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Zusammenfassung

Zusammenfassung

Durch technische Fortschritte ist die Erfassung von Hochdurchsatzdaten umfassend

und kostengünstig geworden. Die Herausforderung jedoch liegt in der Auswertung der

generierten Datenmengen. Integrative Ansätze zur Analyse von Omics-Datensätzen er-

lauben tiefere Einblicke als die Auswertung der einzelnen Omics-Ebenen. Häufig werden

z.B. genomische und metabolische Daten in quantitativen genetischen Analysen kom-

biniert, um die pflanzliche Stressantwort in Arabidopsis thaliana zu untersuchen. Wie die

Informationsweitergabe vom Genom über Transkriptom und Proteom zum Metabolom

erfolgt und welche Mechanismen diesen Prozess regulieren ist ebenso von großem Inte-

resse.

In dieser Arbeit wurde die Analyse von Hochdurchsatzdaten der Pflanzenbiochemie auf

das entsprechende experimentelle Design angepasst. Zunächst wurde die Supervised Pe-

nalized Canonical Correlation Analysis (spCCA) als überwachtes statistisches Verfahren

für Experimente mit mehreren untersuchten Faktoren genutzt. In einer vergleichenden

Studie des Transkriptoms und Proteoms der Phosphatmangelantwort stellten sich Per-

oxidasen als Schalter der oxidativen Stressantwort auf beiden Omics-Ebenen heraus.

Für eine andere Studie wurde ein funktionaler Ansatz gewählt, um Einzelnukleotidpoly-

morphismen mit dem Sekundärmetabolimus zu assoziieren. Für 19 Akzessionen von

A. thaliana konnte die Abwesenheit bestimmter Exsudatmetabolite auf vorzeitige Stop-

codons in den Genen biosynthetischer Enzyme zurückgeführt und für drei Substanzen ex-

perimentell validiert werden. Des Weiteren wurden metabolische Ähnlichkeiten einzelner

Akzessionen im Clustering der codierenden Sequenzen wiedergespiegelt. Um die Repro-

duzierbarkeit von biochemischen Omics-Daten zu untersuchen, wurden die beobachteten

Varianzen für einen Proteomics- und einen Metabolomics-Datensatz in ihre Komponen-

ten zerlegt. Die einzelne Pflanze hatte einen erheblichen Einfluss auf die Varianz; dieser

Trend wird vom Protein zum Metaboliten hin verstärkt. Bei einer weiteren Studie wurde

die pflanzliche Antwort auf biotischen Einfluss am Beispiel des Wurzelendophyten Piri-

formospora indica in Exsudaten, Wurzeln und Blättern von A. thaliana untersucht. Das

Transkriptom deutete bereits auf Veränderungen des Sekundärmetabolismus und hor-

monresponsive Prozesse hin. Der wachstumsfördernde Effekt ging einher mit wenigen

Veränderungen im überirdischen Teil und einer deutlicheren Hochregulation des un-

terirdischen Pflanzenmetabolismus.

Diese Arbeit zeigt an ausgewählten Beispielen maßgeschneiderte Lösungen für integra-

tive Fragestellungen. Zukünftige Ansätze könnten die Systembiologie und Netzwerk-

modellierung als Weiterentwicklung für die ganzheitliche Datenanalyse nutzen.
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Abstract

Abstract

Thanks to technical advances the acquisition of high throughput data has become

comprehensive and affordable, but the challenge remains in the analysis of the generated

bulk of data. Integrative approaches for omics data analysis allow for deeper insights

than the evaluation on a single omics level. For example, genomic and metabolic data are

often combined in quantitative genetic analyses to investigate the plant stress response

in Arabidopsis thaliana. The flow of information from genome through transcriptome

and proteome down to the metabolome and which mechanisms regulate this process are

of great interest.

In this thesis, the analysis of high throughput data was optimized to fit the respective

experimental design. Supervised penalized canonical correlation analysis (spCCA) was

applied as a supervised statistical method for experiments with multiple factors that

were investigated. In a comparative study between transcriptome and proteome of the

phosphate deficiency response, peroxidases were regulated moderately on both omics

levels. A more functional analysis was chosen to associate secondary metabolites with

single nucleotide polymorphisms. For 19 accessions of A. thaliana, the absence of cer-

tain exudate metabolites due to premature stop codons in genes encoding biosynthetic

enzymes could be validated for three substances. Moreover, metabolic similarity of some

accessions was reflected in the clustering of coding sequences. To investigate the repro-

ducibility of biochemical omics data, the total observed variances in a proteomics and

a metabolomics experiment were dissected. A single plant substantially influences the

variance and this trend increases from protein to metabolite. Last, the plant’s response

to a biotic interaction was examined exemplarily for the root endophyte Piriformospora

indica with the metabolic analysis of exudates, roots and leaves of A. thaliana. The trans-

criptome had already pointed towards secondary metabolism and hormone-responsive

processes. The growth-promoting effect was accompanied by the upregulation of the

belowground, but not aboveground plant metabolism.

This thesis demonstrates customized solutions for integrative research questions for se-

lected examples. Future approaches could utilize systems biology and network modeling

as an advancement in holistic data analysis.

II



Contents

Contents

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 High throughput omics technologies and the challenges in data analysis . . . . . 2

1.3 Plant metabolism, metabolomics and analytical techniques . . . . . . . . . . . . 4

1.4 Roots and chemical communication in the rhizosphere . . . . . . . . . . . . . . 6

1.5 Factors in experimental design as a basis of data analysis . . . . . . . . . . . . 7

1.6 Aims and questions addressed . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 General statistical methods for combining multiple omics . . . . . . . . . . . . . 11

2.1.1 Supervised Penalized Canonical Correlation Analysis . . . . . . . . . . . . . . . 11

2.1.2 Comparative expression profiling reveals a role of the root apoplast in local phos-

phate response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Natural variation of root exudates in Arabidopsis thaliana – linking metabolomic

and genomic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3 Biological variability of biochemical phenotypes . . . . . . . . . . . . . . . . . . 66

2.3.1 Plant-to-plant variability in root metabolite profiles of 19 Arabidopsis thaliana

accessions is substance-class-dependent . . . . . . . . . . . . . . . . . . . . . . 66

2.3.2 Assessment of label-free quantification in discovery proteomics and impact of

technological factors and natural variability of protein abundance . . . . . . . . 76

2.4 Piriformospora indica stimulates root metabolism of Arabidopsis thaliana . . . . 119

2.5 Contributions to publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3 Discussion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.1 SpCCA is a versatile tool to connect multiple datasets . . . . . . . . . . . . . . 141

3.2 Linking metabolite absences with stop codons is a functional association analysis 142

3.3 Plant-to-plant variability increases along the omics hierarchy . . . . . . . . . . . 144

3.4 Studying P. indica reveals metabolic insights into a mutualistic interaction . . . 144

3.5 Implications for experimental design . . . . . . . . . . . . . . . . . . . . . . . . 145

3.6 Outlook – systematic approaches on the rise . . . . . . . . . . . . . . . . . . . 145

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

III





Introduction

1 Introduction

1.1 Motivation

This thesis seeks to integratively analyze big data in the context of plant biology using the

model plant Arabidopsis thaliana. Hereby, four topics were focused on, as illustrated in Figure 1:

First, a newly developed statistical method named supervised penalized canonical correlation

analysis (spCCA) was applied to investigate the abiotic stress factor phosphate deficiency. Se-

cond, further investigations in the rhizosphere pointed out the association between metabolites

in root exudates and the genetic background in a collection of 19 naturally occurring acces-

sions that differ by single nucleotide polymorphisms (SNPs) and small insertions and deletions

(INDELs). The root metabolic profiles of these 19 accessions were third analyzed with regard

to natural variation as well as plant-to-plant variability and its substance-class dependency.

A proteomics study also investigated the components software and plant-to-plant variability

as contributors to the overall variance. Fourth, the metabolic response of A. thaliana to a

microbe was investigated upon colonization with the root endophytic fungus Piriformospora

indica and integrated with previously existing transcriptomics data.

Statistics
Natural
variation

Biological
variability

Metabolic 
stress

response

Figure 1: Graphical abstract. The topics in this thesis started off with the application of a general statis-
tical method (upper left circular segment), which was not suitable to analyze natural variation in metabolic
patterns. During the development of a customized workflow to investigate natural variation (upper right
circular segment) substantial biological variability was noticed, which was subsequently analyzed in-depth
(lower right circular segment). The biological relevance of metabolomics studies was examplified for the
metabolic response to a microbe (lower left circular segment). The rectangles attached to each circular
segment will be filled with the manuscripts covering the respective topic in the following thesis.
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Introduction

1.2 High throughput omics technologies and the challenges in
data analysis

The information flow from gene through transcript to protein is known as the central dogma

of biology. The term omics refers to the entirety of genes (genomics), transcripts (transcrip-

tomics), proteins (proteomics) and metabolites (metabolomics). Omics technologies aim to

analyze all biological molecules of the same kind in a single study.

Arabidopsis thaliana, thale cress, is a well-studied model organism in the family Brassicaceae

and is related to cabbage and mustard [1]. Its small genome with five chromosomes and 25,498

genes was one of the first genomes that was fully sequenced in 2000 [2]. Moreover, A. thaliana

has a short life cycle of approximately 6 weeks allowing crossing experiments in a reasonable

time frame [3]. Databases, like The Arabdiopsis Information Resource (TAIR) [4–6], are well

curated and thanks to relatively high homology, other Brassica species can be more easily

inferred [7].

With the decreasing costs of Sanger sequencing and emerging shot-gun technologies, genomics

has made huge progress. The availability of Next Generation Sequencing facilitated the high

throughput analysis of DNA and RNA sequences, expanding the transcriptomics view from

gene-encoding transcripts reflected by microarrays to regulatory, non-coding RNAs. Nucleic

acid-based omics deal with four building blocks differing in the nucleobases adenosine (A),

thymine (T) or uracil (U), cytosine (C) and guanine (G). The combinatorial spectrum of

short oligonucleotides, as obtained by shot-gun technologies, increases the computational ef-

fort compared to traditional sequencing. Reference genomes and a variety of mapping tools

are available [8]. Microarrays have been well established and cover all reported gene-coding

transcripts. Due to their ease of use, they are often used to profile the transcriptome of known

genes. By now, workflows are well established in the next generation technologies and hence,

nucleic acid-based omics are furthest advanced.

The proteome consists of more building blocks, namely 20+ proteinogenic amino acids, and is

also subject to posttranslational modifications. Proteomics readouts are closer to physiology

than genomics or transcriptomics [9] and protein abundances cover a large dynamic range

that have to be captured by the instrument without prior amplification. Baerenfaller et al.

[10] provided a comprehensive proteome map of A. thaliana with 13,029 identified proteins.

Variation at the proteome level can be utilized to derive biomarkers for accelerated breeding

of crop cultivars [7].

Regulatory effects at each level will eventually be integrated at the level of metabolites, which

constitute the biochemical phenotype as shown in Figure 2. Results from studies in upper

omics levels should be validated by metabolite analysis. Metabolomics is the most complex of

these four omics technologies, as the building blocks are vast and can be combined to create

an enormous diversity of metabolites but it is also the omics level that is closest to cellular

physiology.
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Figure 2: Omics hierarchy. Genomics analyses deal with mutations at DNA level. These alterations along-
side epigentic modifications influence the transcription into mRNA, which is analyzed by transcriptomics.
Proteomics captures altered protein abundances and can also be optimized to investigate post-translational
modifications. All influences are eventually captured at the level of metabolites; modified from [11].

The omics levels address different research questions: The genome contains information, i.e.

the potential for all biological processes, but not all of it is transmitted. The trancriptome re-

flects the strategy for a particular developmental stage, tissue or stress response. Proteins are

the molecules that carry out the biological process and determine the physiological state. The

products of these enzyme-catalyzed processes are metabolites that act as functional entities

[12, 13].

Large omics datasets allow an explorative data analysis approach in addition to the classi-

cal hypothesis-driven analysis. To find the distinguishing molecules, multivariate methods are

commonly used for visualization of a single dataset. These methods have to cope with many

variables (features) and little observations (samples) likely resulting in ill-conditioned matri-

ces for statistics [14]. Principal component analysis (PCA) is a non-supervised method to

identify sources of variation between samples, i.e. genotype, treatment or batch effects. PCA

aims at dimensionality reduction and projects the samples (scores) or metabolites (loadings)

along the axis of greatest variance or, mathematically speaking, performs a singular value de-

composition. Other non-supervised representations are multidimensional scaling (MDS) and

hierarchical clustering (HCA). Partial least squares (PLS) is a supervised multivariate technique

to detect covariances between the predicted and observed variables by applying a regression

model. Thereby, both variable sets are projected to latent structures [14].

The challenge with omics data is not primarily data acquisition, but their analysis. The com-

bination of multiple omics technologies can provide a more comprehensive understanding of

biological processes. An integrative analysis goes beyond the reductionalistic approach and

provides insights that might not have been inferred from a single omics study. To capture

long-range and complex interactions, the system as a whole must be understood as more than

the sum of its parts. Commonly used integrative methods are canonical correlation analysis

(CCA) or PLS2, an extension of PLS, to find the variables in two or more datasets that are

associated [15].
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To study genotype-phenotype-associations, quantitative genetic methods can be often used in

population genetics. Quantitative trait loci (QTL) mapping analyzes the genetic linkage in a

population of related individuals, i.e. inbred offspring of contrasting parent lines. Genome-wide

association studies (GWAS) identify associations between a phenotypic trait and SNPs in a

population of non-related individuals [16]. Novel methods include multivariate population ge-

netics approaches and search for a combination of phenotypic traits and genetic alleles [17, 18].

All approaches require a large number of individuals to draw statistically valid conclusions. If

the experimental set-up limits the number of samples, an approach based on more prior knowl-

edge can be suitable to analyze the genotype-phenotype association, as done in section 2.2

for nonsense mutations and qualitative metabolite differences in 19 accessions of A. thaliana.

1.3 Plant metabolism, metabolomics and analytical techniques

The metabolism comprises all enzyme- and non-enzyme catalyzed chemical transformations in

a living cell [19]. Metabolites are low-molecular-weight compounds within the mass range 50-

1,500 Da [20]. Primary metabolism is vital for growth and survival. Plant secondary metabolism

allows the sessile organisms to respond to external stimuli and modulate their environment

[21].

Metabolomics is the comprehensive analysis of all metabolites in a biological sample. More

than 200,000 types of metabolites have been described for the plant kingdom [22, 23]. Major

secondary compound classes occuring in A. thaliana are glucosinolates, flavonoids, phenyl-

propanoids, benzenoids, fatty acid derivatives and terpenoids, of which selected examples are

shown in Figure 3 [24, 25].
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Figure 3: Secondary metabolite classes. Glucosinolates (R = amino acid derivative)and their aglycones,
lignols derived from coumaryl, coniferyl or sinapyl alcohol monomers, flavonoids and coumarins as well
as few phytohormones like salicylic acid are commonly detected in A. thaliana extracts with the applied
LC/MS method.

The great diversity in secondary metabolism is achieved by conjugation of core structures.
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Thereby, the bioactivity of these molecules is also regulated. Defense metabolites like mustard

oils can be glycosylated and thus, these non-toxic forms can be stored by the plants. Similarly,

hormone activity is controlled by modifications like hydroxylation and glycosylation. Salicylic

acid is regulated by further hydroxylation at the 2’ or 3’ position and subsequent glycosylation

to dihydroxybenzoic acid glycosides [26].

There are two approaches to a metabolic analysis: Targeted metabolomics monitors a set of

known compounds to investigate its role in a biological system. Untargeted metabolomics can

comprehensively profile all metabolites in a sample and hence, can reveal novel biomarkers for

e.g. natural variation and defense responses. The general untargeted workflow is illustrated in

Figure 4.
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their naturally occurring physiological 
concentrations18–20. These developments 
provide a highly sensitive and robust 
method for measuring a significant number 
of biologically important metabolites with 
relatively high throughput. Additionally, 
QqQ mass spectrometry methods are 
quantitatively reliable and therefore offer 
opportunities to achieve absolute quanti-
fication of low-concentration metabolites 
that are difficult to detect with less sensi-
tive methods such as NMR (FIG. 1a). By 
applying QqQ mass spectrometry-based 
methods to human plasma, targeted lists 
of metabolites can be screened as potential 
metabolic signatures for disease. For exam-
ple, targeted screening recently revealed 
citric acid metabolites and a small group of 
essential amino acids as metabolic signa-
tures of myocardial ischaemia and diabetes, 
respectively21,22. In another diabetes-related 
study, targeted metabolomic methods 
were used to investigate patient response 
to glucose challenge23. Here, the levels of 
specific plasma metabolites were measured 
after glucose ingestion to determine insulin 
response in patients.

Untargeted metabolomics. Untargeted 
metabolomic methods are global in scope 
and have the aim of simultaneously measur-
ing as many metabolites as possible from 
biological samples without bias (FIG. 1b). 
Although untargeted metabolomics can be 
performed by using either NMR or mass 
spectrometry technologies, liquid chroma-
tography followed by mass spectrometry 
(LC/MS) enables the detection of the most 
metabolites and has therefore been the 
technique of choice for global metabolite 
profiling efforts24–27. By using LC/MS-based 
metabolomic methods, thousands of peaks 
can be routinely detected from biological 
samples14,28,29 (FIG. 1b). Each of these peaks is 
referred to as a metabolite feature and corre-
sponds to a detected ion with a unique mass-
to-charge ratio and a unique retention time 

(it should be noted that some metabolite s 
may produce more than one peak).

 In contrast to targeted metabolomic 
results, untargeted metabolomic data sets 
are exceedingly complex, with file sizes on 
the order of gigabytes per sample for some 
new high-resolution mass spectrometry 
instruments. Manual inspection of the 
thousands of peaks detected is impractical 
and is complicated by experimental drifts 
in instrumentation. In LC/MS experi-
ments, for example, there are deviations in 
retention time from sample to sample as a 
consequence of column degradation, sample 
carryover, small fluctuations in room tem-
perature and mobile phase pH, as well as 
other variations. Although these challenges 
initially presented substantial obstacles 
for interpreting untargeted profiling data, 
major progress has been made in the past 
decade such that the ability to measure 
dysregulated peaks in global metabolomic 
data sets has now become routine with the 
introduction of metabolomic software such 
as MathDAMP, MetAlign, MZMine and 
XCMS1,30–34. These accomplishments have 
already revealed that an astounding number 

Figure 1 | The targeted and untargeted workflow for LC/MS-based 
metabolomics. a | In the triple quadrupole (QqQ)-based targeted metab-
olomic workflow, standard compounds for the metabolites of interest are 
first used to set up selected reaction monitoring methods. Here, optimal 
instrument voltages are determined and response curves are generated 
for absolute quantification. After the targeted methods have been estab-
lished on the basis of standard metabolites, metabolites are extracted from 
tissues, biofluids or cell cultures and analysed. The data output provides 
quantification only of those metabolites for which standard methods have 
been built. b | In the untargeted metabolomic workflow, metabolites are 

first isolated from biological samples and subsequently analysed by liquid 
chromatography followed by mass spectrometry (LC/MS). After data acqui-
sition, the results are processed by using bioinformatic software such as 
XCMS to perform nonlinear retention time alignment and identify peaks 
that are changing between the groups of samples measured. The m/z 
value s for the peaks of interest are searched in metabolite databases to 
obtain putative identifications. Putative identifications are then confirmed 
by comparing tandem mass spectrometry (MS/MS) data and retention time 
data to that of standard compounds. The untargeted workflow is global in 
scope and outputs data related to comprehensive cellular metabolism.

The untargeted 
[metabolomic] workflow is 
global in scope and outputs 
data related to comprehensive 
cellular metabolism.
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Figure 4: Untargeted metabolomics workflow. The untargeted metabolomics workflow aims at a global
metabolic profile of a sample. Extracts are subjected to liquid chromatography coupled to mass spectrom-
etry (LC/MS) and the derived feature matrix is statistically analyzed for the sample class discriminating
features. Putative candidates can be structurally annotated with tandem MS (MS/MS) and are validated
against the fragment spectrum of an authentic standard; modified from [12].

Chromatography-coupled mass spectrometry (MS) with high sensitivity and resolution is com-

monly used in proteomics and metabolomics. The separation of molecules in the chromato-

graphic domain relies on the interaction with stationary and mobile phase. Depending on the

mobile phase of the chromatography, liquid (LC) and gas chromatographic (GC) techniques

are distinguished. In LC, hydrophobic or hydrophilic columns are in use and molecules with

similar polarity as the stationary phase are retained. Two or more solvents that are gradually

mixed constitute the mobile phase. In GC, an inert gas is used as a mobile and mostly quartz

as a stationary phase. Depending on polarity and evaporation pressure, molecules adsorb to

the column. A GC runs at very high temperatures (GC ”oven”) and the gradient is a tem-

perature increase over the run time. GC/MS is suited for volatile and derivatized non-volatile

compounds [27].

Upon elution, compounds have to be ionized before injection into the mass spectrometer.

Whereas electron ionization (EI) is widely used to ionize molecules for GC/MS, the softer

electrospray ionization (ESI) is often applied in LC/MS. The mobile phase is drawn into a

capillary with a high voltage (determining the polarity ESI(+) or ESI(-)). Together with the

nebulizer gas, charged droplets turn into a fine mist with evaporating solvent along the neb-

ulizer unit. The ions eventually vaporize before they reach the MS inlet. ESI is suitable for

thermolabile and semipolar to polar compounds [27].
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In LC/MS metabolomics, often reversed-phase chromatography with a hydrophobic stationary

phase, e.g. C18, is used [27]. Polar metabolites are eluted first, less polar molecules in the

extract adsorb to the column and are eluted with decreasing polarity of the mobile phase.

Acidified solvents provide protons and result in clearer peak shapes. Upon elution, molecules

are subjected to ESI and injected into the mass analyzer, e.g. a time-of-flight (TOF) mass

spectrometer. Within the electric field of the quadrupole, ions are accelerated according to

their mass-to-charge (m/z) ratios, low-molecular-weight ions reach the detector earlier, ions

with higher m/z later.

Databases like KEGG, ChemSpider and PubChem allow the matching of exact masses with

the contained structures. GC/EI-MS spectra are reproducable and can be annotated by the

comparison to NIST and the Golm Metabolome Database [28]. LC/ESI-MS spectra are sub-

ject to the applied analytical conditions and therefore, less suitable for mass spectral library

matching.

In proteomics, ions are further fragmented resulting in MS/MS spectra allowing to decipher the

amino acid composition of the oligopeptides. This is also done in metabolomics to elucidate

the structure of selected compounds. Metabolite identification according to the Metabolomics

Standards Initiative level 1 requires the analysis of an authentic standard [29].

Nuclear Magnetic Resonance (NMR) spectroscopy can also be used for confirmation of struc-

tural proposals and is highly selective. The main limitation is its low sensitivity compared to

MS-based techniques.

1.4 Roots and chemical communication in the rhizosphere

Although plants are sessile organisms that interact with their surroundings, belowground inter-

actions are still not elucidated comprehensively. Roots are important for nutrient acquisition

and interactions with other organisms in the soil. They additionally provide physical strength

and are vital to cope with abiotic and biotic stress, such as nutrient deficiency, salinity, drought

and other soil organisms.

The narrow zone surrounding plant roots is known as the rhizosphere [30] and is the interface

between the plant root, soil, microorganisms, invertebrates and roots of other plants. The

rhizosphere is shaped by processes like root growth, uptake of water and nutrients as well

as rhizodeposition leading to distinct bio-physico-chemical properties compared to bulk soil.

Roots interact with their surroundings via chemical communication by rhizodeposition. These

rhizodeposits are low molecular weight compounds and derive from sloughed-off root cap cell

lysates, root border cells or are released from intact root cells as exudates. This occurs either

via simple or facilitated diffusion. ATP-binding cassette (ABC) as well as multidrug and toxic

compound extrusion (MATE) transporters also allow the active secretion of molecules [31, 32].

A complex mixture of compounds is deposited into the rhizosphere. Whereas plant mucilages,
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mucigel and large carbohydrates belong to the water-insoluble fraction, secondary metabolites,

organic acids and amino acids constitute interesting compound classes of the more hydrophylic

fraction of root exudates. As briefly mentioned in section 1.3, many secondary metabolites are

important for plant defense. Coumarins have additionally been shown to be involved in iron ac-

quisition [33, 34]. Furthermore, roots and root exudates harbor a variety of lignolic compounds

that are regulated upon phosphate depletion ultimately resulting in altered lignification.

Organic acids are involved in various processes. Besides others, citrate, malate and oxalate

facilitate the uptake of insoluble minerals like inorganic phosphorous from soil through chela-

tion and/or ligand exchange [35–37]. Malate and oxalate have also been reported to detoxify

metals [38, 39].

A large range of amino acids and dipeptides has been previously described in exudates of

A. thaliana [40] and together with the knowledge about peptide transporters like PTR1 and

PTR5 with dipeptide affinity [41], the role and origin of dipeptides in the rhizosphere could be

elucidated.

Advances in analytical techniques deliver sufficient sensitivity for the measurement of low

abundance compounds in exudates. Several methods have been described to analyze rhizode-

position: exudates can either be collected from hydroponically or from plants grown in sand or

soil. Hydroponic systems usually result in large sample volumes and hence, a dilution effect.

For exudate collection from soil-grown plants, either adsorbing materials may sample directly

or extensive washing to remove soil particles is required for subsequent exudation into trap

solutions. Thereby, rhizotrons or rhizoboxes are often used to separate rhizosphere from bulk

soil. Oburger et al. [42] compared various exudate collection methods and benchmarked a

set-up of rhizoboxes combined with micro-suction cups distinguished by a high spatial resolu-

tion. Mathieu et al. [43] introduced a ”rhizoponics” approach incorporating the advantages of

rhizotrons and hydroponic systems.

A central issue in exudate collection is the sterility of the procedure because microbial organ-

isms alter the chemical composition of the rhizosphere, e.g. via the degradation of primary

metabolites [44, 45]. Strehmel et al. [40] developed a sterile hydroponic system to monitor

exudation of A. thaliana. However, the low concentration and localized deposition of com-

pounds remains a challenge in rhizosphere analytics.

1.5 Factors in experimental design as a basis of data analysis

When designing an experiment, researchers usually take several factors with multiple levels into

consideration, as illustrated in Figure 5. A common experimental set-up in plant physiology is

the comparison of a wild type plant with a mutant. An average study examines several factors

with few levels and is hence suitable for matrix operations-based statistical analyses, despite

the issue of a larger number of observations (features) than observables (samples) in omics

7
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omics genotype stress localization replicateexperimental
factor

level

genomics
transcriptomics

proteomics
metabolomics

wild type
mutant

accession

biotic
abiotic

root 
leaf

exudate

technical
biological

Figure 5: Examples for experimental design factors with possible levels. A study typically investigates
the influence of an experimental factor, such as genotype and treatment, by contrasting at least two of
its levels, such as a mutant vs. wild type or a treated vs. non-treated scenario.

data.

In addition to mutant scenarios, naturally occurring strains of the same species collected from

different locations, known as ecotypes or nowadays as accession, can be analyzed. Natural

variation refers to small, but numerous genomic alterations like SNPs between these accessions.

These accessions can be utilized to identify the genetic origin of phenotypic traits. As elaborated

in section 1.2, several levels of the omics hierarchy may be integrated to elucidate the genotype-

phenotype-interplay.

Another typical experimetal scenario is the comparison of a stressed state vs. its control

condition. However, the exploration of the general physiological state detects genes controlling

this state, which is the base to comprehend perturbations of this system. Three studies of this

thesis (sections 2.2, 2.3.1 and 2.3.2) invesigate the metabolic and proteomic composition in

an unperturbed state. The exposure to stress allows to dissect the effect of a single gene,

transcript, protein or metabolite. Different growth conditions are applied to go beyond the

general physiological state and explore the roles of certain players in the stress response.

Nutrient deficiencies as well as salinity, drought, light and temperature constitute commonly

investigated abiotic stresses [46–48]. Interactions with microorganisms such as bacteria and

fungi as well as herbivores can constitute biotic forms of stress challenging plants [49]. Two

publications in this thesis analyze the plant’s response to the abiotic stress factor phosphate

starvation in section 2.1.2 and to the biotic factor P. indica, a root endophyte, in section 2.4.

The spCCA method manuscript in section 2.1.1 also demonstrates the power of the analysis

on a dataset of Arabidopsis’ response to the oomycete Phytophthora infestans.

To investigate localization characteristics, multiple cell types or tissues of the same plant can

be analyzed to reveal a more systemic picture like demonstrated for roots, leaves and exudates

in the P. indica study (section 2.4).

One statistically important factor in experimental design is type and number of replicates.

There are uncertainities about the nature of biological and technical replicates and how to

integrate the latter into the analysis. The studies in section 2.3 analyze different replicate types

and reveal interesting subsets of proteins and metabolites with high plant-to-plant variability.

8
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1.6 Aims and questions addressed

Metabolomics is one of the omics technologies with the largest required effort in data analysis

as the building blocks are most diverse. The combined analysis of biochemical phenotypes

at the metabolomics and proteomics levels together with higher omics levels can facilitate

interpretation and allow for overarching conclusions.

The general aim of this thesis was to find appropriate integrative approaches for different

experimental design of omics, especially MS-based omics, technologies. I hereby focused on the

model plant A. thaliana, which has been subjected to many omics analyses but still leaves room

for investigations on roots, exudates, plant-to-plant variability and particular stress responses.

The specific aims of this thesis were the following:

1. Application of general statistical methods for combining multiple experimental

factors:

SpCCA is a supervised statistical approach to integrate several omics datasets and its

experimental design factors (section 2.1.1). It was applied onto transcriptomics and

proteomics to decipher the phosphate response in the root tip. Hereby, two omics levels

were combined with three genotypes and two growth conditions (section 2.1.2).

2. Exploration of secondary metabolism by integrating genomics:

We demonstrate a direct genotype-phenotype association by linking stop codons in genes

encoding biosynthetic enzymes with metabolite absences in root exudates in section 2.2.

Hereby, the factor ”accession” had a substantial number of levels. Since the sample

preparation did not allow high throughput screens and thus sufficient power for a GWAS

experiment, an alternative approach was followed to combine two omics levels for 19

accessions. Since the metabolite abundances were quite variable between the replicates

of one accession, a qualitative measure was chosen.

3. Investigation of biological variability at omics levels downstream of genomics:

In a proteomics and a metabolomics study (section 2.3), the total observed variance in

abundances was decomposed into the fractions attributable to plant-to-plant variability,

experimental batch, sample preparation and data processing. Hereby, an emphasis was

laid on multi-level experimental designs and the variances at each level. Different kinds

of replicates are integrated into a statistical analysis and the question was asked whether

plant-to-plant variability is biologically meaningful.

4. Deciphering the metabolic response to microbes:

To study the interaction between the endophytic fungus P. indica with A. thaliana,

metabolic profiles of roots, exudates and leaves were interpreted in the context of pre-

viously reported root transcriptomics (section 2.4). Hereby, plants were grown in two

9
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conditions, exposed to biotic stress and the control condition. The aboveground and be-

lowground part of the plant as well as root exudates were analyzed for changes in both

primary and secondary metabolism and integrated with another omics level revealing a

comprehensive metabolic picture.

An outline of the topics covered in this thesis is illustrated in Figure 6.

Generalized
statistics for

combing 
several omics

Natural 
variation of 
genomics and 
metabolomics in 
the rhizosphere

Biological
variability of
(biochemical)
phenotypes

Metabolic 
reponses to

microbes

association of exudate
metabolite absence

and stop codons

- substances in
primary and se-

condary metabolism
- highly variable plant

defense proteins

- spCCA method
- spCCA application: 
  transcriptomics and
  proteomics of
  phosphate 
  mutants

P. indica's 
influence on 
exudate, root and 
leaf metabolism 
including transcriptomics

special case:
19 accessions

variability 
among

replicates

defense response

Figure 6: Graphical outline. The four topics were investigated in either one or two examplary studies.
The arrows illustrate the observations from one topic that directed research towards the topic in the next
circular segment.
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Supervised Penalized Canonical Correlation Analysis

Andrea Thum, Susann Mönchgesang, Lore Westphal, Tilo Lübken, Sabine Rosahl,
Steffen Neumann and Stefan Posch

May 8, 2014

Abstract

Motivation: The canonical correlation analysis (CCA) is commonly used to analyze data sets with
paired data, e.g. measurements of gene expression and metabolomic intensities of the same experiments.
This allows to find interesting relationships between the data sets, e.g. they can be assigned to biological
processes. However, it can be difficult to interpret the processes and often the relationships observed are
not related to the experimental design but to some unknown parameters.

Results: Here we present an extension of the penalized CCA, the supervised penalized approach
(spCCA), where the experimental design is used as a third data set and the correlation of the biological
data sets with the design data set is maximized to find interpretable and meaningful canonical variables.

The spCCA was successfully tested on a data set of Arabidopsis thaliana with gene expression and
metabolite intensity measurements and resulted in eight significant canonical variables and their inter-
pretation. We provide an R-package under the GPL license.

Availability: R package spCCA at http://msbi.ipb-halle.de/msbi/spCCA/

Contact: andrea.thum@informatik.uni-halle.de

1 Introduction

Systems biology aims to understand living organisms, often by combining multi-factorial experiments and
multiple assay techniques to obtain, e.g., gene expression, protein or metabolite levels. To unravel the
interactions between genes, proteins, or metabolites, statistical methods are used to discover dependencies
among the data.

Many genes are already known to be involved in the control of metabolism and activation of pathways.
Correlations between genes and specific metabolites have been used to assign signaling functions to the
metabolites (Hannah et al. (2010)). Moreover, genes encoding enzymes for secondary metabolite synthesis
have been identified by specifically looking for expression profiles of possible candidate genes (Muroi et al.
(2009)).

In order to detect linear correlations between two data sets, the canonical correlation analysis (CCA,
Hotelling (1936)) can be used. The CCA returns a pair of linear combinations of the features (e.g. gene or
metabolite levels) in each of the two data sets, which correlate maximally: the first pair of canonical variates,
which is the first canonical variable. Orthogonal to this pair, the second pair of combinations with second
largest correlation coefficient can be found, and so forth.

The canonical variables for the observed biological data contain information about the underlying processes
in the organism, where a large weight for one feature in the linear combination corresponds to large influence

1

ar
X

iv
:1

40
5.

15
34

v1
  [

st
at

.A
P]

  7
 M

ay
 2

01
4

Publications

12



of this feature to the process. A process can be deduced from the pattern of the course of the canonical
variable across the samples.

For large-scale data sets, there is often an imbalance between the large number of features and the much
smaller number of biological samples measured. A robust and sparse solution is neccessary to deal with
the underdetermination and to extract the most relevant features. This can be achieved by penalized CCA
(pCCA, Waaijenborg and Zwinderman (2009)), where an elastic net solution is implemented which combines
two penalty terms. The ridge regression term is used to eliminate the singularity. A lasso regression term
is implemented which forces small weights within the linear combinations to zero, thus essentially removing
them.

A biological system is influenced by many factors, which can be caused by the experimental design, but also
by parameters beyond the control of the experimentalist. Often it is difficult to recognize which processes are
associated with the canonical variable as there may be processes that interfere with each other resulting in
a complicated pattern of the canonical variable. Furthermore, processes independent from the experimental
design are difficult to interpret. Therefore, it is desirable to associate the canonical variables with the
experimental design.

We extend the pCCA to more than two data sets and use the experimental design as an additional data set
to obtain a supervised penalized CCA (spCCA). In this case, the sum of the correlation coefficients between
the canonical variables of each biological data set with the experimental design data set is maximized. Thus,
a high correlation can be achieved between the linear combination of the features of each biological data set
and the linear combination of the vectors of the experimental design. These combinations can be interpreted
easily in terms of the experimental design.

The paper is structured as follows: in Section 2.1 we first introduce standard and penalized canonical corre-
lation analysis for two data sets, as well as the generalized CCA for more than two data sets. In 2.2 we show
how we combined generalized and penalized CCA and adopted this approach to obtain the new supervised
penalized CCA. Section 2.3 gives details of the biological experiments including two assays obtained from
Arabidopsis thaliana, where both gene expression and metabolite levels were determined. In the results
section 3 we apply the new spCCA to these data sets. We identify several well-explainable processes, and
compare the results to standard pCCA to demonstrate the potential of the supervised approach.

2 Materials and methods

We consider n experiments with two sets of features. The features in the sets are generally of different type,
e.g., metabolite intensities and gene expression. The p1 and p2 features are collected in a n× p1-matrix X1

and a n×p2-matrix X2, where rows represent the experiments. The variables of the matrices are normalized
columnwise to have zero means and unit variance.

2.1 Canonical Correlation Analysis

In order to maximize the correlation between the linear combinations X1w1 and X2w2 of the columns of the
matrices X1 and X2 the CCA determines weight vectors w1 and w2. The resulting linear combinations are
the pair of canonical variates for the first canonical variable.
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2.1.1 Standard CCA

To compute the standard CCA, the correlation coefficient of the linear combinations is to be maximized with
respect to w1 and w2 :

corr(X1w1, X2w2) =
wT

1 X
T
1 X2w2√

wT
1 X

T
1 X1w1wT

2 X
T
2 X2w2

→ max,

where XT
1 X1 and XT

2 X2 are the variance matrices and XT
1 X2 is the co-variance matrix of data sets X1 and

X2.

This is equivalent to:

wT
1 X1

TX2w2 → max

with constraint:

wT
1 X1

TX1w1 = wT
2 X2

TX2w2 = 1

This leads to a generalized eigenvalue problem, where the maximal eigenvalue corresponds to the correlation
coefficient between the first canonical variates for X1 and X2, and the corresponding eigenvector yields the
weights of the canonical variate for data set X1. The weights for X2 can be inferred (Hardoon et al. (2003)).
The weights of the canonical variates indicate the contribution of each feature, e.g. the gene or metabolite,
to the correlation.

