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Abstract

This thesis deals with the application of the multiple scattering theory to describe
physical properties of complex systems. In particular, it is concerned with the
calculation of magnons and plasmons. The magnetic properties of disordered
systems are treated in terms of the classical Heisenberg Hamiltonian allowing
the calculation of their magnetic susceptibility. To get an understanding of
the magnetic behavior of disordered systems, diluted magnets in form of a
model system and the alloy Fe1−𝑥Al𝑥 are investigated. The calculations of
the plasmonic properties of metallic nanostructures are performed with the
Generalized Multiparticle Mie method, which is a multiple scattering extension
to the classical Mie theory. The method is used to design a plasmonic filter.

Diese Dissertation beschäftigt sich mit der Anwendung der Vielfachstreutheorie
zur Beschreibung physikalischer Eigenschaften komplexer Systeme. Im Speziellen
handelt sie von der Berechnung von Magnonen und Plasmonen. Die magneti-
schen Eigenschaften ungeordneter Systeme werden im Rahmen des klassischen
Heisenberg-Hamiltonians behandelt, was die Berechnung der magnetischen Sus-
zeptibilität erlaubt. Um ein Verständnis für den Magnetismus in ungeordneten
System zu entwickeln, werden verdünnte Magnete am Beispiel eines Modellsys-
tems und der Legierung Fe1−𝑥Al𝑥 untersucht. Die Berechnung der plasmoni-
schen Eigenschaften metallischer Nanostrukturen wird mit der verallgemeinerten
Vielteilchen-Mie-Methode, die eine Vielfachstreuerweiterung der klassischen Mie-
Theorie darstellt, durchgeführt. Diese Methode wird hier verwendet um einen
plasmonischen Filter zu entwickeln.
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1 Introduction

Many processes in physics can be explained with the concept of quasiparticles.
This concept helps to describe the interactions between the elementary particles
and certain physical phenomena, because these phenomena behave in a particle-
like manner. The quasiparticles of interest here are the collective excitations,
which describe the excitation state of a whole system in a particle picture. Typical
examples for these collective excitations are vibrations of the lattice, propagating
disturbances in the magnetic order or oscillations in the charges of a solid, which
are represented as phonons, magnons and plasmons, respectively. The other kind
of quasiparticles are particles in a narrower sense: for example, missing electrons
or bound states of two particles, i.e., electron holes or excitons, respectively. In
the framework of this thesis, two collective excitations were of particular interest:
magnons and plasmons.

Magnons are propagating disturbances in the magnetic order of a magnetic
system. They play an important role, e.g., in understanding the electron-electron
interaction in superconductors or newly found phenomena like current-induced
magnetization switching and domain wall motion.1 A very strong interest can also
be found in magnonics. This is among other things important for better storage
devices,2,3 and spintronic applications, which are aimed at improving or replacing
conventional semiconductor technology.4 Experimental measurements of magnons
can be performed by spin-polarized electron energy loss spectroscopy,1,5 inelastic
neutron scattering,6–9 Brillouin scattering,10 ferromagnetic scattering11,12 and
spin-polarized scanning tunneling microscopy.13

Plasmons, on the other hand, are oscillations of free charges in a system. They
play an important role in the design of plasmonic nanoantennas14–17 and surface-
enhanced Raman spectroscopy (SERS). A new field of research is spinplasmonics,
which is a combination of spintronics and plasmonics, aimed at the design of
magnetism-controlled plasmonic devices.18–20 Typical experimental techniques to
measure surface plasmons include the electron energy loss spectroscopy (EELS)
in a transmission electron microscope (TEM) and the attenuated total reflection.21

A theoretical description of both quasiparticles can be achieved using a multiple
scattering approach. This approach is similar for both quasiparticles – as well
as for other (quasi-)particles – although the underlying theoretical frameworks
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1 Introduction

are different. Most of the time, the applicable scheme breaks down into the
evaluation of a single-scattering problem, i.e., the scattering at a single scatterer
like an atom, and the subsequent self-consistent solution of the scattering between
multiple scatterers.

The particular interest of this thesis is the investigation of these quasiparticles
in disordered systems – a difficult task within the well-known methods, but inter-
esting for many applications. The magnon dispersion relation of a perfect system
can be easily calculated in terms of the torque matrix derived from the Heisen-
berg Hamiltonian.22 However, disordered systems require more sophisticated
approaches like the coherent potential approximation (CPA) or the application
of a Monte Carlo algorithm (MCA) in combination with the calculation of the
susceptibility. The investigation of plasmons is focused on the optimization of
plasmonic nanostructures with respect to near-field enhancement and filtering
of certain wavelengths. While well-known algorithms like the discrete dipole
approximation,23 the generalized multipole technique,24 the boundary element
method25 or finite element methods like the discontinuous Galerkin time domain
method26,27 are flexible but computationally expensive, the T-matrix method
is very efficient but restricted in the systems possible to compute.28 A method,
which is both fast and flexible, is the Generalized Multiparticle Mie method,29,30

which was implemented and used for optimization of plasmonic nanostructures.
In addition to the study of magnons and plasmons, the multiple scattering

approach was also used to investigate electronic and magnetic properties of several
other systems: The calculation of the electronic structure with electron multiple
scattering theory was used to investigate the electromechanical properties of the
semiconductors ZnO and Pb𝑥Sn1−𝑥Te. Both systems have a band gap depending
on the applied mechanical strain. On the other hand, the magnetic properties
of several Heusler alloys were studied. The system Ca(Co𝑥Ru1−𝑥)O3 exhibits
anti-ferromagnetic interaction between nearest-neighbor Co atoms. The lack
of magnetic ordering suggests the existence of a frustrated magnetic lattice in
this material. Concluding to this investigation, the “traditional” Heusler alloysPd2MnSn, Ni2MnSn and Cu2MnAl are examined with respect to a uniform
description of their magnetic and thermodynamic properties.

This thesis consists of four parts: At first, the experiments for the investigation
of magnons and plasmons are described and subsequently the corresponding
theory is explained. Then, a brief overview of some computational details is
provided in order to give some insight, how the actual calculations were performed.
Finally, the results of the investigations about magnons and plasmons, but also
the results from the study of the electromechanical systems and the Heusler
alloys, are presented.

2



2 Review of experimental techniques
to investigate magnons and
plasmons

In order to provide a proper theoretical description of magnons and plasmons,
it is necessary to take a look at the available experiments and the observable
physical quantities. Therefore, the following chapter provides a review of the
most prominent experimental techniques to detect these two quasiparticles.

In both cases, most experiments rely on the scattering of an incident particle,
e.g., electrons, neutrons or photons. This encourages the theoretical description
of magnons and plasmons in terms of multiple scattering theory to be as close to
the experiment as possible. The measured quantity is usually the energy and the
corresponding wave vector of the scattered particle. This allows to determine the
dispersion relation – the relation between energy and momentum, or frequency
and wave vector – which is accessible from theoretical calculations.

2.1 Magnons at metallic surfaces and thin films

In a perfect ferromagnetic system, the spins of all atoms are parallel to each
other. However, due to thermal excitations, these spins can deviate from their
equilibrium orientation. Since the ferromagnetic system exhibits an effective
magnetic field, the deviated spins start to precess. At this point, the interaction
between all neighboring spins induces a change of spin direction for the interacting
spins. This propagating spin deviation can be observed as a so called spin-wave
or magnon (cf. fig. 2.1.1) characterized by its frequency and wave vector.

Although magnons are a bulk property, the experiments1,31 motivating the
theoretical investigations of this thesis were carried out at the surface of thin
films. Also, most of the other available experiments presented in the following are
restricted to properties at the surface like the resulting 2-dimensional dispersion
relation. The according theoretical description described in section 3.1.4 is not
restricted to 2-dimensional systems but describes these as a special case of a
3-dimensional system.
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2 Review of experimental techniques to investigate magnons and plasmons

Figure 2.1.1: Schematic representation of magnons with different wavelengths.
The arrows depict the deviation of the spins from the out-of-plane,
ferromagnetical ordering.

Figure 2.1.2: Experimental setup for SPEELS.5

2.1.1 Spin-polarized electron energy loss spectroscopy

A recently developed method is the spin-polarized electron energy loss spec-
troscopy (SPEELS).1,5 The experimental setup, shown in fig. 2.1.2, consists of
a source of spin-polarized electrons, a monochromator to define the energy of
incident electrons, an analyzer to measure the energy loss and a channeltron to
detect the scattered electrons.

The spin-polarized electrons, which are directed at the sample, are usually
created with an GaAs-cathode irradiated by a beam of circularly polarized light.
By application of strain, e.g., by creating the cathode as a semiconducting
heterostructure with large lattice strain, the polarization of the emitted electrons
can reach up to 90 %. The handedness of the circular polarization of the incident
laser beam influences the spin direction of the created electrons, which is either
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2.1 Magnons at metallic surfaces and thin films

Figure 2.1.3: Possible excitations occurring in a SPEELS experiment. Only the
“flip” excitations correspond to scattering at magnons.1

parallel or antiparallel to the majority electrons of the sample. However, the
final detection of electrons is spin-unresolved.

The scattering process at the sample is influenced by several possible excitations
presented in fig. 2.1.3. These excitations can be divided into “non-flip” and
“flip” excitations. Only the latter can be magnon excitations, because both the
creation and annihilation of magnons require a spin exchange of 1ℏ. The following
paragraph summarizes the six excitations observed for an incident electron with
energy 𝐸i.

An incident electron with spin-down polarization can experience an excitation
of a spin-down electron below the Fermi energy 𝐸Fermi, where either the excited
or the incident electron gets scattered, while the other one will occupy a state
above the Fermi energy (cf. fig. 2.1.3a). Another possibility is the excitation of a
spin-up electron from below the Fermi energy to a state above the Fermi energy,
while the incident electron gets scattered (cf. fig. 2.1.3b). Both of these excitations
exhibit no spin exchange and are thus not involved with magnon creation or
annihilation. However, the third possible excitation, where the incident spin-
down electron excites and scatters a spin-up electron, while occupying a state
above the Fermi energy, involves a spin flip (cf. fig. 2.1.3e), which is necessary
to create a magnon. In the case of an incident spin-up electron, the “non-flip”
excitations are similar (cf. fig. 2.1.3c,d), while the “flip” excitation (cf. fig. 2.1.3f)
requires an angular momentum of 1ℏ, i.e., the annihilation of a magnon.1

The SPEELS measurements are typically performed by measuring the scat-
tering rate for a given energy loss and a wave vector parallel to the sample
surface. The measured detector-dependent scattering rate is proportional to the
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2 Review of experimental techniques to investigate magnons and plasmons

Figure 2.1.4: SPEELS spectrum for 8ML Co(100) on Cu(100).1

spin-polarized electron energy loss probability. The resulting spin-resolved spec-
tra show characteristic peaks due to magnon excitations. These contributions
are proportional to the imaginary part of the transverse magnetic susceptibility.
Figure 2.1.4 shows a SPEELS spectrum of 8 monolayers (ML) of Co(100) onCu(100). The spin-down channel contains a significant peak around 180 meV,
which is the result of magnon creation.

As mentioned before, it is also possible to annihilate thermally excited magnons.
Since the annihilation frees the magnon’s energy, this process leads to an energy
gain, which can be seen as peaks in the negative energy range of the SPEELS
spectra (fig. 2.1.5a). Accordingly, it is also expected that a cooled sample does
not show magnon annihilation, because no thermally exited magnons should
exist (fig. 2.1.5b).

The possibility to measure energy loss and energy gain allows the distinction
of magnon and phonon excitations, of which the latter will also appear in the
spectra. On the one hand, magnon creation and annihilation require an exchange
of angular momentum. Thus, the asymmetry of the intensities ((𝐼↓ −𝐼↑)/(𝐼↓ +𝐼↑))
has positive and negative sign, respectively. Differing from this, the phonon
excitations are spin-independent. The sign of the asymmetry is therefore equal
for both energy gain and loss. In fig. 2.1.6, these phenomena are prominently
visible. The peaks at around ±19 meV show opposite sign and can thus be
attributed to magnon creation and annihilation. The other peaks are caused by
phonon excitations, because their intensities’ asymmetry shows the same sign for
positive and negative energy ranges.
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2.1 Magnons at metallic surfaces and thin films

Figure 2.1.5: SPEELS spectra for 2ML Fe(110)/W(110) at (a) 300 K and (b) 10 K.
Magnon excitations can be observed at ±45 meV.1

Figure 2.1.6: SPEELS spectra for Fe(001)-O(1 × 1) surface at 300 K. The gray
area marks magnon excitations.1
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2 Review of experimental techniques to investigate magnons and plasmons

2.1.2 Inelastic neutron scattering
A second possible experiment, which can be used to measure magnons, is the
inelastic neutron scattering (INS). Due to the advantageous relation of energy and
momentum of slow neutrons, this method is well suited for such measurements.

In INS experiments, slow neutrons with predetermined energy 𝐸inc ≈ 100 meV
and momentum 𝒌inc are directed at the sample. In addition to the well-known
Bragg peaks, which appear due to elastic scattering, there are additional peaks
in their direct vicinity. These are the result of inelastic excitations. The corre-
sponding energy can be determined from the energy 𝐸sca and the wave vector𝒌sca of the scattered neutron,6–8𝒌inc − 𝒌sca = 2π𝑮 − 𝒒, (2.1.1)𝛥𝐸 = 𝐸inc − 𝐸sca = ±ℏ𝜔. (2.1.2)

The reciprocal lattice vector 𝑮 corresponds to a Bragg peak, from which the
neutron was inelastically scattered. The energy ±ℏ𝜔 and the momentum 𝒒
describe the created/annihilated excitation.

Here, it is again important to distinguish between magnon and phonon excita-
tions. For this reason, the INS experiment can be performed with spin polarized
neutrons created by reflection from, e.g., Fe3O4 or Co92Fe8. Because neutrons
have a magnetic moment of 12ℏ, they are well suited to create or annihilate
magnons. The distinction between magnon and phonon excitations can finally
be achieved by the modification of the polarisation state of the spin-polarized
neutron beam, because the intensity of the peak depends on the polarization
state.9,32

2.1.3 Brillouin scattering
Similar to inelastic neutron scattering, it is also possible to perform these experi-
ments with photons, i.e., inelastic light scattering.

A typical setup consists of a monochromatic polarized light source, which is
directed at the sample and scattered by 180°. The polarization of the incident
photons is parallel to the plane of incidence, so called p-polarization, while the
scattered photons can have s- and p-polarization, i.e., perpendicular or parallel
to the plane of incidence. The energy of the scattered photon can be analyzed
with a Fabry-Pérot interferometer.10

As already known, a change of polarization is necessary for the photon to
interact with the magnon. Therefore, it is possible to distinguish between phonon
and magnon excitations by analysis of the backscattered photons.10 The energy
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2.1 Magnons at metallic surfaces and thin films

change of the photon and the difference of incident and scattered wave vectors
determine the dispersion relation of the magnons.

2.1.4 Ferromagnetic resonance
A completely different approach is used in ferromagnetic resonance experiments.
Here, the sample is put into a high-frequency magnetic field and the energy
absorption is measured.

In contrast to the other methods, it is not possible to determine the in-plane
dispersion relation 𝐸(𝑘∥) of magnetic thin-films, but the discrete out-of-plane
(𝑘⟂) magnons, which are caused by the confinement of the upper and lower
interfaces/surfaces of the sample:11𝑘⟂ = 𝑝π𝐿 , 𝑝 is an odd integer. (2.1.3)

The dispersion of the magnons is interpreted to have a quadratic dispersion
relation. It depends on the magnetic exchange constant 𝐴 and the saturation
magnetization 𝑀: 𝜔 = 𝜔0 + 2𝐴𝛾𝑘2⟂𝑀 . (2.1.4)

However, this method can still be used, to gain information about “standing”
spin-waves, i.e., at the Γ point (𝑘∥ = 0).12

2.1.5 Spin-polarized scanning tunneling microscope
The scanning tunneling microscope (STM) can also be used to create and
annihilate magnons in a surface sample. To be able to measure this as inelastic
scattering, it is necessary to create a magnetized STM tip to create a spin-
polarized tunneling current. For this purpose, a tungsten tip can be coated
with iron, resulting in a spin polarization of 60 % minority electrons. Depending
on the magnetization of the sample – parallel or antiparallel to the tip – these
electrons will enter the sample as minority or majority electrons.13

In the STM experiment, the same restrictions on the spin directions for the
creation and annihilation of magnons apply as in the SPEELS experiments,
i.e., only the minority electrons can create magnons, while majority electrons
can only annihilate magnons. Assuming a cooled sample, where no thermally
excited magnons exist, a difference in the intensity of the measured signal can
be observed, when switching the magnetization of the sample. This can be used

9



2 Review of experimental techniques to investigate magnons and plasmons

Figure 2.1.7: Magnon creation of two tunneling directions. (a) If the sample
bias is positive, minority electrons can scatter into majority states,
creating magnons. This yields a peak at 𝑈 = 𝐸x/𝑒. (b) For a
negative bias, tunneling majority electrons leave majority holes
behind, that can in turn be filled with minority electrons leading
again to magnon creation and a resulting peak at 𝑈 = −𝐸x/𝑒.13

to distinguish between magnons and phonons, because phonon excitations are –
again – independent of the spin direction of the electrons.

The process of magnon creation is sketched in fig. 2.1.7. For both positive and
negative sample bias, the creation of magnons is possible either by scattering
minority electrons in majority states, or by tunneling majority electrons, which
leave majority holes behind. However, a big caveat of this method is the
inaccessibility of 𝒒∥-space information. The electrons are essentially moving
out-of-plane and thus only a small part of the space around 𝒒∥ = 0 contributes
to the measured signal.

2.2 Plasmonic excitations at surfaces and in
nanoparticles

The second kind of collective excitations, which are described in this thesis,
are plasmons. Plasmons are rapid oscillations of the charge density and are
usually observed confined to surfaces or interfaces as surface plasmon polaritons
or localized surface plasmons. The former describe the coupling between the
charge oscillations in a metal with the electromagnetic field in a dielectric, while
the latter describe the confinement of these charge oscillations to nanoparticles
in the sub-wavelength domain.33 However, plasmons can also appear in bulk
systems as volume plasmons, which were the subject of previous research.34,35

10



2.2 Plasmonic excitations at surfaces and in nanoparticles

The charge oscillations are the result of the interaction of the electromagnetic
field with the free conduction electrons in a metal. This process can be described
by a plasma model of a gas of free electrons, which moves against a fixed
background of positive ion cores:𝑚�̈� + 𝑚𝜂�̇� = −𝑒𝑬. (2.2.1)

This equation of motion describes an electron with the charge −𝑒 and the effective
mass 𝑚, whose motion is damped by collisions occurring at frequency 𝜂 = 1/𝜏.
From this simple model, the most important quantity, the permittivity 𝜀(𝜔), can
be derived as: 𝜀(𝜔) = 1 − 𝜔2p𝜔2 + i𝜂𝜔, (2.2.2)

with the plasma frequency of the electron gas 𝜔p = 𝑛 𝑒2𝜀0𝑚 and the electron density 𝑛.
This model is known as the Drude model of the permittivity.

The real and imaginary parts of the Drude permittivity, 𝜀 = 𝜀1 + i𝜀2,𝜀1(𝜔) = 1 − 𝜔2p𝜏21 + 𝜔2𝜏2 , 𝜀2(𝜔) = 𝜔2p𝜏21 + 𝜔2𝜏2 , (2.2.3)

show immediately the importance of the plasma frequency 𝜔p for the permittivity
of a material: If the frequency of the excitation is much larger than the plasma
frequency, or if the plasma frequency is very small due to missing free electrons,
the imaginary part of the permittivity vanishes and leaves a material behaving
like a dielectric – no plasmons can be observed.

Figure 2.2.1 shows this behavior by comparing the permittivities of gold36

and silicon:37 In the range of visible light, the imaginary part of the permittiv-
ity of silicon vanishes leaving a dielectric material. On the other hand, gold
has a significant contribution to the imaginary part of its permittivity resulting
in observable plasmon excitations. However, the actual description of the per-
mittivity of gold is more complicated than the Drude model and requires more
sophisticated approaches to explain the interaction of the free electrons and the
electromagnetic fields (cf. section 5.2.1).

For detection and measuring purposes, the strong coupling between the plas-
mons and the electromagnetic fields can be exploited by interacting with the
latter and interpreting them as the electromagnetic part of a surface plasmon
polariton. The interaction, here, is achieved with either charged particles, i.e.,
usually electrons, or with incident photons. Additionally, it is also possible to
image surface plasmons with a number of different microscopy techniques. An
overview over available methods is briefly discussed, below.33
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2 Review of experimental techniques to investigate magnons and plasmons
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Figure 2.2.1: Permittivity of gold36 and silicon.37 The imaginary part of silicon’s
permittivity almost vanishes in the visible part of the spectrum
(marked gray).

2.2.1 Low-energy electron diffraction

A way of excitation and measurement of plasmons is given by the low-energy
electron diffraction. In this experiment, the incident electron can experience an
energy loss due to plasmon excitations in the bulk and at the surface. While
the bulk plasmons are causing an energy loss of ℏ𝜔p, the surface plasmon
excitation results in a lower-lying peak at ℏ𝜔p/√1 + 𝜀, which reduces in the case
of air/vacuum to ℏ𝜔p/√2.

2.2.2 Transmission electron microscopy

The extension of the low-energy electron diffraction to the transmission of
high-energy electrons yields the electron energy loss spectroscopy. This is an
experiment, which can be performed with transmission electron microscopes
(TEM).

