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An uncertainty-aware, shareable, and transparent 
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Beate Endemann7, Fabian Bamberg8, Thomas Kröncke9, Robin Bülow10, Henry Völzke11, 
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The deviation between chronological age and age predicted from neuroimaging data has been identified as 
a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. 
However, machine learning models underlying the field do not consider uncertainty, thereby confounding results 
with training data density and variability. Also, existing models are commonly based on homogeneous training 
sets, often not independently validated, and cannot be shared because of data protection issues. Here, we intro-
duce an uncertainty-aware, shareable, and transparent Monte Carlo dropout composite quantile regression 
(MCCQR) Neural Network trained on N = 10,691 datasets from the German National Cohort. The MCCQR model 
provides robust, distribution-free uncertainty quantification in high-dimensional neuroimaging data, achiev-
ing lower error rates compared with existing models. In two examples, we demonstrate that it prevents spu-
rious associations and increases power to detect deviant brain aging. We make the pretrained model and code 
publicly available.

INTRODUCTION
Although aging is ubiquitous, the rate at which age-associated 
biological changes in the brain occur differs substantially between 
individuals. Building on this, the so-called “brain-age paradigm” (1) 
aims to estimate a brain’s “biological age” (2) and posits that brain 
age may serve as a cumulative marker of disease risk, functional 
capacity, and residual life span (3). In a typical brain-age study, a 
machine learning model is trained on neuroimaging data—usually 
whole-brain structural T1-weighted magnetic resonance imaging 
(MRI) data—to predict chronological age. This trained model is then 
used to evaluate neuroimaging data from previously unseen indi-
viduals and evaluated on the basis of the “brain-age gap” (BAG) as 
defined by the difference between predicted and chronological age.

A decade after its inception, this approach has developed into a 
major component of biological age research with a plethora of 
publications linking individual differences between chronological 
and brain age to genetic, environmental, and demographic charac-
teristics in health and disease [for a comprehensive review, see (4)]. 

For example, a higher brain age compared to chronological age 
has been associated with markers of physiological aging (e.g., 
grip strength, lung function, walking speed), cognitive aging (5), 
life risk (6), and poor future health outcomes including progression 
from mild cognitive impairment to dementia (7, 8), mortality (5), 
and a range of neurological diseases and psychiatric disorders 
[reviewed in (9)].

However, despite its scientific relevance and popularity, brain-
age research faces numerous challenges, which hamper further 
progress and the translation of findings into clinical practice. First, 
the quantity and quality of the neuroimaging data upon which the 
underlying brain-age models are trained differ widely across 
studies, with only more recent studies training on more than 
100 samples. Given the large number of voxels measured by modern 
structural MRI and the complexity of the multivariate machine 
learning models used in brain-age modeling, these small training 
sample sizes may lead to low-performance models with compara-
tively large errors. While studies drawing on larger training samples 
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exist, historical models are of limited value as they cover only a cer-
tain age range [cf., for example, the UK Biobank (3) dataset including 
subjects older than 45 years only]. In contrast, more recent studies 
train on several publicly available datasets that have reached training 
sample sizes of up to N = 2001 covering the full adult age range (10). 
Also, more recent studies [enhancing neuro imaging genetics through 
meta-analysis (ENIGMA) (11) or Kaufmann et al. (12)] have reached 
very good performance in large training and validation datasets de-
spite focusing on a limited set of morphological features. These studies 
clearly provide major improvements with regard to previous studies.

Second, the assessment of the performance of the trained model 
is often severely hampered by small validation datasets. With 
so-called leave-one-out cross validation—a validation scheme that 
relies on averaging performance across N models using a validation 
dataset size of N = 1  in each iteration—the norm rather than the 
exception, performance estimates are often highly variable. If inde-
pendent model validation on previously unseen datasets is conducted 
at all, validation samples are often small. Since validation sample 
sizes below N = 100 may yield a substantial percentage of spuriously 
inflated performance estimates, the stability of brain-age estimates 
underlying many brain-age studies might be questioned (13). 
Further, validation on large independent datasets including data 
from multiple recruitment centers and imaging sites has only 
improved recently with studies such as Bashyam et al. (14), who 
used a cross-disorder sample comprising N = 11,729 participants. 
Also, brain-age models are regularly not evaluated regarding poten-
tial biases such as gender, for which fitting separate models might 
be beneficial.

Third, although the initial brain-age framework suggested linear 
relevance vector regression (RVR), algorithms commonly used 
today also include (nonlinear) support vector machines (SVMs) 
and, more recently, Gaussian process regressors (4). Often, the 
choice of algorithm is not justified, and empirical comparisons of 
different approaches are rare. Especially problematic is the fact that 
Gaussian process regression (GPR) and RVR runtimes scale 
cubically with the number of samples, rendering training on large 
datasets difficult. Also, models trained using these algorithms 
cannot be shared among researchers because of data protection 
issues as they allow for a partial or even complete reconstruction of 
the training data, thereby hampering external validation. Moreover, 
the lack of publicly available brain-age models forces researchers 

to use a large portion of their data for brain-age model training 
and validation—either vastly decreasing statistical power for subse-
quent analyses or introducing additional variation because of 
cross-validation.

