
Received: 1 August 2019 Revised: 3 April 2020 Accepted: 29 May 2020

DOI: 10.1002/zamm.201900205

EDITOR ’ S CH OICE

Low-rank linear fluid-structure interaction discretizations

RomanWeinhandl1,2 Peter Benner1,2 Thomas Richter1

1 Institute for Analysis and Numerics,
Otto von Guericke University Magdeburg,
Universitaetsplatz 2, Magdeburg 39106,
Germany
2 Max Planck Institute for Dynamics of
Complex Technical Systems,
Sandtorstrasse 1, Magdeburg 39106,
Germany

Correspondence
RomanWeinhandl,MaxPlanck Institute
forDynamics ofComplexTechnical Sys-
tems, Sandtorstrasse 1, 39106Magdeburg,
Germany.
Email:weinhandl@mpi-magdeburg.mpg.
de

Funding information
DeutscheForschungsgemeinschaft,
Grant/AwardNumber: 314838170,GRK
2297MathCoRe

Fluid-structure interactionmodels involve parameters that describe the solid and
the fluid behavior. In simulations, there often is a need to vary these parameters
to examine the behavior of a fluid-structure interactionmodel for different solids
and different fluids. For instance, a shipping company wants to know how the
material, a ship’s hull is made of, interacts with fluids at different Reynolds and
Strouhal numbers before the building process takes place. Also, the behavior of
such models for solids with different properties is considered before the proto-
type phase. A parameter-dependent linear fluid-structure interaction discretiza-
tion provides approximations for a bundle of different parameters at one step.
Such a discretization with respect to different material parameters leads to a big
block-diagonal systemmatrix that is equivalent to amatrix equation as discussed
in [1]. The unknown is then a matrix which can be approximated using a low-
rank approach that represents the iterate by a tensor. This paper discusses a low-
rank GMRES variant and a truncated variant of the Chebyshev iteration. Bounds
for the error resulting from the truncation operations are derived. Numerical
experiments show that such truncatedmethods applied to parameter-dependent
discretizations provide approximationswith relative residual norms smaller than
10−8 within a twentieth of the time used by individual standard approaches.

KEYWORDS
ChebyshevT, GMREST, low-rank, parameter-dependent fluid-structure interaction, tensor

1 INTRODUCTION

Aparameter-dependent linear fluid-structure interaction problemas described in Section 2 discretized using bilinear finite
elements with a total number of𝑀 ∈ ℕ degrees of freedom (see Section 3 for details) and𝑚 ∈ ℕ parameter combinations
leads to equations of the form (

𝐴0 + 𝜇𝑖𝑠𝐴1 + 𝜆𝑖𝑠𝐴2 + 𝜌𝑖
𝑓
𝐴3

)
𝑥𝑖 = 𝑏𝐷 for 𝑖 ∈ {1, … ,𝑚}, (1)

where the discretization matrices𝐴0,𝐴1, 𝐴2, 𝐴3 ∈ ℝ𝑀×𝑀 and the right hand side 𝑏𝐷 ∈ ℝ𝑀 depends on the Dirichlet data
and the 𝑖th finite element solution 𝑥𝑖 ∈ ℝ𝑀 . The samples of interest are given by the shear moduli 𝜇𝑖𝑠 ∈ ℝ, the first Lamé
parameters 𝜆𝑖𝑠 ∈ ℝ and the fluid densities 𝜌𝑖

𝑓
for 𝑖 ∈ {1, … ,𝑚}.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2020 The Authors. ZAMM - Journal of Applied Mathematics and Mechanics Published by Wiley-VCH Verlag GmbH & Co. KGaA

Z Angew Math Mech. 2020;100:e201900205. www.zamm-journal.org 1 of 28
https://doi.org/10.1002/zamm.201900205

https://orcid.org/0000-0002-9728-8682
https://orcid.org/0000-0003-3362-4103
https://orcid.org/0000-0003-0206-3606
mailto:weinhandl@mpi-magdeburg.mpg.penalty -@M de
mailto:weinhandl@mpi-magdeburg.mpg.penalty -@M de
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.zamm-journal.org
https://doi.org/10.1002/zamm.201900205
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fzamm.201900205&domain=pdf&date_stamp=2020-07-11

2 of 28 WEINHANDL et al.

Equation (1) can directly be written as the linear system



⎛⎜⎜⎜⎝
𝑥1

⋮

𝑥𝑚

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
𝑏𝐷

⋮

𝑏𝐷

⎞⎟⎟⎟⎠, (2)

where ∈ ℝ𝑀𝑚×𝑀𝑚 is a block diagonal matrix. Following [1], Equation (2) can then be translated into the matrix equa-
tion

𝐴0𝑋 + 𝐴1𝑋𝐷1 + 𝐴2𝑋𝐷2 + 𝐴3𝑋𝐷3 = 𝐵 (3)

with 𝐵 ∶= [𝑏𝐷 ⋯ 𝑏𝐷] and diagonal matrices𝐷1, 𝐷2, 𝐷3 ∈ ℝ𝑀×𝑀 , where the 𝑖th diagonal entry of these diagonal matrices
is given by 𝜇𝑖𝑠, 𝜆𝑖𝑠 and 𝜌𝑖𝑓 , respectively. In (3), the unknown

𝑋 =
[
𝑥1 ⋯ 𝑥𝑚

]
∈ ℝ𝑀×𝑚

is a matrix. Now an iterative method to solve linear systems can be modified such that it uses an iterate that is a matrix. It
is applied to the big system (2) but computation is kept in the matrix notation (3) by representing the iterate as a matrix
instead of a vector. The methods used in this paper fix a rank 𝑅 ∈ ℕ, 𝑅 ≪ 𝑀,𝑚 and represent this iterate as a tensor. The
goal is to find a low-rank approximation 𝑋̂ of rank 𝑅

𝑋̂ =

𝑅∑
𝑗=1

𝑢𝑗 ⊗ 𝑣𝑇
𝑗
, 𝑢𝑗 ∈ ℝ𝑀 and 𝑣𝑗 ∈ ℝ𝑀 ∀𝑗 ∈ {1, … , 𝑅}

that approximates the full matrix𝑋 from (3) and therefore provides (parameter-dependent) finite element approximations
for all equations in (1).
Fluid-structure interaction problems yield non-symmetric system matrices. Hence, the system matrix  in (2) is not

symmetric. The methods examined in this paper are based on the GMRES method as introduced in a truncated variant
in [2] and the Chebyshev method from [3]. These methods will then be compared to a truncated method based on the
Bi-CGstab method from [4] similar to Algorithm 3 of [1] and Algorithm 2 of [5].
In Section 2 and Section 3, we derive the matrix equations that appear when dealing with parameter-dependent fluid-

structure interaction discretizations. The low-rank framework and related methods are introduced in Section 4 for sta-
tionary problems and generalized to non-stationary problems in Section 5. In Section 6, theoretical error bounds for the
GMREST and the ChebyshevT method are derived and numerically evaluated in Section 7. The convergences of the trun-
cated approaches presented are compared in numerical experiments in Section 8.

2 THE STATIONARY LINEAR FLUID-STRUCTURE INTERACTION PROBLEM

Let 𝑑 ∈ {2, 3},Ω ⊂ ℝ𝑑, 𝐹, 𝑆 ⊂ Ω such that 𝐹̄ ∪ 𝑆̄ = Ω̄ and 𝐹 ∩ 𝑆 = ∅, where 𝐹 represents the fluid and 𝑆 the solid part. Let
Γint = 𝜕𝐹 ∩ 𝜕𝑆 and Γout

𝑓
⊂ 𝜕𝐹 ⧵ 𝜕𝑆 denote the boundary part where Neumann outflow conditions hold. Γ𝐷

𝑓
= 𝜕𝐹 ⧵ (Γout

𝑓
∪

Γint) denotes the boundary part where Dirichlet conditions hold. Consider the Stokes fluid equations from Section 2.4.4
of [6] as a model for the fluid part and the Navier–Lamé equations discussed as Problem 2.23 of [6] as a model for the
solid part. Both equations are assumed to have a vanishing right hand side. If these two equations are coupled with the
kinematic and the dynamic coupling conditions discussed in Section 3.1 of [6], the weak formulation of the stationary
coupled linear fluid-structure interaction problem reads

⟨∇ ⋅ 𝑣, 𝜉⟩𝐹 = 0,

𝜇𝑠⟨∇𝑢 + ∇𝑢𝑇,∇𝜑⟩𝑆 + 𝜆𝑠⟨div 𝑢, div 𝜑⟩𝑆 + 𝜈𝑓𝜌𝑓⟨∇𝑣 + ∇𝑣𝑇,∇𝜑⟩𝐹 − ⟨𝑝,∇ ⋅ 𝜑⟩𝐹 = 0,

⟨∇𝑢,∇𝜓⟩𝐹 = 0,

(4)

WEINHANDL et al. 3 of 28

with the trial functions 𝑣 ∈ 𝑣in +𝐻1
0(Ω, Γ

𝐷
𝑓
∪ Γint)

𝑑 (velocity), where 𝑣in ∈ 𝐻1(Ω)𝑑 is an extension of the Dirichlet data
on Γ𝐷

𝑓
, 𝑢 ∈ 𝐻1

0(Ω)
𝑑 (deformation) and 𝑝 ∈ 𝐿2(𝐹) (pressure) and the test functions 𝜉 ∈ 𝐿2(𝐹) (divergence equation), 𝜑 ∈

𝐻1
0(Ω, 𝜕Ω ⧵ Γout

𝑓
)𝑑 (momentum equation) and 𝜓 ∈ 𝐻1

0(𝐹)
𝑑 (deformation equation). ⟨⋅, ⋅⟩𝑆 and ⟨⋅, ⋅⟩𝐹 denote the 2 scalar

product on 𝑆 and 𝐹, respectively. 𝜈𝑓 ∈ ℝ denotes the kinematic fluid viscosity and 𝜌𝑓 ∈ ℝ the fluid density. The shear
modulus 𝜇𝑠 ∈ ℝ and the first Lamé parameter 𝜆𝑠 ∈ ℝ determine the Poisson ratio of the solid.

Definition 1 (The Poisson Ratio - Definition 2.18 of [6]). The Poisson ratio of a solid is given by the number

𝜈
𝑝
𝑠 =

𝜆𝑠
2(𝜆𝑠 + 𝜇𝑠)

.

It describes the compressibility of a solid.

3 PARAMETER-DEPENDENT DISCRETIZATION

Assume the behavior of a linear fluid-structure interactionmodel for𝑚1 ∈ ℕ shearmoduli,𝑚2 ∈ ℕ first Lamé parameters
and 𝑚3 ∈ ℕ fluid densities is of interest. The kinematic fluid viscosity 𝜈𝑓 ∈ ℝ is assumed to be fixed. Let the samples of
interest be given by the following sets.

{𝜇
𝑖1
𝑠 }𝑖1∈{1,…,𝑚1}

⊂ ℝ+, a set of shear moduli,

{𝜆
𝑖2
𝑠 }𝑖2∈{1,…,𝑚2}

⊂ ℝ+, a set of first Lamé parameters and

{𝜌
𝑖3
𝑓
}
𝑖3∈{1,…,𝑚3}

⊂ ℝ+, a set of fluid densities.

In a bilinear finite element discretization of (4) with a mesh grid size of 𝑁 ∈ ℕ, every mesh grid point corresponds to
a pressure, a velocity and a deformation variable. In two dimensions, the velocity and deformation are two dimensional
vectors, in three dimensions they correspond to a three dimensional vector each. The total number of degrees of freedom
is therefore𝑀 = 5𝑁 in two dimensions and𝑀 = 7𝑁 in three dimensions.
LetΩℎ be amatchingmesh of the domainΩ as defined in Definition 5.9 of [6] with𝑁mesh grid points.𝐴0 ∈ ℝ𝑀×𝑀 is a

discrete differential operator restricted to the finite element space with dimension𝑀. It discretizes all operators involved
in (4) with a fixed shear modulus 𝜇𝑠 ∈ ℝ, a fixed first Lamé parameter 𝜆𝑠 ∈ ℝ and a fixed fluid density 𝜌𝑓 ∈ ℝ. In this
paper, 𝑄1 finite elements as discussed in Section 4.2.1 of [6] are used and we will denote the discrete differential operators
by discretization matrices. Moreover, let 𝐴1,𝐴2, 𝐴3 ∈ ℝ𝑀×𝑀 be the discretization matrices of the following operators:

𝐴1 discretizes ⟨∇𝑢 + ∇𝑢𝑇,∇𝜑⟩𝑆 ,
𝐴2 discretizes ⟨tr(∇𝑢)𝐼, ∇𝜑⟩𝑆 and

𝐴3 discretizes ⟨∇𝑣 + ∇𝑣𝑇,∇𝜑⟩𝐹.
The parameter-dependent equation(

𝐴0 + (𝜇
𝑖1
𝑠 − 𝜇𝑠)𝐴1 + (𝜆

𝑖2
𝑠 − 𝜆𝑠)𝐴2 + 𝜈𝑓(𝜌

𝑖3
𝑓
− 𝜌𝑓)𝐴3

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

=∶𝐴(𝜇
𝑖1
𝑠 ,𝜆

𝑖2
𝑠 ,𝜌

𝑖3
𝑓
)

𝑥𝑖1𝑖2𝑖3 = 𝑏𝐷 for

(𝑖1, 𝑖2, 𝑖3) ∈ {1, … ,𝑚1} × {1, … ,𝑚2} × {1, … ,𝑚3}

(5)

is the finite element discretization of (4) related to a shear modulus 𝜇𝑖1𝑠 , a first Lamé parameter 𝜆
𝑖2
𝑠 and a fluid density 𝜌

𝑖3
𝑓
.