The main principle of this experiment is the measurement of the energy loss,
which a passing electron experiences, due to the interaction of the electron and
the electromagnetic field of the surface plasmon induced by the electron itself.
By adding another source of energy to the system, e.g., a light pump, it would
also be possible, to measure an energy gain.38

12



2.2 Plasmonic excitations at surfaces and in nanoparticles

2.2.3 Attenuated total reflection

A different approach is the excitation of surface plasmons by attenuated total
reflection. An incoming laser beam is coupled with the help of an optical
prism with high refractive index, which is located at the surface.21 The prism is
necessary, because the propagation constant of the surface plasmon 𝛽 and the
in-plane propagation constant of the incident light beam 𝑘∥ = 𝑘0 sin 𝜃 have to
match. The definition of the propagation constant 𝛽,𝛽 = 𝑘0√ 𝜀m𝜀i𝜀m + 𝜀i , (2.2.4)

for a metal-insulator interface with respective permittivities 𝜀m and 𝜀i, however,
prohibits this matching because 𝛽 > 𝑘0 ≥ 𝑘∥.

The matching between the propagation constants can by achieved with two
different configurations: The Kretschmann geometry consists of a metal layer
with a dielectric on one side and the prism on the other. Due to the difference
between the permittivity of the prism and the dielectric, the matching condition
can be fulfilled by exciting a surface plasmon through the metal layer. The
second configuration is the Otto geometry, where the prism is located above the
dielectric-metal interface to yield a prism-dielectric-metal system.

In both cases, the evanescent waves from the total reflection at the prism-metal
or prism-dielectric interfaces are coupling to the surface plasmons. The surface
plasmon excitations appear as dips in the reflectivity spectra, in dependence of
the incidence angle.

2.2.4 Grating coupling

Similar to the light coupling with high-refractive index prisms, the matching
condition 𝛽 = 𝑘∥ can also be achieved by modification of the metal-dielectric
interface. A surface grating, either by direct modification of the metal or by
application of a dielectric, can modify the matching condition. A grating with
lattice constant 𝑎 results in the matching condition𝛽 = 𝑘∥ ± 2π𝑛𝑎 , (2.2.5)

with integer 𝑛 = 1, 2, …. In this experiment, the plasmon excitations will appear
in the reflectivity spectra, too.
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2 Review of experimental techniques to investigate magnons and plasmons

2.2.5 Microscopy techniques
A broad field of excitation and measurement of plasmons is available with
different kinds of microscopes. For example, a microscope with a high numerical
aperture allows to locally excite surface plasmons, because of the large spread
of the incident beam allowing larger incidence angles than in the attenuated
total reflection method. The excited surface plasmons radiate back into the
microscope, where this leakage radiation can be analyzed. This method is well
suited for analysis of the propagation width of a continuum of surface plasmons.

Similarly, near-field microscopy allows the localized excitation of surface plas-
mons, because of the sub-wavelength tip size and the resulting low numerical
aperture. The leakage of plasmons out of the tip area allows the analysis of the
effects of surface roughness.

Both methods can be also be used to analyze the surface plasmons excited by
attenuated total reflection and grating coupling.

14



3 Fundamental theory in magnonics
and plasmonics

The purpose of this chapter is the description of the underlying theory necessary
to describe magnons and plasmons. It is a brief summary of the well-known
fundamental principles, which were used for research and development presented
in chapters 4 and 5.

On the one hand, for the calculation of magnonic excitations, it is necessary
to describe the electronic properties of the systems of interest. The according
calculations are performed in terms of the density functional theory. The given
results can then be used to obtain the magnetic exchange parameters, which
are required to calculate the magnetic properties in terms of the disordered
Heisenberg Hamiltonian.

On the other hand, the investigation of plasmonic excitations requires the
solution of the electromagnetic wave equation with special attention to the
frequency-dependent complex permittivity. This equation is solved in terms of
the classical Mie theory, which is extended to multiple scatterers. The necessary
expansions of excitations in terms of the Spherical Vector Wave Functions are
provided afterwards.

3.1 Magnon theory

The description of magnon excitations in the framework of this thesis will be done
in terms of the well-known classical Heisenberg model (see section 3.1.4). This
theoretical model is based on the exchange coefficients 𝐽𝑖𝑗, which describe the
energy needed to change the spin at site 𝑖 under the influence of the spin at site 𝑗.
They can be calculated in terms of the density functional theory39 by investigation
of the total energy, while the spins are infinitesimally deviated in opposite
directions (keeping the total magnetisation constant). However, the treatment
of the density functional theory with the Green’s function method by Korringa,
Kohn and Rostoker (KKR)40,41 allows the application of the magnetic force
theorem,42 which provides a more precise and efficient approach for calculating
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3 Fundamental theory in magnonics and plasmonics

the exchange coefficients. These topics will be only discussed shortly, because
they were not the main subject of this thesis.

3.1.1 Electron multiple scattering theory
The calculation of physical properties, like the aforementioned exchange coeffi-
cients, was performed in terms of the KKR method40,41 as it is implemented
in the computer program Hutsepot.43,44 This method solves the Kohn-Sham
equation45 by application of a Green’s function approach. As the KKR method
is not the main part of this thesis, only a summary of the method is provided. A
more thorough description, including a description of the relativistic variant of
this algorithm, can be found, e.g., in the book of Zabloudil et al.46

The main idea of the KKR method is the solution of the Schrödinger equationℋ𝜓 = 𝐸𝜓, (3.1.1)

with the Hamiltonian ℋ in terms of its resolvent𝒢(𝑧) = (𝑧ℐ − ℋ)−1, 𝑧 = 𝜖 + i𝛿, 𝒢(𝑧∗) = 𝒢(𝑧)†. (3.1.2)

The operator ℐ is the identity operator, and 𝑧 is the complex energy with its real
and imaginary parts 𝜖 and 𝛿.

The method’s eponymous Green’s function is defined as any representation of
the resolvent 𝒢(𝑧), e.g., ⟨𝒓 | 𝒢(𝑧) | 𝒓′⟩ = 𝐺(𝒓, 𝒓′; 𝑧). (3.1.3)

The solution of the Schrödinger equation is, however, a non-trivial task. A
possible ansatz is the definition of the system in terms of a free system with the
potentials added as a perturbation:ℋ = ℋ0 + 𝒱. (3.1.4)

There are now two resolvents 𝒢 and 𝒢0,𝒢(𝑧) = (𝑧ℐ − ℋ)−1, 𝒢0(𝑧) = (𝑧ℐ − ℋ0)−1, (3.1.5)

which are connected in terms of a Dyson equation𝒢(𝑧) = 𝒢0(𝑧) + 𝒢(𝑧)𝒱𝒢0(𝑧) = 𝒢0(𝑧) + 𝒢0(𝑧)𝒱𝒢(𝑧). (3.1.6)
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3.1 Magnon theory

The iterative insertion of the formula allows to define the 𝒯 operator𝒯(𝑧) = 𝒱 + 𝒱𝒢0(𝑧)𝒱 + 𝒱𝒢0(𝑧)𝒱𝒢0(𝑧)𝒱 + … , (3.1.7)

which yields 𝒢(𝑧) = 𝒢0(𝑧) + 𝒢0(𝑧)𝒯𝒢0(𝑧), (3.1.8)

or 𝒯(𝑧)𝒢0(𝑧) = 𝒱𝒢(𝑧). (3.1.9)

In actual calculations, the corresponding Hamiltonian 𝐻 is not given by
the full Schrödinger Hamiltonian ℋ including the full interaction between all
involved electrons. The Hohenberg-Kohn-theorem39 states that the ground state
of a system of 𝑁 electrons is already determined by their charge density 𝑛(𝒓).
This charge density can be determined by solving the Kohn-Sham equations for𝑁 non-interacting electrons. However, this approach requires the treatment of
the exchange and correlation between the 𝑁 electrons in terms of this single-
electron charge density. The easiest and well-known approaches to treat this
problem are the local density approximation (LDA) and the generalized gradient
approximation (GGA).

The Hamiltonian 𝐻(𝒓) is given by a kinetic energy 𝐾 and an effective single
particle potential 𝑉 (𝒓), which contains the external potential from the lattice,
the Coulomb interaction between the electrons and the exchange-correlation
potential: 𝐻(𝒓) = 𝐾 + 𝑉 (𝒓), 𝑉 (𝒓) = ⟨𝒓 | 𝒱 | 𝒓⟩ . (3.1.10)

The effective potential 𝑉 (𝒓) of a system is given by the individual effective
potentials 𝑉𝑖(𝒓) of the individual scatterers at positions 𝑹𝑖:𝑉 (𝒓) = 𝑁∑𝑖 𝑉𝑖(𝒓𝑖), 𝒓𝑖 = 𝒓 − 𝑹𝑖. (3.1.11)

The individual potentials 𝑉𝑖(𝒓) are defined to be disjunct, i.e., not overlapping
each other. A typical definition is given within the muffin-tin-approximation,
where the total effective potential is given by non-overlapping spherical potentials
with constant potential in the interstitial area. Another definition is the full-
potential method, where the individual potentials are defined within the Voronoi
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3 Fundamental theory in magnonics and plasmonics

cell around each individual scatterer, which is comparable to their Wigner-Seitz-
cell.

To account for multiple scattering, the 𝒯 operator is expanded for the multiple
scatterers, and thus for the potentials, in the system. By naming the single-site𝒯 operator of the potential 𝒱𝑛 as 𝑡𝑛,𝑡𝑛 = 𝒱𝑛 + 𝒱𝑛𝒢0𝑡𝑛 = (ℐ − 𝒱𝒢0)−1𝒱𝑛, (3.1.12)

the multi-site 𝒯 operator can be rewritten as𝒯 = ∑𝑛 𝒱𝑛 + ∑𝑛,𝑚 𝒱𝑛𝒢0𝒱𝑚 + ∑𝑛,𝑚,𝑘 𝒱𝑛𝒢0𝒱𝑚𝒢0𝒱𝑘 + … (3.1.13)= ∑𝑛 𝑡𝑛 + ∑𝑛,𝑚 𝑡𝑛𝒢0(1 − 𝛿𝑛𝑚)𝑡𝑚 + ∑𝑛,𝑚,𝑘 𝑡𝑛𝒢0(1 − 𝛿𝑛𝑚)𝑡𝑚𝒢0(1 − 𝛿𝑚𝑘)𝑡𝑘+ ∑𝑛,𝑚,𝑘,𝑗 𝑡𝑛𝒢0(1 − 𝛿𝑛𝑚)𝑡𝑚𝒢0(1 − 𝛿𝑚𝑘)𝑡𝑘𝒢0(1 − 𝛿𝑘𝑗)𝑡𝑗. (3.1.14)

Alternatively, the multi-site 𝒯 operator can be defined in terms of the scattering
path operators 𝜏𝑛𝑚𝒯 = ∑𝑛𝑚 𝜏𝑛𝑚, (3.1.15)𝜏𝑛𝑚 = 𝑡𝑛𝛿𝑛𝑚 + 𝑡𝑛𝒢0(1 − 𝛿𝑛𝑚)𝑡𝑚 + ∑𝑘 𝑡𝑛𝒢0(1 − 𝛿𝑛𝑘)𝑡𝑘𝒢0(1 − 𝛿𝑘𝑚)𝑡𝑚+ ∑𝑘,𝑗 𝑡𝑛𝒢0(1 − 𝛿𝑛𝑘)𝑡𝑘𝒢0(1 − 𝛿𝑘𝑗)𝑡𝑗𝒢0(1 − 𝛿𝑗𝑚)𝑡𝑚 + … . (3.1.16)

Combining the scattering path operators 𝜏𝑚𝑛, the single-site 𝒯 operator 𝑡𝑛, and
the structure constants 𝒢0 for the whole system in corresponding supermatrices𝝉, 𝒕 and 𝒢0, the main equation of the Green’s function method can be written as𝝉 = (𝒕−1 − 𝒢0)−1. (3.1.17)

An important similarity to the later presented T-matrix method in plasmonics
can be observed, when the incoming and outgoing waves from a single particle,𝜓𝑛i and 𝜓𝑛o , are related with the single-site scattering operator 𝑡𝑛:47|𝜓𝑛o ⟩ = 𝒢0𝑡𝑛 |𝜓𝑛i ⟩ . (3.1.18)

The outgoing wave can be easily calculated from the incoming wave by application
of the structure constant 𝒢0 and the single-site scattering operator 𝑡𝑛. After
numerical expansion, this process yields a simple matrix multiplication.
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3.1 Magnon theory

3.1.2 Coherent potential approximation

The above description of the KKR method is limited to ordered structures.
Therein, disorder can only be described by creating a large supercell, which is
used as an approximation to the actual disorder. Unfortunately, this approach
has two major problems: Increasing the size of the calculated cell means also a
massive increase in computation time, and supercell calculations are still subject
to periodic repetition of the used structure. The latter problem is especially
important in smaller supercells, because this “ordered disorder” can lead to
artifacts, which will not appear in the actual system.

In order to circumvent these problems, early approaches were done in terms of
the Virtual Crystal Approximation (VCA). The VCA is implemented by averaging
the potentials of the alloyed atoms 𝑉𝑖 with their respective concentrations 𝑐𝑖:𝑉VCA = ∑𝑖 𝑐𝑖𝑉𝑖. (3.1.19)

This method yields satisfying results for small perturbations, e.g., from atoms
with similar potentials, but breaks for systems with larger atomic potentials like
they appear in systems with localized electronic states.

The next development was achieved by averaging the single-site scattering
matrices 𝑡, resulting in the Average 𝑡-matrix Approximation (ATA). Similar to
the VCA, the scattering matrices of the alloyed atoms 𝑡𝑖 are weighted with their
concentrations: 𝑡ATA = ∑𝑖 𝑐𝑖𝑡𝑖. (3.1.20)

This method assumes small concentrations for the atoms to be able to neglect the
inter-site scattering contributions but degrades for higher concentrations. It is
essentially a non-self-consistent version of the Coherent Potential Approximation
(CPA).

The CPA tries to tackle these problems by introducing a coherent 𝑡-matrix𝒕C.43,48 The idea is to avoid the additional scattering contributions from the
interaction of the alloyed atoms. An expression for the coherent 𝑡-matrix can be
derived by starting with the weighted average of the scattering path operator,𝜏𝑛𝑚C = ∑𝑖 𝑐𝑖𝜏𝑛𝑚𝑖 . (3.1.21)
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3 Fundamental theory in magnonics and plasmonics

This condition is, in practice, only required for 𝑛 = 𝑚 = 0. In comparison to
eq. (3.1.17), the relation between the diagonal coherent scattering path operator𝜏00C and the coherent 𝑡-matrix 𝒕C is given by𝜏00C = 1ΩBZ ∫ d𝒌 (𝑡−1C − 𝒢0(𝒌))−1, (3.1.22)

with the volume of the Brillouin zone ΩBZ. The diagonal impurity scattering
path operators can be obtained from a Dyson equation,𝜏00𝑖 = 𝜏00C1 + 𝜏00C (𝑡−1𝑖 − 𝑡−1C ) . (3.1.23)

By iteration of the following equation, a self-consistent solution to the above
eqs. (3.1.22) and (3.1.23) can be obtained:43

𝑡newC = (𝜏00C (∑𝑖 𝑐𝑖𝜏𝑖)−1 − 1(∑𝑖 𝑐𝑖𝜏𝑖)−1 + 𝑡−1C )−1
(3.1.24)

The CPA can successfully calculate the electronic properties of many random
alloys. However, the single-site approximation cannot describe the influence
of effects such as short-range order. The necessary extension of the sketched
algorithm is given by the Multi-Sublattice Non-Local CPA (MS-NL-CPA), which
is also implemented in the used computer program Hutsepot.43,49

3.1.3 Magnetic force theorem

The magnonic subsystem, i.e., the interaction of the spins, will be described in
terms of the classical Heisenberg Hamiltonian. This effective Hamiltonian relates
the existing spins with the magnetic exchange coefficients 𝐽𝑖𝑗 between the spins
at sites 𝑖 and 𝑗: 𝐻 = − ∑𝑖𝑗 𝐽𝑖𝑗𝑺𝑖 ⋅ 𝑺𝑗. (3.1.25)

Following from this definition, positive exchange coefficients yield a ferromagnet
and negative ones an anti-ferromagnet.

A straightforward way to calculate the interaction of a single spin with the
rest of the ferromagnetic system is the deviation of this spin by a small angle 𝜃.
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3.1 Magnon theory

According to the definition of the Heisenberg-Hamiltonian, this will result in an
energy change of 𝛿𝐸0 = 2 ∑𝑗 𝐽0𝑗(1 − cos 𝜃) ≈ 𝐽0𝜃2, (3.1.26)𝐽0 = ∑𝑗 𝐽0𝑗. (3.1.27)

The interaction between two spins at sites 𝑖 and 𝑗 can similarly be determined
by deviating them to opposite angles ±𝜃/2, resulting in an energy change of𝛿𝐸𝑖𝑗 = 𝐽𝑖𝑗(1 − cos 𝜃) ≈ 12𝐽𝑖𝑗𝜃2. (3.1.28)

However, the calculation of this energy change is quite difficult in terms of the
usual DFT calculations. The KKR method with its previously defined single-site𝒯 operators 𝑡𝑖 and scattering path operators 𝜏 𝑖𝑗 can overcome this problem
by employing Lloyd’s formula to yield a compact definition of the exchange
coefficients42𝐽𝑖𝑗 = − 14π Im ∫ 𝐸f−∞ d𝐸 Tr{[(𝑡𝑖↑)−1 − (𝑡𝑖↓)−1]𝜏 𝑖𝑗↑ [(𝑡𝑗↑)−1 − (𝑡𝑗↓)−1]𝜏 𝑖𝑗↓ }.

(3.1.29)

The integral is performed by integrating over the occupied energy range, i.e., all
energies below the Fermi energy 𝐸f.50,51

3.1.4 Disordered Heisenberg-Hamiltonian
The taken approach to calculate the susceptibility of a magnetic system within
the Heisenberg model is the equation of motion of a spin 𝑺𝑖 in the (infinite) real
space cluster. This spin is precessing due to the effective field 𝑩𝑖eff resulting from
the surrounding spins:∂𝑡𝑺𝑖 = −𝛾𝑺𝑖 × 𝑩𝑖eff, 𝑩𝑖eff = 1𝜇B𝑆𝑖 ∑𝑗 𝐽𝑖𝑗𝒆𝑗. (3.1.30)

Assuming small deviations 𝑒+𝑖 ≡ 𝑒x𝑖 + i𝑒y𝑖 from a collinear ground state 𝒆𝑖 ∥ 𝒆z,
this equation can be linearized:

∂𝑡𝑆𝑖 ⎛⎜⎝𝑒x𝑖𝑒y𝑖𝑒z𝑖 ⎞⎟⎠ = − 𝛾𝜇B ∑𝑗 𝐽𝑖𝑗 ⎛⎜⎜⎝𝑒y𝑖 𝑒z𝑗 − 𝑒z𝑖 𝑒y𝑗𝑒z𝑖 𝑒x𝑗 − 𝑒x𝑖 𝑒z𝑗𝑒x𝑖 𝑒y𝑗 − 𝑒y𝑖 𝑒x𝑗 ⎞⎟⎟⎠ . (3.1.31)
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3 Fundamental theory in magnonics and plasmonics

Therein, the spin 𝑺𝑖 of an atom is defined by its magnitude 𝑆𝑖 and the direction
of its polarization 𝑒z𝑖 = ±1:

𝑺𝑖 = 𝑆𝑖 ⎛⎜⎝𝑒x𝑖𝑒y𝑖𝑒z𝑖 ⎞⎟⎠ . (3.1.32)

In the next step, the first two components of the linearized equation of motion
get combined. For easier notation, the magnitude 𝑒𝑖 of the spin direction vector𝒆𝑖 shall be interpreted as the direction of the polarization 𝑒𝑖 != 𝑒z𝑖 . Thus, 𝑒𝑖 = 1
means that the moment of atom 𝑖 points upwards and 𝑒𝑖 = −1 represents a
downward pointing moment:∂𝑡𝑒+𝑖 = − 𝑔𝑆𝑖 ∑𝑗 𝐽𝑖𝑗(𝑒y𝑖 𝑒𝑗 − 𝑒𝑖𝑒y𝑗 + i𝑒𝑖𝑒x𝑗 − i𝑒x𝑖 𝑒𝑗) (3.1.33)= i𝑔𝑆𝑖 ∑𝑗 𝐽𝑖𝑗(𝑒+𝑖 𝑒𝑗 − 𝑒𝑖𝑒+𝑗 ). (3.1.34)

At this point, the deviations 𝑒+𝑖 are time-dependent quantities. By introducing
time-harmonic solutions 𝑒+𝑖 (𝑡) = 𝑒+𝑖 ei𝜔𝑡, (3.1.35)

the eigenvalue problem for the realspace torque matrix can be derived:i𝜔𝑒+𝑖 ei𝜔𝑡 = i𝑔𝑆𝑖 ∑𝑗 𝐽𝑖𝑗(𝑒+𝑖 ei𝜔𝑡𝑒𝑗 − 𝑒𝑖𝑒+𝑗 ei𝜔𝑡), (3.1.36)𝜔𝑒+𝑖 = 𝑔𝑆𝑖 ∑𝑗 (𝛿𝑖𝑗 ∑𝑘 𝐽𝑖𝑘𝑒+𝑗 𝑒𝑘 − 𝐽𝑖𝑗𝑒𝑖𝑒+𝑗 ). (3.1.37)

Interpreting 𝒆+𝜆 as the vector of the spin deviations for all atoms in the system
with corresponding frequency 𝜔𝜆, the static torque matrix 𝑻 = {𝑇𝑖𝑗} can be
derived:𝜔𝜆𝑒+𝜆𝑖 = ∑𝑗 𝑇𝑖𝑗𝑒+𝜆𝑗, 𝑇𝑖𝑗 = 𝑔𝑆𝑖 (𝛿𝑖𝑗 ∑𝑘 𝐽𝑖𝑘𝑒𝑘 − 𝐽𝑖𝑗𝑒𝑖). (3.1.38)

Since the investigated system is usually a translationally invariant (periodic)
system, with cells 𝑹 and position 𝒓𝑝, the eigensolutions are plane waves𝑒+𝜆𝑖 = 𝑒+𝜆𝑝(𝒒)ei𝒒⋅𝑹, (3.1.39)
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or the Fourier transform can be performed. This, in turn, results in a split of
the index 𝑖, which corresponds to the atoms in the infinite crystal, into an index𝑝 addressing the position in the (super-)cell, and the position 𝑹 of the cell in
the infinite crystal:𝜔𝜆𝑒+𝜆𝑝ei𝒒⋅𝑹 = ∑𝑟 ∑𝑹′ 𝑇(𝑝,𝑹),(𝑟,𝑹′)𝑒+𝜆𝑟ei𝒒⋅𝑹′ , (3.1.40)𝜔𝜆𝑒+𝜆𝑝 = ∑𝑟 ∑𝑹′ 𝑇(𝑝,𝑹),(𝑟,𝑹′)𝑒+𝜆𝑟ei𝒒⋅(𝑹′−𝑹). (3.1.41)

In order to reduce eq. (3.1.41) back to a standard eigenvalue problem, it is
necessary to include the summation over 𝑹′ into the torque matrix 𝑻,𝑇𝑝𝑟 = ∑𝑹′ 𝑇(𝑝,𝑹),(𝑟,𝑹′)ei𝒒⋅(𝑹′−𝑹) (3.1.42)= 𝑔𝑆𝑝 ∑𝑹′ (𝛿𝑝𝑟𝛿𝑹𝑹′ ∑𝑙 ∑𝑹″ 𝐽 (𝑙,𝑹″)(𝑝,𝑹) 𝑒𝑙ei𝒒⋅(𝑹′−𝑹) − 𝐽 (𝑟,𝑹′)(𝑝,𝑹) 𝑒𝑝ei𝒒⋅(𝑹′−𝑹)).