Fourth, an analysis regarding which characteristics of the brain 
drive brain-age predictions is either not conducted at all, or results 
are not comparable across studies because of different preprocessing 
and algorithm-specific importance score mapping. For example, 
mapping SVM weights as a proxy for feature importance may yield 
vastly different results, compared with deriving Gaussian process 
g-maps (15), rendering results incomparable. In addition, studies 
investigate the properties and performance of the machine learning 
model, not the interaction with single-subject data underlying 
predictions, thereby disregarding individual differences driving 
predictions. With ever-growing samples allowing for the applica-
tion of ever more sophisticated machine learning algorithms, this 
underscores the need for a principled approach to transparency 
[cf. explainability (16)] that is comparable across algorithms.

The core metric of the field—i.e., the difference between chrono-
logical and predicted brain age (commonly referred to as BAG)—
does not account for uncertainty in model predictions. Not 
adjusting the BAG for uncertainty, however, renders findings of 
altered aging confounded with data density and variability [cf. the 
concept of normative modeling (17) for an introduction]. Specifi-
cally, deviations between chronological age and BAG may arise not 
only from neural changes as intended but also erroneously from 
high uncertainty. Therefore, failing to properly model uncertainty 
may lead to spurious results, which depend on the characteristics of 
the training sample and properties of the model rather than on the 
underlying association of a variable with BAG. Uncertainty arising 
from noise inherent in the observations (i.e., aleatory uncertainty) 
and uncertainty arising from the model itself (i.e., epistemic 
uncertainty) must be considered. Figure 1 illustrates the concept of 
adjusting the BAG by individual uncertainty.

While not commonly used in brain-age research, algorithms 
often used in brain-age modeling such as RVR and the GPR are, in 
principle, capable of modeling aleatory and epistemic uncertainty. 
For high-dimensional inputs, however, uncertainty estimation be-
comes exceedingly difficult using these methods. This has sparked 
a plethora of research into alternative approaches, especially for 
neural networks (18–20). While interesting, most of these approaches 

Fig. 1. Example data illustrating the effects of adjusting the BAG for individual uncertainty. Left: Regression model (solid line) with uncertainty estimate (e.g., 95% 
predictive interval; dotted lines) trained on toy data with varying density and variability (light grey) was applied to three test samples (dark gray). BAG is defined as a test 
sample’s distance from the regression line. Right: Uncertainty adjustment increases BAG in areas of low uncertainty (left-most test sample) and decreases it in areas of high 
uncertainty (right-most test sample). a, aleatory uncertainty; e, epistemic uncertainty.
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do not consider aleatory and epistemic uncertainty together, and 
none have been applied to brain-age research.

Here, we address these issues by (i) introducing a robust Monte 
Carlo dropout composite quantile regression (MCCQR) Neural 
Network architecture capable of estimating aleatory and epistemic 
uncertainty in high-dimensional data; (ii) training our model on 
anatomical MRI data of N = 10,691 individuals between 20 and 
72 years of age from the German National Cohort (GNC); (iii) 
validating the resulting model using leave-site-out cross-validation 
across 10 recruitment centers and 3 additionally independent, 
external validation sets comprising a total of N = 4004 samples 
between 18 and 86 years of age; (iv) benchmarking the MCCQR 
model against the five most commonly used algorithms in brain-
age modeling with regard to predictive performance and quantifi-
cation of uncertainty; (v) systematically assessing model bias for 
gender, age, and ethnicity; and (vi) developing a unified explain-
ability approach based on the combination of occlusion-sensitivity 
mapping and generalized linear multilevel modeling to identify 
brain regions driving brain-age predictions. Building on data from 
the GNC study, we apply the MCCQR model to predict uncertainty- 
adjusted brain-age gaps and investigate their association with body 
mass index (BMI) and major depressive disorder. As training data 
cannot be reconstructed from the MCCQR model, we make the 
pretrained model publicly available for validation and use in future 
research.

RESULTS
Model performance
We evaluated our MCCQR Neural Network model against five 
commonly used algorithms in brain-age modeling—namely, the RVR, 
linear SVM, SVM with a radial basis function kernel (SVM-rbf), 
GPR, and least absolute shrinkage and selection operator (LASSO) 
regression—regarding predictive performance. For comparison, we 
also evaluated a version of our neural network model without 
uncertainty quantification but with an otherwise identical network 
structure and hyperparameters [artificial neural network (ANN)].

We iteratively trained our model on data of patients recruited by 
9 of the 10 recruitment centers contributing MRI data to the GNC 
(N = 10,691) and predicted brain age for all samples from the 
remaining center. This leave-site-out cross-validation showed a 
median absolute error (MAE) across all 10 recruitment centers of 
2.94 years (SD = 0.22) for the MCCQR model. Performance of the 
other algorithms ranged from 3.05 (SD = 0.22) for both GPR and 
SVM to 4.25 (SD = 0.30) for LASSO regression. Results of 10-fold 
cross-validation corroborate this ranking of performance with the 
MCCQR, reaching an MAE of 2.95 years (SD = 0.16) with GPR and 
SVM MAE = 3.09 (SD = 0.11) and LASSO regression MAE = 4.19 
(SD = 0.11). The ANN obtained MAE = 3.10 (SD = 0.14) for leave-
site- out cross-validation and MAE = 3.02 (SD = 0.15) for 10-fold 
cross-validation.