The finite element solution is 𝑥𝑖1𝑖2𝑖3 ∈ ℝ𝑀 and the right hand side 𝑏𝐷 ∈ ℝ𝑀 depends on the Dirichlet data.

4 of 28 WEINHANDL et al.

Remark 1. If the fixed parameters vanish, namely 𝜇𝑠 = 𝜆𝑠 = 𝜌𝑓 = 0, (5) translates to(
𝐴0 + 𝜇

𝑖1
𝑠 𝐴1 + 𝜆

𝑖2
𝑠 𝐴2+𝜈𝑓𝜌

𝑖3
𝑓
𝐴3

)
𝑥𝑖1𝑖2𝑖3 = 𝑏𝐷 for (𝑖1, 𝑖2, 𝑖3) ∈ {1, … ,𝑚1} × {1, … ,𝑚2} × {1, … ,𝑚3}.

At first sight, this presentation seems to be more convenient. But choosing, for instance, the parameters 𝜇𝑠 = 𝜇1𝑠 , 𝜆𝑠 = 𝜆1𝑠
and 𝜌𝑓 = 𝜌1

𝑓
minimizes the number of nonzero entries in the diagonalmatrices𝐷1,𝐷2,𝐷3 ∈ ℝ𝑚×𝑚 that will be introduced

in (7). From a numerical point of view, this is an advantage. Furthermore, vanishing fixed parameters would lead to a
singular matrix 𝐴0. This can become a problem if the preconditioner 𝐴0

from Section 3.2 is used.

Combining all sample combinations in (5) leads to a total of𝑚 = 𝑚1𝑚2𝑚3 equations. Written as a linear system, these
equations translate to

=∶
⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞

diag

[0𝑝𝑡]
𝑖1∈{1,…,𝑚1}
𝑖2∈{1,…,𝑚2}
𝑖3∈{1,…,𝑚3}

(
𝐴(𝜇

𝑖1
𝑠 , 𝜆

𝑖2
𝑠 , 𝜌

𝑖3
𝑓
)
) ⎛⎜⎜⎜⎝

𝑥1

⋮

𝑥𝑚1𝑚2𝑚3

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
𝑏𝐷

⋮

𝑏𝐷

⎞⎟⎟⎟⎠, (6)

where diag(⋅) denotes the operator introduced in Section 1.2.6 of [7] extended to block diagonalization. Even though ∈

ℝ𝑀𝑚×𝑀𝑚 is of block diagonal structure, solving the blocks on the diagonal 𝑚 times (potentially in parallel) is often not
feasible. If 100 samples per parameter are considered, one would have to face 1003 = 106 blocks already in such a direct
approach. This would lead to huge storage requirements for the solution vectors.

3.1 The matrix equation

The diagonal entries of 𝐷1, 𝐷2 and 𝐷3 ∈ ℝ𝑚×𝑚 are 𝜇𝑖1𝑠 − 𝜇𝑠, 𝜆
𝑖2
𝑠 − 𝜆𝑠 and 𝜌

𝑖3
𝑓
− 𝜌𝑓 , respectively. The order of the diagonal

entries has to be chosen such that every parameter combination occurs only once. If 𝐼𝑚1
∈ ℝ𝑚1×𝑚1 denotes the𝑚1 × 𝑚1

identity matrix, a possible sample order would lead to matrices

𝐷1 = 𝐼𝑚2𝑚3
⊗ diag

[0𝑝𝑡] 𝑖1∈
{1,…,𝑚1}

(𝜇
𝑖1
𝑠), 𝐷2 = 𝐼𝑚3

⊗ diag

[0𝑝𝑡] 𝑖2∈
{1,…,𝑚2}

(𝜆
𝑖2
𝑠) ⊗ 𝐼𝑚1

and 𝐷3 = diag

[0𝑝𝑡] 𝑖3∈
{1,…,𝑚3}

(𝜌
𝑖3
𝑓
) ⊗ 𝐼𝑚1𝑚2

.
(7)

As discussed in [1], Equation (2) can then be written as the matrix equation

𝐴0 + 𝐴1𝑋𝐷1 + 𝐴2𝑋𝐷2 + 𝜈𝑓𝐴3𝑋𝐷3
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

=∶𝐹(𝑋)

= 𝐵 ∶= [𝑏𝐷|⋯ |𝑏𝐷] (8)

where the unknown is the matrix 𝑋 = [𝑥1|⋯ |𝑥𝑚1𝑚2𝑚3
] ∈ ℝ𝑀×𝑚 whose 𝑖th column corresponds to the finite element

approximation of (4) related to the 𝑖th sample combination.

Definition 2 (Vector and Matrix Notation). We refer to the representation (6) and (8) as the vector and the matrix
notation, respectively. In (6), the unknown is a vectorwhereas in (8), the unknown is amatrix. Even though both equations
express the same, for the theoretical proofs in Section 6, the vector notation is more suitable since considering spaces that
are spanned bymatrices is rather uncommon.On the other hand, software implementations exploit the low-rank structure
of the matrix 𝑋 in (8). This is why the matrix notation fits better in these cases.

In (5), the right hand side 𝑏𝐷 does not depend on any parameter and𝐴(𝜇
𝑖1
𝑠 , 𝜆

𝑖2
𝑠 , 𝜌

𝑖3
𝑓
) depends linearly on each parameter.

Assume that 𝐴(𝜇𝑖1𝑠 , 𝜆
𝑖2
𝑠 , 𝜌

𝑖3
𝑓
) is invertible for all parameters. In this case, Theorem 3.6 of [1] is applicable and provides exis-

tence of a low-rank approximation of𝑋 in (8) with an error bound that implies a stronger error decay than any polynomial
in the rank 𝑅. However, the constant 𝐶 in Theorem 3.6 of [1] can become very big but we do not want to go into detail here
and refer the interested reader to [1].

WEINHANDL et al. 5 of 28

3.2 Preconditioners

The system matrix has the structure

 = 𝐼𝑚 ⊗ 𝐴0 + 𝐷1 ⊗ 𝐴1 + 𝐷2 ⊗ 𝐴2 + 𝜈𝑓𝐷3 ⊗ 𝐴3.

Promising choices of preconditioners that were used already in [1] are

𝐴0
∶= 𝐼𝑚 ⊗ 𝐴0

or

𝑇 ∶= 𝐼𝑚 ⊗
(
𝐴0 + 𝜇̄𝑠𝐴1 + 𝜆̄𝑠𝐴2 + 𝜈𝑓𝜌̄𝑓𝐴3

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

=∶𝑃𝑇

with the means

𝜇̄𝑠 =

min
𝑖1∈{1,…,𝑚1}

(𝜇
𝑖1
𝑠 − 𝜇𝑠) + max

𝑖1∈{1,…,𝑚1}
(𝜇

𝑖1
𝑠 − 𝜇𝑠)

2
, 𝜆̄𝑠 =

min
𝑖2∈{1,…,𝑚2}

(𝜆
𝑖2
𝑠 − 𝜆𝑠) + max

𝑖2∈{1,…,𝑚2}
(𝜆

𝑖2
𝑠 − 𝜆𝑠)

2
and

𝜌̄𝑓 =

min
𝑖3∈{1,…,𝑚3}

(𝜌
𝑖3
𝑓
− 𝜌𝑓) + max

𝑖3∈{1,…,𝑚3}
(𝜌

𝑖3
𝑓
− 𝜌𝑓)

2
.

The preconditioner 𝑇 usually provides faster convergence than 𝐴0
, especially if the means 𝜇̄𝑠, 𝜆̄𝑠 and 𝜌̄𝑓 are big. Left

multiplication of −1
𝑇 with



⎛⎜⎜⎜⎝
𝑥1

⋮

𝑥𝑚1𝑚2𝑚3

⎞⎟⎟⎟⎠
is equivalent to application of 𝑃−1𝑇 to 𝐹(𝑋) from the left using the matrix notation from (8).

4 THE LOW-RANKMETHODS

Now, we discuss iterative methods that can be applied to solve the big system (6). The iterate is then a vector 𝑥 ∈ ℝ𝑀𝑚.
But if the iterate is represented as a matrix instead of a vector, computation can be kept in the matrix notation from (8).
For instance, thematrix-vector multiplication in such a global approach corresponds to the evaluation of the function 𝐹(⋅)
from (8). The Euclidean norm of the vector

⎛⎜⎜⎜⎝
𝑥1

⋮

𝑥𝑚1𝑚2𝑚3

⎞⎟⎟⎟⎠
from (6) then equals the Frobenius norm of the matrix 𝑋 in (8), ‖𝑋‖𝐹 . Low-rank methods that use this approach can be
based on many methods such as the Richardson iteration or the conjugate gradient method as discussed in Algorithm
1 and Algorithm 2 of [1]. But since for fluid-structure interaction problems, the matrix  is not symmetric, the focus in
this paper lies on methods that base on the GMRES and the Chebyshev method. As proved in Theorem 35.2 of [8], the
GMRES method converges in this case, and so does the Chebyshev method, if all eigenvalues of the system matrix lie in
an ellipse that does not touch the imaginary axis as proved in [3]. Also, the Bi-CGSTABmethod from [4] is considered for
a numerical comparison.

6 of 28 WEINHANDL et al.

As mentioned, the low-rank methods discussed in this paper use an iterate that is, instead of a matrix, a tensor of order
two. The iterate is then given by

𝑋̂ =

𝑅∑
𝑗=1

= (𝑢𝑗 ⊗ 𝑣𝑇
𝑗
) with 𝑢𝑗 ∈ ℝ𝑀 , 𝑣𝑗 ∈ ℝ𝑚 ∀𝑗 ∈ {1, … , 𝑅},

where the tensor rank𝑅 ∈ ℕ is kept small such that𝑅 ≪ 𝑀,𝑚. The goal of themethod is to find a low-rank approximation
𝑋̂ that approximates thematrix𝑋 in (8). ThemethodsGMREST (alsomentioned in [2]) andChebyshevT are suchmethods
andwill be explained in the following. They are not just faster than the standardmethods applied to𝑚 individual equations
of the form (5), they also need a smaller amount of storage to store the approximation. If𝑀 and𝑚 are very big, this plays
an important role since the storage amount to store 𝑋̂ is in𝑂((𝑀 +𝑚)𝑅)while the storage amount to store the full matrix
𝑋 is in 𝑂(𝑀𝑚).

4.1 Tensor format and truncation

There are several formats available to represent the tensor 𝑋̂. For 𝑑 = 2, the hierarchical Tucker format (Definition 11.11
of [9]) is equivalent to the Tucker format. It is based on so called minimal subspaces that are explained in Chapter 6 of [9].

Definition 3 (Tucker Format - Definition 8.1 of [9] for 𝒅 = 𝟐). Let 𝑉 ∶= ℝ𝑀 ⊗ℝ𝑚, (𝑟1, 𝑟2) ∈ ℕ2. For 𝑑 = 2, the
Tucker tensors of Tucker rank (𝑟1, 𝑟2) are given by the set

𝑇(𝑟1,𝑟2)(𝑉) ∶= {𝑣 ∈ 𝑉1 ⊗ 𝑉2 ∶ 𝑉1 ⊂ ℝ𝑀 , dim(𝑉1) = 𝑟1, 𝑉2 ⊂ ℝ𝑚, dim(𝑉2) = 𝑟2}.

From now on, the set 𝑇(𝑅,𝑅)(𝑉) will be denoted by 𝑇𝑅. By a tensor of rank 𝑅, a Tucker tensor in 𝑇(𝑅,𝑅) is addressed in
the following.

As explained in Section 13.1.4 of [9], summation of two arbitrary Tucker tensors of rank 𝑅, in general, results in a Tucker
tensor of rank 2𝑅. But to keep a low-rank method fast, the rank of the iterate has to be kept small. This induces the need
for a truncation operator.

Definition 4 (Truncation Operator). The truncation operator

 ∶ ℝ𝑀 ⊗ℝ𝑚 → 𝑇𝑅

maps a Tucker or a full tensor into the set of Tucker tensors of rank 𝑅. The truncation operator is, in the case of tensors
of order 2, based on the singular value decomposition and projects its arguments to 𝑇𝑅. For further reading, we refer to
Definition 2.5 of [10].

Remark 2. As proved in Section 3.2.3 of [9], it holds

ℝ𝑀 ⊗ℝ𝑚 ≅ ℝ𝑀×𝑚,

where the relation ⋅ ≅ ⋅ denotes spaces that are isomorphic to each other (see Section 3.2.5 of [9]). Since, for our purposes,
we consider a matrix that is represented by a tensor, we assume

 ∶ ℝ𝑀×𝑚 → 𝑇𝑅.

and if

𝑥̂ ∈ 𝑇𝑅,

by 𝑥̂, the full representation of the tensor in ℝ𝑀𝑚 in vector notation is addressed.

WEINHANDL et al. 7 of 28

Before we proceed, one more definition is needed.