So far we considered the combination with the highest correlation coefficient achievable. Further com-
binations of features with lower correlation can be inferred from the remaining eigenvectors. There are
min(rank(X1), rank(X2)) canonical variables, which are orthogonal to each other with decreasing correlation
coefficients.

2.1.2 Penalized CCA

In data sets from biological experiments the number of experiments is often much smaller than the number
of features. For data matrices with p1 > n or p2 > n , the variance matrix is singular and thus not invertible,
and the CCA-problem is ill-posed. Parkhomenko et al. (2009) as well as Waaijenborg and Zwinderman
(2009) propose the pCCA solution to address this problem by incorporating the elastic net approach.

The elastic net (Zou and Hastie (2005)) is a combination of two regression penalties: ridge regression and
lasso. Ridge regression is implemented by regularizing a matrix M , to make them full rank and thus invertible
(Hastie et al. (2009)). For this purpose, γI is added to the matrix, where γ is a positive scalar parameter
and I is the identity matrix.

Since not all features are expected to be involved in the underlying process, the lasso penalty aims at
eliminating unimportant features. Weights less than a parameter 1

2λ are set to zero (Tibshirani (1996)). To
avoid a double shrinkage by this two-stage procedure the coefficients are multiplied by (1 + γ).

The elastic net can deal with data sets with more features than experiments, produces sparse results and
shows a ‘grouping effect’, i.e. it assigns similar weights to highly correlated features within each data set.

The elastic net has no analytical solution. To integrate this approach into the standard CCA framework,
Waaijenborg and Zwinderman (2009) translated this problem into a coupled regression framework. This
framework can be solved iteratively by the power method, which determines the eigenvectors w1 and w2 for
the canonical variates X1w1 and X2w2 for the dominant eigenvalue. To compute the next pair, which is
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orthogonal to the first, the data sets X
′
k are constructed orthogonally to the first variable by the subtraction

of the canonical variates from the data sets. This can be done by regressing each column of Xk on the
canonical variate Xkwk and keeping the orthogonal residual (Waaijenborg and Zwinderman (2009)).

For each data set, two parameters are required: the ridge regression parameter γk to control the strength
of regularization and lasso parameter λk for the sparsity. It is not obvious how to set these parameters.
Parkhomenko et al. (2009) suggest a strong ridge regression regularization and set the ridge regression
parameter to infinity. The lasso parameters are determined via resampling, maximizing the test sample
correlation.

2.1.3 Generalized CCA

As we aim to analyze more than two data sets by a penalized CCA we consider first the standard generalized
canonical anlysis.

The standard generalized canonical correlation analysis (gCCA) computes the CCA for m > 2 data sets
with n experiments and pk features, k = 1, . . . ,m. Here, different optimization criterions are possible. We
used the sum of the correlation coefficients of the canonical variates between all pairs Xk, Xl of the data
sets, which is to be maximized (SUMCOR formulation in Kettenring (1971)):

1

m(m− 1)

m∑

k,l=1,
k 6=l

wT
kX

T
k Xlwl → max

with constraint:

wT
kX

T
k Xkwk = 1, k = 1, . . .m

For the standard CCA, a canonical variable is a pair of two maximally correlated variates. Now, a generalized
canonical variable for m data sets consists of m variates, where the sum of the correlation coefficients of all
pairs of these variates is maximal.

The SUMCOR optimization problem has no closed form solution. The eigenvalue problem can be translated
into a regression framework. As described in Vı́a et al. (2006) this results in m coupled regression problems,
which can be solved iteratively.

For iteration step t this yields:

w
(t)
k = X+

k ·
m∑

i=1

Xiw
(t−1)
i , k = 1, . . . ,m

where X+
k = (XT

k Xk)−1XT
k is the pseudoinverse of Xk. The w

(t)
k have to be normalized to length 1 before

the next iteration step.

2.2 Supervised pCCA

In addition to m − 1 biological data sets X1, . . . , Xm−1, we include the design data set Xm to the CCA.
This design data set is semantically similar to the design matrix of the experiments and describes the
experimental setup, for example the growth condition, mutations or treatment. The information about the
experimental design can be encoded in binary design vectors of size n, the number of experiments. These
vectors describe the group membership of each experiment to different experimental conditions. Depending
on the experiments this yields pm vectors each in analogy to the measurements of one feature in all n

4

Publications

15



experiments. For example, the feature vector for n = 10 and a treatment vs. control setup with five
replicates each is given as: (0 0 0 0 0 1 1 1 1 1)T . The combination of these vectors as columns yields the
n× pm design matrix Xm.

We call the generalized pCCA applied to these m data sets supervised penalized CCA (spCCA) as knowledge
about the experimental setup is directly intergrated and exploited. The weights of the canonical variate
Xmwm yield a combination of the experimental conditions and facilitate the interpretation of the underlying
processes.

If the sum of the pairwise correlation coefficients is maximized as proposed by the SUMCOR approach,
high correlation coefficients between pairs of biological data sets might compensate low correlation between
biological data sets and the design data set. Thus, as we are especially interested in a high correlation with
the design data set, we only consider the correlation coefficients for each biological data set with the design
data set. This does not take the correlation between the biological data sets into account and maximizes the
following problem:

1

m− 1

m−1∑

k=1

wT
kX

T
k Xmwm → max,

wT
kX

T
k Xkwk = 1, k = 1, . . .m

where Xm denotes the design data set.

This results in a reduced iterative solution:

w
(t)
k = w

(t−1)
k +X+

k Xmw
(t−1)
m , k = 1, . . . ,m− 1

w(t)
m = w(t−1)

m +X+
m ·

m−1∑

i=1

Xiw
(t)
i

We used a strong regularization for the elastic net, which sets the co-variances in the pseudoinverses X+
k of

each data matrix to zero (Parkhomenko et al. (2009)).

The lasso penalty is included by setting weights below a threshold 1
2λk to zero in each iteration step.

It is difficult to adjust the lasso parameters λk to adequately control the sparsity of the penalized CCA.

We used a resampling technique to determine the parameters. Using a grid search on the λk the following
algorithm for the spCCA is repeated several times for different training data sets and for each combination
of λk. For our Arabidopsis data set, ten training data sets were sampled. For each training data set, one
eighth of the experiments was randomly drawn.
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ALGORITHM FOR spCCA

1. INPUT: m − 1 biological data sets X1, . . . , Xm−1, normalized to zero mean and unit variance; one
design data set Xm, normalized to zero-mean and unit variance, extracted from the experimental
design; m sparsity parameters λk

2. Compute strong regularized pseudoinverses for the biological data sets X+
1 , . . . , X

+
m−1

3. Compute pseudoinverse of the design data set Xm. Xm does not have to be regularized, if there are
no redundant vectors.

4. Set initial normalized values for w
(0)
k , k = 1, . . . ,m

5. In iteration step t:

(a) for 1 ≤ k < m (biological data sets):

vk = w
(t−1)
k +X+

k Xmw
(t−1)
m

for k = m (design data set):

vm =w(t−1)
m +X+

m ·
m−1∑

i=1

Xiw
(t)
i

(b) Normalize vk = vk
|vk| , k = 1, . . . ,m

(c) Set all components of each vk to zero, which are smaller or equal to the sparsity parameter 1
2λk

(=̂ lasso penalty)

(d) Normalize again to obtain updated weigth vector w
(t)
k = vk

|vk| , k = 1, . . . ,m

(e) if convergence criterium reached: break

Due to the lasso penalty in step (c), which enforces the sparseness, the algorithm converges to an eigenvector.
Depending on the initial weights, it does not necessarily converge to the vector associated with the dominant
eigenvalue. Thus we repeat the iteration in step 5. for different initializations with random values (step 4.)
ten times and keep the solution with the largest eigenvalue for the training data set. The eigenvectors with
the median eigenvalue of all training data sets is used as the weight vectors for the canonical variable.

Again, this determines only the first canonical variable. To compute further variables the variates are
subtracted from the biological data sets Xk to produce orthogonal data sets. The design data set remains
unchanged.

2.2.1 Significance of correlation

To decide whether a canonical variable for three data sets is significant, a permutation test was used. We
found that for our data set the correlation coefficient needs to exceed 0.605 for a level of significance α = 0.05
and needs to be larger than 0.635 for α = 0.01.
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2.3 Data

We demonstrate the power of the supervised pCCA approach using data from an experiment on the response
of the model plant Arabidopsis thaliana to the pathogen Phytophthora infestans. The data set consists of
microarray gene expression data and LC/MS based metabolite profiles.

The oomycete P. infestans is the causal agent of late blight, the most devastating potato disease. In contrast
to potato, A. thaliana is able to successfully prevent colonization of the pathogen due to a multi-layered
nonhost resistance.

Several mutants have been isolated which are impaired in penetration resistance. A mutation in the gene
PEN2, which encodes an enzyme involved in indole glucosinolate metabolism (Bednarek et al. (2009)),
results in the loss of penetration resistance against P. infestans (Lipka et al. (2005)). Despite its ability
to penetrate epidermal cells of pen2 mutant plants, P. infestans is still not able to colonize these plants.
Additional mutants were isolated by Kopischke et al. (2013) which show enhanced defense responses upon
infection with P. infestans: pen2erp1 and pen2erp2, and backcrossed mutants erp140 and erp2D.

We used six different plant lines, the wildtype-like gl1, and the five different mutants (pen2, pen2erp1,
pen2erp2, erp2D, erp140). The plants were either infected with P. infestans spores or treated with water as
control, and harvested 6h and 12h after treatment. The experiment was repeated three times with different
P. infestans cultures, resulting in biological triplicates, for an overall of 6× 2× 2× 3 = 72 samples.

These samples from the same plant material were used on 72 Affymetrix microarrays and for LC/MS-
metabolite profiling (see supplemental material for details). For each of the 72 samples, three LC/MS-runs
were performed. We obtained 202 LC/MS measurements (72 samples with one to three technical replicates
each) of the abundance of polar metabolites. We used the centWave algorithm (Tautenhahn et al. (2008))
to extract features from the LC/MS raw data, and used xcms (Smith et al. (2006)) to group them into a
rectangular data matrix. The technical replicates were averaged and the metabolomic data resulted in a
72×5896 data matrix. The metabolomic data was reduced to 3007 putative pseudomolecular ions with help
of the R-package CAMERA (Kuhl et al. (2012)). The microarray data was processed and normalized with
the R-package simpleaffy (Wilson and Miller (2005)) and resulted in a 72× 22810 data matrix.

We reduced the data sets by excluding features with low variance (threshold chosen σ < 1 for genes and
σ < 0.4 for metabolites), resulting in a 72 × 1277 gene expression matrix, and a 72 × 252 LC/MS signal
intensity matrix.

3 Results

The reduced data sets were analysed by the supervised pCCA. The supervised solution included the experi-
mental information in Fig. 1 as the design data set.

To describe six mutants non-redundantly only five vectors are required, likewise only two vectors to code
three replicates and the oomycete cultures. In consequence, the design data set contains 11 design vectors
of length 72 for the 72 experiments.

To determine the sparsity parameters for our data set we performed a ten-fold repeated hold-out sampling
with a grid of size 16× 21× 31 = 10416. This requires between 20 to 120 minutes using an AMD Athlon 64
Processor 4000+ with 2400 MHz and 2 GB RAM.

The first canonical variable (Fig. 2) is a combination of genotype and pathogen response, which is elevated
in all three pen2-mutants upon infection. One pen2-mutant shows exceedingly high expression values and
metabolite intensities for both treatment and control. The largest weighted metabolites include camalexin
as well as flavonoids, which play a role in defense. This is in agreement with biological knowledge: the plant
senses the attack by P. infestans and immediately releases camalexin as first defense reaction.
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Experimental design vectors for design data set Z
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Figure 1: The experimental design vectors for the 72 experiments. The biological replicates are consecutive, the solid vertical
lines separate the six mutants, the dotted lines seperate the time points (6h and 12h) and the dashed lines the treatment (H2O
and P. infestans).
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Figure 2: Supervised pCCA results: First canonical variable for the genes (X1w1), metabolites (X2w2) and the experimental
design data set (Xmwm) for all 72 experiments.

The genotype pen2erp2 is the explanation of the second canonical variable (for this and all further variables:
see supplemental material). The metabolites salicylic acid glucoside and dihydroxybenzoic acid receive the
largest weights for this variable. Salicylic acid appears to be present at constitutively high levels in pen2erp2.

The third variable resembles the circadian rhythm, since the sample collection time was 6h and 12h after
inoculation (at noon and late afternoon, respectively). Not surprisingly, a large number of genes show
the circadian rhythm, but only a few metabolites in our data set. This might be due to the fact that
the metabolites associated with circadian rhythm (especially primary metabolism and sugars), cannot be
detected by LC/MS. A combination of two mutations is found in the fourth variable: the erp2-mutation
and the pen2-mutation. As the pen2erp2-component was already subtracted in the second variable, mainly
mutant erp2D is increased and pen2 and pen2erp1 are decreased in the canonical variable. The gene PEN2
can be found among the largest weighted features.

An interesting effect is quality control of the experiment. Despite the best efforts to sustain reproducible
experimental conditions, the fifth, the sixth and the ninth canonical variable could possibly be explained
by unknown environmental factors or slight variations in the sample processing procedures which influenced
the replicates, as well as the influence of different oomycete cultures to the plants. The spCCA allows to
decompose these effects.

There are two further canonical variables (seventh and eighth) with a quite low but still significant correlation
coefficient. They suggest a similarity between the mutants pen2erp1, pen2 and erp2D, as well as differences
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between the mutants pen2 and pen2erp1.
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Figure 3: The correlation coefficients for the first ten canonical variables. The dashed line indicates a significance of α = 0.01.

Our supervised approach was able to recognize nine significant variables for significance level α = 0.01 and
to give an explanation to them. The main explainable processes in the plants seem to be the defense against
the oomycete, as well as the circadian rhythm. The effects of two of the mutations, as well as influences of
the replicates show a slightly lower correlation. Further variables are not significantly correlated (Fig. 3).

For the standard CCA, which does not use sparse weight vectors, the correlation coefficients of the canonical
variables are monotonously decreasing. This may not be the case in penalized CCA. This effect can be seen
in Fig. 3, where the correlation coefficients for the first ten variables are shown. The second and the sixth
correlation coefficient are larger than their respective predecessors.

If standard non-supervised penalized CCA is used, ten significant combinations of genes and metabolites
were found, but only two were easy to interpret.

The first canonical variable (see supplemental material) is similar to the first variable of the spCCA and shows
the reaction to the infection, which is increased for the pen2-mutants. The second variable corresponds to
mutant pen2erp2, and the main metabolite is salicylic acid. A number of further canonical variables are found
which are difficult to interpret. The canonical variables for the pen2-mutant as well as the erp1-mutation
(fourth supervised pCCA variable) were not found.
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4 Discussion

Discovery and interpretation of complex relationships between gene activity and metabolites is still a chal-
lenge in systems biology. A penalized canonical correlation analysis is a useful tool for this purpose. Still,
the main question to a canonical variable is: which process does it resemble, what does it biologically mean?
Although some processes are easy to identify, most of the canonical variables are difficult to interpret. One
solution is to check the corresponding genes and metabolites of the canonical variable – but this is elaborate
and very complicated since many genes and gene functions are still unknown, or the metabolites might not
yet be identified.

Furthermore, many correlations are based on an unknown genotype effect or unobserved growth conditions.
These effects are usually not interesting for the experimentalist and it is hard or even impossible to interpret
the pattern. A standard pCCA can only search for high correlation, and thus well-explainable variables with
lower correlation coefficient will be missed.

The supervised pCCA provides additional information as it explicitly incorporates the design of the experi-
ment into the analysis, and thus the underlying biological questions. This assists in interpreting the biological
processes and guides the spCCA to find interpretable processes of interest. We showed that this method was
very useful to unravel relevant relationships between two data sets of gene expression and metabolite levels
of Arabidopsis thaliana subjected to pathogen infection. To extract further processes a standard penalized
CCA can be applied subsequently to unveil additional correlation in the residual data sets.

In the analyses described in this work the supervised pCCA was applied to two biological data sets and a third
design data set. The methods can be easily extended to more than three data sets, but the determination
of suitable sparsity parameters λk becomes very costly.

We created an R-package, which includes functions, examples and visualizations for two biological and one
design data set. It is available at http://msbi.ipb-halle.de/msbi/spCCA under GPL license.
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A Materials and Methods

A.1 Experiments

Six different Arabidopsis lines (gl1 as wildtype, single mutants pen2, erp140 and erp2D, double mutants
pen2erp1 and pen2erp2) were used for the experiment. Plants were treated with water or P. infestans spores
as described at http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi. Leaves were harvested at 6 hours and 12
hours after inoculation. The leaves of 6 different plants per genotype were pooled for the isolation of total
RNA and for metabolite profiling. The whole experiment was repeated another two times resulting in 72
samples (6 plant lines × 2 treatments × 2 time points × 3 repeats.

A.1.1 Gene expression data

Total RNA was isolated from Arabidopsis leaves according to Ahn (2009) and purified using the RNeasy
Plant Mini Kit (Qiagen). Hybridization of the samples to Affymetrix ATH1 GeneChips was performed by
AROS APPLIED BIOTECHNOLOGY (Aarhus, Denmark).

A.1.2 LC/MS metabolite profiling and data processing

Chromatographic separations were performed on an Acquity UPLC system (Waters) equipped with a HSS
T3 column (100× 1.0 mm, particle size 1.8µm; Waters) with a flow rate of 200µL/min at 40 ◦C column
temperature using the following gradient program: 0 – 60 s, isocratic 95% A (water/formic acid, 99.9/0.1
(v/v)), 5% B (acetonitrile/formic acid, 99.9/0.1 (v/v)); 60 – 360 s, linear from 5 to 30% B; 360 – 600 s,
linear from 30 to 95% B; 360 – 720 s isocratic 95% B. The injection volume was 2.0µL (full loop injection).
Eluted compounds were detected at a spectra rate of 3 Hz from m/z 100 – 1000 using a MicrOTOF-Q-
II (Bruker, Daltonics) equipped with an Apollo II electrospray ion source in positive ion mode with the
following instrument settings: nebulizer gas, nitrogen, 1.2 bar; dry gas, nitrogen, 8 L/min, 190 ◦C; capillary,
-4500 V; end plate offset, -500 V; funnel 1 RF, 200 Vpp; funnel 2 RF, 200 Vpp. Mass calibration of individual
raw data files was performed on lithium formate cluster ions obtained by automatic infusion of 20µL 10 mM
lithium hydroxide in isopropanol/water/formic acid, 49.9/49.9/0.2 (v/v/v) at a gradient time of 720 s using
a diverter valve.

XCMS settings for processing LC/MS data were prefilter=3,500; snthr=3; ppm=25, peakwidth=5,12. For
alignment group.density function with parameters minfrac=0.75 and bw=5 was used.
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B Canonical variables for supervised pCCA for data assay of Ara-
bidopsis columbiana with infection with P. infestans

Below the eight significant variables are described and are all depicted in the figures below.

• First variable: Reaction to P. infestans.

• Second variable: Mutant pen2erp2. Constantly high abundance of salicylic acid in pen2erp2-mutants.
Because the infection with P. infestans was subtracted in the previous canonical variable by regression,
a negative image of this variable was created, resulting in this pattern.

• Third variable: Circadian rhythm.

• Forth variable: Combination of pen2-mutation and erp2-mutation. One associated gene is the PEN2-
gene. pen2erp2 was already subtracted in the second variable.

• Fifth variable: Replicates and influence of different oomycete cultures on plants.

• Sixth variable: Replicates.

• Seventh variable: Similarities between mutants pen2erp1, pen2 and erp2D.

• Eighth variable: Mutant pen2erp1.

• Ninth variable: Influence of different oomycete cultures on plants.
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5. canonical variable

N
or

m
al

iz
ed

 In
te

ns
ity

Experiments

 

gl
1

pe
n2

pe
n2

er
p1

 p
en

2e
rp

2

er
p2

D

er
p1

40

−
0.

5
−

0.
3

−
0.

1
0.

1
0.

3
0.

5 Genes
Metabolites
Patterns
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8. canonical variable
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C Canonical Variables for Standard Penalized CCA

Below, the seven significant variables are described and are all depicted in the figures below.

• First variable: Reaction to P.infestans, enhanced reaction for pen2-mutants. Camalexin is the main
metabolite.

• Second variable: Mutant pen2erp2. Constantly high abundance of salicylic acid in pen2erp2-mutants.
Because the infection with P. infestans was subtracted in the previous canonical variable by regression,
a negative image of this variable was created, resulting in this pattern.

• Fourth variable: Circadian rhythm.

• Further variables: Unknown processes
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4. canonical variable
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10. canonical variable
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2.1.2 Comparative expression profiling reveals a role of the root
apoplast in local phosphate response

Hoehenwarter, W.; Mönchgesang, S.; Neumann, S.; Majovsky, P.; Abel, S.; Müller, J. Com-

parative expression profiling reveals a role of the root apoplast in local phosphate response.

BMC Plant Biol 2016, 16, 106.
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RESEARCH ARTICLE Open Access

Comparative expression profiling reveals a
role of the root apoplast in local phosphate
response
Wolfgang Hoehenwarter1†, Susann Mönchgesang2†, Steffen Neumann2, Petra Majovsky1, Steffen Abel3,4,5

and Jens Müller3*†

Abstract

Background: Plant adaptation to limited phosphate availability comprises a wide range of responses to conserve
and remobilize internal phosphate sources and to enhance phosphate acquisition. Vigorous restructuring of root
system architecture provides a developmental strategy for topsoil exploration and phosphate scavenging. Changes
in external phosphate availability are locally sensed at root tips and adjust root growth by modulating cell
expansion and cell division. The functionally interacting Arabidopsis genes, LOW PHOSPHATE RESPONSE 1 and 2
(LPR1/LPR2) and PHOSPHATE DEFICIENCY RESPONSE 2 (PDR2), are key components of root phosphate sensing. We
recently demonstrated that the LOW PHOSPHATE RESPONSE 1 - PHOSPHATE DEFICIENCY RESPONSE 2 (LPR1-PDR2)
module mediates apoplastic deposition of ferric iron (Fe3+) in the growing root tip during phosphate limitation.
Iron deposition coincides with sites of reactive oxygen species generation and triggers cell wall thickening and
callose accumulation, which interfere with cell-to-cell communication and inhibit root growth.

Results: We took advantage of the opposite phosphate-conditional root phenotype of the phosphate deficiency
response 2 mutant (hypersensitive) and low phosphate response 1 and 2 double mutant (insensitive) to investigate
the phosphate dependent regulation of gene and protein expression in roots using genome-wide transcriptome
and proteome analysis. We observed an overrepresentation of genes and proteins that are involved in the
regulation of iron homeostasis, cell wall remodeling and reactive oxygen species formation, and we highlight a
number of candidate genes with a potential function in root adaptation to limited phosphate availability. Our
experiments reveal that FERRIC REDUCTASE DEFECTIVE 3 mediated, apoplastic iron redistribution, but not intracellular
iron uptake and iron storage, triggers phosphate-dependent root growth modulation. We further highlight
expressional changes of several cell wall-modifying enzymes and provide evidence for adjustment of the pectin
network at sites of iron accumulation in the root.

Conclusion: Our study reveals new aspects of the elaborate interplay between phosphate starvation responses and
changes in iron homeostasis. The results emphasize the importance of apoplastic iron redistribution to mediate
phosphate-dependent root growth adjustment and suggest an important role for citrate in phosphate-dependent
apoplastic iron transport. We further demonstrate that root growth modulation correlates with an altered
expression of cell wall modifying enzymes and changes in the pectin network of the phosphate-deprived root tip,
supporting the hypothesis that pectins are involved in iron binding and/or phosphate mobilization.

Keywords: Arabidopsis thaliana, Phosphate deficiency, Root growth, Proteomics, Transcriptomics, Iron transport, Cell
wall, Pectin
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Background
Inorganic phosphate (Pi) is an essential macronutrient
for plant growth and development. Despite its high
abundance in the rhizosphere, bioavailability of Pi is typ-
ically limited because its majority is bound in organic
compounds or complexed with metal ions such as Ca
(alkaline soils), Fe or Al (acidic soils) [1]. Thus, plants
evolved strategies to enhance Pi acquisition and to con-
serve or remobilize Pi from internal sources to adapt to
Pi limiting conditions. Previous efforts elucidated some
of these adaptive responses, including the identification
of high-affinity Pi transport systems, the characterization
of diverse metabolic bypass reactions, the reutilization of
Pi from phospholipids, and many more [2]. Most of the
Pi starvation response (PSR) genes involved in these sys-
temic adjustments are regulated by the myb transcrip-
tion factor PHR1 (PHOSPHATE STARVATION
RESPONSE1) [3–6].
Dynamic redesign of the root system architecture

(RSA) provides another strategy to maintain cellular Pi
supply. In Arabidopsis, low external Pi availability is lo-
cally sensed by the growing root tip, which causes reduc-
tion of cell elongation and meristematic activity at the
site of Pi depletion. The resultant inhibition of root
growth is accompanied by accelerated formation of root
hairs and development of lateral roots to increase the
absorptive surface for topsoil exploration [7, 8]. The de-
velopment of a densely branched and/or shallow root
systems increases Pi starvation tolerance in several plant
species, including agronomically important crops such
as barley, lupin, soybean or common bean [9]. Several
Arabidopsis mutants with altered Pi dependent root
growth responses have been described [10–18]. How-
ever, for most of the underlying genes only little infor-
mation is available how they affect Pi sensing and root
growth modulation. LPR1 (LOW PHOSPHATE ROOT1),
its closely related paralog LPR2, and PDR2 (PHOS-
PHATE DEFICIENCY RESPONSE2) have been identified
as central players in local root Pi sensing [11, 13, 19].
PDR2, which codes for the single P5-type ATPase of un-
known substrate-specificity (AtP5A), and LPR1, encod-
ing a multicopper oxidase, are expressed in overlapping
domains of the root apical meristem (RAM). LPR1 and
PDR2 interact genetically and are required for meristem
maintenance and cell elongation in Pi-deprived roots.
Importantly, the lpr1lpr2 mutation impedes local root
growth inhibition under Pi limitation and suppresses the
hypersensitive short-root phenotype of pdr2 plants, indi-
cating that they act in the same pathway [11, 13].
Previous work revealed that external Fe availability

modifies local Pi sensing [11, 13, 20]. A number of stud-
ies observed that Pi-starved Arabidopsis and rice plants
accumulate elevated levels of Fe in the root and the
shoot [20–23], which has been suggested as a proactive

strategy to mobilize Pi from insoluble Fe complexes [8].
Fe participates in the formation of reactive oxygen spe-
cies (ROS) and it has been proposed that Fe toxicity
causes local root growth inhibition [20]. We recently
provided evidence for apoplastic LPR1 ferroxidase activ-
ity and uncovered a major role of the LPR1-PDR2 mod-
ule for root tip-specific deposition of Fe3+ in cell walls
(CW) of the RAM and elongation zone (EZ) during Pi
limitation [19]. We further showed that Fe accumulation
in the RAM is massively enhanced in Pi-starved pdr2
roots, but suppressed in the insensitive lpr1lpr2 line. Fe
deposition coincides with sites of ROS generation and
triggers CW thickening and callose accumulation, which
interferes with cell-to-cell communication, RAM main-
tenance, and cell elongation.
In recent years, a set of transcriptome profiling studies

provided significant insights into the transcriptional
changes upon Pi deficiency in Arabidopsis [6, 21, 24–28].
In addition, a complementary transcriptome and prote-
ome study highlighted the convergence of mRNA and
protein expression profiles on lipid remodeling and glu-
cose metabolism upon Pi-deprivation [25]. In this study,
we performed comparative transcriptome and proteome
expression profiling on roots of Pi-replete and Pi-starved
wild-type (Col-0), pdr2, and lpr1lpr2 plants in combin-
ation with a set of physiological and cell biological experi-
ments. Our analysis emphasizes the importance of root Fe
uptake and redistribution under Pi limitation. We high-
light the potential role of so far unknown players in the
regulation of Pi-dependent Fe-redistribution and demon-
strate that apoplastic but not intracellular Fe accumulation
triggers Pi-dependent root growth modulation. Consist-
ently, we observed regulation of several CW modifying
enzymes, which correlates with an increased deposition of
pectin at sites of Fe accumulation. The potential role of
pectin in Pi-dependent root Fe storage and Pi mobilization
is discussed.

Results
Differential gene expression correlates with genotype-
specific Pi sensitivity
For transcriptome analysis, wild-type, pdr2 and lpr1lpr2
seedlings were germinated on + Pi agar (4 days) and
transferred to + Pi or –Pi medium for 20 h, a period dur-
ing which Pi limitation alters global gene expression [28]
as well as root meristem activity [19]. RNA was ex-
tracted from roots of three biological replicates and pre-
pared for hybridization with ATH1 Affymetrix chips.
Data were analyzed using ARRAYSTAR (Version 4.1.0)
and further processed (Additional file 1: Table S1).
Hierarchical clustering (Fig. 1a) confirmed high homo-
geneity within each replicate set because the biological
replicates clustered together for each genotype and Pi
condition (as indicated by the short branches at the
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bottom of the dendrogram). It also revealed a clear sep-
aration between + Pi and –Pi samples for the wild-type
and the hypersensitive pdr2 mutant (long branches be-
tween the + Pi and –Pi samples), but less pronounced
differences for the insensitive lpr1lpr2 line (shorter
branches between the + Pi and –Pi samples). Pairwise
comparisons using a fold-change cutoff value of ≥ 1.5 for
increased and of ≤0.66 for decreased transcript levels
(p ≤ 0.05; Student’s t-test) revealed 2292 differentially
expressed genes across all genotypes and the two growth
conditions. Low Pi exposure altered the expression of
749, 524, and 131 genes in pdr2, wild-type, and lpr1lpr2
roots, respectively (Fig. 1b). Thus, the genotype-specific
sensitivity of root growth inhibition in response to Pi de-
pletion positively correlates with the number of differen-
tially regulated genes.

Identification of genotype-independent Pi-responsive
genes
We generated Venn diagrams to illustrate the distribu-
tion of differentially expressed genes between the three

genotypes (Fig. 1c). Wild-type shared a subset of 289
and 69 Pi-responsive genes with pdr2 and lpr1lpr2, re-
spectively, and all three lines had in common a core set
of 48 genes (Fig. 1c). Hierarchical clustering of this core
set revealed similar expression changes in all genotypes
in response to –Pi with high positive correlation
(Additional file 2: Figure S1 A, B). The core set com-
prises two partially overlapping groups that consist of at
least 19 PSR and 23 metal-responsive genes (Table 1,
Additional file 3: Table S2). Members of the first group
(e.g., SPX1, PAP17/ACP5, SRG3, CAX3) are known tar-
gets of the Pi-regulated myb transcription factor PHR1
[5, 6, 29–31], suggesting that the systemic response to Pi
deficiency is maintained in pdr2 and lpr1lpr2 mutants.
In the second group, Fe-related genes are overrepre-

sented (17 members) and comprise the majority of re-
pressed genes (Table 1). The most strongly suppressed
gene in all three genotypes (>10-fold repression) codes
for IRT1, the major feedback-regulated Fe-uptake system
in Arabidopsis [32, 33]. Many IRT1 co-regulated genes
(http://atted.jp) are induced under Fe deficiency [34–36].

Fig. 1 Statistical analysis of comparative gene expression analysis. a Hierarchical clustering of all ATH1 datasets, including wild-type (Col-0), pdr2 and
lpr1lpr2 samples, the two growth regimes (+Pi and –Pi), and three biological replicates. Distances in the dendrogram illustrate the degree of
relationship between samples. Note the short distance between biological replicate sets (lowest branches) compared to the relatively long distance
between + Pi and –Pi conditions. b Number of up- and downregulated genes (p≤ 0.05, Student’s t-test; 0.66≥ FC≥ 1.5) in wild-type, pdr2 and lpr1lpr2
roots upon transfer from+ Pi to –Pi (−/+), and in the three genotypes under + Pi (+/+) or –Pi (−/−) conditions. c Venn diagrams illustrating the number
of differentially regulated genes in pairwise comparisons for all three genotypes under both growth regimes
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Table 1 Pi-dependent transcriptional changes of commonly regulated genes

Shown is the fold change expression (FC) of all 48 Pi-responsive genes that are regulated in each of the tested genotypes (wild-type, pdr2 and lpr1lpr2). Grey and
white boxes denote genes that are significantly suppressed or induced, respectively (p ≤ 0.05, student’s t-test; 0.66 ≥ FC ≥ 1.5). All genes were interrogated for
published responsiveness to Pi-starvation and/or metal-ions. References are indicated in superscript numbers and listed in Additional file 3: Table S2
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Interestingly, 13 of the top 25 co-regulated genes are
repressed in Pi-starved roots irrespective of the geno-
type (Table 2). Intriguingly, Pi-replete pdr2 roots
show higher expression of at least 12 Fe-related genes
(Table 2), including a group of transcription factors
(BHLH039, BHLH101, MYB10, MYB72) known to
promote Fe-uptake under Fe deficiency [37–39]. The
remaining Fe-related genes of this group are similarly
induced in all three genotypes and encode the Fe
storage protein FERRITIN1 (FER1) and various Fe-
responsive metal transporters thought to be involved
in transition metal detoxification and homeostasis
(Table 1, Additional file 3: Table S2).

Pi depletion alters expression of cell wall-related genes
We identified 241 Pi-responsive genes that are shared be-
tween the wild-type and the hypersensitive pdr2 mutant,
but not with the insensitive lpr1lpr2 line (Fig. 1c). Surpris-
ingly, only 10 genes of unknown functions in Pi starvation
response were significantly deregulated in pdr2 compared
with the wild-type (>2-fold), whereas the remaining genes
showed a high positive correlation (r= 0.88) between both
genotypes (Additional file 2: Figure S1C, Additional file 4:
Table S3). GO term analysis revealed high overrepresenta-
tion of gene products associated with the extracellular re-
gion (GO:0005576). An extended analysis for enriched GO
terms within a group of 1680 genes (Additional file 5: Table
S4), which are either regulated by –Pi in one or more geno-
types or are differentially expressed in at least one of the

lines in + Pi (p < 0.05; BH corrected), confirmed overrepre-
sentation of genes (322) annotated to encode extracellular
proteins (Additional file 2: Figure S1D, Additional file 6:
Table S5). In this group, we identified a subset of 66 genes
with putative functions in CW remodeling (Table 3). A
similar number of genes were differentially expressed in
pdr2 (27) and wild-type (33) but only one-third (11) in
lpr1lpr2 roots. As noted for Fe-related genes, many CW-
modifying genes (31) were deregulated in Pi-replete pdr2
roots. Within the subset of 66 genes, 29 encoded proteins
could be assigned a potential function in pectin modifica-
tion, predominantly pectin methylesterification. In addition,
we noted several expansins and xyloglucan endotransglyco-
sylases (XTH) as well as a set of carbohydrate hydrolyzing
enzymes. Intriguingly, all these proteins are predicted to
regulate CW extensibility [40, 41].
GO term analysis also revealed overrepresentation of

genes encoding tetrapyrrole- and heme-binding proteins
(GO:0046906 and GO:0020037) with oxidoreductase ac-
tivity (GO:0016491) (Additional file 2: Figure S1D). This
group codes for 29 peroxidases and most of those (28)
belong to the 73 member-family of class III peroxidases
(CIII Prx) (Additional file 7: Table S6), which are extra-
cellular enzymes with partly antagonistic functions in
ROS formation and CW dynamics [42]. While Pi-
responsive expression of 8 CIII Prx-encoding genes was
similar between wild-type and pdr2 roots, 7 genes were
regulated independently in each line under low Pi, and
only three CIII Prx genes responded significantly to Pi

Table 2 Pi-dependent regulation of the top 25 genes co-regulated with IRT1 (ATTEDII)

Shown is the fold change expression in wild type, pdr2 and lpr1lpr2 after transfer to –Pi or the fold change expression of Pi-replete pdr2 and lpr1lpr2 plants
compared to the wild-type. Red and green boxes denote genes that are significantly suppressed or induced (p ≤ 0.05, student’s t-test; 0.66 ≥ FC ≥ 1.5)

Hoehenwarter et al. BMC Plant Biology  (2016) 16:106 Page 5 of 21

Publications

37



Table 3 Pi-dependent regulation of cell wall modifying enzymes

Shown is the fold change expression of selected CW modifying enzymes in wild-type, pdr2 and lpr1lpr2 after transfer to –Pi or the fold change expression of
Pi-replete pdr2 and lpr1lpr2 plants compared to the wild-type. Candidates were selected from a set of regulated genes annotated to be localized in the
extracellular region (see also Additional File 6: Table S5). Red and green boxes denote significantly suppressed or induced (p ≤ 0.05, student’s t-test; 0.66 ≥ FC ≥ 1.5)
genes. PME, pectin methyl esterase; EXP, expansin; EXL, expansin-like; XTH, xyloglucan endotransglucosylase/hydrolyse
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limitation in lpr1lpr2 plants (Additional file 7: Table S6).
Again, 19 CIII Prx genes were deregulated in pdr2
under + Pi. Thus, peroxidases may be an important link
between ROS formation and CW remodeling upon Pi
starvation.

Proteomics supports regulation of Pi-responsive genes in
pdr2 and lpr1lpr2 mutants
Genotype-specific changes in the root proteome upon Pi
deficiency were monitored in an unlabeled approach
using a fast scanning high resolution accurate mass
(HRAM) LC-MS system. Three biological and three
technical replicates were measured for each genotype
under + Pi and –Pi conditions (54 samples) yielding
3,328,368 MS/MS spectra (individual peptide measure-
ments). 726,944 spectra could be annotated to a peptide
sequence (peptide spectral match, PSM) with a global
false discovery rate (FDR) threshold of 0.01 %. These
PSMs were used to identify 5110 protein groups (unique
proteins), each with at least one unique peptide and a
global FDR threshold of 1 % (Additional file 8: Table S7).