While cross-validation performance—particularly across recruit-
ment centers—usually provides good estimates of generalization 
performance, it does not consider additional sources of variability 
such as different data acquisition protocols, alterations in recruit-
ment, or sample characteristics. Therefore, we validated all models 
in three independent samples (N = 4004), namely, the BiDirect study, 
the Marburg-Münster Affective Disorders Cohort Study (MACS), 
and the Information eXtraction from Images (IXI) dataset. To 

assess stability under real-world conditions of later use, these sam-
ples covered a larger age range than the training data (20 to 86 years 
versus 20 to 72 years in the GNC sample) as well as less restrictive 
exclusion criteria (for a detailed description, see Materials and 
Methods): For the BiDirect sample (N = 1460), the MCCQR model 
reached an MAE of 3.45 years. Performance of the other models 
ranged from 3.60 for the RVR to 4.79 for the SVM-rbf. The ANN 
reached an MAE of 3.76 years. In the MACS sample (N  =  1986) 
(21), the MCCQR model reached an MAE of 3.92, while the other 
models obtained generalization performance between 4.15 (GPR 
and SVM) and 9.92 (SVM-rbf). The ANN reached MAE  =  3.76 
years. Last, we evaluated performance on the publicly available IXI 
dataset (www.brain-development.org, N  =  561). The MCCQR 
model and the ANN reached an MAE of 4.57 and 4.48 years, respec-
tively. The other models’ performances ranged between MAE = 4.91 
years (RVR) and MAE = 8.10 (SVM-rbf). Table 1 shows individual 
model performance for leave-site-out, 10-fold cross-validation, and 
the three independent validation samples. The MCCQR achieves 
lower MAE compared with all other algorithms commonly used in 
brain-age research. The ANN displays lower MAE than the MCCQR 
in two of five cases, indicating a slight advantage for the neural 
network architecture disregarding uncertainty in these cases.

Uncertainty quantification
Adjusting BAG for aleatory and epistemic uncertainty is crucial as 
findings of altered aging may otherwise be driven by, e.g., training 
data density and variability. While algorithms such as RVR and 
GPR are, in principle, capable of modeling aleatory and epistemic 
uncertainty, performance on high-dimensional data may be 
problematic. To evaluate the quality of the uncertainty quantifica-
tion, we estimated uncertainty using the MCCQR, RVR, and GPR 
(note that the other algorithms do not readily provide uncertainty 
estimates). Then, we assessed prediction interval coverage probability 
(PICP), i.e., the probability that a sample’s true value is contained 
within the predictive interval. Figure 2 depicts PICPs for given 
quantile values for cross-validation and the three independent vali-
dation datasets. Note that underestimation of uncertainty is highly 
problematic as samples may be erroneously characterized as 
deviants from the normal brain-aging trajectory. Overestimation of 
uncertainty decreases the ability to detect outliers, rendering the ap-
proach more conservative. While the GPR substantially overestimates 
uncertainty in all datasets, RVR and MCCQR provide high-quality 

Table 1. MAE for all models, cross-validation schemes, and 
independent validation samples. CV, cross-validation. For  
cross-validation, SD across folds is given in parentheses. 

Model Leave-site-
out CV 10-Fold CV BiDirect MACS IXI

RVR 3.37 (0.16) 3.32 (0.13) 3.60 5.07 4.91

GPR 3.05 (0.22) 3.09 (0.11) 3.74 4.15 5.03

SVM 3.05 (0.22) 3.09 (0.11) 3.74 4.15 5.03

SVM-rbf 4.19 (0.27) 4.16 (0.16) 4.79 9.92 8.10

LASSO 4.25 (0.30) 4.19 (0.12) 4.44 8.35 6.94

ANN 3.10 (0.14) 3.02 (0.15) 3.56 3.76 4.48

MCCQR 2.94 (0.22) 2.95 (0.16) 3.45 3.91 4.57
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uncertainty estimations for GNC and BiDirect datasets. MCCQR 
outperforms RVR in the MACS and IXI datasets. Note that incor-
porating epistemic or aleatory uncertainty alone—as has recently 
been suggested (20) for brain-age models—systematically under-
estimates uncertainty (see fig. S1).

Relevance of uncertainty adjustment
As outlined above, brain-age gaps may arise not only from brain 
changes as intended but also erroneously from high uncertainty, 
i.e., a person may have a large BAG not only due to actual changes 
in the brain but also due to properties of the underlying machine 
learning model that arise from characteristics of the training data 
such as data density and variability. Here, we empirically demon-
strate two such cases.

First, we investigated the association of BAG and BMI in the 
GNC study data. On the basis of this, we find a significant associa-
tion between BMI and BAG (F1,10,344 = 7.06, P = 0.008). However, 
this effect is no longer observed if uncertainty is considered by 
scaling BAG with the SD of the individual predictive distribution 
(F1,10,344 = 0.15, P = 0.697). Correspondingly, effect size (partial 2) 
was reduced by 98%.

Second, we investigated the difference in BAG between a 
population sample (N = 1612) and patients suffering from major 
depressive disorder (N = 1541) from the MACS and the BiDirect 
sample. While the standard analysis based on BAG failed to reveal a 
significant difference (F1,3148 = 1.61, P = 0.204), the same analysis 
based on uncertainty-corrected BAG detected a significant effect 
(F1,3148 = 5.59, P = 0.018). Likewise, partial 2 was increased by 247%.