(3.1.43)
Distributing the sum with respect to 𝑹′ allows to remove the first exponential
due to the 𝛿-function:𝑇𝑝𝑟 = 𝑔𝑆𝑝 (𝛿𝑝𝑟 ∑𝑙 𝑒𝑙 ∑𝑹″ 𝐽 (𝑙,𝑹″)(𝑝,𝑹) − 𝑒𝑝 ∑𝑹′ 𝐽 (𝑟,𝑹′)(𝑝,𝑹) ei𝒒⋅(𝑹′−𝑹)). (3.1.44)

The translational invariance of the investigated system allows the summations to
be shifted by 𝑹″ and 𝑹′, respectively:𝑇𝑝𝑟(𝒒) = 𝑔𝑆𝑝 (𝛿𝑝𝑟 ∑𝑙 𝑒𝑙𝐽𝑝𝑙(𝟎) − 𝑒𝑝𝐽𝑝𝑟(𝒒)), 𝐽𝑝𝑟(𝒒) = ∑𝑹 𝐽 (𝑟,𝟎)(𝑝,𝑹)e−i𝒒⋅𝑹,

(3.1.45)𝜔𝜆𝑒+𝜆𝑝 = ∑𝑟 𝑇𝑝𝑟𝑒+𝜆𝑟. (3.1.46)

This dynamic torque matrix 𝑻(𝒒) is valid for a periodic system consisting of a
unit cell with 𝑝 atoms.

The summation over the interactions with neighboring atoms, which is theo-
retically an infinite sum, is naturally limited by the limited physical range of the𝐽𝑖𝑗. Depending on the magnetic atoms in a system, only the first two or three
shells might be required. For example, Heusler alloys often show a short-range
interaction, while 3d-metals like Fe, Co or Ni exhibit a long-range exchange. The
actual limit, which has to be set manually to match the physical properties of
the involved atoms, results in a certain sparsity of the torque matrix 𝑻(𝒒). The
degree of sparsity depends on the ratio of atoms within the selected interaction
range compared to the total number of atoms in the system.
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Transverse magnetic susceptibility

The transverse magnetic susceptibility in terms of the Heisenberg model can be
derived from the application of a small transverse field 𝐵+𝑝 (𝒒)ei𝒒⋅𝑹ei𝜔𝑡 and the
corresponding change in spins 𝑆𝑝𝑒+𝑝 ei𝒒⋅𝑹ei𝜔𝑡:22∑𝑟 𝑆−1𝑟 (𝜔𝛿𝑝𝑟 − 𝑇𝑝𝑟(𝒒))𝑆𝑟𝑒+𝑟 (𝒒) = 𝛾𝑒𝑝 1𝜇B (−𝜇B𝐵+𝑝 (𝒒)). (3.1.47)

Starting from the latter equation, the inverse of the transverse magnetic suscep-
tibility can be defined by(𝜒−1(𝜔, 𝒒))𝑝𝑟 = 𝜇B𝑒𝑝𝛾−1𝑆−1𝑟 (𝜔𝛿𝑝𝑟 − 𝑇𝑝𝑟(𝒒)). (3.1.48)

Inserting the definition of the torque matrix 𝑻 from eq. (3.1.45) and replacing
the circular frequency 𝜔 with the complex energy 𝑧, which is possible due to the
application of atomic units (ℏ = 1), yields a directly calculable expression for
the inverse susceptibility matrix(𝜒−1(𝑧, 𝒒))𝑝𝑟 = 𝑒𝑝𝑧𝑔𝑆𝑟 𝛿𝑝𝑟 − 𝑒𝑝𝑔𝑆𝑟 𝑇𝑝𝑟(𝒒) (3.1.49)= 𝑒𝑝𝑧𝑔𝑆𝑟 𝛿𝑝𝑟 − 𝑒𝑝𝑔𝑆𝑟 (𝛿𝑝𝑟 ∑𝑙 𝐽𝑝𝑙(𝟎) − 𝑒𝑝𝐽𝑝𝑟(𝒒)). (3.1.50)

Since this calculation will be performed in a supercell, it is important to care for
the Bloch factors, introduced by the interactions 𝐽𝑝𝑟(𝒒), when the summation
wraps around the boundary of the supercell.

In principle, the formula above would be enough to calculate the loss from the
susceptibility matrix 𝝌, ℒ = 12i(𝝌 − 𝝌†), (3.1.51)

associated with the susceptibility of a single disordered system. However, the
main target is the calculation of the average susceptibility and the corresponding
loss in a disordered supercell. This can be achieved by averaging the susceptibility
matrices 𝝌 over a larger amount of differently occupied supercells (so called
configurations). Afterwards, it is possible to fold the supercell back to the original
supercell by application of a Fourier transformation𝜒(𝒒) = ∑𝑝 ∑𝑟 ei𝒒⋅𝒓𝑝e−i𝒒⋅𝒓𝑟𝜒𝑝𝑟(𝒒). (3.1.52)
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Figure 3.1.1: Definition of coordinates. The simulation domain is a supercell
(blue) consisting of unit cells (green) with several basis atoms
(circles).

A general extension to this algorithm is the introduction of an additional subdi-
vision of the supercell 𝑹 into basis sites 𝛼 in a cell ̃𝑝 (see fig. 3.1.1) by splitting
the vectors as 𝒓𝑖 = 𝑹 + 𝒓𝑝 (3.1.53)= 𝑹 + 𝒓�̃� + 𝒓𝛼. (3.1.54)

This leads to the definition of the basis-resolved susceptibility𝜒𝛼𝛽(𝒒) = ∑𝒓�̃� ∑𝒓�̃� ei𝒒⋅𝒓�̃�e−i𝒒⋅𝒓�̃�(𝜒(𝒒))(�̃�,𝛼),( ̃𝑟,𝛽). (3.1.55)

The calculation of a complete susceptibility spectrum, with respect to energy𝑧 and wave vector 𝒒, requires, in principle, the recalculation of the susceptibility
matrix 𝝌 for every wave vector 𝒒 and a subsequent Fourier transform. However,
the actual dependency of the susceptibility matrix 𝝌 on the wave vector is given
by 𝐽𝑝𝑟(𝒒) (cf. eq. (3.1.45)) asei𝒒⋅𝑹, for any wave vector 𝑹. (3.1.56)

Exploiting this fact by restricting the spectra to wave vectors where this factor
vanishes allows to calculate the spectrum without having to recalculate the
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susceptibility matrix. In particular, only the Fourier transform is required. This
procedure is possible, because the introduction of plane waves in eq. (3.1.39)
was performed in terms of the supercell (cf. fig. 3.1.1), while the final Fourier
transform in eq. (3.1.52) was done with respect to the position of the atoms in
the supercell.

The advantage of the aforementioned method is its ability to correctly represent
the magnetic susceptibility as it results from disordered structures. Possible finite
size effects will appear for small systems, but they vanish rapidly by increasing
the size of the system (cf. section 5.1.1). A Monte Carlo approach can be used
to keep the systems at intermediate sizes, while the finite-size effects are almost
perfectly avoided. One caveat of the method is, however, that it requires the
adiabatic approximation, which neglects any broadening due to interactions with
electrons, photons, or with the Stoner continuum. This problem can be avoided
by using the dynamic approximation within Monte Carlo calculations, but this
was beyond the scope of the investigations in this thesis.

Alternatively, the calculation of disordered magnonic systems can be achieved
with the CPA. This method was implemented by Paweł Buczek and the details
can be found in the appendix of [T1].

The general idea is the similarity of several quantities between electronics and
magnonics (cf. sections 3.1.1 and 3.1.2): The structure constant 𝒢0, defined in
eq. (3.1.5), has the same structure as the free spin propagator, except that the
Hamiltonian of the “free magnonic system” is ℋ0 = 0:𝐺0 = 𝑧−1ℐ. (3.1.57)

The potential 𝒱 corresponds to the product of the electron’s g-factor 𝛾, the spin
moment matrix 𝑆, 𝑆𝑝𝑟 = 𝑆𝑝𝛿𝑝𝑟, (3.1.58)

and the torque matrix 𝑇. Appropriately, the magnon spin propagator can be
calculated from the equation 𝐺 = 𝐺0 + 𝐺0𝛾𝑆𝑇 𝐺, (3.1.59)

which compares perfectly to eq. (3.1.6). The susceptibility 𝜒 is then defined as𝜒 = 𝛾𝐺𝑆. (3.1.60)
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3.2 Electromagnetic scattering theory

3.2.1 Wave equation
The starting point for electromagnetic scattering theory are Maxwell’s equations:𝛁 ⋅ 𝑩 = 0, 𝛁 × 𝑬 = −∂𝑩∂𝑡 , (3.2.1)𝛁 ⋅ 𝑫 = 𝜌, 𝛁 × 𝑯 = 𝒋 + ∂𝑫∂𝑡 . (3.2.2)

For both the electric and magnetic fields, a respective tensorial susceptibility
describes the reaction of the medium resulting in electric polarization 𝑷 and
magnetization 𝑴,𝑃𝑖𝜀0 = ∑𝑗 𝜒(1)e,𝑖𝑗𝐸𝑗 + ∑𝑗𝑘 𝜒(2)e,𝑖𝑗𝑘𝐸𝑗𝐸𝑘 + ∑𝑗𝑘𝑙 𝜒(3)e,𝑖𝑗𝑘𝑙𝐸𝑗𝐸𝑘𝐸𝑙 + … , (3.2.3)𝑀𝑖 = ∑𝑗 𝜒(1)m,𝑖𝑗𝐻𝑗 + ∑𝑗𝑘 𝜒(2)m,𝑖𝑗𝑘𝐻𝑗𝐻𝑘 + ∑𝑗𝑘𝑙 𝜒(3)m,𝑖𝑗𝑘𝑙𝐻𝑗𝐻𝑘𝐻𝑙 + … . (3.2.4)

The above equations can be linearized for small intensities by omitting terms
of higher order. Furthermore, most materials can by described by an isotropic
model, leaving a scalar susceptibility. By application of the material equations𝑫 = 𝜀0𝑬 + 𝑷 = 𝜀0(1 + 𝜒e)𝑬 = 𝜀0𝜀r𝑬, (3.2.5)𝑩 = 𝜇0(𝑯 + 𝑴) = 𝜇0(1 + 𝜒m)𝑯 = 𝜇0𝜇r𝑯, (3.2.6)

the electric flux density 𝑫 and the magnetic flux density 𝑩 can be eliminated.
In general, both the relative permittivity 𝜀r and the relative permeability 𝜇r

are frequency-dependent quantities. Especially, the complex-valued permittivity
(cf. section 2.2) is necessary for the theoretical description of plasmons. The
restriction to non-magnetic materials (i.e., 𝜇r ≈ 1), which forbids calculation for
spin-plasmonic applications, allows to reduce Maxwell’s equations to𝛁 ⋅ 𝑯 = 0, 𝛁 × 𝑬 = −𝜇0 ∂𝑯∂𝑡 , (3.2.7)𝛁 ⋅ 𝜀r𝑬 = 𝜌𝜀0 , 𝛁 × 𝑯 = 𝒋 + 𝜀0𝜀r ∂𝑬∂𝑡 . (3.2.8)

Similar to the introduction of time-dependent solutions for the definition of the
magnonic torque matrix (cf. eq. (3.1.35)), the electric and magnetic fields should
have a harmonic time dependency, too. Due to different conventions in the
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different fields of physics, the signs differ (e−i𝜔𝑡 instead of ei𝜔𝑡). The harmonic
time dependency allows further reductions in the induction and circuital law

𝛁 ⋅ 𝑯 = 0, 𝛁 × 𝑬 = i𝜔𝜇0 ∂𝑯∂𝑡 , (3.2.9)𝛁 ⋅ 𝜀r𝑬 = 𝜌𝜀0 , 𝛁 × 𝑯 = 𝒋 − i𝜔𝜀0𝜀r ∂𝑬∂𝑡 . (3.2.10)

In homogeneous media without free charges 𝜌 and currents 𝒋, the homogeneous
wave equations can be derived from the above induction and circuital law

𝛁 × 𝛁 × 𝑬 = −𝜇0𝜇r𝜀0𝜀r ∂2𝑬∂𝑡2 , (3.2.11)𝛁 × 𝛁 × 𝑯 = −𝜇0𝜇r𝜀0𝜀r ∂2𝑯∂𝑡2 . (3.2.12)

The definition of the vacuum speed of light 𝑐0 = 1√𝜇0𝜀0 and the refraction index𝑛 = √𝜇r𝜀r yields the well known wave equations

𝛥𝑬 − 𝑛2𝑐0 ∂2𝑬∂𝑡2 = 0, (3.2.13)𝛥𝑯 − 𝑛2𝑐0 ∂2𝑯∂𝑡2 = 0. (3.2.14)

Due to the relation between the electric and magnetic field, where the latter can
be calculated from the former with the induction law, further discussion can be
restricted to the electric field.

3.2.2 Single-sphere scattering

In a scattering experiment with a single sphere, three fundamental fields appear:
the incident field 𝑬inc, the internal field 𝑬int and the scattered field 𝑬scat. They
are related by the boundary condition at the surface of the sphere (with normal
vector 𝒏) (𝑬inc + 𝑬sca − 𝑬int) × 𝒏 = 0. (3.2.15)
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The expansion of these fields is done in terms of the spherical vector wave
functions (SVWF) 𝑴 (1,3)𝑚𝑛 and 𝑵 (1,3)𝑚𝑛 (cf. eqs. (A.5) and (A.6))𝑬inc = ∞∑𝑛=1 𝑛∑𝑚=−𝑛 𝑎𝑚𝑛𝑴 (1)𝑚𝑛 + 𝑏𝑚𝑛𝑵 (1)𝑚𝑛, (3.2.16)𝑬int = ∞∑𝑛=1 𝑛∑𝑚=−𝑛 𝑐𝑚𝑛𝑴 (1)𝑚𝑛 + 𝑑𝑚𝑛𝑵 (1)𝑚𝑛, (3.2.17)𝑬sca = ∞∑𝑛=1 𝑛∑𝑚=−𝑛 𝑓𝑚𝑛𝑴 (3)𝑚𝑛 + 𝑔𝑚𝑛𝑵 (3)𝑚𝑛. (3.2.18)

The boundary condition helps to relate the expansion coefficients of the incident
field 𝑎 and 𝑏 to the expansion coefficients of the scattered field 𝑓 and 𝑔. In the
case of a sphere, the relation is given by the well-known Mie coefficients𝑇 1𝑛 = − (𝑚r𝐿𝑛(𝑚r𝑥) + 𝑛/𝑥)𝑗𝑛(𝑥) − 𝑗𝑛−1(𝑥)(𝑚r𝐿𝑛(𝑚r𝑥) + 𝑛/𝑥)ℎ(1)𝑛 (𝑥) − ℎ(1)𝑛−1(𝑥) , (3.2.19)𝑇 2𝑛 = − (𝐿𝑛(𝑚r𝑥)/𝑚r + 𝑛/𝑥)𝑗𝑛(𝑥) − 𝑗𝑛−1(𝑥)(𝐿𝑛(𝑚r𝑥)/𝑚r + 𝑛/𝑥)ℎ(1)𝑛 (𝑥) − ℎ(1)𝑛−1(𝑥) , (3.2.20)

which depend on the relative refractive index 𝑚r = √𝜀i/𝜀s with the relative
permittivities 𝜀i and 𝜀s, inside the sphere and in its surrounding, respectively.
The dimensionless size parameter 𝑥 = 𝑘𝑅 is the product of the wave number and
the radius of the sphere. The functions 𝑗𝑛(𝑥) and ℎ(1)𝑛 are spherical Bessel and
Hankel functions, respectively. The logarithmic derivative 𝐿𝑛 is defined as𝐿𝑛( ̃𝑥) = dd ̃𝑥[ln( ̃𝑥𝑗𝑛( ̃𝑥))]. (3.2.21)

The relation between the expansion coefficients is now simply𝑓𝑚𝑛 = 𝑇 1𝑛𝑎𝑚𝑛, 𝑔𝑚𝑛 = 𝑇 2𝑛𝑏𝑚𝑛, (3.2.22)

which can be rewritten in matrix form(𝒇𝒈) = 𝑻 (𝒂𝒃) = (𝑻 1 00 𝑻 2) (𝒂𝒃) , (3.2.23)

where 𝑻 defines the scattering matrix (T-matrix) for a single spherical particle.
At this point, the similarity of the different approaches of electronics and

plasmonics become obvious. Equation (3.2.23) shows the relation between the
expansion coefficients of the incident and scattered fields as a matrix product,
similar to the scattering expression in eq. (3.1.18).
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3.2.3 Multi-sphere scattering
The generalization of the T-matrix method of a single scatterer towards multiple
scatterers can be achieved in several ways.

The first method is a direct approach, where the T-matrix of each scatterer
is calculated and then related by application of translation coefficients for the
SVWFs. For a dimer of spheres, this means, that at first the T-matrices 𝑻1 and𝑻2 are calculated. In order to create the system’s T-matrix 𝑻0, several translation
matrices 𝔗(1,3)𝑖𝑗 have to be used, to translate the incident and scattered fields,
denoted by the respective superscript (1) and (3), between the coordinate systems
of the scatterers, themselves, and the system of scatterers as a whole:28𝑻0 = 𝔗(1)01 𝑻1(𝑰 − 𝔗(3)12 𝑻2𝔗(3)21 𝑻1)−1(𝑰 + 𝔗(3)12 𝑻2𝔗(1)21 )𝔗(1)10+ 𝔗(1)02 𝑻2(𝑰 − 𝔗(3)21 𝑻1𝔗(3)12 𝑻2)−1(𝑰 + 𝔗(3)21 𝑻1𝔗(1)12 )𝔗(1)20 . (3.2.24)

Theoretically, this scheme could by expanded to systems with more scatterers,
but the explicit inversions pose a difficult numerical problem. Even for a system
of dimers, the maximum expansion order 𝑛 is severely limited by the stability of
the matrix inversion.

The second method is the Generalized Multiparticle Mie method.29,30 In this
approach, the scattering coefficients of all scatterers are related in a large system
of equations. It is again necessary to translate the SVWFs expansion coefficients
between the respective scatterers 𝑖 and 𝑗 with translation coefficients 𝐴𝜇𝜈𝑚𝑛(𝑗, 𝑖)
and 𝐵𝜇𝜈𝑚𝑛(𝑗, 𝑖). These coefficients translate the scattered waves from particle 𝑗
with indices 𝜇, 𝜈 into incident waves on particle 𝑖 with indices 𝑚, 𝑛:𝑓 𝑖𝑚𝑛 = 𝑇 1𝑖,𝑛(𝑎𝑖𝑚𝑛 − 𝑁∑𝑗=1𝑖≠𝑗

∞∑𝜈=1 𝜈∑𝜇=−𝜈 (𝑓𝑗𝜇𝜈𝐴𝜇𝜈𝑚𝑛(𝑗, 𝑖) + 𝑔𝑗𝜇𝜈𝐵𝜇𝜈𝑚𝑛(𝑗, 𝑖))), (3.2.25)

𝑔𝑖𝑚𝑛 = 𝑇 2𝑖,𝑛(𝑏𝑖𝑚𝑛 − 𝑁∑𝑗=1𝑖≠𝑗
∞∑𝜈=1 𝜈∑𝜇=−𝜈 (𝑓𝑗𝜇𝜈𝐵𝜇𝜈𝑚𝑛(𝑗, 𝑖) + 𝑔𝑗𝜇𝜈𝐴𝜇𝜈𝑚𝑛(𝑗, 𝑖))). (3.2.26)

This system of equations can be easily recasted in matrix form making standard
solvers for linear systems of equations applicable:[(𝑰 00 𝑰) + (𝑻 1 00 𝑻 2) (𝑨 𝑩𝑩 𝑨)] (𝒇𝒈) = (𝑻 1 00 𝑻 2) (𝒂𝒃)= (�̃̃�𝒃) . (3.2.27)
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The matrices 𝑨 and 𝑩, containing the translation coefficients 𝐴𝜇𝜈𝑚𝑛(𝑗, 𝑖) and𝐵𝜇𝜈𝑚𝑛(𝑗, 𝑖), can be determined using Mackowski’s three-step-method:52

𝑨𝑖𝑗(𝒓𝑖𝑗) = 𝑹−1(𝒓𝑖𝑗) ̃𝑨𝑖𝑗(𝑟𝑖𝑗)𝑹(𝒓𝑖𝑗), (3.2.28)𝑩𝑖𝑗(𝒓𝑖𝑗) = 𝑹−1(𝒓𝑖𝑗)�̃�𝑖𝑗(𝑟𝑖𝑗)𝑹(𝒓𝑖𝑗). (3.2.29)

The matrices ̃𝑨𝑖𝑗(𝑟𝑖𝑗) and �̃�𝑖𝑗(𝑟𝑖𝑗) describe the axial translations between the
different coordinate systems, and the unitary matrix 𝑹 describes the rotation of
the coordinate system.