Protein abundance was inferred based on peptide abun-
dance determined by peptide ion signal peak integration
using the PROGENESIS software. Pairwise comparison
of all genotypes under both growth regimes revealed
2439 differentially regulated proteins (p ≤ 0.05). Based on
this list, we identified 1304 proteins that were either Pi-
responsive in at least one genotype or which were
already deregulated in one of the mutant lines grown on
Pi-replete conditions (0.769 ≥ FC ≥ 1.3) (Additional file 9:
Table S8).
Multidimensional scaling (MDS) analysis of ANOVA

filtered (p < 0.05) samples revealed low variance between
biological replicates but significant differences between
genotypes and Pi conditions (Fig. 2a). The levels of 108
proteins were increased or decreased in the wild-type
upon Pi depletion (Fig. 2b). As expected, the highest
number of proteins (451) were regulated in hypersensi-
tive pdr2 mutant, probably reflecting changes in root
morphology. We also identified a high number of Pi-
responsive proteins (265) in the insensitive lpr1lpr2 line.
Of these, 214 proteins were unique to lpr1lpr2 (Fig. 2c),

a b

c d e

Fig. 2 Statistics of comparative protein expression analysis. a Multidimensional scaling (MDS) analysis of all biological replicate samples. b
Illustration of the number of up- and downregulated proteins (p≤ 0.05, Student’s t-test; 0.769≥ FC≥ 1.3) in wild-type, pdr2 and lpr1lpr2 roots
upon transfer from + Pi to –Pi (−/+), and the number of differentially regulated proteins in pairwise comparisons of the three genotypes under +
Pi (+/+) or –Pi (−/−) conditions. c, d, and e Venn diagrams illustrating the number of regulated proteins in pairwise comparisons for all three
genotypes under both growth regimes (see also Additional file 8: Table S7, Additional file 9: Table S8, Additional file 10: Table S9)
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indicating that the adjustment of protein expression
might contribute to the decreased Pi responsiveness.
Both mutant lines showed differential regulation of more
than 300 proteins under Pi-replete conditions. This rela-
tively high value is reminiscent of what we observed in
the transcript dataset, supporting the assumption that
PDR2 and LPR proteins may also regulate Pi independ-
ent processes.
Venn diagrams identified a group of 6 proteins that

were similarly regulated in all lines upon Pi depletion
(Fig. 2c, d, e). Notably, 4 of these proteins were posi-
tively correlated with our transcript data, showing induc-
tion on both mRNA and protein level (Table 4). Two
members of this group were FER1 and the pectin modi-
fying enzyme POLYGALACTURONASE INHIBITING
PROTEIN1 (PGIP1) [43, 44], which further indicates
that changes in Fe distribution and CW modification are
associated with the response to low Pi.

Correlation of proteome and transcriptome analysis
Next, we performed GO term analysis to identify groups
of proteins involved in genotype-specific Pi responsive-
ness. Most proteins have assigned metabolic functions in
wild-type and lpr1lpr2, probably reflecting processes re-
lated to Pi recycling and mobilization. Strikingly, in + Pi
condition and upon transfer to –Pi, the pdr2 line
showed a significant regulation of proteins assigned as
response to metal ion (GO:0010038) and oxidoreductase
activity (GO:0016491). A closer examination revealed re-
pression of 15 peroxidases in pdr2 in + Pi and induction
of 9 peroxidases in –Pi condition. Within the group of
repressed proteins we identified 14 CIII Prxs of which 3
enzymes were regulated at the transcript level. Only one
and six Pi-responsive CIII Prx were detected in wild-
type and lpr1lpr2 root extracts, respectively (Additional
file 10: Table S9).

To compare the proteome and transcriptome data
sets, we plotted all significantly regulated proteins (p ≤
0.05, Student’s t-test) against their cognate transcript.
For those differentially expressed proteins, the percent-
age of detected transcripts was 91.6 % for wild-type
(152/166), 94.3 % for pdr2 (541/574) and 92.1 % for
lpr1lpr2 (351/381) roots. We observed only a low, but
highly significant, positive correlation of transcript and
protein abundance for all three genotypes (R ≥ 0.2, p ≤
0.001) (Fig. 3a, b). We generated a list of significantly al-
tered transcripts, which we compared to the list of sig-
nificantly altered proteins (p < 0.05). We identified 26
cognate genes for wild-type, 22 for lp1lpr2 and 211 for
pdr2. The correlation coefficient markedly increased
when we plotted these genes against their cognate pro-
teins (Fig. 3b, c, d, e; Additional file 11: Table S10).
We identified the 4 genes, including FER1 and PGIP1,

that were co-regulated on mRNA and protein level
across all genotypes in response to Pi depletion
(Additional file 11: Table S10). In wild-type, we noticed
induction of PPa4 (PYROPHOSPHORYLASE 4), a can-
didate for Pi mobilization, and PCK1 (PHOSPHOENOL-
PYRUVATE CARBOXYKINASE 1), which is involved in
metabolic adjustment to Pi deprivation [45]. We further
identified two hemicellulose modifying enzymes, XTH8
and XTH31 (XYLOGLUCAN ENDOTRANSGLUCOSY-
LASE/HYDROLASE), which were slightly decreased in
low Pi. Interestingly, both enzymes were previously
shown to be regulated by SIZ1 [46], a SUMO E3-
ligase involved in Pi dependent root growth remodel-
ing [47, 48].
GO term analysis of the 211 mRNA/protein pairs al-

tered in pdr2 revealed an overrepresentation of meta-
bolic processes. The second most significant term
(response to metal ion) is consistent with altered metal
homeostasis in pdr2 plants [19]. For example, we

Table 4 Pi-dependent Protein/mRNA regulation

Shown is the fold change expression of the 6 proteins (PO) that are Pi-responsive in all lines (wild-type, pdr2 and lpr1lpr2) or the fold change expression of
Pi-replete pdr2 and lpr1lpr2 plants compared to the wild-type. Protein expression is compared to transcript changes (TC). Red and green boxes denote genes that
are significantly suppressed or induced (p ≤ 0.05, student’s t-test; 0.76 ≥ FC ≥ 1.3)
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noticed induction of FER3 and proteins potentially in-
volved in detoxification of metal ion-induced ROS for-
mation, including several GLUTATHIONE-S-
TRANSFERASEs (GSTs) (Additional file 11: Table S10).

We also identified F6’H1 (feruloyl-CoA 6’-hydroxylase
1), which is involved in coumarin biosynthesis and Fe-
mobilization in alkaline soils [49–51]. Our datasets re-
vealed anti-correlation of F6’H1 expression in pdr2,

Fig. 3 Comparative analysis of transcriptome and proteome data and spCCA analysis. a, b, c, and d Correlation between transcript and protein
fold-changes upon Pi-deficiency. a For each genotype, all significantly regulated proteins (p≤ 0.05) were plotted against its cognate transcript, if
present on the ATH1 chip. b, c, and d Significantly (p ≤ 0.05) regulated protein/mRNA pairs were plotted against each other. Scatter plots show
26 protein/mRNA pairs regulated in wild-type upon Pi-deficiency, 211 pairs identified for pdr2, and 21 pairs identified in lpr1lrp2. e Correlation (r)
values for each pairwise comparison. Asterisks indicate significance for each correlation analysis (p < 0.0001). f, g Canonical variables of the spCCA
analysis representing a subset of transcripts/proteins which showed maximum correlation with the illustrated patterns that were generated by
the spCCA algorithm. (see also Additional file 1: Figure S1, Additional file 11: Table S10. Additional file 13: Table S11)
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showing elevated protein but decreased transcript levels
in –Pi and an inverse relation in + Pi (Additional file 1:
Table S1, Additional file 9: Table S8), which indicates
stringent regulation of F6’H1 expression in pdr2. In
addition, protein level of CCoAOMT1 (caffeoyl coen-
zyme A O-methyltransferase 1), which converts caffeoyl-
CoA to feruloyl-CoA, the substrate of F6’H1 [52], was
also elevated in pdr2 (Additional file 9: Table S8). Thus,
coumarin-mediated mobilization of Fe may be involved
in Pi dependent Fe accumulation.

Integrative spCCA analysis supports Pi-dependent metal
redistribution
We integrated the two –omics approaches to uncover
relationships that are supported by both individual data-
sets. We performed a supervised penalized canonical
correlation analysis (spCCA), which searches for correla-
tions between a set of transcripts and proteins [53]. The
experimental design was integrated into the analysis to
allow for biological interpretation of the derived canon-
ical variables. The experimental factors (i.e., genotype, Pi
condition, replicate sample) were provided as a binary
matrix of design vectors that uniquely characterize each
sample (Additional file 12: Figure S2). The supervised
correlation approach seeks a linear combination of a fea-
ture subset from each -omics dataset that correlates
maximally with a subset of experimental design factors.
To maximize stringency, only varying transcripts and
proteins were considered for spCCA. For transcripto-
mics, we choose a list of 1143 ANOVA filtered genes
(p ≤ 0.05, var ≥ 0.12) and for proteomics a list of 47 pro-
teins (p ≤ 0.05, var ≥ 0.4). Our analysis revealed distinct
canonical variables (CVs), each representing a specific
pattern correlating with a subset of proteins and/or tran-
scripts. The first two CVs revealed structured patterns
(Fig. 3f, g), while a third CV was disordered and there-
fore not further examined (Additional file 12: Figure
S2B). The first CV mainly represented genes/transcripts
(g/t) that were differentially expressed in pdr2 compared
to wild-type and lpr1lpr2 independently of Pi status
(Fig. 3f ). We examined the top 100 g/t in this variable
and found several Fe-related candidates (Additional file
13: Table S11), such as Fe chelate reductase 3 (FRO3)
[54] and MYB10, which is required for growth in Fe de-
ficiency [37]. MYB10 and MYB72 mediate Fe-dependent
induction of NICOTIANAMINE SYNTHASE 4 (NAS4)
[37], which is also present in this group. NAS proteins
synthesize nicotianamine, a Fe-chelator essential for Fe-
remobilization in the root [55]. We further identified a
member of the ALUMINUM ACTIVATED MALATE
TRANSPORTER (ALMT) family. It is of note that
ALMT1 is most highly induced in all three genotypes
during Pi depletion (Table 1).

The second CV mainly represented g/t that were simi-
larly expressed in Pi-replete pdr2 and lpr1lpr2 roots but
slightly differed from the wild-type. In contrast to the
first CV, the majority of these g/t were Pi responsive in
all genotypes. As expected, we found several known Pi
acquisition g/t, including SPX1, CAX3, the phosphate
transporter PT2, and the Pi starvation-inducible inor-
ganic pyrophosphatase 1 (Additional file 13: Table S11).
Many other g/t are implicated in metal homeostasis, e.g.,
the Fe/Zn transporters IRT1 and IRT3, the Ni trans-
porter IREG2, the Zn/Cd transporter HMA2 or the NA
transporter YSL2, further supporting our observation
that metal homeostasis is strictly controlled in all geno-
types upon Pi starvation.

Root growth inhibition in low Pi is independent of
general Fe uptake and cellular storage
We previously reported that LPR1-dependent Fe accumu-
lation and distribution in root tips controls RAM activity
in response to low Pi [19]. Our comparative transcripto-
mics and proteomics analysis of entire roots revealed Pi-
responsive expression of Fe-related genes, notably FER1
and IRT1 (Table 1, Table 4), which correlated with Fe
overload in Pi-starved roots of the three genotypes under
study [19] (Additional file 14: Figure S3). To further inves-
tigate the role of Fe during the local response of roots to
Pi availability, we analyzed the impact of FER1 and IRT1
loss-of-function mutants on Fe-distribution and root
growth inhibition upon Pi deprivation.
Ferritins are located in plastids and can be visualized

by Perls/DAB Fe staining as dot-like structures in root
cells of wild-type plants, which are not detectable in
fer1-3-4 roots lacking FER expression [56]. Using semi-
thin sections from Perls/DAB-stained wild-type roots,
we observed similar dot-like structures in Pi-replete root
tips, which strongly increased in number and staining
intensity upon transfer to –Pi medium. These punctuate
structures are associated with the symplast and are
clearly distinctive from apoplastic Fe staining (Additional
file 15: Figure S4A). We next performed root growth as-
says using the fer1-3-4 triple and fer1-2-3-4 quadruple
mutant. Primary root growth rates of the fer mutants
were indistinguishable from the wild-type on both + Pi
or –Pi medium (Fig. 4a). Thus, ferritins do not affect the
local root growth response to –Pi.
Similarly, we performed Perls/DAB Fe-staining to

examine Fe distribution in wild type and irt1 roots.
Compared with Pi-replete wild-type seedlings, the irt1
mutant showed more intense Fe staining on the root
surface of the mature root zone (Additional file 15:
Figure S4B), which is in accordance with impaired Fe
uptake from the rhizosphere. However, both lines dis-
played similar Fe staining in the RAM and EZ, which is
consistent with predominant IRT1 expression in the
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Fig. 4 (See legend on next page.)
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differentiation zone [32] and confirms our previous
study [19]. Under Pi depletion, Fe staining increased
strongly and comparably in all segments of wild-type
and irt1 roots, indicating that Fe accumulation and dis-
tribution in root tips is independent of IRT1. We gener-
ated homozygous pdr2irt1 double and lpr1lpr2irt1 triple
mutants and monitored primary root growth on + Pi and
–Pi agar. As expected, the irt1 mutation did not affect
the Pi-dependent root growth response of pdr2 and
lpr1lpr2 plants (Fig. 4b), indicating IRT1-independent Fe
accumulation in the root tip in response to low Pi.

Apoplastic Fe redistribution modifies Pi-dependent root
growth adaptation
Long distance apoplastic Fe transport and distribution in
symplastically disconnected tissues are mediated by the
citrate exporter FERRIC REDICTASE DEFECTIVE 3
(FRD3) [57, 58]. Intriguingly, a previous study reported
that frd3 plants display a hypersensitive short-root
phenotype when grown on –Pi medium [20]. To exam-
ine a potential role of FRD3 for mediating Pi-dependent
Fe distribution via Fe-citrate complexes, we performed
Perls Fe-staining (without DAB intensification to avoid
oversaturation) on wild-type and frd3 roots. As previ-
ously reported [58–60], Pi-replete frd3 roots overaccu-
mulated Fe in the vascular tissue (Fig. 4c). Within 20 h
after transfer to –Pi, wild-type plants accumulated Fe in
the outer cell layers, whereas frd3 roots showed en-
hanced Fe staining in the vasculature, particularly in dif-
ferentiated root segments. Importantly, only minor
differences were noted in the root tip, where Fe accumu-
lation was slightly increased in frd3 (Fig. 4c); However,
extended growth on –Pi (up to 6 days) progressively in-
creased this difference, finally causing massive overaccu-
mulation of Fe within the EZ and early differentiation
zone of frd3 roots (Fig. 4d).
We previously showed that Pi-dependent Fe accumu-

lation correlates with callose formation at the sites of Fe
deposition (<2 days) [19]. After transfer to –Pi (2 days),
callose deposition at sites of Fe accumulation and result-
ant root growth inhibition were similar for wild-type
and frd3 plants (Additional file 16: Figure S5A).

However, extended exposure (6 days) caused callose
overproduction in frd3 roots which correlated with an
enhanced growth inhibition (Fig. 4d, e).
Based on our observations, we assumed that

mobilization of apoplastic Fe-citrate complexes might be
involved in the Pi dependent modulation of root growth.
To test this, we transferred wild-type plants from + Pi
conditions to + Pi or –Pi medium, supplemented with
citrate, which was previously shown to restore Fe
mobilization on frd3 mutants [57] and monitored their
growth behavior. Indeed, addition of 100–250 μM citrate
promotes root growth within the first two days after
transfer to –Pi. However, this effect was transient and
external supply of citrate eventually suppressed root
growth on low Pi (Additional file 16: Figure S5B, C).

Pi deprivation modifies pectins at Fe accumulation sites
Our comparative expression profiling pointed to a role
for pectin-modifying enzymes. Therefore, we studied Pi-
dependent changes in the pectineous CW by using Ru-
thenium Red (RR), an inorganic dye that stains unesteri-
fied pectins [61, 62].
Roots of wild-type, pdr2 and lpr1lpr2 showed a similar

RR staining pattern on + Pi medium. One day after trans-
fer to –Pi, we observed a strong increase in RR staining
intensity in wild-type root tips, particularly within the dif-
ferentiating EZ (Fig. 5a). Compared with wild-type, pdr2
seedlings showed a more intense staining in this region
while the RR staining in the lpr1lpr2 mutant was un-
altered. Interestingly, the site of enhanced pectin staining
correlated well with the site of low Pi induced Fe depos-
ition in wild-type and pdr2 roots (Fig. 5a, c).
We also visualized the distribution of methyl-esterified

pectin by using the hydroxylamine ferric chloride (HFC)
reagent, which specifically reacts with methyl esters of
pectin and results in a yellow to red coloration [62–64].
Only weak staining was evident in roots on + Pi (Fig. 5b)
and transfer to –Pi did not significantly change the
staining pattern in the differentiating EZ. However,
higher magnification images revealed increased staining
in the RAM of wild-type, with the highest intensity in
the quiescent center (QC) and the cortical cell layer at

(See figure on previous page.)
Fig. 4 Root growth in fer and irt1 mutant plants and phenotypes of frd3 roots. a 4-days-old seedlings were transferred from + Pi to + Pi or –Pi
medium for up to 6 days. Daily increase in root growth was measured and illustrated in segmented boxes within the bar graph (±SE, n≥ 15).
Standard error was calculated from the average total root growth. b Total increase in root length after transfer from + Pi to either + Pi or –Pi
medium t-test; p < 0.05 (±SE, n≥ 20). c, d, and e Fe staining and root growth assays of wild-type and frd3-7 seedlings. 4-days-old plants were
transferred from + Pi to + Pi or –Pi medium for up to 6 days. c Perls staining in different root segments 20 h after transfer to + Pi or –Pi medium.
Upper and middle panels show mature root segments. The lower panels show the RAM and early differentiation zone. Scale bar 200 μm. d Fe
(Perls) and aniline blue (AB) callose staining of root tips and differentiated root segments 6 days after transfer to –Pi medium. Scale bar 100 μm. e
Root growth of wild-type and frd3-7 seedlings within 6 days after transfer to Pi-depleted medium. The bar graph shows the daily increase in root
growth, illustrated in segmented boxes. Standard error was calculated from the average total root growth. *** t-test; p = 1.85−8 (±SE, n ≥ 20).
Overview images show the root growth after 3 days and 6 days on –Pi medium . Arrows indicate the position of the root tip, directly after
transfer to –Pi (t = 0), as well as 3 days and 6 days after transfer. Scale bar 1000 μm. (See also Additional file 14: Figure S3)
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the transition zone, which demarcates the border be-
tween the RAM and EZ. In contrast, pdr2 seedlings
showed enhanced staining in the RAM, particularly
within the QC region, but no distinct labeling of the cor-
tical cell layer. No differences in pectin staining were de-
tected in lpr1lpr2 roots after transfer to –Pi medium.
High magnification images of RR- and HFC-stained
roots revealed simultaneous accumulation of acidic and
methyl-esterified pectin in the meristem of the two sen-
sitive lines. In particular, after transfer to –Pi, strong
HFC and RR staining was evident in the cortex cell layer
of wild-type and in the QC region of pdr2 roots (Fig. 5c),
which co-localized with major sites of Fe deposition.

Discussion
Plant adaptation to Pi limitation depends on coordinated
transcriptional and translational regulation of gene ex-
pression [6, 21, 24–28]. While comparative transcrip-
tome analysis proved to be a viable approach to
distinguish between local and systemic regulation in Pi-
starved plants [5, 6], only little information is available
on the regulation of genes and proteins associated with
the Pi-dependent adaption of root system architecture.

Previous work revealed that PDR2 and LPR genes act to-
gether in the local response to Pi availability by regulat-
ing cell type-specific deposition of Fe and callose in the
root tip [11, 13, 19]. Here, we took advantage of the con-
trasting Pi-dependent root phenotype of pdr2 and
lpr1lpr2 plants to investigate the associated changes in
steady-state transcript and protein levels in a compara-
tive approach. Genotype independent regulation of sev-
eral PSR genes demonstrated the validity of our
experiments and revealed that pdr2 and lpr1lpr2 mu-
tants are likely not affected in the systemic response to
Pi limitation (Table 1). Further analysis of our dataset re-
vealed a number of candidate genes that are possibly in-
volved in the Pi-dependent regulation of Fe storage and
Fe redistribution as well as in the modulation of CW dy-
namics and/or ROS formation within the root.

Pi depletion modulates root Fe distribution
Our study revealed genotype-independent repression of
numerous Fe-responsive and IRT1-coregulated genes
upon transfer to Pi limitation, which likely reflects feed-
back regulation as a consequence of elevated Fe accu-
mulation in Pi-starved differentiated roots. On the other

Fig. 5 Fe and pectin staining of roots after seedling transfer from + Pi agar to + Pi or –Pi medium for up to 2 days. a Perls/DAB Fe staining (left
panels) and Ruthenium Red (RR) staining of non-methylesterified pectins (center and right panels). Shown are overview images of Perls/DAB and
RR stained roots as well as detail images of the elongation/early differentiation zone. Scale bar 100 μm. b Hydroxylamine ferric chloride (HFC)
staining of methylesterified pectins. Shown are overview images of the root (scale bar 100 μm) as well as detail images of the root meristem
(scale bar 100 μm) and the stem cell niche (scale bar 20 μm). Differences in coloration between overview and detail result from the use of
different imaging devices. Arrows point to the SCN and cortical cell layer in the transition zone, asterisks label the quiescent center cells in the
SCN. c Details of the Perls/DAB, RR and HFC staining in Pi-depleted cortical cells of Col plants and stem cells of pdr2 plants. Scale bar 20 μm
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hand, de-repression of Fe-related genes in Pi-replete
pdr2 plants may sensitize Fe overaccumulation in limit-
ing Pi [19] (Table 2, Additional file 12: Figure S2).
FER1 and related ferritins are plastid-localized Fe stor-

age proteins protecting cells from Fe-mediated oxidative
stress [65]. Using Perls/DAB Fe staining, Reyt et al. [56]
recently reported dot-like structures in root cells of
wild-type plants that likely display ferritin-bound Fe be-
cause they are absent in fer1-3-4 roots [65]. A previous
study showed that FER1 is induced by PHR1 in low Pi
independent of external Fe [66], indicating that FER1
may play a role in Pi-dependent Fe distribution.
Our comparative analysis revealed induction of FER1

expression on mRNA and protein level in all three lines
(Table 4). Detection of Fe accumulation in dot-like
structures supports the notion of intracellular Fe storage
under Pi limitation, possibly as ferritin Fe (Figure S4).
Importantly, Pi-dependent root growth was not affected
by loss of ferritins (fer1-[2]-3-4 mutants) or loss of IRT1
in pdr2 (pdr2irt1) and lpr (lpr1lpr2irt1) mutants (Fig. 4),
indicating that Pi dependent root growth modulation is
independent of intracellular Fe accumulation. Our data
are consistent with a recent study reporting indistin-
guishable primary root growth of fer1-3-4 and wild-type
plants on high Fe [56].
Fe mobilization from the rhizosphere is facilitated by

chelators such as carboxylates (e.g., citrate and malate)
and coumarins, and apoplastic long distance Fe traffick-
ing is mediated by Fe-citrate complexes [49–51, 67].
FRD3 exports citrate and the frd3 mutant is defective in
apoplastic Fe translocation, causing Fe hyperaccumula-
tion in root stele tissues [58–60]. Importantly, frd3 mu-
tants show a hypersensitive short root phenotype in low
Pi [20] and we demonstrated Fe overaccumulation in Pi-
deprived frd3 roots (Fig. 4), which indicates that citrate
secretion is required for proper Fe-distribution under Pi
limitation. Interestingly, citrate application transiently
promoted frd3 root growth in low Pi (Additional file 16:
Figure S5), indicating that the Pi-dependent short root
phenotype of frd3 is likely a consequence of altered Fe
redistribution in the growing root.
Transcript analysis and spCCA (Additional file 1:

Table S1, Additional file 13: Table S11) revealed regula-
tion of ALMT genes, including a strong Pi-dependent in-
duction of ALMT1 (Table 1), which was previously
shown to exude malate into the rhizosphere as a strategy
to cope with aluminum toxicity [68]. Earlier studies re-
vealed PHR1-dependent accumulation of malate and
citrate in Pi-depleted plants [24, 69]. Interestingly, exud-
ation of both carboxylates into the rhizosphere was
shown to facilitate mobilization of Pi and Fe in several
plant species that do not form mycorrhiza [67].
We also noticed deregulation of coumarin biosynthesis-

related genes, F6’H1 and CCoAOMT1, in pdr2 roots

(Additional file 1: Table S1, Additional file 9: Table S8).
Several studies showed that coumarins (scopoletin and es-
culetin) are exuded into the rhizosphere to mobilize Fe in
alkaline soils [49–51]. A recent report showed that escule-
tin accumulates in roots of Pi-starved wild-type plants but
was suppressed in the phr1 mutant, which lacks the in-
duction of PSR genes upon Pi deficiency [69]. Moreover,
using a non-targeted approach to identify metabolites
from Pi-starved Arabidopsis root exudates, we recently
confirmed Pi-dependent regulation of coumarin secretion
[70]. Thus, our analysis implicates additional Fe-chelators
in the regulation of Pi-dependent Fe accumulation and/or
distribution in roots.

Pi depletion modulates root pectins
Inhibition of root cell elongation, formation of root hairs
and induction of lateral roots are the most robust local
responses to Pi deficiency [7, 8], which all require exten-
sive reorganization of the CW. Our analysis revealed Pi-
dependent regulation of CW-modifying enzymes, par-
ticularly in the sensitive wild-type and pdr2 plants and
to a lesser extent in lpr1lpr2 roots (Table 3). Consistent
with a previous transcriptome study [28], we identified
several putative pectin esterases and esterase inhibitors.
Pectins are secreted into the apoplast in a highly methy-
lesterified state. In the CW, pectin methylesterases
(PME) may remove methyl groups, generating free carb-
oxylate functions on the surface of pectin polymers.
Crosslinking of these carboxylate-groups by Ca2+ re-
duces CW extensibility and regulates cell expansion
[41]. Our experiments revealed low Pi-induced accumu-
lation of non-methylated pectin, specifically within the
EZ of wild-type and pdr2 roots (Fig. 5), which might
contribute to rapid inhibition of cell elongation in these
lines. In addition, there is growing evidence that plants
exchange Ca2+ ions for other divalent and trivalent metal
ions to prevent metal uptake and ROS formation [71].
Gessa et al. [72] showed in vitro Fe3+ binding to carb-
oxylate groups on polygalacturonic acids (PGA), and
two studies in Arabidopsis and rice demonstrated the
ability of PGA to mobilize Pi from FePO4 complexes
and clay [73, 74]. Interestingly, a decrease in pectins in
the Arabidopsis qua1-2 mutant causes a hypersensitive
short root phenotype upon Pi depletion [74]. Here, we
show that accumulation of pectin in the root meristem
coincides with the sites of Fe accumulation (Fig. 5a, c).
Local pectin deposition might be a strategy to mobilize
Pi from Fe-phosphate complexes. The data support our
previous observations of CW thickening and callose de-
position at sites of Fe accumulation in the root tip [19].
A recent study of the Arabidopsis flower transcriptome

revealed deregulation of PGIP1 and other CW-
modifying enzymes in the ferritin1-3-4 triple mutant
[75]. PGIP1 is a member of the leucine-rich repeat
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(LRR) protein superfamily and inhibits fungal and bac-
terial polygalacturonases, which cleave non-methylated
pectin residues in infected tissues [43]. It further regu-
lates germination by inhibiting the breakdown of seed
coat pectins [44]. Intriguingly, our analysis revealed co-
regulation of PGIP1 and FER1 on transcript and protein
level in all lines upon Pi-depletion (Table 4), further in-
dicating a potential link between the Pi-dependent regu-
lation of Fe distribution and the modification of pectin
in the CW.

Peroxidases may modulate ROS formation and cell wall
dynamics
We identified 41 CIII Prxs (56 % of the 73-member fam-
ily) that were regulated on the mRNA and/or protein
level, either in response to Pi depletion (23 members) or
as a consequence of the pdr2 and lpr mutations
(Additional file 7: Table S6, Additional file 10: Table S9).
Interestingly, the majority of CIII Prx mRNAs/proteins
(30) were deregulated in pdr2 in Pi replete conditions.
CIII Prxs are involved in superoxide formation by trans-
ferring electrons from NADH to O2 as well as in the Fe
catalyzed generation of hydroxyl radicals [76, 77]. ROS
formation is likely responsible for the cleavage of CW
polysaccharides to promote cell expansion. On the other
hand, oxidation of monolignols by CIII Prxs is the pre-
dominant mechanism of monolignol polymerization (lig-
nification) which rigidifies the CW and degrades H2O2

[78]. The potential role of CIII Prxs for modulating ROS
levels and CW dynamics and their strong deregulation
in pdr2 mutants points to a function in local root
growth adaptation. A comprehensive analysis of available
transcriptome and proteome data revealed that most
CIII Prxs are mainly expressed in the root [42]. Two of
those, Prx33 and Prx34, bind to Ca2+ polygalacturonates
and mediate root growth in Arabidopsis [79]. A more re-
cent study demonstrated that prx33 and prx34 knock-
down lines exhibited reduced ROS and callose formation
upon treatment with microbe-associated molecular pat-
terns (MAMPs), implicating a direct role of these gene
products in ROS formation [80]. Using specific ROS in-
dicators, we recently demonstrated the formation of
apoplastic ROS at the site of –Pi induced Fe deposition
[19]. The underlying mechanism remains elusive but
CIII Prxs may constitute a missing link between Pi
dependent ROS formation and CW remodeling.

Comparative transcriptome and proteome analysis allows
in-depth dissection of gene expression
Our comparative transcriptome and proteome analysis
revealed a highly significant but relatively low positive
correlation for the abundance of PSR proteins and
their cognate transcripts in all three genotypes tested
(Fig. 3a, e). The majority of mRNA/protein pairs in

our dataset showed discordant changes, which has
been previously observed and discussed in Arabidop-
sis and other organisms like mice and humans and
which is likely explained by (post-) translational regu-
lation and/or a temporal delay between the regulation
of transcript and protein abundance. In addition,
technical limitations in the efficiency of protein iden-
tification (e.g., low abundant proteins and transmem-
brane proteins) may restrict the detection of proteins
relative to their cognate transcripts [25, 81–84].
Correlation values significantly increased when gene

activity was subcategorized. For example, we observed a
strong positive correlation between protein and mRNA
abundance when we focused on proteins that were Pi-
responsive in all genotypes (Table 4). Similarly, we found
an enhanced positive correlation when we compared
only significantly regulated genes with their cognate pro-
teins (Fig. 3b, c, d, e). Moreover, our observations sug-
gest that the integration of transcriptome and proteome
datasets can be used as a valuable complementary ap-
proach. For example, we identified 28 and 18 CIII Prx,
regulated on the transcript and/or protein level, respect-
ively. Only 5 of those showed correlative expression
changes in both datasets (Additional file 7; Table S6,
Additional file 10: Table S9). However, the integration of
both approaches revealed regulation of 41 CIII Prx, sug-
gesting that the majority of CIII Prx are involved in the
response to Pi deprivation.
We demonstrate that spCCA is a useful tool to inte-

grate all experimental factors in our investigation, in-
cluding the proteome and transcriptome data, Pi-status
and genotype in order to elucidate unknown correlations
in this multidimensional dataset. Interestingly, the first
two CVs of our spCCA indicated a prominent role of
genes and proteins that were differentially regulated in
Pi-replete pdr2 seedlings (Fig. 3f, g). Indeed, detailed
analysis of our datasets revealed that the majority of Pi-
responsive genes was not significantly deregulated in
pdr2, compared to the wild type (Additional file 2:
Figure S1C, Additional file 4: Table S3). On the other
hand, several Fe-related genes, CIII Prx and pectin
modifying enzymes were differentially regulated in Pi-
replete pdr2 plants (Table 2, Table 3, Additional file 7:
Table S6), indicating that conditional hypersensitivity in
pdr2 might be a cause of constitutive de-repression or
sensitization of these genes/proteins. P5-type ATPases
are orphan, membrane localized ER proteins with un-
known substrate specificity [85]. Mutant studies on yeast
SPF1 and Arabidopsis MIA/PDR2 strongly suggest a
function in ER quality control, protein folding and regu-
lation of secretory processes [13, 86–88]. Hyperaccumu-
lation of pectin and callose in the CW of Pi-depleted
pdr2 roots [19] (and this study) support a function of
PDR2 in regulating ER-dependent secretion.
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Conclusions
We performed complementary transcriptomics and prote-
omics approaches to monitor changes in steady-state tran-
script and protein levels upon Pi deprivation of
Arabidopsis wild-type, pdr2 and lpr1lpr2 roots. Our ana-
lysis reveals a set of genes and proteins that are involved
in the regulation of Fe homeostasis, cell wall remodeling
and ROS formation. We observed increased FER1 and de-
creased IRT1 expression in all genotypes, which are con-
sistent with intracellular Fe accumulation and feed-back
inhibited Fe uptake in Pi-depleted roots, respectively. Ana-
lysis of fer1-3-4, fer1-2-3-4 and irt1 mutants demonstrates
that cellular Fe uptake and Fe storage in ferritin are not
involved in Pi-dependent modulation of root growth. We
provide evidence for the importance of apoplastic Fe re-
distribution to maintain root growth upon Pi-depletion
and for a role of FRD3 in this process. Our data further re-
veal Pi-dependent regulation of cell wall-modifying en-
zyme expression and changes in the deposition of pectins
in Pi-deprived roots. The high correlation between sites of
Fe deposition and enhanced pectin accumulation suggests
that pectins might be involved in Fe binding and/or Pi
mobilization from Fe-P complexes.

Methods
Plant material and growth conditions
Arabidopsis thaliana accession Columbia (Col-0) and
Col lines pdr2-1, lpr1-1lpr2-1, irt1-1, frd3-7, fer1-3-4 and
fer1-2-3-4 were previously described [11, 13, 58, 89, 90].
The pdr2-1 mutant was identified and characterized by
our group [12, 13, 19]. The irt1-1 (SALK_024525) and
frd3-7 (SALK_122235) lines were obtained from the
European Arabidopsis Stock Center (NASC). The lpr1-
1lpr2-1 double mutant and the ferritin mutants (fer1-(2)-
3-4) were kindly provided by T. Desnos [11] and J.F.
Briat [90], respectively. Seeds were surface-sterilized and
germinated on 0.8 % (w/v) Phyto-Agar (Duchefa) con-
taining 50 μM Fe-EDTA and 2.5 mM KH2PO4, pH 5.6
(high or + Pi medium) or no Pi supplement (low or –Pi
medium) as reported [13, 19].

Root growth measurement
The position of the root tip was marked on the back of
the agar plate directly after seedling transfer from + Pi
to + Pi or –Pi medium. Images were taken on a stereo-
microscope and total increment of primary root length
was calculated at the according time point using ImageJ
software. For daily growth rate measurements, the root
tip position was marked every 24 h. The distance be-
tween two marker-points defines the daily root growth.

Histochemical staining
Accumulation and distribution of Fe and callose in roots
was monitored as previously described [19]. De-methyl

esterified pectins were stained for 5–10 min in 0.05 % (w/
v) Ruthenium Red solution (Applichem). Hydroxylamine-
ferric chloride staining was adapted from Hornatowska
and Reeve [63, 64]. Seedlings were initially incubated for
5–10 min in freshly prepared hydroxylamine solution
(0.7 % NaOH, 0.7 % hydroxylamine hydrochloride in 60 %
EtOH), followed by the addition of an equal (or higher)
volume of a solution containing concentrated HCl/EtOH
95 % (1:2 ratio). The solution was removed and ferric
chloride was added (10 % FeCl3 in 60 % EtOH containing
0.1 N HCl). Seedlings were cleared using chloral hydrate
solution (7:7:1 chloral hydrate:ddH2O:glycerol). Samples
were analyzed using a multizoom stereomicroscope
(Nikon AZ100) for overview images and a Zeiss AxioIma-
ger bright field microscope for detail images.

RNA preparation and microarray hybridization
Seedlings (4-days-old) were transferred from + Pi to ei-
ther + Pi or –Pi medium and roots were harvested after
20 h. RNA was extracted using the RNeasy Plant Mini
Kit from Qiagen followed by an on-column DNA diges-
tion (40 min) using Qiagen RNase-free DNase Set. Qual-
ity control and hybridization to ATH1 Arabidopsis
GeneChips was done by NASC’s Affymetrix Service
(http://affymetrix.arabidopsis.info/).

Statistical analysis of mRNA expression data
Data preprocessing, generation of Venn diagrams and
heat maps was performed using Arraystar 4.1 software
(DNASTAR). Arrays were normalized with robust multi-
array analysis (RMA) and quantile background correc-
tion. Pairwise comparisons were performed using a fold-
change cutoff value of ≥ 1.5 for increased and of ≤0.66
for decreased transcript levels (p ≤ 0.05; Student’s t-test,
no multiple testing correction). Gene ontology analysis
was done with the preassigned settings of the Arraystar
software using a cutoff value p ≤ 0.05 and FDR
(Benjamini Hochberg) correction. Hierarchical clustering
was performed with 4870 ANOVA-filtered genes using
the hclust package of the R software v.3.0.0. [91]. The
ATTED-II database (http://atted.jp) was used to generate
a list of IRT1 co-regulated genes based on ATTED’s mu-
tual ranking. All other calculations and graphics were
prepared using Microsoft Excel 2010 software.