Bias assessment
As machine learning models are not programmed but trained, they 
will mimic systematic biases inherent in their training data (22). 
While this potential algorithmic bias must be carefully investigated 
with regard to performance differences in specific subgroups to 
determine for which populations it yields robust estimates, it is 
often neglected in brain-age research [for an in-depth discussion, 
see (23)]. Here, we investigated model performance differences for 
gender, ethnicity, and age.

We found that model performance of the MCCQR did not 
substantially differ with regard to gender, reaching a standardized 
MAE of 0.459 for females and a standardized MAE of 0.456 for 
males in the BiDirect dataset (due to different age ranges between 

Fig. 2. PICP for leave-site-out GNC and independent validation samples (BiDirect, MACS, and IXI) for the RVR, the GPR, and our MCCQR Neural Network. Under-
estimation (overestimation) of uncertainty occurs if empirical PICPs are below (above) optimal PICP as indicated by the solid line.

D
ow

nloaded from
 https://w

w
w

.science.org at M
artin L

uther U
niversitat H

alle-W
ittenberg on M

ay 12, 2022



Hahn et al., Sci. Adv. 8, eabg9471 (2022)     5 January 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 10

males and females, we standardized MAE to make results comparable). 
In the MACS dataset, standardized MAE reached 0.298 in females 
and 0.264 in males. For the IXI dataset, the model reached a 
standardized MAE of 0.264 in females and 0.300 in males. Note that 
we defined gender as male and female as no further information on 
other genders was available. Regarding ethnicity, we tested our 
model on a publicly available dataset from Beijing Normal Univer-
sity (N = 179) between 18 and 28 years of age. Despite the low age 
range, the MCCQR failed to provide reasonable brain-age predic-
tions with an MAE = 8.39. Last, we investigated model performance 
across different ages. As commonly reported in brain-age studies, 
we observed a correlation between BAG and age (r = −0.39) and 
between uncertainty-corrected BAG and age (r = −0.43) in the 
BiDirect sample. The same is true for the MACS dataset (BAG, 
r = −0.36; uncertainty-corrected BAG, r = −0.40) and the IXI dataset 
(BAG, r = −0.70; uncertainty-corrected BAG r = −0.75), implying 
that in all three validation datasets, performance is better in older 
participants (see fig. S2). Thus, we included age as a covariate in all 
statistical analyses involving the BAG in the “Relevance of uncer-
tainty adjustment” section.

Explainability
Combining occlusion-sensitivity mapping and generalized linear 
multilevel modeling, we investigated which brain regions are relevant 
for accurate brain-age prediction in the MACS sample (N = 1986). 
We show that occlusion—i.e., the exclusion of data—of any of the 
116 regions of the Automated Anatomical Labeling brain atlas signifi-
cantly affected model performance (largest P < 0.001; see table S1). 
Occlusion of five regions leads to increased BAG, while occlusion 
of 107 regions decreased BAG. Strongest BAG-increasing effects 
were observed for left and right putamen and left Heschl’s gyrus. 
Strongest BAG- decreasing effects were observed for right inferior 
temporal gyrus, left middle temporal gyrus, and left middle frontal 
gyrus (see fig. S3).

DISCUSSION
We trained an uncertainty-aware, shareable, and transparent 
MCCQR Neural Network on N = 10,691 samples from the GNC.  
This model achieves lower error rates compared with existing models 
across 10 recruitment centers and in three additional, independent 
validation samples (N = 4004). The model thus generalized well to 
independent datasets with larger age range than the training data. 
In contrast to currently used algorithms—which either do not pro-
vide uncertainty estimates or over- or underestimate uncertainty—
the MCCQR model provides robust, distribution-free uncertainty 
quantification in high-dimensional neuroimaging data. Building on 
this, we show in N = 10,691 subjects from the GNC that a spuriously 
inflated brain-age deviation effect for BMI is found if uncertainty is 
ignored. Likewise, we demonstrate in the BiDirect sample that 
correcting for uncertainty also increases power to detect altered 
aging in major depressive disorder (N = 688) as compared with a 
population sample (N = 719). These findings underscore the need 
to adjust brain-age gaps for aleatory and epistemic uncertainty. 
Nonadjustment for these uncertainty components led to false-positive 
and false-negative findings in our studies.

While the importance of uncertainty quantification has been 
discussed at length in the context of normative modeling [cf. (17) 
for a discussion of the relevance of including aleatory and epistemic 

uncertainty] and two of the algorithms commonly used in brain-age 
research (mainly GPR) provide uncertainty quantification, it has 
largely been ignored in the brain-age literature to date. This could 
be due to several reasons: First, GPR and RVR do not scale well to 
large datasets as they require the inversion of the kernel matrix, and 
more scalable GPRs based on variational Bayes are still an active 
area of research. Second, reasonable uncertainty estimation for 
GPR models becomes exceedingly difficult in situations in which 
the number of features far exceeds the number of samples as is the 
case in virtually all MRI studies. This issue also arose in our study, 
leading to unreasonable uncertainty estimates (cf. Fig.  2). Third, 
GPR and RVR models require the full training sample to make 
predictions. While scalable GPR approaches only require a subset 
of the training data, the quality of predictions directly depends on 
the number and representativity of these so-called induction points. 
Note that in our study, the RVR algorithm’s uncertainty quantifica-
tion was of high quality in the GNC and BiDirect data but decreased 
in comparison to the MCCQR in the MACS and IXI datasets. This 
performance might render it a viable alternative with regard to 
uncertainty quantification in some cases. However, as literally the 
entire training dataset is required to make predictions using RVR, 
the data protection issues arising from this largely prohibit model 
sharing and thus independent validation.