Definition 5 (Vectorization restricted to ℝ𝑴×𝒎). The vectorization operator

vec ∶ ℝ𝑀×𝑚 → ℝ𝑀𝑚, vec
(
𝑣1 ⋯ 𝑣𝑚

)
↦

⎛⎜⎜⎝
𝑣1
⋮

𝑣𝑚

⎞⎟⎟⎠
stacks matrix entries column wise into a vector. Its inverse maps to an𝑀 ×𝑚matrix:

vec−1 ∶ ℝ𝑀𝑚 → ℝ𝑀×𝑚, vec−1
⎛⎜⎜⎝
𝑣1
⋮

𝑣𝑚

⎞⎟⎟⎠ = (𝑣1|⋯ |𝑣𝑚).
Remark 3. The argument of the function 𝐹(⋅) from (8) is tacitly assumed to be a matrix so 𝐹(𝑥̂) addresses 𝐹(vec−1(𝑥̂)) for
𝑥̂ ∈ 𝑇𝑅.

Since truncation is an operation that is applied after nearly every addition of tensors and multiple times in every itera-
tion, the format that provides the truncation with the least complexity is often the preferred one. According to Algorithm
6 of [11], the htucker toolbox [11] for MATLAB R© provides truncation with complexity (2max(𝑀,𝑚)𝑅2 + 2𝑅4) if the input
format is in hierarchical Tucker format. The truncation complexity of the TT toolbox [12] forMATLAB that uses the Tensor
Train format is in 𝑂(2max(𝑀,𝑚)𝑅3) as stated in Algorithm 2 of [12].

4.2 The GMREST and the GMRESTRmethod

Consider from (6), a suitable preconditioner  = 𝐼𝑚 ⊗ 𝑃 ∈ ℝ𝑀𝑚×𝑀𝑚, a start vector 𝑥0 ∈ ℝ𝑀𝑚 and

𝑏 ∶=
⎛⎜⎜⎝
𝑏𝐷
⋮

𝑏𝐷

⎞⎟⎟⎠, 𝑟0 ∶= −1(𝑏 −𝑥0).

𝑙 GMRES iterations with the preconditioner  applied to the system (6) minimize ‖𝑟0 − −1𝑧‖2 for 𝑧 ∈ ℝ𝑀𝑚 over the
Krylov subspace (compare Section 6.2 of [13])

𝑙 ∶= span{𝑟0,
−1𝑟0, … , (−1)𝑙−1𝑟0}.

As mentioned before, from the theoretical point of view, this classical GMRES method is equivalent to the global GMRES
method that uses an iterate that is a matrix instead of a vector. But if the iterate is represented by a tensor of a fixed rank 𝑅,
the truncation operator  generates an additional error every time it is applied to truncate the iterate or tensors involved
back to rank 𝑅. With an initial guess 𝑥̂0 ∶=  (𝑥0),

𝑏̂ ∶=  (𝑏) and 𝑟0 ∶= 
(
𝑃−1[𝑏̂ − 𝐹(𝑥̂0)]

)
,

𝑙 iterations of the truncated GMRES method GMREST that is coded in Algorithm 1 minimize ‖ vec( (𝑟0 − 𝑃−1𝐹(𝑧̂)))‖2
for 𝑧̂ ∈ 𝑇𝑅 over the truncated Krylov subspace



𝑙
∶= span{vec(𝑟0), vec

(

(
𝑃−1𝐹(𝑟0)

))
, … , vec

((
 (𝑃−1𝐹)

)𝑙−1
(𝑟0)

)
}.

Algorithm 1 is a translation of a preconditioned variant of Algorithm 6.9 of [13] to the low-rank framework. The Arnoldi
iteration is used to compute an orthogonal basis of 

𝑙
. The operations involved are translated from the vector notation

8 of 28 WEINHANDL et al.

A l g o r i t hm 1 GMREST(𝑙) (Preconditioned Truncated GMRES Method)

Input: Iteration number 𝑙, truncation rank 𝑅 for  , 𝐹(⋅) from (8), left preconditioner 𝑃 ∈ ℝ𝑀×𝑀 , right hand side 𝐵̂ ∈ 𝑇𝑅 and start matrix
𝑋̂ ∈ 𝑇𝑅

Output: Approximate solution 𝑋̂ ∈ 𝑇𝑅

Find 𝑅̂ ∈ 𝑇𝑅 such that 𝑃𝑅̂ =  (𝐵̂ − 𝐹(𝑋̂)).
𝑧 ∶= (‖𝑅̂‖𝐹 0⋯0)𝑇

𝑉̂1 ∶=
𝑅̂‖𝑅̂‖𝐹

for 𝑖 = 1, … , 𝑙 do
Find 𝑊̂ ∈ 𝑇𝑅 such that 𝑃𝑊̂ =  (𝐹(𝑉̂𝑖)).
for 𝑘 = 1,… , 𝑖 do
𝐻𝑘,𝑖 ∶= trace(𝑉̂𝐻

𝑘
𝑊̂)

𝑊̂ ∶=  (𝑊̂ − 𝐻𝑘,𝑖𝑉̂𝑘)

end for
𝐻𝑖+1,𝑖 ∶= ‖𝑊̂‖𝐹
𝑉̂𝑖+1 ∶= 𝑊̂

1

𝐻𝑖+1,𝑖

end for
Now find a unitary matrix 𝑄 such that 𝑄𝐻 is an upper triangular matrix via Givens rotations. Find 𝑦 such that 𝑄𝐻𝑦 = 𝑄𝑧.

𝑋̂ =  (𝑋̂ +
𝑙∑

𝑗=1
𝑦𝑗𝑉̂𝑗)

A l g o r i t hm 2 GMRESTR(𝑙, 𝑑) (Preconditioned Truncated GMRES Restart Method)

Input: In addition to the inputs of Algorithm 1, a divisor 𝑑 ∈ ℕ

Output: Approximate solution 𝑋̂ ∈ 𝑇𝑅

𝑑1 ∶= f loor(
𝑙

𝑑
)

for 𝑖 = 1, … , 𝑖 do
𝑋̂ =GMREST(𝑑) with start matrix 𝑋̂

end for

to the matrix notation. Therefore, the Euclidean norm of a vector translates to the Frobenius norm of a matrix. The scalar
product of two vectors corresponds to the Frobenius scalar product of two matrices,

𝑣𝐻 ⋅ 𝑤 = trace
(
vec−1(𝑣)𝐻 vec−1(𝑤)

)
for 𝑣, 𝑤 ∈ ℝ𝑀𝑚.

But even the standard GMRES method can stagnate due to machine precision. This means that at the 𝑙th iteration, the
dimension of the numerical approximation of 𝑙 is smaller than 𝑙. As we will see later, the truncation operator brings,
in addition to the finite precision error (round-off), a truncation error into play. As a result, the GMREST method can
stagnate much earlier than the non truncated full approach. As in the full approach, restarting themethod with the actual
iterate as initial guess can be a remedy. This restarted variant of the GMRESTmethod, called GMRESTR here, is coded in
Algorithm 2.

4.3 The ChebyshevT method

The Chebyshev method converges for non-symmetric system matrices if, in the complex plane, the eigenvalues can be
encircled by an ellipse that does not touch the imaginary axis.
The diagonal blocks of the preconditioned system matrix −1

𝑇  are

𝐵𝑙(𝑖1, 𝑖2, 𝑖3) ∶= 𝑃−1𝑇

(
𝐴0 + (𝜇

𝑖1
𝑠 − 𝜇𝑠)𝐴1 + (𝜆

𝑖2
𝑠 − 𝜆𝑠)𝐴2 + 𝜈𝑓(𝜌

𝑖3
𝑓
− 𝜌𝑓)𝐴3

)
for (𝑖1, 𝑖2, 𝑖3) ∈ {1, … ,𝑚1} × {1, … ,𝑚2} × {1, … ,𝑚3}.

(9)

WEINHANDL et al. 9 of 28

A l g o r i t hm 3 ChebyshevT(𝑙, 𝑑, 𝑐) (Preconditioned Truncated Chebyshev Method)

Input: Iteration number 𝑙, ellipse by center 𝑑 and foci 𝑑 ± 𝑐, truncation rank 𝑅 for  , 𝐹(⋅) from (8), left preconditioner 𝑃 ∈ ℝ𝑀×𝑀 , right
hand side 𝐵̂ ∈ 𝑇𝑅 and start matrix 𝑋̂ ∈ 𝑇𝑅

Output: Approximate solution 𝑋̂ ∈ 𝑇𝑅

Find 𝑅̂0 such that 𝑃𝑅̂0 =  (𝐵̂ − 𝐹(𝑋̂))

Φ̂0 ∶=
1

𝑑
𝑅̂0

𝑋̂ =  (𝑋̂ + Φ̂0)

𝑡0 ∶= 1

𝑡1 ∶=
𝑑

𝑐

for 𝑖 = 1, … , 𝑙 do
𝑡𝑖+1 ∶= 2

𝑑

𝑐
𝑡𝑖 − 𝑡𝑖−1

𝛼𝑖 ∶=
2𝑡𝑖

𝑐𝑡𝑖+1

𝛽𝑖 ∶=
𝑡𝑖−1

𝑡𝑖+1

Find 𝑅̂𝑖 such that 𝑃𝑅̂𝑖 =  (𝐵̂ − 𝐹(𝑋̂)).
Φ̂𝑖 ∶=  (𝛼𝑖𝑅̂𝑖 + 𝛽𝑖Φ̂𝑖−1)

𝑋̂ =  (𝑋̂ + Φ̂𝑖)

end for

Moreover, the parameter-dependent matrices (5) are assumed to be invertible. The eigenvalues of −1
𝑇  denoted by

Λ(−1
𝑇 ) therefore coincide with the set ⋃

[20𝑝𝑡]
𝑖1∈{1,…,𝑚1}
𝑖2∈{1,…,𝑚2}
𝑖3∈{1,…,𝑚3}

Λ(𝐵𝑙(𝑖1, 𝑖2, 𝑖3)). (10)

In numerical tests, it turned out that 𝑅Λ ∶= {Re(𝛼) ∶ 𝛼 ∈ Λ(−1
𝑇 )} ⊂ (0,∞) for the linear fluid-structure interaction

problems considered and the maximum and the minimum of 𝑅Λ do not depend on the number of degrees of freedom,
where the operator Re(𝛼) returns the real part of a complex number 𝛼 ∈ ℂ. Unfortunately, so far it is not clear how to
derive a useful bound for 𝑅Λ away from 0 and from above. For a discretization, the quantities

Λmax ∶= max{|𝛼| ∶ 𝛼 ∈ Λ(−1
𝑇 )} and Λmin ∶= min{|𝛼| ∶ 𝛼 ∈ Λ(−1

𝑇 )} (11)

can therefore be computed using the representation (10) of Λ(−1
𝑇 ) for a small number of degrees of freedom. Since we

are using the mean-based preconditioner, the elements in Λ(−1
𝑇 ) lie symmetrically around 𝑥 = 1 in the complex plane

(compare (9)). Consider the ellipse with center

𝑑 ∶=
Λmin + Λmax

2
and foci 𝑑 ± 𝑐 for 𝑐 ∶= Λmax − 𝑑.

The imaginary parts of the the elements in Λ(−1
𝑇 ) are so small such that this ellipse encircles all eigenvalues of −1.

Moreover, it does not touch the imaginary axis since Λmin > 0. The Chebyshev method from [3] can therefore be general-
ized in the same manner as the GMRES method in Section 4.2 and used to find a low-rank approximation 𝑋̂ of 𝑋 in (8).
The resulting truncated Chebyshev variant ChebyshevT is coded in (3).

5 TIME DISCRETIZATION

5.1 The linear fluid-structure interaction problem

Let [0, 𝑇] be a time interval for 𝑇 ∈ ℝ+ and 𝑡 ∈ [0, 𝑇] be the time variable. The deformation 𝑢 and the velocity 𝑣 now
depend, in addition, on the time variable 𝑡 so we write 𝑢(𝑡, 𝑥) and 𝑣(𝑡, 𝑥). With the solid density 𝜌𝑠 ∈ ℝ, the non stationary

10 of 28 WEINHANDL et al.

Navier–Lamé equations discussed in Section 2.3.1.2 of [6] fulfill

𝜌𝑠𝜕𝑡𝑡𝑢 − div(𝜎) = 𝜌𝑠𝜕𝑡𝑣 − div(𝜎) = 0, 𝜕𝑡𝑢 = 𝑣.

The time term 𝜌𝑓𝜕𝑡𝑣 coming from the Stokes fluid equations as mentioned in (2.42) of [6] is added to the left side of the
momentum equation. The weak formulation of the non-stationary coupled linear fluid-structure interaction problem is
given by

⟨∇ ⋅ 𝑣, 𝜉⟩𝐹 = 0,

𝜌𝑓⟨𝜕𝑡𝑣, 𝜑⟩𝐹 + 𝜌𝑠⟨𝜕𝑡𝑣, 𝜑⟩𝑆 + 𝜇𝑠⟨∇𝑢 + ∇𝑢𝑇,∇𝜑⟩𝑆 + 𝜆𝑠⟨tr(∇𝑢)𝐼, ∇𝜑⟩𝑆 + 𝜈𝑓𝜌𝑓⟨∇𝑣 + ∇𝑣𝑇,∇𝜑⟩𝐹 − ⟨𝑝,∇ ⋅ 𝜑⟩𝐹 = 0,

⟨∇𝑢,∇𝜓⟩𝐹 = 0

(12)

with regularity conditions 𝑣 ∈ 𝐿2([0, 𝑇]; 𝑣in +𝐻1
0(Ω, Γ

𝐷
𝑓
∪ Γint)

𝑑), 𝜕𝑡𝑣 ∈ 𝐿2([0, 𝑇];𝐻−1(Ω)𝑑) for all (𝑡, 𝑥) ∈ [0, 𝑇] × Ω. We
use the notation from (4).