Preparation of protein samples and LC-MS analysis
Plants were grown as for mRNA analysis. Proteins were
extracted from root tissue and digested with trypsin.
Peptides were injected into an EASY-nLC II nano liquid
chromatography system, equipped with a Nanospray
Flex ion source (Thermo Fisher Scientific) and electro-
sprayed into an Orbitrap Velos Pro mass spectrometer
(Thermo Fisher Scientific). Details are described in
Additional file 17.
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Protein identification and relative quantification
The raw data was imported into Proteome Discoverer
v.1.4 (PD). Peak lists generated with a precursor signal
to noise ratio of 1.5 with PD were used to search the
TAIR10 database amended with common contaminants
(35,394 sequences, 14,486,974 residues) with the Mascot
algorithm v.2.5 on an in-house Mascot server. The en-
zyme specificity was set to trypsin and two missed cleav-
ages were tolerated. Carbamidomethylation of cysteine
was set as a fixed modification and oxidation of methio-
nine as a variable modification. The precursor tolerance
was set to 7 ppm and the product ion mass tolerance
was set to 0.8 Da. A decoy database search was per-
formed to determine the peptide false discovery rate
(FDR). The search results were imported into the Scaf-
fold Q+ software v.4.1.1 (Proteome Software, Inc.). Pep-
tide and protein FDRs were calculated and the identity
thresholds set to 0.01 and 1 % respectively to control the
family wise error rate of peptide and protein
identifications.
The raw data was imported into Progenesis LC-MS

v.4.1 (Nonlinear Dynamics) for relative protein quantifi-
cation between LC-MS analyses. The peptide ion signal
peak landscapes of LC-MS analyses were aligned using
the analysis as a reference that gave the highest mini-
mum and maximum number of vectors in the aligned
set of analyses when each analysis was used as a refer-
ence. Ratiometric normalization in log space to a se-
lected reference analysis over all aligned peptide ion
signals was performed. The summed intensities of pep-
tide ion signal peak isotope envelopes over time were
used as a measure of peptide abundance. A coefficient of
variance (CV) of peptide abundance of less than 50 %
for a peptide in all LC-MS analyses of a biological condi-
tion (three replicate analyses of each of three biological
replicates for a total of 9) was required for a peptide to
be quantified. Protein abundance was inferred by the
sum of all unique peptides mapping to a given protein
(non-conflicting peptides). Protein abundance fold
changes and corresponding p-values between the bio-
logical conditions were calculated.

Multidimensional scaling (MDS) analysis
Multidimensional scaling was conducted using the
isoMDS function from the MASS package version
7.3-29 [92]. Technical replicates of the proteome ana-
lysis were averaged, reducing the original dataset to
18 biological replicate samples. Missing values were
either imputed by half of the minimum intensity or
excluded from further analysis. The resulting matrix
of 3849x18 proteins was subjected to ANOVA (p <
0.05) revealing 412 consistent proteins. Intensities
were log-transformed.

Supervised penalized canonical correlation analysis
(spCCA)
SpCCA analysis was done according to [53]. ANOVA fil-
tered transcriptome and proteome data sets were re-
duced to signals with a variance of ≥0.12 and ≥0.4
resulting in 1143 transcripts and 47 proteins. The ex-
perimental design consisted of a binaric matrix of 18
samples x 8 experimental factors (three genotypes: Col,
pdr2, lpr1lpr2; two growth media: +Pi, −Pi agar; and
three replicates). SpCCA was conducted with 25 resam-
pling runs (n.r = 25) and 25 random start vectors (max.-
counter.test = 25) to optimize sparsity parameters in a
grid search between (0,0,0) and (0.6,0.5,1) with small
step sizes (0.05,0.05,0.1) for transcriptomics, proteomics
and design dataset.

Ethics (and consent to participate)
Not applicable.

Consent for publication
Not applicable.

Availability of data and materials
Microarray data sets with the reference number
NASCARRAYS-648 were deposited on the NASCArrays
database (http://affymetrix.arabidopsis.info/). The proteo-
mics data have been deposited to the ProteomeXchange
Consortium [93] via the PRIDE partner repository with
the dataset identifier PXD003449 and 10.6019/
PXD003449 (http://www.ebi.ac.uk/pride/archive/).

Additional files

Additional file 1: Table S1. ATH1 dataset. Shown is the relative
average expression value of all probe sets (B-G) and the linear fold
change of all pairwise comparions (L-AC). (XLSX 9833 kb)

Additional file 2: Figure S1. Correlation and GO term analysis. (A) Heat
map of a hierarchical cluster analysis of the group of 48 transcripts altered in
all three genotypes upon Pi-depletion. Relative expression values are shown.
(B) Scatter plots presenting pairwise correlation analysis (log2 fold changes)
of the 48 commonly regulated genes upon Pi-depletion. FC, fold change.
(see also Additional file 1: Table S1). (C) Correlation analysis of a subset of
241 Pi-responsive genes that were differentially regulated in wild-type and
pdr2 but not in lpr1lpr2 roots (p≤ 0.05, Student’s t-test; 0.66≥ FC≥ 1.5). The
upper image shows log2 fold changes of all genes upon Pi-starvation. The
lower heat map illustrates the same gene set and expressional changes
using a color code. (D) GO term analysis of a subset of 1680 genes that were
either Pi-responsive in wild-type, pdr2 and/or lpr1lpr2 roots or that were
differentially regulated in Pi-replete pdr2 and/or lpr1lpr2 roots (p≤ 0.05,
Student’s t-test; 0.66≥ FC≥ 1.5). Each segment in a wheel represent one GO
term. The top five GO terms are listed and significance values are shown.
The complete list of genes and GO terms is shown in Additional file 4: Table
S3. (see also Additional file 4: Table S3, Additional file 5: Table S4, Additional
file 6: Table S5, Additional file 7: Table S6). (PDF 246 kb)

Additional file 3: Table S2. Shown is a list of references that described
Pi- or Fe-responsiveness of the genes listed in Table 1. (XLSX 14 kb)

Additional file 4: Table S3. Pi-responsive genes exclusively regulated in
wild-type and pdr2 roots. Shown is the linear fold change of all 241 genes that
showed Pi-dependent expressional changes (p≤ 0.05, Student’s t-test; 0.66≥
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FC≥ 1.5) in wild-type and pdr2 only, but not in lpr1lpr2 roots. Highlighted are
genes that were differentially expressed in pdr2 (at least 2-fold higher or lower)
compared to the wild-type. (XLSX 82 kb)

Additional file 5: Table S4. Pi-responsive and deregulated genes in
pdr2 or lpr1lpr2 roots and GO term analysis. Shown is a list of 1680 genes
that were either regulated in one of the tested lines under Pi-depletion
or differentially regulated in pdr2 or lpr1lpr2 in Pi-replete conditions,
compared to the wild-type (p ≤ 0.05, Student’s t-test; 0.66 ≥ FC ≥ 1.5).
Additional tabs show results from Gene Ontology analysis using the list
of 1680 genes. BP, biological processes; MF, molecular function; CC,
cellular compartment. (XLSX 1048 kb)

Additional file 6: Table S5. Regulated genes of the GO term
“extracellular region”. Listed are 322 genes whose encoded proteins are
annotated to be located in the extracellular region (GO: 0005576) and
which were either regulated in one of the tested lines under Pi-depletion
or which were differentially regulated in pdr2 or lpr1lpr2 in Pi-replete
conditions. This table is based on the list of 1680 genes (see Additional
file 4: Table S3). (XLSX 98 kb)

Additional file 7: Table S6. Regulation of extracellular peroxidases.
Listed are 29 peroxidases that are annotated to be located in the
extracellular region and found to be regulated either in one of the tested
lines under Pi-depletion or which were differentially regulated in pdr2 or
lpr1lpr2 in Pi-replete conditions. Green and red fields depict significantly
induced or repressed genes, respectively (p ≤ 0.05, Student’s t-test; 0.66 ≥
FC ≥ 1.5). This table is based on the list of 322 regulated genes of the GO
term “extracellular region” (see Additional file 6: Table S5). (XLSX 19 kb)

Additional file 8: Table S7. Proteome data. Scaffold v4.4.1 was used to
aggregate and visualize protein identifications from the Mascot search
engine (v2.5.) run via Proteome Discoverer (V1.4) with X!Tandem searches
integrated into Scaffold. LFDR scoring and protein cluster analysis for
protein grouping were used to identify proteins. Total spectra (#PSMs)
per protein normalized to the total spectra of all proteins recorded for
each biological condition are shown. (XLSX 643 kb)

Additional file 9: Table S8. Differentially regulated proteins. Listed are
1304 proteins that were either Pi-responsive in at least one genotype
(Col-0, pdr2 and/or lpr1lpr2) or which were already deregulated in one of
the mutant lines grown on Pi-replete conditions (p ≤ 0.05, 0.769 ≥ FC ≥
1.3). Green and red boxes represent proteins that were significantly
induced or repressed, respectively. Blue boxes represent proteins that
were significantly regulated (p ≤ 0.05) but did not reach the preassigned
cut-off fold change value. (XLSX 230 kb)

Additional file 10: Table S9. Regulation of peroxidases. (A) Listed are
23 peroxidases that were either Pi-responsive in at least one genotype
(wild-type, pdr2 and/or lpr1lpr2) or were already deregulated in one of
the mutant lines grown on Pi-replete conditions (p ≤ 0.05, 0.769 ≥ FC ≥
1.3). (B) Listed are 5 peroxidases that were regulated on transcript and
protein level in at least one pairwise comparison. TC, transcript; PO,
protein. Green and red boxes represent proteins which were significantly
induced or repressed, respectively. (XLSX 60 kb)

Additional file 11: Table S10. Regulation of mRNA/protein pairs. Listed
are mRNA/protein pairs that showed correlative expression upon Pi-
deficiency. Shown is a list of 26 pairs for wild-type, 211 pairs for pdr2 and 22
pairs for lpr1lpr2. Green and red boxes represent proteins that were
significantly induced or repressed, respectively (p≤ 0.05, 0.769≥ FC≥ 1.3).
Blue boxes represent proteins which were significantly regulated (p≤ 0.05)
but did not reach the preassigned cut-off fold change value. (XLSX 73 kb)

Additional file 12: Figure S2. Fe staining and root growth assay. Perls/
DAB Fe staining on 4-days-old seedlings that were transferred from + Pi
to + Pi or –Pi medium for 20 h. Upper panels show mature root segments
of wild-type, pdr2 and lpr1lpr2 seedlings, lower panels depict the root
meristem and EZ, which shows early differentiation of root hairs under-Pi.
Scale bar, 200 μm. (PDF 45 kb)

Additional file 13: Table S11. Protein/transcript list of spCCA analysis.
Shown is the list of mRNAs/proteins that are highly relevant (high
weight) within the three canonical variables found in the spCCA analysis.
Values in tables illustrate the relative weight of each mRNA/protein.
Negative values indicate that these mRNAs/proteins are anti-correlated to

the pattern of the respective canonical variable as shown in Fig. 3 and
Additional file 14: Figure S3. (XLSX 26 kb)

Additional file 14: Figure S3. spCCA analysis. (A) Shown are the
experimental design factors used for the supervised correlation analysis.
(B, C, and D) Canonical variables (CV) of the spCCA analysis representing
a subset of transcripts/proteins that showed maximum correlation with
the illustrated patterns generated by the spCCA algorithm. CVs in B and
C are also shown in Fig. 4 (see also Additional file 13: Table S11).
(PDF 961 kb)

Additional file 15: Figure S4. Fe distribution in fer and irt1 mutant
plants. (A) Semi-thin (1 μm) longitudinal sections of Perls/DAB stained root
tips of wild-type seedlings after transfer from + Pi to + Pi or –Pi (20 h).
Shown are overview (scale bar 100 μm) and detail (scale bar 25 μm) images
of the root tip. Arrows indicate punctate Fe storages. (B) Perls/DAB Fe
staining of wild-type and irt1 seedlings. Upper and middle panels show
mature and young differentiated root segments, respectively. Lower panels
show the root meristem. Scale bar 100 μm. (PDF 1598 kb)

Additional file 16: Figure S5. Aniline blue staining on frd3 roots and
citrate application. (A) 4-days-old wild-type and frd3-7 seedlings were
transferred from + Pi to + Pi or –Pi medium for 2 days. Left: Aniline blue
(callose) staining. Right: photographs. Scale bar, 200 μm. (B, and C) 4-days-
old wild-type seedlings were transferred from+ Pi to + Pi or –Pi medium
supplemented with increasing concentrations of citrate. (B) Daily increase in
primary root growth was measured over 3 days and illustrated in
segmented boxes within the bar graph. (±SE, n≥ 15). Standard error was
calculated from the average total root growth within 3 days. (C) Photograph
of wild-type plants that were transferred for 5 days to –Pi medium,
supplemented with different citrate concentrations. Each colored spot
indicates the position of the root tip after the indicated time point. Scale
bar, 1000 μm. (PDF 1948 kb)

Additional file 17: Detailed description of protein extraction and LC-MS
analysis. (PDF 76 kb)
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Natural variation of root exudates 
in Arabidopsis thaliana-linking 
metabolomic and genomic data
Susann Mönchgesang*, Nadine Strehmel*, Stephan Schmidt*, Lore Westphal, 
Franziska Taruttis†, Erik Müller, Siska Herklotz, Steffen Neumann & Dierk Scheel

Many metabolomics studies focus on aboveground parts of the plant, while metabolism within 
roots and the chemical composition of the rhizosphere, as influenced by exudation, are not deeply 
investigated. In this study, we analysed exudate metabolic patterns of Arabidopsis thaliana and their 
variation in genetically diverse accessions. For this project, we used the 19 parental accessions of 
the Arabidopsis MAGIC collection. Plants were grown in a hydroponic system, their exudates were 
harvested before bolting and subjected to UPLC/ESI-QTOF-MS analysis. Metabolite profiles were 
analysed together with the genome sequence information. Our study uncovered distinct metabolite 
profiles for root exudates of the 19 accessions. Hierarchical clustering revealed similarities in the 
exudate metabolite profiles, which were partly reflected by the genetic distances. An association 
of metabolite absence with nonsense mutations was detected for the biosynthetic pathways of an 
indolic glucosinolate hydrolysis product, a hydroxycinnamic acid amine and a flavonoid triglycoside. 
Consequently, a direct link between metabolic phenotype and genotype was detected without 
using segregating populations. Moreover, genomics can help to identify biosynthetic enzymes in 
metabolomics experiments. Our study elucidates the chemical composition of the rhizosphere and 
its natural variation in A. thaliana, which is important for the attraction and shaping of microbial 
communities.

In Arabidopsis thaliana (A. thaliana), natural genetic variation has been intensively exploited to study a variety of 
traits related to plant development, stress response and nutrient content (for review, see Weigel1). Several publi-
cations have demonstrated that natural variation is a suitable basis for dissecting secondary metabolite pathways 
by using genetic mapping analyses. The genetics of glucosinolates and its link to pathogen and herbivore resist-
ance have been investigated thoroughly2–5. A large variation of glucosinolates in leaves and seeds was observed 
for 39 genetically diverse Arabidopsis accessions6. Houshyani et al.7 found that natural variation of the general 
metabolic response to different environmental conditions is not necessarily associated with the genetic similarity 
between nine accessions.

Many metabolomics studies focus on aboveground plant tissues. As a result, only limited information is avail-
able with regard to the metabolism of belowground parts of the plant.

Roots are crucial for the uptake of water and nutrients. For example, Agrawal et al.8 utilized natural variation 
of A. thaliana to identify malic acid as a key mediator for nickel tolerance. To communicate with the belowground 
environment, plant roots also exude metabolites such as flavonoids, phenylpropanoids and glucosinolates9, which 
can attract microorganisms or increase the resistance against pathogens9–11. These interactions take place in the 
rhizosphere, which is regarded as the space adjacent to roots12. As the properties of the rhizosphere differ strongly 
from the bulk soil in terms of microorganism abundance13, as well as the qualitative and quantitative metabolic 
composition14,15, investigations on root exudates are needed to assess the role of this microenvironment. Micallef 
et al.16 demonstrated that the rhizobacterial community composition is influenced by varying exudation profiles.

Non-targeted metabolite profiling of secondary metabolites by liquid chromatography coupled to mass spec-
trometry (LC/MS) is an ideal analytical platform to link natural metabolite variation to biosynthetic pathways. 
It allows for the detection and quantification of semipolar compounds17, when the resulting three-dimensional 
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signals with a specific mass-to-charge (m/z) ratio, retention time (RT) and intensity, so-called features, can be 
annotated. Depending on the nature of the compound, they are more likely to be detected upon electrospray 
ionization in the positive (ESI(+)) or negative mode (ESI(−)).

Our approach to investigate natural genetic variation of secondary metabolism in root exudates focuses on 
19 A. thaliana accessions, which show a large degree of geographic and phenotypic diversity (Supplementary 
Table S1) and were used to generate the Multiparent Advanced Generation Inter-Cross (MAGIC) lines18. Whole 
genome sequencing revealed that the parental accessions and the MAGIC lines represent most of genetic variabil-
ity of A. thaliana and therefore provide a valuable resource for genetic and metabolic studies19,20.

The aim of this study is to find out if the root exudate composition in A. thaliana is genetically determined. 
For this purpose, we analysed which metabolites show natural variation, if similar metabolic phenotypes share a 
genetic base, in particular, if certain characteristics can be traced back to single nucleotide polymorphisms and 
hence, directly link phenotype and genotype.

Results
Non-targeted metabolite profiling of root exudates reveals distinct metabolic phenotypes for 
19 Arabidopsis accessions. A clustering analysis was performed to find similarities between the metabolic 
profiles and sequence polymorphisms of the 19 founder accessions of the MAGIC population of A. thaliana. The 
dendrograms calculated from the metabolic features show a clear separation of accessions in Fig. 1a for exudates 
measured in ESI(−) and Fig. 1b in ESI(+). At a correlation threshold of 0.95 (dashed line), seven and five clusters, 
respectively, were observed.

No-0 and Po-0 (blue) were found in the same cluster (cluster 1, ESI(−); cluster 5 ESI(+)) in both ion modes. 
Ct-1 and Edi-0 (purple) also displayed high similarity in their metabolic profiles. Sf-2 and Kn-0 (green) were in 
close proximity and would have been in the same clade when cutting the ESI(+) dendrogram at a different thresh-
old. Similar metabolic phenotypes were also detected in the exudation patterns of Wu-0 and Tsu-0, and addition-
ally Mt-0 (orange). These three accessions either clustered in dendrogram branch 2 (ESI(−)) or 3 (ESI(+)).

In both metabolic dendrograms, one Oy-0 sample was observed as an outlier, which did not cluster with the 
other replicates of Oy-0. For Hi-0 and Ws-0, mixed clusters were observed. The positive ion mode generally 
harboured more outliers. As obvious from the quality control plots in Supplementary Fig. S1, the outlying sam-
ples did not show any extreme deviations on the technical side and were therefore not excluded from further 
analysis21.

For the analysis of genetic diversity, sequence polymorphisms in coding sequences (CDS) extracted from the 
19 genomes project22 were used for a genetic clustering (Fig. 1c). One large dendrogram branch (Ler-0, Kn-0, 
Wil-2; Ws-0, Ct-1, No-0; Hi-0, Tsu-0, Mt-0, Wu-0, Col-0, Rsch-4) had less than 825,000 mismatches (dashed line) 
while the outliers Bur-0, Sf-2, and Can-0 had increasing numbers of polymorphisms. Oy-0 and Po-0 formed a 
small cluster and were found in proximity to Edi-0, Zu-0 and the large dendrogram branch.

The metabolic analysis was based on a non-targeted metabolite profiling approach considering metabolic 
features characterised only by their m/z ratios, RTs and intensities. These characteristics are not sufficient to inves-
tigate the underlying molecules, its biosynthetic pathway and its potential in plant signaling. Annotations and 
identifications of metabolites, as shown in the next paragraph, are required to interpret non-targeted metabolic 
profiles in the biological context.

Semipolar secondary metabolites are the major components of the exudation patterns. Only 
25 and 22 of the metabolic signals (455 (ESI(−)), 475 (ESI(+), respectively) could be assigned to metabolites 
which have been previously described as exudate-characteristic for Col-015. Differential metabolites were detected 
by a generalized Welch-test between the 19 accessions; their colour-coded intensity map is shown in Fig. 2. 
Chemically related compounds were placed in groups separated by horizontal spacing.

Among the differential metabolites, there were several compounds with an aromatic moiety, such as the nucle-
oside thymidine and the amino acids Phe and Tyr. The amino acid derivative hexahomo-Met S-oxide had low 
abundance in the exudates of Sf-2 and was enriched in Mt-0.

A range of glucosinolate degradation products was characteristic for the exudates of some accessions. 
Edi-0 had rather low levels of indolic compounds and the isothiocyanate hydrolysis product of 8-MeSO-Octyl 
glucosinolate. Wu-0 showed a clear absence of the neoglucobrassicin (1-MeO-I3M) hydrolysis product 
1-methoxy-indole-3-ylmethylamine (1-MeO-I3CH2NH2), while Sf-2 was missing the malonyl-glucoside 
of 6-hydroxyindole-3-carboxylic acid (6-(Malonyl-GlcO)-I3CH2CO2H). An unknown indole derivative 
(C10H9NO3) was highly abundant in the exudates of Ct-1 and Wil-2, and lowly abundant in Sf-2. Generally, large 
amounts of the glucosinolate precursor and hydrolysis products were detected in the exudates of Ler-0, Mt-0 and 
Wil-2.

Plant hormone-derived metabolites also differed between the 19 accessions. Two salicylic acid (SA) catabo-
lites, 2,3 and 2,5-dihydroxybenzoic acid (DHBA) pentosides, were highly abundant in Col-0, Kn-0, Ler-0, Mt-0, 
Wil-2, Ws-0 and Wu-0. No preference for the 3′ or 5′ hydroxylated variant of DHBA was noticed, and both iso-
mers correlated positively with a Pearson correlation of 0.91. 9,10-dihydrohydroxy jasmonic acid (JA) O-sulfate 
was another differential plant hormone catabolite in A. thaliana exudates with low levels in Bur-0, Can-0 and 
Zu-0 and high levels in Col-0, Kn-0, Po-0, Rsch-4 and Wu-0.

Among the phenylpropanoids, the coumarin scopoletin and its glycosides differed in the exudates of the 19 
accessions. A hexose-pentose conjugate of scopoletin as well as three other glycosides (C4H10O Hex-DeoxyHex, 
C12H16O5 Hex, C7H14O4 Malonyl-Hex) were among the differentially abundant metabolites which were described 
for Col-0 exudates15.
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Other differential phenylpropanoids include the monolignol glucoside syringin as well as both isomers of the 
sulfated dilignol G(8-O-4)FA O-sulfate consisting of coniferyl alcohol (G) and ferulic acid (FA): it was present 
at high levels in Kn-0 and Wil-2 exudates. Two hydroxylated fatty acids also showed natural variation and were 
highly abundant in Mt-0.

Several isoforms of known glycosylated metabolites (e.g. kaempferol triglycosides with m/z 739.21) were 
detected at different RTs indicating differences in sugar conjugation. The investigation of these putatively anno-
tated metabolites can be facilitated by exploring polymorphisms in genes encoding their biosynthetic enzymes.

Figure 1. Hierarchical clustering of metabolic features from (a) exudates ESI(−), (b) ESI(+) and of (c) genetic 
distances. (a+b) Features were obtained by UPLC/ESI(−)-QTOF-MS (a) or UPLC/ESI(+)-QTOF-MS (b) from 
exudate samples and differed from the blank (Welch test, p < 0.05). Intensities were corrected for batch effects 
using SVA and subjected to average linkage clustering with correlation as a distance measure. (c) Variant tables 
of the 19 genomes project were reduced to coding regions, as annotated by TAIR. The sum of all mismatches 
was used as a distance matrix for average linkage clustering. Dendrograms were cut at a correlation threshold of 
0.95 (dashed line). As cluster numbers were not comparable, consistent clusters were coloured across ion modes 
as a visual guidance.
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The absence of an indolic glucosinolate hydrolysis product and a hydroxycinnamic acid 
conjugate is genetically determined. Wiesner et al.23 reported that the accession Wu-0 lacks the 
1′-methoxylated indolic glucosinolate due to a premature stop codon in the CYP81F4 gene24. Its frameshift muta-
tion leads to a loss of function and subsequently to the absence of 1-MeO-I3M in roots and leaves23, and also its 
amine, 1-MeO-I3CH2NH2, in the exudates of our hydroponic system.

To elucidate if further metabolite absences in the exudates like 1-MeO-I3CH2NH2 in Wu-0 can be traced 
back to a single gene, we developed a workflow to link genomic and metabolic patterns (Fig. 3). Features with the 
same absence pattern could be different molecular species of the same compound (adducts, isotopes, fragment 
or cluster ions). Alternatively, they may be different isomers from the same biosynthetic pathway with a common 
precursor.

Among the seven metabolic features with absence in two accessions, three were characteristic for Can-0 and 
Ler-0. The hydroxycinnamic acid polyamine derivative cyclic didehydro-di(coumaroyl)spermidine sulfate pre-
viously identified in Col-015 and also detected in other accessions was clearly absent in Can-0 and Ler-0 (Fig. 2). 
This compound with RT = 3.6 min was absent in the negative ion mode as [M-H]− adduct with m/z = 514.17 and 
[M-2H + Na + CH2O2]− adduct with m/z = 582.15. Another compound with m/z = 514.17 eluting at 4.2 min was 
also absent in Can-0 and Ler-0. Tandem mass spectrometry (MS/MS) analysis revealed a sulfur trioxide loss in 
the fragmentation pattern similar to the sulfated cyclic didehydro-di(coumaroyl)spermidine conjugate. Can-0 
carries a premature stop codon in the gene AT2G25150 encoding spermidine dicoumaroyl transferase (SCT), 
whereas in Ler-0, a large deletion is present in the CDS of this gene22. Both accessions have no detectable levels of 
SCT transcript in their roots (Fig. 4a).

Thus, neither Can-0 nor Ler-0 possess SCT activity to most likely produce cyclic didehydro-di(coumaroyl)
spermidine sulfate and its isomer. To further support the data observed with these two accessions, we analysed the 
exudates of the homozygous knockout line SALK_098927C (Col-0 background), which indeed did not display 
any peaks with m/z 514.17 ESI(−) at 3.6 min, as shown in Fig. 4b, and thus confirm our hypothesis.

The above results for the Wu-0 and Can-0/Ler-0 pattern showed the feasibility of such an association analysis 
to link compounds to their biosynthetic pathways. In specific cases, there is a direct connection between meta-
bolic phenotype and genotype. Therein, metabolite variation among Arabidopsis accessions can be traced back to 
individual SNPs without trait segregation and QTL mapping.

Matching metabolic and genetic patterns can indicate compound class. Genetic alterations may 
be exploited to characterise so far unknown compounds which are part of related biosynthetic pathways25. MS/MS  
fragmentation facilitates the annotation of chemical substructures, which are often characteristic for a certain 
class of compounds. Knowledge about biosynthetic pathways can further support the assignment of unknown 
features to compound classes.

For the annotation of metabolites, collision-induced dissociation (CID-) MS was performed for 17 selected 
MS1 ESI(−) features obtained by the above described screening.

With the help of MS/MS spectra, nine out of 17 features were annotated and for five further features, the 
elemental composition was determined. An overview of compounds, fragment spectra and matching enzymes is 
given in Supplementary Table S5.

A compound (m/z 739.21, RT = 4.3 min) that was not found in the exudates of Wu-0 (Fig. 5a) was iden-
tified as a flavonoid with the same elemental composition (C33H40H19) and fragment spectrum as kaempferol 
3-O-Rha(1→2)Glc 7-O-Rha15. The RT shift indicates different glycosidic conjugation. This compound was iden-
tified as robinin (kaempferol 3-O-Rha-Gal 7-O-Rha) by an authentic standard having a galactose moiety instead 
of glucose in the diglycoside at the 3′ position (Fig. 5b). One out of the 16 premature stop codons characteristic 
for Wu-0 was present in AT2G22590.1, which encodes the UDP-glycosyltransferase (UGT) superfamily protein 

Figure 2. Colour-coded intensity matrix of differential metabolites occurring in exudates. Integrated peak 
areas were log-transformed and scaled to zero mean and standard variance. A Welch-test was used to find 
differentially abundant metabolites between the 19 accessions.

Publications

58



www.nature.com/scientificreports/

5Scientific RepoRts | 6:29033 | DOI: 10.1038/srep29033

UGT91A1. This gene is coexpressed with the flavonol synthase 1 (FLS1, AT5G08640) and chalcone flavanone 
isomerase (TT5, AT3G55120) encoding genes that are annotated with the “flavonoid biosynthetic process” by 
Gene Ontology26. The exudates of the homozygous knockout line SALK_088702C (Col-0 background) were 
missing robinin and its UGT91A1 transcript levels in roots were diminished (Fig. 5c–e).

The hydroxylated fatty acid 9,12,13-trihydroxyoctadec-10-enoic acid (9,12,13-TriHOME, KEGG C14833) was 
not present in the exudates of Edi-0 and Zu-0 (Fig. 2). Its lack corresponds to a SNP pattern introducing a stop 
codon into a long-chain-alcohol O-fatty-acyltransferase gene (AT5G55360.1). The unsaturated variant 9,12,13-tri
hydroxyoctadec-10(E),15(Z)-enoic acid, however, could be detected in Edi-0 and Zu-0 exudates, but not in the 
Ct-1 accession, and accordingly, pointed to different polymorphism patterns. Besides, similar intensity distribu-
tions of both hydroxylated fatty acids were found across the exudates of the 19 accessions (Fig. 2).

These examples show that the direct search for a metabolite-enzyme-connection can provide valuable insights 
into biosynthetic pathways but require careful examination of the resulting candidate genes.

Figure 3. Workflow for matching metabolic patterns of absence with stop codons in genes annotated 
as AraCyc enzymes. For the metabolic data, 384 out of 455 metabolic features from the ESI(−) data set 
were absent in at least one accession. 38 of them were annotated as monoisotopic peak [M] by CAMERA. 
Approximately 32,000 stop codons were detected. 1,588 of AraCyc enzyme-encoding genes displayed a 
prematurely ended amino acid sequence possibly representing non-functional enzymes that can be causative for 
metabolite absence.
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Discussion
This study showed how the exudation pattern of A. thaliana accessions is reflected by a genetic clustering of pol-
ymorphisms in their CDS. The previously reported similarity of the German and Norwegian accession Po-0 and 
Oy-022 was only observable at metabolic level in the ESI(−) dendrogram. The close relation was confirmed by the 
genetic clustering. However, we also observed closely related metabolic profiles of Po-0 with No-0 (blue), which 
has not been described before. Neither the metabolic proximity of Sf-2 and Kn-0 (green) nor of Ct-1 and Edi-0 
(purple) were reflected by small genetic distances.

The similarity of the Wu-0, Tsu-0 and Mt-0 was present in both ESI dendrograms of the exudate analysis and 
seems to be genetically determined. The close genetic relation between the Japanese accession Tsu-0 and Mt-0 
from Libya has already been reported by Nordborg et al.19 as well as by De Pessemier et al.27, and was confirmed 
for metabolic exudate and the CDS profiles (orange).

The clustering of metabolic profiles demonstrated that genetic variation between the 19 founder accessions 
of the Arabidopsis MAGIC population is indeed reflected in the exudate metabolome. This is in contrast to the 
previously reported only minor correlation between shoot metabolic and genetic similarity7 of nine accessions, 
partially overlapping with the MAGIC founder lines. Compared to 149 SNPs that were used to estimate a genetic 
distance by Houshyani et al.7, our analysis included 640,066 polymorphisms that were exclusively within CDS. 
The usage of SNPs in CDS ensures a comprehensive, but most direct genotype-phenotype-association, disre-
garding regulatory sequences. From hierarchical clustering, we can conclude that the three dendrograms reflect 
the genetic determination of the exudation profile of several Arabidopsis accessions. Both, the genetic and thus 
the metabolic profiles, may have been affected by selection processes at the collection sites25. Information on 

Figure 4. Natural and T-DNA insertion knockouts of SCT. (a) Relative transcript levels of SCT in root tissue 
as determined by qPCR, PP2A as reference, normalized to Rsch-4, mean ± s.e.m., n = 3. (b) Peak area counts of 
cyclic didehydro-di(coumaroyl)spermidine sulfate in exudates, mean ± s.e.m., n = 3.

Figure 5. Robinin absence is linked to a stop codon in the UGT91A1 encoding gene. (a) Peak area counts, 
mean ± s.e.m. (n = 3) with absence in Wu-0 (highlighted in red) (b) MS/MS spectrum of robinin, 30 eV, (c) 
extracted ion chromatogram at m/z 739.21 with kaempferol 3-O-Rha(1→2)Glc 7-O-Rha eluting at 3.9 min and 
the galactose-conjugated robinin eluting at 4.3 min not detected in the natural knockout Wu-0 and T-DNA 
insertion line SALK_088702C, (d) relative transcript levels of UGT91A1 in roots as determined by qPCR, PP2A 
as reference, normalized to Col-0, mean ± s.e.m., n = 4, (e) schematic representation of the UGT91A1 gene (one 
exon) and the loss-of-function mutations in Wu-0 and SALK_088702C.
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environmental conditions, especially characteristic rhizosphere data of the original locations, would be of great 
interest, but unfortunately, these are not well documented28.

In our study, a variety of glycosylated and sulfated compounds are the key metabolites that underlie nat-
ural variation in the exudates of the MAGIC parental lines. Scopoletin was found both as an aglycone and 
hexose-pentose conjugate. However, glucosinolates were only detected as degradation products (amines, carbal-
dehydes, isothiocyanates). Currently, we cannot elucidate whether glucosinolate exudation is initiated by myrosi-
nase activation or if hydrolysis was caused by the sample preparation procedure.

Previously, hormones were described as constituents of root exudates29. Despite that, plant hormones were 
difficult to detect with the analytical method due to their low abundance. Plant hormone-derived metabolites 
were detected as glycosylated and sulfated in case of SA and JA, respectively. Natural variation is reflected by 
a great spectrum of glycosidic conjugation. This was shown for SA catabolites. SA was present in the exudates 
of Col-0 in the study of Strehmel et al.15 but did not pass their stringent filtering criteria to be included in their 
exudate compound collection, while SA derivatives with 2,3 or 2,5- dihydroxy-substituted benzoic acid pen-
tose conjugates passed the filter. As shown in Supplementary Fig. S2, high amounts of SA were found in Kn-0, 
Wil-2 and Wu-0, the lowest amount was present in Sf-2 exudates, one of the accessions with also low DHBA 
pentoside levels. Interestingly, solely pentosides but no hexosides of DHBA were detected in the root exudates 
of Col-015. Li et al.30 investigated the discrimination of hexose and pentose conjugation in 96 A. thaliana acces-
sions. Combined QTL and association mapping pointed to a locus on chromosome 5 within proximity of a gene 
encoding a putative UGT with pentose specificity. The findings of this study support the previously reported low 
ratio of pentose-hexose conjugates for Edi-030. Sf-2 was the accession with the lowest DHBA pentoside-hexoside 
ratio, which may be caused by a non-functional pentose-conjugating UGT and a background hexose-transferase 
activity that leads to a DHBA hexoside phenotype.

Chemically related compounds often derive from the same biosynthetic pathway. The characterisation of these 
metabolites might be facilitated by combining metabolic patterns with genomic data. Thus, an analysis workflow 
was developed which compares metabolite and sequence polymorphism patterns. In order to reduce the com-
plexity, qualitative metabolic patterns were extracted and compared with the presence of premature stop codons 
in enzyme-encoding genes. The absence of a sulfated cyclic di(dehydrocoumaroyl)-spermidine was traced back 
to a single genomic alteration diminishing SCT activity in Can-0 and Ler-0. These data support the hypothesis 
postulated by Strehmel et al.15 that the cyclic conjugate is derived from di(coumaroyl)spermidine synthesized 
from spermidine and coumaroyl-CoA by SCT as illustrated in Fig. 6. A subsequent oxidative ring formation and 
sulfonylation led to sulfated cyclic di(dehydrocoumaryol)-spermidine31. Nevertheless, the coumaroyl spermidine 
transferase activity can hardly be inferred from the gene annotation as “HXXD-type acyl transferase family pro-
tein”. This workflow furthermore pointed towards the substrate specificity of UGT91A1. Previous studies have 
shown that UGT91A1 is regulated by MYB transcription factors and speculated about its involvement in glyco-
sylation of flavonols or flavonol glycosides32. We could show that in the absence of UGT91A1 enzymatic activity 
no galactose transfer to kaempferol 3-O-Rha 7-O-Rha (kaempferitrin) is catalysed to produce robinin. However, 
the presence of the glucose-substituted isomer kaempferol 3-O-Rha(1→2)Glc 7-O-Rha implies the involvement 
of a different UGT not accepting galactose but rather glucose as a substrate. We hereby found that UGT91A1 
might have similar flavonoid substrate specificity as UGT73C6 and UGT78D133. However, the patterns of two 
closely related hydroxylated fatty acids did not show mutual absences. Their intensity distributions were similar 
and point out the threshold issue in the absence definition. The SNP in AT5G55360 is likely to be a false positive 
candidate that needs to be excluded by a careful interpretation.

Future investigations will focus on the refinement of our approach by addressing the following points: i) When 
is a peak defined as absent? We relied on the decision of the peak-picking method centWave34 in the xcms pack-
age35. If the algorithm found a peak at a particular m/z and RT in one accession but could erroneously not match 
its peak criterion in any replicates of another accession, the peak was defined as absent. ii) For a proof of concept, 
our workflow only included nonsense mutations in CDS of single genes. More complex studies would include 
amino acid exchanges in CDS, alterations in promoter regions as well as cases of gene function redundancies.

Linking stop codons with metabolite absences helps with the elucidation of secondary metabolite pathways 
but still requires fragment spectra to be interpreted manually and gene annotations have to be carefully checked 
for a possible involvement within the biosynthetic pathway of the metabolite. The connection has to be validated 
by knockout lines of the respective candidate genes.