A recent study also recognized the issue of uncertainty quantifi-
cation for brain-age modeling and used quantile regression (QR) to 
estimate aleatory uncertainty in brain-age prediction (20). While 
this approach accounts for aleatory uncertainty induced by, e.g., 
measurement error, it does not consider epistemic uncertainty, i.e., 
uncertainty in the model weights. Empirically, we showed that 
accounting for aleatory uncertainty only substantially underestimated 
true uncertainty (cf. fig. S1). If data density differs over age groups, 
seemingly uncertainty-corrected brain-age gaps may still be con-
founded. Thereby, deviant brain ages might spuriously arise from 
differential training data density—an effect especially problematic 
given the relatively small training sample sizes used in most brain-age 
studies. In addition, it may be difficult to detect as only subsets of 
BAGs of a given sample are affected.

As mentioned above, our approach is intimately related to 
normative modeling (17). In contrast to this approach, however, we 
do not seek to quantify voxel-wise deviation, but deviation on the 
level of the individual. Hence, we do not predict single voxel data 
from chronological age, but chronological age from the multivariate 
pattern of whole-brain data. While this directly yields brain-age 
predictions on the level of the individual—hence circumventing the 
need to estimate individual-level predictions based on extreme 
value statistics or the combination of deviations across voxels as has 
been suggested for normative modeling—it cannot directly be used 
as a brain mapping method. To this end, we adopted an occlusion- 
sensitivity mapping approach, which quantifies regional importance 
as the reduction in BAG when features from a specific region are 
withheld (24). Compared with other approaches to explainability 
such as the visualization of the network weights using, e.g., layer- 
wise relevance propagation (25), occlusion-sensitivity mapping comes 
with the benefit of yielding relevant features for each individual. 
From a methodological point of view, the multilevel model used in 
this study holds crucial advantages over the commonly used mass- 
univariate approach. First, in the mass-univariate approach, estimates 
for the effect of the predictors on BAG are only informed by one 
region. In the multilevel framework, however, each estimate is 
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informed not only by its region but also by all other regions. Second, 
the multilevel model enables us to include theoretically necessary 
control variables, which vary over brain regions, but not over 
samples, such as the size of each region of interest (ROI). Third, the 
multilevel approach controls for dependency within the model, 
alleviating the need for multiple comparison correction as required 
in the mass-univariate case (26). This analysis revealed that occlu-
sion of any region resulted in a significant change of brain-age 
predictions, underscoring the multivariate, distributed nature of aging 
in the brain. Also, our results mitigate concerns that high-performance 
brain-age models might focus on a small subset of features not 
affected by pathology (14).

Machine learning models are trained on data and may thus mimic 
systematic biases inherent in their training data. Investigating per-
formance in specific subgroups revealed that the MCCQR performed 
comparably for females and males. As is the case for most brain-age 
models, we observed a correlation between BAG and age. This be-
havior is not unexpected, as errors in regression modeling will always 
tend toward the mean (age in this case) of the training set. Nonethe-
less, it requires modeling age as a covariate in all analyses aiming 
to associate BAG with variables of interest [for an introduction to 
age-bias correction approaches in brain-age modeling, see (27)]. In-
vestigating ethnicity bias, we showed that our model fails to ac-
curately predict age in a Chinese sample. On the one hand, this 
limitation was to be expected given the GNC aims to recruit a ran-
dom population sample of Germany. One the other hand, this effect 
underscores the need for systematic bias assessment. The MCCQR 
also offers an opportunity to remedy this issue (see below).

The MCCQR—in contrast to most approaches used in brain-age 
research—does not allow for the reconstruction of individual 
samples from the training sample. Thus, we make it publicly avail-
able. This is beneficial for three reasons: First, it allows others to 
independently assess MCCQR model performance. Second, it may 
markedly increase power and robustness of smaller brain-age stud-
ies by circumventing the need to train a brain-age model and test 
associations with variables of interest in the same dataset. Third, it 
enables researchers to continue training the model with more data. 
For example, fine-tuning the MCCQR model with data from other 
ethnic groups—e.g., Asian—would help the model generalize better. 
In this regard, future studies using additional data from ethnic 
groups ought to clarify whether it is ethnicity per se or, e.g., differ-
ent MRI scanning protocols that have led to lower performance. 
In the same vein, our model could be extended by adding, e.g., 
three-dimensional convolution layers [as done, e.g., in (10, 14)] to 
the MCCQR to allow predictions directly from raw MRI data with-
out the need for preprocessing. While this study constitutes a first 
step toward incorporating uncertainty in brain-age modeling, it is 
limited in several ways. First, we evaluated the model neither on a 
large sample of older participants (>72 years) nor on a sample of 
adolescents. Second, we did not explicitly model GNC imaging sites 
during training, and a benchmark against state-of-the-art deep 
learning approaches is missing. Future studies could therefore not 
only evaluate the model but also increase generalization and usability 
by training on more diverse datasets and developing model archi-
tecture. We facilitate this research by making the pretrained model 
publicly available with this publication.