In contrast to the T-matrix method, which yields a single set of expansion
coefficients for the whole system, the Generalized Multiparticle Mie method
calculates a separate set of coefficients for each scatterer.

3.2.4 Excitation with light and electrons

A critical part of the scattering experiment is the kind of excitation. For many
experiments, this is simply an incoming laser beam, which can be represented as
plane wave or a focused gaussian beam.28 On the other hand, in an STM, the
scattering system is excited by the field induced from a passing electron.53

To be able to calculate the scattering, it is necessary to expand these incident
fields into SVWFs. Since the SVWFs form a complete set of orthogonal basis
functions on the unit sphere, the expansion coefficients can be calculated by
integration of the incident field 𝑬inc over an auxiliary sphere:

𝑎𝑚𝑛 = ∫ π0 d𝜃 ∫ 2π0 d𝜑 𝑬inc𝑴 (1)𝑚𝑛 sin 𝜃∫ π0 d𝜃 ∫ 2π0 d𝜑 |𝑴 (1)𝑚𝑛|2 sin 𝜃 , (3.2.30)

𝑏𝑚𝑛 = ∫ π0 d𝜃 ∫ 2π0 d𝜑 𝑬inc𝑵 (1)𝑚𝑛 sin 𝜃∫ π0 d𝜃 ∫ 2π0 d𝜑 |𝑵 (1)𝑚𝑛|2 sin 𝜃 . (3.2.31)

For example, for an incident plane wave, the following non-vanishing expansion
coefficients can be determined:𝑎1,𝑛 = −𝑎−1,𝑛 = i𝑛−1√2𝑛 + 1, (3.2.32)𝑏1,𝑛 = 𝑏−1,𝑛 = i𝑛−1√2𝑛 + 1. (3.2.33)
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Figure 3.2.1: Coordinates of the electron beam passing a sphere.T2

However, the field resulting from a passing electron requires a more sophisti-
cated derivation. The chosen approach is the description of the electric field 𝑬
in terms of the scalar potential 𝜙 and vector potential 𝑨𝑬 = −𝛁𝜙 − ∂𝑨∂𝑡 . (3.2.34)

The potentials are defined by the charge density 𝜌 and current density 𝒋,𝜌(𝒓, 𝑡) = −𝛿(𝒓 − 𝒓e(𝑡)), (3.2.35)𝒋(𝒓, 𝑡) = −𝒗𝛿(𝒓 − 𝒓e(𝑡)). (3.2.36)

The time-dependent position of the passing electron 𝒓e(𝑡) shall be limited to a
trajectory in 𝑧-direction. This does not limit the possibilities, since the simulated
system could be translated/rotated to fit this requirement:𝒓e(𝑡) = 𝒓0 + 𝒗𝑡, 𝒗 ∥ 𝒆z. (3.2.37)

Furthermore, the initial position 𝒓0 is given in cylindrical coordinates with radius𝑏, azimuthal angle 𝜑0, and initial height 𝑧0 (see fig. 3.2.1).
Inserting the time-dependent retarded Green’s function into the definition

of the electric field (3.2.34) yields a definition in terms of the retarded Green’s
function in the frequency domain:54

𝑬(𝑡) = (𝛁 − i𝑘𝒗) ∫ ∞−∞ d𝑡′ ei𝜔𝑡′𝑔+𝜔 (𝒓, 𝒓e(𝑡)). (3.2.38)
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3.2 Electromagnetic scattering theory

Performing a multipole expansion for the Green’s function 𝑔+𝜔 finally yields the
expansion coefficients 𝑎𝑚𝑛 and 𝑏𝑚𝑛,T2

𝑎𝑚𝑛 = 𝑅𝑚 i𝑛−2𝑚𝑘π ( 2𝑛(𝑛 + 1)) 12 𝑚𝑃 |𝑚|𝑛 (𝑣−1), (3.2.39)𝑏𝑚𝑛 = 𝑅𝑚 i𝑛−2𝑚𝑘π ( 2𝑛(𝑛 + 1)) 12 i2𝑣𝛾× (𝑐+𝑚−1√(𝑛 − 𝑚 + 1)(𝑛 + 𝑚)𝑃 |𝑚−1|𝑛 (𝑣−1)− 𝑐−𝑚+1√(𝑛 + 𝑚 + 1)(𝑛 − 𝑚)𝑃 |𝑚+1|𝑛 (𝑣−1)), (3.2.40)𝑅𝑚 = 𝐾𝑚(𝜔𝑏𝑣 1𝛾) exp(−i𝑚𝜑0 − i𝜔𝑏𝑣 𝑧0𝑏 ). (3.2.41)

The functions 𝑃 |𝑚|𝑛 are associated Legendre polynomials, and 𝐾𝑚 are modified
Bessel functions of the second kind. The Lorentz factor is given by 𝛾−1 = √1 − 𝑣2.
The factors 𝑐+/−𝑚 appear due to definition of the associated Legendre polynomials
with |𝑚| as given by Doicu et al.28 and correct the sign with respect to 𝑚:𝑐+𝑚 = {1 𝑚 < 0−1 𝑚 ≥ 0 , 𝑐−𝑚 = {1 𝑚 ≤ 0−1 𝑚 > 0 . (3.2.42)
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4 Combination and improvement of
numerical techniques

The calculation of magnonic properties and the optimization of plasmonic nanos-
tructures require the application of special numerical techniques to get satisfying
result within a reasonable time. This chapter summarizes the investigations con-
cerning the generation of random structures for magnonic systems, the analytic
continuation of the magnetic susceptibility, and the optimization of plasmonic
nanostructures. They are necessary for the calculations in the next chapter.

4.1 Generation of random structures
The generation of random structures, i.e., different occupations of the simulated
supercells, is a critical part in the calculation of the susceptibility of disordered
systems and plays an important role in the success of the method. The main
goal of the following algorithms is to resemble real physical structures as closely
as possible.

Especially for surface structures, it is important to find reasonable methods,
because the growth process will impact the resulting structures: Figure 4.1.1a
shows 7 monolayers of Co deposited on Cu(001), which yields a rugged surface

Figure 4.1.1: (a) As-deposited 7ML Co/Cu(100), (b) Co/Cu(100) after annealing
at 370 K. Different colors denote different surface heights.13
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4 Combination and improvement of numerical techniques

structure with several different thicknesses and plateaus with diameters of a
few nm. To reduce the impact of this disorder, the sample was annealed at370 K to obtain a much smoother surface (cf. fig. 4.1.1b).13 However, since films
with less than 6 monolayers of Co on Cu(100) suffer from diffusion of Cu to the
surface, while annealing,13 the rugged structures are a necessary target for the
structure generation algorithm. For the simulation of smooth annealed surfaces,
an algorithm capable of avoiding a surplus amount of point defects would be
favorable.

In the following, three major algorithms are presented, which were used for the
creation of random structures. They are focused on performance and tunability
of the resulting outputs. Because of their versatility and good comparison with
the shown experimental surfaces, they were chosen over more complex algorithms,
like kinetic Monte Carlo approaches.

4.1.1 Direct random structure generation and
Fisher-Yates-Shuffle

The most straightforward approach to create random structures is the use of
standard pseudorandom numbers (PRN). A given setup and equally distributed
PRNs in the right-open interval [0..1) – the output of most standard PRN
generators – lead to two basic ways to create the desired random distribution of
atoms.

The first method is the direct use of the random numbers by dividing the
interval according to the probabilities of each species at a given site. For example,
a probability of 40 % for species A and 60 % for species B would result in species
A for all random numbers 𝑝 < 0.4 and species B, otherwise. An important caveat
of this method is the possibility of an unbalanced system, where the actual final
composition does not meet the desired probabilities (if at all possible due to the
limited amount of lattice positions in the supercell). In this case, an additional
rebalancing step might be necessary (cf. eq. (5.1.1) in section 5.1.1).

The second method is the use of the Fisher-Yates-Shuffle (cf. algorithm 1).55

Algorithm 1 Fisher-Yates-Shuffle
Require: 𝑎(1 ∶ 𝑛) contains desired composition

for 𝑖 = n downto 2 do𝑗 ← random integer 1 ≤ 𝑗 ≤ 𝑖
swap 𝑎(𝑖) ↔ 𝑎(𝑗)

end for
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1st layer
2nd layer
3rd layer
4th layer

Figure 4.1.2: Sideview of a possible random configuration for 3ML Co/Cu(001)
where 50 % of the atoms from the 3rd layer are moved to the 4th
layer. Possibly undesired floating atoms (red) and holes (green)
were created.

For a given site in the original unit cell, a list of all corresponding positions in
the supercell is created and filled with the desired composition of species in an
arbitrary order. Applying the above example to a system with 25 sites would
result in a list filled with 10 entries of A and 15 entries of B. Then, the Fisher-
Yates-Shuffle will create a completely random permutation of this composition,
which can then be used for further calculations.

Nevertheless, both methods can produce unphysical or undesired results. For
example, the calculation of the system 3ML Co/Cu(001) where 50 % of Co atoms
from the 3rd layer are moved to the 4th layer will most likely produce floating
atoms or holes (see fig. 4.1.2).

4.1.2 Perlin noise method

This method is based on the popular Perlin noise,56,57 which is commonly used
for procedural creation of textures in computer graphics. The idea of this
approach is to model the surface in terms of a smooth noise function. Some form
of downsampling is applied to create a closed hilly surface which can be used in
susceptibility calculations.

In order to create Perlin noise on a grid (in this case, the supercell), a second
grid with a lower resolution is generated and its vertices are populated with
random gradient vectors. Then, for every point in the supercell, i.e., the high-
resolution grid, the contributions from the nearest gradient vectors are weighted
to get a smooth noise function. In the 1-dimensional case (see fig. 4.1.3), the
gradients from the vertices to the left and to the right are used and the resulting
linear functions are interpolated. In the 2-dimensional case, the interpolation
would be calculated from the 4 vertices of the circumscribing rectangle.

In fig. 4.1.3, it becomes apparent that this definition of Perlin noise results in
the value “zero” at each of the low-resolution grid’s vertices. For that reason,
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4 Combination and improvement of numerical techniques

an additional contribution of cubically interpolated regular noise, which is also
defined at the vertices of the low-resolution grid, was added to the Perlin noise.
The generation of the final structure from the Perlin noise is then achieved with
the help of a level-set method (see fig. 4.1.4). In this method, one or more
thresholds are defined and compared to the noise function at every position in
the grid. The example in the figure can be interpreted as a 1-dimensional surface.
Positions, where the noise function is less than the 1st level, would get assigned
no atoms, positions with a value between the two levels get assigned one atom
and positions with a value above the 2nd level get assigned two atoms.

This method has the same problems concerning stoichiometry as the purely
random distribution of atoms. To get closer to the desired composition, the
thresholds of the level set method can be adapted to fit the needs of the calculation.
Another problem is the fact that this method can only be defined on a rectangular
grid. As a result, the application of Perlin noise to a non-rectangular supercell,
which is needed for calculations of, e.g., a hexagonal surface represented by
rhombic unit cells, would result in a distorted grid with a strong anisotropy. In
particular, one diagonal of the unit cell is longer than the other resulting in a
structure, which is stretched along the longer diagonal. A possible solution is
provided by simplex noise,58 a later invention of Perlin, which is defined on a
triangular grid.

4.1.3 Random structures from Voronoi tessellation
The third possible method is based on a Voronoi tessellation of the supercell.

To create the desired distribution of atoms in the supercell, some points 𝑷𝑘
(which get marked with a species label) are put into the supercell and the Voronoi
tessellation (with cyclical boundary conditions) is computed. The Voronoi regions𝑅𝑘 get the same species label as the corresponding points (see fig. 4.1.5). In
the next step, the atoms in the supercell get assigned the appropriate species,
determined by the species label of the Voronoi region at the corresponding
position (see fig. 4.1.6).

Similar to the other methods, additional steps are needed to get the desired
stoichiometry. This can be achieved using a weighted Voronoi tessellation and
optimizing the weights 𝑤𝑘 towards the desired composition:𝑅𝑘 = {𝒙 ∈ ℝ𝑛 | 𝑑(𝒙, 𝑘) ≤ 𝑑(𝒙, 𝑗), ∀ 𝑗 ≠ 𝑘}, (4.1.1)𝑑(𝒙, 𝑘) = 𝑤𝑘 ⋅ ∥𝒙 − 𝑷𝑘∥2. (4.1.2)

Due to the fact that the Voronoi regions are defined by the points in the supercell,
there are no limitations to the shape of the supercell. Additionally, the size of
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0.0 0.2 0.4 0.6 0.8 1.0−0.4−0.20.00.20.4

Figure 4.1.3: 1-dimensional Perlin noise (blue line). The low-resolution grid is
defined at the red points and the gradient vectors are represented
by arrows.

1st level

2nd level

0.0 0.2 0.4 0.6 0.8 1.0−0.5
0.0
0.5

Figure 4.1.4: Level-set method with 2 levels at 0.5 and −0.5 applied to
1-dimensional Perlin noise. The blue area is below the 1st level,
the green areas between both levels and the red area is above the
2nd level.
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Figure 4.1.5: 2-dimensional voronoi tesselation with 2 different species.

Figure 4.1.6: Resulting distribution of atom species from voronoi tesselation in
fig. 4.1.5.
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4.2 Analytic Continuation

the generated structures (i.e., clusters of similar atoms) can be tuned by the
composition and amount of the initial points 𝑷𝑘.

4.1.4 Application of generators
From the properties of the three methods, it is straightforward to determine
which method should be used for a given system: The 2-dimensional system of7ML Co/Cu(100) could be created with the Perlin method. Depending on the
size of the surface’s features, a varying resolution of the coarse grid can be used.
While the annealed system can be obtained from the algorithm as described, the
unannealed system could be generated with a high-resolution “coarse” grid to
effectively switch of its smoothing capability. On the other hand, a purely random
composition might produce acceptable results for the unannealed structure, but
this was not used in actual calculations.

For 3-dimensional systems, the most important property is the short-range
order of the system. If the atoms of the different species are randomly distributed,
a purely random generation is preferred, and if a clustering of similar atoms is
observable, the Voronoi tessellation is the method of choice. In the latter case,
a 3-dimensional variant of the Perlin method would also be possible, but this
was not implemented because of the limitations apparent from the 2-dimensional
version.

4.2 Analytic Continuation
The calculation of magnon dispersion relations is additionally bound to the
problem of diverging poles on the real energy axis. In the calculations of
section 5.1, this problem manifests itself in slowly converging spectra (i.e., a huge
amount of random configurations is needed to obtain a smooth spectrum). It is
possible to work around this problem by adding a small imaginary part to the
energy, but the resulting spectra show artificially broadened peaks. For example,
fig. 4.2.1 shows the increasing noise in the spectra of an Fe0.7Al0.3 alloy when
the artificial broadening 𝛾, i.e., the imaginary part of the energy, is reduced from𝛾1 = 5 meV to 𝛾2 = 0.1 meV.

A possibility to circumvent both problems, i.e., the noise for small imaginary
energies and the increased artificial broadening for larger imaginary energies,
is given by the analytic continuation. The idea of the analytic continuation is
to calculate the susceptibility for energies with a higher imaginary part, which
allows the sufficient convergence of the spectrum, and to shift this result towards
the real axis to get a better converged susceptibility (see fig. 4.2.2). Figure 4.2.1
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i𝛾,𝒒) 𝛾1 = 5 meV, 𝑁c = 100𝛾2 = 0.1 meV, 𝑁c = 100𝛾2 = 0.1 meV, 𝑁c = 1000
AC from 𝛾1 to 𝛾2

Figure 4.2.1: Comparison of susceptibility spectra for an Fe0.7Al0.3 alloy with two
different artificial broadenings 𝛾1 = 5 meV and 𝛾2 = 0.1 meV. The
spectrum with the artificial broadening 𝛾1 is analytically continued
towards an artificial broadening of 𝛾2.

shows the analytic continuation applied to the previously calculated susceptibility
with 𝛾1 = 5 meV. The resulting spectrum contains much less numerical noise
than the directly calculated counterpart with 𝛾2 = 0.1 meV.

The reasoning behind the analytic continuation is the Cauchy-Riemann differ-
ential equations, ∂𝑢∂𝑥 = ∂𝑣∂𝑦, (4.2.1)∂𝑢∂𝑦 = − ∂𝑣∂𝑥, (4.2.2)

which can be applied to a complex function 𝑓(𝑧) asi ∂𝑓∂𝑥 = ∂𝑓∂𝑦. (4.2.3)

This relation is obtained by understanding the arguments 𝑥 and 𝑦 as the real
and imaginary part of the argument 𝑧, respectively. Similarly, the function 𝑓 is
composed by its real and imaginary part 𝑢 and 𝑣, respectively.

In the context of the analytic continuation of the magnetic susceptibility, this
means that any interpolation of the susceptibility in the direction of the real
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AC Re 𝑧

Im 𝑧

Figure 4.2.2: Due to poles on the real axis (red crosses), the susceptibility has to
be calculated at complex energies. Analytic continuation can be
used to interpolate a solution closer to the real axis.

energy should have locally the same derivative in both directions. Depending on
the convergence of the interpolation, this allows the extrapolation of the function
in direction of imaginary energy towards the real axis.

Below, several methods are presented, which can be used to perform the
analytic continuation. While three of these methods are directly based on the
Cauchy-Riemann differential equation, two other methods are trying to reverse
the broadening, which results from the added imaginary energy.

4.2.1 Padé approximation
The first approach for analytic continuation is the use of the Padé approximant
of the susceptibility. To perform the analytic continuation, the calculated suscep-
tibility is interpolated around the energy of interest and the Padé approximant
is then used to calculate the value for a smaller imaginary part of the energy.

In general, a Padé approximant is determined by the order of its numerator 𝑚
and denominator 𝑛:𝑓(𝑥) ≈ 𝑅[𝑚/𝑛](𝑥) = 𝑃𝑚(𝑥)𝑄𝑛(𝑥) = 1 + ∑𝑚𝑗=1 𝑎𝑗𝑥𝑗∑𝑛𝑗=0 𝑏𝑗𝑥𝑗 . (4.2.4)

However, the exact definition of the Padé approximant is not standardized.
Deviating from the above definition, where the coefficient 𝑎0 = 1 is fixed, often
the constraint 𝑏0 = 1 is used instead. The result of this difference is simply a
constant factor scaling all coefficients.

For a given analytic function, a valid approach for determining the (𝑚 + 𝑛 + 1)
coefficients would be the comparison of the first (𝑚 + 𝑛) derivatives and the
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actual functions themselves, around some evaluation point 𝑥0. However, in the
case of numerical data, like for the calculated susceptibility, this is not possible.

An alternative approach is the solution of the system of equations given by𝑁 = (𝑚 + 𝑛 + 1) data points 𝑥𝑖 with their corresponding values 𝑦𝑖:𝑓(𝑥𝑖) = 𝑦𝑖 = 𝑃𝑚(𝑥𝑖)𝑄𝑛(𝑥𝑖) . (4.2.5)

By rearranging this system of equations by moving the sums to the left-hand
side, it is easily possible to derive a matrix equation for the set of expansion
coefficients 𝑎𝑖 and 𝑏𝑖:

⎛⎜⎜⎜⎜⎝
𝑥1 𝑥21 ⋯ 𝑥𝑚1 𝑦1 𝑦1𝑥1 𝑦1𝑥21 ⋯ 𝑦1𝑥𝑛1𝑥2 𝑥22 ⋯ 𝑥𝑚2 𝑦2 𝑦2𝑥2 𝑦2𝑥22 ⋯ 𝑦2𝑥𝑛2⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮𝑥𝑁 𝑥2𝑁 ⋯ 𝑥𝑚𝑁 𝑦𝑁 𝑦𝑁𝑥𝑁 𝑦𝑁𝑥2𝑁 ⋯ 𝑦𝑁𝑥𝑛𝑁

⎞⎟⎟⎟⎟⎠ ⋅ ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑎1⋮𝑎𝑚𝑏0⋮𝑏𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1⋮11⋮1
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
(4.2.6)

The matrix in this equation contains two blocks, which are responsible for
the numerator and the denominator, respectively. These blocks are similar to
Vandermonde matrices, which are well known from polynomial interpolation,
but avoided because of their bad condition. It is possible to circumvent the
resulting numerical problems by using stepwise interpolation and, thus, smaller
matrices. Alternatively, there is also a recursive algorithm, similar to the Neville
interpolation, which provides are more stable method to calculate the Padé
approximation.59 This recursive algorithm allows the construction of a single
Padé approximation for several hundred points, without any noticeable numerical
error.

Another caveat of the Padé approximation are occasional zeros of numerator
and denominator, although the interpolated function does not have a pole. In
theory, both zeros should cancel out, but numerical noise in the calculation can
lead to sharp spikes in the resulting interpolation.