Our study revealed natural variation in the root exudate composition of 19 genetically diverse accessions of 
A. thaliana. Combining nonsense mutations with metabolic patterns of the exudates facilitated to determine the 
genetic base of specific metabolite absences. Furthermore, the integration of sequence data can help to identify 
compound classes in metabolomics experiments. Our study can aid to further unravel biochemical and molecular 
processes in the rhizosphere by providing a metabolomics resource of root exudates (MetaboLights, accession 
number MTBLS160, http://www.ebi.ac.uk/metabolights/MTBLS160). Future investigations should aim at corre-
lating metagenomics with exudation profiles in order to deduce characteristics that can be exploited to circum-
vent limiting abiotic factors and decrease the susceptibility towards biotic stresses.

Methods
Plant material. Seeds of the accessions Bur-0, Col-0, Can-0, Ct-1, Edi-0, Hi-0, Kn-0, Ler-0, Mt-0, No-0, 
Oy-0, Po-0, Rsch-4, Sf-2, Tsu-0, Wil-2, Ws-0, Wu-0, and Zu-0 of A. thaliana (Supplementary Table S1) were 
obtained from the European Arabidopsis Stock Centre. The T-DNA insertion lines SALK_098927C and 
SALK_088702C were obtained from the SALK institute and Dr. Ralf Stracke (Bielefeld), respectively, and charac-
terised as elaborated in the Supplementary Methods.
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Plant cultivation. All seeds were surface-sterilized prior to plant cultivation. Then, all lines were cultivated 
in a hydroponic system with three independent biological experiments as previously described15 and in the 
Supplement. Culture medium was used as a blank. Medium was collected after one-week-exudation (week 5–6) 
and resulted in 57 pooled root exudates (of four plants each).

Figure 6. Biosynthetic pathway of cyclic didehydro-di(coumaroyl) spermidine sulfate. Di(coumaroyl)
spermidine is synthesized by SCT47 and subsequent oxidative ring closure and sulfonylation leads to cyclic 
didehydro-di(coumaroyl) spermidine sulfate, PAPS = 3′-phosphoadenosine-5′-phosphosulfate.
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Sample preparation. Root exudates were prepared according to Strehmel et al.15 and as described in 
Supplementary Methods.

Non-targeted metabolite profiling analysis. Changes in metabolism were analysed by 
ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time–of–flight mass 
spectrometry (UPLC/ESI-QTOF-MS) according to Böttcher et al.36.

All mass spectra were acquired in centroid mode and recalibrated on the basis of lithium formate cluster ions.
A detailed description of plant cultivation, sample preparation and metabolite profiling can be found in 

Supplementary Methods.

Data analysis. Raw data files were converted to mzData using CompassXPort version 1.3.10 (Bruker 
Daltonics 4.0). Subsequently, the R package xcms version 1.41.035 was used for feature detection, alignment 
and filling of missing values. On this account, features were detected with the help of the centWave algo-
rithm according to Tautenhahn et al.34 (snthr = 5, scanrange = c(1,3060), ppm = 20, peak width = c(5,12)), 
matched across samples (xcms function group, minfrac = 0.75, bw = 2, mzwid = 0.05, max = 50), corrected 
for retention time shifts (method = “loess”) and grouped again. Missing values were imputed with the xcms 
function fillPeaks which integrates raw chromatographic data. The data matrix was extracted using the dif-
freport function.

DataAnalysis 4.0 (Bruker Daltonics) was used for generation of extracted ion chromatograms, deconvolu-
tion of compound mass spectra and calculation of elemental compositions. For relative quantification of com-
pounds extracted ion chromatograms from the non-targeted analysis were integrated with QuantAnalysis 2.0 
(Bruker Daltonics) using the quantifier ions as listed in Supplementary Table S3. Peak areas were log-transformed 
and z-scaled to achieve normal distribution. Differential metabolites were detected by a generalized Welch-test 
between the 19 accessions (unequal variances, one-way layout, p < 0.05, corrected for multiple testing by 
Benjamini-Hochberg’s method37).

All statistical procedures were performed with the R statistical language version 3.0.038 and the Bioconductor 
environment39. All data are available from the MetaboLights repository under the accession number MTBLS160 
(see Supplementary Methods).

Hierarchical clustering. Before hierarchical clustering, remaining missing values were replaced with half of 
the minimum feature intensity. Feature intensities were logarithmized, z-transformed and checked for normality 
with a Kolmogorov-Smirnow test. Non-biological sources of variation were removed by surrogate variable anal-
ysis from the SVA package version 3.8.040. In order to discriminate between experimental artifacts and metabolic 
features in the non-targeted analysis, a generalized Welch test (unequal variances, one-way layout) was applied to 
find differential features (p < 0.05, corrected for multiple testing by Benjamini-Hochberg’s method37) between the 
19 accessions and blank. As a post-hoc test, 2-sample Welch tests were used to find features that were differential 
(p < 0.05) from the blank in at least one accession. This resulted in 455 out of 1950 ESI(−) and 475 out of 3738 
ESI(+) metabolic features used for hierarchical clustering. Hierarchical clustering was performed via multiscale 
bootstrap resampling with the R package pvclust version 1.2–241, which improves robustness by providing an 
approximately unbiased p-value (AU, red number in Fig. 1). Pearson correlation was used as distance measure 
and average linkage as a linkage method. Since the combination of both ion modes results in redundancy by 
compounds giving rise to several features, each mode was processed separately. Consistent clusters between the 
ESI(−) and ESI(+) mode were coloured.

Unspecific signals were more pronounced (87% vs. 75%) in ESI(+) vs. ESI(−). This had led to us to focus on 
ESI(−) in subsequent analyses.

Sequence analysis. Genetic distances were estimated from the variant tables available from the 19 genomes 
project22. Loci were reduced to CDS as annotated by the R packages Bsgenome.Athaliana.TAIR.TAIR942 and 
Genomic Ranges version 1.14.443. For each variant locus, 19 × 19 comparisons were conducted. In order to con-
struct a distance matrix, mismatches were penalized by increasing the distance by 1. The sum of matrices over all 
6,400,466 loci was used as a distance matrix (Supplementary Table S2) for hierarchical clustering via the hclust 
package with average linkage.

Predicted amino acid sequences were processed with BioPerl (Bio::Tools::Run::Alignment::Clustalw, 
Bio::SeqIO, Bio::Seq, and Bio::AlignIO) and aligned with the Clustalw algorithm with ktuple = 2 and a BLOSUM 
scoring matrix. Multiple sequence alignments were evaluated for premature ending with the R packages 
Biostrings version 2.30.1 and plyr version 1.8.1.

Combination of metabolic and genetic patterns. A metabolic feature was defined as absent when 
below the limit of detection in all replicates of an accession. Applying this stringent definition, the peak list cre-
ated from aligning all spectra from ESI(−) was screened for metabolic features with absence, thus reducing the 
number of features by 25% for exudates ESI(−). The distribution of absence across the 19 accessions is referred 
to as a pattern. The length of a pattern is the number of accessions that lack the same feature, i.e. a feature absent 
in Can-0 und Zu-0 is a pattern of length two. Out of the 455 metabolic features in the exudate data set (ESI(−)), 
384 were missing in at least one accession. 46 were missing in exactly one accession (length = 1), 52 were absent 
in two accessions (length = 2) (see Supplementary Table S4). The R package CAMERA version 1.23.244 was used 
for annotation of adduct species and isotope information. In order to find an association between metabolic 
patterns of absence and its genetic background, features with a pattern of absence, a monoisotopic annotation by 
CAMERA and a minimal median intensity of 10,000 were evaluated. 31 features that passed the intensity thresh-
old were matched with stop codon patterns resulting in 9/7/1 features of absence with length 1/2/3.
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These matching features or their corresponding quasi-molecular ion were subjected to fragmentation by 
MS/MS with 10, 20 and 30 eV. Stop codon patterns were derived from multiple sequence alignments of AraCyc 
enzyme genes45 (ftp.plantcyc.org/Pathways/BLAST_sets/aracyc_enzymes.fasta, Dec 2015) as annotated by 
TAIR10_functional annotations from TAIR.org46.
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Abstract: Natural variation of secondary metabolism between different accessions of Arabidopsis
thaliana (A. thaliana) has been studied extensively. In this study, we extended the natural variation
approach by including biological variability (plant-to-plant variability) and analysed root metabolic
patterns as well as their variability between plants and naturally occurring accessions. To screen 19
accessions of A. thaliana, comprehensive non-targeted metabolite profiling of single plant root extracts
was performed using ultra performance liquid chromatography/electrospray ionization quadrupole
time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) and gas chromatography/electron
ionization quadrupole mass spectrometry (GC/EI-QMS). Linear mixed models were applied to
dissect the total observed variance. All metabolic profiles pointed towards a larger plant-to-plant
variability than natural variation between accessions and variance of experimental batches. Ratios of
plant-to-plant to total variability were high and distinct for certain secondary metabolites. None of the
investigated accessions displayed a specifically high or low biological variability for these substance
classes. This study provides recommendations for future natural variation analyses of glucosinolates,
flavonoids, and phenylpropanoids and also reference data for additional substance classes.

Keywords: LC/MS; GC/MS; Arabidopsis; secondary metabolism; natural variation; individual
variability; metabolite profiling

1. Introduction

Metabolomics is one of the “-omics” disciplines in plant science. With the help of hyphenated
techniques such as gas chromatography coupled to mass spectrometry (GC/MS) or liquid
chromatography-coupled mass spectrometry (LC/MS), a large spectrum of small molecules within
a plant can be analysed. Arabidopsis thaliana (A. thaliana) is a model species to investigate secondary
metabolic pathways. Naturally occurring accessions and their distinct phenotypes have evolved in
different habitats and full genome sequencing revealed a substantial number of single nucleotide
polymorphisms [1]. Compared to seeds and shoots, root metabolism is not as well investigated, but
in plants it is crucial in order to provide the molecular building blocks for physical anchorage in the
ground and to regulate all belowground processes. By root exudation, plants also communicate with
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their surrounding rhizosphere and soil microorganisms. In general, due to the relatively low biomass
of Arabidopsis, especially in roots, material of several plants is pooled before sample preparation.
With increasing sensitivity and decreasing costs of analytical techniques, pooling does not seem to
be technically necessary anymore. Indeed, in some cases it is interesting to focus on individual
variability to investigate which mechanisms determine plant metabolism without stress exposure.
Once the plant material is pooled, the information on individual plants is irreversibly lost. Vice versa,
smart experimental design allows for both—investigating variances on different levels (replicates) and
detecting differences between accessions.

Several metabolomics studies examined the contribution of different variance sources to the total
observed variance [2,3]. For nuclear magnetic resonance (NMR) metabolomics, Lewisetal et al. [2]
found that extraction and instrumental deviations accounted for less than 10% and 1%, respectively,
of the total variance in leaves of the accession Ler-0. The substantial plant-to-plant variability of 52%
in Ler-0 could be reduced by pooling several plants to facilitate the separation of Ler-0 from Col-0
samples. Reducing biological variability by pooling might allow for the fast detection of the effect
of interest but nevertheless, it might miss subtle between-plant effects. Similar trends for extraction
and instrumental variance were observed in comprehensive LC/MS-based metabolomics studies of
Col-0 shoots [3]. Trutschel et al. [3] also provide a solution for how to incorporate different kinds of
replicates into a powerful experimental design without the need for sample pooling.

Previous studies have investigated plant-to-plant variability during leaf development. The area of
leaf six varied substantially between plants of the isogenic accession Col-0 at the same developmental
stage, and this variability seems to converge in mature leaves [4]. Li et al. [5] determined there was
33%–40% plant-to-plant variability between the oil content of Col-0 seeds, and pointed out that this
fact needs to be considered to draw statistically valid conclusions.

Plant-to-plant variability has neither been investigated in root metabolism nor have previous
studies incorporated more than two A. thaliana accessions into a comprehensive root metabolic profiling
analysis. Here, we analysed root metabolic profiles of 19 accessions, which were the founders of the
multiparent advanced generation inter-cross (MAGIC) collection of A. thaliana [1,6], using a single-plant
setup in a hydroponic system.

The aim of this study was to decompose the total variance of root metabolite profiles observed
in untreated plants into the components attributable to (1) natural variation between accessions;
(2) experimental batch; and (3) individual variability between plants. Furthermore, we investigated the
relative biological variability of three important substance classes: glucosinolates (GSLs), flavonoids,
and phenylpropanoids including oligolignols which seem to play a vital role in root (but not shoot)
metabolism. Following the analysis of 19 accessions in their entirety, the variability of each accession
was analysed to identify any particular highly or lowly variable accessions.

2. Results

2.1. Variability between Plants Is a Greater Source of Variance than Natural Variation between Accessions

Many studies on natural variation are primarily interested in differences between the accessions,
and reduce plant-to-plant variability by pooling material to obtain fast results. However, to obtain
a comprehensive picture of variability, the variance at each level of the experimental design should
be incorporated.

The experimental setup of our study, shown in Figure 1, resulted in 222 single-plant LC/MS
measurements in each electrospray ionization (ESI) mode. The alignment of chromatograms and
spectra over 222 samples was performed, deviations in retention time (RT) and mass-to-charge ratio
(m/z) were small across all samples (Figure S1) reflecting a sufficient quality of the measurements to
analyse the effects of accession, experimental batch, and individual plant. Linear mixed models with
all experimental levels as random effects were applied to decompose the total metabolic variance.
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Figure 1. Nested experimental design with three levels. Each variance level had multiple replicates—
to assess natural variation, 19 accessions of Arabidopsis thaliana (A. thaliana) were grown. Three 
independent biological experiments were performed to estimate non-biological variance derived 
from the experimental batch. To assess individual variability, four plants were harvested in each 
biological experiment for each accession. Single-plant root extracts were subjected to liquid 
chromatography-coupled mass spectrometry (LC/MS) and gas chromatography-coupled mass 
spectrometry (GC/MS) analysis. 

The non-targeted metabolic profiles of the 19 accessions indicated that the between-accession 
variance is smaller than the plant-to-plant-variability over all features. The results for ESI(−) are 
shown in Figure 2a and for ESI(+) in Supplementary Figure S2. 

 
Figure 2. Variance decomposition of LC/electrospray ionization (ESI)(−) MS data set. (a) Variances for 
plant, batch and accession were estimated with a linear mixed model (lmm), dot—variance of one 
feature, bar and number—mean variance over 2730 features; (b) cumulative intraclass correlation 
(ICC) distribution for all features (σ2plant/σ2total), dotted lines indicate 25%, 50% and 75% quantiles. 

The mean between-plant variance σ2plant = 0.50 is 20% larger than the between-accession variance 
σ2accession = 0.37. The estimated mean between-experiment variation σ2batch = 0.19 is less than 40% of 
σ2plant. On average, plant-to-plant variability contributes to approximately half of the total variance 
(σ2plant/σ2total = 0.47). However, this biological variance has to be interpreted in the context of the total 
variance for comparisons across features and platforms, i.e., knowing whether the feature with the 
highest σ2plant also exhibits large σ2total. It may also occur that a feature with high σ2plant has low σ2total, 
which determines the experimental design to include more replicates on the plant level in a potential 
validation study. 

The intraclass correlation (ICC) according to Sampson et al. [7], here σ2plant/σ2total, reflects which 
fraction of total variance is attributable to the single plant and thus, a relative biological variability. 
The mean ICC ≈ 0.5 of a data set could either be representative for the majority of features (narrow 
interquartile range) or only for a few features if the interquartile range is broad. Figure 2b shows the 
cumulative ICC distribution over all features, with the fraction of features (x-axis) in increasing ICC 

Figure 1. Nested experimental design with three levels. Each variance level had multiple replicates—to
assess natural variation, 19 accessions of Arabidopsis thaliana (A. thaliana) were grown. Three
independent biological experiments were performed to estimate non-biological variance derived
from the experimental batch. To assess individual variability, four plants were harvested in
each biological experiment for each accession. Single-plant root extracts were subjected to liquid
chromatography-coupled mass spectrometry (LC/MS) and gas chromatography-coupled mass
spectrometry (GC/MS) analysis.

The non-targeted metabolic profiles of the 19 accessions indicated that the between-accession
variance is smaller than the plant-to-plant-variability over all features. The results for ESI(−) are
shown in Figure 2a and for ESI(+) in Supplementary Figure S2.
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The mean ICC ≈ 0.5 of a data set could either be representative for the majority of features (narrow
interquartile range) or only for a few features if the interquartile range is broad. Figure 2b shows the
cumulative ICC distribution over all features, with the fraction of features (x-axis) in increasing ICC
(y-axis) order. The distribution revealed that 25%, 50%, and 75% of all these features had an ICC up to
0.36, 0.50, and 0.62. This implies that for half of the features, the plant-to-plant variability contributes
to less than 50% to the total variance, and for the other half this variance level explains more than 50%
of the total variance. In summary, in our non-targeted analysis of root metabolic natural variation,
plant-to-plant variability seems to be larger than between-accession variance. If a broad range of
metabolites are of interest, it is important to know the biological variability that is exhibited by most
metabolites. If only a small subset of the non-targeted analysis is in research focus, it will be sufficient
to deal with the biological variability of a certain substance class.

2.2. Plant-to-Plant Variability in Secondary Metabolism Is Substance-Class-Dependent, but Not
Accession-Specific

A difficulty in non-targeted metabolomics is the assignment of the measured features to
metabolites and their potential role in pathways in a living system. To facilitate the interpretation of
plant-to-plant variability, three sets of annotatable compounds were quantified by integrating peak
areas of the extracted ion chromatograms and analysed for their variances at each level (Table S1).
In Figure 3, GSLs, flavonoids, and phenylpropanoids are indicated by circles, triangles, and squares,
respectively. GSLs were the substance class with the highest plant-to-plant variability (σ2

plant = 3.16,
Figure 3a left, circles) compared to flavonoids and phenylpropanoids. They also showed a large
deviation of the single metabolite plant variance from the mean of the substance class. Similarly,
σ2

total = 5.03 was highest for GSLs in the comparison to flavonoids (σ2
plant = 1.63, σ2

total = 2.60) and
phenylpropanoids (σ2

plant = 1.24, σ2
total = 2.88).
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With the current experimental setup of four plants in three batches for a total of 12 plants per
accession, the minimal detectable log fold-change to distinguish between two accessions is 3.94,
2.97 and 3.24 for glucosinolates, flavonoids, and phenylpropanoids, respectively, with a power of
0.8 and a significance level of 0.05. However, plant-to-plant variability needs to be interpreted in
the context of total variance to find out at which experimental level the main observation is made.
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If σ2
plant ≈ σ2

total, nearly all of the total variance would be caused by plant-to-plant variability and
a large number of plants would be required to analyse effects beyond this experimental level, i.e.,
between accessions. If σ2

plant/σ2
total ≈ 0, it would be sufficient to use one plant per accession.

Glucosinolates and phenylpropanoids show a large range of ICCs. For flavonoid metabolites, the
ICCs are rather high but similar for all analysed members of the substance class (Figure 3b). Hence,
calculations with the mean ICCs like above will provide sufficient power for analyses of flavonoids,
but not for all metabolites of the classes glucosinolates and phenylpropanoids.

A set of primary metabolites was also analysed for their plant-to-plant variability (Table S2) but,
in comparison to secondary metabolism, the ICC distributions of carbohydrates, organic acids, amino
acids, and phosphates covered a large range (Figure S3). As expected, the primary metabolism is more
stable than secondary metabolism, the latter showing substance-class specific ICC distributions.

Until here, we assumed all accessions to have equal variances at the plant and batch level. In
addition, we analysed if the accessions differ with regard to their plant-to-plant variability. For this
purpose, linear mixed models were applied to estimate the variances of secondary metabolites for each
accession separately. As shown in Figure S4, there are no clear highly and lowly variable accessions
across the measured substance classes. However, Edi-0 showed relatively low ICCs for GSLs and
flavonoids. Hi-0 and Sf-2 showed higher ICCs for all three compound classes.

In our analysis, taking the ICCs of secondary metabolite classes into consideration seems to be
more important than the selection of accessions.

3. Discussion

Our study investigated natural variation and plant-to-plant variability of 19 key accessions
in a comprehensive metabolite profiling approach. Measuring single plant extracts prevented the
irreversible information loss resulting from pooling plant material and allows to distinguish between
accessions and still analyse plant-to-plant variability. Environmental variation was kept to a minimum
by a randomized growth regimen and selecting plants with approximately the same vigor for analyses.
Both non-targeted LC/MS ionization modes indicated a higher plant-to-plant variability than natural
variation between accessions and variance due to experimental batches. Plant-to-plant variability
contributed to 47%–50% of the total variance, which is higher than previously reported for one
particular compound class in seeds of one accession [5]. As our total variance was the sum of plant,
batch and accession variance, the ICCs referring to the sum of plant and batch variance, like in the oil
seed study [5], would have been larger.

Furthermore, we chose a range of secondary and primary metabolite classes for more specific
analyses. Both data sets indicated that the plant-to-plant variability had the greatest contribution
to the total variance of these metabolite classes. For GSLs, flavonoids and phenylpropanoids,
the means of σ2

batch and σ2
accession were in the same order of magnitude, whereas for primary

metabolite sets σ2
accession was less pronounced with values one order of magnitude below σ2

batch.
The minimal detectable effects were quite large and impractical with the given experimental setup
of three experiments with four plants each. Possible combinations of biological and technical
replicates to reliably detect a smaller effect can be calculated with the implementation provided by
Trutschel et al. [3]. All annotated substance classes displayed higher mean ICCs than the non-targeted
data sets they were derived from. The higher the fraction of features with high ICCs, the higher the
number of plants that is required to maintain the power in a statistical analysis. This should be taken
into consideration for future experimental designs. Flavonoid metabolites have similar ICCs within
their substance class and therefore, calculation with mean ICC of the substance class will be sufficient
to obtain reliable results for most metabolites in this class. Contrarily, GSLs and phenylpropanoids
displayed a large ICC spread and require a substance-specific estimation of variance prior to future
analyses. A previous study of root exudates has demonstrated that there are substance-specific
differences in some metabolite classes due to alterations in the biosynthetic pathways [8]. Since some
metabolites are specifically induced during stress response, they might not have been expressed in
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the unperturbed physiological state that was the focus of this study. The analysis of plant-to-plant
variability in each accession revealed that ICC distributions are not distinct for any of the 19 accessions
with the few exceptions of Edi-0, Hi-0, and Sf-2. However, our set of 19 accessions is too small to draw
a general conclusion about accession-specific plant-to-plant variability and more accessions have to be
analysed in future.

There are hints that biological variability converges after development [4] and upon exposure
to stress factors [9,10]. A study of Arabidopsis plants exposed to a biotic stress factor, namely the
endophytic fungus Piriformospora indica, showed substantial metabolic variability in untreated control
samples and only a small spread of co-cultivated samples in principal component analyses. These
samples were no single plant measurements but the batch variances in both sample classes were
identical and thus, the observed deviation is expected to result from plant-to-plant variability [9].
Töpfer et al. [10] found that upon abiotic stress treatment, certain metabolites were robust in their
abundance from plant to plant and displayed low coefficients of variation, whereas other metabolites
showed larger plant-to-plant variability.

For future natural variation studies, it might be worth considering measuring single plants and
make the data available for further analyses answering research questions on a different experimental
level. We have provided estimated variances for selected substances in Supplementary Tables S1 and
S2. Furthermore, we provide exemplary data and the functions in an R script for variance estimation in
the Supplementary Folder S1 as well as data for additional substance classes in the targeted analysis in
MTBLS338 in the MetaboLights repository. This knowledge can be exploited to appropriately design
an experiment prior to its conduction because it may differ between a non-targeted screen and the
analysis of specific substance classes.

4. Materials and Methods

4.1. Plant Cultivation

The A. thaliana accessions Bur-0, Can-0, Col-0, Ct-1, Edi-0, Hi-0, Kn-0, Ler-0, Mt-0, No-0, Oy-0, Po-0,
Rsch-4, Sf-2, Tsu-0, Wil-2, Ws-0, Wu-0, and Zu-0 were obtained as seeds from the European Arabidopsis
Stock Centre (Nottingham, UK) and surface sterilized prior to plant cultivation. All accessions were
cultivated in a hydroponic system under 8 h light and 22 ◦C as described previously [11] and in the
protocol section of MTBLS338 with four plants in each of the three independent biological experiments.
All samples were rotated in the growth chamber to minimize position effects. Primary root length and
root fresh weight are given in MTBLS338. Out of 228 root samples, 210 and 222 from individual plants
could be used for the GC/MS and LC/MS analysis, respectively.

4.2. Liquid Chromatography/Mass Spectrometry (LC/MS)

For LC/MS analysis, 40 mg root material were extracted in 200 µL 80% methanol/water (v/v)
twice according to Böttcher et al. [12] and reconstituted in 30% methanol (v/v) containing 5 µM
2,4-dichlorophenoxyacetic acid as an internal standard. Upon full loop injection into an Acquitiy UPLC
system (Waters, Eschborn/Germany) mounted with a HSS T3 column (100 × 1.0 mm, 1.8 µM particle
size), samples were separated at a flow rate of 150 µL/min with mixtures of A (water/0.1% formic acid)
and B (acetonitrile/0.1% formic acid) with a 20 min gradient: 0–1 min isocratic 95% A, 5% B; 1–16 min
linear 5%–95% B; 16–18 min isocratic 95% B; 18–18.01 min linear 95%–5% B; 18.01–20 min isocratic
5% B. Eluates were ionized using an Apollo II source (Bruker Daltonics, Billerica, MA, USA) into a
MicroTOF-Q I hybrid quadrupole time-of-flight mass analyzer (Bruker Daltonics) in both ionization
modes with a mass range m/z 80–1000. Mass spectrometry settings were applied as previously
described [11] and in the protocol section of MTBLS338.

All LC/MS runs were acquired as centroid spectra and recalibrated with lithium formate cluster
ions for each measurement. Vendor .d file formats were converted into the open standard mzData
with CompassXPort (Bruker Daltonics, Billerica, MA, USA).
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4.3. Gas Chromatography/Mass Spectrometry (GC/MS)

For GC/MS analysis, 40 µL of the root extract were vacuum-evaporated and subjected to a
derivatization with (1) methoxyamine hydrochloride and (2) N,O-bis(trimethylsilyl)-trifluoroacetamide
as previously described [13]. Derivatized samples were injected in a splitless manner into a
split/splitless inlet of an Agilent 6890N GC and a ZB-5 column (30 m × 0.25 mm, 0.25 m 95%
dimethyl/5% diphenyl polysiloxane film, 10 m integrated guard column, Phenomenex, Aschaffenburg,
Germany) at 230 ◦C. An Agilent 5975 Series Mass Selective Detector (Agilent Technologies, Waldbronn,
Germany) was used to detect eluting compounds from m/z 70 to 600. Vendor file format conversion
and baseline correction was performed by MetAlign [14].

4.4. Data Analysis

Statistical analysis was performed using R version 3.2.0 and the Bioconductor environment [15,16].
Functions are available as an R script in the Supplementary Folder S1.

4.4.1. Raw Data Processing

All LC/MS data analysis was performed with the R packages XCMS and CAMERA [17–19].
Features were extracted with centWave (snthr = 10, ppm = 20, peakwidth = c(5,12),
scanrange = c(1,3600)) and grouped (minfrac = 0.75, bw = 5, mzwid = 0.05), corrected for retention
shifts and re-grouped with smaller bandwidth (bw = 2). Missing values were imputed by integration of
raw data (fillPeaks) and with random numbers around the minimal intensity value across the samples.

Baseline-corrected GC/MS tags with intensities above 500 peak height were subsequently
processed with TagFinder [20] and mass spectral features were grouped according to their common
retention time. Clusters with at least 3 correlating tags were extracted and identified according
to matching the Golm Metabolome Database [21]. In GC/MS, 15,539 tags were detected and 98
metabolites were annotated (Table S3).

All data were log-transformed to approximate a normal distribution for further statistics.

4.4.2. Targeted LC/MS Analysis

For the targeted analysis, DataAnalysis 4.2 (Bruker Daltonics, Billerica, MA, USA) was used to
extract ion chromatograms, deconvolute mass spectra and determine the elemental composition. Peak
areas (minimum peak area = 500) of extracted ion chromatograms were integrated with QuantAnalysis
2.0 (Bruker Daltonics, Billerica, MA, USA) to quantify compound abundances with quasi-molecular
ions as listed in Table S4 [11,22]. In the LC/MS measurements, 3305 peaks ESI(+) and 2730 peaks
ESI(−) were detected and all together 139 compounds could be annotated.

4.4.3. Variance Estimation with Linear Mixed Models

A linear mixed model (R package lme4, version 1.1-11, [23]) with accession, batch and plant
as random effects was applied to log-transformed metabolite abundances to estimate variance
contribution of each experimental level assuming equal variances for each accession. Linear mixed
models with batch and plant as random effects were applied separately to each accession to examine
accession-specific variances. Intraclass correlations (ICCs) were calculated as the ratio of σ2

plant and
σ2

total according to Sampson et al. [7] and plotted as a cumulative distribution. Further analysis was
constrained to known metabolites to allow for a better interpretation. The minimal detectable effect
sizes were estimated with the power calculations for multilevel experiments [3].

4.5. Data Availability

All data sets including the targeted analyses are available from the MetaboLights repository under
the accession number MTBLS338 [24].
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5. Conclusions

This study investigated the variability in root metabolite profiles of 19 A. thaliana accessions. It
revealed that plant-to-plant variability can be a substantial component of the overall variability in
a natural variation analysis. Additionally, several selected substance classes were characterized by
differing intraclass correlations. To exploit the full potential of a non-targeted metabolite profiling,
single-plant measurements should be acquired and correctly integrated into the analysis. Hence,
different substance classes of interest might require a customised experimental set-up.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/9/1565/s1.
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Abstract 

We evaluated the state of label-free discovery proteomics focusing especially on technological 

contributions and contributions of naturally occurring differences in protein abundance to the inter-

sample variability in protein abundance estimates in this highly peptide-centric technology. First, the 

performance of popular quantitative proteomics software, Proteome Discoverer, Scaffold, MaxQuant 

and Progenesis QIP was benchmarked using their default parameters and some modified settings. 

Beyond this the inter- sample variability in protein abundance estimates was decomposed into 

variability introduced by the entire technology itself and variable protein amounts inherent to 

individual plants of the Arabidopsis thaliana Col-0 accession. The technical component was 

considerably higher than the biological inter-sample variability suggesting an effect on the degree 

and validity of reported biological changes in protein abundance. Surprisingly, the biological 

variability, protein abundance estimates and protein fold changes were recorded differently by the 

software used to quantify the proteins, warranting caution in the comparison of discovery 

proteomics results. As expected, around 99 % of the proteome was invariant in the isogenic plants in 

the absence of environmental factors; however few proteins showed substantial quantitative 

variability. This naturally occurring variation between individual organisms can have an impact on the 

causality of reported protein fold changes. 
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Keywords: natural variability, shotgun proteomics, label-free quantification, MaxQuant, Progenesis, 

biological variability, experimental variability, protein abundance  
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Introduction 

The past five years have seen great advances in the field of proteomics. Particularly the maturation 

of shotgun or discovery proteomics has been profound, delivering on the –omics promise of 

quantitative measurement of all of the proteins of higher eukaryotes 
1
. The most significant 

developments may have been in terms of sensitivity and quantification. Both can be attributed to 

improvements in liquid chromatography (LC) and mass spectrometry (MS) hardware, particularly 

nano-UPLC and fast scanning high resolution accurate mass MS and proteomics data analysis 

software. 

The incompatibility of metabolic labeling and shotgun proteomics in clinical trials and agronomics 

field studies has lately led to the popularization of label-free quantitative proteomics approaches. 

Research into the mass spectrometric measurement of the abundance of different proteins in a 

biological sample by direct quantification of the signal response of their derivative peptides goes 

back more than ten years. Bondarenko and Wang and co-workers 
2, 3

 showed a linear relationship 

between protein abundance and peptide peak areas. Liu and others 
4, 5

 showed the same for the 

number of total MS/MS spectra recorded for a given protein. Numerous strategies and algorithms 

implementing these two themes, peptide ion signal peak intensity and peptide spectral match (PSM) 

(spectral counting) based quantification have since been published (reviewed in 
6-8

 and extensively 

cited in 
9
). All of them are reported to quantify protein abundance with reasonable accuracy over a 

dynamic range of two to four orders of magnitude. Nevertheless, few have been independently 

validated or have found general consensus in the proteomics community. 

In this study we set out to perform a rigorous evaluation of the label-free shotgun proteomics 

technology as a whole. To begin, we comparatively assessed the performance of four of the currently 

most popular professional software for label-free quantification of proteins in MS- based discovery 

proteomics experiments returned in a search of the Thomson Reuters Web of Science 

(Supplementary Table 1). They are available commercially or free of charge, promise to be robust, 
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5 

 

accurate and facile even for a non-expert user and are supported by comprehensive instructions and 

/or on-line user communities and help forums as well as direct support from the vendors where 

applicable.  

Proteome Discoverer (henceforth termed PD) is a MS data analysis platform provided by Thermo 

Fisher Scientific for its mass spectrometers 

(http://www.thermoscientific.com/content/tfs/en/product/proteome-discoverer-software.html). Its  

main focus is protein identification. MaxQuant LFQ (MQ) is freely available from the MPI of 

Biochemistry in Martinsried, Germany 
9, 10

 and quantifies proteins across samples using the maximum 

(pair-wise) peptide ratio information from extracted peptide ion signal intensities. These are 

normalized by minimizing the overall fold changes of all peptides across all fractions prior to 

normalization. Progenesis QIP (QIP) marketed by Waters (http://www.nonlinear.com/progenesis/qi/) 

also quantifies proteins based on peptide ion signal peak intensity (the quantification algorithms are 

not published). It allows full operator control over every processing step including alignment of 

peptide ion signal landscapes and indeed individual peptide ion signal peaks. Scaffold is a software 

suite from Proteome Software (http://www.proteomesoftware.com/products/scaffold/) that serves 

mainly as a quantitative data analysis and integration platform. This software also features advanced 

statistical procedures for refinement of quantitative search engine results and various spectral 

counting or peak ion intensity based protein quantification indices (PQIs). 

We then went beyond the software benchmark validation which has been the focus of several recent 

studies 
11-17

 to an analysis of the variability in protein abundance estimates in repeated sample 

analysis (inter-sample variability) introduced by the entire shotgun proteomics technology from 

protein extraction to software supported protein quantification. To this end, individual, essentially 

isogenic plants of the Arabidopsis thaliana Col-0 accession, cultivated and harvested under controlled 

conditions were sampled to focus on the technological contribution to the inter-sample variability. 

We found it to be substantial and to have an impact on the degree of protein abundance fold 

changes that can be reported as biological in nature at different statistical confidence levels. 
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Importantly, we also found well known issues such as protein inference from measured peptides 

persist in discovery proteomics and confound protein quantification, leading to vastly different 

abundance estimates of the same proteins by MQ and QIP. 

In addition, we observed marked variability in the abundance of around 25 proteins in the individual 

Arabidopsis plants. This naturally occurring variability found even in an isogenic background under 

controlled cultivation and harvest conditions can also affect protein abundance fold changes and 

their reported causality in response to experimental conditions, especially in studies wherein 

individual organisms are pooled. This underscores the importance of a priori consideration and 

development of suitable experimental design. 

 

Experimental Procedures 

Standard Proteins and Plant Material 

α-Lactoalbumin (αLA), Apotransferin (APO), ß-Lactoglobulin A and B (ßLA and ßLB), Bovine Serum 

Albumin (BSA), Carbonic Anhydrase (CAH), Cytochrome C (CYTC), Fetuin (FET) and Myoglobin (MYO) 

were purchased from Sigma Aldrich GmbH. Ovalbumin (OVA) was purchased from Protea Biosciences 

(West Virginia, USA). 

Arabidopsis thaliana ecotype Columbia (Col-0) seeds were cold-stratified and sterilized with chlorine 

gas. Seeds were sown in steam sterilized soil. Germinated seedlings were transplanted into individual 

pots at the two cotyledon stage. Plants were grown in a growth chamber in one flat consisting of 60 

pots under short day conditions (8 hour photo period) at 22°C for six weeks with weekly watering. 

Plant shoots (leaf rosette) were harvested by cutting slightly above soil level and immediately frozen 

in liquid nitrogen. 
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Standard Protein Dilution Series 

Standard proteins were dissolved in ddH2O. SDS-PAGE of standard proteins was performed according 

to Laemmli 
18

. Disulfide bonds were reduced with dithiothreitol (DTT) and alkylated with an excess of 

iodoacetamide (IAA). Proteins were digested with trypsin at an enzyme to protein ratio of 1:50 (w/w) 

at 37°C over night. Tryptic peptides were desalted with in-house made STAGE Tips containing 6 layers 

of 3M Empore C18 solid phase extraction matrix (3M, Minneapolis, USA) in a 100 µl pipette tip as 

described 
19

. 

Six isobaric mixtures of the ten digested standard proteins were prepared to give a six point dilution 

series (10 fmol/µl, 30 fmol/µl, 100 fmol/µl, 300 fmol/µl, 600 fmol/µl, 1000 fmol/µl) of all of them. 

The molar composition in fmol/µl and the weight amount of total protein in µg/µl of each of the 

mixtures is given in Supplementary Table 2. One µl of each mixture was injected into an LC-MS 

system to measure the dilution series under naked conditions. The six mixtures were spiked into one 

µg of trypsin digested Arabidopsis thaliana total protein extract and injected to give a measurement 

of the dilution series under matrix conditions. The ratio of standard to matrix protein weight amount 

was approximately 11% (Supplementary Table 2). 

Arabidopsis thaliana Total Protein Extraction 

Frozen leaf rosettes were ground to a fine, light green powder under liquid nitrogen with a mortar 

and pestle. Proteins were extracted from the plant tissue with a phenol based procedure described in 

detail previously 
19

. 