In light of this, we provide the uncertainty-aware, shareable, and 
transparent MCCQR architecture and pretrained model with the 
intention to stimulate further research and increase power for 

small-sample analyses. The pretrained PHOTON-AI model and 
code can be downloaded from the PHOTON AI model repository 
(www.photon-ai.com/repo).

MATERIALS AND METHODS
Training and validation samples
Whole-brain MRI data from five sources were used. We trained the 
MCCQR on the GNC sample. Results for leave-site-out and 10-fold 
cross-validation are also based on the GNC sample. Independent 
validation was based on the BiDirect sample, the MACS data, and 
the IXI dataset. Ethnicity bias assessment was conducted using the 
Beijing Normal University dataset (see below). In the following, we 
describe each dataset in more detail. Also, table S2 provides further 
sample characteristics, including sample sizes, gender distribution, 
age minimum and maximum, and SD.
German National Cohort
This cohort is one of the population-based “megacohorts” and 
examines 205,000 Germans, aged 20 to 72 years, in 18 study centers 
across Germany between 2014 and 2019 using a comprehensive 
program. Specifically, this included a 3.0-Tesla whole-body MRI 
(T1w-MPRAGE) in 30,000 participants, performed in five GNC 
imaging centers equipped with dedicated identical magnets (Skyra, 
Siemens Healthineers, Erlangen, Germany) examining participants 
from 11 of the centers. This analysis is based on the “data freeze 
100K” milestone for the first 100,000 participants, which also included 
the first 10,691 participants with completed MRIs of sufficient quality 
[for a detailed protocol, see (28, 29)]. We calculated BMI from directly 
measured height and weight (kg/m2; mean Becks Depression Inven-
tory (BDI) = 26.82; SD BDI = 4.76). To ensure that our models were 
not driven by data quality or total intracranial volume (TIV), we as-
sessed the predictive power of the three data quality parameters pro-
vided by the Cat12 toolbox and TIV. We show that TIV, bias, noise, 
and weighted average interquartile range combined explain only 
9.06% of variation in age using a linear SVM with 10-fold cross- 
validation compared to the 86% achieved by the MCCQR model.
BiDirect
The BiDirect study is an ongoing study that comprises three distinct 
cohorts: patients hospitalized for an acute episode of major depres-
sion, patients 2 to 4 months after an acute cardiac event, and healthy 
controls randomly drawn from the population register of the city of 
Münster, Germany. Baseline examination of all participants included 
a structural MRI of the brain, a computer-assisted face-to-face 
interview about sociodemographic characteristics, a medical history, 
an extensive psychiatric assessment, and collection of blood sam-
ples. Inclusion criteria for the present study were availability of 
completed baseline MRI data with sufficient MRI quality. All pa-
tients with major depressive disorder had an episode of major 
depression at the time of recruitment and were either currently 
hospitalized (>90%) or had been hospitalized for depression at least 
once during the 12 months before inclusion in the study (<10%). 
Further details on the rationale, design, and recruitment procedures 
of the BiDirect study have been described elsewhere (30).
Marburg-Münster Affective Disorder Cohort Study
Participants were recruited through psychiatric hospitals or news-
paper advertisements. Inclusion criteria included mild, moderate, 
or partially remitted major depressive disorder episodes in addition 
to severe depression. Patients could be undergoing inpatient, 
outpatient, or no current treatment. The MACS was conducted at 
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two imaging sites: University of Münster, Germany, and University of 
Marburg, Germany. Further details about the structure of the MACS 
(31) and MRI quality assurance protocol (21) are provided elsewhere. 
Inclusion criteria for the present study were availability of completed 
baseline MRI data with sufficient MRI quality [see (21) for details].
Information eXtraction from Images
This dataset comprises images from normal, healthy participants, 
along with demographic characteristics, collected as part of the IXI 
project available for download (https://brain-development.org/
ixi-dataset/). The data have been collected at three hospitals in 
London (Hammersmith Hospital using a Philips 3T system, Guy’s 
Hospital using a Philips 1.5T system, and Institute of Psychiatry 
using a GE 1.5T system). Inclusion criteria for the present study 
were availability of completed baseline MRI data.
Beijing Normal University
This dataset includes 180 healthy controls from a community 
(student) sample at Beijing Normal University in China. Inclusion 
criteria for the present study were availability of completed baseline 
MRI data. Further details can be found online (http://fcon_1000.
projects.nitrc.org/indi/retro/BeijingEnhanced.html).

MRI preprocessing
MRI data were preprocessed using the CAT12 toolbox (built 1450 
with SPM12 version 7487 and Matlab 2019a; http://dbm.neuro.
uni-jena.de/cat) with default parameters. Images were bias corrected, 
segmented using tissue classification, normalized to MNI-space 
using DARTEL normalization, smoothed with an isotropic Gaussian 
Kernel (8 mm FWHM), and resampled to 3-mm isomorphic voxels. 
Using the PHOTON AI software (see “Model training and valida-
tion” section below), a whole-brain mask comprising all gray matter 
voxels was applied, data were vectorized, features with zero vari-
ance in the GNC dataset were removed, and the scikit-learn Standard 
Scaler was applied.