5.2 Time discretization with the 𝜽-scheme

Let 𝐴𝑓
𝑡 , 𝐴

𝑠
𝑡 ∈ ℝ𝑀×𝑀 be discretization matrices:

𝐴
𝑓
𝑡 discretizes ⟨𝑣, 𝜑⟩𝐹 and 𝐴𝑠

𝑡 discretizes 𝜌𝑠⟨𝑣, 𝜑⟩𝑆.
Now consider a discretization that splits the time interval [0, 𝑇] into 𝑠 + 1 ∈ ℕ equidistant time steps. Let the distance
between two time steps beΔ𝑡. The starting time is 𝑡0 = 0 and the following times are thus given by 𝑡𝑖 ∶= 𝑖Δ𝑡 for 𝑖 ∈ {1, … , 𝑠}.
Let 𝑋𝑖 be the approximate solution at time 𝑡𝑖 , 𝑋0 is given as the initial value. The given Dirichlet data 𝑏𝑖𝐷 at time 𝑡𝑖 for all
𝑖 ∈ {0, … , 𝑠} yield the time dependent right hand side

𝐵𝑖 ∶= 𝑏𝑖𝐷 ⊗ (1, … , 1) for 𝑖 ∈ {0, … , 𝑠}.

Consider the one-step 𝜃-scheme explained in Section 4.1 of [6]. Using the notation from (8), at time 𝑡𝑖 , the following
equation is to be solved for 𝑋𝑖:

1

Δ𝑡
𝐴
𝑓
𝑡 𝑋

𝑖(𝜌𝑓𝐼𝑚 + 𝐷3) +
1

Δ𝑡
𝐴𝑠
𝑡𝑋

𝑖 + 𝜃𝐹(𝑋𝑖)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=∶𝐹𝑖(𝑋𝑖)

=
1

Δ𝑡
𝐴
𝑓
𝑡 𝑋

𝑖−1(𝜌𝑓𝐼𝑚 + 𝐷3) +
1

Δ𝑡
𝐴𝑠
𝑡𝑋

𝑖−1 − (1 − 𝜃)𝐹(𝑋𝑖−1) + 𝜃𝐵𝑖 + (1 − 𝜃)𝐵𝑖−1

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=∶𝐵𝑖(𝑋𝑖−1)

,

(13)

where 𝜃 ∈ [0, 1]. 𝐹𝑖(⋅) contains only two sum terms more than 𝐹(⋅) from (8). At time 𝑡𝑖 , both Algorithm 1 and Algorithm 3
can be applied to the quasi stationary problem (13) with 𝐹𝑖(⋅) instead of 𝐹(⋅) and the right hand side 𝐵𝑖(𝑋𝑖−1).

5.3 Preconditioner

At all time steps, the full matrix is given by

𝑡 ∶=
1

Δ𝑡
(𝜌𝑓𝐼𝑚 + 𝐷3) ⊗ 𝐴

𝑓
𝑡 +

1

Δ𝑡
𝐼𝑚 ⊗ 𝐴𝑠

𝑡 + 𝜃
(
𝐼 ⊗ 𝐴0 + 𝐷1 ⊗ 𝐴1 + 𝐷2 ⊗ 𝐴2 + 𝜈𝑓𝐷3 ⊗ 𝐴3

)
.

The mean-based preconditioner, similar to 𝑇 from Section 3.2, is

 𝑡
𝑇 ∶= 𝐼 ⊗ 𝑃𝑡𝑇, where 𝑃𝑡𝑇 ∶=

1

Δ𝑡
(𝜌𝑓 + 𝜌̄𝑓)𝐴

𝑓
𝑡 +

1

Δ𝑡
𝐴𝑠
𝑡 + 𝜃

(
𝐴0 + 𝜇̄𝑠𝐴1 + 𝜆̄𝑠𝐴2 + 𝜈𝑓𝜌̄𝑓𝐴3

)
.

Even though the right hand side 𝐵𝑖(𝑋𝑖−1) changes with every time step, the system matrix does not.

WEINHANDL et al. 11 of 28

6 THEORETICAL ERROR BOUNDS

The convergence proofs of the GMRES method from Theorem 35.2 of [8] and Section 3.4 of [14] base on the fact that the
residual of the 𝑙th GMRES iterate can be represented as a product of a polynomial in and the initial residual since the
𝑙th GMRES iterate is a linear combination of the start vector 𝑥0 and the generating elements of𝑙. Also, the error bound
of the Chebyshevmethod in [15] relies on the fact that the residual of the 𝑙th Chebyshev iterate is such a product. But even
if one considers Algorithm 1 and Algorithm 3 in a non preconditioned version, multiplication with the system matrix
is always disturbed due to the error induced by the truncation operator. The GMREST method minimizes over 

𝑙
, the

truncated Krylov subspace, instead of 𝑙. In Section 6.2, the basis elements of 

𝑙
are represented explicitly taking the

truncation accuracy into consideration. Let 𝑥𝑙 be the 𝑙th GMRES iterate, 𝑥̂𝑙 be the 𝑙th GMREST iterate. An upper bound
of

‖𝑥𝑙 − 𝑥̂𝑙‖2
is derived from the accuracy of the basis elements of 

𝑙
. In relation to Krylov subspace methods, inaccuracies induced

by matrix-vector multiplication result in so called inexact Krylov methods and have been discussed in [16]. Iterative pro-
cesses that involve truncation have been discussed in a general way in [17]. For the 𝑙th Chebyshev iterate 𝑥𝑙 and the 𝑙th
ChebyshevT iterate 𝑥̂𝑙, the error

‖𝑥𝑙 − 𝑥̂𝑙‖2
is bounded in the same way in Section 6.3. These bounds show how the truncation error is propagated iteratively in
Algorithm 1 and Algorithm 3 if the machine precision error is neglected.

Remark 4. If 𝑣 ∈ ℝ𝑀𝑚,  (𝑣) addresses  (vec−1(𝑣)). Thus for the ease of notation, the truncation operator  from Defi-
nition 4 is regarded as a map

 ∶ 𝑀𝑚 → 𝑇𝑅

and for 𝑣 ∈ ℝ𝑀𝑚,  (𝑣) addresses the full representation of the tensor in vector notation, a vector in ℝ𝑀𝑚.

Definition 6 (Truncation accuracy). The truncation operator  from Definition 4 is said to have accuracy 𝜖 > 0 if for
any 𝑥 ∈ ℝ𝑀𝑚

𝑥̂ ∶=  (𝑥) = 𝑥 + 𝑥̂ with 𝑥̂ ∈ ℝ𝑀𝑚 and ‖𝑥̂‖2 ≤ 𝜖

holds. 𝑥̂ is the error induced by  when 𝑥 is truncated.

6.1 Matrix-vector product evaluation accuracy

If a tensor is multiplied with a scalar or a matrix, there is no truncation needed since the tensor rank does not grow. But
the evaluation of 𝐹(⋅) from (8) involves 4 sum terms. After an evaluation of 𝐹(⋅) with a tensor as argument, the result has
to be truncated. To keep complexity low for 𝑋̂ ∈ 𝑇𝑅, the sum  (𝐹(𝑋̂)), in practice, is truncated consecutively


(
𝐹(𝑋̂)

)
≡ 

(

(
 (𝐴0𝑋̂ + 𝐴1𝑋̂𝐷1) + 𝐴2𝑋̂𝐷2

)
+ 𝜈𝑓𝐴3𝑋̂𝐷3

)
= 

(
 (𝐴0𝑋̂ + 𝐴1𝑋̂𝐷1 + 𝐴2𝑋̂𝐷2 + 𝐹̂𝑠1

) + 𝜈𝑓𝐴3𝑋̂𝐷3

)
= 

(
𝐴0𝑋̂ + 𝐴1𝑋̂𝐷1 + 𝐴2𝑋̂𝐷2 + 𝜈𝑓𝐴3𝑋̂𝐷3 + 𝐹̂𝑠1

+ 𝐹̂𝑠2

)
= 𝐹(𝑋̂) + 𝐹̂𝑠1

+ 𝐹̂𝑠2
+ 𝐹̂𝑠3

.

12 of 28 WEINHANDL et al.

𝐹̂𝑠𝑖
denotes the truncation error induced by the truncation of the 𝑖th sum term for 𝑖 ∈ {1, 2, 3}. By Definition 4, ‖𝐹̂𝑠𝑖 ‖2 ≤ 𝜖

for all 𝑖 ∈ {1, 2, 3}. In  (𝐹(⋅)) are, if the number of summands in 𝐹(⋅) is 𝐾 ∈ ℕ, a total of 𝐾 − 1 truncations hidden. For a
truncation accuracy of 𝜖 > 0 we have

‖ (𝐹(𝑋̂)) − 𝐹(𝑋̂)‖2 ≤ (𝐾 − 1)𝜖.

Since 𝐾 is a small number, usually not bigger than 4, we will neglect this detail and simply assume

‖ (𝐹(𝑋̂)) − 𝐹(𝑋̂)‖2 ≤ 𝜖

in the following. To make sure that the stated error bounds are still valid, the truncation accuracy would be asked to, to
be exact, less than 𝜖

𝐾−1
.

6.2 GMREST error bounds

Let 𝑥𝑙 be the 𝑙th standard GMRES iterate, 𝑥̂𝑙 be the 𝑙th GMREST iterate. How big is the difference between the truncated
Krylov subspace 

𝑙
from Section 4.2 and the Krylov subspace 𝑙? First we derive explicit representations of the non-

normalized basis elements of

𝑙
. For the following Lemma, we need the truncation errors 𝐾𝑘 ∈ ℝ𝑀𝑚 for 𝑘 ∈ ℕ. They

are induced by the truncation operator when the 𝑘th basis element of the truncated Krylov subspace

𝑙
is computed. For

a truncation operator with accuracy 𝜖 > 0, it holds ‖
𝑘 ‖2 ≤ 𝜖 for all 𝑘 ∈ ℕ.

Lemma 1 (Basis Representation of

𝑙
). Assume dim(

𝑙
) = 𝑙 and

𝑟0 = 
(
−1(𝑏 −𝑥0)

)
= 𝑟0 + 𝑟0 .

Let the truncation operator  (⋅) have accuracy 𝜖 > 0. The non-normalized basis elements of

𝑙
are given by

𝑟0 and 𝐾𝑘 ∶= (−1)𝑘𝑟0 + (−1)𝑘𝑟0 +

𝑘∑
𝑗=1

(−1)𝑗−1
𝐾
𝑘−𝑗+1 for all 𝑘 ∈ {1, … , 𝑙 − 1}.

Proof (by induction). For 𝑘 = 1

𝐾1 = 
(
−1𝐹(𝑟0)

)
=  (−1𝑟0) = 

(
−1(𝑟0 + 𝑟0)

)
= −1𝑟0 + −1𝑟0 + 𝐾1

and “𝑘 − 1 ⇒ 𝑘” since

𝐾𝑘 =  (−1𝐹)𝑘(𝑟0) = 
(
−1𝐹(𝐾𝑘−1)

)
=  (−1𝐾𝑘−1)

= 

(
−1

(
(−1)𝑘−1𝑟0 + (−1)𝑘−1𝑟0 +

𝑘−1∑
𝑗=1

(−1)𝑗−1
𝐾
𝑘−𝑗

))

= (−1)𝑘𝑟0 + (−1)𝑘𝑟0 +

𝑘−1∑
𝑗=1

(−1)𝑗
𝐾
𝑘−𝑗 + 𝐾𝑘

= (−1)𝑘𝑟0 + (−1)𝑘𝑟0 +

𝑘∑
𝑗=1

(−1)𝑗−1
𝐾
𝑘−𝑗+1 . □

Remark 5 (Truncation Error of 𝑟0). Consider the line

𝐹𝑖𝑛𝑑 𝑅̂ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃𝑅̂ = 
(
𝐵̂ − 𝐹(𝑋̂)

)

WEINHANDL et al. 13 of 28

of Algorithm 1. In vector notation,

𝑟0 =  (𝑏 − 𝐹(𝑥̂0)) (14)

is solved for 𝑟0. Usually the initial vector 𝑥0 is chosen such that it can be represented by a tensor of low rank. So we assume
𝑥̂0 =  (𝑥0) = 𝑥0. If the linear system (14) is solved before truncation we have

‖𝑟0‖2 ≤ 𝜖.

But this is rarely implemented this way. In practice, the right-hand side of (14) is truncated before the linear system is
solved for 𝑟0. In this case,

‖𝑟0‖2 ≤ 𝜖‖−1‖2
holds. The following statements refer to the latter, more practical case. The error bounds that result in the first case can
be found in Appendix A.1.

Remark 6 (Truncation of 𝑊̂ and Orthogonality). Consider the line

𝑊̂ ∶=  (𝑊̂ − 𝐻𝑘,𝑖𝑉̂𝑘)

in Algorithm 1. In the lemma above, this truncation is neglected.When the 𝑘th basis element 𝑉̂𝑘 is set up, there are 𝑘 extra
additions involved due to this line. Let 𝑊̂ be the truncation error that occurs when this line is executed. For the sake of
readability, we neglect that they differ from loop iteration to loop iteration. As a consequence, we do not add another index
to 𝑊̂ . The basis elements are then given by

𝑟0 and 𝐾𝑘 ∶= (−1)𝑘𝑟0 + (−1)𝑘𝑟0 +

𝑘∑
𝑗=1

(−1)𝑗−1
𝐾
𝑘−𝑗+1 + 𝑘𝑊̂ for 𝑘 ∈ {1, … , 𝑙 − 1}.