Liquid Chromatography and Mass Spectrometry 

Peptides were injected into an EASY-nLC 1000 nano liquid chromatography system (Thermo Fisher 

Scientific). Peptides were separated using C18 reverse phase chemistry using an Acclaim PepMap 100 

pre-column (length 2cm, inner diameter 75 µm, particle diameter 3 µm) in-line with an EASY-Spray 

ES803 column (length 50 cm, inner diameter 75 µm, particle diameter 2 µm) (both from Thermo 
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Fisher Scientific). Peptides were eluted with a 180 min gradient increasing from 5% to 40% ACN in 

ddH2O (60 min gradient for QC measurements of the standard proteins individually) and a flow rate 

of 300 nl/min and electrosprayed into an Orbitrap Velos Pro mass spectrometer (Thermo Fisher 

Scientific) with an EASY-Spray ion source (Thermo Fisher Scientific). The source voltage was set to 2 

kV, the S-Lens RF level to 50%. The delta multipole offset was -7.00. The instrument method 

consisted of one survey (full) scan of the entire ion population in the Orbitrap mass analyzer followed 

by up to 20 data dependent CID product ion scans of selected precursor ions in the linear quadrupole 

ion trap (LTQ). A single micro scan per mass spectrum was acquired in both mass analyzers. The AGC 

target value was set to 1e06 and the maximum injection time (max IT) to 500 ms in the Orbitrap. The 

parameters were set to 1e04 and 100 ms in the LTQ with an isolation width of 2 Da and normalized 

collision energy of 35 for precursor isolation and MS/MS scanning. Dynamic exclusion was enabled 

with a repeat count of 1, a repeat duration of 30 s an exclusion duration of 60s and a relative 

exclusion width of 10 ppm. Full scan mass spectra were internally calibrated on the fly using the lock 

mass option with the m/z 445.120024. Four blank injections were run following every sample 

injection to reduce carryover of the most abundant proteins to approximately 5%. The mass 

spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the 

PRIDE 
20

 partner repository with the dataset identifier PXD004025 and 10.6019/PXD004025 

Standard Protein Dilution Series Quantification under Naked Conditions 

Thermo .raw files were imported into Proteome Discoverer v1.4. (PD). Peak lists were generated with 

a precursor signal to noise ratio of 1.5 and default settings were used to search a custom made 

database containing the sequences of the protein standards taken from NCBI (STD, 10 sequences, 

3040 residues) with the Mascot algorithm v.2.5.1 on an in-house Mascot server. The enzyme 

specificity was set to trypsin and two missed cleavages were tolerated. Carbamidomethylation of 

cysteine was set as a fixed modification and oxidation of methionine as a variable modification. The 

precursor tolerance was set to 7 ppm and the product ion mass tolerance was set to 0.8 Da. A decoy 
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database search was performed to determine the peptide false discovery rate (FDR) with the Target 

Decoy PSM Validator module. A 1% peptide FDR threshold was applied. 

Mascot .mgf files were imported into the Skyline software v.3.1.0.7382 
21

 to produce a spectral 

library of the standard proteins. The STD standard proteins database in .FASTA format was imported 

into Skyline to populate a spectral tree. The .raw files were imported into Skyline and XICs of the 

standard peptides in the respective measurements were produced using the settings described 

previously 
19

. 

Validation of Label-free Quantitative Proteomics Software 

Thermo. Raw files were imported into all tested software without any file conversion. The software 

versions, settings and employed PQIs are summarized in Table 1. All database searches were 

performed using a concatenated database that combined TAIR10 amended with common 

contaminates and STD (TAIR10STD, 35,414 sequences, 14,493,054 residues). 

For PD peptides and proteins were identified with the Mascot software as described above. A protein 

quantitation matrix containing the #PSMs for each identified protein in each measurement was 

produced by opening all of the .msf files of the measurements in a single report. The NSAF PQI was 

calculated manually according to 
22

. 

Additionally, peptide precursor ion intensities were extracted from the .raw files using the Precursor 

Ions Area Detector module. The .msf files were imported into the Scaffold Q+ (Scaffold) software. A 

1% peptide and 1% protein FDR threshold was applied. Two protein quantitation matrices were 

produced, one containing the NSAF, the other the Top3 PQI by selecting the respective PQIs in the 

Quantitative Analysis setup. 

MaxQuant used its integrated Andromeda search engine to identify peptides and proteins. 

Carbamidomethylation of cysteine was set as a fixed modification and oxidation of methionine and 

Page 9 of 42

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Publications

86



10 

 

acetylation of protein N-termini as variable modifications. For all other settings and parameters 

deviating from software defaults see Table 1. 

Progenesis QIP settings were software defaults with the exceptions listed in Table 1. Mascot .mgf 

files for database search with Mascot were created in QIP excluding MS/MS spectra ranking greater 

than 5. Peptides and proteins were identified as described above for PD. The peptide FDR threshold 

was adjusted to 1% and the Mascot search result was imported into Progenesis as an .xml file. Peak 

picking and alignment of Ovalbumin peptide ion signal peaks were manually adjusted using the 

Review Peak Picking Window and the Select and Edit Buttons in the Run tab. All peptide and protein 

identifications and estimated abundance values for all software settings and PQIs are provided as 

supplemental data. 

Table 1. Software Settings and PQIs evaluated in the study. All listed settings are deviations from the 

software defaults which are given in the text. Settings for database search are also given in the text. 

The functionality and algorithms behind the MQ settings are explained in detail in 
10

. LFQ is the PQI 

implemented in MaxLFQ and also described in detail in 
9
. iBAQ refers to intensity based absolute 

quantification, more information can be found in 
11, 23

. Top3 uses the peak areas of a protein’s 3 

peptides with the most intense mass spectrometric signal response for quantification 
24

. The QIP PQI 

Non-conflicting Peptides means only peptides unique to a protein were used for quantification. NSAF 

refers to the normalized spectral abundance factor, details can be found in 
22

. 

Software Name Version Software Parameter 

Set Name 

Settings Deviating from Default PQI 

MaxQuant 1.5.0.0 MQ-Def-LFQ Default LFQ 

  MQ-MBR-LFQ Default; Match Between Runs (MBR) enabled LFQ 

  MQ-Mod-LFQ Default; Match Between Runs (MBR) enabled; Minimum Ratio set 

to 1; Precursor mass tolerance 7 ppm 

LFQ 

  MQ-MBR-iBAQ Default, Match Between Runs (MBR) enabled, iBAQ enabled iBAQ 

Progenesis QIP 4.1. QIP-Def-Top3 Default; Mascot search see text Top3 

  QIP-Def-NoC Default; Mascot search see text Non-

conflicting 

Peptides 

  QIP-Ses-Top3 Peak Picking Parameters Sensitivity set to 5 (Maximum); Mascot 

search see text 

Top3 

  QIP-Ses-NoC Peak Picking Parameters Sensitivity set to 5 (Maximum); Mascot 

search see text 

Non-

conflicting 

Peptides 

Proteome 

Discoverer 

1.4. PD-NSAF see text NSAF 

Scaffold Q+ 4.4.3. Scaffold-NSAF Peptide and Protein ID from PD; Protein FDR 1% NSAF 

  Scaffold-Top3 Peptide and Protein ID, Peak Intensity from PD; Protein FDR 1% Top3 
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Experimental Design and Statistical Rationale 

For validation of the label-free quantitative proteomics software, the same weight amount of each of 

the six isobaric mixtures of the ten digested standard proteins was spiked into 1 µg each of the same 

tryptic digest of Arabidopsis thaliana total protein extract. Each of these six mixtures was measured 

four times in a block design wherein all of the mixtures were measured once in random order before 

proceeding to the second block wherein all of the mixtures were measured again in random order 

and so forth. This design eliminated biological and experimental variability in Arabidopsis protein 

abundance and minimized variability potentially introduced by sample handling and the LC-MS 

system to focus solely on any variability in protein abundance estimates introduced by the tested 

software and thereby on their individual merits. 

In order to analyze the correlation between measured and expected protein abundance, all possible 

fold changes between measured protein abundance s at all molar amounts were calculated for each 

protein and compared to their expected fold-changes by a linear model. Permutation analysis was 

performed for testing the significance of the linear models. Eighty percent of the measured log10 fold 

changes were resampled 10 times. Each resampled replicate was permuted. Linear models and their 

slopes were calculated for each of the 10 permuted sets with the expected log10 fold changes. The 

null hypothesis of no linear correlation between measured and expected log10 fold changes (H0 : 

linear model slope a = 0) was tested using a Student’s t-test and the slopes of ten unpermuted, 

resampled sets. 

The overall performance of all tested software parameter sets was scored. Formally the score is 

expressed in equation (1) with aFC being the expected log10 fold change, mFC the measured log10 fold 

change, n the number of log10 fold changes quantified for all standard proteins, 168 being the 

maximum number, i.e. all possible fold changes for all standards and k the number of Arabidopsis 

background proteins quantified in at least 12 measurements. 
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(1): 

 

 

This term takes into account the accuracy and precision of protein quantification by way of the mean 

deviation of measured from expected standard protein abundance over the entire range of fold 

changes and molar amounts. It also takes into account the sensitivity of protein quantification by 

rewarding proportionally larger numbers of quantified standard protein log10 fold changes as well as 

larger absolute numbers of quantified background matrix proteins. 

To assess the variability in protein abundance estimates from analysis to analysis introduced by the 

entire shotgun proteomics technology (intra-sample or technical variability) four six-week-old 

Arabidopsis thaliana Col-0 plants with essentially no genetic polymorphism grown under the same 

conditions were extracted independently three times and measured resulting in a multilevel 

(hierarchical) experimental design. The measured proteins were quantified using three of the 

software and parameter sets independently, QIP-Def-Top3, MQ-MBR-LFQ and MQ-MBR-iBAQ. This 

design allowed assessment of the variability of protein abundance estimates from plant to plant 

(inter-sample or biological variability), in this case virtually excluding genetic and environmental 

factors. 

To decompose the total measured variance in protein abundance into biological and technical 

components, a linear mixed model with no fixed effects and biological and technical replicates as 

random effects was fit onto every protein quantified by each of the three software parameter sets to 

adjust for dependencies in multilevel structure. A second analysis was performed with software as a 

fixed and biological and technical replicates as random effects on the mutual set of proteins 

quantified by all three software parameter sets. PQI values output from the software and parameter 

sets were log2-transformed to approximate a normal distribution for further statistical testing. The 
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expected values for each software and parameter set were estimated using model-based least 

square means. The intra-class correlation (ICC) is defined in 
25

 as the ratio of inter-sample to total 

variance. The statistical analysis was performed using the statistical software language R, version 

3.1.3, the lme4 package, version 1.1-11 
26

 and lmerTest, version 2.0 
27

. Further details and R code are 

provided as a supplement. 

 

Results 

Benchmark Set of Protein Standards 

We selected a set of ten standard proteins spanning the molecular weight (Mw) and isoelectric point 

(pI) range of the majority of cellular protein monomers (Table 2). We assessed their purity with SDS-

PAGE (Supplementary Figure 1) and LC-MS (data not shown) and found minimal contamination in line 

with high purity chemicals. 

We digested the proteins with trypsin and measured 100 fmol on column of each protein digest with 

DDA UPLC-HR/AM MS using a 50 cm LC column. We identified a substantial number of unique 

peptides resulting in high sequence coverage for all of the proteins (Table 2). We made six mixtures 

of the ten digested standard proteins with approximately equal weight (coefficient of variance 

0.33%) but different molar amounts. These were used to produce a six point dilution series of all 

standard proteins comprising 10, 30, 100, 300, 600 and 1000 fmol and so numerous small and large 

fold changes over the full two orders of magnitude. The dilution series was measured in triplicate. 

We extracted the #PSMs and the peak areas of the three most abundant peptides per protein (Top 3) 

using a 1% PSM FDR threshold. These PQIs were plotted as the dependent variables against the protein 

molar amounts. As expected, strong correlation to a linear model was observed for both PQIs for all 

proteins (Supplementary Figure 2). The highest R
2 

was observed for proteins with the highest #PSM 

to peptides ratio and not necessarily the largest proteins, underscoring the impact of peptide specific 

properties on protein quantification. As also may be expected, the slopes of the lines were different 
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for the individual proteins as well as deviating from unity, implying every protein quantified in a 

discovery proteomics experiment requires its own proportionality coefficient to correctly infer its 

abundance. 

Table 2. Proteins used as standards in the study. The sequence coverage, number of PSMs and 

number of peptides recorded in a measurement of 100 fmol on column are given. The number of 

peptides unique to a protein is given in parentheses. 

Standard Name Token MW (Da) % Coverage # PSMs # Peptides pI 

Cytochrome C CYTC 12327 42.86 17 7 (7) 9.50 

α-Lactoalbumin αLA 14178 40.58 28 7 (7) 5.14 

Myoglobin MYO 17000 63.69 161 9 (9) 7.81 

ß-Lactoglobulin B BLB 18276 48.15 74 10 (1) 4.92 

ß-Lactoglobulin A BLA 18363 40.12 40 13 (2) 4.86 

Ovalbumin  OVA 42750 15.32 28 5 (5) 5.29 

BSA BSA 66000 80.40 494 68 (68) 6.18 

Fetuin FET 48400 22.60 73 8 (8) 5.50 

Carbonic 

anhydrase 

CAH 29000 31.50 30 9 (9) 6.92 

 Transferrin TRA 80000 70.17 610 60 (60) 7.08 

 

Inference of Standard Protein Abundance from Measured Peptide Ion Signal Response 

Currently discovery proteomics experiments are inherently peptide-centric so we were interested in 

quantification of the standard proteins on the peptide level. We plotted the protein molar amounts 

against the #PSMs of each peptide normalized to the Mw of each peptides respective progenitor 

protein as a proxy for the number of quantifiable peptides per protein. We mostly observed a linear 

relationship between peptide signal response and protein molar amounts with this PQI (Figure 1A). 

Although this may seem intuitive from the protein results described above this need not be so 

because the proteins are quantified using the sum of peptide signal responses. Indeed, when using 

raw #PSMs, peptide responses were often far from linear over the range of protein molar amounts. 

Two of the proteins in our standard set (ßLA and ßLB) were genetic isoforms distinguished at only 

two positions in their primary structure and hence by two unique peptides each. Both #PSMs and 

Top 3 could not quantify them because it was impossible to fractionally assign the PQIs to their 

respective molar amounts. The combined molar amounts however showed excellent linearity to both 
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PQIs (Figure 1B, top panel). The two discriminating peptides that were identified (one for each 

isoform) showed a very weak signal response (Figure 1B, center and bottom panels). Only the 

peptide WENDEc(Carb)AQK unique to ß-LA showed a strong linear relationship between its peak area 

and the protein’s molar amount and so could be potentially suitable for quantification. 

Figure 1 

 

To further investigate the relationship between inferred protein and measured peptide abundance 

we normalized each protein’s #PSMs at each molar amount to its Mw and multiplied this term by the 

respective protein sequence coverages. The sequence coverage is greatly affected by the mass 

spectrometric peptide ion signal response even at low protein abundance and therefore serves as a 

proxy to incorporate the factor of peptides physico-chemical properties on protein quantification. 
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The PQI was then set in relation to the molar amount for each protein. Note that this term 

corresponds to the proportionality between measured and actual protein abundance (slope of the 

linear model). We plotted it as a function of the #PSMs of each identified peptide of each protein 

(Figure 1C). Two things become apparent: First, with increasing number of peptide PSMs which 

conceivably can be generalized to any measure of peptide signal response, the relationship between 

measured and actual protein abundance converges on direct proportionality. Second, this is primarily 

the case for larger and more abundant proteins (plot coloring). While this is not surprising, it does 

imply there may be substantial error associated with quantification of smaller and low abundant 

proteins (red points) as observed previously 
11

. 

Accuracy and Precision of Label-Free Quantitative Proteomics Software 

Peptides and proteins were identified and quantified in quadruplicate measurements of the six 

isobaric standard mixtures spiked into the Arabidopsis peptide matrix with PD, Scaffold (Scaffold 

used the PD output files so linked to PD), MQ and QIP. We tested each software using the software 

defaults (i.e. ready to use) as well as with sets of modified settings and different PQIs; for a detailed 

description see Experimental Procedures and Table 1. Importantly, only Scaffold and MQ had the 

option of applying a protein FDR calculation in addition to the commonly employed peptide FDR. All 

FDR thresholds were set to 1% for peptide and protein identification in all analyses. 

We investigated the relationship between the measured and expected fold changes for each of the 

standard proteins detected in all quadruplicate measurements to assess the accuracy and precision 

of protein quantification. Figure 2 shows the results for the settings that performed most favorably 

for each software, the results for all other settings are shown in Supplementary Figure 3. Table 3 

shows the slopes of all linear models. As expected, all software and all settings achieved reasonable 

agreement with a linear model as evidenced by a coefficient of determination (R
2
) of > 0.7 with the 

exception of Scaffold employing the Top3 PQI (Table 3, Supplementary Figure 3 2
nd

 column). Both 

Scaffold and PD alone produced much improved R
2
 employing the NSAF PQI (Figure 2A top panel, 
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Supplementary Figure 3 1
st

 column) suggesting precursor ion intensity extraction from the raw data 

using PD was sub-optimal. MQ and QIP both showed more precise quantification of standard protein 

log10 fold changes with all settings and PQIs over the entire range of molar abundance using R
2
 as a 

measure of global precision (Table 3). MQ, however, consistently delivered higher R
2
 than QIP. 

Figure 2 
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The slope of the linear model reflects the accuracy of the measurement of the log10 fold changes, a 

slope of one meaning direct proportionality between measured and expected protein abundance. PD 

and Scaffold employing NSAF both showed a 0.5 fold underestimation of log10 fold changes indicating 

this PQI is semi-quantitative at best. Strikingly, a slope deviating only slightly from unity was achieved 

by MQ for all settings and PQIs including the software defaults, so quantification of the set of 

standard proteins over the entire dynamic range of 10 to 1000 fmol was very accurate. QIP was 

substantially less accurate employing all settings and PQIs; however upon closer inspection it became 

clear, that one of the standard proteins, OVA had been incorrectly quantified over the entire range of 

protein molar amounts. We made use of the extensive QIP interface to manually correct the peak 

picking and alignment of all OVA derived peptide ion signal peaks using the default settings and Top3 

PQI which proved to be the most advantageous for QIP (QIP-Def-Top3 (mod OVA), Supplementary 

Figure 3 1
st
 column). This improved both the slope and R

2
 slightly. We then removed OVA from the 

QIP results entirely (QIP-Def-Top3 (no OVA), Figure 2A bottom panel) which lead to a slope close to 

unity and an R
2
 > 0.9, in agreement with the MQ results. 

To visualize the accuracy and precision of protein quantification more directly the relative error in 

percent of the measured log10 fold changes and their relative standard deviation (RSD) in the 

quadruplicate measurements were plotted (Figure 2A center panel and Supplementary Figure 3). PD 

and Scaffold employing the NSAF PQI greatly underestimated protein abundance log10 fold changes 

by 30 to 100%; especially larger ones (note for example a 50 % error of a log10 fold change of 2 means 

a 50 fold error). MQ showed very conservative percent errors of < 30% using the default settings and 

the match between runs (MBR) option enabled with the LFQ PQI. Small and larger log 10 fold changes 

were quantified similarly accurately with these parameters. The accuracy decreased somewhat using 

modified settings with a minimum ratio count of 1 as opposed to the default of 2 and when using the 

IBAQ PQI with MBR settings. Both of these parameter sets were designed to increase the number of 

standard proteins quantified at low abundance (10 to 30 fmol), i.e. the sensitivity. The percent error 

was still mostly below 30 %. However, some log10 fold changes, and particularly the largest ones (1.78 
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and 2), were equally over and under- estimated. QIP also quantified most of the proteins correctly 

with an error of <30 % although a substantial number of log10 fold changes were more severely 

underestimated with all parameter sets. However, this could be reconciled when OVA quantification 

was manually corrected and more so when the protein was removed entirely. In this case all 

remaining proteins were quantified very accurately over the entire range of log10 fold changes 

including the largest ones. The RSD of the quadruplicate measurements of log10 fold changes was 

generally below 40 % for all software and all parameter sets. 

Table 3. Ranked list of the evaluated software and parameter sets and of some of the results of the 

evaluation. Coefficient of determination and slope of the linear model, number of quantified log10 

fold changes for all protein standards (168 maximum meaning every possible pair wise fold change 

for every protein) and p-value of significance testing of the linear models are given. The number of 

Arabidopsis thaliana background matrix proteins quantified in at least 1, 12 and all 24 measurements 

as well as the software/parameter set score are also given.  

Software Parameter Set R
2
 Slope Quantified Log10 

Fold Changes (n) 

P-value Arabidopsis Matrix Proteins 

Quantified in ≥ Measurements 

Score 

     1 12 24  

QIP-Def-Top3 (no OVA) 0.909 0.86 147 3.985-13 2178 2178 2170 100.85 

MQ-MBR-LFQ 0.958 1.15 120 1.058E-09 2366 1671 1294 53.42 

QIP-Def-Top3 (mod OVA) 0.797 0.79 168 1.022E-13 2178 2178 2170 50.86 

QIP-Def-Top3 0.731 0.77 168 1.107E-09 2178 2178 2170 38.26 

QIP-Def-NoC 0.74 0.74 168 2.605E-12 2178 2177 2166 37.88 

QIP-Ses-NoC 0.733 0.74 168 4.489E-12 2182 2182 2169 37.46 

QIP-Ses-Top3 0.723 0.77 168 7.730E-12 2182 2182 2169 37.46 

MQ-MBR -iBAQ 0.815 1.13 145 2.473E-12 2319 2221 1811 35.44 

MQ-Mod-LFQ 0.773 1.1 145 6.307E-10 2314 2199 1793 30.12 

MQ-Def-LFQ 0.961 1.18 101 6.308E-09 2362 1275 881 27.73 

PD-NSAF 0.858 0.54 110 3.593E-11 2605 1894 1391 17.58 

Scaffold-NSAF 0.828 0.53 110 9.134E-10 2543 1878 1307 16.12 

Scaffold-Top3 0.391 2.15 106 2.200E-09 2768 2005 1462 0.61 

 

Sensitivity and LOQ  

We found it important to determine the absolute limit of quantification (LOQ) to measure the 

sensitivity as an additional performance metric of the software. To do so, we examined if a 

quantitative value was available at each molar amount of the dilution series for each standard 

protein in all quadruplicate measurements for each software and parameter set (Figure 2B). PD and 

Page 19 of 42

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Publications

96



20 

 

Scaffold using the NSAF PQI were both unable to quantify four of the standard proteins at 10 and 30 

fmol as well as some others even at higher molar amounts. The same held true for MQ using the 

default and MBR settings with the LFQ PQI. MQ sensitivity improved markedly with the modified 

settings and the IBAQ PQI with MBR settings. This explains the better accuracy and precision of the 

former two parameter sets, because a lack of quantitative data points at low molar amounts 

translates directly into a lack of measured large fold changes which inherently tend to be associated 

with higher errors. Remarkably, QIP performed perfectly for all parameter sets, quantifying all 

proteins at all molar amounts in all four measurements. The relationship between experimentally 

observed and expected protein amounts was highly significant for all software and parameter sets. 

Quantification of Arabidopsis thaliana Background Matrix Proteins 

It was also interesting to judge the softwares’ performance in regard to the Arabidopsis thaliana 

background matrix. The number of Arabidopsis proteins that gave a quantitative value in one, 12 and 

all 24 of the measurements was counted (Table 3). All software quantified more than 2000 proteins 

with all parameter sets in at least one of the 24 measurements. PD and Scaffold with the NSAF PQI 

(and incidentally also with the Top3 PQI) produced the highest number of quantified proteins in a 

single measurement. It decreased sharply, however, in 12 and 24 measurements when the 

repeatability of protein quantification became a requirement. Note that the number of quantified 

proteins was very similar between PD and Scaffold with the NSAF PQI suggesting the 1% peptide FDR 

in this instance delivers sufficiently stringent protein identification compared with the 1% protein 

FDR applied additionally in Scaffold. 

The number of quantified proteins decreased most greatly in 12 and 24 measurements using MQ 

with the default settings and the LFQ PQI. The default settings link peptide identification and protein 

quantification. A peptide ion signal peak must be annotated with an MS/MS identification in each 

measurement wherein it is to be quantified. Presumably the MQ feature extraction (peak picking) 

algorithm gives a higher quality signal than a simple PSM count, which forms the basis of the NSAF 
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PQI. This raises the LOQ explaining the substantially lower number of quantified proteins especially in 

24 measurements compared to PD and Scaffold. The number of proteins quantified in all 

measurements was increased when the MBR settings were applied. The MBR option allows the 

calibration of peptide retention times over all LC-MS measurements in a set and thereby alignment 

of peptide ion signal peaks. Peak and protein identification can thus be transferred from one LC-MS 

measurement to all measurements in the set. 

MQ with the modified settings as well as with the IBAQ PQI with MBR settings mostly negated the 

decline in quantified proteins. The minimum ratio count of 1 in the modified settings reduces the 

number of peptide ratios required for protein quantification to 1, mitigating the constraints on 

protein quantification and increasing sensitivity. QIP, much as MQ, applies peptide ions signal peak 

picking, normalization and feature alignment prior to identification. Notably, QIP did not suffer from 

any decline in the number of proteins quantified in any number of measurements for all parameter 

sets. This may suggest QIP enforces quantification of peptide ion signals in all aligned measurements, 

presumably if a high quality signal peak is encountered in at least one measurement in the aligned 

set. 

To assess the accuracy and precision of quantification of the matrix proteins, the median log 10 fold 

change of the PQI values of each measurement to the mean of all measurements was plotted on the 

abscissa and the standard deviation of the log10 fold changes on the ordinate for each protein for the 

most favorable parameter sets for each software (Figure 2A right panel). Perhaps surprisingly in light 

of the significant error in quantifying the standard proteins, Scaffold with the NSAF PQI exhibited 

high accuracy and precision likely because there was apparently no variability in the abundance of 

the Arabidopsis proteins. As expected from the results for the standard proteins, MQ with the MBR 

settings and the LFQ PQI was the most accurate and precise. MQ with the iBAQ PQI showed slightly 

higher standard deviations as well as some underestimation of proteins with a weaker PQI response 

however this was only a small fraction of all quantified proteins. QIP with the default parameters and 

the Top3 PQI showed similar behavior but with the log10 fold change of somewhat more proteins 

Page 21 of 42

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Publications

98



22 

 

being underestimated. However QIP also quantified a substantially higher number of Arabidopsis 

proteins in all. 

Software Ranking 

We chose to aggregate the tested metrics into a score to rank the software according to their 

performance in label free protein quantification (Table 3). QIP ranked highest when OVA was 

removed and third when OVA quantification was manually corrected, reflecting the high accuracy 

and precision under these circumstances as well as QIP’s generally superior sensitivity. However, 

these circumstances represent a handicap. Under unbiased conditions MQ with the MBR settings and 

the LFQ PQI outperformed QIP regardless of the employed QIP parameter set, highlighting MQ’s 

superior accuracy and precision albeit with somewhat modest sensitivity. Moreover, MQ-with the 

MBR settings and the iBAQ PQI was only slightly outscored by QIP. The iBAQ PQI which substantially 

increased the number of quantified standard and matrix proteins especially in 24 measurements still 

delivered high R
2
 and a slope close to unity, suggesting MQ-iBAQ is generally en par with QIP. The 

MQ modified LFQ parameter set performed similarly to the iBAQ parameter set. The MQ default 

settings with the LFQ PQI had the lowest score for all MQ parameter sets because of poor sensitivity 

despite delivering the highest R
2
. As expected, PD and Scaffold ranked well below MQ and QIP due to 

the very poor approximation of expected standard protein log 10 fold changes and their overall 

modest sensitivity. 

 

Variability in Protein Abundance Estimates in the Shotgun Proteomics Technology 

We were interested in the repeatability of large scale protein quantification from sample to sample. 

The shotgun proteomics protocol comprises at the least protein extraction, digestion, LC-MS and 

software-supported protein identification and quantification. All of these steps are possible avenues 

of variability and so far we had only investigated the latter. The variability vested in the entire 
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technology strongly impacts the accuracy of protein abundance estimates and the difference in fold 

changes that can be confidently inferred between samples and ultimately determines its utility. 

We made use of a nested experimental design described by Trutschel and co-workers 
28

 wherein 

repeated experimental analysis of multiple biological samples allows decomposition of the total 

variance of measured protein abundance in the data set into additive technical and biological 

components. The measurements were analyzed with the three highest scoring software/parameter 

sets, QIP using the default settings and the Top3 PQI (QIP-Def-Top3) and MQ with the MBR settings 

and the LFQ PQI (MQ-MBR-LFQ) as well as with the iBAQ PQI (MQ-MBR-iBAQ). 2382, 1414 and 1996 

proteins were respectively quantified in all 12 analyses (3 of each plant) reflecting the increased 

sensitivity of QIP and MQ with the iBAQ PQI as already reported. 

A linear mixed model (LMM) was used to estimate the contributions of the shotgun proteomics 

technology (technical variance) and the plants themselves (biological variance) to the total variance 

of the abundance of each protein inferred by each of the software (Figure 3A). The respective mean 

estimated variances for all quantified proteins were also calculated. As expected, the mean 

estimated biological variance was very small regardless of which software and parameter sets were 

used to quantify the proteins. Perhaps not unexpectedly in light of its complexity particularly in plant 

samples, the mean estimated variance associated with the technology was 6.15 fold higher for QIP-

Def-Top3, 3.39 fold for MQ-MBR-LFQ and 4.39 fold for MQ-MBR-iBAQ than the respective mean 

estimated biological variances. Interestingly, none of the mean biological variances estimated for the 

quantitative results from the three software that by definition should be unaffected by the software 

and PQIs used for protein quantification were the same. This can be explained by the different 

number of proteins quantified by each of the software, the variance of every one of them having a 

technical and biological component. The ratio of the estimated mean biological to total variance, 

known as the intra-class correlation  (ICC) according to 
25

 was also determined for every protein for 

the three software (Figure 3B). Forty to 50% of the proteins exhibited ICCs below 0.03 so only 

Page 23 of 42

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Publications

100



24 

 

negligible biological variability in their abundance and 10 % had approximately equal technical and 

biological variance components (ICC of around 0.5). 

Figure 3 

 

 

Considering the high mean technical to biological variance ratios we were interested in the minimal 

effect (fold change in protein abundance) that can be inferred with confidence (α = 0.05, power = 

80%) with the two-level hierarchical experimental design used here (3 analyses of four plants each) 

and the estimated technical and biological variances. The minimal detectable fold change was 1.68 

for QIP using the default settings and the Top3 PQI, 1.39 for MQ with the MBR settings and the LFQ 
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PQI and 1.99 with the iBAQ PQI (calculated according to 
28

). The possible combinations of the number 

of individual plants and the number of independent analyses of each necessary to detect a 1.41 fold 

change (0.5 log2 fold change) at the same confidence was also calculated (Figure 3C). These results 

suggest some caution is warranted in the interpretation of shotgun proteomics results in plants, 

particularly for small fold changes in protein abundance. 

To further address the issue of different biological variance estimates by the three software, we used 

the set of 1028 proteins quantified by all of them as an input for the LMM. These proteins had 

exactly the same protein group accessions for all three software, i.e. for both MQ parameters sets 

and QIP. The least square means ofPQIs for each protein produced by the three software were 

plotted as independent variables (Figure 3D, top panel). Moderate correlation was observed for QIP 

with any of the MQ parameters sets whereas a strong positive correlation was observed between 

MQ using the LFQ and the iBAQ PQIs. It is clear that different PQIs cannot be directly compared. 

Nevertheless, modest positive correlation particularly for less intense signals suggests that relative 

protein abundance estimates by QIP and MQ were also quite different. 

To investigate the possible implications of different relative estimates of protein abundance by the 

software on biological conclusions, we made use of a discovery proteomics dataset quantifying 

changes in protein abundance in response to phosphate deprivation in Arabidopsis roots that we 

published previously 
29

. We analyzed three measurements each of three pools of wild type Col-0 

seedling roots grown on plates containing or lacking phosphate in the growth medium with all three 

software and parameter sets. We plotted the least square means of PQIs for both phosphate replete 

and deprived samples and observed similar correlations between MQ and QIP and both MQ 

parameter sets as above (Supplementary Figure 4A, top left and right panels). Upon plotting the log2 

fold changes in protein abundance incurred by a lack of phosphate (minus/plus phosphate) we found 

correlation as well as direct proportionality (R
2
 and slope of the respective linear model) deteriorated 

markedly between all software and parameter sets (Figure 3D, center panel). Indeed, there was 

essentially a lack of positive correlation between QIP and MQ. To shed a better light on de facto 
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changes in protein abundance we then plotted only the statistically significant (p<0.05 in any of the 

software’s estimates) log2 fold changes between the two nutrient regimes (Figure 3D bottom panel). 

Positive correlation and approximate direct proportionality was evident with R
2
 and slope values 

similar to the plots of the PQIs themselves. This indicates that trends and directionalities of changes 

in protein abundance are conserved between MQ and QIP. Nevertheless, there are still some 

substantial discrepancies, particularly for the relatively small changes in protein abundance upon 

phosphate deprivation reported here and in 
29

. 

Naturally Occurring Variability in Isogenic Plants 

Finally, we looked at the proteins with a particularity high biological component of the total variance 

of their abundance. We selected the proteins quantified by MQ with the MBR settings and the LFQ 

PQI because these parameters allowed the most confident inference of small fold changes in protein 

abundance and produced the 90 % quantile of quantified proteins with the highest ICC values of all 

three software parameters sets. Together this permitted the most confident and sensitive detection 

of biologically variant proteins. 

Twenty-five proteins showed substantial variance in their abundance that was of a biological nature 

(Supplementary Table 3). This was in spite of the essentially isogenic background and controlled 

cultivation of the sampled plants that eliminates major genetic and environmental variation as a 

source of quantitative changes in protein abundance. As expected under such conditions the relative 

biological variance for nearly all other proteins was minimal as reflected by the ICCs of the 80% 

quantiles (80% of proteins had ICCs ≤ 0.36, Figure 3B). We performed gene ontology (GO) analysis of 

the twenty five proteins and found that set of proteins was highly enriched for proteins responsive to 

abiotic and biotic stimuli as well as to stress and proteins involved in cellular metabolic processes 

(Supplementary Figure 4B). 

The protein whose abundance varied the most in the four plants was PATHOGENESIS-RELATED 

PROTEIN 5 (PR5). Incidentally, the technical component of its total variance in protein abundance 
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was negligible so the protein had a very high ICC of 0.96. The abundance of other proteins involved in 

the plant response to biotic pathogens such as MITOCHONDRIAL HSO70 2 (MTHSC70-2) and ANKYRIN 

REPEAT CONTAINING PROTEIN 22 (AKR2) was also highly variable in the sampled plants 

(Supplementary Figure 4C). 

 

Discussion 

We conducted a study to assess the quantitative performance of label-free shotgun proteomics in 

particular focusing on the sample-to-sample variability in protein abundance estimates and its 

implications by the technology as a whole. The performance of label-free quantification software has 

received renewed attention in the recent literature 
11-17

. However, much of this work was directed 

towards the workings of individual PQIs. Ahrné and co-workers in particular report extensively on the 

merits of 5 of the most well-known label-free PQIs for absolute protein quantification, the 

conclusions of the work of course being equally applicable to relative protein quantification 
11

. 

A set of ten standard proteins in a total plant extract was used to test the software. We decided to 

use a relatively small set of proteins because this allowed us to measure each of the physico-

chemically distinct proteins and the more than 150 derived tryptic peptides at six different molar 

amounts and so to examine quantitative software performance for each of them over a dynamic 

range of two orders of magnitude for both small and large fold changes. The range was selected 

because 1 fmol of the individual protein digests of BSA, MYO, ßLA and ßLB and 3 fmol of each protein 

in a combined dilution series was detected in preliminary measurements. We hypothesized that 10 

fmol would be reasonably close to the absolute sensitivity limit of our LC-MS system using a data 

dependent (DDA) scan strategy common in shotgun proteomics experiments yet still be detectable in 

a complex peptide matrix. On the other hand 1000 fmol is the amount of more abundant cellular 

proteins and so we did not think it necessary or feasible to extend the dynamic range further 

upwards because the ratio of standards to matrix would have become high. 
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In their important paper Ahrné et al. direct considerable attention to analysis and discussion of not 

only linearity but, more meaningfully, proportionality between actual and PQI inferred protein 

abundance 
11

. This question addresses one of the quintessential yet seldom treated issues in 

quantitative proteomics: the relationship between protein abundance and MS peptide ion signal 

response. In a landmark paper, Silva and co-workers showed direct proportionality between these 

two variables meaning signal response is a linear function of protein abundance with a slope of one 

when the signal intensity of the three most abundant peptides ions of a protein is used for 

quantification 
24

. Direct proportionality between the total signal and total protein abundance has 

also been reported 
4
, however, not all of the thousands of proteins measured in a discovery 

proteomics experiment exhibit direct, or even the same proportionality. This was already evident 

from our measurements of the standards under naked conditions (Supplementary Figure 2 and 

Figure 1B, top panel). In this case results will be semi-quantitative at best, because the measured fold 

changes cannot be equated with actual changes in protein abundance. This illustrates the central 

challenge faced by quantitative proteomics software solutions. 

Reassuringly, both of the tested software that were primarily conceived for label-free protein 

quantification, MQ and QIP, demonstrated accurate and precise proportionality estimates over two 

orders of magnitude of protein abundance for small and large fold changes. They also showed 

accurate and precise quantification of proteins on a large scale as exemplified by quantification of 

Arabidopsis background matrix proteins. This is a tribute to their feasibility for shotgun proteomics 

studies by a person with limited expertise. We have verified this independently of previous work by 

the software developers employing a mixture of two proteomes 
9
. 