MCCQR model
Commonly, regression models fW(x) are used to describe the rela-
tionship of features X = (x,…,xn) and a target variable y = (y1,…,yn). 
We denote model predictions    ̂  y   =  f   W (x)  with W the model param-
eters. Commonly, these regression models provide predictions as 
point estimates rather predictive distributions. We thus consider 
two types of uncertainty in accordance with Kendall and Gal (32). 
The first—aleatory uncertainty—captures noise inherent in the 
observations. The second—epistemic uncertainty—accounts for 
uncertainty in the model. While the former is irreducible for a given 
model, the latter depends on data availability and training and is 
thus affected by data density and can be reduced by training (i) the 
model based on the loss function and (ii) with additional data. 
While numerous approaches to uncertainty quantification have 
been suggested, no commonly accepted approach exists. While 
Bayesian approaches such as GPR provide a mathematically elegant 
framework, such approaches often fail in high-dimensional settings 
or are not scalable to large datasets (33). In particular, capturing 
aleatory and epistemic uncertainty within the same neural network 
model remains challenging (34). Here, we suggest to combine 
composite QR and Monte Carlo dropout to model aleatory and 
epistemic uncertainty within a single framework, respectively.
Composite QR
QR provides an estimate not only of the conditional mean (as is 
done when optimizing for mean absolute error) but also of any 

quantile in the data. This comes with two advantages. First, we can 
estimate the median (instead of the mean), thereby obtaining a 
prediction more robust to potential outliers. Second, predicting 
quantiles can yield predictive intervals, thereby modeling aleatory 
uncertainty. For example, we cannot only predict a sample’s target 
value but also the 95% confidence bounds of this prediction. This 
makes QR interesting whenever percentile curves are of interest, 
e.g., when screening for abnormal growth.

Commonly, conditional quantiles for predetermined quantile 
probabilities are estimated separately by different regression equa-
tions. These are then combined to build a piecewise estimate of the 
conditional response distribution. As this approach is prone to 
“quantile crossing,” i.e., QR predictions do not increase with the 
specified quantile probability , composite QR was introduced (35). 
In composite QR, simultaneous estimates for multiple values of  
are obtained, and the regression coefficients are shared across the 
different QR models. In essence, we aim to approximate a single 
-independent function that best describes the function to be learned. 
Structurally, composite QR differs from QR only in that the QR 
error (tilted loss) function is summed over many, usually equally 
spaced values of . Specifically, QR is implemented using the QR 
error function (36) to optimize a neural network via

   E     =   1 ─ N     ∑ 
t=1

  
N

         (y(t ) −   ̂  y  (t ) )  

with the tilted loss function 

   ρ  τ  (ε ) = τ · ε if ε ≥ 0, else (1 − τ ) ε  

Composite QR extends this idea to estimating multiple quantiles 
simultaneously. This is not only more stable but also computation-
ally more efficient as fewer coefficients and fewer operations during 
weight updating are required. To achieve this, we modified the QR 
error function (above) to

   E  C   =   1 ─ KN     ∑ 
k=1

  
K

     ∑ 
t=1

  
N

          k    (y(t ) −     ̂  y       k    (t ) )  

where k are usually equally spaced, for example,     k   =   k _ K + 1   for 
k = 1,2,…, K as suggested by Cannon (18). Specifically, we calculate 
101 equally spaced quantile values for 0 <  < 1. To allow for contin-
uous sampling during prediction, we linearly interpolated these 
quantile values. Note that while this approach does not formally 
guarantee the absence of quantile crossover, composite QR reduced 
the likelihood so much that we never empirically observed quantile 
crossover for any of the more than 1.48 billion quantiles (arising 
from 101 quantiles, 14,695 samples, and 1000 draws from the 
predictive distribution per sample) estimated during independent 
and cross-validation in this study.
Monte Carlo dropout
While composite QR captures aleatory uncertainty, it does not 
account for epistemic uncertainty, i.e., uncertainty in the model 
parameters. For example, epistemic uncertainty should be higher in 
regions of the input space where little data are available, whereas it 
should be lower in regions with high data density. While we could, 
in principle, model each weight of a neural network as distribution 
from which to sample weight values during prediction, estimating 
these probabilistic models remains challenging for high-dimensional 
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data. Following Gal and Ghahramani (19), we therefore adopted a 
Monte Carlo dropout approach. While dropout is commonly used 
for regularization during neural network training, the Monte Carlo 
dropout approach enforces dropout during training and at test 
time. Thus, dropout can be used to obtain T predictions for the 
same input with different active neurons. This allows the estimation 
of p(y|fW(x)), the mean probability of a prediction given a test input 
X = (X1,…,Xn) for the neural network f with the according weights 
W. We therefore define our likelihood as a Gaussian with mean 
given by the model output according to Gal and Ghahramani (19)

  p(y ∣  f   W (x ) ) = N(  f   W (x ) ,     2 )  

We can then calculate the mean probability using Monte Carlo 
dropout performing T forward passes using randomly sampled 
weight values Wi from the neural network using dropout as

  p(y ∣  f   W (x ) ) =   1 ─ T     ∑ 
i=1

  
T
   p(  f   W (x ) = k ∣ x,  W  i  )  