4.2.2 Finite difference method
Another approach for the analytic continuation, which is based on the Cauchy-
Riemann differential equations, is the application of finite differences. An ap-
proximation of the derivative is calculated along (i.e., parallel to) the real energy
axis and then a step towards the real axis is performed.60,61
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The principle approach is the determination of an approximate formula for the
derivative by application of the Taylor expansion. For example, the derivative
along the real energy axis could be calculated with 5 data points, while the
derivative along the imaginary energy axis is done with an Euler step. Assuming
a step width of ℎ = 𝛥𝐸 in both directions, the energy can be defined as𝐸 = 𝐸0 + 𝑥 ℎ + 𝑦 iℎ, 𝑓(𝐸) = 𝑓𝑥,𝑦. (4.2.7)

The Taylor expansion around 𝐸0, i.e., for 𝑥 = 𝑦 = 0,𝑓−2,0 = 𝑓0,0 − 2ℎ𝑓 ′0,0 + 2ℎ2𝑓″0,0 − 43ℎ3𝑓 (3)0,0 + 23ℎ4𝑓 (4)0,0 − 415ℎ5𝑓 (5)0,0 + … ,𝑓−1,0 = 𝑓0,0 − ℎ𝑓 ′0,0 + 12ℎ2𝑓″0,0 − 16ℎ3𝑓 (3)0,0 + 124ℎ4𝑓 (4)0,0 − 1120ℎ5𝑓 (5)0,0 + … ,𝑓0,0 = 𝑓0,0,𝑓1,0 = 𝑓0,0 + ℎ𝑓 ′0,0 + 12ℎ2𝑓″0,0 + 16ℎ3𝑓 (3)0,0 + 124ℎ4𝑓 (4)0,0 + 1120ℎ5𝑓 (5)0,0 + … ,𝑓2,0 = 𝑓0,0 + 2ℎ𝑓 ′0,0 + 2ℎ2𝑓″0,0 + 43ℎ3𝑓 (3)0,0 + 23ℎ4𝑓 (4)0,0 + 415ℎ5𝑓 (5)0,0 + … ,𝑓0,−1 = 𝑓0,0 − iℎ𝑓 ′0,0 − 12ℎ2𝑓″0,0 + i16ℎ3𝑓 (3)0,0 + 124ℎ4𝑓 (4)0,0 − i 1120ℎ5𝑓 (5)0,0 + … ,
(4.2.8)

can be inserted in the finite difference formula:i ( ̃𝑎 𝑓−2,0 + ̃𝑏 𝑓−1,0 + ̃𝑐 𝑓0,0 + ̃𝑑 𝑓1,0 + ̃𝑒 𝑓2,0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟∂𝑥𝑓 = ̃𝑔 𝑓0,0 + �̃� 𝑓0,−1⏟⏟⏟⏟⏟⏟⏟∂𝑦𝑓 , (4.2.9)𝑎 𝑓−2,0 + 𝑏 𝑓−1,0 + 𝑐 𝑓0,0 + 𝑑 𝑓1,0 + 𝑒 𝑓2,0 = 𝑓0,−1. (4.2.10)

Comparison of coefficients, i.e., with respect to the derivatives of 𝑓, provides a
system of equations for the coefficients 𝑎 to 𝑒,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1−2 −1 0 1 22 12 0 12 2−43 −16 0 16 4323 124 0 124 23
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⋅ ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎𝑏𝑐𝑑𝑒
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−i−12i16124
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4.2.11)

which in turn yields the expression𝑓0,−1 ≈ 1−2i12 𝑓−2,0 − 5−5i6 𝑓−1,0 + 52𝑓0,0 − 5+5i6 𝑓1,0 + 1+2i12 𝑓2,0. (4.2.12)
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Figure 4.2.3: Application of finite difference formulae to calculate the analytic
continuation. Equation (4.2.12) is marked in green, eq. (4.2.13) is
marked in blue and an asymmetric formula for recovery of edge
points is marked in red. The calculated susceptibility (∘) is ana-
lytically continued via intermediate steps (×) to an interpolation
close to the real axis (△). The gray points could be recovered with
asymmetric finite difference formulae.

Since it was assumed before that the step width along both the real and imaginary
axis should be equal, several finite difference steps might be necessary to calculate
an interpolation sufficiently close to the real axis. In order to keep a larger data
range – the above formula “destroys” two data points at each end of the dataset –
and to have a better approximation for the derivative along the imaginary energy
axis, Hass et al.60 proposed the use of the centered derivative formula

𝑓0,−1 = 4𝑓0,0 − 𝑓0,1 − 𝑓−1,0 − 𝑓1,0, (4.2.13)

instead of an Euler step for further steps of the analytic continuation (see
fig. 4.2.3). However, this formula still suffers from a loss of one data point per
continuation step. The lost data points can be recovered by using asymmetric
finite difference formulae, which can be obtained by solving the above system of
equations for, e.g., 𝑓0,0, 𝑓1,0, 𝑓2,0 and 𝑓0,−1.

Using this method, one has to keep in mind that by successive execution of
continuation steps, an accumulation of errors can appear, which renders the
results unusable.61 It is also necessary to mention that by trying to improve the
results by inclusion of more data points in the finite difference formulae, it is
likely that the accumulation of numerical errors is sped up.
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4.2 Analytic Continuation

4.2.3 Spline approximation
The spline approximation is another application of the Cauchy-Riemann differen-
tial equations. This approximation is a polynomial interpolation, which consists
of cubic polynomials 𝑆𝑖 in each interval of points [𝑥𝑖, 𝑥𝑖+1] (𝑖 = 0 … 𝑛):62𝑆𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)2 + 𝑑𝑖(𝑥 − 𝑥𝑖)3, 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1] . (4.2.14)

In the case of natural splines, the coefficients 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖 are determined by
the boundary conditions at the boundaries of the data set,𝑆″(𝑥0) = 0, 𝑆″(𝑥𝑛) = 0, (4.2.15)

and at the boundaries of the intervals𝑆𝑖−1(𝑥𝑖) = 𝑆𝑖(𝑥𝑖), 𝑆′𝑖−1(𝑥𝑖) = 𝑆′𝑖 (𝑥𝑖), 𝑆″𝑖−1(𝑥𝑖) = 𝑆″𝑖 (𝑥𝑖), 𝑖 = 1 … (𝑛 − 1).
(4.2.16)

The condition that the original data should be exactly replicated (𝑆𝑖(𝑥𝑖) = 𝑦𝑖)
immediately yields 𝑎𝑖 = 𝑦𝑖. The coefficients 𝑐𝑖 are then determined by solving
a tridiagonal matrix, which can be achieved very efficiently. The remaining
coefficients 𝑏𝑖 and 𝑑𝑖 can be calculated directly from 𝑐𝑖 and 𝑐𝑖+1.

4.2.4 Fourier transformation
A completely different approach was proposed by Natoli et al.63 The authors
propose to use the Fourier transform to perform the analytic continuation of an
electron Green’s function.

The principle idea can be summarized as the application of a time shift in the
complex domain, ℱ[𝑓(𝑥 − 𝑎)] = e−i𝑎𝑘ℱ[𝑓(𝑥)], (4.2.17)

to “move” the function towards the real axis. By analysis of the four possible
cases of sign combinations for 𝑘 and the imaginary energy, the master equation𝐺(𝑥, 0±) = 12πℱ−1[e|𝑘||𝑦|ℱ[𝐺(𝑥′, 𝑦)]] (4.2.18)

could be derived. The exponential e|𝑘||𝑦| shows clearly the ill-posed nature of this
approach, including the exponential amplification of any error in the calculated
Green’s function 𝐺(𝑥′, 𝑦).
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4 Combination and improvement of numerical techniques

It is further proposed to perform the calculations by application of the Fast-
Fourier-Transform (FFT). To reduce possible numerical errors and noise, it is
necessary to choose an appropriate step width for the FFT, which fits the desired
shift in direction of imaginary energy 𝛥x ≈ |𝑦|. Additionally, it is proposed that
an additional term is included to damp oscillations of higher frequency:𝐺(𝑥, 0±) = 12πℱ−1[e|𝑘||𝑦|e− 4π2 𝛥2x𝑘2ℱ[𝐺(𝑥′, 𝑦)]]. (4.2.19)

4.2.5 Stochastic Optimization Method
The method proposed by Mishchenko64 is in principle similar to the FFT method,
since a direct relation between the calculated function 𝐺(𝑥′) and the analytically
continued function 𝐴(𝑥) is used:𝐺(𝑥′) = ∫ ∞−∞ d𝑥 𝒦(𝑥, 𝑥′)𝐴(𝑥). (4.2.20)

The integration kernel 𝒦 describes a smearing of the function 𝐴 on the real axis
by shifting it towards a larger imaginary energy 𝑦 resulting in 𝐺.

Given the kernel 𝒦, an inverse approach is taken to determine 𝐴(𝑥): It is
parametrized as a sum of rectangles, whose smearing can ideally be determined
analytically, and by successive modification of these parameters, a set of ap-
proximations ̃𝐴 of 𝐴(𝑥) is determined. The application of the smearing integral
to the approximations ̃𝐴 yields the set of approximations ̃𝐺 for the calculated
function 𝐺(𝑥′). The objective function𝐷 = 𝑀∑𝑚=1 |𝛥(𝑚)|, (4.2.21)

defined by the deviation function𝛥(𝑚) = 𝐺(𝑚) − ̃𝐺(𝑚)𝒮(𝑚) , (4.2.22)

which relates the measured function 𝐺, the approximated function ̃𝐺 and the
known standard deviation 𝒮, provides a way to estimate the original function as
a selective mean over the set of approximations ̃𝐴:𝐴(𝑥) = 1𝐿good 𝐿∑𝑗=1 𝜃{2 min[𝐷( ̃𝐴𝑗)] − 𝐷( ̃𝐴𝑗)} ̃𝐴𝑗(𝑥), (4.2.23)𝐿good = 𝐿∑𝑗=1 𝜃{2 min[𝐷( ̃𝐴𝑗)] − 𝐷( ̃𝐴𝑗)}. (4.2.24)
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4.2 Analytic Continuation

4.2.6 Implementation, test and comparison

Within the scope of this thesis, several of the above mentioned methods were
implemented, to provide an analytic continuation for susceptibility calculations.
The implemented methods include:

1. Padé approximation with matrix method (section 4.2.1)

2. Padé approximation with recursive method (section 4.2.1)

3. Finite Difference method (section 4.2.2)

4. Spline-Approximation (section 4.2.3)

5. Fast-Fourier-Transform method (section 4.2.4)

In the following part, these five methods are compared by application to two
test functions: At first, an analytic function, where the analytic continuation
is naturally known, is tested. Afterwards, an actually measured susceptibility
spectrum, where the analytic continuation is known from calculations with very
small imaginary energy, is compared.

The Padé approximation, which was calculated within the matrix method,
was implemented with 𝑚 = 2 and 𝑛 = 2. This means that the interpolation was
achieved by interpolating the nearest 5 data points, which are usually centered
around the requested data point, but at the edges of the data set. The recursive
Padé approximation by Press et al.59 was used to interpolate the whole dataset
at once.

In order to provide more flexibility for the finite difference method, an
anisotropic step width was used. In particular, instead of the isotropic dif-
ference 𝛥x = 𝛥y = ℎ, the energy differences 𝛥x/y were used directly. The
stability of the method could be improved by splitting the step width in direction
of imaginary energy into multiple steps (𝑛) to get an approximate isotropic step
width 𝛥x ≈ ℎy = 𝛥y/𝑛.

Because of the flexibility of the spline approximation, no special requirements
were necessary for this method.

However, the FFT method requires that the step widths along the real and
imaginary energy axes are roughly the same. The following first example was
constructed to fit this requirement approximately. For the second example, the
number of data points was halved for this method to allow a larger step towards
the real energy axis. The omitted points were reinterpolated afterwards by
Neville interpolation.
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4 Combination and improvement of numerical techniques

Analytic function

The first test is an analytic function, whose analytic continuation is, naturally,
already known. Because of the nature of the susceptibility, the selection of
Lorentzians is a good choice. The test function consists of three Lorentzians:
The first two peaks result from peaks on the real axis and should become sharper
by performing the analytic continuation towards the real axis. The third peak
results from two peak symmetrically off the real axis and should become broader:𝑓(𝑧) = 0.21 + (𝑧 − (1 + i))2⏟⏟⏟⏟⏟⏟⏟

1st peak

+ 10.1 + (𝑧 − (2 + 0.1i))2⏟⏟⏟⏟⏟⏟⏟⏟⏟
2nd peak

+ 10.1 + (𝑧 − 3)2⏟⏟⏟⏟⏟⏟⏟
3rd peak

. (4.2.25)

The result in fig. 4.2.4 shows clearly, that both versions of analytic continuation
by Padé approximation give excellent results. While the matrix-based method is
perfectly suitable for the approximation of the local poles (the difference in the
height of the first pole is less than 1 ‰), the recursive approximation can fit the
data exactly achieving the same outcome as the analytic expression.

In contrast to this, the other methods are failing. While the finite difference
method and the spline approximation – both are based on polynomials – show
very good agreement for both broad peaks, the narrow peak is underestimated
with oscillations at the base of the peak.

The FFT method is even further off and fails to correctly continue all three
peaks. It is important to note that, while the continuation trend for the first two
peaks is correct, the third peak got more narrow, too. This is an artifact related
to the prerequisites of the method, which, in short, require the peaks to be on
the real axis.

Susceptibility

The second example is the continuation of an actual susceptibility spectrum for a
system of 4ML Co on a Cu(111) surface, where some Co atoms from the surface
layer have moved to the layer above, effectively building an island structure. The
susceptibility was calculated for two imaginary energies Im 𝑧1 = 0.01 eV andIm 𝑧2 = 0.001 eV. For all methods, but the FFT method, 521 data points were
used, the FFT method was restricted to 261 data points.

In fig. 4.2.5, it is again apparent that both Padé approximants yield excellent
results for the analytic continuation. However, the results of the matrix-based
method disagree slightly in the range 𝐸 = 0.00 … 0.07 eV. At this point, one
should start to consider the necessary computation time. While, for this example,
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Figure 4.2.4: Analytic continuation of eq. (4.2.25) with 𝛥x = 0.05 from Im 𝑧 =0.05 (𝑓old) to Im 𝑧 = 0.005 (𝑓AC). (b)-(f) Comparison of the
analytically continued functions with the exact result 𝑓AC.
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Figure 4.2.5: Analytic continuation of the susceptibility of 4ML Co on Cu(111).
(a) The calculated spectra at Im 𝑧 = 0.01 eV (𝜒old) and Im 𝑧 =0.001 eV (𝜒AC). (b)-(f) Analytic continuation of 𝜒old compared to
the calculated result 𝜒AC.
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the solution of 521 systems of equations consisting of 5 equations can be found
very quickly, the calculation of 521 interpolations by recursing over all 521 data
points, requires a more serious computational effort.

Similar to the results of the analytic function, the other three methods showed
worse results. However, the finite difference approach resembles most of the
peaks with surprising accuracy, while the biggest issue are the oscillations at the
base of the narrow peaks (e.g., around the zero-peak and next to the peak at0.5 eV). In comparison to this, the spline approximation yields fewer oscillations
but does not correctly describe the sharp peaks. The worst method is again
the FFT method, which fails to accurately reproduce the analytically continued
peaks. Nevertheless, the continuation shows the correct trend and fails most likely,
because of the necessary stability adjustments (cf. eqs. (4.2.18) and (4.2.19)).

In conclusion, the Padé approximation, especially the iterative implementation
from Press et al.,59 is still the best tested method for the analytic continuation
of the magnetic susceptibility. The methods based on the spline approximation
and the FFT yield results, which are too bad to be considered as a replacement
for the Padé approximation. Solely, the finite-difference-based method might be
considered for the analytic continuation, because its computational requirements
are, depending on the applied finite-difference formula, very low and grow only
linearly with the number of points and necessary analytic continuation steps (cf.
the number of steps 𝑛 on page 49).

4.3 Optimization techniques

Similar to the analytic continuation, the field of optimization techniques is already
well-investigated. However, it is always a challenge to select the best-suited
methods for the optimization of an existing problem.

For the optimization of plasmonic nanostructures, a two-step approach was
used to overcome the principal problems of many optimization algorithms: Most
algorithms are either only suitable for local searches and get stuck in local
minima within the search space, or they are simply not precise enough, to get an
acceptable final solution. Hence, the optimization was started by application of
genetic algorithms and afterwards refined with the simplex algorithm of Nelder
and Mead.65

Genetic algorithms are a class of algorithms, which are motivated by natural
evolution processes. The general idea is the creation of a population of different
configurations, which ideally evolves towards the global minimum of an objective
function (also called fitness) by performing biologically motivated modifications
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of the configurations. These modifications could be intermixing of two config-
urations’ parameters (similar to breeding), simply the random variation of a
single parameter of a configuration (analog to mutation), or even the generation
of completely new configurations. The repeated generation of new generations,
the selective dropping of “bad” configurations (i.e., configurations with a poor
fitness), and the selection of the configurations with good fitness (i.e., the concept
of elitism) should result in the improvement of the overall fitness. In combina-
tion with the large amount of individual configurations, this should lead to a
convergence towards the vicinity of the global minimum.

However, it is difficult to use the random-based genetic algorithms, to system-
atically converge to the exact position of a minimum. Therefore, the simplex
algorithm is used to perform this necessary step. The simplex algorithm for a
system with 𝑛 parameters can be started from a single configuration, by gener-
ating 𝑛 additional configurations as small deviations from the single one, or by
selecting the 𝑛 + 1 best configurations from the genetic algorithms. These 𝑛 + 1
configurations are the vertices of a simplex in the parameter space. The optimiza-
tion is performed by the systematical replacement of the vertices with the worst
fitness. If no better vertex is found, the whole simplex gets contracted toward its
center. By the repeated optimization of the simplex’ vertices, the whole vertex
converges towards a local minimum, which should be the global minimum, due
to the previous optimization with genetic algorithms. The big advantage of this
method is the low number of necessary evaluations of the objective function and
the waiver of derivatives.

The objective function is usually a measurable quantity. In the field of
plasmonic nanostructures, this could be the field strength at a certain position,
or, what is used later for the optimization of plasmonic filters, the ratio of the
electric field’s magnitude for two different wavelengths𝐹 = log(∣𝑬𝜆1 ∣∣𝑬𝜆2 ∣). (4.3.1)

This particular definition was inspired by typical near-field enhancement opti-
mizations, where the intensity at a certain point gets compared to the intensity of
the incoming plane wave excitation,66 and the optimization of surface structures
for surface enhanced raman spectroscopy (SERS).67

The biggest problem when using the genetic algorithms is the quick reduction
in search space, due to the intermixing of the configurations. It is possible to
avoid this problem by massively increasing the number of used configurations,
or by application of more sophisticated algorithms, which preserve/restore the
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spanned parameter space. A good method to achieve this is the principal
component analysis (PCA). PCA provides a numerical technique to detect lost
dimensions in the search space. Therefore, the eigensystem of the covariance
matrix of the configurations is analyzed with respect to vanishing eigenvalues.
The corresponding lost dimensions can be recovered by random sampling of new
configurations. One method that implements this dimension-recovering technique
(and a variant of the simplex algorithm) is the shuffled complex evolution with
principal components analysis-University of California at Irvine (SP-UCI), which
was also used for the optimization of plasmonic nanostructures.68
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5 Application of multiple scattering
approaches to investigate
magnonic, plasmonic and
electronic systems

In the following chapter, the previously presented multiple scattering approaches
for magnons, plasmons and electrons are applied to selected physical systems.
As far as possible, the calculated results are compared to existing experimental
or theoretical findings to verify the correctness of the used approach.

5.1 Magnons in disordered systems

The study of magnons in disordered systems was performed with respect to
diluted magnets.T1 Diluted magnets are systems, where the magnetic atoms
were partially substituted by non-magnetic atoms. From the theoretical point of
view, the investigation of diluted magnets has the advantage that only a subset
of the possible interactions in the system has to be considered in comparison
to an alloy of several magnetic atoms. This research is motivated by several
important systems like the ultrastrong low-density steels based on FeAl69 or the
class of diluted magnetic semiconductors with respect to their application in
spintronics.70–73

5.1.1 Dimensionality studies

Besides the typical bulk systems, like the aforementioned FeAl alloy, there is
also interest in the investigations of lower-dimensional systems like the thin-film
systems of Fe/Ir(001)31 or Co/Cu(001).1 However, the behavior of magnetic
systems is highly dimensionality dependent: Important features include the
differing behavior of the Stoner density of states1 and the proposed absence of
magnetic order in 1- and 2-dimensional Heisenberg systems.74,75
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5 Application of multiple scattering approaches

Figure 5.1.1: 1-dimensional diluted magnet with magnetic (filled circles) and non-
magnetic atoms (empty circles).T1

The dimensionality studies are performed for a hypothetical material with
only nearest-neighbor magnetical interactions of 𝐽 = 1/8. Due to the quick-
diminishing nature of the interactions, this model is often a good approximation
for a real system, while allowing an easy theoretical description.

1-dimensional system

A 1-dimensional system can be described as a ring of atoms (see fig. 5.1.1). The
shown structure was generated by placing magnetic atoms with probability 𝑐 = 0.7
on a total of 𝑁s = 32 sites, without limiting their actual composition (here:24/32 = 0.75). Apart from the fact that an occupation of 𝑐 = 0.7 is impossible to
achieve in a system of 32 atoms, this allows the inclusion of systems with similar,
but differing, occupation rates, which might appear locally in any actual system.
In larger simulated systems, this is of no bigger concern anymore, because the
relative standard deviation, for what is essentially a Bernoulli process,𝜎𝑛 = √𝑛 𝑐(1 − 𝑐)𝑛 ∝ 1√𝑛 (5.1.1)

reduces like 𝑛− 12 . In a typical 3-dimensional cell with 𝑁s = 323 and a concentra-
tion of 𝑐 = 0.7, more than 95 % of compositions are differing less than 1 % from
the desired concentration.

In this 1-dimensional system, every atom can interact at most with its two
neighboring atoms, resulting in isolated magnetic clusters. The localized modes
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in these clusters manifest themselves in the spin excitation spectrum (fig. 5.1.2a)
as a series of sharp peaks, whose line-width is only induced by the artificial
broadening of 𝛾 = 10−2. Each peak corresponds to a localized spin excitation
with infinite lifetime. The height of the peaks is a result of the number of states,
as well as the overlap integral between the particular spin excitation and the
plane wave with wave vector 𝒒.