Which of the software is preferable may depend on the study type. Based on our experimental 

approach and LC-MS system we recommend MQ with the MBR settings and the LFQ PQI for datasets 

where quantification of up to one or two thousand proteins is desired such as in comparative 

shotgun proteomics analyses of SDS PAGE bands, organelle proteomes, immuno-precipitates or 

prokaryotic proteomes because of it superior accuracy and precision. QIP may be the better choice 
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when maximum quantitative coverage of complex proteomes is the goal because of its increased 

sensitivity. One drawback is that QIP does not allow the upfront calculation of a protein FDR which 

should be the norm in today’s proteomics studies. MQ with the iBAQ PQI could be a good 

compromise which has probably led to its recent popularity 
23, 30

. The decision for the right software 

also bears some financial aspects. MQ is available free of charge whereas QIP is commercial 

software. Scaffold and PD which are geared more towards protein identification, data integration, 

statistical analysis and results visualization did not perform as well as MQ and QIP which were 

designed explicitly for protein quantification. However, this may also be attributed to the spectral 

counting based NSAF PQI and the relatively simple peak intensity extraction algorithm integrated in 

PD v1.4. 

Our analysis of the variability of protein abundance measurements by the shotgun proteomics 

technology as a whole yielded some unexpected insights. Clearly variability introduced by the 

technology will outweigh the biological component of the total variability in our experiment. It is also 

no surprise that the biological component was generally very small as seen from the ICC plots. We 

expected the relatively large technical component to be especially prominent in plant proteomics 

studies because of the involved procedure to extract proteins for in-solution digestion from these 

tissues 
31, 32

. Conceivably this could also hold true for many human and animal tissues. It may well be 

that the technical variance is much smaller for other types of samples such as single cell organisms or 

cell cultures. Nevertheless, the calculations of statistical confidence and power for the detection of 

fold changes in protein abundance imply that some care must be taken in the interpretation of 

quantitative shotgun proteomics results particularly in plants and in up-front experimental design in 

general. A hierarchical experimental design wherein proteins from several biologically identical 

samples are repeatedly extracted and measured is advantageous, in some cases necessitating large 

numbers of samples and repetitions, particularly when the variability between biological conditions is 

expected to be high 
28

. 
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The difference in the biological variance estimates from the results of the three software parameter 

sets was astonishing. Biological variance should by definition not be influenced by experimental 

factors and we expected its estimate to be the same for all three software results. Initially we 

explained this discrepancy by the different number of proteins, each having a biological variance 

component quantified by the software. However, we saw another, even more astonishing 

discrepancy when the intersection of proteins quantified by all three software parameter sets was 

analyzed for each variance source, particularly so when protein fold changes were considered The 

modest and respective absence of positive correlation between MQ and QIP (Figure 3D) showed, 

that the relative quantification of the same proteins was quite different by these two. We attribute 

this result to different sets of peptides derived from the individual proteins being identified and 

quantified by MQ and QIP and used to infer protein abundance. Incidentally it seems not so much to 

be an issue of the employed PQI, i.e. the actual method of protein quantification, because relative 

protein abundance estimates were consistent for two PQIs within MQ. What does this mean and 

how can it be reconciled with the accurate and precise quantification of the standard proteins by 

both software discussed above? 

The peptides used to quantify the standard proteins were all unique to the respective standards 

(Table 2). Therefore they could be unequivocally assigned to their progenitors and used to correctly 

infer protein abundance. Many of the Arabidopsis proteins have some degree of primary structure 

homology, resulting in a large number of peptides that are shared between them upon enzymatic 

digestion. By extension these peptides all have their own biological variance components. Three 

scenarios are readily conceivable and presumably all three contribute to the observed discrepancies. 

(1) MQ and QIP quantified the same peptides relatively differently. This is underscored by the 

erroneous quantification of OVA in the set of standard proteins and implied by the seemingly 

enforced quantification of peptide ion signals by QIP. (2) Different sets of peptides are identified, 

quantified and used to estimate the abundance of the same protein (same protein group accession) 

by QIP and MQ. This is undoubtedly the case but may be secondary as shown by the generally high 
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correlation between the two employed MQ PQIs. (3) MQ and QIP grouped and assigned peptides 

differently to different sets of prospective progenitors, thereby leading to distinct reconstructions of 

biological variance and indeed distinct estimates of the abundance of the same proteins. We 

investigated this issue of protein grouping further by determining and plotting both least square 

mean intensities and log2 fold changes of sets of mutually quantified protein groups not assigned the 

same protein group accession by the two software, but sharing at least one common protein 

accession number (Supplementary Figure 4A, bottom left and right panels). The correlation and 

direct proportionality of the linear model were diminished somewhat compared to the sets of 

proteins with exactly the same protein group accessions assigned by both software. This indicates 

differential grouping has an effect on protein quantification. 

Although trends and directionalities were conserved when statistically significant changes in protein 

abundance were quantified by both MQ and QIP, it was interesting to see, that R
2
 values were 

considerably lower when log2 fold changes rather than PQIs were plotted. We explain this by way of 

a cumulative error potential in fold changes which comprise two abundance estimates of the same 

protein as opposed to a single estimate of PQI values (expressed in equations 2 and 3 wherein I 

refers to the measured intensity, Pn to protein n and α to a deviation from the measured intensity 

introduced by the respective quantification software): 

(2): �����|��,	
 ∶ 	 ��� + ���|��� = �	��� + ���|	
� + �. 

(3): ��������,��|��,	
 ∶ 	 ������� + ���|��� − ������� + ���|��� = �	 �������� + ���|	
� −

������� + ���|	
�� + �. 

These points illustrate perhaps the most significant issue in peptide centric proteomics which is 

however largely ignored in lieu of a solution: the problem of protein inference 
33, 34

. It is further 

exemplified by the inability of the tested software to correctly quantify the two ß-lactoglobulin 

isoforms in the set of standards because the distinguishing peptides could not be quantified (Figure 1 
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B). These findings highlight the importance of considering protein quantification at the peptide level 

in discovery proteomics experiments and further advocate prudence in the interpretation and 

comparison of shotgun proteomics results from different software and experimental platforms. The 

major issues elucidated in this study as well as some possible actions to take to mitigate them are 

summarized below in Table 4. 

Table 4. Major caveats identified in this study, their effect on protein quantification and possible 

solutions. 

Caveat Problem Possible Solution 

High variability in protein abundance 

estimates introduced by discovery proteomics 

technology. 

Small fold changes (<2) in 

abundance are difficult to quantify 

accurately. 

Hierarchical experimental design and a priori 

calculation of required number of replicates. 

Variability in protein abundance estimates 

introduced by genetic factors present. 

Inference of causality may be 

hampered. 

Hierarchical experimental design and a priori 

calculation of required number of replicates. 

Different peptide quantification, PQIs and 

protein inference by proteomics software. 

Different abundance estimates of 

proteins with shared sets of 

peptides. 

Cautiously compare discovery proteomics 

results. Quantify proteins with two proteomics 

software. 

Peptides distinguishing homologous proteins 

escape detection. 

Highly homologous proteins are 

difficult to quantify. 

Perform targeted proteomics experiment with 

the distinguishing peptides. 

Proportionality between PQI value and 

protein abundance not unitary. 

Protein abundance estimates are 

semi-quantitative at best. 

Use peak area based software and PQI. 

Calibrate measurements with spike-in 

standards. 

Small proteins generate a limited set of 

peptides for quantification. 

Small proteins are difficult to 

quantify. 

Perform targeted proteomics experiment with 

suitable peptide or peptides. 

Low abundant proteins generate a limited set 

of peptides with ion signal for quantification 

Low abundant proteins are difficult 

to quantify 

Perform targeted proteomics experiment with 

peptides with the best ESI response. 

 

In our experiments we determined the variability of protein abundance in plants of the commonly 

used Arabidopsis thaliana Col-0 accession with essentially no genome wide genetic polymorphism. 

Arabidopsis thaliana is the most important angiosperm model plant. It is an annual, self pollinating 

species that is naturalized worldwide. As expected, the mean variance of the abundance of all 

proteins in the practically isogenic plants grown and harvested under controlled conditions was very 

small. Incidentally, biological variance in metabolite abundance was found to be much higher in this 

accession 
28

. This is no surprise as the metabolome is further downstream from the genome than the 

proteome. 

A handful of proteins showed some sizable variability in their abundance in the sampled plants. This 

naturally occurring variability in biological samples in the absence of genetic or environmental factors 

warrants consideration in the experimental design of comparative molecular studies and when 

Page 32 of 42

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Publications

109



33 

 

reporting the causality in response to experimental conditions. Incidentally, it was a surprise to see 

that these proteins are nearly all involved in stress response. It is documented that epigenetic 

mechanisms underlie most types of stress response in plants 
35-37

 and there is specific evidence for 

this at the PR5 locus 
38

, one of the most well known markers for induction of salicylic acid (SA) 

mediated resistance to biotrophic pathogens 
39

 and systemic acquired resistance (SAR) 
40, 41

. 
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Figure Legends 

Figure 1. Inference of Standard Protein Abundance from Measured Peptide Ion Signal Response. A. 

The mean number of PSMs in the three measurements of each molar amount of each standard 

protein normalized to the respective standard protein’s molecular weight is plotted. Only peptides 

with a sum of 24 or greater mean PSMs in measurements of all six molar amounts were plotted. This 

cut-off was chosen to eliminate peptides with less than 4 PSMs at any one point of the dilution series 

(6*4 = 24) as PSM based quantification with values below 4 was shown to be highly inaccurate 

[citation]. B. Quantification of ßLA and ßLB isoforms. Top panel; mean number of PSMs and mean 

Top3 PQI (ion signal peak area of three most intense peptide ion signals) in the three measurements 

of each molar amount of common peptides between ßLA and ßLB. Error bars denote standard errors 

(SE). Center panel; as top panel but PQIs for the tryptic peptide WENDEc(Carb)AQK from AA 61 to 69 

on ßLA discriminating the isoforms. Bottom panel; as center panel for the homologous peptide on 

ßLB WENGEc(Carb)AQK. C. The proportionality between measured and actual sample protein 

abundance expressed as a function of peptide ion signal response. The number of PSMs multiplied by 

the sequence coverage normalized to the molecular weight of every standard protein at each molar 

amount is set in relation to the respective molar amounts on the log10 scaled ordinate. Note this 

corresponds to the slope of a linear model of proportionality between measured and actual protein 

abundance. The number of PSMs of each peptide of each standard protein at each molar amount is 

on the abscissa. There is a general trend towards direct proportionality especially for larger, more 

abundant proteins. Dashed lines parallel to the x-axis show 0.5 and 1.5 ordinate values, respectively. 

 

Figure 2. Validation of Label-free Quantitative Proteomics Software. A. Left panel; proportionality 

between measured and expected standard protein log10 fold changes. Log10 fold changes were 

calculated exclusively for mean PQI values of four measurements of standard protein molar amounts. 

Center panel; percent error and variability of measured standard protein log10 fold changes. Percent 
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error was calculated as the difference between measured and expected log10 fold changes 

normalized to the respective expected log10 fold change multiplied by 100. When the log10 expected 

fold change was zero, only the difference multiplied by 100 was used. As above, only log10 measured 

fold changes calculated for mean PQI values of four measurements of standard protein molar 

amounts were considered. The RSD of measured log10 fold changes was calculated from all possible 

pair wise fold changes of four measurements of standard protein molar amounts (4*4 = 16). Dashed 

horizontal lines denote -30% and 30% error respectively. Coloring is according to log10 fold change 

(from green to blue). Right panel; Volcano plot showing the median log10 fold change of measured to 

mean PQI of 12 or more measurements of Arabidopsis thaliana background matrix proteins and the 

standard deviation of the respective log10 fold changes. Dashed horizontal lines denote 0.097 and 

0.079 log10 fold changes (0.8 and 1.2 fold changes) respectively. Coloring is according to PQI signal 

intensity (from red to blue). FC denotes Fold change. B. Heat map showing standard proteins 

quantified at molar amounts with each of the evaluated software parameter sets. Red indicates 

standard proteins were quantified in all four measurements of the respective molar amount, white 

indicates a failure to do so. Note the molar amounts for ßLA/ßLB differ from the six point dilution 

series of the other standards because peptides shared between the two could be quantified. 

Therefore ßLA/ßLB molar amounts are the sum of the two in each mixture (in ascending order: 20, 

60, 400, 1100, 1200, 1300 fmol). 

Figure 3. Analysis of the contributions of the shotgun proteomics technology (technical variance) and 

the plants (biological variance) to the total variance of protein abundance. A. The total variance of 

the abundance of every protein measured in all 3 repeated analyses of every plant in the nested 

experimental design and quantified by three software parameter sets (QIP-def-Top3, MQ-MBR-LFQ 

and MQ-MBR-iBAQ) was decomposed into technical and biological variance using a LMM for each of 

the software parameter sets. Mean variances for all proteins are indicated by horizontal bars and by 

numbers. B. The ratio of biological to total variance (ICC) is shown for the accumulating fraction of all 

quantified proteins. The 60, 80 and 90% quantiles are indicated by dashed lines. C. The possible 
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combinations of the numbers of plants and repeated analyses of each plant to detect fold changes in 

protein abundance of 1.41 with 95% confidence and 80% power are shown. D. Top panel: The 

expected protein abundance values (PQI) of each quantified protein were estimated for the three 

software and parameter sets using model-based least square means and plotted as independent 

variables for pair wise comparisons of software and parameter sets. Center panel: log2 fold changes 

of protein abundance values estimated as above for measurements of root proteomes deprived of 

and replete with phosphate (minus/plus phosphate). Bottom panel: As center panel showing only 

statistically significant fold changes (Student’s two sample T-test, n = 9, α = 0.05). 
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Abstract: Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants
including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to
growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been
identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed
Arabidopsis thaliana’s roots, root exudates, and leaves of inoculated and non-inoculated plants by
ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass
spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass
spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration
of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in
the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like
carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf
profiles, we detected by far less significant changes. We only observed an increased concentration of
organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased
concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the
understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales
and are a valid source for follow-up mechanistic studies, because these symbioses are particular and
clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes

Keywords: plant; fungus; interaction; exudates; roots; leaves; metabolite profiling; liquid
chromatography/mass spectrometry (LC/MS); gas chromatography/mass spectrometry (GC/MS)

1. Introduction

Piriformospora indica is a root-interacting endophytic fungus and has been found in the Indian
Thar-Dessert [1]. It belongs to the order of Sebacinaceous (Basidiomycota) [2] and yields a growth
promotion effect with various crop plants such as barley, tobacco, maize, and tomato, but also with the
model plant Arabidopsis thaliana [3]. Previous studies showed that P. indica promotes nutrient uptake
and helps plants to survive under biotic (pathogenic organisms) [4,5] and abiotic (water, temperature,
salt, toxins, heavy metal ions) stress conditions [6,7]. Furthermore, it stimulates plant growth, biomass,
and seed production [8,9]. The fungus colonizes the epidermal and rhizodermal part of the roots
and forms pearshaped spores, which accumulate within the roots and on the root surface. P. indica
grows inter- and intracellularly [10] but does not invade the endodermis and aerial parts of the plant.

Int. J. Mol. Sci. 2016, 17, 1091; doi:10.3390/ijms17071091 www.mdpi.com/journal/ijms
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This endosymbiotic interaction has been considered as mutualistic, as it leads to an improved nutrient
state in the host [11]. After establishment of this endosymbiotic interaction, the plant obtains more
phosphorous and water through extracellular hyphae of the fungus, whereas the fungus is supplied
with nitrogen and hydrocarbons in form of plant amino acids [11–15].

P. indica can be cultivated with the model plant A. thaliana. In general, P. indica colonization is
host-dependent and occurs in two phases: Early interactions are biotrophic in barley and A. thaliana,
but can switch to saprotrophy or maintain biotrophy in later stages, respectively [15]. Host metabolism
determines the availability of nitrogen, and the subsequent induction of nitrogen transporters and
a possible nutritional switch of P. indica from biotrophy to saprotrophy. A. thaliana had been shown
to provide sufficient nitrogen sources in form of increased levels of amino acids like Gln and Asn
at 14 dpi.

During the initial phase of this interaction, defense genes are activated and reactive oxygen species
(ROS) produced by the host against P. indica [16]. However, P. indica can rescue plants with elevated
ROS levels by providing antioxidants [17]. After recognition of A. thaliana, P. indica releases effectors
into the rhizosphere, which induce a response in the host [18]. Moreover, an increase in the intracellular
calcium concentration in the host’s root cells is provoked, which triggers an intracellular signaling
cascade (mitogen-activated protein kinase signaling pathways) [19,20], whereupon ethylene signaling
components and ethylene-response transcription factors are required [21,22]. Furthermore, cytokinins
and auxins play a crucial role in the maintenance of this symbiotic interaction [23]. Lahrmann et al. [24]
and others showed that the colonization of A. thaliana with P. indica correlates with the induction
of salicylic acid catabolites and jasmonate as well as glucosinolate metabolism [25,26]. Indolics
were identified as key players in the maintenance of this mutualistic interaction. Especially indolic
glucosinolates and reaction products are required to restrict the growth of P. indica.

Since the genomes of both organisms have been completely sequenced, both partners offer an ideal
opportunity to study mutualistic interactions of plants and root endophytes in the rhizosphere [27,28].
Thus, we investigated the metabolic response of A. thaliana to P. indica under hydroponic conditions by
non-targeted liquid chromatography/mass spectrometry (LC/MS) and gas chromatography/mass
spectrometry (GC/MS)-based metabolite profiling. For this purpose, we chose ultra performance
liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry
(UPLC/ESI-QTOFMS) for the profiling of secondary metabolites and gas chromatography coupled
to electron ionization quadrupole mass spectrometry (GC/EI-QMS) for the profiling of primary
metabolites. Both platforms gain a snapshot of biochemical processes within a cell. Whereas
reversed-phase LC/MS allows for the profiling of semipolar compounds [29], namely indolics,
flavonoids, phenylpropanoids, glucosinolates and their degradation products, GC/EI-QMS covers
main parts of central carbon metabolism [30]. Regardless of the choice of analysis platform, all
samples can be grouped according to their common metabolic fingerprint. For this purpose we set up
a standardized co-cultivation system, which supports the growth of both partners in close association
to each other and the consequent profiling of roots and their exudates as well as leaves.

2. Results and Discussion

To study the interaction of P. indica with A. thaliana, a sterile hydroponic cultivation system was
developed, which allows for the simultaneous profiling of roots and their exudates (Supplementary
Figure S1). For this purpose, P. indica was precultivated on agar plates and A. thaliana on
agar-filled, bottom-cut PCR tubes protruding into a liquid culture medium. After two weeks, both
organisms were brought together in half-strength Murashige-Skoog (MS) medium supplemented with
0.5% sucrose (w/v) and Gamborg B5 vitamins such as myo-inositol, nicotinic acid, pyridoxin, and
thiamine. According to our preliminary studies both components are essential for this symbiosis and
hence the growth promotion effect of A. thaliana.

Publications

121



Int. J. Mol. Sci. 2016, 17, 1091 3 of 19

2.1. P. indica Promotes Shoot Growth of A. thaliana under Specific Culturing Conditions in a Hydroponic
System after Root Colonization

If both components (sucrose and Gamborg B5 vitamins) were supplied for the co-cultivation
studies, the shoot biomass increased by 22% (p = 4.2 ˆ 10´5) in inoculated samples compared to the
control confirming the previously reported growth promotion effect in soil [31]. Although P. indica
colonizes the roots, the root biomass did not change after two weeks of co-cultivation (Figure 1) leading
to the assumption that P. indica might provoke a systemic effect in A. thaliana. Although previous
studies have shown a growth promotion effect in roots [23,31], we anticipated slight deviations in
a hydroponic system compared to soil due to different physicochemical properties.
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Each replicate n comprises a pool of 24 plants. Significance analysis of differences between control 
and co-cultivated samples was performed by t-test: ***, p ≤ 0.001.  
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Figure 2. Microscopic image of an inoculated root with a GFP-labeled P. indica strain. (A) brightfield 
image; (B) fluorescence image. 

P. indica grows inter- and intracellularly in root cells of A. thaliana when co-cultivated in  
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conditions, a GFP-labeled P. indica strain was used to visualize colonization. Only weak 
autofluorescence signals were detected in the non-inoculated roots and roots inoculated with the 

Figure 1. Leaf and root fresh weight of A. thaliana (A.t.) after co-cultivation with P. indica (P.i.) in
a hydroponic system. A. thaliana was co-cultivated for two weeks with an agar plug containing mycelia
of P. indica. For control A. thaliana was solely cultivated with an agar plug in 0.5ˆMurashige & Skoog
(MS) medium supplemented with 0.5% sucrose (w/v) and vitamins: (A) shoot fresh weight (FW);
(B) root fresh weight (FW). Values represent the mean ˘ SD (standard deviation) of three independent
experiments (control samples: n = 3 ˆ (3 ´ 5) and co-cultivated samples: n = 3 ˆ 5). Each replicate n
comprises a pool of 24 plants. Significance analysis of differences between control and co-cultivated
samples was performed by t-test: ***, p ď 0.001.

To investigate how P. indica interacts with the host in a hydroponic system, fluorescence
microscopy images were recorded using green fluorescent protein (GFP)-labeled P. indica and the
interaction monitored at 14 dpi.
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Figure 2. Microscopic image of an inoculated root with a GFP-labeled P. indica strain. (A) brightfield
image; (B) fluorescence image.

P. indica grows inter- and intracellularly in root cells of A. thaliana when co-cultivated in soil [31].
In order to test if P. indica still forms fungal hyphae at the root surface under hydroponic conditions,
a GFP-labeled P. indica strain was used to visualize colonization. Only weak autofluorescence signals
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were detected in the non-inoculated roots and roots inoculated with the non-labeled P. indica strain
(Supplementary Figure S2). In contrast, roots inoculated with the GFP-labeled strain exhibited
a very strong fluorescence already after a 3 s exposure time showing that P. indica colonizes the
root surface and penetrates the root of A. thaliana (Figure 2). Interestingly, P. indica was predominantly
detected in lateral roots. According to these observations, we concluded that P. indica colonizes roots
of A. thaliana and as a consequence likely leads to changes in root and shoot metabolism. So far,
only indolic glucosinolates and hormones have been discussed in depth [24,26].

2.2. P. indica Alters the Exudation of Secondary Metabolites by A. thaliana Roots

Hormonal regulation has been described to accompany the colonization of P. indica on A. thaliana
roots [22–24,32–35]. An enrichment analysis (Table 1 and Supplementary Table S1) of the upregulated
root transcripts 14 dpi as published in Lahrmann et al. [24] revealed an overrepresentation of genes
involved in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway “Biosynthesis of plant
hormones” (ath01070).

Table 1. Overrepresented KEGG pathways among upregulated A. thaliana root transcripts 14 dpi [15].

Term Fold Enrichment p-Value *

ath00966: Glucosinolate biosynthesis 10.4 8.89 ˆ 10´8

ath00940: Phenylpropanoid biosynthesis 3.8 5.84 ˆ 10´7

ath00360: Phenylalanine metabolism 3.7 6.21 ˆ 10´5

ath00903: Limonene and pinene degradation 3.8 1.12 ˆ 10´4

ath00680: Methane metabolism 3.5 1.70 ˆ 10´4

ath00945: Stilbenoid, diarylheptanoid and gingerol biosynthesis 3.7 2.20 ˆ 10´4

ath00910: Nitrogen metabolism 3.9 5.56 ˆ 10´3

ath00260: Glycine, serine and threonine metabolism 3.7 7.07 ˆ 10´3

ath00460: Cyanoamino acid metabolism 5.0 1.25 ˆ 10´2

ath00960: Tropane, piperidine and pyridine alkaloid biosynthesis 5.5 2.05 ˆ 10´2

ath01070: Biosynthesis of plant hormones 1.6 3.54 ˆ 10´2

ath00400: Phenylalanine, tyrosine and tryptophan biosynthesis 3.3 4.44 ˆ 10´2

* p-value was corrected according to Benjamini-Hochberg.

As shown in Supplementary Figure S3, P. indica significantly affects phytohormone levels in
root exudates and roots, respectively. A higher concentration of hormones was found in exudates of
co-cultivated samples as compared to control samples. This effect was in particular pronounced for
jasmonate (JA), and jasmonyl-isoleucine (JA-Ile), both showing a more than 10-fold increase in the
exudates and its potential role was discussed in reference [24]. In roots, the hormone content was also
increased, but to a lower extent for JA, and JA-Ile, for which only a two- to four-fold increase was
observed. 12-oxo-phytodienoic acid (OPDA), the precursor of JA and JA-Ile, also accumulated in roots
but could not be detected in exudates irrespective of the conditions.

Besides the transcriptional regulation of hormone biosynthesis, hormone responses were
overrepresented biological processes in Gene Ontology (GO:0009753 response to jasmonic acid
stimulus, GO:0009751 response to salicylic acid stimulus). The analysis of Gene Ontology (GO) terms
(Supplementary Table S1) further pointed to the involvement of secondary metabolic processes as the
top two enriched processes (GO:0019748) ranked after defense response (GO:0006952). Consequently,
roots and their exudates were comprehensively profiled for changes in primary and secondary
metabolism upon P. indica colonization. Root exudates were only profiled for changes in semipolar
metabolism, as in a screen for primary metabolites (GC/MS) all blank samples (samples without plant
and/or fungus) already exhibited a considerable number of primary metabolites. Representative
base peak chromatograms are depicted in Figure 3 and reveal a unique metabolic fingerprint for
both ionization modes, ESI(+) and ESI(´). A principal component analysis (PCA) could verify this
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assumption. For both ionization modes 89% of the total variance was explained by the first principal
component (PC1) and 3% ESI(+) as well as 4% ESI(´) by PC2 (Supplementary Figure S4).Int. J. Mol. Sci. 2016, 17, 1091 5 of 18 
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exudates of inoculated samples (Figure 4) leading to the assumption that these oligomers are further 
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Figure 3. Overlay of representative UPLC/ESI(+/´)-QTOFMS base peak chromatograms (m/z
100–1000) of inoculated (red) and non-inoculated (green) A. thaliana exudates. (A) ESI(+): positive
ionization mode; (B) ESI(´): negative ionization mode. 1: 8-MeSO–Octyl–NH2; 2: C10H15N3;
3: H–Ile–Ile–OH; 4: 1-MeO–I3CH2NH2; 5: C9H7N3O3; 6: C17H34NO9P; 7: Scopoletin; 8:
8-MeSO–Octyl–CN; 9: C16H29NO8; 10: C12H20O4; 11: C14H28O5; 12: C28H42O6; 13: Pantothenic
acid; 14: C16H26O8; 15: C16H23N3O8; 16: C16H23N3O8; 17: C13H24O6; 18: C12H22O5; 19:
C9H18O4; 20: C13H22O5; 21: C12H22O5; 22: C25H41N3O9; 23: C14H26O5; 24: Internal standard
2,4-Dichlorophenoxyacetic acid; 25: 9,12,13-Trihydroxyoctadec-10-enoic acid; 26: C12H18O4; 27:
C28H44O6; 28: C28H42O6.

Non-targeted UPLC/ESI(+/´)-QTOFMS-based metabolite profiling revealed that the
concentration of 200 out of 341 detected ESI(+) components as well as 271 out of 377 ESI(´) components
was significantly affected (p < 0.01) due to the presence of P. indica. A total of 28 (ESI(+)) as well as
24 (ESI(´)) components were down- and 172 (ESI(+)) as well as 247 (ESI(´)) components were
upregulated due to the inoculation implying that P. indica stimulates root exudation of A. thaliana.

As already observed by Lahrmann et al. [24], the amount of compounds associated with nucleoside
and aromatic amino acid metabolism was reduced in concentration by the inoculation, while that
of aliphatic and indolic glucosinolate metabolism (except for 4-hydroxy-indole-3-carbaldehyde),
dihydroxybenzoic acid (DHBA) conjugates, JA metabolism as well as fatty acid and pantothenic
acid metabolism was increased. A number of phenylpropanoids including coumarins and oligolignols
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(except for scopoletin and G(8-O-4)FA sulfate) showed reduced levels in the exudates of inoculated
samples (Figure 4) leading to the assumption that these oligomers are further metabolized inside
the cell and not exuded, very likely to oligolignols or to lignin [36], a main constituent of the cell
wall. Both, glucosinolate (ath00966) and phenylpropanoid biosynthesis (ath00940), were among the
overrepresented KEGG pathways of root transcripts (Table 1).
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Figure 4. Differentially expressed metabolites (p ď 0.01) in root exudates of A. thaliana after
co-cultivation with the fungus P. indica for two weeks across two independent biological experiments.
Intensity values were log-transformed and z-scored row-wise. Red: maximal intensity; Green:
minimal intensity.

Nicotinic acid, an important precursor for vitamin B6, and thus, key player in the photoprotection
of plants [37], also decreased in concentration upon co-cultivation in the root exudates (Figure 4).
Obviously, nicotinic acid is required by P. indica. If this compound was not supplemented,
no growth-promoting effect was observed of the host.

In the exudates we also detected differences in the dipeptide pool, namely the concentration of
Phe-Gly, Ile-Leu, Phe-Ile and Ile-Phe was enhanced, while that of Ile-Val, Leu-Val, Val-Leu, Leu-Pro
and Leu-Tyr was reduced in the co-cultivated samples (Figure 4). These differences might originate
from different functionalities of the respective dipeptides and require further investigation. So far,
Komarova et al. [38] showed that peptide transporters (AtPTR5 and AtPTR5) facilitate the uptake of
nitrogen from the rhizosphere.

2.3. Changes in the Root Metabolism of A. thaliana

The secondary metabolic changes detected in root exudates, especially that of glucosinolate
biosynthesis, phenylpropanoid biosynthesis, and phenylalanine metabolism should also be reflected
in root metabolism. In addition, transcriptionally enriched KEGG pathways of primary metabolism
(Table 1), such as nitrogen metabolism (ath00910), glycine, serine and threonine metabolism (ath00260),
and cyanoamino acid metabolism (ath00460) were expected in the GC/MS-based metabolite profiles.
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2.3.1. Non-Targeted GC/MS Based Metabolite Profiling Reveals Perturbations in the Primary
Root Metabolism

Figure 5 shows two representative extracted ion chromatograms of m/z 73 (equals C3H9Si+

and is a typical fragment for trimethylsilylated compounds) obtained from a pool of inoculated and
non-inoculated roots. Again, the inoculated profile is distinct compared to the non-inoculated root
metabolic profile. Forty-eight percent of the total variance was explained by PC1 and 13% by PC2 and
are plotted in Supplementary Figure S5.
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increase in the concentration of Asn, Gln, Ser, Thr, and Ala at 14 dpi. Serine was also increased in its 

Figure 5. Representative extracted ion chromatograms (m/z 73) of inoculated and non-inoculated
A. thaliana root extracts. (A) Non-inoculated root; (B) with P. indica inoculated root. 1: Lactic acid
(2TMS); 2: Alanine (2TMS); 3: Sulfuric acid (2TMS); 4: Phosphoric acid (3TMS); 5: Glyceric acid (3TMS);
6: Serine (3TMS); 7: Threonine (3TMS); 8: Malic acid (3TMS); 9: Pyroglutamic acid (2TMS); 10: GABA
(3TMS); 11: Glutamic acid (3TMS); 12: Asparagine (3TMS); 13: Glutamic acid (3TMS); 14: Glutamine
(3TMS); 15: Citric acid (4TMS); 16: Myo-Inositol (6TMS); 17: Glucose-6-phosphate (1MeOX, 6TMS);
18: Thiamine hexoside; 19: Sucrose (8TMS); 20: Unknown; 21: Unknown.

Non-targeted GC/EI-Q-MS based metabolite profiling revealed 287 out of 801 differentially
accumulated components. Among them, we detected amino acids (e.g., Asn, Thr, Leu, 3-Cyano-Ala,
beta-Ala, Val, Ala, Gln, ornithine, Pro, pyro-Glu, and GABA), organic acids (e.g., citrate, 2-oxoglutarate,
fumarate, malate, oxalate, glycerate, fumarate, and 3-hydroxy-3-methylglutaric acid), carbohydrates
(e.g., 1-O-methylglucopyranoside, 1-O-methylgalactopyraoside, maltose, raffinose, trehalose, xylose,
ribose), polyols (erythritol, myo-inositol), phosphates (e.g., glycerol-3-phosphate, phosphate,
glycerophosphoglycerol), and sulfates (e.g., sulfate, thiamine, thiamine-hex) belonging to the starch
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and sucrose metabolism, glycolysis, tricarboxylic acid (TCA) cycle, amino acid metabolism, and urea
metabolism. All compounds showed increased levels in the inoculated roots (Figure 6) except for
pyruvate, erythritol, allantoin, and 4-methyl-5-thiazoleethanolglycopyranoside (for spectrum see
Supplementary Figure S6) indicating that the initially applied amount of sucrose and thiamine is
metabolized by P. indica. We observed an increase in the concentration of Asn, Gln, Ser, Thr, and Ala at
14 dpi. Serine was also increased in its levels as described by Lahrmann et al. [15], but did not pass the
defined significance level (p = 0.051). In general, the data collected are in good accordance with the
transcriptional changes and lead us to the hypothesis that A. thaliana provides nitrogen to the fungus
so that P. indica can maintain a biotrophic nutritional state [15]. In the leaf profiles, the N-rich amino
acids (Gln, Arg, Asn, 3-Cyano-Ala, and ornithine) were among the few differentially accumulated
compounds decreasing in concentration upon colonization and consequently showed the opposite
trend (Supplementary Figure S7) compared to the roots. This raises the question if these amino acids
are transported to the root to feed P. indica. Most likely, these amino acids are required to balance the
nutritional state of P. indica. To trace the flow of nutrients, further investigations are required. The
change in the concentration of organic acids and carbohydrates was comparable for roots and leaves
except that less differential changes were observed in the leaf profiles. These results again show that
P. indica activates primary root metabolism of A. thaliana. According to our data, both partners appear
to offer each other nutrients to maintain a mutualistic interaction, since an enhanced amount of P, S,
and N (in the form of amino acids) was observed in roots of A. thaliana colonized with P. indica.
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Figure 6. Differentially expressed primary metabolites occurring in root extracts of A. thaliana.
Control and treatments are color-coded; control: A. thaliana (green) and treatment: A. thaliana +
P. indica (red). Compounds with p < 0.01 are specifically marked by grey color or left blank for
0.01 ď p ď 0.05. GPG: glycerophosphoglycerol; 4M5HET: 4-methyl-5-hydroxyethylthiazole;
3H3MGA: 3-hydroxy-3-methylglutaric acid; 4-HBA: 4-hydroxybenzoic acid; 1-OMGclP:
1-O-methyl-glucopyranoside; 1-OMGalP: 1-O-methylgalactopyranoside.

2.3.2. LC/MS Based Non-Targeted Metabolite Profiling Shows an Induction of Aliphatic and Indolic
Glucosinolate Metabolism, Flavonoids, and Oligolignols in Roots

Besides primary metabolism, secondary root metabolism was investigated, since one category
“secondary metabolic process” was a highly ranked candidate in the GO enrichment analysis.
A unique fingerprint was observed in the root LC/MS profiles (Figure 7). According to Supplementary
Figure S5, 76% of the entire variance was explained by PC1 and 0.07% by PC2 for the positive mode.
These values were similar for the negative mode (PC1: 74%; PC2: 0.08%) and indicate that secondary
metabolism is perturbed to a greater extent than primary metabolism.
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Figure 7. Representative UPLC/ESI(´)-QTOFMS base peak chromatograms (m/z 100–1000) of
inoculated and non-inoculated A. thaliana root extracts. (A) Non-inoculated root; (B) with P. indica
inoculated root. 1: 7MeSO Heptyl GSL; 2: 2,5 DHBA-Pent; 3: I3M GSL; 4: C14H18O10; 5: C17H24O10;
6: 8 MeSO Octyl GSL; 7: Scopolin; 8: 4MeO-I3M GSL 9: 1MeO-I3M GSL; 10: C18H32O11; 11: C19H18O3;
12: C19H18O3; 13: 7MeS Heptyl GSL; 14: C38H46O18; 15: 8MeS Octyl GSL.
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In these profiles, 167 out of 329 detected compounds (ESI(+)) were altered in abundance and
188 out of 359 for the negative ionization mode due to the presence of P. indica. Similarly to the
exudates, a higher number of compounds displayed upregulated abundance in the inoculated samples
compared to the non-inoculated samples. From these numbers one can once more conclude that
P. indica stimulates secondary root metabolism as well.

In accordance with Lahrmann et al. [24], aliphatic and indolic glucosinolates as well as their
breakdown products, aromatic amino acids, coumarins, oligolignols, and flavonoids accumulated
in inoculated roots (Figure 8) confirming the transcript data (KEGG, Table 1: glucosinolate ath00966
and phenylpropanoid biosynthesis ath00940). Although the plant seems to be in a defensive
stage, no camalexin was detected in these profiles. In the leaf profiles an increased amount of
aliphatic and indolic glucosinolates as well as their breakdown products, JA conjugates, oligolignols,
and hydroxycinnamic acid amides was detected (Supplementary Figure S8). Several flavonoids
(glycosylated kaempferol and quercetin) were only detected as differential in the root profiles and not
in the leaf profiles, leading to the conclusion that this substance class plays an important role in the
mutualistic interaction of A. thaliana and P. indica. Recently, Lahrmann et al. [24] stated that it remains
to be clarified if flavonoids are accumulating in roots of A. thaliana upon interaction with P. indica.
Indeed, we show that flavonoids accumulate in roots of A. thaliana upon co-cultivation with P. indica.
Most likely, enhanced flavonoid biosynthesis, in addition to JA signaling [39], may also function as
a signal for P. indica.
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the mutualistic interaction of A. thaliana and P. indica. Recently, Lahrmann et al. [24] stated that it 
remains to be clarified if flavonoids are accumulating in roots of A. thaliana upon interaction with  
P. indica. Indeed, we show that flavonoids accumulate in roots of A. thaliana upon co-cultivation with 
P. indica. Most likely, enhanced flavonoid biosynthesis, in addition to JA signaling [39], may also 
function as a signal for P. indica. 
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across two independent biological experiments. Candidates were retrieved from a two-sided t-test
(p < 0.01). For visualization, intensity values were log-transformed and z-scored row-wise. Red:
maximal intensity; green: minimal intensity.
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3. Materials and Methods

3.1. Chemicals and Standards

All chemicals were of highest analytical grade (>99%) and obtained from Carl Roth GmbH + Co.
KG (Karlsruhe, Germany), Difco Microbiology (Lawrence, KS, USA), Duchefa Biochemie B.V. (Haarlem,
The Netherlands), Merck KGaA (Darmstadt, Germany), and Sigma-Aldrich (Steinheim, Germany).