Furthermore, we neglect round-off errors incurred from finite precision arithmetic as these are assumed to be much
smaller than the truncation errors. The reason why the basis elements of𝑙 and

𝑙
obtained from the Arnoldi iteration

differ from each other is the truncation error. Even though the elements

{𝑟0,
−1, … , (−1)𝑙−1𝑟0} (15)

span 𝑙, they are not orthogonal. But for the sake of notation, we incorporate the error made at the orthogonalization
of the basis elements, in the truncated case, into 𝑊̂ and address by (15) the normalized basis elements that result from
the Arnoldi iteration. In other words, we tacitly assume that the basis elements (15) of 𝑙 are orthonormal, write them
in the representation (15) and incorporate the error we made at orthogonalization into 𝑊̂ . This is just one result of the
assumption that we use exact precision.

Lemma 2 (Error Bound for Truncated Basis Elements). Let 𝜎 ∶= ‖−1‖2. Under the assumptions of Lemma 1, for
𝑒𝑘 ∶=

⎧⎪⎨⎪⎩
‖𝑟0 − 𝑟0‖2 if 𝑘 = 0

‖𝐾𝑘 − (−1𝐴)𝑘𝑟0‖2 if 𝑘 ∈ {1, … , 𝑙 − 1}
,

it holds that

𝑒𝑘 ≤ 𝜖

(
𝑘∑

𝑗=1

𝜎
𝑗−1


+ ‖−1‖2𝜎𝑘 + 𝑘

)
for 𝑘 ∈ {0, … , 𝑙 − 1}.

14 of 28 WEINHANDL et al.

Proof. For 𝑘 = 0, we have

‖𝑟0 − 𝑟0‖2 = ‖𝑟0‖2
≤ 𝜖‖−1‖2
= 𝜖

(
𝑘∑

𝑗=1

𝜎
𝑗−1


+ ‖−1‖2𝜎𝑘
)
,

with the convention ∑
𝑗∈∅

𝜎
𝑗−1


= 0.

For 𝑘 ≥ 1, we use Lemma 1.

𝑒𝑘 = ‖(−1)𝑘𝑟0 +

𝑘∑
𝑗=1

(−1)𝑗−1
𝐾
𝑘−𝑗+1‖2

= ‖(−1)𝑘𝑟0 + 𝐾𝑘 +

𝑘−1∑
𝑗=1

(−1)𝑗
𝐾
𝑘−𝑗 ‖2

≤ 𝜎𝑘

𝜖‖−1‖2 + 𝜖 +

𝑘−1∑
𝑗=1

𝜎
𝑗

𝜖

= 𝜖

(
𝑘∑

𝑗=1

𝜎
𝑗−1


+ ‖−1‖2𝜎𝑘
)
.

The truncation error coming from the orthogonalization process mentioned in Remark 6 adds the term 𝜖𝑘 to the
error bound. □

The standard GMRES minimizes over the Krylov subspace 𝑙. In terms of Remark 6, the standard GMRES method
finds coefficients 𝑐𝑖 ∈ ℝ for 𝑖 ∈ {1, … , 𝑙} such that

𝑥𝑙 = 𝑥0 + 𝑐1𝑟0 + 𝑐2
−1𝑟0 +⋯+ 𝑐𝑙(

−1)𝑙−1𝑟0.

In the same way we can write

𝑥̂𝑙 = 𝑥̂0 + 𝑑1𝑟0 + 𝑑2𝐾
1 +⋯ + 𝑑𝑙𝐾

𝑙−1 ,

where the coefficients 𝑑𝑖 for 𝑖 ∈ {1, … , 𝑙} refer to the coefficients found by the Arnoldi iteration in the GMREST method.
This allows to state the following theorem.

Theorem 1 (Approximation Error of GMREST). Let 𝑥𝑙 be the 𝑙th iterate of the standard GMRES method, 𝑥̂𝑙 be the 𝑙th
iterate of the GMREST method. It holds

‖𝑥̂𝑙 − 𝑥𝑙‖2 ≤ 𝜖

𝑙∑
𝑗=1

|𝑑𝑗|(𝑗−1∑
𝑖=1

𝜎𝑖−1


+ ‖−1‖2𝜎𝑗−1
+ 𝑗 − 1

)
+

𝑙∑
𝑗=1

|𝑐𝑗 − 𝑑𝑗| + 𝜖𝑙.

Proof.

‖𝑥̂𝑙 − 𝑥𝑙‖2 = ‖𝑥̂0 − 𝑥0 + 𝑑1𝑟0 − 𝑐1𝑟0 + 𝑑2𝐾
1 − 𝑐2

−1𝑟0 +⋯+ 𝑑𝑙𝐾
𝑙−1 − 𝑐𝑙(

−1)𝑙−1𝑟0‖2
≤ |𝑑1|𝑒0 + |𝑑2|𝑒1 +⋯+ |𝑑𝑙|𝑒𝑙−1 + |𝑐1 − 𝑑1|‖ 𝑟0

⏟⏟⏟
[0𝑝𝑡](⋆)

‖2

WEINHANDL et al. 15 of 28

+ |𝑐2 − 𝑑2|‖−1𝑟0
⏟⎴⏟⎴⏟

(⋆)

‖2 +⋯+ |𝑐𝑙 − 𝑑𝑙|‖(−1)𝑙−1𝑟0
⏟⎴⎴⏟⎴⎴⏟

(⋆)

‖2 = (∗)

We assume that the standard GMRES method does an accurate orthogonalization of the Krylov subspace 𝑙 (see
Remark 6). By the elements (⋆) we address the orthonormal basis elements of 𝑙. They all have an Euclidean norm
of 1. Therefore,

(∗) =

𝑙∑
𝑗=1

(|𝑑𝑗|𝑒𝑗−1 + |𝑐𝑗 − 𝑑𝑗|)

≤ 𝜖

𝑙∑
𝑗=1

|𝑑𝑗|(𝑗−1∑
𝑖=1

𝜎𝑖−1


+ ‖−1‖2𝜎𝑗−1
+ 𝑗 − 1

)
+

𝑙∑
𝑗=1

|𝑐𝑗 − 𝑑𝑗|
holds. The additional sum term 𝜖𝑙 comes from the last successive sum in themethodwhere the approximation is built. □

6.3 ChebyshevT error bounds

Similar to Section 6.2, we derive an error bound for the ChebyshevT method coded in Algorithm 3. Let 𝑥𝑙 denote the 𝑙th
iterate of the standard Chebyshev method and 𝑥̂𝑙 denote the 𝑙th iterate of the ChebyshevT method.

Remark 7. The 𝑖th residual is given by the solution 𝑟𝑖 to

𝑟𝑖 = 𝑏 −𝑥𝑖.

The truncation of 𝑟𝑖 yields

𝑟𝑖 =  (𝑟𝑖) = 𝑟𝑖 + 𝑟𝑖 , with ‖𝑟𝑖‖2 ≤ 𝜖

if the truncation operator  is assumed to have accuracy 𝜖. In analogy to Remark 5, the two cases ‖𝑟𝑖‖2 ≤ 𝜖 and ‖𝑟𝑖‖2 ≤
𝜖‖−1‖2 have to be distinguished. In this section, we consider the latter case. The error bounds of Theorem 2 for the case‖𝑟𝑖‖ ≤ 𝜖 can be found in Appendix A.2.

The start vector and the right hand side are assumed to be of low rank, namely

𝑥̂0 =  (𝑥0) = 𝑥0 and 𝑏̂ =  (𝑏) = 𝑏.

In the same way as in Section 6.2, the norm ‖𝑥̂𝑙 − 𝑥𝑙‖2 is to be estimated. 𝑥̂𝑎
𝑙
denotes the total error

𝑥̂𝑎
𝑙
∶= 𝑥̂𝑙 − 𝑥𝑙,

not to be confused with 𝑥̂𝑙 , the truncation error with norm 𝜖 that occurs when truncating 𝑥̂𝑙. The iterative Chebyshev
method is a three term recursion. Thus, the Chebyshev iterates itself can be represented by a recursive formula.

Lemma 3 (Representation of the ChebyshevT Iterates). Let the scalars

𝛼𝑖, 𝛽𝑖 ∈ ℝ for 𝑖 ∈ {1, … , 𝑙} and Φ̂𝑖 ∈ 𝑇𝑅 for 𝑖 ∈ {0, … , 𝑙}

be given as defined in Algorithm 3. Φ𝑖 denote the non truncated full matrices corresponding to Φ̂𝑖 if Algorithm 3 is applied
and any truncation is neglected. If

𝑟0 = 𝑟0 + 𝑟0 ,

16 of 28 WEINHANDL et al.

it holds that

𝑥̂𝑎0
= 0,

𝑥̂1 = 𝑥1 +
1

𝑑
𝑟0 + 𝑥̂1

⏟⎴⎴⏟⎴⎴⏟
𝑥̂𝑎

1

,

𝑥̂2 = 𝑥2 + Φ̂1
+ 𝑥̂𝑎1

+ 𝑥̂2 + 𝛼1(𝑟1 − −1𝑥̂𝑎1
) +

𝛽1
𝑑
𝑟0

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝑥̂𝑎

2

and

𝑥̂𝑙 = 𝑥𝑙 + Φ̂𝑙−1
+ 𝑥̂𝑎

𝑙−1
+ 𝑥̂𝑙 +

𝑙−1∑
𝑗=1

𝛼𝑗

(
𝑙−𝑗−1∏
𝑖=1

𝛽𝑖+𝑗

)
(𝑟𝑗 − −1𝑥̂𝑎

𝑗
) +

(
𝑙−1∏
𝑗=1

𝛽𝑗

)
1

𝑑
𝑟0 +

𝑙−2∑
𝑗=1

(
𝑙−𝑗−1∏
𝑖=1

𝛽𝑖+𝑗

)
Φ̂𝑗

for 𝑙 ≥ 3,

where 𝑥̂𝑎
𝑗
∶= 𝑥̂𝑗 − 𝑥𝑗 for 𝑗 ∈ {0, … , 𝑙}. We use the convention

∏
𝑗∈∅

𝛽𝑗 = 1.

If a truncation operator of accuracy 𝜖 > 0 is used, then certainly ‖𝑥̂𝑖‖2 ≤ 𝜖 but not necessarily ‖𝑥̂𝑎
𝑖
‖2 ≤ 𝜖 holds for 𝑖 ∈

{0, … , 𝑙}. The error induced by the truncation operator that truncates Φ̂𝑖 is denoted by Φ̂𝑖
for 𝑖 ∈ {0, … , 𝑙}.

Proof. 𝑙 = 1:
Provided that 𝑥̂0 = 𝑥0 = 𝑥0 + 𝑥̂𝑎0

⇒ 𝑥̂𝑎0
= 0.

𝑥̂1 =  (𝑥̂0 +
1

𝑑
𝑟0) = 

(
𝑥0 +

1

𝑑
𝑟0 +

1

𝑑
𝑟0

)
= 𝑥0 +

1

𝑑
𝑟0

⏟⎴⏟⎴⏟
=𝑥1

+
1

𝑑
𝑟0 + 𝑥̂1

⏟⎴⎴⏟⎴⎴⏟
=𝑥̂𝑎

1

𝑙 = 2:

𝑥̂2 =  (𝑥̂1 + Φ̂1) = 
(
𝑥̂1 +  (𝛼1𝑟1 + 𝛽1Φ̂0)

)
= 

(
𝑥̂1 +  (𝛼1𝑟1 +

𝛽1
𝑑
𝑟0)

)
= 

(
𝑥1 + 𝑥̂𝑎1

+ 

(
𝛼1(𝑟1 + 𝑟1 − −1𝑥̂𝑎1

) +
𝛽1
𝑑
(𝑟0 + 𝑟0)

))
= (⋆)

since

𝑟1 = 
(
−1(𝑏 −𝑥̂1)

)
= 

(
−1(𝑏 −𝑥1 −𝑥̂𝑎1

)
)
= 𝑟1 − −1𝑥̂𝑎1

+ 𝑟1 .

Thus,

(⋆) = 

⎛⎜⎜⎜⎜⎝
𝑥1 + 𝛼1𝑟1 +

𝛽1
𝑑
𝑟0

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
=𝑥2

+𝛼1(𝑟1 − −1𝑥̂𝑎1
) +

𝛽1
𝑑
𝑟0 + 𝑥̂𝑎1

+ Φ̂1

⎞⎟⎟⎟⎟⎠
= 𝑥2 + 𝛼1(𝑟1 − −1𝑥̂𝑎1

) +
𝛽1
𝑑
𝑟0 + 𝑥̂𝑎1

+ Φ̂1
+ 𝑥̂2

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
=𝑥̂𝑎

2

.