Monte Carlo dropout composite QR
To model epistemic and aleatory uncertainty simultaneously within 
the same framework, we combined Monte Carlo dropout and 
composite QR described above. Specifically, we implemented the 
resulting MCCQR Neural Network consisting of one hidden layer 
with 32 rectified linear units using Tensorflow 2.0 together with 
tensor flow probability for robust median MAE calculation over 
batches. Note that we used MAE instead of the more common mean 
absolute error as the median is more robust to outliers compared to 
the mean. We trained for 10 epochs with a learning rate of 0.01, a batch 
size of 64, and a dropout rate of 0.2 using the Adam Optimizer with 
default settings. Predictions were obtained by sampling 1000 times 
from each sample’s predictive distribution with random  values and 
dropout enabled. A sample’s brain-age prediction was computed as 
the median of the resulting values. Likewise, uncertainty was computed 
as the SD of the resulting values.
Reconstruction of individual-level data
Machine learning models traditionally used in brain-age modeling 
allow for the reconstruction of individual-level data. For our model, 
however, only saving model parameters and network architecture is 
required. Reconstructing individual-level data from this informa-
tion alone is not possible for quantitative and conceptual reasons: 
Considering the quantity of information, our final model contains 
1,269,701 parameters, 64 of which are not trainable. The complete 
training dataset consists of 10,696 images containing 39,904 voxels 
each, resulting in 426,733,376 parameters in the dataset. This 
amounts to about 336 times the number of parameters in our model, 
rendering it incapable of “memorizing” the data. Considering the 
conceptual nature of the training process, our model applies the 
Monte Carlo dropout. This method—used to counter overfitting 
and to estimate epistemic uncertainty—randomly reduces the 
number of active units during a forward pass. As the network 
parameters are optimized for inference across the whole training 
set, the network is not capable of compressing the images. Thus, we 
cannot recover individual trainings samples from the network.

Benchmarking alternative machine learning models
We evaluated our MCCQR Neural Network model against five 
commonly used algorithms in brain-age modeling—namely, the 

RVR, linear SVM, SVM-rbf, GPR, and LASSO regression. We used 
the fast-rvm implementation from sklearn-bayes (https://github.
com/AmazaspShumik/sklearn-bayes) and used SVM, GPR, and 
LASSO implementations from sci-kit learn (37) with default settings. 
For comparison, we also evaluated a version of our neural network 
model without uncertainty quantification but with an otherwise 
identical network structure and hyperparameters optimizing mean 
absolute error over predictions instead of the tilted loss function 
used for the MCCQR model.

Model training and validation
All models were trained and cross-validated using the PHOTON AI 
software (www.photon-ai.com) for leave-site-out and 10-fold cross- 
validation on the GNC sample. Independent validation was con-
ducted using PHOTON AI’s .photon format for pipeline-based 
prediction with the BiDirect, MACS, IXI, and Beijing Normal 
University samples.

Generalized linear multilevel modeling for  
occlusion-sensitivity mapping
Occlusion-sensitivity mapping—in analogy to occlusion-based 
approaches for two-dimensional images (24)—quantifies regional 
importance as the reduction in performance when features from 
a specific region are withheld. Occlusion was implemented by 
sequentially setting all voxels within each of the 116 ROIs of the 
AAL brain atlas (38) to zero. Occlusion sensitivity is widely used to 
gain insight into which regions of an image a machine learning 
model uses for prediction. A region is considered more important if 
model performance decreases more strongly when information 
from this region is withheld.

To quantify this notion of importance, we combined occlusion- 
sensitivity mapping with generalized linear multilevel modeling. 
Specifically, we used multiple linear regression using the R packages 
lme4 to model the difference between BAG based on whole-brain 
data and BAG if information from a specific atlas region is withheld.

To investigate regionally specific effects, we computed uncertainty- 
corrected BAG estimates for each individual and ROI (i.e., 116 re-
gions from the AAL atlas distributed with statistical parametric mapping 
(SPM); www.fil.ion.ucl.ac.uk/spm/) independently. Then, we pre-
dicted uncertainty-corrected BAG from a group factor with AAL 
regions as factor levels, controlling for chronological age, site (where 
appropriate), gender, and ROI size. The ROI group factor was de-
fined as treatment contrast with the whole-brain (no occlusion) 
level as reference factor. This way, ROI effect estimates can easily be 
interpreted as difference in BAG from the full model. P values for 
ROI factor level effects were computed using the Kenward-Roger ap-
proximation (39) as implemented in the afex R package. This approach 
allows us to test whether the occlusion of a given region results in 
an above-chance change of predictive performance. While beyond 
the scope of this paper, the combination of occlusion-sensitivity 
mapping and generalized linear multilevel modeling also allows for 
the investigation of regional effects between clinical groups.

More generally, our approach can be considered a form of model- 
independent explainable AI: In recent years, a large number of 
methods have been proposed that aim to shed light on the contribu-
tion of variables or groups of variables on a model prediction [for a 
review and best practice, see (40)]. Among those are algorithm- 
specific approaches such as layer-wise relevance propagation that 
work with deep neural networks or the weight mapping for SVMs. 
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In essence, these techniques provide (qualitative) heatmaps, i.e., 
help to understand the informational flow in the network. In 
contrast, more general approaches ask how the prediction for a 
single sample/participant would change if the data changed (e.g., if 
we did not have variable x or if its single-to-noise ratio changes). As 
we aimed to quantify the effect of omitting/occluding ROIs inde-
pendent of a specific training sample, we opted for occlusion 
mapping here.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg9471

View/request a protocol for this paper from Bio-protocol.
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