By increasing the number of sites 𝑁s, more different clusters appear in the
system resulting in more peaks at different energies (cf. fig. 5.1.2a for 𝑁s = 128).
A further increase of the number of sites will finally lead to convergence (see
fig. 5.1.2b for 𝑁s = 2048 and 𝑁s = 4096).

A big problem with this approach is the massive computation time, which is
necessary to calculate the spectrum. The computation has essentially a complexity
of 𝒪(𝑁3s ), due to the inversion of the susceptibility matrix 𝝌 in eq. (3.1.50).
This could be improved by appropriate algorithms like the Strassen algorithm
for matrix multiplication, or by algorithms, which exploit the sparse structure
of the matrices. To work around this problem, several configurations 𝑁c with
intermediate size are calculated and their respective susceptibilities averaged.
This has the added benefit that it is possible to calculate a standard deviation
for the susceptibility.

Figure 5.1.2b shows the good agreement of a single huge system (𝑁s = 4096,𝑁c = 1) compared to the average of several intermediate-sized systems (𝑁s = 128,𝑁c = 100) with small differences around 𝜔 = 0.4 and 𝜔 = 0.6. This behavior
is expected since the isolated chains do not interact with each other and can
be calculated separately, while the smaller system is restricted by its size and
the occupation ratio to chains of a shorter maximum length. In particular, in a
system with 𝑁s = 32 atoms, a continuous chain of 30 atoms is unlikely because
it is far off the desired concentration of 𝑐 = 0.7 and a chain of 40 atoms is simply
not possible. The corresponding contributions will not appear in the spectrum.

2- and 3-dimensional systems

In systems of a higher dimensionality, a new phenomenon appears, which will
only appear in completely filled 1-dimensional systems: the problem of site
percolation, i.e., the appearance of a continuous chain or cluster of interacting
atoms along the whole simulated system.

In a 1-dimensional system, e.g., a magnetic nano wire, with only nearest-
neighbor interactions, an interacting cluster ends when a single atom is missing.
Thus the percolation threshold, i.e., the occupation ratio needed for a continuous
cluster, is 𝑐p = 1. In a 2-dimensional rectangular grid, it is possible to build a
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Figure 5.1.2: Spin-wave spectra for one-dimensional random alloys with concen-
tration 𝑐 = 0.7 and wave-number 𝑞 = 0.25 ⋅ 2π/𝑎. The spectrum in
panel (a) with 𝑁s = 32 and 𝑁c = 1 corresponds to the structure in
fig. 5.1.1.T1
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continuous cluster “around” missing atoms, which results in a percolation thresh-
old of around 0.59.76 Similarly it is even easier on a 3-dimensional simple cubic
grid, resulting in a value of around 0.31.77,78 The usual systems appearing in
physics, the face-centered cubic and body-centered cubic systems, have percola-
tion thresholds of 0.20 and 0.25, respectively.78 For example, Mn-doped GaAs,
or Mn- or Co-doped ZnO have the magnetic atoms on their face-centered cubic
sublattice.4

The impact of percolation can be observed in the spin excitation spectra in
fig. 5.1.3. While the spectrum of the 1-dimensional system with 𝑁s = 128 sites
is made out of single peaks with artificial broadening 𝛾 = 10−2, resulting from
standing spin excitations, the spectra of the systems in two and three dimensions
with respective number of sites 𝑁s = 642 and 𝑁s = 163 feature a continuum of
peaks with intrinsic finite width because of the better connectivity of clusters
in higher dimensions. The broadening of the peaks can be interpreted as spin
excitations with finite lifetime. The sharp peaks in the spectrum of the 2-
dimensional system result from isolated islands, which can also appear above the
percolation threshold. Due to the lower percolation threshold of the 3-dimensional
system, isolated islands are rarer and only a single broad peak appears.

Reducing the concentration of magnetic atoms in a system of higher dimension
to a value below the percolation threshold (cf. fig. 5.1.4), results again in localized
spin excitations with corresponding sharp peaks. By estimating the intensity
of the zero-frequency peak, i.e., the Goldstone mode, it can be shown that the
contribution of the localized spin excitations vanishes for increasing concentration
of magnetic atoms.T1

5.1.2 Magnon CPA

The next step is the comparison of the exact Monte Carlo calculations to the
results of the CPA calculations in the magnonic subsystem. Figure 5.1.5 shows
the comparison of Monte Carlo, CPA and VCA calculations. While the Monte
Carlo calculation features a series of localized spin excitations and corresponding
peaks in the spectrum, the CPA yields a continuum of states. This wrong
behavior is mainly a result of the mean field character of the CPA, which fails to
describe the localized features of the island-like structure.

Careful inspection of the zero-energy peak of the CPA spectrum in fig. 5.1.5
shows a small shift to the region of negative energies. This stems from the
poor performance of the CPA in 1-dimensional systems and the difficulty to
perform an analytic continuation of this strongly asymmetric peak. The tail
towards negative energies, however, will remain in the spectrum even for higher
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Figure 5.1.3: Spin-wave spectra for random alloys in different dimensions with
wave vector 𝒒 = (0.25, 0, 0) ⋅ 2π/𝑎 and concentration 𝑐 = 0.7. An
artificial broadening of 𝛾 = 10−2 was applied.T1
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Figure 5.1.4: Spin-wave spectrum for a two-dimensional random alloy with wave
vector 𝒒 = (0.25, 0, 0)⋅2π/𝑎 and concentration 𝑐 = 0.4. An artificial
broadening of 𝛾 = 10−2 was applied.T1
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Figure 5.1.5: Spin-wave spectrum for a one-dimensional random alloy with wave
vector 𝒒 = (0.25, 0, 0)⋅2π/𝑎 and concentration 𝑐 = 0.7. An artificial
broadening of 𝛾 = 10−2 was applied.T1
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5 Application of multiple scattering approaches

dimensions, because it is the result of the artificial broadening 𝛾. The VCA
calculation fails completely as it results in a single long living magnon mode
because of the static character of its self-energy.

In calculations for higher dimensions (e.g., in fig. 5.1.6), the CPA performs
much more satisfactorily. The spectra resemble most of the features of the Monte
Carlo calculations. This is the result of the better connectivity and the vanishing
influence of localized features of the magnetic system.

5.1.3 Long-wavelength limit
Another interesting investigation can be done with respect to the behavior of
the spin-waves in the long-wavelength limit, or in other words, in the center of
the Brillouin zone.

In contrast to the results for 1-dimensional systems, the spectra in 2 and
3 dimensions exhibit the interesting behavior that they are showing regular
Lorentzian-shaped peaks. These Lorentzians can be characterized by their
position 𝜔𝑞, i.e., the energy of the peak, and their full width at half maximum
(FWHM). The calculations show that the peak’s energies grow quadratically
with respect to the wave vector 𝑞. The proportionality parameter 𝐷 is called
the stiffness constant, which depends on the magnetic interaction 𝐽, the lattice
constant 𝑎 and the gyromagnetic ratio 𝑔 as𝐷 = 𝑔𝑎𝐽. (5.1.2)

For the further considerations, the lattice constant is taken to be 𝑎 = 1, the
gyromagnetic ratio is 𝑔 = 2 and the magnetic interaction was previously defined
as 𝐽 = 1/8 (cf. section 5.1.1), resulting in a stiffness constant of 𝐷 = 1/4 in all
dimensions.

Both the stiffness constant 𝐷 and the FWHM are dimensionality and concen-
tration dependent (cf. fig. 5.1.7). However, the stiffness constant obtained from
the VCA calculation does not depend on the dimensionality and yields a linear
dependence on the concentration. Due to the infinite lifetime of the resulting
modes, the FWHM is 0 for all concentrations. On the other hand, the stiffness
obtained from the CPA calculations shows very good agreement with the Monte
Carlo calculations down to the percolation threshold, where the description of
the “spin-wave quasiparticle” breaks down. The results for the FWHM are also
in good agreement for high concentrations, but show significant deviations for
lower concentrations approaching the percolation threshold. This hints a depen-
dence of the damping on the local properties, which are insufficiently described
by the CPA method.
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Figure 5.1.6: Spin-wave spectra for two- and three-dimensional random alloys
with wave vector 𝒒 = (0.25, 0, 0) ⋅ 2π/𝑎 and concentration 𝑐 = 0.7.
An artificial broadening of 𝛾 = 10−2 was applied.T1
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Figure 5.1.7: (a) Normalized spin-wave stiffness 𝐷 and (b) FWHM for the wave
vector 𝒒 = (0.125, 0, 0) ⋅ 2π/𝑎 in two and three dimensions. An
artificial broadening of 𝛾 = 10−2 was applied.T1
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5.1 Magnons in disordered systems

5.1.4 Impact of electronic structure

In contrast to the model system in the previous section, an actual physical
system can have a much longer magnetic interaction range. As a result of
this, magnetically isolated clusters are much rarer and, typically, a continuous
spectrum can be observed for smaller concentrations of magnetic atoms.

The system considered here is the ultrastrong low-density steels based onFe𝑐Al1−𝑐, which enjoy a renewed attention.69 However, nothing is known about
the spin dynamics of this alloy consisting of magnetic and non-magnetic atoms.
This system is considered for low concentrations of Al at (1−𝑐) < 0.3, in a random
alloy phase. In this regime, the system features a bcc lattice structure with
ferromagnetic ordering79,80 and a lattice constant, which is linearly increasing
with growing Al content.81

The electronic structure was calculated in terms of the KKR method based on
the local density approximations and the coherent potential approximation, to
model the alloying of the system. The resulting magnetic moments range from2.27 𝜇B, for the pure bcc-Fe, up to 2.32 𝜇B, for Fe0.9Al0.1, and then decreasing
down to 2.206 𝜇B, for Fe0.7Al0.3. The exchange parameters are evaluated using
eq. (3.1.29) and taking advantage of the vertex cancellation theorem in the
disordered case (cf. fig. 5.1.8).82,83 It becomes apparent that there are significant
contributions to the second-nearest-neighbor interactions, which are strongly
varying, but not diminishing, with varying Al content. The 2-dimensional
magnetic interactions (see publication [T1]), exhibit a similar behavior with less
dependence on the concentration.

The spin excitations of the Fe𝑐Al1−𝑐 system, which were obtained with the
Monte Carlo method, exhibit a much more complex behavior in the long-
wavelength limit than their counterpart for the theoretical system in the previous
section (cf. fig. 5.1.7). Figure 5.1.9 shows both the normalized spin-wave stiffness𝐷 and the normalized FWHM for the system in two and three dimensions. Addi-
tionally, another calculation (3Dc) was performed, where the magnetic exchange
parameters for the perfect Fe system (𝑐 = 1) were used for all concentrations.

Due to the more complex magnetic interactions including negative exchange
parameters in the 3rd and 4th shell, the spin-wave stiffness in the 2-dimensional
system decreases with reducing concentration of magnetic atoms slightly faster
than the previously studied theoretical model. In three dimensions, an initial
increase can be observed, which has its maximum at around 𝑐 ≈ 0.8. This change
can be explained by the increase of the nearest-neighbor magnetic exchange
interaction and the diminishing negative interaction in the more extended shells
as can be seen in fig. 5.1.8.
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Figure 5.1.8: The exchange parameters between Fe moments in Fe𝑐Al1−𝑐 as a
function of concentration in three dimensions.T1

The results from the calculation with a fixed magnetic exchange interaction
(i.e., the influence of the electronic structure is switched off) are similar to the
theoretical predictions, which are in principle discarding all interactions beyond
the nearest-neighbor interaction. This is the expected behavior, because the
influence of the first two shells is similarly affected by the disorder and they are
dominating the interaction, compared to the smaller interactions of the farther
shells.

The normalized FWHM increases with increasing concentration of Al atoms
and the effect is stronger for the 2-dimensional system. The comparison of the
two 3-dimensional cases shows that the electronic structure and the corresponding
change in magnetic interactions, have a strong influence on the FWHM.

Finally, the CPA calculations are performed for the Fe0.7Al0.3 system. Fig-
ure 5.1.10 shows the good performance of the method, which shows good agree-
ment for the size, position and width of the peaks, especially for longer wave-
lengths.

Summarizing the investigations, it can be seen that a well-suited method for
investigation of magnons in disordered systems was developed. The study of
1-, 2- and 3-dimensional model systems with nearest-neighbor interactions was
successfully compared to the respective theoretical predictions. Additionally, a
CPA approach for magnons in disordered systems was presented and applied to
the alloy Fe0.7Al0.3 for comparison with the MCA method.
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Figure 5.1.9: (a) Normalized spin-wave stiffness 𝐷 and (b) normalized FWHM
for the wave vector 𝒒 = (0.125, 0, 0) ⋅ 2π/𝑎 for Fe𝑐Al1−𝑐 for two
(2D) and three (3D) dimensions and in three dimensions with fixed
magnetic exchange parameters (3Dc).T1
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Figure 5.1.10: Comparison of Monte Carlo (MCA) and CPA calculations for the
system Fe0.7Al0.3 at two different wave vectors 𝒒1 = (0.125, 0, 0) ⋅2π/𝑎 and 𝒒2 = (0.375, 0, 0) ⋅ 2π/𝑎. An artificial broadening of𝛾 = 10−2 was applied.T1

5.2 Excitation of plasmons in metallic nanostructures
by means of electron beams

The optimization of plasmonic nanostructures is an important topic with regards
to the development of optical devices. Therefore, there is a wide range of available
methods, which were developed to calculate the optical scattering properties of
various structures.

The two major requirements for these methods with respect to the optimization
of plasmonic nanostructures are a fast solution of Maxwell’s equations and a
sufficient flexibility in the systems, which can be calculated. The used Generalized
Multiparticle Mie method (cf. section 3.2.3 and publication [T2]) is both fast and
flexible. It is possible to calculate multiple scattering of ensembles of particles,
whose T-matrix is known. The restriction of the multi-scattering T-matrix (cf.
eq. (3.2.24)), i.e., that any source of excitation has to be outside of the smallest
circumscribing sphere, is still existent, but only relevant for each individual
particle. With respect to the calculation of scattering properties of ensembles of
spherical particles with the GMM method, this poses only the restriction that
the excitation can’t be inside of a scatterer.
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5.2.1 Electron energy loss spectroscopy
To verify the correctness of the implemented Generalized Multiparticle Mie
method (GMM), the electron energy loss spectra and cathodoluminescence
spectra of a dimer of two gold spheres (radius 𝑟 = 10 nm and distance of1 nm) were compared to the results of the T-matrix method (TMM) and the
Discontinuous Galerkin Time Domain method (DGTD).27,84 The electron passes
the dimer with an impact parameter of 𝑏 = 10.5 nm, i.e., 0.5 nm above the surface
of one of the gold spheres, and a velocity of 30 % of the speed of light at the
outer edge.

Although the permittivity is the most important property for calculations of
plasmonic systems containing all necessary material properties (cf. section 2.2),
similar to the importance of the magnetic exchange coefficients 𝐽𝑖𝑗 in magnonics,
the DGTD requires the restriction to an analytic model. The model of choice is
the already introduced Drude model for a free electron gas,𝜀r(𝜔) = 1 − 𝜔2p𝜔(𝜔 + i𝜂) , (5.2.1)

to get a reasonably fast calculation. The parameters in the Drude model are
the plasma frequency 𝜔p and the relaxation rate 𝜂. Fitting the Drude model
to the experimental data from Johnson and Christy36 yielded the parametersℏ𝜔p = 9.073 eV and ℏ𝜂 = 0.071 eV.53 These results are similar to previously
published parameters.85–87

Nevertheless, it is well known that gold can be described much better by
adding Lorentzians,88𝜀(𝜔) = 𝜀∞ − 𝜔2p,0𝜔(𝜔 + i𝜂0) + 𝜔2p,1𝜔20,1 − 𝜔(𝜔 + i𝜂1) , (5.2.2)

or critical points describing the interband transitions,89,90𝜀(𝜔) = 𝜀∞ − 𝜔2p,0𝜔(𝜔 + i𝜂0)+ 2∑𝑗=1 𝐶𝑗( ei𝛽𝑗(𝜔0,𝑗 − 𝜔 − i𝜂𝑗)−𝜇 + e−i𝛽𝑗(𝜔0,𝑗 + 𝜔 + i𝜂𝑗)−𝜇 ). (5.2.3)

The performance of these three approaches is compared in fig. 5.2.1.34 The shown
Drude model works well for long wavelengths but fails for wavelengths below700 nm. However, in contrast to the definition in eq. (5.2.1), the permittivity for
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Figure 5.2.1: Permittivity of gold from Johnson and Christy36 in comparison
with the Drude model,88 the Drude model with Lorentzians88 and
the Drude model with critical points.34,89,90

small wavelengths is not fixed to 1 but set to the value 𝜀∞ = 9.0685 to avoid a
systematic misrepresentation of the real part of the permittivity. The description
with an added Lorentzian extends the range of well-represented wavelengths
down to 500 nm but adds a bump in the real part of the permittivity. The
introduction of critical points shows a very good agreement over the whole
examined wavelength range. Due to the complexity of the Drude model with
added Lorentzians or critical points, these models are not suitable for usage with
the DGTD method because of the necessary computation time. The TMM and
GMM don’t have this restriction and can be used with arbitrary permittivities
including the experimental data.

The calculation of scattering in the (sub-)nanometer regime requires careful
consideration of non-local effects. These include the difference in permittivity
due to finite size effects compared to the used bulk permittivity. A possible
implementation could be achieved in terms of the hydrodynamical model as an
extension to the present Drude model by adding an additional damping term.91

The influence on such calculations was already discussed in theory92 and in
comparison of theory and experiment.93 Ultimately, García de Abajo92 showed
that the typical effects, i.e., blue-shift of the resonances and plasmon broadening,
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5.2 Excitation of plasmons in metallic nanostructures

won’t appear in the used regime of spheres of 10 nm radius and distance of 1 nm,
but well below this distance. Concluding, the non-local effects were not taken
into account in the following calculations.

The electron energy loss probability 𝑃EELS(𝜔) is the probability that an
electron passing the scatterer loses 𝛥𝐸 = ℏ𝜔 of energy𝛥𝐸 = ℏ ∫ ∞0 d𝜔 𝜔𝑃(𝜔). (5.2.4)

The energy loss can be determined by integrating the force on the electron along
its path, which appears due to the interaction with the scattered field 𝑬sca,𝛥𝐸 = 𝑒 ∫ ∞−∞ d𝑡 𝒗e(𝑡) ⋅ 𝑬sca(𝒓e(𝑡), 𝑡). (5.2.5)

Exploiting the no-recoil approximation, i.e., the electron’s momentum is constant,
this can be reformulated as an integral in the frequency domain. Comparing the
result with eq. (5.2.4) yields an expression for the electron energy loss probability𝑃EELS = 2𝑒ℏ𝜔 ∫ ∞−∞ d𝑡 Re{𝒗e(𝑡) ⋅ 𝑬sca(𝒓e(𝑡), 𝜔)e−i𝜔𝑡}. (5.2.6)

By further application of the no-recoil approximation, i.e., by substitution of𝒓e(𝑡) = 𝒓0+𝒗𝑡, this expression becomes suitable for frequency domain calculations.
Additionally, the restriction that the electron only travels in 𝑧-direction is set:𝑃EELS = 2𝑒ℏ𝜔 ∫ ∞−∞ d𝑧 Re{𝒆z ⋅ 𝑬sca(𝒓0, 𝜔)e−i𝜔𝑧/𝑣}. (5.2.7)

On the other hand, the cathodoluminescence probability is simply given by
the amount of scattered energy and can thus be calculated by integrating the
Poynting vector over a closed surface around the scatterer:𝛥𝐸 = ∫ π0 d𝜃 ∫ 2π0 d𝜑 ∫ ∞−∞ d𝑡 𝑟2𝒆r ⋅ (𝑬 × 𝑯). (5.2.8)

Similar to eq. (5.2.4), this energy loss can be expressed by integrating the
cathodoluminescence probability𝛥𝐸 = ℏ ∫ π0 d𝜃 ∫ 2π0 d𝜑 ∫ ∞0 d𝜔 𝜔𝑃CL(𝜔, 𝜃, 𝜑). (5.2.9)
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Figure 5.2.2: Comparison of the electron energy loss probability 𝑃EELS(𝜔) for aAu dimer, calculated with T-matrix method (TMM), Generalized
Multiparticle Mie method (GMM) and Discontinuous Galerkin
Time-Domain method (DGTD).T2

Comparing this with the Fourier transform of eq. (5.2.8) yields an expression
for the angular-dependent cathodoluminescence probability, which can easily be
calculated in the far-field limit of the fields:𝑃CL(𝜔, 𝜃, 𝜑) = 1ℏ𝜔√ 𝜀s𝜇s |𝑬(𝜃, 𝜑)|2 . (5.2.10)

The comparison of the three methods (GMM, TMM and DGTD) can be seen
in fig. 5.2.2. The spectra of GMM and TMM were calculated with a maximum
multipole order of 𝑛 = 16 to get comparable results. This maximum expansion
order was limited by the stability of the TMM, while the GMM is more stable94

and can achieve much higher expansion orders. The curves are normalized to
the height of the first peak.

For lower frequencies, the GMM and TMM show a very good agreement, while
there are some larger differences for frequencies 𝜔 ≥ 0.65𝜔p. This could be
explained by poorer convergence properties of the TMM. Overall, the TMM
uses (in this case) only half the number of expansion coefficients the GMM uses
because there is essentially only a single expansion center. The GMM expands
the fields in the centers of the two spheres. However, by increasing the multipole
order of the TMM, a clear trend towards the GMM’s solution can be seen.
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Figure 5.2.3: Electron energy loss probability and cathodoluminescence probabil-
ity for a Au dimer excited at three different points.T2

The results of the DGTD show a slight frequency shift towards higher frequen-
cies and the results at higher frequencies show some minor differences, too. The
reason for this could also be missing convergence: A very fine spatial mesh is
necessary to describe the interaction of electron and dimer, and a very long simu-
lation in the time-domain is necessary to acquire a reasonable Fourier transform.