WEINHANDL et al. 17 of 28

For the proof for 𝑙 ≥ 3, we go by induction. For the initial step 𝑙 = 3, we need

Φ̂0 =
1

𝑑
𝑟0 =

1

𝑑
(𝑟0 + 𝑟0) = Φ0 +

1

𝑑
𝑟0 ,

Φ̂1 =  (𝛼1𝑟1 + 𝛽1Φ̂0) = 

(
𝛼1𝑟1 + 𝛽1Φ0 + 𝛼1(𝑟1 − −1𝑥̂𝑎1

) +
𝛽1
𝑑
𝑟0

)
= Φ1 + 𝛼1(𝑟1 − −1𝑥̂𝑎1

) +
𝛽1
𝑑
𝑟0 + Φ̂1

and

Φ̂2 =  (𝛼2𝑟2 + 𝛽2Φ̂1) = 𝛼2𝑟2 + 𝛽2Φ1 + 𝛼2(𝑟2 − −1𝑥̂𝑎2
) + 𝛼1𝛽2(𝑟1 − −1𝑥̂𝑎1

) +
𝛽1𝛽2
𝑑

𝑟0 + 𝛽2Φ̂1
+ Φ̂2

= Φ2 + 𝛼2(𝑟2 − −1𝑥̂𝑎2
) + 𝛼1𝛽2(𝑟1 − −1𝑥̂𝑎1

) +
𝛽1𝛽2
𝑑

𝑟0 + 𝛽2Φ̂1
+ Φ̂2

. (16)

Therefore,

𝑥̂3 =  (𝑥̂2 + Φ̂2)

= 

(
𝑥2 + Φ2 + 𝑥̂𝑎2

+ 𝛼2(𝑟2 − −1𝑥̂𝑎2
) + 𝛼1𝛽2(𝑟1 − −1𝑥̂𝑎1

) +
𝛽1𝛽2
𝑑

𝑟0 + 𝛽2Φ̂1
+ Φ̂2

)
= 𝑥3 + Φ̂2

+ 𝑥̂𝑎2
+ 𝑥̂3 + 𝛼1𝛽2(𝑟1 − −1𝑥̂𝑎1

) + 𝛼2(𝑟2 − −1𝑥̂𝑎2
) +

𝛽1𝛽2
𝑑

𝑟0 + 𝛽2Φ̂1

= 𝑥3 + Φ̂2
+ 𝑥̂𝑎2

+ 𝑥̂3 +

2∑
𝑗=1

𝛼𝑗

(
3−𝑗−1∏
𝑖=1

𝛽𝑖+𝑗

)
(𝑟𝑗 − −1𝑥̂𝑎

𝑗
) +

(
2∏

𝑗=1

𝛽𝑗

)
1

𝑑
𝑟0 + 𝛽2Φ̂1

.

To conclude 𝑙 − 1 → 𝑙 we first prove that

Φ̂𝑙−1 = Φ𝑙−1 + Φ̂𝑙−1
+

𝑙−1∑
𝑗=1

𝛼𝑗

(
𝑙−𝑗−1∏
𝑖=1

𝛽𝑖+𝑗

)
(𝑟𝑗 − −1𝑥̂𝑎

𝑗
) +

(
𝑙−1∏
𝑗=1

𝛽𝑗

)
1

𝑑
𝑟0 +

𝑙−2∑
𝑗=1

(
𝑙−𝑗−1∏
𝑖=1

𝛽𝑖+𝑗

)
Φ̂𝑗

(17)

under the assumption that this equation holds for Φ̂𝑙−2. For Φ̂2, this is true since from (16), we have that

Φ̂2 = Φ2 + Φ̂2
+

2∑
𝑗=1

𝛼𝑗

(
2−𝑗∏
𝑖=1

𝛽𝑖+𝑗

)
(𝑟𝑗 − −1𝑥̂𝑎

𝑗
) +

(
2∏

𝑗=1

𝛽𝑗

)
1

𝑑
𝑟0 + 𝛽2Φ̂1

.

The induction step for (17) is as follows.

Φ̂𝑙−1 =  (𝛼𝑙−1𝑟𝑙−1 + 𝛽𝑙−1Φ̂𝑙−2)

= 𝛼𝑙−1𝑟𝑙−1 + 𝛽𝑙−1Φ𝑙−2 + Φ̂𝑙−1
+ 𝛼𝑙−1(𝑟𝑙−1 − −1𝑥̂𝑎

𝑙−1
) + 𝛽𝑙−1Φ̂𝑙−2

+ 𝛽𝑙−1

𝑙−2∑
𝑗=1

𝛼𝑗

(
𝑙−𝑗−2∏
𝑖=1

𝛽𝑖+𝑗

)
(𝑟𝑗 − −1𝑥̂𝑎

𝑗
)

+ 𝛽𝑙−1

(
𝑙−2∏
𝑗=1

𝛽𝑗

)
1

𝑑
𝑟0 + 𝛽𝑙−1

𝑙−3∑
𝑗=1

(
𝑙−𝑗−2∏
𝑖=1

𝛽𝑖+𝑗

)
Φ̂𝑗

= Φ𝑙−1 + Φ̂𝑙−1
+

𝑙−1∑
𝑗=1

𝛼𝑗

(
𝑙−𝑗−1∏
𝑖=1

𝛽𝑖+𝑗

)
(𝑟𝑗 − −1𝑥̂𝑎

𝑗
) +

(
𝑙−1∏
𝑗=1

𝛽𝑗

)
1

𝑑
𝑟0 +

𝑙−2∑
𝑗=1

(
𝑙−𝑗−1∏
𝑖=1

𝛽𝑖+𝑗

)
Φ̂𝑗

18 of 28 WEINHANDL et al.

With this, it follows that

𝑥̂𝑙 =  (𝑥̂𝑙−1 + Φ̂𝑙−1)

= 𝑥𝑙 + Φ̂𝑙−1
+ 𝑥̂𝑎

𝑙−1
+ 𝑥̂𝑙 +

𝑙−1∑
𝑗=1

𝛼𝑗

(
𝑙−𝑗−1∏
𝑖=1

𝛽𝑖+𝑗

)
(𝑟𝑗 − −1𝑥̂𝑎

𝑗
) +

(
𝑙−1∏
𝑗=1

𝛽𝑗

)
1

𝑑
𝑟0 +

𝑙−2∑
𝑗=1

(
𝑙−𝑗−1∏
𝑖=1

𝛽𝑖+𝑗

)
Φ̂𝑗

.

□

Theorem 2 (Approximation Error of ChebyshevT). Let 𝜎 ∶= ‖−1‖2. Under the assumptions of Lemma 3, the
following error bounds hold for a truncation operator of accuracy 𝜖 > 0.

𝑒1 ∶= ‖𝑥̂𝑙 − 𝑥𝑙‖2 = ‖𝑥̂𝑎1 ‖2 ≤ 𝜖

(
1 +

1|𝑑|‖−1‖2),
𝑒2 ∶= ‖𝑥̂2 − 𝑥2‖2 ≤ 𝜖

(
3 + |𝛼1|𝜎 +

(|𝛼1| + 1 + |𝛽1| + |𝛼1|𝜎|𝑑|
)‖−1‖2) and

𝑒𝑙 ∶= ‖𝑥̂𝑙 − 𝑥𝑙‖2 ≤ (1 + |𝛼𝑙−1|𝜎)𝑒𝑙−1 + 𝑙−2∑
𝑗=1

|𝛼𝑗|𝑒𝑗𝜎 𝑙−𝑗−1∏
𝑖=1

|𝛽𝑖+𝑗|

+ 𝜖

⎛⎜⎜⎜⎜⎜⎝
2 +

𝑙−2∑
𝑗=1

𝑙−𝑗−1∏
𝑖=1

|𝛽𝑖+𝑗| +
⎛⎜⎜⎜⎜⎜⎝
𝑙−1∑
𝑗=1

|𝛼𝑗| 𝑙−𝑗−1∏
𝑖=1

|𝛽𝑖+𝑗| +
𝑙−1∏
𝑗=1

|𝛽𝑗|
|𝑑|

⎞⎟⎟⎟⎟⎟⎠
‖−1‖2

⎞⎟⎟⎟⎟⎟⎠
for 𝑙 ≥ 3.

Proof. Let 𝜖𝑅 > 0 such that ‖𝑟𝑖‖2 ≤ 𝜖𝑅 for all 𝑖 ∈ {1, … , 𝑙}.
𝑙 = 1:

𝑒1 = ‖𝑥̂𝑎1 ‖2 ≤ 𝜖 +
1|𝑑|𝜖𝑅

𝑙 = 2:

𝑒2 = ‖Φ̂1
+
1

𝑑
𝑟0 + 𝑥̂1 + 𝑥̂2 + 𝛼1

(
𝑟1 − −1

(
1

𝑑
𝑟0 + 𝑥̂1

))
+
𝛽1
𝑑
𝑟0‖2

≤ ‖Φ̂1
+ 𝑥̂1 + 𝑥̂2‖2 + |𝛼1|𝜎‖𝑥̂1‖2 + |𝛼1|‖𝑟1‖2 + (1 + |𝛼1|𝜎 + |𝛽1|)‖𝑟0𝑑 ‖2

≤ (3 + |𝛼1|𝜎)𝜖 +(|𝛼1| + 1 + |𝛽1| + |𝛼1|𝜎|𝑑|
)
𝜖𝑅

𝑙 ≥ 3:

𝑒𝑙 =

‖‖‖‖‖‖Φ̂𝑙−1
+ 𝑥̂𝑎

𝑙−1
+ 𝑥̂𝑙 +

𝑙−1∑
𝑗=1

𝛼𝑗

(
𝑙−𝑗−1∏
𝑖=1

𝛽𝑖+𝑗

)
(𝑟𝑗 − −1𝑥̂𝑎

𝑗
) +

(
𝑙−1∏
𝑗=1

𝛽𝑗

)
1

𝑑
𝑟0 +

𝑙−2∑
𝑗=1

(
𝑙−𝑗−1∏
𝑖=1

𝛽𝑖+𝑗

)
Φ̂𝑗

‖‖‖‖‖‖2
≤ ‖𝑥̂𝑎

𝑙−1
‖2

⏟⎴⏟⎴⏟
=𝑒𝑙−1

+|𝛼𝑙−1|𝜎‖𝑥̂𝑎
𝑙−1

‖2 + 𝑙−2∑
𝑗=1

|𝛼𝑗|𝜎‖𝑥̂𝑎
𝑗
‖2 𝑙−𝑗−1∏

𝑖=1

|𝛽𝑖+𝑗| + ‖Φ̂𝑙−1
+ 𝑥̂𝑙‖2 + 𝑙−2∑

𝑗=1

‖Φ̂𝑗
‖2 𝑙−𝑗−1∏

𝑖=1

|𝛽𝑖+𝑗|

+

𝑙−1∑
𝑗=1

|𝛼𝑗|‖𝑟𝑗‖2 𝑙−𝑗−1∏
𝑖=1

|𝛽𝑖+𝑗| +
𝑙−1∏
𝑗=1

|𝛽𝑗|
|𝑑| ‖𝑟0‖2

WEINHANDL et al. 19 of 28

≤ (1 + |𝛼𝑙−1|𝜎)𝑒𝑙−1 + 𝑙−2∑
𝑗=1

|𝛼𝑗|𝑒𝑗𝜎 𝑙−𝑗−1∏
𝑖=1

|𝛽𝑖+𝑗| +(
2 +

𝑙−2∑
𝑗=1

𝑙−𝑗−1∏
𝑖=1

|𝛽𝑖+𝑗|)𝜖 +
⎛⎜⎜⎜⎜⎜⎝
𝑙−1∑
𝑗=1

|𝛼𝑗| 𝑙−𝑗−1∏
𝑖=1

|𝛽𝑖+𝑗| +
𝑙−1∏
𝑗=1

|𝛽𝑗|
|𝑑|

⎞⎟⎟⎟⎟⎟⎠
𝜖𝑅

The estimation 𝜖𝑅 ≤ 𝜖‖−1‖2 leads to the claimed error bounds. □

7 NUMERICAL EVALUATION OF THE ERROR BOUNDS

In algorithm and software implementations, the accuracy of a truncation operator depends on the truncation rank. If one
chooses a rank 𝑅, the iterate of the GMREST or the ChebyshevT method is truncated to, the accuracy of the truncation
operator is still unknown. Most truncation techniques like the HOSVD for hierarchical Tucker tensors (Section 8.3 and
Section 10.1.1 of [9]) or the TT-rounding for TT tensors (Algorithm 1 and 2 of [12]) provide quasi optimality for tensors
of order 𝑑 > 2. For tensors of order 𝑑 = 2 they even provide optimality in the sense that the result of the truncation of a
matrix to rank 𝑅 is indeed the best rank 𝑅 approximation of the matrix. Nonetheless, since the singular value decay of the
argument to be truncated is, in general, not known, the truncation operator will be simulated for a numerical evaluation
of the error bounds of Theorem 1 and Theorem 2. Using the MATLAB routine rand(), a vector

𝑧̃ ∈ ℝ𝑀𝑚

with entries that are uniformly distributed in the interval (0,1) is constructed first. The argument 𝑥 ∈ ℝ𝑀𝑚 is then trun-
cated using the truncation simulator

𝑠(𝑥) ∶= 𝑥 +
𝜖‖𝑧̃‖2 𝑧̃. (18)

Of course, 𝑧̃ is computed anew every time 𝑠(⋅) is applied. For this subsection, all the computations are therefore made
in the full format and whenever a truncation operator is applied, the truncation simulator 𝑠(⋅) is evaluated. The main
advantage of this strategy is that

‖𝑠(𝑥) − 𝑥‖2 = 𝜖 ∀𝑥 ∈ ℝ𝑀𝑚.

A truncation operator based on the singular value decomposition does not provide such a reliable behavior. Let

{𝜎𝑖}𝑖∈{1,…,min{𝑀,𝑚}}, 𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎min{𝑀,𝑚}

be the singular values of vec−1(𝑥) and ∃𝑘 ∈ {1, … ,min{𝑀,𝑚} − 1} such that, e.g.,

𝜎𝑘 = 10−4 and 𝜎𝑘+1 = 10−10.