3.2. Pre-Cultivation of P. indica

P. indica was cultured on agar plates (1.5% (w/v) agar) for 3 weeks at 28 ˝C in the dark using
Aspergillus minimal medium [29]. For this purpose, a punched out agar block with mycelia of P. indica
was placed in the center of a culture plate.

3.3. Conduction of Co-Cultivation Studies and Production of Plant Material

Co-cultivation studies were performed as previously described [25]. In short, two-week old
A. thaliana plantlets were co-cultivated for two weeks with P. indica in a hydroponic system under
short day conditions (23 ˝C, 8 h light, 180 µE¨ m´2¨ s´1 and 21 ˝C, 16 h dark). After two weeks
of co-cultivation (four-week old plants), the medium containing the nutrient solution and the root
exudates was filtered and stored at 4 ˝C in Schott flasks until further processing. At harvest, roots
were cut below the bottom of the PCR tube and blotted dry with a paper towel before shock freezing
in liquid nitrogen. Finally, they were stored at ´80 ˝C until further processing. More technical details
are visualized in Supplementary Figure S1. Media composition is summarized in Appendix A.

3.4. LC/MS-Based Metabolite Profiling

For LC/MS-based metabolite profiling (UPLC: Acquity, Waters, Eschborn, Germany; MS:
MicrOTOF–Q I hybrid quadrupole time-of-flight mass spectrometer equipped with an Apollo II
electrospray ion source, Bruker Daltonik GmbH, Bremen, Germany), the ground tissue material was
processed by solid liquid extraction using methanol/water, 80/20 (v/v) (40 mg root fresh weight
corresponds to 200 µL extraction solution and 50 mg leaf fresh weight corresponds to 400 µL extraction
solution). Analytes of the nutrient solution were extracted by a reversed-phase solid phase extraction
procedure (180 mL medium result in 120 µL analysis solution).

3.4.1. Preparation of Nutrient Solutions for LC/MS Analysis

All exudate samples were prepared and analyzed by UPLC/ESI-QTOFMS as presented in
Lahrmann et al. [24]. In short, the nutrient solution was spiked with 20 µM 2-(2,4-dichlorophenoxy)
acetic acid, evaporated until dryness, reconstituted in 9 mL water/methanol 95/5 (v/v) and subjected
to a Bond Elut PPL cartridge (200 mg, 3 mL, Agilent Technologies, Böblingen, Germany). Finally, the
eluate was subjected to a solid phase extraction workup and reconstituted in 120 µL water/methanol
70/30 (v/v) prior to LC/MS analysis. Technical details of the solid phase extraction workup can be
found in the Appendix B.

3.4.2. Sample Preparation and Profiling of Tissue Material for LC/MS Analysis

The plant material was processed according to Böttcher et al. [29]. As already described, the frozen
material was extracted twice with methanol/water, 80/20 (v/v) and reconstituted in methanol/water,
30/70 (v/v) prior to LC/MS-analysis. More details of the extraction procedure can be found in the
Appendix B.

3.4.3. Non-Targeted LC/MS-Based Profiling and Data Analysis

Changes in the secondary plant metabolism were analyzed by UPLC/ESI-QTOFMS. Samples
were injected onto an Acquity UPLC system (Waters, Eschborn, Germany), equipped with an HSS
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T3 column (100 ˆ 1.0 mm, particle size 1.8 µm, Waters), and separated using a binary gradient
(A: water/0.1% (v/v) formic acid; B: acetonitrile/0.1% (v/v) formic acid). Eluting compounds were
detected in positive and negative ionization mode from m/z 100–1000 using a MicroTOF–Q I hybrid
quadrupole time-of-flight mass spectrometer equipped with an Apollo II electrospray ion source
(Bruker Daltonics, Billerica, MA, USA). All instrument parameters and further settings can be found in
the Appendix B.

Raw data files were converted to mzData using CompassXPort version 1.3.10 (Bruker Daltonics).
For feature detection, alignment, and filling of missing values the R package XCMS version 1.41.0 [40]
was used. Settings are summarized in Appendix B.

The intensities of the resulting features (m/z-retention time pairs) were log2 transformed and
subjected to a two-sided Student’s t-test. Relevant mass spectral features were extracted within
a predefined range (isolation width: ˘0.02 m/z) and elemental compositions were calculated applying
a default error range (15 ppm). Putative elemental compositions were checked for consistency while
analyzing elemental compositions of fragment ions and neutral losses of collision-induced dissociation
(CID)-mass spectra. For acquisition of CID mass spectra quasi-molecular cluster ions were isolated
at the Q1 (isolation width: ˘3 m/z) and fragmented inside the collision cell using argon as collision
gas. Product ions were detected as described above. All mass spectral data can be found in the
MetaboLights repository (MTBLS341) [41].

3.5. GC/MS Based Metabolite Profiling

3.5.1. Sample Preparation of Tissue Material

One hundred µL extract of the remainder from the LC/MS-based metabolite profiling studies
was spiked with 100 µM succinic acid-2,2,3,3-d4, dried down in a vacuum concentrator, and stored at
´20 ˝C until further processing.

3.5.2. Preparation of Samples for Non-Targeted Metabolite Profiling and Analysis of GC/MS Profiles

Dried down extracts were subjected to a two-step derivatization process using methoxyamine
hydrochloride and N,O-bis(trimethylsilyl)trifluoroacetamide. Derivatized samples were injected
splitless at 230 ˝C onto an Agilent 6890N GC equipped with a split/splitless inlet and a ZB-5 column
(30 m ˆ 0.25 mm, 0.25 µm 95% dimethyl/5% diphenyl polysiloxane film, 10 m integrated guard
column, Phenomenex, Aschaffenburg, Germany). Eluting components were detected from m/z
70–600 by using an Agilent 5975 Series Mass Selective Detector (Agilent Technologies, Waldbronn,
Germany). For the generation of the metabolite profiles, chromatograms were baseline-corrected using
Metalign [42]. Peak intensities above 500 arbitrary ion current units were imported into the TagFinder
software [43], aligned using the retention index model of van den Dool and grouped according to their
common retention time and mass spectral features. For statistical analysis, peak intensities of cluster
(cluster size > 3) were normalized to the internal standard (succinic acid-2,2,3,3-d4). Then, all data
were log2-transformed and submitted to a two-sided Students t-test. Finally, resulting mass spectral
features were identified via best mass spectral and retention index match using the Golm Metabolome
Database [44] and the NIST2012 software (May 2011, National Institute of Standards and Technology,
Gaithersburg, MD, USA). Details of the derivatization protocol and instrument parameters can be
found in the Appendix C.

All statistical analysis was either performed with the R statistical language, the Bioconductor
environment, the package pcaMethods or Microsoft Excel.

3.6. Hormone Analysis

Hormone profiling was conducted as described in Ziegler et al. [45] (for further information see
Appendix D). Root material was homogenized, extracted in methanol, and processed firstly using a
hydrophobic solid phase extraction cartridge (Chromabond Sorbent HR-XC, Macherey-Nagel, Düren,
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Germany) and secondly with an anion exchange solid phase extraction cartridge (Diethylaminoethyl
Sephadex (DEAE-Sephadex)). For the root exudates the anion exchange step was omitted.

Analytes were separated by an Agilent 1290 Infinity HPLC system and detected on-line by
ESI-MS/MS using an API 3200 triple-quadrupole LC-MS/MS system equipped with an ESI Turbo
Ion Spray interface (AB Sciex, Darmstadt, Germany). Triple quadrupole scans were acquired in the
multiple reaction monitoring mode (MRM) with Q1 and Q3 set at unit resolution. Scheduled MRM
was performed with a window of 90 s and a target scan time of 0.1 s. Selected MRM transitions and
compound specific parameters can be found in Ziegler et al. [45].

3.7. Microscope Images

Bright-field and fluorescence microscopic images were recorded with a Stemi 2000 Axio Imager
stereomicroscope (Carl Zeiss MicroImaging GmbH, Göttingen, Germany). For bright-field images
a Plan Apochromat 20ˆ/0.75 objective with 20ˆ magnification was used and for fluorescence images
a Plan Apochromat 20ˆ/0.75 objective with 20ˆ magnification, a GFP-Filter 450–490 nm, filterset 9
and the Axio Imager camera.

3.8. Transcript Enrichment Analysis

Overrepresentation analysis of the overexpressed genes in Arabidopsis 14 dpi as published in
Lahrmann et al. [24] was performed with DAVID [46,47] against the default background genes from
TAIR using KEGG pathways [48] and Gene Ontology [49].

3.9. Data Availability

All data sets are available from the MetaboLights repository [41] under the accession
number MTBLS341.

4. Conclusions

The mutualistic interaction of P. indica with A. thaliana resulted in an increased shoot biomass
production, but not root biomass after a two-week co-cultivation. Interestingly, the presence of P. indica
had an obvious effect on the root’s primary and secondary metabolism and the exudation rate, but
not on leaf metabolism of A. thaliana. Apparently, P. indica stimulates the belowground metabolism
of A. thaliana, but not the shoot metabolism. The metabolic changes identified can be considered as
potential biomarkers, which need to be tackled in the near future. Previous studies and this study
have shown that indolic glucosinolates and hormones are important for the interaction. The induction
of the defense response might indicate that the plant tries to balance fungal growth and maintain
its mutualism. This assumption could be confirmed by the analysis of appropriate mutants. In the
future, new mutants, especially of the flavonoid metabolism, need to be obtained to investigate the
mutualistic interaction in more depth. It is possible that plant-growth promoting microorganisms can
be valuable tools for crop improvement [7,50], as they promote the plant growth and help the plant to
cope with abiotic and biotic stress factors.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/
7/1091/s1.
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Abbreviations

A. thaliana Arabidopsis thaliana
P. indica Piriformospora indica
GC Gas chromatography
UPLC Ultraperformance liquid chromatography
ESI Electrospray ionisation
QTOF Quadupole time of flight mass spectrometer
SD Standard deviation
ET Ethylene
JA Jasmonic acid
GSL Glucosinolate

Appendix A (Media for Co-Cultivation Studies)

Cultivation of P. indica: For the cultivation of P. indica Complete Medium was used and prepared
as follows: stock solution 1: 12% (w/v) NaNO3, 1.04% (w/v) KCl, 1.04% (w/v) MgSO4¨ 7H2O, 3.03%
(w/v) KH2PO4 and stock solution 2: 0.6% (w/v) MnCl2¨ 4H2O, 0.265% (w/v) ZnSO4¨ 7H2O, 0.15% (w/v)
H3BO3, 0.075% (w/v) KI, 0.025% (w/v) Na2MO4¨ 2H2O, 0.013% (w/v) CuSO4¨ 5H2O. The final medium
consisted of a mix of 5% (v/v) stock solution 1, 2% (w/v) Glucose, 0.2% (w/v) Bacto-Pepton, 0.1% (w/v)
yeast extract, 0.1% (w/v) Casamino acids and 0.1% (v/v) stock solution 2.

Cultivation of A. thaliana and co-cultivation of A. thaliana with P. indica: For the pre- and
co-cultivation stage 0.221% (w/v) Premix (M0231; Duchefa Biochemie B.V.) and 0.5% (w/v) sucrose in
water were used. The pH was adjusted to 5.9 with 1 M KOH prior to autoclaving.

Appendix B (UPLC/ESI-QTOFMS)

C18-SPE: Bond Elut PPL cartridges were washed with 1 mL methanol, conditioned with 1 mL
water/formic acid, 98/2 (v/v), loaded with 4 mL sample solution, washed with 1 mL water, and eluted
with 2 mL methanol/formic acid, 99/2 (v/v); eluates were evaporated in a vacuum centrifuge and the
residue were reconstituted in 120 µL water/methanol, 70/30 (v/v).

Extraction of root material: 200 µL methanol/water, 80/20 (v/v), pre-cooled at ´28 ˝C, were added
to the tissue; the mixture was allowed to reach room temperature within 15 min with occasionally
vortexing; after sonication for 15 min at 20 ˝C and centrifugation for 10 min at 16,000ˆ g the supernatant
was transferred to a new 2 mL polypropylene tube; the remaining plant material was extracted
a second time with 200 µL methanol/water, 80/20 (v/v); both extracts were combined and evaporated
to dryness at 40 ˝C using a vacuum centrifuge; the residue was redissolved in methanol/water, 30/70
(v/v) according to fresh weight (40 mg = 200 µL), sonicated for 10 min at 20 ˝C, centrifuged for 5 min
at 16,000ˆ g, and the supernatant subjected to UPLC/ESI-QTOFMS analysis

UPLC settings: Full loop (loop volume: 2.5 µL); gradient: (flow rate: 150 µL¨ min´1) 0–1 min,
isocratic 95% A, 5% B; 1–16 min, linear from 5% to 95% B; 16–18 min, isocratic 95% B; 18–18.01 min,
linear from 95% to 5% B; 18.01–20 min, isocratic 5% B.

ESI(+) settings: Nebulizer gas, nitrogen, 1.6 bar; dry gas, nitrogen, 6 L¨ min´1, 190 ˝C; capillary,
´5000 V; end plate offset, ´500 V; funnel 1 RF, 200 Vpp; funnel 2 RF, 200 Vpp; in-source CID energy,
0 V; hexapole RF, 100 Vpp; quadrupole ion energy, 3 eV; collision gas, argon; collision energy, 3 eV;
collision RF 200 Vpp; transfer time, 70 µs; pre pulse storage, 5 µs; spectra rate, 3 Hz.

ESI(´) settings: All parameters were maintained except for the nebulizer gas (1.4 bar), capillary
(4000 V), quadrupole ion energy (5 eV), collision energy (7 eV), and collision RF (150 Vpp).

Data acquisition: centroid mode; recalibration on the basis of lithium formate cluster ions
after injecting 20 µL 10 mM lithium hydroxide 49.9/49.9/0.2 (dissolved in isopropanol/water/formic
acid; v/v/v).
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XCMS settings: Feature detection with the help of the centWave algorithm (sntresh: 3, prefilter:
(3.100), ppm: 25, peak width: (5.12); feature alignment with the help of the XCMS function
group.density (minfrac: 0.75, bw: 2, mzwid: 0.05); missing values replacement by the XCMS
function fillPeaks.

Analysis of raw data: DataAnalysis 4.2 software (Bruker Daltonics) for deconvolution and
generation of extracted ion chromatograms

Appendix C (GC/EI-QMS)

Derivatization: Residues were reconstituted in 40 µL methoxyaminehydrochloride (20 mg/mL
in pyridine, Sigma-Aldrich), the solution thoroughly vortexed and incubated at 40 ˝C for 1.5 h. An
80 µL mix comprising 70 µL N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA, Macherey-Nagel)
and 10 µL alkane reference mixture (dodecane, pentadecane, nonadecane, docosane, octacosane
and dotriacontane each to a final concentration of 80 µg¨ mL´1 dissolved in pyridine) were added
and incubation at 40 ˝C proceeded for an additional 30 min; the solution was centrifuged and the
supernatant transferred to a GC vial.

GC settings: Carrier gas helium, constant flow: 1 mL¨ min´1; temperature program: 70 ˝C for
1 min, gradient 9 K¨ min´1 to 300 ˝C, 5 min at 300 ˝C.

EI settings: Transfer line 300 ˝C; ion source temperature 230 ˝C; scan rate 3 Hz
Metalign settings: Maximum amplitude: 6,000,000, peak slope factor: 0.5, peak threshold factor: 1,

average peak width at half height: 5.
TagFinder settings: Peak Finder (Smooth Width Apex Finder: 3; Low Intensity Threshold:

500; Max: Merging Time Width: 0.3); Time Scanner (Time Scan Width: 1; Min Fragment Intensity:
500); Tag Gen Filter (Tag Mass: 76, 146, 150–600; Sample Counts > 5); Intensity Calculator (Simple:
MAX_INTENSITY); Tag Correlation (Correlation Method: PearsonCor; Significance Level: SIG_005);
Tag Clustering (Core Adjacency Option: SAME_CORE; Min Core Option: INPUT_VALUE); Tag Output
(Min Cluster Size: 3)

Appendix D (Hormone Analysis)

Profiling of Root Tissue

Homogenization and extraction: Root material was homogenized in bead beater and extracted
with; 200 µL methanol (supplemented with 2 ng abscisic acid-d6 (ABA-d6), 5 ng indole-3-acetic
acid-13C6 (IAA-13C6), 5 ng jasmonic acid-d6 (JA-d6), 0.74 ng jasmonyl isoleucine-d2 (JA-Ile-d2),
30 ng 12-oxo phytodienoic acid (OPDA-d5), 1.5 ng salicylic acid-d4 (SA-d4), 5 ng zeatin (Z-d5),
5 ng trans-zeatin-riboside-d5 (tZ9R-d5), 5 ng dihydrozeatin riboside-d5 (DHZR-d5). After vortexing for
20 min the supernatant was clarified by two rounds of centrifugation at 10,000 rpm for 5 min. Before
loading on the HR-XC SPE 1 mL water/acetic acid, 98/2 (v/v) was added.

HR-XC: The resin was conditioned with 1 mL methanol followed by 1 mL water (the liquid was
passed through SPE 96 well plate (50 mg HR-XC resin per well) by centrifugation at 250ˆ g for 5 min
using a JS5.3 bucket rotor in an Avanti J-26XP centrifuge (Beckman). Samples were transferred to the
SPE 96 well plate, the resin washed with 1 mL H2O. Analytes were eluted successively by adding
1 mL MeOH (for acidic hormones) and 1 mL methanolic ammonia (0.35 M) for zeatins.

DEAE-Sephadex: The resin was washed with 1 mL methanol. The methanolic eluates from the
HR-XC plates were loaded onto DEAE-Sephadex (acetate form, 50 mg¨ well´1) filled. After washing
with 1 mL methanol, the analytes were eluted with 1 mL of 3 M acetic acid in methanol.

Further processing: eluates were transferred to 2 mL Eppendorf tubes and evaporated to dryness;
residues were dissolved in 40 µL of 20% (v/v) methanol, diluted with 40 µL of water and centrifuged
at 10,000ˆ g for 10 min.
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LC: Agilent 1290 Infinity HPLC; Nucleoshell RP18 column (50 ˆ 3 mm, particle size
2.7 µm; Macherey-Nagel, Düren, Germany) at 30 ˝C; eluent (A: water/0.2% (v/v) acetic acid; B:
acetonitrile/0.2% (v/v) acetic acid); flow rate: 0.5 mL¨ min´1; gradient for cytokinins: 2% B for 0.5 min,
followed by a linear increase to 28% B within 3 min; increase to 98% in 0.5 min followed by an isocratic
period of 1.5 min at 98% B, starting conditions restored within the next 0.5 min, and the column was
allowed to re-equilibrate for 1 min at 2% B; gradient for acidic phytohormones: B increased from 10%
to 80% within 9 min after an initial hold at 10% B for 0.5 min; further increase to 98% B within 0.5 min;
isocratic period at 98% B for 1.5 min; column re-equilibrated at 10% B for 1 min.

ESI(+) for cytokinins: curtain gas 50 psi, ion spray voltage 3500 V, ion source temperature 650 ˝C,
nebulizing and drying gas 70 psi and 50 psi.

ESI(´) for acidic phytohormones: negative ion mode curtain gas 50 psi, ion spray voltage ´4500 V,
ion source temperature 350 ˝C, nebulizing and drying gas 70 psi and 50 psi.

Data evaluation: Peak areas were calculated automatically using the IntelliQuant algorithm of
the Analyst 1.6.2 software (AB Sciex, Darmstadt, Germany) and manually supervised. All other
calculations were performed with Excel (Microsoft Office Professional Plus 2010).

Profiling of Root Exudates

Sample preparation: Exudates were processed according to LC/MS-based metabolite profiling
protocol; the residues were reconstituted in 200 µL methanol (supplemented with 0.5 ng ABA-d6,
2.5 ng IAA-13C6, 1 ng JA-d6, 0.1 ng JA-Ile-d2, 4 ng OPDA-d5, 0.4 ng SA, 2.5 ng Z-d5, 2.5 ng tZ9R-d5,
2.5 ng DHZR-d5); incubated for 15 min at room temperature; after centrifugation, the supernatant was
processed as described for root extracts, except for the omission of the DEAE-Sephadex SPE.
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formospora indica Stimulates Root Metabolism of Arabidopsis thaliana. Int J Mol Sci
2016, 17.

� design: 5 %

� experimentation: 0 %

� data analysis: 40 %

� manuscript writing: SM prepared some figures and extended introduction, methods
and results part (10 %)

equal contributions

Susann Mönchgesang

Place, Date

Signature

Dierk Scheel

Place, Date

Signature

Wolfgang Hoehenwarter

Place, Date

Signature

140



Discussion and perspectives

3 Discussion and perspectives

This thesis focused on integrative analysis methods for high throughput omics data. Thereby,

emphasis was laid on customization of the analysis pipeline according to the experimental de-

sign of the individual study. Several experimental design factors were investigated in each study

ranging from different omics levels to stress conditions. Four of the publications investigated

root and exudate metabolomics of A. thaliana to shed light on belowground interactions. It

was shown that integrating labor-intense omics with better annotated omics (genomics, tran-

scriptomics) can rapidly advance research.

However, these customized data integration strategies shown in this thesis can be applicable to

other experimental designs and should inspire to develop individual data analysis workflows to

address further research questions with a different combinations of experimental design factors

as shown in Figure 5.

3.1 SpCCA is a versatile tool to connect multiple datasets

In section 2.1, spCCA was applied in two manuscripts as a supervised method to combine two

or more datasets. The major advantage of spCCA is the biological interpretation of resulting

canonical variables. It is a universal approach that looks for linear combinations of up- and

downregulated features involved in one biological process. The spCCA approach was initially

tested on transcriptomics and metabolomics datasets measuring the responses of several A.

thaliana genotypes to Phytophthora infestans. The comparison of the supervised against the

non-supervised approach showed that only two out of first ten canonical variables were eas-

ily interpretable in the non-supervised pCCA. Contrarily, spCCA was not able to detect the

canonical variable associated with two mutants that was revealed by non-supervised pCCA.

However, in this multifactorial experimental design, spCCA was useful to interpret the resulting

canonical variables with biological processes.

In a comparative transcriptomics-proteomics study, the phosphate deficiency response was dis-

sected in the wild type Col-0, the hypersensitive mutant pdr2 and the insensitive double-mutant

lpr1/lpr2. Both individual datasets revealed modified metal homeostasis, cell wall remodeling

and oxidative stress as a result of phosphate depletion. SpCCA identified a larger number of

regulated CIII peroxidases than could be inferred from the individual datasets. In combination

with wet lab experiments, the results of the integrative analysis of high throughput omics data

provide a valid base for future investigations.
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3.2 Linking metabolite absences with stop codons is a func-
tional association analysis

For experimental designs considering one factor with many levels, e.g. the factor accession

with 19 possible levels for the parental lines of the MAGIC collection, classic statistics like

spCCA that rely on matrix operations would not succeed. Instead, customized workflows to

find associations between different omics levels are required. In the manuscript in section 2.2,

two factors were examined: one of them had 19 levels, namely accessions of A. thaliana, that

were investigated on two omics levels. For selected exudate compounds, a connection between

metabolic patterns and genetic variation was detected. This knowledge was extended to an

unbiased approach to quickly investigate metabolite absences and potentially linked biosyn-

thetic enzymes. A user-friendly web-application was developed to facilitate the collaboration

between computational biologists and analytical chemists. This graphical user interface, as

illustrated in Figure 7, conveniently allowed for matching of metabolic patterns with genomics

alterations alongside structural and functional annotations.

The study showed that root exudation phenotypes are genetically determined. More specifi-

cally, metabolite absences are linked to nonsense mutations, which could be successfully vali-

dated in wet lab experiments with the corresponding knockout lines for representatives of three

substance classes. Glycosylation constitutes an important modification underlying natural vari-

ation, as demonstrated for robinin in Wu-0 and a unique DHBA hexoside fingerprint in Sf-2

among the 19 accessions. This approach was also used to identify further root metabolites

that show qualitative variation [50].

Our exudate dataset provides a valuable resource to further elucidate the complex interplay

between a plant and its rhizosphere. To deepen the mechanistic understanding of exuda-

tion, transporters could be monitored for genetic alterations. AraMemnon, the Arabidopsis

membrane proteine database, provides a group of drug/metabolite transporters and could be

screened for further proteins with at least four transmembrane domains [51]. However, query

options are rather limited and do not allow for automatic searches of the database. A ma-

jor drawback is the predictive and not experimentally validated nature of the transmembrane

domains. For a functional coherence, metagenomics data from soil bacteria and fungi were

acquired for these 19 accessions within the SAW project ”Chemical Communication in the

Rhizosphere” and are ought to be correlated with the exuded metabolites.

These exudation profiles, obtained from the pooled nutrient solution of four plants, revealed

high variability and therefore, we measured single plant root extracts to analyze biological

variability in the subsequent metabolomics study of plant roots.
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3.3 Plant-to-plant variability increases along the omics hierar-
chy

In the studies in section 2.3, multi-level experimental designs were utilized to address the

central question of biological vs. technical replicates and revealed a substantial plant-to-plant

variability for certain proteins and metabolites. To assess plant-to-plant variability, the intra-

class correlation (ICC) according to Sampson et al. [53] is a useful measure. This measure is

defined as the ratio of plant to total variability and thus, the proportion to which the individual

plant contributes to the overall variance of a feature can be identified.

The proteomics study in section 2.3.2 evaluated the performance of commonly used proteomics

softwares. The variability introduced by shotgun proteomics technology is higher than sample

preparation. Moreover, the quantiles of the cumulative ICC distribution revealed more than

40 % of all proteins with no plant-to-plant-variability. In the metabolomics study in section

2.3.1, substantial plant-to-plant variability was observed for a set of glucosinolates, phenyl-

propanoids and flavonoids (75 % of metabolites with ICC>0.36).

In a similar metabolomics experiment with Arabidopsis leaves, the plant-to-plant variability was

greater than the variance attributable to the factors instrumentation and sample preparation

[54]. The publication in section 2.3.1 demonstrated that plant-to-plant variability of Ara-

bidopsis roots was even greater than natural variation between accessions and non-biological

variation between experimental batches. ICCs were useful to compare feature variances across

platforms and different methods for variance estimation because they allow the interpreation

of biological in context of the total variance. The numerical values for plant-to-plant variability

were indeed not comparable between the leaf and root study: Whereas Trutschel et al. [54]

applied a hierarchical t-test to estimate the contribution of each factor in the leaf metabolic

profiles, a linear mixed model was applied to decompose the total observed root variances

resulting in different numerical values of each contributing factor. Nevertheless, the ICC allows

the comparison and the proportion of biological variability to the total variability was similar

in the metabolomics studies of roots and leaves. Both cumulative ICC distribution followed a

polynomial trend with a median ICC of 0.50 and 0.58, in contrast to the proteomics manuscript

in section 2.3. Thus, the variability of biochemical entities increases along the omics hierarchy.

3.4 Studying P. indica reveals metabolic insights into a mutual-
istic interaction

Microorganisms have a great influence on host metabolism and its exudation. The root en-

dophytic fungus P. indica has a growth-promoting effect on many hosts. In a comprehensive

metabolomics study it could be shown that P. indica stimulates metabolism of A. thaliana

at the site of colonization and exudation processes, but not leaf metabolism (section 2.4).
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Transcriptomics data pointed towards secondary metabolism and other metabolic processes.

The previously reported induced biosynthesis of glucosinolates of the indolic type was con-

firmed [55]. This leads to the hypothesis that even though the interaction is considered as

mutualistic the plant balances fungal growth with a moderate defense response. Nitrogen-rich

amino acids and flavonoids accumulated differentially in roots and leaves and proved as inter-

esting candidates for follow-up studies. Current invesigations in our laboratory include mutants

of the flavonoid biosynthesis pathway, transparent testa (tt) knockout lines tt4 and tt5, to

explore the compound-class specific effects. As an integrative method spCCA (section 2.1)

could be applied onto the metabolomics data of three tissues of three genotypes under two

growth conditions.

3.5 Implications for experimental design

This series of studies demonstrated how valuable a custom-made analysis pipeline is. My thesis

aimed at the combination of reductionistic and holistic approaches.

The right choice of integrative methods obeys experimental limitations. SpCCA was shown to

be versatile. Nevertheless, if the number of levels of one factor far exceeds the others, it is not

the best data fusion approach. In this case, a pattern search and careful manual interpretation

can elucidate connections between genotype and biochemical phenotype.

Another key contribution of this thesis is identifying the substantial variability of the omics lev-

els downstream of nucleic acids. This is partially caused by more laborious sample preparation

procedures as well as natural variability and both factors should be taken into consideration

for future analyses. Pooling material from several plants is a commonly accepted way to deal

with high plant-to-plant variability. Decreased analytical costs no longer require pooling of

plant material, and statistical advances facilitate the correct integration of replicate types in

the analysis. I would like to encourage researchers to measure comprehensive data without an

irreversible loss of information, make them publicly available and allow fellow researchers to

utilize these data for studies with different research questions in mind.

Both studies in section 2.3 underline the importance of a priori estimation of variances and

advise how to handle them in experimental designs to obtain reproducible results and statisti-

cally valid conclusions.

3.6 Outlook – systematic approaches on the rise

Metabolism is highly dynamic and specific within an organism. With LC/MS and GC/MS, large

number of samples can be handled to record metabolic snapshots for further use in systems

biology approaches. Herein, different omics information is integrated to investigate the regula-

tion of metabolism at the systems level. Metabolic networks may be reconstructed by utilizing
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genomics data about enzymes for metabolic pathways and integrating quantitative metabolic

information about the compounds therein. Software tools like VANTED and Cytoscape that

are freely available to visualize complex network information [56, 57] and the creation of a

systems biology markup language (SBML) as a standard format for computational modeling

accelerate metabolic modeling studies [58].

The association of biosynthetic enzymes with metabolites in section 2.2 is related to a systems

biology approach primarily aimed at finding patterns among known metabolites and unknown

m/z & RT features. MS-based omics techniques deliver masses, RTs and fragment spectra.

Structure elucidation and identification are important to take analyses beyond the nontar-

geted level and allow for biological interpretation of the measured biological entities. Due to

the limited number of building blocks and connection sites, proteomics results in regular mass

patterns that can be easily annotated with the available software tools. In metabolomics, there

are more possible substructures and combinations thereof. To-date, no workflow can guarantee

metabolite ”identification”. Metabolite identification is like collecting clues about the com-

pound structure from orthogonal techniques like MS and possibly NMR. The MS spectrum

points towards the accurate mass and the isotope pattern towards the elements. A sum for-

mula from an MS spectrum needs to be validated by MS/MS spectra, which also allow for the

annotation of fragments and hence, substructure annotation. The whole procedure requires

expertise for spectral interpretation and are limited by the availability of a reference standard.

Identification remains a bottleneck in metabolomics and could be tackled by integrating com-

putational methods into integrative analysis workflows. Current approaches also aim at the

identification of substructures to annotate either compound classes or to find sets of metabo-

lites with common modifications. MetFamily uses a combination of MS and MS/MS measure-

ments to find chemical substructures that are distinct for the levels of an experimental factor

[59]. Since the fragmentation patterns in LC/MS metabolomics are dependent on the applied

analytical conditions, an inhouse library with fragments and their corresponding substructures

occurring in the commonly applied analytical set-up may be used to classify metabolites by

either simple ”has a substructure” assignments or overrepresentation of fragments that are

characteristic for a substance class. A traditional tool in genomics like enrichment analysis, e.g.

of Gene Ontology terms, has already been successfully utilized in metabolomics to annotate

sets of metabolites, like implemented in Metabolite Set Enrichment Analysis and BiNChe –

given that the compounds are listed in either simple metabolite set or chemical ontology

databases, respectively [60, 61]. In most cases, the knowledge about functionally relevant

substructures or compound classes would already be sufficient to generate hypotheses. Fur-

ther genotype-phenotype studies could integrate the information about shared characteristic

fragments between the MS/MS spectra of unknown metabolites, which would strengthen the

hypothesis that these metabolites derive from the same biosynthetic pathway or underwent

the same biochemcial transformation and that their abundance is likely to be associated with

a SNP. These predictions need to be validated in experiments, possibly also with a targeted

146



Discussion and perspectives

workflow.

Future studies should address the flux of metabolites and the dynamics of metabolic transport

within the plant. Several methods have been established to track metabolites in the living sys-

tem like radioactive and isotopic labeling by either glucose substrates or a CO2 environment

with 13C that can be analyzed by constraint-based modeling in a flux balance analysis (FBA)

[62]. This technique could elucidate the biosynthesis dynamics and flow of metabolites from

carbon assimilation in leaves to exudation in the rhizosphere.

This thesis followed a data-driven approach and thus, generating hypotheses for validation in

biochemical studies. Future studies may combine the power of high throughput data acquired

in omics experiments with prior hypotheses to initially allow for both hypothesis- and data-

driven approaches. To do so, experimental designs in omics studies should be thoughtfully

conceived.
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Investigate Abiotic Stress Tolerance in Plants. Int J Mol Sci 2013, 14, 4885–4911.

[48] Jorge, T.F.; Rodrigues, J.A.; Caldana, C.; Schmidt, R.; van Dongen, J.T.; Thomas-
Oates, J.; Antonio, C. Mass spectrometry-based plant metabolomics: Metabolite
responses to abiotic stress. Mass Spectrom Rev 2016, 35, 620–649.

[49] Tenenboim, H.; Brotman, Y. Omic Relief for the Biotically Stressed: Metabolomics
of Plant Biotic Interactions. Trends Plant Sci 2016, 21, 781–791.

[50] Mönchgesang, S.; Strehmel, N.; Trutschel, D.; Westphal, L.; Neumann, S.; Scheel,
D. Plant-to-Plant Variability in Root Metabolite Profiles of 19 Arabidopsis thaliana
Accessions Is Substance-Class-Dependent. Int J Mol Sci 2016, 17.

[51] Schwacke, R.; Schneider, A.; van der Graaff, E.; Fischer, K.; Catoni, E.; Desimone,
M.; Frommer, W.B.; Flugge, U.I.; Kunze, R. ARAMEMNON, a novel database for
Arabidopsis integral membrane proteins. Plant Physiol 2003, 131, 16–26.
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Appendix

List of acronyms and abbreviations
ABC ATP-binding cassette

CCA canonical correlation analysis

EI electron ionization

ESI electrospray ionization

FBA flux balance analysis

GC gas chromatography

GSL glucosinolate

GWAS genome-wide association analysis

HCA hierarchical clustering analysis

INDEL insertions and deletion

LC liquid chromatgraphy

MAGIC Multiparent Advanced Generation Inter-Cross

MATE multidrug and toxic compound extrusion

MDS multi-dimensional scaling

MS mass spectrometry

m/z mass-to-charge ratio

PCA principal component analysis

PLS partial least squares

PTR peptide transporter

QTL quantitative trait loci

RT retention time

SNP single nucleotide polymorphism

spCCA supervised penalized canonical correlation analysis

TOF time-of-flight

153



Appendix

List of publications

� Al Shweiki, M. R.; Mönchgesang, S.; Majovsky, P.; Thieme, D.; Trutschel, D.; Hoehen-
warter, W. Assessment of Label-free Quantification in Discovery Proteomics and Impact
of Technological Factors and Natural Variability of Protein Abundance. J Proteome Res
(revised version submitted on 21/10/2016).

� Hoehenwarter, W.; Mönchgesang, S.; Neumann, S.; Majovsky, P.; Abel, S.; Müller, J.
Comparative expression profiling reveals a role of the root apoplast in local phosphate
response. BMC Plant Biol 2016, 16, 106.

� Mönchgesang, S.; Ruttkies, C.; Treutler, H.; Heisters, M. Meeting Report: Plant Science
Student Conference (PSSC) 2015 – Young researchers in green biotechnology. Biotechnol
J 2015, 10, 1666-1667.

� Mönchgesang, S.; Strehmel, N.; Schmidt, S.; Westphal, L.; Taruttis, F.; Müller, E.; Herk-
lotz, S.; Neumann, S.; Scheel, D. Natural variation of root exudates in Arabidopsis
thaliana – linking metabolomic and genomic data. Sci Rep 2016, 6.

� Mönchgesang, S.; Strehmel, N.; Trutschel, D.; Westphal, L.; Neumann, S.; Scheel, D.,
Plant-to-Plant Variability in Root Metabolite Profiles of 19 Arabidopsis thaliana Acces-
sions Is Substance-Class-Dependent.Int J Mol Sci 2016, 17.

� Rubbiani, R.; Can, S.; Kitanovic, I.; Alborzinia, H.; Stefanopoulou, M.; Kokoschka, M.;
Mönchgesang, S.; Sheldrick, W.S.; Wölfl, S.; Ott, I. Comparative in vitro evaluation of
N-heterocyclic carbene gold(I) complexes of the benzimidazolylidene type. J Med Chem
2011, 54, 8646-8657.
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