As the GMM is more versatile, i.e., it does not pose restrictions on the path of
the electron beam, two other trajectories were investigated (cf. fig. 5.2.3). The
first path is, again, outside the dimer, the second is at the side of one sphere, and
the third path goes through the center of the dimer. The spectra corresponding
to paths 1 and 2 show contributions mainly in the lower frequency range, while
the spectrum of path 3 has most contributions in the higher frequency range.
This is indeed the expected behavior because the excitations at point 1 and 2
excite modes, which “bounce” along the long axis of the dimer. On the other
hand, the symmetry requires excitations at point 3 to be symmetrically restricted
to a single sphere.

By examining the cathodoluminescence spectrum, which is a far-field quantity,
it is possible to examine so called dark and bright modes. Dark modes are modes,
which exist locally, but don’t couple to the far-field because their contributions
cancel out. An example would be the excitation at position 3, when the excited
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mode is symmetrically oscillating in the two sphere. On the other hand, an
excitation from position 1 could oscillate in both sphere in the same direction,
yielding a high contribution to the far-field and, thus, exhibiting a bright mode.
In the spectrum in fig. 5.2.3, the modes c and e show no contribution to the
cathodoluminescence probability and can be considered to be dark modes, while
the modes b and d show some contributions and are thus optical bright modes.
The mode a is prominent for all three positions. Its frequency corresponds to
the frequency of the dipole mode of a single sphere, which is directed along the
electron path.

5.2.2 Plasmonic filter

The usual optimizations, which are found in the literature, are carried out for
a near-field enhancement like it is needed for the surface enhanced Raman
spectroscopy (SERS).95,96 However, in this section, another target will be used
to optimize plasmonic nanostructures: a plasmonic filter.

A plasmonic filter can be understood as a device, which filters an incoming
excitation or signal and lets only pass a certain frequency or frequency range.
Thus, the plasmonic filter could be considered as the plasmonic equivalent of
bandpass filters in acoustics and electronics. In this case, the excitation is an
electron beam with an electron’s velocity of 𝑣 = 0.3𝑐0.

The predefined structure consists of a single fixed sphere next to the reference
point and additionally five spheres, which should be positioned by the optimiza-
tion process in a box given by 𝑥, 𝑦 ∈ −30 … 30 nm and 𝑧 ∈ −25 … 125 nm. All
spheres have a fixed radius of 10 nm. The goal was the creation of a filter, which
enhances the field for the wavelength of 𝜆 = 600 nm, while blocking the field for𝜆 = 500 nm. That is, the fitness was given by the function𝐹 = log(∣𝑬600 nm∣∣𝑬500 nm∣). (5.2.11)

Over the course of the coarse optimization with genetic algorithms, several
different structures were generated indicating a complicated fitness function.
However, at the end, the best results, which were then optimized with the
simplex algorithm, consisted of a single sphere “catching” the electron’s field and
an arc guiding the scattered field towards the reference point (cf. fig. 5.2.4).

A separate optimization with the SP-UCI method (cf. section 4.3) showed
similar result. For this method, there are no intermediate, coarse results available,
because it already contains a simplex algorithm for fine optimization. The
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Figure 5.2.4: Contrast between scattered fields for 𝜆 = 500 nm and 𝜆 = 600 nm.
The black arrow shows the point, where the field is measured to
optimize the system. The white areas indicate the spheres. The
sphere marked with (×) is fixed.T2

Sphere 𝑥 in nm 𝑦 in nm 𝑧 in nm
1 −19.5 −0.4 8.4
2 47.0 −2.9 20.1
3 67.2 −2.1 19.2
4 87.2 −3.8 15.4

fixed sphere (×) 100.0 0.0 0.0
5 119.6 −1.6 5.0

Table 5.2.1: Optimized positions for the plasmonic filter (see fig. 5.2.4).

results obtained from the SP-UCI method were in general better than the results
obtained from genetic algorithms and simplex algorithm.

The best result, obtained from the optimization, has all its spheres positioned
almost perfectly in the 𝑥-𝑧-plane (cf. table 5.2.1). There is indeed a tendency
towards a perfectly in-plane structure, but the optimization of tightly packed
spheres with the restriction of a minimum distance or no overlap is numerically
very expensive.

As a comparison, an additional optimization was performed for the raw near-
field enhancement for both wavelengths. The setup for this optimization was
the same, but the fitness function was simply the magnitude of the electric field𝐹 = |𝑬|. The resulting structures, which can be seen in fig. 5.2.5, differ by
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Figure 5.2.5: Optimized structures for both wavelengths. The fields are measured
at the points indicated by the black arrows. The spheres marked
with (×) are fixed.T2

consisting of a stretched structure between the electron beam and the reference
point, for 𝜆 = 500 nm (cf. table 5.2.2), and a tightly packed rod of spheres
for 𝜆 = 600 nm (cf. table 5.2.3). The field’s intensity differs by an order of
magnitude between the two wavelengths. Additionally, the numerical complexity
of optimizing a tightly packed structure is again apparent from the results. While
the stretched structure of the 500 nm optimization has its spheres perfectly in-
plane, the tightly packed structure for 600 nm differs several nm from the perfect
placement.

At this point, it is important to note, that the results include particle distances
down to 0.2 nm and are probably subject of non-local effects. Therefore, further
calculations might be necessary.

The Generalized Multiparticle Mie method has proven itself as a fast and
reliable tool for the calculation of plasmonic excitations and the optimization
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Sphere 𝑥 in nm 𝑦 in nm 𝑧 in nm
1 10.1 0.0 −19.4
2 30.2 0.0 −11.1
3 53.4 0.0 −6.5
4 77.5 0.0 −2.6

fixed sphere (×) 100.0 0.0 0.0
5 121.1 0.0 0.0

Table 5.2.2: Optimized positions for 500 nm (see fig. 5.2.5).

Sphere 𝑥 in nm 𝑦 in nm 𝑧 in nm
1 18.5 2.3 −3.1
2 38.8 2.9 −1.5
3 59.2 1.9 −1.3
4 79.7 0.5 −0.5

fixed sphere (×) 100.0 0.0 0.0
5 120.3 0.3 −4.0

Table 5.2.3: Optimized positions for 600 nm (see fig. 5.2.5).
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of metallic nanostructures. It is more versatile than the T-matrix method and
faster than the DGTD method.

5.3 Functional materials
In the following section, the investigation of several interesting functional ma-
terials is presented, starting with the electromechanical semiconductor ZnO.
Afterwards, another semiconductor with strain-dependent electronic properties,Pb𝑥Sn1−𝑥Te, is investigated. This section is then concluded with two studies of
the electronic and magnetic properties of the Heusler alloys Ca(Co𝑥Ru1−𝑥)O3,Pd2MnSn, Ni2MnSn and Cu2MnAl.
5.3.1 Zinc oxide wires – a nanoelectromechanical systemZnO is a semiconductor with a large band gap of 3.37 eV and is therefore a good
target to study the effects of mechanical strain on the electronic properties to
optimize the performance in nanoelectromechanical systems.T3 The large band
gap makes ZnO a promising material for light-emitting devices in the range of
blue to ultraviolet colors. Additionally, it is a well-established material for strain
generators and piezoelectric sensors. However, despite efforts in theoretical and
experimental research, the deformation parameters, which describe the relation
between the strain and the electronic structure, remain uncertain.

The experimental investigation of strain in ZnO is typically performed by
growing a thin film of ZnO on a substrate with smaller or larger lattice constant.
The relaxation of the thin film, i.e., the stretching or shrinking with respect to its
bulk equilibrium lattice constant, yields typical strains, which are characteristic
for the respective substrate. A more flexible approach is the bending of microwires
of ZnO, because a continuous range of strains (from compressive to tensile) can
be observed along the diameter of the microwire.

The microwire’s bending, as seen in fig. 5.3.1, was investigated with the
finite element (FEM) simulation package COMSOL Multiphysics.97 A microwire
with a diameter of 8.5 μm and a length of 100 μm was fixed at its center and a
downward pointing force was applied to both ends. Along the diameter (top to
bottom) the change of strain from tensile to compressive can be observed. The
elastic constants 𝑐𝑖𝑗, which were necessary to perform the FEM calculation, were
calculated with the Vienna Ab initio Simulation Package (VASP) by employing
the algorithm from Fast et al.98 and Ahuja et al.99 The gist of this method is
the calculation of the total energy for the bulk system under certain distortions
of varying degrees. The resulting curves of total energy versus lattice distortion
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Figure 5.3.1: Simulation of the bending of ZnO microwires with COMSOL Mul-
tiphysics.T3,97

can be fitted to directly obtain the required elastic constants. The calculations
were performed with a Hubbard 𝑈 of 𝑈eff = 6.5 eV on the d orbitals of Zn to
get a better agreement with the experimental band gap. The resulting elastic
constants are in good agreement with other theoretical and experimental results
(cf. table 5.3.1).

To perform further investigations on the band gap, a base point for the further
calculations had to be determined. This was achieved by performing total energy
calculations for a large number of strains in 𝑥- and 𝑧-direction to determine the
structural ground state of ZnO (cf. fig. 5.3.2).

Theory Experiment
This workT3 Ahuja et al.99 Bateman100 Kobiakov101𝑐11 2.225 2.30 2.096 2.070𝑐12 1.181 0.82 1.211 1.177𝑐13 1.273 0.64 1.051 1.061𝑐33 2.152 2.47 2.109 2.095𝑐55 0.510 0.75 0.425 0.448

Table 5.3.1: Elastic constants 𝑐𝑖𝑗 obtained from GGA+𝑈 (𝑈eff = 6.5 eV).
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Figure 5.3.2: Determination of the equilibrium lattice parameters 𝑐0 and 𝑎0 of
unstrained bulk ZnO as calculated from GGA+𝑈. The red dashed
line marks the equilibrium lattice parameters of the strained system.
The energy is given relative to the equilibrium energy.T3
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Figure 5.3.3: Comparison of lateral strain 𝜀xx and 𝜀zz.T3

Figure 5.3.3 shows the relation of lateral strain 𝜀xx versus 𝜀zz as calculated
from the FEM calculation and from the red dashed line in fig. 5.3.2. Additionally,
the curve resulting from the Poisson ratio𝜀xx = −𝜈𝜀zz, 𝜈 = 𝑐13𝑐11 + 𝑐12 , (5.3.1)

which was calculated from the elastic constants of Adeagbo et al.T3 in table 5.3.1,
and the curve from the Poisson ratio from the experimental results by Kobiakov101

are shown. There is a good agreement between all four curves, especially the
results from COMSOL fit almost perfectly to the curve from Poisson’s ratio of
Adeagbo et al.T3

The quantity, which was finally obtained, was the deformation potential
parameter 𝐷. This parameter measures the change of band gap with respect to
the uniaxial strain: 𝛥𝐸gap = 𝐸A/B − 𝐸A/B(0), (5.3.2)𝐸A/B = 𝐸A/B(0) + 𝐷𝜀zz. (5.3.3)

From the latter equation, it is apparent that the deformation potential parameter𝐷 can be calculated from the slope of the band gap change 𝛥𝐸gap with respect to
the uniaxial strain 𝜀zz, which can be seen in fig. 5.3.4. The value, resulting from
this slope is 𝐷 = −2.91 eV, which differs from an experimentally determined
value of 𝐷 = −2.04(2) eV.102 However, one has to keep in mind that there is a
large dependence on the used exchange-correlation functional and the respective𝑈eff parameter. Reducing the value of 𝑈eff in the GGA+𝑈 calculations leads
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Figure 5.3.4: Change of the band gap 𝛥𝐸gap with respect to the uniaxial strain𝜀zz as calculated from GGA+𝑈 (𝑈eff = 6.5 eV). The pink line
approximates the slope around the equilibrium position.T3

to a decrease of the deformation potential parameter. By omitting 𝑈eff, i.e., by
performing a regular GGA calculation, a value of 𝐷 = −2.18 eV can be obtained,
but the band gap also reduces to 𝐸gap ≈ 0.75 eV.

The discussion of the used functionals for the calculation of deformation po-
tential parameter 𝐷 can be further extended: In table 5.3.2 several theoretic
calculations are compared to the experimental results for the deformation poten-
tial parameter,102 the position of the 𝑑 band of Zn103–105 and the band gap.106,107

While using LDA or GGA functionals, the theoretical results are systematically
too large but still close to the experimental value. The application of Coulomb
correlation corrections as in the GGA+𝑈 and the HSE screened hybrid-functional
approach increase the deviation. Especially, the increase of the parameter 𝑈
changes the slope of the curve in fig. 5.3.4 and thus the corresponding deforma-
tion potential parameter to the worse. Additional treatment of the GGA results
with many-body perturbation theory within the GW approximation yields large
deviations.

The electronic structure of the system is calculated with full structural re-
laxation for LDA, GGA and GGA+𝑈 functionals. The other functionals were
used with the equilibrium lattice constants of the GGA calculation, because
the equilibrium structural parameters are differing by only a few percents when
using different functionals. Although the meta-GGA calculations can in prin-
ciple also be performed with full-relaxation, those results were showing a too
strong deviation incomparable to the experimental measurements. Using the
GGA parameters, the meta-GGA functional yielded the best results, overall. The
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Functional 𝐷 𝐸(Znd) in eV 𝐸gap in eV
LDA −2.26 −5.59 0.67
GGA −2.18 −5.57 0.73
GGA + (𝑈d = 1.0 eV) −2.22 −5.77 0.86
GGA + (𝑈d = 2.5 eV) −2.39 −6.14 1.03
GGA + (𝑈d = 4.0 eV) −2.61 −6.67 1.19
GGA + (𝑈d = 6.5 eV) −2.91 −7.41 1.45
meta-GGA −2.09 −5.60 0.73
HSE (𝛼 = 0.375) −2.90 −7.24 3.28
PBE0 −2.81 −6.55 3.09
GGA + G0W0 −3.70 −6.35 2.14
GGA + GW −4.02 −7.05 3.20
Experiment −2.04(2) −7.4…−8.6 3.43

Table 5.3.2: Deformation potential parameter, location of the Znd states and
band gap from theoretical calculations compared to experiments.
Only the LDA, GGA and GGA+𝑈 calculations were performed with
full relaxation.

differences in electronic structure of LDA, GGA and meta-GGA are mainly due
to the underestimation of the band gap and the overestimation of the hybridiza-
tion of Znd and Op orbitals. Attempting a correction by adding an additional
orbital-specific Hubbard correlation (𝑈), both the location of the Znd band and
the band gap are systematically improved. However, the optimal choice of the 𝑈
parameter is open for discussion, because the increase of 𝑈 results in a systemat-
ically increasing deviation of the deformation potential parameter 𝐷.

In these calculations, the results from the LDA, GGA and meta-GGA calcula-
tions are reliably describing the structural properties. The higher level GGA+𝑈
and hybrid functional methods show an improved picture of the electronic struc-
ture, but fail to determine accurate values for the deformation potential param-
eter. The results from the GGA+𝑈 calculations imply a change of electronic
structure with respect to each strain value. This means that the parametric
calculations need a new set of parameters (e.g., a new value of 𝑈 in GGA+𝑈) for
each calculation. However, missing a proper scheme to determine these parame-
ters, one is intended to stick to a fixed set of parameters for all calculations. The
big advantage of the basic functionals is their independence from parameters.
Additionally, the errors of exchange and correlation cancel out to some degree,
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increasing the quality of the final results.108

In summary, the variation of the band gap was investigated with density func-
tion theory under consideration of several exchange-correlation functionals. The
LDA and GGA functionals provide the most reliable results for the deformation
potential parameter. The mechanical properties were successfully compared to
calculations within the finite-element method implemented by COMSOL Multi-
physics. In the future, these studies should be extended to other functional oxide
materials to understand their rich properties.

5.3.2 Band gap inversion of PbxSn1-xTe
The investigation of the effects of hydrostatic pressure on the electronic structure
of Pb𝑥Sn1−𝑥TeT4 is related to the previous topic. This semiconductor is used
in infrared photodetectors and the fabrication of thermoelectric materials. A
recent interest developed in the carrier controlled ferromagnetism of the material,
while doping. Additionally, it is a topological crystalline insulator with robust
conducting states.

The latter property is related to the band gap inversion observed during the
alloying process from SnTe to PbTe. During the substitution of Sn atoms withPb atoms, the band gap closes and reopens. Additionally, the character of
upper valence band and the lower conduction band are inversed. This interesting
phenomenon can be observed by comparing the anion and cation contributions to
the Bloch spectral function 𝐴B for the pure systems PbTe and SnTe at the band
gap along the high-symmetry line Γ–L–W, as calculated by the fully relativistic
KKR method.44 Figure 5.3.5 shows the difference between both contributions𝛥𝐴B = 𝐴cationB − 𝐴anionB . (5.3.4)

While the investigation of PbTe shows the typical behavior of a semiconductor,
i.e., the valence band is dominated by anion contributions and the conduction
band is dominated by cation contributions, a different behavior can be observed
for SnTe: The contributions of anion and cation are exchanged or, in other words,
inverted. Therefore, the band gap is called “inverted band gap”. Inverted band
gaps are described as band gaps with negative energy.

Investigating this feature with group theory,35 the characterization of the
bands exhibits the same behavior. The valence and conduction bands of PbTe
show even (𝐿+6 ) and odd (𝐿−6 ) symmetry, respectively, while the bands of SnTe
show the exact opposite behavior.

By application of the CPA method, it is possible to investigate the actual
process of inversion. In fig. 5.3.6 the dependence of the band gap on the change
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law. The alloy, for which the band gap vanishes, is marked as black
dot.T4
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of lattice constant and concentration 𝑥 can be observed. The white area marks
the vanishing band gap, which can be observed for all concentration ranges by
changing the lattice constant of the system. Along the experimentally accessible
Vegard’s law, 𝑙(𝑥) = 𝑥 𝑙PbTe + (1 − 𝑥) 𝑙SnTe, (5.3.5)

which is shown as dashed line, the three possible states (regular band gap, no
band gap and inverted band gap) can be observed. A black dot marks the point
on Vegard’s law, where the band gap vanishes. The determined value of 𝑥 ≈ 60 %
is in good agreement with experimental values.109–111

This behavior can be explained by referring to the tight-binding model,112

where an analytical expression for the band gap𝐸gap ≈ 𝛥0 + 10𝑡2sp(𝛥−11 − 𝛥−12 )/3 (5.3.6)

with abbreviations 𝛥0 = ̄𝜖p,Pb/Sn − ̄𝜖p,Te, (5.3.7)𝛥−11 = ̄𝜖p,Pb/Sn − 𝜖s,Te, (5.3.8)𝛥−12 = ̄𝜖p,Te − 𝜖s,Pb/Sn (5.3.9)

can be derived. The abbreviations 𝛥𝑖 depend on the relativistic and non-
relativistic orbital energies, ̄𝜖𝑙,X and 𝜖𝑙,X, respectively, which are related bȳ𝜖𝑙,X = 𝜖𝑙,X ± 2𝜆X. The coefficient 𝜆X is the spin-orbit coupling strength of
element X. Equation (5.3.6) yields two effects competing over the size of the
band gap: On the one hand, the dependence of 𝛥0 and the effective hopping
interaction 𝑡sp on the volume of the unit cell, and on the other hand, the depen-
dence of the strength of the spin-orbit interaction 𝜆X on the concentration 𝑥.
Barone et al.112 suggest that the first criterion is dominating the band gap, which
is in agreement with fig. 5.3.6.

In conclusion, the relation between the band gap, the lattice constant, and the
concentration 𝑥 of Pb𝑥Sn1−𝑥Te was investigated. The experimental findings of a
closing band gap at around 𝑥 ≈ 60 % could be reproduced. As a consequence, the
investigated material is a promising candidate for the fabrication of topological
switches.
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Figure 5.3.7: Structure of the orthorhombic CaRuO3. This structure is also valid
for small substitutions of Ru with Co.T5

5.3.3 Ca(CoxRu1-x)O3 – a model system for a quantum spin
liquid

The Heusler system Ca(Co𝑥Ru1−𝑥)O3 (cf. fig. 5.3.7 for the structure of CaRuO3)
for small concentrations of Co is a good candidate for an artificial spin-½ system,
where magnetic frustrations can be investigated.T5 This is of particular interest,
because it allows to study quantum spin liquids (valence bond liquids), which
were originally proposed for 2-dimensional triangular lattices, where an anti-
ferromagnetic interaction results in unstable configurations.

The case of the 2-dimensional frustrated triangular lattice can be explained very
easily: While a ferromagnetic interaction would result in a parallel orientation
of all magnetic moments, it is more difficult to describe the same system with
anti-ferromagnetic interaction. A dimer with anti-ferromagnetic interaction has
its magnetic moments in anti-parallel orientation. Adding a third atom to the
system results in the problem that the interactions with the atoms of the dimer
effectively cancel out, allowing the spin to fluctuate.

At this point, the Ca(Co𝑥Ru1−𝑥)O3 was proposed as a possible research subject
in three dimensions, where non-magnetic Ru atoms were substituted by magneticCo atoms. Theoretical calculations with the CPA-KKR method show magnetic
moments of 1.04 … 1.15 𝜇B, almost linearly increasing over the concentration
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Figure 5.3.8: Magnetic moment of Co in Ca(Co𝑥Ru1−𝑥)O3 in dependence of
substitution concentration 𝑥 as calculated with the CPA-KKR
method.T5

range from 𝑥 = 5 % up to 𝑥 = 20 % (cf. fig. 5.3.8). This magnetic moment of
approximately 1 𝜇B matches a spin-½ system. The magnetic exchange between
nearest-neighbor Co atoms was determined to be −6.86 … −5.98 meV, which is
in agreement with the experimentally determined interaction of −5.6 meV. The
next interactions are rapidly decreasing.