A truncation operator with accuracy 𝜖 = 10−5 based on the singular value decompositionwould provide an approximation
of 𝑥 with accuracy 10−10 in this example. So in this sense, the truncation simulator 𝑠 yields the worst case error every
time it is applied.

7.1 GMREST error Bound

We consider the error bound from Theorem 1 that reads

‖𝑥̂𝑙 − 𝑥𝑙‖2 ≤ 𝜖

𝑙∑
𝑗=1

|𝑑𝑗|(𝑗−1∑
𝑖=1

𝜎𝑖−1


+ ‖−1‖2𝜎𝑗−1
+ 𝑗 − 1

)
+

𝑙∑
𝑗=1

|𝑐𝑗 − 𝑑𝑗| + 𝜖𝑙.

20 of 28 WEINHANDL et al.

(a)

(b)

F IGURE 1 A numerical evaluation of the theoretical
GMREST error bound

This theoretical error bound is compared with

‖𝑥𝑙 − 𝑥̂𝑙‖2, (19)

where 𝑥𝑙 denotes the 𝑙th GMRES iterate and 𝑥̂𝑙 the 𝑙th GMREST iterate. As just explained, everything is computed in the
full format and every time a truncation is involved (which affects the GMREST iterate 𝑥̂𝑙 only), 𝑠 from (18) is evaluated.
The 3d jetty fromSection 8.1 is consideredwith size𝑀 = 4095 and a three parameter discretizationwith a total of𝑚 = 8000

parameter combinations as used in Section 8.3. We use the estimate 𝜎 ≈ 𝑑 + 𝑐 with 𝑐, 𝑑 from Section 8.5. In addition, the
basis element error bound from Lemma 2 is plotted for a truncation accuracy of 𝜖 = 10−12. If one starts with a matrix
whose entries are all set to 1, the error bound (19) states that ‖𝑥10 − 𝑥̂10‖2 is not bigger than ≈ 10−2, which can be seen in
Figure 1a. The reason for such a tolerant bound is that the first coefficients 𝑑1, 𝑑2, … are very big if the initial guess is bad.
But if both methods are restarted with 𝑥̂6 as start matrix, these coefficients become smaller as shown in Figure 1b. Also,
the relative residual norm of the GMRES iterate, ‖𝐵−𝐹(𝑥)‖𝐹‖𝐵‖𝐹 , and the one of the GMREST iterate, ‖𝐵−𝐹(𝑥̂)‖𝐹‖𝐵‖𝐹 , are plotted. So
even though ‖𝑥𝑙 − 𝑥̂𝑙‖2 stagnates, the residual of the truncated approach still decreases.

WEINHANDL et al. 21 of 28

The dominating terms are

𝜖

𝑙∑
𝑗=1

|𝑑𝑗|‖−1‖2𝜎𝑗−1
and 𝜖

𝑙∑
𝑗=1

|𝑑𝑗| 𝑗−1∑
𝑖=1

𝜎𝑖−1


.

As pointed out above, 𝑑1, 𝑑2, … are big for a bad initial guess. Then, in addition, 𝜖 can not compensate the (exponential)
growth of 𝜎𝑗−1


for 𝑗 ∈ {1, … , 𝑙}. Notice that 𝜎 ≈ 1.6 in this example. Since ‖−1‖2 is rather big, namely ≈ 3 ⋅ 104 in this

example, the former of these two terms is bigger for the first 10 iterations. Furthermore, 1.610 ≈ 102 and the moduli of the
coefficients 𝑑𝑗 become smaller the bigger the iteration count is. This is why we do not see an exponential growth of the
bound in Figure 1a,b.

7.2 ChebyshevT error bound

In this subsection, the approximation error from Theorem 2 is numerically examined. Let 𝑥𝑙 be the 𝑙th Chebyshev iter-
ate and 𝑥̂𝑙 be the 𝑙th ChebyshevT iterate. For the ChebyshevT method, similar to the GMRES comparison, 𝑠 is used as
truncation operator.

Remark 8. If preconditioned with 𝑇 , in theory,

𝜖𝑅 ≤ 𝜖‖−1
𝑇 ‖2

holds as mentioned in Remark 7. But, due to the bad condition of the preconditioner and machine precision, in practice,
𝜖𝑅 is often bigger. The line

𝐹𝑖𝑛𝑑 𝑅̂𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃𝑅̂𝑖 = 
(
𝐵̂ − 𝐹(𝑋̂)

)
.

is executed in every iteration of Algorithm 3 which sometimes leads to real errors that are higher than the error bound
from Theorem 2. In contrast to this, the line

𝐹𝑖𝑛𝑑 𝑊̂ ∈ 𝑇𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃𝑊̂ = 
(
𝐹(𝑉̂𝑖)

)
.

in Algorithm 1 is less vulnerable. To circumvent this problem, for the error bound of Theorem 2, the error 𝜖𝑅 is computed
explicitly. This value instead of 𝜖‖−1

𝑇 ‖2 is then used to compute the theoretical error bounds that are compared with the
real errors.

We use the same configuration as used in Section 7.1. Even though the theoretical error bound literally explodes, for
𝜖 = 10−12, the truncated method converges roughly as good as the non truncated method until iteration 10 for the 3d jetty
model from Section 8.1 as shown in Figure 2a. But the convergence of the ChebyshevT method deteriorates remarkably
after 4 iterations for 𝜖 = 10−6 if compared to the full approach (see Figure 2b).
The two terms in the error bound that are not multiplied with 𝜖 are

(1 + |𝛼𝑙−1|𝜎)𝑒𝑙−1 and (20)

𝑙−2∑
𝑗=1

|𝛼𝑗|𝑒𝑗𝜎
(⋆)

⏞⎴⎴⏞⎴⎴⏞
𝑙−𝑗−1∏
𝑖=1

|𝛽𝑖+𝑗| . (21)

The coefficients 𝛽𝑖 in the Chebyshev method have norms that are smaller than 1. This becomes clear if one considers
the recursive computation formula for the Chebyshev polynomials (see (2.4) in [3]) evaluated at 𝑑

𝑐
with |𝑐| < |𝑑|. The

coefficients 𝛽𝑖 are then given as a fraction where the numerator has a norm that is smaller than the denominator. The
product (⋆) becomes smaller the higher the iteration number is and therefore, the term (21) becomes negligibly small, at

22 of 28 WEINHANDL et al.

(a)

(b)

F IGURE 2 A numerical evaluation of the error bound
from Theorem 2. All entries of the start matrix are set to 1

least if it is compared with the term Equation (20). For our configuration, 𝑐 = 0.6. Hence, the coefficients 𝛼𝑖 are bigger
than 1 on the other hand (see (2.24) in [3]). For 𝜎 ≈ 𝑐 + 𝑑 = 1.6

1 + |𝛼𝑙−1|𝜎 ≥ 2.6.

This explains why the first term in Theorem 2, the term Equation 20, dominates the error bound and makes it explode.
Thus, when using ChebyshevT, one has to be very careful about the choice of the truncation tolerance.

8 NUMERICAL EXAMPLES

8.1 A three dimensional jetty in a channel

The geometric configuration of a 3d jetty in a channel is given by

Ω ∶= (0, 8) × (0, 8) × (0, 4), 𝑆 ∶= (3, 4) × (0, 8) × (0, 2) and 𝐹 ∶= Ω ⧵ 𝑆̄.

WEINHANDL et al. 23 of 28

F IGURE 3 The initial configuration of the jetty where the Dirichlet data simulate an inflow from the left

With the velocity

⎛⎜⎜⎝
𝑣1
𝑣2
𝑣3

⎞⎟⎟⎠ ∈ ℝ3, the deformation
⎛⎜⎜⎝
𝑢1
𝑢2
𝑢3

⎞⎟⎟⎠ ∈ ℝ3 and coordinates (𝑥, 𝑦, 𝑧) ∈ Ω̄,

the Dirichlet inflow on the left boundary is given by

𝑣 =

⎛⎜⎜⎜⎝
1

2
𝑦(8 − 𝑦)𝑧(4 − 𝑧)

0

0

⎞⎟⎟⎟⎠ if 𝑥 = 0.

The geometric configuration is illustrated in Figure 3. On the right, for 𝑥 = 8, do nothing boundary outflow conditions
as discussed in Section 2.4.2 of [6] hold. The surface is at 𝑦 = 8. There, 𝑣2 and 𝑢2 vanish. Everywhere else on 𝜕(Ω), the
velocity and the deformation fulfill zero Dirichlet boundary conditions.

8.2 Stabilization of equal-order finite elements

Because we use 𝑄1 finite elements for the pressure, velocity and the deformation, we have to stabilize the Stokes fluid
equations on the fluid part. For this, stabilized Stokes elements as explained in Lemma 4.47 of [6] are used.

8.3 Three parameter discretization

Problem (4) is discretized with respect to

20 shear moduli 𝜇𝑖1𝑠 ∈ [30000, 50000],

20 first Lamé parameters 𝜆𝑖2𝑠 ∈ [100000, 200000] and

20 fluid densities 𝜌𝑖3
𝑓
∈ [50, 200].

24 of 28 WEINHANDL et al.

The kinematic fluid viscosity is fixed to 𝜈𝑓 = 0.01. The shear modulus and first Lamé parameter ranges cover solids with
Poisson ratios between 1

3
(e.g., concrete) and 0.43478 (e.g., clay). The total number of equations is𝑚 = 203 = 8000 and the

number of degrees of freedom is𝑀 = 192423.
In the following computations,MATLAB 2017b on a CentOS 7.6.1810 64bit with 2 AMDEPYC 7501 and 512GB of RAM is

used. The htuckerMATLAB toolbox [11] is used to realize the Tucker format 𝑇𝑅. The preconditioners are decomposed into
a permuted LU decomposition using the MATLAB builtin command lu(). All methods start with a start matrix whose
entries are all set to 1.

8.4 GMREST

A standard GMRES approach is compared with the GMRESTR method from Algorithm 2.
By “standard GMRES approach”, the standard GMRES method applied to𝑚 = 8000 different equations of the form (5)

is meant. It is once restarted after 8 iterations so it uses a total of 16 iterations per equation. For all 8000 separate standard
GMRES methods, 5 preconditioners given by

𝐴0 + (𝐷1)𝑖,𝑖𝐴1 + (𝐷2)𝑖,𝑖𝐴2 + (𝐷3)𝑖,𝑖𝐴3 for 𝑖 ∈ {800, 2400, 4000, 5600, 7200} (22)

are set up where the diagonal matrices {𝐷𝑗}𝑗∈{1,2,3} are the ones from (7).
The GMRESTRmethod uses 6 iterations per restart and is restarted 3 times. The mean based preconditioner𝑇 is used.

The times to compute the preconditioners (one in the case of GMRESTR, 5 in the case of standard GMRES) can be found
in the column Precon. in Table 1. The method itself took the time that is listed in the column Comp. and the column Total
is then the sum of these times. Both methods result in 8000 approximations. Each of these approximations (x axis) then
provides a certain accuracy (y axis) that is plotted in Figure 4. The standard GMRES method applied to 8000 equations
in this way provides accuracies that are plotted in red within about 90 hours and 32 minutes. The approximations the

TABLE 1 GMRESTR compared with standard GMRES

Computation times (in minutes)
Method Approx. storage Precon. Comp. Total
GMRESTR 𝑂[(𝑀 +𝑚 + 𝑅)𝑅]

(𝑅 = 200) ≈ 306.12MB 1.24 179.88 181.12
Standard GMRES 𝑂(𝑀𝑚)

(8000 times) ≈ 11.47GB 6.63 5426.23 5432.86

F IGURE 4 The standard GMRES method applied to
8000 separate equations (relative residual norms in red) is
compared with the GMREST method (relative residual norms

in blue). The relative residual norms are
‖𝑏𝐷−𝐴(𝜇𝑖1𝑠 ,𝜆𝑖2𝑠 ,𝜌𝑖3𝑓)𝑥𝑖1 ,𝑖2 ,𝑖3 ‖2‖𝑏𝐷‖2 ,

where 𝑥𝑖1,𝑖2,𝑖3 is the approximation related to the parameters
𝜇
𝑖1
𝑠 , 𝜆

𝑖2
𝑠 and 𝜌

𝑖3
𝑓

WEINHANDL et al. 25 of 28

GMRESTRmethod provides have accuracies that are plotted in blue. The GMRESTRmethod took only about 181 minutes
to compute these approximations as one can see in Table 1. Also, the storage that is needed to store the approximation
varies significantly. The rank 200 approximation, in the Tucker format, requires only about 306MBwhereas the full matrix
requires almost 12GB.

8.5 ChebyshevT

Before the Chebyshev method can be applied, the extreme eigenvalues of −1
𝑇  have to be estimated as explained in

Section 4.3. An estimation of Λmax and Λmin from (11) involves the estimation of extreme eigenvalues for 𝑚 different
matrices if the representation (10) is considered. But we restrict to an estimation of

Λ̄max = max
𝑖1∈{1,𝑚1}
𝑖2∈{1,𝑚2}
𝑖3∈{1,𝑚3}

Λ(𝐵𝑙(𝑖1, 𝑖2, 𝑖3)) ≈ Λmax and Λ̄min = min
𝑖1∈{1,𝑚1}
𝑖2∈{1,𝑚2}
𝑖3∈{1,𝑚3}

Λ(𝐵𝑙(𝑖1, 𝑖2, 𝑖3)) ≈ Λmin.

