaft und Umwelt (1996) 
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Appendix II: Biophysical yields and ratios 

 

 

Figure 11 Biophysical crop yields at experimental station Beetzendorf.  

Note: Observations on mean yields of winter barley, mean yields of winter wheat and the crop 

yield ratio between the years 1996 and 2007. 

Source: own Illustration. 
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Figure 12 Biophysical crop yields at experimental station Magdeburg.  

Note: Observations on mean yields of winter barley, mean yields of winter wheat and the crop yield ratio 

between the years 1996 and 2007. 

Source: own Illustration. 
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Figure 13 Biophysical crop yields at experimental station Gadegast.  

Note: Observations on mean yields of winter barley, mean yields of winter wheat and the crop yield ratio 

between the years 1996 and 2007. 

Source: own Illustration. 

 

  



113 
 

Appendix III: Biophysical mean yield ratios 

 

 

Figure 14 Biophysical mean yield ratios.  

Note: The mean yield ratios at Beetzendorf, Magdeburg and Gadegast for the years between 1996 and 

2007, displayed in the range of values between 0 and 2. 

Source: own Illustration.  
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Appendix IV: Dendrograms 

 

 

Figure 15 Hierarchical clustering results for Beetzendorf.  

Note: Single linkage dendrogram above (consistent with two clusters), complete linkage dendrogram 

below (consistent with two clusters). 

Source: own illustration. 
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Figure 16 Hierarchical clustering results for Magdeburg.  

Note: Single linkage dendrogram above (consistent with three clusters and an outlier observation 1996), 

complete linkage dendrogram below (consistent with two or four clusters).  

Source: own illustration. 
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Figure 17 Hierarchical clustering results for Gadegast.  

Note: Single linkage dendrogram above (consistent with two or three clusters), complete linkage 

dendrogram below (consistent with two or three clusters).  

Source: own illustration. 

 

 