For a chemical substitution in the range of 𝑥 = 8.25 … 17 %, at least one Ru
atom per unit cell is replaced by a Co atom. As a result, different magnetic
dimers, that involve nearest-neighbor and farther interactions, form. Due to
the anti-ferromagnetic nearest-neighbor interaction, the respective dimers have
a net magnetic moment of 𝑚 ≈ 0 and show a paramagnetic behavior. It was
found that the dimer-dimer interaction exhibits magnetic properties similar to
those of 2-dimensional frustrated spin-½ lattices. For example, neither elastic
neutron scattering measurements nor heat capacity measurements with and
without applied magnetic field could detect any form of magnetic order.

However, temperature-dependent inelastic neutron scattering experiments
with Ca(Co0.17Ru0.83)O3 showed two interesting features: For low temperatures,
starting from 𝑇 = 80 mK to 𝑇 = 30 K, a strong localized excitation at 𝑄 = 1 Å−1
and a weaker one at 𝑄 = 2 Å−1 could be detected with an energy of 𝐸 ≈ 5.9 meV,
which is close to the nearest-neighbor interaction between the Co atoms (cf.
fig. 5.3.9a-c). The intensity spectrum of the wave vector 𝑄 = 1 Å−1 is well
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Figure 5.3.9: Spectrum of Ca(Co0.17Ru0.83)O3 from inelastic neutron scattering
at different temperatures. The plots are background corrected and
thermally balanced by multiplying with the Bose factor.T5
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described by the singlet-to-triplet excitations of spin dimers, involving nearest
and next-nearest-neighbor interactions:𝐼(𝑄) = ∣𝐹(𝑄)∣2 ∑𝑖 𝑚2𝑖 (1 − sin(𝑄𝑑𝑖)𝑄𝑑𝑖 ). (5.3.10)

The magnetic moments per formula unit, 𝑚21 = 0.33 𝜇2B and 𝑚22 = 0.18 𝜇2B, which
are obtained from fitting to the experimental spectrum, are consistent with similar
previous observations.T5 The distances 𝑑1 = 3.18 Å and 𝑑2 = 7.88 Å are close to
the lattice values. For higher temperatures starting at around 𝑇 = 80 K, a broad
continuous excitation appears for the wave vector 𝑄 = 1 Å−1 at 𝐸 ≈ 7.8 meV (cf.
fig. 5.3.9d-f). This is most likely the result of the breaking of the dimer pairs.

The measurements allow to take three conclusions: Although the disorder in
the system would prohibit the valence bond liquid state, the creation of dimers
allows the moments to point in random directions. The dimer-dimer interaction
results in a gapped singlet-to-triplet excitation. The breaking of the dimer pairs
at higher temperatures create freely fluctuating spins that occupy a large part
of the energy-momentum space. This quasi-continuum spectrum extends to an
unusually high temperature, which extends the study to the semi-classical regime.
And finally, the introduction of disorder in a non-frustrated lattice can provide a
new platform for further research on quantum magnetism.

5.3.4 Magnetic properties of Heusler alloys

Besides the specialized application of a Heusler alloy in the previous section,
the Heusler alloys, in general, have a variety of possible applications including
spintronics113 and magnonics.2,114 Also a possible application in the fabrication
of hard magnets was proposed.115 Unfortunately, since their discovery more than
100 years ago no full theoretical understanding of their magnetic properties could
be achieved.

To obtain this understanding a good agreement between theoretical and
experimental results is necessary. Appropriate quantities are spin-wave spectra
and Curie temperatures, which, on the one hand, can be measured directly
and, on the other hand, can be easily deduced from first principle calculations.
Additionally, the magnetic exchange parameters 𝐽𝑖𝑗 can be used for comparison.
However, they are usually not measured directly but obtained by fitting a
Heisenberg Hamiltonian to a spin-wave dispersion. As such, they are subject to
an assumed model including a certain magnetic interaction range and a predefined
kind of anisotropy contributions.
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Compound X Y Z TotalPd2MnSn, exp. − − − 4.23118Pd2MnSn, theo. 0.07 4.13 −0.07 4.20Ni2MnSn, exp. − − − 4.05;118 3.98119Ni2MnSn, theo. 0.21 3.75 −0.06 4.10Cu2MnAl, exp. − − − 3.8;118 3.60120Cu2MnAl, theo. 0.02 3.62 −0.11 3.56
Table 5.3.3: Magnetic moments of Pd2MnSn, Ni2MnSn and Cu2MnAl from ex-

periment and theory.T6

In this work,T6 these properties are compared for the three Heusler alloysPd2MnSn, Ni2MnSn and Cu2MnAl. All three of them belong to the group of full
Heusler alloys with the general formula X2YZ and crystallize in the cubic L21
structure, i.e., a NaCl lattice of Y and Z interleaved with a simple cubic lattice
of species X. It is shown that the description of magnetic properties can be
improved by introducing certain kinds of disorder like the intermixing of atoms
between selected sites of the system.

The systems were calculated using the KKR method with the GGA in the PBE
parametrization and the full-charge-density approximation. Test calculations
with the LDA confirm the results. The magnetic exchange parameters 𝐽𝑖𝑗
are again determined using the magnetic force theorem and subsequently used
to obtain approximates for the critical temperature 𝑇C within the mean field
approximation (MFA) as the largest eigenvalue of the matrix 𝜣 = {𝛩𝐴𝐵},𝛩𝐴𝐵 = 23𝑘B 𝐽𝐴𝐵(𝟎), (5.3.11)

and within Monte Carlo (MC) simulations. The latter were simulated towards a
thermal equilibrium state and afterwards properties like the magnetic suscepti-
bility were measured.

The electronic properties were initially investigated for the perfect ordered
structures. Strong hybridization can be found between the Mnd and Xd bands
and also with the Sns bands in the X2MnSn Heusler alloys (cf. fig. 5.3.10).
This supports the picture of d-d and d-s interactions as exchange mechanism in
Heusler alloys. These findings are in agreement with experimental results.116,117

The magnetic moments, shown in table 5.3.3, are also close to the experimental
findings. The magnetic properties are calculated with the magnetic exchange
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parameters 𝐽𝑖𝑗, obtained from the successful calculations of the electronic sub-
system. Due to the good agreement in the electronic properties, one would also
expect a reasonable description of the magnetic subsystem. However, this is not
the case and further influences to the magnetic properties have to be considered.

Pd
2
MnSn

The obtained magnetic exchange parameters 𝐽𝑖𝑗 are in good agreement with
the experimental ones.121 Only the parameters of the 1st, 2nd and 4th shell are
deviating quantitatively, as can be seen in fig. 5.3.11. One might expect that
these contributions cancel out in the resulting dispersion relation (fig. 5.3.12)
but the magnon energies are heavily overestimated.

The first approach to improving the spectrum was the correction of the Mn3d
bands by application of the GGA+𝑈 method (𝑈 = 1.5 eV) as suggested by
XPS measurements.116 This improves the agreement of the calculated dispersion
relation with the experimental results. Only along the high-symmetry line Γ–L,
an additional dip was introduced. However, the moderate value of 𝑈 = 1.5 eV
suggests a minor role for the correlation-related errors. This is strengthened by
the good agreement of the magnetic moment of Mn from the GGA calculation
(4.13 𝜇B) with the experimentally determined moment (4.08 𝜇B),122 whereas the
GGA+𝑈 calculation provides an overestimated result of 4.37 𝜇B.
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Figure 5.3.12: Dispersion relation of Pd2MnSn including experimental data from
Noda and Ishikawa121 and theoretical results for the perfect L21
structure and structures with A2- and B2-like disorder.T6

The second approach is the consideration of disorder in the calculation of
the dispersion relation. Experimentally, there are two main types of disorder,
which can usually appear in full Heusler alloys: Assuming the X2YZ composition,
a B2-like disorder is achieved by exchanging some atoms of species Y and Z,
and an A2-like disorder is introduced by exchanging atoms of all three species.
In the case of Pd2MnSn, the B2-like disorder is the most probable and was
calculated with an exchange rate of 7 %. The resulting dispersion relation is
quantitatively improved but the minimum along the high-symmetry line K–Γ has
almost vanished. Introducing the A2-like disorder by exchanging 3 % of Pd with
both Mn and Sn, the results improve further. However, the dispersion relation
lacks the qualitative description of the turning points along the high-symmetry
lines Γ–X and Γ–L and the minimum along K–Γ.

Concerning the critical temperature of the system, table 5.3.4 summarizes the
experimental and theoretical results. The original calculation with the L21 struc-
ture overestimates the critical temperature, even beyond the expected overesti-
mation of the MFA calculation. The application of the GGA+𝑈 correction yields
a massive underestimation, although this method provided the best description
of the dispersion relation. A better agreement was achieved by introduction of
disorder, which results in a slight overestimation of the critical temperature by
the MFA calculations and a moderate underestimation by the MC calculations.
The results of the A2-like disorder could be further improved by increasing the
amount of exchange to 5 %.
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5.3 Functional materials

Method MFA MC
Exp. 190;123 189;118 184122L21 267 224
GGA+𝑈, Mn0.96Sn1.04 156 110A2 3 % 219 156A2 5 % 204 136B2 7 %, Mn0.96Sn1.04 197 140
Table 5.3.4: Critical temperatures of Pd2MnSn.

In summary, the GGA+𝑈 calculation provided the best dispersion relation but
overestimated the magnetic moment and underestimated the critical temperature.
However, the overall results are better from pure GGA calculations in combination
with A2- and B2-like disorder.

Ni
2
MnSn

The theoretical treatment of Ni2MnSn is similar to Pd2MnSn. Again, the
magnetic exchange parameters are in good qualitative agreement, while the 1st,
2nd and 4th shell provide a quantitative deviation (cf. fig. 5.3.13). In addition
to the magnetic exchange between the Mn atoms, a strong nearest-neighbor
interaction between Mn and the slightly magnetic Ni atoms (0.21 𝜇B) can be
observed.

As expected from the previous results, the dispersion relation of the pure L21
structure, as shown in fig. 5.3.14, is massively overestimating the experimentally
determined magnon energies. The introduction of the GGA+𝑈 correction with𝑈 = 3 eV provides a modest quantitative improvement with a qualitative degra-
dation of the spectrum. Similarly, the introduction of A2- and B2-like disorder
improves the spectrum slightly.

However, the comparison of the resulting critical temperatures provides a
different situation: Table 5.3.5 shows a good agreement for the GGA calculation
of the L21 structure with the experimental results but all other calculations
underestimate the critical temperature. Therefore, the chosen methods do not
provide a proper theoretical description of the system and the discrepancy between
theoretical and experimental results cannot be explained by pure stoichiometric
disorder.

Another possible approach is the introduction of n-doping to the system. In
this calculation, this was achieved by the insertion of vacancies on the Sn sites.
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Figure 5.3.13: Magnetic exchange parameters of Ni2MnSn from experiment121
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Method MFA MC
Exp. 344;118 340124L21 386 285L21, GGA+𝑈 319 210A2 3 % 327 230B2 10 % 266 220B2 15 % 236 205

Table 5.3.5: Critical temperatures of Ni2MnSn.
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Figure 5.3.15: Dispersion relation of Ni2MnSn including experimental data from
Noda and Ishikawa121 and theoretical results by n-doping.T6

The resulting dispersion relation (cf. fig. 5.3.15) shows similar magnon energies as
the GGA+𝑈 calculation, but improves the qualitative description of the saddle
point along the high-symmetry line Γ–K. Additionally, a very good agreement
with the long-wavelength behavior is provided by this method.

Cu
2
MnAl

Finally, Cu2MnAl is the system most difficult to describe of the three Heusler al-
loys under consideration: While the magnetic exchange parameters (cf. fig. 5.3.16)
of the first two shells are only differing by their magnitude and overestimate
the experimental parameters by a factor of 3, the exchange parameters of the
3rd and the 4th shell are also of opposite sign. This behaviour, differing from
the previous results for Pd2MnSn and Ni2MnSn, can be explained by the high
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dependence of the magnetic exchange on the Z atom.126 The additional valence
electron of Al changes the electron configuration at the Fermi level, which has a
large impact on the magnetic exchange parameters.127

As expected from the different 𝐽3 and 𝐽4, which are mainly responsible for the
dispersion relation along the high-symmetry line Γ–X, the dispersion relation
in fig. 5.3.17 shows a clear misrepresentation for the respective wave vector
range. The application of the GGA+𝑈 method did not result in any qualitative
improvement but increased the magnetic moment of Mn to values disagreeing
with experimental findings. The corresponding spectrum is therefore not shown.
Likewise, the introduction of 5 % of A2-like disorder did not result in a significant
change of the spectrum. Introducing a rather large amount of 25 % of B2-like
disorder, however, reduces the deviation of the peak along the high-symmetry
line Γ–X to half of the original deviation from the perfect L21 structure. The
additional branch, visible in fig. 5.3.17, can also qualitatively describe the extra
data points from the experiment.125 This branch is the result of a second magnetic
sublattice of Mn due to the high amount of introduced disorder.

Comparing the critical temperatures of the aforementioned calculations (cf.
table 5.3.6), a similar situation appears: While the temperatures calculated from
the perfect structure are too high, the GGA+𝑈 calculation, which was previously
neglected, shows a better agreement by bracketing the experimental values with
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Method MFA MC
Exp. 600118L21 877 670L21, GGA+𝑈 734 470A2 3 % 750 500A2 5 % 674 410B2 10 % 732 510B2 15 % 645 430

Table 5.3.6: Critical temperatures of Cu2MnAl.
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Figure 5.3.18: Dispersion relation of Cu3Mn2Al including experimental data from
Tajima et al.125 and theoretical results for the C15 structure.T6

theoretical results. The temperatures obtained from the disordered structures
are systematically lower and are therefore in better agreement than the perfect
system.

A third alternative for disorder is the introduction of vacancies in the system to
lower the Fermi level 𝐸f to achieve an electron configuration similar to Pd2MnSn.
By lowering the Fermi level 𝐸f by 0.34 eV, a significant qualitative improvement
over the perfect structure could be achieved, but the absolute magnon energies
are still too high, as can be seen in fig. 5.3.17.

Besides the limited possibilities of stoichiometric disorder, previous experi-
ments128,129 suggested a multiphase system with significant contributions fromCu3Mn2Al crystallizing in a C15 structure. The resulting spectrum in fig. 5.3.18
provides a significant improvement: The long-wavelength dispersion relation
is properly described and magnon energies are much more consistent with the
experimental data, especially along the high-symmetry line Γ–L. However, the
qualitative description of the turning point along the line Γ–X and the minimum
at the high-symmetry point K is missing.

The calculated electronic properties of the three presented Heusler alloys are
in excellent agreement with previously reported findings. In contrast to this,
there are significant problems in the description of their magnetic properties.
While the investigations of the Heusler alloy Pd2MnSn could lead to satisfying
results, especially for the dispersion relation, both Ni2MnSn and Cu2MnAl lack
a proper theoretical description.

This leads to several conclusions: Quantitative predictions for Heusler alloys
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5.3 Functional materials

remain a problematic topic which might require further qualitative understanding
of the underlying magnetism, including the magnetic moment formation and
exchange mechanism. A general description of Heusler alloys is unlikely and
each compound has to be treated separately. The improvement of theoretically
calculated properties with respect to experimental data by introduction of disorder
suggests the existence of disorder in most experimental samples. Following
from the last point, the probably missing stability and reproducibility of certain
compounds with their respective properties could be a serious problem for any
application.
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6 Summary

In this thesis, the successful application of the multiple scattering approach was
demonstrated. This approach was used to calculate diverse physical properties
of electronic, magnetic and plasmonic systems.

At first, magnons in disordered systems were calculated in terms of the disor-
dered Heisenberg Hamiltonian. This formulation allows to describe the magnetic
properties of many systems with inherent disorder, like the diluted magnets,
which appear in nature as alloys of magnetic and non-magnetic materials. The
description in terms of large supercells avoids finite-size artifacts, while the aver-
aging procedure keeps the computational requirements moderate. The method
was successfully applied to the system Fe1−𝑥Al𝑥 (𝑥 < 0.3) and can now be used
to calculate more complex systems, like the later investigated Heusler alloys.

The second topic was concerned with the investigation of ensembles of plasmonic
particles with respect to the scattering of the electromagnetic field of a passing
electron. The used approach represents a high-performing extension of the
classical Mie theory towards the multi-scattering at multiple particles. Both, the
numerical and computational performance were successfully verified by comparing
the electron energy loss spectrum of a dimer of two gold spheres with previous
results. Due to algorithmic advantages, it was additionally possible to create
further spectra, which were not obtainable with a similar method. The good
performance allowed to execute structural optimizations to design systems for
near-field enhancements at different wavelengths and a plasmonic filter which
amplifies the field for one wavelength, while it suppresses the field for another.
This method could now be improved to further shapes of scatterers to provide
more flexibility in the calculation of plasmonic scattering at ensembles of particles.

The multiple scattering approach was then used to calculate the electronic
properties of several semiconductors under mechanical strain. On the one hand,
microwires of ZnO were strained to observe the change in its band gap and to
calculate the corresponding deformation potential parameter. The influence of
several functionals, which determine the calculation of the internal energy and
therefore the the equilibrium state at different strains, was investigated to gain
a better understanding of the underlying physical phenomena. On the other
hand, the semiconducting and topologically insulating alloy Pb𝑥Sn1−𝑥Te was
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also examined with respect to its band gap behavior, which shows an inversion
under pressure. It was shown that the band gap of this material depends on
both the composition and lattice constant of the system. The experimentally
determined point of band gap closure was successfully reproduced.

The remaining two sections were concerned with the investigation of Heusler
alloys. At first, the Heusler alloy Ca(Co𝑥Ru1−𝑥)O3 was studied for small con-
centrations of Co (𝑥 < 0.2). Due to the anti-ferromagnetic interaction of the
low-concentrated Co atoms, the behavior as a quantum spin liquid was observed.
The theoretically determined results support the experimental findings.

The investigation of the Heusler alloys Pd2MnSn, Ni2MnSn and Cu2MnAl
was aimed at the description of their magnetic properties, including the magnetic
moments, critical temperatures and dispersion relation. This description was
satisfactorily achieved for the first of the three Heusler alloys, but was shown
to be problematic for the two remaining samples. The improvement of the
results by introduction of heavy disorder hints at problems in the stability and
reproducibility of experimental results. Especially, the multiphase structure ofCu2MnAl provides tough conditions for future research. A unified description
for the Heusler alloys could not be found and further research of the magnetic
properties is required to potentially find suitable applications for these materials.

Summarizing, the multiple scattering approach was successfully used to de-
termine various physical properties of a wide range of materials. While the
corresponding methods are already well understood and deeply developed, more
complex systems still provide a challenge for most existing approaches and there
is still room for improvement.
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Spherical vector wave functions

The expansion of the electric fields in eqs. (3.2.16) to (3.2.18) in section 3.2.2
is done in terms of the spherical vector wave functions (SVWF). These are
constructed from the scalar spherical wave functions, which are solutions to the
scalar Helmholtz equation:𝑢(1,3)𝑚𝑛 (𝑘 𝒓) = 𝑧(1,3)𝑛 (𝑘 𝑟)𝑃 |𝑚|𝑛 (cos 𝜃)ei𝑚𝜑, (A.1)

with 𝑛 = 1, 2, … and 𝑚 = −𝑛, … , 𝑛. The position vector 𝒓 is given by its
components in spherical coordinates (𝑟, 𝜃, 𝜑). The spherical Bessel functions𝑧(1)𝑛 = 𝑗𝑛 and the spherical Hankel functions of first kind 𝑧(3)𝑛 = ℎ(1)𝑛 are used
for incoming and outgoing waves, respectively. The remaining two spherical
functions, i.e., the spherical Neumann functions 𝑧(2)𝑛 = 𝑦𝑛 and the spherical
Hankel functions of second kind 𝑧(4)𝑛 = ℎ(2)𝑛 , are not used because the former
functions diverge in the origin and the latter signify an incoming spherical wave.
Following the definition of Doicu et al.,28 the polar part is given by the associated
Legendre polynomials 𝑃 |𝑚|𝑛 , which depends on the magnitude of 𝑚.

The SVWFs are the independent solutions of the vector wave equation, and
are given with respect to the pilot vector 𝒓 as𝑴 (1,3)𝑚𝑛 (𝑘 𝒓) = 1√2𝑛(𝑛 + 1)𝛁𝑢1,3𝑚𝑛(𝑘 𝒓) × 𝒓, (A.2)𝑵 (1,3)𝑚𝑛 (𝑘 𝒓) = 1𝑘𝛁 × 𝑴 (1,3)𝑚𝑛 (𝑘 𝒓). (A.3)

By defining the angular function 𝜏𝑚𝑛 and 𝜋𝑚𝑛 in terms of the associated Legendre
polynomials 𝑃 𝑚𝑛 ,𝜏𝑚𝑛 (𝜃) = dd𝜃𝑃 𝑚𝑛 (cos 𝜃), 𝜋𝑚𝑛 (𝜃) = 𝑃 𝑚𝑛 (cos 𝜃)sin 𝜃 , (A.4)
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the final expressions for the SVWFs are given by𝑴 (1,3)𝑚𝑛 (𝑘 𝒓) = 𝑧(1,3)𝑛 (𝑘 𝑟)√2𝑛(𝑛 + 1)(i𝑚𝜋|𝑚|𝑛 (𝜃)𝒆θ − 𝜏 |𝑚|𝑛 (𝜃)𝒆φ)ei𝑚𝜑, (A.5)𝑵 (1,3)𝑚𝑛 (𝑘 𝒓) = 1√2𝑛(𝑛 + 1)(𝑛(𝑛 + 1)𝑧(1,3)𝑛 (𝑘 𝑟)𝑘 𝑟 𝑃 |𝑚|𝑛 (cos 𝜃)𝒆r+ [𝑘 𝑟 𝑧(1,3)𝑛 (𝑘 𝑟)]′𝑘 𝑟 (𝜏 |𝑚|𝑛 (𝜃)𝒆θ + i𝑚𝜋|𝑚|𝑛 (𝜃)𝒆φ))ei𝑚𝜑. (A.6)
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