With themean based preconditioner𝑇 , this leads to 𝑑 = 1 and 𝑐 = 0.6 in this configuration. The time needed to compute
Λ̄max and Λ̄min on a coarse grid with𝑀 = 735 degrees of freedom is listed in the column “Est.” in Table 2.
In the same manner as in the preceding subsection, for comparison, a standard Cheyshev approach is applied to 8000

equations of the form (5). The resulting accuracies are visualized in Figure 5. The standard Chebyshev method uses 20
iterations at each equation and, in total, the same 5 preconditioners (22) as the standard GMRES uses. The ChebyshevT
method iterates, in total, 24 times and uses 𝑇 , the mean based preconditioner. The ChebyshevT method is restarted 3
times with 6 iterations per restart. Compared to this, 24 iterations without restart took about the same time but provide
approximation accuracies that are slightly worse.

TABLE 2 ChebyshevT compared with standard Chebyshev

Computation times (in minutes)
Method Approx. storage Est. Precon. Comp. Total
ChebyshevT 𝑂[(𝑀 +𝑚 + 𝑅)𝑅]

(𝑅 = 200) ≈ 306.12MB 0.013 1.24 177.99 179.243
Standard Chebyshev 𝑂(𝑀𝑚)

(8000 times) ≈ 11.47GB 0.013 6.63 5490.85 𝟓𝟒𝟗𝟕.𝟒𝟗𝟑

F IGURE 5 The standard Chebyshev method applied to
8000 separate equations (relative residual norms in red) is
compared with the ChebyshevT method (relative residual
norms in blue)

26 of 28 WEINHANDL et al.

8.6 Comparison with the Bi-CGstab method

Another method that also works for non-symmetric matrices is the Bi-CGstab method [4]. It was not considered in the
first place because it can break down under some circumstances as explained in Section 2.3.8 of [18]. The preconditioned
truncated variant similar to Algorithm 3 of [1] but strictly based on [4] is compared with the GMRESTR and the Cheby-
shevT method in Figure 6. The truncated Bi-CGstab method is applied with 6 iterations per restart. If once restarted, in
total, the method iterates 12 times. The resulting approximation accuracy is indeed better than the one obtained when
iterating 12 times directly without any restart.

F IGURE 6 The approximation accuracies for the
GMREST (blue), the ChebyshevT (cyan) and the truncated
Bi-CGstab (red)

To avoid early stagnation, the residual at step 𝑖 is computed directly

𝑅̂𝑖 = 
(
𝐵̂ − 𝐹(𝑋̂)

)
.

The main reason why the Bi-CGstab takes more time (compare Table 3), is the truncation. If𝑀 and𝑚 are big, truncation
after every addition is indispensable. In this way, in every for-loop in the preconditioned Bi-CGstab Algorithm[4], a total
of 12 truncations occur (3 times, 𝐹(⋅) is evaluated). In a for-loop of Algorithm 3, we have 6 truncations only. In the outer
for-loop of Algorithm 1, 3 + 𝑖 truncations occur. It turned out that, in the implementation of the preconditioned Bi-CGStab
method of [4], the truncation of the sum

𝑠 = 𝑟𝑖−1 − 𝛼𝑣𝑖

can be left out. Leaving out further truncations did not lead to a better performance of the truncated Bi-CGstab method.

TABLE 3 Computation time comparison of the truncated approaches

Computation times (in minutes)
Method (R=200) Est. Precon. Comp. Total
ChebyshevT 0.013 1.24 177.99 𝟏𝟕𝟗.𝟐𝟒

GMREST - 1.24 179.88 𝟏𝟖𝟏.𝟏𝟐

Truncated Bi-CGstab - 1.24 302.94 𝟑𝟎𝟒.𝟏𝟖

9 CONCLUSIONS

The truncated methods discussed in this paper provide approximations with relative residual norms smaller than 10−8

within less than a twentieth of the time needed by the correspondent standard approaches that solve the 𝑚 equations
individually. This raises the question how these methods perform when applied to nonlinear problems.

WEINHANDL et al. 27 of 28

Since the truncation error affects, in addition to the machine precision error, the accuracy of the Arnoldi orthogonal-
ization, the GMREST method should preferably be applied in a restarted version. Mostly, the ChebyshevT method is a bit
faster and a bit more accurate than the GMREST method. But the main disadvantage of the ChebyshevT method is that
the ellipse that contains the eigenvalues of −1 described by the foci 𝑑 ± 𝑐 has to be approximated newly every time the
parameter configuration changes. In this matter, the GMREST method can be seen as a method that is a bit more flexible
if compared to the ChebyshevT method.
Also, the ChebyshevT and the truncated BiCGstabmethods can and preferably should be applied in a restartedmanner.

If not restarted, the methods stagnate after a few iterations already. The reason is a numerical issue initiated by the bad
condition of the mean-based preconditioner.
There is still further investigation needed regarding the error bounds. If the GMRESTmethod is applied, the coefficients

𝑐𝑗 are not known. The ChebyshevT bound is rather pessimistic and merely of theoretical nature. The method seems to
converge too fast such that the truncation error does not really play a role in the cases examined.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge funding received by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - 314838170, GRK 2297 MathCoRe.

ORCID
RomanWeinhandl https://orcid.org/0000-0002-9728-8682
Peter Benner https://orcid.org/0000-0003-3362-4103
ThomasRichter https://orcid.org/0000-0003-0206-3606

REFERENCES
[1] Kressner, D., Tobler, C.: Low-rank tensor Krylov subspace methods for parametrized linear systems. SIAM J. Matrix Anal. Appl. 32(4),

1288–1316 (2011)
[2] Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format. Numer. Linear Algebra Appl. 20(1), 27–43 (2013)
[3] Manteuffel, T.A.: The Tchebychev iteration for nonsymmetric linear systems. Numer. Math. 28(3), 307–327 (1977)
[4] van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM

J. Sci. Statist. Comput. 13(2), 631–644 (1992)
[5] Benner, P., Breiten, T.: Low rank methods for a class of generalized Lyapunov equations and related issues. Numer. Math. 124(3), 441–470

(2013)
[6] Richter, T.: Fluid-Structure Interactions. Lecture Notes in Computational Science and Engineering, vol. 118. Springer, Cham (2017)
[7] Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th ed. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University

Press, Baltimore, MD (2013)
[8] Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia, PA (1997)
[9] Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer Series in Computational Mathematics, vol. 42. Springer, Heidel-

berg (2012)
[10] Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31(4), 2029–2054 (2009/10)
[11] Kressner, D., Tobler, C.: Algorithm 941: htucker—a MATLAB toolbox for tensors in hierarchical Tucker format. ACM Trans. Math. Soft-

ware 40(3), 22 (2014)
[12] Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
[13] Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd ed. Society for Industrial and Applied Mathematics, Philadelphia, PA (2003)
[14] Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist.

Comput. 7(3), 856–869 (1986)
[15] Calvetti, D., Golub, G.H., Reichel, L.: An adaptive Chebyshev iterative method for nonsymmetric linear systems based on modified

moments. Numer. Math. 67(1), 21–40 (1994)
[16] Simoncini, V., Szyld, D.B.: Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM J. Sci. Comput.

25(2), 454–477 (2003)
[17] Hackbusch,W., Khoromskij, B.N., Tyrtyshnikov, E.E.: Approximate iterations for structuredmatrices. Numer.Math. 109(3), 365–383 (2008)
[18] Barrett, R., Berry, M., Chan, T.F., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Society for

Industrial and Applied Mathematics, Philadelphia, PA (1994)

How to cite this article: Weinhandl R, Benner P, Richter T. Low-rank linear fluid-structure interaction
discretizations. Z Angew Math Mech. 2020;100:e201900205. https://doi.org/10.1002/zamm.201900205

https://orcid.org/0000-0002-9728-8682
https://orcid.org/0000-0002-9728-8682
https://orcid.org/0000-0003-3362-4103
https://orcid.org/0000-0003-3362-4103
https://orcid.org/0000-0003-0206-3606
https://orcid.org/0000-0003-0206-3606
https://doi.org/10.1002/zamm.201900205

28 of 28 WEINHANDL et al.

APPENDIX A: ERROR BOUNDS

A.1 GMREST error bounds
Lemma 4 (Error Bound for Truncated Basis Elements). Under the assumptions of Lemma 2, with ‖𝑟0‖2 ≤ 𝜖, it holds

𝑒𝑘 ≤ 𝜖

𝑘+1∑
𝑗=1

𝜎
𝑗−1


+ 𝜖𝑘 for 𝑘 ∈ {0, … , 𝑙 − 1}.

Proof. The case 𝑘 = 0 is clear. For 𝑘 ≥ 1, we have

𝑒𝑘 = ‖(−1)𝑘𝑟0 + 𝐾𝑘 +

𝑘−1∑
𝑗=1

(−1)𝑗
𝐾
𝑘−𝑗 ‖2 ≤ 𝜎𝑘


𝜖 + 𝜖 +

𝑘−1∑
𝑗=1

𝜎
𝑗

𝜖 = 𝜖

𝑘+1∑
𝑗=1

𝜎
𝑗−1


.

The term 𝜖𝑘 is to be added to the error bound as explained in Remark 6. □

Theorem 3 (Approximation Error of GMREST). Under the assumptions of Theorem 1 and ‖𝑟0‖2 ≤ 𝜖, it holds

‖𝑥̂𝑙 − 𝑥𝑙‖2 ≤ 𝜖

𝑙∑
𝑗=1

|𝑑𝑗|(𝑗∑
𝑖=1

𝜎𝑖−1


+ 𝑗 − 1

)
+

𝑙∑
𝑗=1

|𝑐𝑗 − 𝑑𝑗| + 𝜖𝑙.

Proof. We use the proof of Theorem 1 and the error bound of Lemma 4 to estimate

‖𝑥̂𝑙 − 𝑥𝑙‖2 ≤ 𝑙∑
𝑗=1

(|𝑑𝑗|𝑒𝑗−1 + |𝑐𝑗 − 𝑑𝑗|) ≤ 𝜖

𝑙∑
𝑗=1

|𝑑𝑗|(𝑗∑
𝑖=1

𝜎𝑖−1


+ 𝑗 − 1

)
+

𝑙∑
𝑗=1

|𝑐𝑗 − 𝑑𝑗|.
Truncation in the last line of Algorithm 1 leads to the additional sum term 𝜖𝑙. □

A.2 ChebyshevT error bounds
Theorem 4 (Approximation Error of ChebyshevT). Under the assumptions of Theorem 2 and ‖𝑟𝑖‖2 ≤ 𝜖 for all 𝑖 ∈
{1, … , 𝑙}, the error bounds of the ChebyshevT method translate to

𝑒1 ∶= ‖𝑥̂𝑙 − 𝑥𝑙‖2 = ‖𝑥̂𝑎1 ‖2 ≤ 𝜖

(
1 +

1|𝑑|
)
,

𝑒2 ∶= ‖𝑥̂2 − 𝑥2‖2 ≤ 𝜖

(
3 + |𝛼1|𝜎 + |𝛼1| + 1 + |𝛽1| + |𝛼1|𝜎|𝑑|

)
and

𝑒𝑙 ∶= ‖𝑥̂𝑙 − 𝑥𝑙‖2 ≤ (1 + |𝛼𝑙−1|𝜎)𝑒𝑙−1 + 𝑙−2∑
𝑗=1

|𝛼𝑗|𝑒𝑗𝜎 𝑙−𝑗−1∏
𝑖=1

|𝛽𝑖+𝑗|

+ 𝜖

⎛⎜⎜⎜⎜⎜⎝
2 +

𝑙−2∑
𝑗=1

𝑙−𝑗−1∏
𝑖=1

|𝛽𝑖+𝑗| + 𝑙−1∑
𝑗=1

|𝛼𝑗| 𝑙−𝑗−1∏
𝑖=1

|𝛽𝑖+𝑗| +
𝑙−1∏
𝑗=1

|𝛽𝑗|
|𝑑|

⎞⎟⎟⎟⎟⎟⎠
for 𝑙 ≥ 3.

Proof. For all cases, we can use the proof of Theorem 2 and estimate 𝜖𝑅 ≤ 𝜖. □

	Low-rank linear fluid-structure interaction discretizations
	1 | INTRODUCTION
	2 | THE STATIONARY LINEAR FLUID-STRUCTURE INTERACTION PROBLEM
	3 | PARAMETER-DEPENDENT DISCRETIZATION
	3.1 | The matrix equation
	3.2 | Preconditioners

	4 | THE LOW-RANK METHODS
	4.1 | Tensor format and truncation
	4.2 | The GMREST and the GMRESTR method
	4.3 | The ChebyshevT method

	5 | TIME DISCRETIZATION
	5.1 | The linear fluid-structure interaction problem
	5.2 | Time discretization with the -scheme
	5.3 | Preconditioner

	6 | THEORETICAL ERROR BOUNDS
	6.1 | Matrix-vector product evaluation accuracy
	6.2 | GMREST error bounds
	6.3 | ChebyshevT error bounds

	7 | NUMERICAL EVALUATION OF THE ERROR BOUNDS
	7.1 | GMREST error Bound
	7.2 | ChebyshevT error bound

	8 | NUMERICAL EXAMPLES
	8.1 | A three dimensional jetty in a channel
	8.2 | Stabilization of equal-order finite elements
	8.3 | Three parameter discretization
	8.4 | GMREST
	8.5 | ChebyshevT
	8.6 | Comparison with the Bi-CGstab method

	9 | CONCLUSIONS
	ACKNOWLEDGEMENTS
	ORCID
	REFERENCES
	APPENDIX A: ERROR BOUNDS
	A.1 | GMREST error bounds
	A.2 | ChebyshevT error bounds

